diff options
Diffstat (limited to 'src/share')
-rw-r--r-- | src/share/algebra/browse.daase | 3390 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 6602 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 1348 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 10654 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 32268 |
5 files changed, 27145 insertions, 27117 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 85de97e3..b76f127a 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2267929 . 3485644666) +(2267310 . 3485684126) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4457 . T) (-4456 . T)) +((-4456 . T) (-4455 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}"))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4453 . T) (-4451 . T) (-4450 . T) ((-4458 "*") . T) (-4449 . T) (-4454 . T) (-4448 . T)) +((-4452 . T) (-4450 . T) (-4449 . T) ((-4457 "*") . T) (-4448 . T) (-4453 . T) (-4447 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,14 +56,14 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -1386) +(-32 R -1385) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574))))) +((|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4456))) +((|HasAttribute| |#1| (QUOTE -4455))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4456 . T) (-4457 . T)) +((-4455 . T) (-4456 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-4450 . T) (-4451 . T) (-4453 . T)) +((-4449 . T) (-4450 . T) (-4452 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -1386 UP UPUP -2089) +(-40 -1385 UP UPUP -3621) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4449 |has| (-417 |#2|) (-372)) (-4454 |has| (-417 |#2|) (-372)) (-4448 |has| (-417 |#2|) (-372)) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| (-417 |#2|) (QUOTE (-146))) (|HasCategory| (-417 |#2|) (QUOTE (-148))) (|HasCategory| (-417 |#2|) (QUOTE (-358))) (-2818 (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-377))) (-2818 (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (-2818 (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-417 |#2|) (QUOTE (-358))))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -649) (QUOTE (-574)))) (-2818 (|HasCategory| (-417 |#2|) (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372))))) -(-41 R -1386) +((-4448 |has| (-416 |#2|) (-371)) (-4453 |has| (-416 |#2|) (-371)) (-4447 |has| (-416 |#2|) (-371)) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| (-416 |#2|) (QUOTE (-146))) (|HasCategory| (-416 |#2|) (QUOTE (-148))) (|HasCategory| (-416 |#2|) (QUOTE (-357))) (-2817 (|HasCategory| (-416 |#2|) (QUOTE (-371))) (|HasCategory| (-416 |#2|) (QUOTE (-357)))) (|HasCategory| (-416 |#2|) (QUOTE (-371))) (|HasCategory| (-416 |#2|) (QUOTE (-376))) (-2817 (-12 (|HasCategory| (-416 |#2|) (QUOTE (-238))) (|HasCategory| (-416 |#2|) (QUOTE (-371)))) (|HasCategory| (-416 |#2|) (QUOTE (-357)))) (-2817 (-12 (|HasCategory| (-416 |#2|) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| (-416 |#2|) (QUOTE (-371)))) (-12 (|HasCategory| (-416 |#2|) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| (-416 |#2|) (QUOTE (-357))))) (|HasCategory| (-416 |#2|) (LIST (QUOTE -648) (QUOTE (-573)))) (-2817 (|HasCategory| (-416 |#2|) (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| (-416 |#2|) (QUOTE (-371)))) (|HasCategory| (-416 |#2|) (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| (-416 |#2|) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| (-416 |#2|) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| (-416 |#2|) (QUOTE (-371)))) (-12 (|HasCategory| (-416 |#2|) (QUOTE (-238))) (|HasCategory| (-416 |#2|) (QUOTE (-371))))) +(-41 R -1385) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -440) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -439) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -103,34 +103,34 @@ NIL (-43 R A) ((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,a) = 0} and \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,x,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,b,x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,a,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis."))) NIL -((|HasCategory| |#1| (QUOTE (-315)))) +((|HasCategory| |#1| (QUOTE (-314)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4453 |has| |#1| (-566)) (-4451 . T) (-4450 . T)) -((|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) +((-4452 |has| |#1| (-565)) (-4450 . T) (-4449 . T)) +((|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4456 . T) (-4457 . T)) -((-2818 (-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1908) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1908) (|devaluate| |#2|))))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1908) (|devaluate| |#2|))))))) +((-4455 . T) (-4456 . T)) +((-2817 (-12 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-859))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -316) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3692) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -316) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3692) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#2|))))))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-859))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -623) (QUOTE (-545)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-859))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| |#2| (QUOTE (-1112)))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| |#2| (QUOTE (-1112)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -316) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3692) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#2|))))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-371)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4450 . T) (-4451 . T) (-4453 . T)) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4449 . T) (-4450 . T) (-4452 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| $ (QUOTE (-1062))) (|HasCategory| $ (LIST (QUOTE -1051) (QUOTE (-574))))) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| $ (QUOTE (-1061))) (|HasCategory| $ (LIST (QUOTE -1050) (QUOTE (-573))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4453 . T)) +((-4452 . T)) NIL (-51 S) ((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -1386) +(-54 |Base| R -1385) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -158,7 +158,7 @@ NIL NIL (-57 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4456 . T) (-4457 . T)) +((-4455 . T) (-4456 . T)) NIL (-58 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) @@ -166,65 +166,65 @@ NIL NIL (-59 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4457 . T) (-4456 . T)) -((-2818 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) +((-4456 . T) (-4455 . T)) +((-2817 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112)))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4456 . T) (-4457 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) -(-61 -2032) +((-4455 . T) (-4456 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) +(-61 -2031) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -2032) +(-62 -2031) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-63 -2032) +(-63 -2031) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -2032) +(-64 -2031) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -2032) +(-65 -2031) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -2032) +(-66 -2031) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-67 -2032) +(-67 -2031) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -2032) +(-68 -2031) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-69 -2032) +(-69 -2031) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-70 -2032) +(-70 -2031) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-71 -2032) +(-71 -2031) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-72 -2032) +(-72 -2031) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-73 -2032) +(-73 -2031) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-74 -2032) +(-74 -2031) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -236,66 +236,66 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-77 -2032) +(-77 -2031) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-78 -2032) +(-78 -2031) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-79 -2032) +(-79 -2031) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -2032) +(-80 -2031) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -2032) +(-81 -2031) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-82 -2032) +(-82 -2031) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -2032) +(-83 -2031) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -2032) +(-84 -2031) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -2032) +(-85 -2031) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -2032) +(-86 -2031) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -2032) +(-87 -2031) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-88 -2032) +(-88 -2031) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-89 -2032) +(-89 -2031) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL (-90 R L) ((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op, m)} returns \\spad{[w, eq, lw, lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,...,A_n]} such that if \\spad{y = [y_1,...,y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',y_j'',...,y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op, m)} returns \\spad{[M,w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) NIL -((|HasCategory| |#1| (QUOTE (-372)))) +((|HasCategory| |#1| (QUOTE (-371)))) (-91 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4456 . T) (-4457 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +((-4455 . T) (-4456 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (-92 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -318,15 +318,15 @@ NIL NIL (-97) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4456 . T)) +((-4455 . T)) NIL (-98) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4456 . T) ((-4458 "*") . T) (-4457 . T) (-4453 . T) (-4451 . T) (-4450 . T) (-4449 . T) (-4454 . T) (-4448 . T) (-4447 . T) (-4446 . T) (-4445 . T) (-4444 . T) (-4452 . T) (-4455 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4443 . T)) +((-4455 . T) ((-4457 "*") . T) (-4456 . T) (-4452 . T) (-4450 . T) (-4449 . T) (-4448 . T) (-4453 . T) (-4447 . T) (-4446 . T) (-4445 . T) (-4444 . T) (-4443 . T) (-4451 . T) (-4454 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4442 . T)) NIL (-99 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4453 . T)) +((-4452 . T)) NIL (-100 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}."))) @@ -342,15 +342,15 @@ NIL NIL (-103 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4456 . T) (-4457 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +((-4455 . T) (-4456 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (-104 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4458 "*")))) +((|HasAttribute| |#1| (QUOTE (-4457 "*")))) (-105) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4456 . T)) +((-4455 . T)) NIL (-106 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -358,23 +358,23 @@ NIL NIL (-107 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4457 . T)) +((-4456 . T)) NIL (-108) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| (-574) (QUOTE (-920))) (|HasCategory| (-574) (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| (-574) (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-148))) (|HasCategory| (-574) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-1035))) (|HasCategory| (-574) (QUOTE (-830))) (-2818 (|HasCategory| (-574) (QUOTE (-830))) (|HasCategory| (-574) (QUOTE (-860)))) (|HasCategory| (-574) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-1165))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-574) (QUOTE (-239))) (|HasCategory| (-574) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-574) (LIST (QUOTE -524) (QUOTE (-1190)) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -317) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -294) (QUOTE (-574)) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-315))) (|HasCategory| (-574) (QUOTE (-555))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-574) (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-920)))) (|HasCategory| (-574) (QUOTE (-146))))) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| (-573) (QUOTE (-919))) (|HasCategory| (-573) (LIST (QUOTE -1050) (QUOTE (-1189)))) (|HasCategory| (-573) (QUOTE (-146))) (|HasCategory| (-573) (QUOTE (-148))) (|HasCategory| (-573) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| (-573) (QUOTE (-1034))) (|HasCategory| (-573) (QUOTE (-829))) (-2817 (|HasCategory| (-573) (QUOTE (-829))) (|HasCategory| (-573) (QUOTE (-859)))) (|HasCategory| (-573) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| (-573) (QUOTE (-1164))) (|HasCategory| (-573) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| (-573) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| (-573) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| (-573) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| (-573) (QUOTE (-238))) (|HasCategory| (-573) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| (-573) (LIST (QUOTE -523) (QUOTE (-1189)) (QUOTE (-573)))) (|HasCategory| (-573) (LIST (QUOTE -316) (QUOTE (-573)))) (|HasCategory| (-573) (LIST (QUOTE -293) (QUOTE (-573)) (QUOTE (-573)))) (|HasCategory| (-573) (QUOTE (-314))) (|HasCategory| (-573) (QUOTE (-554))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| (-573) (LIST (QUOTE -648) (QUOTE (-573)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-573) (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-573) (QUOTE (-919)))) (|HasCategory| (-573) (QUOTE (-146))))) (-109) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL (-110) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4457 . T) (-4456 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1113))) (|HasCategory| (-112) (LIST (QUOTE -317) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-112) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-112) (QUOTE (-1113))) (|HasCategory| (-112) (LIST (QUOTE -623) (QUOTE (-872))))) +((-4456 . T) (-4455 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1112))) (|HasCategory| (-112) (LIST (QUOTE -316) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| (-112) (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| (-112) (QUOTE (-1112))) (|HasCategory| (-112) (LIST (QUOTE -622) (QUOTE (-871))))) (-111 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4451 . T) (-4450 . T)) +((-4450 . T) (-4449 . T)) NIL (-112) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}."))) @@ -392,22 +392,22 @@ NIL ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}."))) NIL NIL -(-116 -1386 UP) +(-116 -1385 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-117 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL (-118 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| (-117 |#1|) (QUOTE (-920))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-117 |#1|) (QUOTE (-1035))) (|HasCategory| (-117 |#1|) (QUOTE (-830))) (-2818 (|HasCategory| (-117 |#1|) (QUOTE (-830))) (|HasCategory| (-117 |#1|) (QUOTE (-860)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| (-117 |#1|) (QUOTE (-1165))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-117 |#1|) (QUOTE (-239))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -524) (QUOTE (-1190)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -317) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -294) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-315))) (|HasCategory| (-117 |#1|) (QUOTE (-555))) (|HasCategory| (-117 |#1|) (QUOTE (-860))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-920)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))))) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| (-117 |#1|) (QUOTE (-919))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1050) (QUOTE (-1189)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| (-117 |#1|) (QUOTE (-1034))) (|HasCategory| (-117 |#1|) (QUOTE (-829))) (-2817 (|HasCategory| (-117 |#1|) (QUOTE (-829))) (|HasCategory| (-117 |#1|) (QUOTE (-859)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| (-117 |#1|) (QUOTE (-1164))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| (-117 |#1|) (QUOTE (-238))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -523) (QUOTE (-1189)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -316) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -293) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-314))) (|HasCategory| (-117 |#1|) (QUOTE (-554))) (|HasCategory| (-117 |#1|) (QUOTE (-859))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-919)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))))) (-119 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4457))) +((|HasAttribute| |#1| (QUOTE -4456))) (-120 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -418,15 +418,15 @@ NIL NIL (-122 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4456 . T) (-4457 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +((-4455 . T) (-4456 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (-123 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) NIL NIL (-124) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) -((-4457 . T) (-4456 . T)) +((-4456 . T) (-4455 . T)) NIL (-125 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -434,20 +434,20 @@ NIL NIL (-126 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4456 . T) (-4457 . T)) +((-4455 . T) (-4456 . T)) NIL (-127 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4456 . T) (-4457 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +((-4455 . T) (-4456 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (-128 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4456 . T) (-4457 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +((-4455 . T) (-4456 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (-129) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-4457 . T) (-4456 . T)) -((-2818 (-12 (|HasCategory| (-130) (QUOTE (-860))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1113))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130)))))) (-2818 (-12 (|HasCategory| (-130) (QUOTE (-1113))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-130) (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| (-130) (QUOTE (-860))) (|HasCategory| (-130) (QUOTE (-1113)))) (|HasCategory| (-130) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-130) (QUOTE (-1113))) (|HasCategory| (-130) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-130) (QUOTE (-1113))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130)))))) +((-4456 . T) (-4455 . T)) +((-2817 (-12 (|HasCategory| (-130) (QUOTE (-859))) (|HasCategory| (-130) (LIST (QUOTE -316) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1112))) (|HasCategory| (-130) (LIST (QUOTE -316) (QUOTE (-130)))))) (-2817 (-12 (|HasCategory| (-130) (QUOTE (-1112))) (|HasCategory| (-130) (LIST (QUOTE -316) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| (-130) (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| (-130) (QUOTE (-859))) (|HasCategory| (-130) (QUOTE (-1112)))) (|HasCategory| (-130) (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| (-130) (QUOTE (-1112))) (|HasCategory| (-130) (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| (-130) (QUOTE (-1112))) (|HasCategory| (-130) (LIST (QUOTE -316) (QUOTE (-130)))))) (-130) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL @@ -470,13 +470,13 @@ NIL NIL (-135) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) -(((-4458 "*") . T)) +(((-4457 "*") . T)) NIL -(-136 |minix| -4132 S T$) +(-136 |minix| -4131 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-137 |minix| -4132 R) +(-137 |minix| -4131 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL @@ -498,8 +498,8 @@ NIL NIL (-142) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4456 . T) (-4446 . T) (-4457 . T)) -((-2818 (-12 (|HasCategory| (-145) (QUOTE (-377))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1113))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-145) (QUOTE (-377))) (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1113))) (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1113))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) +((-4455 . T) (-4445 . T) (-4456 . T)) +((-2817 (-12 (|HasCategory| (-145) (QUOTE (-376))) (|HasCategory| (-145) (LIST (QUOTE -316) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1112))) (|HasCategory| (-145) (LIST (QUOTE -316) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| (-145) (QUOTE (-376))) (|HasCategory| (-145) (QUOTE (-859))) (|HasCategory| (-145) (QUOTE (-1112))) (|HasCategory| (-145) (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| (-145) (QUOTE (-1112))) (|HasCategory| (-145) (LIST (QUOTE -316) (QUOTE (-145)))))) (-143 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL @@ -514,7 +514,7 @@ NIL NIL (-146) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4453 . T)) +((-4452 . T)) NIL (-147 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) @@ -522,9 +522,9 @@ NIL NIL (-148) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4453 . T)) +((-4452 . T)) NIL -(-149 -1386 UP UPUP) +(-149 -1385 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}."))) NIL NIL @@ -535,14 +535,14 @@ NIL (-151 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasAttribute| |#1| (QUOTE -4456))) +((|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasAttribute| |#1| (QUOTE -4455))) (-152 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL (-153 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4451 . T) (-4450 . T) (-4453 . T)) +((-4450 . T) (-4449 . T) (-4452 . T)) NIL (-154) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) @@ -564,7 +564,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-159 R -1386) +(-159 R -1385) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -595,10 +595,10 @@ NIL (-166 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-920))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-1216))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (QUOTE (-1035))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4452)) (|HasAttribute| |#2| (QUOTE -4455)) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-566)))) +((|HasCategory| |#2| (QUOTE (-919))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1215))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#2| (QUOTE (-371))) (|HasAttribute| |#2| (QUOTE -4451)) (|HasAttribute| |#2| (QUOTE -4454)) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-565)))) (-167 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4449 -2818 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920)))) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4452 |has| |#1| (-6 -4452)) (-4455 |has| |#1| (-6 -4455)) (-3562 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4448 -2817 (|has| |#1| (-565)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919)))) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) (-4451 |has| |#1| (-6 -4451)) (-4454 |has| |#1| (-6 -4454)) (-3561 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL (-168 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -614,8 +614,8 @@ NIL NIL (-171 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4449 -2818 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920)))) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4452 |has| |#1| (-6 -4452)) (-4455 |has| |#1| (-6 -4455)) (-3562 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-358))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1190)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-239))) (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-377)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1035)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1216)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-920))))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-920)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-920)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-920))))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-1216)))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (QUOTE (-1035))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1190)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-1073))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-1216)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-920))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-372)))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-239))) (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasAttribute| |#1| (QUOTE -4452)) (|HasAttribute| |#1| (QUOTE -4455)) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190))))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-358))))) +((-4448 -2817 (|has| |#1| (-565)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919)))) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) (-4451 |has| |#1| (-6 -4451)) (-4454 |has| |#1| (-6 -4454)) (-3561 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-357))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-376))) (-2817 (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -523) (QUOTE (-1189)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-238))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-837)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-1034)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-1215)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-371))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-919))))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-919)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-919)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-919))))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-1215)))) (|HasCategory| |#1| (QUOTE (-1215))) (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-565)))) (-2817 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -523) (QUOTE (-1189)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-1072))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-1215)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-919))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-371)))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-238))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasAttribute| |#1| (QUOTE -4451)) (|HasAttribute| |#1| (QUOTE -4454)) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189))))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-357))))) (-172 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL @@ -626,7 +626,7 @@ NIL NIL (-174) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +(((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL (-175) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) @@ -634,7 +634,7 @@ NIL NIL (-176 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4458 "*") . T) (-4449 . T) (-4454 . T) (-4448 . T) (-4450 . T) (-4451 . T) (-4453 . T)) +(((-4457 "*") . T) (-4448 . T) (-4453 . T) (-4447 . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL (-177) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with \\spad{`n'}. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) @@ -651,7 +651,7 @@ NIL (-180 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-963 |#2|) (LIST (QUOTE -897) (|devaluate| |#1|)))) +((|HasCategory| (-962 |#2|) (LIST (QUOTE -896) (|devaluate| |#1|)))) (-181 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}"))) NIL @@ -688,7 +688,7 @@ NIL ((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-190 R -1386) +(-190 R -1385) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -796,23 +796,23 @@ NIL ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-217 -1386 UP UPUP R) +(-217 -1385 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-218 -1386 FP) +(-218 -1385 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-219) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| (-574) (QUOTE (-920))) (|HasCategory| (-574) (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| (-574) (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-148))) (|HasCategory| (-574) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-1035))) (|HasCategory| (-574) (QUOTE (-830))) (-2818 (|HasCategory| (-574) (QUOTE (-830))) (|HasCategory| (-574) (QUOTE (-860)))) (|HasCategory| (-574) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-1165))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-574) (QUOTE (-239))) (|HasCategory| (-574) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-574) (LIST (QUOTE -524) (QUOTE (-1190)) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -317) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -294) (QUOTE (-574)) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-315))) (|HasCategory| (-574) (QUOTE (-555))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-574) (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-920)))) (|HasCategory| (-574) (QUOTE (-146))))) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| (-573) (QUOTE (-919))) (|HasCategory| (-573) (LIST (QUOTE -1050) (QUOTE (-1189)))) (|HasCategory| (-573) (QUOTE (-146))) (|HasCategory| (-573) (QUOTE (-148))) (|HasCategory| (-573) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| (-573) (QUOTE (-1034))) (|HasCategory| (-573) (QUOTE (-829))) (-2817 (|HasCategory| (-573) (QUOTE (-829))) (|HasCategory| (-573) (QUOTE (-859)))) (|HasCategory| (-573) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| (-573) (QUOTE (-1164))) (|HasCategory| (-573) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| (-573) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| (-573) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| (-573) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| (-573) (QUOTE (-238))) (|HasCategory| (-573) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| (-573) (LIST (QUOTE -523) (QUOTE (-1189)) (QUOTE (-573)))) (|HasCategory| (-573) (LIST (QUOTE -316) (QUOTE (-573)))) (|HasCategory| (-573) (LIST (QUOTE -293) (QUOTE (-573)) (QUOTE (-573)))) (|HasCategory| (-573) (QUOTE (-314))) (|HasCategory| (-573) (QUOTE (-554))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| (-573) (LIST (QUOTE -648) (QUOTE (-573)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-573) (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-573) (QUOTE (-919)))) (|HasCategory| (-573) (QUOTE (-146))))) (-220) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-221 R -1386) +(-221 R -1385) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL @@ -826,19 +826,19 @@ NIL NIL (-224 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4456 . T) (-4457 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +((-4455 . T) (-4456 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (-225 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4453 . T)) +((-4452 . T)) NIL -(-226 R -1386) +(-226 R -1385) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-227) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-3551 . T) (-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-3550 . T) (-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL (-228) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) @@ -846,23 +846,23 @@ NIL NIL (-229 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4456 . T) (-4457 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-566))) (|HasAttribute| |#1| (QUOTE (-4458 "*"))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) +((-4455 . T) (-4456 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-565))) (|HasAttribute| |#1| (QUOTE (-4457 "*"))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (-230 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL (-231 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4457 . T)) +((-4456 . T)) NIL (-232 S R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-239)))) +((|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-238)))) (-233 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) -((-4453 . T)) +((-4452 . T)) NIL (-234 S T$) ((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}."))) @@ -880,4297 +880,4293 @@ NIL ((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}."))) NIL NIL -(-238 S) -((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x, n)} returns the \\spad{n}-th derivative of \\spad{x}."))) +(-238) +((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline"))) +((-4452 . T)) NIL -NIL -(-239) -((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x, n)} returns the \\spad{n}-th derivative of \\spad{x}."))) -((-4453 . T)) -NIL -(-240 A S) +(-239 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4456))) -(-241 S) +((|HasAttribute| |#1| (QUOTE -4455))) +(-240 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4457 . T)) +((-4456 . T)) NIL -(-242) +(-241) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-243 S -4132 R) +(-242 S -4131 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-858))) (|HasAttribute| |#3| (QUOTE -4453)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (QUOTE (-1113)))) -(-244 -4132 R) +((|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (QUOTE (-802))) (|HasCategory| |#3| (QUOTE (-857))) (|HasAttribute| |#3| (QUOTE -4452)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (QUOTE (-1112)))) +(-243 -4131 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4450 |has| |#2| (-1062)) (-4451 |has| |#2| (-1062)) (-4453 |has| |#2| (-6 -4453)) ((-4458 "*") |has| |#2| (-174)) (-4456 . T)) +((-4449 |has| |#2| (-1061)) (-4450 |has| |#2| (-1061)) (-4452 |has| |#2| (-6 -4452)) ((-4457 "*") |has| |#2| (-174)) (-4455 . T)) NIL -(-245 -4132 A B) +(-244 -4131 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-246 -4132 R) +(-245 -4131 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4450 |has| |#2| (-1062)) (-4451 |has| |#2| (-1062)) (-4453 |has| |#2| (-6 -4453)) ((-4458 "*") |has| |#2| (-174)) (-4456 . T)) -((-2818 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1113)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1062)))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-372))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-803))) (-2818 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-736))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1062)))) (|HasCategory| |#2| (QUOTE (-377))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1062)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-377)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-858)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1113))))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1062)))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-2818 (|HasCategory| |#2| (QUOTE (-1062))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1113)))) (|HasAttribute| |#2| (QUOTE -4453)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))))) -(-247) +((-4449 |has| |#2| (-1061)) (-4450 |has| |#2| (-1061)) (-4452 |has| |#2| (-6 -4452)) ((-4457 "*") |has| |#2| (-174)) (-4455 . T)) +((-2817 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-802))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))))) (-2817 (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1112)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1061)))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#2| (QUOTE (-371))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-1061)))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-371)))) (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-802))) (-2817 (|HasCategory| |#2| (QUOTE (-802))) (|HasCategory| |#2| (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (QUOTE (-735))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1061)))) (|HasCategory| |#2| (QUOTE (-376))) (-2817 (-12 (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573)))))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-802))) (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (QUOTE (-1112)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-371))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1061)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-371))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1061)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-371))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1061)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1061)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-371)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-802)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-857)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1061)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1112))))) (-2817 (-12 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-802))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1061))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))))) (-2817 (-12 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-802))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))))) (|HasCategory| (-573) (QUOTE (-859))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1061)))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189))))) (-2817 (|HasCategory| |#2| (QUOTE (-1061))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1112)))) (|HasAttribute| |#2| (QUOTE -4452)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|))))) +(-246) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL NIL -(-248 S) +(-247 S) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) NIL NIL -(-249) +(-248) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4449 . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4448 . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-250 S) +(-249 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) NIL NIL -(-251 S) +(-250 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) -((-4457 . T) (-4456 . T)) -((-2818 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) -(-252 M) +((-4456 . T) (-4455 . T)) +((-2817 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112)))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) +(-251 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL -(-253 |vl| R) +(-252 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4458 "*") |has| |#2| (-174)) (-4449 |has| |#2| (-566)) (-4454 |has| |#2| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T)) -((|HasCategory| |#2| (QUOTE (-920))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-920)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4454)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-920)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-254) +(((-4457 "*") |has| |#2| (-174)) (-4448 |has| |#2| (-565)) (-4453 |has| |#2| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) +((|HasCategory| |#2| (QUOTE (-919))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-919)))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-174))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-565)))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545))))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-371))) (|HasAttribute| |#2| (QUOTE -4453)) (|HasCategory| |#2| (QUOTE (-461))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-919)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-253) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}."))) NIL NIL -(-255) +(-254) ((|constructor| (NIL "This domain provides representations for domains constructors.")) (|functorData| (((|FunctorData|) $) "\\spad{functorData x} returns the functor data associated with the domain constructor \\spad{x}."))) NIL NIL -(-256) +(-255) ((|constructor| (NIL "Represntation of domain templates resulting from compiling a domain constructor")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# x} returns the length of the domain template \\spad{x}."))) NIL NIL -(-257 |n| R M S) +(-256 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4453 -2818 (-2087 (|has| |#4| (-1062)) (|has| |#4| (-239))) (|has| |#4| (-6 -4453)) (-2087 (|has| |#4| (-1062)) (|has| |#4| (-911 (-1190))))) (-4450 |has| |#4| (-1062)) (-4451 |has| |#4| (-1062)) ((-4458 "*") |has| |#4| (-174)) (-4456 . T)) -((-2818 (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-736))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-858))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1062))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-1190)))))) (|HasCategory| |#4| (QUOTE (-372))) (-2818 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (QUOTE (-1062)))) (-2818 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-372)))) (|HasCategory| |#4| (QUOTE (-1062))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-803))) (-2818 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (QUOTE (-858)))) (|HasCategory| |#4| (QUOTE (-858))) (|HasCategory| |#4| (QUOTE (-736))) (-2818 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-1062)))) (|HasCategory| |#4| (QUOTE (-377))) (-2818 (-12 (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-858))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1062))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-1190)))) (-2818 (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1062)))) (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-239)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-372)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-377)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-736)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-803)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-858)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1062)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1113))))) (-2818 (-12 (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-736))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-858))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1062))) (-12 (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-736))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-858))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1062))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#4| (QUOTE (-1062))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1062))) (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1062)))) (-2818 (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1062)))) (|HasCategory| |#4| (QUOTE (-736))) (-12 (|HasCategory| |#4| (QUOTE (-1062))) (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-1190)))))) (-12 (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574))))) (-2818 (|HasCategory| |#4| (QUOTE (-1062))) (-12 (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#4| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1113)))) (-2818 (|HasAttribute| |#4| (QUOTE -4453)) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1062)))) (-12 (|HasCategory| |#4| (QUOTE (-1062))) (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-1190)))))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|))))) -(-258 |n| R S) +((-4452 -2817 (-2086 (|has| |#4| (-1061)) (|has| |#4| (-238))) (|has| |#4| (-6 -4452)) (-2086 (|has| |#4| (-1061)) (|has| |#4| (-910 (-1189))))) (-4449 |has| |#4| (-1061)) (-4450 |has| |#4| (-1061)) ((-4457 "*") |has| |#4| (-174)) (-4455 . T)) +((-2817 (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-371))) (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-735))) (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-802))) (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-857))) (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1061))) (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -910) (QUOTE (-1189)))))) (|HasCategory| |#4| (QUOTE (-371))) (-2817 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-371))) (|HasCategory| |#4| (QUOTE (-1061)))) (-2817 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-371)))) (|HasCategory| |#4| (QUOTE (-1061))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-802))) (-2817 (|HasCategory| |#4| (QUOTE (-802))) (|HasCategory| |#4| (QUOTE (-857)))) (|HasCategory| |#4| (QUOTE (-857))) (|HasCategory| |#4| (QUOTE (-735))) (-2817 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-1061)))) (|HasCategory| |#4| (QUOTE (-376))) (-2817 (-12 (|HasCategory| |#4| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#4| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-371))) (|HasCategory| |#4| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-857))) (|HasCategory| |#4| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-1061))) (|HasCategory| |#4| (LIST (QUOTE -648) (QUOTE (-573)))))) (|HasCategory| |#4| (LIST (QUOTE -910) (QUOTE (-1189)))) (-2817 (|HasCategory| |#4| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1061)))) (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#4| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#4| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#4| (QUOTE (-238)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#4| (QUOTE (-371)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#4| (QUOTE (-376)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#4| (QUOTE (-735)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#4| (QUOTE (-802)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#4| (QUOTE (-857)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#4| (QUOTE (-1061)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#4| (QUOTE (-1112))))) (-2817 (-12 (|HasCategory| |#4| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-371))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-735))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-802))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-857))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#4| (QUOTE (-1061))) (-12 (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573)))))) (-2817 (-12 (|HasCategory| |#4| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-371))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-735))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-802))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-857))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-1061))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573)))))) (|HasCategory| (-573) (QUOTE (-859))) (-12 (|HasCategory| |#4| (QUOTE (-1061))) (|HasCategory| |#4| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#4| (QUOTE (-1061))) (|HasCategory| |#4| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1061)))) (-2817 (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1061)))) (|HasCategory| |#4| (QUOTE (-735))) (-12 (|HasCategory| |#4| (QUOTE (-1061))) (|HasCategory| |#4| (LIST (QUOTE -910) (QUOTE (-1189)))))) (-12 (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573))))) (-2817 (|HasCategory| |#4| (QUOTE (-1061))) (-12 (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#4| (LIST (QUOTE -1050) (QUOTE (-573)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#4| (QUOTE (-1112)))) (-2817 (|HasAttribute| |#4| (QUOTE -4452)) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1061)))) (-12 (|HasCategory| |#4| (QUOTE (-1061))) (|HasCategory| |#4| (LIST (QUOTE -910) (QUOTE (-1189)))))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|))))) +(-257 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4453 -2818 (-2087 (|has| |#3| (-1062)) (|has| |#3| (-239))) (|has| |#3| (-6 -4453)) (-2087 (|has| |#3| (-1062)) (|has| |#3| (-911 (-1190))))) (-4450 |has| |#3| (-1062)) (-4451 |has| |#3| (-1062)) ((-4458 "*") |has| |#3| (-174)) (-4456 . T)) -((-2818 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))))) (|HasCategory| |#3| (QUOTE (-372))) (-2818 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1062)))) (-2818 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372)))) (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-803))) (-2818 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-858)))) (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (QUOTE (-736))) (-2818 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1062)))) (|HasCategory| |#3| (QUOTE (-377))) (-2818 (-12 (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))) (-2818 (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1062)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-372)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-377)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-736)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-803)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-858)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1062)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1113))))) (-2818 (-12 (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1062))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1062)))) (-2818 (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1062)))) (|HasCategory| |#3| (QUOTE (-736))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-2818 (|HasCategory| |#3| (QUOTE (-1062))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1113)))) (-2818 (|HasAttribute| |#3| (QUOTE -4453)) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1062)))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))))) -(-259 A R S V E) +((-4452 -2817 (-2086 (|has| |#3| (-1061)) (|has| |#3| (-238))) (|has| |#3| (-6 -4452)) (-2086 (|has| |#3| (-1061)) (|has| |#3| (-910 (-1189))))) (-4449 |has| |#3| (-1061)) (-4450 |has| |#3| (-1061)) ((-4457 "*") |has| |#3| (-174)) (-4455 . T)) +((-2817 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-802))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-857))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))))) (|HasCategory| |#3| (QUOTE (-371))) (-2817 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (QUOTE (-1061)))) (-2817 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-371)))) (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-802))) (-2817 (|HasCategory| |#3| (QUOTE (-802))) (|HasCategory| |#3| (QUOTE (-857)))) (|HasCategory| |#3| (QUOTE (-857))) (|HasCategory| |#3| (QUOTE (-735))) (-2817 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1061)))) (|HasCategory| |#3| (QUOTE (-376))) (-2817 (-12 (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-857))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573)))))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))) (-2817 (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1061)))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-238)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-371)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-735)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-802)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-857)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-1061)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-1112))))) (-2817 (-12 (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-802))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-857))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-1061))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573)))))) (-2817 (-12 (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-802))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-857))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573)))))) (|HasCategory| (-573) (QUOTE (-859))) (-12 (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1061)))) (-2817 (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1061)))) (|HasCategory| |#3| (QUOTE (-735))) (-12 (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-2817 (|HasCategory| |#3| (QUOTE (-1061))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-1112)))) (-2817 (|HasAttribute| |#3| (QUOTE -4452)) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1061)))) (-12 (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|))))) +(-258 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL -((|HasCategory| |#2| (QUOTE (-239)))) -(-260 R S V E) +((|HasCategory| |#2| (QUOTE (-238)))) +(-259 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T)) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) NIL -(-261 S) +(-260 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4456 . T) (-4457 . T)) +((-4455 . T) (-4456 . T)) NIL -(-262) +(-261) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g),a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-263 R |Ex|) +(-262 R |Ex|) ((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,y) = g(x,y),x,y,l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) NIL NIL -(-264) +(-263) ((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,rRange,iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f, -2..2, -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,rRange,iRange,arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f, 0.3..3, 0..2*\\%pi, false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) NIL NIL -(-265 R) +(-264 R) ((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}."))) NIL NIL -(-266 |Ex|) +(-265 |Ex|) ((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-267) +(-266) ((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,lz,l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly,lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) NIL NIL -(-268) +(-267) ((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) NIL NIL -(-269 S) +(-268 S) ((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) NIL NIL -(-270) +(-269) ((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,y,z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,y,z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) NIL NIL -(-271 R S V) +(-270 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T)) -((|HasCategory| |#1| (QUOTE (-920))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#3| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#3| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4454)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-272 A S) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) +((|HasCategory| |#1| (QUOTE (-919))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#3| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#3| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-545))))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-371))) (|HasAttribute| |#1| (QUOTE -4453)) (|HasCategory| |#1| (QUOTE (-461))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-271 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-273 S) +(-272 S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-274) +(-273) ((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}."))) NIL NIL -(-275) +(-274) ((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-276) +(-275) ((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-277) +(-276) ((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-278) +(-277) ((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-279) +(-278) ((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF,{} an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-280) +(-279) ((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF,{} an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-281) +(-280) ((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-282) +(-281) ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-283 R -1386) +(-282 R -1385) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-284 R -1386) +(-283 R -1385) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL -(-285 |Coef| UTS ULS) +(-284 |Coef| UTS ULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-372)))) -(-286 |Coef| ULS UPXS EFULS) +((|HasCategory| |#1| (QUOTE (-371)))) +(-285 |Coef| ULS UPXS EFULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-372)))) -(-287) +((|HasCategory| |#1| (QUOTE (-371)))) +(-286) ((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Identifier|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Identifier|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|Syntax|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter."))) NIL NIL -(-288) +(-287) ((|environment| (((|Environment|) $) "\\spad{environment(x)} returns the environment of the elaboration \\spad{x}.")) (|typeForm| (((|InternalTypeForm|) $) "\\spad{typeForm(x)} returns the type form of the elaboration \\spad{x}.")) (|irForm| (((|InternalRepresentationForm|) $) "\\spad{irForm(x)} returns the internal representation form of the elaboration \\spad{x}.")) (|elaboration| (($ (|InternalRepresentationForm|) (|InternalTypeForm|) (|Environment|)) "\\spad{elaboration(ir,ty,env)} construct an elaboration object for for the internal representation form \\spad{ir},{} with type \\spad{ty},{} and environment \\spad{env}."))) NIL NIL -(-289 A S) +(-288 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1113)))) -(-290 S) +((|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-1112)))) +(-289 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4457 . T)) +((-4456 . T)) NIL -(-291 S) +(-290 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-292) +(-291) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-293 |Coef| UTS) +(-292 |Coef| UTS) ((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}"))) NIL NIL -(-294 S T$) +(-293 S T$) ((|constructor| (NIL "An eltable over domains \\spad{S} and \\spad{T} is a structure which can be viewed as a function from \\spad{S} to \\spad{T}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,s)} (also written: \\spad{u.s}) returns the value of \\spad{u} at \\spad{s}. Error: if \\spad{u} is not defined at \\spad{s}."))) NIL NIL -(-295 S |Dom| |Im|) +(-294 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4457))) -(-296 |Dom| |Im|) +((|HasAttribute| |#1| (QUOTE -4456))) +(-295 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-297 S R |Mod| -2666 -4430 |exactQuo|) +(-296 S R |Mod| -4115 -1480 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-298) +(-297) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4449 . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4448 . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-299) +(-298) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) NIL NIL -(-300 R) +(-299 R) ((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,m,k,g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) NIL NIL -(-301 S R) +(-300 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL -(-302 S) +(-301 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4453 -2818 (|has| |#1| (-1062)) (|has| |#1| (-483))) (-4450 |has| |#1| (-1062)) (-4451 |has| |#1| (-1062))) -((|HasCategory| |#1| (QUOTE (-372))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1062)))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-1062)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1062)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1062)))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1062)))) (-2818 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-736)))) (|HasCategory| |#1| (QUOTE (-483))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-1113)))) (-2818 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1190)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-310))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-483)))) (-2818 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-736)))) (-2818 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-1062)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-736)))) -(-303 |Key| |Entry|) +((-4452 -2817 (|has| |#1| (-1061)) (|has| |#1| (-482))) (-4449 |has| |#1| (-1061)) (-4450 |has| |#1| (-1061))) +((|HasCategory| |#1| (QUOTE (-371))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-1061)))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-1061)))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-1061)))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-1061)))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1061)))) (-2817 (|HasCategory| |#1| (QUOTE (-482))) (|HasCategory| |#1| (QUOTE (-735)))) (|HasCategory| |#1| (QUOTE (-482))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-482))) (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (QUOTE (-1112)))) (-2817 (|HasCategory| |#1| (QUOTE (-482))) (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#1| (QUOTE (-1124)))) (|HasCategory| |#1| (LIST (QUOTE -523) (QUOTE (-1189)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-309))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-482)))) (-2817 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-735)))) (-2817 (|HasCategory| |#1| (QUOTE (-482))) (|HasCategory| |#1| (QUOTE (-1061)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (QUOTE (-735)))) +(-302 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4456 . T) (-4457 . T)) -((-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1908) (|devaluate| |#2|)))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872))))) -(-304) +((-4455 . T) (-4456 . T)) +((-12 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -316) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3692) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#2|)))))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| |#2| (QUOTE (-1112)))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -623) (QUOTE (-545)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-1112))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871))))) +(-303) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-305 -1386 S) +(-304 -1385 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-306 E -1386) +(-305 E -1385) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) NIL NIL -(-307 A B) +(-306 A B) ((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) NIL NIL -(-308) +(-307) ((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,var,range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,var,range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) NIL NIL -(-309 S) +(-308 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-1062)))) -(-310) +((|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-1061)))) +(-309) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-311 R1) +(-310 R1) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}"))) NIL NIL -(-312 R1 R2) +(-311 R1 R2) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}"))) NIL NIL -(-313) +(-312) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) NIL NIL -(-314 S) +(-313 S) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) NIL NIL -(-315) +(-314) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-316 S R) +(-315 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-317 R) +(-316 R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-318 -1386) +(-317 -1385) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL -(-319) +(-318) ((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'."))) NIL NIL -(-320) +(-319) ((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) NIL NIL -(-321 R FE |var| |cen|) +(-320 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (QUOTE (-920))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (QUOTE (-1035))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (QUOTE (-830))) (-2818 (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (QUOTE (-830))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (QUOTE (-860)))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (QUOTE (-1165))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (LIST (QUOTE -524) (QUOTE (-1190)) (LIST (QUOTE -1267) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (LIST (QUOTE -317) (LIST (QUOTE -1267) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (LIST (QUOTE -294) (LIST (QUOTE -1267) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1267) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (QUOTE (-315))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (QUOTE (-555))) (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (QUOTE (-860))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (QUOTE (-920))) (|HasCategory| $ (QUOTE (-146)))) (-2818 (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3| |#4|) (QUOTE (-920))) (|HasCategory| $ (QUOTE (-146)))))) -(-322 R S) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (QUOTE (-919))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1050) (QUOTE (-1189)))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (QUOTE (-1034))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (QUOTE (-829))) (-2817 (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (QUOTE (-829))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (QUOTE (-859)))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (QUOTE (-1164))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (QUOTE (-238))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (LIST (QUOTE -523) (QUOTE (-1189)) (LIST (QUOTE -1266) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (LIST (QUOTE -316) (LIST (QUOTE -1266) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (LIST (QUOTE -293) (LIST (QUOTE -1266) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1266) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (QUOTE (-314))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (QUOTE (-554))) (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (QUOTE (-859))) (-12 (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (QUOTE (-919))) (|HasCategory| $ (QUOTE (-146)))) (-2817 (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1266 |#1| |#2| |#3| |#4|) (QUOTE (-919))) (|HasCategory| $ (QUOTE (-146)))))) +(-321 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL NIL -(-323 R FE) +(-322 R FE) ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-324 R) +(-323 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4453 -2818 (-12 (|has| |#1| (-566)) (-2818 (|has| |#1| (-1062)) (|has| |#1| (-483)))) (|has| |#1| (-1062)) (|has| |#1| (-483))) (-4451 |has| |#1| (-174)) (-4450 |has| |#1| (-174)) ((-4458 "*") |has| |#1| (-566)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-566)) (-4448 |has| |#1| (-566))) -((-2818 (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (-2818 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1062)))) (|HasCategory| |#1| (QUOTE (-21))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1062)))) (|HasCategory| |#1| (QUOTE (-1062))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))))) (-2818 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574))))) (-2818 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1062)))) (-2818 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1062)))) (-2818 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1062)))) (-12 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-2818 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))))) (-2818 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2818 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))))) (-2818 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-1062)))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| $ (QUOTE (-1062))) (|HasCategory| $ (LIST (QUOTE -1051) (QUOTE (-574))))) -(-325 R -1386) +((-4452 -2817 (-12 (|has| |#1| (-565)) (-2817 (|has| |#1| (-1061)) (|has| |#1| (-482)))) (|has| |#1| (-1061)) (|has| |#1| (-482))) (-4450 |has| |#1| (-174)) (-4449 |has| |#1| (-174)) ((-4457 "*") |has| |#1| (-565)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-565)) (-4447 |has| |#1| (-565))) +((-2817 (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))))) (|HasCategory| |#1| (QUOTE (-565))) (-2817 (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-1061)))) (|HasCategory| |#1| (QUOTE (-21))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1061)))) (|HasCategory| |#1| (QUOTE (-1061))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))))) (-2817 (|HasCategory| |#1| (QUOTE (-482))) (|HasCategory| |#1| (QUOTE (-1124)))) (|HasCategory| |#1| (QUOTE (-482))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573))))) (-2817 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-1061)))) (-2817 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-1061)))) (-2817 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-1061)))) (-12 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565)))) (-2817 (|HasCategory| |#1| (QUOTE (-482))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573))))) (-2817 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))))) (-2817 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-1124)))) (-2817 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))))) (-2817 (|HasCategory| |#1| (QUOTE (-482))) (|HasCategory| |#1| (QUOTE (-1061)))) (-2817 (-12 (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| $ (QUOTE (-1061))) (|HasCategory| $ (LIST (QUOTE -1050) (QUOTE (-573))))) +(-324 R -1385) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}."))) NIL NIL -(-326) +(-325) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}."))) NIL NIL -(-327 FE |var| |cen|) +(-326 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-372))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2379) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|))))))) -(-328 M) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573))) (|devaluate| |#1|)))) (|HasCategory| (-416 (-573)) (QUOTE (-1124))) (|HasCategory| |#1| (QUOTE (-371))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasSignature| |#1| (LIST (QUOTE -2942) (LIST (|devaluate| |#1|) (QUOTE (-1189)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573)))))) (-2817 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-969))) (|HasCategory| |#1| (QUOTE (-1215))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasSignature| |#1| (LIST (QUOTE -1626) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1189))))) (|HasSignature| |#1| (LIST (QUOTE -4354) (LIST (LIST (QUOTE -653) (QUOTE (-1189))) (|devaluate| |#1|))))))) +(-327 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL NIL -(-329 E OV R P) +(-328 E OV R P) ((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly, lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly, lvar, lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}."))) NIL NIL -(-330 S) +(-329 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4451 . T) (-4450 . T)) -((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-802)))) -(-331 S E) +((-4450 . T) (-4449 . T)) +((|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-801)))) +(-330 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL NIL -(-332 S) +(-331 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-781) (QUOTE (-802)))) -(-333 S R E) +((|HasCategory| (-780) (QUOTE (-801)))) +(-332 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174)))) -(-334 R E) +((|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-174)))) +(-333 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4450 . T) (-4451 . T) (-4453 . T)) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-335 S) +(-334 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4457 . T) (-4456 . T)) -((-2818 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) -(-336 S -1386) +((-4456 . T) (-4455 . T)) +((-2817 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112)))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) +(-335 S -1385) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL -((|HasCategory| |#2| (QUOTE (-377)))) -(-337 -1386) +((|HasCategory| |#2| (QUOTE (-376)))) +(-336 -1385) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-338) +(-337) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10."))) NIL NIL -(-339 E) +(-338 E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series"))) NIL NIL -(-340) +(-339) ((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,b,d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,p,q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,p)} \\undocumented{}"))) NIL NIL -(-341) +(-340) ((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}."))) NIL NIL -(-342 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-341 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) NIL NIL -(-343 S -1386 UP UPUP R) +(-342 S -1385 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-344 -1386 UP UPUP R) +(-343 -1385 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-345 -1386 UP UPUP R) +(-344 -1385 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL -(-346 S R) +(-345 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1190)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) -(-347 R) +((|HasCategory| |#2| (LIST (QUOTE -523) (QUOTE (-1189)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|) (|devaluate| |#2|)))) +(-346 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL -(-348 |basicSymbols| |subscriptedSymbols| R) +(-347 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-388)))) (|HasCategory| $ (QUOTE (-1062))) (|HasCategory| $ (LIST (QUOTE -1051) (QUOTE (-574))))) -(-349 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +((-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-387)))) (|HasCategory| $ (QUOTE (-1061))) (|HasCategory| $ (LIST (QUOTE -1050) (QUOTE (-573))))) +(-348 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-350 S -1386 UP UPUP) +(-349 S -1385 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL -((|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-372)))) -(-351 -1386 UP UPUP) +((|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-371)))) +(-350 -1385 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4449 |has| (-417 |#2|) (-372)) (-4454 |has| (-417 |#2|) (-372)) (-4448 |has| (-417 |#2|) (-372)) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4448 |has| (-416 |#2|) (-371)) (-4453 |has| (-416 |#2|) (-371)) (-4447 |has| (-416 |#2|) (-371)) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-352 |p| |extdeg|) +(-351 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) -((-2818 (|HasCategory| (-921 |#1|) (QUOTE (-146))) (|HasCategory| (-921 |#1|) (QUOTE (-377)))) (|HasCategory| (-921 |#1|) (QUOTE (-148))) (|HasCategory| (-921 |#1|) (QUOTE (-377))) (|HasCategory| (-921 |#1|) (QUOTE (-146)))) -(-353 GF |defpol|) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-2817 (|HasCategory| (-920 |#1|) (QUOTE (-146))) (|HasCategory| (-920 |#1|) (QUOTE (-376)))) (|HasCategory| (-920 |#1|) (QUOTE (-148))) (|HasCategory| (-920 |#1|) (QUOTE (-376))) (|HasCategory| (-920 |#1|) (QUOTE (-146)))) +(-352 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) -((-2818 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146)))) -(-354 GF |extdeg|) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-2817 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-146)))) +(-353 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) -((-2818 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146)))) -(-355 GF) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-2817 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-146)))) +(-354 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL NIL -(-356 F1 GF F2) +(-355 F1 GF F2) ((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse."))) NIL NIL -(-357 S) +(-356 S) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) NIL NIL -(-358) +(-357) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-359 R UP -1386) +(-358 R UP -1385) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-360 |p| |extdeg|) +(-359 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) -((-2818 (|HasCategory| (-921 |#1|) (QUOTE (-146))) (|HasCategory| (-921 |#1|) (QUOTE (-377)))) (|HasCategory| (-921 |#1|) (QUOTE (-148))) (|HasCategory| (-921 |#1|) (QUOTE (-377))) (|HasCategory| (-921 |#1|) (QUOTE (-146)))) -(-361 GF |uni|) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-2817 (|HasCategory| (-920 |#1|) (QUOTE (-146))) (|HasCategory| (-920 |#1|) (QUOTE (-376)))) (|HasCategory| (-920 |#1|) (QUOTE (-148))) (|HasCategory| (-920 |#1|) (QUOTE (-376))) (|HasCategory| (-920 |#1|) (QUOTE (-146)))) +(-360 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) -((-2818 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146)))) -(-362 GF |extdeg|) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-2817 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-146)))) +(-361 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) -((-2818 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146)))) -(-363 |p| |n|) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-2817 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-146)))) +(-362 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) -((-2818 (|HasCategory| (-921 |#1|) (QUOTE (-146))) (|HasCategory| (-921 |#1|) (QUOTE (-377)))) (|HasCategory| (-921 |#1|) (QUOTE (-148))) (|HasCategory| (-921 |#1|) (QUOTE (-377))) (|HasCategory| (-921 |#1|) (QUOTE (-146)))) -(-364 GF |defpol|) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-2817 (|HasCategory| (-920 |#1|) (QUOTE (-146))) (|HasCategory| (-920 |#1|) (QUOTE (-376)))) (|HasCategory| (-920 |#1|) (QUOTE (-148))) (|HasCategory| (-920 |#1|) (QUOTE (-376))) (|HasCategory| (-920 |#1|) (QUOTE (-146)))) +(-363 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) -((-2818 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146)))) -(-365 -1386 GF) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-2817 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-146)))) +(-364 -1385 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-366 GF) +(-365 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-367 -1386 FP FPP) +(-366 -1385 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-368 GF |n|) +(-367 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) -((-2818 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146)))) -(-369 R |ls|) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-2817 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-146)))) +(-368 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL -(-370 S) +(-369 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4453 . T)) +((-4452 . T)) NIL -(-371 S) +(-370 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) NIL NIL -(-372) +(-371) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-373 |Name| S) +(-372 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) NIL NIL -(-374 S) +(-373 S) ((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL -(-375 S R) +(-374 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-566)))) -(-376 R) +((|HasCategory| |#2| (QUOTE (-565)))) +(-375 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4453 |has| |#1| (-566)) (-4451 . T) (-4450 . T)) +((-4452 |has| |#1| (-565)) (-4450 . T) (-4449 . T)) NIL -(-377) +(-376) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) NIL NIL -(-378 S R UP) +(-377 S R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) NIL -((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-372)))) -(-379 R UP) +((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-371)))) +(-378 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4450 . T) (-4451 . T) (-4453 . T)) +((-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-380 S A R B) +(-379 S A R B) ((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) NIL NIL -(-381 A S) +(-380 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1113)))) -(-382 S) +((|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-1112)))) +(-381 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4456 . T)) +((-4455 . T)) NIL -(-383 |VarSet| R) +(-382 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4451 . T) (-4450 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4450 . T) (-4449 . T)) NIL -(-384 S V) +(-383 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) NIL NIL -(-385 S R) +(-384 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) -(-386 R) +((|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) +(-385 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL NIL -(-387 |Par|) +(-386 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL NIL -(-388) +(-387) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4439 . T) (-4447 . T) (-3551 . T) (-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4438 . T) (-4446 . T) (-3550 . T) (-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-389 |Par|) +(-388 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL -(-390 R S) +(-389 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4451 . T) (-4450 . T)) +((-4450 . T) (-4449 . T)) ((|HasCategory| |#1| (QUOTE (-174)))) -(-391 R |Basis|) +(-390 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4451 . T) (-4450 . T)) +((-4450 . T) (-4449 . T)) NIL -(-392) +(-391) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) NIL NIL -(-393) +(-392) ((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-394 R S) +(-393 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4451 . T) (-4450 . T)) +((-4450 . T) (-4449 . T)) ((|HasCategory| |#1| (QUOTE (-174)))) -(-395 S) +(-394 S) ((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL -(-396 S) +(-395 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative."))) NIL -((|HasCategory| |#1| (QUOTE (-860)))) -(-397) +((|HasCategory| |#1| (QUOTE (-859)))) +(-396) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-398) +(-397) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) NIL NIL -(-399) +(-398) ((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,pref,e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,n,e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used."))) NIL NIL -(-400 |n| |class| R) +(-399 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4451 . T) (-4450 . T)) +((-4450 . T) (-4449 . T)) NIL -(-401) +(-400) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-402 -1386 UP UPUP R) +(-401 -1385 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-403 S) +(-402 S) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) NIL NIL -(-404) +(-403) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-405) +(-404) ((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) NIL NIL -(-406) +(-405) ((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-407) +(-406) ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}"))) NIL NIL -(-408 -2032 |returnType| -1564 |symbols|) +(-407 -2031 |returnType| -1563 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-409 -1386 UP) +(-408 -1385 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL -(-410 R) +(-409 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) NIL NIL -(-411 S) +(-410 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) NIL NIL -(-412) +(-411) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-413 S) +(-412 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4439)) (|HasAttribute| |#1| (QUOTE -4447))) -(-414) +((|HasAttribute| |#1| (QUOTE -4438)) (|HasAttribute| |#1| (QUOTE -4446))) +(-413) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-3551 . T) (-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-3550 . T) (-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-415 R S) +(-414 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-416 A B) +(-415 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-417 S) +(-416 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4443 -12 (|has| |#1| (-6 -4454)) (|has| |#1| (-462)) (|has| |#1| (-6 -4443))) (-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| |#1| (QUOTE (-920))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (QUOTE (-1035))) (|HasCategory| |#1| (QUOTE (-830))) (-2818 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-860)))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-1165))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838))))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1190)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-555))) (-12 (|HasAttribute| |#1| (QUOTE -4454)) (|HasAttribute| |#1| (QUOTE -4443)) (|HasCategory| |#1| (QUOTE (-462)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-418 S R UP) +((-4442 -12 (|has| |#1| (-6 -4453)) (|has| |#1| (-461)) (|has| |#1| (-6 -4442))) (-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545))))) (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (QUOTE (-829))) (-2817 (|HasCategory| |#1| (QUOTE (-829))) (|HasCategory| |#1| (QUOTE (-859)))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-387)))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-837))))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-837))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (LIST (QUOTE -523) (QUOTE (-1189)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-554))) (-12 (|HasAttribute| |#1| (QUOTE -4453)) (|HasAttribute| |#1| (QUOTE -4442)) (|HasCategory| |#1| (QUOTE (-461)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-417 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-419 R UP) +(-418 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4450 . T) (-4451 . T) (-4453 . T)) +((-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-420 A S) +(-419 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) -(-421 S) +((|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) +(-420 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-422 R1 F1 U1 A1 R2 F2 U2 A2) +(-421 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) NIL NIL -(-423 R -1386 UP A) +(-422 R -1385 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) -((-4453 . T)) +((-4452 . T)) NIL -(-424 R -1386 UP A |ibasis|) +(-423 R -1385 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) NIL -((|HasCategory| |#4| (LIST (QUOTE -1051) (|devaluate| |#2|)))) -(-425 AR R AS S) +((|HasCategory| |#4| (LIST (QUOTE -1050) (|devaluate| |#2|)))) +(-424 AR R AS S) ((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-426 S R) +(-425 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-372)))) -(-427 R) +((|HasCategory| |#2| (QUOTE (-371)))) +(-426 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4453 |has| |#1| (-566)) (-4451 . T) (-4450 . T)) +((-4452 |has| |#1| (-565)) (-4450 . T) (-4449 . T)) NIL -(-428 R) +(-427 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1190)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -317) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -294) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-1235))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-1235)))) (|HasCategory| |#1| (QUOTE (-1035))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1190)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -294) (QUOTE $) (QUOTE $)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-462)))) -(-429 R) +((-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| |#1| (LIST (QUOTE -523) (QUOTE (-1189)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -316) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -293) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-1234))) (-2817 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-1234)))) (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -523) (QUOTE (-1189)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-238))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -293) (QUOTE $) (QUOTE $)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-461)))) +(-428 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) NIL NIL -(-430 R FE |x| |cen|) +(-429 R FE |x| |cen|) ((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL NIL -(-431 R A S B) +(-430 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-432 R FE |Expon| UPS TRAN |x|) +(-431 R FE |Expon| UPS TRAN |x|) ((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series"))) NIL NIL -(-433 S A R B) +(-432 S A R B) ((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-434 A S) +(-433 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-377)))) -(-435 S) +((|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-376)))) +(-434 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4456 . T) (-4446 . T) (-4457 . T)) +((-4455 . T) (-4445 . T) (-4456 . T)) NIL -(-436 R -1386) +(-435 R -1385) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL -(-437 R E) +(-436 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4443 -12 (|has| |#1| (-6 -4443)) (|has| |#2| (-6 -4443))) (-4450 . T) (-4451 . T) (-4453 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4443)) (|HasAttribute| |#2| (QUOTE -4443)))) -(-438 R -1386) +((-4442 -12 (|has| |#1| (-6 -4442)) (|has| |#2| (-6 -4442))) (-4449 . T) (-4450 . T) (-4452 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4442)) (|HasAttribute| |#2| (QUOTE -4442)))) +(-437 R -1385) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-439 S R) +(-438 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) -(-440 R) +((|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-482))) (|HasCategory| |#2| (QUOTE (-1124))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545))))) +(-439 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4453 -2818 (|has| |#1| (-1062)) (|has| |#1| (-483))) (-4451 |has| |#1| (-174)) (-4450 |has| |#1| (-174)) ((-4458 "*") |has| |#1| (-566)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-566)) (-4448 |has| |#1| (-566))) +((-4452 -2817 (|has| |#1| (-1061)) (|has| |#1| (-482))) (-4450 |has| |#1| (-174)) (-4449 |has| |#1| (-174)) ((-4457 "*") |has| |#1| (-565)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-565)) (-4447 |has| |#1| (-565))) NIL -(-441 R -1386) +(-440 R -1385) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-442 R -1386) +(-441 R -1385) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-443 R -1386) +(-442 R -1385) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL -(-444) +(-443) ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-445 R -1386 UP) +(-444 R -1385 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-48))))) -(-446) +((|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-48))))) +(-445) ((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL NIL -(-447) +(-446) ((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type"))) NIL NIL -(-448 |f|) +(-447 |f|) ((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-449) +(-448) ((|constructor| (NIL "This is the datatype for exported function descriptor. A function descriptor consists of: (1) a signature; (2) a predicate; and (3) a slot into the scope object.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of function described by \\spad{x}."))) NIL NIL -(-450) +(-449) ((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) NIL NIL -(-451) +(-450) ((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-452 UP) +(-451 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-453 R UP -1386) +(-452 R UP -1385) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL -(-454 R UP) +(-453 R UP) ((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) NIL NIL -(-455 R) +(-454 R) ((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,r)} returns the binomial coefficient \\spad{C(n,r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) NIL -((|HasCategory| |#1| (QUOTE (-414)))) -(-456) +((|HasCategory| |#1| (QUOTE (-413)))) +(-455) ((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(zi)} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(zi)} produces the complete factorization of the complex integer \\spad{zi}."))) NIL NIL -(-457 |Dom| |Expon| |VarSet| |Dpol|) +(-456 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp, infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL -(-458 |Dom| |Expon| |VarSet| |Dpol|) +(-457 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions, info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL -(-459 |Dom| |Expon| |VarSet| |Dpol|) +(-458 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) NIL NIL -(-460 |Dom| |Expon| |VarSet| |Dpol|) +(-459 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp, infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) NIL -((|HasCategory| |#1| (QUOTE (-372)))) -(-461 S) +((|HasCategory| |#1| (QUOTE (-371)))) +(-460 S) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL -(-462) +(-461) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-463 R |n| |ls| |gamma|) +(-462 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4453 |has| (-417 (-963 |#1|)) (-566)) (-4451 . T) (-4450 . T)) -((|HasCategory| (-417 (-963 |#1|)) (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| (-417 (-963 |#1|)) (QUOTE (-566)))) -(-464 |vl| R E) +((-4452 |has| (-416 (-962 |#1|)) (-565)) (-4450 . T) (-4449 . T)) +((|HasCategory| (-416 (-962 |#1|)) (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| (-416 (-962 |#1|)) (QUOTE (-565)))) +(-463 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4458 "*") |has| |#2| (-174)) (-4449 |has| |#2| (-566)) (-4454 |has| |#2| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T)) -((|HasCategory| |#2| (QUOTE (-920))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-920)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4454)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-920)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-465 R BP) +(((-4457 "*") |has| |#2| (-174)) (-4448 |has| |#2| (-565)) (-4453 |has| |#2| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) +((|HasCategory| |#2| (QUOTE (-919))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-919)))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-174))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-565)))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545))))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-371))) (|HasAttribute| |#2| (QUOTE -4453)) (|HasCategory| |#2| (QUOTE (-461))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-919)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-464 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL NIL -(-466 OV E S R P) +(-465 OV E S R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-467 E OV R P) +(-466 E OV R P) ((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}"))) NIL NIL -(-468 R) +(-467 R) ((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) NIL NIL -(-469 R FE) +(-468 R FE) ((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),n,x = a,n0..)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}; \\spad{taylor(a(n),n,x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),x = a,n0..)} returns \\spad{sum(n=n0..,a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}."))) NIL NIL -(-470 RP TP) +(-469 RP TP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,lfact,prime,bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,lfacts,prime,bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) NIL NIL -(-471 |vl| R IS E |ff| P) +(-470 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4451 . T) (-4450 . T)) +((-4450 . T) (-4449 . T)) NIL -(-472 E V R P Q) +(-471 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) NIL NIL -(-473 R E |VarSet| P) +(-472 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4457 . T) (-4456 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872))))) -(-474 S R E) +((-4456 . T) (-4455 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-871))))) +(-473 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-475 R E) +(-474 R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-476) +(-475) ((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) NIL NIL -(-477) +(-476) ((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) NIL NIL -(-478) +(-477) ((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(gi)} returns the indicated graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(gi,pt,pal)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(gi,pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{gi},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,pt,pal1,pal2,ps)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(gi,pt)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,lp,pal1,pal2,p)} sets the components of the graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{gi} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(gi,lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{gi}.") (((|List| (|Float|)) $) "\\spad{units(gi)} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(gi,lr)} modifies the list of ranges for the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{gi}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(gi)} returns the list of ranges of the point components from the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(gi)} returns the process ID of the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(gi)} returns the list of lists of points which compose the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp,lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(gi)} takes the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{gi} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) NIL NIL -(-479 S R E) +(-478 S R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-480 R E) +(-479 R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-481 |lv| -1386 R) +(-480 |lv| -1385 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL -(-482 S) +(-481 S) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) NIL NIL -(-483) +(-482) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4453 . T)) +((-4452 . T)) NIL -(-484 |Coef| |var| |cen|) +(-483 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-372))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2379) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|))))))) -(-485 |Key| |Entry| |Tbl| |dent|) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573))) (|devaluate| |#1|)))) (|HasCategory| (-416 (-573)) (QUOTE (-1124))) (|HasCategory| |#1| (QUOTE (-371))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasSignature| |#1| (LIST (QUOTE -2942) (LIST (|devaluate| |#1|) (QUOTE (-1189)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573)))))) (-2817 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-969))) (|HasCategory| |#1| (QUOTE (-1215))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasSignature| |#1| (LIST (QUOTE -1626) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1189))))) (|HasSignature| |#1| (LIST (QUOTE -4354) (LIST (LIST (QUOTE -653) (QUOTE (-1189))) (|devaluate| |#1|))))))) +(-484 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4457 . T)) -((-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1908) (|devaluate| |#2|)))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-860))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113)))) -(-486 R E V P) +((-4456 . T)) +((-12 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -316) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3692) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#2|)))))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| |#2| (QUOTE (-1112)))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -623) (QUOTE (-545)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-859))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112)))) +(-485 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4457 . T) (-4456 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872))))) -(-487) +((-4456 . T) (-4455 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-871))))) +(-486) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-488) +(-487) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) NIL NIL -(-489 |Key| |Entry| |hashfn|) +(-488 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4456 . T) (-4457 . T)) -((-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1908) (|devaluate| |#2|)))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872))))) -(-490) +((-4455 . T) (-4456 . T)) +((-12 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -316) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3692) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#2|)))))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| |#2| (QUOTE (-1112)))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -623) (QUOTE (-545)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-1112))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871))))) +(-489) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL -(-491 |vl| R) +(-490 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4458 "*") |has| |#2| (-174)) (-4449 |has| |#2| (-566)) (-4454 |has| |#2| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T)) -((|HasCategory| |#2| (QUOTE (-920))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-920)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4454)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-920)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-492 -4132 S) +(((-4457 "*") |has| |#2| (-174)) (-4448 |has| |#2| (-565)) (-4453 |has| |#2| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) +((|HasCategory| |#2| (QUOTE (-919))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-919)))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-174))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-565)))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545))))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-371))) (|HasAttribute| |#2| (QUOTE -4453)) (|HasCategory| |#2| (QUOTE (-461))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-919)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-491 -4131 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4450 |has| |#2| (-1062)) (-4451 |has| |#2| (-1062)) (-4453 |has| |#2| (-6 -4453)) ((-4458 "*") |has| |#2| (-174)) (-4456 . T)) -((-2818 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1113)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1062)))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-372))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-803))) (-2818 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-736))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1062)))) (|HasCategory| |#2| (QUOTE (-377))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1062)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-377)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-858)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1113))))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1062)))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-2818 (|HasCategory| |#2| (QUOTE (-1062))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1113)))) (|HasAttribute| |#2| (QUOTE -4453)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))))) -(-493) +((-4449 |has| |#2| (-1061)) (-4450 |has| |#2| (-1061)) (-4452 |has| |#2| (-6 -4452)) ((-4457 "*") |has| |#2| (-174)) (-4455 . T)) +((-2817 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-802))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))))) (-2817 (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1112)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1061)))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#2| (QUOTE (-371))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-1061)))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-371)))) (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-802))) (-2817 (|HasCategory| |#2| (QUOTE (-802))) (|HasCategory| |#2| (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (QUOTE (-735))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1061)))) (|HasCategory| |#2| (QUOTE (-376))) (-2817 (-12 (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573)))))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-802))) (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (QUOTE (-1112)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-371))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1061)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-371))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1061)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-371))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1061)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1061)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-371)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-802)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-857)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1061)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1112))))) (-2817 (-12 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-802))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1061))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))))) (-2817 (-12 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-802))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))))) (|HasCategory| (-573) (QUOTE (-859))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1061)))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189))))) (-2817 (|HasCategory| |#2| (QUOTE (-1061))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1112)))) (|HasAttribute| |#2| (QUOTE -4452)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|))))) +(-492) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL NIL -(-494 S) +(-493 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4456 . T) (-4457 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) -(-495 -1386 UP UPUP R) +((-4455 . T) (-4456 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) +(-494 -1385 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL -(-496 BP) +(-495 BP) ((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,..,ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,..,fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,..,fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,..,fk])} = \\spad{gcd} of the polynomials \\spad{fi}."))) NIL NIL -(-497) +(-496) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| (-574) (QUOTE (-920))) (|HasCategory| (-574) (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| (-574) (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-148))) (|HasCategory| (-574) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-1035))) (|HasCategory| (-574) (QUOTE (-830))) (-2818 (|HasCategory| (-574) (QUOTE (-830))) (|HasCategory| (-574) (QUOTE (-860)))) (|HasCategory| (-574) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-1165))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-574) (QUOTE (-239))) (|HasCategory| (-574) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-574) (LIST (QUOTE -524) (QUOTE (-1190)) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -317) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -294) (QUOTE (-574)) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-315))) (|HasCategory| (-574) (QUOTE (-555))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-574) (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-920)))) (|HasCategory| (-574) (QUOTE (-146))))) -(-498 A S) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| (-573) (QUOTE (-919))) (|HasCategory| (-573) (LIST (QUOTE -1050) (QUOTE (-1189)))) (|HasCategory| (-573) (QUOTE (-146))) (|HasCategory| (-573) (QUOTE (-148))) (|HasCategory| (-573) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| (-573) (QUOTE (-1034))) (|HasCategory| (-573) (QUOTE (-829))) (-2817 (|HasCategory| (-573) (QUOTE (-829))) (|HasCategory| (-573) (QUOTE (-859)))) (|HasCategory| (-573) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| (-573) (QUOTE (-1164))) (|HasCategory| (-573) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| (-573) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| (-573) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| (-573) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| (-573) (QUOTE (-238))) (|HasCategory| (-573) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| (-573) (LIST (QUOTE -523) (QUOTE (-1189)) (QUOTE (-573)))) (|HasCategory| (-573) (LIST (QUOTE -316) (QUOTE (-573)))) (|HasCategory| (-573) (LIST (QUOTE -293) (QUOTE (-573)) (QUOTE (-573)))) (|HasCategory| (-573) (QUOTE (-314))) (|HasCategory| (-573) (QUOTE (-554))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| (-573) (LIST (QUOTE -648) (QUOTE (-573)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-573) (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-573) (QUOTE (-919)))) (|HasCategory| (-573) (QUOTE (-146))))) +(-497 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4456)) (|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) -(-499 S) +((|HasAttribute| |#1| (QUOTE -4455)) (|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) +(-498 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL NIL -(-500 S) +(-499 S) ((|constructor| (NIL "A is homotopic to \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain \\spad{B},{} and nay element of domain \\spad{B} can be automatically converted into an A."))) NIL NIL -(-501) +(-500) ((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}."))) NIL NIL -(-502 S) +(-501 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-503) +(-502) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-504 -1386 UP |AlExt| |AlPol|) +(-503 -1385 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL -(-505) +(-504) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| $ (QUOTE (-1062))) (|HasCategory| $ (LIST (QUOTE -1051) (QUOTE (-574))))) -(-506 S |mn|) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| $ (QUOTE (-1061))) (|HasCategory| $ (LIST (QUOTE -1050) (QUOTE (-573))))) +(-505 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4457 . T) (-4456 . T)) -((-2818 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) -(-507 R |mnRow| |mnCol|) +((-4456 . T) (-4455 . T)) +((-2817 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112)))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) +(-506 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4456 . T) (-4457 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) -(-508 K R UP) +((-4455 . T) (-4456 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) +(-507 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL NIL -(-509 R UP -1386) +(-508 R UP -1385) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-510 |mn|) +(-509 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4457 . T) (-4456 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1113))) (|HasCategory| (-112) (LIST (QUOTE -317) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-112) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-112) (QUOTE (-1113))) (|HasCategory| (-112) (LIST (QUOTE -623) (QUOTE (-872))))) -(-511 K R UP L) +((-4456 . T) (-4455 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1112))) (|HasCategory| (-112) (LIST (QUOTE -316) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| (-112) (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| (-112) (QUOTE (-1112))) (|HasCategory| (-112) (LIST (QUOTE -622) (QUOTE (-871))))) +(-510 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL -(-512) +(-511) ((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL -(-513 R Q A B) +(-512 R Q A B) ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-514 -1386 |Expon| |VarSet| |DPoly|) +(-513 -1385 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -624) (QUOTE (-1190))))) -(-515 |vl| |nv|) +((|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-1189))))) +(-514 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL -(-516) +(-515) ((|constructor| (NIL "This domain represents identifer AST. This domain differs from Symbol in that it does not support any form of scripting. A value of this domain is a plain old identifier. \\blankline")) (|gensym| (($) "\\spad{gensym()} returns a new identifier,{} different from any other identifier in the running system"))) NIL NIL -(-517 A S) +(-516 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-518 A S) +(-517 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL NIL -(-519 A S) +(-518 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL NIL -(-520 A S) +(-519 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-521 A S) +(-520 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-522 A S) +(-521 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) NIL NIL -(-523 S A B) +(-522 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-524 A B) +(-523 A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-525 S E |un|) +(-524 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-802)))) -(-526 S |mn|) +((|HasCategory| |#2| (QUOTE (-801)))) +(-525 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4457 . T) (-4456 . T)) -((-2818 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) -(-527) +((-4456 . T) (-4455 . T)) +((-2817 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112)))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) +(-526) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL -(-528 |p| |n|) +(-527 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) -((-2818 (|HasCategory| (-591 |#1|) (QUOTE (-146))) (|HasCategory| (-591 |#1|) (QUOTE (-377)))) (|HasCategory| (-591 |#1|) (QUOTE (-148))) (|HasCategory| (-591 |#1|) (QUOTE (-377))) (|HasCategory| (-591 |#1|) (QUOTE (-146)))) -(-529 R |mnRow| |mnCol| |Row| |Col|) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((-2817 (|HasCategory| (-590 |#1|) (QUOTE (-146))) (|HasCategory| (-590 |#1|) (QUOTE (-376)))) (|HasCategory| (-590 |#1|) (QUOTE (-148))) (|HasCategory| (-590 |#1|) (QUOTE (-376))) (|HasCategory| (-590 |#1|) (QUOTE (-146)))) +(-528 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4456 . T) (-4457 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) -(-530 S |mn|) +((-4455 . T) (-4456 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) +(-529 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4457 . T) (-4456 . T)) -((-2818 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) -(-531 R |Row| |Col| M) +((-4456 . T) (-4455 . T)) +((-2817 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112)))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) +(-530 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4457))) -(-532 R |Row| |Col| M QF |Row2| |Col2| M2) +((|HasAttribute| |#3| (QUOTE -4456))) +(-531 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4457))) -(-533 R |mnRow| |mnCol|) +((|HasAttribute| |#7| (QUOTE -4456))) +(-532 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4456 . T) (-4457 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-566))) (|HasAttribute| |#1| (QUOTE (-4458 "*"))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) -(-534) +((-4455 . T) (-4456 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-565))) (|HasAttribute| |#1| (QUOTE (-4457 "*"))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) +(-533) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL NIL -(-535) +(-534) ((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'"))) NIL NIL -(-536 S) +(-535 S) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-537) +(-536) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-538 GF) +(-537 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,e,d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,n,k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,...,vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}."))) NIL NIL -(-539) +(-538) ((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{`f'}.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-540 R) +(-539 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-541 |Varset|) +(-540 |Varset|) ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL NIL -(-542 K -1386 |Par|) +(-541 K -1385 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL -(-543) +(-542) NIL NIL NIL -(-544) +(-543) ((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL -(-545 R) +(-544 R) ((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL -(-546) +(-545) ((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL -(-547 |Coef| UTS) +(-546 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-548 K -1386 |Par|) +(-547 K -1385 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL -(-549 R BP |pMod| |nextMod|) +(-548 R BP |pMod| |nextMod|) ((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL -(-550 OV E R P) +(-549 OV E R P) ((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL -(-551 K UP |Coef| UTS) +(-550 K UP |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-552 |Coef| UTS) +(-551 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-553 R UP) +(-552 R UP) ((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,i,f)} \\undocumented"))) NIL NIL -(-554 S) +(-553 S) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL NIL -(-555) +(-554) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4454 . T) (-4455 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4453 . T) (-4454 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-556) +(-555) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits."))) NIL NIL -(-557) +(-556) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits."))) NIL NIL -(-558) +(-557) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 64 bits."))) NIL NIL -(-559) +(-558) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits."))) NIL NIL -(-560 |Key| |Entry| |addDom|) +(-559 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4456 . T) (-4457 . T)) -((-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1908) (|devaluate| |#2|)))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872))))) -(-561 R -1386) +((-4455 . T) (-4456 . T)) +((-12 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -316) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3692) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#2|)))))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| |#2| (QUOTE (-1112)))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -623) (QUOTE (-545)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-1112))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871))))) +(-560 R -1385) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-562 R0 -1386 UP UPUP R) +(-561 R0 -1385 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-563) +(-562) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-564 R) +(-563 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-3551 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-3550 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-565 S) +(-564 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-566) +(-565) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-567 R -1386) +(-566 R -1385) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-568 I) +(-567 I) ((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-569) +(-568) ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-570 R -1386 L) +(-569 R -1385 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -666) (|devaluate| |#2|)))) -(-571) +((|HasCategory| |#3| (LIST (QUOTE -665) (|devaluate| |#2|)))) +(-570) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-572 -1386 UP UPUP R) +(-571 -1385 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-573 -1386 UP) +(-572 -1385 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-574) +(-573) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4438 . T) (-4444 . T) (-4448 . T) (-4443 . T) (-4454 . T) (-4455 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4437 . T) (-4443 . T) (-4447 . T) (-4442 . T) (-4453 . T) (-4454 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-575) +(-574) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-576 R -1386 L) +(-575 R -1385 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -666) (|devaluate| |#2|)))) -(-577 R -1386) +((|HasCategory| |#3| (LIST (QUOTE -665) (|devaluate| |#2|)))) +(-576 R -1385) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-1152)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-639))))) -(-578 -1386 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#2| (QUOTE (-1151)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#2| (QUOTE (-638))))) +(-577 -1385 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-579 S) +(-578 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-580 -1386) +(-579 -1385) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-581 R) +(-580 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-3551 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-3550 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-582) +(-581) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-583 R -1386) +(-582 R -1385) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-292))) (|HasCategory| |#2| (QUOTE (-639))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-1190))))) (-12 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-292)))) (|HasCategory| |#1| (QUOTE (-566)))) -(-584 -1386 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#2| (QUOTE (-291))) (|HasCategory| |#2| (QUOTE (-638))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-1189))))) (-12 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-291)))) (|HasCategory| |#1| (QUOTE (-565)))) +(-583 -1385 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-585 R -1386) +(-584 R -1385) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL -(-586) +(-585) ((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations."))) NIL NIL -(-587) +(-586) ((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if \\spad{`f'} is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by \\spad{`f'} as a binary file."))) NIL NIL -(-588) +(-587) ((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|closed| (($) "\\spad{closed} indicates that the IO conduit has been closed.")) (|bothWays| (($) "\\spad{bothWays} indicates that an IO conduit is for both input and output.")) (|output| (($) "\\spad{output} indicates that an IO conduit is for output")) (|input| (($) "\\spad{input} indicates that an IO conduit is for input."))) NIL NIL -(-589) +(-588) ((|constructor| (NIL "This domain provides representation for ARPA Internet IP4 addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the IP4 address of host \\spad{`h'}.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address \\spad{`x'}.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'."))) NIL NIL -(-590 |p| |unBalanced?|) +(-589 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-591 |p|) +(-590 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-377)))) -(-592) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-376)))) +(-591) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-593 R -1386) +(-592 R -1385) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-594 E -1386) +(-593 E -1385) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) NIL NIL -(-595) +(-594) ((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}"))) NIL NIL -(-596 -1386) +(-595 -1385) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4451 . T) (-4450 . T)) -((|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-1190))))) -(-597 I) +((-4450 . T) (-4449 . T)) +((|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-1189))))) +(-596 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-598 GF) +(-597 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-599 R) +(-598 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL ((|HasCategory| |#1| (QUOTE (-148)))) -(-600) +(-599) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,2,...,n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,3,3,1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,2,...,n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em pi} in the symmetric group,{} whose elements permute {\\em {1,2,...,n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|PositiveInteger|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-601 R E V P TS) +(-600 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-602) +(-601) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'."))) NIL NIL -(-603 |mn|) +(-602 |mn|) ((|constructor| (NIL "This domain implements low-level strings"))) -((-4457 . T) (-4456 . T)) -((-2818 (-12 (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1113))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (-2818 (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1113))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1113)))) (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1113))) (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1113))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) -(-604 E V R P) +((-4456 . T) (-4455 . T)) +((-2817 (-12 (|HasCategory| (-145) (QUOTE (-859))) (|HasCategory| (-145) (LIST (QUOTE -316) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1112))) (|HasCategory| (-145) (LIST (QUOTE -316) (QUOTE (-145)))))) (-2817 (|HasCategory| (-145) (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| (-145) (QUOTE (-1112))) (|HasCategory| (-145) (LIST (QUOTE -316) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| (-145) (QUOTE (-859))) (|HasCategory| (-145) (QUOTE (-1112)))) (|HasCategory| (-145) (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| (-145) (QUOTE (-1112))) (|HasCategory| (-145) (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| (-145) (QUOTE (-1112))) (|HasCategory| (-145) (LIST (QUOTE -316) (QUOTE (-145)))))) +(-603 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-605 |Coef|) +(-604 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))) (|HasCategory| (-574) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574)))))) -(-606 |Coef|) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-565))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-573)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-573)) (|devaluate| |#1|)))) (|HasCategory| (-573) (QUOTE (-1124))) (|HasCategory| |#1| (QUOTE (-371))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-573))))) (|HasSignature| |#1| (LIST (QUOTE -2942) (LIST (|devaluate| |#1|) (QUOTE (-1189)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-573)))))) +(-605 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -(((-4458 "*") |has| |#1| (-566)) (-4449 |has| |#1| (-566)) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| |#1| (QUOTE (-566)))) -(-607) +(((-4457 "*") |has| |#1| (-565)) (-4448 |has| |#1| (-565)) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| |#1| (QUOTE (-565)))) +(-606) ((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context"))) NIL NIL -(-608 A B) +(-607 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-609 A B C) +(-608 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) NIL NIL -(-610 R -1386 FG) +(-609 R -1385 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-611 S) +(-610 S) ((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,s)} returns \\spad{[s,f(s),f(f(s)),...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-612 R |mn|) +(-611 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4457 . T) (-4456 . T)) -((-2818 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1062))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-1062)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) -(-613 S |Index| |Entry|) +((-4456 . T) (-4455 . T)) +((-2817 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112)))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#1| (QUOTE (-1061))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-1061)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) +(-612 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#2| (QUOTE (-860))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#3| (QUOTE (-1113)))) -(-614 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#2| (QUOTE (-859))) (|HasAttribute| |#1| (QUOTE -4455)) (|HasCategory| |#3| (QUOTE (-1112)))) +(-613 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL NIL -(-615) +(-614) ((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes."))) NIL NIL -(-616) +(-615) ((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join \\spad{`x'}.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) NIL NIL -(-617 R A) +(-616 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4453 -2818 (-2087 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))) (-4451 . T) (-4450 . T)) -((-2818 (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|)))) -(-618 |Entry|) +((-4452 -2817 (-2086 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))) (-4450 . T) (-4449 . T)) +((-2817 (|HasCategory| |#2| (LIST (QUOTE -375) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -426) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -426) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -426) (|devaluate| |#1|)))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#2| (LIST (QUOTE -375) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#2| (LIST (QUOTE -426) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -375) (|devaluate| |#1|)))) +(-617 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4456 . T) (-4457 . T)) -((-12 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (QUOTE (-1172))) (LIST (QUOTE |:|) (QUOTE -1908) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| (-1172) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (LIST (QUOTE -623) (QUOTE (-872))))) -(-619 S |Key| |Entry|) +((-4455 . T) (-4456 . T)) +((-12 (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (LIST (QUOTE -316) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3692) (QUOTE (-1171))) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (LIST (QUOTE -623) (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| (-1171) (QUOTE (-859))) (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (LIST (QUOTE -622) (QUOTE (-871))))) +(-618 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-620 |Key| |Entry|) +(-619 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4457 . T)) +((-4456 . T)) NIL -(-621 R S) +(-620 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-622 S) +(-621 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) -(-623 S) +((|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) +(-622 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-624 S) +(-623 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-625 -1386 UP) +(-624 -1385 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-626 S) +(-625 S) ((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms \\spad{`s'} into an element of `\\%'."))) NIL NIL -(-627) +(-626) ((|constructor| (NIL "This domain implements Kleene\\spad{'s} 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of \\spad{`x'} is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of \\spad{`x'} is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of \\spad{`x'} is `false'")) (|unknown| (($) "the indefinite `unknown'"))) NIL NIL -(-628 S) +(-627 S) ((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms \\spad{`s'} into an element of `\\%'."))) NIL NIL -(-629 S R) +(-628 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-630 R) +(-629 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4453 . T)) +((-4452 . T)) NIL -(-631 A R S) +(-630 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| |#1| (QUOTE (-858)))) -(-632 R -1386) +((-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| |#1| (QUOTE (-857)))) +(-631 R -1385) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform."))) NIL NIL -(-633 R UP) +(-632 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4451 . T) (-4450 . T) ((-4458 "*") . T) (-4449 . T) (-4453 . T)) -((|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574))))) -(-634 R E V P TS ST) +((-4450 . T) (-4449 . T) ((-4457 "*") . T) (-4448 . T) (-4452 . T)) +((|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573))))) +(-633 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL NIL -(-635 OV E Z P) +(-634 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-636) +(-635) ((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) NIL NIL -(-637 |VarSet| R |Order|) +(-636 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4453 . T)) +((-4452 . T)) NIL -(-638 R |ls|) +(-637 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) NIL NIL -(-639) +(-638) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-640 R -1386) +(-639 R -1385) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-641 |lv| -1386) +(-640 |lv| -1385) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-642) +(-641) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4457 . T)) -((-12 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (QUOTE (-1172))) (LIST (QUOTE |:|) (QUOTE -1908) (QUOTE (-52))))))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (QUOTE (-1113))) (|HasCategory| (-52) (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (QUOTE (-1113))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| (-52) (QUOTE (-1113))) (|HasCategory| (-52) (LIST (QUOTE -317) (QUOTE (-52))))) (|HasCategory| (-1172) (QUOTE (-860))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-52) (QUOTE (-1113))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (QUOTE (-1113)))) -(-643 S R) +((-4456 . T)) +((-12 (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (LIST (QUOTE -316) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3692) (QUOTE (-1171))) (LIST (QUOTE |:|) (QUOTE -1907) (QUOTE (-52))))))) (-2817 (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (QUOTE (-1112))) (|HasCategory| (-52) (QUOTE (-1112)))) (-2817 (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-52) (QUOTE (-1112))) (|HasCategory| (-52) (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (LIST (QUOTE -623) (QUOTE (-545)))) (-12 (|HasCategory| (-52) (QUOTE (-1112))) (|HasCategory| (-52) (LIST (QUOTE -316) (QUOTE (-52))))) (|HasCategory| (-1171) (QUOTE (-859))) (-2817 (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-52) (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| (-52) (QUOTE (-1112))) (|HasCategory| (-52) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (QUOTE (-1112)))) +(-642 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL -((|HasCategory| |#2| (QUOTE (-372)))) -(-644 R) +((|HasCategory| |#2| (QUOTE (-371)))) +(-643 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4451 . T) (-4450 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4450 . T) (-4449 . T)) NIL -(-645 R A) +(-644 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4453 -2818 (-2087 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))) (-4451 . T) (-4450 . T)) -((-2818 (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|)))) -(-646 R FE) +((-4452 -2817 (-2086 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))) (-4450 . T) (-4449 . T)) +((-2817 (|HasCategory| |#2| (LIST (QUOTE -375) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -426) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -426) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -426) (|devaluate| |#1|)))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#2| (LIST (QUOTE -375) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#2| (LIST (QUOTE -426) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -375) (|devaluate| |#1|)))) +(-645 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) NIL NIL -(-647 R) +(-646 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-648 S R) +(-647 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-2076 (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-372)))) -(-649 R) +((-2075 (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-371)))) +(-648 R) ((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{reducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}."))) NIL NIL -(-650 R) +(-649 R) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-linear set if it is stable by dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{Module} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: LeftLinearSet,{} RightLinearSet."))) NIL NIL -(-651 A B) +(-650 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-652 A B) +(-651 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}."))) NIL NIL -(-653 A B C) +(-652 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-654 S) +(-653 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) -((-4457 . T) (-4456 . T)) -((-2818 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) -(-655 T$) +((-4456 . T) (-4455 . T)) +((-2817 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112)))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-837))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) +(-654 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-656 R) +(-655 R) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{LeftModule} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{r*x} is the left-dilation of \\spad{x} by \\spad{r}.")) (|zero?| (((|Boolean|) $) "\\spad{zero? x} holds is \\spad{x} is the origin.")) ((|Zero|) (($) "\\spad{0} represents the origin of the linear set"))) NIL NIL -(-657 S) +(-656 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4456 . T) (-4457 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) -(-658 R) +((-4455 . T) (-4456 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) +(-657 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline"))) NIL NIL -(-659 S E |un|) +(-658 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a, b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a, n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-660 A S) +(-659 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4457))) -(-661 S) +((|HasAttribute| |#1| (QUOTE -4456))) +(-660 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-662 R -1386 L) +(-661 R -1385 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-663 A) +(-662 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372)))) -(-664 A M) +((-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-371)))) +(-663 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372)))) -(-665 S A) +((-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-371)))) +(-664 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL -((|HasCategory| |#2| (QUOTE (-372)))) -(-666 A) +((|HasCategory| |#2| (QUOTE (-371)))) +(-665 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4450 . T) (-4451 . T) (-4453 . T)) +((-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-667 -1386 UP) +(-666 -1385 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-668 A -2727) +(-667 A -3189) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372)))) -(-669 A L) +((-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-371)))) +(-668 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-670 S) +(-669 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-671) +(-670) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-672 M R S) +(-671 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4451 . T) (-4450 . T)) -((|HasCategory| |#1| (QUOTE (-801)))) -(-673 R) +((-4450 . T) (-4449 . T)) +((|HasCategory| |#1| (QUOTE (-800)))) +(-672 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-674 |VarSet| R) +(-673 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4451 . T) (-4450 . T)) -((|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-174)))) -(-675 A S) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4450 . T) (-4449 . T)) +((|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-174)))) +(-674 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-676 S) +(-675 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4457 . T) (-4456 . T)) +((-4456 . T) (-4455 . T)) NIL -(-677 -1386) +(-676 -1385) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-678 -1386 |Row| |Col| M) +(-677 -1385 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-679 R E OV P) +(-678 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-680 |n| R) +(-679 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4453 . T) (-4456 . T) (-4450 . T) (-4451 . T)) -((|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4458 "*"))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-566))) (-2818 (|HasAttribute| |#2| (QUOTE (-4458 "*"))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) -(-681) +((-4452 . T) (-4455 . T) (-4449 . T) (-4450 . T)) +((|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE (-4457 "*"))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-565))) (-2817 (|HasAttribute| |#2| (QUOTE (-4457 "*"))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) +(-680) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-682 |VarSet|) +(-681 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-683 A S) +(-682 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-684 S) +(-683 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-685 R) +(-684 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms"))) NIL -((-2818 (-12 (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) -(-686) +((-2817 (-12 (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) +(-685) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL NIL -(-687 |VarSet|) +(-686 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-688 A) +(-687 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-689 A C) +(-688 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument."))) NIL NIL -(-690 A B C) +(-689 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}."))) NIL NIL -(-691) +(-690) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-692 A) +(-691 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-693 A C) +(-692 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-694 A B C) +(-693 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}"))) NIL NIL -(-695 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-694 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-696 S R |Row| |Col|) +(-695 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4458 "*"))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-566)))) -(-697 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-4457 "*"))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-565)))) +(-696 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4456 . T) (-4457 . T)) +((-4455 . T) (-4456 . T)) NIL -(-698 R |Row| |Col| M) +(-697 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-566)))) -(-699 R) +((|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-565)))) +(-698 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4456 . T) (-4457 . T)) -((-2818 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-566))) (|HasAttribute| |#1| (QUOTE (-4458 "*"))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) -(-700 R) +((-4455 . T) (-4456 . T)) +((-2817 (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-565))) (|HasAttribute| |#1| (QUOTE (-4457 "*"))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) +(-699 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-701 T$) +(-700 T$) ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%."))) NIL NIL -(-702 S -1386 FLAF FLAS) +(-701 S -1385 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL -(-703 R Q) +(-702 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-704) +(-703) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4449 . T) (-4454 |has| (-709) (-372)) (-4448 |has| (-709) (-372)) (-3562 . T) (-4455 |has| (-709) (-6 -4455)) (-4452 |has| (-709) (-6 -4452)) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| (-709) (QUOTE (-148))) (|HasCategory| (-709) (QUOTE (-146))) (|HasCategory| (-709) (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-709) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-709) (QUOTE (-377))) (|HasCategory| (-709) (QUOTE (-372))) (-2818 (|HasCategory| (-709) (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-709) (QUOTE (-372)))) (|HasCategory| (-709) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-709) (QUOTE (-239))) (-2818 (|HasCategory| (-709) (QUOTE (-372))) (|HasCategory| (-709) (QUOTE (-358)))) (|HasCategory| (-709) (QUOTE (-358))) (|HasCategory| (-709) (LIST (QUOTE -294) (QUOTE (-709)) (QUOTE (-709)))) (|HasCategory| (-709) (LIST (QUOTE -317) (QUOTE (-709)))) (|HasCategory| (-709) (LIST (QUOTE -524) (QUOTE (-1190)) (QUOTE (-709)))) (|HasCategory| (-709) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-709) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-709) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-709) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (-2818 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-372))) (|HasCategory| (-709) (QUOTE (-358)))) (|HasCategory| (-709) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-709) (QUOTE (-1035))) (|HasCategory| (-709) (QUOTE (-1216))) (-12 (|HasCategory| (-709) (QUOTE (-1015))) (|HasCategory| (-709) (QUOTE (-1216)))) (-2818 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-920)))) (|HasCategory| (-709) (QUOTE (-372))) (-12 (|HasCategory| (-709) (QUOTE (-358))) (|HasCategory| (-709) (QUOTE (-920))))) (-2818 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-920)))) (-12 (|HasCategory| (-709) (QUOTE (-372))) (|HasCategory| (-709) (QUOTE (-920)))) (-12 (|HasCategory| (-709) (QUOTE (-358))) (|HasCategory| (-709) (QUOTE (-920))))) (|HasCategory| (-709) (QUOTE (-555))) (-12 (|HasCategory| (-709) (QUOTE (-1073))) (|HasCategory| (-709) (QUOTE (-1216)))) (|HasCategory| (-709) (QUOTE (-1073))) (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-920))) (-2818 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-920)))) (|HasCategory| (-709) (QUOTE (-372)))) (-2818 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-920)))) (|HasCategory| (-709) (QUOTE (-566)))) (-12 (|HasCategory| (-709) (QUOTE (-239))) (|HasCategory| (-709) (QUOTE (-372)))) (-12 (|HasCategory| (-709) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-709) (QUOTE (-372)))) (|HasCategory| (-709) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| (-709) (QUOTE (-566))) (|HasAttribute| (-709) (QUOTE -4455)) (|HasAttribute| (-709) (QUOTE -4452)) (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-920)))) (|HasCategory| (-709) (QUOTE (-146)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-920)))) (|HasCategory| (-709) (QUOTE (-358))))) -(-705 S) +((-4448 . T) (-4453 |has| (-708) (-371)) (-4447 |has| (-708) (-371)) (-3561 . T) (-4454 |has| (-708) (-6 -4454)) (-4451 |has| (-708) (-6 -4451)) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| (-708) (QUOTE (-148))) (|HasCategory| (-708) (QUOTE (-146))) (|HasCategory| (-708) (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| (-708) (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| (-708) (QUOTE (-376))) (|HasCategory| (-708) (QUOTE (-371))) (-2817 (|HasCategory| (-708) (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| (-708) (QUOTE (-371)))) (|HasCategory| (-708) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| (-708) (QUOTE (-238))) (-2817 (|HasCategory| (-708) (QUOTE (-371))) (|HasCategory| (-708) (QUOTE (-357)))) (|HasCategory| (-708) (QUOTE (-357))) (|HasCategory| (-708) (LIST (QUOTE -293) (QUOTE (-708)) (QUOTE (-708)))) (|HasCategory| (-708) (LIST (QUOTE -316) (QUOTE (-708)))) (|HasCategory| (-708) (LIST (QUOTE -523) (QUOTE (-1189)) (QUOTE (-708)))) (|HasCategory| (-708) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| (-708) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| (-708) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| (-708) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (-2817 (|HasCategory| (-708) (QUOTE (-314))) (|HasCategory| (-708) (QUOTE (-371))) (|HasCategory| (-708) (QUOTE (-357)))) (|HasCategory| (-708) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| (-708) (QUOTE (-1034))) (|HasCategory| (-708) (QUOTE (-1215))) (-12 (|HasCategory| (-708) (QUOTE (-1014))) (|HasCategory| (-708) (QUOTE (-1215)))) (-2817 (-12 (|HasCategory| (-708) (QUOTE (-314))) (|HasCategory| (-708) (QUOTE (-919)))) (|HasCategory| (-708) (QUOTE (-371))) (-12 (|HasCategory| (-708) (QUOTE (-357))) (|HasCategory| (-708) (QUOTE (-919))))) (-2817 (-12 (|HasCategory| (-708) (QUOTE (-314))) (|HasCategory| (-708) (QUOTE (-919)))) (-12 (|HasCategory| (-708) (QUOTE (-371))) (|HasCategory| (-708) (QUOTE (-919)))) (-12 (|HasCategory| (-708) (QUOTE (-357))) (|HasCategory| (-708) (QUOTE (-919))))) (|HasCategory| (-708) (QUOTE (-554))) (-12 (|HasCategory| (-708) (QUOTE (-1072))) (|HasCategory| (-708) (QUOTE (-1215)))) (|HasCategory| (-708) (QUOTE (-1072))) (|HasCategory| (-708) (QUOTE (-314))) (|HasCategory| (-708) (QUOTE (-919))) (-2817 (-12 (|HasCategory| (-708) (QUOTE (-314))) (|HasCategory| (-708) (QUOTE (-919)))) (|HasCategory| (-708) (QUOTE (-371)))) (-2817 (-12 (|HasCategory| (-708) (QUOTE (-314))) (|HasCategory| (-708) (QUOTE (-919)))) (|HasCategory| (-708) (QUOTE (-565)))) (-12 (|HasCategory| (-708) (QUOTE (-238))) (|HasCategory| (-708) (QUOTE (-371)))) (-12 (|HasCategory| (-708) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| (-708) (QUOTE (-371)))) (|HasCategory| (-708) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| (-708) (QUOTE (-565))) (|HasAttribute| (-708) (QUOTE -4454)) (|HasAttribute| (-708) (QUOTE -4451)) (-12 (|HasCategory| (-708) (QUOTE (-314))) (|HasCategory| (-708) (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-708) (QUOTE (-314))) (|HasCategory| (-708) (QUOTE (-919)))) (|HasCategory| (-708) (QUOTE (-146)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-708) (QUOTE (-314))) (|HasCategory| (-708) (QUOTE (-919)))) (|HasCategory| (-708) (QUOTE (-357))))) +(-704 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4457 . T)) +((-4456 . T)) NIL -(-706 U) +(-705 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-707) +(-706) ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) NIL NIL -(-708 OV E -1386 PG) +(-707 OV E -1385 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-709) +(-708) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-3551 . T) (-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-3550 . T) (-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-710 R) +(-709 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-711) +(-710) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4455 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4454 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-712 S D1 D2 I) +(-711 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-713 S) +(-712 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, x, y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-714 S) +(-713 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x, y)} creates a function \\spad{foo(x, y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-715 S T$) +(-714 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-716 S -3610 I) +(-715 S -3609 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-717 E OV R P) +(-716 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented"))) NIL NIL -(-718 R) +(-717 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4450 . T) (-4451 . T) (-4453 . T)) +((-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-719 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-718 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-720) +(-719) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-721 R |Mod| -2666 -4430 |exactQuo|) +(-720 R |Mod| -4115 -1480 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-722 R |Rep|) +(-721 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4452 |has| |#1| (-372)) (-4454 |has| |#1| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T)) -((|HasCategory| |#1| (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1165))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4454)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-723 IS E |ff|) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4451 |has| |#1| (-371)) (-4453 |has| |#1| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) +((|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545))))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4453)) (|HasCategory| |#1| (QUOTE (-461))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-722 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-724 R M) +(-723 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4451 |has| |#1| (-174)) (-4450 |has| |#1| (-174)) (-4453 . T)) +((-4450 |has| |#1| (-174)) (-4449 |has| |#1| (-174)) (-4452 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148)))) -(-725 R |Mod| -2666 -4430 |exactQuo|) +(-724 R |Mod| -4115 -1480 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4453 . T)) +((-4452 . T)) NIL -(-726 S R) +(-725 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-727 R) +(-726 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4451 . T) (-4450 . T)) +((-4450 . T) (-4449 . T)) NIL -(-728 -1386) +(-727 -1385) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}."))) -((-4453 . T)) +((-4452 . T)) NIL -(-729 S) +(-728 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-730) +(-729) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-731 S) +(-730 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-732) +(-731) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-733 S R UP) +(-732 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL -((|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377)))) -(-734 R UP) +((|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-376)))) +(-733 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4449 |has| |#1| (-372)) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4448 |has| |#1| (-371)) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-735 S) +(-734 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-736) +(-735) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-737 -1386 UP) +(-736 -1385 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-738 |VarSet| E1 E2 R S PR PS) +(-737 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-739 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-738 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-740 E OV R PPR) +(-739 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-741 |vl| R) +(-740 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4458 "*") |has| |#2| (-174)) (-4449 |has| |#2| (-566)) (-4454 |has| |#2| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T)) -((|HasCategory| |#2| (QUOTE (-920))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-920)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4454)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-920)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-742 E OV R PRF) +(((-4457 "*") |has| |#2| (-174)) (-4448 |has| |#2| (-565)) (-4453 |has| |#2| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) +((|HasCategory| |#2| (QUOTE (-919))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-919)))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-174))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-565)))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| (-873 |#1|) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545))))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-371))) (|HasAttribute| |#2| (QUOTE -4453)) (|HasCategory| |#2| (QUOTE (-461))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-919)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-741 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-743 E OV R P) +(-742 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-744 R S M) +(-743 R S M) ((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-745 R M) +(-744 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4451 |has| |#1| (-174)) (-4450 |has| |#1| (-174)) (-4453 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-860)))) -(-746 S) +((-4450 |has| |#1| (-174)) (-4449 |has| |#1| (-174)) (-4452 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-859)))) +(-745 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4446 . T) (-4457 . T)) +((-4445 . T) (-4456 . T)) NIL -(-747 S) +(-746 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4456 . T) (-4446 . T) (-4457 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) -(-748) +((-4455 . T) (-4445 . T) (-4456 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) +(-747) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-749 S) +(-748 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-750 |Coef| |Var|) +(-749 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4451 . T) (-4450 . T) (-4453 . T)) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4450 . T) (-4449 . T) (-4452 . T)) NIL -(-751 OV E R P) +(-750 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-752 E OV R P) +(-751 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-753 S R) +(-752 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-754 R) +(-753 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4451 . T) (-4450 . T)) +((-4450 . T) (-4449 . T)) NIL -(-755) +(-754) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) NIL NIL -(-756) +(-755) ((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,ldfjac,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,b,eps,eta,ifail,f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) NIL NIL -(-757) +(-756) ((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,n,x,ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,n,x,ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,y,ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,x,ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,n,init,x,y,trigm,trign,ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,n,init,x,y,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,n,x,y,ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,x,y,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,x,ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,x,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) NIL NIL -(-758) +(-757) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,a,b,maxcls,eps,lenwrk,mincls,wrkstr,ifail,functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,y,n,ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,a,b,maxpts,eps,lenwrk,minpts,ifail,functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,b,itype,n,gtype,ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,omega,key,epsabs,limlst,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,b,c,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,b,alfa,beta,key,epsabs,epsrel,lw,liw,ifail,g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,b,omega,key,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,inf,epsabs,epsrel,lw,liw,ifail,f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,b,npts,points,epsabs,epsrel,lw,liw,ifail,f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) NIL NIL -(-759) +(-758) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,mnp,numbeg,nummix,tol,init,iy,ijac,lwork,liwork,np,x,y,deleps,ifail,fcn,g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval,monit,report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,b,n,tol,mnp,lw,liw,c,d,gam,x,np,ifail,fcnf,fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,v,n,a,b,tol,mnp,lw,liw,x,np,ifail,fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,m,n,relabs,iw,x,y,tol,ifail,g,fcn,pederv,output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,m,n,tol,relabs,x,y,ifail,g,fcn,output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,n,irelab,hmax,x,y,tol,ifail,g,fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,m,n,irelab,x,y,tol,ifail,fcn,output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) NIL NIL -(-760) +(-759) ((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,xf,l,lbdcnd,bdxs,bdxf,ys,yf,m,mbdcnd,bdys,bdyf,zs,zf,n,nbdcnd,bdzs,bdzf,lambda,ldimf,mdimf,lwrk,f,ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,xmax,ymin,ymax,ngx,ngy,lda,scheme,ifail,pdef,bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,ngy,lda,maxit,acc,iout,a,rhs,ub,ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) NIL NIL -(-761) +(-760) ((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,x,y,f,rnw,fnodes,px,py,ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,x,y,f,nw,nq,rnw,rnq,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,x,y,f,triang,grads,px,py,ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,x,y,f,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,my,x,y,f,ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,x,f,d,a,b,ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,x,f,ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,x,y,lck,lwrk,ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) NIL NIL -(-762) +(-761) ((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,py,lamda,mu,m,x,y,npoint,nadres,ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,la,nplus2,toler,a,b,ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,my,px,py,x,y,lamda,mu,c,lwrk,liwrk,ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,px,py,x,y,lamda,mu,c,ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,m,x,y,f,w,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,mx,x,my,y,f,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,iwrk,ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,px,py,x,y,f,w,mu,point,npoint,nc,nws,eps,lamda,ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,m,x,y,w,s,nest,lwrk,n,lamda,ifail,wrk,iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,lamda,c,ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,lamda,c,x,left,ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,lamda,c,x,ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,ncap7,x,y,w,lamda,ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,xmin,xmax,a,ia1,la,x,ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,xmin,xmax,a,ia1,la,qatm1,iaint1,laint,ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,xmin,xmax,a,ia1,la,iadif1,ladif,ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,kplus1,nrows,xmin,xmax,x,y,w,mf,xf,yf,lyf,ip,lwrk,liwrk,ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,a,xcap,ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,kplus1,nrows,x,y,w,ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) NIL NIL -(-763) +(-762) ((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,m,n,fsumsq,s,lv,v,ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,nclin,ncnln,nrowa,nrowj,nrowr,a,bl,bu,liwork,lwork,sta,cra,der,fea,fun,hes,infb,infs,linf,lint,list,maji,majp,mini,minp,mon,nonf,opt,ste,stao,stac,stoo,stoc,ve,istate,cjac,clamda,r,x,ifail,confun,objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,msglvl,n,nclin,nctotl,nrowa,nrowh,ncolh,bigbnd,a,bl,bu,cvec,featol,hess,cold,lpp,orthog,liwork,lwork,x,istate,ifail,qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,msglvl,n,nclin,nctotl,nrowa,a,bl,bu,cvec,linobj,liwork,lwork,x,ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,ibound,liw,lw,bl,bu,x,ifail,funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,n,liw,lw,x,ifail,lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,n,liw,lw,x,ifail,lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,es,fu,it,lin,list,ma,op,pr,sta,sto,ve,x,ifail,objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) NIL NIL -(-764) +(-763) ((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,m,n,ncolq,lda,theta,a,ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,wheret,m,n,a,lda,theta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,m,n,ncolq,lda,zeta,a,ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,wheret,m,n,a,lda,zeta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,avals,lal,nrow,ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,nz,licn,lirn,abort,avals,irn,icn,droptl,densw,ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,nz,licn,ivect,jvect,icn,ikeep,grow,eta,abort,idisp,avals,ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,nz,licn,lirn,pivot,lblock,grow,abort,a,irn,icn,ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) NIL NIL -(-765) +(-764) ((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldph,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldpt,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image,monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,ia,ib,eps1,matv,iv,a,b,ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,n,alb,ub,m,iv,a,ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,iar,ai,iai,n,ivr,ivi,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,iai,n,ivr,ivi,ar,ai,ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,n,ivr,ivi,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,n,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,ib,n,iv,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,ib,n,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,ia,n,iv,ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,n,a,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) NIL NIL -(-766) +(-765) ((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,n,damp,atol,btol,conlim,itnlim,msglvl,lrwork,liwork,b,ifail,aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,al,lal,d,nrow,ir,b,nrb,iselct,nrx,ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,b,precon,shift,itnlim,msglvl,lrwork,liwork,rtol,ifail,aprod,msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,nz,avals,licn,irn,lirn,icn,wkeep,ikeep,inform,b,acc,noits,ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,n,nra,tol,lwork,a,b,ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,n,d,e,b,ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,a,licn,icn,ikeep,mtype,idisp,rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,ia,b,n,iaa,ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,b,n,a,ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,b,n,a,ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,b,ib,n,m,ic,a,ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) NIL NIL -(-767) +(-766) ((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,n,nrhs,a,lda,ldb,b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,n,lda,a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,n,nrhs,a,lda,ipiv,ldb,b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,n,lda,a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) NIL NIL -(-768) +(-767) ((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,y,z,r,ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,y,ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,fnu,z,n,scale,ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,x,tol,ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) NIL NIL -(-769) +(-768) ((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) NIL NIL -(-770 S) +(-769 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-771) +(-770) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-772 S) +(-771 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-773) +(-772) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-774 |Par|) +(-773 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-775 -1386) +(-774 -1385) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-776 P -1386) +(-775 P -1385) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-777 T$) +(-776 T$) NIL NIL NIL -(-778 UP -1386) +(-777 UP -1385) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-779) +(-778) ((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-780 R) +(-779 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-781) +(-780) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4458 "*") . T)) +(((-4457 "*") . T)) NIL -(-782 R -1386) +(-781 R -1385) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-783 S) +(-782 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-784) +(-783) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-785 R |PolR| E |PolE|) +(-784 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-786 R E V P TS) +(-785 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-787 -1386 |ExtF| |SUEx| |ExtP| |n|) +(-786 -1385 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-788 BP E OV R P) +(-787 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-789 |Par|) +(-788 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) NIL NIL -(-790 R |VarSet|) +(-789 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T)) -((|HasCategory| |#1| (QUOTE (-920))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190)))) (-2076 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190)))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190)))) (-2076 (|HasCategory| |#1| (QUOTE (-555)))) (-2076 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190)))) (-2076 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-574))))) (-2076 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1190)))) (-2076 (|HasCategory| |#1| (LIST (QUOTE -1005) (QUOTE (-574))))))) (|HasAttribute| |#1| (QUOTE -4454)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-791 R S) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) +((|HasCategory| |#1| (QUOTE (-919))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545))))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-1189))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-371))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-1189))))) (-2817 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-1189)))) (-2075 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-1189)))))) (-2817 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-1189)))) (-2075 (|HasCategory| |#1| (QUOTE (-554)))) (-2075 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-1189)))) (-2075 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-573))))) (-2075 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-1189)))) (-2075 (|HasCategory| |#1| (LIST (QUOTE -1004) (QUOTE (-573))))))) (|HasAttribute| |#1| (QUOTE -4453)) (|HasCategory| |#1| (QUOTE (-461))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-790 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-792 R) +(-791 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4452 |has| |#1| (-372)) (-4454 |has| |#1| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T)) -((|HasCategory| |#1| (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1165))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4454)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-793 R) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4451 |has| |#1| (-371)) (-4453 |has| |#1| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) +((|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545))))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4453)) (|HasCategory| |#1| (QUOTE (-461))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-792 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) -(-794 R E V P) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) +(-793 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4457 . T) (-4456 . T)) +((-4456 . T) (-4455 . T)) NIL -(-795 S) +(-794 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (QUOTE (-174)))) -(-796) +((-12 (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-859)))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (QUOTE (-174)))) +(-795) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-797) +(-796) ((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-798) +(-797) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-799) +(-798) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-800 |Curve|) +(-799 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-801) +(-800) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering."))) NIL NIL -(-802) +(-801) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-803) +(-802) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-804) +(-803) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-805) +(-804) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-806 S R) +(-805 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-377)))) -(-807 R) +((|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-376)))) +(-806 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4450 . T) (-4451 . T) (-4453 . T)) +((-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-808 -2818 R OS S) +(-807 -2817 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-809 R) +(-808 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1190)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (-2818 (|HasCategory| (-1012 |#1|) (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2818 (|HasCategory| (-1012 |#1|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| (-1012 |#1|) (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1012 |#1|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574))))) -(-810) +((-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -523) (QUOTE (-1189)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|) (|devaluate| |#1|))) (-2817 (|HasCategory| (-1011 |#1|) (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (-2817 (|HasCategory| (-1011 |#1|) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| (-1011 |#1|) (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| (-1011 |#1|) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573))))) +(-809) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-811 R -1386 L) +(-810 R -1385 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-812 R -1386) +(-811 R -1385) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-813) +(-812) ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-814 R -1386) +(-813 R -1385) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-815) +(-814) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-816 -1386 UP UPUP R) +(-815 -1385 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-817 -1386 UP L LQ) +(-816 -1385 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-818) +(-817) ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-819 -1386 UP L LQ) +(-818 -1385 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-820 -1386 UP) +(-819 -1385 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-821 -1386 L UP A LO) +(-820 -1385 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-822 -1386 UP) +(-821 -1385 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-823 -1386 LO) +(-822 -1385 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-824 -1386 LODO) +(-823 -1385 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-825 -4132 S |f|) +(-824 -4131 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4450 |has| |#2| (-1062)) (-4451 |has| |#2| (-1062)) (-4453 |has| |#2| (-6 -4453)) ((-4458 "*") |has| |#2| (-174)) (-4456 . T)) -((-2818 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1113)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1062)))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-372))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-803))) (-2818 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-736))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1062)))) (|HasCategory| |#2| (QUOTE (-377))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1062)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-377)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-858)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1113))))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1062))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1062)))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190))))) (-2818 (|HasCategory| |#2| (QUOTE (-1062))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1113)))) (|HasAttribute| |#2| (QUOTE -4453)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))))) -(-826 R) +((-4449 |has| |#2| (-1061)) (-4450 |has| |#2| (-1061)) (-4452 |has| |#2| (-6 -4452)) ((-4457 "*") |has| |#2| (-174)) (-4455 . T)) +((-2817 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-802))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))))) (-2817 (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1112)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1061)))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#2| (QUOTE (-371))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-1061)))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-371)))) (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-802))) (-2817 (|HasCategory| |#2| (QUOTE (-802))) (|HasCategory| |#2| (QUOTE (-857)))) (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (QUOTE (-735))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1061)))) (|HasCategory| |#2| (QUOTE (-376))) (-2817 (-12 (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573)))))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-802))) (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (QUOTE (-1112)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-371))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1061)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-371))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1061)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-371))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1061)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1061)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-371)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-802)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-857)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1061)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1112))))) (-2817 (-12 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-802))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1061))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))))) (-2817 (-12 (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-802))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-857))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))))) (|HasCategory| (-573) (QUOTE (-859))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1061)))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189))))) (-2817 (|HasCategory| |#2| (QUOTE (-1061))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-1112)))) (|HasAttribute| |#2| (QUOTE -4452)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|))))) +(-825 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T)) -((|HasCategory| |#1| (QUOTE (-920))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-828 (-1190)) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-828 (-1190)) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-828 (-1190)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-828 (-1190)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-828 (-1190)) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4454)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-827 |Kernels| R |var|) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) +((|HasCategory| |#1| (QUOTE (-919))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| (-827 (-1189)) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| (-827 (-1189)) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| (-827 (-1189)) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| (-827 (-1189)) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| (-827 (-1189)) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545))))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-371))) (|HasAttribute| |#1| (QUOTE -4453)) (|HasCategory| |#1| (QUOTE (-461))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-826 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-4458 "*") |has| |#2| (-372)) (-4449 |has| |#2| (-372)) (-4454 |has| |#2| (-372)) (-4448 |has| |#2| (-372)) (-4453 . T) (-4451 . T) (-4450 . T)) -((|HasCategory| |#2| (QUOTE (-372)))) -(-828 S) +(((-4457 "*") |has| |#2| (-371)) (-4448 |has| |#2| (-371)) (-4453 |has| |#2| (-371)) (-4447 |has| |#2| (-371)) (-4452 . T) (-4450 . T) (-4449 . T)) +((|HasCategory| |#2| (QUOTE (-371)))) +(-827 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-829 S) +(-828 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-860)))) -(-830) +((|HasCategory| |#1| (QUOTE (-859)))) +(-829) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-831) +(-830) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) NIL NIL -(-832) +(-831) ((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,cd,s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,mode,enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) NIL NIL -(-833) +(-832) ((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) NIL NIL -(-834) +(-833) ((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) NIL NIL -(-835) +(-834) ((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) NIL NIL -(-836 R) +(-835 R) ((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath."))) NIL NIL -(-837 P R) +(-836 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-239)))) -(-838) +((-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-238)))) +(-837) ((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) NIL NIL -(-839) +(-838) ((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) NIL NIL -(-840 S) +(-839 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4456 . T) (-4446 . T) (-4457 . T)) +((-4455 . T) (-4445 . T) (-4456 . T)) NIL -(-841) +(-840) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) NIL NIL -(-842 R S) +(-841 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-843 R) +(-842 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4453 |has| |#1| (-858))) -((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-21))) (-2818 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-858)))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (-2818 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-555)))) -(-844 A S) +((-4452 |has| |#1| (-857))) +((|HasCategory| |#1| (QUOTE (-857))) (|HasCategory| |#1| (QUOTE (-21))) (-2817 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-857)))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (-2817 (|HasCategory| |#1| (QUOTE (-857))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-554)))) +(-843 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-845 S) +(-844 S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-846 R) +(-845 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4451 |has| |#1| (-174)) (-4450 |has| |#1| (-174)) (-4453 . T)) +((-4450 |has| |#1| (-174)) (-4449 |has| |#1| (-174)) (-4452 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148)))) -(-847) +(-846) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) NIL NIL -(-848) +(-847) ((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of \\spad{`x'}."))) NIL NIL -(-849) +(-848) ((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-850) +(-849) ((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,cons,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) NIL NIL -(-851) +(-850) ((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-852 R S) +(-851 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-853 R) +(-852 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4453 |has| |#1| (-858))) -((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-21))) (-2818 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-858)))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (-2818 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-555)))) -(-854) +((-4452 |has| |#1| (-857))) +((|HasCategory| |#1| (QUOTE (-857))) (|HasCategory| |#1| (QUOTE (-21))) (-2817 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-857)))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (-2817 (|HasCategory| |#1| (QUOTE (-857))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-554)))) +(-853) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-855 -4132 S) +(-854 -4131 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-856) +(-855) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-857 S) +(-856 S) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) NIL NIL -(-858) +(-857) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4453 . T)) +((-4452 . T)) NIL -(-859 S) +(-858 S) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-860) +(-859) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-861 S R) +(-860 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174)))) -(-862 R) +((|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-174)))) +(-861 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4450 . T) (-4451 . T) (-4453 . T)) +((-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-863 R C) +(-862 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) -(-864 R |sigma| -2075) +((|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) +(-863 R |sigma| -2074) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372)))) -(-865 |x| R |sigma| -2075) +((-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-371)))) +(-864 |x| R |sigma| -2074) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-372)))) -(-866 R) +((-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-371)))) +(-865 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) -(-867) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) +(-866) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-868) +(-867) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-869 S) +(-868 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-870) +(-869) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-871) +(-870) ((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-872) +(-871) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-873) +(-872) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-874 |VariableList|) +(-873 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-875) +(-874) ((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}."))) NIL NIL -(-876 R |vl| |wl| |wtlevel|) +(-875 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4451 |has| |#1| (-174)) (-4450 |has| |#1| (-174)) (-4453 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372)))) -(-877 R PS UP) +((-4450 |has| |#1| (-174)) (-4449 |has| |#1| (-174)) (-4452 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371)))) +(-876 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-878 R |x| |pt|) +(-877 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-879 |p|) +(-878 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-880 |p|) +(-879 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-881 |p|) +(-880 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| (-880 |#1|) (QUOTE (-920))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| (-880 |#1|) (QUOTE (-146))) (|HasCategory| (-880 |#1|) (QUOTE (-148))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-880 |#1|) (QUOTE (-1035))) (|HasCategory| (-880 |#1|) (QUOTE (-830))) (-2818 (|HasCategory| (-880 |#1|) (QUOTE (-830))) (|HasCategory| (-880 |#1|) (QUOTE (-860)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| (-880 |#1|) (QUOTE (-1165))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-880 |#1|) (QUOTE (-239))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -524) (QUOTE (-1190)) (LIST (QUOTE -880) (|devaluate| |#1|)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -317) (LIST (QUOTE -880) (|devaluate| |#1|)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -294) (LIST (QUOTE -880) (|devaluate| |#1|)) (LIST (QUOTE -880) (|devaluate| |#1|)))) (|HasCategory| (-880 |#1|) (QUOTE (-315))) (|HasCategory| (-880 |#1|) (QUOTE (-555))) (|HasCategory| (-880 |#1|) (QUOTE (-860))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-880 |#1|) (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-880 |#1|) (QUOTE (-920)))) (|HasCategory| (-880 |#1|) (QUOTE (-146))))) -(-882 |p| PADIC) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| (-879 |#1|) (QUOTE (-919))) (|HasCategory| (-879 |#1|) (LIST (QUOTE -1050) (QUOTE (-1189)))) (|HasCategory| (-879 |#1|) (QUOTE (-146))) (|HasCategory| (-879 |#1|) (QUOTE (-148))) (|HasCategory| (-879 |#1|) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| (-879 |#1|) (QUOTE (-1034))) (|HasCategory| (-879 |#1|) (QUOTE (-829))) (-2817 (|HasCategory| (-879 |#1|) (QUOTE (-829))) (|HasCategory| (-879 |#1|) (QUOTE (-859)))) (|HasCategory| (-879 |#1|) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| (-879 |#1|) (QUOTE (-1164))) (|HasCategory| (-879 |#1|) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| (-879 |#1|) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| (-879 |#1|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| (-879 |#1|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| (-879 |#1|) (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| (-879 |#1|) (QUOTE (-238))) (|HasCategory| (-879 |#1|) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| (-879 |#1|) (LIST (QUOTE -523) (QUOTE (-1189)) (LIST (QUOTE -879) (|devaluate| |#1|)))) (|HasCategory| (-879 |#1|) (LIST (QUOTE -316) (LIST (QUOTE -879) (|devaluate| |#1|)))) (|HasCategory| (-879 |#1|) (LIST (QUOTE -293) (LIST (QUOTE -879) (|devaluate| |#1|)) (LIST (QUOTE -879) (|devaluate| |#1|)))) (|HasCategory| (-879 |#1|) (QUOTE (-314))) (|HasCategory| (-879 |#1|) (QUOTE (-554))) (|HasCategory| (-879 |#1|) (QUOTE (-859))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-879 |#1|) (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-879 |#1|) (QUOTE (-919)))) (|HasCategory| (-879 |#1|) (QUOTE (-146))))) +(-881 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| |#2| (QUOTE (-920))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-1035))) (|HasCategory| |#2| (QUOTE (-830))) (-2818 (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-1165))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1190)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-860))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-920)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-883 S T$) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| |#2| (QUOTE (-919))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-829))) (-2817 (|HasCategory| |#2| (QUOTE (-829))) (|HasCategory| |#2| (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#2| (QUOTE (-1164))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (LIST (QUOTE -523) (QUOTE (-1189)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-859))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-919)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-882 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))))) -(-884) +((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#2| (QUOTE (-1112)))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#2| (QUOTE (-1112)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871)))))) +(-883) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL NIL -(-885) +(-884) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-886) +(-885) ((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}."))) NIL NIL -(-887 CF1 CF2) +(-886 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-888 |ComponentFunction|) +(-887 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-889 CF1 CF2) +(-888 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-890 |ComponentFunction|) +(-889 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-891) +(-890) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-892 CF1 CF2) +(-891 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-893 |ComponentFunction|) +(-892 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-894) +(-893) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|PositiveInteger|))) (|Stream| (|List| (|PositiveInteger|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}."))) NIL NIL -(-895 R) +(-894 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-896 R S L) +(-895 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-897 S) +(-896 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-898 |Base| |Subject| |Pat|) +(-897 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-2076 (|HasCategory| |#2| (QUOTE (-1062)))) (-2076 (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-1190)))))) (-12 (|HasCategory| |#2| (QUOTE (-1062))) (-2076 (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-1190)))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-1190))))) -(-899 R A B) +((-12 (-2075 (|HasCategory| |#2| (QUOTE (-1061)))) (-2075 (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-1189)))))) (-12 (|HasCategory| |#2| (QUOTE (-1061))) (-2075 (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-1189)))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-1189))))) +(-898 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL NIL -(-900 R S) +(-899 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-901 R -3610) +(-900 R -3609) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-902 R S) +(-901 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-903 R) +(-902 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-904 |VarSet|) +(-903 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-905 UP R) +(-904 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented"))) NIL NIL -(-906) +(-905) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-907 UP -1386) +(-906 UP -1385) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-908) +(-907) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st,tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) NIL NIL -(-909) +(-908) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-910 A S) +(-909 A S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1, n1)..., sn, nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#2|) "\\spad{D(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.") (($ $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-911 S) +(-910 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1, n1)..., sn, nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{D(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) -((-4453 . T)) +((-4452 . T)) NIL -(-912 S) +(-911 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) -(-913 |n| R) +((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) +(-912 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-914 S) +(-913 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4453 . T)) +((-4452 . T)) NIL -(-915 S) +(-914 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-916 S) +(-915 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4453 . T)) -((-2818 (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-860)))) -(-917 R E |VarSet| S) +((-4452 . T)) +((-2817 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-859)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-859)))) +(-916 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-918 R S) +(-917 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-919 S) +(-918 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL ((|HasCategory| |#1| (QUOTE (-146)))) -(-920) +(-919) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-921 |p|) +(-920 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-377)))) -(-922 R0 -1386 UP UPUP R) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-376)))) +(-921 R0 -1385 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-923 UP UPUP R) +(-922 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-924 UP UPUP) +(-923 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-925 R) +(-924 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-926 R) +(-925 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-927 E OV R P) +(-926 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-928) +(-927) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}."))) NIL NIL -(-929 -1386) +(-928 -1385) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-930 R) +(-929 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-931) +(-930) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-932) +(-931) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4458 "*") . T)) +(((-4457 "*") . T)) NIL -(-933 -1386 P) +(-932 -1385 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) NIL NIL -(-934 |xx| -1386) +(-933 |xx| -1385) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) NIL NIL -(-935 R |Var| |Expon| GR) +(-934 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-936 S) +(-935 S) ((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-937) +(-936) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-938) +(-937) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}."))) NIL NIL -(-939) +(-938) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-940 R -1386) +(-939 R -1385) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-941) +(-940) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-942 S A B) +(-941 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-943 S R -1386) +(-942 S R -1385) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-944 I) +(-943 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-945 S E) +(-944 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-946 S R L) +(-945 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-947 S E V R P) +(-946 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -897) (|devaluate| |#1|)))) -(-948 R -1386 -3610) +((|HasCategory| |#3| (LIST (QUOTE -896) (|devaluate| |#1|)))) +(-947 R -1385 -3609) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-949 -3610) +(-948 -3609) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-950 S R Q) +(-949 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-951 S) +(-950 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-952 S R P) +(-951 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-953) +(-952) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}."))) NIL NIL -(-954 R) +(-953 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4457 . T) (-4456 . T)) -((-2818 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1062))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-1062)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) -(-955 |lv| R) +((-4456 . T) (-4455 . T)) +((-2817 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112)))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#1| (QUOTE (-1061))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-1061)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) +(-954 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-956 |TheField| |ThePols|) +(-955 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-858)))) -(-957 R S) +((|HasCategory| |#1| (QUOTE (-857)))) +(-956 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-958 |x| R) +(-957 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-959 S R E |VarSet|) +(-958 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-920))) (|HasAttribute| |#2| (QUOTE -4454)) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#4| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#4| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) -(-960 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-919))) (|HasAttribute| |#2| (QUOTE -4453)) (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#4| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#4| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545))))) +(-959 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T)) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) NIL -(-961 E V R P -1386) +(-960 E V R P -1385) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-962 E |Vars| R P S) +(-961 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-963 R) +(-962 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T)) -((|HasCategory| |#1| (QUOTE (-920))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1190) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1190) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1190) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1190) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1190) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4454)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-964 E V R P -1386) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) +((|HasCategory| |#1| (QUOTE (-919))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| (-1189) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| (-1189) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| (-1189) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| (-1189) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| (-1189) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545))))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-371))) (|HasAttribute| |#1| (QUOTE -4453)) (|HasCategory| |#1| (QUOTE (-461))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-963 E V R P -1385) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL -((|HasCategory| |#3| (QUOTE (-462)))) -(-965) +((|HasCategory| |#3| (QUOTE (-461)))) +(-964) ((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}."))) NIL NIL -(-966) +(-965) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-967 R L) +(-966 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}."))) NIL NIL -(-968 A B) +(-967 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL -(-969 S) +(-968 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4457 . T) (-4456 . T)) -((-2818 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) -(-970) +((-4456 . T) (-4455 . T)) +((-2817 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112)))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) +(-969) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-971 -1386) +(-970 -1385) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL -(-972 I) +(-971 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-973) +(-972) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-974 R E) +(-973 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-6 -4454)) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4454))) -(-975 A B) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-6 -4453)) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-565))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-461))) (-12 (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4453))) +(-974 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) -((-4453 -12 (|has| |#2| (-483)) (|has| |#1| (-483)))) -((-2818 (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-860))))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803)))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803))))) (-12 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-483)))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-736))))) (-12 (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-377)))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803))))) (-12 (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-860))))) -(-976) +((-4452 -12 (|has| |#2| (-482)) (|has| |#1| (-482)))) +((-2817 (-12 (|HasCategory| |#1| (QUOTE (-802))) (|HasCategory| |#2| (QUOTE (-802)))) (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-859))))) (-12 (|HasCategory| |#1| (QUOTE (-802))) (|HasCategory| |#2| (QUOTE (-802)))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-802))) (|HasCategory| |#2| (QUOTE (-802))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-802))) (|HasCategory| |#2| (QUOTE (-802))))) (-12 (|HasCategory| |#1| (QUOTE (-482))) (|HasCategory| |#2| (QUOTE (-482)))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-482))) (|HasCategory| |#2| (QUOTE (-482)))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-376)))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-482))) (|HasCategory| |#2| (QUOTE (-482)))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#1| (QUOTE (-802))) (|HasCategory| |#2| (QUOTE (-802))))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-859))))) +(-975) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-977 T$) +(-976 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isAtom| (((|Maybe| |#1|) $) "\\spad{isAtom f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term."))) NIL NIL -(-978 T$) +(-977 T$) ((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} \\spad{++} returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}."))) NIL NIL -(-979 S T$) +(-978 S T$) ((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all atoms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them."))) NIL NIL -(-980) +(-979) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-981 S) +(-980 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4456 . T) (-4457 . T)) +((-4455 . T) (-4456 . T)) NIL -(-982 R |polR|) +(-981 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL -((|HasCategory| |#1| (QUOTE (-462)))) -(-983) +((|HasCategory| |#1| (QUOTE (-461)))) +(-982) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-984) +(-983) ((|constructor| (NIL "Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|PositiveInteger|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|Pair| (|PositiveInteger|) (|PositiveInteger|))) $) "\\spad{powers(x)} returns a list of pairs. The second component of each pair is the multiplicity with which the first component occurs in \\spad{li}.")) (|partitions| (((|Stream| $) (|NonNegativeInteger|)) "\\spad{partitions n} returns the stream of all partitions of size \\spad{n}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#x} returns the sum of all parts of the partition \\spad{x}.")) (|parts| (((|List| (|PositiveInteger|)) $) "\\spad{parts x} returns the list of decreasing integer sequence making up the partition \\spad{x}.")) (|partition| (($ (|List| (|PositiveInteger|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-985 S |Coef| |Expon| |Var|) +(-984 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) NIL NIL -(-986 |Coef| |Expon| |Var|) +(-985 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4450 . T) (-4451 . T) (-4453 . T)) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-987) +(-986) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-988 S R E |VarSet| P) +(-987 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-566)))) -(-989 R E |VarSet| P) +((|HasCategory| |#2| (QUOTE (-565)))) +(-988 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4456 . T)) +((-4455 . T)) NIL -(-990 R E V P) +(-989 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-315)))) (|HasCategory| |#1| (QUOTE (-462)))) -(-991 K) +((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-314)))) (|HasCategory| |#1| (QUOTE (-461)))) +(-990 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-992 |VarSet| E RC P) +(-991 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-993 R) +(-992 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4457 . T) (-4456 . T)) +((-4456 . T) (-4455 . T)) NIL -(-994 R1 R2) +(-993 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-995 R) +(-994 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-996 K) +(-995 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-997 R E OV PPR) +(-996 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-998 K R UP -1386) +(-997 K R UP -1385) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-999 |vl| |nv|) +(-998 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-1000 R |Var| |Expon| |Dpoly|) +(-999 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-315))))) -(-1001 R E V P TS) +((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-314))))) +(-1000 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1002) +(-1001) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation."))) NIL NIL -(-1003 A B R S) +(-1002 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-1004 A S) +(-1003 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-920))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-1035))) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-1165)))) -(-1005 S) +((|HasCategory| |#2| (QUOTE (-919))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-829))) (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#2| (QUOTE (-1164)))) +(-1004 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-1006 |n| K) +(-1005 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-1007) +(-1006) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-1008 S) +(-1007 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4456 . T) (-4457 . T)) +((-4455 . T) (-4456 . T)) NIL -(-1009 S R) +(-1008 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-298)))) -(-1010 R) +((|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-297)))) +(-1009 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4449 |has| |#1| (-298)) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4448 |has| |#1| (-297)) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-1011 QR R QS S) +(-1010 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-1012 R) +(-1011 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4449 |has| |#1| (-298)) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372))) (-2818 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1190)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-555)))) -(-1013 S) +((-4448 |has| |#1| (-297)) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-371))) (-2817 (|HasCategory| |#1| (QUOTE (-297))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-297))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -523) (QUOTE (-1189)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-238))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-238)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-554)))) +(-1012 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4456 . T) (-4457 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) -(-1014 S) +((-4455 . T) (-4456 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) +(-1013 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1015) +(-1014) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1016 -1386 UP UPUP |radicnd| |n|) +(-1015 -1385 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4449 |has| (-417 |#2|) (-372)) (-4454 |has| (-417 |#2|) (-372)) (-4448 |has| (-417 |#2|) (-372)) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| (-417 |#2|) (QUOTE (-146))) (|HasCategory| (-417 |#2|) (QUOTE (-148))) (|HasCategory| (-417 |#2|) (QUOTE (-358))) (-2818 (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-377))) (-2818 (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (-2818 (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-417 |#2|) (QUOTE (-358))))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -649) (QUOTE (-574)))) (-2818 (|HasCategory| (-417 |#2|) (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372))))) -(-1017 |bb|) +((-4448 |has| (-416 |#2|) (-371)) (-4453 |has| (-416 |#2|) (-371)) (-4447 |has| (-416 |#2|) (-371)) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| (-416 |#2|) (QUOTE (-146))) (|HasCategory| (-416 |#2|) (QUOTE (-148))) (|HasCategory| (-416 |#2|) (QUOTE (-357))) (-2817 (|HasCategory| (-416 |#2|) (QUOTE (-371))) (|HasCategory| (-416 |#2|) (QUOTE (-357)))) (|HasCategory| (-416 |#2|) (QUOTE (-371))) (|HasCategory| (-416 |#2|) (QUOTE (-376))) (-2817 (-12 (|HasCategory| (-416 |#2|) (QUOTE (-238))) (|HasCategory| (-416 |#2|) (QUOTE (-371)))) (|HasCategory| (-416 |#2|) (QUOTE (-357)))) (-2817 (-12 (|HasCategory| (-416 |#2|) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| (-416 |#2|) (QUOTE (-371)))) (-12 (|HasCategory| (-416 |#2|) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| (-416 |#2|) (QUOTE (-357))))) (|HasCategory| (-416 |#2|) (LIST (QUOTE -648) (QUOTE (-573)))) (-2817 (|HasCategory| (-416 |#2|) (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| (-416 |#2|) (QUOTE (-371)))) (|HasCategory| (-416 |#2|) (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| (-416 |#2|) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| (-416 |#2|) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| (-416 |#2|) (QUOTE (-371)))) (-12 (|HasCategory| (-416 |#2|) (QUOTE (-238))) (|HasCategory| (-416 |#2|) (QUOTE (-371))))) +(-1016 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| (-574) (QUOTE (-920))) (|HasCategory| (-574) (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| (-574) (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-148))) (|HasCategory| (-574) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-1035))) (|HasCategory| (-574) (QUOTE (-830))) (-2818 (|HasCategory| (-574) (QUOTE (-830))) (|HasCategory| (-574) (QUOTE (-860)))) (|HasCategory| (-574) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-1165))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-574) (QUOTE (-239))) (|HasCategory| (-574) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| (-574) (LIST (QUOTE -524) (QUOTE (-1190)) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -317) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -294) (QUOTE (-574)) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-315))) (|HasCategory| (-574) (QUOTE (-555))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-574) (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-920)))) (|HasCategory| (-574) (QUOTE (-146))))) -(-1018) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| (-573) (QUOTE (-919))) (|HasCategory| (-573) (LIST (QUOTE -1050) (QUOTE (-1189)))) (|HasCategory| (-573) (QUOTE (-146))) (|HasCategory| (-573) (QUOTE (-148))) (|HasCategory| (-573) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| (-573) (QUOTE (-1034))) (|HasCategory| (-573) (QUOTE (-829))) (-2817 (|HasCategory| (-573) (QUOTE (-829))) (|HasCategory| (-573) (QUOTE (-859)))) (|HasCategory| (-573) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| (-573) (QUOTE (-1164))) (|HasCategory| (-573) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| (-573) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| (-573) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| (-573) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| (-573) (QUOTE (-238))) (|HasCategory| (-573) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| (-573) (LIST (QUOTE -523) (QUOTE (-1189)) (QUOTE (-573)))) (|HasCategory| (-573) (LIST (QUOTE -316) (QUOTE (-573)))) (|HasCategory| (-573) (LIST (QUOTE -293) (QUOTE (-573)) (QUOTE (-573)))) (|HasCategory| (-573) (QUOTE (-314))) (|HasCategory| (-573) (QUOTE (-554))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| (-573) (LIST (QUOTE -648) (QUOTE (-573)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-573) (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-573) (QUOTE (-919)))) (|HasCategory| (-573) (QUOTE (-146))))) +(-1017) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-1019) +(-1018) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-1020 RP) +(-1019 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-1021 S) +(-1020 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-1022 A S) +(-1021 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#2| (QUOTE (-1113)))) -(-1023 S) +((|HasAttribute| |#1| (QUOTE -4456)) (|HasCategory| |#2| (QUOTE (-1112)))) +(-1022 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL NIL -(-1024 S) +(-1023 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-1025) +(-1024) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4449 . T) (-4454 . T) (-4448 . T) (-4451 . T) (-4450 . T) ((-4458 "*") . T) (-4453 . T)) +((-4448 . T) (-4453 . T) (-4447 . T) (-4450 . T) (-4449 . T) ((-4457 "*") . T) (-4452 . T)) NIL -(-1026 R -1386) +(-1025 R -1385) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-1027 R -1386) +(-1026 R -1385) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-1028 -1386 UP) +(-1027 -1385 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-1029 -1386 UP) +(-1028 -1385 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-1030 S) +(-1029 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1031 F1 UP UPUP R F2) +(-1030 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented"))) NIL NIL -(-1032) +(-1031) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-1033 |Pol|) +(-1032 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1034 |Pol|) +(-1033 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1035) +(-1034) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-1036) +(-1035) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-1037 |TheField|) +(-1036 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4449 . T) (-4454 . T) (-4448 . T) (-4451 . T) (-4450 . T) ((-4458 "*") . T) (-4453 . T)) -((-2818 (|HasCategory| (-417 (-574)) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| (-417 (-574)) (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 (-574)) (LIST (QUOTE -1051) (QUOTE (-574))))) -(-1038 -1386 L) +((-4448 . T) (-4453 . T) (-4447 . T) (-4450 . T) (-4449 . T) ((-4457 "*") . T) (-4452 . T)) +((-2817 (|HasCategory| (-416 (-573)) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| (-416 (-573)) (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| (-416 (-573)) (LIST (QUOTE -1050) (QUOTE (-573))))) +(-1037 -1385 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-1039 S) +(-1038 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,m)} same as \\spad{setelt(n,m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1113)))) -(-1040 R E V P) +((|HasCategory| |#1| (QUOTE (-1112)))) +(-1039 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4457 . T) (-4456 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872))))) -(-1041 R) +((-4456 . T) (-4455 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-871))))) +(-1040 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4458 "*")))) -(-1042 R) +((|HasAttribute| |#1| (QUOTE (-4457 "*")))) +(-1041 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-315)))) -(-1043 S) +((-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-314)))) +(-1042 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-1044) +(-1043) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-1045 S) +(-1044 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-1046 S) +(-1045 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1047 -1386 |Expon| |VarSet| |FPol| |LFPol|) +(-1046 -1385 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +(((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-1048) +(-1047) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4456 . T) (-4457 . T)) -((-12 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (QUOTE (-1190))) (LIST (QUOTE |:|) (QUOTE -1908) (QUOTE (-52))))))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (QUOTE (-1113))) (|HasCategory| (-52) (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (QUOTE (-1113))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| (-52) (QUOTE (-1113))) (|HasCategory| (-52) (LIST (QUOTE -317) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (QUOTE (-1113))) (|HasCategory| (-1190) (QUOTE (-860))) (|HasCategory| (-52) (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (LIST (QUOTE -623) (QUOTE (-872))))) -(-1049) +((-4455 . T) (-4456 . T)) +((-12 (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (LIST (QUOTE -316) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3692) (QUOTE (-1189))) (LIST (QUOTE |:|) (QUOTE -1907) (QUOTE (-52))))))) (-2817 (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (QUOTE (-1112))) (|HasCategory| (-52) (QUOTE (-1112)))) (-2817 (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-52) (QUOTE (-1112))) (|HasCategory| (-52) (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (LIST (QUOTE -623) (QUOTE (-545)))) (-12 (|HasCategory| (-52) (QUOTE (-1112))) (|HasCategory| (-52) (LIST (QUOTE -316) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (QUOTE (-1112))) (|HasCategory| (-1189) (QUOTE (-859))) (|HasCategory| (-52) (QUOTE (-1112))) (-2817 (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-52) (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| (-52) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (LIST (QUOTE -622) (QUOTE (-871))))) +(-1048) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-1050 A S) +(-1049 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1051 S) +(-1050 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1052 Q R) +(-1051 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-1053) +(-1052) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-1054 UP) +(-1053 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1055 R) +(-1054 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-1056 R) +(-1055 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-1057 T$) +(-1056 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}."))) NIL NIL -(-1058 T$) +(-1057 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space."))) NIL NIL -(-1059 R |ls|) +(-1058 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4457 . T) (-4456 . T)) -((-12 (|HasCategory| (-790 |#1| (-874 |#2|)) (QUOTE (-1113))) (|HasCategory| (-790 |#1| (-874 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -790) (|devaluate| |#1|) (LIST (QUOTE -874) (|devaluate| |#2|)))))) (|HasCategory| (-790 |#1| (-874 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-790 |#1| (-874 |#2|)) (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| (-874 |#2|) (QUOTE (-377))) (|HasCategory| (-790 |#1| (-874 |#2|)) (LIST (QUOTE -623) (QUOTE (-872))))) -(-1060) +((-4456 . T) (-4455 . T)) +((-12 (|HasCategory| (-789 |#1| (-873 |#2|)) (QUOTE (-1112))) (|HasCategory| (-789 |#1| (-873 |#2|)) (LIST (QUOTE -316) (LIST (QUOTE -789) (|devaluate| |#1|) (LIST (QUOTE -873) (|devaluate| |#2|)))))) (|HasCategory| (-789 |#1| (-873 |#2|)) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| (-789 |#1| (-873 |#2|)) (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| (-873 |#2|) (QUOTE (-376))) (|HasCategory| (-789 |#1| (-873 |#2|)) (LIST (QUOTE -622) (QUOTE (-871))))) +(-1059) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1061 S) +(-1060 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-1062) +(-1061) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4453 . T)) +((-4452 . T)) NIL -(-1063 |xx| -1386) +(-1062 |xx| -1385) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-1064 R) +(-1063 R) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{RightModule} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{r*x} is the left-dilation of \\spad{x} by \\spad{r}.")) (|zero?| (((|Boolean|) $) "\\spad{zero? x} holds is \\spad{x} is the origin.")) ((|Zero|) (($) "\\spad{0} represents the origin of the linear set"))) NIL NIL -(-1065 S |m| |n| R |Row| |Col|) +(-1064 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL -((|HasCategory| |#4| (QUOTE (-315))) (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (QUOTE (-566))) (|HasCategory| |#4| (QUOTE (-174)))) -(-1066 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-314))) (|HasCategory| |#4| (QUOTE (-371))) (|HasCategory| |#4| (QUOTE (-565))) (|HasCategory| |#4| (QUOTE (-174)))) +(-1065 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4456 . T) (-4451 . T) (-4450 . T)) +((-4455 . T) (-4450 . T) (-4449 . T)) NIL -(-1067 |m| |n| R) +(-1066 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4456 . T) (-4451 . T) (-4450 . T)) -((|HasCategory| |#3| (QUOTE (-174))) (-2818 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372)))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (QUOTE (-315))) (|HasCategory| |#3| (QUOTE (-566))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872))))) -(-1068 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4455 . T) (-4450 . T) (-4449 . T)) +((|HasCategory| |#3| (QUOTE (-174))) (-2817 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-371)))) (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (QUOTE (-565))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-871))))) +(-1067 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-1069 R) +(-1068 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline"))) NIL NIL -(-1070 S T$) +(-1069 S T$) ((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1113)))) -(-1071) +((|HasCategory| |#1| (QUOTE (-1112)))) +(-1070) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-1072 S) +(-1071 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-1073) +(-1072) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-1074 |TheField| |ThePolDom|) +(-1073 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-1075) +(-1074) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4444 . T) (-4448 . T) (-4443 . T) (-4454 . T) (-4455 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4443 . T) (-4447 . T) (-4442 . T) (-4453 . T) (-4454 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-1076) +(-1075) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4456 . T) (-4457 . T)) -((-12 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (QUOTE (-1190))) (LIST (QUOTE |:|) (QUOTE -1908) (QUOTE (-52))))))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (QUOTE (-1113))) (|HasCategory| (-52) (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (QUOTE (-1113))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| (-52) (QUOTE (-1113))) (|HasCategory| (-52) (LIST (QUOTE -317) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (QUOTE (-1113))) (|HasCategory| (-1190) (QUOTE (-860))) (|HasCategory| (-52) (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (LIST (QUOTE -623) (QUOTE (-872))))) -(-1077 S R E V) +((-4455 . T) (-4456 . T)) +((-12 (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (LIST (QUOTE -316) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3692) (QUOTE (-1189))) (LIST (QUOTE |:|) (QUOTE -1907) (QUOTE (-52))))))) (-2817 (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (QUOTE (-1112))) (|HasCategory| (-52) (QUOTE (-1112)))) (-2817 (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-52) (QUOTE (-1112))) (|HasCategory| (-52) (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (LIST (QUOTE -623) (QUOTE (-545)))) (-12 (|HasCategory| (-52) (QUOTE (-1112))) (|HasCategory| (-52) (LIST (QUOTE -316) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (QUOTE (-1112))) (|HasCategory| (-1189) (QUOTE (-859))) (|HasCategory| (-52) (QUOTE (-1112))) (-2817 (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-52) (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| (-52) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (LIST (QUOTE -622) (QUOTE (-871))))) +(-1076 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -1005) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-1190))))) -(-1078 R E V) +((|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#2| (QUOTE (-554))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -1004) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-1189))))) +(-1077 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T)) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) NIL -(-1079) +(-1078) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-1080 S |TheField| |ThePols|) +(-1079 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1081 |TheField| |ThePols|) +(-1080 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1082 R E V P TS) +(-1081 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1083 S R E V P) +(-1082 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1084 R E V P) +(-1083 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4457 . T) (-4456 . T)) +((-4456 . T) (-4455 . T)) NIL -(-1085 R E V P TS) +(-1084 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1086) +(-1085) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-1087) +(-1086) ((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory."))) NIL NIL -(-1088 |f|) +(-1087 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1089 |Base| R -1386) +(-1088 |Base| R -1385) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1090 |Base| R -1386) +(-1089 |Base| R -1385) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) NIL NIL -(-1091 R |ls|) +(-1090 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1092 UP SAE UPA) +(-1091 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1093 R UP M) +(-1092 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4449 |has| |#1| (-372)) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-358))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-358)))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372))))) -(-1094 UP SAE UPA) +((-4448 |has| |#1| (-371)) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-357))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-376))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-357)))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-371))))) +(-1093 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1095) +(-1094) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1096) +(-1095) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1097 S) +(-1096 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1098) +(-1097) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1099 R) +(-1098 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1100 R) +(-1099 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T)) -((|HasCategory| |#1| (QUOTE (-920))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1101 (-1190)) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1101 (-1190)) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1101 (-1190)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1101 (-1190)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1101 (-1190)) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4454)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1101 S) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) +((|HasCategory| |#1| (QUOTE (-919))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| (-1100 (-1189)) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| (-1100 (-1189)) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| (-1100 (-1189)) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| (-1100 (-1189)) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| (-1100 (-1189)) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545))))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-371))) (|HasAttribute| |#1| (QUOTE -4453)) (|HasCategory| |#1| (QUOTE (-461))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1100 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1102 R S) +(-1101 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-858)))) -(-1103) +((|HasCategory| |#1| (QUOTE (-857)))) +(-1102) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1104 R S) +(-1103 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1105 S) +(-1104 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions."))) NIL -((|HasCategory| (-1107 |#1|) (QUOTE (-1113)))) -(-1106 S) +((|HasCategory| (-1106 |#1|) (QUOTE (-1112)))) +(-1105 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) NIL NIL -(-1107 S) +(-1106 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1113)))) -(-1108 S L) +((|HasCategory| |#1| (QUOTE (-857))) (|HasCategory| |#1| (QUOTE (-1112)))) +(-1107 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}."))) NIL NIL -(-1109) +(-1108) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1110 A S) +(-1109 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1111 S) +(-1110 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4446 . T)) +((-4445 . T)) NIL -(-1112 S) +(-1111 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1113) +(-1112) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1114 |m| |n|) +(-1113 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1115 S) +(-1114 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) -((-4456 . T) (-4446 . T) (-4457 . T)) -((-2818 (-12 (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) -(-1116 |Str| |Sym| |Int| |Flt| |Expr|) +((-4455 . T) (-4445 . T) (-4456 . T)) +((-2817 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) +(-1115 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL NIL -(-1117) +(-1116) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1118 |Str| |Sym| |Int| |Flt| |Expr|) +(-1117 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1119 R FS) +(-1118 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,ftype,body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1120 R E V P TS) +(-1119 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1121 R E V P TS) +(-1120 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1122 R E V P) +(-1121 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4457 . T) (-4456 . T)) +((-4456 . T) (-4455 . T)) NIL -(-1123) +(-1122) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1124 S) +(-1123 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1125) +(-1124) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1126 |dimtot| |dim1| S) +(-1125 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4450 |has| |#3| (-1062)) (-4451 |has| |#3| (-1062)) (-4453 |has| |#3| (-6 -4453)) ((-4458 "*") |has| |#3| (-174)) (-4456 . T)) -((-2818 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))))) (-2818 (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1113)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1062)))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#3| (QUOTE (-372))) (-2818 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1062)))) (-2818 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372)))) (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-803))) (-2818 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-858)))) (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (QUOTE (-736))) (-2818 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1062)))) (|HasCategory| |#3| (QUOTE (-377))) (-2818 (-12 (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))) (-2818 (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (QUOTE (-1113)))) (-2818 (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1062)))) (-2818 (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1062)))) (-2818 (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1062)))) (-2818 (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1062)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-372)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-377)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-736)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-803)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-858)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1062)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1113))))) (-2818 (-12 (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1062))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-858))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1062)))) (-12 (|HasCategory| |#3| (QUOTE (-1062))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-1190))))) (-2818 (|HasCategory| |#3| (QUOTE (-1062))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574)))))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1113)))) (|HasAttribute| |#3| (QUOTE -4453)) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#3| (QUOTE (-1113))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))))) -(-1127 R |x|) +((-4449 |has| |#3| (-1061)) (-4450 |has| |#3| (-1061)) (-4452 |has| |#3| (-6 -4452)) ((-4457 "*") |has| |#3| (-174)) (-4455 . T)) +((-2817 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-802))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-857))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))))) (-2817 (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-1112)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1061)))) (-12 (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#3| (QUOTE (-371))) (-2817 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (QUOTE (-1061)))) (-2817 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-371)))) (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-802))) (-2817 (|HasCategory| |#3| (QUOTE (-802))) (|HasCategory| |#3| (QUOTE (-857)))) (|HasCategory| |#3| (QUOTE (-857))) (|HasCategory| |#3| (QUOTE (-735))) (-2817 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1061)))) (|HasCategory| |#3| (QUOTE (-376))) (-2817 (-12 (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-857))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573)))))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))) (-2817 (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (QUOTE (-802))) (|HasCategory| |#3| (QUOTE (-857))) (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (QUOTE (-1112)))) (-2817 (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-371))) (-12 (|HasCategory| |#3| (QUOTE (-857))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-1061)))) (-2817 (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-371))) (-12 (|HasCategory| |#3| (QUOTE (-857))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-1061)))) (-2817 (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-371))) (-12 (|HasCategory| |#3| (QUOTE (-857))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-1061)))) (-2817 (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1061)))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-238)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-371)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-735)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-802)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-857)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-1061)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-1112))))) (-2817 (-12 (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-802))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-857))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-1061))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573)))))) (-2817 (-12 (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-371))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-802))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-857))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573)))))) (|HasCategory| (-573) (QUOTE (-859))) (-12 (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1061)))) (-12 (|HasCategory| |#3| (QUOTE (-1061))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-1189))))) (-2817 (|HasCategory| |#3| (QUOTE (-1061))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573)))))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#3| (QUOTE (-1112)))) (|HasAttribute| |#3| (QUOTE -4452)) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#3| (QUOTE (-1112))) (|HasCategory| |#3| (LIST (QUOTE -316) (|devaluate| |#3|))))) +(-1126 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL -((|HasCategory| |#1| (QUOTE (-462)))) -(-1128) +((|HasCategory| |#1| (QUOTE (-461)))) +(-1127) ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) NIL NIL -(-1129 R -1386) +(-1128 R -1385) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1130 R) +(-1129 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1131) +(-1130) ((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) NIL NIL -(-1132) +(-1131) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1133) +(-1132) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4444 . T) (-4448 . T) (-4443 . T) (-4454 . T) (-4455 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4443 . T) (-4447 . T) (-4442 . T) (-4453 . T) (-4454 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-1134 S) +(-1133 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4456 . T) (-4457 . T)) +((-4455 . T) (-4456 . T)) NIL -(-1135 S |ndim| R |Row| |Col|) +(-1134 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-372))) (|HasAttribute| |#3| (QUOTE (-4458 "*"))) (|HasCategory| |#3| (QUOTE (-174)))) -(-1136 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-371))) (|HasAttribute| |#3| (QUOTE (-4457 "*"))) (|HasCategory| |#3| (QUOTE (-174)))) +(-1135 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-4456 . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4455 . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-1137 R |Row| |Col| M) +(-1136 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1138 R |VarSet|) +(-1137 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T)) -((|HasCategory| |#1| (QUOTE (-920))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4454)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1139 |Coef| |Var| SMP) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) +((|HasCategory| |#1| (QUOTE (-919))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545))))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-371))) (|HasAttribute| |#1| (QUOTE -4453)) (|HasCategory| |#1| (QUOTE (-461))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1138 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4451 . T) (-4450 . T) (-4453 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-372)))) -(-1140 R E V P) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4450 . T) (-4449 . T) (-4452 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-371)))) +(-1139 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4457 . T) (-4456 . T)) +((-4456 . T) (-4455 . T)) NIL -(-1141 UP -1386) +(-1140 UP -1385) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1142 R) +(-1141 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1143 R) +(-1142 R) ((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1144 R) +(-1143 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1145 S A) +(-1144 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-860)))) -(-1146 R) +((|HasCategory| |#1| (QUOTE (-859)))) +(-1145 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1147 R) +(-1146 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1148) +(-1147) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1149) +(-1148) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1150) +(-1149) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement."))) NIL NIL -(-1151) +(-1150) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1152) +(-1151) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1153 V C) +(-1152 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1154 V C) +(-1153 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4456 . T) (-4457 . T)) -((-12 (|HasCategory| (-1153 |#1| |#2|) (LIST (QUOTE -317) (LIST (QUOTE -1153) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1153 |#1| |#2|) (QUOTE (-1113)))) (|HasCategory| (-1153 |#1| |#2|) (QUOTE (-1113))) (-2818 (|HasCategory| (-1153 |#1| |#2|) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-1153 |#1| |#2|) (LIST (QUOTE -317) (LIST (QUOTE -1153) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1153 |#1| |#2|) (QUOTE (-1113))))) (|HasCategory| (-1153 |#1| |#2|) (LIST (QUOTE -623) (QUOTE (-872))))) -(-1155 |ndim| R) +((-4455 . T) (-4456 . T)) +((-12 (|HasCategory| (-1152 |#1| |#2|) (LIST (QUOTE -316) (LIST (QUOTE -1152) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1152 |#1| |#2|) (QUOTE (-1112)))) (|HasCategory| (-1152 |#1| |#2|) (QUOTE (-1112))) (-2817 (|HasCategory| (-1152 |#1| |#2|) (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| (-1152 |#1| |#2|) (LIST (QUOTE -316) (LIST (QUOTE -1152) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1152 |#1| |#2|) (QUOTE (-1112))))) (|HasCategory| (-1152 |#1| |#2|) (LIST (QUOTE -622) (QUOTE (-871))))) +(-1154 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-4453 . T) (-4445 |has| |#2| (-6 (-4458 "*"))) (-4456 . T) (-4450 . T) (-4451 . T)) -((|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4458 "*"))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-372))) (-2818 (|HasAttribute| |#2| (QUOTE (-4458 "*"))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) -(-1156 S) +((-4452 . T) (-4444 |has| |#2| (-6 (-4457 "*"))) (-4455 . T) (-4449 . T) (-4450 . T)) +((|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE (-4457 "*"))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (QUOTE (-371))) (-2817 (|HasAttribute| |#2| (QUOTE (-4457 "*"))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) +(-1155 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1157) +(-1156) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4457 . T) (-4456 . T)) +((-4456 . T) (-4455 . T)) NIL -(-1158 R E V P TS) +(-1157 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1159 R E V P) +(-1158 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4457 . T) (-4456 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872))))) -(-1160 S) +((-4456 . T) (-4455 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-871))))) +(-1159 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4456 . T) (-4457 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) -(-1161 A S) +((-4455 . T) (-4456 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) +(-1160 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1162 S) +(-1161 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1163 |Key| |Ent| |dent|) +(-1162 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4457 . T)) -((-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1908) (|devaluate| |#2|)))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-860))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113)))) -(-1164) +((-4456 . T)) +((-12 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -316) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3692) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#2|)))))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| |#2| (QUOTE (-1112)))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -623) (QUOTE (-545)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-859))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112)))) +(-1163) ((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}."))) NIL NIL -(-1165) +(-1164) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1166 |Coef|) +(-1165 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1167 S) +(-1166 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}."))) NIL NIL -(-1168 A B) +(-1167 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-1169 A B C) +(-1168 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}."))) NIL NIL -(-1170 S) +(-1169 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4457 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) -(-1171) +((-4456 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) +(-1170) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) -((-4457 . T) (-4456 . T)) +((-4456 . T) (-4455 . T)) NIL -(-1172) +(-1171) NIL -((-4457 . T) (-4456 . T)) -((-2818 (-12 (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1113))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1113))) (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1113))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) -(-1173 |Entry|) +((-4456 . T) (-4455 . T)) +((-2817 (-12 (|HasCategory| (-145) (QUOTE (-859))) (|HasCategory| (-145) (LIST (QUOTE -316) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1112))) (|HasCategory| (-145) (LIST (QUOTE -316) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| (-145) (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| (-145) (QUOTE (-1112))) (|HasCategory| (-145) (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| (-145) (QUOTE (-1112))) (|HasCategory| (-145) (LIST (QUOTE -316) (QUOTE (-145)))))) +(-1172 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4456 . T) (-4457 . T)) -((-12 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (QUOTE (-1172))) (LIST (QUOTE |:|) (QUOTE -1908) (|devaluate| |#1|)))))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (QUOTE (-1113))) (|HasCategory| (-1172) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (LIST (QUOTE -623) (QUOTE (-872))))) -(-1174 A) +((-4455 . T) (-4456 . T)) +((-12 (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (LIST (QUOTE -316) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3692) (QUOTE (-1171))) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#1|)))))) (-2817 (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-1112)))) (-2817 (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (LIST (QUOTE -623) (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (QUOTE (-1112))) (|HasCategory| (-1171) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (LIST (QUOTE -622) (QUOTE (-871))))) +(-1173 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) -(-1175 |Coef|) +((|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) +(-1174 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1176 |Coef|) +(-1175 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1177 R UP) +(-1176 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}."))) NIL -((|HasCategory| |#1| (QUOTE (-315)))) -(-1178 |n| R) +((|HasCategory| |#1| (QUOTE (-314)))) +(-1177 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1179 S1 S2) +(-1178 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form \\spad{s:t}"))) NIL NIL -(-1180) +(-1179) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1181 |Coef| |var| |cen|) +(-1180 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4458 "*") -2818 (-2087 (|has| |#1| (-372)) (|has| (-1188 |#1| |#2| |#3|) (-830))) (|has| |#1| (-174)) (-2087 (|has| |#1| (-372)) (|has| (-1188 |#1| |#2| |#3|) (-920)))) (-4449 -2818 (-2087 (|has| |#1| (-372)) (|has| (-1188 |#1| |#2| |#3|) (-830))) (|has| |#1| (-566)) (-2087 (|has| |#1| (-372)) (|has| (-1188 |#1| |#2| |#3|) (-920)))) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T)) -((-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-1035))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-1165))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1190)) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1125))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-1035))) (|HasCategory| |#1| (QUOTE (-372)))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372))))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-1165))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1190)) (LIST (QUOTE -1188) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2379) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1188 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1182 R -1386) +(((-4457 "*") -2817 (-2086 (|has| |#1| (-371)) (|has| (-1187 |#1| |#2| |#3|) (-829))) (|has| |#1| (-174)) (-2086 (|has| |#1| (-371)) (|has| (-1187 |#1| |#2| |#3|) (-919)))) (-4448 -2817 (-2086 (|has| |#1| (-371)) (|has| (-1187 |#1| |#2| |#3|) (-829))) (|has| |#1| (-565)) (-2086 (|has| |#1| (-371)) (|has| (-1187 |#1| |#2| |#3|) (-919)))) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) (-4449 . T) (-4450 . T) (-4452 . T)) +((-2817 (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-829))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-1034))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-1164))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -293) (LIST (QUOTE -1187) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1187) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -316) (LIST (QUOTE -1187) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -523) (QUOTE (-1189)) (LIST (QUOTE -1187) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -1050) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (-2817 (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2817 (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2817 (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-573)) (|devaluate| |#1|)))))) (-2817 (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-573)) (|devaluate| |#1|))))) (|HasCategory| (-573) (QUOTE (-1124))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-371))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -1050) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-1034))) (|HasCategory| |#1| (QUOTE (-371)))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-829))) (|HasCategory| |#1| (QUOTE (-371)))) (-2817 (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-829))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-371))))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-1164))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -293) (LIST (QUOTE -1187) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1187) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -316) (LIST (QUOTE -1187) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -523) (QUOTE (-1189)) (LIST (QUOTE -1187) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-573))))) (|HasSignature| |#1| (LIST (QUOTE -2942) (LIST (|devaluate| |#1|) (QUOTE (-1189)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-573))))) (-2817 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-969))) (|HasCategory| |#1| (QUOTE (-1215))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasSignature| |#1| (LIST (QUOTE -1626) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1189))))) (|HasSignature| |#1| (LIST (QUOTE -4354) (LIST (LIST (QUOTE -653) (QUOTE (-1189))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-919))) (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2817 (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-829))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-565)))) (-2817 (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) (-2817 (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-829))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-371)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1187 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1181 R -1385) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1183 R) +(-1182 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1184 R S) +(-1183 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1185 E OV R P) +(-1184 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1186 R) +(-1185 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4452 |has| |#1| (-372)) (-4454 |has| |#1| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T)) -((|HasCategory| |#1| (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1165))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4454)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1187 |Coef| |var| |cen|) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4451 |has| |#1| (-371)) (-4453 |has| |#1| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) +((|HasCategory| |#1| (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545))))) (|HasCategory| |#1| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-461))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-1164))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4453)) (|HasCategory| |#1| (QUOTE (-461))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1186 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-372))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2379) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|))))))) -(-1188 |Coef| |var| |cen|) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573))) (|devaluate| |#1|)))) (|HasCategory| (-416 (-573)) (QUOTE (-1124))) (|HasCategory| |#1| (QUOTE (-371))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasSignature| |#1| (LIST (QUOTE -2942) (LIST (|devaluate| |#1|) (QUOTE (-1189)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573)))))) (-2817 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-969))) (|HasCategory| |#1| (QUOTE (-1215))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasSignature| |#1| (LIST (QUOTE -1626) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1189))))) (|HasSignature| |#1| (LIST (QUOTE -4354) (LIST (LIST (QUOTE -653) (QUOTE (-1189))) (|devaluate| |#1|))))))) +(-1187 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|)))) (|HasCategory| (-781) (QUOTE (-1125))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasCategory| |#1| (QUOTE (-372))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2379) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|))))))) -(-1189) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-565))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-780)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-780)) (|devaluate| |#1|)))) (|HasCategory| (-780) (QUOTE (-1124))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-780))))) (|HasSignature| |#1| (LIST (QUOTE -2942) (LIST (|devaluate| |#1|) (QUOTE (-1189)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-780))))) (|HasCategory| |#1| (QUOTE (-371))) (-2817 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-969))) (|HasCategory| |#1| (QUOTE (-1215))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasSignature| |#1| (LIST (QUOTE -1626) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1189))))) (|HasSignature| |#1| (LIST (QUOTE -4354) (LIST (LIST (QUOTE -653) (QUOTE (-1189))) (|devaluate| |#1|))))))) +(-1188) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL NIL -(-1190) +(-1189) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1191 R) +(-1190 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}."))) NIL NIL -(-1192 R) +(-1191 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-6 -4454)) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| (-984) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasAttribute| |#1| (QUOTE -4454))) -(-1193) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-6 -4453)) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-565))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-461))) (-12 (|HasCategory| (-983) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasAttribute| |#1| (QUOTE -4453))) +(-1192) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1194) +(-1193) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1195) +(-1194) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if \\spad{`x'} really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1196 N) +(-1195 N) ((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type."))) NIL NIL -(-1197 N) +(-1196 N) ((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}."))) NIL NIL -(-1198) +(-1197) ((|constructor| (NIL "This domain is a datatype system-level pointer values."))) NIL NIL -(-1199 R) +(-1198 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1200) +(-1199) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1201 S) +(-1200 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1202 S) +(-1201 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1203 |Key| |Entry|) +(-1202 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4456 . T) (-4457 . T)) -((-12 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3693) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1908) (|devaluate| |#2|)))))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-1113)))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1113))) (-2818 (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (LIST (QUOTE -623) (QUOTE (-872))))) -(-1204 S) +((-4455 . T) (-4456 . T)) +((-12 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -316) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3692) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1907) (|devaluate| |#2|)))))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| |#2| (QUOTE (-1112)))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -623) (QUOTE (-545)))) (-12 (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#2| (QUOTE (-1112))) (-2817 (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-871)))) (|HasCategory| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (LIST (QUOTE -622) (QUOTE (-871))))) +(-1203 S) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}."))) NIL NIL -(-1205 R) +(-1204 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}."))) NIL NIL -(-1206 S |Key| |Entry|) +(-1205 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1207 |Key| |Entry|) +(-1206 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4457 . T)) +((-4456 . T)) NIL -(-1208 |Key| |Entry|) +(-1207 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1209) +(-1208) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1210 S) +(-1209 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1211) +(-1210) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-1212) +(-1211) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1213 R) +(-1212 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1214) +(-1213) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1215 S) +(-1214 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1216) +(-1215) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1217 S) +(-1216 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4457 . T) (-4456 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1113))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) -(-1218 S) +((-4456 . T) (-4455 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1112))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) +(-1217 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1219) +(-1218) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1220 R -1386) +(-1219 R -1385) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1221 R |Row| |Col| M) +(-1220 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1222 R -1386) +(-1221 R -1385) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -897) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -897) (|devaluate| |#1|))))) -(-1223 S R E V P) +((-12 (|HasCategory| |#1| (LIST (QUOTE -623) (LIST (QUOTE -902) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -896) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -896) (|devaluate| |#1|))))) +(-1222 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL -((|HasCategory| |#4| (QUOTE (-377)))) -(-1224 R E V P) +((|HasCategory| |#4| (QUOTE (-376)))) +(-1223 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4457 . T) (-4456 . T)) +((-4456 . T) (-4455 . T)) NIL -(-1225 |Coef|) +(-1224 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4451 . T) (-4450 . T) (-4453 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-372)))) -(-1226 |Curve|) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4450 . T) (-4449 . T) (-4452 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-371)))) +(-1225 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1227) +(-1226) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1228 S) +(-1227 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL -((|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) -(-1229 -1386) +((|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) +(-1228 -1385) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1230) +(-1229) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1231) +(-1230) ((|constructor| (NIL "The fundamental Type."))) NIL NIL -(-1232 S) +(-1231 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL -((|HasCategory| |#1| (QUOTE (-860)))) -(-1233) +((|HasCategory| |#1| (QUOTE (-859)))) +(-1232) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1234 S) +(-1233 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1235) +(-1234) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-1236) +(-1235) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits."))) NIL NIL -(-1237) +(-1236) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits."))) NIL NIL -(-1238) +(-1237) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits."))) NIL NIL -(-1239) +(-1238) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits."))) NIL NIL -(-1240 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1239 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1241 |Coef|) +(-1240 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T)) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-1242 S |Coef| UTS) +(-1241 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) NIL -((|HasCategory| |#2| (QUOTE (-372)))) -(-1243 |Coef| UTS) +((|HasCategory| |#2| (QUOTE (-371)))) +(-1242 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T)) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-1244 |Coef| UTS) +(-1243 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T)) -((-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1190)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-920)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1035)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1165)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-1190)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-146))))) (-2818 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-148))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1125))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-920)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-1190))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1035)))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860))))) (-2818 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1190)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-920)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1035)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1165)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-1190)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1165)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1190)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2379) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-920))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-315)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-920)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-146)))))) -(-1245 |Coef| |var| |cen|) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) (-4449 . T) (-4450 . T) (-4452 . T)) +((-2817 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -523) (QUOTE (-1189)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-829)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-919)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-1034)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-1164)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-1189)))))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (-2817 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-146))))) (-2817 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-148))))) (-2817 (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-573)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-573)) (|devaluate| |#1|))))) (|HasCategory| (-573) (QUOTE (-1124))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-371))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-919)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-1189))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-1034)))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-829)))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-829)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-859))))) (-2817 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -523) (QUOTE (-1189)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-829)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-919)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-1034)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-1164)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-1189)))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-1164)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -316) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -523) (QUOTE (-1189)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-573))))) (|HasSignature| |#1| (LIST (QUOTE -2942) (LIST (|devaluate| |#1|) (QUOTE (-1189)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-573))))) (-2817 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-969))) (|HasCategory| |#1| (QUOTE (-1215))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasSignature| |#1| (LIST (QUOTE -1626) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1189))))) (|HasSignature| |#1| (LIST (QUOTE -4354) (LIST (LIST (QUOTE -653) (QUOTE (-1189))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-919))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-554)))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-314)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-919)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-146)))))) +(-1244 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4458 "*") -2818 (-2087 (|has| |#1| (-372)) (|has| (-1273 |#1| |#2| |#3|) (-830))) (|has| |#1| (-174)) (-2087 (|has| |#1| (-372)) (|has| (-1273 |#1| |#2| |#3|) (-920)))) (-4449 -2818 (-2087 (|has| |#1| (-372)) (|has| (-1273 |#1| |#2| |#3|) (-830))) (|has| |#1| (-566)) (-2087 (|has| |#1| (-372)) (|has| (-1273 |#1| |#2| |#3|) (-920)))) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T)) -((-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-1035))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-1165))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1190)) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1125))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-1035))) (|HasCategory| |#1| (QUOTE (-372)))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372))))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-1165))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1190)) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2379) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-920))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1246 ZP) +(((-4457 "*") -2817 (-2086 (|has| |#1| (-371)) (|has| (-1272 |#1| |#2| |#3|) (-829))) (|has| |#1| (-174)) (-2086 (|has| |#1| (-371)) (|has| (-1272 |#1| |#2| |#3|) (-919)))) (-4448 -2817 (-2086 (|has| |#1| (-371)) (|has| (-1272 |#1| |#2| |#3|) (-829))) (|has| |#1| (-565)) (-2086 (|has| |#1| (-371)) (|has| (-1272 |#1| |#2| |#3|) (-919)))) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) (-4449 . T) (-4450 . T) (-4452 . T)) +((-2817 (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-829))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-1034))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-1164))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -293) (LIST (QUOTE -1272) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1272) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -316) (LIST (QUOTE -1272) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -523) (QUOTE (-1189)) (LIST (QUOTE -1272) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -1050) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (-2817 (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2817 (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2817 (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-573)) (|devaluate| |#1|)))))) (-2817 (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-573)) (|devaluate| |#1|))))) (|HasCategory| (-573) (QUOTE (-1124))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-371))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -1050) (QUOTE (-1189)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-1034))) (|HasCategory| |#1| (QUOTE (-371)))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-829))) (|HasCategory| |#1| (QUOTE (-371)))) (-2817 (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-829))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-371))))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-1164))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -293) (LIST (QUOTE -1272) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1272) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -316) (LIST (QUOTE -1272) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -523) (QUOTE (-1189)) (LIST (QUOTE -1272) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-573))))) (|HasSignature| |#1| (LIST (QUOTE -2942) (LIST (|devaluate| |#1|) (QUOTE (-1189)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-573))))) (-2817 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-969))) (|HasCategory| |#1| (QUOTE (-1215))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasSignature| |#1| (LIST (QUOTE -1626) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1189))))) (|HasSignature| |#1| (LIST (QUOTE -4354) (LIST (LIST (QUOTE -653) (QUOTE (-1189))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-554))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-919))) (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2817 (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-829))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-565)))) (-2817 (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) (-2817 (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-829))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-371)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-919))) (|HasCategory| |#1| (QUOTE (-371)))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-371)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1245 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1247 R S) +(-1246 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-858)))) -(-1248 S) +((|HasCategory| |#1| (QUOTE (-857)))) +(-1247 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1113)))) -(-1249 |x| R |y| S) +((|HasCategory| |#1| (QUOTE (-857))) (|HasCategory| |#1| (QUOTE (-1112)))) +(-1248 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1250 R Q UP) +(-1249 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1251 R UP) +(-1250 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1252 R UP) +(-1251 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1253 R U) +(-1252 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1254 |x| R) +(-1253 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4458 "*") |has| |#2| (-174)) (-4449 |has| |#2| (-566)) (-4452 |has| |#2| (-372)) (-4454 |has| |#2| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T)) -((|HasCategory| |#2| (QUOTE (-920))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1095) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (QUOTE (-574)))) (-2818 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (-2818 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-920)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1165))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE -4454)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-920)))) (-2818 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-920)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-1255 R PR S PS) +(((-4457 "*") |has| |#2| (-174)) (-4448 |has| |#2| (-565)) (-4451 |has| |#2| (-371)) (-4453 |has| |#2| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) +((|HasCategory| |#2| (QUOTE (-919))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-174))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-565)))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -896) (QUOTE (-387)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-387))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -896) (QUOTE (-573)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-573))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-387)))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -623) (LIST (QUOTE -902) (QUOTE (-573)))))) (-12 (|HasCategory| (-1094) (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-545))))) (|HasCategory| |#2| (LIST (QUOTE -648) (QUOTE (-573)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (QUOTE (-573)))) (-2817 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| |#2| (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (-2817 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-919)))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-1164))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE -4453)) (|HasCategory| |#2| (QUOTE (-461))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-919)))) (-2817 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-919)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-1254 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1256 S R) +(-1255 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1165)))) -(-1257 R) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-371))) (|HasCategory| |#2| (QUOTE (-461))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1164)))) +(-1256 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4452 |has| |#1| (-372)) (-4454 |has| |#1| (-6 -4454)) (-4451 . T) (-4450 . T) (-4453 . T)) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4451 |has| |#1| (-371)) (-4453 |has| |#1| (-6 -4453)) (-4450 . T) (-4449 . T) (-4452 . T)) NIL -(-1258 S |Coef| |Expon|) +(-1257 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1125))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2943) (LIST (|devaluate| |#2|) (QUOTE (-1190)))))) -(-1259 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1124))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2942) (LIST (|devaluate| |#2|) (QUOTE (-1189)))))) +(-1258 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4450 . T) (-4451 . T) (-4453 . T)) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-1260 RC P) +(-1259 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1261 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1260 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1262 |Coef|) +(-1261 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T)) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-1263 S |Coef| ULS) +(-1262 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1264 |Coef| ULS) +(-1263 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T)) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-1265 |Coef| ULS) +(-1264 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-372))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2379) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) -(-1266 |Coef| |var| |cen|) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573))) (|devaluate| |#1|)))) (|HasCategory| (-416 (-573)) (QUOTE (-1124))) (|HasCategory| |#1| (QUOTE (-371))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasSignature| |#1| (LIST (QUOTE -2942) (LIST (|devaluate| |#1|) (QUOTE (-1189)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573)))))) (-2817 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-969))) (|HasCategory| |#1| (QUOTE (-1215))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasSignature| |#1| (LIST (QUOTE -1626) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1189))))) (|HasSignature| |#1| (LIST (QUOTE -4354) (LIST (LIST (QUOTE -653) (QUOTE (-1189))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) +(-1265 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4454 |has| |#1| (-372)) (-4448 |has| |#1| (-372)) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-372))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2818 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2379) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|))))))) -(-1267 R FE |var| |cen|) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4453 |has| |#1| (-371)) (-4447 |has| |#1| (-371)) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#1| (QUOTE (-174))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573))) (|devaluate| |#1|)))) (|HasCategory| (-416 (-573)) (QUOTE (-1124))) (|HasCategory| |#1| (QUOTE (-371))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (-2817 (|HasCategory| |#1| (QUOTE (-371))) (|HasCategory| |#1| (QUOTE (-565)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasSignature| |#1| (LIST (QUOTE -2942) (LIST (|devaluate| |#1|) (QUOTE (-1189)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -416) (QUOTE (-573)))))) (-2817 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-969))) (|HasCategory| |#1| (QUOTE (-1215))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasSignature| |#1| (LIST (QUOTE -1626) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1189))))) (|HasSignature| |#1| (LIST (QUOTE -4354) (LIST (LIST (QUOTE -653) (QUOTE (-1189))) (|devaluate| |#1|))))))) +(-1266 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) -(((-4458 "*") |has| (-1266 |#2| |#3| |#4|) (-174)) (-4449 |has| (-1266 |#2| |#3| |#4|) (-566)) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| (-1266 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1266 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1266 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1266 |#2| |#3| |#4|) (QUOTE (-174))) (-2818 (|HasCategory| (-1266 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1266 |#2| |#3| |#4|) (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| (-1266 |#2| |#3| |#4|) (LIST (QUOTE -1051) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1266 |#2| |#3| |#4|) (LIST (QUOTE -1051) (QUOTE (-574)))) (|HasCategory| (-1266 |#2| |#3| |#4|) (QUOTE (-372))) (|HasCategory| (-1266 |#2| |#3| |#4|) (QUOTE (-462))) (|HasCategory| (-1266 |#2| |#3| |#4|) (QUOTE (-566)))) -(-1268 A S) +(((-4457 "*") |has| (-1265 |#2| |#3| |#4|) (-174)) (-4448 |has| (-1265 |#2| |#3| |#4|) (-565)) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| (-1265 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| (-1265 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1265 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1265 |#2| |#3| |#4|) (QUOTE (-174))) (-2817 (|HasCategory| (-1265 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| (-1265 |#2| |#3| |#4|) (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573)))))) (|HasCategory| (-1265 |#2| |#3| |#4|) (LIST (QUOTE -1050) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| (-1265 |#2| |#3| |#4|) (LIST (QUOTE -1050) (QUOTE (-573)))) (|HasCategory| (-1265 |#2| |#3| |#4|) (QUOTE (-371))) (|HasCategory| (-1265 |#2| |#3| |#4|) (QUOTE (-461))) (|HasCategory| (-1265 |#2| |#3| |#4|) (QUOTE (-565)))) +(-1267 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4457))) -(-1269 S) +((|HasAttribute| |#1| (QUOTE -4456))) +(-1268 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL NIL -(-1270 |Coef1| |Coef2| UTS1 UTS2) +(-1269 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1271 S |Coef|) +(-1270 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-1216))) (|HasSignature| |#2| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2379) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1190))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) -(-1272 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-573)))) (|HasCategory| |#2| (QUOTE (-969))) (|HasCategory| |#2| (QUOTE (-1215))) (|HasSignature| |#2| (LIST (QUOTE -4354) (LIST (LIST (QUOTE -653) (QUOTE (-1189))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1626) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1189))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#2| (QUOTE (-371)))) +(-1271 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4450 . T) (-4451 . T) (-4453 . T)) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-1273 |Coef| |var| |cen|) +(-1272 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4458 "*") |has| |#1| (-174)) (-4449 |has| |#1| (-566)) (-4450 . T) (-4451 . T) (-4453 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2818 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-1190)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|)))) (|HasCategory| (-781) (QUOTE (-1125))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasSignature| |#1| (LIST (QUOTE -2943) (LIST (|devaluate| |#1|) (QUOTE (-1190)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasCategory| |#1| (QUOTE (-372))) (-2818 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1216))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2379) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1190))))) (|HasSignature| |#1| (LIST (QUOTE -4355) (LIST (LIST (QUOTE -654) (QUOTE (-1190))) (|devaluate| |#1|))))))) -(-1274 |Coef| UTS) +(((-4457 "*") |has| |#1| (-174)) (-4448 |has| |#1| (-565)) (-4449 . T) (-4450 . T) (-4452 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasCategory| |#1| (QUOTE (-565))) (-2817 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-565)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-1189)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-780)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-780)) (|devaluate| |#1|)))) (|HasCategory| (-780) (QUOTE (-1124))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-780))))) (|HasSignature| |#1| (LIST (QUOTE -2942) (LIST (|devaluate| |#1|) (QUOTE (-1189)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-780))))) (|HasCategory| |#1| (QUOTE (-371))) (-2817 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-573)))) (|HasCategory| |#1| (QUOTE (-969))) (|HasCategory| |#1| (QUOTE (-1215))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasSignature| |#1| (LIST (QUOTE -1626) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1189))))) (|HasSignature| |#1| (LIST (QUOTE -4354) (LIST (LIST (QUOTE -653) (QUOTE (-1189))) (|devaluate| |#1|))))))) +(-1273 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1275 -1386 UP L UTS) +(-1274 -1385 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-566)))) -(-1276) +((|HasCategory| |#1| (QUOTE (-565)))) +(-1275) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) NIL NIL -(-1277 |sym|) +(-1276 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1278 S R) +(-1277 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1279 R) +((|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1278 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4457 . T) (-4456 . T)) +((-4456 . T) (-4455 . T)) NIL -(-1280 A B) +(-1279 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1281 R) +(-1280 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4457 . T) (-4456 . T)) -((-2818 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2818 (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2818 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1062))) (-12 (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-1062)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) -(-1282) +((-4456 . T) (-4455 . T)) +((-2817 (-12 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) (-2817 (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-545)))) (-2817 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112)))) (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| (-573) (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#1| (QUOTE (-1061))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-1061)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -316) (|devaluate| |#1|))))) +(-1281) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1283) +(-1282) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1284) +(-1283) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1285) +(-1284) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1286) +(-1285) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1287 A S) +(-1286 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1288 S) +(-1287 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4451 . T) (-4450 . T)) +((-4450 . T) (-4449 . T)) NIL -(-1289 R) +(-1288 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1290 K R UP -1386) +(-1289 K R UP -1385) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1291) +(-1290) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1292) +(-1291) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1293 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1292 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4451 |has| |#1| (-174)) (-4450 |has| |#1| (-174)) (-4453 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372)))) -(-1294 R E V P) +((-4450 |has| |#1| (-174)) (-4449 |has| |#1| (-174)) (-4452 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371)))) +(-1293 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4457 . T) (-4456 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872))))) -(-1295 R) +((-4456 . T) (-4455 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#4| (LIST (QUOTE -316) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-545)))) (|HasCategory| |#4| (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-565))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-871))))) +(-1294 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})"))) -((-4450 . T) (-4451 . T) (-4453 . T)) +((-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-1296 |vl| R) +(-1295 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4453 . T) (-4449 |has| |#2| (-6 -4449)) (-4451 . T) (-4450 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4449))) -(-1297 R |VarSet| XPOLY) +((-4452 . T) (-4448 |has| |#2| (-6 -4448)) (-4450 . T) (-4449 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4448))) +(-1296 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1298 |vl| R) +(-1297 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4449 |has| |#2| (-6 -4449)) (-4451 . T) (-4450 . T) (-4453 . T)) +((-4448 |has| |#2| (-6 -4448)) (-4450 . T) (-4449 . T) (-4452 . T)) NIL -(-1299 S -1386) +(-1298 S -1385) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL -((|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148)))) -(-1300 -1386) +((|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148)))) +(-1299 -1385) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4448 . T) (-4454 . T) (-4449 . T) ((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +((-4447 . T) (-4453 . T) (-4448 . T) ((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL -(-1301 |VarSet| R) +(-1300 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4449 |has| |#2| (-6 -4449)) (-4451 . T) (-4450 . T) (-4453 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -727) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasAttribute| |#2| (QUOTE -4449))) -(-1302 |vl| R) +((-4448 |has| |#2| (-6 -4448)) (-4450 . T) (-4449 . T) (-4452 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -726) (LIST (QUOTE -416) (QUOTE (-573))))) (|HasAttribute| |#2| (QUOTE -4448))) +(-1301 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4449 |has| |#2| (-6 -4449)) (-4451 . T) (-4450 . T) (-4453 . T)) +((-4448 |has| |#2| (-6 -4448)) (-4450 . T) (-4449 . T) (-4452 . T)) NIL -(-1303 R) +(-1302 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4449 |has| |#1| (-6 -4449)) (-4451 . T) (-4450 . T) (-4453 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4449))) -(-1304 R E) +((-4448 |has| |#1| (-6 -4448)) (-4450 . T) (-4449 . T) (-4452 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4448))) +(-1303 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4453 . T) (-4454 |has| |#1| (-6 -4454)) (-4449 |has| |#1| (-6 -4449)) (-4451 . T) (-4450 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4453)) (|HasAttribute| |#1| (QUOTE -4454)) (|HasAttribute| |#1| (QUOTE -4449))) -(-1305 |VarSet| R) +((-4452 . T) (-4453 |has| |#1| (-6 -4453)) (-4448 |has| |#1| (-6 -4448)) (-4450 . T) (-4449 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-371))) (|HasAttribute| |#1| (QUOTE -4452)) (|HasAttribute| |#1| (QUOTE -4453)) (|HasAttribute| |#1| (QUOTE -4448))) +(-1304 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4449 |has| |#2| (-6 -4449)) (-4451 . T) (-4450 . T) (-4453 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4449))) -(-1306) +((-4448 |has| |#2| (-6 -4448)) (-4450 . T) (-4449 . T) (-4452 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4448))) +(-1305) ((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}"))) NIL NIL -(-1307 A) +(-1306 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1308 R |ls| |ls2|) +(-1307 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1309 R) +(-1308 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1310 |p|) +(-1309 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4458 "*") . T) (-4450 . T) (-4451 . T) (-4453 . T)) +(((-4457 "*") . T) (-4449 . T) (-4450 . T) (-4452 . T)) NIL NIL NIL @@ -5188,4 +5184,4 @@ NIL NIL NIL NIL -((-3 NIL 2267909 2267914 2267919 2267924) (-2 NIL 2267889 2267894 2267899 2267904) (-1 NIL 2267869 2267874 2267879 2267884) (0 NIL 2267849 2267854 2267859 2267864) (-1310 "ZMOD.spad" 2267658 2267671 2267787 2267844) (-1309 "ZLINDEP.spad" 2266724 2266735 2267648 2267653) (-1308 "ZDSOLVE.spad" 2256669 2256691 2266714 2266719) (-1307 "YSTREAM.spad" 2256164 2256175 2256659 2256664) (-1306 "YDIAGRAM.spad" 2255798 2255807 2256154 2256159) (-1305 "XRPOLY.spad" 2255018 2255038 2255654 2255723) (-1304 "XPR.spad" 2252813 2252826 2254736 2254835) (-1303 "XPOLY.spad" 2252368 2252379 2252669 2252738) (-1302 "XPOLYC.spad" 2251687 2251703 2252294 2252363) (-1301 "XPBWPOLY.spad" 2250124 2250144 2251467 2251536) (-1300 "XF.spad" 2248587 2248602 2250026 2250119) (-1299 "XF.spad" 2247030 2247047 2248471 2248476) (-1298 "XFALG.spad" 2244078 2244094 2246956 2247025) (-1297 "XEXPPKG.spad" 2243329 2243355 2244068 2244073) (-1296 "XDPOLY.spad" 2242943 2242959 2243185 2243254) (-1295 "XALG.spad" 2242603 2242614 2242899 2242938) (-1294 "WUTSET.spad" 2238442 2238459 2242249 2242276) (-1293 "WP.spad" 2237641 2237685 2238300 2238367) (-1292 "WHILEAST.spad" 2237439 2237448 2237631 2237636) (-1291 "WHEREAST.spad" 2237110 2237119 2237429 2237434) (-1290 "WFFINTBS.spad" 2234773 2234795 2237100 2237105) (-1289 "WEIER.spad" 2232995 2233006 2234763 2234768) (-1288 "VSPACE.spad" 2232668 2232679 2232963 2232990) (-1287 "VSPACE.spad" 2232361 2232374 2232658 2232663) (-1286 "VOID.spad" 2232038 2232047 2232351 2232356) (-1285 "VIEW.spad" 2229718 2229727 2232028 2232033) (-1284 "VIEWDEF.spad" 2224919 2224928 2229708 2229713) (-1283 "VIEW3D.spad" 2208880 2208889 2224909 2224914) (-1282 "VIEW2D.spad" 2196771 2196780 2208870 2208875) (-1281 "VECTOR.spad" 2195445 2195456 2195696 2195723) (-1280 "VECTOR2.spad" 2194084 2194097 2195435 2195440) (-1279 "VECTCAT.spad" 2191988 2191999 2194052 2194079) (-1278 "VECTCAT.spad" 2189699 2189712 2191765 2191770) (-1277 "VARIABLE.spad" 2189479 2189494 2189689 2189694) (-1276 "UTYPE.spad" 2189123 2189132 2189469 2189474) (-1275 "UTSODETL.spad" 2188418 2188442 2189079 2189084) (-1274 "UTSODE.spad" 2186634 2186654 2188408 2188413) (-1273 "UTS.spad" 2181438 2181466 2185101 2185198) (-1272 "UTSCAT.spad" 2178917 2178933 2181336 2181433) (-1271 "UTSCAT.spad" 2176040 2176058 2178461 2178466) (-1270 "UTS2.spad" 2175635 2175670 2176030 2176035) (-1269 "URAGG.spad" 2170308 2170319 2175625 2175630) (-1268 "URAGG.spad" 2164945 2164958 2170264 2170269) (-1267 "UPXSSING.spad" 2162590 2162616 2164026 2164159) (-1266 "UPXS.spad" 2159744 2159772 2160722 2160871) (-1265 "UPXSCONS.spad" 2157503 2157523 2157876 2158025) (-1264 "UPXSCCA.spad" 2156074 2156094 2157349 2157498) (-1263 "UPXSCCA.spad" 2154787 2154809 2156064 2156069) (-1262 "UPXSCAT.spad" 2153376 2153392 2154633 2154782) (-1261 "UPXS2.spad" 2152919 2152972 2153366 2153371) (-1260 "UPSQFREE.spad" 2151333 2151347 2152909 2152914) (-1259 "UPSCAT.spad" 2149120 2149144 2151231 2151328) (-1258 "UPSCAT.spad" 2146613 2146639 2148726 2148731) (-1257 "UPOLYC.spad" 2141653 2141664 2146455 2146608) (-1256 "UPOLYC.spad" 2136585 2136598 2141389 2141394) (-1255 "UPOLYC2.spad" 2136056 2136075 2136575 2136580) (-1254 "UP.spad" 2133255 2133270 2133642 2133795) (-1253 "UPMP.spad" 2132155 2132168 2133245 2133250) (-1252 "UPDIVP.spad" 2131720 2131734 2132145 2132150) (-1251 "UPDECOMP.spad" 2129965 2129979 2131710 2131715) (-1250 "UPCDEN.spad" 2129174 2129190 2129955 2129960) (-1249 "UP2.spad" 2128538 2128559 2129164 2129169) (-1248 "UNISEG.spad" 2127891 2127902 2128457 2128462) (-1247 "UNISEG2.spad" 2127388 2127401 2127847 2127852) (-1246 "UNIFACT.spad" 2126491 2126503 2127378 2127383) (-1245 "ULS.spad" 2117049 2117077 2118136 2118565) (-1244 "ULSCONS.spad" 2109445 2109465 2109815 2109964) (-1243 "ULSCCAT.spad" 2107182 2107202 2109291 2109440) (-1242 "ULSCCAT.spad" 2105027 2105049 2107138 2107143) (-1241 "ULSCAT.spad" 2103259 2103275 2104873 2105022) (-1240 "ULS2.spad" 2102773 2102826 2103249 2103254) (-1239 "UINT8.spad" 2102650 2102659 2102763 2102768) (-1238 "UINT64.spad" 2102526 2102535 2102640 2102645) (-1237 "UINT32.spad" 2102402 2102411 2102516 2102521) (-1236 "UINT16.spad" 2102278 2102287 2102392 2102397) (-1235 "UFD.spad" 2101343 2101352 2102204 2102273) (-1234 "UFD.spad" 2100470 2100481 2101333 2101338) (-1233 "UDVO.spad" 2099351 2099360 2100460 2100465) (-1232 "UDPO.spad" 2096844 2096855 2099307 2099312) (-1231 "TYPE.spad" 2096776 2096785 2096834 2096839) (-1230 "TYPEAST.spad" 2096695 2096704 2096766 2096771) (-1229 "TWOFACT.spad" 2095347 2095362 2096685 2096690) (-1228 "TUPLE.spad" 2094833 2094844 2095246 2095251) (-1227 "TUBETOOL.spad" 2091700 2091709 2094823 2094828) (-1226 "TUBE.spad" 2090347 2090364 2091690 2091695) (-1225 "TS.spad" 2088946 2088962 2089912 2090009) (-1224 "TSETCAT.spad" 2076073 2076090 2088914 2088941) (-1223 "TSETCAT.spad" 2063186 2063205 2076029 2076034) (-1222 "TRMANIP.spad" 2057552 2057569 2062892 2062897) (-1221 "TRIMAT.spad" 2056515 2056540 2057542 2057547) (-1220 "TRIGMNIP.spad" 2055042 2055059 2056505 2056510) (-1219 "TRIGCAT.spad" 2054554 2054563 2055032 2055037) (-1218 "TRIGCAT.spad" 2054064 2054075 2054544 2054549) (-1217 "TREE.spad" 2052639 2052650 2053671 2053698) (-1216 "TRANFUN.spad" 2052478 2052487 2052629 2052634) (-1215 "TRANFUN.spad" 2052315 2052326 2052468 2052473) (-1214 "TOPSP.spad" 2051989 2051998 2052305 2052310) (-1213 "TOOLSIGN.spad" 2051652 2051663 2051979 2051984) (-1212 "TEXTFILE.spad" 2050213 2050222 2051642 2051647) (-1211 "TEX.spad" 2047359 2047368 2050203 2050208) (-1210 "TEX1.spad" 2046915 2046926 2047349 2047354) (-1209 "TEMUTL.spad" 2046470 2046479 2046905 2046910) (-1208 "TBCMPPK.spad" 2044563 2044586 2046460 2046465) (-1207 "TBAGG.spad" 2043613 2043636 2044543 2044558) (-1206 "TBAGG.spad" 2042671 2042696 2043603 2043608) (-1205 "TANEXP.spad" 2042079 2042090 2042661 2042666) (-1204 "TALGOP.spad" 2041803 2041814 2042069 2042074) (-1203 "TABLE.spad" 2040214 2040237 2040484 2040511) (-1202 "TABLEAU.spad" 2039695 2039706 2040204 2040209) (-1201 "TABLBUMP.spad" 2036498 2036509 2039685 2039690) (-1200 "SYSTEM.spad" 2035726 2035735 2036488 2036493) (-1199 "SYSSOLP.spad" 2033209 2033220 2035716 2035721) (-1198 "SYSPTR.spad" 2033108 2033117 2033199 2033204) (-1197 "SYSNNI.spad" 2032290 2032301 2033098 2033103) (-1196 "SYSINT.spad" 2031694 2031705 2032280 2032285) (-1195 "SYNTAX.spad" 2027900 2027909 2031684 2031689) (-1194 "SYMTAB.spad" 2025968 2025977 2027890 2027895) (-1193 "SYMS.spad" 2021991 2022000 2025958 2025963) (-1192 "SYMPOLY.spad" 2020998 2021009 2021080 2021207) (-1191 "SYMFUNC.spad" 2020499 2020510 2020988 2020993) (-1190 "SYMBOL.spad" 2018002 2018011 2020489 2020494) (-1189 "SWITCH.spad" 2014773 2014782 2017992 2017997) (-1188 "SUTS.spad" 2011678 2011706 2013240 2013337) (-1187 "SUPXS.spad" 2008819 2008847 2009810 2009959) (-1186 "SUP.spad" 2005632 2005643 2006405 2006558) (-1185 "SUPFRACF.spad" 2004737 2004755 2005622 2005627) (-1184 "SUP2.spad" 2004129 2004142 2004727 2004732) (-1183 "SUMRF.spad" 2003103 2003114 2004119 2004124) (-1182 "SUMFS.spad" 2002740 2002757 2003093 2003098) (-1181 "SULS.spad" 1993285 1993313 1994385 1994814) (-1180 "SUCHTAST.spad" 1993054 1993063 1993275 1993280) (-1179 "SUCH.spad" 1992736 1992751 1993044 1993049) (-1178 "SUBSPACE.spad" 1984851 1984866 1992726 1992731) (-1177 "SUBRESP.spad" 1984021 1984035 1984807 1984812) (-1176 "STTF.spad" 1980120 1980136 1984011 1984016) (-1175 "STTFNC.spad" 1976588 1976604 1980110 1980115) (-1174 "STTAYLOR.spad" 1969223 1969234 1976469 1976474) (-1173 "STRTBL.spad" 1967728 1967745 1967877 1967904) (-1172 "STRING.spad" 1967137 1967146 1967151 1967178) (-1171 "STRICAT.spad" 1966925 1966934 1967105 1967132) (-1170 "STREAM.spad" 1963843 1963854 1966450 1966465) (-1169 "STREAM3.spad" 1963416 1963431 1963833 1963838) (-1168 "STREAM2.spad" 1962544 1962557 1963406 1963411) (-1167 "STREAM1.spad" 1962250 1962261 1962534 1962539) (-1166 "STINPROD.spad" 1961186 1961202 1962240 1962245) (-1165 "STEP.spad" 1960387 1960396 1961176 1961181) (-1164 "STEPAST.spad" 1959621 1959630 1960377 1960382) (-1163 "STBL.spad" 1958147 1958175 1958314 1958329) (-1162 "STAGG.spad" 1957222 1957233 1958137 1958142) (-1161 "STAGG.spad" 1956295 1956308 1957212 1957217) (-1160 "STACK.spad" 1955652 1955663 1955902 1955929) (-1159 "SREGSET.spad" 1953356 1953373 1955298 1955325) (-1158 "SRDCMPK.spad" 1951917 1951937 1953346 1953351) (-1157 "SRAGG.spad" 1947060 1947069 1951885 1951912) (-1156 "SRAGG.spad" 1942223 1942234 1947050 1947055) (-1155 "SQMATRIX.spad" 1939895 1939913 1940811 1940898) (-1154 "SPLTREE.spad" 1934447 1934460 1939331 1939358) (-1153 "SPLNODE.spad" 1931035 1931048 1934437 1934442) (-1152 "SPFCAT.spad" 1929844 1929853 1931025 1931030) (-1151 "SPECOUT.spad" 1928396 1928405 1929834 1929839) (-1150 "SPADXPT.spad" 1919991 1920000 1928386 1928391) (-1149 "spad-parser.spad" 1919456 1919465 1919981 1919986) (-1148 "SPADAST.spad" 1919157 1919166 1919446 1919451) (-1147 "SPACEC.spad" 1903356 1903367 1919147 1919152) (-1146 "SPACE3.spad" 1903132 1903143 1903346 1903351) (-1145 "SORTPAK.spad" 1902681 1902694 1903088 1903093) (-1144 "SOLVETRA.spad" 1900444 1900455 1902671 1902676) (-1143 "SOLVESER.spad" 1898972 1898983 1900434 1900439) (-1142 "SOLVERAD.spad" 1894998 1895009 1898962 1898967) (-1141 "SOLVEFOR.spad" 1893460 1893478 1894988 1894993) (-1140 "SNTSCAT.spad" 1893060 1893077 1893428 1893455) (-1139 "SMTS.spad" 1891332 1891358 1892625 1892722) (-1138 "SMP.spad" 1888807 1888827 1889197 1889324) (-1137 "SMITH.spad" 1887652 1887677 1888797 1888802) (-1136 "SMATCAT.spad" 1885762 1885792 1887596 1887647) (-1135 "SMATCAT.spad" 1883804 1883836 1885640 1885645) (-1134 "SKAGG.spad" 1882767 1882778 1883772 1883799) (-1133 "SINT.spad" 1881707 1881716 1882633 1882762) (-1132 "SIMPAN.spad" 1881435 1881444 1881697 1881702) (-1131 "SIG.spad" 1880765 1880774 1881425 1881430) (-1130 "SIGNRF.spad" 1879883 1879894 1880755 1880760) (-1129 "SIGNEF.spad" 1879162 1879179 1879873 1879878) (-1128 "SIGAST.spad" 1878547 1878556 1879152 1879157) (-1127 "SHP.spad" 1876475 1876490 1878503 1878508) (-1126 "SHDP.spad" 1866109 1866136 1866618 1866749) (-1125 "SGROUP.spad" 1865717 1865726 1866099 1866104) (-1124 "SGROUP.spad" 1865323 1865334 1865707 1865712) (-1123 "SGCF.spad" 1858462 1858471 1865313 1865318) (-1122 "SFRTCAT.spad" 1857392 1857409 1858430 1858457) (-1121 "SFRGCD.spad" 1856455 1856475 1857382 1857387) (-1120 "SFQCMPK.spad" 1851092 1851112 1856445 1856450) (-1119 "SFORT.spad" 1850531 1850545 1851082 1851087) (-1118 "SEXOF.spad" 1850374 1850414 1850521 1850526) (-1117 "SEX.spad" 1850266 1850275 1850364 1850369) (-1116 "SEXCAT.spad" 1848047 1848087 1850256 1850261) (-1115 "SET.spad" 1846371 1846382 1847468 1847507) (-1114 "SETMN.spad" 1844821 1844838 1846361 1846366) (-1113 "SETCAT.spad" 1844143 1844152 1844811 1844816) (-1112 "SETCAT.spad" 1843463 1843474 1844133 1844138) (-1111 "SETAGG.spad" 1840012 1840023 1843443 1843458) (-1110 "SETAGG.spad" 1836569 1836582 1840002 1840007) (-1109 "SEQAST.spad" 1836272 1836281 1836559 1836564) (-1108 "SEGXCAT.spad" 1835428 1835441 1836262 1836267) (-1107 "SEG.spad" 1835241 1835252 1835347 1835352) (-1106 "SEGCAT.spad" 1834166 1834177 1835231 1835236) (-1105 "SEGBIND.spad" 1833924 1833935 1834113 1834118) (-1104 "SEGBIND2.spad" 1833622 1833635 1833914 1833919) (-1103 "SEGAST.spad" 1833336 1833345 1833612 1833617) (-1102 "SEG2.spad" 1832771 1832784 1833292 1833297) (-1101 "SDVAR.spad" 1832047 1832058 1832761 1832766) (-1100 "SDPOL.spad" 1829473 1829484 1829764 1829891) (-1099 "SCPKG.spad" 1827562 1827573 1829463 1829468) (-1098 "SCOPE.spad" 1826715 1826724 1827552 1827557) (-1097 "SCACHE.spad" 1825411 1825422 1826705 1826710) (-1096 "SASTCAT.spad" 1825320 1825329 1825401 1825406) (-1095 "SAOS.spad" 1825192 1825201 1825310 1825315) (-1094 "SAERFFC.spad" 1824905 1824925 1825182 1825187) (-1093 "SAE.spad" 1823080 1823096 1823691 1823826) (-1092 "SAEFACT.spad" 1822781 1822801 1823070 1823075) (-1091 "RURPK.spad" 1820440 1820456 1822771 1822776) (-1090 "RULESET.spad" 1819893 1819917 1820430 1820435) (-1089 "RULE.spad" 1818133 1818157 1819883 1819888) (-1088 "RULECOLD.spad" 1817985 1817998 1818123 1818128) (-1087 "RTVALUE.spad" 1817720 1817729 1817975 1817980) (-1086 "RSTRCAST.spad" 1817437 1817446 1817710 1817715) (-1085 "RSETGCD.spad" 1813815 1813835 1817427 1817432) (-1084 "RSETCAT.spad" 1803751 1803768 1813783 1813810) (-1083 "RSETCAT.spad" 1793707 1793726 1803741 1803746) (-1082 "RSDCMPK.spad" 1792159 1792179 1793697 1793702) (-1081 "RRCC.spad" 1790543 1790573 1792149 1792154) (-1080 "RRCC.spad" 1788925 1788957 1790533 1790538) (-1079 "RPTAST.spad" 1788627 1788636 1788915 1788920) (-1078 "RPOLCAT.spad" 1767987 1768002 1788495 1788622) (-1077 "RPOLCAT.spad" 1747060 1747077 1767570 1767575) (-1076 "ROUTINE.spad" 1742943 1742952 1745707 1745734) (-1075 "ROMAN.spad" 1742271 1742280 1742809 1742938) (-1074 "ROIRC.spad" 1741351 1741383 1742261 1742266) (-1073 "RNS.spad" 1740254 1740263 1741253 1741346) (-1072 "RNS.spad" 1739243 1739254 1740244 1740249) (-1071 "RNG.spad" 1738978 1738987 1739233 1739238) (-1070 "RNGBIND.spad" 1738138 1738152 1738933 1738938) (-1069 "RMODULE.spad" 1737903 1737914 1738128 1738133) (-1068 "RMCAT2.spad" 1737323 1737380 1737893 1737898) (-1067 "RMATRIX.spad" 1736147 1736166 1736490 1736529) (-1066 "RMATCAT.spad" 1731726 1731757 1736103 1736142) (-1065 "RMATCAT.spad" 1727195 1727228 1731574 1731579) (-1064 "RLINSET.spad" 1726589 1726600 1727185 1727190) (-1063 "RINTERP.spad" 1726477 1726497 1726579 1726584) (-1062 "RING.spad" 1725947 1725956 1726457 1726472) (-1061 "RING.spad" 1725425 1725436 1725937 1725942) (-1060 "RIDIST.spad" 1724817 1724826 1725415 1725420) (-1059 "RGCHAIN.spad" 1723400 1723416 1724302 1724329) (-1058 "RGBCSPC.spad" 1723181 1723193 1723390 1723395) (-1057 "RGBCMDL.spad" 1722711 1722723 1723171 1723176) (-1056 "RF.spad" 1720353 1720364 1722701 1722706) (-1055 "RFFACTOR.spad" 1719815 1719826 1720343 1720348) (-1054 "RFFACT.spad" 1719550 1719562 1719805 1719810) (-1053 "RFDIST.spad" 1718546 1718555 1719540 1719545) (-1052 "RETSOL.spad" 1717965 1717978 1718536 1718541) (-1051 "RETRACT.spad" 1717393 1717404 1717955 1717960) (-1050 "RETRACT.spad" 1716819 1716832 1717383 1717388) (-1049 "RETAST.spad" 1716631 1716640 1716809 1716814) (-1048 "RESULT.spad" 1714691 1714700 1715278 1715305) (-1047 "RESRING.spad" 1714038 1714085 1714629 1714686) (-1046 "RESLATC.spad" 1713362 1713373 1714028 1714033) (-1045 "REPSQ.spad" 1713093 1713104 1713352 1713357) (-1044 "REP.spad" 1710647 1710656 1713083 1713088) (-1043 "REPDB.spad" 1710354 1710365 1710637 1710642) (-1042 "REP2.spad" 1700012 1700023 1710196 1710201) (-1041 "REP1.spad" 1694208 1694219 1699962 1699967) (-1040 "REGSET.spad" 1692005 1692022 1693854 1693881) (-1039 "REF.spad" 1691340 1691351 1691960 1691965) (-1038 "REDORDER.spad" 1690546 1690563 1691330 1691335) (-1037 "RECLOS.spad" 1689329 1689349 1690033 1690126) (-1036 "REALSOLV.spad" 1688469 1688478 1689319 1689324) (-1035 "REAL.spad" 1688341 1688350 1688459 1688464) (-1034 "REAL0Q.spad" 1685639 1685654 1688331 1688336) (-1033 "REAL0.spad" 1682483 1682498 1685629 1685634) (-1032 "RDUCEAST.spad" 1682204 1682213 1682473 1682478) (-1031 "RDIV.spad" 1681859 1681884 1682194 1682199) (-1030 "RDIST.spad" 1681426 1681437 1681849 1681854) (-1029 "RDETRS.spad" 1680290 1680308 1681416 1681421) (-1028 "RDETR.spad" 1678429 1678447 1680280 1680285) (-1027 "RDEEFS.spad" 1677528 1677545 1678419 1678424) (-1026 "RDEEF.spad" 1676538 1676555 1677518 1677523) (-1025 "RCFIELD.spad" 1673724 1673733 1676440 1676533) (-1024 "RCFIELD.spad" 1670996 1671007 1673714 1673719) (-1023 "RCAGG.spad" 1668924 1668935 1670986 1670991) (-1022 "RCAGG.spad" 1666779 1666792 1668843 1668848) (-1021 "RATRET.spad" 1666139 1666150 1666769 1666774) (-1020 "RATFACT.spad" 1665831 1665843 1666129 1666134) (-1019 "RANDSRC.spad" 1665150 1665159 1665821 1665826) (-1018 "RADUTIL.spad" 1664906 1664915 1665140 1665145) (-1017 "RADIX.spad" 1661827 1661841 1663373 1663466) (-1016 "RADFF.spad" 1660240 1660277 1660359 1660515) (-1015 "RADCAT.spad" 1659835 1659844 1660230 1660235) (-1014 "RADCAT.spad" 1659428 1659439 1659825 1659830) (-1013 "QUEUE.spad" 1658776 1658787 1659035 1659062) (-1012 "QUAT.spad" 1657234 1657245 1657577 1657642) (-1011 "QUATCT2.spad" 1656854 1656873 1657224 1657229) (-1010 "QUATCAT.spad" 1655024 1655035 1656784 1656849) (-1009 "QUATCAT.spad" 1652945 1652958 1654707 1654712) (-1008 "QUAGG.spad" 1651772 1651783 1652913 1652940) (-1007 "QQUTAST.spad" 1651540 1651549 1651762 1651767) (-1006 "QFORM.spad" 1651158 1651173 1651530 1651535) (-1005 "QFCAT.spad" 1649860 1649871 1651060 1651153) (-1004 "QFCAT.spad" 1648153 1648166 1649355 1649360) (-1003 "QFCAT2.spad" 1647845 1647862 1648143 1648148) (-1002 "QEQUAT.spad" 1647403 1647412 1647835 1647840) (-1001 "QCMPACK.spad" 1642149 1642169 1647393 1647398) (-1000 "QALGSET.spad" 1638227 1638260 1642063 1642068) (-999 "QALGSET2.spad" 1636223 1636241 1638217 1638222) (-998 "PWFFINTB.spad" 1633639 1633660 1636213 1636218) (-997 "PUSHVAR.spad" 1632978 1632997 1633629 1633634) (-996 "PTRANFN.spad" 1629106 1629116 1632968 1632973) (-995 "PTPACK.spad" 1626194 1626204 1629096 1629101) (-994 "PTFUNC2.spad" 1626017 1626031 1626184 1626189) (-993 "PTCAT.spad" 1625272 1625282 1625985 1626012) (-992 "PSQFR.spad" 1624579 1624603 1625262 1625267) (-991 "PSEUDLIN.spad" 1623465 1623475 1624569 1624574) (-990 "PSETPK.spad" 1608898 1608914 1623343 1623348) (-989 "PSETCAT.spad" 1602818 1602841 1608878 1608893) (-988 "PSETCAT.spad" 1596712 1596737 1602774 1602779) (-987 "PSCURVE.spad" 1595695 1595703 1596702 1596707) (-986 "PSCAT.spad" 1594478 1594507 1595593 1595690) (-985 "PSCAT.spad" 1593351 1593382 1594468 1594473) (-984 "PRTITION.spad" 1592049 1592057 1593341 1593346) (-983 "PRTDAST.spad" 1591768 1591776 1592039 1592044) (-982 "PRS.spad" 1581330 1581347 1591724 1591729) (-981 "PRQAGG.spad" 1580765 1580775 1581298 1581325) (-980 "PROPLOG.spad" 1580337 1580345 1580755 1580760) (-979 "PROPFUN2.spad" 1579960 1579973 1580327 1580332) (-978 "PROPFUN1.spad" 1579358 1579369 1579950 1579955) (-977 "PROPFRML.spad" 1577926 1577937 1579348 1579353) (-976 "PROPERTY.spad" 1577414 1577422 1577916 1577921) (-975 "PRODUCT.spad" 1575096 1575108 1575380 1575435) (-974 "PR.spad" 1573488 1573500 1574187 1574314) (-973 "PRINT.spad" 1573240 1573248 1573478 1573483) (-972 "PRIMES.spad" 1571493 1571503 1573230 1573235) (-971 "PRIMELT.spad" 1569574 1569588 1571483 1571488) (-970 "PRIMCAT.spad" 1569201 1569209 1569564 1569569) (-969 "PRIMARR.spad" 1568206 1568216 1568384 1568411) (-968 "PRIMARR2.spad" 1566973 1566985 1568196 1568201) (-967 "PREASSOC.spad" 1566355 1566367 1566963 1566968) (-966 "PPCURVE.spad" 1565492 1565500 1566345 1566350) (-965 "PORTNUM.spad" 1565267 1565275 1565482 1565487) (-964 "POLYROOT.spad" 1564116 1564138 1565223 1565228) (-963 "POLY.spad" 1561451 1561461 1561966 1562093) (-962 "POLYLIFT.spad" 1560716 1560739 1561441 1561446) (-961 "POLYCATQ.spad" 1558834 1558856 1560706 1560711) (-960 "POLYCAT.spad" 1552304 1552325 1558702 1558829) (-959 "POLYCAT.spad" 1545112 1545135 1551512 1551517) (-958 "POLY2UP.spad" 1544564 1544578 1545102 1545107) (-957 "POLY2.spad" 1544161 1544173 1544554 1544559) (-956 "POLUTIL.spad" 1543102 1543131 1544117 1544122) (-955 "POLTOPOL.spad" 1541850 1541865 1543092 1543097) (-954 "POINT.spad" 1540688 1540698 1540775 1540802) (-953 "PNTHEORY.spad" 1537390 1537398 1540678 1540683) (-952 "PMTOOLS.spad" 1536165 1536179 1537380 1537385) (-951 "PMSYM.spad" 1535714 1535724 1536155 1536160) (-950 "PMQFCAT.spad" 1535305 1535319 1535704 1535709) (-949 "PMPRED.spad" 1534784 1534798 1535295 1535300) (-948 "PMPREDFS.spad" 1534238 1534260 1534774 1534779) (-947 "PMPLCAT.spad" 1533318 1533336 1534170 1534175) (-946 "PMLSAGG.spad" 1532903 1532917 1533308 1533313) (-945 "PMKERNEL.spad" 1532482 1532494 1532893 1532898) (-944 "PMINS.spad" 1532062 1532072 1532472 1532477) (-943 "PMFS.spad" 1531639 1531657 1532052 1532057) (-942 "PMDOWN.spad" 1530929 1530943 1531629 1531634) (-941 "PMASS.spad" 1529939 1529947 1530919 1530924) (-940 "PMASSFS.spad" 1528906 1528922 1529929 1529934) (-939 "PLOTTOOL.spad" 1528686 1528694 1528896 1528901) (-938 "PLOT.spad" 1523609 1523617 1528676 1528681) (-937 "PLOT3D.spad" 1520073 1520081 1523599 1523604) (-936 "PLOT1.spad" 1519230 1519240 1520063 1520068) (-935 "PLEQN.spad" 1506520 1506547 1519220 1519225) (-934 "PINTERP.spad" 1506142 1506161 1506510 1506515) (-933 "PINTERPA.spad" 1505926 1505942 1506132 1506137) (-932 "PI.spad" 1505535 1505543 1505900 1505921) (-931 "PID.spad" 1504505 1504513 1505461 1505530) (-930 "PICOERCE.spad" 1504162 1504172 1504495 1504500) (-929 "PGROEB.spad" 1502763 1502777 1504152 1504157) (-928 "PGE.spad" 1494380 1494388 1502753 1502758) (-927 "PGCD.spad" 1493270 1493287 1494370 1494375) (-926 "PFRPAC.spad" 1492419 1492429 1493260 1493265) (-925 "PFR.spad" 1489082 1489092 1492321 1492414) (-924 "PFOTOOLS.spad" 1488340 1488356 1489072 1489077) (-923 "PFOQ.spad" 1487710 1487728 1488330 1488335) (-922 "PFO.spad" 1487129 1487156 1487700 1487705) (-921 "PF.spad" 1486703 1486715 1486934 1487027) (-920 "PFECAT.spad" 1484385 1484393 1486629 1486698) (-919 "PFECAT.spad" 1482095 1482105 1484341 1484346) (-918 "PFBRU.spad" 1479983 1479995 1482085 1482090) (-917 "PFBR.spad" 1477543 1477566 1479973 1479978) (-916 "PERM.spad" 1473350 1473360 1477373 1477388) (-915 "PERMGRP.spad" 1468120 1468130 1473340 1473345) (-914 "PERMCAT.spad" 1466781 1466791 1468100 1468115) (-913 "PERMAN.spad" 1465313 1465327 1466771 1466776) (-912 "PENDTREE.spad" 1464654 1464664 1464942 1464947) (-911 "PDRING.spad" 1463205 1463215 1464634 1464649) (-910 "PDRING.spad" 1461764 1461776 1463195 1463200) (-909 "PDEPROB.spad" 1460779 1460787 1461754 1461759) (-908 "PDEPACK.spad" 1454819 1454827 1460769 1460774) (-907 "PDECOMP.spad" 1454289 1454306 1454809 1454814) (-906 "PDECAT.spad" 1452645 1452653 1454279 1454284) (-905 "PCOMP.spad" 1452498 1452511 1452635 1452640) (-904 "PBWLB.spad" 1451086 1451103 1452488 1452493) (-903 "PATTERN.spad" 1445625 1445635 1451076 1451081) (-902 "PATTERN2.spad" 1445363 1445375 1445615 1445620) (-901 "PATTERN1.spad" 1443699 1443715 1445353 1445358) (-900 "PATRES.spad" 1441274 1441286 1443689 1443694) (-899 "PATRES2.spad" 1440946 1440960 1441264 1441269) (-898 "PATMATCH.spad" 1439143 1439174 1440654 1440659) (-897 "PATMAB.spad" 1438572 1438582 1439133 1439138) (-896 "PATLRES.spad" 1437658 1437672 1438562 1438567) (-895 "PATAB.spad" 1437422 1437432 1437648 1437653) (-894 "PARTPERM.spad" 1435430 1435438 1437412 1437417) (-893 "PARSURF.spad" 1434864 1434892 1435420 1435425) (-892 "PARSU2.spad" 1434661 1434677 1434854 1434859) (-891 "script-parser.spad" 1434181 1434189 1434651 1434656) (-890 "PARSCURV.spad" 1433615 1433643 1434171 1434176) (-889 "PARSC2.spad" 1433406 1433422 1433605 1433610) (-888 "PARPCURV.spad" 1432868 1432896 1433396 1433401) (-887 "PARPC2.spad" 1432659 1432675 1432858 1432863) (-886 "PARAMAST.spad" 1431787 1431795 1432649 1432654) (-885 "PAN2EXPR.spad" 1431199 1431207 1431777 1431782) (-884 "PALETTE.spad" 1430169 1430177 1431189 1431194) (-883 "PAIR.spad" 1429156 1429169 1429757 1429762) (-882 "PADICRC.spad" 1426490 1426508 1427661 1427754) (-881 "PADICRAT.spad" 1424505 1424517 1424726 1424819) (-880 "PADIC.spad" 1424200 1424212 1424431 1424500) (-879 "PADICCT.spad" 1422749 1422761 1424126 1424195) (-878 "PADEPAC.spad" 1421438 1421457 1422739 1422744) (-877 "PADE.spad" 1420190 1420206 1421428 1421433) (-876 "OWP.spad" 1419430 1419460 1420048 1420115) (-875 "OVERSET.spad" 1419003 1419011 1419420 1419425) (-874 "OVAR.spad" 1418784 1418807 1418993 1418998) (-873 "OUT.spad" 1417870 1417878 1418774 1418779) (-872 "OUTFORM.spad" 1407262 1407270 1417860 1417865) (-871 "OUTBFILE.spad" 1406680 1406688 1407252 1407257) (-870 "OUTBCON.spad" 1405686 1405694 1406670 1406675) (-869 "OUTBCON.spad" 1404690 1404700 1405676 1405681) (-868 "OSI.spad" 1404165 1404173 1404680 1404685) (-867 "OSGROUP.spad" 1404083 1404091 1404155 1404160) (-866 "ORTHPOL.spad" 1402568 1402578 1404000 1404005) (-865 "OREUP.spad" 1402021 1402049 1402248 1402287) (-864 "ORESUP.spad" 1401322 1401346 1401701 1401740) (-863 "OREPCTO.spad" 1399179 1399191 1401242 1401247) (-862 "OREPCAT.spad" 1393326 1393336 1399135 1399174) (-861 "OREPCAT.spad" 1387363 1387375 1393174 1393179) (-860 "ORDSET.spad" 1386535 1386543 1387353 1387358) (-859 "ORDSET.spad" 1385705 1385715 1386525 1386530) (-858 "ORDRING.spad" 1385095 1385103 1385685 1385700) (-857 "ORDRING.spad" 1384493 1384503 1385085 1385090) (-856 "ORDMON.spad" 1384348 1384356 1384483 1384488) (-855 "ORDFUNS.spad" 1383480 1383496 1384338 1384343) (-854 "ORDFIN.spad" 1383300 1383308 1383470 1383475) (-853 "ORDCOMP.spad" 1381765 1381775 1382847 1382876) (-852 "ORDCOMP2.spad" 1381058 1381070 1381755 1381760) (-851 "OPTPROB.spad" 1379696 1379704 1381048 1381053) (-850 "OPTPACK.spad" 1372105 1372113 1379686 1379691) (-849 "OPTCAT.spad" 1369784 1369792 1372095 1372100) (-848 "OPSIG.spad" 1369438 1369446 1369774 1369779) (-847 "OPQUERY.spad" 1368987 1368995 1369428 1369433) (-846 "OP.spad" 1368729 1368739 1368809 1368876) (-845 "OPERCAT.spad" 1368195 1368205 1368719 1368724) (-844 "OPERCAT.spad" 1367659 1367671 1368185 1368190) (-843 "ONECOMP.spad" 1366404 1366414 1367206 1367235) (-842 "ONECOMP2.spad" 1365828 1365840 1366394 1366399) (-841 "OMSERVER.spad" 1364834 1364842 1365818 1365823) (-840 "OMSAGG.spad" 1364622 1364632 1364790 1364829) (-839 "OMPKG.spad" 1363238 1363246 1364612 1364617) (-838 "OM.spad" 1362211 1362219 1363228 1363233) (-837 "OMLO.spad" 1361636 1361648 1362097 1362136) (-836 "OMEXPR.spad" 1361470 1361480 1361626 1361631) (-835 "OMERR.spad" 1361015 1361023 1361460 1361465) (-834 "OMERRK.spad" 1360049 1360057 1361005 1361010) (-833 "OMENC.spad" 1359393 1359401 1360039 1360044) (-832 "OMDEV.spad" 1353702 1353710 1359383 1359388) (-831 "OMCONN.spad" 1353111 1353119 1353692 1353697) (-830 "OINTDOM.spad" 1352874 1352882 1353037 1353106) (-829 "OFMONOID.spad" 1350997 1351007 1352830 1352835) (-828 "ODVAR.spad" 1350258 1350268 1350987 1350992) (-827 "ODR.spad" 1349902 1349928 1350070 1350219) (-826 "ODPOL.spad" 1347284 1347294 1347624 1347751) (-825 "ODP.spad" 1337054 1337074 1337427 1337558) (-824 "ODETOOLS.spad" 1335703 1335722 1337044 1337049) (-823 "ODESYS.spad" 1333397 1333414 1335693 1335698) (-822 "ODERTRIC.spad" 1329406 1329423 1333354 1333359) (-821 "ODERED.spad" 1328805 1328829 1329396 1329401) (-820 "ODERAT.spad" 1326420 1326437 1328795 1328800) (-819 "ODEPRRIC.spad" 1323457 1323479 1326410 1326415) (-818 "ODEPROB.spad" 1322714 1322722 1323447 1323452) (-817 "ODEPRIM.spad" 1320048 1320070 1322704 1322709) (-816 "ODEPAL.spad" 1319434 1319458 1320038 1320043) (-815 "ODEPACK.spad" 1306100 1306108 1319424 1319429) (-814 "ODEINT.spad" 1305535 1305551 1306090 1306095) (-813 "ODEIFTBL.spad" 1302930 1302938 1305525 1305530) (-812 "ODEEF.spad" 1298421 1298437 1302920 1302925) (-811 "ODECONST.spad" 1297958 1297976 1298411 1298416) (-810 "ODECAT.spad" 1296556 1296564 1297948 1297953) (-809 "OCT.spad" 1294692 1294702 1295406 1295445) (-808 "OCTCT2.spad" 1294338 1294359 1294682 1294687) (-807 "OC.spad" 1292134 1292144 1294294 1294333) (-806 "OC.spad" 1289655 1289667 1291817 1291822) (-805 "OCAMON.spad" 1289503 1289511 1289645 1289650) (-804 "OASGP.spad" 1289318 1289326 1289493 1289498) (-803 "OAMONS.spad" 1288840 1288848 1289308 1289313) (-802 "OAMON.spad" 1288701 1288709 1288830 1288835) (-801 "OAGROUP.spad" 1288563 1288571 1288691 1288696) (-800 "NUMTUBE.spad" 1288154 1288170 1288553 1288558) (-799 "NUMQUAD.spad" 1276130 1276138 1288144 1288149) (-798 "NUMODE.spad" 1267484 1267492 1276120 1276125) (-797 "NUMINT.spad" 1265050 1265058 1267474 1267479) (-796 "NUMFMT.spad" 1263890 1263898 1265040 1265045) (-795 "NUMERIC.spad" 1256004 1256014 1263695 1263700) (-794 "NTSCAT.spad" 1254512 1254528 1255972 1255999) (-793 "NTPOLFN.spad" 1254063 1254073 1254429 1254434) (-792 "NSUP.spad" 1247109 1247119 1251649 1251802) (-791 "NSUP2.spad" 1246501 1246513 1247099 1247104) (-790 "NSMP.spad" 1242731 1242750 1243039 1243166) (-789 "NREP.spad" 1241109 1241123 1242721 1242726) (-788 "NPCOEF.spad" 1240355 1240375 1241099 1241104) (-787 "NORMRETR.spad" 1239953 1239992 1240345 1240350) (-786 "NORMPK.spad" 1237855 1237874 1239943 1239948) (-785 "NORMMA.spad" 1237543 1237569 1237845 1237850) (-784 "NONE.spad" 1237284 1237292 1237533 1237538) (-783 "NONE1.spad" 1236960 1236970 1237274 1237279) (-782 "NODE1.spad" 1236447 1236463 1236950 1236955) (-781 "NNI.spad" 1235342 1235350 1236421 1236442) (-780 "NLINSOL.spad" 1233968 1233978 1235332 1235337) (-779 "NIPROB.spad" 1232509 1232517 1233958 1233963) (-778 "NFINTBAS.spad" 1230069 1230086 1232499 1232504) (-777 "NETCLT.spad" 1230043 1230054 1230059 1230064) (-776 "NCODIV.spad" 1228259 1228275 1230033 1230038) (-775 "NCNTFRAC.spad" 1227901 1227915 1228249 1228254) (-774 "NCEP.spad" 1226067 1226081 1227891 1227896) (-773 "NASRING.spad" 1225663 1225671 1226057 1226062) (-772 "NASRING.spad" 1225257 1225267 1225653 1225658) (-771 "NARNG.spad" 1224609 1224617 1225247 1225252) (-770 "NARNG.spad" 1223959 1223969 1224599 1224604) (-769 "NAGSP.spad" 1223036 1223044 1223949 1223954) (-768 "NAGS.spad" 1212697 1212705 1223026 1223031) (-767 "NAGF07.spad" 1211128 1211136 1212687 1212692) (-766 "NAGF04.spad" 1205530 1205538 1211118 1211123) (-765 "NAGF02.spad" 1199599 1199607 1205520 1205525) (-764 "NAGF01.spad" 1195360 1195368 1199589 1199594) (-763 "NAGE04.spad" 1189060 1189068 1195350 1195355) (-762 "NAGE02.spad" 1179720 1179728 1189050 1189055) (-761 "NAGE01.spad" 1175722 1175730 1179710 1179715) (-760 "NAGD03.spad" 1173726 1173734 1175712 1175717) (-759 "NAGD02.spad" 1166473 1166481 1173716 1173721) (-758 "NAGD01.spad" 1160766 1160774 1166463 1166468) (-757 "NAGC06.spad" 1156641 1156649 1160756 1160761) (-756 "NAGC05.spad" 1155142 1155150 1156631 1156636) (-755 "NAGC02.spad" 1154409 1154417 1155132 1155137) (-754 "NAALG.spad" 1153950 1153960 1154377 1154404) (-753 "NAALG.spad" 1153511 1153523 1153940 1153945) (-752 "MULTSQFR.spad" 1150469 1150486 1153501 1153506) (-751 "MULTFACT.spad" 1149852 1149869 1150459 1150464) (-750 "MTSCAT.spad" 1147946 1147967 1149750 1149847) (-749 "MTHING.spad" 1147605 1147615 1147936 1147941) (-748 "MSYSCMD.spad" 1147039 1147047 1147595 1147600) (-747 "MSET.spad" 1144997 1145007 1146745 1146784) (-746 "MSETAGG.spad" 1144842 1144852 1144965 1144992) (-745 "MRING.spad" 1141819 1141831 1144550 1144617) (-744 "MRF2.spad" 1141389 1141403 1141809 1141814) (-743 "MRATFAC.spad" 1140935 1140952 1141379 1141384) (-742 "MPRFF.spad" 1138975 1138994 1140925 1140930) (-741 "MPOLY.spad" 1136446 1136461 1136805 1136932) (-740 "MPCPF.spad" 1135710 1135729 1136436 1136441) (-739 "MPC3.spad" 1135527 1135567 1135700 1135705) (-738 "MPC2.spad" 1135173 1135206 1135517 1135522) (-737 "MONOTOOL.spad" 1133524 1133541 1135163 1135168) (-736 "MONOID.spad" 1132843 1132851 1133514 1133519) (-735 "MONOID.spad" 1132160 1132170 1132833 1132838) (-734 "MONOGEN.spad" 1130908 1130921 1132020 1132155) (-733 "MONOGEN.spad" 1129678 1129693 1130792 1130797) (-732 "MONADWU.spad" 1127708 1127716 1129668 1129673) (-731 "MONADWU.spad" 1125736 1125746 1127698 1127703) (-730 "MONAD.spad" 1124896 1124904 1125726 1125731) (-729 "MONAD.spad" 1124054 1124064 1124886 1124891) (-728 "MOEBIUS.spad" 1122790 1122804 1124034 1124049) (-727 "MODULE.spad" 1122660 1122670 1122758 1122785) (-726 "MODULE.spad" 1122550 1122562 1122650 1122655) (-725 "MODRING.spad" 1121885 1121924 1122530 1122545) (-724 "MODOP.spad" 1120550 1120562 1121707 1121774) (-723 "MODMONOM.spad" 1120281 1120299 1120540 1120545) (-722 "MODMON.spad" 1117076 1117092 1117795 1117948) (-721 "MODFIELD.spad" 1116438 1116477 1116978 1117071) (-720 "MMLFORM.spad" 1115298 1115306 1116428 1116433) (-719 "MMAP.spad" 1115040 1115074 1115288 1115293) (-718 "MLO.spad" 1113499 1113509 1114996 1115035) (-717 "MLIFT.spad" 1112111 1112128 1113489 1113494) (-716 "MKUCFUNC.spad" 1111646 1111664 1112101 1112106) (-715 "MKRECORD.spad" 1111250 1111263 1111636 1111641) (-714 "MKFUNC.spad" 1110657 1110667 1111240 1111245) (-713 "MKFLCFN.spad" 1109625 1109635 1110647 1110652) (-712 "MKBCFUNC.spad" 1109120 1109138 1109615 1109620) (-711 "MINT.spad" 1108559 1108567 1109022 1109115) (-710 "MHROWRED.spad" 1107070 1107080 1108549 1108554) (-709 "MFLOAT.spad" 1105590 1105598 1106960 1107065) (-708 "MFINFACT.spad" 1104990 1105012 1105580 1105585) (-707 "MESH.spad" 1102772 1102780 1104980 1104985) (-706 "MDDFACT.spad" 1100983 1100993 1102762 1102767) (-705 "MDAGG.spad" 1100274 1100284 1100963 1100978) (-704 "MCMPLX.spad" 1096285 1096293 1096899 1097100) (-703 "MCDEN.spad" 1095495 1095507 1096275 1096280) (-702 "MCALCFN.spad" 1092617 1092643 1095485 1095490) (-701 "MAYBE.spad" 1091901 1091912 1092607 1092612) (-700 "MATSTOR.spad" 1089209 1089219 1091891 1091896) (-699 "MATRIX.spad" 1087913 1087923 1088397 1088424) (-698 "MATLIN.spad" 1085257 1085281 1087797 1087802) (-697 "MATCAT.spad" 1076986 1077008 1085225 1085252) (-696 "MATCAT.spad" 1068587 1068611 1076828 1076833) (-695 "MATCAT2.spad" 1067869 1067917 1068577 1068582) (-694 "MAPPKG3.spad" 1066784 1066798 1067859 1067864) (-693 "MAPPKG2.spad" 1066122 1066134 1066774 1066779) (-692 "MAPPKG1.spad" 1064950 1064960 1066112 1066117) (-691 "MAPPAST.spad" 1064265 1064273 1064940 1064945) (-690 "MAPHACK3.spad" 1064077 1064091 1064255 1064260) (-689 "MAPHACK2.spad" 1063846 1063858 1064067 1064072) (-688 "MAPHACK1.spad" 1063490 1063500 1063836 1063841) (-687 "MAGMA.spad" 1061280 1061297 1063480 1063485) (-686 "MACROAST.spad" 1060859 1060867 1061270 1061275) (-685 "M3D.spad" 1058579 1058589 1060237 1060242) (-684 "LZSTAGG.spad" 1055817 1055827 1058569 1058574) (-683 "LZSTAGG.spad" 1053053 1053065 1055807 1055812) (-682 "LWORD.spad" 1049758 1049775 1053043 1053048) (-681 "LSTAST.spad" 1049542 1049550 1049748 1049753) (-680 "LSQM.spad" 1047828 1047842 1048222 1048273) (-679 "LSPP.spad" 1047363 1047380 1047818 1047823) (-678 "LSMP.spad" 1046213 1046241 1047353 1047358) (-677 "LSMP1.spad" 1044031 1044045 1046203 1046208) (-676 "LSAGG.spad" 1043700 1043710 1043999 1044026) (-675 "LSAGG.spad" 1043389 1043401 1043690 1043695) (-674 "LPOLY.spad" 1042343 1042362 1043245 1043314) (-673 "LPEFRAC.spad" 1041614 1041624 1042333 1042338) (-672 "LO.spad" 1041015 1041029 1041548 1041575) (-671 "LOGIC.spad" 1040617 1040625 1041005 1041010) (-670 "LOGIC.spad" 1040217 1040227 1040607 1040612) (-669 "LODOOPS.spad" 1039147 1039159 1040207 1040212) (-668 "LODO.spad" 1038531 1038547 1038827 1038866) (-667 "LODOF.spad" 1037577 1037594 1038488 1038493) (-666 "LODOCAT.spad" 1036243 1036253 1037533 1037572) (-665 "LODOCAT.spad" 1034907 1034919 1036199 1036204) (-664 "LODO2.spad" 1034180 1034192 1034587 1034626) (-663 "LODO1.spad" 1033580 1033590 1033860 1033899) (-662 "LODEEF.spad" 1032382 1032400 1033570 1033575) (-661 "LNAGG.spad" 1028529 1028539 1032372 1032377) (-660 "LNAGG.spad" 1024640 1024652 1028485 1028490) (-659 "LMOPS.spad" 1021408 1021425 1024630 1024635) (-658 "LMODULE.spad" 1021176 1021186 1021398 1021403) (-657 "LMDICT.spad" 1020463 1020473 1020727 1020754) (-656 "LLINSET.spad" 1019860 1019870 1020453 1020458) (-655 "LITERAL.spad" 1019766 1019777 1019850 1019855) (-654 "LIST.spad" 1017501 1017511 1018913 1018940) (-653 "LIST3.spad" 1016812 1016826 1017491 1017496) (-652 "LIST2.spad" 1015514 1015526 1016802 1016807) (-651 "LIST2MAP.spad" 1012417 1012429 1015504 1015509) (-650 "LINSET.spad" 1012039 1012049 1012407 1012412) (-649 "LINEXP.spad" 1011177 1011187 1012029 1012034) (-648 "LINDEP.spad" 1009986 1009998 1011089 1011094) (-647 "LIMITRF.spad" 1007914 1007924 1009976 1009981) (-646 "LIMITPS.spad" 1006817 1006830 1007904 1007909) (-645 "LIE.spad" 1004833 1004845 1006107 1006252) (-644 "LIECAT.spad" 1004309 1004319 1004759 1004828) (-643 "LIECAT.spad" 1003813 1003825 1004265 1004270) (-642 "LIB.spad" 1002026 1002034 1002472 1002487) (-641 "LGROBP.spad" 999379 999398 1002016 1002021) (-640 "LF.spad" 998334 998350 999369 999374) (-639 "LFCAT.spad" 997393 997401 998324 998329) (-638 "LEXTRIPK.spad" 992896 992911 997383 997388) (-637 "LEXP.spad" 990899 990926 992876 992891) (-636 "LETAST.spad" 990598 990606 990889 990894) (-635 "LEADCDET.spad" 988996 989013 990588 990593) (-634 "LAZM3PK.spad" 987700 987722 988986 988991) (-633 "LAUPOL.spad" 986393 986406 987293 987362) (-632 "LAPLACE.spad" 985976 985992 986383 986388) (-631 "LA.spad" 985416 985430 985898 985937) (-630 "LALG.spad" 985192 985202 985396 985411) (-629 "LALG.spad" 984976 984988 985182 985187) (-628 "KVTFROM.spad" 984711 984721 984966 984971) (-627 "KTVLOGIC.spad" 984223 984231 984701 984706) (-626 "KRCFROM.spad" 983961 983971 984213 984218) (-625 "KOVACIC.spad" 982684 982701 983951 983956) (-624 "KONVERT.spad" 982406 982416 982674 982679) (-623 "KOERCE.spad" 982143 982153 982396 982401) (-622 "KERNEL.spad" 980798 980808 981927 981932) (-621 "KERNEL2.spad" 980501 980513 980788 980793) (-620 "KDAGG.spad" 979610 979632 980481 980496) (-619 "KDAGG.spad" 978727 978751 979600 979605) (-618 "KAFILE.spad" 977690 977706 977925 977952) (-617 "JORDAN.spad" 975519 975531 976980 977125) (-616 "JOINAST.spad" 975213 975221 975509 975514) (-615 "JAVACODE.spad" 975079 975087 975203 975208) (-614 "IXAGG.spad" 973212 973236 975069 975074) (-613 "IXAGG.spad" 971200 971226 973059 973064) (-612 "IVECTOR.spad" 969970 969985 970125 970152) (-611 "ITUPLE.spad" 969131 969141 969960 969965) (-610 "ITRIGMNP.spad" 967970 967989 969121 969126) (-609 "ITFUN3.spad" 967476 967490 967960 967965) (-608 "ITFUN2.spad" 967220 967232 967466 967471) (-607 "ITFORM.spad" 966575 966583 967210 967215) (-606 "ITAYLOR.spad" 964569 964584 966439 966536) (-605 "ISUPS.spad" 957006 957021 963543 963640) (-604 "ISUMP.spad" 956507 956523 956996 957001) (-603 "ISTRING.spad" 955595 955608 955676 955703) (-602 "ISAST.spad" 955314 955322 955585 955590) (-601 "IRURPK.spad" 954031 954050 955304 955309) (-600 "IRSN.spad" 952003 952011 954021 954026) (-599 "IRRF2F.spad" 950488 950498 951959 951964) (-598 "IRREDFFX.spad" 950089 950100 950478 950483) (-597 "IROOT.spad" 948428 948438 950079 950084) (-596 "IR.spad" 946229 946243 948283 948310) (-595 "IRFORM.spad" 945553 945561 946219 946224) (-594 "IR2.spad" 944581 944597 945543 945548) (-593 "IR2F.spad" 943787 943803 944571 944576) (-592 "IPRNTPK.spad" 943547 943555 943777 943782) (-591 "IPF.spad" 943112 943124 943352 943445) (-590 "IPADIC.spad" 942873 942899 943038 943107) (-589 "IP4ADDR.spad" 942430 942438 942863 942868) (-588 "IOMODE.spad" 941952 941960 942420 942425) (-587 "IOBFILE.spad" 941313 941321 941942 941947) (-586 "IOBCON.spad" 941178 941186 941303 941308) (-585 "INVLAPLA.spad" 940827 940843 941168 941173) (-584 "INTTR.spad" 934209 934226 940817 940822) (-583 "INTTOOLS.spad" 931964 931980 933783 933788) (-582 "INTSLPE.spad" 931284 931292 931954 931959) (-581 "INTRVL.spad" 930850 930860 931198 931279) (-580 "INTRF.spad" 929274 929288 930840 930845) (-579 "INTRET.spad" 928706 928716 929264 929269) (-578 "INTRAT.spad" 927433 927450 928696 928701) (-577 "INTPM.spad" 925818 925834 927076 927081) (-576 "INTPAF.spad" 923682 923700 925750 925755) (-575 "INTPACK.spad" 914056 914064 923672 923677) (-574 "INT.spad" 913504 913512 913910 914051) (-573 "INTHERTR.spad" 912778 912795 913494 913499) (-572 "INTHERAL.spad" 912448 912472 912768 912773) (-571 "INTHEORY.spad" 908887 908895 912438 912443) (-570 "INTG0.spad" 902620 902638 908819 908824) (-569 "INTFTBL.spad" 896649 896657 902610 902615) (-568 "INTFACT.spad" 895708 895718 896639 896644) (-567 "INTEF.spad" 894093 894109 895698 895703) (-566 "INTDOM.spad" 892716 892724 894019 894088) (-565 "INTDOM.spad" 891401 891411 892706 892711) (-564 "INTCAT.spad" 889660 889670 891315 891396) (-563 "INTBIT.spad" 889167 889175 889650 889655) (-562 "INTALG.spad" 888355 888382 889157 889162) (-561 "INTAF.spad" 887855 887871 888345 888350) (-560 "INTABL.spad" 886373 886404 886536 886563) (-559 "INT8.spad" 886253 886261 886363 886368) (-558 "INT64.spad" 886132 886140 886243 886248) (-557 "INT32.spad" 886011 886019 886122 886127) (-556 "INT16.spad" 885890 885898 886001 886006) (-555 "INS.spad" 883393 883401 885792 885885) (-554 "INS.spad" 880982 880992 883383 883388) (-553 "INPSIGN.spad" 880430 880443 880972 880977) (-552 "INPRODPF.spad" 879526 879545 880420 880425) (-551 "INPRODFF.spad" 878614 878638 879516 879521) (-550 "INNMFACT.spad" 877589 877606 878604 878609) (-549 "INMODGCD.spad" 877077 877107 877579 877584) (-548 "INFSP.spad" 875374 875396 877067 877072) (-547 "INFPROD0.spad" 874454 874473 875364 875369) (-546 "INFORM.spad" 871653 871661 874444 874449) (-545 "INFORM1.spad" 871278 871288 871643 871648) (-544 "INFINITY.spad" 870830 870838 871268 871273) (-543 "INETCLTS.spad" 870807 870815 870820 870825) (-542 "INEP.spad" 869345 869367 870797 870802) (-541 "INDE.spad" 869074 869091 869335 869340) (-540 "INCRMAPS.spad" 868495 868505 869064 869069) (-539 "INBFILE.spad" 867567 867575 868485 868490) (-538 "INBFF.spad" 863361 863372 867557 867562) (-537 "INBCON.spad" 861651 861659 863351 863356) (-536 "INBCON.spad" 859939 859949 861641 861646) (-535 "INAST.spad" 859600 859608 859929 859934) (-534 "IMPTAST.spad" 859308 859316 859590 859595) (-533 "IMATRIX.spad" 858253 858279 858765 858792) (-532 "IMATQF.spad" 857347 857391 858209 858214) (-531 "IMATLIN.spad" 855952 855976 857303 857308) (-530 "ILIST.spad" 854610 854625 855135 855162) (-529 "IIARRAY2.spad" 853998 854036 854217 854244) (-528 "IFF.spad" 853408 853424 853679 853772) (-527 "IFAST.spad" 853022 853030 853398 853403) (-526 "IFARRAY.spad" 850515 850530 852205 852232) (-525 "IFAMON.spad" 850377 850394 850471 850476) (-524 "IEVALAB.spad" 849782 849794 850367 850372) (-523 "IEVALAB.spad" 849185 849199 849772 849777) (-522 "IDPO.spad" 848983 848995 849175 849180) (-521 "IDPOAMS.spad" 848739 848751 848973 848978) (-520 "IDPOAM.spad" 848459 848471 848729 848734) (-519 "IDPC.spad" 847397 847409 848449 848454) (-518 "IDPAM.spad" 847142 847154 847387 847392) (-517 "IDPAG.spad" 846889 846901 847132 847137) (-516 "IDENT.spad" 846539 846547 846879 846884) (-515 "IDECOMP.spad" 843778 843796 846529 846534) (-514 "IDEAL.spad" 838727 838766 843713 843718) (-513 "ICDEN.spad" 837916 837932 838717 838722) (-512 "ICARD.spad" 837107 837115 837906 837911) (-511 "IBPTOOLS.spad" 835714 835731 837097 837102) (-510 "IBITS.spad" 834917 834930 835350 835377) (-509 "IBATOOL.spad" 831894 831913 834907 834912) (-508 "IBACHIN.spad" 830401 830416 831884 831889) (-507 "IARRAY2.spad" 829389 829415 830008 830035) (-506 "IARRAY1.spad" 828434 828449 828572 828599) (-505 "IAN.spad" 826657 826665 828250 828343) (-504 "IALGFACT.spad" 826260 826293 826647 826652) (-503 "HYPCAT.spad" 825684 825692 826250 826255) (-502 "HYPCAT.spad" 825106 825116 825674 825679) (-501 "HOSTNAME.spad" 824914 824922 825096 825101) (-500 "HOMOTOP.spad" 824657 824667 824904 824909) (-499 "HOAGG.spad" 821939 821949 824647 824652) (-498 "HOAGG.spad" 818996 819008 821706 821711) (-497 "HEXADEC.spad" 817098 817106 817463 817556) (-496 "HEUGCD.spad" 816133 816144 817088 817093) (-495 "HELLFDIV.spad" 815723 815747 816123 816128) (-494 "HEAP.spad" 815115 815125 815330 815357) (-493 "HEADAST.spad" 814648 814656 815105 815110) (-492 "HDP.spad" 804414 804430 804791 804922) (-491 "HDMP.spad" 801628 801643 802244 802371) (-490 "HB.spad" 799879 799887 801618 801623) (-489 "HASHTBL.spad" 798349 798380 798560 798587) (-488 "HASAST.spad" 798065 798073 798339 798344) (-487 "HACKPI.spad" 797556 797564 797967 798060) (-486 "GTSET.spad" 796495 796511 797202 797229) (-485 "GSTBL.spad" 795014 795049 795188 795203) (-484 "GSERIES.spad" 792185 792212 793146 793295) (-483 "GROUP.spad" 791458 791466 792165 792180) (-482 "GROUP.spad" 790739 790749 791448 791453) (-481 "GROEBSOL.spad" 789233 789254 790729 790734) (-480 "GRMOD.spad" 787804 787816 789223 789228) (-479 "GRMOD.spad" 786373 786387 787794 787799) (-478 "GRIMAGE.spad" 779262 779270 786363 786368) (-477 "GRDEF.spad" 777641 777649 779252 779257) (-476 "GRAY.spad" 776104 776112 777631 777636) (-475 "GRALG.spad" 775181 775193 776094 776099) (-474 "GRALG.spad" 774256 774270 775171 775176) (-473 "GPOLSET.spad" 773710 773733 773938 773965) (-472 "GOSPER.spad" 772979 772997 773700 773705) (-471 "GMODPOL.spad" 772127 772154 772947 772974) (-470 "GHENSEL.spad" 771210 771224 772117 772122) (-469 "GENUPS.spad" 767503 767516 771200 771205) (-468 "GENUFACT.spad" 767080 767090 767493 767498) (-467 "GENPGCD.spad" 766666 766683 767070 767075) (-466 "GENMFACT.spad" 766118 766137 766656 766661) (-465 "GENEEZ.spad" 764069 764082 766108 766113) (-464 "GDMP.spad" 761125 761142 761899 762026) (-463 "GCNAALG.spad" 755048 755075 760919 760986) (-462 "GCDDOM.spad" 754224 754232 754974 755043) (-461 "GCDDOM.spad" 753462 753472 754214 754219) (-460 "GB.spad" 750988 751026 753418 753423) (-459 "GBINTERN.spad" 747008 747046 750978 750983) (-458 "GBF.spad" 742775 742813 746998 747003) (-457 "GBEUCLID.spad" 740657 740695 742765 742770) (-456 "GAUSSFAC.spad" 739970 739978 740647 740652) (-455 "GALUTIL.spad" 738296 738306 739926 739931) (-454 "GALPOLYU.spad" 736750 736763 738286 738291) (-453 "GALFACTU.spad" 734923 734942 736740 736745) (-452 "GALFACT.spad" 725112 725123 734913 734918) (-451 "FVFUN.spad" 722135 722143 725102 725107) (-450 "FVC.spad" 721187 721195 722125 722130) (-449 "FUNDESC.spad" 720865 720873 721177 721182) (-448 "FUNCTION.spad" 720714 720726 720855 720860) (-447 "FT.spad" 719011 719019 720704 720709) (-446 "FTEM.spad" 718176 718184 719001 719006) (-445 "FSUPFACT.spad" 717076 717095 718112 718117) (-444 "FST.spad" 715162 715170 717066 717071) (-443 "FSRED.spad" 714642 714658 715152 715157) (-442 "FSPRMELT.spad" 713524 713540 714599 714604) (-441 "FSPECF.spad" 711615 711631 713514 713519) (-440 "FS.spad" 705883 705893 711390 711610) (-439 "FS.spad" 699929 699941 705438 705443) (-438 "FSINT.spad" 699589 699605 699919 699924) (-437 "FSERIES.spad" 698780 698792 699409 699508) (-436 "FSCINT.spad" 698097 698113 698770 698775) (-435 "FSAGG.spad" 697214 697224 698053 698092) (-434 "FSAGG.spad" 696293 696305 697134 697139) (-433 "FSAGG2.spad" 695036 695052 696283 696288) (-432 "FS2UPS.spad" 689527 689561 695026 695031) (-431 "FS2.spad" 689174 689190 689517 689522) (-430 "FS2EXPXP.spad" 688299 688322 689164 689169) (-429 "FRUTIL.spad" 687253 687263 688289 688294) (-428 "FR.spad" 680785 680795 686093 686162) (-427 "FRNAALG.spad" 676054 676064 680727 680780) (-426 "FRNAALG.spad" 671335 671347 676010 676015) (-425 "FRNAAF2.spad" 670791 670809 671325 671330) (-424 "FRMOD.spad" 670201 670231 670722 670727) (-423 "FRIDEAL.spad" 669426 669447 670181 670196) (-422 "FRIDEAL2.spad" 669030 669062 669416 669421) (-421 "FRETRCT.spad" 668541 668551 669020 669025) (-420 "FRETRCT.spad" 667918 667930 668399 668404) (-419 "FRAMALG.spad" 666266 666279 667874 667913) (-418 "FRAMALG.spad" 664646 664661 666256 666261) (-417 "FRAC.spad" 661745 661755 662148 662321) (-416 "FRAC2.spad" 661350 661362 661735 661740) (-415 "FR2.spad" 660686 660698 661340 661345) (-414 "FPS.spad" 657501 657509 660576 660681) (-413 "FPS.spad" 654344 654354 657421 657426) (-412 "FPC.spad" 653390 653398 654246 654339) (-411 "FPC.spad" 652522 652532 653380 653385) (-410 "FPATMAB.spad" 652284 652294 652512 652517) (-409 "FPARFRAC.spad" 650771 650788 652274 652279) (-408 "FORTRAN.spad" 649277 649320 650761 650766) (-407 "FORT.spad" 648226 648234 649267 649272) (-406 "FORTFN.spad" 645396 645404 648216 648221) (-405 "FORTCAT.spad" 645080 645088 645386 645391) (-404 "FORMULA.spad" 642554 642562 645070 645075) (-403 "FORMULA1.spad" 642033 642043 642544 642549) (-402 "FORDER.spad" 641724 641748 642023 642028) (-401 "FOP.spad" 640925 640933 641714 641719) (-400 "FNLA.spad" 640349 640371 640893 640920) (-399 "FNCAT.spad" 638944 638952 640339 640344) (-398 "FNAME.spad" 638836 638844 638934 638939) (-397 "FMTC.spad" 638634 638642 638762 638831) (-396 "FMONOID.spad" 638299 638309 638590 638595) (-395 "FMONCAT.spad" 635452 635462 638289 638294) (-394 "FM.spad" 635147 635159 635386 635413) (-393 "FMFUN.spad" 632177 632185 635137 635142) (-392 "FMC.spad" 631229 631237 632167 632172) (-391 "FMCAT.spad" 628897 628915 631197 631224) (-390 "FM1.spad" 628254 628266 628831 628858) (-389 "FLOATRP.spad" 625989 626003 628244 628249) (-388 "FLOAT.spad" 619303 619311 625855 625984) (-387 "FLOATCP.spad" 616734 616748 619293 619298) (-386 "FLINEXP.spad" 616456 616466 616724 616729) (-385 "FLINEXP.spad" 616122 616134 616392 616397) (-384 "FLASORT.spad" 615448 615460 616112 616117) (-383 "FLALG.spad" 613094 613113 615374 615443) (-382 "FLAGG.spad" 610136 610146 613074 613089) (-381 "FLAGG.spad" 607079 607091 610019 610024) (-380 "FLAGG2.spad" 605804 605820 607069 607074) (-379 "FINRALG.spad" 603865 603878 605760 605799) (-378 "FINRALG.spad" 601852 601867 603749 603754) (-377 "FINITE.spad" 601004 601012 601842 601847) (-376 "FINAALG.spad" 590125 590135 600946 600999) (-375 "FINAALG.spad" 579258 579270 590081 590086) (-374 "FILE.spad" 578841 578851 579248 579253) (-373 "FILECAT.spad" 577367 577384 578831 578836) (-372 "FIELD.spad" 576773 576781 577269 577362) (-371 "FIELD.spad" 576265 576275 576763 576768) (-370 "FGROUP.spad" 574912 574922 576245 576260) (-369 "FGLMICPK.spad" 573699 573714 574902 574907) (-368 "FFX.spad" 573074 573089 573415 573508) (-367 "FFSLPE.spad" 572577 572598 573064 573069) (-366 "FFPOLY.spad" 563839 563850 572567 572572) (-365 "FFPOLY2.spad" 562899 562916 563829 563834) (-364 "FFP.spad" 562296 562316 562615 562708) (-363 "FF.spad" 561744 561760 561977 562070) (-362 "FFNBX.spad" 560256 560276 561460 561553) (-361 "FFNBP.spad" 558769 558786 559972 560065) (-360 "FFNB.spad" 557234 557255 558450 558543) (-359 "FFINTBAS.spad" 554748 554767 557224 557229) (-358 "FFIELDC.spad" 552325 552333 554650 554743) (-357 "FFIELDC.spad" 549988 549998 552315 552320) (-356 "FFHOM.spad" 548736 548753 549978 549983) (-355 "FFF.spad" 546171 546182 548726 548731) (-354 "FFCGX.spad" 545018 545038 545887 545980) (-353 "FFCGP.spad" 543907 543927 544734 544827) (-352 "FFCG.spad" 542699 542720 543588 543681) (-351 "FFCAT.spad" 535872 535894 542538 542694) (-350 "FFCAT.spad" 529124 529148 535792 535797) (-349 "FFCAT2.spad" 528871 528911 529114 529119) (-348 "FEXPR.spad" 520588 520634 528627 528666) (-347 "FEVALAB.spad" 520296 520306 520578 520583) (-346 "FEVALAB.spad" 519789 519801 520073 520078) (-345 "FDIV.spad" 519231 519255 519779 519784) (-344 "FDIVCAT.spad" 517295 517319 519221 519226) (-343 "FDIVCAT.spad" 515357 515383 517285 517290) (-342 "FDIV2.spad" 515013 515053 515347 515352) (-341 "FCTRDATA.spad" 514021 514029 515003 515008) (-340 "FCPAK1.spad" 512588 512596 514011 514016) (-339 "FCOMP.spad" 511967 511977 512578 512583) (-338 "FC.spad" 501974 501982 511957 511962) (-337 "FAXF.spad" 494945 494959 501876 501969) (-336 "FAXF.spad" 487968 487984 494901 494906) (-335 "FARRAY.spad" 486118 486128 487151 487178) (-334 "FAMR.spad" 484254 484266 486016 486113) (-333 "FAMR.spad" 482374 482388 484138 484143) (-332 "FAMONOID.spad" 482042 482052 482328 482333) (-331 "FAMONC.spad" 480338 480350 482032 482037) (-330 "FAGROUP.spad" 479962 479972 480234 480261) (-329 "FACUTIL.spad" 478166 478183 479952 479957) (-328 "FACTFUNC.spad" 477360 477370 478156 478161) (-327 "EXPUPXS.spad" 474193 474216 475492 475641) (-326 "EXPRTUBE.spad" 471481 471489 474183 474188) (-325 "EXPRODE.spad" 468641 468657 471471 471476) (-324 "EXPR.spad" 463816 463826 464530 464825) (-323 "EXPR2UPS.spad" 459938 459951 463806 463811) (-322 "EXPR2.spad" 459643 459655 459928 459933) (-321 "EXPEXPAN.spad" 456583 456608 457215 457308) (-320 "EXIT.spad" 456254 456262 456573 456578) (-319 "EXITAST.spad" 455990 455998 456244 456249) (-318 "EVALCYC.spad" 455450 455464 455980 455985) (-317 "EVALAB.spad" 455022 455032 455440 455445) (-316 "EVALAB.spad" 454592 454604 455012 455017) (-315 "EUCDOM.spad" 452166 452174 454518 454587) (-314 "EUCDOM.spad" 449802 449812 452156 452161) (-313 "ESTOOLS.spad" 441648 441656 449792 449797) (-312 "ESTOOLS2.spad" 441251 441265 441638 441643) (-311 "ESTOOLS1.spad" 440936 440947 441241 441246) (-310 "ES.spad" 433751 433759 440926 440931) (-309 "ES.spad" 426472 426482 433649 433654) (-308 "ESCONT.spad" 423265 423273 426462 426467) (-307 "ESCONT1.spad" 423014 423026 423255 423260) (-306 "ES2.spad" 422519 422535 423004 423009) (-305 "ES1.spad" 422089 422105 422509 422514) (-304 "ERROR.spad" 419416 419424 422079 422084) (-303 "EQTBL.spad" 417888 417910 418097 418124) (-302 "EQ.spad" 412693 412703 415480 415592) (-301 "EQ2.spad" 412411 412423 412683 412688) (-300 "EP.spad" 408737 408747 412401 412406) (-299 "ENV.spad" 407415 407423 408727 408732) (-298 "ENTIRER.spad" 407083 407091 407359 407410) (-297 "EMR.spad" 406371 406412 407009 407078) (-296 "ELTAGG.spad" 404625 404644 406361 406366) (-295 "ELTAGG.spad" 402843 402864 404581 404586) (-294 "ELTAB.spad" 402318 402331 402833 402838) (-293 "ELFUTS.spad" 401705 401724 402308 402313) (-292 "ELEMFUN.spad" 401394 401402 401695 401700) (-291 "ELEMFUN.spad" 401081 401091 401384 401389) (-290 "ELAGG.spad" 399052 399062 401061 401076) (-289 "ELAGG.spad" 396960 396972 398971 398976) (-288 "ELABOR.spad" 396306 396314 396950 396955) (-287 "ELABEXPR.spad" 395238 395246 396296 396301) (-286 "EFUPXS.spad" 392014 392044 395194 395199) (-285 "EFULS.spad" 388850 388873 391970 391975) (-284 "EFSTRUC.spad" 386865 386881 388840 388845) (-283 "EF.spad" 381641 381657 386855 386860) (-282 "EAB.spad" 379917 379925 381631 381636) (-281 "E04UCFA.spad" 379453 379461 379907 379912) (-280 "E04NAFA.spad" 379030 379038 379443 379448) (-279 "E04MBFA.spad" 378610 378618 379020 379025) (-278 "E04JAFA.spad" 378146 378154 378600 378605) (-277 "E04GCFA.spad" 377682 377690 378136 378141) (-276 "E04FDFA.spad" 377218 377226 377672 377677) (-275 "E04DGFA.spad" 376754 376762 377208 377213) (-274 "E04AGNT.spad" 372604 372612 376744 376749) (-273 "DVARCAT.spad" 369494 369504 372594 372599) (-272 "DVARCAT.spad" 366382 366394 369484 369489) (-271 "DSMP.spad" 363849 363863 364154 364281) (-270 "DROPT.spad" 357808 357816 363839 363844) (-269 "DROPT1.spad" 357473 357483 357798 357803) (-268 "DROPT0.spad" 352330 352338 357463 357468) (-267 "DRAWPT.spad" 350503 350511 352320 352325) (-266 "DRAW.spad" 343379 343392 350493 350498) (-265 "DRAWHACK.spad" 342687 342697 343369 343374) (-264 "DRAWCX.spad" 340157 340165 342677 342682) (-263 "DRAWCURV.spad" 339704 339719 340147 340152) (-262 "DRAWCFUN.spad" 329236 329244 339694 339699) (-261 "DQAGG.spad" 327414 327424 329204 329231) (-260 "DPOLCAT.spad" 322763 322779 327282 327409) (-259 "DPOLCAT.spad" 318198 318216 322719 322724) (-258 "DPMO.spad" 310671 310687 310809 311054) (-257 "DPMM.spad" 303157 303175 303282 303527) (-256 "DOMTMPLT.spad" 302928 302936 303147 303152) (-255 "DOMCTOR.spad" 302683 302691 302918 302923) (-254 "DOMAIN.spad" 301770 301778 302673 302678) (-253 "DMP.spad" 299030 299045 299600 299727) (-252 "DLP.spad" 298382 298392 299020 299025) (-251 "DLIST.spad" 296961 296971 297565 297592) (-250 "DLAGG.spad" 295378 295388 296951 296956) (-249 "DIVRING.spad" 294920 294928 295322 295373) (-248 "DIVRING.spad" 294506 294516 294910 294915) (-247 "DISPLAY.spad" 292696 292704 294496 294501) (-246 "DIRPROD.spad" 282199 282215 282839 282970) (-245 "DIRPROD2.spad" 281017 281035 282189 282194) (-244 "DIRPCAT.spad" 279961 279977 280881 281012) (-243 "DIRPCAT.spad" 278634 278652 279556 279561) (-242 "DIOSP.spad" 277459 277467 278624 278629) (-241 "DIOPS.spad" 276455 276465 277439 277454) (-240 "DIOPS.spad" 275425 275437 276411 276416) (-239 "DIFRING.spad" 275031 275039 275405 275420) (-238 "DIFRING.spad" 274645 274655 275021 275026) (-237 "DIFFSPC.spad" 274224 274232 274635 274640) (-236 "DIFFSPC.spad" 273801 273811 274214 274219) (-235 "DIFFDOM.spad" 272966 272977 273791 273796) (-234 "DIFFDOM.spad" 272129 272142 272956 272961) (-233 "DIFEXT.spad" 271300 271310 272109 272124) (-232 "DIFEXT.spad" 270388 270400 271199 271204) (-231 "DIAGG.spad" 270018 270028 270368 270383) (-230 "DIAGG.spad" 269656 269668 270008 270013) (-229 "DHMATRIX.spad" 267968 267978 269113 269140) (-228 "DFSFUN.spad" 261608 261616 267958 267963) (-227 "DFLOAT.spad" 258339 258347 261498 261603) (-226 "DFINTTLS.spad" 256570 256586 258329 258334) (-225 "DERHAM.spad" 254484 254516 256550 256565) (-224 "DEQUEUE.spad" 253808 253818 254091 254118) (-223 "DEGRED.spad" 253425 253439 253798 253803) (-222 "DEFINTRF.spad" 250962 250972 253415 253420) (-221 "DEFINTEF.spad" 249472 249488 250952 250957) (-220 "DEFAST.spad" 248840 248848 249462 249467) (-219 "DECIMAL.spad" 246946 246954 247307 247400) (-218 "DDFACT.spad" 244759 244776 246936 246941) (-217 "DBLRESP.spad" 244359 244383 244749 244754) (-216 "DBASE.spad" 243023 243033 244349 244354) (-215 "DATAARY.spad" 242485 242498 243013 243018) (-214 "D03FAFA.spad" 242313 242321 242475 242480) (-213 "D03EEFA.spad" 242133 242141 242303 242308) (-212 "D03AGNT.spad" 241219 241227 242123 242128) (-211 "D02EJFA.spad" 240681 240689 241209 241214) (-210 "D02CJFA.spad" 240159 240167 240671 240676) (-209 "D02BHFA.spad" 239649 239657 240149 240154) (-208 "D02BBFA.spad" 239139 239147 239639 239644) (-207 "D02AGNT.spad" 233953 233961 239129 239134) (-206 "D01WGTS.spad" 232272 232280 233943 233948) (-205 "D01TRNS.spad" 232249 232257 232262 232267) (-204 "D01GBFA.spad" 231771 231779 232239 232244) (-203 "D01FCFA.spad" 231293 231301 231761 231766) (-202 "D01ASFA.spad" 230761 230769 231283 231288) (-201 "D01AQFA.spad" 230207 230215 230751 230756) (-200 "D01APFA.spad" 229631 229639 230197 230202) (-199 "D01ANFA.spad" 229125 229133 229621 229626) (-198 "D01AMFA.spad" 228635 228643 229115 229120) (-197 "D01ALFA.spad" 228175 228183 228625 228630) (-196 "D01AKFA.spad" 227701 227709 228165 228170) (-195 "D01AJFA.spad" 227224 227232 227691 227696) (-194 "D01AGNT.spad" 223291 223299 227214 227219) (-193 "CYCLOTOM.spad" 222797 222805 223281 223286) (-192 "CYCLES.spad" 219589 219597 222787 222792) (-191 "CVMP.spad" 219006 219016 219579 219584) (-190 "CTRIGMNP.spad" 217506 217522 218996 219001) (-189 "CTOR.spad" 217197 217205 217496 217501) (-188 "CTORKIND.spad" 216800 216808 217187 217192) (-187 "CTORCAT.spad" 216049 216057 216790 216795) (-186 "CTORCAT.spad" 215296 215306 216039 216044) (-185 "CTORCALL.spad" 214885 214895 215286 215291) (-184 "CSTTOOLS.spad" 214130 214143 214875 214880) (-183 "CRFP.spad" 207854 207867 214120 214125) (-182 "CRCEAST.spad" 207574 207582 207844 207849) (-181 "CRAPACK.spad" 206625 206635 207564 207569) (-180 "CPMATCH.spad" 206129 206144 206550 206555) (-179 "CPIMA.spad" 205834 205853 206119 206124) (-178 "COORDSYS.spad" 200843 200853 205824 205829) (-177 "CONTOUR.spad" 200254 200262 200833 200838) (-176 "CONTFRAC.spad" 196004 196014 200156 200249) (-175 "CONDUIT.spad" 195762 195770 195994 195999) (-174 "COMRING.spad" 195436 195444 195700 195757) (-173 "COMPPROP.spad" 194954 194962 195426 195431) (-172 "COMPLPAT.spad" 194721 194736 194944 194949) (-171 "COMPLEX.spad" 188858 188868 189102 189363) (-170 "COMPLEX2.spad" 188573 188585 188848 188853) (-169 "COMPILER.spad" 188122 188130 188563 188568) (-168 "COMPFACT.spad" 187724 187738 188112 188117) (-167 "COMPCAT.spad" 185796 185806 187458 187719) (-166 "COMPCAT.spad" 183596 183608 185260 185265) (-165 "COMMUPC.spad" 183344 183362 183586 183591) (-164 "COMMONOP.spad" 182877 182885 183334 183339) (-163 "COMM.spad" 182688 182696 182867 182872) (-162 "COMMAAST.spad" 182451 182459 182678 182683) (-161 "COMBOPC.spad" 181366 181374 182441 182446) (-160 "COMBINAT.spad" 180133 180143 181356 181361) (-159 "COMBF.spad" 177515 177531 180123 180128) (-158 "COLOR.spad" 176352 176360 177505 177510) (-157 "COLONAST.spad" 176018 176026 176342 176347) (-156 "CMPLXRT.spad" 175729 175746 176008 176013) (-155 "CLLCTAST.spad" 175391 175399 175719 175724) (-154 "CLIP.spad" 171499 171507 175381 175386) (-153 "CLIF.spad" 170154 170170 171455 171494) (-152 "CLAGG.spad" 166659 166669 170144 170149) (-151 "CLAGG.spad" 163035 163047 166522 166527) (-150 "CINTSLPE.spad" 162366 162379 163025 163030) (-149 "CHVAR.spad" 160504 160526 162356 162361) (-148 "CHARZ.spad" 160419 160427 160484 160499) (-147 "CHARPOL.spad" 159929 159939 160409 160414) (-146 "CHARNZ.spad" 159682 159690 159909 159924) (-145 "CHAR.spad" 157556 157564 159672 159677) (-144 "CFCAT.spad" 156884 156892 157546 157551) (-143 "CDEN.spad" 156080 156094 156874 156879) (-142 "CCLASS.spad" 154229 154237 155491 155530) (-141 "CATEGORY.spad" 153271 153279 154219 154224) (-140 "CATCTOR.spad" 153162 153170 153261 153266) (-139 "CATAST.spad" 152780 152788 153152 153157) (-138 "CASEAST.spad" 152494 152502 152770 152775) (-137 "CARTEN.spad" 147861 147885 152484 152489) (-136 "CARTEN2.spad" 147251 147278 147851 147856) (-135 "CARD.spad" 144546 144554 147225 147246) (-134 "CAPSLAST.spad" 144320 144328 144536 144541) (-133 "CACHSET.spad" 143944 143952 144310 144315) (-132 "CABMON.spad" 143499 143507 143934 143939) (-131 "BYTEORD.spad" 143174 143182 143489 143494) (-130 "BYTE.spad" 142601 142609 143164 143169) (-129 "BYTEBUF.spad" 140460 140468 141770 141797) (-128 "BTREE.spad" 139533 139543 140067 140094) (-127 "BTOURN.spad" 138538 138548 139140 139167) (-126 "BTCAT.spad" 137930 137940 138506 138533) (-125 "BTCAT.spad" 137342 137354 137920 137925) (-124 "BTAGG.spad" 136808 136816 137310 137337) (-123 "BTAGG.spad" 136294 136304 136798 136803) (-122 "BSTREE.spad" 135035 135045 135901 135928) (-121 "BRILL.spad" 133232 133243 135025 135030) (-120 "BRAGG.spad" 132172 132182 133222 133227) (-119 "BRAGG.spad" 131076 131088 132128 132133) (-118 "BPADICRT.spad" 129057 129069 129312 129405) (-117 "BPADIC.spad" 128721 128733 128983 129052) (-116 "BOUNDZRO.spad" 128377 128394 128711 128716) (-115 "BOP.spad" 123559 123567 128367 128372) (-114 "BOP1.spad" 121025 121035 123549 123554) (-113 "BOOLE.spad" 120675 120683 121015 121020) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2267290 2267295 2267300 2267305) (-2 NIL 2267270 2267275 2267280 2267285) (-1 NIL 2267250 2267255 2267260 2267265) (0 NIL 2267230 2267235 2267240 2267245) (-1309 "ZMOD.spad" 2267039 2267052 2267168 2267225) (-1308 "ZLINDEP.spad" 2266105 2266116 2267029 2267034) (-1307 "ZDSOLVE.spad" 2256050 2256072 2266095 2266100) (-1306 "YSTREAM.spad" 2255545 2255556 2256040 2256045) (-1305 "YDIAGRAM.spad" 2255179 2255188 2255535 2255540) (-1304 "XRPOLY.spad" 2254399 2254419 2255035 2255104) (-1303 "XPR.spad" 2252194 2252207 2254117 2254216) (-1302 "XPOLY.spad" 2251749 2251760 2252050 2252119) (-1301 "XPOLYC.spad" 2251068 2251084 2251675 2251744) (-1300 "XPBWPOLY.spad" 2249505 2249525 2250848 2250917) (-1299 "XF.spad" 2247968 2247983 2249407 2249500) (-1298 "XF.spad" 2246411 2246428 2247852 2247857) (-1297 "XFALG.spad" 2243459 2243475 2246337 2246406) (-1296 "XEXPPKG.spad" 2242710 2242736 2243449 2243454) (-1295 "XDPOLY.spad" 2242324 2242340 2242566 2242635) (-1294 "XALG.spad" 2241984 2241995 2242280 2242319) (-1293 "WUTSET.spad" 2237823 2237840 2241630 2241657) (-1292 "WP.spad" 2237022 2237066 2237681 2237748) (-1291 "WHILEAST.spad" 2236820 2236829 2237012 2237017) (-1290 "WHEREAST.spad" 2236491 2236500 2236810 2236815) (-1289 "WFFINTBS.spad" 2234154 2234176 2236481 2236486) (-1288 "WEIER.spad" 2232376 2232387 2234144 2234149) (-1287 "VSPACE.spad" 2232049 2232060 2232344 2232371) (-1286 "VSPACE.spad" 2231742 2231755 2232039 2232044) (-1285 "VOID.spad" 2231419 2231428 2231732 2231737) (-1284 "VIEW.spad" 2229099 2229108 2231409 2231414) (-1283 "VIEWDEF.spad" 2224300 2224309 2229089 2229094) (-1282 "VIEW3D.spad" 2208261 2208270 2224290 2224295) (-1281 "VIEW2D.spad" 2196152 2196161 2208251 2208256) (-1280 "VECTOR.spad" 2194826 2194837 2195077 2195104) (-1279 "VECTOR2.spad" 2193465 2193478 2194816 2194821) (-1278 "VECTCAT.spad" 2191369 2191380 2193433 2193460) (-1277 "VECTCAT.spad" 2189080 2189093 2191146 2191151) (-1276 "VARIABLE.spad" 2188860 2188875 2189070 2189075) (-1275 "UTYPE.spad" 2188504 2188513 2188850 2188855) (-1274 "UTSODETL.spad" 2187799 2187823 2188460 2188465) (-1273 "UTSODE.spad" 2186015 2186035 2187789 2187794) (-1272 "UTS.spad" 2180819 2180847 2184482 2184579) (-1271 "UTSCAT.spad" 2178298 2178314 2180717 2180814) (-1270 "UTSCAT.spad" 2175421 2175439 2177842 2177847) (-1269 "UTS2.spad" 2175016 2175051 2175411 2175416) (-1268 "URAGG.spad" 2169689 2169700 2175006 2175011) (-1267 "URAGG.spad" 2164326 2164339 2169645 2169650) (-1266 "UPXSSING.spad" 2161971 2161997 2163407 2163540) (-1265 "UPXS.spad" 2159125 2159153 2160103 2160252) (-1264 "UPXSCONS.spad" 2156884 2156904 2157257 2157406) (-1263 "UPXSCCA.spad" 2155455 2155475 2156730 2156879) (-1262 "UPXSCCA.spad" 2154168 2154190 2155445 2155450) (-1261 "UPXSCAT.spad" 2152757 2152773 2154014 2154163) (-1260 "UPXS2.spad" 2152300 2152353 2152747 2152752) (-1259 "UPSQFREE.spad" 2150714 2150728 2152290 2152295) (-1258 "UPSCAT.spad" 2148501 2148525 2150612 2150709) (-1257 "UPSCAT.spad" 2145994 2146020 2148107 2148112) (-1256 "UPOLYC.spad" 2141034 2141045 2145836 2145989) (-1255 "UPOLYC.spad" 2135966 2135979 2140770 2140775) (-1254 "UPOLYC2.spad" 2135437 2135456 2135956 2135961) (-1253 "UP.spad" 2132636 2132651 2133023 2133176) (-1252 "UPMP.spad" 2131536 2131549 2132626 2132631) (-1251 "UPDIVP.spad" 2131101 2131115 2131526 2131531) (-1250 "UPDECOMP.spad" 2129346 2129360 2131091 2131096) (-1249 "UPCDEN.spad" 2128555 2128571 2129336 2129341) (-1248 "UP2.spad" 2127919 2127940 2128545 2128550) (-1247 "UNISEG.spad" 2127272 2127283 2127838 2127843) (-1246 "UNISEG2.spad" 2126769 2126782 2127228 2127233) (-1245 "UNIFACT.spad" 2125872 2125884 2126759 2126764) (-1244 "ULS.spad" 2116430 2116458 2117517 2117946) (-1243 "ULSCONS.spad" 2108826 2108846 2109196 2109345) (-1242 "ULSCCAT.spad" 2106563 2106583 2108672 2108821) (-1241 "ULSCCAT.spad" 2104408 2104430 2106519 2106524) (-1240 "ULSCAT.spad" 2102640 2102656 2104254 2104403) (-1239 "ULS2.spad" 2102154 2102207 2102630 2102635) (-1238 "UINT8.spad" 2102031 2102040 2102144 2102149) (-1237 "UINT64.spad" 2101907 2101916 2102021 2102026) (-1236 "UINT32.spad" 2101783 2101792 2101897 2101902) (-1235 "UINT16.spad" 2101659 2101668 2101773 2101778) (-1234 "UFD.spad" 2100724 2100733 2101585 2101654) (-1233 "UFD.spad" 2099851 2099862 2100714 2100719) (-1232 "UDVO.spad" 2098732 2098741 2099841 2099846) (-1231 "UDPO.spad" 2096225 2096236 2098688 2098693) (-1230 "TYPE.spad" 2096157 2096166 2096215 2096220) (-1229 "TYPEAST.spad" 2096076 2096085 2096147 2096152) (-1228 "TWOFACT.spad" 2094728 2094743 2096066 2096071) (-1227 "TUPLE.spad" 2094214 2094225 2094627 2094632) (-1226 "TUBETOOL.spad" 2091081 2091090 2094204 2094209) (-1225 "TUBE.spad" 2089728 2089745 2091071 2091076) (-1224 "TS.spad" 2088327 2088343 2089293 2089390) (-1223 "TSETCAT.spad" 2075454 2075471 2088295 2088322) (-1222 "TSETCAT.spad" 2062567 2062586 2075410 2075415) (-1221 "TRMANIP.spad" 2056933 2056950 2062273 2062278) (-1220 "TRIMAT.spad" 2055896 2055921 2056923 2056928) (-1219 "TRIGMNIP.spad" 2054423 2054440 2055886 2055891) (-1218 "TRIGCAT.spad" 2053935 2053944 2054413 2054418) (-1217 "TRIGCAT.spad" 2053445 2053456 2053925 2053930) (-1216 "TREE.spad" 2052020 2052031 2053052 2053079) (-1215 "TRANFUN.spad" 2051859 2051868 2052010 2052015) (-1214 "TRANFUN.spad" 2051696 2051707 2051849 2051854) (-1213 "TOPSP.spad" 2051370 2051379 2051686 2051691) (-1212 "TOOLSIGN.spad" 2051033 2051044 2051360 2051365) (-1211 "TEXTFILE.spad" 2049594 2049603 2051023 2051028) (-1210 "TEX.spad" 2046740 2046749 2049584 2049589) (-1209 "TEX1.spad" 2046296 2046307 2046730 2046735) (-1208 "TEMUTL.spad" 2045851 2045860 2046286 2046291) (-1207 "TBCMPPK.spad" 2043944 2043967 2045841 2045846) (-1206 "TBAGG.spad" 2042994 2043017 2043924 2043939) (-1205 "TBAGG.spad" 2042052 2042077 2042984 2042989) (-1204 "TANEXP.spad" 2041460 2041471 2042042 2042047) (-1203 "TALGOP.spad" 2041184 2041195 2041450 2041455) (-1202 "TABLE.spad" 2039595 2039618 2039865 2039892) (-1201 "TABLEAU.spad" 2039076 2039087 2039585 2039590) (-1200 "TABLBUMP.spad" 2035879 2035890 2039066 2039071) (-1199 "SYSTEM.spad" 2035107 2035116 2035869 2035874) (-1198 "SYSSOLP.spad" 2032590 2032601 2035097 2035102) (-1197 "SYSPTR.spad" 2032489 2032498 2032580 2032585) (-1196 "SYSNNI.spad" 2031671 2031682 2032479 2032484) (-1195 "SYSINT.spad" 2031075 2031086 2031661 2031666) (-1194 "SYNTAX.spad" 2027281 2027290 2031065 2031070) (-1193 "SYMTAB.spad" 2025349 2025358 2027271 2027276) (-1192 "SYMS.spad" 2021372 2021381 2025339 2025344) (-1191 "SYMPOLY.spad" 2020379 2020390 2020461 2020588) (-1190 "SYMFUNC.spad" 2019880 2019891 2020369 2020374) (-1189 "SYMBOL.spad" 2017383 2017392 2019870 2019875) (-1188 "SWITCH.spad" 2014154 2014163 2017373 2017378) (-1187 "SUTS.spad" 2011059 2011087 2012621 2012718) (-1186 "SUPXS.spad" 2008200 2008228 2009191 2009340) (-1185 "SUP.spad" 2005013 2005024 2005786 2005939) (-1184 "SUPFRACF.spad" 2004118 2004136 2005003 2005008) (-1183 "SUP2.spad" 2003510 2003523 2004108 2004113) (-1182 "SUMRF.spad" 2002484 2002495 2003500 2003505) (-1181 "SUMFS.spad" 2002121 2002138 2002474 2002479) (-1180 "SULS.spad" 1992666 1992694 1993766 1994195) (-1179 "SUCHTAST.spad" 1992435 1992444 1992656 1992661) (-1178 "SUCH.spad" 1992117 1992132 1992425 1992430) (-1177 "SUBSPACE.spad" 1984232 1984247 1992107 1992112) (-1176 "SUBRESP.spad" 1983402 1983416 1984188 1984193) (-1175 "STTF.spad" 1979501 1979517 1983392 1983397) (-1174 "STTFNC.spad" 1975969 1975985 1979491 1979496) (-1173 "STTAYLOR.spad" 1968604 1968615 1975850 1975855) (-1172 "STRTBL.spad" 1967109 1967126 1967258 1967285) (-1171 "STRING.spad" 1966518 1966527 1966532 1966559) (-1170 "STRICAT.spad" 1966306 1966315 1966486 1966513) (-1169 "STREAM.spad" 1963224 1963235 1965831 1965846) (-1168 "STREAM3.spad" 1962797 1962812 1963214 1963219) (-1167 "STREAM2.spad" 1961925 1961938 1962787 1962792) (-1166 "STREAM1.spad" 1961631 1961642 1961915 1961920) (-1165 "STINPROD.spad" 1960567 1960583 1961621 1961626) (-1164 "STEP.spad" 1959768 1959777 1960557 1960562) (-1163 "STEPAST.spad" 1959002 1959011 1959758 1959763) (-1162 "STBL.spad" 1957528 1957556 1957695 1957710) (-1161 "STAGG.spad" 1956603 1956614 1957518 1957523) (-1160 "STAGG.spad" 1955676 1955689 1956593 1956598) (-1159 "STACK.spad" 1955033 1955044 1955283 1955310) (-1158 "SREGSET.spad" 1952737 1952754 1954679 1954706) (-1157 "SRDCMPK.spad" 1951298 1951318 1952727 1952732) (-1156 "SRAGG.spad" 1946441 1946450 1951266 1951293) (-1155 "SRAGG.spad" 1941604 1941615 1946431 1946436) (-1154 "SQMATRIX.spad" 1939276 1939294 1940192 1940279) (-1153 "SPLTREE.spad" 1933828 1933841 1938712 1938739) (-1152 "SPLNODE.spad" 1930416 1930429 1933818 1933823) (-1151 "SPFCAT.spad" 1929225 1929234 1930406 1930411) (-1150 "SPECOUT.spad" 1927777 1927786 1929215 1929220) (-1149 "SPADXPT.spad" 1919372 1919381 1927767 1927772) (-1148 "spad-parser.spad" 1918837 1918846 1919362 1919367) (-1147 "SPADAST.spad" 1918538 1918547 1918827 1918832) (-1146 "SPACEC.spad" 1902737 1902748 1918528 1918533) (-1145 "SPACE3.spad" 1902513 1902524 1902727 1902732) (-1144 "SORTPAK.spad" 1902062 1902075 1902469 1902474) (-1143 "SOLVETRA.spad" 1899825 1899836 1902052 1902057) (-1142 "SOLVESER.spad" 1898353 1898364 1899815 1899820) (-1141 "SOLVERAD.spad" 1894379 1894390 1898343 1898348) (-1140 "SOLVEFOR.spad" 1892841 1892859 1894369 1894374) (-1139 "SNTSCAT.spad" 1892441 1892458 1892809 1892836) (-1138 "SMTS.spad" 1890713 1890739 1892006 1892103) (-1137 "SMP.spad" 1888188 1888208 1888578 1888705) (-1136 "SMITH.spad" 1887033 1887058 1888178 1888183) (-1135 "SMATCAT.spad" 1885143 1885173 1886977 1887028) (-1134 "SMATCAT.spad" 1883185 1883217 1885021 1885026) (-1133 "SKAGG.spad" 1882148 1882159 1883153 1883180) (-1132 "SINT.spad" 1881088 1881097 1882014 1882143) (-1131 "SIMPAN.spad" 1880816 1880825 1881078 1881083) (-1130 "SIG.spad" 1880146 1880155 1880806 1880811) (-1129 "SIGNRF.spad" 1879264 1879275 1880136 1880141) (-1128 "SIGNEF.spad" 1878543 1878560 1879254 1879259) (-1127 "SIGAST.spad" 1877928 1877937 1878533 1878538) (-1126 "SHP.spad" 1875856 1875871 1877884 1877889) (-1125 "SHDP.spad" 1865490 1865517 1865999 1866130) (-1124 "SGROUP.spad" 1865098 1865107 1865480 1865485) (-1123 "SGROUP.spad" 1864704 1864715 1865088 1865093) (-1122 "SGCF.spad" 1857843 1857852 1864694 1864699) (-1121 "SFRTCAT.spad" 1856773 1856790 1857811 1857838) (-1120 "SFRGCD.spad" 1855836 1855856 1856763 1856768) (-1119 "SFQCMPK.spad" 1850473 1850493 1855826 1855831) (-1118 "SFORT.spad" 1849912 1849926 1850463 1850468) (-1117 "SEXOF.spad" 1849755 1849795 1849902 1849907) (-1116 "SEX.spad" 1849647 1849656 1849745 1849750) (-1115 "SEXCAT.spad" 1847428 1847468 1849637 1849642) (-1114 "SET.spad" 1845752 1845763 1846849 1846888) (-1113 "SETMN.spad" 1844202 1844219 1845742 1845747) (-1112 "SETCAT.spad" 1843524 1843533 1844192 1844197) (-1111 "SETCAT.spad" 1842844 1842855 1843514 1843519) (-1110 "SETAGG.spad" 1839393 1839404 1842824 1842839) (-1109 "SETAGG.spad" 1835950 1835963 1839383 1839388) (-1108 "SEQAST.spad" 1835653 1835662 1835940 1835945) (-1107 "SEGXCAT.spad" 1834809 1834822 1835643 1835648) (-1106 "SEG.spad" 1834622 1834633 1834728 1834733) (-1105 "SEGCAT.spad" 1833547 1833558 1834612 1834617) (-1104 "SEGBIND.spad" 1833305 1833316 1833494 1833499) (-1103 "SEGBIND2.spad" 1833003 1833016 1833295 1833300) (-1102 "SEGAST.spad" 1832717 1832726 1832993 1832998) (-1101 "SEG2.spad" 1832152 1832165 1832673 1832678) (-1100 "SDVAR.spad" 1831428 1831439 1832142 1832147) (-1099 "SDPOL.spad" 1828854 1828865 1829145 1829272) (-1098 "SCPKG.spad" 1826943 1826954 1828844 1828849) (-1097 "SCOPE.spad" 1826096 1826105 1826933 1826938) (-1096 "SCACHE.spad" 1824792 1824803 1826086 1826091) (-1095 "SASTCAT.spad" 1824701 1824710 1824782 1824787) (-1094 "SAOS.spad" 1824573 1824582 1824691 1824696) (-1093 "SAERFFC.spad" 1824286 1824306 1824563 1824568) (-1092 "SAE.spad" 1822461 1822477 1823072 1823207) (-1091 "SAEFACT.spad" 1822162 1822182 1822451 1822456) (-1090 "RURPK.spad" 1819821 1819837 1822152 1822157) (-1089 "RULESET.spad" 1819274 1819298 1819811 1819816) (-1088 "RULE.spad" 1817514 1817538 1819264 1819269) (-1087 "RULECOLD.spad" 1817366 1817379 1817504 1817509) (-1086 "RTVALUE.spad" 1817101 1817110 1817356 1817361) (-1085 "RSTRCAST.spad" 1816818 1816827 1817091 1817096) (-1084 "RSETGCD.spad" 1813196 1813216 1816808 1816813) (-1083 "RSETCAT.spad" 1803132 1803149 1813164 1813191) (-1082 "RSETCAT.spad" 1793088 1793107 1803122 1803127) (-1081 "RSDCMPK.spad" 1791540 1791560 1793078 1793083) (-1080 "RRCC.spad" 1789924 1789954 1791530 1791535) (-1079 "RRCC.spad" 1788306 1788338 1789914 1789919) (-1078 "RPTAST.spad" 1788008 1788017 1788296 1788301) (-1077 "RPOLCAT.spad" 1767368 1767383 1787876 1788003) (-1076 "RPOLCAT.spad" 1746441 1746458 1766951 1766956) (-1075 "ROUTINE.spad" 1742324 1742333 1745088 1745115) (-1074 "ROMAN.spad" 1741652 1741661 1742190 1742319) (-1073 "ROIRC.spad" 1740732 1740764 1741642 1741647) (-1072 "RNS.spad" 1739635 1739644 1740634 1740727) (-1071 "RNS.spad" 1738624 1738635 1739625 1739630) (-1070 "RNG.spad" 1738359 1738368 1738614 1738619) (-1069 "RNGBIND.spad" 1737519 1737533 1738314 1738319) (-1068 "RMODULE.spad" 1737284 1737295 1737509 1737514) (-1067 "RMCAT2.spad" 1736704 1736761 1737274 1737279) (-1066 "RMATRIX.spad" 1735528 1735547 1735871 1735910) (-1065 "RMATCAT.spad" 1731107 1731138 1735484 1735523) (-1064 "RMATCAT.spad" 1726576 1726609 1730955 1730960) (-1063 "RLINSET.spad" 1725970 1725981 1726566 1726571) (-1062 "RINTERP.spad" 1725858 1725878 1725960 1725965) (-1061 "RING.spad" 1725328 1725337 1725838 1725853) (-1060 "RING.spad" 1724806 1724817 1725318 1725323) (-1059 "RIDIST.spad" 1724198 1724207 1724796 1724801) (-1058 "RGCHAIN.spad" 1722781 1722797 1723683 1723710) (-1057 "RGBCSPC.spad" 1722562 1722574 1722771 1722776) (-1056 "RGBCMDL.spad" 1722092 1722104 1722552 1722557) (-1055 "RF.spad" 1719734 1719745 1722082 1722087) (-1054 "RFFACTOR.spad" 1719196 1719207 1719724 1719729) (-1053 "RFFACT.spad" 1718931 1718943 1719186 1719191) (-1052 "RFDIST.spad" 1717927 1717936 1718921 1718926) (-1051 "RETSOL.spad" 1717346 1717359 1717917 1717922) (-1050 "RETRACT.spad" 1716774 1716785 1717336 1717341) (-1049 "RETRACT.spad" 1716200 1716213 1716764 1716769) (-1048 "RETAST.spad" 1716012 1716021 1716190 1716195) (-1047 "RESULT.spad" 1714072 1714081 1714659 1714686) (-1046 "RESRING.spad" 1713419 1713466 1714010 1714067) (-1045 "RESLATC.spad" 1712743 1712754 1713409 1713414) (-1044 "REPSQ.spad" 1712474 1712485 1712733 1712738) (-1043 "REP.spad" 1710028 1710037 1712464 1712469) (-1042 "REPDB.spad" 1709735 1709746 1710018 1710023) (-1041 "REP2.spad" 1699393 1699404 1709577 1709582) (-1040 "REP1.spad" 1693589 1693600 1699343 1699348) (-1039 "REGSET.spad" 1691386 1691403 1693235 1693262) (-1038 "REF.spad" 1690721 1690732 1691341 1691346) (-1037 "REDORDER.spad" 1689927 1689944 1690711 1690716) (-1036 "RECLOS.spad" 1688710 1688730 1689414 1689507) (-1035 "REALSOLV.spad" 1687850 1687859 1688700 1688705) (-1034 "REAL.spad" 1687722 1687731 1687840 1687845) (-1033 "REAL0Q.spad" 1685020 1685035 1687712 1687717) (-1032 "REAL0.spad" 1681864 1681879 1685010 1685015) (-1031 "RDUCEAST.spad" 1681585 1681594 1681854 1681859) (-1030 "RDIV.spad" 1681240 1681265 1681575 1681580) (-1029 "RDIST.spad" 1680807 1680818 1681230 1681235) (-1028 "RDETRS.spad" 1679671 1679689 1680797 1680802) (-1027 "RDETR.spad" 1677810 1677828 1679661 1679666) (-1026 "RDEEFS.spad" 1676909 1676926 1677800 1677805) (-1025 "RDEEF.spad" 1675919 1675936 1676899 1676904) (-1024 "RCFIELD.spad" 1673105 1673114 1675821 1675914) (-1023 "RCFIELD.spad" 1670377 1670388 1673095 1673100) (-1022 "RCAGG.spad" 1668305 1668316 1670367 1670372) (-1021 "RCAGG.spad" 1666160 1666173 1668224 1668229) (-1020 "RATRET.spad" 1665520 1665531 1666150 1666155) (-1019 "RATFACT.spad" 1665212 1665224 1665510 1665515) (-1018 "RANDSRC.spad" 1664531 1664540 1665202 1665207) (-1017 "RADUTIL.spad" 1664287 1664296 1664521 1664526) (-1016 "RADIX.spad" 1661208 1661222 1662754 1662847) (-1015 "RADFF.spad" 1659621 1659658 1659740 1659896) (-1014 "RADCAT.spad" 1659216 1659225 1659611 1659616) (-1013 "RADCAT.spad" 1658809 1658820 1659206 1659211) (-1012 "QUEUE.spad" 1658157 1658168 1658416 1658443) (-1011 "QUAT.spad" 1656615 1656626 1656958 1657023) (-1010 "QUATCT2.spad" 1656235 1656254 1656605 1656610) (-1009 "QUATCAT.spad" 1654405 1654416 1656165 1656230) (-1008 "QUATCAT.spad" 1652326 1652339 1654088 1654093) (-1007 "QUAGG.spad" 1651153 1651164 1652294 1652321) (-1006 "QQUTAST.spad" 1650921 1650930 1651143 1651148) (-1005 "QFORM.spad" 1650539 1650554 1650911 1650916) (-1004 "QFCAT.spad" 1649241 1649252 1650441 1650534) (-1003 "QFCAT.spad" 1647534 1647547 1648736 1648741) (-1002 "QFCAT2.spad" 1647226 1647243 1647524 1647529) (-1001 "QEQUAT.spad" 1646784 1646793 1647216 1647221) (-1000 "QCMPACK.spad" 1641530 1641550 1646774 1646779) (-999 "QALGSET.spad" 1637609 1637641 1641444 1641449) (-998 "QALGSET2.spad" 1635605 1635623 1637599 1637604) (-997 "PWFFINTB.spad" 1633021 1633042 1635595 1635600) (-996 "PUSHVAR.spad" 1632360 1632379 1633011 1633016) (-995 "PTRANFN.spad" 1628488 1628498 1632350 1632355) (-994 "PTPACK.spad" 1625576 1625586 1628478 1628483) (-993 "PTFUNC2.spad" 1625399 1625413 1625566 1625571) (-992 "PTCAT.spad" 1624654 1624664 1625367 1625394) (-991 "PSQFR.spad" 1623961 1623985 1624644 1624649) (-990 "PSEUDLIN.spad" 1622847 1622857 1623951 1623956) (-989 "PSETPK.spad" 1608280 1608296 1622725 1622730) (-988 "PSETCAT.spad" 1602200 1602223 1608260 1608275) (-987 "PSETCAT.spad" 1596094 1596119 1602156 1602161) (-986 "PSCURVE.spad" 1595077 1595085 1596084 1596089) (-985 "PSCAT.spad" 1593860 1593889 1594975 1595072) (-984 "PSCAT.spad" 1592733 1592764 1593850 1593855) (-983 "PRTITION.spad" 1591431 1591439 1592723 1592728) (-982 "PRTDAST.spad" 1591150 1591158 1591421 1591426) (-981 "PRS.spad" 1580712 1580729 1591106 1591111) (-980 "PRQAGG.spad" 1580147 1580157 1580680 1580707) (-979 "PROPLOG.spad" 1579719 1579727 1580137 1580142) (-978 "PROPFUN2.spad" 1579342 1579355 1579709 1579714) (-977 "PROPFUN1.spad" 1578740 1578751 1579332 1579337) (-976 "PROPFRML.spad" 1577308 1577319 1578730 1578735) (-975 "PROPERTY.spad" 1576796 1576804 1577298 1577303) (-974 "PRODUCT.spad" 1574478 1574490 1574762 1574817) (-973 "PR.spad" 1572870 1572882 1573569 1573696) (-972 "PRINT.spad" 1572622 1572630 1572860 1572865) (-971 "PRIMES.spad" 1570875 1570885 1572612 1572617) (-970 "PRIMELT.spad" 1568956 1568970 1570865 1570870) (-969 "PRIMCAT.spad" 1568583 1568591 1568946 1568951) (-968 "PRIMARR.spad" 1567588 1567598 1567766 1567793) (-967 "PRIMARR2.spad" 1566355 1566367 1567578 1567583) (-966 "PREASSOC.spad" 1565737 1565749 1566345 1566350) (-965 "PPCURVE.spad" 1564874 1564882 1565727 1565732) (-964 "PORTNUM.spad" 1564649 1564657 1564864 1564869) (-963 "POLYROOT.spad" 1563498 1563520 1564605 1564610) (-962 "POLY.spad" 1560833 1560843 1561348 1561475) (-961 "POLYLIFT.spad" 1560098 1560121 1560823 1560828) (-960 "POLYCATQ.spad" 1558216 1558238 1560088 1560093) (-959 "POLYCAT.spad" 1551686 1551707 1558084 1558211) (-958 "POLYCAT.spad" 1544494 1544517 1550894 1550899) (-957 "POLY2UP.spad" 1543946 1543960 1544484 1544489) (-956 "POLY2.spad" 1543543 1543555 1543936 1543941) (-955 "POLUTIL.spad" 1542484 1542513 1543499 1543504) (-954 "POLTOPOL.spad" 1541232 1541247 1542474 1542479) (-953 "POINT.spad" 1540070 1540080 1540157 1540184) (-952 "PNTHEORY.spad" 1536772 1536780 1540060 1540065) (-951 "PMTOOLS.spad" 1535547 1535561 1536762 1536767) (-950 "PMSYM.spad" 1535096 1535106 1535537 1535542) (-949 "PMQFCAT.spad" 1534687 1534701 1535086 1535091) (-948 "PMPRED.spad" 1534166 1534180 1534677 1534682) (-947 "PMPREDFS.spad" 1533620 1533642 1534156 1534161) (-946 "PMPLCAT.spad" 1532700 1532718 1533552 1533557) (-945 "PMLSAGG.spad" 1532285 1532299 1532690 1532695) (-944 "PMKERNEL.spad" 1531864 1531876 1532275 1532280) (-943 "PMINS.spad" 1531444 1531454 1531854 1531859) (-942 "PMFS.spad" 1531021 1531039 1531434 1531439) (-941 "PMDOWN.spad" 1530311 1530325 1531011 1531016) (-940 "PMASS.spad" 1529321 1529329 1530301 1530306) (-939 "PMASSFS.spad" 1528288 1528304 1529311 1529316) (-938 "PLOTTOOL.spad" 1528068 1528076 1528278 1528283) (-937 "PLOT.spad" 1522991 1522999 1528058 1528063) (-936 "PLOT3D.spad" 1519455 1519463 1522981 1522986) (-935 "PLOT1.spad" 1518612 1518622 1519445 1519450) (-934 "PLEQN.spad" 1505902 1505929 1518602 1518607) (-933 "PINTERP.spad" 1505524 1505543 1505892 1505897) (-932 "PINTERPA.spad" 1505308 1505324 1505514 1505519) (-931 "PI.spad" 1504917 1504925 1505282 1505303) (-930 "PID.spad" 1503887 1503895 1504843 1504912) (-929 "PICOERCE.spad" 1503544 1503554 1503877 1503882) (-928 "PGROEB.spad" 1502145 1502159 1503534 1503539) (-927 "PGE.spad" 1493762 1493770 1502135 1502140) (-926 "PGCD.spad" 1492652 1492669 1493752 1493757) (-925 "PFRPAC.spad" 1491801 1491811 1492642 1492647) (-924 "PFR.spad" 1488464 1488474 1491703 1491796) (-923 "PFOTOOLS.spad" 1487722 1487738 1488454 1488459) (-922 "PFOQ.spad" 1487092 1487110 1487712 1487717) (-921 "PFO.spad" 1486511 1486538 1487082 1487087) (-920 "PF.spad" 1486085 1486097 1486316 1486409) (-919 "PFECAT.spad" 1483767 1483775 1486011 1486080) (-918 "PFECAT.spad" 1481477 1481487 1483723 1483728) (-917 "PFBRU.spad" 1479365 1479377 1481467 1481472) (-916 "PFBR.spad" 1476925 1476948 1479355 1479360) (-915 "PERM.spad" 1472732 1472742 1476755 1476770) (-914 "PERMGRP.spad" 1467502 1467512 1472722 1472727) (-913 "PERMCAT.spad" 1466163 1466173 1467482 1467497) (-912 "PERMAN.spad" 1464695 1464709 1466153 1466158) (-911 "PENDTREE.spad" 1464036 1464046 1464324 1464329) (-910 "PDRING.spad" 1462587 1462597 1464016 1464031) (-909 "PDRING.spad" 1461146 1461158 1462577 1462582) (-908 "PDEPROB.spad" 1460161 1460169 1461136 1461141) (-907 "PDEPACK.spad" 1454201 1454209 1460151 1460156) (-906 "PDECOMP.spad" 1453671 1453688 1454191 1454196) (-905 "PDECAT.spad" 1452027 1452035 1453661 1453666) (-904 "PCOMP.spad" 1451880 1451893 1452017 1452022) (-903 "PBWLB.spad" 1450468 1450485 1451870 1451875) (-902 "PATTERN.spad" 1445007 1445017 1450458 1450463) (-901 "PATTERN2.spad" 1444745 1444757 1444997 1445002) (-900 "PATTERN1.spad" 1443081 1443097 1444735 1444740) (-899 "PATRES.spad" 1440656 1440668 1443071 1443076) (-898 "PATRES2.spad" 1440328 1440342 1440646 1440651) (-897 "PATMATCH.spad" 1438525 1438556 1440036 1440041) (-896 "PATMAB.spad" 1437954 1437964 1438515 1438520) (-895 "PATLRES.spad" 1437040 1437054 1437944 1437949) (-894 "PATAB.spad" 1436804 1436814 1437030 1437035) (-893 "PARTPERM.spad" 1434812 1434820 1436794 1436799) (-892 "PARSURF.spad" 1434246 1434274 1434802 1434807) (-891 "PARSU2.spad" 1434043 1434059 1434236 1434241) (-890 "script-parser.spad" 1433563 1433571 1434033 1434038) (-889 "PARSCURV.spad" 1432997 1433025 1433553 1433558) (-888 "PARSC2.spad" 1432788 1432804 1432987 1432992) (-887 "PARPCURV.spad" 1432250 1432278 1432778 1432783) (-886 "PARPC2.spad" 1432041 1432057 1432240 1432245) (-885 "PARAMAST.spad" 1431169 1431177 1432031 1432036) (-884 "PAN2EXPR.spad" 1430581 1430589 1431159 1431164) (-883 "PALETTE.spad" 1429551 1429559 1430571 1430576) (-882 "PAIR.spad" 1428538 1428551 1429139 1429144) (-881 "PADICRC.spad" 1425872 1425890 1427043 1427136) (-880 "PADICRAT.spad" 1423887 1423899 1424108 1424201) (-879 "PADIC.spad" 1423582 1423594 1423813 1423882) (-878 "PADICCT.spad" 1422131 1422143 1423508 1423577) (-877 "PADEPAC.spad" 1420820 1420839 1422121 1422126) (-876 "PADE.spad" 1419572 1419588 1420810 1420815) (-875 "OWP.spad" 1418812 1418842 1419430 1419497) (-874 "OVERSET.spad" 1418385 1418393 1418802 1418807) (-873 "OVAR.spad" 1418166 1418189 1418375 1418380) (-872 "OUT.spad" 1417252 1417260 1418156 1418161) (-871 "OUTFORM.spad" 1406644 1406652 1417242 1417247) (-870 "OUTBFILE.spad" 1406062 1406070 1406634 1406639) (-869 "OUTBCON.spad" 1405068 1405076 1406052 1406057) (-868 "OUTBCON.spad" 1404072 1404082 1405058 1405063) (-867 "OSI.spad" 1403547 1403555 1404062 1404067) (-866 "OSGROUP.spad" 1403465 1403473 1403537 1403542) (-865 "ORTHPOL.spad" 1401950 1401960 1403382 1403387) (-864 "OREUP.spad" 1401403 1401431 1401630 1401669) (-863 "ORESUP.spad" 1400704 1400728 1401083 1401122) (-862 "OREPCTO.spad" 1398561 1398573 1400624 1400629) (-861 "OREPCAT.spad" 1392708 1392718 1398517 1398556) (-860 "OREPCAT.spad" 1386745 1386757 1392556 1392561) (-859 "ORDSET.spad" 1385917 1385925 1386735 1386740) (-858 "ORDSET.spad" 1385087 1385097 1385907 1385912) (-857 "ORDRING.spad" 1384477 1384485 1385067 1385082) (-856 "ORDRING.spad" 1383875 1383885 1384467 1384472) (-855 "ORDMON.spad" 1383730 1383738 1383865 1383870) (-854 "ORDFUNS.spad" 1382862 1382878 1383720 1383725) (-853 "ORDFIN.spad" 1382682 1382690 1382852 1382857) (-852 "ORDCOMP.spad" 1381147 1381157 1382229 1382258) (-851 "ORDCOMP2.spad" 1380440 1380452 1381137 1381142) (-850 "OPTPROB.spad" 1379078 1379086 1380430 1380435) (-849 "OPTPACK.spad" 1371487 1371495 1379068 1379073) (-848 "OPTCAT.spad" 1369166 1369174 1371477 1371482) (-847 "OPSIG.spad" 1368820 1368828 1369156 1369161) (-846 "OPQUERY.spad" 1368369 1368377 1368810 1368815) (-845 "OP.spad" 1368111 1368121 1368191 1368258) (-844 "OPERCAT.spad" 1367577 1367587 1368101 1368106) (-843 "OPERCAT.spad" 1367041 1367053 1367567 1367572) (-842 "ONECOMP.spad" 1365786 1365796 1366588 1366617) (-841 "ONECOMP2.spad" 1365210 1365222 1365776 1365781) (-840 "OMSERVER.spad" 1364216 1364224 1365200 1365205) (-839 "OMSAGG.spad" 1364004 1364014 1364172 1364211) (-838 "OMPKG.spad" 1362620 1362628 1363994 1363999) (-837 "OM.spad" 1361593 1361601 1362610 1362615) (-836 "OMLO.spad" 1361018 1361030 1361479 1361518) (-835 "OMEXPR.spad" 1360852 1360862 1361008 1361013) (-834 "OMERR.spad" 1360397 1360405 1360842 1360847) (-833 "OMERRK.spad" 1359431 1359439 1360387 1360392) (-832 "OMENC.spad" 1358775 1358783 1359421 1359426) (-831 "OMDEV.spad" 1353084 1353092 1358765 1358770) (-830 "OMCONN.spad" 1352493 1352501 1353074 1353079) (-829 "OINTDOM.spad" 1352256 1352264 1352419 1352488) (-828 "OFMONOID.spad" 1350379 1350389 1352212 1352217) (-827 "ODVAR.spad" 1349640 1349650 1350369 1350374) (-826 "ODR.spad" 1349284 1349310 1349452 1349601) (-825 "ODPOL.spad" 1346666 1346676 1347006 1347133) (-824 "ODP.spad" 1336436 1336456 1336809 1336940) (-823 "ODETOOLS.spad" 1335085 1335104 1336426 1336431) (-822 "ODESYS.spad" 1332779 1332796 1335075 1335080) (-821 "ODERTRIC.spad" 1328788 1328805 1332736 1332741) (-820 "ODERED.spad" 1328187 1328211 1328778 1328783) (-819 "ODERAT.spad" 1325802 1325819 1328177 1328182) (-818 "ODEPRRIC.spad" 1322839 1322861 1325792 1325797) (-817 "ODEPROB.spad" 1322096 1322104 1322829 1322834) (-816 "ODEPRIM.spad" 1319430 1319452 1322086 1322091) (-815 "ODEPAL.spad" 1318816 1318840 1319420 1319425) (-814 "ODEPACK.spad" 1305482 1305490 1318806 1318811) (-813 "ODEINT.spad" 1304917 1304933 1305472 1305477) (-812 "ODEIFTBL.spad" 1302312 1302320 1304907 1304912) (-811 "ODEEF.spad" 1297803 1297819 1302302 1302307) (-810 "ODECONST.spad" 1297340 1297358 1297793 1297798) (-809 "ODECAT.spad" 1295938 1295946 1297330 1297335) (-808 "OCT.spad" 1294074 1294084 1294788 1294827) (-807 "OCTCT2.spad" 1293720 1293741 1294064 1294069) (-806 "OC.spad" 1291516 1291526 1293676 1293715) (-805 "OC.spad" 1289037 1289049 1291199 1291204) (-804 "OCAMON.spad" 1288885 1288893 1289027 1289032) (-803 "OASGP.spad" 1288700 1288708 1288875 1288880) (-802 "OAMONS.spad" 1288222 1288230 1288690 1288695) (-801 "OAMON.spad" 1288083 1288091 1288212 1288217) (-800 "OAGROUP.spad" 1287945 1287953 1288073 1288078) (-799 "NUMTUBE.spad" 1287536 1287552 1287935 1287940) (-798 "NUMQUAD.spad" 1275512 1275520 1287526 1287531) (-797 "NUMODE.spad" 1266866 1266874 1275502 1275507) (-796 "NUMINT.spad" 1264432 1264440 1266856 1266861) (-795 "NUMFMT.spad" 1263272 1263280 1264422 1264427) (-794 "NUMERIC.spad" 1255386 1255396 1263077 1263082) (-793 "NTSCAT.spad" 1253894 1253910 1255354 1255381) (-792 "NTPOLFN.spad" 1253445 1253455 1253811 1253816) (-791 "NSUP.spad" 1246491 1246501 1251031 1251184) (-790 "NSUP2.spad" 1245883 1245895 1246481 1246486) (-789 "NSMP.spad" 1242113 1242132 1242421 1242548) (-788 "NREP.spad" 1240491 1240505 1242103 1242108) (-787 "NPCOEF.spad" 1239737 1239757 1240481 1240486) (-786 "NORMRETR.spad" 1239335 1239374 1239727 1239732) (-785 "NORMPK.spad" 1237237 1237256 1239325 1239330) (-784 "NORMMA.spad" 1236925 1236951 1237227 1237232) (-783 "NONE.spad" 1236666 1236674 1236915 1236920) (-782 "NONE1.spad" 1236342 1236352 1236656 1236661) (-781 "NODE1.spad" 1235829 1235845 1236332 1236337) (-780 "NNI.spad" 1234724 1234732 1235803 1235824) (-779 "NLINSOL.spad" 1233350 1233360 1234714 1234719) (-778 "NIPROB.spad" 1231891 1231899 1233340 1233345) (-777 "NFINTBAS.spad" 1229451 1229468 1231881 1231886) (-776 "NETCLT.spad" 1229425 1229436 1229441 1229446) (-775 "NCODIV.spad" 1227641 1227657 1229415 1229420) (-774 "NCNTFRAC.spad" 1227283 1227297 1227631 1227636) (-773 "NCEP.spad" 1225449 1225463 1227273 1227278) (-772 "NASRING.spad" 1225045 1225053 1225439 1225444) (-771 "NASRING.spad" 1224639 1224649 1225035 1225040) (-770 "NARNG.spad" 1223991 1223999 1224629 1224634) (-769 "NARNG.spad" 1223341 1223351 1223981 1223986) (-768 "NAGSP.spad" 1222418 1222426 1223331 1223336) (-767 "NAGS.spad" 1212079 1212087 1222408 1222413) (-766 "NAGF07.spad" 1210510 1210518 1212069 1212074) (-765 "NAGF04.spad" 1204912 1204920 1210500 1210505) (-764 "NAGF02.spad" 1198981 1198989 1204902 1204907) (-763 "NAGF01.spad" 1194742 1194750 1198971 1198976) (-762 "NAGE04.spad" 1188442 1188450 1194732 1194737) (-761 "NAGE02.spad" 1179102 1179110 1188432 1188437) (-760 "NAGE01.spad" 1175104 1175112 1179092 1179097) (-759 "NAGD03.spad" 1173108 1173116 1175094 1175099) (-758 "NAGD02.spad" 1165855 1165863 1173098 1173103) (-757 "NAGD01.spad" 1160148 1160156 1165845 1165850) (-756 "NAGC06.spad" 1156023 1156031 1160138 1160143) (-755 "NAGC05.spad" 1154524 1154532 1156013 1156018) (-754 "NAGC02.spad" 1153791 1153799 1154514 1154519) (-753 "NAALG.spad" 1153332 1153342 1153759 1153786) (-752 "NAALG.spad" 1152893 1152905 1153322 1153327) (-751 "MULTSQFR.spad" 1149851 1149868 1152883 1152888) (-750 "MULTFACT.spad" 1149234 1149251 1149841 1149846) (-749 "MTSCAT.spad" 1147328 1147349 1149132 1149229) (-748 "MTHING.spad" 1146987 1146997 1147318 1147323) (-747 "MSYSCMD.spad" 1146421 1146429 1146977 1146982) (-746 "MSET.spad" 1144379 1144389 1146127 1146166) (-745 "MSETAGG.spad" 1144224 1144234 1144347 1144374) (-744 "MRING.spad" 1141201 1141213 1143932 1143999) (-743 "MRF2.spad" 1140771 1140785 1141191 1141196) (-742 "MRATFAC.spad" 1140317 1140334 1140761 1140766) (-741 "MPRFF.spad" 1138357 1138376 1140307 1140312) (-740 "MPOLY.spad" 1135828 1135843 1136187 1136314) (-739 "MPCPF.spad" 1135092 1135111 1135818 1135823) (-738 "MPC3.spad" 1134909 1134949 1135082 1135087) (-737 "MPC2.spad" 1134555 1134588 1134899 1134904) (-736 "MONOTOOL.spad" 1132906 1132923 1134545 1134550) (-735 "MONOID.spad" 1132225 1132233 1132896 1132901) (-734 "MONOID.spad" 1131542 1131552 1132215 1132220) (-733 "MONOGEN.spad" 1130290 1130303 1131402 1131537) (-732 "MONOGEN.spad" 1129060 1129075 1130174 1130179) (-731 "MONADWU.spad" 1127090 1127098 1129050 1129055) (-730 "MONADWU.spad" 1125118 1125128 1127080 1127085) (-729 "MONAD.spad" 1124278 1124286 1125108 1125113) (-728 "MONAD.spad" 1123436 1123446 1124268 1124273) (-727 "MOEBIUS.spad" 1122172 1122186 1123416 1123431) (-726 "MODULE.spad" 1122042 1122052 1122140 1122167) (-725 "MODULE.spad" 1121932 1121944 1122032 1122037) (-724 "MODRING.spad" 1121267 1121306 1121912 1121927) (-723 "MODOP.spad" 1119932 1119944 1121089 1121156) (-722 "MODMONOM.spad" 1119663 1119681 1119922 1119927) (-721 "MODMON.spad" 1116458 1116474 1117177 1117330) (-720 "MODFIELD.spad" 1115820 1115859 1116360 1116453) (-719 "MMLFORM.spad" 1114680 1114688 1115810 1115815) (-718 "MMAP.spad" 1114422 1114456 1114670 1114675) (-717 "MLO.spad" 1112881 1112891 1114378 1114417) (-716 "MLIFT.spad" 1111493 1111510 1112871 1112876) (-715 "MKUCFUNC.spad" 1111028 1111046 1111483 1111488) (-714 "MKRECORD.spad" 1110632 1110645 1111018 1111023) (-713 "MKFUNC.spad" 1110039 1110049 1110622 1110627) (-712 "MKFLCFN.spad" 1109007 1109017 1110029 1110034) (-711 "MKBCFUNC.spad" 1108502 1108520 1108997 1109002) (-710 "MINT.spad" 1107941 1107949 1108404 1108497) (-709 "MHROWRED.spad" 1106452 1106462 1107931 1107936) (-708 "MFLOAT.spad" 1104972 1104980 1106342 1106447) (-707 "MFINFACT.spad" 1104372 1104394 1104962 1104967) (-706 "MESH.spad" 1102154 1102162 1104362 1104367) (-705 "MDDFACT.spad" 1100365 1100375 1102144 1102149) (-704 "MDAGG.spad" 1099656 1099666 1100345 1100360) (-703 "MCMPLX.spad" 1095667 1095675 1096281 1096482) (-702 "MCDEN.spad" 1094877 1094889 1095657 1095662) (-701 "MCALCFN.spad" 1091999 1092025 1094867 1094872) (-700 "MAYBE.spad" 1091283 1091294 1091989 1091994) (-699 "MATSTOR.spad" 1088591 1088601 1091273 1091278) (-698 "MATRIX.spad" 1087295 1087305 1087779 1087806) (-697 "MATLIN.spad" 1084639 1084663 1087179 1087184) (-696 "MATCAT.spad" 1076368 1076390 1084607 1084634) (-695 "MATCAT.spad" 1067969 1067993 1076210 1076215) (-694 "MATCAT2.spad" 1067251 1067299 1067959 1067964) (-693 "MAPPKG3.spad" 1066166 1066180 1067241 1067246) (-692 "MAPPKG2.spad" 1065504 1065516 1066156 1066161) (-691 "MAPPKG1.spad" 1064332 1064342 1065494 1065499) (-690 "MAPPAST.spad" 1063647 1063655 1064322 1064327) (-689 "MAPHACK3.spad" 1063459 1063473 1063637 1063642) (-688 "MAPHACK2.spad" 1063228 1063240 1063449 1063454) (-687 "MAPHACK1.spad" 1062872 1062882 1063218 1063223) (-686 "MAGMA.spad" 1060662 1060679 1062862 1062867) (-685 "MACROAST.spad" 1060241 1060249 1060652 1060657) (-684 "M3D.spad" 1057961 1057971 1059619 1059624) (-683 "LZSTAGG.spad" 1055199 1055209 1057951 1057956) (-682 "LZSTAGG.spad" 1052435 1052447 1055189 1055194) (-681 "LWORD.spad" 1049140 1049157 1052425 1052430) (-680 "LSTAST.spad" 1048924 1048932 1049130 1049135) (-679 "LSQM.spad" 1047210 1047224 1047604 1047655) (-678 "LSPP.spad" 1046745 1046762 1047200 1047205) (-677 "LSMP.spad" 1045595 1045623 1046735 1046740) (-676 "LSMP1.spad" 1043413 1043427 1045585 1045590) (-675 "LSAGG.spad" 1043082 1043092 1043381 1043408) (-674 "LSAGG.spad" 1042771 1042783 1043072 1043077) (-673 "LPOLY.spad" 1041725 1041744 1042627 1042696) (-672 "LPEFRAC.spad" 1040996 1041006 1041715 1041720) (-671 "LO.spad" 1040397 1040411 1040930 1040957) (-670 "LOGIC.spad" 1039999 1040007 1040387 1040392) (-669 "LOGIC.spad" 1039599 1039609 1039989 1039994) (-668 "LODOOPS.spad" 1038529 1038541 1039589 1039594) (-667 "LODO.spad" 1037913 1037929 1038209 1038248) (-666 "LODOF.spad" 1036959 1036976 1037870 1037875) (-665 "LODOCAT.spad" 1035625 1035635 1036915 1036954) (-664 "LODOCAT.spad" 1034289 1034301 1035581 1035586) (-663 "LODO2.spad" 1033562 1033574 1033969 1034008) (-662 "LODO1.spad" 1032962 1032972 1033242 1033281) (-661 "LODEEF.spad" 1031764 1031782 1032952 1032957) (-660 "LNAGG.spad" 1027911 1027921 1031754 1031759) (-659 "LNAGG.spad" 1024022 1024034 1027867 1027872) (-658 "LMOPS.spad" 1020790 1020807 1024012 1024017) (-657 "LMODULE.spad" 1020558 1020568 1020780 1020785) (-656 "LMDICT.spad" 1019845 1019855 1020109 1020136) (-655 "LLINSET.spad" 1019242 1019252 1019835 1019840) (-654 "LITERAL.spad" 1019148 1019159 1019232 1019237) (-653 "LIST.spad" 1016883 1016893 1018295 1018322) (-652 "LIST3.spad" 1016194 1016208 1016873 1016878) (-651 "LIST2.spad" 1014896 1014908 1016184 1016189) (-650 "LIST2MAP.spad" 1011799 1011811 1014886 1014891) (-649 "LINSET.spad" 1011421 1011431 1011789 1011794) (-648 "LINEXP.spad" 1010559 1010569 1011411 1011416) (-647 "LINDEP.spad" 1009368 1009380 1010471 1010476) (-646 "LIMITRF.spad" 1007296 1007306 1009358 1009363) (-645 "LIMITPS.spad" 1006199 1006212 1007286 1007291) (-644 "LIE.spad" 1004215 1004227 1005489 1005634) (-643 "LIECAT.spad" 1003691 1003701 1004141 1004210) (-642 "LIECAT.spad" 1003195 1003207 1003647 1003652) (-641 "LIB.spad" 1001408 1001416 1001854 1001869) (-640 "LGROBP.spad" 998761 998780 1001398 1001403) (-639 "LF.spad" 997716 997732 998751 998756) (-638 "LFCAT.spad" 996775 996783 997706 997711) (-637 "LEXTRIPK.spad" 992278 992293 996765 996770) (-636 "LEXP.spad" 990281 990308 992258 992273) (-635 "LETAST.spad" 989980 989988 990271 990276) (-634 "LEADCDET.spad" 988378 988395 989970 989975) (-633 "LAZM3PK.spad" 987082 987104 988368 988373) (-632 "LAUPOL.spad" 985775 985788 986675 986744) (-631 "LAPLACE.spad" 985358 985374 985765 985770) (-630 "LA.spad" 984798 984812 985280 985319) (-629 "LALG.spad" 984574 984584 984778 984793) (-628 "LALG.spad" 984358 984370 984564 984569) (-627 "KVTFROM.spad" 984093 984103 984348 984353) (-626 "KTVLOGIC.spad" 983605 983613 984083 984088) (-625 "KRCFROM.spad" 983343 983353 983595 983600) (-624 "KOVACIC.spad" 982066 982083 983333 983338) (-623 "KONVERT.spad" 981788 981798 982056 982061) (-622 "KOERCE.spad" 981525 981535 981778 981783) (-621 "KERNEL.spad" 980180 980190 981309 981314) (-620 "KERNEL2.spad" 979883 979895 980170 980175) (-619 "KDAGG.spad" 978992 979014 979863 979878) (-618 "KDAGG.spad" 978109 978133 978982 978987) (-617 "KAFILE.spad" 977072 977088 977307 977334) (-616 "JORDAN.spad" 974901 974913 976362 976507) (-615 "JOINAST.spad" 974595 974603 974891 974896) (-614 "JAVACODE.spad" 974461 974469 974585 974590) (-613 "IXAGG.spad" 972594 972618 974451 974456) (-612 "IXAGG.spad" 970582 970608 972441 972446) (-611 "IVECTOR.spad" 969352 969367 969507 969534) (-610 "ITUPLE.spad" 968513 968523 969342 969347) (-609 "ITRIGMNP.spad" 967352 967371 968503 968508) (-608 "ITFUN3.spad" 966858 966872 967342 967347) (-607 "ITFUN2.spad" 966602 966614 966848 966853) (-606 "ITFORM.spad" 965957 965965 966592 966597) (-605 "ITAYLOR.spad" 963951 963966 965821 965918) (-604 "ISUPS.spad" 956388 956403 962925 963022) (-603 "ISUMP.spad" 955889 955905 956378 956383) (-602 "ISTRING.spad" 954977 954990 955058 955085) (-601 "ISAST.spad" 954696 954704 954967 954972) (-600 "IRURPK.spad" 953413 953432 954686 954691) (-599 "IRSN.spad" 951385 951393 953403 953408) (-598 "IRRF2F.spad" 949870 949880 951341 951346) (-597 "IRREDFFX.spad" 949471 949482 949860 949865) (-596 "IROOT.spad" 947810 947820 949461 949466) (-595 "IR.spad" 945611 945625 947665 947692) (-594 "IRFORM.spad" 944935 944943 945601 945606) (-593 "IR2.spad" 943963 943979 944925 944930) (-592 "IR2F.spad" 943169 943185 943953 943958) (-591 "IPRNTPK.spad" 942929 942937 943159 943164) (-590 "IPF.spad" 942494 942506 942734 942827) (-589 "IPADIC.spad" 942255 942281 942420 942489) (-588 "IP4ADDR.spad" 941812 941820 942245 942250) (-587 "IOMODE.spad" 941334 941342 941802 941807) (-586 "IOBFILE.spad" 940695 940703 941324 941329) (-585 "IOBCON.spad" 940560 940568 940685 940690) (-584 "INVLAPLA.spad" 940209 940225 940550 940555) (-583 "INTTR.spad" 933591 933608 940199 940204) (-582 "INTTOOLS.spad" 931346 931362 933165 933170) (-581 "INTSLPE.spad" 930666 930674 931336 931341) (-580 "INTRVL.spad" 930232 930242 930580 930661) (-579 "INTRF.spad" 928656 928670 930222 930227) (-578 "INTRET.spad" 928088 928098 928646 928651) (-577 "INTRAT.spad" 926815 926832 928078 928083) (-576 "INTPM.spad" 925200 925216 926458 926463) (-575 "INTPAF.spad" 923064 923082 925132 925137) (-574 "INTPACK.spad" 913438 913446 923054 923059) (-573 "INT.spad" 912886 912894 913292 913433) (-572 "INTHERTR.spad" 912160 912177 912876 912881) (-571 "INTHERAL.spad" 911830 911854 912150 912155) (-570 "INTHEORY.spad" 908269 908277 911820 911825) (-569 "INTG0.spad" 902002 902020 908201 908206) (-568 "INTFTBL.spad" 896031 896039 901992 901997) (-567 "INTFACT.spad" 895090 895100 896021 896026) (-566 "INTEF.spad" 893475 893491 895080 895085) (-565 "INTDOM.spad" 892098 892106 893401 893470) (-564 "INTDOM.spad" 890783 890793 892088 892093) (-563 "INTCAT.spad" 889042 889052 890697 890778) (-562 "INTBIT.spad" 888549 888557 889032 889037) (-561 "INTALG.spad" 887737 887764 888539 888544) (-560 "INTAF.spad" 887237 887253 887727 887732) (-559 "INTABL.spad" 885755 885786 885918 885945) (-558 "INT8.spad" 885635 885643 885745 885750) (-557 "INT64.spad" 885514 885522 885625 885630) (-556 "INT32.spad" 885393 885401 885504 885509) (-555 "INT16.spad" 885272 885280 885383 885388) (-554 "INS.spad" 882775 882783 885174 885267) (-553 "INS.spad" 880364 880374 882765 882770) (-552 "INPSIGN.spad" 879812 879825 880354 880359) (-551 "INPRODPF.spad" 878908 878927 879802 879807) (-550 "INPRODFF.spad" 877996 878020 878898 878903) (-549 "INNMFACT.spad" 876971 876988 877986 877991) (-548 "INMODGCD.spad" 876459 876489 876961 876966) (-547 "INFSP.spad" 874756 874778 876449 876454) (-546 "INFPROD0.spad" 873836 873855 874746 874751) (-545 "INFORM.spad" 871035 871043 873826 873831) (-544 "INFORM1.spad" 870660 870670 871025 871030) (-543 "INFINITY.spad" 870212 870220 870650 870655) (-542 "INETCLTS.spad" 870189 870197 870202 870207) (-541 "INEP.spad" 868727 868749 870179 870184) (-540 "INDE.spad" 868456 868473 868717 868722) (-539 "INCRMAPS.spad" 867877 867887 868446 868451) (-538 "INBFILE.spad" 866949 866957 867867 867872) (-537 "INBFF.spad" 862743 862754 866939 866944) (-536 "INBCON.spad" 861033 861041 862733 862738) (-535 "INBCON.spad" 859321 859331 861023 861028) (-534 "INAST.spad" 858982 858990 859311 859316) (-533 "IMPTAST.spad" 858690 858698 858972 858977) (-532 "IMATRIX.spad" 857635 857661 858147 858174) (-531 "IMATQF.spad" 856729 856773 857591 857596) (-530 "IMATLIN.spad" 855334 855358 856685 856690) (-529 "ILIST.spad" 853992 854007 854517 854544) (-528 "IIARRAY2.spad" 853380 853418 853599 853626) (-527 "IFF.spad" 852790 852806 853061 853154) (-526 "IFAST.spad" 852404 852412 852780 852785) (-525 "IFARRAY.spad" 849897 849912 851587 851614) (-524 "IFAMON.spad" 849759 849776 849853 849858) (-523 "IEVALAB.spad" 849164 849176 849749 849754) (-522 "IEVALAB.spad" 848567 848581 849154 849159) (-521 "IDPO.spad" 848365 848377 848557 848562) (-520 "IDPOAMS.spad" 848121 848133 848355 848360) (-519 "IDPOAM.spad" 847841 847853 848111 848116) (-518 "IDPC.spad" 846779 846791 847831 847836) (-517 "IDPAM.spad" 846524 846536 846769 846774) (-516 "IDPAG.spad" 846271 846283 846514 846519) (-515 "IDENT.spad" 845921 845929 846261 846266) (-514 "IDECOMP.spad" 843160 843178 845911 845916) (-513 "IDEAL.spad" 838109 838148 843095 843100) (-512 "ICDEN.spad" 837298 837314 838099 838104) (-511 "ICARD.spad" 836489 836497 837288 837293) (-510 "IBPTOOLS.spad" 835096 835113 836479 836484) (-509 "IBITS.spad" 834299 834312 834732 834759) (-508 "IBATOOL.spad" 831276 831295 834289 834294) (-507 "IBACHIN.spad" 829783 829798 831266 831271) (-506 "IARRAY2.spad" 828771 828797 829390 829417) (-505 "IARRAY1.spad" 827816 827831 827954 827981) (-504 "IAN.spad" 826039 826047 827632 827725) (-503 "IALGFACT.spad" 825642 825675 826029 826034) (-502 "HYPCAT.spad" 825066 825074 825632 825637) (-501 "HYPCAT.spad" 824488 824498 825056 825061) (-500 "HOSTNAME.spad" 824296 824304 824478 824483) (-499 "HOMOTOP.spad" 824039 824049 824286 824291) (-498 "HOAGG.spad" 821321 821331 824029 824034) (-497 "HOAGG.spad" 818378 818390 821088 821093) (-496 "HEXADEC.spad" 816480 816488 816845 816938) (-495 "HEUGCD.spad" 815515 815526 816470 816475) (-494 "HELLFDIV.spad" 815105 815129 815505 815510) (-493 "HEAP.spad" 814497 814507 814712 814739) (-492 "HEADAST.spad" 814030 814038 814487 814492) (-491 "HDP.spad" 803796 803812 804173 804304) (-490 "HDMP.spad" 801010 801025 801626 801753) (-489 "HB.spad" 799261 799269 801000 801005) (-488 "HASHTBL.spad" 797731 797762 797942 797969) (-487 "HASAST.spad" 797447 797455 797721 797726) (-486 "HACKPI.spad" 796938 796946 797349 797442) (-485 "GTSET.spad" 795877 795893 796584 796611) (-484 "GSTBL.spad" 794396 794431 794570 794585) (-483 "GSERIES.spad" 791567 791594 792528 792677) (-482 "GROUP.spad" 790840 790848 791547 791562) (-481 "GROUP.spad" 790121 790131 790830 790835) (-480 "GROEBSOL.spad" 788615 788636 790111 790116) (-479 "GRMOD.spad" 787186 787198 788605 788610) (-478 "GRMOD.spad" 785755 785769 787176 787181) (-477 "GRIMAGE.spad" 778644 778652 785745 785750) (-476 "GRDEF.spad" 777023 777031 778634 778639) (-475 "GRAY.spad" 775486 775494 777013 777018) (-474 "GRALG.spad" 774563 774575 775476 775481) (-473 "GRALG.spad" 773638 773652 774553 774558) (-472 "GPOLSET.spad" 773092 773115 773320 773347) (-471 "GOSPER.spad" 772361 772379 773082 773087) (-470 "GMODPOL.spad" 771509 771536 772329 772356) (-469 "GHENSEL.spad" 770592 770606 771499 771504) (-468 "GENUPS.spad" 766885 766898 770582 770587) (-467 "GENUFACT.spad" 766462 766472 766875 766880) (-466 "GENPGCD.spad" 766048 766065 766452 766457) (-465 "GENMFACT.spad" 765500 765519 766038 766043) (-464 "GENEEZ.spad" 763451 763464 765490 765495) (-463 "GDMP.spad" 760507 760524 761281 761408) (-462 "GCNAALG.spad" 754430 754457 760301 760368) (-461 "GCDDOM.spad" 753606 753614 754356 754425) (-460 "GCDDOM.spad" 752844 752854 753596 753601) (-459 "GB.spad" 750370 750408 752800 752805) (-458 "GBINTERN.spad" 746390 746428 750360 750365) (-457 "GBF.spad" 742157 742195 746380 746385) (-456 "GBEUCLID.spad" 740039 740077 742147 742152) (-455 "GAUSSFAC.spad" 739352 739360 740029 740034) (-454 "GALUTIL.spad" 737678 737688 739308 739313) (-453 "GALPOLYU.spad" 736132 736145 737668 737673) (-452 "GALFACTU.spad" 734305 734324 736122 736127) (-451 "GALFACT.spad" 724494 724505 734295 734300) (-450 "FVFUN.spad" 721517 721525 724484 724489) (-449 "FVC.spad" 720569 720577 721507 721512) (-448 "FUNDESC.spad" 720247 720255 720559 720564) (-447 "FUNCTION.spad" 720096 720108 720237 720242) (-446 "FT.spad" 718393 718401 720086 720091) (-445 "FTEM.spad" 717558 717566 718383 718388) (-444 "FSUPFACT.spad" 716458 716477 717494 717499) (-443 "FST.spad" 714544 714552 716448 716453) (-442 "FSRED.spad" 714024 714040 714534 714539) (-441 "FSPRMELT.spad" 712906 712922 713981 713986) (-440 "FSPECF.spad" 710997 711013 712896 712901) (-439 "FS.spad" 705265 705275 710772 710992) (-438 "FS.spad" 699311 699323 704820 704825) (-437 "FSINT.spad" 698971 698987 699301 699306) (-436 "FSERIES.spad" 698162 698174 698791 698890) (-435 "FSCINT.spad" 697479 697495 698152 698157) (-434 "FSAGG.spad" 696596 696606 697435 697474) (-433 "FSAGG.spad" 695675 695687 696516 696521) (-432 "FSAGG2.spad" 694418 694434 695665 695670) (-431 "FS2UPS.spad" 688909 688943 694408 694413) (-430 "FS2.spad" 688556 688572 688899 688904) (-429 "FS2EXPXP.spad" 687681 687704 688546 688551) (-428 "FRUTIL.spad" 686635 686645 687671 687676) (-427 "FR.spad" 680167 680177 685475 685544) (-426 "FRNAALG.spad" 675436 675446 680109 680162) (-425 "FRNAALG.spad" 670717 670729 675392 675397) (-424 "FRNAAF2.spad" 670173 670191 670707 670712) (-423 "FRMOD.spad" 669583 669613 670104 670109) (-422 "FRIDEAL.spad" 668808 668829 669563 669578) (-421 "FRIDEAL2.spad" 668412 668444 668798 668803) (-420 "FRETRCT.spad" 667923 667933 668402 668407) (-419 "FRETRCT.spad" 667300 667312 667781 667786) (-418 "FRAMALG.spad" 665648 665661 667256 667295) (-417 "FRAMALG.spad" 664028 664043 665638 665643) (-416 "FRAC.spad" 661127 661137 661530 661703) (-415 "FRAC2.spad" 660732 660744 661117 661122) (-414 "FR2.spad" 660068 660080 660722 660727) (-413 "FPS.spad" 656883 656891 659958 660063) (-412 "FPS.spad" 653726 653736 656803 656808) (-411 "FPC.spad" 652772 652780 653628 653721) (-410 "FPC.spad" 651904 651914 652762 652767) (-409 "FPATMAB.spad" 651666 651676 651894 651899) (-408 "FPARFRAC.spad" 650153 650170 651656 651661) (-407 "FORTRAN.spad" 648659 648702 650143 650148) (-406 "FORT.spad" 647608 647616 648649 648654) (-405 "FORTFN.spad" 644778 644786 647598 647603) (-404 "FORTCAT.spad" 644462 644470 644768 644773) (-403 "FORMULA.spad" 641936 641944 644452 644457) (-402 "FORMULA1.spad" 641415 641425 641926 641931) (-401 "FORDER.spad" 641106 641130 641405 641410) (-400 "FOP.spad" 640307 640315 641096 641101) (-399 "FNLA.spad" 639731 639753 640275 640302) (-398 "FNCAT.spad" 638326 638334 639721 639726) (-397 "FNAME.spad" 638218 638226 638316 638321) (-396 "FMTC.spad" 638016 638024 638144 638213) (-395 "FMONOID.spad" 637681 637691 637972 637977) (-394 "FMONCAT.spad" 634834 634844 637671 637676) (-393 "FM.spad" 634529 634541 634768 634795) (-392 "FMFUN.spad" 631559 631567 634519 634524) (-391 "FMC.spad" 630611 630619 631549 631554) (-390 "FMCAT.spad" 628279 628297 630579 630606) (-389 "FM1.spad" 627636 627648 628213 628240) (-388 "FLOATRP.spad" 625371 625385 627626 627631) (-387 "FLOAT.spad" 618685 618693 625237 625366) (-386 "FLOATCP.spad" 616116 616130 618675 618680) (-385 "FLINEXP.spad" 615838 615848 616106 616111) (-384 "FLINEXP.spad" 615504 615516 615774 615779) (-383 "FLASORT.spad" 614830 614842 615494 615499) (-382 "FLALG.spad" 612476 612495 614756 614825) (-381 "FLAGG.spad" 609518 609528 612456 612471) (-380 "FLAGG.spad" 606461 606473 609401 609406) (-379 "FLAGG2.spad" 605186 605202 606451 606456) (-378 "FINRALG.spad" 603247 603260 605142 605181) (-377 "FINRALG.spad" 601234 601249 603131 603136) (-376 "FINITE.spad" 600386 600394 601224 601229) (-375 "FINAALG.spad" 589507 589517 600328 600381) (-374 "FINAALG.spad" 578640 578652 589463 589468) (-373 "FILE.spad" 578223 578233 578630 578635) (-372 "FILECAT.spad" 576749 576766 578213 578218) (-371 "FIELD.spad" 576155 576163 576651 576744) (-370 "FIELD.spad" 575647 575657 576145 576150) (-369 "FGROUP.spad" 574294 574304 575627 575642) (-368 "FGLMICPK.spad" 573081 573096 574284 574289) (-367 "FFX.spad" 572456 572471 572797 572890) (-366 "FFSLPE.spad" 571959 571980 572446 572451) (-365 "FFPOLY.spad" 563221 563232 571949 571954) (-364 "FFPOLY2.spad" 562281 562298 563211 563216) (-363 "FFP.spad" 561678 561698 561997 562090) (-362 "FF.spad" 561126 561142 561359 561452) (-361 "FFNBX.spad" 559638 559658 560842 560935) (-360 "FFNBP.spad" 558151 558168 559354 559447) (-359 "FFNB.spad" 556616 556637 557832 557925) (-358 "FFINTBAS.spad" 554130 554149 556606 556611) (-357 "FFIELDC.spad" 551707 551715 554032 554125) (-356 "FFIELDC.spad" 549370 549380 551697 551702) (-355 "FFHOM.spad" 548118 548135 549360 549365) (-354 "FFF.spad" 545553 545564 548108 548113) (-353 "FFCGX.spad" 544400 544420 545269 545362) (-352 "FFCGP.spad" 543289 543309 544116 544209) (-351 "FFCG.spad" 542081 542102 542970 543063) (-350 "FFCAT.spad" 535254 535276 541920 542076) (-349 "FFCAT.spad" 528506 528530 535174 535179) (-348 "FFCAT2.spad" 528253 528293 528496 528501) (-347 "FEXPR.spad" 519970 520016 528009 528048) (-346 "FEVALAB.spad" 519678 519688 519960 519965) (-345 "FEVALAB.spad" 519171 519183 519455 519460) (-344 "FDIV.spad" 518613 518637 519161 519166) (-343 "FDIVCAT.spad" 516677 516701 518603 518608) (-342 "FDIVCAT.spad" 514739 514765 516667 516672) (-341 "FDIV2.spad" 514395 514435 514729 514734) (-340 "FCTRDATA.spad" 513403 513411 514385 514390) (-339 "FCPAK1.spad" 511970 511978 513393 513398) (-338 "FCOMP.spad" 511349 511359 511960 511965) (-337 "FC.spad" 501356 501364 511339 511344) (-336 "FAXF.spad" 494327 494341 501258 501351) (-335 "FAXF.spad" 487350 487366 494283 494288) (-334 "FARRAY.spad" 485500 485510 486533 486560) (-333 "FAMR.spad" 483636 483648 485398 485495) (-332 "FAMR.spad" 481756 481770 483520 483525) (-331 "FAMONOID.spad" 481424 481434 481710 481715) (-330 "FAMONC.spad" 479720 479732 481414 481419) (-329 "FAGROUP.spad" 479344 479354 479616 479643) (-328 "FACUTIL.spad" 477548 477565 479334 479339) (-327 "FACTFUNC.spad" 476742 476752 477538 477543) (-326 "EXPUPXS.spad" 473575 473598 474874 475023) (-325 "EXPRTUBE.spad" 470863 470871 473565 473570) (-324 "EXPRODE.spad" 468023 468039 470853 470858) (-323 "EXPR.spad" 463198 463208 463912 464207) (-322 "EXPR2UPS.spad" 459320 459333 463188 463193) (-321 "EXPR2.spad" 459025 459037 459310 459315) (-320 "EXPEXPAN.spad" 455965 455990 456597 456690) (-319 "EXIT.spad" 455636 455644 455955 455960) (-318 "EXITAST.spad" 455372 455380 455626 455631) (-317 "EVALCYC.spad" 454832 454846 455362 455367) (-316 "EVALAB.spad" 454404 454414 454822 454827) (-315 "EVALAB.spad" 453974 453986 454394 454399) (-314 "EUCDOM.spad" 451548 451556 453900 453969) (-313 "EUCDOM.spad" 449184 449194 451538 451543) (-312 "ESTOOLS.spad" 441030 441038 449174 449179) (-311 "ESTOOLS2.spad" 440633 440647 441020 441025) (-310 "ESTOOLS1.spad" 440318 440329 440623 440628) (-309 "ES.spad" 433133 433141 440308 440313) (-308 "ES.spad" 425854 425864 433031 433036) (-307 "ESCONT.spad" 422647 422655 425844 425849) (-306 "ESCONT1.spad" 422396 422408 422637 422642) (-305 "ES2.spad" 421901 421917 422386 422391) (-304 "ES1.spad" 421471 421487 421891 421896) (-303 "ERROR.spad" 418798 418806 421461 421466) (-302 "EQTBL.spad" 417270 417292 417479 417506) (-301 "EQ.spad" 412075 412085 414862 414974) (-300 "EQ2.spad" 411793 411805 412065 412070) (-299 "EP.spad" 408119 408129 411783 411788) (-298 "ENV.spad" 406797 406805 408109 408114) (-297 "ENTIRER.spad" 406465 406473 406741 406792) (-296 "EMR.spad" 405753 405794 406391 406460) (-295 "ELTAGG.spad" 404007 404026 405743 405748) (-294 "ELTAGG.spad" 402225 402246 403963 403968) (-293 "ELTAB.spad" 401700 401713 402215 402220) (-292 "ELFUTS.spad" 401087 401106 401690 401695) (-291 "ELEMFUN.spad" 400776 400784 401077 401082) (-290 "ELEMFUN.spad" 400463 400473 400766 400771) (-289 "ELAGG.spad" 398434 398444 400443 400458) (-288 "ELAGG.spad" 396342 396354 398353 398358) (-287 "ELABOR.spad" 395688 395696 396332 396337) (-286 "ELABEXPR.spad" 394620 394628 395678 395683) (-285 "EFUPXS.spad" 391396 391426 394576 394581) (-284 "EFULS.spad" 388232 388255 391352 391357) (-283 "EFSTRUC.spad" 386247 386263 388222 388227) (-282 "EF.spad" 381023 381039 386237 386242) (-281 "EAB.spad" 379299 379307 381013 381018) (-280 "E04UCFA.spad" 378835 378843 379289 379294) (-279 "E04NAFA.spad" 378412 378420 378825 378830) (-278 "E04MBFA.spad" 377992 378000 378402 378407) (-277 "E04JAFA.spad" 377528 377536 377982 377987) (-276 "E04GCFA.spad" 377064 377072 377518 377523) (-275 "E04FDFA.spad" 376600 376608 377054 377059) (-274 "E04DGFA.spad" 376136 376144 376590 376595) (-273 "E04AGNT.spad" 371986 371994 376126 376131) (-272 "DVARCAT.spad" 368876 368886 371976 371981) (-271 "DVARCAT.spad" 365764 365776 368866 368871) (-270 "DSMP.spad" 363231 363245 363536 363663) (-269 "DROPT.spad" 357190 357198 363221 363226) (-268 "DROPT1.spad" 356855 356865 357180 357185) (-267 "DROPT0.spad" 351712 351720 356845 356850) (-266 "DRAWPT.spad" 349885 349893 351702 351707) (-265 "DRAW.spad" 342761 342774 349875 349880) (-264 "DRAWHACK.spad" 342069 342079 342751 342756) (-263 "DRAWCX.spad" 339539 339547 342059 342064) (-262 "DRAWCURV.spad" 339086 339101 339529 339534) (-261 "DRAWCFUN.spad" 328618 328626 339076 339081) (-260 "DQAGG.spad" 326796 326806 328586 328613) (-259 "DPOLCAT.spad" 322145 322161 326664 326791) (-258 "DPOLCAT.spad" 317580 317598 322101 322106) (-257 "DPMO.spad" 310053 310069 310191 310436) (-256 "DPMM.spad" 302539 302557 302664 302909) (-255 "DOMTMPLT.spad" 302310 302318 302529 302534) (-254 "DOMCTOR.spad" 302065 302073 302300 302305) (-253 "DOMAIN.spad" 301152 301160 302055 302060) (-252 "DMP.spad" 298412 298427 298982 299109) (-251 "DLP.spad" 297764 297774 298402 298407) (-250 "DLIST.spad" 296343 296353 296947 296974) (-249 "DLAGG.spad" 294760 294770 296333 296338) (-248 "DIVRING.spad" 294302 294310 294704 294755) (-247 "DIVRING.spad" 293888 293898 294292 294297) (-246 "DISPLAY.spad" 292078 292086 293878 293883) (-245 "DIRPROD.spad" 281581 281597 282221 282352) (-244 "DIRPROD2.spad" 280399 280417 281571 281576) (-243 "DIRPCAT.spad" 279343 279359 280263 280394) (-242 "DIRPCAT.spad" 278016 278034 278938 278943) (-241 "DIOSP.spad" 276841 276849 278006 278011) (-240 "DIOPS.spad" 275837 275847 276821 276836) (-239 "DIOPS.spad" 274807 274819 275793 275798) (-238 "DIFRING.spad" 274645 274653 274787 274802) (-237 "DIFFSPC.spad" 274224 274232 274635 274640) (-236 "DIFFSPC.spad" 273801 273811 274214 274219) (-235 "DIFFDOM.spad" 272966 272977 273791 273796) (-234 "DIFFDOM.spad" 272129 272142 272956 272961) (-233 "DIFEXT.spad" 271300 271310 272109 272124) (-232 "DIFEXT.spad" 270388 270400 271199 271204) (-231 "DIAGG.spad" 270018 270028 270368 270383) (-230 "DIAGG.spad" 269656 269668 270008 270013) (-229 "DHMATRIX.spad" 267968 267978 269113 269140) (-228 "DFSFUN.spad" 261608 261616 267958 267963) (-227 "DFLOAT.spad" 258339 258347 261498 261603) (-226 "DFINTTLS.spad" 256570 256586 258329 258334) (-225 "DERHAM.spad" 254484 254516 256550 256565) (-224 "DEQUEUE.spad" 253808 253818 254091 254118) (-223 "DEGRED.spad" 253425 253439 253798 253803) (-222 "DEFINTRF.spad" 250962 250972 253415 253420) (-221 "DEFINTEF.spad" 249472 249488 250952 250957) (-220 "DEFAST.spad" 248840 248848 249462 249467) (-219 "DECIMAL.spad" 246946 246954 247307 247400) (-218 "DDFACT.spad" 244759 244776 246936 246941) (-217 "DBLRESP.spad" 244359 244383 244749 244754) (-216 "DBASE.spad" 243023 243033 244349 244354) (-215 "DATAARY.spad" 242485 242498 243013 243018) (-214 "D03FAFA.spad" 242313 242321 242475 242480) (-213 "D03EEFA.spad" 242133 242141 242303 242308) (-212 "D03AGNT.spad" 241219 241227 242123 242128) (-211 "D02EJFA.spad" 240681 240689 241209 241214) (-210 "D02CJFA.spad" 240159 240167 240671 240676) (-209 "D02BHFA.spad" 239649 239657 240149 240154) (-208 "D02BBFA.spad" 239139 239147 239639 239644) (-207 "D02AGNT.spad" 233953 233961 239129 239134) (-206 "D01WGTS.spad" 232272 232280 233943 233948) (-205 "D01TRNS.spad" 232249 232257 232262 232267) (-204 "D01GBFA.spad" 231771 231779 232239 232244) (-203 "D01FCFA.spad" 231293 231301 231761 231766) (-202 "D01ASFA.spad" 230761 230769 231283 231288) (-201 "D01AQFA.spad" 230207 230215 230751 230756) (-200 "D01APFA.spad" 229631 229639 230197 230202) (-199 "D01ANFA.spad" 229125 229133 229621 229626) (-198 "D01AMFA.spad" 228635 228643 229115 229120) (-197 "D01ALFA.spad" 228175 228183 228625 228630) (-196 "D01AKFA.spad" 227701 227709 228165 228170) (-195 "D01AJFA.spad" 227224 227232 227691 227696) (-194 "D01AGNT.spad" 223291 223299 227214 227219) (-193 "CYCLOTOM.spad" 222797 222805 223281 223286) (-192 "CYCLES.spad" 219589 219597 222787 222792) (-191 "CVMP.spad" 219006 219016 219579 219584) (-190 "CTRIGMNP.spad" 217506 217522 218996 219001) (-189 "CTOR.spad" 217197 217205 217496 217501) (-188 "CTORKIND.spad" 216800 216808 217187 217192) (-187 "CTORCAT.spad" 216049 216057 216790 216795) (-186 "CTORCAT.spad" 215296 215306 216039 216044) (-185 "CTORCALL.spad" 214885 214895 215286 215291) (-184 "CSTTOOLS.spad" 214130 214143 214875 214880) (-183 "CRFP.spad" 207854 207867 214120 214125) (-182 "CRCEAST.spad" 207574 207582 207844 207849) (-181 "CRAPACK.spad" 206625 206635 207564 207569) (-180 "CPMATCH.spad" 206129 206144 206550 206555) (-179 "CPIMA.spad" 205834 205853 206119 206124) (-178 "COORDSYS.spad" 200843 200853 205824 205829) (-177 "CONTOUR.spad" 200254 200262 200833 200838) (-176 "CONTFRAC.spad" 196004 196014 200156 200249) (-175 "CONDUIT.spad" 195762 195770 195994 195999) (-174 "COMRING.spad" 195436 195444 195700 195757) (-173 "COMPPROP.spad" 194954 194962 195426 195431) (-172 "COMPLPAT.spad" 194721 194736 194944 194949) (-171 "COMPLEX.spad" 188858 188868 189102 189363) (-170 "COMPLEX2.spad" 188573 188585 188848 188853) (-169 "COMPILER.spad" 188122 188130 188563 188568) (-168 "COMPFACT.spad" 187724 187738 188112 188117) (-167 "COMPCAT.spad" 185796 185806 187458 187719) (-166 "COMPCAT.spad" 183596 183608 185260 185265) (-165 "COMMUPC.spad" 183344 183362 183586 183591) (-164 "COMMONOP.spad" 182877 182885 183334 183339) (-163 "COMM.spad" 182688 182696 182867 182872) (-162 "COMMAAST.spad" 182451 182459 182678 182683) (-161 "COMBOPC.spad" 181366 181374 182441 182446) (-160 "COMBINAT.spad" 180133 180143 181356 181361) (-159 "COMBF.spad" 177515 177531 180123 180128) (-158 "COLOR.spad" 176352 176360 177505 177510) (-157 "COLONAST.spad" 176018 176026 176342 176347) (-156 "CMPLXRT.spad" 175729 175746 176008 176013) (-155 "CLLCTAST.spad" 175391 175399 175719 175724) (-154 "CLIP.spad" 171499 171507 175381 175386) (-153 "CLIF.spad" 170154 170170 171455 171494) (-152 "CLAGG.spad" 166659 166669 170144 170149) (-151 "CLAGG.spad" 163035 163047 166522 166527) (-150 "CINTSLPE.spad" 162366 162379 163025 163030) (-149 "CHVAR.spad" 160504 160526 162356 162361) (-148 "CHARZ.spad" 160419 160427 160484 160499) (-147 "CHARPOL.spad" 159929 159939 160409 160414) (-146 "CHARNZ.spad" 159682 159690 159909 159924) (-145 "CHAR.spad" 157556 157564 159672 159677) (-144 "CFCAT.spad" 156884 156892 157546 157551) (-143 "CDEN.spad" 156080 156094 156874 156879) (-142 "CCLASS.spad" 154229 154237 155491 155530) (-141 "CATEGORY.spad" 153271 153279 154219 154224) (-140 "CATCTOR.spad" 153162 153170 153261 153266) (-139 "CATAST.spad" 152780 152788 153152 153157) (-138 "CASEAST.spad" 152494 152502 152770 152775) (-137 "CARTEN.spad" 147861 147885 152484 152489) (-136 "CARTEN2.spad" 147251 147278 147851 147856) (-135 "CARD.spad" 144546 144554 147225 147246) (-134 "CAPSLAST.spad" 144320 144328 144536 144541) (-133 "CACHSET.spad" 143944 143952 144310 144315) (-132 "CABMON.spad" 143499 143507 143934 143939) (-131 "BYTEORD.spad" 143174 143182 143489 143494) (-130 "BYTE.spad" 142601 142609 143164 143169) (-129 "BYTEBUF.spad" 140460 140468 141770 141797) (-128 "BTREE.spad" 139533 139543 140067 140094) (-127 "BTOURN.spad" 138538 138548 139140 139167) (-126 "BTCAT.spad" 137930 137940 138506 138533) (-125 "BTCAT.spad" 137342 137354 137920 137925) (-124 "BTAGG.spad" 136808 136816 137310 137337) (-123 "BTAGG.spad" 136294 136304 136798 136803) (-122 "BSTREE.spad" 135035 135045 135901 135928) (-121 "BRILL.spad" 133232 133243 135025 135030) (-120 "BRAGG.spad" 132172 132182 133222 133227) (-119 "BRAGG.spad" 131076 131088 132128 132133) (-118 "BPADICRT.spad" 129057 129069 129312 129405) (-117 "BPADIC.spad" 128721 128733 128983 129052) (-116 "BOUNDZRO.spad" 128377 128394 128711 128716) (-115 "BOP.spad" 123559 123567 128367 128372) (-114 "BOP1.spad" 121025 121035 123549 123554) (-113 "BOOLE.spad" 120675 120683 121015 121020) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index 973e2dfd..56198f5b 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,1125 +1,1128 @@ -(193859 . 3485644672) -(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((#0=(-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) #0#) |has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))))) -((((-574)) . T) (($) -2818 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-1051 (-417 (-574))))) ((|#1|) . T)) +(195368 . 3485684133) +(((|#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((#0=(-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) #0#) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) +((((-573)) . T) (($) -2817 (|has| |#1| (-314)) (|has| |#1| (-371)) (|has| |#1| (-357)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357)) (|has| |#1| (-1050 (-416 (-573))))) ((|#1|) . T)) (((|#2| |#2|) . T)) -((((-574)) . T)) -((($ $) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) ((|#2| |#2|) . T) ((#0=(-417 (-574)) #0#) |has| |#2| (-38 (-417 (-574))))) +((((-573)) . T)) +((($ $) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) ((|#2| |#2|) . T) ((#0=(-416 (-573)) #0#) |has| |#2| (-38 (-416 (-573))))) ((($) . T)) (((|#1|) . T)) -((($) . T) (((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($) . T) (((-573)) |has| |#1| (-648 (-573))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) (((|#2|) . T)) -((($) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574))))) -(|has| |#1| (-920)) -((((-872)) . T)) -((((-872)) . T)) -((((-872)) . T)) -((($) . T) (((-417 (-574))) . T)) +((($) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) ((|#2|) . T) (((-416 (-573))) |has| |#2| (-38 (-416 (-573))))) +(|has| |#1| (-919)) +((((-871)) . T)) +((((-871)) . T)) +((((-871)) . T)) +((($) . T) (((-416 (-573))) . T)) ((($) . T)) ((($) . T)) (((|#2| |#2|) . T)) ((((-145)) . T)) -((((-546)) . T) (((-1172)) . T) (((-227)) . T) (((-388)) . T) (((-903 (-388))) . T)) -(((|#1|) . T)) -((((-227)) . T) (((-872)) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -(((|#1|) . T)) -(-2818 (|has| |#1| (-21)) (|has| |#1| (-858))) -((($ $) . T) ((#0=(-417 (-574)) #0#) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1| |#1|) . T)) -(-2818 (|has| |#1| (-830)) (|has| |#1| (-860))) -((((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) (((-574)) |has| |#1| (-1051 (-574))) ((|#1|) . T)) -((((-872)) . T)) -((((-872)) . T)) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-566))) -(|has| |#1| (-858)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -((((-324 |#1|)) . T) (((-574)) . T) (($) . T)) +((((-545)) . T) (((-1171)) . T) (((-227)) . T) (((-387)) . T) (((-902 (-387))) . T)) +(((|#1|) . T)) +((((-227)) . T) (((-871)) . T)) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(((|#1|) . T)) +(-2817 (|has| |#1| (-21)) (|has| |#1| (-857))) +((($ $) . T) ((#0=(-416 (-573)) #0#) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1| |#1|) . T)) +(-2817 (|has| |#1| (-829)) (|has| |#1| (-859))) +((((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) (((-573)) |has| |#1| (-1050 (-573))) ((|#1|) . T)) +((((-871)) . T)) +((((-871)) . T)) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) +(|has| |#1| (-857)) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +((((-323 |#1|)) . T) (((-573)) . T) (($) . T)) (((|#1| |#2| |#3|) . T)) -((((-574)) . T) (((-880 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) -((($) . T) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) -((((-417 (-574))) . T) (((-709)) . T) (($) . T)) -((((-872)) . T)) -((((-1195)) . T)) -((((-1195)) . T)) +((((-573)) . T) (((-879 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) +((($) . T) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1|) . T)) +((((-416 (-573))) . T) (((-708)) . T) (($) . T)) +((((-871)) . T)) +((((-1194)) . T)) +((((-1194)) . T)) (((|#4|) . T)) -((((-417 (-574))) . T) (((-709)) . T) (($) . T)) -((((-872)) . T)) -((((-872)) |has| (-1107 |#1|) (-1113))) -(-2818 (|has| |#1| (-239)) (|has| |#1| (-294 $ $)) (|has| |#1| (-294 |#1| |#1|))) -((((-872)) . T) (((-1195)) . T)) +((((-416 (-573))) . T) (((-708)) . T) (($) . T)) +((((-871)) . T)) +((((-871)) |has| (-1106 |#1|) (-1112))) +(-2817 (|has| |#1| (-238)) (|has| |#1| (-293 $ $)) (|has| |#1| (-293 |#1| |#1|))) +((((-871)) . T) (((-1194)) . T)) (((|#1|) . T) ((|#2|) . T)) -((((-1195)) . T)) -(((|#1|) . T) (((-574)) |has| |#1| (-1051 (-574))) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574))))) -(-2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) -(-2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) -(((|#2| (-492 (-2863 |#1|) (-781))) . T)) -(((|#1| (-541 (-1190))) . T)) -(((#0=(-880 |#1|) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T)) -((((-1172)) . T) (((-969 (-130))) . T) (((-872)) . T)) -((((-872)) . T)) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -(|has| |#4| (-377)) -(|has| |#3| (-377)) -(((|#1|) . T)) -((((-1190)) . T)) -((((-516)) . T)) -((((-880 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-872)) . T)) +((((-1194)) . T)) +(((|#1|) . T) (((-573)) |has| |#1| (-1050 (-573))) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573))))) +(-2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) +(-2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) +(((|#2| (-491 (-2862 |#1|) (-780))) . T)) +(((|#1| (-540 (-1189))) . T)) +(((#0=(-879 |#1|) #0#) . T) ((#1=(-416 (-573)) #1#) . T) (($ $) . T)) +((((-1171)) . T) (((-968 (-130))) . T) (((-871)) . T)) +((((-871)) . T)) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +(|has| |#4| (-376)) +(|has| |#3| (-376)) +(((|#1|) . T)) +((((-1189)) . T)) +((((-515)) . T)) +((((-879 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-871)) . T)) (((|#1| |#2|) . T)) ((($) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) -(|has| |#1| (-566)) -((((-574)) . T) (((-417 (-574))) -2818 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1051 (-417 (-574))))) ((|#2|) . T) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) (((-874 |#1|)) . T)) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-566))) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-566))) -((((-2 (|:| -2576 |#1|) (|:| -3715 |#2|))) . T)) -((($) . T)) -((((-574)) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))) ((|#1|) . T) (($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) (((-1190)) . T)) -((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1113)))) -((((-546)) |has| |#1| (-624 (-546)))) -((((-1190)) . T)) -((((-574)) . T) (($) . T)) -((((-591 |#1|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) -((($) . T) (((-574)) . T) (((-417 (-574))) . T)) -((($) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T)) +(|has| |#1| (-565)) +((((-573)) . T) (((-416 (-573))) -2817 (|has| |#2| (-38 (-416 (-573)))) (|has| |#2| (-1050 (-416 (-573))))) ((|#2|) . T) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) (((-873 |#1|)) . T)) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) +((((-2 (|:| -2575 |#1|) (|:| -3907 |#2|))) . T)) +((($) . T)) +((((-573)) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573))))) ((|#1|) . T) (($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) (((-1189)) . T)) +((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-859)) (|has| |#1| (-1112)))) +((((-545)) |has| |#1| (-623 (-545)))) +((((-1189)) . T)) +((((-573)) . T) (($) . T)) +((((-590 |#1|)) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) +((($) . T) (((-573)) . T) (((-416 (-573))) . T)) +((($) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -(((|#1|) . T) (((-574)) . T) (($) . T)) -((((-872)) . T)) -((((-872)) . T)) -(((|#1|) . T)) -((((-417 (-574))) . T) (($) . T)) -((((-872)) . T)) -((((-872)) . T)) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(((|#1|) . T) (((-573)) . T) (($) . T)) +((((-871)) . T)) +((((-871)) . T)) +(((|#1|) . T)) +((((-416 (-573))) . T) (($) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-871)) . T)) (((|#1| |#2|) . T)) -((((-872)) . T)) (((|#1|) . T)) -(|has| |#1| (-1113)) -(((#0=(-417 (-574)) #0#) |has| |#2| (-38 (-417 (-574)))) ((|#2| |#2|) . T) (($ $) -2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))) +(((#0=(-416 (-573)) #0#) |has| |#2| (-38 (-416 (-573)))) ((|#2| |#2|) . T) (($ $) -2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) +(|has| |#1| (-1112)) (((|#1|) . T)) -((((-117 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))) -((($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) -((((-117 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) -((((-417 (-574))) . T) (($) . T) (((-574)) . T)) -((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T)) -(((|#2|) . T) (((-574)) . T) ((|#6|) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))) +((((-117 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) +((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) |has| |#2| (-174)) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) +((($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) +((((-117 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) +((((-416 (-573))) . T) (($) . T) (((-573)) . T)) +((($) . T) (((-573)) . T) (((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T)) +(((|#2|) . T) (((-573)) . T) ((|#6|) . T)) +((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T) (($) -2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) ((($) . T)) (((|#2|) . T)) ((($) . T)) -(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T) (($) . T)) -((((-574)) . T) (($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))) ((|#1| |#1|) . T) (($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))) +(((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) (((-573)) . T) (($) . T)) +((((-573)) . T) (($) . T) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +(((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573)))) ((|#1| |#1|) . T) (($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919)))) +((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919)))) ((($ $) . T)) ((($) . T)) -((((-574)) . T) (($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((((-872)) . T)) +((((-573)) . T) (($) . T) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-377)) +(|has| |#1| (-376)) (((|#1|) . T)) -((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1273 |#1| |#2| |#3|)) |has| |#1| (-372)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) . T)) -(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (($) . T)) -(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113))) +((((-871)) . T)) +((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (((-1272 |#1| |#2| |#3|)) |has| |#1| (-371)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) . T)) +(((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) (($) . T)) (((|#1|) . T)) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -((((-574)) . T)) -((((-872)) . T)) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) +((((-573)) . T)) +((((-871)) . T)) (((|#1| |#2|) . T)) -(-2818 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-911 (-1190))) (|has| |#1| (-1062))) -(-2818 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-911 (-1190))) (|has| |#1| (-1062))) -((($) |has| |#1| (-239))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -(|has| |#1| (-566)) -(((|#1|) . T) (((-574)) . T) (($) . T)) -((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T)) -(-2818 (|has| |#1| (-21)) (|has| |#1| (-858))) -((($ $) . T) ((#0=(-417 (-574)) #0#) . T)) -(-2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) -(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113))) -(|has| |#1| (-1113)) -(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113))) -(|has| |#1| (-1113)) -(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113))) -(|has| |#1| (-858)) +(-2817 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-910 (-1189))) (|has| |#1| (-1061))) +(-2817 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-910 (-1189))) (|has| |#1| (-1061))) +((($) |has| |#1| (-238))) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(|has| |#1| (-565)) +(((|#1|) . T) (((-573)) . T) (($) . T)) +((((-416 |#2|)) . T) (((-416 (-573))) . T) (($) . T)) +(-2817 (|has| |#1| (-21)) (|has| |#1| (-857))) +((($ $) . T) ((#0=(-416 (-573)) #0#) . T)) +(-2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) +(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) +(|has| |#1| (-1112)) +(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) +(|has| |#1| (-1112)) +(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) +(|has| |#1| (-857)) (((|#1| |#1|) . T)) -((($) . T) (((-417 (-574))) . T)) +((($) . T) (((-416 (-573))) . T)) (((|#1|) . T)) -((((-417 (-574))) . T) (($) . T)) -((((-574) (-130)) . T)) -((((-872)) . T)) -((($) . T) (((-417 (-574))) . T)) +((((-416 (-573))) . T) (($) . T)) +((((-573) (-130)) . T)) +((((-871)) . T)) +((($) . T) (((-416 (-573))) . T)) ((((-130)) . T)) -(-2818 (|has| |#4| (-803)) (|has| |#4| (-858))) -(-2818 (|has| |#4| (-803)) (|has| |#4| (-858))) -(-2818 (|has| |#3| (-803)) (|has| |#3| (-858))) -(-2818 (|has| |#3| (-803)) (|has| |#3| (-858))) +(-2817 (|has| |#4| (-802)) (|has| |#4| (-857))) +(-2817 (|has| |#4| (-802)) (|has| |#4| (-857))) +(-2817 (|has| |#3| (-802)) (|has| |#3| (-857))) +(-2817 (|has| |#3| (-802)) (|has| |#3| (-857))) (((|#1| |#2|) . T)) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-358))) -((((-1195)) . T)) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-357))) +((((-1194)) . T)) (((|#1| |#2|) . T)) -(((|#2| |#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-317 |#2|))) (((-1190) |#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-524 (-1190) |#2|)))) -(|has| |#1| (-1113)) -(|has| |#1| (-1113)) -((((-574)) . T) (((-417 (-574))) . T)) -(((|#1| (-1190) (-1101 (-1190)) (-541 (-1101 (-1190)))) . T)) -((((-574) |#1|) . T)) -((((-574)) . T)) -((((-574)) . T)) -((((-921 |#1|)) . T)) -(((|#1| (-541 |#2|)) . T)) -((((-574)) . T)) -((((-574)) . T)) -(((|#1|) . T)) -(-2818 (|has| |#2| (-174)) (|has| |#2| (-736)) (|has| |#2| (-858)) (|has| |#2| (-1062))) -(((|#1| (-781)) . T)) -(|has| |#2| (-803)) -(-2818 (|has| |#2| (-803)) (|has| |#2| (-858))) -(|has| |#2| (-858)) +(((|#2| |#2|) -12 (|has| |#1| (-371)) (|has| |#2| (-316 |#2|))) (((-1189) |#2|) -12 (|has| |#1| (-371)) (|has| |#2| (-523 (-1189) |#2|)))) +(|has| |#1| (-1112)) +(|has| |#1| (-1112)) +((((-573)) . T) (((-416 (-573))) . T)) +(((|#1| (-1189) (-1100 (-1189)) (-540 (-1100 (-1189)))) . T)) +((((-573) |#1|) . T)) +((((-573)) . T)) +((((-573)) . T)) +((((-920 |#1|)) . T)) +(((|#1| (-540 |#2|)) . T)) +((((-573)) . T)) +((((-573)) . T)) +(((|#1|) . T)) +(-2817 (|has| |#2| (-174)) (|has| |#2| (-735)) (|has| |#2| (-857)) (|has| |#2| (-1061))) +(((|#1| (-780)) . T)) +(|has| |#2| (-802)) +(-2817 (|has| |#2| (-802)) (|has| |#2| (-857))) +(|has| |#2| (-857)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-1172) |#1|) . T)) -((((-1248 (-574)) $) . T) (((-574) (-130)) . T)) +((((-1171) |#1|) . T)) +((((-1247 (-573)) $) . T) (((-573) (-130)) . T)) (((|#1|) . T)) -((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113)))) -(((|#3| (-781)) . T)) +((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) +(((|#3| (-780)) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((($) . T) (((-417 (-574))) . T)) +((($) . T) (((-416 (-573))) . T)) ((($) . T)) ((($) . T)) -(-2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) -(-2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) -((((-417 (-574))) . T) (($) . T)) +(-2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) +(-2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) +((((-416 (-573))) . T) (($) . T)) ((($) . T)) ((($) . T)) -(|has| |#1| (-1113)) -((((-417 (-574))) . T) (((-574)) . T)) -((((-574)) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574))))) -((((-574)) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))) ((|#1|) . T) (($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#2|) . T)) -((((-1190) |#2|) |has| |#2| (-524 (-1190) |#2|)) ((|#2| |#2|) |has| |#2| (-317 |#2|))) -((((-417 (-574))) . T) (((-574)) . T)) -((((-574)) . T) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) (((-1095)) . T) ((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574)))))) +(|has| |#1| (-1112)) +((((-416 (-573))) . T) (((-573)) . T)) +((((-573)) . T) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573))))) +((((-573)) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573))))) ((|#1|) . T) (($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#2|) . T)) +((((-1189) |#2|) |has| |#2| (-523 (-1189) |#2|)) ((|#2| |#2|) |has| |#2| (-316 |#2|))) +((((-416 (-573))) . T) (((-573)) . T)) +((((-573)) . T) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) (((-1094)) . T) ((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573)))))) (((|#1|) . T) (($) . T)) -((((-574)) . T)) -((((-574)) . T)) -((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) -((((-574)) . T)) -((((-574)) . T)) -((((-417 (-574))) . T) (($) . T)) -(((#0=(-709) (-1186 #0#)) . T)) -((((-417 (-574))) . T) (((-574)) . T) (($) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) -(((|#1|) . T)) -(|has| |#2| (-372)) -((((-1248 (-574)) $) . T) (((-574) |#1|) . T)) -((($) |has| (-417 |#2|) (-239))) -((($) . T) (((-574)) . T) (((-417 (-574))) . T)) +((((-573)) . T)) +((((-573)) . T)) +((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#1|) |has| |#1| (-174))) +((((-573)) . T)) +((((-573)) . T)) +((((-416 (-573))) . T) (($) . T)) +(((#0=(-708) (-1185 #0#)) . T)) +((((-416 (-573))) . T) (((-573)) . T) (($) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) +(((|#1|) . T)) +(|has| |#2| (-371)) +((((-1247 (-573)) $) . T) (((-573) |#1|) . T)) +((($) |has| (-416 |#2|) (-238))) +((($) . T) (((-573)) . T) (((-416 (-573))) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-872)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -((((-1172) |#1|) . T)) -((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T)) +((((-871)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +((((-1171) |#1|) . T)) +((($) . T) (((-573)) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T)) (((|#3| |#3|) . T)) -((((-872)) . T)) -((((-872)) . T)) +((((-871)) . T)) +((((-871)) . T)) (((|#1| |#1|) . T)) -(((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))) ((|#1| |#1|) . T) (($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))) -((($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))) -((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((($) -2818 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1062))) ((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1062))) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062)))) -((((-872)) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-574) |#1|) . T)) -((((-872)) . T)) -((((-171 (-227))) |has| |#1| (-1035)) (((-171 (-388))) |has| |#1| (-1035)) (((-546)) |has| |#1| (-624 (-546))) (((-1186 |#1|)) . T) (((-903 (-574))) |has| |#1| (-624 (-903 (-574)))) (((-903 (-388))) |has| |#1| (-624 (-903 (-388))))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -(((|#1|) . T)) -(-2818 (|has| |#1| (-21)) (|has| |#1| (-858))) -(-2818 (|has| |#1| (-21)) (|has| |#1| (-858))) -((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#2|) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566)))) -(|has| |#1| (-372)) -((((-872)) . T)) +(((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573)))) ((|#1| |#1|) . T) (($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919)))) +((($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1| |#1|) . T) ((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573))))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919)))) +((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((($) -2817 (|has| |#2| (-174)) (|has| |#2| (-857)) (|has| |#2| (-1061))) ((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-1061))) (((-573)) -12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) +((((-871)) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-573) |#1|) . T)) +((((-871)) . T)) +((((-171 (-227))) |has| |#1| (-1034)) (((-171 (-387))) |has| |#1| (-1034)) (((-545)) |has| |#1| (-623 (-545))) (((-1185 |#1|)) . T) (((-902 (-573))) |has| |#1| (-623 (-902 (-573)))) (((-902 (-387))) |has| |#1| (-623 (-902 (-387))))) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(((|#1|) . T)) +(-2817 (|has| |#1| (-21)) (|has| |#1| (-857))) +(-2817 (|has| |#1| (-21)) (|has| |#1| (-857))) +((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) ((|#2|) |has| |#1| (-371)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565)))) +(|has| |#1| (-371)) +((((-871)) . T)) ((($) . T)) ((($) . T)) ((((-130)) . T)) -((($) |has| |#2| (-239))) -(-12 (|has| |#4| (-239)) (|has| |#4| (-1062))) -(-12 (|has| |#3| (-239)) (|has| |#3| (-1062))) -(-2818 (|has| |#4| (-174)) (|has| |#4| (-858)) (|has| |#4| (-1062))) -(-2818 (|has| |#3| (-174)) (|has| |#3| (-858)) (|has| |#3| (-1062))) -((((-872)) . T) (((-1195)) . T)) -((((-872)) . T) (((-1195)) . T)) -((((-1195)) . T)) -((((-1195)) . T)) -((((-872)) . T)) -(((|#1|) . T)) -((((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) (((-574)) |has| |#1| (-1051 (-574))) ((|#1|) . T)) -(((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) -(((|#2|) . T) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) . T)) -(|has| |#1| (-566)) -((((-574)) -2818 (|has| |#4| (-174)) (|has| |#4| (-858)) (-12 (|has| |#4| (-1051 (-574))) (|has| |#4| (-1113))) (|has| |#4| (-1062))) ((|#4|) -2818 (|has| |#4| (-174)) (|has| |#4| (-1113))) (((-417 (-574))) -12 (|has| |#4| (-1051 (-417 (-574)))) (|has| |#4| (-1113)))) -((((-574)) -2818 (|has| |#3| (-174)) (|has| |#3| (-858)) (-12 (|has| |#3| (-1051 (-574))) (|has| |#3| (-1113))) (|has| |#3| (-1062))) ((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-1113))) (((-417 (-574))) -12 (|has| |#3| (-1051 (-417 (-574)))) (|has| |#3| (-1113)))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -(|has| |#1| (-566)) -(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113))) -(((|#1|) . T)) -(|has| |#1| (-566)) -(|has| |#1| (-566)) -(|has| |#1| (-566)) -((((-709)) . T)) -(((|#1|) . T)) -(-12 (|has| |#1| (-1015)) (|has| |#1| (-1216))) -((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T)) -(((|#2|) . T) (($) . T) (((-417 (-574))) . T)) -((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T)) -(-12 (|has| |#1| (-1113)) (|has| |#2| (-1113))) -((($) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T)) -((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1188 |#1| |#2| |#3|)) |has| |#1| (-372)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) . T)) -(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (($) . T)) -(((|#4| |#4|) -2818 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-1062))) (($ $) |has| |#4| (-174))) -(((|#3| |#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1062))) (($ $) |has| |#3| (-174))) -(((|#2|) . T)) -(((|#1|) . T)) -((((-546)) |has| |#2| (-624 (-546))) (((-903 (-388))) |has| |#2| (-624 (-903 (-388)))) (((-903 (-574))) |has| |#2| (-624 (-903 (-574))))) -((((-872)) . T)) +(-12 (|has| |#4| (-238)) (|has| |#4| (-1061))) +(-12 (|has| |#3| (-238)) (|has| |#3| (-1061))) +((($) |has| |#2| (-238))) +(-2817 (|has| |#4| (-174)) (|has| |#4| (-857)) (|has| |#4| (-1061))) +(-2817 (|has| |#3| (-174)) (|has| |#3| (-857)) (|has| |#3| (-1061))) +((((-871)) . T) (((-1194)) . T)) +((((-871)) . T) (((-1194)) . T)) +((((-1194)) . T)) +((((-1194)) . T)) +((((-871)) . T)) +(((|#1|) . T)) +((((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) (((-573)) |has| |#1| (-1050 (-573))) ((|#1|) . T)) +(((|#1|) . T) (((-573)) |has| |#1| (-648 (-573)))) +(((|#2|) . T) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) . T)) +(|has| |#1| (-565)) +((((-573)) -2817 (|has| |#4| (-174)) (|has| |#4| (-857)) (-12 (|has| |#4| (-1050 (-573))) (|has| |#4| (-1112))) (|has| |#4| (-1061))) ((|#4|) -2817 (|has| |#4| (-174)) (|has| |#4| (-1112))) (((-416 (-573))) -12 (|has| |#4| (-1050 (-416 (-573)))) (|has| |#4| (-1112)))) +((((-573)) -2817 (|has| |#3| (-174)) (|has| |#3| (-857)) (-12 (|has| |#3| (-1050 (-573))) (|has| |#3| (-1112))) (|has| |#3| (-1061))) ((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-1112))) (((-416 (-573))) -12 (|has| |#3| (-1050 (-416 (-573)))) (|has| |#3| (-1112)))) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(|has| |#1| (-565)) +(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) +(((|#1|) . T)) +(|has| |#1| (-565)) +(|has| |#1| (-565)) +(|has| |#1| (-565)) +((((-708)) . T)) +(((|#1|) . T)) +(-12 (|has| |#1| (-1014)) (|has| |#1| (-1215))) +((((-416 |#2|)) . T) (((-416 (-573))) . T) (($) . T)) +(((|#2|) . T) (($) . T) (((-416 (-573))) . T)) +((((-416 |#2|)) . T) (((-416 (-573))) . T) (($) . T)) +(-12 (|has| |#1| (-1112)) (|has| |#2| (-1112))) +((($) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T)) +((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (((-1187 |#1| |#2| |#3|)) |has| |#1| (-371)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) . T)) +(((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) (($) . T)) +(((|#4| |#4|) -2817 (|has| |#4| (-174)) (|has| |#4| (-371)) (|has| |#4| (-1061))) (($ $) |has| |#4| (-174))) +(((|#3| |#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-1061))) (($ $) |has| |#3| (-174))) +(((|#2|) . T)) +(((|#1|) . T)) +((((-545)) |has| |#2| (-623 (-545))) (((-902 (-387))) |has| |#2| (-623 (-902 (-387)))) (((-902 (-573))) |has| |#2| (-623 (-902 (-573))))) +((((-871)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-2 (|:| -2576 |#1|) (|:| -3715 |#2|))) . T) (((-872)) . T)) -((((-546)) |has| |#1| (-624 (-546))) (((-903 (-388))) |has| |#1| (-624 (-903 (-388)))) (((-903 (-574))) |has| |#1| (-624 (-903 (-574))))) -(((|#4|) -2818 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-1062))) (($) |has| |#4| (-174))) -(((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1062))) (($) |has| |#3| (-174))) -((((-2 (|:| -2576 |#1|) (|:| -3715 |#2|))) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-546)) . T) (((-574)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T)) -((((-654 |#1|)) . T)) -(((|#1|) . T) (((-574)) |has| |#1| (-1051 (-574))) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574))))) -((($) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) -((((-417 $) (-417 $)) |has| |#2| (-566)) (($ $) . T) ((|#2| |#2|) . T)) -((((-2 (|:| -3693 (-1172)) (|:| -1908 (-52)))) . T)) -(((|#1|) . T)) -(|has| |#2| (-920)) -((((-1172) (-52)) . T)) -((((-574)) |has| #0=(-417 |#2|) (-649 (-574))) ((#0#) . T)) -((((-546)) . T) (((-227)) . T) (((-388)) . T) (((-903 (-388))) . T)) -((((-872)) . T)) -(-2818 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-911 (-1190))) (|has| |#1| (-1062))) +((((-2 (|:| -2575 |#1|) (|:| -3907 |#2|))) . T) (((-871)) . T)) +((((-545)) |has| |#1| (-623 (-545))) (((-902 (-387))) |has| |#1| (-623 (-902 (-387)))) (((-902 (-573))) |has| |#1| (-623 (-902 (-573))))) +(((|#4|) -2817 (|has| |#4| (-174)) (|has| |#4| (-371)) (|has| |#4| (-1061))) (($) |has| |#4| (-174))) +(((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-1061))) (($) |has| |#3| (-174))) +((((-2 (|:| -2575 |#1|) (|:| -3907 |#2|))) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-545)) . T) (((-573)) . T) (((-902 (-573))) . T) (((-387)) . T) (((-227)) . T)) +((((-653 |#1|)) . T)) +(((|#1|) . T) (((-573)) |has| |#1| (-1050 (-573))) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573))))) +((($) . T) (((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T) (((-573)) |has| |#2| (-648 (-573)))) +((((-416 $) (-416 $)) |has| |#2| (-565)) (($ $) . T) ((|#2| |#2|) . T)) +((((-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) . T)) +(((|#1|) . T)) +(|has| |#2| (-919)) +((((-1171) (-52)) . T)) +((((-573)) |has| #0=(-416 |#2|) (-648 (-573))) ((#0#) . T)) +((((-545)) . T) (((-227)) . T) (((-387)) . T) (((-902 (-387))) . T)) +((((-871)) . T)) +(-2817 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-910 (-1189))) (|has| |#1| (-1061))) (((|#1|) |has| |#1| (-174))) -(((|#1| $) |has| |#1| (-294 |#1| |#1|))) -((((-872)) . T)) -((((-872)) . T)) -((((-417 (-574))) . T) (($) . T)) -((((-417 (-574))) . T) (($) . T)) -((((-872)) . T)) -(|has| |#1| (-860)) -(((|#2|) . T) (((-574)) . T) (((-829 |#1|)) . T)) -((((-921 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) -(|has| |#1| (-1113)) -((((-921 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) -(((|#1|) . T)) -((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1113)))) -((((-546)) |has| |#1| (-624 (-546)))) -((((-872)) . T) (((-1195)) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))) -((((-1195)) . T)) -((($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(|has| |#1| (-239)) -((($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(((|#1| (-541 (-828 (-1190)))) . T)) -(((|#1| (-984)) . T)) -((((-574)) . T) ((|#2|) . T)) -(((#0=(-880 |#1|) $) |has| #0# (-294 #0# #0#))) -((((-574) |#4|) . T)) -((((-574) |#3|) . T)) +(((|#1| $) |has| |#1| (-293 |#1| |#1|))) +((((-871)) . T)) +((((-871)) . T)) +((((-416 (-573))) . T) (($) . T)) +((((-416 (-573))) . T) (($) . T)) +((((-871)) . T)) +(|has| |#1| (-859)) +(((|#2|) . T) (((-573)) . T) (((-828 |#1|)) . T)) +((((-920 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) +(|has| |#1| (-1112)) +((((-920 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) +(((|#1|) . T)) +((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-859)) (|has| |#1| (-1112)))) +((((-545)) |has| |#1| (-623 (-545)))) +((((-871)) . T) (((-1194)) . T)) +((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) |has| |#2| (-174)) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) +((((-1194)) . T)) +((($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +(|has| |#1| (-238)) +((($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +(((|#1| (-540 (-827 (-1189)))) . T)) +(((|#1| (-983)) . T)) +((((-573)) . T) ((|#2|) . T)) +(((#0=(-879 |#1|) $) |has| #0# (-293 #0# #0#))) +((((-573) |#4|) . T)) +((((-573) |#3|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) -(|has| |#1| (-1165)) -((((-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) . T)) -(|has| (-1267 |#1| |#2| |#3| |#4|) (-146)) -(|has| (-1267 |#1| |#2| |#3| |#4|) (-148)) +(|has| |#1| (-1164)) +((((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) . T)) +(|has| (-1266 |#1| |#2| |#3| |#4|) (-146)) +(|has| (-1266 |#1| |#2| |#3| |#4|) (-148)) (|has| |#1| (-146)) (|has| |#1| (-148)) -((((-1190)) -12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) +((((-1189)) -12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (((|#1|) |has| |#1| (-174))) -(|has| |#1| (-1113)) -((((-1172) |#1|) . T)) +(|has| |#1| (-1112)) +((((-1171) |#1|) . T)) (((|#2|) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) -((((-1138 |#1| (-1190))) . T) (((-574)) . T) (((-828 (-1190))) . T) (($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))) (((-1190)) . T)) -(|has| |#2| (-377)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) +(((|#2|) . T) (((-573)) |has| |#2| (-648 (-573)))) +((((-1137 |#1| (-1189))) . T) (((-573)) . T) (((-827 (-1189))) . T) (($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573))))) (((-1189)) . T)) +(|has| |#2| (-376)) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) ((($) . T) ((|#1|) . T)) -(((|#2|) |has| |#2| (-1062))) -((((-872)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((#0=(-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) #0#) |has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))))) +(((|#2|) |has| |#2| (-1061))) +((((-871)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((#0=(-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) #0#) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) (((|#1|) . T)) -((((-1281 (-348 (-2956) (-2956 (QUOTE X)) (-709)))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((#0=(-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) #0#) |has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-317 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))))) -((((-872)) . T)) -((((-574) |#1|) . T)) -((((-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#2| (-624 (-546)))) (((-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388))))) (((-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) +((((-1280 (-347 (-2955) (-2955 (QUOTE X)) (-708)))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((#0=(-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) #0#) |has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))))) +((((-871)) . T)) +((((-573) |#1|) . T)) +((((-545)) -12 (|has| |#1| (-623 (-545))) (|has| |#2| (-623 (-545)))) (((-902 (-387))) -12 (|has| |#1| (-623 (-902 (-387)))) (|has| |#2| (-623 (-902 (-387))))) (((-902 (-573))) -12 (|has| |#1| (-623 (-902 (-573)))) (|has| |#2| (-623 (-902 (-573)))))) ((($) . T)) -((((-872)) . T)) -((($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) -((((-872)) . T)) +((((-871)) . T)) +((($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1| |#1|) . T) ((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573))))) +((((-871)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((((-872)) . T)) -((((-872)) . T)) -(|has| (-1266 |#2| |#3| |#4|) (-148)) -(|has| (-1266 |#2| |#3| |#4|) (-146)) -(((|#2|) |has| |#2| (-1113)) (((-574)) -12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113))) (((-417 (-574))) -12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113)))) +((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((((-871)) . T)) +((((-871)) . T)) +(|has| (-1265 |#2| |#3| |#4|) (-148)) +(|has| (-1265 |#2| |#3| |#4|) (-146)) +(((|#2|) |has| |#2| (-1112)) (((-573)) -12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112))) (((-416 (-573))) -12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) (((|#1|) . T)) -(|has| |#1| (-1113)) -((((-872)) . T)) +(|has| |#1| (-1112)) +((((-871)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-2818 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-911 (-1190))) (|has| |#1| (-1062))) +(-2817 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-910 (-1189))) (|has| |#1| (-1061))) (((|#1|) . T)) -((((-574) |#1|) . T)) +((((-573) |#1|) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) -(-2818 (|has| |#1| (-21)) (|has| |#1| (-858))) -((((-872)) |has| |#1| (-1113))) -((($) |has| |#1| (-239))) -(-2818 (|has| |#1| (-483)) (|has| |#1| (-736)) (|has| |#1| (-911 (-1190))) (|has| |#1| (-1062)) (|has| |#1| (-1125))) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-358))) -((((-921 |#1|)) . T)) -((((-417 |#2|) |#3|) . T)) -(|has| |#1| (-15 * (|#1| (-574) |#1|))) -((((-417 (-574))) . T) (($) . T)) +(-2817 (|has| |#1| (-21)) (|has| |#1| (-857))) +((((-871)) |has| |#1| (-1112))) +((($) |has| |#1| (-238))) +(-2817 (|has| |#1| (-482)) (|has| |#1| (-735)) (|has| |#1| (-910 (-1189))) (|has| |#1| (-1061)) (|has| |#1| (-1124))) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-357))) +((((-920 |#1|)) . T)) +((((-416 |#2|) |#3|) . T)) +(|has| |#1| (-15 * (|#1| (-573) |#1|))) +((((-416 (-573))) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) -((((-417 (-574))) . T) (($) . T)) -((((-872)) . T)) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) -(|has| |#1| (-372)) -(-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))) -(|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) -(|has| |#1| (-372)) -(|has| |#1| (-15 * (|#1| (-781) |#1|))) -((((-574)) . T)) -((((-574)) . T)) -((((-1155 |#2| (-417 (-963 |#1|)))) . T) (((-417 (-963 |#1|))) . T)) +((((-416 (-573))) . T) (($) . T)) +((((-871)) . T)) +((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-565))) +(|has| |#1| (-371)) +(-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|)))) +(|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) +(|has| |#1| (-371)) +(|has| |#1| (-15 * (|#1| (-780) |#1|))) +((((-573)) . T)) +((((-573)) . T)) +((((-1154 |#2| (-416 (-962 |#1|)))) . T) (((-416 (-962 |#1|))) . T)) ((($) . T)) (((|#1|) |has| |#1| (-174)) (($) . T)) -(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (($) . T)) -(((|#1|) . T)) -((((-1248 (-574)) $) . T) (((-574) |#1|) . T)) -((((-872)) . T)) -(((|#2|) . T)) -(-2818 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) -((((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) -((($) |has| |#1| (-566)) (((-574)) . T)) -(-2818 (|has| |#2| (-803)) (|has| |#2| (-858))) -(-2818 (|has| |#2| (-803)) (|has| |#2| (-858))) -((((-1273 |#1| |#2| |#3|)) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-574)) . T) ((|#1|) |has| |#1| (-174))) -((((-1277 |#2|)) . T) (((-1273 |#1| |#2| |#3|)) . T) (((-1245 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566)))) -((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T)) -(((|#1|) . T)) -((((-1190)) -12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) -(((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -(-12 (|has| |#1| (-372)) (|has| |#2| (-830))) -(-2818 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) -(((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))) ((|#1| |#1|) . T) (($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-566)))) -((($ $) |has| |#1| (-566)) ((|#1| |#1|) . T)) -(((#0=(-709) (-1186 #0#)) . T)) -((((-591 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) -((((-417 (-574))) . T) (($) . T)) -((((-872)) . T) (((-1281 |#4|)) . T)) -((((-872)) . T) (((-1281 |#3|)) . T)) -((((-591 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) -((($) . T) (((-417 (-574))) . T)) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-566)))) -((($) |has| |#1| (-566)) ((|#1|) . T)) -((((-872)) . T)) -((($) . T) (((-574)) . T) (((-417 (-574))) . T)) -((($) . T)) -((($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((#1=(-1273 |#1| |#2| |#3|) #1#) |has| |#1| (-372)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) -((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1273 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) . T)) -(((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) -(((|#3|) |has| |#3| (-1062))) -((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) -(|has| (-1107 |#1|) (-1113)) -(((|#2| (-829 |#1|)) . T)) -((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T)) -((((-574)) . T) (($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))) +(((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) (($) . T)) +(((|#1|) . T)) +((((-1247 (-573)) $) . T) (((-573) |#1|) . T)) +((((-871)) . T)) +(((|#2|) . T)) +(-2817 (|has| |#2| (-371)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) +((((-573)) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-565))) +((($) |has| |#1| (-565)) (((-573)) . T)) +(-2817 (|has| |#2| (-802)) (|has| |#2| (-857))) +(-2817 (|has| |#2| (-802)) (|has| |#2| (-857))) +((((-1272 |#1| |#2| |#3|)) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-573)) . T) ((|#1|) |has| |#1| (-174))) +((((-1276 |#2|)) . T) (((-1272 |#1| |#2| |#3|)) . T) (((-1244 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (((-573)) . T) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565)))) +((($) |has| |#1| (-565)) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) (((-573)) . T)) +(((|#1|) . T)) +((((-1189)) -12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) +(((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(-12 (|has| |#1| (-371)) (|has| |#2| (-829))) +(-2817 (|has| |#1| (-314)) (|has| |#1| (-371)) (|has| |#1| (-357)) (|has| |#1| (-565))) +(((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573)))) ((|#1| |#1|) . T) (($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-565)))) +((($ $) |has| |#1| (-565)) ((|#1| |#1|) . T)) +(((#0=(-708) (-1185 #0#)) . T)) +((((-590 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) +((((-416 (-573))) . T) (($) . T)) +((((-871)) . T) (((-1280 |#4|)) . T)) +((((-871)) . T) (((-1280 |#3|)) . T)) +((((-590 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) +((($) . T) (((-416 (-573))) . T)) +((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-565)))) +((($) |has| |#1| (-565)) ((|#1|) . T)) +((((-871)) . T)) +((($) . T) (((-573)) . T) (((-416 (-573))) . T)) +((($) . T)) +((($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) ((#0=(-416 (-573)) #0#) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((#1=(-1272 |#1| |#2| |#3|) #1#) |has| |#1| (-371)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) ((#0=(-416 (-573)) #0#) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371)))) +((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (((-1272 |#1| |#2| |#3|)) |has| |#1| (-371)) ((|#1|) . T)) +(((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371)))) +(((|#3|) |has| |#3| (-1061))) +((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-565))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-565))) ((|#1| |#1|) . T) ((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573))))) +(|has| (-1106 |#1|) (-1112)) +(((|#2| (-828 |#1|)) . T)) +((($) . T) (((-573)) . T) (((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T)) +((((-573)) . T) (($) . T) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +(((|#1|) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) +((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) |has| |#2| (-174)) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) (((|#2|) . T) ((|#6|) . T)) -(|has| |#1| (-372)) -((((-574)) . T) ((|#2|) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))) +(|has| |#1| (-371)) +((((-573)) . T) ((|#2|) . T)) +((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T) (($) -2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) (((|#2|) . T) ((|#6|) . T)) -((($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(((|#1|) . T)) -((($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((((-417 $) (-417 $)) |has| |#1| (-566)) (($ $) . T) ((|#1| |#1|) . T)) -((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(((#0=(-1095) |#2|) . T) ((#0# $) . T) (($ $) . T)) -((((-872)) . T)) -((((-921 |#1|)) . T)) +((($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +(((|#1|) . T)) +((($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((((-416 $) (-416 $)) |has| |#1| (-565)) (($ $) . T) ((|#1| |#1|) . T)) +((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +(((#0=(-1094) |#2|) . T) ((#0# $) . T) (($ $) . T)) +((((-871)) . T)) +((((-920 |#1|)) . T)) ((((-145)) . T)) ((((-145)) . T)) -((((-246 |#1| |#2|) |#2|) . T)) -((((-872)) . T)) -(((|#3|) |has| |#3| (-1113)) (((-574)) -12 (|has| |#3| (-1051 (-574))) (|has| |#3| (-1113))) (((-417 (-574))) -12 (|has| |#3| (-1051 (-417 (-574)))) (|has| |#3| (-1113)))) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) +((((-245 |#1| |#2|) |#2|) . T)) +((((-871)) . T)) +(((|#3|) |has| |#3| (-1112)) (((-573)) -12 (|has| |#3| (-1050 (-573))) (|has| |#3| (-1112))) (((-416 (-573))) -12 (|has| |#3| (-1050 (-416 (-573)))) (|has| |#3| (-1112)))) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) (((|#1|) . T)) -((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1113)))) -((((-546)) |has| |#1| (-624 (-546)))) +((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-859)) (|has| |#1| (-1112)))) +((((-545)) |has| |#1| (-623 (-545)))) (((|#1|) |has| |#1| (-174))) -((((-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) . T)) -(|has| |#1| (-372)) -((((-1195)) . T)) -(((|#1|) . T)) -(-2818 (|has| |#1| (-21)) (|has| |#1| (-858))) -((($) . T)) -((((-1190) |#1|) |has| |#1| (-524 (-1190) |#1|)) ((|#1| |#1|) |has| |#1| (-317 |#1|))) -(|has| |#2| (-830)) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-858)) -(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113))) -((((-872)) . T)) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -((((-546)) |has| |#1| (-624 (-546)))) +((((-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) . T)) +(|has| |#1| (-371)) +((((-1194)) . T)) +(((|#1|) . T)) +(-2817 (|has| |#1| (-21)) (|has| |#1| (-857))) +((($) . T)) +((((-1189) |#1|) |has| |#1| (-523 (-1189) |#1|)) ((|#1| |#1|) |has| |#1| (-316 |#1|))) +(|has| |#2| (-829)) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-857)) +(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +((((-871)) . T)) +((((-545)) |has| |#1| (-623 (-545)))) (((|#1| |#2|) . T)) -((((-1190)) -12 (|has| |#1| (-372)) (|has| |#1| (-911 (-1190))))) -((((-1172) |#1|) . T)) -(((|#1| |#2| |#3| (-541 |#3|)) . T)) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -(|has| |#1| (-377)) -(|has| |#1| (-377)) -(|has| |#1| (-377)) -((((-872)) . T)) -((((-417 (-574))) . T)) -(((|#1|) . T)) -(-2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) -((((-417 (-574))) . T)) -(|has| |#1| (-377)) -(-2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) -((((-574)) . T)) -((((-574)) . T)) -(((|#1|) . T) (((-574)) . T)) -(-2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) -((((-872)) . T)) -((((-872)) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) -((((-574)) . T) (($) . T) (((-417 (-574))) . T)) -(-12 (|has| |#2| (-239)) (|has| |#2| (-1062))) -((((-1190) #0=(-880 |#1|)) |has| #0# (-524 (-1190) #0#)) ((#0# #0#) |has| #0# (-317 #0#))) -(((|#1|) . T)) -((((-574) |#4|) . T)) -((((-574) |#3|) . T)) -(((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) -(-2818 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1062))) -((((-1267 |#1| |#2| |#3| |#4|)) . T)) -((((-417 (-574))) . T) (((-574)) . T)) -((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113)))) +((((-1189)) -12 (|has| |#1| (-371)) (|has| |#1| (-910 (-1189))))) +((((-1171) |#1|) . T)) +(((|#1| |#2| |#3| (-540 |#3|)) . T)) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +((((-871)) . T)) +((((-416 (-573))) . T)) +(((|#1|) . T)) +(-2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) +((((-416 (-573))) . T)) +(|has| |#1| (-376)) +(-2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) +((((-573)) . T)) +((((-573)) . T)) +(((|#1|) . T) (((-573)) . T)) +(-2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) +((((-871)) . T)) +((((-871)) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) +((((-573)) . T) (($) . T) (((-416 (-573))) . T)) +(-12 (|has| |#2| (-238)) (|has| |#2| (-1061))) +((((-1189) #0=(-879 |#1|)) |has| #0# (-523 (-1189) #0#)) ((#0# #0#) |has| #0# (-316 #0#))) +(((|#1|) . T)) +((((-573) |#4|) . T)) +((((-573) |#3|) . T)) +(((|#1|) . T) (((-573)) |has| |#1| (-648 (-573)))) +(-2817 (|has| |#2| (-174)) (|has| |#2| (-857)) (|has| |#2| (-1061))) +((((-1266 |#1| |#2| |#3| |#4|)) . T)) +((((-416 (-573))) . T) (((-573)) . T)) +((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -(((|#1|) . T)) -(((|#1|) . T)) -((($) . T) (((-574)) . T) (((-417 (-574))) . T)) -((((-574)) . T)) -((((-574)) . T)) -((($) . T) (((-574)) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) . T)) -((($) . T) (((-574)) . T) (((-417 (-574))) . T)) -((((-574)) -2818 (|has| |#2| (-174)) (|has| |#2| (-858)) (-12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113))) (|has| |#2| (-1062))) ((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-1113))) (((-417 (-574))) -12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113)))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-417 (-574))) . T) (($) . T)) -(((|#1|) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T)) -((($) . T) (((-417 (-574))) . T)) -(((#0=(-574) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-574)) |has| |#1| (-1051 (-574))) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574))))) -(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) -(((|#1|) |has| |#1| (-566))) -((((-574) |#4|) . T)) -(|has| |#1| (-377)) -(|has| |#1| (-377)) -(|has| |#1| (-377)) -((((-574) |#3|) . T)) -((((-872)) . T)) -((((-574)) . T) (((-417 (-574))) . T) (($) . T)) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-566)))) -((((-872)) . T)) -(-2818 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358))) -((((-574) |#1|) . T)) -(((|#1|) . T)) -((($ $) . T) ((#0=(-874 |#1|) $) . T) ((#0# |#2|) . T)) -((($) . T)) -((($ $) . T) ((#0=(-1190) $) . T) ((#0# |#1|) . T)) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(((|#1|) . T)) +(((|#1|) . T)) +((($) . T) (((-573)) . T) (((-416 (-573))) . T)) +((((-573)) . T)) +((((-573)) . T)) +((($) . T) (((-573)) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#1|) . T)) +((($) . T) (((-573)) . T) (((-416 (-573))) . T)) +((((-573)) -2817 (|has| |#2| (-174)) (|has| |#2| (-857)) (-12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112))) (|has| |#2| (-1061))) ((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-1112))) (((-416 (-573))) -12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-416 (-573))) . T) (($) . T)) +(((|#1|) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-416 (-573)) #0#) . T)) +((($) . T) (((-416 (-573))) . T)) +(((#0=(-573) #0#) . T) ((#1=(-416 (-573)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-573)) |has| |#1| (-1050 (-573))) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573))))) +(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) +((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-565))) +(((|#1|) |has| |#1| (-565))) +((((-573) |#4|) . T)) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +((((-573) |#3|) . T)) +((((-871)) . T)) +((((-573)) . T) (((-416 (-573))) . T) (($) . T)) +((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-565)))) +((((-871)) . T)) +(-2817 (-12 (|has| |#1| (-238)) (|has| |#1| (-371))) (|has| |#1| (-357))) +((((-573) |#1|) . T)) +(((|#1|) . T)) +((($ $) . T) ((#0=(-873 |#1|) $) . T) ((#0# |#2|) . T)) +((($) . T)) +((($ $) . T) ((#0=(-1189) $) . T) ((#0# |#1|) . T)) (((|#2|) |has| |#2| (-174))) -((($) -2818 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) ((|#2|) |has| |#2| (-174)) (((-417 (-574))) |has| |#2| (-38 (-417 (-574))))) -(((|#2| |#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1062))) (($ $) |has| |#2| (-174))) +((($) -2817 (|has| |#2| (-371)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) ((|#2|) |has| |#2| (-174)) (((-416 (-573))) |has| |#2| (-38 (-416 (-573))))) +(((|#2| |#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-1061))) (($ $) |has| |#2| (-174))) ((((-145)) . T)) (((|#1|) . T)) -(-12 (|has| |#1| (-377)) (|has| |#2| (-377))) -((((-872)) . T)) -(((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1062))) (($) |has| |#2| (-174))) +(-12 (|has| |#1| (-376)) (|has| |#2| (-376))) +((((-871)) . T)) +(((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-1061))) (($) |has| |#2| (-174))) (((|#1|) . T)) -((((-872)) . T)) -(|has| |#1| (-1113)) +((((-871)) . T)) +(|has| |#1| (-1112)) (|has| $ (-148)) -((((-1195)) . T)) -((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#2|) |has| |#1| (-372)) (((-574)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) . T)) -((((-1248 (-574)) $) . T) (((-574) |#1|) . T)) -((($) -2818 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) -((((-1190)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) -(|has| |#1| (-372)) -(-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))) -(|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) -(|has| |#1| (-372)) -(|has| |#1| (-15 * (|#1| (-781) |#1|))) -(((|#1|) . T)) -(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113))) -((((-872)) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -(-2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) -(((|#2| (-541 (-874 |#1|))) . T)) -((((-872)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -(((|#1|) . T)) -(-2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) -(-2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) -((((-591 |#1|)) . T)) -((($) . T)) -((((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) +((((-1194)) . T)) +((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#2|) |has| |#1| (-371)) (((-573)) . T) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (((-573)) . T) (($) . T)) +((((-1247 (-573)) $) . T) (((-573) |#1|) . T)) +((($) -2817 (|has| |#1| (-314)) (|has| |#1| (-371)) (|has| |#1| (-357)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1|) . T)) +((((-1189)) -12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) +(|has| |#1| (-371)) +(-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|)))) +(|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) +(|has| |#1| (-371)) +(|has| |#1| (-15 * (|#1| (-780) |#1|))) +(((|#1|) . T)) +(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) +((((-871)) . T)) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(-2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) +(((|#2| (-540 (-873 |#1|))) . T)) +((((-871)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(((|#1|) . T)) +(-2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) +(-2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) +((((-590 |#1|)) . T)) +((($) . T)) +((((-573)) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-565))) (((|#1|) . T) (($) . T)) -((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T)) -((((-1188 |#1| |#2| |#3|)) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-574)) . T) ((|#1|) |has| |#1| (-174))) -((((-1277 |#2|)) . T) (((-1188 |#1| |#2| |#3|)) . T) (((-1181 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566)))) +((((-573)) |has| |#1| (-648 (-573))) ((|#1|) . T)) +((((-1187 |#1| |#2| |#3|)) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-573)) . T) ((|#1|) |has| |#1| (-174))) +((((-1276 |#2|)) . T) (((-1187 |#1| |#2| |#3|)) . T) (((-1180 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (((-573)) . T) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565)))) (((|#4|) . T)) (((|#3|) . T)) -((((-880 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) -((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T)) -((((-1190)) -12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) -(((|#1|) . T)) -((($) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-574)) . T) (((-417 (-574))) -2818 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1051 (-417 (-574))))) ((|#2|) . T) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) (((-874 |#1|)) . T)) -((((-574) |#2|) . T)) -((((-872)) . T)) -((($) . T) (((-574)) . T) ((|#2|) . T) (((-417 (-574))) . T)) -((((-872)) . T)) -((((-872)) . T)) +((((-879 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) +((($) |has| |#1| (-565)) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) (((-573)) . T)) +((((-1189)) -12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) +(|has| |#2| (-238)) +(((|#1|) . T)) +((($) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-573)) . T) (((-416 (-573))) -2817 (|has| |#2| (-38 (-416 (-573)))) (|has| |#2| (-1050 (-416 (-573))))) ((|#2|) . T) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) (((-873 |#1|)) . T)) +((((-573) |#2|) . T)) +((((-871)) . T)) +((($) . T) (((-573)) . T) ((|#2|) . T) (((-416 (-573))) . T)) +((((-871)) . T)) +((((-871)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -(((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))) ((|#1| |#1|) . T) (($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-566)))) -((($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((#1=(-1188 |#1| |#2| |#3|) #1#) |has| |#1| (-372)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) -((($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) -((((-872)) . T)) -(((|#2|) |has| |#2| (-1062))) -(|has| |#1| (-1113)) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-566)))) -((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1188 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) . T)) -(((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) -((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573)))) ((|#1| |#1|) . T) (($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-565)))) +((($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) ((#0=(-416 (-573)) #0#) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((#1=(-1187 |#1| |#2| |#3|) #1#) |has| |#1| (-371)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) ((#0=(-416 (-573)) #0#) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371)))) +((($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-565))) ((|#1| |#1|) . T) ((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573))))) +((((-871)) . T)) +(((|#2|) |has| |#2| (-1061))) +(|has| |#1| (-1112)) +((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-565)))) +((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (((-1187 |#1| |#2| |#3|)) |has| |#1| (-371)) ((|#1|) . T)) +(((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371)))) +((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-565))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) (((|#1|) |has| |#1| (-174)) (($) . T)) (((|#1|) . T)) -(((#0=(-417 (-574)) #0#) |has| |#2| (-38 (-417 (-574)))) ((|#2| |#2|) . T) (($ $) -2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))) -((((-872)) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))) +(((#0=(-416 (-573)) #0#) |has| |#2| (-38 (-416 (-573)))) ((|#2| |#2|) . T) (($ $) -2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) +((((-871)) . T)) +((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) |has| |#2| (-174)) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))) -(((#0=(-1095) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))) -((($) . T)) -(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (($) . T)) -(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113))) -(((|#1|) . T)) -(((|#2|) |has| |#2| (-1113)) (((-574)) -12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113))) (((-417 (-574))) -12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113)))) -(((|#2|) |has| |#1| (-372))) -((((-574) |#1|) . T)) -((((-1195)) . T)) -((((-1195)) . T)) -((((-1195)) . T)) -((((-1195)) . T)) -((((-1195)) . T)) -((((-1195)) . T)) -(((|#1|) |has| |#1| (-174)) (($) . T) (((-574)) . T)) -((((-872)) . T)) -((((-417 |#2|) |#3|) . T)) -(((|#1| (-417 (-574))) . T)) -((((-417 (-574))) . T) (($) . T)) -((((-417 (-574))) . T) (($) . T)) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -((((-872)) . T) (((-1195)) . T)) +((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919)))) +(((#0=(-1094) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T) (($) -2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) +((($) . T)) +(((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) (($) . T)) +(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) +(((|#1|) . T)) +(((|#2|) |has| |#2| (-1112)) (((-573)) -12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112))) (((-416 (-573))) -12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) +(((|#2|) |has| |#1| (-371))) +((((-573) |#1|) . T)) +((((-1194)) . T)) +((((-1194)) . T)) +((((-1194)) . T)) +((((-1194)) . T)) +((((-1194)) . T)) +((((-1194)) . T)) +(((|#1|) |has| |#1| (-174)) (($) . T) (((-573)) . T)) +((((-871)) . T)) +((((-416 |#2|) |#3|) . T)) +(((|#1| (-416 (-573))) . T)) +((((-416 (-573))) . T) (($) . T)) +((((-416 (-573))) . T) (($) . T)) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +((((-871)) . T) (((-1194)) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) -((((-1195)) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))) -((($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((((-417 (-574))) . T) (($) . T)) -((((-417 (-574))) . T) (($) . T)) -((((-417 (-574))) . T) (($) . T)) -(((|#2| |#3| (-874 |#1|)) . T)) -((((-1190)) |has| |#2| (-911 (-1190)))) -(((|#1|) . T)) -(((|#1| (-541 |#2|) |#2|) . T)) -(((|#1| (-781) (-1095)) . T)) -((((-417 (-574))) |has| |#2| (-372)) (($) . T)) -(((|#1| (-541 (-1101 (-1190))) (-1101 (-1190))) . T)) -(-2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) -(-2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) -(((|#2|) . T)) -(((|#1|) . T)) -(((|#2|) . T)) -((((-1012 |#1|)) . T) (((-574)) . T) ((|#1|) . T) (((-417 (-574))) -2818 (|has| (-1012 |#1|) (-1051 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574)))))) -(-2818 (|has| |#2| (-174)) (|has| |#2| (-736)) (|has| |#2| (-858)) (|has| |#2| (-1062))) -(|has| |#2| (-803)) -(-2818 (|has| |#2| (-803)) (|has| |#2| (-858))) -(|has| |#1| (-377)) -(|has| |#1| (-377)) -(|has| |#1| (-377)) -(|has| |#2| (-858)) -((((-904 |#1|)) . T) (((-829 |#1|)) . T)) -((((-829 (-1190))) . T)) -(((|#1|) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-654 (-932))) . T) (((-872)) . T)) -((((-417 (-574))) . T) (((-872)) . T)) -((((-546)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T)) -(|has| |#1| (-239)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -((($ $) . T) (((-574) |#1|) . T)) +((((-1194)) . T)) +((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) |has| |#2| (-174)) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) +((($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((((-416 (-573))) . T) (($) . T)) +((((-416 (-573))) . T) (($) . T)) +((((-416 (-573))) . T) (($) . T)) +(((|#2| |#3| (-873 |#1|)) . T)) +((((-1189)) |has| |#2| (-910 (-1189)))) +(((|#1|) . T)) +(((|#1| (-540 |#2|) |#2|) . T)) +(((|#1| (-780) (-1094)) . T)) +((((-416 (-573))) |has| |#2| (-371)) (($) . T)) +(((|#1| (-540 (-1100 (-1189))) (-1100 (-1189))) . T)) +(-2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) +(-2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) +(((|#2|) . T)) +(((|#1|) . T)) +(((|#2|) . T)) +((((-1011 |#1|)) . T) (((-573)) . T) ((|#1|) . T) (((-416 (-573))) -2817 (|has| (-1011 |#1|) (-1050 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573)))))) +(-2817 (|has| |#2| (-174)) (|has| |#2| (-735)) (|has| |#2| (-857)) (|has| |#2| (-1061))) +(|has| |#2| (-802)) +(-2817 (|has| |#2| (-802)) (|has| |#2| (-857))) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +(|has| |#2| (-857)) +((((-903 |#1|)) . T) (((-828 |#1|)) . T)) +((((-828 (-1189))) . T)) +(((|#1|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-653 (-931))) . T) (((-871)) . T)) +((((-416 (-573))) . T) (((-871)) . T)) +((((-545)) . T) (((-902 (-573))) . T) (((-387)) . T) (((-227)) . T)) +(|has| |#1| (-238)) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +((($ $) . T) (((-573) |#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -((((-1273 |#1| |#2| |#3|) $) -12 (|has| (-1273 |#1| |#2| |#3|) (-294 (-1273 |#1| |#2| |#3|) (-1273 |#1| |#2| |#3|))) (|has| |#1| (-372))) (($ $) . T) (((-574) |#1|) . T)) -((($ $) . T) (((-417 (-574)) |#1|) . T)) -((((-781) |#1|) . T) (($ $) . T)) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +((((-1272 |#1| |#2| |#3|) $) -12 (|has| (-1272 |#1| |#2| |#3|) (-293 (-1272 |#1| |#2| |#3|) (-1272 |#1| |#2| |#3|))) (|has| |#1| (-371))) (($ $) . T) (((-573) |#1|) . T)) +((($ $) . T) (((-416 (-573)) |#1|) . T)) +((((-780) |#1|) . T) (($ $) . T)) (((|#1|) . T)) -((((-1153 |#1| |#2|)) |has| (-1153 |#1| |#2|) (-317 (-1153 |#1| |#2|)))) -(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) -(((|#3| |#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113)))) -(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) |has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))))) -(((|#2|) . T) (((-574)) |has| |#2| (-1051 (-574))) (((-417 (-574))) |has| |#2| (-1051 (-417 (-574))))) +((((-1152 |#1| |#2|)) |has| (-1152 |#1| |#2|) (-316 (-1152 |#1| |#2|)))) +(((|#4| |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) +(((|#3| |#3|) -12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) +(((|#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) +(((|#2|) . T) (((-573)) |has| |#2| (-1050 (-573))) (((-416 (-573))) |has| |#2| (-1050 (-416 (-573))))) (((|#1|) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((($) . T)) (((|#2|) . T)) (((|#3|) . T)) -(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113))) -(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) |has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))))) +(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) +(((|#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) (((|#2|) . T)) -((((-872)) -2818 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-623 (-872))) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062)) (|has| |#2| (-1113))) (((-1281 |#2|)) . T)) -((((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((|#1|) . T) (((-574)) . T) (($) . T)) +((((-871)) -2817 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-622 (-871))) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-376)) (|has| |#2| (-735)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061)) (|has| |#2| (-1112))) (((-1280 |#2|)) . T)) +((((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((|#1|) . T) (((-573)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) -((((-574)) . T)) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))) -(|has| |#1| (-1113)) -((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((((-574) (-145)) . T)) -((($) -2818 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1062))) ((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1062))) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062)))) -((((-574)) . T)) -(((|#1|) . T) ((|#2|) . T) (((-574)) . T)) -((($) |has| |#1| (-566)) ((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))) (((-574)) . T)) -(-2818 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1062))) -(((|#1|) . T)) -(-2818 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1062))) -((($) . T) (((-574)) . T) ((|#2|) . T)) -(((|#1|) |has| |#1| (-174)) (($) . T) (((-574)) . T)) -(((|#2|) |has| |#1| (-372))) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) +((((-573)) . T)) +((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919)))) +(|has| |#1| (-1112)) +((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((((-573) (-145)) . T)) +((($) -2817 (|has| |#2| (-174)) (|has| |#2| (-857)) (|has| |#2| (-1061))) ((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-1061))) (((-573)) -12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) +((((-573)) . T)) +(((|#1|) . T) ((|#2|) . T) (((-573)) . T)) +((($) |has| |#1| (-565)) ((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573))))) (((-573)) . T)) +(-2817 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-565)) (|has| |#1| (-1061))) +(((|#1|) . T)) +(-2817 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-565)) (|has| |#1| (-1061))) +((($) . T) (((-573)) . T) ((|#2|) . T)) +(((|#1|) |has| |#1| (-174)) (($) . T) (((-573)) . T)) +(((|#2|) |has| |#1| (-371))) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (((|#1| |#1|) . T) (($ $) . T)) -((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -((((-1195)) . T)) -((((-417 (-574))) . T) (((-574)) . T) (($) . T)) -(((|#1| (-541 #0=(-1190)) #0#) . T)) +((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#1|) |has| |#1| (-174))) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +((((-1194)) . T)) +((((-416 (-573))) . T) (((-573)) . T) (($) . T)) +(((|#1| (-540 #0=(-1189)) #0#) . T)) (((|#1|) . T) (($) . T)) -((((-574)) . T)) +((((-573)) . T)) (|has| |#4| (-174)) (|has| |#3| (-174)) -(((#0=(-417 (-963 |#1|)) #0#) . T)) -(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113))) -(|has| |#1| (-1113)) -(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113))) -(|has| |#1| (-1113)) -((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1113)))) -((((-546)) |has| |#1| (-624 (-546)))) -(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113))) -((((-872)) . T) (((-1195)) . T)) -((((-1195)) . T)) +(((#0=(-416 (-962 |#1|)) #0#) . T)) +(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) +(|has| |#1| (-1112)) +(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) +(|has| |#1| (-1112)) +((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-859)) (|has| |#1| (-1112)))) +((((-545)) |has| |#1| (-623 (-545)))) +(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) +((((-871)) . T) (((-1194)) . T)) +((((-1194)) . T)) (((|#1| |#1|) |has| |#1| (-174))) -((($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) +(|has| (-416 |#2|) (-238)) +((($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-565))) ((|#1| |#1|) . T) ((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573))))) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +((((-416 (-962 |#1|))) . T)) (((|#1|) . T)) -((((-417 (-963 |#1|))) . T)) -(((|#1|) . T) (((-574)) . T) (($) . T)) +(((|#1|) . T) (((-573)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) -((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(-2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) -((((-872)) . T)) -((((-872)) . T)) -((((-1267 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1062)) (((-574)) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062)))) +((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-565))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +(-2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) +((((-871)) . T)) +((((-871)) . T)) +((((-1266 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1061)) (((-573)) -12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061)))) (((|#1| |#2|) . T)) -(-2818 (|has| |#3| (-174)) (|has| |#3| (-736)) (|has| |#3| (-858)) (|has| |#3| (-1062))) -(|has| |#3| (-803)) -(-2818 (|has| |#3| (-803)) (|has| |#3| (-858))) -(|has| |#3| (-858)) -((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#2|) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566)))) -(((|#2|) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-872)) . T)) -(((|#1| (-1170 |#1|)) |has| |#1| (-858))) -((((-574) |#2|) . T)) -(|has| |#1| (-1113)) -(((|#1|) . T)) -(-12 (|has| |#1| (-372)) (|has| |#2| (-1165))) -((((-417 (-574))) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -((($) . T) (((-417 (-574))) . T)) -(|has| |#1| (-1113)) -(((|#2|) . T)) -((((-546)) |has| |#2| (-624 (-546))) (((-903 (-388))) |has| |#2| (-624 (-903 (-388)))) (((-903 (-574))) |has| |#2| (-624 (-903 (-574))))) -(((|#4|) -2818 (|has| |#4| (-174)) (|has| |#4| (-372)))) -(((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372)))) -((((-872)) . T)) -(((|#1|) . T)) -(-2818 (|has| |#2| (-462)) (|has| |#2| (-920))) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))) -((($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) -(-2818 (|has| |#1| (-462)) (|has| |#1| (-920))) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))) -((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) -(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) -(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) -(((|#2|) . T)) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-920))) -(((|#2|) . T)) -((($ $) . T) ((#0=(-1190) $) |has| |#1| (-239)) ((#0# |#1|) |has| |#1| (-239)) ((#1=(-828 (-1190)) |#1|) . T) ((#1# $) . T)) -(-2818 (|has| |#1| (-462)) (|has| |#1| (-920))) -((((-574) |#2|) . T)) -((((-872)) . T)) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -((($) -2818 (|has| |#3| (-174)) (|has| |#3| (-858)) (|has| |#3| (-1062))) ((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1062))) (((-574)) -12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1062)))) -((((-574) |#1|) . T)) -(|has| (-417 |#2|) (-148)) -(|has| (-417 |#2|) (-146)) -(((|#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-317 |#2|)))) -(|has| |#1| (-38 (-417 (-574)))) -(((|#1|) . T)) -(((|#2|) . T) (($) . T) (((-417 (-574))) . T)) -((((-872)) . T)) -(|has| |#1| (-566)) -(|has| |#1| (-566)) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -((((-872)) . T)) -((((-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) . T)) -(|has| |#1| (-38 (-417 (-574)))) -((((-398) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) . T)) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#2| (-1165)) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-566))) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-566))) -((((-872)) . T) (((-1195)) . T)) -((((-872)) . T) (((-1195)) . T)) -((((-1195)) . T)) -((((-1195)) . T)) -((((-872)) . T) (((-1195)) . T)) -((((-1195)) . T)) -((((-872)) . T) (((-1195)) . T)) -((((-1195)) . T)) -((((-1230)) . T) (((-872)) . T) (((-1195)) . T)) +(-2817 (|has| |#3| (-174)) (|has| |#3| (-735)) (|has| |#3| (-857)) (|has| |#3| (-1061))) +(|has| |#3| (-802)) +(-2817 (|has| |#3| (-802)) (|has| |#3| (-857))) +(|has| |#3| (-857)) +((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) ((|#2|) |has| |#1| (-371)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565)))) +(((|#2|) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-871)) . T)) +(((|#1| (-1169 |#1|)) |has| |#1| (-857))) +((((-573) |#2|) . T)) +(|has| |#1| (-1112)) +(((|#1|) . T)) +(-12 (|has| |#1| (-371)) (|has| |#2| (-1164))) +((((-416 (-573))) . T) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +((($) . T) (((-416 (-573))) . T)) +(|has| |#1| (-1112)) +(((|#2|) . T)) +((((-545)) |has| |#2| (-623 (-545))) (((-902 (-387))) |has| |#2| (-623 (-902 (-387)))) (((-902 (-573))) |has| |#2| (-623 (-902 (-573))))) +(((|#4|) -2817 (|has| |#4| (-174)) (|has| |#4| (-371)))) +(((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)))) +((((-871)) . T)) +(((|#1|) . T)) +(-2817 (|has| |#2| (-461)) (|has| |#2| (-919))) +((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) |has| |#2| (-174)) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) +((($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) +(-2817 (|has| |#1| (-461)) (|has| |#1| (-919))) +((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T) (($) -2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) +((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) +(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) +(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-919))) +((($ $) . T) ((#0=(-1189) $) |has| |#1| (-238)) ((#0# |#1|) |has| |#1| (-238)) ((#1=(-827 (-1189)) |#1|) . T) ((#1# $) . T)) +(-2817 (|has| |#1| (-461)) (|has| |#1| (-919))) +((((-573) |#2|) . T)) +((((-871)) . T)) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +((($) -2817 (|has| |#3| (-174)) (|has| |#3| (-857)) (|has| |#3| (-1061))) ((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-1061))) (((-573)) -12 (|has| |#3| (-648 (-573))) (|has| |#3| (-1061)))) +((((-573) |#1|) . T)) +(|has| (-416 |#2|) (-148)) +(|has| (-416 |#2|) (-146)) +(((|#2|) -12 (|has| |#1| (-371)) (|has| |#2| (-316 |#2|)))) +(|has| |#1| (-38 (-416 (-573)))) +(((|#1|) . T)) +(((|#2|) . T) (($) . T) (((-416 (-573))) . T)) +((((-871)) . T)) +(|has| |#1| (-565)) +(|has| |#1| (-565)) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +((((-871)) . T)) +((((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) . T)) +(|has| |#1| (-38 (-416 (-573)))) +((((-397) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) . T)) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#2| (-1164)) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) +((((-871)) . T) (((-1194)) . T)) +((((-871)) . T) (((-1194)) . T)) +((((-1194)) . T)) +((((-1194)) . T)) +((((-871)) . T) (((-1194)) . T)) +((((-1194)) . T)) +((((-871)) . T) (((-1194)) . T)) +((((-1194)) . T)) +((((-1229)) . T) (((-871)) . T) (((-1194)) . T)) ((((-117 |#1|)) . T)) -((((-1195)) . T)) -((((-872)) . T) (((-1195)) . T)) -((((-1195)) . T)) +((((-1194)) . T)) +((((-871)) . T) (((-1194)) . T)) +((((-1194)) . T)) (((|#1|) . T)) -((((-398) (-1172)) . T)) -(|has| |#1| (-566)) -((((-1248 (-574)) $) . T) (((-574) |#1|) . T)) -(-2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) -((((-574)) . T) (($) . T) (((-417 (-574))) . T)) -((((-574)) . T) (($) . T) (((-417 (-574))) . T)) +((((-397) (-1171)) . T)) +(|has| |#1| (-565)) +((((-1247 (-573)) $) . T) (((-573) |#1|) . T)) +(-2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) +((((-573)) . T) (($) . T) (((-416 (-573))) . T)) +((((-573)) . T) (($) . T) (((-416 (-573))) . T)) (((|#2|) . T)) -((((-781) (-1195)) . T)) -((((-872)) . T)) -((((-829 |#1|)) . T)) +((((-780) (-1194)) . T)) +((((-871)) . T)) +((((-828 |#1|)) . T)) ((($) . T)) (((|#2|) |has| |#2| (-174))) -((((-1190) (-52)) . T)) +((((-1189) (-52)) . T)) (((|#1|) . T)) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-566)) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-565)) (((|#1|) |has| |#1| (-174))) -((((-654 |#1|)) . T)) -((((-872)) . T)) -((((-546)) |has| |#1| (-624 (-546)))) -(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113))) -(((|#2|) |has| |#2| (-317 |#2|))) -(((#0=(-574) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T)) -(((|#1|) . T)) -(((|#1| (-1186 |#1|)) . T)) +((((-653 |#1|)) . T)) +((((-871)) . T)) +((((-545)) |has| |#1| (-623 (-545)))) +(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) +(((|#2|) |has| |#2| (-316 |#2|))) +(((#0=(-573) #0#) . T) ((#1=(-416 (-573)) #1#) . T) (($ $) . T)) +(((|#1|) . T)) +(((|#1| (-1185 |#1|)) . T)) (|has| $ (-148)) (((|#2|) . T)) ((($) . T)) -((($) . T) (((-574)) . T) (((-417 (-574))) . T)) -(|has| |#2| (-377)) -(((#0=(-574) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T)) -(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113))) -(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) -((((-574)) . T) (((-417 (-574))) . T) (($) . T)) -((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) +((($) . T) (((-573)) . T) (((-416 (-573))) . T)) +(|has| |#2| (-376)) +(((#0=(-573) #0#) . T) ((#1=(-416 (-573)) #1#) . T) (($ $) . T)) +(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) +(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) +((((-573)) . T) (((-416 (-573))) . T) (($) . T)) +((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#1|) |has| |#1| (-174))) (((|#1| |#2|) . T)) -((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1|) . T)) -((((-574)) . T) (((-417 (-574))) . T) (($) . T)) +((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) ((|#1|) . T)) +((((-573)) . T) (((-416 (-573))) . T) (($) . T)) (((|#1| |#2|) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-546)) |has| |#1| (-624 (-546)))) -((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113)))) -((($) . T) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) -((((-872)) . T)) -((((-1188 |#1| |#2| |#3|) $) -12 (|has| (-1188 |#1| |#2| |#3|) (-294 (-1188 |#1| |#2| |#3|) (-1188 |#1| |#2| |#3|))) (|has| |#1| (-372))) (($ $) . T) (((-574) |#1|) . T)) -((($ $) . T) (((-417 (-574)) |#1|) . T)) -((((-781) |#1|) . T) (($ $) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -(((#0=(-1273 |#1| |#2| |#3|) #0#) -12 (|has| (-1273 |#1| |#2| |#3|) (-317 (-1273 |#1| |#2| |#3|))) (|has| |#1| (-372))) (((-1190) #0#) -12 (|has| (-1273 |#1| |#2| |#3|) (-524 (-1190) (-1273 |#1| |#2| |#3|))) (|has| |#1| (-372)))) -(-12 (|has| |#1| (-1113)) (|has| |#2| (-1113))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-574)) . T) (($) . T)) -((($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((($) . T) (((-574)) . T) ((|#2|) . T)) -((((-574)) . T) (($) . T) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574))))) -((((-417 (-574))) . T) (((-574)) . T)) -((((-574) (-145)) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-545)) |has| |#1| (-623 (-545)))) +((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) +((($) . T) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1|) . T) (((-573)) |has| |#1| (-648 (-573)))) +((((-871)) . T)) +((((-1187 |#1| |#2| |#3|) $) -12 (|has| (-1187 |#1| |#2| |#3|) (-293 (-1187 |#1| |#2| |#3|) (-1187 |#1| |#2| |#3|))) (|has| |#1| (-371))) (($ $) . T) (((-573) |#1|) . T)) +((($ $) . T) (((-416 (-573)) |#1|) . T)) +((((-780) |#1|) . T) (($ $) . T)) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(((#0=(-1272 |#1| |#2| |#3|) #0#) -12 (|has| (-1272 |#1| |#2| |#3|) (-316 (-1272 |#1| |#2| |#3|))) (|has| |#1| (-371))) (((-1189) #0#) -12 (|has| (-1272 |#1| |#2| |#3|) (-523 (-1189) (-1272 |#1| |#2| |#3|))) (|has| |#1| (-371)))) +(-12 (|has| |#1| (-1112)) (|has| |#2| (-1112))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-573)) . T) (($) . T)) +((($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((($) . T) (((-573)) . T) ((|#2|) . T)) +((((-573)) . T) (($) . T) ((|#2|) . T) (((-416 (-573))) |has| |#2| (-38 (-416 (-573))))) +((((-416 (-573))) . T) (((-573)) . T)) +((((-573) (-145)) . T)) ((((-145)) . T)) (((|#1|) . T)) -(-2818 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1062))) +(-2817 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-565)) (|has| |#1| (-1061))) ((((-112)) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) ((((-112)) . T)) -(((|#1|) . T)) -((((-546)) |has| |#1| (-624 (-546))) (((-227)) . #0=(|has| |#1| (-1035))) (((-388)) . #0#)) -((((-872)) . T)) -((((-1195)) . T)) -(|has| |#1| (-830)) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) -((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#2|) |has| |#1| (-372)) ((|#1|) . T)) -((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#2|) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) -(((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) -(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566)))) -(-2818 (|has| |#1| (-174)) (|has| |#1| (-566))) -(|has| |#1| (-566)) -(|has| |#1| (-860)) -((($) . T) (((-574)) . T) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) -((((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((|#1|) . T) (((-574)) . T)) -(|has| |#1| (-920)) -(((|#1|) . T)) -(|has| |#1| (-1113)) -((((-872)) . T)) -(-2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) -(-2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) -(-2818 (|has| |#1| (-174)) (|has| |#1| (-566))) -((((-872)) . T)) -((((-872)) . T)) -((((-872)) . T)) -(((|#1| (-1281 |#1|) (-1281 |#1|)) . T)) -((((-574) (-145)) . T) (((-1248 (-574)) $) . T)) -((($) . T)) -(-2818 (|has| |#4| (-174)) (|has| |#4| (-858)) (|has| |#4| (-1062))) -(-2818 (|has| |#3| (-174)) (|has| |#3| (-858)) (|has| |#3| (-1062))) -((((-1195)) . T) (((-872)) . T)) -((((-1195)) . T)) -((((-872)) . T)) -(|has| |#1| (-1113)) -(((|#1| (-984)) . T)) +((((-545)) |has| |#1| (-623 (-545))) (((-227)) . #0=(|has| |#1| (-1034))) (((-387)) . #0#)) +((((-871)) . T)) +(((|#1|) . T)) +((((-1194)) . T)) +(|has| |#1| (-829)) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) +((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#2|) |has| |#1| (-371)) ((|#1|) . T)) +((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) ((|#2|) |has| |#1| (-371)) ((|#1|) |has| |#1| (-174))) +(((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371)))) +(((|#1|) |has| |#1| (-174)) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565)))) +(-2817 (|has| |#1| (-174)) (|has| |#1| (-565))) +(|has| |#1| (-565)) +(|has| |#1| (-859)) +((($) . T) (((-573)) . T) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1|) . T)) +((((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((|#1|) . T) (((-573)) . T)) +(|has| |#1| (-919)) +(((|#1|) . T)) +(|has| |#1| (-1112)) +((((-871)) . T)) +(-2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) +(-2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) +(-2817 (|has| |#1| (-174)) (|has| |#1| (-565))) +((((-871)) . T)) +((((-871)) . T)) +((((-871)) . T)) +(((|#1| (-1280 |#1|) (-1280 |#1|)) . T)) +((((-573) (-145)) . T) (((-1247 (-573)) $) . T)) +((($) . T)) +(-2817 (|has| |#4| (-174)) (|has| |#4| (-857)) (|has| |#4| (-1061))) +(-2817 (|has| |#3| (-174)) (|has| |#3| (-857)) (|has| |#3| (-1061))) +((((-1194)) . T) (((-871)) . T)) +((((-1194)) . T)) +((((-871)) . T)) +(|has| |#1| (-1112)) +(((|#1| (-983)) . T)) (((|#1| |#1|) . T)) ((($) . T)) -(-2818 (|has| |#2| (-803)) (|has| |#2| (-858))) -(-2818 (|has| |#2| (-803)) (|has| |#2| (-858))) -(-12 (|has| |#1| (-483)) (|has| |#2| (-483))) -(-2818 (|has| |#2| (-174)) (|has| |#2| (-736)) (|has| |#2| (-858)) (|has| |#2| (-1062))) -((($) . T) (((-574)) . T) (((-880 |#1|)) . T) (((-417 (-574))) . T)) +(-2817 (|has| |#2| (-802)) (|has| |#2| (-857))) +(-2817 (|has| |#2| (-802)) (|has| |#2| (-857))) +(-12 (|has| |#1| (-482)) (|has| |#2| (-482))) +(-2817 (|has| |#2| (-174)) (|has| |#2| (-735)) (|has| |#2| (-857)) (|has| |#2| (-1061))) +((($) . T) (((-573)) . T) (((-879 |#1|)) . T) (((-416 (-573))) . T)) (((|#1|) . T)) -(|has| |#2| (-803)) -(-2818 (|has| |#2| (-803)) (|has| |#2| (-858))) +(|has| |#2| (-802)) +(-2817 (|has| |#2| (-802)) (|has| |#2| (-857))) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -(|has| |#2| (-858)) -(-12 (|has| |#1| (-803)) (|has| |#2| (-803))) -(-12 (|has| |#1| (-803)) (|has| |#2| (-803))) -(-2818 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(|has| |#2| (-857)) +(-12 (|has| |#1| (-802)) (|has| |#2| (-802))) +(-12 (|has| |#1| (-802)) (|has| |#2| (-802))) +(-2817 (-12 (|has| |#1| (-482)) (|has| |#2| (-482))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))) (((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-174)) ((|#4|) . T) (((-574)) . T)) +(((|#1|) |has| |#1| (-174)) ((|#4|) . T) (((-573)) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) -((((-872)) . T)) -(|has| |#1| (-358)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-417 (-574))) . T) (($) . T)) -(((|#2|) . T) (($) . T) (((-417 (-574))) . T)) -((($) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) . T)) -(|has| |#1| (-838)) -((((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) (((-574)) |has| |#1| (-1051 (-574))) ((|#1|) . T)) -(|has| |#1| (-1113)) -(((|#1| $) |has| |#1| (-294 |#1| |#1|))) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) -((($) |has| |#1| (-566))) -(((|#2|) . T) (((-417 (-574))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1113))) -(((|#3|) |has| |#3| (-1113))) -(|has| |#3| (-377)) -((($) |has| |#1| (-566)) ((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))) (((-574)) . T)) -((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1273 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) -((((-872)) . T)) -((((-872)) . T)) +((((-871)) . T)) +(|has| |#1| (-238)) +(|has| |#1| (-357)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-416 (-573))) . T) (($) . T)) +(((|#2|) . T) (($) . T) (((-416 (-573))) . T)) +((($) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#1|) . T)) +(|has| |#1| (-837)) +((((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) (((-573)) |has| |#1| (-1050 (-573))) ((|#1|) . T)) +(|has| |#1| (-1112)) +(((|#1| $) |has| |#1| (-293 |#1| |#1|))) +((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-565))) +((($) |has| |#1| (-565))) +(((|#2|) . T) (((-416 (-573))) . T) (($) . T)) +(((|#4|) |has| |#4| (-1112))) +(((|#3|) |has| |#3| (-1112))) +(|has| |#3| (-376)) +((($) |has| |#1| (-565)) ((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573))))) (((-573)) . T)) +((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-1272 |#1| |#2| |#3|)) |has| |#1| (-371)) ((|#1|) |has| |#1| (-174))) +((((-871)) . T)) +((((-871)) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566)))) -((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +(((|#1|) |has| |#1| (-174)) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565)))) +((($) |has| |#1| (-565)) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) (((|#1| |#1|) |has| |#1| (-174))) -(|has| |#2| (-372)) +(|has| |#2| (-371)) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) -((((-417 (-574))) . T) (((-574)) . T)) -((($) |has| |#2| (-239))) -((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T)) -((($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) -((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T)) -((($) . T) (((-574)) . T)) -((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) +((((-416 (-573))) . T) (((-573)) . T)) +((($) |has| |#2| (-238))) +((($) . T) (((-573)) . T) (((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T)) +((($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-565))) ((|#1| |#1|) . T) ((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573))))) +((($) . T) (((-573)) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T)) +((($) . T) (((-573)) . T)) +((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-565))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +(((|#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) ((((-145)) . T)) (((|#1|) . T)) -((($) -2818 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1062))) ((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1062))) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062)))) +((($) -2817 (|has| |#2| (-174)) (|has| |#2| (-857)) (|has| |#2| (-1061))) ((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-1061))) (((-573)) -12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) ((((-145)) . T)) ((((-145)) . T)) -((((-417 (-574))) . #0=(|has| |#2| (-372))) (($) . #0#) ((|#2|) . T) (((-574)) . T)) +((((-416 (-573))) . #0=(|has| |#2| (-371))) (($) . #0#) ((|#2|) . T) (((-573)) . T)) (((|#1| |#2| |#3|) . T)) -(-2818 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1062))) +(-2817 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-565)) (|has| |#1| (-1061))) (((|#1|) |has| |#1| (-174))) (|has| $ (-148)) (|has| $ (-148)) -((((-1195)) . T)) +((((-1194)) . T)) (((|#1|) |has| |#1| (-174))) -(|has| |#1| (-1113)) -((((-872)) . T)) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -(-2818 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-483)) (|has| |#1| (-566)) (|has| |#1| (-1062)) (|has| |#1| (-1125))) -((($ $) |has| |#1| (-294 $ $)) ((|#1| $) |has| |#1| (-294 |#1| |#1|))) -(((|#1| (-417 (-574))) . T)) -(((|#1|) . T)) -((((-417 (-574))) . T) (((-574)) . T) (($) . T)) -((((-1190)) . T)) -(|has| |#1| (-566)) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-566))) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-566))) -(|has| |#1| (-566)) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -((((-872)) . T)) +(|has| |#1| (-1112)) +((((-871)) . T)) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +(-2817 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-482)) (|has| |#1| (-565)) (|has| |#1| (-1061)) (|has| |#1| (-1124))) +((($ $) |has| |#1| (-293 $ $)) ((|#1| $) |has| |#1| (-293 |#1| |#1|))) +(((|#1| (-416 (-573))) . T)) +(((|#1|) . T)) +((((-416 (-573))) . T) (((-573)) . T) (($) . T)) +((((-1189)) . T)) +(|has| |#1| (-565)) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) +(|has| |#1| (-565)) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +((((-871)) . T)) (|has| |#2| (-146)) (|has| |#2| (-148)) -((((-574) (-417 (-963 |#1|))) . T)) +((((-573) (-416 (-962 |#1|))) . T)) (((|#2|) . T) (($) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) -(|has| |#4| (-858)) -(((|#2| (-246 (-2863 |#1|) (-781)) (-874 |#1|)) . T)) -(|has| |#3| (-858)) -(((|#1| (-541 |#3|) |#3|) . T)) +(|has| |#4| (-857)) +(((|#2| (-245 (-2862 |#1|) (-780)) (-873 |#1|)) . T)) +(|has| |#3| (-857)) +(((|#1| (-540 |#3|) |#3|) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) -(((#0=(-417 (-574)) #0#) |has| |#2| (-372)) (($ $) . T)) -((((-880 |#1|)) . T)) -(|has| |#1| (-377)) -(|has| |#1| (-377)) -(|has| |#1| (-377)) -((((-872)) . T)) +(((#0=(-416 (-573)) #0#) |has| |#2| (-371)) (($ $) . T)) +((((-879 |#1|)) . T)) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +((((-871)) . T)) (|has| |#1| (-148)) -((((-417 (-574))) |has| |#2| (-372)) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -(-2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) +((((-416 (-573))) |has| |#2| (-371)) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(-2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) (|has| |#1| (-146)) -(-2818 (|has| |#1| (-358)) (|has| |#1| (-377))) -((((-1155 |#2| |#1|)) . T) ((|#1|) . T)) +(-2817 (|has| |#1| (-357)) (|has| |#1| (-376))) +((((-1154 |#2| |#1|)) . T) ((|#1|) . T)) (|has| |#2| (-174)) (((|#1| |#2|) . T)) -(-12 (|has| |#2| (-239)) (|has| |#2| (-1062))) -(((|#2|) . T) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -(-2818 (|has| |#3| (-803)) (|has| |#3| (-858))) -(-2818 (|has| |#3| (-803)) (|has| |#3| (-858))) -((((-872)) . T)) +(-12 (|has| |#2| (-238)) (|has| |#2| (-1061))) +(((|#2|) . T) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +(-2817 (|has| |#3| (-802)) (|has| |#3| (-857))) +(-2817 (|has| |#3| (-802)) (|has| |#3| (-857))) +((((-871)) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) -((((-709)) . T)) -(-2818 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1062))) -(|has| |#1| (-566)) +((((-708)) . T)) +(-2817 (|has| |#2| (-174)) (|has| |#2| (-857)) (|has| |#2| (-1061))) +(|has| |#1| (-565)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -1129,383 +1132,387 @@ (((|#1|) . T)) ((($) . T)) (((|#1|) . T)) -((((-1190) (-52)) . T)) -((((-1017 10)) . T) (((-417 (-574))) . T) (((-872)) . T)) -((((-546)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T)) +((((-1189) (-52)) . T)) +((((-1016 10)) . T) (((-416 (-573))) . T) (((-871)) . T)) +((((-545)) . T) (((-902 (-573))) . T) (((-387)) . T) (((-227)) . T)) (((|#1|) . T)) -((((-1017 16)) . T) (((-417 (-574))) . T) (((-872)) . T)) -((((-546)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T)) -(((|#1| (-574)) . T)) -((((-872)) . T)) -((((-872)) . T)) +((((-1016 16)) . T) (((-416 (-573))) . T) (((-871)) . T)) +((((-545)) . T) (((-902 (-573))) . T) (((-387)) . T) (((-227)) . T)) +(((|#1| (-573)) . T)) +((((-871)) . T)) +((((-871)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-417 (-574))) . T)) -(((|#3|) . T) (((-622 $)) . T)) +(((|#1| (-416 (-573))) . T)) +(((|#3|) . T) (((-621 $)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -((((-574)) -2818 (|has| |#2| (-174)) (|has| |#2| (-858)) (-12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113))) (|has| |#2| (-1062))) ((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-1113))) (((-417 (-574))) -12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113)))) -(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +((((-573)) -2817 (|has| |#2| (-174)) (|has| |#2| (-857)) (-12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112))) (|has| |#2| (-1061))) ((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-1112))) (((-416 (-573))) -12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) +(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) ((($ $) . T) ((|#2| $) . T)) -((((-574)) . T) (($) . T) (((-417 (-574))) . T)) -(((#0=(-1188 |#1| |#2| |#3|) #0#) -12 (|has| (-1188 |#1| |#2| |#3|) (-317 (-1188 |#1| |#2| |#3|))) (|has| |#1| (-372))) (((-1190) #0#) -12 (|has| (-1188 |#1| |#2| |#3|) (-524 (-1190) (-1188 |#1| |#2| |#3|))) (|has| |#1| (-372)))) -((((-872)) . T)) -((((-872)) . T)) +((((-573)) . T) (($) . T) (((-416 (-573))) . T)) +(((#0=(-1187 |#1| |#2| |#3|) #0#) -12 (|has| (-1187 |#1| |#2| |#3|) (-316 (-1187 |#1| |#2| |#3|))) (|has| |#1| (-371))) (((-1189) #0#) -12 (|has| (-1187 |#1| |#2| |#3|) (-523 (-1189) (-1187 |#1| |#2| |#3|))) (|has| |#1| (-371)))) +((((-871)) . T)) +((((-871)) . T)) (((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) |has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))))) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) (((-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) |has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-317 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))))) -((((-872)) . T)) +(((|#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) |has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))))) +((((-871)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#1|) . T)) -((($) . T) ((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) -((((-1190) (-52)) . T)) +((($) . T) ((|#2|) . T) (((-573)) |has| |#2| (-648 (-573)))) +((((-1189) (-52)) . T)) (((|#3|) . T)) -((($ $) . T) ((#0=(-874 |#1|) $) . T) ((#0# |#2|) . T)) -(|has| |#1| (-838)) -((($) . T) (((-574)) . T) ((|#1|) . T)) -((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T)) -((((-574)) . T) (($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(|has| (-1107 |#1|) (-1113)) -(((|#2| |#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1062))) (($ $) |has| |#2| (-174))) -(((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)))) -((((-574) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1062))) (($) |has| |#2| (-174))) -((((-574)) . T)) -((((-1195)) . T)) -((((-781)) . T)) +((($ $) . T) ((#0=(-873 |#1|) $) . T) ((#0# |#2|) . T)) +(|has| |#1| (-837)) +((($) . T) (((-573)) . T) ((|#1|) . T)) +((($) . T) (((-573)) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T)) +((((-573)) . T) (($) . T) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +(|has| (-1106 |#1|) (-1112)) +(((|#2| |#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-1061))) (($ $) |has| |#2| (-174))) +(((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)))) +((((-573) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-1061))) (($) |has| |#2| (-174))) +((((-573)) . T)) +((((-1194)) . T)) +((((-780)) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) -(|has| |#1| (-566)) -((((-574)) . T)) +(|has| |#1| (-565)) +((((-573)) . T)) (((|#2|) . T)) -((((-872)) . T)) -(((|#1| (-417 (-574)) (-1095)) . T)) +((((-871)) . T)) +(((|#1| (-416 (-573)) (-1094)) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) -(|has| |#1| (-566)) -((((-574)) . T)) +(|has| |#1| (-565)) +((((-573)) . T)) ((((-117 |#1|)) . T)) (((|#1|) . T)) -((((-417 (-574))) . T) (($) . T)) -(-2818 (|has| |#1| (-174)) (|has| |#1| (-566))) -((((-1195)) . T)) -((($) . T) (((-417 (-574))) . T)) -(-2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) -(-2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) -(-2818 (|has| |#1| (-174)) (|has| |#1| (-566))) -((((-574)) . T)) +((((-416 (-573))) . T) (($) . T)) +(-2817 (|has| |#1| (-174)) (|has| |#1| (-565))) +((((-1194)) . T)) +((($) . T) (((-416 (-573))) . T)) +(-2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) +(-2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) +(-2817 (|has| |#1| (-174)) (|has| |#1| (-565))) +((((-573)) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) -((((-574)) . T)) -((((-903 (-574))) . T) (((-903 (-388))) . T) (((-546)) . T) (((-1190)) . T)) -((((-872)) . T)) -(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113))) -((((-872)) . T) (((-1195)) . T)) -((((-1195)) . T)) +((((-573)) . T)) +((((-902 (-573))) . T) (((-902 (-387))) . T) (((-545)) . T) (((-1189)) . T)) +((((-871)) . T)) +(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) +((((-871)) . T) (((-1194)) . T)) +((((-1194)) . T)) ((($) . T)) (((|#1|) . T)) -((((-872)) . T)) -(-2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) +((((-871)) . T)) +(-2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) (((|#1|) . T) (($) . T)) (((|#2|) |has| |#2| (-174))) -((($) -2818 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) ((|#2|) |has| |#2| (-174)) (((-417 (-574))) |has| |#2| (-38 (-417 (-574))))) -((((-880 |#1|)) . T)) -(-2818 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062)) (|has| |#2| (-1113))) -(-12 (|has| |#3| (-239)) (|has| |#3| (-1062))) -(|has| |#2| (-1165)) -(((#0=(-52)) . T) (((-2 (|:| -3693 (-1190)) (|:| -1908 #0#))) . T)) +((($) -2817 (|has| |#2| (-371)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) ((|#2|) |has| |#2| (-174)) (((-416 (-573))) |has| |#2| (-38 (-416 (-573))))) +((((-879 |#1|)) . T)) +(-2817 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-376)) (|has| |#2| (-735)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061)) (|has| |#2| (-1112))) +(-12 (|has| |#3| (-238)) (|has| |#3| (-1061))) +(|has| |#2| (-1164)) +(((#0=(-52)) . T) (((-2 (|:| -3692 (-1189)) (|:| -1907 #0#))) . T)) (((|#1| |#2|) . T)) -(-2818 (|has| |#3| (-174)) (|has| |#3| (-858)) (|has| |#3| (-1062))) -(((|#1| (-574) (-1095)) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -(((|#1| (-417 (-574)) (-1095)) . T)) -((($) -2818 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) -((($) |has| (-417 |#2|) (-239))) -((((-574) |#2|) . T)) +(-2817 (|has| |#3| (-174)) (|has| |#3| (-857)) (|has| |#3| (-1061))) +(((|#1| (-573) (-1094)) . T)) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(((|#1| (-416 (-573)) (-1094)) . T)) +((($) -2817 (|has| |#1| (-314)) (|has| |#1| (-371)) (|has| |#1| (-357)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1|) . T)) +((($) |has| (-416 |#2|) (-238))) +((((-573) |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#2| (-377)) +(|has| |#2| (-376)) (((|#1| |#1|) . T)) -((((-872)) . T)) -((((-1190) |#1|) |has| |#1| (-524 (-1190) |#1|)) ((|#1| |#1|) |has| |#1| (-317 |#1|))) -(-12 (|has| |#1| (-377)) (|has| |#2| (-377))) -(-2818 (|has| |#1| (-146)) (|has| |#1| (-377))) -(-2818 (|has| |#1| (-146)) (|has| |#1| (-377))) -(-2818 (|has| |#1| (-146)) (|has| |#1| (-377))) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) -(((|#1|) . T)) -((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1188 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566)))) -(|has| |#1| (-358)) -((((-574)) -2818 (|has| |#3| (-174)) (|has| |#3| (-858)) (-12 (|has| |#3| (-1051 (-574))) (|has| |#3| (-1113))) (|has| |#3| (-1062))) ((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-1113))) (((-417 (-574))) -12 (|has| |#3| (-1051 (-417 (-574)))) (|has| |#3| (-1113)))) -(((|#1|) . T)) -((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-871)) . T)) +((((-1189) |#1|) |has| |#1| (-523 (-1189) |#1|)) ((|#1| |#1|) |has| |#1| (-316 |#1|))) +(-12 (|has| |#1| (-376)) (|has| |#2| (-376))) +(-2817 (|has| |#1| (-146)) (|has| |#1| (-376))) +(-2817 (|has| |#1| (-146)) (|has| |#1| (-376))) +(-2817 (|has| |#1| (-146)) (|has| |#1| (-376))) +((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-565))) +(((|#1|) . T)) +((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-1187 |#1| |#2| |#3|)) |has| |#1| (-371)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565)))) +(|has| |#1| (-357)) +((((-573)) -2817 (|has| |#3| (-174)) (|has| |#3| (-857)) (-12 (|has| |#3| (-1050 (-573))) (|has| |#3| (-1112))) (|has| |#3| (-1061))) ((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-1112))) (((-416 (-573))) -12 (|has| |#3| (-1050 (-416 (-573)))) (|has| |#3| (-1112)))) +(((|#1|) . T)) +((($) |has| |#1| (-565)) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) (((|#4|) . T)) -(((|#4|) . T) (((-872)) . T)) -(((|#3|) . T) ((|#2|) . T) (($) -2818 (|has| |#4| (-174)) (|has| |#4| (-858)) (|has| |#4| (-1062))) (((-574)) . T) ((|#4|) -2818 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-1062)))) -(((|#2|) . T) (($) -2818 (|has| |#3| (-174)) (|has| |#3| (-858)) (|has| |#3| (-1062))) (((-574)) . T) ((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1062)))) -(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((#0=(-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) #0#) |has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))))) -(|has| |#1| (-566)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -((((-872)) . T)) +(((|#4|) . T) (((-871)) . T)) +(((|#3|) . T) ((|#2|) . T) (($) -2817 (|has| |#4| (-174)) (|has| |#4| (-857)) (|has| |#4| (-1061))) (((-573)) . T) ((|#4|) -2817 (|has| |#4| (-174)) (|has| |#4| (-371)) (|has| |#4| (-1061)))) +(((|#2|) . T) (($) -2817 (|has| |#3| (-174)) (|has| |#3| (-857)) (|has| |#3| (-1061))) (((-573)) . T) ((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-1061)))) +(((|#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((#0=(-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) #0#) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) +(|has| |#1| (-565)) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +((((-871)) . T)) (((|#1| |#2|) . T)) -(-2818 (|has| |#2| (-462)) (|has| |#2| (-920))) -(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113))) -(-2818 (|has| |#1| (-462)) (|has| |#1| (-920))) -((((-417 (-574))) . T) (((-574)) . T)) -((((-574)) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))) -((($) . T)) -((((-872)) . T)) -(((|#1|) . T)) -((((-880 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) -((((-872)) . T)) -(((|#3| |#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1062))) (($ $) |has| |#3| (-174))) -(|has| |#1| (-1035)) -((((-872)) . T)) -(((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1062))) (($) |has| |#3| (-174))) -((((-574) (-112)) . T)) -((((-1195)) . T)) -(((|#1|) |has| |#1| (-317 |#1|))) -((((-1195)) . T)) -(|has| |#1| (-377)) -(|has| |#1| (-377)) -(|has| |#1| (-377)) -((((-1190) $) |has| |#1| (-524 (-1190) $)) (($ $) |has| |#1| (-317 $)) ((|#1| |#1|) |has| |#1| (-317 |#1|)) (((-1190) |#1|) |has| |#1| (-524 (-1190) |#1|))) -((((-1190)) |has| |#1| (-911 (-1190)))) -(-2818 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358))) +(-2817 (|has| |#2| (-461)) (|has| |#2| (-919))) +(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) +(-2817 (|has| |#1| (-461)) (|has| |#1| (-919))) +((((-416 (-573))) . T) (((-573)) . T)) +((((-573)) . T)) +((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) |has| |#2| (-174)) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) +((($) . T)) +((((-871)) . T)) +(((|#1|) . T)) +((((-879 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) +((((-871)) . T)) +(((|#3| |#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-1061))) (($ $) |has| |#3| (-174))) +(|has| |#1| (-1034)) +((((-871)) . T)) +(((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-1061))) (($) |has| |#3| (-174))) +((((-573) (-112)) . T)) +((((-1194)) . T)) +(((|#1|) |has| |#1| (-316 |#1|))) +((((-1194)) . T)) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +((((-1189) $) |has| |#1| (-523 (-1189) $)) (($ $) |has| |#1| (-316 $)) ((|#1| |#1|) |has| |#1| (-316 |#1|)) (((-1189) |#1|) |has| |#1| (-523 (-1189) |#1|))) +((((-1189)) |has| |#1| (-910 (-1189)))) +(-2817 (-12 (|has| |#1| (-238)) (|has| |#1| (-371))) (|has| |#1| (-357))) (((|#1| |#4|) . T)) (((|#1| |#3|) . T)) ((($) . T)) -((((-398) |#1|) . T)) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-358))) -(|has| |#1| (-1113)) -(((|#2|) . T) (((-872)) . T)) -((((-872)) . T)) -(((|#2|) . T)) -((((-921 |#1|)) . T)) -((((-872)) . T) (((-1195)) . T)) -((((-1195)) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))) +((((-397) |#1|) . T)) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-357))) +(|has| |#1| (-1112)) +(((|#2|) . T) (((-871)) . T)) +((((-871)) . T)) +(((|#2|) . T)) +((((-920 |#1|)) . T)) +((((-871)) . T) (((-1194)) . T)) +((((-1194)) . T)) +((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) |has| |#2| (-174)) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) +((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919)))) (((|#1| |#2|) . T)) ((($) . T)) -((((-574)) . T) (($) . T) (((-417 (-574))) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) +((((-573)) . T) (($) . T) (((-416 (-573))) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (($) . T) (((-573)) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (($) . T) (((-573)) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (($) . T) (((-573)) . T)) (((|#1| |#1|) . T)) -(((#0=(-880 |#1|)) |has| #0# (-317 #0#))) -((((-574)) . T) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-1051 (-417 (-574))))) ((|#1|) . T)) +(((#0=(-879 |#1|)) |has| #0# (-316 #0#))) +((((-573)) . T) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357)) (|has| |#1| (-1050 (-416 (-573))))) ((|#1|) . T)) (((|#1| |#2|) . T)) -(-2818 (|has| |#2| (-803)) (|has| |#2| (-858))) -(-2818 (|has| |#2| (-803)) (|has| |#2| (-858))) -(((|#1|) . T)) -(-12 (|has| |#1| (-803)) (|has| |#2| (-803))) -(-12 (|has| |#1| (-803)) (|has| |#2| (-803))) -(-2818 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1062))) -((($) . T) (((-574)) . T) ((|#2|) . T)) -(((|#2|) . T) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) +(-2817 (|has| |#2| (-802)) (|has| |#2| (-857))) +(-2817 (|has| |#2| (-802)) (|has| |#2| (-857))) +(((|#1|) . T)) +(-12 (|has| |#1| (-802)) (|has| |#2| (-802))) +(-12 (|has| |#1| (-802)) (|has| |#2| (-802))) +(-2817 (|has| |#2| (-174)) (|has| |#2| (-857)) (|has| |#2| (-1061))) +((($) . T) (((-573)) . T) ((|#2|) . T)) +(((|#2|) . T) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) (((|#2|) . T) (($) . T)) -(|has| |#1| (-1216)) -(((#0=(-574) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T)) -((((-417 (-574))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1062))) -(((|#3|) |has| |#3| (-1062))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T)) -(|has| |#1| (-372)) -((((-574)) . T) (((-417 (-574))) . T) (($) . T)) -((($ $) . T) ((#0=(-417 (-574)) #0#) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1| |#1|) . T)) -((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113)))) -(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) -((((-872)) . T)) -((((-872)) . T)) -(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) -(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-574) |#3|) . T)) -((((-872)) . T)) -((((-546)) |has| |#3| (-624 (-546)))) -((((-699 |#3|)) . T) (((-872)) . T)) +(|has| |#1| (-1215)) +(((#0=(-573) #0#) . T) ((#1=(-416 (-573)) #1#) . T) (($ $) . T)) +((((-416 (-573))) . T) (($) . T)) +(((|#4|) |has| |#4| (-1061))) +(((|#3|) |has| |#3| (-1061))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-416 (-573)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-416 (-573)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-416 (-573)) #0#) . T)) +(|has| |#1| (-371)) +((((-573)) . T) (((-416 (-573))) . T) (($) . T)) +((($ $) . T) ((#0=(-416 (-573)) #0#) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1| |#1|) . T)) +((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) +(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) +((((-871)) . T)) +((((-871)) . T)) +(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) +(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-573) |#3|) . T)) +((((-871)) . T)) +((((-545)) |has| |#3| (-623 (-545)))) +((((-698 |#3|)) . T) (((-871)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-858)) -(|has| |#1| (-858)) -((($) . T) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) -(-2818 (|has| |#1| (-174)) (|has| |#1| (-566))) +(|has| |#1| (-857)) +(|has| |#1| (-857)) +((($) . T) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1|) . T)) +(-2817 (|has| |#1| (-174)) (|has| |#1| (-565))) ((($) . T)) -(((#0=(-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) #0#) |has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-317 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))))) +(((#0=(-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) #0#) |has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))))) ((($) . T)) ((($) . T)) -(((|#2|) |has| |#2| (-1113))) -((((-872)) -2818 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-623 (-872))) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062)) (|has| |#2| (-1113))) (((-1281 |#2|)) . T)) +(((|#2|) |has| |#2| (-1112))) +((((-871)) -2817 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-622 (-871))) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-376)) (|has| |#2| (-735)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061)) (|has| |#2| (-1112))) (((-1280 |#2|)) . T)) ((($) . T)) -((((-574)) . T) (($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((((-1172) (-52)) . T)) +((((-573)) . T) (($) . T) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((((-1171) (-52)) . T)) (((|#2|) |has| |#2| (-174))) -((($) -2818 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) ((|#2|) |has| |#2| (-174)) (((-417 (-574))) |has| |#2| (-38 (-417 (-574))))) -((((-872)) . T)) -(((|#2|) . T)) -((($) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574))))) -((((-574)) |has| #0=(-417 |#2|) (-649 (-574))) ((#0#) . T)) -((($) . T) (((-574)) . T)) -((((-574) (-145)) . T)) -((((-574) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T) ((|#1| |#2|) . T)) -((((-417 (-574))) . T) (($) . T)) -(((|#1|) . T)) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -((((-872)) . T)) -((((-921 |#1|)) . T)) -(|has| |#1| (-372)) -(|has| |#1| (-372)) -(|has| |#1| (-372)) -(|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) -(|has| |#1| (-858)) -((($) -2818 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) -(|has| |#1| (-372)) +((($) -2817 (|has| |#2| (-371)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) ((|#2|) |has| |#2| (-174)) (((-416 (-573))) |has| |#2| (-38 (-416 (-573))))) +((((-871)) . T)) +(((|#2|) . T)) +((($) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) ((|#2|) . T) (((-416 (-573))) |has| |#2| (-38 (-416 (-573))))) +((((-573)) |has| #0=(-416 |#2|) (-648 (-573))) ((#0#) . T)) +((($) . T) (((-573)) . T)) +((((-573) (-145)) . T)) +((((-573) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T) ((|#1| |#2|) . T)) +((((-416 (-573))) . T) (($) . T)) +(((|#1|) . T)) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +((((-871)) . T)) +((((-920 |#1|)) . T)) +(|has| |#1| (-371)) +(|has| |#1| (-371)) +(|has| |#1| (-371)) +(|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) +(|has| |#1| (-857)) +((($) -2817 (|has| |#1| (-314)) (|has| |#1| (-371)) (|has| |#1| (-357)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1|) . T)) +(|has| |#1| (-371)) (((|#1|) . T) (($) . T)) -(|has| |#1| (-858)) -((($) . T) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) -((((-1190)) |has| |#1| (-911 (-1190)))) -(|has| |#1| (-858)) -((((-516)) . T)) -(((|#1| (-1190)) . T)) -(((|#1| (-1281 |#1|) (-1281 |#1|)) . T)) -((((-872)) . T) (((-1195)) . T)) +(|has| |#1| (-857)) +((($) . T) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1|) . T)) +((((-1189)) |has| |#1| (-910 (-1189)))) +(|has| |#1| (-857)) +((((-515)) . T)) +(((|#1| (-1189)) . T)) +(((|#1| (-1280 |#1|) (-1280 |#1|)) . T)) +((((-871)) . T) (((-1194)) . T)) (((|#1| |#2|) . T)) ((($ $) . T)) -((((-1195)) . T)) -(|has| |#1| (-1113)) -(((|#1| (-1190) (-828 (-1190)) (-541 (-828 (-1190)))) . T)) -((((-417 (-963 |#1|))) . T)) -((((-546)) . T)) -((((-872)) . T)) +((((-1194)) . T)) +(|has| |#1| (-1112)) +(((|#1| (-1189) (-827 (-1189)) (-540 (-827 (-1189)))) . T)) +((((-416 (-962 |#1|))) . T)) +((((-545)) . T)) +((((-871)) . T)) ((($) . T)) (((|#2|) . T) (($) . T)) -((((-574) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T) (((-1248 (-574)) $) . T) ((|#1| |#2|) . T)) +((((-573) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T) (((-1247 (-573)) $) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) -((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((((-872)) . T) (((-1195)) . T)) -((((-1195)) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) +((($) |has| |#1| (-565)) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((((-871)) . T) (((-1194)) . T)) +((((-1194)) . T)) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (((|#3|) . T)) (((|#1|) |has| |#1| (-174))) -(|has| |#2| (-427 |#1|)) -(|has| |#2| (-427 |#1|)) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))) -((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-574)) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) -((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-546)) |has| |#1| (-624 (-546))) (((-903 (-388))) |has| |#1| (-624 (-903 (-388)))) (((-903 (-574))) |has| |#1| (-624 (-903 (-574))))) -((((-872)) . T)) -((((-880 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) -(((|#2|) . T) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -((((-516)) . T)) -(|has| |#2| (-858)) -((((-516)) . T)) -(-12 (|has| |#2| (-239)) (|has| |#2| (-1062))) -(|has| |#1| (-566)) -((((-880 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) -((((-1172) |#1|) . T)) -(|has| |#1| (-1165)) -(-2818 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1062))) -((((-969 |#1|)) . T)) -(((#0=(-417 (-574)) #0#) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1| |#1|) . T)) -((((-417 (-574))) |has| |#1| (-1051 (-574))) (((-574)) |has| |#1| (-1051 (-574))) (((-1190)) |has| |#1| (-1051 (-1190))) ((|#1|) . T)) -((($) . T)) -((($) . T)) -((((-574) |#2|) . T)) -((((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) (((-574)) |has| |#1| (-1051 (-574))) ((|#1|) . T)) -((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T)) -((((-574)) |has| |#1| (-897 (-574))) (((-388)) |has| |#1| (-897 (-388)))) -((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T) (($) . T) (((-574)) . T)) -((((-654 |#4|)) . T) (((-872)) . T)) -((((-546)) |has| |#4| (-624 (-546)))) -((((-546)) |has| |#4| (-624 (-546)))) -((((-872)) . T) (((-654 |#4|)) . T)) -((($) |has| |#1| (-858))) -((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1273 |#1| |#2| |#3|)) |has| |#1| (-372)) (((-574)) . T) (($) . T) ((|#1|) . T)) -((((-574)) -2818 (|has| |#2| (-174)) (|has| |#2| (-858)) (-12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113))) (|has| |#2| (-1062))) ((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-1113))) (((-417 (-574))) -12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113)))) -(((|#1|) . T)) -(((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) . T)) -((((-654 |#4|)) . T) (((-872)) . T)) -((((-546)) |has| |#4| (-624 (-546)))) -(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T) (($) . T)) -(((|#1|) . T)) -((((-1190)) |has| (-417 |#2|) (-911 (-1190)))) -(((|#2|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((#0=(-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) #0#) |has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))))) -((($) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))) -((($) |has| |#1| (-239))) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))) -((($) . T)) -((($) . T)) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))) -((($) . T)) -((($) . T)) -((((-872)) -2818 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-623 (-872))) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-377)) (|has| |#3| (-736)) (|has| |#3| (-803)) (|has| |#3| (-858)) (|has| |#3| (-1062)) (|has| |#3| (-1113))) (((-1281 |#3|)) . T)) -(((|#2|) . T)) -((((-574) |#2|) . T)) -(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113))) -(((|#2| |#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1062))) (($ $) |has| |#2| (-174))) -(((|#2|) . T) (((-574)) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T) ((|#2|) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-1172) (-1190) (-574) (-227) (-872)) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-872)) . T)) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -((((-872)) . T)) -((((-574) (-112)) . T)) -(((|#1|) . T)) -((((-872)) . T)) +(|has| |#2| (-426 |#1|)) +(|has| |#2| (-426 |#1|)) +((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-573)) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#1|) |has| |#1| (-174))) +((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919)))) +((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-545)) |has| |#1| (-623 (-545))) (((-902 (-387))) |has| |#1| (-623 (-902 (-387)))) (((-902 (-573))) |has| |#1| (-623 (-902 (-573))))) +((((-871)) . T)) +((((-879 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) +(((|#2|) . T) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +((((-515)) . T)) +(|has| |#2| (-857)) +((((-515)) . T)) +(-12 (|has| |#2| (-238)) (|has| |#2| (-1061))) +(|has| |#1| (-565)) +((((-879 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) +(|has| |#1| (-238)) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +(-2817 (|has| |#2| (-174)) (|has| |#2| (-857)) (|has| |#2| (-1061))) +((((-1171) |#1|) . T)) +(|has| |#1| (-1164)) +((((-968 |#1|)) . T)) +(((#0=(-416 (-573)) #0#) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) ((|#1| |#1|) . T)) +((((-416 (-573))) |has| |#1| (-1050 (-573))) (((-573)) |has| |#1| (-1050 (-573))) (((-1189)) |has| |#1| (-1050 (-1189))) ((|#1|) . T)) +((($) . T)) +((($) . T)) +((((-573) |#2|) . T)) +((((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) (((-573)) |has| |#1| (-1050 (-573))) ((|#1|) . T)) +((($) . T) (((-573)) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T)) +((((-573)) |has| |#1| (-896 (-573))) (((-387)) |has| |#1| (-896 (-387)))) +((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T) (($) . T) (((-573)) . T)) +((((-653 |#4|)) . T) (((-871)) . T)) +((((-545)) |has| |#4| (-623 (-545)))) +((((-545)) |has| |#4| (-623 (-545)))) +((((-871)) . T) (((-653 |#4|)) . T)) +((($) |has| |#1| (-857))) +((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (((-1272 |#1| |#2| |#3|)) |has| |#1| (-371)) (((-573)) . T) (($) . T) ((|#1|) . T)) +((((-573)) -2817 (|has| |#2| (-174)) (|has| |#2| (-857)) (-12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112))) (|has| |#2| (-1061))) ((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-1112))) (((-416 (-573))) -12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) +(((|#1|) . T)) +(((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (((-573)) . T) (($) . T)) +((((-653 |#4|)) . T) (((-871)) . T)) +((((-545)) |has| |#4| (-623 (-545)))) +(((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) (((-573)) . T) (($) . T)) +(((|#1|) . T)) +((((-1189)) |has| (-416 |#2|) (-910 (-1189)))) +(((|#2|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((#0=(-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) #0#) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) +((($) . T)) +((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) |has| |#2| (-174)) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) +((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T) (($) -2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) +((($) |has| |#1| (-238))) +((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919)))) +((($) . T)) +((($) . T)) +((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919)))) +((($) . T)) +((($) . T)) +((((-871)) -2817 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-622 (-871))) (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-376)) (|has| |#3| (-735)) (|has| |#3| (-802)) (|has| |#3| (-857)) (|has| |#3| (-1061)) (|has| |#3| (-1112))) (((-1280 |#3|)) . T)) +(((|#2|) . T)) +((((-573) |#2|) . T)) +(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) +(((|#2| |#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-1061))) (($ $) |has| |#2| (-174))) +(((|#2|) . T) (((-573)) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T) ((|#2|) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-1171) (-1189) (-573) (-227) (-871)) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-871)) . T)) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +((((-871)) . T)) +((((-573) (-112)) . T)) +(((|#1|) . T)) +((((-871)) . T)) ((((-112)) . T)) ((((-112)) . T)) -((((-872)) . T)) -((((-872)) . T)) +((((-871)) . T)) +((((-871)) . T)) ((((-112)) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-872)) . T)) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -((((-417 (-574))) . T) (($) . T)) -((((-872)) . T)) -((((-546)) |has| |#1| (-624 (-546)))) -((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113)))) -((($) . T) (((-417 (-574))) . T)) -(((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1062))) (($) |has| |#2| (-174))) +((((-871)) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-871)) . T)) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +((((-416 (-573))) . T) (($) . T)) +((((-871)) . T)) +((((-545)) |has| |#1| (-623 (-545)))) +((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) +((($) . T) (((-416 (-573))) . T)) +(((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-1061))) (($) |has| |#2| (-174))) (|has| $ (-148)) -((((-417 |#2|)) . T)) -((((-417 (-574))) |has| #0=(-417 |#2|) (-1051 (-417 (-574)))) (((-574)) |has| #0# (-1051 (-574))) ((#0#) . T)) +((((-416 |#2|)) . T)) +((((-416 (-573))) |has| #0=(-416 |#2|) (-1050 (-416 (-573)))) (((-573)) |has| #0# (-1050 (-573))) ((#0#) . T)) (((|#2| |#2|) . T)) (((|#4|) |has| |#4| (-174))) (|has| |#2| (-146)) @@ -1513,208 +1520,212 @@ (((|#3|) |has| |#3| (-174))) (|has| |#1| (-148)) (|has| |#1| (-146)) -(-2818 (|has| |#1| (-146)) (|has| |#1| (-377))) +(-2817 (|has| |#1| (-146)) (|has| |#1| (-376))) (|has| |#1| (-148)) -(-2818 (|has| |#1| (-146)) (|has| |#1| (-377))) +(-2817 (|has| |#1| (-146)) (|has| |#1| (-376))) (|has| |#1| (-148)) -(-2818 (|has| |#1| (-146)) (|has| |#1| (-377))) +(-2817 (|has| |#1| (-146)) (|has| |#1| (-376))) (|has| |#1| (-148)) (((|#1|) . T)) -(|has| |#2| (-239)) +(|has| |#2| (-238)) (((|#2|) . T)) -((((-872)) . T) (((-1195)) . T)) -((((-1195)) . T)) -((((-1190) (-52)) . T)) -((((-872)) . T)) -((((-872)) . T) (((-1195)) . T)) -((((-1195)) . T)) +((((-871)) . T) (((-1194)) . T)) +((((-1194)) . T)) +(|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) +((((-1189) (-52)) . T)) +((((-871)) . T)) +((((-871)) . T) (((-1194)) . T)) +((((-1194)) . T)) (((|#1| |#1|) . T)) -((((-1190)) |has| |#2| (-911 (-1190)))) +((((-1189)) |has| |#2| (-910 (-1189)))) ((((-130)) . T)) -(|has| (-417 |#2|) (-239)) -((((-574) (-112)) . T) (((-1248 (-574)) $) . T)) -(|has| |#1| (-566)) +(|has| (-416 |#2|) (-238)) +((((-573) (-112)) . T) (((-1247 (-573)) $) . T)) +(|has| |#1| (-565)) (((|#2|) . T)) (((|#2|) . T)) -((((-904 |#1|)) . T) ((|#2|) . T) (((-574)) . T) (((-829 |#1|)) . T)) -(((|#1|) . T) (((-574)) . T) (((-829 (-1190))) . T)) +((((-903 |#1|)) . T) ((|#2|) . T) (((-573)) . T) (((-828 |#1|)) . T)) +(((|#1|) . T) (((-573)) . T) (((-828 (-1189))) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) (((|#3|) . T)) -(|has| |#1| (-38 (-417 (-574)))) -((((-574)) . T) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-1051 (-417 (-574))))) -(((|#1|) . T)) -((((-1017 2)) . T) (((-417 (-574))) . T) (((-872)) . T)) -((((-546)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-1012 |#1|)) . T) ((|#1|) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -((((-417 (-574))) . T) (((-417 |#1|)) . T) ((|#1|) . T) (($) . T)) -(((|#1| (-1186 |#1|)) . T)) -((((-574)) . T) (($) . T) (((-417 (-574))) . T)) +(|has| |#1| (-38 (-416 (-573)))) +((((-573)) . T) ((|#2|) . T) (((-416 (-573))) |has| |#2| (-1050 (-416 (-573))))) +(((|#1|) . T)) +((((-1016 2)) . T) (((-416 (-573))) . T) (((-871)) . T)) +((((-545)) . T) (((-902 (-573))) . T) (((-387)) . T) (((-227)) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-1011 |#1|)) . T) ((|#1|) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +((((-416 (-573))) . T) (((-416 |#1|)) . T) ((|#1|) . T) (($) . T)) +(((|#1| (-1185 |#1|)) . T)) +((((-573)) . T) (($) . T) (((-416 (-573))) . T)) (((|#3|) . T) (($) . T)) -(|has| |#1| (-860)) -(((|#1|) . T) (((-574)) . T) (($) . T)) -(((|#2|) . T)) -((((-574)) . T) (($) . T) (((-417 (-574))) . T)) -((((-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) . T)) -((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113)))) -((((-574) |#2|) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) -((($) . T) (((-574)) . T) (((-417 (-574))) . T)) -(((|#2|) . T)) -((((-574) |#3|) . T)) -(((|#2|) . T)) -((((-872)) . T)) -(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) -(((|#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113)))) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -((((-1273 |#1| |#2| |#3|)) |has| |#1| (-372))) -(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((#0=(-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) #0#) |has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))))) +(|has| |#1| (-859)) +(((|#1|) . T) (((-573)) . T) (($) . T)) +(((|#2|) . T)) +((((-573)) . T) (($) . T) (((-416 (-573))) . T)) +((((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) . T)) +((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) +((((-573) |#2|) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) +((($) . T) (((-573)) . T) (((-416 (-573))) . T)) +(((|#2|) . T)) +((((-573) |#3|) . T)) +(((|#2|) . T)) +((((-871)) . T)) +(((|#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) +(((|#3|) -12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) +(-2817 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (-12 (|has| |#1| (-371)) (|has| |#2| (-238)))) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +(((|#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((#0=(-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) #0#) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) (((|#2| |#2|) . T)) -(|has| |#1| (-1113)) -(|has| |#2| (-372)) -(((|#2|) . T) (((-574)) |has| |#2| (-1051 (-574))) (((-417 (-574))) |has| |#2| (-1051 (-417 (-574))))) -(|has| |#1| (-38 (-417 (-574)))) +((((-1272 |#1| |#2| |#3|)) |has| |#1| (-371))) +(|has| |#2| (-371)) +(((|#2|) . T) (((-573)) |has| |#2| (-1050 (-573))) (((-416 (-573))) |has| |#2| (-1050 (-416 (-573))))) +(|has| |#1| (-1112)) (((|#2|) . T)) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) +(|has| |#1| (-38 (-416 (-573)))) (((|#1|) |has| |#1| (-174))) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))) -((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919)))) +((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) (((|#2|) . T)) +((((-1171) (-52)) . T)) (((|#1|) . T)) -((((-1172) (-52)) . T)) -(((|#1|) . T)) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920)))) -((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919)))) +((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) (((|#2|) |has| |#2| (-174))) -((($) -2818 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1062))) (((-574)) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-858)) (|has| |#2| (-1062))) ((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1062)))) -((((-574) |#3|) . T)) -((((-574) (-145)) . T)) +(((|#1|) . T)) +((($) -2817 (|has| |#2| (-174)) (|has| |#2| (-857)) (|has| |#2| (-1061))) (((-573)) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-857)) (|has| |#2| (-1061))) ((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-1061)))) +((((-573) |#3|) . T)) +((((-573) (-145)) . T)) ((((-145)) . T)) -((((-872)) . T)) -((((-1195)) . T)) +((((-871)) . T)) +((((-1194)) . T)) ((((-112)) . T)) (|has| |#1| (-148)) (((|#1|) . T)) (|has| |#1| (-146)) ((($) . T)) -(|has| |#1| (-566)) -((((-574)) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) +(|has| |#1| (-565)) +((((-573)) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (((|#1|) . T)) -(((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) +(((|#2|) . T) (((-573)) |has| |#2| (-648 (-573)))) ((((-145)) . T)) -((((-872)) . T)) -((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T)) -((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T)) -((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T)) -((((-1190) (-52)) . T) (((-1172) (-52)) . T)) +((((-871)) . T)) +((((-573)) |has| |#1| (-648 (-573))) ((|#1|) . T)) +((((-573)) |has| |#1| (-648 (-573))) ((|#1|) . T)) +((((-573)) |has| |#1| (-648 (-573))) ((|#1|) . T)) +((((-1189) (-52)) . T) (((-1171) (-52)) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (((|#1| |#2|) . T)) -((((-1248 (-574)) $) . T) (((-574) (-145)) . T)) -(((#0=(-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) #0#) |has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) -((($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(|has| |#1| (-860)) -(((|#2| (-781) (-1095)) . T)) +(|has| |#2| (-238)) +((((-1247 (-573)) $) . T) (((-573) (-145)) . T)) +(((#0=(-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) #0#) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) +((($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +(|has| |#1| (-859)) +(((|#2| (-780) (-1094)) . T)) (((|#1| |#2|) . T)) -(-2818 (|has| |#1| (-174)) (|has| |#1| (-566))) -(|has| |#1| (-801)) +(-2817 (|has| |#1| (-174)) (|has| |#1| (-565))) +(|has| |#1| (-800)) (((|#1|) |has| |#1| (-174))) (((|#4|) . T)) (((|#4|) . T)) (((|#1| |#2|) . T)) -(-2818 (|has| |#1| (-148)) (-12 (|has| |#1| (-372)) (|has| |#2| (-148)))) -(-2818 (|has| |#1| (-146)) (-12 (|has| |#1| (-372)) (|has| |#2| (-146)))) +(-2817 (|has| |#1| (-148)) (-12 (|has| |#1| (-371)) (|has| |#2| (-148)))) +(-2817 (|has| |#1| (-146)) (-12 (|has| |#1| (-371)) (|has| |#2| (-146)))) (((|#4|) . T)) (|has| |#1| (-146)) -((((-1172) |#1|) . T)) +((((-1171) |#1|) . T)) (|has| |#1| (-148)) (((|#1|) . T)) -((((-574)) . T)) -((((-872)) . T)) +((((-573)) . T)) +((((-871)) . T)) (((|#1| |#2|) . T)) -((((-872)) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) +((((-871)) . T)) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (((|#3|) . T)) -((((-1273 |#1| |#2| |#3|)) |has| |#1| (-372))) -((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T)) -((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1188 |#1| |#2| |#3|)) |has| |#1| (-372)) (((-574)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) . T)) -((((-872)) . T)) -(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113))) -(((|#1|) . T)) -(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T) (($) . T)) -((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113)))) -((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113))) (((-969 |#1|)) . T)) -(|has| |#1| (-858)) -(|has| |#1| (-858)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -((((-969 |#1|)) . T)) -(((|#4|) -2818 (|has| |#4| (-174)) (|has| |#4| (-372)))) -(((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372)))) -(|has| |#2| (-372)) +((((-1272 |#1| |#2| |#3|)) |has| |#1| (-371))) +((($) . T) (((-573)) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T)) +((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (((-1187 |#1| |#2| |#3|)) |has| |#1| (-371)) (((-573)) . T) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (((-573)) . T) (($) . T)) +((((-871)) . T)) +(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) +(((|#1|) . T)) +(((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) (((-573)) . T) (($) . T)) +((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) +((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112))) (((-968 |#1|)) . T)) +(|has| |#1| (-857)) +(|has| |#1| (-857)) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +((((-968 |#1|)) . T)) +(((|#4|) -2817 (|has| |#4| (-174)) (|has| |#4| (-371)))) +(((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)))) +(|has| |#2| (-371)) (((|#1|) |has| |#1| (-174))) -(((|#4|) -2818 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-1062))) (($) |has| |#4| (-174))) -(((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1062))) (($) |has| |#3| (-174))) -(((|#2|) |has| |#2| (-1062))) -((((-1172) |#1|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113)))) -(((|#2| (-904 |#1|)) . T)) -((($) . T)) -((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T)) -((((-398) (-1172)) . T)) -((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((((-872)) -2818 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-623 (-872))) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062)) (|has| |#2| (-1113))) (((-1281 |#2|)) . T)) -(((#0=(-52)) . T) (((-2 (|:| -3693 (-1172)) (|:| -1908 #0#))) . T)) -(((|#1|) . T)) -((((-872)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) +(((|#4|) -2817 (|has| |#4| (-174)) (|has| |#4| (-371)) (|has| |#4| (-1061))) (($) |has| |#4| (-174))) +(((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-1061))) (($) |has| |#3| (-174))) +(((|#2|) |has| |#2| (-1061))) +((((-1171) |#1|) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) +(((|#2| (-903 |#1|)) . T)) +((($) . T)) +((($) . T) (((-573)) . T) (((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T)) +((((-397) (-1171)) . T)) +((($) |has| |#1| (-565)) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((((-871)) -2817 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-622 (-871))) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-376)) (|has| |#2| (-735)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061)) (|has| |#2| (-1112))) (((-1280 |#2|)) . T)) +(((#0=(-52)) . T) (((-2 (|:| -3692 (-1171)) (|:| -1907 #0#))) . T)) +(((|#1|) . T)) +((((-871)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) ((((-145)) . T)) (|has| |#2| (-146)) -((((-574)) . T)) +((((-573)) . T)) (|has| |#2| (-148)) -(|has| |#1| (-483)) -(-2818 (|has| |#1| (-483)) (|has| |#1| (-736)) (|has| |#1| (-911 (-1190))) (|has| |#1| (-1062))) -(|has| |#1| (-372)) -((((-872)) . T)) -(|has| |#1| (-38 (-417 (-574)))) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) -((($) |has| |#1| (-566))) -((((-1195)) . T)) -(|has| |#1| (-858)) -(|has| |#1| (-858)) -((((-872)) . T)) -(((|#2|) . T)) -((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1273 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566)))) -((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(((|#2|) . T) (((-574)) . T) (((-829 |#1|)) . T)) +(|has| |#1| (-482)) +(-2817 (|has| |#1| (-482)) (|has| |#1| (-735)) (|has| |#1| (-910 (-1189))) (|has| |#1| (-1061))) +(|has| |#1| (-371)) +((((-871)) . T)) +(|has| |#1| (-38 (-416 (-573)))) +((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-565))) +((($) |has| |#1| (-565))) +((((-1194)) . T)) +(|has| |#1| (-857)) +(|has| |#1| (-857)) +((((-871)) . T)) +(((|#2|) . T)) +((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-1272 |#1| |#2| |#3|)) |has| |#1| (-371)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565)))) +((($) |has| |#1| (-565)) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +(((|#2|) . T) (((-573)) . T) (((-828 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-1190)) |has| |#1| (-911 (-1190)))) +((((-1189)) |has| |#1| (-910 (-1189)))) (((|#2| |#2|) . T)) -((((-921 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) -((((-872)) . T)) -((((-872)) . T)) -(|has| |#1| (-1113)) -(((|#2| (-492 (-2863 |#1|) (-781)) (-874 |#1|)) . T)) -((((-417 (-574))) . #0=(|has| |#2| (-372))) (($) . #0#)) -(((|#1| (-541 (-1190)) (-1190)) . T)) +((((-920 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) +((((-871)) . T)) +((((-871)) . T)) +(|has| |#1| (-1112)) +(((|#2| (-491 (-2862 |#1|) (-780)) (-873 |#1|)) . T)) +((((-416 (-573))) . #0=(|has| |#2| (-371))) (($) . #0#)) +(((|#1| (-540 (-1189)) (-1189)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-872)) . T)) -((((-872)) . T)) +((((-871)) . T)) +((((-871)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#1|) . T)) @@ -1729,2305 +1740,2332 @@ (((|#2|) |has| |#2| (-174))) (((|#1|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) . T)) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -(((|#2|) . T)) -((((-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) . T)) -((((-1188 |#1| |#2| |#3|)) |has| |#1| (-372))) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -((((-1190) (-52)) . T)) -((((-417 (-574)) |#1|) . T) (($ $) . T)) -(((|#1| (-574)) . T)) -((((-921 |#1|)) . T)) -(((|#1|) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-1062))) (($) -2818 (|has| |#1| (-911 (-1190))) (|has| |#1| (-1062)))) -(((|#1|) . T) (((-574)) |has| |#1| (-1051 (-574))) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574))))) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -((((-574) |#2|) . T)) -((($) . T) (((-574)) . T) ((|#1|) . T)) -((((-872)) . T)) -((((-574)) . T)) -(|has| |#1| (-860)) -((((-699 |#2|)) . T) (((-872)) . T)) -((((-1273 |#1| |#2| |#3|)) -12 (|has| (-1273 |#1| |#2| |#3|) (-317 (-1273 |#1| |#2| |#3|))) (|has| |#1| (-372)))) -((((-417 (-574))) . T) (((-574)) . T) (($) . T)) +(((|#1|) . T) (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) . T)) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +(((|#2|) . T)) +((((-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) . T)) +((((-1187 |#1| |#2| |#3|)) |has| |#1| (-371))) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +((((-1189) (-52)) . T)) +((((-416 (-573)) |#1|) . T) (($ $) . T)) +(((|#1| (-573)) . T)) +((((-920 |#1|)) . T)) +(((|#1|) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-1061))) (($) -2817 (|has| |#1| (-910 (-1189))) (|has| |#1| (-1061)))) +(((|#1|) . T) (((-573)) |has| |#1| (-1050 (-573))) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573))))) +(|has| |#1| (-859)) +(|has| |#1| (-859)) +((((-573) |#2|) . T)) +((($) . T) (((-573)) . T) ((|#1|) . T)) +((((-871)) . T)) +((((-573)) . T)) +(|has| |#1| (-859)) +((((-698 |#2|)) . T) (((-871)) . T)) +((((-1272 |#1| |#2| |#3|)) -12 (|has| (-1272 |#1| |#2| |#3|) (-316 (-1272 |#1| |#2| |#3|))) (|has| |#1| (-371)))) +((((-416 (-573))) . T) (((-573)) . T) (($) . T)) +(|has| |#1| (-238)) (((|#1| |#2|) . T)) -((((-417 (-963 |#1|))) . T)) -((((-984)) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) -(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) +((((-416 (-962 |#1|))) . T)) +((((-983)) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) +(((|#4| |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (((|#1|) |has| |#1| (-174))) -(-2818 (|has| |#1| (-239)) (|has| |#1| (-294 |#1| |#1|))) -(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) -(((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372)))) -((($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(-2818 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-920))) -((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((($ $) . T) ((#0=(-417 (-574)) #0#) . T)) -((((-574) |#2|) . T)) -(((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)))) -(|has| |#1| (-358)) -(((|#3| |#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113)))) -(((|#2|) . T) (((-574)) . T)) -((($) . T) (((-417 (-574))) . T)) -((((-574) (-112)) . T)) -(|has| |#1| (-830)) -(|has| |#1| (-830)) -(((|#1|) . T)) -(-2818 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358))) -(|has| |#1| (-858)) -(|has| |#1| (-858)) -(|has| |#1| (-858)) -(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) -(((|#1|) . T) (((-574)) . T) (($) . T)) -((((-574)) . T) (($) . T) (((-417 (-574))) . T)) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-358))) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -((((-1190)) |has| |#1| (-911 (-1190))) (((-1095)) . T)) -(((|#1|) . T)) -(|has| |#1| (-858)) -(((#0=(-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) #0#) |has| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-317 (-2 (|:| -3693 (-1172)) (|:| -1908 (-52)))))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -(|has| |#1| (-1113)) -((((-872)) . T) (((-1195)) . T)) -((((-1195)) . T)) +(-2817 (|has| |#1| (-238)) (|has| |#1| (-293 |#1| |#1|))) +(((|#4| |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) +(((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)))) +((($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +(-2817 (|has| |#2| (-371)) (|has| |#2| (-461)) (|has| |#2| (-919))) +((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((($ $) . T) ((#0=(-416 (-573)) #0#) . T)) +((((-573) |#2|) . T)) +(((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)))) +(|has| |#1| (-357)) +(((|#3| |#3|) -12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) +(((|#2|) . T) (((-573)) . T)) +((($) . T) (((-416 (-573))) . T)) +((((-573) (-112)) . T)) +(|has| |#1| (-829)) +(|has| |#1| (-829)) +(((|#1|) . T)) +(-2817 (|has| |#1| (-314)) (|has| |#1| (-371)) (|has| |#1| (-357))) +(|has| |#1| (-857)) +(|has| |#1| (-857)) +(|has| |#1| (-857)) +(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) +(((|#1|) . T) (((-573)) . T) (($) . T)) +((((-573)) . T) (($) . T) (((-416 (-573))) . T)) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-357))) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +((((-1189)) |has| |#1| (-910 (-1189))) (((-1094)) . T)) +(((|#1|) . T)) +(|has| |#1| (-857)) +(((#0=(-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) #0#) |has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))))) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(|has| |#1| (-1112)) +((((-871)) . T) (((-1194)) . T)) +((((-1194)) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1|) . T)) -((((-1155 |#2| (-417 (-963 |#1|)))) . T) (((-417 (-963 |#1|))) . T) (((-574)) . T)) -(((|#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) . T)) +((((-1154 |#2| (-416 (-962 |#1|)))) . T) (((-416 (-962 |#1|))) . T) (((-573)) . T)) +(((|#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) -((($) . T) (((-574)) . T)) -(((|#1|) |has| |#1| (-174)) (($) . T) (((-574)) . T)) -(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T) (($) . T)) +((($) . T) (((-573)) . T)) +(((|#1|) |has| |#1| (-174)) (($) . T) (((-573)) . T)) +(((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) (((-573)) . T) (($) . T)) (((|#2|) . T)) (((|#1|) . T)) -(((|#1| (-541 |#2|) |#2|) . T)) -((((-872)) . T)) -((((-145)) . T) (((-872)) . T)) -((((-574) |#1|) . T)) -(((|#1| (-781) (-1095)) . T)) +(((|#1| (-540 |#2|) |#2|) . T)) +((((-871)) . T)) +((((-145)) . T) (((-871)) . T)) +((((-573) |#1|) . T)) +(((|#1| (-780) (-1094)) . T)) (((|#3|) . T)) ((((-145)) . T)) -((((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) (((-574)) -2818 (|has| |#1| (-858)) (|has| |#1| (-1051 (-574)))) ((|#1|) . T)) +((((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) (((-573)) -2817 (|has| |#1| (-857)) (|has| |#1| (-1050 (-573)))) ((|#1|) . T)) (((|#1|) . T)) ((((-145)) . T)) (((|#2|) |has| |#2| (-174))) -(-2818 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062)) (|has| |#2| (-1113))) +(-2817 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-376)) (|has| |#2| (-735)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061)) (|has| |#2| (-1112))) (((|#1|) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#3| (-174)) -(((|#4|) |has| |#4| (-372))) -(((|#3|) |has| |#3| (-372))) -(((|#1|) . T)) -(((|#2|) |has| |#1| (-372))) -((((-872)) . T)) -((((-872)) . T)) -(((|#2|) . T)) -(((|#1| (-1186 |#1|)) . T)) -((((-1095)) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1051 (-574))) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574))))) -((($) . T) ((|#1|) . T) (((-417 (-574))) . T) (((-574)) |has| |#1| (-649 (-574)))) -((($) . T)) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) -((($) |has| |#1| (-566))) -(((|#2|) . T)) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-566)))) -((($) |has| |#1| (-566)) ((|#1|) . T)) -((($) |has| |#1| (-858))) -((((-1188 |#1| |#2| |#3|)) |has| |#1| (-372))) -(|has| |#1| (-920)) -((((-1190)) . T)) -((((-872)) . T)) -((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1273 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) . T)) -((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1273 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) -(((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) -(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566)))) -((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -((((-574) |#2|) . T)) -((($) |has| |#1| (-239))) -((($) |has| |#1| (-377))) -((($) |has| |#1| (-377))) -((($) |has| |#1| (-377))) +(((|#4|) |has| |#4| (-371))) +(((|#3|) |has| |#3| (-371))) +(((|#1|) . T)) +(((|#2|) |has| |#1| (-371))) +((((-871)) . T)) +((((-871)) . T)) +(((|#2|) . T)) +(((|#1| (-1185 |#1|)) . T)) +((((-1094)) . T) ((|#1|) . T) (((-573)) |has| |#1| (-1050 (-573))) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573))))) +((($) . T) ((|#1|) . T) (((-416 (-573))) . T) (((-573)) |has| |#1| (-648 (-573)))) +((($) . T)) +((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-565))) +((($) |has| |#1| (-565))) +(((|#2|) . T)) +((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-565)))) +((($) |has| |#1| (-565)) ((|#1|) . T)) +((($) |has| |#1| (-857))) +((((-1187 |#1| |#2| |#3|)) |has| |#1| (-371))) +(|has| |#1| (-919)) +((((-1189)) . T)) +((((-871)) . T)) +((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (((-1272 |#1| |#2| |#3|)) |has| |#1| (-371)) ((|#1|) . T)) +((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-1272 |#1| |#2| |#3|)) |has| |#1| (-371)) ((|#1|) |has| |#1| (-174))) +(((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371)))) +(((|#1|) |has| |#1| (-174)) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565)))) +((($) |has| |#1| (-565)) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-565))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +((((-573) |#2|) . T)) +((($) |has| |#1| (-238))) +((($) |has| |#1| (-376))) +((($) |has| |#1| (-376))) +((($) |has| |#1| (-376))) (((|#1| |#2|) . T)) -(-2818 (|has| |#2| (-462)) (|has| |#2| (-920))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((#0=(-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) #0#) |has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-317 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))))) -(-2818 (|has| |#1| (-462)) (|has| |#1| (-920))) +(-2817 (|has| |#2| (-461)) (|has| |#2| (-919))) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((#0=(-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) #0#) |has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))))) +(-2817 (|has| |#1| (-461)) (|has| |#1| (-919))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) -(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) +(((|#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372)))) -(|has| |#1| (-860)) -(|has| |#1| (-566)) -((((-591 |#1|)) . T)) +(((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)))) +(|has| |#1| (-859)) +(|has| |#1| (-565)) +((((-590 |#1|)) . T)) ((($) . T)) (((|#2|) . T)) -(-2818 (-12 (|has| |#1| (-372)) (|has| |#2| (-830))) (-12 (|has| |#1| (-372)) (|has| |#2| (-860)))) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-566))) -((((-921 |#1|)) . T)) -(((|#1| (-506 |#1| |#3|) (-506 |#1| |#2|)) . T)) +(-2817 (-12 (|has| |#1| (-371)) (|has| |#2| (-829))) (-12 (|has| |#1| (-371)) (|has| |#2| (-859)))) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) +((((-920 |#1|)) . T)) +(((|#1| (-505 |#1| |#3|) (-505 |#1| |#2|)) . T)) (((|#1| |#4| |#5|) . T)) -(((|#1| (-781)) . T)) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) -((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1188 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566)))) -((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((((-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) . T)) -((((-574)) |has| #0=(-417 |#2|) (-649 (-574))) ((#0#) . T) (((-417 (-574))) . T) (($) . T)) -((((-682 |#1|)) . T)) +(((|#1| (-780)) . T)) +((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-565))) +((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-1187 |#1| |#2| |#3|)) |has| |#1| (-371)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565)))) +((($) |has| |#1| (-565)) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((((-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) . T)) +((((-573)) |has| #0=(-416 |#2|) (-648 (-573))) ((#0#) . T) (((-416 (-573))) . T) (($) . T)) +((((-681 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-872)) . T) (((-1195)) . T)) -((((-546)) . T)) -((((-872)) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -((((-872)) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))) -((((-1195)) . T)) -((((-417 (-574))) . T) (($) . T) (((-417 |#1|)) . T) ((|#1|) . T) (((-574)) . T)) -(((|#3|) . T) (((-574)) . T) (((-622 $)) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-872)) . T)) -(((|#2|) . T)) -(-2818 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-377)) (|has| |#3| (-736)) (|has| |#3| (-803)) (|has| |#3| (-858)) (|has| |#3| (-1062)) (|has| |#3| (-1113))) -(-2818 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1062))) -((((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) (((-574)) |has| |#1| (-1051 (-574))) ((|#1|) . T)) -(|has| |#1| (-1216)) -(|has| |#1| (-1216)) -(-2818 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062)) (|has| |#2| (-1113))) -(|has| |#1| (-1216)) -(|has| |#1| (-1216)) -((((-574)) . T) (($) . T) (((-417 (-574))) . T)) -((($ $) . T) ((#0=(-417 (-574)) #0#) . T) ((#1=(-417 |#1|) #1#) . T) ((|#1| |#1|) . T)) -((($) . T) (((-574)) . T) (((-417 (-574))) . T)) -((($) . T) (((-417 (-574))) . T) (((-417 |#1|)) . T) ((|#1|) . T)) +((((-871)) . T) (((-1194)) . T)) +((((-545)) . T)) +((((-871)) . T)) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +((((-871)) . T)) +((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) |has| |#2| (-174)) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) +((((-1194)) . T)) +((((-416 (-573))) . T) (($) . T) (((-416 |#1|)) . T) ((|#1|) . T) (((-573)) . T)) +(((|#3|) . T) (((-573)) . T) (((-621 $)) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-871)) . T)) +(((|#2|) . T)) +(-2817 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-376)) (|has| |#3| (-735)) (|has| |#3| (-802)) (|has| |#3| (-857)) (|has| |#3| (-1061)) (|has| |#3| (-1112))) +(-2817 (|has| |#2| (-174)) (|has| |#2| (-857)) (|has| |#2| (-1061))) +((((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) (((-573)) |has| |#1| (-1050 (-573))) ((|#1|) . T)) +(|has| |#1| (-1215)) +(|has| |#1| (-1215)) +(-2817 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-376)) (|has| |#2| (-735)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061)) (|has| |#2| (-1112))) +(|has| |#1| (-1215)) +(|has| |#1| (-1215)) +((((-573)) . T) (($) . T) (((-416 (-573))) . T)) +((($ $) . T) ((#0=(-416 (-573)) #0#) . T) ((#1=(-416 |#1|) #1#) . T) ((|#1| |#1|) . T)) +((($) . T) (((-573)) . T) (((-416 (-573))) . T)) +((($) . T) (((-416 (-573))) . T) (((-416 |#1|)) . T) ((|#1|) . T)) (((|#3| |#3|) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) (((|#3|) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) -((($) . T) (((-574)) . T) (((-417 (-574))) . T)) -((((-1172) (-52)) . T)) -(|has| |#1| (-1113)) +((($) |has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) +((($) . T) (((-573)) . T) (((-416 (-573))) . T)) +((((-1171) (-52)) . T)) +(|has| |#1| (-1112)) (((|#1|) |has| |#1| (-174)) (($) . T)) -(-2818 (|has| |#2| (-830)) (|has| |#2| (-860))) -(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) -(((|#1|) . T)) -((((-574)) . T) (($) . T) (((-417 (-574))) . T)) -((((-574)) . T) (($) . T)) -((((-781)) . T)) -(-2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -((((-872)) . T)) -((($) . T) (((-574)) . T)) -((($) . T)) -(|has| |#2| (-920)) -(|has| |#1| (-372)) -(((|#2|) |has| |#2| (-1113))) -(-2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) -((((-574)) . T) (((-417 (-574))) . T) (($) . T)) -((((-546)) . T) (((-417 (-1186 (-574)))) . T) (((-227)) . T) (((-388)) . T)) -((((-388)) . T) (((-227)) . T) (((-872)) . T)) -(|has| |#1| (-920)) -(|has| |#1| (-920)) -((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) -(|has| |#1| (-920)) -(-2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) -(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113))) -(-2818 (|has| |#1| (-462)) (|has| |#1| (-920))) -((($) . T)) -((($) . T) ((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) -(((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)))) -(((|#1|) . T)) -((((-1188 |#1| |#2| |#3|)) -12 (|has| (-1188 |#1| |#2| |#3|) (-317 (-1188 |#1| |#2| |#3|))) (|has| |#1| (-372)))) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-920))) -(((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1062))) (($) |has| |#2| (-174))) -(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) -((((-872)) . T)) -((((-872)) . T)) -((((-984)) . T)) -((((-984)) . T) (((-872)) . T)) +(-2817 (|has| |#2| (-829)) (|has| |#2| (-859))) +(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) +(((|#1|) . T)) +((((-573)) . T) (($) . T) (((-416 (-573))) . T)) +((((-573)) . T) (($) . T)) +((((-780)) . T)) +(-2817 (|has| |#1| (-238)) (|has| |#1| (-357))) +(-2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) +((((-871)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +((($) . T) (((-573)) . T)) +(|has| |#2| (-919)) +(|has| |#1| (-371)) +(((|#2|) |has| |#2| (-1112))) +((($) . T)) +(-2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) +((((-545)) . T) (((-416 (-1185 (-573)))) . T) (((-227)) . T) (((-387)) . T)) +((((-387)) . T) (((-227)) . T) (((-871)) . T)) +(|has| |#1| (-919)) +(|has| |#1| (-919)) +((((-573)) . T) (((-416 (-573))) . T) (($) . T)) +((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1|) . T)) +(|has| |#1| (-919)) +(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) +(-2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) +(-2817 (|has| |#1| (-461)) (|has| |#1| (-919))) +((($) . T)) +(((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)))) +((($) . T) ((|#2|) . T) (((-573)) |has| |#2| (-648 (-573)))) +(((|#1|) . T)) +((((-1187 |#1| |#2| |#3|)) -12 (|has| (-1187 |#1| |#2| |#3|) (-316 (-1187 |#1| |#2| |#3|))) (|has| |#1| (-371)))) +(((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-1061))) (($) |has| |#2| (-174))) +(((|#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-919))) +((((-871)) . T)) +((((-871)) . T)) +((((-983)) . T)) +((((-983)) . T) (((-871)) . T)) ((($ $) . T)) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -((($) -2818 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (-12 (|has| |#1| (-372)) (|has| |#2| (-239))))) -((($) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +((($) -2817 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (-12 (|has| |#1| (-371)) (|has| |#2| (-238))))) +((($) |has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) ((($ $) . T)) -((((-574) (-112)) . T)) +((((-573) (-112)) . T)) ((($) . T)) (((|#1|) . T)) -((((-574)) . T)) ((((-112)) . T)) -(-2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) -(|has| |#1| (-38 (-417 (-574)))) -(((|#1| (-574)) . T)) +(-2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) +((((-573)) . T)) +(((|#1| (-573)) . T)) ((($) . T)) -(((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) -((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T)) +(((|#2|) . T) (((-573)) |has| |#2| (-648 (-573)))) +((((-573)) |has| |#1| (-648 (-573))) ((|#1|) . T)) (((|#1|) . T)) -((((-574)) . T)) +((((-573)) . T)) (((|#1| |#2|) . T)) -((((-1190)) |has| |#1| (-1062))) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) +((((-1189)) |has| |#1| (-1061))) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +((((-871)) . T)) (((|#1|) . T)) -((((-872)) . T)) -(((|#1| (-574)) . T)) -(((|#1| (-1273 |#1| |#2| |#3|)) . T)) +(((|#1| (-573)) . T)) +(((|#1| (-1272 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) -(((|#1| (-417 (-574))) . T)) -(((|#1| (-1245 |#1| |#2| |#3|)) . T)) -(((|#1| (-781)) . T)) +(((|#1| (-416 (-573))) . T)) +(((|#1| (-1244 |#1| |#2| |#3|)) . T)) +(((|#1| (-780)) . T)) +((((-871)) . T)) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +(|has| |#1| (-1112)) (((|#1|) . T)) -((((-872)) . T)) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -(|has| |#1| (-1113)) -((((-1172) |#1|) . T)) +((((-1171) |#1|) . T)) ((($) . T)) (|has| |#2| (-148)) (|has| |#2| (-146)) -(((|#1| (-541 (-828 (-1190))) (-828 (-1190))) . T)) -((((-872)) . T)) -((((-1267 |#1| |#2| |#3| |#4|)) . T)) -((((-1267 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1062))) -((((-574) (-112)) . T) (((-1248 (-574)) $) . T)) -((((-872)) |has| |#1| (-1113))) -(((|#1|) . T) (((-574)) . T) (($) . T)) +(((|#1| (-540 (-827 (-1189))) (-827 (-1189))) . T)) +((((-871)) . T)) +((((-1266 |#1| |#2| |#3| |#4|)) . T)) +((((-1266 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1061))) +((((-573) (-112)) . T) (((-1247 (-573)) $) . T)) +((((-871)) |has| |#1| (-1112))) +(((|#1|) . T) (((-573)) . T) (($) . T)) (|has| |#2| (-174)) -((((-574)) . T)) -(|has| |#2| (-858)) +((((-573)) . T)) +(|has| |#2| (-857)) (((|#1|) . T)) -((((-574)) . T)) -((((-872)) . T)) -(-2818 (|has| |#1| (-146)) (|has| |#1| (-358))) -((((-872)) . T)) +((((-573)) . T)) +((((-871)) . T)) +(-2817 (|has| |#1| (-146)) (|has| |#1| (-357))) +((((-871)) . T)) (|has| |#1| (-148)) (((|#3|) . T)) -(-2818 (|has| |#3| (-174)) (|has| |#3| (-858)) (|has| |#3| (-1062))) -((((-872)) . T)) -((($) |has| |#2| (-239))) -((((-1266 |#2| |#3| |#4|)) . T) (((-1267 |#1| |#2| |#3| |#4|)) . T)) -((((-872)) . T)) -((((-48)) -12 (|has| |#1| (-566)) (|has| |#1| (-1051 (-574)))) (((-622 $)) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1051 (-574))) (((-417 (-574))) -2818 (-12 (|has| |#1| (-566)) (|has| |#1| (-1051 (-574)))) (|has| |#1| (-1051 (-417 (-574))))) (((-417 (-963 |#1|))) |has| |#1| (-566)) (((-963 |#1|)) |has| |#1| (-1062)) (((-1190)) . T)) +((((-871)) . T)) +(-2817 (|has| |#3| (-174)) (|has| |#3| (-857)) (|has| |#3| (-1061))) +((($) |has| |#2| (-238))) +((((-1265 |#2| |#3| |#4|)) . T) (((-1266 |#1| |#2| |#3| |#4|)) . T)) +((((-871)) . T)) +((((-48)) -12 (|has| |#1| (-565)) (|has| |#1| (-1050 (-573)))) (((-621 $)) . T) ((|#1|) . T) (((-573)) |has| |#1| (-1050 (-573))) (((-416 (-573))) -2817 (-12 (|has| |#1| (-565)) (|has| |#1| (-1050 (-573)))) (|has| |#1| (-1050 (-416 (-573))))) (((-416 (-962 |#1|))) |has| |#1| (-565)) (((-962 |#1|)) |has| |#1| (-1061)) (((-1189)) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-781)) . T)) +(((|#1| (-780)) . T)) (((|#1|) . T)) -((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-317 |#1|))) -((((-1267 |#1| |#2| |#3| |#4|)) . T)) -((((-574)) |has| |#1| (-897 (-574))) (((-388)) |has| |#1| (-897 (-388)))) +((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-316 |#1|))) +((((-1266 |#1| |#2| |#3| |#4|)) . T)) +((((-573)) |has| |#1| (-896 (-573))) (((-387)) |has| |#1| (-896 (-387)))) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-566)) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) +(|has| |#1| (-565)) +((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-565))) (((|#1|) . T)) -((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1188 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566)))) -((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-566)))) -((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1188 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) . T)) -(((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) -((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) |has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))))) +((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-1187 |#1| |#2| |#3|)) |has| |#1| (-371)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565)))) +((($) |has| |#1| (-565)) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-565)))) +((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (((-1187 |#1| |#2| |#3|)) |has| |#1| (-371)) ((|#1|) . T)) +(((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371)))) +((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-565))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +(((|#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) (((|#1|) |has| |#1| (-174))) -((((-872)) . T)) -((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -(((|#1|) |has| |#1| (-174)) (($) . T) (((-574)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) -(((|#1|) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))) -(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T) (($) . T)) -(((|#3|) |has| |#3| (-1113))) -((((-921 |#1|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) -(((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)))) -((((-1266 |#2| |#3| |#4|)) . T)) +((((-871)) . T)) +((($) |has| |#1| (-565)) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(((|#1|) |has| |#1| (-174)) (($) . T) (((-573)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) +(((|#1|) . T)) +((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) |has| |#2| (-174)) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) +((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T) (($) -2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) +(((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) (((-573)) . T) (($) . T)) +(((|#3|) |has| |#3| (-1112))) +((((-920 |#1|)) . T) (((-416 (-573))) . T) (($) . T) (((-573)) . T)) +(((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)))) +((((-1265 |#2| |#3| |#4|)) . T)) ((((-112)) . T)) -(|has| |#1| (-830)) -(|has| |#1| (-830)) -(((|#1| (-574) (-1095)) . T)) -((($) |has| |#1| (-317 $)) ((|#1|) |has| |#1| (-317 |#1|))) -(|has| |#1| (-858)) -(|has| |#1| (-858)) -(((|#1| (-574) (-1095)) . T)) -(-2818 (|has| |#1| (-911 (-1190))) (|has| |#1| (-1062))) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -(((|#1| (-417 (-574)) (-1095)) . T)) -(((|#1| (-781) (-1095)) . T)) -(|has| |#1| (-860)) -(((#0=(-921 |#1|) #0#) . T) (($ $) . T) ((#1=(-417 (-574)) #1#) . T)) +(|has| |#1| (-829)) +(|has| |#1| (-829)) +(((|#1| (-573) (-1094)) . T)) +((($) |has| |#1| (-316 $)) ((|#1|) |has| |#1| (-316 |#1|))) +(|has| |#1| (-857)) +(|has| |#1| (-857)) +(((|#1| (-573) (-1094)) . T)) +(-2817 (|has| |#1| (-910 (-1189))) (|has| |#1| (-1061))) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +(((|#1| (-416 (-573)) (-1094)) . T)) +(((|#1| (-780) (-1094)) . T)) +(|has| |#1| (-859)) +(((#0=(-920 |#1|) #0#) . T) (($ $) . T) ((#1=(-416 (-573)) #1#) . T)) (|has| |#2| (-146)) (|has| |#2| (-148)) (((|#2|) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) -(|has| |#1| (-1113)) -((((-921 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) -(|has| |#1| (-1113)) -((((-417 (-574))) |has| |#2| (-372)) (($) . T) (((-574)) . T)) -((((-574)) -2818 (|has| |#1| (-911 (-1190))) (|has| |#1| (-1062)))) -(((|#1|) . T)) -(|has| |#1| (-1113)) -((((-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-649 (-574)))) ((|#2|) |has| |#1| (-372))) -(-2818 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062)) (|has| |#2| (-1113))) -((((-699 (-348 (-2956) (-2956 (QUOTE X) (QUOTE HESS)) (-709)))) . T)) +(|has| |#1| (-1112)) +((((-920 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) +(|has| |#1| (-1112)) +((((-416 (-573))) |has| |#2| (-371)) (($) . T) (((-573)) . T)) +((((-573)) -2817 (|has| |#1| (-910 (-1189))) (|has| |#1| (-1061)))) +(((|#1|) . T)) +(|has| |#1| (-1112)) +((((-573)) -12 (|has| |#1| (-371)) (|has| |#2| (-648 (-573)))) ((|#2|) |has| |#1| (-371))) +(-2817 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-376)) (|has| |#2| (-735)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061)) (|has| |#2| (-1112))) +((((-698 (-347 (-2955) (-2955 (QUOTE X) (QUOTE HESS)) (-708)))) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -((((-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) . T)) -((((-872)) . T)) -(|has| |#3| (-858)) -((((-872)) . T)) -((((-1266 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) . T)) -((((-872)) . T)) -(((|#1| |#1|) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-1062)))) -(((|#1|) . T)) -((((-574)) . T)) -((((-574)) . T)) -(((|#1|) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-1062)))) -(((|#2|) |has| |#2| (-372))) -(((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-372)) (((-574)) |has| |#1| (-649 (-574)))) -(|has| |#1| (-860)) -(((|#1|) . T)) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -(((|#1|) . T) (((-574)) . T)) -(((|#2|) . T)) -((((-574)) . T) ((|#3|) . T)) -((((-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) |has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-317 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))))) -(-2818 (|has| |#1| (-462)) (|has| |#1| (-920))) -(((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) -((((-872)) . T)) -((((-872)) . T)) -((($) -2818 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1062))) (((-574)) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-858)) (|has| |#2| (-1062))) ((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1062)))) -((((-546)) . T) (((-574)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T)) -((((-872)) . T)) -((($) |has| |#1| (-239))) -(|has| |#1| (-38 (-417 (-574)))) -((((-574)) . T) (($) . T) (((-417 (-574))) . T)) -((((-574)) . T) (($) . T) (((-417 (-574))) . T)) -((($) . T)) -(|has| |#1| (-239)) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +((((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) . T)) +((((-871)) . T)) +(|has| |#3| (-857)) +((((-871)) . T)) +((((-871)) . T)) +((((-1265 |#2| |#3| |#4|) (-326 |#2| |#3| |#4|)) . T)) +(((|#1| |#1|) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-1061)))) +(((|#1|) . T)) +((((-573)) . T)) +((((-573)) . T)) +(((|#1|) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-1061)))) +(((|#2|) |has| |#2| (-371))) +(((|#1|) . T)) +((($) . T) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-371)) (((-573)) |has| |#1| (-648 (-573)))) +(|has| |#1| (-859)) +(((|#1|) . T)) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +(((|#1|) . T) (((-573)) . T)) +(((|#2|) . T)) +((((-573)) . T) ((|#3|) . T)) +((((-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) |has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))))) +(-2817 (|has| |#1| (-461)) (|has| |#1| (-919))) +(((|#2|) . T) (((-573)) |has| |#2| (-648 (-573)))) +((((-871)) . T)) +((((-871)) . T)) +((($) -2817 (|has| |#2| (-174)) (|has| |#2| (-857)) (|has| |#2| (-1061))) (((-573)) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-857)) (|has| |#2| (-1061))) ((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-1061)))) +((((-545)) . T) (((-573)) . T) (((-902 (-573))) . T) (((-387)) . T) (((-227)) . T)) +((((-871)) . T)) +((($) |has| |#1| (-238))) +(|has| |#1| (-38 (-416 (-573)))) +((((-573)) . T) (($) . T) (((-416 (-573))) . T)) +((((-573)) . T) (($) . T) (((-416 (-573))) . T)) +((($) . T)) +(|has| |#1| (-238)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -(|has| |#1| (-858)) -(((|#1| (-574)) . T)) +(|has| |#1| (-857)) +(((|#1| (-573)) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1| (-1188 |#1| |#2| |#3|)) . T)) +(((|#1| (-1187 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) -(((|#1| (-417 (-574))) . T)) -(((|#1| |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) -(((|#1| (-1181 |#1| |#2| |#3|)) . T)) -(((|#1| (-781)) . T)) +(((|#1| (-416 (-573))) . T)) +(((|#1| |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) . T)) +(((|#1| (-1180 |#1| |#2| |#3|)) . T)) +(((|#1| (-780)) . T)) (((|#1|) . T)) -((((-417 (-963 |#1|))) . T)) +((((-416 (-962 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-148)) -((((-417 (-963 |#1|))) . T)) +((((-416 (-962 |#1|))) . T)) (((|#1|) |has| |#1| (-174))) (|has| |#1| (-146)) -((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) +((($) |has| |#1| (-565)) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) (((|#1|) |has| |#1| (-174))) -((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((((-574)) . T) ((|#1|) . T) (($) . T) (((-417 (-574))) . T) (((-1190)) |has| |#1| (-1051 (-1190)))) +((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-565))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((((-573)) . T) ((|#1|) . T) (($) . T) (((-416 (-573))) . T) (((-1189)) |has| |#1| (-1050 (-1189)))) (((|#1| |#2|) . T)) -((((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) (((-574)) -2818 (|has| |#1| (-858)) (|has| |#1| (-1051 (-574)))) ((|#1|) . T)) +((((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) (((-573)) -2817 (|has| |#1| (-857)) (|has| |#1| (-1050 (-573)))) ((|#1|) . T)) +(-12 (|has| |#4| (-238)) (|has| |#4| (-1061))) +(-12 (|has| |#3| (-238)) (|has| |#3| (-1061))) ((((-145)) . T)) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -(((|#1|) . T)) -(-2818 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1062))) -(((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) . T) (($ $) . T)) -(((|#2|) . T) ((|#1|) . T) (((-574)) . T)) -((((-872)) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) -((($) . T) (((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113)))) -(|has| |#1| (-372)) -(|has| |#1| (-372)) -(|has| (-417 |#2|) (-239)) -((((-654 |#1|)) . T)) -(|has| |#1| (-920)) -(((|#2|) |has| |#2| (-1062))) -((($) . T)) -(|has| |#1| (-372)) -(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) |has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))))) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +(((|#1|) . T)) +(-2817 (|has| |#2| (-174)) (|has| |#2| (-857)) (|has| |#2| (-1061))) +(((|#1| |#1|) . T) ((#0=(-416 (-573)) #0#) . T) (($ $) . T)) +(((|#2|) . T) ((|#1|) . T) (((-573)) . T)) +((((-871)) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) +((($) . T) (((-573)) |has| |#1| (-648 (-573))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) +(|has| |#1| (-371)) +(|has| |#1| (-371)) +(|has| (-416 |#2|) (-238)) +((((-653 |#1|)) . T)) +(|has| |#1| (-919)) +(((|#2|) |has| |#2| (-1061))) +((($) . T)) +(|has| |#1| (-371)) +(((|#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) (((|#1|) |has| |#1| (-174))) (((|#1| |#1|) . T)) -((((-880 |#1|)) . T)) -((((-872)) . T)) +((((-879 |#1|)) . T)) +((((-871)) . T)) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1113))) +(((|#2|) |has| |#2| (-1112))) (((|#1|) . T)) -((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) -((((-654 $)) . T) (((-1172)) . T) (((-1190)) . T) (((-574)) . T) (((-227)) . T) (((-872)) . T)) -((($) -2818 (|has| |#3| (-174)) (|has| |#3| (-858)) (|has| |#3| (-1062))) (((-574)) -2818 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-858)) (|has| |#3| (-1062))) ((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1062)))) -((((-417 (-574))) . T) (((-574)) . T) (((-622 $)) . T)) +((((-416 |#2|)) . T) (((-416 (-573))) . T) (($) . T) (((-573)) . T)) +((((-653 $)) . T) (((-1171)) . T) (((-1189)) . T) (((-573)) . T) (((-227)) . T) (((-871)) . T)) +((($) -2817 (|has| |#3| (-174)) (|has| |#3| (-857)) (|has| |#3| (-1061))) (((-573)) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-857)) (|has| |#3| (-1061))) ((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-1061)))) +((((-416 (-573))) . T) (((-573)) . T) (((-621 $)) . T)) (((|#1|) . T)) -((((-872)) . T)) +((((-871)) . T)) ((($) . T)) -(((|#1| (-541 |#2|) |#2|) . T)) -((((-872)) . T)) -(((|#1| (-574) (-1095)) . T)) -((((-921 |#1|)) . T)) -((((-872)) . T)) +(((|#1| (-540 |#2|) |#2|) . T)) +((((-871)) . T)) +(((|#1| (-573) (-1094)) . T)) +((((-920 |#1|)) . T)) +((((-871)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-417 (-574)) (-1095)) . T)) -(((|#1| (-781) (-1095)) . T)) -(((#0=(-417 |#2|) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-574)) -2818 (|has| (-417 (-574)) (-1051 (-574))) (|has| |#1| (-1051 (-574)))) (((-417 (-574))) . T)) -(((|#1| (-612 |#1| |#3|) (-612 |#1| |#2|)) . T)) +(((|#1| (-416 (-573)) (-1094)) . T)) +(((|#1| (-780) (-1094)) . T)) +(((#0=(-416 |#2|) #0#) . T) ((#1=(-416 (-573)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-573)) -2817 (|has| (-416 (-573)) (-1050 (-573))) (|has| |#1| (-1050 (-573)))) (((-416 (-573))) . T)) +(((|#1| (-611 |#1| |#3|) (-611 |#1| |#2|)) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T)) -(|has| |#2| (-239)) -(((|#2| (-541 (-874 |#1|)) (-874 |#1|)) . T)) -((((-872)) . T)) -((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((((-872)) . T)) +((((-416 |#2|)) . T) (((-416 (-573))) . T) (($) . T)) +(|has| |#2| (-238)) +(((|#2| (-540 (-873 |#1|)) (-873 |#1|)) . T)) +((((-871)) . T)) +((($) |has| |#1| (-565)) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((((-871)) . T)) (((|#1| |#3|) . T)) -((((-872)) . T)) -(((|#1|) |has| |#1| (-174)) (((-963 |#1|)) . T) (((-574)) . T)) +((((-871)) . T)) +(((|#1|) |has| |#1| (-174)) (((-962 |#1|)) . T) (((-573)) . T)) (((|#1|) |has| |#1| (-174))) -((((-709)) . T)) -((((-709)) . T)) +((((-708)) . T)) +((((-708)) . T)) (((|#2|) |has| |#2| (-174))) -(|has| |#2| (-858)) -((((-574)) . T) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-1051 (-417 (-574))))) -((((-112)) |has| |#1| (-1113)) (((-872)) -2818 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-483)) (|has| |#1| (-736)) (|has| |#1| (-911 (-1190))) (|has| |#1| (-1062)) (|has| |#1| (-1125)) (|has| |#1| (-1113)))) +(|has| |#2| (-857)) +(|has| |#1| (-238)) +((((-573)) . T) ((|#2|) . T) (((-416 (-573))) |has| |#2| (-1050 (-416 (-573))))) +((((-112)) |has| |#1| (-1112)) (((-871)) -2817 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-482)) (|has| |#1| (-735)) (|has| |#1| (-910 (-1189))) (|has| |#1| (-1061)) (|has| |#1| (-1124)) (|has| |#1| (-1112)))) (((|#1|) . T) (($) . T)) (((|#1| |#2|) . T)) -((($) . T) (((-574)) . T) (((-417 (-574))) . T)) -((((-574)) . T) (($) . T) (((-417 (-574))) . T)) -((((-2 (|:| -3693 (-1172)) (|:| -1908 (-52)))) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) -((((-574)) . T) (($) . T) (((-417 (-574))) . T)) -((((-574)) . T) (((-417 (-574))) . T) (($) . T)) -((((-872)) . T)) -((((-574)) . T) (((-417 (-574))) . T) (($) . T)) -((((-872)) . T)) -((((-709)) . T) (((-417 (-574))) . T) (((-574)) . T)) +((($) . T) (((-573)) . T) (((-416 (-573))) . T)) +((((-573)) . T) (($) . T) (((-416 (-573))) . T)) +((((-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) +((((-573)) . T) (($) . T) (((-416 (-573))) . T)) +((((-573)) . T) (((-416 (-573))) . T) (($) . T)) +((((-871)) . T)) +((((-573)) . T) (((-416 (-573))) . T) (($) . T)) +((((-871)) . T)) +((((-708)) . T) (((-416 (-573))) . T) (((-573)) . T)) (((|#1| |#1|) |has| |#1| (-174))) (((|#2|) . T)) -((($) . T) (((-574)) . T) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) -((((-574) |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) |has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))))) -((((-388)) . T)) -((((-709)) . T)) -((((-417 (-574))) . #0=(|has| |#2| (-372))) (($) . #0#)) +((($) . T) (((-573)) . T) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1|) . T)) +((((-573) |#1|) . T)) +(((|#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) +((((-387)) . T)) +((((-708)) . T)) +((((-416 (-573))) . #0=(|has| |#2| (-371))) (($) . #0#)) (((|#1|) |has| |#1| (-174))) -((((-417 (-963 |#1|))) . T)) +((((-416 (-962 |#1|))) . T)) (((|#2| |#2|) . T)) -(-2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) -(-2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) -(((|#1|) . T)) -(((|#2|) . T)) -(((|#3|) |has| |#3| (-1062))) -(|has| |#2| (-920)) -(|has| |#1| (-920)) -(|has| |#1| (-372)) -((($) . T)) -((((-1190)) |has| |#2| (-911 (-1190)))) -((((-872)) . T)) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -((((-417 (-574))) . T) (($) . T)) -(|has| |#1| (-483)) -(|has| |#1| (-377)) -(|has| |#1| (-377)) -(|has| |#1| (-377)) -(|has| |#1| (-372)) -(-2818 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-483)) (|has| |#1| (-566)) (|has| |#1| (-1062)) (|has| |#1| (-1125))) -((($) -2818 (|has| |#1| (-239)) (|has| |#1| (-358)))) +(-2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) +(-2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) +(((|#1|) . T)) +(((|#2|) . T)) +(((|#3|) |has| |#3| (-1061))) +(|has| |#2| (-919)) +(|has| |#1| (-919)) +(|has| |#1| (-371)) +((($) . T)) +((((-1189)) |has| |#2| (-910 (-1189)))) +((((-871)) . T)) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +((((-416 (-573))) . T) (($) . T)) +(|has| |#1| (-482)) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +(|has| |#1| (-371)) +(-2817 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-482)) (|has| |#1| (-565)) (|has| |#1| (-1061)) (|has| |#1| (-1124))) +((($) -2817 (|has| |#1| (-238)) (|has| |#1| (-357)))) ((((-117 |#1|)) . T)) ((((-117 |#1|)) . T)) -(|has| |#1| (-358)) +(|has| |#1| (-357)) ((((-145)) . T)) -(|has| |#1| (-38 (-417 (-574)))) -((($) . T) (((-574)) . T)) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -(((|#2|) . T) (((-872)) . T)) -(((|#2|) . T) (((-872)) . T)) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-860)) -((((-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) . T)) +(|has| |#1| (-38 (-416 (-573)))) +((($) . T) (((-573)) . T)) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +(((|#2|) . T) (((-871)) . T)) +(((|#2|) . T) (((-871)) . T)) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-859)) +((((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) . T)) (((|#1| |#2|) . T)) -((($) . T) (((-574)) . T)) +((($) . T) (((-573)) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) |has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) ((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) ((|#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (((|#2|) . T)) +(|has| |#1| (-15 * (|#1| (-573) |#1|))) (((|#3|) . T)) ((((-117 |#1|)) . T)) -(|has| |#1| (-377)) -(|has| |#1| (-860)) -(((|#2|) . T) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) (((-574)) |has| |#1| (-1051 (-574))) ((|#1|) . T)) +(|has| |#1| (-376)) +(-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|)))) +(|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) +(|has| |#1| (-859)) +(|has| |#1| (-15 * (|#1| (-780) |#1|))) +(((|#2|) . T) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) (((-573)) |has| |#1| (-1050 (-573))) ((|#1|) . T)) ((((-117 |#1|)) . T)) (((|#1|) |has| |#1| (-174))) (((|#2|) |has| |#2| (-174))) (((|#1|) . T)) (((|#1|) . T)) -((((-574)) . T)) -(|has| |#1| (-372)) -(|has| |#1| (-372)) -(|has| |#2| (-239)) -((((-872)) . T)) -((((-872)) . T)) -((((-546)) |has| |#1| (-624 (-546))) (((-903 (-574))) |has| |#1| (-624 (-903 (-574)))) (((-903 (-388))) |has| |#1| (-624 (-903 (-388)))) (((-388)) . #0=(|has| |#1| (-1035))) (((-227)) . #0#)) -(((|#1|) |has| |#1| (-372))) -((((-872)) . T)) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -((($ $) . T) (((-622 $) $) . T)) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-566))) -((($) . T) (((-1267 |#1| |#2| |#3| |#4|)) . T) (((-417 (-574))) . T)) -((($) -2818 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1062))) ((|#1|) -2818 (|has| |#1| (-174)) (|has| |#1| (-1062))) (((-417 (-574))) |has| |#1| (-566)) (((-574)) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062)))) -((($) . T) (((-574)) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) . T)) -(|has| |#1| (-372)) -(|has| |#1| (-372)) -(|has| |#1| (-372)) -((((-388)) . T) (((-574)) . T) (((-417 (-574))) . T)) -((((-654 (-790 |#1| (-874 |#2|)))) . T) (((-872)) . T)) -((((-546)) |has| (-790 |#1| (-874 |#2|)) (-624 (-546)))) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -((((-388)) . T)) +((((-573)) . T)) +(|has| |#1| (-371)) +(|has| |#1| (-371)) +(|has| |#2| (-238)) +((((-871)) . T)) +((((-871)) . T)) +((((-545)) |has| |#1| (-623 (-545))) (((-902 (-573))) |has| |#1| (-623 (-902 (-573)))) (((-902 (-387))) |has| |#1| (-623 (-902 (-387)))) (((-387)) . #0=(|has| |#1| (-1034))) (((-227)) . #0#)) +(((|#1|) |has| |#1| (-371))) +((((-871)) . T)) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +((($ $) . T) (((-621 $) $) . T)) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) +((($) . T) (((-1266 |#1| |#2| |#3| |#4|)) . T) (((-416 (-573))) . T)) +((($) -2817 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-565)) (|has| |#1| (-1061))) ((|#1|) -2817 (|has| |#1| (-174)) (|has| |#1| (-1061))) (((-416 (-573))) |has| |#1| (-565)) (((-573)) -12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061)))) +((($) . T) (((-573)) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#1|) . T)) +(|has| |#1| (-371)) +(|has| |#1| (-371)) +(|has| |#1| (-371)) +((((-387)) . T) (((-573)) . T) (((-416 (-573))) . T)) +((((-653 (-789 |#1| (-873 |#2|)))) . T) (((-871)) . T)) +((((-545)) |has| (-789 |#1| (-873 |#2|)) (-623 (-545)))) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +((((-387)) . T)) (((|#1|) |has| |#1| (-174))) -(((|#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113)))) +(((|#3|) -12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) (((|#1|) |has| |#1| (-174))) -((((-872)) . T)) -(-2818 (|has| |#2| (-462)) (|has| |#2| (-920))) -(((|#1|) . T)) -((($) . T)) -((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113)))) -((((-546)) |has| |#1| (-624 (-546)))) -(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) -((((-781)) . T)) -(|has| |#1| (-1113)) -((($) -2818 (|has| |#2| (-174)) (|has| |#2| (-858)) (|has| |#2| (-1062))) (((-574)) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-858)) (|has| |#2| (-1062))) ((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1062)))) -((((-872)) . T)) -((((-1190)) . T) (((-872)) . T)) -((((-574)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) -((((-417 (-574))) . T) (((-574)) . T) (((-622 $)) . T)) +((((-871)) . T)) +(-2817 (|has| |#2| (-461)) (|has| |#2| (-919))) +(((|#1|) . T)) +((($) . T)) +((($) |has| |#1| (-565)) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-565))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) +((((-545)) |has| |#1| (-623 (-545)))) +(((|#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) +((((-780)) . T)) +(|has| |#1| (-1112)) +((($) -2817 (|has| |#2| (-174)) (|has| |#2| (-857)) (|has| |#2| (-1061))) (((-573)) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-857)) (|has| |#2| (-1061))) ((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-1061)))) +((((-871)) . T)) +((((-1189)) . T) (((-871)) . T)) +((((-573)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) +((((-416 (-573))) . T) (((-573)) . T) (((-621 $)) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) -((((-574)) . T)) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-566))) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-566))) -(((#0=(-1266 |#2| |#3| |#4|)) . T) (((-417 (-574))) |has| #0# (-38 (-417 (-574)))) (($) . T)) -((((-574)) . T)) -((($) . T)) -(|has| |#1| (-372)) -(-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-148)) (|has| |#1| (-372))) (|has| |#1| (-148))) -(-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-146)) (|has| |#1| (-372))) (|has| |#1| (-146))) -(|has| |#1| (-372)) +((((-573)) . T)) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) +(((#0=(-1265 |#2| |#3| |#4|)) . T) (((-416 (-573))) |has| #0# (-38 (-416 (-573)))) (($) . T)) +((((-573)) . T)) +((($) . T)) +(|has| |#1| (-371)) +(-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-148)) (|has| |#1| (-371))) (|has| |#1| (-148))) +(-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-146)) (|has| |#1| (-371))) (|has| |#1| (-146))) +(|has| |#1| (-371)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-148)) (|has| |#1| (-146)) -(|has| |#1| (-239)) -(|has| |#1| (-372)) +(|has| |#1| (-238)) +(|has| |#1| (-371)) (((|#3|) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-574)) |has| |#2| (-649 (-574))) ((|#2|) . T)) -((((-574) |#1|) |has| |#2| (-427 |#1|))) -((((-574) |#1|) |has| |#2| (-427 |#1|))) -(((|#2|) . T) (($) . T) (((-574)) . T)) -(((|#2|) . T)) -((((-417 (-574))) . #0=(|has| |#2| (-372))) (($) . #0#)) -((((-417 (-574))) |has| |#2| (-372)) (($) . T)) -(|has| |#1| (-1113)) -((((-1155 |#2| |#1|)) . T) ((|#1|) . T) (((-574)) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-573)) |has| |#2| (-648 (-573))) ((|#2|) . T)) +((((-573) |#1|) |has| |#2| (-426 |#1|))) +((((-573) |#1|) |has| |#2| (-426 |#1|))) +(((|#2|) . T) (($) . T) (((-573)) . T)) +(((|#2|) . T)) +((((-416 (-573))) . #0=(|has| |#2| (-371))) (($) . #0#)) +((((-416 (-573))) |has| |#2| (-371)) (($) . T)) +(|has| |#1| (-1112)) +((((-1154 |#2| |#1|)) . T) ((|#1|) . T) (((-573)) . T)) (((|#1| |#2|) . T)) -((((-574)) . T) ((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-1051 (-417 (-574)))))) -(((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) +((((-573)) . T) ((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-1050 (-416 (-573)))))) +(((|#1|) . T) (((-573)) |has| |#1| (-648 (-573)))) (((|#3|) |has| |#3| (-174))) -(((|#2|) . T) (($) . T) (((-574)) . T)) -(((|#1|) . T) (($) . T) (((-574)) . T)) -(-2818 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062)) (|has| |#2| (-1113))) -((((-872)) . T)) -((((-574)) . T)) -(((|#1| $) |has| |#1| (-294 |#1| |#1|))) -((((-417 (-574))) . T) (($) . T) (((-417 |#1|)) . T) ((|#1|) . T)) -((((-963 |#1|)) . T) (((-872)) . T)) +(((|#2|) . T) (($) . T) (((-573)) . T)) +(((|#1|) . T) (($) . T) (((-573)) . T)) +(-2817 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-376)) (|has| |#2| (-735)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061)) (|has| |#2| (-1112))) +((((-871)) . T)) +((((-573)) . T)) +(-12 (|has| |#2| (-238)) (|has| |#2| (-1061))) +(((|#1| $) |has| |#1| (-293 |#1| |#1|))) +((((-416 (-573))) . T) (($) . T) (((-416 |#1|)) . T) ((|#1|) . T)) +((((-962 |#1|)) . T) (((-871)) . T)) (((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -2818 (|has| |#1| (-298)) (|has| |#1| (-372))) ((#0=(-417 (-574)) #0#) |has| |#1| (-372))) -((((-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) . T)) -((((-963 |#1|)) . T)) -((($) . T)) -((((-574) |#1|) . T)) -((((-1190)) |has| (-417 |#2|) (-911 (-1190)))) -(((|#1|) . T) (($) -2818 (|has| |#1| (-298)) (|has| |#1| (-372))) (((-417 (-574))) |has| |#1| (-372))) -((((-546)) |has| |#2| (-624 (-546)))) -((((-699 |#2|)) . T) (((-872)) . T)) -(((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) -(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) -((((-880 |#1|)) . T)) +(((|#1| |#1|) . T) (($ $) -2817 (|has| |#1| (-297)) (|has| |#1| (-371))) ((#0=(-416 (-573)) #0#) |has| |#1| (-371))) +((((-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) . T)) +((((-962 |#1|)) . T)) +((($) . T)) +((((-573) |#1|) . T)) +((((-1189)) |has| (-416 |#2|) (-910 (-1189)))) +(((|#1|) . T) (($) -2817 (|has| |#1| (-297)) (|has| |#1| (-371))) (((-416 (-573))) |has| |#1| (-371))) +((((-545)) |has| |#2| (-623 (-545)))) +((((-698 |#2|)) . T) (((-871)) . T)) +(((|#1|) . T)) +(((|#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) +(((|#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) +((((-879 |#1|)) . T)) (((|#1|) |has| |#1| (-174))) -(-2818 (|has| |#4| (-803)) (|has| |#4| (-858))) -(-2818 (|has| |#3| (-803)) (|has| |#3| (-858))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -((((-872)) . T)) -((((-872)) . T)) -(((|#1|) . T)) -((($) . T) (((-574)) . T) ((|#2|) . T)) -(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) -(((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372)))) -(((|#2|) |has| |#2| (-1062))) +(-2817 (|has| |#4| (-802)) (|has| |#4| (-857))) +(-2817 (|has| |#3| (-802)) (|has| |#3| (-857))) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +((((-871)) . T)) +((((-871)) . T)) +(((|#1|) . T)) +((($) . T) (((-573)) . T) ((|#2|) . T)) +(((|#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) +(((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)))) +(((|#2|) |has| |#2| (-1061))) (((|#3|) . T)) ((($) . T)) (((|#1|) . T)) -((((-417 |#2|)) . T)) -(((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)))) -(((|#1|) . T)) -(((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1062))) (($) |has| |#2| (-174))) -(((|#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113)))) -((((-1248 (-574)) $) . T) (((-574) |#1|) . T)) -(((|#1|) . T)) -((($) . T)) -((((-574)) . T) (($) . T) (((-417 (-574))) . T)) -((((-417 (-574))) . T) (($) . T)) -((((-417 (-574))) . T) (($) . T)) -((((-417 (-574))) . T) (($) . T)) -(-2818 (|has| |#1| (-462)) (|has| |#1| (-1235))) -((($) . T)) -((((-417 (-574))) |has| #0=(-417 |#2|) (-1051 (-417 (-574)))) (((-574)) |has| #0# (-1051 (-574))) ((#0#) . T)) -(((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) -(((|#1| (-781)) . T)) -(|has| |#1| (-860)) -(((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) -((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) -((((-574)) . T)) -(|has| |#1| (-38 (-417 (-574)))) -((((-2 (|:| -3693 (-1172)) (|:| -1908 (-52)))) |has| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-317 (-2 (|:| -3693 (-1172)) (|:| -1908 (-52)))))) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -(|has| |#1| (-858)) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -((((-574) $) . T) (((-654 (-574)) $) . T)) -(|has| |#1| (-377)) -(|has| |#1| (-377)) -(|has| |#1| (-377)) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -(|has| (-417 |#2|) (-239)) -(|has| |#1| (-358)) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -((((-1172)) . T) (((-516)) . T) (((-227)) . T) (((-574)) . T)) -((((-872)) . T)) -(((|#2|) . T) (((-574)) . T) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) (((-1095)) . T) ((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574)))))) +((((-416 |#2|)) . T)) +(((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)))) +(((|#1|) . T)) +(((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-1061))) (($) |has| |#2| (-174))) +(((|#3|) -12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) +((((-1247 (-573)) $) . T) (((-573) |#1|) . T)) +(((|#1|) . T)) +((($) . T)) +((((-573)) . T) (($) . T) (((-416 (-573))) . T)) +((((-416 (-573))) . T) (($) . T)) +((((-416 (-573))) . T) (($) . T)) +((((-416 (-573))) . T) (($) . T)) +(-2817 (|has| |#1| (-461)) (|has| |#1| (-1234))) +((($) . T)) +((((-416 (-573))) |has| #0=(-416 |#2|) (-1050 (-416 (-573)))) (((-573)) |has| #0# (-1050 (-573))) ((#0#) . T)) +(((|#2|) . T) (((-573)) |has| |#2| (-648 (-573)))) +(((|#1| (-780)) . T)) +(|has| |#1| (-859)) +(((|#1|) . T) (((-573)) |has| |#1| (-648 (-573)))) +((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1|) . T)) +((((-573)) . T)) +(|has| |#1| (-38 (-416 (-573)))) +((((-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) |has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))))) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(|has| |#1| (-857)) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +((((-573) $) . T) (((-653 (-573)) $) . T)) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +(|has| (-416 |#2|) (-238)) +(|has| |#1| (-357)) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +((((-1171)) . T) (((-515)) . T) (((-227)) . T) (((-573)) . T)) +((((-871)) . T)) +(-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|)))) +(|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) +(|has| |#1| (-15 * (|#1| (-780) |#1|))) +(((|#2|) . T) (((-573)) . T) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) (((-1094)) . T) ((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573)))))) (((|#1| |#2|) . T)) ((((-145)) . T)) -((((-790 |#1| (-874 |#2|))) . T)) -((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113)))) -(|has| |#1| (-1216)) -((((-872)) . T)) -(((|#1|) . T)) -(-2818 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-377)) (|has| |#3| (-736)) (|has| |#3| (-803)) (|has| |#3| (-858)) (|has| |#3| (-1062)) (|has| |#3| (-1113))) -((((-1190) |#1|) |has| |#1| (-524 (-1190) |#1|))) -(((|#2|) . T)) -((($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) -((((-921 |#1|)) . T)) -((($) . T)) -((($) -12 (|has| |#4| (-239)) (|has| |#4| (-1062)))) -((($) -12 (|has| |#3| (-239)) (|has| |#3| (-1062)))) -((((-417 (-963 |#1|))) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((((-546)) |has| |#4| (-624 (-546)))) -((((-872)) . T) (((-654 |#4|)) . T)) -(|has| |#1| (-858)) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -(|has| |#1| (-1113)) -(((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) (((-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) |has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-317 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))))) -(|has| |#1| (-372)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372)))) -((((-682 |#1|)) . T)) -(((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1062))) (($) |has| |#3| (-174))) -((((-574)) . T) (($) . T) (((-417 (-574))) . T)) -((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) +((((-789 |#1| (-873 |#2|))) . T)) +((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) +(|has| |#1| (-1215)) +((((-871)) . T)) +(((|#1|) . T)) +(-2817 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-376)) (|has| |#3| (-735)) (|has| |#3| (-802)) (|has| |#3| (-857)) (|has| |#3| (-1061)) (|has| |#3| (-1112))) +((((-1189) |#1|) |has| |#1| (-523 (-1189) |#1|))) +(((|#2|) . T)) +((($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1| |#1|) . T) ((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573))))) +((((-920 |#1|)) . T)) +((($) -12 (|has| |#4| (-238)) (|has| |#4| (-1061)))) +((($) -12 (|has| |#3| (-238)) (|has| |#3| (-1061)))) +((($) . T)) +((((-416 (-962 |#1|))) . T)) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((((-545)) |has| |#4| (-623 (-545)))) +((((-871)) . T) (((-653 |#4|)) . T)) +(|has| |#1| (-857)) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +(|has| |#1| (-1112)) +(((|#1|) . T)) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) |has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))))) +(|has| |#1| (-371)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)))) +((((-681 |#1|)) . T)) +(((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-1061))) (($) |has| |#3| (-174))) +((((-573)) . T) (($) . T) (((-416 (-573))) . T)) +((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#1|) |has| |#1| (-174))) (|has| |#1| (-146)) (|has| |#1| (-148)) -(-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-148)) (|has| |#1| (-372))) (|has| |#1| (-148))) -(-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-146)) (|has| |#1| (-372))) (|has| |#1| (-146))) +(-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-148)) (|has| |#1| (-371))) (|has| |#1| (-148))) +(-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-146)) (|has| |#1| (-371))) (|has| |#1| (-146))) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113)))) -((((-1273 |#1| |#2| |#3|)) |has| |#1| (-372))) -(|has| |#1| (-858)) +((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) +((((-1272 |#1| |#2| |#3|)) |has| |#1| (-371))) +(|has| |#1| (-857)) (((|#1| |#2|) . T)) -(((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) -((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T)) -((((-921 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) -(|has| |#1| (-1113)) -(((|#1|) . T) (($) . T) (((-417 (-574))) . T) (((-574)) . T)) -((((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((|#1|) . T) (((-574)) . T)) +(((|#1|) . T) (((-573)) |has| |#1| (-648 (-573)))) +((((-573)) |has| |#1| (-648 (-573))) ((|#1|) . T)) +((((-920 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) +(|has| |#1| (-1112)) +(((|#1|) . T) (($) . T) (((-416 (-573))) . T) (((-573)) . T)) +((((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((|#1|) . T) (((-573)) . T)) (|has| |#2| (-146)) (|has| |#2| (-148)) -((((-921 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) -(|has| |#1| (-1113)) +((((-920 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) +(|has| |#1| (-1112)) (((|#2|) |has| |#2| (-174))) -((((-574)) . T) ((|#1|) . T)) -(((|#2|) . T) (($) . T) (((-574)) . T)) +((((-573)) . T) ((|#1|) . T)) +(((|#2|) . T) (($) . T) (((-573)) . T)) (((|#2|) . T)) (((|#1| |#1|) . T)) -(((|#3|) |has| |#3| (-372))) -((((-417 |#2|)) . T)) -((((-872)) . T)) -(((|#1|) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-546)) |has| |#1| (-624 (-546)))) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -((((-574)) . T) (($) . T) (((-417 (-574))) . T)) -((((-1190) |#1|) |has| |#1| (-524 (-1190) |#1|)) ((|#1| |#1|) |has| |#1| (-317 |#1|))) -(((|#1|) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)))) -(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) -((((-574)) . T) (((-417 (-574))) . T) (($) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) -((((-324 |#1|)) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) -(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) -(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) -(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) -(((|#2|) |has| |#2| (-372))) -((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) -(((|#2|) . T)) -((((-417 (-574))) . T) (((-709)) . T) (($) . T)) -((($) . T) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -(((#0=(-790 |#1| (-874 |#2|)) #0#) |has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|))))) -((($) |has| |#1| (-239))) -((((-574)) . T) (($) . T)) -((((-874 |#1|)) . T)) +(((|#3|) |has| |#3| (-371))) +((((-416 |#2|)) . T)) +((((-871)) . T)) +(((|#1|) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-545)) |has| |#1| (-623 (-545)))) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +((((-573)) . T) (($) . T) (((-416 (-573))) . T)) +((((-1189) |#1|) |has| |#1| (-523 (-1189) |#1|)) ((|#1| |#1|) |has| |#1| (-316 |#1|))) +(((|#1|) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)))) +(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) +((((-573)) . T) (((-416 (-573))) . T) (($) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) +((((-323 |#1|)) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) +(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) +(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) +(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) +(((|#2|) |has| |#2| (-371))) +((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1|) . T)) +(((|#2|) . T)) +((((-416 (-573))) . T) (((-708)) . T) (($) . T)) +((($) . T) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1|) . T)) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(|has| |#1| (-238)) +(((#0=(-789 |#1| (-873 |#2|)) #0#) |has| (-789 |#1| (-873 |#2|)) (-316 (-789 |#1| (-873 |#2|))))) +((($) |has| |#1| (-238))) +((((-573)) . T) (($) . T)) +((((-873 |#1|)) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) (((|#2|) . T)) -((((-1190)) |has| |#1| (-911 (-1190))) (((-1095)) . T)) -((((-1190)) |has| |#1| (-911 (-1190))) (((-1101 (-1190))) . T)) -(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) -((((-417 (-574))) . T) (((-574)) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -(|has| |#1| (-38 (-417 (-574)))) -(((|#4|) |has| |#4| (-1062)) (((-574)) -12 (|has| |#4| (-649 (-574))) (|has| |#4| (-1062)))) -(((|#3|) |has| |#3| (-1062)) (((-574)) -12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1062)))) +((((-1189)) |has| |#1| (-910 (-1189))) (((-1094)) . T)) +((((-1189)) |has| |#1| (-910 (-1189))) (((-1100 (-1189))) . T)) +(((|#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) +((((-416 (-573))) . T) (((-573)) . T) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(|has| |#1| (-38 (-416 (-573)))) +(((|#4|) |has| |#4| (-1061)) (((-573)) -12 (|has| |#4| (-648 (-573))) (|has| |#4| (-1061)))) +(((|#3|) |has| |#3| (-1061)) (((-573)) -12 (|has| |#3| (-648 (-573))) (|has| |#3| (-1061)))) (|has| |#1| (-146)) (|has| |#1| (-148)) ((($ $) . T)) -(-2818 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-483)) (|has| |#1| (-736)) (|has| |#1| (-911 (-1190))) (|has| |#1| (-1062)) (|has| |#1| (-1125)) (|has| |#1| (-1113))) -(|has| |#1| (-566)) +(-2817 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-482)) (|has| |#1| (-735)) (|has| |#1| (-910 (-1189))) (|has| |#1| (-1061)) (|has| |#1| (-1124)) (|has| |#1| (-1112))) +(|has| |#1| (-565)) (((|#2|) . T)) -((((-574)) . T)) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) +((((-573)) . T)) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) (((|#1|) . T)) -(-2818 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1062))) +(-2817 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-565)) (|has| |#1| (-1061))) (((|#1| (-59 |#1|) (-59 |#1|)) . T)) -((((-591 |#1|)) . T)) +((((-590 |#1|)) . T)) ((($) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) (((|#1|) . T)) -((((-872)) . T)) -(((|#2|) |has| |#2| (-6 (-4458 "*")))) +((((-871)) . T)) +(((|#2|) |has| |#2| (-6 (-4457 "*")))) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) (((|#3|) . T)) ((($) . T)) -(((|#2|) . T) (((-574)) . T) (($) . T)) +(((|#2|) . T) (((-573)) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) . T) (((-574)) . T)) -((((-1266 |#2| |#3| |#4|)) . T) (((-574)) . T) (((-1267 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-417 (-574))) . T)) -((((-48)) -12 (|has| |#1| (-566)) (|has| |#1| (-1051 (-574)))) (((-574)) -2818 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1051 (-574))) (|has| |#1| (-1062))) ((|#1|) . T) (((-622 $)) . T) (($) |has| |#1| (-566)) (((-417 (-574))) -2818 (|has| |#1| (-566)) (|has| |#1| (-1051 (-417 (-574))))) (((-417 (-963 |#1|))) |has| |#1| (-566)) (((-963 |#1|)) |has| |#1| (-1062)) (((-1190)) . T)) -((((-417 (-574))) |has| |#2| (-1051 (-417 (-574)))) (((-574)) |has| |#2| (-1051 (-574))) ((|#2|) . T) (((-874 |#1|)) . T)) -((($) . T) (((-117 |#1|)) . T) (((-417 (-574))) . T)) -((((-1138 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1051 (-574))) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574))))) -((((-1186 |#1|)) . T) (((-1095)) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1051 (-574))) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574))))) -((((-1138 |#1| (-1190))) . T) (((-1101 (-1190))) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1051 (-574))) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) (((-1190)) . T)) -(|has| |#1| (-1113)) +(((|#3|) . T) (((-573)) . T)) +((((-1265 |#2| |#3| |#4|)) . T) (((-573)) . T) (((-1266 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-416 (-573))) . T)) +((((-48)) -12 (|has| |#1| (-565)) (|has| |#1| (-1050 (-573)))) (((-573)) -2817 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-565)) (|has| |#1| (-1050 (-573))) (|has| |#1| (-1061))) ((|#1|) . T) (((-621 $)) . T) (($) |has| |#1| (-565)) (((-416 (-573))) -2817 (|has| |#1| (-565)) (|has| |#1| (-1050 (-416 (-573))))) (((-416 (-962 |#1|))) |has| |#1| (-565)) (((-962 |#1|)) |has| |#1| (-1061)) (((-1189)) . T)) +((((-416 (-573))) |has| |#2| (-1050 (-416 (-573)))) (((-573)) |has| |#2| (-1050 (-573))) ((|#2|) . T) (((-873 |#1|)) . T)) +((($) . T) (((-117 |#1|)) . T) (((-416 (-573))) . T)) +((((-1137 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-573)) |has| |#1| (-1050 (-573))) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573))))) +((((-1185 |#1|)) . T) (((-1094)) . T) ((|#1|) . T) (((-573)) |has| |#1| (-1050 (-573))) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573))))) +((((-1137 |#1| (-1189))) . T) (((-1100 (-1189))) . T) ((|#1|) . T) (((-573)) |has| |#1| (-1050 (-573))) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) (((-1189)) . T)) +(|has| |#1| (-1112)) ((($) . T)) -(|has| |#1| (-1113)) -((((-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#2| (-897 (-574)))) (((-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#2| (-897 (-388))))) +(|has| |#1| (-1112)) +((((-573)) -12 (|has| |#1| (-896 (-573))) (|has| |#2| (-896 (-573)))) (((-387)) -12 (|has| |#1| (-896 (-387))) (|has| |#2| (-896 (-387))))) (((|#1| |#2|) . T)) -((((-1190) |#1|) . T)) +((((-1189) |#1|) . T)) (((|#4|) . T)) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-358))) -((((-1190) (-52)) . T)) -(|has| |#1| (-239)) -((((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) (((-574)) |has| |#1| (-1051 (-574))) ((|#1|) . T)) -((((-1266 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) . T)) -((((-872)) . T)) -(-2818 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062)) (|has| |#2| (-1113))) -(((#0=(-1267 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T)) -(((|#1| |#1|) |has| |#1| (-174)) ((#0=(-417 (-574)) #0#) |has| |#1| (-566)) (($ $) |has| |#1| (-566))) -((($) |has| |#1| (-15 * (|#1| (-574) |#1|)))) -((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) -(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) -(((|#1| $) |has| |#1| (-294 |#1| |#1|))) -((((-1267 |#1| |#2| |#3| |#4|)) . T) (((-417 (-574))) . T) (($) . T)) -(((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-566)) (($) |has| |#1| (-566))) -((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1|) . T)) -(|has| |#1| (-372)) -((($) |has| |#1| (-858)) (((-574)) -2818 (|has| |#1| (-21)) (|has| |#1| (-858)))) -((($) -2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) -((($) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) -((($) |has| |#1| (-15 * (|#1| (-781) |#1|)))) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-357))) +((((-1189) (-52)) . T)) +(|has| |#1| (-238)) +((((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) (((-573)) |has| |#1| (-1050 (-573))) ((|#1|) . T)) +((((-1265 |#2| |#3| |#4|) (-326 |#2| |#3| |#4|)) . T)) +((((-871)) . T)) +(-2817 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-376)) (|has| |#2| (-735)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061)) (|has| |#2| (-1112))) +(((#0=(-1266 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-416 (-573)) #1#) . T) (($ $) . T)) +(((|#1| |#1|) |has| |#1| (-174)) ((#0=(-416 (-573)) #0#) |has| |#1| (-565)) (($ $) |has| |#1| (-565))) +((($) |has| |#1| (-15 * (|#1| (-573) |#1|)))) +((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#1|) |has| |#1| (-174))) +(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) +(((|#1| $) |has| |#1| (-293 |#1| |#1|))) +((((-1266 |#1| |#2| |#3| |#4|)) . T) (((-416 (-573))) . T) (($) . T)) +(((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-565)) (($) |has| |#1| (-565))) +((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) ((|#1|) . T)) +(|has| |#1| (-371)) +((($) |has| |#1| (-857)) (((-573)) -2817 (|has| |#1| (-21)) (|has| |#1| (-857)))) +((($) -2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) +((($) |has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) +((($) |has| |#1| (-15 * (|#1| (-780) |#1|)))) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((((-417 (-574))) . T) (($) . T)) -(((|#3|) |has| |#3| (-372))) -(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) -((((-1190)) . T)) -((($) . T) (((-1266 |#2| |#3| |#4|)) . T) (((-417 (-574))) |has| (-1266 |#2| |#3| |#4|) (-38 (-417 (-574)))) (((-574)) . T)) +((((-416 (-573))) . T) (($) . T)) +(((|#3|) |has| |#3| (-371))) +(((|#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) +((((-1189)) . T)) +((($) . T) (((-1265 |#2| |#3| |#4|)) . T) (((-416 (-573))) |has| (-1265 |#2| |#3| |#4|) (-38 (-416 (-573)))) (((-573)) . T)) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) +(((|#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (((|#2| |#3|) . T)) -(-2818 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) -(((|#1| (-541 |#2|)) . T)) -(((|#1| (-781)) . T)) -(((|#1| (-541 (-1101 (-1190)))) . T)) +(-2817 (|has| |#2| (-371)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) +(((|#1| (-540 |#2|)) . T)) +(((|#1| (-780)) . T)) +(((|#1| (-540 (-1100 (-1189)))) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) -(|has| |#2| (-920)) -(-2818 (|has| |#2| (-803)) (|has| |#2| (-858))) -((((-872)) . T)) -(((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)))) -(((|#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1062))) (($) |has| |#2| (-174))) -((($ $) . T) ((#0=(-1266 |#2| |#3| |#4|) #0#) . T) ((#1=(-417 (-574)) #1#) |has| #0# (-38 (-417 (-574))))) -((((-921 |#1|)) . T)) -(-12 (|has| |#1| (-372)) (|has| |#2| (-830))) -((((-574)) . T) (($) . T) (((-417 (-574))) . T)) -((((-872)) . T)) -((($) . T) (((-574)) . T)) -((($) . T)) -(-2818 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) -(|has| |#1| (-372)) -(|has| |#1| (-372)) +(|has| |#2| (-919)) +(-2817 (|has| |#2| (-802)) (|has| |#2| (-857))) +((((-871)) . T)) +(((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)))) +(((|#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-1061))) (($) |has| |#2| (-174))) +((($ $) . T) ((#0=(-1265 |#2| |#3| |#4|) #0#) . T) ((#1=(-416 (-573)) #1#) |has| #0# (-38 (-416 (-573))))) +((((-920 |#1|)) . T)) +(-12 (|has| |#1| (-371)) (|has| |#2| (-829))) +((((-573)) . T) (($) . T) (((-416 (-573))) . T)) +((((-871)) . T)) +((($) . T) (((-573)) . T)) +((($) . T)) +(-2817 (|has| |#1| (-314)) (|has| |#1| (-371)) (|has| |#1| (-357)) (|has| |#1| (-565))) +(|has| |#1| (-371)) +(|has| |#1| (-371)) (((|#1| |#2|) . T)) -((($) . T) ((#0=(-1266 |#2| |#3| |#4|)) . T) (((-417 (-574))) |has| #0# (-38 (-417 (-574))))) -((((-1188 |#1| |#2| |#3|)) |has| |#1| (-372))) -(-2818 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-372)) (|has| |#1| (-358))) -(-2818 (|has| |#1| (-911 (-1190))) (|has| |#1| (-1062))) -((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T)) +((($) . T) ((#0=(-1265 |#2| |#3| |#4|)) . T) (((-416 (-573))) |has| #0# (-38 (-416 (-573))))) +((((-1187 |#1| |#2| |#3|)) |has| |#1| (-371))) +(-2817 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-371)) (|has| |#1| (-357))) +(-2817 (|has| |#1| (-910 (-1189))) (|has| |#1| (-1061))) +((((-573)) |has| |#1| (-648 (-573))) ((|#1|) . T)) (((|#1| |#2|) . T)) -((((-872)) . T)) -((((-872)) . T)) +((((-871)) . T)) +((((-871)) . T)) ((((-112)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#2|) . T)) -((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T)) +((((-416 |#2|)) . T) (((-416 (-573))) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((|#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|))) . T)) +(((|#1| (-540 (-873 |#2|)) (-873 |#2|) (-789 |#1| (-873 |#2|))) . T)) (((|#2|) . T)) -(|has| |#2| (-372)) -(|has| |#1| (-860)) +(|has| |#2| (-371)) +(|has| |#1| (-859)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-574)) . T)) +((((-573)) . T)) (((|#1|) . T)) -((((-872)) . T)) +((((-871)) . T)) (((|#2|) |has| |#2| (-174))) -(|has| |#1| (-1113)) +(|has| |#1| (-1112)) (((|#1|) |has| |#1| (-174))) (((|#2|) . T)) (((|#1|) . T)) (((|#4|) . T)) (((|#4|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -((((-417 (-574))) . T) (((-417 |#1|)) . T) ((|#1|) . T) (((-574)) . T) (($) . T)) -(((|#3|) . T) (((-574)) . T) (($) . T)) -((((-417 $) (-417 $)) |has| |#1| (-566)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#2| (-830)) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +((((-416 (-573))) . T) (((-416 |#1|)) . T) ((|#1|) . T) (((-573)) . T) (($) . T)) +(((|#3|) . T) (((-573)) . T) (($) . T)) +((((-416 $) (-416 $)) |has| |#1| (-565)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#2| (-829)) ((($) . T)) (((|#4|) . T)) ((($) . T)) ((($ $) . T)) -((((-872)) . T)) -(((|#1| (-541 (-1190))) . T)) +((((-871)) . T)) +(((|#1| (-540 (-1189))) . T)) ((($) . T)) (((|#1|) |has| |#1| (-174))) -((((-872)) . T)) +((((-871)) . T)) (((|#2|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) +(((|#4| |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (((|#2|) . T)) -(((|#2|) -2818 (|has| |#2| (-6 (-4458 "*"))) (|has| |#2| (-174)))) -(-2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) -(-2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) -(|has| |#2| (-920)) -(|has| |#1| (-920)) -((($) -12 (|has| |#2| (-239)) (|has| |#2| (-1062)))) +(((|#2|) -2817 (|has| |#2| (-6 (-4457 "*"))) (|has| |#2| (-174)))) +(-2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) +(-2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) +(|has| |#2| (-919)) +(|has| |#1| (-919)) +((($) -12 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (((|#2|) |has| |#2| (-174))) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -((((-1273 |#1| |#2| |#3|)) |has| |#1| (-372))) -((((-872)) . T)) -((((-872)) . T)) -((((-546)) . T) (((-574)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T)) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +((((-1272 |#1| |#2| |#3|)) |has| |#1| (-371))) +((((-871)) . T)) +((((-871)) . T)) +((((-545)) . T) (((-573)) . T) (((-902 (-573))) . T) (((-387)) . T) (((-227)) . T)) (((|#1| |#2|) . T)) -((($) . T) (((-574)) . T)) -((((-2 (|:| -3693 (-1172)) (|:| -1908 (-52)))) . T)) +((($) . T) (((-573)) . T)) +((((-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) . T)) (((|#1|) . T)) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -((((-872)) . T)) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +((((-871)) . T)) (((|#1| |#2|) . T)) -((($) . T) (((-574)) . T)) -(((|#1| (-417 (-574))) . T)) +((($) . T) (((-573)) . T)) +(((|#1| (-416 (-573))) . T)) (((|#1|) . T)) -(-2818 (|has| |#1| (-298)) (|has| |#1| (-372))) +(-2817 (|has| |#1| (-297)) (|has| |#1| (-371))) ((((-145)) . T)) -((((-574)) |has| #0=(-417 |#2|) (-649 (-574))) ((#0#) . T) (((-417 (-574))) . T) (($) . T)) -(|has| |#1| (-858)) -((((-872)) . T)) -((((-872)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -(((|#1| |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) +((((-573)) |has| #0=(-416 |#2|) (-648 (-573))) ((#0#) . T) (((-416 (-573))) . T) (($) . T)) +(|has| |#1| (-857)) +((((-871)) . T)) +((((-871)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(((|#1| |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-417 (-574))) . T) (($) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-189)) . T) (((-872)) . T)) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) +((((-416 (-573))) . T) (($) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-189)) . T) (((-871)) . T)) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-546)) |has| |#1| (-624 (-546))) (((-903 (-574))) |has| |#1| (-624 (-903 (-574)))) (((-903 (-388))) |has| |#1| (-624 (-903 (-388))))) -((((-1190) (-52)) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-654 (-145))) . T) (((-1172)) . T)) -((((-872)) . T)) -((((-1172)) . T)) -((((-1190) |#1|) |has| |#1| (-524 (-1190) |#1|)) ((|#1| |#1|) |has| |#1| (-317 |#1|))) -((((-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) . T)) -(|has| |#1| (-860)) -((($) -2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) -((((-872)) . T)) -((((-546)) |has| |#1| (-624 (-546)))) -((($) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) -((($) |has| |#1| (-15 * (|#1| (-781) |#1|)))) -((((-872)) . T)) -(((|#2|) |has| |#2| (-372))) -((((-872)) . T)) -((((-546)) |has| |#4| (-624 (-546)))) -((((-872)) . T) (((-654 |#4|)) . T)) -(((|#2|) . T)) -((((-921 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) -((($) . T) (((-574)) . T) (((-417 (-574))) . T) (((-622 $)) . T)) -(-2818 (|has| |#4| (-174)) (|has| |#4| (-736)) (|has| |#4| (-858)) (|has| |#4| (-1062))) -(-2818 (|has| |#3| (-174)) (|has| |#3| (-736)) (|has| |#3| (-858)) (|has| |#3| (-1062))) -((((-1190) (-52)) . T)) -(-2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-2818 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062))) -(-2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-858)) (|has| |#2| (-1062))) -(|has| |#1| (-920)) -((((-921 |#1|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) -(|has| |#1| (-920)) -(((|#1|) . T) (((-574)) . T) (((-417 (-574))) . T) (($) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -((((-872)) . T)) -((((-574)) . T)) -(((#0=(-417 (-574)) #0#) . T) (($ $) . T)) -((((-417 (-574))) . T) (($) . T)) -(((|#1| (-417 (-574)) (-1095)) . T)) -(|has| |#1| (-1113)) -(|has| |#1| (-566)) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) -(|has| |#1| (-830)) -(((#0=(-921 |#1|) #0#) . T) (($ $) . T) ((#1=(-417 (-574)) #1#) . T)) -((((-417 |#2|)) . T)) -(|has| |#1| (-858)) -((((-1217 |#1|)) . T) (((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113)))) -(((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) . T) ((#1=(-574) #1#) . T) (($ $) . T)) -((((-921 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) -(((|#2|) |has| |#2| (-1062)) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062)))) -((((-921 |#1|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-545)) |has| |#1| (-623 (-545))) (((-902 (-573))) |has| |#1| (-623 (-902 (-573)))) (((-902 (-387))) |has| |#1| (-623 (-902 (-387))))) +((((-1189) (-52)) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-653 (-145))) . T) (((-1171)) . T)) +((((-871)) . T)) +((((-1171)) . T)) +((((-1189) |#1|) |has| |#1| (-523 (-1189) |#1|)) ((|#1| |#1|) |has| |#1| (-316 |#1|))) +((((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) . T)) +(|has| |#1| (-859)) +((($) -2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) +((((-871)) . T)) +((((-545)) |has| |#1| (-623 (-545)))) +((($) |has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) +((($) |has| |#1| (-15 * (|#1| (-780) |#1|)))) +((((-871)) . T)) +(((|#2|) |has| |#2| (-371))) +((((-871)) . T)) +((((-545)) |has| |#4| (-623 (-545)))) +((((-871)) . T) (((-653 |#4|)) . T)) +(((|#2|) . T)) +((((-920 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) +((($) . T) (((-573)) . T) (((-416 (-573))) . T) (((-621 $)) . T)) +(-2817 (|has| |#4| (-174)) (|has| |#4| (-735)) (|has| |#4| (-857)) (|has| |#4| (-1061))) +(-2817 (|has| |#3| (-174)) (|has| |#3| (-735)) (|has| |#3| (-857)) (|has| |#3| (-1061))) +((((-1189) (-52)) . T)) +(-2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-2817 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061))) +(-2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-857)) (|has| |#2| (-1061))) +(|has| |#1| (-919)) +((((-920 |#1|)) . T) (((-416 (-573))) . T) (($) . T) (((-573)) . T)) +(|has| |#1| (-919)) +(((|#1|) . T) (((-573)) . T) (((-416 (-573))) . T) (($) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +((((-871)) . T)) +((((-573)) . T)) +(((#0=(-416 (-573)) #0#) . T) (($ $) . T)) +((((-416 (-573))) . T) (($) . T)) +(((|#1| (-416 (-573)) (-1094)) . T)) +(|has| |#1| (-1112)) +(|has| |#1| (-565)) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) +(|has| |#1| (-829)) +(((#0=(-920 |#1|) #0#) . T) (($ $) . T) ((#1=(-416 (-573)) #1#) . T)) +((((-416 |#2|)) . T)) +(|has| |#1| (-857)) +((((-1216 |#1|)) . T) (((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) +(((|#1| |#1|) . T) ((#0=(-416 (-573)) #0#) . T) ((#1=(-573) #1#) . T) (($ $) . T)) +((((-920 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) +(((|#2|) |has| |#2| (-1061)) (((-573)) -12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) +((((-920 |#1|)) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) (((|#2|) . T)) -((((-872)) . T)) -((((-417 (-574))) . T) (((-709)) . T) (($) . T) (((-574)) . T)) +((((-871)) . T)) +((((-416 (-573))) . T) (((-708)) . T) (($) . T) (((-573)) . T)) (((|#1|) |has| |#1| (-174))) (((|#2|) |has| |#2| (-174))) (((|#1|) . T)) (((|#2|) . T)) -(-2818 (|has| |#1| (-146)) (|has| |#1| (-377))) -(-2818 (|has| |#1| (-146)) (|has| |#1| (-377))) -(-2818 (|has| |#1| (-146)) (|has| |#1| (-377))) -((((-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) . T)) -((((-574) |#3|) . T)) -(((#0=(-52)) . T) (((-2 (|:| -3693 (-1190)) (|:| -1908 #0#))) . T)) -(|has| |#1| (-358)) -((((-574)) . T)) -((((-872)) . T)) -(((|#1|) . T)) -(((#0=(-1267 |#1| |#2| |#3| |#4|) $) |has| #0# (-294 #0# #0#))) -(|has| |#1| (-372)) -(((|#1|) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-1062))) (($) -2818 (|has| |#1| (-911 (-1190))) (|has| |#1| (-1062))) (((-574)) -2818 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-911 (-1190))) (|has| |#1| (-1062)))) -(((#0=(-1095) |#1|) . T) ((#0# $) . T) (($ $) . T)) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-358))) -(((#0=(-417 (-574)) #0#) . T) ((#1=(-709) #1#) . T) (($ $) . T)) -((((-324 |#1|)) . T) (($) . T)) -(((|#1|) . T) (((-417 (-574))) |has| |#1| (-372))) -((((-872)) . T)) -(|has| |#1| (-1113)) -(((|#1|) . T)) -(((|#1|) -2818 (|has| |#2| (-376 |#1|)) (|has| |#2| (-427 |#1|)))) -(((|#1|) -2818 (|has| |#2| (-376 |#1|)) (|has| |#2| (-427 |#1|)))) -(((|#2|) . T)) -((((-417 (-574))) . T) (((-709)) . T) (($) . T)) -((((-589)) . T)) +(-2817 (|has| |#1| (-146)) (|has| |#1| (-376))) +(-2817 (|has| |#1| (-146)) (|has| |#1| (-376))) +(-2817 (|has| |#1| (-146)) (|has| |#1| (-376))) +((((-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) . T)) +((((-573) |#3|) . T)) +(((#0=(-52)) . T) (((-2 (|:| -3692 (-1189)) (|:| -1907 #0#))) . T)) +(|has| |#1| (-357)) +((((-573)) . T)) +((((-871)) . T)) +(((|#1|) . T)) +(((#0=(-1266 |#1| |#2| |#3| |#4|) $) |has| #0# (-293 #0# #0#))) +(|has| |#1| (-371)) +(-12 (|has| |#2| (-238)) (|has| |#2| (-1061))) +(((|#1|) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-1061))) (($) -2817 (|has| |#1| (-910 (-1189))) (|has| |#1| (-1061))) (((-573)) -2817 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-910 (-1189))) (|has| |#1| (-1061)))) +(((#0=(-1094) |#1|) . T) ((#0# $) . T) (($ $) . T)) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-357))) +(((#0=(-416 (-573)) #0#) . T) ((#1=(-708) #1#) . T) (($ $) . T)) +((((-323 |#1|)) . T) (($) . T)) +(((|#1|) . T) (((-416 (-573))) |has| |#1| (-371))) +((((-871)) . T)) +(|has| |#1| (-1112)) +(((|#1|) . T)) +(((|#1|) -2817 (|has| |#2| (-375 |#1|)) (|has| |#2| (-426 |#1|)))) +(((|#1|) -2817 (|has| |#2| (-375 |#1|)) (|has| |#2| (-426 |#1|)))) +(((|#2|) . T)) +((((-416 (-573))) . T) (((-708)) . T) (($) . T)) +((((-588)) . T)) (((|#3| |#3|) . T)) -(|has| |#2| (-239)) -((((-874 |#1|)) . T)) -((((-1190)) |has| |#1| (-911 (-1190))) ((|#3|) . T)) -((((-654 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) -(-12 (|has| |#1| (-372)) (|has| |#2| (-1035))) -((((-417 (-574))) . T) (($) . T)) -((((-1188 |#1| |#2| |#3|)) |has| |#1| (-372))) -((($) . T) (((-417 (-574))) . T)) -((((-872)) . T)) -(|has| |#1| (-372)) -(|has| |#1| (-372)) -((((-417 (-574))) . T) (($) . T) (((-417 |#1|)) . T) ((|#1|) . T)) -((((-574)) . T) (((-117 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) -((((-574)) . T)) +(|has| |#2| (-238)) +((((-873 |#1|)) . T)) +((((-1189)) |has| |#1| (-910 (-1189))) ((|#3|) . T)) +((((-653 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) +(-12 (|has| |#1| (-371)) (|has| |#2| (-1034))) +((((-416 (-573))) . T) (($) . T)) +((((-1187 |#1| |#2| |#3|)) |has| |#1| (-371))) +((($) . T) (((-416 (-573))) . T)) +((((-871)) . T)) +(|has| |#1| (-371)) +(|has| |#1| (-371)) +((((-416 (-573))) . T) (($) . T) (((-416 |#1|)) . T) ((|#1|) . T)) +((((-573)) . T) (((-117 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) +((((-573)) . T)) (((|#3|) . T)) -(|has| |#1| (-1113)) +(|has| |#1| (-1112)) (((|#2|) . T)) (((|#1|) . T)) -((($) |has| |#1| (-239))) -((((-574)) . T)) -(((|#2|) . T) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((|#1|) . T) (($) . T) (((-574)) . T)) -(-2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) -(((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) +((($) |has| |#1| (-238))) +((((-573)) . T)) +(((|#2|) . T) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((|#1|) . T) (($) . T) (((-573)) . T)) +(-2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) +(((|#2|) . T) (((-573)) |has| |#2| (-648 (-573)))) (((|#1| |#2|) . T)) ((($) . T)) -((((-591 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) -((($) . T) (((-417 (-574))) . T)) +((((-590 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) +((($) . T) (((-416 (-573))) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-574)) . T)) -(((|#1|) . T) (((-574)) . T)) -(((|#1| (-1281 |#1|) (-1281 |#1|)) . T)) +(((|#1|) . T) (((-573)) . T)) +(((|#1|) . T) (((-573)) . T)) +(((|#1| (-1280 |#1|) (-1280 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#2|) . T)) -((((-872)) . T)) -((((-872)) . T)) +((((-871)) . T)) +((((-871)) . T)) (((|#2|) . T)) (((|#3|) . T)) -(((#0=(-117 |#1|) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T)) -((((-417 (-574))) |has| |#2| (-1051 (-417 (-574)))) (((-574)) |has| |#2| (-1051 (-574))) ((|#2|) . T) (((-874 |#1|)) . T)) -((((-1138 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1051 (-574))) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((|#2|) . T)) +(((#0=(-117 |#1|) #0#) . T) ((#1=(-416 (-573)) #1#) . T) (($ $) . T)) +((((-416 (-573))) |has| |#2| (-1050 (-416 (-573)))) (((-573)) |has| |#2| (-1050 (-573))) ((|#2|) . T) (((-873 |#1|)) . T)) +((((-1137 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-573)) |has| |#1| (-1050 (-573))) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#3|) . T)) ((($ $) . T)) -((((-682 |#1|)) . T)) -((($) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) -((((-117 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) -((((-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#3| (-897 (-574)))) (((-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#3| (-897 (-388))))) +((((-681 |#1|)) . T)) +((($) . T) (((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T) (((-573)) |has| |#2| (-648 (-573)))) +((((-117 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) +((((-573)) -12 (|has| |#1| (-896 (-573))) (|has| |#3| (-896 (-573)))) (((-387)) -12 (|has| |#1| (-896 (-387))) (|has| |#3| (-896 (-387))))) (((|#2|) . T) ((|#6|) . T)) -((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (($) . T)) +((((-573)) |has| |#1| (-648 (-573))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) (($) . T)) ((((-145)) . T)) ((($) . T)) -((($) . T) (((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((((-388)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) -((($) . T) (((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(((|#1|) . T)) -(|has| |#2| (-920)) -(|has| |#1| (-239)) -(|has| |#1| (-377)) -(|has| |#1| (-377)) -(|has| |#1| (-377)) -(|has| |#1| (-920)) -(|has| |#1| (-920)) +((($) . T) (((-573)) |has| |#1| (-648 (-573))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((((-387)) . T) (((-416 (-573))) . T) (($) . T) (((-573)) . T)) +((($) . T) (((-573)) |has| |#1| (-648 (-573))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +(((|#1|) . T)) +(|has| |#2| (-919)) +(|has| |#1| (-238)) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +(|has| |#1| (-919)) +(|has| |#1| (-919)) (((|#4|) . T)) -(|has| |#2| (-1035)) +(|has| |#2| (-1034)) ((($) . T)) -(|has| |#1| (-920)) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) +(|has| |#1| (-919)) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) ((($) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) ((($) . T)) -(|has| |#1| (-372)) -((((-921 |#1|)) . T)) -((($) . T) (((-574)) . T) ((|#1|) . T) (((-417 (-574))) . T)) -((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((($) |has| |#1| (-858)) (((-574)) -2818 (|has| |#1| (-21)) (|has| |#1| (-858)))) -((($ $) . T) ((#0=(-417 (-574)) #0#) . T)) -(-2818 (|has| |#1| (-377)) (|has| |#1| (-860))) -(((|#1|) . T)) -((((-781)) . T)) -((((-872)) . T)) -((((-1190)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) -((((-417 |#2|) |#3|) . T)) -((($) . T) (((-417 (-574))) . T)) -((($) . T) (((-574)) . T) (((-417 (-574))) . T) (((-622 $)) . T)) -((((-574)) . T) (($) . T)) -((((-574)) . T) (($) . T)) -((((-781) |#1|) . T)) -(((|#2| (-246 (-2863 |#1|) (-781))) . T)) -(((|#1| (-541 |#3|)) . T)) -((((-417 (-574))) . T)) -(-2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) -((((-1172)) . T) (((-872)) . T)) -(((#0=(-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) #0#) |has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-317 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))))) -((((-1172)) . T)) -(|has| |#1| (-920)) -(|has| |#2| (-372)) -(((|#1|) . T) (($) . T) (((-574)) . T)) -(-2818 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062))) -((((-171 (-388))) . T) (((-227)) . T) (((-388)) . T)) -((((-872)) . T)) -(((|#1|) . T)) -((((-388)) . T) (((-574)) . T)) -(((#0=(-417 (-574)) #0#) . T) (($ $) . T)) +(|has| |#1| (-371)) +((((-920 |#1|)) . T)) +((($) . T) (((-573)) . T) ((|#1|) . T) (((-416 (-573))) . T)) +((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((($) |has| |#1| (-857)) (((-573)) -2817 (|has| |#1| (-21)) (|has| |#1| (-857)))) +((($ $) . T) ((#0=(-416 (-573)) #0#) . T)) +(-2817 (|has| |#1| (-376)) (|has| |#1| (-859))) +(((|#1|) . T)) +((((-780)) . T)) +((((-871)) . T)) +(-12 (|has| |#3| (-238)) (|has| |#3| (-1061))) +((((-1189)) -12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) +((((-416 |#2|) |#3|) . T)) +((($) . T) (((-416 (-573))) . T)) +((($) . T) (((-573)) . T) (((-416 (-573))) . T) (((-621 $)) . T)) +((((-573)) . T) (($) . T)) +((((-573)) . T) (($) . T)) +((((-780) |#1|) . T)) +(((|#2| (-245 (-2862 |#1|) (-780))) . T)) +(((|#1| (-540 |#3|)) . T)) +((((-416 (-573))) . T)) +(-2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) +((((-1171)) . T) (((-871)) . T)) +(((#0=(-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) #0#) |has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))))) +((((-1171)) . T)) +(|has| |#1| (-919)) +(|has| |#2| (-371)) +(((|#1|) . T) (($) . T) (((-573)) . T)) +(-2817 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061))) +((((-171 (-387))) . T) (((-227)) . T) (((-387)) . T)) +((((-871)) . T)) +(((|#1|) . T)) +((((-387)) . T) (((-573)) . T)) +(((#0=(-416 (-573)) #0#) . T) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1| |#1|) . T)) -((((-872)) . T)) -(|has| |#1| (-566)) -((((-417 (-574))) . T) (($) . T)) -((($) . T)) -((($) . T)) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -(-2818 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358))) -(|has| |#1| (-38 (-417 (-574)))) -(-12 (|has| |#1| (-555)) (|has| |#1| (-838))) -((((-872)) . T)) -((((-1190)) -2818 (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))) (-12 (|has| |#1| (-372)) (|has| |#2| (-911 (-1190)))))) -(|has| |#1| (-372)) -((((-1190)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) -(|has| |#1| (-372)) -((((-417 (-574))) . T) (($) . T)) -((((-417 |#2|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) -((($) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T)) -((((-574) |#1|) . T)) -(((|#1|) . T)) -(((|#2|) |has| |#1| (-372))) -(((|#2|) |has| |#1| (-372))) -((((-574)) . T) (($) . T)) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) +((((-871)) . T)) +(|has| |#1| (-565)) +((((-416 (-573))) . T) (($) . T)) +((($) . T)) +((($) . T)) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +(-2817 (|has| |#1| (-314)) (|has| |#1| (-371)) (|has| |#1| (-357))) +(|has| |#1| (-38 (-416 (-573)))) +(-12 (|has| |#1| (-554)) (|has| |#1| (-837))) +((((-871)) . T)) +((((-1189)) -2817 (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))) (-12 (|has| |#1| (-371)) (|has| |#2| (-910 (-1189)))))) +(|has| |#1| (-371)) +((((-1189)) -12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) +(|has| |#1| (-371)) +((((-416 (-573))) . T) (($) . T)) +((((-416 |#2|)) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) +((($) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T)) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +((((-573) |#1|) . T)) +(((|#1|) . T)) +(-2817 (-12 (|has| |#1| (-238)) (|has| |#1| (-371))) (|has| |#1| (-357))) +(((|#2|) |has| |#1| (-371))) +(((|#2|) |has| |#1| (-371))) +((((-573)) . T) (($) . T)) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) ((($) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-1190)) -12 (|has| |#1| (-372)) (|has| |#2| (-1051 (-1190)))) (((-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-1051 (-574)))) (((-417 (-574))) -12 (|has| |#1| (-372)) (|has| |#2| (-1051 (-574))))) +(((|#2|) . T) (((-1189)) -12 (|has| |#1| (-371)) (|has| |#2| (-1050 (-1189)))) (((-573)) -12 (|has| |#1| (-371)) (|has| |#2| (-1050 (-573)))) (((-416 (-573))) -12 (|has| |#1| (-371)) (|has| |#2| (-1050 (-573))))) (((|#2|) . T)) ((($) . T)) -((((-1190) #0=(-1267 |#1| |#2| |#3| |#4|)) |has| #0# (-524 (-1190) #0#)) ((#0# #0#) |has| #0# (-317 #0#))) -((((-417 (-574))) . T) (($) . T) (((-417 |#1|)) . T) ((|#1|) . T)) -((((-622 $) $) . T) (($ $) . T)) -((((-171 (-227))) . T) (((-171 (-388))) . T) (((-1186 (-709))) . T) (((-903 (-388))) . T)) +((((-1189) #0=(-1266 |#1| |#2| |#3| |#4|)) |has| #0# (-523 (-1189) #0#)) ((#0# #0#) |has| #0# (-316 #0#))) +((((-416 (-573))) . T) (($) . T) (((-416 |#1|)) . T) ((|#1|) . T)) +((((-621 $) $) . T) (($ $) . T)) +((((-171 (-227))) . T) (((-171 (-387))) . T) (((-1185 (-708))) . T) (((-902 (-387))) . T)) (((|#3|) . T)) -(|has| |#1| (-566)) -(|has| (-417 |#2|) (-239)) -(((|#1| (-417 (-574))) . T)) -((($) . T) (((-417 (-574))) . T) (((-417 |#1|)) . T) ((|#1|) . T)) +(|has| |#1| (-565)) +(|has| (-416 |#2|) (-238)) +(((|#1| (-416 (-573))) . T)) +((($) . T) (((-416 (-573))) . T) (((-416 |#1|)) . T) ((|#1|) . T)) (((|#3|) . T)) -(|has| |#1| (-566)) -((((-872)) . T)) +(|has| |#1| (-565)) +((((-871)) . T)) ((($ $) . T)) ((($) . T)) -((((-872)) . T)) -((((-1190)) |has| |#2| (-911 (-1190)))) -((((-417 (-574))) . T) (($) . T)) -(((|#1|) |has| |#1| (-174)) (($) . T) (((-574)) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -((((-872)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -(((|#2|) |has| |#1| (-372))) -((((-388)) -12 (|has| |#1| (-372)) (|has| |#2| (-897 (-388)))) (((-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-897 (-574))))) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-566))) -(|has| |#1| (-372)) -(((|#1|) . T)) -((($) . T) (((-574)) . T) ((|#2|) . T)) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-566))) +((((-871)) . T)) +((((-1189)) |has| |#2| (-910 (-1189)))) +((((-416 (-573))) . T) (($) . T)) +(((|#1|) |has| |#1| (-174)) (($) . T) (((-573)) . T)) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +((((-871)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(((|#2|) |has| |#1| (-371))) +((((-387)) -12 (|has| |#1| (-371)) (|has| |#2| (-896 (-387)))) (((-573)) -12 (|has| |#1| (-371)) (|has| |#2| (-896 (-573))))) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) +(|has| |#1| (-371)) +(((|#1|) . T)) +((($) . T) (((-573)) . T) ((|#2|) . T)) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((|#3|) . T)) -((((-1172)) . T) (((-516)) . T) (((-227)) . T) (((-574)) . T)) +((((-1171)) . T) (((-515)) . T) (((-227)) . T) (((-573)) . T)) (((|#1|) . T)) -(|has| |#1| (-372)) -(|has| |#1| (-566)) -(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) -((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) -(-2818 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062))) +(|has| |#1| (-371)) +(|has| |#1| (-565)) +(((|#4| |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) +((((-416 |#2|)) . T) (((-416 (-573))) . T) (($) . T) (((-573)) . T)) +(-2817 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061))) (((|#2|) . T)) (((|#2|) . T)) -(-2818 (|has| |#2| (-174)) (|has| |#2| (-736)) (|has| |#2| (-858)) (|has| |#2| (-1062))) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -((((-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) . T)) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -(|has| |#1| (-38 (-417 (-574)))) +(-2817 (|has| |#2| (-174)) (|has| |#2| (-735)) (|has| |#2| (-857)) (|has| |#2| (-1061))) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +((((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) . T)) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +(|has| |#1| (-38 (-416 (-573)))) (((|#1| |#2|) . T)) -(|has| |#1| (-38 (-417 (-574)))) -(-2818 (|has| |#1| (-146)) (|has| |#1| (-377))) +(|has| |#1| (-38 (-416 (-573)))) +(-2817 (|has| |#1| (-146)) (|has| |#1| (-376))) ((($) . T)) -((((-1172) |#1|) . T)) +((((-1171) |#1|) . T)) (|has| |#1| (-148)) -(-2818 (|has| |#1| (-146)) (|has| |#1| (-377))) +(-2817 (|has| |#1| (-146)) (|has| |#1| (-376))) (|has| |#1| (-148)) -(-2818 (|has| |#1| (-146)) (|has| |#1| (-377))) +(-2817 (|has| |#1| (-146)) (|has| |#1| (-376))) ((($) . T)) (|has| |#1| (-148)) -((((-591 |#1|)) . T)) +((((-590 |#1|)) . T)) ((($) . T)) -(|has| |#1| (-566)) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) +(|has| |#1| (-565)) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) ((($) . T)) ((($) . T)) -((((-417 |#2|)) . T)) -((((-417 (-574))) |has| |#2| (-1051 (-574))) (((-574)) |has| |#2| (-1051 (-574))) (((-1190)) |has| |#2| (-1051 (-1190))) ((|#2|) . T)) -(((#0=(-417 |#2|) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T)) +((((-416 |#2|)) . T)) +((((-416 (-573))) |has| |#2| (-1050 (-573))) (((-573)) |has| |#2| (-1050 (-573))) (((-1189)) |has| |#2| (-1050 (-1189))) ((|#2|) . T)) +(((#0=(-416 |#2|) #0#) . T) ((#1=(-416 (-573)) #1#) . T) (($ $) . T)) (((|#1|) . T)) -(-2818 (|has| |#1| (-146)) (|has| |#1| (-358))) +(-2817 (|has| |#1| (-146)) (|has| |#1| (-357))) (|has| |#1| (-148)) -((((-872)) . T)) +((((-871)) . T)) ((($) . T)) -((((-1153 |#1| |#2|)) . T)) -(((|#1| (-574)) . T)) -(((|#1| (-417 (-574))) . T)) -((((-574)) |has| |#2| (-897 (-574))) (((-388)) |has| |#2| (-897 (-388)))) +((((-1152 |#1| |#2|)) . T)) +(((|#1| (-573)) . T)) +(((|#1| (-416 (-573))) . T)) +((((-573)) |has| |#2| (-896 (-573))) (((-387)) |has| |#2| (-896 (-387)))) (((|#2|) . T)) -((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T)) +((((-416 |#2|)) . T) (((-416 (-573))) . T) (($) . T)) ((((-112)) . T)) -(((|#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) -(((|#2|) . T)) -((((-872)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -((((-1190) (-52)) . T)) -((((-417 |#2|)) . T)) -((((-872)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1113)) -(|has| |#1| (-801)) -(|has| |#1| (-801)) -((((-872)) . T)) -((((-921 |#1|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) -((((-872)) . T)) -((((-546)) |has| |#1| (-624 (-546)))) -((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1113)))) +(((|#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) . T)) +(((|#2|) . T)) +((((-871)) . T)) +(|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +((((-1189) (-52)) . T)) +((((-416 |#2|)) . T)) +((((-871)) . T)) +(((|#1|) . T)) +(|has| |#1| (-1112)) +(|has| |#1| (-800)) +(|has| |#1| (-800)) +((((-871)) . T)) +((((-920 |#1|)) . T) (((-416 (-573))) . T) (($) . T) (((-573)) . T)) +((((-871)) . T)) +((((-545)) |has| |#1| (-623 (-545)))) +((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-859)) (|has| |#1| (-1112)))) ((((-115)) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-227)) . T) (((-388)) . T) (((-903 (-388))) . T)) -((((-872)) . T)) -((((-1267 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-417 (-574))) . T)) -(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)) (((-417 (-574))) |has| |#1| (-566))) -((((-872)) . T)) -((((-872)) . T)) +((((-227)) . T) (((-387)) . T) (((-902 (-387))) . T)) +((((-871)) . T)) +((((-1266 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-416 (-573))) . T)) +(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-565)) (((-416 (-573))) |has| |#1| (-565))) +((((-871)) . T)) +(-12 (|has| |#2| (-238)) (|has| |#2| (-1061))) +((((-871)) . T)) (((|#2|) . T)) -((((-872)) . T)) -(((#0=(-921 |#1|) #0#) . T) (($ $) . T) ((#1=(-417 (-574)) #1#) . T)) +((((-871)) . T)) +(((#0=(-920 |#1|) #0#) . T) (($ $) . T) ((#1=(-416 (-573)) #1#) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-921 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) -(|has| |#1| (-372)) -((((-872)) . T)) +((((-920 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) +(|has| |#1| (-371)) +((((-871)) . T)) (((|#2|) . T)) -((((-574)) . T)) -((((-872)) . T)) -((((-574)) . T)) -(-2818 (|has| |#2| (-803)) (|has| |#2| (-858))) -((((-171 (-388))) . T) (((-227)) . T) (((-388)) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-1172)) . T) (((-546)) . T) (((-574)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T)) -((((-872)) . T)) +((((-573)) . T)) +((((-871)) . T)) +((((-573)) . T)) +(-2817 (|has| |#2| (-802)) (|has| |#2| (-857))) +((((-171 (-387))) . T) (((-227)) . T) (((-387)) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-1171)) . T) (((-545)) . T) (((-573)) . T) (((-902 (-573))) . T) (((-387)) . T) (((-227)) . T)) +((((-871)) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((($) . T) ((#0=(-1266 |#2| |#3| |#4|)) |has| #0# (-174)) (((-417 (-574))) |has| #0# (-38 (-417 (-574))))) -(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) -(|has| |#1| (-372)) -(|has| |#1| (-372)) -((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113)))) -((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113)))) -((((-574) $) . T) (((-654 (-574)) $) . T)) -(-2818 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-483)) (|has| |#1| (-736)) (|has| |#1| (-911 (-1190))) (|has| |#1| (-1062)) (|has| |#1| (-1125)) (|has| |#1| (-1113))) -(|has| |#1| (-1165)) -((((-921 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) -((($) . T)) -((((-921 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) -((((-574) |#1|) . T)) -(((|#1|) . T)) -(((#0=(-117 |#1|) $) |has| #0# (-294 #0# #0#))) +((($) . T) ((#0=(-1265 |#2| |#3| |#4|)) |has| #0# (-174)) (((-416 (-573))) |has| #0# (-38 (-416 (-573))))) +(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) +(|has| |#1| (-371)) +(|has| |#1| (-371)) +((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) +((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) +((((-573) $) . T) (((-653 (-573)) $) . T)) +(-2817 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-482)) (|has| |#1| (-735)) (|has| |#1| (-910 (-1189))) (|has| |#1| (-1061)) (|has| |#1| (-1124)) (|has| |#1| (-1112))) +(|has| |#1| (-1164)) +((((-920 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) +((($) . T)) +((((-920 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) +((((-573) |#1|) . T)) +(((|#1|) . T)) +(((#0=(-117 |#1|) $) |has| #0# (-293 #0# #0#))) (((|#1|) |has| |#1| (-174))) -((((-324 |#1|)) . T) (((-574)) . T)) +((((-323 |#1|)) . T) (((-573)) . T)) +(|has| |#2| (-238)) (((|#1|) . T)) -((((-872)) . T)) +((((-871)) . T)) ((((-115)) . T) ((|#1|) . T)) -((((-872)) . T)) +((((-871)) . T)) (((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-317 |#1|))) -((((-574) |#1|) . T) (((-1248 (-574)) $) . T)) -((((-1190) |#1|) . T)) -(((|#1|) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)))) +(((|#1|) |has| |#1| (-316 |#1|))) +((((-573) |#1|) . T) (((-1247 (-573)) $) . T)) +((((-1189) |#1|) . T)) +(((|#1|) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)))) (((|#1|) . T)) -(((|#1|) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-1062)))) -((((-574)) . T) (((-417 (-574))) . T)) +(((|#1|) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-1061)))) +((((-573)) . T) (((-416 (-573))) . T)) (((|#1|) . T)) -(|has| |#1| (-566)) -(|has| |#1| (-239)) -((($) . T) (((-574)) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-372))) -((((-388)) . T)) -((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T)) +(|has| |#1| (-565)) +(|has| |#1| (-238)) +((($) . T) (((-573)) . T) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-371))) +((((-387)) . T)) +((((-416 |#2|)) . T) (((-416 (-573))) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-566))) -(|has| |#1| (-372)) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-566))) -(|has| |#1| (-372)) -(|has| |#1| (-566)) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) +(|has| |#1| (-371)) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) +(|has| |#1| (-371)) +(|has| |#1| (-565)) ((($) . T)) -(|has| |#1| (-1113)) -((((-790 |#1| (-874 |#2|))) |has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|))))) -(-2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) +(|has| |#1| (-1112)) +((((-789 |#1| (-873 |#2|))) |has| (-789 |#1| (-873 |#2|)) (-316 (-789 |#1| (-873 |#2|))))) +(-2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) (((|#1|) . T)) (((|#2| |#3|) . T)) (((|#1|) . T)) -(|has| |#2| (-920)) -(((|#1| (-541 |#2|)) . T)) -(((|#1| (-781)) . T)) -(|has| |#1| (-239)) -(((|#1| (-541 (-1101 (-1190)))) . T)) -(|has| |#2| (-372)) -((($) -12 (|has| |#2| (-239)) (|has| |#2| (-1062)))) -((((-591 |#1|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) -((((-574)) . T) (((-417 (-574))) . T) (($) . T)) -((((-2 (|:| -3693 (-1172)) (|:| -1908 (-52)))) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-574)) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -((((-872)) . T)) -((((-872)) . T)) -(-2818 (|has| |#3| (-803)) (|has| |#3| (-858))) -((((-872)) . T)) -((((-1133)) . T) (((-872)) . T)) -((((-546)) . T) (((-872)) . T)) -(((|#1|) . T)) -((($ $) . T) (((-622 $) $) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-574)) . T)) +(|has| |#2| (-919)) +(((|#1| (-540 |#2|)) . T)) +(((|#1| (-780)) . T)) +(|has| |#1| (-238)) +(((|#1| (-540 (-1100 (-1189)))) . T)) +(|has| |#2| (-371)) +((($) -12 (|has| |#2| (-238)) (|has| |#2| (-1061)))) +((((-590 |#1|)) . T) (((-416 (-573))) . T) (($) . T) (((-573)) . T)) +((((-573)) . T) (((-416 (-573))) . T) (($) . T)) +((((-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-573)) . T)) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +((((-871)) . T)) +((((-871)) . T)) +(-2817 (|has| |#3| (-802)) (|has| |#3| (-857))) +((((-871)) . T)) +((((-1132)) . T) (((-871)) . T)) +((((-545)) . T) (((-871)) . T)) +(((|#1|) . T)) +((($ $) . T) (((-621 $) $) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-573)) . T)) (((|#3|) . T)) -((((-872)) . T)) -(-2818 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358))) -((((-574)) . T) (((-417 (-574))) -2818 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1051 (-417 (-574))))) ((|#2|) . T) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) (((-874 |#1|)) . T)) -((((-1138 |#1| |#2|)) . T) ((|#2|) . T) (($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))) (((-574)) . T)) -((((-1186 |#1|)) . T) (((-574)) . T) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) (((-1095)) . T) ((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574)))))) -(-2818 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1062))) -((((-1138 |#1| (-1190))) . T) (((-574)) . T) (((-1101 (-1190))) . T) (($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))) (((-1190)) . T)) -(((#0=(-591 |#1|) #0#) . T) (($ $) . T) ((#1=(-417 (-574)) #1#) . T)) -((($ $) . T) ((#0=(-417 (-574)) #0#) . T)) +((((-871)) . T)) +(-2817 (|has| |#1| (-314)) (|has| |#1| (-371)) (|has| |#1| (-357))) +((((-573)) . T) (((-416 (-573))) -2817 (|has| |#2| (-38 (-416 (-573)))) (|has| |#2| (-1050 (-416 (-573))))) ((|#2|) . T) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) (((-873 |#1|)) . T)) +((((-1137 |#1| |#2|)) . T) ((|#2|) . T) (($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573))))) (((-573)) . T)) +((((-1185 |#1|)) . T) (((-573)) . T) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) (((-1094)) . T) ((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573)))))) +(-2817 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-565)) (|has| |#1| (-1061))) +((((-1137 |#1| (-1189))) . T) (((-573)) . T) (((-1100 (-1189))) . T) (($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573))))) (((-1189)) . T)) +(((#0=(-590 |#1|) #0#) . T) (($ $) . T) ((#1=(-416 (-573)) #1#) . T)) +((($ $) . T) ((#0=(-416 (-573)) #0#) . T)) (((|#1|) |has| |#1| (-174))) -(((|#1| (-1281 |#1|) (-1281 |#1|)) . T)) -((((-591 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) -((($) . T) (((-417 (-574))) . T)) +(((|#1| (-1280 |#1|) (-1280 |#1|)) . T)) +((((-590 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) +((($) . T) (((-416 (-573))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($) . T) (((-417 (-574))) . T)) -(((|#2|) |has| |#2| (-6 (-4458 "*")))) +((($) . T) (((-416 (-573))) . T)) +(((|#2|) |has| |#2| (-6 (-4457 "*")))) (((|#1|) . T)) -((((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((|#1|) . T) (((-574)) . T)) +((((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((|#1|) . T) (((-573)) . T)) (((|#1|) . T)) -((((-872)) . T)) -((((-302 |#3|)) . T)) -(((#0=(-417 (-574)) #0#) |has| |#2| (-38 (-417 (-574)))) ((|#2| |#2|) . T) (($ $) -2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))) +((((-871)) . T)) +((((-301 |#3|)) . T)) +(((#0=(-416 (-573)) #0#) |has| |#2| (-38 (-416 (-573)))) ((|#2| |#2|) . T) (($ $) -2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#1|) . T)) -((($) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) -((($) . T) (((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) -((($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) -((($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) +((($) . T) (((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T) (((-573)) |has| |#2| (-648 (-573)))) +((($) . T) (((-573)) |has| |#1| (-648 (-573))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) +((($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1| |#1|) . T) ((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573))))) +((($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1| |#1|) . T) ((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573))))) (((|#2|) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))) +((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T) (($) -2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) (((|#2|) . T) ((|#6|) . T)) -((($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) -((((-872)) . T)) -((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(|has| |#2| (-920)) -(|has| |#1| (-920)) -((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((((-872)) . T)) +((($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1| |#1|) . T) ((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573))))) +((((-871)) . T)) +((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +(|has| |#2| (-919)) +(|has| |#1| (-919)) +((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((((-871)) . T)) (((|#1|) . T)) -((((-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) . T)) +((((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1113)) +(|has| |#1| (-1112)) (((|#1|) . T)) -(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) -((((-1190)) . T) ((|#1|) . T)) -((((-872)) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (($) . T)) -((((-872)) . T)) -((((-574)) . T) (($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) -(((#0=(-417 (-574)) #0#) . T)) -((((-417 (-574))) . T)) +(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) +((((-1189)) . T) ((|#1|) . T)) +((((-871)) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (($) . T)) +((((-871)) . T)) +((((-573)) . T) (($) . T) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +(((|#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) +(((#0=(-416 (-573)) #0#) . T)) +((((-416 (-573))) . T)) (((|#1|) |has| |#1| (-174))) -(-2818 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062))) -(((|#1|) . T)) -(((|#1|) . T)) -(-2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-858)) (|has| |#2| (-1062))) -(((|#1|) . T)) -((((-417 (-574))) . T) (((-574)) . T) (($) . T)) -((((-546)) . T)) -((((-872)) . T)) -((($) -12 (|has| |#3| (-239)) (|has| |#3| (-1062)))) -((((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) -((((-872)) . T)) -((((-1190)) |has| |#2| (-911 (-1190))) (((-1095)) . T)) -((((-921 |#1|)) . T)) -((((-1266 |#2| |#3| |#4|)) . T)) -((($) . T) (((-417 (-574))) . T)) -(-12 (|has| |#1| (-372)) (|has| |#2| (-830))) -(-12 (|has| |#1| (-372)) (|has| |#2| (-830))) -((((-872)) . T)) -(|has| |#1| (-1235)) -(((|#2|) . T)) -((($ $) . T) ((#0=(-417 (-574)) #0#) . T)) -((((-1190)) |has| |#1| (-911 (-1190)))) -((((-921 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) -((($) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) . T)) -(((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))) ((|#1| |#1|) . T) (($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-566)))) -((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T)) -((($) . T) (((-417 (-574))) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) -(((|#2|) |has| |#2| (-1062)) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062)))) -((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T)) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-566)))) -(|has| |#1| (-566)) -(((|#1|) |has| |#1| (-372))) -((((-574)) . T)) -((((-1190) #0=(-117 |#1|)) |has| #0# (-524 (-1190) #0#)) ((#0# #0#) |has| #0# (-317 #0#))) -(|has| |#1| (-801)) -(|has| |#1| (-801)) -(((|#2|) . T) (((-574)) |has| |#2| (-1051 (-574))) (((-417 (-574))) |has| |#2| (-1051 (-417 (-574))))) -((((-1095)) . T) ((|#2|) . T) (((-574)) |has| |#2| (-1051 (-574))) (((-417 (-574))) |has| |#2| (-1051 (-417 (-574))))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-574)) . T) (($) . T)) -((((-574) (-781)) . T) ((|#3| (-781)) . T)) +(-2817 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061))) +(((|#1|) . T)) +(((|#1|) . T)) +(-2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-857)) (|has| |#2| (-1061))) +(((|#1|) . T)) +((((-416 (-573))) . T) (((-573)) . T) (($) . T)) +((((-545)) . T)) +((((-871)) . T)) +((($) -12 (|has| |#3| (-238)) (|has| |#3| (-1061)))) +((((-573)) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-565))) +((((-871)) . T)) +((((-1189)) |has| |#2| (-910 (-1189))) (((-1094)) . T)) +((((-920 |#1|)) . T)) +((((-1265 |#2| |#3| |#4|)) . T)) +((($) . T) (((-416 (-573))) . T)) +(-12 (|has| |#1| (-371)) (|has| |#2| (-829))) +(-12 (|has| |#1| (-371)) (|has| |#2| (-829))) +((((-871)) . T)) +(|has| |#1| (-1234)) +(((|#2|) . T)) +((($ $) . T) ((#0=(-416 (-573)) #0#) . T)) +((((-1189)) |has| |#1| (-910 (-1189)))) +((((-920 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) +((($) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#1|) . T)) +(((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573)))) ((|#1| |#1|) . T) (($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-565)))) +((((-416 |#2|)) . T) (((-416 (-573))) . T) (($) . T)) +((($) . T) (((-416 (-573))) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) +(((|#2|) |has| |#2| (-1061)) (((-573)) -12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) +((((-416 |#2|)) . T) (((-416 (-573))) . T) (($) . T)) +((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-565)))) +(|has| |#1| (-565)) +(((|#1|) |has| |#1| (-371))) +((((-573)) . T)) +((((-1189) #0=(-117 |#1|)) |has| #0# (-523 (-1189) #0#)) ((#0# #0#) |has| #0# (-316 #0#))) +(|has| |#1| (-800)) +(|has| |#1| (-800)) +(((|#2|) . T) (((-573)) |has| |#2| (-1050 (-573))) (((-416 (-573))) |has| |#2| (-1050 (-416 (-573))))) +((((-1094)) . T) ((|#2|) . T) (((-573)) |has| |#2| (-1050 (-573))) (((-416 (-573))) |has| |#2| (-1050 (-416 (-573))))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-573)) . T) (($) . T)) +((((-573) (-780)) . T) ((|#3| (-780)) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) ((($) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -((((-872)) . T)) -((($) |has| |#1| (-377))) -((($) |has| |#1| (-377))) -((($) |has| |#1| (-377))) -(|has| |#2| (-830)) -(|has| |#2| (-830)) -((((-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-649 (-574)))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#2|) |has| |#1| (-372)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-574)) |has| |#1| (-1051 (-574))) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574))))) -(((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) . T)) -((($) -2818 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -((((-574)) |has| |#1| (-897 (-574))) (((-388)) |has| |#1| (-897 (-388)))) -(((|#1|) . T)) -((((-880 |#1|)) . T)) -((((-880 |#1|)) . T)) -(-12 (|has| |#1| (-372)) (|has| |#2| (-920))) -((((-417 (-574))) . T) (((-709)) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +((((-871)) . T)) +((($) |has| |#1| (-376))) +((($) |has| |#1| (-376))) +((($) |has| |#1| (-376))) +(|has| |#2| (-829)) +(|has| |#2| (-829)) +((((-573)) -12 (|has| |#1| (-371)) (|has| |#2| (-648 (-573)))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#2|) |has| |#1| (-371)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-573)) |has| |#1| (-1050 (-573))) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573))))) +(((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) . T)) +((($) -2817 (-12 (|has| |#1| (-238)) (|has| |#1| (-371))) (|has| |#1| (-357)))) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +((((-573)) |has| |#1| (-896 (-573))) (((-387)) |has| |#1| (-896 (-387)))) +(((|#1|) . T)) +((((-879 |#1|)) . T)) +((((-879 |#1|)) . T)) +(-12 (|has| |#1| (-371)) (|has| |#2| (-919))) +((((-416 (-573))) . T) (((-708)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) -(|has| |#1| (-372)) -(|has| |#1| (-372)) +(|has| |#1| (-371)) +(|has| |#1| (-371)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) -(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) -(((|#2|) -2818 (|has| |#2| (-6 (-4458 "*"))) (|has| |#2| (-174)))) +(((|#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) +(((|#2|) -2817 (|has| |#2| (-6 (-4457 "*"))) (|has| |#2| (-174)))) (((|#2|) . T)) -(|has| |#1| (-372)) +(|has| |#1| (-371)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-874 |#1|)) . T)) +((((-873 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| (-781)) . T)) -((((-1190)) . T)) -((((-880 |#1|)) . T)) -(-2818 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-803)) (|has| |#3| (-858)) (|has| |#3| (-1062))) -(-2818 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-858)) (|has| |#3| (-1062))) -((((-872)) . T)) +(((|#2| (-780)) . T)) +((((-1189)) . T)) +((((-879 |#1|)) . T)) +(-2817 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-802)) (|has| |#3| (-857)) (|has| |#3| (-1061))) +(-2817 (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-857)) (|has| |#3| (-1061))) +((((-871)) . T)) (((|#1|) . T)) -(-2818 (|has| |#2| (-803)) (|has| |#2| (-858))) -(-2818 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))) -((((-880 |#1|)) . T)) +(-2817 (|has| |#2| (-802)) (|has| |#2| (-857))) +(-2817 (-12 (|has| |#1| (-802)) (|has| |#2| (-802))) (-12 (|has| |#1| (-859)) (|has| |#2| (-859)))) +((((-879 |#1|)) . T)) (((|#1|) . T)) -(|has| |#1| (-377)) -(|has| |#1| (-377)) -(|has| |#1| (-377)) -((($ $) . T) (((-622 $) $) . T)) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +((($ $) . T) (((-621 $) $) . T)) ((($) . T)) -((((-872)) . T)) -((((-574)) . T)) +((((-871)) . T)) +((((-573)) . T)) (((|#2|) . T)) -((((-872)) . T)) -((($) . T) (((-574)) . T)) -(((|#1|) . T) (((-417 (-574))) |has| |#1| (-372))) -((((-872)) . T)) +((((-871)) . T)) +((($) . T) (((-573)) . T)) +(((|#1|) . T) (((-416 (-573))) |has| |#1| (-371))) +((((-871)) . T)) (((|#1|) . T)) -((((-872)) . T)) -((($) . T) ((|#2|) . T) (((-417 (-574))) . T) (((-574)) |has| |#2| (-649 (-574)))) -(|has| |#1| (-1113)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) +((((-871)) . T)) +((($) . T) ((|#2|) . T) (((-416 (-573))) . T) (((-573)) |has| |#2| (-648 (-573)))) +(|has| |#1| (-1112)) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-872)) . T)) -(|has| |#2| (-920)) -((((-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) . T)) -((((-546)) |has| |#2| (-624 (-546))) (((-903 (-388))) |has| |#2| (-624 (-903 (-388)))) (((-903 (-574))) |has| |#2| (-624 (-903 (-574))))) -((((-872)) . T)) -((((-872)) . T)) -(((|#3|) |has| |#3| (-1062)) (((-574)) -12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1062)))) -((((-1138 |#1| |#2|)) . T) (((-963 |#1|)) |has| |#2| (-624 (-1190))) (((-872)) . T)) -((((-963 |#1|)) |has| |#2| (-624 (-1190))) (((-1172)) -12 (|has| |#1| (-1051 (-574))) (|has| |#2| (-624 (-1190)))) (((-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574))))) (((-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388))))) (((-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#2| (-624 (-546))))) -((((-1186 |#1|)) . T) (((-872)) . T)) -((((-872)) . T)) -((((-417 (-574))) |has| |#2| (-1051 (-417 (-574)))) (((-574)) |has| |#2| (-1051 (-574))) ((|#2|) . T) (((-874 |#1|)) . T)) -((((-117 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) -((((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) (((-574)) |has| |#1| (-1051 (-574))) ((|#1|) . T) (((-1190)) . T)) -((((-872)) . T)) -((((-574)) . T)) +((((-871)) . T)) +(|has| |#2| (-919)) +((((-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) . T)) +((((-545)) |has| |#2| (-623 (-545))) (((-902 (-387))) |has| |#2| (-623 (-902 (-387)))) (((-902 (-573))) |has| |#2| (-623 (-902 (-573))))) +((((-871)) . T)) +((((-871)) . T)) +(((|#3|) |has| |#3| (-1061)) (((-573)) -12 (|has| |#3| (-648 (-573))) (|has| |#3| (-1061)))) +((((-1137 |#1| |#2|)) . T) (((-962 |#1|)) |has| |#2| (-623 (-1189))) (((-871)) . T)) +((((-962 |#1|)) |has| |#2| (-623 (-1189))) (((-1171)) -12 (|has| |#1| (-1050 (-573))) (|has| |#2| (-623 (-1189)))) (((-902 (-573))) -12 (|has| |#1| (-623 (-902 (-573)))) (|has| |#2| (-623 (-902 (-573))))) (((-902 (-387))) -12 (|has| |#1| (-623 (-902 (-387)))) (|has| |#2| (-623 (-902 (-387))))) (((-545)) -12 (|has| |#1| (-623 (-545))) (|has| |#2| (-623 (-545))))) +((((-1185 |#1|)) . T) (((-871)) . T)) +((((-871)) . T)) +((((-416 (-573))) |has| |#2| (-1050 (-416 (-573)))) (((-573)) |has| |#2| (-1050 (-573))) ((|#2|) . T) (((-873 |#1|)) . T)) +((((-117 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) +((((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) (((-573)) |has| |#1| (-1050 (-573))) ((|#1|) . T) (((-1189)) . T)) +((((-871)) . T)) +((((-573)) . T)) (((|#1|) . T)) ((($) . T)) -((((-388)) |has| |#1| (-897 (-388))) (((-574)) |has| |#1| (-897 (-574)))) -((((-574)) . T)) +((((-387)) |has| |#1| (-896 (-387))) (((-573)) |has| |#1| (-896 (-573)))) +((((-573)) . T)) (((|#1|) . T)) -((((-872)) . T)) +((((-871)) . T)) (((|#1|) . T)) -((((-872)) . T)) -((((-1195)) . T)) -((((-1195)) . T)) -((((-1195)) . T)) -((((-654 |#1|)) . T)) -((($) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) -((($) . T) (((-574)) . T) (((-1267 |#1| |#2| |#3| |#4|)) . T) (((-417 (-574))) . T)) -((((-574)) -2818 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1062))) (($) -2818 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1062))) ((|#1|) -2818 (|has| |#1| (-174)) (|has| |#1| (-1062))) (((-417 (-574))) |has| |#1| (-566))) -((((-1195)) . T)) -((((-574)) . T) (((-417 (-574))) . T)) -((((-1195)) . T)) -((((-1195)) . T)) +((((-871)) . T)) +((((-1194)) . T)) +((((-1194)) . T)) +((((-1194)) . T)) +((((-653 |#1|)) . T)) +((($) |has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) +((($) . T) (((-573)) . T) (((-1266 |#1| |#2| |#3| |#4|)) . T) (((-416 (-573))) . T)) +((((-573)) -2817 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-565)) (|has| |#1| (-1061))) (($) -2817 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-565)) (|has| |#1| (-1061))) ((|#1|) -2817 (|has| |#1| (-174)) (|has| |#1| (-1061))) (((-416 (-573))) |has| |#1| (-565))) +((((-1194)) . T)) +((((-573)) . T) (((-416 (-573))) . T)) +((((-1194)) . T)) +((((-1194)) . T)) (((|#1|) |has| |#1| (-174)) (($) . T)) -((((-1195)) . T)) -(((|#1|) |has| |#1| (-317 |#1|))) -((((-388)) . T)) +((((-1194)) . T)) +(((|#1|) |has| |#1| (-316 |#1|))) +((((-387)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-872)) . T)) -((((-417 (-574))) . T) (($) . T)) -((((-872)) . T)) -((((-417 |#2|) |#3|) . T)) +((((-871)) . T)) +((((-416 (-573))) . T) (($) . T)) +((((-871)) . T)) +((((-416 |#2|) |#3|) . T)) (((|#1|) . T)) -(|has| |#1| (-1113)) -(((|#2| (-492 (-2863 |#1|) (-781))) . T)) -((((-574) |#1|) . T)) -((((-1172)) . T) (((-872)) . T)) +(|has| |#1| (-1112)) +(((|#2| (-491 (-2862 |#1|) (-780))) . T)) +((((-573) |#1|) . T)) +((((-1171)) . T) (((-871)) . T)) (((|#2| |#2|) . T)) -(((|#1| (-541 (-1190))) . T)) -(-2818 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062))) -((((-574)) . T)) +(((|#1| (-540 (-1189))) . T)) +(-2817 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061))) +((((-573)) . T)) (((|#2|) . T)) -((($) -12 (|has| |#2| (-239)) (|has| |#2| (-1062)))) +((($) -12 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (((|#2|) . T)) -((((-1190)) |has| |#1| (-911 (-1190))) (((-1095)) . T)) -(((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) -(|has| |#1| (-566)) -(((#0=(-1266 |#2| |#3| |#4|)) . T) (((-417 (-574))) |has| #0# (-38 (-417 (-574)))) (((-574)) . T) (($) . T)) -((($) . T) (((-417 (-574))) . T)) +((((-1189)) |has| |#1| (-910 (-1189))) (((-1094)) . T)) +(((|#1|) . T) (((-573)) |has| |#1| (-648 (-573)))) +(|has| |#1| (-565)) +(((#0=(-1265 |#2| |#3| |#4|)) . T) (((-416 (-573))) |has| #0# (-38 (-416 (-573)))) (((-573)) . T) (($) . T)) +((($) . T) (((-416 (-573))) . T)) ((($) . T)) ((($) . T)) -(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113))) +(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) (((|#1|) . T)) -((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((((-872)) . T)) +((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((((-871)) . T)) ((((-145)) . T)) -(((|#1|) . T) (((-417 (-574))) . T)) +(((|#1|) . T) (((-416 (-573))) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-872)) . T)) +((((-871)) . T)) (((|#1|) . T)) -(|has| |#1| (-1165)) -(((|#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|))) . T)) +(|has| |#1| (-1164)) +(((|#1| (-540 (-873 |#2|)) (-873 |#2|) (-789 |#1| (-873 |#2|))) . T)) (((|#1|) . T)) -((((-417 $) (-417 $)) |has| |#1| (-566)) (($ $) . T) ((|#1| |#1|) . T)) -(((|#1|) . T) (((-574)) |has| |#1| (-1051 (-574))) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574))))) -((((-872)) . T)) -((((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) (((-574)) |has| |#1| (-1051 (-574))) ((|#1|) . T) ((|#2|) . T)) -((((-1095)) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1051 (-574))) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574))))) -((((-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#2| (-897 (-388)))) (((-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#2| (-897 (-574))))) -((((-1267 |#1| |#2| |#3| |#4|)) . T)) -((((-574) |#1|) . T)) +((((-416 $) (-416 $)) |has| |#1| (-565)) (($ $) . T) ((|#1| |#1|) . T)) +(((|#1|) . T) (((-573)) |has| |#1| (-1050 (-573))) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573))))) +((((-871)) . T)) +((((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) (((-573)) |has| |#1| (-1050 (-573))) ((|#1|) . T) ((|#2|) . T)) +((((-1094)) . T) ((|#1|) . T) (((-573)) |has| |#1| (-1050 (-573))) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573))))) +((((-387)) -12 (|has| |#1| (-896 (-387))) (|has| |#2| (-896 (-387)))) (((-573)) -12 (|has| |#1| (-896 (-573))) (|has| |#2| (-896 (-573))))) +((((-1266 |#1| |#2| |#3| |#4|)) . T)) +((((-573) |#1|) . T)) (((|#1| |#1|) . T)) ((($) . T) ((|#2|) . T)) (((|#1|) |has| |#1| (-174)) (($) . T)) ((($) . T)) -((((-709)) . T)) -((((-790 |#1| (-874 |#2|))) . T)) -((((-574)) . T) (($) . T)) -((($) . T)) -(((|#1|) . T) (((-417 (-574))) |has| |#1| (-372))) -((((-417 (-574))) . T) (($) . T)) -(|has| |#1| (-1113)) -(|has| |#1| (-1113)) -(|has| |#2| (-372)) -(((|#1|) . T) (($) -2818 (|has| |#1| (-298)) (|has| |#1| (-372))) (((-417 (-574))) |has| |#1| (-372))) -(|has| |#1| (-372)) -(|has| |#1| (-372)) -(|has| |#1| (-38 (-417 (-574)))) -((($) |has| |#2| (-239))) -((((-574)) . T)) -((((-1190)) -12 (|has| |#4| (-911 (-1190))) (|has| |#4| (-1062)))) -((((-1190)) -12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) -(((|#1|) . T)) -(|has| |#1| (-239)) -(((|#2| (-246 (-2863 |#1|) (-781))) . T)) -(((|#1| (-541 |#3|)) . T)) -(|has| |#1| (-377)) -(|has| |#1| (-377)) -(|has| |#1| (-377)) +((((-708)) . T)) +((((-789 |#1| (-873 |#2|))) . T)) +((((-573)) . T) (($) . T)) +((($) . T)) +(((|#1|) . T) (((-416 (-573))) |has| |#1| (-371))) +((((-416 (-573))) . T) (($) . T)) +(|has| |#1| (-1112)) +(|has| |#1| (-1112)) +(|has| |#2| (-371)) +(((|#1|) . T) (($) -2817 (|has| |#1| (-297)) (|has| |#1| (-371))) (((-416 (-573))) |has| |#1| (-371))) +(|has| |#1| (-371)) +(|has| |#1| (-371)) +(|has| |#1| (-38 (-416 (-573)))) +((($) |has| |#2| (-238))) +((((-573)) . T)) +((((-1189)) -12 (|has| |#4| (-910 (-1189))) (|has| |#4| (-1061)))) +((((-1189)) -12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) +(((|#1|) . T)) +(|has| |#1| (-238)) +(((|#2| (-245 (-2862 |#1|) (-780))) . T)) +(((|#1| (-540 |#3|)) . T)) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +(|has| |#1| (-376)) (((|#1|) . T) (($) . T)) -(((|#1| (-541 |#2|)) . T)) -(-2818 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062))) -(((|#1| (-781)) . T)) -(|has| |#1| (-566)) -(-2818 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062))) -(-2818 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-858)) (|has| |#2| (-1062))) +(((|#1| (-540 |#2|)) . T)) +(-2817 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061))) +(((|#1| (-780)) . T)) +(|has| |#1| (-565)) +(-2817 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061))) +(-2817 (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-857)) (|has| |#2| (-1061))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -((((-872)) . T)) -((((-574)) . T) (((-417 (-574))) . T) (($) . T)) -(-2818 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))) -(-2818 (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-803)) (|has| |#3| (-858)) (|has| |#3| (-1062))) -(-2818 (|has| |#2| (-174)) (|has| |#2| (-736)) (|has| |#2| (-858)) (|has| |#2| (-1062))) +((((-871)) . T)) +((((-573)) . T) (((-416 (-573))) . T) (($) . T)) +(-2817 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-802)) (|has| |#2| (-802)))) +(-2817 (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-802)) (|has| |#3| (-857)) (|has| |#3| (-1061))) +(-2817 (|has| |#2| (-174)) (|has| |#2| (-735)) (|has| |#2| (-857)) (|has| |#2| (-1061))) (((|#1|) |has| |#1| (-174))) -(((|#4|) |has| |#4| (-1062))) -(((|#3|) |has| |#3| (-1062))) -(-12 (|has| |#1| (-372)) (|has| |#2| (-830))) -(-12 (|has| |#1| (-372)) (|has| |#2| (-830))) -((((-574)) . T) (((-417 (-574))) -2818 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1051 (-417 (-574))))) ((|#2|) . T) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) (((-874 |#1|)) . T)) -((((-1138 |#1| |#2|)) . T) (((-574)) . T) ((|#3|) . T) (($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))) ((|#2|) . T)) -((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1113)))) -((((-546)) |has| |#1| (-624 (-546)))) -(((|#1|) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T)) -((((-1195)) . T)) -((((-682 |#1|)) . T)) -((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T)) -((($ $) . T) ((#0=(-417 (-574)) #0#) . T)) -((((-872)) . T)) -((((-654 $)) . T) (((-1172)) . T) (((-1190)) . T) (((-574)) . T) (((-227)) . T) (((-872)) . T)) -((((-1195)) . T)) -((((-1195)) . T)) -((($) . T) (((-417 (-574))) . T)) -(((|#1|) . T)) -(((|#4|) |has| |#4| (-1113)) (((-574)) -12 (|has| |#4| (-1051 (-574))) (|has| |#4| (-1113))) (((-417 (-574))) -12 (|has| |#4| (-1051 (-417 (-574)))) (|has| |#4| (-1113)))) -(((|#3|) |has| |#3| (-1113)) (((-574)) -12 (|has| |#3| (-1051 (-574))) (|has| |#3| (-1113))) (((-417 (-574))) -12 (|has| |#3| (-1051 (-417 (-574)))) (|has| |#3| (-1113)))) -(|has| |#2| (-372)) -(((|#2|) |has| |#2| (-1062)) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062)))) -(((|#1|) . T)) -(|has| |#2| (-372)) -(((#0=(-417 (-574)) #0#) |has| |#2| (-38 (-417 (-574)))) ((|#2| |#2|) . T) (($ $) -2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))) -((($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574))))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T)) +(((|#4|) |has| |#4| (-1061))) +(((|#3|) |has| |#3| (-1061))) +(-12 (|has| |#1| (-371)) (|has| |#2| (-829))) +(-12 (|has| |#1| (-371)) (|has| |#2| (-829))) +((((-573)) . T) (((-416 (-573))) -2817 (|has| |#2| (-38 (-416 (-573)))) (|has| |#2| (-1050 (-416 (-573))))) ((|#2|) . T) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) (((-873 |#1|)) . T)) +((((-1137 |#1| |#2|)) . T) (((-573)) . T) ((|#3|) . T) (($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573))))) ((|#2|) . T)) +((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-859)) (|has| |#1| (-1112)))) +((((-545)) |has| |#1| (-623 (-545)))) +(((|#1|) . T) (((-416 (-573))) . T) (($) . T) (((-573)) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (($) . T) (((-573)) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (($) . T) (((-573)) . T)) +((((-1194)) . T)) +((((-681 |#1|)) . T)) +((((-416 |#2|)) . T) (((-416 (-573))) . T) (($) . T)) +((($ $) . T) ((#0=(-416 (-573)) #0#) . T)) +((((-871)) . T)) +((((-653 $)) . T) (((-1171)) . T) (((-1189)) . T) (((-573)) . T) (((-227)) . T) (((-871)) . T)) +((((-1194)) . T)) +((((-1194)) . T)) +((($) . T) (((-416 (-573))) . T)) +(((|#1|) . T)) +(((|#4|) |has| |#4| (-1112)) (((-573)) -12 (|has| |#4| (-1050 (-573))) (|has| |#4| (-1112))) (((-416 (-573))) -12 (|has| |#4| (-1050 (-416 (-573)))) (|has| |#4| (-1112)))) +(((|#3|) |has| |#3| (-1112)) (((-573)) -12 (|has| |#3| (-1050 (-573))) (|has| |#3| (-1112))) (((-416 (-573))) -12 (|has| |#3| (-1050 (-416 (-573)))) (|has| |#3| (-1112)))) +(|has| |#2| (-371)) +(((|#2|) |has| |#2| (-1061)) (((-573)) -12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) +(((|#1|) . T)) +(|has| |#2| (-371)) +(((#0=(-416 (-573)) #0#) |has| |#2| (-38 (-416 (-573)))) ((|#2| |#2|) . T) (($ $) -2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) +((($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1| |#1|) . T) ((#0=(-416 (-573)) #0#) |has| |#1| (-38 (-416 (-573))))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-416 (-573)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-416 (-573)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-416 (-573)) #0#) . T)) (((|#2| |#2|) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))) -((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) -(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) -(((|#1|) . T) (($) . T) (((-417 (-574))) . T)) -(((|#2|) . T)) -((((-872)) |has| |#1| (-1113))) -((($) . T)) -((((-1267 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#2| (-830)) -(|has| |#2| (-830)) -((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(|has| |#1| (-372)) -(|has| |#1| (-372)) -(|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) -(|has| |#1| (-372)) -((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(((|#1|) |has| |#2| (-427 |#1|))) -(((|#1|) |has| |#2| (-427 |#1|))) -((((-1172)) . T)) -((((-921 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) -((((-872)) . T) (((-1195)) . T)) -((((-872)) . T) (((-1195)) . T)) -((((-872)) . T) (((-1195)) . T)) -((((-654 |#1|)) . T) (((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1113)))) -((((-1195)) . T)) -((((-1195)) . T)) -((((-1195)) . T)) -((((-654 |#1|)) . T)) -((((-546)) |has| |#1| (-624 (-546)))) -((((-872)) . T) (((-1195)) . T)) -((((-1195)) . T)) -((((-872)) . T)) -((((-872)) . T) (((-1195)) . T)) -((((-1230)) . T) (((-872)) . T) (((-1195)) . T)) -((((-1195)) . T)) -((((-1195)) . T)) -((((-872)) . T) (((-1195)) . T)) -((((-1195)) . T)) -((((-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) |has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-317 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))))) -(-2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) -((((-574) |#1|) . T)) -((((-574) |#1|) . T)) -((((-574) |#1|) . T)) -(-2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) -((((-574) |#1|) . T)) -(((|#1|) . T)) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) -(-2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) -((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-574)) . T) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174))) -((((-1190)) |has| |#1| (-911 (-1190))) (((-828 (-1190))) . T)) -(-2818 (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-803)) (|has| |#3| (-858)) (|has| |#3| (-1062))) -((((-829 |#1|)) . T)) +((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T) (($) -2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) +((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) +(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) +(((|#1|) . T) (($) . T) (((-416 (-573))) . T)) +(((|#2|) . T)) +((((-871)) |has| |#1| (-1112))) +((($) . T)) +((((-1266 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#2| (-829)) +(|has| |#2| (-829)) +((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +(|has| |#1| (-371)) +(|has| |#1| (-371)) +(|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) +(|has| |#1| (-371)) +((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +(((|#1|) |has| |#2| (-426 |#1|))) +(((|#1|) |has| |#2| (-426 |#1|))) +((((-1171)) . T)) +((((-920 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) +((((-871)) . T) (((-1194)) . T)) +((((-871)) . T) (((-1194)) . T)) +((((-871)) . T) (((-1194)) . T)) +((((-653 |#1|)) . T) (((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-859)) (|has| |#1| (-1112)))) +((((-1194)) . T)) +((((-1194)) . T)) +((((-1194)) . T)) +((((-653 |#1|)) . T)) +((((-545)) |has| |#1| (-623 (-545)))) +((((-871)) . T) (((-1194)) . T)) +((((-1194)) . T)) +((((-871)) . T)) +((((-871)) . T) (((-1194)) . T)) +((((-1229)) . T) (((-871)) . T) (((-1194)) . T)) +((((-1194)) . T)) +((((-1194)) . T)) +((((-871)) . T) (((-1194)) . T)) +((((-1194)) . T)) +((((-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) |has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))))) +(-2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) +((((-573) |#1|) . T)) +((((-573) |#1|) . T)) +((((-573) |#1|) . T)) +(-2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) +((((-573) |#1|) . T)) +(((|#1|) . T)) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) +(-2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) +((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-573)) . T) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#1|) |has| |#1| (-174))) +((((-1189)) |has| |#1| (-910 (-1189))) (((-827 (-1189))) . T)) +(-2817 (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-802)) (|has| |#3| (-857)) (|has| |#3| (-1061))) +((((-828 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-872)) . T)) -(-2818 (|has| |#3| (-174)) (|has| |#3| (-736)) (|has| |#3| (-858)) (|has| |#3| (-1062))) +((((-871)) . T)) +(-2817 (|has| |#3| (-174)) (|has| |#3| (-735)) (|has| |#3| (-857)) (|has| |#3| (-1061))) (((|#1| |#2|) . T)) -((($) . T) (((-574)) . T) (((-417 (-574))) . T)) -(|has| |#1| (-38 (-417 (-574)))) -((((-872)) . T)) -((((-1267 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-417 (-574))) . T)) -(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)) (((-417 (-574))) |has| |#1| (-566))) -(((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) -(|has| |#1| (-372)) -(-2818 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (-12 (|has| |#1| (-372)) (|has| |#2| (-239)))) -(|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) -(|has| |#1| (-372)) -(((|#1|) . T)) -(((#0=(-417 (-574)) #0#) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1| |#1|) . T)) -((((-1248 (-574)) $) . T) (((-574) |#1|) . T)) -((((-324 |#1|)) . T)) -((((-921 |#1|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) -(((#0=(-709) (-1186 #0#)) . T)) -((((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1|) . T)) -(((|#1|) . T) (($) . T) (((-574)) . T) (((-417 (-574))) . T)) +((($) . T) (((-573)) . T) (((-416 (-573))) . T)) +(|has| |#1| (-38 (-416 (-573)))) +((((-871)) . T)) +((((-1266 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-416 (-573))) . T)) +(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-565)) (((-416 (-573))) |has| |#1| (-565))) +(((|#2|) . T) (((-573)) |has| |#2| (-648 (-573)))) +(|has| |#1| (-371)) +(-2817 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (-12 (|has| |#1| (-371)) (|has| |#2| (-238)))) +(|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) +(|has| |#1| (-371)) +(((|#1|) . T)) +(((#0=(-416 (-573)) #0#) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) ((|#1| |#1|) . T)) +((((-1247 (-573)) $) . T) (((-573) |#1|) . T)) +((((-323 |#1|)) . T)) +((((-920 |#1|)) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) +(((#0=(-708) (-1185 #0#)) . T)) +((((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) ((|#1|) . T)) +(((|#1|) . T) (($) . T) (((-573)) . T) (((-416 (-573))) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-858)) -(((|#2|) . T) (((-1190)) -12 (|has| |#1| (-372)) (|has| |#2| (-1051 (-1190)))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-574)) . T) ((|#1|) |has| |#1| (-174))) -(((|#2|) . T) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) -2818 (|has| |#1| (-372)) (|has| |#1| (-566)))) -((($ $) . T) ((#0=(-874 |#1|) $) . T) ((#0# |#2|) . T)) -((((-1138 |#1| (-1190))) . T) (((-828 (-1190))) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1051 (-574))) (((-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) (((-1190)) . T)) +(|has| |#1| (-857)) +(((|#2|) . T) (((-1189)) -12 (|has| |#1| (-371)) (|has| |#2| (-1050 (-1189)))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565))) (((-573)) . T) ((|#1|) |has| |#1| (-174))) +(((|#2|) . T) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) (((-573)) . T) (($) -2817 (|has| |#1| (-371)) (|has| |#1| (-565)))) +((($ $) . T) ((#0=(-873 |#1|) $) . T) ((#0# |#2|) . T)) +((((-1137 |#1| (-1189))) . T) (((-827 (-1189))) . T) ((|#1|) . T) (((-573)) |has| |#1| (-1050 (-573))) (((-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) (((-1189)) . T)) ((($) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) -(((#0=(-1095) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ $) . T) ((#0=(-1190) $) |has| |#1| (-239)) ((#0# |#1|) |has| |#1| (-239)) ((#1=(-1101 (-1190)) |#1|) . T) ((#1# $) . T)) +(((#0=(-1094) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((($ $) . T) ((#0=(-1189) $) |has| |#1| (-238)) ((#0# |#1|) |has| |#1| (-238)) ((#1=(-1100 (-1189)) |#1|) . T) ((#1# $) . T)) ((($) . T) ((|#2|) . T)) -((($) . T) (((-574)) |has| |#2| (-649 (-574))) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574))))) -(|has| |#1| (-239)) -(|has| |#2| (-920)) -((($) . T) ((#0=(-1266 |#2| |#3| |#4|)) |has| #0# (-174)) (((-417 (-574))) |has| #0# (-38 (-417 (-574))))) +((($) . T) (((-573)) |has| |#2| (-648 (-573))) ((|#2|) . T) (((-416 (-573))) |has| |#2| (-38 (-416 (-573))))) +(|has| |#1| (-238)) +(|has| |#2| (-919)) +((($) . T) ((#0=(-1265 |#2| |#3| |#4|)) |has| #0# (-174)) (((-416 (-573))) |has| #0# (-38 (-416 (-573))))) (((|#1|) |has| |#1| (-174))) -((((-574) |#1|) . T)) +((((-573) |#1|) . T)) (((|#1|) . T)) -((((-1195)) . T)) -(((#0=(-1267 |#1| |#2| |#3| |#4|)) |has| #0# (-317 #0#))) +((((-1194)) . T)) +(((#0=(-1266 |#1| |#2| |#3| |#4|)) |has| #0# (-316 #0#))) ((($) . T)) (((|#1|) . T)) -((($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#2| |#2|) |has| |#1| (-372)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) -(|has| |#2| (-239)) +((($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) ((#0=(-416 (-573)) #0#) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#2| |#2|) |has| |#1| (-371)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) ((#0=(-416 (-573)) #0#) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371)))) +(|has| |#2| (-238)) (|has| $ (-148)) -((((-872)) . T)) -((($) . T) (((-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) -((((-872)) . T)) -(|has| |#1| (-858)) +((((-871)) . T)) +((($) . T) (((-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-357))) ((|#1|) . T) (((-573)) |has| |#1| (-648 (-573)))) +((((-871)) . T)) +(|has| |#1| (-857)) ((((-130)) . T)) -((((-1190)) -12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))) -((((-417 (-574))) . T) (((-709)) . T) (($) . T) (((-574)) . T)) +((((-1189)) -12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))) +((((-416 (-573))) . T) (((-708)) . T) (($) . T) (((-573)) . T)) (((|#1|) . T)) ((((-130)) . T)) -((((-417 |#2|) |#3|) . T)) -((((-872)) . T)) -(-12 (|has| |#1| (-315)) (|has| |#1| (-920))) -(((|#2| (-682 |#1|)) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -((((-872)) |has| |#1| (-1113))) +((((-416 |#2|) |#3|) . T)) +((((-871)) . T)) +(-12 (|has| |#1| (-314)) (|has| |#1| (-919))) +(((|#2| (-681 |#1|)) . T)) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +((((-871)) |has| |#1| (-1112))) (((|#4|) . T)) -(|has| |#1| (-566)) -((($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#2|) |has| |#1| (-372)) ((|#1|) . T)) -((((-1190)) -2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) -(((|#1|) . T) (($) -2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372)))) -((((-1190)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) -((((-1190)) -12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) -((((-1248 (-574)) $) . T) (((-574) |#1|) . T)) -(-2818 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) -(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) -(((|#1|) . T)) -(((|#1| (-541 (-828 (-1190)))) . T)) -(-2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) -(-2818 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) -((((-574)) . T) ((|#2|) . T) (($) . T) (((-417 (-574))) . T) (((-1190)) |has| |#2| (-1051 (-1190)))) -(((|#1|) . T)) -(-2818 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) -(((|#1|) . T)) -(-2818 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062))) -(-2818 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))) -((((-1273 |#1| |#2| |#3|)) |has| |#1| (-372))) -((($) . T) (((-880 |#1|)) . T) (((-417 (-574))) . T)) -((((-1273 |#1| |#2| |#3|)) |has| |#1| (-372))) -(|has| |#1| (-566)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-417 |#2|)) . T)) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-358))) -((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1113)))) -((((-546)) |has| |#1| (-624 (-546)))) -((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113)))) -((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1113)))) -((((-546)) |has| |#1| (-624 (-546)))) -((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1113)))) -((((-546)) |has| |#1| (-624 (-546)))) -((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113)))) -(((|#1|) . T)) -(((|#2| |#2|) . T) ((#0=(-417 (-574)) #0#) . T) (($ $) . T)) -(((|#2|) . T) (((-417 (-574))) . T) (($) . T)) -((((-574)) . T)) -((((-872)) . T)) -((((-591 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) -((((-872)) . T)) -((((-417 (-574))) . T) (($) . T)) -((((-574) |#1|) . T)) -((($) . T)) -((($) . T)) -((((-872)) . T)) -((((-546)) |has| |#2| (-624 (-546))) (((-903 (-388))) |has| |#2| (-624 (-903 (-388)))) (((-903 (-574))) |has| |#2| (-624 (-903 (-574))))) -((((-872)) . T)) -((((-872)) . T)) -((((-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#3| (-624 (-903 (-574))))) (((-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#3| (-624 (-903 (-388))))) (((-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#3| (-624 (-546))))) -((((-872)) . T)) -((((-872)) . T)) -((((-872)) . T)) -(((|#1|) . T) (((-872)) . T) (((-1195)) . T)) -((((-872)) . T)) -((((-1195)) . T)) -((((-115)) . T) ((|#1|) . T) (((-574)) . T)) -(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) +(|has| |#1| (-565)) +((($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371))) ((|#2|) |has| |#1| (-371)) ((|#1|) . T)) +((((-1189)) -2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) +(((|#1|) . T) (($) -2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-565))) (((-416 (-573))) -2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-371)))) +((((-1189)) -12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) +((((-1189)) -12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) +((((-1247 (-573)) $) . T) (((-573) |#1|) . T)) +(-2817 (|has| |#2| (-174)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) +(((|#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) +(((|#1|) . T)) +(((|#1| (-540 (-827 (-1189)))) . T)) +(-2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) +(-2817 (|has| |#1| (-174)) (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) +((((-573)) . T) ((|#2|) . T) (($) . T) (((-416 (-573))) . T) (((-1189)) |has| |#2| (-1050 (-1189)))) +(((|#1|) . T)) +(-2817 (|has| |#1| (-174)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) +(((|#1|) . T)) +(-2817 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061))) +(-2817 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-802)) (|has| |#2| (-802)))) +((((-1272 |#1| |#2| |#3|)) |has| |#1| (-371))) +((($) . T) (((-879 |#1|)) . T) (((-416 (-573))) . T)) +((((-1272 |#1| |#2| |#3|)) |has| |#1| (-371))) +(|has| |#1| (-565)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-416 |#2|)) . T)) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-357))) +((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-859)) (|has| |#1| (-1112)))) +((((-545)) |has| |#1| (-623 (-545)))) +((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) +((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-859)) (|has| |#1| (-1112)))) +((((-545)) |has| |#1| (-623 (-545)))) +((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-859)) (|has| |#1| (-1112)))) +((((-545)) |has| |#1| (-623 (-545)))) +((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) +(((|#1|) . T)) +(((|#2| |#2|) . T) ((#0=(-416 (-573)) #0#) . T) (($ $) . T)) +(((|#2|) . T) (((-416 (-573))) . T) (($) . T)) +((((-573)) . T)) +((((-871)) . T)) +((((-590 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) +((((-871)) . T)) +((((-416 (-573))) . T) (($) . T)) +((((-573) |#1|) . T)) +((($) . T)) +((($) . T)) +((((-871)) . T)) +((((-545)) |has| |#2| (-623 (-545))) (((-902 (-387))) |has| |#2| (-623 (-902 (-387)))) (((-902 (-573))) |has| |#2| (-623 (-902 (-573))))) +((((-871)) . T)) +((((-871)) . T)) +((((-902 (-573))) -12 (|has| |#1| (-623 (-902 (-573)))) (|has| |#3| (-623 (-902 (-573))))) (((-902 (-387))) -12 (|has| |#1| (-623 (-902 (-387)))) (|has| |#3| (-623 (-902 (-387))))) (((-545)) -12 (|has| |#1| (-623 (-545))) (|has| |#3| (-623 (-545))))) +((((-871)) . T)) +((((-871)) . T)) +((((-871)) . T)) +(|has| |#1| (-238)) +(((|#1|) . T) (((-871)) . T) (((-1194)) . T)) +((((-1194)) . T)) +((((-871)) . T)) +((((-115)) . T) ((|#1|) . T) (((-573)) . T)) ((((-130)) . T)) -((($) . T) (((-574)) . T) (((-117 |#1|)) . T) (((-417 (-574))) . T)) -(((|#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|))) . T)) -(((|#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) -((((-872)) . T)) -((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920)))) +((($) . T) (((-573)) . T) (((-117 |#1|)) . T) (((-416 (-573))) . T)) +(((|#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(((|#1| (-540 (-873 |#2|)) (-873 |#2|) (-789 |#1| (-873 |#2|))) . T)) +(((|#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) . T)) +((((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) |has| |#2| (-174)) (($) -2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919)))) (((|#2|) . T) ((|#6|) . T)) -((($) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (((-574)) |has| |#2| (-649 (-574)))) -((($) . T) (((-574)) . T)) -((($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((((-1117)) . T)) -((((-872)) . T)) -((((-1195)) . T) (((-872)) . T)) -((((-1195)) . T) (((-872)) . T)) -((($) -2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((((-1195)) . T)) -((((-1195)) . T)) -((($) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) -((($) . T) (((-574)) . T)) -((($) -2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -((($ $) . T) (((-1190) $) . T)) -(|has| |#2| (-920)) -((((-1273 |#1| |#2| |#3|)) . T)) -((((-1273 |#1| |#2| |#3|)) |has| |#1| (-372))) -(((|#1|) . T)) -((((-1273 |#1| |#2| |#3|)) . T) (((-1245 |#1| |#2| |#3|)) . T)) -(|has| |#1| (-920)) -((((-1190)) . T) (((-872)) . T)) +((($) . T) (((-416 (-573))) |has| |#2| (-38 (-416 (-573)))) ((|#2|) . T) (((-573)) |has| |#2| (-648 (-573)))) +((($) . T) (((-573)) . T)) +((($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((((-1116)) . T)) +((((-871)) . T)) +((((-1194)) . T) (((-871)) . T)) +((((-1194)) . T) (((-871)) . T)) +((($) -2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((((-1194)) . T)) +((((-1194)) . T)) +((($) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T) (((-573)) |has| |#1| (-648 (-573)))) +((($) . T) (((-573)) . T)) +((($) -2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) ((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +((((-871)) . T)) +(|has| |#2| (-919)) +((($ $) . T) (((-1189) $) . T)) +((((-1272 |#1| |#2| |#3|)) . T)) +((((-1272 |#1| |#2| |#3|)) |has| |#1| (-371))) +(((|#1|) . T)) +((((-1272 |#1| |#2| |#3|)) . T) (((-1244 |#1| |#2| |#3|)) . T)) +(|has| |#1| (-919)) +((((-1189)) . T) (((-871)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) |has| |#1| (-174))) -((((-709)) . T)) -((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113)))) -((((-1195)) . T)) +((((-708)) . T)) +((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) +((((-1194)) . T)) (((|#1|) |has| |#1| (-174))) -((((-1195)) . T)) -((((-1267 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-417 (-574))) . T)) -(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)) (((-417 (-574))) |has| |#1| (-566))) -((((-1195)) . T)) -((((-1267 |#1| |#2| |#3| |#4|)) . T) (((-417 (-574))) . T) (($) . T)) -(((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-566)) (($) |has| |#1| (-566))) -((((-417 (-574))) . T) (($) . T)) -(((|#1| (-574)) . T)) +((((-1194)) . T)) +((((-1266 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-416 (-573))) . T)) +(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-565)) (((-416 (-573))) |has| |#1| (-565))) +((((-1194)) . T)) +((((-1266 |#1| |#2| |#3| |#4|)) . T) (((-416 (-573))) . T) (($) . T)) +(((|#1|) |has| |#1| (-174)) (((-416 (-573))) |has| |#1| (-565)) (($) |has| |#1| (-565))) +((((-416 (-573))) . T) (($) . T)) +(((|#1| (-573)) . T)) (((|#1|) |has| |#1| (-174))) -((((-417 (-574))) . T) (((-574)) . T) (($) . T)) -((((-1195)) . T)) -((((-1195)) . T)) -((((-1195)) . T)) -((((-1195)) . T)) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-358))) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-358))) -((((-1195)) . T)) -((((-1195)) . T)) -(|has| |#1| (-372)) -(|has| |#1| (-372)) -(-2818 (|has| |#1| (-174)) (|has| |#1| (-566))) -(((|#1| (-574)) . T)) -(((|#1| (-417 (-574))) . T)) -(((|#1| (-781)) . T)) -((((-417 (-574))) . T)) -(((|#1| (-541 |#2|) |#2|) . T)) -((((-574) |#1|) . T)) -((((-574) |#1|) . T)) -(|has| |#1| (-1113)) -((((-574) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-903 (-388))) . T) (((-903 (-574))) . T) (((-1190)) . T) (((-546)) . T)) -(((|#1|) . T)) -((((-872)) . T)) -(-2818 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-858)) (|has| |#2| (-1062))) -(-2818 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))) -((((-574)) . T)) -((((-574)) . T)) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) +((((-416 (-573))) . T) (((-573)) . T) (($) . T)) +((((-1194)) . T)) +((((-1194)) . T)) +((((-1194)) . T)) +((((-1194)) . T)) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-357))) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-357))) +((((-1194)) . T)) +((((-1194)) . T)) +(|has| |#1| (-371)) +(|has| |#1| (-371)) +(-2817 (|has| |#1| (-174)) (|has| |#1| (-565))) +(((|#1| (-573)) . T)) +(((|#1| (-416 (-573))) . T)) +(((|#1| (-780)) . T)) +((((-416 (-573))) . T)) +(((|#1| (-540 |#2|) |#2|) . T)) +((((-573) |#1|) . T)) +((((-573) |#1|) . T)) +(|has| |#1| (-1112)) +(|has| (-416 |#2|) (-238)) +((((-573) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-902 (-387))) . T) (((-902 (-573))) . T) (((-1189)) . T) (((-545)) . T)) +(-2817 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-371)) (|has| |#2| (-802)) (|has| |#2| (-857)) (|has| |#2| (-1061))) +(-2817 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-802)) (|has| |#2| (-802)))) +((((-871)) . T)) +((((-573)) . T)) +((((-573)) . T)) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(-2818 (|has| |#2| (-174)) (|has| |#2| (-736)) (|has| |#2| (-858)) (|has| |#2| (-1062))) -((((-1190)) -12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) -(-2818 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))) +(-2817 (|has| |#2| (-174)) (|has| |#2| (-735)) (|has| |#2| (-857)) (|has| |#2| (-1061))) +((((-1189)) -12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) +(-2817 (-12 (|has| |#1| (-482)) (|has| |#2| (-482))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))) (|has| |#1| (-146)) (|has| |#1| (-148)) -(|has| |#1| (-372)) +(|has| |#1| (-371)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((($) . T) ((#0=(-1266 |#2| |#3| |#4|)) |has| #0# (-174)) (((-417 (-574))) |has| #0# (-38 (-417 (-574))))) -(|has| |#1| (-239)) -((($) . T) (((-574)) . T) (((-417 (-574))) . T)) -((($) . T) (((-574)) . T)) -((($) . T) (((-574)) . T)) -((($) . T) ((#0=(-1266 |#2| |#3| |#4|)) . T) (((-417 (-574))) |has| #0# (-38 (-417 (-574))))) -((((-872)) . T)) -(((|#1| (-781) (-1095)) . T)) -((((-1248 (-574)) $) . T) (((-574) |#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -((((-1248 (-574)) $) . T) (((-574) |#1|) . T)) -((((-1248 (-574)) $) . T) (((-574) |#1|) . T)) +((($) . T) ((#0=(-1265 |#2| |#3| |#4|)) |has| #0# (-174)) (((-416 (-573))) |has| #0# (-38 (-416 (-573))))) +(|has| |#1| (-238)) +((($) . T) (((-573)) . T) (((-416 (-573))) . T)) +((($) . T) (((-573)) . T)) +((($) . T) (((-573)) . T)) +((($) . T) ((#0=(-1265 |#2| |#3| |#4|)) . T) (((-416 (-573))) |has| #0# (-38 (-416 (-573))))) +((((-871)) . T)) +(((|#1| (-780) (-1094)) . T)) +((((-1247 (-573)) $) . T) (((-573) |#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +((((-1247 (-573)) $) . T) (((-573) |#1|) . T)) +((((-1247 (-573)) $) . T) (((-573) |#1|) . T)) ((((-117 |#1|)) . T)) -((((-417 (-574))) . T) (((-574)) . T)) -(((|#2|) |has| |#2| (-1062))) -((((-417 (-574))) . T) (($) . T)) -(((|#2|) . T)) -((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566))) -((((-574)) . T)) -((((-574)) . T)) -((((-1172) (-1190) (-574) (-227) (-872)) . T)) +((((-416 (-573))) . T) (((-573)) . T)) +(((|#2|) |has| |#2| (-1061))) +((((-416 (-573))) . T) (($) . T)) +(((|#2|) . T)) +((((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-565))) +((((-573)) . T)) +((((-573)) . T)) +((((-1171) (-1189) (-573) (-227) (-871)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-574)) . T) ((|#2|) |has| |#2| (-174))) -((((-115)) . T) ((|#1|) . T) (((-574)) . T)) -(-2818 (|has| |#1| (-358)) (|has| |#1| (-377))) +((((-573)) . T) ((|#2|) |has| |#2| (-174))) +((((-115)) . T) ((|#1|) . T) (((-573)) . T)) +(-2817 (|has| |#1| (-357)) (|has| |#1| (-376))) (((|#1| |#2|) . T)) ((((-227)) . T)) -((((-417 (-574))) . T) (($) . T) (((-574)) . T)) -((((-872)) . T)) +((((-416 (-573))) . T) (($) . T) (((-573)) . T)) +((((-871)) . T)) ((($) . T) ((|#1|) . T)) -((($) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (((-574)) |has| |#1| (-649 (-574)))) -((($) . T) (((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574))))) -(((|#2|) |has| |#2| (-1113)) (((-574)) -12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113))) (((-417 (-574))) -12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113)))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-546)) |has| |#1| (-624 (-546)))) -((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1113)))) -((((-574) $) . T) (((-654 (-574)) $) . T)) -((($) . T) (((-417 (-574))) . T)) -(|has| |#1| (-920)) -(|has| |#1| (-920)) -((((-227)) -12 (|has| |#1| (-372)) (|has| |#2| (-1035))) (((-388)) -12 (|has| |#1| (-372)) (|has| |#2| (-1035))) (((-903 (-388))) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-903 (-388))))) (((-903 (-574))) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-903 (-574))))) (((-546)) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-546))))) -((((-872)) . T)) -((((-872)) . T)) +((($) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((|#1|) . T) (((-573)) |has| |#1| (-648 (-573)))) +((($) . T) (((-573)) |has| |#1| (-648 (-573))) ((|#1|) . T) (((-416 (-573))) |has| |#1| (-38 (-416 (-573))))) +(((|#2|) |has| |#2| (-1112)) (((-573)) -12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112))) (((-416 (-573))) -12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) +(|has| |#2| (-238)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-545)) |has| |#1| (-623 (-545)))) +((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-859)) (|has| |#1| (-1112)))) +((((-573) $) . T) (((-653 (-573)) $) . T)) +((($) . T) (((-416 (-573))) . T)) +(|has| |#1| (-919)) +(|has| |#1| (-919)) +((((-227)) -12 (|has| |#1| (-371)) (|has| |#2| (-1034))) (((-387)) -12 (|has| |#1| (-371)) (|has| |#2| (-1034))) (((-902 (-387))) -12 (|has| |#1| (-371)) (|has| |#2| (-623 (-902 (-387))))) (((-902 (-573))) -12 (|has| |#1| (-371)) (|has| |#2| (-623 (-902 (-573))))) (((-545)) -12 (|has| |#1| (-371)) (|has| |#2| (-623 (-545))))) +((((-871)) . T)) +((((-871)) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) |has| |#1| (-174))) -(((|#1|) . T) (((-574)) . T)) -((((-1195)) . T)) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-566))) -(-2818 (|has| |#1| (-21)) (|has| |#1| (-858))) +(((|#1|) . T) (((-573)) . T)) +((((-1194)) . T)) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-565))) +(-2817 (|has| |#1| (-21)) (|has| |#1| (-857))) (((|#2|) . T)) -(-2818 (|has| |#1| (-21)) (|has| |#1| (-858))) +(-2817 (|has| |#1| (-21)) (|has| |#1| (-857))) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) (((|#1|) . T)) -((((-872)) -2818 (-12 (|has| |#1| (-623 (-872))) (|has| |#2| (-623 (-872)))) (-12 (|has| |#1| (-1113)) (|has| |#2| (-1113))))) -((((-417 |#2|) |#3|) . T)) -((((-417 (-574))) . T) (($) . T)) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-372)) -((($ $) . T) ((#0=(-417 (-574)) #0#) . T)) -((($) . T) (((-574)) . T)) -(|has| (-417 |#2|) (-148)) -(|has| (-417 |#2|) (-146)) -((($) . T)) -((((-709)) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) -(((#0=(-574) #0#) . T)) -((($) . T) (((-417 (-574))) . T)) -(-2818 (|has| |#4| (-174)) (|has| |#4| (-736)) (|has| |#4| (-858)) (|has| |#4| (-1062))) -(-2818 (|has| |#3| (-174)) (|has| |#3| (-736)) (|has| |#3| (-858)) (|has| |#3| (-1062))) -((((-872)) . T) (((-1195)) . T)) -(|has| |#4| (-803)) -(-2818 (|has| |#4| (-803)) (|has| |#4| (-858))) -(|has| |#4| (-858)) -(|has| |#3| (-803)) -((((-1195)) . T)) -(-2818 (|has| |#3| (-803)) (|has| |#3| (-858))) -(|has| |#3| (-858)) -((((-574)) . T)) -(((|#2|) . T)) -((((-1190)) -2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) -((((-1190)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) -((((-1190)) -12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) +((((-871)) -2817 (-12 (|has| |#1| (-622 (-871))) (|has| |#2| (-622 (-871)))) (-12 (|has| |#1| (-1112)) (|has| |#2| (-1112))))) +((((-416 |#2|) |#3|) . T)) +((((-416 (-573))) . T) (($) . T)) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-371)) +((($ $) . T) ((#0=(-416 (-573)) #0#) . T)) +((($) . T) (((-573)) . T)) +(|has| (-416 |#2|) (-148)) +(|has| (-416 |#2|) (-146)) +((($) . T)) +((((-708)) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) +(((#0=(-573) #0#) . T)) +((($) . T) (((-416 (-573))) . T)) +(-2817 (|has| |#4| (-174)) (|has| |#4| (-735)) (|has| |#4| (-857)) (|has| |#4| (-1061))) +(-2817 (|has| |#3| (-174)) (|has| |#3| (-735)) (|has| |#3| (-857)) (|has| |#3| (-1061))) +((((-871)) . T) (((-1194)) . T)) +(|has| |#4| (-802)) +(-2817 (|has| |#4| (-802)) (|has| |#4| (-857))) +(|has| |#4| (-857)) +(|has| |#3| (-802)) +((((-1194)) . T)) +(-2817 (|has| |#3| (-802)) (|has| |#3| (-857))) +(|has| |#3| (-857)) +((((-573)) . T)) +(((|#2|) . T)) +((((-1189)) -2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) +((((-1189)) -12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) +((((-1189)) -12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (((|#1| |#1|) . T) (($ $) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -((((-874 |#1|)) . T)) -((((-1188 |#1| |#2| |#3|)) |has| |#1| (-372))) -((((-1153 |#1| |#2|)) . T)) -((((-1188 |#1| |#2| |#3|)) |has| |#1| (-372))) -(((|#2|) . T) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -((((-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) . T)) -((($) . T)) -(|has| |#1| (-1035)) -(((|#2|) . T) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -((($) . T)) -((((-872)) . T)) -((((-546)) |has| |#2| (-624 (-546))) (((-903 (-574))) |has| |#2| (-624 (-903 (-574)))) (((-903 (-388))) |has| |#2| (-624 (-903 (-388)))) (((-388)) . #0=(|has| |#2| (-1035))) (((-227)) . #0#)) -((((-302 |#3|)) . T)) -((((-1190) (-52)) . T)) -(((|#1|) . T)) -(|has| |#1| (-38 (-417 (-574)))) -(|has| |#1| (-38 (-417 (-574)))) -((((-872)) . T)) -(((|#2|) . T)) -((((-872)) . T)) -((((-417 (-574)) |#1|) . T) (($ $) . T)) -((((-417 |#2|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) -((((-417 (-574))) . T) (((-709)) . T) (($) . T)) -((((-1188 |#1| |#2| |#3|)) . T)) -((((-1188 |#1| |#2| |#3|)) . T) (((-1181 |#1| |#2| |#3|)) . T)) -((((-872)) . T)) -((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113)))) -((((-574) |#1|) . T)) -((((-1188 |#1| |#2| |#3|)) |has| |#1| (-372))) +((((-873 |#1|)) . T)) +((((-1187 |#1| |#2| |#3|)) |has| |#1| (-371))) +((((-1152 |#1| |#2|)) . T)) +((((-1187 |#1| |#2| |#3|)) |has| |#1| (-371))) +(((|#2|) . T) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +((((-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) . T)) +((($) . T)) +(|has| |#1| (-1034)) +(((|#2|) . T) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +((($) . T)) +((((-871)) . T)) +((((-545)) |has| |#2| (-623 (-545))) (((-902 (-573))) |has| |#2| (-623 (-902 (-573)))) (((-902 (-387))) |has| |#2| (-623 (-902 (-387)))) (((-387)) . #0=(|has| |#2| (-1034))) (((-227)) . #0#)) +((((-301 |#3|)) . T)) +((((-1189) (-52)) . T)) +(((|#1|) . T)) +(|has| |#1| (-38 (-416 (-573)))) +(|has| |#1| (-38 (-416 (-573)))) +((((-871)) . T)) +(((|#2|) . T)) +((((-871)) . T)) +((((-416 (-573)) |#1|) . T) (($ $) . T)) +((((-416 |#2|)) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) +((((-416 (-573))) . T) (((-708)) . T) (($) . T)) +((((-1187 |#1| |#2| |#3|)) . T)) +((((-1187 |#1| |#2| |#3|)) . T) (((-1180 |#1| |#2| |#3|)) . T)) +((((-871)) . T)) +((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) +((((-573) |#1|) . T)) +((((-1187 |#1| |#2| |#3|)) |has| |#1| (-371))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#2|) . T)) -(|has| |#2| (-372)) -(((|#3|) . T) ((|#2|) . T) (($) -2818 (|has| |#4| (-174)) (|has| |#4| (-858)) (|has| |#4| (-1062))) ((|#4|) -2818 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-1062))) (((-574)) -12 (|has| |#4| (-649 (-574))) (|has| |#4| (-1062)))) -(((|#2|) . T) (($) -2818 (|has| |#3| (-174)) (|has| |#3| (-858)) (|has| |#3| (-1062))) ((|#3|) -2818 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1062))) (((-574)) -12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1062)))) +(|has| |#2| (-371)) +(((|#3|) . T) ((|#2|) . T) (($) -2817 (|has| |#4| (-174)) (|has| |#4| (-857)) (|has| |#4| (-1061))) ((|#4|) -2817 (|has| |#4| (-174)) (|has| |#4| (-371)) (|has| |#4| (-1061))) (((-573)) -12 (|has| |#4| (-648 (-573))) (|has| |#4| (-1061)))) +(((|#2|) . T) (($) -2817 (|has| |#3| (-174)) (|has| |#3| (-857)) (|has| |#3| (-1061))) ((|#3|) -2817 (|has| |#3| (-174)) (|has| |#3| (-371)) (|has| |#3| (-1061))) (((-573)) -12 (|has| |#3| (-648 (-573))) (|has| |#3| (-1061)))) (((|#1|) . T)) (((|#1|) . T)) ((((-117 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-417 (-574))) |has| |#2| (-1051 (-417 (-574)))) (((-574)) |has| |#2| (-1051 (-574))) ((|#2|) . T) (((-874 |#1|)) . T)) -((((-1190)) . T) ((|#1|) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-872)) . T)) -((((-189)) . T) (((-872)) . T)) -((((-872)) . T)) +((((-416 (-573))) |has| |#2| (-1050 (-416 (-573)))) (((-573)) |has| |#2| (-1050 (-573))) ((|#2|) . T) (((-873 |#1|)) . T)) +((((-1189)) . T) ((|#1|) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-871)) . T)) +((((-189)) . T) (((-871)) . T)) +((((-871)) . T)) (((|#1|) . T)) -((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113)))) -((((-130)) . T) (((-872)) . T)) -((((-574) |#1|) . T) (((-1248 (-574)) $) . T)) +((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) +((((-130)) . T) (((-871)) . T)) +((((-573) |#1|) . T) (((-1247 (-573)) $) . T)) ((((-130)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-372)) (|has| |#2| (-294 |#2| |#2|))) (($ $) . T) (((-574) |#1|) . T)) -((($ $) . T) (((-417 (-574)) |#1|) . T)) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-920))) -(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113))) -((((-872)) . T)) -((((-872)) . T)) -((((-872)) . T)) -(((|#1| (-541 |#2|)) . T)) -((((-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) . T)) -((((-574) (-130)) . T)) -(((|#1| (-574)) . T)) -(((|#1| (-417 (-574))) . T)) -(((|#1| (-781)) . T)) -((((-921 |#1|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) -((((-872)) . T) (((-1195)) . T)) -((((-872)) . T) (((-1195)) . T)) -((((-1195)) . T)) -((((-872)) . T) (((-1195)) . T)) -((((-1195)) . T)) -((((-117 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) -((((-1195)) . T)) -((((-872)) . T) (((-1195)) . T)) -((((-872)) . T) (((-1195)) . T)) -(-2818 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) -(-2818 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-920))) -((($) . T)) -(((|#2| (-541 (-874 |#1|))) . T)) -((((-1195)) . T)) -((((-1195)) . T)) -((((-574) |#1|) . T)) -((((-872)) . T) (((-1195)) . T)) -((((-1195)) . T)) -(((|#2|) . T)) -((((-872)) . T) (((-1195)) . T)) -((((-1195)) . T)) -((((-872)) . T) (((-1195)) . T)) -((((-1195)) . T)) -((((-872)) . T) (((-1195)) . T)) -((((-1195)) . T)) -((((-872)) -2818 (|has| |#1| (-623 (-872))) (|has| |#1| (-1113)))) -(((|#1|) . T)) -(((|#2| (-781)) . T)) +(((|#2| $) -12 (|has| |#1| (-371)) (|has| |#2| (-293 |#2| |#2|))) (($ $) . T) (((-573) |#1|) . T)) +((($ $) . T) (((-416 (-573)) |#1|) . T)) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-461)) (|has| |#1| (-919))) +(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) +((((-871)) . T)) +((((-871)) . T)) +((((-871)) . T)) +(((|#1| (-540 |#2|)) . T)) +((((-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) . T)) +((((-573) (-130)) . T)) +(((|#1| (-573)) . T)) +(((|#1| (-416 (-573))) . T)) +(((|#1| (-780)) . T)) +((((-920 |#1|)) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) +((((-871)) . T) (((-1194)) . T)) +((((-871)) . T) (((-1194)) . T)) +((((-1194)) . T)) +((((-871)) . T) (((-1194)) . T)) +((((-1194)) . T)) +((((-117 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) +((((-1194)) . T)) +((((-871)) . T) (((-1194)) . T)) +((((-871)) . T) (((-1194)) . T)) +(-2817 (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) +(-2817 (|has| |#1| (-461)) (|has| |#1| (-565)) (|has| |#1| (-919))) +((($) . T)) +(((|#2| (-540 (-873 |#1|))) . T)) +((((-1194)) . T)) +((((-1194)) . T)) +((((-573) |#1|) . T)) +((((-871)) . T) (((-1194)) . T)) +((((-1194)) . T)) +(((|#2|) . T)) +((((-871)) . T) (((-1194)) . T)) +((((-1194)) . T)) +((((-871)) . T) (((-1194)) . T)) +((((-1194)) . T)) +((((-871)) . T) (((-1194)) . T)) +((((-1194)) . T)) +((((-871)) -2817 (|has| |#1| (-622 (-871))) (|has| |#1| (-1112)))) +(((|#1|) . T)) +(((|#2| (-780)) . T)) (((|#1| |#2|) . T)) -((((-1172) |#1|) . T)) -((((-417 |#2|)) . T)) -((((-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T)) -(|has| |#1| (-566)) -(|has| |#1| (-566)) +((((-1171) |#1|) . T)) +((((-416 |#2|)) . T)) +((((-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T)) +(|has| |#1| (-565)) +(|has| |#1| (-565)) ((($) . T) ((|#2|) . T)) -((($) . T) (((-417 (-574))) . T)) -((((-417 (-574))) . T) (($) . T)) +((($) . T) (((-416 (-573))) . T)) +((((-416 (-573))) . T) (($) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-574)) . T) (($) . T)) -(((|#2| $) |has| |#2| (-294 |#2| |#2|))) -(((|#1| (-654 |#1|)) |has| |#1| (-858))) -(-2818 (|has| |#1| (-239)) (|has| |#1| (-358))) -(-2818 (|has| |#1| (-372)) (|has| |#1| (-358))) -((((-1277 |#1|)) . T) (((-574)) . T) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-1051 (-417 (-574))))) -(|has| |#1| (-1113)) -(((|#1|) . T)) -((((-1277 |#1|)) . T) (((-574)) . T) (($) -2818 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-920))) (((-1095)) . T) ((|#2|) . T) (((-417 (-574))) -2818 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1051 (-417 (-574)))))) -((((-417 (-574))) . T) (($) . T)) -((((-1012 |#1|)) . T) ((|#1|) . T) (((-574)) -2818 (|has| (-1012 |#1|) (-1051 (-574))) (|has| |#1| (-1051 (-574)))) (((-417 (-574))) -2818 (|has| (-1012 |#1|) (-1051 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574)))))) -((((-921 |#1|)) . T) (((-417 (-574))) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -((((-1190)) |has| |#1| (-911 (-1190)))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -((((-921 |#1|)) . T) (($) . T) (((-417 (-574))) . T)) -((($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) -(((|#1| (-612 |#1| |#3|) (-612 |#1| |#2|)) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T)) +((((-573)) . T) (($) . T)) +(((|#2| $) |has| |#2| (-293 |#2| |#2|))) +(((|#1| (-653 |#1|)) |has| |#1| (-857))) +(-2817 (|has| |#1| (-238)) (|has| |#1| (-357))) +(-2817 (|has| |#1| (-371)) (|has| |#1| (-357))) +((((-1276 |#1|)) . T) (((-573)) . T) ((|#2|) . T) (((-416 (-573))) |has| |#2| (-1050 (-416 (-573))))) +(|has| |#1| (-1112)) +(((|#1|) . T)) +((((-1276 |#1|)) . T) (((-573)) . T) (($) -2817 (|has| |#2| (-371)) (|has| |#2| (-461)) (|has| |#2| (-565)) (|has| |#2| (-919))) (((-1094)) . T) ((|#2|) . T) (((-416 (-573))) -2817 (|has| |#2| (-38 (-416 (-573)))) (|has| |#2| (-1050 (-416 (-573)))))) +((((-416 (-573))) . T) (($) . T)) +((((-1011 |#1|)) . T) ((|#1|) . T) (((-573)) -2817 (|has| (-1011 |#1|) (-1050 (-573))) (|has| |#1| (-1050 (-573)))) (((-416 (-573))) -2817 (|has| (-1011 |#1|) (-1050 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573)))))) +((((-920 |#1|)) . T) (((-416 (-573))) . T) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +((((-1189)) |has| |#1| (-910 (-1189)))) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +((((-920 |#1|)) . T) (($) . T) (((-416 (-573))) . T)) +((($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) +(((|#1| (-611 |#1| |#3|) (-611 |#1| |#2|)) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-416 (-573))) . T) (((-573)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((#0=(-1153 |#1| |#2|) #0#) |has| (-1153 |#1| |#2|) (-317 (-1153 |#1| |#2|)))) +(((#0=(-1152 |#1| |#2|) #0#) |has| (-1152 |#1| |#2|) (-316 (-1152 |#1| |#2|)))) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((#0=(-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) #0#) |has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))))) -(|has| |#1| (-294 |#1| |#1|)) -(((#0=(-117 |#1|)) |has| #0# (-317 #0#))) +(((|#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((#0=(-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) #0#) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) +(|has| |#1| (-293 |#1| |#1|)) +(|has| |#1| (-238)) +(((#0=(-117 |#1|)) |has| #0# (-316 #0#))) ((($ $) . T)) -(-2818 (|has| |#1| (-860)) (|has| |#1| (-1113))) -((($ $) . T) ((#0=(-874 |#1|) $) . T) ((#0# |#2|) . T)) -((($ $) . T) ((|#2| $) |has| |#1| (-239)) ((|#2| |#1|) |has| |#1| (-239)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(((-488 . -1113) T) ((-271 . -524) 193750) ((-253 . -524) 193693) ((-251 . -1113) 193643) ((-581 . -111) 193628) ((-541 . -23) T) ((-134 . -1113) T) ((-139 . -1113) T) ((-118 . -317) 193585) ((-138 . -1113) T) ((-809 . -1231) 193554) ((-489 . -524) 193346) ((-687 . -626) 193330) ((-704 . -102) T) ((-1154 . -524) 193249) ((-400 . -132) T) ((-1294 . -989) 193218) ((-1037 . -1064) 193155) ((-31 . -93) T) ((-612 . -499) 193139) ((-1037 . -650) 193076) ((-631 . -132) T) ((-829 . -856) T) ((-533 . -57) 193026) ((-529 . -524) 192959) ((-360 . -235) 192946) ((-363 . -1064) 192891) ((-59 . -524) 192824) ((-526 . -524) 192757) ((-428 . -911) 192716) ((-171 . -1062) T) ((-507 . -524) 192649) ((-506 . -524) 192582) ((-363 . -650) 192527) ((-809 . -1051) 192307) ((-709 . -38) 192272) ((-1254 . -626) 192020) ((-352 . -358) T) ((-1107 . -1106) 192004) ((-1107 . -1113) 191982) ((-865 . -626) 191879) ((-171 . -249) 191830) ((-171 . -239) 191781) ((-1107 . -1108) 191739) ((-882 . -294) 191697) ((-227 . -805) T) ((-227 . -802) T) ((-704 . -292) NIL) ((-581 . -626) 191669) ((-1163 . -1207) 191648) ((-417 . -1005) 191632) ((-48 . -1064) 191597) ((-711 . -21) T) ((-711 . -25) T) ((-48 . -650) 191562) ((-1296 . -658) 191536) ((-324 . -161) 191515) ((-324 . -144) 191494) ((-1163 . -107) 191444) ((-117 . -21) T) ((-40 . -233) 191421) ((-135 . -25) T) ((-117 . -25) T) ((-618 . -296) 191397) ((-485 . -296) 191376) ((-1254 . -334) 191353) ((-1254 . -1062) T) ((-865 . -1062) T) ((-809 . -347) 191337) ((-140 . -187) T) ((-118 . -1165) NIL) ((-91 . -623) 191269) ((-487 . -132) T) ((-1254 . -239) T) ((-1109 . -500) 191250) ((-1109 . -623) 191216) ((-1103 . -500) 191197) ((-1103 . -623) 191163) ((-603 . -1231) T) ((-1086 . -500) 191144) ((-581 . -1062) T) ((-1086 . -623) 191110) ((-672 . -727) 191094) ((-1079 . -500) 191075) ((-1079 . -623) 191041) ((-969 . -296) 191018) ((-60 . -34) T) ((-1075 . -805) T) ((-1075 . -802) T) ((-1049 . -500) 190999) ((-1032 . -500) 190980) ((-826 . -736) T) ((-741 . -47) 190945) ((-633 . -38) 190932) ((-364 . -298) T) ((-361 . -298) T) ((-353 . -298) T) ((-271 . -298) 190863) ((-253 . -298) 190794) ((-1049 . -623) 190760) ((-1037 . -102) T) ((-1032 . -623) 190726) ((-636 . -500) 190707) ((-423 . -736) T) ((-118 . -38) 190652) ((-493 . -500) 190633) ((-636 . -623) 190599) ((-423 . -483) T) ((-220 . -500) 190580) ((-493 . -623) 190546) ((-363 . -102) T) ((-220 . -623) 190512) ((-1225 . -1071) T) ((-352 . -656) 190442) ((-721 . -1071) T) ((-1188 . -47) 190419) ((-1187 . -47) 190389) ((-1181 . -47) 190366) ((-129 . -296) 190341) ((-1048 . -152) 190287) ((-921 . -298) T) ((-1139 . -47) 190259) ((-704 . -317) NIL) ((-525 . -623) 190241) ((-520 . -623) 190223) ((-518 . -623) 190205) ((-335 . -1113) 190155) ((-722 . -462) 190086) ((-48 . -102) T) ((-1265 . -294) 190044) ((-1244 . -294) 189944) ((-654 . -676) 189928) ((-654 . -661) 189912) ((-348 . -21) T) ((-348 . -25) T) ((-40 . -358) NIL) ((-176 . -21) T) ((-176 . -25) T) ((-654 . -382) 189896) ((-615 . -500) 189878) ((-612 . -294) 189830) ((-615 . -623) 189797) ((-398 . -102) T) ((-1133 . -144) T) ((-127 . -623) 189729) ((-884 . -1113) T) ((-668 . -421) 189713) ((-724 . -623) 189695) ((-255 . -623) 189662) ((-189 . -623) 189644) ((-163 . -623) 189626) ((-158 . -623) 189608) ((-1296 . -736) T) ((-1115 . -34) T) ((-881 . -805) NIL) ((-881 . -802) NIL) ((-868 . -860) T) ((-741 . -897) NIL) ((-1305 . -132) T) ((-390 . -132) T) ((-903 . -626) 189576) ((-915 . -102) T) ((-741 . -1051) 189452) ((-1188 . -1231) T) ((-541 . -132) T) ((-1187 . -1231) T) ((-1100 . -421) 189436) ((-1013 . -499) 189420) ((-118 . -410) 189397) ((-1181 . -1231) T) ((-792 . -421) 189381) ((-790 . -421) 189365) ((-954 . -34) T) ((-704 . -1165) NIL) ((-258 . -658) 189137) ((-257 . -658) 188896) ((-827 . -931) 188875) ((-464 . -421) 188859) ((-612 . -19) 188843) ((-1159 . -1224) 188812) ((-1181 . -897) NIL) ((-1181 . -895) 188764) ((-612 . -614) 188741) ((-1217 . -623) 188673) ((-1189 . -623) 188655) ((-62 . -405) T) ((-1187 . -1051) 188590) ((-1181 . -1051) 188556) ((-704 . -38) 188506) ((-40 . -656) 188436) ((-484 . -294) 188394) ((-1237 . -623) 188376) ((-741 . -386) 188360) ((-848 . -623) 188342) ((-668 . -1071) T) ((-1265 . -1015) 188308) ((-1244 . -1015) 188274) ((-256 . -1231) T) ((-1101 . -626) 188258) ((-1076 . -1207) 188233) ((-1089 . -626) 188210) ((-882 . -624) 188017) ((-882 . -623) 187999) ((-711 . -235) 187986) ((-1203 . -499) 187923) ((-428 . -1035) 187901) ((-48 . -317) 187888) ((-1076 . -107) 187834) ((-489 . -499) 187771) ((-530 . -1231) T) ((-1181 . -347) 187723) ((-1154 . -499) 187694) ((-1181 . -386) 187646) ((-1100 . -1071) T) ((-447 . -102) T) ((-185 . -1113) T) ((-258 . -34) T) ((-257 . -34) T) ((-792 . -1071) T) ((-790 . -1071) T) ((-741 . -911) 187623) ((-464 . -1071) T) ((-59 . -499) 187607) ((-1047 . -1069) 187581) ((-529 . -499) 187565) ((-526 . -499) 187549) ((-507 . -499) 187533) ((-506 . -499) 187517) ((-251 . -524) 187450) ((-1047 . -111) 187417) ((-1188 . -911) 187330) ((-1187 . -911) 187236) ((-1181 . -911) 187069) ((-1139 . -911) 187053) ((-680 . -1125) T) ((-363 . -1165) T) ((-655 . -93) T) ((-330 . -1069) 187035) ((-258 . -801) 187014) ((-258 . -804) 186965) ((-31 . -500) 186946) ((-258 . -803) 186925) ((-257 . -801) 186904) ((-257 . -804) 186855) ((-257 . -803) 186834) ((-31 . -623) 186800) ((-50 . -1071) T) ((-258 . -736) 186710) ((-257 . -736) 186620) ((-1225 . -1113) T) ((-680 . -23) T) ((-591 . -1071) T) ((-528 . -1071) T) ((-388 . -1069) 186585) ((-330 . -111) 186560) ((-73 . -392) T) ((-73 . -405) T) ((-1037 . -38) 186497) ((-704 . -410) 186479) ((-99 . -102) T) ((-721 . -1113) T) ((-1310 . -1064) 186466) ((-1016 . -146) 186438) ((-1016 . -148) 186410) ((-880 . -656) 186382) ((-388 . -111) 186338) ((-327 . -1235) 186317) ((-484 . -1015) 186283) ((-363 . -38) 186248) ((-40 . -379) 186220) ((-883 . -623) 186092) ((-128 . -126) 186076) ((-122 . -126) 186060) ((-846 . -1069) 186030) ((-843 . -21) 185982) ((-837 . -1069) 185966) ((-843 . -25) 185918) ((-327 . -566) 185869) ((-527 . -626) 185850) ((-574 . -838) T) ((-246 . -1231) T) ((-1047 . -626) 185819) ((-846 . -111) 185784) ((-837 . -111) 185763) ((-1265 . -623) 185745) ((-1244 . -623) 185727) ((-1244 . -624) 185398) ((-1186 . -920) 185377) ((-1138 . -920) 185356) ((-48 . -38) 185321) ((-1303 . -1125) T) ((-546 . -294) 185277) ((-612 . -623) 185189) ((-612 . -624) 185150) ((-1301 . -1125) T) ((-370 . -626) 185134) ((-330 . -626) 185118) ((-246 . -1051) 184945) ((-1186 . -658) 184834) ((-1138 . -658) 184723) ((-864 . -658) 184697) ((-728 . -623) 184679) ((-556 . -377) T) ((-1303 . -23) T) ((-1301 . -23) T) ((-501 . -1113) T) ((-388 . -626) 184629) ((-388 . -628) 184611) ((-1047 . -1062) T) ((-875 . -102) T) ((-1203 . -294) 184590) ((-171 . -377) 184541) ((-1017 . -1231) T) ((-846 . -626) 184495) ((-837 . -626) 184450) ((-44 . -23) T) ((-489 . -294) 184429) ((-596 . -1113) T) ((-1159 . -1122) 184398) ((-1117 . -1116) 184350) ((-400 . -21) T) ((-400 . -25) T) ((-153 . -1125) T) ((-1310 . -102) T) ((-1017 . -895) 184332) ((-1017 . -897) 184314) ((-1225 . -727) 184211) ((-633 . -233) 184195) ((-631 . -21) T) ((-297 . -566) T) ((-631 . -25) T) ((-1211 . -1113) T) ((-721 . -727) 184160) ((-246 . -386) 184129) ((-1017 . -1051) 184089) ((-388 . -1062) T) ((-225 . -1071) T) ((-118 . -233) 184066) ((-59 . -294) 184018) ((-153 . -23) T) ((-526 . -294) 183970) ((-335 . -524) 183903) ((-506 . -294) 183855) ((-388 . -249) T) ((-388 . -239) T) ((-846 . -1062) T) ((-837 . -1062) T) ((-722 . -960) 183824) ((-711 . -860) T) ((-484 . -623) 183806) ((-1267 . -1064) 183711) ((-590 . -656) 183683) ((-574 . -656) 183655) ((-505 . -656) 183605) ((-837 . -239) 183584) ((-135 . -860) T) ((-1267 . -650) 183476) ((-668 . -1113) T) ((-1203 . -614) 183455) ((-560 . -1207) 183434) ((-345 . -1113) T) ((-327 . -372) 183413) ((-417 . -148) 183392) ((-417 . -146) 183371) ((-975 . -1125) 183270) ((-246 . -911) 183202) ((-825 . -1125) 183112) ((-664 . -862) 183096) ((-489 . -614) 183075) ((-560 . -107) 183025) ((-1017 . -386) 183007) ((-1017 . -347) 182989) ((-97 . -1113) T) ((-975 . -23) 182800) ((-487 . -21) T) ((-487 . -25) T) ((-825 . -23) 182670) ((-1190 . -623) 182652) ((-59 . -19) 182636) ((-1190 . -624) 182558) ((-1186 . -736) T) ((-1138 . -736) T) ((-526 . -19) 182542) ((-506 . -19) 182526) ((-59 . -614) 182503) ((-1100 . -1113) T) ((-912 . -102) 182481) ((-864 . -736) T) ((-792 . -1113) T) ((-526 . -614) 182458) ((-506 . -614) 182435) ((-790 . -1113) T) ((-790 . -1078) 182402) ((-471 . -1113) T) ((-464 . -1113) T) ((-596 . -727) 182377) ((-659 . -1113) T) ((-1273 . -47) 182354) ((-1267 . -102) T) ((-1266 . -47) 182324) ((-1245 . -47) 182301) ((-1225 . -174) 182252) ((-1187 . -315) 182231) ((-1181 . -315) 182210) ((-1109 . -626) 182191) ((-1103 . -626) 182172) ((-1093 . -566) 182123) ((-1017 . -911) NIL) ((-1093 . -1235) 182074) ((-680 . -132) T) ((-637 . -1125) T) ((-1086 . -626) 182055) ((-1079 . -626) 182036) ((-1049 . -626) 182017) ((-1032 . -626) 181998) ((-709 . -656) 181948) ((-282 . -1113) T) ((-85 . -451) T) ((-85 . -405) T) ((-724 . -1069) 181918) ((-721 . -174) T) ((-50 . -1113) T) ((-605 . -47) 181895) ((-227 . -658) 181860) ((-591 . -1113) T) ((-528 . -1113) T) ((-497 . -830) T) ((-497 . -931) T) ((-368 . -1235) T) ((-362 . -1235) T) ((-354 . -1235) T) ((-327 . -1125) T) ((-324 . -1064) 181770) ((-321 . -1064) 181699) ((-108 . -1235) T) ((-636 . -626) 181680) ((-368 . -566) T) ((-219 . -931) T) ((-219 . -830) T) ((-324 . -650) 181590) ((-321 . -650) 181519) ((-362 . -566) T) ((-354 . -566) T) ((-493 . -626) 181500) ((-108 . -566) T) ((-668 . -727) 181470) ((-1181 . -1035) NIL) ((-220 . -626) 181451) ((-327 . -23) T) ((-67 . -1231) T) ((-1013 . -623) 181383) ((-704 . -233) 181365) ((-724 . -111) 181330) ((-654 . -34) T) ((-251 . -499) 181314) ((-1310 . -1165) T) ((-1305 . -21) T) ((-1305 . -25) T) ((-1115 . -1111) 181298) ((-173 . -1113) T) ((-1303 . -132) T) ((-1301 . -132) T) ((-1294 . -102) T) ((-1277 . -623) 181264) ((-1273 . -1231) T) ((-963 . -920) 181243) ((-1266 . -1231) T) ((-1266 . -1051) 181178) ((-1245 . -1231) T) ((-525 . -626) 181162) ((-1245 . -897) NIL) ((-1245 . -895) 181114) ((-1245 . -1051) 181080) ((-491 . -920) 181059) ((-1225 . -524) 181026) ((-1203 . -624) NIL) ((-1100 . -727) 180875) ((-1075 . -658) 180847) ((-963 . -658) 180736) ((-607 . -500) 180717) ((-595 . -500) 180698) ((-792 . -727) 180527) ((-607 . -623) 180493) ((-595 . -623) 180459) ((-546 . -623) 180441) ((-546 . -624) 180422) ((-790 . -727) 180271) ((-1090 . -102) T) ((-390 . -25) T) ((-633 . -656) 180243) ((-390 . -21) T) ((-491 . -658) 180132) ((-471 . -727) 180103) ((-464 . -727) 179952) ((-1000 . -102) T) ((-1203 . -623) 179934) ((-1155 . -1136) 179879) ((-1059 . -1224) 179808) ((-747 . -102) T) ((-118 . -656) 179738) ((-615 . -626) 179720) ((-912 . -317) 179658) ((-886 . -93) T) ((-541 . -25) T) ((-724 . -626) 179612) ((-691 . -93) T) ((-686 . -93) T) ((-655 . -500) 179593) ((-142 . -102) T) ((-44 . -132) T) ((-674 . -623) 179575) ((-605 . -1231) T) ((-352 . -1071) T) ((-297 . -1125) T) ((-655 . -623) 179528) ((-488 . -93) T) ((-364 . -623) 179510) ((-361 . -623) 179492) ((-353 . -623) 179474) ((-271 . -624) 179222) ((-271 . -623) 179204) ((-253 . -623) 179186) ((-253 . -624) 179047) ((-134 . -93) T) ((-139 . -93) T) ((-138 . -93) T) ((-1154 . -623) 179029) ((-1133 . -650) 179016) ((-1133 . -1064) 179003) ((-829 . -736) T) ((-829 . -867) T) ((-612 . -296) 178980) ((-591 . -727) 178945) ((-489 . -624) NIL) ((-489 . -623) 178927) ((-528 . -727) 178872) ((-324 . -102) T) ((-321 . -102) T) ((-297 . -23) T) ((-153 . -132) T) ((-921 . -623) 178854) ((-921 . -624) 178836) ((-396 . -736) T) ((-882 . -1069) 178788) ((-882 . -111) 178726) ((-724 . -1062) T) ((-722 . -1257) 178710) ((-704 . -358) NIL) ((-115 . -102) T) ((-140 . -102) T) ((-137 . -102) T) ((-529 . -623) 178642) ((-388 . -805) T) ((-225 . -1113) T) ((-169 . -1231) T) ((-388 . -802) T) ((-227 . -804) T) ((-227 . -801) T) ((-59 . -624) 178603) ((-59 . -623) 178515) ((-227 . -736) T) ((-526 . -624) 178476) ((-526 . -623) 178388) ((-507 . -623) 178320) ((-506 . -624) 178281) ((-506 . -623) 178193) ((-1093 . -372) 178144) ((-40 . -421) 178121) ((-77 . -1231) T) ((-881 . -920) NIL) ((-368 . -337) 178105) ((-368 . -372) T) ((-362 . -337) 178089) ((-362 . -372) T) ((-354 . -337) 178073) ((-354 . -372) T) ((-324 . -292) 178052) ((-108 . -372) T) ((-70 . -1231) T) ((-1245 . -347) 178004) ((-881 . -658) 177949) ((-1245 . -386) 177901) ((-975 . -132) 177756) ((-825 . -132) 177626) ((-969 . -661) 177610) ((-1100 . -174) 177521) ((-969 . -382) 177505) ((-1075 . -804) T) ((-1075 . -801) T) ((-882 . -626) 177403) ((-792 . -174) 177294) ((-790 . -174) 177205) ((-826 . -47) 177167) ((-1075 . -736) T) ((-335 . -499) 177151) ((-963 . -736) T) ((-1294 . -317) 177089) ((-464 . -174) 177000) ((-251 . -294) 176952) ((-1273 . -911) 176865) ((-1266 . -911) 176771) ((-1265 . -1069) 176606) ((-491 . -736) T) ((-1245 . -911) 176439) ((-1244 . -1069) 176247) ((-1225 . -298) 176226) ((-1200 . -1231) T) ((-1197 . -377) T) ((-1196 . -377) T) ((-1159 . -152) 176210) ((-1133 . -102) T) ((-1131 . -1113) T) ((-1093 . -23) T) ((-1093 . -1125) T) ((-1088 . -102) T) ((-1070 . -623) 176177) ((-938 . -966) T) ((-747 . -317) 176115) ((-75 . -1231) T) ((-674 . -391) 176087) ((-171 . -920) 176040) ((-30 . -966) T) ((-112 . -854) T) ((-1 . -623) 176022) ((-1016 . -419) 175994) ((-129 . -661) 175976) ((-50 . -630) 175960) ((-704 . -656) 175895) ((-605 . -911) 175808) ((-448 . -102) T) ((-129 . -382) 175790) ((-142 . -317) NIL) ((-882 . -1062) T) ((-843 . -860) 175769) ((-81 . -1231) T) ((-721 . -298) T) ((-40 . -1071) T) ((-591 . -174) T) ((-528 . -174) T) ((-521 . -623) 175751) ((-171 . -658) 175625) ((-517 . -623) 175607) ((-360 . -148) 175589) ((-360 . -146) T) ((-368 . -1125) T) ((-362 . -1125) T) ((-354 . -1125) T) ((-1017 . -315) T) ((-925 . -315) T) ((-882 . -249) T) ((-108 . -1125) T) ((-882 . -239) 175568) ((-1265 . -111) 175389) ((-1244 . -111) 175178) ((-251 . -1269) 175162) ((-574 . -858) T) ((-368 . -23) T) ((-363 . -358) T) ((-324 . -317) 175149) ((-321 . -317) 175090) ((-362 . -23) T) ((-327 . -132) T) ((-354 . -23) T) ((-1017 . -1035) T) ((-31 . -626) 175071) ((-108 . -23) T) ((-664 . -1064) 175055) ((-251 . -614) 175032) ((-341 . -1113) T) ((-664 . -650) 175002) ((-1267 . -38) 174894) ((-1254 . -920) 174873) ((-112 . -1113) T) ((-826 . -1231) 174852) ((-1048 . -102) T) ((-1254 . -658) 174741) ((-881 . -804) NIL) ((-865 . -658) 174715) ((-881 . -801) NIL) ((-826 . -897) NIL) ((-881 . -736) T) ((-1100 . -524) 174588) ((-792 . -524) 174535) ((-790 . -524) 174487) ((-581 . -658) 174474) ((-826 . -1051) 174302) ((-464 . -524) 174245) ((-398 . -399) T) ((-1265 . -626) 174058) ((-1244 . -626) 173806) ((-60 . -1231) T) ((-631 . -860) 173785) ((-510 . -671) T) ((-1159 . -989) 173754) ((-1037 . -656) 173691) ((-1016 . -462) T) ((-709 . -858) T) ((-520 . -802) T) ((-484 . -1069) 173526) ((-510 . -113) T) ((-352 . -1113) T) ((-321 . -1165) NIL) ((-297 . -132) T) ((-404 . -1113) T) ((-880 . -1071) T) ((-704 . -379) 173493) ((-363 . -656) 173423) ((-225 . -630) 173400) ((-335 . -294) 173352) ((-484 . -111) 173173) ((-1265 . -1062) T) ((-1244 . -1062) T) ((-826 . -386) 173157) ((-171 . -736) T) ((-664 . -102) T) ((-1265 . -249) 173136) ((-1265 . -239) 173088) ((-1244 . -239) 172993) ((-1244 . -249) 172972) ((-1016 . -412) NIL) ((-680 . -649) 172920) ((-324 . -38) 172830) ((-321 . -38) 172759) ((-69 . -623) 172741) ((-327 . -503) 172707) ((-48 . -656) 172657) ((-1203 . -296) 172636) ((-1239 . -860) T) ((-1126 . -1125) 172546) ((-83 . -1231) T) ((-61 . -623) 172528) ((-489 . -296) 172507) ((-1296 . -1051) 172484) ((-1178 . -1113) T) ((-1126 . -23) 172354) ((-826 . -911) 172290) ((-1254 . -736) T) ((-1115 . -1231) T) ((-484 . -626) 172116) ((-1100 . -298) 172047) ((-977 . -1113) T) ((-904 . -102) T) ((-792 . -298) 171958) ((-335 . -19) 171942) ((-59 . -296) 171919) ((-790 . -298) 171850) ((-865 . -736) T) ((-118 . -858) NIL) ((-526 . -296) 171827) ((-335 . -614) 171804) ((-506 . -296) 171781) ((-464 . -298) 171712) ((-1048 . -317) 171563) ((-886 . -500) 171544) ((-886 . -623) 171510) ((-691 . -500) 171491) ((-581 . -736) T) ((-686 . -500) 171472) ((-691 . -623) 171422) ((-686 . -623) 171388) ((-672 . -623) 171370) ((-488 . -500) 171351) ((-488 . -623) 171317) ((-251 . -624) 171278) ((-251 . -500) 171255) ((-139 . -500) 171236) ((-138 . -500) 171217) ((-134 . -500) 171198) ((-251 . -623) 171090) ((-215 . -102) T) ((-139 . -623) 171056) ((-138 . -623) 171022) ((-134 . -623) 170988) ((-1160 . -34) T) ((-954 . -1231) T) ((-352 . -727) 170933) ((-680 . -25) T) ((-680 . -21) T) ((-1190 . -626) 170914) ((-484 . -1062) T) ((-645 . -427) 170879) ((-617 . -427) 170844) ((-1133 . -1165) T) ((-722 . -1064) 170667) ((-591 . -298) T) ((-528 . -298) T) ((-1266 . -315) 170646) ((-484 . -239) 170598) ((-484 . -249) 170577) ((-1245 . -315) 170556) ((-722 . -650) 170385) ((-1245 . -1035) NIL) ((-1093 . -132) T) ((-882 . -805) 170364) ((-145 . -102) T) ((-40 . -1113) T) ((-882 . -802) 170343) ((-654 . -1023) 170327) ((-590 . -1071) T) ((-574 . -1071) T) ((-505 . -1071) T) ((-417 . -462) T) ((-368 . -132) T) ((-324 . -410) 170311) ((-321 . -410) 170272) ((-362 . -132) T) ((-354 . -132) T) ((-1195 . -1113) T) ((-1133 . -38) 170259) ((-1107 . -623) 170226) ((-108 . -132) T) ((-965 . -1113) T) ((-932 . -1113) T) ((-781 . -1113) T) ((-682 . -1113) T) ((-711 . -148) T) ((-117 . -148) T) ((-1303 . -21) T) ((-1303 . -25) T) ((-1301 . -21) T) ((-1301 . -25) T) ((-674 . -1069) 170210) ((-541 . -860) T) ((-510 . -860) T) ((-364 . -1069) 170162) ((-361 . -1069) 170114) ((-353 . -1069) 170066) ((-258 . -1231) T) ((-257 . -1231) T) ((-271 . -1069) 169909) ((-253 . -1069) 169752) ((-674 . -111) 169731) ((-557 . -854) T) ((-364 . -111) 169669) ((-361 . -111) 169607) ((-353 . -111) 169545) ((-271 . -111) 169374) ((-253 . -111) 169203) ((-827 . -1235) 169182) ((-633 . -421) 169166) ((-44 . -21) T) ((-44 . -25) T) ((-825 . -649) 169072) ((-827 . -566) 169051) ((-258 . -1051) 168878) ((-257 . -1051) 168705) ((-127 . -120) 168689) ((-921 . -1069) 168654) ((-722 . -102) T) ((-709 . -1071) T) ((-607 . -626) 168635) ((-595 . -626) 168616) ((-546 . -628) 168519) ((-352 . -174) T) ((-88 . -623) 168501) ((-153 . -21) T) ((-153 . -25) T) ((-921 . -111) 168457) ((-40 . -727) 168402) ((-880 . -1113) T) ((-674 . -626) 168379) ((-655 . -626) 168360) ((-364 . -626) 168297) ((-361 . -626) 168234) ((-557 . -1113) T) ((-353 . -626) 168171) ((-335 . -624) 168132) ((-335 . -623) 168044) ((-271 . -626) 167797) ((-253 . -626) 167582) ((-1244 . -802) 167535) ((-1244 . -805) 167488) ((-258 . -386) 167457) ((-257 . -386) 167426) ((-664 . -38) 167396) ((-618 . -34) T) ((-492 . -1125) 167306) ((-485 . -34) T) ((-1126 . -132) 167176) ((-975 . -25) 166987) ((-921 . -626) 166937) ((-884 . -623) 166919) ((-975 . -21) 166874) ((-825 . -21) 166784) ((-825 . -25) 166635) ((-1237 . -377) T) ((-633 . -1071) T) ((-1192 . -566) 166614) ((-1186 . -47) 166591) ((-364 . -1062) T) ((-361 . -1062) T) ((-492 . -23) 166461) ((-353 . -1062) T) ((-271 . -1062) T) ((-253 . -1062) T) ((-1138 . -47) 166433) ((-118 . -1071) T) ((-1047 . -658) 166407) ((-969 . -34) T) ((-364 . -239) 166386) ((-364 . -249) T) ((-361 . -239) 166365) ((-361 . -249) T) ((-353 . -239) 166344) ((-353 . -249) T) ((-271 . -334) 166316) ((-253 . -334) 166273) ((-271 . -239) 166252) ((-1170 . -152) 166236) ((-258 . -911) 166168) ((-257 . -911) 166100) ((-1095 . -860) T) ((-424 . -1125) T) ((-1067 . -23) T) ((-921 . -1062) T) ((-330 . -658) 166082) ((-1037 . -858) T) ((-680 . -235) 166055) ((-1225 . -1015) 166021) ((-1187 . -931) 166000) ((-1181 . -931) 165979) ((-1181 . -830) NIL) ((-1012 . -1064) 165875) ((-978 . -1231) T) ((-921 . -249) T) ((-827 . -372) 165854) ((-394 . -23) T) ((-128 . -1113) 165832) ((-122 . -1113) 165810) ((-921 . -239) T) ((-129 . -34) T) ((-388 . -658) 165775) ((-1012 . -650) 165723) ((-880 . -727) 165710) ((-1310 . -656) 165682) ((-1059 . -152) 165647) ((-1006 . -1231) T) ((-40 . -174) T) ((-704 . -421) 165629) ((-722 . -317) 165616) ((-846 . -658) 165576) ((-837 . -658) 165550) ((-327 . -25) T) ((-327 . -21) T) ((-668 . -294) 165529) ((-590 . -1113) T) ((-574 . -1113) T) ((-505 . -1113) T) ((-251 . -296) 165506) ((-1186 . -1231) T) ((-321 . -233) 165467) ((-1186 . -897) NIL) ((-55 . -1113) T) ((-1138 . -897) 165326) ((-130 . -860) T) ((-1186 . -1051) 165206) ((-1138 . -1051) 165089) ((-185 . -623) 165071) ((-864 . -1051) 164967) ((-792 . -294) 164894) ((-827 . -1125) T) ((-1047 . -736) T) ((-612 . -661) 164878) ((-1059 . -989) 164807) ((-1012 . -102) T) ((-827 . -23) T) ((-722 . -1165) 164785) ((-704 . -1071) T) ((-612 . -382) 164769) ((-360 . -462) T) ((-352 . -298) T) ((-1282 . -1113) T) ((-254 . -1113) T) ((-409 . -102) T) ((-297 . -21) T) ((-297 . -25) T) ((-370 . -736) T) ((-720 . -1113) T) ((-709 . -1113) T) ((-370 . -483) T) ((-1225 . -623) 164751) ((-1186 . -386) 164735) ((-1138 . -386) 164719) ((-1037 . -421) 164681) ((-142 . -231) 164663) ((-388 . -804) T) ((-388 . -801) T) ((-880 . -174) T) ((-388 . -736) T) ((-721 . -623) 164645) ((-722 . -38) 164474) ((-1281 . -1279) 164458) ((-360 . -412) T) ((-1281 . -1113) 164408) ((-1204 . -1113) T) ((-590 . -727) 164395) ((-574 . -727) 164382) ((-505 . -727) 164347) ((-1267 . -656) 164237) ((-324 . -639) 164216) ((-846 . -736) T) ((-837 . -736) T) ((-654 . -1231) T) ((-1093 . -649) 164164) ((-1186 . -911) 164107) ((-1138 . -911) 164091) ((-825 . -235) 164037) ((-672 . -1069) 164021) ((-108 . -649) 164003) ((-492 . -132) 163873) ((-1192 . -1125) T) ((-963 . -47) 163842) ((-633 . -1113) T) ((-672 . -111) 163821) ((-501 . -623) 163787) ((-335 . -296) 163764) ((-491 . -47) 163721) ((-1192 . -23) T) ((-118 . -1113) T) ((-103 . -102) 163699) ((-1293 . -1125) T) ((-558 . -860) T) ((-227 . -1231) T) ((-1067 . -132) T) ((-1037 . -1071) T) ((-829 . -1051) 163683) ((-1293 . -23) T) ((-1016 . -734) 163655) ((-1211 . -623) 163637) ((-709 . -727) 163602) ((-596 . -623) 163584) ((-396 . -1051) 163568) ((-363 . -1071) T) ((-394 . -132) T) ((-332 . -1051) 163552) ((-1133 . -838) T) ((-1118 . -1113) T) ((-1093 . -21) T) ((-227 . -897) 163534) ((-1017 . -931) T) ((-91 . -34) T) ((-1017 . -830) T) ((-925 . -931) T) ((-1093 . -25) T) ((-1012 . -317) 163499) ((-497 . -1235) T) ((-886 . -626) 163480) ((-724 . -658) 163440) ((-691 . -626) 163421) ((-219 . -1235) T) ((-686 . -626) 163402) ((-227 . -1051) 163362) ((-40 . -298) T) ((-497 . -566) T) ((-488 . -626) 163343) ((-368 . -25) T) ((-324 . -656) 162998) ((-321 . -656) 162912) ((-368 . -21) T) ((-362 . -25) T) ((-362 . -21) T) ((-219 . -566) T) ((-354 . -25) T) ((-354 . -21) T) ((-327 . -235) 162858) ((-251 . -626) 162835) ((-139 . -626) 162816) ((-138 . -626) 162797) ((-134 . -626) 162778) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1071) T) ((-590 . -174) T) ((-574 . -174) T) ((-505 . -174) T) ((-1075 . -1231) T) ((-668 . -623) 162760) ((-747 . -746) 162744) ((-345 . -623) 162726) ((-68 . -392) T) ((-68 . -405) T) ((-1115 . -107) 162710) ((-1075 . -897) 162692) ((-963 . -897) 162617) ((-663 . -1125) T) ((-633 . -727) 162604) ((-491 . -897) NIL) ((-1159 . -102) T) ((-1107 . -628) 162588) ((-1075 . -1051) 162570) ((-97 . -623) 162552) ((-487 . -148) T) ((-963 . -1051) 162432) ((-118 . -727) 162377) ((-663 . -23) T) ((-491 . -1051) 162253) ((-1100 . -624) NIL) ((-1100 . -623) 162235) ((-792 . -624) NIL) ((-792 . -623) 162196) ((-790 . -624) 161830) ((-790 . -623) 161744) ((-1126 . -649) 161650) ((-471 . -623) 161632) ((-464 . -623) 161614) ((-464 . -624) 161475) ((-1048 . -231) 161421) ((-882 . -920) 161400) ((-127 . -34) T) ((-827 . -132) T) ((-659 . -623) 161382) ((-588 . -102) T) ((-364 . -1300) 161366) ((-361 . -1300) 161350) ((-353 . -1300) 161334) ((-128 . -524) 161267) ((-122 . -524) 161200) ((-521 . -802) T) ((-521 . -805) T) ((-520 . -804) T) ((-103 . -317) 161138) ((-224 . -102) 161116) ((-709 . -174) T) ((-704 . -1113) T) ((-882 . -658) 161032) ((-65 . -393) T) ((-282 . -623) 161014) ((-65 . -405) T) ((-963 . -386) 160998) ((-880 . -298) T) ((-50 . -623) 160980) ((-1012 . -38) 160928) ((-1133 . -656) 160900) ((-591 . -623) 160882) ((-491 . -386) 160866) ((-591 . -624) 160848) ((-528 . -623) 160830) ((-921 . -1300) 160817) ((-881 . -1231) T) ((-711 . -462) T) ((-505 . -524) 160783) ((-497 . -372) T) ((-364 . -377) 160762) ((-361 . -377) 160741) ((-353 . -377) 160720) ((-724 . -736) T) ((-219 . -372) T) ((-117 . -462) T) ((-1304 . -1295) 160704) ((-881 . -895) 160681) ((-881 . -897) NIL) ((-975 . -860) 160580) ((-825 . -860) 160531) ((-1238 . -102) T) ((-664 . -666) 160515) ((-1217 . -34) T) ((-173 . -623) 160497) ((-1126 . -21) 160407) ((-1126 . -25) 160258) ((-881 . -1051) 160235) ((-963 . -911) 160216) ((-1254 . -47) 160193) ((-921 . -377) T) ((-59 . -661) 160177) ((-526 . -661) 160161) ((-491 . -911) 160138) ((-71 . -451) T) ((-71 . -405) T) ((-506 . -661) 160122) ((-59 . -382) 160106) ((-633 . -174) T) ((-526 . -382) 160090) ((-506 . -382) 160074) ((-837 . -718) 160058) ((-1186 . -315) 160037) ((-1192 . -132) T) ((-1155 . -1064) 160021) ((-118 . -174) T) ((-1155 . -650) 159953) ((-1159 . -317) 159891) ((-171 . -1231) T) ((-1293 . -132) T) ((-876 . -1064) 159861) ((-645 . -754) 159845) ((-617 . -754) 159829) ((-1266 . -931) 159808) ((-1245 . -931) 159787) ((-1245 . -830) NIL) ((-876 . -650) 159757) ((-704 . -727) 159707) ((-1244 . -920) 159660) ((-1037 . -1113) T) ((-881 . -386) 159637) ((-881 . -347) 159614) ((-916 . -1125) T) ((-171 . -895) 159598) ((-171 . -897) 159523) ((-1281 . -524) 159456) ((-1093 . -235) 159375) ((-497 . -1125) T) ((-363 . -1113) T) ((-219 . -1125) T) ((-76 . -451) T) ((-76 . -405) T) ((-1265 . -658) 159272) ((-171 . -1051) 159168) ((-327 . -860) T) ((-1244 . -658) 158976) ((-882 . -804) 158955) ((-882 . -801) 158934) ((-882 . -736) T) ((-497 . -23) T) ((-368 . -235) 158907) ((-362 . -235) 158880) ((-354 . -235) 158853) ((-225 . -623) 158835) ((-176 . -462) T) ((-224 . -317) 158773) ((-86 . -451) T) ((-86 . -405) T) ((-108 . -235) 158760) ((-219 . -23) T) ((-1305 . -1298) 158739) ((-687 . -1051) 158723) ((-590 . -298) T) ((-574 . -298) T) ((-505 . -298) T) ((-137 . -480) 158678) ((-1254 . -1231) T) ((-664 . -656) 158637) ((-48 . -1113) T) ((-722 . -233) 158621) ((-881 . -911) NIL) ((-1254 . -897) NIL) ((-900 . -102) T) ((-896 . -102) T) ((-398 . -1113) T) ((-171 . -386) 158605) ((-171 . -347) 158589) ((-1254 . -1051) 158469) ((-865 . -1051) 158365) ((-1155 . -102) T) ((-672 . -802) 158344) ((-663 . -132) T) ((-672 . -805) 158323) ((-118 . -524) 158231) ((-581 . -1051) 158213) ((-302 . -1288) 158183) ((-876 . -102) T) ((-974 . -566) 158162) ((-1225 . -1069) 158045) ((-1016 . -1064) 157990) ((-492 . -649) 157896) ((-915 . -1113) T) ((-1037 . -727) 157833) ((-721 . -1069) 157798) ((-1016 . -650) 157743) ((-627 . -102) T) ((-612 . -34) T) ((-1160 . -1231) T) ((-1225 . -111) 157612) ((-484 . -658) 157509) ((-363 . -727) 157454) ((-171 . -911) 157413) ((-709 . -298) T) ((-704 . -174) T) ((-721 . -111) 157369) ((-1310 . -1071) T) ((-1254 . -386) 157353) ((-428 . -1235) 157331) ((-1131 . -623) 157313) ((-321 . -858) NIL) ((-428 . -566) T) ((-227 . -315) T) ((-1244 . -801) 157266) ((-1244 . -804) 157219) ((-1265 . -736) T) ((-1244 . -736) T) ((-48 . -727) 157184) ((-227 . -1035) T) ((-1267 . -421) 157150) ((-360 . -1288) 157127) ((-1254 . -911) 157070) ((-728 . -736) T) ((-341 . -623) 157052) ((-1225 . -626) 156934) ((-1126 . -235) 156880) ((-112 . -623) 156862) ((-112 . -624) 156844) ((-728 . -483) T) ((-721 . -626) 156794) ((-1304 . -1064) 156778) ((-492 . -21) 156688) ((-128 . -499) 156672) ((-122 . -499) 156656) ((-492 . -25) 156507) ((-1304 . -650) 156477) ((-633 . -298) T) ((-596 . -1069) 156452) ((-447 . -1113) T) ((-1075 . -315) T) ((-118 . -298) T) ((-1117 . -102) T) ((-1016 . -102) T) ((-596 . -111) 156420) ((-1155 . -317) 156358) ((-1225 . -1062) T) ((-1075 . -1035) T) ((-66 . -1231) T) ((-1067 . -25) T) ((-1067 . -21) T) ((-721 . -1062) T) ((-394 . -21) T) ((-394 . -25) T) ((-704 . -524) NIL) ((-1037 . -174) T) ((-721 . -249) T) ((-1075 . -555) T) ((-722 . -656) 156268) ((-516 . -102) T) ((-512 . -102) T) ((-363 . -174) T) ((-352 . -623) 156250) ((-417 . -1064) 156202) ((-404 . -623) 156184) ((-1133 . -858) T) ((-484 . -736) T) ((-903 . -1051) 156152) ((-417 . -650) 156104) ((-108 . -860) T) ((-668 . -1069) 156088) ((-497 . -132) T) ((-1267 . -1071) T) ((-219 . -132) T) ((-1170 . -102) 156066) ((-99 . -1113) T) ((-251 . -676) 156050) ((-251 . -661) 156034) ((-668 . -111) 156013) ((-596 . -626) 155997) ((-324 . -421) 155981) ((-251 . -382) 155965) ((-1173 . -241) 155912) ((-1012 . -233) 155896) ((-74 . -1231) T) ((-48 . -174) T) ((-711 . -397) T) ((-711 . -144) T) ((-1304 . -102) T) ((-1211 . -626) 155878) ((-1101 . -1231) T) ((-1100 . -1069) 155721) ((-1089 . -1231) T) ((-271 . -920) 155700) ((-253 . -920) 155679) ((-792 . -1069) 155502) ((-790 . -1069) 155345) ((-618 . -1231) T) ((-1178 . -623) 155327) ((-1100 . -111) 155156) ((-1059 . -102) T) ((-485 . -1231) T) ((-471 . -1069) 155127) ((-464 . -1069) 154970) ((-674 . -658) 154954) ((-881 . -315) T) ((-792 . -111) 154763) ((-790 . -111) 154592) ((-364 . -658) 154544) ((-361 . -658) 154496) ((-353 . -658) 154448) ((-271 . -658) 154337) ((-253 . -658) 154226) ((-1172 . -860) T) ((-1101 . -1051) 154210) ((-471 . -111) 154171) ((-464 . -111) 154000) ((-1089 . -1051) 153977) ((-1013 . -34) T) ((-977 . -623) 153959) ((-969 . -1231) T) ((-127 . -1023) 153943) ((-974 . -1125) T) ((-881 . -1035) NIL) ((-745 . -1125) T) ((-725 . -1125) T) ((-668 . -626) 153861) ((-1281 . -499) 153845) ((-1155 . -38) 153805) ((-974 . -23) T) ((-921 . -658) 153770) ((-875 . -1113) T) ((-853 . -102) T) ((-827 . -21) T) ((-645 . -1064) 153754) ((-617 . -1064) 153738) ((-827 . -25) T) ((-745 . -23) T) ((-725 . -23) T) ((-645 . -650) 153722) ((-110 . -671) T) ((-617 . -650) 153706) ((-591 . -1069) 153671) ((-528 . -1069) 153616) ((-229 . -57) 153574) ((-463 . -23) T) ((-417 . -102) T) ((-270 . -102) T) ((-110 . -113) T) ((-704 . -298) T) ((-876 . -38) 153544) ((-591 . -111) 153500) ((-528 . -111) 153429) ((-1100 . -626) 153165) ((-428 . -1125) T) ((-324 . -1071) 153055) ((-321 . -1071) T) ((-129 . -1231) T) ((-792 . -626) 152803) ((-790 . -626) 152569) ((-668 . -1062) T) ((-1310 . -1113) T) ((-464 . -626) 152354) ((-171 . -315) 152285) ((-428 . -23) T) ((-40 . -623) 152267) ((-40 . -624) 152251) ((-108 . -1005) 152233) ((-117 . -879) 152217) ((-659 . -626) 152201) ((-48 . -524) 152167) ((-1217 . -1023) 152151) ((-1195 . -623) 152118) ((-1203 . -34) T) ((-965 . -623) 152084) ((-932 . -623) 152066) ((-1126 . -860) 152017) ((-781 . -623) 151999) ((-682 . -623) 151981) ((-1170 . -317) 151919) ((-489 . -34) T) ((-1105 . -1231) T) ((-487 . -462) T) ((-1154 . -34) T) ((-1100 . -1062) T) ((-50 . -626) 151888) ((-792 . -1062) T) ((-790 . -1062) T) ((-657 . -241) 151872) ((-642 . -241) 151818) ((-591 . -626) 151768) ((-528 . -626) 151698) ((-492 . -235) 151644) ((-1254 . -315) 151623) ((-1100 . -334) 151584) ((-464 . -1062) T) ((-1192 . -21) T) ((-1100 . -239) 151563) ((-792 . -334) 151540) ((-792 . -239) T) ((-790 . -334) 151512) ((-741 . -1235) 151491) ((-335 . -661) 151475) ((-1192 . -25) T) ((-59 . -34) T) ((-529 . -34) T) ((-526 . -34) T) ((-464 . -334) 151454) ((-335 . -382) 151438) ((-507 . -34) T) ((-506 . -34) T) ((-1016 . -1165) NIL) ((-741 . -566) 151369) ((-645 . -102) T) ((-617 . -102) T) ((-364 . -736) T) ((-361 . -736) T) ((-353 . -736) T) ((-271 . -736) T) ((-253 . -736) T) ((-388 . -1231) T) ((-1059 . -317) 151277) ((-1293 . -21) T) ((-912 . -1113) 151255) ((-828 . -235) 151242) ((-50 . -1062) T) ((-1293 . -25) T) ((-1188 . -566) 151221) ((-1187 . -1235) 151200) ((-1187 . -566) 151151) ((-1181 . -1235) 151130) ((-1181 . -566) 151081) ((-591 . -1062) T) ((-528 . -1062) T) ((-1037 . -298) T) ((-370 . -1051) 151065) ((-330 . -1051) 151049) ((-1016 . -38) 150994) ((-388 . -897) 150976) ((-1012 . -656) 150899) ((-846 . -1231) T) ((-837 . -1231) 150878) ((-809 . -1125) T) ((-921 . -736) T) ((-591 . -249) T) ((-591 . -239) T) ((-528 . -239) T) ((-528 . -249) T) ((-1139 . -566) 150857) ((-363 . -298) T) ((-657 . -705) 150841) ((-388 . -1051) 150801) ((-302 . -1064) 150722) ((-1133 . -1071) T) ((-103 . -126) 150706) ((-302 . -650) 150648) ((-809 . -23) T) ((-1303 . -1298) 150624) ((-1281 . -294) 150576) ((-417 . -317) 150541) ((-1301 . -1298) 150520) ((-1267 . -1113) T) ((-880 . -623) 150502) ((-846 . -1051) 150471) ((-205 . -797) T) ((-204 . -797) T) ((-203 . -797) T) ((-202 . -797) T) ((-201 . -797) T) ((-200 . -797) T) ((-199 . -797) T) ((-198 . -797) T) ((-197 . -797) T) ((-196 . -797) T) ((-557 . -623) 150453) ((-505 . -1015) T) ((-281 . -849) T) ((-280 . -849) T) ((-279 . -849) T) ((-278 . -849) T) ((-48 . -298) T) ((-277 . -849) T) ((-276 . -849) T) ((-275 . -849) T) ((-195 . -797) T) ((-622 . -860) T) ((-664 . -421) 150437) ((-225 . -626) 150399) ((-110 . -860) T) ((-663 . -21) T) ((-663 . -25) T) ((-1304 . -38) 150369) ((-118 . -294) 150320) ((-1281 . -19) 150304) ((-1281 . -614) 150281) ((-1294 . -1113) T) ((-360 . -1064) 150226) ((-1090 . -1113) T) ((-1000 . -1113) T) ((-974 . -132) T) ((-827 . -235) 150213) ((-747 . -1113) T) ((-360 . -650) 150158) ((-745 . -132) T) ((-725 . -132) T) ((-521 . -803) T) ((-521 . -804) T) ((-463 . -132) T) ((-417 . -1165) 150136) ((-225 . -1062) T) ((-302 . -102) 149918) ((-142 . -1113) T) ((-709 . -1015) T) ((-1118 . -294) 149874) ((-91 . -1231) T) ((-128 . -623) 149806) ((-122 . -623) 149738) ((-1310 . -174) T) ((-1187 . -372) 149717) ((-1181 . -372) 149696) ((-324 . -1113) T) ((-428 . -132) T) ((-321 . -1113) T) ((-417 . -38) 149648) ((-1146 . -102) T) ((-1267 . -727) 149540) ((-664 . -1071) T) ((-1148 . -1276) T) ((-327 . -146) 149519) ((-327 . -148) 149498) ((-140 . -1113) T) ((-137 . -1113) T) ((-115 . -1113) T) ((-868 . -102) T) ((-590 . -623) 149480) ((-574 . -624) 149379) ((-574 . -623) 149361) ((-505 . -623) 149343) ((-505 . -624) 149288) ((-495 . -23) T) ((-492 . -860) 149239) ((-497 . -649) 149221) ((-976 . -623) 149203) ((-219 . -649) 149185) ((-227 . -414) T) ((-672 . -658) 149169) ((-55 . -623) 149151) ((-1186 . -931) 149130) ((-741 . -1125) T) ((-360 . -102) T) ((-1230 . -1096) T) ((-1133 . -854) T) ((-828 . -860) T) ((-741 . -23) T) ((-352 . -1069) 149075) ((-1172 . -1171) T) ((-1160 . -107) 149059) ((-1188 . -1125) T) ((-1187 . -1125) T) ((-525 . -1051) 149043) ((-1181 . -1125) T) ((-1139 . -1125) T) ((-352 . -111) 148972) ((-1017 . -1235) T) ((-127 . -1231) T) ((-925 . -1235) T) ((-704 . -294) NIL) ((-724 . -1231) T) ((-1282 . -623) 148954) ((-1188 . -23) T) ((-1187 . -23) T) ((-1181 . -23) T) ((-1017 . -566) T) ((-1155 . -233) 148938) ((-925 . -566) T) ((-1139 . -23) T) ((-254 . -623) 148920) ((-1088 . -1113) T) ((-809 . -132) T) ((-720 . -623) 148902) ((-324 . -727) 148812) ((-321 . -727) 148741) ((-709 . -623) 148723) ((-709 . -624) 148668) ((-417 . -410) 148652) ((-448 . -1113) T) ((-497 . -25) T) ((-497 . -21) T) ((-1133 . -1113) T) ((-219 . -25) T) ((-219 . -21) T) ((-722 . -421) 148636) ((-724 . -1051) 148605) ((-1281 . -623) 148517) ((-1281 . -624) 148478) ((-1267 . -174) T) ((-1204 . -623) 148460) ((-251 . -34) T) ((-352 . -626) 148390) ((-404 . -626) 148372) ((-937 . -987) T) ((-1217 . -1231) T) ((-672 . -801) 148351) ((-672 . -804) 148330) ((-408 . -405) T) ((-533 . -102) 148308) ((-1048 . -1113) T) ((-224 . -1008) 148292) ((-514 . -102) T) ((-633 . -623) 148274) ((-45 . -860) NIL) ((-633 . -624) 148251) ((-1048 . -620) 148226) ((-912 . -524) 148159) ((-352 . -1062) T) ((-118 . -624) NIL) ((-118 . -623) 148141) ((-882 . -1231) T) ((-680 . -427) 148125) ((-680 . -1136) 148070) ((-510 . -152) 148052) ((-352 . -239) T) ((-352 . -249) T) ((-40 . -1069) 147997) ((-882 . -895) 147981) ((-882 . -897) 147906) ((-722 . -1071) T) ((-704 . -1015) NIL) ((-1265 . -47) 147876) ((-1244 . -47) 147853) ((-1154 . -1023) 147824) ((-3 . |UnionCategory|) T) ((-1133 . -727) 147811) ((-1118 . -623) 147793) ((-1093 . -148) 147772) ((-1093 . -146) 147723) ((-977 . -626) 147707) ((-227 . -931) T) ((-40 . -111) 147636) ((-882 . -1051) 147500) ((-1017 . -372) T) ((-1016 . -233) 147477) ((-711 . -1064) 147464) ((-925 . -372) T) ((-711 . -650) 147451) ((-327 . -1219) 147417) ((-388 . -315) T) ((-327 . -1216) 147383) ((-324 . -174) 147362) ((-321 . -174) T) ((-591 . -1300) 147349) ((-528 . -1300) 147326) ((-368 . -148) 147305) ((-117 . -1064) 147292) ((-368 . -146) 147243) ((-362 . -148) 147222) ((-362 . -146) 147173) ((-354 . -148) 147152) ((-618 . -1207) 147128) ((-117 . -650) 147115) ((-354 . -146) 147066) ((-327 . -35) 147032) ((-485 . -1207) 147011) ((0 . |EnumerationCategory|) T) ((-327 . -95) 146977) ((-388 . -1035) T) ((-108 . -148) T) ((-108 . -146) NIL) ((-45 . -241) 146927) ((-664 . -1113) T) ((-618 . -107) 146874) ((-495 . -132) T) ((-485 . -107) 146824) ((-246 . -1125) 146734) ((-882 . -386) 146718) ((-882 . -347) 146702) ((-246 . -23) 146572) ((-40 . -626) 146502) ((-1075 . -931) T) ((-1075 . -830) T) ((-591 . -377) T) ((-528 . -377) T) ((-1294 . -524) 146435) ((-1273 . -566) 146414) ((-1266 . -1235) 146393) ((-360 . -1165) T) ((-335 . -34) T) ((-44 . -427) 146377) ((-1195 . -626) 146313) ((-883 . -1231) T) ((-400 . -754) 146297) ((-1266 . -566) 146248) ((-1265 . -1231) T) ((-1155 . -656) 146207) ((-741 . -132) T) ((-682 . -626) 146191) ((-1245 . -1235) 146170) ((-1245 . -566) 146121) ((-1244 . -1231) T) ((-1244 . -897) 145994) ((-1244 . -895) 145964) ((-1188 . -132) T) ((-319 . -1096) T) ((-1187 . -132) T) ((-747 . -524) 145897) ((-1181 . -132) T) ((-1139 . -132) T) ((-904 . -1113) T) ((-145 . -854) T) ((-1037 . -1015) T) ((-701 . -623) 145879) ((-1017 . -23) T) ((-533 . -317) 145817) ((-1017 . -1125) T) ((-142 . -524) NIL) ((-876 . -656) 145762) ((-1016 . -358) NIL) ((-984 . -23) T) ((-925 . -1125) T) ((-360 . -38) 145727) ((-925 . -23) T) ((-882 . -911) 145686) ((-82 . -623) 145668) ((-40 . -1062) T) ((-880 . -1069) 145655) ((-880 . -111) 145640) ((-711 . -102) T) ((-704 . -623) 145622) ((-612 . -1231) T) ((-606 . -566) 145601) ((-437 . -1125) T) ((-348 . -1064) 145585) ((-215 . -1113) T) ((-176 . -1064) 145517) ((-484 . -47) 145487) ((-135 . -102) T) ((-40 . -239) 145459) ((-40 . -249) T) ((-117 . -102) T) ((-605 . -566) 145438) ((-348 . -650) 145422) ((-704 . -624) 145330) ((-324 . -524) 145296) ((-176 . -650) 145228) ((-321 . -524) 145120) ((-497 . -235) 145107) ((-1265 . -1051) 145091) ((-1244 . -1051) 144877) ((-1012 . -421) 144861) ((-219 . -235) 144848) ((-437 . -23) T) ((-1133 . -174) T) ((-1267 . -298) T) ((-664 . -727) 144818) ((-145 . -1113) T) ((-48 . -1015) T) ((-417 . -233) 144802) ((-303 . -241) 144752) ((-881 . -931) T) ((-881 . -830) NIL) ((-880 . -626) 144724) ((-874 . -860) T) ((-1244 . -347) 144694) ((-1244 . -386) 144664) ((-224 . -1134) 144648) ((-1281 . -296) 144625) ((-484 . -1231) T) ((-1225 . -658) 144550) ((-1016 . -656) 144480) ((-974 . -21) T) ((-974 . -25) T) ((-745 . -21) T) ((-745 . -25) T) ((-725 . -21) T) ((-725 . -25) T) ((-721 . -658) 144445) ((-463 . -21) T) ((-463 . -25) T) ((-348 . -102) T) ((-176 . -102) T) ((-1012 . -1071) T) ((-880 . -1062) T) ((-784 . -102) T) ((-1266 . -372) 144424) ((-1265 . -911) 144330) ((-1245 . -372) 144309) ((-1244 . -911) 144160) ((-1037 . -623) 144142) ((-417 . -838) 144095) ((-1188 . -503) 144061) ((-171 . -931) 143992) ((-1187 . -503) 143958) ((-1181 . -503) 143924) ((-722 . -1113) T) ((-1139 . -503) 143890) ((-590 . -1069) 143877) ((-574 . -1069) 143864) ((-505 . -1069) 143829) ((-324 . -298) 143808) ((-321 . -298) T) ((-363 . -623) 143790) ((-428 . -25) T) ((-428 . -21) T) ((-99 . -294) 143769) ((-590 . -111) 143754) ((-574 . -111) 143739) ((-505 . -111) 143695) ((-1190 . -897) 143662) ((-912 . -499) 143646) ((-48 . -623) 143628) ((-48 . -624) 143573) ((-246 . -132) 143443) ((-1304 . -656) 143402) ((-1254 . -931) 143381) ((-826 . -1235) 143360) ((-398 . -500) 143341) ((-1048 . -524) 143185) ((-398 . -623) 143151) ((-826 . -566) 143082) ((-596 . -658) 143057) ((-271 . -47) 143029) ((-253 . -47) 142986) ((-541 . -519) 142963) ((-590 . -626) 142935) ((-574 . -626) 142907) ((-505 . -626) 142840) ((-1087 . -1231) T) ((-1013 . -1231) T) ((-1273 . -23) T) ((-1273 . -1125) T) ((-709 . -1069) 142805) ((-1266 . -1125) T) ((-1266 . -23) T) ((-1245 . -1125) T) ((-1245 . -23) T) ((-1225 . -736) T) ((-1016 . -379) 142777) ((-112 . -377) T) ((-484 . -911) 142683) ((-1133 . -298) T) ((-915 . -623) 142665) ((-55 . -626) 142647) ((-91 . -107) 142631) ((-1017 . -132) T) ((-916 . -860) 142582) ((-711 . -1165) T) ((-709 . -111) 142538) ((-853 . -656) 142455) ((-606 . -1125) T) ((-605 . -1125) T) ((-722 . -727) 142284) ((-721 . -736) T) ((-984 . -132) T) ((-925 . -132) T) ((-497 . -860) T) ((-809 . -25) T) ((-809 . -21) T) ((-590 . -1062) T) ((-219 . -860) T) ((-417 . -656) 142221) ((-574 . -1062) T) ((-546 . -1231) T) ((-505 . -1062) T) ((-606 . -23) T) ((-352 . -1300) 142198) ((-327 . -462) 142177) ((-348 . -317) 142164) ((-605 . -23) T) ((-437 . -132) T) ((-668 . -658) 142138) ((-251 . -1023) 142122) ((-882 . -315) T) ((-1305 . -1295) 142106) ((-781 . -802) T) ((-781 . -805) T) ((-711 . -38) 142093) ((-574 . -239) T) ((-505 . -249) T) ((-505 . -239) T) ((-1163 . -241) 142043) ((-1100 . -920) 142022) ((-117 . -38) 142009) ((-211 . -810) T) ((-210 . -810) T) ((-209 . -810) T) ((-208 . -810) T) ((-882 . -1035) 141987) ((-1294 . -499) 141971) ((-792 . -920) 141950) ((-790 . -920) 141929) ((-364 . -1231) 141908) ((-361 . -1231) 141887) ((-353 . -1231) 141866) ((-1203 . -1231) T) ((-271 . -1231) 141845) ((-464 . -920) 141824) ((-747 . -499) 141808) ((-1100 . -658) 141697) ((-709 . -626) 141632) ((-792 . -658) 141521) ((-633 . -1069) 141508) ((-489 . -1231) T) ((-352 . -377) T) ((-142 . -499) 141490) ((-790 . -658) 141379) ((-1154 . -1231) T) ((-559 . -860) T) ((-471 . -658) 141350) ((-271 . -897) 141209) ((-253 . -897) NIL) ((-118 . -1069) 141154) ((-464 . -658) 141043) ((-674 . -1051) 141020) ((-633 . -111) 141005) ((-400 . -1064) 140989) ((-364 . -1051) 140973) ((-361 . -1051) 140957) ((-353 . -1051) 140941) ((-271 . -1051) 140785) ((-253 . -1051) 140661) ((-921 . -1231) T) ((-118 . -111) 140590) ((-59 . -1231) T) ((-400 . -650) 140574) ((-631 . -1064) 140558) ((-529 . -1231) T) ((-526 . -1231) T) ((-507 . -1231) T) ((-506 . -1231) T) ((-447 . -623) 140540) ((-444 . -623) 140522) ((-631 . -650) 140506) ((-3 . -102) T) ((-1040 . -1224) 140475) ((-843 . -102) T) ((-699 . -57) 140433) ((-709 . -1062) T) ((-645 . -656) 140402) ((-617 . -656) 140371) ((-50 . -658) 140345) ((-297 . -462) T) ((-486 . -1224) 140314) ((0 . -102) T) ((-591 . -658) 140279) ((-528 . -658) 140224) ((-49 . -102) T) ((-921 . -1051) 140211) ((-709 . -249) T) ((-1093 . -419) 140190) ((-741 . -649) 140138) ((-1012 . -1113) T) ((-722 . -174) 140029) ((-633 . -626) 139924) ((-497 . -1005) 139906) ((-428 . -235) 139879) ((-271 . -386) 139863) ((-253 . -386) 139847) ((-409 . -1113) T) ((-1039 . -102) 139825) ((-348 . -38) 139809) ((-219 . -1005) 139791) ((-118 . -626) 139721) ((-176 . -38) 139653) ((-1265 . -315) 139632) ((-1244 . -315) 139611) ((-668 . -736) T) ((-99 . -623) 139593) ((-487 . -1064) 139558) ((-1181 . -649) 139510) ((-487 . -650) 139475) ((-495 . -25) T) ((-495 . -21) T) ((-1244 . -1035) 139427) ((-1070 . -1231) T) ((-633 . -1062) T) ((-388 . -414) T) ((-400 . -102) T) ((-1118 . -628) 139342) ((-271 . -911) 139288) ((-253 . -911) 139265) ((-118 . -1062) T) ((-826 . -1125) T) ((-1100 . -736) T) ((-633 . -239) 139244) ((-631 . -102) T) ((-792 . -736) T) ((-790 . -736) T) ((-423 . -1125) T) ((-118 . -249) T) ((-40 . -377) NIL) ((-118 . -239) NIL) ((-1236 . -860) T) ((-464 . -736) T) ((-826 . -23) T) ((-741 . -25) T) ((-741 . -21) T) ((-1090 . -294) 139223) ((-78 . -406) T) ((-78 . -405) T) ((-543 . -777) 139205) ((-704 . -1069) 139155) ((-1273 . -132) T) ((-1266 . -132) T) ((-1245 . -132) T) ((-1188 . -25) T) ((-1155 . -421) 139139) ((-645 . -376) 139071) ((-617 . -376) 139003) ((-1170 . -1162) 138987) ((-103 . -1113) 138965) ((-1188 . -21) T) ((-1187 . -21) T) ((-875 . -623) 138947) ((-1012 . -727) 138895) ((-225 . -658) 138862) ((-704 . -111) 138796) ((-50 . -736) T) ((-1187 . -25) T) ((-360 . -358) T) ((-1181 . -21) T) ((-1093 . -462) 138747) ((-1181 . -25) T) ((-722 . -524) 138694) ((-591 . -736) T) ((-528 . -736) T) ((-1139 . -21) T) ((-1139 . -25) T) ((-1306 . -102) T) ((-606 . -132) T) ((-302 . -656) 138429) ((-605 . -132) T) ((-368 . -462) T) ((-362 . -462) T) ((-354 . -462) T) ((-484 . -315) 138408) ((-1239 . -102) T) ((-321 . -294) 138343) ((-108 . -462) T) ((-79 . -451) T) ((-79 . -405) T) ((-487 . -102) T) ((-701 . -626) 138327) ((-1310 . -623) 138309) ((-1310 . -624) 138291) ((-1093 . -412) 138270) ((-1048 . -499) 138201) ((-137 . -294) 138178) ((-574 . -805) T) ((-574 . -802) T) ((-1076 . -241) 138124) ((-368 . -412) 138075) ((-362 . -412) 138026) ((-354 . -412) 137977) ((-1296 . -1125) T) ((-1305 . -1064) 137961) ((-390 . -1064) 137945) ((-1305 . -650) 137915) ((-828 . -237) T) ((-390 . -650) 137885) ((-704 . -626) 137820) ((-1296 . -23) T) ((-1283 . -102) T) ((-177 . -623) 137802) ((-1155 . -1071) T) ((-557 . -377) T) ((-680 . -754) 137786) ((-1192 . -146) 137765) ((-1192 . -148) 137744) ((-1159 . -1113) T) ((-1159 . -1084) 137713) ((-69 . -1231) T) ((-1037 . -1069) 137650) ((-360 . -656) 137580) ((-876 . -1071) T) ((-246 . -649) 137486) ((-704 . -1062) T) ((-363 . -1069) 137431) ((-61 . -1231) T) ((-1037 . -111) 137347) ((-912 . -623) 137258) ((-704 . -249) T) ((-704 . -239) NIL) ((-853 . -858) 137237) ((-709 . -805) T) ((-709 . -802) T) ((-1016 . -421) 137214) ((-363 . -111) 137143) ((-388 . -931) T) ((-417 . -858) 137122) ((-722 . -298) 137033) ((-225 . -736) T) ((-1273 . -503) 136999) ((-1266 . -503) 136965) ((-1245 . -503) 136931) ((-588 . -1113) T) ((-324 . -1015) 136910) ((-224 . -1113) 136888) ((-1238 . -854) T) ((-327 . -986) 136850) ((-105 . -102) T) ((-48 . -1069) 136815) ((-1305 . -102) T) ((-390 . -102) T) ((-48 . -111) 136771) ((-1017 . -649) 136753) ((-1267 . -623) 136735) ((-541 . -102) T) ((-510 . -102) T) ((-1146 . -1147) 136719) ((-153 . -1288) 136703) ((-251 . -1231) T) ((-1230 . -102) T) ((-1037 . -626) 136640) ((-1186 . -1235) 136619) ((-363 . -626) 136549) ((-1138 . -1235) 136528) ((-246 . -21) 136438) ((-246 . -25) 136289) ((-128 . -120) 136273) ((-122 . -120) 136257) ((-44 . -754) 136241) ((-1186 . -566) 136152) ((-1138 . -566) 136083) ((-1238 . -1113) T) ((-1048 . -294) 136058) ((-1180 . -1096) T) ((-1007 . -1096) T) ((-826 . -132) T) ((-118 . -805) NIL) ((-118 . -802) NIL) ((-364 . -315) T) ((-361 . -315) T) ((-353 . -315) T) ((-258 . -1125) 135968) ((-257 . -1125) 135878) ((-1037 . -1062) T) ((-1016 . -1071) T) ((-48 . -626) 135811) ((-352 . -658) 135756) ((-631 . -38) 135740) ((-1294 . -623) 135702) ((-1294 . -624) 135663) ((-1090 . -623) 135645) ((-1037 . -249) T) ((-363 . -1062) T) ((-825 . -1288) 135615) ((-258 . -23) T) ((-257 . -23) T) ((-1000 . -623) 135597) ((-1188 . -235) 135550) ((-1187 . -235) 135496) ((-747 . -624) 135457) ((-747 . -623) 135439) ((-1181 . -235) 135320) ((-809 . -860) 135299) ((-1173 . -152) 135246) ((-1012 . -524) 135158) ((-363 . -239) T) ((-363 . -249) T) ((-398 . -626) 135139) ((-1017 . -25) T) ((-142 . -623) 135121) ((-142 . -624) 135080) ((-921 . -315) T) ((-1017 . -21) T) ((-984 . -25) T) ((-925 . -21) T) ((-925 . -25) T) ((-437 . -21) T) ((-437 . -25) T) ((-853 . -421) 135064) ((-48 . -1062) T) ((-1303 . -1295) 135048) ((-1301 . -1295) 135032) ((-1048 . -614) 135007) ((-324 . -624) 134868) ((-324 . -623) 134850) ((-321 . -624) NIL) ((-321 . -623) 134832) ((-48 . -249) T) ((-48 . -239) T) ((-664 . -294) 134793) ((-560 . -241) 134743) ((-140 . -623) 134710) ((-137 . -623) 134692) ((-115 . -623) 134674) ((-487 . -38) 134639) ((-1305 . -1302) 134618) ((-1296 . -132) T) ((-1304 . -1071) T) ((-1095 . -102) T) ((-88 . -1231) T) ((-510 . -317) NIL) ((-1013 . -107) 134602) ((-900 . -1113) T) ((-896 . -1113) T) ((-1281 . -661) 134586) ((-1281 . -382) 134570) ((-335 . -1231) T) ((-603 . -860) T) ((-1155 . -1113) T) ((-1155 . -1066) 134510) ((-103 . -524) 134443) ((-938 . -623) 134425) ((-352 . -736) T) ((-30 . -623) 134407) ((-876 . -1113) T) ((-853 . -1071) 134386) ((-40 . -658) 134293) ((-227 . -1235) T) ((-417 . -1071) T) ((-1172 . -152) 134275) ((-1012 . -298) 134226) ((-627 . -1113) T) ((-227 . -566) T) ((-327 . -1262) 134210) ((-327 . -1259) 134180) ((-711 . -656) 134152) ((-1203 . -1207) 134131) ((-1088 . -623) 134113) ((-1203 . -107) 134063) ((-657 . -152) 134047) ((-642 . -152) 133993) ((-117 . -656) 133965) ((-489 . -1207) 133944) ((-497 . -148) T) ((-497 . -146) NIL) ((-1133 . -624) 133859) ((-448 . -623) 133841) ((-219 . -148) T) ((-219 . -146) NIL) ((-1133 . -623) 133823) ((-130 . -102) T) ((-52 . -102) T) ((-1245 . -649) 133775) ((-489 . -107) 133725) ((-1006 . -23) T) ((-1305 . -38) 133695) ((-1186 . -1125) T) ((-1138 . -1125) T) ((-1075 . -1235) T) ((-246 . -235) 133641) ((-319 . -102) T) ((-864 . -1125) T) ((-963 . -1235) 133620) ((-491 . -1235) 133599) ((-1075 . -566) T) ((-963 . -566) 133530) ((-1186 . -23) T) ((-1164 . -1096) T) ((-1138 . -23) T) ((-864 . -23) T) ((-491 . -566) 133461) ((-1155 . -727) 133393) ((-680 . -1064) 133377) ((-1159 . -524) 133310) ((-680 . -650) 133294) ((-1048 . -624) NIL) ((-1048 . -623) 133276) ((-96 . -1096) T) ((-876 . -727) 133246) ((-1310 . -1069) 133233) ((-1225 . -47) 133202) ((-258 . -132) T) ((-257 . -132) T) ((-1117 . -1113) T) ((-1016 . -1113) T) ((-62 . -623) 133184) ((-1181 . -860) NIL) ((-1037 . -802) T) ((-1037 . -805) T) ((-1310 . -111) 133169) ((-1273 . -25) T) ((-1273 . -21) T) ((-1266 . -21) T) ((-880 . -658) 133156) ((-1266 . -25) T) ((-1245 . -21) T) ((-1245 . -25) T) ((-1040 . -152) 133140) ((-1017 . -235) 133127) ((-882 . -830) 133106) ((-882 . -931) T) ((-722 . -294) 133033) ((-606 . -21) T) ((-348 . -656) 132992) ((-606 . -25) T) ((-605 . -21) T) ((-176 . -656) 132909) ((-40 . -736) T) ((-224 . -524) 132842) ((-605 . -25) T) ((-486 . -152) 132826) ((-473 . -152) 132810) ((-932 . -804) T) ((-932 . -736) T) ((-781 . -803) T) ((-781 . -804) T) ((-516 . -1113) T) ((-512 . -1113) T) ((-781 . -736) T) ((-227 . -372) T) ((-1303 . -1064) 132794) ((-1301 . -1064) 132778) ((-1303 . -650) 132748) ((-1170 . -1113) 132726) ((-881 . -1235) T) ((-1301 . -650) 132696) ((-664 . -623) 132678) ((-881 . -566) T) ((-704 . -377) NIL) ((-44 . -1064) 132662) ((-1310 . -626) 132644) ((-1304 . -1113) T) ((-680 . -102) T) ((-368 . -1288) 132628) ((-362 . -1288) 132612) ((-44 . -650) 132596) ((-354 . -1288) 132580) ((-558 . -102) T) ((-530 . -860) 132559) ((-1059 . -1113) T) ((-827 . -462) 132538) ((-153 . -1064) 132522) ((-1059 . -1084) 132451) ((-1040 . -989) 132420) ((-829 . -1125) T) ((-1016 . -727) 132365) ((-153 . -650) 132349) ((-396 . -1125) T) ((-486 . -989) 132318) ((-473 . -989) 132287) ((-110 . -152) 132269) ((-73 . -623) 132251) ((-904 . -623) 132233) ((-1093 . -734) 132212) ((-1310 . -1062) T) ((-826 . -649) 132160) ((-302 . -1071) 132102) ((-171 . -1235) 132007) ((-227 . -1125) T) ((-332 . -23) T) ((-1181 . -1005) 131959) ((-853 . -1113) T) ((-1267 . -1069) 131864) ((-1139 . -750) 131843) ((-1265 . -931) 131822) ((-1244 . -931) 131801) ((-880 . -736) T) ((-171 . -566) 131712) ((-590 . -658) 131699) ((-574 . -658) 131671) ((-417 . -1113) T) ((-270 . -1113) T) ((-215 . -623) 131653) ((-505 . -658) 131603) ((-227 . -23) T) ((-1244 . -830) 131556) ((-1303 . -102) T) ((-363 . -1300) 131533) ((-1301 . -102) T) ((-1267 . -111) 131425) ((-825 . -1064) 131322) ((-825 . -650) 131264) ((-145 . -623) 131246) ((-1006 . -132) T) ((-44 . -102) T) ((-246 . -860) 131197) ((-1254 . -1235) 131176) ((-103 . -499) 131160) ((-1304 . -727) 131130) ((-1100 . -47) 131091) ((-1075 . -1125) T) ((-963 . -1125) T) ((-128 . -34) T) ((-122 . -34) T) ((-792 . -47) 131068) ((-790 . -47) 131040) ((-1254 . -566) 130951) ((-363 . -377) T) ((-491 . -1125) T) ((-1186 . -132) T) ((-1138 . -132) T) ((-464 . -47) 130930) ((-881 . -372) T) ((-864 . -132) T) ((-153 . -102) T) ((-1075 . -23) T) ((-963 . -23) T) ((-581 . -566) T) ((-826 . -25) T) ((-826 . -21) T) ((-1155 . -524) 130863) ((-602 . -1096) T) ((-596 . -1051) 130847) ((-1267 . -626) 130721) ((-491 . -23) T) ((-360 . -1071) T) ((-1225 . -911) 130702) ((-680 . -317) 130640) ((-1126 . -1288) 130610) ((-709 . -658) 130575) ((-1017 . -860) T) ((-1016 . -174) T) ((-974 . -146) 130554) ((-645 . -1113) T) ((-617 . -1113) T) ((-974 . -148) 130533) ((-745 . -148) 130512) ((-745 . -146) 130491) ((-668 . -1231) T) ((-984 . -860) T) ((-1273 . -235) 130444) ((-1266 . -235) 130390) ((-1245 . -235) 130271) ((-843 . -656) 130188) ((-484 . -931) 130167) ((-327 . -1064) 130002) ((-324 . -1069) 129912) ((-321 . -1069) 129841) ((-1012 . -294) 129799) ((-417 . -727) 129751) ((-327 . -650) 129592) ((-605 . -235) 129545) ((-711 . -858) T) ((-1267 . -1062) T) ((-324 . -111) 129441) ((-321 . -111) 129354) ((-975 . -102) T) ((-825 . -102) 129144) ((-722 . -624) NIL) ((-722 . -623) 129126) ((-1267 . -334) 129070) ((-668 . -1051) 128966) ((-1100 . -1231) 128945) ((-1048 . -296) 128920) ((-590 . -736) T) ((-574 . -804) T) ((-171 . -372) 128871) ((-574 . -801) T) ((-574 . -736) T) ((-505 . -736) T) ((-792 . -1231) T) ((-1159 . -499) 128855) ((-1100 . -897) NIL) ((-881 . -1125) T) ((-118 . -920) NIL) ((-1303 . -1302) 128831) ((-1301 . -1302) 128810) ((-792 . -897) NIL) ((-790 . -897) 128669) ((-1296 . -25) T) ((-1296 . -21) T) ((-1228 . -102) 128647) ((-1119 . -405) T) ((-633 . -658) 128634) ((-464 . -897) NIL) ((-685 . -102) 128612) ((-1100 . -1051) 128439) ((-881 . -23) T) ((-792 . -1051) 128298) ((-790 . -1051) 128155) ((-118 . -658) 128100) ((-464 . -1051) 127976) ((-324 . -626) 127540) ((-321 . -626) 127423) ((-400 . -656) 127392) ((-659 . -1051) 127376) ((-591 . -1231) T) ((-637 . -102) T) ((-528 . -1231) T) ((-224 . -499) 127360) ((-1281 . -34) T) ((-631 . -656) 127319) ((-297 . -1064) 127306) ((-137 . -626) 127290) ((-297 . -650) 127277) ((-645 . -727) 127261) ((-617 . -727) 127245) ((-680 . -38) 127205) ((-327 . -102) T) ((-85 . -623) 127187) ((-50 . -1051) 127171) ((-1133 . -1069) 127158) ((-1100 . -386) 127142) ((-792 . -386) 127126) ((-709 . -736) T) ((-709 . -804) T) ((-709 . -801) T) ((-591 . -1051) 127113) ((-528 . -1051) 127090) ((-60 . -57) 127052) ((-332 . -132) T) ((-324 . -1062) 126942) ((-321 . -1062) T) ((-171 . -1125) T) ((-790 . -386) 126926) ((-45 . -152) 126876) ((-1017 . -1005) 126858) ((-464 . -386) 126842) ((-417 . -174) T) ((-324 . -249) 126821) ((-321 . -249) T) ((-321 . -239) NIL) ((-302 . -1113) 126603) ((-227 . -132) T) ((-1133 . -111) 126588) ((-171 . -23) T) ((-809 . -148) 126567) ((-809 . -146) 126546) ((-258 . -649) 126452) ((-257 . -649) 126358) ((-327 . -292) 126324) ((-1170 . -524) 126257) ((-487 . -656) 126207) ((-1146 . -1113) T) ((-227 . -1073) T) ((-825 . -317) 126145) ((-1100 . -911) 126080) ((-792 . -911) 126023) ((-790 . -911) 126007) ((-1303 . -38) 125977) ((-1301 . -38) 125947) ((-1254 . -1125) T) ((-865 . -1125) T) ((-464 . -911) 125924) ((-868 . -1113) T) ((-1254 . -23) T) ((-1133 . -626) 125896) ((-1075 . -132) T) ((-581 . -1125) T) ((-865 . -23) T) ((-633 . -736) T) ((-364 . -931) T) ((-361 . -931) T) ((-297 . -102) T) ((-353 . -931) T) ((-983 . -1096) T) ((-963 . -132) T) ((-826 . -235) 125869) ((-118 . -804) NIL) ((-118 . -801) NIL) ((-118 . -736) T) ((-704 . -920) NIL) ((-1059 . -524) 125770) ((-491 . -132) T) ((-581 . -23) T) ((-685 . -317) 125708) ((-645 . -771) T) ((-617 . -771) T) ((-1245 . -860) NIL) ((-1093 . -1064) 125618) ((-1016 . -298) T) ((-704 . -658) 125568) ((-258 . -21) T) ((-360 . -1113) T) ((-258 . -25) T) ((-257 . -21) T) ((-257 . -25) T) ((-153 . -38) 125552) ((-2 . -102) T) ((-921 . -931) T) ((-1093 . -650) 125420) ((-492 . -1288) 125390) ((-1133 . -1062) T) ((-721 . -315) T) ((-368 . -1064) 125342) ((-362 . -1064) 125294) ((-354 . -1064) 125246) ((-368 . -650) 125198) ((-225 . -1051) 125175) ((-362 . -650) 125127) ((-108 . -1064) 125077) ((-354 . -650) 125029) ((-302 . -727) 124971) ((-711 . -1071) T) ((-497 . -462) T) ((-417 . -524) 124883) ((-108 . -650) 124833) ((-219 . -462) T) ((-1133 . -239) T) ((-303 . -152) 124783) ((-1012 . -624) 124744) ((-1012 . -623) 124726) ((-1002 . -623) 124708) ((-117 . -1071) T) ((-664 . -1069) 124692) ((-227 . -503) T) ((-409 . -623) 124674) ((-409 . -624) 124651) ((-1067 . -1288) 124621) ((-664 . -111) 124600) ((-1155 . -499) 124584) ((-1305 . -656) 124543) ((-390 . -656) 124512) ((-825 . -38) 124482) ((-63 . -451) T) ((-63 . -405) T) ((-1173 . -102) T) ((-881 . -132) T) ((-494 . -102) 124460) ((-1310 . -377) T) ((-1093 . -102) T) ((-1074 . -102) T) ((-360 . -727) 124405) ((-741 . -148) 124384) ((-741 . -146) 124363) ((-664 . -626) 124281) ((-1037 . -658) 124218) ((-533 . -1113) 124196) ((-368 . -102) T) ((-362 . -102) T) ((-354 . -102) T) ((-108 . -102) T) ((-514 . -1113) T) ((-363 . -658) 124141) ((-1186 . -649) 124089) ((-1138 . -649) 124037) ((-394 . -519) 124016) ((-843 . -858) 123995) ((-388 . -1235) T) ((-704 . -736) T) ((-1245 . -1005) 123947) ((-348 . -1071) T) ((-112 . -1231) T) ((-176 . -1071) T) ((-103 . -623) 123879) ((-1188 . -146) 123858) ((-1188 . -148) 123837) ((-388 . -566) T) ((-1187 . -148) 123816) ((-1187 . -146) 123795) ((-1181 . -146) 123702) ((-417 . -298) T) ((-1181 . -148) 123609) ((-1139 . -148) 123588) ((-1139 . -146) 123567) ((-327 . -38) 123408) ((-171 . -132) T) ((-321 . -805) NIL) ((-321 . -802) NIL) ((-664 . -1062) T) ((-48 . -658) 123358) ((-1126 . -1064) 123255) ((-904 . -626) 123232) ((-1126 . -650) 123174) ((-1180 . -102) T) ((-1007 . -102) T) ((-1006 . -21) T) ((-128 . -1023) 123158) ((-122 . -1023) 123142) ((-1006 . -25) T) ((-912 . -120) 123126) ((-1172 . -102) T) ((-1254 . -132) T) ((-1186 . -25) T) ((-352 . -1231) T) ((-1186 . -21) T) ((-865 . -132) T) ((-1138 . -25) T) ((-1138 . -21) T) ((-864 . -25) T) ((-864 . -21) T) ((-792 . -315) 123105) ((-1173 . -317) 122900) ((-1170 . -499) 122884) ((-657 . -102) 122862) ((-642 . -102) T) ((-1163 . -152) 122812) ((-581 . -132) T) ((-631 . -858) 122791) ((-1159 . -623) 122753) ((-1159 . -624) 122714) ((-1037 . -801) T) ((-1037 . -804) T) ((-1037 . -736) T) ((-722 . -1069) 122537) ((-494 . -317) 122475) ((-463 . -427) 122445) ((-360 . -174) T) ((-258 . -235) 122391) ((-257 . -235) 122337) ((-297 . -38) 122324) ((-281 . -102) T) ((-280 . -102) T) ((-279 . -102) T) ((-278 . -102) T) ((-277 . -102) T) ((-276 . -102) T) ((-352 . -1051) 122301) ((-275 . -102) T) ((-214 . -102) T) ((-213 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-363 . -736) T) ((-722 . -111) 122110) ((-680 . -233) 122094) ((-591 . -315) T) ((-528 . -315) T) ((-302 . -524) 122043) ((-108 . -317) NIL) ((-72 . -405) T) ((-1126 . -102) 121833) ((-843 . -421) 121817) ((-1133 . -805) T) ((-1133 . -802) T) ((-711 . -1113) T) ((-588 . -623) 121799) ((-388 . -372) T) ((-171 . -503) 121777) ((-224 . -623) 121709) ((-135 . -1113) T) ((-117 . -1113) T) ((-977 . -1231) T) ((-48 . -736) T) ((-1059 . -499) 121674) ((-142 . -435) 121656) ((-142 . -377) T) ((-1040 . -102) T) ((-522 . -519) 121635) ((-722 . -626) 121391) ((-486 . -102) T) ((-473 . -102) T) ((-1047 . -1125) T) ((-1238 . -623) 121373) ((-1195 . -1051) 121309) ((-1188 . -35) 121275) ((-1188 . -95) 121241) ((-1188 . -1219) 121207) ((-1188 . -1216) 121173) ((-1187 . -1216) 121139) ((-1187 . -1219) 121105) ((-1172 . -317) NIL) ((-89 . -406) T) ((-89 . -405) T) ((-1093 . -1165) 121084) ((-40 . -1231) 121056) ((-1187 . -95) 121022) ((-1047 . -23) T) ((-1187 . -35) 120988) ((-581 . -503) T) ((-1181 . -1216) 120954) ((-1181 . -1219) 120920) ((-1181 . -95) 120886) ((-1181 . -35) 120852) ((-370 . -1125) T) ((-368 . -1165) 120831) ((-362 . -1165) 120810) ((-354 . -1165) 120789) ((-1117 . -294) 120745) ((-1139 . -35) 120711) ((-1139 . -95) 120677) ((-108 . -1165) T) ((-1139 . -1219) 120643) ((-843 . -1071) 120622) ((-657 . -317) 120560) ((-642 . -317) 120411) ((-1139 . -1216) 120377) ((-722 . -1062) T) ((-1075 . -649) 120359) ((-1093 . -38) 120227) ((-963 . -649) 120175) ((-1017 . -148) T) ((-1017 . -146) NIL) ((-388 . -1125) T) ((-332 . -25) T) ((-330 . -23) T) ((-954 . -860) 120154) ((-722 . -334) 120131) ((-491 . -649) 120079) ((-40 . -1051) 119967) ((-722 . -239) T) ((-711 . -727) 119954) ((-348 . -1113) T) ((-176 . -1113) T) ((-339 . -860) T) ((-428 . -462) 119904) ((-388 . -23) T) ((-368 . -38) 119869) ((-362 . -38) 119834) ((-354 . -38) 119799) ((-80 . -451) T) ((-80 . -405) T) ((-227 . -25) T) ((-227 . -21) T) ((-846 . -1125) T) ((-108 . -38) 119749) ((-837 . -1125) T) ((-784 . -1113) T) ((-117 . -727) 119736) ((-682 . -1051) 119720) ((-622 . -102) T) ((-846 . -23) T) ((-837 . -23) T) ((-1170 . -294) 119672) ((-1126 . -317) 119610) ((-492 . -1064) 119507) ((-1115 . -241) 119491) ((-64 . -406) T) ((-64 . -405) T) ((-1164 . -102) T) ((-110 . -102) T) ((-492 . -650) 119433) ((-40 . -386) 119410) ((-96 . -102) T) ((-663 . -862) 119394) ((-1186 . -235) 119381) ((-1148 . -1096) T) ((-1075 . -21) T) ((-1075 . -25) T) ((-1067 . -1064) 119365) ((-825 . -233) 119334) ((-963 . -25) T) ((-963 . -21) T) ((-1067 . -650) 119276) ((-631 . -1071) T) ((-1133 . -377) T) ((-1040 . -317) 119214) ((-680 . -656) 119173) ((-491 . -25) T) ((-491 . -21) T) ((-394 . -1064) 119157) ((-900 . -623) 119139) ((-896 . -623) 119121) ((-533 . -524) 119054) ((-258 . -860) 119005) ((-257 . -860) 118956) ((-394 . -650) 118926) ((-881 . -649) 118903) ((-486 . -317) 118841) ((-473 . -317) 118779) ((-360 . -298) T) ((-1170 . -1269) 118763) ((-1155 . -623) 118725) ((-1155 . -624) 118686) ((-1153 . -102) T) ((-1012 . -1069) 118582) ((-40 . -911) 118534) ((-1170 . -614) 118511) ((-1310 . -658) 118498) ((-876 . -500) 118475) ((-1076 . -152) 118421) ((-882 . -1235) T) ((-1012 . -111) 118303) ((-348 . -727) 118287) ((-876 . -623) 118249) ((-176 . -727) 118181) ((-417 . -294) 118139) ((-882 . -566) T) ((-108 . -410) 118121) ((-84 . -393) T) ((-84 . -405) T) ((-711 . -174) T) ((-627 . -623) 118103) ((-99 . -736) T) ((-492 . -102) 117893) ((-99 . -483) T) ((-117 . -174) T) ((-1303 . -656) 117852) ((-1301 . -656) 117811) ((-1126 . -38) 117781) ((-171 . -649) 117729) ((-1067 . -102) T) ((-1012 . -626) 117619) ((-881 . -25) T) ((-825 . -244) 117598) ((-881 . -21) T) ((-828 . -102) T) ((-44 . -656) 117541) ((-424 . -102) T) ((-394 . -102) T) ((-110 . -317) NIL) ((-229 . -102) 117519) ((-128 . -1231) T) ((-122 . -1231) T) ((-827 . -1064) 117470) ((-827 . -650) 117412) ((-1047 . -132) T) ((-680 . -376) 117396) ((-153 . -656) 117355) ((-645 . -294) 117313) ((-617 . -294) 117271) ((-1310 . -736) T) ((-1012 . -1062) T) ((-1254 . -649) 117219) ((-1117 . -623) 117201) ((-1016 . -623) 117183) ((-574 . -1231) T) ((-505 . -1231) T) ((-525 . -23) T) ((-520 . -23) T) ((-352 . -315) T) ((-518 . -23) T) ((-330 . -132) T) ((-3 . -1113) T) ((-1016 . -624) 117167) ((-1012 . -249) 117146) ((-1012 . -239) 117125) ((-1273 . -146) 117104) ((-1273 . -148) 117083) ((-843 . -1113) T) ((-1266 . -148) 117062) ((-1266 . -146) 117041) ((-1265 . -1235) 117020) ((-1245 . -146) 116927) ((-1245 . -148) 116834) ((-1244 . -1235) 116813) ((-388 . -132) T) ((-227 . -235) 116800) ((-574 . -897) 116782) ((0 . -1113) T) ((-176 . -174) T) ((-171 . -21) T) ((-171 . -25) T) ((-49 . -1113) T) ((-1267 . -658) 116687) ((-1265 . -566) 116638) ((-724 . -1125) T) ((-1244 . -566) 116589) ((-574 . -1051) 116571) ((-605 . -148) 116550) ((-605 . -146) 116529) ((-505 . -1051) 116472) ((-1148 . -1150) T) ((-87 . -393) T) ((-87 . -405) T) ((-882 . -372) T) ((-846 . -132) T) ((-837 . -132) T) ((-975 . -656) 116416) ((-724 . -23) T) ((-516 . -623) 116382) ((-512 . -623) 116364) ((-825 . -656) 116114) ((-1305 . -1071) T) ((-388 . -1073) T) ((-1039 . -1113) 116092) ((-55 . -1051) 116074) ((-912 . -34) T) ((-492 . -317) 116012) ((-602 . -102) T) ((-1170 . -624) 115973) ((-1170 . -623) 115905) ((-1192 . -1064) 115788) ((-45 . -102) T) ((-827 . -102) T) ((-1192 . -650) 115685) ((-1254 . -25) T) ((-1254 . -21) T) ((-1075 . -235) 115672) ((-865 . -25) T) ((-44 . -376) 115656) ((-865 . -21) T) ((-741 . -462) 115607) ((-1304 . -623) 115589) ((-1293 . -1064) 115559) ((-1067 . -317) 115497) ((-681 . -1096) T) ((-616 . -1096) T) ((-400 . -1113) T) ((-581 . -25) T) ((-581 . -21) T) ((-182 . -1096) T) ((-162 . -1096) T) ((-157 . -1096) T) ((-155 . -1096) T) ((-1293 . -650) 115467) ((-631 . -1113) T) ((-709 . -897) 115449) ((-1281 . -1231) T) ((-229 . -317) 115387) ((-145 . -377) T) ((-1059 . -624) 115329) ((-1059 . -623) 115272) ((-321 . -920) NIL) ((-1239 . -854) T) ((-709 . -1051) 115217) ((-721 . -931) T) ((-484 . -1235) 115196) ((-1187 . -462) 115175) ((-1181 . -462) 115154) ((-338 . -102) T) ((-882 . -1125) T) ((-327 . -656) 115036) ((-324 . -658) 114765) ((-321 . -658) 114694) ((-484 . -566) 114645) ((-348 . -524) 114611) ((-560 . -152) 114561) ((-40 . -315) T) ((-853 . -623) 114543) ((-711 . -298) T) ((-882 . -23) T) ((-388 . -503) T) ((-1093 . -233) 114513) ((-522 . -102) T) ((-417 . -624) 114320) ((-417 . -623) 114302) ((-270 . -623) 114284) ((-117 . -298) T) ((-1267 . -736) T) ((-633 . -1231) 114263) ((-1306 . -1113) T) ((-1265 . -372) 114242) ((-1244 . -372) 114221) ((-1294 . -34) T) ((-1239 . -1113) T) ((-118 . -1231) T) ((-108 . -233) 114203) ((-1192 . -102) T) ((-487 . -1113) T) ((-533 . -499) 114187) ((-747 . -34) T) ((-663 . -1064) 114171) ((-492 . -38) 114141) ((-663 . -650) 114111) ((-881 . -235) NIL) ((-142 . -34) T) ((-118 . -895) 114088) ((-118 . -897) NIL) ((-633 . -1051) 113971) ((-654 . -860) 113950) ((-1293 . -102) T) ((-303 . -102) T) ((-722 . -377) 113929) ((-118 . -1051) 113906) ((-400 . -727) 113890) ((-631 . -727) 113874) ((-1118 . -1231) T) ((-45 . -317) 113678) ((-826 . -146) 113657) ((-826 . -148) 113636) ((-297 . -656) 113608) ((-1304 . -391) 113587) ((-829 . -860) T) ((-1283 . -1113) T) ((-1173 . -231) 113534) ((-396 . -860) 113513) ((-1273 . -1219) 113479) ((-1273 . -1216) 113445) ((-1266 . -1216) 113411) ((-525 . -132) T) ((-1266 . -1219) 113377) ((-1245 . -1216) 113343) ((-1245 . -1219) 113309) ((-1273 . -35) 113275) ((-1273 . -95) 113241) ((-1266 . -95) 113207) ((-645 . -623) 113176) ((-617 . -623) 113145) ((-227 . -860) T) ((-1266 . -35) 113111) ((-1265 . -1125) T) ((-1245 . -95) 113077) ((-1133 . -658) 113049) ((-1245 . -35) 113015) ((-1244 . -1125) T) ((-603 . -152) 112997) ((-1093 . -358) 112976) ((-176 . -298) T) ((-118 . -386) 112953) ((-118 . -347) 112930) ((-171 . -235) 112875) ((-880 . -315) T) ((-321 . -804) NIL) ((-321 . -801) NIL) ((-324 . -736) 112724) ((-321 . -736) T) ((-484 . -372) 112703) ((-368 . -358) 112682) ((-362 . -358) 112661) ((-354 . -358) 112640) ((-324 . -483) 112619) ((-1265 . -23) T) ((-1244 . -23) T) ((-728 . -1125) T) ((-724 . -132) T) ((-663 . -102) T) ((-487 . -727) 112584) ((-45 . -290) 112534) ((-105 . -1113) T) ((-68 . -623) 112516) ((-983 . -102) T) ((-874 . -102) T) ((-633 . -911) 112475) ((-1305 . -1113) T) ((-390 . -1113) T) ((-1254 . -235) 112462) ((-82 . -1231) T) ((-1230 . -1113) T) ((-1075 . -860) T) ((-118 . -911) NIL) ((-792 . -931) 112441) ((-723 . -860) T) ((-541 . -1113) T) ((-510 . -1113) T) ((-364 . -1235) T) ((-361 . -1235) T) ((-353 . -1235) T) ((-271 . -1235) 112420) ((-253 . -1235) 112399) ((-543 . -870) T) ((-1126 . -233) 112368) ((-1172 . -838) T) ((-1155 . -1069) 112352) ((-400 . -771) T) ((-704 . -1231) T) ((-701 . -1051) 112336) ((-364 . -566) T) ((-361 . -566) T) ((-353 . -566) T) ((-271 . -566) 112267) ((-253 . -566) 112198) ((-535 . -1096) T) ((-1155 . -111) 112177) ((-463 . -754) 112147) ((-876 . -1069) 112117) ((-827 . -38) 112059) ((-704 . -895) 112041) ((-704 . -897) 112023) ((-303 . -317) 111827) ((-921 . -1235) T) ((-1170 . -296) 111804) ((-1093 . -656) 111699) ((-680 . -421) 111683) ((-876 . -111) 111648) ((-1017 . -462) T) ((-704 . -1051) 111593) ((-921 . -566) T) ((-543 . -623) 111575) ((-591 . -931) T) ((-497 . -1064) 111525) ((-484 . -1125) T) ((-528 . -931) T) ((-925 . -462) T) ((-65 . -623) 111507) ((-219 . -1064) 111457) ((-497 . -650) 111407) ((-368 . -656) 111344) ((-362 . -656) 111281) ((-354 . -656) 111218) ((-642 . -231) 111164) ((-219 . -650) 111114) ((-108 . -656) 111064) ((-484 . -23) T) ((-1133 . -804) T) ((-882 . -132) T) ((-1133 . -801) T) ((-1296 . -1298) 111043) ((-1133 . -736) T) ((-664 . -658) 111017) ((-302 . -623) 110758) ((-1155 . -626) 110676) ((-1048 . -34) T) ((-825 . -858) 110655) ((-590 . -315) T) ((-574 . -315) T) ((-505 . -315) T) ((-1305 . -727) 110625) ((-704 . -386) 110607) ((-704 . -347) 110589) ((-487 . -174) T) ((-390 . -727) 110559) ((-876 . -626) 110494) ((-881 . -860) NIL) ((-574 . -1035) T) ((-505 . -1035) T) ((-1146 . -623) 110476) ((-1126 . -244) 110455) ((-216 . -102) T) ((-1163 . -102) T) ((-71 . -623) 110437) ((-1155 . -1062) T) ((-1192 . -38) 110334) ((-868 . -623) 110316) ((-574 . -555) T) ((-680 . -1071) T) ((-741 . -960) 110269) ((-363 . -1231) T) ((-1155 . -239) 110248) ((-1095 . -1113) T) ((-1047 . -25) T) ((-1047 . -21) T) ((-1016 . -1069) 110193) ((-916 . -102) T) ((-876 . -1062) T) ((-704 . -911) NIL) ((-364 . -337) 110177) ((-364 . -372) T) ((-361 . -337) 110161) ((-361 . -372) T) ((-353 . -337) 110145) ((-353 . -372) T) ((-497 . -102) T) ((-1293 . -38) 110115) ((-556 . -860) T) ((-533 . -697) 110065) ((-219 . -102) T) ((-1037 . -1051) 109945) ((-1016 . -111) 109874) ((-1188 . -986) 109843) ((-1187 . -986) 109805) ((-530 . -152) 109789) ((-1093 . -379) 109768) ((-360 . -623) 109750) ((-330 . -21) T) ((-363 . -1051) 109727) ((-330 . -25) T) ((-1181 . -986) 109696) ((-48 . -1231) T) ((-76 . -623) 109678) ((-1139 . -986) 109645) ((-709 . -315) T) ((-130 . -854) T) ((-921 . -372) T) ((-388 . -25) T) ((-388 . -21) T) ((-921 . -337) 109632) ((-86 . -623) 109614) ((-709 . -1035) T) ((-687 . -860) T) ((-1265 . -132) T) ((-1244 . -132) T) ((-912 . -1023) 109598) ((-846 . -21) T) ((-48 . -1051) 109541) ((-846 . -25) T) ((-837 . -25) T) ((-837 . -21) T) ((-1126 . -656) 109291) ((-1303 . -1071) T) ((-559 . -102) T) ((-1301 . -1071) T) ((-664 . -736) T) ((-1117 . -628) 109194) ((-1016 . -626) 109124) ((-1304 . -1069) 109108) ((-825 . -421) 109077) ((-103 . -120) 109061) ((-130 . -1113) T) ((-52 . -1113) T) ((-937 . -623) 109043) ((-881 . -1005) 109020) ((-833 . -102) T) ((-1304 . -111) 108999) ((-663 . -38) 108969) ((-581 . -860) T) ((-364 . -1125) T) ((-361 . -1125) T) ((-353 . -1125) T) ((-271 . -1125) T) ((-253 . -1125) T) ((-1163 . -317) 108773) ((-633 . -315) 108752) ((-1101 . -235) 108739) ((-674 . -23) T) ((-534 . -1096) T) ((-319 . -1113) T) ((-492 . -233) 108708) ((-153 . -1071) T) ((-364 . -23) T) ((-361 . -23) T) ((-353 . -23) T) ((-118 . -315) T) ((-271 . -23) T) ((-253 . -23) T) ((-1016 . -1062) T) ((-722 . -920) 108687) ((-1170 . -626) 108664) ((-1016 . -239) 108636) ((-1016 . -249) T) ((-118 . -1035) NIL) ((-921 . -1125) T) ((-1266 . -462) 108615) ((-1245 . -462) 108594) ((-533 . -623) 108526) ((-722 . -658) 108415) ((-417 . -1069) 108367) ((-514 . -623) 108349) ((-921 . -23) T) ((-497 . -317) NIL) ((-1304 . -626) 108305) ((-484 . -132) T) ((-219 . -317) NIL) ((-417 . -111) 108243) ((-825 . -1071) 108173) ((-747 . -1111) 108157) ((-1265 . -503) 108123) ((-1244 . -503) 108089) ((-558 . -854) T) ((-142 . -1111) 108071) ((-487 . -298) T) ((-1304 . -1062) T) ((-1236 . -102) T) ((-1076 . -102) T) ((-853 . -626) 107939) ((-510 . -524) NIL) ((-492 . -244) 107918) ((-417 . -626) 107816) ((-974 . -1064) 107699) ((-745 . -1064) 107669) ((-974 . -650) 107566) ((-1186 . -146) 107545) ((-745 . -650) 107515) ((-463 . -1064) 107485) ((-1186 . -148) 107464) ((-1138 . -148) 107443) ((-1138 . -146) 107422) ((-645 . -1069) 107406) ((-617 . -1069) 107390) ((-463 . -650) 107360) ((-1188 . -1272) 107344) ((-1188 . -1259) 107321) ((-1187 . -1264) 107282) ((-680 . -1113) T) ((-680 . -1066) 107222) ((-1187 . -1259) 107192) ((-558 . -1113) T) ((-497 . -1165) T) ((-1187 . -1262) 107176) ((-1181 . -1243) 107137) ((-828 . -273) 107121) ((-219 . -1165) T) ((-352 . -931) T) ((-99 . -1231) T) ((-645 . -111) 107100) ((-617 . -111) 107079) ((-1181 . -1259) 107056) ((-853 . -1062) 107035) ((-1181 . -1241) 107019) ((-525 . -25) T) ((-505 . -310) T) ((-521 . -23) T) ((-520 . -25) T) ((-518 . -25) T) ((-517 . -23) T) ((-428 . -1064) 106993) ((-417 . -1062) T) ((-327 . -1071) T) ((-704 . -315) T) ((-428 . -650) 106967) ((-108 . -858) T) ((-722 . -736) T) ((-417 . -249) T) ((-417 . -239) 106946) ((-388 . -235) 106933) ((-497 . -38) 106883) ((-219 . -38) 106833) ((-484 . -503) 106799) ((-1238 . -377) T) ((-1172 . -1157) T) ((-1114 . -102) T) ((-837 . -235) 106772) ((-711 . -623) 106754) ((-711 . -624) 106669) ((-724 . -21) T) ((-724 . -25) T) ((-1148 . -102) T) ((-492 . -656) 106419) ((-135 . -623) 106401) ((-117 . -623) 106383) ((-158 . -25) T) ((-1303 . -1113) T) ((-882 . -649) 106331) ((-1301 . -1113) T) ((-974 . -102) T) ((-745 . -102) T) ((-725 . -102) T) ((-463 . -102) T) ((-826 . -462) 106282) ((-44 . -1113) T) ((-1101 . -860) T) ((-1076 . -317) 106133) ((-674 . -132) T) ((-1067 . -656) 106102) ((-680 . -727) 106086) ((-297 . -1071) T) ((-364 . -132) T) ((-361 . -132) T) ((-353 . -132) T) ((-271 . -132) T) ((-253 . -132) T) ((-394 . -656) 106055) ((-428 . -102) T) ((-153 . -1113) T) ((-45 . -231) 106005) ((-809 . -1064) 105989) ((-969 . -860) 105968) ((-1012 . -658) 105870) ((-809 . -650) 105854) ((-246 . -1288) 105824) ((-1037 . -315) T) ((-302 . -1069) 105745) ((-921 . -132) T) ((-40 . -931) T) ((-497 . -410) 105727) ((-363 . -315) T) ((-219 . -410) 105709) ((-1093 . -421) 105693) ((-302 . -111) 105609) ((-1197 . -860) T) ((-1196 . -860) T) ((-882 . -25) T) ((-882 . -21) T) ((-348 . -623) 105591) ((-1267 . -47) 105535) ((-227 . -148) T) ((-176 . -623) 105517) ((-1126 . -858) 105496) ((-784 . -623) 105478) ((-129 . -860) T) ((-618 . -241) 105425) ((-485 . -241) 105375) ((-1303 . -727) 105345) ((-48 . -315) T) ((-1301 . -727) 105315) ((-65 . -626) 105244) ((-975 . -1113) T) ((-825 . -1113) 105034) ((-320 . -102) T) ((-912 . -1231) T) ((-48 . -1035) T) ((-1244 . -649) 104942) ((-699 . -102) 104920) ((-44 . -727) 104904) ((-560 . -102) T) ((-302 . -626) 104835) ((-67 . -392) T) ((-67 . -405) T) ((-672 . -23) T) ((-827 . -656) 104771) ((-680 . -771) T) ((-1228 . -1113) 104749) ((-360 . -1069) 104694) ((-685 . -1113) 104672) ((-1075 . -148) T) ((-963 . -148) 104651) ((-963 . -146) 104630) ((-809 . -102) T) ((-153 . -727) 104614) ((-491 . -148) 104593) ((-491 . -146) 104572) ((-360 . -111) 104501) ((-1093 . -1071) T) ((-330 . -860) 104480) ((-1273 . -986) 104449) ((-637 . -1113) T) ((-1266 . -986) 104411) ((-521 . -132) T) ((-517 . -132) T) ((-303 . -231) 104361) ((-368 . -1071) T) ((-362 . -1071) T) ((-354 . -1071) T) ((-302 . -1062) 104303) ((-1245 . -986) 104272) ((-388 . -860) T) ((-108 . -1071) T) ((-1012 . -736) T) ((-880 . -931) T) ((-853 . -805) 104251) ((-853 . -802) 104230) ((-428 . -317) 104169) ((-478 . -102) T) ((-605 . -986) 104138) ((-327 . -1113) T) ((-417 . -805) 104117) ((-417 . -802) 104096) ((-510 . -499) 104078) ((-1267 . -1051) 104044) ((-1265 . -21) T) ((-1265 . -25) T) ((-1244 . -21) T) ((-1244 . -25) T) ((-825 . -727) 103986) ((-360 . -626) 103916) ((-709 . -414) T) ((-1294 . -1231) T) ((-1126 . -421) 103885) ((-616 . -102) T) ((-1090 . -1231) T) ((-1016 . -377) NIL) ((-681 . -102) T) ((-182 . -102) T) ((-162 . -102) T) ((-157 . -102) T) ((-155 . -102) T) ((-103 . -34) T) ((-1192 . -656) 103795) ((-747 . -1231) T) ((-741 . -1064) 103638) ((-44 . -771) T) ((-741 . -650) 103487) ((-603 . -102) T) ((-663 . -666) 103471) ((-77 . -406) T) ((-77 . -405) T) ((-142 . -1231) T) ((-881 . -148) T) ((-881 . -146) NIL) ((-1230 . -93) T) ((-360 . -1062) T) ((-70 . -392) T) ((-70 . -405) T) ((-1179 . -102) T) ((-680 . -524) 103404) ((-1293 . -656) 103349) ((-699 . -317) 103287) ((-974 . -38) 103184) ((-1194 . -623) 103166) ((-745 . -38) 103136) ((-560 . -317) 102940) ((-1188 . -1064) 102823) ((-324 . -1231) T) ((-360 . -239) T) ((-360 . -249) T) ((-321 . -1231) T) ((-297 . -1113) T) ((-1187 . -1064) 102658) ((-1181 . -1064) 102448) ((-1139 . -1064) 102331) ((-1188 . -650) 102228) ((-1187 . -650) 102069) ((-721 . -1235) T) ((-1181 . -650) 101865) ((-1170 . -661) 101849) ((-1139 . -650) 101746) ((-1225 . -566) 101725) ((-829 . -395) 101709) ((-721 . -566) T) ((-324 . -895) 101693) ((-324 . -897) 101618) ((-137 . -1231) T) ((-321 . -895) 101579) ((-321 . -897) NIL) ((-809 . -317) 101544) ((-327 . -727) 101385) ((-396 . -395) 101369) ((-332 . -331) 101346) ((-495 . -102) T) ((-484 . -25) T) ((-484 . -21) T) ((-428 . -38) 101320) ((-324 . -1051) 100983) ((-227 . -1216) T) ((-227 . -1219) T) ((-3 . -623) 100965) ((-321 . -1051) 100895) ((-882 . -235) 100868) ((-2 . -1113) T) ((-2 . |RecordCategory|) T) ((-843 . -623) 100850) ((-1126 . -1071) 100780) ((-590 . -931) T) ((-574 . -830) T) ((-574 . -931) T) ((-505 . -931) T) ((-137 . -1051) 100764) ((-227 . -95) T) ((-171 . -148) 100743) ((-75 . -451) T) ((0 . -623) 100725) ((-75 . -405) T) ((-171 . -146) 100676) ((-227 . -35) T) ((-49 . -623) 100658) ((-487 . -1071) T) ((-497 . -233) 100640) ((-494 . -981) 100624) ((-492 . -858) 100603) ((-219 . -233) 100585) ((-81 . -451) T) ((-81 . -405) T) ((-1159 . -34) T) ((-825 . -174) 100564) ((-741 . -102) T) ((-663 . -656) 100523) ((-1039 . -623) 100490) ((-510 . -294) 100440) ((-324 . -386) 100409) ((-321 . -386) 100370) ((-321 . -347) 100331) ((-1098 . -623) 100313) ((-826 . -960) 100260) ((-672 . -132) T) ((-1254 . -146) 100239) ((-1254 . -148) 100218) ((-1188 . -102) T) ((-1187 . -102) T) ((-1181 . -102) T) ((-1173 . -1113) T) ((-1139 . -102) T) ((-224 . -34) T) ((-297 . -727) 100205) ((-1173 . -620) 100181) ((-603 . -317) NIL) ((-494 . -1113) 100159) ((-1163 . -231) 100109) ((-400 . -623) 100091) ((-520 . -860) T) ((-1133 . -1231) T) ((-1273 . -1272) 100075) ((-1273 . -1259) 100052) ((-1266 . -1264) 100013) ((-1266 . -1259) 99983) ((-1266 . -1262) 99967) ((-1245 . -1243) 99928) ((-1245 . -1259) 99905) ((-631 . -623) 99887) ((-1245 . -1241) 99871) ((-709 . -931) T) ((-1188 . -292) 99837) ((-1187 . -292) 99803) ((-1181 . -292) 99769) ((-1093 . -1113) T) ((-1074 . -1113) T) ((-48 . -310) T) ((-324 . -911) 99735) ((-321 . -911) NIL) ((-1074 . -1081) 99714) ((-1133 . -897) 99696) ((-809 . -38) 99680) ((-271 . -649) 99628) ((-253 . -649) 99576) ((-711 . -1069) 99563) ((-605 . -1259) 99540) ((-1139 . -292) 99506) ((-327 . -174) 99437) ((-368 . -1113) T) ((-362 . -1113) T) ((-354 . -1113) T) ((-510 . -19) 99419) ((-1133 . -1051) 99401) ((-1115 . -152) 99385) ((-108 . -1113) T) ((-117 . -1069) 99372) ((-721 . -372) T) ((-510 . -614) 99347) ((-711 . -111) 99332) ((-1265 . -235) 99278) ((-1244 . -235) 99177) ((-446 . -102) T) ((-886 . -1276) T) ((-256 . -102) T) ((-45 . -1162) 99127) ((-117 . -111) 99112) ((-1306 . -623) 99079) ((-1306 . -500) 99061) ((-645 . -730) T) ((-617 . -730) T) ((-1283 . -623) 99043) ((-1239 . -623) 99025) ((-1237 . -860) T) ((-1225 . -1125) T) ((-1225 . -23) T) ((-825 . -524) 98958) ((-1048 . -1231) T) ((-246 . -1064) 98855) ((-1186 . -462) 98786) ((-1181 . -317) 98671) ((-954 . -152) 98655) ((-1180 . -1113) T) ((-1172 . -1113) T) ((-246 . -650) 98597) ((-1155 . -658) 98535) ((-1139 . -317) 98522) ((-1138 . -462) 98473) ((-535 . -102) T) ((-530 . -102) 98423) ((-1100 . -566) 98354) ((-1100 . -1235) 98333) ((-1093 . -727) 98201) ((-792 . -1235) 98180) ((-790 . -1235) 98159) ((-62 . -1231) T) ((-487 . -623) 98111) ((-487 . -624) 98033) ((-1017 . -1064) 97983) ((-1007 . -1113) T) ((-792 . -566) 97894) ((-790 . -566) 97825) ((-492 . -421) 97794) ((-633 . -931) 97773) ((-464 . -1235) 97752) ((-741 . -317) 97739) ((-711 . -626) 97711) ((-408 . -623) 97693) ((-685 . -524) 97626) ((-674 . -25) T) ((-674 . -21) T) ((-464 . -566) 97557) ((-364 . -25) T) ((-364 . -21) T) ((-118 . -931) T) ((-118 . -830) NIL) ((-361 . -25) T) ((-361 . -21) T) ((-353 . -25) T) ((-353 . -21) T) ((-271 . -25) T) ((-271 . -21) T) ((-253 . -25) T) ((-253 . -21) T) ((-83 . -393) T) ((-83 . -405) T) ((-135 . -626) 97539) ((-117 . -626) 97511) ((-1017 . -650) 97461) ((-954 . -993) 97445) ((-925 . -650) 97397) ((-925 . -1064) 97349) ((-921 . -21) T) ((-921 . -25) T) ((-882 . -860) 97300) ((-876 . -658) 97260) ((-721 . -1125) T) ((-721 . -23) T) ((-711 . -1062) T) ((-711 . -239) T) ((-297 . -174) T) ((-664 . -1231) T) ((-319 . -93) T) ((-657 . -1113) 97238) ((-642 . -620) 97213) ((-642 . -1113) T) ((-591 . -1235) T) ((-591 . -566) T) ((-528 . -1235) T) ((-528 . -566) T) ((-497 . -656) 97163) ((-484 . -235) 97109) ((-437 . -1064) 97093) ((-437 . -650) 97077) ((-368 . -727) 97029) ((-362 . -727) 96981) ((-348 . -1069) 96965) ((-354 . -727) 96917) ((-348 . -111) 96896) ((-176 . -1069) 96828) ((-219 . -656) 96778) ((-176 . -111) 96689) ((-108 . -727) 96639) ((-281 . -1113) T) ((-280 . -1113) T) ((-279 . -1113) T) ((-278 . -1113) T) ((-277 . -1113) T) ((-276 . -1113) T) ((-275 . -1113) T) ((-214 . -1113) T) ((-213 . -1113) T) ((-171 . -1219) 96617) ((-171 . -1216) 96595) ((-211 . -1113) T) ((-210 . -1113) T) ((-117 . -1062) T) ((-209 . -1113) T) ((-208 . -1113) T) ((-205 . -1113) T) ((-204 . -1113) T) ((-203 . -1113) T) ((-202 . -1113) T) ((-201 . -1113) T) ((-200 . -1113) T) ((-199 . -1113) T) ((-198 . -1113) T) ((-197 . -1113) T) ((-196 . -1113) T) ((-195 . -1113) T) ((-246 . -102) 96385) ((-171 . -35) 96363) ((-171 . -95) 96341) ((-664 . -1051) 96237) ((-492 . -1071) 96167) ((-1126 . -1113) 95957) ((-1155 . -34) T) ((-680 . -499) 95941) ((-73 . -1231) T) ((-105 . -623) 95923) ((-1305 . -623) 95905) ((-390 . -623) 95887) ((-348 . -626) 95839) ((-176 . -626) 95756) ((-1230 . -500) 95737) ((-741 . -38) 95586) ((-581 . -1219) T) ((-581 . -1216) T) ((-541 . -623) 95568) ((-530 . -317) 95506) ((-510 . -623) 95488) ((-510 . -624) 95470) ((-1230 . -623) 95436) ((-1181 . -1165) NIL) ((-1040 . -1084) 95405) ((-1040 . -1113) T) ((-1017 . -102) T) ((-984 . -102) T) ((-925 . -102) T) ((-904 . -1051) 95382) ((-1155 . -736) T) ((-1016 . -658) 95289) ((-486 . -1113) T) ((-473 . -1113) T) ((-596 . -23) T) ((-581 . -35) T) ((-581 . -95) T) ((-437 . -102) T) ((-1076 . -231) 95235) ((-1188 . -38) 95132) ((-876 . -736) T) ((-704 . -931) T) ((-521 . -25) T) ((-517 . -21) T) ((-517 . -25) T) ((-1187 . -38) 94973) ((-348 . -1062) T) ((-1181 . -38) 94769) ((-1093 . -174) T) ((-176 . -1062) T) ((-1139 . -38) 94666) ((-722 . -47) 94643) ((-368 . -174) T) ((-362 . -174) T) ((-529 . -57) 94617) ((-507 . -57) 94567) ((-360 . -1300) 94544) ((-227 . -462) T) ((-327 . -298) 94495) ((-354 . -174) T) ((-176 . -249) T) ((-1244 . -860) 94394) ((-108 . -174) T) ((-882 . -1005) 94378) ((-668 . -1125) T) ((-591 . -372) T) ((-591 . -337) 94365) ((-528 . -337) 94342) ((-528 . -372) T) ((-324 . -315) 94321) ((-321 . -315) T) ((-612 . -860) 94300) ((-1126 . -727) 94242) ((-530 . -290) 94226) ((-668 . -23) T) ((-428 . -233) 94210) ((-321 . -1035) NIL) ((-345 . -23) T) ((-103 . -1023) 94194) ((-45 . -36) 94173) ((-622 . -1113) T) ((-360 . -377) T) ((-534 . -102) T) ((-505 . -27) T) ((-246 . -317) 94111) ((-1100 . -1125) T) ((-1304 . -658) 94085) ((-792 . -1125) T) ((-790 . -1125) T) ((-1192 . -421) 94069) ((-464 . -1125) T) ((-1075 . -462) T) ((-1164 . -1113) T) ((-963 . -462) 94020) ((-1128 . -1096) T) ((-110 . -1113) T) ((-1100 . -23) T) ((-1173 . -524) 93803) ((-827 . -1071) T) ((-792 . -23) T) ((-790 . -23) T) ((-491 . -462) 93754) ((-471 . -23) T) ((-390 . -391) 93733) ((-364 . -235) 93706) ((-361 . -235) 93679) ((-353 . -235) 93652) ((-464 . -23) T) ((-271 . -235) 93625) ((-96 . -1113) T) ((-722 . -1231) T) ((-680 . -294) 93602) ((-494 . -524) 93535) ((-1273 . -1064) 93418) ((-1273 . -650) 93315) ((-1266 . -650) 93156) ((-1266 . -1064) 92991) ((-1245 . -650) 92787) ((-297 . -298) T) ((-1245 . -1064) 92577) ((-1095 . -623) 92559) ((-1095 . -624) 92540) ((-417 . -920) 92519) ((-1225 . -132) T) ((-50 . -1125) T) ((-1181 . -410) 92471) ((-1037 . -931) T) ((-1016 . -736) T) ((-853 . -658) 92444) ((-722 . -897) NIL) ((-606 . -1064) 92404) ((-591 . -1125) T) ((-528 . -1125) T) ((-605 . -1064) 92287) ((-1170 . -34) T) ((-1017 . -317) NIL) ((-825 . -499) 92271) ((-606 . -650) 92244) ((-363 . -931) T) ((-605 . -650) 92141) ((-921 . -235) 92128) ((-417 . -658) 92044) ((-50 . -23) T) ((-721 . -132) T) ((-722 . -1051) 91924) ((-591 . -23) T) ((-108 . -524) NIL) ((-528 . -23) T) ((-171 . -419) 91895) ((-1153 . -1113) T) ((-1296 . -1295) 91879) ((-711 . -805) T) ((-711 . -802) T) ((-1133 . -315) T) ((-388 . -148) T) ((-288 . -623) 91861) ((-287 . -623) 91843) ((-1244 . -1005) 91813) ((-48 . -931) T) ((-685 . -499) 91797) ((-258 . -1288) 91767) ((-257 . -1288) 91737) ((-1190 . -860) T) ((-1101 . -237) T) ((-1126 . -174) 91716) ((-1133 . -1035) T) ((-1059 . -34) T) ((-846 . -148) 91695) ((-846 . -146) 91674) ((-747 . -107) 91658) ((-622 . -133) T) ((-492 . -1113) 91448) ((-1192 . -1071) T) ((-881 . -462) T) ((-85 . -1231) T) ((-246 . -38) 91418) ((-142 . -107) 91400) ((-722 . -386) 91384) ((-843 . -626) 91252) ((-1304 . -736) T) ((-1293 . -1071) T) ((-1273 . -102) T) ((-1133 . -555) T) ((-589 . -102) T) ((-130 . -500) 91234) ((-1266 . -102) T) ((-400 . -1069) 91218) ((-1186 . -960) 91187) ((-44 . -294) 91164) ((-130 . -623) 91131) ((-52 . -623) 91113) ((-1138 . -960) 91080) ((-663 . -421) 91064) ((-1245 . -102) T) ((-1172 . -524) NIL) ((-672 . -25) T) ((-631 . -1069) 91048) ((-672 . -21) T) ((-974 . -656) 90958) ((-745 . -656) 90903) ((-725 . -656) 90875) ((-400 . -111) 90854) ((-224 . -261) 90838) ((-1067 . -1066) 90778) ((-1067 . -1113) T) ((-1017 . -1165) T) ((-828 . -1113) T) ((-463 . -656) 90693) ((-352 . -1235) T) ((-645 . -658) 90677) ((-631 . -111) 90656) ((-617 . -658) 90640) ((-606 . -102) T) ((-319 . -500) 90621) ((-596 . -132) T) ((-605 . -102) T) ((-424 . -1113) T) ((-394 . -1113) T) ((-319 . -623) 90587) ((-229 . -1113) 90565) ((-657 . -524) 90498) ((-642 . -524) 90342) ((-843 . -1062) 90321) ((-654 . -152) 90305) ((-352 . -566) T) ((-722 . -911) 90248) ((-560 . -231) 90198) ((-1273 . -292) 90164) ((-1266 . -292) 90130) ((-1093 . -298) 90081) ((-497 . -858) T) ((-225 . -1125) T) ((-1245 . -292) 90047) ((-1225 . -503) 90013) ((-1017 . -38) 89963) ((-219 . -858) T) ((-428 . -656) 89922) ((-925 . -38) 89874) ((-853 . -804) 89853) ((-853 . -801) 89832) ((-853 . -736) 89811) ((-368 . -298) T) ((-362 . -298) T) ((-354 . -298) T) ((-171 . -462) 89742) ((-437 . -38) 89726) ((-108 . -298) T) ((-225 . -23) T) ((-417 . -804) 89705) ((-417 . -801) 89684) ((-417 . -736) T) ((-510 . -296) 89659) ((-487 . -1069) 89624) ((-668 . -132) T) ((-631 . -626) 89593) ((-1126 . -524) 89526) ((-345 . -132) T) ((-171 . -412) 89505) ((-492 . -727) 89447) ((-825 . -294) 89424) ((-487 . -111) 89380) ((-663 . -1071) T) ((-826 . -1064) 89223) ((-1292 . -1096) T) ((-1254 . -462) 89154) ((-826 . -650) 89003) ((-1291 . -1096) T) ((-1100 . -132) T) ((-1067 . -727) 88945) ((-792 . -132) T) ((-790 . -132) T) ((-581 . -462) T) ((-1040 . -524) 88878) ((-631 . -1062) T) ((-602 . -1113) T) ((-543 . -175) T) ((-471 . -132) T) ((-464 . -132) T) ((-1012 . -1231) 88819) ((-45 . -1113) T) ((-394 . -727) 88789) ((-827 . -1113) T) ((-486 . -524) 88722) ((-473 . -524) 88655) ((-1306 . -626) 88637) ((-463 . -376) 88607) ((-45 . -620) 88586) ((-324 . -310) T) ((-487 . -626) 88536) ((-1245 . -317) 88421) ((-680 . -623) 88383) ((-59 . -860) 88362) ((-1017 . -410) 88344) ((-558 . -623) 88326) ((-809 . -656) 88285) ((-825 . -614) 88262) ((-526 . -860) 88241) ((-506 . -860) 88220) ((-40 . -1235) T) ((-1012 . -1051) 88116) ((-50 . -132) T) ((-591 . -132) T) ((-528 . -132) T) ((-302 . -658) 87976) ((-352 . -337) 87953) ((-352 . -372) T) ((-330 . -331) 87930) ((-327 . -294) 87888) ((-40 . -566) T) ((-388 . -1216) T) ((-388 . -1219) T) ((-1048 . -1207) 87863) ((-1203 . -241) 87813) ((-1181 . -233) 87765) ((-338 . -1113) T) ((-388 . -95) T) ((-388 . -35) T) ((-1048 . -107) 87711) ((-487 . -1062) T) ((-1305 . -1069) 87695) ((-489 . -241) 87645) ((-1173 . -499) 87579) ((-1296 . -1064) 87563) ((-390 . -1069) 87547) ((-1296 . -650) 87517) ((-487 . -249) T) ((-826 . -102) T) ((-724 . -148) 87496) ((-724 . -146) 87475) ((-494 . -499) 87459) ((-495 . -344) 87428) ((-1305 . -111) 87407) ((-522 . -1113) T) ((-492 . -174) 87386) ((-1012 . -386) 87370) ((-423 . -102) T) ((-390 . -111) 87349) ((-1012 . -347) 87333) ((-286 . -996) 87317) ((-285 . -996) 87301) ((-1303 . -623) 87283) ((-1301 . -623) 87265) ((-110 . -524) NIL) ((-1186 . -1257) 87249) ((-864 . -862) 87233) ((-1192 . -1113) T) ((-103 . -1231) T) ((-963 . -960) 87194) ((-827 . -727) 87136) ((-1245 . -1165) NIL) ((-491 . -960) 87081) ((-1075 . -144) T) ((-60 . -102) 87059) ((-44 . -623) 87041) ((-78 . -623) 87023) ((-360 . -658) 86968) ((-1293 . -1113) T) ((-521 . -860) T) ((-297 . -294) 86947) ((-352 . -1125) T) ((-303 . -1113) T) ((-1012 . -911) 86906) ((-303 . -620) 86885) ((-1305 . -626) 86834) ((-1273 . -38) 86731) ((-1266 . -38) 86572) ((-1245 . -38) 86368) ((-497 . -1071) T) ((-390 . -626) 86352) ((-219 . -1071) T) ((-352 . -23) T) ((-153 . -623) 86334) ((-843 . -805) 86313) ((-843 . -802) 86292) ((-1230 . -626) 86273) ((-606 . -38) 86246) ((-605 . -38) 86143) ((-880 . -566) T) ((-225 . -132) T) ((-327 . -1015) 86109) ((-79 . -623) 86091) ((-722 . -315) 86070) ((-302 . -736) 85972) ((-834 . -102) T) ((-874 . -854) T) ((-302 . -483) 85951) ((-1296 . -102) T) ((-40 . -372) T) ((-882 . -148) 85930) ((-495 . -656) 85912) ((-882 . -146) 85891) ((-1172 . -499) 85873) ((-1305 . -1062) T) ((-492 . -524) 85806) ((-1159 . -1231) T) ((-975 . -623) 85788) ((-657 . -499) 85772) ((-642 . -499) 85703) ((-825 . -623) 85434) ((-48 . -27) T) ((-1192 . -727) 85331) ((-663 . -1113) T) ((-871 . -870) T) ((-446 . -373) 85305) ((-741 . -656) 85215) ((-1115 . -102) T) ((-983 . -1113) T) ((-874 . -1113) T) ((-826 . -317) 85202) ((-543 . -537) T) ((-543 . -586) T) ((-1301 . -391) 85174) ((-1067 . -524) 85107) ((-1173 . -294) 85083) ((-246 . -233) 85052) ((-258 . -1064) 84949) ((-257 . -1064) 84846) ((-1293 . -727) 84816) ((-1180 . -93) T) ((-1007 . -93) T) ((-827 . -174) 84795) ((-258 . -650) 84737) ((-257 . -650) 84679) ((-1228 . -500) 84656) ((-229 . -524) 84589) ((-631 . -805) 84568) ((-631 . -802) 84547) ((-1228 . -623) 84459) ((-224 . -1231) T) ((-685 . -623) 84391) ((-1188 . -656) 84301) ((-1170 . -1023) 84285) ((-954 . -102) 84235) ((-360 . -736) T) ((-871 . -623) 84217) ((-1187 . -656) 84099) ((-1181 . -656) 83936) ((-1139 . -656) 83846) ((-1245 . -410) 83798) ((-1126 . -499) 83782) ((-60 . -317) 83720) ((-339 . -102) T) ((-1225 . -21) T) ((-1225 . -25) T) ((-40 . -1125) T) ((-721 . -21) T) ((-637 . -623) 83702) ((-525 . -331) 83681) ((-721 . -25) T) ((-449 . -102) T) ((-108 . -294) NIL) ((-932 . -1125) T) ((-40 . -23) T) ((-781 . -1125) T) ((-574 . -1235) T) ((-505 . -1235) T) ((-327 . -623) 83663) ((-1017 . -233) 83645) ((-171 . -167) 83629) ((-590 . -566) T) ((-574 . -566) T) ((-505 . -566) T) ((-781 . -23) T) ((-1265 . -148) 83608) ((-1173 . -614) 83584) ((-1265 . -146) 83563) ((-1040 . -499) 83547) ((-1244 . -146) 83472) ((-1244 . -148) 83397) ((-1296 . -1302) 83376) ((-486 . -499) 83360) ((-473 . -499) 83344) ((-533 . -34) T) ((-663 . -727) 83314) ((-112 . -980) T) ((-672 . -860) 83293) ((-1192 . -174) 83244) ((-374 . -102) T) ((-246 . -244) 83223) ((-258 . -102) T) ((-257 . -102) T) ((-1254 . -960) 83192) ((-251 . -860) 83171) ((-826 . -38) 83020) ((-45 . -524) 82812) ((-1172 . -294) 82762) ((-216 . -1113) T) ((-1163 . -1113) T) ((-1163 . -620) 82741) ((-596 . -25) T) ((-596 . -21) T) ((-1115 . -317) 82679) ((-974 . -421) 82663) ((-709 . -1235) T) ((-642 . -294) 82616) ((-1100 . -649) 82564) ((-792 . -649) 82512) ((-790 . -649) 82460) ((-352 . -132) T) ((-297 . -623) 82442) ((-916 . -1113) T) ((-709 . -566) T) ((-130 . -626) 82424) ((-880 . -1125) T) ((-464 . -649) 82372) ((-916 . -914) 82356) ((-388 . -462) T) ((-497 . -1113) T) ((-954 . -317) 82294) ((-711 . -658) 82266) ((-559 . -854) T) ((-219 . -1113) T) ((-324 . -931) 82245) ((-321 . -931) T) ((-321 . -830) NIL) ((-400 . -730) T) ((-880 . -23) T) ((-117 . -658) 82232) ((-484 . -146) 82211) ((-428 . -421) 82195) ((-484 . -148) 82174) ((-110 . -499) 82156) ((-319 . -626) 82137) ((-2 . -623) 82119) ((-188 . -102) T) ((-1172 . -19) 82101) ((-1172 . -614) 82076) ((-668 . -21) T) ((-668 . -25) T) ((-603 . -1157) T) ((-1126 . -294) 82053) ((-345 . -25) T) ((-345 . -21) T) ((-246 . -656) 81803) ((-505 . -372) T) ((-1296 . -38) 81773) ((-1186 . -1064) 81596) ((-1155 . -1231) T) ((-1138 . -1064) 81439) ((-864 . -1064) 81423) ((-642 . -614) 81398) ((-1303 . -1069) 81382) ((-1301 . -1069) 81366) ((-1186 . -650) 81195) ((-1138 . -650) 81044) ((-864 . -650) 81014) ((-1265 . -1216) 80980) ((-1265 . -1219) 80946) ((-559 . -1113) T) ((-1100 . -25) T) ((-1100 . -21) T) ((-541 . -802) T) ((-541 . -805) T) ((-118 . -1235) T) ((-974 . -1071) T) ((-633 . -566) T) ((-792 . -25) T) ((-792 . -21) T) ((-790 . -21) T) ((-790 . -25) T) ((-745 . -1071) T) ((-725 . -1071) T) ((-680 . -1069) 80930) ((-527 . -1096) T) ((-471 . -25) T) ((-118 . -566) T) ((-471 . -21) T) ((-464 . -25) T) ((-464 . -21) T) ((-1265 . -95) 80896) ((-1164 . -93) T) ((-1155 . -1051) 80792) ((-827 . -298) 80771) ((-1248 . -102) 80749) ((-833 . -1113) T) ((-977 . -980) T) ((-680 . -111) 80728) ((-627 . -1231) T) ((-303 . -524) 80520) ((-1245 . -233) 80472) ((-1244 . -1216) 80438) ((-1244 . -1219) 80404) ((-258 . -317) 80342) ((-257 . -317) 80280) ((-1239 . -377) T) ((-1173 . -624) NIL) ((-1173 . -623) 80262) ((-1236 . -854) T) ((-1155 . -386) 80246) ((-1133 . -830) T) ((-96 . -93) T) ((-1133 . -931) T) ((-1126 . -614) 80223) ((-1093 . -624) 80207) ((-1017 . -656) 80157) ((-925 . -656) 80094) ((-825 . -296) 80071) ((-494 . -623) 80003) ((-618 . -152) 79950) ((-497 . -727) 79900) ((-428 . -1071) T) ((-492 . -499) 79884) ((-437 . -656) 79843) ((-335 . -860) 79822) ((-348 . -658) 79796) ((-50 . -21) T) ((-50 . -25) T) ((-219 . -727) 79746) ((-171 . -734) 79717) ((-176 . -658) 79649) ((-591 . -21) T) ((-591 . -25) T) ((-528 . -25) T) ((-528 . -21) T) ((-485 . -152) 79599) ((-1093 . -623) 79581) ((-1074 . -623) 79563) ((-1006 . -102) T) ((-872 . -102) T) ((-809 . -421) 79526) ((-40 . -132) T) ((-709 . -372) T) ((-711 . -736) T) ((-711 . -804) T) ((-711 . -801) T) ((-214 . -906) T) ((-590 . -1125) T) ((-574 . -1125) T) ((-505 . -1125) T) ((-368 . -623) 79508) ((-362 . -623) 79490) ((-354 . -623) 79472) ((-66 . -406) T) ((-66 . -405) T) ((-108 . -624) 79402) ((-108 . -623) 79344) ((-213 . -906) T) ((-969 . -152) 79328) ((-781 . -132) T) ((-680 . -626) 79246) ((-135 . -736) T) ((-117 . -736) T) ((-1265 . -35) 79212) ((-1067 . -499) 79196) ((-590 . -23) T) ((-574 . -23) T) ((-505 . -23) T) ((-1244 . -95) 79162) ((-1244 . -35) 79128) ((-1186 . -102) T) ((-1138 . -102) T) ((-864 . -102) T) ((-229 . -499) 79112) ((-1303 . -111) 79091) ((-1301 . -111) 79070) ((-44 . -1069) 79054) ((-1303 . -626) 79000) ((-1303 . -1062) T) ((-1301 . -626) 78929) ((-1254 . -1257) 78913) ((-865 . -862) 78897) ((-1192 . -298) 78876) ((-1117 . -1231) T) ((-110 . -294) 78826) ((-1016 . -1231) 78798) ((-129 . -152) 78780) ((-1155 . -911) 78739) ((-44 . -111) 78718) ((-1236 . -1113) T) ((-1195 . -1276) T) ((-1180 . -500) 78699) ((-1180 . -623) 78665) ((-680 . -1062) T) ((-1172 . -624) NIL) ((-1172 . -623) 78647) ((-1076 . -620) 78622) ((-1076 . -1113) T) ((-1007 . -500) 78603) ((-74 . -451) T) ((-74 . -405) T) ((-1007 . -623) 78569) ((-153 . -1069) 78553) ((-680 . -239) 78532) ((-581 . -564) 78516) ((-364 . -148) 78495) ((-364 . -146) 78446) ((-361 . -148) 78425) ((-361 . -146) 78376) ((-353 . -148) 78355) ((-353 . -146) 78306) ((-271 . -146) 78285) ((-271 . -148) 78264) ((-258 . -38) 78234) ((-253 . -148) 78213) ((-118 . -372) T) ((-253 . -146) 78192) ((-257 . -38) 78162) ((-153 . -111) 78141) ((-1016 . -1051) 78029) ((-1181 . -858) NIL) ((-704 . -1235) T) ((-809 . -1071) T) ((-709 . -1125) T) ((-1301 . -1062) T) ((-1170 . -1231) T) ((-1016 . -386) 78006) ((-921 . -146) T) ((-921 . -148) 77988) ((-880 . -132) T) ((-825 . -1069) 77885) ((-709 . -23) T) ((-704 . -566) T) ((-227 . -1064) 77850) ((-657 . -623) 77782) ((-657 . -624) 77743) ((-642 . -624) NIL) ((-642 . -623) 77725) ((-497 . -174) T) ((-227 . -650) 77690) ((-225 . -21) T) ((-219 . -174) T) ((-225 . -25) T) ((-484 . -1219) 77656) ((-484 . -1216) 77622) ((-281 . -623) 77604) ((-280 . -623) 77586) ((-279 . -623) 77568) ((-278 . -623) 77550) ((-277 . -623) 77532) ((-510 . -661) 77514) ((-276 . -623) 77496) ((-348 . -736) T) ((-275 . -623) 77478) ((-110 . -19) 77460) ((-176 . -736) T) ((-510 . -382) 77442) ((-214 . -623) 77424) ((-530 . -1162) 77408) ((-510 . -124) T) ((-110 . -614) 77383) ((-213 . -623) 77365) ((-484 . -35) 77331) ((-484 . -95) 77297) ((-211 . -623) 77279) ((-210 . -623) 77261) ((-209 . -623) 77243) ((-208 . -623) 77225) ((-205 . -623) 77207) ((-204 . -623) 77189) ((-203 . -623) 77171) ((-202 . -623) 77153) ((-201 . -623) 77135) ((-200 . -623) 77117) ((-199 . -623) 77099) ((-546 . -1116) 77051) ((-198 . -623) 77033) ((-197 . -623) 77015) ((-45 . -499) 76952) ((-196 . -623) 76934) ((-195 . -623) 76916) ((-153 . -626) 76885) ((-1128 . -102) T) ((-825 . -111) 76775) ((-654 . -102) 76725) ((-492 . -294) 76702) ((-1304 . -1051) 76686) ((-1126 . -623) 76417) ((-1114 . -1113) T) ((-1059 . -1231) T) ((-1186 . -317) 76404) ((-1075 . -1064) 76391) ((-1148 . -1113) T) ((-963 . -1064) 76234) ((-1138 . -317) 76221) ((-1109 . -1096) T) ((-633 . -1125) T) ((-1075 . -650) 76208) ((-1103 . -1096) T) ((-963 . -650) 76057) ((-1100 . -235) 76030) ((-491 . -1064) 75873) ((-1086 . -1096) T) ((-1079 . -1096) T) ((-1049 . -1096) T) ((-1032 . -1096) T) ((-118 . -1125) T) ((-491 . -650) 75722) ((-792 . -235) 75709) ((-829 . -102) T) ((-636 . -1096) T) ((-633 . -23) T) ((-1163 . -524) 75501) ((-493 . -1096) T) ((-396 . -102) T) ((-332 . -102) T) ((-220 . -1096) T) ((-974 . -1113) T) ((-153 . -1062) T) ((-741 . -421) 75485) ((-118 . -23) T) ((-1016 . -911) 75437) ((-745 . -1113) T) ((-725 . -1113) T) ((-463 . -1113) T) ((-417 . -1231) T) ((-324 . -440) 75421) ((-602 . -93) T) ((-1273 . -656) 75331) ((-1040 . -624) 75292) ((-1037 . -1235) T) ((-227 . -102) T) ((-1040 . -623) 75254) ((-1266 . -656) 75136) ((-826 . -233) 75120) ((-825 . -626) 74850) ((-1245 . -656) 74687) ((-1037 . -566) T) ((-843 . -658) 74660) ((-363 . -1235) T) ((-486 . -623) 74622) ((-486 . -624) 74583) ((-473 . -624) 74544) ((-473 . -623) 74506) ((-606 . -656) 74465) ((-417 . -895) 74449) ((-327 . -1069) 74284) ((-417 . -897) 74209) ((-605 . -656) 74119) ((-853 . -1051) 74015) ((-497 . -524) NIL) ((-492 . -614) 73992) ((-591 . -235) 73979) ((-363 . -566) T) ((-528 . -235) 73966) ((-219 . -524) NIL) ((-882 . -462) T) ((-428 . -1113) T) ((-417 . -1051) 73830) ((-327 . -111) 73651) ((-704 . -372) T) ((-227 . -292) T) ((-1228 . -626) 73628) ((-48 . -1235) T) ((-825 . -1062) 73558) ((-1186 . -1165) 73536) ((-590 . -132) T) ((-574 . -132) T) ((-505 . -132) T) ((-1173 . -296) 73512) ((-48 . -566) T) ((-1075 . -102) T) ((-963 . -102) T) ((-881 . -1064) 73457) ((-324 . -27) 73436) ((-825 . -239) 73388) ((-255 . -845) 73370) ((-246 . -858) 73349) ((-189 . -845) 73331) ((-723 . -102) T) ((-303 . -499) 73268) ((-881 . -650) 73213) ((-491 . -102) T) ((-741 . -1071) T) ((-622 . -623) 73195) ((-622 . -624) 73056) ((-417 . -386) 73040) ((-417 . -347) 73024) ((-1186 . -38) 72853) ((-327 . -626) 72679) ((-1138 . -38) 72528) ((-645 . -1231) 72502) ((-617 . -1231) 72476) ((-864 . -38) 72446) ((-400 . -658) 72430) ((-654 . -317) 72368) ((-1164 . -500) 72349) ((-1164 . -623) 72315) ((-974 . -727) 72212) ((-745 . -727) 72182) ((-224 . -107) 72166) ((-45 . -294) 72066) ((-631 . -658) 72040) ((-320 . -1113) T) ((-297 . -1069) 72027) ((-110 . -623) 72009) ((-110 . -624) 71991) ((-463 . -727) 71961) ((-826 . -260) 71900) ((-699 . -1113) 71878) ((-560 . -1113) T) ((-1188 . -1071) T) ((-1187 . -1071) T) ((-96 . -500) 71859) ((-1181 . -1071) T) ((-297 . -111) 71844) ((-1139 . -1071) T) ((-560 . -620) 71823) ((-96 . -623) 71789) ((-1017 . -858) T) ((-229 . -697) 71747) ((-704 . -1125) T) ((-1225 . -750) 71723) ((-1037 . -372) T) ((-848 . -845) 71705) ((-843 . -804) 71684) ((-417 . -911) 71643) ((-327 . -1062) T) ((-352 . -25) T) ((-352 . -21) T) ((-171 . -1064) 71553) ((-68 . -1231) T) ((-843 . -801) 71532) ((-428 . -727) 71506) ((-809 . -1113) T) ((-722 . -931) 71485) ((-709 . -132) T) ((-171 . -650) 71313) ((-704 . -23) T) ((-497 . -298) T) ((-843 . -736) 71292) ((-327 . -239) 71244) ((-327 . -249) 71223) ((-219 . -298) T) ((-130 . -377) T) ((-1265 . -462) 71202) ((-1244 . -462) 71181) ((-363 . -337) 71158) ((-363 . -372) T) ((-1153 . -623) 71140) ((-45 . -1269) 71090) ((-881 . -102) T) ((-654 . -290) 71074) ((-709 . -1073) T) ((-1292 . -102) T) ((-1291 . -102) T) ((-487 . -658) 71039) ((-478 . -1113) T) ((-45 . -614) 70964) ((-1172 . -296) 70939) ((-297 . -626) 70911) ((-40 . -649) 70850) ((-1254 . -1064) 70673) ((-865 . -1064) 70657) ((-48 . -372) T) ((-1119 . -623) 70639) ((-1254 . -650) 70468) ((-865 . -650) 70438) ((-642 . -296) 70413) ((-826 . -656) 70323) ((-581 . -1064) 70310) ((-492 . -623) 70041) ((-246 . -421) 70010) ((-963 . -317) 69997) ((-581 . -650) 69984) ((-65 . -1231) T) ((-1076 . -524) 69828) ((-681 . -1113) T) ((-633 . -132) T) ((-491 . -317) 69815) ((-616 . -1113) T) ((-556 . -102) T) ((-118 . -132) T) ((-297 . -1062) T) ((-182 . -1113) T) ((-162 . -1113) T) ((-157 . -1113) T) ((-155 . -1113) T) ((-463 . -771) T) ((-31 . -1096) T) ((-974 . -174) 69766) ((-983 . -93) T) ((-1093 . -1069) 69676) ((-631 . -804) 69655) ((-603 . -1113) T) ((-631 . -801) 69634) ((-631 . -736) T) ((-303 . -294) 69613) ((-302 . -1231) T) ((-1067 . -623) 69575) ((-1067 . -624) 69536) ((-1037 . -1125) T) ((-171 . -102) T) ((-282 . -860) T) ((-1179 . -1113) T) ((-828 . -623) 69518) ((-1126 . -296) 69495) ((-1115 . -231) 69479) ((-1016 . -315) T) ((-809 . -727) 69463) ((-368 . -1069) 69415) ((-363 . -1125) T) ((-362 . -1069) 69367) ((-424 . -623) 69349) ((-394 . -623) 69331) ((-354 . -1069) 69283) ((-229 . -623) 69215) ((-1093 . -111) 69111) ((-1037 . -23) T) ((-108 . -1069) 69061) ((-909 . -102) T) ((-851 . -102) T) ((-818 . -102) T) ((-779 . -102) T) ((-687 . -102) T) ((-484 . -462) 69040) ((-428 . -174) T) ((-368 . -111) 68978) ((-362 . -111) 68916) ((-354 . -111) 68854) ((-258 . -233) 68823) ((-257 . -233) 68792) ((-363 . -23) T) ((-71 . -1231) T) ((-227 . -38) 68757) ((-108 . -111) 68691) ((-40 . -25) T) ((-40 . -21) T) ((-680 . -730) T) ((-171 . -292) 68669) ((-48 . -1125) T) ((-932 . -25) T) ((-781 . -25) T) ((-1305 . -658) 68643) ((-1163 . -499) 68580) ((-495 . -1113) T) ((-1296 . -656) 68539) ((-1254 . -102) T) ((-1075 . -1165) T) ((-865 . -102) T) ((-246 . -1071) 68469) ((-975 . -802) 68422) ((-975 . -805) 68375) ((-390 . -658) 68359) ((-48 . -23) T) ((-825 . -805) 68310) ((-825 . -802) 68261) ((-558 . -377) T) ((-303 . -614) 68240) ((-487 . -736) T) ((-581 . -102) T) ((-1093 . -626) 68058) ((-255 . -187) T) ((-189 . -187) T) ((-881 . -317) 68015) ((-663 . -294) 67994) ((-112 . -671) T) ((-360 . -1231) T) ((-368 . -626) 67931) ((-362 . -626) 67868) ((-354 . -626) 67805) ((-76 . -1231) T) ((-108 . -626) 67755) ((-112 . -113) T) ((-1075 . -38) 67742) ((-674 . -383) 67721) ((-963 . -38) 67570) ((-741 . -1113) T) ((-491 . -38) 67419) ((-86 . -1231) T) ((-602 . -500) 67400) ((-1245 . -858) NIL) ((-581 . -292) T) ((-1188 . -1113) T) ((-602 . -623) 67366) ((-1187 . -1113) T) ((-1181 . -1113) T) ((-1093 . -1062) T) ((-360 . -1051) 67343) ((-827 . -500) 67327) ((-1017 . -1071) T) ((-45 . -623) 67309) ((-45 . -624) NIL) ((-925 . -1071) T) ((-827 . -623) 67278) ((-1160 . -102) 67256) ((-1093 . -249) 67207) ((-437 . -1071) T) ((-368 . -1062) T) ((-362 . -1062) T) ((-374 . -373) 67184) ((-354 . -1062) T) ((-352 . -235) 67171) ((-258 . -244) 67150) ((-257 . -244) 67129) ((-1093 . -239) 67054) ((-1139 . -1113) T) ((-302 . -911) 67013) ((-108 . -1062) T) ((-704 . -132) T) ((-428 . -524) 66855) ((-368 . -239) 66834) ((-368 . -249) T) ((-44 . -730) T) ((-362 . -239) 66813) ((-362 . -249) T) ((-354 . -239) 66792) ((-354 . -249) T) ((-1180 . -626) 66773) ((-171 . -317) 66738) ((-108 . -249) T) ((-108 . -239) T) ((-1007 . -626) 66719) ((-327 . -802) T) ((-880 . -21) T) ((-880 . -25) T) ((-417 . -315) T) ((-510 . -34) T) ((-110 . -296) 66694) ((-1126 . -1069) 66591) ((-881 . -1165) NIL) ((-338 . -623) 66573) ((-417 . -1035) 66551) ((-1126 . -111) 66441) ((-701 . -1276) T) ((-446 . -1113) T) ((-256 . -1113) T) ((-1305 . -736) T) ((-63 . -623) 66423) ((-881 . -38) 66368) ((-533 . -1231) T) ((-612 . -152) 66352) ((-522 . -623) 66334) ((-1254 . -317) 66321) ((-741 . -727) 66170) ((-541 . -803) T) ((-541 . -804) T) ((-574 . -649) 66152) ((-505 . -649) 66112) ((-364 . -462) T) ((-361 . -462) T) ((-353 . -462) T) ((-271 . -462) 66063) ((-535 . -1113) T) ((-530 . -1113) 66013) ((-253 . -462) 65964) ((-1163 . -294) 65943) ((-1192 . -623) 65925) ((-699 . -524) 65858) ((-974 . -298) 65837) ((-560 . -524) 65629) ((-258 . -656) 65449) ((-257 . -656) 65256) ((-1293 . -623) 65225) ((-1293 . -500) 65209) ((-1188 . -727) 65106) ((-1186 . -233) 65090) ((-1126 . -626) 64820) ((-171 . -1165) 64799) ((-1187 . -727) 64640) ((-1181 . -727) 64436) ((-977 . -113) T) ((-903 . -102) T) ((-1170 . -684) 64420) ((-1139 . -727) 64317) ((-1037 . -132) T) ((-364 . -412) 64268) ((-361 . -412) 64219) ((-353 . -412) 64170) ((-975 . -377) 64123) ((-809 . -524) 64035) ((-303 . -624) NIL) ((-303 . -623) 64017) ((-921 . -462) T) ((-916 . -294) 63996) ((-825 . -377) 63975) ((-520 . -519) 63954) ((-518 . -519) 63933) ((-497 . -294) NIL) ((-492 . -296) 63910) ((-428 . -298) T) ((-363 . -132) T) ((-219 . -294) NIL) ((-704 . -503) NIL) ((-99 . -1125) T) ((-40 . -235) 63876) ((-171 . -38) 63704) ((-1265 . -986) 63666) ((-1160 . -317) 63604) ((-1244 . -986) 63573) ((-921 . -412) T) ((-1126 . -1062) 63503) ((-1267 . -566) T) ((-1163 . -614) 63482) ((-112 . -860) T) ((-1076 . -499) 63413) ((-590 . -21) T) ((-590 . -25) T) ((-574 . -21) T) ((-574 . -25) T) ((-505 . -25) T) ((-505 . -21) T) ((-1254 . -1165) 63391) ((-1126 . -239) 63343) ((-48 . -132) T) ((-1212 . -102) T) ((-246 . -1113) 63133) ((-881 . -410) 63110) ((-1101 . -102) T) ((-1089 . -102) T) ((-618 . -102) T) ((-485 . -102) T) ((-1254 . -38) 62939) ((-865 . -38) 62909) ((-1047 . -1064) 62883) ((-741 . -174) 62794) ((-663 . -623) 62776) ((-655 . -1096) T) ((-1047 . -650) 62760) ((-581 . -38) 62747) ((-983 . -500) 62728) ((-983 . -623) 62694) ((-969 . -102) 62644) ((-874 . -623) 62626) ((-874 . -624) 62548) ((-603 . -524) NIL) ((-1273 . -1071) T) ((-1266 . -1071) T) ((-330 . -1064) 62530) ((-1245 . -1071) T) ((-1310 . -1125) T) ((-1225 . -148) 62509) ((-1225 . -146) 62488) ((-330 . -650) 62470) ((-711 . -1231) T) ((-1198 . -102) T) ((-1197 . -102) T) ((-1196 . -102) T) ((-1188 . -174) 62421) ((-606 . -1071) T) ((-605 . -1071) T) ((-1187 . -174) 62352) ((-1181 . -174) 62283) ((-388 . -1064) 62248) ((-1164 . -626) 62229) ((-1139 . -174) 62180) ((-1017 . -1113) T) ((-984 . -1113) T) ((-925 . -1113) T) ((-388 . -650) 62145) ((-809 . -807) 62129) ((-709 . -25) T) ((-709 . -21) T) ((-118 . -649) 62106) ((-711 . -897) 62088) ((-437 . -1113) T) ((-324 . -1235) 62067) ((-321 . -1235) T) ((-171 . -410) 62051) ((-846 . -1064) 62021) ((-484 . -986) 61983) ((-131 . -102) T) ((-129 . -102) T) ((-72 . -623) 61965) ((-837 . -1064) 61949) ((-108 . -805) T) ((-108 . -802) T) ((-711 . -1051) 61931) ((-324 . -566) 61910) ((-321 . -566) T) ((-846 . -650) 61880) ((-837 . -650) 61850) ((-1310 . -23) T) ((-135 . -1051) 61832) ((-96 . -626) 61813) ((-1006 . -656) 61795) ((-492 . -1069) 61692) ((-45 . -296) 61617) ((-246 . -727) 61559) ((-527 . -102) T) ((-492 . -111) 61449) ((-1105 . -102) 61419) ((-1047 . -102) T) ((-1186 . -656) 61329) ((-1138 . -656) 61239) ((-864 . -656) 61198) ((-654 . -838) 61177) ((-741 . -524) 61120) ((-1067 . -1069) 61104) ((-1148 . -93) T) ((-1076 . -294) 61079) ((-633 . -21) T) ((-633 . -25) T) ((-534 . -1113) T) ((-680 . -658) 61017) ((-370 . -102) T) ((-330 . -102) T) ((-394 . -1069) 61001) ((-1067 . -111) 60980) ((-826 . -421) 60964) ((-118 . -25) T) ((-89 . -623) 60946) ((-118 . -21) T) ((-618 . -317) 60741) ((-485 . -317) 60545) ((-1163 . -624) NIL) ((-394 . -111) 60524) ((-388 . -102) T) ((-216 . -623) 60506) ((-1163 . -623) 60488) ((-1181 . -524) 60257) ((-1017 . -727) 60207) ((-1139 . -524) 60177) ((-925 . -727) 60129) ((-492 . -626) 59859) ((-360 . -315) T) ((-1203 . -152) 59809) ((-969 . -317) 59747) ((-846 . -102) T) ((-437 . -727) 59731) ((-227 . -838) T) ((-837 . -102) T) ((-835 . -102) T) ((-1303 . -658) 59705) ((-489 . -152) 59655) ((-1265 . -1264) 59634) ((-1133 . -1235) T) ((-348 . -1051) 59601) ((-1265 . -1259) 59571) ((-1265 . -1262) 59555) ((-1244 . -1243) 59534) ((-80 . -623) 59516) ((-916 . -623) 59498) ((-1244 . -1259) 59475) ((-1133 . -566) T) ((-932 . -860) T) ((-781 . -860) T) ((-682 . -860) T) ((-497 . -624) 59405) ((-497 . -623) 59346) ((-388 . -292) T) ((-1244 . -1241) 59330) ((-1267 . -1125) T) ((-219 . -624) 59260) ((-219 . -623) 59201) ((-1076 . -614) 59176) ((-828 . -626) 59160) ((-574 . -235) 59147) ((-526 . -152) 59131) ((-59 . -152) 59115) ((-506 . -152) 59099) ((-505 . -235) 59086) ((-368 . -1300) 59070) ((-362 . -1300) 59054) ((-354 . -1300) 59038) ((-324 . -372) 59017) ((-321 . -372) T) ((-492 . -1062) 58947) ((-704 . -649) 58929) ((-1301 . -658) 58903) ((-129 . -317) NIL) ((-1267 . -23) T) ((-699 . -499) 58887) ((-64 . -623) 58869) ((-1126 . -805) 58820) ((-1126 . -802) 58771) ((-560 . -499) 58708) ((-680 . -34) T) ((-492 . -239) 58660) ((-303 . -296) 58639) ((-246 . -174) 58618) ((-826 . -1071) T) ((-44 . -658) 58576) ((-1093 . -377) 58527) ((-1100 . -146) 58506) ((-741 . -298) 58437) ((-530 . -524) 58370) ((-827 . -1069) 58321) ((-1100 . -148) 58300) ((-559 . -623) 58282) ((-368 . -377) 58261) ((-362 . -377) 58240) ((-354 . -377) 58219) ((-979 . -1231) T) ((-881 . -233) 58196) ((-827 . -111) 58138) ((-792 . -146) 58117) ((-792 . -148) 58096) ((-271 . -960) 58063) ((-258 . -858) 58042) ((-253 . -960) 57987) ((-257 . -858) 57966) ((-790 . -146) 57945) ((-790 . -148) 57924) ((-153 . -658) 57898) ((-589 . -1113) T) ((-463 . -294) 57861) ((-464 . -148) 57840) ((-464 . -146) 57819) ((-680 . -736) T) ((-833 . -623) 57801) ((-1273 . -1113) T) ((-1266 . -1113) T) ((-1245 . -1113) T) ((-1225 . -1219) 57767) ((-1225 . -1216) 57733) ((-1188 . -298) 57712) ((-1187 . -298) 57663) ((-1181 . -298) 57614) ((-1139 . -298) 57593) ((-348 . -911) 57574) ((-1017 . -174) T) ((-925 . -174) T) ((-704 . -21) T) ((-704 . -25) T) ((-227 . -656) 57524) ((-606 . -1113) T) ((-605 . -1113) T) ((-484 . -1262) 57508) ((-484 . -1259) 57478) ((-428 . -294) 57406) ((-557 . -860) T) ((-324 . -1125) 57255) ((-321 . -1125) T) ((-1225 . -35) 57221) ((-1225 . -95) 57187) ((-84 . -623) 57169) ((-91 . -102) 57147) ((-1310 . -132) T) ((-724 . -1064) 57117) ((-602 . -626) 57098) ((-591 . -146) T) ((-591 . -148) 57080) ((-528 . -148) 57062) ((-528 . -146) T) ((-724 . -650) 57032) ((-324 . -23) 56884) ((-40 . -351) 56858) ((-321 . -23) T) ((-827 . -626) 56772) ((-1172 . -661) 56754) ((-1296 . -1071) T) ((-1172 . -382) 56736) ((-825 . -658) 56521) ((-1109 . -102) T) ((-1103 . -102) T) ((-1086 . -102) T) ((-171 . -233) 56505) ((-1079 . -102) T) ((-1049 . -102) T) ((-1032 . -102) T) ((-603 . -499) 56487) ((-636 . -102) T) ((-246 . -524) 56420) ((-493 . -102) T) ((-1303 . -736) T) ((-1301 . -736) T) ((-220 . -102) T) ((-1192 . -1069) 56303) ((-1075 . -656) 56275) ((-963 . -656) 56185) ((-1192 . -111) 56054) ((-886 . -1096) T) ((-871 . -175) T) ((-491 . -656) 55964) ((-827 . -1062) T) ((-691 . -1096) T) ((-686 . -1096) T) ((-633 . -235) 55937) ((-525 . -102) T) ((-520 . -102) T) ((-48 . -649) 55897) ((-518 . -102) T) ((-488 . -1096) T) ((-1293 . -1069) 55867) ((-118 . -235) NIL) ((-139 . -1096) T) ((-138 . -1096) T) ((-134 . -1096) T) ((-1047 . -38) 55851) ((-827 . -239) T) ((-827 . -249) 55830) ((-1293 . -111) 55795) ((-1273 . -727) 55692) ((-1266 . -727) 55533) ((-560 . -294) 55512) ((-1254 . -233) 55496) ((-1236 . -623) 55478) ((-616 . -93) T) ((-1076 . -624) NIL) ((-1076 . -623) 55460) ((-681 . -93) T) ((-182 . -93) T) ((-162 . -93) T) ((-157 . -93) T) ((-155 . -93) T) ((-1245 . -727) 55256) ((-1016 . -931) T) ((-153 . -736) T) ((-1192 . -626) 55109) ((-1126 . -377) 55088) ((-1037 . -25) T) ((-1017 . -524) NIL) ((-258 . -421) 55057) ((-257 . -421) 55026) ((-1037 . -21) T) ((-882 . -1064) 54978) ((-606 . -727) 54951) ((-605 . -727) 54848) ((-809 . -294) 54806) ((-127 . -102) 54784) ((-843 . -1051) 54680) ((-171 . -838) 54659) ((-327 . -658) 54556) ((-825 . -34) T) ((-724 . -102) T) ((-1133 . -1125) T) ((-1039 . -1231) T) ((-882 . -650) 54508) ((-388 . -38) 54473) ((-363 . -25) T) ((-363 . -21) T) ((-189 . -102) T) ((-163 . -102) T) ((-255 . -102) T) ((-158 . -102) T) ((-364 . -1288) 54457) ((-361 . -1288) 54441) ((-353 . -1288) 54425) ((-171 . -358) 54404) ((-574 . -860) T) ((-1133 . -23) T) ((-87 . -623) 54386) ((-711 . -315) T) ((-846 . -38) 54356) ((-837 . -38) 54326) ((-1293 . -626) 54268) ((-1267 . -132) T) ((-1163 . -296) 54247) ((-975 . -736) 54146) ((-975 . -803) 54099) ((-975 . -804) 54052) ((-825 . -801) 54031) ((-117 . -315) T) ((-91 . -317) 53969) ((-685 . -34) T) ((-560 . -614) 53948) ((-48 . -25) T) ((-48 . -21) T) ((-825 . -804) 53899) ((-825 . -803) 53878) ((-711 . -1035) T) ((-663 . -1069) 53862) ((-881 . -656) 53792) ((-825 . -736) 53702) ((-975 . -483) 53655) ((-492 . -805) 53606) ((-492 . -802) 53557) ((-921 . -1288) 53544) ((-1192 . -1062) T) ((-663 . -111) 53523) ((-1192 . -334) 53500) ((-1217 . -102) 53478) ((-1114 . -623) 53460) ((-711 . -555) T) ((-826 . -1113) T) ((-1293 . -1062) T) ((-1148 . -500) 53441) ((-1237 . -102) T) ((-423 . -1113) T) ((-1148 . -623) 53407) ((-258 . -1071) 53337) ((-257 . -1071) 53267) ((-848 . -102) T) ((-297 . -658) 53254) ((-603 . -294) 53204) ((-699 . -697) 53162) ((-974 . -623) 53144) ((-882 . -102) T) ((-745 . -623) 53126) ((-725 . -623) 53108) ((-1273 . -174) 53059) ((-1266 . -174) 52990) ((-1245 . -174) 52921) ((-709 . -860) T) ((-1017 . -298) T) ((-463 . -623) 52903) ((-637 . -736) T) ((-60 . -1113) 52881) ((-251 . -152) 52865) ((-925 . -298) T) ((-1037 . -1025) T) ((-637 . -483) T) ((-722 . -1235) 52844) ((-704 . -235) NIL) ((-663 . -626) 52762) ((-171 . -656) 52657) ((-1281 . -860) 52636) ((-606 . -174) 52615) ((-605 . -174) 52566) ((-1265 . -650) 52407) ((-1265 . -1064) 52242) ((-1244 . -650) 52056) ((-1244 . -1064) 51864) ((-722 . -566) 51775) ((-417 . -931) T) ((-417 . -830) 51754) ((-327 . -804) T) ((-983 . -626) 51735) ((-327 . -736) T) ((-428 . -623) 51717) ((-428 . -624) 51624) ((-654 . -1162) 51608) ((-110 . -661) 51590) ((-176 . -315) T) ((-127 . -317) 51528) ((-110 . -382) 51510) ((-408 . -1231) T) ((-324 . -132) 51381) ((-321 . -132) T) ((-69 . -405) T) ((-110 . -124) T) ((-530 . -499) 51365) ((-664 . -1125) T) ((-603 . -19) 51347) ((-61 . -451) T) ((-61 . -405) T) ((-834 . -1113) T) ((-603 . -614) 51322) ((-487 . -1051) 51282) ((-663 . -1062) T) ((-664 . -23) T) ((-1296 . -1113) T) ((-31 . -102) T) ((-1254 . -656) 51192) ((-865 . -656) 51151) ((-826 . -727) 51000) ((-587 . -870) T) ((-581 . -656) 50972) ((-118 . -860) NIL) ((-1186 . -421) 50956) ((-1138 . -421) 50940) ((-864 . -421) 50924) ((-883 . -102) 50875) ((-1265 . -102) T) ((-1245 . -524) 50644) ((-1244 . -102) T) ((-1217 . -317) 50582) ((-1188 . -294) 50547) ((-1187 . -294) 50505) ((-535 . -93) T) ((-1181 . -294) 50333) ((-320 . -623) 50315) ((-1115 . -1113) T) ((-1093 . -658) 50189) ((-721 . -462) T) ((-699 . -623) 50121) ((-297 . -736) T) ((-108 . -920) NIL) ((-699 . -624) 50082) ((-611 . -623) 50064) ((-587 . -623) 50046) ((-560 . -624) NIL) ((-560 . -623) 50028) ((-539 . -623) 50010) ((-521 . -519) 49989) ((-497 . -1069) 49939) ((-484 . -1064) 49774) ((-517 . -519) 49753) ((-484 . -650) 49594) ((-219 . -1069) 49544) ((-368 . -658) 49496) ((-362 . -658) 49448) ((-227 . -858) T) ((-354 . -658) 49400) ((-612 . -102) 49350) ((-497 . -111) 49284) ((-492 . -377) 49263) ((-108 . -658) 49213) ((-363 . -235) 49200) ((-246 . -499) 49184) ((-352 . -148) 49166) ((-352 . -146) T) ((-171 . -379) 49137) ((-954 . -1279) 49121) ((-219 . -111) 49055) ((-882 . -317) 49020) ((-954 . -1113) 48970) ((-809 . -624) 48931) ((-809 . -623) 48913) ((-728 . -102) T) ((-339 . -1113) T) ((-216 . -626) 48890) ((-1133 . -132) T) ((-724 . -38) 48860) ((-324 . -503) 48839) ((-510 . -1231) T) ((-1265 . -292) 48805) ((-1244 . -292) 48771) ((-335 . -152) 48755) ((-449 . -1113) T) ((-1076 . -296) 48730) ((-1296 . -727) 48700) ((-48 . -235) 48687) ((-1173 . -34) T) ((-1305 . -1051) 48664) ((-494 . -34) T) ((-478 . -623) 48646) ((-256 . -294) 48620) ((-390 . -1051) 48604) ((-1186 . -1071) T) ((-1138 . -1071) T) ((-864 . -1071) T) ((-1075 . -858) T) ((-497 . -626) 48554) ((-219 . -626) 48504) ((-826 . -174) 48415) ((-530 . -294) 48367) ((-1273 . -298) 48346) ((-1212 . -373) 48320) ((-1101 . -273) 48304) ((-681 . -500) 48285) ((-681 . -623) 48251) ((-616 . -500) 48232) ((-118 . -1005) 48209) ((-616 . -623) 48159) ((-484 . -102) T) ((-182 . -500) 48140) ((-182 . -623) 48106) ((-162 . -500) 48087) ((-162 . -623) 48053) ((-157 . -500) 48034) ((-155 . -500) 48015) ((-157 . -623) 47981) ((-374 . -1113) T) ((-258 . -1113) T) ((-257 . -1113) T) ((-155 . -623) 47947) ((-1266 . -298) 47898) ((-1245 . -298) 47849) ((-882 . -1165) 47827) ((-1188 . -1015) 47793) ((-618 . -373) 47733) ((-1187 . -1015) 47699) ((-618 . -231) 47646) ((-704 . -860) T) ((-603 . -623) 47628) ((-603 . -624) NIL) ((-485 . -231) 47578) ((-497 . -1062) T) ((-1181 . -1015) 47544) ((-88 . -450) T) ((-88 . -405) T) ((-219 . -1062) T) ((-1139 . -1015) 47510) ((-1093 . -736) T) ((-722 . -1125) T) ((-606 . -298) 47489) ((-605 . -298) 47468) ((-497 . -249) T) ((-497 . -239) T) ((-219 . -249) T) ((-219 . -239) T) ((-1179 . -623) 47450) ((-882 . -38) 47402) ((-368 . -736) T) ((-362 . -736) T) ((-354 . -736) T) ((-108 . -804) T) ((-108 . -801) T) ((-722 . -23) T) ((-108 . -736) T) ((-530 . -1269) 47386) ((-1310 . -25) T) ((-484 . -292) 47352) ((-1310 . -21) T) ((-1244 . -317) 47291) ((-1190 . -102) T) ((-40 . -146) 47263) ((-40 . -148) 47235) ((-530 . -614) 47212) ((-1126 . -658) 46997) ((-612 . -317) 46935) ((-45 . -661) 46885) ((-45 . -676) 46835) ((-45 . -382) 46785) ((-1172 . -34) T) ((-881 . -858) NIL) ((-664 . -132) T) ((-495 . -623) 46767) ((-246 . -294) 46744) ((-188 . -1113) T) ((-1100 . -462) 46695) ((-826 . -524) 46569) ((-674 . -1064) 46553) ((-657 . -34) T) ((-642 . -34) T) ((-792 . -462) 46484) ((-674 . -650) 46468) ((-364 . -1064) 46420) ((-361 . -1064) 46372) ((-353 . -1064) 46324) ((-271 . -1064) 46167) ((-253 . -1064) 46010) ((-790 . -462) 45961) ((-364 . -650) 45913) ((-361 . -650) 45865) ((-353 . -650) 45817) ((-271 . -650) 45666) ((-253 . -650) 45515) ((-464 . -462) 45466) ((-963 . -421) 45450) ((-741 . -623) 45432) ((-258 . -727) 45374) ((-257 . -727) 45316) ((-741 . -624) 45177) ((-491 . -421) 45161) ((-348 . -310) T) ((-534 . -93) T) ((-360 . -931) T) ((-1013 . -102) 45139) ((-921 . -1064) 45104) ((-1037 . -860) T) ((-60 . -524) 45037) ((-921 . -650) 45002) ((-1244 . -1165) 44954) ((-1017 . -294) NIL) ((-227 . -1071) T) ((-388 . -838) T) ((-1126 . -34) T) ((-591 . -462) T) ((-528 . -462) T) ((-1248 . -1106) 44938) ((-1248 . -1113) 44916) ((-246 . -614) 44893) ((-1248 . -1108) 44850) ((-1188 . -623) 44832) ((-1187 . -623) 44814) ((-1181 . -623) 44796) ((-1181 . -624) NIL) ((-1139 . -623) 44778) ((-882 . -410) 44762) ((-607 . -102) T) ((-595 . -102) T) ((-546 . -102) T) ((-1265 . -38) 44603) ((-1244 . -38) 44417) ((-880 . -148) T) ((-591 . -412) T) ((-528 . -412) T) ((-1277 . -102) T) ((-1267 . -21) T) ((-1267 . -25) T) ((-1126 . -801) 44396) ((-1126 . -804) 44347) ((-1126 . -803) 44326) ((-1006 . -1113) T) ((-1040 . -34) T) ((-872 . -1113) T) ((-1126 . -736) 44236) ((-674 . -102) T) ((-655 . -102) T) ((-560 . -296) 44215) ((-1203 . -102) T) ((-486 . -34) T) ((-473 . -34) T) ((-364 . -102) T) ((-361 . -102) T) ((-353 . -102) T) ((-271 . -102) T) ((-253 . -102) T) ((-487 . -315) T) ((-1075 . -1071) T) ((-963 . -1071) T) ((-324 . -649) 44121) ((-321 . -649) 44082) ((-1186 . -1113) T) ((-491 . -1071) T) ((-489 . -102) T) ((-446 . -623) 44064) ((-1138 . -1113) T) ((-256 . -623) 44046) ((-864 . -1113) T) ((-1154 . -102) T) ((-826 . -298) 43977) ((-974 . -1069) 43860) ((-487 . -1035) T) ((-745 . -1069) 43830) ((-1047 . -656) 43789) ((-463 . -1069) 43759) ((-1160 . -1134) 43743) ((-1115 . -524) 43676) ((-974 . -111) 43545) ((-921 . -102) T) ((-745 . -111) 43510) ((-535 . -500) 43491) ((-535 . -623) 43457) ((-59 . -102) 43407) ((-530 . -624) 43368) ((-530 . -623) 43280) ((-529 . -102) 43258) ((-526 . -102) 43208) ((-507 . -102) 43186) ((-506 . -102) 43136) ((-463 . -111) 43099) ((-258 . -174) 43078) ((-257 . -174) 43057) ((-330 . -656) 43039) ((-428 . -1069) 43013) ((-1225 . -986) 42975) ((-1012 . -1125) T) ((-388 . -656) 42925) ((-1148 . -626) 42906) ((-954 . -524) 42839) ((-497 . -805) T) ((-484 . -38) 42680) ((-428 . -111) 42647) ((-497 . -802) T) ((-1013 . -317) 42585) ((-219 . -805) T) ((-219 . -802) T) ((-1012 . -23) T) ((-722 . -132) T) ((-1244 . -410) 42555) ((-846 . -656) 42500) ((-837 . -656) 42459) ((-324 . -25) 42311) ((-171 . -421) 42295) ((-324 . -21) 42166) ((-321 . -25) T) ((-321 . -21) T) ((-874 . -377) T) ((-974 . -626) 42019) ((-110 . -34) T) ((-745 . -626) 41975) ((-725 . -626) 41957) ((-492 . -658) 41742) ((-881 . -1071) T) ((-603 . -296) 41717) ((-590 . -148) T) ((-574 . -148) T) ((-505 . -148) T) ((-1186 . -727) 41546) ((-1070 . -102) 41524) ((-1138 . -727) 41373) ((-1133 . -649) 41355) ((-864 . -727) 41325) ((-680 . -1231) T) ((-1 . -102) T) ((-428 . -626) 41233) ((-246 . -623) 40964) ((-1128 . -1113) T) ((-1254 . -421) 40948) ((-1203 . -317) 40752) ((-974 . -1062) T) ((-745 . -1062) T) ((-725 . -1062) T) ((-654 . -1113) 40702) ((-1067 . -658) 40686) ((-865 . -421) 40670) ((-521 . -102) T) ((-517 . -102) T) ((-271 . -317) 40657) ((-253 . -317) 40644) ((-974 . -334) 40623) ((-394 . -658) 40607) ((-680 . -1051) 40503) ((-489 . -317) 40307) ((-258 . -524) 40240) ((-257 . -524) 40173) ((-1154 . -317) 40099) ((-829 . -1113) T) ((-809 . -1069) 40083) ((-1273 . -294) 40048) ((-1266 . -294) 40006) ((-1245 . -294) 39834) ((-396 . -1113) T) ((-332 . -1113) T) ((-428 . -1062) T) ((-171 . -1071) T) ((-59 . -317) 39772) ((-809 . -111) 39751) ((-605 . -294) 39716) ((-529 . -317) 39654) ((-526 . -317) 39592) ((-507 . -317) 39530) ((-506 . -317) 39468) ((-428 . -239) 39447) ((-492 . -34) T) ((-227 . -1113) T) ((-1017 . -624) 39377) ((-1017 . -623) 39337) ((-984 . -623) 39297) ((-925 . -623) 39279) ((-709 . -148) T) ((-711 . -931) T) ((-711 . -830) T) ((-437 . -623) 39261) ((-1133 . -21) T) ((-1133 . -25) T) ((-680 . -386) 39245) ((-117 . -931) T) ((-882 . -233) 39229) ((-44 . -1231) T) ((-78 . -1231) T) ((-127 . -126) 39213) ((-1067 . -34) T) ((-1303 . -1051) 39187) ((-1301 . -1051) 39144) ((-1254 . -1071) T) ((-865 . -1071) T) ((-492 . -801) 39123) ((-364 . -1165) 39102) ((-361 . -1165) 39081) ((-353 . -1165) 39060) ((-492 . -804) 39011) ((-492 . -803) 38990) ((-229 . -34) T) ((-492 . -736) 38900) ((-809 . -626) 38746) ((-672 . -1064) 38730) ((-60 . -499) 38714) ((-581 . -1071) T) ((-672 . -650) 38698) ((-1186 . -174) 38589) ((-1138 . -174) 38500) ((-1075 . -1113) T) ((-1100 . -960) 38445) ((-963 . -1113) T) ((-827 . -658) 38396) ((-792 . -960) 38365) ((-723 . -1113) T) ((-790 . -960) 38332) ((-526 . -290) 38316) ((-680 . -911) 38275) ((-491 . -1113) T) ((-464 . -960) 38242) ((-79 . -1231) T) ((-364 . -38) 38207) ((-361 . -38) 38172) ((-353 . -38) 38137) ((-271 . -38) 37986) ((-253 . -38) 37835) ((-921 . -1165) T) ((-534 . -500) 37816) ((-633 . -148) 37795) ((-633 . -146) 37774) ((-534 . -623) 37740) ((-118 . -148) T) ((-118 . -146) NIL) ((-424 . -736) T) ((-809 . -1062) T) ((-352 . -462) T) ((-1273 . -1015) 37706) ((-1266 . -1015) 37672) ((-1245 . -1015) 37638) ((-921 . -38) 37603) ((-227 . -727) 37568) ((-327 . -47) 37538) ((-40 . -419) 37510) ((-141 . -623) 37492) ((-1012 . -132) T) ((-825 . -1231) T) ((-176 . -931) T) ((-559 . -377) T) ((-724 . -656) 37437) ((-616 . -626) 37418) ((-352 . -412) T) ((-681 . -626) 37399) ((-321 . -235) NIL) ((-182 . -626) 37380) ((-162 . -626) 37361) ((-157 . -626) 37342) ((-155 . -626) 37323) ((-530 . -296) 37300) ((-1244 . -233) 37270) ((-886 . -102) T) ((-825 . -1051) 37097) ((-45 . -34) T) ((-691 . -102) T) ((-686 . -102) T) ((-672 . -102) T) ((-664 . -21) T) ((-664 . -25) T) ((-1115 . -499) 37081) ((-685 . -1231) T) ((-488 . -102) T) ((-251 . -102) 37031) ((-556 . -854) T) ((-134 . -102) T) ((-139 . -102) T) ((-138 . -102) T) ((-881 . -1113) T) ((-1192 . -658) 36956) ((-1075 . -727) 36943) ((-741 . -1069) 36786) ((-1186 . -524) 36733) ((-963 . -727) 36582) ((-1138 . -524) 36534) ((-1292 . -1113) T) ((-1291 . -1113) T) ((-491 . -727) 36383) ((-67 . -623) 36365) ((-741 . -111) 36194) ((-954 . -499) 36178) ((-1293 . -658) 36138) ((-1188 . -1069) 36021) ((-827 . -736) T) ((-1187 . -1069) 35856) ((-1181 . -1069) 35646) ((-327 . -1231) T) ((-1139 . -1069) 35529) ((-1016 . -1235) T) ((-1107 . -102) 35507) ((-825 . -386) 35476) ((-589 . -623) 35458) ((-556 . -1113) T) ((-1016 . -566) T) ((-1188 . -111) 35327) ((-1187 . -111) 35148) ((-1181 . -111) 34917) ((-1139 . -111) 34786) ((-1118 . -1116) 34750) ((-388 . -858) T) ((-1273 . -623) 34732) ((-1266 . -623) 34714) ((-882 . -656) 34651) ((-1245 . -623) 34633) ((-1245 . -624) NIL) ((-246 . -296) 34610) ((-40 . -462) T) ((-227 . -174) T) ((-171 . -1113) T) ((-741 . -626) 34395) ((-704 . -148) T) ((-704 . -146) NIL) ((-606 . -623) 34377) ((-605 . -623) 34359) ((-1133 . -235) 34346) ((-909 . -1113) T) ((-851 . -1113) T) ((-818 . -1113) T) ((-779 . -1113) T) ((-668 . -862) 34330) ((-687 . -1113) T) ((-825 . -911) 34262) ((-1236 . -377) T) ((-40 . -412) NIL) ((-1188 . -626) 34144) ((-1133 . -671) T) ((-881 . -727) 34089) ((-258 . -499) 34073) ((-257 . -499) 34057) ((-1187 . -626) 33800) ((-1181 . -626) 33595) ((-722 . -649) 33543) ((-663 . -658) 33517) ((-1139 . -626) 33399) ((-303 . -34) T) ((-1133 . -113) T) ((-741 . -1062) T) ((-591 . -1288) 33386) ((-528 . -1288) 33363) ((-1254 . -1113) T) ((-1186 . -298) 33274) ((-1138 . -298) 33205) ((-1075 . -174) T) ((-297 . -1231) T) ((-865 . -1113) T) ((-963 . -174) 33116) ((-792 . -1257) 33100) ((-654 . -524) 33033) ((-77 . -623) 33015) ((-741 . -334) 32980) ((-1192 . -736) T) ((-581 . -1113) T) ((-491 . -174) 32891) ((-251 . -317) 32829) ((-1155 . -1125) T) ((-70 . -623) 32811) ((-1293 . -736) T) ((-1188 . -1062) T) ((-1187 . -1062) T) ((-335 . -102) 32761) ((-1181 . -1062) T) ((-1155 . -23) T) ((-1139 . -1062) T) ((-91 . -1134) 32745) ((-876 . -1125) T) ((-1188 . -239) 32704) ((-1187 . -249) 32683) ((-1187 . -239) 32635) ((-1181 . -239) 32522) ((-1181 . -249) 32501) ((-327 . -911) 32407) ((-876 . -23) T) ((-171 . -727) 32235) ((-417 . -1235) T) ((-1114 . -377) T) ((-1016 . -372) T) ((-880 . -462) T) ((-1037 . -148) T) ((-954 . -294) 32187) ((-321 . -860) NIL) ((-1265 . -656) 32069) ((-884 . -102) T) ((-1244 . -656) 31924) ((-722 . -25) T) ((-417 . -566) T) ((-722 . -21) T) ((-535 . -626) 31905) ((-363 . -148) 31887) ((-363 . -146) T) ((-1160 . -1113) 31865) ((-463 . -730) T) ((-75 . -623) 31847) ((-115 . -860) T) ((-251 . -290) 31831) ((-246 . -1069) 31728) ((-81 . -623) 31710) ((-745 . -377) 31663) ((-1190 . -838) T) ((-747 . -241) 31647) ((-1173 . -1231) T) ((-142 . -241) 31629) ((-246 . -111) 31519) ((-1254 . -727) 31348) ((-48 . -148) T) ((-881 . -174) T) ((-865 . -727) 31318) ((-494 . -1231) T) ((-963 . -524) 31265) ((-663 . -736) T) ((-581 . -727) 31252) ((-1047 . -1071) T) ((-491 . -524) 31195) ((-954 . -19) 31179) ((-954 . -614) 31156) ((-1093 . -1231) 31081) ((-826 . -624) NIL) ((-826 . -623) 31063) ((-1225 . -1064) 30946) ((-1017 . -1069) 30896) ((-423 . -623) 30878) ((-258 . -294) 30855) ((-368 . -1231) 30834) ((-362 . -1231) 30813) ((-354 . -1231) 30792) ((-257 . -294) 30769) ((-497 . -920) NIL) ((-324 . -29) 30739) ((-108 . -1231) T) ((-1016 . -1125) T) ((-219 . -920) NIL) ((-1225 . -650) 30636) ((-925 . -1069) 30588) ((-1093 . -1051) 30484) ((-1017 . -111) 30418) ((-721 . -1064) 30383) ((-1016 . -23) T) ((-925 . -111) 30321) ((-747 . -705) 30305) ((-721 . -650) 30270) ((-271 . -233) 30254) ((-437 . -1069) 30238) ((-388 . -1071) T) ((-246 . -626) 29968) ((-704 . -1219) NIL) ((-497 . -658) 29918) ((-484 . -656) 29800) ((-108 . -895) 29782) ((-108 . -897) 29764) ((-704 . -1216) NIL) ((-219 . -658) 29714) ((-368 . -1051) 29698) ((-362 . -1051) 29682) ((-335 . -317) 29620) ((-354 . -1051) 29604) ((-227 . -298) T) ((-437 . -111) 29583) ((-60 . -623) 29515) ((-171 . -174) T) ((-1133 . -860) T) ((-108 . -1051) 29475) ((-903 . -1113) T) ((-846 . -1071) T) ((-837 . -1071) T) ((-704 . -35) NIL) ((-704 . -95) NIL) ((-321 . -1005) 29436) ((-185 . -102) T) ((-590 . -462) T) ((-574 . -462) T) ((-505 . -462) T) ((-417 . -372) T) ((-246 . -1062) 29366) ((-1163 . -34) T) ((-487 . -931) T) ((-1012 . -649) 29314) ((-258 . -614) 29291) ((-257 . -614) 29268) ((-1093 . -386) 29252) ((-881 . -524) 29160) ((-246 . -239) 29112) ((-1172 . -1231) T) ((-1017 . -626) 29062) ((-925 . -626) 28999) ((-834 . -623) 28981) ((-1304 . -1125) T) ((-1296 . -623) 28963) ((-1254 . -174) 28854) ((-437 . -626) 28823) ((-108 . -386) 28805) ((-108 . -347) 28787) ((-1075 . -298) T) ((-963 . -298) 28718) ((-809 . -377) 28697) ((-657 . -1231) T) ((-642 . -1231) T) ((-596 . -1064) 28672) ((-491 . -298) 28603) ((-581 . -174) T) ((-335 . -290) 28587) ((-1304 . -23) T) ((-1225 . -102) T) ((-1212 . -1113) T) ((-1101 . -1113) T) ((-1089 . -1113) T) ((-596 . -650) 28562) ((-83 . -623) 28544) ((-1197 . -854) T) ((-1196 . -854) T) ((-721 . -102) T) ((-364 . -358) 28523) ((-618 . -1113) T) ((-361 . -358) 28502) ((-353 . -358) 28481) ((-485 . -1113) T) ((-1203 . -231) 28431) ((-271 . -260) 28393) ((-1155 . -132) T) ((-618 . -620) 28369) ((-1093 . -911) 28302) ((-1017 . -1062) T) ((-925 . -1062) T) ((-485 . -620) 28281) ((-1181 . -802) NIL) ((-1181 . -805) NIL) ((-1115 . -624) 28242) ((-489 . -231) 28192) ((-1115 . -623) 28174) ((-1017 . -249) T) ((-1017 . -239) T) ((-437 . -1062) T) ((-969 . -1113) 28124) ((-925 . -249) T) ((-876 . -132) T) ((-709 . -462) T) ((-853 . -1125) 28103) ((-108 . -911) NIL) ((-1225 . -292) 28069) ((-1126 . -1231) T) ((-882 . -858) 28048) ((-1012 . -25) T) ((-916 . -736) T) ((-171 . -524) 27960) ((-1012 . -21) T) ((-916 . -483) T) ((-417 . -1125) T) ((-497 . -804) T) ((-497 . -801) T) ((-921 . -358) T) ((-497 . -736) T) ((-219 . -804) T) ((-219 . -801) T) ((-722 . -235) 27947) ((-219 . -736) T) ((-853 . -23) 27899) ((-1198 . -1113) T) ((-668 . -1064) 27883) ((-1197 . -1113) T) ((-534 . -626) 27864) ((-1196 . -1113) T) ((-327 . -315) 27843) ((-1048 . -241) 27789) ((-668 . -650) 27759) ((-417 . -23) T) ((-954 . -624) 27720) ((-954 . -623) 27632) ((-654 . -499) 27616) ((-45 . -1023) 27566) ((-1126 . -1051) 27393) ((-627 . -980) T) ((-501 . -102) T) ((-339 . -623) 27375) ((-1006 . -294) 27342) ((-603 . -661) 27324) ((-131 . -1113) T) ((-129 . -1113) T) ((-603 . -382) 27306) ((-352 . -1288) 27283) ((-449 . -623) 27265) ((-1254 . -524) 27212) ((-1100 . -1064) 27055) ((-1040 . -1231) T) ((-881 . -298) T) ((-1186 . -294) 26982) ((-1100 . -650) 26831) ((-1013 . -1008) 26815) ((-792 . -1064) 26638) ((-790 . -1064) 26481) ((-792 . -650) 26310) ((-790 . -650) 26159) ((-486 . -1231) T) ((-473 . -1231) T) ((-596 . -102) T) ((-471 . -1064) 26130) ((-464 . -1064) 25973) ((-674 . -656) 25942) ((-633 . -462) 25921) ((-471 . -650) 25892) ((-464 . -650) 25741) ((-364 . -656) 25678) ((-361 . -656) 25615) ((-353 . -656) 25552) ((-271 . -656) 25462) ((-253 . -656) 25372) ((-1296 . -391) 25344) ((-527 . -1113) T) ((-118 . -462) T) ((-1211 . -102) T) ((-1105 . -1113) 25314) ((-1047 . -1113) T) ((-1128 . -93) T) ((-904 . -860) T) ((-1273 . -111) 25183) ((-360 . -1235) T) ((-1273 . -1069) 25066) ((-1126 . -386) 25035) ((-1266 . -1069) 24870) ((-1245 . -1069) 24660) ((-1266 . -111) 24481) ((-1245 . -111) 24250) ((-1225 . -317) 24237) ((-1016 . -132) T) ((-921 . -656) 24187) ((-374 . -623) 24169) ((-360 . -566) T) ((-297 . -315) T) ((-606 . -1069) 24129) ((-605 . -1069) 24012) ((-591 . -1064) 23977) ((-528 . -1064) 23922) ((-370 . -1113) T) ((-330 . -1113) T) ((-258 . -623) 23883) ((-257 . -623) 23844) ((-591 . -650) 23809) ((-528 . -650) 23754) ((-704 . -419) 23721) ((-645 . -23) T) ((-617 . -23) T) ((-668 . -102) T) ((-606 . -111) 23674) ((-605 . -111) 23543) ((-388 . -1113) T) ((-345 . -102) T) ((-171 . -298) 23454) ((-1244 . -858) 23407) ((-724 . -1071) T) ((-1160 . -524) 23340) ((-1204 . -845) 23324) ((-1126 . -911) 23256) ((-846 . -1113) T) ((-837 . -1113) T) ((-835 . -1113) T) ((-97 . -102) T) ((-145 . -860) T) ((-622 . -895) 23240) ((-110 . -1231) T) ((-1100 . -102) T) ((-1076 . -34) T) ((-792 . -102) T) ((-790 . -102) T) ((-1273 . -626) 23122) ((-1266 . -626) 22865) ((-471 . -102) T) ((-464 . -102) T) ((-1245 . -626) 22660) ((-246 . -805) 22611) ((-246 . -802) 22562) ((-659 . -102) T) ((-606 . -626) 22520) ((-605 . -626) 22402) ((-1254 . -298) 22313) ((-674 . -644) 22297) ((-188 . -623) 22279) ((-654 . -294) 22231) ((-1047 . -727) 22215) ((-581 . -298) T) ((-974 . -658) 22140) ((-1304 . -132) T) ((-745 . -658) 22100) ((-725 . -658) 22087) ((-282 . -102) T) ((-463 . -658) 22017) ((-50 . -102) T) ((-591 . -102) T) ((-528 . -102) T) ((-1273 . -1062) T) ((-1266 . -1062) T) ((-1245 . -1062) T) ((-517 . -656) 21999) ((-330 . -727) 21981) ((-1273 . -239) 21940) ((-1266 . -249) 21919) ((-1266 . -239) 21871) ((-1245 . -239) 21758) ((-1245 . -249) 21737) ((-1225 . -38) 21634) ((-606 . -1062) T) ((-605 . -1062) T) ((-1017 . -805) T) ((-1017 . -802) T) ((-984 . -805) T) ((-984 . -802) T) ((-882 . -1071) T) ((-109 . -623) 21616) ((-704 . -462) T) ((-388 . -727) 21581) ((-428 . -658) 21555) ((-880 . -879) 21539) ((-721 . -38) 21504) ((-605 . -239) 21463) ((-40 . -734) 21435) ((-360 . -337) 21412) ((-360 . -372) T) ((-1093 . -315) 21363) ((-302 . -1125) 21244) ((-1119 . -1231) T) ((-1012 . -235) 21217) ((-173 . -102) T) ((-1248 . -623) 21184) ((-853 . -132) 21136) ((-654 . -1269) 21120) ((-846 . -727) 21090) ((-837 . -727) 21060) ((-492 . -1231) T) ((-368 . -315) T) ((-362 . -315) T) ((-354 . -315) T) ((-654 . -614) 21037) ((-417 . -132) T) ((-530 . -676) 21021) ((-108 . -315) T) ((-302 . -23) 20904) ((-530 . -661) 20888) ((-704 . -412) NIL) ((-530 . -382) 20872) ((-299 . -623) 20854) ((-91 . -1113) 20832) ((-108 . -1035) T) ((-574 . -144) T) ((-1281 . -152) 20816) ((-492 . -1051) 20643) ((-1267 . -146) 20604) ((-1267 . -148) 20565) ((-1067 . -1231) T) ((-1006 . -623) 20547) ((-828 . -1231) T) ((-872 . -623) 20529) ((-826 . -1069) 20372) ((-1292 . -93) T) ((-1291 . -93) T) ((-1186 . -624) NIL) ((-1109 . -1113) T) ((-1103 . -1113) T) ((-1100 . -317) 20359) ((-1086 . -1113) T) ((-229 . -1231) T) ((-1079 . -1113) T) ((-1049 . -1113) T) ((-1032 . -1113) T) ((-792 . -317) 20346) ((-790 . -317) 20333) ((-1186 . -623) 20315) ((-826 . -111) 20144) ((-1138 . -623) 20126) ((-636 . -1113) T) ((-587 . -175) T) ((-539 . -175) T) ((-464 . -317) 20113) ((-493 . -1113) T) ((-1138 . -624) 19861) ((-1047 . -174) T) ((-954 . -296) 19838) ((-220 . -1113) T) ((-864 . -623) 19820) ((-618 . -524) 19603) ((-81 . -626) 19544) ((-828 . -1051) 19528) ((-485 . -524) 19320) ((-974 . -736) T) ((-745 . -736) T) ((-725 . -736) T) ((-360 . -1125) T) ((-1193 . -623) 19302) ((-225 . -102) T) ((-492 . -386) 19271) ((-525 . -1113) T) ((-520 . -1113) T) ((-518 . -1113) T) ((-809 . -658) 19245) ((-1037 . -462) T) ((-969 . -524) 19178) ((-360 . -23) T) ((-645 . -132) T) ((-617 . -132) T) ((-363 . -462) T) ((-246 . -377) 19157) ((-388 . -174) T) ((-1265 . -1071) T) ((-1244 . -1071) T) ((-227 . -1015) T) ((-826 . -626) 18894) ((-709 . -397) T) ((-428 . -736) T) ((-711 . -1235) T) ((-1155 . -649) 18842) ((-590 . -879) 18826) ((-1296 . -1069) 18810) ((-1173 . -1207) 18786) ((-711 . -566) T) ((-127 . -1113) 18764) ((-724 . -1113) T) ((-668 . -38) 18734) ((-492 . -911) 18666) ((-255 . -1113) T) ((-189 . -1113) T) ((-363 . -412) T) ((-324 . -148) 18645) ((-324 . -146) 18624) ((-129 . -524) NIL) ((-117 . -566) T) ((-321 . -148) 18580) ((-321 . -146) 18536) ((-48 . -462) T) ((-163 . -1113) T) ((-158 . -1113) T) ((-1173 . -107) 18483) ((-792 . -1165) 18461) ((-699 . -34) T) ((-1296 . -111) 18440) ((-560 . -34) T) ((-494 . -107) 18424) ((-258 . -296) 18401) ((-257 . -296) 18378) ((-881 . -294) 18329) ((-45 . -1231) T) ((-1237 . -854) T) ((-827 . -1231) T) ((-826 . -1062) T) ((-672 . -656) 18298) ((-1192 . -47) 18275) ((-826 . -334) 18237) ((-1100 . -38) 18086) ((-826 . -239) 18065) ((-792 . -38) 17894) ((-790 . -38) 17743) ((-1128 . -500) 17724) ((-464 . -38) 17573) ((-1128 . -623) 17539) ((-1131 . -102) T) ((-654 . -624) 17500) ((-654 . -623) 17412) ((-591 . -1165) T) ((-528 . -1165) T) ((-1160 . -499) 17396) ((-352 . -1064) 17341) ((-1217 . -1113) 17319) ((-1155 . -25) T) ((-1155 . -21) T) ((-352 . -650) 17264) ((-1296 . -626) 17213) ((-484 . -1071) T) ((-1237 . -1113) T) ((-1245 . -802) NIL) ((-1245 . -805) NIL) ((-1012 . -860) 17192) ((-848 . -1113) T) ((-829 . -623) 17174) ((-876 . -21) T) ((-876 . -25) T) ((-809 . -736) T) ((-176 . -1235) T) ((-591 . -38) 17139) ((-528 . -38) 17104) ((-396 . -623) 17086) ((-341 . -102) T) ((-332 . -623) 17068) ((-171 . -294) 17026) ((-63 . -1231) T) ((-112 . -102) T) ((-882 . -1113) T) ((-176 . -566) T) ((-724 . -727) 16996) ((-302 . -132) 16879) ((-227 . -623) 16861) ((-227 . -624) 16791) ((-1016 . -649) 16730) ((-1296 . -1062) T) ((-1133 . -148) T) ((-642 . -1207) 16705) ((-741 . -920) 16684) ((-603 . -34) T) ((-657 . -107) 16668) ((-642 . -107) 16614) ((-1254 . -294) 16541) ((-741 . -658) 16430) ((-303 . -1231) T) ((-1192 . -1051) 16326) ((-954 . -628) 16303) ((-587 . -586) T) ((-587 . -537) T) ((-539 . -537) T) ((-1181 . -920) NIL) ((-1075 . -624) 16218) ((-1075 . -623) 16200) ((-963 . -623) 16182) ((-723 . -500) 16132) ((-352 . -102) T) ((-258 . -1069) 16029) ((-257 . -1069) 15926) ((-404 . -102) T) ((-31 . -1113) T) ((-963 . -624) 15787) ((-723 . -623) 15722) ((-1294 . -1224) 15691) ((-491 . -623) 15673) ((-491 . -624) 15534) ((-271 . -421) 15518) ((-253 . -421) 15502) ((-258 . -111) 15392) ((-257 . -111) 15282) ((-1188 . -658) 15207) ((-1187 . -658) 15104) ((-1181 . -658) 14956) ((-1139 . -658) 14881) ((-360 . -132) T) ((-82 . -451) T) ((-82 . -405) T) ((-1016 . -25) T) ((-1016 . -21) T) ((-883 . -1113) 14832) ((-40 . -1064) 14777) ((-882 . -727) 14729) ((-40 . -650) 14674) ((-388 . -298) T) ((-171 . -1015) 14625) ((-704 . -397) T) ((-1012 . -1010) 14609) ((-711 . -1125) T) ((-704 . -167) 14591) ((-1265 . -1113) T) ((-1244 . -1113) T) ((-324 . -1216) 14570) ((-324 . -1219) 14549) ((-1178 . -102) T) ((-324 . -970) 14528) ((-135 . -1125) T) ((-117 . -1125) T) ((-663 . -1231) T) ((-612 . -1279) 14512) ((-711 . -23) T) ((-612 . -1113) 14462) ((-324 . -95) 14441) ((-91 . -524) 14374) ((-176 . -372) T) ((-258 . -626) 14104) ((-257 . -626) 13834) ((-324 . -35) 13813) ((-618 . -499) 13747) ((-135 . -23) T) ((-117 . -23) T) ((-977 . -102) T) ((-728 . -1113) T) ((-485 . -499) 13684) ((-417 . -649) 13632) ((-663 . -1051) 13528) ((-969 . -499) 13512) ((-364 . -1071) T) ((-361 . -1071) T) ((-353 . -1071) T) ((-271 . -1071) T) ((-253 . -1071) T) ((-881 . -624) NIL) ((-881 . -623) 13494) ((-1292 . -500) 13475) ((-1291 . -500) 13456) ((-1304 . -21) T) ((-1292 . -623) 13422) ((-1291 . -623) 13388) ((-581 . -1015) T) ((-741 . -736) T) ((-1304 . -25) T) ((-258 . -1062) 13318) ((-257 . -1062) 13248) ((-72 . -1231) T) ((-258 . -239) 13200) ((-257 . -239) 13152) ((-1155 . -235) 13125) ((-40 . -102) T) ((-921 . -1071) T) ((-1195 . -102) T) ((-129 . -499) 13107) ((-1188 . -736) T) ((-1187 . -736) T) ((-1181 . -736) T) ((-1181 . -801) NIL) ((-1181 . -804) NIL) ((-965 . -102) T) ((-932 . -102) T) ((-880 . -1064) 13094) ((-1139 . -736) T) ((-781 . -102) T) ((-682 . -102) T) ((-880 . -650) 13081) ((-556 . -623) 13063) ((-484 . -1113) T) ((-348 . -1125) T) ((-176 . -1125) T) ((-327 . -931) 13042) ((-1265 . -727) 12883) ((-882 . -174) T) ((-1244 . -727) 12697) ((-853 . -21) 12649) ((-853 . -25) 12601) ((-251 . -1162) 12585) ((-127 . -524) 12518) ((-417 . -25) T) ((-417 . -21) T) ((-348 . -23) T) ((-171 . -624) 12284) ((-171 . -623) 12266) ((-176 . -23) T) ((-654 . -296) 12243) ((-530 . -34) T) ((-909 . -623) 12225) ((-89 . -1231) T) ((-851 . -623) 12207) ((-818 . -623) 12189) ((-779 . -623) 12171) ((-687 . -623) 12153) ((-246 . -658) 11938) ((-627 . -113) T) ((-1190 . -1113) T) ((-1186 . -1069) 11761) ((-1163 . -1231) T) ((-1138 . -1069) 11604) ((-864 . -1069) 11588) ((-1248 . -628) 11572) ((-1186 . -111) 11381) ((-1138 . -111) 11210) ((-864 . -111) 11189) ((-1238 . -860) T) ((-1254 . -624) NIL) ((-1254 . -623) 11171) ((-352 . -1165) T) ((-865 . -623) 11153) ((-1089 . -294) 11132) ((-80 . -1231) T) ((-916 . -1231) T) ((-1017 . -920) NIL) ((-1225 . -656) 11042) ((-618 . -294) 11018) ((-1217 . -524) 10951) ((-497 . -1231) T) ((-581 . -623) 10933) ((-485 . -294) 10912) ((-1100 . -233) 10896) ((-527 . -93) T) ((-1017 . -658) 10846) ((-219 . -1231) T) ((-1016 . -235) 10812) ((-969 . -294) 10764) ((-297 . -931) T) ((-827 . -315) 10743) ((-880 . -102) T) ((-792 . -233) 10727) ((-925 . -658) 10679) ((-721 . -656) 10629) ((-704 . -734) 10596) ((-645 . -21) T) ((-645 . -25) T) ((-617 . -21) T) ((-557 . -102) T) ((-352 . -38) 10561) ((-497 . -895) 10543) ((-497 . -897) 10525) ((-484 . -727) 10366) ((-219 . -895) 10348) ((-64 . -1231) T) ((-219 . -897) 10330) ((-617 . -25) T) ((-437 . -658) 10304) ((-1186 . -626) 10073) ((-497 . -1051) 10033) ((-882 . -524) 9945) ((-1138 . -626) 9737) ((-864 . -626) 9655) ((-219 . -1051) 9615) ((-246 . -34) T) ((-1013 . -1113) 9593) ((-590 . -1064) 9580) ((-574 . -1064) 9567) ((-505 . -1064) 9532) ((-1265 . -174) 9463) ((-1244 . -174) 9394) ((-590 . -650) 9381) ((-574 . -650) 9368) ((-505 . -650) 9333) ((-722 . -146) 9312) ((-722 . -148) 9291) ((-711 . -132) T) ((-137 . -475) 9268) ((-1160 . -623) 9200) ((-668 . -666) 9184) ((-129 . -294) 9134) ((-117 . -132) T) ((-487 . -1235) T) ((-618 . -614) 9110) ((-485 . -614) 9089) ((-345 . -344) 9058) ((-607 . -1113) T) ((-595 . -1113) T) ((-546 . -1113) T) ((-487 . -566) T) ((-1186 . -1062) T) ((-1138 . -1062) T) ((-864 . -1062) T) ((-246 . -801) 9037) ((-246 . -804) 8988) ((-246 . -803) 8967) ((-1186 . -334) 8944) ((-246 . -736) 8854) ((-969 . -19) 8838) ((-497 . -386) 8820) ((-497 . -347) 8802) ((-1138 . -334) 8774) ((-363 . -1288) 8751) ((-219 . -386) 8733) ((-219 . -347) 8715) ((-969 . -614) 8692) ((-1186 . -239) T) ((-1277 . -1113) T) ((-674 . -1113) T) ((-655 . -1113) T) ((-1203 . -1113) T) ((-1100 . -260) 8629) ((-596 . -656) 8589) ((-364 . -1113) T) ((-361 . -1113) T) ((-353 . -1113) T) ((-271 . -1113) T) ((-253 . -1113) T) ((-84 . -1231) T) ((-128 . -102) 8567) ((-122 . -102) 8545) ((-1244 . -524) 8405) ((-1203 . -620) 8384) ((-1154 . -1113) T) ((-1128 . -626) 8365) ((-1093 . -931) 8316) ((-489 . -1113) T) ((-1017 . -804) T) ((-1017 . -801) T) ((-489 . -620) 8295) ((-258 . -805) 8246) ((-258 . -802) 8197) ((-257 . -805) 8148) ((-40 . -1165) NIL) ((-257 . -802) 8099) ((-1017 . -736) T) ((-129 . -19) 8081) ((-984 . -804) T) ((-709 . -1064) 8046) ((-925 . -736) T) ((-921 . -1113) T) ((-903 . -623) 8028) ((-129 . -614) 8003) ((-709 . -650) 7968) ((-91 . -499) 7952) ((-497 . -911) NIL) ((-882 . -298) T) ((-227 . -1069) 7917) ((-846 . -294) 7896) ((-219 . -911) NIL) ((-843 . -1125) 7875) ((-59 . -1113) 7825) ((-529 . -1113) 7803) ((-526 . -1113) 7753) ((-507 . -1113) 7731) ((-506 . -1113) 7681) ((-590 . -102) T) ((-574 . -102) T) ((-505 . -102) T) ((-484 . -174) 7612) ((-368 . -931) T) ((-362 . -931) T) ((-354 . -931) T) ((-227 . -111) 7568) ((-843 . -23) 7520) ((-437 . -736) T) ((-108 . -931) T) ((-40 . -38) 7465) ((-108 . -830) T) ((-591 . -358) T) ((-528 . -358) T) ((-668 . -656) 7424) ((-324 . -462) 7403) ((-321 . -462) T) ((-612 . -524) 7336) ((-417 . -235) 7309) ((-348 . -132) T) ((-176 . -132) T) ((-302 . -25) 7173) ((-302 . -21) 7056) ((-45 . -1207) 7035) ((-66 . -623) 7017) ((-55 . -102) T) ((-345 . -656) 6999) ((-1282 . -102) T) ((-45 . -107) 6949) ((-829 . -626) 6933) ((-1281 . -102) 6883) ((-1273 . -658) 6808) ((-1266 . -658) 6705) ((-1245 . -658) 6557) ((-1245 . -920) NIL) ((-1115 . -435) 6541) ((-1115 . -377) 6520) ((-396 . -626) 6504) ((-332 . -626) 6488) ((-1212 . -623) 6470) ((-1204 . -102) T) ((-1076 . -1231) T) ((-1100 . -656) 6380) ((-1075 . -1069) 6367) ((-1075 . -111) 6352) ((-963 . -1069) 6195) ((-963 . -111) 6024) ((-792 . -656) 5934) ((-790 . -656) 5844) ((-633 . -1064) 5831) ((-674 . -727) 5815) ((-633 . -650) 5802) ((-491 . -1069) 5645) ((-487 . -372) T) ((-471 . -656) 5601) ((-464 . -656) 5511) ((-227 . -626) 5461) ((-364 . -727) 5413) ((-361 . -727) 5365) ((-118 . -1064) 5310) ((-353 . -727) 5262) ((-271 . -727) 5111) ((-253 . -727) 4960) ((-1109 . -93) T) ((-1103 . -93) T) ((-118 . -650) 4905) ((-1086 . -93) T) ((-954 . -661) 4889) ((-1079 . -93) T) ((-491 . -111) 4718) ((-1070 . -1113) 4696) ((-1049 . -93) T) ((-954 . -382) 4680) ((-254 . -102) T) ((-1032 . -93) T) ((-74 . -623) 4662) ((-974 . -47) 4641) ((-720 . -102) T) ((-709 . -102) T) ((-1 . -1113) T) ((-631 . -1125) T) ((-1101 . -623) 4623) ((-636 . -93) T) ((-1089 . -623) 4605) ((-921 . -727) 4570) ((-127 . -499) 4554) ((-493 . -93) T) ((-631 . -23) T) ((-400 . -23) T) ((-87 . -1231) T) ((-220 . -93) T) ((-618 . -623) 4536) ((-618 . -624) NIL) ((-485 . -624) NIL) ((-485 . -623) 4518) ((-360 . -25) T) ((-360 . -21) T) ((-50 . -656) 4477) ((-521 . -1113) T) ((-517 . -1113) T) ((-128 . -317) 4415) ((-122 . -317) 4353) ((-606 . -658) 4327) ((-605 . -658) 4252) ((-591 . -656) 4202) ((-227 . -1062) T) ((-528 . -656) 4132) ((-388 . -1015) T) ((-227 . -249) T) ((-227 . -239) T) ((-1075 . -626) 4104) ((-1075 . -628) 4085) ((-969 . -624) 4046) ((-969 . -623) 3958) ((-963 . -626) 3747) ((-880 . -38) 3734) ((-723 . -626) 3684) ((-1265 . -298) 3635) ((-1244 . -298) 3586) ((-491 . -626) 3371) ((-1133 . -462) T) ((-512 . -860) T) ((-324 . -1152) 3350) ((-1012 . -148) 3329) ((-1012 . -146) 3308) ((-505 . -317) 3295) ((-303 . -1207) 3274) ((-1198 . -623) 3256) ((-1197 . -623) 3238) ((-1196 . -623) 3220) ((-881 . -1069) 3165) ((-487 . -1125) T) ((-140 . -845) 3147) ((-115 . -845) 3128) ((-633 . -102) T) ((-1217 . -499) 3112) ((-258 . -377) 3091) ((-257 . -377) 3070) ((-1075 . -1062) T) ((-303 . -107) 3020) ((-131 . -623) 3002) ((-129 . -624) NIL) ((-129 . -623) 2946) ((-118 . -102) T) ((-963 . -1062) T) ((-881 . -111) 2875) ((-487 . -23) T) ((-463 . -1231) T) ((-491 . -1062) T) ((-1075 . -239) T) ((-963 . -334) 2844) ((-491 . -334) 2801) ((-364 . -174) T) ((-361 . -174) T) ((-353 . -174) T) ((-271 . -174) 2712) ((-253 . -174) 2623) ((-974 . -1051) 2519) ((-527 . -500) 2500) ((-745 . -1051) 2471) ((-527 . -623) 2437) ((-428 . -1231) 2354) ((-1118 . -102) T) ((-1105 . -623) 2313) ((-1047 . -623) 2295) ((-704 . -1064) 2245) ((-1294 . -152) 2229) ((-1292 . -626) 2210) ((-1291 . -626) 2191) ((-1286 . -623) 2173) ((-1273 . -736) T) ((-704 . -650) 2123) ((-1266 . -736) T) ((-1245 . -801) NIL) ((-1245 . -804) NIL) ((-171 . -1069) 2033) ((-921 . -174) T) ((-881 . -626) 1963) ((-1245 . -736) T) ((-1016 . -351) 1937) ((-225 . -656) 1889) ((-1013 . -524) 1822) ((-853 . -860) 1801) ((-574 . -1165) T) ((-484 . -298) 1752) ((-606 . -736) T) ((-370 . -623) 1734) ((-330 . -623) 1716) ((-428 . -1051) 1612) ((-605 . -736) T) ((-417 . -860) 1563) ((-171 . -111) 1459) ((-843 . -132) 1411) ((-747 . -152) 1395) ((-1281 . -317) 1333) ((-497 . -315) T) ((-388 . -623) 1300) ((-530 . -1023) 1284) ((-388 . -624) 1198) ((-219 . -315) T) ((-142 . -152) 1180) ((-724 . -294) 1159) ((-497 . -1035) T) ((-590 . -38) 1146) ((-574 . -38) 1133) ((-505 . -38) 1098) ((-219 . -1035) T) ((-881 . -1062) T) ((-846 . -623) 1080) ((-837 . -623) 1062) ((-835 . -623) 1044) ((-826 . -920) 1023) ((-1305 . -1125) T) ((-1254 . -1069) 846) ((-865 . -1069) 830) ((-881 . -249) T) ((-881 . -239) NIL) ((-699 . -1231) T) ((-1305 . -23) T) ((-826 . -658) 719) ((-560 . -1231) T) ((-428 . -347) 703) ((-581 . -1069) 690) ((-1254 . -111) 499) ((-711 . -649) 481) ((-865 . -111) 460) ((-390 . -23) T) ((-171 . -626) 238) ((-1203 . -524) 30) ((-886 . -1113) T) ((-691 . -1113) T) ((-686 . -1113) T) ((-672 . -1113) T))
\ No newline at end of file +(-2817 (|has| |#1| (-859)) (|has| |#1| (-1112))) +((($ $) . T) ((#0=(-873 |#1|) $) . T) ((#0# |#2|) . T)) +((($ $) . T) ((|#2| $) |has| |#1| (-238)) ((|#2| |#1|) |has| |#1| (-238)) ((|#3| |#1|) . T) ((|#3| $) . T)) +(((-487 . -1112) T) ((-270 . -523) 195259) ((-252 . -523) 195202) ((-250 . -1112) 195152) ((-580 . -111) 195137) ((-540 . -23) T) ((-134 . -1112) T) ((-139 . -1112) T) ((-118 . -316) 195094) ((-138 . -1112) T) ((-1011 . -237) 195073) ((-808 . -1230) 195042) ((-488 . -523) 194834) ((-686 . -625) 194818) ((-703 . -102) T) ((-1153 . -523) 194737) ((-399 . -132) T) ((-1293 . -988) 194706) ((-1036 . -1063) 194643) ((-31 . -93) T) ((-611 . -498) 194627) ((-1036 . -649) 194564) ((-630 . -132) T) ((-828 . -855) T) ((-532 . -57) 194514) ((-528 . -523) 194447) ((-359 . -235) 194434) ((-362 . -1063) 194379) ((-59 . -523) 194312) ((-525 . -523) 194245) ((-427 . -910) 194204) ((-171 . -1061) T) ((-506 . -523) 194137) ((-505 . -523) 194070) ((-362 . -649) 194015) ((-808 . -1050) 193795) ((-708 . -38) 193760) ((-1253 . -625) 193508) ((-351 . -357) T) ((-1106 . -1105) 193492) ((-1106 . -1112) 193470) ((-864 . -625) 193367) ((-171 . -248) 193318) ((-171 . -238) 193269) ((-1106 . -1107) 193227) ((-881 . -293) 193185) ((-227 . -804) T) ((-227 . -801) T) ((-703 . -291) NIL) ((-580 . -625) 193157) ((-1162 . -1206) 193136) ((-416 . -1004) 193120) ((-48 . -1063) 193085) ((-710 . -21) T) ((-710 . -25) T) ((-48 . -649) 193050) ((-1295 . -657) 193024) ((-323 . -161) 193003) ((-323 . -144) 192982) ((-1162 . -107) 192932) ((-117 . -21) T) ((-40 . -233) 192909) ((-135 . -25) T) ((-117 . -25) T) ((-617 . -295) 192885) ((-484 . -295) 192864) ((-1253 . -333) 192841) ((-1253 . -1061) T) ((-864 . -1061) T) ((-808 . -346) 192825) ((-140 . -187) T) ((-118 . -1164) NIL) ((-91 . -622) 192757) ((-486 . -132) T) ((-1253 . -238) T) ((-1108 . -499) 192738) ((-1108 . -622) 192704) ((-1102 . -499) 192685) ((-1102 . -622) 192651) ((-602 . -1230) T) ((-1085 . -499) 192632) ((-580 . -1061) T) ((-1085 . -622) 192598) ((-671 . -726) 192582) ((-1078 . -499) 192563) ((-1078 . -622) 192529) ((-968 . -295) 192506) ((-60 . -34) T) ((-1074 . -804) T) ((-1074 . -801) T) ((-1048 . -499) 192487) ((-1031 . -499) 192468) ((-825 . -735) T) ((-740 . -47) 192433) ((-632 . -38) 192420) ((-363 . -297) T) ((-360 . -297) T) ((-352 . -297) T) ((-270 . -297) 192351) ((-252 . -297) 192282) ((-1048 . -622) 192248) ((-1036 . -102) T) ((-1031 . -622) 192214) ((-635 . -499) 192195) ((-422 . -735) T) ((-118 . -38) 192140) ((-492 . -499) 192121) ((-635 . -622) 192087) ((-422 . -482) T) ((-220 . -499) 192068) ((-492 . -622) 192034) ((-362 . -102) T) ((-220 . -622) 192000) ((-1224 . -1070) T) ((-351 . -655) 191930) ((-720 . -1070) T) ((-1187 . -47) 191907) ((-1186 . -47) 191877) ((-1180 . -47) 191854) ((-129 . -295) 191829) ((-1047 . -152) 191775) ((-920 . -297) T) ((-1138 . -47) 191747) ((-703 . -316) NIL) ((-524 . -622) 191729) ((-519 . -622) 191711) ((-517 . -622) 191693) ((-334 . -1112) 191643) ((-721 . -461) 191574) ((-48 . -102) T) ((-1264 . -293) 191532) ((-1243 . -293) 191432) ((-653 . -675) 191416) ((-653 . -660) 191400) ((-347 . -21) T) ((-347 . -25) T) ((-40 . -357) NIL) ((-176 . -21) T) ((-176 . -25) T) ((-653 . -381) 191384) ((-614 . -499) 191366) ((-611 . -293) 191318) ((-614 . -622) 191285) ((-397 . -102) T) ((-1132 . -144) T) ((-127 . -622) 191217) ((-883 . -1112) T) ((-667 . -420) 191201) ((-723 . -622) 191183) ((-254 . -622) 191150) ((-189 . -622) 191132) ((-163 . -622) 191114) ((-158 . -622) 191096) ((-1295 . -735) T) ((-1114 . -34) T) ((-880 . -804) NIL) ((-880 . -801) NIL) ((-867 . -859) T) ((-740 . -896) NIL) ((-1304 . -132) T) ((-389 . -132) T) ((-902 . -625) 191064) ((-914 . -102) T) ((-740 . -1050) 190940) ((-1187 . -1230) T) ((-540 . -132) T) ((-1186 . -1230) T) ((-1099 . -420) 190924) ((-1012 . -498) 190908) ((-118 . -409) 190885) ((-1180 . -1230) T) ((-791 . -420) 190869) ((-789 . -420) 190853) ((-953 . -34) T) ((-703 . -1164) NIL) ((-257 . -657) 190625) ((-256 . -657) 190384) ((-826 . -930) 190363) ((-463 . -420) 190347) ((-611 . -19) 190331) ((-1158 . -1223) 190300) ((-1180 . -896) NIL) ((-1180 . -894) 190252) ((-611 . -613) 190229) ((-1216 . -622) 190161) ((-1188 . -622) 190143) ((-62 . -404) T) ((-1186 . -1050) 190078) ((-1180 . -1050) 190044) ((-703 . -38) 189994) ((-40 . -655) 189924) ((-483 . -293) 189882) ((-1236 . -622) 189864) ((-740 . -385) 189848) ((-847 . -622) 189830) ((-667 . -1070) T) ((-1264 . -1014) 189796) ((-1243 . -1014) 189762) ((-255 . -1230) T) ((-1100 . -625) 189746) ((-1075 . -1206) 189721) ((-1088 . -625) 189698) ((-881 . -623) 189505) ((-881 . -622) 189487) ((-710 . -235) 189474) ((-1202 . -498) 189411) ((-427 . -1034) 189389) ((-48 . -316) 189376) ((-1075 . -107) 189322) ((-488 . -498) 189259) ((-529 . -1230) T) ((-1180 . -346) 189211) ((-1153 . -498) 189182) ((-1180 . -385) 189134) ((-1099 . -1070) T) ((-446 . -102) T) ((-185 . -1112) T) ((-257 . -34) T) ((-256 . -34) T) ((-791 . -1070) T) ((-789 . -1070) T) ((-740 . -910) 189111) ((-463 . -1070) T) ((-59 . -498) 189095) ((-1046 . -1068) 189069) ((-528 . -498) 189053) ((-525 . -498) 189037) ((-506 . -498) 189021) ((-505 . -498) 189005) ((-250 . -523) 188938) ((-1046 . -111) 188905) ((-1187 . -910) 188818) ((-1186 . -910) 188724) ((-1180 . -910) 188557) ((-1138 . -910) 188541) ((-679 . -1124) T) ((-654 . -93) T) ((-362 . -1164) T) ((-329 . -1068) 188523) ((-257 . -800) 188502) ((-257 . -803) 188453) ((-31 . -499) 188434) ((-257 . -802) 188413) ((-256 . -800) 188392) ((-256 . -803) 188343) ((-256 . -802) 188322) ((-31 . -622) 188288) ((-50 . -1070) T) ((-257 . -735) 188198) ((-256 . -735) 188108) ((-1224 . -1112) T) ((-679 . -23) T) ((-590 . -1070) T) ((-527 . -1070) T) ((-387 . -1068) 188073) ((-329 . -111) 188048) ((-73 . -391) T) ((-73 . -404) T) ((-1036 . -38) 187985) ((-703 . -409) 187967) ((-99 . -102) T) ((-720 . -1112) T) ((-1309 . -1063) 187954) ((-1015 . -146) 187926) ((-1015 . -148) 187898) ((-879 . -655) 187870) ((-387 . -111) 187826) ((-326 . -1234) 187805) ((-483 . -1014) 187771) ((-362 . -38) 187736) ((-40 . -378) 187708) ((-882 . -622) 187580) ((-128 . -126) 187564) ((-122 . -126) 187548) ((-845 . -1068) 187518) ((-842 . -21) 187470) ((-836 . -1068) 187454) ((-842 . -25) 187406) ((-326 . -565) 187357) ((-526 . -625) 187338) ((-573 . -837) T) ((-245 . -1230) T) ((-1046 . -625) 187307) ((-845 . -111) 187272) ((-836 . -111) 187251) ((-1264 . -622) 187233) ((-1243 . -622) 187215) ((-1243 . -623) 186886) ((-1185 . -919) 186865) ((-1137 . -919) 186844) ((-48 . -38) 186809) ((-1302 . -1124) T) ((-545 . -293) 186765) ((-611 . -622) 186677) ((-611 . -623) 186638) ((-1300 . -1124) T) ((-369 . -625) 186622) ((-329 . -625) 186606) ((-1154 . -237) 186585) ((-245 . -1050) 186412) ((-1185 . -657) 186301) ((-1137 . -657) 186190) ((-863 . -657) 186164) ((-727 . -622) 186146) ((-555 . -376) T) ((-1302 . -23) T) ((-1300 . -23) T) ((-500 . -1112) T) ((-387 . -625) 186096) ((-387 . -627) 186078) ((-1046 . -1061) T) ((-874 . -102) T) ((-1202 . -293) 186057) ((-171 . -376) 186008) ((-1016 . -1230) T) ((-845 . -625) 185962) ((-836 . -625) 185917) ((-44 . -23) T) ((-488 . -293) 185896) ((-595 . -1112) T) ((-1158 . -1121) 185865) ((-1116 . -1115) 185817) ((-399 . -21) T) ((-399 . -25) T) ((-153 . -1124) T) ((-1309 . -102) T) ((-1016 . -894) 185799) ((-1016 . -896) 185781) ((-1224 . -726) 185678) ((-632 . -233) 185662) ((-630 . -21) T) ((-296 . -565) T) ((-630 . -25) T) ((-1210 . -1112) T) ((-720 . -726) 185627) ((-245 . -385) 185596) ((-1016 . -1050) 185556) ((-387 . -1061) T) ((-225 . -1070) T) ((-118 . -233) 185533) ((-59 . -293) 185485) ((-153 . -23) T) ((-525 . -293) 185437) ((-334 . -523) 185370) ((-505 . -293) 185322) ((-387 . -248) T) ((-387 . -238) T) ((-845 . -1061) T) ((-836 . -1061) T) ((-721 . -959) 185291) ((-710 . -859) T) ((-483 . -622) 185273) ((-1266 . -1063) 185178) ((-589 . -655) 185150) ((-573 . -655) 185122) ((-504 . -655) 185072) ((-836 . -238) 185051) ((-135 . -859) T) ((-1266 . -649) 184943) ((-667 . -1112) T) ((-1202 . -613) 184922) ((-559 . -1206) 184901) ((-344 . -1112) T) ((-326 . -371) 184880) ((-416 . -148) 184859) ((-416 . -146) 184838) ((-974 . -1124) 184737) ((-245 . -910) 184669) ((-824 . -1124) 184579) ((-663 . -861) 184563) ((-488 . -613) 184542) ((-559 . -107) 184492) ((-1016 . -385) 184474) ((-1016 . -346) 184456) ((-1189 . -622) 184438) ((-97 . -1112) T) ((-974 . -23) 184249) ((-486 . -21) T) ((-486 . -25) T) ((-824 . -23) 184119) ((-1189 . -623) 184041) ((-59 . -19) 184025) ((-1185 . -735) T) ((-1137 . -735) T) ((-1099 . -1112) T) ((-525 . -19) 184009) ((-505 . -19) 183993) ((-59 . -613) 183970) ((-1015 . -237) 183942) ((-911 . -102) 183920) ((-863 . -735) T) ((-791 . -1112) T) ((-525 . -613) 183897) ((-505 . -613) 183874) ((-789 . -1112) T) ((-789 . -1077) 183841) ((-470 . -1112) T) ((-463 . -1112) T) ((-595 . -726) 183816) ((-658 . -1112) T) ((-1272 . -47) 183793) ((-1266 . -102) T) ((-1265 . -47) 183763) ((-1244 . -47) 183740) ((-1224 . -174) 183691) ((-1186 . -314) 183670) ((-1180 . -314) 183649) ((-1108 . -625) 183630) ((-1102 . -625) 183611) ((-1092 . -565) 183562) ((-1016 . -910) NIL) ((-1092 . -1234) 183513) ((-679 . -132) T) ((-636 . -1124) T) ((-1085 . -625) 183494) ((-1078 . -625) 183475) ((-1048 . -625) 183456) ((-1031 . -625) 183437) ((-708 . -655) 183387) ((-281 . -1112) T) ((-85 . -450) T) ((-85 . -404) T) ((-723 . -1068) 183357) ((-720 . -174) T) ((-50 . -1112) T) ((-604 . -47) 183334) ((-227 . -657) 183299) ((-590 . -1112) T) ((-527 . -1112) T) ((-496 . -829) T) ((-496 . -930) T) ((-367 . -1234) T) ((-361 . -1234) T) ((-353 . -1234) T) ((-326 . -1124) T) ((-323 . -1063) 183209) ((-320 . -1063) 183138) ((-108 . -1234) T) ((-635 . -625) 183119) ((-367 . -565) T) ((-219 . -930) T) ((-219 . -829) T) ((-323 . -649) 183029) ((-320 . -649) 182958) ((-361 . -565) T) ((-353 . -565) T) ((-492 . -625) 182939) ((-108 . -565) T) ((-667 . -726) 182909) ((-1180 . -1034) NIL) ((-220 . -625) 182890) ((-326 . -23) T) ((-67 . -1230) T) ((-1012 . -622) 182822) ((-703 . -233) 182804) ((-723 . -111) 182769) ((-653 . -34) T) ((-250 . -498) 182753) ((-1309 . -1164) T) ((-1304 . -21) T) ((-1304 . -25) T) ((-1302 . -132) T) ((-1114 . -1110) 182737) ((-173 . -1112) T) ((-1300 . -132) T) ((-1293 . -102) T) ((-1276 . -622) 182703) ((-1272 . -1230) T) ((-1265 . -1230) T) ((-962 . -919) 182682) ((-1265 . -1050) 182617) ((-1244 . -1230) T) ((-1244 . -896) NIL) ((-524 . -625) 182601) ((-1244 . -894) 182553) ((-1244 . -1050) 182519) ((-1224 . -523) 182486) ((-490 . -919) 182465) ((-1202 . -623) NIL) ((-1202 . -622) 182447) ((-1099 . -726) 182296) ((-1074 . -657) 182268) ((-962 . -657) 182157) ((-606 . -499) 182138) ((-594 . -499) 182119) ((-791 . -726) 181948) ((-606 . -622) 181914) ((-594 . -622) 181880) ((-545 . -622) 181862) ((-545 . -623) 181843) ((-789 . -726) 181692) ((-1089 . -102) T) ((-389 . -25) T) ((-632 . -655) 181664) ((-389 . -21) T) ((-490 . -657) 181553) ((-470 . -726) 181524) ((-463 . -726) 181373) ((-999 . -102) T) ((-1154 . -1135) 181318) ((-1058 . -1223) 181247) ((-911 . -316) 181185) ((-746 . -102) T) ((-118 . -655) 181115) ((-614 . -625) 181097) ((-885 . -93) T) ((-723 . -625) 181051) ((-540 . -25) T) ((-690 . -93) T) ((-685 . -93) T) ((-673 . -622) 181033) ((-654 . -499) 181014) ((-142 . -102) T) ((-44 . -132) T) ((-654 . -622) 180967) ((-604 . -1230) T) ((-351 . -1070) T) ((-296 . -1124) T) ((-487 . -93) T) ((-416 . -237) 180946) ((-363 . -622) 180928) ((-360 . -622) 180910) ((-352 . -622) 180892) ((-270 . -623) 180640) ((-270 . -622) 180622) ((-252 . -622) 180604) ((-252 . -623) 180465) ((-134 . -93) T) ((-139 . -93) T) ((-138 . -93) T) ((-1153 . -622) 180447) ((-1132 . -649) 180434) ((-1132 . -1063) 180421) ((-828 . -735) T) ((-828 . -866) T) ((-611 . -295) 180398) ((-590 . -726) 180363) ((-488 . -623) NIL) ((-488 . -622) 180345) ((-527 . -726) 180290) ((-323 . -102) T) ((-320 . -102) T) ((-296 . -23) T) ((-153 . -132) T) ((-920 . -622) 180272) ((-920 . -623) 180254) ((-395 . -735) T) ((-881 . -1068) 180206) ((-881 . -111) 180144) ((-723 . -1061) T) ((-721 . -1256) 180128) ((-703 . -357) NIL) ((-115 . -102) T) ((-140 . -102) T) ((-137 . -102) T) ((-528 . -622) 180060) ((-387 . -804) T) ((-225 . -1112) T) ((-169 . -1230) T) ((-387 . -801) T) ((-227 . -803) T) ((-227 . -800) T) ((-59 . -623) 180021) ((-59 . -622) 179933) ((-227 . -735) T) ((-525 . -623) 179894) ((-525 . -622) 179806) ((-506 . -622) 179738) ((-505 . -623) 179699) ((-505 . -622) 179611) ((-1092 . -371) 179562) ((-40 . -420) 179539) ((-77 . -1230) T) ((-880 . -919) NIL) ((-367 . -336) 179523) ((-367 . -371) T) ((-361 . -336) 179507) ((-361 . -371) T) ((-353 . -336) 179491) ((-353 . -371) T) ((-323 . -291) 179470) ((-108 . -371) T) ((-70 . -1230) T) ((-1244 . -346) 179422) ((-880 . -657) 179367) ((-1244 . -385) 179319) ((-974 . -132) 179174) ((-824 . -132) 179044) ((-968 . -660) 179028) ((-1099 . -174) 178939) ((-968 . -381) 178923) ((-1074 . -803) T) ((-1074 . -800) T) ((-881 . -625) 178821) ((-791 . -174) 178712) ((-789 . -174) 178623) ((-825 . -47) 178585) ((-1074 . -735) T) ((-334 . -498) 178569) ((-962 . -735) T) ((-1293 . -316) 178507) ((-463 . -174) 178418) ((-250 . -293) 178370) ((-1272 . -910) 178283) ((-1265 . -910) 178189) ((-1264 . -1068) 178024) ((-490 . -735) T) ((-1244 . -910) 177857) ((-1243 . -1068) 177665) ((-1224 . -297) 177644) ((-1199 . -1230) T) ((-1196 . -376) T) ((-1195 . -376) T) ((-1158 . -152) 177628) ((-1132 . -102) T) ((-1130 . -1112) T) ((-1092 . -23) T) ((-1092 . -1124) T) ((-1087 . -102) T) ((-1069 . -622) 177595) ((-937 . -965) T) ((-746 . -316) 177533) ((-75 . -1230) T) ((-673 . -390) 177505) ((-171 . -919) 177458) ((-30 . -965) T) ((-112 . -853) T) ((-1 . -622) 177440) ((-1015 . -418) 177412) ((-129 . -660) 177394) ((-50 . -629) 177378) ((-703 . -655) 177313) ((-604 . -910) 177226) ((-447 . -102) T) ((-129 . -381) 177208) ((-142 . -316) NIL) ((-881 . -1061) T) ((-842 . -859) 177187) ((-81 . -1230) T) ((-720 . -297) T) ((-40 . -1070) T) ((-590 . -174) T) ((-527 . -174) T) ((-520 . -622) 177169) ((-171 . -657) 177043) ((-516 . -622) 177025) ((-359 . -148) 177007) ((-359 . -146) T) ((-367 . -1124) T) ((-361 . -1124) T) ((-353 . -1124) T) ((-1016 . -314) T) ((-924 . -314) T) ((-881 . -248) T) ((-108 . -1124) T) ((-881 . -238) 176986) ((-1264 . -111) 176807) ((-1243 . -111) 176596) ((-250 . -1268) 176580) ((-573 . -857) T) ((-367 . -23) T) ((-362 . -357) T) ((-323 . -316) 176567) ((-320 . -316) 176508) ((-361 . -23) T) ((-326 . -132) T) ((-353 . -23) T) ((-1016 . -1034) T) ((-31 . -625) 176489) ((-108 . -23) T) ((-663 . -1063) 176473) ((-250 . -613) 176450) ((-340 . -1112) T) ((-663 . -649) 176420) ((-1266 . -38) 176312) ((-1253 . -919) 176291) ((-112 . -1112) T) ((-825 . -1230) 176270) ((-1047 . -102) T) ((-1253 . -657) 176159) ((-880 . -803) NIL) ((-864 . -657) 176133) ((-880 . -800) NIL) ((-825 . -896) NIL) ((-880 . -735) T) ((-1099 . -523) 176006) ((-791 . -523) 175953) ((-789 . -523) 175905) ((-580 . -657) 175892) ((-825 . -1050) 175720) ((-463 . -523) 175663) ((-397 . -398) T) ((-1264 . -625) 175476) ((-1243 . -625) 175224) ((-60 . -1230) T) ((-630 . -859) 175203) ((-509 . -670) T) ((-1158 . -988) 175172) ((-1036 . -655) 175109) ((-1015 . -461) T) ((-708 . -857) T) ((-519 . -801) T) ((-483 . -1068) 174944) ((-509 . -113) T) ((-351 . -1112) T) ((-320 . -1164) NIL) ((-296 . -132) T) ((-403 . -1112) T) ((-879 . -1070) T) ((-703 . -378) 174911) ((-362 . -655) 174841) ((-225 . -629) 174818) ((-334 . -293) 174770) ((-483 . -111) 174591) ((-1264 . -1061) T) ((-1243 . -1061) T) ((-825 . -385) 174575) ((-171 . -735) T) ((-663 . -102) T) ((-1264 . -248) 174554) ((-1264 . -238) 174506) ((-1243 . -238) 174411) ((-1243 . -248) 174390) ((-1015 . -411) NIL) ((-679 . -648) 174338) ((-323 . -38) 174248) ((-320 . -38) 174177) ((-69 . -622) 174159) ((-326 . -502) 174125) ((-48 . -655) 174075) ((-1202 . -295) 174054) ((-1238 . -859) T) ((-1125 . -1124) 173964) ((-83 . -1230) T) ((-61 . -622) 173946) ((-488 . -295) 173925) ((-1295 . -1050) 173902) ((-1177 . -1112) T) ((-1125 . -23) 173772) ((-825 . -910) 173708) ((-1253 . -735) T) ((-1114 . -1230) T) ((-483 . -625) 173534) ((-359 . -237) T) ((-1099 . -297) 173465) ((-976 . -1112) T) ((-903 . -102) T) ((-791 . -297) 173376) ((-334 . -19) 173360) ((-59 . -295) 173337) ((-789 . -297) 173268) ((-864 . -735) T) ((-118 . -857) NIL) ((-525 . -295) 173245) ((-334 . -613) 173222) ((-505 . -295) 173199) ((-463 . -297) 173130) ((-1047 . -316) 172981) ((-885 . -499) 172962) ((-885 . -622) 172928) ((-690 . -499) 172909) ((-580 . -735) T) ((-685 . -499) 172890) ((-690 . -622) 172840) ((-685 . -622) 172806) ((-671 . -622) 172788) ((-487 . -499) 172769) ((-487 . -622) 172735) ((-250 . -623) 172696) ((-250 . -499) 172673) ((-139 . -499) 172654) ((-138 . -499) 172635) ((-134 . -499) 172616) ((-250 . -622) 172508) ((-215 . -102) T) ((-139 . -622) 172474) ((-138 . -622) 172440) ((-134 . -622) 172406) ((-1159 . -34) T) ((-953 . -1230) T) ((-351 . -726) 172351) ((-679 . -25) T) ((-679 . -21) T) ((-1189 . -625) 172332) ((-483 . -1061) T) ((-644 . -426) 172297) ((-616 . -426) 172262) ((-1132 . -1164) T) ((-721 . -1063) 172085) ((-590 . -297) T) ((-527 . -297) T) ((-1265 . -314) 172064) ((-483 . -238) 172016) ((-483 . -248) 171995) ((-1244 . -314) 171974) ((-721 . -649) 171803) ((-1244 . -1034) NIL) ((-1092 . -132) T) ((-881 . -804) 171782) ((-145 . -102) T) ((-40 . -1112) T) ((-881 . -801) 171761) ((-653 . -1022) 171745) ((-589 . -1070) T) ((-573 . -1070) T) ((-504 . -1070) T) ((-416 . -461) T) ((-367 . -132) T) ((-323 . -409) 171729) ((-320 . -409) 171690) ((-361 . -132) T) ((-353 . -132) T) ((-1194 . -1112) T) ((-1132 . -38) 171677) ((-1106 . -622) 171644) ((-108 . -132) T) ((-964 . -1112) T) ((-931 . -1112) T) ((-780 . -1112) T) ((-681 . -1112) T) ((-710 . -148) T) ((-117 . -148) T) ((-1302 . -21) T) ((-1302 . -25) T) ((-1300 . -21) T) ((-1300 . -25) T) ((-673 . -1068) 171628) ((-540 . -859) T) ((-509 . -859) T) ((-363 . -1068) 171580) ((-360 . -1068) 171532) ((-352 . -1068) 171484) ((-257 . -1230) T) ((-256 . -1230) T) ((-270 . -1068) 171327) ((-252 . -1068) 171170) ((-673 . -111) 171149) ((-556 . -853) T) ((-363 . -111) 171087) ((-360 . -111) 171025) ((-352 . -111) 170963) ((-270 . -111) 170792) ((-252 . -111) 170621) ((-826 . -1234) 170600) ((-632 . -420) 170584) ((-44 . -21) T) ((-44 . -25) T) ((-824 . -648) 170490) ((-826 . -565) 170469) ((-257 . -1050) 170296) ((-256 . -1050) 170123) ((-127 . -120) 170107) ((-920 . -1068) 170072) ((-721 . -102) T) ((-708 . -1070) T) ((-606 . -625) 170053) ((-594 . -625) 170034) ((-545 . -627) 169937) ((-351 . -174) T) ((-88 . -622) 169919) ((-153 . -21) T) ((-153 . -25) T) ((-920 . -111) 169875) ((-40 . -726) 169820) ((-879 . -1112) T) ((-673 . -625) 169797) ((-654 . -625) 169778) ((-363 . -625) 169715) ((-360 . -625) 169652) ((-556 . -1112) T) ((-352 . -625) 169589) ((-334 . -623) 169550) ((-334 . -622) 169462) ((-270 . -625) 169215) ((-252 . -625) 169000) ((-1243 . -801) 168953) ((-1243 . -804) 168906) ((-257 . -385) 168875) ((-256 . -385) 168844) ((-663 . -38) 168814) ((-617 . -34) T) ((-491 . -1124) 168724) ((-484 . -34) T) ((-1125 . -132) 168594) ((-974 . -25) 168405) ((-920 . -625) 168355) ((-883 . -622) 168337) ((-974 . -21) 168292) ((-824 . -21) 168202) ((-824 . -25) 168053) ((-1236 . -376) T) ((-632 . -1070) T) ((-1191 . -565) 168032) ((-1185 . -47) 168009) ((-363 . -1061) T) ((-360 . -1061) T) ((-491 . -23) 167879) ((-352 . -1061) T) ((-270 . -1061) T) ((-252 . -1061) T) ((-1137 . -47) 167851) ((-118 . -1070) T) ((-1046 . -657) 167825) ((-968 . -34) T) ((-363 . -238) 167804) ((-363 . -248) T) ((-360 . -238) 167783) ((-360 . -248) T) ((-352 . -238) 167762) ((-352 . -248) T) ((-270 . -333) 167734) ((-252 . -333) 167691) ((-270 . -238) 167670) ((-1169 . -152) 167654) ((-257 . -910) 167586) ((-256 . -910) 167518) ((-1094 . -859) T) ((-423 . -1124) T) ((-1066 . -23) T) ((-1036 . -857) T) ((-920 . -1061) T) ((-329 . -657) 167500) ((-710 . -237) T) ((-679 . -235) 167473) ((-1224 . -1014) 167439) ((-1186 . -930) 167418) ((-1180 . -930) 167397) ((-1180 . -829) NIL) ((-1011 . -1063) 167293) ((-977 . -1230) T) ((-920 . -248) T) ((-826 . -371) 167272) ((-393 . -23) T) ((-128 . -1112) 167250) ((-122 . -1112) 167228) ((-920 . -238) T) ((-129 . -34) T) ((-387 . -657) 167193) ((-1011 . -649) 167141) ((-879 . -726) 167128) ((-1309 . -655) 167100) ((-1058 . -152) 167065) ((-1005 . -1230) T) ((-40 . -174) T) ((-703 . -420) 167047) ((-721 . -316) 167034) ((-845 . -657) 166994) ((-836 . -657) 166968) ((-326 . -25) T) ((-326 . -21) T) ((-667 . -293) 166947) ((-589 . -1112) T) ((-573 . -1112) T) ((-504 . -1112) T) ((-250 . -295) 166924) ((-1185 . -1230) T) ((-320 . -233) 166885) ((-1185 . -896) NIL) ((-55 . -1112) T) ((-1137 . -896) 166744) ((-130 . -859) T) ((-1185 . -1050) 166624) ((-1137 . -1050) 166507) ((-185 . -622) 166489) ((-863 . -1050) 166385) ((-791 . -293) 166312) ((-826 . -1124) T) ((-1046 . -735) T) ((-611 . -660) 166296) ((-1058 . -988) 166225) ((-1011 . -102) T) ((-826 . -23) T) ((-721 . -1164) 166203) ((-703 . -1070) T) ((-611 . -381) 166187) ((-359 . -461) T) ((-351 . -297) T) ((-1281 . -1112) T) ((-253 . -1112) T) ((-408 . -102) T) ((-296 . -21) T) ((-296 . -25) T) ((-369 . -735) T) ((-719 . -1112) T) ((-708 . -1112) T) ((-369 . -482) T) ((-1224 . -622) 166169) ((-1185 . -385) 166153) ((-1137 . -385) 166137) ((-1036 . -420) 166099) ((-142 . -231) 166081) ((-387 . -803) T) ((-387 . -800) T) ((-879 . -174) T) ((-387 . -735) T) ((-720 . -622) 166063) ((-721 . -38) 165892) ((-1280 . -1278) 165876) ((-359 . -411) T) ((-1280 . -1112) 165826) ((-1203 . -1112) T) ((-589 . -726) 165813) ((-573 . -726) 165800) ((-504 . -726) 165765) ((-1266 . -655) 165655) ((-323 . -638) 165634) ((-845 . -735) T) ((-836 . -735) T) ((-653 . -1230) T) ((-1092 . -648) 165582) ((-1185 . -910) 165525) ((-1137 . -910) 165509) ((-824 . -235) 165455) ((-671 . -1068) 165439) ((-108 . -648) 165421) ((-491 . -132) 165291) ((-1191 . -1124) T) ((-962 . -47) 165260) ((-632 . -1112) T) ((-671 . -111) 165239) ((-500 . -622) 165205) ((-334 . -295) 165182) ((-490 . -47) 165139) ((-1191 . -23) T) ((-118 . -1112) T) ((-103 . -102) 165117) ((-1292 . -1124) T) ((-557 . -859) T) ((-227 . -1230) T) ((-1066 . -132) T) ((-1036 . -1070) T) ((-828 . -1050) 165101) ((-1292 . -23) T) ((-1015 . -733) 165073) ((-1210 . -622) 165055) ((-708 . -726) 165020) ((-595 . -622) 165002) ((-395 . -1050) 164986) ((-362 . -1070) T) ((-393 . -132) T) ((-331 . -1050) 164970) ((-1132 . -837) T) ((-1117 . -1112) T) ((-1092 . -21) T) ((-227 . -896) 164952) ((-1016 . -930) T) ((-91 . -34) T) ((-1016 . -829) T) ((-924 . -930) T) ((-1092 . -25) T) ((-1011 . -316) 164917) ((-496 . -1234) T) ((-885 . -625) 164898) ((-723 . -657) 164858) ((-690 . -625) 164839) ((-219 . -1234) T) ((-685 . -625) 164820) ((-227 . -1050) 164780) ((-40 . -297) T) ((-496 . -565) T) ((-487 . -625) 164761) ((-367 . -25) T) ((-323 . -655) 164416) ((-320 . -655) 164330) ((-367 . -21) T) ((-361 . -25) T) ((-361 . -21) T) ((-219 . -565) T) ((-353 . -25) T) ((-353 . -21) T) ((-326 . -235) 164276) ((-250 . -625) 164253) ((-139 . -625) 164234) ((-138 . -625) 164215) ((-134 . -625) 164196) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1070) T) ((-589 . -174) T) ((-573 . -174) T) ((-504 . -174) T) ((-1074 . -1230) T) ((-667 . -622) 164178) ((-746 . -745) 164162) ((-344 . -622) 164144) ((-68 . -391) T) ((-68 . -404) T) ((-1114 . -107) 164128) ((-1074 . -896) 164110) ((-962 . -896) 164035) ((-662 . -1124) T) ((-632 . -726) 164022) ((-490 . -896) NIL) ((-1158 . -102) T) ((-1106 . -627) 164006) ((-1074 . -1050) 163988) ((-97 . -622) 163970) ((-486 . -148) T) ((-962 . -1050) 163850) ((-118 . -726) 163795) ((-662 . -23) T) ((-490 . -1050) 163671) ((-1099 . -623) NIL) ((-1099 . -622) 163653) ((-791 . -623) NIL) ((-791 . -622) 163614) ((-789 . -623) 163248) ((-789 . -622) 163162) ((-1125 . -648) 163068) ((-470 . -622) 163050) ((-463 . -622) 163032) ((-463 . -623) 162893) ((-1047 . -231) 162839) ((-881 . -919) 162818) ((-127 . -34) T) ((-826 . -132) T) ((-658 . -622) 162800) ((-587 . -102) T) ((-363 . -1299) 162784) ((-360 . -1299) 162768) ((-352 . -1299) 162752) ((-128 . -523) 162685) ((-122 . -523) 162618) ((-520 . -801) T) ((-520 . -804) T) ((-519 . -803) T) ((-103 . -316) 162556) ((-224 . -102) 162534) ((-708 . -174) T) ((-703 . -1112) T) ((-881 . -657) 162450) ((-65 . -392) T) ((-281 . -622) 162432) ((-65 . -404) T) ((-962 . -385) 162416) ((-879 . -297) T) ((-50 . -622) 162398) ((-1011 . -38) 162346) ((-1132 . -655) 162318) ((-590 . -622) 162300) ((-490 . -385) 162284) ((-590 . -623) 162266) ((-527 . -622) 162248) ((-920 . -1299) 162235) ((-880 . -1230) T) ((-710 . -461) T) ((-504 . -523) 162201) ((-496 . -371) T) ((-363 . -376) 162180) ((-360 . -376) 162159) ((-352 . -376) 162138) ((-723 . -735) T) ((-219 . -371) T) ((-117 . -461) T) ((-1303 . -1294) 162122) ((-880 . -894) 162099) ((-880 . -896) NIL) ((-974 . -859) 161998) ((-824 . -859) 161949) ((-1237 . -102) T) ((-663 . -665) 161933) ((-1216 . -34) T) ((-173 . -622) 161915) ((-1125 . -21) 161825) ((-1125 . -25) 161676) ((-880 . -1050) 161653) ((-962 . -910) 161634) ((-1253 . -47) 161611) ((-920 . -376) T) ((-59 . -660) 161595) ((-525 . -660) 161579) ((-490 . -910) 161556) ((-71 . -450) T) ((-71 . -404) T) ((-505 . -660) 161540) ((-59 . -381) 161524) ((-632 . -174) T) ((-525 . -381) 161508) ((-505 . -381) 161492) ((-836 . -717) 161476) ((-1185 . -314) 161455) ((-1191 . -132) T) ((-1154 . -1063) 161439) ((-118 . -174) T) ((-1154 . -649) 161371) ((-1158 . -316) 161309) ((-171 . -1230) T) ((-1292 . -132) T) ((-875 . -1063) 161279) ((-644 . -753) 161263) ((-616 . -753) 161247) ((-1265 . -930) 161226) ((-1244 . -930) 161205) ((-1244 . -829) NIL) ((-875 . -649) 161175) ((-703 . -726) 161125) ((-1243 . -919) 161078) ((-1036 . -1112) T) ((-880 . -385) 161055) ((-880 . -346) 161032) ((-915 . -1124) T) ((-171 . -894) 161016) ((-171 . -896) 160941) ((-1280 . -523) 160874) ((-1092 . -235) 160793) ((-496 . -1124) T) ((-362 . -1112) T) ((-219 . -1124) T) ((-76 . -450) T) ((-76 . -404) T) ((-1264 . -657) 160690) ((-171 . -1050) 160586) ((-326 . -859) T) ((-1243 . -657) 160394) ((-881 . -803) 160373) ((-881 . -800) 160352) ((-881 . -735) T) ((-496 . -23) T) ((-367 . -235) 160325) ((-361 . -235) 160298) ((-353 . -235) 160271) ((-225 . -622) 160253) ((-176 . -461) T) ((-224 . -316) 160191) ((-86 . -450) T) ((-86 . -404) T) ((-108 . -235) 160178) ((-219 . -23) T) ((-1304 . -1297) 160157) ((-686 . -1050) 160141) ((-589 . -297) T) ((-573 . -297) T) ((-504 . -297) T) ((-137 . -479) 160096) ((-1253 . -1230) T) ((-663 . -655) 160055) ((-48 . -1112) T) ((-721 . -233) 160039) ((-880 . -910) NIL) ((-1253 . -896) NIL) ((-899 . -102) T) ((-895 . -102) T) ((-397 . -1112) T) ((-171 . -385) 160023) ((-171 . -346) 160007) ((-1253 . -1050) 159887) ((-864 . -1050) 159783) ((-1154 . -102) T) ((-671 . -801) 159762) ((-662 . -132) T) ((-671 . -804) 159741) ((-118 . -523) 159649) ((-580 . -1050) 159631) ((-301 . -1287) 159601) ((-875 . -102) T) ((-973 . -565) 159580) ((-1224 . -1068) 159463) ((-1015 . -1063) 159408) ((-491 . -648) 159314) ((-914 . -1112) T) ((-1036 . -726) 159251) ((-720 . -1068) 159216) ((-1015 . -649) 159161) ((-626 . -102) T) ((-611 . -34) T) ((-1159 . -1230) T) ((-1224 . -111) 159030) ((-483 . -657) 158927) ((-362 . -726) 158872) ((-171 . -910) 158831) ((-708 . -297) T) ((-703 . -174) T) ((-720 . -111) 158787) ((-1309 . -1070) T) ((-1253 . -385) 158771) ((-427 . -1234) 158749) ((-1130 . -622) 158731) ((-320 . -857) NIL) ((-427 . -565) T) ((-227 . -314) T) ((-1243 . -800) 158684) ((-1243 . -803) 158637) ((-1264 . -735) T) ((-1243 . -735) T) ((-48 . -726) 158602) ((-227 . -1034) T) ((-1266 . -420) 158568) ((-359 . -1287) 158545) ((-1253 . -910) 158488) ((-727 . -735) T) ((-340 . -622) 158470) ((-1224 . -625) 158352) ((-1125 . -235) 158298) ((-112 . -622) 158280) ((-112 . -623) 158262) ((-727 . -482) T) ((-720 . -625) 158212) ((-1303 . -1063) 158196) ((-491 . -21) 158106) ((-128 . -498) 158090) ((-122 . -498) 158074) ((-491 . -25) 157925) ((-1303 . -649) 157895) ((-632 . -297) T) ((-595 . -1068) 157870) ((-446 . -1112) T) ((-1074 . -314) T) ((-118 . -297) T) ((-1116 . -102) T) ((-1015 . -102) T) ((-595 . -111) 157838) ((-1154 . -316) 157776) ((-1224 . -1061) T) ((-1074 . -1034) T) ((-66 . -1230) T) ((-1066 . -25) T) ((-1066 . -21) T) ((-720 . -1061) T) ((-393 . -21) T) ((-393 . -25) T) ((-703 . -523) NIL) ((-1036 . -174) T) ((-720 . -248) T) ((-1074 . -554) T) ((-721 . -655) 157686) ((-515 . -102) T) ((-511 . -102) T) ((-362 . -174) T) ((-351 . -622) 157668) ((-416 . -1063) 157620) ((-403 . -622) 157602) ((-1132 . -857) T) ((-483 . -735) T) ((-902 . -1050) 157570) ((-416 . -649) 157522) ((-108 . -859) T) ((-667 . -1068) 157506) ((-496 . -132) T) ((-1266 . -1070) T) ((-219 . -132) T) ((-1169 . -102) 157484) ((-99 . -1112) T) ((-250 . -675) 157468) ((-250 . -660) 157452) ((-667 . -111) 157431) ((-595 . -625) 157415) ((-323 . -420) 157399) ((-250 . -381) 157383) ((-1172 . -240) 157330) ((-1011 . -233) 157314) ((-74 . -1230) T) ((-48 . -174) T) ((-710 . -396) T) ((-710 . -144) T) ((-1303 . -102) T) ((-1210 . -625) 157296) ((-1100 . -1230) T) ((-1099 . -1068) 157139) ((-1088 . -1230) T) ((-270 . -919) 157118) ((-252 . -919) 157097) ((-791 . -1068) 156920) ((-789 . -1068) 156763) ((-617 . -1230) T) ((-1177 . -622) 156745) ((-1099 . -111) 156574) ((-1058 . -102) T) ((-484 . -1230) T) ((-470 . -1068) 156545) ((-463 . -1068) 156388) ((-673 . -657) 156372) ((-880 . -314) T) ((-791 . -111) 156181) ((-789 . -111) 156010) ((-363 . -657) 155962) ((-360 . -657) 155914) ((-352 . -657) 155866) ((-270 . -657) 155755) ((-252 . -657) 155644) ((-1171 . -859) T) ((-1100 . -1050) 155628) ((-470 . -111) 155589) ((-463 . -111) 155418) ((-1088 . -1050) 155395) ((-1012 . -34) T) ((-976 . -622) 155377) ((-968 . -1230) T) ((-127 . -1022) 155361) ((-973 . -1124) T) ((-880 . -1034) NIL) ((-744 . -1124) T) ((-724 . -1124) T) ((-667 . -625) 155279) ((-1280 . -498) 155263) ((-1154 . -38) 155223) ((-973 . -23) T) ((-920 . -657) 155188) ((-874 . -1112) T) ((-852 . -102) T) ((-826 . -21) T) ((-644 . -1063) 155172) ((-616 . -1063) 155156) ((-826 . -25) T) ((-744 . -23) T) ((-724 . -23) T) ((-644 . -649) 155140) ((-110 . -670) T) ((-616 . -649) 155124) ((-590 . -1068) 155089) ((-527 . -1068) 155034) ((-229 . -57) 154992) ((-462 . -23) T) ((-416 . -102) T) ((-269 . -102) T) ((-110 . -113) T) ((-703 . -297) T) ((-875 . -38) 154962) ((-590 . -111) 154918) ((-527 . -111) 154847) ((-1099 . -625) 154583) ((-427 . -1124) T) ((-323 . -1070) 154473) ((-320 . -1070) T) ((-129 . -1230) T) ((-791 . -625) 154221) ((-789 . -625) 153987) ((-667 . -1061) T) ((-1309 . -1112) T) ((-463 . -625) 153772) ((-171 . -314) 153703) ((-427 . -23) T) ((-40 . -622) 153685) ((-40 . -623) 153669) ((-108 . -1004) 153651) ((-117 . -878) 153635) ((-658 . -625) 153619) ((-48 . -523) 153585) ((-1216 . -1022) 153569) ((-1194 . -622) 153536) ((-1202 . -34) T) ((-964 . -622) 153502) ((-931 . -622) 153484) ((-1125 . -859) 153435) ((-780 . -622) 153417) ((-681 . -622) 153399) ((-1169 . -316) 153337) ((-488 . -34) T) ((-1104 . -1230) T) ((-486 . -461) T) ((-1153 . -34) T) ((-1099 . -1061) T) ((-50 . -625) 153306) ((-791 . -1061) T) ((-789 . -1061) T) ((-656 . -240) 153290) ((-641 . -240) 153236) ((-590 . -625) 153186) ((-527 . -625) 153116) ((-491 . -235) 153062) ((-1253 . -314) 153041) ((-1099 . -333) 153002) ((-463 . -1061) T) ((-1191 . -21) T) ((-1099 . -238) 152981) ((-791 . -333) 152958) ((-791 . -238) T) ((-789 . -333) 152930) ((-740 . -1234) 152909) ((-334 . -660) 152893) ((-1191 . -25) T) ((-59 . -34) T) ((-528 . -34) T) ((-525 . -34) T) ((-463 . -333) 152872) ((-334 . -381) 152856) ((-506 . -34) T) ((-505 . -34) T) ((-1015 . -1164) NIL) ((-740 . -565) 152787) ((-644 . -102) T) ((-616 . -102) T) ((-363 . -735) T) ((-360 . -735) T) ((-352 . -735) T) ((-270 . -735) T) ((-252 . -735) T) ((-387 . -1230) T) ((-1058 . -316) 152695) ((-1292 . -21) T) ((-911 . -1112) 152673) ((-827 . -235) 152660) ((-50 . -1061) T) ((-1292 . -25) T) ((-1187 . -565) 152639) ((-1186 . -1234) 152618) ((-1186 . -565) 152569) ((-1180 . -1234) 152548) ((-1180 . -565) 152499) ((-590 . -1061) T) ((-527 . -1061) T) ((-1036 . -297) T) ((-369 . -1050) 152483) ((-329 . -1050) 152467) ((-1015 . -38) 152412) ((-387 . -896) 152394) ((-1011 . -655) 152317) ((-845 . -1230) T) ((-836 . -1230) 152296) ((-808 . -1124) T) ((-920 . -735) T) ((-590 . -248) T) ((-590 . -238) T) ((-527 . -238) T) ((-527 . -248) T) ((-1138 . -565) 152275) ((-362 . -297) T) ((-656 . -704) 152259) ((-387 . -1050) 152219) ((-301 . -1063) 152140) ((-1132 . -1070) T) ((-103 . -126) 152124) ((-301 . -649) 152066) ((-808 . -23) T) ((-1302 . -1297) 152042) ((-1280 . -293) 151994) ((-416 . -316) 151959) ((-1300 . -1297) 151938) ((-1266 . -1112) T) ((-879 . -622) 151920) ((-845 . -1050) 151889) ((-205 . -796) T) ((-204 . -796) T) ((-203 . -796) T) ((-202 . -796) T) ((-201 . -796) T) ((-200 . -796) T) ((-199 . -796) T) ((-198 . -796) T) ((-197 . -796) T) ((-196 . -796) T) ((-556 . -622) 151871) ((-504 . -1014) T) ((-280 . -848) T) ((-279 . -848) T) ((-278 . -848) T) ((-277 . -848) T) ((-48 . -297) T) ((-276 . -848) T) ((-275 . -848) T) ((-274 . -848) T) ((-195 . -796) T) ((-621 . -859) T) ((-663 . -420) 151855) ((-679 . -237) 151834) ((-225 . -625) 151796) ((-110 . -859) T) ((-662 . -21) T) ((-662 . -25) T) ((-1303 . -38) 151766) ((-118 . -293) 151717) ((-1280 . -19) 151701) ((-1280 . -613) 151678) ((-1293 . -1112) T) ((-359 . -1063) 151623) ((-1089 . -1112) T) ((-999 . -1112) T) ((-973 . -132) T) ((-826 . -235) 151610) ((-746 . -1112) T) ((-359 . -649) 151555) ((-744 . -132) T) ((-724 . -132) T) ((-520 . -802) T) ((-520 . -803) T) ((-462 . -132) T) ((-416 . -1164) 151533) ((-225 . -1061) T) ((-301 . -102) 151315) ((-142 . -1112) T) ((-708 . -1014) T) ((-1117 . -293) 151271) ((-91 . -1230) T) ((-128 . -622) 151203) ((-122 . -622) 151135) ((-1309 . -174) T) ((-1186 . -371) 151114) ((-1180 . -371) 151093) ((-323 . -1112) T) ((-427 . -132) T) ((-320 . -1112) T) ((-416 . -38) 151045) ((-1145 . -102) T) ((-1266 . -726) 150937) ((-663 . -1070) T) ((-1147 . -1275) T) ((-326 . -146) 150916) ((-326 . -148) 150895) ((-140 . -1112) T) ((-137 . -1112) T) ((-115 . -1112) T) ((-867 . -102) T) ((-589 . -622) 150877) ((-573 . -623) 150776) ((-573 . -622) 150758) ((-504 . -622) 150740) ((-504 . -623) 150685) ((-494 . -23) T) ((-491 . -859) 150636) ((-496 . -648) 150618) ((-975 . -622) 150600) ((-219 . -648) 150582) ((-227 . -413) T) ((-671 . -657) 150566) ((-55 . -622) 150548) ((-1185 . -930) 150527) ((-740 . -1124) T) ((-359 . -102) T) ((-1229 . -1095) T) ((-1132 . -853) T) ((-827 . -859) T) ((-740 . -23) T) ((-351 . -1068) 150472) ((-1171 . -1170) T) ((-1159 . -107) 150456) ((-1187 . -1124) T) ((-1186 . -1124) T) ((-524 . -1050) 150440) ((-1180 . -1124) T) ((-1138 . -1124) T) ((-351 . -111) 150369) ((-1016 . -1234) T) ((-127 . -1230) T) ((-924 . -1234) T) ((-703 . -293) NIL) ((-723 . -1230) T) ((-1281 . -622) 150351) ((-1187 . -23) T) ((-1186 . -23) T) ((-1180 . -23) T) ((-1154 . -233) 150335) ((-1016 . -565) T) ((-1138 . -23) T) ((-924 . -565) T) ((-1087 . -1112) T) ((-253 . -622) 150317) ((-824 . -237) 150269) ((-808 . -132) T) ((-719 . -622) 150251) ((-323 . -726) 150161) ((-320 . -726) 150090) ((-708 . -622) 150072) ((-708 . -623) 150017) ((-416 . -409) 150001) ((-447 . -1112) T) ((-496 . -25) T) ((-496 . -21) T) ((-1132 . -1112) T) ((-219 . -25) T) ((-219 . -21) T) ((-721 . -420) 149985) ((-723 . -1050) 149954) ((-1280 . -622) 149866) ((-1280 . -623) 149827) ((-1266 . -174) T) ((-1203 . -622) 149809) ((-250 . -34) T) ((-351 . -625) 149739) ((-403 . -625) 149721) ((-936 . -986) T) ((-1216 . -1230) T) ((-671 . -800) 149700) ((-671 . -803) 149679) ((-407 . -404) T) ((-532 . -102) 149657) ((-1047 . -1112) T) ((-224 . -1007) 149641) ((-513 . -102) T) ((-632 . -622) 149623) ((-45 . -859) NIL) ((-632 . -623) 149600) ((-1047 . -619) 149575) ((-911 . -523) 149508) ((-326 . -237) 149460) ((-351 . -1061) T) ((-118 . -623) NIL) ((-118 . -622) 149442) ((-881 . -1230) T) ((-679 . -426) 149426) ((-679 . -1135) 149371) ((-509 . -152) 149353) ((-351 . -238) T) ((-351 . -248) T) ((-40 . -1068) 149298) ((-881 . -894) 149282) ((-881 . -896) 149207) ((-721 . -1070) T) ((-703 . -1014) NIL) ((-1264 . -47) 149177) ((-1243 . -47) 149154) ((-1153 . -1022) 149125) ((-3 . |UnionCategory|) T) ((-1132 . -726) 149112) ((-1117 . -622) 149094) ((-1092 . -148) 149073) ((-1092 . -146) 149024) ((-976 . -625) 149008) ((-227 . -930) T) ((-40 . -111) 148937) ((-881 . -1050) 148801) ((-1016 . -371) T) ((-1015 . -233) 148778) ((-710 . -1063) 148765) ((-924 . -371) T) ((-710 . -649) 148752) ((-326 . -1218) 148718) ((-387 . -314) T) ((-326 . -1215) 148684) ((-323 . -174) 148663) ((-320 . -174) T) ((-590 . -1299) 148650) ((-527 . -1299) 148627) ((-367 . -148) 148606) ((-117 . -1063) 148593) ((-367 . -146) 148544) ((-361 . -148) 148523) ((-361 . -146) 148474) ((-353 . -148) 148453) ((-617 . -1206) 148429) ((-117 . -649) 148416) ((-353 . -146) 148367) ((-326 . -35) 148333) ((-484 . -1206) 148312) ((0 . |EnumerationCategory|) T) ((-326 . -95) 148278) ((-387 . -1034) T) ((-108 . -148) T) ((-108 . -146) NIL) ((-45 . -240) 148228) ((-663 . -1112) T) ((-617 . -107) 148175) ((-494 . -132) T) ((-484 . -107) 148125) ((-245 . -1124) 148035) ((-881 . -385) 148019) ((-881 . -346) 148003) ((-245 . -23) 147873) ((-40 . -625) 147803) ((-1074 . -930) T) ((-1074 . -829) T) ((-590 . -376) T) ((-527 . -376) T) ((-1293 . -523) 147736) ((-1272 . -565) 147715) ((-1265 . -1234) 147694) ((-359 . -1164) T) ((-334 . -34) T) ((-44 . -426) 147678) ((-1194 . -625) 147614) ((-882 . -1230) T) ((-399 . -753) 147598) ((-1265 . -565) 147549) ((-1264 . -1230) T) ((-1154 . -655) 147508) ((-740 . -132) T) ((-681 . -625) 147492) ((-1244 . -1234) 147471) ((-1244 . -565) 147422) ((-1243 . -1230) T) ((-1243 . -896) 147295) ((-1243 . -894) 147265) ((-1187 . -132) T) ((-318 . -1095) T) ((-1186 . -132) T) ((-746 . -523) 147198) ((-1180 . -132) T) ((-1138 . -132) T) ((-903 . -1112) T) ((-145 . -853) T) ((-1036 . -1014) T) ((-700 . -622) 147180) ((-1016 . -23) T) ((-532 . -316) 147118) ((-1016 . -1124) T) ((-142 . -523) NIL) ((-875 . -655) 147063) ((-1015 . -357) NIL) ((-983 . -23) T) ((-924 . -1124) T) ((-359 . -38) 147028) ((-924 . -23) T) ((-881 . -910) 146987) ((-82 . -622) 146969) ((-40 . -1061) T) ((-879 . -1068) 146956) ((-879 . -111) 146941) ((-710 . -102) T) ((-703 . -622) 146923) ((-611 . -1230) T) ((-605 . -565) 146902) ((-436 . -1124) T) ((-347 . -1063) 146886) ((-215 . -1112) T) ((-176 . -1063) 146818) ((-483 . -47) 146788) ((-40 . -238) 146760) ((-40 . -248) T) ((-135 . -102) T) ((-117 . -102) T) ((-604 . -565) 146739) ((-347 . -649) 146723) ((-703 . -623) 146631) ((-323 . -523) 146597) ((-176 . -649) 146529) ((-320 . -523) 146421) ((-496 . -235) 146408) ((-1264 . -1050) 146392) ((-1243 . -1050) 146178) ((-1011 . -420) 146162) ((-219 . -235) 146149) ((-436 . -23) T) ((-1132 . -174) T) ((-1266 . -297) T) ((-663 . -726) 146119) ((-145 . -1112) T) ((-48 . -1014) T) ((-416 . -233) 146103) ((-302 . -240) 146053) ((-880 . -930) T) ((-880 . -829) NIL) ((-879 . -625) 146025) ((-873 . -859) T) ((-1243 . -346) 145995) ((-1243 . -385) 145965) ((-1092 . -237) 145890) ((-224 . -1133) 145874) ((-1280 . -295) 145851) ((-367 . -237) 145830) ((-361 . -237) 145809) ((-483 . -1230) T) ((-353 . -237) 145788) ((-108 . -237) T) ((-1224 . -657) 145713) ((-1015 . -655) 145643) ((-973 . -21) T) ((-973 . -25) T) ((-744 . -21) T) ((-744 . -25) T) ((-724 . -21) T) ((-724 . -25) T) ((-720 . -657) 145608) ((-462 . -21) T) ((-462 . -25) T) ((-347 . -102) T) ((-176 . -102) T) ((-1011 . -1070) T) ((-879 . -1061) T) ((-783 . -102) T) ((-1265 . -371) 145587) ((-1264 . -910) 145493) ((-1244 . -371) 145472) ((-1243 . -910) 145323) ((-1036 . -622) 145305) ((-416 . -837) 145258) ((-1187 . -502) 145224) ((-171 . -930) 145155) ((-1186 . -502) 145121) ((-1180 . -502) 145087) ((-721 . -1112) T) ((-1138 . -502) 145053) ((-589 . -1068) 145040) ((-573 . -1068) 145027) ((-504 . -1068) 144992) ((-323 . -297) 144971) ((-320 . -297) T) ((-362 . -622) 144953) ((-427 . -25) T) ((-427 . -21) T) ((-99 . -293) 144932) ((-589 . -111) 144917) ((-573 . -111) 144902) ((-504 . -111) 144858) ((-1189 . -896) 144825) ((-911 . -498) 144809) ((-48 . -622) 144791) ((-48 . -623) 144736) ((-245 . -132) 144606) ((-1303 . -655) 144565) ((-1253 . -930) 144544) ((-825 . -1234) 144523) ((-397 . -499) 144504) ((-1047 . -523) 144348) ((-397 . -622) 144314) ((-825 . -565) 144245) ((-595 . -657) 144220) ((-270 . -47) 144192) ((-252 . -47) 144149) ((-540 . -518) 144126) ((-589 . -625) 144098) ((-573 . -625) 144070) ((-504 . -625) 144003) ((-1086 . -1230) T) ((-1012 . -1230) T) ((-1272 . -23) T) ((-1272 . -1124) T) ((-1265 . -1124) T) ((-708 . -1068) 143968) ((-1265 . -23) T) ((-1244 . -1124) T) ((-1244 . -23) T) ((-1224 . -735) T) ((-1132 . -297) T) ((-1015 . -378) 143940) ((-112 . -376) T) ((-483 . -910) 143846) ((-1125 . -237) 143798) ((-914 . -622) 143780) ((-55 . -625) 143762) ((-91 . -107) 143746) ((-1016 . -132) T) ((-915 . -859) 143697) ((-710 . -1164) T) ((-708 . -111) 143653) ((-852 . -655) 143570) ((-605 . -1124) T) ((-604 . -1124) T) ((-721 . -726) 143399) ((-720 . -735) T) ((-983 . -132) T) ((-924 . -132) T) ((-496 . -859) T) ((-808 . -25) T) ((-808 . -21) T) ((-589 . -1061) T) ((-219 . -859) T) ((-416 . -655) 143336) ((-573 . -1061) T) ((-545 . -1230) T) ((-504 . -1061) T) ((-605 . -23) T) ((-351 . -1299) 143313) ((-326 . -461) 143292) ((-347 . -316) 143279) ((-604 . -23) T) ((-436 . -132) T) ((-667 . -657) 143253) ((-250 . -1022) 143237) ((-881 . -314) T) ((-1304 . -1294) 143221) ((-780 . -801) T) ((-780 . -804) T) ((-710 . -38) 143208) ((-573 . -238) T) ((-504 . -248) T) ((-504 . -238) T) ((-1162 . -240) 143158) ((-1099 . -919) 143137) ((-117 . -38) 143124) ((-211 . -809) T) ((-210 . -809) T) ((-209 . -809) T) ((-208 . -809) T) ((-881 . -1034) 143102) ((-1293 . -498) 143086) ((-791 . -919) 143065) ((-789 . -919) 143044) ((-363 . -1230) 143023) ((-360 . -1230) 143002) ((-352 . -1230) 142981) ((-1202 . -1230) T) ((-270 . -1230) 142960) ((-463 . -919) 142939) ((-746 . -498) 142923) ((-1099 . -657) 142812) ((-708 . -625) 142747) ((-791 . -657) 142636) ((-632 . -1068) 142623) ((-488 . -1230) T) ((-351 . -376) T) ((-142 . -498) 142605) ((-789 . -657) 142494) ((-1153 . -1230) T) ((-558 . -859) T) ((-470 . -657) 142465) ((-270 . -896) 142324) ((-252 . -896) NIL) ((-118 . -1068) 142269) ((-463 . -657) 142158) ((-673 . -1050) 142135) ((-632 . -111) 142120) ((-399 . -1063) 142104) ((-363 . -1050) 142088) ((-360 . -1050) 142072) ((-352 . -1050) 142056) ((-270 . -1050) 141900) ((-252 . -1050) 141776) ((-920 . -1230) T) ((-118 . -111) 141705) ((-59 . -1230) T) ((-399 . -649) 141689) ((-630 . -1063) 141673) ((-528 . -1230) T) ((-525 . -1230) T) ((-506 . -1230) T) ((-505 . -1230) T) ((-446 . -622) 141655) ((-443 . -622) 141637) ((-630 . -649) 141621) ((-3 . -102) T) ((-1039 . -1223) 141590) ((-842 . -102) T) ((-698 . -57) 141548) ((-708 . -1061) T) ((-644 . -655) 141517) ((-616 . -655) 141486) ((-50 . -657) 141460) ((-296 . -461) T) ((-485 . -1223) 141429) ((0 . -102) T) ((-590 . -657) 141394) ((-527 . -657) 141339) ((-49 . -102) T) ((-920 . -1050) 141326) ((-708 . -248) T) ((-1092 . -418) 141305) ((-740 . -648) 141253) ((-1011 . -1112) T) ((-721 . -174) 141144) ((-632 . -625) 141039) ((-496 . -1004) 141021) ((-427 . -235) 140994) ((-270 . -385) 140978) ((-252 . -385) 140962) ((-408 . -1112) T) ((-1038 . -102) 140940) ((-347 . -38) 140924) ((-219 . -1004) 140906) ((-118 . -625) 140836) ((-176 . -38) 140768) ((-1264 . -314) 140747) ((-1243 . -314) 140726) ((-667 . -735) T) ((-99 . -622) 140708) ((-486 . -1063) 140673) ((-1180 . -648) 140625) ((-486 . -649) 140590) ((-494 . -25) T) ((-494 . -21) T) ((-1243 . -1034) 140542) ((-1069 . -1230) T) ((-632 . -1061) T) ((-387 . -413) T) ((-399 . -102) T) ((-1117 . -627) 140457) ((-270 . -910) 140403) ((-252 . -910) 140380) ((-118 . -1061) T) ((-825 . -1124) T) ((-1099 . -735) T) ((-632 . -238) 140359) ((-630 . -102) T) ((-791 . -735) T) ((-789 . -735) T) ((-422 . -1124) T) ((-118 . -248) T) ((-40 . -376) NIL) ((-118 . -238) NIL) ((-1235 . -859) T) ((-463 . -735) T) ((-825 . -23) T) ((-740 . -25) T) ((-740 . -21) T) ((-1089 . -293) 140338) ((-78 . -405) T) ((-78 . -404) T) ((-542 . -776) 140320) ((-703 . -1068) 140270) ((-1305 . -102) T) ((-1272 . -132) T) ((-1265 . -132) T) ((-1244 . -132) T) ((-1187 . -25) T) ((-1154 . -420) 140254) ((-644 . -375) 140186) ((-616 . -375) 140118) ((-1169 . -1161) 140102) ((-103 . -1112) 140080) ((-1187 . -21) T) ((-1186 . -21) T) ((-874 . -622) 140062) ((-1011 . -726) 140010) ((-225 . -657) 139977) ((-703 . -111) 139911) ((-50 . -735) T) ((-1186 . -25) T) ((-359 . -357) T) ((-1180 . -21) T) ((-1092 . -461) 139862) ((-1180 . -25) T) ((-721 . -523) 139809) ((-590 . -735) T) ((-527 . -735) T) ((-1138 . -21) T) ((-1138 . -25) T) ((-605 . -132) T) ((-604 . -132) T) ((-301 . -655) 139544) ((-491 . -237) 139496) ((-367 . -461) T) ((-361 . -461) T) ((-353 . -461) T) ((-483 . -314) 139475) ((-1238 . -102) T) ((-320 . -293) 139410) ((-108 . -461) T) ((-79 . -450) T) ((-79 . -404) T) ((-486 . -102) T) ((-700 . -625) 139394) ((-1309 . -622) 139376) ((-1309 . -623) 139358) ((-1092 . -411) 139337) ((-1047 . -498) 139268) ((-137 . -293) 139245) ((-573 . -804) T) ((-573 . -801) T) ((-1075 . -240) 139191) ((-367 . -411) 139142) ((-361 . -411) 139093) ((-353 . -411) 139044) ((-1295 . -1124) T) ((-1304 . -1063) 139028) ((-389 . -1063) 139012) ((-1304 . -649) 138982) ((-827 . -237) T) ((-389 . -649) 138952) ((-703 . -625) 138887) ((-1295 . -23) T) ((-1282 . -102) T) ((-177 . -622) 138869) ((-1154 . -1070) T) ((-556 . -376) T) ((-679 . -753) 138853) ((-1191 . -146) 138832) ((-1191 . -148) 138811) ((-1158 . -1112) T) ((-1158 . -1083) 138780) ((-69 . -1230) T) ((-1036 . -1068) 138717) ((-359 . -655) 138647) ((-875 . -1070) T) ((-245 . -648) 138553) ((-703 . -1061) T) ((-362 . -1068) 138498) ((-61 . -1230) T) ((-1036 . -111) 138414) ((-911 . -622) 138325) ((-703 . -248) T) ((-703 . -238) NIL) ((-852 . -857) 138304) ((-708 . -804) T) ((-708 . -801) T) ((-1015 . -420) 138281) ((-362 . -111) 138210) ((-387 . -930) T) ((-416 . -857) 138189) ((-721 . -297) 138100) ((-225 . -735) T) ((-1272 . -502) 138066) ((-1265 . -502) 138032) ((-1244 . -502) 137998) ((-587 . -1112) T) ((-323 . -1014) 137977) ((-224 . -1112) 137955) ((-1237 . -853) T) ((-326 . -985) 137917) ((-105 . -102) T) ((-48 . -1068) 137882) ((-1304 . -102) T) ((-389 . -102) T) ((-48 . -111) 137838) ((-1016 . -648) 137820) ((-1266 . -622) 137802) ((-540 . -102) T) ((-509 . -102) T) ((-1145 . -1146) 137786) ((-153 . -1287) 137770) ((-250 . -1230) T) ((-1229 . -102) T) ((-1036 . -625) 137707) ((-826 . -237) T) ((-1185 . -1234) 137686) ((-362 . -625) 137616) ((-1137 . -1234) 137595) ((-245 . -21) 137505) ((-245 . -25) 137356) ((-128 . -120) 137340) ((-122 . -120) 137324) ((-44 . -753) 137308) ((-1185 . -565) 137219) ((-1137 . -565) 137150) ((-1237 . -1112) T) ((-1047 . -293) 137125) ((-1179 . -1095) T) ((-1006 . -1095) T) ((-825 . -132) T) ((-118 . -804) NIL) ((-118 . -801) NIL) ((-363 . -314) T) ((-360 . -314) T) ((-352 . -314) T) ((-257 . -1124) 137035) ((-256 . -1124) 136945) ((-1036 . -1061) T) ((-1015 . -1070) T) ((-48 . -625) 136878) ((-351 . -657) 136823) ((-630 . -38) 136807) ((-1293 . -622) 136769) ((-1293 . -623) 136730) ((-1089 . -622) 136712) ((-1036 . -248) T) ((-362 . -1061) T) ((-824 . -1287) 136682) ((-257 . -23) T) ((-256 . -23) T) ((-999 . -622) 136664) ((-1187 . -235) 136617) ((-1186 . -235) 136563) ((-746 . -623) 136524) ((-746 . -622) 136506) ((-1180 . -235) 136387) ((-808 . -859) 136366) ((-1172 . -152) 136313) ((-1011 . -523) 136225) ((-362 . -238) T) ((-362 . -248) T) ((-397 . -625) 136206) ((-1016 . -25) T) ((-142 . -622) 136188) ((-142 . -623) 136147) ((-920 . -314) T) ((-1016 . -21) T) ((-983 . -25) T) ((-924 . -21) T) ((-924 . -25) T) ((-436 . -21) T) ((-436 . -25) T) ((-852 . -420) 136131) ((-48 . -1061) T) ((-1302 . -1294) 136115) ((-1300 . -1294) 136099) ((-1047 . -613) 136074) ((-323 . -623) 135935) ((-323 . -622) 135917) ((-320 . -623) NIL) ((-320 . -622) 135899) ((-48 . -248) T) ((-48 . -238) T) ((-663 . -293) 135860) ((-559 . -240) 135810) ((-140 . -622) 135777) ((-137 . -622) 135759) ((-115 . -622) 135741) ((-486 . -38) 135706) ((-1304 . -1301) 135685) ((-1295 . -132) T) ((-1303 . -1070) T) ((-1094 . -102) T) ((-88 . -1230) T) ((-509 . -316) NIL) ((-1012 . -107) 135669) ((-899 . -1112) T) ((-895 . -1112) T) ((-1280 . -660) 135653) ((-1280 . -381) 135637) ((-334 . -1230) T) ((-602 . -859) T) ((-1154 . -1112) T) ((-1154 . -1065) 135577) ((-103 . -523) 135510) ((-937 . -622) 135492) ((-351 . -735) T) ((-30 . -622) 135474) ((-875 . -1112) T) ((-852 . -1070) 135453) ((-40 . -657) 135360) ((-227 . -1234) T) ((-416 . -1070) T) ((-1171 . -152) 135342) ((-1011 . -297) 135293) ((-626 . -1112) T) ((-227 . -565) T) ((-326 . -1261) 135277) ((-326 . -1258) 135247) ((-710 . -655) 135219) ((-1202 . -1206) 135198) ((-1087 . -622) 135180) ((-1202 . -107) 135130) ((-656 . -152) 135114) ((-641 . -152) 135060) ((-117 . -655) 135032) ((-488 . -1206) 135011) ((-496 . -148) T) ((-496 . -146) NIL) ((-1132 . -623) 134926) ((-447 . -622) 134908) ((-219 . -148) T) ((-219 . -146) NIL) ((-1132 . -622) 134890) ((-130 . -102) T) ((-52 . -102) T) ((-1244 . -648) 134842) ((-488 . -107) 134792) ((-1005 . -23) T) ((-1304 . -38) 134762) ((-1185 . -1124) T) ((-1137 . -1124) T) ((-1074 . -1234) T) ((-245 . -235) 134708) ((-318 . -102) T) ((-863 . -1124) T) ((-962 . -1234) 134687) ((-490 . -1234) 134666) ((-1074 . -565) T) ((-962 . -565) 134597) ((-1185 . -23) T) ((-1163 . -1095) T) ((-1137 . -23) T) ((-863 . -23) T) ((-490 . -565) 134528) ((-1154 . -726) 134460) ((-679 . -1063) 134444) ((-1158 . -523) 134377) ((-679 . -649) 134361) ((-1047 . -623) NIL) ((-1047 . -622) 134343) ((-96 . -1095) T) ((-875 . -726) 134313) ((-1309 . -1068) 134300) ((-1224 . -47) 134269) ((-257 . -132) T) ((-256 . -132) T) ((-1116 . -1112) T) ((-1015 . -1112) T) ((-62 . -622) 134251) ((-1180 . -859) NIL) ((-1036 . -801) T) ((-1036 . -804) T) ((-1309 . -111) 134236) ((-1272 . -25) T) ((-1272 . -21) T) ((-1265 . -21) T) ((-879 . -657) 134223) ((-1265 . -25) T) ((-1244 . -21) T) ((-1244 . -25) T) ((-1039 . -152) 134207) ((-1016 . -235) 134194) ((-881 . -829) 134173) ((-881 . -930) T) ((-721 . -293) 134100) ((-605 . -21) T) ((-347 . -655) 134059) ((-605 . -25) T) ((-604 . -21) T) ((-176 . -655) 133976) ((-40 . -735) T) ((-224 . -523) 133909) ((-604 . -25) T) ((-485 . -152) 133893) ((-472 . -152) 133877) ((-931 . -803) T) ((-931 . -735) T) ((-780 . -802) T) ((-780 . -803) T) ((-515 . -1112) T) ((-511 . -1112) T) ((-780 . -735) T) ((-227 . -371) T) ((-1302 . -1063) 133861) ((-1300 . -1063) 133845) ((-1302 . -649) 133815) ((-1169 . -1112) 133793) ((-880 . -1234) T) ((-1300 . -649) 133763) ((-663 . -622) 133745) ((-880 . -565) T) ((-703 . -376) NIL) ((-44 . -1063) 133729) ((-1309 . -625) 133711) ((-1303 . -1112) T) ((-679 . -102) T) ((-367 . -1287) 133695) ((-361 . -1287) 133679) ((-44 . -649) 133663) ((-353 . -1287) 133647) ((-557 . -102) T) ((-529 . -859) 133626) ((-496 . -237) T) ((-219 . -237) T) ((-1058 . -1112) T) ((-826 . -461) 133605) ((-153 . -1063) 133589) ((-1058 . -1083) 133518) ((-1039 . -988) 133487) ((-828 . -1124) T) ((-1015 . -726) 133432) ((-153 . -649) 133416) ((-395 . -1124) T) ((-485 . -988) 133385) ((-472 . -988) 133354) ((-110 . -152) 133336) ((-73 . -622) 133318) ((-903 . -622) 133300) ((-1092 . -733) 133279) ((-1309 . -1061) T) ((-825 . -648) 133227) ((-301 . -1070) 133169) ((-171 . -1234) 133074) ((-227 . -1124) T) ((-331 . -23) T) ((-1180 . -1004) 133026) ((-852 . -1112) T) ((-1266 . -1068) 132931) ((-1138 . -749) 132910) ((-1264 . -930) 132889) ((-1243 . -930) 132868) ((-879 . -735) T) ((-171 . -565) 132779) ((-589 . -657) 132766) ((-573 . -657) 132738) ((-416 . -1112) T) ((-269 . -1112) T) ((-215 . -622) 132720) ((-504 . -657) 132670) ((-227 . -23) T) ((-1243 . -829) 132623) ((-1302 . -102) T) ((-362 . -1299) 132600) ((-1300 . -102) T) ((-1266 . -111) 132492) ((-824 . -1063) 132389) ((-824 . -649) 132331) ((-145 . -622) 132313) ((-1005 . -132) T) ((-44 . -102) T) ((-245 . -859) 132264) ((-1253 . -1234) 132243) ((-103 . -498) 132227) ((-1303 . -726) 132197) ((-1099 . -47) 132158) ((-1074 . -1124) T) ((-962 . -1124) T) ((-128 . -34) T) ((-122 . -34) T) ((-791 . -47) 132135) ((-789 . -47) 132107) ((-1253 . -565) 132018) ((-362 . -376) T) ((-490 . -1124) T) ((-1185 . -132) T) ((-1137 . -132) T) ((-463 . -47) 131997) ((-880 . -371) T) ((-863 . -132) T) ((-153 . -102) T) ((-1074 . -23) T) ((-962 . -23) T) ((-580 . -565) T) ((-825 . -25) T) ((-825 . -21) T) ((-1154 . -523) 131930) ((-601 . -1095) T) ((-595 . -1050) 131914) ((-1266 . -625) 131788) ((-490 . -23) T) ((-359 . -1070) T) ((-1224 . -910) 131769) ((-679 . -316) 131707) ((-1125 . -1287) 131677) ((-708 . -657) 131642) ((-1016 . -859) T) ((-1015 . -174) T) ((-973 . -146) 131621) ((-644 . -1112) T) ((-616 . -1112) T) ((-973 . -148) 131600) ((-744 . -148) 131579) ((-744 . -146) 131558) ((-667 . -1230) T) ((-983 . -859) T) ((-1272 . -235) 131511) ((-1265 . -235) 131457) ((-1244 . -235) 131338) ((-842 . -655) 131255) ((-483 . -930) 131234) ((-326 . -1063) 131069) ((-323 . -1068) 130979) ((-320 . -1068) 130908) ((-1011 . -293) 130866) ((-416 . -726) 130818) ((-326 . -649) 130659) ((-604 . -235) 130612) ((-710 . -857) T) ((-1266 . -1061) T) ((-323 . -111) 130508) ((-320 . -111) 130421) ((-974 . -102) T) ((-824 . -102) 130211) ((-721 . -623) NIL) ((-721 . -622) 130193) ((-1266 . -333) 130137) ((-667 . -1050) 130033) ((-1099 . -1230) 130012) ((-1047 . -295) 129987) ((-589 . -735) T) ((-573 . -803) T) ((-171 . -371) 129938) ((-573 . -800) T) ((-573 . -735) T) ((-504 . -735) T) ((-791 . -1230) T) ((-1158 . -498) 129922) ((-1099 . -896) NIL) ((-880 . -1124) T) ((-118 . -919) NIL) ((-1302 . -1301) 129898) ((-1300 . -1301) 129877) ((-791 . -896) NIL) ((-789 . -896) 129736) ((-1295 . -25) T) ((-1295 . -21) T) ((-1227 . -102) 129714) ((-1118 . -404) T) ((-632 . -657) 129701) ((-463 . -896) NIL) ((-684 . -102) 129679) ((-1099 . -1050) 129506) ((-880 . -23) T) ((-791 . -1050) 129365) ((-789 . -1050) 129222) ((-118 . -657) 129167) ((-463 . -1050) 129043) ((-323 . -625) 128607) ((-320 . -625) 128490) ((-399 . -655) 128459) ((-658 . -1050) 128443) ((-590 . -1230) T) ((-636 . -102) T) ((-527 . -1230) T) ((-224 . -498) 128427) ((-1280 . -34) T) ((-630 . -655) 128386) ((-296 . -1063) 128373) ((-137 . -625) 128357) ((-296 . -649) 128344) ((-644 . -726) 128328) ((-616 . -726) 128312) ((-679 . -38) 128272) ((-326 . -102) T) ((-85 . -622) 128254) ((-50 . -1050) 128238) ((-1132 . -1068) 128225) ((-1099 . -385) 128209) ((-791 . -385) 128193) ((-708 . -735) T) ((-708 . -803) T) ((-708 . -800) T) ((-590 . -1050) 128180) ((-527 . -1050) 128157) ((-60 . -57) 128119) ((-331 . -132) T) ((-323 . -1061) 128009) ((-320 . -1061) T) ((-171 . -1124) T) ((-789 . -385) 127993) ((-45 . -152) 127943) ((-1016 . -1004) 127925) ((-463 . -385) 127909) ((-416 . -174) T) ((-323 . -248) 127888) ((-320 . -248) T) ((-320 . -238) NIL) ((-301 . -1112) 127670) ((-227 . -132) T) ((-1132 . -111) 127655) ((-171 . -23) T) ((-808 . -148) 127634) ((-808 . -146) 127613) ((-257 . -648) 127519) ((-256 . -648) 127425) ((-326 . -291) 127391) ((-1169 . -523) 127324) ((-486 . -655) 127274) ((-1145 . -1112) T) ((-227 . -1072) T) ((-824 . -316) 127212) ((-1099 . -910) 127147) ((-791 . -910) 127090) ((-789 . -910) 127074) ((-1302 . -38) 127044) ((-1300 . -38) 127014) ((-1253 . -1124) T) ((-864 . -1124) T) ((-463 . -910) 126991) ((-867 . -1112) T) ((-1253 . -23) T) ((-1132 . -625) 126963) ((-1074 . -132) T) ((-580 . -1124) T) ((-864 . -23) T) ((-632 . -735) T) ((-363 . -930) T) ((-360 . -930) T) ((-296 . -102) T) ((-352 . -930) T) ((-982 . -1095) T) ((-962 . -132) T) ((-825 . -235) 126936) ((-118 . -803) NIL) ((-118 . -800) NIL) ((-118 . -735) T) ((-1058 . -523) 126837) ((-703 . -919) NIL) ((-580 . -23) T) ((-490 . -132) T) ((-427 . -237) 126816) ((-684 . -316) 126754) ((-644 . -770) T) ((-616 . -770) T) ((-1244 . -859) NIL) ((-1092 . -1063) 126664) ((-1015 . -297) T) ((-703 . -657) 126614) ((-257 . -21) T) ((-359 . -1112) T) ((-257 . -25) T) ((-256 . -21) T) ((-256 . -25) T) ((-153 . -38) 126598) ((-2 . -102) T) ((-920 . -930) T) ((-1092 . -649) 126466) ((-491 . -1287) 126436) ((-1132 . -1061) T) ((-720 . -314) T) ((-367 . -1063) 126388) ((-361 . -1063) 126340) ((-353 . -1063) 126292) ((-367 . -649) 126244) ((-225 . -1050) 126221) ((-361 . -649) 126173) ((-108 . -1063) 126123) ((-353 . -649) 126075) ((-301 . -726) 126017) ((-710 . -1070) T) ((-496 . -461) T) ((-416 . -523) 125929) ((-108 . -649) 125879) ((-219 . -461) T) ((-1132 . -238) T) ((-302 . -152) 125829) ((-1011 . -623) 125790) ((-1011 . -622) 125772) ((-1001 . -622) 125754) ((-117 . -1070) T) ((-663 . -1068) 125738) ((-227 . -502) T) ((-408 . -622) 125720) ((-408 . -623) 125697) ((-1066 . -1287) 125667) ((-663 . -111) 125646) ((-1154 . -498) 125630) ((-1304 . -655) 125589) ((-389 . -655) 125558) ((-824 . -38) 125528) ((-63 . -450) T) ((-63 . -404) T) ((-1172 . -102) T) ((-880 . -132) T) ((-493 . -102) 125506) ((-1309 . -376) T) ((-1092 . -102) T) ((-1073 . -102) T) ((-359 . -726) 125451) ((-740 . -148) 125430) ((-740 . -146) 125409) ((-663 . -625) 125327) ((-1036 . -657) 125264) ((-532 . -1112) 125242) ((-367 . -102) T) ((-361 . -102) T) ((-353 . -102) T) ((-108 . -102) T) ((-513 . -1112) T) ((-362 . -657) 125187) ((-1185 . -648) 125135) ((-1137 . -648) 125083) ((-393 . -518) 125062) ((-842 . -857) 125041) ((-387 . -1234) T) ((-703 . -735) T) ((-1244 . -1004) 124993) ((-347 . -1070) T) ((-112 . -1230) T) ((-176 . -1070) T) ((-103 . -622) 124925) ((-1187 . -146) 124904) ((-1187 . -148) 124883) ((-387 . -565) T) ((-1186 . -148) 124862) ((-1186 . -146) 124841) ((-1180 . -146) 124748) ((-416 . -297) T) ((-1180 . -148) 124655) ((-1138 . -148) 124634) ((-1138 . -146) 124613) ((-326 . -38) 124454) ((-171 . -132) T) ((-320 . -804) NIL) ((-320 . -801) NIL) ((-663 . -1061) T) ((-48 . -657) 124404) ((-1125 . -1063) 124301) ((-903 . -625) 124278) ((-1125 . -649) 124220) ((-1179 . -102) T) ((-1006 . -102) T) ((-1005 . -21) T) ((-128 . -1022) 124204) ((-122 . -1022) 124188) ((-1005 . -25) T) ((-911 . -120) 124172) ((-1171 . -102) T) ((-1253 . -132) T) ((-1185 . -25) T) ((-351 . -1230) T) ((-1185 . -21) T) ((-864 . -132) T) ((-1137 . -25) T) ((-1137 . -21) T) ((-863 . -25) T) ((-863 . -21) T) ((-791 . -314) 124151) ((-1172 . -316) 123946) ((-1169 . -498) 123930) ((-656 . -102) 123908) ((-641 . -102) T) ((-1162 . -152) 123858) ((-580 . -132) T) ((-630 . -857) 123837) ((-1158 . -622) 123799) ((-1158 . -623) 123760) ((-1036 . -800) T) ((-1036 . -803) T) ((-1036 . -735) T) ((-721 . -1068) 123583) ((-493 . -316) 123521) ((-462 . -426) 123491) ((-359 . -174) T) ((-296 . -38) 123478) ((-257 . -235) 123424) ((-256 . -235) 123370) ((-280 . -102) T) ((-279 . -102) T) ((-278 . -102) T) ((-277 . -102) T) ((-276 . -102) T) ((-275 . -102) T) ((-351 . -1050) 123347) ((-274 . -102) T) ((-214 . -102) T) ((-213 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-362 . -735) T) ((-721 . -111) 123156) ((-679 . -233) 123140) ((-590 . -314) T) ((-527 . -314) T) ((-301 . -523) 123089) ((-108 . -316) NIL) ((-72 . -404) T) ((-1125 . -102) 122879) ((-842 . -420) 122863) ((-1132 . -804) T) ((-1132 . -801) T) ((-710 . -1112) T) ((-587 . -622) 122845) ((-387 . -371) T) ((-171 . -502) 122823) ((-224 . -622) 122755) ((-135 . -1112) T) ((-117 . -1112) T) ((-976 . -1230) T) ((-48 . -735) T) ((-1058 . -498) 122720) ((-142 . -434) 122702) ((-142 . -376) T) ((-1039 . -102) T) ((-521 . -518) 122681) ((-721 . -625) 122437) ((-1187 . -237) 122396) ((-485 . -102) T) ((-472 . -102) T) ((-1186 . -237) 122348) ((-1180 . -237) 122235) ((-1046 . -1124) T) ((-1237 . -622) 122217) ((-1194 . -1050) 122153) ((-1187 . -35) 122119) ((-1187 . -95) 122085) ((-1187 . -1218) 122051) ((-1187 . -1215) 122017) ((-1186 . -1215) 121983) ((-1186 . -1218) 121949) ((-1171 . -316) NIL) ((-89 . -405) T) ((-89 . -404) T) ((-1092 . -1164) 121928) ((-40 . -1230) 121900) ((-1186 . -95) 121866) ((-1046 . -23) T) ((-1186 . -35) 121832) ((-580 . -502) T) ((-1180 . -1215) 121798) ((-1180 . -1218) 121764) ((-1180 . -95) 121730) ((-1180 . -35) 121696) ((-369 . -1124) T) ((-367 . -1164) 121675) ((-361 . -1164) 121654) ((-353 . -1164) 121633) ((-1116 . -293) 121589) ((-1138 . -35) 121555) ((-1138 . -95) 121521) ((-108 . -1164) T) ((-1138 . -1218) 121487) ((-842 . -1070) 121466) ((-656 . -316) 121404) ((-641 . -316) 121255) ((-1138 . -1215) 121221) ((-721 . -1061) T) ((-1074 . -648) 121203) ((-1092 . -38) 121071) ((-962 . -648) 121019) ((-1016 . -148) T) ((-1016 . -146) NIL) ((-387 . -1124) T) ((-331 . -25) T) ((-329 . -23) T) ((-953 . -859) 120998) ((-721 . -333) 120975) ((-490 . -648) 120923) ((-40 . -1050) 120811) ((-721 . -238) T) ((-710 . -726) 120798) ((-347 . -1112) T) ((-176 . -1112) T) ((-338 . -859) T) ((-427 . -461) 120748) ((-387 . -23) T) ((-367 . -38) 120713) ((-361 . -38) 120678) ((-353 . -38) 120643) ((-80 . -450) T) ((-80 . -404) T) ((-227 . -25) T) ((-227 . -21) T) ((-845 . -1124) T) ((-108 . -38) 120593) ((-836 . -1124) T) ((-783 . -1112) T) ((-117 . -726) 120580) ((-681 . -1050) 120564) ((-621 . -102) T) ((-845 . -23) T) ((-836 . -23) T) ((-1169 . -293) 120516) ((-1125 . -316) 120454) ((-491 . -1063) 120351) ((-1114 . -240) 120335) ((-64 . -405) T) ((-64 . -404) T) ((-1163 . -102) T) ((-110 . -102) T) ((-491 . -649) 120277) ((-40 . -385) 120254) ((-96 . -102) T) ((-662 . -861) 120238) ((-1185 . -235) 120225) ((-1147 . -1095) T) ((-1074 . -21) T) ((-1074 . -25) T) ((-1066 . -1063) 120209) ((-824 . -233) 120178) ((-962 . -25) T) ((-962 . -21) T) ((-1066 . -649) 120120) ((-630 . -1070) T) ((-1132 . -376) T) ((-1039 . -316) 120058) ((-679 . -655) 120017) ((-490 . -25) T) ((-490 . -21) T) ((-393 . -1063) 120001) ((-899 . -622) 119983) ((-895 . -622) 119965) ((-532 . -523) 119898) ((-257 . -859) 119849) ((-256 . -859) 119800) ((-393 . -649) 119770) ((-880 . -648) 119747) ((-485 . -316) 119685) ((-472 . -316) 119623) ((-359 . -297) T) ((-1169 . -1268) 119607) ((-1154 . -622) 119569) ((-1154 . -623) 119530) ((-1152 . -102) T) ((-1011 . -1068) 119426) ((-40 . -910) 119378) ((-1169 . -613) 119355) ((-1309 . -657) 119342) ((-875 . -499) 119319) ((-1075 . -152) 119265) ((-881 . -1234) T) ((-1011 . -111) 119147) ((-347 . -726) 119131) ((-875 . -622) 119093) ((-176 . -726) 119025) ((-881 . -565) T) ((-416 . -293) 118983) ((-245 . -237) 118935) ((-108 . -409) 118917) ((-84 . -392) T) ((-84 . -404) T) ((-710 . -174) T) ((-626 . -622) 118899) ((-99 . -735) T) ((-491 . -102) 118689) ((-99 . -482) T) ((-117 . -174) T) ((-1302 . -655) 118648) ((-1300 . -655) 118607) ((-1125 . -38) 118577) ((-171 . -648) 118525) ((-1066 . -102) T) ((-1011 . -625) 118415) ((-880 . -25) T) ((-824 . -243) 118394) ((-880 . -21) T) ((-827 . -102) T) ((-44 . -655) 118337) ((-1016 . -237) T) ((-423 . -102) T) ((-393 . -102) T) ((-110 . -316) NIL) ((-229 . -102) 118315) ((-128 . -1230) T) ((-122 . -1230) T) ((-826 . -1063) 118266) ((-826 . -649) 118208) ((-1046 . -132) T) ((-679 . -375) 118192) ((-153 . -655) 118151) ((-644 . -293) 118109) ((-616 . -293) 118067) ((-1309 . -735) T) ((-1011 . -1061) T) ((-1253 . -648) 118015) ((-1116 . -622) 117997) ((-1015 . -622) 117979) ((-573 . -1230) T) ((-504 . -1230) T) ((-524 . -23) T) ((-519 . -23) T) ((-351 . -314) T) ((-517 . -23) T) ((-329 . -132) T) ((-3 . -1112) T) ((-1015 . -623) 117963) ((-1011 . -248) 117942) ((-1011 . -238) 117921) ((-1272 . -146) 117900) ((-1272 . -148) 117879) ((-842 . -1112) T) ((-1265 . -148) 117858) ((-1265 . -146) 117837) ((-1264 . -1234) 117816) ((-1244 . -146) 117723) ((-1244 . -148) 117630) ((-1243 . -1234) 117609) ((-387 . -132) T) ((-227 . -235) 117596) ((-573 . -896) 117578) ((0 . -1112) T) ((-176 . -174) T) ((-171 . -21) T) ((-171 . -25) T) ((-49 . -1112) T) ((-1266 . -657) 117483) ((-1264 . -565) 117434) ((-723 . -1124) T) ((-1243 . -565) 117385) ((-573 . -1050) 117367) ((-604 . -148) 117346) ((-604 . -146) 117325) ((-504 . -1050) 117268) ((-1147 . -1149) T) ((-87 . -392) T) ((-87 . -404) T) ((-881 . -371) T) ((-845 . -132) T) ((-836 . -132) T) ((-974 . -655) 117212) ((-723 . -23) T) ((-515 . -622) 117178) ((-511 . -622) 117160) ((-824 . -655) 116910) ((-1304 . -1070) T) ((-387 . -1072) T) ((-1038 . -1112) 116888) ((-55 . -1050) 116870) ((-911 . -34) T) ((-491 . -316) 116808) ((-601 . -102) T) ((-1169 . -623) 116769) ((-1169 . -622) 116701) ((-1191 . -1063) 116584) ((-45 . -102) T) ((-826 . -102) T) ((-1191 . -649) 116481) ((-1253 . -25) T) ((-1253 . -21) T) ((-1074 . -235) 116468) ((-864 . -25) T) ((-44 . -375) 116452) ((-864 . -21) T) ((-740 . -461) 116403) ((-1303 . -622) 116385) ((-1292 . -1063) 116355) ((-1066 . -316) 116293) ((-680 . -1095) T) ((-615 . -1095) T) ((-399 . -1112) T) ((-580 . -25) T) ((-580 . -21) T) ((-182 . -1095) T) ((-162 . -1095) T) ((-157 . -1095) T) ((-155 . -1095) T) ((-1292 . -649) 116263) ((-630 . -1112) T) ((-708 . -896) 116245) ((-1280 . -1230) T) ((-229 . -316) 116183) ((-145 . -376) T) ((-1058 . -623) 116125) ((-1058 . -622) 116068) ((-320 . -919) NIL) ((-1238 . -853) T) ((-708 . -1050) 116013) ((-720 . -930) T) ((-483 . -1234) 115992) ((-1186 . -461) 115971) ((-1180 . -461) 115950) ((-337 . -102) T) ((-881 . -1124) T) ((-326 . -655) 115832) ((-323 . -657) 115561) ((-320 . -657) 115490) ((-483 . -565) 115441) ((-347 . -523) 115407) ((-559 . -152) 115357) ((-40 . -314) T) ((-852 . -622) 115339) ((-710 . -297) T) ((-881 . -23) T) ((-387 . -502) T) ((-1092 . -233) 115309) ((-521 . -102) T) ((-416 . -623) 115116) ((-416 . -622) 115098) ((-269 . -622) 115080) ((-117 . -297) T) ((-1266 . -735) T) ((-632 . -1230) 115059) ((-1305 . -1112) T) ((-1264 . -371) 115038) ((-1243 . -371) 115017) ((-1293 . -34) T) ((-1238 . -1112) T) ((-118 . -1230) T) ((-108 . -233) 114999) ((-1191 . -102) T) ((-486 . -1112) T) ((-532 . -498) 114983) ((-746 . -34) T) ((-662 . -1063) 114967) ((-491 . -38) 114937) ((-662 . -649) 114907) ((-880 . -235) NIL) ((-142 . -34) T) ((-118 . -894) 114884) ((-118 . -896) NIL) ((-632 . -1050) 114767) ((-1292 . -102) T) ((-1272 . -237) 114726) ((-653 . -859) 114705) ((-1265 . -237) 114657) ((-1244 . -237) 114544) ((-302 . -102) T) ((-721 . -376) 114523) ((-118 . -1050) 114500) ((-399 . -726) 114484) ((-604 . -237) 114443) ((-630 . -726) 114427) ((-1117 . -1230) T) ((-45 . -316) 114231) ((-825 . -146) 114210) ((-825 . -148) 114189) ((-296 . -655) 114161) ((-1303 . -390) 114140) ((-828 . -859) T) ((-1282 . -1112) T) ((-1172 . -231) 114087) ((-395 . -859) 114066) ((-1272 . -1218) 114032) ((-1272 . -1215) 113998) ((-1265 . -1215) 113964) ((-524 . -132) T) ((-1265 . -1218) 113930) ((-1244 . -1215) 113896) ((-1244 . -1218) 113862) ((-1272 . -35) 113828) ((-1272 . -95) 113794) ((-1265 . -95) 113760) ((-644 . -622) 113729) ((-616 . -622) 113698) ((-227 . -859) T) ((-1265 . -35) 113664) ((-1264 . -1124) T) ((-1244 . -95) 113630) ((-1132 . -657) 113602) ((-1244 . -35) 113568) ((-1243 . -1124) T) ((-602 . -152) 113550) ((-1092 . -357) 113529) ((-176 . -297) T) ((-118 . -385) 113506) ((-118 . -346) 113483) ((-171 . -235) 113428) ((-879 . -314) T) ((-320 . -803) NIL) ((-320 . -800) NIL) ((-323 . -735) 113277) ((-320 . -735) T) ((-483 . -371) 113256) ((-367 . -357) 113235) ((-361 . -357) 113214) ((-353 . -357) 113193) ((-323 . -482) 113172) ((-1264 . -23) T) ((-1243 . -23) T) ((-727 . -1124) T) ((-723 . -132) T) ((-662 . -102) T) ((-486 . -726) 113137) ((-45 . -289) 113087) ((-105 . -1112) T) ((-68 . -622) 113069) ((-982 . -102) T) ((-873 . -102) T) ((-632 . -910) 113028) ((-1304 . -1112) T) ((-389 . -1112) T) ((-1253 . -235) 113015) ((-82 . -1230) T) ((-1229 . -1112) T) ((-1074 . -859) T) ((-118 . -910) NIL) ((-791 . -930) 112994) ((-722 . -859) T) ((-540 . -1112) T) ((-509 . -1112) T) ((-363 . -1234) T) ((-360 . -1234) T) ((-352 . -1234) T) ((-270 . -1234) 112973) ((-252 . -1234) 112952) ((-542 . -869) T) ((-1125 . -233) 112921) ((-1171 . -837) T) ((-1154 . -1068) 112905) ((-399 . -770) T) ((-703 . -1230) T) ((-700 . -1050) 112889) ((-363 . -565) T) ((-360 . -565) T) ((-352 . -565) T) ((-270 . -565) 112820) ((-252 . -565) 112751) ((-534 . -1095) T) ((-1154 . -111) 112730) ((-462 . -753) 112700) ((-875 . -1068) 112670) ((-826 . -38) 112612) ((-703 . -894) 112594) ((-703 . -896) 112576) ((-302 . -316) 112380) ((-920 . -1234) T) ((-1169 . -295) 112357) ((-1092 . -655) 112252) ((-679 . -420) 112236) ((-875 . -111) 112201) ((-1016 . -461) T) ((-703 . -1050) 112146) ((-920 . -565) T) ((-542 . -622) 112128) ((-590 . -930) T) ((-496 . -1063) 112078) ((-483 . -1124) T) ((-527 . -930) T) ((-924 . -461) T) ((-65 . -622) 112060) ((-219 . -1063) 112010) ((-496 . -649) 111960) ((-367 . -655) 111897) ((-361 . -655) 111834) ((-353 . -655) 111771) ((-641 . -231) 111717) ((-219 . -649) 111667) ((-108 . -655) 111617) ((-483 . -23) T) ((-1132 . -803) T) ((-881 . -132) T) ((-1132 . -800) T) ((-1295 . -1297) 111596) ((-1132 . -735) T) ((-663 . -657) 111570) ((-301 . -622) 111311) ((-1154 . -625) 111229) ((-1047 . -34) T) ((-825 . -237) 111208) ((-824 . -857) 111187) ((-589 . -314) T) ((-573 . -314) T) ((-504 . -314) T) ((-1304 . -726) 111157) ((-703 . -385) 111139) ((-703 . -346) 111121) ((-486 . -174) T) ((-389 . -726) 111091) ((-875 . -625) 111026) ((-880 . -859) NIL) ((-573 . -1034) T) ((-504 . -1034) T) ((-1145 . -622) 111008) ((-1125 . -243) 110987) ((-216 . -102) T) ((-1162 . -102) T) ((-71 . -622) 110969) ((-1154 . -1061) T) ((-1191 . -38) 110866) ((-867 . -622) 110848) ((-573 . -554) T) ((-679 . -1070) T) ((-740 . -959) 110801) ((-362 . -1230) T) ((-1154 . -238) 110780) ((-1094 . -1112) T) ((-1046 . -25) T) ((-1046 . -21) T) ((-1015 . -1068) 110725) ((-915 . -102) T) ((-875 . -1061) T) ((-703 . -910) NIL) ((-363 . -336) 110709) ((-363 . -371) T) ((-360 . -336) 110693) ((-360 . -371) T) ((-352 . -336) 110677) ((-352 . -371) T) ((-496 . -102) T) ((-1292 . -38) 110647) ((-555 . -859) T) ((-532 . -696) 110597) ((-219 . -102) T) ((-1036 . -1050) 110477) ((-1015 . -111) 110406) ((-1187 . -985) 110375) ((-1186 . -985) 110337) ((-529 . -152) 110321) ((-1092 . -378) 110300) ((-359 . -622) 110282) ((-329 . -21) T) ((-362 . -1050) 110259) ((-329 . -25) T) ((-1180 . -985) 110228) ((-48 . -1230) T) ((-76 . -622) 110210) ((-1138 . -985) 110177) ((-708 . -314) T) ((-130 . -853) T) ((-920 . -371) T) ((-387 . -25) T) ((-387 . -21) T) ((-920 . -336) 110164) ((-86 . -622) 110146) ((-708 . -1034) T) ((-686 . -859) T) ((-1264 . -132) T) ((-1243 . -132) T) ((-911 . -1022) 110130) ((-845 . -21) T) ((-48 . -1050) 110073) ((-845 . -25) T) ((-836 . -25) T) ((-836 . -21) T) ((-1125 . -655) 109823) ((-1302 . -1070) T) ((-558 . -102) T) ((-1300 . -1070) T) ((-663 . -735) T) ((-1116 . -627) 109726) ((-1015 . -625) 109656) ((-1303 . -1068) 109640) ((-824 . -420) 109609) ((-103 . -120) 109593) ((-130 . -1112) T) ((-52 . -1112) T) ((-936 . -622) 109575) ((-880 . -1004) 109552) ((-832 . -102) T) ((-1303 . -111) 109531) ((-662 . -38) 109501) ((-580 . -859) T) ((-363 . -1124) T) ((-360 . -1124) T) ((-352 . -1124) T) ((-270 . -1124) T) ((-252 . -1124) T) ((-1162 . -316) 109305) ((-632 . -314) 109284) ((-1100 . -235) 109271) ((-673 . -23) T) ((-533 . -1095) T) ((-318 . -1112) T) ((-491 . -233) 109240) ((-153 . -1070) T) ((-363 . -23) T) ((-360 . -23) T) ((-352 . -23) T) ((-118 . -314) T) ((-270 . -23) T) ((-252 . -23) T) ((-1015 . -1061) T) ((-721 . -919) 109219) ((-1169 . -625) 109196) ((-1015 . -238) 109168) ((-1015 . -248) T) ((-118 . -1034) NIL) ((-920 . -1124) T) ((-1265 . -461) 109147) ((-1244 . -461) 109126) ((-532 . -622) 109058) ((-721 . -657) 108947) ((-416 . -1068) 108899) ((-513 . -622) 108881) ((-920 . -23) T) ((-496 . -316) NIL) ((-1303 . -625) 108837) ((-483 . -132) T) ((-219 . -316) NIL) ((-416 . -111) 108775) ((-824 . -1070) 108705) ((-746 . -1110) 108689) ((-1264 . -502) 108655) ((-1243 . -502) 108621) ((-557 . -853) T) ((-142 . -1110) 108603) ((-486 . -297) T) ((-1303 . -1061) T) ((-257 . -237) 108555) ((-256 . -237) 108507) ((-1235 . -102) T) ((-1075 . -102) T) ((-852 . -625) 108375) ((-509 . -523) NIL) ((-491 . -243) 108354) ((-416 . -625) 108252) ((-973 . -1063) 108135) ((-744 . -1063) 108105) ((-973 . -649) 108002) ((-1185 . -146) 107981) ((-744 . -649) 107951) ((-462 . -1063) 107921) ((-1185 . -148) 107900) ((-1137 . -148) 107879) ((-1137 . -146) 107858) ((-644 . -1068) 107842) ((-616 . -1068) 107826) ((-462 . -649) 107796) ((-1187 . -1271) 107780) ((-1187 . -1258) 107757) ((-1186 . -1263) 107718) ((-679 . -1112) T) ((-679 . -1065) 107658) ((-1186 . -1258) 107628) ((-557 . -1112) T) ((-496 . -1164) T) ((-1186 . -1261) 107612) ((-1180 . -1242) 107573) ((-827 . -272) 107557) ((-219 . -1164) T) ((-351 . -930) T) ((-99 . -1230) T) ((-644 . -111) 107536) ((-616 . -111) 107515) ((-1180 . -1258) 107492) ((-852 . -1061) 107471) ((-1180 . -1240) 107455) ((-524 . -25) T) ((-504 . -309) T) ((-520 . -23) T) ((-519 . -25) T) ((-517 . -25) T) ((-516 . -23) T) ((-427 . -1063) 107429) ((-416 . -1061) T) ((-326 . -1070) T) ((-703 . -314) T) ((-427 . -649) 107403) ((-108 . -857) T) ((-721 . -735) T) ((-416 . -248) T) ((-416 . -238) 107382) ((-387 . -235) 107369) ((-496 . -38) 107319) ((-219 . -38) 107269) ((-483 . -502) 107235) ((-1237 . -376) T) ((-1171 . -1156) T) ((-1113 . -102) T) ((-836 . -235) 107208) ((-710 . -622) 107190) ((-710 . -623) 107105) ((-723 . -21) T) ((-723 . -25) T) ((-1147 . -102) T) ((-491 . -655) 106855) ((-135 . -622) 106837) ((-117 . -622) 106819) ((-158 . -25) T) ((-1302 . -1112) T) ((-881 . -648) 106767) ((-1300 . -1112) T) ((-973 . -102) T) ((-744 . -102) T) ((-724 . -102) T) ((-462 . -102) T) ((-825 . -461) 106718) ((-44 . -1112) T) ((-1100 . -859) T) ((-1075 . -316) 106569) ((-673 . -132) T) ((-1066 . -655) 106538) ((-679 . -726) 106522) ((-296 . -1070) T) ((-363 . -132) T) ((-360 . -132) T) ((-352 . -132) T) ((-270 . -132) T) ((-252 . -132) T) ((-393 . -655) 106491) ((-427 . -102) T) ((-153 . -1112) T) ((-45 . -231) 106441) ((-808 . -1063) 106425) ((-968 . -859) 106404) ((-1011 . -657) 106306) ((-808 . -649) 106290) ((-245 . -1287) 106260) ((-1036 . -314) T) ((-301 . -1068) 106181) ((-920 . -132) T) ((-40 . -930) T) ((-496 . -409) 106163) ((-362 . -314) T) ((-219 . -409) 106145) ((-1092 . -420) 106129) ((-301 . -111) 106045) ((-1196 . -859) T) ((-1195 . -859) T) ((-881 . -25) T) ((-881 . -21) T) ((-1266 . -47) 105989) ((-347 . -622) 105971) ((-1185 . -237) T) ((-227 . -148) T) ((-176 . -622) 105953) ((-1125 . -857) 105932) ((-783 . -622) 105914) ((-129 . -859) T) ((-617 . -240) 105861) ((-484 . -240) 105811) ((-1302 . -726) 105781) ((-48 . -314) T) ((-1300 . -726) 105751) ((-65 . -625) 105680) ((-974 . -1112) T) ((-824 . -1112) 105470) ((-319 . -102) T) ((-911 . -1230) T) ((-48 . -1034) T) ((-1243 . -648) 105378) ((-698 . -102) 105356) ((-44 . -726) 105340) ((-559 . -102) T) ((-301 . -625) 105271) ((-67 . -391) T) ((-67 . -404) T) ((-671 . -23) T) ((-826 . -655) 105207) ((-679 . -770) T) ((-1227 . -1112) 105185) ((-359 . -1068) 105130) ((-684 . -1112) 105108) ((-1074 . -148) T) ((-962 . -148) 105087) ((-962 . -146) 105066) ((-808 . -102) T) ((-153 . -726) 105050) ((-490 . -148) 105029) ((-490 . -146) 105008) ((-359 . -111) 104937) ((-1092 . -1070) T) ((-329 . -859) 104916) ((-1272 . -985) 104885) ((-636 . -1112) T) ((-1265 . -985) 104847) ((-520 . -132) T) ((-516 . -132) T) ((-302 . -231) 104797) ((-367 . -1070) T) ((-361 . -1070) T) ((-353 . -1070) T) ((-301 . -1061) 104739) ((-1244 . -985) 104708) ((-387 . -859) T) ((-108 . -1070) T) ((-1011 . -735) T) ((-879 . -930) T) ((-852 . -804) 104687) ((-852 . -801) 104666) ((-427 . -316) 104605) ((-477 . -102) T) ((-604 . -985) 104574) ((-326 . -1112) T) ((-416 . -804) 104553) ((-416 . -801) 104532) ((-509 . -498) 104514) ((-1266 . -1050) 104480) ((-1264 . -21) T) ((-1264 . -25) T) ((-1243 . -21) T) ((-1243 . -25) T) ((-824 . -726) 104422) ((-359 . -625) 104352) ((-708 . -413) T) ((-1293 . -1230) T) ((-1125 . -420) 104321) ((-615 . -102) T) ((-1089 . -1230) T) ((-1015 . -376) NIL) ((-680 . -102) T) ((-182 . -102) T) ((-162 . -102) T) ((-157 . -102) T) ((-155 . -102) T) ((-103 . -34) T) ((-1191 . -655) 104231) ((-746 . -1230) T) ((-740 . -1063) 104074) ((-44 . -770) T) ((-740 . -649) 103923) ((-602 . -102) T) ((-662 . -665) 103907) ((-77 . -405) T) ((-77 . -404) T) ((-142 . -1230) T) ((-880 . -148) T) ((-880 . -146) NIL) ((-1229 . -93) T) ((-359 . -1061) T) ((-227 . -237) T) ((-70 . -391) T) ((-70 . -404) T) ((-1178 . -102) T) ((-679 . -523) 103840) ((-1292 . -655) 103785) ((-698 . -316) 103723) ((-973 . -38) 103620) ((-1193 . -622) 103602) ((-744 . -38) 103572) ((-559 . -316) 103376) ((-1187 . -1063) 103259) ((-323 . -1230) T) ((-359 . -238) T) ((-359 . -248) T) ((-320 . -1230) T) ((-296 . -1112) T) ((-1186 . -1063) 103094) ((-1180 . -1063) 102884) ((-1138 . -1063) 102767) ((-1187 . -649) 102664) ((-1186 . -649) 102505) ((-720 . -1234) T) ((-1180 . -649) 102301) ((-1169 . -660) 102285) ((-1138 . -649) 102182) ((-1224 . -565) 102161) ((-828 . -394) 102145) ((-720 . -565) T) ((-323 . -894) 102129) ((-323 . -896) 102054) ((-137 . -1230) T) ((-320 . -894) 102015) ((-320 . -896) NIL) ((-808 . -316) 101980) ((-326 . -726) 101821) ((-395 . -394) 101805) ((-331 . -330) 101782) ((-494 . -102) T) ((-483 . -25) T) ((-483 . -21) T) ((-427 . -38) 101756) ((-323 . -1050) 101419) ((-227 . -1215) T) ((-227 . -1218) T) ((-3 . -622) 101401) ((-320 . -1050) 101331) ((-881 . -235) 101304) ((-2 . -1112) T) ((-2 . |RecordCategory|) T) ((-1125 . -1070) 101234) ((-842 . -622) 101216) ((-1074 . -237) T) ((-589 . -930) T) ((-573 . -829) T) ((-573 . -930) T) ((-504 . -930) T) ((-137 . -1050) 101200) ((-227 . -95) T) ((-171 . -148) 101179) ((-75 . -450) T) ((0 . -622) 101161) ((-75 . -404) T) ((-171 . -146) 101112) ((-227 . -35) T) ((-49 . -622) 101094) ((-486 . -1070) T) ((-496 . -233) 101076) ((-493 . -980) 101060) ((-491 . -857) 101039) ((-219 . -233) 101021) ((-81 . -450) T) ((-81 . -404) T) ((-1158 . -34) T) ((-824 . -174) 101000) ((-740 . -102) T) ((-662 . -655) 100959) ((-1038 . -622) 100926) ((-509 . -293) 100876) ((-323 . -385) 100845) ((-320 . -385) 100806) ((-320 . -346) 100767) ((-1097 . -622) 100749) ((-825 . -959) 100696) ((-671 . -132) T) ((-1253 . -146) 100675) ((-1253 . -148) 100654) ((-1187 . -102) T) ((-1186 . -102) T) ((-1180 . -102) T) ((-1172 . -1112) T) ((-1138 . -102) T) ((-224 . -34) T) ((-296 . -726) 100641) ((-1172 . -619) 100617) ((-602 . -316) NIL) ((-1272 . -1271) 100601) ((-493 . -1112) 100579) ((-1162 . -231) 100529) ((-399 . -622) 100511) ((-519 . -859) T) ((-1132 . -1230) T) ((-1272 . -1258) 100488) ((-1265 . -1263) 100449) ((-1265 . -1258) 100419) ((-1265 . -1261) 100403) ((-1244 . -1242) 100364) ((-1244 . -1258) 100341) ((-1244 . -1240) 100325) ((-630 . -622) 100307) ((-1187 . -291) 100273) ((-708 . -930) T) ((-1186 . -291) 100239) ((-1180 . -291) 100205) ((-1138 . -291) 100171) ((-1092 . -1112) T) ((-1073 . -1112) T) ((-48 . -309) T) ((-323 . -910) 100137) ((-320 . -910) NIL) ((-1073 . -1080) 100116) ((-1132 . -896) 100098) ((-808 . -38) 100082) ((-270 . -648) 100030) ((-252 . -648) 99978) ((-710 . -1068) 99965) ((-604 . -1258) 99942) ((-1132 . -1050) 99924) ((-326 . -174) 99855) ((-367 . -1112) T) ((-361 . -1112) T) ((-353 . -1112) T) ((-509 . -19) 99837) ((-1114 . -152) 99821) ((-880 . -237) NIL) ((-108 . -1112) T) ((-117 . -1068) 99808) ((-720 . -371) T) ((-509 . -613) 99783) ((-710 . -111) 99768) ((-1264 . -235) 99714) ((-1243 . -235) 99613) ((-445 . -102) T) ((-885 . -1275) T) ((-255 . -102) T) ((-45 . -1161) 99563) ((-117 . -111) 99548) ((-1305 . -622) 99515) ((-1305 . -499) 99497) ((-1282 . -622) 99479) ((-1253 . -237) T) ((-644 . -729) T) ((-616 . -729) T) ((-1238 . -622) 99461) ((-1236 . -859) T) ((-1224 . -1124) T) ((-1224 . -23) T) ((-1185 . -461) 99392) ((-824 . -523) 99325) ((-1047 . -1230) T) ((-245 . -1063) 99222) ((-1180 . -316) 99107) ((-1179 . -1112) T) ((-953 . -152) 99091) ((-1171 . -1112) T) ((-1154 . -657) 99029) ((-245 . -649) 98971) ((-1138 . -316) 98958) ((-1137 . -461) 98909) ((-1099 . -565) 98840) ((-534 . -102) T) ((-529 . -102) 98790) ((-1099 . -1234) 98769) ((-1092 . -726) 98637) ((-1016 . -1063) 98587) ((-791 . -1234) 98566) ((-789 . -1234) 98545) ((-62 . -1230) T) ((-486 . -622) 98497) ((-486 . -623) 98419) ((-1006 . -1112) T) ((-791 . -565) 98330) ((-789 . -565) 98261) ((-740 . -316) 98248) ((-491 . -420) 98217) ((-632 . -930) 98196) ((-463 . -1234) 98175) ((-710 . -625) 98147) ((-684 . -523) 98080) ((-407 . -622) 98062) ((-673 . -25) T) ((-673 . -21) T) ((-463 . -565) 97993) ((-363 . -25) T) ((-363 . -21) T) ((-360 . -25) T) ((-118 . -930) T) ((-118 . -829) NIL) ((-360 . -21) T) ((-352 . -25) T) ((-352 . -21) T) ((-270 . -25) T) ((-270 . -21) T) ((-252 . -25) T) ((-252 . -21) T) ((-171 . -237) 97944) ((-83 . -392) T) ((-83 . -404) T) ((-135 . -625) 97926) ((-117 . -625) 97898) ((-1016 . -649) 97848) ((-953 . -992) 97832) ((-924 . -649) 97784) ((-924 . -1063) 97736) ((-920 . -21) T) ((-920 . -25) T) ((-881 . -859) 97687) ((-875 . -657) 97647) ((-720 . -1124) T) ((-720 . -23) T) ((-710 . -1061) T) ((-710 . -238) T) ((-296 . -174) T) ((-663 . -1230) T) ((-318 . -93) T) ((-656 . -1112) 97625) ((-641 . -619) 97600) ((-641 . -1112) T) ((-590 . -1234) T) ((-590 . -565) T) ((-527 . -1234) T) ((-527 . -565) T) ((-496 . -655) 97550) ((-483 . -235) 97496) ((-436 . -1063) 97480) ((-436 . -649) 97464) ((-367 . -726) 97416) ((-361 . -726) 97368) ((-347 . -1068) 97352) ((-353 . -726) 97304) ((-347 . -111) 97283) ((-176 . -1068) 97215) ((-219 . -655) 97165) ((-176 . -111) 97076) ((-108 . -726) 97026) ((-280 . -1112) T) ((-279 . -1112) T) ((-278 . -1112) T) ((-277 . -1112) T) ((-276 . -1112) T) ((-275 . -1112) T) ((-274 . -1112) T) ((-214 . -1112) T) ((-213 . -1112) T) ((-171 . -1218) 97004) ((-171 . -1215) 96982) ((-211 . -1112) T) ((-210 . -1112) T) ((-117 . -1061) T) ((-209 . -1112) T) ((-208 . -1112) T) ((-205 . -1112) T) ((-204 . -1112) T) ((-203 . -1112) T) ((-202 . -1112) T) ((-201 . -1112) T) ((-200 . -1112) T) ((-199 . -1112) T) ((-198 . -1112) T) ((-197 . -1112) T) ((-196 . -1112) T) ((-195 . -1112) T) ((-245 . -102) 96772) ((-171 . -35) 96750) ((-171 . -95) 96728) ((-663 . -1050) 96624) ((-491 . -1070) 96554) ((-1125 . -1112) 96344) ((-1154 . -34) T) ((-679 . -498) 96328) ((-73 . -1230) T) ((-105 . -622) 96310) ((-1304 . -622) 96292) ((-389 . -622) 96274) ((-347 . -625) 96226) ((-176 . -625) 96143) ((-1229 . -499) 96124) ((-740 . -38) 95973) ((-580 . -1218) T) ((-580 . -1215) T) ((-540 . -622) 95955) ((-529 . -316) 95893) ((-509 . -622) 95875) ((-509 . -623) 95857) ((-1229 . -622) 95823) ((-1180 . -1164) NIL) ((-1039 . -1083) 95792) ((-1039 . -1112) T) ((-1016 . -102) T) ((-983 . -102) T) ((-924 . -102) T) ((-903 . -1050) 95769) ((-1154 . -735) T) ((-1015 . -657) 95676) ((-485 . -1112) T) ((-472 . -1112) T) ((-595 . -23) T) ((-580 . -35) T) ((-580 . -95) T) ((-436 . -102) T) ((-1075 . -231) 95622) ((-1187 . -38) 95519) ((-875 . -735) T) ((-703 . -930) T) ((-520 . -25) T) ((-516 . -21) T) ((-516 . -25) T) ((-1186 . -38) 95360) ((-347 . -1061) T) ((-1180 . -38) 95156) ((-1092 . -174) T) ((-176 . -1061) T) ((-1138 . -38) 95053) ((-721 . -47) 95030) ((-367 . -174) T) ((-361 . -174) T) ((-528 . -57) 95004) ((-506 . -57) 94954) ((-359 . -1299) 94931) ((-227 . -461) T) ((-326 . -297) 94882) ((-353 . -174) T) ((-176 . -248) T) ((-1243 . -859) 94781) ((-108 . -174) T) ((-881 . -1004) 94765) ((-667 . -1124) T) ((-590 . -371) T) ((-590 . -336) 94752) ((-527 . -336) 94729) ((-527 . -371) T) ((-323 . -314) 94708) ((-320 . -314) T) ((-611 . -859) 94687) ((-1125 . -726) 94629) ((-529 . -289) 94613) ((-667 . -23) T) ((-427 . -233) 94597) ((-320 . -1034) NIL) ((-344 . -23) T) ((-103 . -1022) 94581) ((-45 . -36) 94560) ((-621 . -1112) T) ((-359 . -376) T) ((-533 . -102) T) ((-504 . -27) T) ((-245 . -316) 94498) ((-1099 . -1124) T) ((-1303 . -657) 94472) ((-791 . -1124) T) ((-789 . -1124) T) ((-1191 . -420) 94456) ((-463 . -1124) T) ((-1074 . -461) T) ((-1163 . -1112) T) ((-962 . -461) 94407) ((-1127 . -1095) T) ((-110 . -1112) T) ((-1099 . -23) T) ((-1172 . -523) 94190) ((-826 . -1070) T) ((-791 . -23) T) ((-789 . -23) T) ((-490 . -461) 94141) ((-470 . -23) T) ((-389 . -390) 94120) ((-363 . -235) 94093) ((-360 . -235) 94066) ((-352 . -235) 94039) ((-463 . -23) T) ((-270 . -235) 94012) ((-96 . -1112) T) ((-721 . -1230) T) ((-679 . -293) 93989) ((-493 . -523) 93922) ((-1272 . -1063) 93805) ((-1272 . -649) 93702) ((-1265 . -649) 93543) ((-1265 . -1063) 93378) ((-1244 . -649) 93174) ((-296 . -297) T) ((-1244 . -1063) 92964) ((-1094 . -622) 92946) ((-1094 . -623) 92927) ((-416 . -919) 92906) ((-1224 . -132) T) ((-50 . -1124) T) ((-1180 . -409) 92858) ((-1036 . -930) T) ((-1015 . -735) T) ((-852 . -657) 92831) ((-721 . -896) NIL) ((-605 . -1063) 92791) ((-590 . -1124) T) ((-527 . -1124) T) ((-604 . -1063) 92674) ((-1169 . -34) T) ((-1016 . -316) NIL) ((-824 . -498) 92658) ((-605 . -649) 92631) ((-362 . -930) T) ((-604 . -649) 92528) ((-920 . -235) 92515) ((-416 . -657) 92431) ((-50 . -23) T) ((-720 . -132) T) ((-721 . -1050) 92311) ((-590 . -23) T) ((-108 . -523) NIL) ((-527 . -23) T) ((-171 . -418) 92282) ((-1152 . -1112) T) ((-1295 . -1294) 92266) ((-710 . -804) T) ((-710 . -801) T) ((-1132 . -314) T) ((-387 . -148) T) ((-287 . -622) 92248) ((-286 . -622) 92230) ((-1243 . -1004) 92200) ((-48 . -930) T) ((-684 . -498) 92184) ((-257 . -1287) 92154) ((-256 . -1287) 92124) ((-1189 . -859) T) ((-1100 . -237) T) ((-1125 . -174) 92103) ((-1132 . -1034) T) ((-1058 . -34) T) ((-845 . -148) 92082) ((-845 . -146) 92061) ((-746 . -107) 92045) ((-621 . -133) T) ((-491 . -1112) 91835) ((-1191 . -1070) T) ((-880 . -461) T) ((-85 . -1230) T) ((-245 . -38) 91805) ((-142 . -107) 91787) ((-721 . -385) 91771) ((-842 . -625) 91639) ((-1303 . -735) T) ((-1292 . -1070) T) ((-1272 . -102) T) ((-1132 . -554) T) ((-588 . -102) T) ((-130 . -499) 91621) ((-1265 . -102) T) ((-399 . -1068) 91605) ((-1185 . -959) 91574) ((-44 . -293) 91551) ((-130 . -622) 91518) ((-52 . -622) 91500) ((-1137 . -959) 91467) ((-662 . -420) 91451) ((-1244 . -102) T) ((-1171 . -523) NIL) ((-671 . -25) T) ((-630 . -1068) 91435) ((-671 . -21) T) ((-973 . -655) 91345) ((-744 . -655) 91290) ((-724 . -655) 91262) ((-399 . -111) 91241) ((-224 . -260) 91225) ((-1066 . -1065) 91165) ((-1066 . -1112) T) ((-1016 . -1164) T) ((-827 . -1112) T) ((-462 . -655) 91080) ((-351 . -1234) T) ((-644 . -657) 91064) ((-630 . -111) 91043) ((-616 . -657) 91027) ((-605 . -102) T) ((-318 . -499) 91008) ((-595 . -132) T) ((-604 . -102) T) ((-423 . -1112) T) ((-393 . -1112) T) ((-318 . -622) 90974) ((-229 . -1112) 90952) ((-656 . -523) 90885) ((-641 . -523) 90729) ((-842 . -1061) 90708) ((-653 . -152) 90692) ((-351 . -565) T) ((-721 . -910) 90635) ((-559 . -231) 90585) ((-1272 . -291) 90551) ((-1265 . -291) 90517) ((-1092 . -297) 90468) ((-496 . -857) T) ((-225 . -1124) T) ((-1244 . -291) 90434) ((-1224 . -502) 90400) ((-1016 . -38) 90350) ((-219 . -857) T) ((-427 . -655) 90309) ((-924 . -38) 90261) ((-852 . -803) 90240) ((-852 . -800) 90219) ((-852 . -735) 90198) ((-367 . -297) T) ((-361 . -297) T) ((-353 . -297) T) ((-171 . -461) 90129) ((-436 . -38) 90113) ((-225 . -23) T) ((-108 . -297) T) ((-416 . -803) 90092) ((-416 . -800) 90071) ((-416 . -735) T) ((-509 . -295) 90046) ((-486 . -1068) 90011) ((-667 . -132) T) ((-630 . -625) 89980) ((-1125 . -523) 89913) ((-344 . -132) T) ((-171 . -411) 89892) ((-491 . -726) 89834) ((-824 . -293) 89811) ((-486 . -111) 89767) ((-662 . -1070) T) ((-825 . -1063) 89610) ((-1291 . -1095) T) ((-1253 . -461) 89541) ((-825 . -649) 89390) ((-1290 . -1095) T) ((-1099 . -132) T) ((-1066 . -726) 89332) ((-1039 . -523) 89265) ((-791 . -132) T) ((-789 . -132) T) ((-580 . -461) T) ((-630 . -1061) T) ((-601 . -1112) T) ((-542 . -175) T) ((-470 . -132) T) ((-463 . -132) T) ((-387 . -237) T) ((-1011 . -1230) 89206) ((-45 . -1112) T) ((-393 . -726) 89176) ((-826 . -1112) T) ((-485 . -523) 89109) ((-472 . -523) 89042) ((-1305 . -625) 89024) ((-462 . -375) 88994) ((-45 . -619) 88973) ((-323 . -309) T) ((-836 . -237) 88952) ((-486 . -625) 88902) ((-1244 . -316) 88787) ((-679 . -622) 88749) ((-59 . -859) 88728) ((-1016 . -409) 88710) ((-557 . -622) 88692) ((-808 . -655) 88651) ((-824 . -613) 88628) ((-525 . -859) 88607) ((-505 . -859) 88586) ((-40 . -1234) T) ((-1011 . -1050) 88482) ((-50 . -132) T) ((-590 . -132) T) ((-527 . -132) T) ((-301 . -657) 88342) ((-351 . -336) 88319) ((-351 . -371) T) ((-329 . -330) 88296) ((-326 . -293) 88254) ((-40 . -565) T) ((-387 . -1215) T) ((-387 . -1218) T) ((-1047 . -1206) 88229) ((-1202 . -240) 88179) ((-1180 . -233) 88131) ((-337 . -1112) T) ((-387 . -95) T) ((-387 . -35) T) ((-1047 . -107) 88077) ((-486 . -1061) T) ((-1304 . -1068) 88061) ((-488 . -240) 88011) ((-1172 . -498) 87945) ((-1295 . -1063) 87929) ((-389 . -1068) 87913) ((-1295 . -649) 87883) ((-486 . -248) T) ((-825 . -102) T) ((-723 . -148) 87862) ((-723 . -146) 87841) ((-493 . -498) 87825) ((-494 . -343) 87794) ((-1304 . -111) 87773) ((-521 . -1112) T) ((-491 . -174) 87752) ((-1011 . -385) 87736) ((-422 . -102) T) ((-389 . -111) 87715) ((-1011 . -346) 87699) ((-285 . -995) 87683) ((-284 . -995) 87667) ((-1302 . -622) 87649) ((-1300 . -622) 87631) ((-110 . -523) NIL) ((-1185 . -1256) 87615) ((-863 . -861) 87599) ((-1191 . -1112) T) ((-103 . -1230) T) ((-962 . -959) 87560) ((-826 . -726) 87502) ((-1244 . -1164) NIL) ((-490 . -959) 87447) ((-1074 . -144) T) ((-60 . -102) 87425) ((-44 . -622) 87407) ((-78 . -622) 87389) ((-359 . -657) 87334) ((-1292 . -1112) T) ((-520 . -859) T) ((-296 . -293) 87313) ((-351 . -1124) T) ((-302 . -1112) T) ((-1011 . -910) 87272) ((-302 . -619) 87251) ((-1304 . -625) 87200) ((-1272 . -38) 87097) ((-1265 . -38) 86938) ((-1244 . -38) 86734) ((-496 . -1070) T) ((-389 . -625) 86718) ((-219 . -1070) T) ((-351 . -23) T) ((-153 . -622) 86700) ((-842 . -804) 86679) ((-842 . -801) 86658) ((-1229 . -625) 86639) ((-605 . -38) 86612) ((-604 . -38) 86509) ((-879 . -565) T) ((-225 . -132) T) ((-326 . -1014) 86475) ((-79 . -622) 86457) ((-721 . -314) 86436) ((-301 . -735) 86338) ((-833 . -102) T) ((-873 . -853) T) ((-301 . -482) 86317) ((-1295 . -102) T) ((-40 . -371) T) ((-881 . -148) 86296) ((-494 . -655) 86278) ((-881 . -146) 86257) ((-1171 . -498) 86239) ((-1304 . -1061) T) ((-491 . -523) 86172) ((-1158 . -1230) T) ((-974 . -622) 86154) ((-656 . -498) 86138) ((-641 . -498) 86069) ((-824 . -622) 85800) ((-48 . -27) T) ((-1191 . -726) 85697) ((-662 . -1112) T) ((-870 . -869) T) ((-445 . -372) 85671) ((-740 . -655) 85581) ((-1114 . -102) T) ((-982 . -1112) T) ((-873 . -1112) T) ((-825 . -316) 85568) ((-542 . -536) T) ((-542 . -585) T) ((-1300 . -390) 85540) ((-1066 . -523) 85473) ((-1172 . -293) 85449) ((-245 . -233) 85418) ((-257 . -1063) 85315) ((-256 . -1063) 85212) ((-1292 . -726) 85182) ((-1179 . -93) T) ((-1006 . -93) T) ((-826 . -174) 85161) ((-257 . -649) 85103) ((-256 . -649) 85045) ((-1227 . -499) 85022) ((-229 . -523) 84955) ((-630 . -804) 84934) ((-630 . -801) 84913) ((-1227 . -622) 84825) ((-224 . -1230) T) ((-684 . -622) 84757) ((-1187 . -655) 84667) ((-1169 . -1022) 84651) ((-953 . -102) 84601) ((-359 . -735) T) ((-870 . -622) 84583) ((-1186 . -655) 84465) ((-1180 . -655) 84302) ((-1138 . -655) 84212) ((-1244 . -409) 84164) ((-1125 . -498) 84148) ((-60 . -316) 84086) ((-338 . -102) T) ((-1224 . -21) T) ((-1224 . -25) T) ((-40 . -1124) T) ((-720 . -21) T) ((-636 . -622) 84068) ((-524 . -330) 84047) ((-720 . -25) T) ((-448 . -102) T) ((-108 . -293) NIL) ((-931 . -1124) T) ((-40 . -23) T) ((-780 . -1124) T) ((-573 . -1234) T) ((-504 . -1234) T) ((-326 . -622) 84029) ((-1016 . -233) 84011) ((-171 . -167) 83995) ((-589 . -565) T) ((-573 . -565) T) ((-504 . -565) T) ((-780 . -23) T) ((-1264 . -148) 83974) ((-1172 . -613) 83950) ((-1264 . -146) 83929) ((-1039 . -498) 83913) ((-1243 . -146) 83838) ((-1243 . -148) 83763) ((-1295 . -1301) 83742) ((-485 . -498) 83726) ((-472 . -498) 83710) ((-532 . -34) T) ((-662 . -726) 83680) ((-112 . -979) T) ((-671 . -859) 83659) ((-1191 . -174) 83610) ((-373 . -102) T) ((-245 . -243) 83589) ((-257 . -102) T) ((-256 . -102) T) ((-1253 . -959) 83558) ((-250 . -859) 83537) ((-825 . -38) 83386) ((-45 . -523) 83178) ((-1171 . -293) 83128) ((-216 . -1112) T) ((-1162 . -1112) T) ((-881 . -237) 83107) ((-1162 . -619) 83086) ((-595 . -25) T) ((-595 . -21) T) ((-1114 . -316) 83024) ((-973 . -420) 83008) ((-708 . -1234) T) ((-641 . -293) 82961) ((-1099 . -648) 82909) ((-791 . -648) 82857) ((-789 . -648) 82805) ((-351 . -132) T) ((-296 . -622) 82787) ((-915 . -1112) T) ((-708 . -565) T) ((-130 . -625) 82769) ((-879 . -1124) T) ((-463 . -648) 82717) ((-915 . -913) 82701) ((-387 . -461) T) ((-496 . -1112) T) ((-953 . -316) 82639) ((-710 . -657) 82611) ((-558 . -853) T) ((-219 . -1112) T) ((-323 . -930) 82590) ((-320 . -930) T) ((-320 . -829) NIL) ((-399 . -729) T) ((-879 . -23) T) ((-117 . -657) 82577) ((-483 . -146) 82556) ((-427 . -420) 82540) ((-483 . -148) 82519) ((-110 . -498) 82501) ((-318 . -625) 82482) ((-2 . -622) 82464) ((-188 . -102) T) ((-1171 . -19) 82446) ((-1171 . -613) 82421) ((-667 . -21) T) ((-667 . -25) T) ((-602 . -1156) T) ((-1125 . -293) 82398) ((-344 . -25) T) ((-344 . -21) T) ((-245 . -655) 82148) ((-504 . -371) T) ((-1302 . -1068) 82132) ((-1295 . -38) 82102) ((-1185 . -1063) 81925) ((-1154 . -1230) T) ((-1137 . -1063) 81768) ((-863 . -1063) 81752) ((-641 . -613) 81727) ((-1300 . -1068) 81711) ((-1264 . -1215) 81677) ((-1264 . -1218) 81643) ((-1185 . -649) 81472) ((-1137 . -649) 81321) ((-863 . -649) 81291) ((-1264 . -95) 81257) ((-1264 . -237) 81209) ((-558 . -1112) T) ((-1099 . -25) T) ((-1099 . -21) T) ((-540 . -801) T) ((-540 . -804) T) ((-118 . -1234) T) ((-973 . -1070) T) ((-632 . -565) T) ((-791 . -25) T) ((-791 . -21) T) ((-789 . -21) T) ((-789 . -25) T) ((-744 . -1070) T) ((-724 . -1070) T) ((-679 . -1068) 81193) ((-526 . -1095) T) ((-470 . -25) T) ((-118 . -565) T) ((-470 . -21) T) ((-463 . -25) T) ((-463 . -21) T) ((-1247 . -102) 81171) ((-1163 . -93) T) ((-1154 . -1050) 81067) ((-826 . -297) 81046) ((-1244 . -233) 80998) ((-832 . -1112) T) ((-976 . -979) T) ((-679 . -111) 80977) ((-626 . -1230) T) ((-302 . -523) 80769) ((-1243 . -1215) 80735) ((-1243 . -1218) 80701) ((-1243 . -237) 80606) ((-257 . -316) 80544) ((-256 . -316) 80482) ((-1238 . -376) T) ((-1172 . -623) NIL) ((-1172 . -622) 80464) ((-1235 . -853) T) ((-1154 . -385) 80448) ((-1132 . -829) T) ((-96 . -93) T) ((-1132 . -930) T) ((-1125 . -613) 80425) ((-1092 . -623) 80409) ((-1016 . -655) 80359) ((-924 . -655) 80296) ((-824 . -295) 80273) ((-493 . -622) 80205) ((-617 . -152) 80152) ((-496 . -726) 80102) ((-427 . -1070) T) ((-491 . -498) 80086) ((-436 . -655) 80045) ((-334 . -859) 80024) ((-347 . -657) 79998) ((-50 . -21) T) ((-50 . -25) T) ((-219 . -726) 79948) ((-171 . -733) 79919) ((-176 . -657) 79851) ((-590 . -21) T) ((-590 . -25) T) ((-527 . -25) T) ((-527 . -21) T) ((-484 . -152) 79801) ((-1092 . -622) 79783) ((-1073 . -622) 79765) ((-1005 . -102) T) ((-871 . -102) T) ((-808 . -420) 79728) ((-40 . -132) T) ((-708 . -371) T) ((-710 . -735) T) ((-710 . -803) T) ((-710 . -800) T) ((-214 . -905) T) ((-589 . -1124) T) ((-573 . -1124) T) ((-504 . -1124) T) ((-367 . -622) 79710) ((-361 . -622) 79692) ((-353 . -622) 79674) ((-66 . -405) T) ((-66 . -404) T) ((-108 . -623) 79604) ((-108 . -622) 79546) ((-213 . -905) T) ((-968 . -152) 79530) ((-780 . -132) T) ((-679 . -625) 79448) ((-135 . -735) T) ((-117 . -735) T) ((-1264 . -35) 79414) ((-1066 . -498) 79398) ((-589 . -23) T) ((-573 . -23) T) ((-504 . -23) T) ((-1243 . -95) 79364) ((-1243 . -35) 79330) ((-1185 . -102) T) ((-1137 . -102) T) ((-863 . -102) T) ((-229 . -498) 79314) ((-1302 . -111) 79293) ((-1300 . -111) 79272) ((-44 . -1068) 79256) ((-1302 . -625) 79202) ((-1302 . -1061) T) ((-1300 . -625) 79131) ((-1253 . -1256) 79115) ((-1235 . -1112) T) ((-864 . -861) 79099) ((-1191 . -297) 79078) ((-1116 . -1230) T) ((-110 . -293) 79028) ((-1015 . -1230) 79000) ((-129 . -152) 78982) ((-1154 . -910) 78941) ((-44 . -111) 78920) ((-1194 . -1275) T) ((-1179 . -499) 78901) ((-1179 . -622) 78867) ((-1171 . -623) NIL) ((-679 . -1061) T) ((-1171 . -622) 78849) ((-1075 . -619) 78824) ((-483 . -237) 78776) ((-1075 . -1112) T) ((-1006 . -499) 78757) ((-74 . -450) T) ((-74 . -404) T) ((-1006 . -622) 78723) ((-153 . -1068) 78707) ((-679 . -238) 78686) ((-580 . -563) 78670) ((-363 . -148) 78649) ((-363 . -146) 78600) ((-360 . -148) 78579) ((-360 . -146) 78530) ((-352 . -148) 78509) ((-352 . -146) 78460) ((-270 . -146) 78439) ((-270 . -148) 78418) ((-257 . -38) 78388) ((-252 . -148) 78367) ((-118 . -371) T) ((-252 . -146) 78346) ((-256 . -38) 78316) ((-153 . -111) 78295) ((-1015 . -1050) 78183) ((-1180 . -857) NIL) ((-703 . -1234) T) ((-808 . -1070) T) ((-708 . -1124) T) ((-1300 . -1061) T) ((-1169 . -1230) T) ((-1015 . -385) 78160) ((-920 . -146) T) ((-920 . -148) 78142) ((-879 . -132) T) ((-824 . -1068) 78039) ((-708 . -23) T) ((-703 . -565) T) ((-227 . -1063) 78004) ((-656 . -622) 77936) ((-656 . -623) 77897) ((-641 . -623) NIL) ((-641 . -622) 77879) ((-496 . -174) T) ((-227 . -649) 77844) ((-225 . -21) T) ((-219 . -174) T) ((-225 . -25) T) ((-483 . -1218) 77810) ((-483 . -1215) 77776) ((-280 . -622) 77758) ((-279 . -622) 77740) ((-278 . -622) 77722) ((-277 . -622) 77704) ((-276 . -622) 77686) ((-509 . -660) 77668) ((-275 . -622) 77650) ((-347 . -735) T) ((-274 . -622) 77632) ((-110 . -19) 77614) ((-176 . -735) T) ((-509 . -381) 77596) ((-214 . -622) 77578) ((-529 . -1161) 77562) ((-509 . -124) T) ((-110 . -613) 77537) ((-213 . -622) 77519) ((-483 . -35) 77485) ((-483 . -95) 77451) ((-211 . -622) 77433) ((-210 . -622) 77415) ((-209 . -622) 77397) ((-208 . -622) 77379) ((-205 . -622) 77361) ((-204 . -622) 77343) ((-203 . -622) 77325) ((-202 . -622) 77307) ((-201 . -622) 77289) ((-200 . -622) 77271) ((-199 . -622) 77253) ((-545 . -1115) 77205) ((-198 . -622) 77187) ((-197 . -622) 77169) ((-45 . -498) 77106) ((-196 . -622) 77088) ((-195 . -622) 77070) ((-153 . -625) 77039) ((-1127 . -102) T) ((-824 . -111) 76929) ((-653 . -102) 76879) ((-491 . -293) 76856) ((-1303 . -1050) 76840) ((-1125 . -622) 76571) ((-1113 . -1112) T) ((-1058 . -1230) T) ((-1185 . -316) 76558) ((-1074 . -1063) 76545) ((-1147 . -1112) T) ((-962 . -1063) 76388) ((-1137 . -316) 76375) ((-1108 . -1095) T) ((-632 . -1124) T) ((-1074 . -649) 76362) ((-1102 . -1095) T) ((-962 . -649) 76211) ((-1099 . -235) 76184) ((-490 . -1063) 76027) ((-1085 . -1095) T) ((-1078 . -1095) T) ((-1048 . -1095) T) ((-1031 . -1095) T) ((-118 . -1124) T) ((-490 . -649) 75876) ((-791 . -235) 75863) ((-828 . -102) T) ((-635 . -1095) T) ((-632 . -23) T) ((-1162 . -523) 75655) ((-492 . -1095) T) ((-395 . -102) T) ((-331 . -102) T) ((-220 . -1095) T) ((-973 . -1112) T) ((-153 . -1061) T) ((-740 . -420) 75639) ((-118 . -23) T) ((-1015 . -910) 75591) ((-744 . -1112) T) ((-724 . -1112) T) ((-462 . -1112) T) ((-416 . -1230) T) ((-323 . -439) 75575) ((-601 . -93) T) ((-1272 . -655) 75485) ((-1039 . -623) 75446) ((-1036 . -1234) T) ((-227 . -102) T) ((-1039 . -622) 75408) ((-1265 . -655) 75290) ((-825 . -233) 75274) ((-824 . -625) 75004) ((-1244 . -655) 74841) ((-1036 . -565) T) ((-842 . -657) 74814) ((-362 . -1234) T) ((-485 . -622) 74776) ((-485 . -623) 74737) ((-472 . -623) 74698) ((-472 . -622) 74660) ((-605 . -655) 74619) ((-416 . -894) 74603) ((-326 . -1068) 74438) ((-416 . -896) 74363) ((-604 . -655) 74273) ((-852 . -1050) 74169) ((-496 . -523) NIL) ((-491 . -613) 74146) ((-590 . -235) 74133) ((-362 . -565) T) ((-527 . -235) 74120) ((-219 . -523) NIL) ((-881 . -461) T) ((-427 . -1112) T) ((-416 . -1050) 73984) ((-326 . -111) 73805) ((-703 . -371) T) ((-227 . -291) T) ((-1227 . -625) 73782) ((-48 . -1234) T) ((-1185 . -1164) 73760) ((-1172 . -295) 73736) ((-1074 . -102) T) ((-824 . -1061) 73666) ((-589 . -132) T) ((-573 . -132) T) ((-504 . -132) T) ((-363 . -237) 73645) ((-360 . -237) 73624) ((-352 . -237) 73603) ((-48 . -565) T) ((-962 . -102) T) ((-270 . -237) 73582) ((-880 . -1063) 73527) ((-323 . -27) 73506) ((-824 . -238) 73458) ((-254 . -844) 73440) ((-245 . -857) 73419) ((-189 . -844) 73401) ((-722 . -102) T) ((-302 . -498) 73338) ((-880 . -649) 73283) ((-490 . -102) T) ((-740 . -1070) T) ((-621 . -622) 73265) ((-621 . -623) 73126) ((-416 . -385) 73110) ((-416 . -346) 73094) ((-1185 . -38) 72923) ((-1137 . -38) 72772) ((-326 . -625) 72598) ((-920 . -237) T) ((-644 . -1230) 72572) ((-616 . -1230) 72546) ((-863 . -38) 72516) ((-399 . -657) 72500) ((-653 . -316) 72438) ((-1163 . -499) 72419) ((-1163 . -622) 72385) ((-973 . -726) 72282) ((-744 . -726) 72252) ((-224 . -107) 72236) ((-45 . -293) 72136) ((-630 . -657) 72110) ((-319 . -1112) T) ((-296 . -1068) 72097) ((-110 . -622) 72079) ((-110 . -623) 72061) ((-462 . -726) 72031) ((-825 . -259) 71970) ((-698 . -1112) 71948) ((-559 . -1112) T) ((-1187 . -1070) T) ((-1186 . -1070) T) ((-96 . -499) 71929) ((-1180 . -1070) T) ((-296 . -111) 71914) ((-1138 . -1070) T) ((-559 . -619) 71893) ((-96 . -622) 71859) ((-1016 . -857) T) ((-229 . -696) 71817) ((-703 . -1124) T) ((-1224 . -749) 71793) ((-1036 . -371) T) ((-847 . -844) 71775) ((-842 . -803) 71754) ((-416 . -910) 71713) ((-326 . -1061) T) ((-351 . -25) T) ((-351 . -21) T) ((-171 . -1063) 71623) ((-68 . -1230) T) ((-842 . -800) 71602) ((-427 . -726) 71576) ((-808 . -1112) T) ((-721 . -930) 71555) ((-708 . -132) T) ((-171 . -649) 71383) ((-703 . -23) T) ((-496 . -297) T) ((-842 . -735) 71362) ((-326 . -238) 71314) ((-326 . -248) 71293) ((-219 . -297) T) ((-130 . -376) T) ((-1264 . -461) 71272) ((-1243 . -461) 71251) ((-362 . -336) 71228) ((-362 . -371) T) ((-1152 . -622) 71210) ((-45 . -1268) 71160) ((-880 . -102) T) ((-653 . -289) 71144) ((-708 . -1072) T) ((-1291 . -102) T) ((-1290 . -102) T) ((-486 . -657) 71109) ((-477 . -1112) T) ((-45 . -613) 71034) ((-1171 . -295) 71009) ((-296 . -625) 70981) ((-40 . -648) 70920) ((-1253 . -1063) 70743) ((-864 . -1063) 70727) ((-48 . -371) T) ((-1118 . -622) 70709) ((-1253 . -649) 70538) ((-864 . -649) 70508) ((-641 . -295) 70483) ((-825 . -655) 70393) ((-580 . -1063) 70380) ((-491 . -622) 70111) ((-245 . -420) 70080) ((-962 . -316) 70067) ((-580 . -649) 70054) ((-65 . -1230) T) ((-1075 . -523) 69898) ((-680 . -1112) T) ((-632 . -132) T) ((-490 . -316) 69885) ((-615 . -1112) T) ((-555 . -102) T) ((-118 . -132) T) ((-296 . -1061) T) ((-182 . -1112) T) ((-162 . -1112) T) ((-157 . -1112) T) ((-155 . -1112) T) ((-462 . -770) T) ((-31 . -1095) T) ((-973 . -174) 69836) ((-982 . -93) T) ((-1092 . -1068) 69746) ((-630 . -803) 69725) ((-602 . -1112) T) ((-630 . -800) 69704) ((-630 . -735) T) ((-302 . -293) 69683) ((-301 . -1230) T) ((-1066 . -622) 69645) ((-1066 . -623) 69606) ((-1036 . -1124) T) ((-171 . -102) T) ((-281 . -859) T) ((-1178 . -1112) T) ((-827 . -622) 69588) ((-1125 . -295) 69565) ((-1114 . -231) 69549) ((-1015 . -314) T) ((-808 . -726) 69533) ((-367 . -1068) 69485) ((-362 . -1124) T) ((-361 . -1068) 69437) ((-423 . -622) 69419) ((-393 . -622) 69401) ((-353 . -1068) 69353) ((-229 . -622) 69285) ((-1092 . -111) 69181) ((-1036 . -23) T) ((-108 . -1068) 69131) ((-908 . -102) T) ((-850 . -102) T) ((-817 . -102) T) ((-778 . -102) T) ((-686 . -102) T) ((-483 . -461) 69110) ((-427 . -174) T) ((-367 . -111) 69048) ((-361 . -111) 68986) ((-353 . -111) 68924) ((-257 . -233) 68893) ((-256 . -233) 68862) ((-362 . -23) T) ((-71 . -1230) T) ((-227 . -38) 68827) ((-108 . -111) 68761) ((-40 . -25) T) ((-40 . -21) T) ((-679 . -729) T) ((-171 . -291) 68739) ((-48 . -1124) T) ((-931 . -25) T) ((-780 . -25) T) ((-1304 . -657) 68713) ((-1162 . -498) 68650) ((-494 . -1112) T) ((-1295 . -655) 68609) ((-1253 . -102) T) ((-1074 . -1164) T) ((-864 . -102) T) ((-245 . -1070) 68539) ((-974 . -801) 68492) ((-974 . -804) 68445) ((-389 . -657) 68429) ((-48 . -23) T) ((-824 . -804) 68380) ((-824 . -801) 68331) ((-557 . -376) T) ((-302 . -613) 68310) ((-486 . -735) T) ((-580 . -102) T) ((-1092 . -625) 68128) ((-254 . -187) T) ((-189 . -187) T) ((-880 . -316) 68085) ((-662 . -293) 68064) ((-112 . -670) T) ((-359 . -1230) T) ((-367 . -625) 68001) ((-361 . -625) 67938) ((-353 . -625) 67875) ((-76 . -1230) T) ((-108 . -625) 67825) ((-112 . -113) T) ((-1074 . -38) 67812) ((-673 . -382) 67791) ((-962 . -38) 67640) ((-740 . -1112) T) ((-490 . -38) 67489) ((-86 . -1230) T) ((-601 . -499) 67470) ((-1244 . -857) NIL) ((-580 . -291) T) ((-1187 . -1112) T) ((-601 . -622) 67436) ((-1186 . -1112) T) ((-1180 . -1112) T) ((-1092 . -1061) T) ((-359 . -1050) 67413) ((-826 . -499) 67397) ((-1016 . -1070) T) ((-45 . -622) 67379) ((-45 . -623) NIL) ((-924 . -1070) T) ((-826 . -622) 67348) ((-1159 . -102) 67326) ((-1092 . -248) 67277) ((-436 . -1070) T) ((-367 . -1061) T) ((-361 . -1061) T) ((-373 . -372) 67254) ((-353 . -1061) T) ((-351 . -235) 67241) ((-257 . -243) 67220) ((-256 . -243) 67199) ((-1092 . -238) 67124) ((-1138 . -1112) T) ((-301 . -910) 67083) ((-108 . -1061) T) ((-703 . -132) T) ((-427 . -523) 66925) ((-367 . -238) 66904) ((-367 . -248) T) ((-44 . -729) T) ((-361 . -238) 66883) ((-361 . -248) T) ((-353 . -238) 66862) ((-353 . -248) T) ((-1179 . -625) 66843) ((-171 . -316) 66808) ((-108 . -248) T) ((-108 . -238) T) ((-1006 . -625) 66789) ((-326 . -801) T) ((-879 . -21) T) ((-879 . -25) T) ((-416 . -314) T) ((-509 . -34) T) ((-110 . -295) 66764) ((-1125 . -1068) 66661) ((-880 . -1164) NIL) ((-337 . -622) 66643) ((-416 . -1034) 66621) ((-1125 . -111) 66511) ((-700 . -1275) T) ((-445 . -1112) T) ((-255 . -1112) T) ((-1304 . -735) T) ((-63 . -622) 66493) ((-880 . -38) 66438) ((-532 . -1230) T) ((-611 . -152) 66422) ((-521 . -622) 66404) ((-1253 . -316) 66391) ((-740 . -726) 66240) ((-540 . -802) T) ((-540 . -803) T) ((-573 . -648) 66222) ((-504 . -648) 66182) ((-363 . -461) T) ((-360 . -461) T) ((-352 . -461) T) ((-270 . -461) 66133) ((-534 . -1112) T) ((-529 . -1112) 66083) ((-252 . -461) 66034) ((-1162 . -293) 66013) ((-1191 . -622) 65995) ((-698 . -523) 65928) ((-973 . -297) 65907) ((-559 . -523) 65699) ((-257 . -655) 65519) ((-256 . -655) 65326) ((-1292 . -622) 65295) ((-1292 . -499) 65279) ((-1187 . -726) 65176) ((-1185 . -233) 65160) ((-1125 . -625) 64890) ((-171 . -1164) 64869) ((-1186 . -726) 64710) ((-1180 . -726) 64506) ((-976 . -113) T) ((-902 . -102) T) ((-1169 . -683) 64490) ((-1138 . -726) 64387) ((-1036 . -132) T) ((-363 . -411) 64338) ((-360 . -411) 64289) ((-352 . -411) 64240) ((-974 . -376) 64193) ((-808 . -523) 64105) ((-302 . -623) NIL) ((-302 . -622) 64087) ((-920 . -461) T) ((-915 . -293) 64066) ((-824 . -376) 64045) ((-519 . -518) 64024) ((-517 . -518) 64003) ((-496 . -293) NIL) ((-491 . -295) 63980) ((-427 . -297) T) ((-362 . -132) T) ((-219 . -293) NIL) ((-703 . -502) NIL) ((-99 . -1124) T) ((-40 . -235) 63946) ((-171 . -38) 63774) ((-1264 . -985) 63736) ((-1159 . -316) 63674) ((-1243 . -985) 63643) ((-920 . -411) T) ((-1125 . -1061) 63573) ((-1266 . -565) T) ((-1162 . -613) 63552) ((-112 . -859) T) ((-1075 . -498) 63483) ((-589 . -21) T) ((-589 . -25) T) ((-573 . -21) T) ((-573 . -25) T) ((-504 . -25) T) ((-504 . -21) T) ((-1253 . -1164) 63461) ((-1125 . -238) 63413) ((-48 . -132) T) ((-1211 . -102) T) ((-245 . -1112) 63203) ((-880 . -409) 63180) ((-1100 . -102) T) ((-1088 . -102) T) ((-617 . -102) T) ((-484 . -102) T) ((-1253 . -38) 63009) ((-864 . -38) 62979) ((-1046 . -1063) 62953) ((-740 . -174) 62864) ((-662 . -622) 62846) ((-654 . -1095) T) ((-1046 . -649) 62830) ((-580 . -38) 62817) ((-982 . -499) 62798) ((-982 . -622) 62764) ((-968 . -102) 62714) ((-873 . -622) 62696) ((-873 . -623) 62618) ((-602 . -523) NIL) ((-1272 . -1070) T) ((-1265 . -1070) T) ((-329 . -1063) 62600) ((-1244 . -1070) T) ((-1309 . -1124) T) ((-1224 . -148) 62579) ((-1224 . -146) 62558) ((-329 . -649) 62540) ((-710 . -1230) T) ((-1197 . -102) T) ((-1196 . -102) T) ((-1195 . -102) T) ((-1187 . -174) 62491) ((-605 . -1070) T) ((-604 . -1070) T) ((-1186 . -174) 62422) ((-1180 . -174) 62353) ((-387 . -1063) 62318) ((-1163 . -625) 62299) ((-1138 . -174) 62250) ((-1016 . -1112) T) ((-983 . -1112) T) ((-924 . -1112) T) ((-387 . -649) 62215) ((-808 . -806) 62199) ((-708 . -25) T) ((-708 . -21) T) ((-118 . -648) 62176) ((-710 . -896) 62158) ((-436 . -1112) T) ((-323 . -1234) 62137) ((-320 . -1234) T) ((-171 . -409) 62121) ((-845 . -1063) 62091) ((-483 . -985) 62053) ((-131 . -102) T) ((-129 . -102) T) ((-72 . -622) 62035) ((-836 . -1063) 62019) ((-108 . -804) T) ((-108 . -801) T) ((-710 . -1050) 62001) ((-323 . -565) 61980) ((-320 . -565) T) ((-845 . -649) 61950) ((-836 . -649) 61920) ((-1309 . -23) T) ((-135 . -1050) 61902) ((-96 . -625) 61883) ((-1005 . -655) 61865) ((-491 . -1068) 61762) ((-45 . -295) 61687) ((-245 . -726) 61629) ((-526 . -102) T) ((-491 . -111) 61519) ((-1104 . -102) 61489) ((-1046 . -102) T) ((-1185 . -655) 61399) ((-1137 . -655) 61309) ((-863 . -655) 61268) ((-653 . -837) 61247) ((-740 . -523) 61190) ((-1066 . -1068) 61174) ((-1147 . -93) T) ((-1075 . -293) 61149) ((-632 . -21) T) ((-632 . -25) T) ((-533 . -1112) T) ((-679 . -657) 61087) ((-369 . -102) T) ((-329 . -102) T) ((-393 . -1068) 61071) ((-1066 . -111) 61050) ((-825 . -420) 61034) ((-118 . -25) T) ((-89 . -622) 61016) ((-118 . -21) T) ((-617 . -316) 60811) ((-484 . -316) 60615) ((-1162 . -623) NIL) ((-393 . -111) 60594) ((-387 . -102) T) ((-216 . -622) 60576) ((-1162 . -622) 60558) ((-1180 . -523) 60327) ((-1016 . -726) 60277) ((-1138 . -523) 60247) ((-924 . -726) 60199) ((-491 . -625) 59929) ((-359 . -314) T) ((-1202 . -152) 59879) ((-968 . -316) 59817) ((-845 . -102) T) ((-436 . -726) 59801) ((-227 . -837) T) ((-836 . -102) T) ((-834 . -102) T) ((-1302 . -657) 59775) ((-488 . -152) 59725) ((-1264 . -1263) 59704) ((-1132 . -1234) T) ((-347 . -1050) 59671) ((-1264 . -1258) 59641) ((-1264 . -1261) 59625) ((-1243 . -1242) 59604) ((-80 . -622) 59586) ((-915 . -622) 59568) ((-1243 . -1258) 59545) ((-1132 . -565) T) ((-931 . -859) T) ((-780 . -859) T) ((-681 . -859) T) ((-496 . -623) 59475) ((-496 . -622) 59416) ((-387 . -291) T) ((-1243 . -1240) 59400) ((-1266 . -1124) T) ((-219 . -623) 59330) ((-219 . -622) 59271) ((-1075 . -613) 59246) ((-827 . -625) 59230) ((-573 . -235) 59217) ((-525 . -152) 59201) ((-59 . -152) 59185) ((-505 . -152) 59169) ((-504 . -235) 59156) ((-367 . -1299) 59140) ((-361 . -1299) 59124) ((-353 . -1299) 59108) ((-323 . -371) 59087) ((-320 . -371) T) ((-491 . -1061) 59017) ((-703 . -648) 58999) ((-1300 . -657) 58973) ((-129 . -316) NIL) ((-1266 . -23) T) ((-698 . -498) 58957) ((-64 . -622) 58939) ((-1125 . -804) 58890) ((-1125 . -801) 58841) ((-559 . -498) 58778) ((-679 . -34) T) ((-491 . -238) 58730) ((-302 . -295) 58709) ((-245 . -174) 58688) ((-825 . -1070) T) ((-44 . -657) 58646) ((-1092 . -376) 58597) ((-1099 . -146) 58576) ((-740 . -297) 58507) ((-529 . -523) 58440) ((-826 . -1068) 58391) ((-1099 . -148) 58370) ((-558 . -622) 58352) ((-367 . -376) 58331) ((-361 . -376) 58310) ((-353 . -376) 58289) ((-978 . -1230) T) ((-880 . -233) 58266) ((-826 . -111) 58208) ((-791 . -146) 58187) ((-791 . -148) 58166) ((-270 . -959) 58133) ((-257 . -857) 58112) ((-252 . -959) 58057) ((-256 . -857) 58036) ((-789 . -146) 58015) ((-789 . -148) 57994) ((-153 . -657) 57968) ((-588 . -1112) T) ((-462 . -293) 57931) ((-463 . -148) 57910) ((-463 . -146) 57889) ((-679 . -735) T) ((-832 . -622) 57871) ((-1272 . -1112) T) ((-1265 . -1112) T) ((-1244 . -1112) T) ((-1224 . -1218) 57837) ((-1224 . -1215) 57803) ((-1187 . -297) 57782) ((-1186 . -297) 57733) ((-1180 . -297) 57684) ((-1138 . -297) 57663) ((-347 . -910) 57644) ((-1016 . -174) T) ((-924 . -174) T) ((-703 . -21) T) ((-703 . -25) T) ((-227 . -655) 57594) ((-605 . -1112) T) ((-604 . -1112) T) ((-483 . -1261) 57578) ((-483 . -1258) 57548) ((-427 . -293) 57476) ((-556 . -859) T) ((-323 . -1124) 57325) ((-320 . -1124) T) ((-1224 . -35) 57291) ((-1224 . -95) 57257) ((-84 . -622) 57239) ((-91 . -102) 57217) ((-1309 . -132) T) ((-723 . -1063) 57187) ((-601 . -625) 57168) ((-590 . -146) T) ((-590 . -148) 57150) ((-527 . -148) 57132) ((-527 . -146) T) ((-723 . -649) 57102) ((-323 . -23) 56954) ((-40 . -350) 56928) ((-320 . -23) T) ((-826 . -625) 56842) ((-1171 . -660) 56824) ((-1295 . -1070) T) ((-1171 . -381) 56806) ((-824 . -657) 56591) ((-1108 . -102) T) ((-1102 . -102) T) ((-1085 . -102) T) ((-171 . -233) 56575) ((-1078 . -102) T) ((-1048 . -102) T) ((-1031 . -102) T) ((-602 . -498) 56557) ((-635 . -102) T) ((-245 . -523) 56490) ((-492 . -102) T) ((-1302 . -735) T) ((-1300 . -735) T) ((-220 . -102) T) ((-1191 . -1068) 56373) ((-1074 . -655) 56345) ((-962 . -655) 56255) ((-1191 . -111) 56124) ((-885 . -1095) T) ((-870 . -175) T) ((-490 . -655) 56034) ((-826 . -1061) T) ((-690 . -1095) T) ((-685 . -1095) T) ((-632 . -235) 56007) ((-524 . -102) T) ((-519 . -102) T) ((-48 . -648) 55967) ((-517 . -102) T) ((-487 . -1095) T) ((-1292 . -1068) 55937) ((-118 . -235) NIL) ((-139 . -1095) T) ((-138 . -1095) T) ((-134 . -1095) T) ((-1046 . -38) 55921) ((-826 . -238) T) ((-826 . -248) 55900) ((-1292 . -111) 55865) ((-1272 . -726) 55762) ((-1265 . -726) 55603) ((-559 . -293) 55582) ((-1253 . -233) 55566) ((-1235 . -622) 55548) ((-615 . -93) T) ((-1075 . -623) NIL) ((-1075 . -622) 55530) ((-680 . -93) T) ((-182 . -93) T) ((-162 . -93) T) ((-157 . -93) T) ((-155 . -93) T) ((-1244 . -726) 55326) ((-1015 . -930) T) ((-153 . -735) T) ((-1191 . -625) 55179) ((-1125 . -376) 55158) ((-1036 . -25) T) ((-1016 . -523) NIL) ((-257 . -420) 55127) ((-256 . -420) 55096) ((-1036 . -21) T) ((-881 . -1063) 55048) ((-605 . -726) 55021) ((-604 . -726) 54918) ((-808 . -293) 54876) ((-127 . -102) 54854) ((-842 . -1050) 54750) ((-171 . -837) 54729) ((-326 . -657) 54626) ((-824 . -34) T) ((-723 . -102) T) ((-1132 . -1124) T) ((-1038 . -1230) T) ((-881 . -649) 54578) ((-387 . -38) 54543) ((-362 . -25) T) ((-362 . -21) T) ((-189 . -102) T) ((-163 . -102) T) ((-254 . -102) T) ((-158 . -102) T) ((-363 . -1287) 54527) ((-360 . -1287) 54511) ((-352 . -1287) 54495) ((-171 . -357) 54474) ((-573 . -859) T) ((-1099 . -237) 54453) ((-1132 . -23) T) ((-87 . -622) 54435) ((-791 . -237) T) ((-710 . -314) T) ((-845 . -38) 54405) ((-836 . -38) 54375) ((-1292 . -625) 54317) ((-1266 . -132) T) ((-1162 . -295) 54296) ((-974 . -735) 54195) ((-974 . -802) 54148) ((-974 . -803) 54101) ((-824 . -800) 54080) ((-117 . -314) T) ((-91 . -316) 54018) ((-684 . -34) T) ((-559 . -613) 53997) ((-48 . -25) T) ((-48 . -21) T) ((-824 . -803) 53948) ((-824 . -802) 53927) ((-710 . -1034) T) ((-662 . -1068) 53911) ((-880 . -655) 53841) ((-824 . -735) 53751) ((-974 . -482) 53704) ((-491 . -804) 53655) ((-491 . -801) 53606) ((-920 . -1287) 53593) ((-1191 . -1061) T) ((-662 . -111) 53572) ((-1191 . -333) 53549) ((-1216 . -102) 53527) ((-1113 . -622) 53509) ((-710 . -554) T) ((-825 . -1112) T) ((-590 . -237) T) ((-527 . -237) T) ((-1292 . -1061) T) ((-1147 . -499) 53490) ((-1236 . -102) T) ((-422 . -1112) T) ((-1147 . -622) 53456) ((-257 . -1070) 53386) ((-256 . -1070) 53316) ((-847 . -102) T) ((-296 . -657) 53303) ((-602 . -293) 53253) ((-698 . -696) 53211) ((-973 . -622) 53193) ((-881 . -102) T) ((-744 . -622) 53175) ((-724 . -622) 53157) ((-1272 . -174) 53108) ((-1265 . -174) 53039) ((-1244 . -174) 52970) ((-708 . -859) T) ((-1016 . -297) T) ((-462 . -622) 52952) ((-636 . -735) T) ((-60 . -1112) 52930) ((-250 . -152) 52914) ((-924 . -297) T) ((-1036 . -1024) T) ((-636 . -482) T) ((-721 . -1234) 52893) ((-703 . -235) NIL) ((-662 . -625) 52811) ((-171 . -655) 52706) ((-1280 . -859) 52685) ((-605 . -174) 52664) ((-604 . -174) 52615) ((-1264 . -649) 52456) ((-1264 . -1063) 52291) ((-1243 . -649) 52105) ((-1243 . -1063) 51913) ((-721 . -565) 51824) ((-416 . -930) T) ((-416 . -829) 51803) ((-326 . -803) T) ((-982 . -625) 51784) ((-326 . -735) T) ((-653 . -1161) 51768) ((-427 . -622) 51750) ((-427 . -623) 51657) ((-110 . -660) 51639) ((-176 . -314) T) ((-127 . -316) 51577) ((-110 . -381) 51559) ((-407 . -1230) T) ((-323 . -132) 51430) ((-320 . -132) T) ((-69 . -404) T) ((-110 . -124) T) ((-529 . -498) 51414) ((-663 . -1124) T) ((-602 . -19) 51396) ((-61 . -450) T) ((-61 . -404) T) ((-833 . -1112) T) ((-602 . -613) 51371) ((-486 . -1050) 51331) ((-662 . -1061) T) ((-663 . -23) T) ((-1295 . -1112) T) ((-31 . -102) T) ((-1253 . -655) 51241) ((-864 . -655) 51200) ((-825 . -726) 51049) ((-586 . -869) T) ((-580 . -655) 51021) ((-118 . -859) NIL) ((-1185 . -420) 51005) ((-1137 . -420) 50989) ((-863 . -420) 50973) ((-882 . -102) 50924) ((-1264 . -102) T) ((-1244 . -523) 50693) ((-1243 . -102) T) ((-1216 . -316) 50631) ((-1187 . -293) 50596) ((-1186 . -293) 50554) ((-534 . -93) T) ((-1180 . -293) 50382) ((-319 . -622) 50364) ((-1114 . -1112) T) ((-1092 . -657) 50238) ((-720 . -461) T) ((-698 . -622) 50170) ((-296 . -735) T) ((-108 . -919) NIL) ((-698 . -623) 50131) ((-610 . -622) 50113) ((-586 . -622) 50095) ((-559 . -623) NIL) ((-559 . -622) 50077) ((-538 . -622) 50059) ((-520 . -518) 50038) ((-496 . -1068) 49988) ((-483 . -1063) 49823) ((-516 . -518) 49802) ((-483 . -649) 49643) ((-219 . -1068) 49593) ((-367 . -657) 49545) ((-361 . -657) 49497) ((-227 . -857) T) ((-353 . -657) 49449) ((-611 . -102) 49399) ((-496 . -111) 49333) ((-491 . -376) 49312) ((-108 . -657) 49262) ((-362 . -235) 49249) ((-245 . -498) 49233) ((-351 . -148) 49215) ((-351 . -146) T) ((-171 . -378) 49186) ((-953 . -1278) 49170) ((-219 . -111) 49104) ((-881 . -316) 49069) ((-953 . -1112) 49019) ((-808 . -623) 48980) ((-808 . -622) 48962) ((-727 . -102) T) ((-338 . -1112) T) ((-216 . -625) 48939) ((-1132 . -132) T) ((-723 . -38) 48909) ((-323 . -502) 48888) ((-509 . -1230) T) ((-1264 . -291) 48854) ((-1243 . -291) 48820) ((-334 . -152) 48804) ((-448 . -1112) T) ((-1075 . -295) 48779) ((-1295 . -726) 48749) ((-48 . -235) 48736) ((-1172 . -34) T) ((-1304 . -1050) 48713) ((-493 . -34) T) ((-477 . -622) 48695) ((-255 . -293) 48669) ((-389 . -1050) 48653) ((-1185 . -1070) T) ((-1137 . -1070) T) ((-863 . -1070) T) ((-1074 . -857) T) ((-496 . -625) 48603) ((-219 . -625) 48553) ((-825 . -174) 48464) ((-529 . -293) 48416) ((-1272 . -297) 48395) ((-1211 . -372) 48369) ((-1100 . -272) 48353) ((-680 . -499) 48334) ((-680 . -622) 48300) ((-615 . -499) 48281) ((-118 . -1004) 48258) ((-615 . -622) 48208) ((-483 . -102) T) ((-182 . -499) 48189) ((-182 . -622) 48155) ((-162 . -499) 48136) ((-162 . -622) 48102) ((-157 . -499) 48083) ((-155 . -499) 48064) ((-157 . -622) 48030) ((-373 . -1112) T) ((-257 . -1112) T) ((-256 . -1112) T) ((-155 . -622) 47996) ((-1265 . -297) 47947) ((-1244 . -297) 47898) ((-881 . -1164) 47876) ((-1187 . -1014) 47842) ((-617 . -372) 47782) ((-1186 . -1014) 47748) ((-617 . -231) 47695) ((-703 . -859) T) ((-602 . -622) 47677) ((-602 . -623) NIL) ((-484 . -231) 47627) ((-496 . -1061) T) ((-1180 . -1014) 47593) ((-88 . -449) T) ((-88 . -404) T) ((-219 . -1061) T) ((-1138 . -1014) 47559) ((-1092 . -735) T) ((-721 . -1124) T) ((-605 . -297) 47538) ((-604 . -297) 47517) ((-496 . -248) T) ((-496 . -238) T) ((-219 . -248) T) ((-219 . -238) T) ((-1178 . -622) 47499) ((-881 . -38) 47451) ((-367 . -735) T) ((-361 . -735) T) ((-353 . -735) T) ((-108 . -803) T) ((-108 . -800) T) ((-721 . -23) T) ((-108 . -735) T) ((-529 . -1268) 47435) ((-1309 . -25) T) ((-483 . -291) 47401) ((-1309 . -21) T) ((-1243 . -316) 47340) ((-1189 . -102) T) ((-40 . -146) 47312) ((-40 . -148) 47284) ((-529 . -613) 47261) ((-1125 . -657) 47046) ((-611 . -316) 46984) ((-45 . -660) 46934) ((-45 . -675) 46884) ((-45 . -381) 46834) ((-1171 . -34) T) ((-880 . -857) NIL) ((-663 . -132) T) ((-494 . -622) 46816) ((-245 . -293) 46793) ((-188 . -1112) T) ((-1099 . -461) 46744) ((-825 . -523) 46618) ((-791 . -461) 46549) ((-673 . -1063) 46533) ((-656 . -34) T) ((-641 . -34) T) ((-673 . -649) 46517) ((-363 . -1063) 46469) ((-351 . -237) T) ((-360 . -1063) 46421) ((-352 . -1063) 46373) ((-270 . -1063) 46216) ((-252 . -1063) 46059) ((-789 . -461) 46010) ((-363 . -649) 45962) ((-360 . -649) 45914) ((-352 . -649) 45866) ((-270 . -649) 45715) ((-252 . -649) 45564) ((-463 . -461) 45515) ((-962 . -420) 45499) ((-740 . -622) 45481) ((-257 . -726) 45423) ((-256 . -726) 45365) ((-740 . -623) 45226) ((-490 . -420) 45210) ((-347 . -309) T) ((-533 . -93) T) ((-359 . -930) T) ((-1012 . -102) 45188) ((-920 . -1063) 45153) ((-1036 . -859) T) ((-60 . -523) 45086) ((-920 . -649) 45051) ((-1243 . -1164) 45003) ((-1016 . -293) NIL) ((-227 . -1070) T) ((-387 . -837) T) ((-1125 . -34) T) ((-590 . -461) T) ((-527 . -461) T) ((-1247 . -1105) 44987) ((-1247 . -1112) 44965) ((-245 . -613) 44942) ((-1247 . -1107) 44899) ((-1187 . -622) 44881) ((-1186 . -622) 44863) ((-1180 . -622) 44845) ((-1180 . -623) NIL) ((-1138 . -622) 44827) ((-881 . -409) 44811) ((-606 . -102) T) ((-594 . -102) T) ((-545 . -102) T) ((-1264 . -38) 44652) ((-1243 . -38) 44466) ((-879 . -148) T) ((-590 . -411) T) ((-527 . -411) T) ((-1276 . -102) T) ((-1266 . -21) T) ((-1266 . -25) T) ((-1125 . -800) 44445) ((-1125 . -803) 44396) ((-1125 . -802) 44375) ((-1005 . -1112) T) ((-1039 . -34) T) ((-871 . -1112) T) ((-1125 . -735) 44285) ((-673 . -102) T) ((-654 . -102) T) ((-559 . -295) 44264) ((-1202 . -102) T) ((-485 . -34) T) ((-472 . -34) T) ((-363 . -102) T) ((-360 . -102) T) ((-352 . -102) T) ((-270 . -102) T) ((-252 . -102) T) ((-486 . -314) T) ((-1074 . -1070) T) ((-962 . -1070) T) ((-323 . -648) 44170) ((-320 . -648) 44131) ((-1185 . -1112) T) ((-490 . -1070) T) ((-488 . -102) T) ((-445 . -622) 44113) ((-1137 . -1112) T) ((-255 . -622) 44095) ((-863 . -1112) T) ((-1153 . -102) T) ((-825 . -297) 44026) ((-973 . -1068) 43909) ((-486 . -1034) T) ((-744 . -1068) 43879) ((-1046 . -655) 43838) ((-1159 . -1133) 43822) ((-462 . -1068) 43792) ((-1114 . -523) 43725) ((-973 . -111) 43594) ((-920 . -102) T) ((-40 . -237) 43566) ((-744 . -111) 43531) ((-534 . -499) 43512) ((-534 . -622) 43478) ((-59 . -102) 43428) ((-529 . -623) 43389) ((-529 . -622) 43301) ((-528 . -102) 43279) ((-525 . -102) 43229) ((-506 . -102) 43207) ((-505 . -102) 43157) ((-462 . -111) 43120) ((-257 . -174) 43099) ((-256 . -174) 43078) ((-329 . -655) 43060) ((-427 . -1068) 43034) ((-1224 . -985) 42996) ((-1011 . -1124) T) ((-387 . -655) 42946) ((-1147 . -625) 42927) ((-953 . -523) 42860) ((-496 . -804) T) ((-483 . -38) 42701) ((-427 . -111) 42668) ((-496 . -801) T) ((-1012 . -316) 42606) ((-219 . -804) T) ((-219 . -801) T) ((-1011 . -23) T) ((-721 . -132) T) ((-1243 . -409) 42576) ((-845 . -655) 42521) ((-836 . -655) 42480) ((-323 . -25) 42332) ((-171 . -420) 42316) ((-323 . -21) 42187) ((-320 . -25) T) ((-320 . -21) T) ((-873 . -376) T) ((-973 . -625) 42040) ((-110 . -34) T) ((-744 . -625) 41996) ((-724 . -625) 41978) ((-491 . -657) 41763) ((-880 . -1070) T) ((-602 . -295) 41738) ((-589 . -148) T) ((-573 . -148) T) ((-504 . -148) T) ((-1185 . -726) 41567) ((-1069 . -102) 41545) ((-1137 . -726) 41394) ((-1132 . -648) 41376) ((-863 . -726) 41346) ((-679 . -1230) T) ((-1 . -102) T) ((-427 . -625) 41254) ((-245 . -622) 40985) ((-1127 . -1112) T) ((-1253 . -420) 40969) ((-1202 . -316) 40773) ((-973 . -1061) T) ((-744 . -1061) T) ((-724 . -1061) T) ((-653 . -1112) 40723) ((-1066 . -657) 40707) ((-864 . -420) 40691) ((-520 . -102) T) ((-516 . -102) T) ((-270 . -316) 40678) ((-252 . -316) 40665) ((-973 . -333) 40644) ((-393 . -657) 40628) ((-679 . -1050) 40524) ((-488 . -316) 40328) ((-257 . -523) 40261) ((-256 . -523) 40194) ((-1153 . -316) 40120) ((-828 . -1112) T) ((-808 . -1068) 40104) ((-1272 . -293) 40069) ((-1265 . -293) 40027) ((-1244 . -293) 39855) ((-395 . -1112) T) ((-331 . -1112) T) ((-427 . -1061) T) ((-171 . -1070) T) ((-59 . -316) 39793) ((-808 . -111) 39772) ((-604 . -293) 39737) ((-528 . -316) 39675) ((-525 . -316) 39613) ((-506 . -316) 39551) ((-505 . -316) 39489) ((-427 . -238) 39468) ((-491 . -34) T) ((-227 . -1112) T) ((-1016 . -623) 39398) ((-1016 . -622) 39358) ((-983 . -622) 39318) ((-924 . -622) 39300) ((-708 . -148) T) ((-710 . -930) T) ((-710 . -829) T) ((-436 . -622) 39282) ((-1132 . -21) T) ((-1132 . -25) T) ((-679 . -385) 39266) ((-117 . -930) T) ((-881 . -233) 39250) ((-44 . -1230) T) ((-78 . -1230) T) ((-127 . -126) 39234) ((-1066 . -34) T) ((-1302 . -1050) 39208) ((-1300 . -1050) 39165) ((-1253 . -1070) T) ((-864 . -1070) T) ((-491 . -800) 39144) ((-363 . -1164) 39123) ((-360 . -1164) 39102) ((-352 . -1164) 39081) ((-491 . -803) 39032) ((-491 . -802) 39011) ((-229 . -34) T) ((-491 . -735) 38921) ((-808 . -625) 38767) ((-671 . -1063) 38751) ((-60 . -498) 38735) ((-580 . -1070) T) ((-671 . -649) 38719) ((-1185 . -174) 38610) ((-1137 . -174) 38521) ((-1074 . -1112) T) ((-1099 . -959) 38466) ((-962 . -1112) T) ((-826 . -657) 38417) ((-791 . -959) 38386) ((-722 . -1112) T) ((-789 . -959) 38353) ((-525 . -289) 38337) ((-679 . -910) 38296) ((-490 . -1112) T) ((-463 . -959) 38263) ((-79 . -1230) T) ((-363 . -38) 38228) ((-360 . -38) 38193) ((-352 . -38) 38158) ((-270 . -38) 38007) ((-252 . -38) 37856) ((-920 . -1164) T) ((-533 . -499) 37837) ((-632 . -148) 37816) ((-632 . -146) 37795) ((-533 . -622) 37761) ((-118 . -148) T) ((-118 . -146) NIL) ((-423 . -735) T) ((-808 . -1061) T) ((-573 . -237) T) ((-504 . -237) T) ((-351 . -461) T) ((-1272 . -1014) 37727) ((-1265 . -1014) 37693) ((-1244 . -1014) 37659) ((-920 . -38) 37624) ((-227 . -726) 37589) ((-326 . -47) 37559) ((-40 . -418) 37531) ((-141 . -622) 37513) ((-1011 . -132) T) ((-824 . -1230) T) ((-176 . -930) T) ((-558 . -376) T) ((-723 . -655) 37458) ((-615 . -625) 37439) ((-351 . -411) T) ((-680 . -625) 37420) ((-320 . -235) NIL) ((-182 . -625) 37401) ((-162 . -625) 37382) ((-157 . -625) 37363) ((-155 . -625) 37344) ((-529 . -295) 37321) ((-1243 . -233) 37291) ((-885 . -102) T) ((-824 . -1050) 37118) ((-45 . -34) T) ((-690 . -102) T) ((-685 . -102) T) ((-671 . -102) T) ((-663 . -21) T) ((-663 . -25) T) ((-1114 . -498) 37102) ((-684 . -1230) T) ((-487 . -102) T) ((-250 . -102) 37052) ((-555 . -853) T) ((-134 . -102) T) ((-139 . -102) T) ((-138 . -102) T) ((-880 . -1112) T) ((-1191 . -657) 36977) ((-1074 . -726) 36964) ((-740 . -1068) 36807) ((-1185 . -523) 36754) ((-962 . -726) 36603) ((-1137 . -523) 36555) ((-1291 . -1112) T) ((-1290 . -1112) T) ((-490 . -726) 36404) ((-67 . -622) 36386) ((-740 . -111) 36215) ((-953 . -498) 36199) ((-1292 . -657) 36159) ((-1187 . -1068) 36042) ((-826 . -735) T) ((-1186 . -1068) 35877) ((-1180 . -1068) 35667) ((-326 . -1230) T) ((-1138 . -1068) 35550) ((-1015 . -1234) T) ((-1106 . -102) 35528) ((-824 . -385) 35497) ((-588 . -622) 35479) ((-555 . -1112) T) ((-1015 . -565) T) ((-1187 . -111) 35348) ((-1186 . -111) 35169) ((-1180 . -111) 34938) ((-1138 . -111) 34807) ((-1117 . -1115) 34771) ((-387 . -857) T) ((-1272 . -622) 34753) ((-1265 . -622) 34735) ((-881 . -655) 34672) ((-1244 . -622) 34654) ((-1244 . -623) NIL) ((-245 . -295) 34631) ((-40 . -461) T) ((-227 . -174) T) ((-171 . -1112) T) ((-740 . -625) 34416) ((-703 . -148) T) ((-703 . -146) NIL) ((-605 . -622) 34398) ((-604 . -622) 34380) ((-1132 . -235) 34367) ((-908 . -1112) T) ((-850 . -1112) T) ((-817 . -1112) T) ((-778 . -1112) T) ((-686 . -1112) T) ((-667 . -861) 34351) ((-632 . -237) 34330) ((-824 . -910) 34262) ((-1235 . -376) T) ((-40 . -411) NIL) ((-118 . -237) NIL) ((-1187 . -625) 34144) ((-1132 . -670) T) ((-880 . -726) 34089) ((-257 . -498) 34073) ((-256 . -498) 34057) ((-1186 . -625) 33800) ((-1180 . -625) 33595) ((-721 . -648) 33543) ((-662 . -657) 33517) ((-1138 . -625) 33399) ((-302 . -34) T) ((-1132 . -113) T) ((-740 . -1061) T) ((-590 . -1287) 33386) ((-527 . -1287) 33363) ((-1253 . -1112) T) ((-1185 . -297) 33274) ((-1137 . -297) 33205) ((-1074 . -174) T) ((-296 . -1230) T) ((-864 . -1112) T) ((-962 . -174) 33116) ((-791 . -1256) 33100) ((-653 . -523) 33033) ((-77 . -622) 33015) ((-740 . -333) 32980) ((-1191 . -735) T) ((-580 . -1112) T) ((-490 . -174) 32891) ((-250 . -316) 32829) ((-1154 . -1124) T) ((-70 . -622) 32811) ((-1292 . -735) T) ((-1187 . -1061) T) ((-1186 . -1061) T) ((-334 . -102) 32761) ((-1180 . -1061) T) ((-1154 . -23) T) ((-1138 . -1061) T) ((-91 . -1133) 32745) ((-875 . -1124) T) ((-1187 . -238) 32704) ((-1186 . -248) 32683) ((-1186 . -238) 32635) ((-1180 . -238) 32522) ((-1180 . -248) 32501) ((-326 . -910) 32407) ((-875 . -23) T) ((-171 . -726) 32235) ((-416 . -1234) T) ((-1113 . -376) T) ((-1015 . -371) T) ((-879 . -461) T) ((-1036 . -148) T) ((-953 . -293) 32187) ((-320 . -859) NIL) ((-1264 . -655) 32069) ((-883 . -102) T) ((-1243 . -655) 31924) ((-721 . -25) T) ((-416 . -565) T) ((-721 . -21) T) ((-534 . -625) 31905) ((-362 . -148) 31887) ((-362 . -146) T) ((-1159 . -1112) 31865) ((-462 . -729) T) ((-75 . -622) 31847) ((-115 . -859) T) ((-250 . -289) 31831) ((-245 . -1068) 31728) ((-81 . -622) 31710) ((-744 . -376) 31663) ((-1189 . -837) T) ((-746 . -240) 31647) ((-1172 . -1230) T) ((-142 . -240) 31629) ((-245 . -111) 31519) ((-1253 . -726) 31348) ((-48 . -148) T) ((-880 . -174) T) ((-864 . -726) 31318) ((-493 . -1230) T) ((-962 . -523) 31265) ((-662 . -735) T) ((-580 . -726) 31252) ((-1046 . -1070) T) ((-703 . -237) NIL) ((-490 . -523) 31195) ((-953 . -19) 31179) ((-953 . -613) 31156) ((-1092 . -1230) 31081) ((-825 . -623) NIL) ((-825 . -622) 31063) ((-1224 . -1063) 30946) ((-1016 . -1068) 30896) ((-422 . -622) 30878) ((-257 . -293) 30855) ((-367 . -1230) 30834) ((-361 . -1230) 30813) ((-353 . -1230) 30792) ((-256 . -293) 30769) ((-496 . -919) NIL) ((-323 . -29) 30739) ((-108 . -1230) T) ((-1015 . -1124) T) ((-219 . -919) NIL) ((-1224 . -649) 30636) ((-924 . -1068) 30588) ((-1092 . -1050) 30484) ((-1016 . -111) 30418) ((-720 . -1063) 30383) ((-1015 . -23) T) ((-924 . -111) 30321) ((-746 . -704) 30305) ((-720 . -649) 30270) ((-270 . -233) 30254) ((-436 . -1068) 30238) ((-387 . -1070) T) ((-245 . -625) 29968) ((-703 . -1218) NIL) ((-496 . -657) 29918) ((-483 . -655) 29800) ((-108 . -894) 29782) ((-108 . -896) 29764) ((-703 . -1215) NIL) ((-219 . -657) 29714) ((-367 . -1050) 29698) ((-361 . -1050) 29682) ((-334 . -316) 29620) ((-353 . -1050) 29604) ((-227 . -297) T) ((-436 . -111) 29583) ((-60 . -622) 29515) ((-171 . -174) T) ((-1132 . -859) T) ((-108 . -1050) 29475) ((-902 . -1112) T) ((-845 . -1070) T) ((-836 . -1070) T) ((-703 . -35) NIL) ((-703 . -95) NIL) ((-320 . -1004) 29436) ((-185 . -102) T) ((-589 . -461) T) ((-573 . -461) T) ((-504 . -461) T) ((-416 . -371) T) ((-245 . -1061) 29366) ((-1162 . -34) T) ((-486 . -930) T) ((-1011 . -648) 29314) ((-257 . -613) 29291) ((-256 . -613) 29268) ((-1092 . -385) 29252) ((-880 . -523) 29160) ((-245 . -238) 29112) ((-1171 . -1230) T) ((-1016 . -625) 29062) ((-924 . -625) 28999) ((-833 . -622) 28981) ((-1303 . -1124) T) ((-1295 . -622) 28963) ((-1253 . -174) 28854) ((-436 . -625) 28823) ((-108 . -385) 28805) ((-108 . -346) 28787) ((-1074 . -297) T) ((-962 . -297) 28718) ((-808 . -376) 28697) ((-656 . -1230) T) ((-641 . -1230) T) ((-1303 . -23) T) ((-595 . -1063) 28672) ((-490 . -297) 28603) ((-580 . -174) T) ((-334 . -289) 28587) ((-362 . -237) T) ((-1224 . -102) T) ((-1211 . -1112) T) ((-1100 . -1112) T) ((-1088 . -1112) T) ((-595 . -649) 28562) ((-83 . -622) 28544) ((-1196 . -853) T) ((-1195 . -853) T) ((-720 . -102) T) ((-363 . -357) 28523) ((-617 . -1112) T) ((-360 . -357) 28502) ((-352 . -357) 28481) ((-484 . -1112) T) ((-1202 . -231) 28431) ((-270 . -259) 28393) ((-1154 . -132) T) ((-617 . -619) 28369) ((-1092 . -910) 28302) ((-1016 . -1061) T) ((-924 . -1061) T) ((-484 . -619) 28281) ((-1180 . -801) NIL) ((-1180 . -804) NIL) ((-1114 . -623) 28242) ((-1114 . -622) 28224) ((-488 . -231) 28174) ((-1016 . -248) T) ((-1016 . -238) T) ((-968 . -1112) 28124) ((-436 . -1061) T) ((-924 . -248) T) ((-875 . -132) T) ((-48 . -237) T) ((-708 . -461) T) ((-852 . -1124) 28103) ((-108 . -910) NIL) ((-1224 . -291) 28069) ((-1125 . -1230) T) ((-881 . -857) 28048) ((-1011 . -25) T) ((-915 . -735) T) ((-171 . -523) 27960) ((-1011 . -21) T) ((-915 . -482) T) ((-416 . -1124) T) ((-496 . -803) T) ((-496 . -800) T) ((-920 . -357) T) ((-496 . -735) T) ((-219 . -803) T) ((-219 . -800) T) ((-721 . -235) 27947) ((-219 . -735) T) ((-852 . -23) 27899) ((-1197 . -1112) T) ((-667 . -1063) 27883) ((-1196 . -1112) T) ((-533 . -625) 27864) ((-1195 . -1112) T) ((-326 . -314) 27843) ((-1047 . -240) 27789) ((-667 . -649) 27759) ((-416 . -23) T) ((-953 . -623) 27720) ((-953 . -622) 27632) ((-653 . -498) 27616) ((-45 . -1022) 27566) ((-1125 . -1050) 27393) ((-626 . -979) T) ((-500 . -102) T) ((-338 . -622) 27375) ((-1005 . -293) 27342) ((-602 . -660) 27324) ((-131 . -1112) T) ((-129 . -1112) T) ((-602 . -381) 27306) ((-351 . -1287) 27283) ((-448 . -622) 27265) ((-1253 . -523) 27212) ((-1099 . -1063) 27055) ((-1039 . -1230) T) ((-880 . -297) T) ((-1185 . -293) 26982) ((-1099 . -649) 26831) ((-1012 . -1007) 26815) ((-791 . -1063) 26638) ((-789 . -1063) 26481) ((-791 . -649) 26310) ((-789 . -649) 26159) ((-485 . -1230) T) ((-472 . -1230) T) ((-595 . -102) T) ((-470 . -1063) 26130) ((-463 . -1063) 25973) ((-673 . -655) 25942) ((-632 . -461) 25921) ((-470 . -649) 25892) ((-463 . -649) 25741) ((-363 . -655) 25678) ((-360 . -655) 25615) ((-352 . -655) 25552) ((-270 . -655) 25462) ((-252 . -655) 25372) ((-1295 . -390) 25344) ((-526 . -1112) T) ((-118 . -461) T) ((-1210 . -102) T) ((-1104 . -1112) 25314) ((-1046 . -1112) T) ((-1127 . -93) T) ((-903 . -859) T) ((-1272 . -111) 25183) ((-359 . -1234) T) ((-1272 . -1068) 25066) ((-1125 . -385) 25035) ((-1265 . -1068) 24870) ((-1244 . -1068) 24660) ((-1265 . -111) 24481) ((-1244 . -111) 24250) ((-1224 . -316) 24237) ((-1015 . -132) T) ((-920 . -655) 24187) ((-373 . -622) 24169) ((-359 . -565) T) ((-296 . -314) T) ((-605 . -1068) 24129) ((-604 . -1068) 24012) ((-590 . -1063) 23977) ((-527 . -1063) 23922) ((-369 . -1112) T) ((-329 . -1112) T) ((-257 . -622) 23883) ((-256 . -622) 23844) ((-590 . -649) 23809) ((-527 . -649) 23754) ((-703 . -418) 23721) ((-644 . -23) T) ((-616 . -23) T) ((-667 . -102) T) ((-605 . -111) 23674) ((-604 . -111) 23543) ((-387 . -1112) T) ((-344 . -102) T) ((-171 . -297) 23454) ((-1243 . -857) 23407) ((-723 . -1070) T) ((-1159 . -523) 23340) ((-1203 . -844) 23324) ((-1125 . -910) 23256) ((-845 . -1112) T) ((-836 . -1112) T) ((-834 . -1112) T) ((-97 . -102) T) ((-145 . -859) T) ((-621 . -894) 23240) ((-110 . -1230) T) ((-1099 . -102) T) ((-1075 . -34) T) ((-791 . -102) T) ((-789 . -102) T) ((-1272 . -625) 23122) ((-1265 . -625) 22865) ((-470 . -102) T) ((-463 . -102) T) ((-1244 . -625) 22660) ((-245 . -804) 22611) ((-245 . -801) 22562) ((-658 . -102) T) ((-605 . -625) 22520) ((-604 . -625) 22402) ((-1253 . -297) 22313) ((-673 . -643) 22297) ((-188 . -622) 22279) ((-653 . -293) 22231) ((-1046 . -726) 22215) ((-580 . -297) T) ((-973 . -657) 22140) ((-1303 . -132) T) ((-744 . -657) 22100) ((-724 . -657) 22087) ((-281 . -102) T) ((-462 . -657) 22017) ((-50 . -102) T) ((-590 . -102) T) ((-527 . -102) T) ((-1272 . -1061) T) ((-1265 . -1061) T) ((-1244 . -1061) T) ((-516 . -655) 21999) ((-329 . -726) 21981) ((-1272 . -238) 21940) ((-1265 . -248) 21919) ((-1265 . -238) 21871) ((-1244 . -238) 21758) ((-1244 . -248) 21737) ((-1224 . -38) 21634) ((-605 . -1061) T) ((-604 . -1061) T) ((-1016 . -804) T) ((-1016 . -801) T) ((-983 . -804) T) ((-983 . -801) T) ((-881 . -1070) T) ((-109 . -622) 21616) ((-703 . -461) T) ((-387 . -726) 21581) ((-427 . -657) 21555) ((-879 . -878) 21539) ((-720 . -38) 21504) ((-604 . -238) 21463) ((-40 . -733) 21435) ((-359 . -336) 21412) ((-359 . -371) T) ((-1092 . -314) 21363) ((-301 . -1124) 21244) ((-1118 . -1230) T) ((-1011 . -235) 21217) ((-173 . -102) T) ((-1247 . -622) 21184) ((-852 . -132) 21136) ((-653 . -1268) 21120) ((-845 . -726) 21090) ((-836 . -726) 21060) ((-491 . -1230) T) ((-367 . -314) T) ((-361 . -314) T) ((-353 . -314) T) ((-653 . -613) 21037) ((-416 . -132) T) ((-529 . -675) 21021) ((-108 . -314) T) ((-301 . -23) 20904) ((-529 . -660) 20888) ((-703 . -411) NIL) ((-529 . -381) 20872) ((-298 . -622) 20854) ((-91 . -1112) 20832) ((-108 . -1034) T) ((-573 . -144) T) ((-1280 . -152) 20816) ((-491 . -1050) 20643) ((-1266 . -146) 20604) ((-1266 . -148) 20565) ((-1066 . -1230) T) ((-1005 . -622) 20547) ((-827 . -1230) T) ((-871 . -622) 20529) ((-825 . -1068) 20372) ((-1291 . -93) T) ((-1290 . -93) T) ((-1185 . -623) NIL) ((-1108 . -1112) T) ((-1102 . -1112) T) ((-1099 . -316) 20359) ((-1085 . -1112) T) ((-229 . -1230) T) ((-1078 . -1112) T) ((-1048 . -1112) T) ((-1031 . -1112) T) ((-791 . -316) 20346) ((-789 . -316) 20333) ((-1185 . -622) 20315) ((-825 . -111) 20144) ((-1137 . -622) 20126) ((-635 . -1112) T) ((-586 . -175) T) ((-538 . -175) T) ((-463 . -316) 20113) ((-492 . -1112) T) ((-1137 . -623) 19861) ((-1046 . -174) T) ((-953 . -295) 19838) ((-220 . -1112) T) ((-863 . -622) 19820) ((-617 . -523) 19603) ((-81 . -625) 19544) ((-827 . -1050) 19528) ((-484 . -523) 19320) ((-973 . -735) T) ((-744 . -735) T) ((-724 . -735) T) ((-359 . -1124) T) ((-1192 . -622) 19302) ((-225 . -102) T) ((-491 . -385) 19271) ((-524 . -1112) T) ((-519 . -1112) T) ((-517 . -1112) T) ((-808 . -657) 19245) ((-1036 . -461) T) ((-968 . -523) 19178) ((-359 . -23) T) ((-644 . -132) T) ((-616 . -132) T) ((-362 . -461) T) ((-245 . -376) 19157) ((-387 . -174) T) ((-1264 . -1070) T) ((-1243 . -1070) T) ((-227 . -1014) T) ((-825 . -625) 18894) ((-708 . -396) T) ((-427 . -735) T) ((-710 . -1234) T) ((-1154 . -648) 18842) ((-589 . -878) 18826) ((-1295 . -1068) 18810) ((-1172 . -1206) 18786) ((-710 . -565) T) ((-127 . -1112) 18764) ((-723 . -1112) T) ((-667 . -38) 18734) ((-491 . -910) 18666) ((-254 . -1112) T) ((-189 . -1112) T) ((-362 . -411) T) ((-323 . -148) 18645) ((-323 . -146) 18624) ((-129 . -523) NIL) ((-117 . -565) T) ((-320 . -148) 18580) ((-320 . -146) 18536) ((-48 . -461) T) ((-163 . -1112) T) ((-158 . -1112) T) ((-1172 . -107) 18483) ((-791 . -1164) 18461) ((-698 . -34) T) ((-1295 . -111) 18440) ((-559 . -34) T) ((-493 . -107) 18424) ((-257 . -295) 18401) ((-256 . -295) 18378) ((-880 . -293) 18329) ((-45 . -1230) T) ((-1236 . -853) T) ((-826 . -1230) T) ((-825 . -1061) T) ((-671 . -655) 18298) ((-1191 . -47) 18275) ((-825 . -333) 18237) ((-1099 . -38) 18086) ((-825 . -238) 18065) ((-791 . -38) 17894) ((-789 . -38) 17743) ((-1127 . -499) 17724) ((-463 . -38) 17573) ((-1127 . -622) 17539) ((-1130 . -102) T) ((-653 . -623) 17500) ((-653 . -622) 17412) ((-590 . -1164) T) ((-527 . -1164) T) ((-1159 . -498) 17396) ((-351 . -1063) 17341) ((-1216 . -1112) 17319) ((-1154 . -25) T) ((-1154 . -21) T) ((-351 . -649) 17264) ((-1295 . -625) 17213) ((-483 . -1070) T) ((-1236 . -1112) T) ((-1244 . -801) NIL) ((-1244 . -804) NIL) ((-1011 . -859) 17192) ((-847 . -1112) T) ((-828 . -622) 17174) ((-875 . -21) T) ((-875 . -25) T) ((-808 . -735) T) ((-176 . -1234) T) ((-590 . -38) 17139) ((-527 . -38) 17104) ((-395 . -622) 17086) ((-340 . -102) T) ((-331 . -622) 17068) ((-171 . -293) 17026) ((-63 . -1230) T) ((-112 . -102) T) ((-881 . -1112) T) ((-176 . -565) T) ((-723 . -726) 16996) ((-301 . -132) 16879) ((-227 . -622) 16861) ((-227 . -623) 16791) ((-1015 . -648) 16730) ((-1295 . -1061) T) ((-1132 . -148) T) ((-641 . -1206) 16705) ((-740 . -919) 16684) ((-602 . -34) T) ((-656 . -107) 16668) ((-641 . -107) 16614) ((-1253 . -293) 16541) ((-740 . -657) 16430) ((-302 . -1230) T) ((-1191 . -1050) 16326) ((-953 . -627) 16303) ((-586 . -585) T) ((-586 . -536) T) ((-538 . -536) T) ((-1180 . -919) NIL) ((-1074 . -623) 16218) ((-1074 . -622) 16200) ((-962 . -622) 16182) ((-722 . -499) 16132) ((-351 . -102) T) ((-257 . -1068) 16029) ((-256 . -1068) 15926) ((-403 . -102) T) ((-31 . -1112) T) ((-962 . -623) 15787) ((-722 . -622) 15722) ((-1293 . -1223) 15691) ((-490 . -622) 15673) ((-490 . -623) 15534) ((-270 . -420) 15518) ((-252 . -420) 15502) ((-320 . -237) NIL) ((-257 . -111) 15392) ((-256 . -111) 15282) ((-1187 . -657) 15207) ((-1186 . -657) 15104) ((-1180 . -657) 14956) ((-1138 . -657) 14881) ((-359 . -132) T) ((-82 . -450) T) ((-82 . -404) T) ((-1015 . -25) T) ((-1015 . -21) T) ((-882 . -1112) 14832) ((-40 . -1063) 14777) ((-881 . -726) 14729) ((-40 . -649) 14674) ((-387 . -297) T) ((-171 . -1014) 14625) ((-703 . -396) T) ((-1011 . -1009) 14609) ((-710 . -1124) T) ((-703 . -167) 14591) ((-1264 . -1112) T) ((-1243 . -1112) T) ((-323 . -1215) 14570) ((-323 . -1218) 14549) ((-1177 . -102) T) ((-323 . -969) 14528) ((-135 . -1124) T) ((-117 . -1124) T) ((-662 . -1230) T) ((-611 . -1278) 14512) ((-710 . -23) T) ((-611 . -1112) 14462) ((-323 . -95) 14441) ((-91 . -523) 14374) ((-176 . -371) T) ((-257 . -625) 14104) ((-256 . -625) 13834) ((-323 . -35) 13813) ((-617 . -498) 13747) ((-135 . -23) T) ((-117 . -23) T) ((-976 . -102) T) ((-727 . -1112) T) ((-484 . -498) 13684) ((-416 . -648) 13632) ((-662 . -1050) 13528) ((-968 . -498) 13512) ((-363 . -1070) T) ((-360 . -1070) T) ((-352 . -1070) T) ((-270 . -1070) T) ((-252 . -1070) T) ((-880 . -623) NIL) ((-880 . -622) 13494) ((-1291 . -499) 13475) ((-1290 . -499) 13456) ((-1303 . -21) T) ((-1291 . -622) 13422) ((-1290 . -622) 13388) ((-580 . -1014) T) ((-740 . -735) T) ((-1303 . -25) T) ((-257 . -1061) 13318) ((-256 . -1061) 13248) ((-72 . -1230) T) ((-1154 . -235) 13221) ((-257 . -238) 13173) ((-256 . -238) 13125) ((-1132 . -237) T) ((-40 . -102) T) ((-920 . -1070) T) ((-1194 . -102) T) ((-129 . -498) 13107) ((-1187 . -735) T) ((-1186 . -735) T) ((-1180 . -735) T) ((-1180 . -800) NIL) ((-1180 . -803) NIL) ((-964 . -102) T) ((-931 . -102) T) ((-879 . -1063) 13094) ((-1138 . -735) T) ((-780 . -102) T) ((-681 . -102) T) ((-879 . -649) 13081) ((-555 . -622) 13063) ((-483 . -1112) T) ((-347 . -1124) T) ((-176 . -1124) T) ((-326 . -930) 13042) ((-1264 . -726) 12883) ((-881 . -174) T) ((-1243 . -726) 12697) ((-852 . -21) 12649) ((-852 . -25) 12601) ((-250 . -1161) 12585) ((-127 . -523) 12518) ((-416 . -25) T) ((-416 . -21) T) ((-347 . -23) T) ((-171 . -623) 12284) ((-171 . -622) 12266) ((-176 . -23) T) ((-653 . -295) 12243) ((-529 . -34) T) ((-908 . -622) 12225) ((-89 . -1230) T) ((-850 . -622) 12207) ((-817 . -622) 12189) ((-778 . -622) 12171) ((-686 . -622) 12153) ((-245 . -657) 11938) ((-626 . -113) T) ((-1189 . -1112) T) ((-1185 . -1068) 11761) ((-1162 . -1230) T) ((-1137 . -1068) 11604) ((-863 . -1068) 11588) ((-1247 . -627) 11572) ((-1185 . -111) 11381) ((-1137 . -111) 11210) ((-863 . -111) 11189) ((-1237 . -859) T) ((-1253 . -623) NIL) ((-1253 . -622) 11171) ((-351 . -1164) T) ((-864 . -622) 11153) ((-1088 . -293) 11132) ((-80 . -1230) T) ((-915 . -1230) T) ((-1016 . -919) NIL) ((-1224 . -655) 11042) ((-617 . -293) 11018) ((-1216 . -523) 10951) ((-496 . -1230) T) ((-580 . -622) 10933) ((-484 . -293) 10912) ((-1099 . -233) 10896) ((-526 . -93) T) ((-1016 . -657) 10846) ((-219 . -1230) T) ((-1015 . -235) 10812) ((-968 . -293) 10764) ((-296 . -930) T) ((-826 . -314) 10743) ((-879 . -102) T) ((-791 . -233) 10727) ((-924 . -657) 10679) ((-720 . -655) 10629) ((-703 . -733) 10596) ((-644 . -21) T) ((-644 . -25) T) ((-616 . -21) T) ((-556 . -102) T) ((-351 . -38) 10561) ((-496 . -894) 10543) ((-496 . -896) 10525) ((-483 . -726) 10366) ((-219 . -894) 10348) ((-64 . -1230) T) ((-219 . -896) 10330) ((-616 . -25) T) ((-436 . -657) 10304) ((-1185 . -625) 10073) ((-496 . -1050) 10033) ((-881 . -523) 9945) ((-1137 . -625) 9737) ((-863 . -625) 9655) ((-219 . -1050) 9615) ((-245 . -34) T) ((-1012 . -1112) 9593) ((-589 . -1063) 9580) ((-573 . -1063) 9567) ((-504 . -1063) 9532) ((-1264 . -174) 9463) ((-1243 . -174) 9394) ((-589 . -649) 9381) ((-573 . -649) 9368) ((-504 . -649) 9333) ((-721 . -146) 9312) ((-721 . -148) 9291) ((-710 . -132) T) ((-137 . -474) 9268) ((-1159 . -622) 9200) ((-667 . -665) 9184) ((-129 . -293) 9134) ((-117 . -132) T) ((-486 . -1234) T) ((-617 . -613) 9110) ((-484 . -613) 9089) ((-344 . -343) 9058) ((-606 . -1112) T) ((-594 . -1112) T) ((-545 . -1112) T) ((-486 . -565) T) ((-1185 . -1061) T) ((-1137 . -1061) T) ((-863 . -1061) T) ((-245 . -800) 9037) ((-245 . -803) 8988) ((-245 . -802) 8967) ((-1185 . -333) 8944) ((-245 . -735) 8854) ((-968 . -19) 8838) ((-496 . -385) 8820) ((-496 . -346) 8802) ((-1137 . -333) 8774) ((-362 . -1287) 8751) ((-219 . -385) 8733) ((-219 . -346) 8715) ((-968 . -613) 8692) ((-1185 . -238) T) ((-1276 . -1112) T) ((-673 . -1112) T) ((-654 . -1112) T) ((-1202 . -1112) T) ((-1099 . -259) 8629) ((-595 . -655) 8589) ((-363 . -1112) T) ((-360 . -1112) T) ((-352 . -1112) T) ((-270 . -1112) T) ((-252 . -1112) T) ((-84 . -1230) T) ((-128 . -102) 8567) ((-122 . -102) 8545) ((-1243 . -523) 8405) ((-1202 . -619) 8384) ((-1153 . -1112) T) ((-1127 . -625) 8365) ((-1092 . -930) 8316) ((-488 . -1112) T) ((-1016 . -803) T) ((-1016 . -800) T) ((-488 . -619) 8295) ((-257 . -804) 8246) ((-257 . -801) 8197) ((-256 . -804) 8148) ((-40 . -1164) NIL) ((-256 . -801) 8099) ((-1016 . -735) T) ((-129 . -19) 8081) ((-983 . -803) T) ((-708 . -1063) 8046) ((-924 . -735) T) ((-920 . -1112) T) ((-902 . -622) 8028) ((-129 . -613) 8003) ((-708 . -649) 7968) ((-91 . -498) 7952) ((-496 . -910) NIL) ((-881 . -297) T) ((-227 . -1068) 7917) ((-845 . -293) 7896) ((-219 . -910) NIL) ((-842 . -1124) 7875) ((-59 . -1112) 7825) ((-528 . -1112) 7803) ((-525 . -1112) 7753) ((-506 . -1112) 7731) ((-505 . -1112) 7681) ((-589 . -102) T) ((-573 . -102) T) ((-504 . -102) T) ((-483 . -174) 7612) ((-367 . -930) T) ((-361 . -930) T) ((-353 . -930) T) ((-227 . -111) 7568) ((-842 . -23) 7520) ((-436 . -735) T) ((-108 . -930) T) ((-40 . -38) 7465) ((-108 . -829) T) ((-590 . -357) T) ((-527 . -357) T) ((-667 . -655) 7424) ((-323 . -461) 7403) ((-320 . -461) T) ((-611 . -523) 7336) ((-416 . -235) 7309) ((-347 . -132) T) ((-176 . -132) T) ((-301 . -25) 7173) ((-301 . -21) 7056) ((-45 . -1206) 7035) ((-66 . -622) 7017) ((-55 . -102) T) ((-344 . -655) 6999) ((-1281 . -102) T) ((-1280 . -102) 6949) ((-45 . -107) 6899) ((-828 . -625) 6883) ((-1272 . -657) 6808) ((-1265 . -657) 6705) ((-1244 . -657) 6557) ((-1244 . -919) NIL) ((-1211 . -622) 6539) ((-1114 . -434) 6523) ((-1114 . -376) 6502) ((-395 . -625) 6486) ((-331 . -625) 6470) ((-1203 . -102) T) ((-1108 . -93) T) ((-1075 . -1230) T) ((-1099 . -655) 6380) ((-1074 . -1068) 6367) ((-1074 . -111) 6352) ((-962 . -1068) 6195) ((-962 . -111) 6024) ((-791 . -655) 5934) ((-789 . -655) 5844) ((-632 . -1063) 5831) ((-673 . -726) 5815) ((-632 . -649) 5802) ((-490 . -1068) 5645) ((-486 . -371) T) ((-470 . -655) 5601) ((-463 . -655) 5511) ((-227 . -625) 5461) ((-363 . -726) 5413) ((-360 . -726) 5365) ((-118 . -1063) 5310) ((-352 . -726) 5262) ((-270 . -726) 5111) ((-252 . -726) 4960) ((-1102 . -93) T) ((-1085 . -93) T) ((-118 . -649) 4905) ((-1078 . -93) T) ((-953 . -660) 4889) ((-1069 . -1112) 4867) ((-490 . -111) 4696) ((-1048 . -93) T) ((-1031 . -93) T) ((-953 . -381) 4680) ((-253 . -102) T) ((-973 . -47) 4659) ((-74 . -622) 4641) ((-721 . -237) T) ((-719 . -102) T) ((-708 . -102) T) ((-1 . -1112) T) ((-630 . -1124) T) ((-1100 . -622) 4623) ((-635 . -93) T) ((-1088 . -622) 4605) ((-920 . -726) 4570) ((-127 . -498) 4554) ((-492 . -93) T) ((-630 . -23) T) ((-399 . -23) T) ((-87 . -1230) T) ((-220 . -93) T) ((-617 . -622) 4536) ((-617 . -623) NIL) ((-484 . -623) NIL) ((-484 . -622) 4518) ((-359 . -25) T) ((-359 . -21) T) ((-50 . -655) 4477) ((-520 . -1112) T) ((-516 . -1112) T) ((-128 . -316) 4415) ((-122 . -316) 4353) ((-605 . -657) 4327) ((-604 . -657) 4252) ((-590 . -655) 4202) ((-227 . -1061) T) ((-527 . -655) 4132) ((-387 . -1014) T) ((-227 . -248) T) ((-227 . -238) T) ((-1074 . -625) 4104) ((-1074 . -627) 4085) ((-968 . -623) 4046) ((-968 . -622) 3958) ((-962 . -625) 3747) ((-879 . -38) 3734) ((-722 . -625) 3684) ((-1264 . -297) 3635) ((-1243 . -297) 3586) ((-490 . -625) 3371) ((-1132 . -461) T) ((-511 . -859) T) ((-323 . -1151) 3350) ((-1011 . -148) 3329) ((-1011 . -146) 3308) ((-504 . -316) 3295) ((-302 . -1206) 3274) ((-1197 . -622) 3256) ((-1196 . -622) 3238) ((-1195 . -622) 3220) ((-880 . -1068) 3165) ((-486 . -1124) T) ((-140 . -844) 3147) ((-115 . -844) 3128) ((-632 . -102) T) ((-1216 . -498) 3112) ((-257 . -376) 3091) ((-256 . -376) 3070) ((-1074 . -1061) T) ((-302 . -107) 3020) ((-131 . -622) 3002) ((-129 . -623) NIL) ((-129 . -622) 2946) ((-118 . -102) T) ((-962 . -1061) T) ((-880 . -111) 2875) ((-486 . -23) T) ((-462 . -1230) T) ((-490 . -1061) T) ((-1074 . -238) T) ((-962 . -333) 2844) ((-490 . -333) 2801) ((-363 . -174) T) ((-360 . -174) T) ((-352 . -174) T) ((-270 . -174) 2712) ((-252 . -174) 2623) ((-973 . -1050) 2519) ((-526 . -499) 2500) ((-744 . -1050) 2471) ((-526 . -622) 2437) ((-427 . -1230) 2354) ((-1117 . -102) T) ((-1104 . -622) 2313) ((-1046 . -622) 2295) ((-703 . -1063) 2245) ((-1293 . -152) 2229) ((-1291 . -625) 2210) ((-1290 . -625) 2191) ((-1285 . -622) 2173) ((-1272 . -735) T) ((-703 . -649) 2123) ((-1265 . -735) T) ((-1244 . -800) NIL) ((-1244 . -803) NIL) ((-171 . -1068) 2033) ((-920 . -174) T) ((-880 . -625) 1963) ((-1244 . -735) T) ((-1015 . -350) 1937) ((-225 . -655) 1889) ((-1012 . -523) 1822) ((-852 . -859) 1801) ((-573 . -1164) T) ((-483 . -297) 1752) ((-605 . -735) T) ((-369 . -622) 1734) ((-329 . -622) 1716) ((-427 . -1050) 1612) ((-604 . -735) T) ((-416 . -859) 1563) ((-171 . -111) 1459) ((-842 . -132) 1411) ((-746 . -152) 1395) ((-1280 . -316) 1333) ((-496 . -314) T) ((-387 . -622) 1300) ((-529 . -1022) 1284) ((-387 . -623) 1198) ((-219 . -314) T) ((-142 . -152) 1180) ((-723 . -293) 1159) ((-496 . -1034) T) ((-589 . -38) 1146) ((-573 . -38) 1133) ((-504 . -38) 1098) ((-219 . -1034) T) ((-880 . -1061) T) ((-845 . -622) 1080) ((-836 . -622) 1062) ((-834 . -622) 1044) ((-825 . -919) 1023) ((-1304 . -1124) T) ((-1253 . -1068) 846) ((-864 . -1068) 830) ((-880 . -248) T) ((-880 . -238) NIL) ((-698 . -1230) T) ((-1304 . -23) T) ((-825 . -657) 719) ((-559 . -1230) T) ((-427 . -346) 703) ((-580 . -1068) 690) ((-1253 . -111) 499) ((-710 . -648) 481) ((-864 . -111) 460) ((-389 . -23) T) ((-171 . -625) 238) ((-1202 . -523) 30) ((-885 . -1112) T) ((-690 . -1112) T) ((-685 . -1112) T) ((-671 . -1112) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index b180db24..c4645cd3 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3485644664) -(4459 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3485684124) +(4458 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| @@ -69,14 +69,14 @@ |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| |Dictionary&| |Dictionary| |DifferentialExtension&| |DifferentialExtension| |DifferentialDomain&| |DifferentialDomain| |DifferentialSpace&| - |DifferentialSpace| |DifferentialRing&| |DifferentialRing| - |DictionaryOperations&| |DictionaryOperations| - |DiophantineSolutionPackage| |DirectProductCategory&| - |DirectProductCategory| |DirectProductFunctions2| |DirectProduct| - |DisplayPackage| |DivisionRing&| |DivisionRing| - |DoublyLinkedAggregate| |DataList| |DiscreteLogarithmPackage| - |DistributedMultivariatePolynomial| |Domain| |DomainConstructor| - |DomainTemplate| |DirectProductMatrixModule| |DirectProductModule| + |DifferentialSpace| |DifferentialRing| |DictionaryOperations&| + |DictionaryOperations| |DiophantineSolutionPackage| + |DirectProductCategory&| |DirectProductCategory| + |DirectProductFunctions2| |DirectProduct| |DisplayPackage| + |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| |DataList| + |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial| + |Domain| |DomainConstructor| |DomainTemplate| + |DirectProductMatrixModule| |DirectProductModule| |DifferentialPolynomialCategory&| |DifferentialPolynomialCategory| |DequeueAggregate| |TopLevelDrawFunctionsForCompiledFunctions| |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| @@ -485,667 +485,667 @@ |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |YoungDiagram| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| - |Record| |Union| |reduced?| |parents| |prindINFO| |e01bgf| - |finiteBound| |associator| |coord| |numberOfMonomials| |systemCommand| - |inv| |ravel| |match?| |superHeight| |sequence| - |permutationRepresentation| |leastMonomial| |autoCoerce| |univariate?| - |sinIfCan| |complement| |negative?| |weight| |ode| |ground?| |reshape| - |separateFactors| |partialQuotients| |jordanAlgebra?| |complex?| - |s14abf| |indiceSubResultantEuclidean| |scalarMatrix| |outputFloating| - |removeIrreducibleRedundantFactors| |ground| |simplify| - |createLowComplexityTable| |horizConcat| |monomRDEsys| - |outputBinaryFile| |denomRicDE| |torsionIfCan| |sorted?| |OMgetEndApp| - |leadingMonomial| |normal| |powmod| |minimize| - |selectIntegrationRoutines| |characteristic| |setRow!| |wholeRadix| - |shape| |monomialIntPoly| |makeUnit| |leadingCoefficient| - |invertIfCan| |brillhartIrreducible?| |getStream| |closeComponent| - |maxPoints3D| |addMatchRestricted| |semiResultantEuclidean2| - |factorByRecursion| |augment| |primitiveMonomials| |close| - |cyclotomicDecomposition| |ipow| |inverseLaplace| |makeSketch| F - |reducedContinuedFraction| |ListOfTerms| |move| |attributeData| - |f02axf| |reductum| |update| |listOfLists| |conjugates| |aQuadratic| - |OMputEndObject| |drawToScale| |conical| |pdf2ef| |cyclicSubmodule| - |removeZero| |display| |patternMatchTimes| |insertMatch| - |viewZoomDefault| |outlineRender| |tanQ| |primextintfrac| - |rightScalarTimes!| |quotient| |readInt8!| |getProperty| - |functionIsFracPolynomial?| |sturmSequence| |computeCycleLength| - |factorsOfCyclicGroupSize| |sparsityIF| UTS2UP |aspFilename| - |purelyAlgebraic?| |bitTruth| |OMgetEndError| |insertionSort!| - |sech2cosh| |e01sbf| |binding| |f02xef| |viewThetaDefault| |copies| - |absolutelyIrreducible?| |sumSquares| |clipBoolean| |physicalLength!| - |characteristicPolynomial| |rightCharacteristicPolynomial| - |useSingleFactorBound| |OMgetEndBVar| |xn| |perfectSquare?| |position| - |style| |OMgetObject| |expr| |tubePointsDefault| |hMonic| - |listOfMonoms| |hypergeometric0F1| |s17acf| |leftTrace| - |leftRankPolynomial| |input| ** |e02bcf| |hexDigit?| |isList| - |schwerpunkt| |operation| |cyclotomic| |leftMinimalPolynomial| - |henselFact| |nullary| |resultant| |library| |PDESolve| |readInt32!| - |bit?| |maximumExponent| |setnext!| |sylvesterMatrix| |writeLine!| - |weakBiRank| |finite?| |completeEval| |extendedEuclidean| - |swapColumns!| |setTopPredicate| |lookupFunction| |conjugate| - |rationalPoint?| |listLoops| |clearTheFTable| |dmpToHdmp| |leftUnit| - |UnVectorise| |simpsono| |size| |variable| |cfirst| |decrease| - |numberOfComputedEntries| |infieldIntegrate| |OMputAttr| |vark| - |distFact| |getProperties| |root| |iterators| |setTex!| |ScanArabic| - |setRealSteps| |currentCategoryFrame| |clipPointsDefault| RF2UTS - |normDeriv2| |pdct| |set| |subspace| |green| |removeSinSq| - |removeRoughlyRedundantFactorsInPols| |checkForZero| |recolor| - |noncommutativeJordanAlgebra?| |npcoef| |iFTable| |continuedFraction| - |leftExactQuotient| |extractProperty| |karatsubaOnce| |completeSmith| - |previous| |processTemplate| |conditionP| |curryLeft| - |screenResolution| |checkRur| |wholePart| |yCoord| |updatF| - |viewDeltaXDefault| |character?| |linearAssociatedOrder| - |commaSeparate| |createPrimitiveNormalPoly| |irCtor| - |linearDependenceOverZ| |pastel| |mapExpon| |adaptive| - |screenResolution3D| |explicitlyEmpty?| |removeDuplicates| |OMwrite| - |cAtan| |OMgetBind| |roughSubIdeal?| |middle| |find| |digit| |reseed| - |SturmHabichtSequence| |cylindrical| |tryFunctionalDecomposition| - |createThreeSpace| |hclf| |closedCurve?| |say| |bezoutMatrix| - |leastPower| |laguerreL| |true| |trim| |arguments| |rightDiscriminant| - |f01rdf| |s19aaf| |constantCoefficientRicDE| |primitivePart| - |limitedint| |aromberg| |getOrder| |outputMeasure| |category| - |unitCanonical| |mathieu23| |rename| |orbits| - |selectOptimizationRoutines| |reset| |tValues| |node| |extractPoint| - |empty?| |cross| |addBadValue| |domain| |zeroOf| |fillPascalTriangle| - |acothIfCan| |removeSuperfluousCases| |readLineIfCan!| |complexForm| - |insert| |basisOfLeftNucleus| |aQuartic| |leastAffineMultiple| - |package| |bag| |sizeLess?| |mainDefiningPolynomial| |nullity| |over| - |write| |inc| |members| |createIrreduciblePoly| |parent| |exp| - |iiacosh| |save| |double?| |scalarTypeOf| |supDimElseRittWu?| - |rightDivide| |binomial| |showTheRoutinesTable| |show| - |initializeGroupForWordProblem| |oddlambert| |axesColorDefault| - |setleaves!| |exprHasWeightCosWXorSinWX| |useNagFunctions| - |complexRoots| |normalizedDivide| |mapDown!| |ddFact| |disjunction| - |minColIndex| |ranges| |bandedHessian| |c02agf| |LazardQuotient| - |computePowers| |trace| |yellow| |heapSort| |doubleComplex?| - |LyndonWordsList1| |gcdcofact| |UpTriBddDenomInv| |dn| |prod| - |addMatch| |firstDenom| |primeFrobenius| |Si| |complexSolve| - |powerSum| |complete| |neglist| |pmComplexintegrate| |sec2cos| - |varList| |parabolicCylindrical| |certainlySubVariety?| |zCoord| - |GospersMethod| |edf2ef| |pomopo!| |dictionary| - |integralDerivationMatrix| |tableForDiscreteLogarithm| - |principalIdeal| |rightUnits| |randomR| |region| |OMputEndBVar| - |subNode?| |lazyVariations| |smith| |exptMod| |f01brf| |open| - |laplacian| |s17agf| |nonQsign| F2FG |mightHaveRoots| |viewport3D| - |slex| |getMultiplicationMatrix| |numberOfFactors| |nthFlag| - |OMencodingBinary| |symmetricTensors| |possiblyInfinite?| - |integralBasis| |shiftLeft| |assign| |prinshINFO| |constantIfCan| - |setColumn!| |obj| |retractIfCan| |mainMonomials| |taylorIfCan| - |fglmIfCan| |double| |solve| |e02adf| |s15aef| |geometric| |cache| - |constant| |generalizedContinuumHypothesisAssumed?| - |exportedOperators| |Lazard2| |member?| |contract| |e04gcf| - |cothIfCan| |bat| |operations| |FormatArabic| |highCommonTerms| - |totalLex| |has?| |limitPlus| |implies| |setOfMinN| |doubleResultant| - |df2ef| |replaceKthElement| |symmetricRemainder| |eigenMatrix| |curry| - |minPoints| |euclideanSize| |log10| |key?| |d03faf| |numFunEvals3D| - |primeFactor| |factorset| |stosePrepareSubResAlgo| |coth2trigh| - |rectangularMatrix| |leftRank| |elaboration| |minimumDegree| |bitand| - |OMlistCDs| |infinity| |normalDeriv| |reduceByQuasiMonic| |laguerre| - |setCondition!| |ref| |stronglyReduced?| |setMaxPoints| |bitior| - |leftFactorIfCan| |seriesSolve| |LiePoly| |totalDegree| - |linkToFortran| |generalLambert| |qinterval| |elaborate| - |exprToGenUPS| |keys| |invmultisect| |representationType| - |singularitiesOf| |writeInt8!| |getOperands| |maxrow| - |stoseInvertibleSetreg| |removeDuplicates!| |solve1| |airyBi| - |makeSeries| |kernel| |unitNormal| |map| |groebgen| |isQuotient| - |isOr| |mainCharacterization| |OMgetType| |mesh| |intersect| - |extract!| |buildSyntax| |s17dhf| |list| |basisOfRightNucleus| - |expenseOfEvaluationIF| |perfectSqrt| |roughBase?| |print| - |stoseInvertible?| |idealSimplify| |lhs| |inverseIntegralMatrix| - |fortranCarriageReturn| |inputOutputBinaryFile| |draw| |ceiling| - |basisOfLeftNucloid| |charClass| |palgRDE0| |resolve| - |rightExtendedGcd| |generalInfiniteProduct| |iterationVar| |rhs| - |leftDiscriminant| |rangeIsFinite| |matrixConcat3D| |f01qdf| - |OMbindTCP| |mainForm| |rootRadius| |fortranLinkerArgs| |leftLcm| - |OMgetAttr| |LyndonBasis| |setAdaptive| |countRealRootsMultiple| - |bfEntry| |currentEnv| |rightFactorCandidate| |viewDeltaYDefault| - |mathieu11| |triangSolve| |goto| |solveLinearlyOverQ| |edf2efi| - |repSq| |youngGroup| |returns| |getMultiplicationTable| |convert| - |cyclicCopy| |var1StepsDefault| |height| LODO2FUN |summation| - |realZeros| |normalForm| |mdeg| |printInfo!| |makeObject| |f04atf| - |clearTheIFTable| |OMputObject| |iiatan| |listBranches| |shiftRight| - |RittWuCompare| |rightUnit| |singular?| |quasiMonicPolynomials| - |solveid| |coef| |lowerCase!| |positiveSolve| |backOldPos| - |parametric?| |approxSqrt| |parts| |currentSubProgram| |color| - |lagrange| |makeFloatFunction| |dom| |fullPartialFraction| - |thenBranch| |f07aef| |plot| |slash| |d01gaf| |eisensteinIrreducible?| - |baseRDE| |terms| |solveLinearPolynomialEquation| |rationalIfCan| Y - |basis| |substitute| |optional?| |integralMatrixAtInfinity| |iiasech| - |badNum| |nextPrimitiveNormalPoly| |createNormalPoly| |exponential| - |nilFactor| |mapmult| |enterInCache| |f02ajf| |dfRange| |f07fef| - |s21bcf| |label| |shiftRoots| |rename!| |chiSquare1| |typeList| - |pseudoQuotient| |subResultantGcd| |call| |isAtom| |commonDenominator| - |entry| |radix| |iteratedInitials| |bumprow| |viewWriteDefault| - |hdmpToDmp| |factorAndSplit| |nthFactor| |s17ahf| |rationalPoints| - |elaborateFile| |iiasinh| |reducedQPowers| |setOrder| - |numberOfVariables| |convergents| |minPoly| |cyclicGroup| |lprop| - |headAst| |mainValue| |sdf2lst| |complexEigenvectors| - |constantToUnaryFunction| |rootOfIrreduciblePoly| |mergeDifference| - |basisOfLeftAnnihilator| |principalAncestors| |flexibleArray| |nary?| - |setleft!| |identity| |limit| |gcdcofactprim| |fill!| - |leftCharacteristicPolynomial| |irreducible?| |cAtanh| - |quasiAlgebraicSet| |status| |kovacic| |OMputApp| |alternative?| - |changeMeasure| |lazy?| |incr| |internalAugment| |rootKerSimp| - |selectMultiDimensionalRoutines| |internalSubPolSet?| |imagK| - |subscriptedVariables| |divergence| |setClipValue| |perspective| - |argumentListOf| |constructor| |hi| |indicialEquationAtInfinity| - |roughBasicSet| |getGraph| |mappingAst| |tail| |outputGeneral| - |minimalPolynomial| |element?| |rewriteIdealWithHeadRemainder| - |noValueMode| |moduleSum| |duplicates?| |factor1| |complexElementary| - |option| |multiple?| |lex| |BasicMethod| |prefixRagits| |showSummary| - |string?| |cSec| |universe| |divide| |goodPoint| |expintegrate| - |dimensionOfIrreducibleRepresentation| |cyclicEqual?| - |lazyPremWithDefault| |concat!| |rules| |units| |changeVar| - |PollardSmallFactor| |xCoord| |nil?| |top| |leftScalarTimes!| - |typeLists| |getIdentifier| |critBonD| |showAttributes| |f07fdf| - |rroot| |randnum| |untab| |reducedDiscriminant| |continue| - |OMUnknownCD?| |wordsForStrongGenerators| |rst| |corrPoly| - |createRandomElement| |stoseInvertibleSetsqfreg| |bezoutDiscriminant| - |prepareDecompose| |showClipRegion| |mix| |deepestTail| |octon| - |subresultantVector| |readBytes!| |d01gbf| |box| |largest| - |internalZeroSetSplit| |name| |multinomial| |unknown| |accuracyIF| - |partition| |linearAssociatedLog| |birth| |factorPolynomial| - |separant| |comment| |ramified?| |iisech| |body| |partitions| - |mainContent| |decomposeFunc| |setPosition| |resetNew| |code| - |infinityNorm| |truncate| |external?| |cTan| |graphCurves| - |oneDimensionalArray| |nthCoef| |module| |algint| |htrigs| - |semiSubResultantGcdEuclidean2| |resultantEuclidean| |inverse| - |iiasin| |null| |normal?| |OMputEndAtp| |capacity| |associates?| - |imagk| |genus| |sizeMultiplication| |coerceListOfPairs| |idealiser| - |delta| |not| EQ |An| |areEquivalent?| |semiDiscriminantEuclidean| - |userOrdered?| |tanNa| |hasSolution?| |readUInt32!| |unit?| |exprex| - |and| |shrinkable| |modulus| |fortranLogical| |e04ucf| |lowerCase| - |primlimintfrac| |generate| |cup| |collect| |polygamma| |or| - |totalfract| |transpose| |quickSort| |notelem| |repeatUntilLoop| - |atrapezoidal| |harmonic| |imagi| |block| |getCode| |xor| |sPol| - |patternVariable| |polyred| |assert| |coercePreimagesImages| - |internalIntegrate0| |incrementBy| |meshPar2Var| |port| |infRittWu?| - |cSin| |pattern| |case| |bumptab| |sinh2csch| |palgint0| - |halfExtendedSubResultantGcd2| |isPower| |expand| |minPoints3D| - |build| |allRootsOf| |rationalApproximation| |Zero| - |regularRepresentation| |Gamma| |basisOfRightNucloid| |f02adf| - |balancedBinaryTree| |eof?| |filterWhile| |numerator| |e02zaf| |t| - |cSinh| |One| |OMmakeConn| |makeViewport2D| |euclideanGroebner| - |tanhIfCan| |factorial| |filterUntil| |createGenericMatrix| |logpart| - |OMserve| |dominantTerm| |lambda| |createNormalPrimitivePoly| - |numericalOptimization| |diagonalProduct| |errorInfo| |relativeApprox| - |flagFactor| |search| |setProperty| |select| |dihedral| |crushedSet| - |makeVariable| |message| |extractBottom!| |elem?| |minrank| |digits| - |structuralConstants| |multiset| |OMread| - |setLegalFortranSourceExtensions| |cot2trig| |Vectorise| |c06ekf| - |endOfFile?| |complexNumericIfCan| |setchildren!| |extendedResultant| - |branchPointAtInfinity?| |ScanFloatIgnoreSpacesIfCan| |graphStates| - |mainPrimitivePart| |nrows| |iisinh| |d03edf| |radicalRoots| - |parametersOf| |adjoint| |outputFixed| |airyAi| |weierstrass| |ncols| - |elt| |bounds| |monicCompleteDecompose| |plus!| |setEpilogue!| - |packageCall| |s17aff| |retract| |infinite?| |recoverAfterFail| - |integralCoordinates| |cAsinh| |compactFraction| |outputForm| - |localIntegralBasis| |dilog| |semicolonSeparate| |zero| |decompose| - |innerEigenvectors| |e04ycf| |restorePrecision| |multMonom| - |ip4Address| |leadingBasisTerm| |square?| |brillhartTrials| |cons| - |sin| |makeRecord| |branchIfCan| |lazyGintegrate| |selectsecond| - |cSech| |lazyPseudoQuotient| |nothing| |And| |norm| |cos| - |writeUInt8!| |semiResultantReduitEuclidean| |completeEchelonBasis| - |isExpt| |besselI| |differentialVariables| |isAbsolutelyIrreducible?| - |palgextint| |Or| |tan| |taylorRep| |karatsuba| |univcase| - |univariatePolynomials| |stripCommentsAndBlanks| |pointColorDefault| - |drawCurves| |Not| |cot| |prime?| |rk4f| |fixedDivisor| |polyRDE| - |zeroMatrix| |lighting| |reopen!| |primPartElseUnitCanonical| - |condition| |nthRootIfCan| |sec| |cycleElt| |leftUnits| - |fortranComplex| |fortranInteger| |bernoulliB| |hitherPlane| - |inHallBasis?| |csc| |low| |zoom| |node?| |LyndonCoordinates| - |putProperties| |coerceImages| |nullary?| |iibinom| |leftTraceMatrix| - |interpret| |source| |asin| |purelyAlgebraicLeadingMonomial?| |fmecg| - |invertibleSet| |alphabetic?| |totolex| |comparison| |traceMatrix| - |dec| |repeating| |acos| |c06eaf| |antiCommutator| |csch2sinh| - |rightTraceMatrix| |OMgetInteger| |createZechTable| |plusInfinity| - |atan| |satisfy?| |nativeModuleExtension| |Lazard| |iifact| - |factorList| |integerBound| |f02agf| |iiacsc| |safeFloor| |acot| - |s19acf| |minusInfinity| |roughEqualIdeals?| |char| |elseBranch| - |children| |changeName| |normalise| |mainCoefficients| |asec| - |intcompBasis| |unrankImproperPartitions1| |kmax| |arrayStack| - |c06ebf| |groebnerFactorize| |evaluateInverse| |zeroDim?| |acsc| - |target| |findConstructor| |top!| |sumOfSquares| |midpoint| - |lazyPseudoRemainder| |preprocess| |lastSubResultantEuclidean| |sinh| - |swap| |e02agf| |unaryFunction| |f02bbf| |setFormula!| |poisson| - |shellSort| |getSyntaxFormsFromFile| |cosh| |quoByVar| |mapGen| - |constantLeft| |e04fdf| |subTriSet?| |OMopenFile| |getExplanations| - |oblateSpheroidal| |changeThreshhold| |type| |complexIntegrate| |tanh| - |e02bef| |makeResult| |range| |newTypeLists| |outputList| |moduloP| - |acoshIfCan| |beauzamyBound| |pToHdmp| |shade| |coth| |matrixGcd| - |semiIndiceSubResultantEuclidean| |rightRankPolynomial| |integrate| - |antisymmetricTensors| |float| |janko2| |lazyIntegrate| |youngDiagram| - |qelt| |approximants| |reindex| |bipolar| |sech| |lfextendedint| - |meatAxe| |lazyIrreducibleFactors| |second| |qsetelt| |OMgetString| - |headRemainder| |rightPower| |c02aff| |ratpart| |linears| |high| - |csch| |e01saf| |bivariatePolynomials| |coleman| |third| |rightOne| - |leftOne| |getOperator| |zeroSetSplitIntoTriangularSystems| |xRange| - |setright!| |ScanFloatIgnoreSpaces| |asinh| |isPlus| |aLinear| - |radPoly| |hdmpToP| |putProperty| |lSpaceBasis| |lfunc| |leftPower| - |rotate| |yRange| |compile| |void| |aCubic| |acosh| |ldf2lst| - |monicDecomposeIfCan| |rootBound| |prinpolINFO| |alphabetic| - |mathieu24| |listRepresentation| |selectNonFiniteRoutines| |zRange| - |euclideanNormalForm| |rightRank| |setScreenResolution3D| |atanh| |sn| - |pushdown| |readable?| |genericRightTraceForm| |zerosOf| |distribute| - |atanIfCan| |map!| |LowTriBddDenomInv| |nextSubsetGray| |acoth| - |makingStats?| |halfExtendedSubResultantGcd1| |startTableGcd!| - |digit?| |cAsec| |qsetelt!| |copy!| |pair?| |nextsubResultant2| - |coth2tanh| |prem| |option?| |asech| |primextendedint| - |OMgetEndObject| |integerIfCan| |redpps| |f04adf| |column| |iiasec| - |showIntensityFunctions| |divisor| |bivariate?| |applyRules| |makeop| - |push| |cyclic?| |qfactor| |modularGcd| |vspace| GE |composite| - |problemPoints| |multiple| |scripted?| |reciprocalPolynomial| - |digamma| |toScale| |socf2socdf| |sumOfDivisors| |const| |e02ahf| - |resultantReduit| GT |iprint| |integralMatrix| |applyQuote| - |plotPolar| |front| |OMputEndApp| |multiplyCoefficients| |create| - |shuffle| |putGraph| |upperCase!| LE |rightFactorIfCan| - |commutativeEquality| |constantOperator| |powern| |firstSubsetGray| - |invertible?| |predicate| |factorials| |factorGroebnerBasis| - |readUInt16!| |fortranCompilerName| LT |acsch| |iiacot| - |balancedFactorisation| |exprToUPS| |associative?| |lyndon?| |OMsend| - |internalInfRittWu?| |B1solve| |coefficients| |d02bhf| |pr2dmp| - |extend| |myDegree| |ruleset| |ScanRoman| |quasiMonic?| |rightTrace| - |antisymmetric?| |every?| UP2UTS |powerAssociative?| - |OMunhandledSymbol| |innerint| |subst| |df2fi| |asimpson| |nullSpace| - |transcendenceDegree| |phiCoord| |algebraicDecompose| |leftNorm| - |d01amf| |space| |atanhIfCan| |f04jgf| |littleEndian| |trueEqual| - |linearAssociatedExp| |factorSquareFreePolynomial| |zeroSquareMatrix| - |abelianGroup| |semiResultantEuclidean1| |nodeOf?| |f02aef| - |OMencodingUnknown| |directory| |squareFreePart| |saturate| - |makeMulti| |suchThat| |palgint| |bandedJacobian| |fractRadix| |tree| - |index| |doubleRank| |zeroDimPrime?| |nthExponent| |normalize| - |f02fjf| |autoReduced?| |iCompose| |squareTop| |setprevious!| - |nonLinearPart| |squareFreePrim| |c06gsf| |fTable| |reducedSystem| - |initial| |semiSubResultantGcdEuclidean1| |central?| |enterPointData| - |cycleTail| |linearPart| |evenInfiniteProduct| |rootPower| |hermiteH| - |e02ajf| |toseSquareFreePart| |degreeSubResultantEuclidean| - |insertBottom!| |cscIfCan| |edf2df| |normalElement| |polCase| - |mapSolve| |pair| |getConstant| |eigenvectors| |var1Steps| - |OMgetVariable| |objects| |polygon?| |iidsum| |rightTrim| |relerror| - |RemainderList| |fractionFreeGauss!| |bright| |printCode| - |factorSFBRlcUnit| |parameters| |makeGraphImage| |increment| - |reverse!| |merge!| |times!| |base| |leftTrim| |symmetricProduct| - |rangePascalTriangle| |elRow1!| |parabolic| - |inverseIntegralMatrixAtInfinity| |arg1| |mapBivariate| - |quadraticForm| |setProperties| |setPredicates| |subHeight| - |rowEchLocal| |logIfCan| |transcendentalDecompose| |eval| - |completeHensel| |BumInSepFFE| |arg2| |topPredicate| |setClosed| - |tubeRadius| |critMonD1| |setLabelValue| |OMreadFile| |postfix| - |permanent| |isMult| |palglimint0| |pushup| |Frobenius| |prinb| - |partialFraction| |cAcoth| |tan2cot| |reduction| |selectPolynomials| - |expint| |tan2trig| |conditions| |internalIntegrate| |empty| - |countable?| |resetBadValues| |diagonal?| |iiperm| - |multiEuclideanTree| |error| |epilogue| |ocf2ocdf| |signAround| - |headReduced?| |match| |nsqfree| |c06gbf| - |stiffnessAndStabilityFactor| |se2rfi| |groebnerIdeal| |droot| - |iicoth| |diagonalMatrix| |equation| |splitConstant| |f04axf| GF2FG - |makeEq| |s21bbf| |s17aef| |normal01| |sincos| |bitCoef| |maxIndex| - |isEquiv| |fixedPoints| |indiceSubResultant| - |exprHasLogarithmicWeights| |function| |s01eaf| |intChoose| |s17dcf| - |leftRemainder| |optimize| |att2Result| |clipParametric| |prime| - |primaryDecomp| |mainVariable| |HenselLift| |setMinPoints| - |algebraicVariables| |stFuncN| |returnTypeOf| |monicLeftDivide| - |simpleBounds?| |relationsIdeal| |halfExtendedResultant2| |diff| - |SFunction| |integralAtInfinity?| |supersub| |null?| |bytes| BY - |UP2ifCan| |associatorDependence| |pushucoef| |represents| |cAcos| - |modularFactor| |rationalPower| |inrootof| |more?| - |symmetricDifference| |bitLength| |rootNormalize| |logical?| - |numericIfCan| |nextItem| |doubleFloatFormat| |cycles| |minPol| - |rewriteIdealWithQuasiMonicGenerators| |makeViewport3D| |variable?| - |isTimes| |positive?| |rubiksGroup| |besselJ| |resultantEuclideannaif| - |linearPolynomials| |lyndonIfCan| |resetVariableOrder| |isAnd| - |tablePow| |createNormalElement| |remainder| |leadingTerm| - |defineProperty| |sizePascalTriangle| |characteristicSet| |sort| - |d02kef| |monicDivide| |float?| |splitSquarefree| |readInt16!| - |monomRDE| |pmintegrate| |bivariateSLPEBR| |weighted| - |orthonormalBasis| |isobaric?| |cAsin| |rightRecip| |unit| |rem| - |leftRegularRepresentation| |lazyPquo| |OMsupportsCD?| - |clearDenominator| |properties| |coerceL| |radicalEigenvector| - |integralBasisAtInfinity| |realRoots| |ratDenom| |quo| |insert!| - |chineseRemainder| |hermite| |fortranDoubleComplex| |linearDependence| - |id| |explogs2trigs| NOT |OMputSymbol| |cycleEntry| |translate| - |check| |uncouplingMatrices| |e02aef| |rootSimp| |leadingIdeal| - |bottom!| |quoted?| |lo| |plenaryPower| OR |integer?| |random| - |sinhIfCan| |signatureAst| |gradient| |f01ref| |div| |cyclic| - |squareFree| |rootDirectory| |crest| |clip| AND |lcm| - |subResultantsChain| |OMReadError?| |mainMonomial| |categoryFrame| - |extractTop!| |exquo| |raisePolynomial| |delete| |generalizedInverse| - |intPatternMatch| |categoryMode| |trapezoidalo| |printStats!| |sign| - |OMputVariable| |f02aff| ~= |numberOfIrreduciblePoly| |musserTrials| - |rdregime| |pseudoDivide| |lift| |nand| |paraboloidal| |append| - |f04mcf| |predicates| |inconsistent?| |startTable!| |qroot| |#| - |c06fuf| |secIfCan| |OMgetError| |infix| |reduce| |bombieriNorm| - |prevPrime| |makeYoungTableau| |discriminant| |gcd| |upperCase| - |c06gcf| |remove!| ~ |simplifyPower| |rowEchelon| |hspace| |quartic| - |vectorise| |false| |generalTwoFactor| |getVariableOrder| - |printHeader| |rdHack1| |safetyMargin| |f02wef| |wrregime| - |radicalSimplify| |pole?| |mindeg| |getlo| |expintfldpoly| - |nthFractionalTerm| |characteristicSerie| |mapUp!| |virtualDegree| - |primitivePart!| |apply| |exteriorDifferential| |replace| - |zeroDimensional?| |quasiRegular| |reflect| |trivialIdeal?| - |addPoint2| |rightRemainder| |startPolynomial| |palglimint| |/\\| - |addPointLast| |matrix| |first| |OMParseError?| |deriv| |graeffe| - |simplifyLog| |pointColor| |palgLODE0| |e04dgf| |pushdterm| |s15adf| - |\\/| |rest| |nextSublist| |car| |regime| |lp| |numberOfComposites| - |delete!| |critT| |lazyResidueClass| |minset| |rischDEsys| |inspect| - |sinhcosh| |solveRetract| |Hausdorff| |denominators| |skewSFunction| - |coerce| * |contains?| |primintegrate| |hasoln| |generateIrredPoly| - |jacobiIdentity?| |iicot| |internalLastSubResultant| |insertTop!| - |inputBinaryFile| |printStatement| |tensorProduct| |construct| - |OMreadStr| |subNodeOf?| |upDateBranches| |deref| |s13aaf| - |leftDivide| |magnitude| |ffactor| |moebius| |numer| |binaryFunction| - |printingInfo?| |iicsc| |generator| |bat1| |head| |complexExpand| - |polygon| |extendedIntegrate| |setMaxPoints3D| |denom| - |numberOfPrimitivePoly| |cPower| |unitsColorDefault| = |resultantnaif| - |blue| |OMputInteger| |axes| |s21bdf| |gramschmidt| - |showFortranOutputStack| |extensionDegree| |power!| |scale| - |lowerCase?| |cyclicParents| |tab| |asinIfCan| |overbar| |connectTo| - |infiniteProduct| |failed?| |pi| |divideExponents| |byte| |polar| - |unparse| |coefChoose| |identification| < |expandLog| |distdfact| - |encodingDirectory| |directSum| |subCase?| |df2st| |width| |critM| - |e01sef| |linearlyDependent?| > |basisOfCommutingElements| |pop!| - |genericLeftDiscriminant| |s17dlf| |initiallyReduce| |mkcomm| - |rewriteIdealWithRemainder| |stirling2| |interactiveEnv| |adaptive?| - |divisors| <= |quadraticNorm| |exponents| |sylvesterSequence| |size?| - |viewSizeDefault| |binaryTree| |cyclotomicFactorization| |df2mf| - |e01sff| |extendIfCan| |viewport2D| >= |cschIfCan| |symmetricSquare| - |gensym| |updateStatus!| |knownInfBasis| |hexDigit| - |semiLastSubResultantEuclidean| |unrankImproperPartitions0| |decimal| - |position!| |swapRows!| |setIntersection| |quotientByP| |inR?| - |getDatabase| |expPot| |initTable!| |fixedPoint| |Beta| - |nextIrreduciblePoly| |genericPosition| |LyndonWordsList| |ricDsolve| - |cycleLength| |sturmVariationsOf| |maxRowIndex| |content| - |generalizedContinuumHypothesisAssumed| |create3Space| |OMgetApp| - |monicRightFactorIfCan| |createPrimitiveElement| |elRow2!| |support| - |uniform| |rootOf| + |rootSplit| |yCoordinates| |alphanumeric| |value| - |shallowExpand| |clearCache| |eulerPhi| |coefficient| |bothWays| - |numeric| |factorsOfDegree| |int| |meshPar1Var| |e02dcf| - - |asinhIfCan| |numberOfDivisors| |integral| |exists?| |fractRagits| - |totalGroebner| |LazardQuotient2| |radical| |power| |figureUnits| - |optional| |padicallyExpand| |acschIfCan| / |gcdPolynomial| |lambert| - |numberOfCycles| |firstNumer| |separateDegrees| |errorKind| |lintgcd| - |c06ecf| |useSingleFactorBound?| |property| |log| |pack!| - |radicalEigenvalues| |systemSizeIF| |readUInt8!| - |combineFeatureCompatibility| |fi2df| |chiSquare| |mapdiv| - |laurentRep| |imagj| |diagonal| |squareFreeLexTriangular| - |wronskianMatrix| |genericLeftTrace| |algintegrate| |physicalLength| - |bezoutResultant| |radicalSolve| |zero?| |sts2stst| |signature| - |fortranLiteralLine| |triangulate| |setelt| |e04jaf| |ode2| - |derivationCoordinates| |hasPredicate?| |realEigenvalues| |bracket| - |setref| |sayLength| |cAcosh| |OMputError| |viewDefaults| |forLoop| - |sin2csc| |solid?| |roman| |declare!| |linear?| |realElementary| - |univariateSolve| |commutative?| |c06gqf| |normFactors| |extractIfCan| - |copy| |lieAlgebra?| |monicModulo| |c06fpf| |findBinding| - |squareMatrix| |critMTonD1| |ideal| |cLog| |SturmHabichtCoefficients| - |eulerE| |froot| |subResultantGcdEuclidean| |rischDE| |asechIfCan| - |stoseInvertibleSet| |e02gaf| |iicosh| |d01akf| |pow| |twoFactor| - |datalist| |coshIfCan| |setValue!| |fractionPart| |determinant| - |basisOfCenter| |generic| |numberOfImproperPartitions| |laplace| - |univariatePolynomialsGcds| |readByte!| |one?| |compose| - |exponentialOrder| |acosIfCan| |write!| |commutator| |closed?| - |headReduce| |stronglyReduce| |rightRegularRepresentation| |pointData| - |appendPoint| |prologue| |options| |showTheSymbolTable| |denomLODE| - |exactQuotient| |divisorCascade| |cAcsc| |outputSpacing| |mindegTerm| - |subPolSet?| |makeCos| |cCoth| |getMatch| |listYoungTableaus| - |belong?| |factorFraction| |jordanAdmissible?| |testDim| |upperCase?| - |s19abf| |polynomialZeros| |primes| |chainSubResultants| |OMputBind| - |cosSinInfo| |toseLastSubResultant| |product| |palgRDE| |connect| |Ci| - |lineColorDefault| |segment| |iiexp| |getMeasure| - |ramifiedAtInfinity?| |cExp| |internal?| |output| |string| - |putColorInfo| |selectODEIVPRoutines| |deepExpand| |localAbs| |llprop| - |countRealRoots| |integers| |hcrf| |f01rcf| |read!| |changeBase| - |generators| |subresultantSequence| |component| |isOpen?| |reify| - |graphState| |genericRightMinimalPolynomial| |escape| |inf| |part?| - |SturmHabichtMultiple| |trailingCoefficient| |bipolarCylindrical| - |numberOfChildren| |fracPart| |shallowCopy| |rightMult| - |padicFraction| |cond| |fintegrate| |linGenPos| |OMconnectTCP| - |OMgetSymbol| |before?| |vertConcat| |d02cjf| |rightAlternative?| - |radicalEigenvectors| |voidMode| |mpsode| |symmetric?| |tanAn| |isOp| - |trace2PowMod| |getZechTable| |cCot| |internalSubQuasiComponent?| - |charthRoot| |dark| |setStatus!| |f01qcf| |nlde| |environment| - |eigenvector| |rspace| |bsolve| |medialSet| |maxrank| |showAll?| |in?| - |cyclicEntries| |removeRoughlyRedundantFactorsInContents| - |wholeRagits| |tubePlot| |imports| |setvalue!| |optAttributes| - |invmod| |unknownEndian| |cosh2sech| |anticoord| |fortranTypeOf| - |nextLatticePermutation| |expandPower| |redPol| |lyndon| - |removeZeroes| |HermiteIntegrate| |rk4| |genericRightTrace| - |constantKernel| |cAcsch| |expandTrigProducts| |expt| |remove| - |index?| |isImplies| |increasePrecision| |surface| |host| |d02raf| - |numFunEvals| |solveLinearPolynomialEquationByFractions| - |setAdaptive3D| |stoseSquareFreePart| |binarySearchTree| |eyeDistance| - |diophantineSystem| |qualifier| |exprHasAlgebraicWeight| - |rowEchelonLocal| |normalDenom| |writeByte!| |pToDmp| - |intermediateResultsIF| |definingEquations| |singRicDE| - |particularSolution| |center| |last| |shanksDiscLogAlgorithm| - |parseString| |lexTriangular| |d01anf| |basisOfNucleus| |chvar| - |iitanh| |choosemon| |assoc| |taylorQuoByVar| |printTypes| - |nextNormalPoly| |resultantReduitEuclidean| |subQuasiComponent?| - |f01qef| |iicsch| |stoseInternalLastSubResultant| |e04mbf| |tRange| - |formula| |iiacoth| |triangularSystems| |symmetricPower| |OMputFloat| - |pseudoRemainder| |rightGcd| |vedf2vef| |c05pbf| |functorData| |any?| - |rootsOf| |reorder| |s20adf| |meshFun2Var| |cycleRagits| |reverseLex| - |OMclose| |entry?| |symFunc| |frst| |legendreP| |complexZeros| - |factorOfDegree| |palgextint0| |irForm| |cRationalPower| |sqfrFactor| - |karatsubaDivide| |cotIfCan| |gderiv| |setAttributeButtonStep| - |wreath| |stiffnessAndStabilityOfODEIF| |e02def| |numberOfHues| - |basicSet| |fibonacci| |drawStyle| |infieldint| |rombergo| |cartesian| - |modTree| |createMultiplicationTable| |nextPrimitivePoly| - |setFieldInfo| |sample| |subResultantChain| |bigEndian| |mainKernel| - |vconcat| |getButtonValue| |rotatex| |exprToXXP| |recip| - |standardBasisOfCyclicSubmodule| |toseInvertibleSet| |clearTable!| - |setMinPoints3D| |qPot| |bernoulli| |overlap| - |selectSumOfSquaresRoutines| |perfectNthPower?| |c06frf| |refine| - |algebraicSort| |csc2sin| |toseInvertible?| |exQuo| |realSolve| - |jacobian| |e01daf| |s18aff| |nextPrime| |binary| |rowEch| |compBound| - |algDsolve| |messagePrint| |nthRoot| |newLine| |makeprod| |imaginary| - |iilog| |expenseOfEvaluation| |colorDef| |ODESolve| |po| - |generalizedEigenvector| |selectOrPolynomials| |expressIdealMember| - |noKaratsuba| |degreePartition| |d01alf| |minus!| |even?| - |closedCurve| |sechIfCan| |gcdprim| |rightExactQuotient| - |genericLeftMinimalPolynomial| |abs| |doublyTransitive?| |irVar| - |ParCond| |selectPDERoutines| |coordinates| |dioSolve| |gethi| - |biRank| |minRowIndex| |midpoints| |splitNodeOf!| |polarCoordinates| - |ParCondList| |fixPredicate| |hessian| |queue| |localUnquote| - |normalizeAtInfinity| |goodnessOfFit| |setStatus| |degreeSubResultant| - |tableau| |homogeneous?| |copyInto!| |leaves| |rationalFunction| - |dimensions| |normalizedAssociate| |inRadical?| |coordinate| - |basisOfCentroid| |internalDecompose| |primintfldpoly| - |showAllElements| |boundOfCauchy| |pointSizeDefault| - |stoseLastSubResultant| |rightLcm| |nil| |ef2edf| |atoms| - |subtractIfCan| |number?| |basisOfMiddleNucleus| |normalizeIfCan| - |dmpToP| |macroExpand| |e02dff| |lieAdmissible?| |iisin| - |genericLeftNorm| |lazyPseudoDivide| |fortranDouble| |outputAsTex| - |isConnected?| |badValues| |primlimitedint| |diag| |recur| |arbitrary| - |dAndcExp| |compdegd| |antiAssociative?| |fortranCharacter| - |leadingCoefficientRicDE| |lquo| |iiacos| |fortranReal| |approximate| - |rotatez| |getPickedPoints| |inverseColeman| |points| |s21baf| - |constDsolve| |OMputEndBind| |rootProduct| |omError| |sum| |complex| - |minGbasis| |quotedOperators| |e02bbf| |pquo| |conjug| |polyRicDE| - |OMsupportsSymbol?| |safeCeiling| |overset?| |select!| - |irreducibleRepresentation| |paren| |setrest!| |lowerPolynomial| - |associatedEquations| |polyPart| |quadratic?| |updatD| - |createMultiplicationMatrix| |setlast!| |pointColorPalette| |rank| - |critB| |besselK| |algebraic?| |groebner?| |pureLex| |calcRanges| - |point| |s20acf| |rquo| |cn| |floor| |setButtonValue| |makeFR| - |f04asf| |debug| |trigs2explogs| |failed| |d01asf| |d02bbf| - |flexible?| |subset?| |setVariableOrder| |rootPoly| - |squareFreeFactors| |minordet| D |controlPanel| |listConjugateBases| - |compiledFunction| |f02awf| |coerceP| |KrullNumber| |split!| - |minIndex| |irDef| |drawComplexVectorField| |components| - |permutationGroup| |series| |numericalIntegration| |patternMatch| - |ptFunc| |quatern| |tubeRadiusDefault| |factorSquareFree| |setfirst!| - |solveLinearPolynomialEquationByRecursion| |leaf?| |elliptic?| - |credPol| |closed| |morphism| |open?| |pascalTriangle| - |clearFortranOutputStack| |iflist2Result| |pushuconst| |sort!| |hex| - |csubst| |reduceBasisAtInfinity| |close!| |lfinfieldint| |s13adf| - |d01apf| |collectUpper| |super| |OMputBVar| |lists| |constantOpIfCan| - |lowerBound| |shufflein| |groebSolve| |f04maf| |min| - |lastSubResultantElseSplit| |decreasePrecision| |leftMult| |sup| - |rightMinimalPolynomial| |palgintegrate| |solveInField| |tracePowMod| - |dequeue!| |randomLC| |printInfo| |rotatey| |f04arf| |extractClosed| - |ksec| |externalList| |ignore?| |curve| |measure| |conjunction| - |stopTable!| |besselY| |partialDenominators| |changeNameToObjf| - |fixedPointExquo| |checkPrecision| |substring?| |readLine!| - |multisect| |clipSurface| |probablyZeroDim?| |maxColIndex| - |stoseInvertible?reg| |key| |complementaryBasis| |adaptive3D?| - |f07adf| |derivative| |solveLinear| |resize| |euler| - |var2StepsDefault| |curveColor| |clipWithRanges| |e01bff| |opeval| - |leader| |rightZero| |mapExponents| |idealiserMatrix| |s18acf| - |suffix?| |hasTopPredicate?| |filename| |swap!| |exponent| |delay| - |seed| FG2F |mathieu22| |cubic| |associatedSystem| |collectUnder| - |symbolTable| |loadNativeModule| |argument| |scaleRoots| |monomials| - |identitySquareMatrix| |minimumExponent| |e01baf| |f02aaf| - |OMgetEndBind| |prefix?| |writeBytes!| |e01bef| |parse| |f04mbf| - |enumerate| |pade| |partialNumerators| |fortran| |positiveRemainder| - |constantRight| |exponential1| |unitVector| |plus| |hostByteOrder| - |pushFortranOutputStack| |alternatingGroup| |makeCrit| |ode1| - |stirling1| |legendre| |complexLimit| |OMconnInDevice| |f01maf| |rk4a| - |popFortranOutputStack| |removeCoshSq| |conditionsForIdempotents| - |curryRight| |uniform01| |bringDown| |discriminantEuclidean| - |selectFiniteRoutines| |iomode| |incrementKthElement| - |outputAsFortran| |topFortranOutputStack| |edf2fi| |tab1| - |binomThmExpt| |lflimitedint| |drawComplex| |leadingIndex| |bindings| - |separate| |table| |s19adf| |zag| |showArrayValues| |powers| - |monomialIntegrate| |seriesToOutputForm| |precision| |f02abf| - |OMgetAtp| |times| |cyclePartition| |new| |componentUpperBound| - |permutation| |bumptab1| |prolateSpheroidal| |approxNthRoot| |f01bsf| - |quote| |ReduceOrder| |quasiRegular?| |infix?| |ptree| |oddintegers| - |cos2sec| |removeCosSq| |trunc| |finiteBasis| |gbasis| |flatten| - |iiabs| |mask| |evaluate| |primitiveElement| |frobenius| |d02gaf| - |blankSeparate| |isNot| |irreducibleFactor| |init| |nthr| |nodes| - |groebner| |possiblyNewVariety?| |divideIfCan| |nextsousResultant2| - |lllp| |iiGamma| |sortConstraints| |listexp| |cTanh| |mvar| - |viewPhiDefault| |monom| |s18def| |romberg| |back| |f02akf| |bits| - |leftExtendedGcd| |cCsc| |OMUnknownSymbol?| |FormatRoman| |rule| - |completeHermite| |fullDisplay| |nextColeman| |setelt!| |insertRoot!| - |setScreenResolution| |rewriteSetByReducingWithParticularGenerators| - |gcdPrimitive| |asecIfCan| |lfintegrate| |zeroVector| - |variationOfParameters| |diagonals| |iicos| |iiacsch| |e04naf| - |simpson| |common| |rCoord| |iiatanh| |leftGcd| |Is| |retractable?| - |script| |distance| |padecf| |monomial?| |rightNorm| |imagJ| - |anfactor| |f2df| |push!| |routines| |rotate!| |title| |setImagSteps| - |dihedralGroup| |wordInStrongGenerators| |list?| |pointPlot| - |leftFactor| |order| |cAcot| |sh| |cCsch| |sub| |ellipticCylindrical| - |setEmpty!| |left| |vector| |operators| |varselect| |lllip| - |interpolate| |tex| |exp1| |outerProduct| |writable?| |imagI| - |graphImage| |revert| |right| |differentiate| |fprindINFO| - |mergeFactors| |rewriteSetWithReduction| |symbolTableOf| |e| - |expextendedint| |lexGroebner| |measure2Result| |s18dcf| - |complexEigenvalues| |removeRedundantFactorsInPols| |sequences| - |deleteProperty!| |upperBound| |OMputString| |setUnion| - |scanOneDimSubspaces| |subscript| |maxdeg| |mapCoef| |acscIfCan| - |definingInequation| |leviCivitaSymbol| |cot2tan| |stFunc1| |real?| - |leftZero| |unexpand| |s14aaf| |showTheIFTable| |numberOfComponents| - |radicalOfLeftTraceForm| |ran| |ratDsolve| |validExponential| - |outputArgs| |strongGenerators| |redPo| |s17def| - |invertibleElseSplit?| |nor| |mkIntegral| |nthExpon| |redmat| - |dualSignature| |setDifference| |iipow| |equiv| |zeroSetSplit| - |withPredicates| |newSubProgram| |subSet| |shift| - |removeSuperfluousQuasiComponents| |identityMatrix| |clikeUniv| - |OMputEndAttr| |mainVariables| |any| |hue| |hash| |elementary| - |modularGcdPrimitive| |composites| |mkPrim| |antiCommutative?| - |squareFreePolynomial| |specialTrigs| |freeOf?| |count| - |outputAsScript| |cAsech| |rightQuotient| |next| |OMconnOutDevice| - |mainSquareFreePart| |curveColorPalette| |chebyshevU| |extension| - |whitePoint| |extendedint| |sumOfKthPowerDivisors| - |removeSquaresIfCan| |integralLastSubResultant| |OMreceive| |iisqrt3| - |interReduce| |setPoly| |simplifyExp| |f2st| |numberOfNormalPoly| - |OMencodingSGML| |contractSolve| |stopMusserTrials| |showTheFTable| - |e02bdf| |argscript| |semiDegreeSubResultantEuclidean| - |companionBlocks| |symbol| |OMputEndError| |Ei| |schema| - |pushNewContour| |btwFact| |iExquo| |OMcloseConn| - |clearTheSymbolTable| |acotIfCan| |red| |expression| |eq?| - |triangular?| |removeRedundantFactorsInContents| |testModulus| - |LiePolyIfCan| |innerSolve1| |symbolIfCan| |integralRepresents| - |stFunc2| |integer| |genericRightNorm| |whileLoop| - |removeRoughlyRedundantFactorsInPol| |chebyshevT| - |generalizedEigenvectors| |irreducibleFactors| |linear| |scan| - |enqueue!| |loopPoints| |leftAlternative?| |reducedForm| |round| - |unprotectedRemoveRedundantFactors| |integral?| |rarrow| |point?| - |primitive?| |OMsetEncoding| |indicialEquation| |tanintegrate| - |f04qaf| |scopes| |changeWeightLevel| |indicialEquations| |debug3D| - |polynomial| |createPrimitivePoly| |curve?| |d03eef| |reduceLODE| - |dmp2rfi| |selectfirst| |startStats!| |computeCycleEntry| - |purelyTranscendental?| |computeInt| |cCosh| |generalSqFr| - |cardinality| |hasHi| |cCos| |jacobi| |erf| |intensity| |result| - |explicitlyFinite?| |e02daf| |monic?| |d01aqf| |makeSin| |lazyPrem| - |li| |e02ddf| |firstUncouplingMatrix| |newReduc| |divideIfCan!| - |matrixDimensions| |stopTableGcd!| |pol| |subMatrix| |laurentIfCan| - |unvectorise| |stack| |tower| |mapMatrixIfCan| |prepareSubResAlgo| - |stopTableInvSet!| |linearlyDependentOverZ?| |baseRDEsys| |s18adf| - |splitDenominator| |duplicates| |setsubMatrix!| |colorFunction| - |mathieu12| |is?| |compound?| |light| |d01bbf| |presuper| |symbol?| - |moreAlgebraic?| |sncndn| |lifting| |heap| |OMgetEndAtp| |contours| - |lookup| |sqfree| |tubePoints| |eigenvalues| |unary?| - |normInvertible?| |psolve| |eq| |optpair| |thetaCoord| - |complexNormalize| |tanh2coth| |mappingMode| |sin?| - |tryFunctionalDecomposition?| |mapUnivariateIfCan| |iter| |dim| - |dimension| |interpretString| |length| |latex| |modifyPoint| - |equality| |s17adf| |lfextlimint| |complexNumeric| |rk4qc| |imagE| - |lexico| |explicitEntries?| |step| |scripts| |kroneckerDelta| - |computeBasis| |dflist| |just| |c05nbf| |maxPoints| |ord| - |leadingSupport| |e01bhf| |concat| |mainVariable?| |cosIfCan| |Nul| - |traverse| |test| |kernels| |oddInfiniteProduct| |repeating?| - |extendedSubResultantGcd| |unitNormalize| |monicRightDivide| |getRef| - |row| |maxint| |f01mcf| |f02bjf| |realEigenvectors| |operator| - |unmakeSUP| |noLinearFactor?| |submod| |ridHack1| |iidprod| - |functionIsOscillatory| |numberOfFractionalTerms| |arity| |showRegion| - |definingPolynomial| |OMopenString| |tanIfCan| |leftQuotient| - |jokerMode| |f04faf| |cycle| |numberOfOperations| - |createLowComplexityNormalBasis| |univariate| |algSplitSimple| - |SturmHabicht| |bubbleSort!| |totalDifferential| |rischNormalize| - |leadingExponent| |mulmod| |degree| |less?| |inGroundField?| - |binaryTournament| |readIfCan!| |localReal?| |OMputAtp| |elColumn2!| - |trigs| |singularAtInfinity?| |pdf2df| |endSubProgram| |pointLists| - |prefix| |direction| |iroot| |principal?| |factors| |factor| - |algebraicCoefficients?| |charpol| |lazyEvaluate| |constant?| |s14baf| - |mesh?| |nextNormalPrimitivePoly| |getCurve| |sqrt| - |primPartElseUnitCanonical!| |findCycle| |addPoint| |OMgetBVar| - |makeTerm| |generic?| |dot| |deleteRoutine!| |univariatePolynomial| - |real| |multiplyExponents| |basisOfRightAnnihilator| |torsion?| - |halfExtendedResultant1| |nextPartition| |coerceS| |atom?| |spherical| - |mirror| |imag| |iisec| |declare| |factorSquareFreeByRecursion| - |getGoodPrime| |stop| |palginfieldint| |mainExpression| |max| - |setPrologue!| |var2Steps| |doubleDisc| |directProduct| |linSolve| - |limitedIntegrate| |deepestInitial| |extractSplittingLeaf| |mr| - |d02ejf| |lastSubResultant| |startTableInvSet!| |quasiComponent| - |leftRecip| |wordInGenerators| |infLex?| |someBasis| - |resetAttributeButtons| |s17dgf| SEGMENT - |stoseIntegralLastSubResultant| |dimensionsOf| |expIfCan| |brace| - |kind| |whatInfinity| |generalPosition| |difference| |presub| - |logGamma| |d02gbf| |categories| |getBadValues| |removeSinhSq| - |initiallyReduced?| |destruct| |setLength!| |hostPlatform| |op| - |transcendent?| |fortranLiteral| |weights| |mantissa| |c06fqf| |depth| - |returnType!| |consnewpol| |orbit| |viewWriteAvailable| |solid| - |indices| |numerators| |typeForm| |supRittWu?| |OMgetEndAttr| |cdr| - |mapUnivariate| |LagrangeInterpolation| |lepol| |singleFactorBound| - |s13acf| |useEisensteinCriterion| |split| |level| |deepCopy| - |viewPosDefault| |pleskenSplit| |transform| |twist| - |functionIsContinuousAtEndPoints| |branchPoint?| |lifting1| - |argumentList!| |s17ajf| |quadratic| |moebiusMu| |root?| |monomial| - |roughUnitIdeal?| |s18aef| |dual| |rational| |mat| |linearMatrix| - |discreteLog| |bfKeys| |addmod| |multivariate| |alternating| - |elliptic| |c05adf| |overlabel| |tanSum| |e02akf| - |semiResultantEuclideannaif| |setErrorBound| |dequeue| |variables| - |toroidal| |zeroDimPrimary?| |denominator| |union| |mkAnswer| - |usingTable?| |useEisensteinCriterion?| |addiag| |Aleph| |splitLinear| - |nonSingularModel| |OMlistSymbols| |removeRedundantFactors| - |permutations| |increase| |entries| |trapezoidal| |ldf2vmf| - |viewpoint| |extractIndex| |critpOrder| |makeSUP| |currentScope| - |interval| |alphanumeric?| |log2| |child| |evenlambert| |qqq| |iitan| - |tanh2trigh| |byteBuffer| |e02baf| |hconcat| |modifyPointData| - |palgLODE| |superscript| |genericLeftTraceForm| |ratPoly| |d01fcf| - |algebraicOf| |perfectNthRoot| |domainTemplate| |removeConstantTerm| - |callForm?| |genericRightDiscriminant| |taylor| |multiEuclidean| - |showScalarValues| |comp| |symmetricGroup| |s17akf| |exactQuotient!| - |OMgetFloat| |odd?| |hyperelliptic| |selectAndPolynomials| |laurent| - |rational?| |unravel| |explimitedint| |initials| |child?| |d01ajf| - |tube| |cap| |elements| |reverse| |puiseux| |rur| |innerSolve| - |stoseInvertible?sqfreg| |pile| |collectQuasiMonic| |merge| |graphs| - |iisqrt2| |OMencodingXML| |cycleSplit!| |coHeight| |normalized?| |nil| - |infinite| |arbitraryExponent| |approximate| |complex| - |shallowMutable| |canonical| |noetherian| |central| - |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| - |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| - |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| - |finiteAggregate| |shallowlyMutable| |commutative|)
\ No newline at end of file + |Record| |Union| |wrregime| |parents| |clipPointsDefault| |const| + |cycleElt| |minRowIndex| |tryFunctionalDecomposition| |permutations| + |systemCommand| |inv| |ravel| |match?| |infinityNorm| |mapUnivariate| + |laplacian| |groebgen| |putColorInfo| |autoCoerce| + |leadingCoefficientRicDE| |useNagFunctions| |heap| |exportedOperators| + |outputFixed| |ground?| |reshape| |ideal| |arrayStack| + |processTemplate| |makeMulti| |unmakeSUP| |pointColor| |unit?| + |oblateSpheroidal| |setStatus!| |ground| |edf2fi| |vedf2vef| |gderiv| + |patternMatch| |logpart| |singRicDE| |closed?| |expextendedint| + |clearTable!| |leadingMonomial| |normal| |primaryDecomp| + |numberOfPrimitivePoly| |csch2sinh| |iisec| |iFTable| |finiteBasis| + |mkPrim| |distdfact| |pseudoDivide| |leadingCoefficient| |ratPoly| + |symbolIfCan| |internalLastSubResultant| |bit?| |e01bgf| + |basisOfLeftAnnihilator| |numericIfCan| |d01gaf| |debug3D| + |primitiveMonomials| |close| |torsionIfCan| |mapExponents| + |contractSolve| |strongGenerators| F |subresultantSequence| + |fixedPoint| |collectQuasiMonic| |droot| |rightTrace| |reductum| + |update| |primeFactor| |setClipValue| |property| |radicalSimplify| + |OMputSymbol| |prinpolINFO| |e02ajf| |realEigenvalues| |pureLex| + |display| |makeprod| |factorsOfDegree| |divide| |isOr| |retractable?| + |OMputBVar| |maxrow| |prepareDecompose| |direction| + |lazyIrreducibleFactors| |rangePascalTriangle| |palglimint0| |palgint| + |repSq| |hypergeometric0F1| |midpoints| |nand| |positiveRemainder| + |localAbs| |firstUncouplingMatrix| |mat| |besselY| |ptFunc| |e02ahf| + |OMgetEndAtp| |whatInfinity| |increase| |createThreeSpace| |cLog| + |s17agf| |LagrangeInterpolation| |factorSquareFreeByRecursion| |lquo| + |complexRoots| |exprex| |f01qcf| |Lazard2| |position| + |setAttributeButtonStep| |truncate| |conditionP| |expr| + |maximumExponent| |noLinearFactor?| |leftUnits| |headReduce| + |setMinPoints3D| |airyAi| |input| ** |mainVariable| |rightTraceMatrix| + |c06ebf| |collect| |finiteBound| |operation| |gbasis| + |particularSolution| |lexGroebner| |changeThreshhold| |library| |tab1| + |integralRepresents| |c05pbf| |exactQuotient| |continuedFraction| + |antiCommutative?| |nextItem| |encodingDirectory| + |eisensteinIrreducible?| |sorted?| |insertTop!| |cPower| |redPo| + |createPrimitivePoly| |component| |palgLODE0| |merge| |leadingSupport| + |calcRanges| |goodPoint| |stopMusserTrials| |d01fcf| |size| |variable| + |pole?| |insertRoot!| |OMserve| |principalAncestors| + |stoseInvertibleSetreg| |iicoth| |antisymmetric?| + |partialDenominators| |factorset| |idealiserMatrix| |iterators| + |mainCharacterization| |iroot| |distance| |alphabetic| |Beta| |root| + |bracket| |set| |imaginary| |pack!| |elRow1!| |bandedJacobian| + |constantOpIfCan| |cycleEntry| |hclf| |splitNodeOf!| |maxPoints3D| + |showClipRegion| |OMgetString| |lepol| |pushup| |quatern| |previous| + |iiexp| |youngGroup| |toseSquareFreePart| |contours| |constantRight| + |nlde| |newReduc| |linearMatrix| |curryLeft| |getGoodPrime| |iiacos| + |generalPosition| |shrinkable| |entries| |allRootsOf| |weierstrass| + |binomThmExpt| |functorData| |nonQsign| |setnext!| |paraboloidal| + |resultantReduit| |s17acf| |characteristic| |rightRecip| |member?| + |external?| |wreath| |OMgetInteger| |divisorCascade| |measure2Result| + |normalizedDivide| |stronglyReduce| |qPot| |OMbindTCP| |say| + |groebnerFactorize| |SturmHabichtCoefficients| |inputBinaryFile| + |true| |polygamma| |arguments| |shanksDiscLogAlgorithm| + |lieAdmissible?| |iiabs| |complexIntegrate| |baseRDE| |HenselLift| + |showTheFTable| |stFunc2| |s17def| |category| |fortranComplex| + |every?| |directSum| |isConnected?| |doubleFloatFormat| |bivariate?| + |reset| |node| |algebraicOf| |realZeros| |unitsColorDefault| |mindeg| + |domain| |e01bhf| |e04dgf| |s20acf| |graphs| |repeating?| |curve?| + |insert| |parabolic| |expintegrate| |OMgetType| |package| |principal?| + |removeDuplicates!| |squareFreePolynomial| |addMatchRestricted| + |write| |mix| |df2ef| |inc| |changeNameToObjf| |s18acf| |exp| + |fractRadix| |polarCoordinates| |save| |listOfLists| |setTex!| + |setref| |closedCurve?| |e01daf| |show| |singleFactorBound| + |radicalEigenvalues| |tubeRadiusDefault| |environment| + |nextIrreduciblePoly| |mathieu24| |rationalApproximation| + |exponential1| |integrate| |screenResolution| |cyclic?| |Frobenius| + |palginfieldint| |getMeasure| |bounds| |diagonalMatrix| + |totalDifferential| |trace| |createZechTable| |discreteLog| |traverse| + |sylvesterMatrix| |linkToFortran| |hex| |unit| |f04mcf| |trapezoidal| + |c06gqf| |any?| F2FG |cAcsc| |hdmpToP| |semiSubResultantGcdEuclidean1| + |contract| |s18dcf| |varList| |setScreenResolution| |factorPolynomial| + |stiffnessAndStabilityOfODEIF| |printStatement| |totalfract| + |wordInGenerators| |abs| |e02bef| |terms| |mainForm| + |conditionsForIdempotents| |getlo| |OMgetEndBVar| |is?| |applyRules| + |bernoulli| UP2UTS |indiceSubResultant| |dn| |randomR| |open| + |invertibleElseSplit?| |laplace| |binomial| |iisin| |d03eef| |rquo| + |scalarMatrix| |complexZeros| |e04mbf| |mesh| |exprHasAlgebraicWeight| + |coerceListOfPairs| |factors| |subCase?| |mainVariable?| + |replaceKthElement| |elseBranch| |invertibleSet| |mainExpression| + |obj| |retractIfCan| |approxNthRoot| |fixedDivisor| |ScanArabic| + |double| |s18aff| |denominators| |acotIfCan| |writeLine!| |cache| + |constant| |startPolynomial| |cAcos| |primitive?| |currentSubProgram| + |ramifiedAtInfinity?| |antisymmetricTensors| |OMreceive| + |printingInfo?| |operations| |outputSpacing| |child?| |clikeUniv| + |quadratic?| |infiniteProduct| |regularRepresentation| + |rischNormalize| |lazy?| |setClosed| |transpose| |doublyTransitive?| + |headAst| |ocf2ocdf| |internalInfRittWu?| |leftRegularRepresentation| + |separant| |log10| |rootOf| |complexElementary| |swapRows!| + |generalLambert| |reducedDiscriminant| |readIfCan!| + |rewriteSetByReducingWithParticularGenerators| |printCode| + |normFactors| |bitand| |lambert| |infinity| |fortranTypeOf| |central?| + |putProperty| |OMgetBind| |zero?| |rootRadius| + |exprHasLogarithmicWeights| |extractClosed| |bitior| |resize| + |quartic| |csubst| |compound?| |f02aaf| |ScanFloatIgnoreSpacesIfCan| + |genericLeftNorm| |curryRight| |s17ajf| |keys| |viewWriteAvailable| + |unexpand| |idealiser| |xn| |useEisensteinCriterion?| |tanAn| |makeop| + |outputFloating| |iicsc| |prod| |shiftRoots| |kernel| |writable?| + |map| |univariatePolynomialsGcds| |infLex?| |isQuotient| |taylorIfCan| + |FormatRoman| |cosIfCan| |symmetricRemainder| |alphabetic?| |region| + |zeroSquareMatrix| |list| |setRealSteps| |modularFactor| + |bivariateSLPEBR| |showTheRoutinesTable| |trapezoidalo| |vconcat| + |print| |lhs| |janko2| |factorOfDegree| |tRange| |draw| |KrullNumber| + |resolve| |cExp| |rowEchelonLocal| |f01bsf| |color| |quoByVar| + |iterationVar| |rhs| |nextPrime| |skewSFunction| |children| + |basisOfRightAnnihilator| |d01ajf| |polyRDE| |updatD| |OMsetEncoding| + |number?| |Gamma| |ramified?| |iisqrt3| |red| |extractPoint| + |currentEnv| |qinterval| |palglimint| |failed?| |B1solve| |f04adf| + |gcdPrimitive| |extractIfCan| |rootSplit| |multiple?| + |leadingBasisTerm| |localReal?| |convert| |lSpaceBasis| |OMputEndAttr| + |OMUnknownCD?| |height| |just| |lazyPquo| |s01eaf| |numberOfCycles| + |internalAugment| |makeObject| |nextLatticePermutation| |irVar| + |setIntersection| |roughSubIdeal?| |sts2stst| |fortranLinkerArgs| + |OMputAttr| |uniform01| |tubeRadius| |ksec| |s14aaf| |coef| |light| + |mainValue| |signAround| |isOp| |palgRDE| |parts| + |removeIrreducibleRedundantFactors| |factorSFBRlcUnit| |euler| + |vectorise| |dom| |reduceBasisAtInfinity| |readByte!| |OMgetEndBind| + |graphStates| |halfExtendedSubResultantGcd2| |binary| |solid| + |quadratic| |rename!| |An| |enterPointData| Y |imagI| |addiag| + |weighted| |eigenMatrix| |eq?| |addMatch| |abelianGroup| |someBasis| + |quote| |fglmIfCan| |printStats!| |completeHermite| |lazyIntegrate| + |iiacoth| |OMputEndBVar| |split!| |label| |perfectSquare?| + |rationalPower| |getButtonValue| |lagrange| |basisOfMiddleNucleus| + |explicitlyFinite?| |changeName| |totolex| |torsion?| |entry| + |initializeGroupForWordProblem| |tube| |createMultiplicationMatrix| + |mapGen| |leftDiscriminant| |iisech| |contains?| |palgextint0| + |square?| |elaborate| |zeroMatrix| |indicialEquation| |coefficients| + |column| |lieAlgebra?| |interReduce| |bat1| |expandPower| |lfunc| + |normalDenom| |OMputAtp| |divideExponents| |push| |c05nbf| |bringDown| + |rootKerSimp| |critMonD1| |showTheIFTable| |ParCond| |mainVariables| + |trace2PowMod| |fortranLiteralLine| |vark| |lazyPseudoDivide| + |intChoose| |yCoordinates| |firstNumer| |generalTwoFactor| + |clearDenominator| |d01bbf| |addPointLast| |graphImage| + |wordsForStrongGenerators| |isPower| |incr| |simplify| + |makeGraphImage| |lex| |chiSquare1| |OMgetAttr| |sdf2lst| |one?| + |writeBytes!| |middle| |connect| |constructor| |curry| |hi| + |externalList| |var2StepsDefault| |minIndex| |tail| |quotientByP| + |areEquivalent?| |mainPrimitivePart| |headReduced?| |fullDisplay| + |rowEch| |moebiusMu| |indices| |semiResultantEuclidean1| |option| + |inrootof| |close!| |Aleph| |sign| |showSummary| |orthonormalBasis| + |youngDiagram| |firstDenom| |subNode?| |halfExtendedResultant1| + |rangeIsFinite| |ReduceOrder| |cycleTail| |makeFloatFunction| |solve| + |rules| |units| |e02daf| |comparison| |irForm| |leftMinimalPolynomial| + |top| |resetAttributeButtons| |cap| |rotatex| |d02bhf| |iiasec| + |showAttributes| |partitions| |normalise| |triangularSystems| + |brillhartTrials| |continue| |style| |exprToGenUPS| |constantLeft| + |setlast!| |normalizeIfCan| |monicModulo| |primintegrate| + |triangular?| |redPol| |leftPower| |oddlambert| |polar| |elColumn2!| + |maxPoints| |setPoly| |s17dcf| |box| |head| |name| |unknown| + |numberOfComponents| |writeByte!| |selectPDERoutines| |find| + |tanintegrate| |distFact| |alphanumeric| |comment| + |discriminantEuclidean| |separateDegrees| |body| |getVariableOrder| + |presuper| |lighting| |iisinh| |rst| |code| |Ci| + |createLowComplexityTable| |ignore?| |curveColor| |typeList| + |OMParseError?| |semiDiscriminantEuclidean| |getZechTable| + |triangulate| |minPoints3D| |approximants| |setLabelValue| + |selectMultiDimensionalRoutines| |irDef| |null| |hue| |compose| + |nsqfree| |OMputVariable| |isobaric?| |minPoints| |pdf2ef| + |BasicMethod| |nodeOf?| |delta| |not| EQ |attributeData| |more?| + |e01bef| |revert| |nextColeman| |compBound| |increment| |root?| + |nextPartition| |and| |complexEigenvectors| |quasiRegular?| + |splitLinear| |fullPartialFraction| |matrixConcat3D| |generate| + |monic?| |numerators| |lazyVariations| |henselFact| |or| |inR?| + |elements| |pointColorPalette| |e02adf| |showIntensityFunctions| + |c06fpf| |primeFrobenius| |cRationalPower| |lyndon| |linearPart| |xor| + |exprToXXP| |invmultisect| |pr2dmp| |assert| |dmpToP| |traceMatrix| + |incrementBy| |mainContent| |port| |mainCoefficients| |branchIfCan| + |pattern| |case| |lfinfieldint| |coordinates| |e04fdf| |trigs| |ord| + |expand| |leftRemainder| |complexExpand| |symmetricPower| + |radicalOfLeftTraceForm| |Zero| |s17dgf| |rotate| |digit| |unparse| + |getProperties| |hasoln| |filterWhile| |selectFiniteRoutines| + |removeRedundantFactorsInContents| |t| |printHeader| |One| + |OMgetObject| |symbol?| |fprindINFO| |f04qaf| |build| |horizConcat| + |filterUntil| |clipWithRanges| |simplifyExp| |pseudoQuotient| |lambda| + |Nul| |exponentialOrder| |axesColorDefault| |cCot| |corrPoly| |search| + |lineColorDefault| |euclideanSize| |select| |shallowExpand| + |errorKind| |drawComplexVectorField| |message| |reopen!| + |currentCategoryFrame| |userOrdered?| |d03edf| |e04jaf| |cAsin| + |reindex| |reverse!| |prefixRagits| |f02aef| |pToDmp| + |symmetricDifference| |c06gbf| |f02aff| |setelt!| |algDsolve| + |OMreadFile| |internalSubPolSet?| |coerceS| |nrows| |elementary| + |oddintegers| |thenBranch| |f04mbf| |f01qdf| |roughUnitIdeal?| |curve| + |nullary| |ncols| |elt| |rur| |deriv| |nonSingularModel| |critB| + |divisor| |f04faf| |retract| |cyclicSubmodule| |smith| |ran| + |representationType| |f02axf| |s15aef| |extend| |dilog| |e02dff| + |zero| |sin2csc| |sqfrFactor| |supRittWu?| |lazyGintegrate| |dioSolve| + |constantToUnaryFunction| |singularAtInfinity?| |subTriSet?| |cons| + |sin| |largest| |makeRecord| |Si| |intcompBasis| |removeZeroes| + |reseed| |recip| |nothing| |f01ref| |And| |cos| |testModulus| + |OMputFloat| |rdHack1| |nonLinearPart| |supersub| |scopes| + |internalSubQuasiComponent?| |Or| |list?| |tan| |polygon| |repeating| + |OMencodingUnknown| |odd?| |setOrder| |coefChoose| |radicalRoots| + |Not| |cot| |ode| |f2st| |lintgcd| |components| |pascalTriangle| + |stronglyReduced?| |numberOfIrreduciblePoly| |createRandomElement| + |condition| |totalLex| |sec| |atom?| |balancedBinaryTree| + |clipBoolean| |even?| |mergeFactors| |ode2| |constantOperator| |csc| + |OMgetApp| |cycleRagits| |resultant| |selectODEIVPRoutines| |d02ejf| + |zeroSetSplitIntoTriangularSystems| |stiffnessAndStabilityFactor| + |f07aef| |interpret| |e02bbf| |source| |asin| |mapUnivariateIfCan| + |quasiAlgebraicSet| |safetyMargin| |iiacosh| |s18adf| |myDegree| + |enumerate| |dec| |cycle| |acos| |minimalPolynomial| |solveInField| + |HermiteIntegrate| |OMputEndAtp| |stoseSquareFreePart| |solid?| + |OMgetVariable| |atan| |plusInfinity| |totalGroebner| |selectsecond| + |setValue!| |stripCommentsAndBlanks| |dequeue| |mainMonomial| + |fortranLiteral| |internalZeroSetSplit| |acot| |minusInfinity| + |subHeight| |ratDsolve| |char| |OMgetAtp| |withPredicates| + |nextPrimitivePoly| |solveid| |cyclic| |asec| |heapSort| |maxColIndex| + |makeSeries| |null?| |quasiRegular| |iiacot| |shiftLeft| + |separateFactors| |acsc| |target| |nullary?| |integerBound| |hexDigit| + |hyperelliptic| |irreducibleRepresentation| |unaryFunction| + |pointPlot| |sinh| |pomopo!| |resultantReduitEuclidean| + |outputMeasure| |rewriteIdealWithRemainder| |clearFortranOutputStack| + |setMaxPoints| |leadingExponent| |round| |has?| |cosh| |reverseLex| + |rischDEsys| |semicolonSeparate| |hasHi| |setright!| + |numberOfVariables| |adaptive| |cyclicParents| |type| + |numberOfOperations| |tanh| |whitePoint| |dimension| |binaryTree| + |setvalue!| |outputList| |squareFreePrim| |closedCurve| |critBonD| + |c06ekf| |multinomial| |coth| |conical| |element?| + |definingInequation| |bumprow| |genericLeftTrace| |physicalLength!| + |d02cjf| |splitDenominator| |float| |qelt| |polynomialZeros| + |OMgetEndError| |roman| |sech| |LazardQuotient2| |status| |upperCase| + |second| |capacity| |qsetelt| |lastSubResultant| |categoryFrame| + |scaleRoots| |internalIntegrate0| |partialQuotients| |rowEchLocal| + |csch| |mapmult| |monicRightFactorIfCan| |third| |qqq| |double?| + |resetBadValues| |fractionPart| |setEmpty!| |xRange| |back| + |leftFactor| |asinh| |tracePowMod| |stoseInvertible?reg| |atanhIfCan| + |aQuartic| |binarySearchTree| |toroidal| |compile| |bytes| + |lowerCase!| |yRange| |monicDivide| |void| |acosh| |squareFree| + |dictionary| |polygon?| |completeEchelonBasis| |minordet| + |balancedFactorisation| |cyclePartition| |pointColorDefault| |assign| + |zRange| |ceiling| |weights| |atanh| |limitPlus| |sn| |f02agf| + |makeTerm| |expt| |reflect| |map!| |selectAndPolynomials| + |setFieldInfo| |paren| |prem| |shade| |acoth| |doubleComplex?| + |OMclose| |stirling2| |unitCanonical| |qsetelt!| |newSubProgram| + |leftFactorIfCan| |mulmod| |f02bbf| |pointSizeDefault| + |toseInvertible?| |asech| |iibinom| |interpretString| |optAttributes| + |cCos| |convergents| |ScanFloatIgnoreSpaces| |extractTop!| + |unprotectedRemoveRedundantFactors| |imagE| + |createLowComplexityNormalBasis| |rewriteIdealWithHeadRemainder| + |subQuasiComponent?| |doubleRank| |decompose| |screenResolution3D| + |semiLastSubResultantEuclidean| |sechIfCan| GE |tab| |UnVectorise| + |accuracyIF| |multiple| |inspect| |power| |leviCivitaSymbol| + |cyclotomicFactorization| |iflist2Result| |rightAlternative?| + |duplicates| |algintegrate| GT |meshPar2Var| |applyQuote| |linear?| + |complementaryBasis| |extendedint| |c06gcf| |viewWriteDefault| + |UP2ifCan| |c06gsf| |f07fdf| LE |endOfFile?| |primes| |jordanAlgebra?| + |createPrimitiveElement| |logIfCan| |enterInCache| |factorSquareFree| + |predicate| |operators| |associates?| |characteristicPolynomial| + |monomials| LT |acsch| |f02akf| |integralDerivationMatrix| + |rootDirectory| |kovacic| |f04jgf| |insertionSort!| + |radicalEigenvector| |startTableInvSet!| |determinant| |diagonal?| + |positiveSolve| |float?| |ruleset| |order| |iidsum| |iiacsc| |iitan| + |controlPanel| |scalarTypeOf| |componentUpperBound| |exprToUPS| + |zeroDimPrimary?| |basisOfLeftNucloid| |subst| |leastAffineMultiple| + |implies| |entry?| |dequeue!| |generic?| |setAdaptive| |rational?| + |eyeDistance| |prinshINFO| |setrest!| |option?| |figureUnits| + |matrixGcd| |innerEigenvectors| |c06fqf| |index?| |vspace| + |seriesSolve| |drawCurves| |setFormula!| |degree| |directory| + |stoseLastSubResultant| |noValueMode| |exQuo| |suchThat| + |LyndonWordsList1| |mathieu23| |isExpt| |tree| |index| |gcdprim| + |trivialIdeal?| |explicitlyEmpty?| |sample| |lexico| |algSplitSimple| + |leftTraceMatrix| |adaptive3D?| |interactiveEnv| |invmod| |isPlus| + |subSet| |integral?| |complexNumericIfCan| |initial| |simpsono| + |realElementary| |f01qef| |transcendentalDecompose| |jacobi| |remove!| + |minPoly| |setsubMatrix!| |asinIfCan| |radicalEigenvectors| + |chainSubResultants| |df2mf| |partition| |tableForDiscreteLogarithm| + |sumOfKthPowerDivisors| |leftLcm| |cot2tan| |pair| |basisOfCenter| + |unrankImproperPartitions0| |raisePolynomial| |physicalLength| + |objects| |infRittWu?| |complex?| |rightTrim| |fortranDouble| + |safeFloor| |bright| |sinhcosh| |f02ajf| |hdmpToDmp| |parameters| + |fTable| |imagk| |varselect| |rroot| |bits| |base| |leftTrim| |cAcot| + |elRow2!| |symFunc| |littleEndian| |zeroDimPrime?| |arg1| + |permutation| |pushuconst| |iiperm| |backOldPos| |splitSquarefree| + |ffactor| |crest| |OMputApp| |eval| |listConjugateBases| |setfirst!| + |arg2| |associatorDependence| |rightCharacteristicPolynomial| + |lowerPolynomial| |identitySquareMatrix| |charClass| |setOfMinN| + |relerror| |iExquo| |sech2cosh| |dot| |unravel| |quasiComponent| + |associative?| |denominator| |primextendedint| + |semiIndiceSubResultantEuclidean| |randomLC| |moduleSum| |rename| + |tanh2trigh| |conditions| |LiePoly| |supDimElseRittWu?| + |constantIfCan| |less?| |rightLcm| |error| |realSolve| + |padicallyExpand| |returnType!| |bag| |unknownEndian| |badValues| + |match| |rightExactQuotient| |diophantineSystem| |removeDuplicates| + |poisson| |explicitEntries?| |completeHensel| |SturmHabicht| + |gcdcofact| |equation| |e04ycf| |isImplies| |extendedSubResultantGcd| + |aLinear| |prime?| |generalizedInverse| |subResultantChain| |cfirst| + |linearAssociatedLog| |iicsch| |f07adf| |simplifyPower| |besselI| + |colorFunction| |voidMode| |removeSuperfluousQuasiComponents| + |function| |overbar| |cSin| |optimize| |univariateSolve| + |principalIdeal| |purelyAlgebraicLeadingMonomial?| |adaptive?| + |stFunc1| |genus| |addPoint2| |rarrow| |setchildren!| |OMputBind| + |s14abf| |frst| |removeSquaresIfCan| |dfRange| |intensity| |decimal| + |generic| |lllip| |viewZoomDefault| |readInt16!| BY |doubleResultant| + |s19acf| |solveRetract| |factorAndSplit| |trueEqual| |pushucoef| + |cyclicGroup| |bezoutResultant| |parametric?| |leftExtendedGcd| + |rightRankPolynomial| |alternative?| |moebius| |nthExponent| + |compiledFunction| |sort!| |bumptab1| |associatedEquations| |randnum| + |palgRDE0| |jacobian| |OMcloseConn| |support| |e01sff| + |deleteRoutine!| |explimitedint| |reducedSystem| |multiEuclideanTree| + |lyndon?| |ef2edf| |bubbleSort!| |rotatey| |duplicates?| + |restorePrecision| |solveLinearPolynomialEquationByRecursion| + |useSingleFactorBound| |totalDegree| |sort| |minimumExponent| + |inGroundField?| |OMgetEndObject| |commutative?| |acschIfCan| + |RemainderList| |e01sbf| |orbits| |radPoly| |leftRecip| |tanQ| + |mkAnswer| |kroneckerDelta| |rem| |birth| |derivative| |consnewpol| + |byteBuffer| |cosh2sech| |setColumn!| |genericLeftMinimalPolynomial| + |rightDivide| |properties| |intPatternMatch| |decrease| |quo| + |fixedPoints| |UpTriBddDenomInv| |BumInSepFFE| |sizeLess?| + |rowEchelon| |id| |bigEndian| NOT |rk4f| |mathieu12| |translate| + |OMwrite| |bumptab| |removeCoshSq| |rightUnits| + |stoseInternalLastSubResultant| |differentialVariables| |real?| |lo| + |sizeMultiplication| OR |qualifier| |random| |shellSort| + |extendedResultant| |cosSinInfo| |div| |indiceSubResultantEuclidean| + |legendreP| |fmecg| |increasePrecision| |f07fef| |lcm| AND + |identityMatrix| |numberOfImproperPartitions| |connectTo| |mpsode| + |cCsc| |delete| |exquo| |roughEqualIdeals?| |integralLastSubResultant| + |linearAssociatedExp| |nthFactor| |prolateSpheroidal| |rightRemainder| + |interpolate| |point?| |monomRDE| |s21baf| ~= |binaryFunction| + |Hausdorff| |f02awf| |normalize| |lift| |represents| |position!| + |primlimitedint| |approxSqrt| |append| |outlineRender| + |rightExtendedGcd| |multiplyCoefficients| |#| |uniform| + |clearTheSymbolTable| |extendIfCan| |univariatePolynomial| |reduce| + |polyPart| |lprop| |initials| |composite| |gcd| |radicalSolve| + |integerIfCan| |showRegion| ~ |factor1| |changeMeasure| + |selectOptimizationRoutines| |leaf?| |unitNormalize| |OMsend| |false| + |untab| |atoms| |flagFactor| |fractionFreeGauss!| |gcdPolynomial| + |binding| |multMonom| |f02fjf| |OMlistCDs| |binaryTournament| |e01baf| + |subspace| |computeBasis| |part?| |solveLinear| |f04arf| |apply| + |anticoord| |e02baf| |e01saf| |f02xef| |cAtan| |e02zaf| |epilogue| + |numberOfComputedEntries| |/\\| |OMputEndObject| |topPredicate| + |orbit| |matrix| |first| |leftZero| |mainDefiningPolynomial| |hconcat| + |selectOrPolynomials| |branchPointAtInfinity?| |llprop| |usingTable?| + |toseLastSubResultant| |leastMonomial| |\\/| |rest| |hspace| |surface| + |nullity| |unvectorise| |lp| |iicos| |symmetric?| |mainMonomials| + |sinh2csch| |quoted?| |neglist| |regime| |s21bcf| + |isAbsolutelyIrreducible?| |host| |e02gaf| |coerce| * |mainKernel| + |exp1| |realRoots| |pmintegrate| |push!| |readable?| |gcdcofactprim| + |mapUp!| |coerceP| |palgextint| |htrigs| |construct| |primextintfrac| + |categoryMode| |getSyntaxFormsFromFile| |OMUnknownSymbol?| + |constDsolve| |goodnessOfFit| |semiResultantEuclidean2| + |factorSquareFreePolynomial| |redmat| |numer| |dualSignature| + |relationsIdeal| |bfEntry| |generator| |generalInfiniteProduct| + |create| |optpair| |sturmVariationsOf| |elliptic?| |denom| + |multiplyExponents| |virtualDegree| |PollardSmallFactor| |zag| + |transform| = |problemPoints| |subtractIfCan| |definingPolynomial| + |decreasePrecision| |meshPar1Var| |ip4Address| |s17ahf| + |rationalPoints| |showScalarValues| |linearAssociatedOrder| |mapdiv| + |diag| |redpps| |setProperty| |polCase| |perspective| |tValues| |pi| + |viewport2D| |byte| |normalDeriv| |credPol| FG2F < |digits| + |monicRightDivide| |dflist| |plenaryPower| |schwerpunkt| |rubiksGroup| + |rightScalarTimes!| |width| |expressIdealMember| > |padicFraction| + |selectPolynomials| |green| |infieldIntegrate| |SturmHabichtMultiple| + |nthr| |removeSinhSq| |fillPascalTriangle| |s19aaf| + |bivariatePolynomials| |cschIfCan| <= |leftDivide| |overlabel| |cSinh| + |palgint0| |univariate?| |pmComplexintegrate| |bandedHessian| + |beauzamyBound| |in?| |nthFlag| |mapMatrixIfCan| |autoReduced?| >= + |numerator| |pushNewContour| |countRealRoots| |product| |routines| + |iitanh| |genericRightTraceForm| |recoverAfterFail| |algebraicSort| + |iicosh| |integralBasisAtInfinity| |viewThetaDefault| |infieldint| + |listBranches| |ratDenom| |e04gcf| |setStatus| |zoom| |setUnion| + |purelyTranscendental?| |firstSubsetGray| + |semiSubResultantGcdEuclidean2| |modifyPointData| + |lazyPseudoRemainder| |diagonals| |iiacsch| |startTableGcd!| + |OMputEndBind| |OMconnOutDevice| |thetaCoord| |OMgetError| |pop!| + |showFortranOutputStack| |halfExtendedResultant2| |over| + |countRealRootsMultiple| + |conjug| |lookupFunction| + |rightFactorCandidate| |iiasech| |value| |shuffle| |clearCache| + |e02dcf| |numberOfComposites| |call| |numeric| |twist| |int| |d02raf| + |showArrayValues| - |scan| |block| |recur| |quadraticNorm| + |OMopenString| |factorByRecursion| |argumentListOf| |radical| |d02bbf| + / |optional| |symmetricGroup| |taylorRep| |commaSeparate| |xCoord| + |belong?| |scripted?| |dihedral| |fill!| |nodes| |sparsityIF| + |transcendenceDegree| |setDifference| |reduceByQuasiMonic| |log| + |structuralConstants| |laurentRep| |getRef| |listexp| + |trailingCoefficient| |maxRowIndex| |besselJ| + |nextNormalPrimitivePoly| |legendre| |primitivePart!| |coleman| + |expint| |fintegrate| |remainder| |removeSinSq| |sinIfCan| |leftMult| + |sec2cos| |constantCoefficientRicDE| |normal01| |signature| + |elaborateFile| |noKaratsuba| |setelt| |btwFact| |mathieu22| + |roughBase?| |OMmakeConn| |rotate!| |zerosOf| |mapSolve| + |integralCoordinates| |interval| |quotient| |prepareSubResAlgo| + |tanSum| |magnitude| |digit?| |integers| |declare!| |integer?| + |degreeSubResultant| |initiallyReduced?| |acothIfCan| |cyclicEntries| + |symmetricSquare| |d01akf| |copy| |OMencodingBinary| |shiftRight| + |e04naf| |coordinate| |cothIfCan| |cyclotomic| |complexNormalize| + |infix| |pToHdmp| |closed| |resultantEuclidean| |rombergo| |polyRicDE| + |latex| |insert!| |rootProduct| |c02agf| |indicialEquationAtInfinity| + |scanOneDimSubspaces| |csc2sin| |datalist| |iCompose| |diff| + |invertible?| |preprocess| |arbitrary| |getCode| |putGraph| + |choosemon| |asinhIfCan| |computeInt| |badNum| |zeroVector| |copies| + |powers| |functionIsContinuousAtEndPoints| |enqueue!| |conjugate| + |viewDeltaYDefault| |tanIfCan| |groebner| |node?| |flexible?| + |genericLeftDiscriminant| |coerceL| |options| |minimize| |members| + |createPrimitiveNormalPoly| |extensionDegree| |reciprocalPolynomial| + |factorFraction| |bipolarCylindrical| |delete!| + |resultantEuclideannaif| |exponents| |phiCoord| |s17akf| |numFunEvals| + |linGenPos| |imagj| |leadingTerm| |row| |setImagSteps| + |parabolicCylindrical| |mainSquareFreePart| |isAtom| |getCurve| + |laguerre| |karatsuba| |multiset| |nil?| |cTanh| + |removeRoughlyRedundantFactorsInPols| |segment| + |leftCharacteristicPolynomial| |crushedSet| |complexLimit| |tanh2coth| + |primitivePart| |output| |string| |iipow| |rightOne| |RittWuCompare| + |cubic| |basisOfCentroid| |hcrf| |complement| |ListOfTerms| |content| + |cAsinh| UTS2UP |exteriorDifferential| |degreePartition| |factorials| + |tan2trig| |stoseInvertible?| |makeViewport2D| |sinhIfCan| + |getConstant| |numberOfDivisors| + |removeRoughlyRedundantFactorsInContents| |sincos| |LyndonBasis| + |morphism| |stopTableInvSet!| |e02akf| |OMsupportsSymbol?| + |chineseRemainder| |cAsec| |alphanumeric?| |bat| |sup| |roughBasicSet| + |cond| |bombieriNorm| |modularGcd| |OMsupportsCD?| |iiasinh| |pow| + |cartesian| |branchPoint?| |modifyPoint| |simpson| |getStream| + |setLength!| |possiblyNewVariety?| |removeSuperfluousCases| + |subscript| |asecIfCan| |gensym| |inverse| |irCtor| |symmetricTensors| + |rationalPoint?| |mathieu11| |omError| |linearPolynomials| + |LazardQuotient| |nextPrimitiveNormalPoly| |cCosh| |SFunction| + |readInt8!| |invertIfCan| |OMconnectTCP| |jordanAdmissible?| + |dAndcExp| |upperCase!| |taylorQuoByVar| |certainlySubVariety?| + |s17dlf| |subset?| |monomialIntegrate| |squareTop| |OMread| + |lastSubResultantEuclidean| |sPol| |digamma| |leftQuotient| |reorder| + |LyndonCoordinates| |sylvesterSequence| |algebraicDecompose| + |absolutelyIrreducible?| |f02adf| |exactQuotient!| |remove| |clip| + |power!| |maxint| |mvar| |negative?| |curveColorPalette| + |nativeModuleExtension| |primPartElseUnitCanonical!| + |commonDenominator| |lfintegrate| |selectIntegrationRoutines| + |deepestInitial| |loopPoints| |sh| |checkForZero| |defineProperty| + |dihedralGroup| |critT| |mappingMode| |bitCoef| |limitedint| + |createIrreduciblePoly| |setCondition!| |center| |last| |rightUnit| + |leftScalarTimes!| |copy!| |signatureAst| + |generalizedContinuumHypothesisAssumed| |move| |aspFilename| + |compactFraction| |assoc| |leftOne| + |solveLinearPolynomialEquationByFractions| |safeCeiling| |diagonal| + |idealSimplify| |FormatArabic| |irreducible?| |integral| + |OMconnInDevice| |wholeRagits| |formula| |univcase| |d01alf| + |associatedSystem| |factorGroebnerBasis| |internalDecompose| + |minGbasis| |eigenvectors| |getGraph| |log2| |prevPrime| + |internalIntegrate| |equiv| |linearlyDependentOverZ?| |lifting1| + |normDeriv2| |equality| |closeComponent| |rightMinimalPolynomial| + |lyndonIfCan| |readLineIfCan!| |maxdeg| |deepExpand| |augment| + |replace| |setLegalFortranSourceExtensions| + |semiResultantEuclideannaif| |testDim| |rightFactorIfCan| + |hostPlatform| |divideIfCan| |createNormalPoly| |constantKernel| + |setprevious!| |iiasin| |brillhartIrreducible?| + |linearDependenceOverZ| |listLoops| |jokerMode| |computePowers| + |zCoord| |leftNorm| |norm| |getProperty| |twoFactor| |modTree| + |OMgetSymbol| |patternVariable| |forLoop| |putProperties| |s20adf| + |initiallyReduce| |setVariableOrder| |integralAtInfinity?| + |reducedQPowers| |cCsch| |possiblyInfinite?| |sizePascalTriangle| + |d01gbf| |Lazard| |printTypes| |findCycle| |generalSqFr| + |seriesToOutputForm| |updateStatus!| |swap| |subResultantsChain| + |viewPhiDefault| |weight| |sin?| |chebyshevU| |size?| |aromberg| + |OMgetFloat| |open?| |singular?| |leftAlternative?| + |inverseIntegralMatrix| |gradient| |exists?| |lazyResidueClass| + |tubePlot| |radix| |sumSquares| |ref| |readUInt16!| |scale| + |primintfldpoly| |wordInStrongGenerators| |cAtanh| |mappingAst| + |maxIndex| |outputForm| |minus!| |extractSplittingLeaf| + |squareFreeLexTriangular| |overset?| |pair?| |highCommonTerms| + |nextsousResultant2| |create3Space| |mapCoef| |f01maf| |eof?| + |zeroDimensional?| |getOperator| |argumentList!| |typeLists| |s17adf| + |commutativeEquality| |var1Steps| |resetVariableOrder| + |purelyAlgebraic?| |makeYoungTableau| |pastel| |baseRDEsys| |parent| + |collectUnder| |variationOfParameters| |clearTheFTable| + |quotedOperators| |GospersMethod| |palgintegrate| |exponential| + |child| |cyclotomicDecomposition| |leaves| |setAdaptive3D| |before?| + |empty| |upperCase?| |iifact| |transcendent?| |rootPoly| |complexForm| + |normal?| |univariatePolynomials| |setErrorBound| |cot2trig| |polyred| + |submod| |nil| |yellow| |meshFun2Var| |cAcsch| |d01amf| |macroExpand| + |coshIfCan| |zeroSetSplit| |OMReadError?| |integralBasis| |s18def| + |associator| |nextNormalPoly| |tryFunctionalDecomposition?| + |writeUInt8!| |addPoint| |knownInfBasis| |f02abf| + |createMultiplicationTable| |sub| |characteristicSet| + |leftExactQuotient| |outputGeneral| |coerceImages| |makeSketch| + |mkcomm| |e02agf| |quasiMonicPolynomials| |fortranCarriageReturn| + |isOpen?| |approximate| |extension| |fractRagits| |cardinality| + |getOrder| |OMgetEndApp| |lowerCase?| |select!| |nextsubResultant2| + |sum| |dominantTerm| |complex| |edf2ef| |minset| |imports| + |iteratedInitials| |stosePrepareSubResAlgo| |reducedForm| + |fortranCompilerName| |showAllElements| |padecf| |drawToScale| + |factorList| |viewSizeDefault| |localIntegralBasis| |iilog| + |ellipticCylindrical| |getIdentifier| |lfextlimint| |check| |bitTruth| + |acscIfCan| |headRemainder| |rank| |mapExpon| |wronskianMatrix| + |dmpToHdmp| |returns| |flexibleArray| |lookup| |point| |rk4a| + |discriminant| |cn| |divideIfCan!| |countable?| |vertConcat| |s19abf| + |debug| |fortranReal| |failed| |setRow!| |degreeSubResultantEuclidean| + |nilFactor| |qfactor| |isEquiv| |cTan| |argument| |Vectorise| D + |coercePreimagesImages| |iprint| |rightRegularRepresentation| + |lowerBound| |space| |outputAsTex| |evenlambert| |eulerE| |d02kef| + |leftTrace| |ridHack1| |modulus| |series| |basisOfLeftNucleus| + |squareFreeFactors| |lflimitedint| |e02bdf| |evaluateInverse| + |romberg| |uncouplingMatrices| |evaluate| |difference| |OMgetBVar| + |semiResultantReduitEuclidean| |setMinPoints| |genericRightNorm| + |normalForm| |inputOutputBinaryFile| |extractProperty| |mapDown!| + |cycles| |reducedContinuedFraction| |expandTrigProducts| |powmod| + |inverseIntegralMatrixAtInfinity| |resultantnaif| |boundOfCauchy| + |reify| |iisqrt2| |specialTrigs| |super| |perfectNthRoot| |lists| + |systemSizeIF| |fixedPointExquo| |coth2tanh| + |createNormalPrimitivePoly| |fortranInteger| |solve1| |min| + |bezoutMatrix| |sayLength| |coth2trigh| |prinb| |s13acf| |rk4qc| + |parseString| |coord| |listRepresentation| |printInfo| |eigenvector| + |deepestTail| |expenseOfEvaluation| + |dimensionOfIrreducibleRepresentation| |checkRur| |leftUnit| + |monomial?| |pushdterm| |ParCondList| |splitConstant| + |monicCompleteDecompose| |rightPower| |rootsOf| |hasTopPredicate?| + |getMultiplicationTable| |monomialIntPoly| |checkPrecision| + |complexEigenvalues| |sqfree| |substring?| |unitVector| + |matrixDimensions| |key| |bfKeys| |satisfy?| |nor| |rotatez| + |fortranLogical| |conjugates| |ldf2vmf| |predicates| |froot| + |whileLoop| |tensorProduct| |expintfldpoly| |leader| |nary?| + |integralMatrix| |overlap| |pointData| |suffix?| + |solveLinearPolynomialEquation| |filename| |graphCurves| + |mightHaveRoots| |argscript| |intersect| |iidprod| |genericPosition| + |minPol| |powerAssociative?| |makeResult| |symbolTable| + |loadNativeModule| |drawComplex| |zeroDim?| |mdeg| |distribute| + |insertBottom!| |rightNorm| |df2st| |primitiveElement| |prefix?| + |floor| |algebraicVariables| |parse| |mapBivariate| |e02def| |tableau| + |plus| |fortran| |OMencodingXML| |karatsubaOnce| |shufflein| |pdct| + |reduceLODE| |algebraicCoefficients?| |pushFortranOutputStack| + |domainTemplate| |blue| |readLine!| |max| |numericalOptimization| + |leftRankPolynomial| |airyBi| |leastPower| |cAcosh| + |popFortranOutputStack| |rectangularMatrix| |useEisensteinCriterion| + |removeZero| |weakBiRank| |graphState| |presub| |fixPredicate| |plus!| + |octon| |outputAsFortran| |c02aff| |readUInt8!| |wholePart| + |quickSort| |numberOfMonomials| |ddFact| |selectNonFiniteRoutines| + |f04axf| |rspace| |table| |colorDef| |OMreadStr| |cyclicEqual?| + |mindegTerm| |tubePoints| |lexTriangular| |e02aef| |precision| |times| + |inconsistent?| |hostByteOrder| |new| |stopTableGcd!| |swap!| + |semiDegreeSubResultantEuclidean| |mkIntegral| |appendPoint| + |cyclicCopy| |bernoulliB| |removeRedundantFactorsInPols| |viewpoint| + |infix?| |ptree| |oneDimensionalArray| |partialFraction| |printInfo!| + |nthFractionalTerm| |freeOf?| |flatten| |plotPolar| |mask| |e04ucf| + |rationalIfCan| |empty?| |subResultantGcdEuclidean| |addmod| + |quadraticForm| |extract!| |init| |getPickedPoints| |frobenius| + |s15adf| |setButtonValue| |range| |leadingIndex| |multisect| + |viewport3D| |homogeneous?| |functionIsOscillatory| |makeUnit| + |OMunhandledSymbol| |rewriteIdealWithQuasiMonicGenerators| + |selectSumOfSquaresRoutines| |monom| |stFuncN| |numberOfHues| |split| + |atanIfCan| |rootSimp| |setleft!| |critM| |cycleSplit!| |charpol| + |rule| |removeConstantTerm| |findConstructor| |makeVariable| + |setPrologue!| |genericRightMinimalPolynomial| |euclideanNormalForm| + |LyndonWordsList| |laguerreL| |dmp2rfi| |leftRank| |OMputInteger| + |yCoord| |finite?| |functionIsFracPolynomial?| |diagonalProduct| + |groebSolve| |hessian| |common| |wholeRadix| |ratpart| + |removeRoughlyRedundantFactorsInPol| |numberOfChildren| |notelem| + |script| |superHeight| |eigenvalues| |cscIfCan| GF2FG |bsolve| + |ODESolve| |combineFeatureCompatibility| |companionBlocks| + |subPolSet?| |imagJ| |title| |logGamma| |lowerCase| |OMputError| + |setEpilogue!| |pol| |lazyPremWithDefault| |subNodeOf?| |nthExpon| + |var1StepsDefault| |e02bcf| |prologue| |sequences| + |subresultantVector| |left| |vector| |nthCoef| |cAcoth| |f04atf| + |characteristicSerie| |tex| |front| |outerProduct| |d02gaf| + |disjunction| |alternatingGroup| |startTable!| |right| |differentiate| + |rischDE| |setProperties| |exponent| |buildSyntax| + |basisOfRightNucloid| |e| |inverseColeman| |d01anf| |makeViewport3D| + |basis| |extractIndex| |bindings| |alternating| |clipSurface| + |copyInto!| |numberOfFractionalTerms| |internal?| |coHeight| + |hitherPlane| |innerint| |cross| |returnTypeOf| |top!| |deepCopy| + |LowTriBddDenomInv| |escape| |complexSolve| |nextSublist| |makeFR| + |perfectNthPower?| |callForm?| |updatF| |slex| |var2Steps| |anfactor| + |rightRank| |outputAsScript| |lazyEvaluate| |newTypeLists| + |elaboration| |extractBottom!| |chebyshevT| |completeEval| |errorInfo| + |identity| |queue| |e01sef| |trim| |linears| |fracPart| |basicSet| + |repeatUntilLoop| |leadingIdeal| |shift| |unary?| |ricDsolve| + |selectfirst| |shape| |any| |po| |hash| |ipow| |axes| |makeCos| + |sequence| |edf2df| |primlimintfrac| |makeCrit| |packageCall| |count| + |subMatrix| |OMputEndError| |patternMatchTimes| |next| |s17dhf| + LODO2FUN |f04maf| |showTheSymbolTable| |readBytes!| |medialSet| + |module| |fi2df| |upDateBranches| |nextSubsetGray| |OMputEndApp| + |hexDigit?| |variable?| |deleteProperty!| |makeEq| |asechIfCan| + |clearTheIFTable| |concat!| |rationalFunction| |d02gbf| |points| + |blankSeparate| |oddInfiniteProduct| |qroot| |viewDefaults| |symbol| + |monicLeftDivide| |setPredicates| |delay| |doubleDisc| |powerSum| + |arity| |minColIndex| RF2UTS |substitute| |sturmSequence| |expression| + |separate| |probablyZeroDim?| |tan2cot| |extendedEuclidean| |bottom!| + |basisOfNucleus| |normalized?| |df2fi| |critpOrder| |integer| + |genericRightDiscriminant| |elliptic| |viewPosDefault| |cCoth| + |localUnquote| |f2df| |inHallBasis?| |linear| |f04asf| |addBadValue| + |minimumDegree| |sumOfSquares| |viewDeltaXDefault| |atrapezoidal| + |inf| |cAsech| |setScreenResolution3D| |c06frf| |constant?| + |generalizedEigenvector| |getMultiplicationMatrix| |elem?| |isAnd| + |normInvertible?| |relativeApprox| |car| |polynomial| + |rightDiscriminant| |moduloP| |high| |generalizedEigenvectors| + |shallowCopy| |lllp| |permutationRepresentation| |cup| |limit| + |linearlyDependent?| |s17aff| |laurentIfCan| |fibonacci| + |inverseLaplace| |basisOfRightNucleus| |erf| |aQuadratic| |result| + |denomLODE| |cycleLength| |maxrank| |startStats!| |algint| |Ei| + |s21bdf| |li| |makingStats?| |summation| |normalElement| |isTimes| + |computeCycleLength| |c06fuf| |stoseInvertibleSet| |insertMatch| + |deref| |stack| |dimensions| |tower| |isNot| + |lastSubResultantElseSplit| |s21bbf| |upperBound| |simpleBounds?| + |changeVar| |OMputObject| |linSolve| |euclideanGroebner| + |getBadValues| |complete| |optional?| |ode1| |s19adf| |pleskenSplit| + |chiSquare| |swapColumns!| |f01rcf| |normalizeAtInfinity| |isList| + |trigs2explogs| |makeSUP| |multiEuclidean| |character?| |reduction| + |harmonic| |rCoord| |zeroOf| |ranges| |pushdown| |asimpson| |eq| + |rightMult| |seed| |getMatch| |hermite| |chvar| |iter| |s14baf| + |psolve| |dim| |acoshIfCan| |d01aqf| |length| |c05adf| |minrank| + |iiGamma| |triangSolve| |irreducibleFactor| |f01rdf| |low| + |complexNumeric| |refine| |att2Result| |step| |scripts| + |numberOfFactors| |s13aaf| |tablePow| |toScale| |rightQuotient| + |positive?| |basisOfCommutingElements| |infinite?| |findBinding| + |concat| |schema| |irreducibleFactors| |expenseOfEvaluationIF| + |compdegd| |test| |computeCycleEntry| |kernels| |showAll?| + |decomposeFunc| |iiatan| |midpoint| |normalizedAssociate| |f01mcf| + |getDatabase| |aCubic| |divisors| |operator| |OMputString| |iomode| + |pquo| |drawStyle| |halfExtendedSubResultantGcd1| |recolor| |s13adf| + |moreAlgebraic?| |secIfCan| |subResultantGcd| |palgLODE| |gramschmidt| + |powern| |limitedIntegrate| |read!| |acosIfCan| |evenInfiniteProduct| + |stirling1| |integralMatrixAtInfinity| |univariate| |monomRDEsys| + |setTopPredicate| |tanhIfCan| |stoseIntegralLastSubResultant| |tanNa| + |factorsOfCyclicGroupSize| |d01asf| |key?| |generateIrredPoly| + |string?| |imagi| |iiatanh| |bitLength| |tubePointsDefault| |s17aef| + |nullSpace| |bipolar| |eulerPhi| |e01bff| |listYoungTableaus| |prefix| + |fortranDoubleComplex| |setleaves!| |cos2sec| |factor| |currentScope| + |mesh?| |messagePrint| |postfix| |measure| |sortConstraints| |goto| + |intermediateResultsIF| |innerSolve| |sqrt| |makeSin| |s18aef| |imagK| + |createNormalElement| |socf2socdf| |singularitiesOf| + |primPartElseUnitCanonical| |OMlistSymbols| |besselK| |real| + |setPosition| |exptMod| |merge!| |perfectSqrt| |antiAssociative?| + |graeffe| |ldf2lst| |pdf2df| |geometric| |imag| |clipParametric| + |declare| |OMgetEndAttr| |unrankImproperPartitions1| |stop| + |inRadical?| |f02bjf| |gethi| |modularGcdPrimitive| |musserTrials| + |OMopenFile| |directProduct| |squareMatrix| |c06eaf| |karatsubaDivide| + |factorial| |mr| |sncndn| |rootOfIrreduciblePoly| + |standardBasisOfCyclicSubmodule| |SturmHabichtSequence| + |incrementKthElement| |extendedIntegrate| |pseudoRemainder| + |permutationGroup| |rootNormalize| |noncommutativeJordanAlgebra?| + |expPot| SEGMENT |identification| |charthRoot| |brace| |kind| + |superscript| |numberOfNormalPoly| |LiePolyIfCan| |squareFreePart| + |rootPower| |linearDependence| |write!| |categories| |parametersOf| + |changeWeightLevel| |destruct| |jacobiIdentity?| |outputBinaryFile| + |cSec| |op| |spherical| |hasSolution?| |mantissa| |changeBase| + |d01apf| |depth| |derivationCoordinates| |rewriteSetWithReduction| + |d03faf| |subscriptedVariables| |c06ecf| |PDESolve| |typeForm| + |reduced?| |hMonic| |removeCosSq| |plot| |stoseInvertibleSetsqfreg| + |lfextendedint| |opeval| |coefficient| |validExponential| |leftGcd| + |level| |dimensionsOf| |stoseInvertible?sqfreg| |ScanRoman| |pade| + |nthRoot| |times!| |permanent| |cSech| |fortranCharacter| |biRank| + |exprHasWeightCosWXorSinWX| |se2rfi| |algebraic?| |monomial| + |lazyPrem| |conjunction| |dual| |rk4| |sumOfDivisors| |writeInt8!| + |nthRootIfCan| |removeRedundantFactors| |endSubProgram| |multivariate| + |topFortranOutputStack| |f01brf| |cdr| |f02wef| |solveLinearlyOverQ| + |definingEquations| |monicDecomposeIfCan| + |generalizedContinuumHypothesisAssumed?| |cylindrical| |variables| + |critMTonD1| |kmax| |union| |completeSmith| |unitNormal| + |realEigenvectors| |lifting| |composites| |rdregime| |getExplanations| + |genericLeftTraceForm| |antiCommutator| |cotIfCan| |saturate| + |prindINFO| |readUInt32!| |simplifyLog| |adjoint| |toseInvertibleSet| + |resetNew| |innerSolve1| |rightGcd| |numericalIntegration| |npcoef| + |mergeDifference| |commutator| |indicialEquations| |dark| |prime| + |iicot| |setMaxPoints3D| |mirror| |generators| |logical?| |initTable!| + |symbolTableOf| |expandLog| |denomRicDE| |universe| |OMencodingSGML| + |readInt32!| |createGenericMatrix| |hermiteH| |trunc| + |bezoutDiscriminant| |slash| |taylor| |useSingleFactorBound?| + |numFunEvals3D| |bothWays| |comp| |genericRightTrace| |explogs2trigs| + |pile| |collectUpper| |groebner?| |hasPredicate?| |laurent| |newLine| + |rightZero| |divergence| |lazyPseudoQuotient| |Is| |listOfMonoms| + |getOperands| |partialNumerators| |quasiMonic?| |reverse| |puiseux| + |meatAxe| |isMult| |symmetricProduct| |outputArgs| |edf2efi| + |rootBound| |expIfCan| |pointLists| |groebnerIdeal| |e02ddf| + |rational| |stopTable!| |nil| |infinite| |arbitraryExponent| + |approximate| |complex| |shallowMutable| |canonical| |noetherian| + |central| |partiallyOrderedSet| |arbitraryPrecision| + |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| + |additiveValuation| |unitsKnown| |canonicalUnitNormal| + |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| + |commutative|)
\ No newline at end of file diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index 4bae3632..d35d99fc 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5409 +1,5405 @@ -(3238052 . 3485644687) -((-1357 (((-112) (-1 (-112) |#2| |#2|) $) 86) (((-112) $) NIL)) (-3642 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3143 ((|#2| $ (-574) |#2|) NIL) ((|#2| $ (-1248 (-574)) |#2|) 44)) (-2627 (($ $) 80)) (-2868 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-1441 (((-574) (-1 (-112) |#2|) $) 27) (((-574) |#2| $) NIL) (((-574) |#2| $ (-574)) 96)) (-1864 (((-654 |#2|) $) 13)) (-4430 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-2449 (($ (-1 |#2| |#2|) $) 37)) (-1777 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-1594 (($ |#2| $ (-574)) NIL) (($ $ $ (-574)) 67)) (-1549 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-2540 (((-112) (-1 (-112) |#2|) $) 23)) (-2199 ((|#2| $ (-574) |#2|) NIL) ((|#2| $ (-574)) NIL) (($ $ (-1248 (-574))) 66)) (-2840 (($ $ (-574)) 76) (($ $ (-1248 (-574))) 75)) (-3975 (((-781) (-1 (-112) |#2|) $) 34) (((-781) |#2| $) NIL)) (-3506 (($ $ $ (-574)) 69)) (-3167 (($ $) 68)) (-2956 (($ (-654 |#2|)) 73)) (-4157 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 87) (($ (-654 $)) 85)) (-2943 (((-872) $) 92)) (-3390 (((-112) (-1 (-112) |#2|) $) 22)) (-2981 (((-112) $ $) 95)) (-3007 (((-112) $ $) 99))) -(((-18 |#1| |#2|) (-10 -8 (-15 -2981 ((-112) |#1| |#1|)) (-15 -2943 ((-872) |#1|)) (-15 -3007 ((-112) |#1| |#1|)) (-15 -3642 (|#1| |#1|)) (-15 -3642 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2627 (|#1| |#1|)) (-15 -3506 (|#1| |#1| |#1| (-574))) (-15 -1357 ((-112) |#1|)) (-15 -4430 (|#1| |#1| |#1|)) (-15 -1441 ((-574) |#2| |#1| (-574))) (-15 -1441 ((-574) |#2| |#1|)) (-15 -1441 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -1357 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4430 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3143 (|#2| |#1| (-1248 (-574)) |#2|)) (-15 -1594 (|#1| |#1| |#1| (-574))) (-15 -1594 (|#1| |#2| |#1| (-574))) (-15 -2840 (|#1| |#1| (-1248 (-574)))) (-15 -2840 (|#1| |#1| (-574))) (-15 -1777 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4157 (|#1| (-654 |#1|))) (-15 -4157 (|#1| |#1| |#1|)) (-15 -4157 (|#1| |#2| |#1|)) (-15 -4157 (|#1| |#1| |#2|)) (-15 -2199 (|#1| |#1| (-1248 (-574)))) (-15 -2956 (|#1| (-654 |#2|))) (-15 -1549 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2199 (|#2| |#1| (-574))) (-15 -2199 (|#2| |#1| (-574) |#2|)) (-15 -3143 (|#2| |#1| (-574) |#2|)) (-15 -3975 ((-781) |#2| |#1|)) (-15 -1864 ((-654 |#2|) |#1|)) (-15 -3975 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -2540 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3390 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2449 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1777 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3167 (|#1| |#1|))) (-19 |#2|) (-1231)) (T -18)) +(3238358 . 3485684148) +((-1473 (((-112) (-1 (-112) |#2| |#2|) $) 86) (((-112) $) NIL)) (-2748 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3142 ((|#2| $ (-573) |#2|) NIL) ((|#2| $ (-1247 (-573)) |#2|) 44)) (-2176 (($ $) 80)) (-2867 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-1440 (((-573) (-1 (-112) |#2|) $) 27) (((-573) |#2| $) NIL) (((-573) |#2| $ (-573)) 96)) (-1863 (((-653 |#2|) $) 13)) (-1480 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-2446 (($ (-1 |#2| |#2|) $) 37)) (-1776 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-1593 (($ |#2| $ (-573)) NIL) (($ $ $ (-573)) 67)) (-2036 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-1575 (((-112) (-1 (-112) |#2|) $) 23)) (-2198 ((|#2| $ (-573) |#2|) NIL) ((|#2| $ (-573)) NIL) (($ $ (-1247 (-573))) 66)) (-2836 (($ $ (-573)) 76) (($ $ (-1247 (-573))) 75)) (-3974 (((-780) (-1 (-112) |#2|) $) 34) (((-780) |#2| $) NIL)) (-3919 (($ $ $ (-573)) 69)) (-3166 (($ $) 68)) (-2955 (($ (-653 |#2|)) 73)) (-4156 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 87) (($ (-653 $)) 85)) (-2942 (((-871) $) 92)) (-1646 (((-112) (-1 (-112) |#2|) $) 22)) (-2981 (((-112) $ $) 95)) (-3005 (((-112) $ $) 99))) +(((-18 |#1| |#2|) (-10 -8 (-15 -2981 ((-112) |#1| |#1|)) (-15 -2942 ((-871) |#1|)) (-15 -3005 ((-112) |#1| |#1|)) (-15 -2748 (|#1| |#1|)) (-15 -2748 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2176 (|#1| |#1|)) (-15 -3919 (|#1| |#1| |#1| (-573))) (-15 -1473 ((-112) |#1|)) (-15 -1480 (|#1| |#1| |#1|)) (-15 -1440 ((-573) |#2| |#1| (-573))) (-15 -1440 ((-573) |#2| |#1|)) (-15 -1440 ((-573) (-1 (-112) |#2|) |#1|)) (-15 -1473 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1480 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3142 (|#2| |#1| (-1247 (-573)) |#2|)) (-15 -1593 (|#1| |#1| |#1| (-573))) (-15 -1593 (|#1| |#2| |#1| (-573))) (-15 -2836 (|#1| |#1| (-1247 (-573)))) (-15 -2836 (|#1| |#1| (-573))) (-15 -1776 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4156 (|#1| (-653 |#1|))) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -2198 (|#1| |#1| (-1247 (-573)))) (-15 -2955 (|#1| (-653 |#2|))) (-15 -2036 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2198 (|#2| |#1| (-573))) (-15 -2198 (|#2| |#1| (-573) |#2|)) (-15 -3142 (|#2| |#1| (-573) |#2|)) (-15 -3974 ((-780) |#2| |#1|)) (-15 -1863 ((-653 |#2|) |#1|)) (-15 -3974 ((-780) (-1 (-112) |#2|) |#1|)) (-15 -1575 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1646 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2446 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3166 (|#1| |#1|))) (-19 |#2|) (-1230)) (T -18)) NIL -(-10 -8 (-15 -2981 ((-112) |#1| |#1|)) (-15 -2943 ((-872) |#1|)) (-15 -3007 ((-112) |#1| |#1|)) (-15 -3642 (|#1| |#1|)) (-15 -3642 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2627 (|#1| |#1|)) (-15 -3506 (|#1| |#1| |#1| (-574))) (-15 -1357 ((-112) |#1|)) (-15 -4430 (|#1| |#1| |#1|)) (-15 -1441 ((-574) |#2| |#1| (-574))) (-15 -1441 ((-574) |#2| |#1|)) (-15 -1441 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -1357 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4430 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3143 (|#2| |#1| (-1248 (-574)) |#2|)) (-15 -1594 (|#1| |#1| |#1| (-574))) (-15 -1594 (|#1| |#2| |#1| (-574))) (-15 -2840 (|#1| |#1| (-1248 (-574)))) (-15 -2840 (|#1| |#1| (-574))) (-15 -1777 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4157 (|#1| (-654 |#1|))) (-15 -4157 (|#1| |#1| |#1|)) (-15 -4157 (|#1| |#2| |#1|)) (-15 -4157 (|#1| |#1| |#2|)) (-15 -2199 (|#1| |#1| (-1248 (-574)))) (-15 -2956 (|#1| (-654 |#2|))) (-15 -1549 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2199 (|#2| |#1| (-574))) (-15 -2199 (|#2| |#1| (-574) |#2|)) (-15 -3143 (|#2| |#1| (-574) |#2|)) (-15 -3975 ((-781) |#2| |#1|)) (-15 -1864 ((-654 |#2|) |#1|)) (-15 -3975 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -2540 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3390 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2449 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1777 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3167 (|#1| |#1|))) -((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3714 (((-1286) $ (-574) (-574)) 41 (|has| $ (-6 -4457)))) (-1357 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-860)))) (-3642 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4457))) (($ $) 91 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4457))))) (-2771 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-860)))) (-3034 (((-112) $ (-781)) 8)) (-3143 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) 60 (|has| $ (-6 -4457)))) (-2165 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4456)))) (-3426 (($) 7 T CONST)) (-2627 (($ $) 93 (|has| $ (-6 -4457)))) (-4423 (($ $) 103)) (-1543 (($ $) 80 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ |#1| $) 79 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4456)))) (-2458 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) 52)) (-1441 (((-574) (-1 (-112) |#1|) $) 100) (((-574) |#1| $) 99 (|has| |#1| (-1113))) (((-574) |#1| $ (-574)) 98 (|has| |#1| (-1113)))) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3790 (($ (-781) |#1|) 70)) (-2742 (((-112) $ (-781)) 9)) (-3618 (((-574) $) 44 (|has| (-574) (-860)))) (-3659 (($ $ $) 90 (|has| |#1| (-860)))) (-4430 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-860)))) (-1606 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2702 (((-574) $) 45 (|has| (-574) (-860)))) (-4257 (($ $ $) 89 (|has| |#1| (-860)))) (-2449 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4203 (((-112) $ (-781)) 10)) (-4136 (((-1172) $) 22 (|has| |#1| (-1113)))) (-1594 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-4308 (((-654 (-574)) $) 47)) (-3336 (((-112) (-574) $) 48)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-2915 ((|#1| $) 43 (|has| (-574) (-860)))) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1942 (($ $ |#1|) 42 (|has| $ (-6 -4457)))) (-2540 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 14)) (-3398 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-4371 (((-654 |#1|) $) 49)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-2199 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1248 (-574))) 71)) (-2840 (($ $ (-574)) 64) (($ $ (-1248 (-574))) 63)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3506 (($ $ $ (-574)) 94 (|has| $ (-6 -4457)))) (-3167 (($ $) 13)) (-1836 (((-546) $) 81 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 72)) (-4157 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-3042 (((-112) $ $) 87 (|has| |#1| (-860)))) (-3018 (((-112) $ $) 86 (|has| |#1| (-860)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-3030 (((-112) $ $) 88 (|has| |#1| (-860)))) (-3007 (((-112) $ $) 85 (|has| |#1| (-860)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-19 |#1|) (-141) (-1231)) (T -19)) +(-10 -8 (-15 -2981 ((-112) |#1| |#1|)) (-15 -2942 ((-871) |#1|)) (-15 -3005 ((-112) |#1| |#1|)) (-15 -2748 (|#1| |#1|)) (-15 -2748 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2176 (|#1| |#1|)) (-15 -3919 (|#1| |#1| |#1| (-573))) (-15 -1473 ((-112) |#1|)) (-15 -1480 (|#1| |#1| |#1|)) (-15 -1440 ((-573) |#2| |#1| (-573))) (-15 -1440 ((-573) |#2| |#1|)) (-15 -1440 ((-573) (-1 (-112) |#2|) |#1|)) (-15 -1473 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1480 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3142 (|#2| |#1| (-1247 (-573)) |#2|)) (-15 -1593 (|#1| |#1| |#1| (-573))) (-15 -1593 (|#1| |#2| |#1| (-573))) (-15 -2836 (|#1| |#1| (-1247 (-573)))) (-15 -2836 (|#1| |#1| (-573))) (-15 -1776 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4156 (|#1| (-653 |#1|))) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -2198 (|#1| |#1| (-1247 (-573)))) (-15 -2955 (|#1| (-653 |#2|))) (-15 -2036 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2198 (|#2| |#1| (-573))) (-15 -2198 (|#2| |#1| (-573) |#2|)) (-15 -3142 (|#2| |#1| (-573) |#2|)) (-15 -3974 ((-780) |#2| |#1|)) (-15 -1863 ((-653 |#2|) |#1|)) (-15 -3974 ((-780) (-1 (-112) |#2|) |#1|)) (-15 -1575 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1646 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2446 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3166 (|#1| |#1|))) +((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3791 (((-1285) $ (-573) (-573)) 41 (|has| $ (-6 -4456)))) (-1473 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-859)))) (-2748 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4456))) (($ $) 91 (-12 (|has| |#1| (-859)) (|has| $ (-6 -4456))))) (-2770 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-859)))) (-3450 (((-112) $ (-780)) 8)) (-3142 ((|#1| $ (-573) |#1|) 53 (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) 60 (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4455)))) (-2579 (($) 7 T CONST)) (-2176 (($ $) 93 (|has| $ (-6 -4456)))) (-4422 (($ $) 103)) (-2685 (($ $) 80 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ |#1| $) 79 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4455)))) (-2457 ((|#1| $ (-573) |#1|) 54 (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) 52)) (-1440 (((-573) (-1 (-112) |#1|) $) 100) (((-573) |#1| $) 99 (|has| |#1| (-1112))) (((-573) |#1| $ (-573)) 98 (|has| |#1| (-1112)))) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-3789 (($ (-780) |#1|) 70)) (-2078 (((-112) $ (-780)) 9)) (-1968 (((-573) $) 44 (|has| (-573) (-859)))) (-3659 (($ $ $) 90 (|has| |#1| (-859)))) (-1480 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-859)))) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3470 (((-573) $) 45 (|has| (-573) (-859)))) (-3751 (($ $ $) 89 (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-1593 (($ |#1| $ (-573)) 62) (($ $ $ (-573)) 61)) (-1977 (((-653 (-573)) $) 47)) (-2560 (((-112) (-573) $) 48)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-2914 ((|#1| $) 43 (|has| (-573) (-859)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-3112 (($ $ |#1|) 42 (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-2547 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) 49)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ (-573) |#1|) 51) ((|#1| $ (-573)) 50) (($ $ (-1247 (-573))) 71)) (-2836 (($ $ (-573)) 64) (($ $ (-1247 (-573))) 63)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3919 (($ $ $ (-573)) 94 (|has| $ (-6 -4456)))) (-3166 (($ $) 13)) (-1835 (((-545) $) 81 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 72)) (-4156 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-653 $)) 66)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) 87 (|has| |#1| (-859)))) (-3015 (((-112) $ $) 86 (|has| |#1| (-859)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-3027 (((-112) $ $) 88 (|has| |#1| (-859)))) (-3005 (((-112) $ $) 85 (|has| |#1| (-859)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-19 |#1|) (-141) (-1230)) (T -19)) NIL -(-13 (-382 |t#1|) (-10 -7 (-6 -4457))) -(((-34) . T) ((-102) -2818 (|has| |#1| (-1113)) (|has| |#1| (-860))) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-860)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1248 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-382 |#1|) . T) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-661 |#1|) . T) ((-860) |has| |#1| (-860)) ((-1113) -2818 (|has| |#1| (-1113)) (|has| |#1| (-860))) ((-1231) . T)) -((-3524 (((-3 $ "failed") $ $) 12)) (-3094 (($ $) NIL) (($ $ $) 9)) (* (($ (-932) $) NIL) (($ (-781) $) 16) (($ (-574) $) 26))) -(((-20 |#1|) (-10 -8 (-15 -3094 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -3524 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-932) |#1|))) (-21)) (T -20)) +(-13 (-381 |t#1|) (-10 -7 (-6 -4456))) +(((-34) . T) ((-102) -2817 (|has| |#1| (-1112)) (|has| |#1| (-859))) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-859)) (|has| |#1| (-622 (-871)))) ((-152 |#1|) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-293 #0=(-573) |#1|) . T) ((-293 (-1247 (-573)) $) . T) ((-295 #0# |#1|) . T) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-381 |#1|) . T) ((-498 |#1|) . T) ((-613 #0# |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-660 |#1|) . T) ((-859) |has| |#1| (-859)) ((-1112) -2817 (|has| |#1| (-1112)) (|has| |#1| (-859))) ((-1230) . T)) +((-2983 (((-3 $ "failed") $ $) 12)) (-3093 (($ $) NIL) (($ $ $) 9)) (* (($ (-931) $) NIL) (($ (-780) $) 16) (($ (-573) $) 26))) +(((-20 |#1|) (-10 -8 (-15 -3093 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 -2983 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-931) |#1|))) (-21)) (T -20)) NIL -(-10 -8 (-15 -3094 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -3524 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-932) |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24))) +(-10 -8 (-15 -3093 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 -2983 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-931) |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24))) (((-21) (-141)) (T -21)) -((-3094 (*1 *1 *1) (-4 *1 (-21))) (-3094 (*1 *1 *1 *1) (-4 *1 (-21)))) -(-13 (-132) (-656 (-574)) (-10 -8 (-15 -3094 ($ $)) (-15 -3094 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-1113) . T)) -((-3138 (((-112) $) 10)) (-3426 (($) 15)) (* (($ (-932) $) 14) (($ (-781) $) 19))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-781) |#1|)) (-15 -3138 ((-112) |#1|)) (-15 -3426 (|#1|)) (-15 * (|#1| (-932) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-781) |#1|)) (-15 -3138 ((-112) |#1|)) (-15 -3426 (|#1|)) (-15 * (|#1| (-932) |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3426 (($) 18 T CONST)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3079 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16))) +((-3093 (*1 *1 *1) (-4 *1 (-21))) (-3093 (*1 *1 *1 *1) (-4 *1 (-21)))) +(-13 (-132) (-655 (-573)) (-10 -8 (-15 -3093 ($ $)) (-15 -3093 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-1112) . T)) +((-1748 (((-112) $) 10)) (-2579 (($) 15)) (* (($ (-931) $) 14) (($ (-780) $) 19))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-780) |#1|)) (-15 -1748 ((-112) |#1|)) (-15 -2579 (|#1|)) (-15 * (|#1| (-931) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-780) |#1|)) (-15 -1748 ((-112) |#1|)) (-15 -2579 (|#1|)) (-15 * (|#1| (-931) |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2579 (($) 18 T CONST)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16))) (((-23) (-141)) (T -23)) -((-2133 (*1 *1) (-4 *1 (-23))) (-3426 (*1 *1) (-4 *1 (-23))) (-3138 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-781))))) -(-13 (-25) (-10 -8 (-15 (-2133) ($) -1706) (-15 -3426 ($) -1706) (-15 -3138 ((-112) $)) (-15 * ($ (-781) $)))) -(((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-1113) . T)) -((* (($ (-932) $) 10))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-932) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-932) |#1|))) -((-2849 (((-112) $ $) 7)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6)) (-3079 (($ $ $) 15)) (* (($ (-932) $) 14))) +((-2132 (*1 *1) (-4 *1 (-23))) (-2579 (*1 *1) (-4 *1 (-23))) (-1748 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-780))))) +(-13 (-25) (-10 -8 (-15 (-2132) ($) -1705) (-15 -2579 ($) -1705) (-15 -1748 ((-112) $)) (-15 * ($ (-780) $)))) +(((-25) . T) ((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) +((* (($ (-931) $) 10))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-931) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-931) |#1|))) +((-2848 (((-112) $ $) 7)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14))) (((-25) (-141)) (T -25)) -((-3079 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-932))))) -(-13 (-1113) (-10 -8 (-15 -3079 ($ $ $)) (-15 * ($ (-932) $)))) -(((-102) . T) ((-623 (-872)) . T) ((-1113) . T)) -((-2446 (((-654 $) (-963 $)) 32) (((-654 $) (-1186 $)) 16) (((-654 $) (-1186 $) (-1190)) 20)) (-1588 (($ (-963 $)) 30) (($ (-1186 $)) 11) (($ (-1186 $) (-1190)) 60)) (-3391 (((-654 $) (-963 $)) 33) (((-654 $) (-1186 $)) 18) (((-654 $) (-1186 $) (-1190)) 19)) (-3078 (($ (-963 $)) 31) (($ (-1186 $)) 13) (($ (-1186 $) (-1190)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -2446 ((-654 |#1|) (-1186 |#1|) (-1190))) (-15 -2446 ((-654 |#1|) (-1186 |#1|))) (-15 -2446 ((-654 |#1|) (-963 |#1|))) (-15 -1588 (|#1| (-1186 |#1|) (-1190))) (-15 -1588 (|#1| (-1186 |#1|))) (-15 -1588 (|#1| (-963 |#1|))) (-15 -3391 ((-654 |#1|) (-1186 |#1|) (-1190))) (-15 -3391 ((-654 |#1|) (-1186 |#1|))) (-15 -3391 ((-654 |#1|) (-963 |#1|))) (-15 -3078 (|#1| (-1186 |#1|) (-1190))) (-15 -3078 (|#1| (-1186 |#1|))) (-15 -3078 (|#1| (-963 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -2446 ((-654 |#1|) (-1186 |#1|) (-1190))) (-15 -2446 ((-654 |#1|) (-1186 |#1|))) (-15 -2446 ((-654 |#1|) (-963 |#1|))) (-15 -1588 (|#1| (-1186 |#1|) (-1190))) (-15 -1588 (|#1| (-1186 |#1|))) (-15 -1588 (|#1| (-963 |#1|))) (-15 -3391 ((-654 |#1|) (-1186 |#1|) (-1190))) (-15 -3391 ((-654 |#1|) (-1186 |#1|))) (-15 -3391 ((-654 |#1|) (-963 |#1|))) (-15 -3078 (|#1| (-1186 |#1|) (-1190))) (-15 -3078 (|#1| (-1186 |#1|))) (-15 -3078 (|#1| (-963 |#1|)))) -((-2849 (((-112) $ $) 7)) (-2446 (((-654 $) (-963 $)) 88) (((-654 $) (-1186 $)) 87) (((-654 $) (-1186 $) (-1190)) 86)) (-1588 (($ (-963 $)) 91) (($ (-1186 $)) 90) (($ (-1186 $) (-1190)) 89)) (-3138 (((-112) $) 17)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-1575 (($ $) 46)) (-2085 (((-112) $) 44)) (-3524 (((-3 $ "failed") $ $) 20)) (-2568 (($ $) 81)) (-2827 (((-428 $) $) 80)) (-4229 (($ $) 100)) (-1600 (((-112) $ $) 65)) (-3426 (($) 18 T CONST)) (-3391 (((-654 $) (-963 $)) 94) (((-654 $) (-1186 $)) 93) (((-654 $) (-1186 $) (-1190)) 92)) (-3078 (($ (-963 $)) 97) (($ (-1186 $)) 96) (($ (-1186 $) (-1190)) 95)) (-2786 (($ $ $) 61)) (-3434 (((-3 $ "failed") $) 37)) (-2797 (($ $ $) 62)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) 57)) (-2257 (((-112) $) 79)) (-3199 (((-112) $) 35)) (-3460 (($ $ (-574)) 99)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2832 (($ $ $) 52) (($ (-654 $)) 51)) (-4136 (((-1172) $) 10)) (-1324 (($ $) 78)) (-3966 (((-1133) $) 11)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2873 (($ $ $) 54) (($ (-654 $)) 53)) (-4220 (((-428 $) $) 82)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2838 (((-3 $ "failed") $ $) 48)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-1730 (((-781) $) 64)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 63)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2069 (((-112) $ $) 45)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3108 (($ $ $) 73)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77) (($ $ (-417 (-574))) 98)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75))) +((-3077 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-931))))) +(-13 (-1112) (-10 -8 (-15 -3077 ($ $ $)) (-15 * ($ (-931) $)))) +(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) +((-3148 (((-653 $) (-962 $)) 32) (((-653 $) (-1185 $)) 16) (((-653 $) (-1185 $) (-1189)) 20)) (-4118 (($ (-962 $)) 30) (($ (-1185 $)) 11) (($ (-1185 $) (-1189)) 60)) (-3682 (((-653 $) (-962 $)) 33) (((-653 $) (-1185 $)) 18) (((-653 $) (-1185 $) (-1189)) 19)) (-1732 (($ (-962 $)) 31) (($ (-1185 $)) 13) (($ (-1185 $) (-1189)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -3148 ((-653 |#1|) (-1185 |#1|) (-1189))) (-15 -3148 ((-653 |#1|) (-1185 |#1|))) (-15 -3148 ((-653 |#1|) (-962 |#1|))) (-15 -4118 (|#1| (-1185 |#1|) (-1189))) (-15 -4118 (|#1| (-1185 |#1|))) (-15 -4118 (|#1| (-962 |#1|))) (-15 -3682 ((-653 |#1|) (-1185 |#1|) (-1189))) (-15 -3682 ((-653 |#1|) (-1185 |#1|))) (-15 -3682 ((-653 |#1|) (-962 |#1|))) (-15 -1732 (|#1| (-1185 |#1|) (-1189))) (-15 -1732 (|#1| (-1185 |#1|))) (-15 -1732 (|#1| (-962 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -3148 ((-653 |#1|) (-1185 |#1|) (-1189))) (-15 -3148 ((-653 |#1|) (-1185 |#1|))) (-15 -3148 ((-653 |#1|) (-962 |#1|))) (-15 -4118 (|#1| (-1185 |#1|) (-1189))) (-15 -4118 (|#1| (-1185 |#1|))) (-15 -4118 (|#1| (-962 |#1|))) (-15 -3682 ((-653 |#1|) (-1185 |#1|) (-1189))) (-15 -3682 ((-653 |#1|) (-1185 |#1|))) (-15 -3682 ((-653 |#1|) (-962 |#1|))) (-15 -1732 (|#1| (-1185 |#1|) (-1189))) (-15 -1732 (|#1| (-1185 |#1|))) (-15 -1732 (|#1| (-962 |#1|)))) +((-2848 (((-112) $ $) 7)) (-3148 (((-653 $) (-962 $)) 88) (((-653 $) (-1185 $)) 87) (((-653 $) (-1185 $) (-1189)) 86)) (-4118 (($ (-962 $)) 91) (($ (-1185 $)) 90) (($ (-1185 $) (-1189)) 89)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-2983 (((-3 $ "failed") $ $) 20)) (-4285 (($ $) 81)) (-2427 (((-427 $) $) 80)) (-4228 (($ $) 100)) (-2800 (((-112) $ $) 65)) (-2579 (($) 18 T CONST)) (-3682 (((-653 $) (-962 $)) 94) (((-653 $) (-1185 $)) 93) (((-653 $) (-1185 $) (-1189)) 92)) (-1732 (($ (-962 $)) 97) (($ (-1185 $)) 96) (($ (-1185 $) (-1189)) 95)) (-2784 (($ $ $) 61)) (-2232 (((-3 $ "failed") $) 37)) (-2796 (($ $ $) 62)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 57)) (-2696 (((-112) $) 79)) (-1959 (((-112) $) 35)) (-4325 (($ $ (-573)) 99)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 58)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-1323 (($ $) 78)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-4218 (((-427 $) $) 82)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 56)) (-2163 (((-780) $) 64)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 63)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49) (($ (-416 (-573))) 74)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ $) 73)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 77) (($ $ (-416 (-573))) 98)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 (-573))) 76) (($ (-416 (-573)) $) 75))) (((-27) (-141)) (T -27)) -((-3078 (*1 *1 *2) (-12 (-5 *2 (-963 *1)) (-4 *1 (-27)))) (-3078 (*1 *1 *2) (-12 (-5 *2 (-1186 *1)) (-4 *1 (-27)))) (-3078 (*1 *1 *2 *3) (-12 (-5 *2 (-1186 *1)) (-5 *3 (-1190)) (-4 *1 (-27)))) (-3391 (*1 *2 *3) (-12 (-5 *3 (-963 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) (-3391 (*1 *2 *3) (-12 (-5 *3 (-1186 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) (-3391 (*1 *2 *3 *4) (-12 (-5 *3 (-1186 *1)) (-5 *4 (-1190)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) (-1588 (*1 *1 *2) (-12 (-5 *2 (-963 *1)) (-4 *1 (-27)))) (-1588 (*1 *1 *2) (-12 (-5 *2 (-1186 *1)) (-4 *1 (-27)))) (-1588 (*1 *1 *2 *3) (-12 (-5 *2 (-1186 *1)) (-5 *3 (-1190)) (-4 *1 (-27)))) (-2446 (*1 *2 *3) (-12 (-5 *3 (-963 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) (-2446 (*1 *2 *3) (-12 (-5 *3 (-1186 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) (-2446 (*1 *2 *3 *4) (-12 (-5 *3 (-1186 *1)) (-5 *4 (-1190)) (-4 *1 (-27)) (-5 *2 (-654 *1))))) -(-13 (-372) (-1015) (-10 -8 (-15 -3078 ($ (-963 $))) (-15 -3078 ($ (-1186 $))) (-15 -3078 ($ (-1186 $) (-1190))) (-15 -3391 ((-654 $) (-963 $))) (-15 -3391 ((-654 $) (-1186 $))) (-15 -3391 ((-654 $) (-1186 $) (-1190))) (-15 -1588 ($ (-963 $))) (-15 -1588 ($ (-1186 $))) (-15 -1588 ($ (-1186 $) (-1190))) (-15 -2446 ((-654 $) (-963 $))) (-15 -2446 ((-654 $) (-1186 $))) (-15 -2446 ((-654 $) (-1186 $) (-1190))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-931) . T) ((-1015) . T) ((-1064 #0#) . T) ((-1064 $) . T) ((-1069 #0#) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1235) . T)) -((-2446 (((-654 $) (-963 $)) NIL) (((-654 $) (-1186 $)) NIL) (((-654 $) (-1186 $) (-1190)) 55) (((-654 $) $) 22) (((-654 $) $ (-1190)) 46)) (-1588 (($ (-963 $)) NIL) (($ (-1186 $)) NIL) (($ (-1186 $) (-1190)) 57) (($ $) 20) (($ $ (-1190)) 40)) (-3391 (((-654 $) (-963 $)) NIL) (((-654 $) (-1186 $)) NIL) (((-654 $) (-1186 $) (-1190)) 53) (((-654 $) $) 18) (((-654 $) $ (-1190)) 48)) (-3078 (($ (-963 $)) NIL) (($ (-1186 $)) NIL) (($ (-1186 $) (-1190)) NIL) (($ $) 15) (($ $ (-1190)) 42))) -(((-28 |#1| |#2|) (-10 -8 (-15 -2446 ((-654 |#1|) |#1| (-1190))) (-15 -1588 (|#1| |#1| (-1190))) (-15 -2446 ((-654 |#1|) |#1|)) (-15 -1588 (|#1| |#1|)) (-15 -3391 ((-654 |#1|) |#1| (-1190))) (-15 -3078 (|#1| |#1| (-1190))) (-15 -3391 ((-654 |#1|) |#1|)) (-15 -3078 (|#1| |#1|)) (-15 -2446 ((-654 |#1|) (-1186 |#1|) (-1190))) (-15 -2446 ((-654 |#1|) (-1186 |#1|))) (-15 -2446 ((-654 |#1|) (-963 |#1|))) (-15 -1588 (|#1| (-1186 |#1|) (-1190))) (-15 -1588 (|#1| (-1186 |#1|))) (-15 -1588 (|#1| (-963 |#1|))) (-15 -3391 ((-654 |#1|) (-1186 |#1|) (-1190))) (-15 -3391 ((-654 |#1|) (-1186 |#1|))) (-15 -3391 ((-654 |#1|) (-963 |#1|))) (-15 -3078 (|#1| (-1186 |#1|) (-1190))) (-15 -3078 (|#1| (-1186 |#1|))) (-15 -3078 (|#1| (-963 |#1|)))) (-29 |#2|) (-566)) (T -28)) -NIL -(-10 -8 (-15 -2446 ((-654 |#1|) |#1| (-1190))) (-15 -1588 (|#1| |#1| (-1190))) (-15 -2446 ((-654 |#1|) |#1|)) (-15 -1588 (|#1| |#1|)) (-15 -3391 ((-654 |#1|) |#1| (-1190))) (-15 -3078 (|#1| |#1| (-1190))) (-15 -3391 ((-654 |#1|) |#1|)) (-15 -3078 (|#1| |#1|)) (-15 -2446 ((-654 |#1|) (-1186 |#1|) (-1190))) (-15 -2446 ((-654 |#1|) (-1186 |#1|))) (-15 -2446 ((-654 |#1|) (-963 |#1|))) (-15 -1588 (|#1| (-1186 |#1|) (-1190))) (-15 -1588 (|#1| (-1186 |#1|))) (-15 -1588 (|#1| (-963 |#1|))) (-15 -3391 ((-654 |#1|) (-1186 |#1|) (-1190))) (-15 -3391 ((-654 |#1|) (-1186 |#1|))) (-15 -3391 ((-654 |#1|) (-963 |#1|))) (-15 -3078 (|#1| (-1186 |#1|) (-1190))) (-15 -3078 (|#1| (-1186 |#1|))) (-15 -3078 (|#1| (-963 |#1|)))) -((-2849 (((-112) $ $) 7)) (-2446 (((-654 $) (-963 $)) 88) (((-654 $) (-1186 $)) 87) (((-654 $) (-1186 $) (-1190)) 86) (((-654 $) $) 136) (((-654 $) $ (-1190)) 134)) (-1588 (($ (-963 $)) 91) (($ (-1186 $)) 90) (($ (-1186 $) (-1190)) 89) (($ $) 137) (($ $ (-1190)) 135)) (-3138 (((-112) $) 17)) (-4355 (((-654 (-1190)) $) 205)) (-4194 (((-417 (-1186 $)) $ (-622 $)) 237 (|has| |#1| (-566)))) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-1575 (($ $) 46)) (-2085 (((-112) $) 44)) (-4091 (((-654 (-622 $)) $) 168)) (-3524 (((-3 $ "failed") $ $) 20)) (-2545 (($ $ (-654 (-622 $)) (-654 $)) 158) (($ $ (-654 (-302 $))) 157) (($ $ (-302 $)) 156)) (-2568 (($ $) 81)) (-2827 (((-428 $) $) 80)) (-4229 (($ $) 100)) (-1600 (((-112) $ $) 65)) (-3426 (($) 18 T CONST)) (-3391 (((-654 $) (-963 $)) 94) (((-654 $) (-1186 $)) 93) (((-654 $) (-1186 $) (-1190)) 92) (((-654 $) $) 140) (((-654 $) $ (-1190)) 138)) (-3078 (($ (-963 $)) 97) (($ (-1186 $)) 96) (($ (-1186 $) (-1190)) 95) (($ $) 141) (($ $ (-1190)) 139)) (-1696 (((-3 (-963 |#1|) "failed") $) 255 (|has| |#1| (-1062))) (((-3 (-417 (-963 |#1|)) "failed") $) 239 (|has| |#1| (-566))) (((-3 |#1| "failed") $) 201) (((-3 (-574) "failed") $) 198 (|has| |#1| (-1051 (-574)))) (((-3 (-1190) "failed") $) 192) (((-3 (-622 $) "failed") $) 143) (((-3 (-417 (-574)) "failed") $) 131 (-2818 (-12 (|has| |#1| (-1051 (-574))) (|has| |#1| (-566))) (|has| |#1| (-1051 (-417 (-574))))))) (-2206 (((-963 |#1|) $) 254 (|has| |#1| (-1062))) (((-417 (-963 |#1|)) $) 238 (|has| |#1| (-566))) ((|#1| $) 200) (((-574) $) 199 (|has| |#1| (-1051 (-574)))) (((-1190) $) 191) (((-622 $) $) 142) (((-417 (-574)) $) 132 (-2818 (-12 (|has| |#1| (-1051 (-574))) (|has| |#1| (-566))) (|has| |#1| (-1051 (-417 (-574))))))) (-2786 (($ $ $) 61)) (-2590 (((-699 |#1|) (-1281 $)) 245 (|has| |#1| (-1062))) (((-699 |#1|) (-699 $)) 244 (|has| |#1| (-1062))) (((-2 (|:| -4340 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) 243 (|has| |#1| (-1062))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 130 (-2818 (-2087 (|has| |#1| (-1062)) (|has| |#1| (-649 (-574)))) (-2087 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062))))) (((-699 (-574)) (-699 $)) 129 (-2818 (-2087 (|has| |#1| (-1062)) (|has| |#1| (-649 (-574)))) (-2087 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062))))) (((-699 (-574)) (-1281 $)) 128 (-2818 (-2087 (|has| |#1| (-1062)) (|has| |#1| (-649 (-574)))) (-2087 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062)))))) (-3434 (((-3 $ "failed") $) 37)) (-2797 (($ $ $) 62)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) 57)) (-2257 (((-112) $) 79)) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 197 (|has| |#1| (-897 (-388)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 196 (|has| |#1| (-897 (-574))))) (-3574 (($ (-654 $)) 162) (($ $) 161)) (-3893 (((-654 (-115)) $) 169)) (-4175 (((-115) (-115)) 170)) (-3199 (((-112) $) 35)) (-4410 (((-112) $) 190 (|has| $ (-1051 (-574))))) (-2141 (($ $) 222 (|has| |#1| (-1062)))) (-2966 (((-1138 |#1| (-622 $)) $) 221 (|has| |#1| (-1062)))) (-3460 (($ $ (-574)) 99)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-1924 (((-1186 $) (-622 $)) 187 (|has| $ (-1062)))) (-1777 (($ (-1 $ $) (-622 $)) 176)) (-3429 (((-3 (-622 $) "failed") $) 166)) (-2832 (($ $ $) 52) (($ (-654 $)) 51)) (-4136 (((-1172) $) 10)) (-4163 (((-654 (-622 $)) $) 167)) (-1775 (($ (-115) (-654 $)) 175) (($ (-115) $) 174)) (-2755 (((-3 (-654 $) "failed") $) 216 (|has| |#1| (-1125)))) (-2127 (((-3 (-2 (|:| |val| $) (|:| -3715 (-574))) "failed") $) 225 (|has| |#1| (-1062)))) (-2415 (((-3 (-654 $) "failed") $) 218 (|has| |#1| (-25)))) (-2658 (((-3 (-2 (|:| -1858 (-574)) (|:| |var| (-622 $))) "failed") $) 219 (|has| |#1| (-25)))) (-2241 (((-3 (-2 (|:| |var| (-622 $)) (|:| -3715 (-574))) "failed") $ (-1190)) 224 (|has| |#1| (-1062))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -3715 (-574))) "failed") $ (-115)) 223 (|has| |#1| (-1062))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -3715 (-574))) "failed") $) 217 (|has| |#1| (-1125)))) (-4103 (((-112) $ (-1190)) 173) (((-112) $ (-115)) 172)) (-1324 (($ $) 78)) (-1839 (((-781) $) 165)) (-3966 (((-1133) $) 11)) (-1338 (((-112) $) 203)) (-1349 ((|#1| $) 204)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2873 (($ $ $) 54) (($ (-654 $)) 53)) (-3974 (((-112) $ (-1190)) 178) (((-112) $ $) 177)) (-4220 (((-428 $) $) 82)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2838 (((-3 $ "failed") $ $) 48)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-3476 (((-112) $) 189 (|has| $ (-1051 (-574))))) (-2646 (($ $ (-1190) (-781) (-1 $ $)) 229 (|has| |#1| (-1062))) (($ $ (-1190) (-781) (-1 $ (-654 $))) 228 (|has| |#1| (-1062))) (($ $ (-654 (-1190)) (-654 (-781)) (-654 (-1 $ (-654 $)))) 227 (|has| |#1| (-1062))) (($ $ (-654 (-1190)) (-654 (-781)) (-654 (-1 $ $))) 226 (|has| |#1| (-1062))) (($ $ (-654 (-115)) (-654 $) (-1190)) 215 (|has| |#1| (-624 (-546)))) (($ $ (-115) $ (-1190)) 214 (|has| |#1| (-624 (-546)))) (($ $) 213 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-1190))) 212 (|has| |#1| (-624 (-546)))) (($ $ (-1190)) 211 (|has| |#1| (-624 (-546)))) (($ $ (-115) (-1 $ $)) 186) (($ $ (-115) (-1 $ (-654 $))) 185) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) 184) (($ $ (-654 (-115)) (-654 (-1 $ $))) 183) (($ $ (-1190) (-1 $ $)) 182) (($ $ (-1190) (-1 $ (-654 $))) 181) (($ $ (-654 (-1190)) (-654 (-1 $ (-654 $)))) 180) (($ $ (-654 (-1190)) (-654 (-1 $ $))) 179) (($ $ (-654 $) (-654 $)) 150) (($ $ $ $) 149) (($ $ (-302 $)) 148) (($ $ (-654 (-302 $))) 147) (($ $ (-654 (-622 $)) (-654 $)) 146) (($ $ (-622 $) $) 145)) (-1730 (((-781) $) 64)) (-2199 (($ (-115) (-654 $)) 155) (($ (-115) $ $ $ $) 154) (($ (-115) $ $ $) 153) (($ (-115) $ $) 152) (($ (-115) $) 151)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 63)) (-2447 (($ $ $) 164) (($ $) 163)) (-3905 (($ $ (-1190)) 253 (|has| |#1| (-1062))) (($ $ (-654 (-1190))) 252 (|has| |#1| (-1062))) (($ $ (-1190) (-781)) 251 (|has| |#1| (-1062))) (($ $ (-654 (-1190)) (-654 (-781))) 250 (|has| |#1| (-1062)))) (-4358 (($ $) 232 (|has| |#1| (-566)))) (-2977 (((-1138 |#1| (-622 $)) $) 231 (|has| |#1| (-566)))) (-4185 (($ $) 188 (|has| $ (-1062)))) (-1836 (((-546) $) 259 (|has| |#1| (-624 (-546)))) (($ (-428 $)) 230 (|has| |#1| (-566))) (((-903 (-388)) $) 195 (|has| |#1| (-624 (-903 (-388))))) (((-903 (-574)) $) 194 (|has| |#1| (-624 (-903 (-574)))))) (-1479 (($ $ $) 258 (|has| |#1| (-483)))) (-3204 (($ $ $) 257 (|has| |#1| (-483)))) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ (-963 |#1|)) 256 (|has| |#1| (-1062))) (($ (-417 (-963 |#1|))) 240 (|has| |#1| (-566))) (($ (-417 (-963 (-417 |#1|)))) 236 (|has| |#1| (-566))) (($ (-963 (-417 |#1|))) 235 (|has| |#1| (-566))) (($ (-417 |#1|)) 234 (|has| |#1| (-566))) (($ (-1138 |#1| (-622 $))) 220 (|has| |#1| (-1062))) (($ |#1|) 202) (($ (-1190)) 193) (($ (-622 $)) 144)) (-3298 (((-3 $ "failed") $) 242 (|has| |#1| (-146)))) (-1364 (((-781)) 32 T CONST)) (-2029 (($ (-654 $)) 160) (($ $) 159)) (-3225 (((-112) (-115)) 171)) (-3284 (((-112) $ $) 9)) (-2069 (((-112) $ $) 45)) (-2499 (($ (-1190) (-654 $)) 210) (($ (-1190) $ $ $ $) 209) (($ (-1190) $ $ $) 208) (($ (-1190) $ $) 207) (($ (-1190) $) 206)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-3610 (($ $ (-1190)) 249 (|has| |#1| (-1062))) (($ $ (-654 (-1190))) 248 (|has| |#1| (-1062))) (($ $ (-1190) (-781)) 247 (|has| |#1| (-1062))) (($ $ (-654 (-1190)) (-654 (-781))) 246 (|has| |#1| (-1062)))) (-2981 (((-112) $ $) 6)) (-3108 (($ $ $) 73) (($ (-1138 |#1| (-622 $)) (-1138 |#1| (-622 $))) 233 (|has| |#1| (-566)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77) (($ $ (-417 (-574))) 98)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75) (($ $ |#1|) 241 (|has| |#1| (-174))) (($ |#1| $) 133 (|has| |#1| (-1062))))) -(((-29 |#1|) (-141) (-566)) (T -29)) -((-3078 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-566)))) (-3391 (*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *3)))) (-3078 (*1 *1 *1 *2) (-12 (-5 *2 (-1190)) (-4 *1 (-29 *3)) (-4 *3 (-566)))) (-3391 (*1 *2 *1 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *4)))) (-1588 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-566)))) (-2446 (*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *3)))) (-1588 (*1 *1 *1 *2) (-12 (-5 *2 (-1190)) (-4 *1 (-29 *3)) (-4 *3 (-566)))) (-2446 (*1 *2 *1 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-440 |t#1|) (-10 -8 (-15 -3078 ($ $)) (-15 -3391 ((-654 $) $)) (-15 -3078 ($ $ (-1190))) (-15 -3391 ((-654 $) $ (-1190))) (-15 -1588 ($ $)) (-15 -2446 ((-654 $) $)) (-15 -1588 ($ $ (-1190))) (-15 -2446 ((-654 $) $ (-1190))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) . T) ((-626 #1=(-417 (-963 |#1|))) |has| |#1| (-566)) ((-626 (-574)) . T) ((-626 #2=(-622 $)) . T) ((-626 #3=(-963 |#1|)) |has| |#1| (-1062)) ((-626 #4=(-1190)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-624 (-903 (-388))) |has| |#1| (-624 (-903 (-388)))) ((-624 (-903 (-574))) |has| |#1| (-624 (-903 (-574)))) ((-249) . T) ((-298) . T) ((-315) . T) ((-317 $) . T) ((-310) . T) ((-372) . T) ((-386 |#1|) |has| |#1| (-1062)) ((-410 |#1|) . T) ((-421 |#1|) . T) ((-440 |#1|) . T) ((-462) . T) ((-483) |has| |#1| (-483)) ((-524 (-622 $) $) . T) ((-524 $ $) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 |#1|) -2818 (|has| |#1| (-1062)) (|has| |#1| (-174))) ((-656 $) . T) ((-658 #0#) . T) ((-658 #5=(-574)) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062))) ((-658 |#1|) -2818 (|has| |#1| (-1062)) (|has| |#1| (-174))) ((-658 $) . T) ((-650 #0#) . T) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) . T) ((-649 #5#) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062))) ((-649 |#1|) |has| |#1| (-1062)) ((-727 #0#) . T) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) . T) ((-736) . T) ((-911 (-1190)) |has| |#1| (-1062)) ((-897 (-388)) |has| |#1| (-897 (-388))) ((-897 (-574)) |has| |#1| (-897 (-574))) ((-895 |#1|) . T) ((-931) . T) ((-1015) . T) ((-1051 (-417 (-574))) -2818 (|has| |#1| (-1051 (-417 (-574)))) (-12 (|has| |#1| (-566)) (|has| |#1| (-1051 (-574))))) ((-1051 #1#) |has| |#1| (-566)) ((-1051 (-574)) |has| |#1| (-1051 (-574))) ((-1051 #2#) . T) ((-1051 #3#) |has| |#1| (-1062)) ((-1051 #4#) . T) ((-1051 |#1|) . T) ((-1064 #0#) . T) ((-1064 |#1|) |has| |#1| (-174)) ((-1064 $) . T) ((-1069 #0#) . T) ((-1069 |#1|) |has| |#1| (-174)) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1231) . T) ((-1235) . T)) -((-2424 (((-1107 (-227)) $) NIL)) (-2411 (((-1107 (-227)) $) NIL)) (-3445 (($ $ (-227)) 164)) (-1385 (($ (-963 (-574)) (-1190) (-1190) (-1107 (-417 (-574))) (-1107 (-417 (-574)))) 104)) (-1851 (((-654 (-654 (-954 (-227)))) $) 180)) (-2943 (((-872) $) 194))) -(((-30) (-13 (-966) (-10 -8 (-15 -1385 ($ (-963 (-574)) (-1190) (-1190) (-1107 (-417 (-574))) (-1107 (-417 (-574))))) (-15 -3445 ($ $ (-227)))))) (T -30)) -((-1385 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-963 (-574))) (-5 *3 (-1190)) (-5 *4 (-1107 (-417 (-574)))) (-5 *1 (-30)))) (-3445 (*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30))))) -(-13 (-966) (-10 -8 (-15 -1385 ($ (-963 (-574)) (-1190) (-1190) (-1107 (-417 (-574))) (-1107 (-417 (-574))))) (-15 -3445 ($ $ (-227))))) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 17) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2044 (((-1148) $) 11)) (-3284 (((-112) $ $) NIL)) (-2630 (((-1148) $) 9)) (-2981 (((-112) $ $) NIL))) -(((-31) (-13 (-1096) (-10 -8 (-15 -2630 ((-1148) $)) (-15 -2044 ((-1148) $))))) (T -31)) -((-2630 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-31)))) (-2044 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-31))))) -(-13 (-1096) (-10 -8 (-15 -2630 ((-1148) $)) (-15 -2044 ((-1148) $)))) -((-3078 ((|#2| (-1186 |#2|) (-1190)) 41)) (-4175 (((-115) (-115)) 55)) (-1924 (((-1186 |#2|) (-622 |#2|)) 149 (|has| |#1| (-1051 (-574))))) (-4217 ((|#2| |#1| (-574)) 137 (|has| |#1| (-1051 (-574))))) (-2741 ((|#2| (-1186 |#2|) |#2|) 29)) (-2689 (((-872) (-654 |#2|)) 86)) (-4185 ((|#2| |#2|) 144 (|has| |#1| (-1051 (-574))))) (-3225 (((-112) (-115)) 17)) (** ((|#2| |#2| (-417 (-574))) 103 (|has| |#1| (-1051 (-574)))))) -(((-32 |#1| |#2|) (-10 -7 (-15 -3078 (|#2| (-1186 |#2|) (-1190))) (-15 -4175 ((-115) (-115))) (-15 -3225 ((-112) (-115))) (-15 -2741 (|#2| (-1186 |#2|) |#2|)) (-15 -2689 ((-872) (-654 |#2|))) (IF (|has| |#1| (-1051 (-574))) (PROGN (-15 ** (|#2| |#2| (-417 (-574)))) (-15 -1924 ((-1186 |#2|) (-622 |#2|))) (-15 -4185 (|#2| |#2|)) (-15 -4217 (|#2| |#1| (-574)))) |%noBranch|)) (-566) (-440 |#1|)) (T -32)) -((-4217 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-4 *2 (-440 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1051 *4)) (-4 *3 (-566)))) (-4185 (*1 *2 *2) (-12 (-4 *3 (-1051 (-574))) (-4 *3 (-566)) (-5 *1 (-32 *3 *2)) (-4 *2 (-440 *3)))) (-1924 (*1 *2 *3) (-12 (-5 *3 (-622 *5)) (-4 *5 (-440 *4)) (-4 *4 (-1051 (-574))) (-4 *4 (-566)) (-5 *2 (-1186 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-417 (-574))) (-4 *4 (-1051 (-574))) (-4 *4 (-566)) (-5 *1 (-32 *4 *2)) (-4 *2 (-440 *4)))) (-2689 (*1 *2 *3) (-12 (-5 *3 (-654 *5)) (-4 *5 (-440 *4)) (-4 *4 (-566)) (-5 *2 (-872)) (-5 *1 (-32 *4 *5)))) (-2741 (*1 *2 *3 *2) (-12 (-5 *3 (-1186 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566)) (-5 *1 (-32 *4 *2)))) (-3225 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-440 *4)))) (-4175 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-32 *3 *4)) (-4 *4 (-440 *3)))) (-3078 (*1 *2 *3 *4) (-12 (-5 *3 (-1186 *2)) (-5 *4 (-1190)) (-4 *2 (-440 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-566))))) -(-10 -7 (-15 -3078 (|#2| (-1186 |#2|) (-1190))) (-15 -4175 ((-115) (-115))) (-15 -3225 ((-112) (-115))) (-15 -2741 (|#2| (-1186 |#2|) |#2|)) (-15 -2689 ((-872) (-654 |#2|))) (IF (|has| |#1| (-1051 (-574))) (PROGN (-15 ** (|#2| |#2| (-417 (-574)))) (-15 -1924 ((-1186 |#2|) (-622 |#2|))) (-15 -4185 (|#2| |#2|)) (-15 -4217 (|#2| |#1| (-574)))) |%noBranch|)) -((-3034 (((-112) $ (-781)) 20)) (-3426 (($) 10)) (-2742 (((-112) $ (-781)) 19)) (-4203 (((-112) $ (-781)) 17)) (-4017 (((-112) $ $) 8)) (-1584 (((-112) $) 15))) -(((-33 |#1|) (-10 -8 (-15 -3426 (|#1|)) (-15 -3034 ((-112) |#1| (-781))) (-15 -2742 ((-112) |#1| (-781))) (-15 -4203 ((-112) |#1| (-781))) (-15 -1584 ((-112) |#1|)) (-15 -4017 ((-112) |#1| |#1|))) (-34)) (T -33)) -NIL -(-10 -8 (-15 -3426 (|#1|)) (-15 -3034 ((-112) |#1| (-781))) (-15 -2742 ((-112) |#1| (-781))) (-15 -4203 ((-112) |#1| (-781))) (-15 -1584 ((-112) |#1|)) (-15 -4017 ((-112) |#1| |#1|))) -((-3034 (((-112) $ (-781)) 8)) (-3426 (($) 7 T CONST)) (-2742 (((-112) $ (-781)) 9)) (-4203 (((-112) $ (-781)) 10)) (-4017 (((-112) $ $) 14)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-3167 (($ $) 13)) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) +((-1732 (*1 *1 *2) (-12 (-5 *2 (-962 *1)) (-4 *1 (-27)))) (-1732 (*1 *1 *2) (-12 (-5 *2 (-1185 *1)) (-4 *1 (-27)))) (-1732 (*1 *1 *2 *3) (-12 (-5 *2 (-1185 *1)) (-5 *3 (-1189)) (-4 *1 (-27)))) (-3682 (*1 *2 *3) (-12 (-5 *3 (-962 *1)) (-4 *1 (-27)) (-5 *2 (-653 *1)))) (-3682 (*1 *2 *3) (-12 (-5 *3 (-1185 *1)) (-4 *1 (-27)) (-5 *2 (-653 *1)))) (-3682 (*1 *2 *3 *4) (-12 (-5 *3 (-1185 *1)) (-5 *4 (-1189)) (-4 *1 (-27)) (-5 *2 (-653 *1)))) (-4118 (*1 *1 *2) (-12 (-5 *2 (-962 *1)) (-4 *1 (-27)))) (-4118 (*1 *1 *2) (-12 (-5 *2 (-1185 *1)) (-4 *1 (-27)))) (-4118 (*1 *1 *2 *3) (-12 (-5 *2 (-1185 *1)) (-5 *3 (-1189)) (-4 *1 (-27)))) (-3148 (*1 *2 *3) (-12 (-5 *3 (-962 *1)) (-4 *1 (-27)) (-5 *2 (-653 *1)))) (-3148 (*1 *2 *3) (-12 (-5 *3 (-1185 *1)) (-4 *1 (-27)) (-5 *2 (-653 *1)))) (-3148 (*1 *2 *3 *4) (-12 (-5 *3 (-1185 *1)) (-5 *4 (-1189)) (-4 *1 (-27)) (-5 *2 (-653 *1))))) +(-13 (-371) (-1014) (-10 -8 (-15 -1732 ($ (-962 $))) (-15 -1732 ($ (-1185 $))) (-15 -1732 ($ (-1185 $) (-1189))) (-15 -3682 ((-653 $) (-962 $))) (-15 -3682 ((-653 $) (-1185 $))) (-15 -3682 ((-653 $) (-1185 $) (-1189))) (-15 -4118 ($ (-962 $))) (-15 -4118 ($ (-1185 $))) (-15 -4118 ($ (-1185 $) (-1189))) (-15 -3148 ((-653 $) (-962 $))) (-15 -3148 ((-653 $) (-1185 $))) (-15 -3148 ((-653 $) (-1185 $) (-1189))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-625 #0#) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-248) . T) ((-297) . T) ((-314) . T) ((-371) . T) ((-461) . T) ((-565) . T) ((-655 #0#) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-726 #0#) . T) ((-726 $) . T) ((-735) . T) ((-930) . T) ((-1014) . T) ((-1063 #0#) . T) ((-1063 $) . T) ((-1068 #0#) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1234) . T)) +((-3148 (((-653 $) (-962 $)) NIL) (((-653 $) (-1185 $)) NIL) (((-653 $) (-1185 $) (-1189)) 55) (((-653 $) $) 22) (((-653 $) $ (-1189)) 46)) (-4118 (($ (-962 $)) NIL) (($ (-1185 $)) NIL) (($ (-1185 $) (-1189)) 57) (($ $) 20) (($ $ (-1189)) 40)) (-3682 (((-653 $) (-962 $)) NIL) (((-653 $) (-1185 $)) NIL) (((-653 $) (-1185 $) (-1189)) 53) (((-653 $) $) 18) (((-653 $) $ (-1189)) 48)) (-1732 (($ (-962 $)) NIL) (($ (-1185 $)) NIL) (($ (-1185 $) (-1189)) NIL) (($ $) 15) (($ $ (-1189)) 42))) +(((-28 |#1| |#2|) (-10 -8 (-15 -3148 ((-653 |#1|) |#1| (-1189))) (-15 -4118 (|#1| |#1| (-1189))) (-15 -3148 ((-653 |#1|) |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -3682 ((-653 |#1|) |#1| (-1189))) (-15 -1732 (|#1| |#1| (-1189))) (-15 -3682 ((-653 |#1|) |#1|)) (-15 -1732 (|#1| |#1|)) (-15 -3148 ((-653 |#1|) (-1185 |#1|) (-1189))) (-15 -3148 ((-653 |#1|) (-1185 |#1|))) (-15 -3148 ((-653 |#1|) (-962 |#1|))) (-15 -4118 (|#1| (-1185 |#1|) (-1189))) (-15 -4118 (|#1| (-1185 |#1|))) (-15 -4118 (|#1| (-962 |#1|))) (-15 -3682 ((-653 |#1|) (-1185 |#1|) (-1189))) (-15 -3682 ((-653 |#1|) (-1185 |#1|))) (-15 -3682 ((-653 |#1|) (-962 |#1|))) (-15 -1732 (|#1| (-1185 |#1|) (-1189))) (-15 -1732 (|#1| (-1185 |#1|))) (-15 -1732 (|#1| (-962 |#1|)))) (-29 |#2|) (-565)) (T -28)) +NIL +(-10 -8 (-15 -3148 ((-653 |#1|) |#1| (-1189))) (-15 -4118 (|#1| |#1| (-1189))) (-15 -3148 ((-653 |#1|) |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -3682 ((-653 |#1|) |#1| (-1189))) (-15 -1732 (|#1| |#1| (-1189))) (-15 -3682 ((-653 |#1|) |#1|)) (-15 -1732 (|#1| |#1|)) (-15 -3148 ((-653 |#1|) (-1185 |#1|) (-1189))) (-15 -3148 ((-653 |#1|) (-1185 |#1|))) (-15 -3148 ((-653 |#1|) (-962 |#1|))) (-15 -4118 (|#1| (-1185 |#1|) (-1189))) (-15 -4118 (|#1| (-1185 |#1|))) (-15 -4118 (|#1| (-962 |#1|))) (-15 -3682 ((-653 |#1|) (-1185 |#1|) (-1189))) (-15 -3682 ((-653 |#1|) (-1185 |#1|))) (-15 -3682 ((-653 |#1|) (-962 |#1|))) (-15 -1732 (|#1| (-1185 |#1|) (-1189))) (-15 -1732 (|#1| (-1185 |#1|))) (-15 -1732 (|#1| (-962 |#1|)))) +((-2848 (((-112) $ $) 7)) (-3148 (((-653 $) (-962 $)) 88) (((-653 $) (-1185 $)) 87) (((-653 $) (-1185 $) (-1189)) 86) (((-653 $) $) 136) (((-653 $) $ (-1189)) 134)) (-4118 (($ (-962 $)) 91) (($ (-1185 $)) 90) (($ (-1185 $) (-1189)) 89) (($ $) 137) (($ $ (-1189)) 135)) (-1748 (((-112) $) 17)) (-4354 (((-653 (-1189)) $) 205)) (-4193 (((-416 (-1185 $)) $ (-621 $)) 237 (|has| |#1| (-565)))) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-4090 (((-653 (-621 $)) $) 168)) (-2983 (((-3 $ "failed") $ $) 20)) (-2544 (($ $ (-653 (-621 $)) (-653 $)) 158) (($ $ (-653 (-301 $))) 157) (($ $ (-301 $)) 156)) (-4285 (($ $) 81)) (-2427 (((-427 $) $) 80)) (-4228 (($ $) 100)) (-2800 (((-112) $ $) 65)) (-2579 (($) 18 T CONST)) (-3682 (((-653 $) (-962 $)) 94) (((-653 $) (-1185 $)) 93) (((-653 $) (-1185 $) (-1189)) 92) (((-653 $) $) 140) (((-653 $) $ (-1189)) 138)) (-1732 (($ (-962 $)) 97) (($ (-1185 $)) 96) (($ (-1185 $) (-1189)) 95) (($ $) 141) (($ $ (-1189)) 139)) (-1695 (((-3 (-962 |#1|) "failed") $) 255 (|has| |#1| (-1061))) (((-3 (-416 (-962 |#1|)) "failed") $) 239 (|has| |#1| (-565))) (((-3 |#1| "failed") $) 201) (((-3 (-573) "failed") $) 198 (|has| |#1| (-1050 (-573)))) (((-3 (-1189) "failed") $) 192) (((-3 (-621 $) "failed") $) 143) (((-3 (-416 (-573)) "failed") $) 131 (-2817 (-12 (|has| |#1| (-1050 (-573))) (|has| |#1| (-565))) (|has| |#1| (-1050 (-416 (-573))))))) (-2205 (((-962 |#1|) $) 254 (|has| |#1| (-1061))) (((-416 (-962 |#1|)) $) 238 (|has| |#1| (-565))) ((|#1| $) 200) (((-573) $) 199 (|has| |#1| (-1050 (-573)))) (((-1189) $) 191) (((-621 $) $) 142) (((-416 (-573)) $) 132 (-2817 (-12 (|has| |#1| (-1050 (-573))) (|has| |#1| (-565))) (|has| |#1| (-1050 (-416 (-573))))))) (-2784 (($ $ $) 61)) (-2759 (((-698 |#1|) (-1280 $)) 245 (|has| |#1| (-1061))) (((-698 |#1|) (-698 $)) 244 (|has| |#1| (-1061))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) 243 (|has| |#1| (-1061))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 130 (-2817 (-2086 (|has| |#1| (-1061)) (|has| |#1| (-648 (-573)))) (-2086 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061))))) (((-698 (-573)) (-698 $)) 129 (-2817 (-2086 (|has| |#1| (-1061)) (|has| |#1| (-648 (-573)))) (-2086 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061))))) (((-698 (-573)) (-1280 $)) 128 (-2817 (-2086 (|has| |#1| (-1061)) (|has| |#1| (-648 (-573)))) (-2086 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061)))))) (-2232 (((-3 $ "failed") $) 37)) (-2796 (($ $ $) 62)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 57)) (-2696 (((-112) $) 79)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 197 (|has| |#1| (-896 (-387)))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 196 (|has| |#1| (-896 (-573))))) (-2449 (($ (-653 $)) 162) (($ $) 161)) (-2515 (((-653 (-115)) $) 169)) (-4173 (((-115) (-115)) 170)) (-1959 (((-112) $) 35)) (-2250 (((-112) $) 190 (|has| $ (-1050 (-573))))) (-3041 (($ $) 222 (|has| |#1| (-1061)))) (-2965 (((-1137 |#1| (-621 $)) $) 221 (|has| |#1| (-1061)))) (-4325 (($ $ (-573)) 99)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 58)) (-2597 (((-1185 $) (-621 $)) 187 (|has| $ (-1061)))) (-1776 (($ (-1 $ $) (-621 $)) 176)) (-2944 (((-3 (-621 $) "failed") $) 166)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-4163 (((-653 (-621 $)) $) 167)) (-1774 (($ (-115) (-653 $)) 175) (($ (-115) $) 174)) (-4082 (((-3 (-653 $) "failed") $) 216 (|has| |#1| (-1124)))) (-1951 (((-3 (-2 (|:| |val| $) (|:| -3907 (-573))) "failed") $) 225 (|has| |#1| (-1061)))) (-2586 (((-3 (-653 $) "failed") $) 218 (|has| |#1| (-25)))) (-4425 (((-3 (-2 (|:| -1857 (-573)) (|:| |var| (-621 $))) "failed") $) 219 (|has| |#1| (-25)))) (-2573 (((-3 (-2 (|:| |var| (-621 $)) (|:| -3907 (-573))) "failed") $ (-1189)) 224 (|has| |#1| (-1061))) (((-3 (-2 (|:| |var| (-621 $)) (|:| -3907 (-573))) "failed") $ (-115)) 223 (|has| |#1| (-1061))) (((-3 (-2 (|:| |var| (-621 $)) (|:| -3907 (-573))) "failed") $) 217 (|has| |#1| (-1124)))) (-1667 (((-112) $ (-1189)) 173) (((-112) $ (-115)) 172)) (-1323 (($ $) 78)) (-1839 (((-780) $) 165)) (-3965 (((-1132) $) 11)) (-1337 (((-112) $) 203)) (-1348 ((|#1| $) 204)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-3805 (((-112) $ (-1189)) 178) (((-112) $ $) 177)) (-4218 (((-427 $) $) 82)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 56)) (-2270 (((-112) $) 189 (|has| $ (-1050 (-573))))) (-2645 (($ $ (-1189) (-780) (-1 $ $)) 229 (|has| |#1| (-1061))) (($ $ (-1189) (-780) (-1 $ (-653 $))) 228 (|has| |#1| (-1061))) (($ $ (-653 (-1189)) (-653 (-780)) (-653 (-1 $ (-653 $)))) 227 (|has| |#1| (-1061))) (($ $ (-653 (-1189)) (-653 (-780)) (-653 (-1 $ $))) 226 (|has| |#1| (-1061))) (($ $ (-653 (-115)) (-653 $) (-1189)) 215 (|has| |#1| (-623 (-545)))) (($ $ (-115) $ (-1189)) 214 (|has| |#1| (-623 (-545)))) (($ $) 213 (|has| |#1| (-623 (-545)))) (($ $ (-653 (-1189))) 212 (|has| |#1| (-623 (-545)))) (($ $ (-1189)) 211 (|has| |#1| (-623 (-545)))) (($ $ (-115) (-1 $ $)) 186) (($ $ (-115) (-1 $ (-653 $))) 185) (($ $ (-653 (-115)) (-653 (-1 $ (-653 $)))) 184) (($ $ (-653 (-115)) (-653 (-1 $ $))) 183) (($ $ (-1189) (-1 $ $)) 182) (($ $ (-1189) (-1 $ (-653 $))) 181) (($ $ (-653 (-1189)) (-653 (-1 $ (-653 $)))) 180) (($ $ (-653 (-1189)) (-653 (-1 $ $))) 179) (($ $ (-653 $) (-653 $)) 150) (($ $ $ $) 149) (($ $ (-301 $)) 148) (($ $ (-653 (-301 $))) 147) (($ $ (-653 (-621 $)) (-653 $)) 146) (($ $ (-621 $) $) 145)) (-2163 (((-780) $) 64)) (-2198 (($ (-115) (-653 $)) 155) (($ (-115) $ $ $ $) 154) (($ (-115) $ $ $) 153) (($ (-115) $ $) 152) (($ (-115) $) 151)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 63)) (-3727 (($ $ $) 164) (($ $) 163)) (-3904 (($ $ (-1189)) 253 (|has| |#1| (-1061))) (($ $ (-653 (-1189))) 252 (|has| |#1| (-1061))) (($ $ (-1189) (-780)) 251 (|has| |#1| (-1061))) (($ $ (-653 (-1189)) (-653 (-780))) 250 (|has| |#1| (-1061)))) (-2662 (($ $) 232 (|has| |#1| (-565)))) (-2975 (((-1137 |#1| (-621 $)) $) 231 (|has| |#1| (-565)))) (-2984 (($ $) 188 (|has| $ (-1061)))) (-1835 (((-545) $) 259 (|has| |#1| (-623 (-545)))) (($ (-427 $)) 230 (|has| |#1| (-565))) (((-902 (-387)) $) 195 (|has| |#1| (-623 (-902 (-387))))) (((-902 (-573)) $) 194 (|has| |#1| (-623 (-902 (-573)))))) (-3204 (($ $ $) 258 (|has| |#1| (-482)))) (-4380 (($ $ $) 257 (|has| |#1| (-482)))) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49) (($ (-416 (-573))) 74) (($ (-962 |#1|)) 256 (|has| |#1| (-1061))) (($ (-416 (-962 |#1|))) 240 (|has| |#1| (-565))) (($ (-416 (-962 (-416 |#1|)))) 236 (|has| |#1| (-565))) (($ (-962 (-416 |#1|))) 235 (|has| |#1| (-565))) (($ (-416 |#1|)) 234 (|has| |#1| (-565))) (($ (-1137 |#1| (-621 $))) 220 (|has| |#1| (-1061))) (($ |#1|) 202) (($ (-1189)) 193) (($ (-621 $)) 144)) (-4279 (((-3 $ "failed") $) 242 (|has| |#1| (-146)))) (-1545 (((-780)) 32 T CONST)) (-2029 (($ (-653 $)) 160) (($ $) 159)) (-3109 (((-112) (-115)) 171)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-2497 (($ (-1189) (-653 $)) 210) (($ (-1189) $ $ $ $) 209) (($ (-1189) $ $ $) 208) (($ (-1189) $ $) 207) (($ (-1189) $) 206)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-1189)) 249 (|has| |#1| (-1061))) (($ $ (-653 (-1189))) 248 (|has| |#1| (-1061))) (($ $ (-1189) (-780)) 247 (|has| |#1| (-1061))) (($ $ (-653 (-1189)) (-653 (-780))) 246 (|has| |#1| (-1061)))) (-2981 (((-112) $ $) 6)) (-3103 (($ $ $) 73) (($ (-1137 |#1| (-621 $)) (-1137 |#1| (-621 $))) 233 (|has| |#1| (-565)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 77) (($ $ (-416 (-573))) 98)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 (-573))) 76) (($ (-416 (-573)) $) 75) (($ $ |#1|) 241 (|has| |#1| (-174))) (($ |#1| $) 133 (|has| |#1| (-1061))))) +(((-29 |#1|) (-141) (-565)) (T -29)) +((-1732 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-565)))) (-3682 (*1 *2 *1) (-12 (-4 *3 (-565)) (-5 *2 (-653 *1)) (-4 *1 (-29 *3)))) (-1732 (*1 *1 *1 *2) (-12 (-5 *2 (-1189)) (-4 *1 (-29 *3)) (-4 *3 (-565)))) (-3682 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-565)) (-5 *2 (-653 *1)) (-4 *1 (-29 *4)))) (-4118 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-565)))) (-3148 (*1 *2 *1) (-12 (-4 *3 (-565)) (-5 *2 (-653 *1)) (-4 *1 (-29 *3)))) (-4118 (*1 *1 *1 *2) (-12 (-5 *2 (-1189)) (-4 *1 (-29 *3)) (-4 *3 (-565)))) (-3148 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-565)) (-5 *2 (-653 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-439 |t#1|) (-10 -8 (-15 -1732 ($ $)) (-15 -3682 ((-653 $) $)) (-15 -1732 ($ $ (-1189))) (-15 -3682 ((-653 $) $ (-1189))) (-15 -4118 ($ $)) (-15 -3148 ((-653 $) $)) (-15 -4118 ($ $ (-1189))) (-15 -3148 ((-653 $) $ (-1189))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) . T) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #0#) . T) ((-625 #1=(-416 (-962 |#1|))) |has| |#1| (-565)) ((-625 (-573)) . T) ((-625 #2=(-621 $)) . T) ((-625 #3=(-962 |#1|)) |has| |#1| (-1061)) ((-625 #4=(-1189)) . T) ((-625 |#1|) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-623 (-902 (-387))) |has| |#1| (-623 (-902 (-387)))) ((-623 (-902 (-573))) |has| |#1| (-623 (-902 (-573)))) ((-248) . T) ((-297) . T) ((-314) . T) ((-316 $) . T) ((-309) . T) ((-371) . T) ((-385 |#1|) |has| |#1| (-1061)) ((-409 |#1|) . T) ((-420 |#1|) . T) ((-439 |#1|) . T) ((-461) . T) ((-482) |has| |#1| (-482)) ((-523 (-621 $) $) . T) ((-523 $ $) . T) ((-565) . T) ((-655 #0#) . T) ((-655 (-573)) . T) ((-655 |#1|) -2817 (|has| |#1| (-1061)) (|has| |#1| (-174))) ((-655 $) . T) ((-657 #0#) . T) ((-657 #5=(-573)) -12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061))) ((-657 |#1|) -2817 (|has| |#1| (-1061)) (|has| |#1| (-174))) ((-657 $) . T) ((-649 #0#) . T) ((-649 |#1|) |has| |#1| (-174)) ((-649 $) . T) ((-648 #5#) -12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061))) ((-648 |#1|) |has| |#1| (-1061)) ((-726 #0#) . T) ((-726 |#1|) |has| |#1| (-174)) ((-726 $) . T) ((-735) . T) ((-910 (-1189)) |has| |#1| (-1061)) ((-896 (-387)) |has| |#1| (-896 (-387))) ((-896 (-573)) |has| |#1| (-896 (-573))) ((-894 |#1|) . T) ((-930) . T) ((-1014) . T) ((-1050 (-416 (-573))) -2817 (|has| |#1| (-1050 (-416 (-573)))) (-12 (|has| |#1| (-565)) (|has| |#1| (-1050 (-573))))) ((-1050 #1#) |has| |#1| (-565)) ((-1050 (-573)) |has| |#1| (-1050 (-573))) ((-1050 #2#) . T) ((-1050 #3#) |has| |#1| (-1061)) ((-1050 #4#) . T) ((-1050 |#1|) . T) ((-1063 #0#) . T) ((-1063 |#1|) |has| |#1| (-174)) ((-1063 $) . T) ((-1068 #0#) . T) ((-1068 |#1|) |has| |#1| (-174)) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1230) . T) ((-1234) . T)) +((-2423 (((-1106 (-227)) $) NIL)) (-2410 (((-1106 (-227)) $) NIL)) (-4143 (($ $ (-227)) 164)) (-3544 (($ (-962 (-573)) (-1189) (-1189) (-1106 (-416 (-573))) (-1106 (-416 (-573)))) 104)) (-3054 (((-653 (-653 (-953 (-227)))) $) 180)) (-2942 (((-871) $) 194))) +(((-30) (-13 (-965) (-10 -8 (-15 -3544 ($ (-962 (-573)) (-1189) (-1189) (-1106 (-416 (-573))) (-1106 (-416 (-573))))) (-15 -4143 ($ $ (-227)))))) (T -30)) +((-3544 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-962 (-573))) (-5 *3 (-1189)) (-5 *4 (-1106 (-416 (-573)))) (-5 *1 (-30)))) (-4143 (*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30))))) +(-13 (-965) (-10 -8 (-15 -3544 ($ (-962 (-573)) (-1189) (-1189) (-1106 (-416 (-573))) (-1106 (-416 (-573))))) (-15 -4143 ($ $ (-227))))) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 17) (($ (-1194)) NIL) (((-1194) $) NIL)) (-2043 (((-1147) $) 11)) (-3507 (((-112) $ $) NIL)) (-2629 (((-1147) $) 9)) (-2981 (((-112) $ $) NIL))) +(((-31) (-13 (-1095) (-10 -8 (-15 -2629 ((-1147) $)) (-15 -2043 ((-1147) $))))) (T -31)) +((-2629 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-31)))) (-2043 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-31))))) +(-13 (-1095) (-10 -8 (-15 -2629 ((-1147) $)) (-15 -2043 ((-1147) $)))) +((-1732 ((|#2| (-1185 |#2|) (-1189)) 41)) (-4173 (((-115) (-115)) 55)) (-2597 (((-1185 |#2|) (-621 |#2|)) 149 (|has| |#1| (-1050 (-573))))) (-1500 ((|#2| |#1| (-573)) 137 (|has| |#1| (-1050 (-573))))) (-1980 ((|#2| (-1185 |#2|) |#2|) 29)) (-1389 (((-871) (-653 |#2|)) 86)) (-2984 ((|#2| |#2|) 144 (|has| |#1| (-1050 (-573))))) (-3109 (((-112) (-115)) 17)) (** ((|#2| |#2| (-416 (-573))) 103 (|has| |#1| (-1050 (-573)))))) +(((-32 |#1| |#2|) (-10 -7 (-15 -1732 (|#2| (-1185 |#2|) (-1189))) (-15 -4173 ((-115) (-115))) (-15 -3109 ((-112) (-115))) (-15 -1980 (|#2| (-1185 |#2|) |#2|)) (-15 -1389 ((-871) (-653 |#2|))) (IF (|has| |#1| (-1050 (-573))) (PROGN (-15 ** (|#2| |#2| (-416 (-573)))) (-15 -2597 ((-1185 |#2|) (-621 |#2|))) (-15 -2984 (|#2| |#2|)) (-15 -1500 (|#2| |#1| (-573)))) |%noBranch|)) (-565) (-439 |#1|)) (T -32)) +((-1500 (*1 *2 *3 *4) (-12 (-5 *4 (-573)) (-4 *2 (-439 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1050 *4)) (-4 *3 (-565)))) (-2984 (*1 *2 *2) (-12 (-4 *3 (-1050 (-573))) (-4 *3 (-565)) (-5 *1 (-32 *3 *2)) (-4 *2 (-439 *3)))) (-2597 (*1 *2 *3) (-12 (-5 *3 (-621 *5)) (-4 *5 (-439 *4)) (-4 *4 (-1050 (-573))) (-4 *4 (-565)) (-5 *2 (-1185 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-416 (-573))) (-4 *4 (-1050 (-573))) (-4 *4 (-565)) (-5 *1 (-32 *4 *2)) (-4 *2 (-439 *4)))) (-1389 (*1 *2 *3) (-12 (-5 *3 (-653 *5)) (-4 *5 (-439 *4)) (-4 *4 (-565)) (-5 *2 (-871)) (-5 *1 (-32 *4 *5)))) (-1980 (*1 *2 *3 *2) (-12 (-5 *3 (-1185 *2)) (-4 *2 (-439 *4)) (-4 *4 (-565)) (-5 *1 (-32 *4 *2)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-565)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-439 *4)))) (-4173 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-565)) (-5 *1 (-32 *3 *4)) (-4 *4 (-439 *3)))) (-1732 (*1 *2 *3 *4) (-12 (-5 *3 (-1185 *2)) (-5 *4 (-1189)) (-4 *2 (-439 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-565))))) +(-10 -7 (-15 -1732 (|#2| (-1185 |#2|) (-1189))) (-15 -4173 ((-115) (-115))) (-15 -3109 ((-112) (-115))) (-15 -1980 (|#2| (-1185 |#2|) |#2|)) (-15 -1389 ((-871) (-653 |#2|))) (IF (|has| |#1| (-1050 (-573))) (PROGN (-15 ** (|#2| |#2| (-416 (-573)))) (-15 -2597 ((-1185 |#2|) (-621 |#2|))) (-15 -2984 (|#2| |#2|)) (-15 -1500 (|#2| |#1| (-573)))) |%noBranch|)) +((-3450 (((-112) $ (-780)) 20)) (-2579 (($) 10)) (-2078 (((-112) $ (-780)) 19)) (-2673 (((-112) $ (-780)) 17)) (-1885 (((-112) $ $) 8)) (-3811 (((-112) $) 15))) +(((-33 |#1|) (-10 -8 (-15 -2579 (|#1|)) (-15 -3450 ((-112) |#1| (-780))) (-15 -2078 ((-112) |#1| (-780))) (-15 -2673 ((-112) |#1| (-780))) (-15 -3811 ((-112) |#1|)) (-15 -1885 ((-112) |#1| |#1|))) (-34)) (T -33)) +NIL +(-10 -8 (-15 -2579 (|#1|)) (-15 -3450 ((-112) |#1| (-780))) (-15 -2078 ((-112) |#1| (-780))) (-15 -2673 ((-112) |#1| (-780))) (-15 -3811 ((-112) |#1|)) (-15 -1885 ((-112) |#1| |#1|))) +((-3450 (((-112) $ (-780)) 8)) (-2579 (($) 7 T CONST)) (-2078 (((-112) $ (-780)) 9)) (-2673 (((-112) $ (-780)) 10)) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-3166 (($ $) 13)) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) (((-34) (-141)) (T -34)) -((-4017 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3167 (*1 *1 *1) (-4 *1 (-34))) (-2672 (*1 *1) (-4 *1 (-34))) (-1584 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4203 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112)))) (-2742 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112)))) (-3034 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112)))) (-3426 (*1 *1) (-4 *1 (-34))) (-2863 (*1 *2 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-34)) (-5 *2 (-781))))) -(-13 (-1231) (-10 -8 (-15 -4017 ((-112) $ $)) (-15 -3167 ($ $)) (-15 -2672 ($)) (-15 -1584 ((-112) $)) (-15 -4203 ((-112) $ (-781))) (-15 -2742 ((-112) $ (-781))) (-15 -3034 ((-112) $ (-781))) (-15 -3426 ($) -1706) (IF (|has| $ (-6 -4456)) (-15 -2863 ((-781) $)) |%noBranch|))) -(((-1231) . T)) -((-2441 (($ $) 11)) (-2414 (($ $) 10)) (-2465 (($ $) 9)) (-2521 (($ $) 8)) (-2452 (($ $) 7)) (-2428 (($ $) 6))) +((-1885 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3166 (*1 *1 *1) (-4 *1 (-34))) (-3508 (*1 *1) (-4 *1 (-34))) (-3811 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2673 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-780)) (-5 *2 (-112)))) (-2078 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-780)) (-5 *2 (-112)))) (-3450 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-780)) (-5 *2 (-112)))) (-2579 (*1 *1) (-4 *1 (-34))) (-2862 (*1 *2 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-34)) (-5 *2 (-780))))) +(-13 (-1230) (-10 -8 (-15 -1885 ((-112) $ $)) (-15 -3166 ($ $)) (-15 -3508 ($)) (-15 -3811 ((-112) $)) (-15 -2673 ((-112) $ (-780))) (-15 -2078 ((-112) $ (-780))) (-15 -3450 ((-112) $ (-780))) (-15 -2579 ($) -1705) (IF (|has| $ (-6 -4455)) (-15 -2862 ((-780) $)) |%noBranch|))) +(((-1230) . T)) +((-2439 (($ $) 11)) (-2413 (($ $) 10)) (-2464 (($ $) 9)) (-2520 (($ $) 8)) (-2452 (($ $) 7)) (-2426 (($ $) 6))) (((-35) (-141)) (T -35)) -((-2441 (*1 *1 *1) (-4 *1 (-35))) (-2414 (*1 *1 *1) (-4 *1 (-35))) (-2465 (*1 *1 *1) (-4 *1 (-35))) (-2521 (*1 *1 *1) (-4 *1 (-35))) (-2452 (*1 *1 *1) (-4 *1 (-35))) (-2428 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -2428 ($ $)) (-15 -2452 ($ $)) (-15 -2521 ($ $)) (-15 -2465 ($ $)) (-15 -2414 ($ $)) (-15 -2441 ($ $)))) -((-2849 (((-112) $ $) 19 (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))))) (-3083 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 127)) (-2406 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 150)) (-1970 (($ $) 148)) (-3778 (($) 73) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) 72)) (-3714 (((-1286) $ |#1| |#1|) 100 (|has| $ (-6 -4457))) (((-1286) $ (-574) (-574)) 180 (|has| $ (-6 -4457)))) (-3617 (($ $ (-574)) 161 (|has| $ (-6 -4457)))) (-1357 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 211) (((-112) $) 205 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-860)))) (-3642 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 202 (|has| $ (-6 -4457))) (($ $) 201 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-860)) (|has| $ (-6 -4457))))) (-2771 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 212) (($ $) 206 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-860)))) (-3034 (((-112) $ (-781)) 8)) (-3316 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) 136 (|has| $ (-6 -4457)))) (-3575 (($ $ $) 157 (|has| $ (-6 -4457)))) (-3582 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) 159 (|has| $ (-6 -4457)))) (-3630 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) 155 (|has| $ (-6 -4457)))) (-3143 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ (-574) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) 191 (|has| $ (-6 -4457))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ (-1248 (-574)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) 162 (|has| $ (-6 -4457))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ "last" (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) 160 (|has| $ (-6 -4457))) (($ $ "rest" $) 158 (|has| $ (-6 -4457))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ "first" (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) 156 (|has| $ (-6 -4457))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ "value" (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) 135 (|has| $ (-6 -4457)))) (-2183 (($ $ (-654 $)) 134 (|has| $ (-6 -4457)))) (-3572 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 46 (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 218)) (-2165 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 56 (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 177 (|has| $ (-6 -4456)))) (-2393 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 149)) (-2163 (((-3 |#2| "failed") |#1| $) 62)) (-3426 (($) 7 T CONST)) (-2627 (($ $) 203 (|has| $ (-6 -4457)))) (-4423 (($ $) 213)) (-2926 (($ $ (-781)) 144) (($ $) 142)) (-1771 (($ $) 216 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (-1543 (($ $) 59 (-2818 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| $ (-6 -4456))) (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| $ (-6 -4456)))))) (-2876 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 48 (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 47 (|has| $ (-6 -4456))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 222) (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 217 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (-3335 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 55 (|has| $ (-6 -4456))) (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 179 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 176 (|has| $ (-6 -4456)))) (-2868 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) 57 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| $ (-6 -4456)))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) 54 (|has| $ (-6 -4456))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 53 (|has| $ (-6 -4456))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) 178 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| $ (-6 -4456)))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) 175 (|has| $ (-6 -4456))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 174 (|has| $ (-6 -4456)))) (-2458 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4457))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ (-574) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) 192 (|has| $ (-6 -4457)))) (-2385 ((|#2| $ |#1|) 89) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ (-574)) 190)) (-1688 (((-112) $) 194)) (-1441 (((-574) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 210) (((-574) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 209 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))) (((-574) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ (-574)) 208 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (-1864 (((-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 31 (|has| $ (-6 -4456))) (((-654 |#2|) $) 80 (|has| $ (-6 -4456))) (((-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 116 (|has| $ (-6 -4456)))) (-3820 (((-654 $) $) 125)) (-2278 (((-112) $ $) 133 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (-3790 (($ (-781) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) 170)) (-2742 (((-112) $ (-781)) 9)) (-3618 ((|#1| $) 97 (|has| |#1| (-860))) (((-574) $) 182 (|has| (-574) (-860)))) (-3659 (($ $ $) 200 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-860)))) (-2628 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $ $) 219) (($ $ $) 215 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-860)))) (-4430 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $ $) 214) (($ $ $) 207 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-860)))) (-1606 (((-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 30 (|has| $ (-6 -4456))) (((-654 |#2|) $) 81 (|has| $ (-6 -4456))) (((-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 117 (|has| $ (-6 -4456)))) (-1710 (((-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| $ (-6 -4456)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1113)) (|has| $ (-6 -4456)))) (((-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 119 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| $ (-6 -4456))))) (-2702 ((|#1| $) 96 (|has| |#1| (-860))) (((-574) $) 183 (|has| (-574) (-860)))) (-4257 (($ $ $) 199 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-860)))) (-2449 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 35 (|has| $ (-6 -4457))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4457))) (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 112 (|has| $ (-6 -4457)))) (-1777 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 111)) (-1788 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) 227)) (-4203 (((-112) $ (-781)) 10)) (-3507 (((-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 130)) (-3632 (((-112) $) 126)) (-4136 (((-1172) $) 22 (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))))) (-3360 (($ $ (-781)) 147) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 145)) (-1763 (((-654 |#1|) $) 64)) (-1732 (((-112) |#1| $) 65)) (-2937 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 40)) (-2798 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 41) (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ (-574)) 221) (($ $ $ (-574)) 220)) (-1594 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ (-574)) 164) (($ $ $ (-574)) 163)) (-4308 (((-654 |#1|) $) 94) (((-654 (-574)) $) 185)) (-3336 (((-112) |#1| $) 93) (((-112) (-574) $) 186)) (-3966 (((-1133) $) 21 (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))))) (-2915 ((|#2| $) 98 (|has| |#1| (-860))) (($ $ (-781)) 141) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 139)) (-1549 (((-3 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) "failed") (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 52) (((-3 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) "failed") (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 173)) (-1942 (($ $ |#2|) 99 (|has| $ (-6 -4457))) (($ $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) 181 (|has| $ (-6 -4457)))) (-1785 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 42)) (-4073 (((-112) $) 193)) (-2540 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 33 (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 114 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))))) 27 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-302 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) 26 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) 25 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) 24 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) 87 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) 85 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 (-302 |#2|))) 84 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) 123 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) 122 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-302 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) 121 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-654 (-302 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))))) 120 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))))) (-4017 (((-112) $ $) 14)) (-3398 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113)))) (((-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 184 (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))))) (-4371 (((-654 |#2|) $) 92) (((-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 187)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-2199 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ (-574) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) 189) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ (-574)) 188) (($ $ (-1248 (-574))) 171) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ "last") 146) (($ $ "rest") 143) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ "first") 140) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ "value") 128)) (-3867 (((-574) $ $) 131)) (-1662 (($) 50) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) 49)) (-2932 (($ $ (-574)) 224) (($ $ (-1248 (-574))) 223)) (-2840 (($ $ (-574)) 166) (($ $ (-1248 (-574))) 165)) (-2479 (((-112) $) 129)) (-2595 (($ $) 153)) (-4434 (($ $) 154 (|has| $ (-6 -4457)))) (-3066 (((-781) $) 152)) (-2807 (($ $) 151)) (-3975 (((-781) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 32 (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| $ (-6 -4456)))) (((-781) |#2| $) 82 (-12 (|has| |#2| (-1113)) (|has| $ (-6 -4456)))) (((-781) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 118 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| $ (-6 -4456)))) (((-781) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 115 (|has| $ (-6 -4456)))) (-3506 (($ $ $ (-574)) 204 (|has| $ (-6 -4457)))) (-3167 (($ $) 13)) (-1836 (((-546) $) 60 (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-624 (-546))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-624 (-546)))))) (-2956 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) 51) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) 172)) (-1995 (($ $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) 226) (($ $ $) 225)) (-4157 (($ $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) 169) (($ (-654 $)) 168) (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 138) (($ $ $) 137)) (-2943 (((-872) $) 18 (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-623 (-872)))))) (-2321 (((-654 $) $) 124)) (-4418 (((-112) $ $) 132 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (-3284 (((-112) $ $) 23 (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))))) (-1599 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) 43)) (-3369 (((-3 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) "failed") |#1| $) 110)) (-3390 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 34 (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 113 (|has| $ (-6 -4456)))) (-3042 (((-112) $ $) 197 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-860)))) (-3018 (((-112) $ $) 196 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-860)))) (-2981 (((-112) $ $) 20 (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))))) (-3030 (((-112) $ $) 198 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-860)))) (-3007 (((-112) $ $) 195 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-860)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-36 |#1| |#2|) (-141) (-1113) (-1113)) (T -36)) -((-3369 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-5 *2 (-2 (|:| -3693 *3) (|:| -1908 *4)))))) -(-13 (-1207 |t#1| |t#2|) (-676 (-2 (|:| -3693 |t#1|) (|:| -1908 |t#2|))) (-10 -8 (-15 -3369 ((-3 (-2 (|:| -3693 |t#1|) (|:| -1908 |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T) ((-102) -2818 (|has| |#2| (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-860))) ((-623 (-872)) -2818 (|has| |#2| (-1113)) (|has| |#2| (-623 (-872))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-860)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-623 (-872)))) ((-152 #1=(-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T) ((-624 (-546)) |has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-624 (-546))) ((-231 #0#) . T) ((-241 #0#) . T) ((-294 #2=(-574) #1#) . T) ((-294 (-1248 (-574)) $) . T) ((-294 |#1| |#2|) . T) ((-296 #2# #1#) . T) ((-296 |#1| |#2|) . T) ((-317 #1#) -12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))) ((-317 |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((-290 #1#) . T) ((-382 #1#) . T) ((-499 #1#) . T) ((-499 |#2|) . T) ((-614 #2# #1#) . T) ((-614 |#1| |#2|) . T) ((-524 #1# #1#) -12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))) ((-524 |#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((-620 |#1| |#2|) . T) ((-661 #1#) . T) ((-676 #1#) . T) ((-860) |has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-860)) ((-1023 #1#) . T) ((-1113) -2818 (|has| |#2| (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-860))) ((-1162 #1#) . T) ((-1207 |#1| |#2|) . T) ((-1231) . T) ((-1269 #1#) . T)) -((-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) 10))) -(((-37 |#1| |#2|) (-10 -8 (-15 -2943 (|#1| |#2|)) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|))) (-38 |#2|) (-174)) (T -37)) -NIL -(-10 -8 (-15 -2943 (|#1| |#2|)) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-3434 (((-3 $ "failed") $) 37)) (-3199 (((-112) $) 35)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +((-2439 (*1 *1 *1) (-4 *1 (-35))) (-2413 (*1 *1 *1) (-4 *1 (-35))) (-2464 (*1 *1 *1) (-4 *1 (-35))) (-2520 (*1 *1 *1) (-4 *1 (-35))) (-2452 (*1 *1 *1) (-4 *1 (-35))) (-2426 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -2426 ($ $)) (-15 -2452 ($ $)) (-15 -2520 ($ $)) (-15 -2464 ($ $)) (-15 -2413 ($ $)) (-15 -2439 ($ $)))) +((-2848 (((-112) $ $) 19 (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-3082 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 127)) (-2404 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 150)) (-1969 (($ $) 148)) (-3777 (($) 73) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 72)) (-3791 (((-1285) $ |#1| |#1|) 100 (|has| $ (-6 -4456))) (((-1285) $ (-573) (-573)) 180 (|has| $ (-6 -4456)))) (-1896 (($ $ (-573)) 161 (|has| $ (-6 -4456)))) (-1473 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 211) (((-112) $) 205 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-2748 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 202 (|has| $ (-6 -4456))) (($ $) 201 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)) (|has| $ (-6 -4456))))) (-2770 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 212) (($ $) 206 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-3450 (((-112) $ (-780)) 8)) (-2367 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 136 (|has| $ (-6 -4456)))) (-2554 (($ $ $) 157 (|has| $ (-6 -4456)))) (-2016 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 159 (|has| $ (-6 -4456)))) (-2647 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 155 (|has| $ (-6 -4456)))) (-3142 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 191 (|has| $ (-6 -4456))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-1247 (-573)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 162 (|has| $ (-6 -4456))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ "last" (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 160 (|has| $ (-6 -4456))) (($ $ "rest" $) 158 (|has| $ (-6 -4456))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ "first" (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 156 (|has| $ (-6 -4456))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ "value" (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 135 (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) 134 (|has| $ (-6 -4456)))) (-3557 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 46 (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 218)) (-2164 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 56 (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 177 (|has| $ (-6 -4455)))) (-2392 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 149)) (-2161 (((-3 |#2| "failed") |#1| $) 62)) (-2579 (($) 7 T CONST)) (-2176 (($ $) 203 (|has| $ (-6 -4456)))) (-4422 (($ $) 213)) (-2925 (($ $ (-780)) 144) (($ $) 142)) (-1599 (($ $) 216 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (-2685 (($ $) 59 (-2817 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455))) (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455)))))) (-2596 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 48 (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 47 (|has| $ (-6 -4455))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 222) (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 217 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (-3334 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 55 (|has| $ (-6 -4455))) (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 179 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 176 (|has| $ (-6 -4455)))) (-2867 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 57 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455)))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 54 (|has| $ (-6 -4455))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 53 (|has| $ (-6 -4455))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 178 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455)))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 175 (|has| $ (-6 -4455))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 174 (|has| $ (-6 -4455)))) (-2457 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4456))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 192 (|has| $ (-6 -4456)))) (-2384 ((|#2| $ |#1|) 89) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573)) 190)) (-3435 (((-112) $) 194)) (-1440 (((-573) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 210) (((-573) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 209 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))) (((-573) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573)) 208 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (-1863 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 31 (|has| $ (-6 -4455))) (((-653 |#2|) $) 80 (|has| $ (-6 -4455))) (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 116 (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) 125)) (-3208 (((-112) $ $) 133 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (-3789 (($ (-780) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 170)) (-2078 (((-112) $ (-780)) 9)) (-1968 ((|#1| $) 97 (|has| |#1| (-859))) (((-573) $) 182 (|has| (-573) (-859)))) (-3659 (($ $ $) 200 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-4241 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ $) 219) (($ $ $) 215 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-1480 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ $) 214) (($ $ $) 207 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-3214 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 30 (|has| $ (-6 -4455))) (((-653 |#2|) $) 81 (|has| $ (-6 -4455))) (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 117 (|has| $ (-6 -4455)))) (-1547 (((-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1112)) (|has| $ (-6 -4455)))) (((-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 119 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455))))) (-3470 ((|#1| $) 96 (|has| |#1| (-859))) (((-573) $) 183 (|has| (-573) (-859)))) (-3751 (($ $ $) 199 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-2446 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 35 (|has| $ (-6 -4456))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4456))) (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 112 (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 111)) (-1787 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 227)) (-2673 (((-112) $ (-780)) 10)) (-3505 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 130)) (-2880 (((-112) $) 126)) (-3180 (((-1171) $) 22 (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-3359 (($ $ (-780)) 147) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 145)) (-1762 (((-653 |#1|) $) 64)) (-4201 (((-112) |#1| $) 65)) (-2487 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 40)) (-3181 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 41) (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573)) 221) (($ $ $ (-573)) 220)) (-1593 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573)) 164) (($ $ $ (-573)) 163)) (-1977 (((-653 |#1|) $) 94) (((-653 (-573)) $) 185)) (-2560 (((-112) |#1| $) 93) (((-112) (-573) $) 186)) (-3965 (((-1132) $) 21 (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-2914 ((|#2| $) 98 (|has| |#1| (-859))) (($ $ (-780)) 141) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 139)) (-2036 (((-3 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 52) (((-3 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 173)) (-3112 (($ $ |#2|) 99 (|has| $ (-6 -4456))) (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 181 (|has| $ (-6 -4456)))) (-3815 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 42)) (-1903 (((-112) $) 193)) (-1575 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 33 (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 114 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) 27 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 26 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 25 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 24 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) 87 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) 85 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 (-301 |#2|))) 84 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 123 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 122 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 121 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) 120 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-1885 (((-112) $ $) 14)) (-2547 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112)))) (((-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 184 (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-1535 (((-653 |#2|) $) 92) (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 187)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 189) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573)) 188) (($ $ (-1247 (-573))) 171) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ "last") 146) (($ $ "rest") 143) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ "first") 140) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ "value") 128)) (-1501 (((-573) $ $) 131)) (-2428 (($) 50) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 49)) (-3220 (($ $ (-573)) 224) (($ $ (-1247 (-573))) 223)) (-2836 (($ $ (-573)) 166) (($ $ (-1247 (-573))) 165)) (-1628 (((-112) $) 129)) (-1992 (($ $) 153)) (-3839 (($ $) 154 (|has| $ (-6 -4456)))) (-4072 (((-780) $) 152)) (-1512 (($ $) 151)) (-3974 (((-780) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 32 (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455)))) (((-780) |#2| $) 82 (-12 (|has| |#2| (-1112)) (|has| $ (-6 -4455)))) (((-780) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 118 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455)))) (((-780) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 115 (|has| $ (-6 -4455)))) (-3919 (($ $ $ (-573)) 204 (|has| $ (-6 -4456)))) (-3166 (($ $) 13)) (-1835 (((-545) $) 60 (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-623 (-545))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-623 (-545)))))) (-2955 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 51) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 172)) (-3996 (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 226) (($ $ $) 225)) (-4156 (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 169) (($ (-653 $)) 168) (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 138) (($ $ $) 137)) (-2942 (((-871) $) 18 (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-622 (-871))) (|has| |#2| (-622 (-871))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-622 (-871)))))) (-1811 (((-653 $) $) 124)) (-1716 (((-112) $ $) 132 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (-3507 (((-112) $ $) 23 (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-2679 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 43)) (-3368 (((-3 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) "failed") |#1| $) 110)) (-1646 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 34 (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 113 (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) 197 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-3015 (((-112) $ $) 196 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-2981 (((-112) $ $) 20 (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-3027 (((-112) $ $) 198 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-3005 (((-112) $ $) 195 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-36 |#1| |#2|) (-141) (-1112) (-1112)) (T -36)) +((-3368 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-5 *2 (-2 (|:| -3692 *3) (|:| -1907 *4)))))) +(-13 (-1206 |t#1| |t#2|) (-675 (-2 (|:| -3692 |t#1|) (|:| -1907 |t#2|))) (-10 -8 (-15 -3368 ((-3 (-2 (|:| -3692 |t#1|) (|:| -1907 |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T) ((-102) -2817 (|has| |#2| (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859))) ((-622 (-871)) -2817 (|has| |#2| (-1112)) (|has| |#2| (-622 (-871))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-622 (-871)))) ((-152 #1=(-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T) ((-623 (-545)) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-623 (-545))) ((-231 #0#) . T) ((-240 #0#) . T) ((-293 #2=(-573) #1#) . T) ((-293 (-1247 (-573)) $) . T) ((-293 |#1| |#2|) . T) ((-295 #2# #1#) . T) ((-295 |#1| |#2|) . T) ((-316 #1#) -12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))) ((-316 |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((-289 #1#) . T) ((-381 #1#) . T) ((-498 #1#) . T) ((-498 |#2|) . T) ((-613 #2# #1#) . T) ((-613 |#1| |#2|) . T) ((-523 #1# #1#) -12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))) ((-523 |#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((-619 |#1| |#2|) . T) ((-660 #1#) . T) ((-675 #1#) . T) ((-859) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)) ((-1022 #1#) . T) ((-1112) -2817 (|has| |#2| (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859))) ((-1161 #1#) . T) ((-1206 |#1| |#2|) . T) ((-1230) . T) ((-1268 #1#) . T)) +((-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#2|) 10))) +(((-37 |#1| |#2|) (-10 -8 (-15 -2942 (|#1| |#2|)) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) (-38 |#2|) (-174)) (T -37)) +NIL +(-10 -8 (-15 -2942 (|#1| |#2|)) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 44)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) (((-38 |#1|) (-141) (-174)) (T -38)) NIL -(-13 (-1062) (-727 |t#1|) (-626 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-736) . T) ((-1064 |#1|) . T) ((-1069 |#1|) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T)) -((-4320 (((-428 |#1|) |#1|) 41)) (-4220 (((-428 |#1|) |#1|) 30) (((-428 |#1|) |#1| (-654 (-48))) 33)) (-3483 (((-112) |#1|) 59))) -(((-39 |#1|) (-10 -7 (-15 -4220 ((-428 |#1|) |#1| (-654 (-48)))) (-15 -4220 ((-428 |#1|) |#1|)) (-15 -4320 ((-428 |#1|) |#1|)) (-15 -3483 ((-112) |#1|))) (-1257 (-48))) (T -39)) -((-3483 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1257 (-48))))) (-4320 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1257 (-48))))) (-4220 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1257 (-48))))) (-4220 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-48))) (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1257 (-48)))))) -(-10 -7 (-15 -4220 ((-428 |#1|) |#1| (-654 (-48)))) (-15 -4220 ((-428 |#1|) |#1|)) (-15 -4320 ((-428 |#1|) |#1|)) (-15 -3483 ((-112) |#1|))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3081 (((-2 (|:| |num| (-1281 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| (-417 |#2|) (-372)))) (-1575 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-2085 (((-112) $) NIL (|has| (-417 |#2|) (-372)))) (-2294 (((-699 (-417 |#2|)) (-1281 $)) NIL) (((-699 (-417 |#2|))) NIL)) (-1636 (((-417 |#2|) $) NIL)) (-1664 (((-1203 (-932) (-781)) (-574)) NIL (|has| (-417 |#2|) (-358)))) (-3524 (((-3 $ "failed") $ $) NIL)) (-2568 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-2827 (((-428 $) $) NIL (|has| (-417 |#2|) (-372)))) (-1600 (((-112) $ $) NIL (|has| (-417 |#2|) (-372)))) (-1487 (((-781)) NIL (|has| (-417 |#2|) (-377)))) (-4211 (((-112)) NIL)) (-1855 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-574) "failed") $) NIL (|has| (-417 |#2|) (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-417 |#2|) (-1051 (-417 (-574))))) (((-3 (-417 |#2|) "failed") $) NIL)) (-2206 (((-574) $) NIL (|has| (-417 |#2|) (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| (-417 |#2|) (-1051 (-417 (-574))))) (((-417 |#2|) $) NIL)) (-2737 (($ (-1281 (-417 |#2|)) (-1281 $)) NIL) (($ (-1281 (-417 |#2|))) 61) (($ (-1281 |#2|) |#2|) 131)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-417 |#2|) (-358)))) (-2786 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-2134 (((-699 (-417 |#2|)) $ (-1281 $)) NIL) (((-699 (-417 |#2|)) $) NIL)) (-2590 (((-699 (-574)) (-1281 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -4340 (-699 (-417 |#2|))) (|:| |vec| (-1281 (-417 |#2|)))) (-699 $) (-1281 $)) NIL) (((-699 (-417 |#2|)) (-699 $)) NIL) (((-699 (-417 |#2|)) (-1281 $)) NIL)) (-3645 (((-1281 $) (-1281 $)) NIL)) (-2868 (($ |#3|) NIL) (((-3 $ "failed") (-417 |#3|)) NIL (|has| (-417 |#2|) (-372)))) (-3434 (((-3 $ "failed") $) NIL)) (-1917 (((-654 (-654 |#1|))) NIL (|has| |#1| (-377)))) (-1480 (((-112) |#1| |#1|) NIL)) (-3584 (((-932)) NIL)) (-2820 (($) NIL (|has| (-417 |#2|) (-377)))) (-3245 (((-112)) NIL)) (-2042 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2797 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| (-417 |#2|) (-372)))) (-1569 (($ $) NIL)) (-3812 (($) NIL (|has| (-417 |#2|) (-358)))) (-4044 (((-112) $) NIL (|has| (-417 |#2|) (-358)))) (-1647 (($ $ (-781)) NIL (|has| (-417 |#2|) (-358))) (($ $) NIL (|has| (-417 |#2|) (-358)))) (-2257 (((-112) $) NIL (|has| (-417 |#2|) (-372)))) (-3884 (((-932) $) NIL (|has| (-417 |#2|) (-358))) (((-843 (-932)) $) NIL (|has| (-417 |#2|) (-358)))) (-3199 (((-112) $) NIL)) (-3936 (((-781)) NIL)) (-3500 (((-1281 $) (-1281 $)) 106)) (-2236 (((-417 |#2|) $) NIL)) (-4366 (((-654 (-963 |#1|)) (-1190)) NIL (|has| |#1| (-372)))) (-2748 (((-3 $ "failed") $) NIL (|has| (-417 |#2|) (-358)))) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-417 |#2|) (-372)))) (-1972 ((|#3| $) NIL (|has| (-417 |#2|) (-372)))) (-4115 (((-932) $) NIL (|has| (-417 |#2|) (-377)))) (-2854 ((|#3| $) NIL)) (-2832 (($ (-654 $)) NIL (|has| (-417 |#2|) (-372))) (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-4136 (((-1172) $) NIL)) (-3047 (((-1286) (-781)) 84)) (-2636 (((-699 (-417 |#2|))) 56)) (-1797 (((-699 (-417 |#2|))) 49)) (-1324 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-4024 (($ (-1281 |#2|) |#2|) 132)) (-1885 (((-699 (-417 |#2|))) 50)) (-2498 (((-699 (-417 |#2|))) 48)) (-1663 (((-2 (|:| |num| (-699 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130)) (-2209 (((-2 (|:| |num| (-1281 |#2|)) (|:| |den| |#2|)) $) 68)) (-2794 (((-1281 $)) 47)) (-1689 (((-1281 $)) 46)) (-2729 (((-112) $) NIL)) (-4041 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3818 (($) NIL (|has| (-417 |#2|) (-358)) CONST)) (-2576 (($ (-932)) NIL (|has| (-417 |#2|) (-377)))) (-4411 (((-3 |#2| "failed")) NIL)) (-3966 (((-1133) $) NIL)) (-2071 (((-781)) NIL)) (-2970 (($) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| (-417 |#2|) (-372)))) (-2873 (($ (-654 $)) NIL (|has| (-417 |#2|) (-372))) (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-1417 (((-654 (-2 (|:| -4220 (-574)) (|:| -3715 (-574))))) NIL (|has| (-417 |#2|) (-358)))) (-4220 (((-428 $) $) NIL (|has| (-417 |#2|) (-372)))) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-417 |#2|) (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| (-417 |#2|) (-372)))) (-2838 (((-3 $ "failed") $ $) NIL (|has| (-417 |#2|) (-372)))) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-417 |#2|) (-372)))) (-1730 (((-781) $) NIL (|has| (-417 |#2|) (-372)))) (-2199 ((|#1| $ |#1| |#1|) NIL)) (-4347 (((-3 |#2| "failed")) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| (-417 |#2|) (-372)))) (-2872 (((-417 |#2|) (-1281 $)) NIL) (((-417 |#2|)) 44)) (-4342 (((-781) $) NIL (|has| (-417 |#2|) (-358))) (((-3 (-781) "failed") $ $) NIL (|has| (-417 |#2|) (-358)))) (-3905 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 |#2| |#2|)) 126) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-781)) NIL (-2818 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $) NIL (-2818 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-3146 (((-699 (-417 |#2|)) (-1281 $) (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372)))) (-4185 ((|#3|) 55)) (-3074 (($) NIL (|has| (-417 |#2|) (-358)))) (-3487 (((-1281 (-417 |#2|)) $ (-1281 $)) NIL) (((-699 (-417 |#2|)) (-1281 $) (-1281 $)) NIL) (((-1281 (-417 |#2|)) $) 62) (((-699 (-417 |#2|)) (-1281 $)) 107)) (-1836 (((-1281 (-417 |#2|)) $) NIL) (($ (-1281 (-417 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (|has| (-417 |#2|) (-358)))) (-3694 (((-1281 $) (-1281 $)) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 |#2|)) NIL) (($ (-417 (-574))) NIL (-2818 (|has| (-417 |#2|) (-1051 (-417 (-574)))) (|has| (-417 |#2|) (-372)))) (($ $) NIL (|has| (-417 |#2|) (-372)))) (-3298 (($ $) NIL (|has| (-417 |#2|) (-358))) (((-3 $ "failed") $) NIL (|has| (-417 |#2|) (-146)))) (-1435 ((|#3| $) NIL)) (-1364 (((-781)) NIL T CONST)) (-2185 (((-112)) 42)) (-4328 (((-112) |#1|) 54) (((-112) |#2|) 138)) (-3284 (((-112) $ $) NIL)) (-1882 (((-1281 $)) NIL)) (-2069 (((-112) $ $) NIL (|has| (-417 |#2|) (-372)))) (-4195 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1431 (((-112)) NIL)) (-2133 (($) 17 T CONST)) (-2145 (($) 27 T CONST)) (-3610 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-781)) NIL (-2818 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $) NIL (-2818 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| (-417 |#2|) (-372)))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 |#2|)) NIL) (($ (-417 |#2|) $) NIL) (($ (-417 (-574)) $) NIL (|has| (-417 |#2|) (-372))) (($ $ (-417 (-574))) NIL (|has| (-417 |#2|) (-372))))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-351 |#1| |#2| |#3|) (-10 -7 (-15 -3047 ((-1286) (-781))))) (-372) (-1257 |#1|) (-1257 (-417 |#2|)) |#3|) (T -40)) -((-3047 (*1 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-372)) (-4 *5 (-1257 *4)) (-5 *2 (-1286)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1257 (-417 *5))) (-14 *7 *6)))) -(-13 (-351 |#1| |#2| |#3|) (-10 -7 (-15 -3047 ((-1286) (-781))))) -((-3080 ((|#2| |#2|) 47)) (-2812 ((|#2| |#2|) 139 (-12 (|has| |#2| (-440 |#1|)) (|has| |#1| (-13 (-462) (-1051 (-574))))))) (-3559 ((|#2| |#2|) 100 (-12 (|has| |#2| (-440 |#1|)) (|has| |#1| (-13 (-462) (-1051 (-574))))))) (-2598 ((|#2| |#2|) 101 (-12 (|has| |#2| (-440 |#1|)) (|has| |#1| (-13 (-462) (-1051 (-574))))))) (-1955 ((|#2| (-115) |#2| (-781)) 135 (-12 (|has| |#2| (-440 |#1|)) (|has| |#1| (-13 (-462) (-1051 (-574))))))) (-4394 (((-1186 |#2|) |#2|) 44)) (-2796 ((|#2| |#2| (-654 (-622 |#2|))) 18) ((|#2| |#2| (-654 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) -(((-41 |#1| |#2|) (-10 -7 (-15 -3080 (|#2| |#2|)) (-15 -2796 (|#2| |#2|)) (-15 -2796 (|#2| |#2| |#2|)) (-15 -2796 (|#2| |#2| (-654 |#2|))) (-15 -2796 (|#2| |#2| (-654 (-622 |#2|)))) (-15 -4394 ((-1186 |#2|) |#2|)) (IF (|has| |#1| (-13 (-462) (-1051 (-574)))) (IF (|has| |#2| (-440 |#1|)) (PROGN (-15 -2598 (|#2| |#2|)) (-15 -3559 (|#2| |#2|)) (-15 -2812 (|#2| |#2|)) (-15 -1955 (|#2| (-115) |#2| (-781)))) |%noBranch|) |%noBranch|)) (-566) (-13 (-372) (-310) (-10 -8 (-15 -2966 ((-1138 |#1| (-622 $)) $)) (-15 -2977 ((-1138 |#1| (-622 $)) $)) (-15 -2943 ($ (-1138 |#1| (-622 $))))))) (T -41)) -((-1955 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-781)) (-4 *5 (-13 (-462) (-1051 (-574)))) (-4 *5 (-566)) (-5 *1 (-41 *5 *2)) (-4 *2 (-440 *5)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2966 ((-1138 *5 (-622 $)) $)) (-15 -2977 ((-1138 *5 (-622 $)) $)) (-15 -2943 ($ (-1138 *5 (-622 $))))))))) (-2812 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1051 (-574)))) (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2966 ((-1138 *3 (-622 $)) $)) (-15 -2977 ((-1138 *3 (-622 $)) $)) (-15 -2943 ($ (-1138 *3 (-622 $))))))))) (-3559 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1051 (-574)))) (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2966 ((-1138 *3 (-622 $)) $)) (-15 -2977 ((-1138 *3 (-622 $)) $)) (-15 -2943 ($ (-1138 *3 (-622 $))))))))) (-2598 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1051 (-574)))) (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2966 ((-1138 *3 (-622 $)) $)) (-15 -2977 ((-1138 *3 (-622 $)) $)) (-15 -2943 ($ (-1138 *3 (-622 $))))))))) (-4394 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-1186 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-372) (-310) (-10 -8 (-15 -2966 ((-1138 *4 (-622 $)) $)) (-15 -2977 ((-1138 *4 (-622 $)) $)) (-15 -2943 ($ (-1138 *4 (-622 $))))))))) (-2796 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-622 *2))) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2966 ((-1138 *4 (-622 $)) $)) (-15 -2977 ((-1138 *4 (-622 $)) $)) (-15 -2943 ($ (-1138 *4 (-622 $))))))) (-4 *4 (-566)) (-5 *1 (-41 *4 *2)))) (-2796 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2966 ((-1138 *4 (-622 $)) $)) (-15 -2977 ((-1138 *4 (-622 $)) $)) (-15 -2943 ($ (-1138 *4 (-622 $))))))) (-4 *4 (-566)) (-5 *1 (-41 *4 *2)))) (-2796 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2966 ((-1138 *3 (-622 $)) $)) (-15 -2977 ((-1138 *3 (-622 $)) $)) (-15 -2943 ($ (-1138 *3 (-622 $))))))))) (-2796 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2966 ((-1138 *3 (-622 $)) $)) (-15 -2977 ((-1138 *3 (-622 $)) $)) (-15 -2943 ($ (-1138 *3 (-622 $))))))))) (-3080 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2966 ((-1138 *3 (-622 $)) $)) (-15 -2977 ((-1138 *3 (-622 $)) $)) (-15 -2943 ($ (-1138 *3 (-622 $)))))))))) -(-10 -7 (-15 -3080 (|#2| |#2|)) (-15 -2796 (|#2| |#2|)) (-15 -2796 (|#2| |#2| |#2|)) (-15 -2796 (|#2| |#2| (-654 |#2|))) (-15 -2796 (|#2| |#2| (-654 (-622 |#2|)))) (-15 -4394 ((-1186 |#2|) |#2|)) (IF (|has| |#1| (-13 (-462) (-1051 (-574)))) (IF (|has| |#2| (-440 |#1|)) (PROGN (-15 -2598 (|#2| |#2|)) (-15 -3559 (|#2| |#2|)) (-15 -2812 (|#2| |#2|)) (-15 -1955 (|#2| (-115) |#2| (-781)))) |%noBranch|) |%noBranch|)) -((-4220 (((-428 (-1186 |#3|)) (-1186 |#3|) (-654 (-48))) 23) (((-428 |#3|) |#3| (-654 (-48))) 19))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4220 ((-428 |#3|) |#3| (-654 (-48)))) (-15 -4220 ((-428 (-1186 |#3|)) (-1186 |#3|) (-654 (-48))))) (-860) (-803) (-960 (-48) |#2| |#1|)) (T -42)) -((-4220 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-48))) (-4 *5 (-860)) (-4 *6 (-803)) (-4 *7 (-960 (-48) *6 *5)) (-5 *2 (-428 (-1186 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1186 *7)))) (-4220 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-48))) (-4 *5 (-860)) (-4 *6 (-803)) (-5 *2 (-428 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-960 (-48) *6 *5))))) -(-10 -7 (-15 -4220 ((-428 |#3|) |#3| (-654 (-48)))) (-15 -4220 ((-428 (-1186 |#3|)) (-1186 |#3|) (-654 (-48))))) -((-1472 (((-781) |#2|) 70)) (-2439 (((-781) |#2|) 74)) (-3937 (((-654 |#2|)) 37)) (-1740 (((-781) |#2|) 73)) (-2577 (((-781) |#2|) 69)) (-3490 (((-781) |#2|) 72)) (-2136 (((-654 (-699 |#1|))) 65)) (-1789 (((-654 |#2|)) 60)) (-4241 (((-654 |#2|) |#2|) 48)) (-3365 (((-654 |#2|)) 62)) (-3526 (((-654 |#2|)) 61)) (-1802 (((-654 (-699 |#1|))) 53)) (-1595 (((-654 |#2|)) 59)) (-1934 (((-654 |#2|) |#2|) 47)) (-3019 (((-654 |#2|)) 55)) (-3513 (((-654 (-699 |#1|))) 66)) (-3193 (((-654 |#2|)) 64)) (-1882 (((-1281 |#2|) (-1281 |#2|)) 99 (|has| |#1| (-315))))) -(((-43 |#1| |#2|) (-10 -7 (-15 -1740 ((-781) |#2|)) (-15 -2439 ((-781) |#2|)) (-15 -2577 ((-781) |#2|)) (-15 -1472 ((-781) |#2|)) (-15 -3490 ((-781) |#2|)) (-15 -3019 ((-654 |#2|))) (-15 -1934 ((-654 |#2|) |#2|)) (-15 -4241 ((-654 |#2|) |#2|)) (-15 -1595 ((-654 |#2|))) (-15 -1789 ((-654 |#2|))) (-15 -3526 ((-654 |#2|))) (-15 -3365 ((-654 |#2|))) (-15 -3193 ((-654 |#2|))) (-15 -1802 ((-654 (-699 |#1|)))) (-15 -2136 ((-654 (-699 |#1|)))) (-15 -3513 ((-654 (-699 |#1|)))) (-15 -3937 ((-654 |#2|))) (IF (|has| |#1| (-315)) (-15 -1882 ((-1281 |#2|) (-1281 |#2|))) |%noBranch|)) (-566) (-427 |#1|)) (T -43)) -((-1882 (*1 *2 *2) (-12 (-5 *2 (-1281 *4)) (-4 *4 (-427 *3)) (-4 *3 (-315)) (-4 *3 (-566)) (-5 *1 (-43 *3 *4)))) (-3937 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-3513 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-2136 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-1802 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-3193 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-3365 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-3526 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-1789 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-1595 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-4241 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-1934 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-3019 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-3490 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-1472 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-2577 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-2439 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-1740 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4))))) -(-10 -7 (-15 -1740 ((-781) |#2|)) (-15 -2439 ((-781) |#2|)) (-15 -2577 ((-781) |#2|)) (-15 -1472 ((-781) |#2|)) (-15 -3490 ((-781) |#2|)) (-15 -3019 ((-654 |#2|))) (-15 -1934 ((-654 |#2|) |#2|)) (-15 -4241 ((-654 |#2|) |#2|)) (-15 -1595 ((-654 |#2|))) (-15 -1789 ((-654 |#2|))) (-15 -3526 ((-654 |#2|))) (-15 -3365 ((-654 |#2|))) (-15 -3193 ((-654 |#2|))) (-15 -1802 ((-654 (-699 |#1|)))) (-15 -2136 ((-654 (-699 |#1|)))) (-15 -3513 ((-654 (-699 |#1|)))) (-15 -3937 ((-654 |#2|))) (IF (|has| |#1| (-315)) (-15 -1882 ((-1281 |#2|) (-1281 |#2|))) |%noBranch|)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-2785 (((-3 $ "failed")) NIL (|has| |#1| (-566)))) (-3524 (((-3 $ "failed") $ $) NIL)) (-2174 (((-1281 (-699 |#1|)) (-1281 $)) NIL) (((-1281 (-699 |#1|))) 24)) (-4274 (((-1281 $)) 52)) (-3426 (($) NIL T CONST)) (-1666 (((-3 (-2 (|:| |particular| $) (|:| -1882 (-654 $))) "failed")) NIL (|has| |#1| (-566)))) (-1854 (((-3 $ "failed")) NIL (|has| |#1| (-566)))) (-2301 (((-699 |#1|) (-1281 $)) NIL) (((-699 |#1|)) NIL)) (-2538 ((|#1| $) NIL)) (-3208 (((-699 |#1|) $ (-1281 $)) NIL) (((-699 |#1|) $) NIL)) (-2784 (((-3 $ "failed") $) NIL (|has| |#1| (-566)))) (-2378 (((-1186 (-963 |#1|))) NIL (|has| |#1| (-372)))) (-2397 (($ $ (-932)) NIL)) (-3870 ((|#1| $) NIL)) (-3664 (((-1186 |#1|) $) NIL (|has| |#1| (-566)))) (-1565 ((|#1| (-1281 $)) NIL) ((|#1|) NIL)) (-1436 (((-1186 |#1|) $) NIL)) (-3287 (((-112)) 99)) (-2737 (($ (-1281 |#1|) (-1281 $)) NIL) (($ (-1281 |#1|)) NIL)) (-3434 (((-3 $ "failed") $) 14 (|has| |#1| (-566)))) (-3584 (((-932)) 53)) (-2542 (((-112)) NIL)) (-2817 (($ $ (-932)) NIL)) (-1514 (((-112)) NIL)) (-3168 (((-112)) NIL)) (-3531 (((-112)) 101)) (-2269 (((-3 (-2 (|:| |particular| $) (|:| -1882 (-654 $))) "failed")) NIL (|has| |#1| (-566)))) (-1484 (((-3 $ "failed")) NIL (|has| |#1| (-566)))) (-2284 (((-699 |#1|) (-1281 $)) NIL) (((-699 |#1|)) NIL)) (-1450 ((|#1| $) NIL)) (-2787 (((-699 |#1|) $ (-1281 $)) NIL) (((-699 |#1|) $) NIL)) (-4271 (((-3 $ "failed") $) NIL (|has| |#1| (-566)))) (-1451 (((-1186 (-963 |#1|))) NIL (|has| |#1| (-372)))) (-2422 (($ $ (-932)) NIL)) (-2552 ((|#1| $) NIL)) (-1460 (((-1186 |#1|) $) NIL (|has| |#1| (-566)))) (-1810 ((|#1| (-1281 $)) NIL) ((|#1|) NIL)) (-1943 (((-1186 |#1|) $) NIL)) (-4037 (((-112)) 98)) (-4136 (((-1172) $) NIL)) (-1342 (((-112)) 106)) (-3227 (((-112)) 105)) (-2949 (((-112)) 107)) (-3966 (((-1133) $) NIL)) (-3604 (((-112)) 100)) (-2199 ((|#1| $ (-574)) 55)) (-3487 (((-1281 |#1|) $ (-1281 $)) 48) (((-699 |#1|) (-1281 $) (-1281 $)) NIL) (((-1281 |#1|) $) 28) (((-699 |#1|) (-1281 $)) NIL)) (-1836 (((-1281 |#1|) $) NIL) (($ (-1281 |#1|)) NIL)) (-3760 (((-654 (-963 |#1|)) (-1281 $)) NIL) (((-654 (-963 |#1|))) NIL)) (-3204 (($ $ $) NIL)) (-3163 (((-112)) 95)) (-2943 (((-872) $) 71) (($ (-1281 |#1|)) 22)) (-3284 (((-112) $ $) NIL)) (-1882 (((-1281 $)) 51)) (-2735 (((-654 (-1281 |#1|))) NIL (|has| |#1| (-566)))) (-1320 (($ $ $ $) NIL)) (-2525 (((-112)) 91)) (-2901 (($ (-699 |#1|) $) 18)) (-2299 (($ $ $) NIL)) (-3971 (((-112)) 97)) (-3545 (((-112)) 92)) (-1950 (((-112)) 90)) (-2133 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1155 |#2| |#1|) $) 19))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-427 |#1|) (-658 (-1155 |#2| |#1|)) (-10 -8 (-15 -2943 ($ (-1281 |#1|))))) (-372) (-932) (-654 (-1190)) (-1281 (-699 |#1|))) (T -44)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-372)) (-14 *6 (-1281 (-699 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-932)) (-14 *5 (-654 (-1190)))))) -(-13 (-427 |#1|) (-658 (-1155 |#2| |#1|)) (-10 -8 (-15 -2943 ($ (-1281 |#1|))))) -((-2849 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-3083 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL)) (-2406 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL)) (-1970 (($ $) NIL)) (-3778 (($) NIL) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL)) (-3714 (((-1286) $ |#1| |#1|) NIL (|has| $ (-6 -4457))) (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-3617 (($ $ (-574)) NIL (|has| $ (-6 -4457)))) (-1357 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-860)))) (-3642 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4457))) (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-860))))) (-2771 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-860)))) (-3034 (((-112) $ (-781)) NIL)) (-3316 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (|has| $ (-6 -4457)))) (-3575 (($ $ $) 33 (|has| $ (-6 -4457)))) (-3582 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (|has| $ (-6 -4457)))) (-3630 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) 35 (|has| $ (-6 -4457)))) (-3143 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ (-574) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (|has| $ (-6 -4457))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ (-1248 (-574)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (|has| $ (-6 -4457))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ "last" (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (|has| $ (-6 -4457))) (($ $ "rest" $) NIL (|has| $ (-6 -4457))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ "first" (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (|has| $ (-6 -4457))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ "value" (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (|has| $ (-6 -4457)))) (-2183 (($ $ (-654 $)) NIL (|has| $ (-6 -4457)))) (-3572 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL)) (-2165 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2393 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL)) (-2163 (((-3 |#2| "failed") |#1| $) 43)) (-3426 (($) NIL T CONST)) (-2627 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-2926 (($ $ (-781)) NIL) (($ $) 29)) (-1771 (($ $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))))) (-2876 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL) (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (-3335 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2868 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2458 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4457))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ (-574) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (|has| $ (-6 -4457)))) (-2385 ((|#2| $ |#1|) NIL) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ (-574)) NIL)) (-1688 (((-112) $) NIL)) (-1441 (((-574) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL) (((-574) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))) (((-574) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ (-574)) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (-1864 (((-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 20 (|has| $ (-6 -4456))) (((-654 |#2|) $) NIL (|has| $ (-6 -4456))) (((-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 20 (|has| $ (-6 -4456)))) (-3820 (((-654 $) $) NIL)) (-2278 (((-112) $ $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (-3790 (($ (-781) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL)) (-2742 (((-112) $ (-781)) NIL)) (-3618 ((|#1| $) NIL (|has| |#1| (-860))) (((-574) $) 38 (|has| (-574) (-860)))) (-3659 (($ $ $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-860)))) (-2628 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-860)))) (-4430 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-860)))) (-1606 (((-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-654 |#2|) $) NIL (|has| $ (-6 -4456))) (((-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113)))) (((-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))))) (-2702 ((|#1| $) NIL (|has| |#1| (-860))) (((-574) $) 40 (|has| (-574) (-860)))) (-4257 (($ $ $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-860)))) (-2449 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4457))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4457))) (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL)) (-1788 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-3507 (((-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL)) (-3632 (((-112) $) NIL)) (-4136 (((-1172) $) 49 (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-3360 (($ $ (-781)) NIL) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL)) (-1763 (((-654 |#1|) $) 22)) (-1732 (((-112) |#1| $) NIL)) (-2937 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL)) (-2798 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL) (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-1594 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-4308 (((-654 |#1|) $) NIL) (((-654 (-574)) $) NIL)) (-3336 (((-112) |#1| $) NIL) (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2915 ((|#2| $) NIL (|has| |#1| (-860))) (($ $ (-781)) NIL) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 27)) (-1549 (((-3 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) "failed") (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL) (((-3 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) "failed") (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL)) (-1942 (($ $ |#2|) NIL (|has| $ (-6 -4457))) (($ $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (|has| $ (-6 -4457)))) (-1785 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL)) (-4073 (((-112) $) NIL)) (-2540 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-302 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-302 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-654 (-302 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113)))) (((-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))))) (-4371 (((-654 |#2|) $) NIL) (((-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 19)) (-1584 (((-112) $) 18)) (-2672 (($) 14)) (-2199 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ (-574) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ (-574)) NIL) (($ $ (-1248 (-574))) NIL) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ "first") NIL) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $ "value") NIL)) (-3867 (((-574) $ $) NIL)) (-1662 (($) 13) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL)) (-2932 (($ $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-2840 (($ $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-2479 (((-112) $) NIL)) (-2595 (($ $) NIL)) (-4434 (($ $) NIL (|has| $ (-6 -4457)))) (-3066 (((-781) $) NIL)) (-2807 (($ $) NIL)) (-3975 (((-781) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (((-781) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-3506 (($ $ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3167 (($ $) NIL)) (-1836 (((-546) $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-624 (-546))))) (-2956 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL)) (-1995 (($ $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL) (($ $ $) NIL)) (-4157 (($ $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL) (($ (-654 $)) NIL) (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 31) (($ $ $) NIL)) (-2943 (((-872) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-2321 (((-654 $) $) NIL)) (-4418 (((-112) $ $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (-3284 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-1599 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL)) (-3369 (((-3 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) "failed") |#1| $) 51)) (-3390 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-3042 (((-112) $ $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-860)))) (-3018 (((-112) $ $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-860)))) (-2981 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-3030 (((-112) $ $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-860)))) (-3007 (((-112) $ $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-860)))) (-2863 (((-781) $) 25 (|has| $ (-6 -4456))))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1113) (-1113)) (T -45)) +(-13 (-1061) (-726 |t#1|) (-625 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-649 |#1|) . T) ((-726 |#1|) . T) ((-735) . T) ((-1063 |#1|) . T) ((-1068 |#1|) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) +((-3834 (((-427 |#1|) |#1|) 41)) (-4218 (((-427 |#1|) |#1|) 30) (((-427 |#1|) |#1| (-653 (-48))) 33)) (-1725 (((-112) |#1|) 59))) +(((-39 |#1|) (-10 -7 (-15 -4218 ((-427 |#1|) |#1| (-653 (-48)))) (-15 -4218 ((-427 |#1|) |#1|)) (-15 -3834 ((-427 |#1|) |#1|)) (-15 -1725 ((-112) |#1|))) (-1256 (-48))) (T -39)) +((-1725 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1256 (-48))))) (-3834 (*1 *2 *3) (-12 (-5 *2 (-427 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1256 (-48))))) (-4218 (*1 *2 *3) (-12 (-5 *2 (-427 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1256 (-48))))) (-4218 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-48))) (-5 *2 (-427 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1256 (-48)))))) +(-10 -7 (-15 -4218 ((-427 |#1|) |#1| (-653 (-48)))) (-15 -4218 ((-427 |#1|) |#1|)) (-15 -3834 ((-427 |#1|) |#1|)) (-15 -1725 ((-112) |#1|))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-1943 (((-2 (|:| |num| (-1280 |#2|)) (|:| |den| |#2|)) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| (-416 |#2|) (-371)))) (-2456 (($ $) NIL (|has| (-416 |#2|) (-371)))) (-1345 (((-112) $) NIL (|has| (-416 |#2|) (-371)))) (-2114 (((-698 (-416 |#2|)) (-1280 $)) NIL) (((-698 (-416 |#2|))) NIL)) (-1635 (((-416 |#2|) $) NIL)) (-2604 (((-1202 (-931) (-780)) (-573)) NIL (|has| (-416 |#2|) (-357)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL (|has| (-416 |#2|) (-371)))) (-2427 (((-427 $) $) NIL (|has| (-416 |#2|) (-371)))) (-2800 (((-112) $ $) NIL (|has| (-416 |#2|) (-371)))) (-1486 (((-780)) NIL (|has| (-416 |#2|) (-376)))) (-2222 (((-112)) NIL)) (-3454 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL (|has| (-416 |#2|) (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| (-416 |#2|) (-1050 (-416 (-573))))) (((-3 (-416 |#2|) "failed") $) NIL)) (-2205 (((-573) $) NIL (|has| (-416 |#2|) (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| (-416 |#2|) (-1050 (-416 (-573))))) (((-416 |#2|) $) NIL)) (-2854 (($ (-1280 (-416 |#2|)) (-1280 $)) NIL) (($ (-1280 (-416 |#2|))) 61) (($ (-1280 |#2|) |#2|) 131)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-416 |#2|) (-357)))) (-2784 (($ $ $) NIL (|has| (-416 |#2|) (-371)))) (-1720 (((-698 (-416 |#2|)) $ (-1280 $)) NIL) (((-698 (-416 |#2|)) $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| (-416 |#2|) (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| (-416 |#2|) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| (-416 |#2|) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-416 |#2|))) (|:| |vec| (-1280 (-416 |#2|)))) (-698 $) (-1280 $)) NIL) (((-698 (-416 |#2|)) (-698 $)) NIL) (((-698 (-416 |#2|)) (-1280 $)) NIL)) (-1869 (((-1280 $) (-1280 $)) NIL)) (-2867 (($ |#3|) NIL) (((-3 $ "failed") (-416 |#3|)) NIL (|has| (-416 |#2|) (-371)))) (-2232 (((-3 $ "failed") $) NIL)) (-2989 (((-653 (-653 |#1|))) NIL (|has| |#1| (-376)))) (-3302 (((-112) |#1| |#1|) NIL)) (-3583 (((-931)) NIL)) (-2819 (($) NIL (|has| (-416 |#2|) (-376)))) (-1710 (((-112)) NIL)) (-1819 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2796 (($ $ $) NIL (|has| (-416 |#2|) (-371)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| (-416 |#2|) (-371)))) (-3246 (($ $) NIL)) (-3731 (($) NIL (|has| (-416 |#2|) (-357)))) (-1708 (((-112) $) NIL (|has| (-416 |#2|) (-357)))) (-2104 (($ $ (-780)) NIL (|has| (-416 |#2|) (-357))) (($ $) NIL (|has| (-416 |#2|) (-357)))) (-2696 (((-112) $) NIL (|has| (-416 |#2|) (-371)))) (-2534 (((-931) $) NIL (|has| (-416 |#2|) (-357))) (((-842 (-931)) $) NIL (|has| (-416 |#2|) (-357)))) (-1959 (((-112) $) NIL)) (-2033 (((-780)) NIL)) (-4109 (((-1280 $) (-1280 $)) 106)) (-3421 (((-416 |#2|) $) NIL)) (-2201 (((-653 (-962 |#1|)) (-1189)) NIL (|has| |#1| (-371)))) (-1470 (((-3 $ "failed") $) NIL (|has| (-416 |#2|) (-357)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| (-416 |#2|) (-371)))) (-2297 ((|#3| $) NIL (|has| (-416 |#2|) (-371)))) (-3589 (((-931) $) NIL (|has| (-416 |#2|) (-376)))) (-2853 ((|#3| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| (-416 |#2|) (-371))) (($ $ $) NIL (|has| (-416 |#2|) (-371)))) (-3180 (((-1171) $) NIL)) (-3536 (((-1285) (-780)) 84)) (-3644 (((-698 (-416 |#2|))) 56)) (-3456 (((-698 (-416 |#2|))) 49)) (-1323 (($ $) NIL (|has| (-416 |#2|) (-371)))) (-1465 (($ (-1280 |#2|) |#2|) 132)) (-4192 (((-698 (-416 |#2|))) 50)) (-3707 (((-698 (-416 |#2|))) 48)) (-2522 (((-2 (|:| |num| (-698 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130)) (-3150 (((-2 (|:| |num| (-1280 |#2|)) (|:| |den| |#2|)) $) 68)) (-3051 (((-1280 $)) 47)) (-3529 (((-1280 $)) 46)) (-3432 (((-112) $) NIL)) (-2588 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3816 (($) NIL (|has| (-416 |#2|) (-357)) CONST)) (-2575 (($ (-931)) NIL (|has| (-416 |#2|) (-376)))) (-2338 (((-3 |#2| "failed")) NIL)) (-3965 (((-1132) $) NIL)) (-2717 (((-780)) NIL)) (-2969 (($) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| (-416 |#2|) (-371)))) (-2872 (($ (-653 $)) NIL (|has| (-416 |#2|) (-371))) (($ $ $) NIL (|has| (-416 |#2|) (-371)))) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) NIL (|has| (-416 |#2|) (-357)))) (-4218 (((-427 $) $) NIL (|has| (-416 |#2|) (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-416 |#2|) (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| (-416 |#2|) (-371)))) (-2837 (((-3 $ "failed") $ $) NIL (|has| (-416 |#2|) (-371)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| (-416 |#2|) (-371)))) (-2163 (((-780) $) NIL (|has| (-416 |#2|) (-371)))) (-2198 ((|#1| $ |#1| |#1|) NIL)) (-4027 (((-3 |#2| "failed")) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| (-416 |#2|) (-371)))) (-3592 (((-416 |#2|) (-1280 $)) NIL) (((-416 |#2|)) 44)) (-1637 (((-780) $) NIL (|has| (-416 |#2|) (-357))) (((-3 (-780) "failed") $ $) NIL (|has| (-416 |#2|) (-357)))) (-3904 (($ $ (-1 (-416 |#2|) (-416 |#2|)) (-780)) NIL (|has| (-416 |#2|) (-371))) (($ $ (-1 (-416 |#2|) (-416 |#2|))) NIL (|has| (-416 |#2|) (-371))) (($ $ (-1 |#2| |#2|)) 126) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $) NIL (-2817 (-12 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371))) (|has| (-416 |#2|) (-357)))) (($ $ (-780)) NIL (-2817 (-12 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371))) (|has| (-416 |#2|) (-357))))) (-4303 (((-698 (-416 |#2|)) (-1280 $) (-1 (-416 |#2|) (-416 |#2|))) NIL (|has| (-416 |#2|) (-371)))) (-2984 ((|#3|) 55)) (-2510 (($) NIL (|has| (-416 |#2|) (-357)))) (-2123 (((-1280 (-416 |#2|)) $ (-1280 $)) NIL) (((-698 (-416 |#2|)) (-1280 $) (-1280 $)) NIL) (((-1280 (-416 |#2|)) $) 62) (((-698 (-416 |#2|)) (-1280 $)) 107)) (-1835 (((-1280 (-416 |#2|)) $) NIL) (($ (-1280 (-416 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (|has| (-416 |#2|) (-357)))) (-2499 (((-1280 $) (-1280 $)) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ (-416 |#2|)) NIL) (($ (-416 (-573))) NIL (-2817 (|has| (-416 |#2|) (-1050 (-416 (-573)))) (|has| (-416 |#2|) (-371)))) (($ $) NIL (|has| (-416 |#2|) (-371)))) (-4279 (($ $) NIL (|has| (-416 |#2|) (-357))) (((-3 $ "failed") $) NIL (|has| (-416 |#2|) (-146)))) (-2517 ((|#3| $) NIL)) (-1545 (((-780)) NIL T CONST)) (-2919 (((-112)) 42)) (-3289 (((-112) |#1|) 54) (((-112) |#2|) 138)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) NIL)) (-2516 (((-112) $ $) NIL (|has| (-416 |#2|) (-371)))) (-2581 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3331 (((-112)) NIL)) (-2132 (($) 17 T CONST)) (-2144 (($) 27 T CONST)) (-3609 (($ $ (-1 (-416 |#2|) (-416 |#2|)) (-780)) NIL (|has| (-416 |#2|) (-371))) (($ $ (-1 (-416 |#2|) (-416 |#2|))) NIL (|has| (-416 |#2|) (-371))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $) NIL (-2817 (-12 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371))) (|has| (-416 |#2|) (-357)))) (($ $ (-780)) NIL (-2817 (-12 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371))) (|has| (-416 |#2|) (-357))))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL (|has| (-416 |#2|) (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL (|has| (-416 |#2|) (-371)))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 |#2|)) NIL) (($ (-416 |#2|) $) NIL) (($ (-416 (-573)) $) NIL (|has| (-416 |#2|) (-371))) (($ $ (-416 (-573))) NIL (|has| (-416 |#2|) (-371))))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-350 |#1| |#2| |#3|) (-10 -7 (-15 -3536 ((-1285) (-780))))) (-371) (-1256 |#1|) (-1256 (-416 |#2|)) |#3|) (T -40)) +((-3536 (*1 *2 *3) (-12 (-5 *3 (-780)) (-4 *4 (-371)) (-4 *5 (-1256 *4)) (-5 *2 (-1285)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1256 (-416 *5))) (-14 *7 *6)))) +(-13 (-350 |#1| |#2| |#3|) (-10 -7 (-15 -3536 ((-1285) (-780))))) +((-1831 ((|#2| |#2|) 47)) (-3836 ((|#2| |#2|) 139 (-12 (|has| |#2| (-439 |#1|)) (|has| |#1| (-13 (-461) (-1050 (-573))))))) (-3182 ((|#2| |#2|) 100 (-12 (|has| |#2| (-439 |#1|)) (|has| |#1| (-13 (-461) (-1050 (-573))))))) (-4286 ((|#2| |#2|) 101 (-12 (|has| |#2| (-439 |#1|)) (|has| |#1| (-13 (-461) (-1050 (-573))))))) (-1933 ((|#2| (-115) |#2| (-780)) 135 (-12 (|has| |#2| (-439 |#1|)) (|has| |#1| (-13 (-461) (-1050 (-573))))))) (-1370 (((-1185 |#2|) |#2|) 44)) (-3055 ((|#2| |#2| (-653 (-621 |#2|))) 18) ((|#2| |#2| (-653 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) +(((-41 |#1| |#2|) (-10 -7 (-15 -1831 (|#2| |#2|)) (-15 -3055 (|#2| |#2|)) (-15 -3055 (|#2| |#2| |#2|)) (-15 -3055 (|#2| |#2| (-653 |#2|))) (-15 -3055 (|#2| |#2| (-653 (-621 |#2|)))) (-15 -1370 ((-1185 |#2|) |#2|)) (IF (|has| |#1| (-13 (-461) (-1050 (-573)))) (IF (|has| |#2| (-439 |#1|)) (PROGN (-15 -4286 (|#2| |#2|)) (-15 -3182 (|#2| |#2|)) (-15 -3836 (|#2| |#2|)) (-15 -1933 (|#2| (-115) |#2| (-780)))) |%noBranch|) |%noBranch|)) (-565) (-13 (-371) (-309) (-10 -8 (-15 -2965 ((-1137 |#1| (-621 $)) $)) (-15 -2975 ((-1137 |#1| (-621 $)) $)) (-15 -2942 ($ (-1137 |#1| (-621 $))))))) (T -41)) +((-1933 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-780)) (-4 *5 (-13 (-461) (-1050 (-573)))) (-4 *5 (-565)) (-5 *1 (-41 *5 *2)) (-4 *2 (-439 *5)) (-4 *2 (-13 (-371) (-309) (-10 -8 (-15 -2965 ((-1137 *5 (-621 $)) $)) (-15 -2975 ((-1137 *5 (-621 $)) $)) (-15 -2942 ($ (-1137 *5 (-621 $))))))))) (-3836 (*1 *2 *2) (-12 (-4 *3 (-13 (-461) (-1050 (-573)))) (-4 *3 (-565)) (-5 *1 (-41 *3 *2)) (-4 *2 (-439 *3)) (-4 *2 (-13 (-371) (-309) (-10 -8 (-15 -2965 ((-1137 *3 (-621 $)) $)) (-15 -2975 ((-1137 *3 (-621 $)) $)) (-15 -2942 ($ (-1137 *3 (-621 $))))))))) (-3182 (*1 *2 *2) (-12 (-4 *3 (-13 (-461) (-1050 (-573)))) (-4 *3 (-565)) (-5 *1 (-41 *3 *2)) (-4 *2 (-439 *3)) (-4 *2 (-13 (-371) (-309) (-10 -8 (-15 -2965 ((-1137 *3 (-621 $)) $)) (-15 -2975 ((-1137 *3 (-621 $)) $)) (-15 -2942 ($ (-1137 *3 (-621 $))))))))) (-4286 (*1 *2 *2) (-12 (-4 *3 (-13 (-461) (-1050 (-573)))) (-4 *3 (-565)) (-5 *1 (-41 *3 *2)) (-4 *2 (-439 *3)) (-4 *2 (-13 (-371) (-309) (-10 -8 (-15 -2965 ((-1137 *3 (-621 $)) $)) (-15 -2975 ((-1137 *3 (-621 $)) $)) (-15 -2942 ($ (-1137 *3 (-621 $))))))))) (-1370 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-1185 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-371) (-309) (-10 -8 (-15 -2965 ((-1137 *4 (-621 $)) $)) (-15 -2975 ((-1137 *4 (-621 $)) $)) (-15 -2942 ($ (-1137 *4 (-621 $))))))))) (-3055 (*1 *2 *2 *3) (-12 (-5 *3 (-653 (-621 *2))) (-4 *2 (-13 (-371) (-309) (-10 -8 (-15 -2965 ((-1137 *4 (-621 $)) $)) (-15 -2975 ((-1137 *4 (-621 $)) $)) (-15 -2942 ($ (-1137 *4 (-621 $))))))) (-4 *4 (-565)) (-5 *1 (-41 *4 *2)))) (-3055 (*1 *2 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-13 (-371) (-309) (-10 -8 (-15 -2965 ((-1137 *4 (-621 $)) $)) (-15 -2975 ((-1137 *4 (-621 $)) $)) (-15 -2942 ($ (-1137 *4 (-621 $))))))) (-4 *4 (-565)) (-5 *1 (-41 *4 *2)))) (-3055 (*1 *2 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-371) (-309) (-10 -8 (-15 -2965 ((-1137 *3 (-621 $)) $)) (-15 -2975 ((-1137 *3 (-621 $)) $)) (-15 -2942 ($ (-1137 *3 (-621 $))))))))) (-3055 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-371) (-309) (-10 -8 (-15 -2965 ((-1137 *3 (-621 $)) $)) (-15 -2975 ((-1137 *3 (-621 $)) $)) (-15 -2942 ($ (-1137 *3 (-621 $))))))))) (-1831 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-371) (-309) (-10 -8 (-15 -2965 ((-1137 *3 (-621 $)) $)) (-15 -2975 ((-1137 *3 (-621 $)) $)) (-15 -2942 ($ (-1137 *3 (-621 $)))))))))) +(-10 -7 (-15 -1831 (|#2| |#2|)) (-15 -3055 (|#2| |#2|)) (-15 -3055 (|#2| |#2| |#2|)) (-15 -3055 (|#2| |#2| (-653 |#2|))) (-15 -3055 (|#2| |#2| (-653 (-621 |#2|)))) (-15 -1370 ((-1185 |#2|) |#2|)) (IF (|has| |#1| (-13 (-461) (-1050 (-573)))) (IF (|has| |#2| (-439 |#1|)) (PROGN (-15 -4286 (|#2| |#2|)) (-15 -3182 (|#2| |#2|)) (-15 -3836 (|#2| |#2|)) (-15 -1933 (|#2| (-115) |#2| (-780)))) |%noBranch|) |%noBranch|)) +((-4218 (((-427 (-1185 |#3|)) (-1185 |#3|) (-653 (-48))) 23) (((-427 |#3|) |#3| (-653 (-48))) 19))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4218 ((-427 |#3|) |#3| (-653 (-48)))) (-15 -4218 ((-427 (-1185 |#3|)) (-1185 |#3|) (-653 (-48))))) (-859) (-802) (-959 (-48) |#2| |#1|)) (T -42)) +((-4218 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-48))) (-4 *5 (-859)) (-4 *6 (-802)) (-4 *7 (-959 (-48) *6 *5)) (-5 *2 (-427 (-1185 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1185 *7)))) (-4218 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-48))) (-4 *5 (-859)) (-4 *6 (-802)) (-5 *2 (-427 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-959 (-48) *6 *5))))) +(-10 -7 (-15 -4218 ((-427 |#3|) |#3| (-653 (-48)))) (-15 -4218 ((-427 (-1185 |#3|)) (-1185 |#3|) (-653 (-48))))) +((-3761 (((-780) |#2|) 70)) (-3940 (((-780) |#2|) 74)) (-2131 (((-653 |#2|)) 37)) (-3851 (((-780) |#2|) 73)) (-2477 (((-780) |#2|) 69)) (-4330 (((-780) |#2|) 72)) (-3909 (((-653 (-698 |#1|))) 65)) (-4067 (((-653 |#2|)) 60)) (-1812 (((-653 |#2|) |#2|) 48)) (-4021 (((-653 |#2|)) 62)) (-1902 (((-653 |#2|)) 61)) (-2543 (((-653 (-698 |#1|))) 53)) (-3623 (((-653 |#2|)) 59)) (-1375 (((-653 |#2|) |#2|) 47)) (-4153 (((-653 |#2|)) 55)) (-3253 (((-653 (-698 |#1|))) 66)) (-2609 (((-653 |#2|)) 64)) (-3914 (((-1280 |#2|) (-1280 |#2|)) 99 (|has| |#1| (-314))))) +(((-43 |#1| |#2|) (-10 -7 (-15 -3851 ((-780) |#2|)) (-15 -3940 ((-780) |#2|)) (-15 -2477 ((-780) |#2|)) (-15 -3761 ((-780) |#2|)) (-15 -4330 ((-780) |#2|)) (-15 -4153 ((-653 |#2|))) (-15 -1375 ((-653 |#2|) |#2|)) (-15 -1812 ((-653 |#2|) |#2|)) (-15 -3623 ((-653 |#2|))) (-15 -4067 ((-653 |#2|))) (-15 -1902 ((-653 |#2|))) (-15 -4021 ((-653 |#2|))) (-15 -2609 ((-653 |#2|))) (-15 -2543 ((-653 (-698 |#1|)))) (-15 -3909 ((-653 (-698 |#1|)))) (-15 -3253 ((-653 (-698 |#1|)))) (-15 -2131 ((-653 |#2|))) (IF (|has| |#1| (-314)) (-15 -3914 ((-1280 |#2|) (-1280 |#2|))) |%noBranch|)) (-565) (-426 |#1|)) (T -43)) +((-3914 (*1 *2 *2) (-12 (-5 *2 (-1280 *4)) (-4 *4 (-426 *3)) (-4 *3 (-314)) (-4 *3 (-565)) (-5 *1 (-43 *3 *4)))) (-2131 (*1 *2) (-12 (-4 *3 (-565)) (-5 *2 (-653 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-426 *3)))) (-3253 (*1 *2) (-12 (-4 *3 (-565)) (-5 *2 (-653 (-698 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-426 *3)))) (-3909 (*1 *2) (-12 (-4 *3 (-565)) (-5 *2 (-653 (-698 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-426 *3)))) (-2543 (*1 *2) (-12 (-4 *3 (-565)) (-5 *2 (-653 (-698 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-426 *3)))) (-2609 (*1 *2) (-12 (-4 *3 (-565)) (-5 *2 (-653 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-426 *3)))) (-4021 (*1 *2) (-12 (-4 *3 (-565)) (-5 *2 (-653 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-426 *3)))) (-1902 (*1 *2) (-12 (-4 *3 (-565)) (-5 *2 (-653 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-426 *3)))) (-4067 (*1 *2) (-12 (-4 *3 (-565)) (-5 *2 (-653 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-426 *3)))) (-3623 (*1 *2) (-12 (-4 *3 (-565)) (-5 *2 (-653 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-426 *3)))) (-1812 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-653 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-426 *4)))) (-1375 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-653 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-426 *4)))) (-4153 (*1 *2) (-12 (-4 *3 (-565)) (-5 *2 (-653 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-426 *3)))) (-4330 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-780)) (-5 *1 (-43 *4 *3)) (-4 *3 (-426 *4)))) (-3761 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-780)) (-5 *1 (-43 *4 *3)) (-4 *3 (-426 *4)))) (-2477 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-780)) (-5 *1 (-43 *4 *3)) (-4 *3 (-426 *4)))) (-3940 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-780)) (-5 *1 (-43 *4 *3)) (-4 *3 (-426 *4)))) (-3851 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-780)) (-5 *1 (-43 *4 *3)) (-4 *3 (-426 *4))))) +(-10 -7 (-15 -3851 ((-780) |#2|)) (-15 -3940 ((-780) |#2|)) (-15 -2477 ((-780) |#2|)) (-15 -3761 ((-780) |#2|)) (-15 -4330 ((-780) |#2|)) (-15 -4153 ((-653 |#2|))) (-15 -1375 ((-653 |#2|) |#2|)) (-15 -1812 ((-653 |#2|) |#2|)) (-15 -3623 ((-653 |#2|))) (-15 -4067 ((-653 |#2|))) (-15 -1902 ((-653 |#2|))) (-15 -4021 ((-653 |#2|))) (-15 -2609 ((-653 |#2|))) (-15 -2543 ((-653 (-698 |#1|)))) (-15 -3909 ((-653 (-698 |#1|)))) (-15 -3253 ((-653 (-698 |#1|)))) (-15 -2131 ((-653 |#2|))) (IF (|has| |#1| (-314)) (-15 -3914 ((-1280 |#2|) (-1280 |#2|))) |%noBranch|)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-1642 (((-3 $ "failed")) NIL (|has| |#1| (-565)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-3119 (((-1280 (-698 |#1|)) (-1280 $)) NIL) (((-1280 (-698 |#1|))) 24)) (-1888 (((-1280 $)) 52)) (-2579 (($) NIL T CONST)) (-2811 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) NIL (|has| |#1| (-565)))) (-3360 (((-3 $ "failed")) NIL (|has| |#1| (-565)))) (-1454 (((-698 |#1|) (-1280 $)) NIL) (((-698 |#1|)) NIL)) (-1390 ((|#1| $) NIL)) (-3612 (((-698 |#1|) $ (-1280 $)) NIL) (((-698 |#1|) $) NIL)) (-1546 (((-3 $ "failed") $) NIL (|has| |#1| (-565)))) (-2743 (((-1185 (-962 |#1|))) NIL (|has| |#1| (-371)))) (-3681 (($ $ (-931)) NIL)) (-3729 ((|#1| $) NIL)) (-3397 (((-1185 |#1|) $) NIL (|has| |#1| (-565)))) (-4053 ((|#1| (-1280 $)) NIL) ((|#1|) NIL)) (-2650 (((-1185 |#1|) $) NIL)) (-2492 (((-112)) 99)) (-2854 (($ (-1280 |#1|) (-1280 $)) NIL) (($ (-1280 |#1|)) NIL)) (-2232 (((-3 $ "failed") $) 14 (|has| |#1| (-565)))) (-3583 (((-931)) 53)) (-3720 (((-112)) NIL)) (-3009 (($ $ (-931)) NIL)) (-4275 (((-112)) NIL)) (-1922 (((-112)) NIL)) (-1565 (((-112)) 101)) (-1447 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) NIL (|has| |#1| (-565)))) (-3675 (((-3 $ "failed")) NIL (|has| |#1| (-565)))) (-2582 (((-698 |#1|) (-1280 $)) NIL) (((-698 |#1|)) NIL)) (-3619 ((|#1| $) NIL)) (-1729 (((-698 |#1|) $ (-1280 $)) NIL) (((-698 |#1|) $) NIL)) (-2780 (((-3 $ "failed") $) NIL (|has| |#1| (-565)))) (-3753 (((-1185 (-962 |#1|))) NIL (|has| |#1| (-371)))) (-2022 (($ $ (-931)) NIL)) (-3420 ((|#1| $) NIL)) (-2000 (((-1185 |#1|) $) NIL (|has| |#1| (-565)))) (-1912 ((|#1| (-1280 $)) NIL) ((|#1|) NIL)) (-3242 (((-1185 |#1|) $) NIL)) (-3455 (((-112)) 98)) (-3180 (((-1171) $) NIL)) (-2509 (((-112)) 106)) (-3313 (((-112)) 105)) (-4293 (((-112)) 107)) (-3965 (((-1132) $) NIL)) (-3209 (((-112)) 100)) (-2198 ((|#1| $ (-573)) 55)) (-2123 (((-1280 |#1|) $ (-1280 $)) 48) (((-698 |#1|) (-1280 $) (-1280 $)) NIL) (((-1280 |#1|) $) 28) (((-698 |#1|) (-1280 $)) NIL)) (-1835 (((-1280 |#1|) $) NIL) (($ (-1280 |#1|)) NIL)) (-1664 (((-653 (-962 |#1|)) (-1280 $)) NIL) (((-653 (-962 |#1|))) NIL)) (-4380 (($ $ $) NIL)) (-2774 (((-112)) 95)) (-2942 (((-871) $) 71) (($ (-1280 |#1|)) 22)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) 51)) (-2649 (((-653 (-1280 |#1|))) NIL (|has| |#1| (-565)))) (-3531 (($ $ $ $) NIL)) (-2661 (((-112)) 91)) (-2900 (($ (-698 |#1|) $) 18)) (-4366 (($ $ $) NIL)) (-1469 (((-112)) 97)) (-4243 (((-112)) 92)) (-2744 (((-112)) 90)) (-2132 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1154 |#2| |#1|) $) 19))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-426 |#1|) (-657 (-1154 |#2| |#1|)) (-10 -8 (-15 -2942 ($ (-1280 |#1|))))) (-371) (-931) (-653 (-1189)) (-1280 (-698 |#1|))) (T -44)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-371)) (-14 *6 (-1280 (-698 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-931)) (-14 *5 (-653 (-1189)))))) +(-13 (-426 |#1|) (-657 (-1154 |#2| |#1|)) (-10 -8 (-15 -2942 ($ (-1280 |#1|))))) +((-2848 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-3082 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-2404 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1969 (($ $) NIL)) (-3777 (($) NIL) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3791 (((-1285) $ |#1| |#1|) NIL (|has| $ (-6 -4456))) (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-1896 (($ $ (-573)) NIL (|has| $ (-6 -4456)))) (-1473 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-2748 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4456))) (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859))))) (-2770 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-3450 (((-112) $ (-780)) NIL)) (-2367 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4456)))) (-2554 (($ $ $) 33 (|has| $ (-6 -4456)))) (-2016 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4456)))) (-2647 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 35 (|has| $ (-6 -4456)))) (-3142 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-1247 (-573)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ "last" (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4456))) (($ $ "rest" $) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ "first" (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ "value" (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) NIL (|has| $ (-6 -4456)))) (-3557 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL)) (-2164 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2392 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-2161 (((-3 |#2| "failed") |#1| $) 43)) (-2579 (($) NIL T CONST)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-2925 (($ $ (-780)) NIL) (($ $) 29)) (-1599 (($ $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-2596 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL) (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (-3334 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2867 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4456)))) (-2384 ((|#2| $ |#1|) NIL) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573)) NIL)) (-3435 (((-112) $) NIL)) (-1440 (((-573) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL) (((-573) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))) (((-573) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573)) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (-1863 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 20 (|has| $ (-6 -4455))) (((-653 |#2|) $) NIL (|has| $ (-6 -4455))) (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 20 (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) NIL)) (-3208 (((-112) $ $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (-3789 (($ (-780) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1968 ((|#1| $) NIL (|has| |#1| (-859))) (((-573) $) 38 (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-4241 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-1480 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-3214 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-653 |#2|) $) NIL (|has| $ (-6 -4455))) (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112)))) (((-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-3470 ((|#1| $) NIL (|has| |#1| (-859))) (((-573) $) 40 (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-2446 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4456))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL)) (-1787 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3505 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL)) (-2880 (((-112) $) NIL)) (-3180 (((-1171) $) 49 (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-3359 (($ $ (-780)) NIL) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1762 (((-653 |#1|) $) 22)) (-4201 (((-112) |#1| $) NIL)) (-2487 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-3181 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL) (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573)) NIL) (($ $ $ (-573)) NIL)) (-1593 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573)) NIL) (($ $ $ (-573)) NIL)) (-1977 (((-653 |#1|) $) NIL) (((-653 (-573)) $) NIL)) (-2560 (((-112) |#1| $) NIL) (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2914 ((|#2| $) NIL (|has| |#1| (-859))) (($ $ (-780)) NIL) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 27)) (-2036 (((-3 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL) (((-3 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL)) (-3112 (($ $ |#2|) NIL (|has| $ (-6 -4456))) (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4456)))) (-3815 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1903 (((-112) $) NIL)) (-1575 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 (-301 |#2|))) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112)))) (((-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-1535 (((-653 |#2|) $) NIL) (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 19)) (-3811 (((-112) $) 18)) (-3508 (($) 14)) (-2198 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ (-573)) NIL) (($ $ (-1247 (-573))) NIL) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ "first") NIL) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $ "value") NIL)) (-1501 (((-573) $ $) NIL)) (-2428 (($) 13) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3220 (($ $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-2836 (($ $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-1628 (((-112) $) NIL)) (-1992 (($ $) NIL)) (-3839 (($ $) NIL (|has| $ (-6 -4456)))) (-4072 (((-780) $) NIL)) (-1512 (($ $) NIL)) (-3974 (((-780) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-780) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112)))) (((-780) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-780) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-3919 (($ $ $ (-573)) NIL (|has| $ (-6 -4456)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-623 (-545))))) (-2955 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3996 (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL) (($ $ $) NIL)) (-4156 (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL) (($ (-653 $)) NIL) (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 31) (($ $ $) NIL)) (-2942 (((-871) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-622 (-871))) (|has| |#2| (-622 (-871)))))) (-1811 (((-653 $) $) NIL)) (-1716 (((-112) $ $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (-3507 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2679 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3368 (((-3 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) "failed") |#1| $) 51)) (-1646 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-3015 (((-112) $ $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-2981 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-3027 (((-112) $ $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-3005 (((-112) $ $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-859)))) (-2862 (((-780) $) 25 (|has| $ (-6 -4455))))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1112) (-1112)) (T -45)) NIL (-36 |#1| |#2|) -((-3869 (((-112) $) 12)) (-1777 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-417 (-574)) $) 25) (($ $ (-417 (-574))) NIL))) -(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -3869 ((-112) |#1|)) (-15 -1777 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-932) |#1|))) (-47 |#2| |#3|) (-1062) (-802)) (T -46)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -3869 ((-112) |#1|)) (-15 -1777 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-932) |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-1575 (($ $) 64 (|has| |#1| (-566)))) (-2085 (((-112) $) 66 (|has| |#1| (-566)))) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-1392 (($ $) 72)) (-3434 (((-3 $ "failed") $) 37)) (-3199 (((-112) $) 35)) (-3869 (((-112) $) 74)) (-4335 (($ |#1| |#2|) 73)) (-1777 (($ (-1 |#1| |#1|) $) 75)) (-1359 (($ $) 77)) (-1370 ((|#1| $) 78)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2838 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-4202 ((|#2| $) 76)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3087 ((|#1| $ |#2|) 71)) (-3298 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2069 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3108 (($ $ |#1|) 70 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) -(((-47 |#1| |#2|) (-141) (-1062) (-802)) (T -47)) -((-1370 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1062)))) (-1359 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-802)))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-802)))) (-1777 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802)))) (-3869 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802)) (-5 *2 (-112)))) (-4335 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-802)))) (-1392 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-802)))) (-3087 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1062)))) (-3108 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-802)) (-4 *2 (-372))))) -(-13 (-1062) (-111 |t#1| |t#1|) (-10 -8 (-15 -1370 (|t#1| $)) (-15 -1359 ($ $)) (-15 -4202 (|t#2| $)) (-15 -1777 ($ (-1 |t#1| |t#1|) $)) (-15 -3869 ((-112) $)) (-15 -4335 ($ |t#1| |t#2|)) (-15 -1392 ($ $)) (-15 -3087 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-372)) (-15 -3108 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-6 (-174)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-566)) (-6 (-566)) |%noBranch|) (IF (|has| |t#1| (-38 (-417 (-574)))) (-6 (-38 (-417 (-574)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) |has| |#1| (-38 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-298) |has| |#1| (-566)) ((-566) |has| |#1| (-566)) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-1064 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1064 |#1|) . T) ((-1064 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1069 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1069 |#1|) . T) ((-1069 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T)) -((-2849 (((-112) $ $) NIL)) (-2446 (((-654 $) (-1186 $) (-1190)) NIL) (((-654 $) (-1186 $)) NIL) (((-654 $) (-963 $)) NIL)) (-1588 (($ (-1186 $) (-1190)) NIL) (($ (-1186 $)) NIL) (($ (-963 $)) NIL)) (-3138 (((-112) $) 9)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-4091 (((-654 (-622 $)) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-2545 (($ $ (-302 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL)) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-4229 (($ $) NIL)) (-1600 (((-112) $ $) NIL)) (-3426 (($) NIL T CONST)) (-3391 (((-654 $) (-1186 $) (-1190)) NIL) (((-654 $) (-1186 $)) NIL) (((-654 $) (-963 $)) NIL)) (-3078 (($ (-1186 $) (-1190)) NIL) (($ (-1186 $)) NIL) (($ (-963 $)) NIL)) (-1696 (((-3 (-622 $) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL)) (-2206 (((-622 $) $) NIL) (((-574) $) NIL) (((-417 (-574)) $) NIL)) (-2786 (($ $ $) NIL)) (-2590 (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1281 $)) NIL) (((-2 (|:| -4340 (-699 (-417 (-574)))) (|:| |vec| (-1281 (-417 (-574))))) (-699 $) (-1281 $)) NIL) (((-699 (-417 (-574))) (-699 $)) NIL) (((-699 (-417 (-574))) (-1281 $)) NIL)) (-2868 (($ $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-2257 (((-112) $) NIL)) (-3574 (($ $) NIL) (($ (-654 $)) NIL)) (-3893 (((-654 (-115)) $) NIL)) (-4175 (((-115) (-115)) NIL)) (-3199 (((-112) $) 11)) (-4410 (((-112) $) NIL (|has| $ (-1051 (-574))))) (-2966 (((-1138 (-574) (-622 $)) $) NIL)) (-3460 (($ $ (-574)) NIL)) (-2236 (((-1186 $) (-1186 $) (-622 $)) NIL) (((-1186 $) (-1186 $) (-654 (-622 $))) NIL) (($ $ (-622 $)) NIL) (($ $ (-654 (-622 $))) NIL)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1924 (((-1186 $) (-622 $)) NIL (|has| $ (-1062)))) (-1777 (($ (-1 $ $) (-622 $)) NIL)) (-3429 (((-3 (-622 $) "failed") $) NIL)) (-2832 (($ (-654 $)) NIL) (($ $ $) NIL)) (-4136 (((-1172) $) NIL)) (-4163 (((-654 (-622 $)) $) NIL)) (-1775 (($ (-115) $) NIL) (($ (-115) (-654 $)) NIL)) (-4103 (((-112) $ (-115)) NIL) (((-112) $ (-1190)) NIL)) (-1324 (($ $) NIL)) (-1839 (((-781) $) NIL)) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ (-654 $)) NIL) (($ $ $) NIL)) (-3974 (((-112) $ $) NIL) (((-112) $ (-1190)) NIL)) (-4220 (((-428 $) $) NIL)) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3476 (((-112) $) NIL (|has| $ (-1051 (-574))))) (-2646 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1190)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-1190)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-1190) (-1 $ (-654 $))) NIL) (($ $ (-1190) (-1 $ $)) NIL) (($ $ (-654 (-115)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-115) (-1 $ (-654 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-1730 (((-781) $) NIL)) (-2199 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-654 $)) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-2447 (($ $) NIL) (($ $ $) NIL)) (-3905 (($ $ (-781)) NIL) (($ $) NIL)) (-2977 (((-1138 (-574) (-622 $)) $) NIL)) (-4185 (($ $) NIL (|has| $ (-1062)))) (-1836 (((-388) $) NIL) (((-227) $) NIL) (((-171 (-388)) $) NIL)) (-2943 (((-872) $) NIL) (($ (-622 $)) NIL) (($ (-417 (-574))) NIL) (($ $) NIL) (($ (-574)) NIL) (($ (-1138 (-574) (-622 $))) NIL)) (-1364 (((-781)) NIL T CONST)) (-2029 (($ $) NIL) (($ (-654 $)) NIL)) (-3225 (((-112) (-115)) NIL)) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL)) (-2133 (($) 6 T CONST)) (-2145 (($) 10 T CONST)) (-3610 (($ $ (-781)) NIL) (($ $) NIL)) (-2981 (((-112) $ $) 13)) (-3108 (($ $ $) NIL)) (-3094 (($ $ $) NIL) (($ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-417 (-574))) NIL) (($ $ (-574)) NIL) (($ $ (-781)) NIL) (($ $ (-932)) NIL)) (* (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL) (($ $ $) NIL) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-932) $) NIL))) -(((-48) (-13 (-310) (-27) (-1051 (-574)) (-1051 (-417 (-574))) (-649 (-574)) (-1035) (-649 (-417 (-574))) (-148) (-624 (-171 (-388))) (-239) (-10 -8 (-15 -2943 ($ (-1138 (-574) (-622 $)))) (-15 -2966 ((-1138 (-574) (-622 $)) $)) (-15 -2977 ((-1138 (-574) (-622 $)) $)) (-15 -2868 ($ $)) (-15 -2236 ((-1186 $) (-1186 $) (-622 $))) (-15 -2236 ((-1186 $) (-1186 $) (-654 (-622 $)))) (-15 -2236 ($ $ (-622 $))) (-15 -2236 ($ $ (-654 (-622 $))))))) (T -48)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-1138 (-574) (-622 (-48)))) (-5 *1 (-48)))) (-2966 (*1 *2 *1) (-12 (-5 *2 (-1138 (-574) (-622 (-48)))) (-5 *1 (-48)))) (-2977 (*1 *2 *1) (-12 (-5 *2 (-1138 (-574) (-622 (-48)))) (-5 *1 (-48)))) (-2868 (*1 *1 *1) (-5 *1 (-48))) (-2236 (*1 *2 *2 *3) (-12 (-5 *2 (-1186 (-48))) (-5 *3 (-622 (-48))) (-5 *1 (-48)))) (-2236 (*1 *2 *2 *3) (-12 (-5 *2 (-1186 (-48))) (-5 *3 (-654 (-622 (-48)))) (-5 *1 (-48)))) (-2236 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-48))) (-5 *1 (-48)))) (-2236 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-622 (-48)))) (-5 *1 (-48))))) -(-13 (-310) (-27) (-1051 (-574)) (-1051 (-417 (-574))) (-649 (-574)) (-1035) (-649 (-417 (-574))) (-148) (-624 (-171 (-388))) (-239) (-10 -8 (-15 -2943 ($ (-1138 (-574) (-622 $)))) (-15 -2966 ((-1138 (-574) (-622 $)) $)) (-15 -2977 ((-1138 (-574) (-622 $)) $)) (-15 -2868 ($ $)) (-15 -2236 ((-1186 $) (-1186 $) (-622 $))) (-15 -2236 ((-1186 $) (-1186 $) (-654 (-622 $)))) (-15 -2236 ($ $ (-622 $))) (-15 -2236 ($ $ (-654 (-622 $)))))) -((-2849 (((-112) $ $) NIL)) (-2624 (((-654 (-516)) $) 17)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 7)) (-2044 (((-1195) $) 18)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-49) (-13 (-1113) (-10 -8 (-15 -2624 ((-654 (-516)) $)) (-15 -2044 ((-1195) $))))) (T -49)) -((-2624 (*1 *2 *1) (-12 (-5 *2 (-654 (-516))) (-5 *1 (-49)))) (-2044 (*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-49))))) -(-13 (-1113) (-10 -8 (-15 -2624 ((-654 (-516)) $)) (-15 -2044 ((-1195) $)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 85)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-3865 (((-112) $) 30)) (-1696 (((-3 |#1| "failed") $) 33)) (-2206 ((|#1| $) 34)) (-1392 (($ $) 40)) (-3434 (((-3 $ "failed") $) NIL)) (-3199 (((-112) $) NIL)) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-1370 ((|#1| $) 31)) (-2223 (($ $) 74)) (-4136 (((-1172) $) NIL)) (-3505 (((-112) $) 43)) (-3966 (((-1133) $) NIL)) (-2970 (($ (-781)) 72)) (-1609 (($ (-654 (-574))) 73)) (-4202 (((-781) $) 44)) (-2943 (((-872) $) 91) (($ (-574)) 69) (($ |#1|) 67)) (-3087 ((|#1| $ $) 28)) (-1364 (((-781)) 71 T CONST)) (-3284 (((-112) $ $) NIL)) (-2133 (($) 45 T CONST)) (-2145 (($) 17 T CONST)) (-2981 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) 64)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 65) (($ |#1| $) 58))) -(((-50 |#1| |#2|) (-13 (-630 |#1|) (-1051 |#1|) (-10 -8 (-15 -1370 (|#1| $)) (-15 -2223 ($ $)) (-15 -1392 ($ $)) (-15 -3087 (|#1| $ $)) (-15 -2970 ($ (-781))) (-15 -1609 ($ (-654 (-574)))) (-15 -3505 ((-112) $)) (-15 -3865 ((-112) $)) (-15 -4202 ((-781) $)) (-15 -1777 ($ (-1 |#1| |#1|) $)))) (-1062) (-654 (-1190))) (T -50)) -((-1370 (*1 *2 *1) (-12 (-4 *2 (-1062)) (-5 *1 (-50 *2 *3)) (-14 *3 (-654 (-1190))))) (-2223 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1062)) (-14 *3 (-654 (-1190))))) (-1392 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1062)) (-14 *3 (-654 (-1190))))) (-3087 (*1 *2 *1 *1) (-12 (-4 *2 (-1062)) (-5 *1 (-50 *2 *3)) (-14 *3 (-654 (-1190))))) (-2970 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1062)) (-14 *4 (-654 (-1190))))) (-1609 (*1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1062)) (-14 *4 (-654 (-1190))))) (-3505 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1062)) (-14 *4 (-654 (-1190))))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1062)) (-14 *4 (-654 (-1190))))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1062)) (-14 *4 (-654 (-1190))))) (-1777 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1062)) (-5 *1 (-50 *3 *4)) (-14 *4 (-654 (-1190)))))) -(-13 (-630 |#1|) (-1051 |#1|) (-10 -8 (-15 -1370 (|#1| $)) (-15 -2223 ($ $)) (-15 -1392 ($ $)) (-15 -3087 (|#1| $ $)) (-15 -2970 ($ (-781))) (-15 -1609 ($ (-654 (-574)))) (-15 -3505 ((-112) $)) (-15 -3865 ((-112) $)) (-15 -4202 ((-781) $)) (-15 -1777 ($ (-1 |#1| |#1|) $)))) -((-3865 (((-112) (-52)) 18)) (-1696 (((-3 |#1| "failed") (-52)) 20)) (-2206 ((|#1| (-52)) 21)) (-2943 (((-52) |#1|) 14))) -(((-51 |#1|) (-10 -7 (-15 -2943 ((-52) |#1|)) (-15 -1696 ((-3 |#1| "failed") (-52))) (-15 -3865 ((-112) (-52))) (-15 -2206 (|#1| (-52)))) (-1231)) (T -51)) -((-2206 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1231)))) (-3865 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1231)))) (-1696 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1231)))) (-2943 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1231))))) -(-10 -7 (-15 -2943 ((-52) |#1|)) (-15 -1696 ((-3 |#1| "failed") (-52))) (-15 -3865 ((-112) (-52))) (-15 -2206 (|#1| (-52)))) -((-2849 (((-112) $ $) NIL)) (-1695 (((-784) $) 8)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-1869 (((-1117) $) 10)) (-2943 (((-872) $) 15)) (-3284 (((-112) $ $) NIL)) (-3964 (($ (-1117) (-784)) 16)) (-2981 (((-112) $ $) 12))) -(((-52) (-13 (-1113) (-10 -8 (-15 -3964 ($ (-1117) (-784))) (-15 -1869 ((-1117) $)) (-15 -1695 ((-784) $))))) (T -52)) -((-3964 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-784)) (-5 *1 (-52)))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-52)))) (-1695 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-52))))) -(-13 (-1113) (-10 -8 (-15 -3964 ($ (-1117) (-784))) (-15 -1869 ((-1117) $)) (-15 -1695 ((-784) $)))) -((-2901 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2901 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1062) (-658 |#1|) (-862 |#1|)) (T -53)) -((-2901 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-658 *5)) (-4 *5 (-1062)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-862 *5))))) -(-10 -7 (-15 -2901 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-3499 ((|#3| |#3| (-654 (-1190))) 44)) (-2476 ((|#3| (-654 (-1089 |#1| |#2| |#3|)) |#3| (-932)) 32) ((|#3| (-654 (-1089 |#1| |#2| |#3|)) |#3|) 31))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -2476 (|#3| (-654 (-1089 |#1| |#2| |#3|)) |#3|)) (-15 -2476 (|#3| (-654 (-1089 |#1| |#2| |#3|)) |#3| (-932))) (-15 -3499 (|#3| |#3| (-654 (-1190))))) (-1113) (-13 (-1062) (-897 |#1|) (-624 (-903 |#1|))) (-13 (-440 |#2|) (-897 |#1|) (-624 (-903 |#1|)))) (T -54)) -((-3499 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-1190))) (-4 *4 (-1113)) (-4 *5 (-13 (-1062) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))))) (-2476 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-654 (-1089 *5 *6 *2))) (-5 *4 (-932)) (-4 *5 (-1113)) (-4 *6 (-13 (-1062) (-897 *5) (-624 (-903 *5)))) (-4 *2 (-13 (-440 *6) (-897 *5) (-624 (-903 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-2476 (*1 *2 *3 *2) (-12 (-5 *3 (-654 (-1089 *4 *5 *2))) (-4 *4 (-1113)) (-4 *5 (-13 (-1062) (-897 *4) (-624 (-903 *4)))) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-54 *4 *5 *2))))) -(-10 -7 (-15 -2476 (|#3| (-654 (-1089 |#1| |#2| |#3|)) |#3|)) (-15 -2476 (|#3| (-654 (-1089 |#1| |#2| |#3|)) |#3| (-932))) (-15 -3499 (|#3| |#3| (-654 (-1190))))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 14)) (-1696 (((-3 (-781) "failed") $) 34)) (-2206 (((-781) $) NIL)) (-3199 (((-112) $) 16)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) 18)) (-2943 (((-872) $) 23) (($ (-781)) 29)) (-3284 (((-112) $ $) NIL)) (-3542 (($) 11 T CONST)) (-2981 (((-112) $ $) 20))) -(((-55) (-13 (-1113) (-1051 (-781)) (-10 -8 (-15 -3542 ($) -1706) (-15 -3138 ((-112) $)) (-15 -3199 ((-112) $))))) (T -55)) -((-3542 (*1 *1) (-5 *1 (-55))) (-3138 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-3199 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) -(-13 (-1113) (-1051 (-781)) (-10 -8 (-15 -3542 ($) -1706) (-15 -3138 ((-112) $)) (-15 -3199 ((-112) $)))) -((-3034 (((-112) $ (-781)) 27)) (-1365 (($ $ (-574) |#3|) 66)) (-1694 (($ $ (-574) |#4|) 70)) (-4170 ((|#3| $ (-574)) 79)) (-1864 (((-654 |#2|) $) 47)) (-2742 (((-112) $ (-781)) 31)) (-1710 (((-112) |#2| $) 74)) (-2449 (($ (-1 |#2| |#2|) $) 55)) (-1777 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-4203 (((-112) $ (-781)) 29)) (-1942 (($ $ |#2|) 52)) (-2540 (((-112) (-1 (-112) |#2|) $) 21)) (-2199 ((|#2| $ (-574) (-574)) NIL) ((|#2| $ (-574) (-574) |#2|) 35)) (-3975 (((-781) (-1 (-112) |#2|) $) 41) (((-781) |#2| $) 76)) (-3167 (($ $) 51)) (-2471 ((|#4| $ (-574)) 82)) (-2943 (((-872) $) 88)) (-3390 (((-112) (-1 (-112) |#2|) $) 20)) (-2981 (((-112) $ $) 73)) (-2863 (((-781) $) 32))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2943 ((-872) |#1|)) (-15 -1777 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1777 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2449 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1694 (|#1| |#1| (-574) |#4|)) (-15 -1365 (|#1| |#1| (-574) |#3|)) (-15 -1864 ((-654 |#2|) |#1|)) (-15 -2471 (|#4| |#1| (-574))) (-15 -4170 (|#3| |#1| (-574))) (-15 -2199 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2199 (|#2| |#1| (-574) (-574))) (-15 -1942 (|#1| |#1| |#2|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -1710 ((-112) |#2| |#1|)) (-15 -3975 ((-781) |#2| |#1|)) (-15 -3975 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -2540 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3390 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1777 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2863 ((-781) |#1|)) (-15 -3034 ((-112) |#1| (-781))) (-15 -2742 ((-112) |#1| (-781))) (-15 -4203 ((-112) |#1| (-781))) (-15 -3167 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1231) (-382 |#2|) (-382 |#2|)) (T -56)) -NIL -(-10 -8 (-15 -2943 ((-872) |#1|)) (-15 -1777 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1777 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2449 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1694 (|#1| |#1| (-574) |#4|)) (-15 -1365 (|#1| |#1| (-574) |#3|)) (-15 -1864 ((-654 |#2|) |#1|)) (-15 -2471 (|#4| |#1| (-574))) (-15 -4170 (|#3| |#1| (-574))) (-15 -2199 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2199 (|#2| |#1| (-574) (-574))) (-15 -1942 (|#1| |#1| |#2|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -1710 ((-112) |#2| |#1|)) (-15 -3975 ((-781) |#2| |#1|)) (-15 -3975 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -2540 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3390 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1777 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2863 ((-781) |#1|)) (-15 -3034 ((-112) |#1| (-781))) (-15 -2742 ((-112) |#1| (-781))) (-15 -4203 ((-112) |#1| (-781))) (-15 -3167 (|#1| |#1|))) -((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3034 (((-112) $ (-781)) 8)) (-3143 ((|#1| $ (-574) (-574) |#1|) 45)) (-1365 (($ $ (-574) |#2|) 43)) (-1694 (($ $ (-574) |#3|) 42)) (-3426 (($) 7 T CONST)) (-4170 ((|#2| $ (-574)) 47)) (-2458 ((|#1| $ (-574) (-574) |#1|) 44)) (-2385 ((|#1| $ (-574) (-574)) 49)) (-1864 (((-654 |#1|) $) 31)) (-2189 (((-781) $) 52)) (-3790 (($ (-781) (-781) |#1|) 58)) (-2198 (((-781) $) 51)) (-2742 (((-112) $ (-781)) 9)) (-3491 (((-574) $) 56)) (-1630 (((-574) $) 54)) (-1606 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3068 (((-574) $) 55)) (-3691 (((-574) $) 53)) (-2449 (($ (-1 |#1| |#1|) $) 35)) (-1777 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-4203 (((-112) $ (-781)) 10)) (-4136 (((-1172) $) 22 (|has| |#1| (-1113)))) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-1942 (($ $ |#1|) 57)) (-2540 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 14)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-2199 ((|#1| $ (-574) (-574)) 50) ((|#1| $ (-574) (-574) |#1|) 48)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-2471 ((|#3| $ (-574)) 46)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-57 |#1| |#2| |#3|) (-141) (-1231) (-382 |t#1|) (-382 |t#1|)) (T -57)) -((-1777 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3790 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-781)) (-4 *3 (-1231)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-1942 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1231)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-3491 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-574)))) (-3068 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-574)))) (-1630 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-574)))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-574)))) (-2189 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-781)))) (-2198 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-781)))) (-2199 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-1231)))) (-2385 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-1231)))) (-2199 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1231)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)))) (-4170 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1231)) (-4 *5 (-382 *4)) (-4 *2 (-382 *4)))) (-2471 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1231)) (-4 *5 (-382 *4)) (-4 *2 (-382 *4)))) (-1864 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-654 *3)))) (-3143 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1231)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)))) (-2458 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1231)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)))) (-1365 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-574)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1231)) (-4 *3 (-382 *4)) (-4 *5 (-382 *4)))) (-1694 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-574)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1231)) (-4 *5 (-382 *4)) (-4 *3 (-382 *4)))) (-2449 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-1777 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-1777 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))) -(-13 (-499 |t#1|) (-10 -8 (-6 -4457) (-6 -4456) (-15 -3790 ($ (-781) (-781) |t#1|)) (-15 -1942 ($ $ |t#1|)) (-15 -3491 ((-574) $)) (-15 -3068 ((-574) $)) (-15 -1630 ((-574) $)) (-15 -3691 ((-574) $)) (-15 -2189 ((-781) $)) (-15 -2198 ((-781) $)) (-15 -2199 (|t#1| $ (-574) (-574))) (-15 -2385 (|t#1| $ (-574) (-574))) (-15 -2199 (|t#1| $ (-574) (-574) |t#1|)) (-15 -4170 (|t#2| $ (-574))) (-15 -2471 (|t#3| $ (-574))) (-15 -1864 ((-654 |t#1|) $)) (-15 -3143 (|t#1| $ (-574) (-574) |t#1|)) (-15 -2458 (|t#1| $ (-574) (-574) |t#1|)) (-15 -1365 ($ $ (-574) |t#2|)) (-15 -1694 ($ $ (-574) |t#3|)) (-15 -1777 ($ (-1 |t#1| |t#1|) $)) (-15 -2449 ($ (-1 |t#1| |t#1|) $)) (-15 -1777 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1777 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1113) |has| |#1| (-1113)) ((-1231) . T)) -((-4034 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-2868 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-1777 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) -(((-58 |#1| |#2|) (-10 -7 (-15 -4034 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2868 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1777 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1231) (-1231)) (T -58)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2868 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1231)) (-4 *2 (-1231)) (-5 *1 (-58 *5 *2)))) (-4034 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1231)) (-4 *5 (-1231)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) -(-10 -7 (-15 -4034 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2868 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1777 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3714 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-1357 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-3642 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4457))) (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| |#1| (-860))))) (-2771 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-3034 (((-112) $ (-781)) NIL)) (-3143 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) NIL (|has| $ (-6 -4457)))) (-2165 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3426 (($) NIL T CONST)) (-2627 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3335 (($ |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-2458 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) NIL)) (-1441 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1113))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1113)))) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-2056 (($ (-654 |#1|)) 11) (($ (-781) |#1|) 14)) (-3790 (($ (-781) |#1|) 13)) (-2742 (((-112) $ (-781)) NIL)) (-3618 (((-574) $) NIL (|has| (-574) (-860)))) (-3659 (($ $ $) NIL (|has| |#1| (-860)))) (-4430 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2702 (((-574) $) NIL (|has| (-574) (-860)))) (-4257 (($ $ $) NIL (|has| |#1| (-860)))) (-2449 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-1594 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-4308 (((-654 (-574)) $) NIL)) (-3336 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2915 ((|#1| $) NIL (|has| (-574) (-860)))) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1942 (($ $ |#1|) NIL (|has| $ (-6 -4457)))) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-4371 (((-654 |#1|) $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-2840 (($ $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3506 (($ $ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3167 (($ $) NIL)) (-1836 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 10)) (-4157 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3007 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2056 ($ (-654 |#1|))) (-15 -2056 ($ (-781) |#1|)))) (-1231)) (T -59)) -((-2056 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-5 *1 (-59 *3)))) (-2056 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *1 (-59 *3)) (-4 *3 (-1231))))) -(-13 (-19 |#1|) (-10 -8 (-15 -2056 ($ (-654 |#1|))) (-15 -2056 ($ (-781) |#1|)))) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3034 (((-112) $ (-781)) NIL)) (-3143 ((|#1| $ (-574) (-574) |#1|) NIL)) (-1365 (($ $ (-574) (-59 |#1|)) NIL)) (-1694 (($ $ (-574) (-59 |#1|)) NIL)) (-3426 (($) NIL T CONST)) (-4170 (((-59 |#1|) $ (-574)) NIL)) (-2458 ((|#1| $ (-574) (-574) |#1|) NIL)) (-2385 ((|#1| $ (-574) (-574)) NIL)) (-1864 (((-654 |#1|) $) NIL)) (-2189 (((-781) $) NIL)) (-3790 (($ (-781) (-781) |#1|) NIL)) (-2198 (((-781) $) NIL)) (-2742 (((-112) $ (-781)) NIL)) (-3491 (((-574) $) NIL)) (-1630 (((-574) $) NIL)) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3068 (((-574) $) NIL)) (-3691 (((-574) $) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-1777 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-1942 (($ $ |#1|) NIL)) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 ((|#1| $ (-574) (-574)) NIL) ((|#1| $ (-574) (-574) |#1|) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) NIL)) (-2471 (((-59 |#1|) $ (-574)) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4457))) (-1231)) (T -60)) -NIL -(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4457))) -((-1696 (((-3 $ "failed") (-1281 (-324 (-388)))) 74) (((-3 $ "failed") (-1281 (-324 (-574)))) 63) (((-3 $ "failed") (-1281 (-963 (-388)))) 94) (((-3 $ "failed") (-1281 (-963 (-574)))) 84) (((-3 $ "failed") (-1281 (-417 (-963 (-388))))) 52) (((-3 $ "failed") (-1281 (-417 (-963 (-574))))) 39)) (-2206 (($ (-1281 (-324 (-388)))) 70) (($ (-1281 (-324 (-574)))) 59) (($ (-1281 (-963 (-388)))) 90) (($ (-1281 (-963 (-574)))) 80) (($ (-1281 (-417 (-963 (-388))))) 48) (($ (-1281 (-417 (-963 (-574))))) 32)) (-3768 (((-1286) $) 124)) (-2943 (((-872) $) 118) (($ (-654 (-338))) 103) (($ (-338)) 97) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) 101) (($ (-1281 (-348 (-2956 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2956) (-709)))) 31))) -(((-61 |#1|) (-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2956) (-709))))))) (-1190)) (T -61)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-1281 (-348 (-2956 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2956) (-709)))) (-5 *1 (-61 *3)) (-14 *3 (-1190))))) -(-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2956) (-709))))))) -((-3768 (((-1286) $) 54) (((-1286)) 55)) (-2943 (((-872) $) 51))) -(((-62 |#1|) (-13 (-405) (-10 -7 (-15 -3768 ((-1286))))) (-1190)) (T -62)) -((-3768 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-62 *3)) (-14 *3 (-1190))))) -(-13 (-405) (-10 -7 (-15 -3768 ((-1286))))) -((-1696 (((-3 $ "failed") (-1281 (-324 (-388)))) 150) (((-3 $ "failed") (-1281 (-324 (-574)))) 140) (((-3 $ "failed") (-1281 (-963 (-388)))) 170) (((-3 $ "failed") (-1281 (-963 (-574)))) 160) (((-3 $ "failed") (-1281 (-417 (-963 (-388))))) 129) (((-3 $ "failed") (-1281 (-417 (-963 (-574))))) 117)) (-2206 (($ (-1281 (-324 (-388)))) 146) (($ (-1281 (-324 (-574)))) 136) (($ (-1281 (-963 (-388)))) 166) (($ (-1281 (-963 (-574)))) 156) (($ (-1281 (-417 (-963 (-388))))) 125) (($ (-1281 (-417 (-963 (-574))))) 110)) (-3768 (((-1286) $) 103)) (-2943 (((-872) $) 97) (($ (-654 (-338))) 30) (($ (-338)) 35) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) 33) (($ (-1281 (-348 (-2956) (-2956 (QUOTE XC)) (-709)))) 95))) -(((-63 |#1|) (-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956) (-2956 (QUOTE XC)) (-709))))))) (-1190)) (T -63)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-1281 (-348 (-2956) (-2956 (QUOTE XC)) (-709)))) (-5 *1 (-63 *3)) (-14 *3 (-1190))))) -(-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956) (-2956 (QUOTE XC)) (-709))))))) -((-1696 (((-3 $ "failed") (-324 (-388))) 41) (((-3 $ "failed") (-324 (-574))) 46) (((-3 $ "failed") (-963 (-388))) 50) (((-3 $ "failed") (-963 (-574))) 54) (((-3 $ "failed") (-417 (-963 (-388)))) 36) (((-3 $ "failed") (-417 (-963 (-574)))) 29)) (-2206 (($ (-324 (-388))) 39) (($ (-324 (-574))) 44) (($ (-963 (-388))) 48) (($ (-963 (-574))) 52) (($ (-417 (-963 (-388)))) 34) (($ (-417 (-963 (-574)))) 26)) (-3768 (((-1286) $) 76)) (-2943 (((-872) $) 69) (($ (-654 (-338))) 61) (($ (-338)) 66) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) 64) (($ (-348 (-2956 (QUOTE X)) (-2956) (-709))) 25))) -(((-64 |#1|) (-13 (-406) (-10 -8 (-15 -2943 ($ (-348 (-2956 (QUOTE X)) (-2956) (-709)))))) (-1190)) (T -64)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-348 (-2956 (QUOTE X)) (-2956) (-709))) (-5 *1 (-64 *3)) (-14 *3 (-1190))))) -(-13 (-406) (-10 -8 (-15 -2943 ($ (-348 (-2956 (QUOTE X)) (-2956) (-709)))))) -((-1696 (((-3 $ "failed") (-699 (-324 (-388)))) 111) (((-3 $ "failed") (-699 (-324 (-574)))) 99) (((-3 $ "failed") (-699 (-963 (-388)))) 133) (((-3 $ "failed") (-699 (-963 (-574)))) 122) (((-3 $ "failed") (-699 (-417 (-963 (-388))))) 87) (((-3 $ "failed") (-699 (-417 (-963 (-574))))) 73)) (-2206 (($ (-699 (-324 (-388)))) 107) (($ (-699 (-324 (-574)))) 95) (($ (-699 (-963 (-388)))) 129) (($ (-699 (-963 (-574)))) 118) (($ (-699 (-417 (-963 (-388))))) 83) (($ (-699 (-417 (-963 (-574))))) 66)) (-3768 (((-1286) $) 141)) (-2943 (((-872) $) 135) (($ (-654 (-338))) 29) (($ (-338)) 34) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) 32) (($ (-699 (-348 (-2956) (-2956 (QUOTE X) (QUOTE HESS)) (-709)))) 56))) -(((-65 |#1|) (-13 (-393) (-626 (-699 (-348 (-2956) (-2956 (QUOTE X) (QUOTE HESS)) (-709))))) (-1190)) (T -65)) -NIL -(-13 (-393) (-626 (-699 (-348 (-2956) (-2956 (QUOTE X) (QUOTE HESS)) (-709))))) -((-1696 (((-3 $ "failed") (-324 (-388))) 60) (((-3 $ "failed") (-324 (-574))) 65) (((-3 $ "failed") (-963 (-388))) 69) (((-3 $ "failed") (-963 (-574))) 73) (((-3 $ "failed") (-417 (-963 (-388)))) 55) (((-3 $ "failed") (-417 (-963 (-574)))) 48)) (-2206 (($ (-324 (-388))) 58) (($ (-324 (-574))) 63) (($ (-963 (-388))) 67) (($ (-963 (-574))) 71) (($ (-417 (-963 (-388)))) 53) (($ (-417 (-963 (-574)))) 45)) (-3768 (((-1286) $) 82)) (-2943 (((-872) $) 76) (($ (-654 (-338))) 29) (($ (-338)) 34) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) 32) (($ (-348 (-2956) (-2956 (QUOTE XC)) (-709))) 40))) -(((-66 |#1|) (-13 (-406) (-10 -8 (-15 -2943 ($ (-348 (-2956) (-2956 (QUOTE XC)) (-709)))))) (-1190)) (T -66)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-348 (-2956) (-2956 (QUOTE XC)) (-709))) (-5 *1 (-66 *3)) (-14 *3 (-1190))))) -(-13 (-406) (-10 -8 (-15 -2943 ($ (-348 (-2956) (-2956 (QUOTE XC)) (-709)))))) -((-3768 (((-1286) $) 65)) (-2943 (((-872) $) 59) (($ (-699 (-709))) 51) (($ (-654 (-338))) 50) (($ (-338)) 57) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) 55))) -(((-67 |#1|) (-392) (-1190)) (T -67)) -NIL -(-392) -((-3768 (((-1286) $) 66)) (-2943 (((-872) $) 60) (($ (-699 (-709))) 52) (($ (-654 (-338))) 51) (($ (-338)) 54) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) 57))) -(((-68 |#1|) (-392) (-1190)) (T -68)) -NIL -(-392) -((-3768 (((-1286) $) NIL) (((-1286)) 33)) (-2943 (((-872) $) NIL))) -(((-69 |#1|) (-13 (-405) (-10 -7 (-15 -3768 ((-1286))))) (-1190)) (T -69)) -((-3768 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-69 *3)) (-14 *3 (-1190))))) -(-13 (-405) (-10 -7 (-15 -3768 ((-1286))))) -((-3768 (((-1286) $) 75)) (-2943 (((-872) $) 69) (($ (-699 (-709))) 61) (($ (-654 (-338))) 63) (($ (-338)) 66) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) 60))) -(((-70 |#1|) (-392) (-1190)) (T -70)) -NIL -(-392) -((-1696 (((-3 $ "failed") (-1281 (-324 (-388)))) 109) (((-3 $ "failed") (-1281 (-324 (-574)))) 98) (((-3 $ "failed") (-1281 (-963 (-388)))) 129) (((-3 $ "failed") (-1281 (-963 (-574)))) 119) (((-3 $ "failed") (-1281 (-417 (-963 (-388))))) 87) (((-3 $ "failed") (-1281 (-417 (-963 (-574))))) 74)) (-2206 (($ (-1281 (-324 (-388)))) 105) (($ (-1281 (-324 (-574)))) 94) (($ (-1281 (-963 (-388)))) 125) (($ (-1281 (-963 (-574)))) 115) (($ (-1281 (-417 (-963 (-388))))) 83) (($ (-1281 (-417 (-963 (-574))))) 67)) (-3768 (((-1286) $) 142)) (-2943 (((-872) $) 136) (($ (-654 (-338))) 131) (($ (-338)) 134) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) 59) (($ (-1281 (-348 (-2956 (QUOTE X)) (-2956 (QUOTE -1881)) (-709)))) 60))) -(((-71 |#1|) (-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956 (QUOTE X)) (-2956 (QUOTE -1881)) (-709))))))) (-1190)) (T -71)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-1281 (-348 (-2956 (QUOTE X)) (-2956 (QUOTE -1881)) (-709)))) (-5 *1 (-71 *3)) (-14 *3 (-1190))))) -(-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956 (QUOTE X)) (-2956 (QUOTE -1881)) (-709))))))) -((-3768 (((-1286) $) 33) (((-1286)) 32)) (-2943 (((-872) $) 36))) -(((-72 |#1|) (-13 (-405) (-10 -7 (-15 -3768 ((-1286))))) (-1190)) (T -72)) -((-3768 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-72 *3)) (-14 *3 (-1190))))) -(-13 (-405) (-10 -7 (-15 -3768 ((-1286))))) -((-3768 (((-1286) $) 65)) (-2943 (((-872) $) 59) (($ (-699 (-709))) 51) (($ (-654 (-338))) 53) (($ (-338)) 56) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) 50))) -(((-73 |#1|) (-392) (-1190)) (T -73)) -NIL -(-392) -((-1696 (((-3 $ "failed") (-1281 (-324 (-388)))) 127) (((-3 $ "failed") (-1281 (-324 (-574)))) 117) (((-3 $ "failed") (-1281 (-963 (-388)))) 147) (((-3 $ "failed") (-1281 (-963 (-574)))) 137) (((-3 $ "failed") (-1281 (-417 (-963 (-388))))) 107) (((-3 $ "failed") (-1281 (-417 (-963 (-574))))) 95)) (-2206 (($ (-1281 (-324 (-388)))) 123) (($ (-1281 (-324 (-574)))) 113) (($ (-1281 (-963 (-388)))) 143) (($ (-1281 (-963 (-574)))) 133) (($ (-1281 (-417 (-963 (-388))))) 103) (($ (-1281 (-417 (-963 (-574))))) 88)) (-3768 (((-1286) $) 80)) (-2943 (((-872) $) 28) (($ (-654 (-338))) 70) (($ (-338)) 66) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) 73) (($ (-1281 (-348 (-2956) (-2956 (QUOTE X)) (-709)))) 67))) -(((-74 |#1|) (-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956) (-2956 (QUOTE X)) (-709))))))) (-1190)) (T -74)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-1281 (-348 (-2956) (-2956 (QUOTE X)) (-709)))) (-5 *1 (-74 *3)) (-14 *3 (-1190))))) -(-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956) (-2956 (QUOTE X)) (-709))))))) -((-1696 (((-3 $ "failed") (-1281 (-324 (-388)))) 132) (((-3 $ "failed") (-1281 (-324 (-574)))) 121) (((-3 $ "failed") (-1281 (-963 (-388)))) 152) (((-3 $ "failed") (-1281 (-963 (-574)))) 142) (((-3 $ "failed") (-1281 (-417 (-963 (-388))))) 110) (((-3 $ "failed") (-1281 (-417 (-963 (-574))))) 97)) (-2206 (($ (-1281 (-324 (-388)))) 128) (($ (-1281 (-324 (-574)))) 117) (($ (-1281 (-963 (-388)))) 148) (($ (-1281 (-963 (-574)))) 138) (($ (-1281 (-417 (-963 (-388))))) 106) (($ (-1281 (-417 (-963 (-574))))) 90)) (-3768 (((-1286) $) 82)) (-2943 (((-872) $) 74) (($ (-654 (-338))) NIL) (($ (-338)) NIL) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) NIL) (($ (-1281 (-348 (-2956 (QUOTE X) (QUOTE EPS)) (-2956 (QUOTE -1881)) (-709)))) 69))) -(((-75 |#1| |#2| |#3|) (-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956 (QUOTE X) (QUOTE EPS)) (-2956 (QUOTE -1881)) (-709))))))) (-1190) (-1190) (-1190)) (T -75)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-1281 (-348 (-2956 (QUOTE X) (QUOTE EPS)) (-2956 (QUOTE -1881)) (-709)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1190)) (-14 *4 (-1190)) (-14 *5 (-1190))))) -(-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956 (QUOTE X) (QUOTE EPS)) (-2956 (QUOTE -1881)) (-709))))))) -((-1696 (((-3 $ "failed") (-1281 (-324 (-388)))) 138) (((-3 $ "failed") (-1281 (-324 (-574)))) 127) (((-3 $ "failed") (-1281 (-963 (-388)))) 158) (((-3 $ "failed") (-1281 (-963 (-574)))) 148) (((-3 $ "failed") (-1281 (-417 (-963 (-388))))) 116) (((-3 $ "failed") (-1281 (-417 (-963 (-574))))) 103)) (-2206 (($ (-1281 (-324 (-388)))) 134) (($ (-1281 (-324 (-574)))) 123) (($ (-1281 (-963 (-388)))) 154) (($ (-1281 (-963 (-574)))) 144) (($ (-1281 (-417 (-963 (-388))))) 112) (($ (-1281 (-417 (-963 (-574))))) 96)) (-3768 (((-1286) $) 88)) (-2943 (((-872) $) 80) (($ (-654 (-338))) NIL) (($ (-338)) NIL) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) NIL) (($ (-1281 (-348 (-2956 (QUOTE EPS)) (-2956 (QUOTE YA) (QUOTE YB)) (-709)))) 75))) -(((-76 |#1| |#2| |#3|) (-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956 (QUOTE EPS)) (-2956 (QUOTE YA) (QUOTE YB)) (-709))))))) (-1190) (-1190) (-1190)) (T -76)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-1281 (-348 (-2956 (QUOTE EPS)) (-2956 (QUOTE YA) (QUOTE YB)) (-709)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1190)) (-14 *4 (-1190)) (-14 *5 (-1190))))) -(-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956 (QUOTE EPS)) (-2956 (QUOTE YA) (QUOTE YB)) (-709))))))) -((-1696 (((-3 $ "failed") (-324 (-388))) 83) (((-3 $ "failed") (-324 (-574))) 88) (((-3 $ "failed") (-963 (-388))) 92) (((-3 $ "failed") (-963 (-574))) 96) (((-3 $ "failed") (-417 (-963 (-388)))) 78) (((-3 $ "failed") (-417 (-963 (-574)))) 71)) (-2206 (($ (-324 (-388))) 81) (($ (-324 (-574))) 86) (($ (-963 (-388))) 90) (($ (-963 (-574))) 94) (($ (-417 (-963 (-388)))) 76) (($ (-417 (-963 (-574)))) 68)) (-3768 (((-1286) $) 63)) (-2943 (((-872) $) 51) (($ (-654 (-338))) 47) (($ (-338)) 57) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) 55) (($ (-348 (-2956) (-2956 (QUOTE X)) (-709))) 48))) -(((-77 |#1|) (-13 (-406) (-10 -8 (-15 -2943 ($ (-348 (-2956) (-2956 (QUOTE X)) (-709)))))) (-1190)) (T -77)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-348 (-2956) (-2956 (QUOTE X)) (-709))) (-5 *1 (-77 *3)) (-14 *3 (-1190))))) -(-13 (-406) (-10 -8 (-15 -2943 ($ (-348 (-2956) (-2956 (QUOTE X)) (-709)))))) -((-1696 (((-3 $ "failed") (-324 (-388))) 47) (((-3 $ "failed") (-324 (-574))) 52) (((-3 $ "failed") (-963 (-388))) 56) (((-3 $ "failed") (-963 (-574))) 60) (((-3 $ "failed") (-417 (-963 (-388)))) 42) (((-3 $ "failed") (-417 (-963 (-574)))) 35)) (-2206 (($ (-324 (-388))) 45) (($ (-324 (-574))) 50) (($ (-963 (-388))) 54) (($ (-963 (-574))) 58) (($ (-417 (-963 (-388)))) 40) (($ (-417 (-963 (-574)))) 32)) (-3768 (((-1286) $) 81)) (-2943 (((-872) $) 75) (($ (-654 (-338))) 67) (($ (-338)) 72) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) 70) (($ (-348 (-2956) (-2956 (QUOTE X)) (-709))) 31))) -(((-78 |#1|) (-13 (-406) (-10 -8 (-15 -2943 ($ (-348 (-2956) (-2956 (QUOTE X)) (-709)))))) (-1190)) (T -78)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-348 (-2956) (-2956 (QUOTE X)) (-709))) (-5 *1 (-78 *3)) (-14 *3 (-1190))))) -(-13 (-406) (-10 -8 (-15 -2943 ($ (-348 (-2956) (-2956 (QUOTE X)) (-709)))))) -((-1696 (((-3 $ "failed") (-1281 (-324 (-388)))) 90) (((-3 $ "failed") (-1281 (-324 (-574)))) 79) (((-3 $ "failed") (-1281 (-963 (-388)))) 110) (((-3 $ "failed") (-1281 (-963 (-574)))) 100) (((-3 $ "failed") (-1281 (-417 (-963 (-388))))) 68) (((-3 $ "failed") (-1281 (-417 (-963 (-574))))) 55)) (-2206 (($ (-1281 (-324 (-388)))) 86) (($ (-1281 (-324 (-574)))) 75) (($ (-1281 (-963 (-388)))) 106) (($ (-1281 (-963 (-574)))) 96) (($ (-1281 (-417 (-963 (-388))))) 64) (($ (-1281 (-417 (-963 (-574))))) 48)) (-3768 (((-1286) $) 126)) (-2943 (((-872) $) 120) (($ (-654 (-338))) 113) (($ (-338)) 38) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) 116) (($ (-1281 (-348 (-2956) (-2956 (QUOTE XC)) (-709)))) 39))) -(((-79 |#1|) (-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956) (-2956 (QUOTE XC)) (-709))))))) (-1190)) (T -79)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-1281 (-348 (-2956) (-2956 (QUOTE XC)) (-709)))) (-5 *1 (-79 *3)) (-14 *3 (-1190))))) -(-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956) (-2956 (QUOTE XC)) (-709))))))) -((-1696 (((-3 $ "failed") (-1281 (-324 (-388)))) 151) (((-3 $ "failed") (-1281 (-324 (-574)))) 141) (((-3 $ "failed") (-1281 (-963 (-388)))) 171) (((-3 $ "failed") (-1281 (-963 (-574)))) 161) (((-3 $ "failed") (-1281 (-417 (-963 (-388))))) 131) (((-3 $ "failed") (-1281 (-417 (-963 (-574))))) 119)) (-2206 (($ (-1281 (-324 (-388)))) 147) (($ (-1281 (-324 (-574)))) 137) (($ (-1281 (-963 (-388)))) 167) (($ (-1281 (-963 (-574)))) 157) (($ (-1281 (-417 (-963 (-388))))) 127) (($ (-1281 (-417 (-963 (-574))))) 112)) (-3768 (((-1286) $) 105)) (-2943 (((-872) $) 99) (($ (-654 (-338))) 90) (($ (-338)) 97) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) 95) (($ (-1281 (-348 (-2956) (-2956 (QUOTE X)) (-709)))) 91))) -(((-80 |#1|) (-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956) (-2956 (QUOTE X)) (-709))))))) (-1190)) (T -80)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-1281 (-348 (-2956) (-2956 (QUOTE X)) (-709)))) (-5 *1 (-80 *3)) (-14 *3 (-1190))))) -(-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956) (-2956 (QUOTE X)) (-709))))))) -((-1696 (((-3 $ "failed") (-1281 (-324 (-388)))) 79) (((-3 $ "failed") (-1281 (-324 (-574)))) 68) (((-3 $ "failed") (-1281 (-963 (-388)))) 99) (((-3 $ "failed") (-1281 (-963 (-574)))) 89) (((-3 $ "failed") (-1281 (-417 (-963 (-388))))) 57) (((-3 $ "failed") (-1281 (-417 (-963 (-574))))) 44)) (-2206 (($ (-1281 (-324 (-388)))) 75) (($ (-1281 (-324 (-574)))) 64) (($ (-1281 (-963 (-388)))) 95) (($ (-1281 (-963 (-574)))) 85) (($ (-1281 (-417 (-963 (-388))))) 53) (($ (-1281 (-417 (-963 (-574))))) 37)) (-3768 (((-1286) $) 125)) (-2943 (((-872) $) 119) (($ (-654 (-338))) 110) (($ (-338)) 116) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) 114) (($ (-1281 (-348 (-2956) (-2956 (QUOTE X)) (-709)))) 36))) -(((-81 |#1|) (-13 (-451) (-626 (-1281 (-348 (-2956) (-2956 (QUOTE X)) (-709))))) (-1190)) (T -81)) -NIL -(-13 (-451) (-626 (-1281 (-348 (-2956) (-2956 (QUOTE X)) (-709))))) -((-1696 (((-3 $ "failed") (-1281 (-324 (-388)))) 98) (((-3 $ "failed") (-1281 (-324 (-574)))) 87) (((-3 $ "failed") (-1281 (-963 (-388)))) 118) (((-3 $ "failed") (-1281 (-963 (-574)))) 108) (((-3 $ "failed") (-1281 (-417 (-963 (-388))))) 76) (((-3 $ "failed") (-1281 (-417 (-963 (-574))))) 63)) (-2206 (($ (-1281 (-324 (-388)))) 94) (($ (-1281 (-324 (-574)))) 83) (($ (-1281 (-963 (-388)))) 114) (($ (-1281 (-963 (-574)))) 104) (($ (-1281 (-417 (-963 (-388))))) 72) (($ (-1281 (-417 (-963 (-574))))) 56)) (-3768 (((-1286) $) 48)) (-2943 (((-872) $) 42) (($ (-654 (-338))) 32) (($ (-338)) 35) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) 38) (($ (-1281 (-348 (-2956 (QUOTE X) (QUOTE -1881)) (-2956) (-709)))) 33))) -(((-82 |#1|) (-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956 (QUOTE X) (QUOTE -1881)) (-2956) (-709))))))) (-1190)) (T -82)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-1281 (-348 (-2956 (QUOTE X) (QUOTE -1881)) (-2956) (-709)))) (-5 *1 (-82 *3)) (-14 *3 (-1190))))) -(-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956 (QUOTE X) (QUOTE -1881)) (-2956) (-709))))))) -((-1696 (((-3 $ "failed") (-699 (-324 (-388)))) 118) (((-3 $ "failed") (-699 (-324 (-574)))) 107) (((-3 $ "failed") (-699 (-963 (-388)))) 140) (((-3 $ "failed") (-699 (-963 (-574)))) 129) (((-3 $ "failed") (-699 (-417 (-963 (-388))))) 96) (((-3 $ "failed") (-699 (-417 (-963 (-574))))) 83)) (-2206 (($ (-699 (-324 (-388)))) 114) (($ (-699 (-324 (-574)))) 103) (($ (-699 (-963 (-388)))) 136) (($ (-699 (-963 (-574)))) 125) (($ (-699 (-417 (-963 (-388))))) 92) (($ (-699 (-417 (-963 (-574))))) 76)) (-3768 (((-1286) $) 66)) (-2943 (((-872) $) 53) (($ (-654 (-338))) 60) (($ (-338)) 49) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) 58) (($ (-699 (-348 (-2956 (QUOTE X) (QUOTE -1881)) (-2956) (-709)))) 50))) -(((-83 |#1|) (-13 (-393) (-10 -8 (-15 -2943 ($ (-699 (-348 (-2956 (QUOTE X) (QUOTE -1881)) (-2956) (-709))))))) (-1190)) (T -83)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-699 (-348 (-2956 (QUOTE X) (QUOTE -1881)) (-2956) (-709)))) (-5 *1 (-83 *3)) (-14 *3 (-1190))))) -(-13 (-393) (-10 -8 (-15 -2943 ($ (-699 (-348 (-2956 (QUOTE X) (QUOTE -1881)) (-2956) (-709))))))) -((-1696 (((-3 $ "failed") (-699 (-324 (-388)))) 113) (((-3 $ "failed") (-699 (-324 (-574)))) 101) (((-3 $ "failed") (-699 (-963 (-388)))) 135) (((-3 $ "failed") (-699 (-963 (-574)))) 124) (((-3 $ "failed") (-699 (-417 (-963 (-388))))) 89) (((-3 $ "failed") (-699 (-417 (-963 (-574))))) 75)) (-2206 (($ (-699 (-324 (-388)))) 109) (($ (-699 (-324 (-574)))) 97) (($ (-699 (-963 (-388)))) 131) (($ (-699 (-963 (-574)))) 120) (($ (-699 (-417 (-963 (-388))))) 85) (($ (-699 (-417 (-963 (-574))))) 68)) (-3768 (((-1286) $) 60)) (-2943 (((-872) $) 54) (($ (-654 (-338))) 48) (($ (-338)) 51) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) 45) (($ (-699 (-348 (-2956 (QUOTE X)) (-2956) (-709)))) 46))) -(((-84 |#1|) (-13 (-393) (-10 -8 (-15 -2943 ($ (-699 (-348 (-2956 (QUOTE X)) (-2956) (-709))))))) (-1190)) (T -84)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-699 (-348 (-2956 (QUOTE X)) (-2956) (-709)))) (-5 *1 (-84 *3)) (-14 *3 (-1190))))) -(-13 (-393) (-10 -8 (-15 -2943 ($ (-699 (-348 (-2956 (QUOTE X)) (-2956) (-709))))))) -((-1696 (((-3 $ "failed") (-1281 (-324 (-388)))) 105) (((-3 $ "failed") (-1281 (-324 (-574)))) 94) (((-3 $ "failed") (-1281 (-963 (-388)))) 125) (((-3 $ "failed") (-1281 (-963 (-574)))) 115) (((-3 $ "failed") (-1281 (-417 (-963 (-388))))) 83) (((-3 $ "failed") (-1281 (-417 (-963 (-574))))) 70)) (-2206 (($ (-1281 (-324 (-388)))) 101) (($ (-1281 (-324 (-574)))) 90) (($ (-1281 (-963 (-388)))) 121) (($ (-1281 (-963 (-574)))) 111) (($ (-1281 (-417 (-963 (-388))))) 79) (($ (-1281 (-417 (-963 (-574))))) 63)) (-3768 (((-1286) $) 47)) (-2943 (((-872) $) 41) (($ (-654 (-338))) 50) (($ (-338)) 37) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) 53) (($ (-1281 (-348 (-2956 (QUOTE X)) (-2956) (-709)))) 38))) -(((-85 |#1|) (-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956 (QUOTE X)) (-2956) (-709))))))) (-1190)) (T -85)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-1281 (-348 (-2956 (QUOTE X)) (-2956) (-709)))) (-5 *1 (-85 *3)) (-14 *3 (-1190))))) -(-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956 (QUOTE X)) (-2956) (-709))))))) -((-1696 (((-3 $ "failed") (-1281 (-324 (-388)))) 80) (((-3 $ "failed") (-1281 (-324 (-574)))) 69) (((-3 $ "failed") (-1281 (-963 (-388)))) 100) (((-3 $ "failed") (-1281 (-963 (-574)))) 90) (((-3 $ "failed") (-1281 (-417 (-963 (-388))))) 58) (((-3 $ "failed") (-1281 (-417 (-963 (-574))))) 45)) (-2206 (($ (-1281 (-324 (-388)))) 76) (($ (-1281 (-324 (-574)))) 65) (($ (-1281 (-963 (-388)))) 96) (($ (-1281 (-963 (-574)))) 86) (($ (-1281 (-417 (-963 (-388))))) 54) (($ (-1281 (-417 (-963 (-574))))) 38)) (-3768 (((-1286) $) 126)) (-2943 (((-872) $) 120) (($ (-654 (-338))) 111) (($ (-338)) 117) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) 115) (($ (-1281 (-348 (-2956 (QUOTE X)) (-2956 (QUOTE -1881)) (-709)))) 37))) -(((-86 |#1|) (-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956 (QUOTE X)) (-2956 (QUOTE -1881)) (-709))))))) (-1190)) (T -86)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-1281 (-348 (-2956 (QUOTE X)) (-2956 (QUOTE -1881)) (-709)))) (-5 *1 (-86 *3)) (-14 *3 (-1190))))) -(-13 (-451) (-10 -8 (-15 -2943 ($ (-1281 (-348 (-2956 (QUOTE X)) (-2956 (QUOTE -1881)) (-709))))))) -((-1696 (((-3 $ "failed") (-699 (-324 (-388)))) 117) (((-3 $ "failed") (-699 (-324 (-574)))) 105) (((-3 $ "failed") (-699 (-963 (-388)))) 139) (((-3 $ "failed") (-699 (-963 (-574)))) 128) (((-3 $ "failed") (-699 (-417 (-963 (-388))))) 93) (((-3 $ "failed") (-699 (-417 (-963 (-574))))) 79)) (-2206 (($ (-699 (-324 (-388)))) 113) (($ (-699 (-324 (-574)))) 101) (($ (-699 (-963 (-388)))) 135) (($ (-699 (-963 (-574)))) 124) (($ (-699 (-417 (-963 (-388))))) 89) (($ (-699 (-417 (-963 (-574))))) 72)) (-3768 (((-1286) $) 63)) (-2943 (((-872) $) 57) (($ (-654 (-338))) 47) (($ (-338)) 54) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) 52) (($ (-699 (-348 (-2956 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2956) (-709)))) 48))) -(((-87 |#1|) (-13 (-393) (-10 -8 (-15 -2943 ($ (-699 (-348 (-2956 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2956) (-709))))))) (-1190)) (T -87)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-699 (-348 (-2956 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2956) (-709)))) (-5 *1 (-87 *3)) (-14 *3 (-1190))))) -(-13 (-393) (-10 -8 (-15 -2943 ($ (-699 (-348 (-2956 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2956) (-709))))))) -((-3768 (((-1286) $) 45)) (-2943 (((-872) $) 39) (($ (-1281 (-709))) 100) (($ (-654 (-338))) 31) (($ (-338)) 36) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) 34))) -(((-88 |#1|) (-450) (-1190)) (T -88)) -NIL -(-450) -((-1696 (((-3 $ "failed") (-324 (-388))) 48) (((-3 $ "failed") (-324 (-574))) 53) (((-3 $ "failed") (-963 (-388))) 57) (((-3 $ "failed") (-963 (-574))) 61) (((-3 $ "failed") (-417 (-963 (-388)))) 43) (((-3 $ "failed") (-417 (-963 (-574)))) 36)) (-2206 (($ (-324 (-388))) 46) (($ (-324 (-574))) 51) (($ (-963 (-388))) 55) (($ (-963 (-574))) 59) (($ (-417 (-963 (-388)))) 41) (($ (-417 (-963 (-574)))) 33)) (-3768 (((-1286) $) 91)) (-2943 (((-872) $) 85) (($ (-654 (-338))) 79) (($ (-338)) 82) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) 77) (($ (-348 (-2956 (QUOTE X)) (-2956 (QUOTE -1881)) (-709))) 32))) -(((-89 |#1|) (-13 (-406) (-10 -8 (-15 -2943 ($ (-348 (-2956 (QUOTE X)) (-2956 (QUOTE -1881)) (-709)))))) (-1190)) (T -89)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-348 (-2956 (QUOTE X)) (-2956 (QUOTE -1881)) (-709))) (-5 *1 (-89 *3)) (-14 *3 (-1190))))) -(-13 (-406) (-10 -8 (-15 -2943 ($ (-348 (-2956 (QUOTE X)) (-2956 (QUOTE -1881)) (-709)))))) -((-2810 (((-1281 (-699 |#1|)) (-699 |#1|)) 61)) (-3721 (((-2 (|:| -4340 (-699 |#1|)) (|:| |vec| (-1281 (-654 (-932))))) |#2| (-932)) 49)) (-3577 (((-2 (|:| |minor| (-654 (-932))) (|:| -4122 |#2|) (|:| |minors| (-654 (-654 (-932)))) (|:| |ops| (-654 |#2|))) |#2| (-932)) 72 (|has| |#1| (-372))))) -(((-90 |#1| |#2|) (-10 -7 (-15 -3721 ((-2 (|:| -4340 (-699 |#1|)) (|:| |vec| (-1281 (-654 (-932))))) |#2| (-932))) (-15 -2810 ((-1281 (-699 |#1|)) (-699 |#1|))) (IF (|has| |#1| (-372)) (-15 -3577 ((-2 (|:| |minor| (-654 (-932))) (|:| -4122 |#2|) (|:| |minors| (-654 (-654 (-932)))) (|:| |ops| (-654 |#2|))) |#2| (-932))) |%noBranch|)) (-566) (-666 |#1|)) (T -90)) -((-3577 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *5 (-566)) (-5 *2 (-2 (|:| |minor| (-654 (-932))) (|:| -4122 *3) (|:| |minors| (-654 (-654 (-932)))) (|:| |ops| (-654 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-932)) (-4 *3 (-666 *5)))) (-2810 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-1281 (-699 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-699 *4)) (-4 *5 (-666 *4)))) (-3721 (*1 *2 *3 *4) (-12 (-4 *5 (-566)) (-5 *2 (-2 (|:| -4340 (-699 *5)) (|:| |vec| (-1281 (-654 (-932)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-932)) (-4 *3 (-666 *5))))) -(-10 -7 (-15 -3721 ((-2 (|:| -4340 (-699 |#1|)) (|:| |vec| (-1281 (-654 (-932))))) |#2| (-932))) (-15 -2810 ((-1281 (-699 |#1|)) (-699 |#1|))) (IF (|has| |#1| (-372)) (-15 -3577 ((-2 (|:| |minor| (-654 (-932))) (|:| -4122 |#2|) (|:| |minors| (-654 (-654 (-932)))) (|:| |ops| (-654 |#2|))) |#2| (-932))) |%noBranch|)) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2002 ((|#1| $) 40)) (-3034 (((-112) $ (-781)) NIL)) (-3426 (($) NIL T CONST)) (-3874 ((|#1| |#1| $) 35)) (-3020 ((|#1| $) 33)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-2742 (((-112) $ (-781)) NIL)) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2449 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-2937 ((|#1| $) NIL)) (-2798 (($ |#1| $) 36)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-1785 ((|#1| $) 34)) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) NIL)) (-1584 (((-112) $) 18)) (-2672 (($) 45)) (-4302 (((-781) $) 31)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) 17)) (-2943 (((-872) $) 30 (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-1599 (($ (-654 |#1|)) NIL)) (-2329 (($ (-654 |#1|)) 42)) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 15 (|has| |#1| (-1113)))) (-2863 (((-781) $) 12 (|has| $ (-6 -4456))))) -(((-91 |#1|) (-13 (-1134 |#1|) (-10 -8 (-15 -2329 ($ (-654 |#1|))))) (-1113)) (T -91)) -((-2329 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-91 *3))))) -(-13 (-1134 |#1|) (-10 -8 (-15 -2329 ($ (-654 |#1|))))) -((-2943 (((-872) $) 13) (($ (-1195)) 9) (((-1195) $) 8))) -(((-92 |#1|) (-10 -8 (-15 -2943 ((-1195) |#1|)) (-15 -2943 (|#1| (-1195))) (-15 -2943 ((-872) |#1|))) (-93)) (T -92)) -NIL -(-10 -8 (-15 -2943 ((-1195) |#1|)) (-15 -2943 (|#1| (-1195))) (-15 -2943 ((-872) |#1|))) -((-2849 (((-112) $ $) 7)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12) (($ (-1195)) 17) (((-1195) $) 16)) (-3284 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) +((-3676 (((-112) $) 12)) (-1776 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-416 (-573)) $) 25) (($ $ (-416 (-573))) NIL))) +(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-416 (-573)))) (-15 * (|#1| (-416 (-573)) |#1|)) (-15 -3676 ((-112) |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-931) |#1|))) (-47 |#2| |#3|) (-1061) (-801)) (T -46)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-416 (-573)))) (-15 * (|#1| (-416 (-573)) |#1|)) (-15 -3676 ((-112) |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-931) |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 63 (|has| |#1| (-565)))) (-2456 (($ $) 64 (|has| |#1| (-565)))) (-1345 (((-112) $) 66 (|has| |#1| (-565)))) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-1391 (($ $) 72)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-3676 (((-112) $) 74)) (-4334 (($ |#1| |#2|) 73)) (-1776 (($ (-1 |#1| |#1|) $) 75)) (-1358 (($ $) 77)) (-1369 ((|#1| $) 78)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2837 (((-3 $ "failed") $ $) 62 (|has| |#1| (-565)))) (-2565 ((|#2| $) 76)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ (-416 (-573))) 69 (|has| |#1| (-38 (-416 (-573))))) (($ $) 61 (|has| |#1| (-565))) (($ |#1|) 59 (|has| |#1| (-174)))) (-4317 ((|#1| $ |#2|) 71)) (-4279 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 65 (|has| |#1| (-565)))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 70 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-416 (-573)) $) 68 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 67 (|has| |#1| (-38 (-416 (-573))))))) +(((-47 |#1| |#2|) (-141) (-1061) (-801)) (T -47)) +((-1369 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-801)) (-4 *2 (-1061)))) (-1358 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-801)))) (-2565 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-801)))) (-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)))) (-3676 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)) (-5 *2 (-112)))) (-4334 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-801)))) (-1391 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-801)))) (-4317 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-801)) (-4 *2 (-1061)))) (-3103 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-801)) (-4 *2 (-371))))) +(-13 (-1061) (-111 |t#1| |t#1|) (-10 -8 (-15 -1369 (|t#1| $)) (-15 -1358 ($ $)) (-15 -2565 (|t#2| $)) (-15 -1776 ($ (-1 |t#1| |t#1|) $)) (-15 -3676 ((-112) $)) (-15 -4334 ($ |t#1| |t#2|)) (-15 -1391 ($ $)) (-15 -4317 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-371)) (-15 -3103 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-6 (-174)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-565)) (-6 (-565)) |%noBranch|) (IF (|has| |t#1| (-38 (-416 (-573)))) (-6 (-38 (-416 (-573)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-565)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-416 (-573)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #0#) |has| |#1| (-38 (-416 (-573)))) ((-625 (-573)) . T) ((-625 |#1|) |has| |#1| (-174)) ((-625 $) |has| |#1| (-565)) ((-622 (-871)) . T) ((-174) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-297) |has| |#1| (-565)) ((-565) |has| |#1| (-565)) ((-655 #0#) |has| |#1| (-38 (-416 (-573)))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #0#) |has| |#1| (-38 (-416 (-573)))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #0#) |has| |#1| (-38 (-416 (-573)))) ((-649 |#1|) |has| |#1| (-174)) ((-649 $) |has| |#1| (-565)) ((-726 #0#) |has| |#1| (-38 (-416 (-573)))) ((-726 |#1|) |has| |#1| (-174)) ((-726 $) |has| |#1| (-565)) ((-735) . T) ((-1063 #0#) |has| |#1| (-38 (-416 (-573)))) ((-1063 |#1|) . T) ((-1063 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-1068 #0#) |has| |#1| (-38 (-416 (-573)))) ((-1068 |#1|) . T) ((-1068 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) +((-2848 (((-112) $ $) NIL)) (-3148 (((-653 $) (-1185 $) (-1189)) NIL) (((-653 $) (-1185 $)) NIL) (((-653 $) (-962 $)) NIL)) (-4118 (($ (-1185 $) (-1189)) NIL) (($ (-1185 $)) NIL) (($ (-962 $)) NIL)) (-1748 (((-112) $) 9)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-4090 (((-653 (-621 $)) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2544 (($ $ (-301 $)) NIL) (($ $ (-653 (-301 $))) NIL) (($ $ (-653 (-621 $)) (-653 $)) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-4228 (($ $) NIL)) (-2800 (((-112) $ $) NIL)) (-2579 (($) NIL T CONST)) (-3682 (((-653 $) (-1185 $) (-1189)) NIL) (((-653 $) (-1185 $)) NIL) (((-653 $) (-962 $)) NIL)) (-1732 (($ (-1185 $) (-1189)) NIL) (($ (-1185 $)) NIL) (($ (-962 $)) NIL)) (-1695 (((-3 (-621 $) "failed") $) NIL) (((-3 (-573) "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL)) (-2205 (((-621 $) $) NIL) (((-573) $) NIL) (((-416 (-573)) $) NIL)) (-2784 (($ $ $) NIL)) (-2759 (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL) (((-698 (-573)) (-698 $)) NIL) (((-698 (-573)) (-1280 $)) NIL) (((-2 (|:| -1423 (-698 (-416 (-573)))) (|:| |vec| (-1280 (-416 (-573))))) (-698 $) (-1280 $)) NIL) (((-698 (-416 (-573))) (-698 $)) NIL) (((-698 (-416 (-573))) (-1280 $)) NIL)) (-2867 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-2449 (($ $) NIL) (($ (-653 $)) NIL)) (-2515 (((-653 (-115)) $) NIL)) (-4173 (((-115) (-115)) NIL)) (-1959 (((-112) $) 11)) (-2250 (((-112) $) NIL (|has| $ (-1050 (-573))))) (-2965 (((-1137 (-573) (-621 $)) $) NIL)) (-4325 (($ $ (-573)) NIL)) (-3421 (((-1185 $) (-1185 $) (-621 $)) NIL) (((-1185 $) (-1185 $) (-653 (-621 $))) NIL) (($ $ (-621 $)) NIL) (($ $ (-653 (-621 $))) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2597 (((-1185 $) (-621 $)) NIL (|has| $ (-1061)))) (-1776 (($ (-1 $ $) (-621 $)) NIL)) (-2944 (((-3 (-621 $) "failed") $) NIL)) (-2829 (($ (-653 $)) NIL) (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-4163 (((-653 (-621 $)) $) NIL)) (-1774 (($ (-115) $) NIL) (($ (-115) (-653 $)) NIL)) (-1667 (((-112) $ (-115)) NIL) (((-112) $ (-1189)) NIL)) (-1323 (($ $) NIL)) (-1839 (((-780) $) NIL)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ (-653 $)) NIL) (($ $ $) NIL)) (-3805 (((-112) $ $) NIL) (((-112) $ (-1189)) NIL)) (-4218 (((-427 $) $) NIL)) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2270 (((-112) $) NIL (|has| $ (-1050 (-573))))) (-2645 (($ $ (-621 $) $) NIL) (($ $ (-653 (-621 $)) (-653 $)) NIL) (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-653 (-1189)) (-653 (-1 $ $))) NIL) (($ $ (-653 (-1189)) (-653 (-1 $ (-653 $)))) NIL) (($ $ (-1189) (-1 $ (-653 $))) NIL) (($ $ (-1189) (-1 $ $)) NIL) (($ $ (-653 (-115)) (-653 (-1 $ $))) NIL) (($ $ (-653 (-115)) (-653 (-1 $ (-653 $)))) NIL) (($ $ (-115) (-1 $ (-653 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2163 (((-780) $) NIL)) (-2198 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-653 $)) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3727 (($ $) NIL) (($ $ $) NIL)) (-3904 (($ $) NIL) (($ $ (-780)) NIL)) (-2975 (((-1137 (-573) (-621 $)) $) NIL)) (-2984 (($ $) NIL (|has| $ (-1061)))) (-1835 (((-387) $) NIL) (((-227) $) NIL) (((-171 (-387)) $) NIL)) (-2942 (((-871) $) NIL) (($ (-621 $)) NIL) (($ (-416 (-573))) NIL) (($ $) NIL) (($ (-573)) NIL) (($ (-1137 (-573) (-621 $))) NIL)) (-1545 (((-780)) NIL T CONST)) (-2029 (($ $) NIL) (($ (-653 $)) NIL)) (-3109 (((-112) (-115)) NIL)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-2132 (($) 6 T CONST)) (-2144 (($) 10 T CONST)) (-3609 (($ $) NIL) (($ $ (-780)) NIL)) (-2981 (((-112) $ $) 13)) (-3103 (($ $ $) NIL)) (-3093 (($ $ $) NIL) (($ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-416 (-573))) NIL) (($ $ (-573)) NIL) (($ $ (-780)) NIL) (($ $ (-931)) NIL)) (* (($ (-416 (-573)) $) NIL) (($ $ (-416 (-573))) NIL) (($ $ $) NIL) (($ (-573) $) NIL) (($ (-780) $) NIL) (($ (-931) $) NIL))) +(((-48) (-13 (-309) (-27) (-1050 (-573)) (-1050 (-416 (-573))) (-648 (-573)) (-1034) (-648 (-416 (-573))) (-148) (-623 (-171 (-387))) (-238) (-10 -8 (-15 -2942 ($ (-1137 (-573) (-621 $)))) (-15 -2965 ((-1137 (-573) (-621 $)) $)) (-15 -2975 ((-1137 (-573) (-621 $)) $)) (-15 -2867 ($ $)) (-15 -3421 ((-1185 $) (-1185 $) (-621 $))) (-15 -3421 ((-1185 $) (-1185 $) (-653 (-621 $)))) (-15 -3421 ($ $ (-621 $))) (-15 -3421 ($ $ (-653 (-621 $))))))) (T -48)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-1137 (-573) (-621 (-48)))) (-5 *1 (-48)))) (-2965 (*1 *2 *1) (-12 (-5 *2 (-1137 (-573) (-621 (-48)))) (-5 *1 (-48)))) (-2975 (*1 *2 *1) (-12 (-5 *2 (-1137 (-573) (-621 (-48)))) (-5 *1 (-48)))) (-2867 (*1 *1 *1) (-5 *1 (-48))) (-3421 (*1 *2 *2 *3) (-12 (-5 *2 (-1185 (-48))) (-5 *3 (-621 (-48))) (-5 *1 (-48)))) (-3421 (*1 *2 *2 *3) (-12 (-5 *2 (-1185 (-48))) (-5 *3 (-653 (-621 (-48)))) (-5 *1 (-48)))) (-3421 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-48))) (-5 *1 (-48)))) (-3421 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-621 (-48)))) (-5 *1 (-48))))) +(-13 (-309) (-27) (-1050 (-573)) (-1050 (-416 (-573))) (-648 (-573)) (-1034) (-648 (-416 (-573))) (-148) (-623 (-171 (-387))) (-238) (-10 -8 (-15 -2942 ($ (-1137 (-573) (-621 $)))) (-15 -2965 ((-1137 (-573) (-621 $)) $)) (-15 -2975 ((-1137 (-573) (-621 $)) $)) (-15 -2867 ($ $)) (-15 -3421 ((-1185 $) (-1185 $) (-621 $))) (-15 -3421 ((-1185 $) (-1185 $) (-653 (-621 $)))) (-15 -3421 ($ $ (-621 $))) (-15 -3421 ($ $ (-653 (-621 $)))))) +((-2848 (((-112) $ $) NIL)) (-2623 (((-653 (-515)) $) 17)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 7)) (-2043 (((-1194) $) 18)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-49) (-13 (-1112) (-10 -8 (-15 -2623 ((-653 (-515)) $)) (-15 -2043 ((-1194) $))))) (T -49)) +((-2623 (*1 *2 *1) (-12 (-5 *2 (-653 (-515))) (-5 *1 (-49)))) (-2043 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-49))))) +(-13 (-1112) (-10 -8 (-15 -2623 ((-653 (-515)) $)) (-15 -2043 ((-1194) $)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 85)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1407 (((-112) $) 30)) (-1695 (((-3 |#1| "failed") $) 33)) (-2205 ((|#1| $) 34)) (-1391 (($ $) 40)) (-2232 (((-3 $ "failed") $) NIL)) (-1959 (((-112) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1369 ((|#1| $) 31)) (-1833 (($ $) 74)) (-3180 (((-1171) $) NIL)) (-3825 (((-112) $) 43)) (-3965 (((-1132) $) NIL)) (-2969 (($ (-780)) 72)) (-1608 (($ (-653 (-573))) 73)) (-2565 (((-780) $) 44)) (-2942 (((-871) $) 91) (($ (-573)) 69) (($ |#1|) 67)) (-4317 ((|#1| $ $) 28)) (-1545 (((-780)) 71 T CONST)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 45 T CONST)) (-2144 (($) 17 T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) 64)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 65) (($ |#1| $) 58))) +(((-50 |#1| |#2|) (-13 (-629 |#1|) (-1050 |#1|) (-10 -8 (-15 -1369 (|#1| $)) (-15 -1833 ($ $)) (-15 -1391 ($ $)) (-15 -4317 (|#1| $ $)) (-15 -2969 ($ (-780))) (-15 -1608 ($ (-653 (-573)))) (-15 -3825 ((-112) $)) (-15 -1407 ((-112) $)) (-15 -2565 ((-780) $)) (-15 -1776 ($ (-1 |#1| |#1|) $)))) (-1061) (-653 (-1189))) (T -50)) +((-1369 (*1 *2 *1) (-12 (-4 *2 (-1061)) (-5 *1 (-50 *2 *3)) (-14 *3 (-653 (-1189))))) (-1833 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1061)) (-14 *3 (-653 (-1189))))) (-1391 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1061)) (-14 *3 (-653 (-1189))))) (-4317 (*1 *2 *1 *1) (-12 (-4 *2 (-1061)) (-5 *1 (-50 *2 *3)) (-14 *3 (-653 (-1189))))) (-2969 (*1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1061)) (-14 *4 (-653 (-1189))))) (-1608 (*1 *1 *2) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1061)) (-14 *4 (-653 (-1189))))) (-3825 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1061)) (-14 *4 (-653 (-1189))))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1061)) (-14 *4 (-653 (-1189))))) (-2565 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1061)) (-14 *4 (-653 (-1189))))) (-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1061)) (-5 *1 (-50 *3 *4)) (-14 *4 (-653 (-1189)))))) +(-13 (-629 |#1|) (-1050 |#1|) (-10 -8 (-15 -1369 (|#1| $)) (-15 -1833 ($ $)) (-15 -1391 ($ $)) (-15 -4317 (|#1| $ $)) (-15 -2969 ($ (-780))) (-15 -1608 ($ (-653 (-573)))) (-15 -3825 ((-112) $)) (-15 -1407 ((-112) $)) (-15 -2565 ((-780) $)) (-15 -1776 ($ (-1 |#1| |#1|) $)))) +((-1407 (((-112) (-52)) 18)) (-1695 (((-3 |#1| "failed") (-52)) 20)) (-2205 ((|#1| (-52)) 21)) (-2942 (((-52) |#1|) 14))) +(((-51 |#1|) (-10 -7 (-15 -2942 ((-52) |#1|)) (-15 -1695 ((-3 |#1| "failed") (-52))) (-15 -1407 ((-112) (-52))) (-15 -2205 (|#1| (-52)))) (-1230)) (T -51)) +((-2205 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1230)))) (-1407 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1230)))) (-1695 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1230)))) (-2942 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1230))))) +(-10 -7 (-15 -2942 ((-52) |#1|)) (-15 -1695 ((-3 |#1| "failed") (-52))) (-15 -1407 ((-112) (-52))) (-15 -2205 (|#1| (-52)))) +((-2848 (((-112) $ $) NIL)) (-1694 (((-783) $) 8)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-1868 (((-1116) $) 10)) (-2942 (((-871) $) 15)) (-3507 (((-112) $ $) NIL)) (-3963 (($ (-1116) (-783)) 16)) (-2981 (((-112) $ $) 12))) +(((-52) (-13 (-1112) (-10 -8 (-15 -3963 ($ (-1116) (-783))) (-15 -1868 ((-1116) $)) (-15 -1694 ((-783) $))))) (T -52)) +((-3963 (*1 *1 *2 *3) (-12 (-5 *2 (-1116)) (-5 *3 (-783)) (-5 *1 (-52)))) (-1868 (*1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-52)))) (-1694 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-52))))) +(-13 (-1112) (-10 -8 (-15 -3963 ($ (-1116) (-783))) (-15 -1868 ((-1116) $)) (-15 -1694 ((-783) $)))) +((-2900 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2900 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1061) (-657 |#1|) (-861 |#1|)) (T -53)) +((-2900 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-657 *5)) (-4 *5 (-1061)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-861 *5))))) +(-10 -7 (-15 -2900 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-4030 ((|#3| |#3| (-653 (-1189))) 44)) (-1668 ((|#3| (-653 (-1088 |#1| |#2| |#3|)) |#3| (-931)) 32) ((|#3| (-653 (-1088 |#1| |#2| |#3|)) |#3|) 31))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1668 (|#3| (-653 (-1088 |#1| |#2| |#3|)) |#3|)) (-15 -1668 (|#3| (-653 (-1088 |#1| |#2| |#3|)) |#3| (-931))) (-15 -4030 (|#3| |#3| (-653 (-1189))))) (-1112) (-13 (-1061) (-896 |#1|) (-623 (-902 |#1|))) (-13 (-439 |#2|) (-896 |#1|) (-623 (-902 |#1|)))) (T -54)) +((-4030 (*1 *2 *2 *3) (-12 (-5 *3 (-653 (-1189))) (-4 *4 (-1112)) (-4 *5 (-13 (-1061) (-896 *4) (-623 (-902 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-439 *5) (-896 *4) (-623 (-902 *4)))))) (-1668 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-653 (-1088 *5 *6 *2))) (-5 *4 (-931)) (-4 *5 (-1112)) (-4 *6 (-13 (-1061) (-896 *5) (-623 (-902 *5)))) (-4 *2 (-13 (-439 *6) (-896 *5) (-623 (-902 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1668 (*1 *2 *3 *2) (-12 (-5 *3 (-653 (-1088 *4 *5 *2))) (-4 *4 (-1112)) (-4 *5 (-13 (-1061) (-896 *4) (-623 (-902 *4)))) (-4 *2 (-13 (-439 *5) (-896 *4) (-623 (-902 *4)))) (-5 *1 (-54 *4 *5 *2))))) +(-10 -7 (-15 -1668 (|#3| (-653 (-1088 |#1| |#2| |#3|)) |#3|)) (-15 -1668 (|#3| (-653 (-1088 |#1| |#2| |#3|)) |#3| (-931))) (-15 -4030 (|#3| |#3| (-653 (-1189))))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 14)) (-1695 (((-3 (-780) "failed") $) 34)) (-2205 (((-780) $) NIL)) (-1959 (((-112) $) 16)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) 18)) (-2942 (((-871) $) 23) (($ (-780)) 29)) (-3507 (((-112) $ $) NIL)) (-3192 (($) 11 T CONST)) (-2981 (((-112) $ $) 20))) +(((-55) (-13 (-1112) (-1050 (-780)) (-10 -8 (-15 -3192 ($) -1705) (-15 -1748 ((-112) $)) (-15 -1959 ((-112) $))))) (T -55)) +((-3192 (*1 *1) (-5 *1 (-55))) (-1748 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-1959 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) +(-13 (-1112) (-1050 (-780)) (-10 -8 (-15 -3192 ($) -1705) (-15 -1748 ((-112) $)) (-15 -1959 ((-112) $)))) +((-3450 (((-112) $ (-780)) 27)) (-3601 (($ $ (-573) |#3|) 66)) (-2790 (($ $ (-573) |#4|) 70)) (-3229 ((|#3| $ (-573)) 79)) (-1863 (((-653 |#2|) $) 47)) (-2078 (((-112) $ (-780)) 31)) (-1547 (((-112) |#2| $) 74)) (-2446 (($ (-1 |#2| |#2|) $) 55)) (-1776 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-2673 (((-112) $ (-780)) 29)) (-3112 (($ $ |#2|) 52)) (-1575 (((-112) (-1 (-112) |#2|) $) 21)) (-2198 ((|#2| $ (-573) (-573)) NIL) ((|#2| $ (-573) (-573) |#2|) 35)) (-3974 (((-780) (-1 (-112) |#2|) $) 41) (((-780) |#2| $) 76)) (-3166 (($ $) 51)) (-1921 ((|#4| $ (-573)) 82)) (-2942 (((-871) $) 88)) (-1646 (((-112) (-1 (-112) |#2|) $) 20)) (-2981 (((-112) $ $) 73)) (-2862 (((-780) $) 32))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2942 ((-871) |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1776 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2446 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2790 (|#1| |#1| (-573) |#4|)) (-15 -3601 (|#1| |#1| (-573) |#3|)) (-15 -1863 ((-653 |#2|) |#1|)) (-15 -1921 (|#4| |#1| (-573))) (-15 -3229 (|#3| |#1| (-573))) (-15 -2198 (|#2| |#1| (-573) (-573) |#2|)) (-15 -2198 (|#2| |#1| (-573) (-573))) (-15 -3112 (|#1| |#1| |#2|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -1547 ((-112) |#2| |#1|)) (-15 -3974 ((-780) |#2| |#1|)) (-15 -3974 ((-780) (-1 (-112) |#2|) |#1|)) (-15 -1575 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1646 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2862 ((-780) |#1|)) (-15 -3450 ((-112) |#1| (-780))) (-15 -2078 ((-112) |#1| (-780))) (-15 -2673 ((-112) |#1| (-780))) (-15 -3166 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1230) (-381 |#2|) (-381 |#2|)) (T -56)) +NIL +(-10 -8 (-15 -2942 ((-871) |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1776 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2446 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2790 (|#1| |#1| (-573) |#4|)) (-15 -3601 (|#1| |#1| (-573) |#3|)) (-15 -1863 ((-653 |#2|) |#1|)) (-15 -1921 (|#4| |#1| (-573))) (-15 -3229 (|#3| |#1| (-573))) (-15 -2198 (|#2| |#1| (-573) (-573) |#2|)) (-15 -2198 (|#2| |#1| (-573) (-573))) (-15 -3112 (|#1| |#1| |#2|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -1547 ((-112) |#2| |#1|)) (-15 -3974 ((-780) |#2| |#1|)) (-15 -3974 ((-780) (-1 (-112) |#2|) |#1|)) (-15 -1575 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1646 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2862 ((-780) |#1|)) (-15 -3450 ((-112) |#1| (-780))) (-15 -2078 ((-112) |#1| (-780))) (-15 -2673 ((-112) |#1| (-780))) (-15 -3166 (|#1| |#1|))) +((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3450 (((-112) $ (-780)) 8)) (-3142 ((|#1| $ (-573) (-573) |#1|) 45)) (-3601 (($ $ (-573) |#2|) 43)) (-2790 (($ $ (-573) |#3|) 42)) (-2579 (($) 7 T CONST)) (-3229 ((|#2| $ (-573)) 47)) (-2457 ((|#1| $ (-573) (-573) |#1|) 44)) (-2384 ((|#1| $ (-573) (-573)) 49)) (-1863 (((-653 |#1|) $) 31)) (-2188 (((-780) $) 52)) (-3789 (($ (-780) (-780) |#1|) 58)) (-2197 (((-780) $) 51)) (-2078 (((-112) $ (-780)) 9)) (-1319 (((-573) $) 56)) (-4011 (((-573) $) 54)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3124 (((-573) $) 55)) (-2326 (((-573) $) 53)) (-2446 (($ (-1 |#1| |#1|) $) 35)) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-3112 (($ $ |#1|) 57)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ (-573) (-573)) 50) ((|#1| $ (-573) (-573) |#1|) 48)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-1921 ((|#3| $ (-573)) 46)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-57 |#1| |#2| |#3|) (-141) (-1230) (-381 |t#1|) (-381 |t#1|)) (T -57)) +((-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-3789 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-780)) (-4 *3 (-1230)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-3112 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1230)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)))) (-1319 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *2 (-573)))) (-3124 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *2 (-573)))) (-4011 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *2 (-573)))) (-2326 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *2 (-573)))) (-2188 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *2 (-780)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *2 (-780)))) (-2198 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-573)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-381 *2)) (-4 *5 (-381 *2)) (-4 *2 (-1230)))) (-2384 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-573)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-381 *2)) (-4 *5 (-381 *2)) (-4 *2 (-1230)))) (-2198 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-573)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1230)) (-4 *4 (-381 *2)) (-4 *5 (-381 *2)))) (-3229 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1230)) (-4 *5 (-381 *4)) (-4 *2 (-381 *4)))) (-1921 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1230)) (-4 *5 (-381 *4)) (-4 *2 (-381 *4)))) (-1863 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *2 (-653 *3)))) (-3142 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-573)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1230)) (-4 *4 (-381 *2)) (-4 *5 (-381 *2)))) (-2457 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-573)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1230)) (-4 *4 (-381 *2)) (-4 *5 (-381 *2)))) (-3601 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-573)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1230)) (-4 *3 (-381 *4)) (-4 *5 (-381 *4)))) (-2790 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-573)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1230)) (-4 *5 (-381 *4)) (-4 *3 (-381 *4)))) (-2446 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-1776 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-1776 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3))))) +(-13 (-498 |t#1|) (-10 -8 (-6 -4456) (-6 -4455) (-15 -3789 ($ (-780) (-780) |t#1|)) (-15 -3112 ($ $ |t#1|)) (-15 -1319 ((-573) $)) (-15 -3124 ((-573) $)) (-15 -4011 ((-573) $)) (-15 -2326 ((-573) $)) (-15 -2188 ((-780) $)) (-15 -2197 ((-780) $)) (-15 -2198 (|t#1| $ (-573) (-573))) (-15 -2384 (|t#1| $ (-573) (-573))) (-15 -2198 (|t#1| $ (-573) (-573) |t#1|)) (-15 -3229 (|t#2| $ (-573))) (-15 -1921 (|t#3| $ (-573))) (-15 -1863 ((-653 |t#1|) $)) (-15 -3142 (|t#1| $ (-573) (-573) |t#1|)) (-15 -2457 (|t#1| $ (-573) (-573) |t#1|)) (-15 -3601 ($ $ (-573) |t#2|)) (-15 -2790 ($ $ (-573) |t#3|)) (-15 -1776 ($ (-1 |t#1| |t#1|) $)) (-15 -2446 ($ (-1 |t#1| |t#1|) $)) (-15 -1776 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1776 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) +((-3094 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-2867 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-1776 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) +(((-58 |#1| |#2|) (-10 -7 (-15 -3094 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2867 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1776 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1230) (-1230)) (T -58)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2867 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1230)) (-4 *2 (-1230)) (-5 *1 (-58 *5 *2)))) (-3094 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1230)) (-4 *5 (-1230)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) +(-10 -7 (-15 -3094 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2867 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1776 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-1473 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-859)))) (-2748 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4456))) (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-859))))) (-2770 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-859)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) NIL (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3334 (($ |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) NIL)) (-1440 (((-573) (-1 (-112) |#1|) $) NIL) (((-573) |#1| $) NIL (|has| |#1| (-1112))) (((-573) |#1| $ (-573)) NIL (|has| |#1| (-1112)))) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-3801 (($ (-653 |#1|)) 11) (($ (-780) |#1|) 14)) (-3789 (($ (-780) |#1|) 13)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) NIL (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-1480 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-859)))) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-1593 (($ |#1| $ (-573)) NIL) (($ $ $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2914 ((|#1| $) NIL (|has| (-573) (-859)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3112 (($ $ |#1|) NIL (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#1| $ (-573) |#1|) NIL) ((|#1| $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-2836 (($ $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3919 (($ $ $ (-573)) NIL (|has| $ (-6 -4456)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 10)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-653 $)) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3801 ($ (-653 |#1|))) (-15 -3801 ($ (-780) |#1|)))) (-1230)) (T -59)) +((-3801 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-5 *1 (-59 *3)))) (-3801 (*1 *1 *2 *3) (-12 (-5 *2 (-780)) (-5 *1 (-59 *3)) (-4 *3 (-1230))))) +(-13 (-19 |#1|) (-10 -8 (-15 -3801 ($ (-653 |#1|))) (-15 -3801 ($ (-780) |#1|)))) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#1| $ (-573) (-573) |#1|) NIL)) (-3601 (($ $ (-573) (-59 |#1|)) NIL)) (-2790 (($ $ (-573) (-59 |#1|)) NIL)) (-2579 (($) NIL T CONST)) (-3229 (((-59 |#1|) $ (-573)) NIL)) (-2457 ((|#1| $ (-573) (-573) |#1|) NIL)) (-2384 ((|#1| $ (-573) (-573)) NIL)) (-1863 (((-653 |#1|) $) NIL)) (-2188 (((-780) $) NIL)) (-3789 (($ (-780) (-780) |#1|) NIL)) (-2197 (((-780) $) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1319 (((-573) $) NIL)) (-4011 (((-573) $) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3124 (((-573) $) NIL)) (-2326 (((-573) $) NIL)) (-2446 (($ (-1 |#1| |#1|) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-3112 (($ $ |#1|) NIL)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#1| $ (-573) (-573)) NIL) ((|#1| $ (-573) (-573) |#1|) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) NIL)) (-1921 (((-59 |#1|) $ (-573)) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4456))) (-1230)) (T -60)) +NIL +(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4456))) +((-1695 (((-3 $ "failed") (-1280 (-323 (-387)))) 74) (((-3 $ "failed") (-1280 (-323 (-573)))) 63) (((-3 $ "failed") (-1280 (-962 (-387)))) 94) (((-3 $ "failed") (-1280 (-962 (-573)))) 84) (((-3 $ "failed") (-1280 (-416 (-962 (-387))))) 52) (((-3 $ "failed") (-1280 (-416 (-962 (-573))))) 39)) (-2205 (($ (-1280 (-323 (-387)))) 70) (($ (-1280 (-323 (-573)))) 59) (($ (-1280 (-962 (-387)))) 90) (($ (-1280 (-962 (-573)))) 80) (($ (-1280 (-416 (-962 (-387))))) 48) (($ (-1280 (-416 (-962 (-573))))) 32)) (-3767 (((-1285) $) 124)) (-2942 (((-871) $) 118) (($ (-653 (-337))) 103) (($ (-337)) 97) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 101) (($ (-1280 (-347 (-2955 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2955) (-708)))) 31))) +(((-61 |#1|) (-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2955) (-708))))))) (-1189)) (T -61)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-1280 (-347 (-2955 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2955) (-708)))) (-5 *1 (-61 *3)) (-14 *3 (-1189))))) +(-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2955) (-708))))))) +((-3767 (((-1285) $) 54) (((-1285)) 55)) (-2942 (((-871) $) 51))) +(((-62 |#1|) (-13 (-404) (-10 -7 (-15 -3767 ((-1285))))) (-1189)) (T -62)) +((-3767 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-62 *3)) (-14 *3 (-1189))))) +(-13 (-404) (-10 -7 (-15 -3767 ((-1285))))) +((-1695 (((-3 $ "failed") (-1280 (-323 (-387)))) 150) (((-3 $ "failed") (-1280 (-323 (-573)))) 140) (((-3 $ "failed") (-1280 (-962 (-387)))) 170) (((-3 $ "failed") (-1280 (-962 (-573)))) 160) (((-3 $ "failed") (-1280 (-416 (-962 (-387))))) 129) (((-3 $ "failed") (-1280 (-416 (-962 (-573))))) 117)) (-2205 (($ (-1280 (-323 (-387)))) 146) (($ (-1280 (-323 (-573)))) 136) (($ (-1280 (-962 (-387)))) 166) (($ (-1280 (-962 (-573)))) 156) (($ (-1280 (-416 (-962 (-387))))) 125) (($ (-1280 (-416 (-962 (-573))))) 110)) (-3767 (((-1285) $) 103)) (-2942 (((-871) $) 97) (($ (-653 (-337))) 30) (($ (-337)) 35) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 33) (($ (-1280 (-347 (-2955) (-2955 (QUOTE XC)) (-708)))) 95))) +(((-63 |#1|) (-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955) (-2955 (QUOTE XC)) (-708))))))) (-1189)) (T -63)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-1280 (-347 (-2955) (-2955 (QUOTE XC)) (-708)))) (-5 *1 (-63 *3)) (-14 *3 (-1189))))) +(-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955) (-2955 (QUOTE XC)) (-708))))))) +((-1695 (((-3 $ "failed") (-323 (-387))) 41) (((-3 $ "failed") (-323 (-573))) 46) (((-3 $ "failed") (-962 (-387))) 50) (((-3 $ "failed") (-962 (-573))) 54) (((-3 $ "failed") (-416 (-962 (-387)))) 36) (((-3 $ "failed") (-416 (-962 (-573)))) 29)) (-2205 (($ (-323 (-387))) 39) (($ (-323 (-573))) 44) (($ (-962 (-387))) 48) (($ (-962 (-573))) 52) (($ (-416 (-962 (-387)))) 34) (($ (-416 (-962 (-573)))) 26)) (-3767 (((-1285) $) 76)) (-2942 (((-871) $) 69) (($ (-653 (-337))) 61) (($ (-337)) 66) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 64) (($ (-347 (-2955 (QUOTE X)) (-2955) (-708))) 25))) +(((-64 |#1|) (-13 (-405) (-10 -8 (-15 -2942 ($ (-347 (-2955 (QUOTE X)) (-2955) (-708)))))) (-1189)) (T -64)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-347 (-2955 (QUOTE X)) (-2955) (-708))) (-5 *1 (-64 *3)) (-14 *3 (-1189))))) +(-13 (-405) (-10 -8 (-15 -2942 ($ (-347 (-2955 (QUOTE X)) (-2955) (-708)))))) +((-1695 (((-3 $ "failed") (-698 (-323 (-387)))) 111) (((-3 $ "failed") (-698 (-323 (-573)))) 99) (((-3 $ "failed") (-698 (-962 (-387)))) 133) (((-3 $ "failed") (-698 (-962 (-573)))) 122) (((-3 $ "failed") (-698 (-416 (-962 (-387))))) 87) (((-3 $ "failed") (-698 (-416 (-962 (-573))))) 73)) (-2205 (($ (-698 (-323 (-387)))) 107) (($ (-698 (-323 (-573)))) 95) (($ (-698 (-962 (-387)))) 129) (($ (-698 (-962 (-573)))) 118) (($ (-698 (-416 (-962 (-387))))) 83) (($ (-698 (-416 (-962 (-573))))) 66)) (-3767 (((-1285) $) 141)) (-2942 (((-871) $) 135) (($ (-653 (-337))) 29) (($ (-337)) 34) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 32) (($ (-698 (-347 (-2955) (-2955 (QUOTE X) (QUOTE HESS)) (-708)))) 56))) +(((-65 |#1|) (-13 (-392) (-625 (-698 (-347 (-2955) (-2955 (QUOTE X) (QUOTE HESS)) (-708))))) (-1189)) (T -65)) +NIL +(-13 (-392) (-625 (-698 (-347 (-2955) (-2955 (QUOTE X) (QUOTE HESS)) (-708))))) +((-1695 (((-3 $ "failed") (-323 (-387))) 60) (((-3 $ "failed") (-323 (-573))) 65) (((-3 $ "failed") (-962 (-387))) 69) (((-3 $ "failed") (-962 (-573))) 73) (((-3 $ "failed") (-416 (-962 (-387)))) 55) (((-3 $ "failed") (-416 (-962 (-573)))) 48)) (-2205 (($ (-323 (-387))) 58) (($ (-323 (-573))) 63) (($ (-962 (-387))) 67) (($ (-962 (-573))) 71) (($ (-416 (-962 (-387)))) 53) (($ (-416 (-962 (-573)))) 45)) (-3767 (((-1285) $) 82)) (-2942 (((-871) $) 76) (($ (-653 (-337))) 29) (($ (-337)) 34) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 32) (($ (-347 (-2955) (-2955 (QUOTE XC)) (-708))) 40))) +(((-66 |#1|) (-13 (-405) (-10 -8 (-15 -2942 ($ (-347 (-2955) (-2955 (QUOTE XC)) (-708)))))) (-1189)) (T -66)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-347 (-2955) (-2955 (QUOTE XC)) (-708))) (-5 *1 (-66 *3)) (-14 *3 (-1189))))) +(-13 (-405) (-10 -8 (-15 -2942 ($ (-347 (-2955) (-2955 (QUOTE XC)) (-708)))))) +((-3767 (((-1285) $) 65)) (-2942 (((-871) $) 59) (($ (-698 (-708))) 51) (($ (-653 (-337))) 50) (($ (-337)) 57) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 55))) +(((-67 |#1|) (-391) (-1189)) (T -67)) +NIL +(-391) +((-3767 (((-1285) $) 66)) (-2942 (((-871) $) 60) (($ (-698 (-708))) 52) (($ (-653 (-337))) 51) (($ (-337)) 54) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 57))) +(((-68 |#1|) (-391) (-1189)) (T -68)) +NIL +(-391) +((-3767 (((-1285) $) NIL) (((-1285)) 33)) (-2942 (((-871) $) NIL))) +(((-69 |#1|) (-13 (-404) (-10 -7 (-15 -3767 ((-1285))))) (-1189)) (T -69)) +((-3767 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-69 *3)) (-14 *3 (-1189))))) +(-13 (-404) (-10 -7 (-15 -3767 ((-1285))))) +((-3767 (((-1285) $) 75)) (-2942 (((-871) $) 69) (($ (-698 (-708))) 61) (($ (-653 (-337))) 63) (($ (-337)) 66) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 60))) +(((-70 |#1|) (-391) (-1189)) (T -70)) +NIL +(-391) +((-1695 (((-3 $ "failed") (-1280 (-323 (-387)))) 109) (((-3 $ "failed") (-1280 (-323 (-573)))) 98) (((-3 $ "failed") (-1280 (-962 (-387)))) 129) (((-3 $ "failed") (-1280 (-962 (-573)))) 119) (((-3 $ "failed") (-1280 (-416 (-962 (-387))))) 87) (((-3 $ "failed") (-1280 (-416 (-962 (-573))))) 74)) (-2205 (($ (-1280 (-323 (-387)))) 105) (($ (-1280 (-323 (-573)))) 94) (($ (-1280 (-962 (-387)))) 125) (($ (-1280 (-962 (-573)))) 115) (($ (-1280 (-416 (-962 (-387))))) 83) (($ (-1280 (-416 (-962 (-573))))) 67)) (-3767 (((-1285) $) 142)) (-2942 (((-871) $) 136) (($ (-653 (-337))) 131) (($ (-337)) 134) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 59) (($ (-1280 (-347 (-2955 (QUOTE X)) (-2955 (QUOTE -1880)) (-708)))) 60))) +(((-71 |#1|) (-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955 (QUOTE X)) (-2955 (QUOTE -1880)) (-708))))))) (-1189)) (T -71)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-1280 (-347 (-2955 (QUOTE X)) (-2955 (QUOTE -1880)) (-708)))) (-5 *1 (-71 *3)) (-14 *3 (-1189))))) +(-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955 (QUOTE X)) (-2955 (QUOTE -1880)) (-708))))))) +((-3767 (((-1285) $) 33) (((-1285)) 32)) (-2942 (((-871) $) 36))) +(((-72 |#1|) (-13 (-404) (-10 -7 (-15 -3767 ((-1285))))) (-1189)) (T -72)) +((-3767 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-72 *3)) (-14 *3 (-1189))))) +(-13 (-404) (-10 -7 (-15 -3767 ((-1285))))) +((-3767 (((-1285) $) 65)) (-2942 (((-871) $) 59) (($ (-698 (-708))) 51) (($ (-653 (-337))) 53) (($ (-337)) 56) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 50))) +(((-73 |#1|) (-391) (-1189)) (T -73)) +NIL +(-391) +((-1695 (((-3 $ "failed") (-1280 (-323 (-387)))) 127) (((-3 $ "failed") (-1280 (-323 (-573)))) 117) (((-3 $ "failed") (-1280 (-962 (-387)))) 147) (((-3 $ "failed") (-1280 (-962 (-573)))) 137) (((-3 $ "failed") (-1280 (-416 (-962 (-387))))) 107) (((-3 $ "failed") (-1280 (-416 (-962 (-573))))) 95)) (-2205 (($ (-1280 (-323 (-387)))) 123) (($ (-1280 (-323 (-573)))) 113) (($ (-1280 (-962 (-387)))) 143) (($ (-1280 (-962 (-573)))) 133) (($ (-1280 (-416 (-962 (-387))))) 103) (($ (-1280 (-416 (-962 (-573))))) 88)) (-3767 (((-1285) $) 80)) (-2942 (((-871) $) 28) (($ (-653 (-337))) 70) (($ (-337)) 66) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 73) (($ (-1280 (-347 (-2955) (-2955 (QUOTE X)) (-708)))) 67))) +(((-74 |#1|) (-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955) (-2955 (QUOTE X)) (-708))))))) (-1189)) (T -74)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-1280 (-347 (-2955) (-2955 (QUOTE X)) (-708)))) (-5 *1 (-74 *3)) (-14 *3 (-1189))))) +(-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955) (-2955 (QUOTE X)) (-708))))))) +((-1695 (((-3 $ "failed") (-1280 (-323 (-387)))) 132) (((-3 $ "failed") (-1280 (-323 (-573)))) 121) (((-3 $ "failed") (-1280 (-962 (-387)))) 152) (((-3 $ "failed") (-1280 (-962 (-573)))) 142) (((-3 $ "failed") (-1280 (-416 (-962 (-387))))) 110) (((-3 $ "failed") (-1280 (-416 (-962 (-573))))) 97)) (-2205 (($ (-1280 (-323 (-387)))) 128) (($ (-1280 (-323 (-573)))) 117) (($ (-1280 (-962 (-387)))) 148) (($ (-1280 (-962 (-573)))) 138) (($ (-1280 (-416 (-962 (-387))))) 106) (($ (-1280 (-416 (-962 (-573))))) 90)) (-3767 (((-1285) $) 82)) (-2942 (((-871) $) 74) (($ (-653 (-337))) NIL) (($ (-337)) NIL) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) NIL) (($ (-1280 (-347 (-2955 (QUOTE X) (QUOTE EPS)) (-2955 (QUOTE -1880)) (-708)))) 69))) +(((-75 |#1| |#2| |#3|) (-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955 (QUOTE X) (QUOTE EPS)) (-2955 (QUOTE -1880)) (-708))))))) (-1189) (-1189) (-1189)) (T -75)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-1280 (-347 (-2955 (QUOTE X) (QUOTE EPS)) (-2955 (QUOTE -1880)) (-708)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1189)) (-14 *4 (-1189)) (-14 *5 (-1189))))) +(-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955 (QUOTE X) (QUOTE EPS)) (-2955 (QUOTE -1880)) (-708))))))) +((-1695 (((-3 $ "failed") (-1280 (-323 (-387)))) 138) (((-3 $ "failed") (-1280 (-323 (-573)))) 127) (((-3 $ "failed") (-1280 (-962 (-387)))) 158) (((-3 $ "failed") (-1280 (-962 (-573)))) 148) (((-3 $ "failed") (-1280 (-416 (-962 (-387))))) 116) (((-3 $ "failed") (-1280 (-416 (-962 (-573))))) 103)) (-2205 (($ (-1280 (-323 (-387)))) 134) (($ (-1280 (-323 (-573)))) 123) (($ (-1280 (-962 (-387)))) 154) (($ (-1280 (-962 (-573)))) 144) (($ (-1280 (-416 (-962 (-387))))) 112) (($ (-1280 (-416 (-962 (-573))))) 96)) (-3767 (((-1285) $) 88)) (-2942 (((-871) $) 80) (($ (-653 (-337))) NIL) (($ (-337)) NIL) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) NIL) (($ (-1280 (-347 (-2955 (QUOTE EPS)) (-2955 (QUOTE YA) (QUOTE YB)) (-708)))) 75))) +(((-76 |#1| |#2| |#3|) (-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955 (QUOTE EPS)) (-2955 (QUOTE YA) (QUOTE YB)) (-708))))))) (-1189) (-1189) (-1189)) (T -76)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-1280 (-347 (-2955 (QUOTE EPS)) (-2955 (QUOTE YA) (QUOTE YB)) (-708)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1189)) (-14 *4 (-1189)) (-14 *5 (-1189))))) +(-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955 (QUOTE EPS)) (-2955 (QUOTE YA) (QUOTE YB)) (-708))))))) +((-1695 (((-3 $ "failed") (-323 (-387))) 83) (((-3 $ "failed") (-323 (-573))) 88) (((-3 $ "failed") (-962 (-387))) 92) (((-3 $ "failed") (-962 (-573))) 96) (((-3 $ "failed") (-416 (-962 (-387)))) 78) (((-3 $ "failed") (-416 (-962 (-573)))) 71)) (-2205 (($ (-323 (-387))) 81) (($ (-323 (-573))) 86) (($ (-962 (-387))) 90) (($ (-962 (-573))) 94) (($ (-416 (-962 (-387)))) 76) (($ (-416 (-962 (-573)))) 68)) (-3767 (((-1285) $) 63)) (-2942 (((-871) $) 51) (($ (-653 (-337))) 47) (($ (-337)) 57) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 55) (($ (-347 (-2955) (-2955 (QUOTE X)) (-708))) 48))) +(((-77 |#1|) (-13 (-405) (-10 -8 (-15 -2942 ($ (-347 (-2955) (-2955 (QUOTE X)) (-708)))))) (-1189)) (T -77)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-347 (-2955) (-2955 (QUOTE X)) (-708))) (-5 *1 (-77 *3)) (-14 *3 (-1189))))) +(-13 (-405) (-10 -8 (-15 -2942 ($ (-347 (-2955) (-2955 (QUOTE X)) (-708)))))) +((-1695 (((-3 $ "failed") (-323 (-387))) 47) (((-3 $ "failed") (-323 (-573))) 52) (((-3 $ "failed") (-962 (-387))) 56) (((-3 $ "failed") (-962 (-573))) 60) (((-3 $ "failed") (-416 (-962 (-387)))) 42) (((-3 $ "failed") (-416 (-962 (-573)))) 35)) (-2205 (($ (-323 (-387))) 45) (($ (-323 (-573))) 50) (($ (-962 (-387))) 54) (($ (-962 (-573))) 58) (($ (-416 (-962 (-387)))) 40) (($ (-416 (-962 (-573)))) 32)) (-3767 (((-1285) $) 81)) (-2942 (((-871) $) 75) (($ (-653 (-337))) 67) (($ (-337)) 72) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 70) (($ (-347 (-2955) (-2955 (QUOTE X)) (-708))) 31))) +(((-78 |#1|) (-13 (-405) (-10 -8 (-15 -2942 ($ (-347 (-2955) (-2955 (QUOTE X)) (-708)))))) (-1189)) (T -78)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-347 (-2955) (-2955 (QUOTE X)) (-708))) (-5 *1 (-78 *3)) (-14 *3 (-1189))))) +(-13 (-405) (-10 -8 (-15 -2942 ($ (-347 (-2955) (-2955 (QUOTE X)) (-708)))))) +((-1695 (((-3 $ "failed") (-1280 (-323 (-387)))) 90) (((-3 $ "failed") (-1280 (-323 (-573)))) 79) (((-3 $ "failed") (-1280 (-962 (-387)))) 110) (((-3 $ "failed") (-1280 (-962 (-573)))) 100) (((-3 $ "failed") (-1280 (-416 (-962 (-387))))) 68) (((-3 $ "failed") (-1280 (-416 (-962 (-573))))) 55)) (-2205 (($ (-1280 (-323 (-387)))) 86) (($ (-1280 (-323 (-573)))) 75) (($ (-1280 (-962 (-387)))) 106) (($ (-1280 (-962 (-573)))) 96) (($ (-1280 (-416 (-962 (-387))))) 64) (($ (-1280 (-416 (-962 (-573))))) 48)) (-3767 (((-1285) $) 126)) (-2942 (((-871) $) 120) (($ (-653 (-337))) 113) (($ (-337)) 38) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 116) (($ (-1280 (-347 (-2955) (-2955 (QUOTE XC)) (-708)))) 39))) +(((-79 |#1|) (-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955) (-2955 (QUOTE XC)) (-708))))))) (-1189)) (T -79)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-1280 (-347 (-2955) (-2955 (QUOTE XC)) (-708)))) (-5 *1 (-79 *3)) (-14 *3 (-1189))))) +(-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955) (-2955 (QUOTE XC)) (-708))))))) +((-1695 (((-3 $ "failed") (-1280 (-323 (-387)))) 151) (((-3 $ "failed") (-1280 (-323 (-573)))) 141) (((-3 $ "failed") (-1280 (-962 (-387)))) 171) (((-3 $ "failed") (-1280 (-962 (-573)))) 161) (((-3 $ "failed") (-1280 (-416 (-962 (-387))))) 131) (((-3 $ "failed") (-1280 (-416 (-962 (-573))))) 119)) (-2205 (($ (-1280 (-323 (-387)))) 147) (($ (-1280 (-323 (-573)))) 137) (($ (-1280 (-962 (-387)))) 167) (($ (-1280 (-962 (-573)))) 157) (($ (-1280 (-416 (-962 (-387))))) 127) (($ (-1280 (-416 (-962 (-573))))) 112)) (-3767 (((-1285) $) 105)) (-2942 (((-871) $) 99) (($ (-653 (-337))) 90) (($ (-337)) 97) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 95) (($ (-1280 (-347 (-2955) (-2955 (QUOTE X)) (-708)))) 91))) +(((-80 |#1|) (-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955) (-2955 (QUOTE X)) (-708))))))) (-1189)) (T -80)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-1280 (-347 (-2955) (-2955 (QUOTE X)) (-708)))) (-5 *1 (-80 *3)) (-14 *3 (-1189))))) +(-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955) (-2955 (QUOTE X)) (-708))))))) +((-1695 (((-3 $ "failed") (-1280 (-323 (-387)))) 79) (((-3 $ "failed") (-1280 (-323 (-573)))) 68) (((-3 $ "failed") (-1280 (-962 (-387)))) 99) (((-3 $ "failed") (-1280 (-962 (-573)))) 89) (((-3 $ "failed") (-1280 (-416 (-962 (-387))))) 57) (((-3 $ "failed") (-1280 (-416 (-962 (-573))))) 44)) (-2205 (($ (-1280 (-323 (-387)))) 75) (($ (-1280 (-323 (-573)))) 64) (($ (-1280 (-962 (-387)))) 95) (($ (-1280 (-962 (-573)))) 85) (($ (-1280 (-416 (-962 (-387))))) 53) (($ (-1280 (-416 (-962 (-573))))) 37)) (-3767 (((-1285) $) 125)) (-2942 (((-871) $) 119) (($ (-653 (-337))) 110) (($ (-337)) 116) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 114) (($ (-1280 (-347 (-2955) (-2955 (QUOTE X)) (-708)))) 36))) +(((-81 |#1|) (-13 (-450) (-625 (-1280 (-347 (-2955) (-2955 (QUOTE X)) (-708))))) (-1189)) (T -81)) +NIL +(-13 (-450) (-625 (-1280 (-347 (-2955) (-2955 (QUOTE X)) (-708))))) +((-1695 (((-3 $ "failed") (-1280 (-323 (-387)))) 98) (((-3 $ "failed") (-1280 (-323 (-573)))) 87) (((-3 $ "failed") (-1280 (-962 (-387)))) 118) (((-3 $ "failed") (-1280 (-962 (-573)))) 108) (((-3 $ "failed") (-1280 (-416 (-962 (-387))))) 76) (((-3 $ "failed") (-1280 (-416 (-962 (-573))))) 63)) (-2205 (($ (-1280 (-323 (-387)))) 94) (($ (-1280 (-323 (-573)))) 83) (($ (-1280 (-962 (-387)))) 114) (($ (-1280 (-962 (-573)))) 104) (($ (-1280 (-416 (-962 (-387))))) 72) (($ (-1280 (-416 (-962 (-573))))) 56)) (-3767 (((-1285) $) 48)) (-2942 (((-871) $) 42) (($ (-653 (-337))) 32) (($ (-337)) 35) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 38) (($ (-1280 (-347 (-2955 (QUOTE X) (QUOTE -1880)) (-2955) (-708)))) 33))) +(((-82 |#1|) (-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955 (QUOTE X) (QUOTE -1880)) (-2955) (-708))))))) (-1189)) (T -82)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-1280 (-347 (-2955 (QUOTE X) (QUOTE -1880)) (-2955) (-708)))) (-5 *1 (-82 *3)) (-14 *3 (-1189))))) +(-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955 (QUOTE X) (QUOTE -1880)) (-2955) (-708))))))) +((-1695 (((-3 $ "failed") (-698 (-323 (-387)))) 118) (((-3 $ "failed") (-698 (-323 (-573)))) 107) (((-3 $ "failed") (-698 (-962 (-387)))) 140) (((-3 $ "failed") (-698 (-962 (-573)))) 129) (((-3 $ "failed") (-698 (-416 (-962 (-387))))) 96) (((-3 $ "failed") (-698 (-416 (-962 (-573))))) 83)) (-2205 (($ (-698 (-323 (-387)))) 114) (($ (-698 (-323 (-573)))) 103) (($ (-698 (-962 (-387)))) 136) (($ (-698 (-962 (-573)))) 125) (($ (-698 (-416 (-962 (-387))))) 92) (($ (-698 (-416 (-962 (-573))))) 76)) (-3767 (((-1285) $) 66)) (-2942 (((-871) $) 53) (($ (-653 (-337))) 60) (($ (-337)) 49) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 58) (($ (-698 (-347 (-2955 (QUOTE X) (QUOTE -1880)) (-2955) (-708)))) 50))) +(((-83 |#1|) (-13 (-392) (-10 -8 (-15 -2942 ($ (-698 (-347 (-2955 (QUOTE X) (QUOTE -1880)) (-2955) (-708))))))) (-1189)) (T -83)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-698 (-347 (-2955 (QUOTE X) (QUOTE -1880)) (-2955) (-708)))) (-5 *1 (-83 *3)) (-14 *3 (-1189))))) +(-13 (-392) (-10 -8 (-15 -2942 ($ (-698 (-347 (-2955 (QUOTE X) (QUOTE -1880)) (-2955) (-708))))))) +((-1695 (((-3 $ "failed") (-698 (-323 (-387)))) 113) (((-3 $ "failed") (-698 (-323 (-573)))) 101) (((-3 $ "failed") (-698 (-962 (-387)))) 135) (((-3 $ "failed") (-698 (-962 (-573)))) 124) (((-3 $ "failed") (-698 (-416 (-962 (-387))))) 89) (((-3 $ "failed") (-698 (-416 (-962 (-573))))) 75)) (-2205 (($ (-698 (-323 (-387)))) 109) (($ (-698 (-323 (-573)))) 97) (($ (-698 (-962 (-387)))) 131) (($ (-698 (-962 (-573)))) 120) (($ (-698 (-416 (-962 (-387))))) 85) (($ (-698 (-416 (-962 (-573))))) 68)) (-3767 (((-1285) $) 60)) (-2942 (((-871) $) 54) (($ (-653 (-337))) 48) (($ (-337)) 51) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 45) (($ (-698 (-347 (-2955 (QUOTE X)) (-2955) (-708)))) 46))) +(((-84 |#1|) (-13 (-392) (-10 -8 (-15 -2942 ($ (-698 (-347 (-2955 (QUOTE X)) (-2955) (-708))))))) (-1189)) (T -84)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-698 (-347 (-2955 (QUOTE X)) (-2955) (-708)))) (-5 *1 (-84 *3)) (-14 *3 (-1189))))) +(-13 (-392) (-10 -8 (-15 -2942 ($ (-698 (-347 (-2955 (QUOTE X)) (-2955) (-708))))))) +((-1695 (((-3 $ "failed") (-1280 (-323 (-387)))) 105) (((-3 $ "failed") (-1280 (-323 (-573)))) 94) (((-3 $ "failed") (-1280 (-962 (-387)))) 125) (((-3 $ "failed") (-1280 (-962 (-573)))) 115) (((-3 $ "failed") (-1280 (-416 (-962 (-387))))) 83) (((-3 $ "failed") (-1280 (-416 (-962 (-573))))) 70)) (-2205 (($ (-1280 (-323 (-387)))) 101) (($ (-1280 (-323 (-573)))) 90) (($ (-1280 (-962 (-387)))) 121) (($ (-1280 (-962 (-573)))) 111) (($ (-1280 (-416 (-962 (-387))))) 79) (($ (-1280 (-416 (-962 (-573))))) 63)) (-3767 (((-1285) $) 47)) (-2942 (((-871) $) 41) (($ (-653 (-337))) 50) (($ (-337)) 37) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 53) (($ (-1280 (-347 (-2955 (QUOTE X)) (-2955) (-708)))) 38))) +(((-85 |#1|) (-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955 (QUOTE X)) (-2955) (-708))))))) (-1189)) (T -85)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-1280 (-347 (-2955 (QUOTE X)) (-2955) (-708)))) (-5 *1 (-85 *3)) (-14 *3 (-1189))))) +(-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955 (QUOTE X)) (-2955) (-708))))))) +((-1695 (((-3 $ "failed") (-1280 (-323 (-387)))) 80) (((-3 $ "failed") (-1280 (-323 (-573)))) 69) (((-3 $ "failed") (-1280 (-962 (-387)))) 100) (((-3 $ "failed") (-1280 (-962 (-573)))) 90) (((-3 $ "failed") (-1280 (-416 (-962 (-387))))) 58) (((-3 $ "failed") (-1280 (-416 (-962 (-573))))) 45)) (-2205 (($ (-1280 (-323 (-387)))) 76) (($ (-1280 (-323 (-573)))) 65) (($ (-1280 (-962 (-387)))) 96) (($ (-1280 (-962 (-573)))) 86) (($ (-1280 (-416 (-962 (-387))))) 54) (($ (-1280 (-416 (-962 (-573))))) 38)) (-3767 (((-1285) $) 126)) (-2942 (((-871) $) 120) (($ (-653 (-337))) 111) (($ (-337)) 117) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 115) (($ (-1280 (-347 (-2955 (QUOTE X)) (-2955 (QUOTE -1880)) (-708)))) 37))) +(((-86 |#1|) (-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955 (QUOTE X)) (-2955 (QUOTE -1880)) (-708))))))) (-1189)) (T -86)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-1280 (-347 (-2955 (QUOTE X)) (-2955 (QUOTE -1880)) (-708)))) (-5 *1 (-86 *3)) (-14 *3 (-1189))))) +(-13 (-450) (-10 -8 (-15 -2942 ($ (-1280 (-347 (-2955 (QUOTE X)) (-2955 (QUOTE -1880)) (-708))))))) +((-1695 (((-3 $ "failed") (-698 (-323 (-387)))) 117) (((-3 $ "failed") (-698 (-323 (-573)))) 105) (((-3 $ "failed") (-698 (-962 (-387)))) 139) (((-3 $ "failed") (-698 (-962 (-573)))) 128) (((-3 $ "failed") (-698 (-416 (-962 (-387))))) 93) (((-3 $ "failed") (-698 (-416 (-962 (-573))))) 79)) (-2205 (($ (-698 (-323 (-387)))) 113) (($ (-698 (-323 (-573)))) 101) (($ (-698 (-962 (-387)))) 135) (($ (-698 (-962 (-573)))) 124) (($ (-698 (-416 (-962 (-387))))) 89) (($ (-698 (-416 (-962 (-573))))) 72)) (-3767 (((-1285) $) 63)) (-2942 (((-871) $) 57) (($ (-653 (-337))) 47) (($ (-337)) 54) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 52) (($ (-698 (-347 (-2955 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2955) (-708)))) 48))) +(((-87 |#1|) (-13 (-392) (-10 -8 (-15 -2942 ($ (-698 (-347 (-2955 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2955) (-708))))))) (-1189)) (T -87)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-698 (-347 (-2955 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2955) (-708)))) (-5 *1 (-87 *3)) (-14 *3 (-1189))))) +(-13 (-392) (-10 -8 (-15 -2942 ($ (-698 (-347 (-2955 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2955) (-708))))))) +((-3767 (((-1285) $) 45)) (-2942 (((-871) $) 39) (($ (-1280 (-708))) 100) (($ (-653 (-337))) 31) (($ (-337)) 36) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 34))) +(((-88 |#1|) (-449) (-1189)) (T -88)) +NIL +(-449) +((-1695 (((-3 $ "failed") (-323 (-387))) 48) (((-3 $ "failed") (-323 (-573))) 53) (((-3 $ "failed") (-962 (-387))) 57) (((-3 $ "failed") (-962 (-573))) 61) (((-3 $ "failed") (-416 (-962 (-387)))) 43) (((-3 $ "failed") (-416 (-962 (-573)))) 36)) (-2205 (($ (-323 (-387))) 46) (($ (-323 (-573))) 51) (($ (-962 (-387))) 55) (($ (-962 (-573))) 59) (($ (-416 (-962 (-387)))) 41) (($ (-416 (-962 (-573)))) 33)) (-3767 (((-1285) $) 91)) (-2942 (((-871) $) 85) (($ (-653 (-337))) 79) (($ (-337)) 82) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 77) (($ (-347 (-2955 (QUOTE X)) (-2955 (QUOTE -1880)) (-708))) 32))) +(((-89 |#1|) (-13 (-405) (-10 -8 (-15 -2942 ($ (-347 (-2955 (QUOTE X)) (-2955 (QUOTE -1880)) (-708)))))) (-1189)) (T -89)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-347 (-2955 (QUOTE X)) (-2955 (QUOTE -1880)) (-708))) (-5 *1 (-89 *3)) (-14 *3 (-1189))))) +(-13 (-405) (-10 -8 (-15 -2942 ($ (-347 (-2955 (QUOTE X)) (-2955 (QUOTE -1880)) (-708)))))) +((-3629 (((-1280 (-698 |#1|)) (-698 |#1|)) 61)) (-3382 (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 (-653 (-931))))) |#2| (-931)) 49)) (-2750 (((-2 (|:| |minor| (-653 (-931))) (|:| -4122 |#2|) (|:| |minors| (-653 (-653 (-931)))) (|:| |ops| (-653 |#2|))) |#2| (-931)) 72 (|has| |#1| (-371))))) +(((-90 |#1| |#2|) (-10 -7 (-15 -3382 ((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 (-653 (-931))))) |#2| (-931))) (-15 -3629 ((-1280 (-698 |#1|)) (-698 |#1|))) (IF (|has| |#1| (-371)) (-15 -2750 ((-2 (|:| |minor| (-653 (-931))) (|:| -4122 |#2|) (|:| |minors| (-653 (-653 (-931)))) (|:| |ops| (-653 |#2|))) |#2| (-931))) |%noBranch|)) (-565) (-665 |#1|)) (T -90)) +((-2750 (*1 *2 *3 *4) (-12 (-4 *5 (-371)) (-4 *5 (-565)) (-5 *2 (-2 (|:| |minor| (-653 (-931))) (|:| -4122 *3) (|:| |minors| (-653 (-653 (-931)))) (|:| |ops| (-653 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-931)) (-4 *3 (-665 *5)))) (-3629 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-1280 (-698 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-698 *4)) (-4 *5 (-665 *4)))) (-3382 (*1 *2 *3 *4) (-12 (-4 *5 (-565)) (-5 *2 (-2 (|:| -1423 (-698 *5)) (|:| |vec| (-1280 (-653 (-931)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-931)) (-4 *3 (-665 *5))))) +(-10 -7 (-15 -3382 ((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 (-653 (-931))))) |#2| (-931))) (-15 -3629 ((-1280 (-698 |#1|)) (-698 |#1|))) (IF (|has| |#1| (-371)) (-15 -2750 ((-2 (|:| |minor| (-653 (-931))) (|:| -4122 |#2|) (|:| |minors| (-653 (-653 (-931)))) (|:| |ops| (-653 |#2|))) |#2| (-931))) |%noBranch|)) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2001 ((|#1| $) 40)) (-3450 (((-112) $ (-780)) NIL)) (-2579 (($) NIL T CONST)) (-2948 ((|#1| |#1| $) 35)) (-3072 ((|#1| $) 33)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-2487 ((|#1| $) NIL)) (-3181 (($ |#1| $) 36)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-3815 ((|#1| $) 34)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) 18)) (-3508 (($) 45)) (-4302 (((-780) $) 31)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) 17)) (-2942 (((-871) $) 30 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2679 (($ (-653 |#1|)) NIL)) (-1340 (($ (-653 |#1|)) 42)) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 15 (|has| |#1| (-1112)))) (-2862 (((-780) $) 12 (|has| $ (-6 -4455))))) +(((-91 |#1|) (-13 (-1133 |#1|) (-10 -8 (-15 -1340 ($ (-653 |#1|))))) (-1112)) (T -91)) +((-1340 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-91 *3))))) +(-13 (-1133 |#1|) (-10 -8 (-15 -1340 ($ (-653 |#1|))))) +((-2942 (((-871) $) 13) (($ (-1194)) 9) (((-1194) $) 8))) +(((-92 |#1|) (-10 -8 (-15 -2942 ((-1194) |#1|)) (-15 -2942 (|#1| (-1194))) (-15 -2942 ((-871) |#1|))) (-93)) (T -92)) +NIL +(-10 -8 (-15 -2942 ((-1194) |#1|)) (-15 -2942 (|#1| (-1194))) (-15 -2942 ((-871) |#1|))) +((-2848 (((-112) $ $) 7)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12) (($ (-1194)) 17) (((-1194) $) 16)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) (((-93) (-141)) (T -93)) NIL -(-13 (-1113) (-500 (-1195))) -(((-102) . T) ((-626 #0=(-1195)) . T) ((-623 (-872)) . T) ((-623 #0#) . T) ((-500 #0#) . T) ((-1113) . T)) -((-2325 (($ $) 10)) (-2334 (($ $) 12))) -(((-94 |#1|) (-10 -8 (-15 -2334 (|#1| |#1|)) (-15 -2325 (|#1| |#1|))) (-95)) (T -94)) +(-13 (-1112) (-499 (-1194))) +(((-102) . T) ((-625 #0=(-1194)) . T) ((-622 (-871)) . T) ((-622 #0#) . T) ((-499 #0#) . T) ((-1112) . T)) +((-2324 (($ $) 10)) (-2333 (($ $) 12))) +(((-94 |#1|) (-10 -8 (-15 -2333 (|#1| |#1|)) (-15 -2324 (|#1| |#1|))) (-95)) (T -94)) NIL -(-10 -8 (-15 -2334 (|#1| |#1|)) (-15 -2325 (|#1| |#1|))) -((-2305 (($ $) 11)) (-2287 (($ $) 10)) (-2325 (($ $) 9)) (-2334 (($ $) 8)) (-2315 (($ $) 7)) (-2297 (($ $) 6))) +(-10 -8 (-15 -2333 (|#1| |#1|)) (-15 -2324 (|#1| |#1|))) +((-2304 (($ $) 11)) (-2286 (($ $) 10)) (-2324 (($ $) 9)) (-2333 (($ $) 8)) (-2314 (($ $) 7)) (-2296 (($ $) 6))) (((-95) (-141)) (T -95)) -((-2305 (*1 *1 *1) (-4 *1 (-95))) (-2287 (*1 *1 *1) (-4 *1 (-95))) (-2325 (*1 *1 *1) (-4 *1 (-95))) (-2334 (*1 *1 *1) (-4 *1 (-95))) (-2315 (*1 *1 *1) (-4 *1 (-95))) (-2297 (*1 *1 *1) (-4 *1 (-95)))) -(-13 (-10 -8 (-15 -2297 ($ $)) (-15 -2315 ($ $)) (-15 -2334 ($ $)) (-15 -2325 ($ $)) (-15 -2287 ($ $)) (-15 -2305 ($ $)))) -((-2849 (((-112) $ $) NIL)) (-2032 (((-1148) $) 9)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 15) (($ (-1195)) NIL) (((-1195) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-96) (-13 (-1096) (-10 -8 (-15 -2032 ((-1148) $))))) (T -96)) -((-2032 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-96))))) -(-13 (-1096) (-10 -8 (-15 -2032 ((-1148) $)))) -((-2849 (((-112) $ $) NIL)) (-3596 (((-388) (-1172) (-388)) 46) (((-388) (-1172) (-1172) (-388)) 44)) (-3411 (((-388) (-388)) 35)) (-4275 (((-1286)) 37)) (-4136 (((-1172) $) NIL)) (-4370 (((-388) (-1172) (-1172)) 50) (((-388) (-1172)) 52)) (-3966 (((-1133) $) NIL)) (-3431 (((-388) (-1172) (-1172)) 51)) (-1490 (((-388) (-1172) (-1172)) 53) (((-388) (-1172)) 54)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-97) (-13 (-1113) (-10 -7 (-15 -4370 ((-388) (-1172) (-1172))) (-15 -4370 ((-388) (-1172))) (-15 -1490 ((-388) (-1172) (-1172))) (-15 -1490 ((-388) (-1172))) (-15 -3431 ((-388) (-1172) (-1172))) (-15 -4275 ((-1286))) (-15 -3411 ((-388) (-388))) (-15 -3596 ((-388) (-1172) (-388))) (-15 -3596 ((-388) (-1172) (-1172) (-388))) (-6 -4456)))) (T -97)) -((-4370 (*1 *2 *3 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-388)) (-5 *1 (-97)))) (-4370 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-388)) (-5 *1 (-97)))) (-1490 (*1 *2 *3 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-388)) (-5 *1 (-97)))) (-1490 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-388)) (-5 *1 (-97)))) (-3431 (*1 *2 *3 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-388)) (-5 *1 (-97)))) (-4275 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-97)))) (-3411 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-97)))) (-3596 (*1 *2 *3 *2) (-12 (-5 *2 (-388)) (-5 *3 (-1172)) (-5 *1 (-97)))) (-3596 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-388)) (-5 *3 (-1172)) (-5 *1 (-97))))) -(-13 (-1113) (-10 -7 (-15 -4370 ((-388) (-1172) (-1172))) (-15 -4370 ((-388) (-1172))) (-15 -1490 ((-388) (-1172) (-1172))) (-15 -1490 ((-388) (-1172))) (-15 -3431 ((-388) (-1172) (-1172))) (-15 -4275 ((-1286))) (-15 -3411 ((-388) (-388))) (-15 -3596 ((-388) (-1172) (-388))) (-15 -3596 ((-388) (-1172) (-1172) (-388))) (-6 -4456))) +((-2304 (*1 *1 *1) (-4 *1 (-95))) (-2286 (*1 *1 *1) (-4 *1 (-95))) (-2324 (*1 *1 *1) (-4 *1 (-95))) (-2333 (*1 *1 *1) (-4 *1 (-95))) (-2314 (*1 *1 *1) (-4 *1 (-95))) (-2296 (*1 *1 *1) (-4 *1 (-95)))) +(-13 (-10 -8 (-15 -2296 ($ $)) (-15 -2314 ($ $)) (-15 -2333 ($ $)) (-15 -2324 ($ $)) (-15 -2286 ($ $)) (-15 -2304 ($ $)))) +((-2848 (((-112) $ $) NIL)) (-2031 (((-1147) $) 9)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 15) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-96) (-13 (-1095) (-10 -8 (-15 -2031 ((-1147) $))))) (T -96)) +((-2031 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-96))))) +(-13 (-1095) (-10 -8 (-15 -2031 ((-1147) $)))) +((-2848 (((-112) $ $) NIL)) (-3820 (((-387) (-1171) (-387)) 46) (((-387) (-1171) (-1171) (-387)) 44)) (-1441 (((-387) (-387)) 35)) (-2002 (((-1285)) 37)) (-3180 (((-1171) $) NIL)) (-1429 (((-387) (-1171) (-1171)) 50) (((-387) (-1171)) 52)) (-3965 (((-1132) $) NIL)) (-1900 (((-387) (-1171) (-1171)) 51)) (-2795 (((-387) (-1171) (-1171)) 53) (((-387) (-1171)) 54)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-97) (-13 (-1112) (-10 -7 (-15 -1429 ((-387) (-1171) (-1171))) (-15 -1429 ((-387) (-1171))) (-15 -2795 ((-387) (-1171) (-1171))) (-15 -2795 ((-387) (-1171))) (-15 -1900 ((-387) (-1171) (-1171))) (-15 -2002 ((-1285))) (-15 -1441 ((-387) (-387))) (-15 -3820 ((-387) (-1171) (-387))) (-15 -3820 ((-387) (-1171) (-1171) (-387))) (-6 -4455)))) (T -97)) +((-1429 (*1 *2 *3 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-387)) (-5 *1 (-97)))) (-1429 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-387)) (-5 *1 (-97)))) (-2795 (*1 *2 *3 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-387)) (-5 *1 (-97)))) (-2795 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-387)) (-5 *1 (-97)))) (-1900 (*1 *2 *3 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-387)) (-5 *1 (-97)))) (-2002 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-97)))) (-1441 (*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-97)))) (-3820 (*1 *2 *3 *2) (-12 (-5 *2 (-387)) (-5 *3 (-1171)) (-5 *1 (-97)))) (-3820 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-387)) (-5 *3 (-1171)) (-5 *1 (-97))))) +(-13 (-1112) (-10 -7 (-15 -1429 ((-387) (-1171) (-1171))) (-15 -1429 ((-387) (-1171))) (-15 -2795 ((-387) (-1171) (-1171))) (-15 -2795 ((-387) (-1171))) (-15 -1900 ((-387) (-1171) (-1171))) (-15 -2002 ((-1285))) (-15 -1441 ((-387) (-387))) (-15 -3820 ((-387) (-1171) (-387))) (-15 -3820 ((-387) (-1171) (-1171) (-387))) (-6 -4455))) NIL (((-98) (-141)) (T -98)) NIL -(-13 (-10 -7 (-6 -4456) (-6 (-4458 "*")) (-6 -4457) (-6 -4453) (-6 -4451) (-6 -4450) (-6 -4449) (-6 -4454) (-6 -4448) (-6 -4447) (-6 -4446) (-6 -4445) (-6 -4444) (-6 -4452) (-6 -4455) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4443))) -((-2849 (((-112) $ $) NIL)) (-3426 (($) NIL T CONST)) (-3434 (((-3 $ "failed") $) NIL)) (-3199 (((-112) $) NIL)) (-3636 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-574))) 24)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) 16)) (-3966 (((-1133) $) NIL)) (-2199 ((|#1| $ |#1|) 13)) (-1479 (($ $ $) NIL)) (-3204 (($ $ $) NIL)) (-2943 (((-872) $) 22)) (-3284 (((-112) $ $) NIL)) (-2145 (($) 8 T CONST)) (-2981 (((-112) $ $) 10)) (-3108 (($ $ $) NIL)) (** (($ $ (-932)) 32) (($ $ (-781)) NIL) (($ $ (-574)) 18)) (* (($ $ $) 33))) -(((-99 |#1|) (-13 (-483) (-294 |#1| |#1|) (-10 -8 (-15 -3636 ($ (-1 |#1| |#1|))) (-15 -3636 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3636 ($ (-1 |#1| |#1| (-574)))))) (-1062)) (T -99)) -((-3636 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1062)) (-5 *1 (-99 *3)))) (-3636 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1062)) (-5 *1 (-99 *3)))) (-3636 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-574))) (-4 *3 (-1062)) (-5 *1 (-99 *3))))) -(-13 (-483) (-294 |#1| |#1|) (-10 -8 (-15 -3636 ($ (-1 |#1| |#1|))) (-15 -3636 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3636 ($ (-1 |#1| |#1| (-574)))))) -((-2523 (((-428 |#2|) |#2| (-654 |#2|)) 10) (((-428 |#2|) |#2| |#2|) 11))) -(((-100 |#1| |#2|) (-10 -7 (-15 -2523 ((-428 |#2|) |#2| |#2|)) (-15 -2523 ((-428 |#2|) |#2| (-654 |#2|)))) (-13 (-462) (-148)) (-1257 |#1|)) (T -100)) -((-2523 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-1257 *5)) (-4 *5 (-13 (-462) (-148))) (-5 *2 (-428 *3)) (-5 *1 (-100 *5 *3)))) (-2523 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-462) (-148))) (-5 *2 (-428 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1257 *4))))) -(-10 -7 (-15 -2523 ((-428 |#2|) |#2| |#2|)) (-15 -2523 ((-428 |#2|) |#2| (-654 |#2|)))) -((-2849 (((-112) $ $) 10))) -(((-101 |#1|) (-10 -8 (-15 -2849 ((-112) |#1| |#1|))) (-102)) (T -101)) -NIL -(-10 -8 (-15 -2849 ((-112) |#1| |#1|))) -((-2849 (((-112) $ $) 7)) (-2981 (((-112) $ $) 6))) +(-13 (-10 -7 (-6 -4455) (-6 (-4457 "*")) (-6 -4456) (-6 -4452) (-6 -4450) (-6 -4449) (-6 -4448) (-6 -4453) (-6 -4447) (-6 -4446) (-6 -4445) (-6 -4444) (-6 -4443) (-6 -4451) (-6 -4454) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4442))) +((-2848 (((-112) $ $) NIL)) (-2579 (($) NIL T CONST)) (-2232 (((-3 $ "failed") $) NIL)) (-1959 (((-112) $) NIL)) (-3272 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-573))) 24)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 16)) (-3965 (((-1132) $) NIL)) (-2198 ((|#1| $ |#1|) 13)) (-3204 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-2942 (((-871) $) 22)) (-3507 (((-112) $ $) NIL)) (-2144 (($) 8 T CONST)) (-2981 (((-112) $ $) 10)) (-3103 (($ $ $) NIL)) (** (($ $ (-931)) 32) (($ $ (-780)) NIL) (($ $ (-573)) 18)) (* (($ $ $) 33))) +(((-99 |#1|) (-13 (-482) (-293 |#1| |#1|) (-10 -8 (-15 -3272 ($ (-1 |#1| |#1|))) (-15 -3272 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3272 ($ (-1 |#1| |#1| (-573)))))) (-1061)) (T -99)) +((-3272 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1061)) (-5 *1 (-99 *3)))) (-3272 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1061)) (-5 *1 (-99 *3)))) (-3272 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-573))) (-4 *3 (-1061)) (-5 *1 (-99 *3))))) +(-13 (-482) (-293 |#1| |#1|) (-10 -8 (-15 -3272 ($ (-1 |#1| |#1|))) (-15 -3272 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3272 ($ (-1 |#1| |#1| (-573)))))) +((-2432 (((-427 |#2|) |#2| (-653 |#2|)) 10) (((-427 |#2|) |#2| |#2|) 11))) +(((-100 |#1| |#2|) (-10 -7 (-15 -2432 ((-427 |#2|) |#2| |#2|)) (-15 -2432 ((-427 |#2|) |#2| (-653 |#2|)))) (-13 (-461) (-148)) (-1256 |#1|)) (T -100)) +((-2432 (*1 *2 *3 *4) (-12 (-5 *4 (-653 *3)) (-4 *3 (-1256 *5)) (-4 *5 (-13 (-461) (-148))) (-5 *2 (-427 *3)) (-5 *1 (-100 *5 *3)))) (-2432 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-461) (-148))) (-5 *2 (-427 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1256 *4))))) +(-10 -7 (-15 -2432 ((-427 |#2|) |#2| |#2|)) (-15 -2432 ((-427 |#2|) |#2| (-653 |#2|)))) +((-2848 (((-112) $ $) 10))) +(((-101 |#1|) (-10 -8 (-15 -2848 ((-112) |#1| |#1|))) (-102)) (T -101)) +NIL +(-10 -8 (-15 -2848 ((-112) |#1| |#1|))) +((-2848 (((-112) $ $) 7)) (-2981 (((-112) $ $) 6))) (((-102) (-141)) (T -102)) -((-2849 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2981 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) -(-13 (-10 -8 (-15 -2981 ((-112) $ $)) (-15 -2849 ((-112) $ $)))) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3083 ((|#1| $) NIL)) (-3034 (((-112) $ (-781)) NIL)) (-3316 ((|#1| $ |#1|) 24 (|has| $ (-6 -4457)))) (-2412 (($ $ $) NIL (|has| $ (-6 -4457)))) (-1938 (($ $ $) NIL (|has| $ (-6 -4457)))) (-1622 (($ $ (-654 |#1|)) 30)) (-3143 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4457))) (($ $ "left" $) NIL (|has| $ (-6 -4457))) (($ $ "right" $) NIL (|has| $ (-6 -4457)))) (-2183 (($ $ (-654 $)) NIL (|has| $ (-6 -4457)))) (-3426 (($) NIL T CONST)) (-3904 (($ $) 12)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3820 (((-654 $) $) NIL)) (-2278 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-1582 (($ $ |#1| $) 32)) (-2742 (((-112) $ (-781)) NIL)) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2898 ((|#1| $ (-1 |#1| |#1| |#1|)) 40) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45)) (-1627 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46) (($ $ |#1| (-1 (-654 |#1|) |#1| |#1| |#1|)) 49)) (-2449 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-3891 (($ $) 11)) (-3507 (((-654 |#1|) $) NIL)) (-3632 (((-112) $) 13)) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) NIL)) (-1584 (((-112) $) 9)) (-2672 (($) 31)) (-2199 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3867 (((-574) $ $) NIL)) (-2479 (((-112) $) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2321 (((-654 $) $) NIL)) (-4418 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2138 (($ (-781) |#1|) 33)) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-103 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4456) (-6 -4457) (-15 -2138 ($ (-781) |#1|)) (-15 -1622 ($ $ (-654 |#1|))) (-15 -2898 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2898 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1627 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1627 ($ $ |#1| (-1 (-654 |#1|) |#1| |#1| |#1|))))) (-1113)) (T -103)) -((-2138 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *1 (-103 *3)) (-4 *3 (-1113)))) (-1622 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-103 *3)))) (-2898 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1113)))) (-2898 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1113)) (-5 *1 (-103 *3)))) (-1627 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1113)) (-5 *1 (-103 *2)))) (-1627 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-654 *2) *2 *2 *2)) (-4 *2 (-1113)) (-5 *1 (-103 *2))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4456) (-6 -4457) (-15 -2138 ($ (-781) |#1|)) (-15 -1622 ($ $ (-654 |#1|))) (-15 -2898 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2898 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1627 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1627 ($ $ |#1| (-1 (-654 |#1|) |#1| |#1| |#1|))))) -((-1470 ((|#3| |#2| |#2|) 34)) (-3136 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4458 "*"))))) (-1559 ((|#3| |#2| |#2|) 36)) (-2020 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4458 "*")))))) -(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1470 (|#3| |#2| |#2|)) (-15 -1559 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4458 "*"))) (PROGN (-15 -3136 (|#1| |#2| |#2|)) (-15 -2020 (|#1| |#2|))) |%noBranch|)) (-1062) (-1257 |#1|) (-697 |#1| |#4| |#5|) (-382 |#1|) (-382 |#1|)) (T -104)) -((-2020 (*1 *2 *3) (-12 (|has| *2 (-6 (-4458 "*"))) (-4 *5 (-382 *2)) (-4 *6 (-382 *2)) (-4 *2 (-1062)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1257 *2)) (-4 *4 (-697 *2 *5 *6)))) (-3136 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4458 "*"))) (-4 *5 (-382 *2)) (-4 *6 (-382 *2)) (-4 *2 (-1062)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1257 *2)) (-4 *4 (-697 *2 *5 *6)))) (-1559 (*1 *2 *3 *3) (-12 (-4 *4 (-1062)) (-4 *2 (-697 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1257 *4)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)))) (-1470 (*1 *2 *3 *3) (-12 (-4 *4 (-1062)) (-4 *2 (-697 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1257 *4)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4))))) -(-10 -7 (-15 -1470 (|#3| |#2| |#2|)) (-15 -1559 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4458 "*"))) (PROGN (-15 -3136 (|#1| |#2| |#2|)) (-15 -2020 (|#1| |#2|))) |%noBranch|)) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-4343 (((-654 (-1190))) 37)) (-1823 (((-2 (|:| |zeros| (-1170 (-227))) (|:| |ones| (-1170 (-227))) (|:| |singularities| (-1170 (-227)))) (-1190)) 39)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-105) (-13 (-1113) (-10 -7 (-15 -4343 ((-654 (-1190)))) (-15 -1823 ((-2 (|:| |zeros| (-1170 (-227))) (|:| |ones| (-1170 (-227))) (|:| |singularities| (-1170 (-227)))) (-1190))) (-6 -4456)))) (T -105)) -((-4343 (*1 *2) (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-105)))) (-1823 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-2 (|:| |zeros| (-1170 (-227))) (|:| |ones| (-1170 (-227))) (|:| |singularities| (-1170 (-227))))) (-5 *1 (-105))))) -(-13 (-1113) (-10 -7 (-15 -4343 ((-654 (-1190)))) (-15 -1823 ((-2 (|:| |zeros| (-1170 (-227))) (|:| |ones| (-1170 (-227))) (|:| |singularities| (-1170 (-227)))) (-1190))) (-6 -4456))) -((-1599 (($ (-654 |#2|)) 11))) -(((-106 |#1| |#2|) (-10 -8 (-15 -1599 (|#1| (-654 |#2|)))) (-107 |#2|) (-1231)) (T -106)) -NIL -(-10 -8 (-15 -1599 (|#1| (-654 |#2|)))) -((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3034 (((-112) $ (-781)) 8)) (-3426 (($) 7 T CONST)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-2742 (((-112) $ (-781)) 9)) (-1606 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2449 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 36)) (-4203 (((-112) $ (-781)) 10)) (-4136 (((-1172) $) 22 (|has| |#1| (-1113)))) (-2937 ((|#1| $) 40)) (-2798 (($ |#1| $) 41)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-1785 ((|#1| $) 42)) (-2540 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 14)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-1599 (($ (-654 |#1|)) 43)) (-3390 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-107 |#1|) (-141) (-1231)) (T -107)) -((-1599 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-4 *1 (-107 *3)))) (-1785 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1231)))) (-2798 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1231)))) (-2937 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1231))))) -(-13 (-499 |t#1|) (-10 -8 (-6 -4457) (-15 -1599 ($ (-654 |t#1|))) (-15 -1785 (|t#1| $)) (-15 -2798 ($ |t#1| $)) (-15 -2937 (|t#1| $)))) -(((-34) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1113) |has| |#1| (-1113)) ((-1231) . T)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1528 (((-574) $) NIL (|has| (-574) (-315)))) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3972 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-1600 (((-112) $ $) NIL)) (-2846 (((-574) $) NIL (|has| (-574) (-830)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-574) "failed") $) NIL) (((-3 (-1190) "failed") $) NIL (|has| (-574) (-1051 (-1190)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-574) (-1051 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-574) (-1051 (-574))))) (-2206 (((-574) $) NIL) (((-1190) $) NIL (|has| (-574) (-1051 (-1190)))) (((-417 (-574)) $) NIL (|has| (-574) (-1051 (-574)))) (((-574) $) NIL (|has| (-574) (-1051 (-574))))) (-2786 (($ $ $) NIL)) (-2590 (((-699 (-574)) (-1281 $)) NIL (|has| (-574) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1281 $)) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2820 (($) NIL (|has| (-574) (-555)))) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-2257 (((-112) $) NIL)) (-2756 (((-112) $) NIL (|has| (-574) (-830)))) (-3625 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-574) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-574) (-897 (-388))))) (-3199 (((-112) $) NIL)) (-2141 (($ $) NIL)) (-2966 (((-574) $) NIL)) (-2748 (((-3 $ "failed") $) NIL (|has| (-574) (-1165)))) (-1335 (((-112) $) NIL (|has| (-574) (-830)))) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3659 (($ $ $) NIL (|has| (-574) (-860)))) (-4257 (($ $ $) NIL (|has| (-574) (-860)))) (-1777 (($ (-1 (-574) (-574)) $) NIL)) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| (-574) (-1165)) CONST)) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3191 (($ $) NIL (|has| (-574) (-315))) (((-417 (-574)) $) NIL)) (-3595 (((-574) $) NIL (|has| (-574) (-555)))) (-2560 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-2039 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-4220 (((-428 $) $) NIL)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2646 (($ $ (-654 (-574)) (-654 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-574) (-574)) NIL (|has| (-574) (-317 (-574)))) (($ $ (-302 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-302 (-574)))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-1190)) (-654 (-574))) NIL (|has| (-574) (-524 (-1190) (-574)))) (($ $ (-1190) (-574)) NIL (|has| (-574) (-524 (-1190) (-574))))) (-1730 (((-781) $) NIL)) (-2199 (($ $ (-574)) NIL (|has| (-574) (-294 (-574) (-574))))) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-3905 (($ $) NIL (|has| (-574) (-239))) (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $ (-1190)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-4358 (($ $) NIL)) (-2977 (((-574) $) NIL)) (-1836 (((-903 (-574)) $) NIL (|has| (-574) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-574) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-574) (-624 (-546)))) (((-388) $) NIL (|has| (-574) (-1035))) (((-227) $) NIL (|has| (-574) (-1035)))) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-574) (-920))))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) 8) (($ (-574)) NIL) (($ (-1190)) NIL (|has| (-574) (-1051 (-1190)))) (((-417 (-574)) $) NIL) (((-1017 2) $) 10)) (-3298 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| (-574) (-920))) (|has| (-574) (-146))))) (-1364 (((-781)) NIL T CONST)) (-1801 (((-574) $) NIL (|has| (-574) (-555)))) (-3455 (($ (-417 (-574))) 9)) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL)) (-3482 (($ $) NIL (|has| (-574) (-830)))) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-3610 (($ $) NIL (|has| (-574) (-239))) (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $ (-1190)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-3042 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3018 (((-112) $ $) NIL (|has| (-574) (-860)))) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3007 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3108 (($ $ $) NIL) (($ (-574) (-574)) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-574) $) NIL) (($ $ (-574)) NIL))) -(((-108) (-13 (-1005 (-574)) (-623 (-417 (-574))) (-623 (-1017 2)) (-10 -8 (-15 -3191 ((-417 (-574)) $)) (-15 -3455 ($ (-417 (-574))))))) (T -108)) -((-3191 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-108)))) (-3455 (*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-108))))) -(-13 (-1005 (-574)) (-623 (-417 (-574))) (-623 (-1017 2)) (-10 -8 (-15 -3191 ((-417 (-574)) $)) (-15 -3455 ($ (-417 (-574)))))) -((-2791 (((-654 (-976)) $) 13)) (-2032 (((-516) $) 9)) (-2943 (((-872) $) 20)) (-1427 (($ (-516) (-654 (-976))) 15))) -(((-109) (-13 (-623 (-872)) (-10 -8 (-15 -2032 ((-516) $)) (-15 -2791 ((-654 (-976)) $)) (-15 -1427 ($ (-516) (-654 (-976))))))) (T -109)) -((-2032 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-109)))) (-2791 (*1 *2 *1) (-12 (-5 *2 (-654 (-976))) (-5 *1 (-109)))) (-1427 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-654 (-976))) (-5 *1 (-109))))) -(-13 (-623 (-872)) (-10 -8 (-15 -2032 ((-516) $)) (-15 -2791 ((-654 (-976)) $)) (-15 -1427 ($ (-516) (-654 (-976)))))) -((-2849 (((-112) $ $) NIL)) (-2877 (($ $) NIL)) (-2109 (($ $ $) NIL)) (-3714 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-1357 (((-112) $) NIL (|has| (-112) (-860))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3642 (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| (-112) (-860)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4457)))) (-2771 (($ $) NIL (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3034 (((-112) $ (-781)) NIL)) (-3143 (((-112) $ (-1248 (-574)) (-112)) NIL (|has| $ (-6 -4457))) (((-112) $ (-574) (-112)) NIL (|has| $ (-6 -4457)))) (-2165 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4456)))) (-3426 (($) NIL T CONST)) (-2627 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-112) (-1113))))) (-3335 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4456))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-112) (-1113))))) (-2868 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4456)) (|has| (-112) (-1113))))) (-2458 (((-112) $ (-574) (-112)) NIL (|has| $ (-6 -4457)))) (-2385 (((-112) $ (-574)) NIL)) (-1441 (((-574) (-112) $ (-574)) NIL (|has| (-112) (-1113))) (((-574) (-112) $) NIL (|has| (-112) (-1113))) (((-574) (-1 (-112) (-112)) $) NIL)) (-1864 (((-654 (-112)) $) NIL (|has| $ (-6 -4456)))) (-2098 (($ $ $) NIL)) (-2076 (($ $) NIL)) (-3946 (($ $ $) NIL)) (-3790 (($ (-781) (-112)) 10)) (-2855 (($ $ $) NIL)) (-2742 (((-112) $ (-781)) NIL)) (-3618 (((-574) $) NIL (|has| (-574) (-860)))) (-3659 (($ $ $) NIL)) (-4430 (($ $ $) NIL (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1606 (((-654 (-112)) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-112) (-1113))))) (-2702 (((-574) $) NIL (|has| (-574) (-860)))) (-4257 (($ $ $) NIL)) (-2449 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL)) (-1594 (($ $ $ (-574)) NIL) (($ (-112) $ (-574)) NIL)) (-4308 (((-654 (-574)) $) NIL)) (-3336 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL)) (-2915 (((-112) $) NIL (|has| (-574) (-860)))) (-1549 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-1942 (($ $ (-112)) NIL (|has| $ (-6 -4457)))) (-2540 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-112)) (-654 (-112))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1113)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1113)))) (($ $ (-302 (-112))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1113)))) (($ $ (-654 (-302 (-112)))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-112) (-1113))))) (-4371 (((-654 (-112)) $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 (($ $ (-1248 (-574))) NIL) (((-112) $ (-574)) NIL) (((-112) $ (-574) (-112)) NIL)) (-2840 (($ $ (-1248 (-574))) NIL) (($ $ (-574)) NIL)) (-3975 (((-781) (-112) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-112) (-1113)))) (((-781) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4456)))) (-3506 (($ $ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3167 (($ $) NIL)) (-1836 (((-546) $) NIL (|has| (-112) (-624 (-546))))) (-2956 (($ (-654 (-112))) NIL)) (-4157 (($ (-654 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2943 (((-872) $) NIL)) (-3837 (($ (-781) (-112)) 11)) (-3284 (((-112) $ $) NIL)) (-3390 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4456)))) (-2087 (($ $ $) NIL)) (-2925 (($ $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) NIL)) (-2912 (($ $ $) NIL)) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-110) (-13 (-124) (-10 -8 (-15 -3837 ($ (-781) (-112)))))) (T -110)) -((-3837 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *3 (-112)) (-5 *1 (-110))))) -(-13 (-124) (-10 -8 (-15 -3837 ($ (-781) (-112))))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31))) -(((-111 |#1| |#2|) (-141) (-1062) (-1062)) (T -111)) -NIL -(-13 (-658 |t#1|) (-1069 |t#2|) (-10 -7 (-6 -4451) (-6 -4450))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-1064 |#2|) . T) ((-1069 |#2|) . T) ((-1113) . T)) -((-2849 (((-112) $ $) NIL)) (-2877 (($ $) 10)) (-2109 (($ $ $) 15)) (-1562 (($) 7 T CONST)) (-4162 (($ $) 6)) (-1487 (((-781)) 24)) (-2820 (($) 32)) (-2098 (($ $ $) 13)) (-2076 (($ $) 9)) (-3946 (($ $ $) 16)) (-2855 (($ $ $) 17)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-4257 (($ $ $) NIL) (($) NIL T CONST)) (-4115 (((-932) $) 30)) (-4136 (((-1172) $) NIL)) (-2576 (($ (-932)) 28)) (-1721 (($ $ $) 20)) (-3966 (((-1133) $) NIL)) (-2883 (($) 8 T CONST)) (-3953 (($ $ $) 21)) (-1836 (((-546) $) 34)) (-2943 (((-872) $) 36)) (-3284 (((-112) $ $) NIL)) (-2087 (($ $ $) 11)) (-2925 (($ $ $) 14)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 19)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) 22)) (-2912 (($ $ $) 12))) -(((-112) (-13 (-854) (-671) (-980) (-624 (-546)) (-10 -8 (-15 -2109 ($ $ $)) (-15 -2855 ($ $ $)) (-15 -3946 ($ $ $)) (-15 -4162 ($ $))))) (T -112)) -((-2109 (*1 *1 *1 *1) (-5 *1 (-112))) (-2855 (*1 *1 *1 *1) (-5 *1 (-112))) (-3946 (*1 *1 *1 *1) (-5 *1 (-112))) (-4162 (*1 *1 *1) (-5 *1 (-112)))) -(-13 (-854) (-671) (-980) (-624 (-546)) (-10 -8 (-15 -2109 ($ $ $)) (-15 -2855 ($ $ $)) (-15 -3946 ($ $ $)) (-15 -4162 ($ $)))) -((-2098 (($ $ $) 6)) (-2076 (($ $) 8)) (-2087 (($ $ $) 7))) +((-2848 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2981 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) +(-13 (-10 -8 (-15 -2981 ((-112) $ $)) (-15 -2848 ((-112) $ $)))) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3082 ((|#1| $) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-2367 ((|#1| $ |#1|) 24 (|has| $ (-6 -4456)))) (-2357 (($ $ $) NIL (|has| $ (-6 -4456)))) (-3837 (($ $ $) NIL (|has| $ (-6 -4456)))) (-4216 (($ $ (-653 |#1|)) 30)) (-3142 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4456))) (($ $ "left" $) NIL (|has| $ (-6 -4456))) (($ $ "right" $) NIL (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) NIL (|has| $ (-6 -4456)))) (-2579 (($) NIL T CONST)) (-3903 (($ $) 12)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) NIL)) (-3208 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1581 (($ $ |#1| $) 32)) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2951 ((|#1| $ (-1 |#1| |#1| |#1|)) 40) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45)) (-3639 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46) (($ $ |#1| (-1 (-653 |#1|) |#1| |#1| |#1|)) 49)) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3890 (($ $) 11)) (-3505 (((-653 |#1|) $) NIL)) (-2880 (((-112) $) 13)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) 9)) (-3508 (($) 31)) (-2198 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1501 (((-573) $ $) NIL)) (-1628 (((-112) $) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) NIL)) (-1716 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2268 (($ (-780) |#1|) 33)) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-103 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4455) (-6 -4456) (-15 -2268 ($ (-780) |#1|)) (-15 -4216 ($ $ (-653 |#1|))) (-15 -2951 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2951 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3639 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3639 ($ $ |#1| (-1 (-653 |#1|) |#1| |#1| |#1|))))) (-1112)) (T -103)) +((-2268 (*1 *1 *2 *3) (-12 (-5 *2 (-780)) (-5 *1 (-103 *3)) (-4 *3 (-1112)))) (-4216 (*1 *1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-103 *3)))) (-2951 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1112)))) (-2951 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1112)) (-5 *1 (-103 *3)))) (-3639 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1112)) (-5 *1 (-103 *2)))) (-3639 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-653 *2) *2 *2 *2)) (-4 *2 (-1112)) (-5 *1 (-103 *2))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4455) (-6 -4456) (-15 -2268 ($ (-780) |#1|)) (-15 -4216 ($ $ (-653 |#1|))) (-15 -2951 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2951 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3639 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3639 ($ $ |#1| (-1 (-653 |#1|) |#1| |#1| |#1|))))) +((-1639 ((|#3| |#2| |#2|) 34)) (-2740 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4457 "*"))))) (-3660 ((|#3| |#2| |#2|) 36)) (-4399 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4457 "*")))))) +(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1639 (|#3| |#2| |#2|)) (-15 -3660 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4457 "*"))) (PROGN (-15 -2740 (|#1| |#2| |#2|)) (-15 -4399 (|#1| |#2|))) |%noBranch|)) (-1061) (-1256 |#1|) (-696 |#1| |#4| |#5|) (-381 |#1|) (-381 |#1|)) (T -104)) +((-4399 (*1 *2 *3) (-12 (|has| *2 (-6 (-4457 "*"))) (-4 *5 (-381 *2)) (-4 *6 (-381 *2)) (-4 *2 (-1061)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1256 *2)) (-4 *4 (-696 *2 *5 *6)))) (-2740 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4457 "*"))) (-4 *5 (-381 *2)) (-4 *6 (-381 *2)) (-4 *2 (-1061)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1256 *2)) (-4 *4 (-696 *2 *5 *6)))) (-3660 (*1 *2 *3 *3) (-12 (-4 *4 (-1061)) (-4 *2 (-696 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1256 *4)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)))) (-1639 (*1 *2 *3 *3) (-12 (-4 *4 (-1061)) (-4 *2 (-696 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1256 *4)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4))))) +(-10 -7 (-15 -1639 (|#3| |#2| |#2|)) (-15 -3660 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4457 "*"))) (PROGN (-15 -2740 (|#1| |#2| |#2|)) (-15 -4399 (|#1| |#2|))) |%noBranch|)) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3693 (((-653 (-1189))) 37)) (-2968 (((-2 (|:| |zeros| (-1169 (-227))) (|:| |ones| (-1169 (-227))) (|:| |singularities| (-1169 (-227)))) (-1189)) 39)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-105) (-13 (-1112) (-10 -7 (-15 -3693 ((-653 (-1189)))) (-15 -2968 ((-2 (|:| |zeros| (-1169 (-227))) (|:| |ones| (-1169 (-227))) (|:| |singularities| (-1169 (-227)))) (-1189))) (-6 -4455)))) (T -105)) +((-3693 (*1 *2) (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-105)))) (-2968 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-2 (|:| |zeros| (-1169 (-227))) (|:| |ones| (-1169 (-227))) (|:| |singularities| (-1169 (-227))))) (-5 *1 (-105))))) +(-13 (-1112) (-10 -7 (-15 -3693 ((-653 (-1189)))) (-15 -2968 ((-2 (|:| |zeros| (-1169 (-227))) (|:| |ones| (-1169 (-227))) (|:| |singularities| (-1169 (-227)))) (-1189))) (-6 -4455))) +((-2679 (($ (-653 |#2|)) 11))) +(((-106 |#1| |#2|) (-10 -8 (-15 -2679 (|#1| (-653 |#2|)))) (-107 |#2|) (-1230)) (T -106)) +NIL +(-10 -8 (-15 -2679 (|#1| (-653 |#2|)))) +((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3450 (((-112) $ (-780)) 8)) (-2579 (($) 7 T CONST)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-2487 ((|#1| $) 40)) (-3181 (($ |#1| $) 41)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-3815 ((|#1| $) 42)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-2679 (($ (-653 |#1|)) 43)) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-107 |#1|) (-141) (-1230)) (T -107)) +((-2679 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-4 *1 (-107 *3)))) (-3815 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1230)))) (-3181 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1230)))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1230))))) +(-13 (-498 |t#1|) (-10 -8 (-6 -4456) (-15 -2679 ($ (-653 |t#1|))) (-15 -3815 (|t#1| $)) (-15 -3181 ($ |t#1| $)) (-15 -2487 (|t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3770 (((-573) $) NIL (|has| (-573) (-314)))) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-2800 (((-112) $ $) NIL)) (-1983 (((-573) $) NIL (|has| (-573) (-829)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL) (((-3 (-1189) "failed") $) NIL (|has| (-573) (-1050 (-1189)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| (-573) (-1050 (-573)))) (((-3 (-573) "failed") $) NIL (|has| (-573) (-1050 (-573))))) (-2205 (((-573) $) NIL) (((-1189) $) NIL (|has| (-573) (-1050 (-1189)))) (((-416 (-573)) $) NIL (|has| (-573) (-1050 (-573)))) (((-573) $) NIL (|has| (-573) (-1050 (-573))))) (-2784 (($ $ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| (-573) (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| (-573) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| (-573) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL) (((-698 (-573)) (-698 $)) NIL) (((-698 (-573)) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) NIL (|has| (-573) (-554)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-4152 (((-112) $) NIL (|has| (-573) (-829)))) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (|has| (-573) (-896 (-573)))) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (|has| (-573) (-896 (-387))))) (-1959 (((-112) $) NIL)) (-3041 (($ $) NIL)) (-2965 (((-573) $) NIL)) (-1470 (((-3 $ "failed") $) NIL (|has| (-573) (-1164)))) (-3339 (((-112) $) NIL (|has| (-573) (-829)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3659 (($ $ $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| (-573) (-859)))) (-1776 (($ (-1 (-573) (-573)) $) NIL)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| (-573) (-1164)) CONST)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-2408 (($ $) NIL (|has| (-573) (-314))) (((-416 (-573)) $) NIL)) (-3733 (((-573) $) NIL (|has| (-573) (-554)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2645 (($ $ (-653 (-573)) (-653 (-573))) NIL (|has| (-573) (-316 (-573)))) (($ $ (-573) (-573)) NIL (|has| (-573) (-316 (-573)))) (($ $ (-301 (-573))) NIL (|has| (-573) (-316 (-573)))) (($ $ (-653 (-301 (-573)))) NIL (|has| (-573) (-316 (-573)))) (($ $ (-653 (-1189)) (-653 (-573))) NIL (|has| (-573) (-523 (-1189) (-573)))) (($ $ (-1189) (-573)) NIL (|has| (-573) (-523 (-1189) (-573))))) (-2163 (((-780) $) NIL)) (-2198 (($ $ (-573)) NIL (|has| (-573) (-293 (-573) (-573))))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3904 (($ $ (-780)) NIL (|has| (-573) (-238))) (($ $) NIL (|has| (-573) (-238))) (($ $ (-1189)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1 (-573) (-573)) (-780)) NIL) (($ $ (-1 (-573) (-573))) NIL)) (-2662 (($ $) NIL)) (-2975 (((-573) $) NIL)) (-1835 (((-902 (-573)) $) NIL (|has| (-573) (-623 (-902 (-573))))) (((-902 (-387)) $) NIL (|has| (-573) (-623 (-902 (-387))))) (((-545) $) NIL (|has| (-573) (-623 (-545)))) (((-387) $) NIL (|has| (-573) (-1034))) (((-227) $) NIL (|has| (-573) (-1034)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| (-573) (-919))))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) 8) (($ (-573)) NIL) (($ (-1189)) NIL (|has| (-573) (-1050 (-1189)))) (((-416 (-573)) $) NIL) (((-1016 2) $) 10)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| (-573) (-919))) (|has| (-573) (-146))))) (-1545 (((-780)) NIL T CONST)) (-2437 (((-573) $) NIL (|has| (-573) (-554)))) (-1874 (($ (-416 (-573))) 9)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-1660 (($ $) NIL (|has| (-573) (-829)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-780)) NIL (|has| (-573) (-238))) (($ $) NIL (|has| (-573) (-238))) (($ $ (-1189)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1 (-573) (-573)) (-780)) NIL) (($ $ (-1 (-573) (-573))) NIL)) (-3040 (((-112) $ $) NIL (|has| (-573) (-859)))) (-3015 (((-112) $ $) NIL (|has| (-573) (-859)))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (|has| (-573) (-859)))) (-3005 (((-112) $ $) NIL (|has| (-573) (-859)))) (-3103 (($ $ $) NIL) (($ (-573) (-573)) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ (-573) $) NIL) (($ $ (-573)) NIL))) +(((-108) (-13 (-1004 (-573)) (-622 (-416 (-573))) (-622 (-1016 2)) (-10 -8 (-15 -2408 ((-416 (-573)) $)) (-15 -1874 ($ (-416 (-573))))))) (T -108)) +((-2408 (*1 *2 *1) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-108)))) (-1874 (*1 *1 *2) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-108))))) +(-13 (-1004 (-573)) (-622 (-416 (-573))) (-622 (-1016 2)) (-10 -8 (-15 -2408 ((-416 (-573)) $)) (-15 -1874 ($ (-416 (-573)))))) +((-2793 (((-653 (-975)) $) 13)) (-2031 (((-515) $) 9)) (-2942 (((-871) $) 20)) (-2889 (($ (-515) (-653 (-975))) 15))) +(((-109) (-13 (-622 (-871)) (-10 -8 (-15 -2031 ((-515) $)) (-15 -2793 ((-653 (-975)) $)) (-15 -2889 ($ (-515) (-653 (-975))))))) (T -109)) +((-2031 (*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-109)))) (-2793 (*1 *2 *1) (-12 (-5 *2 (-653 (-975))) (-5 *1 (-109)))) (-2889 (*1 *1 *2 *3) (-12 (-5 *2 (-515)) (-5 *3 (-653 (-975))) (-5 *1 (-109))))) +(-13 (-622 (-871)) (-10 -8 (-15 -2031 ((-515) $)) (-15 -2793 ((-653 (-975)) $)) (-15 -2889 ($ (-515) (-653 (-975)))))) +((-2848 (((-112) $ $) NIL)) (-2876 (($ $) NIL)) (-2108 (($ $ $) NIL)) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-1473 (((-112) $) NIL (|has| (-112) (-859))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2748 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-112) (-859)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4456)))) (-2770 (($ $) NIL (|has| (-112) (-859))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-3142 (((-112) $ (-1247 (-573)) (-112)) NIL (|has| $ (-6 -4456))) (((-112) $ (-573) (-112)) NIL (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-112) (-1112))))) (-3334 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4455))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-112) (-1112))))) (-2867 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4455)) (|has| (-112) (-1112))))) (-2457 (((-112) $ (-573) (-112)) NIL (|has| $ (-6 -4456)))) (-2384 (((-112) $ (-573)) NIL)) (-1440 (((-573) (-112) $ (-573)) NIL (|has| (-112) (-1112))) (((-573) (-112) $) NIL (|has| (-112) (-1112))) (((-573) (-1 (-112) (-112)) $) NIL)) (-1863 (((-653 (-112)) $) NIL (|has| $ (-6 -4455)))) (-2097 (($ $ $) NIL)) (-2075 (($ $) NIL)) (-3695 (($ $ $) NIL)) (-3789 (($ (-780) (-112)) 10)) (-1419 (($ $ $) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) NIL (|has| (-573) (-859)))) (-3659 (($ $ $) NIL)) (-1480 (($ $ $) NIL (|has| (-112) (-859))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3214 (((-653 (-112)) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-112) (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL)) (-2446 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-1593 (($ $ $ (-573)) NIL) (($ (-112) $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL)) (-2914 (((-112) $) NIL (|has| (-573) (-859)))) (-2036 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3112 (($ $ (-112)) NIL (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-112)) (-653 (-112))) NIL (-12 (|has| (-112) (-316 (-112))) (|has| (-112) (-1112)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-316 (-112))) (|has| (-112) (-1112)))) (($ $ (-301 (-112))) NIL (-12 (|has| (-112) (-316 (-112))) (|has| (-112) (-1112)))) (($ $ (-653 (-301 (-112)))) NIL (-12 (|has| (-112) (-316 (-112))) (|has| (-112) (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-112) (-1112))))) (-1535 (((-653 (-112)) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 (($ $ (-1247 (-573))) NIL) (((-112) $ (-573)) NIL) (((-112) $ (-573) (-112)) NIL)) (-2836 (($ $ (-1247 (-573))) NIL) (($ $ (-573)) NIL)) (-3974 (((-780) (-112) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-112) (-1112)))) (((-780) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4455)))) (-3919 (($ $ $ (-573)) NIL (|has| $ (-6 -4456)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-112) (-623 (-545))))) (-2955 (($ (-653 (-112))) NIL)) (-4156 (($ (-653 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2942 (((-871) $) NIL)) (-2628 (($ (-780) (-112)) 11)) (-3507 (((-112) $ $) NIL)) (-1646 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4455)))) (-2086 (($ $ $) NIL)) (-2924 (($ $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-2909 (($ $ $) NIL)) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-110) (-13 (-124) (-10 -8 (-15 -2628 ($ (-780) (-112)))))) (T -110)) +((-2628 (*1 *1 *2 *3) (-12 (-5 *2 (-780)) (-5 *3 (-112)) (-5 *1 (-110))))) +(-13 (-124) (-10 -8 (-15 -2628 ($ (-780) (-112))))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31))) +(((-111 |#1| |#2|) (-141) (-1061) (-1061)) (T -111)) +NIL +(-13 (-657 |t#1|) (-1068 |t#2|) (-10 -7 (-6 -4450) (-6 -4449))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-657 |#1|) . T) ((-1063 |#2|) . T) ((-1068 |#2|) . T) ((-1112) . T)) +((-2848 (((-112) $ $) NIL)) (-2876 (($ $) 10)) (-2108 (($ $ $) 15)) (-1561 (($) 7 T CONST)) (-4161 (($ $) 6)) (-1486 (((-780)) 24)) (-2819 (($) 32)) (-2097 (($ $ $) 13)) (-2075 (($ $) 9)) (-3695 (($ $ $) 16)) (-1419 (($ $ $) 17)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-3751 (($ $ $) NIL) (($) NIL T CONST)) (-3589 (((-931) $) 30)) (-3180 (((-1171) $) NIL)) (-2575 (($ (-931)) 28)) (-2546 (($ $ $) 20)) (-3965 (((-1132) $) NIL)) (-2883 (($) 8 T CONST)) (-3391 (($ $ $) 21)) (-1835 (((-545) $) 34)) (-2942 (((-871) $) 36)) (-3507 (((-112) $ $) NIL)) (-2086 (($ $ $) 11)) (-2924 (($ $ $) 14)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 19)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 22)) (-2909 (($ $ $) 12))) +(((-112) (-13 (-853) (-670) (-979) (-623 (-545)) (-10 -8 (-15 -2108 ($ $ $)) (-15 -1419 ($ $ $)) (-15 -3695 ($ $ $)) (-15 -4161 ($ $))))) (T -112)) +((-2108 (*1 *1 *1 *1) (-5 *1 (-112))) (-1419 (*1 *1 *1 *1) (-5 *1 (-112))) (-3695 (*1 *1 *1 *1) (-5 *1 (-112))) (-4161 (*1 *1 *1) (-5 *1 (-112)))) +(-13 (-853) (-670) (-979) (-623 (-545)) (-10 -8 (-15 -2108 ($ $ $)) (-15 -1419 ($ $ $)) (-15 -3695 ($ $ $)) (-15 -4161 ($ $)))) +((-2097 (($ $ $) 6)) (-2075 (($ $) 8)) (-2086 (($ $ $) 7))) (((-113) (-141)) (T -113)) -((-2076 (*1 *1 *1) (-4 *1 (-113))) (-2087 (*1 *1 *1 *1) (-4 *1 (-113))) (-2098 (*1 *1 *1 *1) (-4 *1 (-113)))) -(-13 (-1231) (-10 -8 (-15 -2076 ($ $)) (-15 -2087 ($ $ $)) (-15 -2098 ($ $ $)))) -(((-1231) . T)) -((-3811 (((-3 (-1 |#1| (-654 |#1|)) "failed") (-115)) 23) (((-115) (-115) (-1 |#1| |#1|)) 13) (((-115) (-115) (-1 |#1| (-654 |#1|))) 11) (((-3 |#1| "failed") (-115) (-654 |#1|)) 25)) (-3697 (((-3 (-654 (-1 |#1| (-654 |#1|))) "failed") (-115)) 29) (((-115) (-115) (-1 |#1| |#1|)) 33) (((-115) (-115) (-654 (-1 |#1| (-654 |#1|)))) 30)) (-2511 (((-115) |#1|) 63)) (-3654 (((-3 |#1| "failed") (-115)) 58))) -(((-114 |#1|) (-10 -7 (-15 -3811 ((-3 |#1| "failed") (-115) (-654 |#1|))) (-15 -3811 ((-115) (-115) (-1 |#1| (-654 |#1|)))) (-15 -3811 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3811 ((-3 (-1 |#1| (-654 |#1|)) "failed") (-115))) (-15 -3697 ((-115) (-115) (-654 (-1 |#1| (-654 |#1|))))) (-15 -3697 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3697 ((-3 (-654 (-1 |#1| (-654 |#1|))) "failed") (-115))) (-15 -2511 ((-115) |#1|)) (-15 -3654 ((-3 |#1| "failed") (-115)))) (-1113)) (T -114)) -((-3654 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1113)))) (-2511 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1113)))) (-3697 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-654 (-1 *4 (-654 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1113)))) (-3697 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1113)) (-5 *1 (-114 *4)))) (-3697 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 (-1 *4 (-654 *4)))) (-4 *4 (-1113)) (-5 *1 (-114 *4)))) (-3811 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-654 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1113)))) (-3811 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1113)) (-5 *1 (-114 *4)))) (-3811 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-654 *4))) (-4 *4 (-1113)) (-5 *1 (-114 *4)))) (-3811 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-654 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1113))))) -(-10 -7 (-15 -3811 ((-3 |#1| "failed") (-115) (-654 |#1|))) (-15 -3811 ((-115) (-115) (-1 |#1| (-654 |#1|)))) (-15 -3811 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3811 ((-3 (-1 |#1| (-654 |#1|)) "failed") (-115))) (-15 -3697 ((-115) (-115) (-654 (-1 |#1| (-654 |#1|))))) (-15 -3697 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3697 ((-3 (-654 (-1 |#1| (-654 |#1|))) "failed") (-115))) (-15 -2511 ((-115) |#1|)) (-15 -3654 ((-3 |#1| "failed") (-115)))) -((-2849 (((-112) $ $) NIL)) (-1336 (((-781) $) 91) (($ $ (-781)) 37)) (-4119 (((-112) $) 41)) (-2164 (($ $ (-1172) (-784)) 58) (($ $ (-516) (-784)) 33)) (-2640 (($ $ (-45 (-1172) (-784))) 16)) (-3118 (((-3 (-784) "failed") $ (-1172)) 27) (((-701 (-784)) $ (-516)) 32)) (-2791 (((-45 (-1172) (-784)) $) 15)) (-4175 (($ (-1190)) 20) (($ (-1190) (-781)) 23) (($ (-1190) (-55)) 24)) (-2282 (((-112) $) 39)) (-1937 (((-112) $) 43)) (-2032 (((-1190) $) 8)) (-3659 (($ $ $) NIL)) (-4257 (($ $ $) NIL)) (-4136 (((-1172) $) NIL)) (-4103 (((-112) $ (-1190)) 11)) (-1452 (($ $ (-1 (-546) (-654 (-546)))) 64) (((-3 (-1 (-546) (-654 (-546))) "failed") $) 71)) (-3966 (((-1133) $) NIL)) (-1719 (((-112) $ (-516)) 36)) (-4138 (($ $ (-1 (-112) $ $)) 45)) (-1403 (((-3 (-1 (-872) (-654 (-872))) "failed") $) 69) (($ $ (-1 (-872) (-654 (-872)))) 51) (($ $ (-1 (-872) (-872))) 53)) (-3918 (($ $ (-1172)) 55) (($ $ (-516)) 56)) (-3167 (($ $) 77)) (-2293 (($ $ (-1 (-112) $ $)) 46)) (-2943 (((-872) $) 60)) (-3284 (((-112) $ $) NIL)) (-2113 (($ $ (-516)) 34)) (-4183 (((-55) $) 72)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 89)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) 103))) -(((-115) (-13 (-860) (-845 (-1190)) (-10 -8 (-15 -2791 ((-45 (-1172) (-784)) $)) (-15 -3167 ($ $)) (-15 -4175 ($ (-1190))) (-15 -4175 ($ (-1190) (-781))) (-15 -4175 ($ (-1190) (-55))) (-15 -2282 ((-112) $)) (-15 -4119 ((-112) $)) (-15 -1937 ((-112) $)) (-15 -1336 ((-781) $)) (-15 -1336 ($ $ (-781))) (-15 -4138 ($ $ (-1 (-112) $ $))) (-15 -2293 ($ $ (-1 (-112) $ $))) (-15 -1403 ((-3 (-1 (-872) (-654 (-872))) "failed") $)) (-15 -1403 ($ $ (-1 (-872) (-654 (-872))))) (-15 -1403 ($ $ (-1 (-872) (-872)))) (-15 -1452 ($ $ (-1 (-546) (-654 (-546))))) (-15 -1452 ((-3 (-1 (-546) (-654 (-546))) "failed") $)) (-15 -1719 ((-112) $ (-516))) (-15 -2113 ($ $ (-516))) (-15 -3918 ($ $ (-1172))) (-15 -3918 ($ $ (-516))) (-15 -3118 ((-3 (-784) "failed") $ (-1172))) (-15 -3118 ((-701 (-784)) $ (-516))) (-15 -2164 ($ $ (-1172) (-784))) (-15 -2164 ($ $ (-516) (-784))) (-15 -2640 ($ $ (-45 (-1172) (-784))))))) (T -115)) -((-2791 (*1 *2 *1) (-12 (-5 *2 (-45 (-1172) (-784))) (-5 *1 (-115)))) (-3167 (*1 *1 *1) (-5 *1 (-115))) (-4175 (*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-115)))) (-4175 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-781)) (-5 *1 (-115)))) (-4175 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-55)) (-5 *1 (-115)))) (-2282 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-4119 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-1937 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-1336 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-115)))) (-1336 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-115)))) (-4138 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-2293 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-1403 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-872) (-654 (-872)))) (-5 *1 (-115)))) (-1403 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-872) (-654 (-872)))) (-5 *1 (-115)))) (-1403 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-872) (-872))) (-5 *1 (-115)))) (-1452 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-546) (-654 (-546)))) (-5 *1 (-115)))) (-1452 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-546) (-654 (-546)))) (-5 *1 (-115)))) (-1719 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *2 (-112)) (-5 *1 (-115)))) (-2113 (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-115)))) (-3918 (*1 *1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-115)))) (-3918 (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-115)))) (-3118 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1172)) (-5 *2 (-784)) (-5 *1 (-115)))) (-3118 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-784))) (-5 *1 (-115)))) (-2164 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1172)) (-5 *3 (-784)) (-5 *1 (-115)))) (-2164 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-784)) (-5 *1 (-115)))) (-2640 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1172) (-784))) (-5 *1 (-115))))) -(-13 (-860) (-845 (-1190)) (-10 -8 (-15 -2791 ((-45 (-1172) (-784)) $)) (-15 -3167 ($ $)) (-15 -4175 ($ (-1190))) (-15 -4175 ($ (-1190) (-781))) (-15 -4175 ($ (-1190) (-55))) (-15 -2282 ((-112) $)) (-15 -4119 ((-112) $)) (-15 -1937 ((-112) $)) (-15 -1336 ((-781) $)) (-15 -1336 ($ $ (-781))) (-15 -4138 ($ $ (-1 (-112) $ $))) (-15 -2293 ($ $ (-1 (-112) $ $))) (-15 -1403 ((-3 (-1 (-872) (-654 (-872))) "failed") $)) (-15 -1403 ($ $ (-1 (-872) (-654 (-872))))) (-15 -1403 ($ $ (-1 (-872) (-872)))) (-15 -1452 ($ $ (-1 (-546) (-654 (-546))))) (-15 -1452 ((-3 (-1 (-546) (-654 (-546))) "failed") $)) (-15 -1719 ((-112) $ (-516))) (-15 -2113 ($ $ (-516))) (-15 -3918 ($ $ (-1172))) (-15 -3918 ($ $ (-516))) (-15 -3118 ((-3 (-784) "failed") $ (-1172))) (-15 -3118 ((-701 (-784)) $ (-516))) (-15 -2164 ($ $ (-1172) (-784))) (-15 -2164 ($ $ (-516) (-784))) (-15 -2640 ($ $ (-45 (-1172) (-784)))))) -((-2311 (((-574) |#2|) 41))) -(((-116 |#1| |#2|) (-10 -7 (-15 -2311 ((-574) |#2|))) (-13 (-372) (-1051 (-417 (-574)))) (-1257 |#1|)) (T -116)) -((-2311 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-1051 (-417 *2)))) (-5 *2 (-574)) (-5 *1 (-116 *4 *3)) (-4 *3 (-1257 *4))))) -(-10 -7 (-15 -2311 ((-574) |#2|))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-4229 (($ $ (-574)) NIL)) (-1600 (((-112) $ $) NIL)) (-3426 (($) NIL T CONST)) (-1497 (($ (-1186 (-574)) (-574)) NIL)) (-2786 (($ $ $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-3055 (($ $) NIL)) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3884 (((-781) $) NIL)) (-3199 (((-112) $) NIL)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2089 (((-574)) NIL)) (-2370 (((-574) $) NIL)) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2533 (($ $ (-574)) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1730 (((-781) $) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-2173 (((-1170 (-574)) $) NIL)) (-1651 (($ $) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL)) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL)) (-3551 (((-574) $ (-574)) NIL)) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL))) -(((-117 |#1|) (-879 |#1|) (-574)) (T -117)) -NIL -(-879 |#1|) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1528 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-315)))) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3972 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-117 |#1|) (-920)))) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| (-117 |#1|) (-920)))) (-1600 (((-112) $ $) NIL)) (-2846 (((-574) $) NIL (|has| (-117 |#1|) (-830)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-117 |#1|) "failed") $) NIL) (((-3 (-1190) "failed") $) NIL (|has| (-117 |#1|) (-1051 (-1190)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-117 |#1|) (-1051 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-117 |#1|) (-1051 (-574))))) (-2206 (((-117 |#1|) $) NIL) (((-1190) $) NIL (|has| (-117 |#1|) (-1051 (-1190)))) (((-417 (-574)) $) NIL (|has| (-117 |#1|) (-1051 (-574)))) (((-574) $) NIL (|has| (-117 |#1|) (-1051 (-574))))) (-3327 (($ $) NIL) (($ (-574) $) NIL)) (-2786 (($ $ $) NIL)) (-2590 (((-699 (-574)) (-1281 $)) NIL (|has| (-117 |#1|) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-117 |#1|) (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| (-117 |#1|) (-649 (-574)))) (((-2 (|:| -4340 (-699 (-117 |#1|))) (|:| |vec| (-1281 (-117 |#1|)))) (-699 $) (-1281 $)) NIL) (((-699 (-117 |#1|)) (-699 $)) NIL) (((-699 (-117 |#1|)) (-1281 $)) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2820 (($) NIL (|has| (-117 |#1|) (-555)))) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-2257 (((-112) $) NIL)) (-2756 (((-112) $) NIL (|has| (-117 |#1|) (-830)))) (-3625 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-117 |#1|) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-117 |#1|) (-897 (-388))))) (-3199 (((-112) $) NIL)) (-2141 (($ $) NIL)) (-2966 (((-117 |#1|) $) NIL)) (-2748 (((-3 $ "failed") $) NIL (|has| (-117 |#1|) (-1165)))) (-1335 (((-112) $) NIL (|has| (-117 |#1|) (-830)))) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3659 (($ $ $) NIL (|has| (-117 |#1|) (-860)))) (-4257 (($ $ $) NIL (|has| (-117 |#1|) (-860)))) (-1777 (($ (-1 (-117 |#1|) (-117 |#1|)) $) NIL)) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| (-117 |#1|) (-1165)) CONST)) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3191 (($ $) NIL (|has| (-117 |#1|) (-315)))) (-3595 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-555)))) (-2560 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-117 |#1|) (-920)))) (-2039 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-117 |#1|) (-920)))) (-4220 (((-428 $) $) NIL)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2646 (($ $ (-654 (-117 |#1|)) (-654 (-117 |#1|))) NIL (|has| (-117 |#1|) (-317 (-117 |#1|)))) (($ $ (-117 |#1|) (-117 |#1|)) NIL (|has| (-117 |#1|) (-317 (-117 |#1|)))) (($ $ (-302 (-117 |#1|))) NIL (|has| (-117 |#1|) (-317 (-117 |#1|)))) (($ $ (-654 (-302 (-117 |#1|)))) NIL (|has| (-117 |#1|) (-317 (-117 |#1|)))) (($ $ (-654 (-1190)) (-654 (-117 |#1|))) NIL (|has| (-117 |#1|) (-524 (-1190) (-117 |#1|)))) (($ $ (-1190) (-117 |#1|)) NIL (|has| (-117 |#1|) (-524 (-1190) (-117 |#1|))))) (-1730 (((-781) $) NIL)) (-2199 (($ $ (-117 |#1|)) NIL (|has| (-117 |#1|) (-294 (-117 |#1|) (-117 |#1|))))) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-3905 (($ $) NIL (|has| (-117 |#1|) (-239))) (($ $ (-781)) NIL (|has| (-117 |#1|) (-239))) (($ $ (-1190)) NIL (|has| (-117 |#1|) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-117 |#1|) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-117 |#1|) (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-117 |#1|) (-911 (-1190)))) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-781)) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL)) (-4358 (($ $) NIL)) (-2977 (((-117 |#1|) $) NIL)) (-1836 (((-903 (-574)) $) NIL (|has| (-117 |#1|) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-117 |#1|) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-117 |#1|) (-624 (-546)))) (((-388) $) NIL (|has| (-117 |#1|) (-1035))) (((-227) $) NIL (|has| (-117 |#1|) (-1035)))) (-1517 (((-176 (-417 (-574))) $) NIL)) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-920))))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-117 |#1|)) NIL) (($ (-1190)) NIL (|has| (-117 |#1|) (-1051 (-1190))))) (-3298 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-920))) (|has| (-117 |#1|) (-146))))) (-1364 (((-781)) NIL T CONST)) (-1801 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-555)))) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL)) (-3551 (((-417 (-574)) $ (-574)) NIL)) (-3482 (($ $) NIL (|has| (-117 |#1|) (-830)))) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-3610 (($ $) NIL (|has| (-117 |#1|) (-239))) (($ $ (-781)) NIL (|has| (-117 |#1|) (-239))) (($ $ (-1190)) NIL (|has| (-117 |#1|) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-117 |#1|) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-117 |#1|) (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-117 |#1|) (-911 (-1190)))) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-781)) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL)) (-3042 (((-112) $ $) NIL (|has| (-117 |#1|) (-860)))) (-3018 (((-112) $ $) NIL (|has| (-117 |#1|) (-860)))) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (|has| (-117 |#1|) (-860)))) (-3007 (((-112) $ $) NIL (|has| (-117 |#1|) (-860)))) (-3108 (($ $ $) NIL) (($ (-117 |#1|) (-117 |#1|)) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-117 |#1|) $) NIL) (($ $ (-117 |#1|)) NIL))) -(((-118 |#1|) (-13 (-1005 (-117 |#1|)) (-10 -8 (-15 -3551 ((-417 (-574)) $ (-574))) (-15 -1517 ((-176 (-417 (-574))) $)) (-15 -3327 ($ $)) (-15 -3327 ($ (-574) $)))) (-574)) (T -118)) -((-3551 (*1 *2 *1 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-574)))) (-1517 (*1 *2 *1) (-12 (-5 *2 (-176 (-417 (-574)))) (-5 *1 (-118 *3)) (-14 *3 (-574)))) (-3327 (*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-574)))) (-3327 (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-118 *3)) (-14 *3 *2)))) -(-13 (-1005 (-117 |#1|)) (-10 -8 (-15 -3551 ((-417 (-574)) $ (-574))) (-15 -1517 ((-176 (-417 (-574))) $)) (-15 -3327 ($ $)) (-15 -3327 ($ (-574) $)))) -((-3143 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-3820 (((-654 $) $) 31)) (-2278 (((-112) $ $) 36)) (-1710 (((-112) |#2| $) 40)) (-3507 (((-654 |#2|) $) 25)) (-3632 (((-112) $) 18)) (-2199 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2479 (((-112) $) 57)) (-2943 (((-872) $) 47)) (-2321 (((-654 $) $) 32)) (-2981 (((-112) $ $) 38)) (-2863 (((-781) $) 50))) -(((-119 |#1| |#2|) (-10 -8 (-15 -2943 ((-872) |#1|)) (-15 -3143 (|#1| |#1| "right" |#1|)) (-15 -3143 (|#1| |#1| "left" |#1|)) (-15 -2199 (|#1| |#1| "right")) (-15 -2199 (|#1| |#1| "left")) (-15 -3143 (|#2| |#1| "value" |#2|)) (-15 -2278 ((-112) |#1| |#1|)) (-15 -3507 ((-654 |#2|) |#1|)) (-15 -2479 ((-112) |#1|)) (-15 -2199 (|#2| |#1| "value")) (-15 -3632 ((-112) |#1|)) (-15 -3820 ((-654 |#1|) |#1|)) (-15 -2321 ((-654 |#1|) |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -1710 ((-112) |#2| |#1|)) (-15 -2863 ((-781) |#1|))) (-120 |#2|) (-1231)) (T -119)) -NIL -(-10 -8 (-15 -2943 ((-872) |#1|)) (-15 -3143 (|#1| |#1| "right" |#1|)) (-15 -3143 (|#1| |#1| "left" |#1|)) (-15 -2199 (|#1| |#1| "right")) (-15 -2199 (|#1| |#1| "left")) (-15 -3143 (|#2| |#1| "value" |#2|)) (-15 -2278 ((-112) |#1| |#1|)) (-15 -3507 ((-654 |#2|) |#1|)) (-15 -2479 ((-112) |#1|)) (-15 -2199 (|#2| |#1| "value")) (-15 -3632 ((-112) |#1|)) (-15 -3820 ((-654 |#1|) |#1|)) (-15 -2321 ((-654 |#1|) |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -1710 ((-112) |#2| |#1|)) (-15 -2863 ((-781) |#1|))) -((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3083 ((|#1| $) 49)) (-3034 (((-112) $ (-781)) 8)) (-3316 ((|#1| $ |#1|) 40 (|has| $ (-6 -4457)))) (-2412 (($ $ $) 53 (|has| $ (-6 -4457)))) (-1938 (($ $ $) 55 (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4457))) (($ $ "left" $) 56 (|has| $ (-6 -4457))) (($ $ "right" $) 54 (|has| $ (-6 -4457)))) (-2183 (($ $ (-654 $)) 42 (|has| $ (-6 -4457)))) (-3426 (($) 7 T CONST)) (-3904 (($ $) 58)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3820 (((-654 $) $) 51)) (-2278 (((-112) $ $) 43 (|has| |#1| (-1113)))) (-2742 (((-112) $ (-781)) 9)) (-1606 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2449 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 36)) (-4203 (((-112) $ (-781)) 10)) (-3891 (($ $) 60)) (-3507 (((-654 |#1|) $) 46)) (-3632 (((-112) $) 50)) (-4136 (((-1172) $) 22 (|has| |#1| (-1113)))) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-2540 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 14)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-2199 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-3867 (((-574) $ $) 45)) (-2479 (((-112) $) 47)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2321 (((-654 $) $) 52)) (-4418 (((-112) $ $) 44 (|has| |#1| (-1113)))) (-3284 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-120 |#1|) (-141) (-1231)) (T -120)) -((-3891 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1231)))) (-2199 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1231)))) (-3904 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1231)))) (-2199 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1231)))) (-3143 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4457)) (-4 *1 (-120 *3)) (-4 *3 (-1231)))) (-1938 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-120 *2)) (-4 *2 (-1231)))) (-3143 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4457)) (-4 *1 (-120 *3)) (-4 *3 (-1231)))) (-2412 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-120 *2)) (-4 *2 (-1231))))) -(-13 (-1023 |t#1|) (-10 -8 (-15 -3891 ($ $)) (-15 -2199 ($ $ "left")) (-15 -3904 ($ $)) (-15 -2199 ($ $ "right")) (IF (|has| $ (-6 -4457)) (PROGN (-15 -3143 ($ $ "left" $)) (-15 -1938 ($ $ $)) (-15 -3143 ($ $ "right" $)) (-15 -2412 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1023 |#1|) . T) ((-1113) |has| |#1| (-1113)) ((-1231) . T)) -((-4177 (((-112) |#1|) 29)) (-2225 (((-781) (-781)) 28) (((-781)) 27)) (-1372 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) -(((-121 |#1|) (-10 -7 (-15 -1372 ((-112) |#1|)) (-15 -1372 ((-112) |#1| (-112))) (-15 -2225 ((-781))) (-15 -2225 ((-781) (-781))) (-15 -4177 ((-112) |#1|))) (-1257 (-574))) (T -121)) -((-4177 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1257 (-574))))) (-2225 (*1 *2 *2) (-12 (-5 *2 (-781)) (-5 *1 (-121 *3)) (-4 *3 (-1257 (-574))))) (-2225 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-121 *3)) (-4 *3 (-1257 (-574))))) (-1372 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1257 (-574))))) (-1372 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1257 (-574)))))) -(-10 -7 (-15 -1372 ((-112) |#1|)) (-15 -1372 ((-112) |#1| (-112))) (-15 -2225 ((-781))) (-15 -2225 ((-781) (-781))) (-15 -4177 ((-112) |#1|))) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3083 ((|#1| $) 18)) (-4320 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-3034 (((-112) $ (-781)) NIL)) (-3316 ((|#1| $ |#1|) NIL (|has| $ (-6 -4457)))) (-2412 (($ $ $) 21 (|has| $ (-6 -4457)))) (-1938 (($ $ $) 23 (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4457))) (($ $ "left" $) NIL (|has| $ (-6 -4457))) (($ $ "right" $) NIL (|has| $ (-6 -4457)))) (-2183 (($ $ (-654 $)) NIL (|has| $ (-6 -4457)))) (-3426 (($) NIL T CONST)) (-3904 (($ $) 20)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3820 (((-654 $) $) NIL)) (-2278 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-1582 (($ $ |#1| $) 27)) (-2742 (((-112) $ (-781)) NIL)) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2449 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-3891 (($ $) 22)) (-3507 (((-654 |#1|) $) NIL)) (-3632 (((-112) $) NIL)) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-3847 (($ |#1| $) 28)) (-2798 (($ |#1| $) 15)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) NIL)) (-1584 (((-112) $) 17)) (-2672 (($) 11)) (-2199 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3867 (((-574) $ $) NIL)) (-2479 (((-112) $) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2321 (((-654 $) $) NIL)) (-4418 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3346 (($ (-654 |#1|)) 16)) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-122 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4457) (-6 -4456) (-15 -3346 ($ (-654 |#1|))) (-15 -2798 ($ |#1| $)) (-15 -3847 ($ |#1| $)) (-15 -4320 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-860)) (T -122)) -((-3346 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-122 *3)))) (-2798 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-860)))) (-3847 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-860)))) (-4320 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) (-5 *1 (-122 *3)) (-4 *3 (-860))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4457) (-6 -4456) (-15 -3346 ($ (-654 |#1|))) (-15 -2798 ($ |#1| $)) (-15 -3847 ($ |#1| $)) (-15 -4320 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-2877 (($ $) 13)) (-2076 (($ $) 11)) (-3946 (($ $ $) 23)) (-2855 (($ $ $) 21)) (-2925 (($ $ $) 19)) (-2912 (($ $ $) 17))) -(((-123 |#1|) (-10 -8 (-15 -3946 (|#1| |#1| |#1|)) (-15 -2855 (|#1| |#1| |#1|)) (-15 -2877 (|#1| |#1|)) (-15 -2912 (|#1| |#1| |#1|)) (-15 -2925 (|#1| |#1| |#1|)) (-15 -2076 (|#1| |#1|))) (-124)) (T -123)) -NIL -(-10 -8 (-15 -3946 (|#1| |#1| |#1|)) (-15 -2855 (|#1| |#1| |#1|)) (-15 -2877 (|#1| |#1|)) (-15 -2912 (|#1| |#1| |#1|)) (-15 -2925 (|#1| |#1| |#1|)) (-15 -2076 (|#1| |#1|))) -((-2849 (((-112) $ $) 7)) (-2877 (($ $) 103)) (-2109 (($ $ $) 28)) (-3714 (((-1286) $ (-574) (-574)) 66 (|has| $ (-6 -4457)))) (-1357 (((-112) $) 98 (|has| (-112) (-860))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-3642 (($ $) 102 (-12 (|has| (-112) (-860)) (|has| $ (-6 -4457)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4457)))) (-2771 (($ $) 97 (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-3034 (((-112) $ (-781)) 37)) (-3143 (((-112) $ (-1248 (-574)) (-112)) 88 (|has| $ (-6 -4457))) (((-112) $ (-574) (-112)) 54 (|has| $ (-6 -4457)))) (-2165 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4456)))) (-3426 (($) 38 T CONST)) (-2627 (($ $) 100 (|has| $ (-6 -4457)))) (-4423 (($ $) 90)) (-1543 (($ $) 68 (-12 (|has| (-112) (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4456))) (($ (-112) $) 69 (-12 (|has| (-112) (-1113)) (|has| $ (-6 -4456))))) (-2868 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1113)) (|has| $ (-6 -4456))))) (-2458 (((-112) $ (-574) (-112)) 53 (|has| $ (-6 -4457)))) (-2385 (((-112) $ (-574)) 55)) (-1441 (((-574) (-112) $ (-574)) 95 (|has| (-112) (-1113))) (((-574) (-112) $) 94 (|has| (-112) (-1113))) (((-574) (-1 (-112) (-112)) $) 93)) (-1864 (((-654 (-112)) $) 45 (|has| $ (-6 -4456)))) (-2098 (($ $ $) 108)) (-2076 (($ $) 106)) (-3946 (($ $ $) 29)) (-3790 (($ (-781) (-112)) 78)) (-2855 (($ $ $) 30)) (-2742 (((-112) $ (-781)) 36)) (-3618 (((-574) $) 63 (|has| (-574) (-860)))) (-3659 (($ $ $) 14)) (-4430 (($ $ $) 96 (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-1606 (((-654 (-112)) $) 46 (|has| $ (-6 -4456)))) (-1710 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1113)) (|has| $ (-6 -4456))))) (-2702 (((-574) $) 62 (|has| (-574) (-860)))) (-4257 (($ $ $) 15)) (-2449 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4457)))) (-1777 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 40)) (-4203 (((-112) $ (-781)) 35)) (-4136 (((-1172) $) 10)) (-1594 (($ $ $ (-574)) 87) (($ (-112) $ (-574)) 86)) (-4308 (((-654 (-574)) $) 60)) (-3336 (((-112) (-574) $) 59)) (-3966 (((-1133) $) 11)) (-2915 (((-112) $) 64 (|has| (-574) (-860)))) (-1549 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-1942 (($ $ (-112)) 65 (|has| $ (-6 -4457)))) (-2540 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-112)) (-654 (-112))) 52 (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1113)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1113)))) (($ $ (-302 (-112))) 50 (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1113)))) (($ $ (-654 (-302 (-112)))) 49 (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1113))))) (-4017 (((-112) $ $) 31)) (-3398 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4456)) (|has| (-112) (-1113))))) (-4371 (((-654 (-112)) $) 58)) (-1584 (((-112) $) 34)) (-2672 (($) 33)) (-2199 (($ $ (-1248 (-574))) 77) (((-112) $ (-574)) 57) (((-112) $ (-574) (-112)) 56)) (-2840 (($ $ (-1248 (-574))) 85) (($ $ (-574)) 84)) (-3975 (((-781) (-112) $) 47 (-12 (|has| (-112) (-1113)) (|has| $ (-6 -4456)))) (((-781) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4456)))) (-3506 (($ $ $ (-574)) 99 (|has| $ (-6 -4457)))) (-3167 (($ $) 32)) (-1836 (((-546) $) 67 (|has| (-112) (-624 (-546))))) (-2956 (($ (-654 (-112))) 76)) (-4157 (($ (-654 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-3390 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4456)))) (-2087 (($ $ $) 107)) (-2925 (($ $ $) 105)) (-3042 (((-112) $ $) 17)) (-3018 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3030 (((-112) $ $) 16)) (-3007 (((-112) $ $) 19)) (-2912 (($ $ $) 104)) (-2863 (((-781) $) 39 (|has| $ (-6 -4456))))) +((-2075 (*1 *1 *1) (-4 *1 (-113))) (-2086 (*1 *1 *1 *1) (-4 *1 (-113))) (-2097 (*1 *1 *1 *1) (-4 *1 (-113)))) +(-13 (-1230) (-10 -8 (-15 -2075 ($ $)) (-15 -2086 ($ $ $)) (-15 -2097 ($ $ $)))) +(((-1230) . T)) +((-3630 (((-3 (-1 |#1| (-653 |#1|)) "failed") (-115)) 23) (((-115) (-115) (-1 |#1| |#1|)) 13) (((-115) (-115) (-1 |#1| (-653 |#1|))) 11) (((-3 |#1| "failed") (-115) (-653 |#1|)) 25)) (-2786 (((-3 (-653 (-1 |#1| (-653 |#1|))) "failed") (-115)) 29) (((-115) (-115) (-1 |#1| |#1|)) 33) (((-115) (-115) (-653 (-1 |#1| (-653 |#1|)))) 30)) (-2273 (((-115) |#1|) 63)) (-1511 (((-3 |#1| "failed") (-115)) 58))) +(((-114 |#1|) (-10 -7 (-15 -3630 ((-3 |#1| "failed") (-115) (-653 |#1|))) (-15 -3630 ((-115) (-115) (-1 |#1| (-653 |#1|)))) (-15 -3630 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3630 ((-3 (-1 |#1| (-653 |#1|)) "failed") (-115))) (-15 -2786 ((-115) (-115) (-653 (-1 |#1| (-653 |#1|))))) (-15 -2786 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2786 ((-3 (-653 (-1 |#1| (-653 |#1|))) "failed") (-115))) (-15 -2273 ((-115) |#1|)) (-15 -1511 ((-3 |#1| "failed") (-115)))) (-1112)) (T -114)) +((-1511 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1112)))) (-2273 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1112)))) (-2786 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-653 (-1 *4 (-653 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1112)))) (-2786 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1112)) (-5 *1 (-114 *4)))) (-2786 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-653 (-1 *4 (-653 *4)))) (-4 *4 (-1112)) (-5 *1 (-114 *4)))) (-3630 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-653 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1112)))) (-3630 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1112)) (-5 *1 (-114 *4)))) (-3630 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-653 *4))) (-4 *4 (-1112)) (-5 *1 (-114 *4)))) (-3630 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-653 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1112))))) +(-10 -7 (-15 -3630 ((-3 |#1| "failed") (-115) (-653 |#1|))) (-15 -3630 ((-115) (-115) (-1 |#1| (-653 |#1|)))) (-15 -3630 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3630 ((-3 (-1 |#1| (-653 |#1|)) "failed") (-115))) (-15 -2786 ((-115) (-115) (-653 (-1 |#1| (-653 |#1|))))) (-15 -2786 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2786 ((-3 (-653 (-1 |#1| (-653 |#1|))) "failed") (-115))) (-15 -2273 ((-115) |#1|)) (-15 -1511 ((-3 |#1| "failed") (-115)))) +((-2848 (((-112) $ $) NIL)) (-3447 (((-780) $) 91) (($ $ (-780)) 37)) (-3959 (((-112) $) 41)) (-2995 (($ $ (-1171) (-783)) 58) (($ $ (-515) (-783)) 33)) (-3906 (($ $ (-45 (-1171) (-783))) 16)) (-1395 (((-3 (-783) "failed") $ (-1171)) 27) (((-700 (-783)) $ (-515)) 32)) (-2793 (((-45 (-1171) (-783)) $) 15)) (-4173 (($ (-1189)) 20) (($ (-1189) (-780)) 23) (($ (-1189) (-55)) 24)) (-2335 (((-112) $) 39)) (-3706 (((-112) $) 43)) (-2031 (((-1189) $) 8)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-1667 (((-112) $ (-1189)) 11)) (-1451 (($ $ (-1 (-545) (-653 (-545)))) 64) (((-3 (-1 (-545) (-653 (-545))) "failed") $) 71)) (-3965 (((-1132) $) NIL)) (-2351 (((-112) $ (-515)) 36)) (-3395 (($ $ (-1 (-112) $ $)) 45)) (-1402 (((-3 (-1 (-871) (-653 (-871))) "failed") $) 69) (($ $ (-1 (-871) (-653 (-871)))) 51) (($ $ (-1 (-871) (-871))) 53)) (-3992 (($ $ (-1171)) 55) (($ $ (-515)) 56)) (-3166 (($ $) 77)) (-1998 (($ $ (-1 (-112) $ $)) 46)) (-2942 (((-871) $) 60)) (-3507 (((-112) $ $) NIL)) (-2112 (($ $ (-515)) 34)) (-4010 (((-55) $) 72)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 89)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 103))) +(((-115) (-13 (-859) (-844 (-1189)) (-10 -8 (-15 -2793 ((-45 (-1171) (-783)) $)) (-15 -3166 ($ $)) (-15 -4173 ($ (-1189))) (-15 -4173 ($ (-1189) (-780))) (-15 -4173 ($ (-1189) (-55))) (-15 -2335 ((-112) $)) (-15 -3959 ((-112) $)) (-15 -3706 ((-112) $)) (-15 -3447 ((-780) $)) (-15 -3447 ($ $ (-780))) (-15 -3395 ($ $ (-1 (-112) $ $))) (-15 -1998 ($ $ (-1 (-112) $ $))) (-15 -1402 ((-3 (-1 (-871) (-653 (-871))) "failed") $)) (-15 -1402 ($ $ (-1 (-871) (-653 (-871))))) (-15 -1402 ($ $ (-1 (-871) (-871)))) (-15 -1451 ($ $ (-1 (-545) (-653 (-545))))) (-15 -1451 ((-3 (-1 (-545) (-653 (-545))) "failed") $)) (-15 -2351 ((-112) $ (-515))) (-15 -2112 ($ $ (-515))) (-15 -3992 ($ $ (-1171))) (-15 -3992 ($ $ (-515))) (-15 -1395 ((-3 (-783) "failed") $ (-1171))) (-15 -1395 ((-700 (-783)) $ (-515))) (-15 -2995 ($ $ (-1171) (-783))) (-15 -2995 ($ $ (-515) (-783))) (-15 -3906 ($ $ (-45 (-1171) (-783))))))) (T -115)) +((-2793 (*1 *2 *1) (-12 (-5 *2 (-45 (-1171) (-783))) (-5 *1 (-115)))) (-3166 (*1 *1 *1) (-5 *1 (-115))) (-4173 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-115)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-780)) (-5 *1 (-115)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-55)) (-5 *1 (-115)))) (-2335 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-3959 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-3706 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-3447 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-115)))) (-3447 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-115)))) (-3395 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-1998 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-1402 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-871) (-653 (-871)))) (-5 *1 (-115)))) (-1402 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-871) (-653 (-871)))) (-5 *1 (-115)))) (-1402 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-871) (-871))) (-5 *1 (-115)))) (-1451 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-545) (-653 (-545)))) (-5 *1 (-115)))) (-1451 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-545) (-653 (-545)))) (-5 *1 (-115)))) (-2351 (*1 *2 *1 *3) (-12 (-5 *3 (-515)) (-5 *2 (-112)) (-5 *1 (-115)))) (-2112 (*1 *1 *1 *2) (-12 (-5 *2 (-515)) (-5 *1 (-115)))) (-3992 (*1 *1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-115)))) (-3992 (*1 *1 *1 *2) (-12 (-5 *2 (-515)) (-5 *1 (-115)))) (-1395 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1171)) (-5 *2 (-783)) (-5 *1 (-115)))) (-1395 (*1 *2 *1 *3) (-12 (-5 *3 (-515)) (-5 *2 (-700 (-783))) (-5 *1 (-115)))) (-2995 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1171)) (-5 *3 (-783)) (-5 *1 (-115)))) (-2995 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-515)) (-5 *3 (-783)) (-5 *1 (-115)))) (-3906 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1171) (-783))) (-5 *1 (-115))))) +(-13 (-859) (-844 (-1189)) (-10 -8 (-15 -2793 ((-45 (-1171) (-783)) $)) (-15 -3166 ($ $)) (-15 -4173 ($ (-1189))) (-15 -4173 ($ (-1189) (-780))) (-15 -4173 ($ (-1189) (-55))) (-15 -2335 ((-112) $)) (-15 -3959 ((-112) $)) (-15 -3706 ((-112) $)) (-15 -3447 ((-780) $)) (-15 -3447 ($ $ (-780))) (-15 -3395 ($ $ (-1 (-112) $ $))) (-15 -1998 ($ $ (-1 (-112) $ $))) (-15 -1402 ((-3 (-1 (-871) (-653 (-871))) "failed") $)) (-15 -1402 ($ $ (-1 (-871) (-653 (-871))))) (-15 -1402 ($ $ (-1 (-871) (-871)))) (-15 -1451 ($ $ (-1 (-545) (-653 (-545))))) (-15 -1451 ((-3 (-1 (-545) (-653 (-545))) "failed") $)) (-15 -2351 ((-112) $ (-515))) (-15 -2112 ($ $ (-515))) (-15 -3992 ($ $ (-1171))) (-15 -3992 ($ $ (-515))) (-15 -1395 ((-3 (-783) "failed") $ (-1171))) (-15 -1395 ((-700 (-783)) $ (-515))) (-15 -2995 ($ $ (-1171) (-783))) (-15 -2995 ($ $ (-515) (-783))) (-15 -3906 ($ $ (-45 (-1171) (-783)))))) +((-2336 (((-573) |#2|) 41))) +(((-116 |#1| |#2|) (-10 -7 (-15 -2336 ((-573) |#2|))) (-13 (-371) (-1050 (-416 (-573)))) (-1256 |#1|)) (T -116)) +((-2336 (*1 *2 *3) (-12 (-4 *4 (-13 (-371) (-1050 (-416 *2)))) (-5 *2 (-573)) (-5 *1 (-116 *4 *3)) (-4 *3 (-1256 *4))))) +(-10 -7 (-15 -2336 ((-573) |#2|))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4228 (($ $ (-573)) NIL)) (-2800 (((-112) $ $) NIL)) (-2579 (($) NIL T CONST)) (-1504 (($ (-1185 (-573)) (-573)) NIL)) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-1970 (($ $) NIL)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2534 (((-780) $) NIL)) (-1959 (((-112) $) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3621 (((-573)) NIL)) (-4054 (((-573) $) NIL)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2212 (($ $ (-573)) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3006 (((-1169 (-573)) $) NIL)) (-4101 (($ $) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-3550 (((-573) $ (-573)) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL))) +(((-117 |#1|) (-878 |#1|) (-573)) (T -117)) +NIL +(-878 |#1|) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3770 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-314)))) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-117 |#1|) (-919)))) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| (-117 |#1|) (-919)))) (-2800 (((-112) $ $) NIL)) (-1983 (((-573) $) NIL (|has| (-117 |#1|) (-829)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-117 |#1|) "failed") $) NIL) (((-3 (-1189) "failed") $) NIL (|has| (-117 |#1|) (-1050 (-1189)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| (-117 |#1|) (-1050 (-573)))) (((-3 (-573) "failed") $) NIL (|has| (-117 |#1|) (-1050 (-573))))) (-2205 (((-117 |#1|) $) NIL) (((-1189) $) NIL (|has| (-117 |#1|) (-1050 (-1189)))) (((-416 (-573)) $) NIL (|has| (-117 |#1|) (-1050 (-573)))) (((-573) $) NIL (|has| (-117 |#1|) (-1050 (-573))))) (-2230 (($ $) NIL) (($ (-573) $) NIL)) (-2784 (($ $ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| (-117 |#1|) (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| (-117 |#1|) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| (-117 |#1|) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-117 |#1|))) (|:| |vec| (-1280 (-117 |#1|)))) (-698 $) (-1280 $)) NIL) (((-698 (-117 |#1|)) (-698 $)) NIL) (((-698 (-117 |#1|)) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) NIL (|has| (-117 |#1|) (-554)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-4152 (((-112) $) NIL (|has| (-117 |#1|) (-829)))) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (|has| (-117 |#1|) (-896 (-573)))) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (|has| (-117 |#1|) (-896 (-387))))) (-1959 (((-112) $) NIL)) (-3041 (($ $) NIL)) (-2965 (((-117 |#1|) $) NIL)) (-1470 (((-3 $ "failed") $) NIL (|has| (-117 |#1|) (-1164)))) (-3339 (((-112) $) NIL (|has| (-117 |#1|) (-829)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3659 (($ $ $) NIL (|has| (-117 |#1|) (-859)))) (-3751 (($ $ $) NIL (|has| (-117 |#1|) (-859)))) (-1776 (($ (-1 (-117 |#1|) (-117 |#1|)) $) NIL)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| (-117 |#1|) (-1164)) CONST)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-2408 (($ $) NIL (|has| (-117 |#1|) (-314)))) (-3733 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-554)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-117 |#1|) (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-117 |#1|) (-919)))) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2645 (($ $ (-653 (-117 |#1|)) (-653 (-117 |#1|))) NIL (|has| (-117 |#1|) (-316 (-117 |#1|)))) (($ $ (-117 |#1|) (-117 |#1|)) NIL (|has| (-117 |#1|) (-316 (-117 |#1|)))) (($ $ (-301 (-117 |#1|))) NIL (|has| (-117 |#1|) (-316 (-117 |#1|)))) (($ $ (-653 (-301 (-117 |#1|)))) NIL (|has| (-117 |#1|) (-316 (-117 |#1|)))) (($ $ (-653 (-1189)) (-653 (-117 |#1|))) NIL (|has| (-117 |#1|) (-523 (-1189) (-117 |#1|)))) (($ $ (-1189) (-117 |#1|)) NIL (|has| (-117 |#1|) (-523 (-1189) (-117 |#1|))))) (-2163 (((-780) $) NIL)) (-2198 (($ $ (-117 |#1|)) NIL (|has| (-117 |#1|) (-293 (-117 |#1|) (-117 |#1|))))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3904 (($ $ (-780)) NIL (|has| (-117 |#1|) (-238))) (($ $) NIL (|has| (-117 |#1|) (-238))) (($ $ (-1189)) NIL (|has| (-117 |#1|) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-117 |#1|) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-117 |#1|) (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-117 |#1|) (-910 (-1189)))) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-780)) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL)) (-2662 (($ $) NIL)) (-2975 (((-117 |#1|) $) NIL)) (-1835 (((-902 (-573)) $) NIL (|has| (-117 |#1|) (-623 (-902 (-573))))) (((-902 (-387)) $) NIL (|has| (-117 |#1|) (-623 (-902 (-387))))) (((-545) $) NIL (|has| (-117 |#1|) (-623 (-545)))) (((-387) $) NIL (|has| (-117 |#1|) (-1034))) (((-227) $) NIL (|has| (-117 |#1|) (-1034)))) (-1468 (((-176 (-416 (-573))) $) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-919))))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) (($ (-117 |#1|)) NIL) (($ (-1189)) NIL (|has| (-117 |#1|) (-1050 (-1189))))) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-919))) (|has| (-117 |#1|) (-146))))) (-1545 (((-780)) NIL T CONST)) (-2437 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-554)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-3550 (((-416 (-573)) $ (-573)) NIL)) (-1660 (($ $) NIL (|has| (-117 |#1|) (-829)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-780)) NIL (|has| (-117 |#1|) (-238))) (($ $) NIL (|has| (-117 |#1|) (-238))) (($ $ (-1189)) NIL (|has| (-117 |#1|) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-117 |#1|) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-117 |#1|) (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-117 |#1|) (-910 (-1189)))) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-780)) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL)) (-3040 (((-112) $ $) NIL (|has| (-117 |#1|) (-859)))) (-3015 (((-112) $ $) NIL (|has| (-117 |#1|) (-859)))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (|has| (-117 |#1|) (-859)))) (-3005 (((-112) $ $) NIL (|has| (-117 |#1|) (-859)))) (-3103 (($ $ $) NIL) (($ (-117 |#1|) (-117 |#1|)) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ (-117 |#1|) $) NIL) (($ $ (-117 |#1|)) NIL))) +(((-118 |#1|) (-13 (-1004 (-117 |#1|)) (-10 -8 (-15 -3550 ((-416 (-573)) $ (-573))) (-15 -1468 ((-176 (-416 (-573))) $)) (-15 -2230 ($ $)) (-15 -2230 ($ (-573) $)))) (-573)) (T -118)) +((-3550 (*1 *2 *1 *3) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-573)))) (-1468 (*1 *2 *1) (-12 (-5 *2 (-176 (-416 (-573)))) (-5 *1 (-118 *3)) (-14 *3 (-573)))) (-2230 (*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-573)))) (-2230 (*1 *1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-118 *3)) (-14 *3 *2)))) +(-13 (-1004 (-117 |#1|)) (-10 -8 (-15 -3550 ((-416 (-573)) $ (-573))) (-15 -1468 ((-176 (-416 (-573))) $)) (-15 -2230 ($ $)) (-15 -2230 ($ (-573) $)))) +((-3142 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-3113 (((-653 $) $) 31)) (-3208 (((-112) $ $) 36)) (-1547 (((-112) |#2| $) 40)) (-3505 (((-653 |#2|) $) 25)) (-2880 (((-112) $) 18)) (-2198 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-1628 (((-112) $) 57)) (-2942 (((-871) $) 47)) (-1811 (((-653 $) $) 32)) (-2981 (((-112) $ $) 38)) (-2862 (((-780) $) 50))) +(((-119 |#1| |#2|) (-10 -8 (-15 -2942 ((-871) |#1|)) (-15 -3142 (|#1| |#1| "right" |#1|)) (-15 -3142 (|#1| |#1| "left" |#1|)) (-15 -2198 (|#1| |#1| "right")) (-15 -2198 (|#1| |#1| "left")) (-15 -3142 (|#2| |#1| "value" |#2|)) (-15 -3208 ((-112) |#1| |#1|)) (-15 -3505 ((-653 |#2|) |#1|)) (-15 -1628 ((-112) |#1|)) (-15 -2198 (|#2| |#1| "value")) (-15 -2880 ((-112) |#1|)) (-15 -3113 ((-653 |#1|) |#1|)) (-15 -1811 ((-653 |#1|) |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -1547 ((-112) |#2| |#1|)) (-15 -2862 ((-780) |#1|))) (-120 |#2|) (-1230)) (T -119)) +NIL +(-10 -8 (-15 -2942 ((-871) |#1|)) (-15 -3142 (|#1| |#1| "right" |#1|)) (-15 -3142 (|#1| |#1| "left" |#1|)) (-15 -2198 (|#1| |#1| "right")) (-15 -2198 (|#1| |#1| "left")) (-15 -3142 (|#2| |#1| "value" |#2|)) (-15 -3208 ((-112) |#1| |#1|)) (-15 -3505 ((-653 |#2|) |#1|)) (-15 -1628 ((-112) |#1|)) (-15 -2198 (|#2| |#1| "value")) (-15 -2880 ((-112) |#1|)) (-15 -3113 ((-653 |#1|) |#1|)) (-15 -1811 ((-653 |#1|) |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -1547 ((-112) |#2| |#1|)) (-15 -2862 ((-780) |#1|))) +((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3082 ((|#1| $) 49)) (-3450 (((-112) $ (-780)) 8)) (-2367 ((|#1| $ |#1|) 40 (|has| $ (-6 -4456)))) (-2357 (($ $ $) 53 (|has| $ (-6 -4456)))) (-3837 (($ $ $) 55 (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4456))) (($ $ "left" $) 56 (|has| $ (-6 -4456))) (($ $ "right" $) 54 (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) 42 (|has| $ (-6 -4456)))) (-2579 (($) 7 T CONST)) (-3903 (($ $) 58)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) 51)) (-3208 (((-112) $ $) 43 (|has| |#1| (-1112)))) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3890 (($ $) 60)) (-3505 (((-653 |#1|) $) 46)) (-2880 (((-112) $) 50)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-1501 (((-573) $ $) 45)) (-1628 (((-112) $) 47)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) 52)) (-1716 (((-112) $ $) 44 (|has| |#1| (-1112)))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-120 |#1|) (-141) (-1230)) (T -120)) +((-3890 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1230)))) (-2198 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1230)))) (-3903 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1230)))) (-2198 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1230)))) (-3142 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4456)) (-4 *1 (-120 *3)) (-4 *3 (-1230)))) (-3837 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-120 *2)) (-4 *2 (-1230)))) (-3142 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4456)) (-4 *1 (-120 *3)) (-4 *3 (-1230)))) (-2357 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-120 *2)) (-4 *2 (-1230))))) +(-13 (-1022 |t#1|) (-10 -8 (-15 -3890 ($ $)) (-15 -2198 ($ $ "left")) (-15 -3903 ($ $)) (-15 -2198 ($ $ "right")) (IF (|has| $ (-6 -4456)) (PROGN (-15 -3142 ($ $ "left" $)) (-15 -3837 ($ $ $)) (-15 -3142 ($ $ "right" $)) (-15 -2357 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1022 |#1|) . T) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) +((-1446 (((-112) |#1|) 29)) (-2011 (((-780) (-780)) 28) (((-780)) 27)) (-3414 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) +(((-121 |#1|) (-10 -7 (-15 -3414 ((-112) |#1|)) (-15 -3414 ((-112) |#1| (-112))) (-15 -2011 ((-780))) (-15 -2011 ((-780) (-780))) (-15 -1446 ((-112) |#1|))) (-1256 (-573))) (T -121)) +((-1446 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1256 (-573))))) (-2011 (*1 *2 *2) (-12 (-5 *2 (-780)) (-5 *1 (-121 *3)) (-4 *3 (-1256 (-573))))) (-2011 (*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-121 *3)) (-4 *3 (-1256 (-573))))) (-3414 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1256 (-573))))) (-3414 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1256 (-573)))))) +(-10 -7 (-15 -3414 ((-112) |#1|)) (-15 -3414 ((-112) |#1| (-112))) (-15 -2011 ((-780))) (-15 -2011 ((-780) (-780))) (-15 -1446 ((-112) |#1|))) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3082 ((|#1| $) 18)) (-3834 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-3450 (((-112) $ (-780)) NIL)) (-2367 ((|#1| $ |#1|) NIL (|has| $ (-6 -4456)))) (-2357 (($ $ $) 21 (|has| $ (-6 -4456)))) (-3837 (($ $ $) 23 (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4456))) (($ $ "left" $) NIL (|has| $ (-6 -4456))) (($ $ "right" $) NIL (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) NIL (|has| $ (-6 -4456)))) (-2579 (($) NIL T CONST)) (-3903 (($ $) 20)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) NIL)) (-3208 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1581 (($ $ |#1| $) 27)) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3890 (($ $) 22)) (-3505 (((-653 |#1|) $) NIL)) (-2880 (((-112) $) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-1489 (($ |#1| $) 28)) (-3181 (($ |#1| $) 15)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) 17)) (-3508 (($) 11)) (-2198 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1501 (((-573) $ $) NIL)) (-1628 (((-112) $) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) NIL)) (-1716 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2418 (($ (-653 |#1|)) 16)) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-122 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4456) (-6 -4455) (-15 -2418 ($ (-653 |#1|))) (-15 -3181 ($ |#1| $)) (-15 -1489 ($ |#1| $)) (-15 -3834 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-859)) (T -122)) +((-2418 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-859)) (-5 *1 (-122 *3)))) (-3181 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-859)))) (-1489 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-859)))) (-3834 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) (-5 *1 (-122 *3)) (-4 *3 (-859))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4456) (-6 -4455) (-15 -2418 ($ (-653 |#1|))) (-15 -3181 ($ |#1| $)) (-15 -1489 ($ |#1| $)) (-15 -3834 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-2876 (($ $) 13)) (-2075 (($ $) 11)) (-3695 (($ $ $) 23)) (-1419 (($ $ $) 21)) (-2924 (($ $ $) 19)) (-2909 (($ $ $) 17))) +(((-123 |#1|) (-10 -8 (-15 -3695 (|#1| |#1| |#1|)) (-15 -1419 (|#1| |#1| |#1|)) (-15 -2876 (|#1| |#1|)) (-15 -2909 (|#1| |#1| |#1|)) (-15 -2924 (|#1| |#1| |#1|)) (-15 -2075 (|#1| |#1|))) (-124)) (T -123)) +NIL +(-10 -8 (-15 -3695 (|#1| |#1| |#1|)) (-15 -1419 (|#1| |#1| |#1|)) (-15 -2876 (|#1| |#1|)) (-15 -2909 (|#1| |#1| |#1|)) (-15 -2924 (|#1| |#1| |#1|)) (-15 -2075 (|#1| |#1|))) +((-2848 (((-112) $ $) 7)) (-2876 (($ $) 103)) (-2108 (($ $ $) 28)) (-3791 (((-1285) $ (-573) (-573)) 66 (|has| $ (-6 -4456)))) (-1473 (((-112) $) 98 (|has| (-112) (-859))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-2748 (($ $) 102 (-12 (|has| (-112) (-859)) (|has| $ (-6 -4456)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4456)))) (-2770 (($ $) 97 (|has| (-112) (-859))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-3450 (((-112) $ (-780)) 37)) (-3142 (((-112) $ (-1247 (-573)) (-112)) 88 (|has| $ (-6 -4456))) (((-112) $ (-573) (-112)) 54 (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4455)))) (-2579 (($) 38 T CONST)) (-2176 (($ $) 100 (|has| $ (-6 -4456)))) (-4422 (($ $) 90)) (-2685 (($ $) 68 (-12 (|has| (-112) (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4455))) (($ (-112) $) 69 (-12 (|has| (-112) (-1112)) (|has| $ (-6 -4455))))) (-2867 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1112)) (|has| $ (-6 -4455))))) (-2457 (((-112) $ (-573) (-112)) 53 (|has| $ (-6 -4456)))) (-2384 (((-112) $ (-573)) 55)) (-1440 (((-573) (-112) $ (-573)) 95 (|has| (-112) (-1112))) (((-573) (-112) $) 94 (|has| (-112) (-1112))) (((-573) (-1 (-112) (-112)) $) 93)) (-1863 (((-653 (-112)) $) 45 (|has| $ (-6 -4455)))) (-2097 (($ $ $) 108)) (-2075 (($ $) 106)) (-3695 (($ $ $) 29)) (-3789 (($ (-780) (-112)) 78)) (-1419 (($ $ $) 30)) (-2078 (((-112) $ (-780)) 36)) (-1968 (((-573) $) 63 (|has| (-573) (-859)))) (-3659 (($ $ $) 14)) (-1480 (($ $ $) 96 (|has| (-112) (-859))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-3214 (((-653 (-112)) $) 46 (|has| $ (-6 -4455)))) (-1547 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1112)) (|has| $ (-6 -4455))))) (-3470 (((-573) $) 62 (|has| (-573) (-859)))) (-3751 (($ $ $) 15)) (-2446 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 40)) (-2673 (((-112) $ (-780)) 35)) (-3180 (((-1171) $) 10)) (-1593 (($ $ $ (-573)) 87) (($ (-112) $ (-573)) 86)) (-1977 (((-653 (-573)) $) 60)) (-2560 (((-112) (-573) $) 59)) (-3965 (((-1132) $) 11)) (-2914 (((-112) $) 64 (|has| (-573) (-859)))) (-2036 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-3112 (($ $ (-112)) 65 (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-112)) (-653 (-112))) 52 (-12 (|has| (-112) (-316 (-112))) (|has| (-112) (-1112)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-316 (-112))) (|has| (-112) (-1112)))) (($ $ (-301 (-112))) 50 (-12 (|has| (-112) (-316 (-112))) (|has| (-112) (-1112)))) (($ $ (-653 (-301 (-112)))) 49 (-12 (|has| (-112) (-316 (-112))) (|has| (-112) (-1112))))) (-1885 (((-112) $ $) 31)) (-2547 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4455)) (|has| (-112) (-1112))))) (-1535 (((-653 (-112)) $) 58)) (-3811 (((-112) $) 34)) (-3508 (($) 33)) (-2198 (($ $ (-1247 (-573))) 77) (((-112) $ (-573)) 57) (((-112) $ (-573) (-112)) 56)) (-2836 (($ $ (-1247 (-573))) 85) (($ $ (-573)) 84)) (-3974 (((-780) (-112) $) 47 (-12 (|has| (-112) (-1112)) (|has| $ (-6 -4455)))) (((-780) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4455)))) (-3919 (($ $ $ (-573)) 99 (|has| $ (-6 -4456)))) (-3166 (($ $) 32)) (-1835 (((-545) $) 67 (|has| (-112) (-623 (-545))))) (-2955 (($ (-653 (-112))) 76)) (-4156 (($ (-653 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-1646 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4455)))) (-2086 (($ $ $) 107)) (-2924 (($ $ $) 105)) (-3040 (((-112) $ $) 17)) (-3015 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19)) (-2909 (($ $ $) 104)) (-2862 (((-780) $) 39 (|has| $ (-6 -4455))))) (((-124) (-141)) (T -124)) -((-2855 (*1 *1 *1 *1) (-4 *1 (-124))) (-3946 (*1 *1 *1 *1) (-4 *1 (-124))) (-2109 (*1 *1 *1 *1) (-4 *1 (-124)))) -(-13 (-860) (-113) (-671) (-19 (-112)) (-10 -8 (-15 -2855 ($ $ $)) (-15 -3946 ($ $ $)) (-15 -2109 ($ $ $)))) -(((-34) . T) ((-102) . T) ((-113) . T) ((-623 (-872)) . T) ((-152 #0=(-112)) . T) ((-624 (-546)) |has| (-112) (-624 (-546))) ((-294 #1=(-574) #0#) . T) ((-294 (-1248 (-574)) $) . T) ((-296 #1# #0#) . T) ((-317 #0#) -12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1113))) ((-382 #0#) . T) ((-499 #0#) . T) ((-614 #1# #0#) . T) ((-524 #0# #0#) -12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1113))) ((-661 #0#) . T) ((-671) . T) ((-19 #0#) . T) ((-860) . T) ((-1113) . T) ((-1231) . T)) -((-2449 (($ (-1 |#2| |#2|) $) 22)) (-3167 (($ $) 16)) (-2863 (((-781) $) 25))) -(((-125 |#1| |#2|) (-10 -8 (-15 -2449 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2863 ((-781) |#1|)) (-15 -3167 (|#1| |#1|))) (-126 |#2|) (-1113)) (T -125)) -NIL -(-10 -8 (-15 -2449 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2863 ((-781) |#1|)) (-15 -3167 (|#1| |#1|))) -((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3083 ((|#1| $) 49)) (-3034 (((-112) $ (-781)) 8)) (-3316 ((|#1| $ |#1|) 40 (|has| $ (-6 -4457)))) (-2412 (($ $ $) 53 (|has| $ (-6 -4457)))) (-1938 (($ $ $) 55 (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4457))) (($ $ "left" $) 56 (|has| $ (-6 -4457))) (($ $ "right" $) 54 (|has| $ (-6 -4457)))) (-2183 (($ $ (-654 $)) 42 (|has| $ (-6 -4457)))) (-3426 (($) 7 T CONST)) (-3904 (($ $) 58)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3820 (((-654 $) $) 51)) (-2278 (((-112) $ $) 43 (|has| |#1| (-1113)))) (-1582 (($ $ |#1| $) 61)) (-2742 (((-112) $ (-781)) 9)) (-1606 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2449 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 36)) (-4203 (((-112) $ (-781)) 10)) (-3891 (($ $) 60)) (-3507 (((-654 |#1|) $) 46)) (-3632 (((-112) $) 50)) (-4136 (((-1172) $) 22 (|has| |#1| (-1113)))) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-2540 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 14)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-2199 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-3867 (((-574) $ $) 45)) (-2479 (((-112) $) 47)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2321 (((-654 $) $) 52)) (-4418 (((-112) $ $) 44 (|has| |#1| (-1113)))) (-3284 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-126 |#1|) (-141) (-1113)) (T -126)) -((-1582 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1113))))) -(-13 (-120 |t#1|) (-10 -8 (-6 -4457) (-6 -4456) (-15 -1582 ($ $ |t#1| $)))) -(((-34) . T) ((-102) |has| |#1| (-1113)) ((-120 |#1|) . T) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1023 |#1|) . T) ((-1113) |has| |#1| (-1113)) ((-1231) . T)) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3083 ((|#1| $) 18)) (-3034 (((-112) $ (-781)) NIL)) (-3316 ((|#1| $ |#1|) 22 (|has| $ (-6 -4457)))) (-2412 (($ $ $) 23 (|has| $ (-6 -4457)))) (-1938 (($ $ $) 21 (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4457))) (($ $ "left" $) NIL (|has| $ (-6 -4457))) (($ $ "right" $) NIL (|has| $ (-6 -4457)))) (-2183 (($ $ (-654 $)) NIL (|has| $ (-6 -4457)))) (-3426 (($) NIL T CONST)) (-3904 (($ $) 24)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3820 (((-654 $) $) NIL)) (-2278 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-1582 (($ $ |#1| $) NIL)) (-2742 (((-112) $ (-781)) NIL)) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2449 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-3891 (($ $) NIL)) (-3507 (((-654 |#1|) $) NIL)) (-3632 (((-112) $) NIL)) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-2798 (($ |#1| $) 15)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) NIL)) (-1584 (((-112) $) 17)) (-2672 (($) 11)) (-2199 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3867 (((-574) $ $) NIL)) (-2479 (((-112) $) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) 20)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2321 (((-654 $) $) NIL)) (-4418 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-4205 (($ (-654 |#1|)) 16)) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-127 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4457) (-15 -4205 ($ (-654 |#1|))) (-15 -2798 ($ |#1| $)))) (-860)) (T -127)) -((-4205 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-127 *3)))) (-2798 (*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-860))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4457) (-15 -4205 ($ (-654 |#1|))) (-15 -2798 ($ |#1| $)))) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3083 ((|#1| $) 30)) (-3034 (((-112) $ (-781)) NIL)) (-3316 ((|#1| $ |#1|) 32 (|has| $ (-6 -4457)))) (-2412 (($ $ $) 36 (|has| $ (-6 -4457)))) (-1938 (($ $ $) 34 (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4457))) (($ $ "left" $) NIL (|has| $ (-6 -4457))) (($ $ "right" $) NIL (|has| $ (-6 -4457)))) (-2183 (($ $ (-654 $)) NIL (|has| $ (-6 -4457)))) (-3426 (($) NIL T CONST)) (-3904 (($ $) 23)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3820 (((-654 $) $) NIL)) (-2278 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-1582 (($ $ |#1| $) 16)) (-2742 (((-112) $ (-781)) NIL)) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2449 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-3891 (($ $) 22)) (-3507 (((-654 |#1|) $) NIL)) (-3632 (((-112) $) 25)) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) NIL)) (-1584 (((-112) $) 20)) (-2672 (($) 11)) (-2199 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3867 (((-574) $ $) NIL)) (-2479 (((-112) $) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2321 (((-654 $) $) NIL)) (-4418 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3036 (($ |#1|) 18) (($ $ |#1| $) 17)) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 10 (|has| |#1| (-1113)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-128 |#1|) (-13 (-126 |#1|) (-10 -8 (-15 -3036 ($ |#1|)) (-15 -3036 ($ $ |#1| $)))) (-1113)) (T -128)) -((-3036 (*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1113)))) (-3036 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1113))))) -(-13 (-126 |#1|) (-10 -8 (-15 -3036 ($ |#1|)) (-15 -3036 ($ $ |#1| $)))) -((-2849 (((-112) $ $) NIL (|has| (-130) (-1113)))) (-3714 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-1357 (((-112) (-1 (-112) (-130) (-130)) $) NIL) (((-112) $) NIL (|has| (-130) (-860)))) (-3642 (($ (-1 (-112) (-130) (-130)) $) NIL (|has| $ (-6 -4457))) (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| (-130) (-860))))) (-2771 (($ (-1 (-112) (-130) (-130)) $) NIL) (($ $) NIL (|has| (-130) (-860)))) (-3034 (((-112) $ (-781)) NIL)) (-3143 (((-130) $ (-574) (-130)) 26 (|has| $ (-6 -4457))) (((-130) $ (-1248 (-574)) (-130)) NIL (|has| $ (-6 -4457)))) (-4294 (((-781) $ (-781)) 34)) (-2165 (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4456)))) (-3426 (($) NIL T CONST)) (-2627 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-130) (-1113))))) (-3335 (($ (-130) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-130) (-1113)))) (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4456)))) (-2868 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4456)) (|has| (-130) (-1113)))) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4456))) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4456)))) (-2458 (((-130) $ (-574) (-130)) 25 (|has| $ (-6 -4457)))) (-2385 (((-130) $ (-574)) 20)) (-1441 (((-574) (-1 (-112) (-130)) $) NIL) (((-574) (-130) $) NIL (|has| (-130) (-1113))) (((-574) (-130) $ (-574)) NIL (|has| (-130) (-1113)))) (-1864 (((-654 (-130)) $) NIL (|has| $ (-6 -4456)))) (-3790 (($ (-781) (-130)) 14)) (-2742 (((-112) $ (-781)) NIL)) (-3618 (((-574) $) 27 (|has| (-574) (-860)))) (-3659 (($ $ $) NIL (|has| (-130) (-860)))) (-4430 (($ (-1 (-112) (-130) (-130)) $ $) NIL) (($ $ $) NIL (|has| (-130) (-860)))) (-1606 (((-654 (-130)) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-130) (-1113))))) (-2702 (((-574) $) 30 (|has| (-574) (-860)))) (-4257 (($ $ $) NIL (|has| (-130) (-860)))) (-2449 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 (-130) (-130)) $) NIL) (($ (-1 (-130) (-130) (-130)) $ $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL (|has| (-130) (-1113)))) (-1594 (($ (-130) $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-4308 (((-654 (-574)) $) NIL)) (-3336 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL (|has| (-130) (-1113)))) (-2915 (((-130) $) NIL (|has| (-574) (-860)))) (-1549 (((-3 (-130) "failed") (-1 (-112) (-130)) $) NIL)) (-1942 (($ $ (-130)) NIL (|has| $ (-6 -4457)))) (-2540 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-130)))) NIL (-12 (|has| (-130) (-317 (-130))) (|has| (-130) (-1113)))) (($ $ (-302 (-130))) NIL (-12 (|has| (-130) (-317 (-130))) (|has| (-130) (-1113)))) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-317 (-130))) (|has| (-130) (-1113)))) (($ $ (-654 (-130)) (-654 (-130))) NIL (-12 (|has| (-130) (-317 (-130))) (|has| (-130) (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-130) (-1113))))) (-4371 (((-654 (-130)) $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) 12)) (-2199 (((-130) $ (-574) (-130)) NIL) (((-130) $ (-574)) 23) (($ $ (-1248 (-574))) NIL)) (-2840 (($ $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-3975 (((-781) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4456))) (((-781) (-130) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-130) (-1113))))) (-3506 (($ $ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3167 (($ $) NIL)) (-1836 (((-546) $) NIL (|has| (-130) (-624 (-546))))) (-2956 (($ (-654 (-130))) 46)) (-4157 (($ $ (-130)) NIL) (($ (-130) $) NIL) (($ $ $) 47) (($ (-654 $)) NIL)) (-2943 (((-969 (-130)) $) 35) (((-1172) $) 43) (((-872) $) NIL (|has| (-130) (-623 (-872))))) (-2068 (((-781) $) 18)) (-4387 (($ (-781)) 8)) (-3284 (((-112) $ $) NIL (|has| (-130) (-1113)))) (-3390 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4456)))) (-3042 (((-112) $ $) NIL (|has| (-130) (-860)))) (-3018 (((-112) $ $) NIL (|has| (-130) (-860)))) (-2981 (((-112) $ $) 32 (|has| (-130) (-1113)))) (-3030 (((-112) $ $) NIL (|has| (-130) (-860)))) (-3007 (((-112) $ $) NIL (|has| (-130) (-860)))) (-2863 (((-781) $) 15 (|has| $ (-6 -4456))))) -(((-129) (-13 (-19 (-130)) (-623 (-969 (-130))) (-623 (-1172)) (-10 -8 (-15 -4387 ($ (-781))) (-15 -2068 ((-781) $)) (-15 -4294 ((-781) $ (-781))) (-6 -4456)))) (T -129)) -((-4387 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-129)))) (-2068 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-129)))) (-4294 (*1 *2 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-129))))) -(-13 (-19 (-130)) (-623 (-969 (-130))) (-623 (-1172)) (-10 -8 (-15 -4387 ($ (-781))) (-15 -2068 ((-781) $)) (-15 -4294 ((-781) $ (-781))) (-6 -4456))) -((-2849 (((-112) $ $) NIL)) (-1487 (((-781)) 26)) (-3426 (($) NIL T CONST)) (-2820 (($) 35)) (-3659 (($ $ $) NIL) (($) 24 T CONST)) (-4257 (($ $ $) NIL) (($) 25 T CONST)) (-4115 (((-932) $) 33)) (-4136 (((-1172) $) NIL)) (-2576 (($ (-932)) 31)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL) (($ (-145)) 15) (((-145) $) 17)) (-3002 (($ (-781)) 8)) (-1753 (($ $ $) 37)) (-1743 (($ $ $) 36)) (-3284 (((-112) $ $) NIL)) (-3042 (((-112) $ $) 22)) (-3018 (((-112) $ $) 20)) (-2981 (((-112) $ $) 18)) (-3030 (((-112) $ $) 21)) (-3007 (((-112) $ $) 19))) -(((-130) (-13 (-854) (-500 (-145)) (-10 -8 (-15 -3002 ($ (-781))) (-15 -1743 ($ $ $)) (-15 -1753 ($ $ $)) (-15 -3426 ($) -1706)))) (T -130)) -((-3002 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-130)))) (-1743 (*1 *1 *1 *1) (-5 *1 (-130))) (-1753 (*1 *1 *1 *1) (-5 *1 (-130))) (-3426 (*1 *1) (-5 *1 (-130)))) -(-13 (-854) (-500 (-145)) (-10 -8 (-15 -3002 ($ (-781))) (-15 -1743 ($ $ $)) (-15 -1753 ($ $ $)) (-15 -3426 ($) -1706))) +((-1419 (*1 *1 *1 *1) (-4 *1 (-124))) (-3695 (*1 *1 *1 *1) (-4 *1 (-124))) (-2108 (*1 *1 *1 *1) (-4 *1 (-124)))) +(-13 (-859) (-113) (-670) (-19 (-112)) (-10 -8 (-15 -1419 ($ $ $)) (-15 -3695 ($ $ $)) (-15 -2108 ($ $ $)))) +(((-34) . T) ((-102) . T) ((-113) . T) ((-622 (-871)) . T) ((-152 #0=(-112)) . T) ((-623 (-545)) |has| (-112) (-623 (-545))) ((-293 #1=(-573) #0#) . T) ((-293 (-1247 (-573)) $) . T) ((-295 #1# #0#) . T) ((-316 #0#) -12 (|has| (-112) (-316 (-112))) (|has| (-112) (-1112))) ((-381 #0#) . T) ((-498 #0#) . T) ((-613 #1# #0#) . T) ((-523 #0# #0#) -12 (|has| (-112) (-316 (-112))) (|has| (-112) (-1112))) ((-660 #0#) . T) ((-670) . T) ((-19 #0#) . T) ((-859) . T) ((-1112) . T) ((-1230) . T)) +((-2446 (($ (-1 |#2| |#2|) $) 22)) (-3166 (($ $) 16)) (-2862 (((-780) $) 25))) +(((-125 |#1| |#2|) (-10 -8 (-15 -2446 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2862 ((-780) |#1|)) (-15 -3166 (|#1| |#1|))) (-126 |#2|) (-1112)) (T -125)) +NIL +(-10 -8 (-15 -2446 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2862 ((-780) |#1|)) (-15 -3166 (|#1| |#1|))) +((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3082 ((|#1| $) 49)) (-3450 (((-112) $ (-780)) 8)) (-2367 ((|#1| $ |#1|) 40 (|has| $ (-6 -4456)))) (-2357 (($ $ $) 53 (|has| $ (-6 -4456)))) (-3837 (($ $ $) 55 (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4456))) (($ $ "left" $) 56 (|has| $ (-6 -4456))) (($ $ "right" $) 54 (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) 42 (|has| $ (-6 -4456)))) (-2579 (($) 7 T CONST)) (-3903 (($ $) 58)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) 51)) (-3208 (((-112) $ $) 43 (|has| |#1| (-1112)))) (-1581 (($ $ |#1| $) 61)) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3890 (($ $) 60)) (-3505 (((-653 |#1|) $) 46)) (-2880 (((-112) $) 50)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-1501 (((-573) $ $) 45)) (-1628 (((-112) $) 47)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) 52)) (-1716 (((-112) $ $) 44 (|has| |#1| (-1112)))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-126 |#1|) (-141) (-1112)) (T -126)) +((-1581 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1112))))) +(-13 (-120 |t#1|) (-10 -8 (-6 -4456) (-6 -4455) (-15 -1581 ($ $ |t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1112)) ((-120 |#1|) . T) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1022 |#1|) . T) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3082 ((|#1| $) 18)) (-3450 (((-112) $ (-780)) NIL)) (-2367 ((|#1| $ |#1|) 22 (|has| $ (-6 -4456)))) (-2357 (($ $ $) 23 (|has| $ (-6 -4456)))) (-3837 (($ $ $) 21 (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4456))) (($ $ "left" $) NIL (|has| $ (-6 -4456))) (($ $ "right" $) NIL (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) NIL (|has| $ (-6 -4456)))) (-2579 (($) NIL T CONST)) (-3903 (($ $) 24)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) NIL)) (-3208 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1581 (($ $ |#1| $) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3890 (($ $) NIL)) (-3505 (((-653 |#1|) $) NIL)) (-2880 (((-112) $) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3181 (($ |#1| $) 15)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) 17)) (-3508 (($) 11)) (-2198 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1501 (((-573) $ $) NIL)) (-1628 (((-112) $) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) 20)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) NIL)) (-1716 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2893 (($ (-653 |#1|)) 16)) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-127 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4456) (-15 -2893 ($ (-653 |#1|))) (-15 -3181 ($ |#1| $)))) (-859)) (T -127)) +((-2893 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-859)) (-5 *1 (-127 *3)))) (-3181 (*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-859))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4456) (-15 -2893 ($ (-653 |#1|))) (-15 -3181 ($ |#1| $)))) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3082 ((|#1| $) 30)) (-3450 (((-112) $ (-780)) NIL)) (-2367 ((|#1| $ |#1|) 32 (|has| $ (-6 -4456)))) (-2357 (($ $ $) 36 (|has| $ (-6 -4456)))) (-3837 (($ $ $) 34 (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4456))) (($ $ "left" $) NIL (|has| $ (-6 -4456))) (($ $ "right" $) NIL (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) NIL (|has| $ (-6 -4456)))) (-2579 (($) NIL T CONST)) (-3903 (($ $) 23)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) NIL)) (-3208 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1581 (($ $ |#1| $) 16)) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3890 (($ $) 22)) (-3505 (((-653 |#1|) $) NIL)) (-2880 (((-112) $) 25)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) 20)) (-3508 (($) 11)) (-2198 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1501 (((-573) $ $) NIL)) (-1628 (((-112) $) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) NIL)) (-1716 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2366 (($ |#1|) 18) (($ $ |#1| $) 17)) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 10 (|has| |#1| (-1112)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-128 |#1|) (-13 (-126 |#1|) (-10 -8 (-15 -2366 ($ |#1|)) (-15 -2366 ($ $ |#1| $)))) (-1112)) (T -128)) +((-2366 (*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1112)))) (-2366 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1112))))) +(-13 (-126 |#1|) (-10 -8 (-15 -2366 ($ |#1|)) (-15 -2366 ($ $ |#1| $)))) +((-2848 (((-112) $ $) NIL (|has| (-130) (-1112)))) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-1473 (((-112) (-1 (-112) (-130) (-130)) $) NIL) (((-112) $) NIL (|has| (-130) (-859)))) (-2748 (($ (-1 (-112) (-130) (-130)) $) NIL (|has| $ (-6 -4456))) (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-130) (-859))))) (-2770 (($ (-1 (-112) (-130) (-130)) $) NIL) (($ $) NIL (|has| (-130) (-859)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 (((-130) $ (-573) (-130)) 26 (|has| $ (-6 -4456))) (((-130) $ (-1247 (-573)) (-130)) NIL (|has| $ (-6 -4456)))) (-3293 (((-780) $ (-780)) 34)) (-2164 (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-130) (-1112))))) (-3334 (($ (-130) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-130) (-1112)))) (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4455)))) (-2867 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4455)) (|has| (-130) (-1112)))) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4455))) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4455)))) (-2457 (((-130) $ (-573) (-130)) 25 (|has| $ (-6 -4456)))) (-2384 (((-130) $ (-573)) 20)) (-1440 (((-573) (-1 (-112) (-130)) $) NIL) (((-573) (-130) $) NIL (|has| (-130) (-1112))) (((-573) (-130) $ (-573)) NIL (|has| (-130) (-1112)))) (-1863 (((-653 (-130)) $) NIL (|has| $ (-6 -4455)))) (-3789 (($ (-780) (-130)) 14)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) 27 (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (|has| (-130) (-859)))) (-1480 (($ (-1 (-112) (-130) (-130)) $ $) NIL) (($ $ $) NIL (|has| (-130) (-859)))) (-3214 (((-653 (-130)) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-130) (-1112))))) (-3470 (((-573) $) 30 (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| (-130) (-859)))) (-2446 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-130) (-130)) $) NIL) (($ (-1 (-130) (-130) (-130)) $ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| (-130) (-1112)))) (-1593 (($ (-130) $ (-573)) NIL) (($ $ $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL (|has| (-130) (-1112)))) (-2914 (((-130) $) NIL (|has| (-573) (-859)))) (-2036 (((-3 (-130) "failed") (-1 (-112) (-130)) $) NIL)) (-3112 (($ $ (-130)) NIL (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-130)))) NIL (-12 (|has| (-130) (-316 (-130))) (|has| (-130) (-1112)))) (($ $ (-301 (-130))) NIL (-12 (|has| (-130) (-316 (-130))) (|has| (-130) (-1112)))) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-316 (-130))) (|has| (-130) (-1112)))) (($ $ (-653 (-130)) (-653 (-130))) NIL (-12 (|has| (-130) (-316 (-130))) (|has| (-130) (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-130) (-1112))))) (-1535 (((-653 (-130)) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) 12)) (-2198 (((-130) $ (-573) (-130)) NIL) (((-130) $ (-573)) 23) (($ $ (-1247 (-573))) NIL)) (-2836 (($ $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-3974 (((-780) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4455))) (((-780) (-130) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-130) (-1112))))) (-3919 (($ $ $ (-573)) NIL (|has| $ (-6 -4456)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-130) (-623 (-545))))) (-2955 (($ (-653 (-130))) 46)) (-4156 (($ $ (-130)) NIL) (($ (-130) $) NIL) (($ $ $) 47) (($ (-653 $)) NIL)) (-2942 (((-968 (-130)) $) 35) (((-1171) $) 43) (((-871) $) NIL (|has| (-130) (-622 (-871))))) (-2393 (((-780) $) 18)) (-2788 (($ (-780)) 8)) (-3507 (((-112) $ $) NIL (|has| (-130) (-1112)))) (-1646 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) NIL (|has| (-130) (-859)))) (-3015 (((-112) $ $) NIL (|has| (-130) (-859)))) (-2981 (((-112) $ $) 32 (|has| (-130) (-1112)))) (-3027 (((-112) $ $) NIL (|has| (-130) (-859)))) (-3005 (((-112) $ $) NIL (|has| (-130) (-859)))) (-2862 (((-780) $) 15 (|has| $ (-6 -4455))))) +(((-129) (-13 (-19 (-130)) (-622 (-968 (-130))) (-622 (-1171)) (-10 -8 (-15 -2788 ($ (-780))) (-15 -2393 ((-780) $)) (-15 -3293 ((-780) $ (-780))) (-6 -4455)))) (T -129)) +((-2788 (*1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-129)))) (-2393 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-129)))) (-3293 (*1 *2 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-129))))) +(-13 (-19 (-130)) (-622 (-968 (-130))) (-622 (-1171)) (-10 -8 (-15 -2788 ($ (-780))) (-15 -2393 ((-780) $)) (-15 -3293 ((-780) $ (-780))) (-6 -4455))) +((-2848 (((-112) $ $) NIL)) (-1486 (((-780)) 26)) (-2579 (($) NIL T CONST)) (-2819 (($) 35)) (-3659 (($ $ $) NIL) (($) 24 T CONST)) (-3751 (($ $ $) NIL) (($) 25 T CONST)) (-3589 (((-931) $) 33)) (-3180 (((-1171) $) NIL)) (-2575 (($ (-931)) 31)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL) (($ (-145)) 15) (((-145) $) 17)) (-3001 (($ (-780)) 8)) (-1752 (($ $ $) 37)) (-1741 (($ $ $) 36)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) 22)) (-3015 (((-112) $ $) 20)) (-2981 (((-112) $ $) 18)) (-3027 (((-112) $ $) 21)) (-3005 (((-112) $ $) 19))) +(((-130) (-13 (-853) (-499 (-145)) (-10 -8 (-15 -3001 ($ (-780))) (-15 -1741 ($ $ $)) (-15 -1752 ($ $ $)) (-15 -2579 ($) -1705)))) (T -130)) +((-3001 (*1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-130)))) (-1741 (*1 *1 *1 *1) (-5 *1 (-130))) (-1752 (*1 *1 *1 *1) (-5 *1 (-130))) (-2579 (*1 *1) (-5 *1 (-130)))) +(-13 (-853) (-499 (-145)) (-10 -8 (-15 -3001 ($ (-780))) (-15 -1741 ($ $ $)) (-15 -1752 ($ $ $)) (-15 -2579 ($) -1705))) ((|NonNegativeInteger|) (|%ilt| |#1| 256)) -((-2849 (((-112) $ $) NIL)) (-3319 (($) 6 T CONST)) (-2557 (($) 7 T CONST)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 14)) (-3428 (($) 8 T CONST)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 10))) -(((-131) (-13 (-1113) (-10 -8 (-15 -2557 ($) -1706) (-15 -3428 ($) -1706) (-15 -3319 ($) -1706)))) (T -131)) -((-2557 (*1 *1) (-5 *1 (-131))) (-3428 (*1 *1) (-5 *1 (-131))) (-3319 (*1 *1) (-5 *1 (-131)))) -(-13 (-1113) (-10 -8 (-15 -2557 ($) -1706) (-15 -3428 ($) -1706) (-15 -3319 ($) -1706))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3079 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16))) +((-2848 (((-112) $ $) NIL)) (-2680 (($) 6 T CONST)) (-2634 (($) 7 T CONST)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 14)) (-2803 (($) 8 T CONST)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 10))) +(((-131) (-13 (-1112) (-10 -8 (-15 -2634 ($) -1705) (-15 -2803 ($) -1705) (-15 -2680 ($) -1705)))) (T -131)) +((-2634 (*1 *1) (-5 *1 (-131))) (-2803 (*1 *1) (-5 *1 (-131))) (-2680 (*1 *1) (-5 *1 (-131)))) +(-13 (-1112) (-10 -8 (-15 -2634 ($) -1705) (-15 -2803 ($) -1705) (-15 -2680 ($) -1705))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16))) (((-132) (-141)) (T -132)) -((-3524 (*1 *1 *1 *1) (|partial| -4 *1 (-132)))) -(-13 (-23) (-10 -8 (-15 -3524 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-1113) . T)) -((-2849 (((-112) $ $) 7)) (-2048 (((-1286) $ (-781)) 14)) (-1441 (((-781) $) 15)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) +((-2983 (*1 *1 *1 *1) (|partial| -4 *1 (-132)))) +(-13 (-23) (-10 -8 (-15 -2983 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) +((-2848 (((-112) $ $) 7)) (-4239 (((-1285) $ (-780)) 14)) (-1440 (((-780) $) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) (((-133) (-141)) (T -133)) -((-1441 (*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-781)))) (-2048 (*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-781)) (-5 *2 (-1286))))) -(-13 (-1113) (-10 -8 (-15 -1441 ((-781) $)) (-15 -2048 ((-1286) $ (-781))))) -(((-102) . T) ((-623 (-872)) . T) ((-1113) . T)) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 16) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2044 (((-654 (-1148)) $) 10)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-134) (-13 (-1096) (-10 -8 (-15 -2044 ((-654 (-1148)) $))))) (T -134)) -((-2044 (*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-134))))) -(-13 (-1096) (-10 -8 (-15 -2044 ((-654 (-1148)) $)))) -((-2849 (((-112) $ $) 49)) (-3138 (((-112) $) NIL)) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-781) "failed") $) 58)) (-2206 (((-781) $) 56)) (-3434 (((-3 $ "failed") $) NIL)) (-3199 (((-112) $) NIL)) (-3659 (($ $ $) NIL)) (-4257 (($ $ $) 37)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-1707 (((-112)) 59)) (-3070 (((-112) (-112)) 61)) (-1473 (((-112) $) 30)) (-2673 (((-112) $) 55)) (-2943 (((-872) $) 28) (($ (-781)) 20)) (-3284 (((-112) $ $) NIL)) (-2133 (($) 18 T CONST)) (-2145 (($) 19 T CONST)) (-4364 (($ (-781)) 21)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 40)) (-2981 (((-112) $ $) 32)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) 35)) (-3094 (((-3 $ "failed") $ $) 42)) (-3079 (($ $ $) 38)) (** (($ $ (-781)) NIL) (($ $ (-932)) NIL) (($ $ $) 54)) (* (($ (-781) $) 48) (($ (-932) $) NIL) (($ $ $) 45))) -(((-135) (-13 (-860) (-23) (-736) (-1051 (-781)) (-10 -8 (-6 (-4458 "*")) (-15 -3094 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -4364 ($ (-781))) (-15 -1473 ((-112) $)) (-15 -2673 ((-112) $)) (-15 -1707 ((-112))) (-15 -3070 ((-112) (-112)))))) (T -135)) -((-3094 (*1 *1 *1 *1) (|partial| -5 *1 (-135))) (** (*1 *1 *1 *1) (-5 *1 (-135))) (-4364 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-135)))) (-1473 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2673 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-1707 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3070 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(-13 (-860) (-23) (-736) (-1051 (-781)) (-10 -8 (-6 (-4458 "*")) (-15 -3094 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -4364 ($ (-781))) (-15 -1473 ((-112) $)) (-15 -2673 ((-112) $)) (-15 -1707 ((-112))) (-15 -3070 ((-112) (-112))))) -((-1339 (((-137 |#1| |#2| |#4|) (-654 |#4|) (-137 |#1| |#2| |#3|)) 14)) (-1777 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18))) -(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1339 ((-137 |#1| |#2| |#4|) (-654 |#4|) (-137 |#1| |#2| |#3|))) (-15 -1777 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-574) (-781) (-174) (-174)) (T -136)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-574)) (-14 *6 (-781)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-1339 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-574)) (-14 *6 (-781)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))) -(-10 -7 (-15 -1339 ((-137 |#1| |#2| |#4|) (-654 |#4|) (-137 |#1| |#2| |#3|))) (-15 -1777 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) -((-2849 (((-112) $ $) NIL)) (-4415 (($ (-654 |#3|)) 61)) (-2100 (($ $) 123) (($ $ (-574) (-574)) 122)) (-3426 (($) 20)) (-1696 (((-3 |#3| "failed") $) 83)) (-2206 ((|#3| $) NIL)) (-2387 (($ $ (-654 (-574))) 124)) (-1325 (((-654 |#3|) $) 56)) (-3584 (((-781) $) 66)) (-3237 (($ $ $) 117)) (-3928 (($) 65)) (-4136 (((-1172) $) NIL)) (-4148 (($) 19)) (-3966 (((-1133) $) NIL)) (-2199 ((|#3| $ (-574)) 69) ((|#3| $) 68) ((|#3| $ (-574) (-574)) 70) ((|#3| $ (-574) (-574) (-574)) 71) ((|#3| $ (-574) (-574) (-574) (-574)) 72) ((|#3| $ (-654 (-574))) 73)) (-4202 (((-781) $) 67)) (-1711 (($ $ (-574) $ (-574)) 118) (($ $ (-574) (-574)) 120)) (-2943 (((-872) $) 91) (($ |#3|) 92) (($ (-246 |#2| |#3|)) 99) (($ (-1155 |#2| |#3|)) 102) (($ (-654 |#3|)) 74) (($ (-654 $)) 80)) (-3284 (((-112) $ $) NIL)) (-2133 (($) 93 T CONST)) (-2145 (($) 94 T CONST)) (-2981 (((-112) $ $) 104)) (-3094 (($ $) 110) (($ $ $) 108)) (-3079 (($ $ $) 106)) (* (($ |#3| $) 115) (($ $ |#3|) 116) (($ $ (-574)) 113) (($ (-574) $) 112) (($ $ $) 119))) -(((-137 |#1| |#2| |#3|) (-13 (-475 |#3| (-781)) (-480 (-574) (-781)) (-294 (-574) |#3|) (-10 -8 (-15 -2943 ($ (-246 |#2| |#3|))) (-15 -2943 ($ (-1155 |#2| |#3|))) (-15 -2943 ($ (-654 |#3|))) (-15 -2943 ($ (-654 $))) (-15 -3584 ((-781) $)) (-15 -2199 (|#3| $)) (-15 -2199 (|#3| $ (-574) (-574))) (-15 -2199 (|#3| $ (-574) (-574) (-574))) (-15 -2199 (|#3| $ (-574) (-574) (-574) (-574))) (-15 -2199 (|#3| $ (-654 (-574)))) (-15 -3237 ($ $ $)) (-15 * ($ $ $)) (-15 -1711 ($ $ (-574) $ (-574))) (-15 -1711 ($ $ (-574) (-574))) (-15 -2100 ($ $)) (-15 -2100 ($ $ (-574) (-574))) (-15 -2387 ($ $ (-654 (-574)))) (-15 -4148 ($)) (-15 -3928 ($)) (-15 -1325 ((-654 |#3|) $)) (-15 -4415 ($ (-654 |#3|))) (-15 -3426 ($)))) (-574) (-781) (-174)) (T -137)) -((-3237 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-781)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-1155 *4 *5)) (-14 *4 (-781)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-654 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-654 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)) (-4 *5 (-174)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 *2) (-4 *5 (-174)))) (-2199 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-574)) (-14 *4 (-781)))) (-2199 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-781)))) (-2199 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-574)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-781)))) (-2199 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-574)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-781)))) (-2199 (*1 *2 *1 *3) (-12 (-5 *3 (-654 (-574))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-574)) (-14 *5 (-781)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) (-1711 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-781)) (-4 *5 (-174)))) (-1711 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-781)) (-4 *5 (-174)))) (-2100 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) (-2100 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-781)) (-4 *5 (-174)))) (-2387 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)) (-4 *5 (-174)))) (-4148 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) (-3928 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-654 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)) (-4 *5 (-174)))) (-4415 (*1 *1 *2) (-12 (-5 *2 (-654 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)))) (-3426 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174))))) -(-13 (-475 |#3| (-781)) (-480 (-574) (-781)) (-294 (-574) |#3|) (-10 -8 (-15 -2943 ($ (-246 |#2| |#3|))) (-15 -2943 ($ (-1155 |#2| |#3|))) (-15 -2943 ($ (-654 |#3|))) (-15 -2943 ($ (-654 $))) (-15 -3584 ((-781) $)) (-15 -2199 (|#3| $)) (-15 -2199 (|#3| $ (-574) (-574))) (-15 -2199 (|#3| $ (-574) (-574) (-574))) (-15 -2199 (|#3| $ (-574) (-574) (-574) (-574))) (-15 -2199 (|#3| $ (-654 (-574)))) (-15 -3237 ($ $ $)) (-15 * ($ $ $)) (-15 -1711 ($ $ (-574) $ (-574))) (-15 -1711 ($ $ (-574) (-574))) (-15 -2100 ($ $)) (-15 -2100 ($ $ (-574) (-574))) (-15 -2387 ($ $ (-654 (-574)))) (-15 -4148 ($)) (-15 -3928 ($)) (-15 -1325 ((-654 |#3|) $)) (-15 -4415 ($ (-654 |#3|))) (-15 -3426 ($)))) -((-2849 (((-112) $ $) NIL)) (-1809 (((-1148) $) 11)) (-1796 (((-1148) $) 9)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 17) (($ (-1195)) NIL) (((-1195) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-138) (-13 (-1096) (-10 -8 (-15 -1796 ((-1148) $)) (-15 -1809 ((-1148) $))))) (T -138)) -((-1796 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-138)))) (-1809 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-138))))) -(-13 (-1096) (-10 -8 (-15 -1796 ((-1148) $)) (-15 -1809 ((-1148) $)))) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-4282 (((-188) $) 10)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 20) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2044 (((-654 (-1148)) $) 13)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-139) (-13 (-1096) (-10 -8 (-15 -4282 ((-188) $)) (-15 -2044 ((-654 (-1148)) $))))) (T -139)) -((-4282 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) (-2044 (*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-139))))) -(-13 (-1096) (-10 -8 (-15 -4282 ((-188) $)) (-15 -2044 ((-654 (-1148)) $)))) -((-2849 (((-112) $ $) NIL)) (-1715 (((-654 (-875)) $) NIL)) (-2032 (((-516) $) NIL)) (-4136 (((-1172) $) NIL)) (-4282 (((-188) $) NIL)) (-4103 (((-112) $ (-516)) NIL)) (-3966 (((-1133) $) NIL)) (-3950 (((-654 (-112)) $) NIL)) (-2943 (((-872) $) NIL) (((-189) $) 6)) (-3284 (((-112) $ $) NIL)) (-4183 (((-55) $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-140) (-13 (-187) (-623 (-189)))) (T -140)) -NIL -(-13 (-187) (-623 (-189))) -((-1935 (((-654 (-185 (-140))) $) 13)) (-1316 (((-654 (-185 (-140))) $) 14)) (-1708 (((-654 (-848)) $) 10)) (-1964 (((-140) $) 7)) (-2943 (((-872) $) 16))) -(((-141) (-13 (-623 (-872)) (-10 -8 (-15 -1964 ((-140) $)) (-15 -1708 ((-654 (-848)) $)) (-15 -1935 ((-654 (-185 (-140))) $)) (-15 -1316 ((-654 (-185 (-140))) $))))) (T -141)) -((-1964 (*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) (-1708 (*1 *2 *1) (-12 (-5 *2 (-654 (-848))) (-5 *1 (-141)))) (-1935 (*1 *2 *1) (-12 (-5 *2 (-654 (-185 (-140)))) (-5 *1 (-141)))) (-1316 (*1 *2 *1) (-12 (-5 *2 (-654 (-185 (-140)))) (-5 *1 (-141))))) -(-13 (-623 (-872)) (-10 -8 (-15 -1964 ((-140) $)) (-15 -1708 ((-654 (-848)) $)) (-15 -1935 ((-654 (-185 (-140))) $)) (-15 -1316 ((-654 (-185 (-140))) $)))) -((-2849 (((-112) $ $) NIL)) (-2874 (($) 17 T CONST)) (-1988 (($) NIL (|has| (-145) (-377)))) (-4359 (($ $ $) 19) (($ $ (-145)) NIL) (($ (-145) $) NIL)) (-2743 (($ $ $) NIL)) (-3605 (((-112) $ $) NIL)) (-3034 (((-112) $ (-781)) NIL)) (-1487 (((-781)) NIL (|has| (-145) (-377)))) (-1507 (($) NIL) (($ (-654 (-145))) NIL)) (-3572 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456)))) (-2165 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456)))) (-3426 (($) NIL T CONST)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113))))) (-2876 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456))) (($ (-145) $) 60 (|has| $ (-6 -4456)))) (-3335 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456))) (($ (-145) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113))))) (-2868 (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4456))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4456))) (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113))))) (-2820 (($) NIL (|has| (-145) (-377)))) (-1864 (((-654 (-145)) $) 69 (|has| $ (-6 -4456)))) (-3270 (((-112) $ $) NIL)) (-2742 (((-112) $ (-781)) NIL)) (-3659 (((-145) $) NIL (|has| (-145) (-860)))) (-1606 (((-654 (-145)) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) (-145) $) 27 (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113))))) (-4257 (((-145) $) NIL (|has| (-145) (-860)))) (-2449 (($ (-1 (-145) (-145)) $) 68 (|has| $ (-6 -4457)))) (-1777 (($ (-1 (-145) (-145)) $) 64)) (-2092 (($) 18 T CONST)) (-4115 (((-932) $) NIL (|has| (-145) (-377)))) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL)) (-1784 (($ $ $) 30)) (-2937 (((-145) $) 61)) (-2798 (($ (-145) $) 59)) (-2576 (($ (-932)) NIL (|has| (-145) (-377)))) (-3048 (($) 16 T CONST)) (-3966 (((-1133) $) NIL)) (-1549 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-1785 (((-145) $) 62)) (-2540 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-145)) (-654 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113)))) (($ $ (-302 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113)))) (($ $ (-654 (-302 (-145)))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113))))) (-4017 (((-112) $ $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) 57)) (-1550 (($) 15 T CONST)) (-4285 (($ $ $) 32) (($ $ (-145)) NIL)) (-1662 (($ (-654 (-145))) NIL) (($) NIL)) (-3975 (((-781) (-145) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113)))) (((-781) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) NIL)) (-1836 (((-1172) $) 37) (((-546) $) NIL (|has| (-145) (-624 (-546)))) (((-654 (-145)) $) 35)) (-2956 (($ (-654 (-145))) NIL)) (-1334 (($ $) 33 (|has| (-145) (-377)))) (-2943 (((-872) $) 53)) (-1803 (($ (-1172)) 14) (($ (-654 (-145))) 50)) (-4066 (((-781) $) NIL)) (-4281 (($) 58) (($ (-654 (-145))) NIL)) (-3284 (((-112) $ $) NIL)) (-1599 (($ (-654 (-145))) NIL)) (-3390 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456)))) (-3082 (($) 21 T CONST)) (-2433 (($) 20 T CONST)) (-2981 (((-112) $ $) 24)) (-2863 (((-781) $) 56 (|has| $ (-6 -4456))))) -(((-142) (-13 (-1113) (-624 (-1172)) (-435 (-145)) (-624 (-654 (-145))) (-10 -8 (-15 -1803 ($ (-1172))) (-15 -1803 ($ (-654 (-145)))) (-15 -1550 ($) -1706) (-15 -3048 ($) -1706) (-15 -2874 ($) -1706) (-15 -2092 ($) -1706) (-15 -2433 ($) -1706) (-15 -3082 ($) -1706)))) (T -142)) -((-1803 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-142)))) (-1803 (*1 *1 *2) (-12 (-5 *2 (-654 (-145))) (-5 *1 (-142)))) (-1550 (*1 *1) (-5 *1 (-142))) (-3048 (*1 *1) (-5 *1 (-142))) (-2874 (*1 *1) (-5 *1 (-142))) (-2092 (*1 *1) (-5 *1 (-142))) (-2433 (*1 *1) (-5 *1 (-142))) (-3082 (*1 *1) (-5 *1 (-142)))) -(-13 (-1113) (-624 (-1172)) (-435 (-145)) (-624 (-654 (-145))) (-10 -8 (-15 -1803 ($ (-1172))) (-15 -1803 ($ (-654 (-145)))) (-15 -1550 ($) -1706) (-15 -3048 ($) -1706) (-15 -2874 ($) -1706) (-15 -2092 ($) -1706) (-15 -2433 ($) -1706) (-15 -3082 ($) -1706))) -((-4098 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-1907 ((|#1| |#3|) 9)) (-2790 ((|#3| |#3|) 15))) -(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -1907 (|#1| |#3|)) (-15 -2790 (|#3| |#3|)) (-15 -4098 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-566) (-1005 |#1|) (-382 |#2|)) (T -143)) -((-4098 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-1005 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-382 *5)))) (-2790 (*1 *2 *2) (-12 (-4 *3 (-566)) (-4 *4 (-1005 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-382 *4)))) (-1907 (*1 *2 *3) (-12 (-4 *4 (-1005 *2)) (-4 *2 (-566)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-382 *4))))) -(-10 -7 (-15 -1907 (|#1| |#3|)) (-15 -2790 (|#3| |#3|)) (-15 -4098 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-3792 (($ $ $) 8)) (-2150 (($ $) 7)) (-1616 (($ $ $) 6))) +((-1440 (*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-780)))) (-4239 (*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-780)) (-5 *2 (-1285))))) +(-13 (-1112) (-10 -8 (-15 -1440 ((-780) $)) (-15 -4239 ((-1285) $ (-780))))) +(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 16) (($ (-1194)) NIL) (((-1194) $) NIL)) (-2043 (((-653 (-1147)) $) 10)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-134) (-13 (-1095) (-10 -8 (-15 -2043 ((-653 (-1147)) $))))) (T -134)) +((-2043 (*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-134))))) +(-13 (-1095) (-10 -8 (-15 -2043 ((-653 (-1147)) $)))) +((-2848 (((-112) $ $) 49)) (-1748 (((-112) $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-780) "failed") $) 58)) (-2205 (((-780) $) 56)) (-2232 (((-3 $ "failed") $) NIL)) (-1959 (((-112) $) NIL)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) 37)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-4352 (((-112)) 59)) (-3364 (((-112) (-112)) 61)) (-3854 (((-112) $) 30)) (-3595 (((-112) $) 55)) (-2942 (((-871) $) 28) (($ (-780)) 20)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 18 T CONST)) (-2144 (($) 19 T CONST)) (-1982 (($ (-780)) 21)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) 40)) (-2981 (((-112) $ $) 32)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 35)) (-3093 (((-3 $ "failed") $ $) 42)) (-3077 (($ $ $) 38)) (** (($ $ (-780)) NIL) (($ $ (-931)) NIL) (($ $ $) 54)) (* (($ (-780) $) 48) (($ (-931) $) NIL) (($ $ $) 45))) +(((-135) (-13 (-859) (-23) (-735) (-1050 (-780)) (-10 -8 (-6 (-4457 "*")) (-15 -3093 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1982 ($ (-780))) (-15 -3854 ((-112) $)) (-15 -3595 ((-112) $)) (-15 -4352 ((-112))) (-15 -3364 ((-112) (-112)))))) (T -135)) +((-3093 (*1 *1 *1 *1) (|partial| -5 *1 (-135))) (** (*1 *1 *1 *1) (-5 *1 (-135))) (-1982 (*1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-135)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3595 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-4352 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3364 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(-13 (-859) (-23) (-735) (-1050 (-780)) (-10 -8 (-6 (-4457 "*")) (-15 -3093 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1982 ($ (-780))) (-15 -3854 ((-112) $)) (-15 -3595 ((-112) $)) (-15 -4352 ((-112))) (-15 -3364 ((-112) (-112))))) +((-1338 (((-137 |#1| |#2| |#4|) (-653 |#4|) (-137 |#1| |#2| |#3|)) 14)) (-1776 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18))) +(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1338 ((-137 |#1| |#2| |#4|) (-653 |#4|) (-137 |#1| |#2| |#3|))) (-15 -1776 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-573) (-780) (-174) (-174)) (T -136)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-573)) (-14 *6 (-780)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-1338 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-573)) (-14 *6 (-780)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))) +(-10 -7 (-15 -1338 ((-137 |#1| |#2| |#4|) (-653 |#4|) (-137 |#1| |#2| |#3|))) (-15 -1776 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) +((-2848 (((-112) $ $) NIL)) (-2659 (($ (-653 |#3|)) 61)) (-1724 (($ $) 123) (($ $ (-573) (-573)) 122)) (-2579 (($) 20)) (-1695 (((-3 |#3| "failed") $) 83)) (-2205 ((|#3| $) NIL)) (-2175 (($ $ (-653 (-573))) 124)) (-1324 (((-653 |#3|) $) 56)) (-3583 (((-780) $) 66)) (-3044 (($ $ $) 117)) (-2489 (($) 65)) (-3180 (((-1171) $) NIL)) (-2783 (($) 19)) (-3965 (((-1132) $) NIL)) (-2198 ((|#3| $ (-573)) 69) ((|#3| $) 68) ((|#3| $ (-573) (-573)) 70) ((|#3| $ (-573) (-573) (-573)) 71) ((|#3| $ (-573) (-573) (-573) (-573)) 72) ((|#3| $ (-653 (-573))) 73)) (-2565 (((-780) $) 67)) (-1651 (($ $ (-573) $ (-573)) 118) (($ $ (-573) (-573)) 120)) (-2942 (((-871) $) 91) (($ |#3|) 92) (($ (-245 |#2| |#3|)) 99) (($ (-1154 |#2| |#3|)) 102) (($ (-653 |#3|)) 74) (($ (-653 $)) 80)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 93 T CONST)) (-2144 (($) 94 T CONST)) (-2981 (((-112) $ $) 104)) (-3093 (($ $) 110) (($ $ $) 108)) (-3077 (($ $ $) 106)) (* (($ |#3| $) 115) (($ $ |#3|) 116) (($ $ (-573)) 113) (($ (-573) $) 112) (($ $ $) 119))) +(((-137 |#1| |#2| |#3|) (-13 (-474 |#3| (-780)) (-479 (-573) (-780)) (-293 (-573) |#3|) (-10 -8 (-15 -2942 ($ (-245 |#2| |#3|))) (-15 -2942 ($ (-1154 |#2| |#3|))) (-15 -2942 ($ (-653 |#3|))) (-15 -2942 ($ (-653 $))) (-15 -3583 ((-780) $)) (-15 -2198 (|#3| $)) (-15 -2198 (|#3| $ (-573) (-573))) (-15 -2198 (|#3| $ (-573) (-573) (-573))) (-15 -2198 (|#3| $ (-573) (-573) (-573) (-573))) (-15 -2198 (|#3| $ (-653 (-573)))) (-15 -3044 ($ $ $)) (-15 * ($ $ $)) (-15 -1651 ($ $ (-573) $ (-573))) (-15 -1651 ($ $ (-573) (-573))) (-15 -1724 ($ $)) (-15 -1724 ($ $ (-573) (-573))) (-15 -2175 ($ $ (-653 (-573)))) (-15 -2783 ($)) (-15 -2489 ($)) (-15 -1324 ((-653 |#3|) $)) (-15 -2659 ($ (-653 |#3|))) (-15 -2579 ($)))) (-573) (-780) (-174)) (T -137)) +((-3044 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-573)) (-14 *3 (-780)) (-4 *4 (-174)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-245 *4 *5)) (-14 *4 (-780)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-573)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-1154 *4 *5)) (-14 *4 (-780)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-573)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-653 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-573)) (-14 *4 (-780)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-653 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-573)) (-14 *4 (-780)) (-4 *5 (-174)))) (-3583 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-573)) (-14 *4 *2) (-4 *5 (-174)))) (-2198 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-573)) (-14 *4 (-780)))) (-2198 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-573)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-780)))) (-2198 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-573)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-780)))) (-2198 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-573)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-780)))) (-2198 (*1 *2 *1 *3) (-12 (-5 *3 (-653 (-573))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-573)) (-14 *5 (-780)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-573)) (-14 *3 (-780)) (-4 *4 (-174)))) (-1651 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-780)) (-4 *5 (-174)))) (-1651 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-780)) (-4 *5 (-174)))) (-1724 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-573)) (-14 *3 (-780)) (-4 *4 (-174)))) (-1724 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-780)) (-4 *5 (-174)))) (-2175 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-573)) (-14 *4 (-780)) (-4 *5 (-174)))) (-2783 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-573)) (-14 *3 (-780)) (-4 *4 (-174)))) (-2489 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-573)) (-14 *3 (-780)) (-4 *4 (-174)))) (-1324 (*1 *2 *1) (-12 (-5 *2 (-653 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-573)) (-14 *4 (-780)) (-4 *5 (-174)))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-653 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-573)) (-14 *4 (-780)))) (-2579 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-573)) (-14 *3 (-780)) (-4 *4 (-174))))) +(-13 (-474 |#3| (-780)) (-479 (-573) (-780)) (-293 (-573) |#3|) (-10 -8 (-15 -2942 ($ (-245 |#2| |#3|))) (-15 -2942 ($ (-1154 |#2| |#3|))) (-15 -2942 ($ (-653 |#3|))) (-15 -2942 ($ (-653 $))) (-15 -3583 ((-780) $)) (-15 -2198 (|#3| $)) (-15 -2198 (|#3| $ (-573) (-573))) (-15 -2198 (|#3| $ (-573) (-573) (-573))) (-15 -2198 (|#3| $ (-573) (-573) (-573) (-573))) (-15 -2198 (|#3| $ (-653 (-573)))) (-15 -3044 ($ $ $)) (-15 * ($ $ $)) (-15 -1651 ($ $ (-573) $ (-573))) (-15 -1651 ($ $ (-573) (-573))) (-15 -1724 ($ $)) (-15 -1724 ($ $ (-573) (-573))) (-15 -2175 ($ $ (-653 (-573)))) (-15 -2783 ($)) (-15 -2489 ($)) (-15 -1324 ((-653 |#3|) $)) (-15 -2659 ($ (-653 |#3|))) (-15 -2579 ($)))) +((-2848 (((-112) $ $) NIL)) (-1808 (((-1147) $) 11)) (-1795 (((-1147) $) 9)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 17) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-138) (-13 (-1095) (-10 -8 (-15 -1795 ((-1147) $)) (-15 -1808 ((-1147) $))))) (T -138)) +((-1795 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-138)))) (-1808 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-138))))) +(-13 (-1095) (-10 -8 (-15 -1795 ((-1147) $)) (-15 -1808 ((-1147) $)))) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-4281 (((-188) $) 10)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 20) (($ (-1194)) NIL) (((-1194) $) NIL)) (-2043 (((-653 (-1147)) $) 13)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-139) (-13 (-1095) (-10 -8 (-15 -4281 ((-188) $)) (-15 -2043 ((-653 (-1147)) $))))) (T -139)) +((-4281 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) (-2043 (*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-139))))) +(-13 (-1095) (-10 -8 (-15 -4281 ((-188) $)) (-15 -2043 ((-653 (-1147)) $)))) +((-2848 (((-112) $ $) NIL)) (-1714 (((-653 (-874)) $) NIL)) (-2031 (((-515) $) NIL)) (-3180 (((-1171) $) NIL)) (-4281 (((-188) $) NIL)) (-1667 (((-112) $ (-515)) NIL)) (-3965 (((-1132) $) NIL)) (-2966 (((-653 (-112)) $) NIL)) (-2942 (((-871) $) NIL) (((-189) $) 6)) (-3507 (((-112) $ $) NIL)) (-4010 (((-55) $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-140) (-13 (-187) (-622 (-189)))) (T -140)) +NIL +(-13 (-187) (-622 (-189))) +((-1491 (((-653 (-185 (-140))) $) 13)) (-1315 (((-653 (-185 (-140))) $) 14)) (-1335 (((-653 (-847)) $) 10)) (-1963 (((-140) $) 7)) (-2942 (((-871) $) 16))) +(((-141) (-13 (-622 (-871)) (-10 -8 (-15 -1963 ((-140) $)) (-15 -1335 ((-653 (-847)) $)) (-15 -1491 ((-653 (-185 (-140))) $)) (-15 -1315 ((-653 (-185 (-140))) $))))) (T -141)) +((-1963 (*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) (-1335 (*1 *2 *1) (-12 (-5 *2 (-653 (-847))) (-5 *1 (-141)))) (-1491 (*1 *2 *1) (-12 (-5 *2 (-653 (-185 (-140)))) (-5 *1 (-141)))) (-1315 (*1 *2 *1) (-12 (-5 *2 (-653 (-185 (-140)))) (-5 *1 (-141))))) +(-13 (-622 (-871)) (-10 -8 (-15 -1963 ((-140) $)) (-15 -1335 ((-653 (-847)) $)) (-15 -1491 ((-653 (-185 (-140))) $)) (-15 -1315 ((-653 (-185 (-140))) $)))) +((-2848 (((-112) $ $) NIL)) (-2391 (($) 17 T CONST)) (-4393 (($) NIL (|has| (-145) (-376)))) (-4357 (($ $ $) 19) (($ $ (-145)) NIL) (($ (-145) $) NIL)) (-2180 (($ $ $) NIL)) (-3319 (((-112) $ $) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-1486 (((-780)) NIL (|has| (-145) (-376)))) (-1506 (($) NIL) (($ (-653 (-145))) NIL)) (-3557 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112))))) (-2596 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455))) (($ (-145) $) 60 (|has| $ (-6 -4455)))) (-3334 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455))) (($ (-145) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112))))) (-2867 (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4455))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4455))) (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112))))) (-2819 (($) NIL (|has| (-145) (-376)))) (-1863 (((-653 (-145)) $) 69 (|has| $ (-6 -4455)))) (-2897 (((-112) $ $) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-3659 (((-145) $) NIL (|has| (-145) (-859)))) (-3214 (((-653 (-145)) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-145) $) 27 (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112))))) (-3751 (((-145) $) NIL (|has| (-145) (-859)))) (-2446 (($ (-1 (-145) (-145)) $) 68 (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-145) (-145)) $) 64)) (-3878 (($) 18 T CONST)) (-3589 (((-931) $) NIL (|has| (-145) (-376)))) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-3716 (($ $ $) 30)) (-2487 (((-145) $) 61)) (-3181 (($ (-145) $) 59)) (-2575 (($ (-931)) NIL (|has| (-145) (-376)))) (-2337 (($) 16 T CONST)) (-3965 (((-1132) $) NIL)) (-2036 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-3815 (((-145) $) 62)) (-1575 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-145)) (-653 (-145))) NIL (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112)))) (($ $ (-301 (-145))) NIL (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112)))) (($ $ (-653 (-301 (-145)))) NIL (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) 57)) (-2135 (($) 15 T CONST)) (-3631 (($ $ $) 32) (($ $ (-145)) NIL)) (-2428 (($ (-653 (-145))) NIL) (($) NIL)) (-3974 (((-780) (-145) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112)))) (((-780) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) NIL)) (-1835 (((-1171) $) 37) (((-545) $) NIL (|has| (-145) (-623 (-545)))) (((-653 (-145)) $) 35)) (-2955 (($ (-653 (-145))) NIL)) (-3255 (($ $) 33 (|has| (-145) (-376)))) (-2942 (((-871) $) 53)) (-2653 (($ (-1171)) 14) (($ (-653 (-145))) 50)) (-3553 (((-780) $) NIL)) (-4280 (($) 58) (($ (-653 (-145))) NIL)) (-3507 (((-112) $ $) NIL)) (-2679 (($ (-653 (-145))) NIL)) (-1646 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455)))) (-2039 (($) 21 T CONST)) (-1502 (($) 20 T CONST)) (-2981 (((-112) $ $) 24)) (-2862 (((-780) $) 56 (|has| $ (-6 -4455))))) +(((-142) (-13 (-1112) (-623 (-1171)) (-434 (-145)) (-623 (-653 (-145))) (-10 -8 (-15 -2653 ($ (-1171))) (-15 -2653 ($ (-653 (-145)))) (-15 -2135 ($) -1705) (-15 -2337 ($) -1705) (-15 -2391 ($) -1705) (-15 -3878 ($) -1705) (-15 -1502 ($) -1705) (-15 -2039 ($) -1705)))) (T -142)) +((-2653 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-142)))) (-2653 (*1 *1 *2) (-12 (-5 *2 (-653 (-145))) (-5 *1 (-142)))) (-2135 (*1 *1) (-5 *1 (-142))) (-2337 (*1 *1) (-5 *1 (-142))) (-2391 (*1 *1) (-5 *1 (-142))) (-3878 (*1 *1) (-5 *1 (-142))) (-1502 (*1 *1) (-5 *1 (-142))) (-2039 (*1 *1) (-5 *1 (-142)))) +(-13 (-1112) (-623 (-1171)) (-434 (-145)) (-623 (-653 (-145))) (-10 -8 (-15 -2653 ($ (-1171))) (-15 -2653 ($ (-653 (-145)))) (-15 -2135 ($) -1705) (-15 -2337 ($) -1705) (-15 -2391 ($) -1705) (-15 -3878 ($) -1705) (-15 -1502 ($) -1705) (-15 -2039 ($) -1705))) +((-2382 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3343 ((|#1| |#3|) 9)) (-1946 ((|#3| |#3|) 15))) +(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -3343 (|#1| |#3|)) (-15 -1946 (|#3| |#3|)) (-15 -2382 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-565) (-1004 |#1|) (-381 |#2|)) (T -143)) +((-2382 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *5 (-1004 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-381 *5)))) (-1946 (*1 *2 *2) (-12 (-4 *3 (-565)) (-4 *4 (-1004 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-381 *4)))) (-3343 (*1 *2 *3) (-12 (-4 *4 (-1004 *2)) (-4 *2 (-565)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-381 *4))))) +(-10 -7 (-15 -3343 (|#1| |#3|)) (-15 -1946 (|#3| |#3|)) (-15 -2382 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-2637 (($ $ $) 8)) (-4264 (($ $) 7)) (-1677 (($ $ $) 6))) (((-144) (-141)) (T -144)) -((-3792 (*1 *1 *1 *1) (-4 *1 (-144))) (-2150 (*1 *1 *1) (-4 *1 (-144))) (-1616 (*1 *1 *1 *1) (-4 *1 (-144)))) -(-13 (-10 -8 (-15 -1616 ($ $ $)) (-15 -2150 ($ $)) (-15 -3792 ($ $ $)))) -((-2849 (((-112) $ $) NIL)) (-3229 (((-112) $) 39)) (-2874 (($ $) 55)) (-2554 (($) 26 T CONST)) (-1487 (((-781)) 13)) (-2820 (($) 25)) (-3797 (($) 27 T CONST)) (-4154 (((-781) $) 21)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-4257 (($ $ $) NIL) (($) NIL T CONST)) (-2992 (((-112) $) 41)) (-2092 (($ $) 56)) (-4115 (((-932) $) 23)) (-4136 (((-1172) $) 49)) (-2576 (($ (-932)) 20)) (-1455 (((-112) $) 37)) (-3966 (((-1133) $) NIL)) (-3268 (($) 28 T CONST)) (-2456 (((-112) $) 35)) (-2943 (((-872) $) 30)) (-2319 (($ (-781)) 19) (($ (-1172)) 54)) (-3284 (((-112) $ $) NIL)) (-4380 (((-112) $) 45)) (-2291 (((-112) $) 43)) (-3042 (((-112) $ $) 11)) (-3018 (((-112) $ $) 9)) (-2981 (((-112) $ $) 7)) (-3030 (((-112) $ $) 10)) (-3007 (((-112) $ $) 8))) -(((-145) (-13 (-854) (-10 -8 (-15 -4154 ((-781) $)) (-15 -2319 ($ (-781))) (-15 -2319 ($ (-1172))) (-15 -2554 ($) -1706) (-15 -3797 ($) -1706) (-15 -3268 ($) -1706) (-15 -2874 ($ $)) (-15 -2092 ($ $)) (-15 -2456 ((-112) $)) (-15 -1455 ((-112) $)) (-15 -2291 ((-112) $)) (-15 -3229 ((-112) $)) (-15 -2992 ((-112) $)) (-15 -4380 ((-112) $))))) (T -145)) -((-4154 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-145)))) (-2319 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-145)))) (-2319 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-145)))) (-2554 (*1 *1) (-5 *1 (-145))) (-3797 (*1 *1) (-5 *1 (-145))) (-3268 (*1 *1) (-5 *1 (-145))) (-2874 (*1 *1 *1) (-5 *1 (-145))) (-2092 (*1 *1 *1) (-5 *1 (-145))) (-2456 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1455 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2291 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3229 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2992 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(-13 (-854) (-10 -8 (-15 -4154 ((-781) $)) (-15 -2319 ($ (-781))) (-15 -2319 ($ (-1172))) (-15 -2554 ($) -1706) (-15 -3797 ($) -1706) (-15 -3268 ($) -1706) (-15 -2874 ($ $)) (-15 -2092 ($ $)) (-15 -2456 ((-112) $)) (-15 -1455 ((-112) $)) (-15 -2291 ((-112) $)) (-15 -3229 ((-112) $)) (-15 -2992 ((-112) $)) (-15 -4380 ((-112) $)))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-3434 (((-3 $ "failed") $) 37)) (-3199 (((-112) $) 35)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12) (($ (-574)) 33)) (-3298 (((-3 $ "failed") $) 39)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +((-2637 (*1 *1 *1 *1) (-4 *1 (-144))) (-4264 (*1 *1 *1) (-4 *1 (-144))) (-1677 (*1 *1 *1 *1) (-4 *1 (-144)))) +(-13 (-10 -8 (-15 -1677 ($ $ $)) (-15 -4264 ($ $)) (-15 -2637 ($ $ $)))) +((-2848 (((-112) $ $) NIL)) (-3509 (((-112) $) 39)) (-2391 (($ $) 55)) (-3614 (($) 26 T CONST)) (-1486 (((-780)) 13)) (-2819 (($) 25)) (-1889 (($) 27 T CONST)) (-2126 (((-780) $) 21)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-3751 (($ $ $) NIL) (($) NIL T CONST)) (-3556 (((-112) $) 41)) (-3878 (($ $) 56)) (-3589 (((-931) $) 23)) (-3180 (((-1171) $) 49)) (-2575 (($ (-931)) 20)) (-3990 (((-112) $) 37)) (-3965 (((-1132) $) NIL)) (-3930 (($) 28 T CONST)) (-3156 (((-112) $) 35)) (-2942 (((-871) $) 30)) (-2318 (($ (-780)) 19) (($ (-1171)) 54)) (-3507 (((-112) $ $) NIL)) (-3278 (((-112) $) 45)) (-1784 (((-112) $) 43)) (-3040 (((-112) $ $) 11)) (-3015 (((-112) $ $) 9)) (-2981 (((-112) $ $) 7)) (-3027 (((-112) $ $) 10)) (-3005 (((-112) $ $) 8))) +(((-145) (-13 (-853) (-10 -8 (-15 -2126 ((-780) $)) (-15 -2318 ($ (-780))) (-15 -2318 ($ (-1171))) (-15 -3614 ($) -1705) (-15 -1889 ($) -1705) (-15 -3930 ($) -1705) (-15 -2391 ($ $)) (-15 -3878 ($ $)) (-15 -3156 ((-112) $)) (-15 -3990 ((-112) $)) (-15 -1784 ((-112) $)) (-15 -3509 ((-112) $)) (-15 -3556 ((-112) $)) (-15 -3278 ((-112) $))))) (T -145)) +((-2126 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-145)))) (-2318 (*1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-145)))) (-2318 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-145)))) (-3614 (*1 *1) (-5 *1 (-145))) (-1889 (*1 *1) (-5 *1 (-145))) (-3930 (*1 *1) (-5 *1 (-145))) (-2391 (*1 *1 *1) (-5 *1 (-145))) (-3878 (*1 *1 *1) (-5 *1 (-145))) (-3156 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3990 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1784 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3278 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(-13 (-853) (-10 -8 (-15 -2126 ((-780) $)) (-15 -2318 ($ (-780))) (-15 -2318 ($ (-1171))) (-15 -3614 ($) -1705) (-15 -1889 ($) -1705) (-15 -3930 ($) -1705) (-15 -2391 ($ $)) (-15 -3878 ($ $)) (-15 -3156 ((-112) $)) (-15 -3990 ((-112) $)) (-15 -1784 ((-112) $)) (-15 -3509 ((-112) $)) (-15 -3556 ((-112) $)) (-15 -3278 ((-112) $)))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12) (($ (-573)) 33)) (-4279 (((-3 $ "failed") $) 39)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) (((-146) (-141)) (T -146)) -((-3298 (*1 *1 *1) (|partial| -4 *1 (-146)))) -(-13 (-1062) (-10 -8 (-15 -3298 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T)) -((-1435 ((|#1| (-699 |#1|) |#1|) 19))) -(((-147 |#1|) (-10 -7 (-15 -1435 (|#1| (-699 |#1|) |#1|))) (-174)) (T -147)) -((-1435 (*1 *2 *3 *2) (-12 (-5 *3 (-699 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2))))) -(-10 -7 (-15 -1435 (|#1| (-699 |#1|) |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-3434 (((-3 $ "failed") $) 37)) (-3199 (((-112) $) 35)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12) (($ (-574)) 33)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +((-4279 (*1 *1 *1) (|partial| -4 *1 (-146)))) +(-13 (-1061) (-10 -8 (-15 -4279 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-573)) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-735) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) +((-2517 ((|#1| (-698 |#1|) |#1|) 19))) +(((-147 |#1|) (-10 -7 (-15 -2517 (|#1| (-698 |#1|) |#1|))) (-174)) (T -147)) +((-2517 (*1 *2 *3 *2) (-12 (-5 *3 (-698 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2))))) +(-10 -7 (-15 -2517 (|#1| (-698 |#1|) |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12) (($ (-573)) 33)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) (((-148) (-141)) (T -148)) NIL -(-13 (-1062)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T)) -((-3607 (((-2 (|:| -3715 (-781)) (|:| -1858 (-417 |#2|)) (|:| |radicand| |#2|)) (-417 |#2|) (-781)) 76)) (-2417 (((-3 (-2 (|:| |radicand| (-417 |#2|)) (|:| |deg| (-781))) "failed") |#3|) 56)) (-3947 (((-2 (|:| -1858 (-417 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-1990 ((|#1| |#3| |#3|) 44)) (-2646 ((|#3| |#3| (-417 |#2|) (-417 |#2|)) 20)) (-3366 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| |deg| (-781))) |#3| |#3|) 53))) -(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -3947 ((-2 (|:| -1858 (-417 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2417 ((-3 (-2 (|:| |radicand| (-417 |#2|)) (|:| |deg| (-781))) "failed") |#3|)) (-15 -3607 ((-2 (|:| -3715 (-781)) (|:| -1858 (-417 |#2|)) (|:| |radicand| |#2|)) (-417 |#2|) (-781))) (-15 -1990 (|#1| |#3| |#3|)) (-15 -2646 (|#3| |#3| (-417 |#2|) (-417 |#2|))) (-15 -3366 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| |deg| (-781))) |#3| |#3|))) (-1235) (-1257 |#1|) (-1257 (-417 |#2|))) (T -149)) -((-3366 (*1 *2 *3 *3) (-12 (-4 *4 (-1235)) (-4 *5 (-1257 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-417 *5)) (|:| |c2| (-417 *5)) (|:| |deg| (-781)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1257 (-417 *5))))) (-2646 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-417 *5)) (-4 *4 (-1235)) (-4 *5 (-1257 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1257 *3)))) (-1990 (*1 *2 *3 *3) (-12 (-4 *4 (-1257 *2)) (-4 *2 (-1235)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1257 (-417 *4))))) (-3607 (*1 *2 *3 *4) (-12 (-5 *3 (-417 *6)) (-4 *5 (-1235)) (-4 *6 (-1257 *5)) (-5 *2 (-2 (|:| -3715 (-781)) (|:| -1858 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-781)) (-4 *7 (-1257 *3)))) (-2417 (*1 *2 *3) (|partial| -12 (-4 *4 (-1235)) (-4 *5 (-1257 *4)) (-5 *2 (-2 (|:| |radicand| (-417 *5)) (|:| |deg| (-781)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1257 (-417 *5))))) (-3947 (*1 *2 *3) (-12 (-4 *4 (-1235)) (-4 *5 (-1257 *4)) (-5 *2 (-2 (|:| -1858 (-417 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1257 (-417 *5)))))) -(-10 -7 (-15 -3947 ((-2 (|:| -1858 (-417 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2417 ((-3 (-2 (|:| |radicand| (-417 |#2|)) (|:| |deg| (-781))) "failed") |#3|)) (-15 -3607 ((-2 (|:| -3715 (-781)) (|:| -1858 (-417 |#2|)) (|:| |radicand| |#2|)) (-417 |#2|) (-781))) (-15 -1990 (|#1| |#3| |#3|)) (-15 -2646 (|#3| |#3| (-417 |#2|) (-417 |#2|))) (-15 -3366 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| |deg| (-781))) |#3| |#3|))) -((-1879 (((-3 (-654 (-1186 |#2|)) "failed") (-654 (-1186 |#2|)) (-1186 |#2|)) 35))) -(((-150 |#1| |#2|) (-10 -7 (-15 -1879 ((-3 (-654 (-1186 |#2|)) "failed") (-654 (-1186 |#2|)) (-1186 |#2|)))) (-555) (-167 |#1|)) (T -150)) -((-1879 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1186 *5))) (-5 *3 (-1186 *5)) (-4 *5 (-167 *4)) (-4 *4 (-555)) (-5 *1 (-150 *4 *5))))) -(-10 -7 (-15 -1879 ((-3 (-654 (-1186 |#2|)) "failed") (-654 (-1186 |#2|)) (-1186 |#2|)))) -((-2165 (($ (-1 (-112) |#2|) $) 37)) (-1543 (($ $) 44)) (-3335 (($ (-1 (-112) |#2|) $) 35) (($ |#2| $) 40)) (-2868 ((|#2| (-1 |#2| |#2| |#2|) $) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42)) (-1549 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 27)) (-2540 (((-112) (-1 (-112) |#2|) $) 24)) (-3975 (((-781) (-1 (-112) |#2|) $) 18) (((-781) |#2| $) NIL)) (-3390 (((-112) (-1 (-112) |#2|) $) 21)) (-2863 (((-781) $) 12))) -(((-151 |#1| |#2|) (-10 -8 (-15 -1543 (|#1| |#1|)) (-15 -3335 (|#1| |#2| |#1|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2165 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3335 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1549 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3975 ((-781) |#2| |#1|)) (-15 -3975 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -2540 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3390 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2863 ((-781) |#1|))) (-152 |#2|) (-1231)) (T -151)) -NIL -(-10 -8 (-15 -1543 (|#1| |#1|)) (-15 -3335 (|#1| |#2| |#1|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2165 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3335 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1549 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3975 ((-781) |#2| |#1|)) (-15 -3975 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -2540 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3390 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2863 ((-781) |#1|))) -((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3034 (((-112) $ (-781)) 8)) (-2165 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4456)))) (-3426 (($) 7 T CONST)) (-1543 (($ $) 42 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4456))) (($ |#1| $) 43 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-2742 (((-112) $ (-781)) 9)) (-1606 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2449 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 36)) (-4203 (((-112) $ (-781)) 10)) (-4136 (((-1172) $) 22 (|has| |#1| (-1113)))) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-2540 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 14)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-1836 (((-546) $) 41 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 50)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-152 |#1|) (-141) (-1231)) (T -152)) -((-2956 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-4 *1 (-152 *3)))) (-1549 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1231)))) (-2868 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4456)) (-4 *1 (-152 *2)) (-4 *2 (-1231)))) (-2868 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4456)) (-4 *1 (-152 *2)) (-4 *2 (-1231)))) (-3335 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4456)) (-4 *1 (-152 *3)) (-4 *3 (-1231)))) (-2165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4456)) (-4 *1 (-152 *3)) (-4 *3 (-1231)))) (-2868 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1113)) (|has| *1 (-6 -4456)) (-4 *1 (-152 *2)) (-4 *2 (-1231)))) (-3335 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-152 *2)) (-4 *2 (-1231)) (-4 *2 (-1113)))) (-1543 (*1 *1 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-152 *2)) (-4 *2 (-1231)) (-4 *2 (-1113))))) -(-13 (-499 |t#1|) (-10 -8 (-15 -2956 ($ (-654 |t#1|))) (-15 -1549 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4456)) (PROGN (-15 -2868 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2868 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3335 ($ (-1 (-112) |t#1|) $)) (-15 -2165 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1113)) (PROGN (-15 -2868 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3335 ($ |t#1| $)) (-15 -1543 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1113) |has| |#1| (-1113)) ((-1231) . T)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-3434 (((-3 $ "failed") $) 111)) (-3199 (((-112) $) NIL)) (-4335 (($ |#2| (-654 (-932))) 71)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3910 (($ (-932)) 57)) (-4133 (((-135)) 23)) (-2943 (((-872) $) 86) (($ (-574)) 53) (($ |#2|) 54)) (-3087 ((|#2| $ (-654 (-932))) 74)) (-1364 (((-781)) 20 T CONST)) (-3284 (((-112) $ $) NIL)) (-2133 (($) 47 T CONST)) (-2145 (($) 51 T CONST)) (-2981 (((-112) $ $) 33)) (-3108 (($ $ |#2|) NIL)) (-3094 (($ $) 42) (($ $ $) 40)) (-3079 (($ $ $) 38)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 44) (($ $ $) 63) (($ |#2| $) 46) (($ $ |#2|) NIL))) -(((-153 |#1| |#2| |#3|) (-13 (-1062) (-38 |#2|) (-1288 |#2|) (-10 -8 (-15 -3910 ($ (-932))) (-15 -4335 ($ |#2| (-654 (-932)))) (-15 -3087 (|#2| $ (-654 (-932)))) (-15 -3434 ((-3 $ "failed") $)))) (-932) (-372) (-1006 |#1| |#2|)) (T -153)) -((-3434 (*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-932)) (-4 *3 (-372)) (-14 *4 (-1006 *2 *3)))) (-3910 (*1 *1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-372)) (-14 *5 (-1006 *3 *4)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *3 (-654 (-932))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-932)) (-4 *2 (-372)) (-14 *5 (-1006 *4 *2)))) (-3087 (*1 *2 *1 *3) (-12 (-5 *3 (-654 (-932))) (-4 *2 (-372)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-932)) (-14 *5 (-1006 *4 *2))))) -(-13 (-1062) (-38 |#2|) (-1288 |#2|) (-10 -8 (-15 -3910 ($ (-932))) (-15 -4335 ($ |#2| (-654 (-932)))) (-15 -3087 (|#2| $ (-654 (-932)))) (-15 -3434 ((-3 $ "failed") $)))) -((-3703 (((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-654 (-654 (-954 (-227)))) (-227) (-227) (-227) (-227)) 59)) (-2714 (((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-938) (-417 (-574)) (-417 (-574))) 95) (((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-938)) 96)) (-2830 (((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-654 (-654 (-954 (-227))))) 99) (((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-654 (-954 (-227)))) 98) (((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-938) (-417 (-574)) (-417 (-574))) 90) (((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-938)) 91))) -(((-154) (-10 -7 (-15 -2830 ((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-938))) (-15 -2830 ((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-938) (-417 (-574)) (-417 (-574)))) (-15 -2714 ((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-938))) (-15 -2714 ((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-938) (-417 (-574)) (-417 (-574)))) (-15 -3703 ((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-654 (-654 (-954 (-227)))) (-227) (-227) (-227) (-227))) (-15 -2830 ((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-654 (-954 (-227))))) (-15 -2830 ((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-654 (-654 (-954 (-227)))))))) (T -154)) -((-2830 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227))))) (-5 *1 (-154)) (-5 *3 (-654 (-654 (-954 (-227))))))) (-2830 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227))))) (-5 *1 (-154)) (-5 *3 (-654 (-954 (-227)))))) (-3703 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-227)) (-5 *2 (-2 (|:| |brans| (-654 (-654 (-954 *4)))) (|:| |xValues| (-1107 *4)) (|:| |yValues| (-1107 *4)))) (-5 *1 (-154)) (-5 *3 (-654 (-654 (-954 *4)))))) (-2714 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-938)) (-5 *4 (-417 (-574))) (-5 *2 (-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227))))) (-5 *1 (-154)))) (-2714 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227))))) (-5 *1 (-154)))) (-2830 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-938)) (-5 *4 (-417 (-574))) (-5 *2 (-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227))))) (-5 *1 (-154)))) (-2830 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227))))) (-5 *1 (-154))))) -(-10 -7 (-15 -2830 ((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-938))) (-15 -2830 ((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-938) (-417 (-574)) (-417 (-574)))) (-15 -2714 ((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-938))) (-15 -2714 ((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-938) (-417 (-574)) (-417 (-574)))) (-15 -3703 ((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-654 (-654 (-954 (-227)))) (-227) (-227) (-227) (-227))) (-15 -2830 ((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-654 (-954 (-227))))) (-15 -2830 ((-2 (|:| |brans| (-654 (-654 (-954 (-227))))) (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227)))) (-654 (-654 (-954 (-227))))))) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-1498 (((-654 (-1148)) $) 20)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 27) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2044 (((-1148) $) 9)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-155) (-13 (-1096) (-10 -8 (-15 -1498 ((-654 (-1148)) $)) (-15 -2044 ((-1148) $))))) (T -155)) -((-1498 (*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-155)))) (-2044 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-155))))) -(-13 (-1096) (-10 -8 (-15 -1498 ((-654 (-1148)) $)) (-15 -2044 ((-1148) $)))) -((-3402 (((-654 (-171 |#2|)) |#1| |#2|) 50))) -(((-156 |#1| |#2|) (-10 -7 (-15 -3402 ((-654 (-171 |#2|)) |#1| |#2|))) (-1257 (-171 (-574))) (-13 (-372) (-858))) (T -156)) -((-3402 (*1 *2 *3 *4) (-12 (-5 *2 (-654 (-171 *4))) (-5 *1 (-156 *3 *4)) (-4 *3 (-1257 (-171 (-574)))) (-4 *4 (-13 (-372) (-858)))))) -(-10 -7 (-15 -3402 ((-654 (-171 |#2|)) |#1| |#2|))) -((-2849 (((-112) $ $) NIL)) (-1809 (((-1230) $) 12)) (-1796 (((-1148) $) 9)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 19) (($ (-1195)) NIL) (((-1195) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-157) (-13 (-1096) (-10 -8 (-15 -1796 ((-1148) $)) (-15 -1809 ((-1230) $))))) (T -157)) -((-1796 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-157)))) (-1809 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-157))))) -(-13 (-1096) (-10 -8 (-15 -1796 ((-1148) $)) (-15 -1809 ((-1230) $)))) -((-2849 (((-112) $ $) NIL)) (-1637 (($) 41)) (-4015 (($) 40)) (-3415 (((-932)) 46)) (-4136 (((-1172) $) NIL)) (-3965 (((-574) $) 44)) (-3966 (((-1133) $) NIL)) (-1509 (($) 42)) (-1866 (($ (-574)) 47)) (-2943 (((-872) $) 53)) (-2983 (($) 43)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 38)) (-3079 (($ $ $) 35)) (* (($ (-932) $) 45) (($ (-227) $) 11))) -(((-158) (-13 (-25) (-10 -8 (-15 * ($ (-932) $)) (-15 * ($ (-227) $)) (-15 -3079 ($ $ $)) (-15 -4015 ($)) (-15 -1637 ($)) (-15 -1509 ($)) (-15 -2983 ($)) (-15 -3965 ((-574) $)) (-15 -3415 ((-932))) (-15 -1866 ($ (-574)))))) (T -158)) -((-3079 (*1 *1 *1 *1) (-5 *1 (-158))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-932)) (-5 *1 (-158)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) (-4015 (*1 *1) (-5 *1 (-158))) (-1637 (*1 *1) (-5 *1 (-158))) (-1509 (*1 *1) (-5 *1 (-158))) (-2983 (*1 *1) (-5 *1 (-158))) (-3965 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-158)))) (-3415 (*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-158)))) (-1866 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-158))))) -(-13 (-25) (-10 -8 (-15 * ($ (-932) $)) (-15 * ($ (-227) $)) (-15 -3079 ($ $ $)) (-15 -4015 ($)) (-15 -1637 ($)) (-15 -1509 ($)) (-15 -2983 ($)) (-15 -3965 ((-574) $)) (-15 -3415 ((-932))) (-15 -1866 ($ (-574))))) -((-1841 ((|#2| |#2| (-1105 |#2|)) 98) ((|#2| |#2| (-1190)) 75)) (-3237 ((|#2| |#2| (-1105 |#2|)) 97) ((|#2| |#2| (-1190)) 74)) (-3792 ((|#2| |#2| |#2|) 25)) (-4175 (((-115) (-115)) 111)) (-1383 ((|#2| (-654 |#2|)) 130)) (-3952 ((|#2| (-654 |#2|)) 151)) (-2676 ((|#2| (-654 |#2|)) 138)) (-2309 ((|#2| |#2|) 136)) (-2616 ((|#2| (-654 |#2|)) 124)) (-4180 ((|#2| (-654 |#2|)) 125)) (-2283 ((|#2| (-654 |#2|)) 149)) (-2516 ((|#2| |#2| (-1190)) 63) ((|#2| |#2|) 62)) (-2150 ((|#2| |#2|) 21)) (-1616 ((|#2| |#2| |#2|) 24)) (-3225 (((-112) (-115)) 55)) (** ((|#2| |#2| |#2|) 46))) -(((-159 |#1| |#2|) (-10 -7 (-15 -3225 ((-112) (-115))) (-15 -4175 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -1616 (|#2| |#2| |#2|)) (-15 -3792 (|#2| |#2| |#2|)) (-15 -2150 (|#2| |#2|)) (-15 -2516 (|#2| |#2|)) (-15 -2516 (|#2| |#2| (-1190))) (-15 -1841 (|#2| |#2| (-1190))) (-15 -1841 (|#2| |#2| (-1105 |#2|))) (-15 -3237 (|#2| |#2| (-1190))) (-15 -3237 (|#2| |#2| (-1105 |#2|))) (-15 -2309 (|#2| |#2|)) (-15 -2283 (|#2| (-654 |#2|))) (-15 -2676 (|#2| (-654 |#2|))) (-15 -3952 (|#2| (-654 |#2|))) (-15 -2616 (|#2| (-654 |#2|))) (-15 -4180 (|#2| (-654 |#2|))) (-15 -1383 (|#2| (-654 |#2|)))) (-566) (-440 |#1|)) (T -159)) -((-1383 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-4180 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-2616 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-3952 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-2676 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-2283 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-2309 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (-3237 (*1 *2 *2 *3) (-12 (-5 *3 (-1105 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)))) (-3237 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)) (-4 *2 (-440 *4)))) (-1841 (*1 *2 *2 *3) (-12 (-5 *3 (-1105 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)))) (-1841 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)) (-4 *2 (-440 *4)))) (-2516 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)) (-4 *2 (-440 *4)))) (-2516 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (-2150 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (-3792 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (-1616 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (-4175 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-159 *3 *4)) (-4 *4 (-440 *3)))) (-3225 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-159 *4 *5)) (-4 *5 (-440 *4))))) -(-10 -7 (-15 -3225 ((-112) (-115))) (-15 -4175 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -1616 (|#2| |#2| |#2|)) (-15 -3792 (|#2| |#2| |#2|)) (-15 -2150 (|#2| |#2|)) (-15 -2516 (|#2| |#2|)) (-15 -2516 (|#2| |#2| (-1190))) (-15 -1841 (|#2| |#2| (-1190))) (-15 -1841 (|#2| |#2| (-1105 |#2|))) (-15 -3237 (|#2| |#2| (-1190))) (-15 -3237 (|#2| |#2| (-1105 |#2|))) (-15 -2309 (|#2| |#2|)) (-15 -2283 (|#2| (-654 |#2|))) (-15 -2676 (|#2| (-654 |#2|))) (-15 -3952 (|#2| (-654 |#2|))) (-15 -2616 (|#2| (-654 |#2|))) (-15 -4180 (|#2| (-654 |#2|))) (-15 -1383 (|#2| (-654 |#2|)))) -((-3026 ((|#1| |#1| |#1|) 64)) (-3752 ((|#1| |#1| |#1|) 61)) (-3792 ((|#1| |#1| |#1|) 55)) (-2036 ((|#1| |#1|) 42)) (-2033 ((|#1| |#1| (-654 |#1|)) 53)) (-2150 ((|#1| |#1|) 46)) (-1616 ((|#1| |#1| |#1|) 49))) -(((-160 |#1|) (-10 -7 (-15 -1616 (|#1| |#1| |#1|)) (-15 -2150 (|#1| |#1|)) (-15 -2033 (|#1| |#1| (-654 |#1|))) (-15 -2036 (|#1| |#1|)) (-15 -3792 (|#1| |#1| |#1|)) (-15 -3752 (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#1| |#1|))) (-555)) (T -160)) -((-3026 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) (-3752 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) (-3792 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) (-2036 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) (-2033 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-555)) (-5 *1 (-160 *2)))) (-2150 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) (-1616 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555))))) -(-10 -7 (-15 -1616 (|#1| |#1| |#1|)) (-15 -2150 (|#1| |#1|)) (-15 -2033 (|#1| |#1| (-654 |#1|))) (-15 -2036 (|#1| |#1|)) (-15 -3792 (|#1| |#1| |#1|)) (-15 -3752 (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#1| |#1|))) -((-1841 (($ $ (-1190)) 12) (($ $ (-1105 $)) 11)) (-3237 (($ $ (-1190)) 10) (($ $ (-1105 $)) 9)) (-3792 (($ $ $) 8)) (-2516 (($ $) 14) (($ $ (-1190)) 13)) (-2150 (($ $) 7)) (-1616 (($ $ $) 6))) +(-13 (-1061)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-573)) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-735) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) +((-3512 (((-2 (|:| -3907 (-780)) (|:| -1857 (-416 |#2|)) (|:| |radicand| |#2|)) (-416 |#2|) (-780)) 76)) (-2779 (((-3 (-2 (|:| |radicand| (-416 |#2|)) (|:| |deg| (-780))) "failed") |#3|) 56)) (-3793 (((-2 (|:| -1857 (-416 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-1483 ((|#1| |#3| |#3|) 44)) (-2645 ((|#3| |#3| (-416 |#2|) (-416 |#2|)) 20)) (-4127 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-416 |#2|)) (|:| |c2| (-416 |#2|)) (|:| |deg| (-780))) |#3| |#3|) 53))) +(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -3793 ((-2 (|:| -1857 (-416 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2779 ((-3 (-2 (|:| |radicand| (-416 |#2|)) (|:| |deg| (-780))) "failed") |#3|)) (-15 -3512 ((-2 (|:| -3907 (-780)) (|:| -1857 (-416 |#2|)) (|:| |radicand| |#2|)) (-416 |#2|) (-780))) (-15 -1483 (|#1| |#3| |#3|)) (-15 -2645 (|#3| |#3| (-416 |#2|) (-416 |#2|))) (-15 -4127 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-416 |#2|)) (|:| |c2| (-416 |#2|)) (|:| |deg| (-780))) |#3| |#3|))) (-1234) (-1256 |#1|) (-1256 (-416 |#2|))) (T -149)) +((-4127 (*1 *2 *3 *3) (-12 (-4 *4 (-1234)) (-4 *5 (-1256 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-416 *5)) (|:| |c2| (-416 *5)) (|:| |deg| (-780)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1256 (-416 *5))))) (-2645 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-416 *5)) (-4 *4 (-1234)) (-4 *5 (-1256 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1256 *3)))) (-1483 (*1 *2 *3 *3) (-12 (-4 *4 (-1256 *2)) (-4 *2 (-1234)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1256 (-416 *4))))) (-3512 (*1 *2 *3 *4) (-12 (-5 *3 (-416 *6)) (-4 *5 (-1234)) (-4 *6 (-1256 *5)) (-5 *2 (-2 (|:| -3907 (-780)) (|:| -1857 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-780)) (-4 *7 (-1256 *3)))) (-2779 (*1 *2 *3) (|partial| -12 (-4 *4 (-1234)) (-4 *5 (-1256 *4)) (-5 *2 (-2 (|:| |radicand| (-416 *5)) (|:| |deg| (-780)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1256 (-416 *5))))) (-3793 (*1 *2 *3) (-12 (-4 *4 (-1234)) (-4 *5 (-1256 *4)) (-5 *2 (-2 (|:| -1857 (-416 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1256 (-416 *5)))))) +(-10 -7 (-15 -3793 ((-2 (|:| -1857 (-416 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2779 ((-3 (-2 (|:| |radicand| (-416 |#2|)) (|:| |deg| (-780))) "failed") |#3|)) (-15 -3512 ((-2 (|:| -3907 (-780)) (|:| -1857 (-416 |#2|)) (|:| |radicand| |#2|)) (-416 |#2|) (-780))) (-15 -1483 (|#1| |#3| |#3|)) (-15 -2645 (|#3| |#3| (-416 |#2|) (-416 |#2|))) (-15 -4127 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-416 |#2|)) (|:| |c2| (-416 |#2|)) (|:| |deg| (-780))) |#3| |#3|))) +((-3711 (((-3 (-653 (-1185 |#2|)) "failed") (-653 (-1185 |#2|)) (-1185 |#2|)) 35))) +(((-150 |#1| |#2|) (-10 -7 (-15 -3711 ((-3 (-653 (-1185 |#2|)) "failed") (-653 (-1185 |#2|)) (-1185 |#2|)))) (-554) (-167 |#1|)) (T -150)) +((-3711 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-653 (-1185 *5))) (-5 *3 (-1185 *5)) (-4 *5 (-167 *4)) (-4 *4 (-554)) (-5 *1 (-150 *4 *5))))) +(-10 -7 (-15 -3711 ((-3 (-653 (-1185 |#2|)) "failed") (-653 (-1185 |#2|)) (-1185 |#2|)))) +((-2164 (($ (-1 (-112) |#2|) $) 37)) (-2685 (($ $) 44)) (-3334 (($ (-1 (-112) |#2|) $) 35) (($ |#2| $) 40)) (-2867 ((|#2| (-1 |#2| |#2| |#2|) $) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42)) (-2036 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 27)) (-1575 (((-112) (-1 (-112) |#2|) $) 24)) (-3974 (((-780) (-1 (-112) |#2|) $) 18) (((-780) |#2| $) NIL)) (-1646 (((-112) (-1 (-112) |#2|) $) 21)) (-2862 (((-780) $) 12))) +(((-151 |#1| |#2|) (-10 -8 (-15 -2685 (|#1| |#1|)) (-15 -3334 (|#1| |#2| |#1|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2164 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3334 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2036 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3974 ((-780) |#2| |#1|)) (-15 -3974 ((-780) (-1 (-112) |#2|) |#1|)) (-15 -1575 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1646 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2862 ((-780) |#1|))) (-152 |#2|) (-1230)) (T -151)) +NIL +(-10 -8 (-15 -2685 (|#1| |#1|)) (-15 -3334 (|#1| |#2| |#1|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2164 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3334 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2036 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3974 ((-780) |#2| |#1|)) (-15 -3974 ((-780) (-1 (-112) |#2|) |#1|)) (-15 -1575 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1646 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2862 ((-780) |#1|))) +((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3450 (((-112) $ (-780)) 8)) (-2164 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4455)))) (-2579 (($) 7 T CONST)) (-2685 (($ $) 42 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4455))) (($ |#1| $) 43 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-1835 (((-545) $) 41 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 50)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-152 |#1|) (-141) (-1230)) (T -152)) +((-2955 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-4 *1 (-152 *3)))) (-2036 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1230)))) (-2867 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4455)) (-4 *1 (-152 *2)) (-4 *2 (-1230)))) (-2867 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4455)) (-4 *1 (-152 *2)) (-4 *2 (-1230)))) (-3334 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4455)) (-4 *1 (-152 *3)) (-4 *3 (-1230)))) (-2164 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4455)) (-4 *1 (-152 *3)) (-4 *3 (-1230)))) (-2867 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1112)) (|has| *1 (-6 -4455)) (-4 *1 (-152 *2)) (-4 *2 (-1230)))) (-3334 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-152 *2)) (-4 *2 (-1230)) (-4 *2 (-1112)))) (-2685 (*1 *1 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-152 *2)) (-4 *2 (-1230)) (-4 *2 (-1112))))) +(-13 (-498 |t#1|) (-10 -8 (-15 -2955 ($ (-653 |t#1|))) (-15 -2036 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4455)) (PROGN (-15 -2867 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2867 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3334 ($ (-1 (-112) |t#1|) $)) (-15 -2164 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1112)) (PROGN (-15 -2867 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3334 ($ |t#1| $)) (-15 -2685 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-2232 (((-3 $ "failed") $) 111)) (-1959 (((-112) $) NIL)) (-4334 (($ |#2| (-653 (-931))) 71)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-3910 (($ (-931)) 57)) (-2365 (((-135)) 23)) (-2942 (((-871) $) 86) (($ (-573)) 53) (($ |#2|) 54)) (-4317 ((|#2| $ (-653 (-931))) 74)) (-1545 (((-780)) 20 T CONST)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 47 T CONST)) (-2144 (($) 51 T CONST)) (-2981 (((-112) $ $) 33)) (-3103 (($ $ |#2|) NIL)) (-3093 (($ $) 42) (($ $ $) 40)) (-3077 (($ $ $) 38)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 44) (($ $ $) 63) (($ |#2| $) 46) (($ $ |#2|) NIL))) +(((-153 |#1| |#2| |#3|) (-13 (-1061) (-38 |#2|) (-1287 |#2|) (-10 -8 (-15 -3910 ($ (-931))) (-15 -4334 ($ |#2| (-653 (-931)))) (-15 -4317 (|#2| $ (-653 (-931)))) (-15 -2232 ((-3 $ "failed") $)))) (-931) (-371) (-1005 |#1| |#2|)) (T -153)) +((-2232 (*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-931)) (-4 *3 (-371)) (-14 *4 (-1005 *2 *3)))) (-3910 (*1 *1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-371)) (-14 *5 (-1005 *3 *4)))) (-4334 (*1 *1 *2 *3) (-12 (-5 *3 (-653 (-931))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-931)) (-4 *2 (-371)) (-14 *5 (-1005 *4 *2)))) (-4317 (*1 *2 *1 *3) (-12 (-5 *3 (-653 (-931))) (-4 *2 (-371)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-931)) (-14 *5 (-1005 *4 *2))))) +(-13 (-1061) (-38 |#2|) (-1287 |#2|) (-10 -8 (-15 -3910 ($ (-931))) (-15 -4334 ($ |#2| (-653 (-931)))) (-15 -4317 (|#2| $ (-653 (-931)))) (-15 -2232 ((-3 $ "failed") $)))) +((-2152 (((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-653 (-653 (-953 (-227)))) (-227) (-227) (-227) (-227)) 59)) (-4249 (((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-937) (-416 (-573)) (-416 (-573))) 95) (((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-937)) 96)) (-3335 (((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-653 (-653 (-953 (-227))))) 99) (((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-653 (-953 (-227)))) 98) (((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-937) (-416 (-573)) (-416 (-573))) 90) (((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-937)) 91))) +(((-154) (-10 -7 (-15 -3335 ((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-937))) (-15 -3335 ((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-937) (-416 (-573)) (-416 (-573)))) (-15 -4249 ((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-937))) (-15 -4249 ((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-937) (-416 (-573)) (-416 (-573)))) (-15 -2152 ((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-653 (-653 (-953 (-227)))) (-227) (-227) (-227) (-227))) (-15 -3335 ((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-653 (-953 (-227))))) (-15 -3335 ((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-653 (-653 (-953 (-227)))))))) (T -154)) +((-3335 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227))))) (-5 *1 (-154)) (-5 *3 (-653 (-653 (-953 (-227))))))) (-3335 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227))))) (-5 *1 (-154)) (-5 *3 (-653 (-953 (-227)))))) (-2152 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-227)) (-5 *2 (-2 (|:| |brans| (-653 (-653 (-953 *4)))) (|:| |xValues| (-1106 *4)) (|:| |yValues| (-1106 *4)))) (-5 *1 (-154)) (-5 *3 (-653 (-653 (-953 *4)))))) (-4249 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-937)) (-5 *4 (-416 (-573))) (-5 *2 (-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227))))) (-5 *1 (-154)))) (-4249 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227))))) (-5 *1 (-154)))) (-3335 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-937)) (-5 *4 (-416 (-573))) (-5 *2 (-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227))))) (-5 *1 (-154)))) (-3335 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227))))) (-5 *1 (-154))))) +(-10 -7 (-15 -3335 ((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-937))) (-15 -3335 ((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-937) (-416 (-573)) (-416 (-573)))) (-15 -4249 ((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-937))) (-15 -4249 ((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-937) (-416 (-573)) (-416 (-573)))) (-15 -2152 ((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-653 (-653 (-953 (-227)))) (-227) (-227) (-227) (-227))) (-15 -3335 ((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-653 (-953 (-227))))) (-15 -3335 ((-2 (|:| |brans| (-653 (-653 (-953 (-227))))) (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227)))) (-653 (-653 (-953 (-227))))))) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-1498 (((-653 (-1147)) $) 20)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 27) (($ (-1194)) NIL) (((-1194) $) NIL)) (-2043 (((-1147) $) 9)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-155) (-13 (-1095) (-10 -8 (-15 -1498 ((-653 (-1147)) $)) (-15 -2043 ((-1147) $))))) (T -155)) +((-1498 (*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-155)))) (-2043 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-155))))) +(-13 (-1095) (-10 -8 (-15 -1498 ((-653 (-1147)) $)) (-15 -2043 ((-1147) $)))) +((-1682 (((-653 (-171 |#2|)) |#1| |#2|) 50))) +(((-156 |#1| |#2|) (-10 -7 (-15 -1682 ((-653 (-171 |#2|)) |#1| |#2|))) (-1256 (-171 (-573))) (-13 (-371) (-857))) (T -156)) +((-1682 (*1 *2 *3 *4) (-12 (-5 *2 (-653 (-171 *4))) (-5 *1 (-156 *3 *4)) (-4 *3 (-1256 (-171 (-573)))) (-4 *4 (-13 (-371) (-857)))))) +(-10 -7 (-15 -1682 ((-653 (-171 |#2|)) |#1| |#2|))) +((-2848 (((-112) $ $) NIL)) (-1808 (((-1229) $) 12)) (-1795 (((-1147) $) 9)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 19) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-157) (-13 (-1095) (-10 -8 (-15 -1795 ((-1147) $)) (-15 -1808 ((-1229) $))))) (T -157)) +((-1795 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-157)))) (-1808 (*1 *2 *1) (-12 (-5 *2 (-1229)) (-5 *1 (-157))))) +(-13 (-1095) (-10 -8 (-15 -1795 ((-1147) $)) (-15 -1808 ((-1229) $)))) +((-2848 (((-112) $ $) NIL)) (-3521 (($) 41)) (-1821 (($) 40)) (-3833 (((-931)) 46)) (-3180 (((-1171) $) NIL)) (-2065 (((-573) $) 44)) (-3965 (((-1132) $) NIL)) (-3018 (($) 42)) (-1805 (($ (-573)) 47)) (-2942 (((-871) $) 53)) (-3749 (($) 43)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 38)) (-3077 (($ $ $) 35)) (* (($ (-931) $) 45) (($ (-227) $) 11))) +(((-158) (-13 (-25) (-10 -8 (-15 * ($ (-931) $)) (-15 * ($ (-227) $)) (-15 -3077 ($ $ $)) (-15 -1821 ($)) (-15 -3521 ($)) (-15 -3018 ($)) (-15 -3749 ($)) (-15 -2065 ((-573) $)) (-15 -3833 ((-931))) (-15 -1805 ($ (-573)))))) (T -158)) +((-3077 (*1 *1 *1 *1) (-5 *1 (-158))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-931)) (-5 *1 (-158)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) (-1821 (*1 *1) (-5 *1 (-158))) (-3521 (*1 *1) (-5 *1 (-158))) (-3018 (*1 *1) (-5 *1 (-158))) (-3749 (*1 *1) (-5 *1 (-158))) (-2065 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-158)))) (-3833 (*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-158)))) (-1805 (*1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-158))))) +(-13 (-25) (-10 -8 (-15 * ($ (-931) $)) (-15 * ($ (-227) $)) (-15 -3077 ($ $ $)) (-15 -1821 ($)) (-15 -3521 ($)) (-15 -3018 ($)) (-15 -3749 ($)) (-15 -2065 ((-573) $)) (-15 -3833 ((-931))) (-15 -1805 ($ (-573))))) +((-4080 ((|#2| |#2| (-1104 |#2|)) 98) ((|#2| |#2| (-1189)) 75)) (-3044 ((|#2| |#2| (-1104 |#2|)) 97) ((|#2| |#2| (-1189)) 74)) (-2637 ((|#2| |#2| |#2|) 25)) (-4173 (((-115) (-115)) 111)) (-3966 ((|#2| (-653 |#2|)) 130)) (-3249 ((|#2| (-653 |#2|)) 151)) (-2639 ((|#2| (-653 |#2|)) 138)) (-3510 ((|#2| |#2|) 136)) (-2535 ((|#2| (-653 |#2|)) 124)) (-3717 ((|#2| (-653 |#2|)) 125)) (-2465 ((|#2| (-653 |#2|)) 149)) (-3262 ((|#2| |#2| (-1189)) 63) ((|#2| |#2|) 62)) (-4264 ((|#2| |#2|) 21)) (-1677 ((|#2| |#2| |#2|) 24)) (-3109 (((-112) (-115)) 55)) (** ((|#2| |#2| |#2|) 46))) +(((-159 |#1| |#2|) (-10 -7 (-15 -3109 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -1677 (|#2| |#2| |#2|)) (-15 -2637 (|#2| |#2| |#2|)) (-15 -4264 (|#2| |#2|)) (-15 -3262 (|#2| |#2|)) (-15 -3262 (|#2| |#2| (-1189))) (-15 -4080 (|#2| |#2| (-1189))) (-15 -4080 (|#2| |#2| (-1104 |#2|))) (-15 -3044 (|#2| |#2| (-1189))) (-15 -3044 (|#2| |#2| (-1104 |#2|))) (-15 -3510 (|#2| |#2|)) (-15 -2465 (|#2| (-653 |#2|))) (-15 -2639 (|#2| (-653 |#2|))) (-15 -3249 (|#2| (-653 |#2|))) (-15 -2535 (|#2| (-653 |#2|))) (-15 -3717 (|#2| (-653 |#2|))) (-15 -3966 (|#2| (-653 |#2|)))) (-565) (-439 |#1|)) (T -159)) +((-3966 (*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-439 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-565)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-439 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-565)))) (-2535 (*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-439 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-565)))) (-3249 (*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-439 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-565)))) (-2639 (*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-439 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-565)))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-439 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-565)))) (-3510 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-159 *3 *2)) (-4 *2 (-439 *3)))) (-3044 (*1 *2 *2 *3) (-12 (-5 *3 (-1104 *2)) (-4 *2 (-439 *4)) (-4 *4 (-565)) (-5 *1 (-159 *4 *2)))) (-3044 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-565)) (-5 *1 (-159 *4 *2)) (-4 *2 (-439 *4)))) (-4080 (*1 *2 *2 *3) (-12 (-5 *3 (-1104 *2)) (-4 *2 (-439 *4)) (-4 *4 (-565)) (-5 *1 (-159 *4 *2)))) (-4080 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-565)) (-5 *1 (-159 *4 *2)) (-4 *2 (-439 *4)))) (-3262 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-565)) (-5 *1 (-159 *4 *2)) (-4 *2 (-439 *4)))) (-3262 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-159 *3 *2)) (-4 *2 (-439 *3)))) (-4264 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-159 *3 *2)) (-4 *2 (-439 *3)))) (-2637 (*1 *2 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-159 *3 *2)) (-4 *2 (-439 *3)))) (-1677 (*1 *2 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-159 *3 *2)) (-4 *2 (-439 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-159 *3 *2)) (-4 *2 (-439 *3)))) (-4173 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-565)) (-5 *1 (-159 *3 *4)) (-4 *4 (-439 *3)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-565)) (-5 *2 (-112)) (-5 *1 (-159 *4 *5)) (-4 *5 (-439 *4))))) +(-10 -7 (-15 -3109 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -1677 (|#2| |#2| |#2|)) (-15 -2637 (|#2| |#2| |#2|)) (-15 -4264 (|#2| |#2|)) (-15 -3262 (|#2| |#2|)) (-15 -3262 (|#2| |#2| (-1189))) (-15 -4080 (|#2| |#2| (-1189))) (-15 -4080 (|#2| |#2| (-1104 |#2|))) (-15 -3044 (|#2| |#2| (-1189))) (-15 -3044 (|#2| |#2| (-1104 |#2|))) (-15 -3510 (|#2| |#2|)) (-15 -2465 (|#2| (-653 |#2|))) (-15 -2639 (|#2| (-653 |#2|))) (-15 -3249 (|#2| (-653 |#2|))) (-15 -2535 (|#2| (-653 |#2|))) (-15 -3717 (|#2| (-653 |#2|))) (-15 -3966 (|#2| (-653 |#2|)))) +((-2455 ((|#1| |#1| |#1|) 64)) (-4191 ((|#1| |#1| |#1|) 61)) (-2637 ((|#1| |#1| |#1|) 55)) (-2603 ((|#1| |#1|) 42)) (-2373 ((|#1| |#1| (-653 |#1|)) 53)) (-4264 ((|#1| |#1|) 46)) (-1677 ((|#1| |#1| |#1|) 49))) +(((-160 |#1|) (-10 -7 (-15 -1677 (|#1| |#1| |#1|)) (-15 -4264 (|#1| |#1|)) (-15 -2373 (|#1| |#1| (-653 |#1|))) (-15 -2603 (|#1| |#1|)) (-15 -2637 (|#1| |#1| |#1|)) (-15 -4191 (|#1| |#1| |#1|)) (-15 -2455 (|#1| |#1| |#1|))) (-554)) (T -160)) +((-2455 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-554)))) (-4191 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-554)))) (-2637 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-554)))) (-2603 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-554)))) (-2373 (*1 *2 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-554)) (-5 *1 (-160 *2)))) (-4264 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-554)))) (-1677 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-554))))) +(-10 -7 (-15 -1677 (|#1| |#1| |#1|)) (-15 -4264 (|#1| |#1|)) (-15 -2373 (|#1| |#1| (-653 |#1|))) (-15 -2603 (|#1| |#1|)) (-15 -2637 (|#1| |#1| |#1|)) (-15 -4191 (|#1| |#1| |#1|)) (-15 -2455 (|#1| |#1| |#1|))) +((-4080 (($ $ (-1189)) 12) (($ $ (-1104 $)) 11)) (-3044 (($ $ (-1189)) 10) (($ $ (-1104 $)) 9)) (-2637 (($ $ $) 8)) (-3262 (($ $) 14) (($ $ (-1189)) 13)) (-4264 (($ $) 7)) (-1677 (($ $ $) 6))) (((-161) (-141)) (T -161)) -((-2516 (*1 *1 *1) (-4 *1 (-161))) (-2516 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1190)))) (-1841 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1190)))) (-1841 (*1 *1 *1 *2) (-12 (-5 *2 (-1105 *1)) (-4 *1 (-161)))) (-3237 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1190)))) (-3237 (*1 *1 *1 *2) (-12 (-5 *2 (-1105 *1)) (-4 *1 (-161))))) -(-13 (-144) (-10 -8 (-15 -2516 ($ $)) (-15 -2516 ($ $ (-1190))) (-15 -1841 ($ $ (-1190))) (-15 -1841 ($ $ (-1105 $))) (-15 -3237 ($ $ (-1190))) (-15 -3237 ($ $ (-1105 $))))) +((-3262 (*1 *1 *1) (-4 *1 (-161))) (-3262 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1189)))) (-4080 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1189)))) (-4080 (*1 *1 *1 *2) (-12 (-5 *2 (-1104 *1)) (-4 *1 (-161)))) (-3044 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1189)))) (-3044 (*1 *1 *1 *2) (-12 (-5 *2 (-1104 *1)) (-4 *1 (-161))))) +(-13 (-144) (-10 -8 (-15 -3262 ($ $)) (-15 -3262 ($ $ (-1189))) (-15 -4080 ($ $ (-1189))) (-15 -4080 ($ $ (-1104 $))) (-15 -3044 ($ $ (-1189))) (-15 -3044 ($ $ (-1104 $))))) (((-144) . T)) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 16) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2044 (((-654 (-1148)) $) 10)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-162) (-13 (-1096) (-10 -8 (-15 -2044 ((-654 (-1148)) $))))) (T -162)) -((-2044 (*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-162))))) -(-13 (-1096) (-10 -8 (-15 -2044 ((-654 (-1148)) $)))) -((-2849 (((-112) $ $) NIL)) (-3024 (($ (-574)) 14) (($ $ $) 15)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 18)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 9))) -(((-163) (-13 (-1113) (-10 -8 (-15 -3024 ($ (-574))) (-15 -3024 ($ $ $))))) (T -163)) -((-3024 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-163)))) (-3024 (*1 *1 *1 *1) (-5 *1 (-163)))) -(-13 (-1113) (-10 -8 (-15 -3024 ($ (-574))) (-15 -3024 ($ $ $)))) -((-4175 (((-115) (-1190)) 102))) -(((-164) (-10 -7 (-15 -4175 ((-115) (-1190))))) (T -164)) -((-4175 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-115)) (-5 *1 (-164))))) -(-10 -7 (-15 -4175 ((-115) (-1190)))) -((-2344 ((|#3| |#3|) 19))) -(((-165 |#1| |#2| |#3|) (-10 -7 (-15 -2344 (|#3| |#3|))) (-1062) (-1257 |#1|) (-1257 |#2|)) (T -165)) -((-2344 (*1 *2 *2) (-12 (-4 *3 (-1062)) (-4 *4 (-1257 *3)) (-5 *1 (-165 *3 *4 *2)) (-4 *2 (-1257 *4))))) -(-10 -7 (-15 -2344 (|#3| |#3|))) -((-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 223)) (-1636 ((|#2| $) 102)) (-2364 (($ $) 256)) (-2247 (($ $) 250)) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) 47)) (-2343 (($ $) 254)) (-2227 (($ $) 248)) (-1696 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-2206 (((-574) $) NIL) (((-417 (-574)) $) NIL) ((|#2| $) 144)) (-2786 (($ $ $) 229)) (-2590 (((-699 (-574)) (-1281 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL) (((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) 160) (((-699 |#2|) (-699 $)) 154) (((-699 |#2|) (-1281 $)) NIL)) (-2868 (($ (-1186 |#2|)) 125) (((-3 $ "failed") (-417 (-1186 |#2|))) NIL)) (-3434 (((-3 $ "failed") $) 214)) (-1880 (((-3 (-417 (-574)) "failed") $) 204)) (-4414 (((-112) $) 199)) (-4339 (((-417 (-574)) $) 202)) (-3584 (((-932)) 96)) (-2797 (($ $ $) 231)) (-3494 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-3000 (($) 245)) (-3625 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 193) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 198)) (-2236 ((|#2| $) 100)) (-1972 (((-1186 |#2|) $) 127)) (-1777 (($ (-1 |#2| |#2|) $) 108)) (-3119 (($ $) 247)) (-2854 (((-1186 |#2|) $) 126)) (-1324 (($ $) 207)) (-3463 (($) 103)) (-2560 (((-428 (-1186 $)) (-1186 $)) 95)) (-2039 (((-428 (-1186 $)) (-1186 $)) 64)) (-2838 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-1609 (($ $) 246)) (-1730 (((-781) $) 226)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 236)) (-2872 ((|#2| (-1281 $)) NIL) ((|#2|) 98)) (-3905 (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-654 (-1190)) (-654 (-781))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190)) NIL) (($ $ (-781)) NIL) (($ $) NIL)) (-4185 (((-1186 |#2|)) 120)) (-2352 (($ $) 255)) (-2237 (($ $) 249)) (-3487 (((-1281 |#2|) $ (-1281 $)) 136) (((-699 |#2|) (-1281 $) (-1281 $)) NIL) (((-1281 |#2|) $) 116) (((-699 |#2|) (-1281 $)) NIL)) (-1836 (((-1281 |#2|) $) NIL) (($ (-1281 |#2|)) NIL) (((-1186 |#2|) $) NIL) (($ (-1186 |#2|)) NIL) (((-903 (-574)) $) 184) (((-903 (-388)) $) 188) (((-171 (-388)) $) 172) (((-171 (-227)) $) 167) (((-546) $) 180)) (-1479 (($ $) 104)) (-2943 (((-872) $) 143) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-417 (-574))) NIL) (($ $) NIL)) (-1435 (((-1186 |#2|) $) 32)) (-1364 (((-781)) 106)) (-3284 (((-112) $ $) 13)) (-2441 (($ $) 259)) (-2305 (($ $) 253)) (-2414 (($ $) 257)) (-2287 (($ $) 251)) (-3725 ((|#2| $) 242)) (-2428 (($ $) 258)) (-2297 (($ $) 252)) (-3482 (($ $) 162)) (-2981 (((-112) $ $) 110)) (-3094 (($ $) 112) (($ $ $) NIL)) (-3079 (($ $ $) 111)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-417 (-574))) 276) (($ $ $) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL))) -(((-166 |#1| |#2|) (-10 -8 (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -2943 (|#1| |#1|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1776 ((-2 (|:| -2785 |#1|) (|:| -4443 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -1730 ((-781) |#1|)) (-15 -1989 ((-2 (|:| -1411 |#1|) (|:| -2766 |#1|)) |#1| |#1|)) (-15 -2797 (|#1| |#1| |#1|)) (-15 -2786 (|#1| |#1| |#1|)) (-15 -1324 (|#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -1836 ((-546) |#1|)) (-15 -1836 ((-171 (-227)) |#1|)) (-15 -1836 ((-171 (-388)) |#1|)) (-15 -2247 (|#1| |#1|)) (-15 -2227 (|#1| |#1|)) (-15 -2237 (|#1| |#1|)) (-15 -2297 (|#1| |#1|)) (-15 -2287 (|#1| |#1|)) (-15 -2305 (|#1| |#1|)) (-15 -2352 (|#1| |#1|)) (-15 -2343 (|#1| |#1|)) (-15 -2364 (|#1| |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -2414 (|#1| |#1|)) (-15 -2441 (|#1| |#1|)) (-15 -3119 (|#1| |#1|)) (-15 -1609 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3000 (|#1|)) (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -2039 ((-428 (-1186 |#1|)) (-1186 |#1|))) (-15 -2560 ((-428 (-1186 |#1|)) (-1186 |#1|))) (-15 -1879 ((-3 (-654 (-1186 |#1|)) "failed") (-654 (-1186 |#1|)) (-1186 |#1|))) (-15 -1880 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -4339 ((-417 (-574)) |#1|)) (-15 -4414 ((-112) |#1|)) (-15 -3494 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3725 (|#2| |#1|)) (-15 -3482 (|#1| |#1|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1479 (|#1| |#1|)) (-15 -3463 (|#1|)) (-15 -1836 ((-903 (-388)) |#1|)) (-15 -1836 ((-903 (-574)) |#1|)) (-15 -3625 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -3625 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1777 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -2868 ((-3 |#1| "failed") (-417 (-1186 |#2|)))) (-15 -2854 ((-1186 |#2|) |#1|)) (-15 -1836 (|#1| (-1186 |#2|))) (-15 -2868 (|#1| (-1186 |#2|))) (-15 -4185 ((-1186 |#2|))) (-15 -2590 ((-699 |#2|) (-1281 |#1|))) (-15 -2590 ((-699 |#2|) (-699 |#1|))) (-15 -2590 ((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 |#1|) (-1281 |#1|))) (-15 -2590 ((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 |#1|) (-1281 |#1|))) (-15 -2590 ((-699 (-574)) (-699 |#1|))) (-15 -2590 ((-699 (-574)) (-1281 |#1|))) (-15 -1696 ((-3 |#2| "failed") |#1|)) (-15 -2206 (|#2| |#1|)) (-15 -2206 ((-417 (-574)) |#1|)) (-15 -1696 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2206 ((-574) |#1|)) (-15 -1696 ((-3 (-574) "failed") |#1|)) (-15 -1836 ((-1186 |#2|) |#1|)) (-15 -2872 (|#2|)) (-15 -1836 (|#1| (-1281 |#2|))) (-15 -1836 ((-1281 |#2|) |#1|)) (-15 -3487 ((-699 |#2|) (-1281 |#1|))) (-15 -3487 ((-1281 |#2|) |#1|)) (-15 -1972 ((-1186 |#2|) |#1|)) (-15 -1435 ((-1186 |#2|) |#1|)) (-15 -2872 (|#2| (-1281 |#1|))) (-15 -3487 ((-699 |#2|) (-1281 |#1|) (-1281 |#1|))) (-15 -3487 ((-1281 |#2|) |#1| (-1281 |#1|))) (-15 -2236 (|#2| |#1|)) (-15 -1636 (|#2| |#1|)) (-15 -3584 ((-932))) (-15 -2943 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1364 ((-781))) (-15 -2943 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 -3434 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-932))) (-15 -3094 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-932) |#1|)) (-15 -3079 (|#1| |#1| |#1|)) (-15 -3284 ((-112) |#1| |#1|)) (-15 -2943 ((-872) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) (-167 |#2|) (-174)) (T -166)) -((-1364 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-3584 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-932)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-2872 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) (-4185 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1186 *4)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4))))) -(-10 -8 (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -2943 (|#1| |#1|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1776 ((-2 (|:| -2785 |#1|) (|:| -4443 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -1730 ((-781) |#1|)) (-15 -1989 ((-2 (|:| -1411 |#1|) (|:| -2766 |#1|)) |#1| |#1|)) (-15 -2797 (|#1| |#1| |#1|)) (-15 -2786 (|#1| |#1| |#1|)) (-15 -1324 (|#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -1836 ((-546) |#1|)) (-15 -1836 ((-171 (-227)) |#1|)) (-15 -1836 ((-171 (-388)) |#1|)) (-15 -2247 (|#1| |#1|)) (-15 -2227 (|#1| |#1|)) (-15 -2237 (|#1| |#1|)) (-15 -2297 (|#1| |#1|)) (-15 -2287 (|#1| |#1|)) (-15 -2305 (|#1| |#1|)) (-15 -2352 (|#1| |#1|)) (-15 -2343 (|#1| |#1|)) (-15 -2364 (|#1| |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -2414 (|#1| |#1|)) (-15 -2441 (|#1| |#1|)) (-15 -3119 (|#1| |#1|)) (-15 -1609 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3000 (|#1|)) (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -2039 ((-428 (-1186 |#1|)) (-1186 |#1|))) (-15 -2560 ((-428 (-1186 |#1|)) (-1186 |#1|))) (-15 -1879 ((-3 (-654 (-1186 |#1|)) "failed") (-654 (-1186 |#1|)) (-1186 |#1|))) (-15 -1880 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -4339 ((-417 (-574)) |#1|)) (-15 -4414 ((-112) |#1|)) (-15 -3494 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3725 (|#2| |#1|)) (-15 -3482 (|#1| |#1|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1479 (|#1| |#1|)) (-15 -3463 (|#1|)) (-15 -1836 ((-903 (-388)) |#1|)) (-15 -1836 ((-903 (-574)) |#1|)) (-15 -3625 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -3625 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1777 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -2868 ((-3 |#1| "failed") (-417 (-1186 |#2|)))) (-15 -2854 ((-1186 |#2|) |#1|)) (-15 -1836 (|#1| (-1186 |#2|))) (-15 -2868 (|#1| (-1186 |#2|))) (-15 -4185 ((-1186 |#2|))) (-15 -2590 ((-699 |#2|) (-1281 |#1|))) (-15 -2590 ((-699 |#2|) (-699 |#1|))) (-15 -2590 ((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 |#1|) (-1281 |#1|))) (-15 -2590 ((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 |#1|) (-1281 |#1|))) (-15 -2590 ((-699 (-574)) (-699 |#1|))) (-15 -2590 ((-699 (-574)) (-1281 |#1|))) (-15 -1696 ((-3 |#2| "failed") |#1|)) (-15 -2206 (|#2| |#1|)) (-15 -2206 ((-417 (-574)) |#1|)) (-15 -1696 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2206 ((-574) |#1|)) (-15 -1696 ((-3 (-574) "failed") |#1|)) (-15 -1836 ((-1186 |#2|) |#1|)) (-15 -2872 (|#2|)) (-15 -1836 (|#1| (-1281 |#2|))) (-15 -1836 ((-1281 |#2|) |#1|)) (-15 -3487 ((-699 |#2|) (-1281 |#1|))) (-15 -3487 ((-1281 |#2|) |#1|)) (-15 -1972 ((-1186 |#2|) |#1|)) (-15 -1435 ((-1186 |#2|) |#1|)) (-15 -2872 (|#2| (-1281 |#1|))) (-15 -3487 ((-699 |#2|) (-1281 |#1|) (-1281 |#1|))) (-15 -3487 ((-1281 |#2|) |#1| (-1281 |#1|))) (-15 -2236 (|#2| |#1|)) (-15 -1636 (|#2| |#1|)) (-15 -3584 ((-932))) (-15 -2943 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1364 ((-781))) (-15 -2943 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 -3434 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-932))) (-15 -3094 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-932) |#1|)) (-15 -3079 (|#1| |#1| |#1|)) (-15 -3284 ((-112) |#1| |#1|)) (-15 -2943 ((-872) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 103 (-2818 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920)))))) (-1575 (($ $) 104 (-2818 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920)))))) (-2085 (((-112) $) 106 (-2818 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920)))))) (-2294 (((-699 |#1|) (-1281 $)) 53) (((-699 |#1|)) 68)) (-1636 ((|#1| $) 59)) (-2364 (($ $) 232 (|has| |#1| (-1216)))) (-2247 (($ $) 215 (|has| |#1| (-1216)))) (-1664 (((-1203 (-932) (-781)) (-574)) 156 (|has| |#1| (-358)))) (-3524 (((-3 $ "failed") $ $) 20)) (-3972 (((-428 (-1186 $)) (-1186 $)) 246 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))))) (-2568 (($ $) 123 (-2818 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-372))))) (-2827 (((-428 $) $) 124 (-2818 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-372))))) (-4229 (($ $) 245 (-12 (|has| |#1| (-1015)) (|has| |#1| (-1216))))) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) 249 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))))) (-1600 (((-112) $ $) 114 (|has| |#1| (-315)))) (-1487 (((-781)) 97 (|has| |#1| (-377)))) (-2343 (($ $) 231 (|has| |#1| (-1216)))) (-2227 (($ $) 216 (|has| |#1| (-1216)))) (-2389 (($ $) 230 (|has| |#1| (-1216)))) (-2267 (($ $) 217 (|has| |#1| (-1216)))) (-3426 (($) 18 T CONST)) (-1696 (((-3 (-574) "failed") $) 181 (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) 179 (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) 176)) (-2206 (((-574) $) 180 (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) 178 (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) 177)) (-2737 (($ (-1281 |#1|) (-1281 $)) 55) (($ (-1281 |#1|)) 71)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) 162 (|has| |#1| (-358)))) (-2786 (($ $ $) 118 (|has| |#1| (-315)))) (-2134 (((-699 |#1|) $ (-1281 $)) 60) (((-699 |#1|) $) 66)) (-2590 (((-699 (-574)) (-1281 $)) 175 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 174 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 173 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) 172) (((-699 |#1|) (-699 $)) 171) (((-699 |#1|) (-1281 $)) 170)) (-2868 (($ (-1186 |#1|)) 167) (((-3 $ "failed") (-417 (-1186 |#1|))) 164 (|has| |#1| (-372)))) (-3434 (((-3 $ "failed") $) 37)) (-4239 ((|#1| $) 257)) (-1880 (((-3 (-417 (-574)) "failed") $) 250 (|has| |#1| (-555)))) (-4414 (((-112) $) 252 (|has| |#1| (-555)))) (-4339 (((-417 (-574)) $) 251 (|has| |#1| (-555)))) (-3584 (((-932)) 61)) (-2820 (($) 100 (|has| |#1| (-377)))) (-2797 (($ $ $) 117 (|has| |#1| (-315)))) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) 112 (|has| |#1| (-315)))) (-3812 (($) 158 (|has| |#1| (-358)))) (-4044 (((-112) $) 159 (|has| |#1| (-358)))) (-1647 (($ $ (-781)) 150 (|has| |#1| (-358))) (($ $) 149 (|has| |#1| (-358)))) (-2257 (((-112) $) 125 (-2818 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-372))))) (-3494 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 253 (-12 (|has| |#1| (-1073)) (|has| |#1| (-1216))))) (-3000 (($) 242 (|has| |#1| (-1216)))) (-3625 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 265 (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 264 (|has| |#1| (-897 (-388))))) (-3884 (((-932) $) 161 (|has| |#1| (-358))) (((-843 (-932)) $) 147 (|has| |#1| (-358)))) (-3199 (((-112) $) 35)) (-3460 (($ $ (-574)) 244 (-12 (|has| |#1| (-1015)) (|has| |#1| (-1216))))) (-2236 ((|#1| $) 58)) (-2748 (((-3 $ "failed") $) 151 (|has| |#1| (-358)))) (-4403 (((-3 (-654 $) "failed") (-654 $) $) 121 (|has| |#1| (-315)))) (-1972 (((-1186 |#1|) $) 51 (|has| |#1| (-372)))) (-1777 (($ (-1 |#1| |#1|) $) 266)) (-4115 (((-932) $) 99 (|has| |#1| (-377)))) (-3119 (($ $) 239 (|has| |#1| (-1216)))) (-2854 (((-1186 |#1|) $) 165)) (-2832 (($ (-654 $)) 110 (-2818 (|has| |#1| (-315)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920))))) (($ $ $) 109 (-2818 (|has| |#1| (-315)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920)))))) (-4136 (((-1172) $) 10)) (-1324 (($ $) 126 (|has| |#1| (-372)))) (-3818 (($) 152 (|has| |#1| (-358)) CONST)) (-2576 (($ (-932)) 98 (|has| |#1| (-377)))) (-3463 (($) 261)) (-4249 ((|#1| $) 258)) (-3966 (((-1133) $) 11)) (-2970 (($) 169)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 111 (-2818 (|has| |#1| (-315)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920)))))) (-2873 (($ (-654 $)) 108 (-2818 (|has| |#1| (-315)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920))))) (($ $ $) 107 (-2818 (|has| |#1| (-315)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920)))))) (-1417 (((-654 (-2 (|:| -4220 (-574)) (|:| -3715 (-574))))) 155 (|has| |#1| (-358)))) (-2560 (((-428 (-1186 $)) (-1186 $)) 248 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))))) (-2039 (((-428 (-1186 $)) (-1186 $)) 247 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))))) (-4220 (((-428 $) $) 122 (-2818 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-372))))) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120 (|has| |#1| (-315))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 119 (|has| |#1| (-315)))) (-2838 (((-3 $ "failed") $ |#1|) 256 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 102 (-2818 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920)))))) (-3471 (((-3 (-654 $) "failed") (-654 $) $) 113 (|has| |#1| (-315)))) (-1609 (($ $) 240 (|has| |#1| (-1216)))) (-2646 (($ $ (-654 |#1|) (-654 |#1|)) 272 (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) 271 (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) 270 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) 269 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1190)) (-654 |#1|)) 268 (|has| |#1| (-524 (-1190) |#1|))) (($ $ (-1190) |#1|) 267 (|has| |#1| (-524 (-1190) |#1|)))) (-1730 (((-781) $) 115 (|has| |#1| (-315)))) (-2199 (($ $ |#1|) 273 (|has| |#1| (-294 |#1| |#1|)))) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 116 (|has| |#1| (-315)))) (-2872 ((|#1| (-1281 $)) 54) ((|#1|) 67)) (-4342 (((-781) $) 160 (|has| |#1| (-358))) (((-3 (-781) "failed") $ $) 148 (|has| |#1| (-358)))) (-3905 (($ $ (-1 |#1| |#1|) (-781)) 132) (($ $ (-1 |#1| |#1|)) 131) (($ $ (-654 (-1190)) (-654 (-781))) 139 (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) 140 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) 141 (|has| |#1| (-911 (-1190)))) (($ $ (-1190)) 142 (|has| |#1| (-911 (-1190)))) (($ $ (-781)) 144 (-2818 (-2087 (|has| |#1| (-372)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-2087 (|has| |#1| (-239)) (|has| |#1| (-372))))) (($ $) 145 (-2818 (-2087 (|has| |#1| (-372)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-2087 (|has| |#1| (-239)) (|has| |#1| (-372)))))) (-3146 (((-699 |#1|) (-1281 $) (-1 |#1| |#1|)) 163 (|has| |#1| (-372)))) (-4185 (((-1186 |#1|)) 168)) (-2402 (($ $) 229 (|has| |#1| (-1216)))) (-2275 (($ $) 218 (|has| |#1| (-1216)))) (-3074 (($) 157 (|has| |#1| (-358)))) (-2375 (($ $) 228 (|has| |#1| (-1216)))) (-2256 (($ $) 219 (|has| |#1| (-1216)))) (-2352 (($ $) 227 (|has| |#1| (-1216)))) (-2237 (($ $) 220 (|has| |#1| (-1216)))) (-3487 (((-1281 |#1|) $ (-1281 $)) 57) (((-699 |#1|) (-1281 $) (-1281 $)) 56) (((-1281 |#1|) $) 73) (((-699 |#1|) (-1281 $)) 72)) (-1836 (((-1281 |#1|) $) 70) (($ (-1281 |#1|)) 69) (((-1186 |#1|) $) 182) (($ (-1186 |#1|)) 166) (((-903 (-574)) $) 263 (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) 262 (|has| |#1| (-624 (-903 (-388))))) (((-171 (-388)) $) 214 (|has| |#1| (-1035))) (((-171 (-227)) $) 213 (|has| |#1| (-1035))) (((-546) $) 212 (|has| |#1| (-624 (-546))))) (-1479 (($ $) 260)) (-1524 (((-3 (-1281 $) "failed") (-699 $)) 154 (-2818 (-2087 (|has| $ (-146)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920)))) (|has| |#1| (-358))))) (-3562 (($ |#1| |#1|) 259)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44) (($ (-417 (-574))) 96 (-2818 (|has| |#1| (-372)) (|has| |#1| (-1051 (-417 (-574)))))) (($ $) 101 (-2818 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920)))))) (-3298 (($ $) 153 (|has| |#1| (-358))) (((-3 $ "failed") $) 50 (-2818 (-2087 (|has| $ (-146)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920)))) (|has| |#1| (-146))))) (-1435 (((-1186 |#1|) $) 52)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-1882 (((-1281 $)) 74)) (-2441 (($ $) 238 (|has| |#1| (-1216)))) (-2305 (($ $) 226 (|has| |#1| (-1216)))) (-2069 (((-112) $ $) 105 (-2818 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920)))))) (-2414 (($ $) 237 (|has| |#1| (-1216)))) (-2287 (($ $) 225 (|has| |#1| (-1216)))) (-2465 (($ $) 236 (|has| |#1| (-1216)))) (-2325 (($ $) 224 (|has| |#1| (-1216)))) (-3725 ((|#1| $) 254 (|has| |#1| (-1216)))) (-2521 (($ $) 235 (|has| |#1| (-1216)))) (-2334 (($ $) 223 (|has| |#1| (-1216)))) (-2452 (($ $) 234 (|has| |#1| (-1216)))) (-2315 (($ $) 222 (|has| |#1| (-1216)))) (-2428 (($ $) 233 (|has| |#1| (-1216)))) (-2297 (($ $) 221 (|has| |#1| (-1216)))) (-3482 (($ $) 255 (|has| |#1| (-1073)))) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-3610 (($ $ (-1 |#1| |#1|) (-781)) 134) (($ $ (-1 |#1| |#1|)) 133) (($ $ (-654 (-1190)) (-654 (-781))) 135 (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) 136 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) 137 (|has| |#1| (-911 (-1190)))) (($ $ (-1190)) 138 (|has| |#1| (-911 (-1190)))) (($ $ (-781)) 143 (-2818 (-2087 (|has| |#1| (-372)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-2087 (|has| |#1| (-239)) (|has| |#1| (-372))))) (($ $) 146 (-2818 (-2087 (|has| |#1| (-372)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-2087 (|has| |#1| (-239)) (|has| |#1| (-372)))))) (-2981 (((-112) $ $) 6)) (-3108 (($ $ $) 130 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-417 (-574))) 243 (-12 (|has| |#1| (-1015)) (|has| |#1| (-1216)))) (($ $ $) 241 (|has| |#1| (-1216))) (($ $ (-574)) 127 (|has| |#1| (-372)))) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-417 (-574)) $) 129 (|has| |#1| (-372))) (($ $ (-417 (-574))) 128 (|has| |#1| (-372))))) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 16) (($ (-1194)) NIL) (((-1194) $) NIL)) (-2043 (((-653 (-1147)) $) 10)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-162) (-13 (-1095) (-10 -8 (-15 -2043 ((-653 (-1147)) $))))) (T -162)) +((-2043 (*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-162))))) +(-13 (-1095) (-10 -8 (-15 -2043 ((-653 (-1147)) $)))) +((-2848 (((-112) $ $) NIL)) (-3545 (($ (-573)) 14) (($ $ $) 15)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 18)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 9))) +(((-163) (-13 (-1112) (-10 -8 (-15 -3545 ($ (-573))) (-15 -3545 ($ $ $))))) (T -163)) +((-3545 (*1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-163)))) (-3545 (*1 *1 *1 *1) (-5 *1 (-163)))) +(-13 (-1112) (-10 -8 (-15 -3545 ($ (-573))) (-15 -3545 ($ $ $)))) +((-4173 (((-115) (-1189)) 102))) +(((-164) (-10 -7 (-15 -4173 ((-115) (-1189))))) (T -164)) +((-4173 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-115)) (-5 *1 (-164))))) +(-10 -7 (-15 -4173 ((-115) (-1189)))) +((-3444 ((|#3| |#3|) 19))) +(((-165 |#1| |#2| |#3|) (-10 -7 (-15 -3444 (|#3| |#3|))) (-1061) (-1256 |#1|) (-1256 |#2|)) (T -165)) +((-3444 (*1 *2 *2) (-12 (-4 *3 (-1061)) (-4 *4 (-1256 *3)) (-5 *1 (-165 *3 *4 *2)) (-4 *2 (-1256 *4))))) +(-10 -7 (-15 -3444 (|#3| |#3|))) +((-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 223)) (-1635 ((|#2| $) 102)) (-2363 (($ $) 256)) (-2246 (($ $) 250)) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) 47)) (-2342 (($ $) 254)) (-2225 (($ $) 248)) (-1695 (((-3 (-573) "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-2205 (((-573) $) NIL) (((-416 (-573)) $) NIL) ((|#2| $) 144)) (-2784 (($ $ $) 229)) (-2759 (((-698 (-573)) (-1280 $)) NIL) (((-698 (-573)) (-698 $)) NIL) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) 160) (((-698 |#2|) (-698 $)) 154) (((-698 |#2|) (-1280 $)) NIL)) (-2867 (($ (-1185 |#2|)) 125) (((-3 $ "failed") (-416 (-1185 |#2|))) NIL)) (-2232 (((-3 $ "failed") $) 214)) (-3810 (((-3 (-416 (-573)) "failed") $) 204)) (-2551 (((-112) $) 199)) (-4434 (((-416 (-573)) $) 202)) (-3583 (((-931)) 96)) (-2796 (($ $ $) 231)) (-1610 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-2999 (($) 245)) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 193) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 198)) (-3421 ((|#2| $) 100)) (-2297 (((-1185 |#2|) $) 127)) (-1776 (($ (-1 |#2| |#2|) $) 108)) (-3118 (($ $) 247)) (-2853 (((-1185 |#2|) $) 126)) (-1323 (($ $) 207)) (-1507 (($) 103)) (-2963 (((-427 (-1185 $)) (-1185 $)) 95)) (-1655 (((-427 (-1185 $)) (-1185 $)) 64)) (-2837 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-1608 (($ $) 246)) (-2163 (((-780) $) 226)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 236)) (-3592 ((|#2| (-1280 $)) NIL) ((|#2|) 98)) (-3904 (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-653 (-1189)) (-653 (-780))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189)) NIL) (($ $) NIL) (($ $ (-780)) NIL)) (-2984 (((-1185 |#2|)) 120)) (-2352 (($ $) 255)) (-2236 (($ $) 249)) (-2123 (((-1280 |#2|) $ (-1280 $)) 136) (((-698 |#2|) (-1280 $) (-1280 $)) NIL) (((-1280 |#2|) $) 116) (((-698 |#2|) (-1280 $)) NIL)) (-1835 (((-1280 |#2|) $) NIL) (($ (-1280 |#2|)) NIL) (((-1185 |#2|) $) NIL) (($ (-1185 |#2|)) NIL) (((-902 (-573)) $) 184) (((-902 (-387)) $) 188) (((-171 (-387)) $) 172) (((-171 (-227)) $) 167) (((-545) $) 180)) (-3204 (($ $) 104)) (-2942 (((-871) $) 143) (($ (-573)) NIL) (($ |#2|) NIL) (($ (-416 (-573))) NIL) (($ $) NIL)) (-2517 (((-1185 |#2|) $) 32)) (-1545 (((-780)) 106)) (-3507 (((-112) $ $) 13)) (-2439 (($ $) 259)) (-2304 (($ $) 253)) (-2413 (($ $) 257)) (-2286 (($ $) 251)) (-3607 ((|#2| $) 242)) (-2426 (($ $) 258)) (-2296 (($ $) 252)) (-1660 (($ $) 162)) (-2981 (((-112) $ $) 110)) (-3093 (($ $) 112) (($ $ $) NIL)) (-3077 (($ $ $) 111)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-416 (-573))) 276) (($ $ $) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-416 (-573)) $) NIL) (($ $ (-416 (-573))) NIL))) +(((-166 |#1| |#2|) (-10 -8 (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -2942 (|#1| |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4359 ((-2 (|:| -1642 |#1|) (|:| -4442 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -2163 ((-780) |#1|)) (-15 -1405 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -2796 (|#1| |#1| |#1|)) (-15 -2784 (|#1| |#1| |#1|)) (-15 -1323 (|#1| |#1|)) (-15 ** (|#1| |#1| (-573))) (-15 * (|#1| |#1| (-416 (-573)))) (-15 * (|#1| (-416 (-573)) |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -1835 ((-545) |#1|)) (-15 -1835 ((-171 (-227)) |#1|)) (-15 -1835 ((-171 (-387)) |#1|)) (-15 -2246 (|#1| |#1|)) (-15 -2225 (|#1| |#1|)) (-15 -2236 (|#1| |#1|)) (-15 -2296 (|#1| |#1|)) (-15 -2286 (|#1| |#1|)) (-15 -2304 (|#1| |#1|)) (-15 -2352 (|#1| |#1|)) (-15 -2342 (|#1| |#1|)) (-15 -2363 (|#1| |#1|)) (-15 -2426 (|#1| |#1|)) (-15 -2413 (|#1| |#1|)) (-15 -2439 (|#1| |#1|)) (-15 -3118 (|#1| |#1|)) (-15 -1608 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2999 (|#1|)) (-15 ** (|#1| |#1| (-416 (-573)))) (-15 -1655 ((-427 (-1185 |#1|)) (-1185 |#1|))) (-15 -2963 ((-427 (-1185 |#1|)) (-1185 |#1|))) (-15 -3711 ((-3 (-653 (-1185 |#1|)) "failed") (-653 (-1185 |#1|)) (-1185 |#1|))) (-15 -3810 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -4434 ((-416 (-573)) |#1|)) (-15 -2551 ((-112) |#1|)) (-15 -1610 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3607 (|#2| |#1|)) (-15 -1660 (|#1| |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3204 (|#1| |#1|)) (-15 -1507 (|#1|)) (-15 -1835 ((-902 (-387)) |#1|)) (-15 -1835 ((-902 (-573)) |#1|)) (-15 -1352 ((-899 (-387) |#1|) |#1| (-902 (-387)) (-899 (-387) |#1|))) (-15 -1352 ((-899 (-573) |#1|) |#1| (-902 (-573)) (-899 (-573) |#1|))) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -2867 ((-3 |#1| "failed") (-416 (-1185 |#2|)))) (-15 -2853 ((-1185 |#2|) |#1|)) (-15 -1835 (|#1| (-1185 |#2|))) (-15 -2867 (|#1| (-1185 |#2|))) (-15 -2984 ((-1185 |#2|))) (-15 -2759 ((-698 |#2|) (-1280 |#1|))) (-15 -2759 ((-698 |#2|) (-698 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-698 (-573)) (-698 |#1|))) (-15 -2759 ((-698 (-573)) (-1280 |#1|))) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -1835 ((-1185 |#2|) |#1|)) (-15 -3592 (|#2|)) (-15 -1835 (|#1| (-1280 |#2|))) (-15 -1835 ((-1280 |#2|) |#1|)) (-15 -2123 ((-698 |#2|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1|)) (-15 -2297 ((-1185 |#2|) |#1|)) (-15 -2517 ((-1185 |#2|) |#1|)) (-15 -3592 (|#2| (-1280 |#1|))) (-15 -2123 ((-698 |#2|) (-1280 |#1|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1| (-1280 |#1|))) (-15 -3421 (|#2| |#1|)) (-15 -1635 (|#2| |#1|)) (-15 -3583 ((-931))) (-15 -2942 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1545 ((-780))) (-15 -2942 (|#1| (-573))) (-15 ** (|#1| |#1| (-780))) (-15 -2232 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-931))) (-15 -3093 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-931) |#1|)) (-15 -3077 (|#1| |#1| |#1|)) (-15 -3507 ((-112) |#1| |#1|)) (-15 -2942 ((-871) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) (-167 |#2|) (-174)) (T -166)) +((-1545 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-780)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-3583 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-931)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-3592 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) (-2984 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1185 *4)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4))))) +(-10 -8 (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -2942 (|#1| |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4359 ((-2 (|:| -1642 |#1|) (|:| -4442 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -2163 ((-780) |#1|)) (-15 -1405 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -2796 (|#1| |#1| |#1|)) (-15 -2784 (|#1| |#1| |#1|)) (-15 -1323 (|#1| |#1|)) (-15 ** (|#1| |#1| (-573))) (-15 * (|#1| |#1| (-416 (-573)))) (-15 * (|#1| (-416 (-573)) |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -1835 ((-545) |#1|)) (-15 -1835 ((-171 (-227)) |#1|)) (-15 -1835 ((-171 (-387)) |#1|)) (-15 -2246 (|#1| |#1|)) (-15 -2225 (|#1| |#1|)) (-15 -2236 (|#1| |#1|)) (-15 -2296 (|#1| |#1|)) (-15 -2286 (|#1| |#1|)) (-15 -2304 (|#1| |#1|)) (-15 -2352 (|#1| |#1|)) (-15 -2342 (|#1| |#1|)) (-15 -2363 (|#1| |#1|)) (-15 -2426 (|#1| |#1|)) (-15 -2413 (|#1| |#1|)) (-15 -2439 (|#1| |#1|)) (-15 -3118 (|#1| |#1|)) (-15 -1608 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2999 (|#1|)) (-15 ** (|#1| |#1| (-416 (-573)))) (-15 -1655 ((-427 (-1185 |#1|)) (-1185 |#1|))) (-15 -2963 ((-427 (-1185 |#1|)) (-1185 |#1|))) (-15 -3711 ((-3 (-653 (-1185 |#1|)) "failed") (-653 (-1185 |#1|)) (-1185 |#1|))) (-15 -3810 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -4434 ((-416 (-573)) |#1|)) (-15 -2551 ((-112) |#1|)) (-15 -1610 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3607 (|#2| |#1|)) (-15 -1660 (|#1| |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3204 (|#1| |#1|)) (-15 -1507 (|#1|)) (-15 -1835 ((-902 (-387)) |#1|)) (-15 -1835 ((-902 (-573)) |#1|)) (-15 -1352 ((-899 (-387) |#1|) |#1| (-902 (-387)) (-899 (-387) |#1|))) (-15 -1352 ((-899 (-573) |#1|) |#1| (-902 (-573)) (-899 (-573) |#1|))) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -2867 ((-3 |#1| "failed") (-416 (-1185 |#2|)))) (-15 -2853 ((-1185 |#2|) |#1|)) (-15 -1835 (|#1| (-1185 |#2|))) (-15 -2867 (|#1| (-1185 |#2|))) (-15 -2984 ((-1185 |#2|))) (-15 -2759 ((-698 |#2|) (-1280 |#1|))) (-15 -2759 ((-698 |#2|) (-698 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-698 (-573)) (-698 |#1|))) (-15 -2759 ((-698 (-573)) (-1280 |#1|))) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -1835 ((-1185 |#2|) |#1|)) (-15 -3592 (|#2|)) (-15 -1835 (|#1| (-1280 |#2|))) (-15 -1835 ((-1280 |#2|) |#1|)) (-15 -2123 ((-698 |#2|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1|)) (-15 -2297 ((-1185 |#2|) |#1|)) (-15 -2517 ((-1185 |#2|) |#1|)) (-15 -3592 (|#2| (-1280 |#1|))) (-15 -2123 ((-698 |#2|) (-1280 |#1|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1| (-1280 |#1|))) (-15 -3421 (|#2| |#1|)) (-15 -1635 (|#2| |#1|)) (-15 -3583 ((-931))) (-15 -2942 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1545 ((-780))) (-15 -2942 (|#1| (-573))) (-15 ** (|#1| |#1| (-780))) (-15 -2232 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-931))) (-15 -3093 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-931) |#1|)) (-15 -3077 (|#1| |#1| |#1|)) (-15 -3507 ((-112) |#1| |#1|)) (-15 -2942 ((-871) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 103 (-2817 (|has| |#1| (-565)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919)))))) (-2456 (($ $) 104 (-2817 (|has| |#1| (-565)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919)))))) (-1345 (((-112) $) 106 (-2817 (|has| |#1| (-565)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919)))))) (-2114 (((-698 |#1|) (-1280 $)) 53) (((-698 |#1|)) 68)) (-1635 ((|#1| $) 59)) (-2363 (($ $) 232 (|has| |#1| (-1215)))) (-2246 (($ $) 215 (|has| |#1| (-1215)))) (-2604 (((-1202 (-931) (-780)) (-573)) 156 (|has| |#1| (-357)))) (-2983 (((-3 $ "failed") $ $) 20)) (-1600 (((-427 (-1185 $)) (-1185 $)) 246 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))))) (-4285 (($ $) 123 (-2817 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-371))))) (-2427 (((-427 $) $) 124 (-2817 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-371))))) (-4228 (($ $) 245 (-12 (|has| |#1| (-1014)) (|has| |#1| (-1215))))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) 249 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))))) (-2800 (((-112) $ $) 114 (|has| |#1| (-314)))) (-1486 (((-780)) 97 (|has| |#1| (-376)))) (-2342 (($ $) 231 (|has| |#1| (-1215)))) (-2225 (($ $) 216 (|has| |#1| (-1215)))) (-2388 (($ $) 230 (|has| |#1| (-1215)))) (-2266 (($ $) 217 (|has| |#1| (-1215)))) (-2579 (($) 18 T CONST)) (-1695 (((-3 (-573) "failed") $) 181 (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) 179 (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) 176)) (-2205 (((-573) $) 180 (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) 178 (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) 177)) (-2854 (($ (-1280 |#1|) (-1280 $)) 55) (($ (-1280 |#1|)) 71)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) 162 (|has| |#1| (-357)))) (-2784 (($ $ $) 118 (|has| |#1| (-314)))) (-1720 (((-698 |#1|) $ (-1280 $)) 60) (((-698 |#1|) $) 66)) (-2759 (((-698 (-573)) (-1280 $)) 175 (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) 174 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 173 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) 172) (((-698 |#1|) (-698 $)) 171) (((-698 |#1|) (-1280 $)) 170)) (-2867 (($ (-1185 |#1|)) 167) (((-3 $ "failed") (-416 (-1185 |#1|))) 164 (|has| |#1| (-371)))) (-2232 (((-3 $ "failed") $) 37)) (-4238 ((|#1| $) 257)) (-3810 (((-3 (-416 (-573)) "failed") $) 250 (|has| |#1| (-554)))) (-2551 (((-112) $) 252 (|has| |#1| (-554)))) (-4434 (((-416 (-573)) $) 251 (|has| |#1| (-554)))) (-3583 (((-931)) 61)) (-2819 (($) 100 (|has| |#1| (-376)))) (-2796 (($ $ $) 117 (|has| |#1| (-314)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 112 (|has| |#1| (-314)))) (-3731 (($) 158 (|has| |#1| (-357)))) (-1708 (((-112) $) 159 (|has| |#1| (-357)))) (-2104 (($ $ (-780)) 150 (|has| |#1| (-357))) (($ $) 149 (|has| |#1| (-357)))) (-2696 (((-112) $) 125 (-2817 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-371))))) (-1610 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 253 (-12 (|has| |#1| (-1072)) (|has| |#1| (-1215))))) (-2999 (($) 242 (|has| |#1| (-1215)))) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 265 (|has| |#1| (-896 (-573)))) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 264 (|has| |#1| (-896 (-387))))) (-2534 (((-931) $) 161 (|has| |#1| (-357))) (((-842 (-931)) $) 147 (|has| |#1| (-357)))) (-1959 (((-112) $) 35)) (-4325 (($ $ (-573)) 244 (-12 (|has| |#1| (-1014)) (|has| |#1| (-1215))))) (-3421 ((|#1| $) 58)) (-1470 (((-3 $ "failed") $) 151 (|has| |#1| (-357)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 121 (|has| |#1| (-314)))) (-2297 (((-1185 |#1|) $) 51 (|has| |#1| (-371)))) (-1776 (($ (-1 |#1| |#1|) $) 266)) (-3589 (((-931) $) 99 (|has| |#1| (-376)))) (-3118 (($ $) 239 (|has| |#1| (-1215)))) (-2853 (((-1185 |#1|) $) 165)) (-2829 (($ (-653 $)) 110 (-2817 (|has| |#1| (-314)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919))))) (($ $ $) 109 (-2817 (|has| |#1| (-314)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919)))))) (-3180 (((-1171) $) 10)) (-1323 (($ $) 126 (|has| |#1| (-371)))) (-3816 (($) 152 (|has| |#1| (-357)) CONST)) (-2575 (($ (-931)) 98 (|has| |#1| (-376)))) (-1507 (($) 261)) (-4248 ((|#1| $) 258)) (-3965 (((-1132) $) 11)) (-2969 (($) 169)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 111 (-2817 (|has| |#1| (-314)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919)))))) (-2872 (($ (-653 $)) 108 (-2817 (|has| |#1| (-314)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919))))) (($ $ $) 107 (-2817 (|has| |#1| (-314)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919)))))) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) 155 (|has| |#1| (-357)))) (-2963 (((-427 (-1185 $)) (-1185 $)) 248 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))))) (-1655 (((-427 (-1185 $)) (-1185 $)) 247 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))))) (-4218 (((-427 $) $) 122 (-2817 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-371))))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120 (|has| |#1| (-314))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 119 (|has| |#1| (-314)))) (-2837 (((-3 $ "failed") $ |#1|) 256 (|has| |#1| (-565))) (((-3 $ "failed") $ $) 102 (-2817 (|has| |#1| (-565)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919)))))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 113 (|has| |#1| (-314)))) (-1608 (($ $) 240 (|has| |#1| (-1215)))) (-2645 (($ $ (-653 |#1|) (-653 |#1|)) 272 (|has| |#1| (-316 |#1|))) (($ $ |#1| |#1|) 271 (|has| |#1| (-316 |#1|))) (($ $ (-301 |#1|)) 270 (|has| |#1| (-316 |#1|))) (($ $ (-653 (-301 |#1|))) 269 (|has| |#1| (-316 |#1|))) (($ $ (-653 (-1189)) (-653 |#1|)) 268 (|has| |#1| (-523 (-1189) |#1|))) (($ $ (-1189) |#1|) 267 (|has| |#1| (-523 (-1189) |#1|)))) (-2163 (((-780) $) 115 (|has| |#1| (-314)))) (-2198 (($ $ |#1|) 273 (|has| |#1| (-293 |#1| |#1|)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 116 (|has| |#1| (-314)))) (-3592 ((|#1| (-1280 $)) 54) ((|#1|) 67)) (-1637 (((-780) $) 160 (|has| |#1| (-357))) (((-3 (-780) "failed") $ $) 148 (|has| |#1| (-357)))) (-3904 (($ $ (-1 |#1| |#1|) (-780)) 132) (($ $ (-1 |#1| |#1|)) 131) (($ $ (-653 (-1189)) (-653 (-780))) 139 (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) 140 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) 141 (|has| |#1| (-910 (-1189)))) (($ $ (-1189)) 142 (|has| |#1| (-910 (-1189)))) (($ $) 143 (-2817 (-2086 (|has| |#1| (-371)) (|has| |#1| (-238))) (|has| |#1| (-238)) (-2086 (|has| |#1| (-238)) (|has| |#1| (-371))))) (($ $ (-780)) 145 (-2817 (-2086 (|has| |#1| (-371)) (|has| |#1| (-238))) (|has| |#1| (-238)) (-2086 (|has| |#1| (-238)) (|has| |#1| (-371)))))) (-4303 (((-698 |#1|) (-1280 $) (-1 |#1| |#1|)) 163 (|has| |#1| (-371)))) (-2984 (((-1185 |#1|)) 168)) (-2401 (($ $) 229 (|has| |#1| (-1215)))) (-2274 (($ $) 218 (|has| |#1| (-1215)))) (-2510 (($) 157 (|has| |#1| (-357)))) (-2374 (($ $) 228 (|has| |#1| (-1215)))) (-2255 (($ $) 219 (|has| |#1| (-1215)))) (-2352 (($ $) 227 (|has| |#1| (-1215)))) (-2236 (($ $) 220 (|has| |#1| (-1215)))) (-2123 (((-1280 |#1|) $ (-1280 $)) 57) (((-698 |#1|) (-1280 $) (-1280 $)) 56) (((-1280 |#1|) $) 73) (((-698 |#1|) (-1280 $)) 72)) (-1835 (((-1280 |#1|) $) 70) (($ (-1280 |#1|)) 69) (((-1185 |#1|) $) 182) (($ (-1185 |#1|)) 166) (((-902 (-573)) $) 263 (|has| |#1| (-623 (-902 (-573))))) (((-902 (-387)) $) 262 (|has| |#1| (-623 (-902 (-387))))) (((-171 (-387)) $) 214 (|has| |#1| (-1034))) (((-171 (-227)) $) 213 (|has| |#1| (-1034))) (((-545) $) 212 (|has| |#1| (-623 (-545))))) (-3204 (($ $) 260)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) 154 (-2817 (-2086 (|has| $ (-146)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919)))) (|has| |#1| (-357))))) (-3561 (($ |#1| |#1|) 259)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 44) (($ (-416 (-573))) 96 (-2817 (|has| |#1| (-371)) (|has| |#1| (-1050 (-416 (-573)))))) (($ $) 101 (-2817 (|has| |#1| (-565)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919)))))) (-4279 (($ $) 153 (|has| |#1| (-357))) (((-3 $ "failed") $) 50 (-2817 (-2086 (|has| $ (-146)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919)))) (|has| |#1| (-146))))) (-2517 (((-1185 |#1|) $) 52)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-3914 (((-1280 $)) 74)) (-2439 (($ $) 238 (|has| |#1| (-1215)))) (-2304 (($ $) 226 (|has| |#1| (-1215)))) (-2516 (((-112) $ $) 105 (-2817 (|has| |#1| (-565)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919)))))) (-2413 (($ $) 237 (|has| |#1| (-1215)))) (-2286 (($ $) 225 (|has| |#1| (-1215)))) (-2464 (($ $) 236 (|has| |#1| (-1215)))) (-2324 (($ $) 224 (|has| |#1| (-1215)))) (-3607 ((|#1| $) 254 (|has| |#1| (-1215)))) (-2520 (($ $) 235 (|has| |#1| (-1215)))) (-2333 (($ $) 223 (|has| |#1| (-1215)))) (-2452 (($ $) 234 (|has| |#1| (-1215)))) (-2314 (($ $) 222 (|has| |#1| (-1215)))) (-2426 (($ $) 233 (|has| |#1| (-1215)))) (-2296 (($ $) 221 (|has| |#1| (-1215)))) (-1660 (($ $) 255 (|has| |#1| (-1072)))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-1 |#1| |#1|) (-780)) 134) (($ $ (-1 |#1| |#1|)) 133) (($ $ (-653 (-1189)) (-653 (-780))) 135 (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) 136 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) 137 (|has| |#1| (-910 (-1189)))) (($ $ (-1189)) 138 (|has| |#1| (-910 (-1189)))) (($ $) 144 (-2817 (-2086 (|has| |#1| (-371)) (|has| |#1| (-238))) (|has| |#1| (-238)) (-2086 (|has| |#1| (-238)) (|has| |#1| (-371))))) (($ $ (-780)) 146 (-2817 (-2086 (|has| |#1| (-371)) (|has| |#1| (-238))) (|has| |#1| (-238)) (-2086 (|has| |#1| (-238)) (|has| |#1| (-371)))))) (-2981 (((-112) $ $) 6)) (-3103 (($ $ $) 130 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-416 (-573))) 243 (-12 (|has| |#1| (-1014)) (|has| |#1| (-1215)))) (($ $ $) 241 (|has| |#1| (-1215))) (($ $ (-573)) 127 (|has| |#1| (-371)))) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-416 (-573)) $) 129 (|has| |#1| (-371))) (($ $ (-416 (-573))) 128 (|has| |#1| (-371))))) (((-167 |#1|) (-141) (-174)) (T -167)) -((-2236 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3463 (*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1479 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3562 (*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4249 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4239 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2838 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) (-3482 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1073)))) (-3725 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1216)))) (-3494 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1073)) (-4 *3 (-1216)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-4414 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112)))) (-4339 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574))))) (-1880 (*1 *2 *1) (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574)))))) -(-13 (-734 |t#1| (-1186 |t#1|)) (-421 |t#1|) (-233 |t#1|) (-347 |t#1|) (-410 |t#1|) (-895 |t#1|) (-386 |t#1|) (-174) (-10 -8 (-6 -3562) (-15 -3463 ($)) (-15 -1479 ($ $)) (-15 -3562 ($ |t#1| |t#1|)) (-15 -4249 (|t#1| $)) (-15 -4239 (|t#1| $)) (-15 -2236 (|t#1| $)) (IF (|has| |t#1| (-566)) (PROGN (-6 (-566)) (-15 -2838 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-315)) (-6 (-315)) |%noBranch|) (IF (|has| |t#1| (-6 -4455)) (-6 -4455) |%noBranch|) (IF (|has| |t#1| (-6 -4452)) (-6 -4452) |%noBranch|) (IF (|has| |t#1| (-372)) (-6 (-372)) |%noBranch|) (IF (|has| |t#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1035)) (PROGN (-6 (-624 (-171 (-227)))) (-6 (-624 (-171 (-388))))) |%noBranch|) (IF (|has| |t#1| (-1073)) (-15 -3482 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1216)) (PROGN (-6 (-1216)) (-15 -3725 (|t#1| $)) (IF (|has| |t#1| (-1015)) (-6 (-1015)) |%noBranch|) (IF (|has| |t#1| (-1073)) (-15 -3494 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -4414 ((-112) $)) (-15 -4339 ((-417 (-574)) $)) (-15 -1880 ((-3 (-417 (-574)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-920)) (IF (|has| |t#1| (-315)) (-6 (-920)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-38 |#1|) . T) ((-38 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-35) |has| |#1| (-1216)) ((-95) |has| |#1| (-1216)) ((-102) . T) ((-111 #0# #0#) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2818 (|has| |#1| (-358)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-626 #0#) -2818 (|has| |#1| (-1051 (-417 (-574)))) (|has| |#1| (-358)) (|has| |#1| (-372))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-623 (-872)) . T) ((-174) . T) ((-624 (-171 (-227))) |has| |#1| (-1035)) ((-624 (-171 (-388))) |has| |#1| (-1035)) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-624 (-903 (-388))) |has| |#1| (-624 (-903 (-388)))) ((-624 (-903 (-574))) |has| |#1| (-624 (-903 (-574)))) ((-624 #1=(-1186 |#1|)) . T) ((-235 $) -2818 (|has| |#1| (-358)) (|has| |#1| (-239))) ((-233 |#1|) . T) ((-239) -2818 (|has| |#1| (-358)) (|has| |#1| (-239))) ((-249) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-292) |has| |#1| (-1216)) ((-294 |#1| $) |has| |#1| (-294 |#1| |#1|)) ((-298) -2818 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-315) -2818 (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-317 |#1|) |has| |#1| (-317 |#1|)) ((-372) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-412) |has| |#1| (-358)) ((-377) -2818 (|has| |#1| (-377)) (|has| |#1| (-358))) ((-358) |has| |#1| (-358)) ((-379 |#1| #1#) . T) ((-419 |#1| #1#) . T) ((-347 |#1|) . T) ((-386 |#1|) . T) ((-410 |#1|) . T) ((-421 |#1|) . T) ((-462) -2818 (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-503) |has| |#1| (-1216)) ((-524 (-1190) |#1|) |has| |#1| (-524 (-1190) |#1|)) ((-524 |#1| |#1|) |has| |#1| (-317 |#1|)) ((-566) -2818 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-656 #0#) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-658 #2=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-650 |#1|) . T) ((-650 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-649 #2#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-727 |#1|) . T) ((-727 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-734 |#1| #1#) . T) ((-736) . T) ((-911 (-1190)) |has| |#1| (-911 (-1190))) ((-897 (-388)) |has| |#1| (-897 (-388))) ((-897 (-574)) |has| |#1| (-897 (-574))) ((-895 |#1|) . T) ((-920) -12 (|has| |#1| (-315)) (|has| |#1| (-920))) ((-931) -2818 (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-1015) -12 (|has| |#1| (-1015)) (|has| |#1| (-1216))) ((-1051 (-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((-1051 (-574)) |has| |#1| (-1051 (-574))) ((-1051 |#1|) . T) ((-1064 #0#) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-1064 |#1|) . T) ((-1064 $) . T) ((-1069 #0#) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-1069 |#1|) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1165) |has| |#1| (-358)) ((-1216) |has| |#1| (-1216)) ((-1219) |has| |#1| (-1216)) ((-1231) . T) ((-1235) -2818 (|has| |#1| (-358)) (|has| |#1| (-372)) (-12 (|has| |#1| (-315)) (|has| |#1| (-920))))) -((-4220 (((-428 |#2|) |#2|) 67))) -(((-168 |#1| |#2|) (-10 -7 (-15 -4220 ((-428 |#2|) |#2|))) (-315) (-1257 (-171 |#1|))) (T -168)) -((-4220 (*1 *2 *3) (-12 (-4 *4 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1257 (-171 *4)))))) -(-10 -7 (-15 -4220 ((-428 |#2|) |#2|))) -((-3529 (((-1148) (-1148) (-299)) 8)) (-1918 (((-654 (-701 (-288))) (-1172)) 81)) (-1761 (((-701 (-288)) (-1148)) 76))) -(((-169) (-13 (-1231) (-10 -7 (-15 -3529 ((-1148) (-1148) (-299))) (-15 -1761 ((-701 (-288)) (-1148))) (-15 -1918 ((-654 (-701 (-288))) (-1172)))))) (T -169)) -((-3529 (*1 *2 *2 *3) (-12 (-5 *2 (-1148)) (-5 *3 (-299)) (-5 *1 (-169)))) (-1761 (*1 *2 *3) (-12 (-5 *3 (-1148)) (-5 *2 (-701 (-288))) (-5 *1 (-169)))) (-1918 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-654 (-701 (-288)))) (-5 *1 (-169))))) -(-13 (-1231) (-10 -7 (-15 -3529 ((-1148) (-1148) (-299))) (-15 -1761 ((-701 (-288)) (-1148))) (-15 -1918 ((-654 (-701 (-288))) (-1172))))) -((-1777 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14))) -(((-170 |#1| |#2|) (-10 -7 (-15 -1777 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-174) (-174)) (T -170)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6))))) -(-10 -7 (-15 -1777 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 34)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (-2818 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-566))))) (-1575 (($ $) NIL (-2818 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-566))))) (-2085 (((-112) $) NIL (-2818 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-566))))) (-2294 (((-699 |#1|) (-1281 $)) NIL) (((-699 |#1|)) NIL)) (-1636 ((|#1| $) NIL)) (-2364 (($ $) NIL (|has| |#1| (-1216)))) (-2247 (($ $) NIL (|has| |#1| (-1216)))) (-1664 (((-1203 (-932) (-781)) (-574)) NIL (|has| |#1| (-358)))) (-3524 (((-3 $ "failed") $ $) NIL)) (-3972 (((-428 (-1186 $)) (-1186 $)) NIL (-12 (|has| |#1| (-315)) (|has| |#1| (-920))))) (-2568 (($ $) NIL (-2818 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-372))))) (-2827 (((-428 $) $) NIL (-2818 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-372))))) (-4229 (($ $) NIL (-12 (|has| |#1| (-1015)) (|has| |#1| (-1216))))) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (-12 (|has| |#1| (-315)) (|has| |#1| (-920))))) (-1600 (((-112) $ $) NIL (|has| |#1| (-315)))) (-1487 (((-781)) NIL (|has| |#1| (-377)))) (-2343 (($ $) NIL (|has| |#1| (-1216)))) (-2227 (($ $) NIL (|has| |#1| (-1216)))) (-2389 (($ $) NIL (|has| |#1| (-1216)))) (-2267 (($ $) NIL (|has| |#1| (-1216)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2206 (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) NIL)) (-2737 (($ (-1281 |#1|) (-1281 $)) NIL) (($ (-1281 |#1|)) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-358)))) (-2786 (($ $ $) NIL (|has| |#1| (-315)))) (-2134 (((-699 |#1|) $ (-1281 $)) NIL) (((-699 |#1|) $) NIL)) (-2590 (((-699 (-574)) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-2868 (($ (-1186 |#1|)) NIL) (((-3 $ "failed") (-417 (-1186 |#1|))) NIL (|has| |#1| (-372)))) (-3434 (((-3 $ "failed") $) NIL)) (-4239 ((|#1| $) 13)) (-1880 (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-555)))) (-4414 (((-112) $) NIL (|has| |#1| (-555)))) (-4339 (((-417 (-574)) $) NIL (|has| |#1| (-555)))) (-3584 (((-932)) NIL)) (-2820 (($) NIL (|has| |#1| (-377)))) (-2797 (($ $ $) NIL (|has| |#1| (-315)))) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#1| (-315)))) (-3812 (($) NIL (|has| |#1| (-358)))) (-4044 (((-112) $) NIL (|has| |#1| (-358)))) (-1647 (($ $ (-781)) NIL (|has| |#1| (-358))) (($ $) NIL (|has| |#1| (-358)))) (-2257 (((-112) $) NIL (-2818 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-372))))) (-3494 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1073)) (|has| |#1| (-1216))))) (-3000 (($) NIL (|has| |#1| (-1216)))) (-3625 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| |#1| (-897 (-388))))) (-3884 (((-932) $) NIL (|has| |#1| (-358))) (((-843 (-932)) $) NIL (|has| |#1| (-358)))) (-3199 (((-112) $) 36)) (-3460 (($ $ (-574)) NIL (-12 (|has| |#1| (-1015)) (|has| |#1| (-1216))))) (-2236 ((|#1| $) 47)) (-2748 (((-3 $ "failed") $) NIL (|has| |#1| (-358)))) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-315)))) (-1972 (((-1186 |#1|) $) NIL (|has| |#1| (-372)))) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-4115 (((-932) $) NIL (|has| |#1| (-377)))) (-3119 (($ $) NIL (|has| |#1| (-1216)))) (-2854 (((-1186 |#1|) $) NIL)) (-2832 (($ (-654 $)) NIL (|has| |#1| (-315))) (($ $ $) NIL (|has| |#1| (-315)))) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL (|has| |#1| (-372)))) (-3818 (($) NIL (|has| |#1| (-358)) CONST)) (-2576 (($ (-932)) NIL (|has| |#1| (-377)))) (-3463 (($) NIL)) (-4249 ((|#1| $) 15)) (-3966 (((-1133) $) NIL)) (-2970 (($) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-315)))) (-2873 (($ (-654 $)) NIL (|has| |#1| (-315))) (($ $ $) NIL (|has| |#1| (-315)))) (-1417 (((-654 (-2 (|:| -4220 (-574)) (|:| -3715 (-574))))) NIL (|has| |#1| (-358)))) (-2560 (((-428 (-1186 $)) (-1186 $)) NIL (-12 (|has| |#1| (-315)) (|has| |#1| (-920))))) (-2039 (((-428 (-1186 $)) (-1186 $)) NIL (-12 (|has| |#1| (-315)) (|has| |#1| (-920))))) (-4220 (((-428 $) $) NIL (-2818 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-372))))) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-315))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-315)))) (-2838 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 48 (-2818 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-566))))) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-315)))) (-1609 (($ $) NIL (|has| |#1| (-1216)))) (-2646 (($ $ (-654 |#1|) (-654 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1190)) (-654 |#1|)) NIL (|has| |#1| (-524 (-1190) |#1|))) (($ $ (-1190) |#1|) NIL (|has| |#1| (-524 (-1190) |#1|)))) (-1730 (((-781) $) NIL (|has| |#1| (-315)))) (-2199 (($ $ |#1|) NIL (|has| |#1| (-294 |#1| |#1|)))) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#1| (-315)))) (-2872 ((|#1| (-1281 $)) NIL) ((|#1|) NIL)) (-4342 (((-781) $) NIL (|has| |#1| (-358))) (((-3 (-781) "failed") $ $) NIL (|has| |#1| (-358)))) (-3905 (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239)))) (-3146 (((-699 |#1|) (-1281 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-372)))) (-4185 (((-1186 |#1|)) NIL)) (-2402 (($ $) NIL (|has| |#1| (-1216)))) (-2275 (($ $) NIL (|has| |#1| (-1216)))) (-3074 (($) NIL (|has| |#1| (-358)))) (-2375 (($ $) NIL (|has| |#1| (-1216)))) (-2256 (($ $) NIL (|has| |#1| (-1216)))) (-2352 (($ $) NIL (|has| |#1| (-1216)))) (-2237 (($ $) NIL (|has| |#1| (-1216)))) (-3487 (((-1281 |#1|) $ (-1281 $)) NIL) (((-699 |#1|) (-1281 $) (-1281 $)) NIL) (((-1281 |#1|) $) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-1836 (((-1281 |#1|) $) NIL) (($ (-1281 |#1|)) NIL) (((-1186 |#1|) $) NIL) (($ (-1186 |#1|)) NIL) (((-903 (-574)) $) NIL (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| |#1| (-624 (-903 (-388))))) (((-171 (-388)) $) NIL (|has| |#1| (-1035))) (((-171 (-227)) $) NIL (|has| |#1| (-1035))) (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-1479 (($ $) 46)) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-358))))) (-3562 (($ |#1| |#1|) 38)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) 37) (($ (-417 (-574))) NIL (-2818 (|has| |#1| (-372)) (|has| |#1| (-1051 (-417 (-574)))))) (($ $) NIL (-2818 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-566))))) (-3298 (($ $) NIL (|has| |#1| (-358))) (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-146))))) (-1435 (((-1186 |#1|) $) NIL)) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-1882 (((-1281 $)) NIL)) (-2441 (($ $) NIL (|has| |#1| (-1216)))) (-2305 (($ $) NIL (|has| |#1| (-1216)))) (-2069 (((-112) $ $) NIL (-2818 (-12 (|has| |#1| (-315)) (|has| |#1| (-920))) (|has| |#1| (-566))))) (-2414 (($ $) NIL (|has| |#1| (-1216)))) (-2287 (($ $) NIL (|has| |#1| (-1216)))) (-2465 (($ $) NIL (|has| |#1| (-1216)))) (-2325 (($ $) NIL (|has| |#1| (-1216)))) (-3725 ((|#1| $) NIL (|has| |#1| (-1216)))) (-2521 (($ $) NIL (|has| |#1| (-1216)))) (-2334 (($ $) NIL (|has| |#1| (-1216)))) (-2452 (($ $) NIL (|has| |#1| (-1216)))) (-2315 (($ $) NIL (|has| |#1| (-1216)))) (-2428 (($ $) NIL (|has| |#1| (-1216)))) (-2297 (($ $) NIL (|has| |#1| (-1216)))) (-3482 (($ $) NIL (|has| |#1| (-1073)))) (-2133 (($) 28 T CONST)) (-2145 (($) 30 T CONST)) (-1544 (((-1172) $) 23 (|has| |#1| (-838))) (((-1172) $ (-112)) 25 (|has| |#1| (-838))) (((-1286) (-832) $) 26 (|has| |#1| (-838))) (((-1286) (-832) $ (-112)) 27 (|has| |#1| (-838)))) (-3610 (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239)))) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) 40)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-417 (-574))) NIL (-12 (|has| |#1| (-1015)) (|has| |#1| (-1216)))) (($ $ $) NIL (|has| |#1| (-1216))) (($ $ (-574)) NIL (|has| |#1| (-372)))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-417 (-574)) $) NIL (|has| |#1| (-372))) (($ $ (-417 (-574))) NIL (|has| |#1| (-372))))) -(((-171 |#1|) (-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|))) (-174)) (T -171)) -NIL -(-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|))) -((-1836 (((-903 |#1|) |#3|) 22))) -(((-172 |#1| |#2| |#3|) (-10 -7 (-15 -1836 ((-903 |#1|) |#3|))) (-1113) (-13 (-624 (-903 |#1|)) (-174)) (-167 |#2|)) (T -172)) -((-1836 (*1 *2 *3) (-12 (-4 *5 (-13 (-624 *2) (-174))) (-5 *2 (-903 *4)) (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1113)) (-4 *3 (-167 *5))))) -(-10 -7 (-15 -1836 ((-903 |#1|) |#3|))) -((-2849 (((-112) $ $) NIL)) (-3157 (((-112) $) 9)) (-4307 (((-112) $ (-112)) 11)) (-3790 (($) 13)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3167 (($ $) 14)) (-2943 (((-872) $) 18)) (-3205 (((-112) $) 8)) (-1381 (((-112) $ (-112)) 10)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-173) (-13 (-1113) (-10 -8 (-15 -3790 ($)) (-15 -3205 ((-112) $)) (-15 -3157 ((-112) $)) (-15 -1381 ((-112) $ (-112))) (-15 -4307 ((-112) $ (-112))) (-15 -3167 ($ $))))) (T -173)) -((-3790 (*1 *1) (-5 *1 (-173))) (-3205 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3157 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1381 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-4307 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3167 (*1 *1 *1) (-5 *1 (-173)))) -(-13 (-1113) (-10 -8 (-15 -3790 ($)) (-15 -3205 ((-112) $)) (-15 -3157 ((-112) $)) (-15 -1381 ((-112) $ (-112))) (-15 -4307 ((-112) $ (-112))) (-15 -3167 ($ $)))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-3434 (((-3 $ "failed") $) 37)) (-3199 (((-112) $) 35)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12) (($ (-574)) 33)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) +((-3421 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1507 (*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3204 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3561 (*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4238 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2837 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-565)))) (-1660 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1072)))) (-3607 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1215)))) (-1610 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1072)) (-4 *3 (-1215)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-2551 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-554)) (-5 *2 (-112)))) (-4434 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-554)) (-5 *2 (-416 (-573))))) (-3810 (*1 *2 *1) (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-554)) (-5 *2 (-416 (-573)))))) +(-13 (-733 |t#1| (-1185 |t#1|)) (-420 |t#1|) (-233 |t#1|) (-346 |t#1|) (-409 |t#1|) (-894 |t#1|) (-385 |t#1|) (-174) (-10 -8 (-6 -3561) (-15 -1507 ($)) (-15 -3204 ($ $)) (-15 -3561 ($ |t#1| |t#1|)) (-15 -4248 (|t#1| $)) (-15 -4238 (|t#1| $)) (-15 -3421 (|t#1| $)) (IF (|has| |t#1| (-565)) (PROGN (-6 (-565)) (-15 -2837 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-314)) (-6 (-314)) |%noBranch|) (IF (|has| |t#1| (-6 -4454)) (-6 -4454) |%noBranch|) (IF (|has| |t#1| (-6 -4451)) (-6 -4451) |%noBranch|) (IF (|has| |t#1| (-371)) (-6 (-371)) |%noBranch|) (IF (|has| |t#1| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1034)) (PROGN (-6 (-623 (-171 (-227)))) (-6 (-623 (-171 (-387))))) |%noBranch|) (IF (|has| |t#1| (-1072)) (-15 -1660 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1215)) (PROGN (-6 (-1215)) (-15 -3607 (|t#1| $)) (IF (|has| |t#1| (-1014)) (-6 (-1014)) |%noBranch|) (IF (|has| |t#1| (-1072)) (-15 -1610 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-15 -2551 ((-112) $)) (-15 -4434 ((-416 (-573)) $)) (-15 -3810 ((-3 (-416 (-573)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-919)) (IF (|has| |t#1| (-314)) (-6 (-919)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-38 |#1|) . T) ((-38 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-357)) (|has| |#1| (-371)) (|has| |#1| (-314))) ((-35) |has| |#1| (-1215)) ((-95) |has| |#1| (-1215)) ((-102) . T) ((-111 #0# #0#) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2817 (|has| |#1| (-357)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-625 #0#) -2817 (|has| |#1| (-1050 (-416 (-573)))) (|has| |#1| (-357)) (|has| |#1| (-371))) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-625 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-357)) (|has| |#1| (-371)) (|has| |#1| (-314))) ((-622 (-871)) . T) ((-174) . T) ((-623 (-171 (-227))) |has| |#1| (-1034)) ((-623 (-171 (-387))) |has| |#1| (-1034)) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-623 (-902 (-387))) |has| |#1| (-623 (-902 (-387)))) ((-623 (-902 (-573))) |has| |#1| (-623 (-902 (-573)))) ((-623 #1=(-1185 |#1|)) . T) ((-235 $) -2817 (|has| |#1| (-357)) (|has| |#1| (-238))) ((-233 |#1|) . T) ((-238) -2817 (|has| |#1| (-357)) (|has| |#1| (-238))) ((-237) -2817 (|has| |#1| (-357)) (|has| |#1| (-238))) ((-248) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-291) |has| |#1| (-1215)) ((-293 |#1| $) |has| |#1| (-293 |#1| |#1|)) ((-297) -2817 (|has| |#1| (-565)) (|has| |#1| (-357)) (|has| |#1| (-371)) (|has| |#1| (-314))) ((-314) -2817 (|has| |#1| (-357)) (|has| |#1| (-371)) (|has| |#1| (-314))) ((-316 |#1|) |has| |#1| (-316 |#1|)) ((-371) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-411) |has| |#1| (-357)) ((-376) -2817 (|has| |#1| (-376)) (|has| |#1| (-357))) ((-357) |has| |#1| (-357)) ((-378 |#1| #1#) . T) ((-418 |#1| #1#) . T) ((-346 |#1|) . T) ((-385 |#1|) . T) ((-409 |#1|) . T) ((-420 |#1|) . T) ((-461) -2817 (|has| |#1| (-357)) (|has| |#1| (-371)) (|has| |#1| (-314))) ((-502) |has| |#1| (-1215)) ((-523 (-1189) |#1|) |has| |#1| (-523 (-1189) |#1|)) ((-523 |#1| |#1|) |has| |#1| (-316 |#1|)) ((-565) -2817 (|has| |#1| (-565)) (|has| |#1| (-357)) (|has| |#1| (-371)) (|has| |#1| (-314))) ((-655 #0#) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #0#) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-657 #2=(-573)) |has| |#1| (-648 (-573))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #0#) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-649 |#1|) . T) ((-649 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-357)) (|has| |#1| (-371)) (|has| |#1| (-314))) ((-648 #2#) |has| |#1| (-648 (-573))) ((-648 |#1|) . T) ((-726 #0#) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-726 |#1|) . T) ((-726 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-357)) (|has| |#1| (-371)) (|has| |#1| (-314))) ((-733 |#1| #1#) . T) ((-735) . T) ((-910 (-1189)) |has| |#1| (-910 (-1189))) ((-896 (-387)) |has| |#1| (-896 (-387))) ((-896 (-573)) |has| |#1| (-896 (-573))) ((-894 |#1|) . T) ((-919) -12 (|has| |#1| (-314)) (|has| |#1| (-919))) ((-930) -2817 (|has| |#1| (-357)) (|has| |#1| (-371)) (|has| |#1| (-314))) ((-1014) -12 (|has| |#1| (-1014)) (|has| |#1| (-1215))) ((-1050 (-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((-1050 (-573)) |has| |#1| (-1050 (-573))) ((-1050 |#1|) . T) ((-1063 #0#) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-1063 |#1|) . T) ((-1063 $) . T) ((-1068 #0#) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-1068 |#1|) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1164) |has| |#1| (-357)) ((-1215) |has| |#1| (-1215)) ((-1218) |has| |#1| (-1215)) ((-1230) . T) ((-1234) -2817 (|has| |#1| (-357)) (|has| |#1| (-371)) (-12 (|has| |#1| (-314)) (|has| |#1| (-919))))) +((-4218 (((-427 |#2|) |#2|) 67))) +(((-168 |#1| |#2|) (-10 -7 (-15 -4218 ((-427 |#2|) |#2|))) (-314) (-1256 (-171 |#1|))) (T -168)) +((-4218 (*1 *2 *3) (-12 (-4 *4 (-314)) (-5 *2 (-427 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1256 (-171 *4)))))) +(-10 -7 (-15 -4218 ((-427 |#2|) |#2|))) +((-3525 (((-1147) (-1147) (-298)) 8)) (-3140 (((-653 (-700 (-287))) (-1171)) 81)) (-1917 (((-700 (-287)) (-1147)) 76))) +(((-169) (-13 (-1230) (-10 -7 (-15 -3525 ((-1147) (-1147) (-298))) (-15 -1917 ((-700 (-287)) (-1147))) (-15 -3140 ((-653 (-700 (-287))) (-1171)))))) (T -169)) +((-3525 (*1 *2 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-298)) (-5 *1 (-169)))) (-1917 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-700 (-287))) (-5 *1 (-169)))) (-3140 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-653 (-700 (-287)))) (-5 *1 (-169))))) +(-13 (-1230) (-10 -7 (-15 -3525 ((-1147) (-1147) (-298))) (-15 -1917 ((-700 (-287)) (-1147))) (-15 -3140 ((-653 (-700 (-287))) (-1171))))) +((-1776 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14))) +(((-170 |#1| |#2|) (-10 -7 (-15 -1776 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-174) (-174)) (T -170)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6))))) +(-10 -7 (-15 -1776 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 34)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (-2817 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-565))))) (-2456 (($ $) NIL (-2817 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-565))))) (-1345 (((-112) $) NIL (-2817 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-565))))) (-2114 (((-698 |#1|) (-1280 $)) NIL) (((-698 |#1|)) NIL)) (-1635 ((|#1| $) NIL)) (-2363 (($ $) NIL (|has| |#1| (-1215)))) (-2246 (($ $) NIL (|has| |#1| (-1215)))) (-2604 (((-1202 (-931) (-780)) (-573)) NIL (|has| |#1| (-357)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (-12 (|has| |#1| (-314)) (|has| |#1| (-919))))) (-4285 (($ $) NIL (-2817 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-371))))) (-2427 (((-427 $) $) NIL (-2817 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-371))))) (-4228 (($ $) NIL (-12 (|has| |#1| (-1014)) (|has| |#1| (-1215))))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (-12 (|has| |#1| (-314)) (|has| |#1| (-919))))) (-2800 (((-112) $ $) NIL (|has| |#1| (-314)))) (-1486 (((-780)) NIL (|has| |#1| (-376)))) (-2342 (($ $) NIL (|has| |#1| (-1215)))) (-2225 (($ $) NIL (|has| |#1| (-1215)))) (-2388 (($ $) NIL (|has| |#1| (-1215)))) (-2266 (($ $) NIL (|has| |#1| (-1215)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) NIL)) (-2205 (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) NIL)) (-2854 (($ (-1280 |#1|) (-1280 $)) NIL) (($ (-1280 |#1|)) NIL)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-357)))) (-2784 (($ $ $) NIL (|has| |#1| (-314)))) (-1720 (((-698 |#1|) $ (-1280 $)) NIL) (((-698 |#1|) $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) NIL) (((-698 |#1|) (-698 $)) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-2867 (($ (-1185 |#1|)) NIL) (((-3 $ "failed") (-416 (-1185 |#1|))) NIL (|has| |#1| (-371)))) (-2232 (((-3 $ "failed") $) NIL)) (-4238 ((|#1| $) 13)) (-3810 (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-554)))) (-2551 (((-112) $) NIL (|has| |#1| (-554)))) (-4434 (((-416 (-573)) $) NIL (|has| |#1| (-554)))) (-3583 (((-931)) NIL)) (-2819 (($) NIL (|has| |#1| (-376)))) (-2796 (($ $ $) NIL (|has| |#1| (-314)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#1| (-314)))) (-3731 (($) NIL (|has| |#1| (-357)))) (-1708 (((-112) $) NIL (|has| |#1| (-357)))) (-2104 (($ $ (-780)) NIL (|has| |#1| (-357))) (($ $) NIL (|has| |#1| (-357)))) (-2696 (((-112) $) NIL (-2817 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-371))))) (-1610 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1072)) (|has| |#1| (-1215))))) (-2999 (($) NIL (|has| |#1| (-1215)))) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (|has| |#1| (-896 (-573)))) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (|has| |#1| (-896 (-387))))) (-2534 (((-931) $) NIL (|has| |#1| (-357))) (((-842 (-931)) $) NIL (|has| |#1| (-357)))) (-1959 (((-112) $) 36)) (-4325 (($ $ (-573)) NIL (-12 (|has| |#1| (-1014)) (|has| |#1| (-1215))))) (-3421 ((|#1| $) 47)) (-1470 (((-3 $ "failed") $) NIL (|has| |#1| (-357)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-314)))) (-2297 (((-1185 |#1|) $) NIL (|has| |#1| (-371)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3589 (((-931) $) NIL (|has| |#1| (-376)))) (-3118 (($ $) NIL (|has| |#1| (-1215)))) (-2853 (((-1185 |#1|) $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-314))) (($ $ $) NIL (|has| |#1| (-314)))) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL (|has| |#1| (-371)))) (-3816 (($) NIL (|has| |#1| (-357)) CONST)) (-2575 (($ (-931)) NIL (|has| |#1| (-376)))) (-1507 (($) NIL)) (-4248 ((|#1| $) 15)) (-3965 (((-1132) $) NIL)) (-2969 (($) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-314)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-314))) (($ $ $) NIL (|has| |#1| (-314)))) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) NIL (|has| |#1| (-357)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (-12 (|has| |#1| (-314)) (|has| |#1| (-919))))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (-12 (|has| |#1| (-314)) (|has| |#1| (-919))))) (-4218 (((-427 $) $) NIL (-2817 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-371))))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-314))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-314)))) (-2837 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-565))) (((-3 $ "failed") $ $) 48 (-2817 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-565))))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-314)))) (-1608 (($ $) NIL (|has| |#1| (-1215)))) (-2645 (($ $ (-653 |#1|) (-653 |#1|)) NIL (|has| |#1| (-316 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-316 |#1|))) (($ $ (-301 |#1|)) NIL (|has| |#1| (-316 |#1|))) (($ $ (-653 (-301 |#1|))) NIL (|has| |#1| (-316 |#1|))) (($ $ (-653 (-1189)) (-653 |#1|)) NIL (|has| |#1| (-523 (-1189) |#1|))) (($ $ (-1189) |#1|) NIL (|has| |#1| (-523 (-1189) |#1|)))) (-2163 (((-780) $) NIL (|has| |#1| (-314)))) (-2198 (($ $ |#1|) NIL (|has| |#1| (-293 |#1| |#1|)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-314)))) (-3592 ((|#1| (-1280 $)) NIL) ((|#1|) NIL)) (-1637 (((-780) $) NIL (|has| |#1| (-357))) (((-3 (-780) "failed") $ $) NIL (|has| |#1| (-357)))) (-3904 (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-780)) NIL (|has| |#1| (-238)))) (-4303 (((-698 |#1|) (-1280 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-371)))) (-2984 (((-1185 |#1|)) NIL)) (-2401 (($ $) NIL (|has| |#1| (-1215)))) (-2274 (($ $) NIL (|has| |#1| (-1215)))) (-2510 (($) NIL (|has| |#1| (-357)))) (-2374 (($ $) NIL (|has| |#1| (-1215)))) (-2255 (($ $) NIL (|has| |#1| (-1215)))) (-2352 (($ $) NIL (|has| |#1| (-1215)))) (-2236 (($ $) NIL (|has| |#1| (-1215)))) (-2123 (((-1280 |#1|) $ (-1280 $)) NIL) (((-698 |#1|) (-1280 $) (-1280 $)) NIL) (((-1280 |#1|) $) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-1835 (((-1280 |#1|) $) NIL) (($ (-1280 |#1|)) NIL) (((-1185 |#1|) $) NIL) (($ (-1185 |#1|)) NIL) (((-902 (-573)) $) NIL (|has| |#1| (-623 (-902 (-573))))) (((-902 (-387)) $) NIL (|has| |#1| (-623 (-902 (-387))))) (((-171 (-387)) $) NIL (|has| |#1| (-1034))) (((-171 (-227)) $) NIL (|has| |#1| (-1034))) (((-545) $) NIL (|has| |#1| (-623 (-545))))) (-3204 (($ $) 46)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-357))))) (-3561 (($ |#1| |#1|) 38)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#1|) 37) (($ (-416 (-573))) NIL (-2817 (|has| |#1| (-371)) (|has| |#1| (-1050 (-416 (-573)))))) (($ $) NIL (-2817 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-565))))) (-4279 (($ $) NIL (|has| |#1| (-357))) (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-146))))) (-2517 (((-1185 |#1|) $) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) NIL)) (-2439 (($ $) NIL (|has| |#1| (-1215)))) (-2304 (($ $) NIL (|has| |#1| (-1215)))) (-2516 (((-112) $ $) NIL (-2817 (-12 (|has| |#1| (-314)) (|has| |#1| (-919))) (|has| |#1| (-565))))) (-2413 (($ $) NIL (|has| |#1| (-1215)))) (-2286 (($ $) NIL (|has| |#1| (-1215)))) (-2464 (($ $) NIL (|has| |#1| (-1215)))) (-2324 (($ $) NIL (|has| |#1| (-1215)))) (-3607 ((|#1| $) NIL (|has| |#1| (-1215)))) (-2520 (($ $) NIL (|has| |#1| (-1215)))) (-2333 (($ $) NIL (|has| |#1| (-1215)))) (-2452 (($ $) NIL (|has| |#1| (-1215)))) (-2314 (($ $) NIL (|has| |#1| (-1215)))) (-2426 (($ $) NIL (|has| |#1| (-1215)))) (-2296 (($ $) NIL (|has| |#1| (-1215)))) (-1660 (($ $) NIL (|has| |#1| (-1072)))) (-2132 (($) 28 T CONST)) (-2144 (($) 30 T CONST)) (-2808 (((-1171) $) 23 (|has| |#1| (-837))) (((-1171) $ (-112)) 25 (|has| |#1| (-837))) (((-1285) (-831) $) 26 (|has| |#1| (-837))) (((-1285) (-831) $ (-112)) 27 (|has| |#1| (-837)))) (-3609 (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-780)) NIL (|has| |#1| (-238)))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) 40)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-416 (-573))) NIL (-12 (|has| |#1| (-1014)) (|has| |#1| (-1215)))) (($ $ $) NIL (|has| |#1| (-1215))) (($ $ (-573)) NIL (|has| |#1| (-371)))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-416 (-573)) $) NIL (|has| |#1| (-371))) (($ $ (-416 (-573))) NIL (|has| |#1| (-371))))) +(((-171 |#1|) (-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-837)) (-6 (-837)) |%noBranch|))) (-174)) (T -171)) +NIL +(-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-837)) (-6 (-837)) |%noBranch|))) +((-1835 (((-902 |#1|) |#3|) 22))) +(((-172 |#1| |#2| |#3|) (-10 -7 (-15 -1835 ((-902 |#1|) |#3|))) (-1112) (-13 (-623 (-902 |#1|)) (-174)) (-167 |#2|)) (T -172)) +((-1835 (*1 *2 *3) (-12 (-4 *5 (-13 (-623 *2) (-174))) (-5 *2 (-902 *4)) (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1112)) (-4 *3 (-167 *5))))) +(-10 -7 (-15 -1835 ((-902 |#1|) |#3|))) +((-2848 (((-112) $ $) NIL)) (-2302 (((-112) $) 9)) (-1875 (((-112) $ (-112)) 11)) (-3789 (($) 13)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-3166 (($ $) 14)) (-2942 (((-871) $) 18)) (-1355 (((-112) $) 8)) (-1380 (((-112) $ (-112)) 10)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-173) (-13 (-1112) (-10 -8 (-15 -3789 ($)) (-15 -1355 ((-112) $)) (-15 -2302 ((-112) $)) (-15 -1380 ((-112) $ (-112))) (-15 -1875 ((-112) $ (-112))) (-15 -3166 ($ $))))) (T -173)) +((-3789 (*1 *1) (-5 *1 (-173))) (-1355 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-2302 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1380 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1875 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3166 (*1 *1 *1) (-5 *1 (-173)))) +(-13 (-1112) (-10 -8 (-15 -3789 ($)) (-15 -1355 ((-112) $)) (-15 -2302 ((-112) $)) (-15 -1380 ((-112) $ (-112))) (-15 -1875 ((-112) $ (-112))) (-15 -3166 ($ $)))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12) (($ (-573)) 33)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) (((-174) (-141)) (T -174)) NIL -(-13 (-1062) (-111 $ $) (-10 -7 (-6 (-4458 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1064 $) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T)) -((-3646 (($ $) 6))) +(-13 (-1061) (-111 $ $) (-10 -7 (-6 (-4457 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-625 (-573)) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-735) . T) ((-1063 $) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) +((-1981 (($ $) 6))) (((-175) (-141)) (T -175)) -((-3646 (*1 *1 *1) (-4 *1 (-175)))) -(-13 (-10 -8 (-15 -3646 ($ $)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1528 ((|#1| $) 81)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-1600 (((-112) $ $) NIL)) (-3426 (($) NIL T CONST)) (-2786 (($ $ $) NIL)) (-4038 (($ $) 21)) (-1387 (($ |#1| (-1170 |#1|)) 50)) (-3434 (((-3 $ "failed") $) 123)) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-2257 (((-112) $) NIL)) (-1341 (((-1170 |#1|) $) 88)) (-3740 (((-1170 |#1|) $) 85)) (-3682 (((-1170 |#1|) $) 86)) (-3199 (((-112) $) NIL)) (-4309 (((-1170 |#1|) $) 94)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2832 (($ (-654 $)) NIL) (($ $ $) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ (-654 $)) NIL) (($ $ $) NIL)) (-4220 (((-428 $) $) NIL)) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL)) (-2533 (($ $ (-574)) 97)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1730 (((-781) $) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-2941 (((-1170 |#1|) $) 95)) (-1923 (((-1170 (-417 |#1|)) $) 14)) (-1517 (($ (-417 |#1|)) 17) (($ |#1| (-1170 |#1|) (-1170 |#1|)) 40)) (-1651 (($ $) 99)) (-2943 (((-872) $) 139) (($ (-574)) 53) (($ |#1|) 54) (($ (-417 |#1|)) 38) (($ (-417 (-574))) NIL) (($ $) NIL)) (-1364 (((-781)) 69 T CONST)) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL)) (-2386 (((-1170 (-417 |#1|)) $) 20)) (-2133 (($) 27 T CONST)) (-2145 (($) 30 T CONST)) (-2981 (((-112) $ $) 37)) (-3108 (($ $ $) 121)) (-3094 (($ $) 112) (($ $ $) 109)) (-3079 (($ $ $) 107)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-417 |#1|) $) 117) (($ $ (-417 |#1|)) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL))) -(((-176 |#1|) (-13 (-38 |#1|) (-38 (-417 |#1|)) (-372) (-10 -8 (-15 -1517 ($ (-417 |#1|))) (-15 -1517 ($ |#1| (-1170 |#1|) (-1170 |#1|))) (-15 -1387 ($ |#1| (-1170 |#1|))) (-15 -3740 ((-1170 |#1|) $)) (-15 -3682 ((-1170 |#1|) $)) (-15 -1341 ((-1170 |#1|) $)) (-15 -1528 (|#1| $)) (-15 -4038 ($ $)) (-15 -2386 ((-1170 (-417 |#1|)) $)) (-15 -1923 ((-1170 (-417 |#1|)) $)) (-15 -4309 ((-1170 |#1|) $)) (-15 -2941 ((-1170 |#1|) $)) (-15 -2533 ($ $ (-574))) (-15 -1651 ($ $)))) (-315)) (T -176)) -((-1517 (*1 *1 *2) (-12 (-5 *2 (-417 *3)) (-4 *3 (-315)) (-5 *1 (-176 *3)))) (-1517 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1170 *2)) (-4 *2 (-315)) (-5 *1 (-176 *2)))) (-1387 (*1 *1 *2 *3) (-12 (-5 *3 (-1170 *2)) (-4 *2 (-315)) (-5 *1 (-176 *2)))) (-3740 (*1 *2 *1) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-3682 (*1 *2 *1) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-1341 (*1 *2 *1) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-1528 (*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315)))) (-4038 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315)))) (-2386 (*1 *2 *1) (-12 (-5 *2 (-1170 (-417 *3))) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-1923 (*1 *2 *1) (-12 (-5 *2 (-1170 (-417 *3))) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-4309 (*1 *2 *1) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-2941 (*1 *2 *1) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-2533 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-1651 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315))))) -(-13 (-38 |#1|) (-38 (-417 |#1|)) (-372) (-10 -8 (-15 -1517 ($ (-417 |#1|))) (-15 -1517 ($ |#1| (-1170 |#1|) (-1170 |#1|))) (-15 -1387 ($ |#1| (-1170 |#1|))) (-15 -3740 ((-1170 |#1|) $)) (-15 -3682 ((-1170 |#1|) $)) (-15 -1341 ((-1170 |#1|) $)) (-15 -1528 (|#1| $)) (-15 -4038 ($ $)) (-15 -2386 ((-1170 (-417 |#1|)) $)) (-15 -1923 ((-1170 (-417 |#1|)) $)) (-15 -4309 ((-1170 |#1|) $)) (-15 -2941 ((-1170 |#1|) $)) (-15 -2533 ($ $ (-574))) (-15 -1651 ($ $)))) -((-2478 (($ (-109) $) 15)) (-3171 (((-701 (-109)) (-516) $) 14)) (-2943 (((-872) $) 18)) (-3776 (((-654 (-109)) $) 8))) -(((-177) (-13 (-623 (-872)) (-10 -8 (-15 -3776 ((-654 (-109)) $)) (-15 -2478 ($ (-109) $)) (-15 -3171 ((-701 (-109)) (-516) $))))) (T -177)) -((-3776 (*1 *2 *1) (-12 (-5 *2 (-654 (-109))) (-5 *1 (-177)))) (-2478 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))) (-3171 (*1 *2 *3 *1) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-109))) (-5 *1 (-177))))) -(-13 (-623 (-872)) (-10 -8 (-15 -3776 ((-654 (-109)) $)) (-15 -2478 ($ (-109) $)) (-15 -3171 ((-701 (-109)) (-516) $)))) -((-4356 (((-1 (-954 |#1|) (-954 |#1|)) |#1|) 38)) (-4247 (((-954 |#1|) (-954 |#1|)) 22)) (-3794 (((-1 (-954 |#1|) (-954 |#1|)) |#1|) 34)) (-3003 (((-954 |#1|) (-954 |#1|)) 20)) (-2856 (((-954 |#1|) (-954 |#1|)) 28)) (-1656 (((-954 |#1|) (-954 |#1|)) 27)) (-2635 (((-954 |#1|) (-954 |#1|)) 26)) (-2360 (((-1 (-954 |#1|) (-954 |#1|)) |#1|) 35)) (-3889 (((-1 (-954 |#1|) (-954 |#1|)) |#1|) 33)) (-4347 (((-1 (-954 |#1|) (-954 |#1|)) |#1|) 32)) (-1553 (((-954 |#1|) (-954 |#1|)) 21)) (-1399 (((-1 (-954 |#1|) (-954 |#1|)) |#1| |#1|) 41)) (-3421 (((-954 |#1|) (-954 |#1|)) 8)) (-3273 (((-1 (-954 |#1|) (-954 |#1|)) |#1|) 37)) (-2388 (((-1 (-954 |#1|) (-954 |#1|)) |#1|) 36))) -(((-178 |#1|) (-10 -7 (-15 -3421 ((-954 |#1|) (-954 |#1|))) (-15 -3003 ((-954 |#1|) (-954 |#1|))) (-15 -1553 ((-954 |#1|) (-954 |#1|))) (-15 -4247 ((-954 |#1|) (-954 |#1|))) (-15 -2635 ((-954 |#1|) (-954 |#1|))) (-15 -1656 ((-954 |#1|) (-954 |#1|))) (-15 -2856 ((-954 |#1|) (-954 |#1|))) (-15 -4347 ((-1 (-954 |#1|) (-954 |#1|)) |#1|)) (-15 -3889 ((-1 (-954 |#1|) (-954 |#1|)) |#1|)) (-15 -3794 ((-1 (-954 |#1|) (-954 |#1|)) |#1|)) (-15 -2360 ((-1 (-954 |#1|) (-954 |#1|)) |#1|)) (-15 -2388 ((-1 (-954 |#1|) (-954 |#1|)) |#1|)) (-15 -3273 ((-1 (-954 |#1|) (-954 |#1|)) |#1|)) (-15 -4356 ((-1 (-954 |#1|) (-954 |#1|)) |#1|)) (-15 -1399 ((-1 (-954 |#1|) (-954 |#1|)) |#1| |#1|))) (-13 (-372) (-1216) (-1015))) (T -178)) -((-1399 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))))) (-4356 (*1 *2 *3) (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))))) (-3273 (*1 *2 *3) (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))))) (-2388 (*1 *2 *3) (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))))) (-2360 (*1 *2 *3) (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))))) (-3794 (*1 *2 *3) (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))))) (-3889 (*1 *2 *3) (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))))) (-4347 (*1 *2 *3) (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))))) (-2856 (*1 *2 *2) (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))) (-5 *1 (-178 *3)))) (-1656 (*1 *2 *2) (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))) (-5 *1 (-178 *3)))) (-2635 (*1 *2 *2) (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))) (-5 *1 (-178 *3)))) (-4247 (*1 *2 *2) (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))) (-5 *1 (-178 *3)))) (-1553 (*1 *2 *2) (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))) (-5 *1 (-178 *3)))) (-3003 (*1 *2 *2) (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))) (-5 *1 (-178 *3)))) (-3421 (*1 *2 *2) (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))) (-5 *1 (-178 *3))))) -(-10 -7 (-15 -3421 ((-954 |#1|) (-954 |#1|))) (-15 -3003 ((-954 |#1|) (-954 |#1|))) (-15 -1553 ((-954 |#1|) (-954 |#1|))) (-15 -4247 ((-954 |#1|) (-954 |#1|))) (-15 -2635 ((-954 |#1|) (-954 |#1|))) (-15 -1656 ((-954 |#1|) (-954 |#1|))) (-15 -2856 ((-954 |#1|) (-954 |#1|))) (-15 -4347 ((-1 (-954 |#1|) (-954 |#1|)) |#1|)) (-15 -3889 ((-1 (-954 |#1|) (-954 |#1|)) |#1|)) (-15 -3794 ((-1 (-954 |#1|) (-954 |#1|)) |#1|)) (-15 -2360 ((-1 (-954 |#1|) (-954 |#1|)) |#1|)) (-15 -2388 ((-1 (-954 |#1|) (-954 |#1|)) |#1|)) (-15 -3273 ((-1 (-954 |#1|) (-954 |#1|)) |#1|)) (-15 -4356 ((-1 (-954 |#1|) (-954 |#1|)) |#1|)) (-15 -1399 ((-1 (-954 |#1|) (-954 |#1|)) |#1| |#1|))) -((-1435 ((|#2| |#3|) 28))) -(((-179 |#1| |#2| |#3|) (-10 -7 (-15 -1435 (|#2| |#3|))) (-174) (-1257 |#1|) (-734 |#1| |#2|)) (T -179)) -((-1435 (*1 *2 *3) (-12 (-4 *4 (-174)) (-4 *2 (-1257 *4)) (-5 *1 (-179 *4 *2 *3)) (-4 *3 (-734 *4 *2))))) -(-10 -7 (-15 -1435 (|#2| |#3|))) -((-3625 (((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)) 44 (|has| (-963 |#2|) (-897 |#1|))))) -(((-180 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-963 |#2|) (-897 |#1|)) (-15 -3625 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))) |%noBranch|)) (-1113) (-13 (-897 |#1|) (-174)) (-167 |#2|)) (T -180)) -((-3625 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *3)) (-5 *4 (-903 *5)) (-4 *5 (-1113)) (-4 *3 (-167 *6)) (-4 (-963 *6) (-897 *5)) (-4 *6 (-13 (-897 *5) (-174))) (-5 *1 (-180 *5 *6 *3))))) -(-10 -7 (IF (|has| (-963 |#2|) (-897 |#1|)) (-15 -3625 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))) |%noBranch|)) -((-2677 (((-654 |#1|) (-654 |#1|) |#1|) 41)) (-3422 (((-654 |#1|) |#1| (-654 |#1|)) 20)) (-2799 (((-654 |#1|) (-654 (-654 |#1|)) (-654 |#1|)) 36) ((|#1| (-654 |#1|) (-654 |#1|)) 32))) -(((-181 |#1|) (-10 -7 (-15 -3422 ((-654 |#1|) |#1| (-654 |#1|))) (-15 -2799 (|#1| (-654 |#1|) (-654 |#1|))) (-15 -2799 ((-654 |#1|) (-654 (-654 |#1|)) (-654 |#1|))) (-15 -2677 ((-654 |#1|) (-654 |#1|) |#1|))) (-315)) (T -181)) -((-2677 (*1 *2 *2 *3) (-12 (-5 *2 (-654 *3)) (-4 *3 (-315)) (-5 *1 (-181 *3)))) (-2799 (*1 *2 *3 *2) (-12 (-5 *3 (-654 (-654 *4))) (-5 *2 (-654 *4)) (-4 *4 (-315)) (-5 *1 (-181 *4)))) (-2799 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *2)) (-5 *1 (-181 *2)) (-4 *2 (-315)))) (-3422 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-315)) (-5 *1 (-181 *3))))) -(-10 -7 (-15 -3422 ((-654 |#1|) |#1| (-654 |#1|))) (-15 -2799 (|#1| (-654 |#1|) (-654 |#1|))) (-15 -2799 ((-654 |#1|) (-654 (-654 |#1|)) (-654 |#1|))) (-15 -2677 ((-654 |#1|) (-654 |#1|) |#1|))) -((-2849 (((-112) $ $) NIL)) (-2335 (((-1230) $) 13)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-4016 (((-1148) $) 10)) (-2943 (((-872) $) 20) (($ (-1195)) NIL) (((-1195) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-182) (-13 (-1096) (-10 -8 (-15 -4016 ((-1148) $)) (-15 -2335 ((-1230) $))))) (T -182)) -((-4016 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-182)))) (-2335 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-182))))) -(-13 (-1096) (-10 -8 (-15 -4016 ((-1148) $)) (-15 -2335 ((-1230) $)))) -((-2910 (((-2 (|:| |start| |#2|) (|:| -4219 (-428 |#2|))) |#2|) 66)) (-4353 ((|#1| |#1|) 58)) (-1457 (((-171 |#1|) |#2|) 93)) (-1816 ((|#1| |#2|) 136) ((|#1| |#2| |#1|) 90)) (-2488 ((|#2| |#2|) 91)) (-4324 (((-428 |#2|) |#2| |#1|) 118) (((-428 |#2|) |#2| |#1| (-112)) 88)) (-2236 ((|#1| |#2|) 117)) (-2918 ((|#2| |#2|) 130)) (-4220 (((-428 |#2|) |#2|) 153) (((-428 |#2|) |#2| |#1|) 33) (((-428 |#2|) |#2| |#1| (-112)) 152)) (-3216 (((-654 (-2 (|:| -4219 (-654 |#2|)) (|:| -2678 |#1|))) |#2| |#2|) 151) (((-654 (-2 (|:| -4219 (-654 |#2|)) (|:| -2678 |#1|))) |#2| |#2| (-112)) 81)) (-3402 (((-654 (-171 |#1|)) |#2| |#1|) 42) (((-654 (-171 |#1|)) |#2|) 43))) -(((-183 |#1| |#2|) (-10 -7 (-15 -3402 ((-654 (-171 |#1|)) |#2|)) (-15 -3402 ((-654 (-171 |#1|)) |#2| |#1|)) (-15 -3216 ((-654 (-2 (|:| -4219 (-654 |#2|)) (|:| -2678 |#1|))) |#2| |#2| (-112))) (-15 -3216 ((-654 (-2 (|:| -4219 (-654 |#2|)) (|:| -2678 |#1|))) |#2| |#2|)) (-15 -4220 ((-428 |#2|) |#2| |#1| (-112))) (-15 -4220 ((-428 |#2|) |#2| |#1|)) (-15 -4220 ((-428 |#2|) |#2|)) (-15 -2918 (|#2| |#2|)) (-15 -2236 (|#1| |#2|)) (-15 -4324 ((-428 |#2|) |#2| |#1| (-112))) (-15 -4324 ((-428 |#2|) |#2| |#1|)) (-15 -2488 (|#2| |#2|)) (-15 -1816 (|#1| |#2| |#1|)) (-15 -1816 (|#1| |#2|)) (-15 -1457 ((-171 |#1|) |#2|)) (-15 -4353 (|#1| |#1|)) (-15 -2910 ((-2 (|:| |start| |#2|) (|:| -4219 (-428 |#2|))) |#2|))) (-13 (-372) (-858)) (-1257 (-171 |#1|))) (T -183)) -((-2910 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-2 (|:| |start| *3) (|:| -4219 (-428 *3)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4))))) (-4353 (*1 *2 *2) (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1257 (-171 *2))))) (-1457 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) (-4 *4 (-13 (-372) (-858))) (-4 *3 (-1257 *2)))) (-1816 (*1 *2 *3) (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1257 (-171 *2))))) (-1816 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1257 (-171 *2))))) (-2488 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-858))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1257 (-171 *3))))) (-4324 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4))))) (-4324 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4))))) (-2236 (*1 *2 *3) (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1257 (-171 *2))))) (-2918 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-858))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1257 (-171 *3))))) (-4220 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4))))) (-4220 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4))))) (-4220 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4))))) (-3216 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-654 (-2 (|:| -4219 (-654 *3)) (|:| -2678 *4)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4))))) (-3216 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-372) (-858))) (-5 *2 (-654 (-2 (|:| -4219 (-654 *3)) (|:| -2678 *5)))) (-5 *1 (-183 *5 *3)) (-4 *3 (-1257 (-171 *5))))) (-3402 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-654 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4))))) (-3402 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-654 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4)))))) -(-10 -7 (-15 -3402 ((-654 (-171 |#1|)) |#2|)) (-15 -3402 ((-654 (-171 |#1|)) |#2| |#1|)) (-15 -3216 ((-654 (-2 (|:| -4219 (-654 |#2|)) (|:| -2678 |#1|))) |#2| |#2| (-112))) (-15 -3216 ((-654 (-2 (|:| -4219 (-654 |#2|)) (|:| -2678 |#1|))) |#2| |#2|)) (-15 -4220 ((-428 |#2|) |#2| |#1| (-112))) (-15 -4220 ((-428 |#2|) |#2| |#1|)) (-15 -4220 ((-428 |#2|) |#2|)) (-15 -2918 (|#2| |#2|)) (-15 -2236 (|#1| |#2|)) (-15 -4324 ((-428 |#2|) |#2| |#1| (-112))) (-15 -4324 ((-428 |#2|) |#2| |#1|)) (-15 -2488 (|#2| |#2|)) (-15 -1816 (|#1| |#2| |#1|)) (-15 -1816 (|#1| |#2|)) (-15 -1457 ((-171 |#1|) |#2|)) (-15 -4353 (|#1| |#1|)) (-15 -2910 ((-2 (|:| |start| |#2|) (|:| -4219 (-428 |#2|))) |#2|))) -((-2268 (((-3 |#2| "failed") |#2|) 16)) (-1416 (((-781) |#2|) 18)) (-4061 ((|#2| |#2| |#2|) 20))) -(((-184 |#1| |#2|) (-10 -7 (-15 -2268 ((-3 |#2| "failed") |#2|)) (-15 -1416 ((-781) |#2|)) (-15 -4061 (|#2| |#2| |#2|))) (-1231) (-684 |#1|)) (T -184)) -((-4061 (*1 *2 *2 *2) (-12 (-4 *3 (-1231)) (-5 *1 (-184 *3 *2)) (-4 *2 (-684 *3)))) (-1416 (*1 *2 *3) (-12 (-4 *4 (-1231)) (-5 *2 (-781)) (-5 *1 (-184 *4 *3)) (-4 *3 (-684 *4)))) (-2268 (*1 *2 *2) (|partial| -12 (-4 *3 (-1231)) (-5 *1 (-184 *3 *2)) (-4 *2 (-684 *3))))) -(-10 -7 (-15 -2268 ((-3 |#2| "failed") |#2|)) (-15 -1416 ((-781) |#2|)) (-15 -4061 (|#2| |#2| |#2|))) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-1964 ((|#1| $) 7)) (-2943 (((-872) $) 14)) (-3284 (((-112) $ $) NIL)) (-1564 (((-654 (-1195)) $) 10)) (-2981 (((-112) $ $) 12))) -(((-185 |#1|) (-13 (-1113) (-10 -8 (-15 -1964 (|#1| $)) (-15 -1564 ((-654 (-1195)) $)))) (-187)) (T -185)) -((-1964 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-1564 (*1 *2 *1) (-12 (-5 *2 (-654 (-1195))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) -(-13 (-1113) (-10 -8 (-15 -1964 (|#1| $)) (-15 -1564 ((-654 (-1195)) $)))) -((-1715 (((-654 (-875)) $) 16)) (-4282 (((-188) $) 8)) (-3950 (((-654 (-112)) $) 13)) (-4183 (((-55) $) 10))) -(((-186 |#1|) (-10 -8 (-15 -1715 ((-654 (-875)) |#1|)) (-15 -3950 ((-654 (-112)) |#1|)) (-15 -4282 ((-188) |#1|)) (-15 -4183 ((-55) |#1|))) (-187)) (T -186)) -NIL -(-10 -8 (-15 -1715 ((-654 (-875)) |#1|)) (-15 -3950 ((-654 (-112)) |#1|)) (-15 -4282 ((-188) |#1|)) (-15 -4183 ((-55) |#1|))) -((-2849 (((-112) $ $) 7)) (-1715 (((-654 (-875)) $) 19)) (-2032 (((-516) $) 16)) (-4136 (((-1172) $) 10)) (-4282 (((-188) $) 21)) (-4103 (((-112) $ (-516)) 14)) (-3966 (((-1133) $) 11)) (-3950 (((-654 (-112)) $) 20)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-4183 (((-55) $) 15)) (-2981 (((-112) $ $) 6))) +((-1981 (*1 *1 *1) (-4 *1 (-175)))) +(-13 (-10 -8 (-15 -1981 ($ $)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3770 ((|#1| $) 81)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-2579 (($) NIL T CONST)) (-2784 (($ $ $) NIL)) (-3567 (($ $) 21)) (-3641 (($ |#1| (-1169 |#1|)) 50)) (-2232 (((-3 $ "failed") $) 123)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-2399 (((-1169 |#1|) $) 88)) (-4420 (((-1169 |#1|) $) 85)) (-1495 (((-1169 |#1|) $) 86)) (-1959 (((-112) $) NIL)) (-2094 (((-1169 |#1|) $) 94)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2829 (($ (-653 $)) NIL) (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ (-653 $)) NIL) (($ $ $) NIL)) (-4218 (((-427 $) $) NIL)) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL)) (-2212 (($ $ (-573)) 97)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-1701 (((-1169 |#1|) $) 95)) (-2469 (((-1169 (-416 |#1|)) $) 14)) (-1468 (($ (-416 |#1|)) 17) (($ |#1| (-1169 |#1|) (-1169 |#1|)) 40)) (-4101 (($ $) 99)) (-2942 (((-871) $) 139) (($ (-573)) 53) (($ |#1|) 54) (($ (-416 |#1|)) 38) (($ (-416 (-573))) NIL) (($ $) NIL)) (-1545 (((-780)) 69 T CONST)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-2060 (((-1169 (-416 |#1|)) $) 20)) (-2132 (($) 27 T CONST)) (-2144 (($) 30 T CONST)) (-2981 (((-112) $ $) 37)) (-3103 (($ $ $) 121)) (-3093 (($ $) 112) (($ $ $) 109)) (-3077 (($ $ $) 107)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-416 |#1|) $) 117) (($ $ (-416 |#1|)) NIL) (($ (-416 (-573)) $) NIL) (($ $ (-416 (-573))) NIL))) +(((-176 |#1|) (-13 (-38 |#1|) (-38 (-416 |#1|)) (-371) (-10 -8 (-15 -1468 ($ (-416 |#1|))) (-15 -1468 ($ |#1| (-1169 |#1|) (-1169 |#1|))) (-15 -3641 ($ |#1| (-1169 |#1|))) (-15 -4420 ((-1169 |#1|) $)) (-15 -1495 ((-1169 |#1|) $)) (-15 -2399 ((-1169 |#1|) $)) (-15 -3770 (|#1| $)) (-15 -3567 ($ $)) (-15 -2060 ((-1169 (-416 |#1|)) $)) (-15 -2469 ((-1169 (-416 |#1|)) $)) (-15 -2094 ((-1169 |#1|) $)) (-15 -1701 ((-1169 |#1|) $)) (-15 -2212 ($ $ (-573))) (-15 -4101 ($ $)))) (-314)) (T -176)) +((-1468 (*1 *1 *2) (-12 (-5 *2 (-416 *3)) (-4 *3 (-314)) (-5 *1 (-176 *3)))) (-1468 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1169 *2)) (-4 *2 (-314)) (-5 *1 (-176 *2)))) (-3641 (*1 *1 *2 *3) (-12 (-5 *3 (-1169 *2)) (-4 *2 (-314)) (-5 *1 (-176 *2)))) (-4420 (*1 *2 *1) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-176 *3)) (-4 *3 (-314)))) (-1495 (*1 *2 *1) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-176 *3)) (-4 *3 (-314)))) (-2399 (*1 *2 *1) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-176 *3)) (-4 *3 (-314)))) (-3770 (*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-314)))) (-3567 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-314)))) (-2060 (*1 *2 *1) (-12 (-5 *2 (-1169 (-416 *3))) (-5 *1 (-176 *3)) (-4 *3 (-314)))) (-2469 (*1 *2 *1) (-12 (-5 *2 (-1169 (-416 *3))) (-5 *1 (-176 *3)) (-4 *3 (-314)))) (-2094 (*1 *2 *1) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-176 *3)) (-4 *3 (-314)))) (-1701 (*1 *2 *1) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-176 *3)) (-4 *3 (-314)))) (-2212 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-176 *3)) (-4 *3 (-314)))) (-4101 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-314))))) +(-13 (-38 |#1|) (-38 (-416 |#1|)) (-371) (-10 -8 (-15 -1468 ($ (-416 |#1|))) (-15 -1468 ($ |#1| (-1169 |#1|) (-1169 |#1|))) (-15 -3641 ($ |#1| (-1169 |#1|))) (-15 -4420 ((-1169 |#1|) $)) (-15 -1495 ((-1169 |#1|) $)) (-15 -2399 ((-1169 |#1|) $)) (-15 -3770 (|#1| $)) (-15 -3567 ($ $)) (-15 -2060 ((-1169 (-416 |#1|)) $)) (-15 -2469 ((-1169 (-416 |#1|)) $)) (-15 -2094 ((-1169 |#1|) $)) (-15 -1701 ((-1169 |#1|) $)) (-15 -2212 ($ $ (-573))) (-15 -4101 ($ $)))) +((-1930 (($ (-109) $) 15)) (-4155 (((-700 (-109)) (-515) $) 14)) (-2942 (((-871) $) 18)) (-3916 (((-653 (-109)) $) 8))) +(((-177) (-13 (-622 (-871)) (-10 -8 (-15 -3916 ((-653 (-109)) $)) (-15 -1930 ($ (-109) $)) (-15 -4155 ((-700 (-109)) (-515) $))))) (T -177)) +((-3916 (*1 *2 *1) (-12 (-5 *2 (-653 (-109))) (-5 *1 (-177)))) (-1930 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))) (-4155 (*1 *2 *3 *1) (-12 (-5 *3 (-515)) (-5 *2 (-700 (-109))) (-5 *1 (-177))))) +(-13 (-622 (-871)) (-10 -8 (-15 -3916 ((-653 (-109)) $)) (-15 -1930 ($ (-109) $)) (-15 -4155 ((-700 (-109)) (-515) $)))) +((-2419 (((-1 (-953 |#1|) (-953 |#1|)) |#1|) 38)) (-4297 (((-953 |#1|) (-953 |#1|)) 22)) (-2842 (((-1 (-953 |#1|) (-953 |#1|)) |#1|) 34)) (-2024 (((-953 |#1|) (-953 |#1|)) 20)) (-1542 (((-953 |#1|) (-953 |#1|)) 28)) (-3231 (((-953 |#1|) (-953 |#1|)) 27)) (-1594 (((-953 |#1|) (-953 |#1|)) 26)) (-1346 (((-1 (-953 |#1|) (-953 |#1|)) |#1|) 35)) (-3576 (((-1 (-953 |#1|) (-953 |#1|)) |#1|) 33)) (-4027 (((-1 (-953 |#1|) (-953 |#1|)) |#1|) 32)) (-4353 (((-953 |#1|) (-953 |#1|)) 21)) (-2375 (((-1 (-953 |#1|) (-953 |#1|)) |#1| |#1|) 41)) (-3288 (((-953 |#1|) (-953 |#1|)) 8)) (-3219 (((-1 (-953 |#1|) (-953 |#1|)) |#1|) 37)) (-4210 (((-1 (-953 |#1|) (-953 |#1|)) |#1|) 36))) +(((-178 |#1|) (-10 -7 (-15 -3288 ((-953 |#1|) (-953 |#1|))) (-15 -2024 ((-953 |#1|) (-953 |#1|))) (-15 -4353 ((-953 |#1|) (-953 |#1|))) (-15 -4297 ((-953 |#1|) (-953 |#1|))) (-15 -1594 ((-953 |#1|) (-953 |#1|))) (-15 -3231 ((-953 |#1|) (-953 |#1|))) (-15 -1542 ((-953 |#1|) (-953 |#1|))) (-15 -4027 ((-1 (-953 |#1|) (-953 |#1|)) |#1|)) (-15 -3576 ((-1 (-953 |#1|) (-953 |#1|)) |#1|)) (-15 -2842 ((-1 (-953 |#1|) (-953 |#1|)) |#1|)) (-15 -1346 ((-1 (-953 |#1|) (-953 |#1|)) |#1|)) (-15 -4210 ((-1 (-953 |#1|) (-953 |#1|)) |#1|)) (-15 -3219 ((-1 (-953 |#1|) (-953 |#1|)) |#1|)) (-15 -2419 ((-1 (-953 |#1|) (-953 |#1|)) |#1|)) (-15 -2375 ((-1 (-953 |#1|) (-953 |#1|)) |#1| |#1|))) (-13 (-371) (-1215) (-1014))) (T -178)) +((-2375 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))))) (-2419 (*1 *2 *3) (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))))) (-3219 (*1 *2 *3) (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))))) (-4210 (*1 *2 *3) (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))))) (-1346 (*1 *2 *3) (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))))) (-2842 (*1 *2 *3) (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))))) (-3576 (*1 *2 *3) (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))))) (-4027 (*1 *2 *3) (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))))) (-1542 (*1 *2 *2) (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))) (-5 *1 (-178 *3)))) (-3231 (*1 *2 *2) (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))) (-5 *1 (-178 *3)))) (-1594 (*1 *2 *2) (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))) (-5 *1 (-178 *3)))) (-4297 (*1 *2 *2) (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))) (-5 *1 (-178 *3)))) (-4353 (*1 *2 *2) (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))) (-5 *1 (-178 *3)))) (-2024 (*1 *2 *2) (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))) (-5 *1 (-178 *3)))) (-3288 (*1 *2 *2) (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))) (-5 *1 (-178 *3))))) +(-10 -7 (-15 -3288 ((-953 |#1|) (-953 |#1|))) (-15 -2024 ((-953 |#1|) (-953 |#1|))) (-15 -4353 ((-953 |#1|) (-953 |#1|))) (-15 -4297 ((-953 |#1|) (-953 |#1|))) (-15 -1594 ((-953 |#1|) (-953 |#1|))) (-15 -3231 ((-953 |#1|) (-953 |#1|))) (-15 -1542 ((-953 |#1|) (-953 |#1|))) (-15 -4027 ((-1 (-953 |#1|) (-953 |#1|)) |#1|)) (-15 -3576 ((-1 (-953 |#1|) (-953 |#1|)) |#1|)) (-15 -2842 ((-1 (-953 |#1|) (-953 |#1|)) |#1|)) (-15 -1346 ((-1 (-953 |#1|) (-953 |#1|)) |#1|)) (-15 -4210 ((-1 (-953 |#1|) (-953 |#1|)) |#1|)) (-15 -3219 ((-1 (-953 |#1|) (-953 |#1|)) |#1|)) (-15 -2419 ((-1 (-953 |#1|) (-953 |#1|)) |#1|)) (-15 -2375 ((-1 (-953 |#1|) (-953 |#1|)) |#1| |#1|))) +((-2517 ((|#2| |#3|) 28))) +(((-179 |#1| |#2| |#3|) (-10 -7 (-15 -2517 (|#2| |#3|))) (-174) (-1256 |#1|) (-733 |#1| |#2|)) (T -179)) +((-2517 (*1 *2 *3) (-12 (-4 *4 (-174)) (-4 *2 (-1256 *4)) (-5 *1 (-179 *4 *2 *3)) (-4 *3 (-733 *4 *2))))) +(-10 -7 (-15 -2517 (|#2| |#3|))) +((-1352 (((-899 |#1| |#3|) |#3| (-902 |#1|) (-899 |#1| |#3|)) 44 (|has| (-962 |#2|) (-896 |#1|))))) +(((-180 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-962 |#2|) (-896 |#1|)) (-15 -1352 ((-899 |#1| |#3|) |#3| (-902 |#1|) (-899 |#1| |#3|))) |%noBranch|)) (-1112) (-13 (-896 |#1|) (-174)) (-167 |#2|)) (T -180)) +((-1352 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-899 *5 *3)) (-5 *4 (-902 *5)) (-4 *5 (-1112)) (-4 *3 (-167 *6)) (-4 (-962 *6) (-896 *5)) (-4 *6 (-13 (-896 *5) (-174))) (-5 *1 (-180 *5 *6 *3))))) +(-10 -7 (IF (|has| (-962 |#2|) (-896 |#1|)) (-15 -1352 ((-899 |#1| |#3|) |#3| (-902 |#1|) (-899 |#1| |#3|))) |%noBranch|)) +((-2760 (((-653 |#1|) (-653 |#1|) |#1|) 41)) (-3424 (((-653 |#1|) |#1| (-653 |#1|)) 20)) (-3276 (((-653 |#1|) (-653 (-653 |#1|)) (-653 |#1|)) 36) ((|#1| (-653 |#1|) (-653 |#1|)) 32))) +(((-181 |#1|) (-10 -7 (-15 -3424 ((-653 |#1|) |#1| (-653 |#1|))) (-15 -3276 (|#1| (-653 |#1|) (-653 |#1|))) (-15 -3276 ((-653 |#1|) (-653 (-653 |#1|)) (-653 |#1|))) (-15 -2760 ((-653 |#1|) (-653 |#1|) |#1|))) (-314)) (T -181)) +((-2760 (*1 *2 *2 *3) (-12 (-5 *2 (-653 *3)) (-4 *3 (-314)) (-5 *1 (-181 *3)))) (-3276 (*1 *2 *3 *2) (-12 (-5 *3 (-653 (-653 *4))) (-5 *2 (-653 *4)) (-4 *4 (-314)) (-5 *1 (-181 *4)))) (-3276 (*1 *2 *3 *3) (-12 (-5 *3 (-653 *2)) (-5 *1 (-181 *2)) (-4 *2 (-314)))) (-3424 (*1 *2 *3 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-314)) (-5 *1 (-181 *3))))) +(-10 -7 (-15 -3424 ((-653 |#1|) |#1| (-653 |#1|))) (-15 -3276 (|#1| (-653 |#1|) (-653 |#1|))) (-15 -3276 ((-653 |#1|) (-653 (-653 |#1|)) (-653 |#1|))) (-15 -2760 ((-653 |#1|) (-653 |#1|) |#1|))) +((-2848 (((-112) $ $) NIL)) (-2334 (((-1229) $) 13)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-4015 (((-1147) $) 10)) (-2942 (((-871) $) 20) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-182) (-13 (-1095) (-10 -8 (-15 -4015 ((-1147) $)) (-15 -2334 ((-1229) $))))) (T -182)) +((-4015 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-182)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-1229)) (-5 *1 (-182))))) +(-13 (-1095) (-10 -8 (-15 -4015 ((-1147) $)) (-15 -2334 ((-1229) $)))) +((-1706 (((-2 (|:| |start| |#2|) (|:| -1687 (-427 |#2|))) |#2|) 66)) (-3516 ((|#1| |#1|) 58)) (-3010 (((-171 |#1|) |#2|) 93)) (-1749 ((|#1| |#2|) 136) ((|#1| |#2| |#1|) 90)) (-3217 ((|#2| |#2|) 91)) (-4105 (((-427 |#2|) |#2| |#1|) 118) (((-427 |#2|) |#2| |#1| (-112)) 88)) (-3421 ((|#1| |#2|) 117)) (-4244 ((|#2| |#2|) 130)) (-4218 (((-427 |#2|) |#2|) 153) (((-427 |#2|) |#2| |#1|) 33) (((-427 |#2|) |#2| |#1| (-112)) 152)) (-1551 (((-653 (-2 (|:| -1687 (-653 |#2|)) (|:| -2675 |#1|))) |#2| |#2|) 151) (((-653 (-2 (|:| -1687 (-653 |#2|)) (|:| -2675 |#1|))) |#2| |#2| (-112)) 81)) (-1682 (((-653 (-171 |#1|)) |#2| |#1|) 42) (((-653 (-171 |#1|)) |#2|) 43))) +(((-183 |#1| |#2|) (-10 -7 (-15 -1682 ((-653 (-171 |#1|)) |#2|)) (-15 -1682 ((-653 (-171 |#1|)) |#2| |#1|)) (-15 -1551 ((-653 (-2 (|:| -1687 (-653 |#2|)) (|:| -2675 |#1|))) |#2| |#2| (-112))) (-15 -1551 ((-653 (-2 (|:| -1687 (-653 |#2|)) (|:| -2675 |#1|))) |#2| |#2|)) (-15 -4218 ((-427 |#2|) |#2| |#1| (-112))) (-15 -4218 ((-427 |#2|) |#2| |#1|)) (-15 -4218 ((-427 |#2|) |#2|)) (-15 -4244 (|#2| |#2|)) (-15 -3421 (|#1| |#2|)) (-15 -4105 ((-427 |#2|) |#2| |#1| (-112))) (-15 -4105 ((-427 |#2|) |#2| |#1|)) (-15 -3217 (|#2| |#2|)) (-15 -1749 (|#1| |#2| |#1|)) (-15 -1749 (|#1| |#2|)) (-15 -3010 ((-171 |#1|) |#2|)) (-15 -3516 (|#1| |#1|)) (-15 -1706 ((-2 (|:| |start| |#2|) (|:| -1687 (-427 |#2|))) |#2|))) (-13 (-371) (-857)) (-1256 (-171 |#1|))) (T -183)) +((-1706 (*1 *2 *3) (-12 (-4 *4 (-13 (-371) (-857))) (-5 *2 (-2 (|:| |start| *3) (|:| -1687 (-427 *3)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4))))) (-3516 (*1 *2 *2) (-12 (-4 *2 (-13 (-371) (-857))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1256 (-171 *2))))) (-3010 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) (-4 *4 (-13 (-371) (-857))) (-4 *3 (-1256 *2)))) (-1749 (*1 *2 *3) (-12 (-4 *2 (-13 (-371) (-857))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1256 (-171 *2))))) (-1749 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-371) (-857))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1256 (-171 *2))))) (-3217 (*1 *2 *2) (-12 (-4 *3 (-13 (-371) (-857))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1256 (-171 *3))))) (-4105 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-371) (-857))) (-5 *2 (-427 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4))))) (-4105 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-371) (-857))) (-5 *2 (-427 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4))))) (-3421 (*1 *2 *3) (-12 (-4 *2 (-13 (-371) (-857))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1256 (-171 *2))))) (-4244 (*1 *2 *2) (-12 (-4 *3 (-13 (-371) (-857))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1256 (-171 *3))))) (-4218 (*1 *2 *3) (-12 (-4 *4 (-13 (-371) (-857))) (-5 *2 (-427 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4))))) (-4218 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-371) (-857))) (-5 *2 (-427 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4))))) (-4218 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-371) (-857))) (-5 *2 (-427 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4))))) (-1551 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-371) (-857))) (-5 *2 (-653 (-2 (|:| -1687 (-653 *3)) (|:| -2675 *4)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4))))) (-1551 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-371) (-857))) (-5 *2 (-653 (-2 (|:| -1687 (-653 *3)) (|:| -2675 *5)))) (-5 *1 (-183 *5 *3)) (-4 *3 (-1256 (-171 *5))))) (-1682 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-371) (-857))) (-5 *2 (-653 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4))))) (-1682 (*1 *2 *3) (-12 (-4 *4 (-13 (-371) (-857))) (-5 *2 (-653 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4)))))) +(-10 -7 (-15 -1682 ((-653 (-171 |#1|)) |#2|)) (-15 -1682 ((-653 (-171 |#1|)) |#2| |#1|)) (-15 -1551 ((-653 (-2 (|:| -1687 (-653 |#2|)) (|:| -2675 |#1|))) |#2| |#2| (-112))) (-15 -1551 ((-653 (-2 (|:| -1687 (-653 |#2|)) (|:| -2675 |#1|))) |#2| |#2|)) (-15 -4218 ((-427 |#2|) |#2| |#1| (-112))) (-15 -4218 ((-427 |#2|) |#2| |#1|)) (-15 -4218 ((-427 |#2|) |#2|)) (-15 -4244 (|#2| |#2|)) (-15 -3421 (|#1| |#2|)) (-15 -4105 ((-427 |#2|) |#2| |#1| (-112))) (-15 -4105 ((-427 |#2|) |#2| |#1|)) (-15 -3217 (|#2| |#2|)) (-15 -1749 (|#1| |#2| |#1|)) (-15 -1749 (|#1| |#2|)) (-15 -3010 ((-171 |#1|) |#2|)) (-15 -3516 (|#1| |#1|)) (-15 -1706 ((-2 (|:| |start| |#2|) (|:| -1687 (-427 |#2|))) |#2|))) +((-1318 (((-3 |#2| "failed") |#2|) 16)) (-4083 (((-780) |#2|) 18)) (-4162 ((|#2| |#2| |#2|) 20))) +(((-184 |#1| |#2|) (-10 -7 (-15 -1318 ((-3 |#2| "failed") |#2|)) (-15 -4083 ((-780) |#2|)) (-15 -4162 (|#2| |#2| |#2|))) (-1230) (-683 |#1|)) (T -184)) +((-4162 (*1 *2 *2 *2) (-12 (-4 *3 (-1230)) (-5 *1 (-184 *3 *2)) (-4 *2 (-683 *3)))) (-4083 (*1 *2 *3) (-12 (-4 *4 (-1230)) (-5 *2 (-780)) (-5 *1 (-184 *4 *3)) (-4 *3 (-683 *4)))) (-1318 (*1 *2 *2) (|partial| -12 (-4 *3 (-1230)) (-5 *1 (-184 *3 *2)) (-4 *2 (-683 *3))))) +(-10 -7 (-15 -1318 ((-3 |#2| "failed") |#2|)) (-15 -4083 ((-780) |#2|)) (-15 -4162 (|#2| |#2| |#2|))) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-1963 ((|#1| $) 7)) (-2942 (((-871) $) 14)) (-3507 (((-112) $ $) NIL)) (-1563 (((-653 (-1194)) $) 10)) (-2981 (((-112) $ $) 12))) +(((-185 |#1|) (-13 (-1112) (-10 -8 (-15 -1963 (|#1| $)) (-15 -1563 ((-653 (-1194)) $)))) (-187)) (T -185)) +((-1963 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-1563 (*1 *2 *1) (-12 (-5 *2 (-653 (-1194))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) +(-13 (-1112) (-10 -8 (-15 -1963 (|#1| $)) (-15 -1563 ((-653 (-1194)) $)))) +((-1714 (((-653 (-874)) $) 16)) (-4281 (((-188) $) 8)) (-2966 (((-653 (-112)) $) 13)) (-4010 (((-55) $) 10))) +(((-186 |#1|) (-10 -8 (-15 -1714 ((-653 (-874)) |#1|)) (-15 -2966 ((-653 (-112)) |#1|)) (-15 -4281 ((-188) |#1|)) (-15 -4010 ((-55) |#1|))) (-187)) (T -186)) +NIL +(-10 -8 (-15 -1714 ((-653 (-874)) |#1|)) (-15 -2966 ((-653 (-112)) |#1|)) (-15 -4281 ((-188) |#1|)) (-15 -4010 ((-55) |#1|))) +((-2848 (((-112) $ $) 7)) (-1714 (((-653 (-874)) $) 19)) (-2031 (((-515) $) 16)) (-3180 (((-1171) $) 10)) (-4281 (((-188) $) 21)) (-1667 (((-112) $ (-515)) 14)) (-3965 (((-1132) $) 11)) (-2966 (((-653 (-112)) $) 20)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-4010 (((-55) $) 15)) (-2981 (((-112) $ $) 6))) (((-187) (-141)) (T -187)) -((-4282 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-654 (-112))))) (-1715 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-654 (-875)))))) -(-13 (-845 (-516)) (-10 -8 (-15 -4282 ((-188) $)) (-15 -3950 ((-654 (-112)) $)) (-15 -1715 ((-654 (-875)) $)))) -(((-102) . T) ((-623 (-872)) . T) ((-845 (-516)) . T) ((-1113) . T)) -((-2849 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-8 (($) 7 T CONST)) (-2943 (((-872) $) 12)) (-9 (($) 6 T CONST)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 10))) -(((-188) (-13 (-1113) (-10 -8 (-15 -9 ($) -1706) (-15 -8 ($) -1706) (-15 -7 ($) -1706)))) (T -188)) +((-4281 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-2966 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-653 (-112))))) (-1714 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-653 (-874)))))) +(-13 (-844 (-515)) (-10 -8 (-15 -4281 ((-188) $)) (-15 -2966 ((-653 (-112)) $)) (-15 -1714 ((-653 (-874)) $)))) +(((-102) . T) ((-622 (-871)) . T) ((-844 (-515)) . T) ((-1112) . T)) +((-2848 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-8 (($) 7 T CONST)) (-2942 (((-871) $) 12)) (-9 (($) 6 T CONST)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 10))) +(((-188) (-13 (-1112) (-10 -8 (-15 -9 ($) -1705) (-15 -8 ($) -1705) (-15 -7 ($) -1705)))) (T -188)) ((-9 (*1 *1) (-5 *1 (-188))) (-8 (*1 *1) (-5 *1 (-188))) (-7 (*1 *1) (-5 *1 (-188)))) -(-13 (-1113) (-10 -8 (-15 -9 ($) -1706) (-15 -8 ($) -1706) (-15 -7 ($) -1706))) -((-2849 (((-112) $ $) NIL)) (-1715 (((-654 (-875)) $) NIL)) (-2032 (((-516) $) 8)) (-4136 (((-1172) $) NIL)) (-4282 (((-188) $) 10)) (-4103 (((-112) $ (-516)) NIL)) (-3966 (((-1133) $) NIL)) (-2336 (((-701 $) (-516)) 17)) (-3950 (((-654 (-112)) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-4183 (((-55) $) 12)) (-2981 (((-112) $ $) NIL))) -(((-189) (-13 (-187) (-10 -8 (-15 -2336 ((-701 $) (-516)))))) (T -189)) -((-2336 (*1 *2 *3) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-189))) (-5 *1 (-189))))) -(-13 (-187) (-10 -8 (-15 -2336 ((-701 $) (-516))))) -((-4210 ((|#2| |#2|) 28)) (-3931 (((-112) |#2|) 19)) (-4239 (((-324 |#1|) |#2|) 12)) (-4249 (((-324 |#1|) |#2|) 14)) (-4125 ((|#2| |#2| (-1190)) 69) ((|#2| |#2|) 70)) (-1593 (((-171 (-324 |#1|)) |#2|) 10)) (-1979 ((|#2| |#2| (-1190)) 66) ((|#2| |#2|) 60))) -(((-190 |#1| |#2|) (-10 -7 (-15 -4125 (|#2| |#2|)) (-15 -4125 (|#2| |#2| (-1190))) (-15 -1979 (|#2| |#2|)) (-15 -1979 (|#2| |#2| (-1190))) (-15 -4239 ((-324 |#1|) |#2|)) (-15 -4249 ((-324 |#1|) |#2|)) (-15 -3931 ((-112) |#2|)) (-15 -4210 (|#2| |#2|)) (-15 -1593 ((-171 (-324 |#1|)) |#2|))) (-13 (-566) (-1051 (-574))) (-13 (-27) (-1216) (-440 (-171 |#1|)))) (T -190)) -((-1593 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *2 (-171 (-324 *4))) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 (-171 *4)))))) (-4210 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-1051 (-574)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 (-171 *3)))))) (-3931 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *2 (-112)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 (-171 *4)))))) (-4249 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *2 (-324 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 (-171 *4)))))) (-4239 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *2 (-324 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 (-171 *4)))))) (-1979 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 (-171 *4)))))) (-1979 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-1051 (-574)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 (-171 *3)))))) (-4125 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 (-171 *4)))))) (-4125 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-1051 (-574)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 (-171 *3))))))) -(-10 -7 (-15 -4125 (|#2| |#2|)) (-15 -4125 (|#2| |#2| (-1190))) (-15 -1979 (|#2| |#2|)) (-15 -1979 (|#2| |#2| (-1190))) (-15 -4239 ((-324 |#1|) |#2|)) (-15 -4249 ((-324 |#1|) |#2|)) (-15 -3931 ((-112) |#2|)) (-15 -4210 (|#2| |#2|)) (-15 -1593 ((-171 (-324 |#1|)) |#2|))) -((-3615 (((-1281 (-699 (-963 |#1|))) (-1281 (-699 |#1|))) 26)) (-2943 (((-1281 (-699 (-417 (-963 |#1|)))) (-1281 (-699 |#1|))) 37))) -(((-191 |#1|) (-10 -7 (-15 -3615 ((-1281 (-699 (-963 |#1|))) (-1281 (-699 |#1|)))) (-15 -2943 ((-1281 (-699 (-417 (-963 |#1|)))) (-1281 (-699 |#1|))))) (-174)) (T -191)) -((-2943 (*1 *2 *3) (-12 (-5 *3 (-1281 (-699 *4))) (-4 *4 (-174)) (-5 *2 (-1281 (-699 (-417 (-963 *4))))) (-5 *1 (-191 *4)))) (-3615 (*1 *2 *3) (-12 (-5 *3 (-1281 (-699 *4))) (-4 *4 (-174)) (-5 *2 (-1281 (-699 (-963 *4)))) (-5 *1 (-191 *4))))) -(-10 -7 (-15 -3615 ((-1281 (-699 (-963 |#1|))) (-1281 (-699 |#1|)))) (-15 -2943 ((-1281 (-699 (-417 (-963 |#1|)))) (-1281 (-699 |#1|))))) -((-3412 (((-1192 (-417 (-574))) (-1192 (-417 (-574))) (-1192 (-417 (-574)))) 93)) (-2942 (((-1192 (-417 (-574))) (-654 (-574)) (-654 (-574))) 107)) (-1650 (((-1192 (-417 (-574))) (-932)) 54)) (-4431 (((-1192 (-417 (-574))) (-932)) 79)) (-2646 (((-417 (-574)) (-1192 (-417 (-574)))) 89)) (-3967 (((-1192 (-417 (-574))) (-932)) 37)) (-2166 (((-1192 (-417 (-574))) (-932)) 66)) (-2826 (((-1192 (-417 (-574))) (-932)) 61)) (-2095 (((-1192 (-417 (-574))) (-1192 (-417 (-574))) (-1192 (-417 (-574)))) 87)) (-1651 (((-1192 (-417 (-574))) (-932)) 29)) (-4421 (((-417 (-574)) (-1192 (-417 (-574))) (-1192 (-417 (-574)))) 91)) (-4346 (((-1192 (-417 (-574))) (-932)) 35)) (-2728 (((-1192 (-417 (-574))) (-654 (-932))) 100))) -(((-192) (-10 -7 (-15 -1651 ((-1192 (-417 (-574))) (-932))) (-15 -1650 ((-1192 (-417 (-574))) (-932))) (-15 -3967 ((-1192 (-417 (-574))) (-932))) (-15 -4346 ((-1192 (-417 (-574))) (-932))) (-15 -2826 ((-1192 (-417 (-574))) (-932))) (-15 -2166 ((-1192 (-417 (-574))) (-932))) (-15 -4431 ((-1192 (-417 (-574))) (-932))) (-15 -4421 ((-417 (-574)) (-1192 (-417 (-574))) (-1192 (-417 (-574))))) (-15 -2095 ((-1192 (-417 (-574))) (-1192 (-417 (-574))) (-1192 (-417 (-574))))) (-15 -2646 ((-417 (-574)) (-1192 (-417 (-574))))) (-15 -3412 ((-1192 (-417 (-574))) (-1192 (-417 (-574))) (-1192 (-417 (-574))))) (-15 -2728 ((-1192 (-417 (-574))) (-654 (-932)))) (-15 -2942 ((-1192 (-417 (-574))) (-654 (-574)) (-654 (-574)))))) (T -192)) -((-2942 (*1 *2 *3 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-654 (-932))) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192)))) (-3412 (*1 *2 *2 *2) (-12 (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192)))) (-2646 (*1 *2 *3) (-12 (-5 *3 (-1192 (-417 (-574)))) (-5 *2 (-417 (-574))) (-5 *1 (-192)))) (-2095 (*1 *2 *2 *2) (-12 (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192)))) (-4421 (*1 *2 *3 *3) (-12 (-5 *3 (-1192 (-417 (-574)))) (-5 *2 (-417 (-574))) (-5 *1 (-192)))) (-4431 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192)))) (-2166 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192)))) (-2826 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192)))) (-4346 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192)))) (-3967 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192)))) (-1650 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192)))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192))))) -(-10 -7 (-15 -1651 ((-1192 (-417 (-574))) (-932))) (-15 -1650 ((-1192 (-417 (-574))) (-932))) (-15 -3967 ((-1192 (-417 (-574))) (-932))) (-15 -4346 ((-1192 (-417 (-574))) (-932))) (-15 -2826 ((-1192 (-417 (-574))) (-932))) (-15 -2166 ((-1192 (-417 (-574))) (-932))) (-15 -4431 ((-1192 (-417 (-574))) (-932))) (-15 -4421 ((-417 (-574)) (-1192 (-417 (-574))) (-1192 (-417 (-574))))) (-15 -2095 ((-1192 (-417 (-574))) (-1192 (-417 (-574))) (-1192 (-417 (-574))))) (-15 -2646 ((-417 (-574)) (-1192 (-417 (-574))))) (-15 -3412 ((-1192 (-417 (-574))) (-1192 (-417 (-574))) (-1192 (-417 (-574))))) (-15 -2728 ((-1192 (-417 (-574))) (-654 (-932)))) (-15 -2942 ((-1192 (-417 (-574))) (-654 (-574)) (-654 (-574))))) -((-3037 (((-428 (-1186 (-574))) (-574)) 38)) (-1382 (((-654 (-1186 (-574))) (-574)) 33)) (-1459 (((-1186 (-574)) (-574)) 28))) -(((-193) (-10 -7 (-15 -1382 ((-654 (-1186 (-574))) (-574))) (-15 -1459 ((-1186 (-574)) (-574))) (-15 -3037 ((-428 (-1186 (-574))) (-574))))) (T -193)) -((-3037 (*1 *2 *3) (-12 (-5 *2 (-428 (-1186 (-574)))) (-5 *1 (-193)) (-5 *3 (-574)))) (-1459 (*1 *2 *3) (-12 (-5 *2 (-1186 (-574))) (-5 *1 (-193)) (-5 *3 (-574)))) (-1382 (*1 *2 *3) (-12 (-5 *2 (-654 (-1186 (-574)))) (-5 *1 (-193)) (-5 *3 (-574))))) -(-10 -7 (-15 -1382 ((-654 (-1186 (-574))) (-574))) (-15 -1459 ((-1186 (-574)) (-574))) (-15 -3037 ((-428 (-1186 (-574))) (-574)))) -((-1766 (((-1170 (-227)) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 132)) (-1929 (((-654 (-1172)) (-1170 (-227))) NIL)) (-1811 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-2485 (((-654 (-227)) (-324 (-227)) (-1190) (-1107 (-853 (-227)))) NIL)) (-2429 (((-654 (-1172)) (-654 (-227))) NIL)) (-2894 (((-227) (-1107 (-853 (-227)))) 31)) (-3489 (((-227) (-1107 (-853 (-227)))) 32)) (-4181 (((-388) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 126)) (-4327 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 67)) (-3013 (((-1172) (-227)) NIL)) (-1534 (((-1172) (-654 (-1172))) 27)) (-2322 (((-1048) (-1190) (-1190) (-1048)) 13))) -(((-194) (-10 -7 (-15 -1811 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4327 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2894 ((-227) (-1107 (-853 (-227))))) (-15 -3489 ((-227) (-1107 (-853 (-227))))) (-15 -4181 ((-388) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2485 ((-654 (-227)) (-324 (-227)) (-1190) (-1107 (-853 (-227))))) (-15 -1766 ((-1170 (-227)) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3013 ((-1172) (-227))) (-15 -2429 ((-654 (-1172)) (-654 (-227)))) (-15 -1929 ((-654 (-1172)) (-1170 (-227)))) (-15 -1534 ((-1172) (-654 (-1172)))) (-15 -2322 ((-1048) (-1190) (-1190) (-1048))))) (T -194)) -((-2322 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1048)) (-5 *3 (-1190)) (-5 *1 (-194)))) (-1534 (*1 *2 *3) (-12 (-5 *3 (-654 (-1172))) (-5 *2 (-1172)) (-5 *1 (-194)))) (-1929 (*1 *2 *3) (-12 (-5 *3 (-1170 (-227))) (-5 *2 (-654 (-1172))) (-5 *1 (-194)))) (-2429 (*1 *2 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1172))) (-5 *1 (-194)))) (-3013 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1172)) (-5 *1 (-194)))) (-1766 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1170 (-227))) (-5 *1 (-194)))) (-2485 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-227))) (-5 *4 (-1190)) (-5 *5 (-1107 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-194)))) (-4181 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-388)) (-5 *1 (-194)))) (-3489 (*1 *2 *3) (-12 (-5 *3 (-1107 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-2894 (*1 *2 *3) (-12 (-5 *3 (-1107 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-4327 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-194)))) (-1811 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-194))))) -(-10 -7 (-15 -1811 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4327 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2894 ((-227) (-1107 (-853 (-227))))) (-15 -3489 ((-227) (-1107 (-853 (-227))))) (-15 -4181 ((-388) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2485 ((-654 (-227)) (-324 (-227)) (-1190) (-1107 (-853 (-227))))) (-15 -1766 ((-1170 (-227)) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3013 ((-1172) (-227))) (-15 -2429 ((-654 (-1172)) (-654 (-227)))) (-15 -1929 ((-654 (-1172)) (-1170 (-227)))) (-15 -1534 ((-1172) (-654 (-1172)))) (-15 -2322 ((-1048) (-1190) (-1190) (-1048)))) -((-2849 (((-112) $ $) NIL)) (-3624 (((-1048) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) 61) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) NIL)) (-3678 (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 33) (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-195) (-797)) (T -195)) -NIL -(-797) -((-2849 (((-112) $ $) NIL)) (-3624 (((-1048) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) 66) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) NIL)) (-3678 (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-196) (-797)) (T -196)) -NIL -(-797) -((-2849 (((-112) $ $) NIL)) (-3624 (((-1048) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) 81) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) NIL)) (-3678 (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 46) (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-197) (-797)) (T -197)) -NIL -(-797) -((-2849 (((-112) $ $) NIL)) (-3624 (((-1048) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) 63) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) NIL)) (-3678 (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 36) (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-198) (-797)) (T -198)) -NIL -(-797) -((-2849 (((-112) $ $) NIL)) (-3624 (((-1048) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) 75) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) NIL)) (-3678 (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40) (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-199) (-797)) (T -199)) -NIL -(-797) -((-2849 (((-112) $ $) NIL)) (-3624 (((-1048) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) 93) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) NIL)) (-3678 (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49) (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-200) (-797)) (T -200)) -NIL -(-797) -((-2849 (((-112) $ $) NIL)) (-3624 (((-1048) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) 90) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) NIL)) (-3678 (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 51) (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-201) (-797)) (T -201)) -NIL -(-797) -((-2849 (((-112) $ $) NIL)) (-3624 (((-1048) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) 77) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) NIL)) (-3678 (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42) (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-202) (-797)) (T -202)) -NIL -(-797) -((-2849 (((-112) $ $) NIL)) (-3624 (((-1048) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) NIL) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) 76)) (-3678 (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 35)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-203) (-797)) (T -203)) -NIL -(-797) -((-2849 (((-112) $ $) NIL)) (-3624 (((-1048) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) NIL) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) 77)) (-3678 (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-204) (-797)) (T -204)) -NIL -(-797) -((-2849 (((-112) $ $) NIL)) (-3624 (((-1048) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) 105) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) NIL)) (-3678 (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 86) (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-205) (-797)) (T -205)) -NIL -(-797) -((-1623 (((-3 (-2 (|:| -4296 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-2706 (((-574) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 59)) (-3350 (((-3 (-654 (-227)) "failed") (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 90))) -(((-206) (-10 -7 (-15 -1623 ((-3 (-2 (|:| -4296 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3350 ((-3 (-654 (-227)) "failed") (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2706 ((-574) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -206)) -((-2706 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-574)) (-5 *1 (-206)))) (-3350 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-206)))) (-1623 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -4296 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) -(-10 -7 (-15 -1623 ((-3 (-2 (|:| -4296 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3350 ((-3 (-654 (-227)) "failed") (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2706 ((-574) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-3122 (((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49)) (-3413 (((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 157)) (-2686 (((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-699 (-324 (-227)))) 112)) (-1418 (((-388) (-699 (-324 (-227)))) 140)) (-3451 (((-699 (-324 (-227))) (-1281 (-324 (-227))) (-654 (-1190))) 136)) (-3355 (((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 37)) (-1790 (((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 53)) (-2646 (((-699 (-324 (-227))) (-699 (-324 (-227))) (-654 (-1190)) (-1281 (-324 (-227)))) 125)) (-3124 (((-388) (-388) (-654 (-388))) 133) (((-388) (-388) (-388)) 128)) (-2035 (((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 45))) -(((-207) (-10 -7 (-15 -3124 ((-388) (-388) (-388))) (-15 -3124 ((-388) (-388) (-654 (-388)))) (-15 -1418 ((-388) (-699 (-324 (-227))))) (-15 -3451 ((-699 (-324 (-227))) (-1281 (-324 (-227))) (-654 (-1190)))) (-15 -2646 ((-699 (-324 (-227))) (-699 (-324 (-227))) (-654 (-1190)) (-1281 (-324 (-227))))) (-15 -2686 ((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-699 (-324 (-227))))) (-15 -3413 ((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3122 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1790 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2035 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3355 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -207)) -((-3355 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))) (-2035 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))) (-1790 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))) (-3122 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))) (-3413 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388)))) (-5 *1 (-207)))) (-2686 (*1 *2 *3) (-12 (-5 *3 (-699 (-324 (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388)))) (-5 *1 (-207)))) (-2646 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-699 (-324 (-227)))) (-5 *3 (-654 (-1190))) (-5 *4 (-1281 (-324 (-227)))) (-5 *1 (-207)))) (-3451 (*1 *2 *3 *4) (-12 (-5 *3 (-1281 (-324 (-227)))) (-5 *4 (-654 (-1190))) (-5 *2 (-699 (-324 (-227)))) (-5 *1 (-207)))) (-1418 (*1 *2 *3) (-12 (-5 *3 (-699 (-324 (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))) (-3124 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-388))) (-5 *2 (-388)) (-5 *1 (-207)))) (-3124 (*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-207))))) -(-10 -7 (-15 -3124 ((-388) (-388) (-388))) (-15 -3124 ((-388) (-388) (-654 (-388)))) (-15 -1418 ((-388) (-699 (-324 (-227))))) (-15 -3451 ((-699 (-324 (-227))) (-1281 (-324 (-227))) (-654 (-1190)))) (-15 -2646 ((-699 (-324 (-227))) (-699 (-324 (-227))) (-654 (-1190)) (-1281 (-324 (-227))))) (-15 -2686 ((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-699 (-324 (-227))))) (-15 -3413 ((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3122 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1790 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2035 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3355 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-2849 (((-112) $ $) NIL)) (-3678 (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-3467 (((-1048) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 75)) (-2981 (((-112) $ $) NIL))) -(((-208) (-810)) (T -208)) -NIL -(-810) -((-2849 (((-112) $ $) NIL)) (-3678 (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-3467 (((-1048) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 73)) (-2981 (((-112) $ $) NIL))) -(((-209) (-810)) (T -209)) -NIL -(-810) -((-2849 (((-112) $ $) NIL)) (-3678 (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-3467 (((-1048) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 76)) (-2981 (((-112) $ $) NIL))) -(((-210) (-810)) (T -210)) -NIL -(-810) -((-2849 (((-112) $ $) NIL)) (-3678 (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 48)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-3467 (((-1048) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 88)) (-2981 (((-112) $ $) NIL))) -(((-211) (-810)) (T -211)) -NIL -(-810) -((-1655 (((-654 (-1190)) (-1190) (-781)) 26)) (-1959 (((-324 (-227)) (-324 (-227))) 35)) (-3633 (((-112) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227)))) 87)) (-2593 (((-112) (-227) (-227) (-654 (-324 (-227)))) 47))) -(((-212) (-10 -7 (-15 -1655 ((-654 (-1190)) (-1190) (-781))) (-15 -1959 ((-324 (-227)) (-324 (-227)))) (-15 -2593 ((-112) (-227) (-227) (-654 (-324 (-227))))) (-15 -3633 ((-112) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227))))))) (T -212)) -((-3633 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227)))) (-5 *2 (-112)) (-5 *1 (-212)))) (-2593 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-654 (-324 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-212)))) (-1959 (*1 *2 *2) (-12 (-5 *2 (-324 (-227))) (-5 *1 (-212)))) (-1655 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-5 *2 (-654 (-1190))) (-5 *1 (-212)) (-5 *3 (-1190))))) -(-10 -7 (-15 -1655 ((-654 (-1190)) (-1190) (-781))) (-15 -1959 ((-324 (-227)) (-324 (-227)))) (-15 -2593 ((-112) (-227) (-227) (-654 (-324 (-227))))) (-15 -3633 ((-112) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227)))))) -((-2849 (((-112) $ $) NIL)) (-3678 (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227)))) 28)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-1465 (((-1048) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227)))) 70)) (-2981 (((-112) $ $) NIL))) -(((-213) (-906)) (T -213)) -NIL -(-906) -((-2849 (((-112) $ $) NIL)) (-3678 (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227)))) 24)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-1465 (((-1048) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227)))) NIL)) (-2981 (((-112) $ $) NIL))) -(((-214) (-906)) (T -214)) -NIL -(-906) -((-2849 (((-112) $ $) NIL)) (-2394 ((|#2| $ (-781) |#2|) 11)) (-2385 ((|#2| $ (-781)) 10)) (-3790 (($) 8)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 23)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 13))) -(((-215 |#1| |#2|) (-13 (-1113) (-10 -8 (-15 -3790 ($)) (-15 -2385 (|#2| $ (-781))) (-15 -2394 (|#2| $ (-781) |#2|)))) (-932) (-1113)) (T -215)) -((-3790 (*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1113)))) (-2385 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *2 (-1113)) (-5 *1 (-215 *4 *2)) (-14 *4 (-932)))) (-2394 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-215 *4 *2)) (-14 *4 (-932)) (-4 *2 (-1113))))) -(-13 (-1113) (-10 -8 (-15 -3790 ($)) (-15 -2385 (|#2| $ (-781))) (-15 -2394 (|#2| $ (-781) |#2|)))) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3844 (((-1286) $) 37) (((-1286) $ (-932) (-932)) 41)) (-2199 (($ $ (-1002)) 19) (((-251 (-1172)) $ (-1190)) 15)) (-1403 (((-1286) $) 35)) (-2943 (((-872) $) 32) (($ (-654 |#1|)) 8)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3094 (($ $ $) 27)) (-3079 (($ $ $) 22))) -(((-216 |#1|) (-13 (-1113) (-626 (-654 |#1|)) (-10 -8 (-15 -2199 ($ $ (-1002))) (-15 -2199 ((-251 (-1172)) $ (-1190))) (-15 -3079 ($ $ $)) (-15 -3094 ($ $ $)) (-15 -1403 ((-1286) $)) (-15 -3844 ((-1286) $)) (-15 -3844 ((-1286) $ (-932) (-932))))) (-13 (-860) (-10 -8 (-15 -2199 ((-1172) $ (-1190))) (-15 -1403 ((-1286) $)) (-15 -3844 ((-1286) $))))) (T -216)) -((-2199 (*1 *1 *1 *2) (-12 (-5 *2 (-1002)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-860) (-10 -8 (-15 -2199 ((-1172) $ (-1190))) (-15 -1403 ((-1286) $)) (-15 -3844 ((-1286) $))))))) (-2199 (*1 *2 *1 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-251 (-1172))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-860) (-10 -8 (-15 -2199 ((-1172) $ *3)) (-15 -1403 ((-1286) $)) (-15 -3844 ((-1286) $))))))) (-3079 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-860) (-10 -8 (-15 -2199 ((-1172) $ (-1190))) (-15 -1403 ((-1286) $)) (-15 -3844 ((-1286) $))))))) (-3094 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-860) (-10 -8 (-15 -2199 ((-1172) $ (-1190))) (-15 -1403 ((-1286) $)) (-15 -3844 ((-1286) $))))))) (-1403 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-860) (-10 -8 (-15 -2199 ((-1172) $ (-1190))) (-15 -1403 (*2 $)) (-15 -3844 (*2 $))))))) (-3844 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-860) (-10 -8 (-15 -2199 ((-1172) $ (-1190))) (-15 -1403 (*2 $)) (-15 -3844 (*2 $))))))) (-3844 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1286)) (-5 *1 (-216 *4)) (-4 *4 (-13 (-860) (-10 -8 (-15 -2199 ((-1172) $ (-1190))) (-15 -1403 (*2 $)) (-15 -3844 (*2 $)))))))) -(-13 (-1113) (-626 (-654 |#1|)) (-10 -8 (-15 -2199 ($ $ (-1002))) (-15 -2199 ((-251 (-1172)) $ (-1190))) (-15 -3079 ($ $ $)) (-15 -3094 ($ $ $)) (-15 -1403 ((-1286) $)) (-15 -3844 ((-1286) $)) (-15 -3844 ((-1286) $ (-932) (-932))))) -((-1723 ((|#2| |#4| (-1 |#2| |#2|)) 49))) -(((-217 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1723 (|#2| |#4| (-1 |#2| |#2|)))) (-372) (-1257 |#1|) (-1257 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -217)) -((-1723 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-372)) (-4 *6 (-1257 (-417 *2))) (-4 *2 (-1257 *5)) (-5 *1 (-217 *5 *2 *6 *3)) (-4 *3 (-351 *5 *2 *6))))) -(-10 -7 (-15 -1723 (|#2| |#4| (-1 |#2| |#2|)))) -((-3667 ((|#2| |#2| (-781) |#2|) 55)) (-3294 ((|#2| |#2| (-781) |#2|) 51)) (-1340 (((-654 |#2|) (-654 (-2 (|:| |deg| (-781)) (|:| -1644 |#2|)))) 79)) (-3113 (((-654 (-2 (|:| |deg| (-781)) (|:| -1644 |#2|))) |#2|) 73)) (-1944 (((-112) |#2|) 71)) (-3629 (((-428 |#2|) |#2|) 91)) (-4220 (((-428 |#2|) |#2|) 90)) (-1673 ((|#2| |#2| (-781) |#2|) 49)) (-3009 (((-2 (|:| |cont| |#1|) (|:| -4219 (-654 (-2 (|:| |irr| |#2|) (|:| -3186 (-574)))))) |#2| (-112)) 85))) -(((-218 |#1| |#2|) (-10 -7 (-15 -4220 ((-428 |#2|) |#2|)) (-15 -3629 ((-428 |#2|) |#2|)) (-15 -3009 ((-2 (|:| |cont| |#1|) (|:| -4219 (-654 (-2 (|:| |irr| |#2|) (|:| -3186 (-574)))))) |#2| (-112))) (-15 -3113 ((-654 (-2 (|:| |deg| (-781)) (|:| -1644 |#2|))) |#2|)) (-15 -1340 ((-654 |#2|) (-654 (-2 (|:| |deg| (-781)) (|:| -1644 |#2|))))) (-15 -1673 (|#2| |#2| (-781) |#2|)) (-15 -3294 (|#2| |#2| (-781) |#2|)) (-15 -3667 (|#2| |#2| (-781) |#2|)) (-15 -1944 ((-112) |#2|))) (-358) (-1257 |#1|)) (T -218)) -((-1944 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1257 *4)))) (-3667 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1257 *4)))) (-3294 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1257 *4)))) (-1673 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1257 *4)))) (-1340 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| |deg| (-781)) (|:| -1644 *5)))) (-4 *5 (-1257 *4)) (-4 *4 (-358)) (-5 *2 (-654 *5)) (-5 *1 (-218 *4 *5)))) (-3113 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-654 (-2 (|:| |deg| (-781)) (|:| -1644 *3)))) (-5 *1 (-218 *4 *3)) (-4 *3 (-1257 *4)))) (-3009 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |cont| *5) (|:| -4219 (-654 (-2 (|:| |irr| *3) (|:| -3186 (-574))))))) (-5 *1 (-218 *5 *3)) (-4 *3 (-1257 *5)))) (-3629 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-428 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1257 *4)))) (-4220 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-428 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1257 *4))))) -(-10 -7 (-15 -4220 ((-428 |#2|) |#2|)) (-15 -3629 ((-428 |#2|) |#2|)) (-15 -3009 ((-2 (|:| |cont| |#1|) (|:| -4219 (-654 (-2 (|:| |irr| |#2|) (|:| -3186 (-574)))))) |#2| (-112))) (-15 -3113 ((-654 (-2 (|:| |deg| (-781)) (|:| -1644 |#2|))) |#2|)) (-15 -1340 ((-654 |#2|) (-654 (-2 (|:| |deg| (-781)) (|:| -1644 |#2|))))) (-15 -1673 (|#2| |#2| (-781) |#2|)) (-15 -3294 (|#2| |#2| (-781) |#2|)) (-15 -3667 (|#2| |#2| (-781) |#2|)) (-15 -1944 ((-112) |#2|))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1528 (((-574) $) NIL (|has| (-574) (-315)))) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3972 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-1600 (((-112) $ $) NIL)) (-2846 (((-574) $) NIL (|has| (-574) (-830)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-574) "failed") $) NIL) (((-3 (-1190) "failed") $) NIL (|has| (-574) (-1051 (-1190)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-574) (-1051 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-574) (-1051 (-574))))) (-2206 (((-574) $) NIL) (((-1190) $) NIL (|has| (-574) (-1051 (-1190)))) (((-417 (-574)) $) NIL (|has| (-574) (-1051 (-574)))) (((-574) $) NIL (|has| (-574) (-1051 (-574))))) (-2786 (($ $ $) NIL)) (-2590 (((-699 (-574)) (-1281 $)) NIL (|has| (-574) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1281 $)) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2820 (($) NIL (|has| (-574) (-555)))) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-2257 (((-112) $) NIL)) (-2756 (((-112) $) NIL (|has| (-574) (-830)))) (-3625 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-574) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-574) (-897 (-388))))) (-3199 (((-112) $) NIL)) (-2141 (($ $) NIL)) (-2966 (((-574) $) NIL)) (-2748 (((-3 $ "failed") $) NIL (|has| (-574) (-1165)))) (-1335 (((-112) $) NIL (|has| (-574) (-830)))) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3659 (($ $ $) NIL (|has| (-574) (-860)))) (-4257 (($ $ $) NIL (|has| (-574) (-860)))) (-1777 (($ (-1 (-574) (-574)) $) NIL)) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| (-574) (-1165)) CONST)) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3191 (($ $) NIL (|has| (-574) (-315))) (((-417 (-574)) $) NIL)) (-3595 (((-574) $) NIL (|has| (-574) (-555)))) (-2560 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-2039 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-4220 (((-428 $) $) NIL)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2646 (($ $ (-654 (-574)) (-654 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-574) (-574)) NIL (|has| (-574) (-317 (-574)))) (($ $ (-302 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-302 (-574)))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-1190)) (-654 (-574))) NIL (|has| (-574) (-524 (-1190) (-574)))) (($ $ (-1190) (-574)) NIL (|has| (-574) (-524 (-1190) (-574))))) (-1730 (((-781) $) NIL)) (-2199 (($ $ (-574)) NIL (|has| (-574) (-294 (-574) (-574))))) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-3905 (($ $) NIL (|has| (-574) (-239))) (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $ (-1190)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-4358 (($ $) NIL)) (-2977 (((-574) $) NIL)) (-3051 (($ (-417 (-574))) 9)) (-1836 (((-903 (-574)) $) NIL (|has| (-574) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-574) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-574) (-624 (-546)))) (((-388) $) NIL (|has| (-574) (-1035))) (((-227) $) NIL (|has| (-574) (-1035)))) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-574) (-920))))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) 8) (($ (-574)) NIL) (($ (-1190)) NIL (|has| (-574) (-1051 (-1190)))) (((-417 (-574)) $) NIL) (((-1017 10) $) 10)) (-3298 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| (-574) (-920))) (|has| (-574) (-146))))) (-1364 (((-781)) NIL T CONST)) (-1801 (((-574) $) NIL (|has| (-574) (-555)))) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL)) (-3482 (($ $) NIL (|has| (-574) (-830)))) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-3610 (($ $) NIL (|has| (-574) (-239))) (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $ (-1190)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-3042 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3018 (((-112) $ $) NIL (|has| (-574) (-860)))) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3007 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3108 (($ $ $) NIL) (($ (-574) (-574)) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-574) $) NIL) (($ $ (-574)) NIL))) -(((-219) (-13 (-1005 (-574)) (-623 (-417 (-574))) (-623 (-1017 10)) (-10 -8 (-15 -3191 ((-417 (-574)) $)) (-15 -3051 ($ (-417 (-574))))))) (T -219)) -((-3191 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-219)))) (-3051 (*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-219))))) -(-13 (-1005 (-574)) (-623 (-417 (-574))) (-623 (-1017 10)) (-10 -8 (-15 -3191 ((-417 (-574)) $)) (-15 -3051 ($ (-417 (-574)))))) -((-2849 (((-112) $ $) NIL)) (-3140 (((-1131) $) 13)) (-4136 (((-1172) $) NIL)) (-2972 (((-493) $) 10)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 23) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2044 (((-1148) $) 15)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-220) (-13 (-1096) (-10 -8 (-15 -2972 ((-493) $)) (-15 -3140 ((-1131) $)) (-15 -2044 ((-1148) $))))) (T -220)) -((-2972 (*1 *2 *1) (-12 (-5 *2 (-493)) (-5 *1 (-220)))) (-3140 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-220)))) (-2044 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-220))))) -(-13 (-1096) (-10 -8 (-15 -2972 ((-493) $)) (-15 -3140 ((-1131) $)) (-15 -2044 ((-1148) $)))) -((-2379 (((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1105 (-853 |#2|)) (-1172)) 29) (((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1105 (-853 |#2|))) 25)) (-2544 (((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1190) (-853 |#2|) (-853 |#2|) (-112)) 17))) -(((-221 |#1| |#2|) (-10 -7 (-15 -2379 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1105 (-853 |#2|)))) (-15 -2379 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1105 (-853 |#2|)) (-1172))) (-15 -2544 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1190) (-853 |#2|) (-853 |#2|) (-112)))) (-13 (-315) (-148) (-1051 (-574)) (-649 (-574))) (-13 (-1216) (-970) (-29 |#1|))) (T -221)) -((-2544 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1190)) (-5 *6 (-112)) (-4 *7 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) (-4 *3 (-13 (-1216) (-970) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *7 *3)) (-5 *5 (-853 *3)))) (-2379 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1105 (-853 *3))) (-5 *5 (-1172)) (-4 *3 (-13 (-1216) (-970) (-29 *6))) (-4 *6 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6 *3)))) (-2379 (*1 *2 *3 *4) (-12 (-5 *4 (-1105 (-853 *3))) (-4 *3 (-13 (-1216) (-970) (-29 *5))) (-4 *5 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5 *3))))) -(-10 -7 (-15 -2379 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1105 (-853 |#2|)))) (-15 -2379 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1105 (-853 |#2|)) (-1172))) (-15 -2544 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1190) (-853 |#2|) (-853 |#2|) (-112)))) -((-2379 (((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-963 |#1|)) (-1105 (-853 (-417 (-963 |#1|)))) (-1172)) 49) (((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-963 |#1|)) (-1105 (-853 (-417 (-963 |#1|))))) 46) (((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-963 |#1|)) (-1105 (-853 (-324 |#1|))) (-1172)) 50) (((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-963 |#1|)) (-1105 (-853 (-324 |#1|)))) 22))) -(((-222 |#1|) (-10 -7 (-15 -2379 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-963 |#1|)) (-1105 (-853 (-324 |#1|))))) (-15 -2379 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-963 |#1|)) (-1105 (-853 (-324 |#1|))) (-1172))) (-15 -2379 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-963 |#1|)) (-1105 (-853 (-417 (-963 |#1|)))))) (-15 -2379 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-963 |#1|)) (-1105 (-853 (-417 (-963 |#1|)))) (-1172)))) (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) (T -222)) -((-2379 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1105 (-853 (-417 (-963 *6))))) (-5 *5 (-1172)) (-5 *3 (-417 (-963 *6))) (-4 *6 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 (-324 *6))) (|:| |f2| (-654 (-853 (-324 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-2379 (*1 *2 *3 *4) (-12 (-5 *4 (-1105 (-853 (-417 (-963 *5))))) (-5 *3 (-417 (-963 *5))) (-4 *5 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 (-324 *5))) (|:| |f2| (-654 (-853 (-324 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))) (-2379 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-417 (-963 *6))) (-5 *4 (-1105 (-853 (-324 *6)))) (-5 *5 (-1172)) (-4 *6 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 (-324 *6))) (|:| |f2| (-654 (-853 (-324 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-2379 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-1105 (-853 (-324 *5)))) (-4 *5 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 (-324 *5))) (|:| |f2| (-654 (-853 (-324 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5))))) -(-10 -7 (-15 -2379 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-963 |#1|)) (-1105 (-853 (-324 |#1|))))) (-15 -2379 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-963 |#1|)) (-1105 (-853 (-324 |#1|))) (-1172))) (-15 -2379 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-963 |#1|)) (-1105 (-853 (-417 (-963 |#1|)))))) (-15 -2379 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-963 |#1|)) (-1105 (-853 (-417 (-963 |#1|)))) (-1172)))) -((-2868 (((-2 (|:| -4086 (-1186 |#1|)) (|:| |deg| (-932))) (-1186 |#1|)) 26)) (-2128 (((-654 (-324 |#2|)) (-324 |#2|) (-932)) 51))) -(((-223 |#1| |#2|) (-10 -7 (-15 -2868 ((-2 (|:| -4086 (-1186 |#1|)) (|:| |deg| (-932))) (-1186 |#1|))) (-15 -2128 ((-654 (-324 |#2|)) (-324 |#2|) (-932)))) (-1062) (-566)) (T -223)) -((-2128 (*1 *2 *3 *4) (-12 (-5 *4 (-932)) (-4 *6 (-566)) (-5 *2 (-654 (-324 *6))) (-5 *1 (-223 *5 *6)) (-5 *3 (-324 *6)) (-4 *5 (-1062)))) (-2868 (*1 *2 *3) (-12 (-4 *4 (-1062)) (-5 *2 (-2 (|:| -4086 (-1186 *4)) (|:| |deg| (-932)))) (-5 *1 (-223 *4 *5)) (-5 *3 (-1186 *4)) (-4 *5 (-566))))) -(-10 -7 (-15 -2868 ((-2 (|:| -4086 (-1186 |#1|)) (|:| |deg| (-932))) (-1186 |#1|))) (-15 -2128 ((-654 (-324 |#2|)) (-324 |#2|) (-932)))) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2337 ((|#1| $) NIL)) (-2002 ((|#1| $) 30)) (-3034 (((-112) $ (-781)) NIL)) (-3426 (($) NIL T CONST)) (-3876 (($ $) NIL)) (-2627 (($ $) 39)) (-3874 ((|#1| |#1| $) NIL)) (-3020 ((|#1| $) NIL)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-2742 (((-112) $ (-781)) NIL)) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2449 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4135 (((-781) $) NIL)) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-2937 ((|#1| $) NIL)) (-2952 ((|#1| |#1| $) 35)) (-2603 ((|#1| |#1| $) 37)) (-2798 (($ |#1| $) NIL)) (-1839 (((-781) $) 33)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2501 ((|#1| $) NIL)) (-2837 ((|#1| $) 31)) (-2170 ((|#1| $) 29)) (-1785 ((|#1| $) NIL)) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) NIL)) (-4035 ((|#1| |#1| $) NIL)) (-1584 (((-112) $) 9)) (-2672 (($) NIL)) (-3668 ((|#1| $) NIL)) (-4354 (($) NIL) (($ (-654 |#1|)) 16)) (-4302 (((-781) $) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2814 ((|#1| $) 13)) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-1599 (($ (-654 |#1|)) NIL)) (-3835 ((|#1| $) NIL)) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-224 |#1|) (-13 (-261 |#1|) (-10 -8 (-15 -4354 ($ (-654 |#1|))))) (-1113)) (T -224)) -((-4354 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-224 *3))))) -(-13 (-261 |#1|) (-10 -8 (-15 -4354 ($ (-654 |#1|))))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-4198 (($ (-324 |#1|)) 24)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-3865 (((-112) $) NIL)) (-1696 (((-3 (-324 |#1|) "failed") $) NIL)) (-2206 (((-324 |#1|) $) NIL)) (-1392 (($ $) 32)) (-3434 (((-3 $ "failed") $) NIL)) (-3199 (((-112) $) NIL)) (-1777 (($ (-1 (-324 |#1|) (-324 |#1|)) $) NIL)) (-1370 (((-324 |#1|) $) NIL)) (-2223 (($ $) 31)) (-4136 (((-1172) $) NIL)) (-3505 (((-112) $) NIL)) (-3966 (((-1133) $) NIL)) (-2970 (($ (-781)) NIL)) (-2902 (($ $) 33)) (-4202 (((-574) $) NIL)) (-2943 (((-872) $) 65) (($ (-574)) NIL) (($ (-324 |#1|)) NIL)) (-3087 (((-324 |#1|) $ $) NIL)) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-2133 (($) 26 T CONST)) (-2145 (($) NIL T CONST)) (-2981 (((-112) $ $) 29)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) 20)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 25) (($ (-324 |#1|) $) 19))) -(((-225 |#1| |#2|) (-13 (-630 (-324 |#1|)) (-1051 (-324 |#1|)) (-10 -8 (-15 -1370 ((-324 |#1|) $)) (-15 -2223 ($ $)) (-15 -1392 ($ $)) (-15 -3087 ((-324 |#1|) $ $)) (-15 -2970 ($ (-781))) (-15 -3505 ((-112) $)) (-15 -3865 ((-112) $)) (-15 -4202 ((-574) $)) (-15 -1777 ($ (-1 (-324 |#1|) (-324 |#1|)) $)) (-15 -4198 ($ (-324 |#1|))) (-15 -2902 ($ $)))) (-13 (-1062) (-860)) (-654 (-1190))) (T -225)) -((-1370 (*1 *2 *1) (-12 (-5 *2 (-324 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1062) (-860))) (-14 *4 (-654 (-1190))))) (-2223 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1062) (-860))) (-14 *3 (-654 (-1190))))) (-1392 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1062) (-860))) (-14 *3 (-654 (-1190))))) (-3087 (*1 *2 *1 *1) (-12 (-5 *2 (-324 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1062) (-860))) (-14 *4 (-654 (-1190))))) (-2970 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1062) (-860))) (-14 *4 (-654 (-1190))))) (-3505 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1062) (-860))) (-14 *4 (-654 (-1190))))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1062) (-860))) (-14 *4 (-654 (-1190))))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1062) (-860))) (-14 *4 (-654 (-1190))))) (-1777 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-324 *3) (-324 *3))) (-4 *3 (-13 (-1062) (-860))) (-5 *1 (-225 *3 *4)) (-14 *4 (-654 (-1190))))) (-4198 (*1 *1 *2) (-12 (-5 *2 (-324 *3)) (-4 *3 (-13 (-1062) (-860))) (-5 *1 (-225 *3 *4)) (-14 *4 (-654 (-1190))))) (-2902 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1062) (-860))) (-14 *3 (-654 (-1190)))))) -(-13 (-630 (-324 |#1|)) (-1051 (-324 |#1|)) (-10 -8 (-15 -1370 ((-324 |#1|) $)) (-15 -2223 ($ $)) (-15 -1392 ($ $)) (-15 -3087 ((-324 |#1|) $ $)) (-15 -2970 ($ (-781))) (-15 -3505 ((-112) $)) (-15 -3865 ((-112) $)) (-15 -4202 ((-574) $)) (-15 -1777 ($ (-1 (-324 |#1|) (-324 |#1|)) $)) (-15 -4198 ($ (-324 |#1|))) (-15 -2902 ($ $)))) -((-3676 (((-112) (-1172)) 26)) (-4063 (((-3 (-853 |#2|) "failed") (-622 |#2|) |#2| (-853 |#2|) (-853 |#2|) (-112)) 35)) (-1512 (((-3 (-112) "failed") (-1186 |#2|) (-853 |#2|) (-853 |#2|) (-112)) 84) (((-3 (-112) "failed") (-963 |#1|) (-1190) (-853 |#2|) (-853 |#2|) (-112)) 85))) -(((-226 |#1| |#2|) (-10 -7 (-15 -3676 ((-112) (-1172))) (-15 -4063 ((-3 (-853 |#2|) "failed") (-622 |#2|) |#2| (-853 |#2|) (-853 |#2|) (-112))) (-15 -1512 ((-3 (-112) "failed") (-963 |#1|) (-1190) (-853 |#2|) (-853 |#2|) (-112))) (-15 -1512 ((-3 (-112) "failed") (-1186 |#2|) (-853 |#2|) (-853 |#2|) (-112)))) (-13 (-462) (-1051 (-574)) (-649 (-574))) (-13 (-1216) (-29 |#1|))) (T -226)) -((-1512 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1186 *6)) (-5 *4 (-853 *6)) (-4 *6 (-13 (-1216) (-29 *5))) (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-226 *5 *6)))) (-1512 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-963 *6)) (-5 *4 (-1190)) (-5 *5 (-853 *7)) (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-4 *7 (-13 (-1216) (-29 *6))) (-5 *1 (-226 *6 *7)))) (-4063 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-853 *4)) (-5 *3 (-622 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1216) (-29 *6))) (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-226 *6 *4)))) (-3676 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-112)) (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1216) (-29 *4)))))) -(-10 -7 (-15 -3676 ((-112) (-1172))) (-15 -4063 ((-3 (-853 |#2|) "failed") (-622 |#2|) |#2| (-853 |#2|) (-853 |#2|) (-112))) (-15 -1512 ((-3 (-112) "failed") (-963 |#1|) (-1190) (-853 |#2|) (-853 |#2|) (-112))) (-15 -1512 ((-3 (-112) "failed") (-1186 |#2|) (-853 |#2|) (-853 |#2|) (-112)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 98)) (-1528 (((-574) $) 35)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-2052 (($ $) NIL)) (-2364 (($ $) 87)) (-2247 (($ $) 75)) (-3524 (((-3 $ "failed") $ $) NIL)) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-4229 (($ $) 66)) (-1600 (((-112) $ $) NIL)) (-2343 (($ $) 85)) (-2227 (($ $) 73)) (-2846 (((-574) $) 128)) (-2389 (($ $) 90)) (-2267 (($ $) 77)) (-3426 (($) NIL T CONST)) (-4039 (($ $) NIL)) (-1696 (((-3 (-574) "failed") $) 127) (((-3 (-417 (-574)) "failed") $) 124)) (-2206 (((-574) $) 125) (((-417 (-574)) $) 122)) (-2786 (($ $ $) NIL)) (-3434 (((-3 $ "failed") $) 103)) (-2132 (((-417 (-574)) $ (-781)) 117) (((-417 (-574)) $ (-781) (-781)) 116)) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-2257 (((-112) $) NIL)) (-3785 (((-932)) 29) (((-932) (-932)) NIL (|has| $ (-6 -4447)))) (-2756 (((-112) $) NIL)) (-3000 (($) 46)) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL)) (-3884 (((-574) $) 42)) (-3199 (((-112) $) 99)) (-3460 (($ $ (-574)) NIL)) (-2236 (($ $) NIL)) (-1335 (((-112) $) 97)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3659 (($ $ $) 63) (($) 38 (-12 (-2076 (|has| $ (-6 -4439))) (-2076 (|has| $ (-6 -4447)))))) (-4257 (($ $ $) 62) (($) 37 (-12 (-2076 (|has| $ (-6 -4439))) (-2076 (|has| $ (-6 -4447)))))) (-4300 (((-574) $) 27)) (-4381 (($ $) 33)) (-1731 (($ $) 67)) (-3119 (($ $) 72)) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3338 (((-932) (-574)) NIL (|has| $ (-6 -4447)))) (-3966 (((-1133) $) 101)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3191 (($ $) NIL)) (-3595 (($ $) NIL)) (-2381 (($ (-574) (-574)) NIL) (($ (-574) (-574) (-932)) 110)) (-4220 (((-428 $) $) NIL)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3715 (((-574) $) 28)) (-3898 (($) 45)) (-1609 (($ $) 71)) (-1730 (((-781) $) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-2173 (((-932)) NIL) (((-932) (-932)) NIL (|has| $ (-6 -4447)))) (-3905 (($ $ (-781)) NIL) (($ $) 104)) (-3661 (((-932) (-574)) NIL (|has| $ (-6 -4447)))) (-2402 (($ $) 88)) (-2275 (($ $) 78)) (-2375 (($ $) 89)) (-2256 (($ $) 76)) (-2352 (($ $) 86)) (-2237 (($ $) 74)) (-1836 (((-388) $) 113) (((-227) $) 14) (((-903 (-388)) $) NIL) (((-546) $) 52)) (-2943 (((-872) $) 49) (($ (-574)) 70) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-574)) 70) (($ (-417 (-574))) NIL)) (-1364 (((-781)) NIL T CONST)) (-1801 (($ $) NIL)) (-3837 (((-932)) 36) (((-932) (-932)) NIL (|has| $ (-6 -4447)))) (-3284 (((-112) $ $) NIL)) (-2630 (((-932)) 25)) (-2441 (($ $) 93)) (-2305 (($ $) 81) (($ $ $) 120)) (-2069 (((-112) $ $) NIL)) (-2414 (($ $) 91)) (-2287 (($ $) 79)) (-2465 (($ $) 96)) (-2325 (($ $) 84)) (-2521 (($ $) 94)) (-2334 (($ $) 82)) (-2452 (($ $) 95)) (-2315 (($ $) 83)) (-2428 (($ $) 92)) (-2297 (($ $) 80)) (-3482 (($ $) 119)) (-2133 (($) 23 T CONST)) (-2145 (($) 43 T CONST)) (-1544 (((-1172) $) 18) (((-1172) $ (-112)) 20) (((-1286) (-832) $) 21) (((-1286) (-832) $ (-112)) 22)) (-2135 (($ $) 107)) (-3610 (($ $ (-781)) NIL) (($ $) NIL)) (-3061 (($ $ $) 109)) (-3042 (((-112) $ $) 56)) (-3018 (((-112) $ $) 54)) (-2981 (((-112) $ $) 64)) (-3030 (((-112) $ $) 55)) (-3007 (((-112) $ $) 53)) (-3108 (($ $ $) 44) (($ $ (-574)) 65)) (-3094 (($ $) 57) (($ $ $) 59)) (-3079 (($ $ $) 58)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 68) (($ $ (-417 (-574))) 152) (($ $ $) 69)) (* (($ (-932) $) 34) (($ (-781) $) NIL) (($ (-574) $) 61) (($ $ $) 60) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) -(((-227) (-13 (-414) (-239) (-838) (-1216) (-624 (-546)) (-10 -8 (-15 -3108 ($ $ (-574))) (-15 ** ($ $ $)) (-15 -3898 ($)) (-15 -4381 ($ $)) (-15 -1731 ($ $)) (-15 -2305 ($ $ $)) (-15 -2135 ($ $)) (-15 -3061 ($ $ $)) (-15 -2132 ((-417 (-574)) $ (-781))) (-15 -2132 ((-417 (-574)) $ (-781) (-781)))))) (T -227)) -((** (*1 *1 *1 *1) (-5 *1 (-227))) (-3108 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-227)))) (-3898 (*1 *1) (-5 *1 (-227))) (-4381 (*1 *1 *1) (-5 *1 (-227))) (-1731 (*1 *1 *1) (-5 *1 (-227))) (-2305 (*1 *1 *1 *1) (-5 *1 (-227))) (-2135 (*1 *1 *1) (-5 *1 (-227))) (-3061 (*1 *1 *1 *1) (-5 *1 (-227))) (-2132 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-227)))) (-2132 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-227))))) -(-13 (-414) (-239) (-838) (-1216) (-624 (-546)) (-10 -8 (-15 -3108 ($ $ (-574))) (-15 ** ($ $ $)) (-15 -3898 ($)) (-15 -4381 ($ $)) (-15 -1731 ($ $)) (-15 -2305 ($ $ $)) (-15 -2135 ($ $)) (-15 -3061 ($ $ $)) (-15 -2132 ((-417 (-574)) $ (-781))) (-15 -2132 ((-417 (-574)) $ (-781) (-781))))) -((-2097 (((-171 (-227)) (-781) (-171 (-227))) 11) (((-227) (-781) (-227)) 12)) (-4287 (((-171 (-227)) (-171 (-227))) 13) (((-227) (-227)) 14)) (-1448 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 19) (((-227) (-227) (-227)) 22)) (-2489 (((-171 (-227)) (-171 (-227))) 27) (((-227) (-227)) 26)) (-3681 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 57) (((-227) (-227) (-227)) 49)) (-3586 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 62) (((-227) (-227) (-227)) 60)) (-2758 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 15) (((-227) (-227) (-227)) 16)) (-2242 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 17) (((-227) (-227) (-227)) 18)) (-1773 (((-171 (-227)) (-171 (-227))) 74) (((-227) (-227)) 73)) (-2196 (((-227) (-227)) 68) (((-171 (-227)) (-171 (-227))) 72)) (-2135 (((-171 (-227)) (-171 (-227))) 8) (((-227) (-227)) 9)) (-3061 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 35) (((-227) (-227) (-227)) 31))) -(((-228) (-10 -7 (-15 -2135 ((-227) (-227))) (-15 -2135 ((-171 (-227)) (-171 (-227)))) (-15 -3061 ((-227) (-227) (-227))) (-15 -3061 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4287 ((-227) (-227))) (-15 -4287 ((-171 (-227)) (-171 (-227)))) (-15 -2489 ((-227) (-227))) (-15 -2489 ((-171 (-227)) (-171 (-227)))) (-15 -2097 ((-227) (-781) (-227))) (-15 -2097 ((-171 (-227)) (-781) (-171 (-227)))) (-15 -2758 ((-227) (-227) (-227))) (-15 -2758 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3681 ((-227) (-227) (-227))) (-15 -3681 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2242 ((-227) (-227) (-227))) (-15 -2242 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3586 ((-227) (-227) (-227))) (-15 -3586 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2196 ((-171 (-227)) (-171 (-227)))) (-15 -2196 ((-227) (-227))) (-15 -1773 ((-227) (-227))) (-15 -1773 ((-171 (-227)) (-171 (-227)))) (-15 -1448 ((-227) (-227) (-227))) (-15 -1448 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))) (T -228)) -((-1448 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1448 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1773 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1773 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2196 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2196 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3586 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3586 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2242 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2242 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3681 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3681 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2758 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2758 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2097 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-227))) (-5 *3 (-781)) (-5 *1 (-228)))) (-2097 (*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-781)) (-5 *1 (-228)))) (-2489 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2489 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4287 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4287 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3061 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3061 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2135 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2135 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))) -(-10 -7 (-15 -2135 ((-227) (-227))) (-15 -2135 ((-171 (-227)) (-171 (-227)))) (-15 -3061 ((-227) (-227) (-227))) (-15 -3061 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4287 ((-227) (-227))) (-15 -4287 ((-171 (-227)) (-171 (-227)))) (-15 -2489 ((-227) (-227))) (-15 -2489 ((-171 (-227)) (-171 (-227)))) (-15 -2097 ((-227) (-781) (-227))) (-15 -2097 ((-171 (-227)) (-781) (-171 (-227)))) (-15 -2758 ((-227) (-227) (-227))) (-15 -2758 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3681 ((-227) (-227) (-227))) (-15 -3681 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2242 ((-227) (-227) (-227))) (-15 -2242 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3586 ((-227) (-227) (-227))) (-15 -3586 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2196 ((-171 (-227)) (-171 (-227)))) (-15 -2196 ((-227) (-227))) (-15 -1773 ((-227) (-227))) (-15 -1773 ((-171 (-227)) (-171 (-227)))) (-15 -1448 ((-227) (-227) (-227))) (-15 -1448 ((-171 (-227)) (-171 (-227)) (-171 (-227))))) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2216 (($ (-781) (-781)) NIL)) (-3285 (($ $ $) NIL)) (-2100 (($ (-1281 |#1|)) NIL) (($ $) NIL)) (-2808 (($ |#1| |#1| |#1|) 33)) (-3291 (((-112) $) NIL)) (-3053 (($ $ (-574) (-574)) NIL)) (-1476 (($ $ (-574) (-574)) NIL)) (-4087 (($ $ (-574) (-574) (-574) (-574)) NIL)) (-2584 (($ $) NIL)) (-2224 (((-112) $) NIL)) (-3034 (((-112) $ (-781)) NIL)) (-4100 (($ $ (-574) (-574) $) NIL)) (-3143 ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574)) $) NIL)) (-1365 (($ $ (-574) (-1281 |#1|)) NIL)) (-1694 (($ $ (-574) (-1281 |#1|)) NIL)) (-2991 (($ |#1| |#1| |#1|) 32)) (-1346 (($ (-781) |#1|) NIL)) (-3426 (($) NIL T CONST)) (-2879 (($ $) NIL (|has| |#1| (-315)))) (-4170 (((-1281 |#1|) $ (-574)) NIL)) (-3552 (($ |#1|) 31)) (-3671 (($ |#1|) 30)) (-3432 (($ |#1|) 29)) (-3584 (((-781) $) NIL (|has| |#1| (-566)))) (-2458 ((|#1| $ (-574) (-574) |#1|) NIL)) (-2385 ((|#1| $ (-574) (-574)) NIL)) (-1864 (((-654 |#1|) $) NIL)) (-1602 (((-781) $) NIL (|has| |#1| (-566)))) (-2548 (((-654 (-1281 |#1|)) $) NIL (|has| |#1| (-566)))) (-2189 (((-781) $) NIL)) (-3790 (($ (-781) (-781) |#1|) NIL)) (-2198 (((-781) $) NIL)) (-2742 (((-112) $ (-781)) NIL)) (-3609 ((|#1| $) NIL (|has| |#1| (-6 (-4458 "*"))))) (-3491 (((-574) $) NIL)) (-1630 (((-574) $) NIL)) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3068 (((-574) $) NIL)) (-3691 (((-574) $) NIL)) (-2914 (($ (-654 (-654 |#1|))) 11)) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-1777 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1394 (((-654 (-654 |#1|)) $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-2063 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-1939 (($) 12)) (-1352 (($ $ $) NIL)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-1942 (($ $ |#1|) NIL)) (-2838 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 ((|#1| $ (-574) (-574)) NIL) ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574))) NIL)) (-2691 (($ (-654 |#1|)) NIL) (($ (-654 $)) NIL)) (-2675 (((-112) $) NIL)) (-3192 ((|#1| $) NIL (|has| |#1| (-6 (-4458 "*"))))) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) NIL)) (-2471 (((-1281 |#1|) $ (-574)) NIL)) (-2943 (($ (-1281 |#1|)) NIL) (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2539 (((-112) $) NIL)) (-2981 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3108 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3094 (($ $ $) NIL) (($ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-574) $) NIL) (((-1281 |#1|) $ (-1281 |#1|)) 15) (((-1281 |#1|) (-1281 |#1|) $) NIL) (((-954 |#1|) $ (-954 |#1|)) 21)) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-229 |#1|) (-13 (-697 |#1| (-1281 |#1|) (-1281 |#1|)) (-10 -8 (-15 * ((-954 |#1|) $ (-954 |#1|))) (-15 -1939 ($)) (-15 -3432 ($ |#1|)) (-15 -3671 ($ |#1|)) (-15 -3552 ($ |#1|)) (-15 -2991 ($ |#1| |#1| |#1|)) (-15 -2808 ($ |#1| |#1| |#1|)))) (-13 (-372) (-1216))) (T -229)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216))) (-5 *1 (-229 *3)))) (-1939 (*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1216))))) (-3432 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1216))))) (-3671 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1216))))) (-3552 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1216))))) (-2991 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1216))))) (-2808 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1216)))))) -(-13 (-697 |#1| (-1281 |#1|) (-1281 |#1|)) (-10 -8 (-15 * ((-954 |#1|) $ (-954 |#1|))) (-15 -1939 ($)) (-15 -3432 ($ |#1|)) (-15 -3671 ($ |#1|)) (-15 -3552 ($ |#1|)) (-15 -2991 ($ |#1| |#1| |#1|)) (-15 -2808 ($ |#1| |#1| |#1|)))) -((-3572 (($ (-1 (-112) |#2|) $) 16)) (-2876 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 28)) (-1662 (($) NIL) (($ (-654 |#2|)) 11)) (-2981 (((-112) $ $) 26))) -(((-230 |#1| |#2|) (-10 -8 (-15 -3572 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2876 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2876 (|#1| |#2| |#1|)) (-15 -1662 (|#1| (-654 |#2|))) (-15 -1662 (|#1|)) (-15 -2981 ((-112) |#1| |#1|))) (-231 |#2|) (-1113)) (T -230)) -NIL -(-10 -8 (-15 -3572 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2876 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2876 (|#1| |#2| |#1|)) (-15 -1662 (|#1| (-654 |#2|))) (-15 -1662 (|#1|)) (-15 -2981 ((-112) |#1| |#1|))) -((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3034 (((-112) $ (-781)) 8)) (-3572 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4456)))) (-2165 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4456)))) (-3426 (($) 7 T CONST)) (-1543 (($ $) 59 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2876 (($ |#1| $) 48 (|has| $ (-6 -4456))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4456)))) (-3335 (($ |#1| $) 58 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4456)))) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-2742 (((-112) $ (-781)) 9)) (-1606 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2449 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 36)) (-4203 (((-112) $ (-781)) 10)) (-4136 (((-1172) $) 22 (|has| |#1| (-1113)))) (-2937 ((|#1| $) 40)) (-2798 (($ |#1| $) 41)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1785 ((|#1| $) 42)) (-2540 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 14)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-1662 (($) 50) (($ (-654 |#1|)) 49)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-1836 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 51)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-1599 (($ (-654 |#1|)) 43)) (-3390 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-231 |#1|) (-141) (-1113)) (T -231)) -NIL -(-13 (-241 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-241 |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1113) |has| |#1| (-1113)) ((-1231) . T)) -((-3905 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) 11) (($ $ (-654 (-1190)) (-654 (-781))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190)) 19) (($ $ (-781)) NIL) (($ $) 16)) (-3610 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-781)) 14) (($ $ (-654 (-1190)) (-654 (-781))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190)) NIL) (($ $ (-781)) NIL) (($ $) NIL))) -(((-232 |#1| |#2|) (-10 -8 (-15 -3610 (|#1| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -3610 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -3610 (|#1| |#1| (-1190))) (-15 -3610 (|#1| |#1| (-654 (-1190)))) (-15 -3610 (|#1| |#1| (-1190) (-781))) (-15 -3610 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -3610 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3610 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|)))) (-233 |#2|) (-1062)) (T -232)) -NIL -(-10 -8 (-15 -3610 (|#1| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -3610 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -3610 (|#1| |#1| (-1190))) (-15 -3610 (|#1| |#1| (-654 (-1190)))) (-15 -3610 (|#1| |#1| (-1190) (-781))) (-15 -3610 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -3610 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3610 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|)))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-3434 (((-3 $ "failed") $) 37)) (-3199 (((-112) $) 35)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-3905 (($ $ (-1 |#1| |#1|)) 57) (($ $ (-1 |#1| |#1|) (-781)) 56) (($ $ (-654 (-1190)) (-654 (-781))) 49 (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) 48 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) 47 (|has| |#1| (-911 (-1190)))) (($ $ (-1190)) 46 (|has| |#1| (-911 (-1190)))) (($ $ (-781)) 44 (|has| |#1| (-239))) (($ $) 43 (|has| |#1| (-239)))) (-2943 (((-872) $) 12) (($ (-574)) 33)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-3610 (($ $ (-1 |#1| |#1|)) 55) (($ $ (-1 |#1| |#1|) (-781)) 54) (($ $ (-654 (-1190)) (-654 (-781))) 53 (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) 52 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) 51 (|has| |#1| (-911 (-1190)))) (($ $ (-1190)) 50 (|has| |#1| (-911 (-1190)))) (($ $ (-781)) 45 (|has| |#1| (-239))) (($ $) 42 (|has| |#1| (-239)))) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) -(((-233 |#1|) (-141) (-1062)) (T -233)) -((-3905 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1062)))) (-3905 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *1 (-233 *4)) (-4 *4 (-1062)))) (-3610 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1062)))) (-3610 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *1 (-233 *4)) (-4 *4 (-1062))))) -(-13 (-1062) (-10 -8 (-15 -3905 ($ $ (-1 |t#1| |t#1|))) (-15 -3905 ($ $ (-1 |t#1| |t#1|) (-781))) (-15 -3610 ($ $ (-1 |t#1| |t#1|))) (-15 -3610 ($ $ (-1 |t#1| |t#1|) (-781))) (IF (|has| |t#1| (-239)) (-6 (-239)) |%noBranch|) (IF (|has| |t#1| (-911 (-1190))) (-6 (-911 (-1190))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-235 $) |has| |#1| (-239)) ((-239) |has| |#1| (-239)) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-911 (-1190)) |has| |#1| (-911 (-1190))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1231) |has| |#1| (-239))) -((-3610 ((|#2| $) 9))) -(((-234 |#1| |#2|) (-10 -8 (-15 -3610 (|#2| |#1|))) (-235 |#2|) (-1231)) (T -234)) -NIL -(-10 -8 (-15 -3610 (|#2| |#1|))) -((-3905 ((|#1| $) 7)) (-3610 ((|#1| $) 6))) -(((-235 |#1|) (-141) (-1231)) (T -235)) -((-3905 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1231)))) (-3610 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1231))))) -(-13 (-1231) (-10 -8 (-15 -3905 (|t#1| $)) (-15 -3610 (|t#1| $)))) -(((-1231) . T)) -((-3905 (($ $) NIL) (($ $ (-781)) 9)) (-3610 (($ $) NIL) (($ $ (-781)) 11))) -(((-236 |#1|) (-10 -8 (-15 -3610 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1| (-781))) (-15 -3610 (|#1| |#1|)) (-15 -3905 (|#1| |#1|))) (-237)) (T -236)) -NIL -(-10 -8 (-15 -3610 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1| (-781))) (-15 -3610 (|#1| |#1|)) (-15 -3905 (|#1| |#1|))) -((-3905 (($ $) 7) (($ $ (-781)) 10)) (-3610 (($ $) 6) (($ $ (-781)) 9))) +(-13 (-1112) (-10 -8 (-15 -9 ($) -1705) (-15 -8 ($) -1705) (-15 -7 ($) -1705))) +((-2848 (((-112) $ $) NIL)) (-1714 (((-653 (-874)) $) NIL)) (-2031 (((-515) $) 8)) (-3180 (((-1171) $) NIL)) (-4281 (((-188) $) 10)) (-1667 (((-112) $ (-515)) NIL)) (-3965 (((-1132) $) NIL)) (-3843 (((-700 $) (-515)) 17)) (-2966 (((-653 (-112)) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-4010 (((-55) $) 12)) (-2981 (((-112) $ $) NIL))) +(((-189) (-13 (-187) (-10 -8 (-15 -3843 ((-700 $) (-515)))))) (T -189)) +((-3843 (*1 *2 *3) (-12 (-5 *3 (-515)) (-5 *2 (-700 (-189))) (-5 *1 (-189))))) +(-13 (-187) (-10 -8 (-15 -3843 ((-700 $) (-515))))) +((-2125 ((|#2| |#2|) 28)) (-2814 (((-112) |#2|) 19)) (-4238 (((-323 |#1|) |#2|) 12)) (-4248 (((-323 |#1|) |#2|) 14)) (-3173 ((|#2| |#2| (-1189)) 69) ((|#2| |#2|) 70)) (-3513 (((-171 (-323 |#1|)) |#2|) 10)) (-1733 ((|#2| |#2| (-1189)) 66) ((|#2| |#2|) 60))) +(((-190 |#1| |#2|) (-10 -7 (-15 -3173 (|#2| |#2|)) (-15 -3173 (|#2| |#2| (-1189))) (-15 -1733 (|#2| |#2|)) (-15 -1733 (|#2| |#2| (-1189))) (-15 -4238 ((-323 |#1|) |#2|)) (-15 -4248 ((-323 |#1|) |#2|)) (-15 -2814 ((-112) |#2|)) (-15 -2125 (|#2| |#2|)) (-15 -3513 ((-171 (-323 |#1|)) |#2|))) (-13 (-565) (-1050 (-573))) (-13 (-27) (-1215) (-439 (-171 |#1|)))) (T -190)) +((-3513 (*1 *2 *3) (-12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *2 (-171 (-323 *4))) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 (-171 *4)))))) (-2125 (*1 *2 *2) (-12 (-4 *3 (-13 (-565) (-1050 (-573)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 (-171 *3)))))) (-2814 (*1 *2 *3) (-12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *2 (-112)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 (-171 *4)))))) (-4248 (*1 *2 *3) (-12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *2 (-323 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 (-171 *4)))))) (-4238 (*1 *2 *3) (-12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *2 (-323 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 (-171 *4)))))) (-1733 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 (-171 *4)))))) (-1733 (*1 *2 *2) (-12 (-4 *3 (-13 (-565) (-1050 (-573)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 (-171 *3)))))) (-3173 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 (-171 *4)))))) (-3173 (*1 *2 *2) (-12 (-4 *3 (-13 (-565) (-1050 (-573)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 (-171 *3))))))) +(-10 -7 (-15 -3173 (|#2| |#2|)) (-15 -3173 (|#2| |#2| (-1189))) (-15 -1733 (|#2| |#2|)) (-15 -1733 (|#2| |#2| (-1189))) (-15 -4238 ((-323 |#1|) |#2|)) (-15 -4248 ((-323 |#1|) |#2|)) (-15 -2814 ((-112) |#2|)) (-15 -2125 (|#2| |#2|)) (-15 -3513 ((-171 (-323 |#1|)) |#2|))) +((-2952 (((-1280 (-698 (-962 |#1|))) (-1280 (-698 |#1|))) 26)) (-2942 (((-1280 (-698 (-416 (-962 |#1|)))) (-1280 (-698 |#1|))) 37))) +(((-191 |#1|) (-10 -7 (-15 -2952 ((-1280 (-698 (-962 |#1|))) (-1280 (-698 |#1|)))) (-15 -2942 ((-1280 (-698 (-416 (-962 |#1|)))) (-1280 (-698 |#1|))))) (-174)) (T -191)) +((-2942 (*1 *2 *3) (-12 (-5 *3 (-1280 (-698 *4))) (-4 *4 (-174)) (-5 *2 (-1280 (-698 (-416 (-962 *4))))) (-5 *1 (-191 *4)))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-1280 (-698 *4))) (-4 *4 (-174)) (-5 *2 (-1280 (-698 (-962 *4)))) (-5 *1 (-191 *4))))) +(-10 -7 (-15 -2952 ((-1280 (-698 (-962 |#1|))) (-1280 (-698 |#1|)))) (-15 -2942 ((-1280 (-698 (-416 (-962 |#1|)))) (-1280 (-698 |#1|))))) +((-1549 (((-1191 (-416 (-573))) (-1191 (-416 (-573))) (-1191 (-416 (-573)))) 93)) (-1810 (((-1191 (-416 (-573))) (-653 (-573)) (-653 (-573))) 107)) (-4009 (((-1191 (-416 (-573))) (-931)) 54)) (-1590 (((-1191 (-416 (-573))) (-931)) 79)) (-2645 (((-416 (-573)) (-1191 (-416 (-573)))) 89)) (-2189 (((-1191 (-416 (-573))) (-931)) 37)) (-3111 (((-1191 (-416 (-573))) (-931)) 66)) (-2323 (((-1191 (-416 (-573))) (-931)) 61)) (-4060 (((-1191 (-416 (-573))) (-1191 (-416 (-573))) (-1191 (-416 (-573)))) 87)) (-4101 (((-1191 (-416 (-573))) (-931)) 29)) (-2003 (((-416 (-573)) (-1191 (-416 (-573))) (-1191 (-416 (-573)))) 91)) (-3917 (((-1191 (-416 (-573))) (-931)) 35)) (-3309 (((-1191 (-416 (-573))) (-653 (-931))) 100))) +(((-192) (-10 -7 (-15 -4101 ((-1191 (-416 (-573))) (-931))) (-15 -4009 ((-1191 (-416 (-573))) (-931))) (-15 -2189 ((-1191 (-416 (-573))) (-931))) (-15 -3917 ((-1191 (-416 (-573))) (-931))) (-15 -2323 ((-1191 (-416 (-573))) (-931))) (-15 -3111 ((-1191 (-416 (-573))) (-931))) (-15 -1590 ((-1191 (-416 (-573))) (-931))) (-15 -2003 ((-416 (-573)) (-1191 (-416 (-573))) (-1191 (-416 (-573))))) (-15 -4060 ((-1191 (-416 (-573))) (-1191 (-416 (-573))) (-1191 (-416 (-573))))) (-15 -2645 ((-416 (-573)) (-1191 (-416 (-573))))) (-15 -1549 ((-1191 (-416 (-573))) (-1191 (-416 (-573))) (-1191 (-416 (-573))))) (-15 -3309 ((-1191 (-416 (-573))) (-653 (-931)))) (-15 -1810 ((-1191 (-416 (-573))) (-653 (-573)) (-653 (-573)))))) (T -192)) +((-1810 (*1 *2 *3 *3) (-12 (-5 *3 (-653 (-573))) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192)))) (-3309 (*1 *2 *3) (-12 (-5 *3 (-653 (-931))) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192)))) (-1549 (*1 *2 *2 *2) (-12 (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192)))) (-2645 (*1 *2 *3) (-12 (-5 *3 (-1191 (-416 (-573)))) (-5 *2 (-416 (-573))) (-5 *1 (-192)))) (-4060 (*1 *2 *2 *2) (-12 (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192)))) (-2003 (*1 *2 *3 *3) (-12 (-5 *3 (-1191 (-416 (-573)))) (-5 *2 (-416 (-573))) (-5 *1 (-192)))) (-1590 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192)))) (-3111 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192)))) (-2323 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192)))) (-3917 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192)))) (-2189 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192)))) (-4009 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192)))) (-4101 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192))))) +(-10 -7 (-15 -4101 ((-1191 (-416 (-573))) (-931))) (-15 -4009 ((-1191 (-416 (-573))) (-931))) (-15 -2189 ((-1191 (-416 (-573))) (-931))) (-15 -3917 ((-1191 (-416 (-573))) (-931))) (-15 -2323 ((-1191 (-416 (-573))) (-931))) (-15 -3111 ((-1191 (-416 (-573))) (-931))) (-15 -1590 ((-1191 (-416 (-573))) (-931))) (-15 -2003 ((-416 (-573)) (-1191 (-416 (-573))) (-1191 (-416 (-573))))) (-15 -4060 ((-1191 (-416 (-573))) (-1191 (-416 (-573))) (-1191 (-416 (-573))))) (-15 -2645 ((-416 (-573)) (-1191 (-416 (-573))))) (-15 -1549 ((-1191 (-416 (-573))) (-1191 (-416 (-573))) (-1191 (-416 (-573))))) (-15 -3309 ((-1191 (-416 (-573))) (-653 (-931)))) (-15 -1810 ((-1191 (-416 (-573))) (-653 (-573)) (-653 (-573))))) +((-2490 (((-427 (-1185 (-573))) (-573)) 38)) (-3504 (((-653 (-1185 (-573))) (-573)) 33)) (-3172 (((-1185 (-573)) (-573)) 28))) +(((-193) (-10 -7 (-15 -3504 ((-653 (-1185 (-573))) (-573))) (-15 -3172 ((-1185 (-573)) (-573))) (-15 -2490 ((-427 (-1185 (-573))) (-573))))) (T -193)) +((-2490 (*1 *2 *3) (-12 (-5 *2 (-427 (-1185 (-573)))) (-5 *1 (-193)) (-5 *3 (-573)))) (-3172 (*1 *2 *3) (-12 (-5 *2 (-1185 (-573))) (-5 *1 (-193)) (-5 *3 (-573)))) (-3504 (*1 *2 *3) (-12 (-5 *2 (-653 (-1185 (-573)))) (-5 *1 (-193)) (-5 *3 (-573))))) +(-10 -7 (-15 -3504 ((-653 (-1185 (-573))) (-573))) (-15 -3172 ((-1185 (-573)) (-573))) (-15 -2490 ((-427 (-1185 (-573))) (-573)))) +((-4234 (((-1169 (-227)) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 132)) (-1958 (((-653 (-1171)) (-1169 (-227))) NIL)) (-1990 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-2982 (((-653 (-227)) (-323 (-227)) (-1189) (-1106 (-852 (-227)))) NIL)) (-4245 (((-653 (-1171)) (-653 (-227))) NIL)) (-1665 (((-227) (-1106 (-852 (-227)))) 31)) (-4256 (((-227) (-1106 (-852 (-227)))) 32)) (-3826 (((-387) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 126)) (-3202 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 67)) (-3730 (((-1171) (-227)) NIL)) (-3107 (((-1171) (-653 (-1171))) 27)) (-1904 (((-1047) (-1189) (-1189) (-1047)) 13))) +(((-194) (-10 -7 (-15 -1990 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3202 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1665 ((-227) (-1106 (-852 (-227))))) (-15 -4256 ((-227) (-1106 (-852 (-227))))) (-15 -3826 ((-387) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2982 ((-653 (-227)) (-323 (-227)) (-1189) (-1106 (-852 (-227))))) (-15 -4234 ((-1169 (-227)) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3730 ((-1171) (-227))) (-15 -4245 ((-653 (-1171)) (-653 (-227)))) (-15 -1958 ((-653 (-1171)) (-1169 (-227)))) (-15 -3107 ((-1171) (-653 (-1171)))) (-15 -1904 ((-1047) (-1189) (-1189) (-1047))))) (T -194)) +((-1904 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1047)) (-5 *3 (-1189)) (-5 *1 (-194)))) (-3107 (*1 *2 *3) (-12 (-5 *3 (-653 (-1171))) (-5 *2 (-1171)) (-5 *1 (-194)))) (-1958 (*1 *2 *3) (-12 (-5 *3 (-1169 (-227))) (-5 *2 (-653 (-1171))) (-5 *1 (-194)))) (-4245 (*1 *2 *3) (-12 (-5 *3 (-653 (-227))) (-5 *2 (-653 (-1171))) (-5 *1 (-194)))) (-3730 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1171)) (-5 *1 (-194)))) (-4234 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1169 (-227))) (-5 *1 (-194)))) (-2982 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-323 (-227))) (-5 *4 (-1189)) (-5 *5 (-1106 (-852 (-227)))) (-5 *2 (-653 (-227))) (-5 *1 (-194)))) (-3826 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-387)) (-5 *1 (-194)))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-1106 (-852 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-1106 (-852 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-3202 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-194)))) (-1990 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-194))))) +(-10 -7 (-15 -1990 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3202 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1665 ((-227) (-1106 (-852 (-227))))) (-15 -4256 ((-227) (-1106 (-852 (-227))))) (-15 -3826 ((-387) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2982 ((-653 (-227)) (-323 (-227)) (-1189) (-1106 (-852 (-227))))) (-15 -4234 ((-1169 (-227)) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3730 ((-1171) (-227))) (-15 -4245 ((-653 (-1171)) (-653 (-227)))) (-15 -1958 ((-653 (-1171)) (-1169 (-227)))) (-15 -3107 ((-1171) (-653 (-1171)))) (-15 -1904 ((-1047) (-1189) (-1189) (-1047)))) +((-2848 (((-112) $ $) NIL)) (-4377 (((-1047) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) 61) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) NIL)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 33) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-195) (-796)) (T -195)) +NIL +(-796) +((-2848 (((-112) $ $) NIL)) (-4377 (((-1047) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) 66) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) NIL)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-196) (-796)) (T -196)) +NIL +(-796) +((-2848 (((-112) $ $) NIL)) (-4377 (((-1047) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) 81) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) NIL)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 46) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-197) (-796)) (T -197)) +NIL +(-796) +((-2848 (((-112) $ $) NIL)) (-4377 (((-1047) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) 63) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) NIL)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 36) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-198) (-796)) (T -198)) +NIL +(-796) +((-2848 (((-112) $ $) NIL)) (-4377 (((-1047) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) 75) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) NIL)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-199) (-796)) (T -199)) +NIL +(-796) +((-2848 (((-112) $ $) NIL)) (-4377 (((-1047) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) 93) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) NIL)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-200) (-796)) (T -200)) +NIL +(-796) +((-2848 (((-112) $ $) NIL)) (-4377 (((-1047) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) 90) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) NIL)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 51) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-201) (-796)) (T -201)) +NIL +(-796) +((-2848 (((-112) $ $) NIL)) (-4377 (((-1047) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) 77) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) NIL)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-202) (-796)) (T -202)) +NIL +(-796) +((-2848 (((-112) $ $) NIL)) (-4377 (((-1047) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) NIL) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) 76)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 35)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-203) (-796)) (T -203)) +NIL +(-796) +((-2848 (((-112) $ $) NIL)) (-4377 (((-1047) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) NIL) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) 77)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-204) (-796)) (T -204)) +NIL +(-796) +((-2848 (((-112) $ $) NIL)) (-4377 (((-1047) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) 105) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) NIL)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 86) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-205) (-796)) (T -205)) +NIL +(-796) +((-4331 (((-3 (-2 (|:| -4296 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-1750 (((-573) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 59)) (-1685 (((-3 (-653 (-227)) "failed") (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 90))) +(((-206) (-10 -7 (-15 -4331 ((-3 (-2 (|:| -4296 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1685 ((-3 (-653 (-227)) "failed") (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1750 ((-573) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -206)) +((-1750 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-573)) (-5 *1 (-206)))) (-1685 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-653 (-227))) (-5 *1 (-206)))) (-4331 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -4296 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) +(-10 -7 (-15 -4331 ((-3 (-2 (|:| -4296 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1685 ((-3 (-653 (-227)) "failed") (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1750 ((-573) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-3653 (((-387) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49)) (-1656 (((-2 (|:| |stiffnessFactor| (-387)) (|:| |stabilityFactor| (-387))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 157)) (-2281 (((-2 (|:| |stiffnessFactor| (-387)) (|:| |stabilityFactor| (-387))) (-698 (-323 (-227)))) 112)) (-3114 (((-387) (-698 (-323 (-227)))) 140)) (-2753 (((-698 (-323 (-227))) (-1280 (-323 (-227))) (-653 (-1189))) 136)) (-4226 (((-387) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 37)) (-4159 (((-387) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 53)) (-2645 (((-698 (-323 (-227))) (-698 (-323 (-227))) (-653 (-1189)) (-1280 (-323 (-227)))) 125)) (-3872 (((-387) (-387) (-653 (-387))) 133) (((-387) (-387) (-387)) 128)) (-2485 (((-387) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 45))) +(((-207) (-10 -7 (-15 -3872 ((-387) (-387) (-387))) (-15 -3872 ((-387) (-387) (-653 (-387)))) (-15 -3114 ((-387) (-698 (-323 (-227))))) (-15 -2753 ((-698 (-323 (-227))) (-1280 (-323 (-227))) (-653 (-1189)))) (-15 -2645 ((-698 (-323 (-227))) (-698 (-323 (-227))) (-653 (-1189)) (-1280 (-323 (-227))))) (-15 -2281 ((-2 (|:| |stiffnessFactor| (-387)) (|:| |stabilityFactor| (-387))) (-698 (-323 (-227))))) (-15 -1656 ((-2 (|:| |stiffnessFactor| (-387)) (|:| |stabilityFactor| (-387))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3653 ((-387) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4159 ((-387) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2485 ((-387) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4226 ((-387) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -207)) +((-4226 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-387)) (-5 *1 (-207)))) (-2485 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-387)) (-5 *1 (-207)))) (-4159 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-387)) (-5 *1 (-207)))) (-3653 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-387)) (-5 *1 (-207)))) (-1656 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-387)) (|:| |stabilityFactor| (-387)))) (-5 *1 (-207)))) (-2281 (*1 *2 *3) (-12 (-5 *3 (-698 (-323 (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-387)) (|:| |stabilityFactor| (-387)))) (-5 *1 (-207)))) (-2645 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-698 (-323 (-227)))) (-5 *3 (-653 (-1189))) (-5 *4 (-1280 (-323 (-227)))) (-5 *1 (-207)))) (-2753 (*1 *2 *3 *4) (-12 (-5 *3 (-1280 (-323 (-227)))) (-5 *4 (-653 (-1189))) (-5 *2 (-698 (-323 (-227)))) (-5 *1 (-207)))) (-3114 (*1 *2 *3) (-12 (-5 *3 (-698 (-323 (-227)))) (-5 *2 (-387)) (-5 *1 (-207)))) (-3872 (*1 *2 *2 *3) (-12 (-5 *3 (-653 (-387))) (-5 *2 (-387)) (-5 *1 (-207)))) (-3872 (*1 *2 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-207))))) +(-10 -7 (-15 -3872 ((-387) (-387) (-387))) (-15 -3872 ((-387) (-387) (-653 (-387)))) (-15 -3114 ((-387) (-698 (-323 (-227))))) (-15 -2753 ((-698 (-323 (-227))) (-1280 (-323 (-227))) (-653 (-1189)))) (-15 -2645 ((-698 (-323 (-227))) (-698 (-323 (-227))) (-653 (-1189)) (-1280 (-323 (-227))))) (-15 -2281 ((-2 (|:| |stiffnessFactor| (-387)) (|:| |stabilityFactor| (-387))) (-698 (-323 (-227))))) (-15 -1656 ((-2 (|:| |stiffnessFactor| (-387)) (|:| |stabilityFactor| (-387))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3653 ((-387) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4159 ((-387) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2485 ((-387) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4226 ((-387) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-2848 (((-112) $ $) NIL)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-3871 (((-1047) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 75)) (-2981 (((-112) $ $) NIL))) +(((-208) (-809)) (T -208)) +NIL +(-809) +((-2848 (((-112) $ $) NIL)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-3871 (((-1047) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 73)) (-2981 (((-112) $ $) NIL))) +(((-209) (-809)) (T -209)) +NIL +(-809) +((-2848 (((-112) $ $) NIL)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-3871 (((-1047) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 76)) (-2981 (((-112) $ $) NIL))) +(((-210) (-809)) (T -210)) +NIL +(-809) +((-2848 (((-112) $ $) NIL)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 48)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-3871 (((-1047) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 88)) (-2981 (((-112) $ $) NIL))) +(((-211) (-809)) (T -211)) +NIL +(-809) +((-1653 (((-653 (-1189)) (-1189) (-780)) 26)) (-4306 (((-323 (-227)) (-323 (-227))) 35)) (-2974 (((-112) (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227)))) 87)) (-1745 (((-112) (-227) (-227) (-653 (-323 (-227)))) 47))) +(((-212) (-10 -7 (-15 -1653 ((-653 (-1189)) (-1189) (-780))) (-15 -4306 ((-323 (-227)) (-323 (-227)))) (-15 -1745 ((-112) (-227) (-227) (-653 (-323 (-227))))) (-15 -2974 ((-112) (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227))))))) (T -212)) +((-2974 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227)))) (-5 *2 (-112)) (-5 *1 (-212)))) (-1745 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-653 (-323 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-212)))) (-4306 (*1 *2 *2) (-12 (-5 *2 (-323 (-227))) (-5 *1 (-212)))) (-1653 (*1 *2 *3 *4) (-12 (-5 *4 (-780)) (-5 *2 (-653 (-1189))) (-5 *1 (-212)) (-5 *3 (-1189))))) +(-10 -7 (-15 -1653 ((-653 (-1189)) (-1189) (-780))) (-15 -4306 ((-323 (-227)) (-323 (-227)))) (-15 -1745 ((-112) (-227) (-227) (-653 (-323 (-227))))) (-15 -2974 ((-112) (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227)))))) +((-2848 (((-112) $ $) NIL)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227)))) 28)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-4308 (((-1047) (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227)))) 70)) (-2981 (((-112) $ $) NIL))) +(((-213) (-905)) (T -213)) +NIL +(-905) +((-2848 (((-112) $ $) NIL)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227)))) 24)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-4308 (((-1047) (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227)))) NIL)) (-2981 (((-112) $ $) NIL))) +(((-214) (-905)) (T -214)) +NIL +(-905) +((-2848 (((-112) $ $) NIL)) (-2394 ((|#2| $ (-780) |#2|) 11)) (-2384 ((|#2| $ (-780)) 10)) (-3789 (($) 8)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 23)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 13))) +(((-215 |#1| |#2|) (-13 (-1112) (-10 -8 (-15 -3789 ($)) (-15 -2384 (|#2| $ (-780))) (-15 -2394 (|#2| $ (-780) |#2|)))) (-931) (-1112)) (T -215)) +((-3789 (*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1112)))) (-2384 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-4 *2 (-1112)) (-5 *1 (-215 *4 *2)) (-14 *4 (-931)))) (-2394 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-215 *4 *2)) (-14 *4 (-931)) (-4 *2 (-1112))))) +(-13 (-1112) (-10 -8 (-15 -3789 ($)) (-15 -2384 (|#2| $ (-780))) (-15 -2394 (|#2| $ (-780) |#2|)))) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-1974 (((-1285) $) 37) (((-1285) $ (-931) (-931)) 41)) (-2198 (($ $ (-1001)) 19) (((-250 (-1171)) $ (-1189)) 15)) (-1402 (((-1285) $) 35)) (-2942 (((-871) $) 32) (($ (-653 |#1|)) 8)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $ $) 27)) (-3077 (($ $ $) 22))) +(((-216 |#1|) (-13 (-1112) (-625 (-653 |#1|)) (-10 -8 (-15 -2198 ($ $ (-1001))) (-15 -2198 ((-250 (-1171)) $ (-1189))) (-15 -3077 ($ $ $)) (-15 -3093 ($ $ $)) (-15 -1402 ((-1285) $)) (-15 -1974 ((-1285) $)) (-15 -1974 ((-1285) $ (-931) (-931))))) (-13 (-859) (-10 -8 (-15 -2198 ((-1171) $ (-1189))) (-15 -1402 ((-1285) $)) (-15 -1974 ((-1285) $))))) (T -216)) +((-2198 (*1 *1 *1 *2) (-12 (-5 *2 (-1001)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-859) (-10 -8 (-15 -2198 ((-1171) $ (-1189))) (-15 -1402 ((-1285) $)) (-15 -1974 ((-1285) $))))))) (-2198 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-250 (-1171))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-859) (-10 -8 (-15 -2198 ((-1171) $ *3)) (-15 -1402 ((-1285) $)) (-15 -1974 ((-1285) $))))))) (-3077 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-859) (-10 -8 (-15 -2198 ((-1171) $ (-1189))) (-15 -1402 ((-1285) $)) (-15 -1974 ((-1285) $))))))) (-3093 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-859) (-10 -8 (-15 -2198 ((-1171) $ (-1189))) (-15 -1402 ((-1285) $)) (-15 -1974 ((-1285) $))))))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-859) (-10 -8 (-15 -2198 ((-1171) $ (-1189))) (-15 -1402 (*2 $)) (-15 -1974 (*2 $))))))) (-1974 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-859) (-10 -8 (-15 -2198 ((-1171) $ (-1189))) (-15 -1402 (*2 $)) (-15 -1974 (*2 $))))))) (-1974 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1285)) (-5 *1 (-216 *4)) (-4 *4 (-13 (-859) (-10 -8 (-15 -2198 ((-1171) $ (-1189))) (-15 -1402 (*2 $)) (-15 -1974 (*2 $)))))))) +(-13 (-1112) (-625 (-653 |#1|)) (-10 -8 (-15 -2198 ($ $ (-1001))) (-15 -2198 ((-250 (-1171)) $ (-1189))) (-15 -3077 ($ $ $)) (-15 -3093 ($ $ $)) (-15 -1402 ((-1285) $)) (-15 -1974 ((-1285) $)) (-15 -1974 ((-1285) $ (-931) (-931))))) +((-2733 ((|#2| |#4| (-1 |#2| |#2|)) 49))) +(((-217 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2733 (|#2| |#4| (-1 |#2| |#2|)))) (-371) (-1256 |#1|) (-1256 (-416 |#2|)) (-350 |#1| |#2| |#3|)) (T -217)) +((-2733 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-371)) (-4 *6 (-1256 (-416 *2))) (-4 *2 (-1256 *5)) (-5 *1 (-217 *5 *2 *6 *3)) (-4 *3 (-350 *5 *2 *6))))) +(-10 -7 (-15 -2733 (|#2| |#4| (-1 |#2| |#2|)))) +((-2414 ((|#2| |#2| (-780) |#2|) 55)) (-1938 ((|#2| |#2| (-780) |#2|) 51)) (-2332 (((-653 |#2|) (-653 (-2 (|:| |deg| (-780)) (|:| -1772 |#2|)))) 79)) (-2042 (((-653 (-2 (|:| |deg| (-780)) (|:| -1772 |#2|))) |#2|) 73)) (-3375 (((-112) |#2|) 71)) (-2513 (((-427 |#2|) |#2|) 91)) (-4218 (((-427 |#2|) |#2|) 90)) (-4240 ((|#2| |#2| (-780) |#2|) 49)) (-1367 (((-2 (|:| |cont| |#1|) (|:| -1687 (-653 (-2 (|:| |irr| |#2|) (|:| -3287 (-573)))))) |#2| (-112)) 85))) +(((-218 |#1| |#2|) (-10 -7 (-15 -4218 ((-427 |#2|) |#2|)) (-15 -2513 ((-427 |#2|) |#2|)) (-15 -1367 ((-2 (|:| |cont| |#1|) (|:| -1687 (-653 (-2 (|:| |irr| |#2|) (|:| -3287 (-573)))))) |#2| (-112))) (-15 -2042 ((-653 (-2 (|:| |deg| (-780)) (|:| -1772 |#2|))) |#2|)) (-15 -2332 ((-653 |#2|) (-653 (-2 (|:| |deg| (-780)) (|:| -1772 |#2|))))) (-15 -4240 (|#2| |#2| (-780) |#2|)) (-15 -1938 (|#2| |#2| (-780) |#2|)) (-15 -2414 (|#2| |#2| (-780) |#2|)) (-15 -3375 ((-112) |#2|))) (-357) (-1256 |#1|)) (T -218)) +((-3375 (*1 *2 *3) (-12 (-4 *4 (-357)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1256 *4)))) (-2414 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-780)) (-4 *4 (-357)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1256 *4)))) (-1938 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-780)) (-4 *4 (-357)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1256 *4)))) (-4240 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-780)) (-4 *4 (-357)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1256 *4)))) (-2332 (*1 *2 *3) (-12 (-5 *3 (-653 (-2 (|:| |deg| (-780)) (|:| -1772 *5)))) (-4 *5 (-1256 *4)) (-4 *4 (-357)) (-5 *2 (-653 *5)) (-5 *1 (-218 *4 *5)))) (-2042 (*1 *2 *3) (-12 (-4 *4 (-357)) (-5 *2 (-653 (-2 (|:| |deg| (-780)) (|:| -1772 *3)))) (-5 *1 (-218 *4 *3)) (-4 *3 (-1256 *4)))) (-1367 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-357)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1687 (-653 (-2 (|:| |irr| *3) (|:| -3287 (-573))))))) (-5 *1 (-218 *5 *3)) (-4 *3 (-1256 *5)))) (-2513 (*1 *2 *3) (-12 (-4 *4 (-357)) (-5 *2 (-427 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1256 *4)))) (-4218 (*1 *2 *3) (-12 (-4 *4 (-357)) (-5 *2 (-427 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1256 *4))))) +(-10 -7 (-15 -4218 ((-427 |#2|) |#2|)) (-15 -2513 ((-427 |#2|) |#2|)) (-15 -1367 ((-2 (|:| |cont| |#1|) (|:| -1687 (-653 (-2 (|:| |irr| |#2|) (|:| -3287 (-573)))))) |#2| (-112))) (-15 -2042 ((-653 (-2 (|:| |deg| (-780)) (|:| -1772 |#2|))) |#2|)) (-15 -2332 ((-653 |#2|) (-653 (-2 (|:| |deg| (-780)) (|:| -1772 |#2|))))) (-15 -4240 (|#2| |#2| (-780) |#2|)) (-15 -1938 (|#2| |#2| (-780) |#2|)) (-15 -2414 (|#2| |#2| (-780) |#2|)) (-15 -3375 ((-112) |#2|))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3770 (((-573) $) NIL (|has| (-573) (-314)))) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-2800 (((-112) $ $) NIL)) (-1983 (((-573) $) NIL (|has| (-573) (-829)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL) (((-3 (-1189) "failed") $) NIL (|has| (-573) (-1050 (-1189)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| (-573) (-1050 (-573)))) (((-3 (-573) "failed") $) NIL (|has| (-573) (-1050 (-573))))) (-2205 (((-573) $) NIL) (((-1189) $) NIL (|has| (-573) (-1050 (-1189)))) (((-416 (-573)) $) NIL (|has| (-573) (-1050 (-573)))) (((-573) $) NIL (|has| (-573) (-1050 (-573))))) (-2784 (($ $ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| (-573) (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| (-573) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| (-573) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL) (((-698 (-573)) (-698 $)) NIL) (((-698 (-573)) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) NIL (|has| (-573) (-554)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-4152 (((-112) $) NIL (|has| (-573) (-829)))) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (|has| (-573) (-896 (-573)))) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (|has| (-573) (-896 (-387))))) (-1959 (((-112) $) NIL)) (-3041 (($ $) NIL)) (-2965 (((-573) $) NIL)) (-1470 (((-3 $ "failed") $) NIL (|has| (-573) (-1164)))) (-3339 (((-112) $) NIL (|has| (-573) (-829)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3659 (($ $ $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| (-573) (-859)))) (-1776 (($ (-1 (-573) (-573)) $) NIL)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| (-573) (-1164)) CONST)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-2408 (($ $) NIL (|has| (-573) (-314))) (((-416 (-573)) $) NIL)) (-3733 (((-573) $) NIL (|has| (-573) (-554)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2645 (($ $ (-653 (-573)) (-653 (-573))) NIL (|has| (-573) (-316 (-573)))) (($ $ (-573) (-573)) NIL (|has| (-573) (-316 (-573)))) (($ $ (-301 (-573))) NIL (|has| (-573) (-316 (-573)))) (($ $ (-653 (-301 (-573)))) NIL (|has| (-573) (-316 (-573)))) (($ $ (-653 (-1189)) (-653 (-573))) NIL (|has| (-573) (-523 (-1189) (-573)))) (($ $ (-1189) (-573)) NIL (|has| (-573) (-523 (-1189) (-573))))) (-2163 (((-780) $) NIL)) (-2198 (($ $ (-573)) NIL (|has| (-573) (-293 (-573) (-573))))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3904 (($ $ (-780)) NIL (|has| (-573) (-238))) (($ $) NIL (|has| (-573) (-238))) (($ $ (-1189)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1 (-573) (-573)) (-780)) NIL) (($ $ (-1 (-573) (-573))) NIL)) (-2662 (($ $) NIL)) (-2975 (((-573) $) NIL)) (-2727 (($ (-416 (-573))) 9)) (-1835 (((-902 (-573)) $) NIL (|has| (-573) (-623 (-902 (-573))))) (((-902 (-387)) $) NIL (|has| (-573) (-623 (-902 (-387))))) (((-545) $) NIL (|has| (-573) (-623 (-545)))) (((-387) $) NIL (|has| (-573) (-1034))) (((-227) $) NIL (|has| (-573) (-1034)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| (-573) (-919))))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) 8) (($ (-573)) NIL) (($ (-1189)) NIL (|has| (-573) (-1050 (-1189)))) (((-416 (-573)) $) NIL) (((-1016 10) $) 10)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| (-573) (-919))) (|has| (-573) (-146))))) (-1545 (((-780)) NIL T CONST)) (-2437 (((-573) $) NIL (|has| (-573) (-554)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-1660 (($ $) NIL (|has| (-573) (-829)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-780)) NIL (|has| (-573) (-238))) (($ $) NIL (|has| (-573) (-238))) (($ $ (-1189)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1 (-573) (-573)) (-780)) NIL) (($ $ (-1 (-573) (-573))) NIL)) (-3040 (((-112) $ $) NIL (|has| (-573) (-859)))) (-3015 (((-112) $ $) NIL (|has| (-573) (-859)))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (|has| (-573) (-859)))) (-3005 (((-112) $ $) NIL (|has| (-573) (-859)))) (-3103 (($ $ $) NIL) (($ (-573) (-573)) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ (-573) $) NIL) (($ $ (-573)) NIL))) +(((-219) (-13 (-1004 (-573)) (-622 (-416 (-573))) (-622 (-1016 10)) (-10 -8 (-15 -2408 ((-416 (-573)) $)) (-15 -2727 ($ (-416 (-573))))))) (T -219)) +((-2408 (*1 *2 *1) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-219)))) (-2727 (*1 *1 *2) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-219))))) +(-13 (-1004 (-573)) (-622 (-416 (-573))) (-622 (-1016 10)) (-10 -8 (-15 -2408 ((-416 (-573)) $)) (-15 -2727 ($ (-416 (-573)))))) +((-2848 (((-112) $ $) NIL)) (-3139 (((-1130) $) 13)) (-3180 (((-1171) $) NIL)) (-2030 (((-492) $) 10)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 23) (($ (-1194)) NIL) (((-1194) $) NIL)) (-2043 (((-1147) $) 15)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-220) (-13 (-1095) (-10 -8 (-15 -2030 ((-492) $)) (-15 -3139 ((-1130) $)) (-15 -2043 ((-1147) $))))) (T -220)) +((-2030 (*1 *2 *1) (-12 (-5 *2 (-492)) (-5 *1 (-220)))) (-3139 (*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-220)))) (-2043 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-220))))) +(-13 (-1095) (-10 -8 (-15 -2030 ((-492) $)) (-15 -3139 ((-1130) $)) (-15 -2043 ((-1147) $)))) +((-1626 (((-3 (|:| |f1| (-852 |#2|)) (|:| |f2| (-653 (-852 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1104 (-852 |#2|)) (-1171)) 29) (((-3 (|:| |f1| (-852 |#2|)) (|:| |f2| (-653 (-852 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1104 (-852 |#2|))) 25)) (-3924 (((-3 (|:| |f1| (-852 |#2|)) (|:| |f2| (-653 (-852 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1189) (-852 |#2|) (-852 |#2|) (-112)) 17))) +(((-221 |#1| |#2|) (-10 -7 (-15 -1626 ((-3 (|:| |f1| (-852 |#2|)) (|:| |f2| (-653 (-852 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1104 (-852 |#2|)))) (-15 -1626 ((-3 (|:| |f1| (-852 |#2|)) (|:| |f2| (-653 (-852 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1104 (-852 |#2|)) (-1171))) (-15 -3924 ((-3 (|:| |f1| (-852 |#2|)) (|:| |f2| (-653 (-852 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1189) (-852 |#2|) (-852 |#2|) (-112)))) (-13 (-314) (-148) (-1050 (-573)) (-648 (-573))) (-13 (-1215) (-969) (-29 |#1|))) (T -221)) +((-3924 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1189)) (-5 *6 (-112)) (-4 *7 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) (-4 *3 (-13 (-1215) (-969) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-852 *3)) (|:| |f2| (-653 (-852 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *7 *3)) (-5 *5 (-852 *3)))) (-1626 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1104 (-852 *3))) (-5 *5 (-1171)) (-4 *3 (-13 (-1215) (-969) (-29 *6))) (-4 *6 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-3 (|:| |f1| (-852 *3)) (|:| |f2| (-653 (-852 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6 *3)))) (-1626 (*1 *2 *3 *4) (-12 (-5 *4 (-1104 (-852 *3))) (-4 *3 (-13 (-1215) (-969) (-29 *5))) (-4 *5 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-3 (|:| |f1| (-852 *3)) (|:| |f2| (-653 (-852 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5 *3))))) +(-10 -7 (-15 -1626 ((-3 (|:| |f1| (-852 |#2|)) (|:| |f2| (-653 (-852 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1104 (-852 |#2|)))) (-15 -1626 ((-3 (|:| |f1| (-852 |#2|)) (|:| |f2| (-653 (-852 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1104 (-852 |#2|)) (-1171))) (-15 -3924 ((-3 (|:| |f1| (-852 |#2|)) (|:| |f2| (-653 (-852 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1189) (-852 |#2|) (-852 |#2|) (-112)))) +((-1626 (((-3 (|:| |f1| (-852 (-323 |#1|))) (|:| |f2| (-653 (-852 (-323 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-416 (-962 |#1|)) (-1104 (-852 (-416 (-962 |#1|)))) (-1171)) 49) (((-3 (|:| |f1| (-852 (-323 |#1|))) (|:| |f2| (-653 (-852 (-323 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-416 (-962 |#1|)) (-1104 (-852 (-416 (-962 |#1|))))) 46) (((-3 (|:| |f1| (-852 (-323 |#1|))) (|:| |f2| (-653 (-852 (-323 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-416 (-962 |#1|)) (-1104 (-852 (-323 |#1|))) (-1171)) 50) (((-3 (|:| |f1| (-852 (-323 |#1|))) (|:| |f2| (-653 (-852 (-323 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-416 (-962 |#1|)) (-1104 (-852 (-323 |#1|)))) 22))) +(((-222 |#1|) (-10 -7 (-15 -1626 ((-3 (|:| |f1| (-852 (-323 |#1|))) (|:| |f2| (-653 (-852 (-323 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-416 (-962 |#1|)) (-1104 (-852 (-323 |#1|))))) (-15 -1626 ((-3 (|:| |f1| (-852 (-323 |#1|))) (|:| |f2| (-653 (-852 (-323 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-416 (-962 |#1|)) (-1104 (-852 (-323 |#1|))) (-1171))) (-15 -1626 ((-3 (|:| |f1| (-852 (-323 |#1|))) (|:| |f2| (-653 (-852 (-323 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-416 (-962 |#1|)) (-1104 (-852 (-416 (-962 |#1|)))))) (-15 -1626 ((-3 (|:| |f1| (-852 (-323 |#1|))) (|:| |f2| (-653 (-852 (-323 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-416 (-962 |#1|)) (-1104 (-852 (-416 (-962 |#1|)))) (-1171)))) (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) (T -222)) +((-1626 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1104 (-852 (-416 (-962 *6))))) (-5 *5 (-1171)) (-5 *3 (-416 (-962 *6))) (-4 *6 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-3 (|:| |f1| (-852 (-323 *6))) (|:| |f2| (-653 (-852 (-323 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-1626 (*1 *2 *3 *4) (-12 (-5 *4 (-1104 (-852 (-416 (-962 *5))))) (-5 *3 (-416 (-962 *5))) (-4 *5 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-3 (|:| |f1| (-852 (-323 *5))) (|:| |f2| (-653 (-852 (-323 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))) (-1626 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-416 (-962 *6))) (-5 *4 (-1104 (-852 (-323 *6)))) (-5 *5 (-1171)) (-4 *6 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-3 (|:| |f1| (-852 (-323 *6))) (|:| |f2| (-653 (-852 (-323 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-1626 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-1104 (-852 (-323 *5)))) (-4 *5 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-3 (|:| |f1| (-852 (-323 *5))) (|:| |f2| (-653 (-852 (-323 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5))))) +(-10 -7 (-15 -1626 ((-3 (|:| |f1| (-852 (-323 |#1|))) (|:| |f2| (-653 (-852 (-323 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-416 (-962 |#1|)) (-1104 (-852 (-323 |#1|))))) (-15 -1626 ((-3 (|:| |f1| (-852 (-323 |#1|))) (|:| |f2| (-653 (-852 (-323 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-416 (-962 |#1|)) (-1104 (-852 (-323 |#1|))) (-1171))) (-15 -1626 ((-3 (|:| |f1| (-852 (-323 |#1|))) (|:| |f2| (-653 (-852 (-323 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-416 (-962 |#1|)) (-1104 (-852 (-416 (-962 |#1|)))))) (-15 -1626 ((-3 (|:| |f1| (-852 (-323 |#1|))) (|:| |f2| (-653 (-852 (-323 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-416 (-962 |#1|)) (-1104 (-852 (-416 (-962 |#1|)))) (-1171)))) +((-2867 (((-2 (|:| -3881 (-1185 |#1|)) (|:| |deg| (-931))) (-1185 |#1|)) 26)) (-2127 (((-653 (-323 |#2|)) (-323 |#2|) (-931)) 51))) +(((-223 |#1| |#2|) (-10 -7 (-15 -2867 ((-2 (|:| -3881 (-1185 |#1|)) (|:| |deg| (-931))) (-1185 |#1|))) (-15 -2127 ((-653 (-323 |#2|)) (-323 |#2|) (-931)))) (-1061) (-565)) (T -223)) +((-2127 (*1 *2 *3 *4) (-12 (-5 *4 (-931)) (-4 *6 (-565)) (-5 *2 (-653 (-323 *6))) (-5 *1 (-223 *5 *6)) (-5 *3 (-323 *6)) (-4 *5 (-1061)))) (-2867 (*1 *2 *3) (-12 (-4 *4 (-1061)) (-5 *2 (-2 (|:| -3881 (-1185 *4)) (|:| |deg| (-931)))) (-5 *1 (-223 *4 *5)) (-5 *3 (-1185 *4)) (-4 *5 (-565))))) +(-10 -7 (-15 -2867 ((-2 (|:| -3881 (-1185 |#1|)) (|:| |deg| (-931))) (-1185 |#1|))) (-15 -2127 ((-653 (-323 |#2|)) (-323 |#2|) (-931)))) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3927 ((|#1| $) NIL)) (-2001 ((|#1| $) 30)) (-3450 (((-112) $ (-780)) NIL)) (-2579 (($) NIL T CONST)) (-3147 (($ $) NIL)) (-2176 (($ $) 39)) (-2948 ((|#1| |#1| $) NIL)) (-3072 ((|#1| $) NIL)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-4134 (((-780) $) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-2487 ((|#1| $) NIL)) (-1474 ((|#1| |#1| $) 35)) (-3728 ((|#1| |#1| $) 37)) (-3181 (($ |#1| $) NIL)) (-1839 (((-780) $) 33)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-3897 ((|#1| $) NIL)) (-2471 ((|#1| $) 31)) (-3945 ((|#1| $) 29)) (-3815 ((|#1| $) NIL)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3203 ((|#1| |#1| $) NIL)) (-3811 (((-112) $) 9)) (-3508 (($) NIL)) (-2548 ((|#1| $) NIL)) (-2310 (($) NIL) (($ (-653 |#1|)) 16)) (-4302 (((-780) $) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-4020 ((|#1| $) 13)) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2679 (($ (-653 |#1|)) NIL)) (-2411 ((|#1| $) NIL)) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-224 |#1|) (-13 (-260 |#1|) (-10 -8 (-15 -2310 ($ (-653 |#1|))))) (-1112)) (T -224)) +((-2310 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-224 *3))))) +(-13 (-260 |#1|) (-10 -8 (-15 -2310 ($ (-653 |#1|))))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-1634 (($ (-323 |#1|)) 24)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1407 (((-112) $) NIL)) (-1695 (((-3 (-323 |#1|) "failed") $) NIL)) (-2205 (((-323 |#1|) $) NIL)) (-1391 (($ $) 32)) (-2232 (((-3 $ "failed") $) NIL)) (-1959 (((-112) $) NIL)) (-1776 (($ (-1 (-323 |#1|) (-323 |#1|)) $) NIL)) (-1369 (((-323 |#1|) $) NIL)) (-1833 (($ $) 31)) (-3180 (((-1171) $) NIL)) (-3825 (((-112) $) NIL)) (-3965 (((-1132) $) NIL)) (-2969 (($ (-780)) NIL)) (-3260 (($ $) 33)) (-2565 (((-573) $) NIL)) (-2942 (((-871) $) 65) (($ (-573)) NIL) (($ (-323 |#1|)) NIL)) (-4317 (((-323 |#1|) $ $) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 26 T CONST)) (-2144 (($) NIL T CONST)) (-2981 (((-112) $ $) 29)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) 20)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 25) (($ (-323 |#1|) $) 19))) +(((-225 |#1| |#2|) (-13 (-629 (-323 |#1|)) (-1050 (-323 |#1|)) (-10 -8 (-15 -1369 ((-323 |#1|) $)) (-15 -1833 ($ $)) (-15 -1391 ($ $)) (-15 -4317 ((-323 |#1|) $ $)) (-15 -2969 ($ (-780))) (-15 -3825 ((-112) $)) (-15 -1407 ((-112) $)) (-15 -2565 ((-573) $)) (-15 -1776 ($ (-1 (-323 |#1|) (-323 |#1|)) $)) (-15 -1634 ($ (-323 |#1|))) (-15 -3260 ($ $)))) (-13 (-1061) (-859)) (-653 (-1189))) (T -225)) +((-1369 (*1 *2 *1) (-12 (-5 *2 (-323 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1061) (-859))) (-14 *4 (-653 (-1189))))) (-1833 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1061) (-859))) (-14 *3 (-653 (-1189))))) (-1391 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1061) (-859))) (-14 *3 (-653 (-1189))))) (-4317 (*1 *2 *1 *1) (-12 (-5 *2 (-323 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1061) (-859))) (-14 *4 (-653 (-1189))))) (-2969 (*1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1061) (-859))) (-14 *4 (-653 (-1189))))) (-3825 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1061) (-859))) (-14 *4 (-653 (-1189))))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1061) (-859))) (-14 *4 (-653 (-1189))))) (-2565 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1061) (-859))) (-14 *4 (-653 (-1189))))) (-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-323 *3) (-323 *3))) (-4 *3 (-13 (-1061) (-859))) (-5 *1 (-225 *3 *4)) (-14 *4 (-653 (-1189))))) (-1634 (*1 *1 *2) (-12 (-5 *2 (-323 *3)) (-4 *3 (-13 (-1061) (-859))) (-5 *1 (-225 *3 *4)) (-14 *4 (-653 (-1189))))) (-3260 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1061) (-859))) (-14 *3 (-653 (-1189)))))) +(-13 (-629 (-323 |#1|)) (-1050 (-323 |#1|)) (-10 -8 (-15 -1369 ((-323 |#1|) $)) (-15 -1833 ($ $)) (-15 -1391 ($ $)) (-15 -4317 ((-323 |#1|) $ $)) (-15 -2969 ($ (-780))) (-15 -3825 ((-112) $)) (-15 -1407 ((-112) $)) (-15 -2565 ((-573) $)) (-15 -1776 ($ (-1 (-323 |#1|) (-323 |#1|)) $)) (-15 -1634 ($ (-323 |#1|))) (-15 -3260 ($ $)))) +((-2052 (((-112) (-1171)) 26)) (-3197 (((-3 (-852 |#2|) "failed") (-621 |#2|) |#2| (-852 |#2|) (-852 |#2|) (-112)) 35)) (-3349 (((-3 (-112) "failed") (-1185 |#2|) (-852 |#2|) (-852 |#2|) (-112)) 84) (((-3 (-112) "failed") (-962 |#1|) (-1189) (-852 |#2|) (-852 |#2|) (-112)) 85))) +(((-226 |#1| |#2|) (-10 -7 (-15 -2052 ((-112) (-1171))) (-15 -3197 ((-3 (-852 |#2|) "failed") (-621 |#2|) |#2| (-852 |#2|) (-852 |#2|) (-112))) (-15 -3349 ((-3 (-112) "failed") (-962 |#1|) (-1189) (-852 |#2|) (-852 |#2|) (-112))) (-15 -3349 ((-3 (-112) "failed") (-1185 |#2|) (-852 |#2|) (-852 |#2|) (-112)))) (-13 (-461) (-1050 (-573)) (-648 (-573))) (-13 (-1215) (-29 |#1|))) (T -226)) +((-3349 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1185 *6)) (-5 *4 (-852 *6)) (-4 *6 (-13 (-1215) (-29 *5))) (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-226 *5 *6)))) (-3349 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-962 *6)) (-5 *4 (-1189)) (-5 *5 (-852 *7)) (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-4 *7 (-13 (-1215) (-29 *6))) (-5 *1 (-226 *6 *7)))) (-3197 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-852 *4)) (-5 *3 (-621 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1215) (-29 *6))) (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-226 *6 *4)))) (-2052 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-112)) (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1215) (-29 *4)))))) +(-10 -7 (-15 -2052 ((-112) (-1171))) (-15 -3197 ((-3 (-852 |#2|) "failed") (-621 |#2|) |#2| (-852 |#2|) (-852 |#2|) (-112))) (-15 -3349 ((-3 (-112) "failed") (-962 |#1|) (-1189) (-852 |#2|) (-852 |#2|) (-112))) (-15 -3349 ((-3 (-112) "failed") (-1185 |#2|) (-852 |#2|) (-852 |#2|) (-112)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 98)) (-3770 (((-573) $) 35)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-1442 (($ $) NIL)) (-2363 (($ $) 87)) (-2246 (($ $) 75)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-4228 (($ $) 66)) (-2800 (((-112) $ $) NIL)) (-2342 (($ $) 85)) (-2225 (($ $) 73)) (-1983 (((-573) $) 128)) (-2388 (($ $) 90)) (-2266 (($ $) 77)) (-2579 (($) NIL T CONST)) (-2350 (($ $) NIL)) (-1695 (((-3 (-573) "failed") $) 127) (((-3 (-416 (-573)) "failed") $) 124)) (-2205 (((-573) $) 125) (((-416 (-573)) $) 122)) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) 103)) (-1624 (((-416 (-573)) $ (-780)) 117) (((-416 (-573)) $ (-780) (-780)) 116)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-3785 (((-931)) 29) (((-931) (-931)) NIL (|has| $ (-6 -4446)))) (-4152 (((-112) $) NIL)) (-2999 (($) 46)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL)) (-2534 (((-573) $) 42)) (-1959 (((-112) $) 99)) (-4325 (($ $ (-573)) NIL)) (-3421 (($ $) NIL)) (-3339 (((-112) $) 97)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3659 (($ $ $) 63) (($) 38 (-12 (-2075 (|has| $ (-6 -4438))) (-2075 (|has| $ (-6 -4446)))))) (-3751 (($ $ $) 62) (($) 37 (-12 (-2075 (|has| $ (-6 -4438))) (-2075 (|has| $ (-6 -4446)))))) (-4299 (((-573) $) 27)) (-3388 (($ $) 33)) (-1731 (($ $) 67)) (-3118 (($ $) 72)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-2827 (((-931) (-573)) NIL (|has| $ (-6 -4446)))) (-3965 (((-1132) $) 101)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-2408 (($ $) NIL)) (-3733 (($ $) NIL)) (-2383 (($ (-573) (-573)) NIL) (($ (-573) (-573) (-931)) 110)) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3907 (((-573) $) 28)) (-2945 (($) 45)) (-1608 (($ $) 71)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3006 (((-931)) NIL) (((-931) (-931)) NIL (|has| $ (-6 -4446)))) (-3904 (($ $) 104) (($ $ (-780)) NIL)) (-2985 (((-931) (-573)) NIL (|has| $ (-6 -4446)))) (-2401 (($ $) 88)) (-2274 (($ $) 78)) (-2374 (($ $) 89)) (-2255 (($ $) 76)) (-2352 (($ $) 86)) (-2236 (($ $) 74)) (-1835 (((-387) $) 113) (((-227) $) 14) (((-902 (-387)) $) NIL) (((-545) $) 52)) (-2942 (((-871) $) 49) (($ (-573)) 70) (($ $) NIL) (($ (-416 (-573))) NIL) (($ (-573)) 70) (($ (-416 (-573))) NIL)) (-1545 (((-780)) NIL T CONST)) (-2437 (($ $) NIL)) (-2628 (((-931)) 36) (((-931) (-931)) NIL (|has| $ (-6 -4446)))) (-3507 (((-112) $ $) NIL)) (-2629 (((-931)) 25)) (-2439 (($ $) 93)) (-2304 (($ $) 81) (($ $ $) 120)) (-2516 (((-112) $ $) NIL)) (-2413 (($ $) 91)) (-2286 (($ $) 79)) (-2464 (($ $) 96)) (-2324 (($ $) 84)) (-2520 (($ $) 94)) (-2333 (($ $) 82)) (-2452 (($ $) 95)) (-2314 (($ $) 83)) (-2426 (($ $) 92)) (-2296 (($ $) 80)) (-1660 (($ $) 119)) (-2132 (($) 23 T CONST)) (-2144 (($) 43 T CONST)) (-2808 (((-1171) $) 18) (((-1171) $ (-112)) 20) (((-1285) (-831) $) 21) (((-1285) (-831) $ (-112)) 22)) (-1818 (($ $) 107)) (-3609 (($ $) NIL) (($ $ (-780)) NIL)) (-1503 (($ $ $) 109)) (-3040 (((-112) $ $) 56)) (-3015 (((-112) $ $) 54)) (-2981 (((-112) $ $) 64)) (-3027 (((-112) $ $) 55)) (-3005 (((-112) $ $) 53)) (-3103 (($ $ $) 44) (($ $ (-573)) 65)) (-3093 (($ $) 57) (($ $ $) 59)) (-3077 (($ $ $) 58)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) 68) (($ $ (-416 (-573))) 152) (($ $ $) 69)) (* (($ (-931) $) 34) (($ (-780) $) NIL) (($ (-573) $) 61) (($ $ $) 60) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL))) +(((-227) (-13 (-413) (-238) (-837) (-1215) (-623 (-545)) (-10 -8 (-15 -3103 ($ $ (-573))) (-15 ** ($ $ $)) (-15 -2945 ($)) (-15 -3388 ($ $)) (-15 -1731 ($ $)) (-15 -2304 ($ $ $)) (-15 -1818 ($ $)) (-15 -1503 ($ $ $)) (-15 -1624 ((-416 (-573)) $ (-780))) (-15 -1624 ((-416 (-573)) $ (-780) (-780)))))) (T -227)) +((** (*1 *1 *1 *1) (-5 *1 (-227))) (-3103 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-227)))) (-2945 (*1 *1) (-5 *1 (-227))) (-3388 (*1 *1 *1) (-5 *1 (-227))) (-1731 (*1 *1 *1) (-5 *1 (-227))) (-2304 (*1 *1 *1 *1) (-5 *1 (-227))) (-1818 (*1 *1 *1) (-5 *1 (-227))) (-1503 (*1 *1 *1 *1) (-5 *1 (-227))) (-1624 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-5 *2 (-416 (-573))) (-5 *1 (-227)))) (-1624 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-780)) (-5 *2 (-416 (-573))) (-5 *1 (-227))))) +(-13 (-413) (-238) (-837) (-1215) (-623 (-545)) (-10 -8 (-15 -3103 ($ $ (-573))) (-15 ** ($ $ $)) (-15 -2945 ($)) (-15 -3388 ($ $)) (-15 -1731 ($ $)) (-15 -2304 ($ $ $)) (-15 -1818 ($ $)) (-15 -1503 ($ $ $)) (-15 -1624 ((-416 (-573)) $ (-780))) (-15 -1624 ((-416 (-573)) $ (-780) (-780))))) +((-1562 (((-171 (-227)) (-780) (-171 (-227))) 11) (((-227) (-780) (-227)) 12)) (-3877 (((-171 (-227)) (-171 (-227))) 13) (((-227) (-227)) 14)) (-1417 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 19) (((-227) (-227) (-227)) 22)) (-3325 (((-171 (-227)) (-171 (-227))) 27) (((-227) (-227)) 26)) (-1424 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 57) (((-227) (-227) (-227)) 49)) (-4237 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 62) (((-227) (-227) (-227)) 60)) (-3125 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 15) (((-227) (-227) (-227)) 16)) (-2704 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 17) (((-227) (-227) (-227)) 18)) (-3754 (((-171 (-227)) (-171 (-227))) 74) (((-227) (-227)) 73)) (-1450 (((-227) (-227)) 68) (((-171 (-227)) (-171 (-227))) 72)) (-1818 (((-171 (-227)) (-171 (-227))) 8) (((-227) (-227)) 9)) (-1503 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 35) (((-227) (-227) (-227)) 31))) +(((-228) (-10 -7 (-15 -1818 ((-227) (-227))) (-15 -1818 ((-171 (-227)) (-171 (-227)))) (-15 -1503 ((-227) (-227) (-227))) (-15 -1503 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3877 ((-227) (-227))) (-15 -3877 ((-171 (-227)) (-171 (-227)))) (-15 -3325 ((-227) (-227))) (-15 -3325 ((-171 (-227)) (-171 (-227)))) (-15 -1562 ((-227) (-780) (-227))) (-15 -1562 ((-171 (-227)) (-780) (-171 (-227)))) (-15 -3125 ((-227) (-227) (-227))) (-15 -3125 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1424 ((-227) (-227) (-227))) (-15 -1424 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2704 ((-227) (-227) (-227))) (-15 -2704 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4237 ((-227) (-227) (-227))) (-15 -4237 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1450 ((-171 (-227)) (-171 (-227)))) (-15 -1450 ((-227) (-227))) (-15 -3754 ((-227) (-227))) (-15 -3754 ((-171 (-227)) (-171 (-227)))) (-15 -1417 ((-227) (-227) (-227))) (-15 -1417 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))) (T -228)) +((-1417 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1417 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3754 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3754 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1450 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1450 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4237 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4237 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2704 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2704 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1424 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1424 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3125 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3125 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1562 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-227))) (-5 *3 (-780)) (-5 *1 (-228)))) (-1562 (*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-780)) (-5 *1 (-228)))) (-3325 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3325 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3877 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3877 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1503 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1503 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1818 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1818 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))) +(-10 -7 (-15 -1818 ((-227) (-227))) (-15 -1818 ((-171 (-227)) (-171 (-227)))) (-15 -1503 ((-227) (-227) (-227))) (-15 -1503 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3877 ((-227) (-227))) (-15 -3877 ((-171 (-227)) (-171 (-227)))) (-15 -3325 ((-227) (-227))) (-15 -3325 ((-171 (-227)) (-171 (-227)))) (-15 -1562 ((-227) (-780) (-227))) (-15 -1562 ((-171 (-227)) (-780) (-171 (-227)))) (-15 -3125 ((-227) (-227) (-227))) (-15 -3125 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1424 ((-227) (-227) (-227))) (-15 -1424 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2704 ((-227) (-227) (-227))) (-15 -2704 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4237 ((-227) (-227) (-227))) (-15 -4237 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1450 ((-171 (-227)) (-171 (-227)))) (-15 -1450 ((-227) (-227))) (-15 -3754 ((-227) (-227))) (-15 -3754 ((-171 (-227)) (-171 (-227)))) (-15 -1417 ((-227) (-227) (-227))) (-15 -1417 ((-171 (-227)) (-171 (-227)) (-171 (-227))))) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2215 (($ (-780) (-780)) NIL)) (-3596 (($ $ $) NIL)) (-1724 (($ (-1280 |#1|)) NIL) (($ $) NIL)) (-2807 (($ |#1| |#1| |#1|) 33)) (-2932 (((-112) $) NIL)) (-1734 (($ $ (-573) (-573)) NIL)) (-4107 (($ $ (-573) (-573)) NIL)) (-3975 (($ $ (-573) (-573) (-573) (-573)) NIL)) (-3321 (($ $) NIL)) (-1916 (((-112) $) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-2598 (($ $ (-573) (-573) $) NIL)) (-3142 ((|#1| $ (-573) (-573) |#1|) NIL) (($ $ (-653 (-573)) (-653 (-573)) $) NIL)) (-3601 (($ $ (-573) (-1280 |#1|)) NIL)) (-2790 (($ $ (-573) (-1280 |#1|)) NIL)) (-3465 (($ |#1| |#1| |#1|) 32)) (-1681 (($ (-780) |#1|) NIL)) (-2579 (($) NIL T CONST)) (-2801 (($ $) NIL (|has| |#1| (-314)))) (-3229 (((-1280 |#1|) $ (-573)) NIL)) (-3696 (($ |#1|) 31)) (-2764 (($ |#1|) 30)) (-2004 (($ |#1|) 29)) (-3583 (((-780) $) NIL (|has| |#1| (-565)))) (-2457 ((|#1| $ (-573) (-573) |#1|) NIL)) (-2384 ((|#1| $ (-573) (-573)) NIL)) (-1863 (((-653 |#1|) $) NIL)) (-2928 (((-780) $) NIL (|has| |#1| (-565)))) (-4209 (((-653 (-1280 |#1|)) $) NIL (|has| |#1| (-565)))) (-2188 (((-780) $) NIL)) (-3789 (($ (-780) (-780) |#1|) NIL)) (-2197 (((-780) $) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-2431 ((|#1| $) NIL (|has| |#1| (-6 (-4457 "*"))))) (-1319 (((-573) $) NIL)) (-4011 (((-573) $) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3124 (((-573) $) NIL)) (-2326 (((-573) $) NIL)) (-2913 (($ (-653 (-653 |#1|))) 11)) (-2446 (($ (-1 |#1| |#1|) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1612 (((-653 (-653 |#1|)) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3299 (((-3 $ "failed") $) NIL (|has| |#1| (-371)))) (-3949 (($) 12)) (-2150 (($ $ $) NIL)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-3112 (($ $ |#1|) NIL)) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#1| $ (-573) (-573)) NIL) ((|#1| $ (-573) (-573) |#1|) NIL) (($ $ (-653 (-573)) (-653 (-573))) NIL)) (-1633 (($ (-653 |#1|)) NIL) (($ (-653 $)) NIL)) (-2530 (((-112) $) NIL)) (-2529 ((|#1| $) NIL (|has| |#1| (-6 (-4457 "*"))))) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) NIL)) (-1921 (((-1280 |#1|) $ (-573)) NIL)) (-2942 (($ (-1280 |#1|)) NIL) (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-1494 (((-112) $) NIL)) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371)))) (-3093 (($ $ $) NIL) (($ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-780)) NIL) (($ $ (-573)) NIL (|has| |#1| (-371)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-573) $) NIL) (((-1280 |#1|) $ (-1280 |#1|)) 15) (((-1280 |#1|) (-1280 |#1|) $) NIL) (((-953 |#1|) $ (-953 |#1|)) 21)) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-229 |#1|) (-13 (-696 |#1| (-1280 |#1|) (-1280 |#1|)) (-10 -8 (-15 * ((-953 |#1|) $ (-953 |#1|))) (-15 -3949 ($)) (-15 -2004 ($ |#1|)) (-15 -2764 ($ |#1|)) (-15 -3696 ($ |#1|)) (-15 -3465 ($ |#1| |#1| |#1|)) (-15 -2807 ($ |#1| |#1| |#1|)))) (-13 (-371) (-1215))) (T -229)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215))) (-5 *1 (-229 *3)))) (-3949 (*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-371) (-1215))))) (-2004 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-371) (-1215))))) (-2764 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-371) (-1215))))) (-3696 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-371) (-1215))))) (-3465 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-371) (-1215))))) (-2807 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-371) (-1215)))))) +(-13 (-696 |#1| (-1280 |#1|) (-1280 |#1|)) (-10 -8 (-15 * ((-953 |#1|) $ (-953 |#1|))) (-15 -3949 ($)) (-15 -2004 ($ |#1|)) (-15 -2764 ($ |#1|)) (-15 -3696 ($ |#1|)) (-15 -3465 ($ |#1| |#1| |#1|)) (-15 -2807 ($ |#1| |#1| |#1|)))) +((-3557 (($ (-1 (-112) |#2|) $) 16)) (-2596 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 28)) (-2428 (($) NIL) (($ (-653 |#2|)) 11)) (-2981 (((-112) $ $) 26))) +(((-230 |#1| |#2|) (-10 -8 (-15 -3557 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2596 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2596 (|#1| |#2| |#1|)) (-15 -2428 (|#1| (-653 |#2|))) (-15 -2428 (|#1|)) (-15 -2981 ((-112) |#1| |#1|))) (-231 |#2|) (-1112)) (T -230)) +NIL +(-10 -8 (-15 -3557 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2596 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2596 (|#1| |#2| |#1|)) (-15 -2428 (|#1| (-653 |#2|))) (-15 -2428 (|#1|)) (-15 -2981 ((-112) |#1| |#1|))) +((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3450 (((-112) $ (-780)) 8)) (-3557 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4455)))) (-2579 (($) 7 T CONST)) (-2685 (($ $) 59 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2596 (($ |#1| $) 48 (|has| $ (-6 -4455))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4455)))) (-3334 (($ |#1| $) 58 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4455)))) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-2487 ((|#1| $) 40)) (-3181 (($ |#1| $) 41)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3815 ((|#1| $) 42)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2428 (($) 50) (($ (-653 |#1|)) 49)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-1835 (((-545) $) 60 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 51)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-2679 (($ (-653 |#1|)) 43)) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-231 |#1|) (-141) (-1112)) (T -231)) +NIL +(-13 (-240 |t#1|)) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-152 |#1|) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-240 |#1|) . T) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) +((-3904 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-780)) 11) (($ $ (-653 (-1189)) (-653 (-780))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189)) 19) (($ $) 16) (($ $ (-780)) NIL)) (-3609 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-780)) 14) (($ $ (-653 (-1189)) (-653 (-780))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189)) NIL) (($ $) NIL) (($ $ (-780)) NIL))) +(((-232 |#1| |#2|) (-10 -8 (-15 -3609 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1| (-780))) (-15 -3609 (|#1| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -3609 (|#1| |#1| (-1189))) (-15 -3609 (|#1| |#1| (-653 (-1189)))) (-15 -3609 (|#1| |#1| (-1189) (-780))) (-15 -3609 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -3609 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -3609 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|)))) (-233 |#2|) (-1061)) (T -232)) +NIL +(-10 -8 (-15 -3609 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1| (-780))) (-15 -3609 (|#1| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -3609 (|#1| |#1| (-1189))) (-15 -3609 (|#1| |#1| (-653 (-1189)))) (-15 -3609 (|#1| |#1| (-1189) (-780))) (-15 -3609 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -3609 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -3609 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|)))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-3904 (($ $ (-1 |#1| |#1|)) 57) (($ $ (-1 |#1| |#1|) (-780)) 56) (($ $ (-653 (-1189)) (-653 (-780))) 49 (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) 48 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) 47 (|has| |#1| (-910 (-1189)))) (($ $ (-1189)) 46 (|has| |#1| (-910 (-1189)))) (($ $) 45 (|has| |#1| (-238))) (($ $ (-780)) 43 (|has| |#1| (-238)))) (-2942 (((-871) $) 12) (($ (-573)) 33)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-1 |#1| |#1|)) 55) (($ $ (-1 |#1| |#1|) (-780)) 54) (($ $ (-653 (-1189)) (-653 (-780))) 53 (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) 52 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) 51 (|has| |#1| (-910 (-1189)))) (($ $ (-1189)) 50 (|has| |#1| (-910 (-1189)))) (($ $) 44 (|has| |#1| (-238))) (($ $ (-780)) 42 (|has| |#1| (-238)))) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) +(((-233 |#1|) (-141) (-1061)) (T -233)) +((-3904 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1061)))) (-3904 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-780)) (-4 *1 (-233 *4)) (-4 *4 (-1061)))) (-3609 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1061)))) (-3609 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-780)) (-4 *1 (-233 *4)) (-4 *4 (-1061))))) +(-13 (-1061) (-10 -8 (-15 -3904 ($ $ (-1 |t#1| |t#1|))) (-15 -3904 ($ $ (-1 |t#1| |t#1|) (-780))) (-15 -3609 ($ $ (-1 |t#1| |t#1|))) (-15 -3609 ($ $ (-1 |t#1| |t#1|) (-780))) (IF (|has| |t#1| (-238)) (-6 (-238)) |%noBranch|) (IF (|has| |t#1| (-910 (-1189))) (-6 (-910 (-1189))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-573)) . T) ((-622 (-871)) . T) ((-235 $) |has| |#1| (-238)) ((-238) |has| |#1| (-238)) ((-237) |has| |#1| (-238)) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-735) . T) ((-910 (-1189)) |has| |#1| (-910 (-1189))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1230) |has| |#1| (-238))) +((-3609 ((|#2| $) 9))) +(((-234 |#1| |#2|) (-10 -8 (-15 -3609 (|#2| |#1|))) (-235 |#2|) (-1230)) (T -234)) +NIL +(-10 -8 (-15 -3609 (|#2| |#1|))) +((-3904 ((|#1| $) 7)) (-3609 ((|#1| $) 6))) +(((-235 |#1|) (-141) (-1230)) (T -235)) +((-3904 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1230)))) (-3609 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1230))))) +(-13 (-1230) (-10 -8 (-15 -3904 (|t#1| $)) (-15 -3609 (|t#1| $)))) +(((-1230) . T)) +((-3904 (($ $) NIL) (($ $ (-780)) 9)) (-3609 (($ $) NIL) (($ $ (-780)) 11))) +(((-236 |#1|) (-10 -8 (-15 -3609 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1| (-780))) (-15 -3609 (|#1| |#1|)) (-15 -3904 (|#1| |#1|))) (-237)) (T -236)) +NIL +(-10 -8 (-15 -3609 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1| (-780))) (-15 -3609 (|#1| |#1|)) (-15 -3904 (|#1| |#1|))) +((-3904 (($ $) 7) (($ $ (-780)) 10)) (-3609 (($ $) 6) (($ $ (-780)) 9))) (((-237) (-141)) (T -237)) -((-3905 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-781)))) (-3610 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-781))))) -(-13 (-235 $) (-10 -8 (-15 -3905 ($ $ (-781))) (-15 -3610 ($ $ (-781))))) -(((-235 $) . T) ((-1231) . T)) -((-3905 (($ $) NIL) (($ $ (-781)) 9)) (-3610 (($ $) NIL) (($ $ (-781)) 11))) -(((-238 |#1|) (-10 -8 (-15 -3610 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1|)) (-15 -3610 (|#1| |#1|))) (-239)) (T -238)) -NIL -(-10 -8 (-15 -3610 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1|)) (-15 -3610 (|#1| |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-3434 (((-3 $ "failed") $) 37)) (-3199 (((-112) $) 35)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-3905 (($ $) 42) (($ $ (-781)) 41)) (-2943 (((-872) $) 12) (($ (-574)) 33)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-3610 (($ $) 43) (($ $ (-781)) 40)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) -(((-239) (-141)) (T -239)) -((-3905 (*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-781)))) (-3610 (*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-781))))) -(-13 (-1062) (-235 $) (-10 -8 (-15 -3905 ($ $ (-781))) (-15 -3610 ($ $ (-781))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-235 $) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1231) . T)) -((-1662 (($) 12) (($ (-654 |#2|)) NIL)) (-3167 (($ $) 14)) (-2956 (($ (-654 |#2|)) 10)) (-2943 (((-872) $) 21))) -(((-240 |#1| |#2|) (-10 -8 (-15 -2943 ((-872) |#1|)) (-15 -1662 (|#1| (-654 |#2|))) (-15 -1662 (|#1|)) (-15 -2956 (|#1| (-654 |#2|))) (-15 -3167 (|#1| |#1|))) (-241 |#2|) (-1113)) (T -240)) -NIL -(-10 -8 (-15 -2943 ((-872) |#1|)) (-15 -1662 (|#1| (-654 |#2|))) (-15 -1662 (|#1|)) (-15 -2956 (|#1| (-654 |#2|))) (-15 -3167 (|#1| |#1|))) -((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3034 (((-112) $ (-781)) 8)) (-3572 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4456)))) (-2165 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4456)))) (-3426 (($) 7 T CONST)) (-1543 (($ $) 59 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2876 (($ |#1| $) 48 (|has| $ (-6 -4456))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4456)))) (-3335 (($ |#1| $) 58 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4456)))) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-2742 (((-112) $ (-781)) 9)) (-1606 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2449 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 36)) (-4203 (((-112) $ (-781)) 10)) (-4136 (((-1172) $) 22 (|has| |#1| (-1113)))) (-2937 ((|#1| $) 40)) (-2798 (($ |#1| $) 41)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1785 ((|#1| $) 42)) (-2540 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 14)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-1662 (($) 50) (($ (-654 |#1|)) 49)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-1836 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 51)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-1599 (($ (-654 |#1|)) 43)) (-3390 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-241 |#1|) (-141) (-1113)) (T -241)) -((-1662 (*1 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-1113)))) (-1662 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-4 *1 (-241 *3)))) (-2876 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-241 *2)) (-4 *2 (-1113)))) (-2876 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4456)) (-4 *1 (-241 *3)) (-4 *3 (-1113)))) (-3572 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4456)) (-4 *1 (-241 *3)) (-4 *3 (-1113))))) -(-13 (-107 |t#1|) (-152 |t#1|) (-10 -8 (-15 -1662 ($)) (-15 -1662 ($ (-654 |t#1|))) (IF (|has| $ (-6 -4456)) (PROGN (-15 -2876 ($ |t#1| $)) (-15 -2876 ($ (-1 (-112) |t#1|) $)) (-15 -3572 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1113) |has| |#1| (-1113)) ((-1231) . T)) -((-3488 (((-2 (|:| |varOrder| (-654 (-1190))) (|:| |inhom| (-3 (-654 (-1281 (-781))) "failed")) (|:| |hom| (-654 (-1281 (-781))))) (-302 (-963 (-574)))) 42))) -(((-242) (-10 -7 (-15 -3488 ((-2 (|:| |varOrder| (-654 (-1190))) (|:| |inhom| (-3 (-654 (-1281 (-781))) "failed")) (|:| |hom| (-654 (-1281 (-781))))) (-302 (-963 (-574))))))) (T -242)) -((-3488 (*1 *2 *3) (-12 (-5 *3 (-302 (-963 (-574)))) (-5 *2 (-2 (|:| |varOrder| (-654 (-1190))) (|:| |inhom| (-3 (-654 (-1281 (-781))) "failed")) (|:| |hom| (-654 (-1281 (-781)))))) (-5 *1 (-242))))) -(-10 -7 (-15 -3488 ((-2 (|:| |varOrder| (-654 (-1190))) (|:| |inhom| (-3 (-654 (-1281 (-781))) "failed")) (|:| |hom| (-654 (-1281 (-781))))) (-302 (-963 (-574)))))) -((-1487 (((-781)) 56)) (-2590 (((-2 (|:| -4340 (-699 |#3|)) (|:| |vec| (-1281 |#3|))) (-699 $) (-1281 $)) 53) (((-699 |#3|) (-699 $)) 44) (((-699 |#3|) (-1281 $)) NIL) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1281 $)) NIL)) (-4133 (((-135)) 62)) (-3905 (($ $ (-1 |#3| |#3|) (-781)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-654 (-1190)) (-654 (-781))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190)) NIL) (($ $ (-781)) NIL) (($ $) NIL)) (-2943 (((-1281 |#3|) $) NIL) (($ |#3|) NIL) (((-872) $) NIL) (($ (-574)) 12) (($ (-417 (-574))) NIL)) (-1364 (((-781)) 15)) (-3108 (($ $ |#3|) 59))) -(((-243 |#1| |#2| |#3|) (-10 -8 (-15 -2943 (|#1| (-417 (-574)))) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|)) (-15 -1364 ((-781))) (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -2590 ((-699 (-574)) (-1281 |#1|))) (-15 -2590 ((-699 (-574)) (-699 |#1|))) (-15 -2590 ((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 |#1|) (-1281 |#1|))) (-15 -2943 (|#1| |#3|)) (-15 -3905 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3905 (|#1| |#1| (-1 |#3| |#3|) (-781))) (-15 -2590 ((-699 |#3|) (-1281 |#1|))) (-15 -2590 ((-699 |#3|) (-699 |#1|))) (-15 -2590 ((-2 (|:| -4340 (-699 |#3|)) (|:| |vec| (-1281 |#3|))) (-699 |#1|) (-1281 |#1|))) (-15 -1487 ((-781))) (-15 -3108 (|#1| |#1| |#3|)) (-15 -4133 ((-135))) (-15 -2943 ((-1281 |#3|) |#1|))) (-244 |#2| |#3|) (-781) (-1231)) (T -243)) -((-4133 (*1 *2) (-12 (-14 *4 (-781)) (-4 *5 (-1231)) (-5 *2 (-135)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) (-1487 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1231)) (-5 *2 (-781)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) (-1364 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1231)) (-5 *2 (-781)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5))))) -(-10 -8 (-15 -2943 (|#1| (-417 (-574)))) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|)) (-15 -1364 ((-781))) (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -2590 ((-699 (-574)) (-1281 |#1|))) (-15 -2590 ((-699 (-574)) (-699 |#1|))) (-15 -2590 ((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 |#1|) (-1281 |#1|))) (-15 -2943 (|#1| |#3|)) (-15 -3905 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3905 (|#1| |#1| (-1 |#3| |#3|) (-781))) (-15 -2590 ((-699 |#3|) (-1281 |#1|))) (-15 -2590 ((-699 |#3|) (-699 |#1|))) (-15 -2590 ((-2 (|:| -4340 (-699 |#3|)) (|:| |vec| (-1281 |#3|))) (-699 |#1|) (-1281 |#1|))) (-15 -1487 ((-781))) (-15 -3108 (|#1| |#1| |#3|)) (-15 -4133 ((-135))) (-15 -2943 ((-1281 |#3|) |#1|))) -((-2849 (((-112) $ $) 19 (|has| |#2| (-1113)))) (-3138 (((-112) $) 74 (|has| |#2| (-132)))) (-3745 (($ (-932)) 129 (|has| |#2| (-1062)))) (-3714 (((-1286) $ (-574) (-574)) 41 (|has| $ (-6 -4457)))) (-3663 (($ $ $) 125 (|has| |#2| (-803)))) (-3524 (((-3 $ "failed") $ $) 76 (|has| |#2| (-132)))) (-3034 (((-112) $ (-781)) 8)) (-1487 (((-781)) 111 (|has| |#2| (-377)))) (-2846 (((-574) $) 123 (|has| |#2| (-858)))) (-3143 ((|#2| $ (-574) |#2|) 53 (|has| $ (-6 -4457)))) (-3426 (($) 7 T CONST)) (-1696 (((-3 (-574) "failed") $) 69 (-2087 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113)))) (((-3 (-417 (-574)) "failed") $) 66 (-2087 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113)))) (((-3 |#2| "failed") $) 63 (|has| |#2| (-1113)))) (-2206 (((-574) $) 68 (-2087 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113)))) (((-417 (-574)) $) 65 (-2087 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113)))) ((|#2| $) 64 (|has| |#2| (-1113)))) (-2590 (((-699 (-574)) (-1281 $)) 110 (-2087 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062)))) (((-699 (-574)) (-699 $)) 109 (-2087 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 108 (-2087 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062)))) (((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) 107 (|has| |#2| (-1062))) (((-699 |#2|) (-699 $)) 106 (|has| |#2| (-1062))) (((-699 |#2|) (-1281 $)) 105 (|has| |#2| (-1062)))) (-3434 (((-3 $ "failed") $) 81 (|has| |#2| (-736)))) (-2820 (($) 114 (|has| |#2| (-377)))) (-2458 ((|#2| $ (-574) |#2|) 54 (|has| $ (-6 -4457)))) (-2385 ((|#2| $ (-574)) 52)) (-2756 (((-112) $) 121 (|has| |#2| (-858)))) (-1864 (((-654 |#2|) $) 31 (|has| $ (-6 -4456)))) (-3199 (((-112) $) 83 (|has| |#2| (-736)))) (-1335 (((-112) $) 122 (|has| |#2| (-858)))) (-2742 (((-112) $ (-781)) 9)) (-3618 (((-574) $) 44 (|has| (-574) (-860)))) (-3659 (($ $ $) 120 (-2818 (|has| |#2| (-858)) (|has| |#2| (-803))))) (-1606 (((-654 |#2|) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1113)) (|has| $ (-6 -4456))))) (-2702 (((-574) $) 45 (|has| (-574) (-860)))) (-4257 (($ $ $) 119 (-2818 (|has| |#2| (-858)) (|has| |#2| (-803))))) (-2449 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#2| |#2|) $) 36)) (-4115 (((-932) $) 113 (|has| |#2| (-377)))) (-4203 (((-112) $ (-781)) 10)) (-4136 (((-1172) $) 22 (|has| |#2| (-1113)))) (-4308 (((-654 (-574)) $) 47)) (-3336 (((-112) (-574) $) 48)) (-2576 (($ (-932)) 112 (|has| |#2| (-377)))) (-3966 (((-1133) $) 21 (|has| |#2| (-1113)))) (-2915 ((|#2| $) 43 (|has| (-574) (-860)))) (-1942 (($ $ |#2|) 42 (|has| $ (-6 -4457)))) (-2540 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#2|))) 27 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) 26 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) 24 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))) (-4017 (((-112) $ $) 14)) (-3398 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-4371 (((-654 |#2|) $) 49)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-2199 ((|#2| $ (-574) |#2|) 51) ((|#2| $ (-574)) 50)) (-4236 ((|#2| $ $) 128 (|has| |#2| (-1062)))) (-4261 (($ (-1281 |#2|)) 130)) (-4133 (((-135)) 127 (|has| |#2| (-372)))) (-3905 (($ $) 100 (-2087 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-781)) 99 (-2087 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-1190)) 97 (-2087 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190))) 96 (-2087 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1190) (-781)) 95 (-2087 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190)) (-654 (-781))) 94 (-2087 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1 |#2| |#2|) (-781)) 87 (|has| |#2| (-1062))) (($ $ (-1 |#2| |#2|)) 86 (|has| |#2| (-1062)))) (-3975 (((-781) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4456))) (((-781) |#2| $) 29 (-12 (|has| |#2| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-2943 (((-1281 |#2|) $) 131) (($ (-574)) 70 (-2818 (-2087 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113))) (|has| |#2| (-1062)))) (($ (-417 (-574))) 67 (-2087 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113)))) (($ |#2|) 62 (|has| |#2| (-1113))) (((-872) $) 18 (|has| |#2| (-623 (-872))))) (-1364 (((-781)) 85 (|has| |#2| (-1062)) CONST)) (-3284 (((-112) $ $) 23 (|has| |#2| (-1113)))) (-3390 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4456)))) (-3482 (($ $) 124 (|has| |#2| (-858)))) (-2133 (($) 73 (|has| |#2| (-132)) CONST)) (-2145 (($) 84 (|has| |#2| (-736)) CONST)) (-3610 (($ $) 101 (-2087 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-781)) 98 (-2087 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-1190)) 93 (-2087 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190))) 92 (-2087 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1190) (-781)) 91 (-2087 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190)) (-654 (-781))) 90 (-2087 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1 |#2| |#2|) (-781)) 89 (|has| |#2| (-1062))) (($ $ (-1 |#2| |#2|)) 88 (|has| |#2| (-1062)))) (-3042 (((-112) $ $) 117 (-2818 (|has| |#2| (-858)) (|has| |#2| (-803))))) (-3018 (((-112) $ $) 116 (-2818 (|has| |#2| (-858)) (|has| |#2| (-803))))) (-2981 (((-112) $ $) 20 (|has| |#2| (-1113)))) (-3030 (((-112) $ $) 118 (-2818 (|has| |#2| (-858)) (|has| |#2| (-803))))) (-3007 (((-112) $ $) 115 (-2818 (|has| |#2| (-858)) (|has| |#2| (-803))))) (-3108 (($ $ |#2|) 126 (|has| |#2| (-372)))) (-3094 (($ $ $) 104 (|has| |#2| (-1062))) (($ $) 103 (|has| |#2| (-1062)))) (-3079 (($ $ $) 71 (|has| |#2| (-25)))) (** (($ $ (-781)) 82 (|has| |#2| (-736))) (($ $ (-932)) 79 (|has| |#2| (-736)))) (* (($ (-574) $) 102 (|has| |#2| (-1062))) (($ $ $) 80 (|has| |#2| (-736))) (($ $ |#2|) 78 (|has| |#2| (-736))) (($ |#2| $) 77 (|has| |#2| (-736))) (($ (-781) $) 75 (|has| |#2| (-132))) (($ (-932) $) 72 (|has| |#2| (-25)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-244 |#1| |#2|) (-141) (-781) (-1231)) (T -244)) -((-4261 (*1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-4 *4 (-1231)) (-4 *1 (-244 *3 *4)))) (-3745 (*1 *1 *2) (-12 (-5 *2 (-932)) (-4 *1 (-244 *3 *4)) (-4 *4 (-1062)) (-4 *4 (-1231)))) (-4236 (*1 *2 *1 *1) (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1231)) (-4 *2 (-1062)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1231)) (-4 *2 (-736)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1231)) (-4 *2 (-736))))) -(-13 (-614 (-574) |t#2|) (-623 (-1281 |t#2|)) (-10 -8 (-6 -4456) (-15 -4261 ($ (-1281 |t#2|))) (IF (|has| |t#2| (-1113)) (-6 (-421 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1062)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-233 |t#2|)) (-6 (-386 |t#2|)) (-15 -3745 ($ (-932))) (-15 -4236 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#2| (-736)) (PROGN (-6 (-736)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-377)) (-6 (-377)) |%noBranch|) (IF (|has| |t#2| (-174)) (PROGN (-6 (-38 |t#2|)) (-6 (-174))) |%noBranch|) (IF (|has| |t#2| (-6 -4453)) (-6 -4453) |%noBranch|) (IF (|has| |t#2| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |t#2| (-803)) (-6 (-803)) |%noBranch|) (IF (|has| |t#2| (-372)) (-6 (-1288 |t#2|)) |%noBranch|))) -(((-21) -2818 (|has| |#2| (-1062)) (|has| |#2| (-858)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-23) -2818 (|has| |#2| (-1062)) (|has| |#2| (-858)) (|has| |#2| (-803)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-132))) ((-25) -2818 (|has| |#2| (-1062)) (|has| |#2| (-858)) (|has| |#2| (-803)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) -2818 (|has| |#2| (-1113)) (|has| |#2| (-1062)) (|has| |#2| (-858)) (|has| |#2| (-803)) (|has| |#2| (-736)) (|has| |#2| (-377)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -2818 (|has| |#2| (-1062)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-111 $ $) |has| |#2| (-174)) ((-132) -2818 (|has| |#2| (-1062)) (|has| |#2| (-858)) (|has| |#2| (-803)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-132))) ((-626 #0=(-417 (-574))) -12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113))) ((-626 (-574)) -2818 (|has| |#2| (-1062)) (-12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113))) (|has| |#2| (-858)) (|has| |#2| (-174))) ((-626 |#2|) -2818 (|has| |#2| (-1113)) (|has| |#2| (-174))) ((-623 (-872)) -2818 (|has| |#2| (-1113)) (|has| |#2| (-1062)) (|has| |#2| (-858)) (|has| |#2| (-803)) (|has| |#2| (-736)) (|has| |#2| (-377)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-623 (-872))) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-623 (-1281 |#2|)) . T) ((-174) |has| |#2| (-174)) ((-235 $) -12 (|has| |#2| (-239)) (|has| |#2| (-1062))) ((-233 |#2|) |has| |#2| (-1062)) ((-239) -12 (|has| |#2| (-239)) (|has| |#2| (-1062))) ((-294 #1=(-574) |#2|) . T) ((-296 #1# |#2|) . T) ((-317 |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((-377) |has| |#2| (-377)) ((-386 |#2|) |has| |#2| (-1062)) ((-421 |#2|) |has| |#2| (-1113)) ((-499 |#2|) . T) ((-614 #1# |#2|) . T) ((-524 |#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((-656 (-574)) -2818 (|has| |#2| (-1062)) (|has| |#2| (-858)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-656 |#2|) -2818 (|has| |#2| (-1062)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-656 $) -2818 (|has| |#2| (-1062)) (|has| |#2| (-858)) (|has| |#2| (-174))) ((-658 #2=(-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062))) ((-658 |#2|) -2818 (|has| |#2| (-1062)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-658 $) -2818 (|has| |#2| (-1062)) (|has| |#2| (-858)) (|has| |#2| (-174))) ((-650 |#2|) -2818 (|has| |#2| (-372)) (|has| |#2| (-174))) ((-649 #2#) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062))) ((-649 |#2|) |has| |#2| (-1062)) ((-727 |#2|) -2818 (|has| |#2| (-372)) (|has| |#2| (-174))) ((-736) -2818 (|has| |#2| (-1062)) (|has| |#2| (-858)) (|has| |#2| (-736)) (|has| |#2| (-174))) ((-801) |has| |#2| (-858)) ((-802) -2818 (|has| |#2| (-858)) (|has| |#2| (-803))) ((-803) |has| |#2| (-803)) ((-804) -2818 (|has| |#2| (-858)) (|has| |#2| (-803))) ((-805) -2818 (|has| |#2| (-858)) (|has| |#2| (-803))) ((-858) |has| |#2| (-858)) ((-860) -2818 (|has| |#2| (-858)) (|has| |#2| (-803))) ((-911 (-1190)) -12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062))) ((-1051 #0#) -12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113))) ((-1051 (-574)) -12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113))) ((-1051 |#2|) |has| |#2| (-1113)) ((-1064 |#2|) -2818 (|has| |#2| (-1062)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-1064 $) |has| |#2| (-174)) ((-1069 |#2|) -2818 (|has| |#2| (-1062)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-1069 $) |has| |#2| (-174)) ((-1062) -2818 (|has| |#2| (-1062)) (|has| |#2| (-858)) (|has| |#2| (-174))) ((-1071) -2818 (|has| |#2| (-1062)) (|has| |#2| (-858)) (|has| |#2| (-174))) ((-1125) -2818 (|has| |#2| (-1062)) (|has| |#2| (-858)) (|has| |#2| (-736)) (|has| |#2| (-174))) ((-1113) -2818 (|has| |#2| (-1113)) (|has| |#2| (-1062)) (|has| |#2| (-858)) (|has| |#2| (-803)) (|has| |#2| (-736)) (|has| |#2| (-377)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-1231) . T) ((-1288 |#2|) |has| |#2| (-372))) -((-4034 (((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 21)) (-2868 ((|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 23)) (-1777 (((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)) 18))) -(((-245 |#1| |#2| |#3|) (-10 -7 (-15 -4034 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -2868 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -1777 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)))) (-781) (-1231) (-1231)) (T -245)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-781)) (-4 *6 (-1231)) (-4 *7 (-1231)) (-5 *2 (-246 *5 *7)) (-5 *1 (-245 *5 *6 *7)))) (-2868 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-781)) (-4 *6 (-1231)) (-4 *2 (-1231)) (-5 *1 (-245 *5 *6 *2)))) (-4034 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-781)) (-4 *7 (-1231)) (-4 *5 (-1231)) (-5 *2 (-246 *6 *5)) (-5 *1 (-245 *6 *7 *5))))) -(-10 -7 (-15 -4034 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -2868 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -1777 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)))) -((-2849 (((-112) $ $) NIL (|has| |#2| (-1113)))) (-3138 (((-112) $) NIL (|has| |#2| (-132)))) (-3745 (($ (-932)) 62 (|has| |#2| (-1062)))) (-3714 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-3663 (($ $ $) 68 (|has| |#2| (-803)))) (-3524 (((-3 $ "failed") $ $) 53 (|has| |#2| (-132)))) (-3034 (((-112) $ (-781)) NIL)) (-1487 (((-781)) NIL (|has| |#2| (-377)))) (-2846 (((-574) $) NIL (|has| |#2| (-858)))) (-3143 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4457)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-574) "failed") $) NIL (-12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113)))) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1113)))) (-2206 (((-574) $) NIL (-12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113)))) (((-417 (-574)) $) NIL (-12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113)))) ((|#2| $) 28 (|has| |#2| (-1113)))) (-2590 (((-699 (-574)) (-1281 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062)))) (((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) NIL (|has| |#2| (-1062))) (((-699 |#2|) (-699 $)) NIL (|has| |#2| (-1062))) (((-699 |#2|) (-1281 $)) NIL (|has| |#2| (-1062)))) (-3434 (((-3 $ "failed") $) 58 (|has| |#2| (-736)))) (-2820 (($) NIL (|has| |#2| (-377)))) (-2458 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#2| $ (-574)) 56)) (-2756 (((-112) $) NIL (|has| |#2| (-858)))) (-1864 (((-654 |#2|) $) 14 (|has| $ (-6 -4456)))) (-3199 (((-112) $) NIL (|has| |#2| (-736)))) (-1335 (((-112) $) NIL (|has| |#2| (-858)))) (-2742 (((-112) $ (-781)) NIL)) (-3618 (((-574) $) 19 (|has| (-574) (-860)))) (-3659 (($ $ $) NIL (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-1606 (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-2702 (((-574) $) NIL (|has| (-574) (-860)))) (-4257 (($ $ $) NIL (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-2449 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#2| |#2|) $) NIL)) (-4115 (((-932) $) NIL (|has| |#2| (-377)))) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL (|has| |#2| (-1113)))) (-4308 (((-654 (-574)) $) NIL)) (-3336 (((-112) (-574) $) NIL)) (-2576 (($ (-932)) NIL (|has| |#2| (-377)))) (-3966 (((-1133) $) NIL (|has| |#2| (-1113)))) (-2915 ((|#2| $) NIL (|has| (-574) (-860)))) (-1942 (($ $ |#2|) NIL (|has| $ (-6 -4457)))) (-2540 (((-112) (-1 (-112) |#2|) $) 23 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-4371 (((-654 |#2|) $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 ((|#2| $ (-574) |#2|) NIL) ((|#2| $ (-574)) 20)) (-4236 ((|#2| $ $) NIL (|has| |#2| (-1062)))) (-4261 (($ (-1281 |#2|)) 17)) (-4133 (((-135)) NIL (|has| |#2| (-372)))) (-3905 (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-1190)) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1062))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1062)))) (-3975 (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-3167 (($ $) NIL)) (-2943 (((-1281 |#2|) $) 9) (($ (-574)) NIL (-2818 (-12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113))) (|has| |#2| (-1062)))) (($ (-417 (-574))) NIL (-12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113)))) (($ |#2|) 12 (|has| |#2| (-1113))) (((-872) $) NIL (|has| |#2| (-623 (-872))))) (-1364 (((-781)) NIL (|has| |#2| (-1062)) CONST)) (-3284 (((-112) $ $) NIL (|has| |#2| (-1113)))) (-3390 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-3482 (($ $) NIL (|has| |#2| (-858)))) (-2133 (($) 36 (|has| |#2| (-132)) CONST)) (-2145 (($) 40 (|has| |#2| (-736)) CONST)) (-3610 (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-1190)) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1062))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1062)))) (-3042 (((-112) $ $) NIL (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-3018 (((-112) $ $) NIL (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-2981 (((-112) $ $) 27 (|has| |#2| (-1113)))) (-3030 (((-112) $ $) NIL (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-3007 (((-112) $ $) 66 (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-3108 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3094 (($ $ $) NIL (|has| |#2| (-1062))) (($ $) NIL (|has| |#2| (-1062)))) (-3079 (($ $ $) 34 (|has| |#2| (-25)))) (** (($ $ (-781)) NIL (|has| |#2| (-736))) (($ $ (-932)) NIL (|has| |#2| (-736)))) (* (($ (-574) $) NIL (|has| |#2| (-1062))) (($ $ $) 46 (|has| |#2| (-736))) (($ $ |#2|) 44 (|has| |#2| (-736))) (($ |#2| $) 45 (|has| |#2| (-736))) (($ (-781) $) NIL (|has| |#2| (-132))) (($ (-932) $) NIL (|has| |#2| (-25)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-246 |#1| |#2|) (-244 |#1| |#2|) (-781) (-1231)) (T -246)) -NIL -(-244 |#1| |#2|) -((-3151 (((-574) (-654 (-1172))) 36) (((-574) (-1172)) 29)) (-1558 (((-1286) (-654 (-1172))) 40) (((-1286) (-1172)) 39)) (-3461 (((-1172)) 16)) (-1430 (((-1172) (-574) (-1172)) 23)) (-3359 (((-654 (-1172)) (-654 (-1172)) (-574) (-1172)) 37) (((-1172) (-1172) (-574) (-1172)) 35)) (-2621 (((-654 (-1172)) (-654 (-1172))) 15) (((-654 (-1172)) (-1172)) 11))) -(((-247) (-10 -7 (-15 -2621 ((-654 (-1172)) (-1172))) (-15 -2621 ((-654 (-1172)) (-654 (-1172)))) (-15 -3461 ((-1172))) (-15 -1430 ((-1172) (-574) (-1172))) (-15 -3359 ((-1172) (-1172) (-574) (-1172))) (-15 -3359 ((-654 (-1172)) (-654 (-1172)) (-574) (-1172))) (-15 -1558 ((-1286) (-1172))) (-15 -1558 ((-1286) (-654 (-1172)))) (-15 -3151 ((-574) (-1172))) (-15 -3151 ((-574) (-654 (-1172)))))) (T -247)) -((-3151 (*1 *2 *3) (-12 (-5 *3 (-654 (-1172))) (-5 *2 (-574)) (-5 *1 (-247)))) (-3151 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-574)) (-5 *1 (-247)))) (-1558 (*1 *2 *3) (-12 (-5 *3 (-654 (-1172))) (-5 *2 (-1286)) (-5 *1 (-247)))) (-1558 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-247)))) (-3359 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-654 (-1172))) (-5 *3 (-574)) (-5 *4 (-1172)) (-5 *1 (-247)))) (-3359 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1172)) (-5 *3 (-574)) (-5 *1 (-247)))) (-1430 (*1 *2 *3 *2) (-12 (-5 *2 (-1172)) (-5 *3 (-574)) (-5 *1 (-247)))) (-3461 (*1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-247)))) (-2621 (*1 *2 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-247)))) (-2621 (*1 *2 *3) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-247)) (-5 *3 (-1172))))) -(-10 -7 (-15 -2621 ((-654 (-1172)) (-1172))) (-15 -2621 ((-654 (-1172)) (-654 (-1172)))) (-15 -3461 ((-1172))) (-15 -1430 ((-1172) (-574) (-1172))) (-15 -3359 ((-1172) (-1172) (-574) (-1172))) (-15 -3359 ((-654 (-1172)) (-654 (-1172)) (-574) (-1172))) (-15 -1558 ((-1286) (-1172))) (-15 -1558 ((-1286) (-654 (-1172)))) (-15 -3151 ((-574) (-1172))) (-15 -3151 ((-574) (-654 (-1172))))) -((** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 20)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ (-417 (-574)) $) 27) (($ $ (-417 (-574))) NIL))) -(((-248 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-574))) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-932))) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-932) |#1|))) (-249)) (T -248)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-574))) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-932))) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-932) |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-3434 (((-3 $ "failed") $) 37)) (-3199 (((-112) $) 35)) (-4136 (((-1172) $) 10)) (-1324 (($ $) 47)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 51)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 48)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ (-417 (-574)) $) 50) (($ $ (-417 (-574))) 49))) -(((-249) (-141)) (T -249)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-249)) (-5 *2 (-574)))) (-1324 (*1 *1 *1) (-4 *1 (-249)))) -(-13 (-298) (-38 (-417 (-574))) (-10 -8 (-15 ** ($ $ (-574))) (-15 -1324 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-298) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-727 #0#) . T) ((-736) . T) ((-1064 #0#) . T) ((-1064 $) . T) ((-1069 #0#) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T)) -((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3083 ((|#1| $) 49)) (-1970 (($ $) 58)) (-3034 (((-112) $ (-781)) 8)) (-3316 ((|#1| $ |#1|) 40 (|has| $ (-6 -4457)))) (-2585 (($ $ $) 54 (|has| $ (-6 -4457)))) (-1469 (($ $ $) 53 (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4457)))) (-2183 (($ $ (-654 $)) 42 (|has| $ (-6 -4457)))) (-3426 (($) 7 T CONST)) (-1522 (($ $) 57)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3820 (((-654 $) $) 51)) (-2278 (((-112) $ $) 43 (|has| |#1| (-1113)))) (-3979 (($ $) 56)) (-2742 (((-112) $ (-781)) 9)) (-1606 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2449 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 36)) (-4203 (((-112) $ (-781)) 10)) (-3507 (((-654 |#1|) $) 46)) (-3632 (((-112) $) 50)) (-4136 (((-1172) $) 22 (|has| |#1| (-1113)))) (-3360 ((|#1| $) 60)) (-2972 (($ $) 59)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-2540 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 14)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-2199 ((|#1| $ "value") 48)) (-3867 (((-574) $ $) 45)) (-2479 (((-112) $) 47)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-1995 (($ $ $) 55 (|has| $ (-6 -4457)))) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2321 (((-654 $) $) 52)) (-4418 (((-112) $ $) 44 (|has| |#1| (-1113)))) (-3284 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-250 |#1|) (-141) (-1231)) (T -250)) -((-3360 (*1 *2 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1231)))) (-2972 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1231)))) (-1970 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1231)))) (-1522 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1231)))) (-3979 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1231)))) (-1995 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-250 *2)) (-4 *2 (-1231)))) (-2585 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-250 *2)) (-4 *2 (-1231)))) (-1469 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-250 *2)) (-4 *2 (-1231))))) -(-13 (-1023 |t#1|) (-10 -8 (-15 -3360 (|t#1| $)) (-15 -2972 ($ $)) (-15 -1970 ($ $)) (-15 -1522 ($ $)) (-15 -3979 ($ $)) (IF (|has| $ (-6 -4457)) (PROGN (-15 -1995 ($ $ $)) (-15 -2585 ($ $ $)) (-15 -1469 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1023 |#1|) . T) ((-1113) |has| |#1| (-1113)) ((-1231) . T)) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3083 ((|#1| $) NIL)) (-2406 ((|#1| $) NIL)) (-1970 (($ $) NIL)) (-3714 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-3617 (($ $ (-574)) NIL (|has| $ (-6 -4457)))) (-1357 (((-112) $) NIL (|has| |#1| (-860))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3642 (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| |#1| (-860)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-2771 (($ $) 10 (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3034 (((-112) $ (-781)) NIL)) (-3316 ((|#1| $ |#1|) NIL (|has| $ (-6 -4457)))) (-3575 (($ $ $) NIL (|has| $ (-6 -4457)))) (-3582 ((|#1| $ |#1|) NIL (|has| $ (-6 -4457)))) (-3630 ((|#1| $ |#1|) NIL (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4457))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4457))) (($ $ "rest" $) NIL (|has| $ (-6 -4457))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) NIL (|has| $ (-6 -4457))) ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457)))) (-2183 (($ $ (-654 $)) NIL (|has| $ (-6 -4457)))) (-3572 (($ (-1 (-112) |#1|) $) NIL)) (-2165 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2393 ((|#1| $) NIL)) (-3426 (($) NIL T CONST)) (-2627 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-2926 (($ $) NIL) (($ $ (-781)) NIL)) (-1771 (($ $) NIL (|has| |#1| (-1113)))) (-1543 (($ $) 7 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2876 (($ |#1| $) NIL (|has| |#1| (-1113))) (($ (-1 (-112) |#1|) $) NIL)) (-3335 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2458 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) NIL)) (-1688 (((-112) $) NIL)) (-1441 (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1113))) (((-574) |#1| $) NIL (|has| |#1| (-1113))) (((-574) (-1 (-112) |#1|) $) NIL)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3820 (((-654 $) $) NIL)) (-2278 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3790 (($ (-781) |#1|) NIL)) (-2742 (((-112) $ (-781)) NIL)) (-3618 (((-574) $) NIL (|has| (-574) (-860)))) (-3659 (($ $ $) NIL (|has| |#1| (-860)))) (-2628 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4430 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2702 (((-574) $) NIL (|has| (-574) (-860)))) (-4257 (($ $ $) NIL (|has| |#1| (-860)))) (-2449 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1788 (($ |#1|) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-3507 (((-654 |#1|) $) NIL)) (-3632 (((-112) $) NIL)) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-3360 ((|#1| $) NIL) (($ $ (-781)) NIL)) (-2798 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1594 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-4308 (((-654 (-574)) $) NIL)) (-3336 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2915 ((|#1| $) NIL) (($ $ (-781)) NIL)) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1942 (($ $ |#1|) NIL (|has| $ (-6 -4457)))) (-4073 (((-112) $) NIL)) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-4371 (((-654 |#1|) $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1248 (-574))) NIL) ((|#1| $ (-574)) NIL) ((|#1| $ (-574) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-781) $ "count") 16)) (-3867 (((-574) $ $) NIL)) (-2932 (($ $ (-1248 (-574))) NIL) (($ $ (-574)) NIL)) (-2840 (($ $ (-1248 (-574))) NIL) (($ $ (-574)) NIL)) (-3188 (($ (-654 |#1|)) 22)) (-2479 (((-112) $) NIL)) (-2595 (($ $) NIL)) (-4434 (($ $) NIL (|has| $ (-6 -4457)))) (-3066 (((-781) $) NIL)) (-2807 (($ $) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3506 (($ $ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3167 (($ $) NIL)) (-1836 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) NIL)) (-1995 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4157 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-654 $)) NIL) (($ $ |#1|) NIL)) (-2943 (($ (-654 |#1|)) 17) (((-654 |#1|) $) 18) (((-872) $) 21 (|has| |#1| (-623 (-872))))) (-2321 (((-654 $) $) NIL)) (-4418 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3007 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2863 (((-781) $) 14 (|has| $ (-6 -4456))))) -(((-251 |#1|) (-13 (-676 |#1|) (-500 (-654 |#1|)) (-10 -8 (-15 -3188 ($ (-654 |#1|))) (-15 -2199 ($ $ "unique")) (-15 -2199 ($ $ "sort")) (-15 -2199 ((-781) $ "count")))) (-860)) (T -251)) -((-3188 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-251 *3)))) (-2199 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-251 *3)) (-4 *3 (-860)))) (-2199 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-251 *3)) (-4 *3 (-860)))) (-2199 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-781)) (-5 *1 (-251 *4)) (-4 *4 (-860))))) -(-13 (-676 |#1|) (-500 (-654 |#1|)) (-10 -8 (-15 -3188 ($ (-654 |#1|))) (-15 -2199 ($ $ "unique")) (-15 -2199 ($ $ "sort")) (-15 -2199 ((-781) $ "count")))) -((-3361 (((-3 (-781) "failed") |#1| |#1| (-781)) 40))) -(((-252 |#1|) (-10 -7 (-15 -3361 ((-3 (-781) "failed") |#1| |#1| (-781)))) (-13 (-736) (-377) (-10 -7 (-15 ** (|#1| |#1| (-574)))))) (T -252)) -((-3361 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-781)) (-4 *3 (-13 (-736) (-377) (-10 -7 (-15 ** (*3 *3 (-574)))))) (-5 *1 (-252 *3))))) -(-10 -7 (-15 -3361 ((-3 (-781) "failed") |#1| |#1| (-781)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-4355 (((-654 (-874 |#1|)) $) NIL)) (-4194 (((-1186 $) $ (-874 |#1|)) NIL) (((-1186 |#2|) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#2| (-566)))) (-1575 (($ $) NIL (|has| |#2| (-566)))) (-2085 (((-112) $) NIL (|has| |#2| (-566)))) (-1757 (((-781) $) NIL) (((-781) $ (-654 (-874 |#1|))) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3972 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-2568 (($ $) NIL (|has| |#2| (-462)))) (-2827 (((-428 $) $) NIL (|has| |#2| (-462)))) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1051 (-574)))) (((-3 (-874 |#1|) "failed") $) NIL)) (-2206 ((|#2| $) NIL) (((-417 (-574)) $) NIL (|has| |#2| (-1051 (-417 (-574))))) (((-574) $) NIL (|has| |#2| (-1051 (-574)))) (((-874 |#1|) $) NIL)) (-1463 (($ $ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3392 (($ $ (-654 (-574))) NIL)) (-1392 (($ $) NIL)) (-2590 (((-699 (-574)) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1281 $)) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-1569 (($ $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1380 (((-654 $) $) NIL)) (-2257 (((-112) $) NIL (|has| |#2| (-920)))) (-1661 (($ $ |#2| (-246 (-2863 |#1|) (-781)) $) NIL)) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-3199 (((-112) $) NIL)) (-1322 (((-781) $) NIL)) (-4345 (($ (-1186 |#2|) (-874 |#1|)) NIL) (($ (-1186 $) (-874 |#1|)) NIL)) (-3727 (((-654 $) $) NIL)) (-3869 (((-112) $) NIL)) (-4335 (($ |#2| (-246 (-2863 |#1|) (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2773 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $ (-874 |#1|)) NIL)) (-1742 (((-246 (-2863 |#1|) (-781)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-3708 (($ (-1 (-246 (-2863 |#1|) (-781)) (-246 (-2863 |#1|) (-781))) $) NIL)) (-1777 (($ (-1 |#2| |#2|) $) NIL)) (-2717 (((-3 (-874 |#1|) "failed") $) NIL)) (-1359 (($ $) NIL)) (-1370 ((|#2| $) NIL)) (-2832 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-4136 (((-1172) $) NIL)) (-2755 (((-3 (-654 $) "failed") $) NIL)) (-2415 (((-3 (-654 $) "failed") $) NIL)) (-2241 (((-3 (-2 (|:| |var| (-874 |#1|)) (|:| -3715 (-781))) "failed") $) NIL)) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) NIL)) (-1349 ((|#2| $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#2| (-462)))) (-2873 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-2560 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-2039 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-4220 (((-428 $) $) NIL (|has| |#2| (-920)))) (-2838 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-566)))) (-2646 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-874 |#1|) |#2|) NIL) (($ $ (-654 (-874 |#1|)) (-654 |#2|)) NIL) (($ $ (-874 |#1|) $) NIL) (($ $ (-654 (-874 |#1|)) (-654 $)) NIL)) (-2872 (($ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3905 (($ $ (-874 |#1|)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-4202 (((-246 (-2863 |#1|) (-781)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-1836 (((-903 (-388)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-874 |#1|) (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-3069 ((|#2| $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-920))))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-874 |#1|)) NIL) (($ (-417 (-574))) NIL (-2818 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1051 (-417 (-574)))))) (($ $) NIL (|has| |#2| (-566)))) (-2530 (((-654 |#2|) $) NIL)) (-3087 ((|#2| $ (-246 (-2863 |#1|) (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-3298 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#2| (-920))) (|has| |#2| (-146))))) (-1364 (((-781)) NIL T CONST)) (-3772 (($ $ $ (-781)) NIL (|has| |#2| (-174)))) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL (|has| |#2| (-566)))) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-3610 (($ $ (-874 |#1|)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#2| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#2| (-38 (-417 (-574))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-253 |#1| |#2|) (-13 (-960 |#2| (-246 (-2863 |#1|) (-781)) (-874 |#1|)) (-10 -8 (-15 -3392 ($ $ (-654 (-574)))))) (-654 (-1190)) (-1062)) (T -253)) -((-3392 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-253 *3 *4)) (-14 *3 (-654 (-1190))) (-4 *4 (-1062))))) -(-13 (-960 |#2| (-246 (-2863 |#1|) (-781)) (-874 |#1|)) (-10 -8 (-15 -3392 ($ $ (-654 (-574)))))) -((-2849 (((-112) $ $) NIL)) (-1985 (((-1286) $) 17)) (-3265 (((-185 (-255)) $) 11)) (-2906 (($ (-185 (-255))) 12)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-1964 (((-255) $) 7)) (-2943 (((-872) $) 9)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 15))) -(((-254) (-13 (-1113) (-10 -8 (-15 -1964 ((-255) $)) (-15 -3265 ((-185 (-255)) $)) (-15 -2906 ($ (-185 (-255)))) (-15 -1985 ((-1286) $))))) (T -254)) -((-1964 (*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-2906 (*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-1985 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-254))))) -(-13 (-1113) (-10 -8 (-15 -1964 ((-255) $)) (-15 -3265 ((-185 (-255)) $)) (-15 -2906 ($ (-185 (-255)))) (-15 -1985 ((-1286) $)))) -((-2849 (((-112) $ $) NIL)) (-1715 (((-654 (-875)) $) NIL)) (-2032 (((-516) $) NIL)) (-4136 (((-1172) $) NIL)) (-4282 (((-188) $) NIL)) (-4103 (((-112) $ (-516)) NIL)) (-3966 (((-1133) $) NIL)) (-3389 (((-341) $) 7)) (-3950 (((-654 (-112)) $) NIL)) (-2943 (((-872) $) NIL) (((-189) $) 8)) (-3284 (((-112) $ $) NIL)) (-4183 (((-55) $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-255) (-13 (-187) (-623 (-189)) (-10 -8 (-15 -3389 ((-341) $))))) (T -255)) -((-3389 (*1 *2 *1) (-12 (-5 *2 (-341)) (-5 *1 (-255))))) -(-13 (-187) (-623 (-189)) (-10 -8 (-15 -3389 ((-341) $)))) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2199 (((-1195) $ (-781)) 13)) (-2943 (((-872) $) 20)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 16)) (-2863 (((-781) $) 9))) -(((-256) (-13 (-1113) (-294 (-781) (-1195)) (-10 -8 (-15 -2863 ((-781) $))))) (T -256)) -((-2863 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-256))))) -(-13 (-1113) (-294 (-781) (-1195)) (-10 -8 (-15 -2863 ((-781) $)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3745 (($ (-932)) NIL (|has| |#4| (-1062)))) (-3714 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-3663 (($ $ $) NIL (|has| |#4| (-803)))) (-3524 (((-3 $ "failed") $ $) NIL)) (-3034 (((-112) $ (-781)) NIL)) (-1487 (((-781)) NIL (|has| |#4| (-377)))) (-2846 (((-574) $) NIL (|has| |#4| (-858)))) (-3143 ((|#4| $ (-574) |#4|) NIL (|has| $ (-6 -4457)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1113))) (((-3 (-574) "failed") $) NIL (-12 (|has| |#4| (-1051 (-574))) (|has| |#4| (-1113)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#4| (-1051 (-417 (-574)))) (|has| |#4| (-1113))))) (-2206 ((|#4| $) NIL (|has| |#4| (-1113))) (((-574) $) NIL (-12 (|has| |#4| (-1051 (-574))) (|has| |#4| (-1113)))) (((-417 (-574)) $) NIL (-12 (|has| |#4| (-1051 (-417 (-574)))) (|has| |#4| (-1113))))) (-2590 (((-2 (|:| -4340 (-699 |#4|)) (|:| |vec| (-1281 |#4|))) (-699 $) (-1281 $)) NIL (|has| |#4| (-1062))) (((-699 |#4|) (-699 $)) NIL (|has| |#4| (-1062))) (((-699 |#4|) (-1281 $)) NIL (|has| |#4| (-1062))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (-12 (|has| |#4| (-649 (-574))) (|has| |#4| (-1062)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#4| (-649 (-574))) (|has| |#4| (-1062)))) (((-699 (-574)) (-1281 $)) NIL (-12 (|has| |#4| (-649 (-574))) (|has| |#4| (-1062))))) (-3434 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| |#4| (-239)) (|has| |#4| (-1062))) (|has| |#4| (-736)) (-12 (|has| |#4| (-911 (-1190))) (|has| |#4| (-1062)))))) (-2820 (($) NIL (|has| |#4| (-377)))) (-2458 ((|#4| $ (-574) |#4|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#4| $ (-574)) NIL)) (-2756 (((-112) $) NIL (|has| |#4| (-858)))) (-1864 (((-654 |#4|) $) NIL (|has| $ (-6 -4456)))) (-3199 (((-112) $) NIL (-2818 (-12 (|has| |#4| (-239)) (|has| |#4| (-1062))) (|has| |#4| (-736)) (-12 (|has| |#4| (-911 (-1190))) (|has| |#4| (-1062)))))) (-1335 (((-112) $) NIL (|has| |#4| (-858)))) (-2742 (((-112) $ (-781)) NIL)) (-3618 (((-574) $) NIL (|has| (-574) (-860)))) (-3659 (($ $ $) NIL (-2818 (|has| |#4| (-803)) (|has| |#4| (-858))))) (-1606 (((-654 |#4|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113))))) (-2702 (((-574) $) NIL (|has| (-574) (-860)))) (-4257 (($ $ $) NIL (-2818 (|has| |#4| (-803)) (|has| |#4| (-858))))) (-2449 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#4| |#4|) $) NIL)) (-4115 (((-932) $) NIL (|has| |#4| (-377)))) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL)) (-4308 (((-654 (-574)) $) NIL)) (-3336 (((-112) (-574) $) NIL)) (-2576 (($ (-932)) NIL (|has| |#4| (-377)))) (-3966 (((-1133) $) NIL)) (-2915 ((|#4| $) NIL (|has| (-574) (-860)))) (-1942 (($ $ |#4|) NIL (|has| $ (-6 -4457)))) (-2540 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113))))) (-4371 (((-654 |#4|) $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 ((|#4| $ (-574) |#4|) NIL) ((|#4| $ (-574)) 12)) (-4236 ((|#4| $ $) NIL (|has| |#4| (-1062)))) (-4261 (($ (-1281 |#4|)) NIL)) (-4133 (((-135)) NIL (|has| |#4| (-372)))) (-3905 (($ $ (-1 |#4| |#4|) (-781)) NIL (|has| |#4| (-1062))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1062))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#4| (-911 (-1190))) (|has| |#4| (-1062)))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#4| (-911 (-1190))) (|has| |#4| (-1062)))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#4| (-911 (-1190))) (|has| |#4| (-1062)))) (($ $ (-1190)) NIL (-12 (|has| |#4| (-911 (-1190))) (|has| |#4| (-1062)))) (($ $ (-781)) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1062)))) (($ $) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1062))))) (-3975 (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456))) (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113))))) (-3167 (($ $) NIL)) (-2943 (((-1281 |#4|) $) NIL) (((-872) $) NIL) (($ |#4|) NIL (|has| |#4| (-1113))) (($ (-574)) NIL (-2818 (-12 (|has| |#4| (-1051 (-574))) (|has| |#4| (-1113))) (|has| |#4| (-1062)))) (($ (-417 (-574))) NIL (-12 (|has| |#4| (-1051 (-417 (-574)))) (|has| |#4| (-1113))))) (-1364 (((-781)) NIL (|has| |#4| (-1062)) CONST)) (-3284 (((-112) $ $) NIL)) (-3390 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-3482 (($ $) NIL (|has| |#4| (-858)))) (-2133 (($) NIL T CONST)) (-2145 (($) NIL (-2818 (-12 (|has| |#4| (-239)) (|has| |#4| (-1062))) (|has| |#4| (-736)) (-12 (|has| |#4| (-911 (-1190))) (|has| |#4| (-1062)))) CONST)) (-3610 (($ $ (-1 |#4| |#4|) (-781)) NIL (|has| |#4| (-1062))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1062))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#4| (-911 (-1190))) (|has| |#4| (-1062)))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#4| (-911 (-1190))) (|has| |#4| (-1062)))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#4| (-911 (-1190))) (|has| |#4| (-1062)))) (($ $ (-1190)) NIL (-12 (|has| |#4| (-911 (-1190))) (|has| |#4| (-1062)))) (($ $ (-781)) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1062)))) (($ $) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1062))))) (-3042 (((-112) $ $) NIL (-2818 (|has| |#4| (-803)) (|has| |#4| (-858))))) (-3018 (((-112) $ $) NIL (-2818 (|has| |#4| (-803)) (|has| |#4| (-858))))) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (-2818 (|has| |#4| (-803)) (|has| |#4| (-858))))) (-3007 (((-112) $ $) NIL (-2818 (|has| |#4| (-803)) (|has| |#4| (-858))))) (-3108 (($ $ |#4|) NIL (|has| |#4| (-372)))) (-3094 (($ $ $) NIL) (($ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-781)) NIL (-2818 (-12 (|has| |#4| (-239)) (|has| |#4| (-1062))) (|has| |#4| (-736)) (-12 (|has| |#4| (-911 (-1190))) (|has| |#4| (-1062))))) (($ $ (-932)) NIL (-2818 (-12 (|has| |#4| (-239)) (|has| |#4| (-1062))) (|has| |#4| (-736)) (-12 (|has| |#4| (-911 (-1190))) (|has| |#4| (-1062)))))) (* (($ |#2| $) 14) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-932) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-736))) (($ |#4| $) NIL (|has| |#4| (-736))) (($ $ $) NIL (-2818 (-12 (|has| |#4| (-239)) (|has| |#4| (-1062))) (|has| |#4| (-736)) (-12 (|has| |#4| (-911 (-1190))) (|has| |#4| (-1062)))))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-257 |#1| |#2| |#3| |#4|) (-13 (-244 |#1| |#4|) (-658 |#2|) (-658 |#3|)) (-932) (-1062) (-1136 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-658 |#2|)) (T -257)) -NIL -(-13 (-244 |#1| |#4|) (-658 |#2|) (-658 |#3|)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3745 (($ (-932)) NIL (|has| |#3| (-1062)))) (-3714 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-3663 (($ $ $) NIL (|has| |#3| (-803)))) (-3524 (((-3 $ "failed") $ $) NIL)) (-3034 (((-112) $ (-781)) NIL)) (-1487 (((-781)) NIL (|has| |#3| (-377)))) (-2846 (((-574) $) NIL (|has| |#3| (-858)))) (-3143 ((|#3| $ (-574) |#3|) NIL (|has| $ (-6 -4457)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1113))) (((-3 (-574) "failed") $) NIL (-12 (|has| |#3| (-1051 (-574))) (|has| |#3| (-1113)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#3| (-1051 (-417 (-574)))) (|has| |#3| (-1113))))) (-2206 ((|#3| $) NIL (|has| |#3| (-1113))) (((-574) $) NIL (-12 (|has| |#3| (-1051 (-574))) (|has| |#3| (-1113)))) (((-417 (-574)) $) NIL (-12 (|has| |#3| (-1051 (-417 (-574)))) (|has| |#3| (-1113))))) (-2590 (((-2 (|:| -4340 (-699 |#3|)) (|:| |vec| (-1281 |#3|))) (-699 $) (-1281 $)) NIL (|has| |#3| (-1062))) (((-699 |#3|) (-699 $)) NIL (|has| |#3| (-1062))) (((-699 |#3|) (-1281 $)) NIL (|has| |#3| (-1062))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1062)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1062)))) (((-699 (-574)) (-1281 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1062))))) (-3434 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| |#3| (-239)) (|has| |#3| (-1062))) (|has| |#3| (-736)) (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))))) (-2820 (($) NIL (|has| |#3| (-377)))) (-2458 ((|#3| $ (-574) |#3|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#3| $ (-574)) NIL)) (-2756 (((-112) $) NIL (|has| |#3| (-858)))) (-1864 (((-654 |#3|) $) NIL (|has| $ (-6 -4456)))) (-3199 (((-112) $) NIL (-2818 (-12 (|has| |#3| (-239)) (|has| |#3| (-1062))) (|has| |#3| (-736)) (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))))) (-1335 (((-112) $) NIL (|has| |#3| (-858)))) (-2742 (((-112) $ (-781)) NIL)) (-3618 (((-574) $) NIL (|has| (-574) (-860)))) (-3659 (($ $ $) NIL (-2818 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-1606 (((-654 |#3|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#3| (-1113))))) (-2702 (((-574) $) NIL (|has| (-574) (-860)))) (-4257 (($ $ $) NIL (-2818 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-2449 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#3| |#3|) $) NIL)) (-4115 (((-932) $) NIL (|has| |#3| (-377)))) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL)) (-4308 (((-654 (-574)) $) NIL)) (-3336 (((-112) (-574) $) NIL)) (-2576 (($ (-932)) NIL (|has| |#3| (-377)))) (-3966 (((-1133) $) NIL)) (-2915 ((|#3| $) NIL (|has| (-574) (-860)))) (-1942 (($ $ |#3|) NIL (|has| $ (-6 -4457)))) (-2540 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#3|))) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113)))) (($ $ (-302 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113)))) (($ $ (-654 |#3|) (-654 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#3| (-1113))))) (-4371 (((-654 |#3|) $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 ((|#3| $ (-574) |#3|) NIL) ((|#3| $ (-574)) 11)) (-4236 ((|#3| $ $) NIL (|has| |#3| (-1062)))) (-4261 (($ (-1281 |#3|)) NIL)) (-4133 (((-135)) NIL (|has| |#3| (-372)))) (-3905 (($ $ (-1 |#3| |#3|) (-781)) NIL (|has| |#3| (-1062))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1062))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-1190)) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-781)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1062)))) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1062))))) (-3975 (((-781) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4456))) (((-781) |#3| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#3| (-1113))))) (-3167 (($ $) NIL)) (-2943 (((-1281 |#3|) $) NIL) (((-872) $) NIL) (($ |#3|) NIL (|has| |#3| (-1113))) (($ (-574)) NIL (-2818 (-12 (|has| |#3| (-1051 (-574))) (|has| |#3| (-1113))) (|has| |#3| (-1062)))) (($ (-417 (-574))) NIL (-12 (|has| |#3| (-1051 (-417 (-574)))) (|has| |#3| (-1113))))) (-1364 (((-781)) NIL (|has| |#3| (-1062)) CONST)) (-3284 (((-112) $ $) NIL)) (-3390 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4456)))) (-3482 (($ $) NIL (|has| |#3| (-858)))) (-2133 (($) NIL T CONST)) (-2145 (($) NIL (-2818 (-12 (|has| |#3| (-239)) (|has| |#3| (-1062))) (|has| |#3| (-736)) (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) CONST)) (-3610 (($ $ (-1 |#3| |#3|) (-781)) NIL (|has| |#3| (-1062))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1062))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-1190)) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-781)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1062)))) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1062))))) (-3042 (((-112) $ $) NIL (-2818 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-3018 (((-112) $ $) NIL (-2818 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (-2818 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-3007 (((-112) $ $) NIL (-2818 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-3108 (($ $ |#3|) NIL (|has| |#3| (-372)))) (-3094 (($ $ $) NIL) (($ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-781)) NIL (-2818 (-12 (|has| |#3| (-239)) (|has| |#3| (-1062))) (|has| |#3| (-736)) (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062))))) (($ $ (-932)) NIL (-2818 (-12 (|has| |#3| (-239)) (|has| |#3| (-1062))) (|has| |#3| (-736)) (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))))) (* (($ |#2| $) 13) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-932) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-736))) (($ |#3| $) NIL (|has| |#3| (-736))) (($ $ $) NIL (-2818 (-12 (|has| |#3| (-239)) (|has| |#3| (-1062))) (|has| |#3| (-736)) (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-258 |#1| |#2| |#3|) (-13 (-244 |#1| |#3|) (-658 |#2|)) (-781) (-1062) (-658 |#2|)) (T -258)) -NIL -(-13 (-244 |#1| |#3|) (-658 |#2|)) -((-4299 (((-654 (-781)) $) 56) (((-654 (-781)) $ |#3|) 59)) (-1336 (((-781) $) 58) (((-781) $ |#3|) 61)) (-2040 (($ $) 76)) (-1696 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-3884 (((-781) $ |#3|) 43) (((-781) $) 38)) (-2168 (((-1 $ (-781)) |#3|) 15) (((-1 $ (-781)) $) 88)) (-3706 ((|#4| $) 69)) (-2782 (((-112) $) 67)) (-2591 (($ $) 75)) (-2646 (($ $ (-654 (-302 $))) 111) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-654 |#4|) (-654 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-654 |#4|) (-654 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-654 |#3|) (-654 $)) 103) (($ $ |#3| |#2|) NIL) (($ $ (-654 |#3|) (-654 |#2|)) 97)) (-3905 (($ $ |#4|) NIL) (($ $ (-654 |#4|)) NIL) (($ $ |#4| (-781)) NIL) (($ $ (-654 |#4|) (-654 (-781))) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-1190)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-2243 (((-654 |#3|) $) 86)) (-4202 ((|#5| $) NIL) (((-781) $ |#4|) NIL) (((-654 (-781)) $ (-654 |#4|)) NIL) (((-781) $ |#3|) 49)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-417 (-574))) NIL) (($ $) NIL))) -(((-259 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2943 (|#1| |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2646 (|#1| |#1| (-654 |#3|) (-654 |#2|))) (-15 -2646 (|#1| |#1| |#3| |#2|)) (-15 -2646 (|#1| |#1| (-654 |#3|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#3| |#1|)) (-15 -2168 ((-1 |#1| (-781)) |#1|)) (-15 -2040 (|#1| |#1|)) (-15 -2591 (|#1| |#1|)) (-15 -3706 (|#4| |#1|)) (-15 -2782 ((-112) |#1|)) (-15 -1336 ((-781) |#1| |#3|)) (-15 -4299 ((-654 (-781)) |#1| |#3|)) (-15 -1336 ((-781) |#1|)) (-15 -4299 ((-654 (-781)) |#1|)) (-15 -4202 ((-781) |#1| |#3|)) (-15 -3884 ((-781) |#1|)) (-15 -3884 ((-781) |#1| |#3|)) (-15 -2243 ((-654 |#3|) |#1|)) (-15 -2168 ((-1 |#1| (-781)) |#3|)) (-15 -2943 (|#1| |#3|)) (-15 -1696 ((-3 |#3| "failed") |#1|)) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1|)) (-15 -4202 ((-654 (-781)) |#1| (-654 |#4|))) (-15 -4202 ((-781) |#1| |#4|)) (-15 -2943 (|#1| |#4|)) (-15 -1696 ((-3 |#4| "failed") |#1|)) (-15 -2646 (|#1| |#1| (-654 |#4|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#4| |#1|)) (-15 -2646 (|#1| |#1| (-654 |#4|) (-654 |#2|))) (-15 -2646 (|#1| |#1| |#4| |#2|)) (-15 -2646 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#1| |#1|)) (-15 -2646 (|#1| |#1| (-302 |#1|))) (-15 -2646 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -4202 (|#5| |#1|)) (-15 -1696 ((-3 (-574) "failed") |#1|)) (-15 -1696 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -1696 ((-3 |#2| "failed") |#1|)) (-15 -2943 (|#1| |#2|)) (-15 -3905 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -3905 (|#1| |#1| |#4| (-781))) (-15 -3905 (|#1| |#1| (-654 |#4|))) (-15 -3905 (|#1| |#1| |#4|)) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|))) (-260 |#2| |#3| |#4| |#5|) (-1062) (-860) (-273 |#3|) (-803)) (T -259)) -NIL -(-10 -8 (-15 -2943 (|#1| |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2646 (|#1| |#1| (-654 |#3|) (-654 |#2|))) (-15 -2646 (|#1| |#1| |#3| |#2|)) (-15 -2646 (|#1| |#1| (-654 |#3|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#3| |#1|)) (-15 -2168 ((-1 |#1| (-781)) |#1|)) (-15 -2040 (|#1| |#1|)) (-15 -2591 (|#1| |#1|)) (-15 -3706 (|#4| |#1|)) (-15 -2782 ((-112) |#1|)) (-15 -1336 ((-781) |#1| |#3|)) (-15 -4299 ((-654 (-781)) |#1| |#3|)) (-15 -1336 ((-781) |#1|)) (-15 -4299 ((-654 (-781)) |#1|)) (-15 -4202 ((-781) |#1| |#3|)) (-15 -3884 ((-781) |#1|)) (-15 -3884 ((-781) |#1| |#3|)) (-15 -2243 ((-654 |#3|) |#1|)) (-15 -2168 ((-1 |#1| (-781)) |#3|)) (-15 -2943 (|#1| |#3|)) (-15 -1696 ((-3 |#3| "failed") |#1|)) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1|)) (-15 -4202 ((-654 (-781)) |#1| (-654 |#4|))) (-15 -4202 ((-781) |#1| |#4|)) (-15 -2943 (|#1| |#4|)) (-15 -1696 ((-3 |#4| "failed") |#1|)) (-15 -2646 (|#1| |#1| (-654 |#4|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#4| |#1|)) (-15 -2646 (|#1| |#1| (-654 |#4|) (-654 |#2|))) (-15 -2646 (|#1| |#1| |#4| |#2|)) (-15 -2646 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#1| |#1|)) (-15 -2646 (|#1| |#1| (-302 |#1|))) (-15 -2646 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -4202 (|#5| |#1|)) (-15 -1696 ((-3 (-574) "failed") |#1|)) (-15 -1696 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -1696 ((-3 |#2| "failed") |#1|)) (-15 -2943 (|#1| |#2|)) (-15 -3905 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -3905 (|#1| |#1| |#4| (-781))) (-15 -3905 (|#1| |#1| (-654 |#4|))) (-15 -3905 (|#1| |#1| |#4|)) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-4299 (((-654 (-781)) $) 219) (((-654 (-781)) $ |#2|) 217)) (-1336 (((-781) $) 218) (((-781) $ |#2|) 216)) (-4355 (((-654 |#3|) $) 112)) (-4194 (((-1186 $) $ |#3|) 127) (((-1186 |#1|) $) 126)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 89 (|has| |#1| (-566)))) (-1575 (($ $) 90 (|has| |#1| (-566)))) (-2085 (((-112) $) 92 (|has| |#1| (-566)))) (-1757 (((-781) $) 114) (((-781) $ (-654 |#3|)) 113)) (-3524 (((-3 $ "failed") $ $) 20)) (-3972 (((-428 (-1186 $)) (-1186 $)) 102 (|has| |#1| (-920)))) (-2568 (($ $) 100 (|has| |#1| (-462)))) (-2827 (((-428 $) $) 99 (|has| |#1| (-462)))) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) 105 (|has| |#1| (-920)))) (-2040 (($ $) 212)) (-3426 (($) 18 T CONST)) (-1696 (((-3 |#1| "failed") $) 168) (((-3 (-417 (-574)) "failed") $) 165 (|has| |#1| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) 163 (|has| |#1| (-1051 (-574)))) (((-3 |#3| "failed") $) 140) (((-3 |#2| "failed") $) 226)) (-2206 ((|#1| $) 167) (((-417 (-574)) $) 166 (|has| |#1| (-1051 (-417 (-574))))) (((-574) $) 164 (|has| |#1| (-1051 (-574)))) ((|#3| $) 141) ((|#2| $) 227)) (-1463 (($ $ $ |#3|) 110 (|has| |#1| (-174)))) (-1392 (($ $) 158)) (-2590 (((-699 (-574)) (-1281 $)) 138 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 137 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 136 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) 135) (((-699 |#1|) (-699 $)) 134) (((-699 |#1|) (-1281 $)) 133)) (-3434 (((-3 $ "failed") $) 37)) (-1569 (($ $) 180 (|has| |#1| (-462))) (($ $ |#3|) 107 (|has| |#1| (-462)))) (-1380 (((-654 $) $) 111)) (-2257 (((-112) $) 98 (|has| |#1| (-920)))) (-1661 (($ $ |#1| |#4| $) 176)) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 86 (-12 (|has| |#3| (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 85 (-12 (|has| |#3| (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3884 (((-781) $ |#2|) 222) (((-781) $) 221)) (-3199 (((-112) $) 35)) (-1322 (((-781) $) 173)) (-4345 (($ (-1186 |#1|) |#3|) 119) (($ (-1186 $) |#3|) 118)) (-3727 (((-654 $) $) 128)) (-3869 (((-112) $) 156)) (-4335 (($ |#1| |#4|) 157) (($ $ |#3| (-781)) 121) (($ $ (-654 |#3|) (-654 (-781))) 120)) (-2773 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $ |#3|) 122)) (-1742 ((|#4| $) 174) (((-781) $ |#3|) 124) (((-654 (-781)) $ (-654 |#3|)) 123)) (-3708 (($ (-1 |#4| |#4|) $) 175)) (-1777 (($ (-1 |#1| |#1|) $) 155)) (-2168 (((-1 $ (-781)) |#2|) 224) (((-1 $ (-781)) $) 211 (|has| |#1| (-239)))) (-2717 (((-3 |#3| "failed") $) 125)) (-1359 (($ $) 153)) (-1370 ((|#1| $) 152)) (-3706 ((|#3| $) 214)) (-2832 (($ (-654 $)) 96 (|has| |#1| (-462))) (($ $ $) 95 (|has| |#1| (-462)))) (-4136 (((-1172) $) 10)) (-2782 (((-112) $) 215)) (-2755 (((-3 (-654 $) "failed") $) 116)) (-2415 (((-3 (-654 $) "failed") $) 117)) (-2241 (((-3 (-2 (|:| |var| |#3|) (|:| -3715 (-781))) "failed") $) 115)) (-2591 (($ $) 213)) (-3966 (((-1133) $) 11)) (-1338 (((-112) $) 170)) (-1349 ((|#1| $) 171)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 97 (|has| |#1| (-462)))) (-2873 (($ (-654 $)) 94 (|has| |#1| (-462))) (($ $ $) 93 (|has| |#1| (-462)))) (-2560 (((-428 (-1186 $)) (-1186 $)) 104 (|has| |#1| (-920)))) (-2039 (((-428 (-1186 $)) (-1186 $)) 103 (|has| |#1| (-920)))) (-4220 (((-428 $) $) 101 (|has| |#1| (-920)))) (-2838 (((-3 $ "failed") $ |#1|) 178 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-566)))) (-2646 (($ $ (-654 (-302 $))) 149) (($ $ (-302 $)) 148) (($ $ $ $) 147) (($ $ (-654 $) (-654 $)) 146) (($ $ |#3| |#1|) 145) (($ $ (-654 |#3|) (-654 |#1|)) 144) (($ $ |#3| $) 143) (($ $ (-654 |#3|) (-654 $)) 142) (($ $ |#2| $) 210 (|has| |#1| (-239))) (($ $ (-654 |#2|) (-654 $)) 209 (|has| |#1| (-239))) (($ $ |#2| |#1|) 208 (|has| |#1| (-239))) (($ $ (-654 |#2|) (-654 |#1|)) 207 (|has| |#1| (-239)))) (-2872 (($ $ |#3|) 109 (|has| |#1| (-174)))) (-3905 (($ $ |#3|) 46) (($ $ (-654 |#3|)) 45) (($ $ |#3| (-781)) 44) (($ $ (-654 |#3|) (-654 (-781))) 43) (($ $) 242 (|has| |#1| (-239))) (($ $ (-781)) 241 (|has| |#1| (-239))) (($ $ (-1190)) 239 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) 238 (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) 237 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) 236 (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) 229) (($ $ (-1 |#1| |#1|)) 228)) (-2243 (((-654 |#2|) $) 223)) (-4202 ((|#4| $) 154) (((-781) $ |#3|) 132) (((-654 (-781)) $ (-654 |#3|)) 131) (((-781) $ |#2|) 220)) (-1836 (((-903 (-388)) $) 84 (-12 (|has| |#3| (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) 83 (-12 (|has| |#3| (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) 82 (-12 (|has| |#3| (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-3069 ((|#1| $) 179 (|has| |#1| (-462))) (($ $ |#3|) 108 (|has| |#1| (-462)))) (-1524 (((-3 (-1281 $) "failed") (-699 $)) 106 (-2087 (|has| $ (-146)) (|has| |#1| (-920))))) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 169) (($ |#3|) 139) (($ |#2|) 225) (($ (-417 (-574))) 80 (-2818 (|has| |#1| (-1051 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))))) (($ $) 87 (|has| |#1| (-566)))) (-2530 (((-654 |#1|) $) 172)) (-3087 ((|#1| $ |#4|) 159) (($ $ |#3| (-781)) 130) (($ $ (-654 |#3|) (-654 (-781))) 129)) (-3298 (((-3 $ "failed") $) 81 (-2818 (-2087 (|has| $ (-146)) (|has| |#1| (-920))) (|has| |#1| (-146))))) (-1364 (((-781)) 32 T CONST)) (-3772 (($ $ $ (-781)) 177 (|has| |#1| (-174)))) (-3284 (((-112) $ $) 9)) (-2069 (((-112) $ $) 91 (|has| |#1| (-566)))) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-3610 (($ $ |#3|) 42) (($ $ (-654 |#3|)) 41) (($ $ |#3| (-781)) 40) (($ $ (-654 |#3|) (-654 (-781))) 39) (($ $) 243 (|has| |#1| (-239))) (($ $ (-781)) 240 (|has| |#1| (-239))) (($ $ (-1190)) 235 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) 234 (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) 233 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) 232 (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) 231) (($ $ (-1 |#1| |#1|)) 230)) (-2981 (((-112) $ $) 6)) (-3108 (($ $ |#1|) 160 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 162 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 161 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 151) (($ $ |#1|) 150))) -(((-260 |#1| |#2| |#3| |#4|) (-141) (-1062) (-860) (-273 |t#2|) (-803)) (T -260)) -((-2168 (*1 *2 *3) (-12 (-4 *4 (-1062)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-1 *1 (-781))) (-4 *1 (-260 *4 *3 *5 *6)))) (-2243 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-654 *4)))) (-3884 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1062)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781)))) (-3884 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-781)))) (-4202 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1062)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781)))) (-4299 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-654 (-781))))) (-1336 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-781)))) (-4299 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1062)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-654 (-781))))) (-1336 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1062)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781)))) (-2782 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-112)))) (-3706 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1062)) (-4 *4 (-860)) (-4 *5 (-803)) (-4 *2 (-273 *4)))) (-2591 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1062)) (-4 *3 (-860)) (-4 *4 (-273 *3)) (-4 *5 (-803)))) (-2040 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1062)) (-4 *3 (-860)) (-4 *4 (-273 *3)) (-4 *5 (-803)))) (-2168 (*1 *2 *1) (-12 (-4 *3 (-239)) (-4 *3 (-1062)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-1 *1 (-781))) (-4 *1 (-260 *3 *4 *5 *6))))) -(-13 (-960 |t#1| |t#4| |t#3|) (-233 |t#1|) (-1051 |t#2|) (-10 -8 (-15 -2168 ((-1 $ (-781)) |t#2|)) (-15 -2243 ((-654 |t#2|) $)) (-15 -3884 ((-781) $ |t#2|)) (-15 -3884 ((-781) $)) (-15 -4202 ((-781) $ |t#2|)) (-15 -4299 ((-654 (-781)) $)) (-15 -1336 ((-781) $)) (-15 -4299 ((-654 (-781)) $ |t#2|)) (-15 -1336 ((-781) $ |t#2|)) (-15 -2782 ((-112) $)) (-15 -3706 (|t#3| $)) (-15 -2591 ($ $)) (-15 -2040 ($ $)) (IF (|has| |t#1| (-239)) (PROGN (-6 (-524 |t#2| |t#1|)) (-6 (-524 |t#2| $)) (-6 (-317 $)) (-15 -2168 ((-1 $ (-781)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2818 (|has| |#1| (-1051 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 |#2|) . T) ((-626 |#3|) . T) ((-626 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-623 (-872)) . T) ((-174) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-624 (-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#3| (-624 (-546)))) ((-624 (-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#3| (-624 (-903 (-388))))) ((-624 (-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#3| (-624 (-903 (-574))))) ((-235 $) |has| |#1| (-239)) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-298) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-317 $) . T) ((-334 |#1| |#4|) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-462) -2818 (|has| |#1| (-920)) (|has| |#1| (-462))) ((-524 |#2| |#1|) |has| |#1| (-239)) ((-524 |#2| $) |has| |#1| (-239)) ((-524 |#3| |#1|) . T) ((-524 |#3| $) . T) ((-524 $ $) . T) ((-566) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 #1=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-649 #1#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-736) . T) ((-911 (-1190)) |has| |#1| (-911 (-1190))) ((-911 |#3|) . T) ((-897 (-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#3| (-897 (-388)))) ((-897 (-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#3| (-897 (-574)))) ((-960 |#1| |#4| |#3|) . T) ((-920) |has| |#1| (-920)) ((-1051 (-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((-1051 (-574)) |has| |#1| (-1051 (-574))) ((-1051 |#1|) . T) ((-1051 |#2|) . T) ((-1051 |#3|) . T) ((-1064 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1064 |#1|) . T) ((-1064 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1069 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1069 |#1|) . T) ((-1069 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1231) |has| |#1| (-239)) ((-1235) |has| |#1| (-920))) -((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-2337 ((|#1| $) 55)) (-2002 ((|#1| $) 45)) (-3034 (((-112) $ (-781)) 8)) (-3426 (($) 7 T CONST)) (-3876 (($ $) 61)) (-2627 (($ $) 49)) (-3874 ((|#1| |#1| $) 47)) (-3020 ((|#1| $) 46)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-2742 (((-112) $ (-781)) 9)) (-1606 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2449 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 36)) (-4203 (((-112) $ (-781)) 10)) (-4135 (((-781) $) 62)) (-4136 (((-1172) $) 22 (|has| |#1| (-1113)))) (-2937 ((|#1| $) 40)) (-2952 ((|#1| |#1| $) 53)) (-2603 ((|#1| |#1| $) 52)) (-2798 (($ |#1| $) 41)) (-1839 (((-781) $) 56)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-2501 ((|#1| $) 63)) (-2837 ((|#1| $) 51)) (-2170 ((|#1| $) 50)) (-1785 ((|#1| $) 42)) (-2540 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 14)) (-4035 ((|#1| |#1| $) 59)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-3668 ((|#1| $) 60)) (-4354 (($) 58) (($ (-654 |#1|)) 57)) (-4302 (((-781) $) 44)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2814 ((|#1| $) 54)) (-3284 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-1599 (($ (-654 |#1|)) 43)) (-3835 ((|#1| $) 64)) (-3390 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-261 |#1|) (-141) (-1231)) (T -261)) -((-4354 (*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231)))) (-4354 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-4 *1 (-261 *3)))) (-1839 (*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1231)) (-5 *2 (-781)))) (-2337 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231)))) (-2814 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231)))) (-2952 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231)))) (-2603 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231)))) (-2837 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231)))) (-2170 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231)))) (-2627 (*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231))))) -(-13 (-1134 |t#1|) (-1008 |t#1|) (-10 -8 (-15 -4354 ($)) (-15 -4354 ($ (-654 |t#1|))) (-15 -1839 ((-781) $)) (-15 -2337 (|t#1| $)) (-15 -2814 (|t#1| $)) (-15 -2952 (|t#1| |t#1| $)) (-15 -2603 (|t#1| |t#1| $)) (-15 -2837 (|t#1| $)) (-15 -2170 (|t#1| $)) (-15 -2627 ($ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1008 |#1|) . T) ((-1113) |has| |#1| (-1113)) ((-1134 |#1|) . T) ((-1231) . T)) -((-1513 (((-1 (-954 (-227)) (-227) (-227)) (-1 (-954 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 153)) (-1846 (((-1146 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1107 (-388)) (-1107 (-388))) 173) (((-1146 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1107 (-388)) (-1107 (-388)) (-654 (-270))) 171) (((-1146 (-227)) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-388)) (-1107 (-388))) 176) (((-1146 (-227)) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-388)) (-1107 (-388)) (-654 (-270))) 172) (((-1146 (-227)) (-1 (-227) (-227) (-227)) (-1107 (-388)) (-1107 (-388))) 164) (((-1146 (-227)) (-1 (-227) (-227) (-227)) (-1107 (-388)) (-1107 (-388)) (-654 (-270))) 163) (((-1146 (-227)) (-1 (-954 (-227)) (-227)) (-1107 (-388))) 145) (((-1146 (-227)) (-1 (-954 (-227)) (-227)) (-1107 (-388)) (-654 (-270))) 143) (((-1146 (-227)) (-890 (-1 (-227) (-227))) (-1107 (-388))) 144) (((-1146 (-227)) (-890 (-1 (-227) (-227))) (-1107 (-388)) (-654 (-270))) 141)) (-1800 (((-1283) (-893 (-1 (-227) (-227) (-227))) (-1107 (-388)) (-1107 (-388))) 175) (((-1283) (-893 (-1 (-227) (-227) (-227))) (-1107 (-388)) (-1107 (-388)) (-654 (-270))) 174) (((-1283) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-388)) (-1107 (-388))) 178) (((-1283) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-388)) (-1107 (-388)) (-654 (-270))) 177) (((-1283) (-1 (-227) (-227) (-227)) (-1107 (-388)) (-1107 (-388))) 166) (((-1283) (-1 (-227) (-227) (-227)) (-1107 (-388)) (-1107 (-388)) (-654 (-270))) 165) (((-1283) (-1 (-954 (-227)) (-227)) (-1107 (-388))) 151) (((-1283) (-1 (-954 (-227)) (-227)) (-1107 (-388)) (-654 (-270))) 150) (((-1283) (-890 (-1 (-227) (-227))) (-1107 (-388))) 149) (((-1283) (-890 (-1 (-227) (-227))) (-1107 (-388)) (-654 (-270))) 148) (((-1282) (-888 (-1 (-227) (-227))) (-1107 (-388))) 113) (((-1282) (-888 (-1 (-227) (-227))) (-1107 (-388)) (-654 (-270))) 112) (((-1282) (-1 (-227) (-227)) (-1107 (-388))) 107) (((-1282) (-1 (-227) (-227)) (-1107 (-388)) (-654 (-270))) 105))) -(((-262) (-10 -7 (-15 -1800 ((-1282) (-1 (-227) (-227)) (-1107 (-388)) (-654 (-270)))) (-15 -1800 ((-1282) (-1 (-227) (-227)) (-1107 (-388)))) (-15 -1800 ((-1282) (-888 (-1 (-227) (-227))) (-1107 (-388)) (-654 (-270)))) (-15 -1800 ((-1282) (-888 (-1 (-227) (-227))) (-1107 (-388)))) (-15 -1800 ((-1283) (-890 (-1 (-227) (-227))) (-1107 (-388)) (-654 (-270)))) (-15 -1800 ((-1283) (-890 (-1 (-227) (-227))) (-1107 (-388)))) (-15 -1800 ((-1283) (-1 (-954 (-227)) (-227)) (-1107 (-388)) (-654 (-270)))) (-15 -1800 ((-1283) (-1 (-954 (-227)) (-227)) (-1107 (-388)))) (-15 -1846 ((-1146 (-227)) (-890 (-1 (-227) (-227))) (-1107 (-388)) (-654 (-270)))) (-15 -1846 ((-1146 (-227)) (-890 (-1 (-227) (-227))) (-1107 (-388)))) (-15 -1846 ((-1146 (-227)) (-1 (-954 (-227)) (-227)) (-1107 (-388)) (-654 (-270)))) (-15 -1846 ((-1146 (-227)) (-1 (-954 (-227)) (-227)) (-1107 (-388)))) (-15 -1800 ((-1283) (-1 (-227) (-227) (-227)) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1800 ((-1283) (-1 (-227) (-227) (-227)) (-1107 (-388)) (-1107 (-388)))) (-15 -1846 ((-1146 (-227)) (-1 (-227) (-227) (-227)) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1846 ((-1146 (-227)) (-1 (-227) (-227) (-227)) (-1107 (-388)) (-1107 (-388)))) (-15 -1800 ((-1283) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1800 ((-1283) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-388)) (-1107 (-388)))) (-15 -1846 ((-1146 (-227)) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1846 ((-1146 (-227)) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-388)) (-1107 (-388)))) (-15 -1800 ((-1283) (-893 (-1 (-227) (-227) (-227))) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1800 ((-1283) (-893 (-1 (-227) (-227) (-227))) (-1107 (-388)) (-1107 (-388)))) (-15 -1846 ((-1146 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1846 ((-1146 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1107 (-388)) (-1107 (-388)))) (-15 -1513 ((-1 (-954 (-227)) (-227) (-227)) (-1 (-954 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -262)) -((-1513 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-954 (-227)) (-227) (-227))) (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262)))) (-1846 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1107 (-388))) (-5 *2 (-1146 (-227))) (-5 *1 (-262)))) (-1846 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-262)))) (-1800 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1107 (-388))) (-5 *2 (-1283)) (-5 *1 (-262)))) (-1800 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1283)) (-5 *1 (-262)))) (-1846 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-954 (-227)) (-227) (-227))) (-5 *4 (-1107 (-388))) (-5 *2 (-1146 (-227))) (-5 *1 (-262)))) (-1846 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-954 (-227)) (-227) (-227))) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-262)))) (-1800 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-954 (-227)) (-227) (-227))) (-5 *4 (-1107 (-388))) (-5 *2 (-1283)) (-5 *1 (-262)))) (-1800 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-954 (-227)) (-227) (-227))) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1283)) (-5 *1 (-262)))) (-1846 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1107 (-388))) (-5 *2 (-1146 (-227))) (-5 *1 (-262)))) (-1846 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-262)))) (-1800 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1107 (-388))) (-5 *2 (-1283)) (-5 *1 (-262)))) (-1800 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1283)) (-5 *1 (-262)))) (-1846 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-954 (-227)) (-227))) (-5 *4 (-1107 (-388))) (-5 *2 (-1146 (-227))) (-5 *1 (-262)))) (-1846 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-954 (-227)) (-227))) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-262)))) (-1846 (*1 *2 *3 *4) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1107 (-388))) (-5 *2 (-1146 (-227))) (-5 *1 (-262)))) (-1846 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-262)))) (-1800 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-954 (-227)) (-227))) (-5 *4 (-1107 (-388))) (-5 *2 (-1283)) (-5 *1 (-262)))) (-1800 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-954 (-227)) (-227))) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1283)) (-5 *1 (-262)))) (-1800 (*1 *2 *3 *4) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1107 (-388))) (-5 *2 (-1283)) (-5 *1 (-262)))) (-1800 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1283)) (-5 *1 (-262)))) (-1800 (*1 *2 *3 *4) (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1107 (-388))) (-5 *2 (-1282)) (-5 *1 (-262)))) (-1800 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1282)) (-5 *1 (-262)))) (-1800 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1107 (-388))) (-5 *2 (-1282)) (-5 *1 (-262)))) (-1800 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1107 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1282)) (-5 *1 (-262))))) -(-10 -7 (-15 -1800 ((-1282) (-1 (-227) (-227)) (-1107 (-388)) (-654 (-270)))) (-15 -1800 ((-1282) (-1 (-227) (-227)) (-1107 (-388)))) (-15 -1800 ((-1282) (-888 (-1 (-227) (-227))) (-1107 (-388)) (-654 (-270)))) (-15 -1800 ((-1282) (-888 (-1 (-227) (-227))) (-1107 (-388)))) (-15 -1800 ((-1283) (-890 (-1 (-227) (-227))) (-1107 (-388)) (-654 (-270)))) (-15 -1800 ((-1283) (-890 (-1 (-227) (-227))) (-1107 (-388)))) (-15 -1800 ((-1283) (-1 (-954 (-227)) (-227)) (-1107 (-388)) (-654 (-270)))) (-15 -1800 ((-1283) (-1 (-954 (-227)) (-227)) (-1107 (-388)))) (-15 -1846 ((-1146 (-227)) (-890 (-1 (-227) (-227))) (-1107 (-388)) (-654 (-270)))) (-15 -1846 ((-1146 (-227)) (-890 (-1 (-227) (-227))) (-1107 (-388)))) (-15 -1846 ((-1146 (-227)) (-1 (-954 (-227)) (-227)) (-1107 (-388)) (-654 (-270)))) (-15 -1846 ((-1146 (-227)) (-1 (-954 (-227)) (-227)) (-1107 (-388)))) (-15 -1800 ((-1283) (-1 (-227) (-227) (-227)) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1800 ((-1283) (-1 (-227) (-227) (-227)) (-1107 (-388)) (-1107 (-388)))) (-15 -1846 ((-1146 (-227)) (-1 (-227) (-227) (-227)) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1846 ((-1146 (-227)) (-1 (-227) (-227) (-227)) (-1107 (-388)) (-1107 (-388)))) (-15 -1800 ((-1283) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1800 ((-1283) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-388)) (-1107 (-388)))) (-15 -1846 ((-1146 (-227)) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1846 ((-1146 (-227)) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-388)) (-1107 (-388)))) (-15 -1800 ((-1283) (-893 (-1 (-227) (-227) (-227))) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1800 ((-1283) (-893 (-1 (-227) (-227) (-227))) (-1107 (-388)) (-1107 (-388)))) (-15 -1846 ((-1146 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1107 (-388)) (-1107 (-388)) (-654 (-270)))) (-15 -1846 ((-1146 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1107 (-388)) (-1107 (-388)))) (-15 -1513 ((-1 (-954 (-227)) (-227) (-227)) (-1 (-954 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) -((-1800 (((-1282) (-302 |#2|) (-1190) (-1190) (-654 (-270))) 101))) -(((-263 |#1| |#2|) (-10 -7 (-15 -1800 ((-1282) (-302 |#2|) (-1190) (-1190) (-654 (-270))))) (-13 (-566) (-860) (-1051 (-574))) (-440 |#1|)) (T -263)) -((-1800 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-302 *7)) (-5 *4 (-1190)) (-5 *5 (-654 (-270))) (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-860) (-1051 (-574)))) (-5 *2 (-1282)) (-5 *1 (-263 *6 *7))))) -(-10 -7 (-15 -1800 ((-1282) (-302 |#2|) (-1190) (-1190) (-654 (-270))))) -((-1501 (((-574) (-574)) 71)) (-3878 (((-574) (-574)) 72)) (-1961 (((-227) (-227)) 73)) (-3620 (((-1283) (-1 (-171 (-227)) (-171 (-227))) (-1107 (-227)) (-1107 (-227))) 70)) (-3774 (((-1283) (-1 (-171 (-227)) (-171 (-227))) (-1107 (-227)) (-1107 (-227)) (-112)) 68))) -(((-264) (-10 -7 (-15 -3774 ((-1283) (-1 (-171 (-227)) (-171 (-227))) (-1107 (-227)) (-1107 (-227)) (-112))) (-15 -3620 ((-1283) (-1 (-171 (-227)) (-171 (-227))) (-1107 (-227)) (-1107 (-227)))) (-15 -1501 ((-574) (-574))) (-15 -3878 ((-574) (-574))) (-15 -1961 ((-227) (-227))))) (T -264)) -((-1961 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264)))) (-3878 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-264)))) (-1501 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-264)))) (-3620 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1107 (-227))) (-5 *2 (-1283)) (-5 *1 (-264)))) (-3774 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1107 (-227))) (-5 *5 (-112)) (-5 *2 (-1283)) (-5 *1 (-264))))) -(-10 -7 (-15 -3774 ((-1283) (-1 (-171 (-227)) (-171 (-227))) (-1107 (-227)) (-1107 (-227)) (-112))) (-15 -3620 ((-1283) (-1 (-171 (-227)) (-171 (-227))) (-1107 (-227)) (-1107 (-227)))) (-15 -1501 ((-574) (-574))) (-15 -3878 ((-574) (-574))) (-15 -1961 ((-227) (-227)))) -((-2943 (((-1105 (-388)) (-1105 (-324 |#1|))) 16))) -(((-265 |#1|) (-10 -7 (-15 -2943 ((-1105 (-388)) (-1105 (-324 |#1|))))) (-13 (-860) (-566) (-624 (-388)))) (T -265)) -((-2943 (*1 *2 *3) (-12 (-5 *3 (-1105 (-324 *4))) (-4 *4 (-13 (-860) (-566) (-624 (-388)))) (-5 *2 (-1105 (-388))) (-5 *1 (-265 *4))))) -(-10 -7 (-15 -2943 ((-1105 (-388)) (-1105 (-324 |#1|))))) -((-1846 (((-1146 (-227)) (-893 |#1|) (-1105 (-388)) (-1105 (-388))) 75) (((-1146 (-227)) (-893 |#1|) (-1105 (-388)) (-1105 (-388)) (-654 (-270))) 74) (((-1146 (-227)) |#1| (-1105 (-388)) (-1105 (-388))) 65) (((-1146 (-227)) |#1| (-1105 (-388)) (-1105 (-388)) (-654 (-270))) 64) (((-1146 (-227)) (-890 |#1|) (-1105 (-388))) 56) (((-1146 (-227)) (-890 |#1|) (-1105 (-388)) (-654 (-270))) 55)) (-1800 (((-1283) (-893 |#1|) (-1105 (-388)) (-1105 (-388))) 78) (((-1283) (-893 |#1|) (-1105 (-388)) (-1105 (-388)) (-654 (-270))) 77) (((-1283) |#1| (-1105 (-388)) (-1105 (-388))) 68) (((-1283) |#1| (-1105 (-388)) (-1105 (-388)) (-654 (-270))) 67) (((-1283) (-890 |#1|) (-1105 (-388))) 60) (((-1283) (-890 |#1|) (-1105 (-388)) (-654 (-270))) 59) (((-1282) (-888 |#1|) (-1105 (-388))) 47) (((-1282) (-888 |#1|) (-1105 (-388)) (-654 (-270))) 46) (((-1282) |#1| (-1105 (-388))) 38) (((-1282) |#1| (-1105 (-388)) (-654 (-270))) 36))) -(((-266 |#1|) (-10 -7 (-15 -1800 ((-1282) |#1| (-1105 (-388)) (-654 (-270)))) (-15 -1800 ((-1282) |#1| (-1105 (-388)))) (-15 -1800 ((-1282) (-888 |#1|) (-1105 (-388)) (-654 (-270)))) (-15 -1800 ((-1282) (-888 |#1|) (-1105 (-388)))) (-15 -1800 ((-1283) (-890 |#1|) (-1105 (-388)) (-654 (-270)))) (-15 -1800 ((-1283) (-890 |#1|) (-1105 (-388)))) (-15 -1846 ((-1146 (-227)) (-890 |#1|) (-1105 (-388)) (-654 (-270)))) (-15 -1846 ((-1146 (-227)) (-890 |#1|) (-1105 (-388)))) (-15 -1800 ((-1283) |#1| (-1105 (-388)) (-1105 (-388)) (-654 (-270)))) (-15 -1800 ((-1283) |#1| (-1105 (-388)) (-1105 (-388)))) (-15 -1846 ((-1146 (-227)) |#1| (-1105 (-388)) (-1105 (-388)) (-654 (-270)))) (-15 -1846 ((-1146 (-227)) |#1| (-1105 (-388)) (-1105 (-388)))) (-15 -1800 ((-1283) (-893 |#1|) (-1105 (-388)) (-1105 (-388)) (-654 (-270)))) (-15 -1800 ((-1283) (-893 |#1|) (-1105 (-388)) (-1105 (-388)))) (-15 -1846 ((-1146 (-227)) (-893 |#1|) (-1105 (-388)) (-1105 (-388)) (-654 (-270)))) (-15 -1846 ((-1146 (-227)) (-893 |#1|) (-1105 (-388)) (-1105 (-388))))) (-13 (-624 (-546)) (-1113))) (T -266)) -((-1846 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-893 *5)) (-5 *4 (-1105 (-388))) (-4 *5 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1146 (-227))) (-5 *1 (-266 *5)))) (-1846 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-893 *6)) (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270))) (-4 *6 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1146 (-227))) (-5 *1 (-266 *6)))) (-1800 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-893 *5)) (-5 *4 (-1105 (-388))) (-4 *5 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1283)) (-5 *1 (-266 *5)))) (-1800 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-893 *6)) (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270))) (-4 *6 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1283)) (-5 *1 (-266 *6)))) (-1846 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1105 (-388))) (-5 *2 (-1146 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1113))))) (-1846 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1113))))) (-1800 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1105 (-388))) (-5 *2 (-1283)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1113))))) (-1800 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1283)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1113))))) (-1846 (*1 *2 *3 *4) (-12 (-5 *3 (-890 *5)) (-5 *4 (-1105 (-388))) (-4 *5 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1146 (-227))) (-5 *1 (-266 *5)))) (-1846 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 *6)) (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270))) (-4 *6 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1146 (-227))) (-5 *1 (-266 *6)))) (-1800 (*1 *2 *3 *4) (-12 (-5 *3 (-890 *5)) (-5 *4 (-1105 (-388))) (-4 *5 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1283)) (-5 *1 (-266 *5)))) (-1800 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 *6)) (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270))) (-4 *6 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1283)) (-5 *1 (-266 *6)))) (-1800 (*1 *2 *3 *4) (-12 (-5 *3 (-888 *5)) (-5 *4 (-1105 (-388))) (-4 *5 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1282)) (-5 *1 (-266 *5)))) (-1800 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-888 *6)) (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270))) (-4 *6 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1282)) (-5 *1 (-266 *6)))) (-1800 (*1 *2 *3 *4) (-12 (-5 *4 (-1105 (-388))) (-5 *2 (-1282)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1113))))) (-1800 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1282)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1113)))))) -(-10 -7 (-15 -1800 ((-1282) |#1| (-1105 (-388)) (-654 (-270)))) (-15 -1800 ((-1282) |#1| (-1105 (-388)))) (-15 -1800 ((-1282) (-888 |#1|) (-1105 (-388)) (-654 (-270)))) (-15 -1800 ((-1282) (-888 |#1|) (-1105 (-388)))) (-15 -1800 ((-1283) (-890 |#1|) (-1105 (-388)) (-654 (-270)))) (-15 -1800 ((-1283) (-890 |#1|) (-1105 (-388)))) (-15 -1846 ((-1146 (-227)) (-890 |#1|) (-1105 (-388)) (-654 (-270)))) (-15 -1846 ((-1146 (-227)) (-890 |#1|) (-1105 (-388)))) (-15 -1800 ((-1283) |#1| (-1105 (-388)) (-1105 (-388)) (-654 (-270)))) (-15 -1800 ((-1283) |#1| (-1105 (-388)) (-1105 (-388)))) (-15 -1846 ((-1146 (-227)) |#1| (-1105 (-388)) (-1105 (-388)) (-654 (-270)))) (-15 -1846 ((-1146 (-227)) |#1| (-1105 (-388)) (-1105 (-388)))) (-15 -1800 ((-1283) (-893 |#1|) (-1105 (-388)) (-1105 (-388)) (-654 (-270)))) (-15 -1800 ((-1283) (-893 |#1|) (-1105 (-388)) (-1105 (-388)))) (-15 -1846 ((-1146 (-227)) (-893 |#1|) (-1105 (-388)) (-1105 (-388)) (-654 (-270)))) (-15 -1846 ((-1146 (-227)) (-893 |#1|) (-1105 (-388)) (-1105 (-388))))) -((-1800 (((-1283) (-654 (-227)) (-654 (-227)) (-654 (-227)) (-654 (-270))) 23) (((-1283) (-654 (-227)) (-654 (-227)) (-654 (-227))) 24) (((-1282) (-654 (-954 (-227))) (-654 (-270))) 16) (((-1282) (-654 (-954 (-227)))) 17) (((-1282) (-654 (-227)) (-654 (-227)) (-654 (-270))) 20) (((-1282) (-654 (-227)) (-654 (-227))) 21))) -(((-267) (-10 -7 (-15 -1800 ((-1282) (-654 (-227)) (-654 (-227)))) (-15 -1800 ((-1282) (-654 (-227)) (-654 (-227)) (-654 (-270)))) (-15 -1800 ((-1282) (-654 (-954 (-227))))) (-15 -1800 ((-1282) (-654 (-954 (-227))) (-654 (-270)))) (-15 -1800 ((-1283) (-654 (-227)) (-654 (-227)) (-654 (-227)))) (-15 -1800 ((-1283) (-654 (-227)) (-654 (-227)) (-654 (-227)) (-654 (-270)))))) (T -267)) -((-1800 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-654 (-227))) (-5 *4 (-654 (-270))) (-5 *2 (-1283)) (-5 *1 (-267)))) (-1800 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1283)) (-5 *1 (-267)))) (-1800 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-954 (-227)))) (-5 *4 (-654 (-270))) (-5 *2 (-1282)) (-5 *1 (-267)))) (-1800 (*1 *2 *3) (-12 (-5 *3 (-654 (-954 (-227)))) (-5 *2 (-1282)) (-5 *1 (-267)))) (-1800 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-654 (-227))) (-5 *4 (-654 (-270))) (-5 *2 (-1282)) (-5 *1 (-267)))) (-1800 (*1 *2 *3 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1282)) (-5 *1 (-267))))) -(-10 -7 (-15 -1800 ((-1282) (-654 (-227)) (-654 (-227)))) (-15 -1800 ((-1282) (-654 (-227)) (-654 (-227)) (-654 (-270)))) (-15 -1800 ((-1282) (-654 (-954 (-227))))) (-15 -1800 ((-1282) (-654 (-954 (-227))) (-654 (-270)))) (-15 -1800 ((-1283) (-654 (-227)) (-654 (-227)) (-654 (-227)))) (-15 -1800 ((-1283) (-654 (-227)) (-654 (-227)) (-654 (-227)) (-654 (-270))))) -((-4374 (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2991 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-654 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2991 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 25)) (-4259 (((-932) (-654 (-270)) (-932)) 52)) (-2612 (((-932) (-654 (-270)) (-932)) 51)) (-1997 (((-654 (-388)) (-654 (-270)) (-654 (-388))) 68)) (-2652 (((-388) (-654 (-270)) (-388)) 57)) (-4117 (((-932) (-654 (-270)) (-932)) 53)) (-2490 (((-112) (-654 (-270)) (-112)) 27)) (-3877 (((-1172) (-654 (-270)) (-1172)) 19)) (-1442 (((-1172) (-654 (-270)) (-1172)) 26)) (-2554 (((-1146 (-227)) (-654 (-270))) 46)) (-1631 (((-654 (-1107 (-388))) (-654 (-270)) (-654 (-1107 (-388)))) 40)) (-3583 (((-884) (-654 (-270)) (-884)) 32)) (-3982 (((-884) (-654 (-270)) (-884)) 33)) (-1321 (((-1 (-954 (-227)) (-954 (-227))) (-654 (-270)) (-1 (-954 (-227)) (-954 (-227)))) 63)) (-1433 (((-112) (-654 (-270)) (-112)) 14)) (-1540 (((-112) (-654 (-270)) (-112)) 13))) -(((-268) (-10 -7 (-15 -1540 ((-112) (-654 (-270)) (-112))) (-15 -1433 ((-112) (-654 (-270)) (-112))) (-15 -4374 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2991 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-654 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2991 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3877 ((-1172) (-654 (-270)) (-1172))) (-15 -1442 ((-1172) (-654 (-270)) (-1172))) (-15 -2490 ((-112) (-654 (-270)) (-112))) (-15 -3583 ((-884) (-654 (-270)) (-884))) (-15 -3982 ((-884) (-654 (-270)) (-884))) (-15 -1631 ((-654 (-1107 (-388))) (-654 (-270)) (-654 (-1107 (-388))))) (-15 -2612 ((-932) (-654 (-270)) (-932))) (-15 -4259 ((-932) (-654 (-270)) (-932))) (-15 -2554 ((-1146 (-227)) (-654 (-270)))) (-15 -4117 ((-932) (-654 (-270)) (-932))) (-15 -2652 ((-388) (-654 (-270)) (-388))) (-15 -1321 ((-1 (-954 (-227)) (-954 (-227))) (-654 (-270)) (-1 (-954 (-227)) (-954 (-227))))) (-15 -1997 ((-654 (-388)) (-654 (-270)) (-654 (-388)))))) (T -268)) -((-1997 (*1 *2 *3 *2) (-12 (-5 *2 (-654 (-388))) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-1321 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-954 (-227)) (-954 (-227)))) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-2652 (*1 *2 *3 *2) (-12 (-5 *2 (-388)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-4117 (*1 *2 *3 *2) (-12 (-5 *2 (-932)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-2554 (*1 *2 *3) (-12 (-5 *3 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-268)))) (-4259 (*1 *2 *3 *2) (-12 (-5 *2 (-932)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-2612 (*1 *2 *3 *2) (-12 (-5 *2 (-932)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-1631 (*1 *2 *3 *2) (-12 (-5 *2 (-654 (-1107 (-388)))) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-3982 (*1 *2 *3 *2) (-12 (-5 *2 (-884)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-3583 (*1 *2 *3 *2) (-12 (-5 *2 (-884)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-2490 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-1442 (*1 *2 *3 *2) (-12 (-5 *2 (-1172)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-3877 (*1 *2 *3 *2) (-12 (-5 *2 (-1172)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-4374 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2991 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-1433 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-1540 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))) -(-10 -7 (-15 -1540 ((-112) (-654 (-270)) (-112))) (-15 -1433 ((-112) (-654 (-270)) (-112))) (-15 -4374 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2991 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-654 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2991 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3877 ((-1172) (-654 (-270)) (-1172))) (-15 -1442 ((-1172) (-654 (-270)) (-1172))) (-15 -2490 ((-112) (-654 (-270)) (-112))) (-15 -3583 ((-884) (-654 (-270)) (-884))) (-15 -3982 ((-884) (-654 (-270)) (-884))) (-15 -1631 ((-654 (-1107 (-388))) (-654 (-270)) (-654 (-1107 (-388))))) (-15 -2612 ((-932) (-654 (-270)) (-932))) (-15 -4259 ((-932) (-654 (-270)) (-932))) (-15 -2554 ((-1146 (-227)) (-654 (-270)))) (-15 -4117 ((-932) (-654 (-270)) (-932))) (-15 -2652 ((-388) (-654 (-270)) (-388))) (-15 -1321 ((-1 (-954 (-227)) (-954 (-227))) (-654 (-270)) (-1 (-954 (-227)) (-954 (-227))))) (-15 -1997 ((-654 (-388)) (-654 (-270)) (-654 (-388))))) -((-1980 (((-3 |#1| "failed") (-654 (-270)) (-1190)) 17))) -(((-269 |#1|) (-10 -7 (-15 -1980 ((-3 |#1| "failed") (-654 (-270)) (-1190)))) (-1231)) (T -269)) -((-1980 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-654 (-270))) (-5 *4 (-1190)) (-5 *1 (-269 *2)) (-4 *2 (-1231))))) -(-10 -7 (-15 -1980 ((-3 |#1| "failed") (-654 (-270)) (-1190)))) -((-2849 (((-112) $ $) NIL)) (-4374 (($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2991 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 24)) (-4259 (($ (-932)) 81)) (-2612 (($ (-932)) 80)) (-2785 (($ (-654 (-388))) 87)) (-2652 (($ (-388)) 66)) (-4117 (($ (-932)) 82)) (-2490 (($ (-112)) 33)) (-3877 (($ (-1172)) 28)) (-1442 (($ (-1172)) 29)) (-2554 (($ (-1146 (-227))) 76)) (-1631 (($ (-654 (-1107 (-388)))) 72)) (-2367 (($ (-654 (-1107 (-388)))) 68) (($ (-654 (-1107 (-417 (-574))))) 71)) (-2920 (($ (-388)) 38) (($ (-884)) 42)) (-2464 (((-112) (-654 $) (-1190)) 100)) (-1980 (((-3 (-52) "failed") (-654 $) (-1190)) 102)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3702 (($ (-388)) 43) (($ (-884)) 44)) (-3487 (($ (-1 (-954 (-227)) (-954 (-227)))) 65)) (-1321 (($ (-1 (-954 (-227)) (-954 (-227)))) 83)) (-4101 (($ (-1 (-227) (-227))) 48) (($ (-1 (-227) (-227) (-227))) 52) (($ (-1 (-227) (-227) (-227) (-227))) 56)) (-2943 (((-872) $) 93)) (-2830 (($ (-112)) 34) (($ (-654 (-1107 (-388)))) 60)) (-3284 (((-112) $ $) NIL)) (-1540 (($ (-112)) 35)) (-2981 (((-112) $ $) 97))) -(((-270) (-13 (-1113) (-10 -8 (-15 -1540 ($ (-112))) (-15 -2830 ($ (-112))) (-15 -4374 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2991 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3877 ($ (-1172))) (-15 -1442 ($ (-1172))) (-15 -2490 ($ (-112))) (-15 -2830 ($ (-654 (-1107 (-388))))) (-15 -3487 ($ (-1 (-954 (-227)) (-954 (-227))))) (-15 -2920 ($ (-388))) (-15 -2920 ($ (-884))) (-15 -3702 ($ (-388))) (-15 -3702 ($ (-884))) (-15 -4101 ($ (-1 (-227) (-227)))) (-15 -4101 ($ (-1 (-227) (-227) (-227)))) (-15 -4101 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -2652 ($ (-388))) (-15 -2367 ($ (-654 (-1107 (-388))))) (-15 -2367 ($ (-654 (-1107 (-417 (-574)))))) (-15 -1631 ($ (-654 (-1107 (-388))))) (-15 -2554 ($ (-1146 (-227)))) (-15 -2612 ($ (-932))) (-15 -4259 ($ (-932))) (-15 -4117 ($ (-932))) (-15 -1321 ($ (-1 (-954 (-227)) (-954 (-227))))) (-15 -2785 ($ (-654 (-388)))) (-15 -1980 ((-3 (-52) "failed") (-654 $) (-1190))) (-15 -2464 ((-112) (-654 $) (-1190)))))) (T -270)) -((-1540 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2991 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-270)))) (-3877 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-270)))) (-1442 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-270)))) (-2490 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-654 (-1107 (-388)))) (-5 *1 (-270)))) (-3487 (*1 *1 *2) (-12 (-5 *2 (-1 (-954 (-227)) (-954 (-227)))) (-5 *1 (-270)))) (-2920 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270)))) (-2920 (*1 *1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-270)))) (-3702 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270)))) (-3702 (*1 *1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-270)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270)))) (-2367 (*1 *1 *2) (-12 (-5 *2 (-654 (-1107 (-388)))) (-5 *1 (-270)))) (-2367 (*1 *1 *2) (-12 (-5 *2 (-654 (-1107 (-417 (-574))))) (-5 *1 (-270)))) (-1631 (*1 *1 *2) (-12 (-5 *2 (-654 (-1107 (-388)))) (-5 *1 (-270)))) (-2554 (*1 *1 *2) (-12 (-5 *2 (-1146 (-227))) (-5 *1 (-270)))) (-2612 (*1 *1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-270)))) (-4259 (*1 *1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-270)))) (-4117 (*1 *1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-270)))) (-1321 (*1 *1 *2) (-12 (-5 *2 (-1 (-954 (-227)) (-954 (-227)))) (-5 *1 (-270)))) (-2785 (*1 *1 *2) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-270)))) (-1980 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-654 (-270))) (-5 *4 (-1190)) (-5 *2 (-52)) (-5 *1 (-270)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-270))) (-5 *4 (-1190)) (-5 *2 (-112)) (-5 *1 (-270))))) -(-13 (-1113) (-10 -8 (-15 -1540 ($ (-112))) (-15 -2830 ($ (-112))) (-15 -4374 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2991 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3877 ($ (-1172))) (-15 -1442 ($ (-1172))) (-15 -2490 ($ (-112))) (-15 -2830 ($ (-654 (-1107 (-388))))) (-15 -3487 ($ (-1 (-954 (-227)) (-954 (-227))))) (-15 -2920 ($ (-388))) (-15 -2920 ($ (-884))) (-15 -3702 ($ (-388))) (-15 -3702 ($ (-884))) (-15 -4101 ($ (-1 (-227) (-227)))) (-15 -4101 ($ (-1 (-227) (-227) (-227)))) (-15 -4101 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -2652 ($ (-388))) (-15 -2367 ($ (-654 (-1107 (-388))))) (-15 -2367 ($ (-654 (-1107 (-417 (-574)))))) (-15 -1631 ($ (-654 (-1107 (-388))))) (-15 -2554 ($ (-1146 (-227)))) (-15 -2612 ($ (-932))) (-15 -4259 ($ (-932))) (-15 -4117 ($ (-932))) (-15 -1321 ($ (-1 (-954 (-227)) (-954 (-227))))) (-15 -2785 ($ (-654 (-388)))) (-15 -1980 ((-3 (-52) "failed") (-654 $) (-1190))) (-15 -2464 ((-112) (-654 $) (-1190))))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-4299 (((-654 (-781)) $) NIL) (((-654 (-781)) $ |#2|) NIL)) (-1336 (((-781) $) NIL) (((-781) $ |#2|) NIL)) (-4355 (((-654 |#3|) $) NIL)) (-4194 (((-1186 $) $ |#3|) NIL) (((-1186 |#1|) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-1575 (($ $) NIL (|has| |#1| (-566)))) (-2085 (((-112) $) NIL (|has| |#1| (-566)))) (-1757 (((-781) $) NIL) (((-781) $ (-654 |#3|)) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3972 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-2568 (($ $) NIL (|has| |#1| (-462)))) (-2827 (((-428 $) $) NIL (|has| |#1| (-462)))) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-2040 (($ $) NIL)) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1138 |#1| |#2|) "failed") $) 23)) (-2206 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1051 (-574)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1138 |#1| |#2|) $) NIL)) (-1463 (($ $ $ |#3|) NIL (|has| |#1| (-174)))) (-1392 (($ $) NIL)) (-2590 (((-699 (-574)) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-1569 (($ $) NIL (|has| |#1| (-462))) (($ $ |#3|) NIL (|has| |#1| (-462)))) (-1380 (((-654 $) $) NIL)) (-2257 (((-112) $) NIL (|has| |#1| (-920)))) (-1661 (($ $ |#1| (-541 |#3|) $) NIL)) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| |#1| (-897 (-388))) (|has| |#3| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| |#1| (-897 (-574))) (|has| |#3| (-897 (-574)))))) (-3884 (((-781) $ |#2|) NIL) (((-781) $) 10)) (-3199 (((-112) $) NIL)) (-1322 (((-781) $) NIL)) (-4345 (($ (-1186 |#1|) |#3|) NIL) (($ (-1186 $) |#3|) NIL)) (-3727 (((-654 $) $) NIL)) (-3869 (((-112) $) NIL)) (-4335 (($ |#1| (-541 |#3|)) NIL) (($ $ |#3| (-781)) NIL) (($ $ (-654 |#3|) (-654 (-781))) NIL)) (-2773 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $ |#3|) NIL)) (-1742 (((-541 |#3|) $) NIL) (((-781) $ |#3|) NIL) (((-654 (-781)) $ (-654 |#3|)) NIL)) (-3708 (($ (-1 (-541 |#3|) (-541 |#3|)) $) NIL)) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-2168 (((-1 $ (-781)) |#2|) NIL) (((-1 $ (-781)) $) NIL (|has| |#1| (-239)))) (-2717 (((-3 |#3| "failed") $) NIL)) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-3706 ((|#3| $) NIL)) (-2832 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-4136 (((-1172) $) NIL)) (-2782 (((-112) $) NIL)) (-2755 (((-3 (-654 $) "failed") $) NIL)) (-2415 (((-3 (-654 $) "failed") $) NIL)) (-2241 (((-3 (-2 (|:| |var| |#3|) (|:| -3715 (-781))) "failed") $) NIL)) (-2591 (($ $) NIL)) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) NIL)) (-1349 ((|#1| $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-462)))) (-2873 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2560 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-2039 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4220 (((-428 $) $) NIL (|has| |#1| (-920)))) (-2838 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2646 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-654 |#3|) (-654 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-654 |#3|) (-654 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-239))) (($ $ (-654 |#2|) (-654 $)) NIL (|has| |#1| (-239))) (($ $ |#2| |#1|) NIL (|has| |#1| (-239))) (($ $ (-654 |#2|) (-654 |#1|)) NIL (|has| |#1| (-239)))) (-2872 (($ $ |#3|) NIL (|has| |#1| (-174)))) (-3905 (($ $ |#3|) NIL) (($ $ (-654 |#3|)) NIL) (($ $ |#3| (-781)) NIL) (($ $ (-654 |#3|) (-654 (-781))) NIL) (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2243 (((-654 |#2|) $) NIL)) (-4202 (((-541 |#3|) $) NIL) (((-781) $ |#3|) NIL) (((-654 (-781)) $ (-654 |#3|)) NIL) (((-781) $ |#2|) NIL)) (-1836 (((-903 (-388)) $) NIL (-12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#3| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#3| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| |#1| (-624 (-546))) (|has| |#3| (-624 (-546)))))) (-3069 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ |#3|) NIL (|has| |#1| (-462)))) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-920))))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1138 |#1| |#2|)) 32) (($ (-417 (-574))) NIL (-2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-2530 (((-654 |#1|) $) NIL)) (-3087 ((|#1| $ (-541 |#3|)) NIL) (($ $ |#3| (-781)) NIL) (($ $ (-654 |#3|) (-654 (-781))) NIL)) (-3298 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#1| (-920))) (|has| |#1| (-146))))) (-1364 (((-781)) NIL T CONST)) (-3772 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-3610 (($ $ |#3|) NIL) (($ $ (-654 |#3|)) NIL) (($ $ |#3| (-781)) NIL) (($ $ (-654 |#3|) (-654 (-781))) NIL) (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-271 |#1| |#2| |#3|) (-13 (-260 |#1| |#2| |#3| (-541 |#3|)) (-1051 (-1138 |#1| |#2|))) (-1062) (-860) (-273 |#2|)) (T -271)) -NIL -(-13 (-260 |#1| |#2| |#3| (-541 |#3|)) (-1051 (-1138 |#1| |#2|))) -((-1336 (((-781) $) 37)) (-1696 (((-3 |#2| "failed") $) 22)) (-2206 ((|#2| $) 33)) (-3905 (($ $ (-781)) 18) (($ $) 14)) (-2943 (((-872) $) 32) (($ |#2|) 11)) (-2981 (((-112) $ $) 26)) (-3007 (((-112) $ $) 36))) -(((-272 |#1| |#2|) (-10 -8 (-15 -1336 ((-781) |#1|)) (-15 -2943 (|#1| |#2|)) (-15 -1696 ((-3 |#2| "failed") |#1|)) (-15 -2206 (|#2| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -3007 ((-112) |#1| |#1|)) (-15 -2943 ((-872) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) (-273 |#2|) (-860)) (T -272)) -NIL -(-10 -8 (-15 -1336 ((-781) |#1|)) (-15 -2943 (|#1| |#2|)) (-15 -1696 ((-3 |#2| "failed") |#1|)) (-15 -2206 (|#2| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -3007 ((-112) |#1| |#1|)) (-15 -2943 ((-872) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) -((-2849 (((-112) $ $) 7)) (-1336 (((-781) $) 22)) (-1488 ((|#1| $) 23)) (-1696 (((-3 |#1| "failed") $) 27)) (-2206 ((|#1| $) 28)) (-3884 (((-781) $) 24)) (-3659 (($ $ $) 14)) (-4257 (($ $ $) 15)) (-2168 (($ |#1| (-781)) 25)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-3905 (($ $ (-781)) 31) (($ $) 29)) (-2943 (((-872) $) 12) (($ |#1|) 26)) (-3284 (((-112) $ $) 9)) (-3610 (($ $ (-781)) 32) (($ $) 30)) (-3042 (((-112) $ $) 17)) (-3018 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3030 (((-112) $ $) 16)) (-3007 (((-112) $ $) 19))) -(((-273 |#1|) (-141) (-860)) (T -273)) -((-2943 (*1 *1 *2) (-12 (-4 *1 (-273 *2)) (-4 *2 (-860)))) (-2168 (*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-273 *2)) (-4 *2 (-860)))) (-3884 (*1 *2 *1) (-12 (-4 *1 (-273 *3)) (-4 *3 (-860)) (-5 *2 (-781)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-273 *2)) (-4 *2 (-860)))) (-1336 (*1 *2 *1) (-12 (-4 *1 (-273 *3)) (-4 *3 (-860)) (-5 *2 (-781))))) -(-13 (-860) (-237) (-1051 |t#1|) (-10 -8 (-15 -2168 ($ |t#1| (-781))) (-15 -3884 ((-781) $)) (-15 -1488 (|t#1| $)) (-15 -1336 ((-781) $)) (-15 -2943 ($ |t#1|)))) -(((-102) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-235 $) . T) ((-237) . T) ((-860) . T) ((-1051 |#1|) . T) ((-1113) . T) ((-1231) . T)) -((-4355 (((-654 (-1190)) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) 53)) (-1655 (((-654 (-1190)) (-324 (-227)) (-781)) 94)) (-2338 (((-3 (-324 (-227)) "failed") (-324 (-227))) 63)) (-4365 (((-324 (-227)) (-324 (-227))) 79)) (-3827 (((-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 38)) (-2724 (((-112) (-654 (-324 (-227)))) 104)) (-3579 (((-112) (-324 (-227))) 36)) (-3317 (((-654 (-1172)) (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))))) 132)) (-2586 (((-654 (-324 (-227))) (-654 (-324 (-227)))) 108)) (-2596 (((-654 (-324 (-227))) (-654 (-324 (-227)))) 106)) (-4341 (((-699 (-227)) (-654 (-324 (-227))) (-781)) 120)) (-3160 (((-112) (-324 (-227))) 31) (((-112) (-654 (-324 (-227)))) 105)) (-1319 (((-654 (-227)) (-654 (-853 (-227))) (-227)) 15)) (-3465 (((-388) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) 126)) (-3683 (((-1048) (-1190) (-1048)) 46))) -(((-274) (-10 -7 (-15 -1319 ((-654 (-227)) (-654 (-853 (-227))) (-227))) (-15 -3827 ((-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))) (-15 -2338 ((-3 (-324 (-227)) "failed") (-324 (-227)))) (-15 -4365 ((-324 (-227)) (-324 (-227)))) (-15 -2724 ((-112) (-654 (-324 (-227))))) (-15 -3160 ((-112) (-654 (-324 (-227))))) (-15 -3160 ((-112) (-324 (-227)))) (-15 -4341 ((-699 (-227)) (-654 (-324 (-227))) (-781))) (-15 -2596 ((-654 (-324 (-227))) (-654 (-324 (-227))))) (-15 -2586 ((-654 (-324 (-227))) (-654 (-324 (-227))))) (-15 -3579 ((-112) (-324 (-227)))) (-15 -4355 ((-654 (-1190)) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))) (-15 -1655 ((-654 (-1190)) (-324 (-227)) (-781))) (-15 -3683 ((-1048) (-1190) (-1048))) (-15 -3465 ((-388) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))) (-15 -3317 ((-654 (-1172)) (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))))))) (T -274)) -((-3317 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))))) (-5 *2 (-654 (-1172))) (-5 *1 (-274)))) (-3465 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) (-5 *2 (-388)) (-5 *1 (-274)))) (-3683 (*1 *2 *3 *2) (-12 (-5 *2 (-1048)) (-5 *3 (-1190)) (-5 *1 (-274)))) (-1655 (*1 *2 *3 *4) (-12 (-5 *3 (-324 (-227))) (-5 *4 (-781)) (-5 *2 (-654 (-1190))) (-5 *1 (-274)))) (-4355 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) (-5 *2 (-654 (-1190))) (-5 *1 (-274)))) (-3579 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-112)) (-5 *1 (-274)))) (-2586 (*1 *2 *2) (-12 (-5 *2 (-654 (-324 (-227)))) (-5 *1 (-274)))) (-2596 (*1 *2 *2) (-12 (-5 *2 (-654 (-324 (-227)))) (-5 *1 (-274)))) (-4341 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *4 (-781)) (-5 *2 (-699 (-227))) (-5 *1 (-274)))) (-3160 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-112)) (-5 *1 (-274)))) (-3160 (*1 *2 *3) (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *2 (-112)) (-5 *1 (-274)))) (-2724 (*1 *2 *3) (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *2 (-112)) (-5 *1 (-274)))) (-4365 (*1 *2 *2) (-12 (-5 *2 (-324 (-227))) (-5 *1 (-274)))) (-2338 (*1 *2 *2) (|partial| -12 (-5 *2 (-324 (-227))) (-5 *1 (-274)))) (-3827 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (-5 *1 (-274)))) (-1319 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-853 (-227)))) (-5 *4 (-227)) (-5 *2 (-654 *4)) (-5 *1 (-274))))) -(-10 -7 (-15 -1319 ((-654 (-227)) (-654 (-853 (-227))) (-227))) (-15 -3827 ((-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))) (-15 -2338 ((-3 (-324 (-227)) "failed") (-324 (-227)))) (-15 -4365 ((-324 (-227)) (-324 (-227)))) (-15 -2724 ((-112) (-654 (-324 (-227))))) (-15 -3160 ((-112) (-654 (-324 (-227))))) (-15 -3160 ((-112) (-324 (-227)))) (-15 -4341 ((-699 (-227)) (-654 (-324 (-227))) (-781))) (-15 -2596 ((-654 (-324 (-227))) (-654 (-324 (-227))))) (-15 -2586 ((-654 (-324 (-227))) (-654 (-324 (-227))))) (-15 -3579 ((-112) (-324 (-227)))) (-15 -4355 ((-654 (-1190)) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))) (-15 -1655 ((-654 (-1190)) (-324 (-227)) (-781))) (-15 -3683 ((-1048) (-1190) (-1048))) (-15 -3465 ((-388) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))) (-15 -3317 ((-654 (-1172)) (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))))))) -((-2849 (((-112) $ $) NIL)) (-2158 (((-1048) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) NIL) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 56)) (-3678 (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 32) (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-275) (-849)) (T -275)) -NIL -(-849) -((-2849 (((-112) $ $) NIL)) (-2158 (((-1048) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) 72) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 63)) (-3678 (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 41) (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) 43)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-276) (-849)) (T -276)) -NIL -(-849) -((-2849 (((-112) $ $) NIL)) (-2158 (((-1048) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) 90) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 85)) (-3678 (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 52) (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) 65)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-277) (-849)) (T -277)) -NIL -(-849) -((-2849 (((-112) $ $) NIL)) (-2158 (((-1048) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) NIL) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 73)) (-3678 (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 45) (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-278) (-849)) (T -278)) -NIL -(-849) -((-2849 (((-112) $ $) NIL)) (-2158 (((-1048) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) NIL) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 65)) (-3678 (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 31) (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-279) (-849)) (T -279)) -NIL -(-849) -((-2849 (((-112) $ $) NIL)) (-2158 (((-1048) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) NIL) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 90)) (-3678 (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 33) (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-280) (-849)) (T -280)) -NIL -(-849) -((-2849 (((-112) $ $) NIL)) (-2158 (((-1048) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) NIL) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 87)) (-3678 (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 32) (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-281) (-849)) (T -281)) -NIL -(-849) -((-2849 (((-112) $ $) NIL)) (-3659 (($ $ $) NIL)) (-4257 (($ $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3032 (((-654 (-574)) $) 29)) (-4202 (((-781) $) 27)) (-2943 (((-872) $) 33) (($ (-654 (-574))) 23)) (-3284 (((-112) $ $) NIL)) (-4160 (($ (-781)) 30)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 9)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) 17))) -(((-282) (-13 (-860) (-10 -8 (-15 -2943 ($ (-654 (-574)))) (-15 -4202 ((-781) $)) (-15 -3032 ((-654 (-574)) $)) (-15 -4160 ($ (-781)))))) (T -282)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-282)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-282)))) (-3032 (*1 *2 *1) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-282)))) (-4160 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-282))))) -(-13 (-860) (-10 -8 (-15 -2943 ($ (-654 (-574)))) (-15 -4202 ((-781) $)) (-15 -3032 ((-654 (-574)) $)) (-15 -4160 ($ (-781))))) -((-2364 ((|#2| |#2|) 77)) (-2247 ((|#2| |#2|) 65)) (-3973 (((-3 |#2| "failed") |#2| (-654 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-2343 ((|#2| |#2|) 75)) (-2227 ((|#2| |#2|) 63)) (-2389 ((|#2| |#2|) 79)) (-2267 ((|#2| |#2|) 67)) (-3000 ((|#2|) 46)) (-4175 (((-115) (-115)) 100)) (-3119 ((|#2| |#2|) 61)) (-4207 (((-112) |#2|) 147)) (-3367 ((|#2| |#2|) 195)) (-4385 ((|#2| |#2|) 171)) (-3991 ((|#2|) 59)) (-4432 ((|#2|) 58)) (-2190 ((|#2| |#2|) 191)) (-3532 ((|#2| |#2|) 167)) (-2043 ((|#2| |#2|) 199)) (-4250 ((|#2| |#2|) 175)) (-3464 ((|#2| |#2|) 163)) (-3243 ((|#2| |#2|) 165)) (-3376 ((|#2| |#2|) 201)) (-2969 ((|#2| |#2|) 177)) (-2690 ((|#2| |#2|) 197)) (-2950 ((|#2| |#2|) 173)) (-3184 ((|#2| |#2|) 193)) (-3856 ((|#2| |#2|) 169)) (-3862 ((|#2| |#2|) 207)) (-1850 ((|#2| |#2|) 183)) (-1919 ((|#2| |#2|) 203)) (-2064 ((|#2| |#2|) 179)) (-1886 ((|#2| |#2|) 211)) (-2472 ((|#2| |#2|) 187)) (-3857 ((|#2| |#2|) 213)) (-2313 ((|#2| |#2|) 189)) (-3381 ((|#2| |#2|) 209)) (-2522 ((|#2| |#2|) 185)) (-1610 ((|#2| |#2|) 205)) (-3549 ((|#2| |#2|) 181)) (-1609 ((|#2| |#2|) 62)) (-2402 ((|#2| |#2|) 80)) (-2275 ((|#2| |#2|) 68)) (-2375 ((|#2| |#2|) 78)) (-2256 ((|#2| |#2|) 66)) (-2352 ((|#2| |#2|) 76)) (-2237 ((|#2| |#2|) 64)) (-3225 (((-112) (-115)) 98)) (-2441 ((|#2| |#2|) 83)) (-2305 ((|#2| |#2|) 71)) (-2414 ((|#2| |#2|) 81)) (-2287 ((|#2| |#2|) 69)) (-2465 ((|#2| |#2|) 85)) (-2325 ((|#2| |#2|) 73)) (-2521 ((|#2| |#2|) 86)) (-2334 ((|#2| |#2|) 74)) (-2452 ((|#2| |#2|) 84)) (-2315 ((|#2| |#2|) 72)) (-2428 ((|#2| |#2|) 82)) (-2297 ((|#2| |#2|) 70))) -(((-283 |#1| |#2|) (-10 -7 (-15 -1609 (|#2| |#2|)) (-15 -3119 (|#2| |#2|)) (-15 -2227 (|#2| |#2|)) (-15 -2237 (|#2| |#2|)) (-15 -2247 (|#2| |#2|)) (-15 -2256 (|#2| |#2|)) (-15 -2267 (|#2| |#2|)) (-15 -2275 (|#2| |#2|)) (-15 -2287 (|#2| |#2|)) (-15 -2297 (|#2| |#2|)) (-15 -2305 (|#2| |#2|)) (-15 -2315 (|#2| |#2|)) (-15 -2325 (|#2| |#2|)) (-15 -2334 (|#2| |#2|)) (-15 -2343 (|#2| |#2|)) (-15 -2352 (|#2| |#2|)) (-15 -2364 (|#2| |#2|)) (-15 -2375 (|#2| |#2|)) (-15 -2389 (|#2| |#2|)) (-15 -2402 (|#2| |#2|)) (-15 -2414 (|#2| |#2|)) (-15 -2428 (|#2| |#2|)) (-15 -2441 (|#2| |#2|)) (-15 -2452 (|#2| |#2|)) (-15 -2465 (|#2| |#2|)) (-15 -2521 (|#2| |#2|)) (-15 -3000 (|#2|)) (-15 -3225 ((-112) (-115))) (-15 -4175 ((-115) (-115))) (-15 -4432 (|#2|)) (-15 -3991 (|#2|)) (-15 -3243 (|#2| |#2|)) (-15 -3464 (|#2| |#2|)) (-15 -3532 (|#2| |#2|)) (-15 -3856 (|#2| |#2|)) (-15 -4385 (|#2| |#2|)) (-15 -2950 (|#2| |#2|)) (-15 -4250 (|#2| |#2|)) (-15 -2969 (|#2| |#2|)) (-15 -2064 (|#2| |#2|)) (-15 -3549 (|#2| |#2|)) (-15 -1850 (|#2| |#2|)) (-15 -2522 (|#2| |#2|)) (-15 -2472 (|#2| |#2|)) (-15 -2313 (|#2| |#2|)) (-15 -2190 (|#2| |#2|)) (-15 -3184 (|#2| |#2|)) (-15 -3367 (|#2| |#2|)) (-15 -2690 (|#2| |#2|)) (-15 -2043 (|#2| |#2|)) (-15 -3376 (|#2| |#2|)) (-15 -1919 (|#2| |#2|)) (-15 -1610 (|#2| |#2|)) (-15 -3862 (|#2| |#2|)) (-15 -3381 (|#2| |#2|)) (-15 -1886 (|#2| |#2|)) (-15 -3857 (|#2| |#2|)) (-15 -3973 ((-3 |#2| "failed") |#2| (-654 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -4207 ((-112) |#2|))) (-566) (-13 (-440 |#1|) (-1015))) (T -283)) -((-4207 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-283 *4 *3)) (-4 *3 (-13 (-440 *4) (-1015))))) (-3973 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-654 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-440 *4) (-1015))) (-4 *4 (-566)) (-5 *1 (-283 *4 *2)))) (-3857 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-1886 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-3381 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-3862 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-1610 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-1919 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-3376 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2043 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2690 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-3367 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-3184 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2190 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2313 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2472 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2522 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-1850 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-3549 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2064 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2969 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-4250 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2950 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-4385 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-3856 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-3532 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-3464 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-3243 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-3991 (*1 *2) (-12 (-4 *2 (-13 (-440 *3) (-1015))) (-5 *1 (-283 *3 *2)) (-4 *3 (-566)))) (-4432 (*1 *2) (-12 (-4 *2 (-13 (-440 *3) (-1015))) (-5 *1 (-283 *3 *2)) (-4 *3 (-566)))) (-4175 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-283 *3 *4)) (-4 *4 (-13 (-440 *3) (-1015))))) (-3225 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-283 *4 *5)) (-4 *5 (-13 (-440 *4) (-1015))))) (-3000 (*1 *2) (-12 (-4 *2 (-13 (-440 *3) (-1015))) (-5 *1 (-283 *3 *2)) (-4 *3 (-566)))) (-2521 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2465 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2452 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2441 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2428 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2414 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2402 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2389 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2375 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2364 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2352 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2343 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2334 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2325 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2315 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2305 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2297 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2287 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2275 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2267 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2256 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2247 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2237 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-2227 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-3119 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015))))) (-1609 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015)))))) -(-10 -7 (-15 -1609 (|#2| |#2|)) (-15 -3119 (|#2| |#2|)) (-15 -2227 (|#2| |#2|)) (-15 -2237 (|#2| |#2|)) (-15 -2247 (|#2| |#2|)) (-15 -2256 (|#2| |#2|)) (-15 -2267 (|#2| |#2|)) (-15 -2275 (|#2| |#2|)) (-15 -2287 (|#2| |#2|)) (-15 -2297 (|#2| |#2|)) (-15 -2305 (|#2| |#2|)) (-15 -2315 (|#2| |#2|)) (-15 -2325 (|#2| |#2|)) (-15 -2334 (|#2| |#2|)) (-15 -2343 (|#2| |#2|)) (-15 -2352 (|#2| |#2|)) (-15 -2364 (|#2| |#2|)) (-15 -2375 (|#2| |#2|)) (-15 -2389 (|#2| |#2|)) (-15 -2402 (|#2| |#2|)) (-15 -2414 (|#2| |#2|)) (-15 -2428 (|#2| |#2|)) (-15 -2441 (|#2| |#2|)) (-15 -2452 (|#2| |#2|)) (-15 -2465 (|#2| |#2|)) (-15 -2521 (|#2| |#2|)) (-15 -3000 (|#2|)) (-15 -3225 ((-112) (-115))) (-15 -4175 ((-115) (-115))) (-15 -4432 (|#2|)) (-15 -3991 (|#2|)) (-15 -3243 (|#2| |#2|)) (-15 -3464 (|#2| |#2|)) (-15 -3532 (|#2| |#2|)) (-15 -3856 (|#2| |#2|)) (-15 -4385 (|#2| |#2|)) (-15 -2950 (|#2| |#2|)) (-15 -4250 (|#2| |#2|)) (-15 -2969 (|#2| |#2|)) (-15 -2064 (|#2| |#2|)) (-15 -3549 (|#2| |#2|)) (-15 -1850 (|#2| |#2|)) (-15 -2522 (|#2| |#2|)) (-15 -2472 (|#2| |#2|)) (-15 -2313 (|#2| |#2|)) (-15 -2190 (|#2| |#2|)) (-15 -3184 (|#2| |#2|)) (-15 -3367 (|#2| |#2|)) (-15 -2690 (|#2| |#2|)) (-15 -2043 (|#2| |#2|)) (-15 -3376 (|#2| |#2|)) (-15 -1919 (|#2| |#2|)) (-15 -1610 (|#2| |#2|)) (-15 -3862 (|#2| |#2|)) (-15 -3381 (|#2| |#2|)) (-15 -1886 (|#2| |#2|)) (-15 -3857 (|#2| |#2|)) (-15 -3973 ((-3 |#2| "failed") |#2| (-654 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -4207 ((-112) |#2|))) -((-3940 (((-3 |#2| "failed") (-654 (-622 |#2|)) |#2| (-1190)) 151)) (-1408 ((|#2| (-417 (-574)) |#2|) 49)) (-2745 ((|#2| |#2| (-622 |#2|)) 144)) (-4199 (((-2 (|:| |func| |#2|) (|:| |kers| (-654 (-622 |#2|))) (|:| |vals| (-654 |#2|))) |#2| (-1190)) 143)) (-3161 ((|#2| |#2| (-1190)) 20) ((|#2| |#2|) 23)) (-2580 ((|#2| |#2| (-1190)) 157) ((|#2| |#2|) 155))) -(((-284 |#1| |#2|) (-10 -7 (-15 -2580 (|#2| |#2|)) (-15 -2580 (|#2| |#2| (-1190))) (-15 -4199 ((-2 (|:| |func| |#2|) (|:| |kers| (-654 (-622 |#2|))) (|:| |vals| (-654 |#2|))) |#2| (-1190))) (-15 -3161 (|#2| |#2|)) (-15 -3161 (|#2| |#2| (-1190))) (-15 -3940 ((-3 |#2| "failed") (-654 (-622 |#2|)) |#2| (-1190))) (-15 -2745 (|#2| |#2| (-622 |#2|))) (-15 -1408 (|#2| (-417 (-574)) |#2|))) (-13 (-566) (-1051 (-574)) (-649 (-574))) (-13 (-27) (-1216) (-440 |#1|))) (T -284)) -((-1408 (*1 *2 *3 *2) (-12 (-5 *3 (-417 (-574))) (-4 *4 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *4))))) (-2745 (*1 *2 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *4))) (-4 *4 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-284 *4 *2)))) (-3940 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-654 (-622 *2))) (-5 *4 (-1190)) (-4 *2 (-13 (-27) (-1216) (-440 *5))) (-4 *5 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-284 *5 *2)))) (-3161 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *4))))) (-3161 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *3))))) (-4199 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-4 *5 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-654 (-622 *3))) (|:| |vals| (-654 *3)))) (-5 *1 (-284 *5 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5))))) (-2580 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *4))))) (-2580 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *3)))))) -(-10 -7 (-15 -2580 (|#2| |#2|)) (-15 -2580 (|#2| |#2| (-1190))) (-15 -4199 ((-2 (|:| |func| |#2|) (|:| |kers| (-654 (-622 |#2|))) (|:| |vals| (-654 |#2|))) |#2| (-1190))) (-15 -3161 (|#2| |#2|)) (-15 -3161 (|#2| |#2| (-1190))) (-15 -3940 ((-3 |#2| "failed") (-654 (-622 |#2|)) |#2| (-1190))) (-15 -2745 (|#2| |#2| (-622 |#2|))) (-15 -1408 (|#2| (-417 (-574)) |#2|))) -((-2149 (((-3 |#3| "failed") |#3|) 120)) (-2364 ((|#3| |#3|) 142)) (-4187 (((-3 |#3| "failed") |#3|) 89)) (-2247 ((|#3| |#3|) 132)) (-2821 (((-3 |#3| "failed") |#3|) 65)) (-2343 ((|#3| |#3|) 140)) (-1333 (((-3 |#3| "failed") |#3|) 53)) (-2227 ((|#3| |#3|) 130)) (-3478 (((-3 |#3| "failed") |#3|) 122)) (-2389 ((|#3| |#3|) 144)) (-2865 (((-3 |#3| "failed") |#3|) 91)) (-2267 ((|#3| |#3|) 134)) (-2266 (((-3 |#3| "failed") |#3| (-781)) 41)) (-2644 (((-3 |#3| "failed") |#3|) 81)) (-3119 ((|#3| |#3|) 129)) (-4280 (((-3 |#3| "failed") |#3|) 51)) (-1609 ((|#3| |#3|) 128)) (-3043 (((-3 |#3| "failed") |#3|) 123)) (-2402 ((|#3| |#3|) 145)) (-2604 (((-3 |#3| "failed") |#3|) 92)) (-2275 ((|#3| |#3|) 135)) (-1713 (((-3 |#3| "failed") |#3|) 121)) (-2375 ((|#3| |#3|) 143)) (-3409 (((-3 |#3| "failed") |#3|) 90)) (-2256 ((|#3| |#3|) 133)) (-3189 (((-3 |#3| "failed") |#3|) 67)) (-2352 ((|#3| |#3|) 141)) (-4159 (((-3 |#3| "failed") |#3|) 55)) (-2237 ((|#3| |#3|) 131)) (-2555 (((-3 |#3| "failed") |#3|) 73)) (-2441 ((|#3| |#3|) 148)) (-2448 (((-3 |#3| "failed") |#3|) 114)) (-2305 ((|#3| |#3|) 152)) (-3095 (((-3 |#3| "failed") |#3|) 69)) (-2414 ((|#3| |#3|) 146)) (-2995 (((-3 |#3| "failed") |#3|) 57)) (-2287 ((|#3| |#3|) 136)) (-3181 (((-3 |#3| "failed") |#3|) 77)) (-2465 ((|#3| |#3|) 150)) (-3851 (((-3 |#3| "failed") |#3|) 61)) (-2325 ((|#3| |#3|) 138)) (-3107 (((-3 |#3| "failed") |#3|) 79)) (-2521 ((|#3| |#3|) 151)) (-3926 (((-3 |#3| "failed") |#3|) 63)) (-2334 ((|#3| |#3|) 139)) (-1590 (((-3 |#3| "failed") |#3|) 75)) (-2452 ((|#3| |#3|) 149)) (-4014 (((-3 |#3| "failed") |#3|) 117)) (-2315 ((|#3| |#3|) 153)) (-2371 (((-3 |#3| "failed") |#3|) 71)) (-2428 ((|#3| |#3|) 147)) (-3202 (((-3 |#3| "failed") |#3|) 59)) (-2297 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-417 (-574))) 47 (|has| |#1| (-372))))) -(((-285 |#1| |#2| |#3|) (-13 (-996 |#3|) (-10 -7 (IF (|has| |#1| (-372)) (-15 ** (|#3| |#3| (-417 (-574)))) |%noBranch|) (-15 -1609 (|#3| |#3|)) (-15 -3119 (|#3| |#3|)) (-15 -2227 (|#3| |#3|)) (-15 -2237 (|#3| |#3|)) (-15 -2247 (|#3| |#3|)) (-15 -2256 (|#3| |#3|)) (-15 -2267 (|#3| |#3|)) (-15 -2275 (|#3| |#3|)) (-15 -2287 (|#3| |#3|)) (-15 -2297 (|#3| |#3|)) (-15 -2305 (|#3| |#3|)) (-15 -2315 (|#3| |#3|)) (-15 -2325 (|#3| |#3|)) (-15 -2334 (|#3| |#3|)) (-15 -2343 (|#3| |#3|)) (-15 -2352 (|#3| |#3|)) (-15 -2364 (|#3| |#3|)) (-15 -2375 (|#3| |#3|)) (-15 -2389 (|#3| |#3|)) (-15 -2402 (|#3| |#3|)) (-15 -2414 (|#3| |#3|)) (-15 -2428 (|#3| |#3|)) (-15 -2441 (|#3| |#3|)) (-15 -2452 (|#3| |#3|)) (-15 -2465 (|#3| |#3|)) (-15 -2521 (|#3| |#3|)))) (-38 (-417 (-574))) (-1272 |#1|) (-1243 |#1| |#2|)) (T -285)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-417 (-574))) (-4 *4 (-372)) (-4 *4 (-38 *3)) (-4 *5 (-1272 *4)) (-5 *1 (-285 *4 *5 *2)) (-4 *2 (-1243 *4 *5)))) (-1609 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-3119 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2227 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2237 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2247 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2256 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2267 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2275 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2287 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2297 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2305 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2315 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2325 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2334 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2343 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2352 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2364 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2375 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2389 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2402 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2414 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2428 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2441 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2452 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2465 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) (-2521 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4))))) -(-13 (-996 |#3|) (-10 -7 (IF (|has| |#1| (-372)) (-15 ** (|#3| |#3| (-417 (-574)))) |%noBranch|) (-15 -1609 (|#3| |#3|)) (-15 -3119 (|#3| |#3|)) (-15 -2227 (|#3| |#3|)) (-15 -2237 (|#3| |#3|)) (-15 -2247 (|#3| |#3|)) (-15 -2256 (|#3| |#3|)) (-15 -2267 (|#3| |#3|)) (-15 -2275 (|#3| |#3|)) (-15 -2287 (|#3| |#3|)) (-15 -2297 (|#3| |#3|)) (-15 -2305 (|#3| |#3|)) (-15 -2315 (|#3| |#3|)) (-15 -2325 (|#3| |#3|)) (-15 -2334 (|#3| |#3|)) (-15 -2343 (|#3| |#3|)) (-15 -2352 (|#3| |#3|)) (-15 -2364 (|#3| |#3|)) (-15 -2375 (|#3| |#3|)) (-15 -2389 (|#3| |#3|)) (-15 -2402 (|#3| |#3|)) (-15 -2414 (|#3| |#3|)) (-15 -2428 (|#3| |#3|)) (-15 -2441 (|#3| |#3|)) (-15 -2452 (|#3| |#3|)) (-15 -2465 (|#3| |#3|)) (-15 -2521 (|#3| |#3|)))) -((-2149 (((-3 |#3| "failed") |#3|) 70)) (-2364 ((|#3| |#3|) 137)) (-4187 (((-3 |#3| "failed") |#3|) 54)) (-2247 ((|#3| |#3|) 125)) (-2821 (((-3 |#3| "failed") |#3|) 66)) (-2343 ((|#3| |#3|) 135)) (-1333 (((-3 |#3| "failed") |#3|) 50)) (-2227 ((|#3| |#3|) 123)) (-3478 (((-3 |#3| "failed") |#3|) 74)) (-2389 ((|#3| |#3|) 139)) (-2865 (((-3 |#3| "failed") |#3|) 58)) (-2267 ((|#3| |#3|) 127)) (-2266 (((-3 |#3| "failed") |#3| (-781)) 38)) (-2644 (((-3 |#3| "failed") |#3|) 48)) (-3119 ((|#3| |#3|) 111)) (-4280 (((-3 |#3| "failed") |#3|) 46)) (-1609 ((|#3| |#3|) 122)) (-3043 (((-3 |#3| "failed") |#3|) 76)) (-2402 ((|#3| |#3|) 140)) (-2604 (((-3 |#3| "failed") |#3|) 60)) (-2275 ((|#3| |#3|) 128)) (-1713 (((-3 |#3| "failed") |#3|) 72)) (-2375 ((|#3| |#3|) 138)) (-3409 (((-3 |#3| "failed") |#3|) 56)) (-2256 ((|#3| |#3|) 126)) (-3189 (((-3 |#3| "failed") |#3|) 68)) (-2352 ((|#3| |#3|) 136)) (-4159 (((-3 |#3| "failed") |#3|) 52)) (-2237 ((|#3| |#3|) 124)) (-2555 (((-3 |#3| "failed") |#3|) 78)) (-2441 ((|#3| |#3|) 143)) (-2448 (((-3 |#3| "failed") |#3|) 62)) (-2305 ((|#3| |#3|) 131)) (-3095 (((-3 |#3| "failed") |#3|) 112)) (-2414 ((|#3| |#3|) 141)) (-2995 (((-3 |#3| "failed") |#3|) 100)) (-2287 ((|#3| |#3|) 129)) (-3181 (((-3 |#3| "failed") |#3|) 116)) (-2465 ((|#3| |#3|) 145)) (-3851 (((-3 |#3| "failed") |#3|) 107)) (-2325 ((|#3| |#3|) 133)) (-3107 (((-3 |#3| "failed") |#3|) 117)) (-2521 ((|#3| |#3|) 146)) (-3926 (((-3 |#3| "failed") |#3|) 109)) (-2334 ((|#3| |#3|) 134)) (-1590 (((-3 |#3| "failed") |#3|) 80)) (-2452 ((|#3| |#3|) 144)) (-4014 (((-3 |#3| "failed") |#3|) 64)) (-2315 ((|#3| |#3|) 132)) (-2371 (((-3 |#3| "failed") |#3|) 113)) (-2428 ((|#3| |#3|) 142)) (-3202 (((-3 |#3| "failed") |#3|) 103)) (-2297 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-417 (-574))) 44 (|has| |#1| (-372))))) -(((-286 |#1| |#2| |#3| |#4|) (-13 (-996 |#3|) (-10 -7 (IF (|has| |#1| (-372)) (-15 ** (|#3| |#3| (-417 (-574)))) |%noBranch|) (-15 -1609 (|#3| |#3|)) (-15 -3119 (|#3| |#3|)) (-15 -2227 (|#3| |#3|)) (-15 -2237 (|#3| |#3|)) (-15 -2247 (|#3| |#3|)) (-15 -2256 (|#3| |#3|)) (-15 -2267 (|#3| |#3|)) (-15 -2275 (|#3| |#3|)) (-15 -2287 (|#3| |#3|)) (-15 -2297 (|#3| |#3|)) (-15 -2305 (|#3| |#3|)) (-15 -2315 (|#3| |#3|)) (-15 -2325 (|#3| |#3|)) (-15 -2334 (|#3| |#3|)) (-15 -2343 (|#3| |#3|)) (-15 -2352 (|#3| |#3|)) (-15 -2364 (|#3| |#3|)) (-15 -2375 (|#3| |#3|)) (-15 -2389 (|#3| |#3|)) (-15 -2402 (|#3| |#3|)) (-15 -2414 (|#3| |#3|)) (-15 -2428 (|#3| |#3|)) (-15 -2441 (|#3| |#3|)) (-15 -2452 (|#3| |#3|)) (-15 -2465 (|#3| |#3|)) (-15 -2521 (|#3| |#3|)))) (-38 (-417 (-574))) (-1241 |#1|) (-1264 |#1| |#2|) (-996 |#2|)) (T -286)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-417 (-574))) (-4 *4 (-372)) (-4 *4 (-38 *3)) (-4 *5 (-1241 *4)) (-5 *1 (-286 *4 *5 *2 *6)) (-4 *2 (-1264 *4 *5)) (-4 *6 (-996 *5)))) (-1609 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-3119 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2227 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2237 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2247 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2256 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2267 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2275 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2287 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2297 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2305 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2315 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2325 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2334 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2343 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2352 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2364 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2375 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2389 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2402 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2414 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2428 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2441 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2452 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2465 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) (-2521 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4))))) -(-13 (-996 |#3|) (-10 -7 (IF (|has| |#1| (-372)) (-15 ** (|#3| |#3| (-417 (-574)))) |%noBranch|) (-15 -1609 (|#3| |#3|)) (-15 -3119 (|#3| |#3|)) (-15 -2227 (|#3| |#3|)) (-15 -2237 (|#3| |#3|)) (-15 -2247 (|#3| |#3|)) (-15 -2256 (|#3| |#3|)) (-15 -2267 (|#3| |#3|)) (-15 -2275 (|#3| |#3|)) (-15 -2287 (|#3| |#3|)) (-15 -2297 (|#3| |#3|)) (-15 -2305 (|#3| |#3|)) (-15 -2315 (|#3| |#3|)) (-15 -2325 (|#3| |#3|)) (-15 -2334 (|#3| |#3|)) (-15 -2343 (|#3| |#3|)) (-15 -2352 (|#3| |#3|)) (-15 -2364 (|#3| |#3|)) (-15 -2375 (|#3| |#3|)) (-15 -2389 (|#3| |#3|)) (-15 -2402 (|#3| |#3|)) (-15 -2414 (|#3| |#3|)) (-15 -2428 (|#3| |#3|)) (-15 -2441 (|#3| |#3|)) (-15 -2452 (|#3| |#3|)) (-15 -2465 (|#3| |#3|)) (-15 -2521 (|#3| |#3|)))) -((-2754 (((-112) $) 20)) (-2362 (((-1195) $) 7)) (-2409 (((-3 (-516) "failed") $) 14)) (-1768 (((-3 (-654 $) "failed") $) NIL)) (-2005 (((-3 (-516) "failed") $) 21)) (-2610 (((-3 (-1117) "failed") $) 18)) (-4224 (((-112) $) 16)) (-2943 (((-872) $) NIL)) (-4400 (((-112) $) 9))) -(((-287) (-13 (-623 (-872)) (-10 -8 (-15 -2362 ((-1195) $)) (-15 -4224 ((-112) $)) (-15 -2610 ((-3 (-1117) "failed") $)) (-15 -2754 ((-112) $)) (-15 -2005 ((-3 (-516) "failed") $)) (-15 -4400 ((-112) $)) (-15 -2409 ((-3 (-516) "failed") $)) (-15 -1768 ((-3 (-654 $) "failed") $))))) (T -287)) -((-2362 (*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-287)))) (-4224 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287)))) (-2610 (*1 *2 *1) (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-287)))) (-2754 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287)))) (-2005 (*1 *2 *1) (|partial| -12 (-5 *2 (-516)) (-5 *1 (-287)))) (-4400 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287)))) (-2409 (*1 *2 *1) (|partial| -12 (-5 *2 (-516)) (-5 *1 (-287)))) (-1768 (*1 *2 *1) (|partial| -12 (-5 *2 (-654 (-287))) (-5 *1 (-287))))) -(-13 (-623 (-872)) (-10 -8 (-15 -2362 ((-1195) $)) (-15 -4224 ((-112) $)) (-15 -2610 ((-3 (-1117) "failed") $)) (-15 -2754 ((-112) $)) (-15 -2005 ((-3 (-516) "failed") $)) (-15 -4400 ((-112) $)) (-15 -2409 ((-3 (-516) "failed") $)) (-15 -1768 ((-3 (-654 $) "failed") $)))) -((-4310 (((-607) $) 10)) (-3405 (((-595) $) 8)) (-3303 (((-299) $) 12)) (-1741 (($ (-595) (-607) (-299)) NIL)) (-2943 (((-872) $) 19))) -(((-288) (-13 (-623 (-872)) (-10 -8 (-15 -1741 ($ (-595) (-607) (-299))) (-15 -3405 ((-595) $)) (-15 -4310 ((-607) $)) (-15 -3303 ((-299) $))))) (T -288)) -((-1741 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-595)) (-5 *3 (-607)) (-5 *4 (-299)) (-5 *1 (-288)))) (-3405 (*1 *2 *1) (-12 (-5 *2 (-595)) (-5 *1 (-288)))) (-4310 (*1 *2 *1) (-12 (-5 *2 (-607)) (-5 *1 (-288)))) (-3303 (*1 *2 *1) (-12 (-5 *2 (-299)) (-5 *1 (-288))))) -(-13 (-623 (-872)) (-10 -8 (-15 -1741 ($ (-595) (-607) (-299))) (-15 -3405 ((-595) $)) (-15 -4310 ((-607) $)) (-15 -3303 ((-299) $)))) -((-2165 (($ (-1 (-112) |#2|) $) 24)) (-1543 (($ $) 38)) (-2876 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3335 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-2628 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-1594 (($ |#2| $ (-574)) 20) (($ $ $ (-574)) 22)) (-2840 (($ $ (-574)) 11) (($ $ (-1248 (-574))) 14)) (-1995 (($ $ |#2|) 32) (($ $ $) NIL)) (-4157 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-654 $)) NIL))) -(((-289 |#1| |#2|) (-10 -8 (-15 -2628 (|#1| |#1| |#1|)) (-15 -2876 (|#1| |#2| |#1|)) (-15 -2628 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2876 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1995 (|#1| |#1| |#1|)) (-15 -1995 (|#1| |#1| |#2|)) (-15 -1594 (|#1| |#1| |#1| (-574))) (-15 -1594 (|#1| |#2| |#1| (-574))) (-15 -2840 (|#1| |#1| (-1248 (-574)))) (-15 -2840 (|#1| |#1| (-574))) (-15 -4157 (|#1| (-654 |#1|))) (-15 -4157 (|#1| |#1| |#1|)) (-15 -4157 (|#1| |#2| |#1|)) (-15 -4157 (|#1| |#1| |#2|)) (-15 -3335 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2165 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3335 (|#1| |#2| |#1|)) (-15 -1543 (|#1| |#1|))) (-290 |#2|) (-1231)) (T -289)) -NIL -(-10 -8 (-15 -2628 (|#1| |#1| |#1|)) (-15 -2876 (|#1| |#2| |#1|)) (-15 -2628 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2876 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1995 (|#1| |#1| |#1|)) (-15 -1995 (|#1| |#1| |#2|)) (-15 -1594 (|#1| |#1| |#1| (-574))) (-15 -1594 (|#1| |#2| |#1| (-574))) (-15 -2840 (|#1| |#1| (-1248 (-574)))) (-15 -2840 (|#1| |#1| (-574))) (-15 -4157 (|#1| (-654 |#1|))) (-15 -4157 (|#1| |#1| |#1|)) (-15 -4157 (|#1| |#2| |#1|)) (-15 -4157 (|#1| |#1| |#2|)) (-15 -3335 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2165 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3335 (|#1| |#2| |#1|)) (-15 -1543 (|#1| |#1|))) -((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3714 (((-1286) $ (-574) (-574)) 41 (|has| $ (-6 -4457)))) (-3034 (((-112) $ (-781)) 8)) (-3143 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) 60 (|has| $ (-6 -4457)))) (-3572 (($ (-1 (-112) |#1|) $) 88)) (-2165 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4456)))) (-3426 (($) 7 T CONST)) (-1771 (($ $) 86 (|has| |#1| (-1113)))) (-1543 (($ $) 80 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2876 (($ (-1 (-112) |#1|) $) 92) (($ |#1| $) 87 (|has| |#1| (-1113)))) (-3335 (($ |#1| $) 79 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4456)))) (-2458 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) 52)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3790 (($ (-781) |#1|) 70)) (-2742 (((-112) $ (-781)) 9)) (-3618 (((-574) $) 44 (|has| (-574) (-860)))) (-2628 (($ (-1 (-112) |#1| |#1|) $ $) 89) (($ $ $) 85 (|has| |#1| (-860)))) (-1606 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2702 (((-574) $) 45 (|has| (-574) (-860)))) (-2449 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4203 (((-112) $ (-781)) 10)) (-4136 (((-1172) $) 22 (|has| |#1| (-1113)))) (-2798 (($ |#1| $ (-574)) 91) (($ $ $ (-574)) 90)) (-1594 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-4308 (((-654 (-574)) $) 47)) (-3336 (((-112) (-574) $) 48)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-2915 ((|#1| $) 43 (|has| (-574) (-860)))) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1942 (($ $ |#1|) 42 (|has| $ (-6 -4457)))) (-2540 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 14)) (-3398 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-4371 (((-654 |#1|) $) 49)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-2199 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1248 (-574))) 71)) (-2932 (($ $ (-574)) 94) (($ $ (-1248 (-574))) 93)) (-2840 (($ $ (-574)) 64) (($ $ (-1248 (-574))) 63)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-1836 (((-546) $) 81 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 72)) (-1995 (($ $ |#1|) 96) (($ $ $) 95)) (-4157 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-290 |#1|) (-141) (-1231)) (T -290)) -((-1995 (*1 *1 *1 *2) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1231)))) (-1995 (*1 *1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1231)))) (-2932 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-290 *3)) (-4 *3 (-1231)))) (-2932 (*1 *1 *1 *2) (-12 (-5 *2 (-1248 (-574))) (-4 *1 (-290 *3)) (-4 *3 (-1231)))) (-2876 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-290 *3)) (-4 *3 (-1231)))) (-2798 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-290 *2)) (-4 *2 (-1231)))) (-2798 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-290 *3)) (-4 *3 (-1231)))) (-2628 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-290 *3)) (-4 *3 (-1231)))) (-3572 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-290 *3)) (-4 *3 (-1231)))) (-2876 (*1 *1 *2 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1231)) (-4 *2 (-1113)))) (-1771 (*1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1231)) (-4 *2 (-1113)))) (-2628 (*1 *1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1231)) (-4 *2 (-860))))) -(-13 (-661 |t#1|) (-10 -8 (-6 -4457) (-15 -1995 ($ $ |t#1|)) (-15 -1995 ($ $ $)) (-15 -2932 ($ $ (-574))) (-15 -2932 ($ $ (-1248 (-574)))) (-15 -2876 ($ (-1 (-112) |t#1|) $)) (-15 -2798 ($ |t#1| $ (-574))) (-15 -2798 ($ $ $ (-574))) (-15 -2628 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3572 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1113)) (PROGN (-15 -2876 ($ |t#1| $)) (-15 -1771 ($ $))) |%noBranch|) (IF (|has| |t#1| (-860)) (-15 -2628 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1248 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-661 |#1|) . T) ((-1113) |has| |#1| (-1113)) ((-1231) . T)) +((-3904 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-780)))) (-3609 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-780))))) +(-13 (-235 $) (-10 -8 (-15 -3904 ($ $ (-780))) (-15 -3609 ($ $ (-780))))) +(((-235 $) . T) ((-1230) . T)) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-3904 (($ $ (-780)) 42) (($ $) 40)) (-2942 (((-871) $) 12) (($ (-573)) 33)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-780)) 43) (($ $) 41)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) +(((-238) (-141)) (T -238)) +NIL +(-13 (-1061) (-237)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-573)) . T) ((-622 (-871)) . T) ((-235 $) . T) ((-237) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-735) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1230) . T)) +((-2428 (($) 12) (($ (-653 |#2|)) NIL)) (-3166 (($ $) 14)) (-2955 (($ (-653 |#2|)) 10)) (-2942 (((-871) $) 21))) +(((-239 |#1| |#2|) (-10 -8 (-15 -2942 ((-871) |#1|)) (-15 -2428 (|#1| (-653 |#2|))) (-15 -2428 (|#1|)) (-15 -2955 (|#1| (-653 |#2|))) (-15 -3166 (|#1| |#1|))) (-240 |#2|) (-1112)) (T -239)) +NIL +(-10 -8 (-15 -2942 ((-871) |#1|)) (-15 -2428 (|#1| (-653 |#2|))) (-15 -2428 (|#1|)) (-15 -2955 (|#1| (-653 |#2|))) (-15 -3166 (|#1| |#1|))) +((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3450 (((-112) $ (-780)) 8)) (-3557 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4455)))) (-2579 (($) 7 T CONST)) (-2685 (($ $) 59 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2596 (($ |#1| $) 48 (|has| $ (-6 -4455))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4455)))) (-3334 (($ |#1| $) 58 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4455)))) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-2487 ((|#1| $) 40)) (-3181 (($ |#1| $) 41)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3815 ((|#1| $) 42)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2428 (($) 50) (($ (-653 |#1|)) 49)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-1835 (((-545) $) 60 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 51)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-2679 (($ (-653 |#1|)) 43)) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-240 |#1|) (-141) (-1112)) (T -240)) +((-2428 (*1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1112)))) (-2428 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-4 *1 (-240 *3)))) (-2596 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-240 *2)) (-4 *2 (-1112)))) (-2596 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4455)) (-4 *1 (-240 *3)) (-4 *3 (-1112)))) (-3557 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4455)) (-4 *1 (-240 *3)) (-4 *3 (-1112))))) +(-13 (-107 |t#1|) (-152 |t#1|) (-10 -8 (-15 -2428 ($)) (-15 -2428 ($ (-653 |t#1|))) (IF (|has| $ (-6 -4455)) (PROGN (-15 -2596 ($ |t#1| $)) (-15 -2596 ($ (-1 (-112) |t#1|) $)) (-15 -3557 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-152 |#1|) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) +((-2220 (((-2 (|:| |varOrder| (-653 (-1189))) (|:| |inhom| (-3 (-653 (-1280 (-780))) "failed")) (|:| |hom| (-653 (-1280 (-780))))) (-301 (-962 (-573)))) 42))) +(((-241) (-10 -7 (-15 -2220 ((-2 (|:| |varOrder| (-653 (-1189))) (|:| |inhom| (-3 (-653 (-1280 (-780))) "failed")) (|:| |hom| (-653 (-1280 (-780))))) (-301 (-962 (-573))))))) (T -241)) +((-2220 (*1 *2 *3) (-12 (-5 *3 (-301 (-962 (-573)))) (-5 *2 (-2 (|:| |varOrder| (-653 (-1189))) (|:| |inhom| (-3 (-653 (-1280 (-780))) "failed")) (|:| |hom| (-653 (-1280 (-780)))))) (-5 *1 (-241))))) +(-10 -7 (-15 -2220 ((-2 (|:| |varOrder| (-653 (-1189))) (|:| |inhom| (-3 (-653 (-1280 (-780))) "failed")) (|:| |hom| (-653 (-1280 (-780))))) (-301 (-962 (-573)))))) +((-1486 (((-780)) 56)) (-2759 (((-2 (|:| -1423 (-698 |#3|)) (|:| |vec| (-1280 |#3|))) (-698 $) (-1280 $)) 53) (((-698 |#3|) (-698 $)) 44) (((-698 |#3|) (-1280 $)) NIL) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL) (((-698 (-573)) (-698 $)) NIL) (((-698 (-573)) (-1280 $)) NIL)) (-2365 (((-135)) 62)) (-3904 (($ $ (-1 |#3| |#3|) (-780)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-653 (-1189)) (-653 (-780))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189)) NIL) (($ $) NIL) (($ $ (-780)) NIL)) (-2942 (((-1280 |#3|) $) NIL) (($ |#3|) NIL) (((-871) $) NIL) (($ (-573)) 12) (($ (-416 (-573))) NIL)) (-1545 (((-780)) 15)) (-3103 (($ $ |#3|) 59))) +(((-242 |#1| |#2| |#3|) (-10 -8 (-15 -2942 (|#1| (-416 (-573)))) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|)) (-15 -1545 ((-780))) (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -2759 ((-698 (-573)) (-1280 |#1|))) (-15 -2759 ((-698 (-573)) (-698 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 |#1|) (-1280 |#1|))) (-15 -2942 (|#1| |#3|)) (-15 -3904 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3904 (|#1| |#1| (-1 |#3| |#3|) (-780))) (-15 -2759 ((-698 |#3|) (-1280 |#1|))) (-15 -2759 ((-698 |#3|) (-698 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 |#3|)) (|:| |vec| (-1280 |#3|))) (-698 |#1|) (-1280 |#1|))) (-15 -1486 ((-780))) (-15 -3103 (|#1| |#1| |#3|)) (-15 -2365 ((-135))) (-15 -2942 ((-1280 |#3|) |#1|))) (-243 |#2| |#3|) (-780) (-1230)) (T -242)) +((-2365 (*1 *2) (-12 (-14 *4 (-780)) (-4 *5 (-1230)) (-5 *2 (-135)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) (-1486 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1230)) (-5 *2 (-780)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) (-1545 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1230)) (-5 *2 (-780)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5))))) +(-10 -8 (-15 -2942 (|#1| (-416 (-573)))) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|)) (-15 -1545 ((-780))) (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -2759 ((-698 (-573)) (-1280 |#1|))) (-15 -2759 ((-698 (-573)) (-698 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 |#1|) (-1280 |#1|))) (-15 -2942 (|#1| |#3|)) (-15 -3904 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3904 (|#1| |#1| (-1 |#3| |#3|) (-780))) (-15 -2759 ((-698 |#3|) (-1280 |#1|))) (-15 -2759 ((-698 |#3|) (-698 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 |#3|)) (|:| |vec| (-1280 |#3|))) (-698 |#1|) (-1280 |#1|))) (-15 -1486 ((-780))) (-15 -3103 (|#1| |#1| |#3|)) (-15 -2365 ((-135))) (-15 -2942 ((-1280 |#3|) |#1|))) +((-2848 (((-112) $ $) 19 (|has| |#2| (-1112)))) (-1748 (((-112) $) 74 (|has| |#2| (-132)))) (-3690 (($ (-931)) 129 (|has| |#2| (-1061)))) (-3791 (((-1285) $ (-573) (-573)) 41 (|has| $ (-6 -4456)))) (-3280 (($ $ $) 125 (|has| |#2| (-802)))) (-2983 (((-3 $ "failed") $ $) 76 (|has| |#2| (-132)))) (-3450 (((-112) $ (-780)) 8)) (-1486 (((-780)) 111 (|has| |#2| (-376)))) (-1983 (((-573) $) 123 (|has| |#2| (-857)))) (-3142 ((|#2| $ (-573) |#2|) 53 (|has| $ (-6 -4456)))) (-2579 (($) 7 T CONST)) (-1695 (((-3 (-573) "failed") $) 69 (-2086 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112)))) (((-3 (-416 (-573)) "failed") $) 66 (-2086 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) (((-3 |#2| "failed") $) 63 (|has| |#2| (-1112)))) (-2205 (((-573) $) 68 (-2086 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112)))) (((-416 (-573)) $) 65 (-2086 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) ((|#2| $) 64 (|has| |#2| (-1112)))) (-2759 (((-698 (-573)) (-1280 $)) 110 (-2086 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) (((-698 (-573)) (-698 $)) 109 (-2086 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 108 (-2086 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) 107 (|has| |#2| (-1061))) (((-698 |#2|) (-698 $)) 106 (|has| |#2| (-1061))) (((-698 |#2|) (-1280 $)) 105 (|has| |#2| (-1061)))) (-2232 (((-3 $ "failed") $) 81 (|has| |#2| (-735)))) (-2819 (($) 114 (|has| |#2| (-376)))) (-2457 ((|#2| $ (-573) |#2|) 54 (|has| $ (-6 -4456)))) (-2384 ((|#2| $ (-573)) 52)) (-4152 (((-112) $) 121 (|has| |#2| (-857)))) (-1863 (((-653 |#2|) $) 31 (|has| $ (-6 -4455)))) (-1959 (((-112) $) 83 (|has| |#2| (-735)))) (-3339 (((-112) $) 122 (|has| |#2| (-857)))) (-2078 (((-112) $ (-780)) 9)) (-1968 (((-573) $) 44 (|has| (-573) (-859)))) (-3659 (($ $ $) 120 (-2817 (|has| |#2| (-857)) (|has| |#2| (-802))))) (-3214 (((-653 |#2|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1112)) (|has| $ (-6 -4455))))) (-3470 (((-573) $) 45 (|has| (-573) (-859)))) (-3751 (($ $ $) 119 (-2817 (|has| |#2| (-857)) (|has| |#2| (-802))))) (-2446 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#2| |#2|) $) 36)) (-3589 (((-931) $) 113 (|has| |#2| (-376)))) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#2| (-1112)))) (-1977 (((-653 (-573)) $) 47)) (-2560 (((-112) (-573) $) 48)) (-2575 (($ (-931)) 112 (|has| |#2| (-376)))) (-3965 (((-1132) $) 21 (|has| |#2| (-1112)))) (-2914 ((|#2| $) 43 (|has| (-573) (-859)))) (-3112 (($ $ |#2|) 42 (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#2|))) 27 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) 26 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) 24 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))))) (-1885 (((-112) $ $) 14)) (-2547 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-1535 (((-653 |#2|) $) 49)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#2| $ (-573) |#2|) 51) ((|#2| $ (-573)) 50)) (-2658 ((|#2| $ $) 128 (|has| |#2| (-1061)))) (-4260 (($ (-1280 |#2|)) 130)) (-2365 (((-135)) 127 (|has| |#2| (-371)))) (-3904 (($ $ (-780)) 100 (-2086 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $) 98 (-2086 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $ (-1189)) 97 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189))) 96 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1189) (-780)) 95 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189)) (-653 (-780))) 94 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1 |#2| |#2|) (-780)) 87 (|has| |#2| (-1061))) (($ $ (-1 |#2| |#2|)) 86 (|has| |#2| (-1061)))) (-3974 (((-780) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4455))) (((-780) |#2| $) 29 (-12 (|has| |#2| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-2942 (((-1280 |#2|) $) 131) (($ (-573)) 70 (-2817 (-2086 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112))) (|has| |#2| (-1061)))) (($ (-416 (-573))) 67 (-2086 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) (($ |#2|) 62 (|has| |#2| (-1112))) (((-871) $) 18 (|has| |#2| (-622 (-871))))) (-1545 (((-780)) 85 (|has| |#2| (-1061)) CONST)) (-3507 (((-112) $ $) 23 (|has| |#2| (-1112)))) (-1646 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4455)))) (-1660 (($ $) 124 (|has| |#2| (-857)))) (-2132 (($) 73 (|has| |#2| (-132)) CONST)) (-2144 (($) 84 (|has| |#2| (-735)) CONST)) (-3609 (($ $ (-780)) 101 (-2086 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $) 99 (-2086 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $ (-1189)) 93 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189))) 92 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1189) (-780)) 91 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189)) (-653 (-780))) 90 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1 |#2| |#2|) (-780)) 89 (|has| |#2| (-1061))) (($ $ (-1 |#2| |#2|)) 88 (|has| |#2| (-1061)))) (-3040 (((-112) $ $) 117 (-2817 (|has| |#2| (-857)) (|has| |#2| (-802))))) (-3015 (((-112) $ $) 116 (-2817 (|has| |#2| (-857)) (|has| |#2| (-802))))) (-2981 (((-112) $ $) 20 (|has| |#2| (-1112)))) (-3027 (((-112) $ $) 118 (-2817 (|has| |#2| (-857)) (|has| |#2| (-802))))) (-3005 (((-112) $ $) 115 (-2817 (|has| |#2| (-857)) (|has| |#2| (-802))))) (-3103 (($ $ |#2|) 126 (|has| |#2| (-371)))) (-3093 (($ $ $) 104 (|has| |#2| (-1061))) (($ $) 103 (|has| |#2| (-1061)))) (-3077 (($ $ $) 71 (|has| |#2| (-25)))) (** (($ $ (-780)) 82 (|has| |#2| (-735))) (($ $ (-931)) 79 (|has| |#2| (-735)))) (* (($ (-573) $) 102 (|has| |#2| (-1061))) (($ $ $) 80 (|has| |#2| (-735))) (($ $ |#2|) 78 (|has| |#2| (-735))) (($ |#2| $) 77 (|has| |#2| (-735))) (($ (-780) $) 75 (|has| |#2| (-132))) (($ (-931) $) 72 (|has| |#2| (-25)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-243 |#1| |#2|) (-141) (-780) (-1230)) (T -243)) +((-4260 (*1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-4 *4 (-1230)) (-4 *1 (-243 *3 *4)))) (-3690 (*1 *1 *2) (-12 (-5 *2 (-931)) (-4 *1 (-243 *3 *4)) (-4 *4 (-1061)) (-4 *4 (-1230)))) (-2658 (*1 *2 *1 *1) (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1230)) (-4 *2 (-1061)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1230)) (-4 *2 (-735)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1230)) (-4 *2 (-735))))) +(-13 (-613 (-573) |t#2|) (-622 (-1280 |t#2|)) (-10 -8 (-6 -4455) (-15 -4260 ($ (-1280 |t#2|))) (IF (|has| |t#2| (-1112)) (-6 (-420 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1061)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-233 |t#2|)) (-6 (-385 |t#2|)) (-15 -3690 ($ (-931))) (-15 -2658 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#2| (-735)) (PROGN (-6 (-735)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-376)) (-6 (-376)) |%noBranch|) (IF (|has| |t#2| (-174)) (PROGN (-6 (-38 |t#2|)) (-6 (-174))) |%noBranch|) (IF (|has| |t#2| (-6 -4452)) (-6 -4452) |%noBranch|) (IF (|has| |t#2| (-857)) (-6 (-857)) |%noBranch|) (IF (|has| |t#2| (-802)) (-6 (-802)) |%noBranch|) (IF (|has| |t#2| (-371)) (-6 (-1287 |t#2|)) |%noBranch|))) +(((-21) -2817 (|has| |#2| (-1061)) (|has| |#2| (-857)) (|has| |#2| (-371)) (|has| |#2| (-174))) ((-23) -2817 (|has| |#2| (-1061)) (|has| |#2| (-857)) (|has| |#2| (-802)) (|has| |#2| (-371)) (|has| |#2| (-174)) (|has| |#2| (-132))) ((-25) -2817 (|has| |#2| (-1061)) (|has| |#2| (-857)) (|has| |#2| (-802)) (|has| |#2| (-371)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) -2817 (|has| |#2| (-1112)) (|has| |#2| (-1061)) (|has| |#2| (-857)) (|has| |#2| (-802)) (|has| |#2| (-735)) (|has| |#2| (-376)) (|has| |#2| (-371)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -2817 (|has| |#2| (-1061)) (|has| |#2| (-371)) (|has| |#2| (-174))) ((-111 $ $) |has| |#2| (-174)) ((-132) -2817 (|has| |#2| (-1061)) (|has| |#2| (-857)) (|has| |#2| (-802)) (|has| |#2| (-371)) (|has| |#2| (-174)) (|has| |#2| (-132))) ((-625 #0=(-416 (-573))) -12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112))) ((-625 (-573)) -2817 (|has| |#2| (-1061)) (-12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112))) (|has| |#2| (-857)) (|has| |#2| (-174))) ((-625 |#2|) -2817 (|has| |#2| (-1112)) (|has| |#2| (-174))) ((-622 (-871)) -2817 (|has| |#2| (-1112)) (|has| |#2| (-1061)) (|has| |#2| (-857)) (|has| |#2| (-802)) (|has| |#2| (-735)) (|has| |#2| (-376)) (|has| |#2| (-371)) (|has| |#2| (-174)) (|has| |#2| (-622 (-871))) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-622 (-1280 |#2|)) . T) ((-174) |has| |#2| (-174)) ((-235 $) -12 (|has| |#2| (-238)) (|has| |#2| (-1061))) ((-233 |#2|) |has| |#2| (-1061)) ((-238) -12 (|has| |#2| (-238)) (|has| |#2| (-1061))) ((-237) -12 (|has| |#2| (-238)) (|has| |#2| (-1061))) ((-293 #1=(-573) |#2|) . T) ((-295 #1# |#2|) . T) ((-316 |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((-376) |has| |#2| (-376)) ((-385 |#2|) |has| |#2| (-1061)) ((-420 |#2|) |has| |#2| (-1112)) ((-498 |#2|) . T) ((-613 #1# |#2|) . T) ((-523 |#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((-655 (-573)) -2817 (|has| |#2| (-1061)) (|has| |#2| (-857)) (|has| |#2| (-371)) (|has| |#2| (-174))) ((-655 |#2|) -2817 (|has| |#2| (-1061)) (|has| |#2| (-371)) (|has| |#2| (-174))) ((-655 $) -2817 (|has| |#2| (-1061)) (|has| |#2| (-857)) (|has| |#2| (-174))) ((-657 #2=(-573)) -12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061))) ((-657 |#2|) -2817 (|has| |#2| (-1061)) (|has| |#2| (-371)) (|has| |#2| (-174))) ((-657 $) -2817 (|has| |#2| (-1061)) (|has| |#2| (-857)) (|has| |#2| (-174))) ((-649 |#2|) -2817 (|has| |#2| (-371)) (|has| |#2| (-174))) ((-648 #2#) -12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061))) ((-648 |#2|) |has| |#2| (-1061)) ((-726 |#2|) -2817 (|has| |#2| (-371)) (|has| |#2| (-174))) ((-735) -2817 (|has| |#2| (-1061)) (|has| |#2| (-857)) (|has| |#2| (-735)) (|has| |#2| (-174))) ((-800) |has| |#2| (-857)) ((-801) -2817 (|has| |#2| (-857)) (|has| |#2| (-802))) ((-802) |has| |#2| (-802)) ((-803) -2817 (|has| |#2| (-857)) (|has| |#2| (-802))) ((-804) -2817 (|has| |#2| (-857)) (|has| |#2| (-802))) ((-857) |has| |#2| (-857)) ((-859) -2817 (|has| |#2| (-857)) (|has| |#2| (-802))) ((-910 (-1189)) -12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061))) ((-1050 #0#) -12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112))) ((-1050 (-573)) -12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112))) ((-1050 |#2|) |has| |#2| (-1112)) ((-1063 |#2|) -2817 (|has| |#2| (-1061)) (|has| |#2| (-371)) (|has| |#2| (-174))) ((-1063 $) |has| |#2| (-174)) ((-1068 |#2|) -2817 (|has| |#2| (-1061)) (|has| |#2| (-371)) (|has| |#2| (-174))) ((-1068 $) |has| |#2| (-174)) ((-1061) -2817 (|has| |#2| (-1061)) (|has| |#2| (-857)) (|has| |#2| (-174))) ((-1070) -2817 (|has| |#2| (-1061)) (|has| |#2| (-857)) (|has| |#2| (-174))) ((-1124) -2817 (|has| |#2| (-1061)) (|has| |#2| (-857)) (|has| |#2| (-735)) (|has| |#2| (-174))) ((-1112) -2817 (|has| |#2| (-1112)) (|has| |#2| (-1061)) (|has| |#2| (-857)) (|has| |#2| (-802)) (|has| |#2| (-735)) (|has| |#2| (-376)) (|has| |#2| (-371)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-1230) . T) ((-1287 |#2|) |has| |#2| (-371))) +((-3094 (((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|) 21)) (-2867 ((|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|) 23)) (-1776 (((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)) 18))) +(((-244 |#1| |#2| |#3|) (-10 -7 (-15 -3094 ((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -2867 (|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -1776 ((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)))) (-780) (-1230) (-1230)) (T -244)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-245 *5 *6)) (-14 *5 (-780)) (-4 *6 (-1230)) (-4 *7 (-1230)) (-5 *2 (-245 *5 *7)) (-5 *1 (-244 *5 *6 *7)))) (-2867 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-245 *5 *6)) (-14 *5 (-780)) (-4 *6 (-1230)) (-4 *2 (-1230)) (-5 *1 (-244 *5 *6 *2)))) (-3094 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-245 *6 *7)) (-14 *6 (-780)) (-4 *7 (-1230)) (-4 *5 (-1230)) (-5 *2 (-245 *6 *5)) (-5 *1 (-244 *6 *7 *5))))) +(-10 -7 (-15 -3094 ((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -2867 (|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -1776 ((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)))) +((-2848 (((-112) $ $) NIL (|has| |#2| (-1112)))) (-1748 (((-112) $) NIL (|has| |#2| (-132)))) (-3690 (($ (-931)) 62 (|has| |#2| (-1061)))) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-3280 (($ $ $) 68 (|has| |#2| (-802)))) (-2983 (((-3 $ "failed") $ $) 53 (|has| |#2| (-132)))) (-3450 (((-112) $ (-780)) NIL)) (-1486 (((-780)) NIL (|has| |#2| (-376)))) (-1983 (((-573) $) NIL (|has| |#2| (-857)))) (-3142 ((|#2| $ (-573) |#2|) NIL (|has| $ (-6 -4456)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL (-12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112)))) (((-3 (-416 (-573)) "failed") $) NIL (-12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1112)))) (-2205 (((-573) $) NIL (-12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112)))) (((-416 (-573)) $) NIL (-12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) ((|#2| $) 28 (|has| |#2| (-1112)))) (-2759 (((-698 (-573)) (-1280 $)) NIL (-12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) (((-698 (-573)) (-698 $)) NIL (-12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (-12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) NIL (|has| |#2| (-1061))) (((-698 |#2|) (-698 $)) NIL (|has| |#2| (-1061))) (((-698 |#2|) (-1280 $)) NIL (|has| |#2| (-1061)))) (-2232 (((-3 $ "failed") $) 58 (|has| |#2| (-735)))) (-2819 (($) NIL (|has| |#2| (-376)))) (-2457 ((|#2| $ (-573) |#2|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#2| $ (-573)) 56)) (-4152 (((-112) $) NIL (|has| |#2| (-857)))) (-1863 (((-653 |#2|) $) 14 (|has| $ (-6 -4455)))) (-1959 (((-112) $) NIL (|has| |#2| (-735)))) (-3339 (((-112) $) NIL (|has| |#2| (-857)))) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) 19 (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-3214 (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-2446 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-3589 (((-931) $) NIL (|has| |#2| (-376)))) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#2| (-1112)))) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-2575 (($ (-931)) NIL (|has| |#2| (-376)))) (-3965 (((-1132) $) NIL (|has| |#2| (-1112)))) (-2914 ((|#2| $) NIL (|has| (-573) (-859)))) (-3112 (($ $ |#2|) NIL (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#2|) $) 23 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#2|))) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-1535 (((-653 |#2|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#2| $ (-573) |#2|) NIL) ((|#2| $ (-573)) 20)) (-2658 ((|#2| $ $) NIL (|has| |#2| (-1061)))) (-4260 (($ (-1280 |#2|)) 17)) (-2365 (((-135)) NIL (|has| |#2| (-371)))) (-3904 (($ $ (-780)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $ (-1189)) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1 |#2| |#2|) (-780)) NIL (|has| |#2| (-1061))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1061)))) (-3974 (((-780) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455))) (((-780) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3166 (($ $) NIL)) (-2942 (((-1280 |#2|) $) 9) (($ (-573)) NIL (-2817 (-12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112))) (|has| |#2| (-1061)))) (($ (-416 (-573))) NIL (-12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) (($ |#2|) 12 (|has| |#2| (-1112))) (((-871) $) NIL (|has| |#2| (-622 (-871))))) (-1545 (((-780)) NIL (|has| |#2| (-1061)) CONST)) (-3507 (((-112) $ $) NIL (|has| |#2| (-1112)))) (-1646 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-1660 (($ $) NIL (|has| |#2| (-857)))) (-2132 (($) 36 (|has| |#2| (-132)) CONST)) (-2144 (($) 40 (|has| |#2| (-735)) CONST)) (-3609 (($ $ (-780)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $ (-1189)) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1 |#2| |#2|) (-780)) NIL (|has| |#2| (-1061))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1061)))) (-3040 (((-112) $ $) NIL (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-3015 (((-112) $ $) NIL (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-2981 (((-112) $ $) 27 (|has| |#2| (-1112)))) (-3027 (((-112) $ $) NIL (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-3005 (((-112) $ $) 66 (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-3103 (($ $ |#2|) NIL (|has| |#2| (-371)))) (-3093 (($ $ $) NIL (|has| |#2| (-1061))) (($ $) NIL (|has| |#2| (-1061)))) (-3077 (($ $ $) 34 (|has| |#2| (-25)))) (** (($ $ (-780)) NIL (|has| |#2| (-735))) (($ $ (-931)) NIL (|has| |#2| (-735)))) (* (($ (-573) $) NIL (|has| |#2| (-1061))) (($ $ $) 46 (|has| |#2| (-735))) (($ $ |#2|) 44 (|has| |#2| (-735))) (($ |#2| $) 45 (|has| |#2| (-735))) (($ (-780) $) NIL (|has| |#2| (-132))) (($ (-931) $) NIL (|has| |#2| (-25)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-245 |#1| |#2|) (-243 |#1| |#2|) (-780) (-1230)) (T -245)) +NIL +(-243 |#1| |#2|) +((-3661 (((-573) (-653 (-1171))) 36) (((-573) (-1171)) 29)) (-1557 (((-1285) (-653 (-1171))) 40) (((-1285) (-1171)) 39)) (-4413 (((-1171)) 16)) (-3200 (((-1171) (-573) (-1171)) 23)) (-3358 (((-653 (-1171)) (-653 (-1171)) (-573) (-1171)) 37) (((-1171) (-1171) (-573) (-1171)) 35)) (-2619 (((-653 (-1171)) (-653 (-1171))) 15) (((-653 (-1171)) (-1171)) 11))) +(((-246) (-10 -7 (-15 -2619 ((-653 (-1171)) (-1171))) (-15 -2619 ((-653 (-1171)) (-653 (-1171)))) (-15 -4413 ((-1171))) (-15 -3200 ((-1171) (-573) (-1171))) (-15 -3358 ((-1171) (-1171) (-573) (-1171))) (-15 -3358 ((-653 (-1171)) (-653 (-1171)) (-573) (-1171))) (-15 -1557 ((-1285) (-1171))) (-15 -1557 ((-1285) (-653 (-1171)))) (-15 -3661 ((-573) (-1171))) (-15 -3661 ((-573) (-653 (-1171)))))) (T -246)) +((-3661 (*1 *2 *3) (-12 (-5 *3 (-653 (-1171))) (-5 *2 (-573)) (-5 *1 (-246)))) (-3661 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-573)) (-5 *1 (-246)))) (-1557 (*1 *2 *3) (-12 (-5 *3 (-653 (-1171))) (-5 *2 (-1285)) (-5 *1 (-246)))) (-1557 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-246)))) (-3358 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-653 (-1171))) (-5 *3 (-573)) (-5 *4 (-1171)) (-5 *1 (-246)))) (-3358 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1171)) (-5 *3 (-573)) (-5 *1 (-246)))) (-3200 (*1 *2 *3 *2) (-12 (-5 *2 (-1171)) (-5 *3 (-573)) (-5 *1 (-246)))) (-4413 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-246)))) (-2619 (*1 *2 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-246)))) (-2619 (*1 *2 *3) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-246)) (-5 *3 (-1171))))) +(-10 -7 (-15 -2619 ((-653 (-1171)) (-1171))) (-15 -2619 ((-653 (-1171)) (-653 (-1171)))) (-15 -4413 ((-1171))) (-15 -3200 ((-1171) (-573) (-1171))) (-15 -3358 ((-1171) (-1171) (-573) (-1171))) (-15 -3358 ((-653 (-1171)) (-653 (-1171)) (-573) (-1171))) (-15 -1557 ((-1285) (-1171))) (-15 -1557 ((-1285) (-653 (-1171)))) (-15 -3661 ((-573) (-1171))) (-15 -3661 ((-573) (-653 (-1171))))) +((** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) 20)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ (-416 (-573)) $) 27) (($ $ (-416 (-573))) NIL))) +(((-247 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-573))) (-15 * (|#1| |#1| (-416 (-573)))) (-15 * (|#1| (-416 (-573)) |#1|)) (-15 ** (|#1| |#1| (-780))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-931))) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-931) |#1|))) (-248)) (T -247)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-573))) (-15 * (|#1| |#1| (-416 (-573)))) (-15 * (|#1| (-416 (-573)) |#1|)) (-15 ** (|#1| |#1| (-780))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-931))) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-931) |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-3180 (((-1171) $) 10)) (-1323 (($ $) 47)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ (-416 (-573))) 51)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 48)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ (-416 (-573)) $) 50) (($ $ (-416 (-573))) 49))) +(((-248) (-141)) (T -248)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-248)) (-5 *2 (-573)))) (-1323 (*1 *1 *1) (-4 *1 (-248)))) +(-13 (-297) (-38 (-416 (-573))) (-10 -8 (-15 ** ($ $ (-573))) (-15 -1323 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-625 #0#) . T) ((-625 (-573)) . T) ((-622 (-871)) . T) ((-297) . T) ((-655 #0#) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-649 #0#) . T) ((-726 #0#) . T) ((-735) . T) ((-1063 #0#) . T) ((-1063 $) . T) ((-1068 #0#) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) +((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3082 ((|#1| $) 49)) (-1969 (($ $) 58)) (-3450 (((-112) $ (-780)) 8)) (-2367 ((|#1| $ |#1|) 40 (|has| $ (-6 -4456)))) (-3412 (($ $ $) 54 (|has| $ (-6 -4456)))) (-1541 (($ $ $) 53 (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) 42 (|has| $ (-6 -4456)))) (-2579 (($) 7 T CONST)) (-1521 (($ $) 57)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) 51)) (-3208 (((-112) $ $) 43 (|has| |#1| (-1112)))) (-3978 (($ $) 56)) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3505 (((-653 |#1|) $) 46)) (-2880 (((-112) $) 50)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-3359 ((|#1| $) 60)) (-2030 (($ $) 59)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ "value") 48)) (-1501 (((-573) $ $) 45)) (-1628 (((-112) $) 47)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-3996 (($ $ $) 55 (|has| $ (-6 -4456)))) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) 52)) (-1716 (((-112) $ $) 44 (|has| |#1| (-1112)))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-249 |#1|) (-141) (-1230)) (T -249)) +((-3359 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1230)))) (-2030 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1230)))) (-1969 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1230)))) (-1521 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1230)))) (-3978 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1230)))) (-3996 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-249 *2)) (-4 *2 (-1230)))) (-3412 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-249 *2)) (-4 *2 (-1230)))) (-1541 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-249 *2)) (-4 *2 (-1230))))) +(-13 (-1022 |t#1|) (-10 -8 (-15 -3359 (|t#1| $)) (-15 -2030 ($ $)) (-15 -1969 ($ $)) (-15 -1521 ($ $)) (-15 -3978 ($ $)) (IF (|has| $ (-6 -4456)) (PROGN (-15 -3996 ($ $ $)) (-15 -3412 ($ $ $)) (-15 -1541 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1022 |#1|) . T) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3082 ((|#1| $) NIL)) (-2404 ((|#1| $) NIL)) (-1969 (($ $) NIL)) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-1896 (($ $ (-573)) NIL (|has| $ (-6 -4456)))) (-1473 (((-112) $) NIL (|has| |#1| (-859))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2748 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-859)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-2770 (($ $) 10 (|has| |#1| (-859))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-2367 ((|#1| $ |#1|) NIL (|has| $ (-6 -4456)))) (-2554 (($ $ $) NIL (|has| $ (-6 -4456)))) (-2016 ((|#1| $ |#1|) NIL (|has| $ (-6 -4456)))) (-2647 ((|#1| $ |#1|) NIL (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4456))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4456))) (($ $ "rest" $) NIL (|has| $ (-6 -4456))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) NIL (|has| $ (-6 -4456))) ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) NIL (|has| $ (-6 -4456)))) (-3557 (($ (-1 (-112) |#1|) $) NIL)) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2392 ((|#1| $) NIL)) (-2579 (($) NIL T CONST)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-2925 (($ $) NIL) (($ $ (-780)) NIL)) (-1599 (($ $) NIL (|has| |#1| (-1112)))) (-2685 (($ $) 7 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2596 (($ |#1| $) NIL (|has| |#1| (-1112))) (($ (-1 (-112) |#1|) $) NIL)) (-3334 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2457 ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) NIL)) (-3435 (((-112) $) NIL)) (-1440 (((-573) |#1| $ (-573)) NIL (|has| |#1| (-1112))) (((-573) |#1| $) NIL (|has| |#1| (-1112))) (((-573) (-1 (-112) |#1|) $) NIL)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) NIL)) (-3208 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3789 (($ (-780) |#1|) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) NIL (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-4241 (($ $ $) NIL (|has| |#1| (-859))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1480 (($ $ $) NIL (|has| |#1| (-859))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1787 (($ |#1|) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3505 (((-653 |#1|) $) NIL)) (-2880 (((-112) $) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3359 ((|#1| $) NIL) (($ $ (-780)) NIL)) (-3181 (($ $ $ (-573)) NIL) (($ |#1| $ (-573)) NIL)) (-1593 (($ $ $ (-573)) NIL) (($ |#1| $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2914 ((|#1| $) NIL) (($ $ (-780)) NIL)) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3112 (($ $ |#1|) NIL (|has| $ (-6 -4456)))) (-1903 (((-112) $) NIL)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1247 (-573))) NIL) ((|#1| $ (-573)) NIL) ((|#1| $ (-573) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-780) $ "count") 16)) (-1501 (((-573) $ $) NIL)) (-3220 (($ $ (-1247 (-573))) NIL) (($ $ (-573)) NIL)) (-2836 (($ $ (-1247 (-573))) NIL) (($ $ (-573)) NIL)) (-3187 (($ (-653 |#1|)) 22)) (-1628 (((-112) $) NIL)) (-1992 (($ $) NIL)) (-3839 (($ $) NIL (|has| $ (-6 -4456)))) (-4072 (((-780) $) NIL)) (-1512 (($ $) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3919 (($ $ $ (-573)) NIL (|has| $ (-6 -4456)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) NIL)) (-3996 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4156 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-653 $)) NIL) (($ $ |#1|) NIL)) (-2942 (($ (-653 |#1|)) 17) (((-653 |#1|) $) 18) (((-871) $) 21 (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) NIL)) (-1716 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2862 (((-780) $) 14 (|has| $ (-6 -4455))))) +(((-250 |#1|) (-13 (-675 |#1|) (-499 (-653 |#1|)) (-10 -8 (-15 -3187 ($ (-653 |#1|))) (-15 -2198 ($ $ "unique")) (-15 -2198 ($ $ "sort")) (-15 -2198 ((-780) $ "count")))) (-859)) (T -250)) +((-3187 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-859)) (-5 *1 (-250 *3)))) (-2198 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-250 *3)) (-4 *3 (-859)))) (-2198 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-250 *3)) (-4 *3 (-859)))) (-2198 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-780)) (-5 *1 (-250 *4)) (-4 *4 (-859))))) +(-13 (-675 |#1|) (-499 (-653 |#1|)) (-10 -8 (-15 -3187 ($ (-653 |#1|))) (-15 -2198 ($ $ "unique")) (-15 -2198 ($ $ "sort")) (-15 -2198 ((-780) $ "count")))) +((-1564 (((-3 (-780) "failed") |#1| |#1| (-780)) 40))) +(((-251 |#1|) (-10 -7 (-15 -1564 ((-3 (-780) "failed") |#1| |#1| (-780)))) (-13 (-735) (-376) (-10 -7 (-15 ** (|#1| |#1| (-573)))))) (T -251)) +((-1564 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-780)) (-4 *3 (-13 (-735) (-376) (-10 -7 (-15 ** (*3 *3 (-573)))))) (-5 *1 (-251 *3))))) +(-10 -7 (-15 -1564 ((-3 (-780) "failed") |#1| |#1| (-780)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4354 (((-653 (-873 |#1|)) $) NIL)) (-4193 (((-1185 $) $ (-873 |#1|)) NIL) (((-1185 |#2|) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#2| (-565)))) (-2456 (($ $) NIL (|has| |#2| (-565)))) (-1345 (((-112) $) NIL (|has| |#2| (-565)))) (-2769 (((-780) $) NIL) (((-780) $ (-653 (-873 |#1|))) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-4285 (($ $) NIL (|has| |#2| (-461)))) (-2427 (((-427 $) $) NIL (|has| |#2| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#2| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) NIL (|has| |#2| (-1050 (-573)))) (((-3 (-873 |#1|) "failed") $) NIL)) (-2205 ((|#2| $) NIL) (((-416 (-573)) $) NIL (|has| |#2| (-1050 (-416 (-573))))) (((-573) $) NIL (|has| |#2| (-1050 (-573)))) (((-873 |#1|) $) NIL)) (-2277 (($ $ $ (-873 |#1|)) NIL (|has| |#2| (-174)))) (-3327 (($ $ (-653 (-573))) NIL)) (-1391 (($ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) NIL) (((-698 |#2|) (-698 $)) NIL) (((-698 |#2|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#2| (-461))) (($ $ (-873 |#1|)) NIL (|has| |#2| (-461)))) (-1379 (((-653 $) $) NIL)) (-2696 (((-112) $) NIL (|has| |#2| (-919)))) (-2343 (($ $ |#2| (-245 (-2862 |#1|) (-780)) $) NIL)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| (-873 |#1|) (-896 (-387))) (|has| |#2| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| (-873 |#1|) (-896 (-573))) (|has| |#2| (-896 (-573)))))) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) NIL)) (-4344 (($ (-1185 |#2|) (-873 |#1|)) NIL) (($ (-1185 $) (-873 |#1|)) NIL)) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-4334 (($ |#2| (-245 (-2862 |#1|) (-780))) NIL) (($ $ (-873 |#1|) (-780)) NIL) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ (-873 |#1|)) NIL)) (-4036 (((-245 (-2862 |#1|) (-780)) $) NIL) (((-780) $ (-873 |#1|)) NIL) (((-653 (-780)) $ (-653 (-873 |#1|))) NIL)) (-1382 (($ (-1 (-245 (-2862 |#1|) (-780)) (-245 (-2862 |#1|) (-780))) $) NIL)) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-1453 (((-3 (-873 |#1|) "failed") $) NIL)) (-1358 (($ $) NIL)) (-1369 ((|#2| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#2| (-461))) (($ $ $) NIL (|has| |#2| (-461)))) (-3180 (((-1171) $) NIL)) (-4082 (((-3 (-653 $) "failed") $) NIL)) (-2586 (((-3 (-653 $) "failed") $) NIL)) (-2573 (((-3 (-2 (|:| |var| (-873 |#1|)) (|:| -3907 (-780))) "failed") $) NIL)) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) NIL)) (-1348 ((|#2| $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#2| (-461)))) (-2872 (($ (-653 $)) NIL (|has| |#2| (-461))) (($ $ $) NIL (|has| |#2| (-461)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-4218 (((-427 $) $) NIL (|has| |#2| (-919)))) (-2837 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-565))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-565)))) (-2645 (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-873 |#1|) |#2|) NIL) (($ $ (-653 (-873 |#1|)) (-653 |#2|)) NIL) (($ $ (-873 |#1|) $) NIL) (($ $ (-653 (-873 |#1|)) (-653 $)) NIL)) (-3592 (($ $ (-873 |#1|)) NIL (|has| |#2| (-174)))) (-3904 (($ $ (-873 |#1|)) NIL) (($ $ (-653 (-873 |#1|))) NIL) (($ $ (-873 |#1|) (-780)) NIL) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-2565 (((-245 (-2862 |#1|) (-780)) $) NIL) (((-780) $ (-873 |#1|)) NIL) (((-653 (-780)) $ (-653 (-873 |#1|))) NIL)) (-1835 (((-902 (-387)) $) NIL (-12 (|has| (-873 |#1|) (-623 (-902 (-387)))) (|has| |#2| (-623 (-902 (-387)))))) (((-902 (-573)) $) NIL (-12 (|has| (-873 |#1|) (-623 (-902 (-573)))) (|has| |#2| (-623 (-902 (-573)))))) (((-545) $) NIL (-12 (|has| (-873 |#1|) (-623 (-545))) (|has| |#2| (-623 (-545)))))) (-3257 ((|#2| $) NIL (|has| |#2| (-461))) (($ $ (-873 |#1|)) NIL (|has| |#2| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-919))))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#2|) NIL) (($ (-873 |#1|)) NIL) (($ (-416 (-573))) NIL (-2817 (|has| |#2| (-38 (-416 (-573)))) (|has| |#2| (-1050 (-416 (-573)))))) (($ $) NIL (|has| |#2| (-565)))) (-1920 (((-653 |#2|) $) NIL)) (-4317 ((|#2| $ (-245 (-2862 |#1|) (-780))) NIL) (($ $ (-873 |#1|) (-780)) NIL) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#2| (-919))) (|has| |#2| (-146))))) (-1545 (((-780)) NIL T CONST)) (-1538 (($ $ $ (-780)) NIL (|has| |#2| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#2| (-565)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-873 |#1|)) NIL) (($ $ (-653 (-873 |#1|))) NIL) (($ $ (-873 |#1|) (-780)) NIL) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#2|) NIL (|has| |#2| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL (|has| |#2| (-38 (-416 (-573))))) (($ (-416 (-573)) $) NIL (|has| |#2| (-38 (-416 (-573))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-252 |#1| |#2|) (-13 (-959 |#2| (-245 (-2862 |#1|) (-780)) (-873 |#1|)) (-10 -8 (-15 -3327 ($ $ (-653 (-573)))))) (-653 (-1189)) (-1061)) (T -252)) +((-3327 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-252 *3 *4)) (-14 *3 (-653 (-1189))) (-4 *4 (-1061))))) +(-13 (-959 |#2| (-245 (-2862 |#1|) (-780)) (-873 |#1|)) (-10 -8 (-15 -3327 ($ $ (-653 (-573)))))) +((-2848 (((-112) $ $) NIL)) (-1984 (((-1285) $) 17)) (-3647 (((-185 (-254)) $) 11)) (-2445 (($ (-185 (-254))) 12)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-1963 (((-254) $) 7)) (-2942 (((-871) $) 9)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 15))) +(((-253) (-13 (-1112) (-10 -8 (-15 -1963 ((-254) $)) (-15 -3647 ((-185 (-254)) $)) (-15 -2445 ($ (-185 (-254)))) (-15 -1984 ((-1285) $))))) (T -253)) +((-1963 (*1 *2 *1) (-12 (-5 *2 (-254)) (-5 *1 (-253)))) (-3647 (*1 *2 *1) (-12 (-5 *2 (-185 (-254))) (-5 *1 (-253)))) (-2445 (*1 *1 *2) (-12 (-5 *2 (-185 (-254))) (-5 *1 (-253)))) (-1984 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-253))))) +(-13 (-1112) (-10 -8 (-15 -1963 ((-254) $)) (-15 -3647 ((-185 (-254)) $)) (-15 -2445 ($ (-185 (-254)))) (-15 -1984 ((-1285) $)))) +((-2848 (((-112) $ $) NIL)) (-1714 (((-653 (-874)) $) NIL)) (-2031 (((-515) $) NIL)) (-3180 (((-1171) $) NIL)) (-4281 (((-188) $) NIL)) (-1667 (((-112) $ (-515)) NIL)) (-3965 (((-1132) $) NIL)) (-1539 (((-340) $) 7)) (-2966 (((-653 (-112)) $) NIL)) (-2942 (((-871) $) NIL) (((-189) $) 8)) (-3507 (((-112) $ $) NIL)) (-4010 (((-55) $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-254) (-13 (-187) (-622 (-189)) (-10 -8 (-15 -1539 ((-340) $))))) (T -254)) +((-1539 (*1 *2 *1) (-12 (-5 *2 (-340)) (-5 *1 (-254))))) +(-13 (-187) (-622 (-189)) (-10 -8 (-15 -1539 ((-340) $)))) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2198 (((-1194) $ (-780)) 13)) (-2942 (((-871) $) 20)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 16)) (-2862 (((-780) $) 9))) +(((-255) (-13 (-1112) (-293 (-780) (-1194)) (-10 -8 (-15 -2862 ((-780) $))))) (T -255)) +((-2862 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-255))))) +(-13 (-1112) (-293 (-780) (-1194)) (-10 -8 (-15 -2862 ((-780) $)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3690 (($ (-931)) NIL (|has| |#4| (-1061)))) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-3280 (($ $ $) NIL (|has| |#4| (-802)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-1486 (((-780)) NIL (|has| |#4| (-376)))) (-1983 (((-573) $) NIL (|has| |#4| (-857)))) (-3142 ((|#4| $ (-573) |#4|) NIL (|has| $ (-6 -4456)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1112))) (((-3 (-573) "failed") $) NIL (-12 (|has| |#4| (-1050 (-573))) (|has| |#4| (-1112)))) (((-3 (-416 (-573)) "failed") $) NIL (-12 (|has| |#4| (-1050 (-416 (-573)))) (|has| |#4| (-1112))))) (-2205 ((|#4| $) NIL (|has| |#4| (-1112))) (((-573) $) NIL (-12 (|has| |#4| (-1050 (-573))) (|has| |#4| (-1112)))) (((-416 (-573)) $) NIL (-12 (|has| |#4| (-1050 (-416 (-573)))) (|has| |#4| (-1112))))) (-2759 (((-2 (|:| -1423 (-698 |#4|)) (|:| |vec| (-1280 |#4|))) (-698 $) (-1280 $)) NIL (|has| |#4| (-1061))) (((-698 |#4|) (-698 $)) NIL (|has| |#4| (-1061))) (((-698 |#4|) (-1280 $)) NIL (|has| |#4| (-1061))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (-12 (|has| |#4| (-648 (-573))) (|has| |#4| (-1061)))) (((-698 (-573)) (-698 $)) NIL (-12 (|has| |#4| (-648 (-573))) (|has| |#4| (-1061)))) (((-698 (-573)) (-1280 $)) NIL (-12 (|has| |#4| (-648 (-573))) (|has| |#4| (-1061))))) (-2232 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| |#4| (-238)) (|has| |#4| (-1061))) (|has| |#4| (-735)) (-12 (|has| |#4| (-910 (-1189))) (|has| |#4| (-1061)))))) (-2819 (($) NIL (|has| |#4| (-376)))) (-2457 ((|#4| $ (-573) |#4|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#4| $ (-573)) NIL)) (-4152 (((-112) $) NIL (|has| |#4| (-857)))) (-1863 (((-653 |#4|) $) NIL (|has| $ (-6 -4455)))) (-1959 (((-112) $) NIL (-2817 (-12 (|has| |#4| (-238)) (|has| |#4| (-1061))) (|has| |#4| (-735)) (-12 (|has| |#4| (-910 (-1189))) (|has| |#4| (-1061)))))) (-3339 (((-112) $) NIL (|has| |#4| (-857)))) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) NIL (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (-2817 (|has| |#4| (-802)) (|has| |#4| (-857))))) (-3214 (((-653 |#4|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (-2817 (|has| |#4| (-802)) (|has| |#4| (-857))))) (-2446 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#4| |#4|) $) NIL)) (-3589 (((-931) $) NIL (|has| |#4| (-376)))) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-2575 (($ (-931)) NIL (|has| |#4| (-376)))) (-3965 (((-1132) $) NIL)) (-2914 ((|#4| $) NIL (|has| (-573) (-859)))) (-3112 (($ $ |#4|) NIL (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#4|))) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-301 |#4|)) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-653 |#4|) (-653 |#4|)) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112))))) (-1535 (((-653 |#4|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#4| $ (-573) |#4|) NIL) ((|#4| $ (-573)) 12)) (-2658 ((|#4| $ $) NIL (|has| |#4| (-1061)))) (-4260 (($ (-1280 |#4|)) NIL)) (-2365 (((-135)) NIL (|has| |#4| (-371)))) (-3904 (($ $ (-1 |#4| |#4|) (-780)) NIL (|has| |#4| (-1061))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1061))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#4| (-910 (-1189))) (|has| |#4| (-1061)))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#4| (-910 (-1189))) (|has| |#4| (-1061)))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#4| (-910 (-1189))) (|has| |#4| (-1061)))) (($ $ (-1189)) NIL (-12 (|has| |#4| (-910 (-1189))) (|has| |#4| (-1061)))) (($ $) NIL (-12 (|has| |#4| (-238)) (|has| |#4| (-1061)))) (($ $ (-780)) NIL (-12 (|has| |#4| (-238)) (|has| |#4| (-1061))))) (-3974 (((-780) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455))) (((-780) |#4| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112))))) (-3166 (($ $) NIL)) (-2942 (((-1280 |#4|) $) NIL) (((-871) $) NIL) (($ |#4|) NIL (|has| |#4| (-1112))) (($ (-573)) NIL (-2817 (-12 (|has| |#4| (-1050 (-573))) (|has| |#4| (-1112))) (|has| |#4| (-1061)))) (($ (-416 (-573))) NIL (-12 (|has| |#4| (-1050 (-416 (-573)))) (|has| |#4| (-1112))))) (-1545 (((-780)) NIL (|has| |#4| (-1061)) CONST)) (-3507 (((-112) $ $) NIL)) (-1646 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-1660 (($ $) NIL (|has| |#4| (-857)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL (-2817 (-12 (|has| |#4| (-238)) (|has| |#4| (-1061))) (|has| |#4| (-735)) (-12 (|has| |#4| (-910 (-1189))) (|has| |#4| (-1061)))) CONST)) (-3609 (($ $ (-1 |#4| |#4|) (-780)) NIL (|has| |#4| (-1061))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1061))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#4| (-910 (-1189))) (|has| |#4| (-1061)))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#4| (-910 (-1189))) (|has| |#4| (-1061)))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#4| (-910 (-1189))) (|has| |#4| (-1061)))) (($ $ (-1189)) NIL (-12 (|has| |#4| (-910 (-1189))) (|has| |#4| (-1061)))) (($ $) NIL (-12 (|has| |#4| (-238)) (|has| |#4| (-1061)))) (($ $ (-780)) NIL (-12 (|has| |#4| (-238)) (|has| |#4| (-1061))))) (-3040 (((-112) $ $) NIL (-2817 (|has| |#4| (-802)) (|has| |#4| (-857))))) (-3015 (((-112) $ $) NIL (-2817 (|has| |#4| (-802)) (|has| |#4| (-857))))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (-2817 (|has| |#4| (-802)) (|has| |#4| (-857))))) (-3005 (((-112) $ $) NIL (-2817 (|has| |#4| (-802)) (|has| |#4| (-857))))) (-3103 (($ $ |#4|) NIL (|has| |#4| (-371)))) (-3093 (($ $ $) NIL) (($ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-780)) NIL (-2817 (-12 (|has| |#4| (-238)) (|has| |#4| (-1061))) (|has| |#4| (-735)) (-12 (|has| |#4| (-910 (-1189))) (|has| |#4| (-1061))))) (($ $ (-931)) NIL (-2817 (-12 (|has| |#4| (-238)) (|has| |#4| (-1061))) (|has| |#4| (-735)) (-12 (|has| |#4| (-910 (-1189))) (|has| |#4| (-1061)))))) (* (($ |#2| $) 14) (($ (-573) $) NIL) (($ (-780) $) NIL) (($ (-931) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-735))) (($ |#4| $) NIL (|has| |#4| (-735))) (($ $ $) NIL (-2817 (-12 (|has| |#4| (-238)) (|has| |#4| (-1061))) (|has| |#4| (-735)) (-12 (|has| |#4| (-910 (-1189))) (|has| |#4| (-1061)))))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-256 |#1| |#2| |#3| |#4|) (-13 (-243 |#1| |#4|) (-657 |#2|) (-657 |#3|)) (-931) (-1061) (-1135 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-657 |#2|)) (T -256)) +NIL +(-13 (-243 |#1| |#4|) (-657 |#2|) (-657 |#3|)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3690 (($ (-931)) NIL (|has| |#3| (-1061)))) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-3280 (($ $ $) NIL (|has| |#3| (-802)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-1486 (((-780)) NIL (|has| |#3| (-376)))) (-1983 (((-573) $) NIL (|has| |#3| (-857)))) (-3142 ((|#3| $ (-573) |#3|) NIL (|has| $ (-6 -4456)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1112))) (((-3 (-573) "failed") $) NIL (-12 (|has| |#3| (-1050 (-573))) (|has| |#3| (-1112)))) (((-3 (-416 (-573)) "failed") $) NIL (-12 (|has| |#3| (-1050 (-416 (-573)))) (|has| |#3| (-1112))))) (-2205 ((|#3| $) NIL (|has| |#3| (-1112))) (((-573) $) NIL (-12 (|has| |#3| (-1050 (-573))) (|has| |#3| (-1112)))) (((-416 (-573)) $) NIL (-12 (|has| |#3| (-1050 (-416 (-573)))) (|has| |#3| (-1112))))) (-2759 (((-2 (|:| -1423 (-698 |#3|)) (|:| |vec| (-1280 |#3|))) (-698 $) (-1280 $)) NIL (|has| |#3| (-1061))) (((-698 |#3|) (-698 $)) NIL (|has| |#3| (-1061))) (((-698 |#3|) (-1280 $)) NIL (|has| |#3| (-1061))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (-12 (|has| |#3| (-648 (-573))) (|has| |#3| (-1061)))) (((-698 (-573)) (-698 $)) NIL (-12 (|has| |#3| (-648 (-573))) (|has| |#3| (-1061)))) (((-698 (-573)) (-1280 $)) NIL (-12 (|has| |#3| (-648 (-573))) (|has| |#3| (-1061))))) (-2232 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| |#3| (-238)) (|has| |#3| (-1061))) (|has| |#3| (-735)) (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))))) (-2819 (($) NIL (|has| |#3| (-376)))) (-2457 ((|#3| $ (-573) |#3|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#3| $ (-573)) NIL)) (-4152 (((-112) $) NIL (|has| |#3| (-857)))) (-1863 (((-653 |#3|) $) NIL (|has| $ (-6 -4455)))) (-1959 (((-112) $) NIL (-2817 (-12 (|has| |#3| (-238)) (|has| |#3| (-1061))) (|has| |#3| (-735)) (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))))) (-3339 (((-112) $) NIL (|has| |#3| (-857)))) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) NIL (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (-2817 (|has| |#3| (-802)) (|has| |#3| (-857))))) (-3214 (((-653 |#3|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#3| (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (-2817 (|has| |#3| (-802)) (|has| |#3| (-857))))) (-2446 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#3| |#3|) $) NIL)) (-3589 (((-931) $) NIL (|has| |#3| (-376)))) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-2575 (($ (-931)) NIL (|has| |#3| (-376)))) (-3965 (((-1132) $) NIL)) (-2914 ((|#3| $) NIL (|has| (-573) (-859)))) (-3112 (($ $ |#3|) NIL (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#3|))) NIL (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) (($ $ (-301 |#3|)) NIL (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) (($ $ (-653 |#3|) (-653 |#3|)) NIL (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#3| (-1112))))) (-1535 (((-653 |#3|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#3| $ (-573) |#3|) NIL) ((|#3| $ (-573)) 11)) (-2658 ((|#3| $ $) NIL (|has| |#3| (-1061)))) (-4260 (($ (-1280 |#3|)) NIL)) (-2365 (((-135)) NIL (|has| |#3| (-371)))) (-3904 (($ $ (-1 |#3| |#3|) (-780)) NIL (|has| |#3| (-1061))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1061))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $ (-1189)) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1061)))) (($ $ (-780)) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1061))))) (-3974 (((-780) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4455))) (((-780) |#3| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#3| (-1112))))) (-3166 (($ $) NIL)) (-2942 (((-1280 |#3|) $) NIL) (((-871) $) NIL) (($ |#3|) NIL (|has| |#3| (-1112))) (($ (-573)) NIL (-2817 (-12 (|has| |#3| (-1050 (-573))) (|has| |#3| (-1112))) (|has| |#3| (-1061)))) (($ (-416 (-573))) NIL (-12 (|has| |#3| (-1050 (-416 (-573)))) (|has| |#3| (-1112))))) (-1545 (((-780)) NIL (|has| |#3| (-1061)) CONST)) (-3507 (((-112) $ $) NIL)) (-1646 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4455)))) (-1660 (($ $) NIL (|has| |#3| (-857)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL (-2817 (-12 (|has| |#3| (-238)) (|has| |#3| (-1061))) (|has| |#3| (-735)) (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) CONST)) (-3609 (($ $ (-1 |#3| |#3|) (-780)) NIL (|has| |#3| (-1061))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1061))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $ (-1189)) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1061)))) (($ $ (-780)) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1061))))) (-3040 (((-112) $ $) NIL (-2817 (|has| |#3| (-802)) (|has| |#3| (-857))))) (-3015 (((-112) $ $) NIL (-2817 (|has| |#3| (-802)) (|has| |#3| (-857))))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (-2817 (|has| |#3| (-802)) (|has| |#3| (-857))))) (-3005 (((-112) $ $) NIL (-2817 (|has| |#3| (-802)) (|has| |#3| (-857))))) (-3103 (($ $ |#3|) NIL (|has| |#3| (-371)))) (-3093 (($ $ $) NIL) (($ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-780)) NIL (-2817 (-12 (|has| |#3| (-238)) (|has| |#3| (-1061))) (|has| |#3| (-735)) (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061))))) (($ $ (-931)) NIL (-2817 (-12 (|has| |#3| (-238)) (|has| |#3| (-1061))) (|has| |#3| (-735)) (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))))) (* (($ |#2| $) 13) (($ (-573) $) NIL) (($ (-780) $) NIL) (($ (-931) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-735))) (($ |#3| $) NIL (|has| |#3| (-735))) (($ $ $) NIL (-2817 (-12 (|has| |#3| (-238)) (|has| |#3| (-1061))) (|has| |#3| (-735)) (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-257 |#1| |#2| |#3|) (-13 (-243 |#1| |#3|) (-657 |#2|)) (-780) (-1061) (-657 |#2|)) (T -257)) +NIL +(-13 (-243 |#1| |#3|) (-657 |#2|)) +((-2438 (((-653 (-780)) $) 56) (((-653 (-780)) $ |#3|) 59)) (-3447 (((-780) $) 58) (((-780) $ |#3|) 61)) (-1730 (($ $) 76)) (-1695 (((-3 |#2| "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL) (((-3 (-573) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-2534 (((-780) $ |#3|) 43) (((-780) $) 38)) (-3844 (((-1 $ (-780)) |#3|) 15) (((-1 $ (-780)) $) 88)) (-3705 ((|#4| $) 69)) (-2069 (((-112) $) 67)) (-2590 (($ $) 75)) (-2645 (($ $ (-653 (-301 $))) 111) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-653 |#4|) (-653 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-653 |#4|) (-653 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-653 |#3|) (-653 $)) 103) (($ $ |#3| |#2|) NIL) (($ $ (-653 |#3|) (-653 |#2|)) 97)) (-3904 (($ $ |#4|) NIL) (($ $ (-653 |#4|)) NIL) (($ $ |#4| (-780)) NIL) (($ $ (-653 |#4|) (-653 (-780))) NIL) (($ $ (-780)) NIL) (($ $) NIL) (($ $ (-1189)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL) (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-2813 (((-653 |#3|) $) 86)) (-2565 ((|#5| $) NIL) (((-780) $ |#4|) NIL) (((-653 (-780)) $ (-653 |#4|)) NIL) (((-780) $ |#3|) 49)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-416 (-573))) NIL) (($ $) NIL))) +(((-258 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2645 (|#1| |#1| (-653 |#3|) (-653 |#2|))) (-15 -2645 (|#1| |#1| |#3| |#2|)) (-15 -2645 (|#1| |#1| (-653 |#3|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#3| |#1|)) (-15 -3844 ((-1 |#1| (-780)) |#1|)) (-15 -1730 (|#1| |#1|)) (-15 -2590 (|#1| |#1|)) (-15 -3705 (|#4| |#1|)) (-15 -2069 ((-112) |#1|)) (-15 -3447 ((-780) |#1| |#3|)) (-15 -2438 ((-653 (-780)) |#1| |#3|)) (-15 -3447 ((-780) |#1|)) (-15 -2438 ((-653 (-780)) |#1|)) (-15 -2565 ((-780) |#1| |#3|)) (-15 -2534 ((-780) |#1|)) (-15 -2534 ((-780) |#1| |#3|)) (-15 -2813 ((-653 |#3|) |#1|)) (-15 -3844 ((-1 |#1| (-780)) |#3|)) (-15 -2942 (|#1| |#3|)) (-15 -1695 ((-3 |#3| "failed") |#1|)) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-780))) (-15 -2565 ((-653 (-780)) |#1| (-653 |#4|))) (-15 -2565 ((-780) |#1| |#4|)) (-15 -2942 (|#1| |#4|)) (-15 -1695 ((-3 |#4| "failed") |#1|)) (-15 -2645 (|#1| |#1| (-653 |#4|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#4| |#1|)) (-15 -2645 (|#1| |#1| (-653 |#4|) (-653 |#2|))) (-15 -2645 (|#1| |#1| |#4| |#2|)) (-15 -2645 (|#1| |#1| (-653 |#1|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#1| |#1|)) (-15 -2645 (|#1| |#1| (-301 |#1|))) (-15 -2645 (|#1| |#1| (-653 (-301 |#1|)))) (-15 -2565 (|#5| |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2942 (|#1| |#2|)) (-15 -3904 (|#1| |#1| (-653 |#4|) (-653 (-780)))) (-15 -3904 (|#1| |#1| |#4| (-780))) (-15 -3904 (|#1| |#1| (-653 |#4|))) (-15 -3904 (|#1| |#1| |#4|)) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) (-259 |#2| |#3| |#4| |#5|) (-1061) (-859) (-272 |#3|) (-802)) (T -258)) +NIL +(-10 -8 (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2645 (|#1| |#1| (-653 |#3|) (-653 |#2|))) (-15 -2645 (|#1| |#1| |#3| |#2|)) (-15 -2645 (|#1| |#1| (-653 |#3|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#3| |#1|)) (-15 -3844 ((-1 |#1| (-780)) |#1|)) (-15 -1730 (|#1| |#1|)) (-15 -2590 (|#1| |#1|)) (-15 -3705 (|#4| |#1|)) (-15 -2069 ((-112) |#1|)) (-15 -3447 ((-780) |#1| |#3|)) (-15 -2438 ((-653 (-780)) |#1| |#3|)) (-15 -3447 ((-780) |#1|)) (-15 -2438 ((-653 (-780)) |#1|)) (-15 -2565 ((-780) |#1| |#3|)) (-15 -2534 ((-780) |#1|)) (-15 -2534 ((-780) |#1| |#3|)) (-15 -2813 ((-653 |#3|) |#1|)) (-15 -3844 ((-1 |#1| (-780)) |#3|)) (-15 -2942 (|#1| |#3|)) (-15 -1695 ((-3 |#3| "failed") |#1|)) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-780))) (-15 -2565 ((-653 (-780)) |#1| (-653 |#4|))) (-15 -2565 ((-780) |#1| |#4|)) (-15 -2942 (|#1| |#4|)) (-15 -1695 ((-3 |#4| "failed") |#1|)) (-15 -2645 (|#1| |#1| (-653 |#4|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#4| |#1|)) (-15 -2645 (|#1| |#1| (-653 |#4|) (-653 |#2|))) (-15 -2645 (|#1| |#1| |#4| |#2|)) (-15 -2645 (|#1| |#1| (-653 |#1|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#1| |#1|)) (-15 -2645 (|#1| |#1| (-301 |#1|))) (-15 -2645 (|#1| |#1| (-653 (-301 |#1|)))) (-15 -2565 (|#5| |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2942 (|#1| |#2|)) (-15 -3904 (|#1| |#1| (-653 |#4|) (-653 (-780)))) (-15 -3904 (|#1| |#1| |#4| (-780))) (-15 -3904 (|#1| |#1| (-653 |#4|))) (-15 -3904 (|#1| |#1| |#4|)) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2438 (((-653 (-780)) $) 219) (((-653 (-780)) $ |#2|) 217)) (-3447 (((-780) $) 218) (((-780) $ |#2|) 216)) (-4354 (((-653 |#3|) $) 112)) (-4193 (((-1185 $) $ |#3|) 127) (((-1185 |#1|) $) 126)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 89 (|has| |#1| (-565)))) (-2456 (($ $) 90 (|has| |#1| (-565)))) (-1345 (((-112) $) 92 (|has| |#1| (-565)))) (-2769 (((-780) $) 114) (((-780) $ (-653 |#3|)) 113)) (-2983 (((-3 $ "failed") $ $) 20)) (-1600 (((-427 (-1185 $)) (-1185 $)) 102 (|has| |#1| (-919)))) (-4285 (($ $) 100 (|has| |#1| (-461)))) (-2427 (((-427 $) $) 99 (|has| |#1| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) 105 (|has| |#1| (-919)))) (-1730 (($ $) 212)) (-2579 (($) 18 T CONST)) (-1695 (((-3 |#1| "failed") $) 168) (((-3 (-416 (-573)) "failed") $) 165 (|has| |#1| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) 163 (|has| |#1| (-1050 (-573)))) (((-3 |#3| "failed") $) 140) (((-3 |#2| "failed") $) 226)) (-2205 ((|#1| $) 167) (((-416 (-573)) $) 166 (|has| |#1| (-1050 (-416 (-573))))) (((-573) $) 164 (|has| |#1| (-1050 (-573)))) ((|#3| $) 141) ((|#2| $) 227)) (-2277 (($ $ $ |#3|) 110 (|has| |#1| (-174)))) (-1391 (($ $) 158)) (-2759 (((-698 (-573)) (-1280 $)) 138 (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) 137 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 136 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) 135) (((-698 |#1|) (-698 $)) 134) (((-698 |#1|) (-1280 $)) 133)) (-2232 (((-3 $ "failed") $) 37)) (-3246 (($ $) 180 (|has| |#1| (-461))) (($ $ |#3|) 107 (|has| |#1| (-461)))) (-1379 (((-653 $) $) 111)) (-2696 (((-112) $) 98 (|has| |#1| (-919)))) (-2343 (($ $ |#1| |#4| $) 176)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 86 (-12 (|has| |#3| (-896 (-387))) (|has| |#1| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 85 (-12 (|has| |#3| (-896 (-573))) (|has| |#1| (-896 (-573)))))) (-2534 (((-780) $ |#2|) 222) (((-780) $) 221)) (-1959 (((-112) $) 35)) (-3772 (((-780) $) 173)) (-4344 (($ (-1185 |#1|) |#3|) 119) (($ (-1185 $) |#3|) 118)) (-2518 (((-653 $) $) 128)) (-3676 (((-112) $) 156)) (-4334 (($ |#1| |#4|) 157) (($ $ |#3| (-780)) 121) (($ $ (-653 |#3|) (-653 (-780))) 120)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ |#3|) 122)) (-4036 ((|#4| $) 174) (((-780) $ |#3|) 124) (((-653 (-780)) $ (-653 |#3|)) 123)) (-1382 (($ (-1 |#4| |#4|) $) 175)) (-1776 (($ (-1 |#1| |#1|) $) 155)) (-3844 (((-1 $ (-780)) |#2|) 224) (((-1 $ (-780)) $) 211 (|has| |#1| (-238)))) (-1453 (((-3 |#3| "failed") $) 125)) (-1358 (($ $) 153)) (-1369 ((|#1| $) 152)) (-3705 ((|#3| $) 214)) (-2829 (($ (-653 $)) 96 (|has| |#1| (-461))) (($ $ $) 95 (|has| |#1| (-461)))) (-3180 (((-1171) $) 10)) (-2069 (((-112) $) 215)) (-4082 (((-3 (-653 $) "failed") $) 116)) (-2586 (((-3 (-653 $) "failed") $) 117)) (-2573 (((-3 (-2 (|:| |var| |#3|) (|:| -3907 (-780))) "failed") $) 115)) (-2590 (($ $) 213)) (-3965 (((-1132) $) 11)) (-1337 (((-112) $) 170)) (-1348 ((|#1| $) 171)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 97 (|has| |#1| (-461)))) (-2872 (($ (-653 $)) 94 (|has| |#1| (-461))) (($ $ $) 93 (|has| |#1| (-461)))) (-2963 (((-427 (-1185 $)) (-1185 $)) 104 (|has| |#1| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) 103 (|has| |#1| (-919)))) (-4218 (((-427 $) $) 101 (|has| |#1| (-919)))) (-2837 (((-3 $ "failed") $ |#1|) 178 (|has| |#1| (-565))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-565)))) (-2645 (($ $ (-653 (-301 $))) 149) (($ $ (-301 $)) 148) (($ $ $ $) 147) (($ $ (-653 $) (-653 $)) 146) (($ $ |#3| |#1|) 145) (($ $ (-653 |#3|) (-653 |#1|)) 144) (($ $ |#3| $) 143) (($ $ (-653 |#3|) (-653 $)) 142) (($ $ |#2| $) 210 (|has| |#1| (-238))) (($ $ (-653 |#2|) (-653 $)) 209 (|has| |#1| (-238))) (($ $ |#2| |#1|) 208 (|has| |#1| (-238))) (($ $ (-653 |#2|) (-653 |#1|)) 207 (|has| |#1| (-238)))) (-3592 (($ $ |#3|) 109 (|has| |#1| (-174)))) (-3904 (($ $ |#3|) 46) (($ $ (-653 |#3|)) 45) (($ $ |#3| (-780)) 44) (($ $ (-653 |#3|) (-653 (-780))) 43) (($ $ (-780)) 242 (|has| |#1| (-238))) (($ $) 240 (|has| |#1| (-238))) (($ $ (-1189)) 239 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) 238 (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) 237 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) 236 (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) 229) (($ $ (-1 |#1| |#1|)) 228)) (-2813 (((-653 |#2|) $) 223)) (-2565 ((|#4| $) 154) (((-780) $ |#3|) 132) (((-653 (-780)) $ (-653 |#3|)) 131) (((-780) $ |#2|) 220)) (-1835 (((-902 (-387)) $) 84 (-12 (|has| |#3| (-623 (-902 (-387)))) (|has| |#1| (-623 (-902 (-387)))))) (((-902 (-573)) $) 83 (-12 (|has| |#3| (-623 (-902 (-573)))) (|has| |#1| (-623 (-902 (-573)))))) (((-545) $) 82 (-12 (|has| |#3| (-623 (-545))) (|has| |#1| (-623 (-545)))))) (-3257 ((|#1| $) 179 (|has| |#1| (-461))) (($ $ |#3|) 108 (|has| |#1| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) 106 (-2086 (|has| $ (-146)) (|has| |#1| (-919))))) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 169) (($ |#3|) 139) (($ |#2|) 225) (($ (-416 (-573))) 80 (-2817 (|has| |#1| (-1050 (-416 (-573)))) (|has| |#1| (-38 (-416 (-573)))))) (($ $) 87 (|has| |#1| (-565)))) (-1920 (((-653 |#1|) $) 172)) (-4317 ((|#1| $ |#4|) 159) (($ $ |#3| (-780)) 130) (($ $ (-653 |#3|) (-653 (-780))) 129)) (-4279 (((-3 $ "failed") $) 81 (-2817 (-2086 (|has| $ (-146)) (|has| |#1| (-919))) (|has| |#1| (-146))))) (-1545 (((-780)) 32 T CONST)) (-1538 (($ $ $ (-780)) 177 (|has| |#1| (-174)))) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 91 (|has| |#1| (-565)))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ |#3|) 42) (($ $ (-653 |#3|)) 41) (($ $ |#3| (-780)) 40) (($ $ (-653 |#3|) (-653 (-780))) 39) (($ $ (-780)) 243 (|has| |#1| (-238))) (($ $) 241 (|has| |#1| (-238))) (($ $ (-1189)) 235 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) 234 (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) 233 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) 232 (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) 231) (($ $ (-1 |#1| |#1|)) 230)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 160 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 (-573))) 162 (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) 161 (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) 151) (($ $ |#1|) 150))) +(((-259 |#1| |#2| |#3| |#4|) (-141) (-1061) (-859) (-272 |t#2|) (-802)) (T -259)) +((-3844 (*1 *2 *3) (-12 (-4 *4 (-1061)) (-4 *3 (-859)) (-4 *5 (-272 *3)) (-4 *6 (-802)) (-5 *2 (-1 *1 (-780))) (-4 *1 (-259 *4 *3 *5 *6)))) (-2813 (*1 *2 *1) (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-859)) (-4 *5 (-272 *4)) (-4 *6 (-802)) (-5 *2 (-653 *4)))) (-2534 (*1 *2 *1 *3) (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1061)) (-4 *3 (-859)) (-4 *5 (-272 *3)) (-4 *6 (-802)) (-5 *2 (-780)))) (-2534 (*1 *2 *1) (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-859)) (-4 *5 (-272 *4)) (-4 *6 (-802)) (-5 *2 (-780)))) (-2565 (*1 *2 *1 *3) (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1061)) (-4 *3 (-859)) (-4 *5 (-272 *3)) (-4 *6 (-802)) (-5 *2 (-780)))) (-2438 (*1 *2 *1) (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-859)) (-4 *5 (-272 *4)) (-4 *6 (-802)) (-5 *2 (-653 (-780))))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-859)) (-4 *5 (-272 *4)) (-4 *6 (-802)) (-5 *2 (-780)))) (-2438 (*1 *2 *1 *3) (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1061)) (-4 *3 (-859)) (-4 *5 (-272 *3)) (-4 *6 (-802)) (-5 *2 (-653 (-780))))) (-3447 (*1 *2 *1 *3) (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1061)) (-4 *3 (-859)) (-4 *5 (-272 *3)) (-4 *6 (-802)) (-5 *2 (-780)))) (-2069 (*1 *2 *1) (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-859)) (-4 *5 (-272 *4)) (-4 *6 (-802)) (-5 *2 (-112)))) (-3705 (*1 *2 *1) (-12 (-4 *1 (-259 *3 *4 *2 *5)) (-4 *3 (-1061)) (-4 *4 (-859)) (-4 *5 (-802)) (-4 *2 (-272 *4)))) (-2590 (*1 *1 *1) (-12 (-4 *1 (-259 *2 *3 *4 *5)) (-4 *2 (-1061)) (-4 *3 (-859)) (-4 *4 (-272 *3)) (-4 *5 (-802)))) (-1730 (*1 *1 *1) (-12 (-4 *1 (-259 *2 *3 *4 *5)) (-4 *2 (-1061)) (-4 *3 (-859)) (-4 *4 (-272 *3)) (-4 *5 (-802)))) (-3844 (*1 *2 *1) (-12 (-4 *3 (-238)) (-4 *3 (-1061)) (-4 *4 (-859)) (-4 *5 (-272 *4)) (-4 *6 (-802)) (-5 *2 (-1 *1 (-780))) (-4 *1 (-259 *3 *4 *5 *6))))) +(-13 (-959 |t#1| |t#4| |t#3|) (-233 |t#1|) (-1050 |t#2|) (-10 -8 (-15 -3844 ((-1 $ (-780)) |t#2|)) (-15 -2813 ((-653 |t#2|) $)) (-15 -2534 ((-780) $ |t#2|)) (-15 -2534 ((-780) $)) (-15 -2565 ((-780) $ |t#2|)) (-15 -2438 ((-653 (-780)) $)) (-15 -3447 ((-780) $)) (-15 -2438 ((-653 (-780)) $ |t#2|)) (-15 -3447 ((-780) $ |t#2|)) (-15 -2069 ((-112) $)) (-15 -3705 (|t#3| $)) (-15 -2590 ($ $)) (-15 -1730 ($ $)) (IF (|has| |t#1| (-238)) (PROGN (-6 (-523 |t#2| |t#1|)) (-6 (-523 |t#2| $)) (-6 (-316 $)) (-15 -3844 ((-1 $ (-780)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-416 (-573)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #0#) -2817 (|has| |#1| (-1050 (-416 (-573)))) (|has| |#1| (-38 (-416 (-573))))) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-625 |#2|) . T) ((-625 |#3|) . T) ((-625 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-622 (-871)) . T) ((-174) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-174))) ((-623 (-545)) -12 (|has| |#1| (-623 (-545))) (|has| |#3| (-623 (-545)))) ((-623 (-902 (-387))) -12 (|has| |#1| (-623 (-902 (-387)))) (|has| |#3| (-623 (-902 (-387))))) ((-623 (-902 (-573))) -12 (|has| |#1| (-623 (-902 (-573)))) (|has| |#3| (-623 (-902 (-573))))) ((-235 $) |has| |#1| (-238)) ((-233 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) |has| |#1| (-238)) ((-297) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-316 $) . T) ((-333 |#1| |#4|) . T) ((-385 |#1|) . T) ((-420 |#1|) . T) ((-461) -2817 (|has| |#1| (-919)) (|has| |#1| (-461))) ((-523 |#2| |#1|) |has| |#1| (-238)) ((-523 |#2| $) |has| |#1| (-238)) ((-523 |#3| |#1|) . T) ((-523 |#3| $) . T) ((-523 $ $) . T) ((-565) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-655 #0#) |has| |#1| (-38 (-416 (-573)))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #0#) |has| |#1| (-38 (-416 (-573)))) ((-657 #1=(-573)) |has| |#1| (-648 (-573))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #0#) |has| |#1| (-38 (-416 (-573)))) ((-649 |#1|) |has| |#1| (-174)) ((-649 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-648 #1#) |has| |#1| (-648 (-573))) ((-648 |#1|) . T) ((-726 #0#) |has| |#1| (-38 (-416 (-573)))) ((-726 |#1|) |has| |#1| (-174)) ((-726 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-735) . T) ((-910 (-1189)) |has| |#1| (-910 (-1189))) ((-910 |#3|) . T) ((-896 (-387)) -12 (|has| |#1| (-896 (-387))) (|has| |#3| (-896 (-387)))) ((-896 (-573)) -12 (|has| |#1| (-896 (-573))) (|has| |#3| (-896 (-573)))) ((-959 |#1| |#4| |#3|) . T) ((-919) |has| |#1| (-919)) ((-1050 (-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((-1050 (-573)) |has| |#1| (-1050 (-573))) ((-1050 |#1|) . T) ((-1050 |#2|) . T) ((-1050 |#3|) . T) ((-1063 #0#) |has| |#1| (-38 (-416 (-573)))) ((-1063 |#1|) . T) ((-1063 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-174))) ((-1068 #0#) |has| |#1| (-38 (-416 (-573)))) ((-1068 |#1|) . T) ((-1068 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-174))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1230) |has| |#1| (-238)) ((-1234) |has| |#1| (-919))) +((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3927 ((|#1| $) 55)) (-2001 ((|#1| $) 45)) (-3450 (((-112) $ (-780)) 8)) (-2579 (($) 7 T CONST)) (-3147 (($ $) 61)) (-2176 (($ $) 49)) (-2948 ((|#1| |#1| $) 47)) (-3072 ((|#1| $) 46)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-4134 (((-780) $) 62)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-2487 ((|#1| $) 40)) (-1474 ((|#1| |#1| $) 53)) (-3728 ((|#1| |#1| $) 52)) (-3181 (($ |#1| $) 41)) (-1839 (((-780) $) 56)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-3897 ((|#1| $) 63)) (-2471 ((|#1| $) 51)) (-3945 ((|#1| $) 50)) (-3815 ((|#1| $) 42)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3203 ((|#1| |#1| $) 59)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2548 ((|#1| $) 60)) (-2310 (($) 58) (($ (-653 |#1|)) 57)) (-4302 (((-780) $) 44)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-4020 ((|#1| $) 54)) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-2679 (($ (-653 |#1|)) 43)) (-2411 ((|#1| $) 64)) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-260 |#1|) (-141) (-1230)) (T -260)) +((-2310 (*1 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230)))) (-2310 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-4 *1 (-260 *3)))) (-1839 (*1 *2 *1) (-12 (-4 *1 (-260 *3)) (-4 *3 (-1230)) (-5 *2 (-780)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230)))) (-4020 (*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230)))) (-1474 (*1 *2 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230)))) (-3728 (*1 *2 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230)))) (-2471 (*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230)))) (-3945 (*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230)))) (-2176 (*1 *1 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230))))) +(-13 (-1133 |t#1|) (-1007 |t#1|) (-10 -8 (-15 -2310 ($)) (-15 -2310 ($ (-653 |t#1|))) (-15 -1839 ((-780) $)) (-15 -3927 (|t#1| $)) (-15 -4020 (|t#1| $)) (-15 -1474 (|t#1| |t#1| $)) (-15 -3728 (|t#1| |t#1| $)) (-15 -2471 (|t#1| $)) (-15 -3945 (|t#1| $)) (-15 -2176 ($ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1007 |#1|) . T) ((-1112) |has| |#1| (-1112)) ((-1133 |#1|) . T) ((-1230) . T)) +((-4179 (((-1 (-953 (-227)) (-227) (-227)) (-1 (-953 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 153)) (-1845 (((-1145 (-227)) (-892 (-1 (-227) (-227) (-227))) (-1106 (-387)) (-1106 (-387))) 173) (((-1145 (-227)) (-892 (-1 (-227) (-227) (-227))) (-1106 (-387)) (-1106 (-387)) (-653 (-269))) 171) (((-1145 (-227)) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-387)) (-1106 (-387))) 176) (((-1145 (-227)) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-387)) (-1106 (-387)) (-653 (-269))) 172) (((-1145 (-227)) (-1 (-227) (-227) (-227)) (-1106 (-387)) (-1106 (-387))) 164) (((-1145 (-227)) (-1 (-227) (-227) (-227)) (-1106 (-387)) (-1106 (-387)) (-653 (-269))) 163) (((-1145 (-227)) (-1 (-953 (-227)) (-227)) (-1106 (-387))) 145) (((-1145 (-227)) (-1 (-953 (-227)) (-227)) (-1106 (-387)) (-653 (-269))) 143) (((-1145 (-227)) (-889 (-1 (-227) (-227))) (-1106 (-387))) 144) (((-1145 (-227)) (-889 (-1 (-227) (-227))) (-1106 (-387)) (-653 (-269))) 141)) (-1799 (((-1282) (-892 (-1 (-227) (-227) (-227))) (-1106 (-387)) (-1106 (-387))) 175) (((-1282) (-892 (-1 (-227) (-227) (-227))) (-1106 (-387)) (-1106 (-387)) (-653 (-269))) 174) (((-1282) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-387)) (-1106 (-387))) 178) (((-1282) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-387)) (-1106 (-387)) (-653 (-269))) 177) (((-1282) (-1 (-227) (-227) (-227)) (-1106 (-387)) (-1106 (-387))) 166) (((-1282) (-1 (-227) (-227) (-227)) (-1106 (-387)) (-1106 (-387)) (-653 (-269))) 165) (((-1282) (-1 (-953 (-227)) (-227)) (-1106 (-387))) 151) (((-1282) (-1 (-953 (-227)) (-227)) (-1106 (-387)) (-653 (-269))) 150) (((-1282) (-889 (-1 (-227) (-227))) (-1106 (-387))) 149) (((-1282) (-889 (-1 (-227) (-227))) (-1106 (-387)) (-653 (-269))) 148) (((-1281) (-887 (-1 (-227) (-227))) (-1106 (-387))) 113) (((-1281) (-887 (-1 (-227) (-227))) (-1106 (-387)) (-653 (-269))) 112) (((-1281) (-1 (-227) (-227)) (-1106 (-387))) 107) (((-1281) (-1 (-227) (-227)) (-1106 (-387)) (-653 (-269))) 105))) +(((-261) (-10 -7 (-15 -1799 ((-1281) (-1 (-227) (-227)) (-1106 (-387)) (-653 (-269)))) (-15 -1799 ((-1281) (-1 (-227) (-227)) (-1106 (-387)))) (-15 -1799 ((-1281) (-887 (-1 (-227) (-227))) (-1106 (-387)) (-653 (-269)))) (-15 -1799 ((-1281) (-887 (-1 (-227) (-227))) (-1106 (-387)))) (-15 -1799 ((-1282) (-889 (-1 (-227) (-227))) (-1106 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) (-889 (-1 (-227) (-227))) (-1106 (-387)))) (-15 -1799 ((-1282) (-1 (-953 (-227)) (-227)) (-1106 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) (-1 (-953 (-227)) (-227)) (-1106 (-387)))) (-15 -1845 ((-1145 (-227)) (-889 (-1 (-227) (-227))) (-1106 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) (-889 (-1 (-227) (-227))) (-1106 (-387)))) (-15 -1845 ((-1145 (-227)) (-1 (-953 (-227)) (-227)) (-1106 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) (-1 (-953 (-227)) (-227)) (-1106 (-387)))) (-15 -1799 ((-1282) (-1 (-227) (-227) (-227)) (-1106 (-387)) (-1106 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) (-1 (-227) (-227) (-227)) (-1106 (-387)) (-1106 (-387)))) (-15 -1845 ((-1145 (-227)) (-1 (-227) (-227) (-227)) (-1106 (-387)) (-1106 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) (-1 (-227) (-227) (-227)) (-1106 (-387)) (-1106 (-387)))) (-15 -1799 ((-1282) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-387)) (-1106 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-387)) (-1106 (-387)))) (-15 -1845 ((-1145 (-227)) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-387)) (-1106 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-387)) (-1106 (-387)))) (-15 -1799 ((-1282) (-892 (-1 (-227) (-227) (-227))) (-1106 (-387)) (-1106 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) (-892 (-1 (-227) (-227) (-227))) (-1106 (-387)) (-1106 (-387)))) (-15 -1845 ((-1145 (-227)) (-892 (-1 (-227) (-227) (-227))) (-1106 (-387)) (-1106 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) (-892 (-1 (-227) (-227) (-227))) (-1106 (-387)) (-1106 (-387)))) (-15 -4179 ((-1 (-953 (-227)) (-227) (-227)) (-1 (-953 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -261)) +((-4179 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-953 (-227)) (-227) (-227))) (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-261)))) (-1845 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-892 (-1 (-227) (-227) (-227)))) (-5 *4 (-1106 (-387))) (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) (-1845 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-892 (-1 (-227) (-227) (-227)))) (-5 *4 (-1106 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) (-1799 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-892 (-1 (-227) (-227) (-227)))) (-5 *4 (-1106 (-387))) (-5 *2 (-1282)) (-5 *1 (-261)))) (-1799 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-892 (-1 (-227) (-227) (-227)))) (-5 *4 (-1106 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1282)) (-5 *1 (-261)))) (-1845 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-953 (-227)) (-227) (-227))) (-5 *4 (-1106 (-387))) (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) (-1845 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-953 (-227)) (-227) (-227))) (-5 *4 (-1106 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) (-1799 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-953 (-227)) (-227) (-227))) (-5 *4 (-1106 (-387))) (-5 *2 (-1282)) (-5 *1 (-261)))) (-1799 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-953 (-227)) (-227) (-227))) (-5 *4 (-1106 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1282)) (-5 *1 (-261)))) (-1845 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1106 (-387))) (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) (-1845 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1106 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) (-1799 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1106 (-387))) (-5 *2 (-1282)) (-5 *1 (-261)))) (-1799 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1106 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1282)) (-5 *1 (-261)))) (-1845 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-953 (-227)) (-227))) (-5 *4 (-1106 (-387))) (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) (-1845 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-953 (-227)) (-227))) (-5 *4 (-1106 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) (-1845 (*1 *2 *3 *4) (-12 (-5 *3 (-889 (-1 (-227) (-227)))) (-5 *4 (-1106 (-387))) (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) (-1845 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-889 (-1 (-227) (-227)))) (-5 *4 (-1106 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-953 (-227)) (-227))) (-5 *4 (-1106 (-387))) (-5 *2 (-1282)) (-5 *1 (-261)))) (-1799 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-953 (-227)) (-227))) (-5 *4 (-1106 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1282)) (-5 *1 (-261)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *3 (-889 (-1 (-227) (-227)))) (-5 *4 (-1106 (-387))) (-5 *2 (-1282)) (-5 *1 (-261)))) (-1799 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-889 (-1 (-227) (-227)))) (-5 *4 (-1106 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1282)) (-5 *1 (-261)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *3 (-887 (-1 (-227) (-227)))) (-5 *4 (-1106 (-387))) (-5 *2 (-1281)) (-5 *1 (-261)))) (-1799 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-887 (-1 (-227) (-227)))) (-5 *4 (-1106 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1281)) (-5 *1 (-261)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1106 (-387))) (-5 *2 (-1281)) (-5 *1 (-261)))) (-1799 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1106 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1281)) (-5 *1 (-261))))) +(-10 -7 (-15 -1799 ((-1281) (-1 (-227) (-227)) (-1106 (-387)) (-653 (-269)))) (-15 -1799 ((-1281) (-1 (-227) (-227)) (-1106 (-387)))) (-15 -1799 ((-1281) (-887 (-1 (-227) (-227))) (-1106 (-387)) (-653 (-269)))) (-15 -1799 ((-1281) (-887 (-1 (-227) (-227))) (-1106 (-387)))) (-15 -1799 ((-1282) (-889 (-1 (-227) (-227))) (-1106 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) (-889 (-1 (-227) (-227))) (-1106 (-387)))) (-15 -1799 ((-1282) (-1 (-953 (-227)) (-227)) (-1106 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) (-1 (-953 (-227)) (-227)) (-1106 (-387)))) (-15 -1845 ((-1145 (-227)) (-889 (-1 (-227) (-227))) (-1106 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) (-889 (-1 (-227) (-227))) (-1106 (-387)))) (-15 -1845 ((-1145 (-227)) (-1 (-953 (-227)) (-227)) (-1106 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) (-1 (-953 (-227)) (-227)) (-1106 (-387)))) (-15 -1799 ((-1282) (-1 (-227) (-227) (-227)) (-1106 (-387)) (-1106 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) (-1 (-227) (-227) (-227)) (-1106 (-387)) (-1106 (-387)))) (-15 -1845 ((-1145 (-227)) (-1 (-227) (-227) (-227)) (-1106 (-387)) (-1106 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) (-1 (-227) (-227) (-227)) (-1106 (-387)) (-1106 (-387)))) (-15 -1799 ((-1282) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-387)) (-1106 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-387)) (-1106 (-387)))) (-15 -1845 ((-1145 (-227)) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-387)) (-1106 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-387)) (-1106 (-387)))) (-15 -1799 ((-1282) (-892 (-1 (-227) (-227) (-227))) (-1106 (-387)) (-1106 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) (-892 (-1 (-227) (-227) (-227))) (-1106 (-387)) (-1106 (-387)))) (-15 -1845 ((-1145 (-227)) (-892 (-1 (-227) (-227) (-227))) (-1106 (-387)) (-1106 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) (-892 (-1 (-227) (-227) (-227))) (-1106 (-387)) (-1106 (-387)))) (-15 -4179 ((-1 (-953 (-227)) (-227) (-227)) (-1 (-953 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) +((-1799 (((-1281) (-301 |#2|) (-1189) (-1189) (-653 (-269))) 101))) +(((-262 |#1| |#2|) (-10 -7 (-15 -1799 ((-1281) (-301 |#2|) (-1189) (-1189) (-653 (-269))))) (-13 (-565) (-859) (-1050 (-573))) (-439 |#1|)) (T -262)) +((-1799 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-301 *7)) (-5 *4 (-1189)) (-5 *5 (-653 (-269))) (-4 *7 (-439 *6)) (-4 *6 (-13 (-565) (-859) (-1050 (-573)))) (-5 *2 (-1281)) (-5 *1 (-262 *6 *7))))) +(-10 -7 (-15 -1799 ((-1281) (-301 |#2|) (-1189) (-1189) (-653 (-269))))) +((-1788 (((-573) (-573)) 71)) (-3230 (((-573) (-573)) 72)) (-1394 (((-227) (-227)) 73)) (-2167 (((-1282) (-1 (-171 (-227)) (-171 (-227))) (-1106 (-227)) (-1106 (-227))) 70)) (-3724 (((-1282) (-1 (-171 (-227)) (-171 (-227))) (-1106 (-227)) (-1106 (-227)) (-112)) 68))) +(((-263) (-10 -7 (-15 -3724 ((-1282) (-1 (-171 (-227)) (-171 (-227))) (-1106 (-227)) (-1106 (-227)) (-112))) (-15 -2167 ((-1282) (-1 (-171 (-227)) (-171 (-227))) (-1106 (-227)) (-1106 (-227)))) (-15 -1788 ((-573) (-573))) (-15 -3230 ((-573) (-573))) (-15 -1394 ((-227) (-227))))) (T -263)) +((-1394 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-263)))) (-3230 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-263)))) (-1788 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-263)))) (-2167 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1106 (-227))) (-5 *2 (-1282)) (-5 *1 (-263)))) (-3724 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1106 (-227))) (-5 *5 (-112)) (-5 *2 (-1282)) (-5 *1 (-263))))) +(-10 -7 (-15 -3724 ((-1282) (-1 (-171 (-227)) (-171 (-227))) (-1106 (-227)) (-1106 (-227)) (-112))) (-15 -2167 ((-1282) (-1 (-171 (-227)) (-171 (-227))) (-1106 (-227)) (-1106 (-227)))) (-15 -1788 ((-573) (-573))) (-15 -3230 ((-573) (-573))) (-15 -1394 ((-227) (-227)))) +((-2942 (((-1104 (-387)) (-1104 (-323 |#1|))) 16))) +(((-264 |#1|) (-10 -7 (-15 -2942 ((-1104 (-387)) (-1104 (-323 |#1|))))) (-13 (-859) (-565) (-623 (-387)))) (T -264)) +((-2942 (*1 *2 *3) (-12 (-5 *3 (-1104 (-323 *4))) (-4 *4 (-13 (-859) (-565) (-623 (-387)))) (-5 *2 (-1104 (-387))) (-5 *1 (-264 *4))))) +(-10 -7 (-15 -2942 ((-1104 (-387)) (-1104 (-323 |#1|))))) +((-1845 (((-1145 (-227)) (-892 |#1|) (-1104 (-387)) (-1104 (-387))) 75) (((-1145 (-227)) (-892 |#1|) (-1104 (-387)) (-1104 (-387)) (-653 (-269))) 74) (((-1145 (-227)) |#1| (-1104 (-387)) (-1104 (-387))) 65) (((-1145 (-227)) |#1| (-1104 (-387)) (-1104 (-387)) (-653 (-269))) 64) (((-1145 (-227)) (-889 |#1|) (-1104 (-387))) 56) (((-1145 (-227)) (-889 |#1|) (-1104 (-387)) (-653 (-269))) 55)) (-1799 (((-1282) (-892 |#1|) (-1104 (-387)) (-1104 (-387))) 78) (((-1282) (-892 |#1|) (-1104 (-387)) (-1104 (-387)) (-653 (-269))) 77) (((-1282) |#1| (-1104 (-387)) (-1104 (-387))) 68) (((-1282) |#1| (-1104 (-387)) (-1104 (-387)) (-653 (-269))) 67) (((-1282) (-889 |#1|) (-1104 (-387))) 60) (((-1282) (-889 |#1|) (-1104 (-387)) (-653 (-269))) 59) (((-1281) (-887 |#1|) (-1104 (-387))) 47) (((-1281) (-887 |#1|) (-1104 (-387)) (-653 (-269))) 46) (((-1281) |#1| (-1104 (-387))) 38) (((-1281) |#1| (-1104 (-387)) (-653 (-269))) 36))) +(((-265 |#1|) (-10 -7 (-15 -1799 ((-1281) |#1| (-1104 (-387)) (-653 (-269)))) (-15 -1799 ((-1281) |#1| (-1104 (-387)))) (-15 -1799 ((-1281) (-887 |#1|) (-1104 (-387)) (-653 (-269)))) (-15 -1799 ((-1281) (-887 |#1|) (-1104 (-387)))) (-15 -1799 ((-1282) (-889 |#1|) (-1104 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) (-889 |#1|) (-1104 (-387)))) (-15 -1845 ((-1145 (-227)) (-889 |#1|) (-1104 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) (-889 |#1|) (-1104 (-387)))) (-15 -1799 ((-1282) |#1| (-1104 (-387)) (-1104 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) |#1| (-1104 (-387)) (-1104 (-387)))) (-15 -1845 ((-1145 (-227)) |#1| (-1104 (-387)) (-1104 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) |#1| (-1104 (-387)) (-1104 (-387)))) (-15 -1799 ((-1282) (-892 |#1|) (-1104 (-387)) (-1104 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) (-892 |#1|) (-1104 (-387)) (-1104 (-387)))) (-15 -1845 ((-1145 (-227)) (-892 |#1|) (-1104 (-387)) (-1104 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) (-892 |#1|) (-1104 (-387)) (-1104 (-387))))) (-13 (-623 (-545)) (-1112))) (T -265)) +((-1845 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-892 *5)) (-5 *4 (-1104 (-387))) (-4 *5 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1145 (-227))) (-5 *1 (-265 *5)))) (-1845 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-892 *6)) (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) (-4 *6 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1145 (-227))) (-5 *1 (-265 *6)))) (-1799 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-892 *5)) (-5 *4 (-1104 (-387))) (-4 *5 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1282)) (-5 *1 (-265 *5)))) (-1799 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-892 *6)) (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) (-4 *6 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1282)) (-5 *1 (-265 *6)))) (-1845 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1104 (-387))) (-5 *2 (-1145 (-227))) (-5 *1 (-265 *3)) (-4 *3 (-13 (-623 (-545)) (-1112))))) (-1845 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-265 *3)) (-4 *3 (-13 (-623 (-545)) (-1112))))) (-1799 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1104 (-387))) (-5 *2 (-1282)) (-5 *1 (-265 *3)) (-4 *3 (-13 (-623 (-545)) (-1112))))) (-1799 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1282)) (-5 *1 (-265 *3)) (-4 *3 (-13 (-623 (-545)) (-1112))))) (-1845 (*1 *2 *3 *4) (-12 (-5 *3 (-889 *5)) (-5 *4 (-1104 (-387))) (-4 *5 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1145 (-227))) (-5 *1 (-265 *5)))) (-1845 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-889 *6)) (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) (-4 *6 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1145 (-227))) (-5 *1 (-265 *6)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *3 (-889 *5)) (-5 *4 (-1104 (-387))) (-4 *5 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1282)) (-5 *1 (-265 *5)))) (-1799 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-889 *6)) (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) (-4 *6 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1282)) (-5 *1 (-265 *6)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *3 (-887 *5)) (-5 *4 (-1104 (-387))) (-4 *5 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1281)) (-5 *1 (-265 *5)))) (-1799 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-887 *6)) (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) (-4 *6 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1281)) (-5 *1 (-265 *6)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *4 (-1104 (-387))) (-5 *2 (-1281)) (-5 *1 (-265 *3)) (-4 *3 (-13 (-623 (-545)) (-1112))))) (-1799 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1281)) (-5 *1 (-265 *3)) (-4 *3 (-13 (-623 (-545)) (-1112)))))) +(-10 -7 (-15 -1799 ((-1281) |#1| (-1104 (-387)) (-653 (-269)))) (-15 -1799 ((-1281) |#1| (-1104 (-387)))) (-15 -1799 ((-1281) (-887 |#1|) (-1104 (-387)) (-653 (-269)))) (-15 -1799 ((-1281) (-887 |#1|) (-1104 (-387)))) (-15 -1799 ((-1282) (-889 |#1|) (-1104 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) (-889 |#1|) (-1104 (-387)))) (-15 -1845 ((-1145 (-227)) (-889 |#1|) (-1104 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) (-889 |#1|) (-1104 (-387)))) (-15 -1799 ((-1282) |#1| (-1104 (-387)) (-1104 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) |#1| (-1104 (-387)) (-1104 (-387)))) (-15 -1845 ((-1145 (-227)) |#1| (-1104 (-387)) (-1104 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) |#1| (-1104 (-387)) (-1104 (-387)))) (-15 -1799 ((-1282) (-892 |#1|) (-1104 (-387)) (-1104 (-387)) (-653 (-269)))) (-15 -1799 ((-1282) (-892 |#1|) (-1104 (-387)) (-1104 (-387)))) (-15 -1845 ((-1145 (-227)) (-892 |#1|) (-1104 (-387)) (-1104 (-387)) (-653 (-269)))) (-15 -1845 ((-1145 (-227)) (-892 |#1|) (-1104 (-387)) (-1104 (-387))))) +((-1799 (((-1282) (-653 (-227)) (-653 (-227)) (-653 (-227)) (-653 (-269))) 23) (((-1282) (-653 (-227)) (-653 (-227)) (-653 (-227))) 24) (((-1281) (-653 (-953 (-227))) (-653 (-269))) 16) (((-1281) (-653 (-953 (-227)))) 17) (((-1281) (-653 (-227)) (-653 (-227)) (-653 (-269))) 20) (((-1281) (-653 (-227)) (-653 (-227))) 21))) +(((-266) (-10 -7 (-15 -1799 ((-1281) (-653 (-227)) (-653 (-227)))) (-15 -1799 ((-1281) (-653 (-227)) (-653 (-227)) (-653 (-269)))) (-15 -1799 ((-1281) (-653 (-953 (-227))))) (-15 -1799 ((-1281) (-653 (-953 (-227))) (-653 (-269)))) (-15 -1799 ((-1282) (-653 (-227)) (-653 (-227)) (-653 (-227)))) (-15 -1799 ((-1282) (-653 (-227)) (-653 (-227)) (-653 (-227)) (-653 (-269)))))) (T -266)) +((-1799 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-653 (-227))) (-5 *4 (-653 (-269))) (-5 *2 (-1282)) (-5 *1 (-266)))) (-1799 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-653 (-227))) (-5 *2 (-1282)) (-5 *1 (-266)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-953 (-227)))) (-5 *4 (-653 (-269))) (-5 *2 (-1281)) (-5 *1 (-266)))) (-1799 (*1 *2 *3) (-12 (-5 *3 (-653 (-953 (-227)))) (-5 *2 (-1281)) (-5 *1 (-266)))) (-1799 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-653 (-227))) (-5 *4 (-653 (-269))) (-5 *2 (-1281)) (-5 *1 (-266)))) (-1799 (*1 *2 *3 *3) (-12 (-5 *3 (-653 (-227))) (-5 *2 (-1281)) (-5 *1 (-266))))) +(-10 -7 (-15 -1799 ((-1281) (-653 (-227)) (-653 (-227)))) (-15 -1799 ((-1281) (-653 (-227)) (-653 (-227)) (-653 (-269)))) (-15 -1799 ((-1281) (-653 (-953 (-227))))) (-15 -1799 ((-1281) (-653 (-953 (-227))) (-653 (-269)))) (-15 -1799 ((-1282) (-653 (-227)) (-653 (-227)) (-653 (-227)))) (-15 -1799 ((-1282) (-653 (-227)) (-653 (-227)) (-653 (-227)) (-653 (-269))))) +((-3798 (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-653 (-269)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 25)) (-3938 (((-931) (-653 (-269)) (-931)) 52)) (-3489 (((-931) (-653 (-269)) (-931)) 51)) (-1996 (((-653 (-387)) (-653 (-269)) (-653 (-387))) 68)) (-1854 (((-387) (-653 (-269)) (-387)) 57)) (-3782 (((-931) (-653 (-269)) (-931)) 53)) (-4150 (((-112) (-653 (-269)) (-112)) 27)) (-3876 (((-1171) (-653 (-269)) (-1171)) 19)) (-2013 (((-1171) (-653 (-269)) (-1171)) 26)) (-3614 (((-1145 (-227)) (-653 (-269))) 46)) (-4119 (((-653 (-1106 (-387))) (-653 (-269)) (-653 (-1106 (-387)))) 40)) (-2100 (((-883) (-653 (-269)) (-883)) 32)) (-3340 (((-883) (-653 (-269)) (-883)) 33)) (-3667 (((-1 (-953 (-227)) (-953 (-227))) (-653 (-269)) (-1 (-953 (-227)) (-953 (-227)))) 63)) (-2269 (((-112) (-653 (-269)) (-112)) 14)) (-2359 (((-112) (-653 (-269)) (-112)) 13))) +(((-267) (-10 -7 (-15 -2359 ((-112) (-653 (-269)) (-112))) (-15 -2269 ((-112) (-653 (-269)) (-112))) (-15 -3798 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-653 (-269)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3876 ((-1171) (-653 (-269)) (-1171))) (-15 -2013 ((-1171) (-653 (-269)) (-1171))) (-15 -4150 ((-112) (-653 (-269)) (-112))) (-15 -2100 ((-883) (-653 (-269)) (-883))) (-15 -3340 ((-883) (-653 (-269)) (-883))) (-15 -4119 ((-653 (-1106 (-387))) (-653 (-269)) (-653 (-1106 (-387))))) (-15 -3489 ((-931) (-653 (-269)) (-931))) (-15 -3938 ((-931) (-653 (-269)) (-931))) (-15 -3614 ((-1145 (-227)) (-653 (-269)))) (-15 -3782 ((-931) (-653 (-269)) (-931))) (-15 -1854 ((-387) (-653 (-269)) (-387))) (-15 -3667 ((-1 (-953 (-227)) (-953 (-227))) (-653 (-269)) (-1 (-953 (-227)) (-953 (-227))))) (-15 -1996 ((-653 (-387)) (-653 (-269)) (-653 (-387)))))) (T -267)) +((-1996 (*1 *2 *3 *2) (-12 (-5 *2 (-653 (-387))) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) (-3667 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-953 (-227)) (-953 (-227)))) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) (-1854 (*1 *2 *3 *2) (-12 (-5 *2 (-387)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) (-3782 (*1 *2 *3 *2) (-12 (-5 *2 (-931)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) (-3614 (*1 *2 *3) (-12 (-5 *3 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-267)))) (-3938 (*1 *2 *3 *2) (-12 (-5 *2 (-931)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) (-3489 (*1 *2 *3 *2) (-12 (-5 *2 (-931)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) (-4119 (*1 *2 *3 *2) (-12 (-5 *2 (-653 (-1106 (-387)))) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) (-3340 (*1 *2 *3 *2) (-12 (-5 *2 (-883)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) (-2100 (*1 *2 *3 *2) (-12 (-5 *2 (-883)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) (-4150 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) (-2013 (*1 *2 *3 *2) (-12 (-5 *2 (-1171)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) (-3876 (*1 *2 *3 *2) (-12 (-5 *2 (-1171)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) (-3798 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) (-2269 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) (-2359 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-653 (-269))) (-5 *1 (-267))))) +(-10 -7 (-15 -2359 ((-112) (-653 (-269)) (-112))) (-15 -2269 ((-112) (-653 (-269)) (-112))) (-15 -3798 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-653 (-269)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3876 ((-1171) (-653 (-269)) (-1171))) (-15 -2013 ((-1171) (-653 (-269)) (-1171))) (-15 -4150 ((-112) (-653 (-269)) (-112))) (-15 -2100 ((-883) (-653 (-269)) (-883))) (-15 -3340 ((-883) (-653 (-269)) (-883))) (-15 -4119 ((-653 (-1106 (-387))) (-653 (-269)) (-653 (-1106 (-387))))) (-15 -3489 ((-931) (-653 (-269)) (-931))) (-15 -3938 ((-931) (-653 (-269)) (-931))) (-15 -3614 ((-1145 (-227)) (-653 (-269)))) (-15 -3782 ((-931) (-653 (-269)) (-931))) (-15 -1854 ((-387) (-653 (-269)) (-387))) (-15 -3667 ((-1 (-953 (-227)) (-953 (-227))) (-653 (-269)) (-1 (-953 (-227)) (-953 (-227))))) (-15 -1996 ((-653 (-387)) (-653 (-269)) (-653 (-387))))) +((-1979 (((-3 |#1| "failed") (-653 (-269)) (-1189)) 17))) +(((-268 |#1|) (-10 -7 (-15 -1979 ((-3 |#1| "failed") (-653 (-269)) (-1189)))) (-1230)) (T -268)) +((-1979 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-653 (-269))) (-5 *4 (-1189)) (-5 *1 (-268 *2)) (-4 *2 (-1230))))) +(-10 -7 (-15 -1979 ((-3 |#1| "failed") (-653 (-269)) (-1189)))) +((-2848 (((-112) $ $) NIL)) (-3798 (($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 24)) (-3938 (($ (-931)) 81)) (-3489 (($ (-931)) 80)) (-1642 (($ (-653 (-387))) 87)) (-1854 (($ (-387)) 66)) (-3782 (($ (-931)) 82)) (-4150 (($ (-112)) 33)) (-3876 (($ (-1171)) 28)) (-2013 (($ (-1171)) 29)) (-3614 (($ (-1145 (-227))) 76)) (-4119 (($ (-653 (-1106 (-387)))) 72)) (-3821 (($ (-653 (-1106 (-387)))) 68) (($ (-653 (-1106 (-416 (-573))))) 71)) (-1344 (($ (-387)) 38) (($ (-883)) 42)) (-2555 (((-112) (-653 $) (-1189)) 100)) (-1979 (((-3 (-52) "failed") (-653 $) (-1189)) 102)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2053 (($ (-387)) 43) (($ (-883)) 44)) (-2123 (($ (-1 (-953 (-227)) (-953 (-227)))) 65)) (-3667 (($ (-1 (-953 (-227)) (-953 (-227)))) 83)) (-2705 (($ (-1 (-227) (-227))) 48) (($ (-1 (-227) (-227) (-227))) 52) (($ (-1 (-227) (-227) (-227) (-227))) 56)) (-2942 (((-871) $) 93)) (-3335 (($ (-112)) 34) (($ (-653 (-1106 (-387)))) 60)) (-3507 (((-112) $ $) NIL)) (-2359 (($ (-112)) 35)) (-2981 (((-112) $ $) 97))) +(((-269) (-13 (-1112) (-10 -8 (-15 -2359 ($ (-112))) (-15 -3335 ($ (-112))) (-15 -3798 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3876 ($ (-1171))) (-15 -2013 ($ (-1171))) (-15 -4150 ($ (-112))) (-15 -3335 ($ (-653 (-1106 (-387))))) (-15 -2123 ($ (-1 (-953 (-227)) (-953 (-227))))) (-15 -1344 ($ (-387))) (-15 -1344 ($ (-883))) (-15 -2053 ($ (-387))) (-15 -2053 ($ (-883))) (-15 -2705 ($ (-1 (-227) (-227)))) (-15 -2705 ($ (-1 (-227) (-227) (-227)))) (-15 -2705 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -1854 ($ (-387))) (-15 -3821 ($ (-653 (-1106 (-387))))) (-15 -3821 ($ (-653 (-1106 (-416 (-573)))))) (-15 -4119 ($ (-653 (-1106 (-387))))) (-15 -3614 ($ (-1145 (-227)))) (-15 -3489 ($ (-931))) (-15 -3938 ($ (-931))) (-15 -3782 ($ (-931))) (-15 -3667 ($ (-1 (-953 (-227)) (-953 (-227))))) (-15 -1642 ($ (-653 (-387)))) (-15 -1979 ((-3 (-52) "failed") (-653 $) (-1189))) (-15 -2555 ((-112) (-653 $) (-1189)))))) (T -269)) +((-2359 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-269)))) (-3335 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-269)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-269)))) (-3876 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-269)))) (-2013 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-269)))) (-4150 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-269)))) (-3335 (*1 *1 *2) (-12 (-5 *2 (-653 (-1106 (-387)))) (-5 *1 (-269)))) (-2123 (*1 *1 *2) (-12 (-5 *2 (-1 (-953 (-227)) (-953 (-227)))) (-5 *1 (-269)))) (-1344 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-269)))) (-1344 (*1 *1 *2) (-12 (-5 *2 (-883)) (-5 *1 (-269)))) (-2053 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-269)))) (-2053 (*1 *1 *2) (-12 (-5 *2 (-883)) (-5 *1 (-269)))) (-2705 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-269)))) (-2705 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-269)))) (-2705 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-269)))) (-1854 (*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-269)))) (-3821 (*1 *1 *2) (-12 (-5 *2 (-653 (-1106 (-387)))) (-5 *1 (-269)))) (-3821 (*1 *1 *2) (-12 (-5 *2 (-653 (-1106 (-416 (-573))))) (-5 *1 (-269)))) (-4119 (*1 *1 *2) (-12 (-5 *2 (-653 (-1106 (-387)))) (-5 *1 (-269)))) (-3614 (*1 *1 *2) (-12 (-5 *2 (-1145 (-227))) (-5 *1 (-269)))) (-3489 (*1 *1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-269)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-269)))) (-3782 (*1 *1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-269)))) (-3667 (*1 *1 *2) (-12 (-5 *2 (-1 (-953 (-227)) (-953 (-227)))) (-5 *1 (-269)))) (-1642 (*1 *1 *2) (-12 (-5 *2 (-653 (-387))) (-5 *1 (-269)))) (-1979 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-653 (-269))) (-5 *4 (-1189)) (-5 *2 (-52)) (-5 *1 (-269)))) (-2555 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-269))) (-5 *4 (-1189)) (-5 *2 (-112)) (-5 *1 (-269))))) +(-13 (-1112) (-10 -8 (-15 -2359 ($ (-112))) (-15 -3335 ($ (-112))) (-15 -3798 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3876 ($ (-1171))) (-15 -2013 ($ (-1171))) (-15 -4150 ($ (-112))) (-15 -3335 ($ (-653 (-1106 (-387))))) (-15 -2123 ($ (-1 (-953 (-227)) (-953 (-227))))) (-15 -1344 ($ (-387))) (-15 -1344 ($ (-883))) (-15 -2053 ($ (-387))) (-15 -2053 ($ (-883))) (-15 -2705 ($ (-1 (-227) (-227)))) (-15 -2705 ($ (-1 (-227) (-227) (-227)))) (-15 -2705 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -1854 ($ (-387))) (-15 -3821 ($ (-653 (-1106 (-387))))) (-15 -3821 ($ (-653 (-1106 (-416 (-573)))))) (-15 -4119 ($ (-653 (-1106 (-387))))) (-15 -3614 ($ (-1145 (-227)))) (-15 -3489 ($ (-931))) (-15 -3938 ($ (-931))) (-15 -3782 ($ (-931))) (-15 -3667 ($ (-1 (-953 (-227)) (-953 (-227))))) (-15 -1642 ($ (-653 (-387)))) (-15 -1979 ((-3 (-52) "failed") (-653 $) (-1189))) (-15 -2555 ((-112) (-653 $) (-1189))))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2438 (((-653 (-780)) $) NIL) (((-653 (-780)) $ |#2|) NIL)) (-3447 (((-780) $) NIL) (((-780) $ |#2|) NIL)) (-4354 (((-653 |#3|) $) NIL)) (-4193 (((-1185 $) $ |#3|) NIL) (((-1185 |#1|) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-2769 (((-780) $) NIL) (((-780) $ (-653 |#3|)) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4285 (($ $) NIL (|has| |#1| (-461)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-1730 (($ $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1137 |#1| |#2|) "failed") $) 23)) (-2205 ((|#1| $) NIL) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-573) $) NIL (|has| |#1| (-1050 (-573)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1137 |#1| |#2|) $) NIL)) (-2277 (($ $ $ |#3|) NIL (|has| |#1| (-174)))) (-1391 (($ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) NIL) (((-698 |#1|) (-698 $)) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#1| (-461))) (($ $ |#3|) NIL (|has| |#1| (-461)))) (-1379 (((-653 $) $) NIL)) (-2696 (((-112) $) NIL (|has| |#1| (-919)))) (-2343 (($ $ |#1| (-540 |#3|) $) NIL)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| |#1| (-896 (-387))) (|has| |#3| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| |#1| (-896 (-573))) (|has| |#3| (-896 (-573)))))) (-2534 (((-780) $ |#2|) NIL) (((-780) $) 10)) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) NIL)) (-4344 (($ (-1185 |#1|) |#3|) NIL) (($ (-1185 $) |#3|) NIL)) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-540 |#3|)) NIL) (($ $ |#3| (-780)) NIL) (($ $ (-653 |#3|) (-653 (-780))) NIL)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ |#3|) NIL)) (-4036 (((-540 |#3|) $) NIL) (((-780) $ |#3|) NIL) (((-653 (-780)) $ (-653 |#3|)) NIL)) (-1382 (($ (-1 (-540 |#3|) (-540 |#3|)) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3844 (((-1 $ (-780)) |#2|) NIL) (((-1 $ (-780)) $) NIL (|has| |#1| (-238)))) (-1453 (((-3 |#3| "failed") $) NIL)) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-3705 ((|#3| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-3180 (((-1171) $) NIL)) (-2069 (((-112) $) NIL)) (-4082 (((-3 (-653 $) "failed") $) NIL)) (-2586 (((-3 (-653 $) "failed") $) NIL)) (-2573 (((-3 (-2 (|:| |var| |#3|) (|:| -3907 (-780))) "failed") $) NIL)) (-2590 (($ $) NIL)) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) NIL)) (-1348 ((|#1| $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-461)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4218 (((-427 $) $) NIL (|has| |#1| (-919)))) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-565)))) (-2645 (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-653 |#3|) (-653 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-653 |#3|) (-653 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-238))) (($ $ (-653 |#2|) (-653 $)) NIL (|has| |#1| (-238))) (($ $ |#2| |#1|) NIL (|has| |#1| (-238))) (($ $ (-653 |#2|) (-653 |#1|)) NIL (|has| |#1| (-238)))) (-3592 (($ $ |#3|) NIL (|has| |#1| (-174)))) (-3904 (($ $ |#3|) NIL) (($ $ (-653 |#3|)) NIL) (($ $ |#3| (-780)) NIL) (($ $ (-653 |#3|) (-653 (-780))) NIL) (($ $ (-780)) NIL (|has| |#1| (-238))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2813 (((-653 |#2|) $) NIL)) (-2565 (((-540 |#3|) $) NIL) (((-780) $ |#3|) NIL) (((-653 (-780)) $ (-653 |#3|)) NIL) (((-780) $ |#2|) NIL)) (-1835 (((-902 (-387)) $) NIL (-12 (|has| |#1| (-623 (-902 (-387)))) (|has| |#3| (-623 (-902 (-387)))))) (((-902 (-573)) $) NIL (-12 (|has| |#1| (-623 (-902 (-573)))) (|has| |#3| (-623 (-902 (-573)))))) (((-545) $) NIL (-12 (|has| |#1| (-623 (-545))) (|has| |#3| (-623 (-545)))))) (-3257 ((|#1| $) NIL (|has| |#1| (-461))) (($ $ |#3|) NIL (|has| |#1| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-919))))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1137 |#1| |#2|)) 32) (($ (-416 (-573))) NIL (-2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573)))))) (($ $) NIL (|has| |#1| (-565)))) (-1920 (((-653 |#1|) $) NIL)) (-4317 ((|#1| $ (-540 |#3|)) NIL) (($ $ |#3| (-780)) NIL) (($ $ (-653 |#3|) (-653 (-780))) NIL)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#1| (-919))) (|has| |#1| (-146))))) (-1545 (((-780)) NIL T CONST)) (-1538 (($ $ $ (-780)) NIL (|has| |#1| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ |#3|) NIL) (($ $ (-653 |#3|)) NIL) (($ $ |#3| (-780)) NIL) (($ $ (-653 |#3|) (-653 (-780))) NIL) (($ $ (-780)) NIL (|has| |#1| (-238))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-270 |#1| |#2| |#3|) (-13 (-259 |#1| |#2| |#3| (-540 |#3|)) (-1050 (-1137 |#1| |#2|))) (-1061) (-859) (-272 |#2|)) (T -270)) +NIL +(-13 (-259 |#1| |#2| |#3| (-540 |#3|)) (-1050 (-1137 |#1| |#2|))) +((-3447 (((-780) $) 37)) (-1695 (((-3 |#2| "failed") $) 22)) (-2205 ((|#2| $) 33)) (-3904 (($ $ (-780)) 18) (($ $) 14)) (-2942 (((-871) $) 32) (($ |#2|) 11)) (-2981 (((-112) $ $) 26)) (-3005 (((-112) $ $) 36))) +(((-271 |#1| |#2|) (-10 -8 (-15 -3447 ((-780) |#1|)) (-15 -2942 (|#1| |#2|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-780))) (-15 -3005 ((-112) |#1| |#1|)) (-15 -2942 ((-871) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) (-272 |#2|) (-859)) (T -271)) +NIL +(-10 -8 (-15 -3447 ((-780) |#1|)) (-15 -2942 (|#1| |#2|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-780))) (-15 -3005 ((-112) |#1| |#1|)) (-15 -2942 ((-871) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) +((-2848 (((-112) $ $) 7)) (-3447 (((-780) $) 22)) (-1487 ((|#1| $) 23)) (-1695 (((-3 |#1| "failed") $) 27)) (-2205 ((|#1| $) 28)) (-2534 (((-780) $) 24)) (-3659 (($ $ $) 14)) (-3751 (($ $ $) 15)) (-3844 (($ |#1| (-780)) 25)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-3904 (($ $ (-780)) 31) (($ $) 29)) (-2942 (((-871) $) 12) (($ |#1|) 26)) (-3507 (((-112) $ $) 9)) (-3609 (($ $ (-780)) 32) (($ $) 30)) (-3040 (((-112) $ $) 17)) (-3015 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19))) +(((-272 |#1|) (-141) (-859)) (T -272)) +((-2942 (*1 *1 *2) (-12 (-4 *1 (-272 *2)) (-4 *2 (-859)))) (-3844 (*1 *1 *2 *3) (-12 (-5 *3 (-780)) (-4 *1 (-272 *2)) (-4 *2 (-859)))) (-2534 (*1 *2 *1) (-12 (-4 *1 (-272 *3)) (-4 *3 (-859)) (-5 *2 (-780)))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-272 *2)) (-4 *2 (-859)))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-272 *3)) (-4 *3 (-859)) (-5 *2 (-780))))) +(-13 (-859) (-237) (-1050 |t#1|) (-10 -8 (-15 -3844 ($ |t#1| (-780))) (-15 -2534 ((-780) $)) (-15 -1487 (|t#1| $)) (-15 -3447 ((-780) $)) (-15 -2942 ($ |t#1|)))) +(((-102) . T) ((-625 |#1|) . T) ((-622 (-871)) . T) ((-235 $) . T) ((-237) . T) ((-859) . T) ((-1050 |#1|) . T) ((-1112) . T) ((-1230) . T)) +((-4354 (((-653 (-1189)) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) 53)) (-1653 (((-653 (-1189)) (-323 (-227)) (-780)) 94)) (-4037 (((-3 (-323 (-227)) "failed") (-323 (-227))) 63)) (-2089 (((-323 (-227)) (-323 (-227))) 79)) (-4224 (((-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227))))) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 38)) (-4095 (((-112) (-653 (-323 (-227)))) 104)) (-1718 (((-112) (-323 (-227))) 36)) (-2467 (((-653 (-1171)) (-3 (|:| |noa| (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))))) 132)) (-2240 (((-653 (-323 (-227))) (-653 (-323 (-227)))) 108)) (-2107 (((-653 (-323 (-227))) (-653 (-323 (-227)))) 106)) (-1529 (((-698 (-227)) (-653 (-323 (-227))) (-780)) 120)) (-2498 (((-112) (-323 (-227))) 31) (((-112) (-653 (-323 (-227)))) 105)) (-1457 (((-653 (-227)) (-653 (-852 (-227))) (-227)) 15)) (-3672 (((-387) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) 126)) (-1606 (((-1047) (-1189) (-1047)) 46))) +(((-273) (-10 -7 (-15 -1457 ((-653 (-227)) (-653 (-852 (-227))) (-227))) (-15 -4224 ((-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227))))) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227))))))) (-15 -4037 ((-3 (-323 (-227)) "failed") (-323 (-227)))) (-15 -2089 ((-323 (-227)) (-323 (-227)))) (-15 -4095 ((-112) (-653 (-323 (-227))))) (-15 -2498 ((-112) (-653 (-323 (-227))))) (-15 -2498 ((-112) (-323 (-227)))) (-15 -1529 ((-698 (-227)) (-653 (-323 (-227))) (-780))) (-15 -2107 ((-653 (-323 (-227))) (-653 (-323 (-227))))) (-15 -2240 ((-653 (-323 (-227))) (-653 (-323 (-227))))) (-15 -1718 ((-112) (-323 (-227)))) (-15 -4354 ((-653 (-1189)) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227)))))) (-15 -1653 ((-653 (-1189)) (-323 (-227)) (-780))) (-15 -1606 ((-1047) (-1189) (-1047))) (-15 -3672 ((-387) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227)))))) (-15 -2467 ((-653 (-1171)) (-3 (|:| |noa| (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227)))))))))) (T -273)) +((-2467 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))))) (-5 *2 (-653 (-1171))) (-5 *1 (-273)))) (-3672 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) (-5 *2 (-387)) (-5 *1 (-273)))) (-1606 (*1 *2 *3 *2) (-12 (-5 *2 (-1047)) (-5 *3 (-1189)) (-5 *1 (-273)))) (-1653 (*1 *2 *3 *4) (-12 (-5 *3 (-323 (-227))) (-5 *4 (-780)) (-5 *2 (-653 (-1189))) (-5 *1 (-273)))) (-4354 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) (-5 *2 (-653 (-1189))) (-5 *1 (-273)))) (-1718 (*1 *2 *3) (-12 (-5 *3 (-323 (-227))) (-5 *2 (-112)) (-5 *1 (-273)))) (-2240 (*1 *2 *2) (-12 (-5 *2 (-653 (-323 (-227)))) (-5 *1 (-273)))) (-2107 (*1 *2 *2) (-12 (-5 *2 (-653 (-323 (-227)))) (-5 *1 (-273)))) (-1529 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-323 (-227)))) (-5 *4 (-780)) (-5 *2 (-698 (-227))) (-5 *1 (-273)))) (-2498 (*1 *2 *3) (-12 (-5 *3 (-323 (-227))) (-5 *2 (-112)) (-5 *1 (-273)))) (-2498 (*1 *2 *3) (-12 (-5 *3 (-653 (-323 (-227)))) (-5 *2 (-112)) (-5 *1 (-273)))) (-4095 (*1 *2 *3) (-12 (-5 *3 (-653 (-323 (-227)))) (-5 *2 (-112)) (-5 *1 (-273)))) (-2089 (*1 *2 *2) (-12 (-5 *2 (-323 (-227))) (-5 *1 (-273)))) (-4037 (*1 *2 *2) (|partial| -12 (-5 *2 (-323 (-227))) (-5 *1 (-273)))) (-4224 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (-5 *1 (-273)))) (-1457 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-852 (-227)))) (-5 *4 (-227)) (-5 *2 (-653 *4)) (-5 *1 (-273))))) +(-10 -7 (-15 -1457 ((-653 (-227)) (-653 (-852 (-227))) (-227))) (-15 -4224 ((-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227))))) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227))))))) (-15 -4037 ((-3 (-323 (-227)) "failed") (-323 (-227)))) (-15 -2089 ((-323 (-227)) (-323 (-227)))) (-15 -4095 ((-112) (-653 (-323 (-227))))) (-15 -2498 ((-112) (-653 (-323 (-227))))) (-15 -2498 ((-112) (-323 (-227)))) (-15 -1529 ((-698 (-227)) (-653 (-323 (-227))) (-780))) (-15 -2107 ((-653 (-323 (-227))) (-653 (-323 (-227))))) (-15 -2240 ((-653 (-323 (-227))) (-653 (-323 (-227))))) (-15 -1718 ((-112) (-323 (-227)))) (-15 -4354 ((-653 (-1189)) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227)))))) (-15 -1653 ((-653 (-1189)) (-323 (-227)) (-780))) (-15 -1606 ((-1047) (-1189) (-1047))) (-15 -3672 ((-387) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227)))))) (-15 -2467 ((-653 (-1171)) (-3 (|:| |noa| (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))))))) +((-2848 (((-112) $ $) NIL)) (-3752 (((-1047) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) NIL) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 56)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 32) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-274) (-848)) (T -274)) +NIL +(-848) +((-2848 (((-112) $ $) NIL)) (-3752 (((-1047) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) 72) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 63)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 41) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) 43)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-275) (-848)) (T -275)) +NIL +(-848) +((-2848 (((-112) $ $) NIL)) (-3752 (((-1047) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) 90) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 85)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 52) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) 65)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-276) (-848)) (T -276)) +NIL +(-848) +((-2848 (((-112) $ $) NIL)) (-3752 (((-1047) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) NIL) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 73)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 45) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-277) (-848)) (T -277)) +NIL +(-848) +((-2848 (((-112) $ $) NIL)) (-3752 (((-1047) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) NIL) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 65)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 31) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-278) (-848)) (T -278)) +NIL +(-848) +((-2848 (((-112) $ $) NIL)) (-3752 (((-1047) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) NIL) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 90)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 33) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-279) (-848)) (T -279)) +NIL +(-848) +((-2848 (((-112) $ $) NIL)) (-3752 (((-1047) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) NIL) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 87)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 32) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-280) (-848)) (T -280)) +NIL +(-848) +((-2848 (((-112) $ $) NIL)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-3222 (((-653 (-573)) $) 29)) (-2565 (((-780) $) 27)) (-2942 (((-871) $) 33) (($ (-653 (-573))) 23)) (-3507 (((-112) $ $) NIL)) (-2156 (($ (-780)) 30)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 9)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 17))) +(((-281) (-13 (-859) (-10 -8 (-15 -2942 ($ (-653 (-573)))) (-15 -2565 ((-780) $)) (-15 -3222 ((-653 (-573)) $)) (-15 -2156 ($ (-780)))))) (T -281)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-281)))) (-2565 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-281)))) (-3222 (*1 *2 *1) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-281)))) (-2156 (*1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-281))))) +(-13 (-859) (-10 -8 (-15 -2942 ($ (-653 (-573)))) (-15 -2565 ((-780) $)) (-15 -3222 ((-653 (-573)) $)) (-15 -2156 ($ (-780))))) +((-2363 ((|#2| |#2|) 77)) (-2246 ((|#2| |#2|) 65)) (-3649 (((-3 |#2| "failed") |#2| (-653 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-2342 ((|#2| |#2|) 75)) (-2225 ((|#2| |#2|) 63)) (-2388 ((|#2| |#2|) 79)) (-2266 ((|#2| |#2|) 67)) (-2999 ((|#2|) 46)) (-4173 (((-115) (-115)) 100)) (-3118 ((|#2| |#2|) 61)) (-1834 (((-112) |#2|) 147)) (-3046 ((|#2| |#2|) 195)) (-2537 ((|#2| |#2|) 171)) (-1820 ((|#2|) 59)) (-3648 ((|#2|) 58)) (-2047 ((|#2| |#2|) 191)) (-1678 ((|#2| |#2|) 167)) (-1913 ((|#2| |#2|) 199)) (-1363 ((|#2| |#2|) 175)) (-3575 ((|#2| |#2|) 163)) (-1522 ((|#2| |#2|) 165)) (-2701 ((|#2| |#2|) 201)) (-1771 ((|#2| |#2|) 177)) (-1493 ((|#2| |#2|) 197)) (-4384 ((|#2| |#2|) 173)) (-3050 ((|#2| |#2|) 193)) (-2931 ((|#2| |#2|) 169)) (-4205 ((|#2| |#2|) 207)) (-4166 ((|#2| |#2|) 183)) (-3286 ((|#2| |#2|) 203)) (-3413 ((|#2| |#2|) 179)) (-3081 ((|#2| |#2|) 211)) (-2006 ((|#2| |#2|) 187)) (-3066 ((|#2| |#2|) 213)) (-2536 ((|#2| |#2|) 189)) (-1894 ((|#2| |#2|) 209)) (-2330 ((|#2| |#2|) 185)) (-2290 ((|#2| |#2|) 205)) (-1532 ((|#2| |#2|) 181)) (-1608 ((|#2| |#2|) 62)) (-2401 ((|#2| |#2|) 80)) (-2274 ((|#2| |#2|) 68)) (-2374 ((|#2| |#2|) 78)) (-2255 ((|#2| |#2|) 66)) (-2352 ((|#2| |#2|) 76)) (-2236 ((|#2| |#2|) 64)) (-3109 (((-112) (-115)) 98)) (-2439 ((|#2| |#2|) 83)) (-2304 ((|#2| |#2|) 71)) (-2413 ((|#2| |#2|) 81)) (-2286 ((|#2| |#2|) 69)) (-2464 ((|#2| |#2|) 85)) (-2324 ((|#2| |#2|) 73)) (-2520 ((|#2| |#2|) 86)) (-2333 ((|#2| |#2|) 74)) (-2452 ((|#2| |#2|) 84)) (-2314 ((|#2| |#2|) 72)) (-2426 ((|#2| |#2|) 82)) (-2296 ((|#2| |#2|) 70))) +(((-282 |#1| |#2|) (-10 -7 (-15 -1608 (|#2| |#2|)) (-15 -3118 (|#2| |#2|)) (-15 -2225 (|#2| |#2|)) (-15 -2236 (|#2| |#2|)) (-15 -2246 (|#2| |#2|)) (-15 -2255 (|#2| |#2|)) (-15 -2266 (|#2| |#2|)) (-15 -2274 (|#2| |#2|)) (-15 -2286 (|#2| |#2|)) (-15 -2296 (|#2| |#2|)) (-15 -2304 (|#2| |#2|)) (-15 -2314 (|#2| |#2|)) (-15 -2324 (|#2| |#2|)) (-15 -2333 (|#2| |#2|)) (-15 -2342 (|#2| |#2|)) (-15 -2352 (|#2| |#2|)) (-15 -2363 (|#2| |#2|)) (-15 -2374 (|#2| |#2|)) (-15 -2388 (|#2| |#2|)) (-15 -2401 (|#2| |#2|)) (-15 -2413 (|#2| |#2|)) (-15 -2426 (|#2| |#2|)) (-15 -2439 (|#2| |#2|)) (-15 -2452 (|#2| |#2|)) (-15 -2464 (|#2| |#2|)) (-15 -2520 (|#2| |#2|)) (-15 -2999 (|#2|)) (-15 -3109 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 -3648 (|#2|)) (-15 -1820 (|#2|)) (-15 -1522 (|#2| |#2|)) (-15 -3575 (|#2| |#2|)) (-15 -1678 (|#2| |#2|)) (-15 -2931 (|#2| |#2|)) (-15 -2537 (|#2| |#2|)) (-15 -4384 (|#2| |#2|)) (-15 -1363 (|#2| |#2|)) (-15 -1771 (|#2| |#2|)) (-15 -3413 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -4166 (|#2| |#2|)) (-15 -2330 (|#2| |#2|)) (-15 -2006 (|#2| |#2|)) (-15 -2536 (|#2| |#2|)) (-15 -2047 (|#2| |#2|)) (-15 -3050 (|#2| |#2|)) (-15 -3046 (|#2| |#2|)) (-15 -1493 (|#2| |#2|)) (-15 -1913 (|#2| |#2|)) (-15 -2701 (|#2| |#2|)) (-15 -3286 (|#2| |#2|)) (-15 -2290 (|#2| |#2|)) (-15 -4205 (|#2| |#2|)) (-15 -1894 (|#2| |#2|)) (-15 -3081 (|#2| |#2|)) (-15 -3066 (|#2| |#2|)) (-15 -3649 ((-3 |#2| "failed") |#2| (-653 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1834 ((-112) |#2|))) (-565) (-13 (-439 |#1|) (-1014))) (T -282)) +((-1834 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-112)) (-5 *1 (-282 *4 *3)) (-4 *3 (-13 (-439 *4) (-1014))))) (-3649 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-653 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-439 *4) (-1014))) (-4 *4 (-565)) (-5 *1 (-282 *4 *2)))) (-3066 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-3081 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-1894 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-4205 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2290 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-3286 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2701 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-1913 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-1493 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-3046 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-3050 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2047 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2536 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2006 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2330 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-4166 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-3413 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-1771 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-1363 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-4384 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2537 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2931 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-1678 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-3575 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-1522 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-1820 (*1 *2) (-12 (-4 *2 (-13 (-439 *3) (-1014))) (-5 *1 (-282 *3 *2)) (-4 *3 (-565)))) (-3648 (*1 *2) (-12 (-4 *2 (-13 (-439 *3) (-1014))) (-5 *1 (-282 *3 *2)) (-4 *3 (-565)))) (-4173 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-565)) (-5 *1 (-282 *3 *4)) (-4 *4 (-13 (-439 *3) (-1014))))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-565)) (-5 *2 (-112)) (-5 *1 (-282 *4 *5)) (-4 *5 (-13 (-439 *4) (-1014))))) (-2999 (*1 *2) (-12 (-4 *2 (-13 (-439 *3) (-1014))) (-5 *1 (-282 *3 *2)) (-4 *3 (-565)))) (-2520 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2464 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2452 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2439 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2426 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2413 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2401 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2388 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2374 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2363 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2352 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2342 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2333 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2324 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2314 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2304 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2296 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2286 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2274 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2266 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2255 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2246 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2236 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-2225 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-3118 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014))))) (-1608 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014)))))) +(-10 -7 (-15 -1608 (|#2| |#2|)) (-15 -3118 (|#2| |#2|)) (-15 -2225 (|#2| |#2|)) (-15 -2236 (|#2| |#2|)) (-15 -2246 (|#2| |#2|)) (-15 -2255 (|#2| |#2|)) (-15 -2266 (|#2| |#2|)) (-15 -2274 (|#2| |#2|)) (-15 -2286 (|#2| |#2|)) (-15 -2296 (|#2| |#2|)) (-15 -2304 (|#2| |#2|)) (-15 -2314 (|#2| |#2|)) (-15 -2324 (|#2| |#2|)) (-15 -2333 (|#2| |#2|)) (-15 -2342 (|#2| |#2|)) (-15 -2352 (|#2| |#2|)) (-15 -2363 (|#2| |#2|)) (-15 -2374 (|#2| |#2|)) (-15 -2388 (|#2| |#2|)) (-15 -2401 (|#2| |#2|)) (-15 -2413 (|#2| |#2|)) (-15 -2426 (|#2| |#2|)) (-15 -2439 (|#2| |#2|)) (-15 -2452 (|#2| |#2|)) (-15 -2464 (|#2| |#2|)) (-15 -2520 (|#2| |#2|)) (-15 -2999 (|#2|)) (-15 -3109 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 -3648 (|#2|)) (-15 -1820 (|#2|)) (-15 -1522 (|#2| |#2|)) (-15 -3575 (|#2| |#2|)) (-15 -1678 (|#2| |#2|)) (-15 -2931 (|#2| |#2|)) (-15 -2537 (|#2| |#2|)) (-15 -4384 (|#2| |#2|)) (-15 -1363 (|#2| |#2|)) (-15 -1771 (|#2| |#2|)) (-15 -3413 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -4166 (|#2| |#2|)) (-15 -2330 (|#2| |#2|)) (-15 -2006 (|#2| |#2|)) (-15 -2536 (|#2| |#2|)) (-15 -2047 (|#2| |#2|)) (-15 -3050 (|#2| |#2|)) (-15 -3046 (|#2| |#2|)) (-15 -1493 (|#2| |#2|)) (-15 -1913 (|#2| |#2|)) (-15 -2701 (|#2| |#2|)) (-15 -3286 (|#2| |#2|)) (-15 -2290 (|#2| |#2|)) (-15 -4205 (|#2| |#2|)) (-15 -1894 (|#2| |#2|)) (-15 -3081 (|#2| |#2|)) (-15 -3066 (|#2| |#2|)) (-15 -3649 ((-3 |#2| "failed") |#2| (-653 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1834 ((-112) |#2|))) +((-4318 (((-3 |#2| "failed") (-653 (-621 |#2|)) |#2| (-1189)) 151)) (-2781 ((|#2| (-416 (-573)) |#2|) 49)) (-4274 ((|#2| |#2| (-621 |#2|)) 144)) (-1721 (((-2 (|:| |func| |#2|) (|:| |kers| (-653 (-621 |#2|))) (|:| |vals| (-653 |#2|))) |#2| (-1189)) 143)) (-2592 ((|#2| |#2| (-1189)) 20) ((|#2| |#2|) 23)) (-2852 ((|#2| |#2| (-1189)) 157) ((|#2| |#2|) 155))) +(((-283 |#1| |#2|) (-10 -7 (-15 -2852 (|#2| |#2|)) (-15 -2852 (|#2| |#2| (-1189))) (-15 -1721 ((-2 (|:| |func| |#2|) (|:| |kers| (-653 (-621 |#2|))) (|:| |vals| (-653 |#2|))) |#2| (-1189))) (-15 -2592 (|#2| |#2|)) (-15 -2592 (|#2| |#2| (-1189))) (-15 -4318 ((-3 |#2| "failed") (-653 (-621 |#2|)) |#2| (-1189))) (-15 -4274 (|#2| |#2| (-621 |#2|))) (-15 -2781 (|#2| (-416 (-573)) |#2|))) (-13 (-565) (-1050 (-573)) (-648 (-573))) (-13 (-27) (-1215) (-439 |#1|))) (T -283)) +((-2781 (*1 *2 *3 *2) (-12 (-5 *3 (-416 (-573))) (-4 *4 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-283 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *4))))) (-4274 (*1 *2 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *4))) (-4 *4 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-283 *4 *2)))) (-4318 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-653 (-621 *2))) (-5 *4 (-1189)) (-4 *2 (-13 (-27) (-1215) (-439 *5))) (-4 *5 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-283 *5 *2)))) (-2592 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-283 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *4))))) (-2592 (*1 *2 *2) (-12 (-4 *3 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *3))))) (-1721 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-4 *5 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-653 (-621 *3))) (|:| |vals| (-653 *3)))) (-5 *1 (-283 *5 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))))) (-2852 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-283 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *4))))) (-2852 (*1 *2 *2) (-12 (-4 *3 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *3)))))) +(-10 -7 (-15 -2852 (|#2| |#2|)) (-15 -2852 (|#2| |#2| (-1189))) (-15 -1721 ((-2 (|:| |func| |#2|) (|:| |kers| (-653 (-621 |#2|))) (|:| |vals| (-653 |#2|))) |#2| (-1189))) (-15 -2592 (|#2| |#2|)) (-15 -2592 (|#2| |#2| (-1189))) (-15 -4318 ((-3 |#2| "failed") (-653 (-621 |#2|)) |#2| (-1189))) (-15 -4274 (|#2| |#2| (-621 |#2|))) (-15 -2781 (|#2| (-416 (-573)) |#2|))) +((-4196 (((-3 |#3| "failed") |#3|) 120)) (-2363 ((|#3| |#3|) 142)) (-3206 (((-3 |#3| "failed") |#3|) 89)) (-2246 ((|#3| |#3|) 132)) (-3266 (((-3 |#3| "failed") |#3|) 65)) (-2342 ((|#3| |#3|) 140)) (-3134 (((-3 |#3| "failed") |#3|) 53)) (-2225 ((|#3| |#3|) 130)) (-2481 (((-3 |#3| "failed") |#3|) 122)) (-2388 ((|#3| |#3|) 144)) (-4182 (((-3 |#3| "failed") |#3|) 91)) (-2266 ((|#3| |#3|) 134)) (-4341 (((-3 |#3| "failed") |#3| (-780)) 41)) (-2511 (((-3 |#3| "failed") |#3|) 81)) (-3118 ((|#3| |#3|) 129)) (-4430 (((-3 |#3| "failed") |#3|) 51)) (-1608 ((|#3| |#3|) 128)) (-3026 (((-3 |#3| "failed") |#3|) 123)) (-2401 ((|#3| |#3|) 145)) (-3868 (((-3 |#3| "failed") |#3|) 92)) (-2274 ((|#3| |#3|) 135)) (-3171 (((-3 |#3| "failed") |#3|) 121)) (-2374 ((|#3| |#3|) 143)) (-4367 (((-3 |#3| "failed") |#3|) 90)) (-2255 ((|#3| |#3|) 133)) (-3526 (((-3 |#3| "failed") |#3|) 67)) (-2352 ((|#3| |#3|) 141)) (-1782 (((-3 |#3| "failed") |#3|) 55)) (-2236 ((|#3| |#3|) 131)) (-2416 (((-3 |#3| "failed") |#3|) 73)) (-2439 ((|#3| |#3|) 148)) (-3835 (((-3 |#3| "failed") |#3|) 114)) (-2304 ((|#3| |#3|) 152)) (-3196 (((-3 |#3| "failed") |#3|) 69)) (-2413 ((|#3| |#3|) 146)) (-2599 (((-3 |#3| "failed") |#3|) 57)) (-2286 ((|#3| |#3|) 136)) (-3994 (((-3 |#3| "failed") |#3|) 77)) (-2464 ((|#3| |#3|) 150)) (-3297 (((-3 |#3| "failed") |#3|) 61)) (-2324 ((|#3| |#3|) 138)) (-2775 (((-3 |#3| "failed") |#3|) 79)) (-2520 ((|#3| |#3|) 151)) (-3581 (((-3 |#3| "failed") |#3|) 63)) (-2333 ((|#3| |#3|) 139)) (-3162 (((-3 |#3| "failed") |#3|) 75)) (-2452 ((|#3| |#3|) 149)) (-1702 (((-3 |#3| "failed") |#3|) 117)) (-2314 ((|#3| |#3|) 153)) (-4132 (((-3 |#3| "failed") |#3|) 71)) (-2426 ((|#3| |#3|) 147)) (-4189 (((-3 |#3| "failed") |#3|) 59)) (-2296 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-416 (-573))) 47 (|has| |#1| (-371))))) +(((-284 |#1| |#2| |#3|) (-13 (-995 |#3|) (-10 -7 (IF (|has| |#1| (-371)) (-15 ** (|#3| |#3| (-416 (-573)))) |%noBranch|) (-15 -1608 (|#3| |#3|)) (-15 -3118 (|#3| |#3|)) (-15 -2225 (|#3| |#3|)) (-15 -2236 (|#3| |#3|)) (-15 -2246 (|#3| |#3|)) (-15 -2255 (|#3| |#3|)) (-15 -2266 (|#3| |#3|)) (-15 -2274 (|#3| |#3|)) (-15 -2286 (|#3| |#3|)) (-15 -2296 (|#3| |#3|)) (-15 -2304 (|#3| |#3|)) (-15 -2314 (|#3| |#3|)) (-15 -2324 (|#3| |#3|)) (-15 -2333 (|#3| |#3|)) (-15 -2342 (|#3| |#3|)) (-15 -2352 (|#3| |#3|)) (-15 -2363 (|#3| |#3|)) (-15 -2374 (|#3| |#3|)) (-15 -2388 (|#3| |#3|)) (-15 -2401 (|#3| |#3|)) (-15 -2413 (|#3| |#3|)) (-15 -2426 (|#3| |#3|)) (-15 -2439 (|#3| |#3|)) (-15 -2452 (|#3| |#3|)) (-15 -2464 (|#3| |#3|)) (-15 -2520 (|#3| |#3|)))) (-38 (-416 (-573))) (-1271 |#1|) (-1242 |#1| |#2|)) (T -284)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-416 (-573))) (-4 *4 (-371)) (-4 *4 (-38 *3)) (-4 *5 (-1271 *4)) (-5 *1 (-284 *4 *5 *2)) (-4 *2 (-1242 *4 *5)))) (-1608 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-3118 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2225 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2236 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2246 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2255 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2266 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2274 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2286 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2296 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2304 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2314 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2324 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2333 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2342 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2352 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2363 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2374 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2388 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2401 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2413 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2426 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2439 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2452 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2464 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) (-2520 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4))))) +(-13 (-995 |#3|) (-10 -7 (IF (|has| |#1| (-371)) (-15 ** (|#3| |#3| (-416 (-573)))) |%noBranch|) (-15 -1608 (|#3| |#3|)) (-15 -3118 (|#3| |#3|)) (-15 -2225 (|#3| |#3|)) (-15 -2236 (|#3| |#3|)) (-15 -2246 (|#3| |#3|)) (-15 -2255 (|#3| |#3|)) (-15 -2266 (|#3| |#3|)) (-15 -2274 (|#3| |#3|)) (-15 -2286 (|#3| |#3|)) (-15 -2296 (|#3| |#3|)) (-15 -2304 (|#3| |#3|)) (-15 -2314 (|#3| |#3|)) (-15 -2324 (|#3| |#3|)) (-15 -2333 (|#3| |#3|)) (-15 -2342 (|#3| |#3|)) (-15 -2352 (|#3| |#3|)) (-15 -2363 (|#3| |#3|)) (-15 -2374 (|#3| |#3|)) (-15 -2388 (|#3| |#3|)) (-15 -2401 (|#3| |#3|)) (-15 -2413 (|#3| |#3|)) (-15 -2426 (|#3| |#3|)) (-15 -2439 (|#3| |#3|)) (-15 -2452 (|#3| |#3|)) (-15 -2464 (|#3| |#3|)) (-15 -2520 (|#3| |#3|)))) +((-4196 (((-3 |#3| "failed") |#3|) 70)) (-2363 ((|#3| |#3|) 137)) (-3206 (((-3 |#3| "failed") |#3|) 54)) (-2246 ((|#3| |#3|) 125)) (-3266 (((-3 |#3| "failed") |#3|) 66)) (-2342 ((|#3| |#3|) 135)) (-3134 (((-3 |#3| "failed") |#3|) 50)) (-2225 ((|#3| |#3|) 123)) (-2481 (((-3 |#3| "failed") |#3|) 74)) (-2388 ((|#3| |#3|) 139)) (-4182 (((-3 |#3| "failed") |#3|) 58)) (-2266 ((|#3| |#3|) 127)) (-4341 (((-3 |#3| "failed") |#3| (-780)) 38)) (-2511 (((-3 |#3| "failed") |#3|) 48)) (-3118 ((|#3| |#3|) 111)) (-4430 (((-3 |#3| "failed") |#3|) 46)) (-1608 ((|#3| |#3|) 122)) (-3026 (((-3 |#3| "failed") |#3|) 76)) (-2401 ((|#3| |#3|) 140)) (-3868 (((-3 |#3| "failed") |#3|) 60)) (-2274 ((|#3| |#3|) 128)) (-3171 (((-3 |#3| "failed") |#3|) 72)) (-2374 ((|#3| |#3|) 138)) (-4367 (((-3 |#3| "failed") |#3|) 56)) (-2255 ((|#3| |#3|) 126)) (-3526 (((-3 |#3| "failed") |#3|) 68)) (-2352 ((|#3| |#3|) 136)) (-1782 (((-3 |#3| "failed") |#3|) 52)) (-2236 ((|#3| |#3|) 124)) (-2416 (((-3 |#3| "failed") |#3|) 78)) (-2439 ((|#3| |#3|) 143)) (-3835 (((-3 |#3| "failed") |#3|) 62)) (-2304 ((|#3| |#3|) 131)) (-3196 (((-3 |#3| "failed") |#3|) 112)) (-2413 ((|#3| |#3|) 141)) (-2599 (((-3 |#3| "failed") |#3|) 100)) (-2286 ((|#3| |#3|) 129)) (-3994 (((-3 |#3| "failed") |#3|) 116)) (-2464 ((|#3| |#3|) 145)) (-3297 (((-3 |#3| "failed") |#3|) 107)) (-2324 ((|#3| |#3|) 133)) (-2775 (((-3 |#3| "failed") |#3|) 117)) (-2520 ((|#3| |#3|) 146)) (-3581 (((-3 |#3| "failed") |#3|) 109)) (-2333 ((|#3| |#3|) 134)) (-3162 (((-3 |#3| "failed") |#3|) 80)) (-2452 ((|#3| |#3|) 144)) (-1702 (((-3 |#3| "failed") |#3|) 64)) (-2314 ((|#3| |#3|) 132)) (-4132 (((-3 |#3| "failed") |#3|) 113)) (-2426 ((|#3| |#3|) 142)) (-4189 (((-3 |#3| "failed") |#3|) 103)) (-2296 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-416 (-573))) 44 (|has| |#1| (-371))))) +(((-285 |#1| |#2| |#3| |#4|) (-13 (-995 |#3|) (-10 -7 (IF (|has| |#1| (-371)) (-15 ** (|#3| |#3| (-416 (-573)))) |%noBranch|) (-15 -1608 (|#3| |#3|)) (-15 -3118 (|#3| |#3|)) (-15 -2225 (|#3| |#3|)) (-15 -2236 (|#3| |#3|)) (-15 -2246 (|#3| |#3|)) (-15 -2255 (|#3| |#3|)) (-15 -2266 (|#3| |#3|)) (-15 -2274 (|#3| |#3|)) (-15 -2286 (|#3| |#3|)) (-15 -2296 (|#3| |#3|)) (-15 -2304 (|#3| |#3|)) (-15 -2314 (|#3| |#3|)) (-15 -2324 (|#3| |#3|)) (-15 -2333 (|#3| |#3|)) (-15 -2342 (|#3| |#3|)) (-15 -2352 (|#3| |#3|)) (-15 -2363 (|#3| |#3|)) (-15 -2374 (|#3| |#3|)) (-15 -2388 (|#3| |#3|)) (-15 -2401 (|#3| |#3|)) (-15 -2413 (|#3| |#3|)) (-15 -2426 (|#3| |#3|)) (-15 -2439 (|#3| |#3|)) (-15 -2452 (|#3| |#3|)) (-15 -2464 (|#3| |#3|)) (-15 -2520 (|#3| |#3|)))) (-38 (-416 (-573))) (-1240 |#1|) (-1263 |#1| |#2|) (-995 |#2|)) (T -285)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-416 (-573))) (-4 *4 (-371)) (-4 *4 (-38 *3)) (-4 *5 (-1240 *4)) (-5 *1 (-285 *4 *5 *2 *6)) (-4 *2 (-1263 *4 *5)) (-4 *6 (-995 *5)))) (-1608 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-3118 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2225 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2236 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2246 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2255 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2266 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2274 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2286 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2296 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2304 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2314 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2324 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2333 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2342 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2352 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2363 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2374 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2388 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2401 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2413 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2426 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2439 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2452 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2464 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) (-2520 (*1 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4))))) +(-13 (-995 |#3|) (-10 -7 (IF (|has| |#1| (-371)) (-15 ** (|#3| |#3| (-416 (-573)))) |%noBranch|) (-15 -1608 (|#3| |#3|)) (-15 -3118 (|#3| |#3|)) (-15 -2225 (|#3| |#3|)) (-15 -2236 (|#3| |#3|)) (-15 -2246 (|#3| |#3|)) (-15 -2255 (|#3| |#3|)) (-15 -2266 (|#3| |#3|)) (-15 -2274 (|#3| |#3|)) (-15 -2286 (|#3| |#3|)) (-15 -2296 (|#3| |#3|)) (-15 -2304 (|#3| |#3|)) (-15 -2314 (|#3| |#3|)) (-15 -2324 (|#3| |#3|)) (-15 -2333 (|#3| |#3|)) (-15 -2342 (|#3| |#3|)) (-15 -2352 (|#3| |#3|)) (-15 -2363 (|#3| |#3|)) (-15 -2374 (|#3| |#3|)) (-15 -2388 (|#3| |#3|)) (-15 -2401 (|#3| |#3|)) (-15 -2413 (|#3| |#3|)) (-15 -2426 (|#3| |#3|)) (-15 -2439 (|#3| |#3|)) (-15 -2452 (|#3| |#3|)) (-15 -2464 (|#3| |#3|)) (-15 -2520 (|#3| |#3|)))) +((-3991 (((-112) $) 20)) (-2361 (((-1194) $) 7)) (-3484 (((-3 (-515) "failed") $) 14)) (-4419 (((-3 (-653 $) "failed") $) NIL)) (-3577 (((-3 (-515) "failed") $) 21)) (-3267 (((-3 (-1116) "failed") $) 18)) (-4044 (((-112) $) 16)) (-2942 (((-871) $) NIL)) (-3935 (((-112) $) 9))) +(((-286) (-13 (-622 (-871)) (-10 -8 (-15 -2361 ((-1194) $)) (-15 -4044 ((-112) $)) (-15 -3267 ((-3 (-1116) "failed") $)) (-15 -3991 ((-112) $)) (-15 -3577 ((-3 (-515) "failed") $)) (-15 -3935 ((-112) $)) (-15 -3484 ((-3 (-515) "failed") $)) (-15 -4419 ((-3 (-653 $) "failed") $))))) (T -286)) +((-2361 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-286)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-286)))) (-3267 (*1 *2 *1) (|partial| -12 (-5 *2 (-1116)) (-5 *1 (-286)))) (-3991 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-286)))) (-3577 (*1 *2 *1) (|partial| -12 (-5 *2 (-515)) (-5 *1 (-286)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-286)))) (-3484 (*1 *2 *1) (|partial| -12 (-5 *2 (-515)) (-5 *1 (-286)))) (-4419 (*1 *2 *1) (|partial| -12 (-5 *2 (-653 (-286))) (-5 *1 (-286))))) +(-13 (-622 (-871)) (-10 -8 (-15 -2361 ((-1194) $)) (-15 -4044 ((-112) $)) (-15 -3267 ((-3 (-1116) "failed") $)) (-15 -3991 ((-112) $)) (-15 -3577 ((-3 (-515) "failed") $)) (-15 -3935 ((-112) $)) (-15 -3484 ((-3 (-515) "failed") $)) (-15 -4419 ((-3 (-653 $) "failed") $)))) +((-4309 (((-606) $) 10)) (-1999 (((-594) $) 8)) (-1621 (((-298) $) 12)) (-3944 (($ (-594) (-606) (-298)) NIL)) (-2942 (((-871) $) 19))) +(((-287) (-13 (-622 (-871)) (-10 -8 (-15 -3944 ($ (-594) (-606) (-298))) (-15 -1999 ((-594) $)) (-15 -4309 ((-606) $)) (-15 -1621 ((-298) $))))) (T -287)) +((-3944 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-594)) (-5 *3 (-606)) (-5 *4 (-298)) (-5 *1 (-287)))) (-1999 (*1 *2 *1) (-12 (-5 *2 (-594)) (-5 *1 (-287)))) (-4309 (*1 *2 *1) (-12 (-5 *2 (-606)) (-5 *1 (-287)))) (-1621 (*1 *2 *1) (-12 (-5 *2 (-298)) (-5 *1 (-287))))) +(-13 (-622 (-871)) (-10 -8 (-15 -3944 ($ (-594) (-606) (-298))) (-15 -1999 ((-594) $)) (-15 -4309 ((-606) $)) (-15 -1621 ((-298) $)))) +((-2164 (($ (-1 (-112) |#2|) $) 24)) (-2685 (($ $) 38)) (-2596 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3334 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-4241 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-1593 (($ |#2| $ (-573)) 20) (($ $ $ (-573)) 22)) (-2836 (($ $ (-573)) 11) (($ $ (-1247 (-573))) 14)) (-3996 (($ $ |#2|) 32) (($ $ $) NIL)) (-4156 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-653 $)) NIL))) +(((-288 |#1| |#2|) (-10 -8 (-15 -4241 (|#1| |#1| |#1|)) (-15 -2596 (|#1| |#2| |#1|)) (-15 -4241 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2596 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3996 (|#1| |#1| |#1|)) (-15 -3996 (|#1| |#1| |#2|)) (-15 -1593 (|#1| |#1| |#1| (-573))) (-15 -1593 (|#1| |#2| |#1| (-573))) (-15 -2836 (|#1| |#1| (-1247 (-573)))) (-15 -2836 (|#1| |#1| (-573))) (-15 -4156 (|#1| (-653 |#1|))) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -3334 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2164 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3334 (|#1| |#2| |#1|)) (-15 -2685 (|#1| |#1|))) (-289 |#2|) (-1230)) (T -288)) +NIL +(-10 -8 (-15 -4241 (|#1| |#1| |#1|)) (-15 -2596 (|#1| |#2| |#1|)) (-15 -4241 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2596 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3996 (|#1| |#1| |#1|)) (-15 -3996 (|#1| |#1| |#2|)) (-15 -1593 (|#1| |#1| |#1| (-573))) (-15 -1593 (|#1| |#2| |#1| (-573))) (-15 -2836 (|#1| |#1| (-1247 (-573)))) (-15 -2836 (|#1| |#1| (-573))) (-15 -4156 (|#1| (-653 |#1|))) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -3334 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2164 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3334 (|#1| |#2| |#1|)) (-15 -2685 (|#1| |#1|))) +((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3791 (((-1285) $ (-573) (-573)) 41 (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) 8)) (-3142 ((|#1| $ (-573) |#1|) 53 (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) 60 (|has| $ (-6 -4456)))) (-3557 (($ (-1 (-112) |#1|) $) 88)) (-2164 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4455)))) (-2579 (($) 7 T CONST)) (-1599 (($ $) 86 (|has| |#1| (-1112)))) (-2685 (($ $) 80 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2596 (($ (-1 (-112) |#1|) $) 92) (($ |#1| $) 87 (|has| |#1| (-1112)))) (-3334 (($ |#1| $) 79 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4455)))) (-2457 ((|#1| $ (-573) |#1|) 54 (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) 52)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-3789 (($ (-780) |#1|) 70)) (-2078 (((-112) $ (-780)) 9)) (-1968 (((-573) $) 44 (|has| (-573) (-859)))) (-4241 (($ (-1 (-112) |#1| |#1|) $ $) 89) (($ $ $) 85 (|has| |#1| (-859)))) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3470 (((-573) $) 45 (|has| (-573) (-859)))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-3181 (($ |#1| $ (-573)) 91) (($ $ $ (-573)) 90)) (-1593 (($ |#1| $ (-573)) 62) (($ $ $ (-573)) 61)) (-1977 (((-653 (-573)) $) 47)) (-2560 (((-112) (-573) $) 48)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-2914 ((|#1| $) 43 (|has| (-573) (-859)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-3112 (($ $ |#1|) 42 (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-2547 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) 49)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ (-573) |#1|) 51) ((|#1| $ (-573)) 50) (($ $ (-1247 (-573))) 71)) (-3220 (($ $ (-573)) 94) (($ $ (-1247 (-573))) 93)) (-2836 (($ $ (-573)) 64) (($ $ (-1247 (-573))) 63)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-1835 (((-545) $) 81 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 72)) (-3996 (($ $ |#1|) 96) (($ $ $) 95)) (-4156 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-653 $)) 66)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-289 |#1|) (-141) (-1230)) (T -289)) +((-3996 (*1 *1 *1 *2) (-12 (-4 *1 (-289 *2)) (-4 *2 (-1230)))) (-3996 (*1 *1 *1 *1) (-12 (-4 *1 (-289 *2)) (-4 *2 (-1230)))) (-3220 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-289 *3)) (-4 *3 (-1230)))) (-3220 (*1 *1 *1 *2) (-12 (-5 *2 (-1247 (-573))) (-4 *1 (-289 *3)) (-4 *3 (-1230)))) (-2596 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-289 *3)) (-4 *3 (-1230)))) (-3181 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-573)) (-4 *1 (-289 *2)) (-4 *2 (-1230)))) (-3181 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-289 *3)) (-4 *3 (-1230)))) (-4241 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-289 *3)) (-4 *3 (-1230)))) (-3557 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-289 *3)) (-4 *3 (-1230)))) (-2596 (*1 *1 *2 *1) (-12 (-4 *1 (-289 *2)) (-4 *2 (-1230)) (-4 *2 (-1112)))) (-1599 (*1 *1 *1) (-12 (-4 *1 (-289 *2)) (-4 *2 (-1230)) (-4 *2 (-1112)))) (-4241 (*1 *1 *1 *1) (-12 (-4 *1 (-289 *2)) (-4 *2 (-1230)) (-4 *2 (-859))))) +(-13 (-660 |t#1|) (-10 -8 (-6 -4456) (-15 -3996 ($ $ |t#1|)) (-15 -3996 ($ $ $)) (-15 -3220 ($ $ (-573))) (-15 -3220 ($ $ (-1247 (-573)))) (-15 -2596 ($ (-1 (-112) |t#1|) $)) (-15 -3181 ($ |t#1| $ (-573))) (-15 -3181 ($ $ $ (-573))) (-15 -4241 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3557 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1112)) (PROGN (-15 -2596 ($ |t#1| $)) (-15 -1599 ($ $))) |%noBranch|) (IF (|has| |t#1| (-859)) (-15 -4241 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-152 |#1|) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-293 #0=(-573) |#1|) . T) ((-293 (-1247 (-573)) $) . T) ((-295 #0# |#1|) . T) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-613 #0# |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-660 |#1|) . T) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) ((** (($ $ $) 10))) -(((-291 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-292)) (T -291)) +(((-290 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-291)) (T -290)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-3119 (($ $) 6)) (-1609 (($ $) 7)) (** (($ $ $) 8))) -(((-292) (-141)) (T -292)) -((** (*1 *1 *1 *1) (-4 *1 (-292))) (-1609 (*1 *1 *1) (-4 *1 (-292))) (-3119 (*1 *1 *1) (-4 *1 (-292)))) -(-13 (-10 -8 (-15 -3119 ($ $)) (-15 -1609 ($ $)) (-15 ** ($ $ $)))) -((-4110 (((-654 (-1170 |#1|)) (-1170 |#1|) |#1|) 35)) (-2442 ((|#2| |#2| |#1|) 39)) (-1643 ((|#2| |#2| |#1|) 41)) (-3594 ((|#2| |#2| |#1|) 40))) -(((-293 |#1| |#2|) (-10 -7 (-15 -2442 (|#2| |#2| |#1|)) (-15 -3594 (|#2| |#2| |#1|)) (-15 -1643 (|#2| |#2| |#1|)) (-15 -4110 ((-654 (-1170 |#1|)) (-1170 |#1|) |#1|))) (-372) (-1272 |#1|)) (T -293)) -((-4110 (*1 *2 *3 *4) (-12 (-4 *4 (-372)) (-5 *2 (-654 (-1170 *4))) (-5 *1 (-293 *4 *5)) (-5 *3 (-1170 *4)) (-4 *5 (-1272 *4)))) (-1643 (*1 *2 *2 *3) (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1272 *3)))) (-3594 (*1 *2 *2 *3) (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1272 *3)))) (-2442 (*1 *2 *2 *3) (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1272 *3))))) -(-10 -7 (-15 -2442 (|#2| |#2| |#1|)) (-15 -3594 (|#2| |#2| |#1|)) (-15 -1643 (|#2| |#2| |#1|)) (-15 -4110 ((-654 (-1170 |#1|)) (-1170 |#1|) |#1|))) -((-2199 ((|#2| $ |#1|) 6))) -(((-294 |#1| |#2|) (-141) (-1231) (-1231)) (T -294)) -((-2199 (*1 *2 *1 *3) (-12 (-4 *1 (-294 *3 *2)) (-4 *3 (-1231)) (-4 *2 (-1231))))) -(-13 (-1231) (-10 -8 (-15 -2199 (|t#2| $ |t#1|)))) -(((-1231) . T)) -((-2458 ((|#3| $ |#2| |#3|) 12)) (-2385 ((|#3| $ |#2|) 10))) -(((-295 |#1| |#2| |#3|) (-10 -8 (-15 -2458 (|#3| |#1| |#2| |#3|)) (-15 -2385 (|#3| |#1| |#2|))) (-296 |#2| |#3|) (-1113) (-1231)) (T -295)) -NIL -(-10 -8 (-15 -2458 (|#3| |#1| |#2| |#3|)) (-15 -2385 (|#3| |#1| |#2|))) -((-3143 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4457)))) (-2458 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4457)))) (-2385 ((|#2| $ |#1|) 11)) (-2199 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) -(((-296 |#1| |#2|) (-141) (-1113) (-1231)) (T -296)) -((-2199 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1231)))) (-2385 (*1 *2 *1 *3) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1231)))) (-3143 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-296 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1231)))) (-2458 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-296 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1231))))) -(-13 (-294 |t#1| |t#2|) (-10 -8 (-15 -2199 (|t#2| $ |t#1| |t#2|)) (-15 -2385 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4457)) (PROGN (-15 -3143 (|t#2| $ |t#1| |t#2|)) (-15 -2458 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-294 |#1| |#2|) . T) ((-1231) . T)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 37)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 44)) (-1575 (($ $) 41)) (-2085 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-1600 (((-112) $ $) NIL)) (-3426 (($) NIL T CONST)) (-2786 (($ $ $) 35)) (-2868 (($ |#2| |#3|) 18)) (-3434 (((-3 $ "failed") $) NIL)) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3199 (((-112) $) NIL)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2089 ((|#3| $) NIL)) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) 19)) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3449 (((-3 $ "failed") $ $) NIL)) (-1730 (((-781) $) 36)) (-2199 ((|#2| $ |#2|) 46)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 23)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL)) (-2133 (($) 31 T CONST)) (-2145 (($) 39 T CONST)) (-2981 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 40))) -(((-297 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-315) (-294 |#2| |#2|) (-10 -8 (-15 -2089 (|#3| $)) (-15 -2943 (|#2| $)) (-15 -2868 ($ |#2| |#3|)) (-15 -3449 ((-3 $ "failed") $ $)) (-15 -3434 ((-3 $ "failed") $)) (-15 -1324 ($ $)))) (-174) (-1257 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -297)) -((-3434 (*1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1257 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2089 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-297 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1257 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2943 (*1 *2 *1) (-12 (-4 *2 (-1257 *3)) (-5 *1 (-297 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2868 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-297 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1257 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3449 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1257 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1324 (*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1257 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))) -(-13 (-315) (-294 |#2| |#2|) (-10 -8 (-15 -2089 (|#3| $)) (-15 -2943 (|#2| $)) (-15 -2868 ($ |#2| |#3|)) (-15 -3449 ((-3 $ "failed") $ $)) (-15 -3434 ((-3 $ "failed") $)) (-15 -1324 ($ $)))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-3434 (((-3 $ "failed") $) 37)) (-3199 (((-112) $) 35)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12) (($ (-574)) 33)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) -(((-298) (-141)) (T -298)) -NIL -(-13 (-1062) (-111 $ $) (-10 -7 (-6 -4449))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1064 $) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T)) -((-4049 (((-654 (-1098)) $) 10)) (-2419 (($ (-516) (-516) (-1117) $) 19)) (-2280 (($ (-516) (-654 (-976)) $) 23)) (-3027 (($) 25)) (-1413 (((-701 (-1117)) (-516) (-516) $) 18)) (-1496 (((-654 (-976)) (-516) $) 22)) (-2672 (($) 7)) (-1824 (($) 24)) (-2943 (((-872) $) 29)) (-2836 (($) 26))) -(((-299) (-13 (-623 (-872)) (-10 -8 (-15 -2672 ($)) (-15 -4049 ((-654 (-1098)) $)) (-15 -1413 ((-701 (-1117)) (-516) (-516) $)) (-15 -2419 ($ (-516) (-516) (-1117) $)) (-15 -1496 ((-654 (-976)) (-516) $)) (-15 -2280 ($ (-516) (-654 (-976)) $)) (-15 -1824 ($)) (-15 -3027 ($)) (-15 -2836 ($))))) (T -299)) -((-2672 (*1 *1) (-5 *1 (-299))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-654 (-1098))) (-5 *1 (-299)))) (-1413 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-1117))) (-5 *1 (-299)))) (-2419 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-516)) (-5 *3 (-1117)) (-5 *1 (-299)))) (-1496 (*1 *2 *3 *1) (-12 (-5 *3 (-516)) (-5 *2 (-654 (-976))) (-5 *1 (-299)))) (-2280 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-516)) (-5 *3 (-654 (-976))) (-5 *1 (-299)))) (-1824 (*1 *1) (-5 *1 (-299))) (-3027 (*1 *1) (-5 *1 (-299))) (-2836 (*1 *1) (-5 *1 (-299)))) -(-13 (-623 (-872)) (-10 -8 (-15 -2672 ($)) (-15 -4049 ((-654 (-1098)) $)) (-15 -1413 ((-701 (-1117)) (-516) (-516) $)) (-15 -2419 ($ (-516) (-516) (-1117) $)) (-15 -1496 ((-654 (-976)) (-516) $)) (-15 -2280 ($ (-516) (-654 (-976)) $)) (-15 -1824 ($)) (-15 -3027 ($)) (-15 -2836 ($)))) -((-4031 (((-654 (-2 (|:| |eigval| (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|)))) (|:| |geneigvec| (-654 (-699 (-417 (-963 |#1|))))))) (-699 (-417 (-963 |#1|)))) 102)) (-3469 (((-654 (-699 (-417 (-963 |#1|)))) (-2 (|:| |eigval| (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-963 |#1|)))))) (-699 (-417 (-963 |#1|)))) 97) (((-654 (-699 (-417 (-963 |#1|)))) (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|))) (-699 (-417 (-963 |#1|))) (-781) (-781)) 41)) (-2611 (((-654 (-2 (|:| |eigval| (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-963 |#1|))))))) (-699 (-417 (-963 |#1|)))) 99)) (-3304 (((-654 (-699 (-417 (-963 |#1|)))) (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|))) (-699 (-417 (-963 |#1|)))) 75)) (-4118 (((-654 (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|)))) (-699 (-417 (-963 |#1|)))) 74)) (-1435 (((-963 |#1|) (-699 (-417 (-963 |#1|)))) 55) (((-963 |#1|) (-699 (-417 (-963 |#1|))) (-1190)) 56))) -(((-300 |#1|) (-10 -7 (-15 -1435 ((-963 |#1|) (-699 (-417 (-963 |#1|))) (-1190))) (-15 -1435 ((-963 |#1|) (-699 (-417 (-963 |#1|))))) (-15 -4118 ((-654 (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|)))) (-699 (-417 (-963 |#1|))))) (-15 -3304 ((-654 (-699 (-417 (-963 |#1|)))) (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|))) (-699 (-417 (-963 |#1|))))) (-15 -3469 ((-654 (-699 (-417 (-963 |#1|)))) (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|))) (-699 (-417 (-963 |#1|))) (-781) (-781))) (-15 -3469 ((-654 (-699 (-417 (-963 |#1|)))) (-2 (|:| |eigval| (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-963 |#1|)))))) (-699 (-417 (-963 |#1|))))) (-15 -4031 ((-654 (-2 (|:| |eigval| (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|)))) (|:| |geneigvec| (-654 (-699 (-417 (-963 |#1|))))))) (-699 (-417 (-963 |#1|))))) (-15 -2611 ((-654 (-2 (|:| |eigval| (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-963 |#1|))))))) (-699 (-417 (-963 |#1|)))))) (-462)) (T -300)) -((-2611 (*1 *2 *3) (-12 (-4 *4 (-462)) (-5 *2 (-654 (-2 (|:| |eigval| (-3 (-417 (-963 *4)) (-1179 (-1190) (-963 *4)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-963 *4)))))))) (-5 *1 (-300 *4)) (-5 *3 (-699 (-417 (-963 *4)))))) (-4031 (*1 *2 *3) (-12 (-4 *4 (-462)) (-5 *2 (-654 (-2 (|:| |eigval| (-3 (-417 (-963 *4)) (-1179 (-1190) (-963 *4)))) (|:| |geneigvec| (-654 (-699 (-417 (-963 *4)))))))) (-5 *1 (-300 *4)) (-5 *3 (-699 (-417 (-963 *4)))))) (-3469 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-417 (-963 *5)) (-1179 (-1190) (-963 *5)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 *4)))) (-4 *5 (-462)) (-5 *2 (-654 (-699 (-417 (-963 *5))))) (-5 *1 (-300 *5)) (-5 *4 (-699 (-417 (-963 *5)))))) (-3469 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-417 (-963 *6)) (-1179 (-1190) (-963 *6)))) (-5 *5 (-781)) (-4 *6 (-462)) (-5 *2 (-654 (-699 (-417 (-963 *6))))) (-5 *1 (-300 *6)) (-5 *4 (-699 (-417 (-963 *6)))))) (-3304 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-417 (-963 *5)) (-1179 (-1190) (-963 *5)))) (-4 *5 (-462)) (-5 *2 (-654 (-699 (-417 (-963 *5))))) (-5 *1 (-300 *5)) (-5 *4 (-699 (-417 (-963 *5)))))) (-4118 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-963 *4)))) (-4 *4 (-462)) (-5 *2 (-654 (-3 (-417 (-963 *4)) (-1179 (-1190) (-963 *4))))) (-5 *1 (-300 *4)))) (-1435 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-963 *4)))) (-5 *2 (-963 *4)) (-5 *1 (-300 *4)) (-4 *4 (-462)))) (-1435 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-417 (-963 *5)))) (-5 *4 (-1190)) (-5 *2 (-963 *5)) (-5 *1 (-300 *5)) (-4 *5 (-462))))) -(-10 -7 (-15 -1435 ((-963 |#1|) (-699 (-417 (-963 |#1|))) (-1190))) (-15 -1435 ((-963 |#1|) (-699 (-417 (-963 |#1|))))) (-15 -4118 ((-654 (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|)))) (-699 (-417 (-963 |#1|))))) (-15 -3304 ((-654 (-699 (-417 (-963 |#1|)))) (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|))) (-699 (-417 (-963 |#1|))))) (-15 -3469 ((-654 (-699 (-417 (-963 |#1|)))) (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|))) (-699 (-417 (-963 |#1|))) (-781) (-781))) (-15 -3469 ((-654 (-699 (-417 (-963 |#1|)))) (-2 (|:| |eigval| (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-963 |#1|)))))) (-699 (-417 (-963 |#1|))))) (-15 -4031 ((-654 (-2 (|:| |eigval| (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|)))) (|:| |geneigvec| (-654 (-699 (-417 (-963 |#1|))))))) (-699 (-417 (-963 |#1|))))) (-15 -2611 ((-654 (-2 (|:| |eigval| (-3 (-417 (-963 |#1|)) (-1179 (-1190) (-963 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-963 |#1|))))))) (-699 (-417 (-963 |#1|)))))) -((-1777 (((-302 |#2|) (-1 |#2| |#1|) (-302 |#1|)) 14))) -(((-301 |#1| |#2|) (-10 -7 (-15 -1777 ((-302 |#2|) (-1 |#2| |#1|) (-302 |#1|)))) (-1231) (-1231)) (T -301)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-302 *5)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-302 *6)) (-5 *1 (-301 *5 *6))))) -(-10 -7 (-15 -1777 ((-302 |#2|) (-1 |#2| |#1|) (-302 |#1|)))) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3138 (((-112) $) NIL (|has| |#1| (-21)))) (-2344 (($ $) 12)) (-3524 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2545 (($ $ $) 95 (|has| |#1| (-310)))) (-3426 (($) NIL (-2818 (|has| |#1| (-21)) (|has| |#1| (-736))) CONST)) (-3707 (($ $) 51 (|has| |#1| (-21)))) (-2407 (((-3 $ "failed") $) 62 (|has| |#1| (-736)))) (-1809 ((|#1| $) 11)) (-3434 (((-3 $ "failed") $) 60 (|has| |#1| (-736)))) (-3199 (((-112) $) NIL (|has| |#1| (-736)))) (-1777 (($ (-1 |#1| |#1|) $) 14)) (-1796 ((|#1| $) 10)) (-3932 (($ $) 50 (|has| |#1| (-21)))) (-2408 (((-3 $ "failed") $) 61 (|has| |#1| (-736)))) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-1324 (($ $) 64 (-2818 (|has| |#1| (-372)) (|has| |#1| (-483))))) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-1914 (((-654 $) $) 85 (|has| |#1| (-566)))) (-2646 (($ $ $) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 $)) 28 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-1190) |#1|) 17 (|has| |#1| (-524 (-1190) |#1|))) (($ $ (-654 (-1190)) (-654 |#1|)) 21 (|has| |#1| (-524 (-1190) |#1|)))) (-2692 (($ |#1| |#1|) 9)) (-4133 (((-135)) 90 (|has| |#1| (-372)))) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190)) 87 (|has| |#1| (-911 (-1190))))) (-1479 (($ $ $) NIL (|has| |#1| (-483)))) (-3204 (($ $ $) NIL (|has| |#1| (-483)))) (-2943 (($ (-574)) NIL (|has| |#1| (-1062))) (((-112) $) 37 (|has| |#1| (-1113))) (((-872) $) 36 (|has| |#1| (-1113)))) (-1364 (((-781)) 67 (|has| |#1| (-1062)) CONST)) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2133 (($) 47 (|has| |#1| (-21)) CONST)) (-2145 (($) 57 (|has| |#1| (-736)) CONST)) (-3610 (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190))))) (-2981 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1113)))) (-3108 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) 92 (-2818 (|has| |#1| (-372)) (|has| |#1| (-483))))) (-3094 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3079 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-574)) NIL (|has| |#1| (-483))) (($ $ (-781)) NIL (|has| |#1| (-736))) (($ $ (-932)) NIL (|has| |#1| (-1125)))) (* (($ $ |#1|) 55 (|has| |#1| (-1125))) (($ |#1| $) 54 (|has| |#1| (-1125))) (($ $ $) 53 (|has| |#1| (-1125))) (($ (-574) $) 70 (|has| |#1| (-21))) (($ (-781) $) NIL (|has| |#1| (-21))) (($ (-932) $) NIL (|has| |#1| (-25))))) -(((-302 |#1|) (-13 (-1231) (-10 -8 (-15 -2981 ($ |#1| |#1|)) (-15 -2692 ($ |#1| |#1|)) (-15 -2344 ($ $)) (-15 -1796 (|#1| $)) (-15 -1809 (|#1| $)) (-15 -1777 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-524 (-1190) |#1|)) (-6 (-524 (-1190) |#1|)) |%noBranch|) (IF (|has| |#1| (-1113)) (PROGN (-6 (-1113)) (-6 (-623 (-112))) (IF (|has| |#1| (-317 |#1|)) (PROGN (-15 -2646 ($ $ $)) (-15 -2646 ($ $ (-654 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3079 ($ |#1| $)) (-15 -3079 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3932 ($ $)) (-15 -3707 ($ $)) (-15 -3094 ($ |#1| $)) (-15 -3094 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1125)) (PROGN (-6 (-1125)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-736)) (PROGN (-6 (-736)) (-15 -2408 ((-3 $ "failed") $)) (-15 -2407 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-483)) (PROGN (-6 (-483)) (-15 -2408 ((-3 $ "failed") $)) (-15 -2407 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1062)) (PROGN (-6 (-1062)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-727 |#1|)) |%noBranch|) (IF (|has| |#1| (-566)) (-15 -1914 ((-654 $) $)) |%noBranch|) (IF (|has| |#1| (-911 (-1190))) (-6 (-911 (-1190))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-6 (-1288 |#1|)) (-15 -3108 ($ $ $)) (-15 -1324 ($ $))) |%noBranch|) (IF (|has| |#1| (-310)) (-15 -2545 ($ $ $)) |%noBranch|))) (-1231)) (T -302)) -((-2981 (*1 *1 *2 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1231)))) (-2692 (*1 *1 *2 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1231)))) (-2344 (*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1231)))) (-1796 (*1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1231)))) (-1809 (*1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1231)))) (-1777 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1231)) (-5 *1 (-302 *3)))) (-2646 (*1 *1 *1 *1) (-12 (-4 *2 (-317 *2)) (-4 *2 (-1113)) (-4 *2 (-1231)) (-5 *1 (-302 *2)))) (-2646 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-302 *3))) (-4 *3 (-317 *3)) (-4 *3 (-1113)) (-4 *3 (-1231)) (-5 *1 (-302 *3)))) (-3079 (*1 *1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-25)) (-4 *2 (-1231)))) (-3079 (*1 *1 *1 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-25)) (-4 *2 (-1231)))) (-3932 (*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1231)))) (-3707 (*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1231)))) (-3094 (*1 *1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1231)))) (-3094 (*1 *1 *1 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1231)))) (-2408 (*1 *1 *1) (|partial| -12 (-5 *1 (-302 *2)) (-4 *2 (-736)) (-4 *2 (-1231)))) (-2407 (*1 *1 *1) (|partial| -12 (-5 *1 (-302 *2)) (-4 *2 (-736)) (-4 *2 (-1231)))) (-1914 (*1 *2 *1) (-12 (-5 *2 (-654 (-302 *3))) (-5 *1 (-302 *3)) (-4 *3 (-566)) (-4 *3 (-1231)))) (-2545 (*1 *1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-310)) (-4 *2 (-1231)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1125)) (-4 *2 (-1231)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1125)) (-4 *2 (-1231)))) (-3108 (*1 *1 *1 *1) (-2818 (-12 (-5 *1 (-302 *2)) (-4 *2 (-372)) (-4 *2 (-1231))) (-12 (-5 *1 (-302 *2)) (-4 *2 (-483)) (-4 *2 (-1231))))) (-1324 (*1 *1 *1) (-2818 (-12 (-5 *1 (-302 *2)) (-4 *2 (-372)) (-4 *2 (-1231))) (-12 (-5 *1 (-302 *2)) (-4 *2 (-483)) (-4 *2 (-1231)))))) -(-13 (-1231) (-10 -8 (-15 -2981 ($ |#1| |#1|)) (-15 -2692 ($ |#1| |#1|)) (-15 -2344 ($ $)) (-15 -1796 (|#1| $)) (-15 -1809 (|#1| $)) (-15 -1777 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-524 (-1190) |#1|)) (-6 (-524 (-1190) |#1|)) |%noBranch|) (IF (|has| |#1| (-1113)) (PROGN (-6 (-1113)) (-6 (-623 (-112))) (IF (|has| |#1| (-317 |#1|)) (PROGN (-15 -2646 ($ $ $)) (-15 -2646 ($ $ (-654 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3079 ($ |#1| $)) (-15 -3079 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3932 ($ $)) (-15 -3707 ($ $)) (-15 -3094 ($ |#1| $)) (-15 -3094 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1125)) (PROGN (-6 (-1125)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-736)) (PROGN (-6 (-736)) (-15 -2408 ((-3 $ "failed") $)) (-15 -2407 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-483)) (PROGN (-6 (-483)) (-15 -2408 ((-3 $ "failed") $)) (-15 -2407 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1062)) (PROGN (-6 (-1062)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-727 |#1|)) |%noBranch|) (IF (|has| |#1| (-566)) (-15 -1914 ((-654 $) $)) |%noBranch|) (IF (|has| |#1| (-911 (-1190))) (-6 (-911 (-1190))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-6 (-1288 |#1|)) (-15 -3108 ($ $ $)) (-15 -1324 ($ $))) |%noBranch|) (IF (|has| |#1| (-310)) (-15 -2545 ($ $ $)) |%noBranch|))) -((-2849 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-3778 (($) NIL) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL)) (-3714 (((-1286) $ |#1| |#1|) NIL (|has| $ (-6 -4457)))) (-3034 (((-112) $ (-781)) NIL)) (-3143 ((|#2| $ |#1| |#2|) NIL)) (-3572 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2165 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2163 (((-3 |#2| "failed") |#1| $) NIL)) (-3426 (($) NIL T CONST)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))))) (-2876 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-3 |#2| "failed") |#1| $) NIL)) (-3335 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2868 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2458 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#2| $ |#1|) NIL)) (-1864 (((-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-2742 (((-112) $ (-781)) NIL)) (-3618 ((|#1| $) NIL (|has| |#1| (-860)))) (-1606 (((-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-2702 ((|#1| $) NIL (|has| |#1| (-860)))) (-2449 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4457))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-1763 (((-654 |#1|) $) NIL)) (-1732 (((-112) |#1| $) NIL)) (-2937 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL)) (-2798 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL)) (-4308 (((-654 |#1|) $) NIL)) (-3336 (((-112) |#1| $) NIL)) (-3966 (((-1133) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2915 ((|#2| $) NIL (|has| |#1| (-860)))) (-1549 (((-3 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) "failed") (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL)) (-1942 (($ $ |#2|) NIL (|has| $ (-6 -4457)))) (-1785 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL)) (-2540 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-302 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-4371 (((-654 |#2|) $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1662 (($) NIL) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL)) (-3975 (((-781) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) NIL)) (-1836 (((-546) $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-624 (-546))))) (-2956 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL)) (-2943 (((-872) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-3284 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-1599 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL)) (-3390 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-303 |#1| |#2|) (-13 (-1207 |#1| |#2|) (-10 -7 (-6 -4456))) (-1113) (-1113)) (T -303)) -NIL -(-13 (-1207 |#1| |#2|) (-10 -7 (-6 -4456))) -((-2678 (((-320) (-1172) (-654 (-1172))) 17) (((-320) (-1172) (-1172)) 16) (((-320) (-654 (-1172))) 15) (((-320) (-1172)) 14))) -(((-304) (-10 -7 (-15 -2678 ((-320) (-1172))) (-15 -2678 ((-320) (-654 (-1172)))) (-15 -2678 ((-320) (-1172) (-1172))) (-15 -2678 ((-320) (-1172) (-654 (-1172)))))) (T -304)) -((-2678 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-1172))) (-5 *3 (-1172)) (-5 *2 (-320)) (-5 *1 (-304)))) (-2678 (*1 *2 *3 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-320)) (-5 *1 (-304)))) (-2678 (*1 *2 *3) (-12 (-5 *3 (-654 (-1172))) (-5 *2 (-320)) (-5 *1 (-304)))) (-2678 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-320)) (-5 *1 (-304))))) -(-10 -7 (-15 -2678 ((-320) (-1172))) (-15 -2678 ((-320) (-654 (-1172)))) (-15 -2678 ((-320) (-1172) (-1172))) (-15 -2678 ((-320) (-1172) (-654 (-1172))))) -((-1777 ((|#2| (-1 |#2| |#1|) (-1172) (-622 |#1|)) 18))) -(((-305 |#1| |#2|) (-10 -7 (-15 -1777 (|#2| (-1 |#2| |#1|) (-1172) (-622 |#1|)))) (-310) (-1231)) (T -305)) -((-1777 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1172)) (-5 *5 (-622 *6)) (-4 *6 (-310)) (-4 *2 (-1231)) (-5 *1 (-305 *6 *2))))) -(-10 -7 (-15 -1777 (|#2| (-1 |#2| |#1|) (-1172) (-622 |#1|)))) -((-1777 ((|#2| (-1 |#2| |#1|) (-622 |#1|)) 17))) -(((-306 |#1| |#2|) (-10 -7 (-15 -1777 (|#2| (-1 |#2| |#1|) (-622 |#1|)))) (-310) (-310)) (T -306)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-622 *5)) (-4 *5 (-310)) (-4 *2 (-310)) (-5 *1 (-306 *5 *2))))) -(-10 -7 (-15 -1777 (|#2| (-1 |#2| |#1|) (-622 |#1|)))) -((-3310 (((-112) (-227)) 12))) -(((-307 |#1| |#2|) (-10 -7 (-15 -3310 ((-112) (-227)))) (-227) (-227)) (T -307)) -((-3310 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-307 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -3310 ((-112) (-227)))) -((-2446 (((-1170 (-227)) (-324 (-227)) (-654 (-1190)) (-1107 (-853 (-227)))) 118)) (-1766 (((-1170 (-227)) (-1281 (-324 (-227))) (-654 (-1190)) (-1107 (-853 (-227)))) 135) (((-1170 (-227)) (-324 (-227)) (-654 (-1190)) (-1107 (-853 (-227)))) 72)) (-1929 (((-654 (-1172)) (-1170 (-227))) NIL)) (-2485 (((-654 (-227)) (-324 (-227)) (-1190) (-1107 (-853 (-227)))) 69)) (-3231 (((-654 (-227)) (-963 (-417 (-574))) (-1190) (-1107 (-853 (-227)))) 59)) (-2429 (((-654 (-1172)) (-654 (-227))) NIL)) (-2894 (((-227) (-1107 (-853 (-227)))) 29)) (-3489 (((-227) (-1107 (-853 (-227)))) 30)) (-1414 (((-112) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 64)) (-3013 (((-1172) (-227)) NIL))) -(((-308) (-10 -7 (-15 -2894 ((-227) (-1107 (-853 (-227))))) (-15 -3489 ((-227) (-1107 (-853 (-227))))) (-15 -1414 ((-112) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2485 ((-654 (-227)) (-324 (-227)) (-1190) (-1107 (-853 (-227))))) (-15 -2446 ((-1170 (-227)) (-324 (-227)) (-654 (-1190)) (-1107 (-853 (-227))))) (-15 -1766 ((-1170 (-227)) (-324 (-227)) (-654 (-1190)) (-1107 (-853 (-227))))) (-15 -1766 ((-1170 (-227)) (-1281 (-324 (-227))) (-654 (-1190)) (-1107 (-853 (-227))))) (-15 -3231 ((-654 (-227)) (-963 (-417 (-574))) (-1190) (-1107 (-853 (-227))))) (-15 -3013 ((-1172) (-227))) (-15 -2429 ((-654 (-1172)) (-654 (-227)))) (-15 -1929 ((-654 (-1172)) (-1170 (-227)))))) (T -308)) -((-1929 (*1 *2 *3) (-12 (-5 *3 (-1170 (-227))) (-5 *2 (-654 (-1172))) (-5 *1 (-308)))) (-2429 (*1 *2 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1172))) (-5 *1 (-308)))) (-3013 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1172)) (-5 *1 (-308)))) (-3231 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-963 (-417 (-574)))) (-5 *4 (-1190)) (-5 *5 (-1107 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-308)))) (-1766 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1281 (-324 (-227)))) (-5 *4 (-654 (-1190))) (-5 *5 (-1107 (-853 (-227)))) (-5 *2 (-1170 (-227))) (-5 *1 (-308)))) (-1766 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-227))) (-5 *4 (-654 (-1190))) (-5 *5 (-1107 (-853 (-227)))) (-5 *2 (-1170 (-227))) (-5 *1 (-308)))) (-2446 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-227))) (-5 *4 (-654 (-1190))) (-5 *5 (-1107 (-853 (-227)))) (-5 *2 (-1170 (-227))) (-5 *1 (-308)))) (-2485 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-227))) (-5 *4 (-1190)) (-5 *5 (-1107 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-308)))) (-1414 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-112)) (-5 *1 (-308)))) (-3489 (*1 *2 *3) (-12 (-5 *3 (-1107 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-308)))) (-2894 (*1 *2 *3) (-12 (-5 *3 (-1107 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-308))))) -(-10 -7 (-15 -2894 ((-227) (-1107 (-853 (-227))))) (-15 -3489 ((-227) (-1107 (-853 (-227))))) (-15 -1414 ((-112) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2485 ((-654 (-227)) (-324 (-227)) (-1190) (-1107 (-853 (-227))))) (-15 -2446 ((-1170 (-227)) (-324 (-227)) (-654 (-1190)) (-1107 (-853 (-227))))) (-15 -1766 ((-1170 (-227)) (-324 (-227)) (-654 (-1190)) (-1107 (-853 (-227))))) (-15 -1766 ((-1170 (-227)) (-1281 (-324 (-227))) (-654 (-1190)) (-1107 (-853 (-227))))) (-15 -3231 ((-654 (-227)) (-963 (-417 (-574))) (-1190) (-1107 (-853 (-227))))) (-15 -3013 ((-1172) (-227))) (-15 -2429 ((-654 (-1172)) (-654 (-227)))) (-15 -1929 ((-654 (-1172)) (-1170 (-227))))) -((-4091 (((-654 (-622 $)) $) 27)) (-2545 (($ $ (-302 $)) 78) (($ $ (-654 (-302 $))) 139) (($ $ (-654 (-622 $)) (-654 $)) NIL)) (-1696 (((-3 (-622 $) "failed") $) 127)) (-2206 (((-622 $) $) 126)) (-3574 (($ $) 17) (($ (-654 $)) 54)) (-3893 (((-654 (-115)) $) 35)) (-4175 (((-115) (-115)) 88)) (-4410 (((-112) $) 150)) (-1777 (($ (-1 $ $) (-622 $)) 86)) (-3429 (((-3 (-622 $) "failed") $) 94)) (-1775 (($ (-115) $) 59) (($ (-115) (-654 $)) 110)) (-4103 (((-112) $ (-115)) 132) (((-112) $ (-1190)) 131)) (-1839 (((-781) $) 44)) (-3974 (((-112) $ $) 57) (((-112) $ (-1190)) 49)) (-3476 (((-112) $) 148)) (-2646 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL) (($ $ (-654 (-302 $))) 137) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1190)) (-654 (-1 $ $))) 81) (($ $ (-654 (-1190)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-1190) (-1 $ (-654 $))) 67) (($ $ (-1190) (-1 $ $)) 72) (($ $ (-654 (-115)) (-654 (-1 $ $))) 80) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) 82) (($ $ (-115) (-1 $ (-654 $))) 68) (($ $ (-115) (-1 $ $)) 74)) (-2199 (($ (-115) $) 60) (($ (-115) $ $) 61) (($ (-115) $ $ $) 62) (($ (-115) $ $ $ $) 63) (($ (-115) (-654 $)) 123)) (-2447 (($ $) 51) (($ $ $) 135)) (-2029 (($ $) 15) (($ (-654 $)) 53)) (-3225 (((-112) (-115)) 21))) -(((-309 |#1|) (-10 -8 (-15 -4410 ((-112) |#1|)) (-15 -3476 ((-112) |#1|)) (-15 -2646 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2646 (|#1| |#1| (-115) (-1 |#1| (-654 |#1|)))) (-15 -2646 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2646 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| |#1|)))) (-15 -2646 (|#1| |#1| (-1190) (-1 |#1| |#1|))) (-15 -2646 (|#1| |#1| (-1190) (-1 |#1| (-654 |#1|)))) (-15 -2646 (|#1| |#1| (-654 (-1190)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2646 (|#1| |#1| (-654 (-1190)) (-654 (-1 |#1| |#1|)))) (-15 -3974 ((-112) |#1| (-1190))) (-15 -3974 ((-112) |#1| |#1|)) (-15 -1777 (|#1| (-1 |#1| |#1|) (-622 |#1|))) (-15 -1775 (|#1| (-115) (-654 |#1|))) (-15 -1775 (|#1| (-115) |#1|)) (-15 -4103 ((-112) |#1| (-1190))) (-15 -4103 ((-112) |#1| (-115))) (-15 -3225 ((-112) (-115))) (-15 -4175 ((-115) (-115))) (-15 -3893 ((-654 (-115)) |#1|)) (-15 -4091 ((-654 (-622 |#1|)) |#1|)) (-15 -3429 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -1839 ((-781) |#1|)) (-15 -2447 (|#1| |#1| |#1|)) (-15 -2447 (|#1| |#1|)) (-15 -3574 (|#1| (-654 |#1|))) (-15 -3574 (|#1| |#1|)) (-15 -2029 (|#1| (-654 |#1|))) (-15 -2029 (|#1| |#1|)) (-15 -2545 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2545 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2545 (|#1| |#1| (-302 |#1|))) (-15 -2199 (|#1| (-115) (-654 |#1|))) (-15 -2199 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2199 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2199 (|#1| (-115) |#1| |#1|)) (-15 -2199 (|#1| (-115) |#1|)) (-15 -2646 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#1| |#1|)) (-15 -2646 (|#1| |#1| (-302 |#1|))) (-15 -2646 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2646 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2646 (|#1| |#1| (-622 |#1|) |#1|)) (-15 -1696 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2206 ((-622 |#1|) |#1|))) (-310)) (T -309)) -((-4175 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-309 *3)) (-4 *3 (-310)))) (-3225 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-309 *4)) (-4 *4 (-310))))) -(-10 -8 (-15 -4410 ((-112) |#1|)) (-15 -3476 ((-112) |#1|)) (-15 -2646 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2646 (|#1| |#1| (-115) (-1 |#1| (-654 |#1|)))) (-15 -2646 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2646 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| |#1|)))) (-15 -2646 (|#1| |#1| (-1190) (-1 |#1| |#1|))) (-15 -2646 (|#1| |#1| (-1190) (-1 |#1| (-654 |#1|)))) (-15 -2646 (|#1| |#1| (-654 (-1190)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2646 (|#1| |#1| (-654 (-1190)) (-654 (-1 |#1| |#1|)))) (-15 -3974 ((-112) |#1| (-1190))) (-15 -3974 ((-112) |#1| |#1|)) (-15 -1777 (|#1| (-1 |#1| |#1|) (-622 |#1|))) (-15 -1775 (|#1| (-115) (-654 |#1|))) (-15 -1775 (|#1| (-115) |#1|)) (-15 -4103 ((-112) |#1| (-1190))) (-15 -4103 ((-112) |#1| (-115))) (-15 -3225 ((-112) (-115))) (-15 -4175 ((-115) (-115))) (-15 -3893 ((-654 (-115)) |#1|)) (-15 -4091 ((-654 (-622 |#1|)) |#1|)) (-15 -3429 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -1839 ((-781) |#1|)) (-15 -2447 (|#1| |#1| |#1|)) (-15 -2447 (|#1| |#1|)) (-15 -3574 (|#1| (-654 |#1|))) (-15 -3574 (|#1| |#1|)) (-15 -2029 (|#1| (-654 |#1|))) (-15 -2029 (|#1| |#1|)) (-15 -2545 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2545 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2545 (|#1| |#1| (-302 |#1|))) (-15 -2199 (|#1| (-115) (-654 |#1|))) (-15 -2199 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2199 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2199 (|#1| (-115) |#1| |#1|)) (-15 -2199 (|#1| (-115) |#1|)) (-15 -2646 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#1| |#1|)) (-15 -2646 (|#1| |#1| (-302 |#1|))) (-15 -2646 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2646 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2646 (|#1| |#1| (-622 |#1|) |#1|)) (-15 -1696 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2206 ((-622 |#1|) |#1|))) -((-2849 (((-112) $ $) 7)) (-4091 (((-654 (-622 $)) $) 39)) (-2545 (($ $ (-302 $)) 51) (($ $ (-654 (-302 $))) 50) (($ $ (-654 (-622 $)) (-654 $)) 49)) (-1696 (((-3 (-622 $) "failed") $) 64)) (-2206 (((-622 $) $) 65)) (-3574 (($ $) 46) (($ (-654 $)) 45)) (-3893 (((-654 (-115)) $) 38)) (-4175 (((-115) (-115)) 37)) (-4410 (((-112) $) 17 (|has| $ (-1051 (-574))))) (-1924 (((-1186 $) (-622 $)) 20 (|has| $ (-1062)))) (-1777 (($ (-1 $ $) (-622 $)) 31)) (-3429 (((-3 (-622 $) "failed") $) 41)) (-4136 (((-1172) $) 10)) (-4163 (((-654 (-622 $)) $) 40)) (-1775 (($ (-115) $) 33) (($ (-115) (-654 $)) 32)) (-4103 (((-112) $ (-115)) 35) (((-112) $ (-1190)) 34)) (-1839 (((-781) $) 42)) (-3966 (((-1133) $) 11)) (-3974 (((-112) $ $) 30) (((-112) $ (-1190)) 29)) (-3476 (((-112) $) 18 (|has| $ (-1051 (-574))))) (-2646 (($ $ (-622 $) $) 62) (($ $ (-654 (-622 $)) (-654 $)) 61) (($ $ (-654 (-302 $))) 60) (($ $ (-302 $)) 59) (($ $ $ $) 58) (($ $ (-654 $) (-654 $)) 57) (($ $ (-654 (-1190)) (-654 (-1 $ $))) 28) (($ $ (-654 (-1190)) (-654 (-1 $ (-654 $)))) 27) (($ $ (-1190) (-1 $ (-654 $))) 26) (($ $ (-1190) (-1 $ $)) 25) (($ $ (-654 (-115)) (-654 (-1 $ $))) 24) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) 23) (($ $ (-115) (-1 $ (-654 $))) 22) (($ $ (-115) (-1 $ $)) 21)) (-2199 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-654 $)) 52)) (-2447 (($ $) 44) (($ $ $) 43)) (-4185 (($ $) 19 (|has| $ (-1062)))) (-2943 (((-872) $) 12) (($ (-622 $)) 63)) (-2029 (($ $) 48) (($ (-654 $)) 47)) (-3225 (((-112) (-115)) 36)) (-3284 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) -(((-310) (-141)) (T -310)) -((-2199 (*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2199 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2199 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2199 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2199 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 *1)) (-4 *1 (-310)))) (-2545 (*1 *1 *1 *2) (-12 (-5 *2 (-302 *1)) (-4 *1 (-310)))) (-2545 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-302 *1))) (-4 *1 (-310)))) (-2545 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-622 *1))) (-5 *3 (-654 *1)) (-4 *1 (-310)))) (-2029 (*1 *1 *1) (-4 *1 (-310))) (-2029 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-310)))) (-3574 (*1 *1 *1) (-4 *1 (-310))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-310)))) (-2447 (*1 *1 *1) (-4 *1 (-310))) (-2447 (*1 *1 *1 *1) (-4 *1 (-310))) (-1839 (*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-781)))) (-3429 (*1 *2 *1) (|partial| -12 (-5 *2 (-622 *1)) (-4 *1 (-310)))) (-4163 (*1 *2 *1) (-12 (-5 *2 (-654 (-622 *1))) (-4 *1 (-310)))) (-4091 (*1 *2 *1) (-12 (-5 *2 (-654 (-622 *1))) (-4 *1 (-310)))) (-3893 (*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-654 (-115))))) (-4175 (*1 *2 *2) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-3225 (*1 *2 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-112)))) (-4103 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-112)))) (-4103 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1190)) (-5 *2 (-112)))) (-1775 (*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-1775 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 *1)) (-4 *1 (-310)))) (-1777 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-622 *1)) (-4 *1 (-310)))) (-3974 (*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-112)))) (-3974 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1190)) (-5 *2 (-112)))) (-2646 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1190))) (-5 *3 (-654 (-1 *1 *1))) (-4 *1 (-310)))) (-2646 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1190))) (-5 *3 (-654 (-1 *1 (-654 *1)))) (-4 *1 (-310)))) (-2646 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1 *1 (-654 *1))) (-4 *1 (-310)))) (-2646 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) (-2646 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 (-1 *1 *1))) (-4 *1 (-310)))) (-2646 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 (-1 *1 (-654 *1)))) (-4 *1 (-310)))) (-2646 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-654 *1))) (-4 *1 (-310)))) (-2646 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) (-1924 (*1 *2 *3) (-12 (-5 *3 (-622 *1)) (-4 *1 (-1062)) (-4 *1 (-310)) (-5 *2 (-1186 *1)))) (-4185 (*1 *1 *1) (-12 (-4 *1 (-1062)) (-4 *1 (-310)))) (-3476 (*1 *2 *1) (-12 (-4 *1 (-1051 (-574))) (-4 *1 (-310)) (-5 *2 (-112)))) (-4410 (*1 *2 *1) (-12 (-4 *1 (-1051 (-574))) (-4 *1 (-310)) (-5 *2 (-112))))) -(-13 (-1113) (-1051 (-622 $)) (-524 (-622 $) $) (-317 $) (-10 -8 (-15 -2199 ($ (-115) $)) (-15 -2199 ($ (-115) $ $)) (-15 -2199 ($ (-115) $ $ $)) (-15 -2199 ($ (-115) $ $ $ $)) (-15 -2199 ($ (-115) (-654 $))) (-15 -2545 ($ $ (-302 $))) (-15 -2545 ($ $ (-654 (-302 $)))) (-15 -2545 ($ $ (-654 (-622 $)) (-654 $))) (-15 -2029 ($ $)) (-15 -2029 ($ (-654 $))) (-15 -3574 ($ $)) (-15 -3574 ($ (-654 $))) (-15 -2447 ($ $)) (-15 -2447 ($ $ $)) (-15 -1839 ((-781) $)) (-15 -3429 ((-3 (-622 $) "failed") $)) (-15 -4163 ((-654 (-622 $)) $)) (-15 -4091 ((-654 (-622 $)) $)) (-15 -3893 ((-654 (-115)) $)) (-15 -4175 ((-115) (-115))) (-15 -3225 ((-112) (-115))) (-15 -4103 ((-112) $ (-115))) (-15 -4103 ((-112) $ (-1190))) (-15 -1775 ($ (-115) $)) (-15 -1775 ($ (-115) (-654 $))) (-15 -1777 ($ (-1 $ $) (-622 $))) (-15 -3974 ((-112) $ $)) (-15 -3974 ((-112) $ (-1190))) (-15 -2646 ($ $ (-654 (-1190)) (-654 (-1 $ $)))) (-15 -2646 ($ $ (-654 (-1190)) (-654 (-1 $ (-654 $))))) (-15 -2646 ($ $ (-1190) (-1 $ (-654 $)))) (-15 -2646 ($ $ (-1190) (-1 $ $))) (-15 -2646 ($ $ (-654 (-115)) (-654 (-1 $ $)))) (-15 -2646 ($ $ (-654 (-115)) (-654 (-1 $ (-654 $))))) (-15 -2646 ($ $ (-115) (-1 $ (-654 $)))) (-15 -2646 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1062)) (PROGN (-15 -1924 ((-1186 $) (-622 $))) (-15 -4185 ($ $))) |%noBranch|) (IF (|has| $ (-1051 (-574))) (PROGN (-15 -3476 ((-112) $)) (-15 -4410 ((-112) $))) |%noBranch|))) -(((-102) . T) ((-626 #0=(-622 $)) . T) ((-623 (-872)) . T) ((-317 $) . T) ((-524 (-622 $) $) . T) ((-524 $ $) . T) ((-1051 #0#) . T) ((-1113) . T)) -((-1652 (((-654 |#1|) (-654 |#1|)) 10))) -(((-311 |#1|) (-10 -7 (-15 -1652 ((-654 |#1|) (-654 |#1|)))) (-858)) (T -311)) -((-1652 (*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-858)) (-5 *1 (-311 *3))))) -(-10 -7 (-15 -1652 ((-654 |#1|) (-654 |#1|)))) -((-1777 (((-699 |#2|) (-1 |#2| |#1|) (-699 |#1|)) 17))) -(((-312 |#1| |#2|) (-10 -7 (-15 -1777 ((-699 |#2|) (-1 |#2| |#1|) (-699 |#1|)))) (-1062) (-1062)) (T -312)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-699 *5)) (-4 *5 (-1062)) (-4 *6 (-1062)) (-5 *2 (-699 *6)) (-5 *1 (-312 *5 *6))))) -(-10 -7 (-15 -1777 ((-699 |#2|) (-1 |#2| |#1|) (-699 |#1|)))) -((-3387 (((-1281 (-324 (-388))) (-1281 (-324 (-227)))) 110)) (-2491 (((-1107 (-853 (-227))) (-1107 (-853 (-388)))) 43)) (-1929 (((-654 (-1172)) (-1170 (-227))) 92)) (-1400 (((-324 (-388)) (-963 (-227))) 53)) (-4212 (((-227) (-963 (-227))) 49)) (-1573 (((-1172) (-388)) 195)) (-2680 (((-853 (-227)) (-853 (-388))) 37)) (-4192 (((-2 (|:| |additions| (-574)) (|:| |multiplications| (-574)) (|:| |exponentiations| (-574)) (|:| |functionCalls| (-574))) (-1281 (-324 (-227)))) 165)) (-3913 (((-1048) (-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))) (|:| |extra| (-1048)))) 207) (((-1048) (-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))))) 205)) (-4340 (((-699 (-227)) (-654 (-227)) (-781)) 19)) (-4373 (((-1281 (-709)) (-654 (-227))) 99)) (-2429 (((-654 (-1172)) (-654 (-227))) 79)) (-1779 (((-3 (-324 (-227)) "failed") (-324 (-227))) 128)) (-3310 (((-112) (-227) (-1107 (-853 (-227)))) 117)) (-3640 (((-1048) (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))) 224)) (-2894 (((-227) (-1107 (-853 (-227)))) 112)) (-3489 (((-227) (-1107 (-853 (-227)))) 113)) (-3125 (((-227) (-417 (-574))) 31)) (-3995 (((-1172) (-388)) 77)) (-3873 (((-227) (-388)) 22)) (-3465 (((-388) (-1281 (-324 (-227)))) 177)) (-3522 (((-324 (-227)) (-324 (-388))) 28)) (-3770 (((-417 (-574)) (-324 (-227))) 56)) (-1831 (((-324 (-417 (-574))) (-324 (-227))) 73)) (-1660 (((-324 (-388)) (-324 (-227))) 103)) (-2605 (((-227) (-324 (-227))) 57)) (-4150 (((-654 (-227)) (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) 68)) (-1895 (((-1107 (-853 (-227))) (-1107 (-853 (-227)))) 65)) (-3013 (((-1172) (-227)) 76)) (-3038 (((-709) (-227)) 95)) (-2546 (((-417 (-574)) (-227)) 58)) (-1724 (((-324 (-388)) (-227)) 52)) (-1836 (((-654 (-1107 (-853 (-227)))) (-654 (-1107 (-853 (-388))))) 46)) (-4157 (((-1048) (-654 (-1048))) 191) (((-1048) (-1048) (-1048)) 185)) (-2713 (((-1048) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2367 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221))) -(((-313) (-10 -7 (-15 -3873 ((-227) (-388))) (-15 -3522 ((-324 (-227)) (-324 (-388)))) (-15 -2680 ((-853 (-227)) (-853 (-388)))) (-15 -2491 ((-1107 (-853 (-227))) (-1107 (-853 (-388))))) (-15 -1836 ((-654 (-1107 (-853 (-227)))) (-654 (-1107 (-853 (-388)))))) (-15 -2546 ((-417 (-574)) (-227))) (-15 -3770 ((-417 (-574)) (-324 (-227)))) (-15 -2605 ((-227) (-324 (-227)))) (-15 -1779 ((-3 (-324 (-227)) "failed") (-324 (-227)))) (-15 -3465 ((-388) (-1281 (-324 (-227))))) (-15 -4192 ((-2 (|:| |additions| (-574)) (|:| |multiplications| (-574)) (|:| |exponentiations| (-574)) (|:| |functionCalls| (-574))) (-1281 (-324 (-227))))) (-15 -1831 ((-324 (-417 (-574))) (-324 (-227)))) (-15 -1895 ((-1107 (-853 (-227))) (-1107 (-853 (-227))))) (-15 -4150 ((-654 (-227)) (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))))) (-15 -3038 ((-709) (-227))) (-15 -4373 ((-1281 (-709)) (-654 (-227)))) (-15 -1660 ((-324 (-388)) (-324 (-227)))) (-15 -3387 ((-1281 (-324 (-388))) (-1281 (-324 (-227))))) (-15 -3310 ((-112) (-227) (-1107 (-853 (-227))))) (-15 -3013 ((-1172) (-227))) (-15 -3995 ((-1172) (-388))) (-15 -2429 ((-654 (-1172)) (-654 (-227)))) (-15 -1929 ((-654 (-1172)) (-1170 (-227)))) (-15 -2894 ((-227) (-1107 (-853 (-227))))) (-15 -3489 ((-227) (-1107 (-853 (-227))))) (-15 -4157 ((-1048) (-1048) (-1048))) (-15 -4157 ((-1048) (-654 (-1048)))) (-15 -1573 ((-1172) (-388))) (-15 -3913 ((-1048) (-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))))) (-15 -3913 ((-1048) (-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))) (|:| |extra| (-1048))))) (-15 -2713 ((-1048) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2367 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3640 ((-1048) (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))) (-15 -1400 ((-324 (-388)) (-963 (-227)))) (-15 -4212 ((-227) (-963 (-227)))) (-15 -1724 ((-324 (-388)) (-227))) (-15 -3125 ((-227) (-417 (-574)))) (-15 -4340 ((-699 (-227)) (-654 (-227)) (-781))))) (T -313)) -((-4340 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-227))) (-5 *4 (-781)) (-5 *2 (-699 (-227))) (-5 *1 (-313)))) (-3125 (*1 *2 *3) (-12 (-5 *3 (-417 (-574))) (-5 *2 (-227)) (-5 *1 (-313)))) (-1724 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-324 (-388))) (-5 *1 (-313)))) (-4212 (*1 *2 *3) (-12 (-5 *3 (-963 (-227))) (-5 *2 (-227)) (-5 *1 (-313)))) (-1400 (*1 *2 *3) (-12 (-5 *3 (-963 (-227))) (-5 *2 (-324 (-388))) (-5 *1 (-313)))) (-3640 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))) (-5 *2 (-1048)) (-5 *1 (-313)))) (-2713 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2367 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1048)) (-5 *1 (-313)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))) (|:| |extra| (-1048)))) (-5 *2 (-1048)) (-5 *1 (-313)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))))) (-5 *2 (-1048)) (-5 *1 (-313)))) (-1573 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1172)) (-5 *1 (-313)))) (-4157 (*1 *2 *3) (-12 (-5 *3 (-654 (-1048))) (-5 *2 (-1048)) (-5 *1 (-313)))) (-4157 (*1 *2 *2 *2) (-12 (-5 *2 (-1048)) (-5 *1 (-313)))) (-3489 (*1 *2 *3) (-12 (-5 *3 (-1107 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-313)))) (-2894 (*1 *2 *3) (-12 (-5 *3 (-1107 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-313)))) (-1929 (*1 *2 *3) (-12 (-5 *3 (-1170 (-227))) (-5 *2 (-654 (-1172))) (-5 *1 (-313)))) (-2429 (*1 *2 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1172))) (-5 *1 (-313)))) (-3995 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1172)) (-5 *1 (-313)))) (-3013 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1172)) (-5 *1 (-313)))) (-3310 (*1 *2 *3 *4) (-12 (-5 *4 (-1107 (-853 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-313)))) (-3387 (*1 *2 *3) (-12 (-5 *3 (-1281 (-324 (-227)))) (-5 *2 (-1281 (-324 (-388)))) (-5 *1 (-313)))) (-1660 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-324 (-388))) (-5 *1 (-313)))) (-4373 (*1 *2 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1281 (-709))) (-5 *1 (-313)))) (-3038 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-709)) (-5 *1 (-313)))) (-4150 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) (-5 *2 (-654 (-227))) (-5 *1 (-313)))) (-1895 (*1 *2 *2) (-12 (-5 *2 (-1107 (-853 (-227)))) (-5 *1 (-313)))) (-1831 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-324 (-417 (-574)))) (-5 *1 (-313)))) (-4192 (*1 *2 *3) (-12 (-5 *3 (-1281 (-324 (-227)))) (-5 *2 (-2 (|:| |additions| (-574)) (|:| |multiplications| (-574)) (|:| |exponentiations| (-574)) (|:| |functionCalls| (-574)))) (-5 *1 (-313)))) (-3465 (*1 *2 *3) (-12 (-5 *3 (-1281 (-324 (-227)))) (-5 *2 (-388)) (-5 *1 (-313)))) (-1779 (*1 *2 *2) (|partial| -12 (-5 *2 (-324 (-227))) (-5 *1 (-313)))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-227)) (-5 *1 (-313)))) (-3770 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-417 (-574))) (-5 *1 (-313)))) (-2546 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-417 (-574))) (-5 *1 (-313)))) (-1836 (*1 *2 *3) (-12 (-5 *3 (-654 (-1107 (-853 (-388))))) (-5 *2 (-654 (-1107 (-853 (-227))))) (-5 *1 (-313)))) (-2491 (*1 *2 *3) (-12 (-5 *3 (-1107 (-853 (-388)))) (-5 *2 (-1107 (-853 (-227)))) (-5 *1 (-313)))) (-2680 (*1 *2 *3) (-12 (-5 *3 (-853 (-388))) (-5 *2 (-853 (-227))) (-5 *1 (-313)))) (-3522 (*1 *2 *3) (-12 (-5 *3 (-324 (-388))) (-5 *2 (-324 (-227))) (-5 *1 (-313)))) (-3873 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-227)) (-5 *1 (-313))))) -(-10 -7 (-15 -3873 ((-227) (-388))) (-15 -3522 ((-324 (-227)) (-324 (-388)))) (-15 -2680 ((-853 (-227)) (-853 (-388)))) (-15 -2491 ((-1107 (-853 (-227))) (-1107 (-853 (-388))))) (-15 -1836 ((-654 (-1107 (-853 (-227)))) (-654 (-1107 (-853 (-388)))))) (-15 -2546 ((-417 (-574)) (-227))) (-15 -3770 ((-417 (-574)) (-324 (-227)))) (-15 -2605 ((-227) (-324 (-227)))) (-15 -1779 ((-3 (-324 (-227)) "failed") (-324 (-227)))) (-15 -3465 ((-388) (-1281 (-324 (-227))))) (-15 -4192 ((-2 (|:| |additions| (-574)) (|:| |multiplications| (-574)) (|:| |exponentiations| (-574)) (|:| |functionCalls| (-574))) (-1281 (-324 (-227))))) (-15 -1831 ((-324 (-417 (-574))) (-324 (-227)))) (-15 -1895 ((-1107 (-853 (-227))) (-1107 (-853 (-227))))) (-15 -4150 ((-654 (-227)) (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))))) (-15 -3038 ((-709) (-227))) (-15 -4373 ((-1281 (-709)) (-654 (-227)))) (-15 -1660 ((-324 (-388)) (-324 (-227)))) (-15 -3387 ((-1281 (-324 (-388))) (-1281 (-324 (-227))))) (-15 -3310 ((-112) (-227) (-1107 (-853 (-227))))) (-15 -3013 ((-1172) (-227))) (-15 -3995 ((-1172) (-388))) (-15 -2429 ((-654 (-1172)) (-654 (-227)))) (-15 -1929 ((-654 (-1172)) (-1170 (-227)))) (-15 -2894 ((-227) (-1107 (-853 (-227))))) (-15 -3489 ((-227) (-1107 (-853 (-227))))) (-15 -4157 ((-1048) (-1048) (-1048))) (-15 -4157 ((-1048) (-654 (-1048)))) (-15 -1573 ((-1172) (-388))) (-15 -3913 ((-1048) (-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))))) (-15 -3913 ((-1048) (-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))) (|:| |extra| (-1048))))) (-15 -2713 ((-1048) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2367 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3640 ((-1048) (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))) (-15 -1400 ((-324 (-388)) (-963 (-227)))) (-15 -4212 ((-227) (-963 (-227)))) (-15 -1724 ((-324 (-388)) (-227))) (-15 -3125 ((-227) (-417 (-574)))) (-15 -4340 ((-699 (-227)) (-654 (-227)) (-781)))) -((-1600 (((-112) $ $) 14)) (-2786 (($ $ $) 18)) (-2797 (($ $ $) 17)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) 50)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) 65)) (-2873 (($ $ $) 25) (($ (-654 $)) NIL)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2838 (((-3 $ "failed") $ $) 21)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) 53))) -(((-314 |#1|) (-10 -8 (-15 -4403 ((-3 (-654 |#1|) "failed") (-654 |#1|) |#1|)) (-15 -1475 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1475 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2970 |#1|)) |#1| |#1|)) (-15 -2786 (|#1| |#1| |#1|)) (-15 -2797 (|#1| |#1| |#1|)) (-15 -1600 ((-112) |#1| |#1|)) (-15 -3471 ((-3 (-654 |#1|) "failed") (-654 |#1|) |#1|)) (-15 -1665 ((-2 (|:| -1858 (-654 |#1|)) (|:| -2970 |#1|)) (-654 |#1|))) (-15 -2873 (|#1| (-654 |#1|))) (-15 -2873 (|#1| |#1| |#1|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#1|))) (-315)) (T -314)) -NIL -(-10 -8 (-15 -4403 ((-3 (-654 |#1|) "failed") (-654 |#1|) |#1|)) (-15 -1475 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1475 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2970 |#1|)) |#1| |#1|)) (-15 -2786 (|#1| |#1| |#1|)) (-15 -2797 (|#1| |#1| |#1|)) (-15 -1600 ((-112) |#1| |#1|)) (-15 -3471 ((-3 (-654 |#1|) "failed") (-654 |#1|) |#1|)) (-15 -1665 ((-2 (|:| -1858 (-654 |#1|)) (|:| -2970 |#1|)) (-654 |#1|))) (-15 -2873 (|#1| (-654 |#1|))) (-15 -2873 (|#1| |#1| |#1|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-1575 (($ $) 46)) (-2085 (((-112) $) 44)) (-3524 (((-3 $ "failed") $ $) 20)) (-1600 (((-112) $ $) 65)) (-3426 (($) 18 T CONST)) (-2786 (($ $ $) 61)) (-3434 (((-3 $ "failed") $) 37)) (-2797 (($ $ $) 62)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) 57)) (-3199 (((-112) $) 35)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2832 (($ $ $) 52) (($ (-654 $)) 51)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2873 (($ $ $) 54) (($ (-654 $)) 53)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2838 (((-3 $ "failed") $ $) 48)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-1730 (((-781) $) 64)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 63)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2069 (((-112) $ $) 45)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) -(((-315) (-141)) (T -315)) -((-1600 (*1 *2 *1 *1) (-12 (-4 *1 (-315)) (-5 *2 (-112)))) (-1730 (*1 *2 *1) (-12 (-4 *1 (-315)) (-5 *2 (-781)))) (-1989 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1411 *1) (|:| -2766 *1))) (-4 *1 (-315)))) (-2797 (*1 *1 *1 *1) (-4 *1 (-315))) (-2786 (*1 *1 *1 *1) (-4 *1 (-315))) (-1475 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2970 *1))) (-4 *1 (-315)))) (-1475 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-315)))) (-4403 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-654 *1)) (-4 *1 (-315))))) -(-13 (-931) (-10 -8 (-15 -1600 ((-112) $ $)) (-15 -1730 ((-781) $)) (-15 -1989 ((-2 (|:| -1411 $) (|:| -2766 $)) $ $)) (-15 -2797 ($ $ $)) (-15 -2786 ($ $ $)) (-15 -1475 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $)) (-15 -1475 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -4403 ((-3 (-654 $) "failed") (-654 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-931) . T) ((-1064 $) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T)) -((-2646 (($ $ (-654 |#2|) (-654 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-302 |#2|)) 11) (($ $ (-654 (-302 |#2|))) NIL))) -(((-316 |#1| |#2|) (-10 -8 (-15 -2646 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -2646 (|#1| |#1| (-302 |#2|))) (-15 -2646 (|#1| |#1| |#2| |#2|)) (-15 -2646 (|#1| |#1| (-654 |#2|) (-654 |#2|)))) (-317 |#2|) (-1113)) (T -316)) -NIL -(-10 -8 (-15 -2646 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -2646 (|#1| |#1| (-302 |#2|))) (-15 -2646 (|#1| |#1| |#2| |#2|)) (-15 -2646 (|#1| |#1| (-654 |#2|) (-654 |#2|)))) -((-2646 (($ $ (-654 |#1|) (-654 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-302 |#1|)) 11) (($ $ (-654 (-302 |#1|))) 10))) -(((-317 |#1|) (-141) (-1113)) (T -317)) -((-2646 (*1 *1 *1 *2) (-12 (-5 *2 (-302 *3)) (-4 *1 (-317 *3)) (-4 *3 (-1113)))) (-2646 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-302 *3))) (-4 *1 (-317 *3)) (-4 *3 (-1113))))) -(-13 (-524 |t#1| |t#1|) (-10 -8 (-15 -2646 ($ $ (-302 |t#1|))) (-15 -2646 ($ $ (-654 (-302 |t#1|)))))) -(((-524 |#1| |#1|) . T)) -((-2646 ((|#1| (-1 |#1| (-574)) (-1192 (-417 (-574)))) 26))) -(((-318 |#1|) (-10 -7 (-15 -2646 (|#1| (-1 |#1| (-574)) (-1192 (-417 (-574)))))) (-38 (-417 (-574)))) (T -318)) -((-2646 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-574))) (-5 *4 (-1192 (-417 (-574)))) (-5 *1 (-318 *2)) (-4 *2 (-38 (-417 (-574))))))) -(-10 -7 (-15 -2646 (|#1| (-1 |#1| (-574)) (-1192 (-417 (-574)))))) -((-2849 (((-112) $ $) NIL)) (-4321 (((-574) $) 12)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-4016 (((-1148) $) 9)) (-2943 (((-872) $) 19) (($ (-1195)) NIL) (((-1195) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-319) (-13 (-1096) (-10 -8 (-15 -4016 ((-1148) $)) (-15 -4321 ((-574) $))))) (T -319)) -((-4016 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-319)))) (-4321 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-319))))) -(-13 (-1096) (-10 -8 (-15 -4016 ((-1148) $)) (-15 -4321 ((-574) $)))) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 7)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 9))) -(((-320) (-1113)) (T -320)) -NIL -(-1113) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 60)) (-1528 (((-1267 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-315)))) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3972 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-920)))) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-920)))) (-1600 (((-112) $ $) NIL)) (-2846 (((-574) $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-830)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-1267 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1190) "failed") $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-1051 (-1190)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-1051 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-1051 (-574)))) (((-3 (-1266 |#2| |#3| |#4|) "failed") $) 26)) (-2206 (((-1267 |#1| |#2| |#3| |#4|) $) NIL) (((-1190) $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-1051 (-1190)))) (((-417 (-574)) $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-1051 (-574)))) (((-574) $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-1051 (-574)))) (((-1266 |#2| |#3| |#4|) $) NIL)) (-2786 (($ $ $) NIL)) (-2590 (((-699 (-574)) (-1281 $)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-649 (-574)))) (((-2 (|:| -4340 (-699 (-1267 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1281 (-1267 |#1| |#2| |#3| |#4|)))) (-699 $) (-1281 $)) NIL) (((-699 (-1267 |#1| |#2| |#3| |#4|)) (-699 $)) NIL) (((-699 (-1267 |#1| |#2| |#3| |#4|)) (-1281 $)) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2820 (($) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-555)))) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-2257 (((-112) $) NIL)) (-2756 (((-112) $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-830)))) (-3625 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-897 (-388))))) (-3199 (((-112) $) NIL)) (-2141 (($ $) NIL)) (-2966 (((-1267 |#1| |#2| |#3| |#4|) $) 22)) (-2748 (((-3 $ "failed") $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-1165)))) (-1335 (((-112) $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-830)))) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3659 (($ $ $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-860)))) (-4257 (($ $ $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-860)))) (-1777 (($ (-1 (-1267 |#1| |#2| |#3| |#4|) (-1267 |#1| |#2| |#3| |#4|)) $) NIL)) (-1720 (((-3 (-853 |#2|) "failed") $) 80)) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-1165)) CONST)) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3191 (($ $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-315)))) (-3595 (((-1267 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-555)))) (-2560 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-920)))) (-2039 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-920)))) (-4220 (((-428 $) $) NIL)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2646 (($ $ (-654 (-1267 |#1| |#2| |#3| |#4|)) (-654 (-1267 |#1| |#2| |#3| |#4|))) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-317 (-1267 |#1| |#2| |#3| |#4|)))) (($ $ (-1267 |#1| |#2| |#3| |#4|) (-1267 |#1| |#2| |#3| |#4|)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-317 (-1267 |#1| |#2| |#3| |#4|)))) (($ $ (-302 (-1267 |#1| |#2| |#3| |#4|))) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-317 (-1267 |#1| |#2| |#3| |#4|)))) (($ $ (-654 (-302 (-1267 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-317 (-1267 |#1| |#2| |#3| |#4|)))) (($ $ (-654 (-1190)) (-654 (-1267 |#1| |#2| |#3| |#4|))) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-524 (-1190) (-1267 |#1| |#2| |#3| |#4|)))) (($ $ (-1190) (-1267 |#1| |#2| |#3| |#4|)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-524 (-1190) (-1267 |#1| |#2| |#3| |#4|))))) (-1730 (((-781) $) NIL)) (-2199 (($ $ (-1267 |#1| |#2| |#3| |#4|)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-294 (-1267 |#1| |#2| |#3| |#4|) (-1267 |#1| |#2| |#3| |#4|))))) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-3905 (($ $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-239))) (($ $ (-781)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-239))) (($ $ (-1190)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-911 (-1190)))) (($ $ (-1 (-1267 |#1| |#2| |#3| |#4|) (-1267 |#1| |#2| |#3| |#4|)) (-781)) NIL) (($ $ (-1 (-1267 |#1| |#2| |#3| |#4|) (-1267 |#1| |#2| |#3| |#4|))) NIL)) (-4358 (($ $) NIL)) (-2977 (((-1267 |#1| |#2| |#3| |#4|) $) 19)) (-1836 (((-903 (-574)) $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-624 (-546)))) (((-388) $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-1035))) (((-227) $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-1035)))) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-1267 |#1| |#2| |#3| |#4|) (-920))))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-1267 |#1| |#2| |#3| |#4|)) 30) (($ (-1190)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-1051 (-1190)))) (($ (-1266 |#2| |#3| |#4|)) 37)) (-3298 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| (-1267 |#1| |#2| |#3| |#4|) (-920))) (|has| (-1267 |#1| |#2| |#3| |#4|) (-146))))) (-1364 (((-781)) NIL T CONST)) (-1801 (((-1267 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-555)))) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL)) (-3482 (($ $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-830)))) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-3610 (($ $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-239))) (($ $ (-781)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-239))) (($ $ (-1190)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-911 (-1190)))) (($ $ (-1 (-1267 |#1| |#2| |#3| |#4|) (-1267 |#1| |#2| |#3| |#4|)) (-781)) NIL) (($ $ (-1 (-1267 |#1| |#2| |#3| |#4|) (-1267 |#1| |#2| |#3| |#4|))) NIL)) (-3042 (((-112) $ $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-860)))) (-3018 (((-112) $ $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-860)))) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-860)))) (-3007 (((-112) $ $) NIL (|has| (-1267 |#1| |#2| |#3| |#4|) (-860)))) (-3108 (($ $ $) 35) (($ (-1267 |#1| |#2| |#3| |#4|) (-1267 |#1| |#2| |#3| |#4|)) 32)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-1267 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1267 |#1| |#2| |#3| |#4|)) NIL))) -(((-321 |#1| |#2| |#3| |#4|) (-13 (-1005 (-1267 |#1| |#2| |#3| |#4|)) (-1051 (-1266 |#2| |#3| |#4|)) (-10 -8 (-15 -1720 ((-3 (-853 |#2|) "failed") $)) (-15 -2943 ($ (-1266 |#2| |#3| |#4|))))) (-13 (-1051 (-574)) (-649 (-574)) (-462)) (-13 (-27) (-1216) (-440 |#1|)) (-1190) |#2|) (T -321)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-1266 *4 *5 *6)) (-4 *4 (-13 (-27) (-1216) (-440 *3))) (-14 *5 (-1190)) (-14 *6 *4) (-4 *3 (-13 (-1051 (-574)) (-649 (-574)) (-462))) (-5 *1 (-321 *3 *4 *5 *6)))) (-1720 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1051 (-574)) (-649 (-574)) (-462))) (-5 *2 (-853 *4)) (-5 *1 (-321 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1216) (-440 *3))) (-14 *5 (-1190)) (-14 *6 *4)))) -(-13 (-1005 (-1267 |#1| |#2| |#3| |#4|)) (-1051 (-1266 |#2| |#3| |#4|)) (-10 -8 (-15 -1720 ((-3 (-853 |#2|) "failed") $)) (-15 -2943 ($ (-1266 |#2| |#3| |#4|))))) -((-1777 (((-324 |#2|) (-1 |#2| |#1|) (-324 |#1|)) 13))) -(((-322 |#1| |#2|) (-10 -7 (-15 -1777 ((-324 |#2|) (-1 |#2| |#1|) (-324 |#1|)))) (-1113) (-1113)) (T -322)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-324 *5)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-5 *2 (-324 *6)) (-5 *1 (-322 *5 *6))))) -(-10 -7 (-15 -1777 ((-324 |#2|) (-1 |#2| |#1|) (-324 |#1|)))) -((-4402 (((-52) |#2| (-302 |#2|) (-781)) 40) (((-52) |#2| (-302 |#2|)) 32) (((-52) |#2| (-781)) 35) (((-52) |#2|) 33) (((-52) (-1190)) 26)) (-3623 (((-52) |#2| (-302 |#2|) (-417 (-574))) 59) (((-52) |#2| (-302 |#2|)) 56) (((-52) |#2| (-417 (-574))) 58) (((-52) |#2|) 57) (((-52) (-1190)) 55)) (-4424 (((-52) |#2| (-302 |#2|) (-417 (-574))) 54) (((-52) |#2| (-302 |#2|)) 51) (((-52) |#2| (-417 (-574))) 53) (((-52) |#2|) 52) (((-52) (-1190)) 50)) (-4413 (((-52) |#2| (-302 |#2|) (-574)) 47) (((-52) |#2| (-302 |#2|)) 44) (((-52) |#2| (-574)) 46) (((-52) |#2|) 45) (((-52) (-1190)) 43))) -(((-323 |#1| |#2|) (-10 -7 (-15 -4402 ((-52) (-1190))) (-15 -4402 ((-52) |#2|)) (-15 -4402 ((-52) |#2| (-781))) (-15 -4402 ((-52) |#2| (-302 |#2|))) (-15 -4402 ((-52) |#2| (-302 |#2|) (-781))) (-15 -4413 ((-52) (-1190))) (-15 -4413 ((-52) |#2|)) (-15 -4413 ((-52) |#2| (-574))) (-15 -4413 ((-52) |#2| (-302 |#2|))) (-15 -4413 ((-52) |#2| (-302 |#2|) (-574))) (-15 -4424 ((-52) (-1190))) (-15 -4424 ((-52) |#2|)) (-15 -4424 ((-52) |#2| (-417 (-574)))) (-15 -4424 ((-52) |#2| (-302 |#2|))) (-15 -4424 ((-52) |#2| (-302 |#2|) (-417 (-574)))) (-15 -3623 ((-52) (-1190))) (-15 -3623 ((-52) |#2|)) (-15 -3623 ((-52) |#2| (-417 (-574)))) (-15 -3623 ((-52) |#2| (-302 |#2|))) (-15 -3623 ((-52) |#2| (-302 |#2|) (-417 (-574))))) (-13 (-462) (-1051 (-574)) (-649 (-574))) (-13 (-27) (-1216) (-440 |#1|))) (T -323)) -((-3623 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-302 *3)) (-5 *5 (-417 (-574))) (-4 *3 (-13 (-27) (-1216) (-440 *6))) (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) (-3623 (*1 *2 *3 *4) (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5))) (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)))) (-3623 (*1 *2 *3 *4) (-12 (-5 *4 (-417 (-574))) (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5))))) (-3623 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *4))))) (-3623 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1216) (-440 *4))))) (-4424 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-302 *3)) (-5 *5 (-417 (-574))) (-4 *3 (-13 (-27) (-1216) (-440 *6))) (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) (-4424 (*1 *2 *3 *4) (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5))) (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)))) (-4424 (*1 *2 *3 *4) (-12 (-5 *4 (-417 (-574))) (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5))))) (-4424 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *4))))) (-4424 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1216) (-440 *4))))) (-4413 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *6))) (-4 *6 (-13 (-462) (-1051 *5) (-649 *5))) (-5 *5 (-574)) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) (-4413 (*1 *2 *3 *4) (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5))) (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)))) (-4413 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-4 *5 (-13 (-462) (-1051 *4) (-649 *4))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5))))) (-4413 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *4))))) (-4413 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1216) (-440 *4))))) (-4402 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-302 *3)) (-5 *5 (-781)) (-4 *3 (-13 (-27) (-1216) (-440 *6))) (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) (-4402 (*1 *2 *3 *4) (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5))) (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)))) (-4402 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5))))) (-4402 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *4))))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1216) (-440 *4)))))) -(-10 -7 (-15 -4402 ((-52) (-1190))) (-15 -4402 ((-52) |#2|)) (-15 -4402 ((-52) |#2| (-781))) (-15 -4402 ((-52) |#2| (-302 |#2|))) (-15 -4402 ((-52) |#2| (-302 |#2|) (-781))) (-15 -4413 ((-52) (-1190))) (-15 -4413 ((-52) |#2|)) (-15 -4413 ((-52) |#2| (-574))) (-15 -4413 ((-52) |#2| (-302 |#2|))) (-15 -4413 ((-52) |#2| (-302 |#2|) (-574))) (-15 -4424 ((-52) (-1190))) (-15 -4424 ((-52) |#2|)) (-15 -4424 ((-52) |#2| (-417 (-574)))) (-15 -4424 ((-52) |#2| (-302 |#2|))) (-15 -4424 ((-52) |#2| (-302 |#2|) (-417 (-574)))) (-15 -3623 ((-52) (-1190))) (-15 -3623 ((-52) |#2|)) (-15 -3623 ((-52) |#2| (-417 (-574)))) (-15 -3623 ((-52) |#2| (-302 |#2|))) (-15 -3623 ((-52) |#2| (-302 |#2|) (-417 (-574))))) -((-2849 (((-112) $ $) NIL)) (-2446 (((-654 $) $ (-1190)) NIL (|has| |#1| (-566))) (((-654 $) $) NIL (|has| |#1| (-566))) (((-654 $) (-1186 $) (-1190)) NIL (|has| |#1| (-566))) (((-654 $) (-1186 $)) NIL (|has| |#1| (-566))) (((-654 $) (-963 $)) NIL (|has| |#1| (-566)))) (-1588 (($ $ (-1190)) NIL (|has| |#1| (-566))) (($ $) NIL (|has| |#1| (-566))) (($ (-1186 $) (-1190)) NIL (|has| |#1| (-566))) (($ (-1186 $)) NIL (|has| |#1| (-566))) (($ (-963 $)) NIL (|has| |#1| (-566)))) (-3138 (((-112) $) 27 (-2818 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062)))))) (-4355 (((-654 (-1190)) $) 368)) (-4194 (((-417 (-1186 $)) $ (-622 $)) NIL (|has| |#1| (-566)))) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-1575 (($ $) NIL (|has| |#1| (-566)))) (-2085 (((-112) $) NIL (|has| |#1| (-566)))) (-4091 (((-654 (-622 $)) $) NIL)) (-2364 (($ $) 171 (|has| |#1| (-566)))) (-2247 (($ $) 147 (|has| |#1| (-566)))) (-1841 (($ $ (-1105 $)) 232 (|has| |#1| (-566))) (($ $ (-1190)) 228 (|has| |#1| (-566)))) (-3524 (((-3 $ "failed") $ $) NIL (-2818 (|has| |#1| (-21)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062)))))) (-2545 (($ $ (-302 $)) NIL) (($ $ (-654 (-302 $))) 386) (($ $ (-654 (-622 $)) (-654 $)) 430)) (-3972 (((-428 (-1186 $)) (-1186 $)) 308 (-12 (|has| |#1| (-462)) (|has| |#1| (-566))))) (-2568 (($ $) NIL (|has| |#1| (-566)))) (-2827 (((-428 $) $) NIL (|has| |#1| (-566)))) (-4229 (($ $) NIL (|has| |#1| (-566)))) (-1600 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2343 (($ $) 167 (|has| |#1| (-566)))) (-2227 (($ $) 143 (|has| |#1| (-566)))) (-2878 (($ $ (-574)) 73 (|has| |#1| (-566)))) (-2389 (($ $) 175 (|has| |#1| (-566)))) (-2267 (($ $) 151 (|has| |#1| (-566)))) (-3426 (($) NIL (-2818 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062))) (|has| |#1| (-1125))) CONST)) (-3391 (((-654 $) $ (-1190)) NIL (|has| |#1| (-566))) (((-654 $) $) NIL (|has| |#1| (-566))) (((-654 $) (-1186 $) (-1190)) NIL (|has| |#1| (-566))) (((-654 $) (-1186 $)) NIL (|has| |#1| (-566))) (((-654 $) (-963 $)) NIL (|has| |#1| (-566)))) (-3078 (($ $ (-1190)) NIL (|has| |#1| (-566))) (($ $) NIL (|has| |#1| (-566))) (($ (-1186 $) (-1190)) 134 (|has| |#1| (-566))) (($ (-1186 $)) NIL (|has| |#1| (-566))) (($ (-963 $)) NIL (|has| |#1| (-566)))) (-1696 (((-3 (-622 $) "failed") $) 18) (((-3 (-1190) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-566)) (|has| |#1| (-1051 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-963 |#1|)) "failed") $) NIL (|has| |#1| (-566))) (((-3 (-963 |#1|) "failed") $) NIL (|has| |#1| (-1062))) (((-3 (-417 (-574)) "failed") $) 46 (-2818 (-12 (|has| |#1| (-566)) (|has| |#1| (-1051 (-574)))) (|has| |#1| (-1051 (-417 (-574))))))) (-2206 (((-622 $) $) 12) (((-1190) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-566)) (|has| |#1| (-1051 (-574))))) (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-417 (-963 |#1|)) $) NIL (|has| |#1| (-566))) (((-963 |#1|) $) NIL (|has| |#1| (-1062))) (((-417 (-574)) $) 319 (-2818 (-12 (|has| |#1| (-566)) (|has| |#1| (-1051 (-574)))) (|has| |#1| (-1051 (-417 (-574))))))) (-2786 (($ $ $) NIL (|has| |#1| (-566)))) (-2590 (((-2 (|:| -4340 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) 125 (|has| |#1| (-1062))) (((-699 |#1|) (-699 $)) 115 (|has| |#1| (-1062))) (((-699 |#1|) (-1281 $)) NIL (|has| |#1| (-1062))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062)))) (((-699 (-574)) (-1281 $)) NIL (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062))))) (-2868 (($ $) 96 (|has| |#1| (-566)))) (-3434 (((-3 $ "failed") $) NIL (|has| |#1| (-1125)))) (-2797 (($ $ $) NIL (|has| |#1| (-566)))) (-3237 (($ $ (-1105 $)) 236 (|has| |#1| (-566))) (($ $ (-1190)) 234 (|has| |#1| (-566)))) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#1| (-566)))) (-2257 (((-112) $) NIL (|has| |#1| (-566)))) (-2097 (($ $ $) 202 (|has| |#1| (-566)))) (-3000 (($) 137 (|has| |#1| (-566)))) (-3792 (($ $ $) 222 (|has| |#1| (-566)))) (-3625 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 392 (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 399 (|has| |#1| (-897 (-388))))) (-3574 (($ $) NIL) (($ (-654 $)) NIL)) (-3893 (((-654 (-115)) $) NIL)) (-4175 (((-115) (-115)) 276)) (-3199 (((-112) $) 25 (|has| |#1| (-1125)))) (-4410 (((-112) $) NIL (|has| $ (-1051 (-574))))) (-2141 (($ $) 72 (|has| |#1| (-1062)))) (-2966 (((-1138 |#1| (-622 $)) $) 91 (|has| |#1| (-1062)))) (-3525 (((-112) $) 62 (|has| |#1| (-566)))) (-3460 (($ $ (-574)) NIL (|has| |#1| (-566)))) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-566)))) (-1924 (((-1186 $) (-622 $)) 277 (|has| $ (-1062)))) (-1777 (($ (-1 $ $) (-622 $)) 426)) (-3429 (((-3 (-622 $) "failed") $) NIL)) (-3119 (($ $) 141 (|has| |#1| (-566)))) (-4079 (($ $) 247 (|has| |#1| (-566)))) (-2832 (($ (-654 $)) NIL (|has| |#1| (-566))) (($ $ $) NIL (|has| |#1| (-566)))) (-4136 (((-1172) $) NIL)) (-4163 (((-654 (-622 $)) $) 49)) (-1775 (($ (-115) $) NIL) (($ (-115) (-654 $)) 431)) (-2755 (((-3 (-654 $) "failed") $) NIL (|has| |#1| (-1125)))) (-2127 (((-3 (-2 (|:| |val| $) (|:| -3715 (-574))) "failed") $) NIL (|has| |#1| (-1062)))) (-2415 (((-3 (-654 $) "failed") $) 436 (|has| |#1| (-25)))) (-2658 (((-3 (-2 (|:| -1858 (-574)) (|:| |var| (-622 $))) "failed") $) 440 (|has| |#1| (-25)))) (-2241 (((-3 (-2 (|:| |var| (-622 $)) (|:| -3715 (-574))) "failed") $) NIL (|has| |#1| (-1125))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -3715 (-574))) "failed") $ (-115)) NIL (|has| |#1| (-1062))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -3715 (-574))) "failed") $ (-1190)) NIL (|has| |#1| (-1062)))) (-4103 (((-112) $ (-115)) NIL) (((-112) $ (-1190)) 51)) (-1324 (($ $) NIL (-2818 (|has| |#1| (-483)) (|has| |#1| (-566))))) (-3097 (($ $ (-1190)) 251 (|has| |#1| (-566))) (($ $ (-1105 $)) 253 (|has| |#1| (-566)))) (-1839 (((-781) $) NIL)) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) 43)) (-1349 ((|#1| $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 301 (|has| |#1| (-566)))) (-2873 (($ (-654 $)) NIL (|has| |#1| (-566))) (($ $ $) NIL (|has| |#1| (-566)))) (-3974 (((-112) $ $) NIL) (((-112) $ (-1190)) NIL)) (-2516 (($ $ (-1190)) 226 (|has| |#1| (-566))) (($ $) 224 (|has| |#1| (-566)))) (-2150 (($ $) 218 (|has| |#1| (-566)))) (-2039 (((-428 (-1186 $)) (-1186 $)) 306 (-12 (|has| |#1| (-462)) (|has| |#1| (-566))))) (-4220 (((-428 $) $) NIL (|has| |#1| (-566)))) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-566))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-566)))) (-2838 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-566)))) (-1609 (($ $) 139 (|has| |#1| (-566)))) (-3476 (((-112) $) NIL (|has| $ (-1051 (-574))))) (-2646 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) 425) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1190)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-1190)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-1190) (-1 $ (-654 $))) NIL) (($ $ (-1190) (-1 $ $)) NIL) (($ $ (-654 (-115)) (-654 (-1 $ $))) 379) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-115) (-1 $ (-654 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1190)) NIL (|has| |#1| (-624 (-546)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-624 (-546)))) (($ $) NIL (|has| |#1| (-624 (-546)))) (($ $ (-115) $ (-1190)) 366 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-115)) (-654 $) (-1190)) 365 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-1190)) (-654 (-781)) (-654 (-1 $ $))) NIL (|has| |#1| (-1062))) (($ $ (-654 (-1190)) (-654 (-781)) (-654 (-1 $ (-654 $)))) NIL (|has| |#1| (-1062))) (($ $ (-1190) (-781) (-1 $ (-654 $))) NIL (|has| |#1| (-1062))) (($ $ (-1190) (-781) (-1 $ $)) NIL (|has| |#1| (-1062)))) (-1730 (((-781) $) NIL (|has| |#1| (-566)))) (-4070 (($ $) 239 (|has| |#1| (-566)))) (-2199 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-654 $)) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#1| (-566)))) (-2447 (($ $) NIL) (($ $ $) NIL)) (-2214 (($ $) 249 (|has| |#1| (-566)))) (-2489 (($ $) 200 (|has| |#1| (-566)))) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-1062))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-1062))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-1062))) (($ $ (-1190)) NIL (|has| |#1| (-1062)))) (-4358 (($ $) 74 (|has| |#1| (-566)))) (-2977 (((-1138 |#1| (-622 $)) $) 93 (|has| |#1| (-566)))) (-4185 (($ $) 317 (|has| $ (-1062)))) (-2402 (($ $) 177 (|has| |#1| (-566)))) (-2275 (($ $) 153 (|has| |#1| (-566)))) (-2375 (($ $) 173 (|has| |#1| (-566)))) (-2256 (($ $) 149 (|has| |#1| (-566)))) (-2352 (($ $) 169 (|has| |#1| (-566)))) (-2237 (($ $) 145 (|has| |#1| (-566)))) (-1836 (((-903 (-574)) $) NIL (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| |#1| (-624 (-903 (-388))))) (($ (-428 $)) NIL (|has| |#1| (-566))) (((-546) $) 363 (|has| |#1| (-624 (-546))))) (-1479 (($ $ $) NIL (|has| |#1| (-483)))) (-3204 (($ $ $) NIL (|has| |#1| (-483)))) (-2943 (((-872) $) 424) (($ (-622 $)) 415) (($ (-1190)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-566))) (($ (-48)) 312 (-12 (|has| |#1| (-566)) (|has| |#1| (-1051 (-574))))) (($ (-1138 |#1| (-622 $))) 95 (|has| |#1| (-1062))) (($ (-417 |#1|)) NIL (|has| |#1| (-566))) (($ (-963 (-417 |#1|))) NIL (|has| |#1| (-566))) (($ (-417 (-963 (-417 |#1|)))) NIL (|has| |#1| (-566))) (($ (-417 (-963 |#1|))) NIL (|has| |#1| (-566))) (($ (-963 |#1|)) NIL (|has| |#1| (-1062))) (($ (-574)) 34 (-2818 (|has| |#1| (-1051 (-574))) (|has| |#1| (-1062)))) (($ (-417 (-574))) NIL (-2818 (|has| |#1| (-566)) (|has| |#1| (-1051 (-417 (-574))))))) (-3298 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1364 (((-781)) NIL (|has| |#1| (-1062)) CONST)) (-2029 (($ $) NIL) (($ (-654 $)) NIL)) (-1616 (($ $ $) 220 (|has| |#1| (-566)))) (-3681 (($ $ $) 206 (|has| |#1| (-566)))) (-3586 (($ $ $) 210 (|has| |#1| (-566)))) (-2758 (($ $ $) 204 (|has| |#1| (-566)))) (-2242 (($ $ $) 208 (|has| |#1| (-566)))) (-3225 (((-112) (-115)) 10)) (-3284 (((-112) $ $) 86)) (-2441 (($ $) 183 (|has| |#1| (-566)))) (-2305 (($ $) 159 (|has| |#1| (-566)))) (-2069 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2414 (($ $) 179 (|has| |#1| (-566)))) (-2287 (($ $) 155 (|has| |#1| (-566)))) (-2465 (($ $) 187 (|has| |#1| (-566)))) (-2325 (($ $) 163 (|has| |#1| (-566)))) (-2499 (($ (-1190) $) NIL) (($ (-1190) $ $) NIL) (($ (-1190) $ $ $) NIL) (($ (-1190) $ $ $ $) NIL) (($ (-1190) (-654 $)) NIL)) (-1773 (($ $) 214 (|has| |#1| (-566)))) (-2196 (($ $) 212 (|has| |#1| (-566)))) (-2521 (($ $) 189 (|has| |#1| (-566)))) (-2334 (($ $) 165 (|has| |#1| (-566)))) (-2452 (($ $) 185 (|has| |#1| (-566)))) (-2315 (($ $) 161 (|has| |#1| (-566)))) (-2428 (($ $) 181 (|has| |#1| (-566)))) (-2297 (($ $) 157 (|has| |#1| (-566)))) (-3482 (($ $) 192 (|has| |#1| (-566)))) (-2133 (($) 21 (-2818 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062)))) CONST)) (-1648 (($ $) 243 (|has| |#1| (-566)))) (-2145 (($) 23 (|has| |#1| (-1125)) CONST)) (-2135 (($ $) 194 (|has| |#1| (-566))) (($ $ $) 196 (|has| |#1| (-566)))) (-4007 (($ $) 241 (|has| |#1| (-566)))) (-3610 (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-1062))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-1062))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-1062))) (($ $ (-1190)) NIL (|has| |#1| (-1062)))) (-3240 (($ $) 245 (|has| |#1| (-566)))) (-3061 (($ $ $) 198 (|has| |#1| (-566)))) (-2981 (((-112) $ $) 88)) (-3108 (($ (-1138 |#1| (-622 $)) (-1138 |#1| (-622 $))) 106 (|has| |#1| (-566))) (($ $ $) 42 (-2818 (|has| |#1| (-483)) (|has| |#1| (-566))))) (-3094 (($ $ $) 40 (-2818 (|has| |#1| (-21)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062))))) (($ $) 29 (-2818 (|has| |#1| (-21)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062)))))) (-3079 (($ $ $) 38 (-2818 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062)))))) (** (($ $ $) 64 (|has| |#1| (-566))) (($ $ (-417 (-574))) 314 (|has| |#1| (-566))) (($ $ (-574)) 80 (-2818 (|has| |#1| (-483)) (|has| |#1| (-566)))) (($ $ (-781)) 75 (|has| |#1| (-1125))) (($ $ (-932)) 84 (|has| |#1| (-1125)))) (* (($ (-417 (-574)) $) NIL (|has| |#1| (-566))) (($ $ (-417 (-574))) NIL (|has| |#1| (-566))) (($ $ |#1|) NIL (|has| |#1| (-174))) (($ |#1| $) NIL (|has| |#1| (-1062))) (($ $ $) 36 (|has| |#1| (-1125))) (($ (-574) $) 32 (-2818 (|has| |#1| (-21)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062))))) (($ (-781) $) NIL (-2818 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062))))) (($ (-932) $) NIL (-2818 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062))))))) -(((-324 |#1|) (-13 (-440 |#1|) (-10 -8 (IF (|has| |#1| (-566)) (PROGN (-6 (-29 |#1|)) (-6 (-1216)) (-6 (-161)) (-6 (-639)) (-6 (-1152)) (-15 -2868 ($ $)) (-15 -3525 ((-112) $)) (-15 -2878 ($ $ (-574))) (IF (|has| |#1| (-462)) (PROGN (-15 -2039 ((-428 (-1186 $)) (-1186 $))) (-15 -3972 ((-428 (-1186 $)) (-1186 $)))) |%noBranch|) (IF (|has| |#1| (-1051 (-574))) (-6 (-1051 (-48))) |%noBranch|)) |%noBranch|))) (-1113)) (T -324)) -((-2868 (*1 *1 *1) (-12 (-5 *1 (-324 *2)) (-4 *2 (-566)) (-4 *2 (-1113)))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-324 *3)) (-4 *3 (-566)) (-4 *3 (-1113)))) (-2878 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-324 *3)) (-4 *3 (-566)) (-4 *3 (-1113)))) (-2039 (*1 *2 *3) (-12 (-5 *2 (-428 (-1186 *1))) (-5 *1 (-324 *4)) (-5 *3 (-1186 *1)) (-4 *4 (-462)) (-4 *4 (-566)) (-4 *4 (-1113)))) (-3972 (*1 *2 *3) (-12 (-5 *2 (-428 (-1186 *1))) (-5 *1 (-324 *4)) (-5 *3 (-1186 *1)) (-4 *4 (-462)) (-4 *4 (-566)) (-4 *4 (-1113))))) -(-13 (-440 |#1|) (-10 -8 (IF (|has| |#1| (-566)) (PROGN (-6 (-29 |#1|)) (-6 (-1216)) (-6 (-161)) (-6 (-639)) (-6 (-1152)) (-15 -2868 ($ $)) (-15 -3525 ((-112) $)) (-15 -2878 ($ $ (-574))) (IF (|has| |#1| (-462)) (PROGN (-15 -2039 ((-428 (-1186 $)) (-1186 $))) (-15 -3972 ((-428 (-1186 $)) (-1186 $)))) |%noBranch|) (IF (|has| |#1| (-1051 (-574))) (-6 (-1051 (-48))) |%noBranch|)) |%noBranch|))) -((-1755 (((-52) |#2| (-115) (-302 |#2|) (-654 |#2|)) 89) (((-52) |#2| (-115) (-302 |#2|) (-302 |#2|)) 85) (((-52) |#2| (-115) (-302 |#2|) |#2|) 87) (((-52) (-302 |#2|) (-115) (-302 |#2|) |#2|) 88) (((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|))) 81) (((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 |#2|)) 83) (((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 |#2|)) 84) (((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|))) 82) (((-52) (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|)) 90) (((-52) (-302 |#2|) (-115) (-302 |#2|) (-302 |#2|)) 86))) -(((-325 |#1| |#2|) (-10 -7 (-15 -1755 ((-52) (-302 |#2|) (-115) (-302 |#2|) (-302 |#2|))) (-15 -1755 ((-52) (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|))) (-15 -1755 ((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|)))) (-15 -1755 ((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 |#2|))) (-15 -1755 ((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 |#2|))) (-15 -1755 ((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|)))) (-15 -1755 ((-52) (-302 |#2|) (-115) (-302 |#2|) |#2|)) (-15 -1755 ((-52) |#2| (-115) (-302 |#2|) |#2|)) (-15 -1755 ((-52) |#2| (-115) (-302 |#2|) (-302 |#2|))) (-15 -1755 ((-52) |#2| (-115) (-302 |#2|) (-654 |#2|)))) (-13 (-566) (-624 (-546))) (-440 |#1|)) (T -325)) -((-1755 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-5 *6 (-654 *3)) (-4 *3 (-440 *7)) (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *7 *3)))) (-1755 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-4 *3 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-1755 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-4 *3 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-1755 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-302 *5)) (-5 *4 (-115)) (-4 *5 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *5)))) (-1755 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 (-115))) (-5 *6 (-654 (-302 *8))) (-4 *8 (-440 *7)) (-5 *5 (-302 *8)) (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *7 *8)))) (-1755 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-654 *7)) (-5 *4 (-654 (-115))) (-5 *5 (-302 *7)) (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *7)))) (-1755 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-654 (-302 *8))) (-5 *4 (-654 (-115))) (-5 *5 (-302 *8)) (-5 *6 (-654 *8)) (-4 *8 (-440 *7)) (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *7 *8)))) (-1755 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-654 (-302 *7))) (-5 *4 (-654 (-115))) (-5 *5 (-302 *7)) (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *7)))) (-1755 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-302 *7)) (-5 *4 (-115)) (-5 *5 (-654 *7)) (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *7)))) (-1755 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-302 *6)) (-5 *4 (-115)) (-4 *6 (-440 *5)) (-4 *5 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *6))))) -(-10 -7 (-15 -1755 ((-52) (-302 |#2|) (-115) (-302 |#2|) (-302 |#2|))) (-15 -1755 ((-52) (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|))) (-15 -1755 ((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|)))) (-15 -1755 ((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 |#2|))) (-15 -1755 ((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 |#2|))) (-15 -1755 ((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|)))) (-15 -1755 ((-52) (-302 |#2|) (-115) (-302 |#2|) |#2|)) (-15 -1755 ((-52) |#2| (-115) (-302 |#2|) |#2|)) (-15 -1755 ((-52) |#2| (-115) (-302 |#2|) (-302 |#2|))) (-15 -1755 ((-52) |#2| (-115) (-302 |#2|) (-654 |#2|)))) -((-3314 (((-1226 (-937)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1107 (-227)) (-227) (-574) (-1172)) 67) (((-1226 (-937)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1107 (-227)) (-227) (-574)) 68) (((-1226 (-937)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1107 (-227)) (-1 (-227) (-227)) (-574) (-1172)) 64) (((-1226 (-937)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1107 (-227)) (-1 (-227) (-227)) (-574)) 65)) (-1931 (((-1 (-227) (-227)) (-227)) 66))) -(((-326) (-10 -7 (-15 -1931 ((-1 (-227) (-227)) (-227))) (-15 -3314 ((-1226 (-937)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1107 (-227)) (-1 (-227) (-227)) (-574))) (-15 -3314 ((-1226 (-937)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1107 (-227)) (-1 (-227) (-227)) (-574) (-1172))) (-15 -3314 ((-1226 (-937)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1107 (-227)) (-227) (-574))) (-15 -3314 ((-1226 (-937)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1107 (-227)) (-227) (-574) (-1172))))) (T -326)) -((-3314 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1107 (-227))) (-5 *6 (-227)) (-5 *7 (-574)) (-5 *8 (-1172)) (-5 *2 (-1226 (-937))) (-5 *1 (-326)))) (-3314 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1107 (-227))) (-5 *6 (-227)) (-5 *7 (-574)) (-5 *2 (-1226 (-937))) (-5 *1 (-326)))) (-3314 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1107 (-227))) (-5 *6 (-574)) (-5 *7 (-1172)) (-5 *2 (-1226 (-937))) (-5 *1 (-326)))) (-3314 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1107 (-227))) (-5 *6 (-574)) (-5 *2 (-1226 (-937))) (-5 *1 (-326)))) (-1931 (*1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-326)) (-5 *3 (-227))))) -(-10 -7 (-15 -1931 ((-1 (-227) (-227)) (-227))) (-15 -3314 ((-1226 (-937)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1107 (-227)) (-1 (-227) (-227)) (-574))) (-15 -3314 ((-1226 (-937)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1107 (-227)) (-1 (-227) (-227)) (-574) (-1172))) (-15 -3314 ((-1226 (-937)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1107 (-227)) (-227) (-574))) (-15 -3314 ((-1226 (-937)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1107 (-227)) (-227) (-574) (-1172)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 26)) (-4355 (((-654 (-1095)) $) NIL)) (-1488 (((-1190) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-1575 (($ $) NIL (|has| |#1| (-566)))) (-2085 (((-112) $) NIL (|has| |#1| (-566)))) (-2052 (($ $ (-417 (-574))) NIL) (($ $ (-417 (-574)) (-417 (-574))) NIL)) (-1878 (((-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) 20)) (-2364 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3524 (((-3 $ "failed") $ $) NIL)) (-2568 (($ $) NIL (|has| |#1| (-372)))) (-2827 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4229 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1600 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2343 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3623 (($ (-781) (-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) NIL)) (-2389 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3426 (($) NIL T CONST)) (-2786 (($ $ $) NIL (|has| |#1| (-372)))) (-1392 (($ $) 36)) (-3434 (((-3 $ "failed") $) NIL)) (-2797 (($ $ $) NIL (|has| |#1| (-372)))) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-2257 (((-112) $) NIL (|has| |#1| (-372)))) (-2892 (((-112) $) NIL)) (-3000 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3884 (((-417 (-574)) $) NIL) (((-417 (-574)) $ (-417 (-574))) 16)) (-3199 (((-112) $) NIL)) (-3460 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-4240 (($ $ (-932)) NIL) (($ $ (-417 (-574))) NIL)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3869 (((-112) $) NIL)) (-4335 (($ |#1| (-417 (-574))) NIL) (($ $ (-1095) (-417 (-574))) NIL) (($ $ (-654 (-1095)) (-654 (-417 (-574)))) NIL)) (-3659 (($ $ $) NIL)) (-4257 (($ $ $) NIL)) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-3119 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-2832 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL (|has| |#1| (-372)))) (-2379 (($ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190)) NIL (-2818 (-12 (|has| |#1| (-15 -2379 (|#1| |#1| (-1190)))) (|has| |#1| (-15 -4355 ((-654 (-1190)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-970)) (|has| |#1| (-1216)))))) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-372)))) (-2873 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4220 (((-428 $) $) NIL (|has| |#1| (-372)))) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-2533 (($ $ (-417 (-574))) NIL)) (-2838 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3201 (((-417 (-574)) $) 17)) (-1890 (($ (-1266 |#1| |#2| |#3|)) 11)) (-3715 (((-1266 |#1| |#2| |#3|) $) 12)) (-1609 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2646 (((-1170 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-1730 (((-781) $) NIL (|has| |#1| (-372)))) (-2199 ((|#1| $ (-417 (-574))) NIL) (($ $ $) NIL (|has| (-417 (-574)) (-1125)))) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#1| (-372)))) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-4202 (((-417 (-574)) $) NIL)) (-2402 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2256 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2352 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1651 (($ $) 10)) (-2943 (((-872) $) 42) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-3087 ((|#1| $ (-417 (-574))) 34)) (-3298 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1364 (((-781)) NIL T CONST)) (-3359 ((|#1| $) NIL)) (-3284 (((-112) $ $) NIL)) (-2441 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2069 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2414 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3551 ((|#1| $ (-417 (-574))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2521 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2452 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-3610 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 28)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) 37)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) -(((-327 |#1| |#2| |#3|) (-13 (-1262 |#1|) (-802) (-10 -8 (-15 -1890 ($ (-1266 |#1| |#2| |#3|))) (-15 -3715 ((-1266 |#1| |#2| |#3|) $)) (-15 -3201 ((-417 (-574)) $)))) (-372) (-1190) |#1|) (T -327)) -((-1890 (*1 *1 *2) (-12 (-5 *2 (-1266 *3 *4 *5)) (-4 *3 (-372)) (-14 *4 (-1190)) (-14 *5 *3) (-5 *1 (-327 *3 *4 *5)))) (-3715 (*1 *2 *1) (-12 (-5 *2 (-1266 *3 *4 *5)) (-5 *1 (-327 *3 *4 *5)) (-4 *3 (-372)) (-14 *4 (-1190)) (-14 *5 *3))) (-3201 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-327 *3 *4 *5)) (-4 *3 (-372)) (-14 *4 (-1190)) (-14 *5 *3)))) -(-13 (-1262 |#1|) (-802) (-10 -8 (-15 -1890 ($ (-1266 |#1| |#2| |#3|))) (-15 -3715 ((-1266 |#1| |#2| |#3|) $)) (-15 -3201 ((-417 (-574)) $)))) -((-3460 (((-2 (|:| -3715 (-781)) (|:| -1858 |#1|) (|:| |radicand| (-654 |#1|))) (-428 |#1|) (-781)) 35)) (-3119 (((-654 (-2 (|:| -1858 (-781)) (|:| |logand| |#1|))) (-428 |#1|)) 40))) -(((-328 |#1|) (-10 -7 (-15 -3460 ((-2 (|:| -3715 (-781)) (|:| -1858 |#1|) (|:| |radicand| (-654 |#1|))) (-428 |#1|) (-781))) (-15 -3119 ((-654 (-2 (|:| -1858 (-781)) (|:| |logand| |#1|))) (-428 |#1|)))) (-566)) (T -328)) -((-3119 (*1 *2 *3) (-12 (-5 *3 (-428 *4)) (-4 *4 (-566)) (-5 *2 (-654 (-2 (|:| -1858 (-781)) (|:| |logand| *4)))) (-5 *1 (-328 *4)))) (-3460 (*1 *2 *3 *4) (-12 (-5 *3 (-428 *5)) (-4 *5 (-566)) (-5 *2 (-2 (|:| -3715 (-781)) (|:| -1858 *5) (|:| |radicand| (-654 *5)))) (-5 *1 (-328 *5)) (-5 *4 (-781))))) -(-10 -7 (-15 -3460 ((-2 (|:| -3715 (-781)) (|:| -1858 |#1|) (|:| |radicand| (-654 |#1|))) (-428 |#1|) (-781))) (-15 -3119 ((-654 (-2 (|:| -1858 (-781)) (|:| |logand| |#1|))) (-428 |#1|)))) -((-4355 (((-654 |#2|) (-1186 |#4|)) 44)) (-3938 ((|#3| (-574)) 47)) (-2839 (((-1186 |#4|) (-1186 |#3|)) 30)) (-1746 (((-1186 |#4|) (-1186 |#4|) (-574)) 66)) (-3576 (((-1186 |#3|) (-1186 |#4|)) 21)) (-4202 (((-654 (-781)) (-1186 |#4|) (-654 |#2|)) 41)) (-1474 (((-1186 |#3|) (-1186 |#4|) (-654 |#2|) (-654 |#3|)) 35))) -(((-329 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1474 ((-1186 |#3|) (-1186 |#4|) (-654 |#2|) (-654 |#3|))) (-15 -4202 ((-654 (-781)) (-1186 |#4|) (-654 |#2|))) (-15 -4355 ((-654 |#2|) (-1186 |#4|))) (-15 -3576 ((-1186 |#3|) (-1186 |#4|))) (-15 -2839 ((-1186 |#4|) (-1186 |#3|))) (-15 -1746 ((-1186 |#4|) (-1186 |#4|) (-574))) (-15 -3938 (|#3| (-574)))) (-803) (-860) (-1062) (-960 |#3| |#1| |#2|)) (T -329)) -((-3938 (*1 *2 *3) (-12 (-5 *3 (-574)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1062)) (-5 *1 (-329 *4 *5 *2 *6)) (-4 *6 (-960 *2 *4 *5)))) (-1746 (*1 *2 *2 *3) (-12 (-5 *2 (-1186 *7)) (-5 *3 (-574)) (-4 *7 (-960 *6 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1062)) (-5 *1 (-329 *4 *5 *6 *7)))) (-2839 (*1 *2 *3) (-12 (-5 *3 (-1186 *6)) (-4 *6 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-1186 *7)) (-5 *1 (-329 *4 *5 *6 *7)) (-4 *7 (-960 *6 *4 *5)))) (-3576 (*1 *2 *3) (-12 (-5 *3 (-1186 *7)) (-4 *7 (-960 *6 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1062)) (-5 *2 (-1186 *6)) (-5 *1 (-329 *4 *5 *6 *7)))) (-4355 (*1 *2 *3) (-12 (-5 *3 (-1186 *7)) (-4 *7 (-960 *6 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1062)) (-5 *2 (-654 *5)) (-5 *1 (-329 *4 *5 *6 *7)))) (-4202 (*1 *2 *3 *4) (-12 (-5 *3 (-1186 *8)) (-5 *4 (-654 *6)) (-4 *6 (-860)) (-4 *8 (-960 *7 *5 *6)) (-4 *5 (-803)) (-4 *7 (-1062)) (-5 *2 (-654 (-781))) (-5 *1 (-329 *5 *6 *7 *8)))) (-1474 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1186 *9)) (-5 *4 (-654 *7)) (-5 *5 (-654 *8)) (-4 *7 (-860)) (-4 *8 (-1062)) (-4 *9 (-960 *8 *6 *7)) (-4 *6 (-803)) (-5 *2 (-1186 *8)) (-5 *1 (-329 *6 *7 *8 *9))))) -(-10 -7 (-15 -1474 ((-1186 |#3|) (-1186 |#4|) (-654 |#2|) (-654 |#3|))) (-15 -4202 ((-654 (-781)) (-1186 |#4|) (-654 |#2|))) (-15 -4355 ((-654 |#2|) (-1186 |#4|))) (-15 -3576 ((-1186 |#3|) (-1186 |#4|))) (-15 -2839 ((-1186 |#4|) (-1186 |#3|))) (-15 -1746 ((-1186 |#4|) (-1186 |#4|) (-574))) (-15 -3938 (|#3| (-574)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 19)) (-1878 (((-654 (-2 (|:| |gen| |#1|) (|:| -1609 (-574)))) $) 21)) (-3524 (((-3 $ "failed") $ $) NIL)) (-1487 (((-781) $) NIL)) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#1| "failed") $) NIL)) (-2206 ((|#1| $) NIL)) (-1915 ((|#1| $ (-574)) NIL)) (-2057 (((-574) $ (-574)) NIL)) (-3659 (($ $ $) NIL (|has| |#1| (-860)))) (-4257 (($ $ $) NIL (|has| |#1| (-860)))) (-2354 (($ (-1 |#1| |#1|) $) NIL)) (-3925 (($ (-1 (-574) (-574)) $) 11)) (-4136 (((-1172) $) NIL)) (-1717 (($ $ $) NIL (|has| (-574) (-802)))) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL) (($ |#1|) NIL)) (-3087 (((-574) |#1| $) NIL)) (-3284 (((-112) $ $) NIL)) (-2133 (($) NIL T CONST)) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3007 (((-112) $ $) 29 (|has| |#1| (-860)))) (-3094 (($ $) 12) (($ $ $) 28)) (-3079 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ (-574)) NIL) (($ (-574) |#1|) 27))) -(((-330 |#1|) (-13 (-21) (-727 (-574)) (-331 |#1| (-574)) (-10 -7 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|))) (-1113)) (T -330)) -NIL -(-13 (-21) (-727 (-574)) (-331 |#1| (-574)) (-10 -7 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-1878 (((-654 (-2 (|:| |gen| |#1|) (|:| -1609 |#2|))) $) 28)) (-3524 (((-3 $ "failed") $ $) 20)) (-1487 (((-781) $) 29)) (-3426 (($) 18 T CONST)) (-1696 (((-3 |#1| "failed") $) 33)) (-2206 ((|#1| $) 34)) (-1915 ((|#1| $ (-574)) 26)) (-2057 ((|#2| $ (-574)) 27)) (-2354 (($ (-1 |#1| |#1|) $) 23)) (-3925 (($ (-1 |#2| |#2|) $) 24)) (-4136 (((-1172) $) 10)) (-1717 (($ $ $) 22 (|has| |#2| (-802)))) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12) (($ |#1|) 32)) (-3087 ((|#2| |#1| $) 25)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3079 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ |#2| |#1|) 30))) -(((-331 |#1| |#2|) (-141) (-1113) (-132)) (T -331)) -((-3079 (*1 *1 *2 *1) (-12 (-4 *1 (-331 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-132)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-331 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-132)))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-331 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-132)) (-5 *2 (-781)))) (-1878 (*1 *2 *1) (-12 (-4 *1 (-331 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-132)) (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1609 *4)))))) (-2057 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-331 *4 *2)) (-4 *4 (-1113)) (-4 *2 (-132)))) (-1915 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-331 *2 *4)) (-4 *4 (-132)) (-4 *2 (-1113)))) (-3087 (*1 *2 *3 *1) (-12 (-4 *1 (-331 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-132)))) (-3925 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-331 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-132)))) (-2354 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-331 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-132)))) (-1717 (*1 *1 *1 *1) (-12 (-4 *1 (-331 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-132)) (-4 *3 (-802))))) -(-13 (-132) (-1051 |t#1|) (-10 -8 (-15 -3079 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1487 ((-781) $)) (-15 -1878 ((-654 (-2 (|:| |gen| |t#1|) (|:| -1609 |t#2|))) $)) (-15 -2057 (|t#2| $ (-574))) (-15 -1915 (|t#1| $ (-574))) (-15 -3087 (|t#2| |t#1| $)) (-15 -3925 ($ (-1 |t#2| |t#2|) $)) (-15 -2354 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-802)) (-15 -1717 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-1051 |#1|) . T) ((-1113) . T)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1878 (((-654 (-2 (|:| |gen| |#1|) (|:| -1609 (-781)))) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-1487 (((-781) $) NIL)) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#1| "failed") $) NIL)) (-2206 ((|#1| $) NIL)) (-1915 ((|#1| $ (-574)) NIL)) (-2057 (((-781) $ (-574)) NIL)) (-2354 (($ (-1 |#1| |#1|) $) NIL)) (-3925 (($ (-1 (-781) (-781)) $) NIL)) (-4136 (((-1172) $) NIL)) (-1717 (($ $ $) NIL (|has| (-781) (-802)))) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL) (($ |#1|) NIL)) (-3087 (((-781) |#1| $) NIL)) (-3284 (((-112) $ $) NIL)) (-2133 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3079 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-781) |#1|) NIL))) -(((-332 |#1|) (-331 |#1| (-781)) (-1113)) (T -332)) -NIL -(-331 |#1| (-781)) -((-1569 (($ $) 72)) (-1661 (($ $ |#2| |#3| $) 14)) (-3708 (($ (-1 |#3| |#3|) $) 51)) (-1338 (((-112) $) 42)) (-1349 ((|#2| $) 44)) (-2838 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-3069 ((|#2| $) 68)) (-2530 (((-654 |#2|) $) 56)) (-3772 (($ $ $ (-781)) 37)) (-3108 (($ $ |#2|) 60))) -(((-333 |#1| |#2| |#3|) (-10 -8 (-15 -1569 (|#1| |#1|)) (-15 -3069 (|#2| |#1|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3772 (|#1| |#1| |#1| (-781))) (-15 -1661 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3708 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2530 ((-654 |#2|) |#1|)) (-15 -1349 (|#2| |#1|)) (-15 -1338 ((-112) |#1|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3108 (|#1| |#1| |#2|))) (-334 |#2| |#3|) (-1062) (-802)) (T -333)) -NIL -(-10 -8 (-15 -1569 (|#1| |#1|)) (-15 -3069 (|#2| |#1|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3772 (|#1| |#1| |#1| (-781))) (-15 -1661 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3708 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2530 ((-654 |#2|) |#1|)) (-15 -1349 (|#2| |#1|)) (-15 -1338 ((-112) |#1|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3108 (|#1| |#1| |#2|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-1575 (($ $) 64 (|has| |#1| (-566)))) (-2085 (((-112) $) 66 (|has| |#1| (-566)))) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-1696 (((-3 (-574) "failed") $) 100 (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) 98 (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) 95)) (-2206 (((-574) $) 99 (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) 97 (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) 96)) (-1392 (($ $) 72)) (-3434 (((-3 $ "failed") $) 37)) (-1569 (($ $) 84 (|has| |#1| (-462)))) (-1661 (($ $ |#1| |#2| $) 88)) (-3199 (((-112) $) 35)) (-1322 (((-781) $) 91)) (-3869 (((-112) $) 74)) (-4335 (($ |#1| |#2|) 73)) (-1742 ((|#2| $) 90)) (-3708 (($ (-1 |#2| |#2|) $) 89)) (-1777 (($ (-1 |#1| |#1|) $) 75)) (-1359 (($ $) 77)) (-1370 ((|#1| $) 78)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-1338 (((-112) $) 94)) (-1349 ((|#1| $) 93)) (-2838 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-566)))) (-4202 ((|#2| $) 76)) (-3069 ((|#1| $) 85 (|has| |#1| (-462)))) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 61 (|has| |#1| (-566))) (($ |#1|) 59) (($ (-417 (-574))) 69 (-2818 (|has| |#1| (-1051 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))))) (-2530 (((-654 |#1|) $) 92)) (-3087 ((|#1| $ |#2|) 71)) (-3298 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1364 (((-781)) 32 T CONST)) (-3772 (($ $ $ (-781)) 87 (|has| |#1| (-174)))) (-3284 (((-112) $ $) 9)) (-2069 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3108 (($ $ |#1|) 70 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) -(((-334 |#1| |#2|) (-141) (-1062) (-802)) (T -334)) -((-1338 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802)) (-5 *2 (-112)))) (-1349 (*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1062)))) (-2530 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802)) (-5 *2 (-654 *3)))) (-1322 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802)) (-5 *2 (-781)))) (-1742 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-802)))) (-3708 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802)))) (-1661 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-802)))) (-3772 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802)) (-4 *3 (-174)))) (-2838 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-802)) (-4 *2 (-566)))) (-3069 (*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1062)) (-4 *2 (-462)))) (-1569 (*1 *1 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-802)) (-4 *2 (-462))))) -(-13 (-47 |t#1| |t#2|) (-421 |t#1|) (-10 -8 (-15 -1338 ((-112) $)) (-15 -1349 (|t#1| $)) (-15 -2530 ((-654 |t#1|) $)) (-15 -1322 ((-781) $)) (-15 -1742 (|t#2| $)) (-15 -3708 ($ (-1 |t#2| |t#2|) $)) (-15 -1661 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-174)) (-15 -3772 ($ $ $ (-781))) |%noBranch|) (IF (|has| |t#1| (-566)) (-15 -2838 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-462)) (PROGN (-15 -3069 (|t#1| $)) (-15 -1569 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2818 (|has| |#1| (-1051 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-298) |has| |#1| (-566)) ((-421 |#1|) . T) ((-566) |has| |#1| (-566)) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-1051 (-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((-1051 (-574)) |has| |#1| (-1051 (-574))) ((-1051 |#1|) . T) ((-1064 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1064 |#1|) . T) ((-1064 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1069 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1069 |#1|) . T) ((-1069 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T)) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3714 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-1357 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-3642 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4457))) (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| |#1| (-860))))) (-2771 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-3034 (((-112) $ (-781)) NIL)) (-2088 (((-112) (-112)) NIL)) (-3143 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) NIL (|has| $ (-6 -4457)))) (-3572 (($ (-1 (-112) |#1|) $) NIL)) (-2165 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3426 (($) NIL T CONST)) (-2627 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-1771 (($ $) NIL (|has| |#1| (-1113)))) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2876 (($ |#1| $) NIL (|has| |#1| (-1113))) (($ (-1 (-112) |#1|) $) NIL)) (-3335 (($ |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-2458 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) NIL)) (-1441 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1113))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1113)))) (-1434 (($ $ (-574)) NIL)) (-3135 (((-781) $) NIL)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3790 (($ (-781) |#1|) NIL)) (-2742 (((-112) $ (-781)) NIL)) (-3618 (((-574) $) NIL (|has| (-574) (-860)))) (-3659 (($ $ $) NIL (|has| |#1| (-860)))) (-2628 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4430 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2702 (((-574) $) NIL (|has| (-574) (-860)))) (-4257 (($ $ $) NIL (|has| |#1| (-860)))) (-2449 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-2798 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1594 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-4308 (((-654 (-574)) $) NIL)) (-3336 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-1936 (($ (-654 |#1|)) NIL)) (-2915 ((|#1| $) NIL (|has| (-574) (-860)))) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1942 (($ $ |#1|) NIL (|has| $ (-6 -4457)))) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-4371 (((-654 |#1|) $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-2932 (($ $ (-1248 (-574))) NIL) (($ $ (-574)) NIL)) (-2840 (($ $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3506 (($ $ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3167 (($ $) NIL)) (-1836 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) NIL)) (-1995 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4157 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3007 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-335 |#1|) (-13 (-19 |#1|) (-290 |#1|) (-10 -8 (-15 -1936 ($ (-654 |#1|))) (-15 -3135 ((-781) $)) (-15 -1434 ($ $ (-574))) (-15 -2088 ((-112) (-112))))) (-1231)) (T -335)) -((-1936 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-5 *1 (-335 *3)))) (-3135 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-335 *3)) (-4 *3 (-1231)))) (-1434 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-335 *3)) (-4 *3 (-1231)))) (-2088 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-335 *3)) (-4 *3 (-1231))))) -(-13 (-19 |#1|) (-290 |#1|) (-10 -8 (-15 -1936 ($ (-654 |#1|))) (-15 -3135 ((-781) $)) (-15 -1434 ($ $ (-574))) (-15 -2088 ((-112) (-112))))) -((-4297 (((-112) $) 47)) (-2549 (((-781)) 23)) (-1636 ((|#2| $) 51) (($ $ (-932)) 121)) (-1487 (((-781)) 122)) (-2737 (($ (-1281 |#2|)) 20)) (-2066 (((-112) $) 134)) (-2236 ((|#2| $) 53) (($ $ (-932)) 118)) (-1972 (((-1186 |#2|) $) NIL) (((-1186 $) $ (-932)) 109)) (-1533 (((-1186 |#2|) $) 95)) (-2037 (((-1186 |#2|) $) 91) (((-3 (-1186 |#2|) "failed") $ $) 88)) (-2559 (($ $ (-1186 |#2|)) 58)) (-2989 (((-843 (-932))) 30) (((-932)) 48)) (-4133 (((-135)) 27)) (-4202 (((-843 (-932)) $) 32) (((-932) $) 137)) (-2765 (($) 128)) (-3487 (((-1281 |#2|) $) NIL) (((-699 |#2|) (-1281 $)) 42)) (-3298 (($ $) NIL) (((-3 $ "failed") $) 98)) (-3587 (((-112) $) 45))) -(((-336 |#1| |#2|) (-10 -8 (-15 -3298 ((-3 |#1| "failed") |#1|)) (-15 -1487 ((-781))) (-15 -3298 (|#1| |#1|)) (-15 -2037 ((-3 (-1186 |#2|) "failed") |#1| |#1|)) (-15 -2037 ((-1186 |#2|) |#1|)) (-15 -1533 ((-1186 |#2|) |#1|)) (-15 -2559 (|#1| |#1| (-1186 |#2|))) (-15 -2066 ((-112) |#1|)) (-15 -2765 (|#1|)) (-15 -1636 (|#1| |#1| (-932))) (-15 -2236 (|#1| |#1| (-932))) (-15 -1972 ((-1186 |#1|) |#1| (-932))) (-15 -1636 (|#2| |#1|)) (-15 -2236 (|#2| |#1|)) (-15 -4202 ((-932) |#1|)) (-15 -2989 ((-932))) (-15 -1972 ((-1186 |#2|) |#1|)) (-15 -2737 (|#1| (-1281 |#2|))) (-15 -3487 ((-699 |#2|) (-1281 |#1|))) (-15 -3487 ((-1281 |#2|) |#1|)) (-15 -2549 ((-781))) (-15 -2989 ((-843 (-932)))) (-15 -4202 ((-843 (-932)) |#1|)) (-15 -4297 ((-112) |#1|)) (-15 -3587 ((-112) |#1|)) (-15 -4133 ((-135)))) (-337 |#2|) (-372)) (T -336)) -((-4133 (*1 *2) (-12 (-4 *4 (-372)) (-5 *2 (-135)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2989 (*1 *2) (-12 (-4 *4 (-372)) (-5 *2 (-843 (-932))) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2549 (*1 *2) (-12 (-4 *4 (-372)) (-5 *2 (-781)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2989 (*1 *2) (-12 (-4 *4 (-372)) (-5 *2 (-932)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1487 (*1 *2) (-12 (-4 *4 (-372)) (-5 *2 (-781)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4))))) -(-10 -8 (-15 -3298 ((-3 |#1| "failed") |#1|)) (-15 -1487 ((-781))) (-15 -3298 (|#1| |#1|)) (-15 -2037 ((-3 (-1186 |#2|) "failed") |#1| |#1|)) (-15 -2037 ((-1186 |#2|) |#1|)) (-15 -1533 ((-1186 |#2|) |#1|)) (-15 -2559 (|#1| |#1| (-1186 |#2|))) (-15 -2066 ((-112) |#1|)) (-15 -2765 (|#1|)) (-15 -1636 (|#1| |#1| (-932))) (-15 -2236 (|#1| |#1| (-932))) (-15 -1972 ((-1186 |#1|) |#1| (-932))) (-15 -1636 (|#2| |#1|)) (-15 -2236 (|#2| |#1|)) (-15 -4202 ((-932) |#1|)) (-15 -2989 ((-932))) (-15 -1972 ((-1186 |#2|) |#1|)) (-15 -2737 (|#1| (-1281 |#2|))) (-15 -3487 ((-699 |#2|) (-1281 |#1|))) (-15 -3487 ((-1281 |#2|) |#1|)) (-15 -2549 ((-781))) (-15 -2989 ((-843 (-932)))) (-15 -4202 ((-843 (-932)) |#1|)) (-15 -4297 ((-112) |#1|)) (-15 -3587 ((-112) |#1|)) (-15 -4133 ((-135)))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-1575 (($ $) 46)) (-2085 (((-112) $) 44)) (-4297 (((-112) $) 104)) (-2549 (((-781)) 100)) (-1636 ((|#1| $) 151) (($ $ (-932)) 148 (|has| |#1| (-377)))) (-1664 (((-1203 (-932) (-781)) (-574)) 133 (|has| |#1| (-377)))) (-3524 (((-3 $ "failed") $ $) 20)) (-2568 (($ $) 81)) (-2827 (((-428 $) $) 80)) (-1600 (((-112) $ $) 65)) (-1487 (((-781)) 123 (|has| |#1| (-377)))) (-3426 (($) 18 T CONST)) (-1696 (((-3 |#1| "failed") $) 111)) (-2206 ((|#1| $) 112)) (-2737 (($ (-1281 |#1|)) 157)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) 139 (|has| |#1| (-377)))) (-2786 (($ $ $) 61)) (-3434 (((-3 $ "failed") $) 37)) (-2820 (($) 120 (|has| |#1| (-377)))) (-2797 (($ $ $) 62)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) 57)) (-3812 (($) 135 (|has| |#1| (-377)))) (-4044 (((-112) $) 136 (|has| |#1| (-377)))) (-1647 (($ $ (-781)) 97 (-2818 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) 96 (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2257 (((-112) $) 79)) (-3884 (((-932) $) 138 (|has| |#1| (-377))) (((-843 (-932)) $) 94 (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3199 (((-112) $) 35)) (-2606 (($) 146 (|has| |#1| (-377)))) (-2066 (((-112) $) 145 (|has| |#1| (-377)))) (-2236 ((|#1| $) 152) (($ $ (-932)) 149 (|has| |#1| (-377)))) (-2748 (((-3 $ "failed") $) 124 (|has| |#1| (-377)))) (-4403 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-1972 (((-1186 |#1|) $) 156) (((-1186 $) $ (-932)) 150 (|has| |#1| (-377)))) (-4115 (((-932) $) 121 (|has| |#1| (-377)))) (-1533 (((-1186 |#1|) $) 142 (|has| |#1| (-377)))) (-2037 (((-1186 |#1|) $) 141 (|has| |#1| (-377))) (((-3 (-1186 |#1|) "failed") $ $) 140 (|has| |#1| (-377)))) (-2559 (($ $ (-1186 |#1|)) 143 (|has| |#1| (-377)))) (-2832 (($ $ $) 52) (($ (-654 $)) 51)) (-4136 (((-1172) $) 10)) (-1324 (($ $) 78)) (-3818 (($) 125 (|has| |#1| (-377)) CONST)) (-2576 (($ (-932)) 122 (|has| |#1| (-377)))) (-4204 (((-112) $) 103)) (-3966 (((-1133) $) 11)) (-2970 (($) 144 (|has| |#1| (-377)))) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2873 (($ $ $) 54) (($ (-654 $)) 53)) (-1417 (((-654 (-2 (|:| -4220 (-574)) (|:| -3715 (-574))))) 132 (|has| |#1| (-377)))) (-4220 (((-428 $) $) 82)) (-2989 (((-843 (-932))) 101) (((-932)) 154)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2838 (((-3 $ "failed") $ $) 48)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-1730 (((-781) $) 64)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 63)) (-4342 (((-781) $) 137 (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) 95 (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4133 (((-135)) 109)) (-3905 (($ $) 128 (|has| |#1| (-377))) (($ $ (-781)) 127 (|has| |#1| (-377)))) (-4202 (((-843 (-932)) $) 102) (((-932) $) 153)) (-4185 (((-1186 |#1|)) 155)) (-3074 (($) 134 (|has| |#1| (-377)))) (-2765 (($) 147 (|has| |#1| (-377)))) (-3487 (((-1281 |#1|) $) 159) (((-699 |#1|) (-1281 $)) 158)) (-1524 (((-3 (-1281 $) "failed") (-699 $)) 131 (|has| |#1| (-377)))) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ |#1|) 110)) (-3298 (($ $) 130 (|has| |#1| (-377))) (((-3 $ "failed") $) 93 (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-1882 (((-1281 $)) 161) (((-1281 $) (-932)) 160)) (-2069 (((-112) $ $) 45)) (-3587 (((-112) $) 105)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-2661 (($ $) 99 (|has| |#1| (-377))) (($ $ (-781)) 98 (|has| |#1| (-377)))) (-3610 (($ $) 129 (|has| |#1| (-377))) (($ $ (-781)) 126 (|has| |#1| (-377)))) (-2981 (((-112) $ $) 6)) (-3108 (($ $ $) 73) (($ $ |#1|) 108)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) -(((-337 |#1|) (-141) (-372)) (T -337)) -((-1882 (*1 *2) (-12 (-4 *3 (-372)) (-5 *2 (-1281 *1)) (-4 *1 (-337 *3)))) (-1882 (*1 *2 *3) (-12 (-5 *3 (-932)) (-4 *4 (-372)) (-5 *2 (-1281 *1)) (-4 *1 (-337 *4)))) (-3487 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1281 *3)))) (-3487 (*1 *2 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-337 *4)) (-4 *4 (-372)) (-5 *2 (-699 *4)))) (-2737 (*1 *1 *2) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-372)) (-4 *1 (-337 *3)))) (-1972 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1186 *3)))) (-4185 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1186 *3)))) (-2989 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-932)))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-932)))) (-2236 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-372)))) (-1636 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-372)))) (-1972 (*1 *2 *1 *3) (-12 (-5 *3 (-932)) (-4 *4 (-377)) (-4 *4 (-372)) (-5 *2 (-1186 *1)) (-4 *1 (-337 *4)))) (-2236 (*1 *1 *1 *2) (-12 (-5 *2 (-932)) (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)))) (-1636 (*1 *1 *1 *2) (-12 (-5 *2 (-932)) (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)))) (-2765 (*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372)))) (-2606 (*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372)))) (-2066 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) (-5 *2 (-112)))) (-2970 (*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372)))) (-2559 (*1 *1 *1 *2) (-12 (-5 *2 (-1186 *3)) (-4 *3 (-377)) (-4 *1 (-337 *3)) (-4 *3 (-372)))) (-1533 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) (-5 *2 (-1186 *3)))) (-2037 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) (-5 *2 (-1186 *3)))) (-2037 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) (-5 *2 (-1186 *3))))) -(-13 (-1300 |t#1|) (-1051 |t#1|) (-10 -8 (-15 -1882 ((-1281 $))) (-15 -1882 ((-1281 $) (-932))) (-15 -3487 ((-1281 |t#1|) $)) (-15 -3487 ((-699 |t#1|) (-1281 $))) (-15 -2737 ($ (-1281 |t#1|))) (-15 -1972 ((-1186 |t#1|) $)) (-15 -4185 ((-1186 |t#1|))) (-15 -2989 ((-932))) (-15 -4202 ((-932) $)) (-15 -2236 (|t#1| $)) (-15 -1636 (|t#1| $)) (IF (|has| |t#1| (-377)) (PROGN (-6 (-358)) (-15 -1972 ((-1186 $) $ (-932))) (-15 -2236 ($ $ (-932))) (-15 -1636 ($ $ (-932))) (-15 -2765 ($)) (-15 -2606 ($)) (-15 -2066 ((-112) $)) (-15 -2970 ($)) (-15 -2559 ($ $ (-1186 |t#1|))) (-15 -1533 ((-1186 |t#1|) $)) (-15 -2037 ((-1186 |t#1|) $)) (-15 -2037 ((-3 (-1186 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2818 (|has| |#1| (-377)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-235 $) |has| |#1| (-377)) ((-239) |has| |#1| (-377)) ((-249) . T) ((-298) . T) ((-315) . T) ((-1300 |#1|) . T) ((-372) . T) ((-412) -2818 (|has| |#1| (-377)) (|has| |#1| (-146))) ((-377) |has| |#1| (-377)) ((-358) |has| |#1| (-377)) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 |#1|) . T) ((-727 $) . T) ((-736) . T) ((-931) . T) ((-1051 |#1|) . T) ((-1064 #0#) . T) ((-1064 |#1|) . T) ((-1064 $) . T) ((-1069 #0#) . T) ((-1069 |#1|) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1165) |has| |#1| (-377)) ((-1231) |has| |#1| (-377)) ((-1235) . T) ((-1288 |#1|) . T)) -((-2849 (((-112) $ $) NIL)) (-4028 (($ (-1189) $) 100)) (-4254 (($) 89)) (-2654 (((-1133) (-1133)) 9)) (-1611 (($) 90)) (-1834 (($) 104) (($ (-324 (-709))) 112) (($ (-324 (-711))) 108) (($ (-324 (-704))) 116) (($ (-324 (-388))) 123) (($ (-324 (-574))) 119) (($ (-324 (-171 (-388)))) 127)) (-2103 (($ (-1189) $) 101)) (-2954 (($ (-654 (-872))) 91)) (-2622 (((-1286) $) 87)) (-1458 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-1829 (($ (-1133)) 58)) (-2108 (((-1117) $) 30)) (-3155 (($ (-1105 (-963 (-574))) $) 97) (($ (-1105 (-963 (-574))) (-963 (-574)) $) 98)) (-2013 (($ (-1133)) 99)) (-3279 (($ (-1189) $) 129) (($ (-1189) $ $) 130)) (-3860 (($ (-1190) (-654 (-1190))) 88)) (-2041 (($ (-1172)) 94) (($ (-654 (-1172))) 92)) (-2943 (((-872) $) 132)) (-2050 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1190)) (|:| |arrayIndex| (-654 (-963 (-574)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-872)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1190)) (|:| |rand| (-872)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1189)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1584 (-112)) (|:| -3083 (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-872)))))) (|:| |blockBranch| (-654 $)) (|:| |commentBranch| (-654 (-1172))) (|:| |callBranch| (-1172)) (|:| |forBranch| (-2 (|:| -2367 (-1105 (-963 (-574)))) (|:| |span| (-963 (-574))) (|:| -2044 $))) (|:| |labelBranch| (-1133)) (|:| |loopBranch| (-2 (|:| |switch| (-1189)) (|:| -2044 $))) (|:| |commonBranch| (-2 (|:| -2032 (-1190)) (|:| |contents| (-654 (-1190))))) (|:| |printBranch| (-654 (-872)))) $) 50)) (-1905 (($ (-1172)) 202)) (-2107 (($ (-654 $)) 128)) (-3284 (((-112) $ $) NIL)) (-1691 (($ (-1190) (-1172)) 135) (($ (-1190) (-324 (-711))) 175) (($ (-1190) (-324 (-709))) 176) (($ (-1190) (-324 (-704))) 177) (($ (-1190) (-699 (-711))) 138) (($ (-1190) (-699 (-709))) 141) (($ (-1190) (-699 (-704))) 144) (($ (-1190) (-1281 (-711))) 147) (($ (-1190) (-1281 (-709))) 150) (($ (-1190) (-1281 (-704))) 153) (($ (-1190) (-699 (-324 (-711)))) 156) (($ (-1190) (-699 (-324 (-709)))) 159) (($ (-1190) (-699 (-324 (-704)))) 162) (($ (-1190) (-1281 (-324 (-711)))) 165) (($ (-1190) (-1281 (-324 (-709)))) 168) (($ (-1190) (-1281 (-324 (-704)))) 171) (($ (-1190) (-654 (-963 (-574))) (-324 (-711))) 172) (($ (-1190) (-654 (-963 (-574))) (-324 (-709))) 173) (($ (-1190) (-654 (-963 (-574))) (-324 (-704))) 174) (($ (-1190) (-324 (-574))) 199) (($ (-1190) (-324 (-388))) 200) (($ (-1190) (-324 (-171 (-388)))) 201) (($ (-1190) (-699 (-324 (-574)))) 180) (($ (-1190) (-699 (-324 (-388)))) 183) (($ (-1190) (-699 (-324 (-171 (-388))))) 186) (($ (-1190) (-1281 (-324 (-574)))) 189) (($ (-1190) (-1281 (-324 (-388)))) 192) (($ (-1190) (-1281 (-324 (-171 (-388))))) 195) (($ (-1190) (-654 (-963 (-574))) (-324 (-574))) 196) (($ (-1190) (-654 (-963 (-574))) (-324 (-388))) 197) (($ (-1190) (-654 (-963 (-574))) (-324 (-171 (-388)))) 198)) (-2981 (((-112) $ $) NIL))) -(((-338) (-13 (-1113) (-10 -8 (-15 -3155 ($ (-1105 (-963 (-574))) $)) (-15 -3155 ($ (-1105 (-963 (-574))) (-963 (-574)) $)) (-15 -4028 ($ (-1189) $)) (-15 -2103 ($ (-1189) $)) (-15 -1829 ($ (-1133))) (-15 -2013 ($ (-1133))) (-15 -2041 ($ (-1172))) (-15 -2041 ($ (-654 (-1172)))) (-15 -1905 ($ (-1172))) (-15 -1834 ($)) (-15 -1834 ($ (-324 (-709)))) (-15 -1834 ($ (-324 (-711)))) (-15 -1834 ($ (-324 (-704)))) (-15 -1834 ($ (-324 (-388)))) (-15 -1834 ($ (-324 (-574)))) (-15 -1834 ($ (-324 (-171 (-388))))) (-15 -3279 ($ (-1189) $)) (-15 -3279 ($ (-1189) $ $)) (-15 -1691 ($ (-1190) (-1172))) (-15 -1691 ($ (-1190) (-324 (-711)))) (-15 -1691 ($ (-1190) (-324 (-709)))) (-15 -1691 ($ (-1190) (-324 (-704)))) (-15 -1691 ($ (-1190) (-699 (-711)))) (-15 -1691 ($ (-1190) (-699 (-709)))) (-15 -1691 ($ (-1190) (-699 (-704)))) (-15 -1691 ($ (-1190) (-1281 (-711)))) (-15 -1691 ($ (-1190) (-1281 (-709)))) (-15 -1691 ($ (-1190) (-1281 (-704)))) (-15 -1691 ($ (-1190) (-699 (-324 (-711))))) (-15 -1691 ($ (-1190) (-699 (-324 (-709))))) (-15 -1691 ($ (-1190) (-699 (-324 (-704))))) (-15 -1691 ($ (-1190) (-1281 (-324 (-711))))) (-15 -1691 ($ (-1190) (-1281 (-324 (-709))))) (-15 -1691 ($ (-1190) (-1281 (-324 (-704))))) (-15 -1691 ($ (-1190) (-654 (-963 (-574))) (-324 (-711)))) (-15 -1691 ($ (-1190) (-654 (-963 (-574))) (-324 (-709)))) (-15 -1691 ($ (-1190) (-654 (-963 (-574))) (-324 (-704)))) (-15 -1691 ($ (-1190) (-324 (-574)))) (-15 -1691 ($ (-1190) (-324 (-388)))) (-15 -1691 ($ (-1190) (-324 (-171 (-388))))) (-15 -1691 ($ (-1190) (-699 (-324 (-574))))) (-15 -1691 ($ (-1190) (-699 (-324 (-388))))) (-15 -1691 ($ (-1190) (-699 (-324 (-171 (-388)))))) (-15 -1691 ($ (-1190) (-1281 (-324 (-574))))) (-15 -1691 ($ (-1190) (-1281 (-324 (-388))))) (-15 -1691 ($ (-1190) (-1281 (-324 (-171 (-388)))))) (-15 -1691 ($ (-1190) (-654 (-963 (-574))) (-324 (-574)))) (-15 -1691 ($ (-1190) (-654 (-963 (-574))) (-324 (-388)))) (-15 -1691 ($ (-1190) (-654 (-963 (-574))) (-324 (-171 (-388))))) (-15 -2107 ($ (-654 $))) (-15 -4254 ($)) (-15 -1611 ($)) (-15 -2954 ($ (-654 (-872)))) (-15 -3860 ($ (-1190) (-654 (-1190)))) (-15 -1458 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2050 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1190)) (|:| |arrayIndex| (-654 (-963 (-574)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-872)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1190)) (|:| |rand| (-872)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1189)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1584 (-112)) (|:| -3083 (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-872)))))) (|:| |blockBranch| (-654 $)) (|:| |commentBranch| (-654 (-1172))) (|:| |callBranch| (-1172)) (|:| |forBranch| (-2 (|:| -2367 (-1105 (-963 (-574)))) (|:| |span| (-963 (-574))) (|:| -2044 $))) (|:| |labelBranch| (-1133)) (|:| |loopBranch| (-2 (|:| |switch| (-1189)) (|:| -2044 $))) (|:| |commonBranch| (-2 (|:| -2032 (-1190)) (|:| |contents| (-654 (-1190))))) (|:| |printBranch| (-654 (-872)))) $)) (-15 -2622 ((-1286) $)) (-15 -2108 ((-1117) $)) (-15 -2654 ((-1133) (-1133)))))) (T -338)) -((-3155 (*1 *1 *2 *1) (-12 (-5 *2 (-1105 (-963 (-574)))) (-5 *1 (-338)))) (-3155 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1105 (-963 (-574)))) (-5 *3 (-963 (-574))) (-5 *1 (-338)))) (-4028 (*1 *1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-338)))) (-2103 (*1 *1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-338)))) (-1829 (*1 *1 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-338)))) (-2013 (*1 *1 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-338)))) (-2041 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-338)))) (-2041 (*1 *1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-338)))) (-1905 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-338)))) (-1834 (*1 *1) (-5 *1 (-338))) (-1834 (*1 *1 *2) (-12 (-5 *2 (-324 (-709))) (-5 *1 (-338)))) (-1834 (*1 *1 *2) (-12 (-5 *2 (-324 (-711))) (-5 *1 (-338)))) (-1834 (*1 *1 *2) (-12 (-5 *2 (-324 (-704))) (-5 *1 (-338)))) (-1834 (*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-5 *1 (-338)))) (-1834 (*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-5 *1 (-338)))) (-1834 (*1 *1 *2) (-12 (-5 *2 (-324 (-171 (-388)))) (-5 *1 (-338)))) (-3279 (*1 *1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-338)))) (-3279 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-338)))) (-1691 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1172)) (-5 *1 (-338)))) (-1691 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-324 (-711))) (-5 *1 (-338)))) (-1691 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-324 (-709))) (-5 *1 (-338)))) (-1691 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-324 (-704))) (-5 *1 (-338)))) (-1691 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-711))) (-5 *1 (-338)))) (-1691 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-709))) (-5 *1 (-338)))) (-1691 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-704))) (-5 *1 (-338)))) (-1691 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-711))) (-5 *1 (-338)))) (-1691 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-709))) (-5 *1 (-338)))) (-1691 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-704))) (-5 *1 (-338)))) (-1691 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-324 (-711)))) (-5 *1 (-338)))) (-1691 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-324 (-709)))) (-5 *1 (-338)))) (-1691 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-324 (-704)))) (-5 *1 (-338)))) (-1691 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-324 (-711)))) (-5 *1 (-338)))) (-1691 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-324 (-709)))) (-5 *1 (-338)))) (-1691 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-324 (-704)))) (-5 *1 (-338)))) (-1691 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1190)) (-5 *3 (-654 (-963 (-574)))) (-5 *4 (-324 (-711))) (-5 *1 (-338)))) (-1691 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1190)) (-5 *3 (-654 (-963 (-574)))) (-5 *4 (-324 (-709))) (-5 *1 (-338)))) (-1691 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1190)) (-5 *3 (-654 (-963 (-574)))) (-5 *4 (-324 (-704))) (-5 *1 (-338)))) (-1691 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-324 (-574))) (-5 *1 (-338)))) (-1691 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-324 (-388))) (-5 *1 (-338)))) (-1691 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-324 (-171 (-388)))) (-5 *1 (-338)))) (-1691 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-324 (-574)))) (-5 *1 (-338)))) (-1691 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-324 (-388)))) (-5 *1 (-338)))) (-1691 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-324 (-171 (-388))))) (-5 *1 (-338)))) (-1691 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-324 (-574)))) (-5 *1 (-338)))) (-1691 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-324 (-388)))) (-5 *1 (-338)))) (-1691 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-324 (-171 (-388))))) (-5 *1 (-338)))) (-1691 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1190)) (-5 *3 (-654 (-963 (-574)))) (-5 *4 (-324 (-574))) (-5 *1 (-338)))) (-1691 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1190)) (-5 *3 (-654 (-963 (-574)))) (-5 *4 (-324 (-388))) (-5 *1 (-338)))) (-1691 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1190)) (-5 *3 (-654 (-963 (-574)))) (-5 *4 (-324 (-171 (-388)))) (-5 *1 (-338)))) (-2107 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-5 *1 (-338)))) (-4254 (*1 *1) (-5 *1 (-338))) (-1611 (*1 *1) (-5 *1 (-338))) (-2954 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-338)))) (-3860 (*1 *1 *2 *3) (-12 (-5 *3 (-654 (-1190))) (-5 *2 (-1190)) (-5 *1 (-338)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-338)))) (-2050 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1190)) (|:| |arrayIndex| (-654 (-963 (-574)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-872)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1190)) (|:| |rand| (-872)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1189)) (|:| |thenClause| (-338)) (|:| |elseClause| (-338)))) (|:| |returnBranch| (-2 (|:| -1584 (-112)) (|:| -3083 (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-872)))))) (|:| |blockBranch| (-654 (-338))) (|:| |commentBranch| (-654 (-1172))) (|:| |callBranch| (-1172)) (|:| |forBranch| (-2 (|:| -2367 (-1105 (-963 (-574)))) (|:| |span| (-963 (-574))) (|:| -2044 (-338)))) (|:| |labelBranch| (-1133)) (|:| |loopBranch| (-2 (|:| |switch| (-1189)) (|:| -2044 (-338)))) (|:| |commonBranch| (-2 (|:| -2032 (-1190)) (|:| |contents| (-654 (-1190))))) (|:| |printBranch| (-654 (-872))))) (-5 *1 (-338)))) (-2622 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-338)))) (-2108 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-338)))) (-2654 (*1 *2 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-338))))) -(-13 (-1113) (-10 -8 (-15 -3155 ($ (-1105 (-963 (-574))) $)) (-15 -3155 ($ (-1105 (-963 (-574))) (-963 (-574)) $)) (-15 -4028 ($ (-1189) $)) (-15 -2103 ($ (-1189) $)) (-15 -1829 ($ (-1133))) (-15 -2013 ($ (-1133))) (-15 -2041 ($ (-1172))) (-15 -2041 ($ (-654 (-1172)))) (-15 -1905 ($ (-1172))) (-15 -1834 ($)) (-15 -1834 ($ (-324 (-709)))) (-15 -1834 ($ (-324 (-711)))) (-15 -1834 ($ (-324 (-704)))) (-15 -1834 ($ (-324 (-388)))) (-15 -1834 ($ (-324 (-574)))) (-15 -1834 ($ (-324 (-171 (-388))))) (-15 -3279 ($ (-1189) $)) (-15 -3279 ($ (-1189) $ $)) (-15 -1691 ($ (-1190) (-1172))) (-15 -1691 ($ (-1190) (-324 (-711)))) (-15 -1691 ($ (-1190) (-324 (-709)))) (-15 -1691 ($ (-1190) (-324 (-704)))) (-15 -1691 ($ (-1190) (-699 (-711)))) (-15 -1691 ($ (-1190) (-699 (-709)))) (-15 -1691 ($ (-1190) (-699 (-704)))) (-15 -1691 ($ (-1190) (-1281 (-711)))) (-15 -1691 ($ (-1190) (-1281 (-709)))) (-15 -1691 ($ (-1190) (-1281 (-704)))) (-15 -1691 ($ (-1190) (-699 (-324 (-711))))) (-15 -1691 ($ (-1190) (-699 (-324 (-709))))) (-15 -1691 ($ (-1190) (-699 (-324 (-704))))) (-15 -1691 ($ (-1190) (-1281 (-324 (-711))))) (-15 -1691 ($ (-1190) (-1281 (-324 (-709))))) (-15 -1691 ($ (-1190) (-1281 (-324 (-704))))) (-15 -1691 ($ (-1190) (-654 (-963 (-574))) (-324 (-711)))) (-15 -1691 ($ (-1190) (-654 (-963 (-574))) (-324 (-709)))) (-15 -1691 ($ (-1190) (-654 (-963 (-574))) (-324 (-704)))) (-15 -1691 ($ (-1190) (-324 (-574)))) (-15 -1691 ($ (-1190) (-324 (-388)))) (-15 -1691 ($ (-1190) (-324 (-171 (-388))))) (-15 -1691 ($ (-1190) (-699 (-324 (-574))))) (-15 -1691 ($ (-1190) (-699 (-324 (-388))))) (-15 -1691 ($ (-1190) (-699 (-324 (-171 (-388)))))) (-15 -1691 ($ (-1190) (-1281 (-324 (-574))))) (-15 -1691 ($ (-1190) (-1281 (-324 (-388))))) (-15 -1691 ($ (-1190) (-1281 (-324 (-171 (-388)))))) (-15 -1691 ($ (-1190) (-654 (-963 (-574))) (-324 (-574)))) (-15 -1691 ($ (-1190) (-654 (-963 (-574))) (-324 (-388)))) (-15 -1691 ($ (-1190) (-654 (-963 (-574))) (-324 (-171 (-388))))) (-15 -2107 ($ (-654 $))) (-15 -4254 ($)) (-15 -1611 ($)) (-15 -2954 ($ (-654 (-872)))) (-15 -3860 ($ (-1190) (-654 (-1190)))) (-15 -1458 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2050 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1190)) (|:| |arrayIndex| (-654 (-963 (-574)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-872)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1190)) (|:| |rand| (-872)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1189)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1584 (-112)) (|:| -3083 (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-872)))))) (|:| |blockBranch| (-654 $)) (|:| |commentBranch| (-654 (-1172))) (|:| |callBranch| (-1172)) (|:| |forBranch| (-2 (|:| -2367 (-1105 (-963 (-574)))) (|:| |span| (-963 (-574))) (|:| -2044 $))) (|:| |labelBranch| (-1133)) (|:| |loopBranch| (-2 (|:| |switch| (-1189)) (|:| -2044 $))) (|:| |commonBranch| (-2 (|:| -2032 (-1190)) (|:| |contents| (-654 (-1190))))) (|:| |printBranch| (-654 (-872)))) $)) (-15 -2622 ((-1286) $)) (-15 -2108 ((-1117) $)) (-15 -2654 ((-1133) (-1133))))) -((-2849 (((-112) $ $) NIL)) (-4128 (((-112) $) 13)) (-2227 (($ |#1|) 10)) (-3659 (($ $ $) NIL)) (-4257 (($ $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2237 (($ |#1|) 12)) (-2943 (((-872) $) 19)) (-3284 (((-112) $ $) NIL)) (-3725 ((|#1| $) 14)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) 21))) -(((-339 |#1|) (-13 (-860) (-10 -8 (-15 -2227 ($ |#1|)) (-15 -2237 ($ |#1|)) (-15 -4128 ((-112) $)) (-15 -3725 (|#1| $)))) (-860)) (T -339)) -((-2227 (*1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860)))) (-2237 (*1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860)))) (-4128 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3)) (-4 *3 (-860)))) (-3725 (*1 *2 *1) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860))))) -(-13 (-860) (-10 -8 (-15 -2227 ($ |#1|)) (-15 -2237 ($ |#1|)) (-15 -4128 ((-112) $)) (-15 -3725 (|#1| $)))) -((-3853 (((-338) (-1190) (-963 (-574))) 23)) (-2561 (((-338) (-1190) (-963 (-574))) 27)) (-2261 (((-338) (-1190) (-1105 (-963 (-574))) (-1105 (-963 (-574)))) 26) (((-338) (-1190) (-963 (-574)) (-963 (-574))) 24)) (-3728 (((-338) (-1190) (-963 (-574))) 31))) -(((-340) (-10 -7 (-15 -3853 ((-338) (-1190) (-963 (-574)))) (-15 -2261 ((-338) (-1190) (-963 (-574)) (-963 (-574)))) (-15 -2261 ((-338) (-1190) (-1105 (-963 (-574))) (-1105 (-963 (-574))))) (-15 -2561 ((-338) (-1190) (-963 (-574)))) (-15 -3728 ((-338) (-1190) (-963 (-574)))))) (T -340)) -((-3728 (*1 *2 *3 *4) (-12 (-5 *3 (-1190)) (-5 *4 (-963 (-574))) (-5 *2 (-338)) (-5 *1 (-340)))) (-2561 (*1 *2 *3 *4) (-12 (-5 *3 (-1190)) (-5 *4 (-963 (-574))) (-5 *2 (-338)) (-5 *1 (-340)))) (-2261 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1190)) (-5 *4 (-1105 (-963 (-574)))) (-5 *2 (-338)) (-5 *1 (-340)))) (-2261 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1190)) (-5 *4 (-963 (-574))) (-5 *2 (-338)) (-5 *1 (-340)))) (-3853 (*1 *2 *3 *4) (-12 (-5 *3 (-1190)) (-5 *4 (-963 (-574))) (-5 *2 (-338)) (-5 *1 (-340))))) -(-10 -7 (-15 -3853 ((-338) (-1190) (-963 (-574)))) (-15 -2261 ((-338) (-1190) (-963 (-574)) (-963 (-574)))) (-15 -2261 ((-338) (-1190) (-1105 (-963 (-574))) (-1105 (-963 (-574))))) (-15 -2561 ((-338) (-1190) (-963 (-574)))) (-15 -3728 ((-338) (-1190) (-963 (-574))))) -((-2849 (((-112) $ $) NIL)) (-1478 (((-516) $) 20)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3010 (((-969 (-781)) $) 18)) (-4398 (((-256) $) 7)) (-2943 (((-872) $) 26)) (-4289 (((-969 (-185 (-140))) $) 16)) (-3284 (((-112) $ $) NIL)) (-1390 (((-654 (-883 (-1195) (-781))) $) 12)) (-2981 (((-112) $ $) 22))) -(((-341) (-13 (-1113) (-10 -8 (-15 -4398 ((-256) $)) (-15 -1390 ((-654 (-883 (-1195) (-781))) $)) (-15 -3010 ((-969 (-781)) $)) (-15 -4289 ((-969 (-185 (-140))) $)) (-15 -1478 ((-516) $))))) (T -341)) -((-4398 (*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-341)))) (-1390 (*1 *2 *1) (-12 (-5 *2 (-654 (-883 (-1195) (-781)))) (-5 *1 (-341)))) (-3010 (*1 *2 *1) (-12 (-5 *2 (-969 (-781))) (-5 *1 (-341)))) (-4289 (*1 *2 *1) (-12 (-5 *2 (-969 (-185 (-140)))) (-5 *1 (-341)))) (-1478 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-341))))) -(-13 (-1113) (-10 -8 (-15 -4398 ((-256) $)) (-15 -1390 ((-654 (-883 (-1195) (-781))) $)) (-15 -3010 ((-969 (-781)) $)) (-15 -4289 ((-969 (-185 (-140))) $)) (-15 -1478 ((-516) $)))) -((-1777 (((-345 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-345 |#1| |#2| |#3| |#4|)) 33))) -(((-342 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1777 ((-345 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-345 |#1| |#2| |#3| |#4|)))) (-372) (-1257 |#1|) (-1257 (-417 |#2|)) (-351 |#1| |#2| |#3|) (-372) (-1257 |#5|) (-1257 (-417 |#6|)) (-351 |#5| |#6| |#7|)) (T -342)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-345 *5 *6 *7 *8)) (-4 *5 (-372)) (-4 *6 (-1257 *5)) (-4 *7 (-1257 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) (-4 *9 (-372)) (-4 *10 (-1257 *9)) (-4 *11 (-1257 (-417 *10))) (-5 *2 (-345 *9 *10 *11 *12)) (-5 *1 (-342 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-351 *9 *10 *11))))) -(-10 -7 (-15 -1777 ((-345 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-345 |#1| |#2| |#3| |#4|)))) -((-4218 (((-112) $) 14))) -(((-343 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4218 ((-112) |#1|))) (-344 |#2| |#3| |#4| |#5|) (-372) (-1257 |#2|) (-1257 (-417 |#3|)) (-351 |#2| |#3| |#4|)) (T -343)) -NIL -(-10 -8 (-15 -4218 ((-112) |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-2868 (($ $) 29)) (-4218 (((-112) $) 28)) (-4136 (((-1172) $) 10)) (-3174 (((-423 |#2| (-417 |#2|) |#3| |#4|) $) 35)) (-3966 (((-1133) $) 11)) (-2970 (((-3 |#4| "failed") $) 27)) (-2474 (($ (-423 |#2| (-417 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-574)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-2217 (((-2 (|:| -2803 (-423 |#2| (-417 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24))) -(((-344 |#1| |#2| |#3| |#4|) (-141) (-372) (-1257 |t#1|) (-1257 (-417 |t#2|)) (-351 |t#1| |t#2| |t#3|)) (T -344)) -((-3174 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-5 *2 (-423 *4 (-417 *4) *5 *6)))) (-2474 (*1 *1 *2) (-12 (-5 *2 (-423 *4 (-417 *4) *5 *6)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-4 *3 (-372)) (-4 *1 (-344 *3 *4 *5 *6)))) (-2474 (*1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-4 *1 (-344 *3 *4 *5 *2)) (-4 *2 (-351 *3 *4 *5)))) (-2474 (*1 *1 *2 *2) (-12 (-4 *2 (-372)) (-4 *3 (-1257 *2)) (-4 *4 (-1257 (-417 *3))) (-4 *1 (-344 *2 *3 *4 *5)) (-4 *5 (-351 *2 *3 *4)))) (-2474 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-574)) (-4 *2 (-372)) (-4 *4 (-1257 *2)) (-4 *5 (-1257 (-417 *4))) (-4 *1 (-344 *2 *4 *5 *6)) (-4 *6 (-351 *2 *4 *5)))) (-2217 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-5 *2 (-2 (|:| -2803 (-423 *4 (-417 *4) *5 *6)) (|:| |principalPart| *6))))) (-2868 (*1 *1 *1) (-12 (-4 *1 (-344 *2 *3 *4 *5)) (-4 *2 (-372)) (-4 *3 (-1257 *2)) (-4 *4 (-1257 (-417 *3))) (-4 *5 (-351 *2 *3 *4)))) (-4218 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-5 *2 (-112)))) (-2970 (*1 *2 *1) (|partial| -12 (-4 *1 (-344 *3 *4 *5 *2)) (-4 *3 (-372)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-4 *2 (-351 *3 *4 *5)))) (-2474 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-372)) (-4 *3 (-1257 *4)) (-4 *5 (-1257 (-417 *3))) (-4 *1 (-344 *4 *3 *5 *2)) (-4 *2 (-351 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -3174 ((-423 |t#2| (-417 |t#2|) |t#3| |t#4|) $)) (-15 -2474 ($ (-423 |t#2| (-417 |t#2|) |t#3| |t#4|))) (-15 -2474 ($ |t#4|)) (-15 -2474 ($ |t#1| |t#1|)) (-15 -2474 ($ |t#1| |t#1| (-574))) (-15 -2217 ((-2 (|:| -2803 (-423 |t#2| (-417 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2868 ($ $)) (-15 -4218 ((-112) $)) (-15 -2970 ((-3 |t#4| "failed") $)) (-15 -2474 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-1113) . T)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-2868 (($ $) 33)) (-4218 (((-112) $) NIL)) (-4136 (((-1172) $) NIL)) (-2420 (((-1281 |#4|) $) 134)) (-3174 (((-423 |#2| (-417 |#2|) |#3| |#4|) $) 31)) (-3966 (((-1133) $) NIL)) (-2970 (((-3 |#4| "failed") $) 36)) (-3806 (((-1281 |#4|) $) 126)) (-2474 (($ (-423 |#2| (-417 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-574)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-2217 (((-2 (|:| -2803 (-423 |#2| (-417 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2943 (((-872) $) 17)) (-3284 (((-112) $ $) NIL)) (-2133 (($) 14 T CONST)) (-2981 (((-112) $ $) 20)) (-3094 (($ $) 27) (($ $ $) NIL)) (-3079 (($ $ $) 25)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 23))) -(((-345 |#1| |#2| |#3| |#4|) (-13 (-344 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3806 ((-1281 |#4|) $)) (-15 -2420 ((-1281 |#4|) $)))) (-372) (-1257 |#1|) (-1257 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -345)) -((-3806 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-1281 *6)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *6 (-351 *3 *4 *5)))) (-2420 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-1281 *6)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *6 (-351 *3 *4 *5))))) -(-13 (-344 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3806 ((-1281 |#4|) $)) (-15 -2420 ((-1281 |#4|) $)))) -((-2646 (($ $ (-1190) |#2|) NIL) (($ $ (-654 (-1190)) (-654 |#2|)) 20) (($ $ (-654 (-302 |#2|))) 15) (($ $ (-302 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-654 |#2|) (-654 |#2|)) NIL)) (-2199 (($ $ |#2|) 11))) -(((-346 |#1| |#2|) (-10 -8 (-15 -2199 (|#1| |#1| |#2|)) (-15 -2646 (|#1| |#1| (-654 |#2|) (-654 |#2|))) (-15 -2646 (|#1| |#1| |#2| |#2|)) (-15 -2646 (|#1| |#1| (-302 |#2|))) (-15 -2646 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -2646 (|#1| |#1| (-654 (-1190)) (-654 |#2|))) (-15 -2646 (|#1| |#1| (-1190) |#2|))) (-347 |#2|) (-1113)) (T -346)) -NIL -(-10 -8 (-15 -2199 (|#1| |#1| |#2|)) (-15 -2646 (|#1| |#1| (-654 |#2|) (-654 |#2|))) (-15 -2646 (|#1| |#1| |#2| |#2|)) (-15 -2646 (|#1| |#1| (-302 |#2|))) (-15 -2646 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -2646 (|#1| |#1| (-654 (-1190)) (-654 |#2|))) (-15 -2646 (|#1| |#1| (-1190) |#2|))) -((-1777 (($ (-1 |#1| |#1|) $) 6)) (-2646 (($ $ (-1190) |#1|) 17 (|has| |#1| (-524 (-1190) |#1|))) (($ $ (-654 (-1190)) (-654 |#1|)) 16 (|has| |#1| (-524 (-1190) |#1|))) (($ $ (-654 (-302 |#1|))) 15 (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) 14 (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-317 |#1|))) (($ $ (-654 |#1|) (-654 |#1|)) 12 (|has| |#1| (-317 |#1|)))) (-2199 (($ $ |#1|) 11 (|has| |#1| (-294 |#1| |#1|))))) -(((-347 |#1|) (-141) (-1113)) (T -347)) -((-1777 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-347 *3)) (-4 *3 (-1113))))) -(-13 (-10 -8 (-15 -1777 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-294 |t#1| |t#1|)) (-6 (-294 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-317 |t#1|)) (-6 (-317 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-524 (-1190) |t#1|)) (-6 (-524 (-1190) |t#1|)) |%noBranch|))) -(((-294 |#1| $) |has| |#1| (-294 |#1| |#1|)) ((-317 |#1|) |has| |#1| (-317 |#1|)) ((-524 (-1190) |#1|) |has| |#1| (-524 (-1190) |#1|)) ((-524 |#1| |#1|) |has| |#1| (-317 |#1|)) ((-1231) |has| |#1| (-294 |#1| |#1|))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-4355 (((-654 (-1190)) $) NIL)) (-1624 (((-112)) 96) (((-112) (-112)) 97)) (-4091 (((-654 (-622 $)) $) NIL)) (-2364 (($ $) NIL)) (-2247 (($ $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-2545 (($ $ (-302 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL)) (-4229 (($ $) NIL)) (-2343 (($ $) NIL)) (-2227 (($ $) NIL)) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-622 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-324 |#3|)) 76) (((-3 $ "failed") (-1190)) 103) (((-3 $ "failed") (-324 (-574))) 64 (|has| |#3| (-1051 (-574)))) (((-3 $ "failed") (-417 (-963 (-574)))) 70 (|has| |#3| (-1051 (-574)))) (((-3 $ "failed") (-963 (-574))) 65 (|has| |#3| (-1051 (-574)))) (((-3 $ "failed") (-324 (-388))) 94 (|has| |#3| (-1051 (-388)))) (((-3 $ "failed") (-417 (-963 (-388)))) 88 (|has| |#3| (-1051 (-388)))) (((-3 $ "failed") (-963 (-388))) 83 (|has| |#3| (-1051 (-388))))) (-2206 (((-622 $) $) NIL) ((|#3| $) NIL) (($ (-324 |#3|)) 77) (($ (-1190)) 104) (($ (-324 (-574))) 66 (|has| |#3| (-1051 (-574)))) (($ (-417 (-963 (-574)))) 71 (|has| |#3| (-1051 (-574)))) (($ (-963 (-574))) 67 (|has| |#3| (-1051 (-574)))) (($ (-324 (-388))) 95 (|has| |#3| (-1051 (-388)))) (($ (-417 (-963 (-388)))) 89 (|has| |#3| (-1051 (-388)))) (($ (-963 (-388))) 85 (|has| |#3| (-1051 (-388))))) (-3434 (((-3 $ "failed") $) NIL)) (-3000 (($) 101)) (-3574 (($ $) NIL) (($ (-654 $)) NIL)) (-3893 (((-654 (-115)) $) NIL)) (-4175 (((-115) (-115)) NIL)) (-3199 (((-112) $) NIL)) (-4410 (((-112) $) NIL (|has| $ (-1051 (-574))))) (-1924 (((-1186 $) (-622 $)) NIL (|has| $ (-1062)))) (-1777 (($ (-1 $ $) (-622 $)) NIL)) (-3429 (((-3 (-622 $) "failed") $) NIL)) (-1731 (($ $) 99)) (-3119 (($ $) NIL)) (-4136 (((-1172) $) NIL)) (-4163 (((-654 (-622 $)) $) NIL)) (-1775 (($ (-115) $) 98) (($ (-115) (-654 $)) NIL)) (-4103 (((-112) $ (-115)) NIL) (((-112) $ (-1190)) NIL)) (-1839 (((-781) $) NIL)) (-3966 (((-1133) $) NIL)) (-3974 (((-112) $ $) NIL) (((-112) $ (-1190)) NIL)) (-1609 (($ $) NIL)) (-3476 (((-112) $) NIL (|has| $ (-1051 (-574))))) (-2646 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1190)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-1190)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-1190) (-1 $ (-654 $))) NIL) (($ $ (-1190) (-1 $ $)) NIL) (($ $ (-654 (-115)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-115) (-1 $ (-654 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2199 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-654 $)) NIL)) (-2447 (($ $) NIL) (($ $ $) NIL)) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190)) NIL)) (-4185 (($ $) NIL (|has| $ (-1062)))) (-2352 (($ $) NIL)) (-2237 (($ $) NIL)) (-2943 (((-872) $) NIL) (($ (-622 $)) NIL) (($ |#3|) NIL) (($ (-574)) NIL) (((-324 |#3|) $) 102)) (-1364 (((-781)) NIL T CONST)) (-2029 (($ $) NIL) (($ (-654 $)) NIL)) (-3225 (((-112) (-115)) NIL)) (-3284 (((-112) $ $) NIL)) (-2305 (($ $) NIL)) (-2287 (($ $) NIL)) (-2297 (($ $) NIL)) (-3482 (($ $) NIL)) (-2133 (($) 100 T CONST)) (-2145 (($) NIL T CONST)) (-3610 (($ $ (-654 (-1190)) (-654 (-781))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190)) NIL)) (-2981 (((-112) $ $) NIL)) (-3094 (($ $ $) NIL) (($ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-932)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-932) $) NIL))) -(((-348 |#1| |#2| |#3|) (-13 (-310) (-38 |#3|) (-1051 |#3|) (-911 (-1190)) (-10 -8 (-15 -2206 ($ (-324 |#3|))) (-15 -1696 ((-3 $ "failed") (-324 |#3|))) (-15 -2206 ($ (-1190))) (-15 -1696 ((-3 $ "failed") (-1190))) (-15 -2943 ((-324 |#3|) $)) (IF (|has| |#3| (-1051 (-574))) (PROGN (-15 -2206 ($ (-324 (-574)))) (-15 -1696 ((-3 $ "failed") (-324 (-574)))) (-15 -2206 ($ (-417 (-963 (-574))))) (-15 -1696 ((-3 $ "failed") (-417 (-963 (-574))))) (-15 -2206 ($ (-963 (-574)))) (-15 -1696 ((-3 $ "failed") (-963 (-574))))) |%noBranch|) (IF (|has| |#3| (-1051 (-388))) (PROGN (-15 -2206 ($ (-324 (-388)))) (-15 -1696 ((-3 $ "failed") (-324 (-388)))) (-15 -2206 ($ (-417 (-963 (-388))))) (-15 -1696 ((-3 $ "failed") (-417 (-963 (-388))))) (-15 -2206 ($ (-963 (-388)))) (-15 -1696 ((-3 $ "failed") (-963 (-388))))) |%noBranch|) (-15 -3482 ($ $)) (-15 -4229 ($ $)) (-15 -1609 ($ $)) (-15 -3119 ($ $)) (-15 -1731 ($ $)) (-15 -2227 ($ $)) (-15 -2237 ($ $)) (-15 -2247 ($ $)) (-15 -2287 ($ $)) (-15 -2297 ($ $)) (-15 -2305 ($ $)) (-15 -2343 ($ $)) (-15 -2352 ($ $)) (-15 -2364 ($ $)) (-15 -3000 ($)) (-15 -4355 ((-654 (-1190)) $)) (-15 -1624 ((-112))) (-15 -1624 ((-112) (-112))))) (-654 (-1190)) (-654 (-1190)) (-397)) (T -348)) -((-2206 (*1 *1 *2) (-12 (-5 *2 (-324 *5)) (-4 *5 (-397)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))))) (-1696 (*1 *1 *2) (|partial| -12 (-5 *2 (-324 *5)) (-4 *5 (-397)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 *2)) (-14 *4 (-654 *2)) (-4 *5 (-397)))) (-1696 (*1 *1 *2) (|partial| -12 (-5 *2 (-1190)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 *2)) (-14 *4 (-654 *2)) (-4 *5 (-397)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-324 *5)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1051 (-574))) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) (-1696 (*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-574))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1051 (-574))) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-417 (-963 (-574)))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1051 (-574))) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) (-1696 (*1 *1 *2) (|partial| -12 (-5 *2 (-417 (-963 (-574)))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1051 (-574))) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-963 (-574))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1051 (-574))) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) (-1696 (*1 *1 *2) (|partial| -12 (-5 *2 (-963 (-574))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1051 (-574))) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1051 (-388))) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) (-1696 (*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-388))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1051 (-388))) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-417 (-963 (-388)))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1051 (-388))) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) (-1696 (*1 *1 *2) (|partial| -12 (-5 *2 (-417 (-963 (-388)))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1051 (-388))) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-963 (-388))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1051 (-388))) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) (-1696 (*1 *1 *2) (|partial| -12 (-5 *2 (-963 (-388))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1051 (-388))) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) (-3482 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) (-4229 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) (-1609 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) (-3119 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) (-1731 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) (-2227 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) (-2237 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) (-2247 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) (-2287 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) (-2297 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) (-2305 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) (-2343 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) (-2352 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) (-2364 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) (-3000 (*1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) (-4355 (*1 *2 *1) (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-348 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-397)))) (-1624 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) (-1624 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397))))) -(-13 (-310) (-38 |#3|) (-1051 |#3|) (-911 (-1190)) (-10 -8 (-15 -2206 ($ (-324 |#3|))) (-15 -1696 ((-3 $ "failed") (-324 |#3|))) (-15 -2206 ($ (-1190))) (-15 -1696 ((-3 $ "failed") (-1190))) (-15 -2943 ((-324 |#3|) $)) (IF (|has| |#3| (-1051 (-574))) (PROGN (-15 -2206 ($ (-324 (-574)))) (-15 -1696 ((-3 $ "failed") (-324 (-574)))) (-15 -2206 ($ (-417 (-963 (-574))))) (-15 -1696 ((-3 $ "failed") (-417 (-963 (-574))))) (-15 -2206 ($ (-963 (-574)))) (-15 -1696 ((-3 $ "failed") (-963 (-574))))) |%noBranch|) (IF (|has| |#3| (-1051 (-388))) (PROGN (-15 -2206 ($ (-324 (-388)))) (-15 -1696 ((-3 $ "failed") (-324 (-388)))) (-15 -2206 ($ (-417 (-963 (-388))))) (-15 -1696 ((-3 $ "failed") (-417 (-963 (-388))))) (-15 -2206 ($ (-963 (-388)))) (-15 -1696 ((-3 $ "failed") (-963 (-388))))) |%noBranch|) (-15 -3482 ($ $)) (-15 -4229 ($ $)) (-15 -1609 ($ $)) (-15 -3119 ($ $)) (-15 -1731 ($ $)) (-15 -2227 ($ $)) (-15 -2237 ($ $)) (-15 -2247 ($ $)) (-15 -2287 ($ $)) (-15 -2297 ($ $)) (-15 -2305 ($ $)) (-15 -2343 ($ $)) (-15 -2352 ($ $)) (-15 -2364 ($ $)) (-15 -3000 ($)) (-15 -4355 ((-654 (-1190)) $)) (-15 -1624 ((-112))) (-15 -1624 ((-112) (-112))))) -((-1777 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-349 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1777 (|#8| (-1 |#5| |#1|) |#4|))) (-1235) (-1257 |#1|) (-1257 (-417 |#2|)) (-351 |#1| |#2| |#3|) (-1235) (-1257 |#5|) (-1257 (-417 |#6|)) (-351 |#5| |#6| |#7|)) (T -349)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1235)) (-4 *8 (-1235)) (-4 *6 (-1257 *5)) (-4 *7 (-1257 (-417 *6))) (-4 *9 (-1257 *8)) (-4 *2 (-351 *8 *9 *10)) (-5 *1 (-349 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-351 *5 *6 *7)) (-4 *10 (-1257 (-417 *9)))))) -(-10 -7 (-15 -1777 (|#8| (-1 |#5| |#1|) |#4|))) -((-3081 (((-2 (|:| |num| (-1281 |#3|)) (|:| |den| |#3|)) $) 39)) (-2737 (($ (-1281 (-417 |#3|)) (-1281 $)) NIL) (($ (-1281 (-417 |#3|))) NIL) (($ (-1281 |#3|) |#3|) 173)) (-3645 (((-1281 $) (-1281 $)) 156)) (-1917 (((-654 (-654 |#2|))) 126)) (-1480 (((-112) |#2| |#2|) 76)) (-1569 (($ $) 148)) (-3936 (((-781)) 172)) (-3500 (((-1281 $) (-1281 $)) 218)) (-4366 (((-654 (-963 |#2|)) (-1190)) 115)) (-2729 (((-112) $) 169)) (-4041 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 222)) (-4411 (((-3 |#3| "failed")) 52)) (-2071 (((-781)) 184)) (-2199 ((|#2| $ |#2| |#2|) 140)) (-4347 (((-3 |#3| "failed")) 71)) (-3905 (($ $ (-1 (-417 |#3|) (-417 |#3|)) (-781)) NIL) (($ $ (-1 (-417 |#3|) (-417 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 226) (($ $ (-654 (-1190)) (-654 (-781))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190)) NIL) (($ $ (-781)) NIL) (($ $) NIL)) (-3694 (((-1281 $) (-1281 $)) 162)) (-4195 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-1431 (((-112)) 34))) -(((-350 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -1917 ((-654 (-654 |#2|)))) (-15 -4366 ((-654 (-963 |#2|)) (-1190))) (-15 -4195 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4411 ((-3 |#3| "failed"))) (-15 -4347 ((-3 |#3| "failed"))) (-15 -2199 (|#2| |#1| |#2| |#2|)) (-15 -1569 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4041 ((-112) |#1| |#3|)) (-15 -4041 ((-112) |#1| |#2|)) (-15 -2737 (|#1| (-1281 |#3|) |#3|)) (-15 -3081 ((-2 (|:| |num| (-1281 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3645 ((-1281 |#1|) (-1281 |#1|))) (-15 -3500 ((-1281 |#1|) (-1281 |#1|))) (-15 -3694 ((-1281 |#1|) (-1281 |#1|))) (-15 -4041 ((-112) |#1|)) (-15 -2729 ((-112) |#1|)) (-15 -1480 ((-112) |#2| |#2|)) (-15 -1431 ((-112))) (-15 -2071 ((-781))) (-15 -3936 ((-781))) (-15 -3905 (|#1| |#1| (-1 (-417 |#3|) (-417 |#3|)))) (-15 -3905 (|#1| |#1| (-1 (-417 |#3|) (-417 |#3|)) (-781))) (-15 -2737 (|#1| (-1281 (-417 |#3|)))) (-15 -2737 (|#1| (-1281 (-417 |#3|)) (-1281 |#1|)))) (-351 |#2| |#3| |#4|) (-1235) (-1257 |#2|) (-1257 (-417 |#3|))) (T -350)) -((-3936 (*1 *2) (-12 (-4 *4 (-1235)) (-4 *5 (-1257 *4)) (-4 *6 (-1257 (-417 *5))) (-5 *2 (-781)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))) (-2071 (*1 *2) (-12 (-4 *4 (-1235)) (-4 *5 (-1257 *4)) (-4 *6 (-1257 (-417 *5))) (-5 *2 (-781)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))) (-1431 (*1 *2) (-12 (-4 *4 (-1235)) (-4 *5 (-1257 *4)) (-4 *6 (-1257 (-417 *5))) (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))) (-1480 (*1 *2 *3 *3) (-12 (-4 *3 (-1235)) (-4 *5 (-1257 *3)) (-4 *6 (-1257 (-417 *5))) (-5 *2 (-112)) (-5 *1 (-350 *4 *3 *5 *6)) (-4 *4 (-351 *3 *5 *6)))) (-4347 (*1 *2) (|partial| -12 (-4 *4 (-1235)) (-4 *5 (-1257 (-417 *2))) (-4 *2 (-1257 *4)) (-5 *1 (-350 *3 *4 *2 *5)) (-4 *3 (-351 *4 *2 *5)))) (-4411 (*1 *2) (|partial| -12 (-4 *4 (-1235)) (-4 *5 (-1257 (-417 *2))) (-4 *2 (-1257 *4)) (-5 *1 (-350 *3 *4 *2 *5)) (-4 *3 (-351 *4 *2 *5)))) (-4366 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-4 *5 (-1235)) (-4 *6 (-1257 *5)) (-4 *7 (-1257 (-417 *6))) (-5 *2 (-654 (-963 *5))) (-5 *1 (-350 *4 *5 *6 *7)) (-4 *4 (-351 *5 *6 *7)))) (-1917 (*1 *2) (-12 (-4 *4 (-1235)) (-4 *5 (-1257 *4)) (-4 *6 (-1257 (-417 *5))) (-5 *2 (-654 (-654 *4))) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6))))) -(-10 -8 (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -1917 ((-654 (-654 |#2|)))) (-15 -4366 ((-654 (-963 |#2|)) (-1190))) (-15 -4195 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4411 ((-3 |#3| "failed"))) (-15 -4347 ((-3 |#3| "failed"))) (-15 -2199 (|#2| |#1| |#2| |#2|)) (-15 -1569 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4041 ((-112) |#1| |#3|)) (-15 -4041 ((-112) |#1| |#2|)) (-15 -2737 (|#1| (-1281 |#3|) |#3|)) (-15 -3081 ((-2 (|:| |num| (-1281 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3645 ((-1281 |#1|) (-1281 |#1|))) (-15 -3500 ((-1281 |#1|) (-1281 |#1|))) (-15 -3694 ((-1281 |#1|) (-1281 |#1|))) (-15 -4041 ((-112) |#1|)) (-15 -2729 ((-112) |#1|)) (-15 -1480 ((-112) |#2| |#2|)) (-15 -1431 ((-112))) (-15 -2071 ((-781))) (-15 -3936 ((-781))) (-15 -3905 (|#1| |#1| (-1 (-417 |#3|) (-417 |#3|)))) (-15 -3905 (|#1| |#1| (-1 (-417 |#3|) (-417 |#3|)) (-781))) (-15 -2737 (|#1| (-1281 (-417 |#3|)))) (-15 -2737 (|#1| (-1281 (-417 |#3|)) (-1281 |#1|)))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3081 (((-2 (|:| |num| (-1281 |#2|)) (|:| |den| |#2|)) $) 207)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 103 (|has| (-417 |#2|) (-372)))) (-1575 (($ $) 104 (|has| (-417 |#2|) (-372)))) (-2085 (((-112) $) 106 (|has| (-417 |#2|) (-372)))) (-2294 (((-699 (-417 |#2|)) (-1281 $)) 53) (((-699 (-417 |#2|))) 68)) (-1636 (((-417 |#2|) $) 59)) (-1664 (((-1203 (-932) (-781)) (-574)) 156 (|has| (-417 |#2|) (-358)))) (-3524 (((-3 $ "failed") $ $) 20)) (-2568 (($ $) 123 (|has| (-417 |#2|) (-372)))) (-2827 (((-428 $) $) 124 (|has| (-417 |#2|) (-372)))) (-1600 (((-112) $ $) 114 (|has| (-417 |#2|) (-372)))) (-1487 (((-781)) 97 (|has| (-417 |#2|) (-377)))) (-4211 (((-112)) 224)) (-1855 (((-112) |#1|) 223) (((-112) |#2|) 222)) (-3426 (($) 18 T CONST)) (-1696 (((-3 (-574) "failed") $) 181 (|has| (-417 |#2|) (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) 179 (|has| (-417 |#2|) (-1051 (-417 (-574))))) (((-3 (-417 |#2|) "failed") $) 176)) (-2206 (((-574) $) 180 (|has| (-417 |#2|) (-1051 (-574)))) (((-417 (-574)) $) 178 (|has| (-417 |#2|) (-1051 (-417 (-574))))) (((-417 |#2|) $) 177)) (-2737 (($ (-1281 (-417 |#2|)) (-1281 $)) 55) (($ (-1281 (-417 |#2|))) 71) (($ (-1281 |#2|) |#2|) 206)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) 162 (|has| (-417 |#2|) (-358)))) (-2786 (($ $ $) 118 (|has| (-417 |#2|) (-372)))) (-2134 (((-699 (-417 |#2|)) $ (-1281 $)) 60) (((-699 (-417 |#2|)) $) 66)) (-2590 (((-699 (-574)) (-1281 $)) 175 (|has| (-417 |#2|) (-649 (-574)))) (((-699 (-574)) (-699 $)) 174 (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 173 (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -4340 (-699 (-417 |#2|))) (|:| |vec| (-1281 (-417 |#2|)))) (-699 $) (-1281 $)) 172) (((-699 (-417 |#2|)) (-699 $)) 171) (((-699 (-417 |#2|)) (-1281 $)) 170)) (-3645 (((-1281 $) (-1281 $)) 212)) (-2868 (($ |#3|) 167) (((-3 $ "failed") (-417 |#3|)) 164 (|has| (-417 |#2|) (-372)))) (-3434 (((-3 $ "failed") $) 37)) (-1917 (((-654 (-654 |#1|))) 193 (|has| |#1| (-377)))) (-1480 (((-112) |#1| |#1|) 228)) (-3584 (((-932)) 61)) (-2820 (($) 100 (|has| (-417 |#2|) (-377)))) (-3245 (((-112)) 221)) (-2042 (((-112) |#1|) 220) (((-112) |#2|) 219)) (-2797 (($ $ $) 117 (|has| (-417 |#2|) (-372)))) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) 112 (|has| (-417 |#2|) (-372)))) (-1569 (($ $) 199)) (-3812 (($) 158 (|has| (-417 |#2|) (-358)))) (-4044 (((-112) $) 159 (|has| (-417 |#2|) (-358)))) (-1647 (($ $ (-781)) 150 (|has| (-417 |#2|) (-358))) (($ $) 149 (|has| (-417 |#2|) (-358)))) (-2257 (((-112) $) 125 (|has| (-417 |#2|) (-372)))) (-3884 (((-932) $) 161 (|has| (-417 |#2|) (-358))) (((-843 (-932)) $) 147 (|has| (-417 |#2|) (-358)))) (-3199 (((-112) $) 35)) (-3936 (((-781)) 231)) (-3500 (((-1281 $) (-1281 $)) 213)) (-2236 (((-417 |#2|) $) 58)) (-4366 (((-654 (-963 |#1|)) (-1190)) 194 (|has| |#1| (-372)))) (-2748 (((-3 $ "failed") $) 151 (|has| (-417 |#2|) (-358)))) (-4403 (((-3 (-654 $) "failed") (-654 $) $) 121 (|has| (-417 |#2|) (-372)))) (-1972 ((|#3| $) 51 (|has| (-417 |#2|) (-372)))) (-4115 (((-932) $) 99 (|has| (-417 |#2|) (-377)))) (-2854 ((|#3| $) 165)) (-2832 (($ (-654 $)) 110 (|has| (-417 |#2|) (-372))) (($ $ $) 109 (|has| (-417 |#2|) (-372)))) (-4136 (((-1172) $) 10)) (-2636 (((-699 (-417 |#2|))) 208)) (-1797 (((-699 (-417 |#2|))) 210)) (-1324 (($ $) 126 (|has| (-417 |#2|) (-372)))) (-4024 (($ (-1281 |#2|) |#2|) 204)) (-1885 (((-699 (-417 |#2|))) 209)) (-2498 (((-699 (-417 |#2|))) 211)) (-1663 (((-2 (|:| |num| (-699 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 203)) (-2209 (((-2 (|:| |num| (-1281 |#2|)) (|:| |den| |#2|)) $) 205)) (-2794 (((-1281 $)) 217)) (-1689 (((-1281 $)) 218)) (-2729 (((-112) $) 216)) (-4041 (((-112) $) 215) (((-112) $ |#1|) 202) (((-112) $ |#2|) 201)) (-3818 (($) 152 (|has| (-417 |#2|) (-358)) CONST)) (-2576 (($ (-932)) 98 (|has| (-417 |#2|) (-377)))) (-4411 (((-3 |#2| "failed")) 196)) (-3966 (((-1133) $) 11)) (-2071 (((-781)) 230)) (-2970 (($) 169)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 111 (|has| (-417 |#2|) (-372)))) (-2873 (($ (-654 $)) 108 (|has| (-417 |#2|) (-372))) (($ $ $) 107 (|has| (-417 |#2|) (-372)))) (-1417 (((-654 (-2 (|:| -4220 (-574)) (|:| -3715 (-574))))) 155 (|has| (-417 |#2|) (-358)))) (-4220 (((-428 $) $) 122 (|has| (-417 |#2|) (-372)))) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120 (|has| (-417 |#2|) (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 119 (|has| (-417 |#2|) (-372)))) (-2838 (((-3 $ "failed") $ $) 102 (|has| (-417 |#2|) (-372)))) (-3471 (((-3 (-654 $) "failed") (-654 $) $) 113 (|has| (-417 |#2|) (-372)))) (-1730 (((-781) $) 115 (|has| (-417 |#2|) (-372)))) (-2199 ((|#1| $ |#1| |#1|) 198)) (-4347 (((-3 |#2| "failed")) 197)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 116 (|has| (-417 |#2|) (-372)))) (-2872 (((-417 |#2|) (-1281 $)) 54) (((-417 |#2|)) 67)) (-4342 (((-781) $) 160 (|has| (-417 |#2|) (-358))) (((-3 (-781) "failed") $ $) 148 (|has| (-417 |#2|) (-358)))) (-3905 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) 132 (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) 131 (|has| (-417 |#2|) (-372))) (($ $ (-1 |#2| |#2|)) 200) (($ $ (-654 (-1190)) (-654 (-781))) 139 (-2818 (-2087 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190)))) (-2087 (|has| (-417 |#2|) (-911 (-1190))) (|has| (-417 |#2|) (-372))))) (($ $ (-1190) (-781)) 140 (-2818 (-2087 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190)))) (-2087 (|has| (-417 |#2|) (-911 (-1190))) (|has| (-417 |#2|) (-372))))) (($ $ (-654 (-1190))) 141 (-2818 (-2087 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190)))) (-2087 (|has| (-417 |#2|) (-911 (-1190))) (|has| (-417 |#2|) (-372))))) (($ $ (-1190)) 142 (-2818 (-2087 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190)))) (-2087 (|has| (-417 |#2|) (-911 (-1190))) (|has| (-417 |#2|) (-372))))) (($ $ (-781)) 144 (-2818 (-2087 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-239))) (-2087 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $) 145 (-2818 (-2087 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-239))) (-2087 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-3146 (((-699 (-417 |#2|)) (-1281 $) (-1 (-417 |#2|) (-417 |#2|))) 163 (|has| (-417 |#2|) (-372)))) (-4185 ((|#3|) 168)) (-3074 (($) 157 (|has| (-417 |#2|) (-358)))) (-3487 (((-1281 (-417 |#2|)) $ (-1281 $)) 57) (((-699 (-417 |#2|)) (-1281 $) (-1281 $)) 56) (((-1281 (-417 |#2|)) $) 73) (((-699 (-417 |#2|)) (-1281 $)) 72)) (-1836 (((-1281 (-417 |#2|)) $) 70) (($ (-1281 (-417 |#2|))) 69) ((|#3| $) 182) (($ |#3|) 166)) (-1524 (((-3 (-1281 $) "failed") (-699 $)) 154 (|has| (-417 |#2|) (-358)))) (-3694 (((-1281 $) (-1281 $)) 214)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ (-417 |#2|)) 44) (($ (-417 (-574))) 96 (-2818 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-1051 (-417 (-574)))))) (($ $) 101 (|has| (-417 |#2|) (-372)))) (-3298 (($ $) 153 (|has| (-417 |#2|) (-358))) (((-3 $ "failed") $) 50 (|has| (-417 |#2|) (-146)))) (-1435 ((|#3| $) 52)) (-1364 (((-781)) 32 T CONST)) (-2185 (((-112)) 227)) (-4328 (((-112) |#1|) 226) (((-112) |#2|) 225)) (-3284 (((-112) $ $) 9)) (-1882 (((-1281 $)) 74)) (-2069 (((-112) $ $) 105 (|has| (-417 |#2|) (-372)))) (-4195 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 195)) (-1431 (((-112)) 229)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-3610 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) 134 (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) 133 (|has| (-417 |#2|) (-372))) (($ $ (-654 (-1190)) (-654 (-781))) 135 (-2818 (-2087 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190)))) (-2087 (|has| (-417 |#2|) (-911 (-1190))) (|has| (-417 |#2|) (-372))))) (($ $ (-1190) (-781)) 136 (-2818 (-2087 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190)))) (-2087 (|has| (-417 |#2|) (-911 (-1190))) (|has| (-417 |#2|) (-372))))) (($ $ (-654 (-1190))) 137 (-2818 (-2087 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190)))) (-2087 (|has| (-417 |#2|) (-911 (-1190))) (|has| (-417 |#2|) (-372))))) (($ $ (-1190)) 138 (-2818 (-2087 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190)))) (-2087 (|has| (-417 |#2|) (-911 (-1190))) (|has| (-417 |#2|) (-372))))) (($ $ (-781)) 143 (-2818 (-2087 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-239))) (-2087 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $) 146 (-2818 (-2087 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-239))) (-2087 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-2981 (((-112) $ $) 6)) (-3108 (($ $ $) 130 (|has| (-417 |#2|) (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 127 (|has| (-417 |#2|) (-372)))) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 |#2|)) 46) (($ (-417 |#2|) $) 45) (($ (-417 (-574)) $) 129 (|has| (-417 |#2|) (-372))) (($ $ (-417 (-574))) 128 (|has| (-417 |#2|) (-372))))) -(((-351 |#1| |#2| |#3|) (-141) (-1235) (-1257 |t#1|) (-1257 (-417 |t#2|))) (T -351)) -((-3936 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-781)))) (-2071 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-781)))) (-1431 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))) (-1480 (*1 *2 *3 *3) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))) (-2185 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))) (-4328 (*1 *2 *3) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))) (-4328 (*1 *2 *3) (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1235)) (-4 *3 (-1257 *4)) (-4 *5 (-1257 (-417 *3))) (-5 *2 (-112)))) (-4211 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))) (-1855 (*1 *2 *3) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))) (-1855 (*1 *2 *3) (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1235)) (-4 *3 (-1257 *4)) (-4 *5 (-1257 (-417 *3))) (-5 *2 (-112)))) (-3245 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))) (-2042 (*1 *2 *3) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))) (-2042 (*1 *2 *3) (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1235)) (-4 *3 (-1257 *4)) (-4 *5 (-1257 (-417 *3))) (-5 *2 (-112)))) (-1689 (*1 *2) (-12 (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-1281 *1)) (-4 *1 (-351 *3 *4 *5)))) (-2794 (*1 *2) (-12 (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-1281 *1)) (-4 *1 (-351 *3 *4 *5)))) (-2729 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))) (-4041 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))) (-3694 (*1 *2 *2) (-12 (-5 *2 (-1281 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-1281 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))))) (-3645 (*1 *2 *2) (-12 (-5 *2 (-1281 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))))) (-2498 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-699 (-417 *4))))) (-1797 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-699 (-417 *4))))) (-1885 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-699 (-417 *4))))) (-2636 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-699 (-417 *4))))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-2 (|:| |num| (-1281 *4)) (|:| |den| *4))))) (-2737 (*1 *1 *2 *3) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-1257 *4)) (-4 *4 (-1235)) (-4 *1 (-351 *4 *3 *5)) (-4 *5 (-1257 (-417 *3))))) (-2209 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-2 (|:| |num| (-1281 *4)) (|:| |den| *4))))) (-4024 (*1 *1 *2 *3) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-1257 *4)) (-4 *4 (-1235)) (-4 *1 (-351 *4 *3 *5)) (-4 *5 (-1257 (-417 *3))))) (-1663 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-351 *4 *5 *6)) (-4 *4 (-1235)) (-4 *5 (-1257 *4)) (-4 *6 (-1257 (-417 *5))) (-5 *2 (-2 (|:| |num| (-699 *5)) (|:| |den| *5))))) (-4041 (*1 *2 *1 *3) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))) (-4041 (*1 *2 *1 *3) (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1235)) (-4 *3 (-1257 *4)) (-4 *5 (-1257 (-417 *3))) (-5 *2 (-112)))) (-3905 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))))) (-1569 (*1 *1 *1) (-12 (-4 *1 (-351 *2 *3 *4)) (-4 *2 (-1235)) (-4 *3 (-1257 *2)) (-4 *4 (-1257 (-417 *3))))) (-2199 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-351 *2 *3 *4)) (-4 *2 (-1235)) (-4 *3 (-1257 *2)) (-4 *4 (-1257 (-417 *3))))) (-4347 (*1 *2) (|partial| -12 (-4 *1 (-351 *3 *2 *4)) (-4 *3 (-1235)) (-4 *4 (-1257 (-417 *2))) (-4 *2 (-1257 *3)))) (-4411 (*1 *2) (|partial| -12 (-4 *1 (-351 *3 *2 *4)) (-4 *3 (-1235)) (-4 *4 (-1257 (-417 *2))) (-4 *2 (-1257 *3)))) (-4195 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1257 *4)) (-4 *4 (-1235)) (-4 *6 (-1257 (-417 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-351 *4 *5 *6)))) (-4366 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-4 *1 (-351 *4 *5 *6)) (-4 *4 (-1235)) (-4 *5 (-1257 *4)) (-4 *6 (-1257 (-417 *5))) (-4 *4 (-372)) (-5 *2 (-654 (-963 *4))))) (-1917 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) (-4 *3 (-377)) (-5 *2 (-654 (-654 *3)))))) -(-13 (-734 (-417 |t#2|) |t#3|) (-10 -8 (-15 -3936 ((-781))) (-15 -2071 ((-781))) (-15 -1431 ((-112))) (-15 -1480 ((-112) |t#1| |t#1|)) (-15 -2185 ((-112))) (-15 -4328 ((-112) |t#1|)) (-15 -4328 ((-112) |t#2|)) (-15 -4211 ((-112))) (-15 -1855 ((-112) |t#1|)) (-15 -1855 ((-112) |t#2|)) (-15 -3245 ((-112))) (-15 -2042 ((-112) |t#1|)) (-15 -2042 ((-112) |t#2|)) (-15 -1689 ((-1281 $))) (-15 -2794 ((-1281 $))) (-15 -2729 ((-112) $)) (-15 -4041 ((-112) $)) (-15 -3694 ((-1281 $) (-1281 $))) (-15 -3500 ((-1281 $) (-1281 $))) (-15 -3645 ((-1281 $) (-1281 $))) (-15 -2498 ((-699 (-417 |t#2|)))) (-15 -1797 ((-699 (-417 |t#2|)))) (-15 -1885 ((-699 (-417 |t#2|)))) (-15 -2636 ((-699 (-417 |t#2|)))) (-15 -3081 ((-2 (|:| |num| (-1281 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2737 ($ (-1281 |t#2|) |t#2|)) (-15 -2209 ((-2 (|:| |num| (-1281 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4024 ($ (-1281 |t#2|) |t#2|)) (-15 -1663 ((-2 (|:| |num| (-699 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -4041 ((-112) $ |t#1|)) (-15 -4041 ((-112) $ |t#2|)) (-15 -3905 ($ $ (-1 |t#2| |t#2|))) (-15 -1569 ($ $)) (-15 -2199 (|t#1| $ |t#1| |t#1|)) (-15 -4347 ((-3 |t#2| "failed"))) (-15 -4411 ((-3 |t#2| "failed"))) (-15 -4195 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-372)) (-15 -4366 ((-654 (-963 |t#1|)) (-1190))) |%noBranch|) (IF (|has| |t#1| (-377)) (-15 -1917 ((-654 (-654 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-38 #1=(-417 |#2|)) . T) ((-38 $) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-102) . T) ((-111 #0# #0#) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-146))) ((-148) |has| (-417 |#2|) (-148)) ((-626 #0#) -2818 (|has| (-417 |#2|) (-1051 (-417 (-574)))) (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-626 #1#) . T) ((-626 (-574)) . T) ((-626 $) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-623 (-872)) . T) ((-174) . T) ((-624 |#3|) . T) ((-235 $) -2818 (|has| (-417 |#2|) (-358)) (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372)))) ((-233 #1#) |has| (-417 |#2|) (-372)) ((-239) -2818 (|has| (-417 |#2|) (-358)) (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372)))) ((-249) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-298) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-315) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-372) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-412) |has| (-417 |#2|) (-358)) ((-377) -2818 (|has| (-417 |#2|) (-377)) (|has| (-417 |#2|) (-358))) ((-358) |has| (-417 |#2|) (-358)) ((-379 #1# |#3|) . T) ((-419 #1# |#3|) . T) ((-386 #1#) . T) ((-421 #1#) . T) ((-462) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-566) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-656 #0#) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-656 #1#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-658 #1#) . T) ((-658 #2=(-574)) |has| (-417 |#2|) (-649 (-574))) ((-658 $) . T) ((-650 #0#) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-650 #1#) . T) ((-650 $) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-649 #1#) . T) ((-649 #2#) |has| (-417 |#2|) (-649 (-574))) ((-727 #0#) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-727 #1#) . T) ((-727 $) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-734 #1# |#3|) . T) ((-736) . T) ((-911 (-1190)) -12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190)))) ((-931) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-1051 (-417 (-574))) |has| (-417 |#2|) (-1051 (-417 (-574)))) ((-1051 #1#) . T) ((-1051 (-574)) |has| (-417 |#2|) (-1051 (-574))) ((-1064 #0#) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-1064 #1#) . T) ((-1064 $) . T) ((-1069 #0#) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-1069 #1#) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1165) |has| (-417 |#2|) (-358)) ((-1231) -2818 (|has| (-417 |#2|) (-358)) (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372)))) ((-1235) -2818 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-4297 (((-112) $) NIL)) (-2549 (((-781)) NIL)) (-1636 (((-921 |#1|) $) NIL) (($ $ (-932)) NIL (|has| (-921 |#1|) (-377)))) (-1664 (((-1203 (-932) (-781)) (-574)) NIL (|has| (-921 |#1|) (-377)))) (-3524 (((-3 $ "failed") $ $) NIL)) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-1600 (((-112) $ $) NIL)) (-1487 (((-781)) NIL (|has| (-921 |#1|) (-377)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-921 |#1|) "failed") $) NIL)) (-2206 (((-921 |#1|) $) NIL)) (-2737 (($ (-1281 (-921 |#1|))) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-921 |#1|) (-377)))) (-2786 (($ $ $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2820 (($) NIL (|has| (-921 |#1|) (-377)))) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3812 (($) NIL (|has| (-921 |#1|) (-377)))) (-4044 (((-112) $) NIL (|has| (-921 |#1|) (-377)))) (-1647 (($ $ (-781)) NIL (-2818 (|has| (-921 |#1|) (-146)) (|has| (-921 |#1|) (-377)))) (($ $) NIL (-2818 (|has| (-921 |#1|) (-146)) (|has| (-921 |#1|) (-377))))) (-2257 (((-112) $) NIL)) (-3884 (((-932) $) NIL (|has| (-921 |#1|) (-377))) (((-843 (-932)) $) NIL (-2818 (|has| (-921 |#1|) (-146)) (|has| (-921 |#1|) (-377))))) (-3199 (((-112) $) NIL)) (-2606 (($) NIL (|has| (-921 |#1|) (-377)))) (-2066 (((-112) $) NIL (|has| (-921 |#1|) (-377)))) (-2236 (((-921 |#1|) $) NIL) (($ $ (-932)) NIL (|has| (-921 |#1|) (-377)))) (-2748 (((-3 $ "failed") $) NIL (|has| (-921 |#1|) (-377)))) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1972 (((-1186 (-921 |#1|)) $) NIL) (((-1186 $) $ (-932)) NIL (|has| (-921 |#1|) (-377)))) (-4115 (((-932) $) NIL (|has| (-921 |#1|) (-377)))) (-1533 (((-1186 (-921 |#1|)) $) NIL (|has| (-921 |#1|) (-377)))) (-2037 (((-1186 (-921 |#1|)) $) NIL (|has| (-921 |#1|) (-377))) (((-3 (-1186 (-921 |#1|)) "failed") $ $) NIL (|has| (-921 |#1|) (-377)))) (-2559 (($ $ (-1186 (-921 |#1|))) NIL (|has| (-921 |#1|) (-377)))) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| (-921 |#1|) (-377)) CONST)) (-2576 (($ (-932)) NIL (|has| (-921 |#1|) (-377)))) (-4204 (((-112) $) NIL)) (-3966 (((-1133) $) NIL)) (-3295 (((-969 (-1133))) NIL)) (-2970 (($) NIL (|has| (-921 |#1|) (-377)))) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1417 (((-654 (-2 (|:| -4220 (-574)) (|:| -3715 (-574))))) NIL (|has| (-921 |#1|) (-377)))) (-4220 (((-428 $) $) NIL)) (-2989 (((-843 (-932))) NIL) (((-932)) NIL)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1730 (((-781) $) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-4342 (((-781) $) NIL (|has| (-921 |#1|) (-377))) (((-3 (-781) "failed") $ $) NIL (-2818 (|has| (-921 |#1|) (-146)) (|has| (-921 |#1|) (-377))))) (-4133 (((-135)) NIL)) (-3905 (($ $) NIL (|has| (-921 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-921 |#1|) (-377)))) (-4202 (((-843 (-932)) $) NIL) (((-932) $) NIL)) (-4185 (((-1186 (-921 |#1|))) NIL)) (-3074 (($) NIL (|has| (-921 |#1|) (-377)))) (-2765 (($) NIL (|has| (-921 |#1|) (-377)))) (-3487 (((-1281 (-921 |#1|)) $) NIL) (((-699 (-921 |#1|)) (-1281 $)) NIL)) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (|has| (-921 |#1|) (-377)))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-921 |#1|)) NIL)) (-3298 (($ $) NIL (|has| (-921 |#1|) (-377))) (((-3 $ "failed") $) NIL (-2818 (|has| (-921 |#1|) (-146)) (|has| (-921 |#1|) (-377))))) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-1882 (((-1281 $)) NIL) (((-1281 $) (-932)) NIL)) (-2069 (((-112) $ $) NIL)) (-3587 (((-112) $) NIL)) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-2661 (($ $) NIL (|has| (-921 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-921 |#1|) (-377)))) (-3610 (($ $) NIL (|has| (-921 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-921 |#1|) (-377)))) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL) (($ $ (-921 |#1|)) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-921 |#1|)) NIL) (($ (-921 |#1|) $) NIL))) -(((-352 |#1| |#2|) (-13 (-337 (-921 |#1|)) (-10 -7 (-15 -3295 ((-969 (-1133)))))) (-932) (-932)) (T -352)) -((-3295 (*1 *2) (-12 (-5 *2 (-969 (-1133))) (-5 *1 (-352 *3 *4)) (-14 *3 (-932)) (-14 *4 (-932))))) -(-13 (-337 (-921 |#1|)) (-10 -7 (-15 -3295 ((-969 (-1133)))))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 58)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-4297 (((-112) $) NIL)) (-2549 (((-781)) NIL)) (-1636 ((|#1| $) NIL) (($ $ (-932)) NIL (|has| |#1| (-377)))) (-1664 (((-1203 (-932) (-781)) (-574)) 56 (|has| |#1| (-377)))) (-3524 (((-3 $ "failed") $ $) NIL)) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-1600 (((-112) $ $) NIL)) (-1487 (((-781)) NIL (|has| |#1| (-377)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#1| "failed") $) 142)) (-2206 ((|#1| $) 113)) (-2737 (($ (-1281 |#1|)) 130)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-377)))) (-2786 (($ $ $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2820 (($) 124 (|has| |#1| (-377)))) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3812 (($) 160 (|has| |#1| (-377)))) (-4044 (((-112) $) 66 (|has| |#1| (-377)))) (-1647 (($ $ (-781)) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2257 (((-112) $) NIL)) (-3884 (((-932) $) 60 (|has| |#1| (-377))) (((-843 (-932)) $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3199 (((-112) $) 62)) (-2606 (($) 162 (|has| |#1| (-377)))) (-2066 (((-112) $) NIL (|has| |#1| (-377)))) (-2236 ((|#1| $) NIL) (($ $ (-932)) NIL (|has| |#1| (-377)))) (-2748 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1972 (((-1186 |#1|) $) 117) (((-1186 $) $ (-932)) NIL (|has| |#1| (-377)))) (-4115 (((-932) $) 171 (|has| |#1| (-377)))) (-1533 (((-1186 |#1|) $) NIL (|has| |#1| (-377)))) (-2037 (((-1186 |#1|) $) NIL (|has| |#1| (-377))) (((-3 (-1186 |#1|) "failed") $ $) NIL (|has| |#1| (-377)))) (-2559 (($ $ (-1186 |#1|)) NIL (|has| |#1| (-377)))) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) 178)) (-3818 (($) NIL (|has| |#1| (-377)) CONST)) (-2576 (($ (-932)) 96 (|has| |#1| (-377)))) (-4204 (((-112) $) 147)) (-3966 (((-1133) $) NIL)) (-3295 (((-969 (-1133))) 57)) (-2970 (($) 158 (|has| |#1| (-377)))) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1417 (((-654 (-2 (|:| -4220 (-574)) (|:| -3715 (-574))))) 119 (|has| |#1| (-377)))) (-4220 (((-428 $) $) NIL)) (-2989 (((-843 (-932))) 90) (((-932)) 91)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1730 (((-781) $) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-4342 (((-781) $) 161 (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) 154 (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4133 (((-135)) NIL)) (-3905 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-4202 (((-843 (-932)) $) NIL) (((-932) $) NIL)) (-4185 (((-1186 |#1|)) 122)) (-3074 (($) 159 (|has| |#1| (-377)))) (-2765 (($) 167 (|has| |#1| (-377)))) (-3487 (((-1281 |#1|) $) 77) (((-699 |#1|) (-1281 $)) NIL)) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2943 (((-872) $) 174) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 100)) (-3298 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-1364 (((-781)) 155 T CONST)) (-3284 (((-112) $ $) NIL)) (-1882 (((-1281 $)) 144) (((-1281 $) (-932)) 98)) (-2069 (((-112) $ $) NIL)) (-3587 (((-112) $) NIL)) (-2133 (($) 67 T CONST)) (-2145 (($) 103 T CONST)) (-2661 (($ $) 107 (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-3610 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-2981 (((-112) $ $) 65)) (-3108 (($ $ $) 176) (($ $ |#1|) 177)) (-3094 (($ $) 157) (($ $ $) NIL)) (-3079 (($ $ $) 86)) (** (($ $ (-932)) 180) (($ $ (-781)) 181) (($ $ (-574)) 179)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 102) (($ $ $) 101) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175))) -(((-353 |#1| |#2|) (-13 (-337 |#1|) (-10 -7 (-15 -3295 ((-969 (-1133)))))) (-358) (-1186 |#1|)) (T -353)) -((-3295 (*1 *2) (-12 (-5 *2 (-969 (-1133))) (-5 *1 (-353 *3 *4)) (-4 *3 (-358)) (-14 *4 (-1186 *3))))) -(-13 (-337 |#1|) (-10 -7 (-15 -3295 ((-969 (-1133)))))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-4297 (((-112) $) NIL)) (-2549 (((-781)) NIL)) (-1636 ((|#1| $) NIL) (($ $ (-932)) NIL (|has| |#1| (-377)))) (-1664 (((-1203 (-932) (-781)) (-574)) NIL (|has| |#1| (-377)))) (-3524 (((-3 $ "failed") $ $) NIL)) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-1600 (((-112) $ $) NIL)) (-1487 (((-781)) NIL (|has| |#1| (-377)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#1| "failed") $) NIL)) (-2206 ((|#1| $) NIL)) (-2737 (($ (-1281 |#1|)) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-377)))) (-2786 (($ $ $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2820 (($) NIL (|has| |#1| (-377)))) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3812 (($) NIL (|has| |#1| (-377)))) (-4044 (((-112) $) NIL (|has| |#1| (-377)))) (-1647 (($ $ (-781)) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2257 (((-112) $) NIL)) (-3884 (((-932) $) NIL (|has| |#1| (-377))) (((-843 (-932)) $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3199 (((-112) $) NIL)) (-2606 (($) NIL (|has| |#1| (-377)))) (-2066 (((-112) $) NIL (|has| |#1| (-377)))) (-2236 ((|#1| $) NIL) (($ $ (-932)) NIL (|has| |#1| (-377)))) (-2748 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1972 (((-1186 |#1|) $) NIL) (((-1186 $) $ (-932)) NIL (|has| |#1| (-377)))) (-4115 (((-932) $) NIL (|has| |#1| (-377)))) (-1533 (((-1186 |#1|) $) NIL (|has| |#1| (-377)))) (-2037 (((-1186 |#1|) $) NIL (|has| |#1| (-377))) (((-3 (-1186 |#1|) "failed") $ $) NIL (|has| |#1| (-377)))) (-2559 (($ $ (-1186 |#1|)) NIL (|has| |#1| (-377)))) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| |#1| (-377)) CONST)) (-2576 (($ (-932)) NIL (|has| |#1| (-377)))) (-4204 (((-112) $) NIL)) (-3966 (((-1133) $) NIL)) (-3295 (((-969 (-1133))) NIL)) (-2970 (($) NIL (|has| |#1| (-377)))) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1417 (((-654 (-2 (|:| -4220 (-574)) (|:| -3715 (-574))))) NIL (|has| |#1| (-377)))) (-4220 (((-428 $) $) NIL)) (-2989 (((-843 (-932))) NIL) (((-932)) NIL)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1730 (((-781) $) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-4342 (((-781) $) NIL (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4133 (((-135)) NIL)) (-3905 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-4202 (((-843 (-932)) $) NIL) (((-932) $) NIL)) (-4185 (((-1186 |#1|)) NIL)) (-3074 (($) NIL (|has| |#1| (-377)))) (-2765 (($) NIL (|has| |#1| (-377)))) (-3487 (((-1281 |#1|) $) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) NIL)) (-3298 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-1882 (((-1281 $)) NIL) (((-1281 $) (-932)) NIL)) (-2069 (((-112) $ $) NIL)) (-3587 (((-112) $) NIL)) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-2661 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-3610 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-354 |#1| |#2|) (-13 (-337 |#1|) (-10 -7 (-15 -3295 ((-969 (-1133)))))) (-358) (-932)) (T -354)) -((-3295 (*1 *2) (-12 (-5 *2 (-969 (-1133))) (-5 *1 (-354 *3 *4)) (-4 *3 (-358)) (-14 *4 (-932))))) -(-13 (-337 |#1|) (-10 -7 (-15 -3295 ((-969 (-1133)))))) -((-2072 (((-781) (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133)))))) 61)) (-2303 (((-969 (-1133)) (-1186 |#1|)) 112)) (-3423 (((-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))) (-1186 |#1|)) 103)) (-3581 (((-699 |#1|) (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133)))))) 113)) (-1351 (((-3 (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))) "failed") (-932)) 13)) (-4193 (((-3 (-1186 |#1|) (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133)))))) (-932)) 18))) -(((-355 |#1|) (-10 -7 (-15 -2303 ((-969 (-1133)) (-1186 |#1|))) (-15 -3423 ((-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))) (-1186 |#1|))) (-15 -3581 ((-699 |#1|) (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))))) (-15 -2072 ((-781) (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))))) (-15 -1351 ((-3 (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))) "failed") (-932))) (-15 -4193 ((-3 (-1186 |#1|) (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133)))))) (-932)))) (-358)) (T -355)) -((-4193 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-3 (-1186 *4) (-1281 (-654 (-2 (|:| -3083 *4) (|:| -2576 (-1133))))))) (-5 *1 (-355 *4)) (-4 *4 (-358)))) (-1351 (*1 *2 *3) (|partial| -12 (-5 *3 (-932)) (-5 *2 (-1281 (-654 (-2 (|:| -3083 *4) (|:| -2576 (-1133)))))) (-5 *1 (-355 *4)) (-4 *4 (-358)))) (-2072 (*1 *2 *3) (-12 (-5 *3 (-1281 (-654 (-2 (|:| -3083 *4) (|:| -2576 (-1133)))))) (-4 *4 (-358)) (-5 *2 (-781)) (-5 *1 (-355 *4)))) (-3581 (*1 *2 *3) (-12 (-5 *3 (-1281 (-654 (-2 (|:| -3083 *4) (|:| -2576 (-1133)))))) (-4 *4 (-358)) (-5 *2 (-699 *4)) (-5 *1 (-355 *4)))) (-3423 (*1 *2 *3) (-12 (-5 *3 (-1186 *4)) (-4 *4 (-358)) (-5 *2 (-1281 (-654 (-2 (|:| -3083 *4) (|:| -2576 (-1133)))))) (-5 *1 (-355 *4)))) (-2303 (*1 *2 *3) (-12 (-5 *3 (-1186 *4)) (-4 *4 (-358)) (-5 *2 (-969 (-1133))) (-5 *1 (-355 *4))))) -(-10 -7 (-15 -2303 ((-969 (-1133)) (-1186 |#1|))) (-15 -3423 ((-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))) (-1186 |#1|))) (-15 -3581 ((-699 |#1|) (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))))) (-15 -2072 ((-781) (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))))) (-15 -1351 ((-3 (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))) "failed") (-932))) (-15 -4193 ((-3 (-1186 |#1|) (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133)))))) (-932)))) -((-2943 ((|#1| |#3|) 104) ((|#3| |#1|) 87))) -(((-356 |#1| |#2| |#3|) (-10 -7 (-15 -2943 (|#3| |#1|)) (-15 -2943 (|#1| |#3|))) (-337 |#2|) (-358) (-337 |#2|)) (T -356)) -((-2943 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *2 (-337 *4)) (-5 *1 (-356 *2 *4 *3)) (-4 *3 (-337 *4)))) (-2943 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *2 (-337 *4)) (-5 *1 (-356 *3 *4 *2)) (-4 *3 (-337 *4))))) -(-10 -7 (-15 -2943 (|#3| |#1|)) (-15 -2943 (|#1| |#3|))) -((-4044 (((-112) $) 60)) (-3884 (((-843 (-932)) $) 23) (((-932) $) 64)) (-2748 (((-3 $ "failed") $) 18)) (-3818 (($) 9)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 114)) (-4342 (((-3 (-781) "failed") $ $) 92) (((-781) $) 79)) (-3905 (($ $ (-781)) NIL) (($ $) 8)) (-3074 (($) 53)) (-1524 (((-3 (-1281 $) "failed") (-699 $)) 38)) (-3298 (((-3 $ "failed") $) 45) (($ $) 44))) -(((-357 |#1|) (-10 -8 (-15 -3884 ((-932) |#1|)) (-15 -4342 ((-781) |#1|)) (-15 -4044 ((-112) |#1|)) (-15 -3074 (|#1|)) (-15 -1524 ((-3 (-1281 |#1|) "failed") (-699 |#1|))) (-15 -3298 (|#1| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -3818 (|#1|)) (-15 -2748 ((-3 |#1| "failed") |#1|)) (-15 -4342 ((-3 (-781) "failed") |#1| |#1|)) (-15 -3884 ((-843 (-932)) |#1|)) (-15 -3298 ((-3 |#1| "failed") |#1|)) (-15 -3109 ((-1186 |#1|) (-1186 |#1|) (-1186 |#1|)))) (-358)) (T -357)) -NIL -(-10 -8 (-15 -3884 ((-932) |#1|)) (-15 -4342 ((-781) |#1|)) (-15 -4044 ((-112) |#1|)) (-15 -3074 (|#1|)) (-15 -1524 ((-3 (-1281 |#1|) "failed") (-699 |#1|))) (-15 -3298 (|#1| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -3818 (|#1|)) (-15 -2748 ((-3 |#1| "failed") |#1|)) (-15 -4342 ((-3 (-781) "failed") |#1| |#1|)) (-15 -3884 ((-843 (-932)) |#1|)) (-15 -3298 ((-3 |#1| "failed") |#1|)) (-15 -3109 ((-1186 |#1|) (-1186 |#1|) (-1186 |#1|)))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-1575 (($ $) 46)) (-2085 (((-112) $) 44)) (-1664 (((-1203 (-932) (-781)) (-574)) 102)) (-3524 (((-3 $ "failed") $ $) 20)) (-2568 (($ $) 81)) (-2827 (((-428 $) $) 80)) (-1600 (((-112) $ $) 65)) (-1487 (((-781)) 112)) (-3426 (($) 18 T CONST)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) 96)) (-2786 (($ $ $) 61)) (-3434 (((-3 $ "failed") $) 37)) (-2820 (($) 115)) (-2797 (($ $ $) 62)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) 57)) (-3812 (($) 100)) (-4044 (((-112) $) 99)) (-1647 (($ $) 87) (($ $ (-781)) 86)) (-2257 (((-112) $) 79)) (-3884 (((-843 (-932)) $) 89) (((-932) $) 97)) (-3199 (((-112) $) 35)) (-2748 (((-3 $ "failed") $) 111)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-4115 (((-932) $) 114)) (-2832 (($ $ $) 52) (($ (-654 $)) 51)) (-4136 (((-1172) $) 10)) (-1324 (($ $) 78)) (-3818 (($) 110 T CONST)) (-2576 (($ (-932)) 113)) (-3966 (((-1133) $) 11)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2873 (($ $ $) 54) (($ (-654 $)) 53)) (-1417 (((-654 (-2 (|:| -4220 (-574)) (|:| -3715 (-574))))) 103)) (-4220 (((-428 $) $) 82)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2838 (((-3 $ "failed") $ $) 48)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-1730 (((-781) $) 64)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 63)) (-4342 (((-3 (-781) "failed") $ $) 88) (((-781) $) 98)) (-3905 (($ $ (-781)) 108) (($ $) 107)) (-3074 (($) 101)) (-1524 (((-3 (-1281 $) "failed") (-699 $)) 104)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74)) (-3298 (((-3 $ "failed") $) 90) (($ $) 105)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2069 (((-112) $ $) 45)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-3610 (($ $ (-781)) 109) (($ $) 106)) (-2981 (((-112) $ $) 6)) (-3108 (($ $ $) 73)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75))) -(((-358) (-141)) (T -358)) -((-3298 (*1 *1 *1) (-4 *1 (-358))) (-1524 (*1 *2 *3) (|partial| -12 (-5 *3 (-699 *1)) (-4 *1 (-358)) (-5 *2 (-1281 *1)))) (-1417 (*1 *2) (-12 (-4 *1 (-358)) (-5 *2 (-654 (-2 (|:| -4220 (-574)) (|:| -3715 (-574))))))) (-1664 (*1 *2 *3) (-12 (-4 *1 (-358)) (-5 *3 (-574)) (-5 *2 (-1203 (-932) (-781))))) (-3074 (*1 *1) (-4 *1 (-358))) (-3812 (*1 *1) (-4 *1 (-358))) (-4044 (*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-112)))) (-4342 (*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-781)))) (-3884 (*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-932)))) (-1765 (*1 *2) (-12 (-4 *1 (-358)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-412) (-377) (-1165) (-239) (-10 -8 (-15 -3298 ($ $)) (-15 -1524 ((-3 (-1281 $) "failed") (-699 $))) (-15 -1417 ((-654 (-2 (|:| -4220 (-574)) (|:| -3715 (-574)))))) (-15 -1664 ((-1203 (-932) (-781)) (-574))) (-15 -3074 ($)) (-15 -3812 ($)) (-15 -4044 ((-112) $)) (-15 -4342 ((-781) $)) (-15 -3884 ((-932) $)) (-15 -1765 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-235 $) . T) ((-239) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-412) . T) ((-377) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-931) . T) ((-1064 #0#) . T) ((-1064 $) . T) ((-1069 #0#) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1165) . T) ((-1231) . T) ((-1235) . T)) -((-2213 (((-2 (|:| -1882 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) |#1|) 55)) (-1689 (((-2 (|:| -1882 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|)))) 53))) -(((-359 |#1| |#2| |#3|) (-10 -7 (-15 -1689 ((-2 (|:| -1882 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))))) (-15 -2213 ((-2 (|:| -1882 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) |#1|))) (-13 (-315) (-10 -8 (-15 -2827 ((-428 $) $)))) (-1257 |#1|) (-419 |#1| |#2|)) (T -359)) -((-2213 (*1 *2 *3) (-12 (-4 *3 (-13 (-315) (-10 -8 (-15 -2827 ((-428 $) $))))) (-4 *4 (-1257 *3)) (-5 *2 (-2 (|:| -1882 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-5 *1 (-359 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-1689 (*1 *2) (-12 (-4 *3 (-13 (-315) (-10 -8 (-15 -2827 ((-428 $) $))))) (-4 *4 (-1257 *3)) (-5 *2 (-2 (|:| -1882 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-5 *1 (-359 *3 *4 *5)) (-4 *5 (-419 *3 *4))))) -(-10 -7 (-15 -1689 ((-2 (|:| -1882 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))))) (-15 -2213 ((-2 (|:| -1882 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) |#1|))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-4297 (((-112) $) NIL)) (-2549 (((-781)) NIL)) (-1636 (((-921 |#1|) $) NIL) (($ $ (-932)) NIL (|has| (-921 |#1|) (-377)))) (-1664 (((-1203 (-932) (-781)) (-574)) NIL (|has| (-921 |#1|) (-377)))) (-3524 (((-3 $ "failed") $ $) NIL)) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-2072 (((-781)) NIL)) (-1600 (((-112) $ $) NIL)) (-1487 (((-781)) NIL (|has| (-921 |#1|) (-377)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-921 |#1|) "failed") $) NIL)) (-2206 (((-921 |#1|) $) NIL)) (-2737 (($ (-1281 (-921 |#1|))) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-921 |#1|) (-377)))) (-2786 (($ $ $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2820 (($) NIL (|has| (-921 |#1|) (-377)))) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3812 (($) NIL (|has| (-921 |#1|) (-377)))) (-4044 (((-112) $) NIL (|has| (-921 |#1|) (-377)))) (-1647 (($ $ (-781)) NIL (-2818 (|has| (-921 |#1|) (-146)) (|has| (-921 |#1|) (-377)))) (($ $) NIL (-2818 (|has| (-921 |#1|) (-146)) (|has| (-921 |#1|) (-377))))) (-2257 (((-112) $) NIL)) (-3884 (((-932) $) NIL (|has| (-921 |#1|) (-377))) (((-843 (-932)) $) NIL (-2818 (|has| (-921 |#1|) (-146)) (|has| (-921 |#1|) (-377))))) (-3199 (((-112) $) NIL)) (-2606 (($) NIL (|has| (-921 |#1|) (-377)))) (-2066 (((-112) $) NIL (|has| (-921 |#1|) (-377)))) (-2236 (((-921 |#1|) $) NIL) (($ $ (-932)) NIL (|has| (-921 |#1|) (-377)))) (-2748 (((-3 $ "failed") $) NIL (|has| (-921 |#1|) (-377)))) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1972 (((-1186 (-921 |#1|)) $) NIL) (((-1186 $) $ (-932)) NIL (|has| (-921 |#1|) (-377)))) (-4115 (((-932) $) NIL (|has| (-921 |#1|) (-377)))) (-1533 (((-1186 (-921 |#1|)) $) NIL (|has| (-921 |#1|) (-377)))) (-2037 (((-1186 (-921 |#1|)) $) NIL (|has| (-921 |#1|) (-377))) (((-3 (-1186 (-921 |#1|)) "failed") $ $) NIL (|has| (-921 |#1|) (-377)))) (-2559 (($ $ (-1186 (-921 |#1|))) NIL (|has| (-921 |#1|) (-377)))) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| (-921 |#1|) (-377)) CONST)) (-2576 (($ (-932)) NIL (|has| (-921 |#1|) (-377)))) (-4204 (((-112) $) NIL)) (-3966 (((-1133) $) NIL)) (-1835 (((-1281 (-654 (-2 (|:| -3083 (-921 |#1|)) (|:| -2576 (-1133)))))) NIL)) (-1683 (((-699 (-921 |#1|))) NIL)) (-2970 (($) NIL (|has| (-921 |#1|) (-377)))) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1417 (((-654 (-2 (|:| -4220 (-574)) (|:| -3715 (-574))))) NIL (|has| (-921 |#1|) (-377)))) (-4220 (((-428 $) $) NIL)) (-2989 (((-843 (-932))) NIL) (((-932)) NIL)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1730 (((-781) $) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-4342 (((-781) $) NIL (|has| (-921 |#1|) (-377))) (((-3 (-781) "failed") $ $) NIL (-2818 (|has| (-921 |#1|) (-146)) (|has| (-921 |#1|) (-377))))) (-4133 (((-135)) NIL)) (-3905 (($ $) NIL (|has| (-921 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-921 |#1|) (-377)))) (-4202 (((-843 (-932)) $) NIL) (((-932) $) NIL)) (-4185 (((-1186 (-921 |#1|))) NIL)) (-3074 (($) NIL (|has| (-921 |#1|) (-377)))) (-2765 (($) NIL (|has| (-921 |#1|) (-377)))) (-3487 (((-1281 (-921 |#1|)) $) NIL) (((-699 (-921 |#1|)) (-1281 $)) NIL)) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (|has| (-921 |#1|) (-377)))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-921 |#1|)) NIL)) (-3298 (($ $) NIL (|has| (-921 |#1|) (-377))) (((-3 $ "failed") $) NIL (-2818 (|has| (-921 |#1|) (-146)) (|has| (-921 |#1|) (-377))))) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-1882 (((-1281 $)) NIL) (((-1281 $) (-932)) NIL)) (-2069 (((-112) $ $) NIL)) (-3587 (((-112) $) NIL)) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-2661 (($ $) NIL (|has| (-921 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-921 |#1|) (-377)))) (-3610 (($ $) NIL (|has| (-921 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-921 |#1|) (-377)))) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL) (($ $ (-921 |#1|)) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-921 |#1|)) NIL) (($ (-921 |#1|) $) NIL))) -(((-360 |#1| |#2|) (-13 (-337 (-921 |#1|)) (-10 -7 (-15 -1835 ((-1281 (-654 (-2 (|:| -3083 (-921 |#1|)) (|:| -2576 (-1133))))))) (-15 -1683 ((-699 (-921 |#1|)))) (-15 -2072 ((-781))))) (-932) (-932)) (T -360)) -((-1835 (*1 *2) (-12 (-5 *2 (-1281 (-654 (-2 (|:| -3083 (-921 *3)) (|:| -2576 (-1133)))))) (-5 *1 (-360 *3 *4)) (-14 *3 (-932)) (-14 *4 (-932)))) (-1683 (*1 *2) (-12 (-5 *2 (-699 (-921 *3))) (-5 *1 (-360 *3 *4)) (-14 *3 (-932)) (-14 *4 (-932)))) (-2072 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-360 *3 *4)) (-14 *3 (-932)) (-14 *4 (-932))))) -(-13 (-337 (-921 |#1|)) (-10 -7 (-15 -1835 ((-1281 (-654 (-2 (|:| -3083 (-921 |#1|)) (|:| -2576 (-1133))))))) (-15 -1683 ((-699 (-921 |#1|)))) (-15 -2072 ((-781))))) -((-2849 (((-112) $ $) 73)) (-3138 (((-112) $) 88)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-4297 (((-112) $) NIL)) (-2549 (((-781)) NIL)) (-1636 ((|#1| $) 106) (($ $ (-932)) 104 (|has| |#1| (-377)))) (-1664 (((-1203 (-932) (-781)) (-574)) 170 (|has| |#1| (-377)))) (-3524 (((-3 $ "failed") $ $) NIL)) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-2072 (((-781)) 103)) (-1600 (((-112) $ $) NIL)) (-1487 (((-781)) 187 (|has| |#1| (-377)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#1| "failed") $) 127)) (-2206 ((|#1| $) 105)) (-2737 (($ (-1281 |#1|)) 71)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-377)))) (-2786 (($ $ $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2820 (($) 182 (|has| |#1| (-377)))) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3812 (($) 171 (|has| |#1| (-377)))) (-4044 (((-112) $) NIL (|has| |#1| (-377)))) (-1647 (($ $ (-781)) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2257 (((-112) $) NIL)) (-3884 (((-932) $) NIL (|has| |#1| (-377))) (((-843 (-932)) $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3199 (((-112) $) NIL)) (-2606 (($) 113 (|has| |#1| (-377)))) (-2066 (((-112) $) 200 (|has| |#1| (-377)))) (-2236 ((|#1| $) 108) (($ $ (-932)) 107 (|has| |#1| (-377)))) (-2748 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1972 (((-1186 |#1|) $) 214) (((-1186 $) $ (-932)) NIL (|has| |#1| (-377)))) (-4115 (((-932) $) 148 (|has| |#1| (-377)))) (-1533 (((-1186 |#1|) $) 87 (|has| |#1| (-377)))) (-2037 (((-1186 |#1|) $) 84 (|has| |#1| (-377))) (((-3 (-1186 |#1|) "failed") $ $) 96 (|has| |#1| (-377)))) (-2559 (($ $ (-1186 |#1|)) 83 (|has| |#1| (-377)))) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) 218)) (-3818 (($) NIL (|has| |#1| (-377)) CONST)) (-2576 (($ (-932)) 150 (|has| |#1| (-377)))) (-4204 (((-112) $) 123)) (-3966 (((-1133) $) NIL)) (-1835 (((-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133)))))) 97)) (-1683 (((-699 |#1|)) 101)) (-2970 (($) 110 (|has| |#1| (-377)))) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1417 (((-654 (-2 (|:| -4220 (-574)) (|:| -3715 (-574))))) 173 (|has| |#1| (-377)))) (-4220 (((-428 $) $) NIL)) (-2989 (((-843 (-932))) NIL) (((-932)) 174)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1730 (((-781) $) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-4342 (((-781) $) NIL (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4133 (((-135)) NIL)) (-3905 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-4202 (((-843 (-932)) $) NIL) (((-932) $) 75)) (-4185 (((-1186 |#1|)) 175)) (-3074 (($) 147 (|has| |#1| (-377)))) (-2765 (($) NIL (|has| |#1| (-377)))) (-3487 (((-1281 |#1|) $) 121) (((-699 |#1|) (-1281 $)) NIL)) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2943 (((-872) $) 140) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 70)) (-3298 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-1364 (((-781)) 180 T CONST)) (-3284 (((-112) $ $) NIL)) (-1882 (((-1281 $)) 197) (((-1281 $) (-932)) 116)) (-2069 (((-112) $ $) NIL)) (-3587 (((-112) $) NIL)) (-2133 (($) 186 T CONST)) (-2145 (($) 161 T CONST)) (-2661 (($ $) 122 (|has| |#1| (-377))) (($ $ (-781)) 114 (|has| |#1| (-377)))) (-3610 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-2981 (((-112) $ $) 208)) (-3108 (($ $ $) 119) (($ $ |#1|) 120)) (-3094 (($ $) 202) (($ $ $) 206)) (-3079 (($ $ $) 204)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 153)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 211) (($ $ $) 164) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 118))) -(((-361 |#1| |#2|) (-13 (-337 |#1|) (-10 -7 (-15 -1835 ((-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))))) (-15 -1683 ((-699 |#1|))) (-15 -2072 ((-781))))) (-358) (-3 (-1186 |#1|) (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))))) (T -361)) -((-1835 (*1 *2) (-12 (-5 *2 (-1281 (-654 (-2 (|:| -3083 *3) (|:| -2576 (-1133)))))) (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) (-14 *4 (-3 (-1186 *3) *2)))) (-1683 (*1 *2) (-12 (-5 *2 (-699 *3)) (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) (-14 *4 (-3 (-1186 *3) (-1281 (-654 (-2 (|:| -3083 *3) (|:| -2576 (-1133))))))))) (-2072 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) (-14 *4 (-3 (-1186 *3) (-1281 (-654 (-2 (|:| -3083 *3) (|:| -2576 (-1133)))))))))) -(-13 (-337 |#1|) (-10 -7 (-15 -1835 ((-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))))) (-15 -1683 ((-699 |#1|))) (-15 -2072 ((-781))))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-4297 (((-112) $) NIL)) (-2549 (((-781)) NIL)) (-1636 ((|#1| $) NIL) (($ $ (-932)) NIL (|has| |#1| (-377)))) (-1664 (((-1203 (-932) (-781)) (-574)) NIL (|has| |#1| (-377)))) (-3524 (((-3 $ "failed") $ $) NIL)) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-2072 (((-781)) NIL)) (-1600 (((-112) $ $) NIL)) (-1487 (((-781)) NIL (|has| |#1| (-377)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#1| "failed") $) NIL)) (-2206 ((|#1| $) NIL)) (-2737 (($ (-1281 |#1|)) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-377)))) (-2786 (($ $ $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2820 (($) NIL (|has| |#1| (-377)))) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3812 (($) NIL (|has| |#1| (-377)))) (-4044 (((-112) $) NIL (|has| |#1| (-377)))) (-1647 (($ $ (-781)) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2257 (((-112) $) NIL)) (-3884 (((-932) $) NIL (|has| |#1| (-377))) (((-843 (-932)) $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3199 (((-112) $) NIL)) (-2606 (($) NIL (|has| |#1| (-377)))) (-2066 (((-112) $) NIL (|has| |#1| (-377)))) (-2236 ((|#1| $) NIL) (($ $ (-932)) NIL (|has| |#1| (-377)))) (-2748 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1972 (((-1186 |#1|) $) NIL) (((-1186 $) $ (-932)) NIL (|has| |#1| (-377)))) (-4115 (((-932) $) NIL (|has| |#1| (-377)))) (-1533 (((-1186 |#1|) $) NIL (|has| |#1| (-377)))) (-2037 (((-1186 |#1|) $) NIL (|has| |#1| (-377))) (((-3 (-1186 |#1|) "failed") $ $) NIL (|has| |#1| (-377)))) (-2559 (($ $ (-1186 |#1|)) NIL (|has| |#1| (-377)))) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| |#1| (-377)) CONST)) (-2576 (($ (-932)) NIL (|has| |#1| (-377)))) (-4204 (((-112) $) NIL)) (-3966 (((-1133) $) NIL)) (-1835 (((-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133)))))) NIL)) (-1683 (((-699 |#1|)) NIL)) (-2970 (($) NIL (|has| |#1| (-377)))) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1417 (((-654 (-2 (|:| -4220 (-574)) (|:| -3715 (-574))))) NIL (|has| |#1| (-377)))) (-4220 (((-428 $) $) NIL)) (-2989 (((-843 (-932))) NIL) (((-932)) NIL)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1730 (((-781) $) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-4342 (((-781) $) NIL (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4133 (((-135)) NIL)) (-3905 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-4202 (((-843 (-932)) $) NIL) (((-932) $) NIL)) (-4185 (((-1186 |#1|)) NIL)) (-3074 (($) NIL (|has| |#1| (-377)))) (-2765 (($) NIL (|has| |#1| (-377)))) (-3487 (((-1281 |#1|) $) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) NIL)) (-3298 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-1882 (((-1281 $)) NIL) (((-1281 $) (-932)) NIL)) (-2069 (((-112) $ $) NIL)) (-3587 (((-112) $) NIL)) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-2661 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-3610 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-362 |#1| |#2|) (-13 (-337 |#1|) (-10 -7 (-15 -1835 ((-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))))) (-15 -1683 ((-699 |#1|))) (-15 -2072 ((-781))))) (-358) (-932)) (T -362)) -((-1835 (*1 *2) (-12 (-5 *2 (-1281 (-654 (-2 (|:| -3083 *3) (|:| -2576 (-1133)))))) (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) (-14 *4 (-932)))) (-1683 (*1 *2) (-12 (-5 *2 (-699 *3)) (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) (-14 *4 (-932)))) (-2072 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) (-14 *4 (-932))))) -(-13 (-337 |#1|) (-10 -7 (-15 -1835 ((-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))))) (-15 -1683 ((-699 |#1|))) (-15 -2072 ((-781))))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-4297 (((-112) $) NIL)) (-2549 (((-781)) NIL)) (-1636 (((-921 |#1|) $) NIL) (($ $ (-932)) NIL (|has| (-921 |#1|) (-377)))) (-1664 (((-1203 (-932) (-781)) (-574)) NIL (|has| (-921 |#1|) (-377)))) (-3524 (((-3 $ "failed") $ $) NIL)) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-1600 (((-112) $ $) NIL)) (-1487 (((-781)) NIL (|has| (-921 |#1|) (-377)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-921 |#1|) "failed") $) NIL)) (-2206 (((-921 |#1|) $) NIL)) (-2737 (($ (-1281 (-921 |#1|))) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-921 |#1|) (-377)))) (-2786 (($ $ $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2820 (($) NIL (|has| (-921 |#1|) (-377)))) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3812 (($) NIL (|has| (-921 |#1|) (-377)))) (-4044 (((-112) $) NIL (|has| (-921 |#1|) (-377)))) (-1647 (($ $ (-781)) NIL (-2818 (|has| (-921 |#1|) (-146)) (|has| (-921 |#1|) (-377)))) (($ $) NIL (-2818 (|has| (-921 |#1|) (-146)) (|has| (-921 |#1|) (-377))))) (-2257 (((-112) $) NIL)) (-3884 (((-932) $) NIL (|has| (-921 |#1|) (-377))) (((-843 (-932)) $) NIL (-2818 (|has| (-921 |#1|) (-146)) (|has| (-921 |#1|) (-377))))) (-3199 (((-112) $) NIL)) (-2606 (($) NIL (|has| (-921 |#1|) (-377)))) (-2066 (((-112) $) NIL (|has| (-921 |#1|) (-377)))) (-2236 (((-921 |#1|) $) NIL) (($ $ (-932)) NIL (|has| (-921 |#1|) (-377)))) (-2748 (((-3 $ "failed") $) NIL (|has| (-921 |#1|) (-377)))) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1972 (((-1186 (-921 |#1|)) $) NIL) (((-1186 $) $ (-932)) NIL (|has| (-921 |#1|) (-377)))) (-4115 (((-932) $) NIL (|has| (-921 |#1|) (-377)))) (-1533 (((-1186 (-921 |#1|)) $) NIL (|has| (-921 |#1|) (-377)))) (-2037 (((-1186 (-921 |#1|)) $) NIL (|has| (-921 |#1|) (-377))) (((-3 (-1186 (-921 |#1|)) "failed") $ $) NIL (|has| (-921 |#1|) (-377)))) (-2559 (($ $ (-1186 (-921 |#1|))) NIL (|has| (-921 |#1|) (-377)))) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| (-921 |#1|) (-377)) CONST)) (-2576 (($ (-932)) NIL (|has| (-921 |#1|) (-377)))) (-4204 (((-112) $) NIL)) (-3966 (((-1133) $) NIL)) (-2970 (($) NIL (|has| (-921 |#1|) (-377)))) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1417 (((-654 (-2 (|:| -4220 (-574)) (|:| -3715 (-574))))) NIL (|has| (-921 |#1|) (-377)))) (-4220 (((-428 $) $) NIL)) (-2989 (((-843 (-932))) NIL) (((-932)) NIL)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1730 (((-781) $) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-4342 (((-781) $) NIL (|has| (-921 |#1|) (-377))) (((-3 (-781) "failed") $ $) NIL (-2818 (|has| (-921 |#1|) (-146)) (|has| (-921 |#1|) (-377))))) (-4133 (((-135)) NIL)) (-3905 (($ $) NIL (|has| (-921 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-921 |#1|) (-377)))) (-4202 (((-843 (-932)) $) NIL) (((-932) $) NIL)) (-4185 (((-1186 (-921 |#1|))) NIL)) (-3074 (($) NIL (|has| (-921 |#1|) (-377)))) (-2765 (($) NIL (|has| (-921 |#1|) (-377)))) (-3487 (((-1281 (-921 |#1|)) $) NIL) (((-699 (-921 |#1|)) (-1281 $)) NIL)) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (|has| (-921 |#1|) (-377)))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-921 |#1|)) NIL)) (-3298 (($ $) NIL (|has| (-921 |#1|) (-377))) (((-3 $ "failed") $) NIL (-2818 (|has| (-921 |#1|) (-146)) (|has| (-921 |#1|) (-377))))) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-1882 (((-1281 $)) NIL) (((-1281 $) (-932)) NIL)) (-2069 (((-112) $ $) NIL)) (-3587 (((-112) $) NIL)) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-2661 (($ $) NIL (|has| (-921 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-921 |#1|) (-377)))) (-3610 (($ $) NIL (|has| (-921 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-921 |#1|) (-377)))) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL) (($ $ (-921 |#1|)) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-921 |#1|)) NIL) (($ (-921 |#1|) $) NIL))) -(((-363 |#1| |#2|) (-337 (-921 |#1|)) (-932) (-932)) (T -363)) -NIL -(-337 (-921 |#1|)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-4297 (((-112) $) NIL)) (-2549 (((-781)) NIL)) (-1636 ((|#1| $) NIL) (($ $ (-932)) NIL (|has| |#1| (-377)))) (-1664 (((-1203 (-932) (-781)) (-574)) 129 (|has| |#1| (-377)))) (-3524 (((-3 $ "failed") $ $) NIL)) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-1600 (((-112) $ $) NIL)) (-1487 (((-781)) 155 (|has| |#1| (-377)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#1| "failed") $) 103)) (-2206 ((|#1| $) 100)) (-2737 (($ (-1281 |#1|)) 95)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-377)))) (-2786 (($ $ $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2820 (($) 92 (|has| |#1| (-377)))) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3812 (($) 51 (|has| |#1| (-377)))) (-4044 (((-112) $) NIL (|has| |#1| (-377)))) (-1647 (($ $ (-781)) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2257 (((-112) $) NIL)) (-3884 (((-932) $) NIL (|has| |#1| (-377))) (((-843 (-932)) $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3199 (((-112) $) NIL)) (-2606 (($) 130 (|has| |#1| (-377)))) (-2066 (((-112) $) 84 (|has| |#1| (-377)))) (-2236 ((|#1| $) 47) (($ $ (-932)) 52 (|has| |#1| (-377)))) (-2748 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1972 (((-1186 |#1|) $) 75) (((-1186 $) $ (-932)) NIL (|has| |#1| (-377)))) (-4115 (((-932) $) 107 (|has| |#1| (-377)))) (-1533 (((-1186 |#1|) $) NIL (|has| |#1| (-377)))) (-2037 (((-1186 |#1|) $) NIL (|has| |#1| (-377))) (((-3 (-1186 |#1|) "failed") $ $) NIL (|has| |#1| (-377)))) (-2559 (($ $ (-1186 |#1|)) NIL (|has| |#1| (-377)))) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| |#1| (-377)) CONST)) (-2576 (($ (-932)) 105 (|has| |#1| (-377)))) (-4204 (((-112) $) 157)) (-3966 (((-1133) $) NIL)) (-2970 (($) 44 (|has| |#1| (-377)))) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1417 (((-654 (-2 (|:| -4220 (-574)) (|:| -3715 (-574))))) 124 (|has| |#1| (-377)))) (-4220 (((-428 $) $) NIL)) (-2989 (((-843 (-932))) NIL) (((-932)) 154)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1730 (((-781) $) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-4342 (((-781) $) NIL (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4133 (((-135)) NIL)) (-3905 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-4202 (((-843 (-932)) $) NIL) (((-932) $) 67)) (-4185 (((-1186 |#1|)) 98)) (-3074 (($) 135 (|has| |#1| (-377)))) (-2765 (($) NIL (|has| |#1| (-377)))) (-3487 (((-1281 |#1|) $) 63) (((-699 |#1|) (-1281 $)) NIL)) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2943 (((-872) $) 153) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 97)) (-3298 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-1364 (((-781)) 159 T CONST)) (-3284 (((-112) $ $) 161)) (-1882 (((-1281 $)) 119) (((-1281 $) (-932)) 58)) (-2069 (((-112) $ $) NIL)) (-3587 (((-112) $) NIL)) (-2133 (($) 121 T CONST)) (-2145 (($) 40 T CONST)) (-2661 (($ $) 78 (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-3610 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-2981 (((-112) $ $) 117)) (-3108 (($ $ $) 109) (($ $ |#1|) 110)) (-3094 (($ $) 90) (($ $ $) 115)) (-3079 (($ $ $) 113)) (** (($ $ (-932)) NIL) (($ $ (-781)) 53) (($ $ (-574)) 138)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 88) (($ $ $) 65) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 86))) -(((-364 |#1| |#2|) (-337 |#1|) (-358) (-1186 |#1|)) (T -364)) -NIL -(-337 |#1|) -((-1932 ((|#1| (-1186 |#2|)) 59))) -(((-365 |#1| |#2|) (-10 -7 (-15 -1932 (|#1| (-1186 |#2|)))) (-13 (-412) (-10 -7 (-15 -2943 (|#1| |#2|)) (-15 -4115 ((-932) |#1|)) (-15 -1882 ((-1281 |#1|) (-932))) (-15 -2661 (|#1| |#1|)))) (-358)) (T -365)) -((-1932 (*1 *2 *3) (-12 (-5 *3 (-1186 *4)) (-4 *4 (-358)) (-4 *2 (-13 (-412) (-10 -7 (-15 -2943 (*2 *4)) (-15 -4115 ((-932) *2)) (-15 -1882 ((-1281 *2) (-932))) (-15 -2661 (*2 *2))))) (-5 *1 (-365 *2 *4))))) -(-10 -7 (-15 -1932 (|#1| (-1186 |#2|)))) -((-1920 (((-969 (-1186 |#1|)) (-1186 |#1|)) 49)) (-2820 (((-1186 |#1|) (-932) (-932)) 154) (((-1186 |#1|) (-932)) 150)) (-4044 (((-112) (-1186 |#1|)) 107)) (-2978 (((-932) (-932)) 85)) (-3996 (((-932) (-932)) 92)) (-2850 (((-932) (-932)) 83)) (-2066 (((-112) (-1186 |#1|)) 111)) (-3424 (((-3 (-1186 |#1|) "failed") (-1186 |#1|)) 135)) (-1888 (((-3 (-1186 |#1|) "failed") (-1186 |#1|)) 140)) (-4227 (((-3 (-1186 |#1|) "failed") (-1186 |#1|)) 139)) (-3372 (((-3 (-1186 |#1|) "failed") (-1186 |#1|)) 138)) (-3062 (((-3 (-1186 |#1|) "failed") (-1186 |#1|)) 131)) (-1597 (((-1186 |#1|) (-1186 |#1|)) 71)) (-4054 (((-1186 |#1|) (-932)) 145)) (-1535 (((-1186 |#1|) (-932)) 148)) (-2157 (((-1186 |#1|) (-932)) 147)) (-1889 (((-1186 |#1|) (-932)) 146)) (-1607 (((-1186 |#1|) (-932)) 143))) -(((-366 |#1|) (-10 -7 (-15 -4044 ((-112) (-1186 |#1|))) (-15 -2066 ((-112) (-1186 |#1|))) (-15 -2850 ((-932) (-932))) (-15 -2978 ((-932) (-932))) (-15 -3996 ((-932) (-932))) (-15 -1607 ((-1186 |#1|) (-932))) (-15 -4054 ((-1186 |#1|) (-932))) (-15 -1889 ((-1186 |#1|) (-932))) (-15 -2157 ((-1186 |#1|) (-932))) (-15 -1535 ((-1186 |#1|) (-932))) (-15 -3062 ((-3 (-1186 |#1|) "failed") (-1186 |#1|))) (-15 -3424 ((-3 (-1186 |#1|) "failed") (-1186 |#1|))) (-15 -3372 ((-3 (-1186 |#1|) "failed") (-1186 |#1|))) (-15 -4227 ((-3 (-1186 |#1|) "failed") (-1186 |#1|))) (-15 -1888 ((-3 (-1186 |#1|) "failed") (-1186 |#1|))) (-15 -2820 ((-1186 |#1|) (-932))) (-15 -2820 ((-1186 |#1|) (-932) (-932))) (-15 -1597 ((-1186 |#1|) (-1186 |#1|))) (-15 -1920 ((-969 (-1186 |#1|)) (-1186 |#1|)))) (-358)) (T -366)) -((-1920 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-969 (-1186 *4))) (-5 *1 (-366 *4)) (-5 *3 (-1186 *4)))) (-1597 (*1 *2 *2) (-12 (-5 *2 (-1186 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-2820 (*1 *2 *3 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-2820 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-1888 (*1 *2 *2) (|partial| -12 (-5 *2 (-1186 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-4227 (*1 *2 *2) (|partial| -12 (-5 *2 (-1186 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-3372 (*1 *2 *2) (|partial| -12 (-5 *2 (-1186 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-3424 (*1 *2 *2) (|partial| -12 (-5 *2 (-1186 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-3062 (*1 *2 *2) (|partial| -12 (-5 *2 (-1186 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-1535 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-2157 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-1889 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-1607 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-3996 (*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-366 *3)) (-4 *3 (-358)))) (-2978 (*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-366 *3)) (-4 *3 (-358)))) (-2850 (*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-366 *3)) (-4 *3 (-358)))) (-2066 (*1 *2 *3) (-12 (-5 *3 (-1186 *4)) (-4 *4 (-358)) (-5 *2 (-112)) (-5 *1 (-366 *4)))) (-4044 (*1 *2 *3) (-12 (-5 *3 (-1186 *4)) (-4 *4 (-358)) (-5 *2 (-112)) (-5 *1 (-366 *4))))) -(-10 -7 (-15 -4044 ((-112) (-1186 |#1|))) (-15 -2066 ((-112) (-1186 |#1|))) (-15 -2850 ((-932) (-932))) (-15 -2978 ((-932) (-932))) (-15 -3996 ((-932) (-932))) (-15 -1607 ((-1186 |#1|) (-932))) (-15 -4054 ((-1186 |#1|) (-932))) (-15 -1889 ((-1186 |#1|) (-932))) (-15 -2157 ((-1186 |#1|) (-932))) (-15 -1535 ((-1186 |#1|) (-932))) (-15 -3062 ((-3 (-1186 |#1|) "failed") (-1186 |#1|))) (-15 -3424 ((-3 (-1186 |#1|) "failed") (-1186 |#1|))) (-15 -3372 ((-3 (-1186 |#1|) "failed") (-1186 |#1|))) (-15 -4227 ((-3 (-1186 |#1|) "failed") (-1186 |#1|))) (-15 -1888 ((-3 (-1186 |#1|) "failed") (-1186 |#1|))) (-15 -2820 ((-1186 |#1|) (-932))) (-15 -2820 ((-1186 |#1|) (-932) (-932))) (-15 -1597 ((-1186 |#1|) (-1186 |#1|))) (-15 -1920 ((-969 (-1186 |#1|)) (-1186 |#1|)))) -((-1879 (((-3 (-654 |#3|) "failed") (-654 |#3|) |#3|) 38))) -(((-367 |#1| |#2| |#3|) (-10 -7 (-15 -1879 ((-3 (-654 |#3|) "failed") (-654 |#3|) |#3|))) (-358) (-1257 |#1|) (-1257 |#2|)) (T -367)) -((-1879 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 *3)) (-4 *3 (-1257 *5)) (-4 *5 (-1257 *4)) (-4 *4 (-358)) (-5 *1 (-367 *4 *5 *3))))) -(-10 -7 (-15 -1879 ((-3 (-654 |#3|) "failed") (-654 |#3|) |#3|))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-4297 (((-112) $) NIL)) (-2549 (((-781)) NIL)) (-1636 ((|#1| $) NIL) (($ $ (-932)) NIL (|has| |#1| (-377)))) (-1664 (((-1203 (-932) (-781)) (-574)) NIL (|has| |#1| (-377)))) (-3524 (((-3 $ "failed") $ $) NIL)) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-1600 (((-112) $ $) NIL)) (-1487 (((-781)) NIL (|has| |#1| (-377)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#1| "failed") $) NIL)) (-2206 ((|#1| $) NIL)) (-2737 (($ (-1281 |#1|)) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-377)))) (-2786 (($ $ $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2820 (($) NIL (|has| |#1| (-377)))) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3812 (($) NIL (|has| |#1| (-377)))) (-4044 (((-112) $) NIL (|has| |#1| (-377)))) (-1647 (($ $ (-781)) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2257 (((-112) $) NIL)) (-3884 (((-932) $) NIL (|has| |#1| (-377))) (((-843 (-932)) $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3199 (((-112) $) NIL)) (-2606 (($) NIL (|has| |#1| (-377)))) (-2066 (((-112) $) NIL (|has| |#1| (-377)))) (-2236 ((|#1| $) NIL) (($ $ (-932)) NIL (|has| |#1| (-377)))) (-2748 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1972 (((-1186 |#1|) $) NIL) (((-1186 $) $ (-932)) NIL (|has| |#1| (-377)))) (-4115 (((-932) $) NIL (|has| |#1| (-377)))) (-1533 (((-1186 |#1|) $) NIL (|has| |#1| (-377)))) (-2037 (((-1186 |#1|) $) NIL (|has| |#1| (-377))) (((-3 (-1186 |#1|) "failed") $ $) NIL (|has| |#1| (-377)))) (-2559 (($ $ (-1186 |#1|)) NIL (|has| |#1| (-377)))) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| |#1| (-377)) CONST)) (-2576 (($ (-932)) NIL (|has| |#1| (-377)))) (-4204 (((-112) $) NIL)) (-3966 (((-1133) $) NIL)) (-2970 (($) NIL (|has| |#1| (-377)))) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1417 (((-654 (-2 (|:| -4220 (-574)) (|:| -3715 (-574))))) NIL (|has| |#1| (-377)))) (-4220 (((-428 $) $) NIL)) (-2989 (((-843 (-932))) NIL) (((-932)) NIL)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1730 (((-781) $) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-4342 (((-781) $) NIL (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4133 (((-135)) NIL)) (-3905 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-4202 (((-843 (-932)) $) NIL) (((-932) $) NIL)) (-4185 (((-1186 |#1|)) NIL)) (-3074 (($) NIL (|has| |#1| (-377)))) (-2765 (($) NIL (|has| |#1| (-377)))) (-3487 (((-1281 |#1|) $) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) NIL)) (-3298 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-1882 (((-1281 $)) NIL) (((-1281 $) (-932)) NIL)) (-2069 (((-112) $ $) NIL)) (-3587 (((-112) $) NIL)) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-2661 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-3610 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-368 |#1| |#2|) (-337 |#1|) (-358) (-932)) (T -368)) -NIL -(-337 |#1|) -((-2904 (((-112) (-654 (-963 |#1|))) 41)) (-3821 (((-654 (-963 |#1|)) (-654 (-963 |#1|))) 53)) (-1699 (((-3 (-654 (-963 |#1|)) "failed") (-654 (-963 |#1|))) 48))) -(((-369 |#1| |#2|) (-10 -7 (-15 -2904 ((-112) (-654 (-963 |#1|)))) (-15 -1699 ((-3 (-654 (-963 |#1|)) "failed") (-654 (-963 |#1|)))) (-15 -3821 ((-654 (-963 |#1|)) (-654 (-963 |#1|))))) (-462) (-654 (-1190))) (T -369)) -((-3821 (*1 *2 *2) (-12 (-5 *2 (-654 (-963 *3))) (-4 *3 (-462)) (-5 *1 (-369 *3 *4)) (-14 *4 (-654 (-1190))))) (-1699 (*1 *2 *2) (|partial| -12 (-5 *2 (-654 (-963 *3))) (-4 *3 (-462)) (-5 *1 (-369 *3 *4)) (-14 *4 (-654 (-1190))))) (-2904 (*1 *2 *3) (-12 (-5 *3 (-654 (-963 *4))) (-4 *4 (-462)) (-5 *2 (-112)) (-5 *1 (-369 *4 *5)) (-14 *5 (-654 (-1190)))))) -(-10 -7 (-15 -2904 ((-112) (-654 (-963 |#1|)))) (-15 -1699 ((-3 (-654 (-963 |#1|)) "failed") (-654 (-963 |#1|)))) (-15 -3821 ((-654 (-963 |#1|)) (-654 (-963 |#1|))))) -((-2849 (((-112) $ $) NIL)) (-1487 (((-781) $) NIL)) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#1| "failed") $) NIL)) (-2206 ((|#1| $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-3199 (((-112) $) 17)) (-1915 ((|#1| $ (-574)) NIL)) (-3948 (((-574) $ (-574)) NIL)) (-2354 (($ (-1 |#1| |#1|) $) 34)) (-1539 (($ (-1 (-574) (-574)) $) 26)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) 28)) (-3966 (((-1133) $) NIL)) (-4219 (((-654 (-2 (|:| |gen| |#1|) (|:| -1609 (-574)))) $) 30)) (-1479 (($ $ $) NIL)) (-3204 (($ $ $) NIL)) (-2943 (((-872) $) 40) (($ |#1|) NIL)) (-3284 (((-112) $ $) NIL)) (-2145 (($) 11 T CONST)) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL) (($ |#1| (-574)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) -(((-370 |#1|) (-13 (-483) (-1051 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-574))) (-15 -1487 ((-781) $)) (-15 -3948 ((-574) $ (-574))) (-15 -1915 (|#1| $ (-574))) (-15 -1539 ($ (-1 (-574) (-574)) $)) (-15 -2354 ($ (-1 |#1| |#1|) $)) (-15 -4219 ((-654 (-2 (|:| |gen| |#1|) (|:| -1609 (-574)))) $)))) (-1113)) (T -370)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1113)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1113)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-370 *2)) (-4 *2 (-1113)))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-370 *3)) (-4 *3 (-1113)))) (-3948 (*1 *2 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-370 *3)) (-4 *3 (-1113)))) (-1915 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-370 *2)) (-4 *2 (-1113)))) (-1539 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-574) (-574))) (-5 *1 (-370 *3)) (-4 *3 (-1113)))) (-2354 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1113)) (-5 *1 (-370 *3)))) (-4219 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1609 (-574))))) (-5 *1 (-370 *3)) (-4 *3 (-1113))))) -(-13 (-483) (-1051 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-574))) (-15 -1487 ((-781) $)) (-15 -3948 ((-574) $ (-574))) (-15 -1915 (|#1| $ (-574))) (-15 -1539 ($ (-1 (-574) (-574)) $)) (-15 -2354 ($ (-1 |#1| |#1|) $)) (-15 -4219 ((-654 (-2 (|:| |gen| |#1|) (|:| -1609 (-574)))) $)))) -((-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 13)) (-1575 (($ $) 14)) (-2827 (((-428 $) $) 34)) (-2257 (((-112) $) 30)) (-1324 (($ $) 19)) (-2873 (($ $ $) 25) (($ (-654 $)) NIL)) (-4220 (((-428 $) $) 35)) (-2838 (((-3 $ "failed") $ $) 24)) (-1730 (((-781) $) 28)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 39)) (-2069 (((-112) $ $) 16)) (-3108 (($ $ $) 37))) -(((-371 |#1|) (-10 -8 (-15 -3108 (|#1| |#1| |#1|)) (-15 -1324 (|#1| |#1|)) (-15 -2257 ((-112) |#1|)) (-15 -2827 ((-428 |#1|) |#1|)) (-15 -4220 ((-428 |#1|) |#1|)) (-15 -1989 ((-2 (|:| -1411 |#1|) (|:| -2766 |#1|)) |#1| |#1|)) (-15 -1730 ((-781) |#1|)) (-15 -2873 (|#1| (-654 |#1|))) (-15 -2873 (|#1| |#1| |#1|)) (-15 -2069 ((-112) |#1| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -1776 ((-2 (|:| -2785 |#1|) (|:| -4443 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#1|))) (-372)) (T -371)) -NIL -(-10 -8 (-15 -3108 (|#1| |#1| |#1|)) (-15 -1324 (|#1| |#1|)) (-15 -2257 ((-112) |#1|)) (-15 -2827 ((-428 |#1|) |#1|)) (-15 -4220 ((-428 |#1|) |#1|)) (-15 -1989 ((-2 (|:| -1411 |#1|) (|:| -2766 |#1|)) |#1| |#1|)) (-15 -1730 ((-781) |#1|)) (-15 -2873 (|#1| (-654 |#1|))) (-15 -2873 (|#1| |#1| |#1|)) (-15 -2069 ((-112) |#1| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -1776 ((-2 (|:| -2785 |#1|) (|:| -4443 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-1575 (($ $) 46)) (-2085 (((-112) $) 44)) (-3524 (((-3 $ "failed") $ $) 20)) (-2568 (($ $) 81)) (-2827 (((-428 $) $) 80)) (-1600 (((-112) $ $) 65)) (-3426 (($) 18 T CONST)) (-2786 (($ $ $) 61)) (-3434 (((-3 $ "failed") $) 37)) (-2797 (($ $ $) 62)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) 57)) (-2257 (((-112) $) 79)) (-3199 (((-112) $) 35)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2832 (($ $ $) 52) (($ (-654 $)) 51)) (-4136 (((-1172) $) 10)) (-1324 (($ $) 78)) (-3966 (((-1133) $) 11)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2873 (($ $ $) 54) (($ (-654 $)) 53)) (-4220 (((-428 $) $) 82)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2838 (((-3 $ "failed") $ $) 48)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-1730 (((-781) $) 64)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 63)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2069 (((-112) $ $) 45)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3108 (($ $ $) 73)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75))) -(((-372) (-141)) (T -372)) -((-3108 (*1 *1 *1 *1) (-4 *1 (-372)))) -(-13 (-315) (-1235) (-249) (-10 -8 (-15 -3108 ($ $ $)) (-6 -4454) (-6 -4448))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-931) . T) ((-1064 #0#) . T) ((-1064 $) . T) ((-1069 #0#) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1235) . T)) -((-2849 (((-112) $ $) 7)) (-3203 ((|#2| $ |#2|) 14)) (-2263 (($ $ (-1172)) 19)) (-3259 ((|#2| $) 15)) (-1675 (($ |#1|) 21) (($ |#1| (-1172)) 20)) (-2032 ((|#1| $) 17)) (-4136 (((-1172) $) 10)) (-3766 (((-1172) $) 16)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3646 (($ $) 18)) (-3284 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) -(((-373 |#1| |#2|) (-141) (-1113) (-1113)) (T -373)) -((-1675 (*1 *1 *2) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113)))) (-1675 (*1 *1 *2 *3) (-12 (-5 *3 (-1172)) (-4 *1 (-373 *2 *4)) (-4 *2 (-1113)) (-4 *4 (-1113)))) (-2263 (*1 *1 *1 *2) (-12 (-5 *2 (-1172)) (-4 *1 (-373 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)))) (-3646 (*1 *1 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113)))) (-2032 (*1 *2 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *3 (-1113)) (-4 *2 (-1113)))) (-3766 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-5 *2 (-1172)))) (-3259 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1113)))) (-3203 (*1 *2 *1 *2) (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1113))))) -(-13 (-1113) (-10 -8 (-15 -1675 ($ |t#1|)) (-15 -1675 ($ |t#1| (-1172))) (-15 -2263 ($ $ (-1172))) (-15 -3646 ($ $)) (-15 -2032 (|t#1| $)) (-15 -3766 ((-1172) $)) (-15 -3259 (|t#2| $)) (-15 -3203 (|t#2| $ |t#2|)))) -(((-102) . T) ((-623 (-872)) . T) ((-1113) . T)) -((-2849 (((-112) $ $) NIL)) (-3203 ((|#1| $ |#1|) 31)) (-2263 (($ $ (-1172)) 23)) (-4206 (((-3 |#1| "failed") $) 30)) (-3259 ((|#1| $) 28)) (-1675 (($ (-398)) 22) (($ (-398) (-1172)) 21)) (-2032 (((-398) $) 25)) (-4136 (((-1172) $) NIL)) (-3766 (((-1172) $) 26)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 20)) (-3646 (($ $) 24)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 19))) -(((-374 |#1|) (-13 (-373 (-398) |#1|) (-10 -8 (-15 -4206 ((-3 |#1| "failed") $)))) (-1113)) (T -374)) -((-4206 (*1 *2 *1) (|partial| -12 (-5 *1 (-374 *2)) (-4 *2 (-1113))))) -(-13 (-373 (-398) |#1|) (-10 -8 (-15 -4206 ((-3 |#1| "failed") $)))) -((-2174 (((-1281 (-699 |#2|)) (-1281 $)) 67)) (-2301 (((-699 |#2|) (-1281 $)) 139)) (-2538 ((|#2| $) 36)) (-3208 (((-699 |#2|) $ (-1281 $)) 142)) (-2784 (((-3 $ "failed") $) 89)) (-3870 ((|#2| $) 39)) (-3664 (((-1186 |#2|) $) 98)) (-1565 ((|#2| (-1281 $)) 122)) (-1436 (((-1186 |#2|) $) 32)) (-3287 (((-112)) 116)) (-2737 (($ (-1281 |#2|) (-1281 $)) 132)) (-3434 (((-3 $ "failed") $) 93)) (-1514 (((-112)) 111)) (-3168 (((-112)) 106)) (-3531 (((-112)) 58)) (-2284 (((-699 |#2|) (-1281 $)) 137)) (-1450 ((|#2| $) 35)) (-2787 (((-699 |#2|) $ (-1281 $)) 141)) (-4271 (((-3 $ "failed") $) 87)) (-2552 ((|#2| $) 38)) (-1460 (((-1186 |#2|) $) 97)) (-1810 ((|#2| (-1281 $)) 120)) (-1943 (((-1186 |#2|) $) 30)) (-4037 (((-112)) 115)) (-1342 (((-112)) 108)) (-3227 (((-112)) 56)) (-2949 (((-112)) 103)) (-3604 (((-112)) 117)) (-3487 (((-1281 |#2|) $ (-1281 $)) NIL) (((-699 |#2|) (-1281 $) (-1281 $)) 128)) (-3163 (((-112)) 113)) (-2735 (((-654 (-1281 |#2|))) 102)) (-2525 (((-112)) 114)) (-3971 (((-112)) 112)) (-3545 (((-112)) 51)) (-1950 (((-112)) 118))) -(((-375 |#1| |#2|) (-10 -8 (-15 -3664 ((-1186 |#2|) |#1|)) (-15 -1460 ((-1186 |#2|) |#1|)) (-15 -2735 ((-654 (-1281 |#2|)))) (-15 -2784 ((-3 |#1| "failed") |#1|)) (-15 -4271 ((-3 |#1| "failed") |#1|)) (-15 -3434 ((-3 |#1| "failed") |#1|)) (-15 -3168 ((-112))) (-15 -1342 ((-112))) (-15 -1514 ((-112))) (-15 -3227 ((-112))) (-15 -3531 ((-112))) (-15 -2949 ((-112))) (-15 -1950 ((-112))) (-15 -3604 ((-112))) (-15 -3287 ((-112))) (-15 -4037 ((-112))) (-15 -3545 ((-112))) (-15 -2525 ((-112))) (-15 -3971 ((-112))) (-15 -3163 ((-112))) (-15 -1436 ((-1186 |#2|) |#1|)) (-15 -1943 ((-1186 |#2|) |#1|)) (-15 -2301 ((-699 |#2|) (-1281 |#1|))) (-15 -2284 ((-699 |#2|) (-1281 |#1|))) (-15 -1565 (|#2| (-1281 |#1|))) (-15 -1810 (|#2| (-1281 |#1|))) (-15 -2737 (|#1| (-1281 |#2|) (-1281 |#1|))) (-15 -3487 ((-699 |#2|) (-1281 |#1|) (-1281 |#1|))) (-15 -3487 ((-1281 |#2|) |#1| (-1281 |#1|))) (-15 -3870 (|#2| |#1|)) (-15 -2552 (|#2| |#1|)) (-15 -2538 (|#2| |#1|)) (-15 -1450 (|#2| |#1|)) (-15 -3208 ((-699 |#2|) |#1| (-1281 |#1|))) (-15 -2787 ((-699 |#2|) |#1| (-1281 |#1|))) (-15 -2174 ((-1281 (-699 |#2|)) (-1281 |#1|)))) (-376 |#2|) (-174)) (T -375)) -((-3163 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3971 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-2525 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3545 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-4037 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3287 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3604 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-1950 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-2949 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3531 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3227 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-1514 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-1342 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3168 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-2735 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-654 (-1281 *4))) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4))))) -(-10 -8 (-15 -3664 ((-1186 |#2|) |#1|)) (-15 -1460 ((-1186 |#2|) |#1|)) (-15 -2735 ((-654 (-1281 |#2|)))) (-15 -2784 ((-3 |#1| "failed") |#1|)) (-15 -4271 ((-3 |#1| "failed") |#1|)) (-15 -3434 ((-3 |#1| "failed") |#1|)) (-15 -3168 ((-112))) (-15 -1342 ((-112))) (-15 -1514 ((-112))) (-15 -3227 ((-112))) (-15 -3531 ((-112))) (-15 -2949 ((-112))) (-15 -1950 ((-112))) (-15 -3604 ((-112))) (-15 -3287 ((-112))) (-15 -4037 ((-112))) (-15 -3545 ((-112))) (-15 -2525 ((-112))) (-15 -3971 ((-112))) (-15 -3163 ((-112))) (-15 -1436 ((-1186 |#2|) |#1|)) (-15 -1943 ((-1186 |#2|) |#1|)) (-15 -2301 ((-699 |#2|) (-1281 |#1|))) (-15 -2284 ((-699 |#2|) (-1281 |#1|))) (-15 -1565 (|#2| (-1281 |#1|))) (-15 -1810 (|#2| (-1281 |#1|))) (-15 -2737 (|#1| (-1281 |#2|) (-1281 |#1|))) (-15 -3487 ((-699 |#2|) (-1281 |#1|) (-1281 |#1|))) (-15 -3487 ((-1281 |#2|) |#1| (-1281 |#1|))) (-15 -3870 (|#2| |#1|)) (-15 -2552 (|#2| |#1|)) (-15 -2538 (|#2| |#1|)) (-15 -1450 (|#2| |#1|)) (-15 -3208 ((-699 |#2|) |#1| (-1281 |#1|))) (-15 -2787 ((-699 |#2|) |#1| (-1281 |#1|))) (-15 -2174 ((-1281 (-699 |#2|)) (-1281 |#1|)))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-2785 (((-3 $ "failed")) 42 (|has| |#1| (-566)))) (-3524 (((-3 $ "failed") $ $) 20)) (-2174 (((-1281 (-699 |#1|)) (-1281 $)) 83)) (-4274 (((-1281 $)) 86)) (-3426 (($) 18 T CONST)) (-1666 (((-3 (-2 (|:| |particular| $) (|:| -1882 (-654 $))) "failed")) 45 (|has| |#1| (-566)))) (-1854 (((-3 $ "failed")) 43 (|has| |#1| (-566)))) (-2301 (((-699 |#1|) (-1281 $)) 70)) (-2538 ((|#1| $) 79)) (-3208 (((-699 |#1|) $ (-1281 $)) 81)) (-2784 (((-3 $ "failed") $) 50 (|has| |#1| (-566)))) (-2397 (($ $ (-932)) 31)) (-3870 ((|#1| $) 77)) (-3664 (((-1186 |#1|) $) 47 (|has| |#1| (-566)))) (-1565 ((|#1| (-1281 $)) 72)) (-1436 (((-1186 |#1|) $) 68)) (-3287 (((-112)) 62)) (-2737 (($ (-1281 |#1|) (-1281 $)) 74)) (-3434 (((-3 $ "failed") $) 52 (|has| |#1| (-566)))) (-3584 (((-932)) 85)) (-2542 (((-112)) 59)) (-2817 (($ $ (-932)) 38)) (-1514 (((-112)) 55)) (-3168 (((-112)) 53)) (-3531 (((-112)) 57)) (-2269 (((-3 (-2 (|:| |particular| $) (|:| -1882 (-654 $))) "failed")) 46 (|has| |#1| (-566)))) (-1484 (((-3 $ "failed")) 44 (|has| |#1| (-566)))) (-2284 (((-699 |#1|) (-1281 $)) 71)) (-1450 ((|#1| $) 80)) (-2787 (((-699 |#1|) $ (-1281 $)) 82)) (-4271 (((-3 $ "failed") $) 51 (|has| |#1| (-566)))) (-2422 (($ $ (-932)) 32)) (-2552 ((|#1| $) 78)) (-1460 (((-1186 |#1|) $) 48 (|has| |#1| (-566)))) (-1810 ((|#1| (-1281 $)) 73)) (-1943 (((-1186 |#1|) $) 69)) (-4037 (((-112)) 63)) (-4136 (((-1172) $) 10)) (-1342 (((-112)) 54)) (-3227 (((-112)) 56)) (-2949 (((-112)) 58)) (-3966 (((-1133) $) 11)) (-3604 (((-112)) 61)) (-3487 (((-1281 |#1|) $ (-1281 $)) 76) (((-699 |#1|) (-1281 $) (-1281 $)) 75)) (-3760 (((-654 (-963 |#1|)) (-1281 $)) 84)) (-3204 (($ $ $) 28)) (-3163 (((-112)) 67)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2735 (((-654 (-1281 |#1|))) 49 (|has| |#1| (-566)))) (-1320 (($ $ $ $) 29)) (-2525 (((-112)) 65)) (-2299 (($ $ $) 27)) (-3971 (((-112)) 66)) (-3545 (((-112)) 64)) (-1950 (((-112)) 60)) (-2133 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 33)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-376 |#1|) (-141) (-174)) (T -376)) -((-4274 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1281 *1)) (-4 *1 (-376 *3)))) (-3584 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-932)))) (-3760 (*1 *2 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-654 (-963 *4))))) (-2174 (*1 *2 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-1281 (-699 *4))))) (-2787 (*1 *2 *1 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-3208 (*1 *2 *1 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-1450 (*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-2538 (*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-2552 (*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-3870 (*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-3487 (*1 *2 *1 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-1281 *4)))) (-3487 (*1 *2 *3 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-2737 (*1 *1 *2 *3) (-12 (-5 *2 (-1281 *4)) (-5 *3 (-1281 *1)) (-4 *4 (-174)) (-4 *1 (-376 *4)))) (-1810 (*1 *2 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-1565 (*1 *2 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-2284 (*1 *2 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-1943 (*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-1186 *3)))) (-1436 (*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-1186 *3)))) (-3163 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3971 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2525 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3545 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4037 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3287 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3604 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1950 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2542 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2949 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3531 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3227 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1514 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1342 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3168 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3434 (*1 *1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) (-4271 (*1 *1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) (-2784 (*1 *1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) (-2735 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566)) (-5 *2 (-654 (-1281 *3))))) (-1460 (*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566)) (-5 *2 (-1186 *3)))) (-3664 (*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566)) (-5 *2 (-1186 *3)))) (-2269 (*1 *2) (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1882 (-654 *1)))) (-4 *1 (-376 *3)))) (-1666 (*1 *2) (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1882 (-654 *1)))) (-4 *1 (-376 *3)))) (-1484 (*1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174)))) (-1854 (*1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174)))) (-2785 (*1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174))))) -(-13 (-754 |t#1|) (-10 -8 (-15 -4274 ((-1281 $))) (-15 -3584 ((-932))) (-15 -3760 ((-654 (-963 |t#1|)) (-1281 $))) (-15 -2174 ((-1281 (-699 |t#1|)) (-1281 $))) (-15 -2787 ((-699 |t#1|) $ (-1281 $))) (-15 -3208 ((-699 |t#1|) $ (-1281 $))) (-15 -1450 (|t#1| $)) (-15 -2538 (|t#1| $)) (-15 -2552 (|t#1| $)) (-15 -3870 (|t#1| $)) (-15 -3487 ((-1281 |t#1|) $ (-1281 $))) (-15 -3487 ((-699 |t#1|) (-1281 $) (-1281 $))) (-15 -2737 ($ (-1281 |t#1|) (-1281 $))) (-15 -1810 (|t#1| (-1281 $))) (-15 -1565 (|t#1| (-1281 $))) (-15 -2284 ((-699 |t#1|) (-1281 $))) (-15 -2301 ((-699 |t#1|) (-1281 $))) (-15 -1943 ((-1186 |t#1|) $)) (-15 -1436 ((-1186 |t#1|) $)) (-15 -3163 ((-112))) (-15 -3971 ((-112))) (-15 -2525 ((-112))) (-15 -3545 ((-112))) (-15 -4037 ((-112))) (-15 -3287 ((-112))) (-15 -3604 ((-112))) (-15 -1950 ((-112))) (-15 -2542 ((-112))) (-15 -2949 ((-112))) (-15 -3531 ((-112))) (-15 -3227 ((-112))) (-15 -1514 ((-112))) (-15 -1342 ((-112))) (-15 -3168 ((-112))) (IF (|has| |t#1| (-566)) (PROGN (-15 -3434 ((-3 $ "failed") $)) (-15 -4271 ((-3 $ "failed") $)) (-15 -2784 ((-3 $ "failed") $)) (-15 -2735 ((-654 (-1281 |t#1|)))) (-15 -1460 ((-1186 |t#1|) $)) (-15 -3664 ((-1186 |t#1|) $)) (-15 -2269 ((-3 (-2 (|:| |particular| $) (|:| -1882 (-654 $))) "failed"))) (-15 -1666 ((-3 (-2 (|:| |particular| $) (|:| -1882 (-654 $))) "failed"))) (-15 -1484 ((-3 $ "failed"))) (-15 -1854 ((-3 $ "failed"))) (-15 -2785 ((-3 $ "failed"))) (-6 -4453)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-730) . T) ((-754 |#1|) . T) ((-771) . T) ((-1064 |#1|) . T) ((-1069 |#1|) . T) ((-1113) . T)) -((-2849 (((-112) $ $) 7)) (-1487 (((-781)) 17)) (-2820 (($) 14)) (-4115 (((-932) $) 15)) (-4136 (((-1172) $) 10)) (-2576 (($ (-932)) 16)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) -(((-377) (-141)) (T -377)) -((-1487 (*1 *2) (-12 (-4 *1 (-377)) (-5 *2 (-781)))) (-2576 (*1 *1 *2) (-12 (-5 *2 (-932)) (-4 *1 (-377)))) (-4115 (*1 *2 *1) (-12 (-4 *1 (-377)) (-5 *2 (-932)))) (-2820 (*1 *1) (-4 *1 (-377)))) -(-13 (-1113) (-10 -8 (-15 -1487 ((-781))) (-15 -2576 ($ (-932))) (-15 -4115 ((-932) $)) (-15 -2820 ($)))) -(((-102) . T) ((-623 (-872)) . T) ((-1113) . T)) -((-2294 (((-699 |#2|) (-1281 $)) 45)) (-2737 (($ (-1281 |#2|) (-1281 $)) 39)) (-2134 (((-699 |#2|) $ (-1281 $)) 47)) (-2872 ((|#2| (-1281 $)) 13)) (-3487 (((-1281 |#2|) $ (-1281 $)) NIL) (((-699 |#2|) (-1281 $) (-1281 $)) 27))) -(((-378 |#1| |#2| |#3|) (-10 -8 (-15 -2294 ((-699 |#2|) (-1281 |#1|))) (-15 -2872 (|#2| (-1281 |#1|))) (-15 -2737 (|#1| (-1281 |#2|) (-1281 |#1|))) (-15 -3487 ((-699 |#2|) (-1281 |#1|) (-1281 |#1|))) (-15 -3487 ((-1281 |#2|) |#1| (-1281 |#1|))) (-15 -2134 ((-699 |#2|) |#1| (-1281 |#1|)))) (-379 |#2| |#3|) (-174) (-1257 |#2|)) (T -378)) -NIL -(-10 -8 (-15 -2294 ((-699 |#2|) (-1281 |#1|))) (-15 -2872 (|#2| (-1281 |#1|))) (-15 -2737 (|#1| (-1281 |#2|) (-1281 |#1|))) (-15 -3487 ((-699 |#2|) (-1281 |#1|) (-1281 |#1|))) (-15 -3487 ((-1281 |#2|) |#1| (-1281 |#1|))) (-15 -2134 ((-699 |#2|) |#1| (-1281 |#1|)))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-2294 (((-699 |#1|) (-1281 $)) 53)) (-1636 ((|#1| $) 59)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-2737 (($ (-1281 |#1|) (-1281 $)) 55)) (-2134 (((-699 |#1|) $ (-1281 $)) 60)) (-3434 (((-3 $ "failed") $) 37)) (-3584 (((-932)) 61)) (-3199 (((-112) $) 35)) (-2236 ((|#1| $) 58)) (-1972 ((|#2| $) 51 (|has| |#1| (-372)))) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2872 ((|#1| (-1281 $)) 54)) (-3487 (((-1281 |#1|) $ (-1281 $)) 57) (((-699 |#1|) (-1281 $) (-1281 $)) 56)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44)) (-3298 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-1435 ((|#2| $) 52)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-379 |#1| |#2|) (-141) (-174) (-1257 |t#1|)) (T -379)) -((-3584 (*1 *2) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1257 *3)) (-5 *2 (-932)))) (-2134 (*1 *2 *1 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1257 *4)) (-5 *2 (-699 *4)))) (-1636 (*1 *2 *1) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1257 *2)) (-4 *2 (-174)))) (-2236 (*1 *2 *1) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1257 *2)) (-4 *2 (-174)))) (-3487 (*1 *2 *1 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1257 *4)) (-5 *2 (-1281 *4)))) (-3487 (*1 *2 *3 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1257 *4)) (-5 *2 (-699 *4)))) (-2737 (*1 *1 *2 *3) (-12 (-5 *2 (-1281 *4)) (-5 *3 (-1281 *1)) (-4 *4 (-174)) (-4 *1 (-379 *4 *5)) (-4 *5 (-1257 *4)))) (-2872 (*1 *2 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-379 *2 *4)) (-4 *4 (-1257 *2)) (-4 *2 (-174)))) (-2294 (*1 *2 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1257 *4)) (-5 *2 (-699 *4)))) (-1435 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1257 *3)))) (-1972 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-174)) (-4 *3 (-372)) (-4 *2 (-1257 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -3584 ((-932))) (-15 -2134 ((-699 |t#1|) $ (-1281 $))) (-15 -1636 (|t#1| $)) (-15 -2236 (|t#1| $)) (-15 -3487 ((-1281 |t#1|) $ (-1281 $))) (-15 -3487 ((-699 |t#1|) (-1281 $) (-1281 $))) (-15 -2737 ($ (-1281 |t#1|) (-1281 $))) (-15 -2872 (|t#1| (-1281 $))) (-15 -2294 ((-699 |t#1|) (-1281 $))) (-15 -1435 (|t#2| $)) (IF (|has| |t#1| (-372)) (-15 -1972 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-736) . T) ((-1064 |#1|) . T) ((-1069 |#1|) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T)) -((-4034 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-2868 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-1777 ((|#4| (-1 |#3| |#1|) |#2|) 23))) -(((-380 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1777 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2868 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4034 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1231) (-382 |#1|) (-1231) (-382 |#3|)) (T -380)) -((-4034 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1231)) (-4 *5 (-1231)) (-4 *2 (-382 *5)) (-5 *1 (-380 *6 *4 *5 *2)) (-4 *4 (-382 *6)))) (-2868 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1231)) (-4 *2 (-1231)) (-5 *1 (-380 *5 *4 *2 *6)) (-4 *4 (-382 *5)) (-4 *6 (-382 *2)))) (-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-4 *2 (-382 *6)) (-5 *1 (-380 *5 *4 *6 *2)) (-4 *4 (-382 *5))))) -(-10 -7 (-15 -1777 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2868 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4034 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-1357 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-3642 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-2771 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-4423 (($ $) 25)) (-1441 (((-574) (-1 (-112) |#2|) $) NIL) (((-574) |#2| $) 11) (((-574) |#2| $ (-574)) NIL)) (-4430 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-381 |#1| |#2|) (-10 -8 (-15 -3642 (|#1| |#1|)) (-15 -3642 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1357 ((-112) |#1|)) (-15 -2771 (|#1| |#1|)) (-15 -4430 (|#1| |#1| |#1|)) (-15 -1441 ((-574) |#2| |#1| (-574))) (-15 -1441 ((-574) |#2| |#1|)) (-15 -1441 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -1357 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2771 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4423 (|#1| |#1|)) (-15 -4430 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-382 |#2|) (-1231)) (T -381)) -NIL -(-10 -8 (-15 -3642 (|#1| |#1|)) (-15 -3642 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1357 ((-112) |#1|)) (-15 -2771 (|#1| |#1|)) (-15 -4430 (|#1| |#1| |#1|)) (-15 -1441 ((-574) |#2| |#1| (-574))) (-15 -1441 ((-574) |#2| |#1|)) (-15 -1441 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -1357 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2771 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4423 (|#1| |#1|)) (-15 -4430 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) -((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3714 (((-1286) $ (-574) (-574)) 41 (|has| $ (-6 -4457)))) (-1357 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-860)))) (-3642 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4457))) (($ $) 91 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4457))))) (-2771 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-860)))) (-3034 (((-112) $ (-781)) 8)) (-3143 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) 60 (|has| $ (-6 -4457)))) (-2165 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4456)))) (-3426 (($) 7 T CONST)) (-2627 (($ $) 93 (|has| $ (-6 -4457)))) (-4423 (($ $) 103)) (-1543 (($ $) 80 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ |#1| $) 79 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4456)))) (-2458 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) 52)) (-1441 (((-574) (-1 (-112) |#1|) $) 100) (((-574) |#1| $) 99 (|has| |#1| (-1113))) (((-574) |#1| $ (-574)) 98 (|has| |#1| (-1113)))) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3790 (($ (-781) |#1|) 70)) (-2742 (((-112) $ (-781)) 9)) (-3618 (((-574) $) 44 (|has| (-574) (-860)))) (-3659 (($ $ $) 90 (|has| |#1| (-860)))) (-4430 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-860)))) (-1606 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2702 (((-574) $) 45 (|has| (-574) (-860)))) (-4257 (($ $ $) 89 (|has| |#1| (-860)))) (-2449 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4203 (((-112) $ (-781)) 10)) (-4136 (((-1172) $) 22 (|has| |#1| (-1113)))) (-1594 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-4308 (((-654 (-574)) $) 47)) (-3336 (((-112) (-574) $) 48)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-2915 ((|#1| $) 43 (|has| (-574) (-860)))) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1942 (($ $ |#1|) 42 (|has| $ (-6 -4457)))) (-2540 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 14)) (-3398 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-4371 (((-654 |#1|) $) 49)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-2199 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1248 (-574))) 71)) (-2840 (($ $ (-574)) 64) (($ $ (-1248 (-574))) 63)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3506 (($ $ $ (-574)) 94 (|has| $ (-6 -4457)))) (-3167 (($ $) 13)) (-1836 (((-546) $) 81 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 72)) (-4157 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-3042 (((-112) $ $) 87 (|has| |#1| (-860)))) (-3018 (((-112) $ $) 86 (|has| |#1| (-860)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-3030 (((-112) $ $) 88 (|has| |#1| (-860)))) (-3007 (((-112) $ $) 85 (|has| |#1| (-860)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-382 |#1|) (-141) (-1231)) (T -382)) -((-4430 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-382 *3)) (-4 *3 (-1231)))) (-4423 (*1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1231)))) (-2771 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-382 *3)) (-4 *3 (-1231)))) (-1357 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-382 *4)) (-4 *4 (-1231)) (-5 *2 (-112)))) (-1441 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-382 *4)) (-4 *4 (-1231)) (-5 *2 (-574)))) (-1441 (*1 *2 *3 *1) (-12 (-4 *1 (-382 *3)) (-4 *3 (-1231)) (-4 *3 (-1113)) (-5 *2 (-574)))) (-1441 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-382 *3)) (-4 *3 (-1231)) (-4 *3 (-1113)))) (-4430 (*1 *1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1231)) (-4 *2 (-860)))) (-2771 (*1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1231)) (-4 *2 (-860)))) (-1357 (*1 *2 *1) (-12 (-4 *1 (-382 *3)) (-4 *3 (-1231)) (-4 *3 (-860)) (-5 *2 (-112)))) (-3506 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-574)) (|has| *1 (-6 -4457)) (-4 *1 (-382 *3)) (-4 *3 (-1231)))) (-2627 (*1 *1 *1) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-382 *2)) (-4 *2 (-1231)))) (-3642 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4457)) (-4 *1 (-382 *3)) (-4 *3 (-1231)))) (-3642 (*1 *1 *1) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-382 *2)) (-4 *2 (-1231)) (-4 *2 (-860))))) -(-13 (-661 |t#1|) (-10 -8 (-6 -4456) (-15 -4430 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4423 ($ $)) (-15 -2771 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1357 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -1441 ((-574) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1113)) (PROGN (-15 -1441 ((-574) |t#1| $)) (-15 -1441 ((-574) |t#1| $ (-574)))) |%noBranch|) (IF (|has| |t#1| (-860)) (PROGN (-6 (-860)) (-15 -4430 ($ $ $)) (-15 -2771 ($ $)) (-15 -1357 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4457)) (PROGN (-15 -3506 ($ $ $ (-574))) (-15 -2627 ($ $)) (-15 -3642 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-860)) (-15 -3642 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -2818 (|has| |#1| (-1113)) (|has| |#1| (-860))) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-860)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1248 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-661 |#1|) . T) ((-860) |has| |#1| (-860)) ((-1113) -2818 (|has| |#1| (-1113)) (|has| |#1| (-860))) ((-1231) . T)) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-1655 (((-654 |#1|) $) 37)) (-3805 (($ $ (-781)) 38)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-3593 (((-1305 |#1| |#2|) (-1305 |#1| |#2|) $) 41)) (-4248 (($ $) 39)) (-3548 (((-1305 |#1| |#2|) (-1305 |#1| |#2|) $) 42)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2646 (($ $ |#1| $) 36) (($ $ (-654 |#1|) (-654 $)) 35)) (-4202 (((-781) $) 43)) (-2956 (($ $ $) 34)) (-2943 (((-872) $) 12) (($ |#1|) 46) (((-1296 |#1| |#2|) $) 45) (((-1305 |#1| |#2|) $) 44)) (-1858 ((|#2| (-1305 |#1| |#2|) $) 47)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-1756 (($ (-682 |#1|)) 40)) (-2981 (((-112) $ $) 6)) (-3108 (($ $ |#2|) 33 (|has| |#2| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31))) -(((-383 |#1| |#2|) (-141) (-860) (-174)) (T -383)) -((-1858 (*1 *2 *3 *1) (-12 (-5 *3 (-1305 *4 *2)) (-4 *1 (-383 *4 *2)) (-4 *4 (-860)) (-4 *2 (-174)))) (-2943 (*1 *1 *2) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174)))) (-2943 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *2 (-1296 *3 *4)))) (-2943 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *2 (-1305 *3 *4)))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *2 (-781)))) (-3548 (*1 *2 *2 *1) (-12 (-5 *2 (-1305 *3 *4)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-3593 (*1 *2 *2 *1) (-12 (-5 *2 (-1305 *3 *4)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-1756 (*1 *1 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-4 *1 (-383 *3 *4)) (-4 *4 (-174)))) (-4248 (*1 *1 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174)))) (-3805 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-1655 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *2 (-654 *3)))) (-2646 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174)))) (-2646 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-860)) (-4 *5 (-174))))) -(-13 (-644 |t#2|) (-10 -8 (-15 -1858 (|t#2| (-1305 |t#1| |t#2|) $)) (-15 -2943 ($ |t#1|)) (-15 -2943 ((-1296 |t#1| |t#2|) $)) (-15 -2943 ((-1305 |t#1| |t#2|) $)) (-15 -4202 ((-781) $)) (-15 -3548 ((-1305 |t#1| |t#2|) (-1305 |t#1| |t#2|) $)) (-15 -3593 ((-1305 |t#1| |t#2|) (-1305 |t#1| |t#2|) $)) (-15 -1756 ($ (-682 |t#1|))) (-15 -4248 ($ $)) (-15 -3805 ($ $ (-781))) (-15 -1655 ((-654 |t#1|) $)) (-15 -2646 ($ $ |t#1| $)) (-15 -2646 ($ $ (-654 |t#1|) (-654 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#2|) . T) ((-658 |#2|) . T) ((-644 |#2|) . T) ((-650 |#2|) . T) ((-727 |#2|) . T) ((-1064 |#2|) . T) ((-1069 |#2|) . T) ((-1113) . T)) -((-2350 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 40)) (-2101 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-1638 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 33))) -(((-384 |#1| |#2|) (-10 -7 (-15 -2101 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1638 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2350 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1231) (-13 (-382 |#1|) (-10 -7 (-6 -4457)))) (T -384)) -((-2350 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1231)) (-5 *1 (-384 *4 *2)) (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4457)))))) (-1638 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1231)) (-5 *1 (-384 *4 *2)) (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4457)))))) (-2101 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1231)) (-5 *1 (-384 *4 *2)) (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4457))))))) -(-10 -7 (-15 -2101 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1638 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2350 (|#2| (-1 (-112) |#1| |#1|) |#2|))) -((-2590 (((-699 |#2|) (-1281 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) NIL) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 22) (((-699 (-574)) (-699 $)) 14) (((-699 (-574)) (-1281 $)) NIL))) -(((-385 |#1| |#2|) (-10 -8 (-15 -2590 ((-699 (-574)) (-1281 |#1|))) (-15 -2590 ((-699 (-574)) (-699 |#1|))) (-15 -2590 ((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 |#1|) (-1281 |#1|))) (-15 -2590 ((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 |#1|) (-1281 |#1|))) (-15 -2590 ((-699 |#2|) (-699 |#1|))) (-15 -2590 ((-699 |#2|) (-1281 |#1|)))) (-386 |#2|) (-1062)) (T -385)) -NIL -(-10 -8 (-15 -2590 ((-699 (-574)) (-1281 |#1|))) (-15 -2590 ((-699 (-574)) (-699 |#1|))) (-15 -2590 ((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 |#1|) (-1281 |#1|))) (-15 -2590 ((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 |#1|) (-1281 |#1|))) (-15 -2590 ((-699 |#2|) (-699 |#1|))) (-15 -2590 ((-699 |#2|) (-1281 |#1|)))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-2590 (((-699 |#1|) (-1281 $)) 31) (((-699 |#1|) (-699 $)) 30) (((-2 (|:| -4340 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) 29) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 39 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 38 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-1281 $)) 37 (|has| |#1| (-649 (-574))))) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27))) -(((-386 |#1|) (-141) (-1062)) (T -386)) -NIL -(-13 (-649 |t#1|) (-10 -7 (IF (|has| |t#1| (-649 (-574))) (-6 (-649 (-574))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 #0=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-649 #0#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-1113) . T)) -((-1649 (((-654 (-302 (-963 (-171 |#1|)))) (-302 (-417 (-963 (-171 (-574))))) |#1|) 51) (((-654 (-302 (-963 (-171 |#1|)))) (-417 (-963 (-171 (-574)))) |#1|) 50) (((-654 (-654 (-302 (-963 (-171 |#1|))))) (-654 (-302 (-417 (-963 (-171 (-574)))))) |#1|) 47) (((-654 (-654 (-302 (-963 (-171 |#1|))))) (-654 (-417 (-963 (-171 (-574))))) |#1|) 41)) (-1625 (((-654 (-654 (-171 |#1|))) (-654 (-417 (-963 (-171 (-574))))) (-654 (-1190)) |#1|) 30) (((-654 (-171 |#1|)) (-417 (-963 (-171 (-574)))) |#1|) 18))) -(((-387 |#1|) (-10 -7 (-15 -1649 ((-654 (-654 (-302 (-963 (-171 |#1|))))) (-654 (-417 (-963 (-171 (-574))))) |#1|)) (-15 -1649 ((-654 (-654 (-302 (-963 (-171 |#1|))))) (-654 (-302 (-417 (-963 (-171 (-574)))))) |#1|)) (-15 -1649 ((-654 (-302 (-963 (-171 |#1|)))) (-417 (-963 (-171 (-574)))) |#1|)) (-15 -1649 ((-654 (-302 (-963 (-171 |#1|)))) (-302 (-417 (-963 (-171 (-574))))) |#1|)) (-15 -1625 ((-654 (-171 |#1|)) (-417 (-963 (-171 (-574)))) |#1|)) (-15 -1625 ((-654 (-654 (-171 |#1|))) (-654 (-417 (-963 (-171 (-574))))) (-654 (-1190)) |#1|))) (-13 (-372) (-858))) (T -387)) -((-1625 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-417 (-963 (-171 (-574)))))) (-5 *4 (-654 (-1190))) (-5 *2 (-654 (-654 (-171 *5)))) (-5 *1 (-387 *5)) (-4 *5 (-13 (-372) (-858))))) (-1625 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-963 (-171 (-574))))) (-5 *2 (-654 (-171 *4))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858))))) (-1649 (*1 *2 *3 *4) (-12 (-5 *3 (-302 (-417 (-963 (-171 (-574)))))) (-5 *2 (-654 (-302 (-963 (-171 *4))))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858))))) (-1649 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-963 (-171 (-574))))) (-5 *2 (-654 (-302 (-963 (-171 *4))))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858))))) (-1649 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-302 (-417 (-963 (-171 (-574))))))) (-5 *2 (-654 (-654 (-302 (-963 (-171 *4)))))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858))))) (-1649 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-963 (-171 (-574)))))) (-5 *2 (-654 (-654 (-302 (-963 (-171 *4)))))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858)))))) -(-10 -7 (-15 -1649 ((-654 (-654 (-302 (-963 (-171 |#1|))))) (-654 (-417 (-963 (-171 (-574))))) |#1|)) (-15 -1649 ((-654 (-654 (-302 (-963 (-171 |#1|))))) (-654 (-302 (-417 (-963 (-171 (-574)))))) |#1|)) (-15 -1649 ((-654 (-302 (-963 (-171 |#1|)))) (-417 (-963 (-171 (-574)))) |#1|)) (-15 -1649 ((-654 (-302 (-963 (-171 |#1|)))) (-302 (-417 (-963 (-171 (-574))))) |#1|)) (-15 -1625 ((-654 (-171 |#1|)) (-417 (-963 (-171 (-574)))) |#1|)) (-15 -1625 ((-654 (-654 (-171 |#1|))) (-654 (-417 (-963 (-171 (-574))))) (-654 (-1190)) |#1|))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 35)) (-1528 (((-574) $) 62)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-2052 (($ $) 136)) (-2364 (($ $) 98)) (-2247 (($ $) 90)) (-3524 (((-3 $ "failed") $ $) NIL)) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-4229 (($ $) 47)) (-1600 (((-112) $ $) NIL)) (-2343 (($ $) 96)) (-2227 (($ $) 85)) (-2846 (((-574) $) 78)) (-3958 (($ $ (-574)) 73)) (-2389 (($ $) NIL)) (-2267 (($ $) NIL)) (-3426 (($) NIL T CONST)) (-4039 (($ $) 138)) (-1696 (((-3 (-574) "failed") $) 231) (((-3 (-417 (-574)) "failed") $) 227)) (-2206 (((-574) $) 229) (((-417 (-574)) $) 225)) (-2786 (($ $ $) NIL)) (-2618 (((-574) $ $) 125)) (-3434 (((-3 $ "failed") $) 141)) (-2132 (((-417 (-574)) $ (-781)) 232) (((-417 (-574)) $ (-781) (-781)) 224)) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-2257 (((-112) $) NIL)) (-3785 (((-932)) 121) (((-932) (-932)) 122 (|has| $ (-6 -4447)))) (-2756 (((-112) $) 130)) (-3000 (($) 41)) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL)) (-3218 (((-1286) (-781)) 191)) (-1971 (((-1286)) 196) (((-1286) (-781)) 197)) (-1347 (((-1286)) 198) (((-1286) (-781)) 199)) (-2195 (((-1286)) 194) (((-1286) (-781)) 195)) (-3884 (((-574) $) 68)) (-3199 (((-112) $) 40)) (-3460 (($ $ (-574)) NIL)) (-2580 (($ $) 51)) (-2236 (($ $) NIL)) (-1335 (((-112) $) 37)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3659 (($ $ $) NIL) (($) NIL (-12 (-2076 (|has| $ (-6 -4439))) (-2076 (|has| $ (-6 -4447)))))) (-4257 (($ $ $) NIL) (($) NIL (-12 (-2076 (|has| $ (-6 -4439))) (-2076 (|has| $ (-6 -4447)))))) (-4300 (((-574) $) 17)) (-4381 (($) 106) (($ $) 113)) (-1731 (($) 112) (($ $) 114)) (-3119 (($ $) 101)) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) 143)) (-3338 (((-932) (-574)) 46 (|has| $ (-6 -4447)))) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3191 (($ $) 60)) (-3595 (($ $) 135)) (-2381 (($ (-574) (-574)) 131) (($ (-574) (-574) (-932)) 132)) (-4220 (((-428 $) $) NIL)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3715 (((-574) $) 19)) (-3898 (($) 115)) (-1609 (($ $) 95)) (-1730 (((-781) $) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-2173 (((-932)) 123) (((-932) (-932)) 124 (|has| $ (-6 -4447)))) (-3905 (($ $ (-781)) NIL) (($ $) 142)) (-3661 (((-932) (-574)) 50 (|has| $ (-6 -4447)))) (-2402 (($ $) NIL)) (-2275 (($ $) NIL)) (-2375 (($ $) NIL)) (-2256 (($ $) NIL)) (-2352 (($ $) 97)) (-2237 (($ $) 89)) (-1836 (((-388) $) 216) (((-227) $) 218) (((-903 (-388)) $) NIL) (((-1172) $) 202) (((-546) $) 214) (($ (-227)) 223)) (-2943 (((-872) $) 206) (($ (-574)) 228) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-574)) 228) (($ (-417 (-574))) NIL) (((-227) $) 219)) (-1364 (((-781)) NIL T CONST)) (-1801 (($ $) 137)) (-3837 (((-932)) 61) (((-932) (-932)) 80 (|has| $ (-6 -4447)))) (-3284 (((-112) $ $) NIL)) (-2630 (((-932)) 126)) (-2441 (($ $) 104)) (-2305 (($ $) 49) (($ $ $) 59)) (-2069 (((-112) $ $) NIL)) (-2414 (($ $) 102)) (-2287 (($ $) 39)) (-2465 (($ $) NIL)) (-2325 (($ $) NIL)) (-2521 (($ $) NIL)) (-2334 (($ $) NIL)) (-2452 (($ $) NIL)) (-2315 (($ $) NIL)) (-2428 (($ $) 103)) (-2297 (($ $) 52)) (-3482 (($ $) 58)) (-2133 (($) 36 T CONST)) (-2145 (($) 43 T CONST)) (-1544 (((-1172) $) 27) (((-1172) $ (-112)) 29) (((-1286) (-832) $) 30) (((-1286) (-832) $ (-112)) 31)) (-3610 (($ $ (-781)) NIL) (($ $) NIL)) (-3042 (((-112) $ $) 203)) (-3018 (((-112) $ $) 45)) (-2981 (((-112) $ $) 56)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) 57)) (-3108 (($ $ $) 48) (($ $ (-574)) 42)) (-3094 (($ $) 38) (($ $ $) 53)) (-3079 (($ $ $) 72)) (** (($ $ (-932)) 83) (($ $ (-781)) NIL) (($ $ (-574)) 107) (($ $ (-417 (-574))) 154) (($ $ $) 145)) (* (($ (-932) $) 79) (($ (-781) $) NIL) (($ (-574) $) 84) (($ $ $) 71) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) -(((-388) (-13 (-414) (-239) (-624 (-1172)) (-838) (-623 (-227)) (-1216) (-624 (-546)) (-628 (-227)) (-10 -8 (-15 -3108 ($ $ (-574))) (-15 ** ($ $ $)) (-15 -2580 ($ $)) (-15 -2618 ((-574) $ $)) (-15 -3958 ($ $ (-574))) (-15 -2132 ((-417 (-574)) $ (-781))) (-15 -2132 ((-417 (-574)) $ (-781) (-781))) (-15 -4381 ($)) (-15 -1731 ($)) (-15 -3898 ($)) (-15 -2305 ($ $ $)) (-15 -4381 ($ $)) (-15 -1731 ($ $)) (-15 -1347 ((-1286))) (-15 -1347 ((-1286) (-781))) (-15 -2195 ((-1286))) (-15 -2195 ((-1286) (-781))) (-15 -1971 ((-1286))) (-15 -1971 ((-1286) (-781))) (-15 -3218 ((-1286) (-781))) (-6 -4447) (-6 -4439)))) (T -388)) -((** (*1 *1 *1 *1) (-5 *1 (-388))) (-3108 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-388)))) (-2580 (*1 *1 *1) (-5 *1 (-388))) (-2618 (*1 *2 *1 *1) (-12 (-5 *2 (-574)) (-5 *1 (-388)))) (-3958 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-388)))) (-2132 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-388)))) (-2132 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-388)))) (-4381 (*1 *1) (-5 *1 (-388))) (-1731 (*1 *1) (-5 *1 (-388))) (-3898 (*1 *1) (-5 *1 (-388))) (-2305 (*1 *1 *1 *1) (-5 *1 (-388))) (-4381 (*1 *1 *1) (-5 *1 (-388))) (-1731 (*1 *1 *1) (-5 *1 (-388))) (-1347 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-388)))) (-1347 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1286)) (-5 *1 (-388)))) (-2195 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-388)))) (-2195 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1286)) (-5 *1 (-388)))) (-1971 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-388)))) (-1971 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1286)) (-5 *1 (-388)))) (-3218 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1286)) (-5 *1 (-388))))) -(-13 (-414) (-239) (-624 (-1172)) (-838) (-623 (-227)) (-1216) (-624 (-546)) (-628 (-227)) (-10 -8 (-15 -3108 ($ $ (-574))) (-15 ** ($ $ $)) (-15 -2580 ($ $)) (-15 -2618 ((-574) $ $)) (-15 -3958 ($ $ (-574))) (-15 -2132 ((-417 (-574)) $ (-781))) (-15 -2132 ((-417 (-574)) $ (-781) (-781))) (-15 -4381 ($)) (-15 -1731 ($)) (-15 -3898 ($)) (-15 -2305 ($ $ $)) (-15 -4381 ($ $)) (-15 -1731 ($ $)) (-15 -1347 ((-1286))) (-15 -1347 ((-1286) (-781))) (-15 -2195 ((-1286))) (-15 -2195 ((-1286) (-781))) (-15 -1971 ((-1286))) (-15 -1971 ((-1286) (-781))) (-15 -3218 ((-1286) (-781))) (-6 -4447) (-6 -4439))) -((-1701 (((-654 (-302 (-963 |#1|))) (-302 (-417 (-963 (-574)))) |#1|) 46) (((-654 (-302 (-963 |#1|))) (-417 (-963 (-574))) |#1|) 45) (((-654 (-654 (-302 (-963 |#1|)))) (-654 (-302 (-417 (-963 (-574))))) |#1|) 42) (((-654 (-654 (-302 (-963 |#1|)))) (-654 (-417 (-963 (-574)))) |#1|) 36)) (-2795 (((-654 |#1|) (-417 (-963 (-574))) |#1|) 20) (((-654 (-654 |#1|)) (-654 (-417 (-963 (-574)))) (-654 (-1190)) |#1|) 30))) -(((-389 |#1|) (-10 -7 (-15 -1701 ((-654 (-654 (-302 (-963 |#1|)))) (-654 (-417 (-963 (-574)))) |#1|)) (-15 -1701 ((-654 (-654 (-302 (-963 |#1|)))) (-654 (-302 (-417 (-963 (-574))))) |#1|)) (-15 -1701 ((-654 (-302 (-963 |#1|))) (-417 (-963 (-574))) |#1|)) (-15 -1701 ((-654 (-302 (-963 |#1|))) (-302 (-417 (-963 (-574)))) |#1|)) (-15 -2795 ((-654 (-654 |#1|)) (-654 (-417 (-963 (-574)))) (-654 (-1190)) |#1|)) (-15 -2795 ((-654 |#1|) (-417 (-963 (-574))) |#1|))) (-13 (-858) (-372))) (T -389)) -((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-963 (-574)))) (-5 *2 (-654 *4)) (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372))))) (-2795 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-417 (-963 (-574))))) (-5 *4 (-654 (-1190))) (-5 *2 (-654 (-654 *5))) (-5 *1 (-389 *5)) (-4 *5 (-13 (-858) (-372))))) (-1701 (*1 *2 *3 *4) (-12 (-5 *3 (-302 (-417 (-963 (-574))))) (-5 *2 (-654 (-302 (-963 *4)))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372))))) (-1701 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-963 (-574)))) (-5 *2 (-654 (-302 (-963 *4)))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372))))) (-1701 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-302 (-417 (-963 (-574)))))) (-5 *2 (-654 (-654 (-302 (-963 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372))))) (-1701 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-963 (-574))))) (-5 *2 (-654 (-654 (-302 (-963 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372)))))) -(-10 -7 (-15 -1701 ((-654 (-654 (-302 (-963 |#1|)))) (-654 (-417 (-963 (-574)))) |#1|)) (-15 -1701 ((-654 (-654 (-302 (-963 |#1|)))) (-654 (-302 (-417 (-963 (-574))))) |#1|)) (-15 -1701 ((-654 (-302 (-963 |#1|))) (-417 (-963 (-574))) |#1|)) (-15 -1701 ((-654 (-302 (-963 |#1|))) (-302 (-417 (-963 (-574)))) |#1|)) (-15 -2795 ((-654 (-654 |#1|)) (-654 (-417 (-963 (-574)))) (-654 (-1190)) |#1|)) (-15 -2795 ((-654 |#1|) (-417 (-963 (-574))) |#1|))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#2| "failed") $) 30)) (-2206 ((|#2| $) 32)) (-1392 (($ $) NIL)) (-1322 (((-781) $) 11)) (-3727 (((-654 $) $) 23)) (-3869 (((-112) $) NIL)) (-3832 (($ |#2| |#1|) 21)) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-2767 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-1359 ((|#2| $) 18)) (-1370 ((|#1| $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 51) (($ |#2|) 31)) (-2530 (((-654 |#1|) $) 20)) (-3087 ((|#1| $ |#2|) 55)) (-3284 (((-112) $ $) NIL)) (-2133 (($) 33 T CONST)) (-1388 (((-654 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2981 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40))) -(((-390 |#1| |#2|) (-13 (-391 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1062) (-860)) (T -390)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-390 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-860))))) -(-13 (-391 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-1696 (((-3 |#2| "failed") $) 49)) (-2206 ((|#2| $) 50)) (-1392 (($ $) 35)) (-1322 (((-781) $) 39)) (-3727 (((-654 $) $) 40)) (-3869 (((-112) $) 43)) (-3832 (($ |#2| |#1|) 44)) (-1777 (($ (-1 |#1| |#1|) $) 45)) (-2767 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-1359 ((|#2| $) 38)) (-1370 ((|#1| $) 37)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12) (($ |#2|) 48)) (-2530 (((-654 |#1|) $) 41)) (-3087 ((|#1| $ |#2|) 46)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-1388 (((-654 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47))) -(((-391 |#1| |#2|) (-141) (-1062) (-1113)) (T -391)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-391 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-1113)))) (-3087 (*1 *2 *1 *3) (-12 (-4 *1 (-391 *2 *3)) (-4 *3 (-1113)) (-4 *2 (-1062)))) (-1777 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-391 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1113)))) (-3832 (*1 *1 *2 *3) (-12 (-4 *1 (-391 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-1113)))) (-3869 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1113)) (-5 *2 (-112)))) (-1388 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1113)) (-5 *2 (-654 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2530 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1113)) (-5 *2 (-654 *3)))) (-3727 (*1 *2 *1) (-12 (-4 *3 (-1062)) (-4 *4 (-1113)) (-5 *2 (-654 *1)) (-4 *1 (-391 *3 *4)))) (-1322 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1113)) (-5 *2 (-781)))) (-1359 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-1113)))) (-1370 (*1 *2 *1) (-12 (-4 *1 (-391 *2 *3)) (-4 *3 (-1113)) (-4 *2 (-1062)))) (-2767 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1113)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1392 (*1 *1 *1) (-12 (-4 *1 (-391 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-1113))))) -(-13 (-111 |t#1| |t#1|) (-1051 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3087 (|t#1| $ |t#2|)) (-15 -1777 ($ (-1 |t#1| |t#1|) $)) (-15 -3832 ($ |t#2| |t#1|)) (-15 -3869 ((-112) $)) (-15 -1388 ((-654 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2530 ((-654 |t#1|) $)) (-15 -3727 ((-654 $) $)) (-15 -1322 ((-781) $)) (-15 -1359 (|t#2| $)) (-15 -1370 (|t#1| $)) (-15 -2767 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1392 ($ $)) (IF (|has| |t#1| (-174)) (-6 (-727 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 |#2|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) |has| |#1| (-174)) ((-727 |#1|) |has| |#1| (-174)) ((-1051 |#2|) . T) ((-1064 |#1|) . T) ((-1069 |#1|) . T) ((-1113) . T)) -((-3768 (((-1286) $) 7)) (-2943 (((-872) $) 8) (($ (-699 (-709))) 14) (($ (-654 (-338))) 13) (($ (-338)) 12) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) 11))) +((-3118 (($ $) 6)) (-1608 (($ $) 7)) (** (($ $ $) 8))) +(((-291) (-141)) (T -291)) +((** (*1 *1 *1 *1) (-4 *1 (-291))) (-1608 (*1 *1 *1) (-4 *1 (-291))) (-3118 (*1 *1 *1) (-4 *1 (-291)))) +(-13 (-10 -8 (-15 -3118 ($ $)) (-15 -1608 ($ $)) (-15 ** ($ $ $)))) +((-4266 (((-653 (-1169 |#1|)) (-1169 |#1|) |#1|) 35)) (-2441 ((|#2| |#2| |#1|) 39)) (-1672 ((|#2| |#2| |#1|) 41)) (-3593 ((|#2| |#2| |#1|) 40))) +(((-292 |#1| |#2|) (-10 -7 (-15 -2441 (|#2| |#2| |#1|)) (-15 -3593 (|#2| |#2| |#1|)) (-15 -1672 (|#2| |#2| |#1|)) (-15 -4266 ((-653 (-1169 |#1|)) (-1169 |#1|) |#1|))) (-371) (-1271 |#1|)) (T -292)) +((-4266 (*1 *2 *3 *4) (-12 (-4 *4 (-371)) (-5 *2 (-653 (-1169 *4))) (-5 *1 (-292 *4 *5)) (-5 *3 (-1169 *4)) (-4 *5 (-1271 *4)))) (-1672 (*1 *2 *2 *3) (-12 (-4 *3 (-371)) (-5 *1 (-292 *3 *2)) (-4 *2 (-1271 *3)))) (-3593 (*1 *2 *2 *3) (-12 (-4 *3 (-371)) (-5 *1 (-292 *3 *2)) (-4 *2 (-1271 *3)))) (-2441 (*1 *2 *2 *3) (-12 (-4 *3 (-371)) (-5 *1 (-292 *3 *2)) (-4 *2 (-1271 *3))))) +(-10 -7 (-15 -2441 (|#2| |#2| |#1|)) (-15 -3593 (|#2| |#2| |#1|)) (-15 -1672 (|#2| |#2| |#1|)) (-15 -4266 ((-653 (-1169 |#1|)) (-1169 |#1|) |#1|))) +((-2198 ((|#2| $ |#1|) 6))) +(((-293 |#1| |#2|) (-141) (-1230) (-1230)) (T -293)) +((-2198 (*1 *2 *1 *3) (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1230)) (-4 *2 (-1230))))) +(-13 (-1230) (-10 -8 (-15 -2198 (|t#2| $ |t#1|)))) +(((-1230) . T)) +((-2457 ((|#3| $ |#2| |#3|) 12)) (-2384 ((|#3| $ |#2|) 10))) +(((-294 |#1| |#2| |#3|) (-10 -8 (-15 -2457 (|#3| |#1| |#2| |#3|)) (-15 -2384 (|#3| |#1| |#2|))) (-295 |#2| |#3|) (-1112) (-1230)) (T -294)) +NIL +(-10 -8 (-15 -2457 (|#3| |#1| |#2| |#3|)) (-15 -2384 (|#3| |#1| |#2|))) +((-3142 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4456)))) (-2457 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4456)))) (-2384 ((|#2| $ |#1|) 11)) (-2198 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(((-295 |#1| |#2|) (-141) (-1112) (-1230)) (T -295)) +((-2198 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-295 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1230)))) (-2384 (*1 *2 *1 *3) (-12 (-4 *1 (-295 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1230)))) (-3142 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-295 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1230)))) (-2457 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-295 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1230))))) +(-13 (-293 |t#1| |t#2|) (-10 -8 (-15 -2198 (|t#2| $ |t#1| |t#2|)) (-15 -2384 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4456)) (PROGN (-15 -3142 (|t#2| $ |t#1| |t#2|)) (-15 -2457 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-293 |#1| |#2|) . T) ((-1230) . T)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 37)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 44)) (-2456 (($ $) 41)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2800 (((-112) $ $) NIL)) (-2579 (($) NIL T CONST)) (-2784 (($ $ $) 35)) (-2867 (($ |#2| |#3|) 18)) (-2232 (((-3 $ "failed") $) NIL)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-1959 (((-112) $) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3621 ((|#3| $) NIL)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 19)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2569 (((-3 $ "failed") $ $) NIL)) (-2163 (((-780) $) 36)) (-2198 ((|#2| $ |#2|) 46)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 23)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-2132 (($) 31 T CONST)) (-2144 (($) 39 T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 40))) +(((-296 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-314) (-293 |#2| |#2|) (-10 -8 (-15 -3621 (|#3| $)) (-15 -2942 (|#2| $)) (-15 -2867 ($ |#2| |#3|)) (-15 -2569 ((-3 $ "failed") $ $)) (-15 -2232 ((-3 $ "failed") $)) (-15 -1323 ($ $)))) (-174) (-1256 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -296)) +((-2232 (*1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-296 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1256 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3621 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-296 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1256 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2942 (*1 *2 *1) (-12 (-4 *2 (-1256 *3)) (-5 *1 (-296 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2867 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-296 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1256 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2569 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-296 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1256 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1323 (*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-296 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1256 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))) +(-13 (-314) (-293 |#2| |#2|) (-10 -8 (-15 -3621 (|#3| $)) (-15 -2942 (|#2| $)) (-15 -2867 ($ |#2| |#3|)) (-15 -2569 ((-3 $ "failed") $ $)) (-15 -2232 ((-3 $ "failed") $)) (-15 -1323 ($ $)))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12) (($ (-573)) 33)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) +(((-297) (-141)) (T -297)) +NIL +(-13 (-1061) (-111 $ $) (-10 -7 (-6 -4448))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-625 (-573)) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-735) . T) ((-1063 $) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) +((-2242 (((-653 (-1097)) $) 10)) (-1746 (($ (-515) (-515) (-1116) $) 19)) (-3428 (($ (-515) (-653 (-975)) $) 23)) (-2584 (($) 25)) (-3422 (((-700 (-1116)) (-515) (-515) $) 18)) (-2137 (((-653 (-975)) (-515) $) 22)) (-3508 (($) 7)) (-1823 (($) 24)) (-2942 (((-871) $) 29)) (-2396 (($) 26))) +(((-298) (-13 (-622 (-871)) (-10 -8 (-15 -3508 ($)) (-15 -2242 ((-653 (-1097)) $)) (-15 -3422 ((-700 (-1116)) (-515) (-515) $)) (-15 -1746 ($ (-515) (-515) (-1116) $)) (-15 -2137 ((-653 (-975)) (-515) $)) (-15 -3428 ($ (-515) (-653 (-975)) $)) (-15 -1823 ($)) (-15 -2584 ($)) (-15 -2396 ($))))) (T -298)) +((-3508 (*1 *1) (-5 *1 (-298))) (-2242 (*1 *2 *1) (-12 (-5 *2 (-653 (-1097))) (-5 *1 (-298)))) (-3422 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-515)) (-5 *2 (-700 (-1116))) (-5 *1 (-298)))) (-1746 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-515)) (-5 *3 (-1116)) (-5 *1 (-298)))) (-2137 (*1 *2 *3 *1) (-12 (-5 *3 (-515)) (-5 *2 (-653 (-975))) (-5 *1 (-298)))) (-3428 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-515)) (-5 *3 (-653 (-975))) (-5 *1 (-298)))) (-1823 (*1 *1) (-5 *1 (-298))) (-2584 (*1 *1) (-5 *1 (-298))) (-2396 (*1 *1) (-5 *1 (-298)))) +(-13 (-622 (-871)) (-10 -8 (-15 -3508 ($)) (-15 -2242 ((-653 (-1097)) $)) (-15 -3422 ((-700 (-1116)) (-515) (-515) $)) (-15 -1746 ($ (-515) (-515) (-1116) $)) (-15 -2137 ((-653 (-975)) (-515) $)) (-15 -3428 ($ (-515) (-653 (-975)) $)) (-15 -1823 ($)) (-15 -2584 ($)) (-15 -2396 ($)))) +((-4056 (((-653 (-2 (|:| |eigval| (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|)))) (|:| |geneigvec| (-653 (-698 (-416 (-962 |#1|))))))) (-698 (-416 (-962 |#1|)))) 102)) (-4045 (((-653 (-698 (-416 (-962 |#1|)))) (-2 (|:| |eigval| (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|)))) (|:| |eigmult| (-780)) (|:| |eigvec| (-653 (-698 (-416 (-962 |#1|)))))) (-698 (-416 (-962 |#1|)))) 97) (((-653 (-698 (-416 (-962 |#1|)))) (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|))) (-698 (-416 (-962 |#1|))) (-780) (-780)) 41)) (-3386 (((-653 (-2 (|:| |eigval| (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|)))) (|:| |eigmult| (-780)) (|:| |eigvec| (-653 (-698 (-416 (-962 |#1|))))))) (-698 (-416 (-962 |#1|)))) 99)) (-3670 (((-653 (-698 (-416 (-962 |#1|)))) (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|))) (-698 (-416 (-962 |#1|)))) 75)) (-3867 (((-653 (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|)))) (-698 (-416 (-962 |#1|)))) 74)) (-2517 (((-962 |#1|) (-698 (-416 (-962 |#1|)))) 55) (((-962 |#1|) (-698 (-416 (-962 |#1|))) (-1189)) 56))) +(((-299 |#1|) (-10 -7 (-15 -2517 ((-962 |#1|) (-698 (-416 (-962 |#1|))) (-1189))) (-15 -2517 ((-962 |#1|) (-698 (-416 (-962 |#1|))))) (-15 -3867 ((-653 (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|)))) (-698 (-416 (-962 |#1|))))) (-15 -3670 ((-653 (-698 (-416 (-962 |#1|)))) (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|))) (-698 (-416 (-962 |#1|))))) (-15 -4045 ((-653 (-698 (-416 (-962 |#1|)))) (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|))) (-698 (-416 (-962 |#1|))) (-780) (-780))) (-15 -4045 ((-653 (-698 (-416 (-962 |#1|)))) (-2 (|:| |eigval| (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|)))) (|:| |eigmult| (-780)) (|:| |eigvec| (-653 (-698 (-416 (-962 |#1|)))))) (-698 (-416 (-962 |#1|))))) (-15 -4056 ((-653 (-2 (|:| |eigval| (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|)))) (|:| |geneigvec| (-653 (-698 (-416 (-962 |#1|))))))) (-698 (-416 (-962 |#1|))))) (-15 -3386 ((-653 (-2 (|:| |eigval| (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|)))) (|:| |eigmult| (-780)) (|:| |eigvec| (-653 (-698 (-416 (-962 |#1|))))))) (-698 (-416 (-962 |#1|)))))) (-461)) (T -299)) +((-3386 (*1 *2 *3) (-12 (-4 *4 (-461)) (-5 *2 (-653 (-2 (|:| |eigval| (-3 (-416 (-962 *4)) (-1178 (-1189) (-962 *4)))) (|:| |eigmult| (-780)) (|:| |eigvec| (-653 (-698 (-416 (-962 *4)))))))) (-5 *1 (-299 *4)) (-5 *3 (-698 (-416 (-962 *4)))))) (-4056 (*1 *2 *3) (-12 (-4 *4 (-461)) (-5 *2 (-653 (-2 (|:| |eigval| (-3 (-416 (-962 *4)) (-1178 (-1189) (-962 *4)))) (|:| |geneigvec| (-653 (-698 (-416 (-962 *4)))))))) (-5 *1 (-299 *4)) (-5 *3 (-698 (-416 (-962 *4)))))) (-4045 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-416 (-962 *5)) (-1178 (-1189) (-962 *5)))) (|:| |eigmult| (-780)) (|:| |eigvec| (-653 *4)))) (-4 *5 (-461)) (-5 *2 (-653 (-698 (-416 (-962 *5))))) (-5 *1 (-299 *5)) (-5 *4 (-698 (-416 (-962 *5)))))) (-4045 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-416 (-962 *6)) (-1178 (-1189) (-962 *6)))) (-5 *5 (-780)) (-4 *6 (-461)) (-5 *2 (-653 (-698 (-416 (-962 *6))))) (-5 *1 (-299 *6)) (-5 *4 (-698 (-416 (-962 *6)))))) (-3670 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-416 (-962 *5)) (-1178 (-1189) (-962 *5)))) (-4 *5 (-461)) (-5 *2 (-653 (-698 (-416 (-962 *5))))) (-5 *1 (-299 *5)) (-5 *4 (-698 (-416 (-962 *5)))))) (-3867 (*1 *2 *3) (-12 (-5 *3 (-698 (-416 (-962 *4)))) (-4 *4 (-461)) (-5 *2 (-653 (-3 (-416 (-962 *4)) (-1178 (-1189) (-962 *4))))) (-5 *1 (-299 *4)))) (-2517 (*1 *2 *3) (-12 (-5 *3 (-698 (-416 (-962 *4)))) (-5 *2 (-962 *4)) (-5 *1 (-299 *4)) (-4 *4 (-461)))) (-2517 (*1 *2 *3 *4) (-12 (-5 *3 (-698 (-416 (-962 *5)))) (-5 *4 (-1189)) (-5 *2 (-962 *5)) (-5 *1 (-299 *5)) (-4 *5 (-461))))) +(-10 -7 (-15 -2517 ((-962 |#1|) (-698 (-416 (-962 |#1|))) (-1189))) (-15 -2517 ((-962 |#1|) (-698 (-416 (-962 |#1|))))) (-15 -3867 ((-653 (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|)))) (-698 (-416 (-962 |#1|))))) (-15 -3670 ((-653 (-698 (-416 (-962 |#1|)))) (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|))) (-698 (-416 (-962 |#1|))))) (-15 -4045 ((-653 (-698 (-416 (-962 |#1|)))) (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|))) (-698 (-416 (-962 |#1|))) (-780) (-780))) (-15 -4045 ((-653 (-698 (-416 (-962 |#1|)))) (-2 (|:| |eigval| (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|)))) (|:| |eigmult| (-780)) (|:| |eigvec| (-653 (-698 (-416 (-962 |#1|)))))) (-698 (-416 (-962 |#1|))))) (-15 -4056 ((-653 (-2 (|:| |eigval| (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|)))) (|:| |geneigvec| (-653 (-698 (-416 (-962 |#1|))))))) (-698 (-416 (-962 |#1|))))) (-15 -3386 ((-653 (-2 (|:| |eigval| (-3 (-416 (-962 |#1|)) (-1178 (-1189) (-962 |#1|)))) (|:| |eigmult| (-780)) (|:| |eigvec| (-653 (-698 (-416 (-962 |#1|))))))) (-698 (-416 (-962 |#1|)))))) +((-1776 (((-301 |#2|) (-1 |#2| |#1|) (-301 |#1|)) 14))) +(((-300 |#1| |#2|) (-10 -7 (-15 -1776 ((-301 |#2|) (-1 |#2| |#1|) (-301 |#1|)))) (-1230) (-1230)) (T -300)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-301 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-301 *6)) (-5 *1 (-300 *5 *6))))) +(-10 -7 (-15 -1776 ((-301 |#2|) (-1 |#2| |#1|) (-301 |#1|)))) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1748 (((-112) $) NIL (|has| |#1| (-21)))) (-3444 (($ $) 12)) (-2983 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2544 (($ $ $) 95 (|has| |#1| (-309)))) (-2579 (($) NIL (-2817 (|has| |#1| (-21)) (|has| |#1| (-735))) CONST)) (-4414 (($ $) 51 (|has| |#1| (-21)))) (-3250 (((-3 $ "failed") $) 62 (|has| |#1| (-735)))) (-1808 ((|#1| $) 11)) (-2232 (((-3 $ "failed") $) 60 (|has| |#1| (-735)))) (-1959 (((-112) $) NIL (|has| |#1| (-735)))) (-1776 (($ (-1 |#1| |#1|) $) 14)) (-1795 ((|#1| $) 10)) (-2915 (($ $) 50 (|has| |#1| (-21)))) (-3369 (((-3 $ "failed") $) 61 (|has| |#1| (-735)))) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-1323 (($ $) 64 (-2817 (|has| |#1| (-371)) (|has| |#1| (-482))))) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2736 (((-653 $) $) 85 (|has| |#1| (-565)))) (-2645 (($ $ $) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 $)) 28 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-1189) |#1|) 17 (|has| |#1| (-523 (-1189) |#1|))) (($ $ (-653 (-1189)) (-653 |#1|)) 21 (|has| |#1| (-523 (-1189) |#1|)))) (-2691 (($ |#1| |#1|) 9)) (-2365 (((-135)) 90 (|has| |#1| (-371)))) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189)) 87 (|has| |#1| (-910 (-1189))))) (-3204 (($ $ $) NIL (|has| |#1| (-482)))) (-4380 (($ $ $) NIL (|has| |#1| (-482)))) (-2942 (($ (-573)) NIL (|has| |#1| (-1061))) (((-112) $) 37 (|has| |#1| (-1112))) (((-871) $) 36 (|has| |#1| (-1112)))) (-1545 (((-780)) 67 (|has| |#1| (-1061)) CONST)) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2132 (($) 47 (|has| |#1| (-21)) CONST)) (-2144 (($) 57 (|has| |#1| (-735)) CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189))))) (-2981 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1112)))) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371))) (($ $ $) 92 (-2817 (|has| |#1| (-371)) (|has| |#1| (-482))))) (-3093 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3077 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-573)) NIL (|has| |#1| (-482))) (($ $ (-780)) NIL (|has| |#1| (-735))) (($ $ (-931)) NIL (|has| |#1| (-1124)))) (* (($ $ |#1|) 55 (|has| |#1| (-1124))) (($ |#1| $) 54 (|has| |#1| (-1124))) (($ $ $) 53 (|has| |#1| (-1124))) (($ (-573) $) 70 (|has| |#1| (-21))) (($ (-780) $) NIL (|has| |#1| (-21))) (($ (-931) $) NIL (|has| |#1| (-25))))) +(((-301 |#1|) (-13 (-1230) (-10 -8 (-15 -2981 ($ |#1| |#1|)) (-15 -2691 ($ |#1| |#1|)) (-15 -3444 ($ $)) (-15 -1795 (|#1| $)) (-15 -1808 (|#1| $)) (-15 -1776 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-523 (-1189) |#1|)) (-6 (-523 (-1189) |#1|)) |%noBranch|) (IF (|has| |#1| (-1112)) (PROGN (-6 (-1112)) (-6 (-622 (-112))) (IF (|has| |#1| (-316 |#1|)) (PROGN (-15 -2645 ($ $ $)) (-15 -2645 ($ $ (-653 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3077 ($ |#1| $)) (-15 -3077 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2915 ($ $)) (-15 -4414 ($ $)) (-15 -3093 ($ |#1| $)) (-15 -3093 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1124)) (PROGN (-6 (-1124)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-735)) (PROGN (-6 (-735)) (-15 -3369 ((-3 $ "failed") $)) (-15 -3250 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-482)) (PROGN (-6 (-482)) (-15 -3369 ((-3 $ "failed") $)) (-15 -3250 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1061)) (PROGN (-6 (-1061)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-726 |#1|)) |%noBranch|) (IF (|has| |#1| (-565)) (-15 -2736 ((-653 $) $)) |%noBranch|) (IF (|has| |#1| (-910 (-1189))) (-6 (-910 (-1189))) |%noBranch|) (IF (|has| |#1| (-371)) (PROGN (-6 (-1287 |#1|)) (-15 -3103 ($ $ $)) (-15 -1323 ($ $))) |%noBranch|) (IF (|has| |#1| (-309)) (-15 -2544 ($ $ $)) |%noBranch|))) (-1230)) (T -301)) +((-2981 (*1 *1 *2 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-1230)))) (-2691 (*1 *1 *2 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-1230)))) (-3444 (*1 *1 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-1230)))) (-1795 (*1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-1230)))) (-1808 (*1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-1230)))) (-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1230)) (-5 *1 (-301 *3)))) (-2645 (*1 *1 *1 *1) (-12 (-4 *2 (-316 *2)) (-4 *2 (-1112)) (-4 *2 (-1230)) (-5 *1 (-301 *2)))) (-2645 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-301 *3))) (-4 *3 (-316 *3)) (-4 *3 (-1112)) (-4 *3 (-1230)) (-5 *1 (-301 *3)))) (-3077 (*1 *1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-25)) (-4 *2 (-1230)))) (-3077 (*1 *1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-25)) (-4 *2 (-1230)))) (-2915 (*1 *1 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-21)) (-4 *2 (-1230)))) (-4414 (*1 *1 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-21)) (-4 *2 (-1230)))) (-3093 (*1 *1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-21)) (-4 *2 (-1230)))) (-3093 (*1 *1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-21)) (-4 *2 (-1230)))) (-3369 (*1 *1 *1) (|partial| -12 (-5 *1 (-301 *2)) (-4 *2 (-735)) (-4 *2 (-1230)))) (-3250 (*1 *1 *1) (|partial| -12 (-5 *1 (-301 *2)) (-4 *2 (-735)) (-4 *2 (-1230)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-653 (-301 *3))) (-5 *1 (-301 *3)) (-4 *3 (-565)) (-4 *3 (-1230)))) (-2544 (*1 *1 *1 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-309)) (-4 *2 (-1230)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-1124)) (-4 *2 (-1230)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-1124)) (-4 *2 (-1230)))) (-3103 (*1 *1 *1 *1) (-2817 (-12 (-5 *1 (-301 *2)) (-4 *2 (-371)) (-4 *2 (-1230))) (-12 (-5 *1 (-301 *2)) (-4 *2 (-482)) (-4 *2 (-1230))))) (-1323 (*1 *1 *1) (-2817 (-12 (-5 *1 (-301 *2)) (-4 *2 (-371)) (-4 *2 (-1230))) (-12 (-5 *1 (-301 *2)) (-4 *2 (-482)) (-4 *2 (-1230)))))) +(-13 (-1230) (-10 -8 (-15 -2981 ($ |#1| |#1|)) (-15 -2691 ($ |#1| |#1|)) (-15 -3444 ($ $)) (-15 -1795 (|#1| $)) (-15 -1808 (|#1| $)) (-15 -1776 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-523 (-1189) |#1|)) (-6 (-523 (-1189) |#1|)) |%noBranch|) (IF (|has| |#1| (-1112)) (PROGN (-6 (-1112)) (-6 (-622 (-112))) (IF (|has| |#1| (-316 |#1|)) (PROGN (-15 -2645 ($ $ $)) (-15 -2645 ($ $ (-653 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3077 ($ |#1| $)) (-15 -3077 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2915 ($ $)) (-15 -4414 ($ $)) (-15 -3093 ($ |#1| $)) (-15 -3093 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1124)) (PROGN (-6 (-1124)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-735)) (PROGN (-6 (-735)) (-15 -3369 ((-3 $ "failed") $)) (-15 -3250 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-482)) (PROGN (-6 (-482)) (-15 -3369 ((-3 $ "failed") $)) (-15 -3250 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1061)) (PROGN (-6 (-1061)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-726 |#1|)) |%noBranch|) (IF (|has| |#1| (-565)) (-15 -2736 ((-653 $) $)) |%noBranch|) (IF (|has| |#1| (-910 (-1189))) (-6 (-910 (-1189))) |%noBranch|) (IF (|has| |#1| (-371)) (PROGN (-6 (-1287 |#1|)) (-15 -3103 ($ $ $)) (-15 -1323 ($ $))) |%noBranch|) (IF (|has| |#1| (-309)) (-15 -2544 ($ $ $)) |%noBranch|))) +((-2848 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-3777 (($) NIL) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3791 (((-1285) $ |#1| |#1|) NIL (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#2| $ |#1| |#2|) NIL)) (-3557 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2161 (((-3 |#2| "failed") |#1| $) NIL)) (-2579 (($) NIL T CONST)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-2596 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-3 |#2| "failed") |#1| $) NIL)) (-3334 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2867 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#2| $ |#1|) NIL)) (-1863 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-1968 ((|#1| $) NIL (|has| |#1| (-859)))) (-3214 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3470 ((|#1| $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4456))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-1762 (((-653 |#1|) $) NIL)) (-4201 (((-112) |#1| $) NIL)) (-2487 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-3181 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1977 (((-653 |#1|) $) NIL)) (-2560 (((-112) |#1| $) NIL)) (-3965 (((-1132) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2914 ((|#2| $) NIL (|has| |#1| (-859)))) (-2036 (((-3 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL)) (-3112 (($ $ |#2|) NIL (|has| $ (-6 -4456)))) (-3815 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1575 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 (-301 |#2|))) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-1535 (((-653 |#2|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2428 (($) NIL) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3974 (((-780) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-780) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112)))) (((-780) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-623 (-545))))) (-2955 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-2942 (((-871) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-622 (-871))) (|has| |#2| (-622 (-871)))))) (-3507 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2679 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-1646 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-302 |#1| |#2|) (-13 (-1206 |#1| |#2|) (-10 -7 (-6 -4455))) (-1112) (-1112)) (T -302)) +NIL +(-13 (-1206 |#1| |#2|) (-10 -7 (-6 -4455))) +((-2675 (((-319) (-1171) (-653 (-1171))) 17) (((-319) (-1171) (-1171)) 16) (((-319) (-653 (-1171))) 15) (((-319) (-1171)) 14))) +(((-303) (-10 -7 (-15 -2675 ((-319) (-1171))) (-15 -2675 ((-319) (-653 (-1171)))) (-15 -2675 ((-319) (-1171) (-1171))) (-15 -2675 ((-319) (-1171) (-653 (-1171)))))) (T -303)) +((-2675 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-1171))) (-5 *3 (-1171)) (-5 *2 (-319)) (-5 *1 (-303)))) (-2675 (*1 *2 *3 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-319)) (-5 *1 (-303)))) (-2675 (*1 *2 *3) (-12 (-5 *3 (-653 (-1171))) (-5 *2 (-319)) (-5 *1 (-303)))) (-2675 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-319)) (-5 *1 (-303))))) +(-10 -7 (-15 -2675 ((-319) (-1171))) (-15 -2675 ((-319) (-653 (-1171)))) (-15 -2675 ((-319) (-1171) (-1171))) (-15 -2675 ((-319) (-1171) (-653 (-1171))))) +((-1776 ((|#2| (-1 |#2| |#1|) (-1171) (-621 |#1|)) 18))) +(((-304 |#1| |#2|) (-10 -7 (-15 -1776 (|#2| (-1 |#2| |#1|) (-1171) (-621 |#1|)))) (-309) (-1230)) (T -304)) +((-1776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1171)) (-5 *5 (-621 *6)) (-4 *6 (-309)) (-4 *2 (-1230)) (-5 *1 (-304 *6 *2))))) +(-10 -7 (-15 -1776 (|#2| (-1 |#2| |#1|) (-1171) (-621 |#1|)))) +((-1776 ((|#2| (-1 |#2| |#1|) (-621 |#1|)) 17))) +(((-305 |#1| |#2|) (-10 -7 (-15 -1776 (|#2| (-1 |#2| |#1|) (-621 |#1|)))) (-309) (-309)) (T -305)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-621 *5)) (-4 *5 (-309)) (-4 *2 (-309)) (-5 *1 (-305 *5 *2))))) +(-10 -7 (-15 -1776 (|#2| (-1 |#2| |#1|) (-621 |#1|)))) +((-3036 (((-112) (-227)) 12))) +(((-306 |#1| |#2|) (-10 -7 (-15 -3036 ((-112) (-227)))) (-227) (-227)) (T -306)) +((-3036 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-306 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -3036 ((-112) (-227)))) +((-3148 (((-1169 (-227)) (-323 (-227)) (-653 (-1189)) (-1106 (-852 (-227)))) 118)) (-4234 (((-1169 (-227)) (-1280 (-323 (-227))) (-653 (-1189)) (-1106 (-852 (-227)))) 135) (((-1169 (-227)) (-323 (-227)) (-653 (-1189)) (-1106 (-852 (-227)))) 72)) (-1958 (((-653 (-1171)) (-1169 (-227))) NIL)) (-2982 (((-653 (-227)) (-323 (-227)) (-1189) (-1106 (-852 (-227)))) 69)) (-2385 (((-653 (-227)) (-962 (-416 (-573))) (-1189) (-1106 (-852 (-227)))) 59)) (-4245 (((-653 (-1171)) (-653 (-227))) NIL)) (-1665 (((-227) (-1106 (-852 (-227)))) 29)) (-4256 (((-227) (-1106 (-852 (-227)))) 30)) (-3855 (((-112) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 64)) (-3730 (((-1171) (-227)) NIL))) +(((-307) (-10 -7 (-15 -1665 ((-227) (-1106 (-852 (-227))))) (-15 -4256 ((-227) (-1106 (-852 (-227))))) (-15 -3855 ((-112) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2982 ((-653 (-227)) (-323 (-227)) (-1189) (-1106 (-852 (-227))))) (-15 -3148 ((-1169 (-227)) (-323 (-227)) (-653 (-1189)) (-1106 (-852 (-227))))) (-15 -4234 ((-1169 (-227)) (-323 (-227)) (-653 (-1189)) (-1106 (-852 (-227))))) (-15 -4234 ((-1169 (-227)) (-1280 (-323 (-227))) (-653 (-1189)) (-1106 (-852 (-227))))) (-15 -2385 ((-653 (-227)) (-962 (-416 (-573))) (-1189) (-1106 (-852 (-227))))) (-15 -3730 ((-1171) (-227))) (-15 -4245 ((-653 (-1171)) (-653 (-227)))) (-15 -1958 ((-653 (-1171)) (-1169 (-227)))))) (T -307)) +((-1958 (*1 *2 *3) (-12 (-5 *3 (-1169 (-227))) (-5 *2 (-653 (-1171))) (-5 *1 (-307)))) (-4245 (*1 *2 *3) (-12 (-5 *3 (-653 (-227))) (-5 *2 (-653 (-1171))) (-5 *1 (-307)))) (-3730 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1171)) (-5 *1 (-307)))) (-2385 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-962 (-416 (-573)))) (-5 *4 (-1189)) (-5 *5 (-1106 (-852 (-227)))) (-5 *2 (-653 (-227))) (-5 *1 (-307)))) (-4234 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1280 (-323 (-227)))) (-5 *4 (-653 (-1189))) (-5 *5 (-1106 (-852 (-227)))) (-5 *2 (-1169 (-227))) (-5 *1 (-307)))) (-4234 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-323 (-227))) (-5 *4 (-653 (-1189))) (-5 *5 (-1106 (-852 (-227)))) (-5 *2 (-1169 (-227))) (-5 *1 (-307)))) (-3148 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-323 (-227))) (-5 *4 (-653 (-1189))) (-5 *5 (-1106 (-852 (-227)))) (-5 *2 (-1169 (-227))) (-5 *1 (-307)))) (-2982 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-323 (-227))) (-5 *4 (-1189)) (-5 *5 (-1106 (-852 (-227)))) (-5 *2 (-653 (-227))) (-5 *1 (-307)))) (-3855 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-112)) (-5 *1 (-307)))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-1106 (-852 (-227)))) (-5 *2 (-227)) (-5 *1 (-307)))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-1106 (-852 (-227)))) (-5 *2 (-227)) (-5 *1 (-307))))) +(-10 -7 (-15 -1665 ((-227) (-1106 (-852 (-227))))) (-15 -4256 ((-227) (-1106 (-852 (-227))))) (-15 -3855 ((-112) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2982 ((-653 (-227)) (-323 (-227)) (-1189) (-1106 (-852 (-227))))) (-15 -3148 ((-1169 (-227)) (-323 (-227)) (-653 (-1189)) (-1106 (-852 (-227))))) (-15 -4234 ((-1169 (-227)) (-323 (-227)) (-653 (-1189)) (-1106 (-852 (-227))))) (-15 -4234 ((-1169 (-227)) (-1280 (-323 (-227))) (-653 (-1189)) (-1106 (-852 (-227))))) (-15 -2385 ((-653 (-227)) (-962 (-416 (-573))) (-1189) (-1106 (-852 (-227))))) (-15 -3730 ((-1171) (-227))) (-15 -4245 ((-653 (-1171)) (-653 (-227)))) (-15 -1958 ((-653 (-1171)) (-1169 (-227))))) +((-4090 (((-653 (-621 $)) $) 27)) (-2544 (($ $ (-301 $)) 78) (($ $ (-653 (-301 $))) 139) (($ $ (-653 (-621 $)) (-653 $)) NIL)) (-1695 (((-3 (-621 $) "failed") $) 127)) (-2205 (((-621 $) $) 126)) (-2449 (($ $) 17) (($ (-653 $)) 54)) (-2515 (((-653 (-115)) $) 35)) (-4173 (((-115) (-115)) 88)) (-2250 (((-112) $) 150)) (-1776 (($ (-1 $ $) (-621 $)) 86)) (-2944 (((-3 (-621 $) "failed") $) 94)) (-1774 (($ (-115) $) 59) (($ (-115) (-653 $)) 110)) (-1667 (((-112) $ (-115)) 132) (((-112) $ (-1189)) 131)) (-1839 (((-780) $) 44)) (-3805 (((-112) $ $) 57) (((-112) $ (-1189)) 49)) (-2270 (((-112) $) 148)) (-2645 (($ $ (-621 $) $) NIL) (($ $ (-653 (-621 $)) (-653 $)) NIL) (($ $ (-653 (-301 $))) 137) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-653 (-1189)) (-653 (-1 $ $))) 81) (($ $ (-653 (-1189)) (-653 (-1 $ (-653 $)))) NIL) (($ $ (-1189) (-1 $ (-653 $))) 67) (($ $ (-1189) (-1 $ $)) 72) (($ $ (-653 (-115)) (-653 (-1 $ $))) 80) (($ $ (-653 (-115)) (-653 (-1 $ (-653 $)))) 82) (($ $ (-115) (-1 $ (-653 $))) 68) (($ $ (-115) (-1 $ $)) 74)) (-2198 (($ (-115) $) 60) (($ (-115) $ $) 61) (($ (-115) $ $ $) 62) (($ (-115) $ $ $ $) 63) (($ (-115) (-653 $)) 123)) (-3727 (($ $) 51) (($ $ $) 135)) (-2029 (($ $) 15) (($ (-653 $)) 53)) (-3109 (((-112) (-115)) 21))) +(((-308 |#1|) (-10 -8 (-15 -2250 ((-112) |#1|)) (-15 -2270 ((-112) |#1|)) (-15 -2645 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2645 (|#1| |#1| (-115) (-1 |#1| (-653 |#1|)))) (-15 -2645 (|#1| |#1| (-653 (-115)) (-653 (-1 |#1| (-653 |#1|))))) (-15 -2645 (|#1| |#1| (-653 (-115)) (-653 (-1 |#1| |#1|)))) (-15 -2645 (|#1| |#1| (-1189) (-1 |#1| |#1|))) (-15 -2645 (|#1| |#1| (-1189) (-1 |#1| (-653 |#1|)))) (-15 -2645 (|#1| |#1| (-653 (-1189)) (-653 (-1 |#1| (-653 |#1|))))) (-15 -2645 (|#1| |#1| (-653 (-1189)) (-653 (-1 |#1| |#1|)))) (-15 -3805 ((-112) |#1| (-1189))) (-15 -3805 ((-112) |#1| |#1|)) (-15 -1776 (|#1| (-1 |#1| |#1|) (-621 |#1|))) (-15 -1774 (|#1| (-115) (-653 |#1|))) (-15 -1774 (|#1| (-115) |#1|)) (-15 -1667 ((-112) |#1| (-1189))) (-15 -1667 ((-112) |#1| (-115))) (-15 -3109 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 -2515 ((-653 (-115)) |#1|)) (-15 -4090 ((-653 (-621 |#1|)) |#1|)) (-15 -2944 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -1839 ((-780) |#1|)) (-15 -3727 (|#1| |#1| |#1|)) (-15 -3727 (|#1| |#1|)) (-15 -2449 (|#1| (-653 |#1|))) (-15 -2449 (|#1| |#1|)) (-15 -2029 (|#1| (-653 |#1|))) (-15 -2029 (|#1| |#1|)) (-15 -2544 (|#1| |#1| (-653 (-621 |#1|)) (-653 |#1|))) (-15 -2544 (|#1| |#1| (-653 (-301 |#1|)))) (-15 -2544 (|#1| |#1| (-301 |#1|))) (-15 -2198 (|#1| (-115) (-653 |#1|))) (-15 -2198 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2198 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2198 (|#1| (-115) |#1| |#1|)) (-15 -2198 (|#1| (-115) |#1|)) (-15 -2645 (|#1| |#1| (-653 |#1|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#1| |#1|)) (-15 -2645 (|#1| |#1| (-301 |#1|))) (-15 -2645 (|#1| |#1| (-653 (-301 |#1|)))) (-15 -2645 (|#1| |#1| (-653 (-621 |#1|)) (-653 |#1|))) (-15 -2645 (|#1| |#1| (-621 |#1|) |#1|)) (-15 -1695 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -2205 ((-621 |#1|) |#1|))) (-309)) (T -308)) +((-4173 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-308 *3)) (-4 *3 (-309)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-308 *4)) (-4 *4 (-309))))) +(-10 -8 (-15 -2250 ((-112) |#1|)) (-15 -2270 ((-112) |#1|)) (-15 -2645 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2645 (|#1| |#1| (-115) (-1 |#1| (-653 |#1|)))) (-15 -2645 (|#1| |#1| (-653 (-115)) (-653 (-1 |#1| (-653 |#1|))))) (-15 -2645 (|#1| |#1| (-653 (-115)) (-653 (-1 |#1| |#1|)))) (-15 -2645 (|#1| |#1| (-1189) (-1 |#1| |#1|))) (-15 -2645 (|#1| |#1| (-1189) (-1 |#1| (-653 |#1|)))) (-15 -2645 (|#1| |#1| (-653 (-1189)) (-653 (-1 |#1| (-653 |#1|))))) (-15 -2645 (|#1| |#1| (-653 (-1189)) (-653 (-1 |#1| |#1|)))) (-15 -3805 ((-112) |#1| (-1189))) (-15 -3805 ((-112) |#1| |#1|)) (-15 -1776 (|#1| (-1 |#1| |#1|) (-621 |#1|))) (-15 -1774 (|#1| (-115) (-653 |#1|))) (-15 -1774 (|#1| (-115) |#1|)) (-15 -1667 ((-112) |#1| (-1189))) (-15 -1667 ((-112) |#1| (-115))) (-15 -3109 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 -2515 ((-653 (-115)) |#1|)) (-15 -4090 ((-653 (-621 |#1|)) |#1|)) (-15 -2944 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -1839 ((-780) |#1|)) (-15 -3727 (|#1| |#1| |#1|)) (-15 -3727 (|#1| |#1|)) (-15 -2449 (|#1| (-653 |#1|))) (-15 -2449 (|#1| |#1|)) (-15 -2029 (|#1| (-653 |#1|))) (-15 -2029 (|#1| |#1|)) (-15 -2544 (|#1| |#1| (-653 (-621 |#1|)) (-653 |#1|))) (-15 -2544 (|#1| |#1| (-653 (-301 |#1|)))) (-15 -2544 (|#1| |#1| (-301 |#1|))) (-15 -2198 (|#1| (-115) (-653 |#1|))) (-15 -2198 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2198 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2198 (|#1| (-115) |#1| |#1|)) (-15 -2198 (|#1| (-115) |#1|)) (-15 -2645 (|#1| |#1| (-653 |#1|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#1| |#1|)) (-15 -2645 (|#1| |#1| (-301 |#1|))) (-15 -2645 (|#1| |#1| (-653 (-301 |#1|)))) (-15 -2645 (|#1| |#1| (-653 (-621 |#1|)) (-653 |#1|))) (-15 -2645 (|#1| |#1| (-621 |#1|) |#1|)) (-15 -1695 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -2205 ((-621 |#1|) |#1|))) +((-2848 (((-112) $ $) 7)) (-4090 (((-653 (-621 $)) $) 39)) (-2544 (($ $ (-301 $)) 51) (($ $ (-653 (-301 $))) 50) (($ $ (-653 (-621 $)) (-653 $)) 49)) (-1695 (((-3 (-621 $) "failed") $) 64)) (-2205 (((-621 $) $) 65)) (-2449 (($ $) 46) (($ (-653 $)) 45)) (-2515 (((-653 (-115)) $) 38)) (-4173 (((-115) (-115)) 37)) (-2250 (((-112) $) 17 (|has| $ (-1050 (-573))))) (-2597 (((-1185 $) (-621 $)) 20 (|has| $ (-1061)))) (-1776 (($ (-1 $ $) (-621 $)) 31)) (-2944 (((-3 (-621 $) "failed") $) 41)) (-3180 (((-1171) $) 10)) (-4163 (((-653 (-621 $)) $) 40)) (-1774 (($ (-115) $) 33) (($ (-115) (-653 $)) 32)) (-1667 (((-112) $ (-115)) 35) (((-112) $ (-1189)) 34)) (-1839 (((-780) $) 42)) (-3965 (((-1132) $) 11)) (-3805 (((-112) $ $) 30) (((-112) $ (-1189)) 29)) (-2270 (((-112) $) 18 (|has| $ (-1050 (-573))))) (-2645 (($ $ (-621 $) $) 62) (($ $ (-653 (-621 $)) (-653 $)) 61) (($ $ (-653 (-301 $))) 60) (($ $ (-301 $)) 59) (($ $ $ $) 58) (($ $ (-653 $) (-653 $)) 57) (($ $ (-653 (-1189)) (-653 (-1 $ $))) 28) (($ $ (-653 (-1189)) (-653 (-1 $ (-653 $)))) 27) (($ $ (-1189) (-1 $ (-653 $))) 26) (($ $ (-1189) (-1 $ $)) 25) (($ $ (-653 (-115)) (-653 (-1 $ $))) 24) (($ $ (-653 (-115)) (-653 (-1 $ (-653 $)))) 23) (($ $ (-115) (-1 $ (-653 $))) 22) (($ $ (-115) (-1 $ $)) 21)) (-2198 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-653 $)) 52)) (-3727 (($ $) 44) (($ $ $) 43)) (-2984 (($ $) 19 (|has| $ (-1061)))) (-2942 (((-871) $) 12) (($ (-621 $)) 63)) (-2029 (($ $) 48) (($ (-653 $)) 47)) (-3109 (((-112) (-115)) 36)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) +(((-309) (-141)) (T -309)) +((-2198 (*1 *1 *2 *1) (-12 (-4 *1 (-309)) (-5 *2 (-115)))) (-2198 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-309)) (-5 *2 (-115)))) (-2198 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-309)) (-5 *2 (-115)))) (-2198 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-309)) (-5 *2 (-115)))) (-2198 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-653 *1)) (-4 *1 (-309)))) (-2544 (*1 *1 *1 *2) (-12 (-5 *2 (-301 *1)) (-4 *1 (-309)))) (-2544 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-301 *1))) (-4 *1 (-309)))) (-2544 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 (-621 *1))) (-5 *3 (-653 *1)) (-4 *1 (-309)))) (-2029 (*1 *1 *1) (-4 *1 (-309))) (-2029 (*1 *1 *2) (-12 (-5 *2 (-653 *1)) (-4 *1 (-309)))) (-2449 (*1 *1 *1) (-4 *1 (-309))) (-2449 (*1 *1 *2) (-12 (-5 *2 (-653 *1)) (-4 *1 (-309)))) (-3727 (*1 *1 *1) (-4 *1 (-309))) (-3727 (*1 *1 *1 *1) (-4 *1 (-309))) (-1839 (*1 *2 *1) (-12 (-4 *1 (-309)) (-5 *2 (-780)))) (-2944 (*1 *2 *1) (|partial| -12 (-5 *2 (-621 *1)) (-4 *1 (-309)))) (-4163 (*1 *2 *1) (-12 (-5 *2 (-653 (-621 *1))) (-4 *1 (-309)))) (-4090 (*1 *2 *1) (-12 (-5 *2 (-653 (-621 *1))) (-4 *1 (-309)))) (-2515 (*1 *2 *1) (-12 (-4 *1 (-309)) (-5 *2 (-653 (-115))))) (-4173 (*1 *2 *2) (-12 (-4 *1 (-309)) (-5 *2 (-115)))) (-3109 (*1 *2 *3) (-12 (-4 *1 (-309)) (-5 *3 (-115)) (-5 *2 (-112)))) (-1667 (*1 *2 *1 *3) (-12 (-4 *1 (-309)) (-5 *3 (-115)) (-5 *2 (-112)))) (-1667 (*1 *2 *1 *3) (-12 (-4 *1 (-309)) (-5 *3 (-1189)) (-5 *2 (-112)))) (-1774 (*1 *1 *2 *1) (-12 (-4 *1 (-309)) (-5 *2 (-115)))) (-1774 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-653 *1)) (-4 *1 (-309)))) (-1776 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-621 *1)) (-4 *1 (-309)))) (-3805 (*1 *2 *1 *1) (-12 (-4 *1 (-309)) (-5 *2 (-112)))) (-3805 (*1 *2 *1 *3) (-12 (-4 *1 (-309)) (-5 *3 (-1189)) (-5 *2 (-112)))) (-2645 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 (-1189))) (-5 *3 (-653 (-1 *1 *1))) (-4 *1 (-309)))) (-2645 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 (-1189))) (-5 *3 (-653 (-1 *1 (-653 *1)))) (-4 *1 (-309)))) (-2645 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1 *1 (-653 *1))) (-4 *1 (-309)))) (-2645 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1 *1 *1)) (-4 *1 (-309)))) (-2645 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 (-115))) (-5 *3 (-653 (-1 *1 *1))) (-4 *1 (-309)))) (-2645 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 (-115))) (-5 *3 (-653 (-1 *1 (-653 *1)))) (-4 *1 (-309)))) (-2645 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-653 *1))) (-4 *1 (-309)))) (-2645 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-309)))) (-2597 (*1 *2 *3) (-12 (-5 *3 (-621 *1)) (-4 *1 (-1061)) (-4 *1 (-309)) (-5 *2 (-1185 *1)))) (-2984 (*1 *1 *1) (-12 (-4 *1 (-1061)) (-4 *1 (-309)))) (-2270 (*1 *2 *1) (-12 (-4 *1 (-1050 (-573))) (-4 *1 (-309)) (-5 *2 (-112)))) (-2250 (*1 *2 *1) (-12 (-4 *1 (-1050 (-573))) (-4 *1 (-309)) (-5 *2 (-112))))) +(-13 (-1112) (-1050 (-621 $)) (-523 (-621 $) $) (-316 $) (-10 -8 (-15 -2198 ($ (-115) $)) (-15 -2198 ($ (-115) $ $)) (-15 -2198 ($ (-115) $ $ $)) (-15 -2198 ($ (-115) $ $ $ $)) (-15 -2198 ($ (-115) (-653 $))) (-15 -2544 ($ $ (-301 $))) (-15 -2544 ($ $ (-653 (-301 $)))) (-15 -2544 ($ $ (-653 (-621 $)) (-653 $))) (-15 -2029 ($ $)) (-15 -2029 ($ (-653 $))) (-15 -2449 ($ $)) (-15 -2449 ($ (-653 $))) (-15 -3727 ($ $)) (-15 -3727 ($ $ $)) (-15 -1839 ((-780) $)) (-15 -2944 ((-3 (-621 $) "failed") $)) (-15 -4163 ((-653 (-621 $)) $)) (-15 -4090 ((-653 (-621 $)) $)) (-15 -2515 ((-653 (-115)) $)) (-15 -4173 ((-115) (-115))) (-15 -3109 ((-112) (-115))) (-15 -1667 ((-112) $ (-115))) (-15 -1667 ((-112) $ (-1189))) (-15 -1774 ($ (-115) $)) (-15 -1774 ($ (-115) (-653 $))) (-15 -1776 ($ (-1 $ $) (-621 $))) (-15 -3805 ((-112) $ $)) (-15 -3805 ((-112) $ (-1189))) (-15 -2645 ($ $ (-653 (-1189)) (-653 (-1 $ $)))) (-15 -2645 ($ $ (-653 (-1189)) (-653 (-1 $ (-653 $))))) (-15 -2645 ($ $ (-1189) (-1 $ (-653 $)))) (-15 -2645 ($ $ (-1189) (-1 $ $))) (-15 -2645 ($ $ (-653 (-115)) (-653 (-1 $ $)))) (-15 -2645 ($ $ (-653 (-115)) (-653 (-1 $ (-653 $))))) (-15 -2645 ($ $ (-115) (-1 $ (-653 $)))) (-15 -2645 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1061)) (PROGN (-15 -2597 ((-1185 $) (-621 $))) (-15 -2984 ($ $))) |%noBranch|) (IF (|has| $ (-1050 (-573))) (PROGN (-15 -2270 ((-112) $)) (-15 -2250 ((-112) $))) |%noBranch|))) +(((-102) . T) ((-625 #0=(-621 $)) . T) ((-622 (-871)) . T) ((-316 $) . T) ((-523 (-621 $) $) . T) ((-523 $ $) . T) ((-1050 #0#) . T) ((-1112) . T)) +((-2936 (((-653 |#1|) (-653 |#1|)) 10))) +(((-310 |#1|) (-10 -7 (-15 -2936 ((-653 |#1|) (-653 |#1|)))) (-857)) (T -310)) +((-2936 (*1 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-857)) (-5 *1 (-310 *3))))) +(-10 -7 (-15 -2936 ((-653 |#1|) (-653 |#1|)))) +((-1776 (((-698 |#2|) (-1 |#2| |#1|) (-698 |#1|)) 17))) +(((-311 |#1| |#2|) (-10 -7 (-15 -1776 ((-698 |#2|) (-1 |#2| |#1|) (-698 |#1|)))) (-1061) (-1061)) (T -311)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-698 *5)) (-4 *5 (-1061)) (-4 *6 (-1061)) (-5 *2 (-698 *6)) (-5 *1 (-311 *5 *6))))) +(-10 -7 (-15 -1776 ((-698 |#2|) (-1 |#2| |#1|) (-698 |#1|)))) +((-1350 (((-1280 (-323 (-387))) (-1280 (-323 (-227)))) 110)) (-4233 (((-1106 (-852 (-227))) (-1106 (-852 (-387)))) 43)) (-1958 (((-653 (-1171)) (-1169 (-227))) 92)) (-2071 (((-323 (-387)) (-962 (-227))) 53)) (-4246 (((-227) (-962 (-227))) 49)) (-2345 (((-1171) (-387)) 195)) (-1727 (((-852 (-227)) (-852 (-387))) 37)) (-2362 (((-2 (|:| |additions| (-573)) (|:| |multiplications| (-573)) (|:| |exponentiations| (-573)) (|:| |functionCalls| (-573))) (-1280 (-323 (-227)))) 165)) (-1552 (((-1047) (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))) (|:| |extra| (-1047)))) 207) (((-1047) (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))))) 205)) (-1423 (((-698 (-227)) (-653 (-227)) (-780)) 19)) (-3699 (((-1280 (-708)) (-653 (-227))) 99)) (-4245 (((-653 (-1171)) (-653 (-227))) 79)) (-1779 (((-3 (-323 (-227)) "failed") (-323 (-227))) 128)) (-3036 (((-112) (-227) (-1106 (-852 (-227)))) 117)) (-2491 (((-1047) (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387)))) 224)) (-1665 (((-227) (-1106 (-852 (-227)))) 112)) (-4256 (((-227) (-1106 (-852 (-227)))) 113)) (-3986 (((-227) (-416 (-573))) 31)) (-2257 (((-1171) (-387)) 77)) (-4031 (((-227) (-387)) 22)) (-3672 (((-387) (-1280 (-323 (-227)))) 177)) (-2762 (((-323 (-227)) (-323 (-387))) 28)) (-1349 (((-416 (-573)) (-323 (-227))) 56)) (-4428 (((-323 (-416 (-573))) (-323 (-227))) 73)) (-3562 (((-323 (-387)) (-323 (-227))) 103)) (-3970 (((-227) (-323 (-227))) 57)) (-3008 (((-653 (-227)) (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) 68)) (-2725 (((-1106 (-852 (-227))) (-1106 (-852 (-227)))) 65)) (-3730 (((-1171) (-227)) 76)) (-2602 (((-708) (-227)) 95)) (-4023 (((-416 (-573)) (-227)) 58)) (-1604 (((-323 (-387)) (-227)) 52)) (-1835 (((-653 (-1106 (-852 (-227)))) (-653 (-1106 (-852 (-387))))) 46)) (-4156 (((-1047) (-653 (-1047))) 191) (((-1047) (-1047) (-1047)) 185)) (-4144 (((-1047) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221))) +(((-312) (-10 -7 (-15 -4031 ((-227) (-387))) (-15 -2762 ((-323 (-227)) (-323 (-387)))) (-15 -1727 ((-852 (-227)) (-852 (-387)))) (-15 -4233 ((-1106 (-852 (-227))) (-1106 (-852 (-387))))) (-15 -1835 ((-653 (-1106 (-852 (-227)))) (-653 (-1106 (-852 (-387)))))) (-15 -4023 ((-416 (-573)) (-227))) (-15 -1349 ((-416 (-573)) (-323 (-227)))) (-15 -3970 ((-227) (-323 (-227)))) (-15 -1779 ((-3 (-323 (-227)) "failed") (-323 (-227)))) (-15 -3672 ((-387) (-1280 (-323 (-227))))) (-15 -2362 ((-2 (|:| |additions| (-573)) (|:| |multiplications| (-573)) (|:| |exponentiations| (-573)) (|:| |functionCalls| (-573))) (-1280 (-323 (-227))))) (-15 -4428 ((-323 (-416 (-573))) (-323 (-227)))) (-15 -2725 ((-1106 (-852 (-227))) (-1106 (-852 (-227))))) (-15 -3008 ((-653 (-227)) (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))))) (-15 -2602 ((-708) (-227))) (-15 -3699 ((-1280 (-708)) (-653 (-227)))) (-15 -3562 ((-323 (-387)) (-323 (-227)))) (-15 -1350 ((-1280 (-323 (-387))) (-1280 (-323 (-227))))) (-15 -3036 ((-112) (-227) (-1106 (-852 (-227))))) (-15 -3730 ((-1171) (-227))) (-15 -2257 ((-1171) (-387))) (-15 -4245 ((-653 (-1171)) (-653 (-227)))) (-15 -1958 ((-653 (-1171)) (-1169 (-227)))) (-15 -1665 ((-227) (-1106 (-852 (-227))))) (-15 -4256 ((-227) (-1106 (-852 (-227))))) (-15 -4156 ((-1047) (-1047) (-1047))) (-15 -4156 ((-1047) (-653 (-1047)))) (-15 -2345 ((-1171) (-387))) (-15 -1552 ((-1047) (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))))) (-15 -1552 ((-1047) (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))) (|:| |extra| (-1047))))) (-15 -4144 ((-1047) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2491 ((-1047) (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387))))) (-15 -2071 ((-323 (-387)) (-962 (-227)))) (-15 -4246 ((-227) (-962 (-227)))) (-15 -1604 ((-323 (-387)) (-227))) (-15 -3986 ((-227) (-416 (-573)))) (-15 -1423 ((-698 (-227)) (-653 (-227)) (-780))))) (T -312)) +((-1423 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-227))) (-5 *4 (-780)) (-5 *2 (-698 (-227))) (-5 *1 (-312)))) (-3986 (*1 *2 *3) (-12 (-5 *3 (-416 (-573))) (-5 *2 (-227)) (-5 *1 (-312)))) (-1604 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-323 (-387))) (-5 *1 (-312)))) (-4246 (*1 *2 *3) (-12 (-5 *3 (-962 (-227))) (-5 *2 (-227)) (-5 *1 (-312)))) (-2071 (*1 *2 *3) (-12 (-5 *3 (-962 (-227))) (-5 *2 (-323 (-387))) (-5 *1 (-312)))) (-2491 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387)))) (-5 *2 (-1047)) (-5 *1 (-312)))) (-4144 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1047)) (-5 *1 (-312)))) (-1552 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))) (|:| |extra| (-1047)))) (-5 *2 (-1047)) (-5 *1 (-312)))) (-1552 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))))) (-5 *2 (-1047)) (-5 *1 (-312)))) (-2345 (*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1171)) (-5 *1 (-312)))) (-4156 (*1 *2 *3) (-12 (-5 *3 (-653 (-1047))) (-5 *2 (-1047)) (-5 *1 (-312)))) (-4156 (*1 *2 *2 *2) (-12 (-5 *2 (-1047)) (-5 *1 (-312)))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-1106 (-852 (-227)))) (-5 *2 (-227)) (-5 *1 (-312)))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-1106 (-852 (-227)))) (-5 *2 (-227)) (-5 *1 (-312)))) (-1958 (*1 *2 *3) (-12 (-5 *3 (-1169 (-227))) (-5 *2 (-653 (-1171))) (-5 *1 (-312)))) (-4245 (*1 *2 *3) (-12 (-5 *3 (-653 (-227))) (-5 *2 (-653 (-1171))) (-5 *1 (-312)))) (-2257 (*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1171)) (-5 *1 (-312)))) (-3730 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1171)) (-5 *1 (-312)))) (-3036 (*1 *2 *3 *4) (-12 (-5 *4 (-1106 (-852 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-312)))) (-1350 (*1 *2 *3) (-12 (-5 *3 (-1280 (-323 (-227)))) (-5 *2 (-1280 (-323 (-387)))) (-5 *1 (-312)))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-323 (-227))) (-5 *2 (-323 (-387))) (-5 *1 (-312)))) (-3699 (*1 *2 *3) (-12 (-5 *3 (-653 (-227))) (-5 *2 (-1280 (-708))) (-5 *1 (-312)))) (-2602 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-708)) (-5 *1 (-312)))) (-3008 (*1 *2 *3) (-12 (-5 *3 (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) (-5 *2 (-653 (-227))) (-5 *1 (-312)))) (-2725 (*1 *2 *2) (-12 (-5 *2 (-1106 (-852 (-227)))) (-5 *1 (-312)))) (-4428 (*1 *2 *3) (-12 (-5 *3 (-323 (-227))) (-5 *2 (-323 (-416 (-573)))) (-5 *1 (-312)))) (-2362 (*1 *2 *3) (-12 (-5 *3 (-1280 (-323 (-227)))) (-5 *2 (-2 (|:| |additions| (-573)) (|:| |multiplications| (-573)) (|:| |exponentiations| (-573)) (|:| |functionCalls| (-573)))) (-5 *1 (-312)))) (-3672 (*1 *2 *3) (-12 (-5 *3 (-1280 (-323 (-227)))) (-5 *2 (-387)) (-5 *1 (-312)))) (-1779 (*1 *2 *2) (|partial| -12 (-5 *2 (-323 (-227))) (-5 *1 (-312)))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-323 (-227))) (-5 *2 (-227)) (-5 *1 (-312)))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-323 (-227))) (-5 *2 (-416 (-573))) (-5 *1 (-312)))) (-4023 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-416 (-573))) (-5 *1 (-312)))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-653 (-1106 (-852 (-387))))) (-5 *2 (-653 (-1106 (-852 (-227))))) (-5 *1 (-312)))) (-4233 (*1 *2 *3) (-12 (-5 *3 (-1106 (-852 (-387)))) (-5 *2 (-1106 (-852 (-227)))) (-5 *1 (-312)))) (-1727 (*1 *2 *3) (-12 (-5 *3 (-852 (-387))) (-5 *2 (-852 (-227))) (-5 *1 (-312)))) (-2762 (*1 *2 *3) (-12 (-5 *3 (-323 (-387))) (-5 *2 (-323 (-227))) (-5 *1 (-312)))) (-4031 (*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-227)) (-5 *1 (-312))))) +(-10 -7 (-15 -4031 ((-227) (-387))) (-15 -2762 ((-323 (-227)) (-323 (-387)))) (-15 -1727 ((-852 (-227)) (-852 (-387)))) (-15 -4233 ((-1106 (-852 (-227))) (-1106 (-852 (-387))))) (-15 -1835 ((-653 (-1106 (-852 (-227)))) (-653 (-1106 (-852 (-387)))))) (-15 -4023 ((-416 (-573)) (-227))) (-15 -1349 ((-416 (-573)) (-323 (-227)))) (-15 -3970 ((-227) (-323 (-227)))) (-15 -1779 ((-3 (-323 (-227)) "failed") (-323 (-227)))) (-15 -3672 ((-387) (-1280 (-323 (-227))))) (-15 -2362 ((-2 (|:| |additions| (-573)) (|:| |multiplications| (-573)) (|:| |exponentiations| (-573)) (|:| |functionCalls| (-573))) (-1280 (-323 (-227))))) (-15 -4428 ((-323 (-416 (-573))) (-323 (-227)))) (-15 -2725 ((-1106 (-852 (-227))) (-1106 (-852 (-227))))) (-15 -3008 ((-653 (-227)) (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))))) (-15 -2602 ((-708) (-227))) (-15 -3699 ((-1280 (-708)) (-653 (-227)))) (-15 -3562 ((-323 (-387)) (-323 (-227)))) (-15 -1350 ((-1280 (-323 (-387))) (-1280 (-323 (-227))))) (-15 -3036 ((-112) (-227) (-1106 (-852 (-227))))) (-15 -3730 ((-1171) (-227))) (-15 -2257 ((-1171) (-387))) (-15 -4245 ((-653 (-1171)) (-653 (-227)))) (-15 -1958 ((-653 (-1171)) (-1169 (-227)))) (-15 -1665 ((-227) (-1106 (-852 (-227))))) (-15 -4256 ((-227) (-1106 (-852 (-227))))) (-15 -4156 ((-1047) (-1047) (-1047))) (-15 -4156 ((-1047) (-653 (-1047)))) (-15 -2345 ((-1171) (-387))) (-15 -1552 ((-1047) (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))))) (-15 -1552 ((-1047) (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))) (|:| |extra| (-1047))))) (-15 -4144 ((-1047) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2491 ((-1047) (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387))))) (-15 -2071 ((-323 (-387)) (-962 (-227)))) (-15 -4246 ((-227) (-962 (-227)))) (-15 -1604 ((-323 (-387)) (-227))) (-15 -3986 ((-227) (-416 (-573)))) (-15 -1423 ((-698 (-227)) (-653 (-227)) (-780)))) +((-2800 (((-112) $ $) 14)) (-2784 (($ $ $) 18)) (-2796 (($ $ $) 17)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 50)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 65)) (-2872 (($ $ $) 25) (($ (-653 $)) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2837 (((-3 $ "failed") $ $) 21)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 53))) +(((-313 |#1|) (-10 -8 (-15 -4113 ((-3 (-653 |#1|) "failed") (-653 |#1|) |#1|)) (-15 -4019 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -4019 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2969 |#1|)) |#1| |#1|)) (-15 -2784 (|#1| |#1| |#1|)) (-15 -2796 (|#1| |#1| |#1|)) (-15 -2800 ((-112) |#1| |#1|)) (-15 -3014 ((-3 (-653 |#1|) "failed") (-653 |#1|) |#1|)) (-15 -2713 ((-2 (|:| -1857 (-653 |#1|)) (|:| -2969 |#1|)) (-653 |#1|))) (-15 -2872 (|#1| (-653 |#1|))) (-15 -2872 (|#1| |#1| |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#1|))) (-314)) (T -313)) +NIL +(-10 -8 (-15 -4113 ((-3 (-653 |#1|) "failed") (-653 |#1|) |#1|)) (-15 -4019 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -4019 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2969 |#1|)) |#1| |#1|)) (-15 -2784 (|#1| |#1| |#1|)) (-15 -2796 (|#1| |#1| |#1|)) (-15 -2800 ((-112) |#1| |#1|)) (-15 -3014 ((-3 (-653 |#1|) "failed") (-653 |#1|) |#1|)) (-15 -2713 ((-2 (|:| -1857 (-653 |#1|)) (|:| -2969 |#1|)) (-653 |#1|))) (-15 -2872 (|#1| (-653 |#1|))) (-15 -2872 (|#1| |#1| |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-2983 (((-3 $ "failed") $ $) 20)) (-2800 (((-112) $ $) 65)) (-2579 (($) 18 T CONST)) (-2784 (($ $ $) 61)) (-2232 (((-3 $ "failed") $) 37)) (-2796 (($ $ $) 62)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 57)) (-1959 (((-112) $) 35)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 58)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 56)) (-2163 (((-780) $) 64)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 63)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) +(((-314) (-141)) (T -314)) +((-2800 (*1 *2 *1 *1) (-12 (-4 *1 (-314)) (-5 *2 (-112)))) (-2163 (*1 *2 *1) (-12 (-4 *1 (-314)) (-5 *2 (-780)))) (-1405 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-314)))) (-2796 (*1 *1 *1 *1) (-4 *1 (-314))) (-2784 (*1 *1 *1 *1) (-4 *1 (-314))) (-4019 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2969 *1))) (-4 *1 (-314)))) (-4019 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-314)))) (-4113 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-653 *1)) (-4 *1 (-314))))) +(-13 (-930) (-10 -8 (-15 -2800 ((-112) $ $)) (-15 -2163 ((-780) $)) (-15 -1405 ((-2 (|:| -3152 $) (|:| -3132 $)) $ $)) (-15 -2796 ($ $ $)) (-15 -2784 ($ $ $)) (-15 -4019 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $)) (-15 -4019 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -4113 ((-3 (-653 $) "failed") (-653 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-297) . T) ((-461) . T) ((-565) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-649 $) . T) ((-726 $) . T) ((-735) . T) ((-930) . T) ((-1063 $) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) +((-2645 (($ $ (-653 |#2|) (-653 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-301 |#2|)) 11) (($ $ (-653 (-301 |#2|))) NIL))) +(((-315 |#1| |#2|) (-10 -8 (-15 -2645 (|#1| |#1| (-653 (-301 |#2|)))) (-15 -2645 (|#1| |#1| (-301 |#2|))) (-15 -2645 (|#1| |#1| |#2| |#2|)) (-15 -2645 (|#1| |#1| (-653 |#2|) (-653 |#2|)))) (-316 |#2|) (-1112)) (T -315)) +NIL +(-10 -8 (-15 -2645 (|#1| |#1| (-653 (-301 |#2|)))) (-15 -2645 (|#1| |#1| (-301 |#2|))) (-15 -2645 (|#1| |#1| |#2| |#2|)) (-15 -2645 (|#1| |#1| (-653 |#2|) (-653 |#2|)))) +((-2645 (($ $ (-653 |#1|) (-653 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-301 |#1|)) 11) (($ $ (-653 (-301 |#1|))) 10))) +(((-316 |#1|) (-141) (-1112)) (T -316)) +((-2645 (*1 *1 *1 *2) (-12 (-5 *2 (-301 *3)) (-4 *1 (-316 *3)) (-4 *3 (-1112)))) (-2645 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-301 *3))) (-4 *1 (-316 *3)) (-4 *3 (-1112))))) +(-13 (-523 |t#1| |t#1|) (-10 -8 (-15 -2645 ($ $ (-301 |t#1|))) (-15 -2645 ($ $ (-653 (-301 |t#1|)))))) +(((-523 |#1| |#1|) . T)) +((-2645 ((|#1| (-1 |#1| (-573)) (-1191 (-416 (-573)))) 26))) +(((-317 |#1|) (-10 -7 (-15 -2645 (|#1| (-1 |#1| (-573)) (-1191 (-416 (-573)))))) (-38 (-416 (-573)))) (T -317)) +((-2645 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-573))) (-5 *4 (-1191 (-416 (-573)))) (-5 *1 (-317 *2)) (-4 *2 (-38 (-416 (-573))))))) +(-10 -7 (-15 -2645 (|#1| (-1 |#1| (-573)) (-1191 (-416 (-573)))))) +((-2848 (((-112) $ $) NIL)) (-4320 (((-573) $) 12)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-4015 (((-1147) $) 9)) (-2942 (((-871) $) 19) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-318) (-13 (-1095) (-10 -8 (-15 -4015 ((-1147) $)) (-15 -4320 ((-573) $))))) (T -318)) +((-4015 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-318)))) (-4320 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-318))))) +(-13 (-1095) (-10 -8 (-15 -4015 ((-1147) $)) (-15 -4320 ((-573) $)))) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 7)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 9))) +(((-319) (-1112)) (T -319)) +NIL +(-1112) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 60)) (-3770 (((-1266 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-314)))) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-919)))) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-919)))) (-2800 (((-112) $ $) NIL)) (-1983 (((-573) $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-829)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-1266 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1189) "failed") $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-1050 (-1189)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-1050 (-573)))) (((-3 (-573) "failed") $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-1050 (-573)))) (((-3 (-1265 |#2| |#3| |#4|) "failed") $) 26)) (-2205 (((-1266 |#1| |#2| |#3| |#4|) $) NIL) (((-1189) $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-1050 (-1189)))) (((-416 (-573)) $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-1050 (-573)))) (((-573) $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-1050 (-573)))) (((-1265 |#2| |#3| |#4|) $) NIL)) (-2784 (($ $ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-1266 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1280 (-1266 |#1| |#2| |#3| |#4|)))) (-698 $) (-1280 $)) NIL) (((-698 (-1266 |#1| |#2| |#3| |#4|)) (-698 $)) NIL) (((-698 (-1266 |#1| |#2| |#3| |#4|)) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-554)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-4152 (((-112) $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-829)))) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-896 (-573)))) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-896 (-387))))) (-1959 (((-112) $) NIL)) (-3041 (($ $) NIL)) (-2965 (((-1266 |#1| |#2| |#3| |#4|) $) 22)) (-1470 (((-3 $ "failed") $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-1164)))) (-3339 (((-112) $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-829)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3659 (($ $ $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-859)))) (-3751 (($ $ $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-859)))) (-1776 (($ (-1 (-1266 |#1| |#2| |#3| |#4|) (-1266 |#1| |#2| |#3| |#4|)) $) NIL)) (-2440 (((-3 (-852 |#2|) "failed") $) 80)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-1164)) CONST)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-2408 (($ $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-314)))) (-3733 (((-1266 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-554)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-919)))) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2645 (($ $ (-653 (-1266 |#1| |#2| |#3| |#4|)) (-653 (-1266 |#1| |#2| |#3| |#4|))) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-316 (-1266 |#1| |#2| |#3| |#4|)))) (($ $ (-1266 |#1| |#2| |#3| |#4|) (-1266 |#1| |#2| |#3| |#4|)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-316 (-1266 |#1| |#2| |#3| |#4|)))) (($ $ (-301 (-1266 |#1| |#2| |#3| |#4|))) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-316 (-1266 |#1| |#2| |#3| |#4|)))) (($ $ (-653 (-301 (-1266 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-316 (-1266 |#1| |#2| |#3| |#4|)))) (($ $ (-653 (-1189)) (-653 (-1266 |#1| |#2| |#3| |#4|))) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-523 (-1189) (-1266 |#1| |#2| |#3| |#4|)))) (($ $ (-1189) (-1266 |#1| |#2| |#3| |#4|)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-523 (-1189) (-1266 |#1| |#2| |#3| |#4|))))) (-2163 (((-780) $) NIL)) (-2198 (($ $ (-1266 |#1| |#2| |#3| |#4|)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-293 (-1266 |#1| |#2| |#3| |#4|) (-1266 |#1| |#2| |#3| |#4|))))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3904 (($ $ (-780)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-238))) (($ $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-238))) (($ $ (-1189)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-910 (-1189)))) (($ $ (-1 (-1266 |#1| |#2| |#3| |#4|) (-1266 |#1| |#2| |#3| |#4|)) (-780)) NIL) (($ $ (-1 (-1266 |#1| |#2| |#3| |#4|) (-1266 |#1| |#2| |#3| |#4|))) NIL)) (-2662 (($ $) NIL)) (-2975 (((-1266 |#1| |#2| |#3| |#4|) $) 19)) (-1835 (((-902 (-573)) $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-623 (-902 (-573))))) (((-902 (-387)) $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-623 (-902 (-387))))) (((-545) $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-623 (-545)))) (((-387) $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-1034))) (((-227) $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-1034)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| (-1266 |#1| |#2| |#3| |#4|) (-919))))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) (($ (-1266 |#1| |#2| |#3| |#4|)) 30) (($ (-1189)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-1050 (-1189)))) (($ (-1265 |#2| |#3| |#4|)) 37)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| (-1266 |#1| |#2| |#3| |#4|) (-919))) (|has| (-1266 |#1| |#2| |#3| |#4|) (-146))))) (-1545 (((-780)) NIL T CONST)) (-2437 (((-1266 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-554)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-1660 (($ $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-829)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-780)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-238))) (($ $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-238))) (($ $ (-1189)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-910 (-1189)))) (($ $ (-1 (-1266 |#1| |#2| |#3| |#4|) (-1266 |#1| |#2| |#3| |#4|)) (-780)) NIL) (($ $ (-1 (-1266 |#1| |#2| |#3| |#4|) (-1266 |#1| |#2| |#3| |#4|))) NIL)) (-3040 (((-112) $ $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-859)))) (-3015 (((-112) $ $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-859)))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-859)))) (-3005 (((-112) $ $) NIL (|has| (-1266 |#1| |#2| |#3| |#4|) (-859)))) (-3103 (($ $ $) 35) (($ (-1266 |#1| |#2| |#3| |#4|) (-1266 |#1| |#2| |#3| |#4|)) 32)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ (-1266 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1266 |#1| |#2| |#3| |#4|)) NIL))) +(((-320 |#1| |#2| |#3| |#4|) (-13 (-1004 (-1266 |#1| |#2| |#3| |#4|)) (-1050 (-1265 |#2| |#3| |#4|)) (-10 -8 (-15 -2440 ((-3 (-852 |#2|) "failed") $)) (-15 -2942 ($ (-1265 |#2| |#3| |#4|))))) (-13 (-1050 (-573)) (-648 (-573)) (-461)) (-13 (-27) (-1215) (-439 |#1|)) (-1189) |#2|) (T -320)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-1265 *4 *5 *6)) (-4 *4 (-13 (-27) (-1215) (-439 *3))) (-14 *5 (-1189)) (-14 *6 *4) (-4 *3 (-13 (-1050 (-573)) (-648 (-573)) (-461))) (-5 *1 (-320 *3 *4 *5 *6)))) (-2440 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1050 (-573)) (-648 (-573)) (-461))) (-5 *2 (-852 *4)) (-5 *1 (-320 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1215) (-439 *3))) (-14 *5 (-1189)) (-14 *6 *4)))) +(-13 (-1004 (-1266 |#1| |#2| |#3| |#4|)) (-1050 (-1265 |#2| |#3| |#4|)) (-10 -8 (-15 -2440 ((-3 (-852 |#2|) "failed") $)) (-15 -2942 ($ (-1265 |#2| |#3| |#4|))))) +((-1776 (((-323 |#2|) (-1 |#2| |#1|) (-323 |#1|)) 13))) +(((-321 |#1| |#2|) (-10 -7 (-15 -1776 ((-323 |#2|) (-1 |#2| |#1|) (-323 |#1|)))) (-1112) (-1112)) (T -321)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-323 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-323 *6)) (-5 *1 (-321 *5 *6))))) +(-10 -7 (-15 -1776 ((-323 |#2|) (-1 |#2| |#1|) (-323 |#1|)))) +((-4401 (((-52) |#2| (-301 |#2|) (-780)) 40) (((-52) |#2| (-301 |#2|)) 32) (((-52) |#2| (-780)) 35) (((-52) |#2|) 33) (((-52) (-1189)) 26)) (-3622 (((-52) |#2| (-301 |#2|) (-416 (-573))) 59) (((-52) |#2| (-301 |#2|)) 56) (((-52) |#2| (-416 (-573))) 58) (((-52) |#2|) 57) (((-52) (-1189)) 55)) (-4423 (((-52) |#2| (-301 |#2|) (-416 (-573))) 54) (((-52) |#2| (-301 |#2|)) 51) (((-52) |#2| (-416 (-573))) 53) (((-52) |#2|) 52) (((-52) (-1189)) 50)) (-4412 (((-52) |#2| (-301 |#2|) (-573)) 47) (((-52) |#2| (-301 |#2|)) 44) (((-52) |#2| (-573)) 46) (((-52) |#2|) 45) (((-52) (-1189)) 43))) +(((-322 |#1| |#2|) (-10 -7 (-15 -4401 ((-52) (-1189))) (-15 -4401 ((-52) |#2|)) (-15 -4401 ((-52) |#2| (-780))) (-15 -4401 ((-52) |#2| (-301 |#2|))) (-15 -4401 ((-52) |#2| (-301 |#2|) (-780))) (-15 -4412 ((-52) (-1189))) (-15 -4412 ((-52) |#2|)) (-15 -4412 ((-52) |#2| (-573))) (-15 -4412 ((-52) |#2| (-301 |#2|))) (-15 -4412 ((-52) |#2| (-301 |#2|) (-573))) (-15 -4423 ((-52) (-1189))) (-15 -4423 ((-52) |#2|)) (-15 -4423 ((-52) |#2| (-416 (-573)))) (-15 -4423 ((-52) |#2| (-301 |#2|))) (-15 -4423 ((-52) |#2| (-301 |#2|) (-416 (-573)))) (-15 -3622 ((-52) (-1189))) (-15 -3622 ((-52) |#2|)) (-15 -3622 ((-52) |#2| (-416 (-573)))) (-15 -3622 ((-52) |#2| (-301 |#2|))) (-15 -3622 ((-52) |#2| (-301 |#2|) (-416 (-573))))) (-13 (-461) (-1050 (-573)) (-648 (-573))) (-13 (-27) (-1215) (-439 |#1|))) (T -322)) +((-3622 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-301 *3)) (-5 *5 (-416 (-573))) (-4 *3 (-13 (-27) (-1215) (-439 *6))) (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *6 *3)))) (-3622 (*1 *2 *3 *4) (-12 (-5 *4 (-301 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))) (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *5 *3)))) (-3622 (*1 *2 *3 *4) (-12 (-5 *4 (-416 (-573))) (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *5 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))))) (-3622 (*1 *2 *3) (-12 (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *4))))) (-3622 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *4 *5)) (-4 *5 (-13 (-27) (-1215) (-439 *4))))) (-4423 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-301 *3)) (-5 *5 (-416 (-573))) (-4 *3 (-13 (-27) (-1215) (-439 *6))) (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *6 *3)))) (-4423 (*1 *2 *3 *4) (-12 (-5 *4 (-301 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))) (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *5 *3)))) (-4423 (*1 *2 *3 *4) (-12 (-5 *4 (-416 (-573))) (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *5 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))))) (-4423 (*1 *2 *3) (-12 (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *4))))) (-4423 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *4 *5)) (-4 *5 (-13 (-27) (-1215) (-439 *4))))) (-4412 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-301 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *6))) (-4 *6 (-13 (-461) (-1050 *5) (-648 *5))) (-5 *5 (-573)) (-5 *2 (-52)) (-5 *1 (-322 *6 *3)))) (-4412 (*1 *2 *3 *4) (-12 (-5 *4 (-301 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))) (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *5 *3)))) (-4412 (*1 *2 *3 *4) (-12 (-5 *4 (-573)) (-4 *5 (-13 (-461) (-1050 *4) (-648 *4))) (-5 *2 (-52)) (-5 *1 (-322 *5 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))))) (-4412 (*1 *2 *3) (-12 (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *4))))) (-4412 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *4 *5)) (-4 *5 (-13 (-27) (-1215) (-439 *4))))) (-4401 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-301 *3)) (-5 *5 (-780)) (-4 *3 (-13 (-27) (-1215) (-439 *6))) (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *6 *3)))) (-4401 (*1 *2 *3 *4) (-12 (-5 *4 (-301 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))) (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *5 *3)))) (-4401 (*1 *2 *3 *4) (-12 (-5 *4 (-780)) (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *5 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))))) (-4401 (*1 *2 *3) (-12 (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *4))))) (-4401 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-322 *4 *5)) (-4 *5 (-13 (-27) (-1215) (-439 *4)))))) +(-10 -7 (-15 -4401 ((-52) (-1189))) (-15 -4401 ((-52) |#2|)) (-15 -4401 ((-52) |#2| (-780))) (-15 -4401 ((-52) |#2| (-301 |#2|))) (-15 -4401 ((-52) |#2| (-301 |#2|) (-780))) (-15 -4412 ((-52) (-1189))) (-15 -4412 ((-52) |#2|)) (-15 -4412 ((-52) |#2| (-573))) (-15 -4412 ((-52) |#2| (-301 |#2|))) (-15 -4412 ((-52) |#2| (-301 |#2|) (-573))) (-15 -4423 ((-52) (-1189))) (-15 -4423 ((-52) |#2|)) (-15 -4423 ((-52) |#2| (-416 (-573)))) (-15 -4423 ((-52) |#2| (-301 |#2|))) (-15 -4423 ((-52) |#2| (-301 |#2|) (-416 (-573)))) (-15 -3622 ((-52) (-1189))) (-15 -3622 ((-52) |#2|)) (-15 -3622 ((-52) |#2| (-416 (-573)))) (-15 -3622 ((-52) |#2| (-301 |#2|))) (-15 -3622 ((-52) |#2| (-301 |#2|) (-416 (-573))))) +((-2848 (((-112) $ $) NIL)) (-3148 (((-653 $) $ (-1189)) NIL (|has| |#1| (-565))) (((-653 $) $) NIL (|has| |#1| (-565))) (((-653 $) (-1185 $) (-1189)) NIL (|has| |#1| (-565))) (((-653 $) (-1185 $)) NIL (|has| |#1| (-565))) (((-653 $) (-962 $)) NIL (|has| |#1| (-565)))) (-4118 (($ $ (-1189)) NIL (|has| |#1| (-565))) (($ $) NIL (|has| |#1| (-565))) (($ (-1185 $) (-1189)) NIL (|has| |#1| (-565))) (($ (-1185 $)) NIL (|has| |#1| (-565))) (($ (-962 $)) NIL (|has| |#1| (-565)))) (-1748 (((-112) $) 27 (-2817 (|has| |#1| (-25)) (-12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061)))))) (-4354 (((-653 (-1189)) $) 368)) (-4193 (((-416 (-1185 $)) $ (-621 $)) NIL (|has| |#1| (-565)))) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-4090 (((-653 (-621 $)) $) NIL)) (-2363 (($ $) 171 (|has| |#1| (-565)))) (-2246 (($ $) 147 (|has| |#1| (-565)))) (-4080 (($ $ (-1104 $)) 232 (|has| |#1| (-565))) (($ $ (-1189)) 228 (|has| |#1| (-565)))) (-2983 (((-3 $ "failed") $ $) NIL (-2817 (|has| |#1| (-21)) (-12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061)))))) (-2544 (($ $ (-301 $)) NIL) (($ $ (-653 (-301 $))) 386) (($ $ (-653 (-621 $)) (-653 $)) 430)) (-1600 (((-427 (-1185 $)) (-1185 $)) 308 (-12 (|has| |#1| (-461)) (|has| |#1| (-565))))) (-4285 (($ $) NIL (|has| |#1| (-565)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-565)))) (-4228 (($ $) NIL (|has| |#1| (-565)))) (-2800 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2342 (($ $) 167 (|has| |#1| (-565)))) (-2225 (($ $) 143 (|has| |#1| (-565)))) (-2703 (($ $ (-573)) 73 (|has| |#1| (-565)))) (-2388 (($ $) 175 (|has| |#1| (-565)))) (-2266 (($ $) 151 (|has| |#1| (-565)))) (-2579 (($) NIL (-2817 (|has| |#1| (-25)) (-12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061))) (|has| |#1| (-1124))) CONST)) (-3682 (((-653 $) $ (-1189)) NIL (|has| |#1| (-565))) (((-653 $) $) NIL (|has| |#1| (-565))) (((-653 $) (-1185 $) (-1189)) NIL (|has| |#1| (-565))) (((-653 $) (-1185 $)) NIL (|has| |#1| (-565))) (((-653 $) (-962 $)) NIL (|has| |#1| (-565)))) (-1732 (($ $ (-1189)) NIL (|has| |#1| (-565))) (($ $) NIL (|has| |#1| (-565))) (($ (-1185 $) (-1189)) 134 (|has| |#1| (-565))) (($ (-1185 $)) NIL (|has| |#1| (-565))) (($ (-962 $)) NIL (|has| |#1| (-565)))) (-1695 (((-3 (-621 $) "failed") $) 18) (((-3 (-1189) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-565)) (|has| |#1| (-1050 (-573))))) (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-962 |#1|)) "failed") $) NIL (|has| |#1| (-565))) (((-3 (-962 |#1|) "failed") $) NIL (|has| |#1| (-1061))) (((-3 (-416 (-573)) "failed") $) 46 (-2817 (-12 (|has| |#1| (-565)) (|has| |#1| (-1050 (-573)))) (|has| |#1| (-1050 (-416 (-573))))))) (-2205 (((-621 $) $) 12) (((-1189) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-565)) (|has| |#1| (-1050 (-573))))) (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-416 (-962 |#1|)) $) NIL (|has| |#1| (-565))) (((-962 |#1|) $) NIL (|has| |#1| (-1061))) (((-416 (-573)) $) 319 (-2817 (-12 (|has| |#1| (-565)) (|has| |#1| (-1050 (-573)))) (|has| |#1| (-1050 (-416 (-573))))))) (-2784 (($ $ $) NIL (|has| |#1| (-565)))) (-2759 (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) 125 (|has| |#1| (-1061))) (((-698 |#1|) (-698 $)) 115 (|has| |#1| (-1061))) (((-698 |#1|) (-1280 $)) NIL (|has| |#1| (-1061))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (-12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061)))) (((-698 (-573)) (-698 $)) NIL (-12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061)))) (((-698 (-573)) (-1280 $)) NIL (-12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061))))) (-2867 (($ $) 96 (|has| |#1| (-565)))) (-2232 (((-3 $ "failed") $) NIL (|has| |#1| (-1124)))) (-2796 (($ $ $) NIL (|has| |#1| (-565)))) (-3044 (($ $ (-1104 $)) 236 (|has| |#1| (-565))) (($ $ (-1189)) 234 (|has| |#1| (-565)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#1| (-565)))) (-2696 (((-112) $) NIL (|has| |#1| (-565)))) (-1562 (($ $ $) 202 (|has| |#1| (-565)))) (-2999 (($) 137 (|has| |#1| (-565)))) (-2637 (($ $ $) 222 (|has| |#1| (-565)))) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 392 (|has| |#1| (-896 (-573)))) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 399 (|has| |#1| (-896 (-387))))) (-2449 (($ $) NIL) (($ (-653 $)) NIL)) (-2515 (((-653 (-115)) $) NIL)) (-4173 (((-115) (-115)) 276)) (-1959 (((-112) $) 25 (|has| |#1| (-1124)))) (-2250 (((-112) $) NIL (|has| $ (-1050 (-573))))) (-3041 (($ $) 72 (|has| |#1| (-1061)))) (-2965 (((-1137 |#1| (-621 $)) $) 91 (|has| |#1| (-1061)))) (-1817 (((-112) $) 62 (|has| |#1| (-565)))) (-4325 (($ $ (-573)) NIL (|has| |#1| (-565)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-565)))) (-2597 (((-1185 $) (-621 $)) 277 (|has| $ (-1061)))) (-1776 (($ (-1 $ $) (-621 $)) 426)) (-2944 (((-3 (-621 $) "failed") $) NIL)) (-3118 (($ $) 141 (|has| |#1| (-565)))) (-4078 (($ $) 247 (|has| |#1| (-565)))) (-2829 (($ (-653 $)) NIL (|has| |#1| (-565))) (($ $ $) NIL (|has| |#1| (-565)))) (-3180 (((-1171) $) NIL)) (-4163 (((-653 (-621 $)) $) 49)) (-1774 (($ (-115) $) NIL) (($ (-115) (-653 $)) 431)) (-4082 (((-3 (-653 $) "failed") $) NIL (|has| |#1| (-1124)))) (-1951 (((-3 (-2 (|:| |val| $) (|:| -3907 (-573))) "failed") $) NIL (|has| |#1| (-1061)))) (-2586 (((-3 (-653 $) "failed") $) 436 (|has| |#1| (-25)))) (-4425 (((-3 (-2 (|:| -1857 (-573)) (|:| |var| (-621 $))) "failed") $) 440 (|has| |#1| (-25)))) (-2573 (((-3 (-2 (|:| |var| (-621 $)) (|:| -3907 (-573))) "failed") $) NIL (|has| |#1| (-1124))) (((-3 (-2 (|:| |var| (-621 $)) (|:| -3907 (-573))) "failed") $ (-115)) NIL (|has| |#1| (-1061))) (((-3 (-2 (|:| |var| (-621 $)) (|:| -3907 (-573))) "failed") $ (-1189)) NIL (|has| |#1| (-1061)))) (-1667 (((-112) $ (-115)) NIL) (((-112) $ (-1189)) 51)) (-1323 (($ $) NIL (-2817 (|has| |#1| (-482)) (|has| |#1| (-565))))) (-3376 (($ $ (-1189)) 251 (|has| |#1| (-565))) (($ $ (-1104 $)) 253 (|has| |#1| (-565)))) (-1839 (((-780) $) NIL)) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) 43)) (-1348 ((|#1| $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 301 (|has| |#1| (-565)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-565))) (($ $ $) NIL (|has| |#1| (-565)))) (-3805 (((-112) $ $) NIL) (((-112) $ (-1189)) NIL)) (-3262 (($ $ (-1189)) 226 (|has| |#1| (-565))) (($ $) 224 (|has| |#1| (-565)))) (-4264 (($ $) 218 (|has| |#1| (-565)))) (-1655 (((-427 (-1185 $)) (-1185 $)) 306 (-12 (|has| |#1| (-461)) (|has| |#1| (-565))))) (-4218 (((-427 $) $) NIL (|has| |#1| (-565)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-565))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-565)))) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-565)))) (-1608 (($ $) 139 (|has| |#1| (-565)))) (-2270 (((-112) $) NIL (|has| $ (-1050 (-573))))) (-2645 (($ $ (-621 $) $) NIL) (($ $ (-653 (-621 $)) (-653 $)) 425) (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-653 (-1189)) (-653 (-1 $ $))) NIL) (($ $ (-653 (-1189)) (-653 (-1 $ (-653 $)))) NIL) (($ $ (-1189) (-1 $ (-653 $))) NIL) (($ $ (-1189) (-1 $ $)) NIL) (($ $ (-653 (-115)) (-653 (-1 $ $))) 379) (($ $ (-653 (-115)) (-653 (-1 $ (-653 $)))) NIL) (($ $ (-115) (-1 $ (-653 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1189)) NIL (|has| |#1| (-623 (-545)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-623 (-545)))) (($ $) NIL (|has| |#1| (-623 (-545)))) (($ $ (-115) $ (-1189)) 366 (|has| |#1| (-623 (-545)))) (($ $ (-653 (-115)) (-653 $) (-1189)) 365 (|has| |#1| (-623 (-545)))) (($ $ (-653 (-1189)) (-653 (-780)) (-653 (-1 $ $))) NIL (|has| |#1| (-1061))) (($ $ (-653 (-1189)) (-653 (-780)) (-653 (-1 $ (-653 $)))) NIL (|has| |#1| (-1061))) (($ $ (-1189) (-780) (-1 $ (-653 $))) NIL (|has| |#1| (-1061))) (($ $ (-1189) (-780) (-1 $ $)) NIL (|has| |#1| (-1061)))) (-2163 (((-780) $) NIL (|has| |#1| (-565)))) (-4068 (($ $) 239 (|has| |#1| (-565)))) (-2198 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-653 $)) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-565)))) (-3727 (($ $) NIL) (($ $ $) NIL)) (-2213 (($ $) 249 (|has| |#1| (-565)))) (-3325 (($ $) 200 (|has| |#1| (-565)))) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-1061))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-1061))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-1061))) (($ $ (-1189)) NIL (|has| |#1| (-1061)))) (-2662 (($ $) 74 (|has| |#1| (-565)))) (-2975 (((-1137 |#1| (-621 $)) $) 93 (|has| |#1| (-565)))) (-2984 (($ $) 317 (|has| $ (-1061)))) (-2401 (($ $) 177 (|has| |#1| (-565)))) (-2274 (($ $) 153 (|has| |#1| (-565)))) (-2374 (($ $) 173 (|has| |#1| (-565)))) (-2255 (($ $) 149 (|has| |#1| (-565)))) (-2352 (($ $) 169 (|has| |#1| (-565)))) (-2236 (($ $) 145 (|has| |#1| (-565)))) (-1835 (((-902 (-573)) $) NIL (|has| |#1| (-623 (-902 (-573))))) (((-902 (-387)) $) NIL (|has| |#1| (-623 (-902 (-387))))) (($ (-427 $)) NIL (|has| |#1| (-565))) (((-545) $) 363 (|has| |#1| (-623 (-545))))) (-3204 (($ $ $) NIL (|has| |#1| (-482)))) (-4380 (($ $ $) NIL (|has| |#1| (-482)))) (-2942 (((-871) $) 424) (($ (-621 $)) 415) (($ (-1189)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-565))) (($ (-48)) 312 (-12 (|has| |#1| (-565)) (|has| |#1| (-1050 (-573))))) (($ (-1137 |#1| (-621 $))) 95 (|has| |#1| (-1061))) (($ (-416 |#1|)) NIL (|has| |#1| (-565))) (($ (-962 (-416 |#1|))) NIL (|has| |#1| (-565))) (($ (-416 (-962 (-416 |#1|)))) NIL (|has| |#1| (-565))) (($ (-416 (-962 |#1|))) NIL (|has| |#1| (-565))) (($ (-962 |#1|)) NIL (|has| |#1| (-1061))) (($ (-573)) 34 (-2817 (|has| |#1| (-1050 (-573))) (|has| |#1| (-1061)))) (($ (-416 (-573))) NIL (-2817 (|has| |#1| (-565)) (|has| |#1| (-1050 (-416 (-573))))))) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) NIL (|has| |#1| (-1061)) CONST)) (-2029 (($ $) NIL) (($ (-653 $)) NIL)) (-1677 (($ $ $) 220 (|has| |#1| (-565)))) (-1424 (($ $ $) 206 (|has| |#1| (-565)))) (-4237 (($ $ $) 210 (|has| |#1| (-565)))) (-3125 (($ $ $) 204 (|has| |#1| (-565)))) (-2704 (($ $ $) 208 (|has| |#1| (-565)))) (-3109 (((-112) (-115)) 10)) (-3507 (((-112) $ $) 86)) (-2439 (($ $) 183 (|has| |#1| (-565)))) (-2304 (($ $) 159 (|has| |#1| (-565)))) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2413 (($ $) 179 (|has| |#1| (-565)))) (-2286 (($ $) 155 (|has| |#1| (-565)))) (-2464 (($ $) 187 (|has| |#1| (-565)))) (-2324 (($ $) 163 (|has| |#1| (-565)))) (-2497 (($ (-1189) $) NIL) (($ (-1189) $ $) NIL) (($ (-1189) $ $ $) NIL) (($ (-1189) $ $ $ $) NIL) (($ (-1189) (-653 $)) NIL)) (-3754 (($ $) 214 (|has| |#1| (-565)))) (-1450 (($ $) 212 (|has| |#1| (-565)))) (-2520 (($ $) 189 (|has| |#1| (-565)))) (-2333 (($ $) 165 (|has| |#1| (-565)))) (-2452 (($ $) 185 (|has| |#1| (-565)))) (-2314 (($ $) 161 (|has| |#1| (-565)))) (-2426 (($ $) 181 (|has| |#1| (-565)))) (-2296 (($ $) 157 (|has| |#1| (-565)))) (-1660 (($ $) 192 (|has| |#1| (-565)))) (-2132 (($) 21 (-2817 (|has| |#1| (-25)) (-12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061)))) CONST)) (-2228 (($ $) 243 (|has| |#1| (-565)))) (-2144 (($) 23 (|has| |#1| (-1124)) CONST)) (-1818 (($ $) 194 (|has| |#1| (-565))) (($ $ $) 196 (|has| |#1| (-565)))) (-4076 (($ $) 241 (|has| |#1| (-565)))) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-1061))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-1061))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-1061))) (($ $ (-1189)) NIL (|has| |#1| (-1061)))) (-2050 (($ $) 245 (|has| |#1| (-565)))) (-1503 (($ $ $) 198 (|has| |#1| (-565)))) (-2981 (((-112) $ $) 88)) (-3103 (($ (-1137 |#1| (-621 $)) (-1137 |#1| (-621 $))) 106 (|has| |#1| (-565))) (($ $ $) 42 (-2817 (|has| |#1| (-482)) (|has| |#1| (-565))))) (-3093 (($ $ $) 40 (-2817 (|has| |#1| (-21)) (-12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061))))) (($ $) 29 (-2817 (|has| |#1| (-21)) (-12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061)))))) (-3077 (($ $ $) 38 (-2817 (|has| |#1| (-25)) (-12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061)))))) (** (($ $ $) 64 (|has| |#1| (-565))) (($ $ (-416 (-573))) 314 (|has| |#1| (-565))) (($ $ (-573)) 80 (-2817 (|has| |#1| (-482)) (|has| |#1| (-565)))) (($ $ (-780)) 75 (|has| |#1| (-1124))) (($ $ (-931)) 84 (|has| |#1| (-1124)))) (* (($ (-416 (-573)) $) NIL (|has| |#1| (-565))) (($ $ (-416 (-573))) NIL (|has| |#1| (-565))) (($ $ |#1|) NIL (|has| |#1| (-174))) (($ |#1| $) NIL (|has| |#1| (-1061))) (($ $ $) 36 (|has| |#1| (-1124))) (($ (-573) $) 32 (-2817 (|has| |#1| (-21)) (-12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061))))) (($ (-780) $) NIL (-2817 (|has| |#1| (-25)) (-12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061))))) (($ (-931) $) NIL (-2817 (|has| |#1| (-25)) (-12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061))))))) +(((-323 |#1|) (-13 (-439 |#1|) (-10 -8 (IF (|has| |#1| (-565)) (PROGN (-6 (-29 |#1|)) (-6 (-1215)) (-6 (-161)) (-6 (-638)) (-6 (-1151)) (-15 -2867 ($ $)) (-15 -1817 ((-112) $)) (-15 -2703 ($ $ (-573))) (IF (|has| |#1| (-461)) (PROGN (-15 -1655 ((-427 (-1185 $)) (-1185 $))) (-15 -1600 ((-427 (-1185 $)) (-1185 $)))) |%noBranch|) (IF (|has| |#1| (-1050 (-573))) (-6 (-1050 (-48))) |%noBranch|)) |%noBranch|))) (-1112)) (T -323)) +((-2867 (*1 *1 *1) (-12 (-5 *1 (-323 *2)) (-4 *2 (-565)) (-4 *2 (-1112)))) (-1817 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-323 *3)) (-4 *3 (-565)) (-4 *3 (-1112)))) (-2703 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-323 *3)) (-4 *3 (-565)) (-4 *3 (-1112)))) (-1655 (*1 *2 *3) (-12 (-5 *2 (-427 (-1185 *1))) (-5 *1 (-323 *4)) (-5 *3 (-1185 *1)) (-4 *4 (-461)) (-4 *4 (-565)) (-4 *4 (-1112)))) (-1600 (*1 *2 *3) (-12 (-5 *2 (-427 (-1185 *1))) (-5 *1 (-323 *4)) (-5 *3 (-1185 *1)) (-4 *4 (-461)) (-4 *4 (-565)) (-4 *4 (-1112))))) +(-13 (-439 |#1|) (-10 -8 (IF (|has| |#1| (-565)) (PROGN (-6 (-29 |#1|)) (-6 (-1215)) (-6 (-161)) (-6 (-638)) (-6 (-1151)) (-15 -2867 ($ $)) (-15 -1817 ((-112) $)) (-15 -2703 ($ $ (-573))) (IF (|has| |#1| (-461)) (PROGN (-15 -1655 ((-427 (-1185 $)) (-1185 $))) (-15 -1600 ((-427 (-1185 $)) (-1185 $)))) |%noBranch|) (IF (|has| |#1| (-1050 (-573))) (-6 (-1050 (-48))) |%noBranch|)) |%noBranch|))) +((-2562 (((-52) |#2| (-115) (-301 |#2|) (-653 |#2|)) 89) (((-52) |#2| (-115) (-301 |#2|) (-301 |#2|)) 85) (((-52) |#2| (-115) (-301 |#2|) |#2|) 87) (((-52) (-301 |#2|) (-115) (-301 |#2|) |#2|) 88) (((-52) (-653 |#2|) (-653 (-115)) (-301 |#2|) (-653 (-301 |#2|))) 81) (((-52) (-653 |#2|) (-653 (-115)) (-301 |#2|) (-653 |#2|)) 83) (((-52) (-653 (-301 |#2|)) (-653 (-115)) (-301 |#2|) (-653 |#2|)) 84) (((-52) (-653 (-301 |#2|)) (-653 (-115)) (-301 |#2|) (-653 (-301 |#2|))) 82) (((-52) (-301 |#2|) (-115) (-301 |#2|) (-653 |#2|)) 90) (((-52) (-301 |#2|) (-115) (-301 |#2|) (-301 |#2|)) 86))) +(((-324 |#1| |#2|) (-10 -7 (-15 -2562 ((-52) (-301 |#2|) (-115) (-301 |#2|) (-301 |#2|))) (-15 -2562 ((-52) (-301 |#2|) (-115) (-301 |#2|) (-653 |#2|))) (-15 -2562 ((-52) (-653 (-301 |#2|)) (-653 (-115)) (-301 |#2|) (-653 (-301 |#2|)))) (-15 -2562 ((-52) (-653 (-301 |#2|)) (-653 (-115)) (-301 |#2|) (-653 |#2|))) (-15 -2562 ((-52) (-653 |#2|) (-653 (-115)) (-301 |#2|) (-653 |#2|))) (-15 -2562 ((-52) (-653 |#2|) (-653 (-115)) (-301 |#2|) (-653 (-301 |#2|)))) (-15 -2562 ((-52) (-301 |#2|) (-115) (-301 |#2|) |#2|)) (-15 -2562 ((-52) |#2| (-115) (-301 |#2|) |#2|)) (-15 -2562 ((-52) |#2| (-115) (-301 |#2|) (-301 |#2|))) (-15 -2562 ((-52) |#2| (-115) (-301 |#2|) (-653 |#2|)))) (-13 (-565) (-623 (-545))) (-439 |#1|)) (T -324)) +((-2562 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-301 *3)) (-5 *6 (-653 *3)) (-4 *3 (-439 *7)) (-4 *7 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) (-5 *1 (-324 *7 *3)))) (-2562 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-301 *3)) (-4 *3 (-439 *6)) (-4 *6 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) (-5 *1 (-324 *6 *3)))) (-2562 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-301 *3)) (-4 *3 (-439 *6)) (-4 *6 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) (-5 *1 (-324 *6 *3)))) (-2562 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-301 *5)) (-5 *4 (-115)) (-4 *5 (-439 *6)) (-4 *6 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) (-5 *1 (-324 *6 *5)))) (-2562 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-653 *8)) (-5 *4 (-653 (-115))) (-5 *6 (-653 (-301 *8))) (-4 *8 (-439 *7)) (-5 *5 (-301 *8)) (-4 *7 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) (-5 *1 (-324 *7 *8)))) (-2562 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-653 *7)) (-5 *4 (-653 (-115))) (-5 *5 (-301 *7)) (-4 *7 (-439 *6)) (-4 *6 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) (-5 *1 (-324 *6 *7)))) (-2562 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-653 (-301 *8))) (-5 *4 (-653 (-115))) (-5 *5 (-301 *8)) (-5 *6 (-653 *8)) (-4 *8 (-439 *7)) (-4 *7 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) (-5 *1 (-324 *7 *8)))) (-2562 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-653 (-301 *7))) (-5 *4 (-653 (-115))) (-5 *5 (-301 *7)) (-4 *7 (-439 *6)) (-4 *6 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) (-5 *1 (-324 *6 *7)))) (-2562 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-301 *7)) (-5 *4 (-115)) (-5 *5 (-653 *7)) (-4 *7 (-439 *6)) (-4 *6 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) (-5 *1 (-324 *6 *7)))) (-2562 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-301 *6)) (-5 *4 (-115)) (-4 *6 (-439 *5)) (-4 *5 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) (-5 *1 (-324 *5 *6))))) +(-10 -7 (-15 -2562 ((-52) (-301 |#2|) (-115) (-301 |#2|) (-301 |#2|))) (-15 -2562 ((-52) (-301 |#2|) (-115) (-301 |#2|) (-653 |#2|))) (-15 -2562 ((-52) (-653 (-301 |#2|)) (-653 (-115)) (-301 |#2|) (-653 (-301 |#2|)))) (-15 -2562 ((-52) (-653 (-301 |#2|)) (-653 (-115)) (-301 |#2|) (-653 |#2|))) (-15 -2562 ((-52) (-653 |#2|) (-653 (-115)) (-301 |#2|) (-653 |#2|))) (-15 -2562 ((-52) (-653 |#2|) (-653 (-115)) (-301 |#2|) (-653 (-301 |#2|)))) (-15 -2562 ((-52) (-301 |#2|) (-115) (-301 |#2|) |#2|)) (-15 -2562 ((-52) |#2| (-115) (-301 |#2|) |#2|)) (-15 -2562 ((-52) |#2| (-115) (-301 |#2|) (-301 |#2|))) (-15 -2562 ((-52) |#2| (-115) (-301 |#2|) (-653 |#2|)))) +((-3460 (((-1225 (-936)) (-323 (-573)) (-323 (-573)) (-323 (-573)) (-1 (-227) (-227)) (-1106 (-227)) (-227) (-573) (-1171)) 67) (((-1225 (-936)) (-323 (-573)) (-323 (-573)) (-323 (-573)) (-1 (-227) (-227)) (-1106 (-227)) (-227) (-573)) 68) (((-1225 (-936)) (-323 (-573)) (-323 (-573)) (-323 (-573)) (-1 (-227) (-227)) (-1106 (-227)) (-1 (-227) (-227)) (-573) (-1171)) 64) (((-1225 (-936)) (-323 (-573)) (-323 (-573)) (-323 (-573)) (-1 (-227) (-227)) (-1106 (-227)) (-1 (-227) (-227)) (-573)) 65)) (-2221 (((-1 (-227) (-227)) (-227)) 66))) +(((-325) (-10 -7 (-15 -2221 ((-1 (-227) (-227)) (-227))) (-15 -3460 ((-1225 (-936)) (-323 (-573)) (-323 (-573)) (-323 (-573)) (-1 (-227) (-227)) (-1106 (-227)) (-1 (-227) (-227)) (-573))) (-15 -3460 ((-1225 (-936)) (-323 (-573)) (-323 (-573)) (-323 (-573)) (-1 (-227) (-227)) (-1106 (-227)) (-1 (-227) (-227)) (-573) (-1171))) (-15 -3460 ((-1225 (-936)) (-323 (-573)) (-323 (-573)) (-323 (-573)) (-1 (-227) (-227)) (-1106 (-227)) (-227) (-573))) (-15 -3460 ((-1225 (-936)) (-323 (-573)) (-323 (-573)) (-323 (-573)) (-1 (-227) (-227)) (-1106 (-227)) (-227) (-573) (-1171))))) (T -325)) +((-3460 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-323 (-573))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1106 (-227))) (-5 *6 (-227)) (-5 *7 (-573)) (-5 *8 (-1171)) (-5 *2 (-1225 (-936))) (-5 *1 (-325)))) (-3460 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-323 (-573))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1106 (-227))) (-5 *6 (-227)) (-5 *7 (-573)) (-5 *2 (-1225 (-936))) (-5 *1 (-325)))) (-3460 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-323 (-573))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1106 (-227))) (-5 *6 (-573)) (-5 *7 (-1171)) (-5 *2 (-1225 (-936))) (-5 *1 (-325)))) (-3460 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-323 (-573))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1106 (-227))) (-5 *6 (-573)) (-5 *2 (-1225 (-936))) (-5 *1 (-325)))) (-2221 (*1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-325)) (-5 *3 (-227))))) +(-10 -7 (-15 -2221 ((-1 (-227) (-227)) (-227))) (-15 -3460 ((-1225 (-936)) (-323 (-573)) (-323 (-573)) (-323 (-573)) (-1 (-227) (-227)) (-1106 (-227)) (-1 (-227) (-227)) (-573))) (-15 -3460 ((-1225 (-936)) (-323 (-573)) (-323 (-573)) (-323 (-573)) (-1 (-227) (-227)) (-1106 (-227)) (-1 (-227) (-227)) (-573) (-1171))) (-15 -3460 ((-1225 (-936)) (-323 (-573)) (-323 (-573)) (-323 (-573)) (-1 (-227) (-227)) (-1106 (-227)) (-227) (-573))) (-15 -3460 ((-1225 (-936)) (-323 (-573)) (-323 (-573)) (-323 (-573)) (-1 (-227) (-227)) (-1106 (-227)) (-227) (-573) (-1171)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 26)) (-4354 (((-653 (-1094)) $) NIL)) (-1487 (((-1189) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-1442 (($ $ (-416 (-573))) NIL) (($ $ (-416 (-573)) (-416 (-573))) NIL)) (-1662 (((-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#1|))) $) 20)) (-2363 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL (|has| |#1| (-371)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4228 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2800 (((-112) $ $) NIL (|has| |#1| (-371)))) (-2342 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3622 (($ (-780) (-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#1|)))) NIL)) (-2388 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) NIL T CONST)) (-2784 (($ $ $) NIL (|has| |#1| (-371)))) (-1391 (($ $) 36)) (-2232 (((-3 $ "failed") $) NIL)) (-2796 (($ $ $) NIL (|has| |#1| (-371)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#1| (-371)))) (-2696 (((-112) $) NIL (|has| |#1| (-371)))) (-1488 (((-112) $) NIL)) (-2999 (($) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2534 (((-416 (-573)) $) NIL) (((-416 (-573)) $ (-416 (-573))) 16)) (-1959 (((-112) $) NIL)) (-4325 (($ $ (-573)) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2976 (($ $ (-931)) NIL) (($ $ (-416 (-573))) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-416 (-573))) NIL) (($ $ (-1094) (-416 (-573))) NIL) (($ $ (-653 (-1094)) (-653 (-416 (-573)))) NIL)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3118 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL (|has| |#1| (-371)))) (-1626 (($ $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189)) NIL (-2817 (-12 (|has| |#1| (-15 -1626 (|#1| |#1| (-1189)))) (|has| |#1| (-15 -4354 ((-653 (-1189)) |#1|))) (|has| |#1| (-38 (-416 (-573))))) (-12 (|has| |#1| (-29 (-573))) (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-969)) (|has| |#1| (-1215)))))) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-371)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-4218 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2212 (($ $ (-416 (-573))) NIL)) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-2157 (((-416 (-573)) $) 17)) (-3502 (($ (-1265 |#1| |#2| |#3|)) 11)) (-3907 (((-1265 |#1| |#2| |#3|) $) 12)) (-1608 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2645 (((-1169 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-416 (-573))))))) (-2163 (((-780) $) NIL (|has| |#1| (-371)))) (-2198 ((|#1| $ (-416 (-573))) NIL) (($ $ $) NIL (|has| (-416 (-573)) (-1124)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (-2565 (((-416 (-573)) $) NIL)) (-2401 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-4101 (($ $) 10)) (-2942 (((-871) $) 42) (($ (-573)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $) NIL (|has| |#1| (-565)))) (-4317 ((|#1| $ (-416 (-573))) 34)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) NIL T CONST)) (-3358 ((|#1| $) NIL)) (-3507 (((-112) $ $) NIL)) (-2439 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2413 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3550 ((|#1| $ (-416 (-573))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-416 (-573))))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2520 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 28)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 37)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))))) +(((-326 |#1| |#2| |#3|) (-13 (-1261 |#1|) (-801) (-10 -8 (-15 -3502 ($ (-1265 |#1| |#2| |#3|))) (-15 -3907 ((-1265 |#1| |#2| |#3|) $)) (-15 -2157 ((-416 (-573)) $)))) (-371) (-1189) |#1|) (T -326)) +((-3502 (*1 *1 *2) (-12 (-5 *2 (-1265 *3 *4 *5)) (-4 *3 (-371)) (-14 *4 (-1189)) (-14 *5 *3) (-5 *1 (-326 *3 *4 *5)))) (-3907 (*1 *2 *1) (-12 (-5 *2 (-1265 *3 *4 *5)) (-5 *1 (-326 *3 *4 *5)) (-4 *3 (-371)) (-14 *4 (-1189)) (-14 *5 *3))) (-2157 (*1 *2 *1) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-326 *3 *4 *5)) (-4 *3 (-371)) (-14 *4 (-1189)) (-14 *5 *3)))) +(-13 (-1261 |#1|) (-801) (-10 -8 (-15 -3502 ($ (-1265 |#1| |#2| |#3|))) (-15 -3907 ((-1265 |#1| |#2| |#3|) $)) (-15 -2157 ((-416 (-573)) $)))) +((-4325 (((-2 (|:| -3907 (-780)) (|:| -1857 |#1|) (|:| |radicand| (-653 |#1|))) (-427 |#1|) (-780)) 35)) (-3118 (((-653 (-2 (|:| -1857 (-780)) (|:| |logand| |#1|))) (-427 |#1|)) 40))) +(((-327 |#1|) (-10 -7 (-15 -4325 ((-2 (|:| -3907 (-780)) (|:| -1857 |#1|) (|:| |radicand| (-653 |#1|))) (-427 |#1|) (-780))) (-15 -3118 ((-653 (-2 (|:| -1857 (-780)) (|:| |logand| |#1|))) (-427 |#1|)))) (-565)) (T -327)) +((-3118 (*1 *2 *3) (-12 (-5 *3 (-427 *4)) (-4 *4 (-565)) (-5 *2 (-653 (-2 (|:| -1857 (-780)) (|:| |logand| *4)))) (-5 *1 (-327 *4)))) (-4325 (*1 *2 *3 *4) (-12 (-5 *3 (-427 *5)) (-4 *5 (-565)) (-5 *2 (-2 (|:| -3907 (-780)) (|:| -1857 *5) (|:| |radicand| (-653 *5)))) (-5 *1 (-327 *5)) (-5 *4 (-780))))) +(-10 -7 (-15 -4325 ((-2 (|:| -3907 (-780)) (|:| -1857 |#1|) (|:| |radicand| (-653 |#1|))) (-427 |#1|) (-780))) (-15 -3118 ((-653 (-2 (|:| -1857 (-780)) (|:| |logand| |#1|))) (-427 |#1|)))) +((-4354 (((-653 |#2|) (-1185 |#4|)) 44)) (-2208 ((|#3| (-573)) 47)) (-2611 (((-1185 |#4|) (-1185 |#3|)) 30)) (-3002 (((-1185 |#4|) (-1185 |#4|) (-573)) 66)) (-2651 (((-1185 |#3|) (-1185 |#4|)) 21)) (-2565 (((-653 (-780)) (-1185 |#4|) (-653 |#2|)) 41)) (-3947 (((-1185 |#3|) (-1185 |#4|) (-653 |#2|) (-653 |#3|)) 35))) +(((-328 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3947 ((-1185 |#3|) (-1185 |#4|) (-653 |#2|) (-653 |#3|))) (-15 -2565 ((-653 (-780)) (-1185 |#4|) (-653 |#2|))) (-15 -4354 ((-653 |#2|) (-1185 |#4|))) (-15 -2651 ((-1185 |#3|) (-1185 |#4|))) (-15 -2611 ((-1185 |#4|) (-1185 |#3|))) (-15 -3002 ((-1185 |#4|) (-1185 |#4|) (-573))) (-15 -2208 (|#3| (-573)))) (-802) (-859) (-1061) (-959 |#3| |#1| |#2|)) (T -328)) +((-2208 (*1 *2 *3) (-12 (-5 *3 (-573)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *2 (-1061)) (-5 *1 (-328 *4 *5 *2 *6)) (-4 *6 (-959 *2 *4 *5)))) (-3002 (*1 *2 *2 *3) (-12 (-5 *2 (-1185 *7)) (-5 *3 (-573)) (-4 *7 (-959 *6 *4 *5)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1061)) (-5 *1 (-328 *4 *5 *6 *7)))) (-2611 (*1 *2 *3) (-12 (-5 *3 (-1185 *6)) (-4 *6 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-1185 *7)) (-5 *1 (-328 *4 *5 *6 *7)) (-4 *7 (-959 *6 *4 *5)))) (-2651 (*1 *2 *3) (-12 (-5 *3 (-1185 *7)) (-4 *7 (-959 *6 *4 *5)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1061)) (-5 *2 (-1185 *6)) (-5 *1 (-328 *4 *5 *6 *7)))) (-4354 (*1 *2 *3) (-12 (-5 *3 (-1185 *7)) (-4 *7 (-959 *6 *4 *5)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1061)) (-5 *2 (-653 *5)) (-5 *1 (-328 *4 *5 *6 *7)))) (-2565 (*1 *2 *3 *4) (-12 (-5 *3 (-1185 *8)) (-5 *4 (-653 *6)) (-4 *6 (-859)) (-4 *8 (-959 *7 *5 *6)) (-4 *5 (-802)) (-4 *7 (-1061)) (-5 *2 (-653 (-780))) (-5 *1 (-328 *5 *6 *7 *8)))) (-3947 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1185 *9)) (-5 *4 (-653 *7)) (-5 *5 (-653 *8)) (-4 *7 (-859)) (-4 *8 (-1061)) (-4 *9 (-959 *8 *6 *7)) (-4 *6 (-802)) (-5 *2 (-1185 *8)) (-5 *1 (-328 *6 *7 *8 *9))))) +(-10 -7 (-15 -3947 ((-1185 |#3|) (-1185 |#4|) (-653 |#2|) (-653 |#3|))) (-15 -2565 ((-653 (-780)) (-1185 |#4|) (-653 |#2|))) (-15 -4354 ((-653 |#2|) (-1185 |#4|))) (-15 -2651 ((-1185 |#3|) (-1185 |#4|))) (-15 -2611 ((-1185 |#4|) (-1185 |#3|))) (-15 -3002 ((-1185 |#4|) (-1185 |#4|) (-573))) (-15 -2208 (|#3| (-573)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 19)) (-1662 (((-653 (-2 (|:| |gen| |#1|) (|:| -1608 (-573)))) $) 21)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1486 (((-780) $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2205 ((|#1| $) NIL)) (-2841 ((|#1| $ (-573)) NIL)) (-3892 (((-573) $ (-573)) NIL)) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-1911 (($ (-1 |#1| |#1|) $) NIL)) (-3480 (($ (-1 (-573) (-573)) $) 11)) (-3180 (((-1171) $) NIL)) (-3477 (($ $ $) NIL (|has| (-573) (-801)))) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL) (($ |#1|) NIL)) (-4317 (((-573) |#1| $) NIL)) (-3507 (((-112) $ $) NIL)) (-2132 (($) NIL T CONST)) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) 29 (|has| |#1| (-859)))) (-3093 (($ $) 12) (($ $ $) 28)) (-3077 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ (-573)) NIL) (($ (-573) |#1|) 27))) +(((-329 |#1|) (-13 (-21) (-726 (-573)) (-330 |#1| (-573)) (-10 -7 (IF (|has| |#1| (-859)) (-6 (-859)) |%noBranch|))) (-1112)) (T -329)) +NIL +(-13 (-21) (-726 (-573)) (-330 |#1| (-573)) (-10 -7 (IF (|has| |#1| (-859)) (-6 (-859)) |%noBranch|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-1662 (((-653 (-2 (|:| |gen| |#1|) (|:| -1608 |#2|))) $) 28)) (-2983 (((-3 $ "failed") $ $) 20)) (-1486 (((-780) $) 29)) (-2579 (($) 18 T CONST)) (-1695 (((-3 |#1| "failed") $) 33)) (-2205 ((|#1| $) 34)) (-2841 ((|#1| $ (-573)) 26)) (-3892 ((|#2| $ (-573)) 27)) (-1911 (($ (-1 |#1| |#1|) $) 23)) (-3480 (($ (-1 |#2| |#2|) $) 24)) (-3180 (((-1171) $) 10)) (-3477 (($ $ $) 22 (|has| |#2| (-801)))) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12) (($ |#1|) 32)) (-4317 ((|#2| |#1| $) 25)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3077 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ |#2| |#1|) 30))) +(((-330 |#1| |#2|) (-141) (-1112) (-132)) (T -330)) +((-3077 (*1 *1 *2 *1) (-12 (-4 *1 (-330 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-132)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-330 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-132)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-330 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-132)) (-5 *2 (-780)))) (-1662 (*1 *2 *1) (-12 (-4 *1 (-330 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-132)) (-5 *2 (-653 (-2 (|:| |gen| *3) (|:| -1608 *4)))))) (-3892 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-4 *1 (-330 *4 *2)) (-4 *4 (-1112)) (-4 *2 (-132)))) (-2841 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-4 *1 (-330 *2 *4)) (-4 *4 (-132)) (-4 *2 (-1112)))) (-4317 (*1 *2 *3 *1) (-12 (-4 *1 (-330 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-132)))) (-3480 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-330 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-132)))) (-1911 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-330 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-132)))) (-3477 (*1 *1 *1 *1) (-12 (-4 *1 (-330 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-132)) (-4 *3 (-801))))) +(-13 (-132) (-1050 |t#1|) (-10 -8 (-15 -3077 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1486 ((-780) $)) (-15 -1662 ((-653 (-2 (|:| |gen| |t#1|) (|:| -1608 |t#2|))) $)) (-15 -3892 (|t#2| $ (-573))) (-15 -2841 (|t#1| $ (-573))) (-15 -4317 (|t#2| |t#1| $)) (-15 -3480 ($ (-1 |t#2| |t#2|) $)) (-15 -1911 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-801)) (-15 -3477 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 |#1|) . T) ((-622 (-871)) . T) ((-1050 |#1|) . T) ((-1112) . T)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-1662 (((-653 (-2 (|:| |gen| |#1|) (|:| -1608 (-780)))) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1486 (((-780) $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2205 ((|#1| $) NIL)) (-2841 ((|#1| $ (-573)) NIL)) (-3892 (((-780) $ (-573)) NIL)) (-1911 (($ (-1 |#1| |#1|) $) NIL)) (-3480 (($ (-1 (-780) (-780)) $) NIL)) (-3180 (((-1171) $) NIL)) (-3477 (($ $ $) NIL (|has| (-780) (-801)))) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL) (($ |#1|) NIL)) (-4317 (((-780) |#1| $) NIL)) (-3507 (((-112) $ $) NIL)) (-2132 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-780) |#1|) NIL))) +(((-331 |#1|) (-330 |#1| (-780)) (-1112)) (T -331)) +NIL +(-330 |#1| (-780)) +((-3246 (($ $) 72)) (-2343 (($ $ |#2| |#3| $) 14)) (-1382 (($ (-1 |#3| |#3|) $) 51)) (-1337 (((-112) $) 42)) (-1348 ((|#2| $) 44)) (-2837 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-3257 ((|#2| $) 68)) (-1920 (((-653 |#2|) $) 56)) (-1538 (($ $ $ (-780)) 37)) (-3103 (($ $ |#2|) 60))) +(((-332 |#1| |#2| |#3|) (-10 -8 (-15 -3246 (|#1| |#1|)) (-15 -3257 (|#2| |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1538 (|#1| |#1| |#1| (-780))) (-15 -2343 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1382 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1920 ((-653 |#2|) |#1|)) (-15 -1348 (|#2| |#1|)) (-15 -1337 ((-112) |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3103 (|#1| |#1| |#2|))) (-333 |#2| |#3|) (-1061) (-801)) (T -332)) +NIL +(-10 -8 (-15 -3246 (|#1| |#1|)) (-15 -3257 (|#2| |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1538 (|#1| |#1| |#1| (-780))) (-15 -2343 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1382 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1920 ((-653 |#2|) |#1|)) (-15 -1348 (|#2| |#1|)) (-15 -1337 ((-112) |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3103 (|#1| |#1| |#2|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 63 (|has| |#1| (-565)))) (-2456 (($ $) 64 (|has| |#1| (-565)))) (-1345 (((-112) $) 66 (|has| |#1| (-565)))) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-1695 (((-3 (-573) "failed") $) 100 (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) 98 (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) 95)) (-2205 (((-573) $) 99 (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) 97 (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) 96)) (-1391 (($ $) 72)) (-2232 (((-3 $ "failed") $) 37)) (-3246 (($ $) 84 (|has| |#1| (-461)))) (-2343 (($ $ |#1| |#2| $) 88)) (-1959 (((-112) $) 35)) (-3772 (((-780) $) 91)) (-3676 (((-112) $) 74)) (-4334 (($ |#1| |#2|) 73)) (-4036 ((|#2| $) 90)) (-1382 (($ (-1 |#2| |#2|) $) 89)) (-1776 (($ (-1 |#1| |#1|) $) 75)) (-1358 (($ $) 77)) (-1369 ((|#1| $) 78)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-1337 (((-112) $) 94)) (-1348 ((|#1| $) 93)) (-2837 (((-3 $ "failed") $ $) 62 (|has| |#1| (-565))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-565)))) (-2565 ((|#2| $) 76)) (-3257 ((|#1| $) 85 (|has| |#1| (-461)))) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 61 (|has| |#1| (-565))) (($ |#1|) 59) (($ (-416 (-573))) 69 (-2817 (|has| |#1| (-1050 (-416 (-573)))) (|has| |#1| (-38 (-416 (-573))))))) (-1920 (((-653 |#1|) $) 92)) (-4317 ((|#1| $ |#2|) 71)) (-4279 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1545 (((-780)) 32 T CONST)) (-1538 (($ $ $ (-780)) 87 (|has| |#1| (-174)))) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 65 (|has| |#1| (-565)))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 70 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-416 (-573)) $) 68 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 67 (|has| |#1| (-38 (-416 (-573))))))) +(((-333 |#1| |#2|) (-141) (-1061) (-801)) (T -333)) +((-1337 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)) (-5 *2 (-112)))) (-1348 (*1 *2 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *3 (-801)) (-4 *2 (-1061)))) (-1920 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)) (-5 *2 (-653 *3)))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)) (-5 *2 (-780)))) (-4036 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-801)))) (-1382 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)))) (-2343 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-801)))) (-1538 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)) (-4 *3 (-174)))) (-2837 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-801)) (-4 *2 (-565)))) (-3257 (*1 *2 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *3 (-801)) (-4 *2 (-1061)) (-4 *2 (-461)))) (-3246 (*1 *1 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-801)) (-4 *2 (-461))))) +(-13 (-47 |t#1| |t#2|) (-420 |t#1|) (-10 -8 (-15 -1337 ((-112) $)) (-15 -1348 (|t#1| $)) (-15 -1920 ((-653 |t#1|) $)) (-15 -3772 ((-780) $)) (-15 -4036 (|t#2| $)) (-15 -1382 ($ (-1 |t#2| |t#2|) $)) (-15 -2343 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-174)) (-15 -1538 ($ $ $ (-780))) |%noBranch|) (IF (|has| |t#1| (-565)) (-15 -2837 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-461)) (PROGN (-15 -3257 (|t#1| $)) (-15 -3246 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-565)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-416 (-573)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #0#) -2817 (|has| |#1| (-1050 (-416 (-573)))) (|has| |#1| (-38 (-416 (-573))))) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-625 $) |has| |#1| (-565)) ((-622 (-871)) . T) ((-174) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-297) |has| |#1| (-565)) ((-420 |#1|) . T) ((-565) |has| |#1| (-565)) ((-655 #0#) |has| |#1| (-38 (-416 (-573)))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #0#) |has| |#1| (-38 (-416 (-573)))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #0#) |has| |#1| (-38 (-416 (-573)))) ((-649 |#1|) |has| |#1| (-174)) ((-649 $) |has| |#1| (-565)) ((-726 #0#) |has| |#1| (-38 (-416 (-573)))) ((-726 |#1|) |has| |#1| (-174)) ((-726 $) |has| |#1| (-565)) ((-735) . T) ((-1050 (-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((-1050 (-573)) |has| |#1| (-1050 (-573))) ((-1050 |#1|) . T) ((-1063 #0#) |has| |#1| (-38 (-416 (-573)))) ((-1063 |#1|) . T) ((-1063 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-1068 #0#) |has| |#1| (-38 (-416 (-573)))) ((-1068 |#1|) . T) ((-1068 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-1473 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-859)))) (-2748 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4456))) (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-859))))) (-2770 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-859)))) (-3450 (((-112) $ (-780)) NIL)) (-1534 (((-112) (-112)) NIL)) (-3142 ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) NIL (|has| $ (-6 -4456)))) (-3557 (($ (-1 (-112) |#1|) $) NIL)) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-1599 (($ $) NIL (|has| |#1| (-1112)))) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2596 (($ |#1| $) NIL (|has| |#1| (-1112))) (($ (-1 (-112) |#1|) $) NIL)) (-3334 (($ |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) NIL)) (-1440 (((-573) (-1 (-112) |#1|) $) NIL) (((-573) |#1| $) NIL (|has| |#1| (-1112))) (((-573) |#1| $ (-573)) NIL (|has| |#1| (-1112)))) (-2380 (($ $ (-573)) NIL)) (-2612 (((-780) $) NIL)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-3789 (($ (-780) |#1|) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) NIL (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-4241 (($ $ $) NIL (|has| |#1| (-859))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1480 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-859)))) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3181 (($ $ $ (-573)) NIL) (($ |#1| $ (-573)) NIL)) (-1593 (($ |#1| $ (-573)) NIL) (($ $ $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-3588 (($ (-653 |#1|)) NIL)) (-2914 ((|#1| $) NIL (|has| (-573) (-859)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3112 (($ $ |#1|) NIL (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#1| $ (-573) |#1|) NIL) ((|#1| $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-3220 (($ $ (-1247 (-573))) NIL) (($ $ (-573)) NIL)) (-2836 (($ $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3919 (($ $ $ (-573)) NIL (|has| $ (-6 -4456)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) NIL)) (-3996 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-653 $)) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-334 |#1|) (-13 (-19 |#1|) (-289 |#1|) (-10 -8 (-15 -3588 ($ (-653 |#1|))) (-15 -2612 ((-780) $)) (-15 -2380 ($ $ (-573))) (-15 -1534 ((-112) (-112))))) (-1230)) (T -334)) +((-3588 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-5 *1 (-334 *3)))) (-2612 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-334 *3)) (-4 *3 (-1230)))) (-2380 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-334 *3)) (-4 *3 (-1230)))) (-1534 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-334 *3)) (-4 *3 (-1230))))) +(-13 (-19 |#1|) (-289 |#1|) (-10 -8 (-15 -3588 ($ (-653 |#1|))) (-15 -2612 ((-780) $)) (-15 -2380 ($ $ (-573))) (-15 -1534 ((-112) (-112))))) +((-3511 (((-112) $) 47)) (-3115 (((-780)) 23)) (-1635 ((|#2| $) 51) (($ $ (-931)) 121)) (-1486 (((-780)) 122)) (-2854 (($ (-1280 |#2|)) 20)) (-3514 (((-112) $) 134)) (-3421 ((|#2| $) 53) (($ $ (-931)) 118)) (-2297 (((-1185 |#2|) $) NIL) (((-1185 $) $ (-931)) 109)) (-2991 (((-1185 |#2|) $) 95)) (-2700 (((-1185 |#2|) $) 91) (((-3 (-1185 |#2|) "failed") $ $) 88)) (-2840 (($ $ (-1185 |#2|)) 58)) (-3216 (((-842 (-931))) 30) (((-931)) 48)) (-2365 (((-135)) 27)) (-2565 (((-842 (-931)) $) 32) (((-931) $) 137)) (-4232 (($) 128)) (-2123 (((-1280 |#2|) $) NIL) (((-698 |#2|) (-1280 $)) 42)) (-4279 (($ $) NIL) (((-3 $ "failed") $) 98)) (-4333 (((-112) $) 45))) +(((-335 |#1| |#2|) (-10 -8 (-15 -4279 ((-3 |#1| "failed") |#1|)) (-15 -1486 ((-780))) (-15 -4279 (|#1| |#1|)) (-15 -2700 ((-3 (-1185 |#2|) "failed") |#1| |#1|)) (-15 -2700 ((-1185 |#2|) |#1|)) (-15 -2991 ((-1185 |#2|) |#1|)) (-15 -2840 (|#1| |#1| (-1185 |#2|))) (-15 -3514 ((-112) |#1|)) (-15 -4232 (|#1|)) (-15 -1635 (|#1| |#1| (-931))) (-15 -3421 (|#1| |#1| (-931))) (-15 -2297 ((-1185 |#1|) |#1| (-931))) (-15 -1635 (|#2| |#1|)) (-15 -3421 (|#2| |#1|)) (-15 -2565 ((-931) |#1|)) (-15 -3216 ((-931))) (-15 -2297 ((-1185 |#2|) |#1|)) (-15 -2854 (|#1| (-1280 |#2|))) (-15 -2123 ((-698 |#2|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1|)) (-15 -3115 ((-780))) (-15 -3216 ((-842 (-931)))) (-15 -2565 ((-842 (-931)) |#1|)) (-15 -3511 ((-112) |#1|)) (-15 -4333 ((-112) |#1|)) (-15 -2365 ((-135)))) (-336 |#2|) (-371)) (T -335)) +((-2365 (*1 *2) (-12 (-4 *4 (-371)) (-5 *2 (-135)) (-5 *1 (-335 *3 *4)) (-4 *3 (-336 *4)))) (-3216 (*1 *2) (-12 (-4 *4 (-371)) (-5 *2 (-842 (-931))) (-5 *1 (-335 *3 *4)) (-4 *3 (-336 *4)))) (-3115 (*1 *2) (-12 (-4 *4 (-371)) (-5 *2 (-780)) (-5 *1 (-335 *3 *4)) (-4 *3 (-336 *4)))) (-3216 (*1 *2) (-12 (-4 *4 (-371)) (-5 *2 (-931)) (-5 *1 (-335 *3 *4)) (-4 *3 (-336 *4)))) (-1486 (*1 *2) (-12 (-4 *4 (-371)) (-5 *2 (-780)) (-5 *1 (-335 *3 *4)) (-4 *3 (-336 *4))))) +(-10 -8 (-15 -4279 ((-3 |#1| "failed") |#1|)) (-15 -1486 ((-780))) (-15 -4279 (|#1| |#1|)) (-15 -2700 ((-3 (-1185 |#2|) "failed") |#1| |#1|)) (-15 -2700 ((-1185 |#2|) |#1|)) (-15 -2991 ((-1185 |#2|) |#1|)) (-15 -2840 (|#1| |#1| (-1185 |#2|))) (-15 -3514 ((-112) |#1|)) (-15 -4232 (|#1|)) (-15 -1635 (|#1| |#1| (-931))) (-15 -3421 (|#1| |#1| (-931))) (-15 -2297 ((-1185 |#1|) |#1| (-931))) (-15 -1635 (|#2| |#1|)) (-15 -3421 (|#2| |#1|)) (-15 -2565 ((-931) |#1|)) (-15 -3216 ((-931))) (-15 -2297 ((-1185 |#2|) |#1|)) (-15 -2854 (|#1| (-1280 |#2|))) (-15 -2123 ((-698 |#2|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1|)) (-15 -3115 ((-780))) (-15 -3216 ((-842 (-931)))) (-15 -2565 ((-842 (-931)) |#1|)) (-15 -3511 ((-112) |#1|)) (-15 -4333 ((-112) |#1|)) (-15 -2365 ((-135)))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-3511 (((-112) $) 104)) (-3115 (((-780)) 100)) (-1635 ((|#1| $) 151) (($ $ (-931)) 148 (|has| |#1| (-376)))) (-2604 (((-1202 (-931) (-780)) (-573)) 133 (|has| |#1| (-376)))) (-2983 (((-3 $ "failed") $ $) 20)) (-4285 (($ $) 81)) (-2427 (((-427 $) $) 80)) (-2800 (((-112) $ $) 65)) (-1486 (((-780)) 123 (|has| |#1| (-376)))) (-2579 (($) 18 T CONST)) (-1695 (((-3 |#1| "failed") $) 111)) (-2205 ((|#1| $) 112)) (-2854 (($ (-1280 |#1|)) 157)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) 139 (|has| |#1| (-376)))) (-2784 (($ $ $) 61)) (-2232 (((-3 $ "failed") $) 37)) (-2819 (($) 120 (|has| |#1| (-376)))) (-2796 (($ $ $) 62)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 57)) (-3731 (($) 135 (|has| |#1| (-376)))) (-1708 (((-112) $) 136 (|has| |#1| (-376)))) (-2104 (($ $ (-780)) 97 (-2817 (|has| |#1| (-146)) (|has| |#1| (-376)))) (($ $) 96 (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2696 (((-112) $) 79)) (-2534 (((-931) $) 138 (|has| |#1| (-376))) (((-842 (-931)) $) 94 (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1959 (((-112) $) 35)) (-4081 (($) 146 (|has| |#1| (-376)))) (-3514 (((-112) $) 145 (|has| |#1| (-376)))) (-3421 ((|#1| $) 152) (($ $ (-931)) 149 (|has| |#1| (-376)))) (-1470 (((-3 $ "failed") $) 124 (|has| |#1| (-376)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 58)) (-2297 (((-1185 |#1|) $) 156) (((-1185 $) $ (-931)) 150 (|has| |#1| (-376)))) (-3589 (((-931) $) 121 (|has| |#1| (-376)))) (-2991 (((-1185 |#1|) $) 142 (|has| |#1| (-376)))) (-2700 (((-1185 |#1|) $) 141 (|has| |#1| (-376))) (((-3 (-1185 |#1|) "failed") $ $) 140 (|has| |#1| (-376)))) (-2840 (($ $ (-1185 |#1|)) 143 (|has| |#1| (-376)))) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-1323 (($ $) 78)) (-3816 (($) 125 (|has| |#1| (-376)) CONST)) (-2575 (($ (-931)) 122 (|has| |#1| (-376)))) (-2772 (((-112) $) 103)) (-3965 (((-1132) $) 11)) (-2969 (($) 144 (|has| |#1| (-376)))) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) 132 (|has| |#1| (-376)))) (-4218 (((-427 $) $) 82)) (-3216 (((-842 (-931))) 101) (((-931)) 154)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 56)) (-2163 (((-780) $) 64)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 63)) (-1637 (((-780) $) 137 (|has| |#1| (-376))) (((-3 (-780) "failed") $ $) 95 (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2365 (((-135)) 109)) (-3904 (($ $ (-780)) 128 (|has| |#1| (-376))) (($ $) 126 (|has| |#1| (-376)))) (-2565 (((-842 (-931)) $) 102) (((-931) $) 153)) (-2984 (((-1185 |#1|)) 155)) (-2510 (($) 134 (|has| |#1| (-376)))) (-4232 (($) 147 (|has| |#1| (-376)))) (-2123 (((-1280 |#1|) $) 159) (((-698 |#1|) (-1280 $)) 158)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) 131 (|has| |#1| (-376)))) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49) (($ (-416 (-573))) 74) (($ |#1|) 110)) (-4279 (($ $) 130 (|has| |#1| (-376))) (((-3 $ "failed") $) 93 (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-3914 (((-1280 $)) 161) (((-1280 $) (-931)) 160)) (-2516 (((-112) $ $) 45)) (-4333 (((-112) $) 105)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-1629 (($ $) 99 (|has| |#1| (-376))) (($ $ (-780)) 98 (|has| |#1| (-376)))) (-3609 (($ $ (-780)) 129 (|has| |#1| (-376))) (($ $) 127 (|has| |#1| (-376)))) (-2981 (((-112) $ $) 6)) (-3103 (($ $ $) 73) (($ $ |#1|) 108)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 77)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 (-573))) 76) (($ (-416 (-573)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) +(((-336 |#1|) (-141) (-371)) (T -336)) +((-3914 (*1 *2) (-12 (-4 *3 (-371)) (-5 *2 (-1280 *1)) (-4 *1 (-336 *3)))) (-3914 (*1 *2 *3) (-12 (-5 *3 (-931)) (-4 *4 (-371)) (-5 *2 (-1280 *1)) (-4 *1 (-336 *4)))) (-2123 (*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-5 *2 (-1280 *3)))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-336 *4)) (-4 *4 (-371)) (-5 *2 (-698 *4)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-371)) (-4 *1 (-336 *3)))) (-2297 (*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-5 *2 (-1185 *3)))) (-2984 (*1 *2) (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-5 *2 (-1185 *3)))) (-3216 (*1 *2) (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-5 *2 (-931)))) (-2565 (*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-5 *2 (-931)))) (-3421 (*1 *2 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-371)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-371)))) (-2297 (*1 *2 *1 *3) (-12 (-5 *3 (-931)) (-4 *4 (-376)) (-4 *4 (-371)) (-5 *2 (-1185 *1)) (-4 *1 (-336 *4)))) (-3421 (*1 *1 *1 *2) (-12 (-5 *2 (-931)) (-4 *1 (-336 *3)) (-4 *3 (-371)) (-4 *3 (-376)))) (-1635 (*1 *1 *1 *2) (-12 (-5 *2 (-931)) (-4 *1 (-336 *3)) (-4 *3 (-371)) (-4 *3 (-376)))) (-4232 (*1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-376)) (-4 *2 (-371)))) (-4081 (*1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-376)) (-4 *2 (-371)))) (-3514 (*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-4 *3 (-376)) (-5 *2 (-112)))) (-2969 (*1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-376)) (-4 *2 (-371)))) (-2840 (*1 *1 *1 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-376)) (-4 *1 (-336 *3)) (-4 *3 (-371)))) (-2991 (*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-4 *3 (-376)) (-5 *2 (-1185 *3)))) (-2700 (*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-4 *3 (-376)) (-5 *2 (-1185 *3)))) (-2700 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-4 *3 (-376)) (-5 *2 (-1185 *3))))) +(-13 (-1299 |t#1|) (-1050 |t#1|) (-10 -8 (-15 -3914 ((-1280 $))) (-15 -3914 ((-1280 $) (-931))) (-15 -2123 ((-1280 |t#1|) $)) (-15 -2123 ((-698 |t#1|) (-1280 $))) (-15 -2854 ($ (-1280 |t#1|))) (-15 -2297 ((-1185 |t#1|) $)) (-15 -2984 ((-1185 |t#1|))) (-15 -3216 ((-931))) (-15 -2565 ((-931) $)) (-15 -3421 (|t#1| $)) (-15 -1635 (|t#1| $)) (IF (|has| |t#1| (-376)) (PROGN (-6 (-357)) (-15 -2297 ((-1185 $) $ (-931))) (-15 -3421 ($ $ (-931))) (-15 -1635 ($ $ (-931))) (-15 -4232 ($)) (-15 -4081 ($)) (-15 -3514 ((-112) $)) (-15 -2969 ($)) (-15 -2840 ($ $ (-1185 |t#1|))) (-15 -2991 ((-1185 |t#1|) $)) (-15 -2700 ((-1185 |t#1|) $)) (-15 -2700 ((-3 (-1185 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2817 (|has| |#1| (-376)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-625 #0#) . T) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-235 $) |has| |#1| (-376)) ((-238) |has| |#1| (-376)) ((-237) |has| |#1| (-376)) ((-248) . T) ((-297) . T) ((-314) . T) ((-1299 |#1|) . T) ((-371) . T) ((-411) -2817 (|has| |#1| (-376)) (|has| |#1| (-146))) ((-376) |has| |#1| (-376)) ((-357) |has| |#1| (-376)) ((-461) . T) ((-565) . T) ((-655 #0#) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #0#) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #0#) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-726 #0#) . T) ((-726 |#1|) . T) ((-726 $) . T) ((-735) . T) ((-930) . T) ((-1050 |#1|) . T) ((-1063 #0#) . T) ((-1063 |#1|) . T) ((-1063 $) . T) ((-1068 #0#) . T) ((-1068 |#1|) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1164) |has| |#1| (-376)) ((-1230) |has| |#1| (-376)) ((-1234) . T) ((-1287 |#1|) . T)) +((-2848 (((-112) $ $) NIL)) (-3702 (($ (-1188) $) 100)) (-4253 (($) 89)) (-2061 (((-1132) (-1132)) 9)) (-1611 (($) 90)) (-3587 (($) 104) (($ (-323 (-708))) 112) (($ (-323 (-710))) 108) (($ (-323 (-703))) 116) (($ (-323 (-387))) 123) (($ (-323 (-573))) 119) (($ (-323 (-171 (-387)))) 127)) (-3956 (($ (-1188) $) 101)) (-1657 (($ (-653 (-871))) 91)) (-1739 (((-1285) $) 87)) (-1458 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-4225 (($ (-1132)) 58)) (-3193 (((-1116) $) 30)) (-3427 (($ (-1104 (-962 (-573))) $) 97) (($ (-1104 (-962 (-573))) (-962 (-573)) $) 98)) (-2012 (($ (-1132)) 99)) (-3282 (($ (-1188) $) 129) (($ (-1188) $ $) 130)) (-3859 (($ (-1189) (-653 (-1189))) 88)) (-2040 (($ (-1171)) 94) (($ (-653 (-1171))) 92)) (-2942 (((-871) $) 132)) (-2049 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1189)) (|:| |arrayIndex| (-653 (-962 (-573)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-871)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1189)) (|:| |rand| (-871)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1188)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3811 (-112)) (|:| -3082 (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-871)))))) (|:| |blockBranch| (-653 $)) (|:| |commentBranch| (-653 (-1171))) (|:| |callBranch| (-1171)) (|:| |forBranch| (-2 (|:| -3821 (-1104 (-962 (-573)))) (|:| |span| (-962 (-573))) (|:| -2043 $))) (|:| |labelBranch| (-1132)) (|:| |loopBranch| (-2 (|:| |switch| (-1188)) (|:| -2043 $))) (|:| |commonBranch| (-2 (|:| -2031 (-1189)) (|:| |contents| (-653 (-1189))))) (|:| |printBranch| (-653 (-871)))) $) 50)) (-3087 (($ (-1171)) 202)) (-3095 (($ (-653 $)) 128)) (-3507 (((-112) $ $) NIL)) (-2435 (($ (-1189) (-1171)) 135) (($ (-1189) (-323 (-710))) 175) (($ (-1189) (-323 (-708))) 176) (($ (-1189) (-323 (-703))) 177) (($ (-1189) (-698 (-710))) 138) (($ (-1189) (-698 (-708))) 141) (($ (-1189) (-698 (-703))) 144) (($ (-1189) (-1280 (-710))) 147) (($ (-1189) (-1280 (-708))) 150) (($ (-1189) (-1280 (-703))) 153) (($ (-1189) (-698 (-323 (-710)))) 156) (($ (-1189) (-698 (-323 (-708)))) 159) (($ (-1189) (-698 (-323 (-703)))) 162) (($ (-1189) (-1280 (-323 (-710)))) 165) (($ (-1189) (-1280 (-323 (-708)))) 168) (($ (-1189) (-1280 (-323 (-703)))) 171) (($ (-1189) (-653 (-962 (-573))) (-323 (-710))) 172) (($ (-1189) (-653 (-962 (-573))) (-323 (-708))) 173) (($ (-1189) (-653 (-962 (-573))) (-323 (-703))) 174) (($ (-1189) (-323 (-573))) 199) (($ (-1189) (-323 (-387))) 200) (($ (-1189) (-323 (-171 (-387)))) 201) (($ (-1189) (-698 (-323 (-573)))) 180) (($ (-1189) (-698 (-323 (-387)))) 183) (($ (-1189) (-698 (-323 (-171 (-387))))) 186) (($ (-1189) (-1280 (-323 (-573)))) 189) (($ (-1189) (-1280 (-323 (-387)))) 192) (($ (-1189) (-1280 (-323 (-171 (-387))))) 195) (($ (-1189) (-653 (-962 (-573))) (-323 (-573))) 196) (($ (-1189) (-653 (-962 (-573))) (-323 (-387))) 197) (($ (-1189) (-653 (-962 (-573))) (-323 (-171 (-387)))) 198)) (-2981 (((-112) $ $) NIL))) +(((-337) (-13 (-1112) (-10 -8 (-15 -3427 ($ (-1104 (-962 (-573))) $)) (-15 -3427 ($ (-1104 (-962 (-573))) (-962 (-573)) $)) (-15 -3702 ($ (-1188) $)) (-15 -3956 ($ (-1188) $)) (-15 -4225 ($ (-1132))) (-15 -2012 ($ (-1132))) (-15 -2040 ($ (-1171))) (-15 -2040 ($ (-653 (-1171)))) (-15 -3087 ($ (-1171))) (-15 -3587 ($)) (-15 -3587 ($ (-323 (-708)))) (-15 -3587 ($ (-323 (-710)))) (-15 -3587 ($ (-323 (-703)))) (-15 -3587 ($ (-323 (-387)))) (-15 -3587 ($ (-323 (-573)))) (-15 -3587 ($ (-323 (-171 (-387))))) (-15 -3282 ($ (-1188) $)) (-15 -3282 ($ (-1188) $ $)) (-15 -2435 ($ (-1189) (-1171))) (-15 -2435 ($ (-1189) (-323 (-710)))) (-15 -2435 ($ (-1189) (-323 (-708)))) (-15 -2435 ($ (-1189) (-323 (-703)))) (-15 -2435 ($ (-1189) (-698 (-710)))) (-15 -2435 ($ (-1189) (-698 (-708)))) (-15 -2435 ($ (-1189) (-698 (-703)))) (-15 -2435 ($ (-1189) (-1280 (-710)))) (-15 -2435 ($ (-1189) (-1280 (-708)))) (-15 -2435 ($ (-1189) (-1280 (-703)))) (-15 -2435 ($ (-1189) (-698 (-323 (-710))))) (-15 -2435 ($ (-1189) (-698 (-323 (-708))))) (-15 -2435 ($ (-1189) (-698 (-323 (-703))))) (-15 -2435 ($ (-1189) (-1280 (-323 (-710))))) (-15 -2435 ($ (-1189) (-1280 (-323 (-708))))) (-15 -2435 ($ (-1189) (-1280 (-323 (-703))))) (-15 -2435 ($ (-1189) (-653 (-962 (-573))) (-323 (-710)))) (-15 -2435 ($ (-1189) (-653 (-962 (-573))) (-323 (-708)))) (-15 -2435 ($ (-1189) (-653 (-962 (-573))) (-323 (-703)))) (-15 -2435 ($ (-1189) (-323 (-573)))) (-15 -2435 ($ (-1189) (-323 (-387)))) (-15 -2435 ($ (-1189) (-323 (-171 (-387))))) (-15 -2435 ($ (-1189) (-698 (-323 (-573))))) (-15 -2435 ($ (-1189) (-698 (-323 (-387))))) (-15 -2435 ($ (-1189) (-698 (-323 (-171 (-387)))))) (-15 -2435 ($ (-1189) (-1280 (-323 (-573))))) (-15 -2435 ($ (-1189) (-1280 (-323 (-387))))) (-15 -2435 ($ (-1189) (-1280 (-323 (-171 (-387)))))) (-15 -2435 ($ (-1189) (-653 (-962 (-573))) (-323 (-573)))) (-15 -2435 ($ (-1189) (-653 (-962 (-573))) (-323 (-387)))) (-15 -2435 ($ (-1189) (-653 (-962 (-573))) (-323 (-171 (-387))))) (-15 -3095 ($ (-653 $))) (-15 -4253 ($)) (-15 -1611 ($)) (-15 -1657 ($ (-653 (-871)))) (-15 -3859 ($ (-1189) (-653 (-1189)))) (-15 -1458 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2049 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1189)) (|:| |arrayIndex| (-653 (-962 (-573)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-871)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1189)) (|:| |rand| (-871)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1188)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3811 (-112)) (|:| -3082 (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-871)))))) (|:| |blockBranch| (-653 $)) (|:| |commentBranch| (-653 (-1171))) (|:| |callBranch| (-1171)) (|:| |forBranch| (-2 (|:| -3821 (-1104 (-962 (-573)))) (|:| |span| (-962 (-573))) (|:| -2043 $))) (|:| |labelBranch| (-1132)) (|:| |loopBranch| (-2 (|:| |switch| (-1188)) (|:| -2043 $))) (|:| |commonBranch| (-2 (|:| -2031 (-1189)) (|:| |contents| (-653 (-1189))))) (|:| |printBranch| (-653 (-871)))) $)) (-15 -1739 ((-1285) $)) (-15 -3193 ((-1116) $)) (-15 -2061 ((-1132) (-1132)))))) (T -337)) +((-3427 (*1 *1 *2 *1) (-12 (-5 *2 (-1104 (-962 (-573)))) (-5 *1 (-337)))) (-3427 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1104 (-962 (-573)))) (-5 *3 (-962 (-573))) (-5 *1 (-337)))) (-3702 (*1 *1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-337)))) (-3956 (*1 *1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-337)))) (-4225 (*1 *1 *2) (-12 (-5 *2 (-1132)) (-5 *1 (-337)))) (-2012 (*1 *1 *2) (-12 (-5 *2 (-1132)) (-5 *1 (-337)))) (-2040 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-337)))) (-2040 (*1 *1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-337)))) (-3087 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-337)))) (-3587 (*1 *1) (-5 *1 (-337))) (-3587 (*1 *1 *2) (-12 (-5 *2 (-323 (-708))) (-5 *1 (-337)))) (-3587 (*1 *1 *2) (-12 (-5 *2 (-323 (-710))) (-5 *1 (-337)))) (-3587 (*1 *1 *2) (-12 (-5 *2 (-323 (-703))) (-5 *1 (-337)))) (-3587 (*1 *1 *2) (-12 (-5 *2 (-323 (-387))) (-5 *1 (-337)))) (-3587 (*1 *1 *2) (-12 (-5 *2 (-323 (-573))) (-5 *1 (-337)))) (-3587 (*1 *1 *2) (-12 (-5 *2 (-323 (-171 (-387)))) (-5 *1 (-337)))) (-3282 (*1 *1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-337)))) (-3282 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1171)) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-323 (-710))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-323 (-708))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-323 (-703))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-710))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-708))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-703))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-710))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-708))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-703))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-323 (-710)))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-323 (-708)))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-323 (-703)))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-323 (-710)))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-323 (-708)))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-323 (-703)))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1189)) (-5 *3 (-653 (-962 (-573)))) (-5 *4 (-323 (-710))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1189)) (-5 *3 (-653 (-962 (-573)))) (-5 *4 (-323 (-708))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1189)) (-5 *3 (-653 (-962 (-573)))) (-5 *4 (-323 (-703))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-323 (-573))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-323 (-387))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-323 (-171 (-387)))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-323 (-573)))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-323 (-387)))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-323 (-171 (-387))))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-323 (-573)))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-323 (-387)))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-323 (-171 (-387))))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1189)) (-5 *3 (-653 (-962 (-573)))) (-5 *4 (-323 (-573))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1189)) (-5 *3 (-653 (-962 (-573)))) (-5 *4 (-323 (-387))) (-5 *1 (-337)))) (-2435 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1189)) (-5 *3 (-653 (-962 (-573)))) (-5 *4 (-323 (-171 (-387)))) (-5 *1 (-337)))) (-3095 (*1 *1 *2) (-12 (-5 *2 (-653 (-337))) (-5 *1 (-337)))) (-4253 (*1 *1) (-5 *1 (-337))) (-1611 (*1 *1) (-5 *1 (-337))) (-1657 (*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-337)))) (-3859 (*1 *1 *2 *3) (-12 (-5 *3 (-653 (-1189))) (-5 *2 (-1189)) (-5 *1 (-337)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-337)))) (-2049 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1189)) (|:| |arrayIndex| (-653 (-962 (-573)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-871)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1189)) (|:| |rand| (-871)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1188)) (|:| |thenClause| (-337)) (|:| |elseClause| (-337)))) (|:| |returnBranch| (-2 (|:| -3811 (-112)) (|:| -3082 (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-871)))))) (|:| |blockBranch| (-653 (-337))) (|:| |commentBranch| (-653 (-1171))) (|:| |callBranch| (-1171)) (|:| |forBranch| (-2 (|:| -3821 (-1104 (-962 (-573)))) (|:| |span| (-962 (-573))) (|:| -2043 (-337)))) (|:| |labelBranch| (-1132)) (|:| |loopBranch| (-2 (|:| |switch| (-1188)) (|:| -2043 (-337)))) (|:| |commonBranch| (-2 (|:| -2031 (-1189)) (|:| |contents| (-653 (-1189))))) (|:| |printBranch| (-653 (-871))))) (-5 *1 (-337)))) (-1739 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-337)))) (-3193 (*1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-337)))) (-2061 (*1 *2 *2) (-12 (-5 *2 (-1132)) (-5 *1 (-337))))) +(-13 (-1112) (-10 -8 (-15 -3427 ($ (-1104 (-962 (-573))) $)) (-15 -3427 ($ (-1104 (-962 (-573))) (-962 (-573)) $)) (-15 -3702 ($ (-1188) $)) (-15 -3956 ($ (-1188) $)) (-15 -4225 ($ (-1132))) (-15 -2012 ($ (-1132))) (-15 -2040 ($ (-1171))) (-15 -2040 ($ (-653 (-1171)))) (-15 -3087 ($ (-1171))) (-15 -3587 ($)) (-15 -3587 ($ (-323 (-708)))) (-15 -3587 ($ (-323 (-710)))) (-15 -3587 ($ (-323 (-703)))) (-15 -3587 ($ (-323 (-387)))) (-15 -3587 ($ (-323 (-573)))) (-15 -3587 ($ (-323 (-171 (-387))))) (-15 -3282 ($ (-1188) $)) (-15 -3282 ($ (-1188) $ $)) (-15 -2435 ($ (-1189) (-1171))) (-15 -2435 ($ (-1189) (-323 (-710)))) (-15 -2435 ($ (-1189) (-323 (-708)))) (-15 -2435 ($ (-1189) (-323 (-703)))) (-15 -2435 ($ (-1189) (-698 (-710)))) (-15 -2435 ($ (-1189) (-698 (-708)))) (-15 -2435 ($ (-1189) (-698 (-703)))) (-15 -2435 ($ (-1189) (-1280 (-710)))) (-15 -2435 ($ (-1189) (-1280 (-708)))) (-15 -2435 ($ (-1189) (-1280 (-703)))) (-15 -2435 ($ (-1189) (-698 (-323 (-710))))) (-15 -2435 ($ (-1189) (-698 (-323 (-708))))) (-15 -2435 ($ (-1189) (-698 (-323 (-703))))) (-15 -2435 ($ (-1189) (-1280 (-323 (-710))))) (-15 -2435 ($ (-1189) (-1280 (-323 (-708))))) (-15 -2435 ($ (-1189) (-1280 (-323 (-703))))) (-15 -2435 ($ (-1189) (-653 (-962 (-573))) (-323 (-710)))) (-15 -2435 ($ (-1189) (-653 (-962 (-573))) (-323 (-708)))) (-15 -2435 ($ (-1189) (-653 (-962 (-573))) (-323 (-703)))) (-15 -2435 ($ (-1189) (-323 (-573)))) (-15 -2435 ($ (-1189) (-323 (-387)))) (-15 -2435 ($ (-1189) (-323 (-171 (-387))))) (-15 -2435 ($ (-1189) (-698 (-323 (-573))))) (-15 -2435 ($ (-1189) (-698 (-323 (-387))))) (-15 -2435 ($ (-1189) (-698 (-323 (-171 (-387)))))) (-15 -2435 ($ (-1189) (-1280 (-323 (-573))))) (-15 -2435 ($ (-1189) (-1280 (-323 (-387))))) (-15 -2435 ($ (-1189) (-1280 (-323 (-171 (-387)))))) (-15 -2435 ($ (-1189) (-653 (-962 (-573))) (-323 (-573)))) (-15 -2435 ($ (-1189) (-653 (-962 (-573))) (-323 (-387)))) (-15 -2435 ($ (-1189) (-653 (-962 (-573))) (-323 (-171 (-387))))) (-15 -3095 ($ (-653 $))) (-15 -4253 ($)) (-15 -1611 ($)) (-15 -1657 ($ (-653 (-871)))) (-15 -3859 ($ (-1189) (-653 (-1189)))) (-15 -1458 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2049 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1189)) (|:| |arrayIndex| (-653 (-962 (-573)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-871)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1189)) (|:| |rand| (-871)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1188)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3811 (-112)) (|:| -3082 (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-871)))))) (|:| |blockBranch| (-653 $)) (|:| |commentBranch| (-653 (-1171))) (|:| |callBranch| (-1171)) (|:| |forBranch| (-2 (|:| -3821 (-1104 (-962 (-573)))) (|:| |span| (-962 (-573))) (|:| -2043 $))) (|:| |labelBranch| (-1132)) (|:| |loopBranch| (-2 (|:| |switch| (-1188)) (|:| -2043 $))) (|:| |commonBranch| (-2 (|:| -2031 (-1189)) (|:| |contents| (-653 (-1189))))) (|:| |printBranch| (-653 (-871)))) $)) (-15 -1739 ((-1285) $)) (-15 -3193 ((-1116) $)) (-15 -2061 ((-1132) (-1132))))) +((-2848 (((-112) $ $) NIL)) (-3448 (((-112) $) 13)) (-2225 (($ |#1|) 10)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2236 (($ |#1|) 12)) (-2942 (((-871) $) 19)) (-3507 (((-112) $ $) NIL)) (-3607 ((|#1| $) 14)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 21))) +(((-338 |#1|) (-13 (-859) (-10 -8 (-15 -2225 ($ |#1|)) (-15 -2236 ($ |#1|)) (-15 -3448 ((-112) $)) (-15 -3607 (|#1| $)))) (-859)) (T -338)) +((-2225 (*1 *1 *2) (-12 (-5 *1 (-338 *2)) (-4 *2 (-859)))) (-2236 (*1 *1 *2) (-12 (-5 *1 (-338 *2)) (-4 *2 (-859)))) (-3448 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-338 *3)) (-4 *3 (-859)))) (-3607 (*1 *2 *1) (-12 (-5 *1 (-338 *2)) (-4 *2 (-859))))) +(-13 (-859) (-10 -8 (-15 -2225 ($ |#1|)) (-15 -2236 ($ |#1|)) (-15 -3448 ((-112) $)) (-15 -3607 (|#1| $)))) +((-3199 (((-337) (-1189) (-962 (-573))) 23)) (-1786 (((-337) (-1189) (-962 (-573))) 27)) (-1918 (((-337) (-1189) (-1104 (-962 (-573))) (-1104 (-962 (-573)))) 26) (((-337) (-1189) (-962 (-573)) (-962 (-573))) 24)) (-2652 (((-337) (-1189) (-962 (-573))) 31))) +(((-339) (-10 -7 (-15 -3199 ((-337) (-1189) (-962 (-573)))) (-15 -1918 ((-337) (-1189) (-962 (-573)) (-962 (-573)))) (-15 -1918 ((-337) (-1189) (-1104 (-962 (-573))) (-1104 (-962 (-573))))) (-15 -1786 ((-337) (-1189) (-962 (-573)))) (-15 -2652 ((-337) (-1189) (-962 (-573)))))) (T -339)) +((-2652 (*1 *2 *3 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-962 (-573))) (-5 *2 (-337)) (-5 *1 (-339)))) (-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-962 (-573))) (-5 *2 (-337)) (-5 *1 (-339)))) (-1918 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-1104 (-962 (-573)))) (-5 *2 (-337)) (-5 *1 (-339)))) (-1918 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-962 (-573))) (-5 *2 (-337)) (-5 *1 (-339)))) (-3199 (*1 *2 *3 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-962 (-573))) (-5 *2 (-337)) (-5 *1 (-339))))) +(-10 -7 (-15 -3199 ((-337) (-1189) (-962 (-573)))) (-15 -1918 ((-337) (-1189) (-962 (-573)) (-962 (-573)))) (-15 -1918 ((-337) (-1189) (-1104 (-962 (-573))) (-1104 (-962 (-573))))) (-15 -1786 ((-337) (-1189) (-962 (-573)))) (-15 -2652 ((-337) (-1189) (-962 (-573))))) +((-2848 (((-112) $ $) NIL)) (-3079 (((-515) $) 20)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-1471 (((-968 (-780)) $) 18)) (-3748 (((-255) $) 7)) (-2942 (((-871) $) 26)) (-4289 (((-968 (-185 (-140))) $) 16)) (-3507 (((-112) $ $) NIL)) (-2077 (((-653 (-882 (-1194) (-780))) $) 12)) (-2981 (((-112) $ $) 22))) +(((-340) (-13 (-1112) (-10 -8 (-15 -3748 ((-255) $)) (-15 -2077 ((-653 (-882 (-1194) (-780))) $)) (-15 -1471 ((-968 (-780)) $)) (-15 -4289 ((-968 (-185 (-140))) $)) (-15 -3079 ((-515) $))))) (T -340)) +((-3748 (*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-340)))) (-2077 (*1 *2 *1) (-12 (-5 *2 (-653 (-882 (-1194) (-780)))) (-5 *1 (-340)))) (-1471 (*1 *2 *1) (-12 (-5 *2 (-968 (-780))) (-5 *1 (-340)))) (-4289 (*1 *2 *1) (-12 (-5 *2 (-968 (-185 (-140)))) (-5 *1 (-340)))) (-3079 (*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-340))))) +(-13 (-1112) (-10 -8 (-15 -3748 ((-255) $)) (-15 -2077 ((-653 (-882 (-1194) (-780))) $)) (-15 -1471 ((-968 (-780)) $)) (-15 -4289 ((-968 (-185 (-140))) $)) (-15 -3079 ((-515) $)))) +((-1776 (((-344 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-344 |#1| |#2| |#3| |#4|)) 33))) +(((-341 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1776 ((-344 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-344 |#1| |#2| |#3| |#4|)))) (-371) (-1256 |#1|) (-1256 (-416 |#2|)) (-350 |#1| |#2| |#3|) (-371) (-1256 |#5|) (-1256 (-416 |#6|)) (-350 |#5| |#6| |#7|)) (T -341)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-344 *5 *6 *7 *8)) (-4 *5 (-371)) (-4 *6 (-1256 *5)) (-4 *7 (-1256 (-416 *6))) (-4 *8 (-350 *5 *6 *7)) (-4 *9 (-371)) (-4 *10 (-1256 *9)) (-4 *11 (-1256 (-416 *10))) (-5 *2 (-344 *9 *10 *11 *12)) (-5 *1 (-341 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-350 *9 *10 *11))))) +(-10 -7 (-15 -1776 ((-344 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-344 |#1| |#2| |#3| |#4|)))) +((-1598 (((-112) $) 14))) +(((-342 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1598 ((-112) |#1|))) (-343 |#2| |#3| |#4| |#5|) (-371) (-1256 |#2|) (-1256 (-416 |#3|)) (-350 |#2| |#3| |#4|)) (T -342)) +NIL +(-10 -8 (-15 -1598 ((-112) |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2867 (($ $) 29)) (-1598 (((-112) $) 28)) (-3180 (((-1171) $) 10)) (-1339 (((-422 |#2| (-416 |#2|) |#3| |#4|) $) 35)) (-3965 (((-1132) $) 11)) (-2969 (((-3 |#4| "failed") $) 27)) (-2203 (($ (-422 |#2| (-416 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-573)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-2478 (((-2 (|:| -2802 (-422 |#2| (-416 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24))) +(((-343 |#1| |#2| |#3| |#4|) (-141) (-371) (-1256 |t#1|) (-1256 (-416 |t#2|)) (-350 |t#1| |t#2| |t#3|)) (T -343)) +((-1339 (*1 *2 *1) (-12 (-4 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-371)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-4 *6 (-350 *3 *4 *5)) (-5 *2 (-422 *4 (-416 *4) *5 *6)))) (-2203 (*1 *1 *2) (-12 (-5 *2 (-422 *4 (-416 *4) *5 *6)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-4 *6 (-350 *3 *4 *5)) (-4 *3 (-371)) (-4 *1 (-343 *3 *4 *5 *6)))) (-2203 (*1 *1 *2) (-12 (-4 *3 (-371)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-4 *1 (-343 *3 *4 *5 *2)) (-4 *2 (-350 *3 *4 *5)))) (-2203 (*1 *1 *2 *2) (-12 (-4 *2 (-371)) (-4 *3 (-1256 *2)) (-4 *4 (-1256 (-416 *3))) (-4 *1 (-343 *2 *3 *4 *5)) (-4 *5 (-350 *2 *3 *4)))) (-2203 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-573)) (-4 *2 (-371)) (-4 *4 (-1256 *2)) (-4 *5 (-1256 (-416 *4))) (-4 *1 (-343 *2 *4 *5 *6)) (-4 *6 (-350 *2 *4 *5)))) (-2478 (*1 *2 *1) (-12 (-4 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-371)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-4 *6 (-350 *3 *4 *5)) (-5 *2 (-2 (|:| -2802 (-422 *4 (-416 *4) *5 *6)) (|:| |principalPart| *6))))) (-2867 (*1 *1 *1) (-12 (-4 *1 (-343 *2 *3 *4 *5)) (-4 *2 (-371)) (-4 *3 (-1256 *2)) (-4 *4 (-1256 (-416 *3))) (-4 *5 (-350 *2 *3 *4)))) (-1598 (*1 *2 *1) (-12 (-4 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-371)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-4 *6 (-350 *3 *4 *5)) (-5 *2 (-112)))) (-2969 (*1 *2 *1) (|partial| -12 (-4 *1 (-343 *3 *4 *5 *2)) (-4 *3 (-371)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-4 *2 (-350 *3 *4 *5)))) (-2203 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-371)) (-4 *3 (-1256 *4)) (-4 *5 (-1256 (-416 *3))) (-4 *1 (-343 *4 *3 *5 *2)) (-4 *2 (-350 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -1339 ((-422 |t#2| (-416 |t#2|) |t#3| |t#4|) $)) (-15 -2203 ($ (-422 |t#2| (-416 |t#2|) |t#3| |t#4|))) (-15 -2203 ($ |t#4|)) (-15 -2203 ($ |t#1| |t#1|)) (-15 -2203 ($ |t#1| |t#1| (-573))) (-15 -2478 ((-2 (|:| -2802 (-422 |t#2| (-416 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2867 ($ $)) (-15 -1598 ((-112) $)) (-15 -2969 ((-3 |t#4| "failed") $)) (-15 -2203 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-1112) . T)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-2867 (($ $) 33)) (-1598 (((-112) $) NIL)) (-3180 (((-1171) $) NIL)) (-1836 (((-1280 |#4|) $) 134)) (-1339 (((-422 |#2| (-416 |#2|) |#3| |#4|) $) 31)) (-3965 (((-1132) $) NIL)) (-2969 (((-3 |#4| "failed") $) 36)) (-1365 (((-1280 |#4|) $) 126)) (-2203 (($ (-422 |#2| (-416 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-573)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-2478 (((-2 (|:| -2802 (-422 |#2| (-416 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2942 (((-871) $) 17)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 14 T CONST)) (-2981 (((-112) $ $) 20)) (-3093 (($ $) 27) (($ $ $) NIL)) (-3077 (($ $ $) 25)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 23))) +(((-344 |#1| |#2| |#3| |#4|) (-13 (-343 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1365 ((-1280 |#4|) $)) (-15 -1836 ((-1280 |#4|) $)))) (-371) (-1256 |#1|) (-1256 (-416 |#2|)) (-350 |#1| |#2| |#3|)) (T -344)) +((-1365 (*1 *2 *1) (-12 (-4 *3 (-371)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-1280 *6)) (-5 *1 (-344 *3 *4 *5 *6)) (-4 *6 (-350 *3 *4 *5)))) (-1836 (*1 *2 *1) (-12 (-4 *3 (-371)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-1280 *6)) (-5 *1 (-344 *3 *4 *5 *6)) (-4 *6 (-350 *3 *4 *5))))) +(-13 (-343 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1365 ((-1280 |#4|) $)) (-15 -1836 ((-1280 |#4|) $)))) +((-2645 (($ $ (-1189) |#2|) NIL) (($ $ (-653 (-1189)) (-653 |#2|)) 20) (($ $ (-653 (-301 |#2|))) 15) (($ $ (-301 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-653 |#2|) (-653 |#2|)) NIL)) (-2198 (($ $ |#2|) 11))) +(((-345 |#1| |#2|) (-10 -8 (-15 -2198 (|#1| |#1| |#2|)) (-15 -2645 (|#1| |#1| (-653 |#2|) (-653 |#2|))) (-15 -2645 (|#1| |#1| |#2| |#2|)) (-15 -2645 (|#1| |#1| (-301 |#2|))) (-15 -2645 (|#1| |#1| (-653 (-301 |#2|)))) (-15 -2645 (|#1| |#1| (-653 (-1189)) (-653 |#2|))) (-15 -2645 (|#1| |#1| (-1189) |#2|))) (-346 |#2|) (-1112)) (T -345)) +NIL +(-10 -8 (-15 -2198 (|#1| |#1| |#2|)) (-15 -2645 (|#1| |#1| (-653 |#2|) (-653 |#2|))) (-15 -2645 (|#1| |#1| |#2| |#2|)) (-15 -2645 (|#1| |#1| (-301 |#2|))) (-15 -2645 (|#1| |#1| (-653 (-301 |#2|)))) (-15 -2645 (|#1| |#1| (-653 (-1189)) (-653 |#2|))) (-15 -2645 (|#1| |#1| (-1189) |#2|))) +((-1776 (($ (-1 |#1| |#1|) $) 6)) (-2645 (($ $ (-1189) |#1|) 17 (|has| |#1| (-523 (-1189) |#1|))) (($ $ (-653 (-1189)) (-653 |#1|)) 16 (|has| |#1| (-523 (-1189) |#1|))) (($ $ (-653 (-301 |#1|))) 15 (|has| |#1| (-316 |#1|))) (($ $ (-301 |#1|)) 14 (|has| |#1| (-316 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-316 |#1|))) (($ $ (-653 |#1|) (-653 |#1|)) 12 (|has| |#1| (-316 |#1|)))) (-2198 (($ $ |#1|) 11 (|has| |#1| (-293 |#1| |#1|))))) +(((-346 |#1|) (-141) (-1112)) (T -346)) +((-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-346 *3)) (-4 *3 (-1112))))) +(-13 (-10 -8 (-15 -1776 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-293 |t#1| |t#1|)) (-6 (-293 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-316 |t#1|)) (-6 (-316 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-523 (-1189) |t#1|)) (-6 (-523 (-1189) |t#1|)) |%noBranch|))) +(((-293 |#1| $) |has| |#1| (-293 |#1| |#1|)) ((-316 |#1|) |has| |#1| (-316 |#1|)) ((-523 (-1189) |#1|) |has| |#1| (-523 (-1189) |#1|)) ((-523 |#1| |#1|) |has| |#1| (-316 |#1|)) ((-1230) |has| |#1| (-293 |#1| |#1|))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4354 (((-653 (-1189)) $) NIL)) (-1333 (((-112)) 96) (((-112) (-112)) 97)) (-4090 (((-653 (-621 $)) $) NIL)) (-2363 (($ $) NIL)) (-2246 (($ $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2544 (($ $ (-301 $)) NIL) (($ $ (-653 (-301 $))) NIL) (($ $ (-653 (-621 $)) (-653 $)) NIL)) (-4228 (($ $) NIL)) (-2342 (($ $) NIL)) (-2225 (($ $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-621 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-323 |#3|)) 76) (((-3 $ "failed") (-1189)) 103) (((-3 $ "failed") (-323 (-573))) 64 (|has| |#3| (-1050 (-573)))) (((-3 $ "failed") (-416 (-962 (-573)))) 70 (|has| |#3| (-1050 (-573)))) (((-3 $ "failed") (-962 (-573))) 65 (|has| |#3| (-1050 (-573)))) (((-3 $ "failed") (-323 (-387))) 94 (|has| |#3| (-1050 (-387)))) (((-3 $ "failed") (-416 (-962 (-387)))) 88 (|has| |#3| (-1050 (-387)))) (((-3 $ "failed") (-962 (-387))) 83 (|has| |#3| (-1050 (-387))))) (-2205 (((-621 $) $) NIL) ((|#3| $) NIL) (($ (-323 |#3|)) 77) (($ (-1189)) 104) (($ (-323 (-573))) 66 (|has| |#3| (-1050 (-573)))) (($ (-416 (-962 (-573)))) 71 (|has| |#3| (-1050 (-573)))) (($ (-962 (-573))) 67 (|has| |#3| (-1050 (-573)))) (($ (-323 (-387))) 95 (|has| |#3| (-1050 (-387)))) (($ (-416 (-962 (-387)))) 89 (|has| |#3| (-1050 (-387)))) (($ (-962 (-387))) 85 (|has| |#3| (-1050 (-387))))) (-2232 (((-3 $ "failed") $) NIL)) (-2999 (($) 101)) (-2449 (($ $) NIL) (($ (-653 $)) NIL)) (-2515 (((-653 (-115)) $) NIL)) (-4173 (((-115) (-115)) NIL)) (-1959 (((-112) $) NIL)) (-2250 (((-112) $) NIL (|has| $ (-1050 (-573))))) (-2597 (((-1185 $) (-621 $)) NIL (|has| $ (-1061)))) (-1776 (($ (-1 $ $) (-621 $)) NIL)) (-2944 (((-3 (-621 $) "failed") $) NIL)) (-1731 (($ $) 99)) (-3118 (($ $) NIL)) (-3180 (((-1171) $) NIL)) (-4163 (((-653 (-621 $)) $) NIL)) (-1774 (($ (-115) $) 98) (($ (-115) (-653 $)) NIL)) (-1667 (((-112) $ (-115)) NIL) (((-112) $ (-1189)) NIL)) (-1839 (((-780) $) NIL)) (-3965 (((-1132) $) NIL)) (-3805 (((-112) $ $) NIL) (((-112) $ (-1189)) NIL)) (-1608 (($ $) NIL)) (-2270 (((-112) $) NIL (|has| $ (-1050 (-573))))) (-2645 (($ $ (-621 $) $) NIL) (($ $ (-653 (-621 $)) (-653 $)) NIL) (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-653 (-1189)) (-653 (-1 $ $))) NIL) (($ $ (-653 (-1189)) (-653 (-1 $ (-653 $)))) NIL) (($ $ (-1189) (-1 $ (-653 $))) NIL) (($ $ (-1189) (-1 $ $)) NIL) (($ $ (-653 (-115)) (-653 (-1 $ $))) NIL) (($ $ (-653 (-115)) (-653 (-1 $ (-653 $)))) NIL) (($ $ (-115) (-1 $ (-653 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2198 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-653 $)) NIL)) (-3727 (($ $) NIL) (($ $ $) NIL)) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189)) NIL)) (-2984 (($ $) NIL (|has| $ (-1061)))) (-2352 (($ $) NIL)) (-2236 (($ $) NIL)) (-2942 (((-871) $) NIL) (($ (-621 $)) NIL) (($ |#3|) NIL) (($ (-573)) NIL) (((-323 |#3|) $) 102)) (-1545 (((-780)) NIL T CONST)) (-2029 (($ $) NIL) (($ (-653 $)) NIL)) (-3109 (((-112) (-115)) NIL)) (-3507 (((-112) $ $) NIL)) (-2304 (($ $) NIL)) (-2286 (($ $) NIL)) (-2296 (($ $) NIL)) (-1660 (($ $) NIL)) (-2132 (($) 100 T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189)) NIL)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $ $) NIL) (($ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-780)) NIL) (($ $ (-931)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-573) $) NIL) (($ (-780) $) NIL) (($ (-931) $) NIL))) +(((-347 |#1| |#2| |#3|) (-13 (-309) (-38 |#3|) (-1050 |#3|) (-910 (-1189)) (-10 -8 (-15 -2205 ($ (-323 |#3|))) (-15 -1695 ((-3 $ "failed") (-323 |#3|))) (-15 -2205 ($ (-1189))) (-15 -1695 ((-3 $ "failed") (-1189))) (-15 -2942 ((-323 |#3|) $)) (IF (|has| |#3| (-1050 (-573))) (PROGN (-15 -2205 ($ (-323 (-573)))) (-15 -1695 ((-3 $ "failed") (-323 (-573)))) (-15 -2205 ($ (-416 (-962 (-573))))) (-15 -1695 ((-3 $ "failed") (-416 (-962 (-573))))) (-15 -2205 ($ (-962 (-573)))) (-15 -1695 ((-3 $ "failed") (-962 (-573))))) |%noBranch|) (IF (|has| |#3| (-1050 (-387))) (PROGN (-15 -2205 ($ (-323 (-387)))) (-15 -1695 ((-3 $ "failed") (-323 (-387)))) (-15 -2205 ($ (-416 (-962 (-387))))) (-15 -1695 ((-3 $ "failed") (-416 (-962 (-387))))) (-15 -2205 ($ (-962 (-387)))) (-15 -1695 ((-3 $ "failed") (-962 (-387))))) |%noBranch|) (-15 -1660 ($ $)) (-15 -4228 ($ $)) (-15 -1608 ($ $)) (-15 -3118 ($ $)) (-15 -1731 ($ $)) (-15 -2225 ($ $)) (-15 -2236 ($ $)) (-15 -2246 ($ $)) (-15 -2286 ($ $)) (-15 -2296 ($ $)) (-15 -2304 ($ $)) (-15 -2342 ($ $)) (-15 -2352 ($ $)) (-15 -2363 ($ $)) (-15 -2999 ($)) (-15 -4354 ((-653 (-1189)) $)) (-15 -1333 ((-112))) (-15 -1333 ((-112) (-112))))) (-653 (-1189)) (-653 (-1189)) (-396)) (T -347)) +((-2205 (*1 *1 *2) (-12 (-5 *2 (-323 *5)) (-4 *5 (-396)) (-5 *1 (-347 *3 *4 *5)) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-323 *5)) (-4 *5 (-396)) (-5 *1 (-347 *3 *4 *5)) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-347 *3 *4 *5)) (-14 *3 (-653 *2)) (-14 *4 (-653 *2)) (-4 *5 (-396)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-1189)) (-5 *1 (-347 *3 *4 *5)) (-14 *3 (-653 *2)) (-14 *4 (-653 *2)) (-4 *5 (-396)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-323 *5)) (-5 *1 (-347 *3 *4 *5)) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-323 (-573))) (-5 *1 (-347 *3 *4 *5)) (-4 *5 (-1050 (-573))) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-323 (-573))) (-5 *1 (-347 *3 *4 *5)) (-4 *5 (-1050 (-573))) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-416 (-962 (-573)))) (-5 *1 (-347 *3 *4 *5)) (-4 *5 (-1050 (-573))) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-416 (-962 (-573)))) (-5 *1 (-347 *3 *4 *5)) (-4 *5 (-1050 (-573))) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-962 (-573))) (-5 *1 (-347 *3 *4 *5)) (-4 *5 (-1050 (-573))) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-962 (-573))) (-5 *1 (-347 *3 *4 *5)) (-4 *5 (-1050 (-573))) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-323 (-387))) (-5 *1 (-347 *3 *4 *5)) (-4 *5 (-1050 (-387))) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-323 (-387))) (-5 *1 (-347 *3 *4 *5)) (-4 *5 (-1050 (-387))) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-416 (-962 (-387)))) (-5 *1 (-347 *3 *4 *5)) (-4 *5 (-1050 (-387))) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-416 (-962 (-387)))) (-5 *1 (-347 *3 *4 *5)) (-4 *5 (-1050 (-387))) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-962 (-387))) (-5 *1 (-347 *3 *4 *5)) (-4 *5 (-1050 (-387))) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-962 (-387))) (-5 *1 (-347 *3 *4 *5)) (-4 *5 (-1050 (-387))) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) (-1660 (*1 *1 *1) (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) (-4228 (*1 *1 *1) (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) (-1608 (*1 *1 *1) (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) (-3118 (*1 *1 *1) (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) (-1731 (*1 *1 *1) (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) (-2225 (*1 *1 *1) (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) (-2236 (*1 *1 *1) (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) (-2246 (*1 *1 *1) (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) (-2286 (*1 *1 *1) (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) (-2296 (*1 *1 *1) (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) (-2304 (*1 *1 *1) (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) (-2342 (*1 *1 *1) (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) (-2352 (*1 *1 *1) (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) (-2363 (*1 *1 *1) (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) (-2999 (*1 *1) (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) (-4354 (*1 *2 *1) (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-347 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-396)))) (-1333 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-347 *3 *4 *5)) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) (-1333 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-347 *3 *4 *5)) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396))))) +(-13 (-309) (-38 |#3|) (-1050 |#3|) (-910 (-1189)) (-10 -8 (-15 -2205 ($ (-323 |#3|))) (-15 -1695 ((-3 $ "failed") (-323 |#3|))) (-15 -2205 ($ (-1189))) (-15 -1695 ((-3 $ "failed") (-1189))) (-15 -2942 ((-323 |#3|) $)) (IF (|has| |#3| (-1050 (-573))) (PROGN (-15 -2205 ($ (-323 (-573)))) (-15 -1695 ((-3 $ "failed") (-323 (-573)))) (-15 -2205 ($ (-416 (-962 (-573))))) (-15 -1695 ((-3 $ "failed") (-416 (-962 (-573))))) (-15 -2205 ($ (-962 (-573)))) (-15 -1695 ((-3 $ "failed") (-962 (-573))))) |%noBranch|) (IF (|has| |#3| (-1050 (-387))) (PROGN (-15 -2205 ($ (-323 (-387)))) (-15 -1695 ((-3 $ "failed") (-323 (-387)))) (-15 -2205 ($ (-416 (-962 (-387))))) (-15 -1695 ((-3 $ "failed") (-416 (-962 (-387))))) (-15 -2205 ($ (-962 (-387)))) (-15 -1695 ((-3 $ "failed") (-962 (-387))))) |%noBranch|) (-15 -1660 ($ $)) (-15 -4228 ($ $)) (-15 -1608 ($ $)) (-15 -3118 ($ $)) (-15 -1731 ($ $)) (-15 -2225 ($ $)) (-15 -2236 ($ $)) (-15 -2246 ($ $)) (-15 -2286 ($ $)) (-15 -2296 ($ $)) (-15 -2304 ($ $)) (-15 -2342 ($ $)) (-15 -2352 ($ $)) (-15 -2363 ($ $)) (-15 -2999 ($)) (-15 -4354 ((-653 (-1189)) $)) (-15 -1333 ((-112))) (-15 -1333 ((-112) (-112))))) +((-1776 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-348 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1776 (|#8| (-1 |#5| |#1|) |#4|))) (-1234) (-1256 |#1|) (-1256 (-416 |#2|)) (-350 |#1| |#2| |#3|) (-1234) (-1256 |#5|) (-1256 (-416 |#6|)) (-350 |#5| |#6| |#7|)) (T -348)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1234)) (-4 *8 (-1234)) (-4 *6 (-1256 *5)) (-4 *7 (-1256 (-416 *6))) (-4 *9 (-1256 *8)) (-4 *2 (-350 *8 *9 *10)) (-5 *1 (-348 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-350 *5 *6 *7)) (-4 *10 (-1256 (-416 *9)))))) +(-10 -7 (-15 -1776 (|#8| (-1 |#5| |#1|) |#4|))) +((-1943 (((-2 (|:| |num| (-1280 |#3|)) (|:| |den| |#3|)) $) 39)) (-2854 (($ (-1280 (-416 |#3|)) (-1280 $)) NIL) (($ (-1280 (-416 |#3|))) NIL) (($ (-1280 |#3|) |#3|) 173)) (-1869 (((-1280 $) (-1280 $)) 156)) (-2989 (((-653 (-653 |#2|))) 126)) (-3302 (((-112) |#2| |#2|) 76)) (-3246 (($ $) 148)) (-2033 (((-780)) 172)) (-4109 (((-1280 $) (-1280 $)) 218)) (-2201 (((-653 (-962 |#2|)) (-1189)) 115)) (-3432 (((-112) $) 169)) (-2588 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 222)) (-2338 (((-3 |#3| "failed")) 52)) (-2717 (((-780)) 184)) (-2198 ((|#2| $ |#2| |#2|) 140)) (-4027 (((-3 |#3| "failed")) 71)) (-3904 (($ $ (-1 (-416 |#3|) (-416 |#3|)) (-780)) NIL) (($ $ (-1 (-416 |#3|) (-416 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 226) (($ $ (-653 (-1189)) (-653 (-780))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189)) NIL) (($ $) NIL) (($ $ (-780)) NIL)) (-2499 (((-1280 $) (-1280 $)) 162)) (-2581 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-3331 (((-112)) 34))) +(((-349 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -2989 ((-653 (-653 |#2|)))) (-15 -2201 ((-653 (-962 |#2|)) (-1189))) (-15 -2581 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2338 ((-3 |#3| "failed"))) (-15 -4027 ((-3 |#3| "failed"))) (-15 -2198 (|#2| |#1| |#2| |#2|)) (-15 -3246 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2588 ((-112) |#1| |#3|)) (-15 -2588 ((-112) |#1| |#2|)) (-15 -2854 (|#1| (-1280 |#3|) |#3|)) (-15 -1943 ((-2 (|:| |num| (-1280 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1869 ((-1280 |#1|) (-1280 |#1|))) (-15 -4109 ((-1280 |#1|) (-1280 |#1|))) (-15 -2499 ((-1280 |#1|) (-1280 |#1|))) (-15 -2588 ((-112) |#1|)) (-15 -3432 ((-112) |#1|)) (-15 -3302 ((-112) |#2| |#2|)) (-15 -3331 ((-112))) (-15 -2717 ((-780))) (-15 -2033 ((-780))) (-15 -3904 (|#1| |#1| (-1 (-416 |#3|) (-416 |#3|)))) (-15 -3904 (|#1| |#1| (-1 (-416 |#3|) (-416 |#3|)) (-780))) (-15 -2854 (|#1| (-1280 (-416 |#3|)))) (-15 -2854 (|#1| (-1280 (-416 |#3|)) (-1280 |#1|)))) (-350 |#2| |#3| |#4|) (-1234) (-1256 |#2|) (-1256 (-416 |#3|))) (T -349)) +((-2033 (*1 *2) (-12 (-4 *4 (-1234)) (-4 *5 (-1256 *4)) (-4 *6 (-1256 (-416 *5))) (-5 *2 (-780)) (-5 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-350 *4 *5 *6)))) (-2717 (*1 *2) (-12 (-4 *4 (-1234)) (-4 *5 (-1256 *4)) (-4 *6 (-1256 (-416 *5))) (-5 *2 (-780)) (-5 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-350 *4 *5 *6)))) (-3331 (*1 *2) (-12 (-4 *4 (-1234)) (-4 *5 (-1256 *4)) (-4 *6 (-1256 (-416 *5))) (-5 *2 (-112)) (-5 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-350 *4 *5 *6)))) (-3302 (*1 *2 *3 *3) (-12 (-4 *3 (-1234)) (-4 *5 (-1256 *3)) (-4 *6 (-1256 (-416 *5))) (-5 *2 (-112)) (-5 *1 (-349 *4 *3 *5 *6)) (-4 *4 (-350 *3 *5 *6)))) (-4027 (*1 *2) (|partial| -12 (-4 *4 (-1234)) (-4 *5 (-1256 (-416 *2))) (-4 *2 (-1256 *4)) (-5 *1 (-349 *3 *4 *2 *5)) (-4 *3 (-350 *4 *2 *5)))) (-2338 (*1 *2) (|partial| -12 (-4 *4 (-1234)) (-4 *5 (-1256 (-416 *2))) (-4 *2 (-1256 *4)) (-5 *1 (-349 *3 *4 *2 *5)) (-4 *3 (-350 *4 *2 *5)))) (-2201 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-4 *5 (-1234)) (-4 *6 (-1256 *5)) (-4 *7 (-1256 (-416 *6))) (-5 *2 (-653 (-962 *5))) (-5 *1 (-349 *4 *5 *6 *7)) (-4 *4 (-350 *5 *6 *7)))) (-2989 (*1 *2) (-12 (-4 *4 (-1234)) (-4 *5 (-1256 *4)) (-4 *6 (-1256 (-416 *5))) (-5 *2 (-653 (-653 *4))) (-5 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-350 *4 *5 *6))))) +(-10 -8 (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -2989 ((-653 (-653 |#2|)))) (-15 -2201 ((-653 (-962 |#2|)) (-1189))) (-15 -2581 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2338 ((-3 |#3| "failed"))) (-15 -4027 ((-3 |#3| "failed"))) (-15 -2198 (|#2| |#1| |#2| |#2|)) (-15 -3246 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2588 ((-112) |#1| |#3|)) (-15 -2588 ((-112) |#1| |#2|)) (-15 -2854 (|#1| (-1280 |#3|) |#3|)) (-15 -1943 ((-2 (|:| |num| (-1280 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1869 ((-1280 |#1|) (-1280 |#1|))) (-15 -4109 ((-1280 |#1|) (-1280 |#1|))) (-15 -2499 ((-1280 |#1|) (-1280 |#1|))) (-15 -2588 ((-112) |#1|)) (-15 -3432 ((-112) |#1|)) (-15 -3302 ((-112) |#2| |#2|)) (-15 -3331 ((-112))) (-15 -2717 ((-780))) (-15 -2033 ((-780))) (-15 -3904 (|#1| |#1| (-1 (-416 |#3|) (-416 |#3|)))) (-15 -3904 (|#1| |#1| (-1 (-416 |#3|) (-416 |#3|)) (-780))) (-15 -2854 (|#1| (-1280 (-416 |#3|)))) (-15 -2854 (|#1| (-1280 (-416 |#3|)) (-1280 |#1|)))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-1943 (((-2 (|:| |num| (-1280 |#2|)) (|:| |den| |#2|)) $) 207)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 103 (|has| (-416 |#2|) (-371)))) (-2456 (($ $) 104 (|has| (-416 |#2|) (-371)))) (-1345 (((-112) $) 106 (|has| (-416 |#2|) (-371)))) (-2114 (((-698 (-416 |#2|)) (-1280 $)) 53) (((-698 (-416 |#2|))) 68)) (-1635 (((-416 |#2|) $) 59)) (-2604 (((-1202 (-931) (-780)) (-573)) 156 (|has| (-416 |#2|) (-357)))) (-2983 (((-3 $ "failed") $ $) 20)) (-4285 (($ $) 123 (|has| (-416 |#2|) (-371)))) (-2427 (((-427 $) $) 124 (|has| (-416 |#2|) (-371)))) (-2800 (((-112) $ $) 114 (|has| (-416 |#2|) (-371)))) (-1486 (((-780)) 97 (|has| (-416 |#2|) (-376)))) (-2222 (((-112)) 224)) (-3454 (((-112) |#1|) 223) (((-112) |#2|) 222)) (-2579 (($) 18 T CONST)) (-1695 (((-3 (-573) "failed") $) 181 (|has| (-416 |#2|) (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) 179 (|has| (-416 |#2|) (-1050 (-416 (-573))))) (((-3 (-416 |#2|) "failed") $) 176)) (-2205 (((-573) $) 180 (|has| (-416 |#2|) (-1050 (-573)))) (((-416 (-573)) $) 178 (|has| (-416 |#2|) (-1050 (-416 (-573))))) (((-416 |#2|) $) 177)) (-2854 (($ (-1280 (-416 |#2|)) (-1280 $)) 55) (($ (-1280 (-416 |#2|))) 71) (($ (-1280 |#2|) |#2|) 206)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) 162 (|has| (-416 |#2|) (-357)))) (-2784 (($ $ $) 118 (|has| (-416 |#2|) (-371)))) (-1720 (((-698 (-416 |#2|)) $ (-1280 $)) 60) (((-698 (-416 |#2|)) $) 66)) (-2759 (((-698 (-573)) (-1280 $)) 175 (|has| (-416 |#2|) (-648 (-573)))) (((-698 (-573)) (-698 $)) 174 (|has| (-416 |#2|) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 173 (|has| (-416 |#2|) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-416 |#2|))) (|:| |vec| (-1280 (-416 |#2|)))) (-698 $) (-1280 $)) 172) (((-698 (-416 |#2|)) (-698 $)) 171) (((-698 (-416 |#2|)) (-1280 $)) 170)) (-1869 (((-1280 $) (-1280 $)) 212)) (-2867 (($ |#3|) 167) (((-3 $ "failed") (-416 |#3|)) 164 (|has| (-416 |#2|) (-371)))) (-2232 (((-3 $ "failed") $) 37)) (-2989 (((-653 (-653 |#1|))) 193 (|has| |#1| (-376)))) (-3302 (((-112) |#1| |#1|) 228)) (-3583 (((-931)) 61)) (-2819 (($) 100 (|has| (-416 |#2|) (-376)))) (-1710 (((-112)) 221)) (-1819 (((-112) |#1|) 220) (((-112) |#2|) 219)) (-2796 (($ $ $) 117 (|has| (-416 |#2|) (-371)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 112 (|has| (-416 |#2|) (-371)))) (-3246 (($ $) 199)) (-3731 (($) 158 (|has| (-416 |#2|) (-357)))) (-1708 (((-112) $) 159 (|has| (-416 |#2|) (-357)))) (-2104 (($ $ (-780)) 150 (|has| (-416 |#2|) (-357))) (($ $) 149 (|has| (-416 |#2|) (-357)))) (-2696 (((-112) $) 125 (|has| (-416 |#2|) (-371)))) (-2534 (((-931) $) 161 (|has| (-416 |#2|) (-357))) (((-842 (-931)) $) 147 (|has| (-416 |#2|) (-357)))) (-1959 (((-112) $) 35)) (-2033 (((-780)) 231)) (-4109 (((-1280 $) (-1280 $)) 213)) (-3421 (((-416 |#2|) $) 58)) (-2201 (((-653 (-962 |#1|)) (-1189)) 194 (|has| |#1| (-371)))) (-1470 (((-3 $ "failed") $) 151 (|has| (-416 |#2|) (-357)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 121 (|has| (-416 |#2|) (-371)))) (-2297 ((|#3| $) 51 (|has| (-416 |#2|) (-371)))) (-3589 (((-931) $) 99 (|has| (-416 |#2|) (-376)))) (-2853 ((|#3| $) 165)) (-2829 (($ (-653 $)) 110 (|has| (-416 |#2|) (-371))) (($ $ $) 109 (|has| (-416 |#2|) (-371)))) (-3180 (((-1171) $) 10)) (-3644 (((-698 (-416 |#2|))) 208)) (-3456 (((-698 (-416 |#2|))) 210)) (-1323 (($ $) 126 (|has| (-416 |#2|) (-371)))) (-1465 (($ (-1280 |#2|) |#2|) 204)) (-4192 (((-698 (-416 |#2|))) 209)) (-3707 (((-698 (-416 |#2|))) 211)) (-2522 (((-2 (|:| |num| (-698 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 203)) (-3150 (((-2 (|:| |num| (-1280 |#2|)) (|:| |den| |#2|)) $) 205)) (-3051 (((-1280 $)) 217)) (-3529 (((-1280 $)) 218)) (-3432 (((-112) $) 216)) (-2588 (((-112) $) 215) (((-112) $ |#1|) 202) (((-112) $ |#2|) 201)) (-3816 (($) 152 (|has| (-416 |#2|) (-357)) CONST)) (-2575 (($ (-931)) 98 (|has| (-416 |#2|) (-376)))) (-2338 (((-3 |#2| "failed")) 196)) (-3965 (((-1132) $) 11)) (-2717 (((-780)) 230)) (-2969 (($) 169)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 111 (|has| (-416 |#2|) (-371)))) (-2872 (($ (-653 $)) 108 (|has| (-416 |#2|) (-371))) (($ $ $) 107 (|has| (-416 |#2|) (-371)))) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) 155 (|has| (-416 |#2|) (-357)))) (-4218 (((-427 $) $) 122 (|has| (-416 |#2|) (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120 (|has| (-416 |#2|) (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 119 (|has| (-416 |#2|) (-371)))) (-2837 (((-3 $ "failed") $ $) 102 (|has| (-416 |#2|) (-371)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 113 (|has| (-416 |#2|) (-371)))) (-2163 (((-780) $) 115 (|has| (-416 |#2|) (-371)))) (-2198 ((|#1| $ |#1| |#1|) 198)) (-4027 (((-3 |#2| "failed")) 197)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 116 (|has| (-416 |#2|) (-371)))) (-3592 (((-416 |#2|) (-1280 $)) 54) (((-416 |#2|)) 67)) (-1637 (((-780) $) 160 (|has| (-416 |#2|) (-357))) (((-3 (-780) "failed") $ $) 148 (|has| (-416 |#2|) (-357)))) (-3904 (($ $ (-1 (-416 |#2|) (-416 |#2|)) (-780)) 132 (|has| (-416 |#2|) (-371))) (($ $ (-1 (-416 |#2|) (-416 |#2|))) 131 (|has| (-416 |#2|) (-371))) (($ $ (-1 |#2| |#2|)) 200) (($ $ (-653 (-1189)) (-653 (-780))) 139 (-2817 (-2086 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189)))) (-2086 (|has| (-416 |#2|) (-910 (-1189))) (|has| (-416 |#2|) (-371))))) (($ $ (-1189) (-780)) 140 (-2817 (-2086 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189)))) (-2086 (|has| (-416 |#2|) (-910 (-1189))) (|has| (-416 |#2|) (-371))))) (($ $ (-653 (-1189))) 141 (-2817 (-2086 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189)))) (-2086 (|has| (-416 |#2|) (-910 (-1189))) (|has| (-416 |#2|) (-371))))) (($ $ (-1189)) 142 (-2817 (-2086 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189)))) (-2086 (|has| (-416 |#2|) (-910 (-1189))) (|has| (-416 |#2|) (-371))))) (($ $) 143 (-2817 (-2086 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-238))) (-2086 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371))) (|has| (-416 |#2|) (-357)))) (($ $ (-780)) 145 (-2817 (-2086 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-238))) (-2086 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371))) (|has| (-416 |#2|) (-357))))) (-4303 (((-698 (-416 |#2|)) (-1280 $) (-1 (-416 |#2|) (-416 |#2|))) 163 (|has| (-416 |#2|) (-371)))) (-2984 ((|#3|) 168)) (-2510 (($) 157 (|has| (-416 |#2|) (-357)))) (-2123 (((-1280 (-416 |#2|)) $ (-1280 $)) 57) (((-698 (-416 |#2|)) (-1280 $) (-1280 $)) 56) (((-1280 (-416 |#2|)) $) 73) (((-698 (-416 |#2|)) (-1280 $)) 72)) (-1835 (((-1280 (-416 |#2|)) $) 70) (($ (-1280 (-416 |#2|))) 69) ((|#3| $) 182) (($ |#3|) 166)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) 154 (|has| (-416 |#2|) (-357)))) (-2499 (((-1280 $) (-1280 $)) 214)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ (-416 |#2|)) 44) (($ (-416 (-573))) 96 (-2817 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-1050 (-416 (-573)))))) (($ $) 101 (|has| (-416 |#2|) (-371)))) (-4279 (($ $) 153 (|has| (-416 |#2|) (-357))) (((-3 $ "failed") $) 50 (|has| (-416 |#2|) (-146)))) (-2517 ((|#3| $) 52)) (-1545 (((-780)) 32 T CONST)) (-2919 (((-112)) 227)) (-3289 (((-112) |#1|) 226) (((-112) |#2|) 225)) (-3507 (((-112) $ $) 9)) (-3914 (((-1280 $)) 74)) (-2516 (((-112) $ $) 105 (|has| (-416 |#2|) (-371)))) (-2581 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 195)) (-3331 (((-112)) 229)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-1 (-416 |#2|) (-416 |#2|)) (-780)) 134 (|has| (-416 |#2|) (-371))) (($ $ (-1 (-416 |#2|) (-416 |#2|))) 133 (|has| (-416 |#2|) (-371))) (($ $ (-653 (-1189)) (-653 (-780))) 135 (-2817 (-2086 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189)))) (-2086 (|has| (-416 |#2|) (-910 (-1189))) (|has| (-416 |#2|) (-371))))) (($ $ (-1189) (-780)) 136 (-2817 (-2086 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189)))) (-2086 (|has| (-416 |#2|) (-910 (-1189))) (|has| (-416 |#2|) (-371))))) (($ $ (-653 (-1189))) 137 (-2817 (-2086 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189)))) (-2086 (|has| (-416 |#2|) (-910 (-1189))) (|has| (-416 |#2|) (-371))))) (($ $ (-1189)) 138 (-2817 (-2086 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189)))) (-2086 (|has| (-416 |#2|) (-910 (-1189))) (|has| (-416 |#2|) (-371))))) (($ $) 144 (-2817 (-2086 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-238))) (-2086 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371))) (|has| (-416 |#2|) (-357)))) (($ $ (-780)) 146 (-2817 (-2086 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-238))) (-2086 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371))) (|has| (-416 |#2|) (-357))))) (-2981 (((-112) $ $) 6)) (-3103 (($ $ $) 130 (|has| (-416 |#2|) (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 127 (|has| (-416 |#2|) (-371)))) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 |#2|)) 46) (($ (-416 |#2|) $) 45) (($ (-416 (-573)) $) 129 (|has| (-416 |#2|) (-371))) (($ $ (-416 (-573))) 128 (|has| (-416 |#2|) (-371))))) +(((-350 |#1| |#2| |#3|) (-141) (-1234) (-1256 |t#1|) (-1256 (-416 |t#2|))) (T -350)) +((-2033 (*1 *2) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-780)))) (-2717 (*1 *2) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-780)))) (-3331 (*1 *2) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112)))) (-3302 (*1 *2 *3 *3) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112)))) (-2919 (*1 *2) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112)))) (-3289 (*1 *2 *3) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112)))) (-3289 (*1 *2 *3) (-12 (-4 *1 (-350 *4 *3 *5)) (-4 *4 (-1234)) (-4 *3 (-1256 *4)) (-4 *5 (-1256 (-416 *3))) (-5 *2 (-112)))) (-2222 (*1 *2) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112)))) (-3454 (*1 *2 *3) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112)))) (-3454 (*1 *2 *3) (-12 (-4 *1 (-350 *4 *3 *5)) (-4 *4 (-1234)) (-4 *3 (-1256 *4)) (-4 *5 (-1256 (-416 *3))) (-5 *2 (-112)))) (-1710 (*1 *2) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112)))) (-1819 (*1 *2 *3) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112)))) (-1819 (*1 *2 *3) (-12 (-4 *1 (-350 *4 *3 *5)) (-4 *4 (-1234)) (-4 *3 (-1256 *4)) (-4 *5 (-1256 (-416 *3))) (-5 *2 (-112)))) (-3529 (*1 *2) (-12 (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-1280 *1)) (-4 *1 (-350 *3 *4 *5)))) (-3051 (*1 *2) (-12 (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-1280 *1)) (-4 *1 (-350 *3 *4 *5)))) (-3432 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112)))) (-2588 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112)))) (-2499 (*1 *2 *2) (-12 (-5 *2 (-1280 *1)) (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))))) (-4109 (*1 *2 *2) (-12 (-5 *2 (-1280 *1)) (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))))) (-1869 (*1 *2 *2) (-12 (-5 *2 (-1280 *1)) (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))))) (-3707 (*1 *2) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-698 (-416 *4))))) (-3456 (*1 *2) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-698 (-416 *4))))) (-4192 (*1 *2) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-698 (-416 *4))))) (-3644 (*1 *2) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-698 (-416 *4))))) (-1943 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-2 (|:| |num| (-1280 *4)) (|:| |den| *4))))) (-2854 (*1 *1 *2 *3) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-1256 *4)) (-4 *4 (-1234)) (-4 *1 (-350 *4 *3 *5)) (-4 *5 (-1256 (-416 *3))))) (-3150 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-2 (|:| |num| (-1280 *4)) (|:| |den| *4))))) (-1465 (*1 *1 *2 *3) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-1256 *4)) (-4 *4 (-1234)) (-4 *1 (-350 *4 *3 *5)) (-4 *5 (-1256 (-416 *3))))) (-2522 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-350 *4 *5 *6)) (-4 *4 (-1234)) (-4 *5 (-1256 *4)) (-4 *6 (-1256 (-416 *5))) (-5 *2 (-2 (|:| |num| (-698 *5)) (|:| |den| *5))))) (-2588 (*1 *2 *1 *3) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112)))) (-2588 (*1 *2 *1 *3) (-12 (-4 *1 (-350 *4 *3 *5)) (-4 *4 (-1234)) (-4 *3 (-1256 *4)) (-4 *5 (-1256 (-416 *3))) (-5 *2 (-112)))) (-3904 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))))) (-3246 (*1 *1 *1) (-12 (-4 *1 (-350 *2 *3 *4)) (-4 *2 (-1234)) (-4 *3 (-1256 *2)) (-4 *4 (-1256 (-416 *3))))) (-2198 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-350 *2 *3 *4)) (-4 *2 (-1234)) (-4 *3 (-1256 *2)) (-4 *4 (-1256 (-416 *3))))) (-4027 (*1 *2) (|partial| -12 (-4 *1 (-350 *3 *2 *4)) (-4 *3 (-1234)) (-4 *4 (-1256 (-416 *2))) (-4 *2 (-1256 *3)))) (-2338 (*1 *2) (|partial| -12 (-4 *1 (-350 *3 *2 *4)) (-4 *3 (-1234)) (-4 *4 (-1256 (-416 *2))) (-4 *2 (-1256 *3)))) (-2581 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1256 *4)) (-4 *4 (-1234)) (-4 *6 (-1256 (-416 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-350 *4 *5 *6)))) (-2201 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-4 *1 (-350 *4 *5 *6)) (-4 *4 (-1234)) (-4 *5 (-1256 *4)) (-4 *6 (-1256 (-416 *5))) (-4 *4 (-371)) (-5 *2 (-653 (-962 *4))))) (-2989 (*1 *2) (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) (-4 *3 (-376)) (-5 *2 (-653 (-653 *3)))))) +(-13 (-733 (-416 |t#2|) |t#3|) (-10 -8 (-15 -2033 ((-780))) (-15 -2717 ((-780))) (-15 -3331 ((-112))) (-15 -3302 ((-112) |t#1| |t#1|)) (-15 -2919 ((-112))) (-15 -3289 ((-112) |t#1|)) (-15 -3289 ((-112) |t#2|)) (-15 -2222 ((-112))) (-15 -3454 ((-112) |t#1|)) (-15 -3454 ((-112) |t#2|)) (-15 -1710 ((-112))) (-15 -1819 ((-112) |t#1|)) (-15 -1819 ((-112) |t#2|)) (-15 -3529 ((-1280 $))) (-15 -3051 ((-1280 $))) (-15 -3432 ((-112) $)) (-15 -2588 ((-112) $)) (-15 -2499 ((-1280 $) (-1280 $))) (-15 -4109 ((-1280 $) (-1280 $))) (-15 -1869 ((-1280 $) (-1280 $))) (-15 -3707 ((-698 (-416 |t#2|)))) (-15 -3456 ((-698 (-416 |t#2|)))) (-15 -4192 ((-698 (-416 |t#2|)))) (-15 -3644 ((-698 (-416 |t#2|)))) (-15 -1943 ((-2 (|:| |num| (-1280 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2854 ($ (-1280 |t#2|) |t#2|)) (-15 -3150 ((-2 (|:| |num| (-1280 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1465 ($ (-1280 |t#2|) |t#2|)) (-15 -2522 ((-2 (|:| |num| (-698 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -2588 ((-112) $ |t#1|)) (-15 -2588 ((-112) $ |t#2|)) (-15 -3904 ($ $ (-1 |t#2| |t#2|))) (-15 -3246 ($ $)) (-15 -2198 (|t#1| $ |t#1| |t#1|)) (-15 -4027 ((-3 |t#2| "failed"))) (-15 -2338 ((-3 |t#2| "failed"))) (-15 -2581 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-371)) (-15 -2201 ((-653 (-962 |t#1|)) (-1189))) |%noBranch|) (IF (|has| |t#1| (-376)) (-15 -2989 ((-653 (-653 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-38 #1=(-416 |#2|)) . T) ((-38 $) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-102) . T) ((-111 #0# #0#) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-146))) ((-148) |has| (-416 |#2|) (-148)) ((-625 #0#) -2817 (|has| (-416 |#2|) (-1050 (-416 (-573)))) (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-625 #1#) . T) ((-625 (-573)) . T) ((-625 $) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-622 (-871)) . T) ((-174) . T) ((-623 |#3|) . T) ((-235 $) -2817 (|has| (-416 |#2|) (-357)) (-12 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371)))) ((-233 #1#) |has| (-416 |#2|) (-371)) ((-238) -2817 (|has| (-416 |#2|) (-357)) (-12 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371)))) ((-237) -2817 (|has| (-416 |#2|) (-357)) (-12 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371)))) ((-248) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-297) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-314) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-371) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-411) |has| (-416 |#2|) (-357)) ((-376) -2817 (|has| (-416 |#2|) (-376)) (|has| (-416 |#2|) (-357))) ((-357) |has| (-416 |#2|) (-357)) ((-378 #1# |#3|) . T) ((-418 #1# |#3|) . T) ((-385 #1#) . T) ((-420 #1#) . T) ((-461) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-565) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-655 #0#) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-655 #1#) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 #0#) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-657 #1#) . T) ((-657 #2=(-573)) |has| (-416 |#2|) (-648 (-573))) ((-657 $) . T) ((-649 #0#) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-649 #1#) . T) ((-649 $) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-648 #1#) . T) ((-648 #2#) |has| (-416 |#2|) (-648 (-573))) ((-726 #0#) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-726 #1#) . T) ((-726 $) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-733 #1# |#3|) . T) ((-735) . T) ((-910 (-1189)) -12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189)))) ((-930) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-1050 (-416 (-573))) |has| (-416 |#2|) (-1050 (-416 (-573)))) ((-1050 #1#) . T) ((-1050 (-573)) |has| (-416 |#2|) (-1050 (-573))) ((-1063 #0#) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-1063 #1#) . T) ((-1063 $) . T) ((-1068 #0#) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371))) ((-1068 #1#) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1164) |has| (-416 |#2|) (-357)) ((-1230) -2817 (|has| (-416 |#2|) (-357)) (-12 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371)))) ((-1234) -2817 (|has| (-416 |#2|) (-357)) (|has| (-416 |#2|) (-371)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-3511 (((-112) $) NIL)) (-3115 (((-780)) NIL)) (-1635 (((-920 |#1|) $) NIL) (($ $ (-931)) NIL (|has| (-920 |#1|) (-376)))) (-2604 (((-1202 (-931) (-780)) (-573)) NIL (|has| (-920 |#1|) (-376)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-1486 (((-780)) NIL (|has| (-920 |#1|) (-376)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-920 |#1|) "failed") $) NIL)) (-2205 (((-920 |#1|) $) NIL)) (-2854 (($ (-1280 (-920 |#1|))) NIL)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-920 |#1|) (-376)))) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) NIL (|has| (-920 |#1|) (-376)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-3731 (($) NIL (|has| (-920 |#1|) (-376)))) (-1708 (((-112) $) NIL (|has| (-920 |#1|) (-376)))) (-2104 (($ $ (-780)) NIL (-2817 (|has| (-920 |#1|) (-146)) (|has| (-920 |#1|) (-376)))) (($ $) NIL (-2817 (|has| (-920 |#1|) (-146)) (|has| (-920 |#1|) (-376))))) (-2696 (((-112) $) NIL)) (-2534 (((-931) $) NIL (|has| (-920 |#1|) (-376))) (((-842 (-931)) $) NIL (-2817 (|has| (-920 |#1|) (-146)) (|has| (-920 |#1|) (-376))))) (-1959 (((-112) $) NIL)) (-4081 (($) NIL (|has| (-920 |#1|) (-376)))) (-3514 (((-112) $) NIL (|has| (-920 |#1|) (-376)))) (-3421 (((-920 |#1|) $) NIL) (($ $ (-931)) NIL (|has| (-920 |#1|) (-376)))) (-1470 (((-3 $ "failed") $) NIL (|has| (-920 |#1|) (-376)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2297 (((-1185 (-920 |#1|)) $) NIL) (((-1185 $) $ (-931)) NIL (|has| (-920 |#1|) (-376)))) (-3589 (((-931) $) NIL (|has| (-920 |#1|) (-376)))) (-2991 (((-1185 (-920 |#1|)) $) NIL (|has| (-920 |#1|) (-376)))) (-2700 (((-1185 (-920 |#1|)) $) NIL (|has| (-920 |#1|) (-376))) (((-3 (-1185 (-920 |#1|)) "failed") $ $) NIL (|has| (-920 |#1|) (-376)))) (-2840 (($ $ (-1185 (-920 |#1|))) NIL (|has| (-920 |#1|) (-376)))) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| (-920 |#1|) (-376)) CONST)) (-2575 (($ (-931)) NIL (|has| (-920 |#1|) (-376)))) (-2772 (((-112) $) NIL)) (-3965 (((-1132) $) NIL)) (-2057 (((-968 (-1132))) NIL)) (-2969 (($) NIL (|has| (-920 |#1|) (-376)))) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) NIL (|has| (-920 |#1|) (-376)))) (-4218 (((-427 $) $) NIL)) (-3216 (((-842 (-931))) NIL) (((-931)) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-1637 (((-780) $) NIL (|has| (-920 |#1|) (-376))) (((-3 (-780) "failed") $ $) NIL (-2817 (|has| (-920 |#1|) (-146)) (|has| (-920 |#1|) (-376))))) (-2365 (((-135)) NIL)) (-3904 (($ $ (-780)) NIL (|has| (-920 |#1|) (-376))) (($ $) NIL (|has| (-920 |#1|) (-376)))) (-2565 (((-842 (-931)) $) NIL) (((-931) $) NIL)) (-2984 (((-1185 (-920 |#1|))) NIL)) (-2510 (($) NIL (|has| (-920 |#1|) (-376)))) (-4232 (($) NIL (|has| (-920 |#1|) (-376)))) (-2123 (((-1280 (-920 |#1|)) $) NIL) (((-698 (-920 |#1|)) (-1280 $)) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (|has| (-920 |#1|) (-376)))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) (($ (-920 |#1|)) NIL)) (-4279 (($ $) NIL (|has| (-920 |#1|) (-376))) (((-3 $ "failed") $) NIL (-2817 (|has| (-920 |#1|) (-146)) (|has| (-920 |#1|) (-376))))) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) NIL) (((-1280 $) (-931)) NIL)) (-2516 (((-112) $ $) NIL)) (-4333 (((-112) $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-1629 (($ $) NIL (|has| (-920 |#1|) (-376))) (($ $ (-780)) NIL (|has| (-920 |#1|) (-376)))) (-3609 (($ $ (-780)) NIL (|has| (-920 |#1|) (-376))) (($ $) NIL (|has| (-920 |#1|) (-376)))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL) (($ $ (-920 |#1|)) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ $ (-920 |#1|)) NIL) (($ (-920 |#1|) $) NIL))) +(((-351 |#1| |#2|) (-13 (-336 (-920 |#1|)) (-10 -7 (-15 -2057 ((-968 (-1132)))))) (-931) (-931)) (T -351)) +((-2057 (*1 *2) (-12 (-5 *2 (-968 (-1132))) (-5 *1 (-351 *3 *4)) (-14 *3 (-931)) (-14 *4 (-931))))) +(-13 (-336 (-920 |#1|)) (-10 -7 (-15 -2057 ((-968 (-1132)))))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 58)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-3511 (((-112) $) NIL)) (-3115 (((-780)) NIL)) (-1635 ((|#1| $) NIL) (($ $ (-931)) NIL (|has| |#1| (-376)))) (-2604 (((-1202 (-931) (-780)) (-573)) 56 (|has| |#1| (-376)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-1486 (((-780)) NIL (|has| |#1| (-376)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) 142)) (-2205 ((|#1| $) 113)) (-2854 (($ (-1280 |#1|)) 130)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-376)))) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) 124 (|has| |#1| (-376)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-3731 (($) 160 (|has| |#1| (-376)))) (-1708 (((-112) $) 66 (|has| |#1| (-376)))) (-2104 (($ $ (-780)) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376)))) (($ $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2696 (((-112) $) NIL)) (-2534 (((-931) $) 60 (|has| |#1| (-376))) (((-842 (-931)) $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1959 (((-112) $) 62)) (-4081 (($) 162 (|has| |#1| (-376)))) (-3514 (((-112) $) NIL (|has| |#1| (-376)))) (-3421 ((|#1| $) NIL) (($ $ (-931)) NIL (|has| |#1| (-376)))) (-1470 (((-3 $ "failed") $) NIL (|has| |#1| (-376)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2297 (((-1185 |#1|) $) 117) (((-1185 $) $ (-931)) NIL (|has| |#1| (-376)))) (-3589 (((-931) $) 171 (|has| |#1| (-376)))) (-2991 (((-1185 |#1|) $) NIL (|has| |#1| (-376)))) (-2700 (((-1185 |#1|) $) NIL (|has| |#1| (-376))) (((-3 (-1185 |#1|) "failed") $ $) NIL (|has| |#1| (-376)))) (-2840 (($ $ (-1185 |#1|)) NIL (|has| |#1| (-376)))) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 178)) (-3816 (($) NIL (|has| |#1| (-376)) CONST)) (-2575 (($ (-931)) 96 (|has| |#1| (-376)))) (-2772 (((-112) $) 147)) (-3965 (((-1132) $) NIL)) (-2057 (((-968 (-1132))) 57)) (-2969 (($) 158 (|has| |#1| (-376)))) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) 119 (|has| |#1| (-376)))) (-4218 (((-427 $) $) NIL)) (-3216 (((-842 (-931))) 90) (((-931)) 91)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-1637 (((-780) $) 161 (|has| |#1| (-376))) (((-3 (-780) "failed") $ $) 154 (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2365 (((-135)) NIL)) (-3904 (($ $ (-780)) NIL (|has| |#1| (-376))) (($ $) NIL (|has| |#1| (-376)))) (-2565 (((-842 (-931)) $) NIL) (((-931) $) NIL)) (-2984 (((-1185 |#1|)) 122)) (-2510 (($) 159 (|has| |#1| (-376)))) (-4232 (($) 167 (|has| |#1| (-376)))) (-2123 (((-1280 |#1|) $) 77) (((-698 |#1|) (-1280 $)) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (|has| |#1| (-376)))) (-2942 (((-871) $) 174) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) (($ |#1|) 100)) (-4279 (($ $) NIL (|has| |#1| (-376))) (((-3 $ "failed") $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1545 (((-780)) 155 T CONST)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) 144) (((-1280 $) (-931)) 98)) (-2516 (((-112) $ $) NIL)) (-4333 (((-112) $) NIL)) (-2132 (($) 67 T CONST)) (-2144 (($) 103 T CONST)) (-1629 (($ $) 107 (|has| |#1| (-376))) (($ $ (-780)) NIL (|has| |#1| (-376)))) (-3609 (($ $ (-780)) NIL (|has| |#1| (-376))) (($ $) NIL (|has| |#1| (-376)))) (-2981 (((-112) $ $) 65)) (-3103 (($ $ $) 176) (($ $ |#1|) 177)) (-3093 (($ $) 157) (($ $ $) NIL)) (-3077 (($ $ $) 86)) (** (($ $ (-931)) 180) (($ $ (-780)) 181) (($ $ (-573)) 179)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 102) (($ $ $) 101) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175))) +(((-352 |#1| |#2|) (-13 (-336 |#1|) (-10 -7 (-15 -2057 ((-968 (-1132)))))) (-357) (-1185 |#1|)) (T -352)) +((-2057 (*1 *2) (-12 (-5 *2 (-968 (-1132))) (-5 *1 (-352 *3 *4)) (-4 *3 (-357)) (-14 *4 (-1185 *3))))) +(-13 (-336 |#1|) (-10 -7 (-15 -2057 ((-968 (-1132)))))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-3511 (((-112) $) NIL)) (-3115 (((-780)) NIL)) (-1635 ((|#1| $) NIL) (($ $ (-931)) NIL (|has| |#1| (-376)))) (-2604 (((-1202 (-931) (-780)) (-573)) NIL (|has| |#1| (-376)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-1486 (((-780)) NIL (|has| |#1| (-376)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2205 ((|#1| $) NIL)) (-2854 (($ (-1280 |#1|)) NIL)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-376)))) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) NIL (|has| |#1| (-376)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-3731 (($) NIL (|has| |#1| (-376)))) (-1708 (((-112) $) NIL (|has| |#1| (-376)))) (-2104 (($ $ (-780)) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376)))) (($ $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2696 (((-112) $) NIL)) (-2534 (((-931) $) NIL (|has| |#1| (-376))) (((-842 (-931)) $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1959 (((-112) $) NIL)) (-4081 (($) NIL (|has| |#1| (-376)))) (-3514 (((-112) $) NIL (|has| |#1| (-376)))) (-3421 ((|#1| $) NIL) (($ $ (-931)) NIL (|has| |#1| (-376)))) (-1470 (((-3 $ "failed") $) NIL (|has| |#1| (-376)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2297 (((-1185 |#1|) $) NIL) (((-1185 $) $ (-931)) NIL (|has| |#1| (-376)))) (-3589 (((-931) $) NIL (|has| |#1| (-376)))) (-2991 (((-1185 |#1|) $) NIL (|has| |#1| (-376)))) (-2700 (((-1185 |#1|) $) NIL (|has| |#1| (-376))) (((-3 (-1185 |#1|) "failed") $ $) NIL (|has| |#1| (-376)))) (-2840 (($ $ (-1185 |#1|)) NIL (|has| |#1| (-376)))) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| |#1| (-376)) CONST)) (-2575 (($ (-931)) NIL (|has| |#1| (-376)))) (-2772 (((-112) $) NIL)) (-3965 (((-1132) $) NIL)) (-2057 (((-968 (-1132))) NIL)) (-2969 (($) NIL (|has| |#1| (-376)))) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) NIL (|has| |#1| (-376)))) (-4218 (((-427 $) $) NIL)) (-3216 (((-842 (-931))) NIL) (((-931)) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-1637 (((-780) $) NIL (|has| |#1| (-376))) (((-3 (-780) "failed") $ $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2365 (((-135)) NIL)) (-3904 (($ $ (-780)) NIL (|has| |#1| (-376))) (($ $) NIL (|has| |#1| (-376)))) (-2565 (((-842 (-931)) $) NIL) (((-931) $) NIL)) (-2984 (((-1185 |#1|)) NIL)) (-2510 (($) NIL (|has| |#1| (-376)))) (-4232 (($) NIL (|has| |#1| (-376)))) (-2123 (((-1280 |#1|) $) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (|has| |#1| (-376)))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) (($ |#1|) NIL)) (-4279 (($ $) NIL (|has| |#1| (-376))) (((-3 $ "failed") $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) NIL) (((-1280 $) (-931)) NIL)) (-2516 (((-112) $ $) NIL)) (-4333 (((-112) $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-1629 (($ $) NIL (|has| |#1| (-376))) (($ $ (-780)) NIL (|has| |#1| (-376)))) (-3609 (($ $ (-780)) NIL (|has| |#1| (-376))) (($ $) NIL (|has| |#1| (-376)))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-353 |#1| |#2|) (-13 (-336 |#1|) (-10 -7 (-15 -2057 ((-968 (-1132)))))) (-357) (-931)) (T -353)) +((-2057 (*1 *2) (-12 (-5 *2 (-968 (-1132))) (-5 *1 (-353 *3 *4)) (-4 *3 (-357)) (-14 *4 (-931))))) +(-13 (-336 |#1|) (-10 -7 (-15 -2057 ((-968 (-1132)))))) +((-2816 (((-780) (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132)))))) 61)) (-1636 (((-968 (-1132)) (-1185 |#1|)) 112)) (-3538 (((-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))) (-1185 |#1|)) 103)) (-1910 (((-698 |#1|) (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132)))))) 113)) (-2051 (((-3 (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))) "failed") (-931)) 13)) (-2474 (((-3 (-1185 |#1|) (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132)))))) (-931)) 18))) +(((-354 |#1|) (-10 -7 (-15 -1636 ((-968 (-1132)) (-1185 |#1|))) (-15 -3538 ((-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))) (-1185 |#1|))) (-15 -1910 ((-698 |#1|) (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))))) (-15 -2816 ((-780) (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))))) (-15 -2051 ((-3 (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))) "failed") (-931))) (-15 -2474 ((-3 (-1185 |#1|) (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132)))))) (-931)))) (-357)) (T -354)) +((-2474 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-3 (-1185 *4) (-1280 (-653 (-2 (|:| -3082 *4) (|:| -2575 (-1132))))))) (-5 *1 (-354 *4)) (-4 *4 (-357)))) (-2051 (*1 *2 *3) (|partial| -12 (-5 *3 (-931)) (-5 *2 (-1280 (-653 (-2 (|:| -3082 *4) (|:| -2575 (-1132)))))) (-5 *1 (-354 *4)) (-4 *4 (-357)))) (-2816 (*1 *2 *3) (-12 (-5 *3 (-1280 (-653 (-2 (|:| -3082 *4) (|:| -2575 (-1132)))))) (-4 *4 (-357)) (-5 *2 (-780)) (-5 *1 (-354 *4)))) (-1910 (*1 *2 *3) (-12 (-5 *3 (-1280 (-653 (-2 (|:| -3082 *4) (|:| -2575 (-1132)))))) (-4 *4 (-357)) (-5 *2 (-698 *4)) (-5 *1 (-354 *4)))) (-3538 (*1 *2 *3) (-12 (-5 *3 (-1185 *4)) (-4 *4 (-357)) (-5 *2 (-1280 (-653 (-2 (|:| -3082 *4) (|:| -2575 (-1132)))))) (-5 *1 (-354 *4)))) (-1636 (*1 *2 *3) (-12 (-5 *3 (-1185 *4)) (-4 *4 (-357)) (-5 *2 (-968 (-1132))) (-5 *1 (-354 *4))))) +(-10 -7 (-15 -1636 ((-968 (-1132)) (-1185 |#1|))) (-15 -3538 ((-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))) (-1185 |#1|))) (-15 -1910 ((-698 |#1|) (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))))) (-15 -2816 ((-780) (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))))) (-15 -2051 ((-3 (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))) "failed") (-931))) (-15 -2474 ((-3 (-1185 |#1|) (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132)))))) (-931)))) +((-2942 ((|#1| |#3|) 104) ((|#3| |#1|) 87))) +(((-355 |#1| |#2| |#3|) (-10 -7 (-15 -2942 (|#3| |#1|)) (-15 -2942 (|#1| |#3|))) (-336 |#2|) (-357) (-336 |#2|)) (T -355)) +((-2942 (*1 *2 *3) (-12 (-4 *4 (-357)) (-4 *2 (-336 *4)) (-5 *1 (-355 *2 *4 *3)) (-4 *3 (-336 *4)))) (-2942 (*1 *2 *3) (-12 (-4 *4 (-357)) (-4 *2 (-336 *4)) (-5 *1 (-355 *3 *4 *2)) (-4 *3 (-336 *4))))) +(-10 -7 (-15 -2942 (|#3| |#1|)) (-15 -2942 (|#1| |#3|))) +((-1708 (((-112) $) 60)) (-2534 (((-842 (-931)) $) 23) (((-931) $) 64)) (-1470 (((-3 $ "failed") $) 18)) (-3816 (($) 9)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 114)) (-1637 (((-3 (-780) "failed") $ $) 92) (((-780) $) 79)) (-3904 (($ $) 8) (($ $ (-780)) NIL)) (-2510 (($) 53)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) 38)) (-4279 (((-3 $ "failed") $) 45) (($ $) 44))) +(((-356 |#1|) (-10 -8 (-15 -2534 ((-931) |#1|)) (-15 -1637 ((-780) |#1|)) (-15 -1708 ((-112) |#1|)) (-15 -2510 (|#1|)) (-15 -1443 ((-3 (-1280 |#1|) "failed") (-698 |#1|))) (-15 -4279 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -3816 (|#1|)) (-15 -1470 ((-3 |#1| "failed") |#1|)) (-15 -1637 ((-3 (-780) "failed") |#1| |#1|)) (-15 -2534 ((-842 (-931)) |#1|)) (-15 -4279 ((-3 |#1| "failed") |#1|)) (-15 -2888 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)))) (-357)) (T -356)) +NIL +(-10 -8 (-15 -2534 ((-931) |#1|)) (-15 -1637 ((-780) |#1|)) (-15 -1708 ((-112) |#1|)) (-15 -2510 (|#1|)) (-15 -1443 ((-3 (-1280 |#1|) "failed") (-698 |#1|))) (-15 -4279 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -3816 (|#1|)) (-15 -1470 ((-3 |#1| "failed") |#1|)) (-15 -1637 ((-3 (-780) "failed") |#1| |#1|)) (-15 -2534 ((-842 (-931)) |#1|)) (-15 -4279 ((-3 |#1| "failed") |#1|)) (-15 -2888 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-2604 (((-1202 (-931) (-780)) (-573)) 102)) (-2983 (((-3 $ "failed") $ $) 20)) (-4285 (($ $) 81)) (-2427 (((-427 $) $) 80)) (-2800 (((-112) $ $) 65)) (-1486 (((-780)) 112)) (-2579 (($) 18 T CONST)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) 96)) (-2784 (($ $ $) 61)) (-2232 (((-3 $ "failed") $) 37)) (-2819 (($) 115)) (-2796 (($ $ $) 62)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 57)) (-3731 (($) 100)) (-1708 (((-112) $) 99)) (-2104 (($ $) 87) (($ $ (-780)) 86)) (-2696 (((-112) $) 79)) (-2534 (((-842 (-931)) $) 89) (((-931) $) 97)) (-1959 (((-112) $) 35)) (-1470 (((-3 $ "failed") $) 111)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 58)) (-3589 (((-931) $) 114)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-1323 (($ $) 78)) (-3816 (($) 110 T CONST)) (-2575 (($ (-931)) 113)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) 103)) (-4218 (((-427 $) $) 82)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 56)) (-2163 (((-780) $) 64)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 63)) (-1637 (((-3 (-780) "failed") $ $) 88) (((-780) $) 98)) (-3904 (($ $) 109) (($ $ (-780)) 107)) (-2510 (($) 101)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) 104)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49) (($ (-416 (-573))) 74)) (-4279 (((-3 $ "failed") $) 90) (($ $) 105)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $) 108) (($ $ (-780)) 106)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ $) 73)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 77)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 (-573))) 76) (($ (-416 (-573)) $) 75))) +(((-357) (-141)) (T -357)) +((-4279 (*1 *1 *1) (-4 *1 (-357))) (-1443 (*1 *2 *3) (|partial| -12 (-5 *3 (-698 *1)) (-4 *1 (-357)) (-5 *2 (-1280 *1)))) (-4199 (*1 *2) (-12 (-4 *1 (-357)) (-5 *2 (-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))))) (-2604 (*1 *2 *3) (-12 (-4 *1 (-357)) (-5 *3 (-573)) (-5 *2 (-1202 (-931) (-780))))) (-2510 (*1 *1) (-4 *1 (-357))) (-3731 (*1 *1) (-4 *1 (-357))) (-1708 (*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-112)))) (-1637 (*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-780)))) (-2534 (*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-931)))) (-2209 (*1 *2) (-12 (-4 *1 (-357)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-411) (-376) (-1164) (-238) (-10 -8 (-15 -4279 ($ $)) (-15 -1443 ((-3 (-1280 $) "failed") (-698 $))) (-15 -4199 ((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573)))))) (-15 -2604 ((-1202 (-931) (-780)) (-573))) (-15 -2510 ($)) (-15 -3731 ($)) (-15 -1708 ((-112) $)) (-15 -1637 ((-780) $)) (-15 -2534 ((-931) $)) (-15 -2209 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-625 #0#) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-235 $) . T) ((-238) . T) ((-237) . T) ((-248) . T) ((-297) . T) ((-314) . T) ((-371) . T) ((-411) . T) ((-376) . T) ((-461) . T) ((-565) . T) ((-655 #0#) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-726 #0#) . T) ((-726 $) . T) ((-735) . T) ((-930) . T) ((-1063 #0#) . T) ((-1063 $) . T) ((-1068 #0#) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1164) . T) ((-1230) . T) ((-1234) . T)) +((-3574 (((-2 (|:| -3914 (-698 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-698 |#1|))) |#1|) 55)) (-3529 (((-2 (|:| -3914 (-698 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-698 |#1|)))) 53))) +(((-358 |#1| |#2| |#3|) (-10 -7 (-15 -3529 ((-2 (|:| -3914 (-698 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-698 |#1|))))) (-15 -3574 ((-2 (|:| -3914 (-698 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-698 |#1|))) |#1|))) (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $)))) (-1256 |#1|) (-418 |#1| |#2|)) (T -358)) +((-3574 (*1 *2 *3) (-12 (-4 *3 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) (-4 *4 (-1256 *3)) (-5 *2 (-2 (|:| -3914 (-698 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-698 *3)))) (-5 *1 (-358 *3 *4 *5)) (-4 *5 (-418 *3 *4)))) (-3529 (*1 *2) (-12 (-4 *3 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) (-4 *4 (-1256 *3)) (-5 *2 (-2 (|:| -3914 (-698 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-698 *3)))) (-5 *1 (-358 *3 *4 *5)) (-4 *5 (-418 *3 *4))))) +(-10 -7 (-15 -3529 ((-2 (|:| -3914 (-698 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-698 |#1|))))) (-15 -3574 ((-2 (|:| -3914 (-698 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-698 |#1|))) |#1|))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-3511 (((-112) $) NIL)) (-3115 (((-780)) NIL)) (-1635 (((-920 |#1|) $) NIL) (($ $ (-931)) NIL (|has| (-920 |#1|) (-376)))) (-2604 (((-1202 (-931) (-780)) (-573)) NIL (|has| (-920 |#1|) (-376)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2816 (((-780)) NIL)) (-2800 (((-112) $ $) NIL)) (-1486 (((-780)) NIL (|has| (-920 |#1|) (-376)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-920 |#1|) "failed") $) NIL)) (-2205 (((-920 |#1|) $) NIL)) (-2854 (($ (-1280 (-920 |#1|))) NIL)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-920 |#1|) (-376)))) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) NIL (|has| (-920 |#1|) (-376)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-3731 (($) NIL (|has| (-920 |#1|) (-376)))) (-1708 (((-112) $) NIL (|has| (-920 |#1|) (-376)))) (-2104 (($ $ (-780)) NIL (-2817 (|has| (-920 |#1|) (-146)) (|has| (-920 |#1|) (-376)))) (($ $) NIL (-2817 (|has| (-920 |#1|) (-146)) (|has| (-920 |#1|) (-376))))) (-2696 (((-112) $) NIL)) (-2534 (((-931) $) NIL (|has| (-920 |#1|) (-376))) (((-842 (-931)) $) NIL (-2817 (|has| (-920 |#1|) (-146)) (|has| (-920 |#1|) (-376))))) (-1959 (((-112) $) NIL)) (-4081 (($) NIL (|has| (-920 |#1|) (-376)))) (-3514 (((-112) $) NIL (|has| (-920 |#1|) (-376)))) (-3421 (((-920 |#1|) $) NIL) (($ $ (-931)) NIL (|has| (-920 |#1|) (-376)))) (-1470 (((-3 $ "failed") $) NIL (|has| (-920 |#1|) (-376)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2297 (((-1185 (-920 |#1|)) $) NIL) (((-1185 $) $ (-931)) NIL (|has| (-920 |#1|) (-376)))) (-3589 (((-931) $) NIL (|has| (-920 |#1|) (-376)))) (-2991 (((-1185 (-920 |#1|)) $) NIL (|has| (-920 |#1|) (-376)))) (-2700 (((-1185 (-920 |#1|)) $) NIL (|has| (-920 |#1|) (-376))) (((-3 (-1185 (-920 |#1|)) "failed") $ $) NIL (|has| (-920 |#1|) (-376)))) (-2840 (($ $ (-1185 (-920 |#1|))) NIL (|has| (-920 |#1|) (-376)))) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| (-920 |#1|) (-376)) CONST)) (-2575 (($ (-931)) NIL (|has| (-920 |#1|) (-376)))) (-2772 (((-112) $) NIL)) (-3965 (((-1132) $) NIL)) (-3684 (((-1280 (-653 (-2 (|:| -3082 (-920 |#1|)) (|:| -2575 (-1132)))))) NIL)) (-4046 (((-698 (-920 |#1|))) NIL)) (-2969 (($) NIL (|has| (-920 |#1|) (-376)))) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) NIL (|has| (-920 |#1|) (-376)))) (-4218 (((-427 $) $) NIL)) (-3216 (((-842 (-931))) NIL) (((-931)) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-1637 (((-780) $) NIL (|has| (-920 |#1|) (-376))) (((-3 (-780) "failed") $ $) NIL (-2817 (|has| (-920 |#1|) (-146)) (|has| (-920 |#1|) (-376))))) (-2365 (((-135)) NIL)) (-3904 (($ $ (-780)) NIL (|has| (-920 |#1|) (-376))) (($ $) NIL (|has| (-920 |#1|) (-376)))) (-2565 (((-842 (-931)) $) NIL) (((-931) $) NIL)) (-2984 (((-1185 (-920 |#1|))) NIL)) (-2510 (($) NIL (|has| (-920 |#1|) (-376)))) (-4232 (($) NIL (|has| (-920 |#1|) (-376)))) (-2123 (((-1280 (-920 |#1|)) $) NIL) (((-698 (-920 |#1|)) (-1280 $)) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (|has| (-920 |#1|) (-376)))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) (($ (-920 |#1|)) NIL)) (-4279 (($ $) NIL (|has| (-920 |#1|) (-376))) (((-3 $ "failed") $) NIL (-2817 (|has| (-920 |#1|) (-146)) (|has| (-920 |#1|) (-376))))) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) NIL) (((-1280 $) (-931)) NIL)) (-2516 (((-112) $ $) NIL)) (-4333 (((-112) $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-1629 (($ $) NIL (|has| (-920 |#1|) (-376))) (($ $ (-780)) NIL (|has| (-920 |#1|) (-376)))) (-3609 (($ $ (-780)) NIL (|has| (-920 |#1|) (-376))) (($ $) NIL (|has| (-920 |#1|) (-376)))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL) (($ $ (-920 |#1|)) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ $ (-920 |#1|)) NIL) (($ (-920 |#1|) $) NIL))) +(((-359 |#1| |#2|) (-13 (-336 (-920 |#1|)) (-10 -7 (-15 -3684 ((-1280 (-653 (-2 (|:| -3082 (-920 |#1|)) (|:| -2575 (-1132))))))) (-15 -4046 ((-698 (-920 |#1|)))) (-15 -2816 ((-780))))) (-931) (-931)) (T -359)) +((-3684 (*1 *2) (-12 (-5 *2 (-1280 (-653 (-2 (|:| -3082 (-920 *3)) (|:| -2575 (-1132)))))) (-5 *1 (-359 *3 *4)) (-14 *3 (-931)) (-14 *4 (-931)))) (-4046 (*1 *2) (-12 (-5 *2 (-698 (-920 *3))) (-5 *1 (-359 *3 *4)) (-14 *3 (-931)) (-14 *4 (-931)))) (-2816 (*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-359 *3 *4)) (-14 *3 (-931)) (-14 *4 (-931))))) +(-13 (-336 (-920 |#1|)) (-10 -7 (-15 -3684 ((-1280 (-653 (-2 (|:| -3082 (-920 |#1|)) (|:| -2575 (-1132))))))) (-15 -4046 ((-698 (-920 |#1|)))) (-15 -2816 ((-780))))) +((-2848 (((-112) $ $) 73)) (-1748 (((-112) $) 88)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-3511 (((-112) $) NIL)) (-3115 (((-780)) NIL)) (-1635 ((|#1| $) 106) (($ $ (-931)) 104 (|has| |#1| (-376)))) (-2604 (((-1202 (-931) (-780)) (-573)) 170 (|has| |#1| (-376)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2816 (((-780)) 103)) (-2800 (((-112) $ $) NIL)) (-1486 (((-780)) 187 (|has| |#1| (-376)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) 127)) (-2205 ((|#1| $) 105)) (-2854 (($ (-1280 |#1|)) 71)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-376)))) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) 182 (|has| |#1| (-376)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-3731 (($) 171 (|has| |#1| (-376)))) (-1708 (((-112) $) NIL (|has| |#1| (-376)))) (-2104 (($ $ (-780)) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376)))) (($ $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2696 (((-112) $) NIL)) (-2534 (((-931) $) NIL (|has| |#1| (-376))) (((-842 (-931)) $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1959 (((-112) $) NIL)) (-4081 (($) 113 (|has| |#1| (-376)))) (-3514 (((-112) $) 200 (|has| |#1| (-376)))) (-3421 ((|#1| $) 108) (($ $ (-931)) 107 (|has| |#1| (-376)))) (-1470 (((-3 $ "failed") $) NIL (|has| |#1| (-376)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2297 (((-1185 |#1|) $) 214) (((-1185 $) $ (-931)) NIL (|has| |#1| (-376)))) (-3589 (((-931) $) 148 (|has| |#1| (-376)))) (-2991 (((-1185 |#1|) $) 87 (|has| |#1| (-376)))) (-2700 (((-1185 |#1|) $) 84 (|has| |#1| (-376))) (((-3 (-1185 |#1|) "failed") $ $) 96 (|has| |#1| (-376)))) (-2840 (($ $ (-1185 |#1|)) 83 (|has| |#1| (-376)))) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 218)) (-3816 (($) NIL (|has| |#1| (-376)) CONST)) (-2575 (($ (-931)) 150 (|has| |#1| (-376)))) (-2772 (((-112) $) 123)) (-3965 (((-1132) $) NIL)) (-3684 (((-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132)))))) 97)) (-4046 (((-698 |#1|)) 101)) (-2969 (($) 110 (|has| |#1| (-376)))) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) 173 (|has| |#1| (-376)))) (-4218 (((-427 $) $) NIL)) (-3216 (((-842 (-931))) NIL) (((-931)) 174)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-1637 (((-780) $) NIL (|has| |#1| (-376))) (((-3 (-780) "failed") $ $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2365 (((-135)) NIL)) (-3904 (($ $ (-780)) NIL (|has| |#1| (-376))) (($ $) NIL (|has| |#1| (-376)))) (-2565 (((-842 (-931)) $) NIL) (((-931) $) 75)) (-2984 (((-1185 |#1|)) 175)) (-2510 (($) 147 (|has| |#1| (-376)))) (-4232 (($) NIL (|has| |#1| (-376)))) (-2123 (((-1280 |#1|) $) 121) (((-698 |#1|) (-1280 $)) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (|has| |#1| (-376)))) (-2942 (((-871) $) 140) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) (($ |#1|) 70)) (-4279 (($ $) NIL (|has| |#1| (-376))) (((-3 $ "failed") $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1545 (((-780)) 180 T CONST)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) 197) (((-1280 $) (-931)) 116)) (-2516 (((-112) $ $) NIL)) (-4333 (((-112) $) NIL)) (-2132 (($) 186 T CONST)) (-2144 (($) 161 T CONST)) (-1629 (($ $) 122 (|has| |#1| (-376))) (($ $ (-780)) 114 (|has| |#1| (-376)))) (-3609 (($ $ (-780)) NIL (|has| |#1| (-376))) (($ $) NIL (|has| |#1| (-376)))) (-2981 (((-112) $ $) 208)) (-3103 (($ $ $) 119) (($ $ |#1|) 120)) (-3093 (($ $) 202) (($ $ $) 206)) (-3077 (($ $ $) 204)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) 153)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 211) (($ $ $) 164) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 118))) +(((-360 |#1| |#2|) (-13 (-336 |#1|) (-10 -7 (-15 -3684 ((-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))))) (-15 -4046 ((-698 |#1|))) (-15 -2816 ((-780))))) (-357) (-3 (-1185 |#1|) (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))))) (T -360)) +((-3684 (*1 *2) (-12 (-5 *2 (-1280 (-653 (-2 (|:| -3082 *3) (|:| -2575 (-1132)))))) (-5 *1 (-360 *3 *4)) (-4 *3 (-357)) (-14 *4 (-3 (-1185 *3) *2)))) (-4046 (*1 *2) (-12 (-5 *2 (-698 *3)) (-5 *1 (-360 *3 *4)) (-4 *3 (-357)) (-14 *4 (-3 (-1185 *3) (-1280 (-653 (-2 (|:| -3082 *3) (|:| -2575 (-1132))))))))) (-2816 (*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-360 *3 *4)) (-4 *3 (-357)) (-14 *4 (-3 (-1185 *3) (-1280 (-653 (-2 (|:| -3082 *3) (|:| -2575 (-1132)))))))))) +(-13 (-336 |#1|) (-10 -7 (-15 -3684 ((-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))))) (-15 -4046 ((-698 |#1|))) (-15 -2816 ((-780))))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-3511 (((-112) $) NIL)) (-3115 (((-780)) NIL)) (-1635 ((|#1| $) NIL) (($ $ (-931)) NIL (|has| |#1| (-376)))) (-2604 (((-1202 (-931) (-780)) (-573)) NIL (|has| |#1| (-376)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2816 (((-780)) NIL)) (-2800 (((-112) $ $) NIL)) (-1486 (((-780)) NIL (|has| |#1| (-376)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2205 ((|#1| $) NIL)) (-2854 (($ (-1280 |#1|)) NIL)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-376)))) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) NIL (|has| |#1| (-376)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-3731 (($) NIL (|has| |#1| (-376)))) (-1708 (((-112) $) NIL (|has| |#1| (-376)))) (-2104 (($ $ (-780)) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376)))) (($ $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2696 (((-112) $) NIL)) (-2534 (((-931) $) NIL (|has| |#1| (-376))) (((-842 (-931)) $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1959 (((-112) $) NIL)) (-4081 (($) NIL (|has| |#1| (-376)))) (-3514 (((-112) $) NIL (|has| |#1| (-376)))) (-3421 ((|#1| $) NIL) (($ $ (-931)) NIL (|has| |#1| (-376)))) (-1470 (((-3 $ "failed") $) NIL (|has| |#1| (-376)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2297 (((-1185 |#1|) $) NIL) (((-1185 $) $ (-931)) NIL (|has| |#1| (-376)))) (-3589 (((-931) $) NIL (|has| |#1| (-376)))) (-2991 (((-1185 |#1|) $) NIL (|has| |#1| (-376)))) (-2700 (((-1185 |#1|) $) NIL (|has| |#1| (-376))) (((-3 (-1185 |#1|) "failed") $ $) NIL (|has| |#1| (-376)))) (-2840 (($ $ (-1185 |#1|)) NIL (|has| |#1| (-376)))) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| |#1| (-376)) CONST)) (-2575 (($ (-931)) NIL (|has| |#1| (-376)))) (-2772 (((-112) $) NIL)) (-3965 (((-1132) $) NIL)) (-3684 (((-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132)))))) NIL)) (-4046 (((-698 |#1|)) NIL)) (-2969 (($) NIL (|has| |#1| (-376)))) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) NIL (|has| |#1| (-376)))) (-4218 (((-427 $) $) NIL)) (-3216 (((-842 (-931))) NIL) (((-931)) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-1637 (((-780) $) NIL (|has| |#1| (-376))) (((-3 (-780) "failed") $ $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2365 (((-135)) NIL)) (-3904 (($ $ (-780)) NIL (|has| |#1| (-376))) (($ $) NIL (|has| |#1| (-376)))) (-2565 (((-842 (-931)) $) NIL) (((-931) $) NIL)) (-2984 (((-1185 |#1|)) NIL)) (-2510 (($) NIL (|has| |#1| (-376)))) (-4232 (($) NIL (|has| |#1| (-376)))) (-2123 (((-1280 |#1|) $) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (|has| |#1| (-376)))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) (($ |#1|) NIL)) (-4279 (($ $) NIL (|has| |#1| (-376))) (((-3 $ "failed") $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) NIL) (((-1280 $) (-931)) NIL)) (-2516 (((-112) $ $) NIL)) (-4333 (((-112) $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-1629 (($ $) NIL (|has| |#1| (-376))) (($ $ (-780)) NIL (|has| |#1| (-376)))) (-3609 (($ $ (-780)) NIL (|has| |#1| (-376))) (($ $) NIL (|has| |#1| (-376)))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-361 |#1| |#2|) (-13 (-336 |#1|) (-10 -7 (-15 -3684 ((-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))))) (-15 -4046 ((-698 |#1|))) (-15 -2816 ((-780))))) (-357) (-931)) (T -361)) +((-3684 (*1 *2) (-12 (-5 *2 (-1280 (-653 (-2 (|:| -3082 *3) (|:| -2575 (-1132)))))) (-5 *1 (-361 *3 *4)) (-4 *3 (-357)) (-14 *4 (-931)))) (-4046 (*1 *2) (-12 (-5 *2 (-698 *3)) (-5 *1 (-361 *3 *4)) (-4 *3 (-357)) (-14 *4 (-931)))) (-2816 (*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-361 *3 *4)) (-4 *3 (-357)) (-14 *4 (-931))))) +(-13 (-336 |#1|) (-10 -7 (-15 -3684 ((-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))))) (-15 -4046 ((-698 |#1|))) (-15 -2816 ((-780))))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-3511 (((-112) $) NIL)) (-3115 (((-780)) NIL)) (-1635 (((-920 |#1|) $) NIL) (($ $ (-931)) NIL (|has| (-920 |#1|) (-376)))) (-2604 (((-1202 (-931) (-780)) (-573)) NIL (|has| (-920 |#1|) (-376)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-1486 (((-780)) NIL (|has| (-920 |#1|) (-376)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-920 |#1|) "failed") $) NIL)) (-2205 (((-920 |#1|) $) NIL)) (-2854 (($ (-1280 (-920 |#1|))) NIL)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-920 |#1|) (-376)))) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) NIL (|has| (-920 |#1|) (-376)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-3731 (($) NIL (|has| (-920 |#1|) (-376)))) (-1708 (((-112) $) NIL (|has| (-920 |#1|) (-376)))) (-2104 (($ $ (-780)) NIL (-2817 (|has| (-920 |#1|) (-146)) (|has| (-920 |#1|) (-376)))) (($ $) NIL (-2817 (|has| (-920 |#1|) (-146)) (|has| (-920 |#1|) (-376))))) (-2696 (((-112) $) NIL)) (-2534 (((-931) $) NIL (|has| (-920 |#1|) (-376))) (((-842 (-931)) $) NIL (-2817 (|has| (-920 |#1|) (-146)) (|has| (-920 |#1|) (-376))))) (-1959 (((-112) $) NIL)) (-4081 (($) NIL (|has| (-920 |#1|) (-376)))) (-3514 (((-112) $) NIL (|has| (-920 |#1|) (-376)))) (-3421 (((-920 |#1|) $) NIL) (($ $ (-931)) NIL (|has| (-920 |#1|) (-376)))) (-1470 (((-3 $ "failed") $) NIL (|has| (-920 |#1|) (-376)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2297 (((-1185 (-920 |#1|)) $) NIL) (((-1185 $) $ (-931)) NIL (|has| (-920 |#1|) (-376)))) (-3589 (((-931) $) NIL (|has| (-920 |#1|) (-376)))) (-2991 (((-1185 (-920 |#1|)) $) NIL (|has| (-920 |#1|) (-376)))) (-2700 (((-1185 (-920 |#1|)) $) NIL (|has| (-920 |#1|) (-376))) (((-3 (-1185 (-920 |#1|)) "failed") $ $) NIL (|has| (-920 |#1|) (-376)))) (-2840 (($ $ (-1185 (-920 |#1|))) NIL (|has| (-920 |#1|) (-376)))) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| (-920 |#1|) (-376)) CONST)) (-2575 (($ (-931)) NIL (|has| (-920 |#1|) (-376)))) (-2772 (((-112) $) NIL)) (-3965 (((-1132) $) NIL)) (-2969 (($) NIL (|has| (-920 |#1|) (-376)))) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) NIL (|has| (-920 |#1|) (-376)))) (-4218 (((-427 $) $) NIL)) (-3216 (((-842 (-931))) NIL) (((-931)) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-1637 (((-780) $) NIL (|has| (-920 |#1|) (-376))) (((-3 (-780) "failed") $ $) NIL (-2817 (|has| (-920 |#1|) (-146)) (|has| (-920 |#1|) (-376))))) (-2365 (((-135)) NIL)) (-3904 (($ $ (-780)) NIL (|has| (-920 |#1|) (-376))) (($ $) NIL (|has| (-920 |#1|) (-376)))) (-2565 (((-842 (-931)) $) NIL) (((-931) $) NIL)) (-2984 (((-1185 (-920 |#1|))) NIL)) (-2510 (($) NIL (|has| (-920 |#1|) (-376)))) (-4232 (($) NIL (|has| (-920 |#1|) (-376)))) (-2123 (((-1280 (-920 |#1|)) $) NIL) (((-698 (-920 |#1|)) (-1280 $)) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (|has| (-920 |#1|) (-376)))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) (($ (-920 |#1|)) NIL)) (-4279 (($ $) NIL (|has| (-920 |#1|) (-376))) (((-3 $ "failed") $) NIL (-2817 (|has| (-920 |#1|) (-146)) (|has| (-920 |#1|) (-376))))) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) NIL) (((-1280 $) (-931)) NIL)) (-2516 (((-112) $ $) NIL)) (-4333 (((-112) $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-1629 (($ $) NIL (|has| (-920 |#1|) (-376))) (($ $ (-780)) NIL (|has| (-920 |#1|) (-376)))) (-3609 (($ $ (-780)) NIL (|has| (-920 |#1|) (-376))) (($ $) NIL (|has| (-920 |#1|) (-376)))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL) (($ $ (-920 |#1|)) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ $ (-920 |#1|)) NIL) (($ (-920 |#1|) $) NIL))) +(((-362 |#1| |#2|) (-336 (-920 |#1|)) (-931) (-931)) (T -362)) +NIL +(-336 (-920 |#1|)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-3511 (((-112) $) NIL)) (-3115 (((-780)) NIL)) (-1635 ((|#1| $) NIL) (($ $ (-931)) NIL (|has| |#1| (-376)))) (-2604 (((-1202 (-931) (-780)) (-573)) 129 (|has| |#1| (-376)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-1486 (((-780)) 155 (|has| |#1| (-376)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) 103)) (-2205 ((|#1| $) 100)) (-2854 (($ (-1280 |#1|)) 95)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-376)))) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) 92 (|has| |#1| (-376)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-3731 (($) 51 (|has| |#1| (-376)))) (-1708 (((-112) $) NIL (|has| |#1| (-376)))) (-2104 (($ $ (-780)) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376)))) (($ $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2696 (((-112) $) NIL)) (-2534 (((-931) $) NIL (|has| |#1| (-376))) (((-842 (-931)) $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1959 (((-112) $) NIL)) (-4081 (($) 130 (|has| |#1| (-376)))) (-3514 (((-112) $) 84 (|has| |#1| (-376)))) (-3421 ((|#1| $) 47) (($ $ (-931)) 52 (|has| |#1| (-376)))) (-1470 (((-3 $ "failed") $) NIL (|has| |#1| (-376)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2297 (((-1185 |#1|) $) 75) (((-1185 $) $ (-931)) NIL (|has| |#1| (-376)))) (-3589 (((-931) $) 107 (|has| |#1| (-376)))) (-2991 (((-1185 |#1|) $) NIL (|has| |#1| (-376)))) (-2700 (((-1185 |#1|) $) NIL (|has| |#1| (-376))) (((-3 (-1185 |#1|) "failed") $ $) NIL (|has| |#1| (-376)))) (-2840 (($ $ (-1185 |#1|)) NIL (|has| |#1| (-376)))) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| |#1| (-376)) CONST)) (-2575 (($ (-931)) 105 (|has| |#1| (-376)))) (-2772 (((-112) $) 157)) (-3965 (((-1132) $) NIL)) (-2969 (($) 44 (|has| |#1| (-376)))) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) 124 (|has| |#1| (-376)))) (-4218 (((-427 $) $) NIL)) (-3216 (((-842 (-931))) NIL) (((-931)) 154)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-1637 (((-780) $) NIL (|has| |#1| (-376))) (((-3 (-780) "failed") $ $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2365 (((-135)) NIL)) (-3904 (($ $ (-780)) NIL (|has| |#1| (-376))) (($ $) NIL (|has| |#1| (-376)))) (-2565 (((-842 (-931)) $) NIL) (((-931) $) 67)) (-2984 (((-1185 |#1|)) 98)) (-2510 (($) 135 (|has| |#1| (-376)))) (-4232 (($) NIL (|has| |#1| (-376)))) (-2123 (((-1280 |#1|) $) 63) (((-698 |#1|) (-1280 $)) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (|has| |#1| (-376)))) (-2942 (((-871) $) 153) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) (($ |#1|) 97)) (-4279 (($ $) NIL (|has| |#1| (-376))) (((-3 $ "failed") $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1545 (((-780)) 159 T CONST)) (-3507 (((-112) $ $) 161)) (-3914 (((-1280 $)) 119) (((-1280 $) (-931)) 58)) (-2516 (((-112) $ $) NIL)) (-4333 (((-112) $) NIL)) (-2132 (($) 121 T CONST)) (-2144 (($) 40 T CONST)) (-1629 (($ $) 78 (|has| |#1| (-376))) (($ $ (-780)) NIL (|has| |#1| (-376)))) (-3609 (($ $ (-780)) NIL (|has| |#1| (-376))) (($ $) NIL (|has| |#1| (-376)))) (-2981 (((-112) $ $) 117)) (-3103 (($ $ $) 109) (($ $ |#1|) 110)) (-3093 (($ $) 90) (($ $ $) 115)) (-3077 (($ $ $) 113)) (** (($ $ (-931)) NIL) (($ $ (-780)) 53) (($ $ (-573)) 138)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 88) (($ $ $) 65) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 86))) +(((-363 |#1| |#2|) (-336 |#1|) (-357) (-1185 |#1|)) (T -363)) +NIL +(-336 |#1|) +((-4267 ((|#1| (-1185 |#2|)) 59))) +(((-364 |#1| |#2|) (-10 -7 (-15 -4267 (|#1| (-1185 |#2|)))) (-13 (-411) (-10 -7 (-15 -2942 (|#1| |#2|)) (-15 -3589 ((-931) |#1|)) (-15 -3914 ((-1280 |#1|) (-931))) (-15 -1629 (|#1| |#1|)))) (-357)) (T -364)) +((-4267 (*1 *2 *3) (-12 (-5 *3 (-1185 *4)) (-4 *4 (-357)) (-4 *2 (-13 (-411) (-10 -7 (-15 -2942 (*2 *4)) (-15 -3589 ((-931) *2)) (-15 -3914 ((-1280 *2) (-931))) (-15 -1629 (*2 *2))))) (-5 *1 (-364 *2 *4))))) +(-10 -7 (-15 -4267 (|#1| (-1185 |#2|)))) +((-3433 (((-968 (-1185 |#1|)) (-1185 |#1|)) 49)) (-2819 (((-1185 |#1|) (-931) (-931)) 154) (((-1185 |#1|) (-931)) 150)) (-1708 (((-112) (-1185 |#1|)) 107)) (-1361 (((-931) (-931)) 85)) (-4283 (((-931) (-931)) 92)) (-2262 (((-931) (-931)) 83)) (-3514 (((-112) (-1185 |#1|)) 111)) (-2321 (((-3 (-1185 |#1|) "failed") (-1185 |#1|)) 135)) (-3307 (((-3 (-1185 |#1|) "failed") (-1185 |#1|)) 140)) (-3126 (((-3 (-1185 |#1|) "failed") (-1185 |#1|)) 139)) (-3532 (((-3 (-1185 |#1|) "failed") (-1185 |#1|)) 138)) (-1622 (((-3 (-1185 |#1|) "failed") (-1185 |#1|)) 131)) (-2545 (((-1185 |#1|) (-1185 |#1|)) 71)) (-1477 (((-1185 |#1|) (-931)) 145)) (-3215 (((-1185 |#1|) (-931)) 148)) (-3656 (((-1185 |#1|) (-931)) 147)) (-3410 (((-1185 |#1|) (-931)) 146)) (-3356 (((-1185 |#1|) (-931)) 143))) +(((-365 |#1|) (-10 -7 (-15 -1708 ((-112) (-1185 |#1|))) (-15 -3514 ((-112) (-1185 |#1|))) (-15 -2262 ((-931) (-931))) (-15 -1361 ((-931) (-931))) (-15 -4283 ((-931) (-931))) (-15 -3356 ((-1185 |#1|) (-931))) (-15 -1477 ((-1185 |#1|) (-931))) (-15 -3410 ((-1185 |#1|) (-931))) (-15 -3656 ((-1185 |#1|) (-931))) (-15 -3215 ((-1185 |#1|) (-931))) (-15 -1622 ((-3 (-1185 |#1|) "failed") (-1185 |#1|))) (-15 -2321 ((-3 (-1185 |#1|) "failed") (-1185 |#1|))) (-15 -3532 ((-3 (-1185 |#1|) "failed") (-1185 |#1|))) (-15 -3126 ((-3 (-1185 |#1|) "failed") (-1185 |#1|))) (-15 -3307 ((-3 (-1185 |#1|) "failed") (-1185 |#1|))) (-15 -2819 ((-1185 |#1|) (-931))) (-15 -2819 ((-1185 |#1|) (-931) (-931))) (-15 -2545 ((-1185 |#1|) (-1185 |#1|))) (-15 -3433 ((-968 (-1185 |#1|)) (-1185 |#1|)))) (-357)) (T -365)) +((-3433 (*1 *2 *3) (-12 (-4 *4 (-357)) (-5 *2 (-968 (-1185 *4))) (-5 *1 (-365 *4)) (-5 *3 (-1185 *4)))) (-2545 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-357)) (-5 *1 (-365 *3)))) (-2819 (*1 *2 *3 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-365 *4)) (-4 *4 (-357)))) (-2819 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-365 *4)) (-4 *4 (-357)))) (-3307 (*1 *2 *2) (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-357)) (-5 *1 (-365 *3)))) (-3126 (*1 *2 *2) (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-357)) (-5 *1 (-365 *3)))) (-3532 (*1 *2 *2) (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-357)) (-5 *1 (-365 *3)))) (-2321 (*1 *2 *2) (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-357)) (-5 *1 (-365 *3)))) (-1622 (*1 *2 *2) (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-357)) (-5 *1 (-365 *3)))) (-3215 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-365 *4)) (-4 *4 (-357)))) (-3656 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-365 *4)) (-4 *4 (-357)))) (-3410 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-365 *4)) (-4 *4 (-357)))) (-1477 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-365 *4)) (-4 *4 (-357)))) (-3356 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-365 *4)) (-4 *4 (-357)))) (-4283 (*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-365 *3)) (-4 *3 (-357)))) (-1361 (*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-365 *3)) (-4 *3 (-357)))) (-2262 (*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-365 *3)) (-4 *3 (-357)))) (-3514 (*1 *2 *3) (-12 (-5 *3 (-1185 *4)) (-4 *4 (-357)) (-5 *2 (-112)) (-5 *1 (-365 *4)))) (-1708 (*1 *2 *3) (-12 (-5 *3 (-1185 *4)) (-4 *4 (-357)) (-5 *2 (-112)) (-5 *1 (-365 *4))))) +(-10 -7 (-15 -1708 ((-112) (-1185 |#1|))) (-15 -3514 ((-112) (-1185 |#1|))) (-15 -2262 ((-931) (-931))) (-15 -1361 ((-931) (-931))) (-15 -4283 ((-931) (-931))) (-15 -3356 ((-1185 |#1|) (-931))) (-15 -1477 ((-1185 |#1|) (-931))) (-15 -3410 ((-1185 |#1|) (-931))) (-15 -3656 ((-1185 |#1|) (-931))) (-15 -3215 ((-1185 |#1|) (-931))) (-15 -1622 ((-3 (-1185 |#1|) "failed") (-1185 |#1|))) (-15 -2321 ((-3 (-1185 |#1|) "failed") (-1185 |#1|))) (-15 -3532 ((-3 (-1185 |#1|) "failed") (-1185 |#1|))) (-15 -3126 ((-3 (-1185 |#1|) "failed") (-1185 |#1|))) (-15 -3307 ((-3 (-1185 |#1|) "failed") (-1185 |#1|))) (-15 -2819 ((-1185 |#1|) (-931))) (-15 -2819 ((-1185 |#1|) (-931) (-931))) (-15 -2545 ((-1185 |#1|) (-1185 |#1|))) (-15 -3433 ((-968 (-1185 |#1|)) (-1185 |#1|)))) +((-3711 (((-3 (-653 |#3|) "failed") (-653 |#3|) |#3|) 38))) +(((-366 |#1| |#2| |#3|) (-10 -7 (-15 -3711 ((-3 (-653 |#3|) "failed") (-653 |#3|) |#3|))) (-357) (-1256 |#1|) (-1256 |#2|)) (T -366)) +((-3711 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-653 *3)) (-4 *3 (-1256 *5)) (-4 *5 (-1256 *4)) (-4 *4 (-357)) (-5 *1 (-366 *4 *5 *3))))) +(-10 -7 (-15 -3711 ((-3 (-653 |#3|) "failed") (-653 |#3|) |#3|))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-3511 (((-112) $) NIL)) (-3115 (((-780)) NIL)) (-1635 ((|#1| $) NIL) (($ $ (-931)) NIL (|has| |#1| (-376)))) (-2604 (((-1202 (-931) (-780)) (-573)) NIL (|has| |#1| (-376)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-1486 (((-780)) NIL (|has| |#1| (-376)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2205 ((|#1| $) NIL)) (-2854 (($ (-1280 |#1|)) NIL)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-376)))) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) NIL (|has| |#1| (-376)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-3731 (($) NIL (|has| |#1| (-376)))) (-1708 (((-112) $) NIL (|has| |#1| (-376)))) (-2104 (($ $ (-780)) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376)))) (($ $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2696 (((-112) $) NIL)) (-2534 (((-931) $) NIL (|has| |#1| (-376))) (((-842 (-931)) $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1959 (((-112) $) NIL)) (-4081 (($) NIL (|has| |#1| (-376)))) (-3514 (((-112) $) NIL (|has| |#1| (-376)))) (-3421 ((|#1| $) NIL) (($ $ (-931)) NIL (|has| |#1| (-376)))) (-1470 (((-3 $ "failed") $) NIL (|has| |#1| (-376)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2297 (((-1185 |#1|) $) NIL) (((-1185 $) $ (-931)) NIL (|has| |#1| (-376)))) (-3589 (((-931) $) NIL (|has| |#1| (-376)))) (-2991 (((-1185 |#1|) $) NIL (|has| |#1| (-376)))) (-2700 (((-1185 |#1|) $) NIL (|has| |#1| (-376))) (((-3 (-1185 |#1|) "failed") $ $) NIL (|has| |#1| (-376)))) (-2840 (($ $ (-1185 |#1|)) NIL (|has| |#1| (-376)))) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| |#1| (-376)) CONST)) (-2575 (($ (-931)) NIL (|has| |#1| (-376)))) (-2772 (((-112) $) NIL)) (-3965 (((-1132) $) NIL)) (-2969 (($) NIL (|has| |#1| (-376)))) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) NIL (|has| |#1| (-376)))) (-4218 (((-427 $) $) NIL)) (-3216 (((-842 (-931))) NIL) (((-931)) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-1637 (((-780) $) NIL (|has| |#1| (-376))) (((-3 (-780) "failed") $ $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2365 (((-135)) NIL)) (-3904 (($ $ (-780)) NIL (|has| |#1| (-376))) (($ $) NIL (|has| |#1| (-376)))) (-2565 (((-842 (-931)) $) NIL) (((-931) $) NIL)) (-2984 (((-1185 |#1|)) NIL)) (-2510 (($) NIL (|has| |#1| (-376)))) (-4232 (($) NIL (|has| |#1| (-376)))) (-2123 (((-1280 |#1|) $) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (|has| |#1| (-376)))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) (($ |#1|) NIL)) (-4279 (($ $) NIL (|has| |#1| (-376))) (((-3 $ "failed") $) NIL (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) NIL) (((-1280 $) (-931)) NIL)) (-2516 (((-112) $ $) NIL)) (-4333 (((-112) $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-1629 (($ $) NIL (|has| |#1| (-376))) (($ $ (-780)) NIL (|has| |#1| (-376)))) (-3609 (($ $ (-780)) NIL (|has| |#1| (-376))) (($ $) NIL (|has| |#1| (-376)))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-367 |#1| |#2|) (-336 |#1|) (-357) (-931)) (T -367)) +NIL +(-336 |#1|) +((-3483 (((-112) (-653 (-962 |#1|))) 41)) (-3207 (((-653 (-962 |#1|)) (-653 (-962 |#1|))) 53)) (-1890 (((-3 (-653 (-962 |#1|)) "failed") (-653 (-962 |#1|))) 48))) +(((-368 |#1| |#2|) (-10 -7 (-15 -3483 ((-112) (-653 (-962 |#1|)))) (-15 -1890 ((-3 (-653 (-962 |#1|)) "failed") (-653 (-962 |#1|)))) (-15 -3207 ((-653 (-962 |#1|)) (-653 (-962 |#1|))))) (-461) (-653 (-1189))) (T -368)) +((-3207 (*1 *2 *2) (-12 (-5 *2 (-653 (-962 *3))) (-4 *3 (-461)) (-5 *1 (-368 *3 *4)) (-14 *4 (-653 (-1189))))) (-1890 (*1 *2 *2) (|partial| -12 (-5 *2 (-653 (-962 *3))) (-4 *3 (-461)) (-5 *1 (-368 *3 *4)) (-14 *4 (-653 (-1189))))) (-3483 (*1 *2 *3) (-12 (-5 *3 (-653 (-962 *4))) (-4 *4 (-461)) (-5 *2 (-112)) (-5 *1 (-368 *4 *5)) (-14 *5 (-653 (-1189)))))) +(-10 -7 (-15 -3483 ((-112) (-653 (-962 |#1|)))) (-15 -1890 ((-3 (-653 (-962 |#1|)) "failed") (-653 (-962 |#1|)))) (-15 -3207 ((-653 (-962 |#1|)) (-653 (-962 |#1|))))) +((-2848 (((-112) $ $) NIL)) (-1486 (((-780) $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2205 ((|#1| $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-1959 (((-112) $) 17)) (-2841 ((|#1| $ (-573)) NIL)) (-3884 (((-573) $ (-573)) NIL)) (-1911 (($ (-1 |#1| |#1|) $) 34)) (-3584 (($ (-1 (-573) (-573)) $) 26)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 28)) (-3965 (((-1132) $) NIL)) (-1687 (((-653 (-2 (|:| |gen| |#1|) (|:| -1608 (-573)))) $) 30)) (-3204 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-2942 (((-871) $) 40) (($ |#1|) NIL)) (-3507 (((-112) $ $) NIL)) (-2144 (($) 11 T CONST)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL) (($ |#1| (-573)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) +(((-369 |#1|) (-13 (-482) (-1050 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-573))) (-15 -1486 ((-780) $)) (-15 -3884 ((-573) $ (-573))) (-15 -2841 (|#1| $ (-573))) (-15 -3584 ($ (-1 (-573) (-573)) $)) (-15 -1911 ($ (-1 |#1| |#1|) $)) (-15 -1687 ((-653 (-2 (|:| |gen| |#1|) (|:| -1608 (-573)))) $)))) (-1112)) (T -369)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-369 *2)) (-4 *2 (-1112)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-369 *2)) (-4 *2 (-1112)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-573)) (-5 *1 (-369 *2)) (-4 *2 (-1112)))) (-1486 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-369 *3)) (-4 *3 (-1112)))) (-3884 (*1 *2 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-369 *3)) (-4 *3 (-1112)))) (-2841 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-5 *1 (-369 *2)) (-4 *2 (-1112)))) (-3584 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-573) (-573))) (-5 *1 (-369 *3)) (-4 *3 (-1112)))) (-1911 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1112)) (-5 *1 (-369 *3)))) (-1687 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| |gen| *3) (|:| -1608 (-573))))) (-5 *1 (-369 *3)) (-4 *3 (-1112))))) +(-13 (-482) (-1050 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-573))) (-15 -1486 ((-780) $)) (-15 -3884 ((-573) $ (-573))) (-15 -2841 (|#1| $ (-573))) (-15 -3584 ($ (-1 (-573) (-573)) $)) (-15 -1911 ($ (-1 |#1| |#1|) $)) (-15 -1687 ((-653 (-2 (|:| |gen| |#1|) (|:| -1608 (-573)))) $)))) +((-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 13)) (-2456 (($ $) 14)) (-2427 (((-427 $) $) 34)) (-2696 (((-112) $) 30)) (-1323 (($ $) 19)) (-2872 (($ $ $) 25) (($ (-653 $)) NIL)) (-4218 (((-427 $) $) 35)) (-2837 (((-3 $ "failed") $ $) 24)) (-2163 (((-780) $) 28)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 39)) (-2516 (((-112) $ $) 16)) (-3103 (($ $ $) 37))) +(((-370 |#1|) (-10 -8 (-15 -3103 (|#1| |#1| |#1|)) (-15 -1323 (|#1| |#1|)) (-15 -2696 ((-112) |#1|)) (-15 -2427 ((-427 |#1|) |#1|)) (-15 -4218 ((-427 |#1|) |#1|)) (-15 -1405 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -2163 ((-780) |#1|)) (-15 -2872 (|#1| (-653 |#1|))) (-15 -2872 (|#1| |#1| |#1|)) (-15 -2516 ((-112) |#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -4359 ((-2 (|:| -1642 |#1|) (|:| -4442 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#1|))) (-371)) (T -370)) +NIL +(-10 -8 (-15 -3103 (|#1| |#1| |#1|)) (-15 -1323 (|#1| |#1|)) (-15 -2696 ((-112) |#1|)) (-15 -2427 ((-427 |#1|) |#1|)) (-15 -4218 ((-427 |#1|) |#1|)) (-15 -1405 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -2163 ((-780) |#1|)) (-15 -2872 (|#1| (-653 |#1|))) (-15 -2872 (|#1| |#1| |#1|)) (-15 -2516 ((-112) |#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -4359 ((-2 (|:| -1642 |#1|) (|:| -4442 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-2983 (((-3 $ "failed") $ $) 20)) (-4285 (($ $) 81)) (-2427 (((-427 $) $) 80)) (-2800 (((-112) $ $) 65)) (-2579 (($) 18 T CONST)) (-2784 (($ $ $) 61)) (-2232 (((-3 $ "failed") $) 37)) (-2796 (($ $ $) 62)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 57)) (-2696 (((-112) $) 79)) (-1959 (((-112) $) 35)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 58)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-1323 (($ $) 78)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-4218 (((-427 $) $) 82)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 56)) (-2163 (((-780) $) 64)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 63)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49) (($ (-416 (-573))) 74)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ $) 73)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 77)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 (-573))) 76) (($ (-416 (-573)) $) 75))) +(((-371) (-141)) (T -371)) +((-3103 (*1 *1 *1 *1) (-4 *1 (-371)))) +(-13 (-314) (-1234) (-248) (-10 -8 (-15 -3103 ($ $ $)) (-6 -4453) (-6 -4447))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-625 #0#) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-248) . T) ((-297) . T) ((-314) . T) ((-461) . T) ((-565) . T) ((-655 #0#) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-726 #0#) . T) ((-726 $) . T) ((-735) . T) ((-930) . T) ((-1063 #0#) . T) ((-1063 $) . T) ((-1068 #0#) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1234) . T)) +((-2848 (((-112) $ $) 7)) (-4288 ((|#2| $ |#2|) 14)) (-2169 (($ $ (-1171)) 19)) (-4188 ((|#2| $) 15)) (-1674 (($ |#1|) 21) (($ |#1| (-1171)) 20)) (-2031 ((|#1| $) 17)) (-3180 (((-1171) $) 10)) (-4175 (((-1171) $) 16)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-1981 (($ $) 18)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) +(((-372 |#1| |#2|) (-141) (-1112) (-1112)) (T -372)) +((-1674 (*1 *1 *2) (-12 (-4 *1 (-372 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112)))) (-1674 (*1 *1 *2 *3) (-12 (-5 *3 (-1171)) (-4 *1 (-372 *2 *4)) (-4 *2 (-1112)) (-4 *4 (-1112)))) (-2169 (*1 *1 *1 *2) (-12 (-5 *2 (-1171)) (-4 *1 (-372 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)))) (-1981 (*1 *1 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112)))) (-2031 (*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1112)) (-4 *2 (-1112)))) (-4175 (*1 *2 *1) (-12 (-4 *1 (-372 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-5 *2 (-1171)))) (-4188 (*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1112)))) (-4288 (*1 *2 *1 *2) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1112))))) +(-13 (-1112) (-10 -8 (-15 -1674 ($ |t#1|)) (-15 -1674 ($ |t#1| (-1171))) (-15 -2169 ($ $ (-1171))) (-15 -1981 ($ $)) (-15 -2031 (|t#1| $)) (-15 -4175 ((-1171) $)) (-15 -4188 (|t#2| $)) (-15 -4288 (|t#2| $ |t#2|)))) +(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) +((-2848 (((-112) $ $) NIL)) (-4288 ((|#1| $ |#1|) 31)) (-2169 (($ $ (-1171)) 23)) (-1737 (((-3 |#1| "failed") $) 30)) (-4188 ((|#1| $) 28)) (-1674 (($ (-397)) 22) (($ (-397) (-1171)) 21)) (-2031 (((-397) $) 25)) (-3180 (((-1171) $) NIL)) (-4175 (((-1171) $) 26)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 20)) (-1981 (($ $) 24)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 19))) +(((-373 |#1|) (-13 (-372 (-397) |#1|) (-10 -8 (-15 -1737 ((-3 |#1| "failed") $)))) (-1112)) (T -373)) +((-1737 (*1 *2 *1) (|partial| -12 (-5 *1 (-373 *2)) (-4 *2 (-1112))))) +(-13 (-372 (-397) |#1|) (-10 -8 (-15 -1737 ((-3 |#1| "failed") $)))) +((-3119 (((-1280 (-698 |#2|)) (-1280 $)) 67)) (-1454 (((-698 |#2|) (-1280 $)) 139)) (-1390 ((|#2| $) 36)) (-3612 (((-698 |#2|) $ (-1280 $)) 142)) (-1546 (((-3 $ "failed") $) 89)) (-3729 ((|#2| $) 39)) (-3397 (((-1185 |#2|) $) 98)) (-4053 ((|#2| (-1280 $)) 122)) (-2650 (((-1185 |#2|) $) 32)) (-2492 (((-112)) 116)) (-2854 (($ (-1280 |#2|) (-1280 $)) 132)) (-2232 (((-3 $ "failed") $) 93)) (-4275 (((-112)) 111)) (-1922 (((-112)) 106)) (-1565 (((-112)) 58)) (-2582 (((-698 |#2|) (-1280 $)) 137)) (-3619 ((|#2| $) 35)) (-1729 (((-698 |#2|) $ (-1280 $)) 141)) (-2780 (((-3 $ "failed") $) 87)) (-3420 ((|#2| $) 38)) (-2000 (((-1185 |#2|) $) 97)) (-1912 ((|#2| (-1280 $)) 120)) (-3242 (((-1185 |#2|) $) 30)) (-3455 (((-112)) 115)) (-2509 (((-112)) 108)) (-3313 (((-112)) 56)) (-4293 (((-112)) 103)) (-3209 (((-112)) 117)) (-2123 (((-1280 |#2|) $ (-1280 $)) NIL) (((-698 |#2|) (-1280 $) (-1280 $)) 128)) (-2774 (((-112)) 113)) (-2649 (((-653 (-1280 |#2|))) 102)) (-2661 (((-112)) 114)) (-1469 (((-112)) 112)) (-4243 (((-112)) 51)) (-2744 (((-112)) 118))) +(((-374 |#1| |#2|) (-10 -8 (-15 -3397 ((-1185 |#2|) |#1|)) (-15 -2000 ((-1185 |#2|) |#1|)) (-15 -2649 ((-653 (-1280 |#2|)))) (-15 -1546 ((-3 |#1| "failed") |#1|)) (-15 -2780 ((-3 |#1| "failed") |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1|)) (-15 -1922 ((-112))) (-15 -2509 ((-112))) (-15 -4275 ((-112))) (-15 -3313 ((-112))) (-15 -1565 ((-112))) (-15 -4293 ((-112))) (-15 -2744 ((-112))) (-15 -3209 ((-112))) (-15 -2492 ((-112))) (-15 -3455 ((-112))) (-15 -4243 ((-112))) (-15 -2661 ((-112))) (-15 -1469 ((-112))) (-15 -2774 ((-112))) (-15 -2650 ((-1185 |#2|) |#1|)) (-15 -3242 ((-1185 |#2|) |#1|)) (-15 -1454 ((-698 |#2|) (-1280 |#1|))) (-15 -2582 ((-698 |#2|) (-1280 |#1|))) (-15 -4053 (|#2| (-1280 |#1|))) (-15 -1912 (|#2| (-1280 |#1|))) (-15 -2854 (|#1| (-1280 |#2|) (-1280 |#1|))) (-15 -2123 ((-698 |#2|) (-1280 |#1|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1| (-1280 |#1|))) (-15 -3729 (|#2| |#1|)) (-15 -3420 (|#2| |#1|)) (-15 -1390 (|#2| |#1|)) (-15 -3619 (|#2| |#1|)) (-15 -3612 ((-698 |#2|) |#1| (-1280 |#1|))) (-15 -1729 ((-698 |#2|) |#1| (-1280 |#1|))) (-15 -3119 ((-1280 (-698 |#2|)) (-1280 |#1|)))) (-375 |#2|) (-174)) (T -374)) +((-2774 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) (-1469 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) (-2661 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) (-4243 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) (-3455 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) (-2492 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) (-3209 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) (-2744 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) (-4293 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) (-1565 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) (-3313 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) (-4275 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) (-2509 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) (-1922 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4)))) (-2649 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-653 (-1280 *4))) (-5 *1 (-374 *3 *4)) (-4 *3 (-375 *4))))) +(-10 -8 (-15 -3397 ((-1185 |#2|) |#1|)) (-15 -2000 ((-1185 |#2|) |#1|)) (-15 -2649 ((-653 (-1280 |#2|)))) (-15 -1546 ((-3 |#1| "failed") |#1|)) (-15 -2780 ((-3 |#1| "failed") |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1|)) (-15 -1922 ((-112))) (-15 -2509 ((-112))) (-15 -4275 ((-112))) (-15 -3313 ((-112))) (-15 -1565 ((-112))) (-15 -4293 ((-112))) (-15 -2744 ((-112))) (-15 -3209 ((-112))) (-15 -2492 ((-112))) (-15 -3455 ((-112))) (-15 -4243 ((-112))) (-15 -2661 ((-112))) (-15 -1469 ((-112))) (-15 -2774 ((-112))) (-15 -2650 ((-1185 |#2|) |#1|)) (-15 -3242 ((-1185 |#2|) |#1|)) (-15 -1454 ((-698 |#2|) (-1280 |#1|))) (-15 -2582 ((-698 |#2|) (-1280 |#1|))) (-15 -4053 (|#2| (-1280 |#1|))) (-15 -1912 (|#2| (-1280 |#1|))) (-15 -2854 (|#1| (-1280 |#2|) (-1280 |#1|))) (-15 -2123 ((-698 |#2|) (-1280 |#1|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1| (-1280 |#1|))) (-15 -3729 (|#2| |#1|)) (-15 -3420 (|#2| |#1|)) (-15 -1390 (|#2| |#1|)) (-15 -3619 (|#2| |#1|)) (-15 -3612 ((-698 |#2|) |#1| (-1280 |#1|))) (-15 -1729 ((-698 |#2|) |#1| (-1280 |#1|))) (-15 -3119 ((-1280 (-698 |#2|)) (-1280 |#1|)))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-1642 (((-3 $ "failed")) 42 (|has| |#1| (-565)))) (-2983 (((-3 $ "failed") $ $) 20)) (-3119 (((-1280 (-698 |#1|)) (-1280 $)) 83)) (-1888 (((-1280 $)) 86)) (-2579 (($) 18 T CONST)) (-2811 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) 45 (|has| |#1| (-565)))) (-3360 (((-3 $ "failed")) 43 (|has| |#1| (-565)))) (-1454 (((-698 |#1|) (-1280 $)) 70)) (-1390 ((|#1| $) 79)) (-3612 (((-698 |#1|) $ (-1280 $)) 81)) (-1546 (((-3 $ "failed") $) 50 (|has| |#1| (-565)))) (-3681 (($ $ (-931)) 31)) (-3729 ((|#1| $) 77)) (-3397 (((-1185 |#1|) $) 47 (|has| |#1| (-565)))) (-4053 ((|#1| (-1280 $)) 72)) (-2650 (((-1185 |#1|) $) 68)) (-2492 (((-112)) 62)) (-2854 (($ (-1280 |#1|) (-1280 $)) 74)) (-2232 (((-3 $ "failed") $) 52 (|has| |#1| (-565)))) (-3583 (((-931)) 85)) (-3720 (((-112)) 59)) (-3009 (($ $ (-931)) 38)) (-4275 (((-112)) 55)) (-1922 (((-112)) 53)) (-1565 (((-112)) 57)) (-1447 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) 46 (|has| |#1| (-565)))) (-3675 (((-3 $ "failed")) 44 (|has| |#1| (-565)))) (-2582 (((-698 |#1|) (-1280 $)) 71)) (-3619 ((|#1| $) 80)) (-1729 (((-698 |#1|) $ (-1280 $)) 82)) (-2780 (((-3 $ "failed") $) 51 (|has| |#1| (-565)))) (-2022 (($ $ (-931)) 32)) (-3420 ((|#1| $) 78)) (-2000 (((-1185 |#1|) $) 48 (|has| |#1| (-565)))) (-1912 ((|#1| (-1280 $)) 73)) (-3242 (((-1185 |#1|) $) 69)) (-3455 (((-112)) 63)) (-3180 (((-1171) $) 10)) (-2509 (((-112)) 54)) (-3313 (((-112)) 56)) (-4293 (((-112)) 58)) (-3965 (((-1132) $) 11)) (-3209 (((-112)) 61)) (-2123 (((-1280 |#1|) $ (-1280 $)) 76) (((-698 |#1|) (-1280 $) (-1280 $)) 75)) (-1664 (((-653 (-962 |#1|)) (-1280 $)) 84)) (-4380 (($ $ $) 28)) (-2774 (((-112)) 67)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2649 (((-653 (-1280 |#1|))) 49 (|has| |#1| (-565)))) (-3531 (($ $ $ $) 29)) (-2661 (((-112)) 65)) (-4366 (($ $ $) 27)) (-1469 (((-112)) 66)) (-4243 (((-112)) 64)) (-2744 (((-112)) 60)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 33)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-375 |#1|) (-141) (-174)) (T -375)) +((-1888 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1280 *1)) (-4 *1 (-375 *3)))) (-3583 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-931)))) (-1664 (*1 *2 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) (-5 *2 (-653 (-962 *4))))) (-3119 (*1 *2 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) (-5 *2 (-1280 (-698 *4))))) (-1729 (*1 *2 *1 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) (-5 *2 (-698 *4)))) (-3612 (*1 *2 *1 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) (-5 *2 (-698 *4)))) (-3619 (*1 *2 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-174)))) (-1390 (*1 *2 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-174)))) (-3420 (*1 *2 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-174)))) (-3729 (*1 *2 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-174)))) (-2123 (*1 *2 *1 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) (-5 *2 (-1280 *4)))) (-2123 (*1 *2 *3 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) (-5 *2 (-698 *4)))) (-2854 (*1 *1 *2 *3) (-12 (-5 *2 (-1280 *4)) (-5 *3 (-1280 *1)) (-4 *4 (-174)) (-4 *1 (-375 *4)))) (-1912 (*1 *2 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *2)) (-4 *2 (-174)))) (-4053 (*1 *2 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *2)) (-4 *2 (-174)))) (-2582 (*1 *2 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) (-5 *2 (-698 *4)))) (-1454 (*1 *2 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) (-5 *2 (-698 *4)))) (-3242 (*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-1185 *3)))) (-2650 (*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-1185 *3)))) (-2774 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1469 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2661 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4243 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3455 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2492 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3209 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2744 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3720 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4293 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1565 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3313 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4275 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2509 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1922 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2232 (*1 *1 *1) (|partial| -12 (-4 *1 (-375 *2)) (-4 *2 (-174)) (-4 *2 (-565)))) (-2780 (*1 *1 *1) (|partial| -12 (-4 *1 (-375 *2)) (-4 *2 (-174)) (-4 *2 (-565)))) (-1546 (*1 *1 *1) (|partial| -12 (-4 *1 (-375 *2)) (-4 *2 (-174)) (-4 *2 (-565)))) (-2649 (*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-4 *3 (-565)) (-5 *2 (-653 (-1280 *3))))) (-2000 (*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-4 *3 (-565)) (-5 *2 (-1185 *3)))) (-3397 (*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-4 *3 (-565)) (-5 *2 (-1185 *3)))) (-1447 (*1 *2) (|partial| -12 (-4 *3 (-565)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3914 (-653 *1)))) (-4 *1 (-375 *3)))) (-2811 (*1 *2) (|partial| -12 (-4 *3 (-565)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3914 (-653 *1)))) (-4 *1 (-375 *3)))) (-3675 (*1 *1) (|partial| -12 (-4 *1 (-375 *2)) (-4 *2 (-565)) (-4 *2 (-174)))) (-3360 (*1 *1) (|partial| -12 (-4 *1 (-375 *2)) (-4 *2 (-565)) (-4 *2 (-174)))) (-1642 (*1 *1) (|partial| -12 (-4 *1 (-375 *2)) (-4 *2 (-565)) (-4 *2 (-174))))) +(-13 (-753 |t#1|) (-10 -8 (-15 -1888 ((-1280 $))) (-15 -3583 ((-931))) (-15 -1664 ((-653 (-962 |t#1|)) (-1280 $))) (-15 -3119 ((-1280 (-698 |t#1|)) (-1280 $))) (-15 -1729 ((-698 |t#1|) $ (-1280 $))) (-15 -3612 ((-698 |t#1|) $ (-1280 $))) (-15 -3619 (|t#1| $)) (-15 -1390 (|t#1| $)) (-15 -3420 (|t#1| $)) (-15 -3729 (|t#1| $)) (-15 -2123 ((-1280 |t#1|) $ (-1280 $))) (-15 -2123 ((-698 |t#1|) (-1280 $) (-1280 $))) (-15 -2854 ($ (-1280 |t#1|) (-1280 $))) (-15 -1912 (|t#1| (-1280 $))) (-15 -4053 (|t#1| (-1280 $))) (-15 -2582 ((-698 |t#1|) (-1280 $))) (-15 -1454 ((-698 |t#1|) (-1280 $))) (-15 -3242 ((-1185 |t#1|) $)) (-15 -2650 ((-1185 |t#1|) $)) (-15 -2774 ((-112))) (-15 -1469 ((-112))) (-15 -2661 ((-112))) (-15 -4243 ((-112))) (-15 -3455 ((-112))) (-15 -2492 ((-112))) (-15 -3209 ((-112))) (-15 -2744 ((-112))) (-15 -3720 ((-112))) (-15 -4293 ((-112))) (-15 -1565 ((-112))) (-15 -3313 ((-112))) (-15 -4275 ((-112))) (-15 -2509 ((-112))) (-15 -1922 ((-112))) (IF (|has| |t#1| (-565)) (PROGN (-15 -2232 ((-3 $ "failed") $)) (-15 -2780 ((-3 $ "failed") $)) (-15 -1546 ((-3 $ "failed") $)) (-15 -2649 ((-653 (-1280 |t#1|)))) (-15 -2000 ((-1185 |t#1|) $)) (-15 -3397 ((-1185 |t#1|) $)) (-15 -1447 ((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed"))) (-15 -2811 ((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed"))) (-15 -3675 ((-3 $ "failed"))) (-15 -3360 ((-3 $ "failed"))) (-15 -1642 ((-3 $ "failed"))) (-6 -4452)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-657 |#1|) . T) ((-649 |#1|) . T) ((-726 |#1|) . T) ((-729) . T) ((-753 |#1|) . T) ((-770) . T) ((-1063 |#1|) . T) ((-1068 |#1|) . T) ((-1112) . T)) +((-2848 (((-112) $ $) 7)) (-1486 (((-780)) 17)) (-2819 (($) 14)) (-3589 (((-931) $) 15)) (-3180 (((-1171) $) 10)) (-2575 (($ (-931)) 16)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) +(((-376) (-141)) (T -376)) +((-1486 (*1 *2) (-12 (-4 *1 (-376)) (-5 *2 (-780)))) (-2575 (*1 *1 *2) (-12 (-5 *2 (-931)) (-4 *1 (-376)))) (-3589 (*1 *2 *1) (-12 (-4 *1 (-376)) (-5 *2 (-931)))) (-2819 (*1 *1) (-4 *1 (-376)))) +(-13 (-1112) (-10 -8 (-15 -1486 ((-780))) (-15 -2575 ($ (-931))) (-15 -3589 ((-931) $)) (-15 -2819 ($)))) +(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) +((-2114 (((-698 |#2|) (-1280 $)) 45)) (-2854 (($ (-1280 |#2|) (-1280 $)) 39)) (-1720 (((-698 |#2|) $ (-1280 $)) 47)) (-3592 ((|#2| (-1280 $)) 13)) (-2123 (((-1280 |#2|) $ (-1280 $)) NIL) (((-698 |#2|) (-1280 $) (-1280 $)) 27))) +(((-377 |#1| |#2| |#3|) (-10 -8 (-15 -2114 ((-698 |#2|) (-1280 |#1|))) (-15 -3592 (|#2| (-1280 |#1|))) (-15 -2854 (|#1| (-1280 |#2|) (-1280 |#1|))) (-15 -2123 ((-698 |#2|) (-1280 |#1|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1| (-1280 |#1|))) (-15 -1720 ((-698 |#2|) |#1| (-1280 |#1|)))) (-378 |#2| |#3|) (-174) (-1256 |#2|)) (T -377)) +NIL +(-10 -8 (-15 -2114 ((-698 |#2|) (-1280 |#1|))) (-15 -3592 (|#2| (-1280 |#1|))) (-15 -2854 (|#1| (-1280 |#2|) (-1280 |#1|))) (-15 -2123 ((-698 |#2|) (-1280 |#1|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1| (-1280 |#1|))) (-15 -1720 ((-698 |#2|) |#1| (-1280 |#1|)))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2114 (((-698 |#1|) (-1280 $)) 53)) (-1635 ((|#1| $) 59)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2854 (($ (-1280 |#1|) (-1280 $)) 55)) (-1720 (((-698 |#1|) $ (-1280 $)) 60)) (-2232 (((-3 $ "failed") $) 37)) (-3583 (((-931)) 61)) (-1959 (((-112) $) 35)) (-3421 ((|#1| $) 58)) (-2297 ((|#2| $) 51 (|has| |#1| (-371)))) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-3592 ((|#1| (-1280 $)) 54)) (-2123 (((-1280 |#1|) $ (-1280 $)) 57) (((-698 |#1|) (-1280 $) (-1280 $)) 56)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 44)) (-4279 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-2517 ((|#2| $) 52)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-378 |#1| |#2|) (-141) (-174) (-1256 |t#1|)) (T -378)) +((-3583 (*1 *2) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1256 *3)) (-5 *2 (-931)))) (-1720 (*1 *2 *1 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-378 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1256 *4)) (-5 *2 (-698 *4)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *3 (-1256 *2)) (-4 *2 (-174)))) (-3421 (*1 *2 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *3 (-1256 *2)) (-4 *2 (-174)))) (-2123 (*1 *2 *1 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-378 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1256 *4)) (-5 *2 (-1280 *4)))) (-2123 (*1 *2 *3 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-378 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1256 *4)) (-5 *2 (-698 *4)))) (-2854 (*1 *1 *2 *3) (-12 (-5 *2 (-1280 *4)) (-5 *3 (-1280 *1)) (-4 *4 (-174)) (-4 *1 (-378 *4 *5)) (-4 *5 (-1256 *4)))) (-3592 (*1 *2 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-378 *2 *4)) (-4 *4 (-1256 *2)) (-4 *2 (-174)))) (-2114 (*1 *2 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-378 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1256 *4)) (-5 *2 (-698 *4)))) (-2517 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1256 *3)))) (-2297 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-174)) (-4 *3 (-371)) (-4 *2 (-1256 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -3583 ((-931))) (-15 -1720 ((-698 |t#1|) $ (-1280 $))) (-15 -1635 (|t#1| $)) (-15 -3421 (|t#1| $)) (-15 -2123 ((-1280 |t#1|) $ (-1280 $))) (-15 -2123 ((-698 |t#1|) (-1280 $) (-1280 $))) (-15 -2854 ($ (-1280 |t#1|) (-1280 $))) (-15 -3592 (|t#1| (-1280 $))) (-15 -2114 ((-698 |t#1|) (-1280 $))) (-15 -2517 (|t#2| $)) (IF (|has| |t#1| (-371)) (-15 -2297 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-649 |#1|) . T) ((-726 |#1|) . T) ((-735) . T) ((-1063 |#1|) . T) ((-1068 |#1|) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) +((-3094 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-2867 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-1776 ((|#4| (-1 |#3| |#1|) |#2|) 23))) +(((-379 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1776 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2867 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3094 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1230) (-381 |#1|) (-1230) (-381 |#3|)) (T -379)) +((-3094 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1230)) (-4 *5 (-1230)) (-4 *2 (-381 *5)) (-5 *1 (-379 *6 *4 *5 *2)) (-4 *4 (-381 *6)))) (-2867 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1230)) (-4 *2 (-1230)) (-5 *1 (-379 *5 *4 *2 *6)) (-4 *4 (-381 *5)) (-4 *6 (-381 *2)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-4 *2 (-381 *6)) (-5 *1 (-379 *5 *4 *6 *2)) (-4 *4 (-381 *5))))) +(-10 -7 (-15 -1776 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2867 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3094 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-1473 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-2748 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-2770 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-4422 (($ $) 25)) (-1440 (((-573) (-1 (-112) |#2|) $) NIL) (((-573) |#2| $) 11) (((-573) |#2| $ (-573)) NIL)) (-1480 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-380 |#1| |#2|) (-10 -8 (-15 -2748 (|#1| |#1|)) (-15 -2748 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1473 ((-112) |#1|)) (-15 -2770 (|#1| |#1|)) (-15 -1480 (|#1| |#1| |#1|)) (-15 -1440 ((-573) |#2| |#1| (-573))) (-15 -1440 ((-573) |#2| |#1|)) (-15 -1440 ((-573) (-1 (-112) |#2|) |#1|)) (-15 -1473 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2770 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4422 (|#1| |#1|)) (-15 -1480 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-381 |#2|) (-1230)) (T -380)) +NIL +(-10 -8 (-15 -2748 (|#1| |#1|)) (-15 -2748 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1473 ((-112) |#1|)) (-15 -2770 (|#1| |#1|)) (-15 -1480 (|#1| |#1| |#1|)) (-15 -1440 ((-573) |#2| |#1| (-573))) (-15 -1440 ((-573) |#2| |#1|)) (-15 -1440 ((-573) (-1 (-112) |#2|) |#1|)) (-15 -1473 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2770 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4422 (|#1| |#1|)) (-15 -1480 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) +((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3791 (((-1285) $ (-573) (-573)) 41 (|has| $ (-6 -4456)))) (-1473 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-859)))) (-2748 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4456))) (($ $) 91 (-12 (|has| |#1| (-859)) (|has| $ (-6 -4456))))) (-2770 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-859)))) (-3450 (((-112) $ (-780)) 8)) (-3142 ((|#1| $ (-573) |#1|) 53 (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) 60 (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4455)))) (-2579 (($) 7 T CONST)) (-2176 (($ $) 93 (|has| $ (-6 -4456)))) (-4422 (($ $) 103)) (-2685 (($ $) 80 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ |#1| $) 79 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4455)))) (-2457 ((|#1| $ (-573) |#1|) 54 (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) 52)) (-1440 (((-573) (-1 (-112) |#1|) $) 100) (((-573) |#1| $) 99 (|has| |#1| (-1112))) (((-573) |#1| $ (-573)) 98 (|has| |#1| (-1112)))) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-3789 (($ (-780) |#1|) 70)) (-2078 (((-112) $ (-780)) 9)) (-1968 (((-573) $) 44 (|has| (-573) (-859)))) (-3659 (($ $ $) 90 (|has| |#1| (-859)))) (-1480 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-859)))) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3470 (((-573) $) 45 (|has| (-573) (-859)))) (-3751 (($ $ $) 89 (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-1593 (($ |#1| $ (-573)) 62) (($ $ $ (-573)) 61)) (-1977 (((-653 (-573)) $) 47)) (-2560 (((-112) (-573) $) 48)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-2914 ((|#1| $) 43 (|has| (-573) (-859)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-3112 (($ $ |#1|) 42 (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-2547 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) 49)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ (-573) |#1|) 51) ((|#1| $ (-573)) 50) (($ $ (-1247 (-573))) 71)) (-2836 (($ $ (-573)) 64) (($ $ (-1247 (-573))) 63)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3919 (($ $ $ (-573)) 94 (|has| $ (-6 -4456)))) (-3166 (($ $) 13)) (-1835 (((-545) $) 81 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 72)) (-4156 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-653 $)) 66)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) 87 (|has| |#1| (-859)))) (-3015 (((-112) $ $) 86 (|has| |#1| (-859)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-3027 (((-112) $ $) 88 (|has| |#1| (-859)))) (-3005 (((-112) $ $) 85 (|has| |#1| (-859)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-381 |#1|) (-141) (-1230)) (T -381)) +((-1480 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-381 *3)) (-4 *3 (-1230)))) (-4422 (*1 *1 *1) (-12 (-4 *1 (-381 *2)) (-4 *2 (-1230)))) (-2770 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-381 *3)) (-4 *3 (-1230)))) (-1473 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-381 *4)) (-4 *4 (-1230)) (-5 *2 (-112)))) (-1440 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-381 *4)) (-4 *4 (-1230)) (-5 *2 (-573)))) (-1440 (*1 *2 *3 *1) (-12 (-4 *1 (-381 *3)) (-4 *3 (-1230)) (-4 *3 (-1112)) (-5 *2 (-573)))) (-1440 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-381 *3)) (-4 *3 (-1230)) (-4 *3 (-1112)))) (-1480 (*1 *1 *1 *1) (-12 (-4 *1 (-381 *2)) (-4 *2 (-1230)) (-4 *2 (-859)))) (-2770 (*1 *1 *1) (-12 (-4 *1 (-381 *2)) (-4 *2 (-1230)) (-4 *2 (-859)))) (-1473 (*1 *2 *1) (-12 (-4 *1 (-381 *3)) (-4 *3 (-1230)) (-4 *3 (-859)) (-5 *2 (-112)))) (-3919 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-573)) (|has| *1 (-6 -4456)) (-4 *1 (-381 *3)) (-4 *3 (-1230)))) (-2176 (*1 *1 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-381 *2)) (-4 *2 (-1230)))) (-2748 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4456)) (-4 *1 (-381 *3)) (-4 *3 (-1230)))) (-2748 (*1 *1 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-381 *2)) (-4 *2 (-1230)) (-4 *2 (-859))))) +(-13 (-660 |t#1|) (-10 -8 (-6 -4455) (-15 -1480 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4422 ($ $)) (-15 -2770 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1473 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -1440 ((-573) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1112)) (PROGN (-15 -1440 ((-573) |t#1| $)) (-15 -1440 ((-573) |t#1| $ (-573)))) |%noBranch|) (IF (|has| |t#1| (-859)) (PROGN (-6 (-859)) (-15 -1480 ($ $ $)) (-15 -2770 ($ $)) (-15 -1473 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4456)) (PROGN (-15 -3919 ($ $ $ (-573))) (-15 -2176 ($ $)) (-15 -2748 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-859)) (-15 -2748 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -2817 (|has| |#1| (-1112)) (|has| |#1| (-859))) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-859)) (|has| |#1| (-622 (-871)))) ((-152 |#1|) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-293 #0=(-573) |#1|) . T) ((-293 (-1247 (-573)) $) . T) ((-295 #0# |#1|) . T) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-613 #0# |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-660 |#1|) . T) ((-859) |has| |#1| (-859)) ((-1112) -2817 (|has| |#1| (-1112)) (|has| |#1| (-859))) ((-1230) . T)) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-1653 (((-653 |#1|) $) 37)) (-4398 (($ $ (-780)) 38)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-1680 (((-1304 |#1| |#2|) (-1304 |#1| |#2|) $) 41)) (-4386 (($ $) 39)) (-1435 (((-1304 |#1| |#2|) (-1304 |#1| |#2|) $) 42)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2645 (($ $ |#1| $) 36) (($ $ (-653 |#1|) (-653 $)) 35)) (-2565 (((-780) $) 43)) (-2955 (($ $ $) 34)) (-2942 (((-871) $) 12) (($ |#1|) 46) (((-1295 |#1| |#2|) $) 45) (((-1304 |#1| |#2|) $) 44)) (-1857 ((|#2| (-1304 |#1| |#2|) $) 47)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2670 (($ (-681 |#1|)) 40)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#2|) 33 (|has| |#2| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31))) +(((-382 |#1| |#2|) (-141) (-859) (-174)) (T -382)) +((-1857 (*1 *2 *3 *1) (-12 (-5 *3 (-1304 *4 *2)) (-4 *1 (-382 *4 *2)) (-4 *4 (-859)) (-4 *2 (-174)))) (-2942 (*1 *1 *2) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-859)) (-4 *3 (-174)))) (-2942 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)) (-5 *2 (-1295 *3 *4)))) (-2942 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)) (-5 *2 (-1304 *3 *4)))) (-2565 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)) (-5 *2 (-780)))) (-1435 (*1 *2 *2 *1) (-12 (-5 *2 (-1304 *3 *4)) (-4 *1 (-382 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)))) (-1680 (*1 *2 *2 *1) (-12 (-5 *2 (-1304 *3 *4)) (-4 *1 (-382 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)))) (-2670 (*1 *1 *2) (-12 (-5 *2 (-681 *3)) (-4 *3 (-859)) (-4 *1 (-382 *3 *4)) (-4 *4 (-174)))) (-4386 (*1 *1 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-859)) (-4 *3 (-174)))) (-4398 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-382 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)))) (-1653 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)) (-5 *2 (-653 *3)))) (-2645 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-859)) (-4 *3 (-174)))) (-2645 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 *4)) (-5 *3 (-653 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-859)) (-4 *5 (-174))))) +(-13 (-643 |t#2|) (-10 -8 (-15 -1857 (|t#2| (-1304 |t#1| |t#2|) $)) (-15 -2942 ($ |t#1|)) (-15 -2942 ((-1295 |t#1| |t#2|) $)) (-15 -2942 ((-1304 |t#1| |t#2|) $)) (-15 -2565 ((-780) $)) (-15 -1435 ((-1304 |t#1| |t#2|) (-1304 |t#1| |t#2|) $)) (-15 -1680 ((-1304 |t#1| |t#2|) (-1304 |t#1| |t#2|) $)) (-15 -2670 ($ (-681 |t#1|))) (-15 -4386 ($ $)) (-15 -4398 ($ $ (-780))) (-15 -1653 ((-653 |t#1|) $)) (-15 -2645 ($ $ |t#1| $)) (-15 -2645 ($ $ (-653 |t#1|) (-653 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#2|) . T) ((-657 |#2|) . T) ((-643 |#2|) . T) ((-649 |#2|) . T) ((-726 |#2|) . T) ((-1063 |#2|) . T) ((-1068 |#2|) . T) ((-1112) . T)) +((-2820 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 40)) (-3771 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-2325 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 33))) +(((-383 |#1| |#2|) (-10 -7 (-15 -3771 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2325 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2820 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1230) (-13 (-381 |#1|) (-10 -7 (-6 -4456)))) (T -383)) +((-2820 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1230)) (-5 *1 (-383 *4 *2)) (-4 *2 (-13 (-381 *4) (-10 -7 (-6 -4456)))))) (-2325 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1230)) (-5 *1 (-383 *4 *2)) (-4 *2 (-13 (-381 *4) (-10 -7 (-6 -4456)))))) (-3771 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1230)) (-5 *1 (-383 *4 *2)) (-4 *2 (-13 (-381 *4) (-10 -7 (-6 -4456))))))) +(-10 -7 (-15 -3771 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2325 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2820 (|#2| (-1 (-112) |#1| |#1|) |#2|))) +((-2759 (((-698 |#2|) (-1280 $)) NIL) (((-698 |#2|) (-698 $)) NIL) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) NIL) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 22) (((-698 (-573)) (-698 $)) 14) (((-698 (-573)) (-1280 $)) NIL))) +(((-384 |#1| |#2|) (-10 -8 (-15 -2759 ((-698 (-573)) (-1280 |#1|))) (-15 -2759 ((-698 (-573)) (-698 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-698 |#2|) (-698 |#1|))) (-15 -2759 ((-698 |#2|) (-1280 |#1|)))) (-385 |#2|) (-1061)) (T -384)) +NIL +(-10 -8 (-15 -2759 ((-698 (-573)) (-1280 |#1|))) (-15 -2759 ((-698 (-573)) (-698 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-698 |#2|) (-698 |#1|))) (-15 -2759 ((-698 |#2|) (-1280 |#1|)))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2759 (((-698 |#1|) (-1280 $)) 31) (((-698 |#1|) (-698 $)) 30) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) 29) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 39 (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) 38 (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-1280 $)) 37 (|has| |#1| (-648 (-573))))) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ |#1| $) 27))) +(((-385 |#1|) (-141) (-1061)) (T -385)) +NIL +(-13 (-648 |t#1|) (-10 -7 (IF (|has| |t#1| (-648 (-573))) (-6 (-648 (-573))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-657 #0=(-573)) |has| |#1| (-648 (-573))) ((-657 |#1|) . T) ((-648 #0#) |has| |#1| (-648 (-573))) ((-648 |#1|) . T) ((-1112) . T)) +((-3931 (((-653 (-301 (-962 (-171 |#1|)))) (-301 (-416 (-962 (-171 (-573))))) |#1|) 51) (((-653 (-301 (-962 (-171 |#1|)))) (-416 (-962 (-171 (-573)))) |#1|) 50) (((-653 (-653 (-301 (-962 (-171 |#1|))))) (-653 (-301 (-416 (-962 (-171 (-573)))))) |#1|) 47) (((-653 (-653 (-301 (-962 (-171 |#1|))))) (-653 (-416 (-962 (-171 (-573))))) |#1|) 41)) (-1436 (((-653 (-653 (-171 |#1|))) (-653 (-416 (-962 (-171 (-573))))) (-653 (-1189)) |#1|) 30) (((-653 (-171 |#1|)) (-416 (-962 (-171 (-573)))) |#1|) 18))) +(((-386 |#1|) (-10 -7 (-15 -3931 ((-653 (-653 (-301 (-962 (-171 |#1|))))) (-653 (-416 (-962 (-171 (-573))))) |#1|)) (-15 -3931 ((-653 (-653 (-301 (-962 (-171 |#1|))))) (-653 (-301 (-416 (-962 (-171 (-573)))))) |#1|)) (-15 -3931 ((-653 (-301 (-962 (-171 |#1|)))) (-416 (-962 (-171 (-573)))) |#1|)) (-15 -3931 ((-653 (-301 (-962 (-171 |#1|)))) (-301 (-416 (-962 (-171 (-573))))) |#1|)) (-15 -1436 ((-653 (-171 |#1|)) (-416 (-962 (-171 (-573)))) |#1|)) (-15 -1436 ((-653 (-653 (-171 |#1|))) (-653 (-416 (-962 (-171 (-573))))) (-653 (-1189)) |#1|))) (-13 (-371) (-857))) (T -386)) +((-1436 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 (-416 (-962 (-171 (-573)))))) (-5 *4 (-653 (-1189))) (-5 *2 (-653 (-653 (-171 *5)))) (-5 *1 (-386 *5)) (-4 *5 (-13 (-371) (-857))))) (-1436 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-962 (-171 (-573))))) (-5 *2 (-653 (-171 *4))) (-5 *1 (-386 *4)) (-4 *4 (-13 (-371) (-857))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-301 (-416 (-962 (-171 (-573)))))) (-5 *2 (-653 (-301 (-962 (-171 *4))))) (-5 *1 (-386 *4)) (-4 *4 (-13 (-371) (-857))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-962 (-171 (-573))))) (-5 *2 (-653 (-301 (-962 (-171 *4))))) (-5 *1 (-386 *4)) (-4 *4 (-13 (-371) (-857))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-301 (-416 (-962 (-171 (-573))))))) (-5 *2 (-653 (-653 (-301 (-962 (-171 *4)))))) (-5 *1 (-386 *4)) (-4 *4 (-13 (-371) (-857))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-416 (-962 (-171 (-573)))))) (-5 *2 (-653 (-653 (-301 (-962 (-171 *4)))))) (-5 *1 (-386 *4)) (-4 *4 (-13 (-371) (-857)))))) +(-10 -7 (-15 -3931 ((-653 (-653 (-301 (-962 (-171 |#1|))))) (-653 (-416 (-962 (-171 (-573))))) |#1|)) (-15 -3931 ((-653 (-653 (-301 (-962 (-171 |#1|))))) (-653 (-301 (-416 (-962 (-171 (-573)))))) |#1|)) (-15 -3931 ((-653 (-301 (-962 (-171 |#1|)))) (-416 (-962 (-171 (-573)))) |#1|)) (-15 -3931 ((-653 (-301 (-962 (-171 |#1|)))) (-301 (-416 (-962 (-171 (-573))))) |#1|)) (-15 -1436 ((-653 (-171 |#1|)) (-416 (-962 (-171 (-573)))) |#1|)) (-15 -1436 ((-653 (-653 (-171 |#1|))) (-653 (-416 (-962 (-171 (-573))))) (-653 (-1189)) |#1|))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 35)) (-3770 (((-573) $) 62)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-1442 (($ $) 136)) (-2363 (($ $) 98)) (-2246 (($ $) 90)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-4228 (($ $) 47)) (-2800 (((-112) $ $) NIL)) (-2342 (($ $) 96)) (-2225 (($ $) 85)) (-1983 (((-573) $) 78)) (-3958 (($ $ (-573)) 73)) (-2388 (($ $) NIL)) (-2266 (($ $) NIL)) (-2579 (($) NIL T CONST)) (-2350 (($ $) 138)) (-1695 (((-3 (-573) "failed") $) 231) (((-3 (-416 (-573)) "failed") $) 227)) (-2205 (((-573) $) 229) (((-416 (-573)) $) 225)) (-2784 (($ $ $) NIL)) (-2655 (((-573) $ $) 125)) (-2232 (((-3 $ "failed") $) 141)) (-1624 (((-416 (-573)) $ (-780)) 232) (((-416 (-573)) $ (-780) (-780)) 224)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-3785 (((-931)) 121) (((-931) (-931)) 122 (|has| $ (-6 -4446)))) (-4152 (((-112) $) 130)) (-2999 (($) 41)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL)) (-1715 (((-1285) (-780)) 191)) (-3542 (((-1285)) 196) (((-1285) (-780)) 197)) (-1770 (((-1285)) 198) (((-1285) (-780)) 199)) (-1336 (((-1285)) 194) (((-1285) (-780)) 195)) (-2534 (((-573) $) 68)) (-1959 (((-112) $) 40)) (-4325 (($ $ (-573)) NIL)) (-2852 (($ $) 51)) (-3421 (($ $) NIL)) (-3339 (((-112) $) 37)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3659 (($ $ $) NIL) (($) NIL (-12 (-2075 (|has| $ (-6 -4438))) (-2075 (|has| $ (-6 -4446)))))) (-3751 (($ $ $) NIL) (($) NIL (-12 (-2075 (|has| $ (-6 -4438))) (-2075 (|has| $ (-6 -4446)))))) (-4299 (((-573) $) 17)) (-3388 (($) 106) (($ $) 113)) (-1731 (($) 112) (($ $) 114)) (-3118 (($ $) 101)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 143)) (-2827 (((-931) (-573)) 46 (|has| $ (-6 -4446)))) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-2408 (($ $) 60)) (-3733 (($ $) 135)) (-2383 (($ (-573) (-573)) 131) (($ (-573) (-573) (-931)) 132)) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3907 (((-573) $) 19)) (-2945 (($) 115)) (-1608 (($ $) 95)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3006 (((-931)) 123) (((-931) (-931)) 124 (|has| $ (-6 -4446)))) (-3904 (($ $) 142) (($ $ (-780)) NIL)) (-2985 (((-931) (-573)) 50 (|has| $ (-6 -4446)))) (-2401 (($ $) NIL)) (-2274 (($ $) NIL)) (-2374 (($ $) NIL)) (-2255 (($ $) NIL)) (-2352 (($ $) 97)) (-2236 (($ $) 89)) (-1835 (((-387) $) 216) (((-227) $) 218) (((-902 (-387)) $) NIL) (((-1171) $) 202) (((-545) $) 214) (($ (-227)) 223)) (-2942 (((-871) $) 206) (($ (-573)) 228) (($ $) NIL) (($ (-416 (-573))) NIL) (($ (-573)) 228) (($ (-416 (-573))) NIL) (((-227) $) 219)) (-1545 (((-780)) NIL T CONST)) (-2437 (($ $) 137)) (-2628 (((-931)) 61) (((-931) (-931)) 80 (|has| $ (-6 -4446)))) (-3507 (((-112) $ $) NIL)) (-2629 (((-931)) 126)) (-2439 (($ $) 104)) (-2304 (($ $) 49) (($ $ $) 59)) (-2516 (((-112) $ $) NIL)) (-2413 (($ $) 102)) (-2286 (($ $) 39)) (-2464 (($ $) NIL)) (-2324 (($ $) NIL)) (-2520 (($ $) NIL)) (-2333 (($ $) NIL)) (-2452 (($ $) NIL)) (-2314 (($ $) NIL)) (-2426 (($ $) 103)) (-2296 (($ $) 52)) (-1660 (($ $) 58)) (-2132 (($) 36 T CONST)) (-2144 (($) 43 T CONST)) (-2808 (((-1171) $) 27) (((-1171) $ (-112)) 29) (((-1285) (-831) $) 30) (((-1285) (-831) $ (-112)) 31)) (-3609 (($ $) NIL) (($ $ (-780)) NIL)) (-3040 (((-112) $ $) 203)) (-3015 (((-112) $ $) 45)) (-2981 (((-112) $ $) 56)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 57)) (-3103 (($ $ $) 48) (($ $ (-573)) 42)) (-3093 (($ $) 38) (($ $ $) 53)) (-3077 (($ $ $) 72)) (** (($ $ (-931)) 83) (($ $ (-780)) NIL) (($ $ (-573)) 107) (($ $ (-416 (-573))) 154) (($ $ $) 145)) (* (($ (-931) $) 79) (($ (-780) $) NIL) (($ (-573) $) 84) (($ $ $) 71) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL))) +(((-387) (-13 (-413) (-238) (-623 (-1171)) (-837) (-622 (-227)) (-1215) (-623 (-545)) (-627 (-227)) (-10 -8 (-15 -3103 ($ $ (-573))) (-15 ** ($ $ $)) (-15 -2852 ($ $)) (-15 -2655 ((-573) $ $)) (-15 -3958 ($ $ (-573))) (-15 -1624 ((-416 (-573)) $ (-780))) (-15 -1624 ((-416 (-573)) $ (-780) (-780))) (-15 -3388 ($)) (-15 -1731 ($)) (-15 -2945 ($)) (-15 -2304 ($ $ $)) (-15 -3388 ($ $)) (-15 -1731 ($ $)) (-15 -1770 ((-1285))) (-15 -1770 ((-1285) (-780))) (-15 -1336 ((-1285))) (-15 -1336 ((-1285) (-780))) (-15 -3542 ((-1285))) (-15 -3542 ((-1285) (-780))) (-15 -1715 ((-1285) (-780))) (-6 -4446) (-6 -4438)))) (T -387)) +((** (*1 *1 *1 *1) (-5 *1 (-387))) (-3103 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-387)))) (-2852 (*1 *1 *1) (-5 *1 (-387))) (-2655 (*1 *2 *1 *1) (-12 (-5 *2 (-573)) (-5 *1 (-387)))) (-3958 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-387)))) (-1624 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-5 *2 (-416 (-573))) (-5 *1 (-387)))) (-1624 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-780)) (-5 *2 (-416 (-573))) (-5 *1 (-387)))) (-3388 (*1 *1) (-5 *1 (-387))) (-1731 (*1 *1) (-5 *1 (-387))) (-2945 (*1 *1) (-5 *1 (-387))) (-2304 (*1 *1 *1 *1) (-5 *1 (-387))) (-3388 (*1 *1 *1) (-5 *1 (-387))) (-1731 (*1 *1 *1) (-5 *1 (-387))) (-1770 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-387)))) (-1770 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1285)) (-5 *1 (-387)))) (-1336 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-387)))) (-1336 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1285)) (-5 *1 (-387)))) (-3542 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-387)))) (-3542 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1285)) (-5 *1 (-387)))) (-1715 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1285)) (-5 *1 (-387))))) +(-13 (-413) (-238) (-623 (-1171)) (-837) (-622 (-227)) (-1215) (-623 (-545)) (-627 (-227)) (-10 -8 (-15 -3103 ($ $ (-573))) (-15 ** ($ $ $)) (-15 -2852 ($ $)) (-15 -2655 ((-573) $ $)) (-15 -3958 ($ $ (-573))) (-15 -1624 ((-416 (-573)) $ (-780))) (-15 -1624 ((-416 (-573)) $ (-780) (-780))) (-15 -3388 ($)) (-15 -1731 ($)) (-15 -2945 ($)) (-15 -2304 ($ $ $)) (-15 -3388 ($ $)) (-15 -1731 ($ $)) (-15 -1770 ((-1285))) (-15 -1770 ((-1285) (-780))) (-15 -1336 ((-1285))) (-15 -1336 ((-1285) (-780))) (-15 -3542 ((-1285))) (-15 -3542 ((-1285) (-780))) (-15 -1715 ((-1285) (-780))) (-6 -4446) (-6 -4438))) +((-1994 (((-653 (-301 (-962 |#1|))) (-301 (-416 (-962 (-573)))) |#1|) 46) (((-653 (-301 (-962 |#1|))) (-416 (-962 (-573))) |#1|) 45) (((-653 (-653 (-301 (-962 |#1|)))) (-653 (-301 (-416 (-962 (-573))))) |#1|) 42) (((-653 (-653 (-301 (-962 |#1|)))) (-653 (-416 (-962 (-573)))) |#1|) 36)) (-2946 (((-653 |#1|) (-416 (-962 (-573))) |#1|) 20) (((-653 (-653 |#1|)) (-653 (-416 (-962 (-573)))) (-653 (-1189)) |#1|) 30))) +(((-388 |#1|) (-10 -7 (-15 -1994 ((-653 (-653 (-301 (-962 |#1|)))) (-653 (-416 (-962 (-573)))) |#1|)) (-15 -1994 ((-653 (-653 (-301 (-962 |#1|)))) (-653 (-301 (-416 (-962 (-573))))) |#1|)) (-15 -1994 ((-653 (-301 (-962 |#1|))) (-416 (-962 (-573))) |#1|)) (-15 -1994 ((-653 (-301 (-962 |#1|))) (-301 (-416 (-962 (-573)))) |#1|)) (-15 -2946 ((-653 (-653 |#1|)) (-653 (-416 (-962 (-573)))) (-653 (-1189)) |#1|)) (-15 -2946 ((-653 |#1|) (-416 (-962 (-573))) |#1|))) (-13 (-857) (-371))) (T -388)) +((-2946 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-962 (-573)))) (-5 *2 (-653 *4)) (-5 *1 (-388 *4)) (-4 *4 (-13 (-857) (-371))))) (-2946 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 (-416 (-962 (-573))))) (-5 *4 (-653 (-1189))) (-5 *2 (-653 (-653 *5))) (-5 *1 (-388 *5)) (-4 *5 (-13 (-857) (-371))))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-301 (-416 (-962 (-573))))) (-5 *2 (-653 (-301 (-962 *4)))) (-5 *1 (-388 *4)) (-4 *4 (-13 (-857) (-371))))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-962 (-573)))) (-5 *2 (-653 (-301 (-962 *4)))) (-5 *1 (-388 *4)) (-4 *4 (-13 (-857) (-371))))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-301 (-416 (-962 (-573)))))) (-5 *2 (-653 (-653 (-301 (-962 *4))))) (-5 *1 (-388 *4)) (-4 *4 (-13 (-857) (-371))))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-416 (-962 (-573))))) (-5 *2 (-653 (-653 (-301 (-962 *4))))) (-5 *1 (-388 *4)) (-4 *4 (-13 (-857) (-371)))))) +(-10 -7 (-15 -1994 ((-653 (-653 (-301 (-962 |#1|)))) (-653 (-416 (-962 (-573)))) |#1|)) (-15 -1994 ((-653 (-653 (-301 (-962 |#1|)))) (-653 (-301 (-416 (-962 (-573))))) |#1|)) (-15 -1994 ((-653 (-301 (-962 |#1|))) (-416 (-962 (-573))) |#1|)) (-15 -1994 ((-653 (-301 (-962 |#1|))) (-301 (-416 (-962 (-573)))) |#1|)) (-15 -2946 ((-653 (-653 |#1|)) (-653 (-416 (-962 (-573)))) (-653 (-1189)) |#1|)) (-15 -2946 ((-653 |#1|) (-416 (-962 (-573))) |#1|))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) 30)) (-2205 ((|#2| $) 32)) (-1391 (($ $) NIL)) (-3772 (((-780) $) 11)) (-2518 (((-653 $) $) 23)) (-3676 (((-112) $) NIL)) (-3831 (($ |#2| |#1|) 21)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3228 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-1358 ((|#2| $) 18)) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 51) (($ |#2|) 31)) (-1920 (((-653 |#1|) $) 20)) (-4317 ((|#1| $ |#2|) 55)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 33 T CONST)) (-3256 (((-653 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40))) +(((-389 |#1| |#2|) (-13 (-390 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1061) (-859)) (T -389)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-389 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-859))))) +(-13 (-390 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-1695 (((-3 |#2| "failed") $) 49)) (-2205 ((|#2| $) 50)) (-1391 (($ $) 35)) (-3772 (((-780) $) 39)) (-2518 (((-653 $) $) 40)) (-3676 (((-112) $) 43)) (-3831 (($ |#2| |#1|) 44)) (-1776 (($ (-1 |#1| |#1|) $) 45)) (-3228 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-1358 ((|#2| $) 38)) (-1369 ((|#1| $) 37)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12) (($ |#2|) 48)) (-1920 (((-653 |#1|) $) 41)) (-4317 ((|#1| $ |#2|) 46)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-3256 (((-653 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47))) +(((-390 |#1| |#2|) (-141) (-1061) (-1112)) (T -390)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-390 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-1112)))) (-4317 (*1 *2 *1 *3) (-12 (-4 *1 (-390 *2 *3)) (-4 *3 (-1112)) (-4 *2 (-1061)))) (-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-390 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1112)))) (-3831 (*1 *1 *2 *3) (-12 (-4 *1 (-390 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-1112)))) (-3676 (*1 *2 *1) (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1112)) (-5 *2 (-112)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1112)) (-5 *2 (-653 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1920 (*1 *2 *1) (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1112)) (-5 *2 (-653 *3)))) (-2518 (*1 *2 *1) (-12 (-4 *3 (-1061)) (-4 *4 (-1112)) (-5 *2 (-653 *1)) (-4 *1 (-390 *3 *4)))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1112)) (-5 *2 (-780)))) (-1358 (*1 *2 *1) (-12 (-4 *1 (-390 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-1112)))) (-1369 (*1 *2 *1) (-12 (-4 *1 (-390 *2 *3)) (-4 *3 (-1112)) (-4 *2 (-1061)))) (-3228 (*1 *2 *1) (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1112)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1391 (*1 *1 *1) (-12 (-4 *1 (-390 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-1112))))) +(-13 (-111 |t#1| |t#1|) (-1050 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4317 (|t#1| $ |t#2|)) (-15 -1776 ($ (-1 |t#1| |t#1|) $)) (-15 -3831 ($ |t#2| |t#1|)) (-15 -3676 ((-112) $)) (-15 -3256 ((-653 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1920 ((-653 |t#1|) $)) (-15 -2518 ((-653 $) $)) (-15 -3772 ((-780) $)) (-15 -1358 (|t#2| $)) (-15 -1369 (|t#1| $)) (-15 -3228 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1391 ($ $)) (IF (|has| |t#1| (-174)) (-6 (-726 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 |#2|) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-657 |#1|) . T) ((-649 |#1|) |has| |#1| (-174)) ((-726 |#1|) |has| |#1| (-174)) ((-1050 |#2|) . T) ((-1063 |#1|) . T) ((-1068 |#1|) . T) ((-1112) . T)) +((-3767 (((-1285) $) 7)) (-2942 (((-871) $) 8) (($ (-698 (-708))) 14) (($ (-653 (-337))) 13) (($ (-337)) 12) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 11))) +(((-391) (-141)) (T -391)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-698 (-708))) (-4 *1 (-391)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-653 (-337))) (-4 *1 (-391)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-337)) (-4 *1 (-391)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) (-4 *1 (-391))))) +(-13 (-404) (-10 -8 (-15 -2942 ($ (-698 (-708)))) (-15 -2942 ($ (-653 (-337)))) (-15 -2942 ($ (-337))) (-15 -2942 ($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337)))))))) +(((-622 (-871)) . T) ((-404) . T) ((-1230) . T)) +((-1695 (((-3 $ "failed") (-698 (-323 (-387)))) 21) (((-3 $ "failed") (-698 (-323 (-573)))) 19) (((-3 $ "failed") (-698 (-962 (-387)))) 17) (((-3 $ "failed") (-698 (-962 (-573)))) 15) (((-3 $ "failed") (-698 (-416 (-962 (-387))))) 13) (((-3 $ "failed") (-698 (-416 (-962 (-573))))) 11)) (-2205 (($ (-698 (-323 (-387)))) 22) (($ (-698 (-323 (-573)))) 20) (($ (-698 (-962 (-387)))) 18) (($ (-698 (-962 (-573)))) 16) (($ (-698 (-416 (-962 (-387))))) 14) (($ (-698 (-416 (-962 (-573))))) 12)) (-3767 (((-1285) $) 7)) (-2942 (((-871) $) 8) (($ (-653 (-337))) 25) (($ (-337)) 24) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 23))) (((-392) (-141)) (T -392)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-699 (-709))) (-4 *1 (-392)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-392)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-392)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) (-4 *1 (-392))))) -(-13 (-405) (-10 -8 (-15 -2943 ($ (-699 (-709)))) (-15 -2943 ($ (-654 (-338)))) (-15 -2943 ($ (-338))) (-15 -2943 ($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338)))))))) -(((-623 (-872)) . T) ((-405) . T) ((-1231) . T)) -((-1696 (((-3 $ "failed") (-699 (-324 (-388)))) 21) (((-3 $ "failed") (-699 (-324 (-574)))) 19) (((-3 $ "failed") (-699 (-963 (-388)))) 17) (((-3 $ "failed") (-699 (-963 (-574)))) 15) (((-3 $ "failed") (-699 (-417 (-963 (-388))))) 13) (((-3 $ "failed") (-699 (-417 (-963 (-574))))) 11)) (-2206 (($ (-699 (-324 (-388)))) 22) (($ (-699 (-324 (-574)))) 20) (($ (-699 (-963 (-388)))) 18) (($ (-699 (-963 (-574)))) 16) (($ (-699 (-417 (-963 (-388))))) 14) (($ (-699 (-417 (-963 (-574))))) 12)) (-3768 (((-1286) $) 7)) (-2943 (((-872) $) 8) (($ (-654 (-338))) 25) (($ (-338)) 24) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) 23))) -(((-393) (-141)) (T -393)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-393)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-393)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) (-4 *1 (-393)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-699 (-324 (-388)))) (-4 *1 (-393)))) (-1696 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-324 (-388)))) (-4 *1 (-393)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-699 (-324 (-574)))) (-4 *1 (-393)))) (-1696 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-324 (-574)))) (-4 *1 (-393)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-699 (-963 (-388)))) (-4 *1 (-393)))) (-1696 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-963 (-388)))) (-4 *1 (-393)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-699 (-963 (-574)))) (-4 *1 (-393)))) (-1696 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-963 (-574)))) (-4 *1 (-393)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-699 (-417 (-963 (-388))))) (-4 *1 (-393)))) (-1696 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-417 (-963 (-388))))) (-4 *1 (-393)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-699 (-417 (-963 (-574))))) (-4 *1 (-393)))) (-1696 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-417 (-963 (-574))))) (-4 *1 (-393))))) -(-13 (-405) (-10 -8 (-15 -2943 ($ (-654 (-338)))) (-15 -2943 ($ (-338))) (-15 -2943 ($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338)))))) (-15 -2206 ($ (-699 (-324 (-388))))) (-15 -1696 ((-3 $ "failed") (-699 (-324 (-388))))) (-15 -2206 ($ (-699 (-324 (-574))))) (-15 -1696 ((-3 $ "failed") (-699 (-324 (-574))))) (-15 -2206 ($ (-699 (-963 (-388))))) (-15 -1696 ((-3 $ "failed") (-699 (-963 (-388))))) (-15 -2206 ($ (-699 (-963 (-574))))) (-15 -1696 ((-3 $ "failed") (-699 (-963 (-574))))) (-15 -2206 ($ (-699 (-417 (-963 (-388)))))) (-15 -1696 ((-3 $ "failed") (-699 (-417 (-963 (-388)))))) (-15 -2206 ($ (-699 (-417 (-963 (-574)))))) (-15 -1696 ((-3 $ "failed") (-699 (-417 (-963 (-574)))))))) -(((-623 (-872)) . T) ((-405) . T) ((-1231) . T)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-1392 (($ $) NIL)) (-4335 (($ |#1| |#2|) NIL)) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-4155 ((|#2| $) NIL)) (-1370 ((|#1| $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 33)) (-3284 (((-112) $ $) NIL)) (-2133 (($) 12 T CONST)) (-2981 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) -(((-394 |#1| |#2|) (-13 (-111 |#1| |#1|) (-519 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-727 |#1|)) |%noBranch|))) (-1062) (-860)) (T -394)) -NIL -(-13 (-111 |#1| |#1|) (-519 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-727 |#1|)) |%noBranch|))) -((-2849 (((-112) $ $) 7)) (-1487 (((-781) $) 34)) (-3426 (($) 19 T CONST)) (-3593 (((-3 $ "failed") $ $) 37)) (-1696 (((-3 |#1| "failed") $) 45)) (-2206 ((|#1| $) 46)) (-3434 (((-3 $ "failed") $) 16)) (-3441 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-3199 (((-112) $) 18)) (-1915 ((|#1| $ (-574)) 31)) (-3948 (((-781) $ (-574)) 32)) (-3659 (($ $ $) 28 (|has| |#1| (-860)))) (-4257 (($ $ $) 27 (|has| |#1| (-860)))) (-2354 (($ (-1 |#1| |#1|) $) 29)) (-1539 (($ (-1 (-781) (-781)) $) 30)) (-3548 (((-3 $ "failed") $ $) 38)) (-4136 (((-1172) $) 10)) (-3257 (($ $ $) 39)) (-1556 (($ $ $) 40)) (-3966 (((-1133) $) 11)) (-4219 (((-654 (-2 (|:| |gen| |#1|) (|:| -1609 (-781)))) $) 33)) (-1989 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-2943 (((-872) $) 12) (($ |#1|) 44)) (-3284 (((-112) $ $) 9)) (-2145 (($) 20 T CONST)) (-3042 (((-112) $ $) 25 (|has| |#1| (-860)))) (-3018 (((-112) $ $) 24 (|has| |#1| (-860)))) (-2981 (((-112) $ $) 6)) (-3030 (((-112) $ $) 26 (|has| |#1| (-860)))) (-3007 (((-112) $ $) 23 (|has| |#1| (-860)))) (** (($ $ (-932)) 14) (($ $ (-781)) 17) (($ |#1| (-781)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42))) -(((-395 |#1|) (-141) (-1113)) (T -395)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1113)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1113)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-395 *2)) (-4 *2 (-1113)))) (-1556 (*1 *1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1113)))) (-3257 (*1 *1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1113)))) (-3548 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-395 *2)) (-4 *2 (-1113)))) (-3593 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-395 *2)) (-4 *2 (-1113)))) (-1989 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1113)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-395 *3)))) (-3441 (*1 *2 *1 *1) (-12 (-4 *3 (-1113)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-395 *3)))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1113)) (-5 *2 (-781)))) (-4219 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1113)) (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1609 (-781))))))) (-3948 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-395 *4)) (-4 *4 (-1113)) (-5 *2 (-781)))) (-1915 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-395 *2)) (-4 *2 (-1113)))) (-1539 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-781) (-781))) (-4 *1 (-395 *3)) (-4 *3 (-1113)))) (-2354 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-395 *3)) (-4 *3 (-1113))))) -(-13 (-736) (-1051 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-781))) (-15 -1556 ($ $ $)) (-15 -3257 ($ $ $)) (-15 -3548 ((-3 $ "failed") $ $)) (-15 -3593 ((-3 $ "failed") $ $)) (-15 -1989 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3441 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1487 ((-781) $)) (-15 -4219 ((-654 (-2 (|:| |gen| |t#1|) (|:| -1609 (-781)))) $)) (-15 -3948 ((-781) $ (-574))) (-15 -1915 (|t#1| $ (-574))) (-15 -1539 ($ (-1 (-781) (-781)) $)) (-15 -2354 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|))) -(((-102) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-736) . T) ((-860) |has| |#1| (-860)) ((-1051 |#1|) . T) ((-1125) . T) ((-1113) . T)) -((-2849 (((-112) $ $) NIL)) (-1487 (((-781) $) 74)) (-3426 (($) NIL T CONST)) (-3593 (((-3 $ "failed") $ $) 77)) (-1696 (((-3 |#1| "failed") $) NIL)) (-2206 ((|#1| $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-3441 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-3199 (((-112) $) 17)) (-1915 ((|#1| $ (-574)) NIL)) (-3948 (((-781) $ (-574)) NIL)) (-3659 (($ $ $) NIL (|has| |#1| (-860)))) (-4257 (($ $ $) NIL (|has| |#1| (-860)))) (-2354 (($ (-1 |#1| |#1|) $) 40)) (-1539 (($ (-1 (-781) (-781)) $) 37)) (-3548 (((-3 $ "failed") $ $) 60)) (-4136 (((-1172) $) NIL)) (-3257 (($ $ $) 28)) (-1556 (($ $ $) 26)) (-3966 (((-1133) $) NIL)) (-4219 (((-654 (-2 (|:| |gen| |#1|) (|:| -1609 (-781)))) $) 34)) (-1989 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-2943 (((-872) $) 24) (($ |#1|) NIL)) (-3284 (((-112) $ $) NIL)) (-2145 (($) 11 T CONST)) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3007 (((-112) $ $) 84 (|has| |#1| (-860)))) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ |#1| (-781)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) -(((-396 |#1|) (-395 |#1|) (-1113)) (T -396)) -NIL -(-395 |#1|) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-1575 (($ $) 46)) (-2085 (((-112) $) 44)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-1696 (((-3 (-574) "failed") $) 53)) (-2206 (((-574) $) 54)) (-3434 (((-3 $ "failed") $) 37)) (-3199 (((-112) $) 35)) (-3659 (($ $ $) 60)) (-4257 (($ $ $) 59)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2838 (((-3 $ "failed") $ $) 48)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-574)) 52)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2069 (((-112) $ $) 45)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-3042 (((-112) $ $) 57)) (-3018 (((-112) $ $) 56)) (-2981 (((-112) $ $) 6)) (-3030 (((-112) $ $) 58)) (-3007 (((-112) $ $) 55)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) -(((-397) (-141)) (T -397)) -NIL -(-13 (-566) (-860) (-1051 (-574))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-860) . T) ((-1051 (-574)) . T) ((-1064 $) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T)) -((-2849 (((-112) $ $) NIL)) (-3900 (((-112) $) 25)) (-2444 (((-112) $) 22)) (-3790 (($ (-1172) (-1172) (-1172)) 26)) (-2032 (((-1172) $) 16)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3713 (($ (-1172) (-1172) (-1172)) 14)) (-3984 (((-1172) $) 17)) (-3098 (((-112) $) 18)) (-2567 (((-1172) $) 15)) (-2943 (((-872) $) 12) (($ (-1172)) 13) (((-1172) $) 9)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 7))) -(((-398) (-399)) (T -398)) -NIL -(-399) -((-2849 (((-112) $ $) 7)) (-3900 (((-112) $) 17)) (-2444 (((-112) $) 18)) (-3790 (($ (-1172) (-1172) (-1172)) 16)) (-2032 (((-1172) $) 21)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-3713 (($ (-1172) (-1172) (-1172)) 23)) (-3984 (((-1172) $) 20)) (-3098 (((-112) $) 19)) (-2567 (((-1172) $) 22)) (-2943 (((-872) $) 12) (($ (-1172)) 25) (((-1172) $) 24)) (-3284 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) -(((-399) (-141)) (T -399)) -((-3713 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1172)) (-4 *1 (-399)))) (-2567 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1172)))) (-2032 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1172)))) (-3984 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1172)))) (-3098 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112)))) (-2444 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112)))) (-3900 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112)))) (-3790 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1172)) (-4 *1 (-399))))) -(-13 (-1113) (-500 (-1172)) (-10 -8 (-15 -3713 ($ (-1172) (-1172) (-1172))) (-15 -2567 ((-1172) $)) (-15 -2032 ((-1172) $)) (-15 -3984 ((-1172) $)) (-15 -3098 ((-112) $)) (-15 -2444 ((-112) $)) (-15 -3900 ((-112) $)) (-15 -3790 ($ (-1172) (-1172) (-1172))))) -(((-102) . T) ((-626 #0=(-1172)) . T) ((-623 (-872)) . T) ((-623 #0#) . T) ((-500 #0#) . T) ((-1113) . T)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3084 (((-872) $) 63)) (-3426 (($) NIL T CONST)) (-2397 (($ $ (-932)) NIL)) (-2817 (($ $ (-932)) NIL)) (-2422 (($ $ (-932)) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2970 (($ (-781)) 38)) (-4133 (((-781)) 18)) (-3252 (((-872) $) 65)) (-3204 (($ $ $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-1320 (($ $ $ $) NIL)) (-2299 (($ $ $) NIL)) (-2133 (($) 24 T CONST)) (-2981 (((-112) $ $) 41)) (-3094 (($ $) 48) (($ $ $) 50)) (-3079 (($ $ $) 51)) (** (($ $ (-932)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47))) -(((-400 |#1| |#2| |#3|) (-13 (-754 |#3|) (-10 -8 (-15 -4133 ((-781))) (-15 -3252 ((-872) $)) (-15 -3084 ((-872) $)) (-15 -2970 ($ (-781))))) (-781) (-781) (-174)) (T -400)) -((-4133 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) (-3252 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 (-781)) (-14 *4 (-781)) (-4 *5 (-174)))) (-3084 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 (-781)) (-14 *4 (-781)) (-4 *5 (-174)))) (-2970 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174))))) -(-13 (-754 |#3|) (-10 -8 (-15 -4133 ((-781))) (-15 -3252 ((-872) $)) (-15 -3084 ((-872) $)) (-15 -2970 ($ (-781))))) -((-3769 (((-1172)) 12)) (-2988 (((-1160 (-1172))) 30)) (-3748 (((-1286) (-1172)) 27) (((-1286) (-398)) 26)) (-3758 (((-1286)) 28)) (-3639 (((-1160 (-1172))) 29))) -(((-401) (-10 -7 (-15 -3639 ((-1160 (-1172)))) (-15 -2988 ((-1160 (-1172)))) (-15 -3758 ((-1286))) (-15 -3748 ((-1286) (-398))) (-15 -3748 ((-1286) (-1172))) (-15 -3769 ((-1172))))) (T -401)) -((-3769 (*1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-401)))) (-3748 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-401)))) (-3748 (*1 *2 *3) (-12 (-5 *3 (-398)) (-5 *2 (-1286)) (-5 *1 (-401)))) (-3758 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-401)))) (-2988 (*1 *2) (-12 (-5 *2 (-1160 (-1172))) (-5 *1 (-401)))) (-3639 (*1 *2) (-12 (-5 *2 (-1160 (-1172))) (-5 *1 (-401))))) -(-10 -7 (-15 -3639 ((-1160 (-1172)))) (-15 -2988 ((-1160 (-1172)))) (-15 -3758 ((-1286))) (-15 -3748 ((-1286) (-398))) (-15 -3748 ((-1286) (-1172))) (-15 -3769 ((-1172)))) -((-3884 (((-781) (-345 |#1| |#2| |#3| |#4|)) 16))) -(((-402 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3884 ((-781) (-345 |#1| |#2| |#3| |#4|)))) (-13 (-377) (-372)) (-1257 |#1|) (-1257 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -402)) -((-3884 (*1 *2 *3) (-12 (-5 *3 (-345 *4 *5 *6 *7)) (-4 *4 (-13 (-377) (-372))) (-4 *5 (-1257 *4)) (-4 *6 (-1257 (-417 *5))) (-4 *7 (-351 *4 *5 *6)) (-5 *2 (-781)) (-5 *1 (-402 *4 *5 *6 *7))))) -(-10 -7 (-15 -3884 ((-781) (-345 |#1| |#2| |#3| |#4|)))) -((-2943 (((-404) |#1|) 11))) -(((-403 |#1|) (-10 -7 (-15 -2943 ((-404) |#1|))) (-1113)) (T -403)) -((-2943 (*1 *2 *3) (-12 (-5 *2 (-404)) (-5 *1 (-403 *3)) (-4 *3 (-1113))))) -(-10 -7 (-15 -2943 ((-404) |#1|))) -((-2849 (((-112) $ $) NIL)) (-4258 (((-654 (-1172)) $ (-654 (-1172))) 42)) (-2348 (((-654 (-1172)) $ (-654 (-1172))) 43)) (-2203 (((-654 (-1172)) $ (-654 (-1172))) 44)) (-3211 (((-654 (-1172)) $) 39)) (-3790 (($) 30)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3380 (((-654 (-1172)) $) 40)) (-2679 (((-654 (-1172)) $) 41)) (-1403 (((-1286) $ (-574)) 37) (((-1286) $) 38)) (-1836 (($ (-872) (-574)) 35)) (-2943 (((-872) $) 49) (($ (-872)) 32)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-404) (-13 (-1113) (-626 (-872)) (-10 -8 (-15 -1836 ($ (-872) (-574))) (-15 -1403 ((-1286) $ (-574))) (-15 -1403 ((-1286) $)) (-15 -2679 ((-654 (-1172)) $)) (-15 -3380 ((-654 (-1172)) $)) (-15 -3790 ($)) (-15 -3211 ((-654 (-1172)) $)) (-15 -2203 ((-654 (-1172)) $ (-654 (-1172)))) (-15 -2348 ((-654 (-1172)) $ (-654 (-1172)))) (-15 -4258 ((-654 (-1172)) $ (-654 (-1172))))))) (T -404)) -((-1836 (*1 *1 *2 *3) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-404)))) (-1403 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1286)) (-5 *1 (-404)))) (-1403 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-404)))) (-2679 (*1 *2 *1) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-404)))) (-3380 (*1 *2 *1) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-404)))) (-3790 (*1 *1) (-5 *1 (-404))) (-3211 (*1 *2 *1) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-404)))) (-2203 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-404)))) (-2348 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-404)))) (-4258 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-404))))) -(-13 (-1113) (-626 (-872)) (-10 -8 (-15 -1836 ($ (-872) (-574))) (-15 -1403 ((-1286) $ (-574))) (-15 -1403 ((-1286) $)) (-15 -2679 ((-654 (-1172)) $)) (-15 -3380 ((-654 (-1172)) $)) (-15 -3790 ($)) (-15 -3211 ((-654 (-1172)) $)) (-15 -2203 ((-654 (-1172)) $ (-654 (-1172)))) (-15 -2348 ((-654 (-1172)) $ (-654 (-1172)))) (-15 -4258 ((-654 (-1172)) $ (-654 (-1172)))))) -((-3768 (((-1286) $) 7)) (-2943 (((-872) $) 8))) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-653 (-337))) (-4 *1 (-392)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-337)) (-4 *1 (-392)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) (-4 *1 (-392)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-698 (-323 (-387)))) (-4 *1 (-392)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-698 (-323 (-387)))) (-4 *1 (-392)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-698 (-323 (-573)))) (-4 *1 (-392)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-698 (-323 (-573)))) (-4 *1 (-392)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-698 (-962 (-387)))) (-4 *1 (-392)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-698 (-962 (-387)))) (-4 *1 (-392)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-698 (-962 (-573)))) (-4 *1 (-392)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-698 (-962 (-573)))) (-4 *1 (-392)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-698 (-416 (-962 (-387))))) (-4 *1 (-392)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-698 (-416 (-962 (-387))))) (-4 *1 (-392)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-698 (-416 (-962 (-573))))) (-4 *1 (-392)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-698 (-416 (-962 (-573))))) (-4 *1 (-392))))) +(-13 (-404) (-10 -8 (-15 -2942 ($ (-653 (-337)))) (-15 -2942 ($ (-337))) (-15 -2942 ($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337)))))) (-15 -2205 ($ (-698 (-323 (-387))))) (-15 -1695 ((-3 $ "failed") (-698 (-323 (-387))))) (-15 -2205 ($ (-698 (-323 (-573))))) (-15 -1695 ((-3 $ "failed") (-698 (-323 (-573))))) (-15 -2205 ($ (-698 (-962 (-387))))) (-15 -1695 ((-3 $ "failed") (-698 (-962 (-387))))) (-15 -2205 ($ (-698 (-962 (-573))))) (-15 -1695 ((-3 $ "failed") (-698 (-962 (-573))))) (-15 -2205 ($ (-698 (-416 (-962 (-387)))))) (-15 -1695 ((-3 $ "failed") (-698 (-416 (-962 (-387)))))) (-15 -2205 ($ (-698 (-416 (-962 (-573)))))) (-15 -1695 ((-3 $ "failed") (-698 (-416 (-962 (-573)))))))) +(((-622 (-871)) . T) ((-404) . T) ((-1230) . T)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1391 (($ $) NIL)) (-4334 (($ |#1| |#2|) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1481 ((|#2| $) NIL)) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 33)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 12 T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) +(((-393 |#1| |#2|) (-13 (-111 |#1| |#1|) (-518 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-726 |#1|)) |%noBranch|))) (-1061) (-859)) (T -393)) +NIL +(-13 (-111 |#1| |#1|) (-518 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-726 |#1|)) |%noBranch|))) +((-2848 (((-112) $ $) 7)) (-1486 (((-780) $) 34)) (-2579 (($) 19 T CONST)) (-1680 (((-3 $ "failed") $ $) 37)) (-1695 (((-3 |#1| "failed") $) 45)) (-2205 ((|#1| $) 46)) (-2232 (((-3 $ "failed") $) 16)) (-3708 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-1959 (((-112) $) 18)) (-2841 ((|#1| $ (-573)) 31)) (-3884 (((-780) $ (-573)) 32)) (-3659 (($ $ $) 28 (|has| |#1| (-859)))) (-3751 (($ $ $) 27 (|has| |#1| (-859)))) (-1911 (($ (-1 |#1| |#1|) $) 29)) (-3584 (($ (-1 (-780) (-780)) $) 30)) (-1435 (((-3 $ "failed") $ $) 38)) (-3180 (((-1171) $) 10)) (-3254 (($ $ $) 39)) (-1513 (($ $ $) 40)) (-3965 (((-1132) $) 11)) (-1687 (((-653 (-2 (|:| |gen| |#1|) (|:| -1608 (-780)))) $) 33)) (-1405 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-2942 (((-871) $) 12) (($ |#1|) 44)) (-3507 (((-112) $ $) 9)) (-2144 (($) 20 T CONST)) (-3040 (((-112) $ $) 25 (|has| |#1| (-859)))) (-3015 (((-112) $ $) 24 (|has| |#1| (-859)))) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 26 (|has| |#1| (-859)))) (-3005 (((-112) $ $) 23 (|has| |#1| (-859)))) (** (($ $ (-931)) 14) (($ $ (-780)) 17) (($ |#1| (-780)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42))) +(((-394 |#1|) (-141) (-1112)) (T -394)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-394 *2)) (-4 *2 (-1112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-394 *2)) (-4 *2 (-1112)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-780)) (-4 *1 (-394 *2)) (-4 *2 (-1112)))) (-1513 (*1 *1 *1 *1) (-12 (-4 *1 (-394 *2)) (-4 *2 (-1112)))) (-3254 (*1 *1 *1 *1) (-12 (-4 *1 (-394 *2)) (-4 *2 (-1112)))) (-1435 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-394 *2)) (-4 *2 (-1112)))) (-1680 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-394 *2)) (-4 *2 (-1112)))) (-1405 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1112)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-394 *3)))) (-3708 (*1 *2 *1 *1) (-12 (-4 *3 (-1112)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-394 *3)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-394 *3)) (-4 *3 (-1112)) (-5 *2 (-780)))) (-1687 (*1 *2 *1) (-12 (-4 *1 (-394 *3)) (-4 *3 (-1112)) (-5 *2 (-653 (-2 (|:| |gen| *3) (|:| -1608 (-780))))))) (-3884 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-4 *1 (-394 *4)) (-4 *4 (-1112)) (-5 *2 (-780)))) (-2841 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-4 *1 (-394 *2)) (-4 *2 (-1112)))) (-3584 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-780) (-780))) (-4 *1 (-394 *3)) (-4 *3 (-1112)))) (-1911 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-394 *3)) (-4 *3 (-1112))))) +(-13 (-735) (-1050 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-780))) (-15 -1513 ($ $ $)) (-15 -3254 ($ $ $)) (-15 -1435 ((-3 $ "failed") $ $)) (-15 -1680 ((-3 $ "failed") $ $)) (-15 -1405 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3708 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1486 ((-780) $)) (-15 -1687 ((-653 (-2 (|:| |gen| |t#1|) (|:| -1608 (-780)))) $)) (-15 -3884 ((-780) $ (-573))) (-15 -2841 (|t#1| $ (-573))) (-15 -3584 ($ (-1 (-780) (-780)) $)) (-15 -1911 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-859)) (-6 (-859)) |%noBranch|))) +(((-102) . T) ((-625 |#1|) . T) ((-622 (-871)) . T) ((-735) . T) ((-859) |has| |#1| (-859)) ((-1050 |#1|) . T) ((-1124) . T) ((-1112) . T)) +((-2848 (((-112) $ $) NIL)) (-1486 (((-780) $) 74)) (-2579 (($) NIL T CONST)) (-1680 (((-3 $ "failed") $ $) 77)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2205 ((|#1| $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3708 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-1959 (((-112) $) 17)) (-2841 ((|#1| $ (-573)) NIL)) (-3884 (((-780) $ (-573)) NIL)) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-1911 (($ (-1 |#1| |#1|) $) 40)) (-3584 (($ (-1 (-780) (-780)) $) 37)) (-1435 (((-3 $ "failed") $ $) 60)) (-3180 (((-1171) $) NIL)) (-3254 (($ $ $) 28)) (-1513 (($ $ $) 26)) (-3965 (((-1132) $) NIL)) (-1687 (((-653 (-2 (|:| |gen| |#1|) (|:| -1608 (-780)))) $) 34)) (-1405 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-2942 (((-871) $) 24) (($ |#1|) NIL)) (-3507 (((-112) $ $) NIL)) (-2144 (($) 11 T CONST)) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) 84 (|has| |#1| (-859)))) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ |#1| (-780)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) +(((-395 |#1|) (-394 |#1|) (-1112)) (T -395)) +NIL +(-394 |#1|) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-1695 (((-3 (-573) "failed") $) 53)) (-2205 (((-573) $) 54)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-3659 (($ $ $) 60)) (-3751 (($ $ $) 59)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2837 (((-3 $ "failed") $ $) 48)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49) (($ (-573)) 52)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3040 (((-112) $ $) 57)) (-3015 (((-112) $ $) 56)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 58)) (-3005 (((-112) $ $) 55)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) +(((-396) (-141)) (T -396)) +NIL +(-13 (-565) (-859) (-1050 (-573))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-297) . T) ((-565) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-649 $) . T) ((-726 $) . T) ((-735) . T) ((-859) . T) ((-1050 (-573)) . T) ((-1063 $) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) +((-2848 (((-112) $ $) NIL)) (-1775 (((-112) $) 25)) (-2949 (((-112) $) 22)) (-3789 (($ (-1171) (-1171) (-1171)) 26)) (-2031 (((-1171) $) 16)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-3712 (($ (-1171) (-1171) (-1171)) 14)) (-3551 (((-1171) $) 17)) (-3458 (((-112) $) 18)) (-2566 (((-1171) $) 15)) (-2942 (((-871) $) 12) (($ (-1171)) 13) (((-1171) $) 9)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 7))) +(((-397) (-398)) (T -397)) +NIL +(-398) +((-2848 (((-112) $ $) 7)) (-1775 (((-112) $) 17)) (-2949 (((-112) $) 18)) (-3789 (($ (-1171) (-1171) (-1171)) 16)) (-2031 (((-1171) $) 21)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-3712 (($ (-1171) (-1171) (-1171)) 23)) (-3551 (((-1171) $) 20)) (-3458 (((-112) $) 19)) (-2566 (((-1171) $) 22)) (-2942 (((-871) $) 12) (($ (-1171)) 25) (((-1171) $) 24)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) +(((-398) (-141)) (T -398)) +((-3712 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1171)) (-4 *1 (-398)))) (-2566 (*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-1171)))) (-2031 (*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-1171)))) (-3551 (*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-1171)))) (-3458 (*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-112)))) (-2949 (*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-112)))) (-1775 (*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-112)))) (-3789 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1171)) (-4 *1 (-398))))) +(-13 (-1112) (-499 (-1171)) (-10 -8 (-15 -3712 ($ (-1171) (-1171) (-1171))) (-15 -2566 ((-1171) $)) (-15 -2031 ((-1171) $)) (-15 -3551 ((-1171) $)) (-15 -3458 ((-112) $)) (-15 -2949 ((-112) $)) (-15 -1775 ((-112) $)) (-15 -3789 ($ (-1171) (-1171) (-1171))))) +(((-102) . T) ((-625 #0=(-1171)) . T) ((-622 (-871)) . T) ((-622 #0#) . T) ((-499 #0#) . T) ((-1112) . T)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2165 (((-871) $) 63)) (-2579 (($) NIL T CONST)) (-3681 (($ $ (-931)) NIL)) (-3009 (($ $ (-931)) NIL)) (-2022 (($ $ (-931)) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2969 (($ (-780)) 38)) (-2365 (((-780)) 18)) (-3401 (((-871) $) 65)) (-4380 (($ $ $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-3531 (($ $ $ $) NIL)) (-4366 (($ $ $) NIL)) (-2132 (($) 24 T CONST)) (-2981 (((-112) $ $) 41)) (-3093 (($ $) 48) (($ $ $) 50)) (-3077 (($ $ $) 51)) (** (($ $ (-931)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47))) +(((-399 |#1| |#2| |#3|) (-13 (-753 |#3|) (-10 -8 (-15 -2365 ((-780))) (-15 -3401 ((-871) $)) (-15 -2165 ((-871) $)) (-15 -2969 ($ (-780))))) (-780) (-780) (-174)) (T -399)) +((-2365 (*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-399 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) (-3401 (*1 *2 *1) (-12 (-5 *2 (-871)) (-5 *1 (-399 *3 *4 *5)) (-14 *3 (-780)) (-14 *4 (-780)) (-4 *5 (-174)))) (-2165 (*1 *2 *1) (-12 (-5 *2 (-871)) (-5 *1 (-399 *3 *4 *5)) (-14 *3 (-780)) (-14 *4 (-780)) (-4 *5 (-174)))) (-2969 (*1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-399 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174))))) +(-13 (-753 |#3|) (-10 -8 (-15 -2365 ((-780))) (-15 -3401 ((-871) $)) (-15 -2165 ((-871) $)) (-15 -2969 ($ (-780))))) +((-4345 (((-1171)) 12)) (-3073 (((-1159 (-1171))) 30)) (-3747 (((-1285) (-1171)) 27) (((-1285) (-397)) 26)) (-3757 (((-1285)) 28)) (-2347 (((-1159 (-1171))) 29))) +(((-400) (-10 -7 (-15 -2347 ((-1159 (-1171)))) (-15 -3073 ((-1159 (-1171)))) (-15 -3757 ((-1285))) (-15 -3747 ((-1285) (-397))) (-15 -3747 ((-1285) (-1171))) (-15 -4345 ((-1171))))) (T -400)) +((-4345 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-400)))) (-3747 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-400)))) (-3747 (*1 *2 *3) (-12 (-5 *3 (-397)) (-5 *2 (-1285)) (-5 *1 (-400)))) (-3757 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-400)))) (-3073 (*1 *2) (-12 (-5 *2 (-1159 (-1171))) (-5 *1 (-400)))) (-2347 (*1 *2) (-12 (-5 *2 (-1159 (-1171))) (-5 *1 (-400))))) +(-10 -7 (-15 -2347 ((-1159 (-1171)))) (-15 -3073 ((-1159 (-1171)))) (-15 -3757 ((-1285))) (-15 -3747 ((-1285) (-397))) (-15 -3747 ((-1285) (-1171))) (-15 -4345 ((-1171)))) +((-2534 (((-780) (-344 |#1| |#2| |#3| |#4|)) 16))) +(((-401 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2534 ((-780) (-344 |#1| |#2| |#3| |#4|)))) (-13 (-376) (-371)) (-1256 |#1|) (-1256 (-416 |#2|)) (-350 |#1| |#2| |#3|)) (T -401)) +((-2534 (*1 *2 *3) (-12 (-5 *3 (-344 *4 *5 *6 *7)) (-4 *4 (-13 (-376) (-371))) (-4 *5 (-1256 *4)) (-4 *6 (-1256 (-416 *5))) (-4 *7 (-350 *4 *5 *6)) (-5 *2 (-780)) (-5 *1 (-401 *4 *5 *6 *7))))) +(-10 -7 (-15 -2534 ((-780) (-344 |#1| |#2| |#3| |#4|)))) +((-2942 (((-403) |#1|) 11))) +(((-402 |#1|) (-10 -7 (-15 -2942 ((-403) |#1|))) (-1112)) (T -402)) +((-2942 (*1 *2 *3) (-12 (-5 *2 (-403)) (-5 *1 (-402 *3)) (-4 *3 (-1112))))) +(-10 -7 (-15 -2942 ((-403) |#1|))) +((-2848 (((-112) $ $) NIL)) (-3845 (((-653 (-1171)) $ (-653 (-1171))) 42)) (-2564 (((-653 (-1171)) $ (-653 (-1171))) 43)) (-3880 (((-653 (-1171)) $ (-653 (-1171))) 44)) (-3887 (((-653 (-1171)) $) 39)) (-3789 (($) 30)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-3379 (((-653 (-1171)) $) 40)) (-2907 (((-653 (-1171)) $) 41)) (-1402 (((-1285) $ (-573)) 37) (((-1285) $) 38)) (-1835 (($ (-871) (-573)) 35)) (-2942 (((-871) $) 49) (($ (-871)) 32)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-403) (-13 (-1112) (-625 (-871)) (-10 -8 (-15 -1835 ($ (-871) (-573))) (-15 -1402 ((-1285) $ (-573))) (-15 -1402 ((-1285) $)) (-15 -2907 ((-653 (-1171)) $)) (-15 -3379 ((-653 (-1171)) $)) (-15 -3789 ($)) (-15 -3887 ((-653 (-1171)) $)) (-15 -3880 ((-653 (-1171)) $ (-653 (-1171)))) (-15 -2564 ((-653 (-1171)) $ (-653 (-1171)))) (-15 -3845 ((-653 (-1171)) $ (-653 (-1171))))))) (T -403)) +((-1835 (*1 *1 *2 *3) (-12 (-5 *2 (-871)) (-5 *3 (-573)) (-5 *1 (-403)))) (-1402 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-5 *2 (-1285)) (-5 *1 (-403)))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-403)))) (-2907 (*1 *2 *1) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-403)))) (-3379 (*1 *2 *1) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-403)))) (-3789 (*1 *1) (-5 *1 (-403))) (-3887 (*1 *2 *1) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-403)))) (-3880 (*1 *2 *1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-403)))) (-2564 (*1 *2 *1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-403)))) (-3845 (*1 *2 *1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-403))))) +(-13 (-1112) (-625 (-871)) (-10 -8 (-15 -1835 ($ (-871) (-573))) (-15 -1402 ((-1285) $ (-573))) (-15 -1402 ((-1285) $)) (-15 -2907 ((-653 (-1171)) $)) (-15 -3379 ((-653 (-1171)) $)) (-15 -3789 ($)) (-15 -3887 ((-653 (-1171)) $)) (-15 -3880 ((-653 (-1171)) $ (-653 (-1171)))) (-15 -2564 ((-653 (-1171)) $ (-653 (-1171)))) (-15 -3845 ((-653 (-1171)) $ (-653 (-1171)))))) +((-3767 (((-1285) $) 7)) (-2942 (((-871) $) 8))) +(((-404) (-141)) (T -404)) +((-3767 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-1285))))) +(-13 (-1230) (-622 (-871)) (-10 -8 (-15 -3767 ((-1285) $)))) +(((-622 (-871)) . T) ((-1230) . T)) +((-1695 (((-3 $ "failed") (-323 (-387))) 21) (((-3 $ "failed") (-323 (-573))) 19) (((-3 $ "failed") (-962 (-387))) 17) (((-3 $ "failed") (-962 (-573))) 15) (((-3 $ "failed") (-416 (-962 (-387)))) 13) (((-3 $ "failed") (-416 (-962 (-573)))) 11)) (-2205 (($ (-323 (-387))) 22) (($ (-323 (-573))) 20) (($ (-962 (-387))) 18) (($ (-962 (-573))) 16) (($ (-416 (-962 (-387)))) 14) (($ (-416 (-962 (-573)))) 12)) (-3767 (((-1285) $) 7)) (-2942 (((-871) $) 8) (($ (-653 (-337))) 25) (($ (-337)) 24) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 23))) (((-405) (-141)) (T -405)) -((-3768 (*1 *2 *1) (-12 (-4 *1 (-405)) (-5 *2 (-1286))))) -(-13 (-1231) (-623 (-872)) (-10 -8 (-15 -3768 ((-1286) $)))) -(((-623 (-872)) . T) ((-1231) . T)) -((-1696 (((-3 $ "failed") (-324 (-388))) 21) (((-3 $ "failed") (-324 (-574))) 19) (((-3 $ "failed") (-963 (-388))) 17) (((-3 $ "failed") (-963 (-574))) 15) (((-3 $ "failed") (-417 (-963 (-388)))) 13) (((-3 $ "failed") (-417 (-963 (-574)))) 11)) (-2206 (($ (-324 (-388))) 22) (($ (-324 (-574))) 20) (($ (-963 (-388))) 18) (($ (-963 (-574))) 16) (($ (-417 (-963 (-388)))) 14) (($ (-417 (-963 (-574)))) 12)) (-3768 (((-1286) $) 7)) (-2943 (((-872) $) 8) (($ (-654 (-338))) 25) (($ (-338)) 24) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) 23))) -(((-406) (-141)) (T -406)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-406)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-406)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) (-4 *1 (-406)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-4 *1 (-406)))) (-1696 (*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-388))) (-4 *1 (-406)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-4 *1 (-406)))) (-1696 (*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-574))) (-4 *1 (-406)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-963 (-388))) (-4 *1 (-406)))) (-1696 (*1 *1 *2) (|partial| -12 (-5 *2 (-963 (-388))) (-4 *1 (-406)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-963 (-574))) (-4 *1 (-406)))) (-1696 (*1 *1 *2) (|partial| -12 (-5 *2 (-963 (-574))) (-4 *1 (-406)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-417 (-963 (-388)))) (-4 *1 (-406)))) (-1696 (*1 *1 *2) (|partial| -12 (-5 *2 (-417 (-963 (-388)))) (-4 *1 (-406)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-417 (-963 (-574)))) (-4 *1 (-406)))) (-1696 (*1 *1 *2) (|partial| -12 (-5 *2 (-417 (-963 (-574)))) (-4 *1 (-406))))) -(-13 (-405) (-10 -8 (-15 -2943 ($ (-654 (-338)))) (-15 -2943 ($ (-338))) (-15 -2943 ($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338)))))) (-15 -2206 ($ (-324 (-388)))) (-15 -1696 ((-3 $ "failed") (-324 (-388)))) (-15 -2206 ($ (-324 (-574)))) (-15 -1696 ((-3 $ "failed") (-324 (-574)))) (-15 -2206 ($ (-963 (-388)))) (-15 -1696 ((-3 $ "failed") (-963 (-388)))) (-15 -2206 ($ (-963 (-574)))) (-15 -1696 ((-3 $ "failed") (-963 (-574)))) (-15 -2206 ($ (-417 (-963 (-388))))) (-15 -1696 ((-3 $ "failed") (-417 (-963 (-388))))) (-15 -2206 ($ (-417 (-963 (-574))))) (-15 -1696 ((-3 $ "failed") (-417 (-963 (-574))))))) -(((-623 (-872)) . T) ((-405) . T) ((-1231) . T)) -((-2177 (((-654 (-1172)) (-654 (-1172))) 9)) (-3768 (((-1286) (-398)) 26)) (-1758 (((-1117) (-1190) (-654 (-1190)) (-1193) (-654 (-1190))) 59) (((-1117) (-1190) (-654 (-3 (|:| |array| (-654 (-1190))) (|:| |scalar| (-1190)))) (-654 (-654 (-3 (|:| |array| (-654 (-1190))) (|:| |scalar| (-1190))))) (-654 (-1190)) (-1190)) 34) (((-1117) (-1190) (-654 (-3 (|:| |array| (-654 (-1190))) (|:| |scalar| (-1190)))) (-654 (-654 (-3 (|:| |array| (-654 (-1190))) (|:| |scalar| (-1190))))) (-654 (-1190))) 33))) -(((-407) (-10 -7 (-15 -1758 ((-1117) (-1190) (-654 (-3 (|:| |array| (-654 (-1190))) (|:| |scalar| (-1190)))) (-654 (-654 (-3 (|:| |array| (-654 (-1190))) (|:| |scalar| (-1190))))) (-654 (-1190)))) (-15 -1758 ((-1117) (-1190) (-654 (-3 (|:| |array| (-654 (-1190))) (|:| |scalar| (-1190)))) (-654 (-654 (-3 (|:| |array| (-654 (-1190))) (|:| |scalar| (-1190))))) (-654 (-1190)) (-1190))) (-15 -1758 ((-1117) (-1190) (-654 (-1190)) (-1193) (-654 (-1190)))) (-15 -3768 ((-1286) (-398))) (-15 -2177 ((-654 (-1172)) (-654 (-1172)))))) (T -407)) -((-2177 (*1 *2 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-407)))) (-3768 (*1 *2 *3) (-12 (-5 *3 (-398)) (-5 *2 (-1286)) (-5 *1 (-407)))) (-1758 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-654 (-1190))) (-5 *5 (-1193)) (-5 *3 (-1190)) (-5 *2 (-1117)) (-5 *1 (-407)))) (-1758 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-654 (-654 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-654 (-3 (|:| |array| (-654 *3)) (|:| |scalar| (-1190))))) (-5 *6 (-654 (-1190))) (-5 *3 (-1190)) (-5 *2 (-1117)) (-5 *1 (-407)))) (-1758 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-654 (-654 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-654 (-3 (|:| |array| (-654 *3)) (|:| |scalar| (-1190))))) (-5 *6 (-654 (-1190))) (-5 *3 (-1190)) (-5 *2 (-1117)) (-5 *1 (-407))))) -(-10 -7 (-15 -1758 ((-1117) (-1190) (-654 (-3 (|:| |array| (-654 (-1190))) (|:| |scalar| (-1190)))) (-654 (-654 (-3 (|:| |array| (-654 (-1190))) (|:| |scalar| (-1190))))) (-654 (-1190)))) (-15 -1758 ((-1117) (-1190) (-654 (-3 (|:| |array| (-654 (-1190))) (|:| |scalar| (-1190)))) (-654 (-654 (-3 (|:| |array| (-654 (-1190))) (|:| |scalar| (-1190))))) (-654 (-1190)) (-1190))) (-15 -1758 ((-1117) (-1190) (-654 (-1190)) (-1193) (-654 (-1190)))) (-15 -3768 ((-1286) (-398))) (-15 -2177 ((-654 (-1172)) (-654 (-1172))))) -((-3768 (((-1286) $) 35)) (-2943 (((-872) $) 97) (($ (-338)) 99) (($ (-654 (-338))) 98) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) 96) (($ (-324 (-711))) 52) (($ (-324 (-709))) 72) (($ (-324 (-704))) 85) (($ (-302 (-324 (-711)))) 67) (($ (-302 (-324 (-709)))) 80) (($ (-302 (-324 (-704)))) 93) (($ (-324 (-574))) 104) (($ (-324 (-388))) 117) (($ (-324 (-171 (-388)))) 130) (($ (-302 (-324 (-574)))) 112) (($ (-302 (-324 (-388)))) 125) (($ (-302 (-324 (-171 (-388))))) 138))) -(((-408 |#1| |#2| |#3| |#4|) (-13 (-405) (-10 -8 (-15 -2943 ($ (-338))) (-15 -2943 ($ (-654 (-338)))) (-15 -2943 ($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338)))))) (-15 -2943 ($ (-324 (-711)))) (-15 -2943 ($ (-324 (-709)))) (-15 -2943 ($ (-324 (-704)))) (-15 -2943 ($ (-302 (-324 (-711))))) (-15 -2943 ($ (-302 (-324 (-709))))) (-15 -2943 ($ (-302 (-324 (-704))))) (-15 -2943 ($ (-324 (-574)))) (-15 -2943 ($ (-324 (-388)))) (-15 -2943 ($ (-324 (-171 (-388))))) (-15 -2943 ($ (-302 (-324 (-574))))) (-15 -2943 ($ (-302 (-324 (-388))))) (-15 -2943 ($ (-302 (-324 (-171 (-388)))))))) (-1190) (-3 (|:| |fst| (-444)) (|:| -2426 "void")) (-654 (-1190)) (-1194)) (T -408)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-324 (-711))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-324 (-709))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-324 (-704))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-711)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-709)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-704)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-324 (-171 (-388)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-574)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-388)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-171 (-388))))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-14 *5 (-654 (-1190))) (-14 *6 (-1194))))) -(-13 (-405) (-10 -8 (-15 -2943 ($ (-338))) (-15 -2943 ($ (-654 (-338)))) (-15 -2943 ($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338)))))) (-15 -2943 ($ (-324 (-711)))) (-15 -2943 ($ (-324 (-709)))) (-15 -2943 ($ (-324 (-704)))) (-15 -2943 ($ (-302 (-324 (-711))))) (-15 -2943 ($ (-302 (-324 (-709))))) (-15 -2943 ($ (-302 (-324 (-704))))) (-15 -2943 ($ (-324 (-574)))) (-15 -2943 ($ (-324 (-388)))) (-15 -2943 ($ (-324 (-171 (-388))))) (-15 -2943 ($ (-302 (-324 (-574))))) (-15 -2943 ($ (-302 (-324 (-388))))) (-15 -2943 ($ (-302 (-324 (-171 (-388)))))))) -((-2849 (((-112) $ $) NIL)) (-3578 ((|#2| $) 38)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-1870 (($ (-417 |#2|)) 93)) (-3275 (((-654 (-2 (|:| -3715 (-781)) (|:| -3359 |#2|) (|:| |num| |#2|))) $) 39)) (-3905 (($ $) 34) (($ $ (-781)) 36)) (-1836 (((-417 |#2|) $) 49)) (-2956 (($ (-654 (-2 (|:| -3715 (-781)) (|:| -3359 |#2|) (|:| |num| |#2|)))) 33)) (-2943 (((-872) $) 131)) (-3284 (((-112) $ $) NIL)) (-3610 (($ $) 35) (($ $ (-781)) 37)) (-2981 (((-112) $ $) NIL)) (-3079 (($ |#2| $) 41))) -(((-409 |#1| |#2|) (-13 (-1113) (-624 (-417 |#2|)) (-10 -8 (-15 -3079 ($ |#2| $)) (-15 -1870 ($ (-417 |#2|))) (-15 -3578 (|#2| $)) (-15 -3275 ((-654 (-2 (|:| -3715 (-781)) (|:| -3359 |#2|) (|:| |num| |#2|))) $)) (-15 -2956 ($ (-654 (-2 (|:| -3715 (-781)) (|:| -3359 |#2|) (|:| |num| |#2|))))) (-15 -3905 ($ $)) (-15 -3610 ($ $)) (-15 -3905 ($ $ (-781))) (-15 -3610 ($ $ (-781))))) (-13 (-372) (-148)) (-1257 |#1|)) (T -409)) -((-3079 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *2)) (-4 *2 (-1257 *3)))) (-1870 (*1 *1 *2) (-12 (-5 *2 (-417 *4)) (-4 *4 (-1257 *3)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)))) (-3578 (*1 *2 *1) (-12 (-4 *2 (-1257 *3)) (-5 *1 (-409 *3 *2)) (-4 *3 (-13 (-372) (-148))))) (-3275 (*1 *2 *1) (-12 (-4 *3 (-13 (-372) (-148))) (-5 *2 (-654 (-2 (|:| -3715 (-781)) (|:| -3359 *4) (|:| |num| *4)))) (-5 *1 (-409 *3 *4)) (-4 *4 (-1257 *3)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3715 (-781)) (|:| -3359 *4) (|:| |num| *4)))) (-4 *4 (-1257 *3)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)))) (-3905 (*1 *1 *1) (-12 (-4 *2 (-13 (-372) (-148))) (-5 *1 (-409 *2 *3)) (-4 *3 (-1257 *2)))) (-3610 (*1 *1 *1) (-12 (-4 *2 (-13 (-372) (-148))) (-5 *1 (-409 *2 *3)) (-4 *3 (-1257 *2)))) (-3905 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)) (-4 *4 (-1257 *3)))) (-3610 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)) (-4 *4 (-1257 *3))))) -(-13 (-1113) (-624 (-417 |#2|)) (-10 -8 (-15 -3079 ($ |#2| $)) (-15 -1870 ($ (-417 |#2|))) (-15 -3578 (|#2| $)) (-15 -3275 ((-654 (-2 (|:| -3715 (-781)) (|:| -3359 |#2|) (|:| |num| |#2|))) $)) (-15 -2956 ($ (-654 (-2 (|:| -3715 (-781)) (|:| -3359 |#2|) (|:| |num| |#2|))))) (-15 -3905 ($ $)) (-15 -3610 ($ $)) (-15 -3905 ($ $ (-781))) (-15 -3610 ($ $ (-781))))) -((-2849 (((-112) $ $) 9 (-2818 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 16 (|has| |#1| (-897 (-388)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 15 (|has| |#1| (-897 (-574))))) (-4136 (((-1172) $) 13 (-2818 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))) (-3966 (((-1133) $) 12 (-2818 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))) (-2943 (((-872) $) 11 (-2818 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))) (-3284 (((-112) $ $) 14 (-2818 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))) (-2981 (((-112) $ $) 10 (-2818 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388))))))) -(((-410 |#1|) (-141) (-1231)) (T -410)) -NIL -(-13 (-1231) (-10 -7 (IF (|has| |t#1| (-897 (-574))) (-6 (-897 (-574))) |%noBranch|) (IF (|has| |t#1| (-897 (-388))) (-6 (-897 (-388))) |%noBranch|))) -(((-102) -2818 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))) ((-623 (-872)) -2818 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))) ((-897 (-388)) |has| |#1| (-897 (-388))) ((-897 (-574)) |has| |#1| (-897 (-574))) ((-1113) -2818 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))) ((-1231) . T)) -((-1647 (($ $) 10) (($ $ (-781)) 12))) -(((-411 |#1|) (-10 -8 (-15 -1647 (|#1| |#1| (-781))) (-15 -1647 (|#1| |#1|))) (-412)) (T -411)) -NIL -(-10 -8 (-15 -1647 (|#1| |#1| (-781))) (-15 -1647 (|#1| |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-1575 (($ $) 46)) (-2085 (((-112) $) 44)) (-3524 (((-3 $ "failed") $ $) 20)) (-2568 (($ $) 81)) (-2827 (((-428 $) $) 80)) (-1600 (((-112) $ $) 65)) (-3426 (($) 18 T CONST)) (-2786 (($ $ $) 61)) (-3434 (((-3 $ "failed") $) 37)) (-2797 (($ $ $) 62)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) 57)) (-1647 (($ $) 87) (($ $ (-781)) 86)) (-2257 (((-112) $) 79)) (-3884 (((-843 (-932)) $) 89)) (-3199 (((-112) $) 35)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2832 (($ $ $) 52) (($ (-654 $)) 51)) (-4136 (((-1172) $) 10)) (-1324 (($ $) 78)) (-3966 (((-1133) $) 11)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2873 (($ $ $) 54) (($ (-654 $)) 53)) (-4220 (((-428 $) $) 82)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2838 (((-3 $ "failed") $ $) 48)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-1730 (((-781) $) 64)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 63)) (-4342 (((-3 (-781) "failed") $ $) 88)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74)) (-3298 (((-3 $ "failed") $) 90)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2069 (((-112) $ $) 45)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3108 (($ $ $) 73)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75))) -(((-412) (-141)) (T -412)) -((-3884 (*1 *2 *1) (-12 (-4 *1 (-412)) (-5 *2 (-843 (-932))))) (-4342 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-412)) (-5 *2 (-781)))) (-1647 (*1 *1 *1) (-4 *1 (-412))) (-1647 (*1 *1 *1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-781))))) -(-13 (-372) (-146) (-10 -8 (-15 -3884 ((-843 (-932)) $)) (-15 -4342 ((-3 (-781) "failed") $ $)) (-15 -1647 ($ $)) (-15 -1647 ($ $ (-781))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-931) . T) ((-1064 #0#) . T) ((-1064 $) . T) ((-1069 #0#) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1235) . T)) -((-2381 (($ (-574) (-574)) 11) (($ (-574) (-574) (-932)) NIL)) (-2173 (((-932)) 19) (((-932) (-932)) NIL))) -(((-413 |#1|) (-10 -8 (-15 -2173 ((-932) (-932))) (-15 -2173 ((-932))) (-15 -2381 (|#1| (-574) (-574) (-932))) (-15 -2381 (|#1| (-574) (-574)))) (-414)) (T -413)) -((-2173 (*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-413 *3)) (-4 *3 (-414)))) (-2173 (*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-413 *3)) (-4 *3 (-414))))) -(-10 -8 (-15 -2173 ((-932) (-932))) (-15 -2173 ((-932))) (-15 -2381 (|#1| (-574) (-574) (-932))) (-15 -2381 (|#1| (-574) (-574)))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-1528 (((-574) $) 97)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-1575 (($ $) 46)) (-2085 (((-112) $) 44)) (-2052 (($ $) 95)) (-3524 (((-3 $ "failed") $ $) 20)) (-2568 (($ $) 81)) (-2827 (((-428 $) $) 80)) (-4229 (($ $) 105)) (-1600 (((-112) $ $) 65)) (-2846 (((-574) $) 122)) (-3426 (($) 18 T CONST)) (-4039 (($ $) 94)) (-1696 (((-3 (-574) "failed") $) 110) (((-3 (-417 (-574)) "failed") $) 107)) (-2206 (((-574) $) 111) (((-417 (-574)) $) 108)) (-2786 (($ $ $) 61)) (-3434 (((-3 $ "failed") $) 37)) (-2797 (($ $ $) 62)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) 57)) (-2257 (((-112) $) 79)) (-3785 (((-932)) 138) (((-932) (-932)) 135 (|has| $ (-6 -4447)))) (-2756 (((-112) $) 120)) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 101)) (-3884 (((-574) $) 144)) (-3199 (((-112) $) 35)) (-3460 (($ $ (-574)) 104)) (-2236 (($ $) 100)) (-1335 (((-112) $) 121)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-3659 (($ $ $) 119) (($) 132 (-12 (-2076 (|has| $ (-6 -4447))) (-2076 (|has| $ (-6 -4439)))))) (-4257 (($ $ $) 118) (($) 131 (-12 (-2076 (|has| $ (-6 -4447))) (-2076 (|has| $ (-6 -4439)))))) (-4300 (((-574) $) 141)) (-2832 (($ $ $) 52) (($ (-654 $)) 51)) (-4136 (((-1172) $) 10)) (-1324 (($ $) 78)) (-3338 (((-932) (-574)) 134 (|has| $ (-6 -4447)))) (-3966 (((-1133) $) 11)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2873 (($ $ $) 54) (($ (-654 $)) 53)) (-3191 (($ $) 96)) (-3595 (($ $) 98)) (-2381 (($ (-574) (-574)) 146) (($ (-574) (-574) (-932)) 145)) (-4220 (((-428 $) $) 82)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2838 (((-3 $ "failed") $ $) 48)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-3715 (((-574) $) 142)) (-1730 (((-781) $) 64)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 63)) (-2173 (((-932)) 139) (((-932) (-932)) 136 (|has| $ (-6 -4447)))) (-3661 (((-932) (-574)) 133 (|has| $ (-6 -4447)))) (-1836 (((-388) $) 113) (((-227) $) 112) (((-903 (-388)) $) 102)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ (-574)) 109) (($ (-417 (-574))) 106)) (-1364 (((-781)) 32 T CONST)) (-1801 (($ $) 99)) (-3837 (((-932)) 140) (((-932) (-932)) 137 (|has| $ (-6 -4447)))) (-3284 (((-112) $ $) 9)) (-2630 (((-932)) 143)) (-2069 (((-112) $ $) 45)) (-3482 (($ $) 123)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-3042 (((-112) $ $) 116)) (-3018 (((-112) $ $) 115)) (-2981 (((-112) $ $) 6)) (-3030 (((-112) $ $) 117)) (-3007 (((-112) $ $) 114)) (-3108 (($ $ $) 73)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77) (($ $ (-417 (-574))) 103)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75))) -(((-414) (-141)) (T -414)) -((-2381 (*1 *1 *2 *2) (-12 (-5 *2 (-574)) (-4 *1 (-414)))) (-2381 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-932)) (-4 *1 (-414)))) (-3884 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574)))) (-2630 (*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-932)))) (-3715 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574)))) (-4300 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574)))) (-3837 (*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-932)))) (-2173 (*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-932)))) (-3785 (*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-932)))) (-3837 (*1 *2 *2) (-12 (-5 *2 (-932)) (|has| *1 (-6 -4447)) (-4 *1 (-414)))) (-2173 (*1 *2 *2) (-12 (-5 *2 (-932)) (|has| *1 (-6 -4447)) (-4 *1 (-414)))) (-3785 (*1 *2 *2) (-12 (-5 *2 (-932)) (|has| *1 (-6 -4447)) (-4 *1 (-414)))) (-3338 (*1 *2 *3) (-12 (-5 *3 (-574)) (|has| *1 (-6 -4447)) (-4 *1 (-414)) (-5 *2 (-932)))) (-3661 (*1 *2 *3) (-12 (-5 *3 (-574)) (|has| *1 (-6 -4447)) (-4 *1 (-414)) (-5 *2 (-932)))) (-3659 (*1 *1) (-12 (-4 *1 (-414)) (-2076 (|has| *1 (-6 -4447))) (-2076 (|has| *1 (-6 -4439))))) (-4257 (*1 *1) (-12 (-4 *1 (-414)) (-2076 (|has| *1 (-6 -4447))) (-2076 (|has| *1 (-6 -4439)))))) -(-13 (-1073) (-10 -8 (-6 -3551) (-15 -2381 ($ (-574) (-574))) (-15 -2381 ($ (-574) (-574) (-932))) (-15 -3884 ((-574) $)) (-15 -2630 ((-932))) (-15 -3715 ((-574) $)) (-15 -4300 ((-574) $)) (-15 -3837 ((-932))) (-15 -2173 ((-932))) (-15 -3785 ((-932))) (IF (|has| $ (-6 -4447)) (PROGN (-15 -3837 ((-932) (-932))) (-15 -2173 ((-932) (-932))) (-15 -3785 ((-932) (-932))) (-15 -3338 ((-932) (-574))) (-15 -3661 ((-932) (-574)))) |%noBranch|) (IF (|has| $ (-6 -4439)) |%noBranch| (IF (|has| $ (-6 -4447)) |%noBranch| (PROGN (-15 -3659 ($)) (-15 -4257 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-624 (-227)) . T) ((-624 (-388)) . T) ((-624 (-903 (-388))) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-858) . T) ((-860) . T) ((-897 (-388)) . T) ((-931) . T) ((-1015) . T) ((-1035) . T) ((-1073) . T) ((-1051 (-417 (-574))) . T) ((-1051 (-574)) . T) ((-1064 #0#) . T) ((-1064 $) . T) ((-1069 #0#) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1235) . T)) -((-1777 (((-428 |#2|) (-1 |#2| |#1|) (-428 |#1|)) 20))) -(((-415 |#1| |#2|) (-10 -7 (-15 -1777 ((-428 |#2|) (-1 |#2| |#1|) (-428 |#1|)))) (-566) (-566)) (T -415)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-428 *5)) (-4 *5 (-566)) (-4 *6 (-566)) (-5 *2 (-428 *6)) (-5 *1 (-415 *5 *6))))) -(-10 -7 (-15 -1777 ((-428 |#2|) (-1 |#2| |#1|) (-428 |#1|)))) -((-1777 (((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)) 13))) -(((-416 |#1| |#2|) (-10 -7 (-15 -1777 ((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)))) (-566) (-566)) (T -416)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-417 *5)) (-4 *5 (-566)) (-4 *6 (-566)) (-5 *2 (-417 *6)) (-5 *1 (-416 *5 *6))))) -(-10 -7 (-15 -1777 ((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 13)) (-1528 ((|#1| $) 21 (|has| |#1| (-315)))) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3972 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-1600 (((-112) $ $) NIL)) (-2846 (((-574) $) NIL (|has| |#1| (-830)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#1| "failed") $) 17) (((-3 (-1190) "failed") $) NIL (|has| |#1| (-1051 (-1190)))) (((-3 (-417 (-574)) "failed") $) 72 (|has| |#1| (-1051 (-574)))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574))))) (-2206 ((|#1| $) 15) (((-1190) $) NIL (|has| |#1| (-1051 (-1190)))) (((-417 (-574)) $) 69 (|has| |#1| (-1051 (-574)))) (((-574) $) NIL (|has| |#1| (-1051 (-574))))) (-2786 (($ $ $) NIL)) (-2590 (((-699 (-574)) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-3434 (((-3 $ "failed") $) 51)) (-2820 (($) NIL (|has| |#1| (-555)))) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-2257 (((-112) $) NIL)) (-2756 (((-112) $) NIL (|has| |#1| (-830)))) (-3625 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| |#1| (-897 (-388))))) (-3199 (((-112) $) 57)) (-2141 (($ $) NIL)) (-2966 ((|#1| $) 73)) (-2748 (((-3 $ "failed") $) NIL (|has| |#1| (-1165)))) (-1335 (((-112) $) NIL (|has| |#1| (-830)))) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3659 (($ $ $) NIL (|has| |#1| (-860)))) (-4257 (($ $ $) NIL (|has| |#1| (-860)))) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| |#1| (-1165)) CONST)) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 100)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3191 (($ $) NIL (|has| |#1| (-315)))) (-3595 ((|#1| $) 28 (|has| |#1| (-555)))) (-2560 (((-428 (-1186 $)) (-1186 $)) 145 (|has| |#1| (-920)))) (-2039 (((-428 (-1186 $)) (-1186 $)) 138 (|has| |#1| (-920)))) (-4220 (((-428 $) $) NIL)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2646 (($ $ (-654 |#1|) (-654 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1190)) (-654 |#1|)) NIL (|has| |#1| (-524 (-1190) |#1|))) (($ $ (-1190) |#1|) NIL (|has| |#1| (-524 (-1190) |#1|)))) (-1730 (((-781) $) NIL)) (-2199 (($ $ |#1|) NIL (|has| |#1| (-294 |#1| |#1|)))) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-3905 (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-4358 (($ $) NIL)) (-2977 ((|#1| $) 75)) (-1836 (((-903 (-574)) $) NIL (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| |#1| (-624 (-903 (-388))))) (((-546) $) NIL (|has| |#1| (-624 (-546)))) (((-388) $) NIL (|has| |#1| (-1035))) (((-227) $) NIL (|has| |#1| (-1035)))) (-1524 (((-3 (-1281 $) "failed") (-699 $)) 122 (-12 (|has| $ (-146)) (|has| |#1| (-920))))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 10) (($ (-1190)) NIL (|has| |#1| (-1051 (-1190))))) (-3298 (((-3 $ "failed") $) 102 (-2818 (-12 (|has| $ (-146)) (|has| |#1| (-920))) (|has| |#1| (-146))))) (-1364 (((-781)) 103 T CONST)) (-1801 ((|#1| $) 26 (|has| |#1| (-555)))) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL)) (-3482 (($ $) NIL (|has| |#1| (-830)))) (-2133 (($) 22 T CONST)) (-2145 (($) 8 T CONST)) (-1544 (((-1172) $) 44 (-12 (|has| |#1| (-555)) (|has| |#1| (-838)))) (((-1172) $ (-112)) 45 (-12 (|has| |#1| (-555)) (|has| |#1| (-838)))) (((-1286) (-832) $) 46 (-12 (|has| |#1| (-555)) (|has| |#1| (-838)))) (((-1286) (-832) $ (-112)) 47 (-12 (|has| |#1| (-555)) (|has| |#1| (-838))))) (-3610 (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2981 (((-112) $ $) 66)) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3007 (((-112) $ $) 24 (|has| |#1| (-860)))) (-3108 (($ $ $) 133) (($ |#1| |#1|) 53)) (-3094 (($ $) 25) (($ $ $) 56)) (-3079 (($ $ $) 54)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 132)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 61) (($ $ $) 58) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) -(((-417 |#1|) (-13 (-1005 |#1|) (-10 -7 (IF (|has| |#1| (-555)) (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4443)) (IF (|has| |#1| (-462)) (IF (|has| |#1| (-6 -4454)) (-6 -4443) |%noBranch|) |%noBranch|) |%noBranch|))) (-566)) (T -417)) -NIL -(-13 (-1005 |#1|) (-10 -7 (IF (|has| |#1| (-555)) (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4443)) (IF (|has| |#1| (-462)) (IF (|has| |#1| (-6 -4454)) (-6 -4443) |%noBranch|) |%noBranch|) |%noBranch|))) -((-2294 (((-699 |#2|) (-1281 $)) NIL) (((-699 |#2|)) 18)) (-2737 (($ (-1281 |#2|) (-1281 $)) NIL) (($ (-1281 |#2|)) 24)) (-2134 (((-699 |#2|) $ (-1281 $)) NIL) (((-699 |#2|) $) 40)) (-1972 ((|#3| $) 69)) (-2872 ((|#2| (-1281 $)) NIL) ((|#2|) 20)) (-3487 (((-1281 |#2|) $ (-1281 $)) NIL) (((-699 |#2|) (-1281 $) (-1281 $)) NIL) (((-1281 |#2|) $) 22) (((-699 |#2|) (-1281 $)) 38)) (-1836 (((-1281 |#2|) $) 11) (($ (-1281 |#2|)) 13)) (-1435 ((|#3| $) 55))) -(((-418 |#1| |#2| |#3|) (-10 -8 (-15 -2134 ((-699 |#2|) |#1|)) (-15 -2872 (|#2|)) (-15 -2294 ((-699 |#2|))) (-15 -1836 (|#1| (-1281 |#2|))) (-15 -1836 ((-1281 |#2|) |#1|)) (-15 -2737 (|#1| (-1281 |#2|))) (-15 -3487 ((-699 |#2|) (-1281 |#1|))) (-15 -3487 ((-1281 |#2|) |#1|)) (-15 -1972 (|#3| |#1|)) (-15 -1435 (|#3| |#1|)) (-15 -2294 ((-699 |#2|) (-1281 |#1|))) (-15 -2872 (|#2| (-1281 |#1|))) (-15 -2737 (|#1| (-1281 |#2|) (-1281 |#1|))) (-15 -3487 ((-699 |#2|) (-1281 |#1|) (-1281 |#1|))) (-15 -3487 ((-1281 |#2|) |#1| (-1281 |#1|))) (-15 -2134 ((-699 |#2|) |#1| (-1281 |#1|)))) (-419 |#2| |#3|) (-174) (-1257 |#2|)) (T -418)) -((-2294 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1257 *4)) (-5 *2 (-699 *4)) (-5 *1 (-418 *3 *4 *5)) (-4 *3 (-419 *4 *5)))) (-2872 (*1 *2) (-12 (-4 *4 (-1257 *2)) (-4 *2 (-174)) (-5 *1 (-418 *3 *2 *4)) (-4 *3 (-419 *2 *4))))) -(-10 -8 (-15 -2134 ((-699 |#2|) |#1|)) (-15 -2872 (|#2|)) (-15 -2294 ((-699 |#2|))) (-15 -1836 (|#1| (-1281 |#2|))) (-15 -1836 ((-1281 |#2|) |#1|)) (-15 -2737 (|#1| (-1281 |#2|))) (-15 -3487 ((-699 |#2|) (-1281 |#1|))) (-15 -3487 ((-1281 |#2|) |#1|)) (-15 -1972 (|#3| |#1|)) (-15 -1435 (|#3| |#1|)) (-15 -2294 ((-699 |#2|) (-1281 |#1|))) (-15 -2872 (|#2| (-1281 |#1|))) (-15 -2737 (|#1| (-1281 |#2|) (-1281 |#1|))) (-15 -3487 ((-699 |#2|) (-1281 |#1|) (-1281 |#1|))) (-15 -3487 ((-1281 |#2|) |#1| (-1281 |#1|))) (-15 -2134 ((-699 |#2|) |#1| (-1281 |#1|)))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-2294 (((-699 |#1|) (-1281 $)) 53) (((-699 |#1|)) 68)) (-1636 ((|#1| $) 59)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-2737 (($ (-1281 |#1|) (-1281 $)) 55) (($ (-1281 |#1|)) 71)) (-2134 (((-699 |#1|) $ (-1281 $)) 60) (((-699 |#1|) $) 66)) (-3434 (((-3 $ "failed") $) 37)) (-3584 (((-932)) 61)) (-3199 (((-112) $) 35)) (-2236 ((|#1| $) 58)) (-1972 ((|#2| $) 51 (|has| |#1| (-372)))) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2872 ((|#1| (-1281 $)) 54) ((|#1|) 67)) (-3487 (((-1281 |#1|) $ (-1281 $)) 57) (((-699 |#1|) (-1281 $) (-1281 $)) 56) (((-1281 |#1|) $) 73) (((-699 |#1|) (-1281 $)) 72)) (-1836 (((-1281 |#1|) $) 70) (($ (-1281 |#1|)) 69)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44)) (-3298 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-1435 ((|#2| $) 52)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-1882 (((-1281 $)) 74)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-419 |#1| |#2|) (-141) (-174) (-1257 |t#1|)) (T -419)) -((-1882 (*1 *2) (-12 (-4 *3 (-174)) (-4 *4 (-1257 *3)) (-5 *2 (-1281 *1)) (-4 *1 (-419 *3 *4)))) (-3487 (*1 *2 *1) (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1257 *3)) (-5 *2 (-1281 *3)))) (-3487 (*1 *2 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-419 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1257 *4)) (-5 *2 (-699 *4)))) (-2737 (*1 *1 *2) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-174)) (-4 *1 (-419 *3 *4)) (-4 *4 (-1257 *3)))) (-1836 (*1 *2 *1) (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1257 *3)) (-5 *2 (-1281 *3)))) (-1836 (*1 *1 *2) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-174)) (-4 *1 (-419 *3 *4)) (-4 *4 (-1257 *3)))) (-2294 (*1 *2) (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1257 *3)) (-5 *2 (-699 *3)))) (-2872 (*1 *2) (-12 (-4 *1 (-419 *2 *3)) (-4 *3 (-1257 *2)) (-4 *2 (-174)))) (-2134 (*1 *2 *1) (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1257 *3)) (-5 *2 (-699 *3))))) -(-13 (-379 |t#1| |t#2|) (-10 -8 (-15 -1882 ((-1281 $))) (-15 -3487 ((-1281 |t#1|) $)) (-15 -3487 ((-699 |t#1|) (-1281 $))) (-15 -2737 ($ (-1281 |t#1|))) (-15 -1836 ((-1281 |t#1|) $)) (-15 -1836 ($ (-1281 |t#1|))) (-15 -2294 ((-699 |t#1|))) (-15 -2872 (|t#1|)) (-15 -2134 ((-699 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-379 |#1| |#2|) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-736) . T) ((-1064 |#1|) . T) ((-1069 |#1|) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T)) -((-1696 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) 27) (((-3 (-574) "failed") $) 19)) (-2206 ((|#2| $) NIL) (((-417 (-574)) $) 24) (((-574) $) 14)) (-2943 (($ |#2|) NIL) (($ (-417 (-574))) 22) (($ (-574)) 11))) -(((-420 |#1| |#2|) (-10 -8 (-15 -2943 (|#1| (-574))) (-15 -1696 ((-3 (-574) "failed") |#1|)) (-15 -2206 ((-574) |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -1696 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2206 ((-417 (-574)) |#1|)) (-15 -2206 (|#2| |#1|)) (-15 -1696 ((-3 |#2| "failed") |#1|)) (-15 -2943 (|#1| |#2|))) (-421 |#2|) (-1231)) (T -420)) -NIL -(-10 -8 (-15 -2943 (|#1| (-574))) (-15 -1696 ((-3 (-574) "failed") |#1|)) (-15 -2206 ((-574) |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -1696 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2206 ((-417 (-574)) |#1|)) (-15 -2206 (|#2| |#1|)) (-15 -1696 ((-3 |#2| "failed") |#1|)) (-15 -2943 (|#1| |#2|))) -((-1696 (((-3 |#1| "failed") $) 9) (((-3 (-417 (-574)) "failed") $) 16 (|has| |#1| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) 13 (|has| |#1| (-1051 (-574))))) (-2206 ((|#1| $) 8) (((-417 (-574)) $) 17 (|has| |#1| (-1051 (-417 (-574))))) (((-574) $) 14 (|has| |#1| (-1051 (-574))))) (-2943 (($ |#1|) 6) (($ (-417 (-574))) 15 (|has| |#1| (-1051 (-417 (-574))))) (($ (-574)) 12 (|has| |#1| (-1051 (-574)))))) -(((-421 |#1|) (-141) (-1231)) (T -421)) -NIL -(-13 (-1051 |t#1|) (-10 -7 (IF (|has| |t#1| (-1051 (-574))) (-6 (-1051 (-574))) |%noBranch|) (IF (|has| |t#1| (-1051 (-417 (-574)))) (-6 (-1051 (-417 (-574)))) |%noBranch|))) -(((-626 #0=(-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((-626 #1=(-574)) |has| |#1| (-1051 (-574))) ((-626 |#1|) . T) ((-1051 #0#) |has| |#1| (-1051 (-417 (-574)))) ((-1051 #1#) |has| |#1| (-1051 (-574))) ((-1051 |#1|) . T)) -((-1777 (((-423 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-423 |#1| |#2| |#3| |#4|)) 35))) -(((-422 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1777 ((-423 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-423 |#1| |#2| |#3| |#4|)))) (-315) (-1005 |#1|) (-1257 |#2|) (-13 (-419 |#2| |#3|) (-1051 |#2|)) (-315) (-1005 |#5|) (-1257 |#6|) (-13 (-419 |#6| |#7|) (-1051 |#6|))) (T -422)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-423 *5 *6 *7 *8)) (-4 *5 (-315)) (-4 *6 (-1005 *5)) (-4 *7 (-1257 *6)) (-4 *8 (-13 (-419 *6 *7) (-1051 *6))) (-4 *9 (-315)) (-4 *10 (-1005 *9)) (-4 *11 (-1257 *10)) (-5 *2 (-423 *9 *10 *11 *12)) (-5 *1 (-422 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-419 *10 *11) (-1051 *10)))))) -(-10 -7 (-15 -1777 ((-423 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-423 |#1| |#2| |#3| |#4|)))) -((-2849 (((-112) $ $) NIL)) (-3426 (($) NIL T CONST)) (-3434 (((-3 $ "failed") $) NIL)) (-3669 ((|#4| (-781) (-1281 |#4|)) 55)) (-3199 (((-112) $) NIL)) (-2966 (((-1281 |#4|) $) 15)) (-2236 ((|#2| $) 53)) (-1362 (($ $) 157)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) 103)) (-3174 (($ (-1281 |#4|)) 102)) (-3966 (((-1133) $) NIL)) (-2977 ((|#1| $) 16)) (-1479 (($ $ $) NIL)) (-3204 (($ $ $) NIL)) (-2943 (((-872) $) 148)) (-3284 (((-112) $ $) NIL)) (-1882 (((-1281 |#4|) $) 141)) (-2145 (($) 11 T CONST)) (-2981 (((-112) $ $) 39)) (-3108 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 134)) (* (($ $ $) 130))) -(((-423 |#1| |#2| |#3| |#4|) (-13 (-483) (-10 -8 (-15 -3174 ($ (-1281 |#4|))) (-15 -1882 ((-1281 |#4|) $)) (-15 -2236 (|#2| $)) (-15 -2966 ((-1281 |#4|) $)) (-15 -2977 (|#1| $)) (-15 -1362 ($ $)) (-15 -3669 (|#4| (-781) (-1281 |#4|))))) (-315) (-1005 |#1|) (-1257 |#2|) (-13 (-419 |#2| |#3|) (-1051 |#2|))) (T -423)) -((-3174 (*1 *1 *2) (-12 (-5 *2 (-1281 *6)) (-4 *6 (-13 (-419 *4 *5) (-1051 *4))) (-4 *4 (-1005 *3)) (-4 *5 (-1257 *4)) (-4 *3 (-315)) (-5 *1 (-423 *3 *4 *5 *6)))) (-1882 (*1 *2 *1) (-12 (-4 *3 (-315)) (-4 *4 (-1005 *3)) (-4 *5 (-1257 *4)) (-5 *2 (-1281 *6)) (-5 *1 (-423 *3 *4 *5 *6)) (-4 *6 (-13 (-419 *4 *5) (-1051 *4))))) (-2236 (*1 *2 *1) (-12 (-4 *4 (-1257 *2)) (-4 *2 (-1005 *3)) (-5 *1 (-423 *3 *2 *4 *5)) (-4 *3 (-315)) (-4 *5 (-13 (-419 *2 *4) (-1051 *2))))) (-2966 (*1 *2 *1) (-12 (-4 *3 (-315)) (-4 *4 (-1005 *3)) (-4 *5 (-1257 *4)) (-5 *2 (-1281 *6)) (-5 *1 (-423 *3 *4 *5 *6)) (-4 *6 (-13 (-419 *4 *5) (-1051 *4))))) (-2977 (*1 *2 *1) (-12 (-4 *3 (-1005 *2)) (-4 *4 (-1257 *3)) (-4 *2 (-315)) (-5 *1 (-423 *2 *3 *4 *5)) (-4 *5 (-13 (-419 *3 *4) (-1051 *3))))) (-1362 (*1 *1 *1) (-12 (-4 *2 (-315)) (-4 *3 (-1005 *2)) (-4 *4 (-1257 *3)) (-5 *1 (-423 *2 *3 *4 *5)) (-4 *5 (-13 (-419 *3 *4) (-1051 *3))))) (-3669 (*1 *2 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-1281 *2)) (-4 *5 (-315)) (-4 *6 (-1005 *5)) (-4 *2 (-13 (-419 *6 *7) (-1051 *6))) (-5 *1 (-423 *5 *6 *7 *2)) (-4 *7 (-1257 *6))))) -(-13 (-483) (-10 -8 (-15 -3174 ($ (-1281 |#4|))) (-15 -1882 ((-1281 |#4|) $)) (-15 -2236 (|#2| $)) (-15 -2966 ((-1281 |#4|) $)) (-15 -2977 (|#1| $)) (-15 -1362 ($ $)) (-15 -3669 (|#4| (-781) (-1281 |#4|))))) -((-2849 (((-112) $ $) NIL)) (-3426 (($) NIL T CONST)) (-3434 (((-3 $ "failed") $) NIL)) (-3199 (((-112) $) NIL)) (-2236 ((|#2| $) 71)) (-2058 (($ (-1281 |#4|)) 27) (($ (-423 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1051 |#2|)))) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 37)) (-3284 (((-112) $ $) NIL)) (-1882 (((-1281 |#4|) $) 28)) (-2145 (($) 25 T CONST)) (-2981 (((-112) $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ $ $) 82))) -(((-424 |#1| |#2| |#3| |#4| |#5|) (-13 (-736) (-10 -8 (-15 -1882 ((-1281 |#4|) $)) (-15 -2236 (|#2| $)) (-15 -2058 ($ (-1281 |#4|))) (IF (|has| |#4| (-1051 |#2|)) (-15 -2058 ($ (-423 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-315) (-1005 |#1|) (-1257 |#2|) (-419 |#2| |#3|) (-1281 |#4|)) (T -424)) -((-1882 (*1 *2 *1) (-12 (-4 *3 (-315)) (-4 *4 (-1005 *3)) (-4 *5 (-1257 *4)) (-5 *2 (-1281 *6)) (-5 *1 (-424 *3 *4 *5 *6 *7)) (-4 *6 (-419 *4 *5)) (-14 *7 *2))) (-2236 (*1 *2 *1) (-12 (-4 *4 (-1257 *2)) (-4 *2 (-1005 *3)) (-5 *1 (-424 *3 *2 *4 *5 *6)) (-4 *3 (-315)) (-4 *5 (-419 *2 *4)) (-14 *6 (-1281 *5)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-1281 *6)) (-4 *6 (-419 *4 *5)) (-4 *4 (-1005 *3)) (-4 *5 (-1257 *4)) (-4 *3 (-315)) (-5 *1 (-424 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-423 *3 *4 *5 *6)) (-4 *6 (-1051 *4)) (-4 *3 (-315)) (-4 *4 (-1005 *3)) (-4 *5 (-1257 *4)) (-4 *6 (-419 *4 *5)) (-14 *7 (-1281 *6)) (-5 *1 (-424 *3 *4 *5 *6 *7))))) -(-13 (-736) (-10 -8 (-15 -1882 ((-1281 |#4|) $)) (-15 -2236 (|#2| $)) (-15 -2058 ($ (-1281 |#4|))) (IF (|has| |#4| (-1051 |#2|)) (-15 -2058 ($ (-423 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-1777 ((|#3| (-1 |#4| |#2|) |#1|) 29))) -(((-425 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1777 (|#3| (-1 |#4| |#2|) |#1|))) (-427 |#2|) (-174) (-427 |#4|) (-174)) (T -425)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-427 *6)) (-5 *1 (-425 *4 *5 *2 *6)) (-4 *4 (-427 *5))))) -(-10 -7 (-15 -1777 (|#3| (-1 |#4| |#2|) |#1|))) -((-2785 (((-3 $ "failed")) 98)) (-2174 (((-1281 (-699 |#2|)) (-1281 $)) NIL) (((-1281 (-699 |#2|))) 103)) (-1666 (((-3 (-2 (|:| |particular| $) (|:| -1882 (-654 $))) "failed")) 96)) (-1854 (((-3 $ "failed")) 95)) (-2301 (((-699 |#2|) (-1281 $)) NIL) (((-699 |#2|)) 114)) (-3208 (((-699 |#2|) $ (-1281 $)) NIL) (((-699 |#2|) $) 122)) (-2378 (((-1186 (-963 |#2|))) 63)) (-1565 ((|#2| (-1281 $)) NIL) ((|#2|) 118)) (-2737 (($ (-1281 |#2|) (-1281 $)) NIL) (($ (-1281 |#2|)) 124)) (-2269 (((-3 (-2 (|:| |particular| $) (|:| -1882 (-654 $))) "failed")) 94)) (-1484 (((-3 $ "failed")) 86)) (-2284 (((-699 |#2|) (-1281 $)) NIL) (((-699 |#2|)) 112)) (-2787 (((-699 |#2|) $ (-1281 $)) NIL) (((-699 |#2|) $) 120)) (-1451 (((-1186 (-963 |#2|))) 62)) (-1810 ((|#2| (-1281 $)) NIL) ((|#2|) 116)) (-3487 (((-1281 |#2|) $ (-1281 $)) NIL) (((-699 |#2|) (-1281 $) (-1281 $)) NIL) (((-1281 |#2|) $) 123) (((-699 |#2|) (-1281 $)) 132)) (-1836 (((-1281 |#2|) $) 108) (($ (-1281 |#2|)) 110)) (-3760 (((-654 (-963 |#2|)) (-1281 $)) NIL) (((-654 (-963 |#2|))) 106)) (-2901 (($ (-699 |#2|) $) 102))) -(((-426 |#1| |#2|) (-10 -8 (-15 -2901 (|#1| (-699 |#2|) |#1|)) (-15 -2378 ((-1186 (-963 |#2|)))) (-15 -1451 ((-1186 (-963 |#2|)))) (-15 -3208 ((-699 |#2|) |#1|)) (-15 -2787 ((-699 |#2|) |#1|)) (-15 -2301 ((-699 |#2|))) (-15 -2284 ((-699 |#2|))) (-15 -1565 (|#2|)) (-15 -1810 (|#2|)) (-15 -1836 (|#1| (-1281 |#2|))) (-15 -1836 ((-1281 |#2|) |#1|)) (-15 -2737 (|#1| (-1281 |#2|))) (-15 -3760 ((-654 (-963 |#2|)))) (-15 -2174 ((-1281 (-699 |#2|)))) (-15 -3487 ((-699 |#2|) (-1281 |#1|))) (-15 -3487 ((-1281 |#2|) |#1|)) (-15 -2785 ((-3 |#1| "failed"))) (-15 -1854 ((-3 |#1| "failed"))) (-15 -1484 ((-3 |#1| "failed"))) (-15 -1666 ((-3 (-2 (|:| |particular| |#1|) (|:| -1882 (-654 |#1|))) "failed"))) (-15 -2269 ((-3 (-2 (|:| |particular| |#1|) (|:| -1882 (-654 |#1|))) "failed"))) (-15 -2301 ((-699 |#2|) (-1281 |#1|))) (-15 -2284 ((-699 |#2|) (-1281 |#1|))) (-15 -1565 (|#2| (-1281 |#1|))) (-15 -1810 (|#2| (-1281 |#1|))) (-15 -2737 (|#1| (-1281 |#2|) (-1281 |#1|))) (-15 -3487 ((-699 |#2|) (-1281 |#1|) (-1281 |#1|))) (-15 -3487 ((-1281 |#2|) |#1| (-1281 |#1|))) (-15 -3208 ((-699 |#2|) |#1| (-1281 |#1|))) (-15 -2787 ((-699 |#2|) |#1| (-1281 |#1|))) (-15 -2174 ((-1281 (-699 |#2|)) (-1281 |#1|))) (-15 -3760 ((-654 (-963 |#2|)) (-1281 |#1|)))) (-427 |#2|) (-174)) (T -426)) -((-2174 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1281 (-699 *4))) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))) (-3760 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-654 (-963 *4))) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))) (-1810 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-426 *3 *2)) (-4 *3 (-427 *2)))) (-1565 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-426 *3 *2)) (-4 *3 (-427 *2)))) (-2284 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-699 *4)) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))) (-2301 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-699 *4)) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))) (-1451 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1186 (-963 *4))) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))) (-2378 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1186 (-963 *4))) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4))))) -(-10 -8 (-15 -2901 (|#1| (-699 |#2|) |#1|)) (-15 -2378 ((-1186 (-963 |#2|)))) (-15 -1451 ((-1186 (-963 |#2|)))) (-15 -3208 ((-699 |#2|) |#1|)) (-15 -2787 ((-699 |#2|) |#1|)) (-15 -2301 ((-699 |#2|))) (-15 -2284 ((-699 |#2|))) (-15 -1565 (|#2|)) (-15 -1810 (|#2|)) (-15 -1836 (|#1| (-1281 |#2|))) (-15 -1836 ((-1281 |#2|) |#1|)) (-15 -2737 (|#1| (-1281 |#2|))) (-15 -3760 ((-654 (-963 |#2|)))) (-15 -2174 ((-1281 (-699 |#2|)))) (-15 -3487 ((-699 |#2|) (-1281 |#1|))) (-15 -3487 ((-1281 |#2|) |#1|)) (-15 -2785 ((-3 |#1| "failed"))) (-15 -1854 ((-3 |#1| "failed"))) (-15 -1484 ((-3 |#1| "failed"))) (-15 -1666 ((-3 (-2 (|:| |particular| |#1|) (|:| -1882 (-654 |#1|))) "failed"))) (-15 -2269 ((-3 (-2 (|:| |particular| |#1|) (|:| -1882 (-654 |#1|))) "failed"))) (-15 -2301 ((-699 |#2|) (-1281 |#1|))) (-15 -2284 ((-699 |#2|) (-1281 |#1|))) (-15 -1565 (|#2| (-1281 |#1|))) (-15 -1810 (|#2| (-1281 |#1|))) (-15 -2737 (|#1| (-1281 |#2|) (-1281 |#1|))) (-15 -3487 ((-699 |#2|) (-1281 |#1|) (-1281 |#1|))) (-15 -3487 ((-1281 |#2|) |#1| (-1281 |#1|))) (-15 -3208 ((-699 |#2|) |#1| (-1281 |#1|))) (-15 -2787 ((-699 |#2|) |#1| (-1281 |#1|))) (-15 -2174 ((-1281 (-699 |#2|)) (-1281 |#1|))) (-15 -3760 ((-654 (-963 |#2|)) (-1281 |#1|)))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-2785 (((-3 $ "failed")) 42 (|has| |#1| (-566)))) (-3524 (((-3 $ "failed") $ $) 20)) (-2174 (((-1281 (-699 |#1|)) (-1281 $)) 83) (((-1281 (-699 |#1|))) 106)) (-4274 (((-1281 $)) 86)) (-3426 (($) 18 T CONST)) (-1666 (((-3 (-2 (|:| |particular| $) (|:| -1882 (-654 $))) "failed")) 45 (|has| |#1| (-566)))) (-1854 (((-3 $ "failed")) 43 (|has| |#1| (-566)))) (-2301 (((-699 |#1|) (-1281 $)) 70) (((-699 |#1|)) 98)) (-2538 ((|#1| $) 79)) (-3208 (((-699 |#1|) $ (-1281 $)) 81) (((-699 |#1|) $) 96)) (-2784 (((-3 $ "failed") $) 50 (|has| |#1| (-566)))) (-2378 (((-1186 (-963 |#1|))) 94 (|has| |#1| (-372)))) (-2397 (($ $ (-932)) 31)) (-3870 ((|#1| $) 77)) (-3664 (((-1186 |#1|) $) 47 (|has| |#1| (-566)))) (-1565 ((|#1| (-1281 $)) 72) ((|#1|) 100)) (-1436 (((-1186 |#1|) $) 68)) (-3287 (((-112)) 62)) (-2737 (($ (-1281 |#1|) (-1281 $)) 74) (($ (-1281 |#1|)) 104)) (-3434 (((-3 $ "failed") $) 52 (|has| |#1| (-566)))) (-3584 (((-932)) 85)) (-2542 (((-112)) 59)) (-2817 (($ $ (-932)) 38)) (-1514 (((-112)) 55)) (-3168 (((-112)) 53)) (-3531 (((-112)) 57)) (-2269 (((-3 (-2 (|:| |particular| $) (|:| -1882 (-654 $))) "failed")) 46 (|has| |#1| (-566)))) (-1484 (((-3 $ "failed")) 44 (|has| |#1| (-566)))) (-2284 (((-699 |#1|) (-1281 $)) 71) (((-699 |#1|)) 99)) (-1450 ((|#1| $) 80)) (-2787 (((-699 |#1|) $ (-1281 $)) 82) (((-699 |#1|) $) 97)) (-4271 (((-3 $ "failed") $) 51 (|has| |#1| (-566)))) (-1451 (((-1186 (-963 |#1|))) 95 (|has| |#1| (-372)))) (-2422 (($ $ (-932)) 32)) (-2552 ((|#1| $) 78)) (-1460 (((-1186 |#1|) $) 48 (|has| |#1| (-566)))) (-1810 ((|#1| (-1281 $)) 73) ((|#1|) 101)) (-1943 (((-1186 |#1|) $) 69)) (-4037 (((-112)) 63)) (-4136 (((-1172) $) 10)) (-1342 (((-112)) 54)) (-3227 (((-112)) 56)) (-2949 (((-112)) 58)) (-3966 (((-1133) $) 11)) (-3604 (((-112)) 61)) (-2199 ((|#1| $ (-574)) 110)) (-3487 (((-1281 |#1|) $ (-1281 $)) 76) (((-699 |#1|) (-1281 $) (-1281 $)) 75) (((-1281 |#1|) $) 108) (((-699 |#1|) (-1281 $)) 107)) (-1836 (((-1281 |#1|) $) 103) (($ (-1281 |#1|)) 102)) (-3760 (((-654 (-963 |#1|)) (-1281 $)) 84) (((-654 (-963 |#1|))) 105)) (-3204 (($ $ $) 28)) (-3163 (((-112)) 67)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-1882 (((-1281 $)) 109)) (-2735 (((-654 (-1281 |#1|))) 49 (|has| |#1| (-566)))) (-1320 (($ $ $ $) 29)) (-2525 (((-112)) 65)) (-2901 (($ (-699 |#1|) $) 93)) (-2299 (($ $ $) 27)) (-3971 (((-112)) 66)) (-3545 (((-112)) 64)) (-1950 (((-112)) 60)) (-2133 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 33)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-427 |#1|) (-141) (-174)) (T -427)) -((-1882 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1281 *1)) (-4 *1 (-427 *3)))) (-3487 (*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1281 *3)))) (-3487 (*1 *2 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-427 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-2174 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1281 (-699 *3))))) (-3760 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-654 (-963 *3))))) (-2737 (*1 *1 *2) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-174)) (-4 *1 (-427 *3)))) (-1836 (*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1281 *3)))) (-1836 (*1 *1 *2) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-174)) (-4 *1 (-427 *3)))) (-1810 (*1 *2) (-12 (-4 *1 (-427 *2)) (-4 *2 (-174)))) (-1565 (*1 *2) (-12 (-4 *1 (-427 *2)) (-4 *2 (-174)))) (-2284 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))) (-2301 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))) (-2787 (*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))) (-3208 (*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))) (-1451 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-4 *3 (-372)) (-5 *2 (-1186 (-963 *3))))) (-2378 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-4 *3 (-372)) (-5 *2 (-1186 (-963 *3))))) (-2901 (*1 *1 *2 *1) (-12 (-5 *2 (-699 *3)) (-4 *1 (-427 *3)) (-4 *3 (-174))))) -(-13 (-376 |t#1|) (-294 (-574) |t#1|) (-10 -8 (-15 -1882 ((-1281 $))) (-15 -3487 ((-1281 |t#1|) $)) (-15 -3487 ((-699 |t#1|) (-1281 $))) (-15 -2174 ((-1281 (-699 |t#1|)))) (-15 -3760 ((-654 (-963 |t#1|)))) (-15 -2737 ($ (-1281 |t#1|))) (-15 -1836 ((-1281 |t#1|) $)) (-15 -1836 ($ (-1281 |t#1|))) (-15 -1810 (|t#1|)) (-15 -1565 (|t#1|)) (-15 -2284 ((-699 |t#1|))) (-15 -2301 ((-699 |t#1|))) (-15 -2787 ((-699 |t#1|) $)) (-15 -3208 ((-699 |t#1|) $)) (IF (|has| |t#1| (-372)) (PROGN (-15 -1451 ((-1186 (-963 |t#1|)))) (-15 -2378 ((-1186 (-963 |t#1|))))) |%noBranch|) (-15 -2901 ($ (-699 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-294 (-574) |#1|) . T) ((-376 |#1|) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-730) . T) ((-754 |#1|) . T) ((-771) . T) ((-1064 |#1|) . T) ((-1069 |#1|) . T) ((-1113) . T) ((-1231) . T)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 60)) (-4167 (($ $) 78)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 192)) (-1575 (($ $) NIL)) (-2085 (((-112) $) 48)) (-2785 ((|#1| $) 16)) (-3524 (((-3 $ "failed") $ $) NIL)) (-2568 (($ $) NIL (|has| |#1| (-1235)))) (-2827 (((-428 $) $) NIL (|has| |#1| (-1235)))) (-3407 (($ |#1| (-574)) 42)) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) 149)) (-2206 (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) 74)) (-3434 (((-3 $ "failed") $) 165)) (-1880 (((-3 (-417 (-574)) "failed") $) 85 (|has| |#1| (-555)))) (-4414 (((-112) $) 81 (|has| |#1| (-555)))) (-4339 (((-417 (-574)) $) 92 (|has| |#1| (-555)))) (-1735 (($ |#1| (-574)) 44)) (-2257 (((-112) $) 212 (|has| |#1| (-1235)))) (-3199 (((-112) $) 62)) (-1684 (((-781) $) 51)) (-1685 (((-3 "nil" "sqfr" "irred" "prime") $ (-574)) 176)) (-1915 ((|#1| $ (-574)) 175)) (-2579 (((-574) $ (-574)) 174)) (-1891 (($ |#1| (-574)) 41)) (-1777 (($ (-1 |#1| |#1|) $) 184)) (-3597 (($ |#1| (-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574))))) 79)) (-2832 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-4136 (((-1172) $) NIL)) (-3817 (($ |#1| (-574)) 43)) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-462)))) (-2873 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) 193 (|has| |#1| (-462)))) (-2162 (($ |#1| (-574) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-4219 (((-654 (-2 (|:| -4220 |#1|) (|:| -3715 (-574)))) $) 73)) (-2310 (((-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574)))) $) 12)) (-4220 (((-428 $) $) NIL (|has| |#1| (-1235)))) (-2838 (((-3 $ "failed") $ $) 177)) (-3715 (((-574) $) 168)) (-2128 ((|#1| $) 75)) (-2646 (($ $ (-654 |#1|) (-654 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) 101 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1190)) (-654 |#1|)) 107 (|has| |#1| (-524 (-1190) |#1|))) (($ $ (-1190) |#1|) NIL (|has| |#1| (-524 (-1190) |#1|))) (($ $ (-1190) $) NIL (|has| |#1| (-524 (-1190) $))) (($ $ (-654 (-1190)) (-654 $)) 108 (|has| |#1| (-524 (-1190) $))) (($ $ (-654 (-302 $))) 104 (|has| |#1| (-317 $))) (($ $ (-302 $)) NIL (|has| |#1| (-317 $))) (($ $ $ $) NIL (|has| |#1| (-317 $))) (($ $ (-654 $) (-654 $)) NIL (|has| |#1| (-317 $)))) (-2199 (($ $ |#1|) 93 (|has| |#1| (-294 |#1| |#1|))) (($ $ $) 94 (|has| |#1| (-294 $ $)))) (-3905 (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) 183)) (-1836 (((-546) $) 39 (|has| |#1| (-624 (-546)))) (((-388) $) 114 (|has| |#1| (-1035))) (((-227) $) 120 (|has| |#1| (-1035)))) (-2943 (((-872) $) 147) (($ (-574)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-417 (-574))) NIL (|has| |#1| (-1051 (-417 (-574)))))) (-1364 (((-781)) 67 T CONST)) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL)) (-2133 (($) 53 T CONST)) (-2145 (($) 52 T CONST)) (-3610 (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2981 (((-112) $ $) 160)) (-3094 (($ $) 162) (($ $ $) NIL)) (-3079 (($ $ $) 181)) (** (($ $ (-932)) NIL) (($ $ (-781)) 126)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) -(((-428 |#1|) (-13 (-566) (-233 |#1|) (-38 |#1|) (-347 |#1|) (-421 |#1|) (-10 -8 (-15 -2128 (|#1| $)) (-15 -3715 ((-574) $)) (-15 -3597 ($ |#1| (-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574)))))) (-15 -2310 ((-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574)))) $)) (-15 -1891 ($ |#1| (-574))) (-15 -4219 ((-654 (-2 (|:| -4220 |#1|) (|:| -3715 (-574)))) $)) (-15 -3817 ($ |#1| (-574))) (-15 -2579 ((-574) $ (-574))) (-15 -1915 (|#1| $ (-574))) (-15 -1685 ((-3 "nil" "sqfr" "irred" "prime") $ (-574))) (-15 -1684 ((-781) $)) (-15 -1735 ($ |#1| (-574))) (-15 -3407 ($ |#1| (-574))) (-15 -2162 ($ |#1| (-574) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2785 (|#1| $)) (-15 -4167 ($ $)) (-15 -1777 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-462)) (-6 (-462)) |%noBranch|) (IF (|has| |#1| (-1035)) (-6 (-1035)) |%noBranch|) (IF (|has| |#1| (-1235)) (-6 (-1235)) |%noBranch|) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -4414 ((-112) $)) (-15 -4339 ((-417 (-574)) $)) (-15 -1880 ((-3 (-417 (-574)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-294 $ $)) (-6 (-294 $ $)) |%noBranch|) (IF (|has| |#1| (-317 $)) (-6 (-317 $)) |%noBranch|) (IF (|has| |#1| (-524 (-1190) $)) (-6 (-524 (-1190) $)) |%noBranch|))) (-566)) (T -428)) -((-1777 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-566)) (-5 *1 (-428 *3)))) (-2128 (*1 *2 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-3715 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-428 *3)) (-4 *3 (-566)))) (-3597 (*1 *1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-574))))) (-4 *2 (-566)) (-5 *1 (-428 *2)))) (-2310 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-574))))) (-5 *1 (-428 *3)) (-4 *3 (-566)))) (-1891 (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-4219 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| -4220 *3) (|:| -3715 (-574))))) (-5 *1 (-428 *3)) (-4 *3 (-566)))) (-3817 (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-2579 (*1 *2 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-428 *3)) (-4 *3 (-566)))) (-1915 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-1685 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-428 *4)) (-4 *4 (-566)))) (-1684 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-428 *3)) (-4 *3 (-566)))) (-1735 (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-3407 (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-2162 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-574)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-2785 (*1 *2 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-4167 (*1 *1 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-4414 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-428 *3)) (-4 *3 (-555)) (-4 *3 (-566)))) (-4339 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-428 *3)) (-4 *3 (-555)) (-4 *3 (-566)))) (-1880 (*1 *2 *1) (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-428 *3)) (-4 *3 (-555)) (-4 *3 (-566))))) -(-13 (-566) (-233 |#1|) (-38 |#1|) (-347 |#1|) (-421 |#1|) (-10 -8 (-15 -2128 (|#1| $)) (-15 -3715 ((-574) $)) (-15 -3597 ($ |#1| (-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574)))))) (-15 -2310 ((-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574)))) $)) (-15 -1891 ($ |#1| (-574))) (-15 -4219 ((-654 (-2 (|:| -4220 |#1|) (|:| -3715 (-574)))) $)) (-15 -3817 ($ |#1| (-574))) (-15 -2579 ((-574) $ (-574))) (-15 -1915 (|#1| $ (-574))) (-15 -1685 ((-3 "nil" "sqfr" "irred" "prime") $ (-574))) (-15 -1684 ((-781) $)) (-15 -1735 ($ |#1| (-574))) (-15 -3407 ($ |#1| (-574))) (-15 -2162 ($ |#1| (-574) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2785 (|#1| $)) (-15 -4167 ($ $)) (-15 -1777 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-462)) (-6 (-462)) |%noBranch|) (IF (|has| |#1| (-1035)) (-6 (-1035)) |%noBranch|) (IF (|has| |#1| (-1235)) (-6 (-1235)) |%noBranch|) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -4414 ((-112) $)) (-15 -4339 ((-417 (-574)) $)) (-15 -1880 ((-3 (-417 (-574)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-294 $ $)) (-6 (-294 $ $)) |%noBranch|) (IF (|has| |#1| (-317 $)) (-6 (-317 $)) |%noBranch|) (IF (|has| |#1| (-524 (-1190) $)) (-6 (-524 (-1190) $)) |%noBranch|))) -((-3445 (((-428 |#1|) (-428 |#1|) (-1 (-428 |#1|) |#1|)) 28)) (-3907 (((-428 |#1|) (-428 |#1|) (-428 |#1|)) 17))) -(((-429 |#1|) (-10 -7 (-15 -3445 ((-428 |#1|) (-428 |#1|) (-1 (-428 |#1|) |#1|))) (-15 -3907 ((-428 |#1|) (-428 |#1|) (-428 |#1|)))) (-566)) (T -429)) -((-3907 (*1 *2 *2 *2) (-12 (-5 *2 (-428 *3)) (-4 *3 (-566)) (-5 *1 (-429 *3)))) (-3445 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-428 *4) *4)) (-4 *4 (-566)) (-5 *2 (-428 *4)) (-5 *1 (-429 *4))))) -(-10 -7 (-15 -3445 ((-428 |#1|) (-428 |#1|) (-1 (-428 |#1|) |#1|))) (-15 -3907 ((-428 |#1|) (-428 |#1|) (-428 |#1|)))) -((-3253 ((|#2| |#2|) 183)) (-3433 (((-3 (|:| |%expansion| (-321 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1172)) (|:| |prob| (-1172))))) |#2| (-112)) 60))) -(((-430 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3433 ((-3 (|:| |%expansion| (-321 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1172)) (|:| |prob| (-1172))))) |#2| (-112))) (-15 -3253 (|#2| |#2|))) (-13 (-462) (-1051 (-574)) (-649 (-574))) (-13 (-27) (-1216) (-440 |#1|)) (-1190) |#2|) (T -430)) -((-3253 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-430 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1216) (-440 *3))) (-14 *4 (-1190)) (-14 *5 *2))) (-3433 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |%expansion| (-321 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1172)) (|:| |prob| (-1172)))))) (-5 *1 (-430 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1216) (-440 *5))) (-14 *6 (-1190)) (-14 *7 *3)))) -(-10 -7 (-15 -3433 ((-3 (|:| |%expansion| (-321 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1172)) (|:| |prob| (-1172))))) |#2| (-112))) (-15 -3253 (|#2| |#2|))) -((-1777 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-431 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1777 (|#4| (-1 |#3| |#1|) |#2|))) (-1062) (-440 |#1|) (-1062) (-440 |#3|)) (T -431)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1062)) (-4 *6 (-1062)) (-4 *2 (-440 *6)) (-5 *1 (-431 *5 *4 *6 *2)) (-4 *4 (-440 *5))))) -(-10 -7 (-15 -1777 (|#4| (-1 |#3| |#1|) |#2|))) -((-3253 ((|#2| |#2|) 106)) (-2524 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1172)) (|:| |prob| (-1172))))) |#2| (-112) (-1172)) 52)) (-1762 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1172)) (|:| |prob| (-1172))))) |#2| (-112) (-1172)) 170))) -(((-432 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2524 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1172)) (|:| |prob| (-1172))))) |#2| (-112) (-1172))) (-15 -1762 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1172)) (|:| |prob| (-1172))))) |#2| (-112) (-1172))) (-15 -3253 (|#2| |#2|))) (-13 (-462) (-1051 (-574)) (-649 (-574))) (-13 (-27) (-1216) (-440 |#1|) (-10 -8 (-15 -2943 ($ |#3|)))) (-858) (-13 (-1259 |#2| |#3|) (-372) (-1216) (-10 -8 (-15 -3905 ($ $)) (-15 -2379 ($ $)))) (-996 |#4|) (-1190)) (T -432)) -((-3253 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-4 *2 (-13 (-27) (-1216) (-440 *3) (-10 -8 (-15 -2943 ($ *4))))) (-4 *4 (-858)) (-4 *5 (-13 (-1259 *2 *4) (-372) (-1216) (-10 -8 (-15 -3905 ($ $)) (-15 -2379 ($ $))))) (-5 *1 (-432 *3 *2 *4 *5 *6 *7)) (-4 *6 (-996 *5)) (-14 *7 (-1190)))) (-1762 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-4 *3 (-13 (-27) (-1216) (-440 *6) (-10 -8 (-15 -2943 ($ *7))))) (-4 *7 (-858)) (-4 *8 (-13 (-1259 *3 *7) (-372) (-1216) (-10 -8 (-15 -3905 ($ $)) (-15 -2379 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1172)) (|:| |prob| (-1172)))))) (-5 *1 (-432 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1172)) (-4 *9 (-996 *8)) (-14 *10 (-1190)))) (-2524 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-4 *3 (-13 (-27) (-1216) (-440 *6) (-10 -8 (-15 -2943 ($ *7))))) (-4 *7 (-858)) (-4 *8 (-13 (-1259 *3 *7) (-372) (-1216) (-10 -8 (-15 -3905 ($ $)) (-15 -2379 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1172)) (|:| |prob| (-1172)))))) (-5 *1 (-432 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1172)) (-4 *9 (-996 *8)) (-14 *10 (-1190))))) -(-10 -7 (-15 -2524 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1172)) (|:| |prob| (-1172))))) |#2| (-112) (-1172))) (-15 -1762 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1172)) (|:| |prob| (-1172))))) |#2| (-112) (-1172))) (-15 -3253 (|#2| |#2|))) -((-4034 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2868 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1777 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-433 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1777 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2868 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4034 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1113) (-435 |#1|) (-1113) (-435 |#3|)) (T -433)) -((-4034 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1113)) (-4 *5 (-1113)) (-4 *2 (-435 *5)) (-5 *1 (-433 *6 *4 *5 *2)) (-4 *4 (-435 *6)))) (-2868 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1113)) (-4 *2 (-1113)) (-5 *1 (-433 *5 *4 *2 *6)) (-4 *4 (-435 *5)) (-4 *6 (-435 *2)))) (-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *2 (-435 *6)) (-5 *1 (-433 *5 *4 *6 *2)) (-4 *4 (-435 *5))))) -(-10 -7 (-15 -1777 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2868 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4034 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-1988 (($) 51)) (-4359 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 47)) (-2743 (($ $ $) 46)) (-3605 (((-112) $ $) 35)) (-1487 (((-781)) 55)) (-1507 (($ (-654 |#2|)) 23) (($) NIL)) (-2820 (($) 66)) (-3270 (((-112) $ $) 15)) (-3659 ((|#2| $) 77)) (-4257 ((|#2| $) 75)) (-4115 (((-932) $) 70)) (-1784 (($ $ $) 42)) (-2576 (($ (-932)) 60)) (-4285 (($ $ |#2|) NIL) (($ $ $) 45)) (-3975 (((-781) (-1 (-112) |#2|) $) NIL) (((-781) |#2| $) 31)) (-2956 (($ (-654 |#2|)) 27)) (-1334 (($ $) 53)) (-2943 (((-872) $) 40)) (-4066 (((-781) $) 24)) (-4281 (($ (-654 |#2|)) 22) (($) NIL)) (-2981 (((-112) $ $) 19))) -(((-434 |#1| |#2|) (-10 -8 (-15 -1487 ((-781))) (-15 -2576 (|#1| (-932))) (-15 -4115 ((-932) |#1|)) (-15 -2820 (|#1|)) (-15 -3659 (|#2| |#1|)) (-15 -4257 (|#2| |#1|)) (-15 -1988 (|#1|)) (-15 -1334 (|#1| |#1|)) (-15 -4066 ((-781) |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -2943 ((-872) |#1|)) (-15 -3270 ((-112) |#1| |#1|)) (-15 -4281 (|#1|)) (-15 -4281 (|#1| (-654 |#2|))) (-15 -1507 (|#1|)) (-15 -1507 (|#1| (-654 |#2|))) (-15 -1784 (|#1| |#1| |#1|)) (-15 -4285 (|#1| |#1| |#1|)) (-15 -4285 (|#1| |#1| |#2|)) (-15 -2743 (|#1| |#1| |#1|)) (-15 -3605 ((-112) |#1| |#1|)) (-15 -4359 (|#1| |#1| |#1|)) (-15 -4359 (|#1| |#1| |#2|)) (-15 -4359 (|#1| |#2| |#1|)) (-15 -2956 (|#1| (-654 |#2|))) (-15 -3975 ((-781) |#2| |#1|)) (-15 -3975 ((-781) (-1 (-112) |#2|) |#1|))) (-435 |#2|) (-1113)) (T -434)) -((-1487 (*1 *2) (-12 (-4 *4 (-1113)) (-5 *2 (-781)) (-5 *1 (-434 *3 *4)) (-4 *3 (-435 *4))))) -(-10 -8 (-15 -1487 ((-781))) (-15 -2576 (|#1| (-932))) (-15 -4115 ((-932) |#1|)) (-15 -2820 (|#1|)) (-15 -3659 (|#2| |#1|)) (-15 -4257 (|#2| |#1|)) (-15 -1988 (|#1|)) (-15 -1334 (|#1| |#1|)) (-15 -4066 ((-781) |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -2943 ((-872) |#1|)) (-15 -3270 ((-112) |#1| |#1|)) (-15 -4281 (|#1|)) (-15 -4281 (|#1| (-654 |#2|))) (-15 -1507 (|#1|)) (-15 -1507 (|#1| (-654 |#2|))) (-15 -1784 (|#1| |#1| |#1|)) (-15 -4285 (|#1| |#1| |#1|)) (-15 -4285 (|#1| |#1| |#2|)) (-15 -2743 (|#1| |#1| |#1|)) (-15 -3605 ((-112) |#1| |#1|)) (-15 -4359 (|#1| |#1| |#1|)) (-15 -4359 (|#1| |#1| |#2|)) (-15 -4359 (|#1| |#2| |#1|)) (-15 -2956 (|#1| (-654 |#2|))) (-15 -3975 ((-781) |#2| |#1|)) (-15 -3975 ((-781) (-1 (-112) |#2|) |#1|))) -((-2849 (((-112) $ $) 19)) (-1988 (($) 68 (|has| |#1| (-377)))) (-4359 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-2743 (($ $ $) 79)) (-3605 (((-112) $ $) 80)) (-3034 (((-112) $ (-781)) 8)) (-1487 (((-781)) 62 (|has| |#1| (-377)))) (-1507 (($ (-654 |#1|)) 75) (($) 74)) (-3572 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4456)))) (-2165 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4456)))) (-3426 (($) 7 T CONST)) (-1543 (($ $) 59 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2876 (($ |#1| $) 48 (|has| $ (-6 -4456))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4456)))) (-3335 (($ |#1| $) 58 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4456)))) (-2820 (($) 65 (|has| |#1| (-377)))) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3270 (((-112) $ $) 71)) (-2742 (((-112) $ (-781)) 9)) (-3659 ((|#1| $) 66 (|has| |#1| (-860)))) (-1606 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-4257 ((|#1| $) 67 (|has| |#1| (-860)))) (-2449 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 36)) (-4115 (((-932) $) 64 (|has| |#1| (-377)))) (-4203 (((-112) $ (-781)) 10)) (-4136 (((-1172) $) 22)) (-1784 (($ $ $) 76)) (-2937 ((|#1| $) 40)) (-2798 (($ |#1| $) 41)) (-2576 (($ (-932)) 63 (|has| |#1| (-377)))) (-3966 (((-1133) $) 21)) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1785 ((|#1| $) 42)) (-2540 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 14)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-4285 (($ $ |#1|) 78) (($ $ $) 77)) (-1662 (($) 50) (($ (-654 |#1|)) 49)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-1836 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 51)) (-1334 (($ $) 69 (|has| |#1| (-377)))) (-2943 (((-872) $) 18)) (-4066 (((-781) $) 70)) (-4281 (($ (-654 |#1|)) 73) (($) 72)) (-3284 (((-112) $ $) 23)) (-1599 (($ (-654 |#1|)) 43)) (-3390 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 20)) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-435 |#1|) (-141) (-1113)) (T -435)) -((-4066 (*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1113)) (-5 *2 (-781)))) (-1334 (*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1113)) (-4 *2 (-377)))) (-1988 (*1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-377)) (-4 *2 (-1113)))) (-4257 (*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1113)) (-4 *2 (-860)))) (-3659 (*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1113)) (-4 *2 (-860))))) -(-13 (-231 |t#1|) (-1111 |t#1|) (-10 -8 (-6 -4456) (-15 -4066 ((-781) $)) (IF (|has| |t#1| (-377)) (PROGN (-6 (-377)) (-15 -1334 ($ $)) (-15 -1988 ($))) |%noBranch|) (IF (|has| |t#1| (-860)) (PROGN (-15 -4257 (|t#1| $)) (-15 -3659 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-623 (-872)) . T) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-231 |#1|) . T) ((-241 |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-377) |has| |#1| (-377)) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1111 |#1|) . T) ((-1113) . T) ((-1231) . T)) -((-2115 (((-596 |#2|) |#2| (-1190)) 36)) (-2671 (((-596 |#2|) |#2| (-1190)) 21)) (-2363 ((|#2| |#2| (-1190)) 26))) -(((-436 |#1| |#2|) (-10 -7 (-15 -2671 ((-596 |#2|) |#2| (-1190))) (-15 -2115 ((-596 |#2|) |#2| (-1190))) (-15 -2363 (|#2| |#2| (-1190)))) (-13 (-315) (-148) (-1051 (-574)) (-649 (-574))) (-13 (-1216) (-29 |#1|))) (T -436)) -((-2363 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-436 *4 *2)) (-4 *2 (-13 (-1216) (-29 *4))))) (-2115 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-4 *5 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-436 *5 *3)) (-4 *3 (-13 (-1216) (-29 *5))))) (-2671 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-4 *5 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-436 *5 *3)) (-4 *3 (-13 (-1216) (-29 *5)))))) -(-10 -7 (-15 -2671 ((-596 |#2|) |#2| (-1190))) (-15 -2115 ((-596 |#2|) |#2| (-1190))) (-15 -2363 (|#2| |#2| (-1190)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-3434 (((-3 $ "failed") $) NIL)) (-3199 (((-112) $) NIL)) (-4077 (($ |#2| |#1|) 37)) (-3221 (($ |#2| |#1|) 35)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-339 |#2|)) 25)) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-2133 (($) 10 T CONST)) (-2145 (($) 16 T CONST)) (-2981 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) 36)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-437 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4443)) (IF (|has| |#1| (-6 -4443)) (-6 -4443) |%noBranch|) |%noBranch|) (-15 -2943 ($ |#1|)) (-15 -2943 ($ (-339 |#2|))) (-15 -4077 ($ |#2| |#1|)) (-15 -3221 ($ |#2| |#1|)))) (-13 (-174) (-38 (-417 (-574)))) (-13 (-860) (-21))) (T -437)) -((-2943 (*1 *1 *2) (-12 (-5 *1 (-437 *2 *3)) (-4 *2 (-13 (-174) (-38 (-417 (-574))))) (-4 *3 (-13 (-860) (-21))))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-339 *4)) (-4 *4 (-13 (-860) (-21))) (-5 *1 (-437 *3 *4)) (-4 *3 (-13 (-174) (-38 (-417 (-574))))))) (-4077 (*1 *1 *2 *3) (-12 (-5 *1 (-437 *3 *2)) (-4 *3 (-13 (-174) (-38 (-417 (-574))))) (-4 *2 (-13 (-860) (-21))))) (-3221 (*1 *1 *2 *3) (-12 (-5 *1 (-437 *3 *2)) (-4 *3 (-13 (-174) (-38 (-417 (-574))))) (-4 *2 (-13 (-860) (-21)))))) -(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4443)) (IF (|has| |#1| (-6 -4443)) (-6 -4443) |%noBranch|) |%noBranch|) (-15 -2943 ($ |#1|)) (-15 -2943 ($ (-339 |#2|))) (-15 -4077 ($ |#2| |#1|)) (-15 -3221 ($ |#2| |#1|)))) -((-2379 (((-3 |#2| (-654 |#2|)) |#2| (-1190)) 115))) -(((-438 |#1| |#2|) (-10 -7 (-15 -2379 ((-3 |#2| (-654 |#2|)) |#2| (-1190)))) (-13 (-315) (-148) (-1051 (-574)) (-649 (-574))) (-13 (-1216) (-970) (-29 |#1|))) (T -438)) -((-2379 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-4 *5 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-3 *3 (-654 *3))) (-5 *1 (-438 *5 *3)) (-4 *3 (-13 (-1216) (-970) (-29 *5)))))) -(-10 -7 (-15 -2379 ((-3 |#2| (-654 |#2|)) |#2| (-1190)))) -((-4355 (((-654 (-1190)) $) 81)) (-4194 (((-417 (-1186 $)) $ (-622 $)) 313)) (-2545 (($ $ (-302 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-654 (-622 $)) (-654 $)) 277)) (-1696 (((-3 (-622 $) "failed") $) NIL) (((-3 (-1190) "failed") $) 84) (((-3 (-574) "failed") $) NIL) (((-3 |#2| "failed") $) 273) (((-3 (-417 (-963 |#2|)) "failed") $) 363) (((-3 (-963 |#2|) "failed") $) 275) (((-3 (-417 (-574)) "failed") $) NIL)) (-2206 (((-622 $) $) NIL) (((-1190) $) 28) (((-574) $) NIL) ((|#2| $) 271) (((-417 (-963 |#2|)) $) 345) (((-963 |#2|) $) 272) (((-417 (-574)) $) NIL)) (-4175 (((-115) (-115)) 47)) (-2141 (($ $) 99)) (-3429 (((-3 (-622 $) "failed") $) 268)) (-4163 (((-654 (-622 $)) $) 269)) (-2755 (((-3 (-654 $) "failed") $) 287)) (-2127 (((-3 (-2 (|:| |val| $) (|:| -3715 (-574))) "failed") $) 294)) (-2415 (((-3 (-654 $) "failed") $) 285)) (-2658 (((-3 (-2 (|:| -1858 (-574)) (|:| |var| (-622 $))) "failed") $) 304)) (-2241 (((-3 (-2 (|:| |var| (-622 $)) (|:| -3715 (-574))) "failed") $) 291) (((-3 (-2 (|:| |var| (-622 $)) (|:| -3715 (-574))) "failed") $ (-115)) 255) (((-3 (-2 (|:| |var| (-622 $)) (|:| -3715 (-574))) "failed") $ (-1190)) 257)) (-1338 (((-112) $) 17)) (-1349 ((|#2| $) 19)) (-2646 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) 276) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1190)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-1190)) (-654 (-1 $ (-654 $)))) 109) (($ $ (-1190) (-1 $ (-654 $))) NIL) (($ $ (-1190) (-1 $ $)) NIL) (($ $ (-654 (-115)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-115) (-1 $ (-654 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1190)) 62) (($ $ (-654 (-1190))) 280) (($ $) 281) (($ $ (-115) $ (-1190)) 65) (($ $ (-654 (-115)) (-654 $) (-1190)) 72) (($ $ (-654 (-1190)) (-654 (-781)) (-654 (-1 $ $))) 120) (($ $ (-654 (-1190)) (-654 (-781)) (-654 (-1 $ (-654 $)))) 282) (($ $ (-1190) (-781) (-1 $ (-654 $))) 105) (($ $ (-1190) (-781) (-1 $ $)) 104)) (-2199 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-654 $)) 119)) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190)) 278)) (-4358 (($ $) 324)) (-1836 (((-903 (-574)) $) 297) (((-903 (-388)) $) 301) (($ (-428 $)) 359) (((-546) $) NIL)) (-2943 (((-872) $) 279) (($ (-622 $)) 93) (($ (-1190)) 24) (($ |#2|) NIL) (($ (-1138 |#2| (-622 $))) NIL) (($ (-417 |#2|)) 329) (($ (-963 (-417 |#2|))) 368) (($ (-417 (-963 (-417 |#2|)))) 341) (($ (-417 (-963 |#2|))) 335) (($ $) NIL) (($ (-963 |#2|)) 216) (($ (-574)) NIL) (($ (-417 (-574))) 373)) (-1364 (((-781)) 88)) (-3225 (((-112) (-115)) 42)) (-2499 (($ (-1190) $) 31) (($ (-1190) $ $) 32) (($ (-1190) $ $ $) 33) (($ (-1190) $ $ $ $) 34) (($ (-1190) (-654 $)) 39)) (* (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL) (($ $ |#2|) NIL) (($ |#2| $) 306) (($ $ $) NIL) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-932) $) NIL))) -(((-439 |#1| |#2|) (-10 -8 (-15 * (|#1| (-932) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -1696 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2206 ((-417 (-574)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2943 (|#1| (-574))) (-15 -1364 ((-781))) (-15 * (|#1| |#2| |#1|)) (-15 -1836 ((-546) |#1|)) (-15 -2943 (|#1| (-963 |#2|))) (-15 -1696 ((-3 (-963 |#2|) "failed") |#1|)) (-15 -2206 ((-963 |#2|) |#1|)) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 * (|#1| |#1| |#2|)) (-15 -2943 (|#1| |#1|)) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -2943 (|#1| (-417 (-963 |#2|)))) (-15 -1696 ((-3 (-417 (-963 |#2|)) "failed") |#1|)) (-15 -2206 ((-417 (-963 |#2|)) |#1|)) (-15 -4194 ((-417 (-1186 |#1|)) |#1| (-622 |#1|))) (-15 -2943 (|#1| (-417 (-963 (-417 |#2|))))) (-15 -2943 (|#1| (-963 (-417 |#2|)))) (-15 -2943 (|#1| (-417 |#2|))) (-15 -4358 (|#1| |#1|)) (-15 -1836 (|#1| (-428 |#1|))) (-15 -2646 (|#1| |#1| (-1190) (-781) (-1 |#1| |#1|))) (-15 -2646 (|#1| |#1| (-1190) (-781) (-1 |#1| (-654 |#1|)))) (-15 -2646 (|#1| |#1| (-654 (-1190)) (-654 (-781)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2646 (|#1| |#1| (-654 (-1190)) (-654 (-781)) (-654 (-1 |#1| |#1|)))) (-15 -2127 ((-3 (-2 (|:| |val| |#1|) (|:| -3715 (-574))) "failed") |#1|)) (-15 -2241 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -3715 (-574))) "failed") |#1| (-1190))) (-15 -2241 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -3715 (-574))) "failed") |#1| (-115))) (-15 -2141 (|#1| |#1|)) (-15 -2943 (|#1| (-1138 |#2| (-622 |#1|)))) (-15 -2658 ((-3 (-2 (|:| -1858 (-574)) (|:| |var| (-622 |#1|))) "failed") |#1|)) (-15 -2415 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -2241 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -3715 (-574))) "failed") |#1|)) (-15 -2755 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -2646 (|#1| |#1| (-654 (-115)) (-654 |#1|) (-1190))) (-15 -2646 (|#1| |#1| (-115) |#1| (-1190))) (-15 -2646 (|#1| |#1|)) (-15 -2646 (|#1| |#1| (-654 (-1190)))) (-15 -2646 (|#1| |#1| (-1190))) (-15 -2499 (|#1| (-1190) (-654 |#1|))) (-15 -2499 (|#1| (-1190) |#1| |#1| |#1| |#1|)) (-15 -2499 (|#1| (-1190) |#1| |#1| |#1|)) (-15 -2499 (|#1| (-1190) |#1| |#1|)) (-15 -2499 (|#1| (-1190) |#1|)) (-15 -4355 ((-654 (-1190)) |#1|)) (-15 -1349 (|#2| |#1|)) (-15 -1338 ((-112) |#1|)) (-15 -2943 (|#1| |#2|)) (-15 -1696 ((-3 |#2| "failed") |#1|)) (-15 -2206 (|#2| |#1|)) (-15 -2206 ((-574) |#1|)) (-15 -1696 ((-3 (-574) "failed") |#1|)) (-15 -1836 ((-903 (-388)) |#1|)) (-15 -1836 ((-903 (-574)) |#1|)) (-15 -2943 (|#1| (-1190))) (-15 -1696 ((-3 (-1190) "failed") |#1|)) (-15 -2206 ((-1190) |#1|)) (-15 -2646 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2646 (|#1| |#1| (-115) (-1 |#1| (-654 |#1|)))) (-15 -2646 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2646 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| |#1|)))) (-15 -2646 (|#1| |#1| (-1190) (-1 |#1| |#1|))) (-15 -2646 (|#1| |#1| (-1190) (-1 |#1| (-654 |#1|)))) (-15 -2646 (|#1| |#1| (-654 (-1190)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2646 (|#1| |#1| (-654 (-1190)) (-654 (-1 |#1| |#1|)))) (-15 -3225 ((-112) (-115))) (-15 -4175 ((-115) (-115))) (-15 -4163 ((-654 (-622 |#1|)) |#1|)) (-15 -3429 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2545 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2545 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2545 (|#1| |#1| (-302 |#1|))) (-15 -2199 (|#1| (-115) (-654 |#1|))) (-15 -2199 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2199 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2199 (|#1| (-115) |#1| |#1|)) (-15 -2199 (|#1| (-115) |#1|)) (-15 -2646 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#1| |#1|)) (-15 -2646 (|#1| |#1| (-302 |#1|))) (-15 -2646 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2646 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2646 (|#1| |#1| (-622 |#1|) |#1|)) (-15 -2943 (|#1| (-622 |#1|))) (-15 -1696 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2206 ((-622 |#1|) |#1|)) (-15 -2943 ((-872) |#1|))) (-440 |#2|) (-1113)) (T -439)) -((-4175 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1113)) (-5 *1 (-439 *3 *4)) (-4 *3 (-440 *4)))) (-3225 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1113)) (-5 *2 (-112)) (-5 *1 (-439 *4 *5)) (-4 *4 (-440 *5)))) (-1364 (*1 *2) (-12 (-4 *4 (-1113)) (-5 *2 (-781)) (-5 *1 (-439 *3 *4)) (-4 *3 (-440 *4))))) -(-10 -8 (-15 * (|#1| (-932) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -1696 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2206 ((-417 (-574)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2943 (|#1| (-574))) (-15 -1364 ((-781))) (-15 * (|#1| |#2| |#1|)) (-15 -1836 ((-546) |#1|)) (-15 -2943 (|#1| (-963 |#2|))) (-15 -1696 ((-3 (-963 |#2|) "failed") |#1|)) (-15 -2206 ((-963 |#2|) |#1|)) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 * (|#1| |#1| |#2|)) (-15 -2943 (|#1| |#1|)) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -2943 (|#1| (-417 (-963 |#2|)))) (-15 -1696 ((-3 (-417 (-963 |#2|)) "failed") |#1|)) (-15 -2206 ((-417 (-963 |#2|)) |#1|)) (-15 -4194 ((-417 (-1186 |#1|)) |#1| (-622 |#1|))) (-15 -2943 (|#1| (-417 (-963 (-417 |#2|))))) (-15 -2943 (|#1| (-963 (-417 |#2|)))) (-15 -2943 (|#1| (-417 |#2|))) (-15 -4358 (|#1| |#1|)) (-15 -1836 (|#1| (-428 |#1|))) (-15 -2646 (|#1| |#1| (-1190) (-781) (-1 |#1| |#1|))) (-15 -2646 (|#1| |#1| (-1190) (-781) (-1 |#1| (-654 |#1|)))) (-15 -2646 (|#1| |#1| (-654 (-1190)) (-654 (-781)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2646 (|#1| |#1| (-654 (-1190)) (-654 (-781)) (-654 (-1 |#1| |#1|)))) (-15 -2127 ((-3 (-2 (|:| |val| |#1|) (|:| -3715 (-574))) "failed") |#1|)) (-15 -2241 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -3715 (-574))) "failed") |#1| (-1190))) (-15 -2241 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -3715 (-574))) "failed") |#1| (-115))) (-15 -2141 (|#1| |#1|)) (-15 -2943 (|#1| (-1138 |#2| (-622 |#1|)))) (-15 -2658 ((-3 (-2 (|:| -1858 (-574)) (|:| |var| (-622 |#1|))) "failed") |#1|)) (-15 -2415 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -2241 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -3715 (-574))) "failed") |#1|)) (-15 -2755 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -2646 (|#1| |#1| (-654 (-115)) (-654 |#1|) (-1190))) (-15 -2646 (|#1| |#1| (-115) |#1| (-1190))) (-15 -2646 (|#1| |#1|)) (-15 -2646 (|#1| |#1| (-654 (-1190)))) (-15 -2646 (|#1| |#1| (-1190))) (-15 -2499 (|#1| (-1190) (-654 |#1|))) (-15 -2499 (|#1| (-1190) |#1| |#1| |#1| |#1|)) (-15 -2499 (|#1| (-1190) |#1| |#1| |#1|)) (-15 -2499 (|#1| (-1190) |#1| |#1|)) (-15 -2499 (|#1| (-1190) |#1|)) (-15 -4355 ((-654 (-1190)) |#1|)) (-15 -1349 (|#2| |#1|)) (-15 -1338 ((-112) |#1|)) (-15 -2943 (|#1| |#2|)) (-15 -1696 ((-3 |#2| "failed") |#1|)) (-15 -2206 (|#2| |#1|)) (-15 -2206 ((-574) |#1|)) (-15 -1696 ((-3 (-574) "failed") |#1|)) (-15 -1836 ((-903 (-388)) |#1|)) (-15 -1836 ((-903 (-574)) |#1|)) (-15 -2943 (|#1| (-1190))) (-15 -1696 ((-3 (-1190) "failed") |#1|)) (-15 -2206 ((-1190) |#1|)) (-15 -2646 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2646 (|#1| |#1| (-115) (-1 |#1| (-654 |#1|)))) (-15 -2646 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2646 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| |#1|)))) (-15 -2646 (|#1| |#1| (-1190) (-1 |#1| |#1|))) (-15 -2646 (|#1| |#1| (-1190) (-1 |#1| (-654 |#1|)))) (-15 -2646 (|#1| |#1| (-654 (-1190)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2646 (|#1| |#1| (-654 (-1190)) (-654 (-1 |#1| |#1|)))) (-15 -3225 ((-112) (-115))) (-15 -4175 ((-115) (-115))) (-15 -4163 ((-654 (-622 |#1|)) |#1|)) (-15 -3429 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2545 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2545 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2545 (|#1| |#1| (-302 |#1|))) (-15 -2199 (|#1| (-115) (-654 |#1|))) (-15 -2199 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2199 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2199 (|#1| (-115) |#1| |#1|)) (-15 -2199 (|#1| (-115) |#1|)) (-15 -2646 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#1| |#1|)) (-15 -2646 (|#1| |#1| (-302 |#1|))) (-15 -2646 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2646 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2646 (|#1| |#1| (-622 |#1|) |#1|)) (-15 -2943 (|#1| (-622 |#1|))) (-15 -1696 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2206 ((-622 |#1|) |#1|)) (-15 -2943 ((-872) |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 116 (|has| |#1| (-25)))) (-4355 (((-654 (-1190)) $) 205)) (-4194 (((-417 (-1186 $)) $ (-622 $)) 173 (|has| |#1| (-566)))) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 145 (|has| |#1| (-566)))) (-1575 (($ $) 146 (|has| |#1| (-566)))) (-2085 (((-112) $) 148 (|has| |#1| (-566)))) (-4091 (((-654 (-622 $)) $) 39)) (-3524 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-2545 (($ $ (-302 $)) 51) (($ $ (-654 (-302 $))) 50) (($ $ (-654 (-622 $)) (-654 $)) 49)) (-2568 (($ $) 165 (|has| |#1| (-566)))) (-2827 (((-428 $) $) 166 (|has| |#1| (-566)))) (-1600 (((-112) $ $) 156 (|has| |#1| (-566)))) (-3426 (($) 104 (-2818 (|has| |#1| (-1125)) (|has| |#1| (-25))) CONST)) (-1696 (((-3 (-622 $) "failed") $) 64) (((-3 (-1190) "failed") $) 218) (((-3 (-574) "failed") $) 212 (|has| |#1| (-1051 (-574)))) (((-3 |#1| "failed") $) 209) (((-3 (-417 (-963 |#1|)) "failed") $) 171 (|has| |#1| (-566))) (((-3 (-963 |#1|) "failed") $) 123 (|has| |#1| (-1062))) (((-3 (-417 (-574)) "failed") $) 98 (-2818 (-12 (|has| |#1| (-1051 (-574))) (|has| |#1| (-566))) (|has| |#1| (-1051 (-417 (-574))))))) (-2206 (((-622 $) $) 65) (((-1190) $) 219) (((-574) $) 211 (|has| |#1| (-1051 (-574)))) ((|#1| $) 210) (((-417 (-963 |#1|)) $) 172 (|has| |#1| (-566))) (((-963 |#1|) $) 124 (|has| |#1| (-1062))) (((-417 (-574)) $) 99 (-2818 (-12 (|has| |#1| (-1051 (-574))) (|has| |#1| (-566))) (|has| |#1| (-1051 (-417 (-574))))))) (-2786 (($ $ $) 160 (|has| |#1| (-566)))) (-2590 (((-699 (-574)) (-1281 $)) 140 (-2087 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062)))) (((-699 (-574)) (-699 $)) 139 (-2087 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 138 (-2087 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062)))) (((-2 (|:| -4340 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) 137 (|has| |#1| (-1062))) (((-699 |#1|) (-699 $)) 136 (|has| |#1| (-1062))) (((-699 |#1|) (-1281 $)) 135 (|has| |#1| (-1062)))) (-3434 (((-3 $ "failed") $) 106 (|has| |#1| (-1125)))) (-2797 (($ $ $) 159 (|has| |#1| (-566)))) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) 154 (|has| |#1| (-566)))) (-2257 (((-112) $) 167 (|has| |#1| (-566)))) (-3625 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 214 (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 213 (|has| |#1| (-897 (-388))))) (-3574 (($ $) 46) (($ (-654 $)) 45)) (-3893 (((-654 (-115)) $) 38)) (-4175 (((-115) (-115)) 37)) (-3199 (((-112) $) 105 (|has| |#1| (-1125)))) (-4410 (((-112) $) 17 (|has| $ (-1051 (-574))))) (-2141 (($ $) 188 (|has| |#1| (-1062)))) (-2966 (((-1138 |#1| (-622 $)) $) 189 (|has| |#1| (-1062)))) (-4403 (((-3 (-654 $) "failed") (-654 $) $) 163 (|has| |#1| (-566)))) (-1924 (((-1186 $) (-622 $)) 20 (|has| $ (-1062)))) (-1777 (($ (-1 $ $) (-622 $)) 31)) (-3429 (((-3 (-622 $) "failed") $) 41)) (-2832 (($ (-654 $)) 152 (|has| |#1| (-566))) (($ $ $) 151 (|has| |#1| (-566)))) (-4136 (((-1172) $) 10)) (-4163 (((-654 (-622 $)) $) 40)) (-1775 (($ (-115) $) 33) (($ (-115) (-654 $)) 32)) (-2755 (((-3 (-654 $) "failed") $) 194 (|has| |#1| (-1125)))) (-2127 (((-3 (-2 (|:| |val| $) (|:| -3715 (-574))) "failed") $) 185 (|has| |#1| (-1062)))) (-2415 (((-3 (-654 $) "failed") $) 192 (|has| |#1| (-25)))) (-2658 (((-3 (-2 (|:| -1858 (-574)) (|:| |var| (-622 $))) "failed") $) 191 (|has| |#1| (-25)))) (-2241 (((-3 (-2 (|:| |var| (-622 $)) (|:| -3715 (-574))) "failed") $) 193 (|has| |#1| (-1125))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -3715 (-574))) "failed") $ (-115)) 187 (|has| |#1| (-1062))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -3715 (-574))) "failed") $ (-1190)) 186 (|has| |#1| (-1062)))) (-4103 (((-112) $ (-115)) 35) (((-112) $ (-1190)) 34)) (-1324 (($ $) 108 (-2818 (|has| |#1| (-483)) (|has| |#1| (-566))))) (-1839 (((-781) $) 42)) (-3966 (((-1133) $) 11)) (-1338 (((-112) $) 207)) (-1349 ((|#1| $) 206)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 153 (|has| |#1| (-566)))) (-2873 (($ (-654 $)) 150 (|has| |#1| (-566))) (($ $ $) 149 (|has| |#1| (-566)))) (-3974 (((-112) $ $) 30) (((-112) $ (-1190)) 29)) (-4220 (((-428 $) $) 164 (|has| |#1| (-566)))) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-566))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 161 (|has| |#1| (-566)))) (-2838 (((-3 $ "failed") $ $) 144 (|has| |#1| (-566)))) (-3471 (((-3 (-654 $) "failed") (-654 $) $) 155 (|has| |#1| (-566)))) (-3476 (((-112) $) 18 (|has| $ (-1051 (-574))))) (-2646 (($ $ (-622 $) $) 62) (($ $ (-654 (-622 $)) (-654 $)) 61) (($ $ (-654 (-302 $))) 60) (($ $ (-302 $)) 59) (($ $ $ $) 58) (($ $ (-654 $) (-654 $)) 57) (($ $ (-654 (-1190)) (-654 (-1 $ $))) 28) (($ $ (-654 (-1190)) (-654 (-1 $ (-654 $)))) 27) (($ $ (-1190) (-1 $ (-654 $))) 26) (($ $ (-1190) (-1 $ $)) 25) (($ $ (-654 (-115)) (-654 (-1 $ $))) 24) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) 23) (($ $ (-115) (-1 $ (-654 $))) 22) (($ $ (-115) (-1 $ $)) 21) (($ $ (-1190)) 199 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-1190))) 198 (|has| |#1| (-624 (-546)))) (($ $) 197 (|has| |#1| (-624 (-546)))) (($ $ (-115) $ (-1190)) 196 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-115)) (-654 $) (-1190)) 195 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-1190)) (-654 (-781)) (-654 (-1 $ $))) 184 (|has| |#1| (-1062))) (($ $ (-654 (-1190)) (-654 (-781)) (-654 (-1 $ (-654 $)))) 183 (|has| |#1| (-1062))) (($ $ (-1190) (-781) (-1 $ (-654 $))) 182 (|has| |#1| (-1062))) (($ $ (-1190) (-781) (-1 $ $)) 181 (|has| |#1| (-1062)))) (-1730 (((-781) $) 157 (|has| |#1| (-566)))) (-2199 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-654 $)) 52)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 158 (|has| |#1| (-566)))) (-2447 (($ $) 44) (($ $ $) 43)) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) 129 (|has| |#1| (-1062))) (($ $ (-1190) (-781)) 128 (|has| |#1| (-1062))) (($ $ (-654 (-1190))) 127 (|has| |#1| (-1062))) (($ $ (-1190)) 126 (|has| |#1| (-1062)))) (-4358 (($ $) 178 (|has| |#1| (-566)))) (-2977 (((-1138 |#1| (-622 $)) $) 179 (|has| |#1| (-566)))) (-4185 (($ $) 19 (|has| $ (-1062)))) (-1836 (((-903 (-574)) $) 216 (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) 215 (|has| |#1| (-624 (-903 (-388))))) (($ (-428 $)) 180 (|has| |#1| (-566))) (((-546) $) 100 (|has| |#1| (-624 (-546))))) (-1479 (($ $ $) 111 (|has| |#1| (-483)))) (-3204 (($ $ $) 112 (|has| |#1| (-483)))) (-2943 (((-872) $) 12) (($ (-622 $)) 63) (($ (-1190)) 217) (($ |#1|) 208) (($ (-1138 |#1| (-622 $))) 190 (|has| |#1| (-1062))) (($ (-417 |#1|)) 176 (|has| |#1| (-566))) (($ (-963 (-417 |#1|))) 175 (|has| |#1| (-566))) (($ (-417 (-963 (-417 |#1|)))) 174 (|has| |#1| (-566))) (($ (-417 (-963 |#1|))) 170 (|has| |#1| (-566))) (($ $) 143 (|has| |#1| (-566))) (($ (-963 |#1|)) 122 (|has| |#1| (-1062))) (($ (-417 (-574))) 97 (-2818 (|has| |#1| (-566)) (-12 (|has| |#1| (-1051 (-574))) (|has| |#1| (-566))) (|has| |#1| (-1051 (-417 (-574)))))) (($ (-574)) 96 (-2818 (|has| |#1| (-1062)) (|has| |#1| (-1051 (-574)))))) (-3298 (((-3 $ "failed") $) 141 (|has| |#1| (-146)))) (-1364 (((-781)) 125 (|has| |#1| (-1062)) CONST)) (-2029 (($ $) 48) (($ (-654 $)) 47)) (-3225 (((-112) (-115)) 36)) (-3284 (((-112) $ $) 9)) (-2069 (((-112) $ $) 147 (|has| |#1| (-566)))) (-2499 (($ (-1190) $) 204) (($ (-1190) $ $) 203) (($ (-1190) $ $ $) 202) (($ (-1190) $ $ $ $) 201) (($ (-1190) (-654 $)) 200)) (-2133 (($) 115 (|has| |#1| (-25)) CONST)) (-2145 (($) 103 (|has| |#1| (-1125)) CONST)) (-3610 (($ $ (-654 (-1190)) (-654 (-781))) 133 (|has| |#1| (-1062))) (($ $ (-1190) (-781)) 132 (|has| |#1| (-1062))) (($ $ (-654 (-1190))) 131 (|has| |#1| (-1062))) (($ $ (-1190)) 130 (|has| |#1| (-1062)))) (-2981 (((-112) $ $) 6)) (-3108 (($ (-1138 |#1| (-622 $)) (-1138 |#1| (-622 $))) 177 (|has| |#1| (-566))) (($ $ $) 109 (-2818 (|has| |#1| (-483)) (|has| |#1| (-566))))) (-3094 (($ $ $) 121 (|has| |#1| (-21))) (($ $) 120 (|has| |#1| (-21)))) (-3079 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-574)) 110 (-2818 (|has| |#1| (-483)) (|has| |#1| (-566)))) (($ $ (-781)) 107 (|has| |#1| (-1125))) (($ $ (-932)) 102 (|has| |#1| (-1125)))) (* (($ (-417 (-574)) $) 169 (|has| |#1| (-566))) (($ $ (-417 (-574))) 168 (|has| |#1| (-566))) (($ $ |#1|) 142 (|has| |#1| (-174))) (($ |#1| $) 134 (|has| |#1| (-1062))) (($ (-574) $) 119 (|has| |#1| (-21))) (($ (-781) $) 117 (|has| |#1| (-25))) (($ (-932) $) 114 (|has| |#1| (-25))) (($ $ $) 101 (|has| |#1| (-1125))))) -(((-440 |#1|) (-141) (-1113)) (T -440)) -((-1338 (*1 *2 *1) (-12 (-4 *1 (-440 *3)) (-4 *3 (-1113)) (-5 *2 (-112)))) (-1349 (*1 *2 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1113)))) (-4355 (*1 *2 *1) (-12 (-4 *1 (-440 *3)) (-4 *3 (-1113)) (-5 *2 (-654 (-1190))))) (-2499 (*1 *1 *2 *1) (-12 (-5 *2 (-1190)) (-4 *1 (-440 *3)) (-4 *3 (-1113)))) (-2499 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1190)) (-4 *1 (-440 *3)) (-4 *3 (-1113)))) (-2499 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1190)) (-4 *1 (-440 *3)) (-4 *3 (-1113)))) (-2499 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1190)) (-4 *1 (-440 *3)) (-4 *3 (-1113)))) (-2499 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-654 *1)) (-4 *1 (-440 *4)) (-4 *4 (-1113)))) (-2646 (*1 *1 *1 *2) (-12 (-5 *2 (-1190)) (-4 *1 (-440 *3)) (-4 *3 (-1113)) (-4 *3 (-624 (-546))))) (-2646 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-1190))) (-4 *1 (-440 *3)) (-4 *3 (-1113)) (-4 *3 (-624 (-546))))) (-2646 (*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1113)) (-4 *2 (-624 (-546))))) (-2646 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1190)) (-4 *1 (-440 *4)) (-4 *4 (-1113)) (-4 *4 (-624 (-546))))) (-2646 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 *1)) (-5 *4 (-1190)) (-4 *1 (-440 *5)) (-4 *5 (-1113)) (-4 *5 (-624 (-546))))) (-2755 (*1 *2 *1) (|partial| -12 (-4 *3 (-1125)) (-4 *3 (-1113)) (-5 *2 (-654 *1)) (-4 *1 (-440 *3)))) (-2241 (*1 *2 *1) (|partial| -12 (-4 *3 (-1125)) (-4 *3 (-1113)) (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -3715 (-574)))) (-4 *1 (-440 *3)))) (-2415 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1113)) (-5 *2 (-654 *1)) (-4 *1 (-440 *3)))) (-2658 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1113)) (-5 *2 (-2 (|:| -1858 (-574)) (|:| |var| (-622 *1)))) (-4 *1 (-440 *3)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-1138 *3 (-622 *1))) (-4 *3 (-1062)) (-4 *3 (-1113)) (-4 *1 (-440 *3)))) (-2966 (*1 *2 *1) (-12 (-4 *3 (-1062)) (-4 *3 (-1113)) (-5 *2 (-1138 *3 (-622 *1))) (-4 *1 (-440 *3)))) (-2141 (*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1113)) (-4 *2 (-1062)))) (-2241 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1062)) (-4 *4 (-1113)) (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -3715 (-574)))) (-4 *1 (-440 *4)))) (-2241 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1190)) (-4 *4 (-1062)) (-4 *4 (-1113)) (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -3715 (-574)))) (-4 *1 (-440 *4)))) (-2127 (*1 *2 *1) (|partial| -12 (-4 *3 (-1062)) (-4 *3 (-1113)) (-5 *2 (-2 (|:| |val| *1) (|:| -3715 (-574)))) (-4 *1 (-440 *3)))) (-2646 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-654 (-1190))) (-5 *3 (-654 (-781))) (-5 *4 (-654 (-1 *1 *1))) (-4 *1 (-440 *5)) (-4 *5 (-1113)) (-4 *5 (-1062)))) (-2646 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-654 (-1190))) (-5 *3 (-654 (-781))) (-5 *4 (-654 (-1 *1 (-654 *1)))) (-4 *1 (-440 *5)) (-4 *5 (-1113)) (-4 *5 (-1062)))) (-2646 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1190)) (-5 *3 (-781)) (-5 *4 (-1 *1 (-654 *1))) (-4 *1 (-440 *5)) (-4 *5 (-1113)) (-4 *5 (-1062)))) (-2646 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1190)) (-5 *3 (-781)) (-5 *4 (-1 *1 *1)) (-4 *1 (-440 *5)) (-4 *5 (-1113)) (-4 *5 (-1062)))) (-1836 (*1 *1 *2) (-12 (-5 *2 (-428 *1)) (-4 *1 (-440 *3)) (-4 *3 (-566)) (-4 *3 (-1113)))) (-2977 (*1 *2 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1113)) (-5 *2 (-1138 *3 (-622 *1))) (-4 *1 (-440 *3)))) (-4358 (*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1113)) (-4 *2 (-566)))) (-3108 (*1 *1 *2 *2) (-12 (-5 *2 (-1138 *3 (-622 *1))) (-4 *3 (-566)) (-4 *3 (-1113)) (-4 *1 (-440 *3)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-417 *3)) (-4 *3 (-566)) (-4 *3 (-1113)) (-4 *1 (-440 *3)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-963 (-417 *3))) (-4 *3 (-566)) (-4 *3 (-1113)) (-4 *1 (-440 *3)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-417 (-963 (-417 *3)))) (-4 *3 (-566)) (-4 *3 (-1113)) (-4 *1 (-440 *3)))) (-4194 (*1 *2 *1 *3) (-12 (-5 *3 (-622 *1)) (-4 *1 (-440 *4)) (-4 *4 (-1113)) (-4 *4 (-566)) (-5 *2 (-417 (-1186 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-440 *3)) (-4 *3 (-1113)) (-4 *3 (-1125))))) -(-13 (-310) (-1051 (-1190)) (-895 |t#1|) (-410 |t#1|) (-421 |t#1|) (-10 -8 (-15 -1338 ((-112) $)) (-15 -1349 (|t#1| $)) (-15 -4355 ((-654 (-1190)) $)) (-15 -2499 ($ (-1190) $)) (-15 -2499 ($ (-1190) $ $)) (-15 -2499 ($ (-1190) $ $ $)) (-15 -2499 ($ (-1190) $ $ $ $)) (-15 -2499 ($ (-1190) (-654 $))) (IF (|has| |t#1| (-624 (-546))) (PROGN (-6 (-624 (-546))) (-15 -2646 ($ $ (-1190))) (-15 -2646 ($ $ (-654 (-1190)))) (-15 -2646 ($ $)) (-15 -2646 ($ $ (-115) $ (-1190))) (-15 -2646 ($ $ (-654 (-115)) (-654 $) (-1190)))) |%noBranch|) (IF (|has| |t#1| (-1125)) (PROGN (-6 (-736)) (-15 ** ($ $ (-781))) (-15 -2755 ((-3 (-654 $) "failed") $)) (-15 -2241 ((-3 (-2 (|:| |var| (-622 $)) (|:| -3715 (-574))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-483)) (-6 (-483)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2415 ((-3 (-654 $) "failed") $)) (-15 -2658 ((-3 (-2 (|:| -1858 (-574)) (|:| |var| (-622 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1062)) (PROGN (-6 (-1062)) (-6 (-1051 (-963 |t#1|))) (-6 (-911 (-1190))) (-6 (-386 |t#1|)) (-15 -2943 ($ (-1138 |t#1| (-622 $)))) (-15 -2966 ((-1138 |t#1| (-622 $)) $)) (-15 -2141 ($ $)) (-15 -2241 ((-3 (-2 (|:| |var| (-622 $)) (|:| -3715 (-574))) "failed") $ (-115))) (-15 -2241 ((-3 (-2 (|:| |var| (-622 $)) (|:| -3715 (-574))) "failed") $ (-1190))) (-15 -2127 ((-3 (-2 (|:| |val| $) (|:| -3715 (-574))) "failed") $)) (-15 -2646 ($ $ (-654 (-1190)) (-654 (-781)) (-654 (-1 $ $)))) (-15 -2646 ($ $ (-654 (-1190)) (-654 (-781)) (-654 (-1 $ (-654 $))))) (-15 -2646 ($ $ (-1190) (-781) (-1 $ (-654 $)))) (-15 -2646 ($ $ (-1190) (-781) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-566)) (PROGN (-6 (-372)) (-6 (-1051 (-417 (-963 |t#1|)))) (-15 -1836 ($ (-428 $))) (-15 -2977 ((-1138 |t#1| (-622 $)) $)) (-15 -4358 ($ $)) (-15 -3108 ($ (-1138 |t#1| (-622 $)) (-1138 |t#1| (-622 $)))) (-15 -2943 ($ (-417 |t#1|))) (-15 -2943 ($ (-963 (-417 |t#1|)))) (-15 -2943 ($ (-417 (-963 (-417 |t#1|))))) (-15 -4194 ((-417 (-1186 $)) $ (-622 $))) (IF (|has| |t#1| (-1051 (-574))) (-6 (-1051 (-417 (-574)))) |%noBranch|)) |%noBranch|))) -(((-21) -2818 (|has| |#1| (-1062)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-23) -2818 (|has| |#1| (-1062)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2818 (|has| |#1| (-1062)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-417 (-574))) |has| |#1| (-566)) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-566)) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) |has| |#1| (-566)) ((-132) -2818 (|has| |#1| (-1062)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2818 (|has| |#1| (-1051 (-417 (-574)))) (|has| |#1| (-566))) ((-626 #1=(-417 (-963 |#1|))) |has| |#1| (-566)) ((-626 (-574)) -2818 (|has| |#1| (-1062)) (|has| |#1| (-1051 (-574))) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-626 #2=(-622 $)) . T) ((-626 #3=(-963 |#1|)) |has| |#1| (-1062)) ((-626 #4=(-1190)) . T) ((-626 |#1|) . T) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) |has| |#1| (-566)) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-624 (-903 (-388))) |has| |#1| (-624 (-903 (-388)))) ((-624 (-903 (-574))) |has| |#1| (-624 (-903 (-574)))) ((-249) |has| |#1| (-566)) ((-298) |has| |#1| (-566)) ((-315) |has| |#1| (-566)) ((-317 $) . T) ((-310) . T) ((-372) |has| |#1| (-566)) ((-386 |#1|) |has| |#1| (-1062)) ((-410 |#1|) . T) ((-421 |#1|) . T) ((-462) |has| |#1| (-566)) ((-483) |has| |#1| (-483)) ((-524 (-622 $) $) . T) ((-524 $ $) . T) ((-566) |has| |#1| (-566)) ((-656 #0#) |has| |#1| (-566)) ((-656 (-574)) -2818 (|has| |#1| (-1062)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-656 |#1|) -2818 (|has| |#1| (-1062)) (|has| |#1| (-174))) ((-656 $) -2818 (|has| |#1| (-1062)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-658 #0#) |has| |#1| (-566)) ((-658 #5=(-574)) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062))) ((-658 |#1|) -2818 (|has| |#1| (-1062)) (|has| |#1| (-174))) ((-658 $) -2818 (|has| |#1| (-1062)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-650 #0#) |has| |#1| (-566)) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-649 #5#) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1062))) ((-649 |#1|) |has| |#1| (-1062)) ((-727 #0#) |has| |#1| (-566)) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) -2818 (|has| |#1| (-1125)) (|has| |#1| (-1062)) (|has| |#1| (-566)) (|has| |#1| (-483)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-911 (-1190)) |has| |#1| (-1062)) ((-897 (-388)) |has| |#1| (-897 (-388))) ((-897 (-574)) |has| |#1| (-897 (-574))) ((-895 |#1|) . T) ((-931) |has| |#1| (-566)) ((-1051 (-417 (-574))) -2818 (|has| |#1| (-1051 (-417 (-574)))) (-12 (|has| |#1| (-566)) (|has| |#1| (-1051 (-574))))) ((-1051 #1#) |has| |#1| (-566)) ((-1051 (-574)) |has| |#1| (-1051 (-574))) ((-1051 #2#) . T) ((-1051 #3#) |has| |#1| (-1062)) ((-1051 #4#) . T) ((-1051 |#1|) . T) ((-1064 #0#) |has| |#1| (-566)) ((-1064 |#1|) |has| |#1| (-174)) ((-1064 $) |has| |#1| (-566)) ((-1069 #0#) |has| |#1| (-566)) ((-1069 |#1|) |has| |#1| (-174)) ((-1069 $) |has| |#1| (-566)) ((-1062) -2818 (|has| |#1| (-1062)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1071) -2818 (|has| |#1| (-1062)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1125) -2818 (|has| |#1| (-1125)) (|has| |#1| (-1062)) (|has| |#1| (-566)) (|has| |#1| (-483)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1113) . T) ((-1231) . T) ((-1235) |has| |#1| (-566))) -((-2097 ((|#2| |#2| |#2|) 31)) (-4175 (((-115) (-115)) 43)) (-3809 ((|#2| |#2|) 63)) (-3826 ((|#2| |#2|) 66)) (-2489 ((|#2| |#2|) 30)) (-3681 ((|#2| |#2| |#2|) 33)) (-3586 ((|#2| |#2| |#2|) 35)) (-2758 ((|#2| |#2| |#2|) 32)) (-2242 ((|#2| |#2| |#2|) 34)) (-3225 (((-112) (-115)) 41)) (-1773 ((|#2| |#2|) 37)) (-2196 ((|#2| |#2|) 36)) (-3482 ((|#2| |#2|) 25)) (-2135 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-3061 ((|#2| |#2| |#2|) 29))) -(((-441 |#1| |#2|) (-10 -7 (-15 -3225 ((-112) (-115))) (-15 -4175 ((-115) (-115))) (-15 -3482 (|#2| |#2|)) (-15 -2135 (|#2| |#2|)) (-15 -2135 (|#2| |#2| |#2|)) (-15 -3061 (|#2| |#2| |#2|)) (-15 -2489 (|#2| |#2|)) (-15 -2097 (|#2| |#2| |#2|)) (-15 -2758 (|#2| |#2| |#2|)) (-15 -3681 (|#2| |#2| |#2|)) (-15 -2242 (|#2| |#2| |#2|)) (-15 -3586 (|#2| |#2| |#2|)) (-15 -2196 (|#2| |#2|)) (-15 -1773 (|#2| |#2|)) (-15 -3826 (|#2| |#2|)) (-15 -3809 (|#2| |#2|))) (-566) (-440 |#1|)) (T -441)) -((-3809 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-3826 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-1773 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-2196 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-3586 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-2242 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-3681 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-2758 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-2097 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-2489 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-3061 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-2135 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-2135 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-3482 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-4175 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-441 *3 *4)) (-4 *4 (-440 *3)))) (-3225 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-441 *4 *5)) (-4 *5 (-440 *4))))) -(-10 -7 (-15 -3225 ((-112) (-115))) (-15 -4175 ((-115) (-115))) (-15 -3482 (|#2| |#2|)) (-15 -2135 (|#2| |#2|)) (-15 -2135 (|#2| |#2| |#2|)) (-15 -3061 (|#2| |#2| |#2|)) (-15 -2489 (|#2| |#2|)) (-15 -2097 (|#2| |#2| |#2|)) (-15 -2758 (|#2| |#2| |#2|)) (-15 -3681 (|#2| |#2| |#2|)) (-15 -2242 (|#2| |#2| |#2|)) (-15 -3586 (|#2| |#2| |#2|)) (-15 -2196 (|#2| |#2|)) (-15 -1773 (|#2| |#2|)) (-15 -3826 (|#2| |#2|)) (-15 -3809 (|#2| |#2|))) -((-3812 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1186 |#2|)) (|:| |pol2| (-1186 |#2|)) (|:| |prim| (-1186 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-654 (-1186 |#2|))) (|:| |prim| (-1186 |#2|))) (-654 |#2|)) 65))) -(((-442 |#1| |#2|) (-10 -7 (-15 -3812 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-654 (-1186 |#2|))) (|:| |prim| (-1186 |#2|))) (-654 |#2|))) (IF (|has| |#2| (-27)) (-15 -3812 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1186 |#2|)) (|:| |pol2| (-1186 |#2|)) (|:| |prim| (-1186 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-566) (-148)) (-440 |#1|)) (T -442)) -((-3812 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-566) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1186 *3)) (|:| |pol2| (-1186 *3)) (|:| |prim| (-1186 *3)))) (-5 *1 (-442 *4 *3)) (-4 *3 (-27)) (-4 *3 (-440 *4)))) (-3812 (*1 *2 *3) (-12 (-5 *3 (-654 *5)) (-4 *5 (-440 *4)) (-4 *4 (-13 (-566) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-654 (-1186 *5))) (|:| |prim| (-1186 *5)))) (-5 *1 (-442 *4 *5))))) -(-10 -7 (-15 -3812 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-654 (-1186 |#2|))) (|:| |prim| (-1186 |#2|))) (-654 |#2|))) (IF (|has| |#2| (-27)) (-15 -3812 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1186 |#2|)) (|:| |pol2| (-1186 |#2|)) (|:| |prim| (-1186 |#2|))) |#2| |#2|)) |%noBranch|)) -((-4082 (((-1286)) 18)) (-3763 (((-1186 (-417 (-574))) |#2| (-622 |#2|)) 40) (((-417 (-574)) |#2|) 24))) -(((-443 |#1| |#2|) (-10 -7 (-15 -3763 ((-417 (-574)) |#2|)) (-15 -3763 ((-1186 (-417 (-574))) |#2| (-622 |#2|))) (-15 -4082 ((-1286)))) (-13 (-566) (-1051 (-574))) (-440 |#1|)) (T -443)) -((-4082 (*1 *2) (-12 (-4 *3 (-13 (-566) (-1051 (-574)))) (-5 *2 (-1286)) (-5 *1 (-443 *3 *4)) (-4 *4 (-440 *3)))) (-3763 (*1 *2 *3 *4) (-12 (-5 *4 (-622 *3)) (-4 *3 (-440 *5)) (-4 *5 (-13 (-566) (-1051 (-574)))) (-5 *2 (-1186 (-417 (-574)))) (-5 *1 (-443 *5 *3)))) (-3763 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *2 (-417 (-574))) (-5 *1 (-443 *4 *3)) (-4 *3 (-440 *4))))) -(-10 -7 (-15 -3763 ((-417 (-574)) |#2|)) (-15 -3763 ((-1186 (-417 (-574))) |#2| (-622 |#2|))) (-15 -4082 ((-1286)))) -((-3931 (((-112) $) 32)) (-2746 (((-112) $) 34)) (-2819 (((-112) $) 35)) (-1639 (((-112) $) 38)) (-1612 (((-112) $) 33)) (-1343 (((-112) $) 37)) (-2943 (((-872) $) 20) (($ (-1172)) 31) (($ (-1190)) 26) (((-1190) $) 24) (((-1117) $) 23)) (-1532 (((-112) $) 36)) (-2981 (((-112) $ $) 17))) -(((-444) (-13 (-623 (-872)) (-10 -8 (-15 -2943 ($ (-1172))) (-15 -2943 ($ (-1190))) (-15 -2943 ((-1190) $)) (-15 -2943 ((-1117) $)) (-15 -3931 ((-112) $)) (-15 -1612 ((-112) $)) (-15 -2819 ((-112) $)) (-15 -1343 ((-112) $)) (-15 -1639 ((-112) $)) (-15 -1532 ((-112) $)) (-15 -2746 ((-112) $)) (-15 -2981 ((-112) $ $))))) (T -444)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-444)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-444)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-444)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-444)))) (-3931 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-1612 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-2819 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-1343 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-1639 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-1532 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-2746 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-2981 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444))))) -(-13 (-623 (-872)) (-10 -8 (-15 -2943 ($ (-1172))) (-15 -2943 ($ (-1190))) (-15 -2943 ((-1190) $)) (-15 -2943 ((-1117) $)) (-15 -3931 ((-112) $)) (-15 -1612 ((-112) $)) (-15 -2819 ((-112) $)) (-15 -1343 ((-112) $)) (-15 -1639 ((-112) $)) (-15 -1532 ((-112) $)) (-15 -2746 ((-112) $)) (-15 -2981 ((-112) $ $)))) -((-2480 (((-3 (-428 (-1186 (-417 (-574)))) "failed") |#3|) 72)) (-2964 (((-428 |#3|) |#3|) 34)) (-3872 (((-3 (-428 (-1186 (-48))) "failed") |#3|) 46 (|has| |#2| (-1051 (-48))))) (-2734 (((-3 (|:| |overq| (-1186 (-417 (-574)))) (|:| |overan| (-1186 (-48))) (|:| -3601 (-112))) |#3|) 37))) -(((-445 |#1| |#2| |#3|) (-10 -7 (-15 -2964 ((-428 |#3|) |#3|)) (-15 -2480 ((-3 (-428 (-1186 (-417 (-574)))) "failed") |#3|)) (-15 -2734 ((-3 (|:| |overq| (-1186 (-417 (-574)))) (|:| |overan| (-1186 (-48))) (|:| -3601 (-112))) |#3|)) (IF (|has| |#2| (-1051 (-48))) (-15 -3872 ((-3 (-428 (-1186 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-566) (-1051 (-574))) (-440 |#1|) (-1257 |#2|)) (T -445)) -((-3872 (*1 *2 *3) (|partial| -12 (-4 *5 (-1051 (-48))) (-4 *4 (-13 (-566) (-1051 (-574)))) (-4 *5 (-440 *4)) (-5 *2 (-428 (-1186 (-48)))) (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1257 *5)))) (-2734 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-4 *5 (-440 *4)) (-5 *2 (-3 (|:| |overq| (-1186 (-417 (-574)))) (|:| |overan| (-1186 (-48))) (|:| -3601 (-112)))) (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1257 *5)))) (-2480 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-4 *5 (-440 *4)) (-5 *2 (-428 (-1186 (-417 (-574))))) (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1257 *5)))) (-2964 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-4 *5 (-440 *4)) (-5 *2 (-428 *3)) (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1257 *5))))) -(-10 -7 (-15 -2964 ((-428 |#3|) |#3|)) (-15 -2480 ((-3 (-428 (-1186 (-417 (-574)))) "failed") |#3|)) (-15 -2734 ((-3 (|:| |overq| (-1186 (-417 (-574)))) (|:| |overan| (-1186 (-48))) (|:| -3601 (-112))) |#3|)) (IF (|has| |#2| (-1051 (-48))) (-15 -3872 ((-3 (-428 (-1186 (-48))) "failed") |#3|)) |%noBranch|)) -((-2849 (((-112) $ $) NIL)) (-3203 (((-1172) $ (-1172)) NIL)) (-2263 (($ $ (-1172)) NIL)) (-3259 (((-1172) $) NIL)) (-1523 (((-398) (-398) (-398)) 17) (((-398) (-398)) 15)) (-1675 (($ (-398)) NIL) (($ (-398) (-1172)) NIL)) (-2032 (((-398) $) NIL)) (-4136 (((-1172) $) NIL)) (-3766 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3141 (((-1286) (-1172)) 9)) (-4298 (((-1286) (-1172)) 10)) (-1798 (((-1286)) 11)) (-2943 (((-872) $) NIL)) (-3646 (($ $) 39)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-446) (-13 (-373 (-398) (-1172)) (-10 -7 (-15 -1523 ((-398) (-398) (-398))) (-15 -1523 ((-398) (-398))) (-15 -3141 ((-1286) (-1172))) (-15 -4298 ((-1286) (-1172))) (-15 -1798 ((-1286)))))) (T -446)) -((-1523 (*1 *2 *2 *2) (-12 (-5 *2 (-398)) (-5 *1 (-446)))) (-1523 (*1 *2 *2) (-12 (-5 *2 (-398)) (-5 *1 (-446)))) (-3141 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-446)))) (-4298 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-446)))) (-1798 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-446))))) -(-13 (-373 (-398) (-1172)) (-10 -7 (-15 -1523 ((-398) (-398) (-398))) (-15 -1523 ((-398) (-398))) (-15 -3141 ((-1286) (-1172))) (-15 -4298 ((-1286) (-1172))) (-15 -1798 ((-1286))))) -((-2849 (((-112) $ $) NIL)) (-1613 (((-3 (|:| |fst| (-444)) (|:| -2426 "void")) $) 11)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3550 (($) 35)) (-2090 (($) 41)) (-2271 (($) 37)) (-2801 (($) 39)) (-3535 (($) 36)) (-2270 (($) 38)) (-3546 (($) 40)) (-2053 (((-112) $) 8)) (-4279 (((-654 (-963 (-574))) $) 19)) (-2956 (($ (-3 (|:| |fst| (-444)) (|:| -2426 "void")) (-654 (-1190)) (-112)) 29) (($ (-3 (|:| |fst| (-444)) (|:| -2426 "void")) (-654 (-963 (-574))) (-112)) 30)) (-2943 (((-872) $) 24) (($ (-444)) 32)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-447) (-13 (-1113) (-10 -8 (-15 -2943 ($ (-444))) (-15 -1613 ((-3 (|:| |fst| (-444)) (|:| -2426 "void")) $)) (-15 -4279 ((-654 (-963 (-574))) $)) (-15 -2053 ((-112) $)) (-15 -2956 ($ (-3 (|:| |fst| (-444)) (|:| -2426 "void")) (-654 (-1190)) (-112))) (-15 -2956 ($ (-3 (|:| |fst| (-444)) (|:| -2426 "void")) (-654 (-963 (-574))) (-112))) (-15 -3550 ($)) (-15 -3535 ($)) (-15 -2271 ($)) (-15 -2090 ($)) (-15 -2270 ($)) (-15 -2801 ($)) (-15 -3546 ($))))) (T -447)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-447)))) (-1613 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-5 *1 (-447)))) (-4279 (*1 *2 *1) (-12 (-5 *2 (-654 (-963 (-574)))) (-5 *1 (-447)))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-2956 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-5 *3 (-654 (-1190))) (-5 *4 (-112)) (-5 *1 (-447)))) (-2956 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-5 *3 (-654 (-963 (-574)))) (-5 *4 (-112)) (-5 *1 (-447)))) (-3550 (*1 *1) (-5 *1 (-447))) (-3535 (*1 *1) (-5 *1 (-447))) (-2271 (*1 *1) (-5 *1 (-447))) (-2090 (*1 *1) (-5 *1 (-447))) (-2270 (*1 *1) (-5 *1 (-447))) (-2801 (*1 *1) (-5 *1 (-447))) (-3546 (*1 *1) (-5 *1 (-447)))) -(-13 (-1113) (-10 -8 (-15 -2943 ($ (-444))) (-15 -1613 ((-3 (|:| |fst| (-444)) (|:| -2426 "void")) $)) (-15 -4279 ((-654 (-963 (-574))) $)) (-15 -2053 ((-112) $)) (-15 -2956 ($ (-3 (|:| |fst| (-444)) (|:| -2426 "void")) (-654 (-1190)) (-112))) (-15 -2956 ($ (-3 (|:| |fst| (-444)) (|:| -2426 "void")) (-654 (-963 (-574))) (-112))) (-15 -3550 ($)) (-15 -3535 ($)) (-15 -2271 ($)) (-15 -2090 ($)) (-15 -2270 ($)) (-15 -2801 ($)) (-15 -3546 ($)))) -((-2849 (((-112) $ $) NIL)) (-2032 (((-1190) $) 8)) (-4136 (((-1172) $) 17)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 11)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 14))) -(((-448 |#1|) (-13 (-1113) (-10 -8 (-15 -2032 ((-1190) $)))) (-1190)) (T -448)) -((-2032 (*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-448 *3)) (-14 *3 *2)))) -(-13 (-1113) (-10 -8 (-15 -2032 ((-1190) $)))) -((-2849 (((-112) $ $) NIL)) (-3140 (((-1131) $) 7)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 13)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 9))) -(((-449) (-13 (-1113) (-10 -8 (-15 -3140 ((-1131) $))))) (T -449)) -((-3140 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-449))))) -(-13 (-1113) (-10 -8 (-15 -3140 ((-1131) $)))) -((-3768 (((-1286) $) 7)) (-2943 (((-872) $) 8) (($ (-1281 (-709))) 14) (($ (-654 (-338))) 13) (($ (-338)) 12) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) 11))) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-653 (-337))) (-4 *1 (-405)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-337)) (-4 *1 (-405)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) (-4 *1 (-405)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-323 (-387))) (-4 *1 (-405)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-323 (-387))) (-4 *1 (-405)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-323 (-573))) (-4 *1 (-405)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-323 (-573))) (-4 *1 (-405)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-962 (-387))) (-4 *1 (-405)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-962 (-387))) (-4 *1 (-405)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-962 (-573))) (-4 *1 (-405)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-962 (-573))) (-4 *1 (-405)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-416 (-962 (-387)))) (-4 *1 (-405)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-416 (-962 (-387)))) (-4 *1 (-405)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-416 (-962 (-573)))) (-4 *1 (-405)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-416 (-962 (-573)))) (-4 *1 (-405))))) +(-13 (-404) (-10 -8 (-15 -2942 ($ (-653 (-337)))) (-15 -2942 ($ (-337))) (-15 -2942 ($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337)))))) (-15 -2205 ($ (-323 (-387)))) (-15 -1695 ((-3 $ "failed") (-323 (-387)))) (-15 -2205 ($ (-323 (-573)))) (-15 -1695 ((-3 $ "failed") (-323 (-573)))) (-15 -2205 ($ (-962 (-387)))) (-15 -1695 ((-3 $ "failed") (-962 (-387)))) (-15 -2205 ($ (-962 (-573)))) (-15 -1695 ((-3 $ "failed") (-962 (-573)))) (-15 -2205 ($ (-416 (-962 (-387))))) (-15 -1695 ((-3 $ "failed") (-416 (-962 (-387))))) (-15 -2205 ($ (-416 (-962 (-573))))) (-15 -1695 ((-3 $ "failed") (-416 (-962 (-573))))))) +(((-622 (-871)) . T) ((-404) . T) ((-1230) . T)) +((-3404 (((-653 (-1171)) (-653 (-1171))) 9)) (-3767 (((-1285) (-397)) 26)) (-1640 (((-1116) (-1189) (-653 (-1189)) (-1192) (-653 (-1189))) 59) (((-1116) (-1189) (-653 (-3 (|:| |array| (-653 (-1189))) (|:| |scalar| (-1189)))) (-653 (-653 (-3 (|:| |array| (-653 (-1189))) (|:| |scalar| (-1189))))) (-653 (-1189)) (-1189)) 34) (((-1116) (-1189) (-653 (-3 (|:| |array| (-653 (-1189))) (|:| |scalar| (-1189)))) (-653 (-653 (-3 (|:| |array| (-653 (-1189))) (|:| |scalar| (-1189))))) (-653 (-1189))) 33))) +(((-406) (-10 -7 (-15 -1640 ((-1116) (-1189) (-653 (-3 (|:| |array| (-653 (-1189))) (|:| |scalar| (-1189)))) (-653 (-653 (-3 (|:| |array| (-653 (-1189))) (|:| |scalar| (-1189))))) (-653 (-1189)))) (-15 -1640 ((-1116) (-1189) (-653 (-3 (|:| |array| (-653 (-1189))) (|:| |scalar| (-1189)))) (-653 (-653 (-3 (|:| |array| (-653 (-1189))) (|:| |scalar| (-1189))))) (-653 (-1189)) (-1189))) (-15 -1640 ((-1116) (-1189) (-653 (-1189)) (-1192) (-653 (-1189)))) (-15 -3767 ((-1285) (-397))) (-15 -3404 ((-653 (-1171)) (-653 (-1171)))))) (T -406)) +((-3404 (*1 *2 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-406)))) (-3767 (*1 *2 *3) (-12 (-5 *3 (-397)) (-5 *2 (-1285)) (-5 *1 (-406)))) (-1640 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-653 (-1189))) (-5 *5 (-1192)) (-5 *3 (-1189)) (-5 *2 (-1116)) (-5 *1 (-406)))) (-1640 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-653 (-653 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-653 (-3 (|:| |array| (-653 *3)) (|:| |scalar| (-1189))))) (-5 *6 (-653 (-1189))) (-5 *3 (-1189)) (-5 *2 (-1116)) (-5 *1 (-406)))) (-1640 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-653 (-653 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-653 (-3 (|:| |array| (-653 *3)) (|:| |scalar| (-1189))))) (-5 *6 (-653 (-1189))) (-5 *3 (-1189)) (-5 *2 (-1116)) (-5 *1 (-406))))) +(-10 -7 (-15 -1640 ((-1116) (-1189) (-653 (-3 (|:| |array| (-653 (-1189))) (|:| |scalar| (-1189)))) (-653 (-653 (-3 (|:| |array| (-653 (-1189))) (|:| |scalar| (-1189))))) (-653 (-1189)))) (-15 -1640 ((-1116) (-1189) (-653 (-3 (|:| |array| (-653 (-1189))) (|:| |scalar| (-1189)))) (-653 (-653 (-3 (|:| |array| (-653 (-1189))) (|:| |scalar| (-1189))))) (-653 (-1189)) (-1189))) (-15 -1640 ((-1116) (-1189) (-653 (-1189)) (-1192) (-653 (-1189)))) (-15 -3767 ((-1285) (-397))) (-15 -3404 ((-653 (-1171)) (-653 (-1171))))) +((-3767 (((-1285) $) 35)) (-2942 (((-871) $) 97) (($ (-337)) 99) (($ (-653 (-337))) 98) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 96) (($ (-323 (-710))) 52) (($ (-323 (-708))) 72) (($ (-323 (-703))) 85) (($ (-301 (-323 (-710)))) 67) (($ (-301 (-323 (-708)))) 80) (($ (-301 (-323 (-703)))) 93) (($ (-323 (-573))) 104) (($ (-323 (-387))) 117) (($ (-323 (-171 (-387)))) 130) (($ (-301 (-323 (-573)))) 112) (($ (-301 (-323 (-387)))) 125) (($ (-301 (-323 (-171 (-387))))) 138))) +(((-407 |#1| |#2| |#3| |#4|) (-13 (-404) (-10 -8 (-15 -2942 ($ (-337))) (-15 -2942 ($ (-653 (-337)))) (-15 -2942 ($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337)))))) (-15 -2942 ($ (-323 (-710)))) (-15 -2942 ($ (-323 (-708)))) (-15 -2942 ($ (-323 (-703)))) (-15 -2942 ($ (-301 (-323 (-710))))) (-15 -2942 ($ (-301 (-323 (-708))))) (-15 -2942 ($ (-301 (-323 (-703))))) (-15 -2942 ($ (-323 (-573)))) (-15 -2942 ($ (-323 (-387)))) (-15 -2942 ($ (-323 (-171 (-387))))) (-15 -2942 ($ (-301 (-323 (-573))))) (-15 -2942 ($ (-301 (-323 (-387))))) (-15 -2942 ($ (-301 (-323 (-171 (-387)))))))) (-1189) (-3 (|:| |fst| (-443)) (|:| -2425 "void")) (-653 (-1189)) (-1193)) (T -407)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-337)) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-653 (-337))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-323 (-710))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-323 (-708))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-323 (-703))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-301 (-323 (-710)))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-301 (-323 (-708)))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-301 (-323 (-703)))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-323 (-573))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-323 (-387))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-323 (-171 (-387)))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-301 (-323 (-573)))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-301 (-323 (-387)))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-301 (-323 (-171 (-387))))) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-14 *5 (-653 (-1189))) (-14 *6 (-1193))))) +(-13 (-404) (-10 -8 (-15 -2942 ($ (-337))) (-15 -2942 ($ (-653 (-337)))) (-15 -2942 ($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337)))))) (-15 -2942 ($ (-323 (-710)))) (-15 -2942 ($ (-323 (-708)))) (-15 -2942 ($ (-323 (-703)))) (-15 -2942 ($ (-301 (-323 (-710))))) (-15 -2942 ($ (-301 (-323 (-708))))) (-15 -2942 ($ (-301 (-323 (-703))))) (-15 -2942 ($ (-323 (-573)))) (-15 -2942 ($ (-323 (-387)))) (-15 -2942 ($ (-323 (-171 (-387))))) (-15 -2942 ($ (-301 (-323 (-573))))) (-15 -2942 ($ (-301 (-323 (-387))))) (-15 -2942 ($ (-301 (-323 (-171 (-387)))))))) +((-2848 (((-112) $ $) NIL)) (-2868 ((|#2| $) 38)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2090 (($ (-416 |#2|)) 93)) (-3954 (((-653 (-2 (|:| -3907 (-780)) (|:| -3358 |#2|) (|:| |num| |#2|))) $) 39)) (-3904 (($ $) 34) (($ $ (-780)) 36)) (-1835 (((-416 |#2|) $) 49)) (-2955 (($ (-653 (-2 (|:| -3907 (-780)) (|:| -3358 |#2|) (|:| |num| |#2|)))) 33)) (-2942 (((-871) $) 131)) (-3507 (((-112) $ $) NIL)) (-3609 (($ $) 35) (($ $ (-780)) 37)) (-2981 (((-112) $ $) NIL)) (-3077 (($ |#2| $) 41))) +(((-408 |#1| |#2|) (-13 (-1112) (-623 (-416 |#2|)) (-10 -8 (-15 -3077 ($ |#2| $)) (-15 -2090 ($ (-416 |#2|))) (-15 -2868 (|#2| $)) (-15 -3954 ((-653 (-2 (|:| -3907 (-780)) (|:| -3358 |#2|) (|:| |num| |#2|))) $)) (-15 -2955 ($ (-653 (-2 (|:| -3907 (-780)) (|:| -3358 |#2|) (|:| |num| |#2|))))) (-15 -3904 ($ $)) (-15 -3609 ($ $)) (-15 -3904 ($ $ (-780))) (-15 -3609 ($ $ (-780))))) (-13 (-371) (-148)) (-1256 |#1|)) (T -408)) +((-3077 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-371) (-148))) (-5 *1 (-408 *3 *2)) (-4 *2 (-1256 *3)))) (-2090 (*1 *1 *2) (-12 (-5 *2 (-416 *4)) (-4 *4 (-1256 *3)) (-4 *3 (-13 (-371) (-148))) (-5 *1 (-408 *3 *4)))) (-2868 (*1 *2 *1) (-12 (-4 *2 (-1256 *3)) (-5 *1 (-408 *3 *2)) (-4 *3 (-13 (-371) (-148))))) (-3954 (*1 *2 *1) (-12 (-4 *3 (-13 (-371) (-148))) (-5 *2 (-653 (-2 (|:| -3907 (-780)) (|:| -3358 *4) (|:| |num| *4)))) (-5 *1 (-408 *3 *4)) (-4 *4 (-1256 *3)))) (-2955 (*1 *1 *2) (-12 (-5 *2 (-653 (-2 (|:| -3907 (-780)) (|:| -3358 *4) (|:| |num| *4)))) (-4 *4 (-1256 *3)) (-4 *3 (-13 (-371) (-148))) (-5 *1 (-408 *3 *4)))) (-3904 (*1 *1 *1) (-12 (-4 *2 (-13 (-371) (-148))) (-5 *1 (-408 *2 *3)) (-4 *3 (-1256 *2)))) (-3609 (*1 *1 *1) (-12 (-4 *2 (-13 (-371) (-148))) (-5 *1 (-408 *2 *3)) (-4 *3 (-1256 *2)))) (-3904 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *3 (-13 (-371) (-148))) (-5 *1 (-408 *3 *4)) (-4 *4 (-1256 *3)))) (-3609 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *3 (-13 (-371) (-148))) (-5 *1 (-408 *3 *4)) (-4 *4 (-1256 *3))))) +(-13 (-1112) (-623 (-416 |#2|)) (-10 -8 (-15 -3077 ($ |#2| $)) (-15 -2090 ($ (-416 |#2|))) (-15 -2868 (|#2| $)) (-15 -3954 ((-653 (-2 (|:| -3907 (-780)) (|:| -3358 |#2|) (|:| |num| |#2|))) $)) (-15 -2955 ($ (-653 (-2 (|:| -3907 (-780)) (|:| -3358 |#2|) (|:| |num| |#2|))))) (-15 -3904 ($ $)) (-15 -3609 ($ $)) (-15 -3904 ($ $ (-780))) (-15 -3609 ($ $ (-780))))) +((-2848 (((-112) $ $) 9 (-2817 (|has| |#1| (-896 (-573))) (|has| |#1| (-896 (-387)))))) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 16 (|has| |#1| (-896 (-387)))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 15 (|has| |#1| (-896 (-573))))) (-3180 (((-1171) $) 13 (-2817 (|has| |#1| (-896 (-573))) (|has| |#1| (-896 (-387)))))) (-3965 (((-1132) $) 12 (-2817 (|has| |#1| (-896 (-573))) (|has| |#1| (-896 (-387)))))) (-2942 (((-871) $) 11 (-2817 (|has| |#1| (-896 (-573))) (|has| |#1| (-896 (-387)))))) (-3507 (((-112) $ $) 14 (-2817 (|has| |#1| (-896 (-573))) (|has| |#1| (-896 (-387)))))) (-2981 (((-112) $ $) 10 (-2817 (|has| |#1| (-896 (-573))) (|has| |#1| (-896 (-387))))))) +(((-409 |#1|) (-141) (-1230)) (T -409)) +NIL +(-13 (-1230) (-10 -7 (IF (|has| |t#1| (-896 (-573))) (-6 (-896 (-573))) |%noBranch|) (IF (|has| |t#1| (-896 (-387))) (-6 (-896 (-387))) |%noBranch|))) +(((-102) -2817 (|has| |#1| (-896 (-573))) (|has| |#1| (-896 (-387)))) ((-622 (-871)) -2817 (|has| |#1| (-896 (-573))) (|has| |#1| (-896 (-387)))) ((-896 (-387)) |has| |#1| (-896 (-387))) ((-896 (-573)) |has| |#1| (-896 (-573))) ((-1112) -2817 (|has| |#1| (-896 (-573))) (|has| |#1| (-896 (-387)))) ((-1230) . T)) +((-2104 (($ $) 10) (($ $ (-780)) 12))) +(((-410 |#1|) (-10 -8 (-15 -2104 (|#1| |#1| (-780))) (-15 -2104 (|#1| |#1|))) (-411)) (T -410)) +NIL +(-10 -8 (-15 -2104 (|#1| |#1| (-780))) (-15 -2104 (|#1| |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-2983 (((-3 $ "failed") $ $) 20)) (-4285 (($ $) 81)) (-2427 (((-427 $) $) 80)) (-2800 (((-112) $ $) 65)) (-2579 (($) 18 T CONST)) (-2784 (($ $ $) 61)) (-2232 (((-3 $ "failed") $) 37)) (-2796 (($ $ $) 62)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 57)) (-2104 (($ $) 87) (($ $ (-780)) 86)) (-2696 (((-112) $) 79)) (-2534 (((-842 (-931)) $) 89)) (-1959 (((-112) $) 35)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 58)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-1323 (($ $) 78)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-4218 (((-427 $) $) 82)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 56)) (-2163 (((-780) $) 64)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 63)) (-1637 (((-3 (-780) "failed") $ $) 88)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49) (($ (-416 (-573))) 74)) (-4279 (((-3 $ "failed") $) 90)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ $) 73)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 77)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 (-573))) 76) (($ (-416 (-573)) $) 75))) +(((-411) (-141)) (T -411)) +((-2534 (*1 *2 *1) (-12 (-4 *1 (-411)) (-5 *2 (-842 (-931))))) (-1637 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-411)) (-5 *2 (-780)))) (-2104 (*1 *1 *1) (-4 *1 (-411))) (-2104 (*1 *1 *1 *2) (-12 (-4 *1 (-411)) (-5 *2 (-780))))) +(-13 (-371) (-146) (-10 -8 (-15 -2534 ((-842 (-931)) $)) (-15 -1637 ((-3 (-780) "failed") $ $)) (-15 -2104 ($ $)) (-15 -2104 ($ $ (-780))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-625 #0#) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-248) . T) ((-297) . T) ((-314) . T) ((-371) . T) ((-461) . T) ((-565) . T) ((-655 #0#) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-726 #0#) . T) ((-726 $) . T) ((-735) . T) ((-930) . T) ((-1063 #0#) . T) ((-1063 $) . T) ((-1068 #0#) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1234) . T)) +((-2383 (($ (-573) (-573)) 11) (($ (-573) (-573) (-931)) NIL)) (-3006 (((-931)) 19) (((-931) (-931)) NIL))) +(((-412 |#1|) (-10 -8 (-15 -3006 ((-931) (-931))) (-15 -3006 ((-931))) (-15 -2383 (|#1| (-573) (-573) (-931))) (-15 -2383 (|#1| (-573) (-573)))) (-413)) (T -412)) +((-3006 (*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-412 *3)) (-4 *3 (-413)))) (-3006 (*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-412 *3)) (-4 *3 (-413))))) +(-10 -8 (-15 -3006 ((-931) (-931))) (-15 -3006 ((-931))) (-15 -2383 (|#1| (-573) (-573) (-931))) (-15 -2383 (|#1| (-573) (-573)))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-3770 (((-573) $) 97)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-1442 (($ $) 95)) (-2983 (((-3 $ "failed") $ $) 20)) (-4285 (($ $) 81)) (-2427 (((-427 $) $) 80)) (-4228 (($ $) 105)) (-2800 (((-112) $ $) 65)) (-1983 (((-573) $) 122)) (-2579 (($) 18 T CONST)) (-2350 (($ $) 94)) (-1695 (((-3 (-573) "failed") $) 110) (((-3 (-416 (-573)) "failed") $) 107)) (-2205 (((-573) $) 111) (((-416 (-573)) $) 108)) (-2784 (($ $ $) 61)) (-2232 (((-3 $ "failed") $) 37)) (-2796 (($ $ $) 62)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 57)) (-2696 (((-112) $) 79)) (-3785 (((-931)) 138) (((-931) (-931)) 135 (|has| $ (-6 -4446)))) (-4152 (((-112) $) 120)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 101)) (-2534 (((-573) $) 144)) (-1959 (((-112) $) 35)) (-4325 (($ $ (-573)) 104)) (-3421 (($ $) 100)) (-3339 (((-112) $) 121)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 58)) (-3659 (($ $ $) 119) (($) 132 (-12 (-2075 (|has| $ (-6 -4446))) (-2075 (|has| $ (-6 -4438)))))) (-3751 (($ $ $) 118) (($) 131 (-12 (-2075 (|has| $ (-6 -4446))) (-2075 (|has| $ (-6 -4438)))))) (-4299 (((-573) $) 141)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-1323 (($ $) 78)) (-2827 (((-931) (-573)) 134 (|has| $ (-6 -4446)))) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-2408 (($ $) 96)) (-3733 (($ $) 98)) (-2383 (($ (-573) (-573)) 146) (($ (-573) (-573) (-931)) 145)) (-4218 (((-427 $) $) 82)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 56)) (-3907 (((-573) $) 142)) (-2163 (((-780) $) 64)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 63)) (-3006 (((-931)) 139) (((-931) (-931)) 136 (|has| $ (-6 -4446)))) (-2985 (((-931) (-573)) 133 (|has| $ (-6 -4446)))) (-1835 (((-387) $) 113) (((-227) $) 112) (((-902 (-387)) $) 102)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49) (($ (-416 (-573))) 74) (($ (-573)) 109) (($ (-416 (-573))) 106)) (-1545 (((-780)) 32 T CONST)) (-2437 (($ $) 99)) (-2628 (((-931)) 140) (((-931) (-931)) 137 (|has| $ (-6 -4446)))) (-3507 (((-112) $ $) 9)) (-2629 (((-931)) 143)) (-2516 (((-112) $ $) 45)) (-1660 (($ $) 123)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3040 (((-112) $ $) 116)) (-3015 (((-112) $ $) 115)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 117)) (-3005 (((-112) $ $) 114)) (-3103 (($ $ $) 73)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 77) (($ $ (-416 (-573))) 103)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 (-573))) 76) (($ (-416 (-573)) $) 75))) +(((-413) (-141)) (T -413)) +((-2383 (*1 *1 *2 *2) (-12 (-5 *2 (-573)) (-4 *1 (-413)))) (-2383 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-573)) (-5 *3 (-931)) (-4 *1 (-413)))) (-2534 (*1 *2 *1) (-12 (-4 *1 (-413)) (-5 *2 (-573)))) (-2629 (*1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-931)))) (-3907 (*1 *2 *1) (-12 (-4 *1 (-413)) (-5 *2 (-573)))) (-4299 (*1 *2 *1) (-12 (-4 *1 (-413)) (-5 *2 (-573)))) (-2628 (*1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-931)))) (-3006 (*1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-931)))) (-3785 (*1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-931)))) (-2628 (*1 *2 *2) (-12 (-5 *2 (-931)) (|has| *1 (-6 -4446)) (-4 *1 (-413)))) (-3006 (*1 *2 *2) (-12 (-5 *2 (-931)) (|has| *1 (-6 -4446)) (-4 *1 (-413)))) (-3785 (*1 *2 *2) (-12 (-5 *2 (-931)) (|has| *1 (-6 -4446)) (-4 *1 (-413)))) (-2827 (*1 *2 *3) (-12 (-5 *3 (-573)) (|has| *1 (-6 -4446)) (-4 *1 (-413)) (-5 *2 (-931)))) (-2985 (*1 *2 *3) (-12 (-5 *3 (-573)) (|has| *1 (-6 -4446)) (-4 *1 (-413)) (-5 *2 (-931)))) (-3659 (*1 *1) (-12 (-4 *1 (-413)) (-2075 (|has| *1 (-6 -4446))) (-2075 (|has| *1 (-6 -4438))))) (-3751 (*1 *1) (-12 (-4 *1 (-413)) (-2075 (|has| *1 (-6 -4446))) (-2075 (|has| *1 (-6 -4438)))))) +(-13 (-1072) (-10 -8 (-6 -3550) (-15 -2383 ($ (-573) (-573))) (-15 -2383 ($ (-573) (-573) (-931))) (-15 -2534 ((-573) $)) (-15 -2629 ((-931))) (-15 -3907 ((-573) $)) (-15 -4299 ((-573) $)) (-15 -2628 ((-931))) (-15 -3006 ((-931))) (-15 -3785 ((-931))) (IF (|has| $ (-6 -4446)) (PROGN (-15 -2628 ((-931) (-931))) (-15 -3006 ((-931) (-931))) (-15 -3785 ((-931) (-931))) (-15 -2827 ((-931) (-573))) (-15 -2985 ((-931) (-573)))) |%noBranch|) (IF (|has| $ (-6 -4438)) |%noBranch| (IF (|has| $ (-6 -4446)) |%noBranch| (PROGN (-15 -3659 ($)) (-15 -3751 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-625 #0#) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-623 (-227)) . T) ((-623 (-387)) . T) ((-623 (-902 (-387))) . T) ((-248) . T) ((-297) . T) ((-314) . T) ((-371) . T) ((-461) . T) ((-565) . T) ((-655 #0#) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-726 #0#) . T) ((-726 $) . T) ((-735) . T) ((-800) . T) ((-801) . T) ((-803) . T) ((-804) . T) ((-857) . T) ((-859) . T) ((-896 (-387)) . T) ((-930) . T) ((-1014) . T) ((-1034) . T) ((-1072) . T) ((-1050 (-416 (-573))) . T) ((-1050 (-573)) . T) ((-1063 #0#) . T) ((-1063 $) . T) ((-1068 #0#) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1234) . T)) +((-1776 (((-427 |#2|) (-1 |#2| |#1|) (-427 |#1|)) 20))) +(((-414 |#1| |#2|) (-10 -7 (-15 -1776 ((-427 |#2|) (-1 |#2| |#1|) (-427 |#1|)))) (-565) (-565)) (T -414)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-427 *5)) (-4 *5 (-565)) (-4 *6 (-565)) (-5 *2 (-427 *6)) (-5 *1 (-414 *5 *6))))) +(-10 -7 (-15 -1776 ((-427 |#2|) (-1 |#2| |#1|) (-427 |#1|)))) +((-1776 (((-416 |#2|) (-1 |#2| |#1|) (-416 |#1|)) 13))) +(((-415 |#1| |#2|) (-10 -7 (-15 -1776 ((-416 |#2|) (-1 |#2| |#1|) (-416 |#1|)))) (-565) (-565)) (T -415)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-416 *5)) (-4 *5 (-565)) (-4 *6 (-565)) (-5 *2 (-416 *6)) (-5 *1 (-415 *5 *6))))) +(-10 -7 (-15 -1776 ((-416 |#2|) (-1 |#2| |#1|) (-416 |#1|)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 13)) (-3770 ((|#1| $) 21 (|has| |#1| (-314)))) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-2800 (((-112) $ $) NIL)) (-1983 (((-573) $) NIL (|has| |#1| (-829)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) 17) (((-3 (-1189) "failed") $) NIL (|has| |#1| (-1050 (-1189)))) (((-3 (-416 (-573)) "failed") $) 72 (|has| |#1| (-1050 (-573)))) (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573))))) (-2205 ((|#1| $) 15) (((-1189) $) NIL (|has| |#1| (-1050 (-1189)))) (((-416 (-573)) $) 69 (|has| |#1| (-1050 (-573)))) (((-573) $) NIL (|has| |#1| (-1050 (-573))))) (-2784 (($ $ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) NIL) (((-698 |#1|) (-698 $)) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) 51)) (-2819 (($) NIL (|has| |#1| (-554)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-4152 (((-112) $) NIL (|has| |#1| (-829)))) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (|has| |#1| (-896 (-573)))) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (|has| |#1| (-896 (-387))))) (-1959 (((-112) $) 57)) (-3041 (($ $) NIL)) (-2965 ((|#1| $) 73)) (-1470 (((-3 $ "failed") $) NIL (|has| |#1| (-1164)))) (-3339 (((-112) $) NIL (|has| |#1| (-829)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| |#1| (-1164)) CONST)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 100)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-2408 (($ $) NIL (|has| |#1| (-314)))) (-3733 ((|#1| $) 28 (|has| |#1| (-554)))) (-2963 (((-427 (-1185 $)) (-1185 $)) 145 (|has| |#1| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) 138 (|has| |#1| (-919)))) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2645 (($ $ (-653 |#1|) (-653 |#1|)) NIL (|has| |#1| (-316 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-316 |#1|))) (($ $ (-301 |#1|)) NIL (|has| |#1| (-316 |#1|))) (($ $ (-653 (-301 |#1|))) NIL (|has| |#1| (-316 |#1|))) (($ $ (-653 (-1189)) (-653 |#1|)) NIL (|has| |#1| (-523 (-1189) |#1|))) (($ $ (-1189) |#1|) NIL (|has| |#1| (-523 (-1189) |#1|)))) (-2163 (((-780) $) NIL)) (-2198 (($ $ |#1|) NIL (|has| |#1| (-293 |#1| |#1|)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3904 (($ $ (-780)) NIL (|has| |#1| (-238))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-2662 (($ $) NIL)) (-2975 ((|#1| $) 75)) (-1835 (((-902 (-573)) $) NIL (|has| |#1| (-623 (-902 (-573))))) (((-902 (-387)) $) NIL (|has| |#1| (-623 (-902 (-387))))) (((-545) $) NIL (|has| |#1| (-623 (-545)))) (((-387) $) NIL (|has| |#1| (-1034))) (((-227) $) NIL (|has| |#1| (-1034)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) 122 (-12 (|has| $ (-146)) (|has| |#1| (-919))))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) (($ |#1|) 10) (($ (-1189)) NIL (|has| |#1| (-1050 (-1189))))) (-4279 (((-3 $ "failed") $) 102 (-2817 (-12 (|has| $ (-146)) (|has| |#1| (-919))) (|has| |#1| (-146))))) (-1545 (((-780)) 103 T CONST)) (-2437 ((|#1| $) 26 (|has| |#1| (-554)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-1660 (($ $) NIL (|has| |#1| (-829)))) (-2132 (($) 22 T CONST)) (-2144 (($) 8 T CONST)) (-2808 (((-1171) $) 44 (-12 (|has| |#1| (-554)) (|has| |#1| (-837)))) (((-1171) $ (-112)) 45 (-12 (|has| |#1| (-554)) (|has| |#1| (-837)))) (((-1285) (-831) $) 46 (-12 (|has| |#1| (-554)) (|has| |#1| (-837)))) (((-1285) (-831) $ (-112)) 47 (-12 (|has| |#1| (-554)) (|has| |#1| (-837))))) (-3609 (($ $ (-780)) NIL (|has| |#1| (-238))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) 66)) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) 24 (|has| |#1| (-859)))) (-3103 (($ $ $) 133) (($ |#1| |#1|) 53)) (-3093 (($ $) 25) (($ $ $) 56)) (-3077 (($ $ $) 54)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) 132)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 61) (($ $ $) 58) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) +(((-416 |#1|) (-13 (-1004 |#1|) (-10 -7 (IF (|has| |#1| (-554)) (IF (|has| |#1| (-837)) (-6 (-837)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4442)) (IF (|has| |#1| (-461)) (IF (|has| |#1| (-6 -4453)) (-6 -4442) |%noBranch|) |%noBranch|) |%noBranch|))) (-565)) (T -416)) +NIL +(-13 (-1004 |#1|) (-10 -7 (IF (|has| |#1| (-554)) (IF (|has| |#1| (-837)) (-6 (-837)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4442)) (IF (|has| |#1| (-461)) (IF (|has| |#1| (-6 -4453)) (-6 -4442) |%noBranch|) |%noBranch|) |%noBranch|))) +((-2114 (((-698 |#2|) (-1280 $)) NIL) (((-698 |#2|)) 18)) (-2854 (($ (-1280 |#2|) (-1280 $)) NIL) (($ (-1280 |#2|)) 24)) (-1720 (((-698 |#2|) $ (-1280 $)) NIL) (((-698 |#2|) $) 40)) (-2297 ((|#3| $) 69)) (-3592 ((|#2| (-1280 $)) NIL) ((|#2|) 20)) (-2123 (((-1280 |#2|) $ (-1280 $)) NIL) (((-698 |#2|) (-1280 $) (-1280 $)) NIL) (((-1280 |#2|) $) 22) (((-698 |#2|) (-1280 $)) 38)) (-1835 (((-1280 |#2|) $) 11) (($ (-1280 |#2|)) 13)) (-2517 ((|#3| $) 55))) +(((-417 |#1| |#2| |#3|) (-10 -8 (-15 -1720 ((-698 |#2|) |#1|)) (-15 -3592 (|#2|)) (-15 -2114 ((-698 |#2|))) (-15 -1835 (|#1| (-1280 |#2|))) (-15 -1835 ((-1280 |#2|) |#1|)) (-15 -2854 (|#1| (-1280 |#2|))) (-15 -2123 ((-698 |#2|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1|)) (-15 -2297 (|#3| |#1|)) (-15 -2517 (|#3| |#1|)) (-15 -2114 ((-698 |#2|) (-1280 |#1|))) (-15 -3592 (|#2| (-1280 |#1|))) (-15 -2854 (|#1| (-1280 |#2|) (-1280 |#1|))) (-15 -2123 ((-698 |#2|) (-1280 |#1|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1| (-1280 |#1|))) (-15 -1720 ((-698 |#2|) |#1| (-1280 |#1|)))) (-418 |#2| |#3|) (-174) (-1256 |#2|)) (T -417)) +((-2114 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1256 *4)) (-5 *2 (-698 *4)) (-5 *1 (-417 *3 *4 *5)) (-4 *3 (-418 *4 *5)))) (-3592 (*1 *2) (-12 (-4 *4 (-1256 *2)) (-4 *2 (-174)) (-5 *1 (-417 *3 *2 *4)) (-4 *3 (-418 *2 *4))))) +(-10 -8 (-15 -1720 ((-698 |#2|) |#1|)) (-15 -3592 (|#2|)) (-15 -2114 ((-698 |#2|))) (-15 -1835 (|#1| (-1280 |#2|))) (-15 -1835 ((-1280 |#2|) |#1|)) (-15 -2854 (|#1| (-1280 |#2|))) (-15 -2123 ((-698 |#2|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1|)) (-15 -2297 (|#3| |#1|)) (-15 -2517 (|#3| |#1|)) (-15 -2114 ((-698 |#2|) (-1280 |#1|))) (-15 -3592 (|#2| (-1280 |#1|))) (-15 -2854 (|#1| (-1280 |#2|) (-1280 |#1|))) (-15 -2123 ((-698 |#2|) (-1280 |#1|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1| (-1280 |#1|))) (-15 -1720 ((-698 |#2|) |#1| (-1280 |#1|)))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2114 (((-698 |#1|) (-1280 $)) 53) (((-698 |#1|)) 68)) (-1635 ((|#1| $) 59)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2854 (($ (-1280 |#1|) (-1280 $)) 55) (($ (-1280 |#1|)) 71)) (-1720 (((-698 |#1|) $ (-1280 $)) 60) (((-698 |#1|) $) 66)) (-2232 (((-3 $ "failed") $) 37)) (-3583 (((-931)) 61)) (-1959 (((-112) $) 35)) (-3421 ((|#1| $) 58)) (-2297 ((|#2| $) 51 (|has| |#1| (-371)))) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-3592 ((|#1| (-1280 $)) 54) ((|#1|) 67)) (-2123 (((-1280 |#1|) $ (-1280 $)) 57) (((-698 |#1|) (-1280 $) (-1280 $)) 56) (((-1280 |#1|) $) 73) (((-698 |#1|) (-1280 $)) 72)) (-1835 (((-1280 |#1|) $) 70) (($ (-1280 |#1|)) 69)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 44)) (-4279 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-2517 ((|#2| $) 52)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-3914 (((-1280 $)) 74)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-418 |#1| |#2|) (-141) (-174) (-1256 |t#1|)) (T -418)) +((-3914 (*1 *2) (-12 (-4 *3 (-174)) (-4 *4 (-1256 *3)) (-5 *2 (-1280 *1)) (-4 *1 (-418 *3 *4)))) (-2123 (*1 *2 *1) (-12 (-4 *1 (-418 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1256 *3)) (-5 *2 (-1280 *3)))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-418 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1256 *4)) (-5 *2 (-698 *4)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-174)) (-4 *1 (-418 *3 *4)) (-4 *4 (-1256 *3)))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-418 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1256 *3)) (-5 *2 (-1280 *3)))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-174)) (-4 *1 (-418 *3 *4)) (-4 *4 (-1256 *3)))) (-2114 (*1 *2) (-12 (-4 *1 (-418 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1256 *3)) (-5 *2 (-698 *3)))) (-3592 (*1 *2) (-12 (-4 *1 (-418 *2 *3)) (-4 *3 (-1256 *2)) (-4 *2 (-174)))) (-1720 (*1 *2 *1) (-12 (-4 *1 (-418 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1256 *3)) (-5 *2 (-698 *3))))) +(-13 (-378 |t#1| |t#2|) (-10 -8 (-15 -3914 ((-1280 $))) (-15 -2123 ((-1280 |t#1|) $)) (-15 -2123 ((-698 |t#1|) (-1280 $))) (-15 -2854 ($ (-1280 |t#1|))) (-15 -1835 ((-1280 |t#1|) $)) (-15 -1835 ($ (-1280 |t#1|))) (-15 -2114 ((-698 |t#1|))) (-15 -3592 (|t#1|)) (-15 -1720 ((-698 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-622 (-871)) . T) ((-378 |#1| |#2|) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-649 |#1|) . T) ((-726 |#1|) . T) ((-735) . T) ((-1063 |#1|) . T) ((-1068 |#1|) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) +((-1695 (((-3 |#2| "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) 27) (((-3 (-573) "failed") $) 19)) (-2205 ((|#2| $) NIL) (((-416 (-573)) $) 24) (((-573) $) 14)) (-2942 (($ |#2|) NIL) (($ (-416 (-573))) 22) (($ (-573)) 11))) +(((-419 |#1| |#2|) (-10 -8 (-15 -2942 (|#1| (-573))) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2942 (|#1| |#2|))) (-420 |#2|) (-1230)) (T -419)) +NIL +(-10 -8 (-15 -2942 (|#1| (-573))) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2942 (|#1| |#2|))) +((-1695 (((-3 |#1| "failed") $) 9) (((-3 (-416 (-573)) "failed") $) 16 (|has| |#1| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) 13 (|has| |#1| (-1050 (-573))))) (-2205 ((|#1| $) 8) (((-416 (-573)) $) 17 (|has| |#1| (-1050 (-416 (-573))))) (((-573) $) 14 (|has| |#1| (-1050 (-573))))) (-2942 (($ |#1|) 6) (($ (-416 (-573))) 15 (|has| |#1| (-1050 (-416 (-573))))) (($ (-573)) 12 (|has| |#1| (-1050 (-573)))))) +(((-420 |#1|) (-141) (-1230)) (T -420)) +NIL +(-13 (-1050 |t#1|) (-10 -7 (IF (|has| |t#1| (-1050 (-573))) (-6 (-1050 (-573))) |%noBranch|) (IF (|has| |t#1| (-1050 (-416 (-573)))) (-6 (-1050 (-416 (-573)))) |%noBranch|))) +(((-625 #0=(-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((-625 #1=(-573)) |has| |#1| (-1050 (-573))) ((-625 |#1|) . T) ((-1050 #0#) |has| |#1| (-1050 (-416 (-573)))) ((-1050 #1#) |has| |#1| (-1050 (-573))) ((-1050 |#1|) . T)) +((-1776 (((-422 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-422 |#1| |#2| |#3| |#4|)) 35))) +(((-421 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1776 ((-422 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-422 |#1| |#2| |#3| |#4|)))) (-314) (-1004 |#1|) (-1256 |#2|) (-13 (-418 |#2| |#3|) (-1050 |#2|)) (-314) (-1004 |#5|) (-1256 |#6|) (-13 (-418 |#6| |#7|) (-1050 |#6|))) (T -421)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-422 *5 *6 *7 *8)) (-4 *5 (-314)) (-4 *6 (-1004 *5)) (-4 *7 (-1256 *6)) (-4 *8 (-13 (-418 *6 *7) (-1050 *6))) (-4 *9 (-314)) (-4 *10 (-1004 *9)) (-4 *11 (-1256 *10)) (-5 *2 (-422 *9 *10 *11 *12)) (-5 *1 (-421 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-418 *10 *11) (-1050 *10)))))) +(-10 -7 (-15 -1776 ((-422 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-422 |#1| |#2| |#3| |#4|)))) +((-2848 (((-112) $ $) NIL)) (-2579 (($) NIL T CONST)) (-2232 (((-3 $ "failed") $) NIL)) (-2665 ((|#4| (-780) (-1280 |#4|)) 55)) (-1959 (((-112) $) NIL)) (-2965 (((-1280 |#4|) $) 15)) (-3421 ((|#2| $) 53)) (-3213 (($ $) 157)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 103)) (-1339 (($ (-1280 |#4|)) 102)) (-3965 (((-1132) $) NIL)) (-2975 ((|#1| $) 16)) (-3204 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-2942 (((-871) $) 148)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 |#4|) $) 141)) (-2144 (($) 11 T CONST)) (-2981 (((-112) $ $) 39)) (-3103 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) 134)) (* (($ $ $) 130))) +(((-422 |#1| |#2| |#3| |#4|) (-13 (-482) (-10 -8 (-15 -1339 ($ (-1280 |#4|))) (-15 -3914 ((-1280 |#4|) $)) (-15 -3421 (|#2| $)) (-15 -2965 ((-1280 |#4|) $)) (-15 -2975 (|#1| $)) (-15 -3213 ($ $)) (-15 -2665 (|#4| (-780) (-1280 |#4|))))) (-314) (-1004 |#1|) (-1256 |#2|) (-13 (-418 |#2| |#3|) (-1050 |#2|))) (T -422)) +((-1339 (*1 *1 *2) (-12 (-5 *2 (-1280 *6)) (-4 *6 (-13 (-418 *4 *5) (-1050 *4))) (-4 *4 (-1004 *3)) (-4 *5 (-1256 *4)) (-4 *3 (-314)) (-5 *1 (-422 *3 *4 *5 *6)))) (-3914 (*1 *2 *1) (-12 (-4 *3 (-314)) (-4 *4 (-1004 *3)) (-4 *5 (-1256 *4)) (-5 *2 (-1280 *6)) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *6 (-13 (-418 *4 *5) (-1050 *4))))) (-3421 (*1 *2 *1) (-12 (-4 *4 (-1256 *2)) (-4 *2 (-1004 *3)) (-5 *1 (-422 *3 *2 *4 *5)) (-4 *3 (-314)) (-4 *5 (-13 (-418 *2 *4) (-1050 *2))))) (-2965 (*1 *2 *1) (-12 (-4 *3 (-314)) (-4 *4 (-1004 *3)) (-4 *5 (-1256 *4)) (-5 *2 (-1280 *6)) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *6 (-13 (-418 *4 *5) (-1050 *4))))) (-2975 (*1 *2 *1) (-12 (-4 *3 (-1004 *2)) (-4 *4 (-1256 *3)) (-4 *2 (-314)) (-5 *1 (-422 *2 *3 *4 *5)) (-4 *5 (-13 (-418 *3 *4) (-1050 *3))))) (-3213 (*1 *1 *1) (-12 (-4 *2 (-314)) (-4 *3 (-1004 *2)) (-4 *4 (-1256 *3)) (-5 *1 (-422 *2 *3 *4 *5)) (-4 *5 (-13 (-418 *3 *4) (-1050 *3))))) (-2665 (*1 *2 *3 *4) (-12 (-5 *3 (-780)) (-5 *4 (-1280 *2)) (-4 *5 (-314)) (-4 *6 (-1004 *5)) (-4 *2 (-13 (-418 *6 *7) (-1050 *6))) (-5 *1 (-422 *5 *6 *7 *2)) (-4 *7 (-1256 *6))))) +(-13 (-482) (-10 -8 (-15 -1339 ($ (-1280 |#4|))) (-15 -3914 ((-1280 |#4|) $)) (-15 -3421 (|#2| $)) (-15 -2965 ((-1280 |#4|) $)) (-15 -2975 (|#1| $)) (-15 -3213 ($ $)) (-15 -2665 (|#4| (-780) (-1280 |#4|))))) +((-2848 (((-112) $ $) NIL)) (-2579 (($) NIL T CONST)) (-2232 (((-3 $ "failed") $) NIL)) (-1959 (((-112) $) NIL)) (-3421 ((|#2| $) 71)) (-3985 (($ (-1280 |#4|)) 27) (($ (-422 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1050 |#2|)))) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 37)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 |#4|) $) 28)) (-2144 (($) 25 T CONST)) (-2981 (((-112) $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ $ $) 82))) +(((-423 |#1| |#2| |#3| |#4| |#5|) (-13 (-735) (-10 -8 (-15 -3914 ((-1280 |#4|) $)) (-15 -3421 (|#2| $)) (-15 -3985 ($ (-1280 |#4|))) (IF (|has| |#4| (-1050 |#2|)) (-15 -3985 ($ (-422 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-314) (-1004 |#1|) (-1256 |#2|) (-418 |#2| |#3|) (-1280 |#4|)) (T -423)) +((-3914 (*1 *2 *1) (-12 (-4 *3 (-314)) (-4 *4 (-1004 *3)) (-4 *5 (-1256 *4)) (-5 *2 (-1280 *6)) (-5 *1 (-423 *3 *4 *5 *6 *7)) (-4 *6 (-418 *4 *5)) (-14 *7 *2))) (-3421 (*1 *2 *1) (-12 (-4 *4 (-1256 *2)) (-4 *2 (-1004 *3)) (-5 *1 (-423 *3 *2 *4 *5 *6)) (-4 *3 (-314)) (-4 *5 (-418 *2 *4)) (-14 *6 (-1280 *5)))) (-3985 (*1 *1 *2) (-12 (-5 *2 (-1280 *6)) (-4 *6 (-418 *4 *5)) (-4 *4 (-1004 *3)) (-4 *5 (-1256 *4)) (-4 *3 (-314)) (-5 *1 (-423 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3985 (*1 *1 *2) (-12 (-5 *2 (-422 *3 *4 *5 *6)) (-4 *6 (-1050 *4)) (-4 *3 (-314)) (-4 *4 (-1004 *3)) (-4 *5 (-1256 *4)) (-4 *6 (-418 *4 *5)) (-14 *7 (-1280 *6)) (-5 *1 (-423 *3 *4 *5 *6 *7))))) +(-13 (-735) (-10 -8 (-15 -3914 ((-1280 |#4|) $)) (-15 -3421 (|#2| $)) (-15 -3985 ($ (-1280 |#4|))) (IF (|has| |#4| (-1050 |#2|)) (-15 -3985 ($ (-422 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-1776 ((|#3| (-1 |#4| |#2|) |#1|) 29))) +(((-424 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1776 (|#3| (-1 |#4| |#2|) |#1|))) (-426 |#2|) (-174) (-426 |#4|) (-174)) (T -424)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-426 *6)) (-5 *1 (-424 *4 *5 *2 *6)) (-4 *4 (-426 *5))))) +(-10 -7 (-15 -1776 (|#3| (-1 |#4| |#2|) |#1|))) +((-1642 (((-3 $ "failed")) 98)) (-3119 (((-1280 (-698 |#2|)) (-1280 $)) NIL) (((-1280 (-698 |#2|))) 103)) (-2811 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) 96)) (-3360 (((-3 $ "failed")) 95)) (-1454 (((-698 |#2|) (-1280 $)) NIL) (((-698 |#2|)) 114)) (-3612 (((-698 |#2|) $ (-1280 $)) NIL) (((-698 |#2|) $) 122)) (-2743 (((-1185 (-962 |#2|))) 63)) (-4053 ((|#2| (-1280 $)) NIL) ((|#2|) 118)) (-2854 (($ (-1280 |#2|) (-1280 $)) NIL) (($ (-1280 |#2|)) 124)) (-1447 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) 94)) (-3675 (((-3 $ "failed")) 86)) (-2582 (((-698 |#2|) (-1280 $)) NIL) (((-698 |#2|)) 112)) (-1729 (((-698 |#2|) $ (-1280 $)) NIL) (((-698 |#2|) $) 120)) (-3753 (((-1185 (-962 |#2|))) 62)) (-1912 ((|#2| (-1280 $)) NIL) ((|#2|) 116)) (-2123 (((-1280 |#2|) $ (-1280 $)) NIL) (((-698 |#2|) (-1280 $) (-1280 $)) NIL) (((-1280 |#2|) $) 123) (((-698 |#2|) (-1280 $)) 132)) (-1835 (((-1280 |#2|) $) 108) (($ (-1280 |#2|)) 110)) (-1664 (((-653 (-962 |#2|)) (-1280 $)) NIL) (((-653 (-962 |#2|))) 106)) (-2900 (($ (-698 |#2|) $) 102))) +(((-425 |#1| |#2|) (-10 -8 (-15 -2900 (|#1| (-698 |#2|) |#1|)) (-15 -2743 ((-1185 (-962 |#2|)))) (-15 -3753 ((-1185 (-962 |#2|)))) (-15 -3612 ((-698 |#2|) |#1|)) (-15 -1729 ((-698 |#2|) |#1|)) (-15 -1454 ((-698 |#2|))) (-15 -2582 ((-698 |#2|))) (-15 -4053 (|#2|)) (-15 -1912 (|#2|)) (-15 -1835 (|#1| (-1280 |#2|))) (-15 -1835 ((-1280 |#2|) |#1|)) (-15 -2854 (|#1| (-1280 |#2|))) (-15 -1664 ((-653 (-962 |#2|)))) (-15 -3119 ((-1280 (-698 |#2|)))) (-15 -2123 ((-698 |#2|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1|)) (-15 -1642 ((-3 |#1| "failed"))) (-15 -3360 ((-3 |#1| "failed"))) (-15 -3675 ((-3 |#1| "failed"))) (-15 -2811 ((-3 (-2 (|:| |particular| |#1|) (|:| -3914 (-653 |#1|))) "failed"))) (-15 -1447 ((-3 (-2 (|:| |particular| |#1|) (|:| -3914 (-653 |#1|))) "failed"))) (-15 -1454 ((-698 |#2|) (-1280 |#1|))) (-15 -2582 ((-698 |#2|) (-1280 |#1|))) (-15 -4053 (|#2| (-1280 |#1|))) (-15 -1912 (|#2| (-1280 |#1|))) (-15 -2854 (|#1| (-1280 |#2|) (-1280 |#1|))) (-15 -2123 ((-698 |#2|) (-1280 |#1|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1| (-1280 |#1|))) (-15 -3612 ((-698 |#2|) |#1| (-1280 |#1|))) (-15 -1729 ((-698 |#2|) |#1| (-1280 |#1|))) (-15 -3119 ((-1280 (-698 |#2|)) (-1280 |#1|))) (-15 -1664 ((-653 (-962 |#2|)) (-1280 |#1|)))) (-426 |#2|) (-174)) (T -425)) +((-3119 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1280 (-698 *4))) (-5 *1 (-425 *3 *4)) (-4 *3 (-426 *4)))) (-1664 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-653 (-962 *4))) (-5 *1 (-425 *3 *4)) (-4 *3 (-426 *4)))) (-1912 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-425 *3 *2)) (-4 *3 (-426 *2)))) (-4053 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-425 *3 *2)) (-4 *3 (-426 *2)))) (-2582 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-698 *4)) (-5 *1 (-425 *3 *4)) (-4 *3 (-426 *4)))) (-1454 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-698 *4)) (-5 *1 (-425 *3 *4)) (-4 *3 (-426 *4)))) (-3753 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1185 (-962 *4))) (-5 *1 (-425 *3 *4)) (-4 *3 (-426 *4)))) (-2743 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1185 (-962 *4))) (-5 *1 (-425 *3 *4)) (-4 *3 (-426 *4))))) +(-10 -8 (-15 -2900 (|#1| (-698 |#2|) |#1|)) (-15 -2743 ((-1185 (-962 |#2|)))) (-15 -3753 ((-1185 (-962 |#2|)))) (-15 -3612 ((-698 |#2|) |#1|)) (-15 -1729 ((-698 |#2|) |#1|)) (-15 -1454 ((-698 |#2|))) (-15 -2582 ((-698 |#2|))) (-15 -4053 (|#2|)) (-15 -1912 (|#2|)) (-15 -1835 (|#1| (-1280 |#2|))) (-15 -1835 ((-1280 |#2|) |#1|)) (-15 -2854 (|#1| (-1280 |#2|))) (-15 -1664 ((-653 (-962 |#2|)))) (-15 -3119 ((-1280 (-698 |#2|)))) (-15 -2123 ((-698 |#2|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1|)) (-15 -1642 ((-3 |#1| "failed"))) (-15 -3360 ((-3 |#1| "failed"))) (-15 -3675 ((-3 |#1| "failed"))) (-15 -2811 ((-3 (-2 (|:| |particular| |#1|) (|:| -3914 (-653 |#1|))) "failed"))) (-15 -1447 ((-3 (-2 (|:| |particular| |#1|) (|:| -3914 (-653 |#1|))) "failed"))) (-15 -1454 ((-698 |#2|) (-1280 |#1|))) (-15 -2582 ((-698 |#2|) (-1280 |#1|))) (-15 -4053 (|#2| (-1280 |#1|))) (-15 -1912 (|#2| (-1280 |#1|))) (-15 -2854 (|#1| (-1280 |#2|) (-1280 |#1|))) (-15 -2123 ((-698 |#2|) (-1280 |#1|) (-1280 |#1|))) (-15 -2123 ((-1280 |#2|) |#1| (-1280 |#1|))) (-15 -3612 ((-698 |#2|) |#1| (-1280 |#1|))) (-15 -1729 ((-698 |#2|) |#1| (-1280 |#1|))) (-15 -3119 ((-1280 (-698 |#2|)) (-1280 |#1|))) (-15 -1664 ((-653 (-962 |#2|)) (-1280 |#1|)))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-1642 (((-3 $ "failed")) 42 (|has| |#1| (-565)))) (-2983 (((-3 $ "failed") $ $) 20)) (-3119 (((-1280 (-698 |#1|)) (-1280 $)) 83) (((-1280 (-698 |#1|))) 106)) (-1888 (((-1280 $)) 86)) (-2579 (($) 18 T CONST)) (-2811 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) 45 (|has| |#1| (-565)))) (-3360 (((-3 $ "failed")) 43 (|has| |#1| (-565)))) (-1454 (((-698 |#1|) (-1280 $)) 70) (((-698 |#1|)) 98)) (-1390 ((|#1| $) 79)) (-3612 (((-698 |#1|) $ (-1280 $)) 81) (((-698 |#1|) $) 96)) (-1546 (((-3 $ "failed") $) 50 (|has| |#1| (-565)))) (-2743 (((-1185 (-962 |#1|))) 94 (|has| |#1| (-371)))) (-3681 (($ $ (-931)) 31)) (-3729 ((|#1| $) 77)) (-3397 (((-1185 |#1|) $) 47 (|has| |#1| (-565)))) (-4053 ((|#1| (-1280 $)) 72) ((|#1|) 100)) (-2650 (((-1185 |#1|) $) 68)) (-2492 (((-112)) 62)) (-2854 (($ (-1280 |#1|) (-1280 $)) 74) (($ (-1280 |#1|)) 104)) (-2232 (((-3 $ "failed") $) 52 (|has| |#1| (-565)))) (-3583 (((-931)) 85)) (-3720 (((-112)) 59)) (-3009 (($ $ (-931)) 38)) (-4275 (((-112)) 55)) (-1922 (((-112)) 53)) (-1565 (((-112)) 57)) (-1447 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) 46 (|has| |#1| (-565)))) (-3675 (((-3 $ "failed")) 44 (|has| |#1| (-565)))) (-2582 (((-698 |#1|) (-1280 $)) 71) (((-698 |#1|)) 99)) (-3619 ((|#1| $) 80)) (-1729 (((-698 |#1|) $ (-1280 $)) 82) (((-698 |#1|) $) 97)) (-2780 (((-3 $ "failed") $) 51 (|has| |#1| (-565)))) (-3753 (((-1185 (-962 |#1|))) 95 (|has| |#1| (-371)))) (-2022 (($ $ (-931)) 32)) (-3420 ((|#1| $) 78)) (-2000 (((-1185 |#1|) $) 48 (|has| |#1| (-565)))) (-1912 ((|#1| (-1280 $)) 73) ((|#1|) 101)) (-3242 (((-1185 |#1|) $) 69)) (-3455 (((-112)) 63)) (-3180 (((-1171) $) 10)) (-2509 (((-112)) 54)) (-3313 (((-112)) 56)) (-4293 (((-112)) 58)) (-3965 (((-1132) $) 11)) (-3209 (((-112)) 61)) (-2198 ((|#1| $ (-573)) 110)) (-2123 (((-1280 |#1|) $ (-1280 $)) 76) (((-698 |#1|) (-1280 $) (-1280 $)) 75) (((-1280 |#1|) $) 108) (((-698 |#1|) (-1280 $)) 107)) (-1835 (((-1280 |#1|) $) 103) (($ (-1280 |#1|)) 102)) (-1664 (((-653 (-962 |#1|)) (-1280 $)) 84) (((-653 (-962 |#1|))) 105)) (-4380 (($ $ $) 28)) (-2774 (((-112)) 67)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-3914 (((-1280 $)) 109)) (-2649 (((-653 (-1280 |#1|))) 49 (|has| |#1| (-565)))) (-3531 (($ $ $ $) 29)) (-2661 (((-112)) 65)) (-2900 (($ (-698 |#1|) $) 93)) (-4366 (($ $ $) 27)) (-1469 (((-112)) 66)) (-4243 (((-112)) 64)) (-2744 (((-112)) 60)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 33)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-426 |#1|) (-141) (-174)) (T -426)) +((-3914 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1280 *1)) (-4 *1 (-426 *3)))) (-2123 (*1 *2 *1) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-1280 *3)))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-426 *4)) (-4 *4 (-174)) (-5 *2 (-698 *4)))) (-3119 (*1 *2) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-1280 (-698 *3))))) (-1664 (*1 *2) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-653 (-962 *3))))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-174)) (-4 *1 (-426 *3)))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-1280 *3)))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-174)) (-4 *1 (-426 *3)))) (-1912 (*1 *2) (-12 (-4 *1 (-426 *2)) (-4 *2 (-174)))) (-4053 (*1 *2) (-12 (-4 *1 (-426 *2)) (-4 *2 (-174)))) (-2582 (*1 *2) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-698 *3)))) (-1454 (*1 *2) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-698 *3)))) (-1729 (*1 *2 *1) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-698 *3)))) (-3612 (*1 *2 *1) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-698 *3)))) (-3753 (*1 *2) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-4 *3 (-371)) (-5 *2 (-1185 (-962 *3))))) (-2743 (*1 *2) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-4 *3 (-371)) (-5 *2 (-1185 (-962 *3))))) (-2900 (*1 *1 *2 *1) (-12 (-5 *2 (-698 *3)) (-4 *1 (-426 *3)) (-4 *3 (-174))))) +(-13 (-375 |t#1|) (-293 (-573) |t#1|) (-10 -8 (-15 -3914 ((-1280 $))) (-15 -2123 ((-1280 |t#1|) $)) (-15 -2123 ((-698 |t#1|) (-1280 $))) (-15 -3119 ((-1280 (-698 |t#1|)))) (-15 -1664 ((-653 (-962 |t#1|)))) (-15 -2854 ($ (-1280 |t#1|))) (-15 -1835 ((-1280 |t#1|) $)) (-15 -1835 ($ (-1280 |t#1|))) (-15 -1912 (|t#1|)) (-15 -4053 (|t#1|)) (-15 -2582 ((-698 |t#1|))) (-15 -1454 ((-698 |t#1|))) (-15 -1729 ((-698 |t#1|) $)) (-15 -3612 ((-698 |t#1|) $)) (IF (|has| |t#1| (-371)) (PROGN (-15 -3753 ((-1185 (-962 |t#1|)))) (-15 -2743 ((-1185 (-962 |t#1|))))) |%noBranch|) (-15 -2900 ($ (-698 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-622 (-871)) . T) ((-293 (-573) |#1|) . T) ((-375 |#1|) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-657 |#1|) . T) ((-649 |#1|) . T) ((-726 |#1|) . T) ((-729) . T) ((-753 |#1|) . T) ((-770) . T) ((-1063 |#1|) . T) ((-1068 |#1|) . T) ((-1112) . T) ((-1230) . T)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 60)) (-2881 (($ $) 78)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 192)) (-2456 (($ $) NIL)) (-1345 (((-112) $) 48)) (-1642 ((|#1| $) 16)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL (|has| |#1| (-1234)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-1234)))) (-2217 (($ |#1| (-573)) 42)) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) 149)) (-2205 (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) 74)) (-2232 (((-3 $ "failed") $) 165)) (-3810 (((-3 (-416 (-573)) "failed") $) 85 (|has| |#1| (-554)))) (-2551 (((-112) $) 81 (|has| |#1| (-554)))) (-4434 (((-416 (-573)) $) 92 (|has| |#1| (-554)))) (-1393 (($ |#1| (-573)) 44)) (-2696 (((-112) $) 212 (|has| |#1| (-1234)))) (-1959 (((-112) $) 62)) (-4147 (((-780) $) 51)) (-3037 (((-3 "nil" "sqfr" "irred" "prime") $ (-573)) 176)) (-2841 ((|#1| $ (-573)) 175)) (-2746 (((-573) $ (-573)) 174)) (-3603 (($ |#1| (-573)) 41)) (-1776 (($ (-1 |#1| |#1|) $) 184)) (-3933 (($ |#1| (-653 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-573))))) 79)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-3180 (((-1171) $) NIL)) (-4139 (($ |#1| (-573)) 43)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-461)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) 193 (|has| |#1| (-461)))) (-2886 (($ |#1| (-573) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-1687 (((-653 (-2 (|:| -4218 |#1|) (|:| -3907 (-573)))) $) 73)) (-3572 (((-653 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-573)))) $) 12)) (-4218 (((-427 $) $) NIL (|has| |#1| (-1234)))) (-2837 (((-3 $ "failed") $ $) 177)) (-3907 (((-573) $) 168)) (-2127 ((|#1| $) 75)) (-2645 (($ $ (-653 |#1|) (-653 |#1|)) NIL (|has| |#1| (-316 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-316 |#1|))) (($ $ (-301 |#1|)) NIL (|has| |#1| (-316 |#1|))) (($ $ (-653 (-301 |#1|))) 101 (|has| |#1| (-316 |#1|))) (($ $ (-653 (-1189)) (-653 |#1|)) 107 (|has| |#1| (-523 (-1189) |#1|))) (($ $ (-1189) |#1|) NIL (|has| |#1| (-523 (-1189) |#1|))) (($ $ (-1189) $) NIL (|has| |#1| (-523 (-1189) $))) (($ $ (-653 (-1189)) (-653 $)) 108 (|has| |#1| (-523 (-1189) $))) (($ $ (-653 (-301 $))) 104 (|has| |#1| (-316 $))) (($ $ (-301 $)) NIL (|has| |#1| (-316 $))) (($ $ $ $) NIL (|has| |#1| (-316 $))) (($ $ (-653 $) (-653 $)) NIL (|has| |#1| (-316 $)))) (-2198 (($ $ |#1|) 93 (|has| |#1| (-293 |#1| |#1|))) (($ $ $) 94 (|has| |#1| (-293 $ $)))) (-3904 (($ $ (-780)) NIL (|has| |#1| (-238))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) 183)) (-1835 (((-545) $) 39 (|has| |#1| (-623 (-545)))) (((-387) $) 114 (|has| |#1| (-1034))) (((-227) $) 120 (|has| |#1| (-1034)))) (-2942 (((-871) $) 147) (($ (-573)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-416 (-573))) NIL (|has| |#1| (-1050 (-416 (-573)))))) (-1545 (((-780)) 67 T CONST)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-2132 (($) 53 T CONST)) (-2144 (($) 52 T CONST)) (-3609 (($ $ (-780)) NIL (|has| |#1| (-238))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2981 (((-112) $ $) 160)) (-3093 (($ $) 162) (($ $ $) NIL)) (-3077 (($ $ $) 181)) (** (($ $ (-931)) NIL) (($ $ (-780)) 126)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) +(((-427 |#1|) (-13 (-565) (-233 |#1|) (-38 |#1|) (-346 |#1|) (-420 |#1|) (-10 -8 (-15 -2127 (|#1| $)) (-15 -3907 ((-573) $)) (-15 -3933 ($ |#1| (-653 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-573)))))) (-15 -3572 ((-653 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-573)))) $)) (-15 -3603 ($ |#1| (-573))) (-15 -1687 ((-653 (-2 (|:| -4218 |#1|) (|:| -3907 (-573)))) $)) (-15 -4139 ($ |#1| (-573))) (-15 -2746 ((-573) $ (-573))) (-15 -2841 (|#1| $ (-573))) (-15 -3037 ((-3 "nil" "sqfr" "irred" "prime") $ (-573))) (-15 -4147 ((-780) $)) (-15 -1393 ($ |#1| (-573))) (-15 -2217 ($ |#1| (-573))) (-15 -2886 ($ |#1| (-573) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1642 (|#1| $)) (-15 -2881 ($ $)) (-15 -1776 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-461)) (-6 (-461)) |%noBranch|) (IF (|has| |#1| (-1034)) (-6 (-1034)) |%noBranch|) (IF (|has| |#1| (-1234)) (-6 (-1234)) |%noBranch|) (IF (|has| |#1| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|) (IF (|has| |#1| (-554)) (PROGN (-15 -2551 ((-112) $)) (-15 -4434 ((-416 (-573)) $)) (-15 -3810 ((-3 (-416 (-573)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-293 $ $)) (-6 (-293 $ $)) |%noBranch|) (IF (|has| |#1| (-316 $)) (-6 (-316 $)) |%noBranch|) (IF (|has| |#1| (-523 (-1189) $)) (-6 (-523 (-1189) $)) |%noBranch|))) (-565)) (T -427)) +((-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-565)) (-5 *1 (-427 *3)))) (-2127 (*1 *2 *1) (-12 (-5 *1 (-427 *2)) (-4 *2 (-565)))) (-3907 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-427 *3)) (-4 *3 (-565)))) (-3933 (*1 *1 *2 *3) (-12 (-5 *3 (-653 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-573))))) (-4 *2 (-565)) (-5 *1 (-427 *2)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-573))))) (-5 *1 (-427 *3)) (-4 *3 (-565)))) (-3603 (*1 *1 *2 *3) (-12 (-5 *3 (-573)) (-5 *1 (-427 *2)) (-4 *2 (-565)))) (-1687 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| -4218 *3) (|:| -3907 (-573))))) (-5 *1 (-427 *3)) (-4 *3 (-565)))) (-4139 (*1 *1 *2 *3) (-12 (-5 *3 (-573)) (-5 *1 (-427 *2)) (-4 *2 (-565)))) (-2746 (*1 *2 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-427 *3)) (-4 *3 (-565)))) (-2841 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-5 *1 (-427 *2)) (-4 *2 (-565)))) (-3037 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-427 *4)) (-4 *4 (-565)))) (-4147 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-427 *3)) (-4 *3 (-565)))) (-1393 (*1 *1 *2 *3) (-12 (-5 *3 (-573)) (-5 *1 (-427 *2)) (-4 *2 (-565)))) (-2217 (*1 *1 *2 *3) (-12 (-5 *3 (-573)) (-5 *1 (-427 *2)) (-4 *2 (-565)))) (-2886 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-573)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-427 *2)) (-4 *2 (-565)))) (-1642 (*1 *2 *1) (-12 (-5 *1 (-427 *2)) (-4 *2 (-565)))) (-2881 (*1 *1 *1) (-12 (-5 *1 (-427 *2)) (-4 *2 (-565)))) (-2551 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427 *3)) (-4 *3 (-554)) (-4 *3 (-565)))) (-4434 (*1 *2 *1) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-427 *3)) (-4 *3 (-554)) (-4 *3 (-565)))) (-3810 (*1 *2 *1) (|partial| -12 (-5 *2 (-416 (-573))) (-5 *1 (-427 *3)) (-4 *3 (-554)) (-4 *3 (-565))))) +(-13 (-565) (-233 |#1|) (-38 |#1|) (-346 |#1|) (-420 |#1|) (-10 -8 (-15 -2127 (|#1| $)) (-15 -3907 ((-573) $)) (-15 -3933 ($ |#1| (-653 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-573)))))) (-15 -3572 ((-653 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-573)))) $)) (-15 -3603 ($ |#1| (-573))) (-15 -1687 ((-653 (-2 (|:| -4218 |#1|) (|:| -3907 (-573)))) $)) (-15 -4139 ($ |#1| (-573))) (-15 -2746 ((-573) $ (-573))) (-15 -2841 (|#1| $ (-573))) (-15 -3037 ((-3 "nil" "sqfr" "irred" "prime") $ (-573))) (-15 -4147 ((-780) $)) (-15 -1393 ($ |#1| (-573))) (-15 -2217 ($ |#1| (-573))) (-15 -2886 ($ |#1| (-573) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1642 (|#1| $)) (-15 -2881 ($ $)) (-15 -1776 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-461)) (-6 (-461)) |%noBranch|) (IF (|has| |#1| (-1034)) (-6 (-1034)) |%noBranch|) (IF (|has| |#1| (-1234)) (-6 (-1234)) |%noBranch|) (IF (|has| |#1| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|) (IF (|has| |#1| (-554)) (PROGN (-15 -2551 ((-112) $)) (-15 -4434 ((-416 (-573)) $)) (-15 -3810 ((-3 (-416 (-573)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-293 $ $)) (-6 (-293 $ $)) |%noBranch|) (IF (|has| |#1| (-316 $)) (-6 (-316 $)) |%noBranch|) (IF (|has| |#1| (-523 (-1189) $)) (-6 (-523 (-1189) $)) |%noBranch|))) +((-4143 (((-427 |#1|) (-427 |#1|) (-1 (-427 |#1|) |#1|)) 28)) (-2271 (((-427 |#1|) (-427 |#1|) (-427 |#1|)) 17))) +(((-428 |#1|) (-10 -7 (-15 -4143 ((-427 |#1|) (-427 |#1|) (-1 (-427 |#1|) |#1|))) (-15 -2271 ((-427 |#1|) (-427 |#1|) (-427 |#1|)))) (-565)) (T -428)) +((-2271 (*1 *2 *2 *2) (-12 (-5 *2 (-427 *3)) (-4 *3 (-565)) (-5 *1 (-428 *3)))) (-4143 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-427 *4) *4)) (-4 *4 (-565)) (-5 *2 (-427 *4)) (-5 *1 (-428 *4))))) +(-10 -7 (-15 -4143 ((-427 |#1|) (-427 |#1|) (-1 (-427 |#1|) |#1|))) (-15 -2271 ((-427 |#1|) (-427 |#1|) (-427 |#1|)))) +((-1421 ((|#2| |#2|) 183)) (-2109 (((-3 (|:| |%expansion| (-320 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1171)) (|:| |prob| (-1171))))) |#2| (-112)) 60))) +(((-429 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2109 ((-3 (|:| |%expansion| (-320 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1171)) (|:| |prob| (-1171))))) |#2| (-112))) (-15 -1421 (|#2| |#2|))) (-13 (-461) (-1050 (-573)) (-648 (-573))) (-13 (-27) (-1215) (-439 |#1|)) (-1189) |#2|) (T -429)) +((-1421 (*1 *2 *2) (-12 (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-429 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1215) (-439 *3))) (-14 *4 (-1189)) (-14 *5 *2))) (-2109 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-3 (|:| |%expansion| (-320 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1171)) (|:| |prob| (-1171)))))) (-5 *1 (-429 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1215) (-439 *5))) (-14 *6 (-1189)) (-14 *7 *3)))) +(-10 -7 (-15 -2109 ((-3 (|:| |%expansion| (-320 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1171)) (|:| |prob| (-1171))))) |#2| (-112))) (-15 -1421 (|#2| |#2|))) +((-1776 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-430 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1776 (|#4| (-1 |#3| |#1|) |#2|))) (-1061) (-439 |#1|) (-1061) (-439 |#3|)) (T -430)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1061)) (-4 *6 (-1061)) (-4 *2 (-439 *6)) (-5 *1 (-430 *5 *4 *6 *2)) (-4 *4 (-439 *5))))) +(-10 -7 (-15 -1776 (|#4| (-1 |#3| |#1|) |#2|))) +((-1421 ((|#2| |#2|) 106)) (-2541 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1171)) (|:| |prob| (-1171))))) |#2| (-112) (-1171)) 52)) (-2014 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1171)) (|:| |prob| (-1171))))) |#2| (-112) (-1171)) 170))) +(((-431 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2541 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1171)) (|:| |prob| (-1171))))) |#2| (-112) (-1171))) (-15 -2014 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1171)) (|:| |prob| (-1171))))) |#2| (-112) (-1171))) (-15 -1421 (|#2| |#2|))) (-13 (-461) (-1050 (-573)) (-648 (-573))) (-13 (-27) (-1215) (-439 |#1|) (-10 -8 (-15 -2942 ($ |#3|)))) (-857) (-13 (-1258 |#2| |#3|) (-371) (-1215) (-10 -8 (-15 -3904 ($ $)) (-15 -1626 ($ $)))) (-995 |#4|) (-1189)) (T -431)) +((-1421 (*1 *2 *2) (-12 (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-4 *2 (-13 (-27) (-1215) (-439 *3) (-10 -8 (-15 -2942 ($ *4))))) (-4 *4 (-857)) (-4 *5 (-13 (-1258 *2 *4) (-371) (-1215) (-10 -8 (-15 -3904 ($ $)) (-15 -1626 ($ $))))) (-5 *1 (-431 *3 *2 *4 *5 *6 *7)) (-4 *6 (-995 *5)) (-14 *7 (-1189)))) (-2014 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-4 *3 (-13 (-27) (-1215) (-439 *6) (-10 -8 (-15 -2942 ($ *7))))) (-4 *7 (-857)) (-4 *8 (-13 (-1258 *3 *7) (-371) (-1215) (-10 -8 (-15 -3904 ($ $)) (-15 -1626 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1171)) (|:| |prob| (-1171)))))) (-5 *1 (-431 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1171)) (-4 *9 (-995 *8)) (-14 *10 (-1189)))) (-2541 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-4 *3 (-13 (-27) (-1215) (-439 *6) (-10 -8 (-15 -2942 ($ *7))))) (-4 *7 (-857)) (-4 *8 (-13 (-1258 *3 *7) (-371) (-1215) (-10 -8 (-15 -3904 ($ $)) (-15 -1626 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1171)) (|:| |prob| (-1171)))))) (-5 *1 (-431 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1171)) (-4 *9 (-995 *8)) (-14 *10 (-1189))))) +(-10 -7 (-15 -2541 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1171)) (|:| |prob| (-1171))))) |#2| (-112) (-1171))) (-15 -2014 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1171)) (|:| |prob| (-1171))))) |#2| (-112) (-1171))) (-15 -1421 (|#2| |#2|))) +((-3094 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2867 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1776 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-432 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1776 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2867 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3094 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1112) (-434 |#1|) (-1112) (-434 |#3|)) (T -432)) +((-3094 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1112)) (-4 *5 (-1112)) (-4 *2 (-434 *5)) (-5 *1 (-432 *6 *4 *5 *2)) (-4 *4 (-434 *6)))) (-2867 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1112)) (-4 *2 (-1112)) (-5 *1 (-432 *5 *4 *2 *6)) (-4 *4 (-434 *5)) (-4 *6 (-434 *2)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *2 (-434 *6)) (-5 *1 (-432 *5 *4 *6 *2)) (-4 *4 (-434 *5))))) +(-10 -7 (-15 -1776 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2867 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3094 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-4393 (($) 51)) (-4357 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 47)) (-2180 (($ $ $) 46)) (-3319 (((-112) $ $) 35)) (-1486 (((-780)) 55)) (-1506 (($ (-653 |#2|)) 23) (($) NIL)) (-2819 (($) 66)) (-2897 (((-112) $ $) 15)) (-3659 ((|#2| $) 77)) (-3751 ((|#2| $) 75)) (-3589 (((-931) $) 70)) (-3716 (($ $ $) 42)) (-2575 (($ (-931)) 60)) (-3631 (($ $ |#2|) NIL) (($ $ $) 45)) (-3974 (((-780) (-1 (-112) |#2|) $) NIL) (((-780) |#2| $) 31)) (-2955 (($ (-653 |#2|)) 27)) (-3255 (($ $) 53)) (-2942 (((-871) $) 40)) (-3553 (((-780) $) 24)) (-4280 (($ (-653 |#2|)) 22) (($) NIL)) (-2981 (((-112) $ $) 19))) +(((-433 |#1| |#2|) (-10 -8 (-15 -1486 ((-780))) (-15 -2575 (|#1| (-931))) (-15 -3589 ((-931) |#1|)) (-15 -2819 (|#1|)) (-15 -3659 (|#2| |#1|)) (-15 -3751 (|#2| |#1|)) (-15 -4393 (|#1|)) (-15 -3255 (|#1| |#1|)) (-15 -3553 ((-780) |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -2942 ((-871) |#1|)) (-15 -2897 ((-112) |#1| |#1|)) (-15 -4280 (|#1|)) (-15 -4280 (|#1| (-653 |#2|))) (-15 -1506 (|#1|)) (-15 -1506 (|#1| (-653 |#2|))) (-15 -3716 (|#1| |#1| |#1|)) (-15 -3631 (|#1| |#1| |#1|)) (-15 -3631 (|#1| |#1| |#2|)) (-15 -2180 (|#1| |#1| |#1|)) (-15 -3319 ((-112) |#1| |#1|)) (-15 -4357 (|#1| |#1| |#1|)) (-15 -4357 (|#1| |#1| |#2|)) (-15 -4357 (|#1| |#2| |#1|)) (-15 -2955 (|#1| (-653 |#2|))) (-15 -3974 ((-780) |#2| |#1|)) (-15 -3974 ((-780) (-1 (-112) |#2|) |#1|))) (-434 |#2|) (-1112)) (T -433)) +((-1486 (*1 *2) (-12 (-4 *4 (-1112)) (-5 *2 (-780)) (-5 *1 (-433 *3 *4)) (-4 *3 (-434 *4))))) +(-10 -8 (-15 -1486 ((-780))) (-15 -2575 (|#1| (-931))) (-15 -3589 ((-931) |#1|)) (-15 -2819 (|#1|)) (-15 -3659 (|#2| |#1|)) (-15 -3751 (|#2| |#1|)) (-15 -4393 (|#1|)) (-15 -3255 (|#1| |#1|)) (-15 -3553 ((-780) |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -2942 ((-871) |#1|)) (-15 -2897 ((-112) |#1| |#1|)) (-15 -4280 (|#1|)) (-15 -4280 (|#1| (-653 |#2|))) (-15 -1506 (|#1|)) (-15 -1506 (|#1| (-653 |#2|))) (-15 -3716 (|#1| |#1| |#1|)) (-15 -3631 (|#1| |#1| |#1|)) (-15 -3631 (|#1| |#1| |#2|)) (-15 -2180 (|#1| |#1| |#1|)) (-15 -3319 ((-112) |#1| |#1|)) (-15 -4357 (|#1| |#1| |#1|)) (-15 -4357 (|#1| |#1| |#2|)) (-15 -4357 (|#1| |#2| |#1|)) (-15 -2955 (|#1| (-653 |#2|))) (-15 -3974 ((-780) |#2| |#1|)) (-15 -3974 ((-780) (-1 (-112) |#2|) |#1|))) +((-2848 (((-112) $ $) 19)) (-4393 (($) 68 (|has| |#1| (-376)))) (-4357 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-2180 (($ $ $) 79)) (-3319 (((-112) $ $) 80)) (-3450 (((-112) $ (-780)) 8)) (-1486 (((-780)) 62 (|has| |#1| (-376)))) (-1506 (($ (-653 |#1|)) 75) (($) 74)) (-3557 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4455)))) (-2579 (($) 7 T CONST)) (-2685 (($ $) 59 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2596 (($ |#1| $) 48 (|has| $ (-6 -4455))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4455)))) (-3334 (($ |#1| $) 58 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4455)))) (-2819 (($) 65 (|has| |#1| (-376)))) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-2897 (((-112) $ $) 71)) (-2078 (((-112) $ (-780)) 9)) (-3659 ((|#1| $) 66 (|has| |#1| (-859)))) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3751 ((|#1| $) 67 (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-3589 (((-931) $) 64 (|has| |#1| (-376)))) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22)) (-3716 (($ $ $) 76)) (-2487 ((|#1| $) 40)) (-3181 (($ |#1| $) 41)) (-2575 (($ (-931)) 63 (|has| |#1| (-376)))) (-3965 (((-1132) $) 21)) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3815 ((|#1| $) 42)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-3631 (($ $ |#1|) 78) (($ $ $) 77)) (-2428 (($) 50) (($ (-653 |#1|)) 49)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-1835 (((-545) $) 60 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 51)) (-3255 (($ $) 69 (|has| |#1| (-376)))) (-2942 (((-871) $) 18)) (-3553 (((-780) $) 70)) (-4280 (($ (-653 |#1|)) 73) (($) 72)) (-3507 (((-112) $ $) 23)) (-2679 (($ (-653 |#1|)) 43)) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20)) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-434 |#1|) (-141) (-1112)) (T -434)) +((-3553 (*1 *2 *1) (-12 (-4 *1 (-434 *3)) (-4 *3 (-1112)) (-5 *2 (-780)))) (-3255 (*1 *1 *1) (-12 (-4 *1 (-434 *2)) (-4 *2 (-1112)) (-4 *2 (-376)))) (-4393 (*1 *1) (-12 (-4 *1 (-434 *2)) (-4 *2 (-376)) (-4 *2 (-1112)))) (-3751 (*1 *2 *1) (-12 (-4 *1 (-434 *2)) (-4 *2 (-1112)) (-4 *2 (-859)))) (-3659 (*1 *2 *1) (-12 (-4 *1 (-434 *2)) (-4 *2 (-1112)) (-4 *2 (-859))))) +(-13 (-231 |t#1|) (-1110 |t#1|) (-10 -8 (-6 -4455) (-15 -3553 ((-780) $)) (IF (|has| |t#1| (-376)) (PROGN (-6 (-376)) (-15 -3255 ($ $)) (-15 -4393 ($))) |%noBranch|) (IF (|has| |t#1| (-859)) (PROGN (-15 -3751 (|t#1| $)) (-15 -3659 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-622 (-871)) . T) ((-152 |#1|) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-231 |#1|) . T) ((-240 |#1|) . T) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-376) |has| |#1| (-376)) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1110 |#1|) . T) ((-1112) . T) ((-1230) . T)) +((-2398 (((-595 |#2|) |#2| (-1189)) 36)) (-3390 (((-595 |#2|) |#2| (-1189)) 21)) (-1567 ((|#2| |#2| (-1189)) 26))) +(((-435 |#1| |#2|) (-10 -7 (-15 -3390 ((-595 |#2|) |#2| (-1189))) (-15 -2398 ((-595 |#2|) |#2| (-1189))) (-15 -1567 (|#2| |#2| (-1189)))) (-13 (-314) (-148) (-1050 (-573)) (-648 (-573))) (-13 (-1215) (-29 |#1|))) (T -435)) +((-1567 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-435 *4 *2)) (-4 *2 (-13 (-1215) (-29 *4))))) (-2398 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-4 *5 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-595 *3)) (-5 *1 (-435 *5 *3)) (-4 *3 (-13 (-1215) (-29 *5))))) (-3390 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-4 *5 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-595 *3)) (-5 *1 (-435 *5 *3)) (-4 *3 (-13 (-1215) (-29 *5)))))) +(-10 -7 (-15 -3390 ((-595 |#2|) |#2| (-1189))) (-15 -2398 ((-595 |#2|) |#2| (-1189))) (-15 -1567 (|#2| |#2| (-1189)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-2232 (((-3 $ "failed") $) NIL)) (-1959 (((-112) $) NIL)) (-4229 (($ |#2| |#1|) 37)) (-3968 (($ |#2| |#1|) 35)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#1|) NIL) (($ (-338 |#2|)) 25)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 10 T CONST)) (-2144 (($) 16 T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) 36)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-436 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4442)) (IF (|has| |#1| (-6 -4442)) (-6 -4442) |%noBranch|) |%noBranch|) (-15 -2942 ($ |#1|)) (-15 -2942 ($ (-338 |#2|))) (-15 -4229 ($ |#2| |#1|)) (-15 -3968 ($ |#2| |#1|)))) (-13 (-174) (-38 (-416 (-573)))) (-13 (-859) (-21))) (T -436)) +((-2942 (*1 *1 *2) (-12 (-5 *1 (-436 *2 *3)) (-4 *2 (-13 (-174) (-38 (-416 (-573))))) (-4 *3 (-13 (-859) (-21))))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-338 *4)) (-4 *4 (-13 (-859) (-21))) (-5 *1 (-436 *3 *4)) (-4 *3 (-13 (-174) (-38 (-416 (-573))))))) (-4229 (*1 *1 *2 *3) (-12 (-5 *1 (-436 *3 *2)) (-4 *3 (-13 (-174) (-38 (-416 (-573))))) (-4 *2 (-13 (-859) (-21))))) (-3968 (*1 *1 *2 *3) (-12 (-5 *1 (-436 *3 *2)) (-4 *3 (-13 (-174) (-38 (-416 (-573))))) (-4 *2 (-13 (-859) (-21)))))) +(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4442)) (IF (|has| |#1| (-6 -4442)) (-6 -4442) |%noBranch|) |%noBranch|) (-15 -2942 ($ |#1|)) (-15 -2942 ($ (-338 |#2|))) (-15 -4229 ($ |#2| |#1|)) (-15 -3968 ($ |#2| |#1|)))) +((-1626 (((-3 |#2| (-653 |#2|)) |#2| (-1189)) 115))) +(((-437 |#1| |#2|) (-10 -7 (-15 -1626 ((-3 |#2| (-653 |#2|)) |#2| (-1189)))) (-13 (-314) (-148) (-1050 (-573)) (-648 (-573))) (-13 (-1215) (-969) (-29 |#1|))) (T -437)) +((-1626 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-4 *5 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-3 *3 (-653 *3))) (-5 *1 (-437 *5 *3)) (-4 *3 (-13 (-1215) (-969) (-29 *5)))))) +(-10 -7 (-15 -1626 ((-3 |#2| (-653 |#2|)) |#2| (-1189)))) +((-4354 (((-653 (-1189)) $) 81)) (-4193 (((-416 (-1185 $)) $ (-621 $)) 313)) (-2544 (($ $ (-301 $)) NIL) (($ $ (-653 (-301 $))) NIL) (($ $ (-653 (-621 $)) (-653 $)) 277)) (-1695 (((-3 (-621 $) "failed") $) NIL) (((-3 (-1189) "failed") $) 84) (((-3 (-573) "failed") $) NIL) (((-3 |#2| "failed") $) 273) (((-3 (-416 (-962 |#2|)) "failed") $) 363) (((-3 (-962 |#2|) "failed") $) 275) (((-3 (-416 (-573)) "failed") $) NIL)) (-2205 (((-621 $) $) NIL) (((-1189) $) 28) (((-573) $) NIL) ((|#2| $) 271) (((-416 (-962 |#2|)) $) 345) (((-962 |#2|) $) 272) (((-416 (-573)) $) NIL)) (-4173 (((-115) (-115)) 47)) (-3041 (($ $) 99)) (-2944 (((-3 (-621 $) "failed") $) 268)) (-4163 (((-653 (-621 $)) $) 269)) (-4082 (((-3 (-653 $) "failed") $) 287)) (-1951 (((-3 (-2 (|:| |val| $) (|:| -3907 (-573))) "failed") $) 294)) (-2586 (((-3 (-653 $) "failed") $) 285)) (-4425 (((-3 (-2 (|:| -1857 (-573)) (|:| |var| (-621 $))) "failed") $) 304)) (-2573 (((-3 (-2 (|:| |var| (-621 $)) (|:| -3907 (-573))) "failed") $) 291) (((-3 (-2 (|:| |var| (-621 $)) (|:| -3907 (-573))) "failed") $ (-115)) 255) (((-3 (-2 (|:| |var| (-621 $)) (|:| -3907 (-573))) "failed") $ (-1189)) 257)) (-1337 (((-112) $) 17)) (-1348 ((|#2| $) 19)) (-2645 (($ $ (-621 $) $) NIL) (($ $ (-653 (-621 $)) (-653 $)) 276) (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-653 (-1189)) (-653 (-1 $ $))) NIL) (($ $ (-653 (-1189)) (-653 (-1 $ (-653 $)))) 109) (($ $ (-1189) (-1 $ (-653 $))) NIL) (($ $ (-1189) (-1 $ $)) NIL) (($ $ (-653 (-115)) (-653 (-1 $ $))) NIL) (($ $ (-653 (-115)) (-653 (-1 $ (-653 $)))) NIL) (($ $ (-115) (-1 $ (-653 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1189)) 62) (($ $ (-653 (-1189))) 280) (($ $) 281) (($ $ (-115) $ (-1189)) 65) (($ $ (-653 (-115)) (-653 $) (-1189)) 72) (($ $ (-653 (-1189)) (-653 (-780)) (-653 (-1 $ $))) 120) (($ $ (-653 (-1189)) (-653 (-780)) (-653 (-1 $ (-653 $)))) 282) (($ $ (-1189) (-780) (-1 $ (-653 $))) 105) (($ $ (-1189) (-780) (-1 $ $)) 104)) (-2198 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-653 $)) 119)) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189)) 278)) (-2662 (($ $) 324)) (-1835 (((-902 (-573)) $) 297) (((-902 (-387)) $) 301) (($ (-427 $)) 359) (((-545) $) NIL)) (-2942 (((-871) $) 279) (($ (-621 $)) 93) (($ (-1189)) 24) (($ |#2|) NIL) (($ (-1137 |#2| (-621 $))) NIL) (($ (-416 |#2|)) 329) (($ (-962 (-416 |#2|))) 368) (($ (-416 (-962 (-416 |#2|)))) 341) (($ (-416 (-962 |#2|))) 335) (($ $) NIL) (($ (-962 |#2|)) 216) (($ (-573)) NIL) (($ (-416 (-573))) 373)) (-1545 (((-780)) 88)) (-3109 (((-112) (-115)) 42)) (-2497 (($ (-1189) $) 31) (($ (-1189) $ $) 32) (($ (-1189) $ $ $) 33) (($ (-1189) $ $ $ $) 34) (($ (-1189) (-653 $)) 39)) (* (($ (-416 (-573)) $) NIL) (($ $ (-416 (-573))) NIL) (($ $ |#2|) NIL) (($ |#2| $) 306) (($ $ $) NIL) (($ (-573) $) NIL) (($ (-780) $) NIL) (($ (-931) $) NIL))) +(((-438 |#1| |#2|) (-10 -8 (-15 * (|#1| (-931) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2942 (|#1| (-573))) (-15 -1545 ((-780))) (-15 * (|#1| |#2| |#1|)) (-15 -1835 ((-545) |#1|)) (-15 -2942 (|#1| (-962 |#2|))) (-15 -1695 ((-3 (-962 |#2|) "failed") |#1|)) (-15 -2205 ((-962 |#2|) |#1|)) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 * (|#1| |#1| |#2|)) (-15 -2942 (|#1| |#1|)) (-15 * (|#1| |#1| (-416 (-573)))) (-15 * (|#1| (-416 (-573)) |#1|)) (-15 -2942 (|#1| (-416 (-962 |#2|)))) (-15 -1695 ((-3 (-416 (-962 |#2|)) "failed") |#1|)) (-15 -2205 ((-416 (-962 |#2|)) |#1|)) (-15 -4193 ((-416 (-1185 |#1|)) |#1| (-621 |#1|))) (-15 -2942 (|#1| (-416 (-962 (-416 |#2|))))) (-15 -2942 (|#1| (-962 (-416 |#2|)))) (-15 -2942 (|#1| (-416 |#2|))) (-15 -2662 (|#1| |#1|)) (-15 -1835 (|#1| (-427 |#1|))) (-15 -2645 (|#1| |#1| (-1189) (-780) (-1 |#1| |#1|))) (-15 -2645 (|#1| |#1| (-1189) (-780) (-1 |#1| (-653 |#1|)))) (-15 -2645 (|#1| |#1| (-653 (-1189)) (-653 (-780)) (-653 (-1 |#1| (-653 |#1|))))) (-15 -2645 (|#1| |#1| (-653 (-1189)) (-653 (-780)) (-653 (-1 |#1| |#1|)))) (-15 -1951 ((-3 (-2 (|:| |val| |#1|) (|:| -3907 (-573))) "failed") |#1|)) (-15 -2573 ((-3 (-2 (|:| |var| (-621 |#1|)) (|:| -3907 (-573))) "failed") |#1| (-1189))) (-15 -2573 ((-3 (-2 (|:| |var| (-621 |#1|)) (|:| -3907 (-573))) "failed") |#1| (-115))) (-15 -3041 (|#1| |#1|)) (-15 -2942 (|#1| (-1137 |#2| (-621 |#1|)))) (-15 -4425 ((-3 (-2 (|:| -1857 (-573)) (|:| |var| (-621 |#1|))) "failed") |#1|)) (-15 -2586 ((-3 (-653 |#1|) "failed") |#1|)) (-15 -2573 ((-3 (-2 (|:| |var| (-621 |#1|)) (|:| -3907 (-573))) "failed") |#1|)) (-15 -4082 ((-3 (-653 |#1|) "failed") |#1|)) (-15 -2645 (|#1| |#1| (-653 (-115)) (-653 |#1|) (-1189))) (-15 -2645 (|#1| |#1| (-115) |#1| (-1189))) (-15 -2645 (|#1| |#1|)) (-15 -2645 (|#1| |#1| (-653 (-1189)))) (-15 -2645 (|#1| |#1| (-1189))) (-15 -2497 (|#1| (-1189) (-653 |#1|))) (-15 -2497 (|#1| (-1189) |#1| |#1| |#1| |#1|)) (-15 -2497 (|#1| (-1189) |#1| |#1| |#1|)) (-15 -2497 (|#1| (-1189) |#1| |#1|)) (-15 -2497 (|#1| (-1189) |#1|)) (-15 -4354 ((-653 (-1189)) |#1|)) (-15 -1348 (|#2| |#1|)) (-15 -1337 ((-112) |#1|)) (-15 -2942 (|#1| |#2|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -1835 ((-902 (-387)) |#1|)) (-15 -1835 ((-902 (-573)) |#1|)) (-15 -2942 (|#1| (-1189))) (-15 -1695 ((-3 (-1189) "failed") |#1|)) (-15 -2205 ((-1189) |#1|)) (-15 -2645 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2645 (|#1| |#1| (-115) (-1 |#1| (-653 |#1|)))) (-15 -2645 (|#1| |#1| (-653 (-115)) (-653 (-1 |#1| (-653 |#1|))))) (-15 -2645 (|#1| |#1| (-653 (-115)) (-653 (-1 |#1| |#1|)))) (-15 -2645 (|#1| |#1| (-1189) (-1 |#1| |#1|))) (-15 -2645 (|#1| |#1| (-1189) (-1 |#1| (-653 |#1|)))) (-15 -2645 (|#1| |#1| (-653 (-1189)) (-653 (-1 |#1| (-653 |#1|))))) (-15 -2645 (|#1| |#1| (-653 (-1189)) (-653 (-1 |#1| |#1|)))) (-15 -3109 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 -4163 ((-653 (-621 |#1|)) |#1|)) (-15 -2944 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -2544 (|#1| |#1| (-653 (-621 |#1|)) (-653 |#1|))) (-15 -2544 (|#1| |#1| (-653 (-301 |#1|)))) (-15 -2544 (|#1| |#1| (-301 |#1|))) (-15 -2198 (|#1| (-115) (-653 |#1|))) (-15 -2198 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2198 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2198 (|#1| (-115) |#1| |#1|)) (-15 -2198 (|#1| (-115) |#1|)) (-15 -2645 (|#1| |#1| (-653 |#1|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#1| |#1|)) (-15 -2645 (|#1| |#1| (-301 |#1|))) (-15 -2645 (|#1| |#1| (-653 (-301 |#1|)))) (-15 -2645 (|#1| |#1| (-653 (-621 |#1|)) (-653 |#1|))) (-15 -2645 (|#1| |#1| (-621 |#1|) |#1|)) (-15 -2942 (|#1| (-621 |#1|))) (-15 -1695 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -2205 ((-621 |#1|) |#1|)) (-15 -2942 ((-871) |#1|))) (-439 |#2|) (-1112)) (T -438)) +((-4173 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1112)) (-5 *1 (-438 *3 *4)) (-4 *3 (-439 *4)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1112)) (-5 *2 (-112)) (-5 *1 (-438 *4 *5)) (-4 *4 (-439 *5)))) (-1545 (*1 *2) (-12 (-4 *4 (-1112)) (-5 *2 (-780)) (-5 *1 (-438 *3 *4)) (-4 *3 (-439 *4))))) +(-10 -8 (-15 * (|#1| (-931) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2942 (|#1| (-573))) (-15 -1545 ((-780))) (-15 * (|#1| |#2| |#1|)) (-15 -1835 ((-545) |#1|)) (-15 -2942 (|#1| (-962 |#2|))) (-15 -1695 ((-3 (-962 |#2|) "failed") |#1|)) (-15 -2205 ((-962 |#2|) |#1|)) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 * (|#1| |#1| |#2|)) (-15 -2942 (|#1| |#1|)) (-15 * (|#1| |#1| (-416 (-573)))) (-15 * (|#1| (-416 (-573)) |#1|)) (-15 -2942 (|#1| (-416 (-962 |#2|)))) (-15 -1695 ((-3 (-416 (-962 |#2|)) "failed") |#1|)) (-15 -2205 ((-416 (-962 |#2|)) |#1|)) (-15 -4193 ((-416 (-1185 |#1|)) |#1| (-621 |#1|))) (-15 -2942 (|#1| (-416 (-962 (-416 |#2|))))) (-15 -2942 (|#1| (-962 (-416 |#2|)))) (-15 -2942 (|#1| (-416 |#2|))) (-15 -2662 (|#1| |#1|)) (-15 -1835 (|#1| (-427 |#1|))) (-15 -2645 (|#1| |#1| (-1189) (-780) (-1 |#1| |#1|))) (-15 -2645 (|#1| |#1| (-1189) (-780) (-1 |#1| (-653 |#1|)))) (-15 -2645 (|#1| |#1| (-653 (-1189)) (-653 (-780)) (-653 (-1 |#1| (-653 |#1|))))) (-15 -2645 (|#1| |#1| (-653 (-1189)) (-653 (-780)) (-653 (-1 |#1| |#1|)))) (-15 -1951 ((-3 (-2 (|:| |val| |#1|) (|:| -3907 (-573))) "failed") |#1|)) (-15 -2573 ((-3 (-2 (|:| |var| (-621 |#1|)) (|:| -3907 (-573))) "failed") |#1| (-1189))) (-15 -2573 ((-3 (-2 (|:| |var| (-621 |#1|)) (|:| -3907 (-573))) "failed") |#1| (-115))) (-15 -3041 (|#1| |#1|)) (-15 -2942 (|#1| (-1137 |#2| (-621 |#1|)))) (-15 -4425 ((-3 (-2 (|:| -1857 (-573)) (|:| |var| (-621 |#1|))) "failed") |#1|)) (-15 -2586 ((-3 (-653 |#1|) "failed") |#1|)) (-15 -2573 ((-3 (-2 (|:| |var| (-621 |#1|)) (|:| -3907 (-573))) "failed") |#1|)) (-15 -4082 ((-3 (-653 |#1|) "failed") |#1|)) (-15 -2645 (|#1| |#1| (-653 (-115)) (-653 |#1|) (-1189))) (-15 -2645 (|#1| |#1| (-115) |#1| (-1189))) (-15 -2645 (|#1| |#1|)) (-15 -2645 (|#1| |#1| (-653 (-1189)))) (-15 -2645 (|#1| |#1| (-1189))) (-15 -2497 (|#1| (-1189) (-653 |#1|))) (-15 -2497 (|#1| (-1189) |#1| |#1| |#1| |#1|)) (-15 -2497 (|#1| (-1189) |#1| |#1| |#1|)) (-15 -2497 (|#1| (-1189) |#1| |#1|)) (-15 -2497 (|#1| (-1189) |#1|)) (-15 -4354 ((-653 (-1189)) |#1|)) (-15 -1348 (|#2| |#1|)) (-15 -1337 ((-112) |#1|)) (-15 -2942 (|#1| |#2|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -1835 ((-902 (-387)) |#1|)) (-15 -1835 ((-902 (-573)) |#1|)) (-15 -2942 (|#1| (-1189))) (-15 -1695 ((-3 (-1189) "failed") |#1|)) (-15 -2205 ((-1189) |#1|)) (-15 -2645 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2645 (|#1| |#1| (-115) (-1 |#1| (-653 |#1|)))) (-15 -2645 (|#1| |#1| (-653 (-115)) (-653 (-1 |#1| (-653 |#1|))))) (-15 -2645 (|#1| |#1| (-653 (-115)) (-653 (-1 |#1| |#1|)))) (-15 -2645 (|#1| |#1| (-1189) (-1 |#1| |#1|))) (-15 -2645 (|#1| |#1| (-1189) (-1 |#1| (-653 |#1|)))) (-15 -2645 (|#1| |#1| (-653 (-1189)) (-653 (-1 |#1| (-653 |#1|))))) (-15 -2645 (|#1| |#1| (-653 (-1189)) (-653 (-1 |#1| |#1|)))) (-15 -3109 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 -4163 ((-653 (-621 |#1|)) |#1|)) (-15 -2944 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -2544 (|#1| |#1| (-653 (-621 |#1|)) (-653 |#1|))) (-15 -2544 (|#1| |#1| (-653 (-301 |#1|)))) (-15 -2544 (|#1| |#1| (-301 |#1|))) (-15 -2198 (|#1| (-115) (-653 |#1|))) (-15 -2198 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2198 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2198 (|#1| (-115) |#1| |#1|)) (-15 -2198 (|#1| (-115) |#1|)) (-15 -2645 (|#1| |#1| (-653 |#1|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#1| |#1|)) (-15 -2645 (|#1| |#1| (-301 |#1|))) (-15 -2645 (|#1| |#1| (-653 (-301 |#1|)))) (-15 -2645 (|#1| |#1| (-653 (-621 |#1|)) (-653 |#1|))) (-15 -2645 (|#1| |#1| (-621 |#1|) |#1|)) (-15 -2942 (|#1| (-621 |#1|))) (-15 -1695 ((-3 (-621 |#1|) "failed") |#1|)) (-15 -2205 ((-621 |#1|) |#1|)) (-15 -2942 ((-871) |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 116 (|has| |#1| (-25)))) (-4354 (((-653 (-1189)) $) 205)) (-4193 (((-416 (-1185 $)) $ (-621 $)) 173 (|has| |#1| (-565)))) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 145 (|has| |#1| (-565)))) (-2456 (($ $) 146 (|has| |#1| (-565)))) (-1345 (((-112) $) 148 (|has| |#1| (-565)))) (-4090 (((-653 (-621 $)) $) 39)) (-2983 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-2544 (($ $ (-301 $)) 51) (($ $ (-653 (-301 $))) 50) (($ $ (-653 (-621 $)) (-653 $)) 49)) (-4285 (($ $) 165 (|has| |#1| (-565)))) (-2427 (((-427 $) $) 166 (|has| |#1| (-565)))) (-2800 (((-112) $ $) 156 (|has| |#1| (-565)))) (-2579 (($) 104 (-2817 (|has| |#1| (-1124)) (|has| |#1| (-25))) CONST)) (-1695 (((-3 (-621 $) "failed") $) 64) (((-3 (-1189) "failed") $) 218) (((-3 (-573) "failed") $) 212 (|has| |#1| (-1050 (-573)))) (((-3 |#1| "failed") $) 209) (((-3 (-416 (-962 |#1|)) "failed") $) 171 (|has| |#1| (-565))) (((-3 (-962 |#1|) "failed") $) 123 (|has| |#1| (-1061))) (((-3 (-416 (-573)) "failed") $) 98 (-2817 (-12 (|has| |#1| (-1050 (-573))) (|has| |#1| (-565))) (|has| |#1| (-1050 (-416 (-573))))))) (-2205 (((-621 $) $) 65) (((-1189) $) 219) (((-573) $) 211 (|has| |#1| (-1050 (-573)))) ((|#1| $) 210) (((-416 (-962 |#1|)) $) 172 (|has| |#1| (-565))) (((-962 |#1|) $) 124 (|has| |#1| (-1061))) (((-416 (-573)) $) 99 (-2817 (-12 (|has| |#1| (-1050 (-573))) (|has| |#1| (-565))) (|has| |#1| (-1050 (-416 (-573))))))) (-2784 (($ $ $) 160 (|has| |#1| (-565)))) (-2759 (((-698 (-573)) (-1280 $)) 140 (-2086 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061)))) (((-698 (-573)) (-698 $)) 139 (-2086 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 138 (-2086 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) 137 (|has| |#1| (-1061))) (((-698 |#1|) (-698 $)) 136 (|has| |#1| (-1061))) (((-698 |#1|) (-1280 $)) 135 (|has| |#1| (-1061)))) (-2232 (((-3 $ "failed") $) 106 (|has| |#1| (-1124)))) (-2796 (($ $ $) 159 (|has| |#1| (-565)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 154 (|has| |#1| (-565)))) (-2696 (((-112) $) 167 (|has| |#1| (-565)))) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 214 (|has| |#1| (-896 (-573)))) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 213 (|has| |#1| (-896 (-387))))) (-2449 (($ $) 46) (($ (-653 $)) 45)) (-2515 (((-653 (-115)) $) 38)) (-4173 (((-115) (-115)) 37)) (-1959 (((-112) $) 105 (|has| |#1| (-1124)))) (-2250 (((-112) $) 17 (|has| $ (-1050 (-573))))) (-3041 (($ $) 188 (|has| |#1| (-1061)))) (-2965 (((-1137 |#1| (-621 $)) $) 189 (|has| |#1| (-1061)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 163 (|has| |#1| (-565)))) (-2597 (((-1185 $) (-621 $)) 20 (|has| $ (-1061)))) (-1776 (($ (-1 $ $) (-621 $)) 31)) (-2944 (((-3 (-621 $) "failed") $) 41)) (-2829 (($ (-653 $)) 152 (|has| |#1| (-565))) (($ $ $) 151 (|has| |#1| (-565)))) (-3180 (((-1171) $) 10)) (-4163 (((-653 (-621 $)) $) 40)) (-1774 (($ (-115) $) 33) (($ (-115) (-653 $)) 32)) (-4082 (((-3 (-653 $) "failed") $) 194 (|has| |#1| (-1124)))) (-1951 (((-3 (-2 (|:| |val| $) (|:| -3907 (-573))) "failed") $) 185 (|has| |#1| (-1061)))) (-2586 (((-3 (-653 $) "failed") $) 192 (|has| |#1| (-25)))) (-4425 (((-3 (-2 (|:| -1857 (-573)) (|:| |var| (-621 $))) "failed") $) 191 (|has| |#1| (-25)))) (-2573 (((-3 (-2 (|:| |var| (-621 $)) (|:| -3907 (-573))) "failed") $) 193 (|has| |#1| (-1124))) (((-3 (-2 (|:| |var| (-621 $)) (|:| -3907 (-573))) "failed") $ (-115)) 187 (|has| |#1| (-1061))) (((-3 (-2 (|:| |var| (-621 $)) (|:| -3907 (-573))) "failed") $ (-1189)) 186 (|has| |#1| (-1061)))) (-1667 (((-112) $ (-115)) 35) (((-112) $ (-1189)) 34)) (-1323 (($ $) 108 (-2817 (|has| |#1| (-482)) (|has| |#1| (-565))))) (-1839 (((-780) $) 42)) (-3965 (((-1132) $) 11)) (-1337 (((-112) $) 207)) (-1348 ((|#1| $) 206)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 153 (|has| |#1| (-565)))) (-2872 (($ (-653 $)) 150 (|has| |#1| (-565))) (($ $ $) 149 (|has| |#1| (-565)))) (-3805 (((-112) $ $) 30) (((-112) $ (-1189)) 29)) (-4218 (((-427 $) $) 164 (|has| |#1| (-565)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-565))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 161 (|has| |#1| (-565)))) (-2837 (((-3 $ "failed") $ $) 144 (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 155 (|has| |#1| (-565)))) (-2270 (((-112) $) 18 (|has| $ (-1050 (-573))))) (-2645 (($ $ (-621 $) $) 62) (($ $ (-653 (-621 $)) (-653 $)) 61) (($ $ (-653 (-301 $))) 60) (($ $ (-301 $)) 59) (($ $ $ $) 58) (($ $ (-653 $) (-653 $)) 57) (($ $ (-653 (-1189)) (-653 (-1 $ $))) 28) (($ $ (-653 (-1189)) (-653 (-1 $ (-653 $)))) 27) (($ $ (-1189) (-1 $ (-653 $))) 26) (($ $ (-1189) (-1 $ $)) 25) (($ $ (-653 (-115)) (-653 (-1 $ $))) 24) (($ $ (-653 (-115)) (-653 (-1 $ (-653 $)))) 23) (($ $ (-115) (-1 $ (-653 $))) 22) (($ $ (-115) (-1 $ $)) 21) (($ $ (-1189)) 199 (|has| |#1| (-623 (-545)))) (($ $ (-653 (-1189))) 198 (|has| |#1| (-623 (-545)))) (($ $) 197 (|has| |#1| (-623 (-545)))) (($ $ (-115) $ (-1189)) 196 (|has| |#1| (-623 (-545)))) (($ $ (-653 (-115)) (-653 $) (-1189)) 195 (|has| |#1| (-623 (-545)))) (($ $ (-653 (-1189)) (-653 (-780)) (-653 (-1 $ $))) 184 (|has| |#1| (-1061))) (($ $ (-653 (-1189)) (-653 (-780)) (-653 (-1 $ (-653 $)))) 183 (|has| |#1| (-1061))) (($ $ (-1189) (-780) (-1 $ (-653 $))) 182 (|has| |#1| (-1061))) (($ $ (-1189) (-780) (-1 $ $)) 181 (|has| |#1| (-1061)))) (-2163 (((-780) $) 157 (|has| |#1| (-565)))) (-2198 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-653 $)) 52)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 158 (|has| |#1| (-565)))) (-3727 (($ $) 44) (($ $ $) 43)) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) 129 (|has| |#1| (-1061))) (($ $ (-1189) (-780)) 128 (|has| |#1| (-1061))) (($ $ (-653 (-1189))) 127 (|has| |#1| (-1061))) (($ $ (-1189)) 126 (|has| |#1| (-1061)))) (-2662 (($ $) 178 (|has| |#1| (-565)))) (-2975 (((-1137 |#1| (-621 $)) $) 179 (|has| |#1| (-565)))) (-2984 (($ $) 19 (|has| $ (-1061)))) (-1835 (((-902 (-573)) $) 216 (|has| |#1| (-623 (-902 (-573))))) (((-902 (-387)) $) 215 (|has| |#1| (-623 (-902 (-387))))) (($ (-427 $)) 180 (|has| |#1| (-565))) (((-545) $) 100 (|has| |#1| (-623 (-545))))) (-3204 (($ $ $) 111 (|has| |#1| (-482)))) (-4380 (($ $ $) 112 (|has| |#1| (-482)))) (-2942 (((-871) $) 12) (($ (-621 $)) 63) (($ (-1189)) 217) (($ |#1|) 208) (($ (-1137 |#1| (-621 $))) 190 (|has| |#1| (-1061))) (($ (-416 |#1|)) 176 (|has| |#1| (-565))) (($ (-962 (-416 |#1|))) 175 (|has| |#1| (-565))) (($ (-416 (-962 (-416 |#1|)))) 174 (|has| |#1| (-565))) (($ (-416 (-962 |#1|))) 170 (|has| |#1| (-565))) (($ $) 143 (|has| |#1| (-565))) (($ (-962 |#1|)) 122 (|has| |#1| (-1061))) (($ (-416 (-573))) 97 (-2817 (|has| |#1| (-565)) (-12 (|has| |#1| (-1050 (-573))) (|has| |#1| (-565))) (|has| |#1| (-1050 (-416 (-573)))))) (($ (-573)) 96 (-2817 (|has| |#1| (-1061)) (|has| |#1| (-1050 (-573)))))) (-4279 (((-3 $ "failed") $) 141 (|has| |#1| (-146)))) (-1545 (((-780)) 125 (|has| |#1| (-1061)) CONST)) (-2029 (($ $) 48) (($ (-653 $)) 47)) (-3109 (((-112) (-115)) 36)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 147 (|has| |#1| (-565)))) (-2497 (($ (-1189) $) 204) (($ (-1189) $ $) 203) (($ (-1189) $ $ $) 202) (($ (-1189) $ $ $ $) 201) (($ (-1189) (-653 $)) 200)) (-2132 (($) 115 (|has| |#1| (-25)) CONST)) (-2144 (($) 103 (|has| |#1| (-1124)) CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) 133 (|has| |#1| (-1061))) (($ $ (-1189) (-780)) 132 (|has| |#1| (-1061))) (($ $ (-653 (-1189))) 131 (|has| |#1| (-1061))) (($ $ (-1189)) 130 (|has| |#1| (-1061)))) (-2981 (((-112) $ $) 6)) (-3103 (($ (-1137 |#1| (-621 $)) (-1137 |#1| (-621 $))) 177 (|has| |#1| (-565))) (($ $ $) 109 (-2817 (|has| |#1| (-482)) (|has| |#1| (-565))))) (-3093 (($ $ $) 121 (|has| |#1| (-21))) (($ $) 120 (|has| |#1| (-21)))) (-3077 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-573)) 110 (-2817 (|has| |#1| (-482)) (|has| |#1| (-565)))) (($ $ (-780)) 107 (|has| |#1| (-1124))) (($ $ (-931)) 102 (|has| |#1| (-1124)))) (* (($ (-416 (-573)) $) 169 (|has| |#1| (-565))) (($ $ (-416 (-573))) 168 (|has| |#1| (-565))) (($ $ |#1|) 142 (|has| |#1| (-174))) (($ |#1| $) 134 (|has| |#1| (-1061))) (($ (-573) $) 119 (|has| |#1| (-21))) (($ (-780) $) 117 (|has| |#1| (-25))) (($ (-931) $) 114 (|has| |#1| (-25))) (($ $ $) 101 (|has| |#1| (-1124))))) +(((-439 |#1|) (-141) (-1112)) (T -439)) +((-1337 (*1 *2 *1) (-12 (-4 *1 (-439 *3)) (-4 *3 (-1112)) (-5 *2 (-112)))) (-1348 (*1 *2 *1) (-12 (-4 *1 (-439 *2)) (-4 *2 (-1112)))) (-4354 (*1 *2 *1) (-12 (-4 *1 (-439 *3)) (-4 *3 (-1112)) (-5 *2 (-653 (-1189))))) (-2497 (*1 *1 *2 *1) (-12 (-5 *2 (-1189)) (-4 *1 (-439 *3)) (-4 *3 (-1112)))) (-2497 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1189)) (-4 *1 (-439 *3)) (-4 *3 (-1112)))) (-2497 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1189)) (-4 *1 (-439 *3)) (-4 *3 (-1112)))) (-2497 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1189)) (-4 *1 (-439 *3)) (-4 *3 (-1112)))) (-2497 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-653 *1)) (-4 *1 (-439 *4)) (-4 *4 (-1112)))) (-2645 (*1 *1 *1 *2) (-12 (-5 *2 (-1189)) (-4 *1 (-439 *3)) (-4 *3 (-1112)) (-4 *3 (-623 (-545))))) (-2645 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-1189))) (-4 *1 (-439 *3)) (-4 *3 (-1112)) (-4 *3 (-623 (-545))))) (-2645 (*1 *1 *1) (-12 (-4 *1 (-439 *2)) (-4 *2 (-1112)) (-4 *2 (-623 (-545))))) (-2645 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1189)) (-4 *1 (-439 *4)) (-4 *4 (-1112)) (-4 *4 (-623 (-545))))) (-2645 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-653 (-115))) (-5 *3 (-653 *1)) (-5 *4 (-1189)) (-4 *1 (-439 *5)) (-4 *5 (-1112)) (-4 *5 (-623 (-545))))) (-4082 (*1 *2 *1) (|partial| -12 (-4 *3 (-1124)) (-4 *3 (-1112)) (-5 *2 (-653 *1)) (-4 *1 (-439 *3)))) (-2573 (*1 *2 *1) (|partial| -12 (-4 *3 (-1124)) (-4 *3 (-1112)) (-5 *2 (-2 (|:| |var| (-621 *1)) (|:| -3907 (-573)))) (-4 *1 (-439 *3)))) (-2586 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1112)) (-5 *2 (-653 *1)) (-4 *1 (-439 *3)))) (-4425 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1112)) (-5 *2 (-2 (|:| -1857 (-573)) (|:| |var| (-621 *1)))) (-4 *1 (-439 *3)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-1137 *3 (-621 *1))) (-4 *3 (-1061)) (-4 *3 (-1112)) (-4 *1 (-439 *3)))) (-2965 (*1 *2 *1) (-12 (-4 *3 (-1061)) (-4 *3 (-1112)) (-5 *2 (-1137 *3 (-621 *1))) (-4 *1 (-439 *3)))) (-3041 (*1 *1 *1) (-12 (-4 *1 (-439 *2)) (-4 *2 (-1112)) (-4 *2 (-1061)))) (-2573 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1061)) (-4 *4 (-1112)) (-5 *2 (-2 (|:| |var| (-621 *1)) (|:| -3907 (-573)))) (-4 *1 (-439 *4)))) (-2573 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1189)) (-4 *4 (-1061)) (-4 *4 (-1112)) (-5 *2 (-2 (|:| |var| (-621 *1)) (|:| -3907 (-573)))) (-4 *1 (-439 *4)))) (-1951 (*1 *2 *1) (|partial| -12 (-4 *3 (-1061)) (-4 *3 (-1112)) (-5 *2 (-2 (|:| |val| *1) (|:| -3907 (-573)))) (-4 *1 (-439 *3)))) (-2645 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-653 (-1189))) (-5 *3 (-653 (-780))) (-5 *4 (-653 (-1 *1 *1))) (-4 *1 (-439 *5)) (-4 *5 (-1112)) (-4 *5 (-1061)))) (-2645 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-653 (-1189))) (-5 *3 (-653 (-780))) (-5 *4 (-653 (-1 *1 (-653 *1)))) (-4 *1 (-439 *5)) (-4 *5 (-1112)) (-4 *5 (-1061)))) (-2645 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1189)) (-5 *3 (-780)) (-5 *4 (-1 *1 (-653 *1))) (-4 *1 (-439 *5)) (-4 *5 (-1112)) (-4 *5 (-1061)))) (-2645 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1189)) (-5 *3 (-780)) (-5 *4 (-1 *1 *1)) (-4 *1 (-439 *5)) (-4 *5 (-1112)) (-4 *5 (-1061)))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-427 *1)) (-4 *1 (-439 *3)) (-4 *3 (-565)) (-4 *3 (-1112)))) (-2975 (*1 *2 *1) (-12 (-4 *3 (-565)) (-4 *3 (-1112)) (-5 *2 (-1137 *3 (-621 *1))) (-4 *1 (-439 *3)))) (-2662 (*1 *1 *1) (-12 (-4 *1 (-439 *2)) (-4 *2 (-1112)) (-4 *2 (-565)))) (-3103 (*1 *1 *2 *2) (-12 (-5 *2 (-1137 *3 (-621 *1))) (-4 *3 (-565)) (-4 *3 (-1112)) (-4 *1 (-439 *3)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-416 *3)) (-4 *3 (-565)) (-4 *3 (-1112)) (-4 *1 (-439 *3)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-962 (-416 *3))) (-4 *3 (-565)) (-4 *3 (-1112)) (-4 *1 (-439 *3)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-416 (-962 (-416 *3)))) (-4 *3 (-565)) (-4 *3 (-1112)) (-4 *1 (-439 *3)))) (-4193 (*1 *2 *1 *3) (-12 (-5 *3 (-621 *1)) (-4 *1 (-439 *4)) (-4 *4 (-1112)) (-4 *4 (-565)) (-5 *2 (-416 (-1185 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-439 *3)) (-4 *3 (-1112)) (-4 *3 (-1124))))) +(-13 (-309) (-1050 (-1189)) (-894 |t#1|) (-409 |t#1|) (-420 |t#1|) (-10 -8 (-15 -1337 ((-112) $)) (-15 -1348 (|t#1| $)) (-15 -4354 ((-653 (-1189)) $)) (-15 -2497 ($ (-1189) $)) (-15 -2497 ($ (-1189) $ $)) (-15 -2497 ($ (-1189) $ $ $)) (-15 -2497 ($ (-1189) $ $ $ $)) (-15 -2497 ($ (-1189) (-653 $))) (IF (|has| |t#1| (-623 (-545))) (PROGN (-6 (-623 (-545))) (-15 -2645 ($ $ (-1189))) (-15 -2645 ($ $ (-653 (-1189)))) (-15 -2645 ($ $)) (-15 -2645 ($ $ (-115) $ (-1189))) (-15 -2645 ($ $ (-653 (-115)) (-653 $) (-1189)))) |%noBranch|) (IF (|has| |t#1| (-1124)) (PROGN (-6 (-735)) (-15 ** ($ $ (-780))) (-15 -4082 ((-3 (-653 $) "failed") $)) (-15 -2573 ((-3 (-2 (|:| |var| (-621 $)) (|:| -3907 (-573))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-482)) (-6 (-482)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2586 ((-3 (-653 $) "failed") $)) (-15 -4425 ((-3 (-2 (|:| -1857 (-573)) (|:| |var| (-621 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1061)) (PROGN (-6 (-1061)) (-6 (-1050 (-962 |t#1|))) (-6 (-910 (-1189))) (-6 (-385 |t#1|)) (-15 -2942 ($ (-1137 |t#1| (-621 $)))) (-15 -2965 ((-1137 |t#1| (-621 $)) $)) (-15 -3041 ($ $)) (-15 -2573 ((-3 (-2 (|:| |var| (-621 $)) (|:| -3907 (-573))) "failed") $ (-115))) (-15 -2573 ((-3 (-2 (|:| |var| (-621 $)) (|:| -3907 (-573))) "failed") $ (-1189))) (-15 -1951 ((-3 (-2 (|:| |val| $) (|:| -3907 (-573))) "failed") $)) (-15 -2645 ($ $ (-653 (-1189)) (-653 (-780)) (-653 (-1 $ $)))) (-15 -2645 ($ $ (-653 (-1189)) (-653 (-780)) (-653 (-1 $ (-653 $))))) (-15 -2645 ($ $ (-1189) (-780) (-1 $ (-653 $)))) (-15 -2645 ($ $ (-1189) (-780) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-565)) (PROGN (-6 (-371)) (-6 (-1050 (-416 (-962 |t#1|)))) (-15 -1835 ($ (-427 $))) (-15 -2975 ((-1137 |t#1| (-621 $)) $)) (-15 -2662 ($ $)) (-15 -3103 ($ (-1137 |t#1| (-621 $)) (-1137 |t#1| (-621 $)))) (-15 -2942 ($ (-416 |t#1|))) (-15 -2942 ($ (-962 (-416 |t#1|)))) (-15 -2942 ($ (-416 (-962 (-416 |t#1|))))) (-15 -4193 ((-416 (-1185 $)) $ (-621 $))) (IF (|has| |t#1| (-1050 (-573))) (-6 (-1050 (-416 (-573)))) |%noBranch|)) |%noBranch|))) +(((-21) -2817 (|has| |#1| (-1061)) (|has| |#1| (-565)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-23) -2817 (|has| |#1| (-1061)) (|has| |#1| (-565)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2817 (|has| |#1| (-1061)) (|has| |#1| (-565)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-416 (-573))) |has| |#1| (-565)) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-565)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-565)) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) |has| |#1| (-565)) ((-132) -2817 (|has| |#1| (-1061)) (|has| |#1| (-565)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #0#) -2817 (|has| |#1| (-1050 (-416 (-573)))) (|has| |#1| (-565))) ((-625 #1=(-416 (-962 |#1|))) |has| |#1| (-565)) ((-625 (-573)) -2817 (|has| |#1| (-1061)) (|has| |#1| (-1050 (-573))) (|has| |#1| (-565)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-625 #2=(-621 $)) . T) ((-625 #3=(-962 |#1|)) |has| |#1| (-1061)) ((-625 #4=(-1189)) . T) ((-625 |#1|) . T) ((-625 $) |has| |#1| (-565)) ((-622 (-871)) . T) ((-174) |has| |#1| (-565)) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-623 (-902 (-387))) |has| |#1| (-623 (-902 (-387)))) ((-623 (-902 (-573))) |has| |#1| (-623 (-902 (-573)))) ((-248) |has| |#1| (-565)) ((-297) |has| |#1| (-565)) ((-314) |has| |#1| (-565)) ((-316 $) . T) ((-309) . T) ((-371) |has| |#1| (-565)) ((-385 |#1|) |has| |#1| (-1061)) ((-409 |#1|) . T) ((-420 |#1|) . T) ((-461) |has| |#1| (-565)) ((-482) |has| |#1| (-482)) ((-523 (-621 $) $) . T) ((-523 $ $) . T) ((-565) |has| |#1| (-565)) ((-655 #0#) |has| |#1| (-565)) ((-655 (-573)) -2817 (|has| |#1| (-1061)) (|has| |#1| (-565)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-655 |#1|) -2817 (|has| |#1| (-1061)) (|has| |#1| (-174))) ((-655 $) -2817 (|has| |#1| (-1061)) (|has| |#1| (-565)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-657 #0#) |has| |#1| (-565)) ((-657 #5=(-573)) -12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061))) ((-657 |#1|) -2817 (|has| |#1| (-1061)) (|has| |#1| (-174))) ((-657 $) -2817 (|has| |#1| (-1061)) (|has| |#1| (-565)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-649 #0#) |has| |#1| (-565)) ((-649 |#1|) |has| |#1| (-174)) ((-649 $) |has| |#1| (-565)) ((-648 #5#) -12 (|has| |#1| (-648 (-573))) (|has| |#1| (-1061))) ((-648 |#1|) |has| |#1| (-1061)) ((-726 #0#) |has| |#1| (-565)) ((-726 |#1|) |has| |#1| (-174)) ((-726 $) |has| |#1| (-565)) ((-735) -2817 (|has| |#1| (-1124)) (|has| |#1| (-1061)) (|has| |#1| (-565)) (|has| |#1| (-482)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-910 (-1189)) |has| |#1| (-1061)) ((-896 (-387)) |has| |#1| (-896 (-387))) ((-896 (-573)) |has| |#1| (-896 (-573))) ((-894 |#1|) . T) ((-930) |has| |#1| (-565)) ((-1050 (-416 (-573))) -2817 (|has| |#1| (-1050 (-416 (-573)))) (-12 (|has| |#1| (-565)) (|has| |#1| (-1050 (-573))))) ((-1050 #1#) |has| |#1| (-565)) ((-1050 (-573)) |has| |#1| (-1050 (-573))) ((-1050 #2#) . T) ((-1050 #3#) |has| |#1| (-1061)) ((-1050 #4#) . T) ((-1050 |#1|) . T) ((-1063 #0#) |has| |#1| (-565)) ((-1063 |#1|) |has| |#1| (-174)) ((-1063 $) |has| |#1| (-565)) ((-1068 #0#) |has| |#1| (-565)) ((-1068 |#1|) |has| |#1| (-174)) ((-1068 $) |has| |#1| (-565)) ((-1061) -2817 (|has| |#1| (-1061)) (|has| |#1| (-565)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1070) -2817 (|has| |#1| (-1061)) (|has| |#1| (-565)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1124) -2817 (|has| |#1| (-1124)) (|has| |#1| (-1061)) (|has| |#1| (-565)) (|has| |#1| (-482)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1112) . T) ((-1230) . T) ((-1234) |has| |#1| (-565))) +((-1562 ((|#2| |#2| |#2|) 31)) (-4173 (((-115) (-115)) 43)) (-1566 ((|#2| |#2|) 63)) (-4137 ((|#2| |#2|) 66)) (-3325 ((|#2| |#2|) 30)) (-1424 ((|#2| |#2| |#2|) 33)) (-4237 ((|#2| |#2| |#2|) 35)) (-3125 ((|#2| |#2| |#2|) 32)) (-2704 ((|#2| |#2| |#2|) 34)) (-3109 (((-112) (-115)) 41)) (-3754 ((|#2| |#2|) 37)) (-1450 ((|#2| |#2|) 36)) (-1660 ((|#2| |#2|) 25)) (-1818 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-1503 ((|#2| |#2| |#2|) 29))) +(((-440 |#1| |#2|) (-10 -7 (-15 -3109 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 -1660 (|#2| |#2|)) (-15 -1818 (|#2| |#2|)) (-15 -1818 (|#2| |#2| |#2|)) (-15 -1503 (|#2| |#2| |#2|)) (-15 -3325 (|#2| |#2|)) (-15 -1562 (|#2| |#2| |#2|)) (-15 -3125 (|#2| |#2| |#2|)) (-15 -1424 (|#2| |#2| |#2|)) (-15 -2704 (|#2| |#2| |#2|)) (-15 -4237 (|#2| |#2| |#2|)) (-15 -1450 (|#2| |#2|)) (-15 -3754 (|#2| |#2|)) (-15 -4137 (|#2| |#2|)) (-15 -1566 (|#2| |#2|))) (-565) (-439 |#1|)) (T -440)) +((-1566 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) (-4137 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) (-3754 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) (-1450 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) (-4237 (*1 *2 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) (-2704 (*1 *2 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) (-1424 (*1 *2 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) (-3125 (*1 *2 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) (-1562 (*1 *2 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) (-3325 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) (-1503 (*1 *2 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) (-1818 (*1 *2 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) (-1818 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) (-1660 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) (-4173 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-565)) (-5 *1 (-440 *3 *4)) (-4 *4 (-439 *3)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-565)) (-5 *2 (-112)) (-5 *1 (-440 *4 *5)) (-4 *5 (-439 *4))))) +(-10 -7 (-15 -3109 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 -1660 (|#2| |#2|)) (-15 -1818 (|#2| |#2|)) (-15 -1818 (|#2| |#2| |#2|)) (-15 -1503 (|#2| |#2| |#2|)) (-15 -3325 (|#2| |#2|)) (-15 -1562 (|#2| |#2| |#2|)) (-15 -3125 (|#2| |#2| |#2|)) (-15 -1424 (|#2| |#2| |#2|)) (-15 -2704 (|#2| |#2| |#2|)) (-15 -4237 (|#2| |#2| |#2|)) (-15 -1450 (|#2| |#2|)) (-15 -3754 (|#2| |#2|)) (-15 -4137 (|#2| |#2|)) (-15 -1566 (|#2| |#2|))) +((-3731 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1185 |#2|)) (|:| |pol2| (-1185 |#2|)) (|:| |prim| (-1185 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-653 (-1185 |#2|))) (|:| |prim| (-1185 |#2|))) (-653 |#2|)) 65))) +(((-441 |#1| |#2|) (-10 -7 (-15 -3731 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-653 (-1185 |#2|))) (|:| |prim| (-1185 |#2|))) (-653 |#2|))) (IF (|has| |#2| (-27)) (-15 -3731 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1185 |#2|)) (|:| |pol2| (-1185 |#2|)) (|:| |prim| (-1185 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-565) (-148)) (-439 |#1|)) (T -441)) +((-3731 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-565) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1185 *3)) (|:| |pol2| (-1185 *3)) (|:| |prim| (-1185 *3)))) (-5 *1 (-441 *4 *3)) (-4 *3 (-27)) (-4 *3 (-439 *4)))) (-3731 (*1 *2 *3) (-12 (-5 *3 (-653 *5)) (-4 *5 (-439 *4)) (-4 *4 (-13 (-565) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-653 (-1185 *5))) (|:| |prim| (-1185 *5)))) (-5 *1 (-441 *4 *5))))) +(-10 -7 (-15 -3731 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-653 (-1185 |#2|))) (|:| |prim| (-1185 |#2|))) (-653 |#2|))) (IF (|has| |#2| (-27)) (-15 -3731 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1185 |#2|)) (|:| |pol2| (-1185 |#2|)) (|:| |prim| (-1185 |#2|))) |#2| |#2|)) |%noBranch|)) +((-1528 (((-1285)) 18)) (-1932 (((-1185 (-416 (-573))) |#2| (-621 |#2|)) 40) (((-416 (-573)) |#2|) 24))) +(((-442 |#1| |#2|) (-10 -7 (-15 -1932 ((-416 (-573)) |#2|)) (-15 -1932 ((-1185 (-416 (-573))) |#2| (-621 |#2|))) (-15 -1528 ((-1285)))) (-13 (-565) (-1050 (-573))) (-439 |#1|)) (T -442)) +((-1528 (*1 *2) (-12 (-4 *3 (-13 (-565) (-1050 (-573)))) (-5 *2 (-1285)) (-5 *1 (-442 *3 *4)) (-4 *4 (-439 *3)))) (-1932 (*1 *2 *3 *4) (-12 (-5 *4 (-621 *3)) (-4 *3 (-439 *5)) (-4 *5 (-13 (-565) (-1050 (-573)))) (-5 *2 (-1185 (-416 (-573)))) (-5 *1 (-442 *5 *3)))) (-1932 (*1 *2 *3) (-12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *2 (-416 (-573))) (-5 *1 (-442 *4 *3)) (-4 *3 (-439 *4))))) +(-10 -7 (-15 -1932 ((-416 (-573)) |#2|)) (-15 -1932 ((-1185 (-416 (-573))) |#2| (-621 |#2|))) (-15 -1528 ((-1285)))) +((-2814 (((-112) $) 32)) (-4388 (((-112) $) 34)) (-3159 (((-112) $) 35)) (-2453 (((-112) $) 38)) (-2406 (((-112) $) 33)) (-2615 (((-112) $) 37)) (-2942 (((-871) $) 20) (($ (-1171)) 31) (($ (-1189)) 26) (((-1189) $) 24) (((-1116) $) 23)) (-4114 (((-112) $) 36)) (-2981 (((-112) $ $) 17))) +(((-443) (-13 (-622 (-871)) (-10 -8 (-15 -2942 ($ (-1171))) (-15 -2942 ($ (-1189))) (-15 -2942 ((-1189) $)) (-15 -2942 ((-1116) $)) (-15 -2814 ((-112) $)) (-15 -2406 ((-112) $)) (-15 -3159 ((-112) $)) (-15 -2615 ((-112) $)) (-15 -2453 ((-112) $)) (-15 -4114 ((-112) $)) (-15 -4388 ((-112) $)) (-15 -2981 ((-112) $ $))))) (T -443)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-443)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-443)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-443)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-443)))) (-2814 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443)))) (-2406 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443)))) (-3159 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443)))) (-2615 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443)))) (-2453 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443)))) (-4114 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443)))) (-4388 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443)))) (-2981 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443))))) +(-13 (-622 (-871)) (-10 -8 (-15 -2942 ($ (-1171))) (-15 -2942 ($ (-1189))) (-15 -2942 ((-1189) $)) (-15 -2942 ((-1116) $)) (-15 -2814 ((-112) $)) (-15 -2406 ((-112) $)) (-15 -3159 ((-112) $)) (-15 -2615 ((-112) $)) (-15 -2453 ((-112) $)) (-15 -4114 ((-112) $)) (-15 -4388 ((-112) $)) (-15 -2981 ((-112) $ $)))) +((-3604 (((-3 (-427 (-1185 (-416 (-573)))) "failed") |#3|) 72)) (-2642 (((-427 |#3|) |#3|) 34)) (-3939 (((-3 (-427 (-1185 (-48))) "failed") |#3|) 46 (|has| |#2| (-1050 (-48))))) (-2503 (((-3 (|:| |overq| (-1185 (-416 (-573)))) (|:| |overan| (-1185 (-48))) (|:| -3600 (-112))) |#3|) 37))) +(((-444 |#1| |#2| |#3|) (-10 -7 (-15 -2642 ((-427 |#3|) |#3|)) (-15 -3604 ((-3 (-427 (-1185 (-416 (-573)))) "failed") |#3|)) (-15 -2503 ((-3 (|:| |overq| (-1185 (-416 (-573)))) (|:| |overan| (-1185 (-48))) (|:| -3600 (-112))) |#3|)) (IF (|has| |#2| (-1050 (-48))) (-15 -3939 ((-3 (-427 (-1185 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-565) (-1050 (-573))) (-439 |#1|) (-1256 |#2|)) (T -444)) +((-3939 (*1 *2 *3) (|partial| -12 (-4 *5 (-1050 (-48))) (-4 *4 (-13 (-565) (-1050 (-573)))) (-4 *5 (-439 *4)) (-5 *2 (-427 (-1185 (-48)))) (-5 *1 (-444 *4 *5 *3)) (-4 *3 (-1256 *5)))) (-2503 (*1 *2 *3) (-12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-4 *5 (-439 *4)) (-5 *2 (-3 (|:| |overq| (-1185 (-416 (-573)))) (|:| |overan| (-1185 (-48))) (|:| -3600 (-112)))) (-5 *1 (-444 *4 *5 *3)) (-4 *3 (-1256 *5)))) (-3604 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-4 *5 (-439 *4)) (-5 *2 (-427 (-1185 (-416 (-573))))) (-5 *1 (-444 *4 *5 *3)) (-4 *3 (-1256 *5)))) (-2642 (*1 *2 *3) (-12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-4 *5 (-439 *4)) (-5 *2 (-427 *3)) (-5 *1 (-444 *4 *5 *3)) (-4 *3 (-1256 *5))))) +(-10 -7 (-15 -2642 ((-427 |#3|) |#3|)) (-15 -3604 ((-3 (-427 (-1185 (-416 (-573)))) "failed") |#3|)) (-15 -2503 ((-3 (|:| |overq| (-1185 (-416 (-573)))) (|:| |overan| (-1185 (-48))) (|:| -3600 (-112))) |#3|)) (IF (|has| |#2| (-1050 (-48))) (-15 -3939 ((-3 (-427 (-1185 (-48))) "failed") |#3|)) |%noBranch|)) +((-2848 (((-112) $ $) NIL)) (-4288 (((-1171) $ (-1171)) NIL)) (-2169 (($ $ (-1171)) NIL)) (-4188 (((-1171) $) NIL)) (-1341 (((-397) (-397) (-397)) 17) (((-397) (-397)) 15)) (-1674 (($ (-397)) NIL) (($ (-397) (-1171)) NIL)) (-2031 (((-397) $) NIL)) (-3180 (((-1171) $) NIL)) (-4175 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-1939 (((-1285) (-1171)) 9)) (-2312 (((-1285) (-1171)) 10)) (-3548 (((-1285)) 11)) (-2942 (((-871) $) NIL)) (-1981 (($ $) 39)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-445) (-13 (-372 (-397) (-1171)) (-10 -7 (-15 -1341 ((-397) (-397) (-397))) (-15 -1341 ((-397) (-397))) (-15 -1939 ((-1285) (-1171))) (-15 -2312 ((-1285) (-1171))) (-15 -3548 ((-1285)))))) (T -445)) +((-1341 (*1 *2 *2 *2) (-12 (-5 *2 (-397)) (-5 *1 (-445)))) (-1341 (*1 *2 *2) (-12 (-5 *2 (-397)) (-5 *1 (-445)))) (-1939 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-445)))) (-2312 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-445)))) (-3548 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-445))))) +(-13 (-372 (-397) (-1171)) (-10 -7 (-15 -1341 ((-397) (-397) (-397))) (-15 -1341 ((-397) (-397))) (-15 -1939 ((-1285) (-1171))) (-15 -2312 ((-1285) (-1171))) (-15 -3548 ((-1285))))) +((-2848 (((-112) $ $) NIL)) (-2539 (((-3 (|:| |fst| (-443)) (|:| -2425 "void")) $) 11)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-3599 (($) 35)) (-3697 (($) 41)) (-3657 (($) 37)) (-4215 (($) 39)) (-2617 (($) 36)) (-1574 (($) 38)) (-4329 (($) 40)) (-1548 (((-112) $) 8)) (-4321 (((-653 (-962 (-573))) $) 19)) (-2955 (($ (-3 (|:| |fst| (-443)) (|:| -2425 "void")) (-653 (-1189)) (-112)) 29) (($ (-3 (|:| |fst| (-443)) (|:| -2425 "void")) (-653 (-962 (-573))) (-112)) 30)) (-2942 (((-871) $) 24) (($ (-443)) 32)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-446) (-13 (-1112) (-10 -8 (-15 -2942 ($ (-443))) (-15 -2539 ((-3 (|:| |fst| (-443)) (|:| -2425 "void")) $)) (-15 -4321 ((-653 (-962 (-573))) $)) (-15 -1548 ((-112) $)) (-15 -2955 ($ (-3 (|:| |fst| (-443)) (|:| -2425 "void")) (-653 (-1189)) (-112))) (-15 -2955 ($ (-3 (|:| |fst| (-443)) (|:| -2425 "void")) (-653 (-962 (-573))) (-112))) (-15 -3599 ($)) (-15 -2617 ($)) (-15 -3657 ($)) (-15 -3697 ($)) (-15 -1574 ($)) (-15 -4215 ($)) (-15 -4329 ($))))) (T -446)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-443)) (-5 *1 (-446)))) (-2539 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-5 *1 (-446)))) (-4321 (*1 *2 *1) (-12 (-5 *2 (-653 (-962 (-573)))) (-5 *1 (-446)))) (-1548 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2955 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-5 *3 (-653 (-1189))) (-5 *4 (-112)) (-5 *1 (-446)))) (-2955 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-5 *3 (-653 (-962 (-573)))) (-5 *4 (-112)) (-5 *1 (-446)))) (-3599 (*1 *1) (-5 *1 (-446))) (-2617 (*1 *1) (-5 *1 (-446))) (-3657 (*1 *1) (-5 *1 (-446))) (-3697 (*1 *1) (-5 *1 (-446))) (-1574 (*1 *1) (-5 *1 (-446))) (-4215 (*1 *1) (-5 *1 (-446))) (-4329 (*1 *1) (-5 *1 (-446)))) +(-13 (-1112) (-10 -8 (-15 -2942 ($ (-443))) (-15 -2539 ((-3 (|:| |fst| (-443)) (|:| -2425 "void")) $)) (-15 -4321 ((-653 (-962 (-573))) $)) (-15 -1548 ((-112) $)) (-15 -2955 ($ (-3 (|:| |fst| (-443)) (|:| -2425 "void")) (-653 (-1189)) (-112))) (-15 -2955 ($ (-3 (|:| |fst| (-443)) (|:| -2425 "void")) (-653 (-962 (-573))) (-112))) (-15 -3599 ($)) (-15 -2617 ($)) (-15 -3657 ($)) (-15 -3697 ($)) (-15 -1574 ($)) (-15 -4215 ($)) (-15 -4329 ($)))) +((-2848 (((-112) $ $) NIL)) (-2031 (((-1189) $) 8)) (-3180 (((-1171) $) 17)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 11)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 14))) +(((-447 |#1|) (-13 (-1112) (-10 -8 (-15 -2031 ((-1189) $)))) (-1189)) (T -447)) +((-2031 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-447 *3)) (-14 *3 *2)))) +(-13 (-1112) (-10 -8 (-15 -2031 ((-1189) $)))) +((-2848 (((-112) $ $) NIL)) (-3139 (((-1130) $) 7)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 13)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 9))) +(((-448) (-13 (-1112) (-10 -8 (-15 -3139 ((-1130) $))))) (T -448)) +((-3139 (*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-448))))) +(-13 (-1112) (-10 -8 (-15 -3139 ((-1130) $)))) +((-3767 (((-1285) $) 7)) (-2942 (((-871) $) 8) (($ (-1280 (-708))) 14) (($ (-653 (-337))) 13) (($ (-337)) 12) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 11))) +(((-449) (-141)) (T -449)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-1280 (-708))) (-4 *1 (-449)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-653 (-337))) (-4 *1 (-449)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-337)) (-4 *1 (-449)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) (-4 *1 (-449))))) +(-13 (-404) (-10 -8 (-15 -2942 ($ (-1280 (-708)))) (-15 -2942 ($ (-653 (-337)))) (-15 -2942 ($ (-337))) (-15 -2942 ($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337)))))))) +(((-622 (-871)) . T) ((-404) . T) ((-1230) . T)) +((-1695 (((-3 $ "failed") (-1280 (-323 (-387)))) 21) (((-3 $ "failed") (-1280 (-323 (-573)))) 19) (((-3 $ "failed") (-1280 (-962 (-387)))) 17) (((-3 $ "failed") (-1280 (-962 (-573)))) 15) (((-3 $ "failed") (-1280 (-416 (-962 (-387))))) 13) (((-3 $ "failed") (-1280 (-416 (-962 (-573))))) 11)) (-2205 (($ (-1280 (-323 (-387)))) 22) (($ (-1280 (-323 (-573)))) 20) (($ (-1280 (-962 (-387)))) 18) (($ (-1280 (-962 (-573)))) 16) (($ (-1280 (-416 (-962 (-387))))) 14) (($ (-1280 (-416 (-962 (-573))))) 12)) (-3767 (((-1285) $) 7)) (-2942 (((-871) $) 8) (($ (-653 (-337))) 25) (($ (-337)) 24) (($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) 23))) (((-450) (-141)) (T -450)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-1281 (-709))) (-4 *1 (-450)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-450)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-450)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) (-4 *1 (-450))))) -(-13 (-405) (-10 -8 (-15 -2943 ($ (-1281 (-709)))) (-15 -2943 ($ (-654 (-338)))) (-15 -2943 ($ (-338))) (-15 -2943 ($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338)))))))) -(((-623 (-872)) . T) ((-405) . T) ((-1231) . T)) -((-1696 (((-3 $ "failed") (-1281 (-324 (-388)))) 21) (((-3 $ "failed") (-1281 (-324 (-574)))) 19) (((-3 $ "failed") (-1281 (-963 (-388)))) 17) (((-3 $ "failed") (-1281 (-963 (-574)))) 15) (((-3 $ "failed") (-1281 (-417 (-963 (-388))))) 13) (((-3 $ "failed") (-1281 (-417 (-963 (-574))))) 11)) (-2206 (($ (-1281 (-324 (-388)))) 22) (($ (-1281 (-324 (-574)))) 20) (($ (-1281 (-963 (-388)))) 18) (($ (-1281 (-963 (-574)))) 16) (($ (-1281 (-417 (-963 (-388))))) 14) (($ (-1281 (-417 (-963 (-574))))) 12)) (-3768 (((-1286) $) 7)) (-2943 (((-872) $) 8) (($ (-654 (-338))) 25) (($ (-338)) 24) (($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) 23))) -(((-451) (-141)) (T -451)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-451)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-451)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) (-4 *1 (-451)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-1281 (-324 (-388)))) (-4 *1 (-451)))) (-1696 (*1 *1 *2) (|partial| -12 (-5 *2 (-1281 (-324 (-388)))) (-4 *1 (-451)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-1281 (-324 (-574)))) (-4 *1 (-451)))) (-1696 (*1 *1 *2) (|partial| -12 (-5 *2 (-1281 (-324 (-574)))) (-4 *1 (-451)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-1281 (-963 (-388)))) (-4 *1 (-451)))) (-1696 (*1 *1 *2) (|partial| -12 (-5 *2 (-1281 (-963 (-388)))) (-4 *1 (-451)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-1281 (-963 (-574)))) (-4 *1 (-451)))) (-1696 (*1 *1 *2) (|partial| -12 (-5 *2 (-1281 (-963 (-574)))) (-4 *1 (-451)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-1281 (-417 (-963 (-388))))) (-4 *1 (-451)))) (-1696 (*1 *1 *2) (|partial| -12 (-5 *2 (-1281 (-417 (-963 (-388))))) (-4 *1 (-451)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-1281 (-417 (-963 (-574))))) (-4 *1 (-451)))) (-1696 (*1 *1 *2) (|partial| -12 (-5 *2 (-1281 (-417 (-963 (-574))))) (-4 *1 (-451))))) -(-13 (-405) (-10 -8 (-15 -2943 ($ (-654 (-338)))) (-15 -2943 ($ (-338))) (-15 -2943 ($ (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338)))))) (-15 -2206 ($ (-1281 (-324 (-388))))) (-15 -1696 ((-3 $ "failed") (-1281 (-324 (-388))))) (-15 -2206 ($ (-1281 (-324 (-574))))) (-15 -1696 ((-3 $ "failed") (-1281 (-324 (-574))))) (-15 -2206 ($ (-1281 (-963 (-388))))) (-15 -1696 ((-3 $ "failed") (-1281 (-963 (-388))))) (-15 -2206 ($ (-1281 (-963 (-574))))) (-15 -1696 ((-3 $ "failed") (-1281 (-963 (-574))))) (-15 -2206 ($ (-1281 (-417 (-963 (-388)))))) (-15 -1696 ((-3 $ "failed") (-1281 (-417 (-963 (-388)))))) (-15 -2206 ($ (-1281 (-417 (-963 (-574)))))) (-15 -1696 ((-3 $ "failed") (-1281 (-417 (-963 (-574)))))))) -(((-623 (-872)) . T) ((-405) . T) ((-1231) . T)) -((-3117 (((-112)) 18)) (-1437 (((-112) (-112)) 19)) (-4362 (((-112)) 14)) (-4319 (((-112) (-112)) 15)) (-4129 (((-112)) 16)) (-1554 (((-112) (-112)) 17)) (-3999 (((-932) (-932)) 22) (((-932)) 21)) (-1684 (((-781) (-654 (-2 (|:| -4220 |#1|) (|:| -4202 (-574))))) 52)) (-2851 (((-932) (-932)) 24) (((-932)) 23)) (-2739 (((-2 (|:| -2715 (-574)) (|:| -4219 (-654 |#1|))) |#1|) 94)) (-3597 (((-428 |#1|) (-2 (|:| |contp| (-574)) (|:| -4219 (-654 (-2 (|:| |irr| |#1|) (|:| -3186 (-574))))))) 174)) (-1461 (((-2 (|:| |contp| (-574)) (|:| -4219 (-654 (-2 (|:| |irr| |#1|) (|:| -3186 (-574)))))) |#1| (-112)) 207)) (-3629 (((-428 |#1|) |#1| (-781) (-781)) 222) (((-428 |#1|) |#1| (-654 (-781)) (-781)) 219) (((-428 |#1|) |#1| (-654 (-781))) 221) (((-428 |#1|) |#1| (-781)) 220) (((-428 |#1|) |#1|) 218)) (-3403 (((-3 |#1| "failed") (-932) |#1| (-654 (-781)) (-781) (-112)) 224) (((-3 |#1| "failed") (-932) |#1| (-654 (-781)) (-781)) 225) (((-3 |#1| "failed") (-932) |#1| (-654 (-781))) 227) (((-3 |#1| "failed") (-932) |#1| (-781)) 226) (((-3 |#1| "failed") (-932) |#1|) 228)) (-4220 (((-428 |#1|) |#1| (-781) (-781)) 217) (((-428 |#1|) |#1| (-654 (-781)) (-781)) 213) (((-428 |#1|) |#1| (-654 (-781))) 215) (((-428 |#1|) |#1| (-781)) 214) (((-428 |#1|) |#1|) 212)) (-1876 (((-112) |#1|) 44)) (-3473 (((-747 (-781)) (-654 (-2 (|:| -4220 |#1|) (|:| -4202 (-574))))) 99)) (-4010 (((-2 (|:| |contp| (-574)) (|:| -4219 (-654 (-2 (|:| |irr| |#1|) (|:| -3186 (-574)))))) |#1| (-112) (-1115 (-781)) (-781)) 211))) -(((-452 |#1|) (-10 -7 (-15 -3597 ((-428 |#1|) (-2 (|:| |contp| (-574)) (|:| -4219 (-654 (-2 (|:| |irr| |#1|) (|:| -3186 (-574)))))))) (-15 -3473 ((-747 (-781)) (-654 (-2 (|:| -4220 |#1|) (|:| -4202 (-574)))))) (-15 -2851 ((-932))) (-15 -2851 ((-932) (-932))) (-15 -3999 ((-932))) (-15 -3999 ((-932) (-932))) (-15 -1684 ((-781) (-654 (-2 (|:| -4220 |#1|) (|:| -4202 (-574)))))) (-15 -2739 ((-2 (|:| -2715 (-574)) (|:| -4219 (-654 |#1|))) |#1|)) (-15 -3117 ((-112))) (-15 -1437 ((-112) (-112))) (-15 -4362 ((-112))) (-15 -4319 ((-112) (-112))) (-15 -1876 ((-112) |#1|)) (-15 -4129 ((-112))) (-15 -1554 ((-112) (-112))) (-15 -4220 ((-428 |#1|) |#1|)) (-15 -4220 ((-428 |#1|) |#1| (-781))) (-15 -4220 ((-428 |#1|) |#1| (-654 (-781)))) (-15 -4220 ((-428 |#1|) |#1| (-654 (-781)) (-781))) (-15 -4220 ((-428 |#1|) |#1| (-781) (-781))) (-15 -3629 ((-428 |#1|) |#1|)) (-15 -3629 ((-428 |#1|) |#1| (-781))) (-15 -3629 ((-428 |#1|) |#1| (-654 (-781)))) (-15 -3629 ((-428 |#1|) |#1| (-654 (-781)) (-781))) (-15 -3629 ((-428 |#1|) |#1| (-781) (-781))) (-15 -3403 ((-3 |#1| "failed") (-932) |#1|)) (-15 -3403 ((-3 |#1| "failed") (-932) |#1| (-781))) (-15 -3403 ((-3 |#1| "failed") (-932) |#1| (-654 (-781)))) (-15 -3403 ((-3 |#1| "failed") (-932) |#1| (-654 (-781)) (-781))) (-15 -3403 ((-3 |#1| "failed") (-932) |#1| (-654 (-781)) (-781) (-112))) (-15 -1461 ((-2 (|:| |contp| (-574)) (|:| -4219 (-654 (-2 (|:| |irr| |#1|) (|:| -3186 (-574)))))) |#1| (-112))) (-15 -4010 ((-2 (|:| |contp| (-574)) (|:| -4219 (-654 (-2 (|:| |irr| |#1|) (|:| -3186 (-574)))))) |#1| (-112) (-1115 (-781)) (-781)))) (-1257 (-574))) (T -452)) -((-4010 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1115 (-781))) (-5 *6 (-781)) (-5 *2 (-2 (|:| |contp| (-574)) (|:| -4219 (-654 (-2 (|:| |irr| *3) (|:| -3186 (-574))))))) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-1461 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-574)) (|:| -4219 (-654 (-2 (|:| |irr| *3) (|:| -3186 (-574))))))) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-3403 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-932)) (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *6 (-112)) (-5 *1 (-452 *2)) (-4 *2 (-1257 (-574))))) (-3403 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-932)) (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *1 (-452 *2)) (-4 *2 (-1257 (-574))))) (-3403 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-932)) (-5 *4 (-654 (-781))) (-5 *1 (-452 *2)) (-4 *2 (-1257 (-574))))) (-3403 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-932)) (-5 *4 (-781)) (-5 *1 (-452 *2)) (-4 *2 (-1257 (-574))))) (-3403 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-932)) (-5 *1 (-452 *2)) (-4 *2 (-1257 (-574))))) (-3629 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-3629 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-3629 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-781))) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-3629 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-3629 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-4220 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-4220 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-4220 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-781))) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-4220 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-4220 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-1554 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-4129 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-1876 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-4319 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-4362 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-1437 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-3117 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-2739 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2715 (-574)) (|:| -4219 (-654 *3)))) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -4220 *4) (|:| -4202 (-574))))) (-4 *4 (-1257 (-574))) (-5 *2 (-781)) (-5 *1 (-452 *4)))) (-3999 (*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-3999 (*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-2851 (*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-2851 (*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) (-3473 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -4220 *4) (|:| -4202 (-574))))) (-4 *4 (-1257 (-574))) (-5 *2 (-747 (-781))) (-5 *1 (-452 *4)))) (-3597 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-574)) (|:| -4219 (-654 (-2 (|:| |irr| *4) (|:| -3186 (-574))))))) (-4 *4 (-1257 (-574))) (-5 *2 (-428 *4)) (-5 *1 (-452 *4))))) -(-10 -7 (-15 -3597 ((-428 |#1|) (-2 (|:| |contp| (-574)) (|:| -4219 (-654 (-2 (|:| |irr| |#1|) (|:| -3186 (-574)))))))) (-15 -3473 ((-747 (-781)) (-654 (-2 (|:| -4220 |#1|) (|:| -4202 (-574)))))) (-15 -2851 ((-932))) (-15 -2851 ((-932) (-932))) (-15 -3999 ((-932))) (-15 -3999 ((-932) (-932))) (-15 -1684 ((-781) (-654 (-2 (|:| -4220 |#1|) (|:| -4202 (-574)))))) (-15 -2739 ((-2 (|:| -2715 (-574)) (|:| -4219 (-654 |#1|))) |#1|)) (-15 -3117 ((-112))) (-15 -1437 ((-112) (-112))) (-15 -4362 ((-112))) (-15 -4319 ((-112) (-112))) (-15 -1876 ((-112) |#1|)) (-15 -4129 ((-112))) (-15 -1554 ((-112) (-112))) (-15 -4220 ((-428 |#1|) |#1|)) (-15 -4220 ((-428 |#1|) |#1| (-781))) (-15 -4220 ((-428 |#1|) |#1| (-654 (-781)))) (-15 -4220 ((-428 |#1|) |#1| (-654 (-781)) (-781))) (-15 -4220 ((-428 |#1|) |#1| (-781) (-781))) (-15 -3629 ((-428 |#1|) |#1|)) (-15 -3629 ((-428 |#1|) |#1| (-781))) (-15 -3629 ((-428 |#1|) |#1| (-654 (-781)))) (-15 -3629 ((-428 |#1|) |#1| (-654 (-781)) (-781))) (-15 -3629 ((-428 |#1|) |#1| (-781) (-781))) (-15 -3403 ((-3 |#1| "failed") (-932) |#1|)) (-15 -3403 ((-3 |#1| "failed") (-932) |#1| (-781))) (-15 -3403 ((-3 |#1| "failed") (-932) |#1| (-654 (-781)))) (-15 -3403 ((-3 |#1| "failed") (-932) |#1| (-654 (-781)) (-781))) (-15 -3403 ((-3 |#1| "failed") (-932) |#1| (-654 (-781)) (-781) (-112))) (-15 -1461 ((-2 (|:| |contp| (-574)) (|:| -4219 (-654 (-2 (|:| |irr| |#1|) (|:| -3186 (-574)))))) |#1| (-112))) (-15 -4010 ((-2 (|:| |contp| (-574)) (|:| -4219 (-654 (-2 (|:| |irr| |#1|) (|:| -3186 (-574)))))) |#1| (-112) (-1115 (-781)) (-781)))) -((-4317 (((-574) |#2|) 52) (((-574) |#2| (-781)) 51)) (-2431 (((-574) |#2|) 64)) (-3031 ((|#3| |#2|) 26)) (-2236 ((|#3| |#2| (-932)) 15)) (-4135 ((|#3| |#2|) 16)) (-2051 ((|#3| |#2|) 9)) (-1839 ((|#3| |#2|) 10)) (-2869 ((|#3| |#2| (-932)) 71) ((|#3| |#2|) 34)) (-2372 (((-574) |#2|) 66))) -(((-453 |#1| |#2| |#3|) (-10 -7 (-15 -2372 ((-574) |#2|)) (-15 -2869 (|#3| |#2|)) (-15 -2869 (|#3| |#2| (-932))) (-15 -2431 ((-574) |#2|)) (-15 -4317 ((-574) |#2| (-781))) (-15 -4317 ((-574) |#2|)) (-15 -2236 (|#3| |#2| (-932))) (-15 -3031 (|#3| |#2|)) (-15 -2051 (|#3| |#2|)) (-15 -1839 (|#3| |#2|)) (-15 -4135 (|#3| |#2|))) (-1062) (-1257 |#1|) (-13 (-414) (-1051 |#1|) (-372) (-1216) (-292))) (T -453)) -((-4135 (*1 *2 *3) (-12 (-4 *4 (-1062)) (-4 *2 (-13 (-414) (-1051 *4) (-372) (-1216) (-292))) (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1257 *4)))) (-1839 (*1 *2 *3) (-12 (-4 *4 (-1062)) (-4 *2 (-13 (-414) (-1051 *4) (-372) (-1216) (-292))) (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1257 *4)))) (-2051 (*1 *2 *3) (-12 (-4 *4 (-1062)) (-4 *2 (-13 (-414) (-1051 *4) (-372) (-1216) (-292))) (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1257 *4)))) (-3031 (*1 *2 *3) (-12 (-4 *4 (-1062)) (-4 *2 (-13 (-414) (-1051 *4) (-372) (-1216) (-292))) (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1257 *4)))) (-2236 (*1 *2 *3 *4) (-12 (-5 *4 (-932)) (-4 *5 (-1062)) (-4 *2 (-13 (-414) (-1051 *5) (-372) (-1216) (-292))) (-5 *1 (-453 *5 *3 *2)) (-4 *3 (-1257 *5)))) (-4317 (*1 *2 *3) (-12 (-4 *4 (-1062)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5)) (-4 *3 (-1257 *4)) (-4 *5 (-13 (-414) (-1051 *4) (-372) (-1216) (-292))))) (-4317 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-1062)) (-5 *2 (-574)) (-5 *1 (-453 *5 *3 *6)) (-4 *3 (-1257 *5)) (-4 *6 (-13 (-414) (-1051 *5) (-372) (-1216) (-292))))) (-2431 (*1 *2 *3) (-12 (-4 *4 (-1062)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5)) (-4 *3 (-1257 *4)) (-4 *5 (-13 (-414) (-1051 *4) (-372) (-1216) (-292))))) (-2869 (*1 *2 *3 *4) (-12 (-5 *4 (-932)) (-4 *5 (-1062)) (-4 *2 (-13 (-414) (-1051 *5) (-372) (-1216) (-292))) (-5 *1 (-453 *5 *3 *2)) (-4 *3 (-1257 *5)))) (-2869 (*1 *2 *3) (-12 (-4 *4 (-1062)) (-4 *2 (-13 (-414) (-1051 *4) (-372) (-1216) (-292))) (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1257 *4)))) (-2372 (*1 *2 *3) (-12 (-4 *4 (-1062)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5)) (-4 *3 (-1257 *4)) (-4 *5 (-13 (-414) (-1051 *4) (-372) (-1216) (-292)))))) -(-10 -7 (-15 -2372 ((-574) |#2|)) (-15 -2869 (|#3| |#2|)) (-15 -2869 (|#3| |#2| (-932))) (-15 -2431 ((-574) |#2|)) (-15 -4317 ((-574) |#2| (-781))) (-15 -4317 ((-574) |#2|)) (-15 -2236 (|#3| |#2| (-932))) (-15 -3031 (|#3| |#2|)) (-15 -2051 (|#3| |#2|)) (-15 -1839 (|#3| |#2|)) (-15 -4135 (|#3| |#2|))) -((-4089 ((|#2| (-1281 |#1|)) 42)) (-1899 ((|#2| |#2| |#1|) 58)) (-3726 ((|#2| |#2| |#1|) 49)) (-4423 ((|#2| |#2|) 44)) (-4075 (((-112) |#2|) 32)) (-3090 (((-654 |#2|) (-932) (-428 |#2|)) 21)) (-3403 ((|#2| (-932) (-428 |#2|)) 25)) (-3473 (((-747 (-781)) (-428 |#2|)) 29))) -(((-454 |#1| |#2|) (-10 -7 (-15 -4075 ((-112) |#2|)) (-15 -4089 (|#2| (-1281 |#1|))) (-15 -4423 (|#2| |#2|)) (-15 -3726 (|#2| |#2| |#1|)) (-15 -1899 (|#2| |#2| |#1|)) (-15 -3473 ((-747 (-781)) (-428 |#2|))) (-15 -3403 (|#2| (-932) (-428 |#2|))) (-15 -3090 ((-654 |#2|) (-932) (-428 |#2|)))) (-1062) (-1257 |#1|)) (T -454)) -((-3090 (*1 *2 *3 *4) (-12 (-5 *3 (-932)) (-5 *4 (-428 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-1062)) (-5 *2 (-654 *6)) (-5 *1 (-454 *5 *6)))) (-3403 (*1 *2 *3 *4) (-12 (-5 *3 (-932)) (-5 *4 (-428 *2)) (-4 *2 (-1257 *5)) (-5 *1 (-454 *5 *2)) (-4 *5 (-1062)))) (-3473 (*1 *2 *3) (-12 (-5 *3 (-428 *5)) (-4 *5 (-1257 *4)) (-4 *4 (-1062)) (-5 *2 (-747 (-781))) (-5 *1 (-454 *4 *5)))) (-1899 (*1 *2 *2 *3) (-12 (-4 *3 (-1062)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1257 *3)))) (-3726 (*1 *2 *2 *3) (-12 (-4 *3 (-1062)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1257 *3)))) (-4423 (*1 *2 *2) (-12 (-4 *3 (-1062)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1257 *3)))) (-4089 (*1 *2 *3) (-12 (-5 *3 (-1281 *4)) (-4 *4 (-1062)) (-4 *2 (-1257 *4)) (-5 *1 (-454 *4 *2)))) (-4075 (*1 *2 *3) (-12 (-4 *4 (-1062)) (-5 *2 (-112)) (-5 *1 (-454 *4 *3)) (-4 *3 (-1257 *4))))) -(-10 -7 (-15 -4075 ((-112) |#2|)) (-15 -4089 (|#2| (-1281 |#1|))) (-15 -4423 (|#2| |#2|)) (-15 -3726 (|#2| |#2| |#1|)) (-15 -1899 (|#2| |#2| |#1|)) (-15 -3473 ((-747 (-781)) (-428 |#2|))) (-15 -3403 (|#2| (-932) (-428 |#2|))) (-15 -3090 ((-654 |#2|) (-932) (-428 |#2|)))) -((-2769 (((-781)) 59)) (-2888 (((-781)) 29 (|has| |#1| (-414))) (((-781) (-781)) 28 (|has| |#1| (-414)))) (-2314 (((-574) |#1|) 25 (|has| |#1| (-414)))) (-3570 (((-574) |#1|) 27 (|has| |#1| (-414)))) (-2633 (((-781)) 58) (((-781) (-781)) 57)) (-3638 ((|#1| (-781) (-574)) 37)) (-1589 (((-1286)) 61))) -(((-455 |#1|) (-10 -7 (-15 -3638 (|#1| (-781) (-574))) (-15 -2633 ((-781) (-781))) (-15 -2633 ((-781))) (-15 -2769 ((-781))) (-15 -1589 ((-1286))) (IF (|has| |#1| (-414)) (PROGN (-15 -3570 ((-574) |#1|)) (-15 -2314 ((-574) |#1|)) (-15 -2888 ((-781) (-781))) (-15 -2888 ((-781)))) |%noBranch|)) (-1062)) (T -455)) -((-2888 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1062)))) (-2888 (*1 *2 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1062)))) (-2314 (*1 *2 *3) (-12 (-5 *2 (-574)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1062)))) (-3570 (*1 *2 *3) (-12 (-5 *2 (-574)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1062)))) (-1589 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-455 *3)) (-4 *3 (-1062)))) (-2769 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1062)))) (-2633 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1062)))) (-2633 (*1 *2 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1062)))) (-3638 (*1 *2 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-574)) (-5 *1 (-455 *2)) (-4 *2 (-1062))))) -(-10 -7 (-15 -3638 (|#1| (-781) (-574))) (-15 -2633 ((-781) (-781))) (-15 -2633 ((-781))) (-15 -2769 ((-781))) (-15 -1589 ((-1286))) (IF (|has| |#1| (-414)) (PROGN (-15 -3570 ((-574) |#1|)) (-15 -2314 ((-574) |#1|)) (-15 -2888 ((-781) (-781))) (-15 -2888 ((-781)))) |%noBranch|)) -((-1432 (((-654 (-574)) (-574)) 76)) (-2257 (((-112) (-171 (-574))) 82)) (-4220 (((-428 (-171 (-574))) (-171 (-574))) 75))) -(((-456) (-10 -7 (-15 -4220 ((-428 (-171 (-574))) (-171 (-574)))) (-15 -1432 ((-654 (-574)) (-574))) (-15 -2257 ((-112) (-171 (-574)))))) (T -456)) -((-2257 (*1 *2 *3) (-12 (-5 *3 (-171 (-574))) (-5 *2 (-112)) (-5 *1 (-456)))) (-1432 (*1 *2 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-456)) (-5 *3 (-574)))) (-4220 (*1 *2 *3) (-12 (-5 *2 (-428 (-171 (-574)))) (-5 *1 (-456)) (-5 *3 (-171 (-574)))))) -(-10 -7 (-15 -4220 ((-428 (-171 (-574))) (-171 (-574)))) (-15 -1432 ((-654 (-574)) (-574))) (-15 -2257 ((-112) (-171 (-574))))) -((-2438 ((|#4| |#4| (-654 |#4|)) 82)) (-2148 (((-654 |#4|) (-654 |#4|) (-1172) (-1172)) 22) (((-654 |#4|) (-654 |#4|) (-1172)) 21) (((-654 |#4|) (-654 |#4|)) 13))) -(((-457 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2438 (|#4| |#4| (-654 |#4|))) (-15 -2148 ((-654 |#4|) (-654 |#4|))) (-15 -2148 ((-654 |#4|) (-654 |#4|) (-1172))) (-15 -2148 ((-654 |#4|) (-654 |#4|) (-1172) (-1172)))) (-315) (-803) (-860) (-960 |#1| |#2| |#3|)) (T -457)) -((-2148 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-1172)) (-4 *7 (-960 *4 *5 *6)) (-4 *4 (-315)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-457 *4 *5 *6 *7)))) (-2148 (*1 *2 *2 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-1172)) (-4 *7 (-960 *4 *5 *6)) (-4 *4 (-315)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-457 *4 *5 *6 *7)))) (-2148 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-457 *3 *4 *5 *6)))) (-2438 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-960 *4 *5 *6)) (-4 *4 (-315)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-457 *4 *5 *6 *2))))) -(-10 -7 (-15 -2438 (|#4| |#4| (-654 |#4|))) (-15 -2148 ((-654 |#4|) (-654 |#4|))) (-15 -2148 ((-654 |#4|) (-654 |#4|) (-1172))) (-15 -2148 ((-654 |#4|) (-654 |#4|) (-1172) (-1172)))) -((-2331 (((-654 (-654 |#4|)) (-654 |#4|) (-112)) 89) (((-654 (-654 |#4|)) (-654 |#4|)) 88) (((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|) (-112)) 82) (((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|)) 83)) (-2517 (((-654 (-654 |#4|)) (-654 |#4|) (-112)) 55) (((-654 (-654 |#4|)) (-654 |#4|)) 77))) -(((-458 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2517 ((-654 (-654 |#4|)) (-654 |#4|))) (-15 -2517 ((-654 (-654 |#4|)) (-654 |#4|) (-112))) (-15 -2331 ((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|))) (-15 -2331 ((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|) (-112))) (-15 -2331 ((-654 (-654 |#4|)) (-654 |#4|))) (-15 -2331 ((-654 (-654 |#4|)) (-654 |#4|) (-112)))) (-13 (-315) (-148)) (-803) (-860) (-960 |#1| |#2| |#3|)) (T -458)) -((-2331 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-960 *5 *6 *7)) (-5 *2 (-654 (-654 *8))) (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8)))) (-2331 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-960 *4 *5 *6)) (-5 *2 (-654 (-654 *7))) (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-2331 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-960 *5 *6 *7)) (-5 *2 (-654 (-654 *8))) (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8)))) (-2331 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-960 *4 *5 *6)) (-5 *2 (-654 (-654 *7))) (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-2517 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-960 *5 *6 *7)) (-5 *2 (-654 (-654 *8))) (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8)))) (-2517 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-960 *4 *5 *6)) (-5 *2 (-654 (-654 *7))) (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7))))) -(-10 -7 (-15 -2517 ((-654 (-654 |#4|)) (-654 |#4|))) (-15 -2517 ((-654 (-654 |#4|)) (-654 |#4|) (-112))) (-15 -2331 ((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|))) (-15 -2331 ((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|) (-112))) (-15 -2331 ((-654 (-654 |#4|)) (-654 |#4|))) (-15 -2331 ((-654 (-654 |#4|)) (-654 |#4|) (-112)))) -((-2899 (((-781) |#4|) 12)) (-1530 (((-654 (-2 (|:| |totdeg| (-781)) (|:| -4086 |#4|))) |#4| (-781) (-654 (-2 (|:| |totdeg| (-781)) (|:| -4086 |#4|)))) 39)) (-3580 (((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-2110 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-3325 ((|#4| |#4| (-654 |#4|)) 54)) (-3943 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-654 |#4|)) 96)) (-1692 (((-1286) |#4|) 59)) (-2432 (((-1286) (-654 |#4|)) 69)) (-1317 (((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574)) 66)) (-2662 (((-1286) (-574)) 110)) (-3563 (((-654 |#4|) (-654 |#4|)) 104)) (-3750 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-781)) (|:| -4086 |#4|)) |#4| (-781)) 31)) (-4316 (((-574) |#4|) 109)) (-1446 ((|#4| |#4|) 37)) (-3807 (((-654 |#4|) (-654 |#4|) (-574) (-574)) 74)) (-3906 (((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574) (-574)) 123)) (-4376 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-2933 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-2653 (((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-3173 (((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-3015 (((-112) |#2| |#2|) 75)) (-2006 (((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-3585 (((-112) |#2| |#2| |#2| |#2|) 80)) (-3634 ((|#4| |#4| (-654 |#4|)) 97))) -(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3634 (|#4| |#4| (-654 |#4|))) (-15 -3325 (|#4| |#4| (-654 |#4|))) (-15 -3807 ((-654 |#4|) (-654 |#4|) (-574) (-574))) (-15 -2933 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3015 ((-112) |#2| |#2|)) (-15 -3585 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2006 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3173 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2653 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3943 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-654 |#4|))) (-15 -1446 (|#4| |#4|)) (-15 -1530 ((-654 (-2 (|:| |totdeg| (-781)) (|:| -4086 |#4|))) |#4| (-781) (-654 (-2 (|:| |totdeg| (-781)) (|:| -4086 |#4|))))) (-15 -2110 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3580 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3563 ((-654 |#4|) (-654 |#4|))) (-15 -4316 ((-574) |#4|)) (-15 -1692 ((-1286) |#4|)) (-15 -1317 ((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574))) (-15 -3906 ((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574) (-574))) (-15 -2432 ((-1286) (-654 |#4|))) (-15 -2662 ((-1286) (-574))) (-15 -4376 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3750 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-781)) (|:| -4086 |#4|)) |#4| (-781))) (-15 -2899 ((-781) |#4|))) (-462) (-803) (-860) (-960 |#1| |#2| |#3|)) (T -459)) -((-2899 (*1 *2 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-781)) (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-960 *4 *5 *6)))) (-3750 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-781)) (|:| -4086 *4))) (-5 *5 (-781)) (-4 *4 (-960 *6 *7 *8)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-459 *6 *7 *8 *4)))) (-4376 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-803)) (-4 *7 (-960 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-459 *4 *5 *6 *7)))) (-2662 (*1 *2 *3) (-12 (-5 *3 (-574)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1286)) (-5 *1 (-459 *4 *5 *6 *7)) (-4 *7 (-960 *4 *5 *6)))) (-2432 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-960 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1286)) (-5 *1 (-459 *4 *5 *6 *7)))) (-3906 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-781)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-803)) (-4 *4 (-960 *5 *6 *7)) (-4 *5 (-462)) (-4 *7 (-860)) (-5 *1 (-459 *5 *6 *7 *4)))) (-1317 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-781)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-803)) (-4 *4 (-960 *5 *6 *7)) (-4 *5 (-462)) (-4 *7 (-860)) (-5 *1 (-459 *5 *6 *7 *4)))) (-1692 (*1 *2 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1286)) (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-960 *4 *5 *6)))) (-4316 (*1 *2 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-574)) (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-960 *4 *5 *6)))) (-3563 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *6)))) (-3580 (*1 *2 *2 *2) (-12 (-5 *2 (-654 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-781)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-803)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-462)) (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *6)))) (-2110 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-803)) (-4 *2 (-960 *4 *5 *6)) (-5 *1 (-459 *4 *5 *6 *2)) (-4 *4 (-462)) (-4 *6 (-860)))) (-1530 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-654 (-2 (|:| |totdeg| (-781)) (|:| -4086 *3)))) (-5 *4 (-781)) (-4 *3 (-960 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-459 *5 *6 *7 *3)))) (-1446 (*1 *2 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *2)) (-4 *2 (-960 *3 *4 *5)))) (-3943 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-960 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-459 *5 *6 *7 *3)))) (-2653 (*1 *2 *3 *2) (-12 (-5 *2 (-654 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-781)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-803)) (-4 *6 (-960 *4 *3 *5)) (-4 *4 (-462)) (-4 *5 (-860)) (-5 *1 (-459 *4 *3 *5 *6)))) (-3173 (*1 *2 *2) (-12 (-5 *2 (-654 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-781)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-803)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-462)) (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *6)))) (-2006 (*1 *2 *3 *2) (-12 (-5 *2 (-654 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-803)) (-4 *3 (-960 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *3)))) (-3585 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-462)) (-4 *3 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-459 *4 *3 *5 *6)) (-4 *6 (-960 *4 *3 *5)))) (-3015 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *3 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-459 *4 *3 *5 *6)) (-4 *6 (-960 *4 *3 *5)))) (-2933 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-803)) (-4 *7 (-960 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-459 *4 *5 *6 *7)))) (-3807 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-574)) (-4 *7 (-960 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *7)))) (-3325 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-960 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *2)))) (-3634 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-960 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *2))))) -(-10 -7 (-15 -3634 (|#4| |#4| (-654 |#4|))) (-15 -3325 (|#4| |#4| (-654 |#4|))) (-15 -3807 ((-654 |#4|) (-654 |#4|) (-574) (-574))) (-15 -2933 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3015 ((-112) |#2| |#2|)) (-15 -3585 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2006 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3173 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2653 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3943 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-654 |#4|))) (-15 -1446 (|#4| |#4|)) (-15 -1530 ((-654 (-2 (|:| |totdeg| (-781)) (|:| -4086 |#4|))) |#4| (-781) (-654 (-2 (|:| |totdeg| (-781)) (|:| -4086 |#4|))))) (-15 -2110 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3580 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3563 ((-654 |#4|) (-654 |#4|))) (-15 -4316 ((-574) |#4|)) (-15 -1692 ((-1286) |#4|)) (-15 -1317 ((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574))) (-15 -3906 ((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574) (-574))) (-15 -2432 ((-1286) (-654 |#4|))) (-15 -2662 ((-1286) (-574))) (-15 -4376 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3750 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-781)) (|:| -4086 |#4|)) |#4| (-781))) (-15 -2899 ((-781) |#4|))) -((-1843 ((|#4| |#4| (-654 |#4|)) 20 (|has| |#1| (-372)))) (-3821 (((-654 |#4|) (-654 |#4|) (-1172) (-1172)) 46) (((-654 |#4|) (-654 |#4|) (-1172)) 45) (((-654 |#4|) (-654 |#4|)) 34))) -(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3821 ((-654 |#4|) (-654 |#4|))) (-15 -3821 ((-654 |#4|) (-654 |#4|) (-1172))) (-15 -3821 ((-654 |#4|) (-654 |#4|) (-1172) (-1172))) (IF (|has| |#1| (-372)) (-15 -1843 (|#4| |#4| (-654 |#4|))) |%noBranch|)) (-462) (-803) (-860) (-960 |#1| |#2| |#3|)) (T -460)) -((-1843 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-960 *4 *5 *6)) (-4 *4 (-372)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-460 *4 *5 *6 *2)))) (-3821 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-1172)) (-4 *7 (-960 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-460 *4 *5 *6 *7)))) (-3821 (*1 *2 *2 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-1172)) (-4 *7 (-960 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-460 *4 *5 *6 *7)))) (-3821 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-460 *3 *4 *5 *6))))) -(-10 -7 (-15 -3821 ((-654 |#4|) (-654 |#4|))) (-15 -3821 ((-654 |#4|) (-654 |#4|) (-1172))) (-15 -3821 ((-654 |#4|) (-654 |#4|) (-1172) (-1172))) (IF (|has| |#1| (-372)) (-15 -1843 (|#4| |#4| (-654 |#4|))) |%noBranch|)) -((-2832 (($ $ $) 14) (($ (-654 $)) 21)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 46)) (-2873 (($ $ $) NIL) (($ (-654 $)) 22))) -(((-461 |#1|) (-10 -8 (-15 -3109 ((-1186 |#1|) (-1186 |#1|) (-1186 |#1|))) (-15 -2832 (|#1| (-654 |#1|))) (-15 -2832 (|#1| |#1| |#1|)) (-15 -2873 (|#1| (-654 |#1|))) (-15 -2873 (|#1| |#1| |#1|))) (-462)) (T -461)) -NIL -(-10 -8 (-15 -3109 ((-1186 |#1|) (-1186 |#1|) (-1186 |#1|))) (-15 -2832 (|#1| (-654 |#1|))) (-15 -2832 (|#1| |#1| |#1|)) (-15 -2873 (|#1| (-654 |#1|))) (-15 -2873 (|#1| |#1| |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-1575 (($ $) 46)) (-2085 (((-112) $) 44)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-3434 (((-3 $ "failed") $) 37)) (-3199 (((-112) $) 35)) (-2832 (($ $ $) 52) (($ (-654 $)) 51)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2873 (($ $ $) 54) (($ (-654 $)) 53)) (-2838 (((-3 $ "failed") $ $) 48)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2069 (((-112) $ $) 45)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) -(((-462) (-141)) (T -462)) -((-2873 (*1 *1 *1 *1) (-4 *1 (-462))) (-2873 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-462)))) (-2832 (*1 *1 *1 *1) (-4 *1 (-462))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-462)))) (-3109 (*1 *2 *2 *2) (-12 (-5 *2 (-1186 *1)) (-4 *1 (-462))))) -(-13 (-566) (-10 -8 (-15 -2873 ($ $ $)) (-15 -2873 ($ (-654 $))) (-15 -2832 ($ $ $)) (-15 -2832 ($ (-654 $))) (-15 -3109 ((-1186 $) (-1186 $) (-1186 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-1064 $) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-2785 (((-3 $ "failed")) NIL (|has| (-417 (-963 |#1|)) (-566)))) (-3524 (((-3 $ "failed") $ $) NIL)) (-2174 (((-1281 (-699 (-417 (-963 |#1|)))) (-1281 $)) NIL) (((-1281 (-699 (-417 (-963 |#1|))))) NIL)) (-4274 (((-1281 $)) NIL)) (-3426 (($) NIL T CONST)) (-1666 (((-3 (-2 (|:| |particular| $) (|:| -1882 (-654 $))) "failed")) NIL)) (-1854 (((-3 $ "failed")) NIL (|has| (-417 (-963 |#1|)) (-566)))) (-2301 (((-699 (-417 (-963 |#1|))) (-1281 $)) NIL) (((-699 (-417 (-963 |#1|)))) NIL)) (-2538 (((-417 (-963 |#1|)) $) NIL)) (-3208 (((-699 (-417 (-963 |#1|))) $ (-1281 $)) NIL) (((-699 (-417 (-963 |#1|))) $) NIL)) (-2784 (((-3 $ "failed") $) NIL (|has| (-417 (-963 |#1|)) (-566)))) (-2378 (((-1186 (-963 (-417 (-963 |#1|))))) NIL (|has| (-417 (-963 |#1|)) (-372))) (((-1186 (-417 (-963 |#1|)))) 90 (|has| |#1| (-566)))) (-2397 (($ $ (-932)) NIL)) (-3870 (((-417 (-963 |#1|)) $) NIL)) (-3664 (((-1186 (-417 (-963 |#1|))) $) 88 (|has| (-417 (-963 |#1|)) (-566)))) (-1565 (((-417 (-963 |#1|)) (-1281 $)) NIL) (((-417 (-963 |#1|))) NIL)) (-1436 (((-1186 (-417 (-963 |#1|))) $) NIL)) (-3287 (((-112)) NIL)) (-2737 (($ (-1281 (-417 (-963 |#1|))) (-1281 $)) 114) (($ (-1281 (-417 (-963 |#1|)))) NIL)) (-3434 (((-3 $ "failed") $) NIL (|has| (-417 (-963 |#1|)) (-566)))) (-3584 (((-932)) NIL)) (-2542 (((-112)) NIL)) (-2817 (($ $ (-932)) NIL)) (-1514 (((-112)) NIL)) (-3168 (((-112)) NIL)) (-3531 (((-112)) NIL)) (-2269 (((-3 (-2 (|:| |particular| $) (|:| -1882 (-654 $))) "failed")) NIL)) (-1484 (((-3 $ "failed")) NIL (|has| (-417 (-963 |#1|)) (-566)))) (-2284 (((-699 (-417 (-963 |#1|))) (-1281 $)) NIL) (((-699 (-417 (-963 |#1|)))) NIL)) (-1450 (((-417 (-963 |#1|)) $) NIL)) (-2787 (((-699 (-417 (-963 |#1|))) $ (-1281 $)) NIL) (((-699 (-417 (-963 |#1|))) $) NIL)) (-4271 (((-3 $ "failed") $) NIL (|has| (-417 (-963 |#1|)) (-566)))) (-1451 (((-1186 (-963 (-417 (-963 |#1|))))) NIL (|has| (-417 (-963 |#1|)) (-372))) (((-1186 (-417 (-963 |#1|)))) 89 (|has| |#1| (-566)))) (-2422 (($ $ (-932)) NIL)) (-2552 (((-417 (-963 |#1|)) $) NIL)) (-1460 (((-1186 (-417 (-963 |#1|))) $) 85 (|has| (-417 (-963 |#1|)) (-566)))) (-1810 (((-417 (-963 |#1|)) (-1281 $)) NIL) (((-417 (-963 |#1|))) NIL)) (-1943 (((-1186 (-417 (-963 |#1|))) $) NIL)) (-4037 (((-112)) NIL)) (-4136 (((-1172) $) NIL)) (-1342 (((-112)) NIL)) (-3227 (((-112)) NIL)) (-2949 (((-112)) NIL)) (-3966 (((-1133) $) NIL)) (-2445 (((-417 (-963 |#1|)) $ $) 76 (|has| |#1| (-566)))) (-3330 (((-417 (-963 |#1|)) $) 100 (|has| |#1| (-566)))) (-4027 (((-417 (-963 |#1|)) $) 104 (|has| |#1| (-566)))) (-3267 (((-1186 (-417 (-963 |#1|))) $) 94 (|has| |#1| (-566)))) (-4401 (((-417 (-963 |#1|))) 77 (|has| |#1| (-566)))) (-4393 (((-417 (-963 |#1|)) $ $) 69 (|has| |#1| (-566)))) (-3133 (((-417 (-963 |#1|)) $) 99 (|has| |#1| (-566)))) (-3533 (((-417 (-963 |#1|)) $) 103 (|has| |#1| (-566)))) (-3481 (((-1186 (-417 (-963 |#1|))) $) 93 (|has| |#1| (-566)))) (-3021 (((-417 (-963 |#1|))) 73 (|has| |#1| (-566)))) (-3194 (($) 110) (($ (-1190)) 118) (($ (-1281 (-1190))) 117) (($ (-1281 $)) 105) (($ (-1190) (-1281 $)) 116) (($ (-1281 (-1190)) (-1281 $)) 115)) (-3604 (((-112)) NIL)) (-2199 (((-417 (-963 |#1|)) $ (-574)) NIL)) (-3487 (((-1281 (-417 (-963 |#1|))) $ (-1281 $)) 107) (((-699 (-417 (-963 |#1|))) (-1281 $) (-1281 $)) NIL) (((-1281 (-417 (-963 |#1|))) $) 43) (((-699 (-417 (-963 |#1|))) (-1281 $)) NIL)) (-1836 (((-1281 (-417 (-963 |#1|))) $) NIL) (($ (-1281 (-417 (-963 |#1|)))) 40)) (-3760 (((-654 (-963 (-417 (-963 |#1|)))) (-1281 $)) NIL) (((-654 (-963 (-417 (-963 |#1|))))) NIL) (((-654 (-963 |#1|)) (-1281 $)) 108 (|has| |#1| (-566))) (((-654 (-963 |#1|))) 109 (|has| |#1| (-566)))) (-3204 (($ $ $) NIL)) (-3163 (((-112)) NIL)) (-2943 (((-872) $) NIL) (($ (-1281 (-417 (-963 |#1|)))) NIL)) (-3284 (((-112) $ $) NIL)) (-1882 (((-1281 $)) 65)) (-2735 (((-654 (-1281 (-417 (-963 |#1|))))) NIL (|has| (-417 (-963 |#1|)) (-566)))) (-1320 (($ $ $ $) NIL)) (-2525 (((-112)) NIL)) (-2901 (($ (-699 (-417 (-963 |#1|))) $) NIL)) (-2299 (($ $ $) NIL)) (-3971 (((-112)) NIL)) (-3545 (((-112)) NIL)) (-1950 (((-112)) NIL)) (-2133 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) 106)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 61) (($ $ (-417 (-963 |#1|))) NIL) (($ (-417 (-963 |#1|)) $) NIL) (($ (-1155 |#2| (-417 (-963 |#1|))) $) NIL))) -(((-463 |#1| |#2| |#3| |#4|) (-13 (-427 (-417 (-963 |#1|))) (-658 (-1155 |#2| (-417 (-963 |#1|)))) (-10 -8 (-15 -2943 ($ (-1281 (-417 (-963 |#1|))))) (-15 -2269 ((-3 (-2 (|:| |particular| $) (|:| -1882 (-654 $))) "failed"))) (-15 -1666 ((-3 (-2 (|:| |particular| $) (|:| -1882 (-654 $))) "failed"))) (-15 -3194 ($)) (-15 -3194 ($ (-1190))) (-15 -3194 ($ (-1281 (-1190)))) (-15 -3194 ($ (-1281 $))) (-15 -3194 ($ (-1190) (-1281 $))) (-15 -3194 ($ (-1281 (-1190)) (-1281 $))) (IF (|has| |#1| (-566)) (PROGN (-15 -1451 ((-1186 (-417 (-963 |#1|))))) (-15 -3481 ((-1186 (-417 (-963 |#1|))) $)) (-15 -3133 ((-417 (-963 |#1|)) $)) (-15 -3533 ((-417 (-963 |#1|)) $)) (-15 -2378 ((-1186 (-417 (-963 |#1|))))) (-15 -3267 ((-1186 (-417 (-963 |#1|))) $)) (-15 -3330 ((-417 (-963 |#1|)) $)) (-15 -4027 ((-417 (-963 |#1|)) $)) (-15 -4393 ((-417 (-963 |#1|)) $ $)) (-15 -3021 ((-417 (-963 |#1|)))) (-15 -2445 ((-417 (-963 |#1|)) $ $)) (-15 -4401 ((-417 (-963 |#1|)))) (-15 -3760 ((-654 (-963 |#1|)) (-1281 $))) (-15 -3760 ((-654 (-963 |#1|))))) |%noBranch|))) (-174) (-932) (-654 (-1190)) (-1281 (-699 |#1|))) (T -463)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-1281 (-417 (-963 *3)))) (-4 *3 (-174)) (-14 *6 (-1281 (-699 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))))) (-2269 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-463 *3 *4 *5 *6)) (|:| -1882 (-654 (-463 *3 *4 *5 *6))))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-1666 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-463 *3 *4 *5 *6)) (|:| -1882 (-654 (-463 *3 *4 *5 *6))))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-3194 (*1 *1) (-12 (-5 *1 (-463 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-932)) (-14 *4 (-654 (-1190))) (-14 *5 (-1281 (-699 *2))))) (-3194 (*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 *2)) (-14 *6 (-1281 (-699 *3))))) (-3194 (*1 *1 *2) (-12 (-5 *2 (-1281 (-1190))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-3194 (*1 *1 *2) (-12 (-5 *2 (-1281 (-463 *3 *4 *5 *6))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-3194 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-463 *4 *5 *6 *7))) (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-932)) (-14 *6 (-654 *2)) (-14 *7 (-1281 (-699 *4))))) (-3194 (*1 *1 *2 *3) (-12 (-5 *2 (-1281 (-1190))) (-5 *3 (-1281 (-463 *4 *5 *6 *7))) (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-932)) (-14 *6 (-654 (-1190))) (-14 *7 (-1281 (-699 *4))))) (-1451 (*1 *2) (-12 (-5 *2 (-1186 (-417 (-963 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-3481 (*1 *2 *1) (-12 (-5 *2 (-1186 (-417 (-963 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-3133 (*1 *2 *1) (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-3533 (*1 *2 *1) (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-2378 (*1 *2) (-12 (-5 *2 (-1186 (-417 (-963 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-3267 (*1 *2 *1) (-12 (-5 *2 (-1186 (-417 (-963 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-3330 (*1 *2 *1) (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-4027 (*1 *2 *1) (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-4393 (*1 *2 *1 *1) (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-3021 (*1 *2) (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-2445 (*1 *2 *1 *1) (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-4401 (*1 *2) (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) (-3760 (*1 *2 *3) (-12 (-5 *3 (-1281 (-463 *4 *5 *6 *7))) (-5 *2 (-654 (-963 *4))) (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-566)) (-4 *4 (-174)) (-14 *5 (-932)) (-14 *6 (-654 (-1190))) (-14 *7 (-1281 (-699 *4))))) (-3760 (*1 *2) (-12 (-5 *2 (-654 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3)))))) -(-13 (-427 (-417 (-963 |#1|))) (-658 (-1155 |#2| (-417 (-963 |#1|)))) (-10 -8 (-15 -2943 ($ (-1281 (-417 (-963 |#1|))))) (-15 -2269 ((-3 (-2 (|:| |particular| $) (|:| -1882 (-654 $))) "failed"))) (-15 -1666 ((-3 (-2 (|:| |particular| $) (|:| -1882 (-654 $))) "failed"))) (-15 -3194 ($)) (-15 -3194 ($ (-1190))) (-15 -3194 ($ (-1281 (-1190)))) (-15 -3194 ($ (-1281 $))) (-15 -3194 ($ (-1190) (-1281 $))) (-15 -3194 ($ (-1281 (-1190)) (-1281 $))) (IF (|has| |#1| (-566)) (PROGN (-15 -1451 ((-1186 (-417 (-963 |#1|))))) (-15 -3481 ((-1186 (-417 (-963 |#1|))) $)) (-15 -3133 ((-417 (-963 |#1|)) $)) (-15 -3533 ((-417 (-963 |#1|)) $)) (-15 -2378 ((-1186 (-417 (-963 |#1|))))) (-15 -3267 ((-1186 (-417 (-963 |#1|))) $)) (-15 -3330 ((-417 (-963 |#1|)) $)) (-15 -4027 ((-417 (-963 |#1|)) $)) (-15 -4393 ((-417 (-963 |#1|)) $ $)) (-15 -3021 ((-417 (-963 |#1|)))) (-15 -2445 ((-417 (-963 |#1|)) $ $)) (-15 -4401 ((-417 (-963 |#1|)))) (-15 -3760 ((-654 (-963 |#1|)) (-1281 $))) (-15 -3760 ((-654 (-963 |#1|))))) |%noBranch|))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 18)) (-4355 (((-654 (-874 |#1|)) $) 87)) (-4194 (((-1186 $) $ (-874 |#1|)) 52) (((-1186 |#2|) $) 138)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#2| (-566)))) (-1575 (($ $) NIL (|has| |#2| (-566)))) (-2085 (((-112) $) NIL (|has| |#2| (-566)))) (-1757 (((-781) $) 27) (((-781) $ (-654 (-874 |#1|))) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3972 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-2568 (($ $) NIL (|has| |#2| (-462)))) (-2827 (((-428 $) $) NIL (|has| |#2| (-462)))) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#2| "failed") $) 50) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1051 (-574)))) (((-3 (-874 |#1|) "failed") $) NIL)) (-2206 ((|#2| $) 48) (((-417 (-574)) $) NIL (|has| |#2| (-1051 (-417 (-574))))) (((-574) $) NIL (|has| |#2| (-1051 (-574)))) (((-874 |#1|) $) NIL)) (-1463 (($ $ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3392 (($ $ (-654 (-574))) 93)) (-1392 (($ $) 80)) (-2590 (((-699 (-574)) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1281 $)) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-1569 (($ $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1380 (((-654 $) $) NIL)) (-2257 (((-112) $) NIL (|has| |#2| (-920)))) (-1661 (($ $ |#2| |#3| $) NIL)) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-3199 (((-112) $) NIL)) (-1322 (((-781) $) 65)) (-4345 (($ (-1186 |#2|) (-874 |#1|)) 143) (($ (-1186 $) (-874 |#1|)) 58)) (-3727 (((-654 $) $) NIL)) (-3869 (((-112) $) 68)) (-4335 (($ |#2| |#3|) 35) (($ $ (-874 |#1|) (-781)) 37) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2773 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $ (-874 |#1|)) NIL)) (-1742 ((|#3| $) NIL) (((-781) $ (-874 |#1|)) 56) (((-654 (-781)) $ (-654 (-874 |#1|))) 63)) (-3708 (($ (-1 |#3| |#3|) $) NIL)) (-1777 (($ (-1 |#2| |#2|) $) NIL)) (-2717 (((-3 (-874 |#1|) "failed") $) 45)) (-1359 (($ $) NIL)) (-1370 ((|#2| $) 47)) (-2832 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-4136 (((-1172) $) NIL)) (-2755 (((-3 (-654 $) "failed") $) NIL)) (-2415 (((-3 (-654 $) "failed") $) NIL)) (-2241 (((-3 (-2 (|:| |var| (-874 |#1|)) (|:| -3715 (-781))) "failed") $) NIL)) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) 46)) (-1349 ((|#2| $) 136)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#2| (-462)))) (-2873 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) 149 (|has| |#2| (-462)))) (-2560 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-2039 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-4220 (((-428 $) $) NIL (|has| |#2| (-920)))) (-2838 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-566)))) (-2646 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-874 |#1|) |#2|) 100) (($ $ (-654 (-874 |#1|)) (-654 |#2|)) 106) (($ $ (-874 |#1|) $) 98) (($ $ (-654 (-874 |#1|)) (-654 $)) 124)) (-2872 (($ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3905 (($ $ (-874 |#1|)) 59) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-4202 ((|#3| $) 79) (((-781) $ (-874 |#1|)) 42) (((-654 (-781)) $ (-654 (-874 |#1|))) 62)) (-1836 (((-903 (-388)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-874 |#1|) (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-3069 ((|#2| $) 145 (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-920))))) (-2943 (((-872) $) 174) (($ (-574)) NIL) (($ |#2|) 99) (($ (-874 |#1|)) 39) (($ (-417 (-574))) NIL (-2818 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1051 (-417 (-574)))))) (($ $) NIL (|has| |#2| (-566)))) (-2530 (((-654 |#2|) $) NIL)) (-3087 ((|#2| $ |#3|) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-3298 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#2| (-920))) (|has| |#2| (-146))))) (-1364 (((-781)) NIL T CONST)) (-3772 (($ $ $ (-781)) NIL (|has| |#2| (-174)))) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL (|has| |#2| (-566)))) (-2133 (($) 22 T CONST)) (-2145 (($) 31 T CONST)) (-3610 (($ $ (-874 |#1|)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ |#2|) 76 (|has| |#2| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) 131)) (** (($ $ (-932)) NIL) (($ $ (-781)) 129)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 36) (($ $ (-417 (-574))) NIL (|has| |#2| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#2| (-38 (-417 (-574))))) (($ |#2| $) 75) (($ $ |#2|) NIL))) -(((-464 |#1| |#2| |#3|) (-13 (-960 |#2| |#3| (-874 |#1|)) (-10 -8 (-15 -3392 ($ $ (-654 (-574)))))) (-654 (-1190)) (-1062) (-244 (-2863 |#1|) (-781))) (T -464)) -((-3392 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-14 *3 (-654 (-1190))) (-5 *1 (-464 *3 *4 *5)) (-4 *4 (-1062)) (-4 *5 (-244 (-2863 *3) (-781)))))) -(-13 (-960 |#2| |#3| (-874 |#1|)) (-10 -8 (-15 -3392 ($ $ (-654 (-574)))))) -((-4020 (((-112) |#1| (-654 |#2|)) 91)) (-2764 (((-3 (-1281 (-654 |#2|)) "failed") (-781) |#1| (-654 |#2|)) 100)) (-1857 (((-3 (-654 |#2|) "failed") |#2| |#1| (-1281 (-654 |#2|))) 102)) (-2666 ((|#2| |#2| |#1|) 35)) (-3457 (((-781) |#2| (-654 |#2|)) 26))) -(((-465 |#1| |#2|) (-10 -7 (-15 -2666 (|#2| |#2| |#1|)) (-15 -3457 ((-781) |#2| (-654 |#2|))) (-15 -2764 ((-3 (-1281 (-654 |#2|)) "failed") (-781) |#1| (-654 |#2|))) (-15 -1857 ((-3 (-654 |#2|) "failed") |#2| |#1| (-1281 (-654 |#2|)))) (-15 -4020 ((-112) |#1| (-654 |#2|)))) (-315) (-1257 |#1|)) (T -465)) -((-4020 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *5)) (-4 *5 (-1257 *3)) (-4 *3 (-315)) (-5 *2 (-112)) (-5 *1 (-465 *3 *5)))) (-1857 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1281 (-654 *3))) (-4 *4 (-315)) (-5 *2 (-654 *3)) (-5 *1 (-465 *4 *3)) (-4 *3 (-1257 *4)))) (-2764 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-781)) (-4 *4 (-315)) (-4 *6 (-1257 *4)) (-5 *2 (-1281 (-654 *6))) (-5 *1 (-465 *4 *6)) (-5 *5 (-654 *6)))) (-3457 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-1257 *5)) (-4 *5 (-315)) (-5 *2 (-781)) (-5 *1 (-465 *5 *3)))) (-2666 (*1 *2 *2 *3) (-12 (-4 *3 (-315)) (-5 *1 (-465 *3 *2)) (-4 *2 (-1257 *3))))) -(-10 -7 (-15 -2666 (|#2| |#2| |#1|)) (-15 -3457 ((-781) |#2| (-654 |#2|))) (-15 -2764 ((-3 (-1281 (-654 |#2|)) "failed") (-781) |#1| (-654 |#2|))) (-15 -1857 ((-3 (-654 |#2|) "failed") |#2| |#1| (-1281 (-654 |#2|)))) (-15 -4020 ((-112) |#1| (-654 |#2|)))) -((-4220 (((-428 |#5|) |#5|) 24))) -(((-466 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4220 ((-428 |#5|) |#5|))) (-13 (-860) (-10 -8 (-15 -1836 ((-1190) $)) (-15 -1488 ((-3 $ "failed") (-1190))))) (-803) (-566) (-566) (-960 |#4| |#2| |#1|)) (T -466)) -((-4220 (*1 *2 *3) (-12 (-4 *4 (-13 (-860) (-10 -8 (-15 -1836 ((-1190) $)) (-15 -1488 ((-3 $ "failed") (-1190)))))) (-4 *5 (-803)) (-4 *7 (-566)) (-5 *2 (-428 *3)) (-5 *1 (-466 *4 *5 *6 *7 *3)) (-4 *6 (-566)) (-4 *3 (-960 *7 *5 *4))))) -(-10 -7 (-15 -4220 ((-428 |#5|) |#5|))) -((-1667 ((|#3|) 38)) (-3109 (((-1186 |#4|) (-1186 |#4|) (-1186 |#4|)) 34))) -(((-467 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3109 ((-1186 |#4|) (-1186 |#4|) (-1186 |#4|))) (-15 -1667 (|#3|))) (-803) (-860) (-920) (-960 |#3| |#1| |#2|)) (T -467)) -((-1667 (*1 *2) (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-920)) (-5 *1 (-467 *3 *4 *2 *5)) (-4 *5 (-960 *2 *3 *4)))) (-3109 (*1 *2 *2 *2) (-12 (-5 *2 (-1186 *6)) (-4 *6 (-960 *5 *3 *4)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-920)) (-5 *1 (-467 *3 *4 *5 *6))))) -(-10 -7 (-15 -3109 ((-1186 |#4|) (-1186 |#4|) (-1186 |#4|))) (-15 -1667 (|#3|))) -((-4220 (((-428 (-1186 |#1|)) (-1186 |#1|)) 43))) -(((-468 |#1|) (-10 -7 (-15 -4220 ((-428 (-1186 |#1|)) (-1186 |#1|)))) (-315)) (T -468)) -((-4220 (*1 *2 *3) (-12 (-4 *4 (-315)) (-5 *2 (-428 (-1186 *4))) (-5 *1 (-468 *4)) (-5 *3 (-1186 *4))))) -(-10 -7 (-15 -4220 ((-428 (-1186 |#1|)) (-1186 |#1|)))) -((-4402 (((-52) |#2| (-1190) (-302 |#2|) (-1248 (-781))) 44) (((-52) (-1 |#2| (-574)) (-302 |#2|) (-1248 (-781))) 43) (((-52) |#2| (-1190) (-302 |#2|)) 36) (((-52) (-1 |#2| (-574)) (-302 |#2|)) 29)) (-3623 (((-52) |#2| (-1190) (-302 |#2|) (-1248 (-417 (-574))) (-417 (-574))) 88) (((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1248 (-417 (-574))) (-417 (-574))) 87) (((-52) |#2| (-1190) (-302 |#2|) (-1248 (-574))) 86) (((-52) (-1 |#2| (-574)) (-302 |#2|) (-1248 (-574))) 85) (((-52) |#2| (-1190) (-302 |#2|)) 80) (((-52) (-1 |#2| (-574)) (-302 |#2|)) 79)) (-4424 (((-52) |#2| (-1190) (-302 |#2|) (-1248 (-417 (-574))) (-417 (-574))) 74) (((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1248 (-417 (-574))) (-417 (-574))) 72)) (-4413 (((-52) |#2| (-1190) (-302 |#2|) (-1248 (-574))) 51) (((-52) (-1 |#2| (-574)) (-302 |#2|) (-1248 (-574))) 50))) -(((-469 |#1| |#2|) (-10 -7 (-15 -4402 ((-52) (-1 |#2| (-574)) (-302 |#2|))) (-15 -4402 ((-52) |#2| (-1190) (-302 |#2|))) (-15 -4402 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1248 (-781)))) (-15 -4402 ((-52) |#2| (-1190) (-302 |#2|) (-1248 (-781)))) (-15 -4413 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1248 (-574)))) (-15 -4413 ((-52) |#2| (-1190) (-302 |#2|) (-1248 (-574)))) (-15 -4424 ((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1248 (-417 (-574))) (-417 (-574)))) (-15 -4424 ((-52) |#2| (-1190) (-302 |#2|) (-1248 (-417 (-574))) (-417 (-574)))) (-15 -3623 ((-52) (-1 |#2| (-574)) (-302 |#2|))) (-15 -3623 ((-52) |#2| (-1190) (-302 |#2|))) (-15 -3623 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1248 (-574)))) (-15 -3623 ((-52) |#2| (-1190) (-302 |#2|) (-1248 (-574)))) (-15 -3623 ((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1248 (-417 (-574))) (-417 (-574)))) (-15 -3623 ((-52) |#2| (-1190) (-302 |#2|) (-1248 (-417 (-574))) (-417 (-574))))) (-13 (-566) (-1051 (-574)) (-649 (-574))) (-13 (-27) (-1216) (-440 |#1|))) (T -469)) -((-3623 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1190)) (-5 *5 (-302 *3)) (-5 *6 (-1248 (-417 (-574)))) (-5 *7 (-417 (-574))) (-4 *3 (-13 (-27) (-1216) (-440 *8))) (-4 *8 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *8 *3)))) (-3623 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-417 (-574)))) (-5 *4 (-302 *8)) (-5 *5 (-1248 (-417 (-574)))) (-5 *6 (-417 (-574))) (-4 *8 (-13 (-27) (-1216) (-440 *7))) (-4 *7 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *8)))) (-3623 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1190)) (-5 *5 (-302 *3)) (-5 *6 (-1248 (-574))) (-4 *3 (-13 (-27) (-1216) (-440 *7))) (-4 *7 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *3)))) (-3623 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1248 (-574))) (-4 *7 (-13 (-27) (-1216) (-440 *6))) (-4 *6 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *7)))) (-3623 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1190)) (-5 *5 (-302 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *6))) (-4 *6 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *3)))) (-3623 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-574))) (-5 *4 (-302 *6)) (-4 *6 (-13 (-27) (-1216) (-440 *5))) (-4 *5 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *5 *6)))) (-4424 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1190)) (-5 *5 (-302 *3)) (-5 *6 (-1248 (-417 (-574)))) (-5 *7 (-417 (-574))) (-4 *3 (-13 (-27) (-1216) (-440 *8))) (-4 *8 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *8 *3)))) (-4424 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-417 (-574)))) (-5 *4 (-302 *8)) (-5 *5 (-1248 (-417 (-574)))) (-5 *6 (-417 (-574))) (-4 *8 (-13 (-27) (-1216) (-440 *7))) (-4 *7 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *8)))) (-4413 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1190)) (-5 *5 (-302 *3)) (-5 *6 (-1248 (-574))) (-4 *3 (-13 (-27) (-1216) (-440 *7))) (-4 *7 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *3)))) (-4413 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1248 (-574))) (-4 *7 (-13 (-27) (-1216) (-440 *6))) (-4 *6 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *7)))) (-4402 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1190)) (-5 *5 (-302 *3)) (-5 *6 (-1248 (-781))) (-4 *3 (-13 (-27) (-1216) (-440 *7))) (-4 *7 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *3)))) (-4402 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1248 (-781))) (-4 *7 (-13 (-27) (-1216) (-440 *6))) (-4 *6 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *7)))) (-4402 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1190)) (-5 *5 (-302 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *6))) (-4 *6 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *3)))) (-4402 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-574))) (-5 *4 (-302 *6)) (-4 *6 (-13 (-27) (-1216) (-440 *5))) (-4 *5 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *5 *6))))) -(-10 -7 (-15 -4402 ((-52) (-1 |#2| (-574)) (-302 |#2|))) (-15 -4402 ((-52) |#2| (-1190) (-302 |#2|))) (-15 -4402 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1248 (-781)))) (-15 -4402 ((-52) |#2| (-1190) (-302 |#2|) (-1248 (-781)))) (-15 -4413 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1248 (-574)))) (-15 -4413 ((-52) |#2| (-1190) (-302 |#2|) (-1248 (-574)))) (-15 -4424 ((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1248 (-417 (-574))) (-417 (-574)))) (-15 -4424 ((-52) |#2| (-1190) (-302 |#2|) (-1248 (-417 (-574))) (-417 (-574)))) (-15 -3623 ((-52) (-1 |#2| (-574)) (-302 |#2|))) (-15 -3623 ((-52) |#2| (-1190) (-302 |#2|))) (-15 -3623 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1248 (-574)))) (-15 -3623 ((-52) |#2| (-1190) (-302 |#2|) (-1248 (-574)))) (-15 -3623 ((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1248 (-417 (-574))) (-417 (-574)))) (-15 -3623 ((-52) |#2| (-1190) (-302 |#2|) (-1248 (-417 (-574))) (-417 (-574))))) -((-2666 ((|#2| |#2| |#1|) 15)) (-2647 (((-654 |#2|) |#2| (-654 |#2|) |#1| (-932)) 82)) (-2718 (((-2 (|:| |plist| (-654 |#2|)) (|:| |modulo| |#1|)) |#2| (-654 |#2|) |#1| (-932)) 72))) -(((-470 |#1| |#2|) (-10 -7 (-15 -2718 ((-2 (|:| |plist| (-654 |#2|)) (|:| |modulo| |#1|)) |#2| (-654 |#2|) |#1| (-932))) (-15 -2647 ((-654 |#2|) |#2| (-654 |#2|) |#1| (-932))) (-15 -2666 (|#2| |#2| |#1|))) (-315) (-1257 |#1|)) (T -470)) -((-2666 (*1 *2 *2 *3) (-12 (-4 *3 (-315)) (-5 *1 (-470 *3 *2)) (-4 *2 (-1257 *3)))) (-2647 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-654 *3)) (-5 *5 (-932)) (-4 *3 (-1257 *4)) (-4 *4 (-315)) (-5 *1 (-470 *4 *3)))) (-2718 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-932)) (-4 *5 (-315)) (-4 *3 (-1257 *5)) (-5 *2 (-2 (|:| |plist| (-654 *3)) (|:| |modulo| *5))) (-5 *1 (-470 *5 *3)) (-5 *4 (-654 *3))))) -(-10 -7 (-15 -2718 ((-2 (|:| |plist| (-654 |#2|)) (|:| |modulo| |#1|)) |#2| (-654 |#2|) |#1| (-932))) (-15 -2647 ((-654 |#2|) |#2| (-654 |#2|) |#1| (-932))) (-15 -2666 (|#2| |#2| |#1|))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 28)) (-3745 (($ |#3|) 25)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-1392 (($ $) 32)) (-2221 (($ |#2| |#4| $) 33)) (-4335 (($ |#2| (-723 |#3| |#4| |#5|)) 24)) (-1359 (((-723 |#3| |#4| |#5|) $) 15)) (-3775 ((|#3| $) 19)) (-4200 ((|#4| $) 17)) (-1370 ((|#2| $) 29)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-2130 (($ |#2| |#3| |#4|) 26)) (-3284 (((-112) $ $) NIL)) (-2133 (($) 36 T CONST)) (-2981 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) 34)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-471 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-727 |#6|) (-727 |#2|) (-10 -8 (-15 -1370 (|#2| $)) (-15 -1359 ((-723 |#3| |#4| |#5|) $)) (-15 -4200 (|#4| $)) (-15 -3775 (|#3| $)) (-15 -1392 ($ $)) (-15 -4335 ($ |#2| (-723 |#3| |#4| |#5|))) (-15 -3745 ($ |#3|)) (-15 -2130 ($ |#2| |#3| |#4|)) (-15 -2221 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-654 (-1190)) (-174) (-860) (-244 (-2863 |#1|) (-781)) (-1 (-112) (-2 (|:| -2576 |#3|) (|:| -3715 |#4|)) (-2 (|:| -2576 |#3|) (|:| -3715 |#4|))) (-960 |#2| |#4| (-874 |#1|))) (T -471)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-654 (-1190))) (-4 *4 (-174)) (-4 *6 (-244 (-2863 *3) (-781))) (-14 *7 (-1 (-112) (-2 (|:| -2576 *5) (|:| -3715 *6)) (-2 (|:| -2576 *5) (|:| -3715 *6)))) (-5 *1 (-471 *3 *4 *5 *6 *7 *2)) (-4 *5 (-860)) (-4 *2 (-960 *4 *6 (-874 *3))))) (-1370 (*1 *2 *1) (-12 (-14 *3 (-654 (-1190))) (-4 *5 (-244 (-2863 *3) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2576 *4) (|:| -3715 *5)) (-2 (|:| -2576 *4) (|:| -3715 *5)))) (-4 *2 (-174)) (-5 *1 (-471 *3 *2 *4 *5 *6 *7)) (-4 *4 (-860)) (-4 *7 (-960 *2 *5 (-874 *3))))) (-1359 (*1 *2 *1) (-12 (-14 *3 (-654 (-1190))) (-4 *4 (-174)) (-4 *6 (-244 (-2863 *3) (-781))) (-14 *7 (-1 (-112) (-2 (|:| -2576 *5) (|:| -3715 *6)) (-2 (|:| -2576 *5) (|:| -3715 *6)))) (-5 *2 (-723 *5 *6 *7)) (-5 *1 (-471 *3 *4 *5 *6 *7 *8)) (-4 *5 (-860)) (-4 *8 (-960 *4 *6 (-874 *3))))) (-4200 (*1 *2 *1) (-12 (-14 *3 (-654 (-1190))) (-4 *4 (-174)) (-14 *6 (-1 (-112) (-2 (|:| -2576 *5) (|:| -3715 *2)) (-2 (|:| -2576 *5) (|:| -3715 *2)))) (-4 *2 (-244 (-2863 *3) (-781))) (-5 *1 (-471 *3 *4 *5 *2 *6 *7)) (-4 *5 (-860)) (-4 *7 (-960 *4 *2 (-874 *3))))) (-3775 (*1 *2 *1) (-12 (-14 *3 (-654 (-1190))) (-4 *4 (-174)) (-4 *5 (-244 (-2863 *3) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2576 *2) (|:| -3715 *5)) (-2 (|:| -2576 *2) (|:| -3715 *5)))) (-4 *2 (-860)) (-5 *1 (-471 *3 *4 *2 *5 *6 *7)) (-4 *7 (-960 *4 *5 (-874 *3))))) (-1392 (*1 *1 *1) (-12 (-14 *2 (-654 (-1190))) (-4 *3 (-174)) (-4 *5 (-244 (-2863 *2) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2576 *4) (|:| -3715 *5)) (-2 (|:| -2576 *4) (|:| -3715 *5)))) (-5 *1 (-471 *2 *3 *4 *5 *6 *7)) (-4 *4 (-860)) (-4 *7 (-960 *3 *5 (-874 *2))))) (-4335 (*1 *1 *2 *3) (-12 (-5 *3 (-723 *5 *6 *7)) (-4 *5 (-860)) (-4 *6 (-244 (-2863 *4) (-781))) (-14 *7 (-1 (-112) (-2 (|:| -2576 *5) (|:| -3715 *6)) (-2 (|:| -2576 *5) (|:| -3715 *6)))) (-14 *4 (-654 (-1190))) (-4 *2 (-174)) (-5 *1 (-471 *4 *2 *5 *6 *7 *8)) (-4 *8 (-960 *2 *6 (-874 *4))))) (-3745 (*1 *1 *2) (-12 (-14 *3 (-654 (-1190))) (-4 *4 (-174)) (-4 *5 (-244 (-2863 *3) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2576 *2) (|:| -3715 *5)) (-2 (|:| -2576 *2) (|:| -3715 *5)))) (-5 *1 (-471 *3 *4 *2 *5 *6 *7)) (-4 *2 (-860)) (-4 *7 (-960 *4 *5 (-874 *3))))) (-2130 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-654 (-1190))) (-4 *2 (-174)) (-4 *4 (-244 (-2863 *5) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2576 *3) (|:| -3715 *4)) (-2 (|:| -2576 *3) (|:| -3715 *4)))) (-5 *1 (-471 *5 *2 *3 *4 *6 *7)) (-4 *3 (-860)) (-4 *7 (-960 *2 *4 (-874 *5))))) (-2221 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-654 (-1190))) (-4 *2 (-174)) (-4 *3 (-244 (-2863 *4) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2576 *5) (|:| -3715 *3)) (-2 (|:| -2576 *5) (|:| -3715 *3)))) (-5 *1 (-471 *4 *2 *5 *3 *6 *7)) (-4 *5 (-860)) (-4 *7 (-960 *2 *3 (-874 *4)))))) -(-13 (-727 |#6|) (-727 |#2|) (-10 -8 (-15 -1370 (|#2| $)) (-15 -1359 ((-723 |#3| |#4| |#5|) $)) (-15 -4200 (|#4| $)) (-15 -3775 (|#3| $)) (-15 -1392 ($ $)) (-15 -4335 ($ |#2| (-723 |#3| |#4| |#5|))) (-15 -3745 ($ |#3|)) (-15 -2130 ($ |#2| |#3| |#4|)) (-15 -2221 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-1659 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) -(((-472 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1659 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-803) (-860) (-566) (-960 |#3| |#1| |#2|) (-13 (-1051 (-417 (-574))) (-372) (-10 -8 (-15 -2943 ($ |#4|)) (-15 -2966 (|#4| $)) (-15 -2977 (|#4| $))))) (T -472)) -((-1659 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-860)) (-4 *5 (-803)) (-4 *6 (-566)) (-4 *7 (-960 *6 *5 *3)) (-5 *1 (-472 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1051 (-417 (-574))) (-372) (-10 -8 (-15 -2943 ($ *7)) (-15 -2966 (*7 $)) (-15 -2977 (*7 $)))))))) -(-10 -7 (-15 -1659 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-2849 (((-112) $ $) NIL)) (-4355 (((-654 |#3|) $) 41)) (-2907 (((-112) $) NIL)) (-4018 (((-112) $) NIL (|has| |#1| (-566)))) (-2771 (((-2 (|:| |under| $) (|:| -3595 $) (|:| |upper| $)) $ |#3|) NIL)) (-3034 (((-112) $ (-781)) NIL)) (-2165 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-3426 (($) NIL T CONST)) (-4336 (((-112) $) NIL (|has| |#1| (-566)))) (-1547 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2318 (((-112) $ $) NIL (|has| |#1| (-566)))) (-1792 (((-112) $) NIL (|has| |#1| (-566)))) (-3025 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1974 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1696 (((-3 $ "failed") (-654 |#4|)) 49)) (-2206 (($ (-654 |#4|)) NIL)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113))))) (-3335 (($ |#4| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-2766 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-2868 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4456))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4456)))) (-1864 (((-654 |#4|) $) 18 (|has| $ (-6 -4456)))) (-3830 ((|#3| $) 47)) (-2742 (((-112) $ (-781)) NIL)) (-1606 (((-654 |#4|) $) 14 (|has| $ (-6 -4456)))) (-1710 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113))))) (-2449 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#4| |#4|) $) 21)) (-3963 (((-654 |#3|) $) NIL)) (-4158 (((-112) |#3| $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL)) (-2396 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-3966 (((-1133) $) NIL)) (-1549 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2540 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))) (-4017 (((-112) $ $) NIL)) (-1584 (((-112) $) 39)) (-2672 (($) 17)) (-3975 (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113)))) (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) 16)) (-1836 (((-546) $) NIL (|has| |#4| (-624 (-546)))) (($ (-654 |#4|)) 51)) (-2956 (($ (-654 |#4|)) 13)) (-3650 (($ $ |#3|) NIL)) (-3722 (($ $ |#3|) NIL)) (-2096 (($ $ |#3|) NIL)) (-2943 (((-872) $) 38) (((-654 |#4|) $) 50)) (-3284 (((-112) $ $) NIL)) (-3390 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 30)) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-473 |#1| |#2| |#3| |#4|) (-13 (-989 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1836 ($ (-654 |#4|))) (-6 -4456) (-6 -4457))) (-1062) (-803) (-860) (-1078 |#1| |#2| |#3|)) (T -473)) -((-1836 (*1 *1 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-473 *3 *4 *5 *6))))) -(-13 (-989 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1836 ($ (-654 |#4|))) (-6 -4456) (-6 -4457))) -((-2133 (($) 11)) (-2145 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-474 |#1| |#2| |#3|) (-10 -8 (-15 -2145 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2133 (|#1|))) (-475 |#2| |#3|) (-174) (-23)) (T -474)) -NIL -(-10 -8 (-15 -2145 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2133 (|#1|))) -((-2849 (((-112) $ $) 7)) (-1696 (((-3 |#1| "failed") $) 27)) (-2206 ((|#1| $) 28)) (-3237 (($ $ $) 24)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-4202 ((|#2| $) 20)) (-2943 (((-872) $) 12) (($ |#1|) 26)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2145 (($) 25 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 16) (($ $ $) 14)) (-3079 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) -(((-475 |#1| |#2|) (-141) (-174) (-23)) (T -475)) -((-2145 (*1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3237 (*1 *1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) -(-13 (-480 |t#1| |t#2|) (-1051 |t#1|) (-10 -8 (-15 (-2145) ($) -1706) (-15 -3237 ($ $ $)))) -(((-102) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-480 |#1| |#2|) . T) ((-1051 |#1|) . T) ((-1113) . T)) -((-2451 (((-1281 (-1281 (-574))) (-1281 (-1281 (-574))) (-932)) 26)) (-2513 (((-1281 (-1281 (-574))) (-932)) 21))) -(((-476) (-10 -7 (-15 -2451 ((-1281 (-1281 (-574))) (-1281 (-1281 (-574))) (-932))) (-15 -2513 ((-1281 (-1281 (-574))) (-932))))) (T -476)) -((-2513 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1281 (-1281 (-574)))) (-5 *1 (-476)))) (-2451 (*1 *2 *2 *3) (-12 (-5 *2 (-1281 (-1281 (-574)))) (-5 *3 (-932)) (-5 *1 (-476))))) -(-10 -7 (-15 -2451 ((-1281 (-1281 (-574))) (-1281 (-1281 (-574))) (-932))) (-15 -2513 ((-1281 (-1281 (-574))) (-932)))) -((-1526 (((-574) (-574)) 32) (((-574)) 24)) (-1729 (((-574) (-574)) 28) (((-574)) 20)) (-4153 (((-574) (-574)) 30) (((-574)) 22)) (-1398 (((-112) (-112)) 14) (((-112)) 12)) (-1503 (((-112) (-112)) 13) (((-112)) 11)) (-1540 (((-112) (-112)) 26) (((-112)) 17))) -(((-477) (-10 -7 (-15 -1503 ((-112))) (-15 -1398 ((-112))) (-15 -1503 ((-112) (-112))) (-15 -1398 ((-112) (-112))) (-15 -1540 ((-112))) (-15 -4153 ((-574))) (-15 -1729 ((-574))) (-15 -1526 ((-574))) (-15 -1540 ((-112) (-112))) (-15 -4153 ((-574) (-574))) (-15 -1729 ((-574) (-574))) (-15 -1526 ((-574) (-574))))) (T -477)) -((-1526 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-1729 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-4153 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-1540 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) (-1526 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-1729 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-4153 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-1540 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) (-1398 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) (-1503 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) (-1398 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) (-1503 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477))))) -(-10 -7 (-15 -1503 ((-112))) (-15 -1398 ((-112))) (-15 -1503 ((-112) (-112))) (-15 -1398 ((-112) (-112))) (-15 -1540 ((-112))) (-15 -4153 ((-574))) (-15 -1729 ((-574))) (-15 -1526 ((-574))) (-15 -1540 ((-112) (-112))) (-15 -4153 ((-574) (-574))) (-15 -1729 ((-574) (-574))) (-15 -1526 ((-574) (-574)))) -((-2849 (((-112) $ $) NIL)) (-1997 (((-654 (-388)) $) 34) (((-654 (-388)) $ (-654 (-388))) 146)) (-1631 (((-654 (-1107 (-388))) $) 16) (((-654 (-1107 (-388))) $ (-654 (-1107 (-388)))) 142)) (-3250 (((-654 (-654 (-954 (-227)))) (-654 (-654 (-954 (-227)))) (-654 (-884))) 58)) (-4214 (((-654 (-654 (-954 (-227)))) $) 137)) (-3591 (((-1286) $ (-954 (-227)) (-884)) 163)) (-2625 (($ $) 136) (($ (-654 (-654 (-954 (-227))))) 149) (($ (-654 (-654 (-954 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-932))) 148) (($ (-654 (-654 (-954 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-932)) (-654 (-270))) 150)) (-4136 (((-1172) $) NIL)) (-3693 (((-574) $) 110)) (-3966 (((-1133) $) NIL)) (-3902 (($) 147)) (-3104 (((-654 (-227)) (-654 (-654 (-954 (-227))))) 89)) (-3263 (((-1286) $ (-654 (-954 (-227))) (-884) (-884) (-932)) 155) (((-1286) $ (-954 (-227))) 157) (((-1286) $ (-954 (-227)) (-884) (-884) (-932)) 156)) (-2943 (((-872) $) 169) (($ (-654 (-654 (-954 (-227))))) 164)) (-3284 (((-112) $ $) NIL)) (-3210 (((-1286) $ (-954 (-227))) 162)) (-2981 (((-112) $ $) NIL))) -(((-478) (-13 (-1113) (-10 -8 (-15 -3902 ($)) (-15 -2625 ($ $)) (-15 -2625 ($ (-654 (-654 (-954 (-227)))))) (-15 -2625 ($ (-654 (-654 (-954 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-932)))) (-15 -2625 ($ (-654 (-654 (-954 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-932)) (-654 (-270)))) (-15 -4214 ((-654 (-654 (-954 (-227)))) $)) (-15 -3693 ((-574) $)) (-15 -1631 ((-654 (-1107 (-388))) $)) (-15 -1631 ((-654 (-1107 (-388))) $ (-654 (-1107 (-388))))) (-15 -1997 ((-654 (-388)) $)) (-15 -1997 ((-654 (-388)) $ (-654 (-388)))) (-15 -3263 ((-1286) $ (-654 (-954 (-227))) (-884) (-884) (-932))) (-15 -3263 ((-1286) $ (-954 (-227)))) (-15 -3263 ((-1286) $ (-954 (-227)) (-884) (-884) (-932))) (-15 -3210 ((-1286) $ (-954 (-227)))) (-15 -3591 ((-1286) $ (-954 (-227)) (-884))) (-15 -2943 ($ (-654 (-654 (-954 (-227)))))) (-15 -2943 ((-872) $)) (-15 -3250 ((-654 (-654 (-954 (-227)))) (-654 (-654 (-954 (-227)))) (-654 (-884)))) (-15 -3104 ((-654 (-227)) (-654 (-654 (-954 (-227))))))))) (T -478)) -((-2943 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-478)))) (-3902 (*1 *1) (-5 *1 (-478))) (-2625 (*1 *1 *1) (-5 *1 (-478))) (-2625 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-954 (-227))))) (-5 *1 (-478)))) (-2625 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-654 (-654 (-954 (-227))))) (-5 *3 (-654 (-884))) (-5 *4 (-654 (-932))) (-5 *1 (-478)))) (-2625 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-654 (-654 (-954 (-227))))) (-5 *3 (-654 (-884))) (-5 *4 (-654 (-932))) (-5 *5 (-654 (-270))) (-5 *1 (-478)))) (-4214 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-954 (-227))))) (-5 *1 (-478)))) (-3693 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-478)))) (-1631 (*1 *2 *1) (-12 (-5 *2 (-654 (-1107 (-388)))) (-5 *1 (-478)))) (-1631 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1107 (-388)))) (-5 *1 (-478)))) (-1997 (*1 *2 *1) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-478)))) (-1997 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-478)))) (-3263 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-654 (-954 (-227)))) (-5 *4 (-884)) (-5 *5 (-932)) (-5 *2 (-1286)) (-5 *1 (-478)))) (-3263 (*1 *2 *1 *3) (-12 (-5 *3 (-954 (-227))) (-5 *2 (-1286)) (-5 *1 (-478)))) (-3263 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-954 (-227))) (-5 *4 (-884)) (-5 *5 (-932)) (-5 *2 (-1286)) (-5 *1 (-478)))) (-3210 (*1 *2 *1 *3) (-12 (-5 *3 (-954 (-227))) (-5 *2 (-1286)) (-5 *1 (-478)))) (-3591 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-954 (-227))) (-5 *4 (-884)) (-5 *2 (-1286)) (-5 *1 (-478)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-954 (-227))))) (-5 *1 (-478)))) (-3250 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-654 (-954 (-227))))) (-5 *3 (-654 (-884))) (-5 *1 (-478)))) (-3104 (*1 *2 *3) (-12 (-5 *3 (-654 (-654 (-954 (-227))))) (-5 *2 (-654 (-227))) (-5 *1 (-478))))) -(-13 (-1113) (-10 -8 (-15 -3902 ($)) (-15 -2625 ($ $)) (-15 -2625 ($ (-654 (-654 (-954 (-227)))))) (-15 -2625 ($ (-654 (-654 (-954 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-932)))) (-15 -2625 ($ (-654 (-654 (-954 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-932)) (-654 (-270)))) (-15 -4214 ((-654 (-654 (-954 (-227)))) $)) (-15 -3693 ((-574) $)) (-15 -1631 ((-654 (-1107 (-388))) $)) (-15 -1631 ((-654 (-1107 (-388))) $ (-654 (-1107 (-388))))) (-15 -1997 ((-654 (-388)) $)) (-15 -1997 ((-654 (-388)) $ (-654 (-388)))) (-15 -3263 ((-1286) $ (-654 (-954 (-227))) (-884) (-884) (-932))) (-15 -3263 ((-1286) $ (-954 (-227)))) (-15 -3263 ((-1286) $ (-954 (-227)) (-884) (-884) (-932))) (-15 -3210 ((-1286) $ (-954 (-227)))) (-15 -3591 ((-1286) $ (-954 (-227)) (-884))) (-15 -2943 ($ (-654 (-654 (-954 (-227)))))) (-15 -2943 ((-872) $)) (-15 -3250 ((-654 (-654 (-954 (-227)))) (-654 (-654 (-954 (-227)))) (-654 (-884)))) (-15 -3104 ((-654 (-227)) (-654 (-654 (-954 (-227)))))))) -((-3094 (($ $) NIL) (($ $ $) 11))) -(((-479 |#1| |#2| |#3|) (-10 -8 (-15 -3094 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|))) (-480 |#2| |#3|) (-174) (-23)) (T -479)) -NIL -(-10 -8 (-15 -3094 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|))) -((-2849 (((-112) $ $) 7)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-4202 ((|#2| $) 20)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 16) (($ $ $) 14)) (-3079 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) -(((-480 |#1| |#2|) (-141) (-174) (-23)) (T -480)) -((-4202 (*1 *2 *1) (-12 (-4 *1 (-480 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) (-2133 (*1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3094 (*1 *1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3079 (*1 *1 *1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3094 (*1 *1 *1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) -(-13 (-1113) (-10 -8 (-15 -4202 (|t#2| $)) (-15 (-2133) ($) -1706) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3094 ($ $)) (-15 -3079 ($ $ $)) (-15 -3094 ($ $ $)))) -(((-102) . T) ((-623 (-872)) . T) ((-1113) . T)) -((-3228 (((-3 (-654 (-491 |#1| |#2|)) "failed") (-654 (-491 |#1| |#2|)) (-654 (-874 |#1|))) 134)) (-3657 (((-654 (-654 (-253 |#1| |#2|))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|))) 131)) (-3063 (((-2 (|:| |dpolys| (-654 (-253 |#1| |#2|))) (|:| |coords| (-654 (-574)))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|))) 86))) -(((-481 |#1| |#2| |#3|) (-10 -7 (-15 -3657 ((-654 (-654 (-253 |#1| |#2|))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|)))) (-15 -3228 ((-3 (-654 (-491 |#1| |#2|)) "failed") (-654 (-491 |#1| |#2|)) (-654 (-874 |#1|)))) (-15 -3063 ((-2 (|:| |dpolys| (-654 (-253 |#1| |#2|))) (|:| |coords| (-654 (-574)))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|))))) (-654 (-1190)) (-462) (-462)) (T -481)) -((-3063 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-874 *5))) (-14 *5 (-654 (-1190))) (-4 *6 (-462)) (-5 *2 (-2 (|:| |dpolys| (-654 (-253 *5 *6))) (|:| |coords| (-654 (-574))))) (-5 *1 (-481 *5 *6 *7)) (-5 *3 (-654 (-253 *5 *6))) (-4 *7 (-462)))) (-3228 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-491 *4 *5))) (-5 *3 (-654 (-874 *4))) (-14 *4 (-654 (-1190))) (-4 *5 (-462)) (-5 *1 (-481 *4 *5 *6)) (-4 *6 (-462)))) (-3657 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-874 *5))) (-14 *5 (-654 (-1190))) (-4 *6 (-462)) (-5 *2 (-654 (-654 (-253 *5 *6)))) (-5 *1 (-481 *5 *6 *7)) (-5 *3 (-654 (-253 *5 *6))) (-4 *7 (-462))))) -(-10 -7 (-15 -3657 ((-654 (-654 (-253 |#1| |#2|))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|)))) (-15 -3228 ((-3 (-654 (-491 |#1| |#2|)) "failed") (-654 (-491 |#1| |#2|)) (-654 (-874 |#1|)))) (-15 -3063 ((-2 (|:| |dpolys| (-654 (-253 |#1| |#2|))) (|:| |coords| (-654 (-574)))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|))))) -((-3434 (((-3 $ "failed") $) 11)) (-1479 (($ $ $) 23)) (-3204 (($ $ $) 24)) (-3108 (($ $ $) 9)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 22))) -(((-482 |#1|) (-10 -8 (-15 -3204 (|#1| |#1| |#1|)) (-15 -1479 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -3108 (|#1| |#1| |#1|)) (-15 -3434 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-932)))) (-483)) (T -482)) -NIL -(-10 -8 (-15 -3204 (|#1| |#1| |#1|)) (-15 -1479 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -3108 (|#1| |#1| |#1|)) (-15 -3434 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-932)))) -((-2849 (((-112) $ $) 7)) (-3426 (($) 19 T CONST)) (-3434 (((-3 $ "failed") $) 16)) (-3199 (((-112) $) 18)) (-4136 (((-1172) $) 10)) (-1324 (($ $) 25)) (-3966 (((-1133) $) 11)) (-1479 (($ $ $) 22)) (-3204 (($ $ $) 21)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2145 (($) 20 T CONST)) (-2981 (((-112) $ $) 6)) (-3108 (($ $ $) 24)) (** (($ $ (-932)) 14) (($ $ (-781)) 17) (($ $ (-574)) 23)) (* (($ $ $) 15))) -(((-483) (-141)) (T -483)) -((-1324 (*1 *1 *1) (-4 *1 (-483))) (-3108 (*1 *1 *1 *1) (-4 *1 (-483))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-483)) (-5 *2 (-574)))) (-1479 (*1 *1 *1 *1) (-4 *1 (-483))) (-3204 (*1 *1 *1 *1) (-4 *1 (-483)))) -(-13 (-736) (-10 -8 (-15 -1324 ($ $)) (-15 -3108 ($ $ $)) (-15 ** ($ $ (-574))) (-6 -4453) (-15 -1479 ($ $ $)) (-15 -3204 ($ $ $)))) -(((-102) . T) ((-623 (-872)) . T) ((-736) . T) ((-1125) . T) ((-1113) . T)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-4355 (((-654 (-1095)) $) NIL)) (-1488 (((-1190) $) 18)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-1575 (($ $) NIL (|has| |#1| (-566)))) (-2085 (((-112) $) NIL (|has| |#1| (-566)))) (-2052 (($ $ (-417 (-574))) NIL) (($ $ (-417 (-574)) (-417 (-574))) NIL)) (-1878 (((-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) NIL)) (-2364 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3524 (((-3 $ "failed") $ $) NIL)) (-2568 (($ $) NIL (|has| |#1| (-372)))) (-2827 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4229 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1600 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2343 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3623 (($ (-781) (-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) NIL)) (-2389 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3426 (($) NIL T CONST)) (-2786 (($ $ $) NIL (|has| |#1| (-372)))) (-1392 (($ $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2797 (($ $ $) NIL (|has| |#1| (-372)))) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-2257 (((-112) $) NIL (|has| |#1| (-372)))) (-2892 (((-112) $) NIL)) (-3000 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3884 (((-417 (-574)) $) NIL) (((-417 (-574)) $ (-417 (-574))) NIL)) (-3199 (((-112) $) NIL)) (-3460 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-4240 (($ $ (-932)) NIL) (($ $ (-417 (-574))) NIL)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3869 (((-112) $) NIL)) (-4335 (($ |#1| (-417 (-574))) NIL) (($ $ (-1095) (-417 (-574))) NIL) (($ $ (-654 (-1095)) (-654 (-417 (-574)))) NIL)) (-1777 (($ (-1 |#1| |#1|) $) 25)) (-3119 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-2832 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL (|has| |#1| (-372)))) (-2379 (($ $) 29 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190)) 35 (-2818 (-12 (|has| |#1| (-15 -2379 (|#1| |#1| (-1190)))) (|has| |#1| (-15 -4355 ((-654 (-1190)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-970)) (|has| |#1| (-1216))))) (($ $ (-1277 |#2|)) 30 (|has| |#1| (-38 (-417 (-574)))))) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-372)))) (-2873 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4220 (((-428 $) $) NIL (|has| |#1| (-372)))) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-2533 (($ $ (-417 (-574))) NIL)) (-2838 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1609 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2646 (((-1170 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-1730 (((-781) $) NIL (|has| |#1| (-372)))) (-2199 ((|#1| $ (-417 (-574))) NIL) (($ $ $) NIL (|has| (-417 (-574)) (-1125)))) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#1| (-372)))) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) 28 (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-1277 |#2|)) 16)) (-4202 (((-417 (-574)) $) NIL)) (-2402 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2256 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2352 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1651 (($ $) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1277 |#2|)) NIL) (($ (-1266 |#1| |#2| |#3|)) 9) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-3087 ((|#1| $ (-417 (-574))) NIL)) (-3298 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1364 (((-781)) NIL T CONST)) (-3359 ((|#1| $) 21)) (-3284 (((-112) $ $) NIL)) (-2441 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2069 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2414 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3551 ((|#1| $ (-417 (-574))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2521 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2452 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-3610 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) 27)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) -(((-484 |#1| |#2| |#3|) (-13 (-1262 |#1|) (-10 -8 (-15 -2943 ($ (-1277 |#2|))) (-15 -2943 ($ (-1266 |#1| |#2| |#3|))) (-15 -3905 ($ $ (-1277 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2379 ($ $ (-1277 |#2|))) |%noBranch|))) (-1062) (-1190) |#1|) (T -484)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-484 *3 *4 *5)) (-4 *3 (-1062)) (-14 *5 *3))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-1266 *3 *4 *5)) (-4 *3 (-1062)) (-14 *4 (-1190)) (-14 *5 *3) (-5 *1 (-484 *3 *4 *5)))) (-3905 (*1 *1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-484 *3 *4 *5)) (-4 *3 (-1062)) (-14 *5 *3))) (-2379 (*1 *1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-484 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-14 *5 *3)))) -(-13 (-1262 |#1|) (-10 -8 (-15 -2943 ($ (-1277 |#2|))) (-15 -2943 ($ (-1266 |#1| |#2| |#3|))) (-15 -3905 ($ $ (-1277 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2379 ($ $ (-1277 |#2|))) |%noBranch|))) -((-2849 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-3778 (($) NIL) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL)) (-3714 (((-1286) $ |#1| |#1|) NIL (|has| $ (-6 -4457)))) (-3034 (((-112) $ (-781)) NIL)) (-3143 ((|#2| $ |#1| |#2|) 18)) (-3572 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2165 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2163 (((-3 |#2| "failed") |#1| $) 19)) (-3426 (($) NIL T CONST)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))))) (-2876 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-3 |#2| "failed") |#1| $) 16)) (-3335 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2868 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2458 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#2| $ |#1|) NIL)) (-1864 (((-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-2742 (((-112) $ (-781)) NIL)) (-3618 ((|#1| $) NIL (|has| |#1| (-860)))) (-1606 (((-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-2702 ((|#1| $) NIL (|has| |#1| (-860)))) (-2449 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4457))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-1763 (((-654 |#1|) $) NIL)) (-1732 (((-112) |#1| $) NIL)) (-2937 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL)) (-2798 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL)) (-4308 (((-654 |#1|) $) NIL)) (-3336 (((-112) |#1| $) NIL)) (-3966 (((-1133) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2915 ((|#2| $) NIL (|has| |#1| (-860)))) (-1549 (((-3 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) "failed") (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL)) (-1942 (($ $ |#2|) NIL (|has| $ (-6 -4457)))) (-1785 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL)) (-2540 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-302 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-4371 (((-654 |#2|) $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1662 (($) NIL) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL)) (-3975 (((-781) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) NIL)) (-1836 (((-546) $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-624 (-546))))) (-2956 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL)) (-2943 (((-872) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-3284 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-1599 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL)) (-3390 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-485 |#1| |#2| |#3| |#4|) (-1207 |#1| |#2|) (-1113) (-1113) (-1207 |#1| |#2|) |#2|) (T -485)) -NIL -(-1207 |#1| |#2|) -((-2849 (((-112) $ $) NIL)) (-2410 (((-654 (-2 (|:| -1381 $) (|:| -1675 (-654 |#4|)))) (-654 |#4|)) NIL)) (-3954 (((-654 $) (-654 |#4|)) NIL)) (-4355 (((-654 |#3|) $) NIL)) (-2907 (((-112) $) NIL)) (-4018 (((-112) $) NIL (|has| |#1| (-566)))) (-1751 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3207 ((|#4| |#4| $) NIL)) (-2771 (((-2 (|:| |under| $) (|:| -3595 $) (|:| |upper| $)) $ |#3|) NIL)) (-3034 (((-112) $ (-781)) NIL)) (-2165 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3426 (($) NIL T CONST)) (-4336 (((-112) $) 29 (|has| |#1| (-566)))) (-1547 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2318 (((-112) $ $) NIL (|has| |#1| (-566)))) (-1792 (((-112) $) NIL (|has| |#1| (-566)))) (-3908 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3025 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1974 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1696 (((-3 $ "failed") (-654 |#4|)) NIL)) (-2206 (($ (-654 |#4|)) NIL)) (-2926 (((-3 $ "failed") $) 45)) (-1402 ((|#4| |#4| $) NIL)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113))))) (-3335 (($ |#4| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-2766 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-1315 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1747 ((|#4| |#4| $) NIL)) (-2868 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4456))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4456))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4270 (((-2 (|:| -1381 (-654 |#4|)) (|:| -1675 (-654 |#4|))) $) NIL)) (-1864 (((-654 |#4|) $) 18 (|has| $ (-6 -4456)))) (-4436 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3830 ((|#3| $) 38)) (-2742 (((-112) $ (-781)) NIL)) (-1606 (((-654 |#4|) $) 19 (|has| $ (-6 -4456)))) (-1710 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113))))) (-2449 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#4| |#4|) $) 23)) (-3963 (((-654 |#3|) $) NIL)) (-4158 (((-112) |#3| $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL)) (-3360 (((-3 |#4| "failed") $) 42)) (-4417 (((-654 |#4|) $) NIL)) (-4292 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3023 ((|#4| |#4| $) NIL)) (-2119 (((-112) $ $) NIL)) (-2396 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-2682 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3206 ((|#4| |#4| $) NIL)) (-3966 (((-1133) $) NIL)) (-2915 (((-3 |#4| "failed") $) 40)) (-1549 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3040 (((-3 $ "failed") $ |#4|) 58)) (-2533 (($ $ |#4|) NIL)) (-2540 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))) (-4017 (((-112) $ $) NIL)) (-1584 (((-112) $) 17)) (-2672 (($) 14)) (-4202 (((-781) $) NIL)) (-3975 (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113)))) (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) 13)) (-1836 (((-546) $) NIL (|has| |#4| (-624 (-546))))) (-2956 (($ (-654 |#4|)) 22)) (-3650 (($ $ |#3|) 52)) (-3722 (($ $ |#3|) 54)) (-4429 (($ $) NIL)) (-2096 (($ $ |#3|) NIL)) (-2943 (((-872) $) 35) (((-654 |#4|) $) 46)) (-4435 (((-781) $) NIL (|has| |#3| (-377)))) (-3284 (((-112) $ $) NIL)) (-3416 (((-3 (-2 (|:| |bas| $) (|:| -2002 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2002 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2582 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) NIL)) (-3390 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-2720 (((-654 |#3|) $) NIL)) (-3587 (((-112) |#3| $) NIL)) (-2981 (((-112) $ $) NIL)) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-486 |#1| |#2| |#3| |#4|) (-1224 |#1| |#2| |#3| |#4|) (-566) (-803) (-860) (-1078 |#1| |#2| |#3|)) (T -486)) -NIL -(-1224 |#1| |#2| |#3| |#4|) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-1600 (((-112) $ $) NIL)) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL)) (-2206 (((-574) $) NIL) (((-417 (-574)) $) NIL)) (-2786 (($ $ $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-2257 (((-112) $) NIL)) (-3000 (($) 17)) (-3199 (((-112) $) NIL)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4220 (((-428 $) $) NIL)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1730 (((-781) $) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-1836 (((-388) $) 21) (((-227) $) 24) (((-417 (-1186 (-574))) $) 18) (((-546) $) 53)) (-2943 (((-872) $) 51) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (((-227) $) 23) (((-388) $) 20)) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL)) (-2133 (($) 37 T CONST)) (-2145 (($) 8 T CONST)) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) -(((-487) (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))) (-1035) (-623 (-227)) (-623 (-388)) (-624 (-417 (-1186 (-574)))) (-624 (-546)) (-10 -8 (-15 -3000 ($))))) (T -487)) -((-3000 (*1 *1) (-5 *1 (-487)))) -(-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))) (-1035) (-623 (-227)) (-623 (-388)) (-624 (-417 (-1186 (-574)))) (-624 (-546)) (-10 -8 (-15 -3000 ($)))) -((-2849 (((-112) $ $) NIL)) (-1809 (((-1148) $) 11)) (-1796 (((-1148) $) 9)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 17) (($ (-1195)) NIL) (((-1195) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-488) (-13 (-1096) (-10 -8 (-15 -1796 ((-1148) $)) (-15 -1809 ((-1148) $))))) (T -488)) -((-1796 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-488)))) (-1809 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-488))))) -(-13 (-1096) (-10 -8 (-15 -1796 ((-1148) $)) (-15 -1809 ((-1148) $)))) -((-2849 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-3778 (($) NIL) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL)) (-3714 (((-1286) $ |#1| |#1|) NIL (|has| $ (-6 -4457)))) (-3034 (((-112) $ (-781)) NIL)) (-3143 ((|#2| $ |#1| |#2|) 16)) (-3572 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2165 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2163 (((-3 |#2| "failed") |#1| $) 20)) (-3426 (($) NIL T CONST)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))))) (-2876 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-3 |#2| "failed") |#1| $) 18)) (-3335 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2868 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2458 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#2| $ |#1|) NIL)) (-1864 (((-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-2742 (((-112) $ (-781)) NIL)) (-3618 ((|#1| $) NIL (|has| |#1| (-860)))) (-1606 (((-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-2702 ((|#1| $) NIL (|has| |#1| (-860)))) (-2449 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4457))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-1763 (((-654 |#1|) $) 13)) (-1732 (((-112) |#1| $) NIL)) (-2937 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL)) (-2798 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL)) (-4308 (((-654 |#1|) $) NIL)) (-3336 (((-112) |#1| $) NIL)) (-3966 (((-1133) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2915 ((|#2| $) NIL (|has| |#1| (-860)))) (-1549 (((-3 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) "failed") (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL)) (-1942 (($ $ |#2|) NIL (|has| $ (-6 -4457)))) (-1785 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL)) (-2540 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-302 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-4371 (((-654 |#2|) $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) 19)) (-2199 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1662 (($) NIL) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL)) (-3975 (((-781) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) NIL)) (-1836 (((-546) $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-624 (-546))))) (-2956 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL)) (-2943 (((-872) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-3284 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-1599 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL)) (-3390 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 11 (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2863 (((-781) $) 15 (|has| $ (-6 -4456))))) -(((-489 |#1| |#2| |#3|) (-13 (-1207 |#1| |#2|) (-10 -7 (-6 -4456))) (-1113) (-1113) (-1172)) (T -489)) -NIL -(-13 (-1207 |#1| |#2|) (-10 -7 (-6 -4456))) -((-2421 (((-574) (-574) (-574)) 19)) (-2274 (((-112) (-574) (-574) (-574) (-574)) 28)) (-2094 (((-1281 (-654 (-574))) (-781) (-781)) 41))) -(((-490) (-10 -7 (-15 -2421 ((-574) (-574) (-574))) (-15 -2274 ((-112) (-574) (-574) (-574) (-574))) (-15 -2094 ((-1281 (-654 (-574))) (-781) (-781))))) (T -490)) -((-2094 (*1 *2 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1281 (-654 (-574)))) (-5 *1 (-490)))) (-2274 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *2 (-112)) (-5 *1 (-490)))) (-2421 (*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-490))))) -(-10 -7 (-15 -2421 ((-574) (-574) (-574))) (-15 -2274 ((-112) (-574) (-574) (-574) (-574))) (-15 -2094 ((-1281 (-654 (-574))) (-781) (-781)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-4355 (((-654 (-874 |#1|)) $) NIL)) (-4194 (((-1186 $) $ (-874 |#1|)) NIL) (((-1186 |#2|) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#2| (-566)))) (-1575 (($ $) NIL (|has| |#2| (-566)))) (-2085 (((-112) $) NIL (|has| |#2| (-566)))) (-1757 (((-781) $) NIL) (((-781) $ (-654 (-874 |#1|))) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3972 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-2568 (($ $) NIL (|has| |#2| (-462)))) (-2827 (((-428 $) $) NIL (|has| |#2| (-462)))) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1051 (-574)))) (((-3 (-874 |#1|) "failed") $) NIL)) (-2206 ((|#2| $) NIL) (((-417 (-574)) $) NIL (|has| |#2| (-1051 (-417 (-574))))) (((-574) $) NIL (|has| |#2| (-1051 (-574)))) (((-874 |#1|) $) NIL)) (-1463 (($ $ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3392 (($ $ (-654 (-574))) NIL)) (-1392 (($ $) NIL)) (-2590 (((-699 (-574)) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1281 $)) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-1569 (($ $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1380 (((-654 $) $) NIL)) (-2257 (((-112) $) NIL (|has| |#2| (-920)))) (-1661 (($ $ |#2| (-492 (-2863 |#1|) (-781)) $) NIL)) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-3199 (((-112) $) NIL)) (-1322 (((-781) $) NIL)) (-4345 (($ (-1186 |#2|) (-874 |#1|)) NIL) (($ (-1186 $) (-874 |#1|)) NIL)) (-3727 (((-654 $) $) NIL)) (-3869 (((-112) $) NIL)) (-4335 (($ |#2| (-492 (-2863 |#1|) (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2773 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $ (-874 |#1|)) NIL)) (-1742 (((-492 (-2863 |#1|) (-781)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-3708 (($ (-1 (-492 (-2863 |#1|) (-781)) (-492 (-2863 |#1|) (-781))) $) NIL)) (-1777 (($ (-1 |#2| |#2|) $) NIL)) (-2717 (((-3 (-874 |#1|) "failed") $) NIL)) (-1359 (($ $) NIL)) (-1370 ((|#2| $) NIL)) (-2832 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-4136 (((-1172) $) NIL)) (-2755 (((-3 (-654 $) "failed") $) NIL)) (-2415 (((-3 (-654 $) "failed") $) NIL)) (-2241 (((-3 (-2 (|:| |var| (-874 |#1|)) (|:| -3715 (-781))) "failed") $) NIL)) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) NIL)) (-1349 ((|#2| $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#2| (-462)))) (-2873 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-2560 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-2039 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-4220 (((-428 $) $) NIL (|has| |#2| (-920)))) (-2838 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-566)))) (-2646 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-874 |#1|) |#2|) NIL) (($ $ (-654 (-874 |#1|)) (-654 |#2|)) NIL) (($ $ (-874 |#1|) $) NIL) (($ $ (-654 (-874 |#1|)) (-654 $)) NIL)) (-2872 (($ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3905 (($ $ (-874 |#1|)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-4202 (((-492 (-2863 |#1|) (-781)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-1836 (((-903 (-388)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-874 |#1|) (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-3069 ((|#2| $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-920))))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-874 |#1|)) NIL) (($ (-417 (-574))) NIL (-2818 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1051 (-417 (-574)))))) (($ $) NIL (|has| |#2| (-566)))) (-2530 (((-654 |#2|) $) NIL)) (-3087 ((|#2| $ (-492 (-2863 |#1|) (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-3298 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#2| (-920))) (|has| |#2| (-146))))) (-1364 (((-781)) NIL T CONST)) (-3772 (($ $ $ (-781)) NIL (|has| |#2| (-174)))) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL (|has| |#2| (-566)))) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-3610 (($ $ (-874 |#1|)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#2| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#2| (-38 (-417 (-574))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-491 |#1| |#2|) (-13 (-960 |#2| (-492 (-2863 |#1|) (-781)) (-874 |#1|)) (-10 -8 (-15 -3392 ($ $ (-654 (-574)))))) (-654 (-1190)) (-1062)) (T -491)) -((-3392 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-491 *3 *4)) (-14 *3 (-654 (-1190))) (-4 *4 (-1062))))) -(-13 (-960 |#2| (-492 (-2863 |#1|) (-781)) (-874 |#1|)) (-10 -8 (-15 -3392 ($ $ (-654 (-574)))))) -((-2849 (((-112) $ $) NIL (|has| |#2| (-1113)))) (-3138 (((-112) $) NIL (|has| |#2| (-132)))) (-3745 (($ (-932)) NIL (|has| |#2| (-1062)))) (-3714 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-3663 (($ $ $) NIL (|has| |#2| (-803)))) (-3524 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-3034 (((-112) $ (-781)) NIL)) (-1487 (((-781)) NIL (|has| |#2| (-377)))) (-2846 (((-574) $) NIL (|has| |#2| (-858)))) (-3143 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4457)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-574) "failed") $) NIL (-12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1113)))) (-2206 (((-574) $) NIL (-12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113)))) (((-417 (-574)) $) NIL (-12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113)))) ((|#2| $) NIL (|has| |#2| (-1113)))) (-2590 (((-699 (-574)) (-1281 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062)))) (((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) NIL (|has| |#2| (-1062))) (((-699 |#2|) (-699 $)) NIL (|has| |#2| (-1062))) (((-699 |#2|) (-1281 $)) NIL (|has| |#2| (-1062)))) (-3434 (((-3 $ "failed") $) NIL (|has| |#2| (-736)))) (-2820 (($) NIL (|has| |#2| (-377)))) (-2458 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#2| $ (-574)) 11)) (-2756 (((-112) $) NIL (|has| |#2| (-858)))) (-1864 (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-3199 (((-112) $) NIL (|has| |#2| (-736)))) (-1335 (((-112) $) NIL (|has| |#2| (-858)))) (-2742 (((-112) $ (-781)) NIL)) (-3618 (((-574) $) NIL (|has| (-574) (-860)))) (-3659 (($ $ $) NIL (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-1606 (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-2702 (((-574) $) NIL (|has| (-574) (-860)))) (-4257 (($ $ $) NIL (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-2449 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#2| |#2|) $) NIL)) (-4115 (((-932) $) NIL (|has| |#2| (-377)))) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL (|has| |#2| (-1113)))) (-4308 (((-654 (-574)) $) NIL)) (-3336 (((-112) (-574) $) NIL)) (-2576 (($ (-932)) NIL (|has| |#2| (-377)))) (-3966 (((-1133) $) NIL (|has| |#2| (-1113)))) (-2915 ((|#2| $) NIL (|has| (-574) (-860)))) (-1942 (($ $ |#2|) NIL (|has| $ (-6 -4457)))) (-2540 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-4371 (((-654 |#2|) $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 ((|#2| $ (-574) |#2|) NIL) ((|#2| $ (-574)) NIL)) (-4236 ((|#2| $ $) NIL (|has| |#2| (-1062)))) (-4261 (($ (-1281 |#2|)) NIL)) (-4133 (((-135)) NIL (|has| |#2| (-372)))) (-3905 (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-1190)) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1062))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1062)))) (-3975 (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-3167 (($ $) NIL)) (-2943 (((-1281 |#2|) $) NIL) (($ (-574)) NIL (-2818 (-12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113))) (|has| |#2| (-1062)))) (($ (-417 (-574))) NIL (-12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113)))) (($ |#2|) NIL (|has| |#2| (-1113))) (((-872) $) NIL (|has| |#2| (-623 (-872))))) (-1364 (((-781)) NIL (|has| |#2| (-1062)) CONST)) (-3284 (((-112) $ $) NIL (|has| |#2| (-1113)))) (-3390 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-3482 (($ $) NIL (|has| |#2| (-858)))) (-2133 (($) NIL (|has| |#2| (-132)) CONST)) (-2145 (($) NIL (|has| |#2| (-736)) CONST)) (-3610 (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-1190)) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1062))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1062)))) (-3042 (((-112) $ $) NIL (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-3018 (((-112) $ $) NIL (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-2981 (((-112) $ $) NIL (|has| |#2| (-1113)))) (-3030 (((-112) $ $) NIL (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-3007 (((-112) $ $) 17 (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-3108 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3094 (($ $ $) NIL (|has| |#2| (-1062))) (($ $) NIL (|has| |#2| (-1062)))) (-3079 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-781)) NIL (|has| |#2| (-736))) (($ $ (-932)) NIL (|has| |#2| (-736)))) (* (($ (-574) $) NIL (|has| |#2| (-1062))) (($ $ $) NIL (|has| |#2| (-736))) (($ $ |#2|) NIL (|has| |#2| (-736))) (($ |#2| $) NIL (|has| |#2| (-736))) (($ (-781) $) NIL (|has| |#2| (-132))) (($ (-932) $) NIL (|has| |#2| (-25)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-492 |#1| |#2|) (-244 |#1| |#2|) (-781) (-803)) (T -492)) -NIL -(-244 |#1| |#2|) -((-2849 (((-112) $ $) NIL)) (-2624 (((-654 (-886)) $) 15)) (-2032 (((-516) $) 13)) (-4136 (((-1172) $) NIL)) (-1927 (($ (-516) (-654 (-886))) 11)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 22) (($ (-1195)) NIL) (((-1195) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-493) (-13 (-1096) (-10 -8 (-15 -1927 ($ (-516) (-654 (-886)))) (-15 -2032 ((-516) $)) (-15 -2624 ((-654 (-886)) $))))) (T -493)) -((-1927 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-654 (-886))) (-5 *1 (-493)))) (-2032 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-493)))) (-2624 (*1 *2 *1) (-12 (-5 *2 (-654 (-886))) (-5 *1 (-493))))) -(-13 (-1096) (-10 -8 (-15 -1927 ($ (-516) (-654 (-886)))) (-15 -2032 ((-516) $)) (-15 -2624 ((-654 (-886)) $)))) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3034 (((-112) $ (-781)) NIL)) (-3426 (($) NIL T CONST)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-2742 (((-112) $ (-781)) NIL)) (-2628 (($ $ $) 48)) (-4430 (($ $ $) 47)) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-4257 ((|#1| $) 40)) (-2449 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-2937 ((|#1| $) 41)) (-2798 (($ |#1| $) 18)) (-4112 (($ (-654 |#1|)) 19)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-1785 ((|#1| $) 34)) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) 11)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-1599 (($ (-654 |#1|)) 45)) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2863 (((-781) $) 29 (|has| $ (-6 -4456))))) -(((-494 |#1|) (-13 (-981 |#1|) (-10 -8 (-15 -4112 ($ (-654 |#1|))))) (-860)) (T -494)) -((-4112 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-494 *3))))) -(-13 (-981 |#1|) (-10 -8 (-15 -4112 ($ (-654 |#1|))))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-2868 (($ $) 71)) (-4218 (((-112) $) NIL)) (-4136 (((-1172) $) NIL)) (-3174 (((-423 |#2| (-417 |#2|) |#3| |#4|) $) 45)) (-3966 (((-1133) $) NIL)) (-2970 (((-3 |#4| "failed") $) 117)) (-2474 (($ (-423 |#2| (-417 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-574)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-2217 (((-2 (|:| -2803 (-423 |#2| (-417 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-2943 (((-872) $) 110)) (-3284 (((-112) $ $) NIL)) (-2133 (($) 32 T CONST)) (-2981 (((-112) $ $) 121)) (-3094 (($ $) 77) (($ $ $) NIL)) (-3079 (($ $ $) 72)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 78))) -(((-495 |#1| |#2| |#3| |#4|) (-344 |#1| |#2| |#3| |#4|) (-372) (-1257 |#1|) (-1257 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -495)) -NIL -(-344 |#1| |#2| |#3| |#4|) -((-3115 (((-574) (-654 (-574))) 53)) (-3479 ((|#1| (-654 |#1|)) 94)) (-1941 (((-654 |#1|) (-654 |#1|)) 95)) (-1641 (((-654 |#1|) (-654 |#1|)) 97)) (-2873 ((|#1| (-654 |#1|)) 96)) (-3069 (((-654 (-574)) (-654 |#1|)) 56))) -(((-496 |#1|) (-10 -7 (-15 -2873 (|#1| (-654 |#1|))) (-15 -3479 (|#1| (-654 |#1|))) (-15 -1641 ((-654 |#1|) (-654 |#1|))) (-15 -1941 ((-654 |#1|) (-654 |#1|))) (-15 -3069 ((-654 (-574)) (-654 |#1|))) (-15 -3115 ((-574) (-654 (-574))))) (-1257 (-574))) (T -496)) -((-3115 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-574)) (-5 *1 (-496 *4)) (-4 *4 (-1257 *2)))) (-3069 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-1257 (-574))) (-5 *2 (-654 (-574))) (-5 *1 (-496 *4)))) (-1941 (*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1257 (-574))) (-5 *1 (-496 *3)))) (-1641 (*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1257 (-574))) (-5 *1 (-496 *3)))) (-3479 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-5 *1 (-496 *2)) (-4 *2 (-1257 (-574))))) (-2873 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-5 *1 (-496 *2)) (-4 *2 (-1257 (-574)))))) -(-10 -7 (-15 -2873 (|#1| (-654 |#1|))) (-15 -3479 (|#1| (-654 |#1|))) (-15 -1641 ((-654 |#1|) (-654 |#1|))) (-15 -1941 ((-654 |#1|) (-654 |#1|))) (-15 -3069 ((-654 (-574)) (-654 |#1|))) (-15 -3115 ((-574) (-654 (-574))))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1528 (((-574) $) NIL (|has| (-574) (-315)))) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3972 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-1600 (((-112) $ $) NIL)) (-2846 (((-574) $) NIL (|has| (-574) (-830)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-574) "failed") $) NIL) (((-3 (-1190) "failed") $) NIL (|has| (-574) (-1051 (-1190)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-574) (-1051 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-574) (-1051 (-574))))) (-2206 (((-574) $) NIL) (((-1190) $) NIL (|has| (-574) (-1051 (-1190)))) (((-417 (-574)) $) NIL (|has| (-574) (-1051 (-574)))) (((-574) $) NIL (|has| (-574) (-1051 (-574))))) (-2786 (($ $ $) NIL)) (-2590 (((-699 (-574)) (-1281 $)) NIL (|has| (-574) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1281 $)) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2820 (($) NIL (|has| (-574) (-555)))) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-2257 (((-112) $) NIL)) (-2756 (((-112) $) NIL (|has| (-574) (-830)))) (-3625 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-574) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-574) (-897 (-388))))) (-3199 (((-112) $) NIL)) (-2141 (($ $) NIL)) (-2966 (((-574) $) NIL)) (-2748 (((-3 $ "failed") $) NIL (|has| (-574) (-1165)))) (-1335 (((-112) $) NIL (|has| (-574) (-830)))) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3659 (($ $ $) NIL (|has| (-574) (-860)))) (-4257 (($ $ $) NIL (|has| (-574) (-860)))) (-1777 (($ (-1 (-574) (-574)) $) NIL)) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| (-574) (-1165)) CONST)) (-3643 (($ (-417 (-574))) 9)) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3191 (($ $) NIL (|has| (-574) (-315))) (((-417 (-574)) $) NIL)) (-3595 (((-574) $) NIL (|has| (-574) (-555)))) (-2560 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-2039 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-4220 (((-428 $) $) NIL)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2646 (($ $ (-654 (-574)) (-654 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-574) (-574)) NIL (|has| (-574) (-317 (-574)))) (($ $ (-302 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-302 (-574)))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-1190)) (-654 (-574))) NIL (|has| (-574) (-524 (-1190) (-574)))) (($ $ (-1190) (-574)) NIL (|has| (-574) (-524 (-1190) (-574))))) (-1730 (((-781) $) NIL)) (-2199 (($ $ (-574)) NIL (|has| (-574) (-294 (-574) (-574))))) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-3905 (($ $) NIL (|has| (-574) (-239))) (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $ (-1190)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-4358 (($ $) NIL)) (-2977 (((-574) $) NIL)) (-1836 (((-903 (-574)) $) NIL (|has| (-574) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-574) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-574) (-624 (-546)))) (((-388) $) NIL (|has| (-574) (-1035))) (((-227) $) NIL (|has| (-574) (-1035)))) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-574) (-920))))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) 8) (($ (-574)) NIL) (($ (-1190)) NIL (|has| (-574) (-1051 (-1190)))) (((-417 (-574)) $) NIL) (((-1017 16) $) 10)) (-3298 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| (-574) (-920))) (|has| (-574) (-146))))) (-1364 (((-781)) NIL T CONST)) (-1801 (((-574) $) NIL (|has| (-574) (-555)))) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL)) (-3482 (($ $) NIL (|has| (-574) (-830)))) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-3610 (($ $) NIL (|has| (-574) (-239))) (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $ (-1190)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-3042 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3018 (((-112) $ $) NIL (|has| (-574) (-860)))) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3007 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3108 (($ $ $) NIL) (($ (-574) (-574)) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-574) $) NIL) (($ $ (-574)) NIL))) -(((-497) (-13 (-1005 (-574)) (-623 (-417 (-574))) (-623 (-1017 16)) (-10 -8 (-15 -3191 ((-417 (-574)) $)) (-15 -3643 ($ (-417 (-574))))))) (T -497)) -((-3191 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-497)))) (-3643 (*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-497))))) -(-13 (-1005 (-574)) (-623 (-417 (-574))) (-623 (-1017 16)) (-10 -8 (-15 -3191 ((-417 (-574)) $)) (-15 -3643 ($ (-417 (-574)))))) -((-1606 (((-654 |#2|) $) 31)) (-1710 (((-112) |#2| $) 36)) (-2540 (((-112) (-1 (-112) |#2|) $) 26)) (-2646 (($ $ (-654 (-302 |#2|))) 13) (($ $ (-302 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-654 |#2|) (-654 |#2|)) NIL)) (-3975 (((-781) (-1 (-112) |#2|) $) 30) (((-781) |#2| $) 34)) (-2943 (((-872) $) 45)) (-3390 (((-112) (-1 (-112) |#2|) $) 23)) (-2981 (((-112) $ $) 39)) (-2863 (((-781) $) 18))) -(((-498 |#1| |#2|) (-10 -8 (-15 -2943 ((-872) |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -2646 (|#1| |#1| (-654 |#2|) (-654 |#2|))) (-15 -2646 (|#1| |#1| |#2| |#2|)) (-15 -2646 (|#1| |#1| (-302 |#2|))) (-15 -2646 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -1710 ((-112) |#2| |#1|)) (-15 -3975 ((-781) |#2| |#1|)) (-15 -1606 ((-654 |#2|) |#1|)) (-15 -3975 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -2540 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3390 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2863 ((-781) |#1|))) (-499 |#2|) (-1231)) (T -498)) -NIL -(-10 -8 (-15 -2943 ((-872) |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -2646 (|#1| |#1| (-654 |#2|) (-654 |#2|))) (-15 -2646 (|#1| |#1| |#2| |#2|)) (-15 -2646 (|#1| |#1| (-302 |#2|))) (-15 -2646 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -1710 ((-112) |#2| |#1|)) (-15 -3975 ((-781) |#2| |#1|)) (-15 -1606 ((-654 |#2|) |#1|)) (-15 -3975 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -2540 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3390 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2863 ((-781) |#1|))) -((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3034 (((-112) $ (-781)) 8)) (-3426 (($) 7 T CONST)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-2742 (((-112) $ (-781)) 9)) (-1606 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2449 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 36)) (-4203 (((-112) $ (-781)) 10)) (-4136 (((-1172) $) 22 (|has| |#1| (-1113)))) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-2540 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 14)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-499 |#1|) (-141) (-1231)) (T -499)) -((-1777 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-499 *3)) (-4 *3 (-1231)))) (-2449 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4457)) (-4 *1 (-499 *3)) (-4 *3 (-1231)))) (-3390 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4456)) (-4 *1 (-499 *4)) (-4 *4 (-1231)) (-5 *2 (-112)))) (-2540 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4456)) (-4 *1 (-499 *4)) (-4 *4 (-1231)) (-5 *2 (-112)))) (-3975 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4456)) (-4 *1 (-499 *4)) (-4 *4 (-1231)) (-5 *2 (-781)))) (-1864 (*1 *2 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-499 *3)) (-4 *3 (-1231)) (-5 *2 (-654 *3)))) (-1606 (*1 *2 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-499 *3)) (-4 *3 (-1231)) (-5 *2 (-654 *3)))) (-3975 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-499 *3)) (-4 *3 (-1231)) (-4 *3 (-1113)) (-5 *2 (-781)))) (-1710 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-499 *3)) (-4 *3 (-1231)) (-4 *3 (-1113)) (-5 *2 (-112))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-623 (-872))) (-6 (-623 (-872))) |%noBranch|) (IF (|has| |t#1| (-1113)) (-6 (-1113)) |%noBranch|) (IF (|has| |t#1| (-1113)) (IF (|has| |t#1| (-317 |t#1|)) (-6 (-317 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1777 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4457)) (-15 -2449 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4456)) (PROGN (-15 -3390 ((-112) (-1 (-112) |t#1|) $)) (-15 -2540 ((-112) (-1 (-112) |t#1|) $)) (-15 -3975 ((-781) (-1 (-112) |t#1|) $)) (-15 -1864 ((-654 |t#1|) $)) (-15 -1606 ((-654 |t#1|) $)) (IF (|has| |t#1| (-1113)) (PROGN (-15 -3975 ((-781) |t#1| $)) (-15 -1710 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1113) |has| |#1| (-1113)) ((-1231) . T)) -((-2943 ((|#1| $) 6) (($ |#1|) 9))) -(((-500 |#1|) (-141) (-1231)) (T -500)) -NIL -(-13 (-623 |t#1|) (-626 |t#1|)) -(((-626 |#1|) . T) ((-623 |#1|) . T)) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3340 (($ (-1172)) 8)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 15) (((-1172) $) 12)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 11))) -(((-501) (-13 (-1113) (-623 (-1172)) (-10 -8 (-15 -3340 ($ (-1172)))))) (T -501)) -((-3340 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-501))))) -(-13 (-1113) (-623 (-1172)) (-10 -8 (-15 -3340 ($ (-1172))))) -((-2364 (($ $) 15)) (-2343 (($ $) 24)) (-2389 (($ $) 12)) (-2402 (($ $) 10)) (-2375 (($ $) 17)) (-2352 (($ $) 22))) -(((-502 |#1|) (-10 -8 (-15 -2352 (|#1| |#1|)) (-15 -2375 (|#1| |#1|)) (-15 -2402 (|#1| |#1|)) (-15 -2389 (|#1| |#1|)) (-15 -2343 (|#1| |#1|)) (-15 -2364 (|#1| |#1|))) (-503)) (T -502)) -NIL -(-10 -8 (-15 -2352 (|#1| |#1|)) (-15 -2375 (|#1| |#1|)) (-15 -2402 (|#1| |#1|)) (-15 -2389 (|#1| |#1|)) (-15 -2343 (|#1| |#1|)) (-15 -2364 (|#1| |#1|))) -((-2364 (($ $) 11)) (-2343 (($ $) 10)) (-2389 (($ $) 9)) (-2402 (($ $) 8)) (-2375 (($ $) 7)) (-2352 (($ $) 6))) -(((-503) (-141)) (T -503)) -((-2364 (*1 *1 *1) (-4 *1 (-503))) (-2343 (*1 *1 *1) (-4 *1 (-503))) (-2389 (*1 *1 *1) (-4 *1 (-503))) (-2402 (*1 *1 *1) (-4 *1 (-503))) (-2375 (*1 *1 *1) (-4 *1 (-503))) (-2352 (*1 *1 *1) (-4 *1 (-503)))) -(-13 (-10 -8 (-15 -2352 ($ $)) (-15 -2375 ($ $)) (-15 -2402 ($ $)) (-15 -2389 ($ $)) (-15 -2343 ($ $)) (-15 -2364 ($ $)))) -((-4220 (((-428 |#4|) |#4| (-1 (-428 |#2|) |#2|)) 54))) -(((-504 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4220 ((-428 |#4|) |#4| (-1 (-428 |#2|) |#2|)))) (-372) (-1257 |#1|) (-13 (-372) (-148) (-734 |#1| |#2|)) (-1257 |#3|)) (T -504)) -((-4220 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1257 *5)) (-4 *5 (-372)) (-4 *7 (-13 (-372) (-148) (-734 *5 *6))) (-5 *2 (-428 *3)) (-5 *1 (-504 *5 *6 *7 *3)) (-4 *3 (-1257 *7))))) -(-10 -7 (-15 -4220 ((-428 |#4|) |#4| (-1 (-428 |#2|) |#2|)))) -((-2849 (((-112) $ $) NIL)) (-2446 (((-654 $) (-1186 $) (-1190)) NIL) (((-654 $) (-1186 $)) NIL) (((-654 $) (-963 $)) NIL)) (-1588 (($ (-1186 $) (-1190)) NIL) (($ (-1186 $)) NIL) (($ (-963 $)) NIL)) (-3138 (((-112) $) 39)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-2558 (((-112) $ $) 73)) (-4091 (((-654 (-622 $)) $) 50)) (-3524 (((-3 $ "failed") $ $) NIL)) (-2545 (($ $ (-302 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL)) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-4229 (($ $) NIL)) (-1600 (((-112) $ $) NIL)) (-3426 (($) NIL T CONST)) (-3391 (((-654 $) (-1186 $) (-1190)) NIL) (((-654 $) (-1186 $)) NIL) (((-654 $) (-963 $)) NIL)) (-3078 (($ (-1186 $) (-1190)) NIL) (($ (-1186 $)) NIL) (($ (-963 $)) NIL)) (-1696 (((-3 (-622 $) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL)) (-2206 (((-622 $) $) NIL) (((-574) $) NIL) (((-417 (-574)) $) 55)) (-2786 (($ $ $) NIL)) (-2590 (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1281 $)) NIL) (((-2 (|:| -4340 (-699 (-417 (-574)))) (|:| |vec| (-1281 (-417 (-574))))) (-699 $) (-1281 $)) NIL) (((-699 (-417 (-574))) (-699 $)) NIL) (((-699 (-417 (-574))) (-1281 $)) NIL)) (-2868 (($ $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-2257 (((-112) $) NIL)) (-3574 (($ $) NIL) (($ (-654 $)) NIL)) (-3893 (((-654 (-115)) $) NIL)) (-4175 (((-115) (-115)) NIL)) (-3199 (((-112) $) 42)) (-4410 (((-112) $) NIL (|has| $ (-1051 (-574))))) (-2966 (((-1138 (-574) (-622 $)) $) 37)) (-3460 (($ $ (-574)) NIL)) (-2236 (((-1186 $) (-1186 $) (-622 $)) 87) (((-1186 $) (-1186 $) (-654 (-622 $))) 62) (($ $ (-622 $)) 76) (($ $ (-654 (-622 $))) 77)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1924 (((-1186 $) (-622 $)) 74 (|has| $ (-1062)))) (-1777 (($ (-1 $ $) (-622 $)) NIL)) (-3429 (((-3 (-622 $) "failed") $) NIL)) (-2832 (($ (-654 $)) NIL) (($ $ $) NIL)) (-4136 (((-1172) $) NIL)) (-4163 (((-654 (-622 $)) $) NIL)) (-1775 (($ (-115) $) NIL) (($ (-115) (-654 $)) NIL)) (-4103 (((-112) $ (-115)) NIL) (((-112) $ (-1190)) NIL)) (-1324 (($ $) NIL)) (-1839 (((-781) $) NIL)) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ (-654 $)) NIL) (($ $ $) NIL)) (-3974 (((-112) $ $) NIL) (((-112) $ (-1190)) NIL)) (-4220 (((-428 $) $) NIL)) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3476 (((-112) $) NIL (|has| $ (-1051 (-574))))) (-2646 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1190)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-1190)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-1190) (-1 $ (-654 $))) NIL) (($ $ (-1190) (-1 $ $)) NIL) (($ $ (-654 (-115)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-115) (-1 $ (-654 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-1730 (((-781) $) NIL)) (-2199 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-654 $)) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-2447 (($ $) NIL) (($ $ $) NIL)) (-3905 (($ $ (-781)) NIL) (($ $) 36)) (-2977 (((-1138 (-574) (-622 $)) $) 20)) (-4185 (($ $) NIL (|has| $ (-1062)))) (-1836 (((-388) $) 101) (((-227) $) 109) (((-171 (-388)) $) 117)) (-2943 (((-872) $) NIL) (($ (-622 $)) NIL) (($ (-417 (-574))) NIL) (($ $) NIL) (($ (-574)) NIL) (($ (-1138 (-574) (-622 $))) 21)) (-1364 (((-781)) NIL T CONST)) (-2029 (($ $) NIL) (($ (-654 $)) NIL)) (-3225 (((-112) (-115)) 93)) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL)) (-2133 (($) 10 T CONST)) (-2145 (($) 22 T CONST)) (-3610 (($ $ (-781)) NIL) (($ $) NIL)) (-2981 (((-112) $ $) 24)) (-3108 (($ $ $) 44)) (-3094 (($ $ $) NIL) (($ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-417 (-574))) NIL) (($ $ (-574)) 48) (($ $ (-781)) NIL) (($ $ (-932)) NIL)) (* (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL) (($ $ $) 27) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-932) $) NIL))) -(((-505) (-13 (-310) (-27) (-1051 (-574)) (-1051 (-417 (-574))) (-649 (-574)) (-1035) (-649 (-417 (-574))) (-148) (-624 (-171 (-388))) (-239) (-10 -8 (-15 -2943 ($ (-1138 (-574) (-622 $)))) (-15 -2966 ((-1138 (-574) (-622 $)) $)) (-15 -2977 ((-1138 (-574) (-622 $)) $)) (-15 -2868 ($ $)) (-15 -2558 ((-112) $ $)) (-15 -2236 ((-1186 $) (-1186 $) (-622 $))) (-15 -2236 ((-1186 $) (-1186 $) (-654 (-622 $)))) (-15 -2236 ($ $ (-622 $))) (-15 -2236 ($ $ (-654 (-622 $))))))) (T -505)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-1138 (-574) (-622 (-505)))) (-5 *1 (-505)))) (-2966 (*1 *2 *1) (-12 (-5 *2 (-1138 (-574) (-622 (-505)))) (-5 *1 (-505)))) (-2977 (*1 *2 *1) (-12 (-5 *2 (-1138 (-574) (-622 (-505)))) (-5 *1 (-505)))) (-2868 (*1 *1 *1) (-5 *1 (-505))) (-2558 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-505)))) (-2236 (*1 *2 *2 *3) (-12 (-5 *2 (-1186 (-505))) (-5 *3 (-622 (-505))) (-5 *1 (-505)))) (-2236 (*1 *2 *2 *3) (-12 (-5 *2 (-1186 (-505))) (-5 *3 (-654 (-622 (-505)))) (-5 *1 (-505)))) (-2236 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-505))) (-5 *1 (-505)))) (-2236 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-622 (-505)))) (-5 *1 (-505))))) -(-13 (-310) (-27) (-1051 (-574)) (-1051 (-417 (-574))) (-649 (-574)) (-1035) (-649 (-417 (-574))) (-148) (-624 (-171 (-388))) (-239) (-10 -8 (-15 -2943 ($ (-1138 (-574) (-622 $)))) (-15 -2966 ((-1138 (-574) (-622 $)) $)) (-15 -2977 ((-1138 (-574) (-622 $)) $)) (-15 -2868 ($ $)) (-15 -2558 ((-112) $ $)) (-15 -2236 ((-1186 $) (-1186 $) (-622 $))) (-15 -2236 ((-1186 $) (-1186 $) (-654 (-622 $)))) (-15 -2236 ($ $ (-622 $))) (-15 -2236 ($ $ (-654 (-622 $)))))) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3714 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-1357 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-3642 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4457))) (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| |#1| (-860))))) (-2771 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-3034 (((-112) $ (-781)) NIL)) (-3143 ((|#1| $ (-574) |#1|) 44 (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) NIL (|has| $ (-6 -4457)))) (-2165 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3426 (($) NIL T CONST)) (-2627 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3335 (($ |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-2458 ((|#1| $ (-574) |#1|) 39 (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) 38)) (-1441 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1113))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1113)))) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3790 (($ (-781) |#1|) 21)) (-2742 (((-112) $ (-781)) NIL)) (-3618 (((-574) $) 17 (|has| (-574) (-860)))) (-3659 (($ $ $) NIL (|has| |#1| (-860)))) (-4430 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2702 (((-574) $) 41 (|has| (-574) (-860)))) (-4257 (($ $ $) NIL (|has| |#1| (-860)))) (-2449 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 32) (($ (-1 |#1| |#1| |#1|) $ $) 35)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-1594 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-4308 (((-654 (-574)) $) NIL)) (-3336 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2915 ((|#1| $) NIL (|has| (-574) (-860)))) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1942 (($ $ |#1|) 15 (|has| $ (-6 -4457)))) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-4371 (((-654 |#1|) $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) 19)) (-2199 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) 43) (($ $ (-1248 (-574))) NIL)) (-2840 (($ $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3506 (($ $ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3167 (($ $) 13)) (-1836 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 24)) (-4157 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3007 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2863 (((-781) $) 11 (|has| $ (-6 -4456))))) -(((-506 |#1| |#2|) (-19 |#1|) (-1231) (-574)) (T -506)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-653 (-337))) (-4 *1 (-450)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-337)) (-4 *1 (-450)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) (-4 *1 (-450)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-1280 (-323 (-387)))) (-4 *1 (-450)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-1280 (-323 (-387)))) (-4 *1 (-450)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-1280 (-323 (-573)))) (-4 *1 (-450)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-1280 (-323 (-573)))) (-4 *1 (-450)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-1280 (-962 (-387)))) (-4 *1 (-450)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-1280 (-962 (-387)))) (-4 *1 (-450)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-1280 (-962 (-573)))) (-4 *1 (-450)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-1280 (-962 (-573)))) (-4 *1 (-450)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-1280 (-416 (-962 (-387))))) (-4 *1 (-450)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-1280 (-416 (-962 (-387))))) (-4 *1 (-450)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-1280 (-416 (-962 (-573))))) (-4 *1 (-450)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-1280 (-416 (-962 (-573))))) (-4 *1 (-450))))) +(-13 (-404) (-10 -8 (-15 -2942 ($ (-653 (-337)))) (-15 -2942 ($ (-337))) (-15 -2942 ($ (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337)))))) (-15 -2205 ($ (-1280 (-323 (-387))))) (-15 -1695 ((-3 $ "failed") (-1280 (-323 (-387))))) (-15 -2205 ($ (-1280 (-323 (-573))))) (-15 -1695 ((-3 $ "failed") (-1280 (-323 (-573))))) (-15 -2205 ($ (-1280 (-962 (-387))))) (-15 -1695 ((-3 $ "failed") (-1280 (-962 (-387))))) (-15 -2205 ($ (-1280 (-962 (-573))))) (-15 -1695 ((-3 $ "failed") (-1280 (-962 (-573))))) (-15 -2205 ($ (-1280 (-416 (-962 (-387)))))) (-15 -1695 ((-3 $ "failed") (-1280 (-416 (-962 (-387)))))) (-15 -2205 ($ (-1280 (-416 (-962 (-573)))))) (-15 -1695 ((-3 $ "failed") (-1280 (-416 (-962 (-573)))))))) +(((-622 (-871)) . T) ((-404) . T) ((-1230) . T)) +((-4402 (((-112)) 18)) (-2768 (((-112) (-112)) 19)) (-1767 (((-112)) 14)) (-3759 (((-112) (-112)) 15)) (-3533 (((-112)) 16)) (-1320 (((-112) (-112)) 17)) (-1484 (((-931) (-931)) 22) (((-931)) 21)) (-4147 (((-780) (-653 (-2 (|:| -4218 |#1|) (|:| -2565 (-573))))) 52)) (-4258 (((-931) (-931)) 24) (((-931)) 23)) (-1789 (((-2 (|:| -4383 (-573)) (|:| -1687 (-653 |#1|))) |#1|) 94)) (-3933 (((-427 |#1|) (-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| |#1|) (|:| -3287 (-573))))))) 174)) (-2096 (((-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| |#1|) (|:| -3287 (-573)))))) |#1| (-112)) 207)) (-2513 (((-427 |#1|) |#1| (-780) (-780)) 222) (((-427 |#1|) |#1| (-653 (-780)) (-780)) 219) (((-427 |#1|) |#1| (-653 (-780))) 221) (((-427 |#1|) |#1| (-780)) 220) (((-427 |#1|) |#1|) 218)) (-1797 (((-3 |#1| "failed") (-931) |#1| (-653 (-780)) (-780) (-112)) 224) (((-3 |#1| "failed") (-931) |#1| (-653 (-780)) (-780)) 225) (((-3 |#1| "failed") (-931) |#1| (-653 (-780))) 227) (((-3 |#1| "failed") (-931) |#1| (-780)) 226) (((-3 |#1| "failed") (-931) |#1|) 228)) (-4218 (((-427 |#1|) |#1| (-780) (-780)) 217) (((-427 |#1|) |#1| (-653 (-780)) (-780)) 213) (((-427 |#1|) |#1| (-653 (-780))) 215) (((-427 |#1|) |#1| (-780)) 214) (((-427 |#1|) |#1|) 212)) (-1472 (((-112) |#1|) 44)) (-3261 (((-746 (-780)) (-653 (-2 (|:| -4218 |#1|) (|:| -2565 (-573))))) 99)) (-3143 (((-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| |#1|) (|:| -3287 (-573)))))) |#1| (-112) (-1114 (-780)) (-780)) 211))) +(((-451 |#1|) (-10 -7 (-15 -3933 ((-427 |#1|) (-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| |#1|) (|:| -3287 (-573)))))))) (-15 -3261 ((-746 (-780)) (-653 (-2 (|:| -4218 |#1|) (|:| -2565 (-573)))))) (-15 -4258 ((-931))) (-15 -4258 ((-931) (-931))) (-15 -1484 ((-931))) (-15 -1484 ((-931) (-931))) (-15 -4147 ((-780) (-653 (-2 (|:| -4218 |#1|) (|:| -2565 (-573)))))) (-15 -1789 ((-2 (|:| -4383 (-573)) (|:| -1687 (-653 |#1|))) |#1|)) (-15 -4402 ((-112))) (-15 -2768 ((-112) (-112))) (-15 -1767 ((-112))) (-15 -3759 ((-112) (-112))) (-15 -1472 ((-112) |#1|)) (-15 -3533 ((-112))) (-15 -1320 ((-112) (-112))) (-15 -4218 ((-427 |#1|) |#1|)) (-15 -4218 ((-427 |#1|) |#1| (-780))) (-15 -4218 ((-427 |#1|) |#1| (-653 (-780)))) (-15 -4218 ((-427 |#1|) |#1| (-653 (-780)) (-780))) (-15 -4218 ((-427 |#1|) |#1| (-780) (-780))) (-15 -2513 ((-427 |#1|) |#1|)) (-15 -2513 ((-427 |#1|) |#1| (-780))) (-15 -2513 ((-427 |#1|) |#1| (-653 (-780)))) (-15 -2513 ((-427 |#1|) |#1| (-653 (-780)) (-780))) (-15 -2513 ((-427 |#1|) |#1| (-780) (-780))) (-15 -1797 ((-3 |#1| "failed") (-931) |#1|)) (-15 -1797 ((-3 |#1| "failed") (-931) |#1| (-780))) (-15 -1797 ((-3 |#1| "failed") (-931) |#1| (-653 (-780)))) (-15 -1797 ((-3 |#1| "failed") (-931) |#1| (-653 (-780)) (-780))) (-15 -1797 ((-3 |#1| "failed") (-931) |#1| (-653 (-780)) (-780) (-112))) (-15 -2096 ((-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| |#1|) (|:| -3287 (-573)))))) |#1| (-112))) (-15 -3143 ((-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| |#1|) (|:| -3287 (-573)))))) |#1| (-112) (-1114 (-780)) (-780)))) (-1256 (-573))) (T -451)) +((-3143 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1114 (-780))) (-5 *6 (-780)) (-5 *2 (-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| *3) (|:| -3287 (-573))))))) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-2096 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| *3) (|:| -3287 (-573))))))) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-1797 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-931)) (-5 *4 (-653 (-780))) (-5 *5 (-780)) (-5 *6 (-112)) (-5 *1 (-451 *2)) (-4 *2 (-1256 (-573))))) (-1797 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-931)) (-5 *4 (-653 (-780))) (-5 *5 (-780)) (-5 *1 (-451 *2)) (-4 *2 (-1256 (-573))))) (-1797 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-931)) (-5 *4 (-653 (-780))) (-5 *1 (-451 *2)) (-4 *2 (-1256 (-573))))) (-1797 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-931)) (-5 *4 (-780)) (-5 *1 (-451 *2)) (-4 *2 (-1256 (-573))))) (-1797 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-931)) (-5 *1 (-451 *2)) (-4 *2 (-1256 (-573))))) (-2513 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-780)) (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-2513 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-653 (-780))) (-5 *5 (-780)) (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-2513 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-780))) (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-2513 (*1 *2 *3 *4) (-12 (-5 *4 (-780)) (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-2513 (*1 *2 *3) (-12 (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-4218 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-780)) (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-4218 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-653 (-780))) (-5 *5 (-780)) (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-4218 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-780))) (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-4218 (*1 *2 *3 *4) (-12 (-5 *4 (-780)) (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-4218 (*1 *2 *3) (-12 (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-1320 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-3533 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-1472 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-3759 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-1767 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-2768 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-4402 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-1789 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4383 (-573)) (|:| -1687 (-653 *3)))) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-4147 (*1 *2 *3) (-12 (-5 *3 (-653 (-2 (|:| -4218 *4) (|:| -2565 (-573))))) (-4 *4 (-1256 (-573))) (-5 *2 (-780)) (-5 *1 (-451 *4)))) (-1484 (*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-1484 (*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-4258 (*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-4258 (*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) (-3261 (*1 *2 *3) (-12 (-5 *3 (-653 (-2 (|:| -4218 *4) (|:| -2565 (-573))))) (-4 *4 (-1256 (-573))) (-5 *2 (-746 (-780))) (-5 *1 (-451 *4)))) (-3933 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| *4) (|:| -3287 (-573))))))) (-4 *4 (-1256 (-573))) (-5 *2 (-427 *4)) (-5 *1 (-451 *4))))) +(-10 -7 (-15 -3933 ((-427 |#1|) (-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| |#1|) (|:| -3287 (-573)))))))) (-15 -3261 ((-746 (-780)) (-653 (-2 (|:| -4218 |#1|) (|:| -2565 (-573)))))) (-15 -4258 ((-931))) (-15 -4258 ((-931) (-931))) (-15 -1484 ((-931))) (-15 -1484 ((-931) (-931))) (-15 -4147 ((-780) (-653 (-2 (|:| -4218 |#1|) (|:| -2565 (-573)))))) (-15 -1789 ((-2 (|:| -4383 (-573)) (|:| -1687 (-653 |#1|))) |#1|)) (-15 -4402 ((-112))) (-15 -2768 ((-112) (-112))) (-15 -1767 ((-112))) (-15 -3759 ((-112) (-112))) (-15 -1472 ((-112) |#1|)) (-15 -3533 ((-112))) (-15 -1320 ((-112) (-112))) (-15 -4218 ((-427 |#1|) |#1|)) (-15 -4218 ((-427 |#1|) |#1| (-780))) (-15 -4218 ((-427 |#1|) |#1| (-653 (-780)))) (-15 -4218 ((-427 |#1|) |#1| (-653 (-780)) (-780))) (-15 -4218 ((-427 |#1|) |#1| (-780) (-780))) (-15 -2513 ((-427 |#1|) |#1|)) (-15 -2513 ((-427 |#1|) |#1| (-780))) (-15 -2513 ((-427 |#1|) |#1| (-653 (-780)))) (-15 -2513 ((-427 |#1|) |#1| (-653 (-780)) (-780))) (-15 -2513 ((-427 |#1|) |#1| (-780) (-780))) (-15 -1797 ((-3 |#1| "failed") (-931) |#1|)) (-15 -1797 ((-3 |#1| "failed") (-931) |#1| (-780))) (-15 -1797 ((-3 |#1| "failed") (-931) |#1| (-653 (-780)))) (-15 -1797 ((-3 |#1| "failed") (-931) |#1| (-653 (-780)) (-780))) (-15 -1797 ((-3 |#1| "failed") (-931) |#1| (-653 (-780)) (-780) (-112))) (-15 -2096 ((-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| |#1|) (|:| -3287 (-573)))))) |#1| (-112))) (-15 -3143 ((-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| |#1|) (|:| -3287 (-573)))))) |#1| (-112) (-1114 (-780)) (-780)))) +((-1618 (((-573) |#2|) 52) (((-573) |#2| (-780)) 51)) (-4429 (((-573) |#2|) 64)) (-3097 ((|#3| |#2|) 26)) (-3421 ((|#3| |#2| (-931)) 15)) (-4134 ((|#3| |#2|) 16)) (-1326 ((|#3| |#2|) 9)) (-1839 ((|#3| |#2|) 10)) (-3283 ((|#3| |#2| (-931)) 71) ((|#3| |#2|) 34)) (-3035 (((-573) |#2|) 66))) +(((-452 |#1| |#2| |#3|) (-10 -7 (-15 -3035 ((-573) |#2|)) (-15 -3283 (|#3| |#2|)) (-15 -3283 (|#3| |#2| (-931))) (-15 -4429 ((-573) |#2|)) (-15 -1618 ((-573) |#2| (-780))) (-15 -1618 ((-573) |#2|)) (-15 -3421 (|#3| |#2| (-931))) (-15 -3097 (|#3| |#2|)) (-15 -1326 (|#3| |#2|)) (-15 -1839 (|#3| |#2|)) (-15 -4134 (|#3| |#2|))) (-1061) (-1256 |#1|) (-13 (-413) (-1050 |#1|) (-371) (-1215) (-291))) (T -452)) +((-4134 (*1 *2 *3) (-12 (-4 *4 (-1061)) (-4 *2 (-13 (-413) (-1050 *4) (-371) (-1215) (-291))) (-5 *1 (-452 *4 *3 *2)) (-4 *3 (-1256 *4)))) (-1839 (*1 *2 *3) (-12 (-4 *4 (-1061)) (-4 *2 (-13 (-413) (-1050 *4) (-371) (-1215) (-291))) (-5 *1 (-452 *4 *3 *2)) (-4 *3 (-1256 *4)))) (-1326 (*1 *2 *3) (-12 (-4 *4 (-1061)) (-4 *2 (-13 (-413) (-1050 *4) (-371) (-1215) (-291))) (-5 *1 (-452 *4 *3 *2)) (-4 *3 (-1256 *4)))) (-3097 (*1 *2 *3) (-12 (-4 *4 (-1061)) (-4 *2 (-13 (-413) (-1050 *4) (-371) (-1215) (-291))) (-5 *1 (-452 *4 *3 *2)) (-4 *3 (-1256 *4)))) (-3421 (*1 *2 *3 *4) (-12 (-5 *4 (-931)) (-4 *5 (-1061)) (-4 *2 (-13 (-413) (-1050 *5) (-371) (-1215) (-291))) (-5 *1 (-452 *5 *3 *2)) (-4 *3 (-1256 *5)))) (-1618 (*1 *2 *3) (-12 (-4 *4 (-1061)) (-5 *2 (-573)) (-5 *1 (-452 *4 *3 *5)) (-4 *3 (-1256 *4)) (-4 *5 (-13 (-413) (-1050 *4) (-371) (-1215) (-291))))) (-1618 (*1 *2 *3 *4) (-12 (-5 *4 (-780)) (-4 *5 (-1061)) (-5 *2 (-573)) (-5 *1 (-452 *5 *3 *6)) (-4 *3 (-1256 *5)) (-4 *6 (-13 (-413) (-1050 *5) (-371) (-1215) (-291))))) (-4429 (*1 *2 *3) (-12 (-4 *4 (-1061)) (-5 *2 (-573)) (-5 *1 (-452 *4 *3 *5)) (-4 *3 (-1256 *4)) (-4 *5 (-13 (-413) (-1050 *4) (-371) (-1215) (-291))))) (-3283 (*1 *2 *3 *4) (-12 (-5 *4 (-931)) (-4 *5 (-1061)) (-4 *2 (-13 (-413) (-1050 *5) (-371) (-1215) (-291))) (-5 *1 (-452 *5 *3 *2)) (-4 *3 (-1256 *5)))) (-3283 (*1 *2 *3) (-12 (-4 *4 (-1061)) (-4 *2 (-13 (-413) (-1050 *4) (-371) (-1215) (-291))) (-5 *1 (-452 *4 *3 *2)) (-4 *3 (-1256 *4)))) (-3035 (*1 *2 *3) (-12 (-4 *4 (-1061)) (-5 *2 (-573)) (-5 *1 (-452 *4 *3 *5)) (-4 *3 (-1256 *4)) (-4 *5 (-13 (-413) (-1050 *4) (-371) (-1215) (-291)))))) +(-10 -7 (-15 -3035 ((-573) |#2|)) (-15 -3283 (|#3| |#2|)) (-15 -3283 (|#3| |#2| (-931))) (-15 -4429 ((-573) |#2|)) (-15 -1618 ((-573) |#2| (-780))) (-15 -1618 ((-573) |#2|)) (-15 -3421 (|#3| |#2| (-931))) (-15 -3097 (|#3| |#2|)) (-15 -1326 (|#3| |#2|)) (-15 -1839 (|#3| |#2|)) (-15 -4134 (|#3| |#2|))) +((-2929 ((|#2| (-1280 |#1|)) 42)) (-1773 ((|#2| |#2| |#1|) 58)) (-2397 ((|#2| |#2| |#1|) 49)) (-4422 ((|#2| |#2|) 44)) (-2093 (((-112) |#2|) 32)) (-1404 (((-653 |#2|) (-931) (-427 |#2|)) 21)) (-1797 ((|#2| (-931) (-427 |#2|)) 25)) (-3261 (((-746 (-780)) (-427 |#2|)) 29))) +(((-453 |#1| |#2|) (-10 -7 (-15 -2093 ((-112) |#2|)) (-15 -2929 (|#2| (-1280 |#1|))) (-15 -4422 (|#2| |#2|)) (-15 -2397 (|#2| |#2| |#1|)) (-15 -1773 (|#2| |#2| |#1|)) (-15 -3261 ((-746 (-780)) (-427 |#2|))) (-15 -1797 (|#2| (-931) (-427 |#2|))) (-15 -1404 ((-653 |#2|) (-931) (-427 |#2|)))) (-1061) (-1256 |#1|)) (T -453)) +((-1404 (*1 *2 *3 *4) (-12 (-5 *3 (-931)) (-5 *4 (-427 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-1061)) (-5 *2 (-653 *6)) (-5 *1 (-453 *5 *6)))) (-1797 (*1 *2 *3 *4) (-12 (-5 *3 (-931)) (-5 *4 (-427 *2)) (-4 *2 (-1256 *5)) (-5 *1 (-453 *5 *2)) (-4 *5 (-1061)))) (-3261 (*1 *2 *3) (-12 (-5 *3 (-427 *5)) (-4 *5 (-1256 *4)) (-4 *4 (-1061)) (-5 *2 (-746 (-780))) (-5 *1 (-453 *4 *5)))) (-1773 (*1 *2 *2 *3) (-12 (-4 *3 (-1061)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1256 *3)))) (-2397 (*1 *2 *2 *3) (-12 (-4 *3 (-1061)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1256 *3)))) (-4422 (*1 *2 *2) (-12 (-4 *3 (-1061)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1256 *3)))) (-2929 (*1 *2 *3) (-12 (-5 *3 (-1280 *4)) (-4 *4 (-1061)) (-4 *2 (-1256 *4)) (-5 *1 (-453 *4 *2)))) (-2093 (*1 *2 *3) (-12 (-4 *4 (-1061)) (-5 *2 (-112)) (-5 *1 (-453 *4 *3)) (-4 *3 (-1256 *4))))) +(-10 -7 (-15 -2093 ((-112) |#2|)) (-15 -2929 (|#2| (-1280 |#1|))) (-15 -4422 (|#2| |#2|)) (-15 -2397 (|#2| |#2| |#1|)) (-15 -1773 (|#2| |#2| |#1|)) (-15 -3261 ((-746 (-780)) (-427 |#2|))) (-15 -1797 (|#2| (-931) (-427 |#2|))) (-15 -1404 ((-653 |#2|) (-931) (-427 |#2|)))) +((-3436 (((-780)) 59)) (-2289 (((-780)) 29 (|has| |#1| (-413))) (((-780) (-780)) 28 (|has| |#1| (-413)))) (-2618 (((-573) |#1|) 25 (|has| |#1| (-413)))) (-3371 (((-573) |#1|) 27 (|has| |#1| (-413)))) (-1413 (((-780)) 58) (((-780) (-780)) 57)) (-2260 ((|#1| (-780) (-573)) 37)) (-3023 (((-1285)) 61))) +(((-454 |#1|) (-10 -7 (-15 -2260 (|#1| (-780) (-573))) (-15 -1413 ((-780) (-780))) (-15 -1413 ((-780))) (-15 -3436 ((-780))) (-15 -3023 ((-1285))) (IF (|has| |#1| (-413)) (PROGN (-15 -3371 ((-573) |#1|)) (-15 -2618 ((-573) |#1|)) (-15 -2289 ((-780) (-780))) (-15 -2289 ((-780)))) |%noBranch|)) (-1061)) (T -454)) +((-2289 (*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-454 *3)) (-4 *3 (-413)) (-4 *3 (-1061)))) (-2289 (*1 *2 *2) (-12 (-5 *2 (-780)) (-5 *1 (-454 *3)) (-4 *3 (-413)) (-4 *3 (-1061)))) (-2618 (*1 *2 *3) (-12 (-5 *2 (-573)) (-5 *1 (-454 *3)) (-4 *3 (-413)) (-4 *3 (-1061)))) (-3371 (*1 *2 *3) (-12 (-5 *2 (-573)) (-5 *1 (-454 *3)) (-4 *3 (-413)) (-4 *3 (-1061)))) (-3023 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-454 *3)) (-4 *3 (-1061)))) (-3436 (*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-454 *3)) (-4 *3 (-1061)))) (-1413 (*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-454 *3)) (-4 *3 (-1061)))) (-1413 (*1 *2 *2) (-12 (-5 *2 (-780)) (-5 *1 (-454 *3)) (-4 *3 (-1061)))) (-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-780)) (-5 *4 (-573)) (-5 *1 (-454 *2)) (-4 *2 (-1061))))) +(-10 -7 (-15 -2260 (|#1| (-780) (-573))) (-15 -1413 ((-780) (-780))) (-15 -1413 ((-780))) (-15 -3436 ((-780))) (-15 -3023 ((-1285))) (IF (|has| |#1| (-413)) (PROGN (-15 -3371 ((-573) |#1|)) (-15 -2618 ((-573) |#1|)) (-15 -2289 ((-780) (-780))) (-15 -2289 ((-780)))) |%noBranch|)) +((-3462 (((-653 (-573)) (-573)) 76)) (-2696 (((-112) (-171 (-573))) 82)) (-4218 (((-427 (-171 (-573))) (-171 (-573))) 75))) +(((-455) (-10 -7 (-15 -4218 ((-427 (-171 (-573))) (-171 (-573)))) (-15 -3462 ((-653 (-573)) (-573))) (-15 -2696 ((-112) (-171 (-573)))))) (T -455)) +((-2696 (*1 *2 *3) (-12 (-5 *3 (-171 (-573))) (-5 *2 (-112)) (-5 *1 (-455)))) (-3462 (*1 *2 *3) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-455)) (-5 *3 (-573)))) (-4218 (*1 *2 *3) (-12 (-5 *2 (-427 (-171 (-573)))) (-5 *1 (-455)) (-5 *3 (-171 (-573)))))) +(-10 -7 (-15 -4218 ((-427 (-171 (-573))) (-171 (-573)))) (-15 -3462 ((-653 (-573)) (-573))) (-15 -2696 ((-112) (-171 (-573))))) +((-3847 ((|#4| |#4| (-653 |#4|)) 82)) (-4099 (((-653 |#4|) (-653 |#4|) (-1171) (-1171)) 22) (((-653 |#4|) (-653 |#4|) (-1171)) 21) (((-653 |#4|) (-653 |#4|)) 13))) +(((-456 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3847 (|#4| |#4| (-653 |#4|))) (-15 -4099 ((-653 |#4|) (-653 |#4|))) (-15 -4099 ((-653 |#4|) (-653 |#4|) (-1171))) (-15 -4099 ((-653 |#4|) (-653 |#4|) (-1171) (-1171)))) (-314) (-802) (-859) (-959 |#1| |#2| |#3|)) (T -456)) +((-4099 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-653 *7)) (-5 *3 (-1171)) (-4 *7 (-959 *4 *5 *6)) (-4 *4 (-314)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-456 *4 *5 *6 *7)))) (-4099 (*1 *2 *2 *3) (-12 (-5 *2 (-653 *7)) (-5 *3 (-1171)) (-4 *7 (-959 *4 *5 *6)) (-4 *4 (-314)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-456 *4 *5 *6 *7)))) (-4099 (*1 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-314)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-456 *3 *4 *5 *6)))) (-3847 (*1 *2 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-959 *4 *5 *6)) (-4 *4 (-314)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-456 *4 *5 *6 *2))))) +(-10 -7 (-15 -3847 (|#4| |#4| (-653 |#4|))) (-15 -4099 ((-653 |#4|) (-653 |#4|))) (-15 -4099 ((-653 |#4|) (-653 |#4|) (-1171))) (-15 -4099 ((-653 |#4|) (-653 |#4|) (-1171) (-1171)))) +((-1558 (((-653 (-653 |#4|)) (-653 |#4|) (-112)) 89) (((-653 (-653 |#4|)) (-653 |#4|)) 88) (((-653 (-653 |#4|)) (-653 |#4|) (-653 |#4|) (-112)) 82) (((-653 (-653 |#4|)) (-653 |#4|) (-653 |#4|)) 83)) (-3383 (((-653 (-653 |#4|)) (-653 |#4|) (-112)) 55) (((-653 (-653 |#4|)) (-653 |#4|)) 77))) +(((-457 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3383 ((-653 (-653 |#4|)) (-653 |#4|))) (-15 -3383 ((-653 (-653 |#4|)) (-653 |#4|) (-112))) (-15 -1558 ((-653 (-653 |#4|)) (-653 |#4|) (-653 |#4|))) (-15 -1558 ((-653 (-653 |#4|)) (-653 |#4|) (-653 |#4|) (-112))) (-15 -1558 ((-653 (-653 |#4|)) (-653 |#4|))) (-15 -1558 ((-653 (-653 |#4|)) (-653 |#4|) (-112)))) (-13 (-314) (-148)) (-802) (-859) (-959 |#1| |#2| |#3|)) (T -457)) +((-1558 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-959 *5 *6 *7)) (-5 *2 (-653 (-653 *8))) (-5 *1 (-457 *5 *6 *7 *8)) (-5 *3 (-653 *8)))) (-1558 (*1 *2 *3) (-12 (-4 *4 (-13 (-314) (-148))) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-959 *4 *5 *6)) (-5 *2 (-653 (-653 *7))) (-5 *1 (-457 *4 *5 *6 *7)) (-5 *3 (-653 *7)))) (-1558 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-959 *5 *6 *7)) (-5 *2 (-653 (-653 *8))) (-5 *1 (-457 *5 *6 *7 *8)) (-5 *3 (-653 *8)))) (-1558 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-314) (-148))) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-959 *4 *5 *6)) (-5 *2 (-653 (-653 *7))) (-5 *1 (-457 *4 *5 *6 *7)) (-5 *3 (-653 *7)))) (-3383 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-959 *5 *6 *7)) (-5 *2 (-653 (-653 *8))) (-5 *1 (-457 *5 *6 *7 *8)) (-5 *3 (-653 *8)))) (-3383 (*1 *2 *3) (-12 (-4 *4 (-13 (-314) (-148))) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-959 *4 *5 *6)) (-5 *2 (-653 (-653 *7))) (-5 *1 (-457 *4 *5 *6 *7)) (-5 *3 (-653 *7))))) +(-10 -7 (-15 -3383 ((-653 (-653 |#4|)) (-653 |#4|))) (-15 -3383 ((-653 (-653 |#4|)) (-653 |#4|) (-112))) (-15 -1558 ((-653 (-653 |#4|)) (-653 |#4|) (-653 |#4|))) (-15 -1558 ((-653 (-653 |#4|)) (-653 |#4|) (-653 |#4|) (-112))) (-15 -1558 ((-653 (-653 |#4|)) (-653 |#4|))) (-15 -1558 ((-653 (-653 |#4|)) (-653 |#4|) (-112)))) +((-2977 (((-780) |#4|) 12)) (-3936 (((-653 (-2 (|:| |totdeg| (-780)) (|:| -3881 |#4|))) |#4| (-780) (-653 (-2 (|:| |totdeg| (-780)) (|:| -3881 |#4|)))) 39)) (-1815 (((-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-3324 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-2021 ((|#4| |#4| (-653 |#4|)) 54)) (-1476 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-653 |#4|)) 96)) (-2553 (((-1285) |#4|) 59)) (-1398 (((-1285) (-653 |#4|)) 69)) (-4369 (((-573) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-573) (-573) (-573)) 66)) (-3663 (((-1285) (-573)) 110)) (-3385 (((-653 |#4|) (-653 |#4|)) 104)) (-3972 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-780)) (|:| -3881 |#4|)) |#4| (-780)) 31)) (-1518 (((-573) |#4|) 109)) (-4311 ((|#4| |#4|) 37)) (-1459 (((-653 |#4|) (-653 |#4|) (-573) (-573)) 74)) (-2147 (((-573) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-573) (-573) (-573) (-573)) 123)) (-4024 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-3352 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-1934 (((-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-4355 (((-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-3838 (((-112) |#2| |#2|) 75)) (-2371 (((-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-2202 (((-112) |#2| |#2| |#2| |#2|) 80)) (-3003 ((|#4| |#4| (-653 |#4|)) 97))) +(((-458 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3003 (|#4| |#4| (-653 |#4|))) (-15 -2021 (|#4| |#4| (-653 |#4|))) (-15 -1459 ((-653 |#4|) (-653 |#4|) (-573) (-573))) (-15 -3352 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3838 ((-112) |#2| |#2|)) (-15 -2202 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2371 ((-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4355 ((-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1934 ((-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1476 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-653 |#4|))) (-15 -4311 (|#4| |#4|)) (-15 -3936 ((-653 (-2 (|:| |totdeg| (-780)) (|:| -3881 |#4|))) |#4| (-780) (-653 (-2 (|:| |totdeg| (-780)) (|:| -3881 |#4|))))) (-15 -3324 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1815 ((-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3385 ((-653 |#4|) (-653 |#4|))) (-15 -1518 ((-573) |#4|)) (-15 -2553 ((-1285) |#4|)) (-15 -4369 ((-573) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-573) (-573) (-573))) (-15 -2147 ((-573) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-573) (-573) (-573) (-573))) (-15 -1398 ((-1285) (-653 |#4|))) (-15 -3663 ((-1285) (-573))) (-15 -4024 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3972 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-780)) (|:| -3881 |#4|)) |#4| (-780))) (-15 -2977 ((-780) |#4|))) (-461) (-802) (-859) (-959 |#1| |#2| |#3|)) (T -458)) +((-2977 (*1 *2 *3) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-780)) (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-959 *4 *5 *6)))) (-3972 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-780)) (|:| -3881 *4))) (-5 *5 (-780)) (-4 *4 (-959 *6 *7 *8)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-458 *6 *7 *8 *4)))) (-4024 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-780)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-802)) (-4 *7 (-959 *4 *5 *6)) (-4 *4 (-461)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-458 *4 *5 *6 *7)))) (-3663 (*1 *2 *3) (-12 (-5 *3 (-573)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-1285)) (-5 *1 (-458 *4 *5 *6 *7)) (-4 *7 (-959 *4 *5 *6)))) (-1398 (*1 *2 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-959 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-1285)) (-5 *1 (-458 *4 *5 *6 *7)))) (-2147 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-780)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-802)) (-4 *4 (-959 *5 *6 *7)) (-4 *5 (-461)) (-4 *7 (-859)) (-5 *1 (-458 *5 *6 *7 *4)))) (-4369 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-780)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-802)) (-4 *4 (-959 *5 *6 *7)) (-4 *5 (-461)) (-4 *7 (-859)) (-5 *1 (-458 *5 *6 *7 *4)))) (-2553 (*1 *2 *3) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-1285)) (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-959 *4 *5 *6)))) (-1518 (*1 *2 *3) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-573)) (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-959 *4 *5 *6)))) (-3385 (*1 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-458 *3 *4 *5 *6)))) (-1815 (*1 *2 *2 *2) (-12 (-5 *2 (-653 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-780)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-802)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-461)) (-4 *5 (-859)) (-5 *1 (-458 *3 *4 *5 *6)))) (-3324 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-780)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-802)) (-4 *2 (-959 *4 *5 *6)) (-5 *1 (-458 *4 *5 *6 *2)) (-4 *4 (-461)) (-4 *6 (-859)))) (-3936 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-653 (-2 (|:| |totdeg| (-780)) (|:| -3881 *3)))) (-5 *4 (-780)) (-4 *3 (-959 *5 *6 *7)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *1 (-458 *5 *6 *7 *3)))) (-4311 (*1 *2 *2) (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-458 *3 *4 *5 *2)) (-4 *2 (-959 *3 *4 *5)))) (-1476 (*1 *2 *3 *4) (-12 (-5 *4 (-653 *3)) (-4 *3 (-959 *5 *6 *7)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-458 *5 *6 *7 *3)))) (-1934 (*1 *2 *3 *2) (-12 (-5 *2 (-653 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-780)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-802)) (-4 *6 (-959 *4 *3 *5)) (-4 *4 (-461)) (-4 *5 (-859)) (-5 *1 (-458 *4 *3 *5 *6)))) (-4355 (*1 *2 *2) (-12 (-5 *2 (-653 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-780)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-802)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-461)) (-4 *5 (-859)) (-5 *1 (-458 *3 *4 *5 *6)))) (-2371 (*1 *2 *3 *2) (-12 (-5 *2 (-653 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-780)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-802)) (-4 *3 (-959 *4 *5 *6)) (-4 *4 (-461)) (-4 *6 (-859)) (-5 *1 (-458 *4 *5 *6 *3)))) (-2202 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-461)) (-4 *3 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) (-5 *1 (-458 *4 *3 *5 *6)) (-4 *6 (-959 *4 *3 *5)))) (-3838 (*1 *2 *3 *3) (-12 (-4 *4 (-461)) (-4 *3 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) (-5 *1 (-458 *4 *3 *5 *6)) (-4 *6 (-959 *4 *3 *5)))) (-3352 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-780)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-802)) (-4 *7 (-959 *4 *5 *6)) (-4 *4 (-461)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-458 *4 *5 *6 *7)))) (-1459 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-653 *7)) (-5 *3 (-573)) (-4 *7 (-959 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-458 *4 *5 *6 *7)))) (-2021 (*1 *2 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-959 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-458 *4 *5 *6 *2)))) (-3003 (*1 *2 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-959 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-458 *4 *5 *6 *2))))) +(-10 -7 (-15 -3003 (|#4| |#4| (-653 |#4|))) (-15 -2021 (|#4| |#4| (-653 |#4|))) (-15 -1459 ((-653 |#4|) (-653 |#4|) (-573) (-573))) (-15 -3352 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3838 ((-112) |#2| |#2|)) (-15 -2202 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2371 ((-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4355 ((-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1934 ((-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1476 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-653 |#4|))) (-15 -4311 (|#4| |#4|)) (-15 -3936 ((-653 (-2 (|:| |totdeg| (-780)) (|:| -3881 |#4|))) |#4| (-780) (-653 (-2 (|:| |totdeg| (-780)) (|:| -3881 |#4|))))) (-15 -3324 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1815 ((-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-653 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3385 ((-653 |#4|) (-653 |#4|))) (-15 -1518 ((-573) |#4|)) (-15 -2553 ((-1285) |#4|)) (-15 -4369 ((-573) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-573) (-573) (-573))) (-15 -2147 ((-573) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-573) (-573) (-573) (-573))) (-15 -1398 ((-1285) (-653 |#4|))) (-15 -3663 ((-1285) (-573))) (-15 -4024 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3972 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-780)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-780)) (|:| -3881 |#4|)) |#4| (-780))) (-15 -2977 ((-780) |#4|))) +((-3636 ((|#4| |#4| (-653 |#4|)) 20 (|has| |#1| (-371)))) (-3207 (((-653 |#4|) (-653 |#4|) (-1171) (-1171)) 46) (((-653 |#4|) (-653 |#4|) (-1171)) 45) (((-653 |#4|) (-653 |#4|)) 34))) +(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3207 ((-653 |#4|) (-653 |#4|))) (-15 -3207 ((-653 |#4|) (-653 |#4|) (-1171))) (-15 -3207 ((-653 |#4|) (-653 |#4|) (-1171) (-1171))) (IF (|has| |#1| (-371)) (-15 -3636 (|#4| |#4| (-653 |#4|))) |%noBranch|)) (-461) (-802) (-859) (-959 |#1| |#2| |#3|)) (T -459)) +((-3636 (*1 *2 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-959 *4 *5 *6)) (-4 *4 (-371)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-459 *4 *5 *6 *2)))) (-3207 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-653 *7)) (-5 *3 (-1171)) (-4 *7 (-959 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-459 *4 *5 *6 *7)))) (-3207 (*1 *2 *2 *3) (-12 (-5 *2 (-653 *7)) (-5 *3 (-1171)) (-4 *7 (-959 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-459 *4 *5 *6 *7)))) (-3207 (*1 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-459 *3 *4 *5 *6))))) +(-10 -7 (-15 -3207 ((-653 |#4|) (-653 |#4|))) (-15 -3207 ((-653 |#4|) (-653 |#4|) (-1171))) (-15 -3207 ((-653 |#4|) (-653 |#4|) (-1171) (-1171))) (IF (|has| |#1| (-371)) (-15 -3636 (|#4| |#4| (-653 |#4|))) |%noBranch|)) +((-2829 (($ $ $) 14) (($ (-653 $)) 21)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 46)) (-2872 (($ $ $) NIL) (($ (-653 $)) 22))) +(((-460 |#1|) (-10 -8 (-15 -2888 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2829 (|#1| (-653 |#1|))) (-15 -2829 (|#1| |#1| |#1|)) (-15 -2872 (|#1| (-653 |#1|))) (-15 -2872 (|#1| |#1| |#1|))) (-461)) (T -460)) +NIL +(-10 -8 (-15 -2888 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2829 (|#1| (-653 |#1|))) (-15 -2829 (|#1| |#1| |#1|)) (-15 -2872 (|#1| (-653 |#1|))) (-15 -2872 (|#1| |#1| |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-2837 (((-3 $ "failed") $ $) 48)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) +(((-461) (-141)) (T -461)) +((-2872 (*1 *1 *1 *1) (-4 *1 (-461))) (-2872 (*1 *1 *2) (-12 (-5 *2 (-653 *1)) (-4 *1 (-461)))) (-2829 (*1 *1 *1 *1) (-4 *1 (-461))) (-2829 (*1 *1 *2) (-12 (-5 *2 (-653 *1)) (-4 *1 (-461)))) (-2888 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *1)) (-4 *1 (-461))))) +(-13 (-565) (-10 -8 (-15 -2872 ($ $ $)) (-15 -2872 ($ (-653 $))) (-15 -2829 ($ $ $)) (-15 -2829 ($ (-653 $))) (-15 -2888 ((-1185 $) (-1185 $) (-1185 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-297) . T) ((-565) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-649 $) . T) ((-726 $) . T) ((-735) . T) ((-1063 $) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-1642 (((-3 $ "failed")) NIL (|has| (-416 (-962 |#1|)) (-565)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-3119 (((-1280 (-698 (-416 (-962 |#1|)))) (-1280 $)) NIL) (((-1280 (-698 (-416 (-962 |#1|))))) NIL)) (-1888 (((-1280 $)) NIL)) (-2579 (($) NIL T CONST)) (-2811 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) NIL)) (-3360 (((-3 $ "failed")) NIL (|has| (-416 (-962 |#1|)) (-565)))) (-1454 (((-698 (-416 (-962 |#1|))) (-1280 $)) NIL) (((-698 (-416 (-962 |#1|)))) NIL)) (-1390 (((-416 (-962 |#1|)) $) NIL)) (-3612 (((-698 (-416 (-962 |#1|))) $ (-1280 $)) NIL) (((-698 (-416 (-962 |#1|))) $) NIL)) (-1546 (((-3 $ "failed") $) NIL (|has| (-416 (-962 |#1|)) (-565)))) (-2743 (((-1185 (-962 (-416 (-962 |#1|))))) NIL (|has| (-416 (-962 |#1|)) (-371))) (((-1185 (-416 (-962 |#1|)))) 90 (|has| |#1| (-565)))) (-3681 (($ $ (-931)) NIL)) (-3729 (((-416 (-962 |#1|)) $) NIL)) (-3397 (((-1185 (-416 (-962 |#1|))) $) 88 (|has| (-416 (-962 |#1|)) (-565)))) (-4053 (((-416 (-962 |#1|)) (-1280 $)) NIL) (((-416 (-962 |#1|))) NIL)) (-2650 (((-1185 (-416 (-962 |#1|))) $) NIL)) (-2492 (((-112)) NIL)) (-2854 (($ (-1280 (-416 (-962 |#1|))) (-1280 $)) 114) (($ (-1280 (-416 (-962 |#1|)))) NIL)) (-2232 (((-3 $ "failed") $) NIL (|has| (-416 (-962 |#1|)) (-565)))) (-3583 (((-931)) NIL)) (-3720 (((-112)) NIL)) (-3009 (($ $ (-931)) NIL)) (-4275 (((-112)) NIL)) (-1922 (((-112)) NIL)) (-1565 (((-112)) NIL)) (-1447 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) NIL)) (-3675 (((-3 $ "failed")) NIL (|has| (-416 (-962 |#1|)) (-565)))) (-2582 (((-698 (-416 (-962 |#1|))) (-1280 $)) NIL) (((-698 (-416 (-962 |#1|)))) NIL)) (-3619 (((-416 (-962 |#1|)) $) NIL)) (-1729 (((-698 (-416 (-962 |#1|))) $ (-1280 $)) NIL) (((-698 (-416 (-962 |#1|))) $) NIL)) (-2780 (((-3 $ "failed") $) NIL (|has| (-416 (-962 |#1|)) (-565)))) (-3753 (((-1185 (-962 (-416 (-962 |#1|))))) NIL (|has| (-416 (-962 |#1|)) (-371))) (((-1185 (-416 (-962 |#1|)))) 89 (|has| |#1| (-565)))) (-2022 (($ $ (-931)) NIL)) (-3420 (((-416 (-962 |#1|)) $) NIL)) (-2000 (((-1185 (-416 (-962 |#1|))) $) 85 (|has| (-416 (-962 |#1|)) (-565)))) (-1912 (((-416 (-962 |#1|)) (-1280 $)) NIL) (((-416 (-962 |#1|))) NIL)) (-3242 (((-1185 (-416 (-962 |#1|))) $) NIL)) (-3455 (((-112)) NIL)) (-3180 (((-1171) $) NIL)) (-2509 (((-112)) NIL)) (-3313 (((-112)) NIL)) (-4293 (((-112)) NIL)) (-3965 (((-1132) $) NIL)) (-3047 (((-416 (-962 |#1|)) $ $) 76 (|has| |#1| (-565)))) (-4406 (((-416 (-962 |#1|)) $) 100 (|has| |#1| (-565)))) (-3635 (((-416 (-962 |#1|)) $) 104 (|has| |#1| (-565)))) (-3846 (((-1185 (-416 (-962 |#1|))) $) 94 (|has| |#1| (-565)))) (-4026 (((-416 (-962 |#1|))) 77 (|has| |#1| (-565)))) (-4365 (((-416 (-962 |#1|)) $ $) 69 (|has| |#1| (-565)))) (-2379 (((-416 (-962 |#1|)) $) 99 (|has| |#1| (-565)))) (-1759 (((-416 (-962 |#1|)) $) 103 (|has| |#1| (-565)))) (-2791 (((-1185 (-416 (-962 |#1|))) $) 93 (|has| |#1| (-565)))) (-3210 (((-416 (-962 |#1|))) 73 (|has| |#1| (-565)))) (-2728 (($) 110) (($ (-1189)) 118) (($ (-1280 (-1189))) 117) (($ (-1280 $)) 105) (($ (-1189) (-1280 $)) 116) (($ (-1280 (-1189)) (-1280 $)) 115)) (-3209 (((-112)) NIL)) (-2198 (((-416 (-962 |#1|)) $ (-573)) NIL)) (-2123 (((-1280 (-416 (-962 |#1|))) $ (-1280 $)) 107) (((-698 (-416 (-962 |#1|))) (-1280 $) (-1280 $)) NIL) (((-1280 (-416 (-962 |#1|))) $) 43) (((-698 (-416 (-962 |#1|))) (-1280 $)) NIL)) (-1835 (((-1280 (-416 (-962 |#1|))) $) NIL) (($ (-1280 (-416 (-962 |#1|)))) 40)) (-1664 (((-653 (-962 (-416 (-962 |#1|)))) (-1280 $)) NIL) (((-653 (-962 (-416 (-962 |#1|))))) NIL) (((-653 (-962 |#1|)) (-1280 $)) 108 (|has| |#1| (-565))) (((-653 (-962 |#1|))) 109 (|has| |#1| (-565)))) (-4380 (($ $ $) NIL)) (-2774 (((-112)) NIL)) (-2942 (((-871) $) NIL) (($ (-1280 (-416 (-962 |#1|)))) NIL)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) 65)) (-2649 (((-653 (-1280 (-416 (-962 |#1|))))) NIL (|has| (-416 (-962 |#1|)) (-565)))) (-3531 (($ $ $ $) NIL)) (-2661 (((-112)) NIL)) (-2900 (($ (-698 (-416 (-962 |#1|))) $) NIL)) (-4366 (($ $ $) NIL)) (-1469 (((-112)) NIL)) (-4243 (((-112)) NIL)) (-2744 (((-112)) NIL)) (-2132 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) 106)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 61) (($ $ (-416 (-962 |#1|))) NIL) (($ (-416 (-962 |#1|)) $) NIL) (($ (-1154 |#2| (-416 (-962 |#1|))) $) NIL))) +(((-462 |#1| |#2| |#3| |#4|) (-13 (-426 (-416 (-962 |#1|))) (-657 (-1154 |#2| (-416 (-962 |#1|)))) (-10 -8 (-15 -2942 ($ (-1280 (-416 (-962 |#1|))))) (-15 -1447 ((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed"))) (-15 -2811 ((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed"))) (-15 -2728 ($)) (-15 -2728 ($ (-1189))) (-15 -2728 ($ (-1280 (-1189)))) (-15 -2728 ($ (-1280 $))) (-15 -2728 ($ (-1189) (-1280 $))) (-15 -2728 ($ (-1280 (-1189)) (-1280 $))) (IF (|has| |#1| (-565)) (PROGN (-15 -3753 ((-1185 (-416 (-962 |#1|))))) (-15 -2791 ((-1185 (-416 (-962 |#1|))) $)) (-15 -2379 ((-416 (-962 |#1|)) $)) (-15 -1759 ((-416 (-962 |#1|)) $)) (-15 -2743 ((-1185 (-416 (-962 |#1|))))) (-15 -3846 ((-1185 (-416 (-962 |#1|))) $)) (-15 -4406 ((-416 (-962 |#1|)) $)) (-15 -3635 ((-416 (-962 |#1|)) $)) (-15 -4365 ((-416 (-962 |#1|)) $ $)) (-15 -3210 ((-416 (-962 |#1|)))) (-15 -3047 ((-416 (-962 |#1|)) $ $)) (-15 -4026 ((-416 (-962 |#1|)))) (-15 -1664 ((-653 (-962 |#1|)) (-1280 $))) (-15 -1664 ((-653 (-962 |#1|))))) |%noBranch|))) (-174) (-931) (-653 (-1189)) (-1280 (-698 |#1|))) (T -462)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-1280 (-416 (-962 *3)))) (-4 *3 (-174)) (-14 *6 (-1280 (-698 *3))) (-5 *1 (-462 *3 *4 *5 *6)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))))) (-1447 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-462 *3 *4 *5 *6)) (|:| -3914 (-653 (-462 *3 *4 *5 *6))))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-2811 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-462 *3 *4 *5 *6)) (|:| -3914 (-653 (-462 *3 *4 *5 *6))))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-2728 (*1 *1) (-12 (-5 *1 (-462 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-931)) (-14 *4 (-653 (-1189))) (-14 *5 (-1280 (-698 *2))))) (-2728 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 *2)) (-14 *6 (-1280 (-698 *3))))) (-2728 (*1 *1 *2) (-12 (-5 *2 (-1280 (-1189))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-2728 (*1 *1 *2) (-12 (-5 *2 (-1280 (-462 *3 *4 *5 *6))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-2728 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-462 *4 *5 *6 *7))) (-5 *1 (-462 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-931)) (-14 *6 (-653 *2)) (-14 *7 (-1280 (-698 *4))))) (-2728 (*1 *1 *2 *3) (-12 (-5 *2 (-1280 (-1189))) (-5 *3 (-1280 (-462 *4 *5 *6 *7))) (-5 *1 (-462 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-931)) (-14 *6 (-653 (-1189))) (-14 *7 (-1280 (-698 *4))))) (-3753 (*1 *2) (-12 (-5 *2 (-1185 (-416 (-962 *3)))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-2791 (*1 *2 *1) (-12 (-5 *2 (-1185 (-416 (-962 *3)))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-2379 (*1 *2 *1) (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-1759 (*1 *2 *1) (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-2743 (*1 *2) (-12 (-5 *2 (-1185 (-416 (-962 *3)))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-1185 (-416 (-962 *3)))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-4406 (*1 *2 *1) (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-3635 (*1 *2 *1) (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-4365 (*1 *2 *1 *1) (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-3210 (*1 *2) (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-3047 (*1 *2 *1 *1) (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-4026 (*1 *2) (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) (-1664 (*1 *2 *3) (-12 (-5 *3 (-1280 (-462 *4 *5 *6 *7))) (-5 *2 (-653 (-962 *4))) (-5 *1 (-462 *4 *5 *6 *7)) (-4 *4 (-565)) (-4 *4 (-174)) (-14 *5 (-931)) (-14 *6 (-653 (-1189))) (-14 *7 (-1280 (-698 *4))))) (-1664 (*1 *2) (-12 (-5 *2 (-653 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3)))))) +(-13 (-426 (-416 (-962 |#1|))) (-657 (-1154 |#2| (-416 (-962 |#1|)))) (-10 -8 (-15 -2942 ($ (-1280 (-416 (-962 |#1|))))) (-15 -1447 ((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed"))) (-15 -2811 ((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed"))) (-15 -2728 ($)) (-15 -2728 ($ (-1189))) (-15 -2728 ($ (-1280 (-1189)))) (-15 -2728 ($ (-1280 $))) (-15 -2728 ($ (-1189) (-1280 $))) (-15 -2728 ($ (-1280 (-1189)) (-1280 $))) (IF (|has| |#1| (-565)) (PROGN (-15 -3753 ((-1185 (-416 (-962 |#1|))))) (-15 -2791 ((-1185 (-416 (-962 |#1|))) $)) (-15 -2379 ((-416 (-962 |#1|)) $)) (-15 -1759 ((-416 (-962 |#1|)) $)) (-15 -2743 ((-1185 (-416 (-962 |#1|))))) (-15 -3846 ((-1185 (-416 (-962 |#1|))) $)) (-15 -4406 ((-416 (-962 |#1|)) $)) (-15 -3635 ((-416 (-962 |#1|)) $)) (-15 -4365 ((-416 (-962 |#1|)) $ $)) (-15 -3210 ((-416 (-962 |#1|)))) (-15 -3047 ((-416 (-962 |#1|)) $ $)) (-15 -4026 ((-416 (-962 |#1|)))) (-15 -1664 ((-653 (-962 |#1|)) (-1280 $))) (-15 -1664 ((-653 (-962 |#1|))))) |%noBranch|))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 18)) (-4354 (((-653 (-873 |#1|)) $) 87)) (-4193 (((-1185 $) $ (-873 |#1|)) 52) (((-1185 |#2|) $) 138)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#2| (-565)))) (-2456 (($ $) NIL (|has| |#2| (-565)))) (-1345 (((-112) $) NIL (|has| |#2| (-565)))) (-2769 (((-780) $) 27) (((-780) $ (-653 (-873 |#1|))) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-4285 (($ $) NIL (|has| |#2| (-461)))) (-2427 (((-427 $) $) NIL (|has| |#2| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) 50) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#2| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) NIL (|has| |#2| (-1050 (-573)))) (((-3 (-873 |#1|) "failed") $) NIL)) (-2205 ((|#2| $) 48) (((-416 (-573)) $) NIL (|has| |#2| (-1050 (-416 (-573))))) (((-573) $) NIL (|has| |#2| (-1050 (-573)))) (((-873 |#1|) $) NIL)) (-2277 (($ $ $ (-873 |#1|)) NIL (|has| |#2| (-174)))) (-3327 (($ $ (-653 (-573))) 93)) (-1391 (($ $) 80)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) NIL) (((-698 |#2|) (-698 $)) NIL) (((-698 |#2|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#2| (-461))) (($ $ (-873 |#1|)) NIL (|has| |#2| (-461)))) (-1379 (((-653 $) $) NIL)) (-2696 (((-112) $) NIL (|has| |#2| (-919)))) (-2343 (($ $ |#2| |#3| $) NIL)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| (-873 |#1|) (-896 (-387))) (|has| |#2| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| (-873 |#1|) (-896 (-573))) (|has| |#2| (-896 (-573)))))) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) 65)) (-4344 (($ (-1185 |#2|) (-873 |#1|)) 143) (($ (-1185 $) (-873 |#1|)) 58)) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) 68)) (-4334 (($ |#2| |#3|) 35) (($ $ (-873 |#1|) (-780)) 37) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ (-873 |#1|)) NIL)) (-4036 ((|#3| $) NIL) (((-780) $ (-873 |#1|)) 56) (((-653 (-780)) $ (-653 (-873 |#1|))) 63)) (-1382 (($ (-1 |#3| |#3|) $) NIL)) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-1453 (((-3 (-873 |#1|) "failed") $) 45)) (-1358 (($ $) NIL)) (-1369 ((|#2| $) 47)) (-2829 (($ (-653 $)) NIL (|has| |#2| (-461))) (($ $ $) NIL (|has| |#2| (-461)))) (-3180 (((-1171) $) NIL)) (-4082 (((-3 (-653 $) "failed") $) NIL)) (-2586 (((-3 (-653 $) "failed") $) NIL)) (-2573 (((-3 (-2 (|:| |var| (-873 |#1|)) (|:| -3907 (-780))) "failed") $) NIL)) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) 46)) (-1348 ((|#2| $) 136)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#2| (-461)))) (-2872 (($ (-653 $)) NIL (|has| |#2| (-461))) (($ $ $) 149 (|has| |#2| (-461)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-4218 (((-427 $) $) NIL (|has| |#2| (-919)))) (-2837 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-565))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-565)))) (-2645 (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-873 |#1|) |#2|) 100) (($ $ (-653 (-873 |#1|)) (-653 |#2|)) 106) (($ $ (-873 |#1|) $) 98) (($ $ (-653 (-873 |#1|)) (-653 $)) 124)) (-3592 (($ $ (-873 |#1|)) NIL (|has| |#2| (-174)))) (-3904 (($ $ (-873 |#1|)) 59) (($ $ (-653 (-873 |#1|))) NIL) (($ $ (-873 |#1|) (-780)) NIL) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-2565 ((|#3| $) 79) (((-780) $ (-873 |#1|)) 42) (((-653 (-780)) $ (-653 (-873 |#1|))) 62)) (-1835 (((-902 (-387)) $) NIL (-12 (|has| (-873 |#1|) (-623 (-902 (-387)))) (|has| |#2| (-623 (-902 (-387)))))) (((-902 (-573)) $) NIL (-12 (|has| (-873 |#1|) (-623 (-902 (-573)))) (|has| |#2| (-623 (-902 (-573)))))) (((-545) $) NIL (-12 (|has| (-873 |#1|) (-623 (-545))) (|has| |#2| (-623 (-545)))))) (-3257 ((|#2| $) 145 (|has| |#2| (-461))) (($ $ (-873 |#1|)) NIL (|has| |#2| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-919))))) (-2942 (((-871) $) 174) (($ (-573)) NIL) (($ |#2|) 99) (($ (-873 |#1|)) 39) (($ (-416 (-573))) NIL (-2817 (|has| |#2| (-38 (-416 (-573)))) (|has| |#2| (-1050 (-416 (-573)))))) (($ $) NIL (|has| |#2| (-565)))) (-1920 (((-653 |#2|) $) NIL)) (-4317 ((|#2| $ |#3|) NIL) (($ $ (-873 |#1|) (-780)) NIL) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#2| (-919))) (|has| |#2| (-146))))) (-1545 (((-780)) NIL T CONST)) (-1538 (($ $ $ (-780)) NIL (|has| |#2| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#2| (-565)))) (-2132 (($) 22 T CONST)) (-2144 (($) 31 T CONST)) (-3609 (($ $ (-873 |#1|)) NIL) (($ $ (-653 (-873 |#1|))) NIL) (($ $ (-873 |#1|) (-780)) NIL) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#2|) 76 (|has| |#2| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) 131)) (** (($ $ (-931)) NIL) (($ $ (-780)) 129)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 36) (($ $ (-416 (-573))) NIL (|has| |#2| (-38 (-416 (-573))))) (($ (-416 (-573)) $) NIL (|has| |#2| (-38 (-416 (-573))))) (($ |#2| $) 75) (($ $ |#2|) NIL))) +(((-463 |#1| |#2| |#3|) (-13 (-959 |#2| |#3| (-873 |#1|)) (-10 -8 (-15 -3327 ($ $ (-653 (-573)))))) (-653 (-1189)) (-1061) (-243 (-2862 |#1|) (-780))) (T -463)) +((-3327 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-573))) (-14 *3 (-653 (-1189))) (-5 *1 (-463 *3 *4 *5)) (-4 *4 (-1061)) (-4 *5 (-243 (-2862 *3) (-780)))))) +(-13 (-959 |#2| |#3| (-873 |#1|)) (-10 -8 (-15 -3327 ($ $ (-653 (-573)))))) +((-2237 (((-112) |#1| (-653 |#2|)) 91)) (-4149 (((-3 (-1280 (-653 |#2|)) "failed") (-780) |#1| (-653 |#2|)) 100)) (-2322 (((-3 (-653 |#2|) "failed") |#2| |#1| (-1280 (-653 |#2|))) 102)) (-4115 ((|#2| |#2| |#1|) 35)) (-2082 (((-780) |#2| (-653 |#2|)) 26))) +(((-464 |#1| |#2|) (-10 -7 (-15 -4115 (|#2| |#2| |#1|)) (-15 -2082 ((-780) |#2| (-653 |#2|))) (-15 -4149 ((-3 (-1280 (-653 |#2|)) "failed") (-780) |#1| (-653 |#2|))) (-15 -2322 ((-3 (-653 |#2|) "failed") |#2| |#1| (-1280 (-653 |#2|)))) (-15 -2237 ((-112) |#1| (-653 |#2|)))) (-314) (-1256 |#1|)) (T -464)) +((-2237 (*1 *2 *3 *4) (-12 (-5 *4 (-653 *5)) (-4 *5 (-1256 *3)) (-4 *3 (-314)) (-5 *2 (-112)) (-5 *1 (-464 *3 *5)))) (-2322 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1280 (-653 *3))) (-4 *4 (-314)) (-5 *2 (-653 *3)) (-5 *1 (-464 *4 *3)) (-4 *3 (-1256 *4)))) (-4149 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-780)) (-4 *4 (-314)) (-4 *6 (-1256 *4)) (-5 *2 (-1280 (-653 *6))) (-5 *1 (-464 *4 *6)) (-5 *5 (-653 *6)))) (-2082 (*1 *2 *3 *4) (-12 (-5 *4 (-653 *3)) (-4 *3 (-1256 *5)) (-4 *5 (-314)) (-5 *2 (-780)) (-5 *1 (-464 *5 *3)))) (-4115 (*1 *2 *2 *3) (-12 (-4 *3 (-314)) (-5 *1 (-464 *3 *2)) (-4 *2 (-1256 *3))))) +(-10 -7 (-15 -4115 (|#2| |#2| |#1|)) (-15 -2082 ((-780) |#2| (-653 |#2|))) (-15 -4149 ((-3 (-1280 (-653 |#2|)) "failed") (-780) |#1| (-653 |#2|))) (-15 -2322 ((-3 (-653 |#2|) "failed") |#2| |#1| (-1280 (-653 |#2|)))) (-15 -2237 ((-112) |#1| (-653 |#2|)))) +((-4218 (((-427 |#5|) |#5|) 24))) +(((-465 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4218 ((-427 |#5|) |#5|))) (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $)) (-15 -1487 ((-3 $ "failed") (-1189))))) (-802) (-565) (-565) (-959 |#4| |#2| |#1|)) (T -465)) +((-4218 (*1 *2 *3) (-12 (-4 *4 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $)) (-15 -1487 ((-3 $ "failed") (-1189)))))) (-4 *5 (-802)) (-4 *7 (-565)) (-5 *2 (-427 *3)) (-5 *1 (-465 *4 *5 *6 *7 *3)) (-4 *6 (-565)) (-4 *3 (-959 *7 *5 *4))))) +(-10 -7 (-15 -4218 ((-427 |#5|) |#5|))) +((-1673 ((|#3|) 38)) (-2888 (((-1185 |#4|) (-1185 |#4|) (-1185 |#4|)) 34))) +(((-466 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2888 ((-1185 |#4|) (-1185 |#4|) (-1185 |#4|))) (-15 -1673 (|#3|))) (-802) (-859) (-919) (-959 |#3| |#1| |#2|)) (T -466)) +((-1673 (*1 *2) (-12 (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-919)) (-5 *1 (-466 *3 *4 *2 *5)) (-4 *5 (-959 *2 *3 *4)))) (-2888 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *6)) (-4 *6 (-959 *5 *3 *4)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *5 (-919)) (-5 *1 (-466 *3 *4 *5 *6))))) +(-10 -7 (-15 -2888 ((-1185 |#4|) (-1185 |#4|) (-1185 |#4|))) (-15 -1673 (|#3|))) +((-4218 (((-427 (-1185 |#1|)) (-1185 |#1|)) 43))) +(((-467 |#1|) (-10 -7 (-15 -4218 ((-427 (-1185 |#1|)) (-1185 |#1|)))) (-314)) (T -467)) +((-4218 (*1 *2 *3) (-12 (-4 *4 (-314)) (-5 *2 (-427 (-1185 *4))) (-5 *1 (-467 *4)) (-5 *3 (-1185 *4))))) +(-10 -7 (-15 -4218 ((-427 (-1185 |#1|)) (-1185 |#1|)))) +((-4401 (((-52) |#2| (-1189) (-301 |#2|) (-1247 (-780))) 44) (((-52) (-1 |#2| (-573)) (-301 |#2|) (-1247 (-780))) 43) (((-52) |#2| (-1189) (-301 |#2|)) 36) (((-52) (-1 |#2| (-573)) (-301 |#2|)) 29)) (-3622 (((-52) |#2| (-1189) (-301 |#2|) (-1247 (-416 (-573))) (-416 (-573))) 88) (((-52) (-1 |#2| (-416 (-573))) (-301 |#2|) (-1247 (-416 (-573))) (-416 (-573))) 87) (((-52) |#2| (-1189) (-301 |#2|) (-1247 (-573))) 86) (((-52) (-1 |#2| (-573)) (-301 |#2|) (-1247 (-573))) 85) (((-52) |#2| (-1189) (-301 |#2|)) 80) (((-52) (-1 |#2| (-573)) (-301 |#2|)) 79)) (-4423 (((-52) |#2| (-1189) (-301 |#2|) (-1247 (-416 (-573))) (-416 (-573))) 74) (((-52) (-1 |#2| (-416 (-573))) (-301 |#2|) (-1247 (-416 (-573))) (-416 (-573))) 72)) (-4412 (((-52) |#2| (-1189) (-301 |#2|) (-1247 (-573))) 51) (((-52) (-1 |#2| (-573)) (-301 |#2|) (-1247 (-573))) 50))) +(((-468 |#1| |#2|) (-10 -7 (-15 -4401 ((-52) (-1 |#2| (-573)) (-301 |#2|))) (-15 -4401 ((-52) |#2| (-1189) (-301 |#2|))) (-15 -4401 ((-52) (-1 |#2| (-573)) (-301 |#2|) (-1247 (-780)))) (-15 -4401 ((-52) |#2| (-1189) (-301 |#2|) (-1247 (-780)))) (-15 -4412 ((-52) (-1 |#2| (-573)) (-301 |#2|) (-1247 (-573)))) (-15 -4412 ((-52) |#2| (-1189) (-301 |#2|) (-1247 (-573)))) (-15 -4423 ((-52) (-1 |#2| (-416 (-573))) (-301 |#2|) (-1247 (-416 (-573))) (-416 (-573)))) (-15 -4423 ((-52) |#2| (-1189) (-301 |#2|) (-1247 (-416 (-573))) (-416 (-573)))) (-15 -3622 ((-52) (-1 |#2| (-573)) (-301 |#2|))) (-15 -3622 ((-52) |#2| (-1189) (-301 |#2|))) (-15 -3622 ((-52) (-1 |#2| (-573)) (-301 |#2|) (-1247 (-573)))) (-15 -3622 ((-52) |#2| (-1189) (-301 |#2|) (-1247 (-573)))) (-15 -3622 ((-52) (-1 |#2| (-416 (-573))) (-301 |#2|) (-1247 (-416 (-573))) (-416 (-573)))) (-15 -3622 ((-52) |#2| (-1189) (-301 |#2|) (-1247 (-416 (-573))) (-416 (-573))))) (-13 (-565) (-1050 (-573)) (-648 (-573))) (-13 (-27) (-1215) (-439 |#1|))) (T -468)) +((-3622 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1189)) (-5 *5 (-301 *3)) (-5 *6 (-1247 (-416 (-573)))) (-5 *7 (-416 (-573))) (-4 *3 (-13 (-27) (-1215) (-439 *8))) (-4 *8 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-468 *8 *3)))) (-3622 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-416 (-573)))) (-5 *4 (-301 *8)) (-5 *5 (-1247 (-416 (-573)))) (-5 *6 (-416 (-573))) (-4 *8 (-13 (-27) (-1215) (-439 *7))) (-4 *7 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-468 *7 *8)))) (-3622 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1189)) (-5 *5 (-301 *3)) (-5 *6 (-1247 (-573))) (-4 *3 (-13 (-27) (-1215) (-439 *7))) (-4 *7 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-468 *7 *3)))) (-3622 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-573))) (-5 *4 (-301 *7)) (-5 *5 (-1247 (-573))) (-4 *7 (-13 (-27) (-1215) (-439 *6))) (-4 *6 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-468 *6 *7)))) (-3622 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1189)) (-5 *5 (-301 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *6))) (-4 *6 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-468 *6 *3)))) (-3622 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-573))) (-5 *4 (-301 *6)) (-4 *6 (-13 (-27) (-1215) (-439 *5))) (-4 *5 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-468 *5 *6)))) (-4423 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1189)) (-5 *5 (-301 *3)) (-5 *6 (-1247 (-416 (-573)))) (-5 *7 (-416 (-573))) (-4 *3 (-13 (-27) (-1215) (-439 *8))) (-4 *8 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-468 *8 *3)))) (-4423 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-416 (-573)))) (-5 *4 (-301 *8)) (-5 *5 (-1247 (-416 (-573)))) (-5 *6 (-416 (-573))) (-4 *8 (-13 (-27) (-1215) (-439 *7))) (-4 *7 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-468 *7 *8)))) (-4412 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1189)) (-5 *5 (-301 *3)) (-5 *6 (-1247 (-573))) (-4 *3 (-13 (-27) (-1215) (-439 *7))) (-4 *7 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-468 *7 *3)))) (-4412 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-573))) (-5 *4 (-301 *7)) (-5 *5 (-1247 (-573))) (-4 *7 (-13 (-27) (-1215) (-439 *6))) (-4 *6 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-468 *6 *7)))) (-4401 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1189)) (-5 *5 (-301 *3)) (-5 *6 (-1247 (-780))) (-4 *3 (-13 (-27) (-1215) (-439 *7))) (-4 *7 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-468 *7 *3)))) (-4401 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-573))) (-5 *4 (-301 *7)) (-5 *5 (-1247 (-780))) (-4 *7 (-13 (-27) (-1215) (-439 *6))) (-4 *6 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-468 *6 *7)))) (-4401 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1189)) (-5 *5 (-301 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *6))) (-4 *6 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-468 *6 *3)))) (-4401 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-573))) (-5 *4 (-301 *6)) (-4 *6 (-13 (-27) (-1215) (-439 *5))) (-4 *5 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) (-5 *1 (-468 *5 *6))))) +(-10 -7 (-15 -4401 ((-52) (-1 |#2| (-573)) (-301 |#2|))) (-15 -4401 ((-52) |#2| (-1189) (-301 |#2|))) (-15 -4401 ((-52) (-1 |#2| (-573)) (-301 |#2|) (-1247 (-780)))) (-15 -4401 ((-52) |#2| (-1189) (-301 |#2|) (-1247 (-780)))) (-15 -4412 ((-52) (-1 |#2| (-573)) (-301 |#2|) (-1247 (-573)))) (-15 -4412 ((-52) |#2| (-1189) (-301 |#2|) (-1247 (-573)))) (-15 -4423 ((-52) (-1 |#2| (-416 (-573))) (-301 |#2|) (-1247 (-416 (-573))) (-416 (-573)))) (-15 -4423 ((-52) |#2| (-1189) (-301 |#2|) (-1247 (-416 (-573))) (-416 (-573)))) (-15 -3622 ((-52) (-1 |#2| (-573)) (-301 |#2|))) (-15 -3622 ((-52) |#2| (-1189) (-301 |#2|))) (-15 -3622 ((-52) (-1 |#2| (-573)) (-301 |#2|) (-1247 (-573)))) (-15 -3622 ((-52) |#2| (-1189) (-301 |#2|) (-1247 (-573)))) (-15 -3622 ((-52) (-1 |#2| (-416 (-573))) (-301 |#2|) (-1247 (-416 (-573))) (-416 (-573)))) (-15 -3622 ((-52) |#2| (-1189) (-301 |#2|) (-1247 (-416 (-573))) (-416 (-573))))) +((-4115 ((|#2| |#2| |#1|) 15)) (-2688 (((-653 |#2|) |#2| (-653 |#2|) |#1| (-931)) 82)) (-1569 (((-2 (|:| |plist| (-653 |#2|)) (|:| |modulo| |#1|)) |#2| (-653 |#2|) |#1| (-931)) 72))) +(((-469 |#1| |#2|) (-10 -7 (-15 -1569 ((-2 (|:| |plist| (-653 |#2|)) (|:| |modulo| |#1|)) |#2| (-653 |#2|) |#1| (-931))) (-15 -2688 ((-653 |#2|) |#2| (-653 |#2|) |#1| (-931))) (-15 -4115 (|#2| |#2| |#1|))) (-314) (-1256 |#1|)) (T -469)) +((-4115 (*1 *2 *2 *3) (-12 (-4 *3 (-314)) (-5 *1 (-469 *3 *2)) (-4 *2 (-1256 *3)))) (-2688 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-653 *3)) (-5 *5 (-931)) (-4 *3 (-1256 *4)) (-4 *4 (-314)) (-5 *1 (-469 *4 *3)))) (-1569 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-931)) (-4 *5 (-314)) (-4 *3 (-1256 *5)) (-5 *2 (-2 (|:| |plist| (-653 *3)) (|:| |modulo| *5))) (-5 *1 (-469 *5 *3)) (-5 *4 (-653 *3))))) +(-10 -7 (-15 -1569 ((-2 (|:| |plist| (-653 |#2|)) (|:| |modulo| |#1|)) |#2| (-653 |#2|) |#1| (-931))) (-15 -2688 ((-653 |#2|) |#2| (-653 |#2|) |#1| (-931))) (-15 -4115 (|#2| |#2| |#1|))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 28)) (-3690 (($ |#3|) 25)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1391 (($ $) 32)) (-2890 (($ |#2| |#4| $) 33)) (-4334 (($ |#2| (-722 |#3| |#4| |#5|)) 24)) (-1358 (((-722 |#3| |#4| |#5|) $) 15)) (-3822 ((|#3| $) 19)) (-2349 ((|#4| $) 17)) (-1369 ((|#2| $) 29)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-2149 (($ |#2| |#3| |#4|) 26)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 36 T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) 34)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-470 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-726 |#6|) (-726 |#2|) (-10 -8 (-15 -1369 (|#2| $)) (-15 -1358 ((-722 |#3| |#4| |#5|) $)) (-15 -2349 (|#4| $)) (-15 -3822 (|#3| $)) (-15 -1391 ($ $)) (-15 -4334 ($ |#2| (-722 |#3| |#4| |#5|))) (-15 -3690 ($ |#3|)) (-15 -2149 ($ |#2| |#3| |#4|)) (-15 -2890 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-653 (-1189)) (-174) (-859) (-243 (-2862 |#1|) (-780)) (-1 (-112) (-2 (|:| -2575 |#3|) (|:| -3907 |#4|)) (-2 (|:| -2575 |#3|) (|:| -3907 |#4|))) (-959 |#2| |#4| (-873 |#1|))) (T -470)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-653 (-1189))) (-4 *4 (-174)) (-4 *6 (-243 (-2862 *3) (-780))) (-14 *7 (-1 (-112) (-2 (|:| -2575 *5) (|:| -3907 *6)) (-2 (|:| -2575 *5) (|:| -3907 *6)))) (-5 *1 (-470 *3 *4 *5 *6 *7 *2)) (-4 *5 (-859)) (-4 *2 (-959 *4 *6 (-873 *3))))) (-1369 (*1 *2 *1) (-12 (-14 *3 (-653 (-1189))) (-4 *5 (-243 (-2862 *3) (-780))) (-14 *6 (-1 (-112) (-2 (|:| -2575 *4) (|:| -3907 *5)) (-2 (|:| -2575 *4) (|:| -3907 *5)))) (-4 *2 (-174)) (-5 *1 (-470 *3 *2 *4 *5 *6 *7)) (-4 *4 (-859)) (-4 *7 (-959 *2 *5 (-873 *3))))) (-1358 (*1 *2 *1) (-12 (-14 *3 (-653 (-1189))) (-4 *4 (-174)) (-4 *6 (-243 (-2862 *3) (-780))) (-14 *7 (-1 (-112) (-2 (|:| -2575 *5) (|:| -3907 *6)) (-2 (|:| -2575 *5) (|:| -3907 *6)))) (-5 *2 (-722 *5 *6 *7)) (-5 *1 (-470 *3 *4 *5 *6 *7 *8)) (-4 *5 (-859)) (-4 *8 (-959 *4 *6 (-873 *3))))) (-2349 (*1 *2 *1) (-12 (-14 *3 (-653 (-1189))) (-4 *4 (-174)) (-14 *6 (-1 (-112) (-2 (|:| -2575 *5) (|:| -3907 *2)) (-2 (|:| -2575 *5) (|:| -3907 *2)))) (-4 *2 (-243 (-2862 *3) (-780))) (-5 *1 (-470 *3 *4 *5 *2 *6 *7)) (-4 *5 (-859)) (-4 *7 (-959 *4 *2 (-873 *3))))) (-3822 (*1 *2 *1) (-12 (-14 *3 (-653 (-1189))) (-4 *4 (-174)) (-4 *5 (-243 (-2862 *3) (-780))) (-14 *6 (-1 (-112) (-2 (|:| -2575 *2) (|:| -3907 *5)) (-2 (|:| -2575 *2) (|:| -3907 *5)))) (-4 *2 (-859)) (-5 *1 (-470 *3 *4 *2 *5 *6 *7)) (-4 *7 (-959 *4 *5 (-873 *3))))) (-1391 (*1 *1 *1) (-12 (-14 *2 (-653 (-1189))) (-4 *3 (-174)) (-4 *5 (-243 (-2862 *2) (-780))) (-14 *6 (-1 (-112) (-2 (|:| -2575 *4) (|:| -3907 *5)) (-2 (|:| -2575 *4) (|:| -3907 *5)))) (-5 *1 (-470 *2 *3 *4 *5 *6 *7)) (-4 *4 (-859)) (-4 *7 (-959 *3 *5 (-873 *2))))) (-4334 (*1 *1 *2 *3) (-12 (-5 *3 (-722 *5 *6 *7)) (-4 *5 (-859)) (-4 *6 (-243 (-2862 *4) (-780))) (-14 *7 (-1 (-112) (-2 (|:| -2575 *5) (|:| -3907 *6)) (-2 (|:| -2575 *5) (|:| -3907 *6)))) (-14 *4 (-653 (-1189))) (-4 *2 (-174)) (-5 *1 (-470 *4 *2 *5 *6 *7 *8)) (-4 *8 (-959 *2 *6 (-873 *4))))) (-3690 (*1 *1 *2) (-12 (-14 *3 (-653 (-1189))) (-4 *4 (-174)) (-4 *5 (-243 (-2862 *3) (-780))) (-14 *6 (-1 (-112) (-2 (|:| -2575 *2) (|:| -3907 *5)) (-2 (|:| -2575 *2) (|:| -3907 *5)))) (-5 *1 (-470 *3 *4 *2 *5 *6 *7)) (-4 *2 (-859)) (-4 *7 (-959 *4 *5 (-873 *3))))) (-2149 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-653 (-1189))) (-4 *2 (-174)) (-4 *4 (-243 (-2862 *5) (-780))) (-14 *6 (-1 (-112) (-2 (|:| -2575 *3) (|:| -3907 *4)) (-2 (|:| -2575 *3) (|:| -3907 *4)))) (-5 *1 (-470 *5 *2 *3 *4 *6 *7)) (-4 *3 (-859)) (-4 *7 (-959 *2 *4 (-873 *5))))) (-2890 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-653 (-1189))) (-4 *2 (-174)) (-4 *3 (-243 (-2862 *4) (-780))) (-14 *6 (-1 (-112) (-2 (|:| -2575 *5) (|:| -3907 *3)) (-2 (|:| -2575 *5) (|:| -3907 *3)))) (-5 *1 (-470 *4 *2 *5 *3 *6 *7)) (-4 *5 (-859)) (-4 *7 (-959 *2 *3 (-873 *4)))))) +(-13 (-726 |#6|) (-726 |#2|) (-10 -8 (-15 -1369 (|#2| $)) (-15 -1358 ((-722 |#3| |#4| |#5|) $)) (-15 -2349 (|#4| $)) (-15 -3822 (|#3| $)) (-15 -1391 ($ $)) (-15 -4334 ($ |#2| (-722 |#3| |#4| |#5|))) (-15 -3690 ($ |#3|)) (-15 -2149 ($ |#2| |#3| |#4|)) (-15 -2890 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-3500 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) +(((-471 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3500 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-802) (-859) (-565) (-959 |#3| |#1| |#2|) (-13 (-1050 (-416 (-573))) (-371) (-10 -8 (-15 -2942 ($ |#4|)) (-15 -2965 (|#4| $)) (-15 -2975 (|#4| $))))) (T -471)) +((-3500 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-859)) (-4 *5 (-802)) (-4 *6 (-565)) (-4 *7 (-959 *6 *5 *3)) (-5 *1 (-471 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1050 (-416 (-573))) (-371) (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) (-15 -2975 (*7 $)))))))) +(-10 -7 (-15 -3500 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-2848 (((-112) $ $) NIL)) (-4354 (((-653 |#3|) $) 41)) (-2577 (((-112) $) NIL)) (-2020 (((-112) $) NIL (|has| |#1| (-565)))) (-2770 (((-2 (|:| |under| $) (|:| -3733 $) (|:| |upper| $)) $ |#3|) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-2164 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2194 (((-112) $) NIL (|has| |#1| (-565)))) (-1849 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2838 (((-112) $ $) NIL (|has| |#1| (-565)))) (-3145 (((-112) $) NIL (|has| |#1| (-565)))) (-2346 (((-653 |#4|) (-653 |#4|) $) NIL (|has| |#1| (-565)))) (-2475 (((-653 |#4|) (-653 |#4|) $) NIL (|has| |#1| (-565)))) (-1695 (((-3 $ "failed") (-653 |#4|)) 49)) (-2205 (($ (-653 |#4|)) NIL)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112))))) (-3334 (($ |#4| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-3132 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-565)))) (-2867 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4455))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4455)))) (-1863 (((-653 |#4|) $) 18 (|has| $ (-6 -4455)))) (-3338 ((|#3| $) 47)) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#4|) $) 14 (|has| $ (-6 -4455)))) (-1547 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112))))) (-2446 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#4| |#4|) $) 21)) (-1937 (((-653 |#3|) $) NIL)) (-1689 (((-112) |#3| $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-3582 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-565)))) (-3965 (((-1132) $) NIL)) (-2036 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1575 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 |#4|) (-653 |#4|)) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-301 |#4|)) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-653 (-301 |#4|))) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) 39)) (-3508 (($) 17)) (-3974 (((-780) |#4| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112)))) (((-780) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) 16)) (-1835 (((-545) $) NIL (|has| |#4| (-623 (-545)))) (($ (-653 |#4|)) 51)) (-2955 (($ (-653 |#4|)) 13)) (-4409 (($ $ |#3|) NIL)) (-3496 (($ $ |#3|) NIL)) (-1456 (($ $ |#3|) NIL)) (-2942 (((-871) $) 38) (((-653 |#4|) $) 50)) (-3507 (((-112) $ $) NIL)) (-1646 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 30)) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-472 |#1| |#2| |#3| |#4|) (-13 (-988 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1835 ($ (-653 |#4|))) (-6 -4455) (-6 -4456))) (-1061) (-802) (-859) (-1077 |#1| |#2| |#3|)) (T -472)) +((-1835 (*1 *1 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-472 *3 *4 *5 *6))))) +(-13 (-988 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1835 ($ (-653 |#4|))) (-6 -4455) (-6 -4456))) +((-2132 (($) 11)) (-2144 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-473 |#1| |#2| |#3|) (-10 -8 (-15 -2144 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2132 (|#1|))) (-474 |#2| |#3|) (-174) (-23)) (T -473)) +NIL +(-10 -8 (-15 -2144 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2132 (|#1|))) +((-2848 (((-112) $ $) 7)) (-1695 (((-3 |#1| "failed") $) 27)) (-2205 ((|#1| $) 28)) (-3044 (($ $ $) 24)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2565 ((|#2| $) 20)) (-2942 (((-871) $) 12) (($ |#1|) 26)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 25 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 16) (($ $ $) 14)) (-3077 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) +(((-474 |#1| |#2|) (-141) (-174) (-23)) (T -474)) +((-2144 (*1 *1) (-12 (-4 *1 (-474 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3044 (*1 *1 *1 *1) (-12 (-4 *1 (-474 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) +(-13 (-479 |t#1| |t#2|) (-1050 |t#1|) (-10 -8 (-15 (-2144) ($) -1705) (-15 -3044 ($ $ $)))) +(((-102) . T) ((-625 |#1|) . T) ((-622 (-871)) . T) ((-479 |#1| |#2|) . T) ((-1050 |#1|) . T) ((-1112) . T)) +((-3988 (((-1280 (-1280 (-573))) (-1280 (-1280 (-573))) (-931)) 26)) (-3061 (((-1280 (-1280 (-573))) (-931)) 21))) +(((-475) (-10 -7 (-15 -3988 ((-1280 (-1280 (-573))) (-1280 (-1280 (-573))) (-931))) (-15 -3061 ((-1280 (-1280 (-573))) (-931))))) (T -475)) +((-3061 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1280 (-1280 (-573)))) (-5 *1 (-475)))) (-3988 (*1 *2 *2 *3) (-12 (-5 *2 (-1280 (-1280 (-573)))) (-5 *3 (-931)) (-5 *1 (-475))))) +(-10 -7 (-15 -3988 ((-1280 (-1280 (-573))) (-1280 (-1280 (-573))) (-931))) (-15 -3061 ((-1280 (-1280 (-573))) (-931)))) +((-1627 (((-573) (-573)) 32) (((-573)) 24)) (-2070 (((-573) (-573)) 28) (((-573)) 20)) (-2026 (((-573) (-573)) 30) (((-573)) 22)) (-3571 (((-112) (-112)) 14) (((-112)) 12)) (-1316 (((-112) (-112)) 13) (((-112)) 11)) (-2359 (((-112) (-112)) 26) (((-112)) 17))) +(((-476) (-10 -7 (-15 -1316 ((-112))) (-15 -3571 ((-112))) (-15 -1316 ((-112) (-112))) (-15 -3571 ((-112) (-112))) (-15 -2359 ((-112))) (-15 -2026 ((-573))) (-15 -2070 ((-573))) (-15 -1627 ((-573))) (-15 -2359 ((-112) (-112))) (-15 -2026 ((-573) (-573))) (-15 -2070 ((-573) (-573))) (-15 -1627 ((-573) (-573))))) (T -476)) +((-1627 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-476)))) (-2070 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-476)))) (-2026 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-476)))) (-2359 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-476)))) (-1627 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-476)))) (-2070 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-476)))) (-2026 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-476)))) (-2359 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-476)))) (-3571 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-476)))) (-1316 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-476)))) (-3571 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-476)))) (-1316 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-476))))) +(-10 -7 (-15 -1316 ((-112))) (-15 -3571 ((-112))) (-15 -1316 ((-112) (-112))) (-15 -3571 ((-112) (-112))) (-15 -2359 ((-112))) (-15 -2026 ((-573))) (-15 -2070 ((-573))) (-15 -1627 ((-573))) (-15 -2359 ((-112) (-112))) (-15 -2026 ((-573) (-573))) (-15 -2070 ((-573) (-573))) (-15 -1627 ((-573) (-573)))) +((-2848 (((-112) $ $) NIL)) (-1996 (((-653 (-387)) $) 34) (((-653 (-387)) $ (-653 (-387))) 146)) (-4119 (((-653 (-1106 (-387))) $) 16) (((-653 (-1106 (-387))) $ (-653 (-1106 (-387)))) 142)) (-1330 (((-653 (-653 (-953 (-227)))) (-653 (-653 (-953 (-227)))) (-653 (-883))) 58)) (-4431 (((-653 (-653 (-953 (-227)))) $) 137)) (-3590 (((-1285) $ (-953 (-227)) (-883)) 163)) (-1954 (($ $) 136) (($ (-653 (-653 (-953 (-227))))) 149) (($ (-653 (-653 (-953 (-227)))) (-653 (-883)) (-653 (-883)) (-653 (-931))) 148) (($ (-653 (-653 (-953 (-227)))) (-653 (-883)) (-653 (-883)) (-653 (-931)) (-653 (-269))) 150)) (-3180 (((-1171) $) NIL)) (-3692 (((-573) $) 110)) (-3965 (((-1132) $) NIL)) (-1949 (($) 147)) (-2556 (((-653 (-227)) (-653 (-653 (-953 (-227))))) 89)) (-1478 (((-1285) $ (-653 (-953 (-227))) (-883) (-883) (-931)) 155) (((-1285) $ (-953 (-227))) 157) (((-1285) $ (-953 (-227)) (-883) (-883) (-931)) 156)) (-2942 (((-871) $) 169) (($ (-653 (-653 (-953 (-227))))) 164)) (-3507 (((-112) $ $) NIL)) (-3794 (((-1285) $ (-953 (-227))) 162)) (-2981 (((-112) $ $) NIL))) +(((-477) (-13 (-1112) (-10 -8 (-15 -1949 ($)) (-15 -1954 ($ $)) (-15 -1954 ($ (-653 (-653 (-953 (-227)))))) (-15 -1954 ($ (-653 (-653 (-953 (-227)))) (-653 (-883)) (-653 (-883)) (-653 (-931)))) (-15 -1954 ($ (-653 (-653 (-953 (-227)))) (-653 (-883)) (-653 (-883)) (-653 (-931)) (-653 (-269)))) (-15 -4431 ((-653 (-653 (-953 (-227)))) $)) (-15 -3692 ((-573) $)) (-15 -4119 ((-653 (-1106 (-387))) $)) (-15 -4119 ((-653 (-1106 (-387))) $ (-653 (-1106 (-387))))) (-15 -1996 ((-653 (-387)) $)) (-15 -1996 ((-653 (-387)) $ (-653 (-387)))) (-15 -1478 ((-1285) $ (-653 (-953 (-227))) (-883) (-883) (-931))) (-15 -1478 ((-1285) $ (-953 (-227)))) (-15 -1478 ((-1285) $ (-953 (-227)) (-883) (-883) (-931))) (-15 -3794 ((-1285) $ (-953 (-227)))) (-15 -3590 ((-1285) $ (-953 (-227)) (-883))) (-15 -2942 ($ (-653 (-653 (-953 (-227)))))) (-15 -2942 ((-871) $)) (-15 -1330 ((-653 (-653 (-953 (-227)))) (-653 (-653 (-953 (-227)))) (-653 (-883)))) (-15 -2556 ((-653 (-227)) (-653 (-653 (-953 (-227))))))))) (T -477)) +((-2942 (*1 *2 *1) (-12 (-5 *2 (-871)) (-5 *1 (-477)))) (-1949 (*1 *1) (-5 *1 (-477))) (-1954 (*1 *1 *1) (-5 *1 (-477))) (-1954 (*1 *1 *2) (-12 (-5 *2 (-653 (-653 (-953 (-227))))) (-5 *1 (-477)))) (-1954 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-653 (-653 (-953 (-227))))) (-5 *3 (-653 (-883))) (-5 *4 (-653 (-931))) (-5 *1 (-477)))) (-1954 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-653 (-653 (-953 (-227))))) (-5 *3 (-653 (-883))) (-5 *4 (-653 (-931))) (-5 *5 (-653 (-269))) (-5 *1 (-477)))) (-4431 (*1 *2 *1) (-12 (-5 *2 (-653 (-653 (-953 (-227))))) (-5 *1 (-477)))) (-3692 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-477)))) (-4119 (*1 *2 *1) (-12 (-5 *2 (-653 (-1106 (-387)))) (-5 *1 (-477)))) (-4119 (*1 *2 *1 *2) (-12 (-5 *2 (-653 (-1106 (-387)))) (-5 *1 (-477)))) (-1996 (*1 *2 *1) (-12 (-5 *2 (-653 (-387))) (-5 *1 (-477)))) (-1996 (*1 *2 *1 *2) (-12 (-5 *2 (-653 (-387))) (-5 *1 (-477)))) (-1478 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-653 (-953 (-227)))) (-5 *4 (-883)) (-5 *5 (-931)) (-5 *2 (-1285)) (-5 *1 (-477)))) (-1478 (*1 *2 *1 *3) (-12 (-5 *3 (-953 (-227))) (-5 *2 (-1285)) (-5 *1 (-477)))) (-1478 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-953 (-227))) (-5 *4 (-883)) (-5 *5 (-931)) (-5 *2 (-1285)) (-5 *1 (-477)))) (-3794 (*1 *2 *1 *3) (-12 (-5 *3 (-953 (-227))) (-5 *2 (-1285)) (-5 *1 (-477)))) (-3590 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-953 (-227))) (-5 *4 (-883)) (-5 *2 (-1285)) (-5 *1 (-477)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-653 (-653 (-953 (-227))))) (-5 *1 (-477)))) (-1330 (*1 *2 *2 *3) (-12 (-5 *2 (-653 (-653 (-953 (-227))))) (-5 *3 (-653 (-883))) (-5 *1 (-477)))) (-2556 (*1 *2 *3) (-12 (-5 *3 (-653 (-653 (-953 (-227))))) (-5 *2 (-653 (-227))) (-5 *1 (-477))))) +(-13 (-1112) (-10 -8 (-15 -1949 ($)) (-15 -1954 ($ $)) (-15 -1954 ($ (-653 (-653 (-953 (-227)))))) (-15 -1954 ($ (-653 (-653 (-953 (-227)))) (-653 (-883)) (-653 (-883)) (-653 (-931)))) (-15 -1954 ($ (-653 (-653 (-953 (-227)))) (-653 (-883)) (-653 (-883)) (-653 (-931)) (-653 (-269)))) (-15 -4431 ((-653 (-653 (-953 (-227)))) $)) (-15 -3692 ((-573) $)) (-15 -4119 ((-653 (-1106 (-387))) $)) (-15 -4119 ((-653 (-1106 (-387))) $ (-653 (-1106 (-387))))) (-15 -1996 ((-653 (-387)) $)) (-15 -1996 ((-653 (-387)) $ (-653 (-387)))) (-15 -1478 ((-1285) $ (-653 (-953 (-227))) (-883) (-883) (-931))) (-15 -1478 ((-1285) $ (-953 (-227)))) (-15 -1478 ((-1285) $ (-953 (-227)) (-883) (-883) (-931))) (-15 -3794 ((-1285) $ (-953 (-227)))) (-15 -3590 ((-1285) $ (-953 (-227)) (-883))) (-15 -2942 ($ (-653 (-653 (-953 (-227)))))) (-15 -2942 ((-871) $)) (-15 -1330 ((-653 (-653 (-953 (-227)))) (-653 (-653 (-953 (-227)))) (-653 (-883)))) (-15 -2556 ((-653 (-227)) (-653 (-653 (-953 (-227)))))))) +((-3093 (($ $) NIL) (($ $ $) 11))) +(((-478 |#1| |#2| |#3|) (-10 -8 (-15 -3093 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|))) (-479 |#2| |#3|) (-174) (-23)) (T -478)) +NIL +(-10 -8 (-15 -3093 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|))) +((-2848 (((-112) $ $) 7)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2565 ((|#2| $) 20)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 16) (($ $ $) 14)) (-3077 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) +(((-479 |#1| |#2|) (-141) (-174) (-23)) (T -479)) +((-2565 (*1 *2 *1) (-12 (-4 *1 (-479 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) (-2132 (*1 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3093 (*1 *1 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3077 (*1 *1 *1 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3093 (*1 *1 *1 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) +(-13 (-1112) (-10 -8 (-15 -2565 (|t#2| $)) (-15 (-2132) ($) -1705) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3093 ($ $)) (-15 -3077 ($ $ $)) (-15 -3093 ($ $ $)))) +(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) +((-3406 (((-3 (-653 (-490 |#1| |#2|)) "failed") (-653 (-490 |#1| |#2|)) (-653 (-873 |#1|))) 134)) (-3857 (((-653 (-653 (-252 |#1| |#2|))) (-653 (-252 |#1| |#2|)) (-653 (-873 |#1|))) 131)) (-3718 (((-2 (|:| |dpolys| (-653 (-252 |#1| |#2|))) (|:| |coords| (-653 (-573)))) (-653 (-252 |#1| |#2|)) (-653 (-873 |#1|))) 86))) +(((-480 |#1| |#2| |#3|) (-10 -7 (-15 -3857 ((-653 (-653 (-252 |#1| |#2|))) (-653 (-252 |#1| |#2|)) (-653 (-873 |#1|)))) (-15 -3406 ((-3 (-653 (-490 |#1| |#2|)) "failed") (-653 (-490 |#1| |#2|)) (-653 (-873 |#1|)))) (-15 -3718 ((-2 (|:| |dpolys| (-653 (-252 |#1| |#2|))) (|:| |coords| (-653 (-573)))) (-653 (-252 |#1| |#2|)) (-653 (-873 |#1|))))) (-653 (-1189)) (-461) (-461)) (T -480)) +((-3718 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-873 *5))) (-14 *5 (-653 (-1189))) (-4 *6 (-461)) (-5 *2 (-2 (|:| |dpolys| (-653 (-252 *5 *6))) (|:| |coords| (-653 (-573))))) (-5 *1 (-480 *5 *6 *7)) (-5 *3 (-653 (-252 *5 *6))) (-4 *7 (-461)))) (-3406 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-653 (-490 *4 *5))) (-5 *3 (-653 (-873 *4))) (-14 *4 (-653 (-1189))) (-4 *5 (-461)) (-5 *1 (-480 *4 *5 *6)) (-4 *6 (-461)))) (-3857 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-873 *5))) (-14 *5 (-653 (-1189))) (-4 *6 (-461)) (-5 *2 (-653 (-653 (-252 *5 *6)))) (-5 *1 (-480 *5 *6 *7)) (-5 *3 (-653 (-252 *5 *6))) (-4 *7 (-461))))) +(-10 -7 (-15 -3857 ((-653 (-653 (-252 |#1| |#2|))) (-653 (-252 |#1| |#2|)) (-653 (-873 |#1|)))) (-15 -3406 ((-3 (-653 (-490 |#1| |#2|)) "failed") (-653 (-490 |#1| |#2|)) (-653 (-873 |#1|)))) (-15 -3718 ((-2 (|:| |dpolys| (-653 (-252 |#1| |#2|))) (|:| |coords| (-653 (-573)))) (-653 (-252 |#1| |#2|)) (-653 (-873 |#1|))))) +((-2232 (((-3 $ "failed") $) 11)) (-3204 (($ $ $) 23)) (-4380 (($ $ $) 24)) (-3103 (($ $ $) 9)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) 22))) +(((-481 |#1|) (-10 -8 (-15 -4380 (|#1| |#1| |#1|)) (-15 -3204 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-573))) (-15 -3103 (|#1| |#1| |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-780))) (-15 ** (|#1| |#1| (-931)))) (-482)) (T -481)) +NIL +(-10 -8 (-15 -4380 (|#1| |#1| |#1|)) (-15 -3204 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-573))) (-15 -3103 (|#1| |#1| |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-780))) (-15 ** (|#1| |#1| (-931)))) +((-2848 (((-112) $ $) 7)) (-2579 (($) 19 T CONST)) (-2232 (((-3 $ "failed") $) 16)) (-1959 (((-112) $) 18)) (-3180 (((-1171) $) 10)) (-1323 (($ $) 25)) (-3965 (((-1132) $) 11)) (-3204 (($ $ $) 22)) (-4380 (($ $ $) 21)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2144 (($) 20 T CONST)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ $) 24)) (** (($ $ (-931)) 14) (($ $ (-780)) 17) (($ $ (-573)) 23)) (* (($ $ $) 15))) +(((-482) (-141)) (T -482)) +((-1323 (*1 *1 *1) (-4 *1 (-482))) (-3103 (*1 *1 *1 *1) (-4 *1 (-482))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-482)) (-5 *2 (-573)))) (-3204 (*1 *1 *1 *1) (-4 *1 (-482))) (-4380 (*1 *1 *1 *1) (-4 *1 (-482)))) +(-13 (-735) (-10 -8 (-15 -1323 ($ $)) (-15 -3103 ($ $ $)) (-15 ** ($ $ (-573))) (-6 -4452) (-15 -3204 ($ $ $)) (-15 -4380 ($ $ $)))) +(((-102) . T) ((-622 (-871)) . T) ((-735) . T) ((-1124) . T) ((-1112) . T)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4354 (((-653 (-1094)) $) NIL)) (-1487 (((-1189) $) 18)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-1442 (($ $ (-416 (-573))) NIL) (($ $ (-416 (-573)) (-416 (-573))) NIL)) (-1662 (((-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#1|))) $) NIL)) (-2363 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL (|has| |#1| (-371)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4228 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2800 (((-112) $ $) NIL (|has| |#1| (-371)))) (-2342 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3622 (($ (-780) (-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#1|)))) NIL)) (-2388 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) NIL T CONST)) (-2784 (($ $ $) NIL (|has| |#1| (-371)))) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2796 (($ $ $) NIL (|has| |#1| (-371)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#1| (-371)))) (-2696 (((-112) $) NIL (|has| |#1| (-371)))) (-1488 (((-112) $) NIL)) (-2999 (($) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2534 (((-416 (-573)) $) NIL) (((-416 (-573)) $ (-416 (-573))) NIL)) (-1959 (((-112) $) NIL)) (-4325 (($ $ (-573)) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2976 (($ $ (-931)) NIL) (($ $ (-416 (-573))) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-416 (-573))) NIL) (($ $ (-1094) (-416 (-573))) NIL) (($ $ (-653 (-1094)) (-653 (-416 (-573)))) NIL)) (-1776 (($ (-1 |#1| |#1|) $) 25)) (-3118 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL (|has| |#1| (-371)))) (-1626 (($ $) 29 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189)) 35 (-2817 (-12 (|has| |#1| (-15 -1626 (|#1| |#1| (-1189)))) (|has| |#1| (-15 -4354 ((-653 (-1189)) |#1|))) (|has| |#1| (-38 (-416 (-573))))) (-12 (|has| |#1| (-29 (-573))) (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-969)) (|has| |#1| (-1215))))) (($ $ (-1276 |#2|)) 30 (|has| |#1| (-38 (-416 (-573)))))) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-371)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-4218 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2212 (($ $ (-416 (-573))) NIL)) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-1608 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2645 (((-1169 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-416 (-573))))))) (-2163 (((-780) $) NIL (|has| |#1| (-371)))) (-2198 ((|#1| $ (-416 (-573))) NIL) (($ $ $) NIL (|has| (-416 (-573)) (-1124)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) 28 (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-1276 |#2|)) 16)) (-2565 (((-416 (-573)) $) NIL)) (-2401 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-4101 (($ $) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1276 |#2|)) NIL) (($ (-1265 |#1| |#2| |#3|)) 9) (($ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $) NIL (|has| |#1| (-565)))) (-4317 ((|#1| $ (-416 (-573))) NIL)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) NIL T CONST)) (-3358 ((|#1| $) 21)) (-3507 (((-112) $ $) NIL)) (-2439 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2413 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3550 ((|#1| $ (-416 (-573))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-416 (-573))))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2520 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) 27)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))))) +(((-483 |#1| |#2| |#3|) (-13 (-1261 |#1|) (-10 -8 (-15 -2942 ($ (-1276 |#2|))) (-15 -2942 ($ (-1265 |#1| |#2| |#3|))) (-15 -3904 ($ $ (-1276 |#2|))) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1276 |#2|))) |%noBranch|))) (-1061) (-1189) |#1|) (T -483)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-483 *3 *4 *5)) (-4 *3 (-1061)) (-14 *5 *3))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-1265 *3 *4 *5)) (-4 *3 (-1061)) (-14 *4 (-1189)) (-14 *5 *3) (-5 *1 (-483 *3 *4 *5)))) (-3904 (*1 *1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-483 *3 *4 *5)) (-4 *3 (-1061)) (-14 *5 *3))) (-1626 (*1 *1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-483 *3 *4 *5)) (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-14 *5 *3)))) +(-13 (-1261 |#1|) (-10 -8 (-15 -2942 ($ (-1276 |#2|))) (-15 -2942 ($ (-1265 |#1| |#2| |#3|))) (-15 -3904 ($ $ (-1276 |#2|))) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1276 |#2|))) |%noBranch|))) +((-2848 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-3777 (($) NIL) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3791 (((-1285) $ |#1| |#1|) NIL (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#2| $ |#1| |#2|) 18)) (-3557 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2161 (((-3 |#2| "failed") |#1| $) 19)) (-2579 (($) NIL T CONST)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-2596 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-3 |#2| "failed") |#1| $) 16)) (-3334 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2867 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#2| $ |#1|) NIL)) (-1863 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-1968 ((|#1| $) NIL (|has| |#1| (-859)))) (-3214 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3470 ((|#1| $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4456))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-1762 (((-653 |#1|) $) NIL)) (-4201 (((-112) |#1| $) NIL)) (-2487 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-3181 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1977 (((-653 |#1|) $) NIL)) (-2560 (((-112) |#1| $) NIL)) (-3965 (((-1132) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2914 ((|#2| $) NIL (|has| |#1| (-859)))) (-2036 (((-3 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL)) (-3112 (($ $ |#2|) NIL (|has| $ (-6 -4456)))) (-3815 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1575 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 (-301 |#2|))) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-1535 (((-653 |#2|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2428 (($) NIL) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3974 (((-780) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-780) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112)))) (((-780) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-623 (-545))))) (-2955 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-2942 (((-871) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-622 (-871))) (|has| |#2| (-622 (-871)))))) (-3507 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2679 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-1646 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-484 |#1| |#2| |#3| |#4|) (-1206 |#1| |#2|) (-1112) (-1112) (-1206 |#1| |#2|) |#2|) (T -484)) +NIL +(-1206 |#1| |#2|) +((-2848 (((-112) $ $) NIL)) (-2280 (((-653 (-2 (|:| -1380 $) (|:| -1674 (-653 |#4|)))) (-653 |#4|)) NIL)) (-3527 (((-653 $) (-653 |#4|)) NIL)) (-4354 (((-653 |#3|) $) NIL)) (-2577 (((-112) $) NIL)) (-2020 (((-112) $) NIL (|has| |#1| (-565)))) (-2261 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1554 ((|#4| |#4| $) NIL)) (-2770 (((-2 (|:| |under| $) (|:| -3733 $) (|:| |upper| $)) $ |#3|) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-2164 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2579 (($) NIL T CONST)) (-2194 (((-112) $) 29 (|has| |#1| (-565)))) (-1849 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2838 (((-112) $ $) NIL (|has| |#1| (-565)))) (-3145 (((-112) $) NIL (|has| |#1| (-565)))) (-4304 (((-653 |#4|) (-653 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2346 (((-653 |#4|) (-653 |#4|) $) NIL (|has| |#1| (-565)))) (-2475 (((-653 |#4|) (-653 |#4|) $) NIL (|has| |#1| (-565)))) (-1695 (((-3 $ "failed") (-653 |#4|)) NIL)) (-2205 (($ (-653 |#4|)) NIL)) (-2925 (((-3 $ "failed") $) 45)) (-3760 ((|#4| |#4| $) NIL)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112))))) (-3334 (($ |#4| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-3132 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-565)))) (-4310 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3117 ((|#4| |#4| $) NIL)) (-2867 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4455))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4455))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2660 (((-2 (|:| -1380 (-653 |#4|)) (|:| -1674 (-653 |#4|))) $) NIL)) (-1863 (((-653 |#4|) $) 18 (|has| $ (-6 -4455)))) (-4022 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3338 ((|#3| $) 38)) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#4|) $) 19 (|has| $ (-6 -4455)))) (-1547 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112))))) (-2446 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#4| |#4|) $) 23)) (-1937 (((-653 |#3|) $) NIL)) (-1689 (((-112) |#3| $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-3359 (((-3 |#4| "failed") $) 42)) (-2870 (((-653 |#4|) $) NIL)) (-3161 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3430 ((|#4| |#4| $) NIL)) (-2614 (((-112) $ $) NIL)) (-3582 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-565)))) (-1973 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1448 ((|#4| |#4| $) NIL)) (-3965 (((-1132) $) NIL)) (-2914 (((-3 |#4| "failed") $) 40)) (-2036 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2865 (((-3 $ "failed") $ |#4|) 58)) (-2212 (($ $ |#4|) NIL)) (-1575 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 |#4|) (-653 |#4|)) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-301 |#4|)) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-653 (-301 |#4|))) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) 17)) (-3508 (($) 14)) (-2565 (((-780) $) NIL)) (-3974 (((-780) |#4| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112)))) (((-780) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) 13)) (-1835 (((-545) $) NIL (|has| |#4| (-623 (-545))))) (-2955 (($ (-653 |#4|)) 22)) (-4409 (($ $ |#3|) 52)) (-3496 (($ $ |#3|) 54)) (-1388 (($ $) NIL)) (-1456 (($ $ |#3|) NIL)) (-2942 (((-871) $) 35) (((-653 |#4|) $) 46)) (-3922 (((-780) $) NIL (|has| |#3| (-376)))) (-3507 (((-112) $ $) NIL)) (-3955 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3039 (((-112) $ (-1 (-112) |#4| (-653 |#4|))) NIL)) (-1646 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-3734 (((-653 |#3|) $) NIL)) (-4333 (((-112) |#3| $) NIL)) (-2981 (((-112) $ $) NIL)) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-485 |#1| |#2| |#3| |#4|) (-1223 |#1| |#2| |#3| |#4|) (-565) (-802) (-859) (-1077 |#1| |#2| |#3|)) (T -485)) +NIL +(-1223 |#1| |#2| |#3| |#4|) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL)) (-2205 (((-573) $) NIL) (((-416 (-573)) $) NIL)) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-2999 (($) 17)) (-1959 (((-112) $) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-1835 (((-387) $) 21) (((-227) $) 24) (((-416 (-1185 (-573))) $) 18) (((-545) $) 53)) (-2942 (((-871) $) 51) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) (((-227) $) 23) (((-387) $) 20)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-2132 (($) 37 T CONST)) (-2144 (($) 8 T CONST)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL))) +(((-486) (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))) (-1034) (-622 (-227)) (-622 (-387)) (-623 (-416 (-1185 (-573)))) (-623 (-545)) (-10 -8 (-15 -2999 ($))))) (T -486)) +((-2999 (*1 *1) (-5 *1 (-486)))) +(-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))) (-1034) (-622 (-227)) (-622 (-387)) (-623 (-416 (-1185 (-573)))) (-623 (-545)) (-10 -8 (-15 -2999 ($)))) +((-2848 (((-112) $ $) NIL)) (-1808 (((-1147) $) 11)) (-1795 (((-1147) $) 9)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 17) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-487) (-13 (-1095) (-10 -8 (-15 -1795 ((-1147) $)) (-15 -1808 ((-1147) $))))) (T -487)) +((-1795 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-487)))) (-1808 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-487))))) +(-13 (-1095) (-10 -8 (-15 -1795 ((-1147) $)) (-15 -1808 ((-1147) $)))) +((-2848 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-3777 (($) NIL) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3791 (((-1285) $ |#1| |#1|) NIL (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#2| $ |#1| |#2|) 16)) (-3557 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2161 (((-3 |#2| "failed") |#1| $) 20)) (-2579 (($) NIL T CONST)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-2596 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-3 |#2| "failed") |#1| $) 18)) (-3334 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2867 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#2| $ |#1|) NIL)) (-1863 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-1968 ((|#1| $) NIL (|has| |#1| (-859)))) (-3214 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3470 ((|#1| $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4456))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-1762 (((-653 |#1|) $) 13)) (-4201 (((-112) |#1| $) NIL)) (-2487 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-3181 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1977 (((-653 |#1|) $) NIL)) (-2560 (((-112) |#1| $) NIL)) (-3965 (((-1132) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2914 ((|#2| $) NIL (|has| |#1| (-859)))) (-2036 (((-3 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL)) (-3112 (($ $ |#2|) NIL (|has| $ (-6 -4456)))) (-3815 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1575 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 (-301 |#2|))) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-1535 (((-653 |#2|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) 19)) (-2198 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2428 (($) NIL) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3974 (((-780) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-780) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112)))) (((-780) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-623 (-545))))) (-2955 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-2942 (((-871) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-622 (-871))) (|has| |#2| (-622 (-871)))))) (-3507 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2679 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-1646 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 11 (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2862 (((-780) $) 15 (|has| $ (-6 -4455))))) +(((-488 |#1| |#2| |#3|) (-13 (-1206 |#1| |#2|) (-10 -7 (-6 -4455))) (-1112) (-1112) (-1171)) (T -488)) +NIL +(-13 (-1206 |#1| |#2|) (-10 -7 (-6 -4455))) +((-1926 (((-573) (-573) (-573)) 19)) (-4032 (((-112) (-573) (-573) (-573) (-573)) 28)) (-2092 (((-1280 (-653 (-573))) (-780) (-780)) 41))) +(((-489) (-10 -7 (-15 -1926 ((-573) (-573) (-573))) (-15 -4032 ((-112) (-573) (-573) (-573) (-573))) (-15 -2092 ((-1280 (-653 (-573))) (-780) (-780))))) (T -489)) +((-2092 (*1 *2 *3 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1280 (-653 (-573)))) (-5 *1 (-489)))) (-4032 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-573)) (-5 *2 (-112)) (-5 *1 (-489)))) (-1926 (*1 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-489))))) +(-10 -7 (-15 -1926 ((-573) (-573) (-573))) (-15 -4032 ((-112) (-573) (-573) (-573) (-573))) (-15 -2092 ((-1280 (-653 (-573))) (-780) (-780)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4354 (((-653 (-873 |#1|)) $) NIL)) (-4193 (((-1185 $) $ (-873 |#1|)) NIL) (((-1185 |#2|) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#2| (-565)))) (-2456 (($ $) NIL (|has| |#2| (-565)))) (-1345 (((-112) $) NIL (|has| |#2| (-565)))) (-2769 (((-780) $) NIL) (((-780) $ (-653 (-873 |#1|))) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-4285 (($ $) NIL (|has| |#2| (-461)))) (-2427 (((-427 $) $) NIL (|has| |#2| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#2| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) NIL (|has| |#2| (-1050 (-573)))) (((-3 (-873 |#1|) "failed") $) NIL)) (-2205 ((|#2| $) NIL) (((-416 (-573)) $) NIL (|has| |#2| (-1050 (-416 (-573))))) (((-573) $) NIL (|has| |#2| (-1050 (-573)))) (((-873 |#1|) $) NIL)) (-2277 (($ $ $ (-873 |#1|)) NIL (|has| |#2| (-174)))) (-3327 (($ $ (-653 (-573))) NIL)) (-1391 (($ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) NIL) (((-698 |#2|) (-698 $)) NIL) (((-698 |#2|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#2| (-461))) (($ $ (-873 |#1|)) NIL (|has| |#2| (-461)))) (-1379 (((-653 $) $) NIL)) (-2696 (((-112) $) NIL (|has| |#2| (-919)))) (-2343 (($ $ |#2| (-491 (-2862 |#1|) (-780)) $) NIL)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| (-873 |#1|) (-896 (-387))) (|has| |#2| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| (-873 |#1|) (-896 (-573))) (|has| |#2| (-896 (-573)))))) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) NIL)) (-4344 (($ (-1185 |#2|) (-873 |#1|)) NIL) (($ (-1185 $) (-873 |#1|)) NIL)) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-4334 (($ |#2| (-491 (-2862 |#1|) (-780))) NIL) (($ $ (-873 |#1|) (-780)) NIL) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ (-873 |#1|)) NIL)) (-4036 (((-491 (-2862 |#1|) (-780)) $) NIL) (((-780) $ (-873 |#1|)) NIL) (((-653 (-780)) $ (-653 (-873 |#1|))) NIL)) (-1382 (($ (-1 (-491 (-2862 |#1|) (-780)) (-491 (-2862 |#1|) (-780))) $) NIL)) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-1453 (((-3 (-873 |#1|) "failed") $) NIL)) (-1358 (($ $) NIL)) (-1369 ((|#2| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#2| (-461))) (($ $ $) NIL (|has| |#2| (-461)))) (-3180 (((-1171) $) NIL)) (-4082 (((-3 (-653 $) "failed") $) NIL)) (-2586 (((-3 (-653 $) "failed") $) NIL)) (-2573 (((-3 (-2 (|:| |var| (-873 |#1|)) (|:| -3907 (-780))) "failed") $) NIL)) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) NIL)) (-1348 ((|#2| $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#2| (-461)))) (-2872 (($ (-653 $)) NIL (|has| |#2| (-461))) (($ $ $) NIL (|has| |#2| (-461)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-4218 (((-427 $) $) NIL (|has| |#2| (-919)))) (-2837 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-565))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-565)))) (-2645 (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-873 |#1|) |#2|) NIL) (($ $ (-653 (-873 |#1|)) (-653 |#2|)) NIL) (($ $ (-873 |#1|) $) NIL) (($ $ (-653 (-873 |#1|)) (-653 $)) NIL)) (-3592 (($ $ (-873 |#1|)) NIL (|has| |#2| (-174)))) (-3904 (($ $ (-873 |#1|)) NIL) (($ $ (-653 (-873 |#1|))) NIL) (($ $ (-873 |#1|) (-780)) NIL) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-2565 (((-491 (-2862 |#1|) (-780)) $) NIL) (((-780) $ (-873 |#1|)) NIL) (((-653 (-780)) $ (-653 (-873 |#1|))) NIL)) (-1835 (((-902 (-387)) $) NIL (-12 (|has| (-873 |#1|) (-623 (-902 (-387)))) (|has| |#2| (-623 (-902 (-387)))))) (((-902 (-573)) $) NIL (-12 (|has| (-873 |#1|) (-623 (-902 (-573)))) (|has| |#2| (-623 (-902 (-573)))))) (((-545) $) NIL (-12 (|has| (-873 |#1|) (-623 (-545))) (|has| |#2| (-623 (-545)))))) (-3257 ((|#2| $) NIL (|has| |#2| (-461))) (($ $ (-873 |#1|)) NIL (|has| |#2| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-919))))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#2|) NIL) (($ (-873 |#1|)) NIL) (($ (-416 (-573))) NIL (-2817 (|has| |#2| (-38 (-416 (-573)))) (|has| |#2| (-1050 (-416 (-573)))))) (($ $) NIL (|has| |#2| (-565)))) (-1920 (((-653 |#2|) $) NIL)) (-4317 ((|#2| $ (-491 (-2862 |#1|) (-780))) NIL) (($ $ (-873 |#1|) (-780)) NIL) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#2| (-919))) (|has| |#2| (-146))))) (-1545 (((-780)) NIL T CONST)) (-1538 (($ $ $ (-780)) NIL (|has| |#2| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#2| (-565)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-873 |#1|)) NIL) (($ $ (-653 (-873 |#1|))) NIL) (($ $ (-873 |#1|) (-780)) NIL) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#2|) NIL (|has| |#2| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL (|has| |#2| (-38 (-416 (-573))))) (($ (-416 (-573)) $) NIL (|has| |#2| (-38 (-416 (-573))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-490 |#1| |#2|) (-13 (-959 |#2| (-491 (-2862 |#1|) (-780)) (-873 |#1|)) (-10 -8 (-15 -3327 ($ $ (-653 (-573)))))) (-653 (-1189)) (-1061)) (T -490)) +((-3327 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-490 *3 *4)) (-14 *3 (-653 (-1189))) (-4 *4 (-1061))))) +(-13 (-959 |#2| (-491 (-2862 |#1|) (-780)) (-873 |#1|)) (-10 -8 (-15 -3327 ($ $ (-653 (-573)))))) +((-2848 (((-112) $ $) NIL (|has| |#2| (-1112)))) (-1748 (((-112) $) NIL (|has| |#2| (-132)))) (-3690 (($ (-931)) NIL (|has| |#2| (-1061)))) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-3280 (($ $ $) NIL (|has| |#2| (-802)))) (-2983 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-3450 (((-112) $ (-780)) NIL)) (-1486 (((-780)) NIL (|has| |#2| (-376)))) (-1983 (((-573) $) NIL (|has| |#2| (-857)))) (-3142 ((|#2| $ (-573) |#2|) NIL (|has| $ (-6 -4456)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL (-12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112)))) (((-3 (-416 (-573)) "failed") $) NIL (-12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1112)))) (-2205 (((-573) $) NIL (-12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112)))) (((-416 (-573)) $) NIL (-12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) ((|#2| $) NIL (|has| |#2| (-1112)))) (-2759 (((-698 (-573)) (-1280 $)) NIL (-12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) (((-698 (-573)) (-698 $)) NIL (-12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (-12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) NIL (|has| |#2| (-1061))) (((-698 |#2|) (-698 $)) NIL (|has| |#2| (-1061))) (((-698 |#2|) (-1280 $)) NIL (|has| |#2| (-1061)))) (-2232 (((-3 $ "failed") $) NIL (|has| |#2| (-735)))) (-2819 (($) NIL (|has| |#2| (-376)))) (-2457 ((|#2| $ (-573) |#2|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#2| $ (-573)) 11)) (-4152 (((-112) $) NIL (|has| |#2| (-857)))) (-1863 (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-1959 (((-112) $) NIL (|has| |#2| (-735)))) (-3339 (((-112) $) NIL (|has| |#2| (-857)))) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) NIL (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-3214 (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-2446 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-3589 (((-931) $) NIL (|has| |#2| (-376)))) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#2| (-1112)))) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-2575 (($ (-931)) NIL (|has| |#2| (-376)))) (-3965 (((-1132) $) NIL (|has| |#2| (-1112)))) (-2914 ((|#2| $) NIL (|has| (-573) (-859)))) (-3112 (($ $ |#2|) NIL (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#2|))) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-1535 (((-653 |#2|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#2| $ (-573) |#2|) NIL) ((|#2| $ (-573)) NIL)) (-2658 ((|#2| $ $) NIL (|has| |#2| (-1061)))) (-4260 (($ (-1280 |#2|)) NIL)) (-2365 (((-135)) NIL (|has| |#2| (-371)))) (-3904 (($ $ (-780)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $ (-1189)) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1 |#2| |#2|) (-780)) NIL (|has| |#2| (-1061))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1061)))) (-3974 (((-780) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455))) (((-780) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3166 (($ $) NIL)) (-2942 (((-1280 |#2|) $) NIL) (($ (-573)) NIL (-2817 (-12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112))) (|has| |#2| (-1061)))) (($ (-416 (-573))) NIL (-12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) (($ |#2|) NIL (|has| |#2| (-1112))) (((-871) $) NIL (|has| |#2| (-622 (-871))))) (-1545 (((-780)) NIL (|has| |#2| (-1061)) CONST)) (-3507 (((-112) $ $) NIL (|has| |#2| (-1112)))) (-1646 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-1660 (($ $) NIL (|has| |#2| (-857)))) (-2132 (($) NIL (|has| |#2| (-132)) CONST)) (-2144 (($) NIL (|has| |#2| (-735)) CONST)) (-3609 (($ $ (-780)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $ (-1189)) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1 |#2| |#2|) (-780)) NIL (|has| |#2| (-1061))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1061)))) (-3040 (((-112) $ $) NIL (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-3015 (((-112) $ $) NIL (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-2981 (((-112) $ $) NIL (|has| |#2| (-1112)))) (-3027 (((-112) $ $) NIL (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-3005 (((-112) $ $) 17 (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-3103 (($ $ |#2|) NIL (|has| |#2| (-371)))) (-3093 (($ $ $) NIL (|has| |#2| (-1061))) (($ $) NIL (|has| |#2| (-1061)))) (-3077 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-780)) NIL (|has| |#2| (-735))) (($ $ (-931)) NIL (|has| |#2| (-735)))) (* (($ (-573) $) NIL (|has| |#2| (-1061))) (($ $ $) NIL (|has| |#2| (-735))) (($ $ |#2|) NIL (|has| |#2| (-735))) (($ |#2| $) NIL (|has| |#2| (-735))) (($ (-780) $) NIL (|has| |#2| (-132))) (($ (-931) $) NIL (|has| |#2| (-25)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-491 |#1| |#2|) (-243 |#1| |#2|) (-780) (-802)) (T -491)) +NIL +(-243 |#1| |#2|) +((-2848 (((-112) $ $) NIL)) (-2623 (((-653 (-885)) $) 15)) (-2031 (((-515) $) 13)) (-3180 (((-1171) $) NIL)) (-1726 (($ (-515) (-653 (-885))) 11)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 22) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-492) (-13 (-1095) (-10 -8 (-15 -1726 ($ (-515) (-653 (-885)))) (-15 -2031 ((-515) $)) (-15 -2623 ((-653 (-885)) $))))) (T -492)) +((-1726 (*1 *1 *2 *3) (-12 (-5 *2 (-515)) (-5 *3 (-653 (-885))) (-5 *1 (-492)))) (-2031 (*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-492)))) (-2623 (*1 *2 *1) (-12 (-5 *2 (-653 (-885))) (-5 *1 (-492))))) +(-13 (-1095) (-10 -8 (-15 -1726 ($ (-515) (-653 (-885)))) (-15 -2031 ((-515) $)) (-15 -2623 ((-653 (-885)) $)))) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3450 (((-112) $ (-780)) NIL)) (-2579 (($) NIL T CONST)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-4241 (($ $ $) 48)) (-1480 (($ $ $) 47)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3751 ((|#1| $) 40)) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-2487 ((|#1| $) 41)) (-3181 (($ |#1| $) 18)) (-1334 (($ (-653 |#1|)) 19)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-3815 ((|#1| $) 34)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) 11)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2679 (($ (-653 |#1|)) 45)) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2862 (((-780) $) 29 (|has| $ (-6 -4455))))) +(((-493 |#1|) (-13 (-980 |#1|) (-10 -8 (-15 -1334 ($ (-653 |#1|))))) (-859)) (T -493)) +((-1334 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-859)) (-5 *1 (-493 *3))))) +(-13 (-980 |#1|) (-10 -8 (-15 -1334 ($ (-653 |#1|))))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-2867 (($ $) 71)) (-1598 (((-112) $) NIL)) (-3180 (((-1171) $) NIL)) (-1339 (((-422 |#2| (-416 |#2|) |#3| |#4|) $) 45)) (-3965 (((-1132) $) NIL)) (-2969 (((-3 |#4| "failed") $) 117)) (-2203 (($ (-422 |#2| (-416 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-573)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-2478 (((-2 (|:| -2802 (-422 |#2| (-416 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-2942 (((-871) $) 110)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 32 T CONST)) (-2981 (((-112) $ $) 121)) (-3093 (($ $) 77) (($ $ $) NIL)) (-3077 (($ $ $) 72)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 78))) +(((-494 |#1| |#2| |#3| |#4|) (-343 |#1| |#2| |#3| |#4|) (-371) (-1256 |#1|) (-1256 (-416 |#2|)) (-350 |#1| |#2| |#3|)) (T -494)) +NIL +(-343 |#1| |#2| |#3| |#4|) +((-2258 (((-573) (-653 (-573))) 53)) (-2576 ((|#1| (-653 |#1|)) 94)) (-2950 (((-653 |#1|) (-653 |#1|)) 95)) (-2690 (((-653 |#1|) (-653 |#1|)) 97)) (-2872 ((|#1| (-653 |#1|)) 96)) (-3257 (((-653 (-573)) (-653 |#1|)) 56))) +(((-495 |#1|) (-10 -7 (-15 -2872 (|#1| (-653 |#1|))) (-15 -2576 (|#1| (-653 |#1|))) (-15 -2690 ((-653 |#1|) (-653 |#1|))) (-15 -2950 ((-653 |#1|) (-653 |#1|))) (-15 -3257 ((-653 (-573)) (-653 |#1|))) (-15 -2258 ((-573) (-653 (-573))))) (-1256 (-573))) (T -495)) +((-2258 (*1 *2 *3) (-12 (-5 *3 (-653 (-573))) (-5 *2 (-573)) (-5 *1 (-495 *4)) (-4 *4 (-1256 *2)))) (-3257 (*1 *2 *3) (-12 (-5 *3 (-653 *4)) (-4 *4 (-1256 (-573))) (-5 *2 (-653 (-573))) (-5 *1 (-495 *4)))) (-2950 (*1 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1256 (-573))) (-5 *1 (-495 *3)))) (-2690 (*1 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1256 (-573))) (-5 *1 (-495 *3)))) (-2576 (*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-5 *1 (-495 *2)) (-4 *2 (-1256 (-573))))) (-2872 (*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-5 *1 (-495 *2)) (-4 *2 (-1256 (-573)))))) +(-10 -7 (-15 -2872 (|#1| (-653 |#1|))) (-15 -2576 (|#1| (-653 |#1|))) (-15 -2690 ((-653 |#1|) (-653 |#1|))) (-15 -2950 ((-653 |#1|) (-653 |#1|))) (-15 -3257 ((-653 (-573)) (-653 |#1|))) (-15 -2258 ((-573) (-653 (-573))))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3770 (((-573) $) NIL (|has| (-573) (-314)))) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-2800 (((-112) $ $) NIL)) (-1983 (((-573) $) NIL (|has| (-573) (-829)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL) (((-3 (-1189) "failed") $) NIL (|has| (-573) (-1050 (-1189)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| (-573) (-1050 (-573)))) (((-3 (-573) "failed") $) NIL (|has| (-573) (-1050 (-573))))) (-2205 (((-573) $) NIL) (((-1189) $) NIL (|has| (-573) (-1050 (-1189)))) (((-416 (-573)) $) NIL (|has| (-573) (-1050 (-573)))) (((-573) $) NIL (|has| (-573) (-1050 (-573))))) (-2784 (($ $ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| (-573) (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| (-573) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| (-573) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL) (((-698 (-573)) (-698 $)) NIL) (((-698 (-573)) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) NIL (|has| (-573) (-554)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-4152 (((-112) $) NIL (|has| (-573) (-829)))) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (|has| (-573) (-896 (-573)))) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (|has| (-573) (-896 (-387))))) (-1959 (((-112) $) NIL)) (-3041 (($ $) NIL)) (-2965 (((-573) $) NIL)) (-1470 (((-3 $ "failed") $) NIL (|has| (-573) (-1164)))) (-3339 (((-112) $) NIL (|has| (-573) (-829)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3659 (($ $ $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| (-573) (-859)))) (-1776 (($ (-1 (-573) (-573)) $) NIL)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| (-573) (-1164)) CONST)) (-1641 (($ (-416 (-573))) 9)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-2408 (($ $) NIL (|has| (-573) (-314))) (((-416 (-573)) $) NIL)) (-3733 (((-573) $) NIL (|has| (-573) (-554)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2645 (($ $ (-653 (-573)) (-653 (-573))) NIL (|has| (-573) (-316 (-573)))) (($ $ (-573) (-573)) NIL (|has| (-573) (-316 (-573)))) (($ $ (-301 (-573))) NIL (|has| (-573) (-316 (-573)))) (($ $ (-653 (-301 (-573)))) NIL (|has| (-573) (-316 (-573)))) (($ $ (-653 (-1189)) (-653 (-573))) NIL (|has| (-573) (-523 (-1189) (-573)))) (($ $ (-1189) (-573)) NIL (|has| (-573) (-523 (-1189) (-573))))) (-2163 (((-780) $) NIL)) (-2198 (($ $ (-573)) NIL (|has| (-573) (-293 (-573) (-573))))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3904 (($ $ (-780)) NIL (|has| (-573) (-238))) (($ $) NIL (|has| (-573) (-238))) (($ $ (-1189)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1 (-573) (-573)) (-780)) NIL) (($ $ (-1 (-573) (-573))) NIL)) (-2662 (($ $) NIL)) (-2975 (((-573) $) NIL)) (-1835 (((-902 (-573)) $) NIL (|has| (-573) (-623 (-902 (-573))))) (((-902 (-387)) $) NIL (|has| (-573) (-623 (-902 (-387))))) (((-545) $) NIL (|has| (-573) (-623 (-545)))) (((-387) $) NIL (|has| (-573) (-1034))) (((-227) $) NIL (|has| (-573) (-1034)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| (-573) (-919))))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) 8) (($ (-573)) NIL) (($ (-1189)) NIL (|has| (-573) (-1050 (-1189)))) (((-416 (-573)) $) NIL) (((-1016 16) $) 10)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| (-573) (-919))) (|has| (-573) (-146))))) (-1545 (((-780)) NIL T CONST)) (-2437 (((-573) $) NIL (|has| (-573) (-554)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-1660 (($ $) NIL (|has| (-573) (-829)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-780)) NIL (|has| (-573) (-238))) (($ $) NIL (|has| (-573) (-238))) (($ $ (-1189)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1 (-573) (-573)) (-780)) NIL) (($ $ (-1 (-573) (-573))) NIL)) (-3040 (((-112) $ $) NIL (|has| (-573) (-859)))) (-3015 (((-112) $ $) NIL (|has| (-573) (-859)))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (|has| (-573) (-859)))) (-3005 (((-112) $ $) NIL (|has| (-573) (-859)))) (-3103 (($ $ $) NIL) (($ (-573) (-573)) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ (-573) $) NIL) (($ $ (-573)) NIL))) +(((-496) (-13 (-1004 (-573)) (-622 (-416 (-573))) (-622 (-1016 16)) (-10 -8 (-15 -2408 ((-416 (-573)) $)) (-15 -1641 ($ (-416 (-573))))))) (T -496)) +((-2408 (*1 *2 *1) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-496)))) (-1641 (*1 *1 *2) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-496))))) +(-13 (-1004 (-573)) (-622 (-416 (-573))) (-622 (-1016 16)) (-10 -8 (-15 -2408 ((-416 (-573)) $)) (-15 -1641 ($ (-416 (-573)))))) +((-3214 (((-653 |#2|) $) 31)) (-1547 (((-112) |#2| $) 36)) (-1575 (((-112) (-1 (-112) |#2|) $) 26)) (-2645 (($ $ (-653 (-301 |#2|))) 13) (($ $ (-301 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-653 |#2|) (-653 |#2|)) NIL)) (-3974 (((-780) (-1 (-112) |#2|) $) 30) (((-780) |#2| $) 34)) (-2942 (((-871) $) 45)) (-1646 (((-112) (-1 (-112) |#2|) $) 23)) (-2981 (((-112) $ $) 39)) (-2862 (((-780) $) 18))) +(((-497 |#1| |#2|) (-10 -8 (-15 -2942 ((-871) |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -2645 (|#1| |#1| (-653 |#2|) (-653 |#2|))) (-15 -2645 (|#1| |#1| |#2| |#2|)) (-15 -2645 (|#1| |#1| (-301 |#2|))) (-15 -2645 (|#1| |#1| (-653 (-301 |#2|)))) (-15 -1547 ((-112) |#2| |#1|)) (-15 -3974 ((-780) |#2| |#1|)) (-15 -3214 ((-653 |#2|) |#1|)) (-15 -3974 ((-780) (-1 (-112) |#2|) |#1|)) (-15 -1575 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1646 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2862 ((-780) |#1|))) (-498 |#2|) (-1230)) (T -497)) +NIL +(-10 -8 (-15 -2942 ((-871) |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -2645 (|#1| |#1| (-653 |#2|) (-653 |#2|))) (-15 -2645 (|#1| |#1| |#2| |#2|)) (-15 -2645 (|#1| |#1| (-301 |#2|))) (-15 -2645 (|#1| |#1| (-653 (-301 |#2|)))) (-15 -1547 ((-112) |#2| |#1|)) (-15 -3974 ((-780) |#2| |#1|)) (-15 -3214 ((-653 |#2|) |#1|)) (-15 -3974 ((-780) (-1 (-112) |#2|) |#1|)) (-15 -1575 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1646 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2862 ((-780) |#1|))) +((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3450 (((-112) $ (-780)) 8)) (-2579 (($) 7 T CONST)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-498 |#1|) (-141) (-1230)) (T -498)) +((-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-498 *3)) (-4 *3 (-1230)))) (-2446 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4456)) (-4 *1 (-498 *3)) (-4 *3 (-1230)))) (-1646 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4455)) (-4 *1 (-498 *4)) (-4 *4 (-1230)) (-5 *2 (-112)))) (-1575 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4455)) (-4 *1 (-498 *4)) (-4 *4 (-1230)) (-5 *2 (-112)))) (-3974 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4455)) (-4 *1 (-498 *4)) (-4 *4 (-1230)) (-5 *2 (-780)))) (-1863 (*1 *2 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-498 *3)) (-4 *3 (-1230)) (-5 *2 (-653 *3)))) (-3214 (*1 *2 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-498 *3)) (-4 *3 (-1230)) (-5 *2 (-653 *3)))) (-3974 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-498 *3)) (-4 *3 (-1230)) (-4 *3 (-1112)) (-5 *2 (-780)))) (-1547 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-498 *3)) (-4 *3 (-1230)) (-4 *3 (-1112)) (-5 *2 (-112))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-622 (-871))) (-6 (-622 (-871))) |%noBranch|) (IF (|has| |t#1| (-1112)) (-6 (-1112)) |%noBranch|) (IF (|has| |t#1| (-1112)) (IF (|has| |t#1| (-316 |t#1|)) (-6 (-316 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1776 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4456)) (-15 -2446 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4455)) (PROGN (-15 -1646 ((-112) (-1 (-112) |t#1|) $)) (-15 -1575 ((-112) (-1 (-112) |t#1|) $)) (-15 -3974 ((-780) (-1 (-112) |t#1|) $)) (-15 -1863 ((-653 |t#1|) $)) (-15 -3214 ((-653 |t#1|) $)) (IF (|has| |t#1| (-1112)) (PROGN (-15 -3974 ((-780) |t#1| $)) (-15 -1547 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) +((-2942 ((|#1| $) 6) (($ |#1|) 9))) +(((-499 |#1|) (-141) (-1230)) (T -499)) +NIL +(-13 (-622 |t#1|) (-625 |t#1|)) +(((-625 |#1|) . T) ((-622 |#1|) . T)) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-2940 (($ (-1171)) 8)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 15) (((-1171) $) 12)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 11))) +(((-500) (-13 (-1112) (-622 (-1171)) (-10 -8 (-15 -2940 ($ (-1171)))))) (T -500)) +((-2940 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-500))))) +(-13 (-1112) (-622 (-1171)) (-10 -8 (-15 -2940 ($ (-1171))))) +((-2363 (($ $) 15)) (-2342 (($ $) 24)) (-2388 (($ $) 12)) (-2401 (($ $) 10)) (-2374 (($ $) 17)) (-2352 (($ $) 22))) +(((-501 |#1|) (-10 -8 (-15 -2352 (|#1| |#1|)) (-15 -2374 (|#1| |#1|)) (-15 -2401 (|#1| |#1|)) (-15 -2388 (|#1| |#1|)) (-15 -2342 (|#1| |#1|)) (-15 -2363 (|#1| |#1|))) (-502)) (T -501)) +NIL +(-10 -8 (-15 -2352 (|#1| |#1|)) (-15 -2374 (|#1| |#1|)) (-15 -2401 (|#1| |#1|)) (-15 -2388 (|#1| |#1|)) (-15 -2342 (|#1| |#1|)) (-15 -2363 (|#1| |#1|))) +((-2363 (($ $) 11)) (-2342 (($ $) 10)) (-2388 (($ $) 9)) (-2401 (($ $) 8)) (-2374 (($ $) 7)) (-2352 (($ $) 6))) +(((-502) (-141)) (T -502)) +((-2363 (*1 *1 *1) (-4 *1 (-502))) (-2342 (*1 *1 *1) (-4 *1 (-502))) (-2388 (*1 *1 *1) (-4 *1 (-502))) (-2401 (*1 *1 *1) (-4 *1 (-502))) (-2374 (*1 *1 *1) (-4 *1 (-502))) (-2352 (*1 *1 *1) (-4 *1 (-502)))) +(-13 (-10 -8 (-15 -2352 ($ $)) (-15 -2374 ($ $)) (-15 -2401 ($ $)) (-15 -2388 ($ $)) (-15 -2342 ($ $)) (-15 -2363 ($ $)))) +((-4218 (((-427 |#4|) |#4| (-1 (-427 |#2|) |#2|)) 54))) +(((-503 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4218 ((-427 |#4|) |#4| (-1 (-427 |#2|) |#2|)))) (-371) (-1256 |#1|) (-13 (-371) (-148) (-733 |#1| |#2|)) (-1256 |#3|)) (T -503)) +((-4218 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-427 *6) *6)) (-4 *6 (-1256 *5)) (-4 *5 (-371)) (-4 *7 (-13 (-371) (-148) (-733 *5 *6))) (-5 *2 (-427 *3)) (-5 *1 (-503 *5 *6 *7 *3)) (-4 *3 (-1256 *7))))) +(-10 -7 (-15 -4218 ((-427 |#4|) |#4| (-1 (-427 |#2|) |#2|)))) +((-2848 (((-112) $ $) NIL)) (-3148 (((-653 $) (-1185 $) (-1189)) NIL) (((-653 $) (-1185 $)) NIL) (((-653 $) (-962 $)) NIL)) (-4118 (($ (-1185 $) (-1189)) NIL) (($ (-1185 $)) NIL) (($ (-962 $)) NIL)) (-1748 (((-112) $) 39)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2737 (((-112) $ $) 73)) (-4090 (((-653 (-621 $)) $) 50)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2544 (($ $ (-301 $)) NIL) (($ $ (-653 (-301 $))) NIL) (($ $ (-653 (-621 $)) (-653 $)) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-4228 (($ $) NIL)) (-2800 (((-112) $ $) NIL)) (-2579 (($) NIL T CONST)) (-3682 (((-653 $) (-1185 $) (-1189)) NIL) (((-653 $) (-1185 $)) NIL) (((-653 $) (-962 $)) NIL)) (-1732 (($ (-1185 $) (-1189)) NIL) (($ (-1185 $)) NIL) (($ (-962 $)) NIL)) (-1695 (((-3 (-621 $) "failed") $) NIL) (((-3 (-573) "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL)) (-2205 (((-621 $) $) NIL) (((-573) $) NIL) (((-416 (-573)) $) 55)) (-2784 (($ $ $) NIL)) (-2759 (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL) (((-698 (-573)) (-698 $)) NIL) (((-698 (-573)) (-1280 $)) NIL) (((-2 (|:| -1423 (-698 (-416 (-573)))) (|:| |vec| (-1280 (-416 (-573))))) (-698 $) (-1280 $)) NIL) (((-698 (-416 (-573))) (-698 $)) NIL) (((-698 (-416 (-573))) (-1280 $)) NIL)) (-2867 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-2449 (($ $) NIL) (($ (-653 $)) NIL)) (-2515 (((-653 (-115)) $) NIL)) (-4173 (((-115) (-115)) NIL)) (-1959 (((-112) $) 42)) (-2250 (((-112) $) NIL (|has| $ (-1050 (-573))))) (-2965 (((-1137 (-573) (-621 $)) $) 37)) (-4325 (($ $ (-573)) NIL)) (-3421 (((-1185 $) (-1185 $) (-621 $)) 87) (((-1185 $) (-1185 $) (-653 (-621 $))) 62) (($ $ (-621 $)) 76) (($ $ (-653 (-621 $))) 77)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2597 (((-1185 $) (-621 $)) 74 (|has| $ (-1061)))) (-1776 (($ (-1 $ $) (-621 $)) NIL)) (-2944 (((-3 (-621 $) "failed") $) NIL)) (-2829 (($ (-653 $)) NIL) (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-4163 (((-653 (-621 $)) $) NIL)) (-1774 (($ (-115) $) NIL) (($ (-115) (-653 $)) NIL)) (-1667 (((-112) $ (-115)) NIL) (((-112) $ (-1189)) NIL)) (-1323 (($ $) NIL)) (-1839 (((-780) $) NIL)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ (-653 $)) NIL) (($ $ $) NIL)) (-3805 (((-112) $ $) NIL) (((-112) $ (-1189)) NIL)) (-4218 (((-427 $) $) NIL)) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2270 (((-112) $) NIL (|has| $ (-1050 (-573))))) (-2645 (($ $ (-621 $) $) NIL) (($ $ (-653 (-621 $)) (-653 $)) NIL) (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-653 (-1189)) (-653 (-1 $ $))) NIL) (($ $ (-653 (-1189)) (-653 (-1 $ (-653 $)))) NIL) (($ $ (-1189) (-1 $ (-653 $))) NIL) (($ $ (-1189) (-1 $ $)) NIL) (($ $ (-653 (-115)) (-653 (-1 $ $))) NIL) (($ $ (-653 (-115)) (-653 (-1 $ (-653 $)))) NIL) (($ $ (-115) (-1 $ (-653 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2163 (((-780) $) NIL)) (-2198 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-653 $)) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3727 (($ $) NIL) (($ $ $) NIL)) (-3904 (($ $) 36) (($ $ (-780)) NIL)) (-2975 (((-1137 (-573) (-621 $)) $) 20)) (-2984 (($ $) NIL (|has| $ (-1061)))) (-1835 (((-387) $) 101) (((-227) $) 109) (((-171 (-387)) $) 117)) (-2942 (((-871) $) NIL) (($ (-621 $)) NIL) (($ (-416 (-573))) NIL) (($ $) NIL) (($ (-573)) NIL) (($ (-1137 (-573) (-621 $))) 21)) (-1545 (((-780)) NIL T CONST)) (-2029 (($ $) NIL) (($ (-653 $)) NIL)) (-3109 (((-112) (-115)) 93)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-2132 (($) 10 T CONST)) (-2144 (($) 22 T CONST)) (-3609 (($ $) NIL) (($ $ (-780)) NIL)) (-2981 (((-112) $ $) 24)) (-3103 (($ $ $) 44)) (-3093 (($ $ $) NIL) (($ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-416 (-573))) NIL) (($ $ (-573)) 48) (($ $ (-780)) NIL) (($ $ (-931)) NIL)) (* (($ (-416 (-573)) $) NIL) (($ $ (-416 (-573))) NIL) (($ $ $) 27) (($ (-573) $) NIL) (($ (-780) $) NIL) (($ (-931) $) NIL))) +(((-504) (-13 (-309) (-27) (-1050 (-573)) (-1050 (-416 (-573))) (-648 (-573)) (-1034) (-648 (-416 (-573))) (-148) (-623 (-171 (-387))) (-238) (-10 -8 (-15 -2942 ($ (-1137 (-573) (-621 $)))) (-15 -2965 ((-1137 (-573) (-621 $)) $)) (-15 -2975 ((-1137 (-573) (-621 $)) $)) (-15 -2867 ($ $)) (-15 -2737 ((-112) $ $)) (-15 -3421 ((-1185 $) (-1185 $) (-621 $))) (-15 -3421 ((-1185 $) (-1185 $) (-653 (-621 $)))) (-15 -3421 ($ $ (-621 $))) (-15 -3421 ($ $ (-653 (-621 $))))))) (T -504)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-1137 (-573) (-621 (-504)))) (-5 *1 (-504)))) (-2965 (*1 *2 *1) (-12 (-5 *2 (-1137 (-573) (-621 (-504)))) (-5 *1 (-504)))) (-2975 (*1 *2 *1) (-12 (-5 *2 (-1137 (-573) (-621 (-504)))) (-5 *1 (-504)))) (-2867 (*1 *1 *1) (-5 *1 (-504))) (-2737 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-504)))) (-3421 (*1 *2 *2 *3) (-12 (-5 *2 (-1185 (-504))) (-5 *3 (-621 (-504))) (-5 *1 (-504)))) (-3421 (*1 *2 *2 *3) (-12 (-5 *2 (-1185 (-504))) (-5 *3 (-653 (-621 (-504)))) (-5 *1 (-504)))) (-3421 (*1 *1 *1 *2) (-12 (-5 *2 (-621 (-504))) (-5 *1 (-504)))) (-3421 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-621 (-504)))) (-5 *1 (-504))))) +(-13 (-309) (-27) (-1050 (-573)) (-1050 (-416 (-573))) (-648 (-573)) (-1034) (-648 (-416 (-573))) (-148) (-623 (-171 (-387))) (-238) (-10 -8 (-15 -2942 ($ (-1137 (-573) (-621 $)))) (-15 -2965 ((-1137 (-573) (-621 $)) $)) (-15 -2975 ((-1137 (-573) (-621 $)) $)) (-15 -2867 ($ $)) (-15 -2737 ((-112) $ $)) (-15 -3421 ((-1185 $) (-1185 $) (-621 $))) (-15 -3421 ((-1185 $) (-1185 $) (-653 (-621 $)))) (-15 -3421 ($ $ (-621 $))) (-15 -3421 ($ $ (-653 (-621 $)))))) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-1473 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-859)))) (-2748 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4456))) (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-859))))) (-2770 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-859)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#1| $ (-573) |#1|) 44 (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) NIL (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3334 (($ |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#1| $ (-573) |#1|) 39 (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) 38)) (-1440 (((-573) (-1 (-112) |#1|) $) NIL) (((-573) |#1| $) NIL (|has| |#1| (-1112))) (((-573) |#1| $ (-573)) NIL (|has| |#1| (-1112)))) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-3789 (($ (-780) |#1|) 21)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) 17 (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-1480 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-859)))) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3470 (((-573) $) 41 (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 32) (($ (-1 |#1| |#1| |#1|) $ $) 35)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-1593 (($ |#1| $ (-573)) NIL) (($ $ $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2914 ((|#1| $) NIL (|has| (-573) (-859)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3112 (($ $ |#1|) 15 (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) 19)) (-2198 ((|#1| $ (-573) |#1|) NIL) ((|#1| $ (-573)) 43) (($ $ (-1247 (-573))) NIL)) (-2836 (($ $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3919 (($ $ $ (-573)) NIL (|has| $ (-6 -4456)))) (-3166 (($ $) 13)) (-1835 (((-545) $) NIL (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 24)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-653 $)) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2862 (((-780) $) 11 (|has| $ (-6 -4455))))) +(((-505 |#1| |#2|) (-19 |#1|) (-1230) (-573)) (T -505)) NIL (-19 |#1|) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3034 (((-112) $ (-781)) NIL)) (-3143 ((|#1| $ (-574) (-574) |#1|) NIL)) (-1365 (($ $ (-574) (-506 |#1| |#3|)) NIL)) (-1694 (($ $ (-574) (-506 |#1| |#2|)) NIL)) (-3426 (($) NIL T CONST)) (-4170 (((-506 |#1| |#3|) $ (-574)) NIL)) (-2458 ((|#1| $ (-574) (-574) |#1|) NIL)) (-2385 ((|#1| $ (-574) (-574)) NIL)) (-1864 (((-654 |#1|) $) NIL)) (-2189 (((-781) $) NIL)) (-3790 (($ (-781) (-781) |#1|) NIL)) (-2198 (((-781) $) NIL)) (-2742 (((-112) $ (-781)) NIL)) (-3491 (((-574) $) NIL)) (-1630 (((-574) $) NIL)) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3068 (((-574) $) NIL)) (-3691 (((-574) $) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-1777 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-1942 (($ $ |#1|) NIL)) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 ((|#1| $ (-574) (-574)) NIL) ((|#1| $ (-574) (-574) |#1|) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) NIL)) (-2471 (((-506 |#1| |#2|) $ (-574)) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-507 |#1| |#2| |#3|) (-57 |#1| (-506 |#1| |#3|) (-506 |#1| |#2|)) (-1231) (-574) (-574)) (T -507)) -NIL -(-57 |#1| (-506 |#1| |#3|) (-506 |#1| |#2|)) -((-3612 (((-654 (-2 (|:| -1882 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-2 (|:| -1882 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-781) (-781)) 32)) (-2310 (((-654 (-1186 |#1|)) |#1| (-781) (-781) (-781)) 43)) (-2799 (((-2 (|:| -1882 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-654 |#3|) (-654 (-2 (|:| -1882 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-781)) 107))) -(((-508 |#1| |#2| |#3|) (-10 -7 (-15 -2310 ((-654 (-1186 |#1|)) |#1| (-781) (-781) (-781))) (-15 -3612 ((-654 (-2 (|:| -1882 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-2 (|:| -1882 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-781) (-781))) (-15 -2799 ((-2 (|:| -1882 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-654 |#3|) (-654 (-2 (|:| -1882 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-781)))) (-358) (-1257 |#1|) (-1257 |#2|)) (T -508)) -((-2799 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 (-2 (|:| -1882 (-699 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-699 *7))))) (-5 *5 (-781)) (-4 *8 (-1257 *7)) (-4 *7 (-1257 *6)) (-4 *6 (-358)) (-5 *2 (-2 (|:| -1882 (-699 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-699 *7)))) (-5 *1 (-508 *6 *7 *8)))) (-3612 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-781)) (-4 *5 (-358)) (-4 *6 (-1257 *5)) (-5 *2 (-654 (-2 (|:| -1882 (-699 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-699 *6))))) (-5 *1 (-508 *5 *6 *7)) (-5 *3 (-2 (|:| -1882 (-699 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-699 *6)))) (-4 *7 (-1257 *6)))) (-2310 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-781)) (-4 *3 (-358)) (-4 *5 (-1257 *3)) (-5 *2 (-654 (-1186 *3))) (-5 *1 (-508 *3 *5 *6)) (-4 *6 (-1257 *5))))) -(-10 -7 (-15 -2310 ((-654 (-1186 |#1|)) |#1| (-781) (-781) (-781))) (-15 -3612 ((-654 (-2 (|:| -1882 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-2 (|:| -1882 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-781) (-781))) (-15 -2799 ((-2 (|:| -1882 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-654 |#3|) (-654 (-2 (|:| -1882 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-781)))) -((-1976 (((-2 (|:| -1882 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -1882 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -1882 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|)))) 70)) (-2376 ((|#1| (-699 |#1|) |#1| (-781)) 24)) (-1560 (((-781) (-781) (-781)) 34)) (-3709 (((-699 |#1|) (-699 |#1|) (-699 |#1|)) 50)) (-2074 (((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|) 58) (((-699 |#1|) (-699 |#1|) (-699 |#1|)) 55)) (-4083 ((|#1| (-699 |#1|) (-699 |#1|) |#1| (-574)) 28)) (-2159 ((|#1| (-699 |#1|)) 18))) -(((-509 |#1| |#2| |#3|) (-10 -7 (-15 -2159 (|#1| (-699 |#1|))) (-15 -2376 (|#1| (-699 |#1|) |#1| (-781))) (-15 -4083 (|#1| (-699 |#1|) (-699 |#1|) |#1| (-574))) (-15 -1560 ((-781) (-781) (-781))) (-15 -2074 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2074 ((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|)) (-15 -3709 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -1976 ((-2 (|:| -1882 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -1882 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -1882 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|)))))) (-13 (-315) (-10 -8 (-15 -2827 ((-428 $) $)))) (-1257 |#1|) (-419 |#1| |#2|)) (T -509)) -((-1976 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -1882 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-4 *3 (-13 (-315) (-10 -8 (-15 -2827 ((-428 $) $))))) (-4 *4 (-1257 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-3709 (*1 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-13 (-315) (-10 -8 (-15 -2827 ((-428 $) $))))) (-4 *4 (-1257 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-2074 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-699 *3)) (-4 *3 (-13 (-315) (-10 -8 (-15 -2827 ((-428 $) $))))) (-4 *4 (-1257 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-2074 (*1 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-13 (-315) (-10 -8 (-15 -2827 ((-428 $) $))))) (-4 *4 (-1257 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-1560 (*1 *2 *2 *2) (-12 (-5 *2 (-781)) (-4 *3 (-13 (-315) (-10 -8 (-15 -2827 ((-428 $) $))))) (-4 *4 (-1257 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-4083 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-699 *2)) (-5 *4 (-574)) (-4 *2 (-13 (-315) (-10 -8 (-15 -2827 ((-428 $) $))))) (-4 *5 (-1257 *2)) (-5 *1 (-509 *2 *5 *6)) (-4 *6 (-419 *2 *5)))) (-2376 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-699 *2)) (-5 *4 (-781)) (-4 *2 (-13 (-315) (-10 -8 (-15 -2827 ((-428 $) $))))) (-4 *5 (-1257 *2)) (-5 *1 (-509 *2 *5 *6)) (-4 *6 (-419 *2 *5)))) (-2159 (*1 *2 *3) (-12 (-5 *3 (-699 *2)) (-4 *4 (-1257 *2)) (-4 *2 (-13 (-315) (-10 -8 (-15 -2827 ((-428 $) $))))) (-5 *1 (-509 *2 *4 *5)) (-4 *5 (-419 *2 *4))))) -(-10 -7 (-15 -2159 (|#1| (-699 |#1|))) (-15 -2376 (|#1| (-699 |#1|) |#1| (-781))) (-15 -4083 (|#1| (-699 |#1|) (-699 |#1|) |#1| (-574))) (-15 -1560 ((-781) (-781) (-781))) (-15 -2074 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2074 ((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|)) (-15 -3709 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -1976 ((-2 (|:| -1882 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -1882 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -1882 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|)))))) -((-2849 (((-112) $ $) NIL)) (-2877 (($ $) NIL)) (-2109 (($ $ $) 40)) (-3714 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-1357 (((-112) $) NIL (|has| (-112) (-860))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3642 (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| (-112) (-860)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4457)))) (-2771 (($ $) NIL (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3034 (((-112) $ (-781)) NIL)) (-3143 (((-112) $ (-1248 (-574)) (-112)) NIL (|has| $ (-6 -4457))) (((-112) $ (-574) (-112)) 42 (|has| $ (-6 -4457)))) (-2165 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4456)))) (-3426 (($) NIL T CONST)) (-2627 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-112) (-1113))))) (-3335 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4456))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-112) (-1113))))) (-2868 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4456)) (|has| (-112) (-1113))))) (-2458 (((-112) $ (-574) (-112)) NIL (|has| $ (-6 -4457)))) (-2385 (((-112) $ (-574)) NIL)) (-1441 (((-574) (-112) $ (-574)) NIL (|has| (-112) (-1113))) (((-574) (-112) $) NIL (|has| (-112) (-1113))) (((-574) (-1 (-112) (-112)) $) NIL)) (-1864 (((-654 (-112)) $) NIL (|has| $ (-6 -4456)))) (-2098 (($ $ $) 38)) (-2076 (($ $) NIL)) (-3946 (($ $ $) NIL)) (-3790 (($ (-781) (-112)) 27)) (-2855 (($ $ $) NIL)) (-2742 (((-112) $ (-781)) NIL)) (-3618 (((-574) $) 8 (|has| (-574) (-860)))) (-3659 (($ $ $) NIL)) (-4430 (($ $ $) NIL (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1606 (((-654 (-112)) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-112) (-1113))))) (-2702 (((-574) $) NIL (|has| (-574) (-860)))) (-4257 (($ $ $) NIL)) (-2449 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL)) (-1594 (($ $ $ (-574)) NIL) (($ (-112) $ (-574)) NIL)) (-4308 (((-654 (-574)) $) NIL)) (-3336 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL)) (-2915 (((-112) $) NIL (|has| (-574) (-860)))) (-1549 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-1942 (($ $ (-112)) NIL (|has| $ (-6 -4457)))) (-2540 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-112)) (-654 (-112))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1113)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1113)))) (($ $ (-302 (-112))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1113)))) (($ $ (-654 (-302 (-112)))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-112) (-1113))))) (-4371 (((-654 (-112)) $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) 28)) (-2199 (($ $ (-1248 (-574))) NIL) (((-112) $ (-574)) 22) (((-112) $ (-574) (-112)) NIL)) (-2840 (($ $ (-1248 (-574))) NIL) (($ $ (-574)) NIL)) (-3975 (((-781) (-112) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-112) (-1113)))) (((-781) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4456)))) (-3506 (($ $ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3167 (($ $) 29)) (-1836 (((-546) $) NIL (|has| (-112) (-624 (-546))))) (-2956 (($ (-654 (-112))) NIL)) (-4157 (($ (-654 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2943 (((-872) $) 26)) (-3284 (((-112) $ $) NIL)) (-3390 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4456)))) (-2087 (($ $ $) 36)) (-2925 (($ $ $) NIL)) (-2246 (($ $ $) 45)) (-2255 (($ $) 43)) (-2235 (($ $ $) 44)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 30)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) 31)) (-2912 (($ $ $) NIL)) (-2863 (((-781) $) 13 (|has| $ (-6 -4456))))) -(((-510 |#1|) (-13 (-124) (-10 -8 (-15 -2255 ($ $)) (-15 -2246 ($ $ $)) (-15 -2235 ($ $ $)))) (-574)) (T -510)) -((-2255 (*1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574)))) (-2246 (*1 *1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574)))) (-2235 (*1 *1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574))))) -(-13 (-124) (-10 -8 (-15 -2255 ($ $)) (-15 -2246 ($ $ $)) (-15 -2235 ($ $ $)))) -((-4130 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1186 |#4|)) 35)) (-4314 (((-1186 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1186 |#4|)) 22)) (-4092 (((-3 (-699 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-699 (-1186 |#4|))) 46)) (-2638 (((-1186 (-1186 |#4|)) (-1 |#4| |#1|) |#3|) 55))) -(((-511 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4314 (|#2| (-1 |#1| |#4|) (-1186 |#4|))) (-15 -4314 ((-1186 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -4130 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1186 |#4|))) (-15 -4092 ((-3 (-699 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-699 (-1186 |#4|)))) (-15 -2638 ((-1186 (-1186 |#4|)) (-1 |#4| |#1|) |#3|))) (-1062) (-1257 |#1|) (-1257 |#2|) (-1062)) (T -511)) -((-2638 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1062)) (-4 *7 (-1062)) (-4 *6 (-1257 *5)) (-5 *2 (-1186 (-1186 *7))) (-5 *1 (-511 *5 *6 *4 *7)) (-4 *4 (-1257 *6)))) (-4092 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-699 (-1186 *8))) (-4 *5 (-1062)) (-4 *8 (-1062)) (-4 *6 (-1257 *5)) (-5 *2 (-699 *6)) (-5 *1 (-511 *5 *6 *7 *8)) (-4 *7 (-1257 *6)))) (-4130 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1186 *7)) (-4 *5 (-1062)) (-4 *7 (-1062)) (-4 *2 (-1257 *5)) (-5 *1 (-511 *5 *2 *6 *7)) (-4 *6 (-1257 *2)))) (-4314 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1062)) (-4 *7 (-1062)) (-4 *4 (-1257 *5)) (-5 *2 (-1186 *7)) (-5 *1 (-511 *5 *4 *6 *7)) (-4 *6 (-1257 *4)))) (-4314 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1186 *7)) (-4 *5 (-1062)) (-4 *7 (-1062)) (-4 *2 (-1257 *5)) (-5 *1 (-511 *5 *2 *6 *7)) (-4 *6 (-1257 *2))))) -(-10 -7 (-15 -4314 (|#2| (-1 |#1| |#4|) (-1186 |#4|))) (-15 -4314 ((-1186 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -4130 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1186 |#4|))) (-15 -4092 ((-3 (-699 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-699 (-1186 |#4|)))) (-15 -2638 ((-1186 (-1186 |#4|)) (-1 |#4| |#1|) |#3|))) -((-2849 (((-112) $ $) NIL)) (-3659 (($ $ $) NIL)) (-4257 (($ $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3844 (((-1286) $) 25)) (-2199 (((-1172) $ (-1190)) 30)) (-1403 (((-1286) $) 17)) (-2943 (((-872) $) 27) (($ (-1172)) 26)) (-3284 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 11)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) 9))) -(((-512) (-13 (-860) (-10 -8 (-15 -2199 ((-1172) $ (-1190))) (-15 -1403 ((-1286) $)) (-15 -3844 ((-1286) $)) (-15 -2943 ($ (-1172)))))) (T -512)) -((-2199 (*1 *2 *1 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-1172)) (-5 *1 (-512)))) (-1403 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-512)))) (-3844 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-512)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-512))))) -(-13 (-860) (-10 -8 (-15 -2199 ((-1172) $ (-1190))) (-15 -1403 ((-1286) $)) (-15 -3844 ((-1286) $)) (-15 -2943 ($ (-1172))))) -((-4098 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-1907 ((|#1| |#4|) 10)) (-2790 ((|#3| |#4|) 17))) -(((-513 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1907 (|#1| |#4|)) (-15 -2790 (|#3| |#4|)) (-15 -4098 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-566) (-1005 |#1|) (-382 |#1|) (-382 |#2|)) (T -513)) -((-4098 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-1005 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-513 *4 *5 *6 *3)) (-4 *6 (-382 *4)) (-4 *3 (-382 *5)))) (-2790 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-1005 *4)) (-4 *2 (-382 *4)) (-5 *1 (-513 *4 *5 *2 *3)) (-4 *3 (-382 *5)))) (-1907 (*1 *2 *3) (-12 (-4 *4 (-1005 *2)) (-4 *2 (-566)) (-5 *1 (-513 *2 *4 *5 *3)) (-4 *5 (-382 *2)) (-4 *3 (-382 *4))))) -(-10 -7 (-15 -1907 (|#1| |#4|)) (-15 -2790 (|#3| |#4|)) (-15 -4098 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-2849 (((-112) $ $) NIL)) (-2333 (((-112) $ (-654 |#3|)) 126) (((-112) $) 127)) (-3138 (((-112) $) 178)) (-2569 (($ $ |#4|) 117) (($ $ |#4| (-654 |#3|)) 121)) (-2725 (((-1179 (-654 (-963 |#1|)) (-654 (-302 (-963 |#1|)))) (-654 |#4|)) 171 (|has| |#3| (-624 (-1190))))) (-1411 (($ $ $) 107) (($ $ |#4|) 105)) (-3199 (((-112) $) 177)) (-2813 (($ $) 131)) (-4136 (((-1172) $) NIL)) (-1784 (($ $ $) 99) (($ (-654 $)) 101)) (-3511 (((-112) |#4| $) 129)) (-3310 (((-112) $ $) 82)) (-3174 (($ (-654 |#4|)) 106)) (-3966 (((-1133) $) NIL)) (-2688 (($ (-654 |#4|)) 175)) (-3588 (((-112) $) 176)) (-3821 (($ $) 85)) (-3261 (((-654 |#4|) $) 73)) (-4284 (((-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $)) $ (-654 |#3|)) NIL)) (-1973 (((-112) |#4| $) 89)) (-4133 (((-574) $ (-654 |#3|)) 133) (((-574) $) 134)) (-2943 (((-872) $) 174) (($ (-654 |#4|)) 102)) (-3284 (((-112) $ $) NIL)) (-1861 (($ (-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $))) NIL)) (-2981 (((-112) $ $) 84)) (-3079 (($ $ $) 109)) (** (($ $ (-781)) 115)) (* (($ $ $) 113))) -(((-514 |#1| |#2| |#3| |#4|) (-13 (-1113) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-781))) (-15 -3079 ($ $ $)) (-15 -3199 ((-112) $)) (-15 -3138 ((-112) $)) (-15 -1973 ((-112) |#4| $)) (-15 -3310 ((-112) $ $)) (-15 -3511 ((-112) |#4| $)) (-15 -2333 ((-112) $ (-654 |#3|))) (-15 -2333 ((-112) $)) (-15 -1784 ($ $ $)) (-15 -1784 ($ (-654 $))) (-15 -1411 ($ $ $)) (-15 -1411 ($ $ |#4|)) (-15 -3821 ($ $)) (-15 -4284 ((-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $)) $ (-654 |#3|))) (-15 -1861 ($ (-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $)))) (-15 -4133 ((-574) $ (-654 |#3|))) (-15 -4133 ((-574) $)) (-15 -2813 ($ $)) (-15 -3174 ($ (-654 |#4|))) (-15 -2688 ($ (-654 |#4|))) (-15 -3588 ((-112) $)) (-15 -3261 ((-654 |#4|) $)) (-15 -2943 ($ (-654 |#4|))) (-15 -2569 ($ $ |#4|)) (-15 -2569 ($ $ |#4| (-654 |#3|))) (IF (|has| |#3| (-624 (-1190))) (-15 -2725 ((-1179 (-654 (-963 |#1|)) (-654 (-302 (-963 |#1|)))) (-654 |#4|))) |%noBranch|))) (-372) (-803) (-860) (-960 |#1| |#2| |#3|)) (T -514)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-960 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5)))) (-3079 (*1 *1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-960 *2 *3 *4)))) (-3199 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5)))) (-3138 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5)))) (-1973 (*1 *2 *3 *1) (-12 (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-960 *4 *5 *6)))) (-3310 (*1 *2 *1 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5)))) (-3511 (*1 *2 *3 *1) (-12 (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-960 *4 *5 *6)))) (-2333 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) (-5 *2 (-112)) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-960 *4 *5 *6)))) (-2333 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5)))) (-1784 (*1 *1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-960 *2 *3 *4)))) (-1784 (*1 *1 *2) (-12 (-5 *2 (-654 (-514 *3 *4 *5 *6))) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5)))) (-1411 (*1 *1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-960 *2 *3 *4)))) (-1411 (*1 *1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-960 *3 *4 *5)))) (-3821 (*1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-960 *2 *3 *4)))) (-4284 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) (-5 *2 (-2 (|:| |mval| (-699 *4)) (|:| |invmval| (-699 *4)) (|:| |genIdeal| (-514 *4 *5 *6 *7)))) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-960 *4 *5 *6)))) (-1861 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-699 *3)) (|:| |invmval| (-699 *3)) (|:| |genIdeal| (-514 *3 *4 *5 *6)))) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5)))) (-4133 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) (-5 *2 (-574)) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-960 *4 *5 *6)))) (-4133 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-574)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5)))) (-2813 (*1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-960 *2 *3 *4)))) (-3174 (*1 *1 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)))) (-2688 (*1 *1 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)))) (-3588 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5)))) (-3261 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *6)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)))) (-2569 (*1 *1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-960 *3 *4 *5)))) (-2569 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) (-5 *1 (-514 *4 *5 *6 *2)) (-4 *2 (-960 *4 *5 *6)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-960 *4 *5 *6)) (-4 *6 (-624 (-1190))) (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1179 (-654 (-963 *4)) (-654 (-302 (-963 *4))))) (-5 *1 (-514 *4 *5 *6 *7))))) -(-13 (-1113) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-781))) (-15 -3079 ($ $ $)) (-15 -3199 ((-112) $)) (-15 -3138 ((-112) $)) (-15 -1973 ((-112) |#4| $)) (-15 -3310 ((-112) $ $)) (-15 -3511 ((-112) |#4| $)) (-15 -2333 ((-112) $ (-654 |#3|))) (-15 -2333 ((-112) $)) (-15 -1784 ($ $ $)) (-15 -1784 ($ (-654 $))) (-15 -1411 ($ $ $)) (-15 -1411 ($ $ |#4|)) (-15 -3821 ($ $)) (-15 -4284 ((-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $)) $ (-654 |#3|))) (-15 -1861 ($ (-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $)))) (-15 -4133 ((-574) $ (-654 |#3|))) (-15 -4133 ((-574) $)) (-15 -2813 ($ $)) (-15 -3174 ($ (-654 |#4|))) (-15 -2688 ($ (-654 |#4|))) (-15 -3588 ((-112) $)) (-15 -3261 ((-654 |#4|) $)) (-15 -2943 ($ (-654 |#4|))) (-15 -2569 ($ $ |#4|)) (-15 -2569 ($ $ |#4| (-654 |#3|))) (IF (|has| |#3| (-624 (-1190))) (-15 -2725 ((-1179 (-654 (-963 |#1|)) (-654 (-302 (-963 |#1|)))) (-654 |#4|))) |%noBranch|))) -((-2578 (((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) 176)) (-4357 (((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) 177)) (-3102 (((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) 129)) (-2257 (((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) NIL)) (-2716 (((-654 (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) 179)) (-1711 (((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-654 (-874 |#1|))) 195))) -(((-515 |#1| |#2|) (-10 -7 (-15 -2578 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -4357 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -2257 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -3102 ((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -2716 ((-654 (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -1711 ((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-654 (-874 |#1|))))) (-654 (-1190)) (-781)) (T -515)) -((-1711 (*1 *2 *2 *3) (-12 (-5 *2 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574))))) (-5 *3 (-654 (-874 *4))) (-14 *4 (-654 (-1190))) (-14 *5 (-781)) (-5 *1 (-515 *4 *5)))) (-2716 (*1 *2 *3) (-12 (-14 *4 (-654 (-1190))) (-14 *5 (-781)) (-5 *2 (-654 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574)))))) (-5 *1 (-515 *4 *5)) (-5 *3 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574))))))) (-3102 (*1 *2 *2) (-12 (-5 *2 (-514 (-417 (-574)) (-246 *4 (-781)) (-874 *3) (-253 *3 (-417 (-574))))) (-14 *3 (-654 (-1190))) (-14 *4 (-781)) (-5 *1 (-515 *3 *4)))) (-2257 (*1 *2 *3) (-12 (-5 *3 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574))))) (-14 *4 (-654 (-1190))) (-14 *5 (-781)) (-5 *2 (-112)) (-5 *1 (-515 *4 *5)))) (-4357 (*1 *2 *3) (-12 (-5 *3 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574))))) (-14 *4 (-654 (-1190))) (-14 *5 (-781)) (-5 *2 (-112)) (-5 *1 (-515 *4 *5)))) (-2578 (*1 *2 *3) (-12 (-5 *3 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574))))) (-14 *4 (-654 (-1190))) (-14 *5 (-781)) (-5 *2 (-112)) (-5 *1 (-515 *4 *5))))) -(-10 -7 (-15 -2578 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -4357 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -2257 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -3102 ((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -2716 ((-654 (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -1711 ((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-654 (-874 |#1|))))) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3045 (($) 6)) (-2943 (((-872) $) 12) (((-1190) $) 10)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 8))) -(((-516) (-13 (-1113) (-623 (-1190)) (-10 -8 (-15 -3045 ($))))) (T -516)) -((-3045 (*1 *1) (-5 *1 (-516)))) -(-13 (-1113) (-623 (-1190)) (-10 -8 (-15 -3045 ($)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-1392 (($ $) NIL)) (-4335 (($ |#1| |#2|) NIL)) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-4155 ((|#2| $) NIL)) (-1370 ((|#1| $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2133 (($) 12 T CONST)) (-2981 (((-112) $ $) NIL)) (-3094 (($ $) 11) (($ $ $) 35)) (-3079 (($ $ $) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 21))) -(((-517 |#1| |#2|) (-13 (-21) (-519 |#1| |#2|)) (-21) (-860)) (T -517)) -NIL -(-13 (-21) (-519 |#1| |#2|)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 13)) (-3426 (($) NIL T CONST)) (-1392 (($ $) 41)) (-4335 (($ |#1| |#2|) 38)) (-1777 (($ (-1 |#1| |#1|) $) 40)) (-4155 ((|#2| $) NIL)) (-1370 ((|#1| $) 42)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2133 (($) 10 T CONST)) (-2981 (((-112) $ $) NIL)) (-3079 (($ $ $) 26)) (* (($ (-932) $) NIL) (($ (-781) $) 36))) -(((-518 |#1| |#2|) (-13 (-23) (-519 |#1| |#2|)) (-23) (-860)) (T -518)) -NIL -(-13 (-23) (-519 |#1| |#2|)) -((-2849 (((-112) $ $) 7)) (-1392 (($ $) 14)) (-4335 (($ |#1| |#2|) 17)) (-1777 (($ (-1 |#1| |#1|) $) 18)) (-4155 ((|#2| $) 15)) (-1370 ((|#1| $) 16)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) -(((-519 |#1| |#2|) (-141) (-1113) (-860)) (T -519)) -((-1777 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-519 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-860)))) (-4335 (*1 *1 *2 *3) (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-860)))) (-1370 (*1 *2 *1) (-12 (-4 *1 (-519 *2 *3)) (-4 *3 (-860)) (-4 *2 (-1113)))) (-4155 (*1 *2 *1) (-12 (-4 *1 (-519 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-860)))) (-1392 (*1 *1 *1) (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-860))))) -(-13 (-1113) (-10 -8 (-15 -1777 ($ (-1 |t#1| |t#1|) $)) (-15 -4335 ($ |t#1| |t#2|)) (-15 -1370 (|t#1| $)) (-15 -4155 (|t#2| $)) (-15 -1392 ($ $)))) -(((-102) . T) ((-623 (-872)) . T) ((-1113) . T)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3426 (($) NIL T CONST)) (-1392 (($ $) NIL)) (-4335 (($ |#1| |#2|) NIL)) (-3659 (($ $ $) NIL)) (-4257 (($ $ $) NIL)) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-4155 ((|#2| $) NIL)) (-1370 ((|#1| $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2133 (($) NIL T CONST)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) 22)) (-3079 (($ $ $) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL))) -(((-520 |#1| |#2|) (-13 (-802) (-519 |#1| |#2|)) (-802) (-860)) (T -520)) -NIL -(-13 (-802) (-519 |#1| |#2|)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3663 (($ $ $) 23)) (-3524 (((-3 $ "failed") $ $) 19)) (-3426 (($) NIL T CONST)) (-1392 (($ $) NIL)) (-4335 (($ |#1| |#2|) NIL)) (-3659 (($ $ $) NIL)) (-4257 (($ $ $) NIL)) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-4155 ((|#2| $) NIL)) (-1370 ((|#1| $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2133 (($) NIL T CONST)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) NIL)) (-3079 (($ $ $) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL))) -(((-521 |#1| |#2|) (-13 (-803) (-519 |#1| |#2|)) (-803) (-860)) (T -521)) -NIL -(-13 (-803) (-519 |#1| |#2|)) -((-2849 (((-112) $ $) NIL)) (-1392 (($ $) 32)) (-4335 (($ |#1| |#2|) 28)) (-1777 (($ (-1 |#1| |#1|) $) 30)) (-4155 ((|#2| $) 34)) (-1370 ((|#1| $) 33)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 27)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 20))) -(((-522 |#1| |#2|) (-519 |#1| |#2|) (-1113) (-860)) (T -522)) -NIL -(-519 |#1| |#2|) -((-2646 (($ $ (-654 |#2|) (-654 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-523 |#1| |#2| |#3|) (-10 -8 (-15 -2646 (|#1| |#1| |#2| |#3|)) (-15 -2646 (|#1| |#1| (-654 |#2|) (-654 |#3|)))) (-524 |#2| |#3|) (-1113) (-1231)) (T -523)) -NIL -(-10 -8 (-15 -2646 (|#1| |#1| |#2| |#3|)) (-15 -2646 (|#1| |#1| (-654 |#2|) (-654 |#3|)))) -((-2646 (($ $ (-654 |#1|) (-654 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-524 |#1| |#2|) (-141) (-1113) (-1231)) (T -524)) -((-2646 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 *5)) (-4 *1 (-524 *4 *5)) (-4 *4 (-1113)) (-4 *5 (-1231)))) (-2646 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-524 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1231))))) -(-13 (-10 -8 (-15 -2646 ($ $ |t#1| |t#2|)) (-15 -2646 ($ $ (-654 |t#1|) (-654 |t#2|))))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 17)) (-1878 (((-654 (-2 (|:| |gen| |#1|) (|:| -1609 |#2|))) $) 19)) (-3524 (((-3 $ "failed") $ $) NIL)) (-1487 (((-781) $) NIL)) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#1| "failed") $) NIL)) (-2206 ((|#1| $) NIL)) (-1915 ((|#1| $ (-574)) 24)) (-2057 ((|#2| $ (-574)) 22)) (-2354 (($ (-1 |#1| |#1|) $) 48)) (-3925 (($ (-1 |#2| |#2|) $) 45)) (-4136 (((-1172) $) NIL)) (-1717 (($ $ $) 55 (|has| |#2| (-802)))) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 44) (($ |#1|) NIL)) (-3087 ((|#2| |#1| $) 51)) (-3284 (((-112) $ $) NIL)) (-2133 (($) 11 T CONST)) (-2981 (((-112) $ $) 30)) (-3079 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-932) $) NIL) (($ (-781) $) 37) (($ |#2| |#1|) 32))) -(((-525 |#1| |#2| |#3|) (-331 |#1| |#2|) (-1113) (-132) |#2|) (T -525)) -NIL -(-331 |#1| |#2|) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3714 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-1357 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-3642 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4457))) (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| |#1| (-860))))) (-2771 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-3034 (((-112) $ (-781)) NIL)) (-2088 (((-112) (-112)) 32)) (-3143 ((|#1| $ (-574) |#1|) 42 (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) NIL (|has| $ (-6 -4457)))) (-3572 (($ (-1 (-112) |#1|) $) 77)) (-2165 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3426 (($) NIL T CONST)) (-2627 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-1771 (($ $) 81 (|has| |#1| (-1113)))) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2876 (($ |#1| $) NIL (|has| |#1| (-1113))) (($ (-1 (-112) |#1|) $) 64)) (-3335 (($ |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-2458 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) NIL)) (-1441 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1113))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1113)))) (-1434 (($ $ (-574)) 19)) (-3135 (((-781) $) 13)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3790 (($ (-781) |#1|) 31)) (-2742 (((-112) $ (-781)) NIL)) (-3618 (((-574) $) 29 (|has| (-574) (-860)))) (-3659 (($ $ $) NIL (|has| |#1| (-860)))) (-2628 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) 55)) (-4430 (($ (-1 (-112) |#1| |#1|) $ $) 56) (($ $ $) NIL (|has| |#1| (-860)))) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2702 (((-574) $) 28 (|has| (-574) (-860)))) (-4257 (($ $ $) NIL (|has| |#1| (-860)))) (-2449 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-2798 (($ $ $ (-574)) 73) (($ |#1| $ (-574)) 57)) (-1594 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-4308 (((-654 (-574)) $) NIL)) (-3336 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-1936 (($ (-654 |#1|)) 43)) (-2915 ((|#1| $) NIL (|has| (-574) (-860)))) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1942 (($ $ |#1|) 24 (|has| $ (-6 -4457)))) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 60)) (-3398 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-4371 (((-654 |#1|) $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) 21)) (-2199 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) 53) (($ $ (-1248 (-574))) NIL)) (-2932 (($ $ (-1248 (-574))) 71) (($ $ (-574)) 65)) (-2840 (($ $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3506 (($ $ $ (-574)) 61 (|has| $ (-6 -4457)))) (-3167 (($ $) 51)) (-1836 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) NIL)) (-1995 (($ $ $) 62) (($ $ |#1|) 59)) (-4157 (($ $ |#1|) NIL) (($ |#1| $) 58) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3007 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2863 (((-781) $) 22 (|has| $ (-6 -4456))))) -(((-526 |#1| |#2|) (-13 (-19 |#1|) (-290 |#1|) (-10 -8 (-15 -1936 ($ (-654 |#1|))) (-15 -3135 ((-781) $)) (-15 -1434 ($ $ (-574))) (-15 -2088 ((-112) (-112))))) (-1231) (-574)) (T -526)) -((-1936 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-5 *1 (-526 *3 *4)) (-14 *4 (-574)))) (-3135 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1231)) (-14 *4 (-574)))) (-1434 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1231)) (-14 *4 *2))) (-2088 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1231)) (-14 *4 (-574))))) -(-13 (-19 |#1|) (-290 |#1|) (-10 -8 (-15 -1936 ($ (-654 |#1|))) (-15 -3135 ((-781) $)) (-15 -1434 ($ $ (-574))) (-15 -2088 ((-112) (-112))))) -((-2849 (((-112) $ $) NIL)) (-1871 (((-1148) $) 11)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2320 (((-1148) $) 13)) (-2265 (((-1148) $) 9)) (-2943 (((-872) $) 19) (($ (-1195)) NIL) (((-1195) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-527) (-13 (-1096) (-10 -8 (-15 -2265 ((-1148) $)) (-15 -1871 ((-1148) $)) (-15 -2320 ((-1148) $))))) (T -527)) -((-2265 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-527)))) (-1871 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-527)))) (-2320 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-527))))) -(-13 (-1096) (-10 -8 (-15 -2265 ((-1148) $)) (-15 -1871 ((-1148) $)) (-15 -2320 ((-1148) $)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-4297 (((-112) $) NIL)) (-2549 (((-781)) NIL)) (-1636 (((-591 |#1|) $) NIL) (($ $ (-932)) NIL (|has| (-591 |#1|) (-377)))) (-1664 (((-1203 (-932) (-781)) (-574)) NIL (|has| (-591 |#1|) (-377)))) (-3524 (((-3 $ "failed") $ $) NIL)) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-1600 (((-112) $ $) NIL)) (-1487 (((-781)) NIL (|has| (-591 |#1|) (-377)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-591 |#1|) "failed") $) NIL)) (-2206 (((-591 |#1|) $) NIL)) (-2737 (($ (-1281 (-591 |#1|))) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-591 |#1|) (-377)))) (-2786 (($ $ $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2820 (($) NIL (|has| (-591 |#1|) (-377)))) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3812 (($) NIL (|has| (-591 |#1|) (-377)))) (-4044 (((-112) $) NIL (|has| (-591 |#1|) (-377)))) (-1647 (($ $ (-781)) NIL (-2818 (|has| (-591 |#1|) (-146)) (|has| (-591 |#1|) (-377)))) (($ $) NIL (-2818 (|has| (-591 |#1|) (-146)) (|has| (-591 |#1|) (-377))))) (-2257 (((-112) $) NIL)) (-3884 (((-932) $) NIL (|has| (-591 |#1|) (-377))) (((-843 (-932)) $) NIL (-2818 (|has| (-591 |#1|) (-146)) (|has| (-591 |#1|) (-377))))) (-3199 (((-112) $) NIL)) (-2606 (($) NIL (|has| (-591 |#1|) (-377)))) (-2066 (((-112) $) NIL (|has| (-591 |#1|) (-377)))) (-2236 (((-591 |#1|) $) NIL) (($ $ (-932)) NIL (|has| (-591 |#1|) (-377)))) (-2748 (((-3 $ "failed") $) NIL (|has| (-591 |#1|) (-377)))) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1972 (((-1186 (-591 |#1|)) $) NIL) (((-1186 $) $ (-932)) NIL (|has| (-591 |#1|) (-377)))) (-4115 (((-932) $) NIL (|has| (-591 |#1|) (-377)))) (-1533 (((-1186 (-591 |#1|)) $) NIL (|has| (-591 |#1|) (-377)))) (-2037 (((-1186 (-591 |#1|)) $) NIL (|has| (-591 |#1|) (-377))) (((-3 (-1186 (-591 |#1|)) "failed") $ $) NIL (|has| (-591 |#1|) (-377)))) (-2559 (($ $ (-1186 (-591 |#1|))) NIL (|has| (-591 |#1|) (-377)))) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| (-591 |#1|) (-377)) CONST)) (-2576 (($ (-932)) NIL (|has| (-591 |#1|) (-377)))) (-4204 (((-112) $) NIL)) (-3966 (((-1133) $) NIL)) (-2970 (($) NIL (|has| (-591 |#1|) (-377)))) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1417 (((-654 (-2 (|:| -4220 (-574)) (|:| -3715 (-574))))) NIL (|has| (-591 |#1|) (-377)))) (-4220 (((-428 $) $) NIL)) (-2989 (((-843 (-932))) NIL) (((-932)) NIL)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1730 (((-781) $) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-4342 (((-781) $) NIL (|has| (-591 |#1|) (-377))) (((-3 (-781) "failed") $ $) NIL (-2818 (|has| (-591 |#1|) (-146)) (|has| (-591 |#1|) (-377))))) (-4133 (((-135)) NIL)) (-3905 (($ $) NIL (|has| (-591 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-591 |#1|) (-377)))) (-4202 (((-843 (-932)) $) NIL) (((-932) $) NIL)) (-4185 (((-1186 (-591 |#1|))) NIL)) (-3074 (($) NIL (|has| (-591 |#1|) (-377)))) (-2765 (($) NIL (|has| (-591 |#1|) (-377)))) (-3487 (((-1281 (-591 |#1|)) $) NIL) (((-699 (-591 |#1|)) (-1281 $)) NIL)) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (|has| (-591 |#1|) (-377)))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-591 |#1|)) NIL)) (-3298 (($ $) NIL (|has| (-591 |#1|) (-377))) (((-3 $ "failed") $) NIL (-2818 (|has| (-591 |#1|) (-146)) (|has| (-591 |#1|) (-377))))) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-1882 (((-1281 $)) NIL) (((-1281 $) (-932)) NIL)) (-2069 (((-112) $ $) NIL)) (-3587 (((-112) $) NIL)) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-2661 (($ $) NIL (|has| (-591 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-591 |#1|) (-377)))) (-3610 (($ $) NIL (|has| (-591 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-591 |#1|) (-377)))) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL) (($ $ (-591 |#1|)) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-591 |#1|)) NIL) (($ (-591 |#1|) $) NIL))) -(((-528 |#1| |#2|) (-337 (-591 |#1|)) (-932) (-932)) (T -528)) -NIL -(-337 (-591 |#1|)) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3034 (((-112) $ (-781)) NIL)) (-3143 ((|#1| $ (-574) (-574) |#1|) 51)) (-1365 (($ $ (-574) |#4|) NIL)) (-1694 (($ $ (-574) |#5|) NIL)) (-3426 (($) NIL T CONST)) (-4170 ((|#4| $ (-574)) NIL)) (-2458 ((|#1| $ (-574) (-574) |#1|) 50)) (-2385 ((|#1| $ (-574) (-574)) 45)) (-1864 (((-654 |#1|) $) NIL)) (-2189 (((-781) $) 33)) (-3790 (($ (-781) (-781) |#1|) 30)) (-2198 (((-781) $) 38)) (-2742 (((-112) $ (-781)) NIL)) (-3491 (((-574) $) 31)) (-1630 (((-574) $) 32)) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3068 (((-574) $) 37)) (-3691 (((-574) $) 39)) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-1777 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) 55 (|has| |#1| (-1113)))) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-1942 (($ $ |#1|) NIL)) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) NIL)) (-1584 (((-112) $) 14)) (-2672 (($) 16)) (-2199 ((|#1| $ (-574) (-574)) 48) ((|#1| $ (-574) (-574) |#1|) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) NIL)) (-2471 ((|#5| $ (-574)) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-529 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1231) (-574) (-574) (-382 |#1|) (-382 |#1|)) (T -529)) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#1| $ (-573) (-573) |#1|) NIL)) (-3601 (($ $ (-573) (-505 |#1| |#3|)) NIL)) (-2790 (($ $ (-573) (-505 |#1| |#2|)) NIL)) (-2579 (($) NIL T CONST)) (-3229 (((-505 |#1| |#3|) $ (-573)) NIL)) (-2457 ((|#1| $ (-573) (-573) |#1|) NIL)) (-2384 ((|#1| $ (-573) (-573)) NIL)) (-1863 (((-653 |#1|) $) NIL)) (-2188 (((-780) $) NIL)) (-3789 (($ (-780) (-780) |#1|) NIL)) (-2197 (((-780) $) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1319 (((-573) $) NIL)) (-4011 (((-573) $) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3124 (((-573) $) NIL)) (-2326 (((-573) $) NIL)) (-2446 (($ (-1 |#1| |#1|) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-3112 (($ $ |#1|) NIL)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#1| $ (-573) (-573)) NIL) ((|#1| $ (-573) (-573) |#1|) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) NIL)) (-1921 (((-505 |#1| |#2|) $ (-573)) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-506 |#1| |#2| |#3|) (-57 |#1| (-505 |#1| |#3|) (-505 |#1| |#2|)) (-1230) (-573) (-573)) (T -506)) +NIL +(-57 |#1| (-505 |#1| |#3|) (-505 |#1| |#2|)) +((-2646 (((-653 (-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|)))) (-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))) (-780) (-780)) 32)) (-3572 (((-653 (-1185 |#1|)) |#1| (-780) (-780) (-780)) 43)) (-3276 (((-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))) (-653 |#3|) (-653 (-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|)))) (-780)) 107))) +(((-507 |#1| |#2| |#3|) (-10 -7 (-15 -3572 ((-653 (-1185 |#1|)) |#1| (-780) (-780) (-780))) (-15 -2646 ((-653 (-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|)))) (-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))) (-780) (-780))) (-15 -3276 ((-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))) (-653 |#3|) (-653 (-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|)))) (-780)))) (-357) (-1256 |#1|) (-1256 |#2|)) (T -507)) +((-3276 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 *8)) (-5 *4 (-653 (-2 (|:| -3914 (-698 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-698 *7))))) (-5 *5 (-780)) (-4 *8 (-1256 *7)) (-4 *7 (-1256 *6)) (-4 *6 (-357)) (-5 *2 (-2 (|:| -3914 (-698 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-698 *7)))) (-5 *1 (-507 *6 *7 *8)))) (-2646 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-780)) (-4 *5 (-357)) (-4 *6 (-1256 *5)) (-5 *2 (-653 (-2 (|:| -3914 (-698 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-698 *6))))) (-5 *1 (-507 *5 *6 *7)) (-5 *3 (-2 (|:| -3914 (-698 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-698 *6)))) (-4 *7 (-1256 *6)))) (-3572 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-780)) (-4 *3 (-357)) (-4 *5 (-1256 *3)) (-5 *2 (-653 (-1185 *3))) (-5 *1 (-507 *3 *5 *6)) (-4 *6 (-1256 *5))))) +(-10 -7 (-15 -3572 ((-653 (-1185 |#1|)) |#1| (-780) (-780) (-780))) (-15 -2646 ((-653 (-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|)))) (-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))) (-780) (-780))) (-15 -3276 ((-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))) (-653 |#3|) (-653 (-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|)))) (-780)))) +((-2666 (((-2 (|:| -3914 (-698 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-698 |#1|))) (-2 (|:| -3914 (-698 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-698 |#1|))) (-2 (|:| -3914 (-698 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-698 |#1|)))) 70)) (-2557 ((|#1| (-698 |#1|) |#1| (-780)) 24)) (-3755 (((-780) (-780) (-780)) 34)) (-1497 (((-698 |#1|) (-698 |#1|) (-698 |#1|)) 50)) (-1765 (((-698 |#1|) (-698 |#1|) (-698 |#1|) |#1|) 58) (((-698 |#1|) (-698 |#1|) (-698 |#1|)) 55)) (-3594 ((|#1| (-698 |#1|) (-698 |#1|) |#1| (-573)) 28)) (-3856 ((|#1| (-698 |#1|)) 18))) +(((-508 |#1| |#2| |#3|) (-10 -7 (-15 -3856 (|#1| (-698 |#1|))) (-15 -2557 (|#1| (-698 |#1|) |#1| (-780))) (-15 -3594 (|#1| (-698 |#1|) (-698 |#1|) |#1| (-573))) (-15 -3755 ((-780) (-780) (-780))) (-15 -1765 ((-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -1765 ((-698 |#1|) (-698 |#1|) (-698 |#1|) |#1|)) (-15 -1497 ((-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -2666 ((-2 (|:| -3914 (-698 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-698 |#1|))) (-2 (|:| -3914 (-698 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-698 |#1|))) (-2 (|:| -3914 (-698 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-698 |#1|)))))) (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $)))) (-1256 |#1|) (-418 |#1| |#2|)) (T -508)) +((-2666 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3914 (-698 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-698 *3)))) (-4 *3 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) (-4 *4 (-1256 *3)) (-5 *1 (-508 *3 *4 *5)) (-4 *5 (-418 *3 *4)))) (-1497 (*1 *2 *2 *2) (-12 (-5 *2 (-698 *3)) (-4 *3 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) (-4 *4 (-1256 *3)) (-5 *1 (-508 *3 *4 *5)) (-4 *5 (-418 *3 *4)))) (-1765 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-698 *3)) (-4 *3 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) (-4 *4 (-1256 *3)) (-5 *1 (-508 *3 *4 *5)) (-4 *5 (-418 *3 *4)))) (-1765 (*1 *2 *2 *2) (-12 (-5 *2 (-698 *3)) (-4 *3 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) (-4 *4 (-1256 *3)) (-5 *1 (-508 *3 *4 *5)) (-4 *5 (-418 *3 *4)))) (-3755 (*1 *2 *2 *2) (-12 (-5 *2 (-780)) (-4 *3 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) (-4 *4 (-1256 *3)) (-5 *1 (-508 *3 *4 *5)) (-4 *5 (-418 *3 *4)))) (-3594 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-698 *2)) (-5 *4 (-573)) (-4 *2 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) (-4 *5 (-1256 *2)) (-5 *1 (-508 *2 *5 *6)) (-4 *6 (-418 *2 *5)))) (-2557 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-698 *2)) (-5 *4 (-780)) (-4 *2 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) (-4 *5 (-1256 *2)) (-5 *1 (-508 *2 *5 *6)) (-4 *6 (-418 *2 *5)))) (-3856 (*1 *2 *3) (-12 (-5 *3 (-698 *2)) (-4 *4 (-1256 *2)) (-4 *2 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) (-5 *1 (-508 *2 *4 *5)) (-4 *5 (-418 *2 *4))))) +(-10 -7 (-15 -3856 (|#1| (-698 |#1|))) (-15 -2557 (|#1| (-698 |#1|) |#1| (-780))) (-15 -3594 (|#1| (-698 |#1|) (-698 |#1|) |#1| (-573))) (-15 -3755 ((-780) (-780) (-780))) (-15 -1765 ((-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -1765 ((-698 |#1|) (-698 |#1|) (-698 |#1|) |#1|)) (-15 -1497 ((-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -2666 ((-2 (|:| -3914 (-698 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-698 |#1|))) (-2 (|:| -3914 (-698 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-698 |#1|))) (-2 (|:| -3914 (-698 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-698 |#1|)))))) +((-2848 (((-112) $ $) NIL)) (-2876 (($ $) NIL)) (-2108 (($ $ $) 40)) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-1473 (((-112) $) NIL (|has| (-112) (-859))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2748 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-112) (-859)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4456)))) (-2770 (($ $) NIL (|has| (-112) (-859))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-3142 (((-112) $ (-1247 (-573)) (-112)) NIL (|has| $ (-6 -4456))) (((-112) $ (-573) (-112)) 42 (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-112) (-1112))))) (-3334 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4455))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-112) (-1112))))) (-2867 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4455)) (|has| (-112) (-1112))))) (-2457 (((-112) $ (-573) (-112)) NIL (|has| $ (-6 -4456)))) (-2384 (((-112) $ (-573)) NIL)) (-1440 (((-573) (-112) $ (-573)) NIL (|has| (-112) (-1112))) (((-573) (-112) $) NIL (|has| (-112) (-1112))) (((-573) (-1 (-112) (-112)) $) NIL)) (-1863 (((-653 (-112)) $) NIL (|has| $ (-6 -4455)))) (-2097 (($ $ $) 38)) (-2075 (($ $) NIL)) (-3695 (($ $ $) NIL)) (-3789 (($ (-780) (-112)) 27)) (-1419 (($ $ $) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) 8 (|has| (-573) (-859)))) (-3659 (($ $ $) NIL)) (-1480 (($ $ $) NIL (|has| (-112) (-859))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3214 (((-653 (-112)) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-112) (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL)) (-2446 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-1593 (($ $ $ (-573)) NIL) (($ (-112) $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL)) (-2914 (((-112) $) NIL (|has| (-573) (-859)))) (-2036 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3112 (($ $ (-112)) NIL (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-112)) (-653 (-112))) NIL (-12 (|has| (-112) (-316 (-112))) (|has| (-112) (-1112)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-316 (-112))) (|has| (-112) (-1112)))) (($ $ (-301 (-112))) NIL (-12 (|has| (-112) (-316 (-112))) (|has| (-112) (-1112)))) (($ $ (-653 (-301 (-112)))) NIL (-12 (|has| (-112) (-316 (-112))) (|has| (-112) (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-112) (-1112))))) (-1535 (((-653 (-112)) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) 28)) (-2198 (($ $ (-1247 (-573))) NIL) (((-112) $ (-573)) 22) (((-112) $ (-573) (-112)) NIL)) (-2836 (($ $ (-1247 (-573))) NIL) (($ $ (-573)) NIL)) (-3974 (((-780) (-112) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-112) (-1112)))) (((-780) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4455)))) (-3919 (($ $ $ (-573)) NIL (|has| $ (-6 -4456)))) (-3166 (($ $) 29)) (-1835 (((-545) $) NIL (|has| (-112) (-623 (-545))))) (-2955 (($ (-653 (-112))) NIL)) (-4156 (($ (-653 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2942 (((-871) $) 26)) (-3507 (((-112) $ $) NIL)) (-1646 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4455)))) (-2086 (($ $ $) 36)) (-2924 (($ $ $) NIL)) (-2244 (($ $ $) 45)) (-2254 (($ $) 43)) (-2235 (($ $ $) 44)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 30)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 31)) (-2909 (($ $ $) NIL)) (-2862 (((-780) $) 13 (|has| $ (-6 -4455))))) +(((-509 |#1|) (-13 (-124) (-10 -8 (-15 -2254 ($ $)) (-15 -2244 ($ $ $)) (-15 -2235 ($ $ $)))) (-573)) (T -509)) +((-2254 (*1 *1 *1) (-12 (-5 *1 (-509 *2)) (-14 *2 (-573)))) (-2244 (*1 *1 *1 *1) (-12 (-5 *1 (-509 *2)) (-14 *2 (-573)))) (-2235 (*1 *1 *1 *1) (-12 (-5 *1 (-509 *2)) (-14 *2 (-573))))) +(-13 (-124) (-10 -8 (-15 -2254 ($ $)) (-15 -2244 ($ $ $)) (-15 -2235 ($ $ $)))) +((-2287 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1185 |#4|)) 35)) (-1327 (((-1185 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1185 |#4|)) 22)) (-3038 (((-3 (-698 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-698 (-1185 |#4|))) 46)) (-3736 (((-1185 (-1185 |#4|)) (-1 |#4| |#1|) |#3|) 55))) +(((-510 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1327 (|#2| (-1 |#1| |#4|) (-1185 |#4|))) (-15 -1327 ((-1185 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2287 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1185 |#4|))) (-15 -3038 ((-3 (-698 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-698 (-1185 |#4|)))) (-15 -3736 ((-1185 (-1185 |#4|)) (-1 |#4| |#1|) |#3|))) (-1061) (-1256 |#1|) (-1256 |#2|) (-1061)) (T -510)) +((-3736 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1061)) (-4 *7 (-1061)) (-4 *6 (-1256 *5)) (-5 *2 (-1185 (-1185 *7))) (-5 *1 (-510 *5 *6 *4 *7)) (-4 *4 (-1256 *6)))) (-3038 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-698 (-1185 *8))) (-4 *5 (-1061)) (-4 *8 (-1061)) (-4 *6 (-1256 *5)) (-5 *2 (-698 *6)) (-5 *1 (-510 *5 *6 *7 *8)) (-4 *7 (-1256 *6)))) (-2287 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1185 *7)) (-4 *5 (-1061)) (-4 *7 (-1061)) (-4 *2 (-1256 *5)) (-5 *1 (-510 *5 *2 *6 *7)) (-4 *6 (-1256 *2)))) (-1327 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1061)) (-4 *7 (-1061)) (-4 *4 (-1256 *5)) (-5 *2 (-1185 *7)) (-5 *1 (-510 *5 *4 *6 *7)) (-4 *6 (-1256 *4)))) (-1327 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1185 *7)) (-4 *5 (-1061)) (-4 *7 (-1061)) (-4 *2 (-1256 *5)) (-5 *1 (-510 *5 *2 *6 *7)) (-4 *6 (-1256 *2))))) +(-10 -7 (-15 -1327 (|#2| (-1 |#1| |#4|) (-1185 |#4|))) (-15 -1327 ((-1185 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2287 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1185 |#4|))) (-15 -3038 ((-3 (-698 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-698 (-1185 |#4|)))) (-15 -3736 ((-1185 (-1185 |#4|)) (-1 |#4| |#1|) |#3|))) +((-2848 (((-112) $ $) NIL)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-1974 (((-1285) $) 25)) (-2198 (((-1171) $ (-1189)) 30)) (-1402 (((-1285) $) 17)) (-2942 (((-871) $) 27) (($ (-1171)) 26)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 11)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 9))) +(((-511) (-13 (-859) (-10 -8 (-15 -2198 ((-1171) $ (-1189))) (-15 -1402 ((-1285) $)) (-15 -1974 ((-1285) $)) (-15 -2942 ($ (-1171)))))) (T -511)) +((-2198 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1171)) (-5 *1 (-511)))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-511)))) (-1974 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-511)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-511))))) +(-13 (-859) (-10 -8 (-15 -2198 ((-1171) $ (-1189))) (-15 -1402 ((-1285) $)) (-15 -1974 ((-1285) $)) (-15 -2942 ($ (-1171))))) +((-2382 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3343 ((|#1| |#4|) 10)) (-1946 ((|#3| |#4|) 17))) +(((-512 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3343 (|#1| |#4|)) (-15 -1946 (|#3| |#4|)) (-15 -2382 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-565) (-1004 |#1|) (-381 |#1|) (-381 |#2|)) (T -512)) +((-2382 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *5 (-1004 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *6 (-381 *4)) (-4 *3 (-381 *5)))) (-1946 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *5 (-1004 *4)) (-4 *2 (-381 *4)) (-5 *1 (-512 *4 *5 *2 *3)) (-4 *3 (-381 *5)))) (-3343 (*1 *2 *3) (-12 (-4 *4 (-1004 *2)) (-4 *2 (-565)) (-5 *1 (-512 *2 *4 *5 *3)) (-4 *5 (-381 *2)) (-4 *3 (-381 *4))))) +(-10 -7 (-15 -3343 (|#1| |#4|)) (-15 -1946 (|#3| |#4|)) (-15 -2382 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-2848 (((-112) $ $) NIL)) (-3725 (((-112) $ (-653 |#3|)) 126) (((-112) $) 127)) (-1748 (((-112) $) 178)) (-4368 (($ $ |#4|) 117) (($ $ |#4| (-653 |#3|)) 121)) (-2967 (((-1178 (-653 (-962 |#1|)) (-653 (-301 (-962 |#1|)))) (-653 |#4|)) 171 (|has| |#3| (-623 (-1189))))) (-3152 (($ $ $) 107) (($ $ |#4|) 105)) (-1959 (((-112) $) 177)) (-3957 (($ $) 131)) (-3180 (((-1171) $) NIL)) (-3716 (($ $ $) 99) (($ (-653 $)) 101)) (-4254 (((-112) |#4| $) 129)) (-3036 (((-112) $ $) 82)) (-1339 (($ (-653 |#4|)) 106)) (-3965 (((-1132) $) NIL)) (-4432 (($ (-653 |#4|)) 175)) (-4410 (((-112) $) 176)) (-3207 (($ $) 85)) (-4387 (((-653 |#4|) $) 73)) (-1533 (((-2 (|:| |mval| (-698 |#1|)) (|:| |invmval| (-698 |#1|)) (|:| |genIdeal| $)) $ (-653 |#3|)) NIL)) (-2376 (((-112) |#4| $) 89)) (-2365 (((-573) $ (-653 |#3|)) 133) (((-573) $) 134)) (-2942 (((-871) $) 174) (($ (-653 |#4|)) 102)) (-3507 (((-112) $ $) NIL)) (-2640 (($ (-2 (|:| |mval| (-698 |#1|)) (|:| |invmval| (-698 |#1|)) (|:| |genIdeal| $))) NIL)) (-2981 (((-112) $ $) 84)) (-3077 (($ $ $) 109)) (** (($ $ (-780)) 115)) (* (($ $ $) 113))) +(((-513 |#1| |#2| |#3| |#4|) (-13 (-1112) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-780))) (-15 -3077 ($ $ $)) (-15 -1959 ((-112) $)) (-15 -1748 ((-112) $)) (-15 -2376 ((-112) |#4| $)) (-15 -3036 ((-112) $ $)) (-15 -4254 ((-112) |#4| $)) (-15 -3725 ((-112) $ (-653 |#3|))) (-15 -3725 ((-112) $)) (-15 -3716 ($ $ $)) (-15 -3716 ($ (-653 $))) (-15 -3152 ($ $ $)) (-15 -3152 ($ $ |#4|)) (-15 -3207 ($ $)) (-15 -1533 ((-2 (|:| |mval| (-698 |#1|)) (|:| |invmval| (-698 |#1|)) (|:| |genIdeal| $)) $ (-653 |#3|))) (-15 -2640 ($ (-2 (|:| |mval| (-698 |#1|)) (|:| |invmval| (-698 |#1|)) (|:| |genIdeal| $)))) (-15 -2365 ((-573) $ (-653 |#3|))) (-15 -2365 ((-573) $)) (-15 -3957 ($ $)) (-15 -1339 ($ (-653 |#4|))) (-15 -4432 ($ (-653 |#4|))) (-15 -4410 ((-112) $)) (-15 -4387 ((-653 |#4|) $)) (-15 -2942 ($ (-653 |#4|))) (-15 -4368 ($ $ |#4|)) (-15 -4368 ($ $ |#4| (-653 |#3|))) (IF (|has| |#3| (-623 (-1189))) (-15 -2967 ((-1178 (-653 (-962 |#1|)) (-653 (-301 (-962 |#1|)))) (-653 |#4|))) |%noBranch|))) (-371) (-802) (-859) (-959 |#1| |#2| |#3|)) (T -513)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-371)) (-4 *3 (-802)) (-4 *4 (-859)) (-5 *1 (-513 *2 *3 *4 *5)) (-4 *5 (-959 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) (-3077 (*1 *1 *1 *1) (-12 (-4 *2 (-371)) (-4 *3 (-802)) (-4 *4 (-859)) (-5 *1 (-513 *2 *3 *4 *5)) (-4 *5 (-959 *2 *3 *4)))) (-1959 (*1 *2 *1) (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) (-1748 (*1 *2 *1) (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) (-2376 (*1 *2 *3 *1) (-12 (-4 *4 (-371)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-513 *4 *5 *6 *3)) (-4 *3 (-959 *4 *5 *6)))) (-3036 (*1 *2 *1 *1) (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) (-4254 (*1 *2 *3 *1) (-12 (-4 *4 (-371)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-513 *4 *5 *6 *3)) (-4 *3 (-959 *4 *5 *6)))) (-3725 (*1 *2 *1 *3) (-12 (-5 *3 (-653 *6)) (-4 *6 (-859)) (-4 *4 (-371)) (-4 *5 (-802)) (-5 *2 (-112)) (-5 *1 (-513 *4 *5 *6 *7)) (-4 *7 (-959 *4 *5 *6)))) (-3725 (*1 *2 *1) (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) (-3716 (*1 *1 *1 *1) (-12 (-4 *2 (-371)) (-4 *3 (-802)) (-4 *4 (-859)) (-5 *1 (-513 *2 *3 *4 *5)) (-4 *5 (-959 *2 *3 *4)))) (-3716 (*1 *1 *2) (-12 (-5 *2 (-653 (-513 *3 *4 *5 *6))) (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) (-3152 (*1 *1 *1 *1) (-12 (-4 *2 (-371)) (-4 *3 (-802)) (-4 *4 (-859)) (-5 *1 (-513 *2 *3 *4 *5)) (-4 *5 (-959 *2 *3 *4)))) (-3152 (*1 *1 *1 *2) (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-513 *3 *4 *5 *2)) (-4 *2 (-959 *3 *4 *5)))) (-3207 (*1 *1 *1) (-12 (-4 *2 (-371)) (-4 *3 (-802)) (-4 *4 (-859)) (-5 *1 (-513 *2 *3 *4 *5)) (-4 *5 (-959 *2 *3 *4)))) (-1533 (*1 *2 *1 *3) (-12 (-5 *3 (-653 *6)) (-4 *6 (-859)) (-4 *4 (-371)) (-4 *5 (-802)) (-5 *2 (-2 (|:| |mval| (-698 *4)) (|:| |invmval| (-698 *4)) (|:| |genIdeal| (-513 *4 *5 *6 *7)))) (-5 *1 (-513 *4 *5 *6 *7)) (-4 *7 (-959 *4 *5 *6)))) (-2640 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-698 *3)) (|:| |invmval| (-698 *3)) (|:| |genIdeal| (-513 *3 *4 *5 *6)))) (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) (-2365 (*1 *2 *1 *3) (-12 (-5 *3 (-653 *6)) (-4 *6 (-859)) (-4 *4 (-371)) (-4 *5 (-802)) (-5 *2 (-573)) (-5 *1 (-513 *4 *5 *6 *7)) (-4 *7 (-959 *4 *5 *6)))) (-2365 (*1 *2 *1) (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-573)) (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) (-3957 (*1 *1 *1) (-12 (-4 *2 (-371)) (-4 *3 (-802)) (-4 *4 (-859)) (-5 *1 (-513 *2 *3 *4 *5)) (-4 *5 (-959 *2 *3 *4)))) (-1339 (*1 *1 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-513 *3 *4 *5 *6)))) (-4432 (*1 *1 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-513 *3 *4 *5 *6)))) (-4410 (*1 *2 *1) (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) (-4387 (*1 *2 *1) (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *6)) (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-513 *3 *4 *5 *6)))) (-4368 (*1 *1 *1 *2) (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-513 *3 *4 *5 *2)) (-4 *2 (-959 *3 *4 *5)))) (-4368 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-653 *6)) (-4 *6 (-859)) (-4 *4 (-371)) (-4 *5 (-802)) (-5 *1 (-513 *4 *5 *6 *2)) (-4 *2 (-959 *4 *5 *6)))) (-2967 (*1 *2 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-959 *4 *5 *6)) (-4 *6 (-623 (-1189))) (-4 *4 (-371)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-1178 (-653 (-962 *4)) (-653 (-301 (-962 *4))))) (-5 *1 (-513 *4 *5 *6 *7))))) +(-13 (-1112) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-780))) (-15 -3077 ($ $ $)) (-15 -1959 ((-112) $)) (-15 -1748 ((-112) $)) (-15 -2376 ((-112) |#4| $)) (-15 -3036 ((-112) $ $)) (-15 -4254 ((-112) |#4| $)) (-15 -3725 ((-112) $ (-653 |#3|))) (-15 -3725 ((-112) $)) (-15 -3716 ($ $ $)) (-15 -3716 ($ (-653 $))) (-15 -3152 ($ $ $)) (-15 -3152 ($ $ |#4|)) (-15 -3207 ($ $)) (-15 -1533 ((-2 (|:| |mval| (-698 |#1|)) (|:| |invmval| (-698 |#1|)) (|:| |genIdeal| $)) $ (-653 |#3|))) (-15 -2640 ($ (-2 (|:| |mval| (-698 |#1|)) (|:| |invmval| (-698 |#1|)) (|:| |genIdeal| $)))) (-15 -2365 ((-573) $ (-653 |#3|))) (-15 -2365 ((-573) $)) (-15 -3957 ($ $)) (-15 -1339 ($ (-653 |#4|))) (-15 -4432 ($ (-653 |#4|))) (-15 -4410 ((-112) $)) (-15 -4387 ((-653 |#4|) $)) (-15 -2942 ($ (-653 |#4|))) (-15 -4368 ($ $ |#4|)) (-15 -4368 ($ $ |#4| (-653 |#3|))) (IF (|has| |#3| (-623 (-1189))) (-15 -2967 ((-1178 (-653 (-962 |#1|)) (-653 (-301 (-962 |#1|)))) (-653 |#4|))) |%noBranch|))) +((-2635 (((-112) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573))))) 176)) (-2542 (((-112) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573))))) 177)) (-3101 (((-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573))))) 129)) (-2696 (((-112) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573))))) NIL)) (-1360 (((-653 (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573))))) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573))))) 179)) (-1651 (((-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))) (-653 (-873 |#1|))) 195))) +(((-514 |#1| |#2|) (-10 -7 (-15 -2635 ((-112) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))))) (-15 -2542 ((-112) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))))) (-15 -2696 ((-112) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))))) (-15 -3101 ((-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))))) (-15 -1360 ((-653 (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573))))) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))))) (-15 -1651 ((-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))) (-653 (-873 |#1|))))) (-653 (-1189)) (-780)) (T -514)) +((-1651 (*1 *2 *2 *3) (-12 (-5 *2 (-513 (-416 (-573)) (-245 *5 (-780)) (-873 *4) (-252 *4 (-416 (-573))))) (-5 *3 (-653 (-873 *4))) (-14 *4 (-653 (-1189))) (-14 *5 (-780)) (-5 *1 (-514 *4 *5)))) (-1360 (*1 *2 *3) (-12 (-14 *4 (-653 (-1189))) (-14 *5 (-780)) (-5 *2 (-653 (-513 (-416 (-573)) (-245 *5 (-780)) (-873 *4) (-252 *4 (-416 (-573)))))) (-5 *1 (-514 *4 *5)) (-5 *3 (-513 (-416 (-573)) (-245 *5 (-780)) (-873 *4) (-252 *4 (-416 (-573))))))) (-3101 (*1 *2 *2) (-12 (-5 *2 (-513 (-416 (-573)) (-245 *4 (-780)) (-873 *3) (-252 *3 (-416 (-573))))) (-14 *3 (-653 (-1189))) (-14 *4 (-780)) (-5 *1 (-514 *3 *4)))) (-2696 (*1 *2 *3) (-12 (-5 *3 (-513 (-416 (-573)) (-245 *5 (-780)) (-873 *4) (-252 *4 (-416 (-573))))) (-14 *4 (-653 (-1189))) (-14 *5 (-780)) (-5 *2 (-112)) (-5 *1 (-514 *4 *5)))) (-2542 (*1 *2 *3) (-12 (-5 *3 (-513 (-416 (-573)) (-245 *5 (-780)) (-873 *4) (-252 *4 (-416 (-573))))) (-14 *4 (-653 (-1189))) (-14 *5 (-780)) (-5 *2 (-112)) (-5 *1 (-514 *4 *5)))) (-2635 (*1 *2 *3) (-12 (-5 *3 (-513 (-416 (-573)) (-245 *5 (-780)) (-873 *4) (-252 *4 (-416 (-573))))) (-14 *4 (-653 (-1189))) (-14 *5 (-780)) (-5 *2 (-112)) (-5 *1 (-514 *4 *5))))) +(-10 -7 (-15 -2635 ((-112) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))))) (-15 -2542 ((-112) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))))) (-15 -2696 ((-112) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))))) (-15 -3101 ((-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))))) (-15 -1360 ((-653 (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573))))) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))))) (-15 -1651 ((-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))) (-513 (-416 (-573)) (-245 |#2| (-780)) (-873 |#1|) (-252 |#1| (-416 (-573)))) (-653 (-873 |#1|))))) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-3298 (($) 6)) (-2942 (((-871) $) 12) (((-1189) $) 10)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 8))) +(((-515) (-13 (-1112) (-622 (-1189)) (-10 -8 (-15 -3298 ($))))) (T -515)) +((-3298 (*1 *1) (-5 *1 (-515)))) +(-13 (-1112) (-622 (-1189)) (-10 -8 (-15 -3298 ($)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1391 (($ $) NIL)) (-4334 (($ |#1| |#2|) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1481 ((|#2| $) NIL)) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 12 T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) 11) (($ $ $) 35)) (-3077 (($ $ $) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 21))) +(((-516 |#1| |#2|) (-13 (-21) (-518 |#1| |#2|)) (-21) (-859)) (T -516)) +NIL +(-13 (-21) (-518 |#1| |#2|)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 13)) (-2579 (($) NIL T CONST)) (-1391 (($ $) 41)) (-4334 (($ |#1| |#2|) 38)) (-1776 (($ (-1 |#1| |#1|) $) 40)) (-1481 ((|#2| $) NIL)) (-1369 ((|#1| $) 42)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 10 T CONST)) (-2981 (((-112) $ $) NIL)) (-3077 (($ $ $) 26)) (* (($ (-931) $) NIL) (($ (-780) $) 36))) +(((-517 |#1| |#2|) (-13 (-23) (-518 |#1| |#2|)) (-23) (-859)) (T -517)) +NIL +(-13 (-23) (-518 |#1| |#2|)) +((-2848 (((-112) $ $) 7)) (-1391 (($ $) 14)) (-4334 (($ |#1| |#2|) 17)) (-1776 (($ (-1 |#1| |#1|) $) 18)) (-1481 ((|#2| $) 15)) (-1369 ((|#1| $) 16)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) +(((-518 |#1| |#2|) (-141) (-1112) (-859)) (T -518)) +((-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-518 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-859)))) (-4334 (*1 *1 *2 *3) (-12 (-4 *1 (-518 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-859)))) (-1369 (*1 *2 *1) (-12 (-4 *1 (-518 *2 *3)) (-4 *3 (-859)) (-4 *2 (-1112)))) (-1481 (*1 *2 *1) (-12 (-4 *1 (-518 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-859)))) (-1391 (*1 *1 *1) (-12 (-4 *1 (-518 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-859))))) +(-13 (-1112) (-10 -8 (-15 -1776 ($ (-1 |t#1| |t#1|) $)) (-15 -4334 ($ |t#1| |t#2|)) (-15 -1369 (|t#1| $)) (-15 -1481 (|t#2| $)) (-15 -1391 ($ $)))) +(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2579 (($) NIL T CONST)) (-1391 (($ $) NIL)) (-4334 (($ |#1| |#2|) NIL)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1481 ((|#2| $) NIL)) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2132 (($) NIL T CONST)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 22)) (-3077 (($ $ $) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL))) +(((-519 |#1| |#2|) (-13 (-801) (-518 |#1| |#2|)) (-801) (-859)) (T -519)) +NIL +(-13 (-801) (-518 |#1| |#2|)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3280 (($ $ $) 23)) (-2983 (((-3 $ "failed") $ $) 19)) (-2579 (($) NIL T CONST)) (-1391 (($ $) NIL)) (-4334 (($ |#1| |#2|) NIL)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1481 ((|#2| $) NIL)) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2132 (($) NIL T CONST)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL))) +(((-520 |#1| |#2|) (-13 (-802) (-518 |#1| |#2|)) (-802) (-859)) (T -520)) +NIL +(-13 (-802) (-518 |#1| |#2|)) +((-2848 (((-112) $ $) NIL)) (-1391 (($ $) 32)) (-4334 (($ |#1| |#2|) 28)) (-1776 (($ (-1 |#1| |#1|) $) 30)) (-1481 ((|#2| $) 34)) (-1369 ((|#1| $) 33)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 27)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 20))) +(((-521 |#1| |#2|) (-518 |#1| |#2|) (-1112) (-859)) (T -521)) +NIL +(-518 |#1| |#2|) +((-2645 (($ $ (-653 |#2|) (-653 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-522 |#1| |#2| |#3|) (-10 -8 (-15 -2645 (|#1| |#1| |#2| |#3|)) (-15 -2645 (|#1| |#1| (-653 |#2|) (-653 |#3|)))) (-523 |#2| |#3|) (-1112) (-1230)) (T -522)) +NIL +(-10 -8 (-15 -2645 (|#1| |#1| |#2| |#3|)) (-15 -2645 (|#1| |#1| (-653 |#2|) (-653 |#3|)))) +((-2645 (($ $ (-653 |#1|) (-653 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(((-523 |#1| |#2|) (-141) (-1112) (-1230)) (T -523)) +((-2645 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 *4)) (-5 *3 (-653 *5)) (-4 *1 (-523 *4 *5)) (-4 *4 (-1112)) (-4 *5 (-1230)))) (-2645 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-523 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1230))))) +(-13 (-10 -8 (-15 -2645 ($ $ |t#1| |t#2|)) (-15 -2645 ($ $ (-653 |t#1|) (-653 |t#2|))))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 17)) (-1662 (((-653 (-2 (|:| |gen| |#1|) (|:| -1608 |#2|))) $) 19)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1486 (((-780) $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2205 ((|#1| $) NIL)) (-2841 ((|#1| $ (-573)) 24)) (-3892 ((|#2| $ (-573)) 22)) (-1911 (($ (-1 |#1| |#1|) $) 48)) (-3480 (($ (-1 |#2| |#2|) $) 45)) (-3180 (((-1171) $) NIL)) (-3477 (($ $ $) 55 (|has| |#2| (-801)))) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 44) (($ |#1|) NIL)) (-4317 ((|#2| |#1| $) 51)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 11 T CONST)) (-2981 (((-112) $ $) 30)) (-3077 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-931) $) NIL) (($ (-780) $) 37) (($ |#2| |#1|) 32))) +(((-524 |#1| |#2| |#3|) (-330 |#1| |#2|) (-1112) (-132) |#2|) (T -524)) +NIL +(-330 |#1| |#2|) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-1473 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-859)))) (-2748 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4456))) (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-859))))) (-2770 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-859)))) (-3450 (((-112) $ (-780)) NIL)) (-1534 (((-112) (-112)) 32)) (-3142 ((|#1| $ (-573) |#1|) 42 (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) NIL (|has| $ (-6 -4456)))) (-3557 (($ (-1 (-112) |#1|) $) 77)) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-1599 (($ $) 81 (|has| |#1| (-1112)))) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2596 (($ |#1| $) NIL (|has| |#1| (-1112))) (($ (-1 (-112) |#1|) $) 64)) (-3334 (($ |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) NIL)) (-1440 (((-573) (-1 (-112) |#1|) $) NIL) (((-573) |#1| $) NIL (|has| |#1| (-1112))) (((-573) |#1| $ (-573)) NIL (|has| |#1| (-1112)))) (-2380 (($ $ (-573)) 19)) (-2612 (((-780) $) 13)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-3789 (($ (-780) |#1|) 31)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) 29 (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-4241 (($ $ $) NIL (|has| |#1| (-859))) (($ (-1 (-112) |#1| |#1|) $ $) 55)) (-1480 (($ (-1 (-112) |#1| |#1|) $ $) 56) (($ $ $) NIL (|has| |#1| (-859)))) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3470 (((-573) $) 28 (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3181 (($ $ $ (-573)) 73) (($ |#1| $ (-573)) 57)) (-1593 (($ |#1| $ (-573)) NIL) (($ $ $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-3588 (($ (-653 |#1|)) 43)) (-2914 ((|#1| $) NIL (|has| (-573) (-859)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3112 (($ $ |#1|) 24 (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 60)) (-2547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) 21)) (-2198 ((|#1| $ (-573) |#1|) NIL) ((|#1| $ (-573)) 53) (($ $ (-1247 (-573))) NIL)) (-3220 (($ $ (-1247 (-573))) 71) (($ $ (-573)) 65)) (-2836 (($ $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3919 (($ $ $ (-573)) 61 (|has| $ (-6 -4456)))) (-3166 (($ $) 51)) (-1835 (((-545) $) NIL (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) NIL)) (-3996 (($ $ $) 62) (($ $ |#1|) 59)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) 58) (($ $ $) NIL) (($ (-653 $)) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2862 (((-780) $) 22 (|has| $ (-6 -4455))))) +(((-525 |#1| |#2|) (-13 (-19 |#1|) (-289 |#1|) (-10 -8 (-15 -3588 ($ (-653 |#1|))) (-15 -2612 ((-780) $)) (-15 -2380 ($ $ (-573))) (-15 -1534 ((-112) (-112))))) (-1230) (-573)) (T -525)) +((-3588 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-5 *1 (-525 *3 *4)) (-14 *4 (-573)))) (-2612 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-525 *3 *4)) (-4 *3 (-1230)) (-14 *4 (-573)))) (-2380 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-525 *3 *4)) (-4 *3 (-1230)) (-14 *4 *2))) (-1534 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-525 *3 *4)) (-4 *3 (-1230)) (-14 *4 (-573))))) +(-13 (-19 |#1|) (-289 |#1|) (-10 -8 (-15 -3588 ($ (-653 |#1|))) (-15 -2612 ((-780) $)) (-15 -2380 ($ $ (-573))) (-15 -1534 ((-112) (-112))))) +((-2848 (((-112) $ $) NIL)) (-2191 (((-1147) $) 11)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-1691 (((-1147) $) 13)) (-2264 (((-1147) $) 9)) (-2942 (((-871) $) 19) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-526) (-13 (-1095) (-10 -8 (-15 -2264 ((-1147) $)) (-15 -2191 ((-1147) $)) (-15 -1691 ((-1147) $))))) (T -526)) +((-2264 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-526)))) (-2191 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-526)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-526))))) +(-13 (-1095) (-10 -8 (-15 -2264 ((-1147) $)) (-15 -2191 ((-1147) $)) (-15 -1691 ((-1147) $)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-3511 (((-112) $) NIL)) (-3115 (((-780)) NIL)) (-1635 (((-590 |#1|) $) NIL) (($ $ (-931)) NIL (|has| (-590 |#1|) (-376)))) (-2604 (((-1202 (-931) (-780)) (-573)) NIL (|has| (-590 |#1|) (-376)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-1486 (((-780)) NIL (|has| (-590 |#1|) (-376)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-590 |#1|) "failed") $) NIL)) (-2205 (((-590 |#1|) $) NIL)) (-2854 (($ (-1280 (-590 |#1|))) NIL)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-590 |#1|) (-376)))) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) NIL (|has| (-590 |#1|) (-376)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-3731 (($) NIL (|has| (-590 |#1|) (-376)))) (-1708 (((-112) $) NIL (|has| (-590 |#1|) (-376)))) (-2104 (($ $ (-780)) NIL (-2817 (|has| (-590 |#1|) (-146)) (|has| (-590 |#1|) (-376)))) (($ $) NIL (-2817 (|has| (-590 |#1|) (-146)) (|has| (-590 |#1|) (-376))))) (-2696 (((-112) $) NIL)) (-2534 (((-931) $) NIL (|has| (-590 |#1|) (-376))) (((-842 (-931)) $) NIL (-2817 (|has| (-590 |#1|) (-146)) (|has| (-590 |#1|) (-376))))) (-1959 (((-112) $) NIL)) (-4081 (($) NIL (|has| (-590 |#1|) (-376)))) (-3514 (((-112) $) NIL (|has| (-590 |#1|) (-376)))) (-3421 (((-590 |#1|) $) NIL) (($ $ (-931)) NIL (|has| (-590 |#1|) (-376)))) (-1470 (((-3 $ "failed") $) NIL (|has| (-590 |#1|) (-376)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2297 (((-1185 (-590 |#1|)) $) NIL) (((-1185 $) $ (-931)) NIL (|has| (-590 |#1|) (-376)))) (-3589 (((-931) $) NIL (|has| (-590 |#1|) (-376)))) (-2991 (((-1185 (-590 |#1|)) $) NIL (|has| (-590 |#1|) (-376)))) (-2700 (((-1185 (-590 |#1|)) $) NIL (|has| (-590 |#1|) (-376))) (((-3 (-1185 (-590 |#1|)) "failed") $ $) NIL (|has| (-590 |#1|) (-376)))) (-2840 (($ $ (-1185 (-590 |#1|))) NIL (|has| (-590 |#1|) (-376)))) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| (-590 |#1|) (-376)) CONST)) (-2575 (($ (-931)) NIL (|has| (-590 |#1|) (-376)))) (-2772 (((-112) $) NIL)) (-3965 (((-1132) $) NIL)) (-2969 (($) NIL (|has| (-590 |#1|) (-376)))) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) NIL (|has| (-590 |#1|) (-376)))) (-4218 (((-427 $) $) NIL)) (-3216 (((-842 (-931))) NIL) (((-931)) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-1637 (((-780) $) NIL (|has| (-590 |#1|) (-376))) (((-3 (-780) "failed") $ $) NIL (-2817 (|has| (-590 |#1|) (-146)) (|has| (-590 |#1|) (-376))))) (-2365 (((-135)) NIL)) (-3904 (($ $ (-780)) NIL (|has| (-590 |#1|) (-376))) (($ $) NIL (|has| (-590 |#1|) (-376)))) (-2565 (((-842 (-931)) $) NIL) (((-931) $) NIL)) (-2984 (((-1185 (-590 |#1|))) NIL)) (-2510 (($) NIL (|has| (-590 |#1|) (-376)))) (-4232 (($) NIL (|has| (-590 |#1|) (-376)))) (-2123 (((-1280 (-590 |#1|)) $) NIL) (((-698 (-590 |#1|)) (-1280 $)) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (|has| (-590 |#1|) (-376)))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) (($ (-590 |#1|)) NIL)) (-4279 (($ $) NIL (|has| (-590 |#1|) (-376))) (((-3 $ "failed") $) NIL (-2817 (|has| (-590 |#1|) (-146)) (|has| (-590 |#1|) (-376))))) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) NIL) (((-1280 $) (-931)) NIL)) (-2516 (((-112) $ $) NIL)) (-4333 (((-112) $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-1629 (($ $) NIL (|has| (-590 |#1|) (-376))) (($ $ (-780)) NIL (|has| (-590 |#1|) (-376)))) (-3609 (($ $ (-780)) NIL (|has| (-590 |#1|) (-376))) (($ $) NIL (|has| (-590 |#1|) (-376)))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL) (($ $ (-590 |#1|)) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ $ (-590 |#1|)) NIL) (($ (-590 |#1|) $) NIL))) +(((-527 |#1| |#2|) (-336 (-590 |#1|)) (-931) (-931)) (T -527)) +NIL +(-336 (-590 |#1|)) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#1| $ (-573) (-573) |#1|) 51)) (-3601 (($ $ (-573) |#4|) NIL)) (-2790 (($ $ (-573) |#5|) NIL)) (-2579 (($) NIL T CONST)) (-3229 ((|#4| $ (-573)) NIL)) (-2457 ((|#1| $ (-573) (-573) |#1|) 50)) (-2384 ((|#1| $ (-573) (-573)) 45)) (-1863 (((-653 |#1|) $) NIL)) (-2188 (((-780) $) 33)) (-3789 (($ (-780) (-780) |#1|) 30)) (-2197 (((-780) $) 38)) (-2078 (((-112) $ (-780)) NIL)) (-1319 (((-573) $) 31)) (-4011 (((-573) $) 32)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3124 (((-573) $) 37)) (-2326 (((-573) $) 39)) (-2446 (($ (-1 |#1| |#1|) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) 55 (|has| |#1| (-1112)))) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-3112 (($ $ |#1|) NIL)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) 14)) (-3508 (($) 16)) (-2198 ((|#1| $ (-573) (-573)) 48) ((|#1| $ (-573) (-573) |#1|) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) NIL)) (-1921 ((|#5| $ (-573)) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-528 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1230) (-573) (-573) (-381 |#1|) (-381 |#1|)) (T -528)) NIL (-57 |#1| |#4| |#5|) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3083 ((|#1| $) NIL)) (-2406 ((|#1| $) NIL)) (-1970 (($ $) NIL)) (-3714 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-3617 (($ $ (-574)) 70 (|has| $ (-6 -4457)))) (-1357 (((-112) $) NIL (|has| |#1| (-860))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3642 (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| |#1| (-860)))) (($ (-1 (-112) |#1| |#1|) $) 64 (|has| $ (-6 -4457)))) (-2771 (($ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3034 (((-112) $ (-781)) NIL)) (-3316 ((|#1| $ |#1|) NIL (|has| $ (-6 -4457)))) (-3575 (($ $ $) 23 (|has| $ (-6 -4457)))) (-3582 ((|#1| $ |#1|) NIL (|has| $ (-6 -4457)))) (-3630 ((|#1| $ |#1|) 21 (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4457))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4457))) (($ $ "rest" $) 24 (|has| $ (-6 -4457))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) NIL (|has| $ (-6 -4457))) ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457)))) (-2183 (($ $ (-654 $)) NIL (|has| $ (-6 -4457)))) (-3572 (($ (-1 (-112) |#1|) $) NIL)) (-2165 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2393 ((|#1| $) NIL)) (-3426 (($) NIL T CONST)) (-2627 (($ $) 28 (|has| $ (-6 -4457)))) (-4423 (($ $) 29)) (-2926 (($ $) 18) (($ $ (-781)) 32)) (-1771 (($ $) 62 (|has| |#1| (-1113)))) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2876 (($ |#1| $) NIL (|has| |#1| (-1113))) (($ (-1 (-112) |#1|) $) NIL)) (-3335 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2458 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) NIL)) (-1688 (((-112) $) NIL)) (-1441 (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1113))) (((-574) |#1| $) NIL (|has| |#1| (-1113))) (((-574) (-1 (-112) |#1|) $) NIL)) (-1864 (((-654 |#1|) $) 27 (|has| $ (-6 -4456)))) (-3820 (((-654 $) $) NIL)) (-2278 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3790 (($ (-781) |#1|) NIL)) (-2742 (((-112) $ (-781)) NIL)) (-3618 (((-574) $) 31 (|has| (-574) (-860)))) (-3659 (($ $ $) NIL (|has| |#1| (-860)))) (-2628 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) 65)) (-4430 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 60 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2702 (((-574) $) NIL (|has| (-574) (-860)))) (-4257 (($ $ $) NIL (|has| |#1| (-860)))) (-2449 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1788 (($ |#1|) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-3507 (((-654 |#1|) $) NIL)) (-3632 (((-112) $) NIL)) (-4136 (((-1172) $) 58 (|has| |#1| (-1113)))) (-3360 ((|#1| $) NIL) (($ $ (-781)) NIL)) (-2798 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1594 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-4308 (((-654 (-574)) $) NIL)) (-3336 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2915 ((|#1| $) 13) (($ $ (-781)) NIL)) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1942 (($ $ |#1|) NIL (|has| $ (-6 -4457)))) (-4073 (((-112) $) NIL)) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 12)) (-3398 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-4371 (((-654 |#1|) $) NIL)) (-1584 (((-112) $) 17)) (-2672 (($) 16)) (-2199 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1248 (-574))) NIL) ((|#1| $ (-574)) NIL) ((|#1| $ (-574) |#1|) NIL)) (-3867 (((-574) $ $) NIL)) (-2932 (($ $ (-1248 (-574))) NIL) (($ $ (-574)) NIL)) (-2840 (($ $ (-1248 (-574))) NIL) (($ $ (-574)) NIL)) (-2479 (((-112) $) 35)) (-2595 (($ $) NIL)) (-4434 (($ $) NIL (|has| $ (-6 -4457)))) (-3066 (((-781) $) NIL)) (-2807 (($ $) 40)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3506 (($ $ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3167 (($ $) 36)) (-1836 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 26)) (-1995 (($ $ $) 61) (($ $ |#1|) NIL)) (-4157 (($ $ $) NIL) (($ |#1| $) 10) (($ (-654 $)) NIL) (($ $ |#1|) NIL)) (-2943 (((-872) $) 50 (|has| |#1| (-623 (-872))))) (-2321 (((-654 $) $) NIL)) (-4418 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2981 (((-112) $ $) 54 (|has| |#1| (-1113)))) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3007 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2863 (((-781) $) 9 (|has| $ (-6 -4456))))) -(((-530 |#1| |#2|) (-676 |#1|) (-1231) (-574)) (T -530)) -NIL -(-676 |#1|) -((-2879 ((|#4| |#4|) 38)) (-3584 (((-781) |#4|) 44)) (-1602 (((-781) |#4|) 45)) (-2548 (((-654 |#3|) |#4|) 55 (|has| |#3| (-6 -4457)))) (-2063 (((-3 |#4| "failed") |#4|) 67)) (-2841 ((|#4| |#4|) 59)) (-3192 ((|#1| |#4|) 58))) -(((-531 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2879 (|#4| |#4|)) (-15 -3584 ((-781) |#4|)) (-15 -1602 ((-781) |#4|)) (IF (|has| |#3| (-6 -4457)) (-15 -2548 ((-654 |#3|) |#4|)) |%noBranch|) (-15 -3192 (|#1| |#4|)) (-15 -2841 (|#4| |#4|)) (-15 -2063 ((-3 |#4| "failed") |#4|))) (-372) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|)) (T -531)) -((-2063 (*1 *2 *2) (|partial| -12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-2841 (*1 *2 *2) (-12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-3192 (*1 *2 *3) (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-372)) (-5 *1 (-531 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5)))) (-2548 (*1 *2 *3) (-12 (|has| *6 (-6 -4457)) (-4 *4 (-372)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-654 *6)) (-5 *1 (-531 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-1602 (*1 *2 *3) (-12 (-4 *4 (-372)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-531 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-3584 (*1 *2 *3) (-12 (-4 *4 (-372)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-531 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-2879 (*1 *2 *2) (-12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) -(-10 -7 (-15 -2879 (|#4| |#4|)) (-15 -3584 ((-781) |#4|)) (-15 -1602 ((-781) |#4|)) (IF (|has| |#3| (-6 -4457)) (-15 -2548 ((-654 |#3|) |#4|)) |%noBranch|) (-15 -3192 (|#1| |#4|)) (-15 -2841 (|#4| |#4|)) (-15 -2063 ((-3 |#4| "failed") |#4|))) -((-2879 ((|#8| |#4|) 20)) (-2548 (((-654 |#3|) |#4|) 29 (|has| |#7| (-6 -4457)))) (-2063 (((-3 |#8| "failed") |#4|) 23))) -(((-532 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2879 (|#8| |#4|)) (-15 -2063 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4457)) (-15 -2548 ((-654 |#3|) |#4|)) |%noBranch|)) (-566) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|) (-1005 |#1|) (-382 |#5|) (-382 |#5|) (-697 |#5| |#6| |#7|)) (T -532)) -((-2548 (*1 *2 *3) (-12 (|has| *9 (-6 -4457)) (-4 *4 (-566)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-4 *7 (-1005 *4)) (-4 *8 (-382 *7)) (-4 *9 (-382 *7)) (-5 *2 (-654 *6)) (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-697 *4 *5 *6)) (-4 *10 (-697 *7 *8 *9)))) (-2063 (*1 *2 *3) (|partial| -12 (-4 *4 (-566)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-4 *7 (-1005 *4)) (-4 *2 (-697 *7 *8 *9)) (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-697 *4 *5 *6)) (-4 *8 (-382 *7)) (-4 *9 (-382 *7)))) (-2879 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-4 *7 (-1005 *4)) (-4 *2 (-697 *7 *8 *9)) (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-697 *4 *5 *6)) (-4 *8 (-382 *7)) (-4 *9 (-382 *7))))) -(-10 -7 (-15 -2879 (|#8| |#4|)) (-15 -2063 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4457)) (-15 -2548 ((-654 |#3|) |#4|)) |%noBranch|)) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2216 (($ (-781) (-781)) NIL)) (-3285 (($ $ $) NIL)) (-2100 (($ (-612 |#1| |#3|)) NIL) (($ $) NIL)) (-3291 (((-112) $) NIL)) (-3053 (($ $ (-574) (-574)) 21)) (-1476 (($ $ (-574) (-574)) NIL)) (-4087 (($ $ (-574) (-574) (-574) (-574)) NIL)) (-2584 (($ $) NIL)) (-2224 (((-112) $) NIL)) (-3034 (((-112) $ (-781)) NIL)) (-4100 (($ $ (-574) (-574) $) NIL)) (-3143 ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574)) $) NIL)) (-1365 (($ $ (-574) (-612 |#1| |#3|)) NIL)) (-1694 (($ $ (-574) (-612 |#1| |#2|)) NIL)) (-1346 (($ (-781) |#1|) NIL)) (-3426 (($) NIL T CONST)) (-2879 (($ $) 30 (|has| |#1| (-315)))) (-4170 (((-612 |#1| |#3|) $ (-574)) NIL)) (-3584 (((-781) $) 33 (|has| |#1| (-566)))) (-2458 ((|#1| $ (-574) (-574) |#1|) NIL)) (-2385 ((|#1| $ (-574) (-574)) NIL)) (-1864 (((-654 |#1|) $) NIL)) (-1602 (((-781) $) 35 (|has| |#1| (-566)))) (-2548 (((-654 (-612 |#1| |#2|)) $) 38 (|has| |#1| (-566)))) (-2189 (((-781) $) NIL)) (-3790 (($ (-781) (-781) |#1|) NIL)) (-2198 (((-781) $) NIL)) (-2742 (((-112) $ (-781)) NIL)) (-3609 ((|#1| $) 28 (|has| |#1| (-6 (-4458 "*"))))) (-3491 (((-574) $) 10)) (-1630 (((-574) $) NIL)) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3068 (((-574) $) 13)) (-3691 (((-574) $) NIL)) (-2914 (($ (-654 (-654 |#1|))) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-1777 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1394 (((-654 (-654 |#1|)) $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-2063 (((-3 $ "failed") $) 42 (|has| |#1| (-372)))) (-1352 (($ $ $) NIL)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-1942 (($ $ |#1|) NIL)) (-2838 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 ((|#1| $ (-574) (-574)) NIL) ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574))) NIL)) (-2691 (($ (-654 |#1|)) NIL) (($ (-654 $)) NIL)) (-2675 (((-112) $) NIL)) (-3192 ((|#1| $) 26 (|has| |#1| (-6 (-4458 "*"))))) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) NIL)) (-2471 (((-612 |#1| |#2|) $ (-574)) NIL)) (-2943 (($ (-612 |#1| |#2|)) NIL) (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2539 (((-112) $) NIL)) (-2981 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3108 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3094 (($ $ $) NIL) (($ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-574) $) NIL) (((-612 |#1| |#2|) $ (-612 |#1| |#2|)) NIL) (((-612 |#1| |#3|) (-612 |#1| |#3|) $) NIL)) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-533 |#1| |#2| |#3|) (-697 |#1| (-612 |#1| |#3|) (-612 |#1| |#2|)) (-1062) (-574) (-574)) (T -533)) -NIL -(-697 |#1| (-612 |#1| |#3|) (-612 |#1| |#2|)) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3315 (((-654 (-1230)) $) 13)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 19) (($ (-1195)) NIL) (((-1195) $) NIL) (($ (-654 (-1230))) 11)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-534) (-13 (-1096) (-10 -8 (-15 -2943 ($ (-654 (-1230)))) (-15 -3315 ((-654 (-1230)) $))))) (T -534)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-654 (-1230))) (-5 *1 (-534)))) (-3315 (*1 *2 *1) (-12 (-5 *2 (-654 (-1230))) (-5 *1 (-534))))) -(-13 (-1096) (-10 -8 (-15 -2943 ($ (-654 (-1230)))) (-15 -3315 ((-654 (-1230)) $)))) -((-2849 (((-112) $ $) NIL)) (-1328 (((-1148) $) 14)) (-4136 (((-1172) $) NIL)) (-1808 (((-516) $) 11)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 21) (($ (-1195)) NIL) (((-1195) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-535) (-13 (-1096) (-10 -8 (-15 -1808 ((-516) $)) (-15 -1328 ((-1148) $))))) (T -535)) -((-1808 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-535)))) (-1328 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-535))))) -(-13 (-1096) (-10 -8 (-15 -1808 ((-516) $)) (-15 -1328 ((-1148) $)))) -((-3123 (((-701 (-1239)) $) 15)) (-2084 (((-701 (-1237)) $) 38)) (-2518 (((-701 (-1236)) $) 29)) (-1412 (((-701 (-559)) $) 12)) (-1466 (((-701 (-557)) $) 42)) (-2776 (((-701 (-556)) $) 33)) (-2027 (((-781) $ (-129)) 54))) -(((-536 |#1|) (-10 -8 (-15 -2027 ((-781) |#1| (-129))) (-15 -2084 ((-701 (-1237)) |#1|)) (-15 -1466 ((-701 (-557)) |#1|)) (-15 -2518 ((-701 (-1236)) |#1|)) (-15 -2776 ((-701 (-556)) |#1|)) (-15 -3123 ((-701 (-1239)) |#1|)) (-15 -1412 ((-701 (-559)) |#1|))) (-537)) (T -536)) -NIL -(-10 -8 (-15 -2027 ((-781) |#1| (-129))) (-15 -2084 ((-701 (-1237)) |#1|)) (-15 -1466 ((-701 (-557)) |#1|)) (-15 -2518 ((-701 (-1236)) |#1|)) (-15 -2776 ((-701 (-556)) |#1|)) (-15 -3123 ((-701 (-1239)) |#1|)) (-15 -1412 ((-701 (-559)) |#1|))) -((-3123 (((-701 (-1239)) $) 12)) (-2084 (((-701 (-1237)) $) 8)) (-2518 (((-701 (-1236)) $) 10)) (-1412 (((-701 (-559)) $) 13)) (-1466 (((-701 (-557)) $) 9)) (-2776 (((-701 (-556)) $) 11)) (-2027 (((-781) $ (-129)) 7)) (-3198 (((-701 (-130)) $) 14)) (-3646 (($ $) 6))) -(((-537) (-141)) (T -537)) -((-3198 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-130))))) (-1412 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-559))))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1239))))) (-2776 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-556))))) (-2518 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1236))))) (-1466 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-557))))) (-2084 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1237))))) (-2027 (*1 *2 *1 *3) (-12 (-4 *1 (-537)) (-5 *3 (-129)) (-5 *2 (-781))))) -(-13 (-175) (-10 -8 (-15 -3198 ((-701 (-130)) $)) (-15 -1412 ((-701 (-559)) $)) (-15 -3123 ((-701 (-1239)) $)) (-15 -2776 ((-701 (-556)) $)) (-15 -2518 ((-701 (-1236)) $)) (-15 -1466 ((-701 (-557)) $)) (-15 -2084 ((-701 (-1237)) $)) (-15 -2027 ((-781) $ (-129))))) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3082 ((|#1| $) NIL)) (-2404 ((|#1| $) NIL)) (-1969 (($ $) NIL)) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-1896 (($ $ (-573)) 70 (|has| $ (-6 -4456)))) (-1473 (((-112) $) NIL (|has| |#1| (-859))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2748 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-859)))) (($ (-1 (-112) |#1| |#1|) $) 64 (|has| $ (-6 -4456)))) (-2770 (($ $) NIL (|has| |#1| (-859))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-2367 ((|#1| $ |#1|) NIL (|has| $ (-6 -4456)))) (-2554 (($ $ $) 23 (|has| $ (-6 -4456)))) (-2016 ((|#1| $ |#1|) NIL (|has| $ (-6 -4456)))) (-2647 ((|#1| $ |#1|) 21 (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4456))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4456))) (($ $ "rest" $) 24 (|has| $ (-6 -4456))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) NIL (|has| $ (-6 -4456))) ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) NIL (|has| $ (-6 -4456)))) (-3557 (($ (-1 (-112) |#1|) $) NIL)) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2392 ((|#1| $) NIL)) (-2579 (($) NIL T CONST)) (-2176 (($ $) 28 (|has| $ (-6 -4456)))) (-4422 (($ $) 29)) (-2925 (($ $) 18) (($ $ (-780)) 32)) (-1599 (($ $) 62 (|has| |#1| (-1112)))) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2596 (($ |#1| $) NIL (|has| |#1| (-1112))) (($ (-1 (-112) |#1|) $) NIL)) (-3334 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2457 ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) NIL)) (-3435 (((-112) $) NIL)) (-1440 (((-573) |#1| $ (-573)) NIL (|has| |#1| (-1112))) (((-573) |#1| $) NIL (|has| |#1| (-1112))) (((-573) (-1 (-112) |#1|) $) NIL)) (-1863 (((-653 |#1|) $) 27 (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) NIL)) (-3208 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3789 (($ (-780) |#1|) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) 31 (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-4241 (($ $ $) NIL (|has| |#1| (-859))) (($ (-1 (-112) |#1| |#1|) $ $) 65)) (-1480 (($ $ $) NIL (|has| |#1| (-859))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 60 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1787 (($ |#1|) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3505 (((-653 |#1|) $) NIL)) (-2880 (((-112) $) NIL)) (-3180 (((-1171) $) 58 (|has| |#1| (-1112)))) (-3359 ((|#1| $) NIL) (($ $ (-780)) NIL)) (-3181 (($ $ $ (-573)) NIL) (($ |#1| $ (-573)) NIL)) (-1593 (($ $ $ (-573)) NIL) (($ |#1| $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2914 ((|#1| $) 13) (($ $ (-780)) NIL)) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3112 (($ $ |#1|) NIL (|has| $ (-6 -4456)))) (-1903 (((-112) $) NIL)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 12)) (-2547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) NIL)) (-3811 (((-112) $) 17)) (-3508 (($) 16)) (-2198 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1247 (-573))) NIL) ((|#1| $ (-573)) NIL) ((|#1| $ (-573) |#1|) NIL)) (-1501 (((-573) $ $) NIL)) (-3220 (($ $ (-1247 (-573))) NIL) (($ $ (-573)) NIL)) (-2836 (($ $ (-1247 (-573))) NIL) (($ $ (-573)) NIL)) (-1628 (((-112) $) 35)) (-1992 (($ $) NIL)) (-3839 (($ $) NIL (|has| $ (-6 -4456)))) (-4072 (((-780) $) NIL)) (-1512 (($ $) 40)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3919 (($ $ $ (-573)) NIL (|has| $ (-6 -4456)))) (-3166 (($ $) 36)) (-1835 (((-545) $) NIL (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 26)) (-3996 (($ $ $) 61) (($ $ |#1|) NIL)) (-4156 (($ $ $) NIL) (($ |#1| $) 10) (($ (-653 $)) NIL) (($ $ |#1|) NIL)) (-2942 (((-871) $) 50 (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) NIL)) (-1716 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) 54 (|has| |#1| (-1112)))) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2862 (((-780) $) 9 (|has| $ (-6 -4455))))) +(((-529 |#1| |#2|) (-675 |#1|) (-1230) (-573)) (T -529)) +NIL +(-675 |#1|) +((-2801 ((|#4| |#4|) 38)) (-3583 (((-780) |#4|) 44)) (-2928 (((-780) |#4|) 45)) (-4209 (((-653 |#3|) |#4|) 55 (|has| |#3| (-6 -4456)))) (-3299 (((-3 |#4| "failed") |#4|) 67)) (-2697 ((|#4| |#4|) 59)) (-2529 ((|#1| |#4|) 58))) +(((-530 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2801 (|#4| |#4|)) (-15 -3583 ((-780) |#4|)) (-15 -2928 ((-780) |#4|)) (IF (|has| |#3| (-6 -4456)) (-15 -4209 ((-653 |#3|) |#4|)) |%noBranch|) (-15 -2529 (|#1| |#4|)) (-15 -2697 (|#4| |#4|)) (-15 -3299 ((-3 |#4| "failed") |#4|))) (-371) (-381 |#1|) (-381 |#1|) (-696 |#1| |#2| |#3|)) (T -530)) +((-3299 (*1 *2 *2) (|partial| -12 (-4 *3 (-371)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5)))) (-2697 (*1 *2 *2) (-12 (-4 *3 (-371)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5)))) (-2529 (*1 *2 *3) (-12 (-4 *4 (-381 *2)) (-4 *5 (-381 *2)) (-4 *2 (-371)) (-5 *1 (-530 *2 *4 *5 *3)) (-4 *3 (-696 *2 *4 *5)))) (-4209 (*1 *2 *3) (-12 (|has| *6 (-6 -4456)) (-4 *4 (-371)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) (-5 *2 (-653 *6)) (-5 *1 (-530 *4 *5 *6 *3)) (-4 *3 (-696 *4 *5 *6)))) (-2928 (*1 *2 *3) (-12 (-4 *4 (-371)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) (-5 *2 (-780)) (-5 *1 (-530 *4 *5 *6 *3)) (-4 *3 (-696 *4 *5 *6)))) (-3583 (*1 *2 *3) (-12 (-4 *4 (-371)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) (-5 *2 (-780)) (-5 *1 (-530 *4 *5 *6 *3)) (-4 *3 (-696 *4 *5 *6)))) (-2801 (*1 *2 *2) (-12 (-4 *3 (-371)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5))))) +(-10 -7 (-15 -2801 (|#4| |#4|)) (-15 -3583 ((-780) |#4|)) (-15 -2928 ((-780) |#4|)) (IF (|has| |#3| (-6 -4456)) (-15 -4209 ((-653 |#3|) |#4|)) |%noBranch|) (-15 -2529 (|#1| |#4|)) (-15 -2697 (|#4| |#4|)) (-15 -3299 ((-3 |#4| "failed") |#4|))) +((-2801 ((|#8| |#4|) 20)) (-4209 (((-653 |#3|) |#4|) 29 (|has| |#7| (-6 -4456)))) (-3299 (((-3 |#8| "failed") |#4|) 23))) +(((-531 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2801 (|#8| |#4|)) (-15 -3299 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4456)) (-15 -4209 ((-653 |#3|) |#4|)) |%noBranch|)) (-565) (-381 |#1|) (-381 |#1|) (-696 |#1| |#2| |#3|) (-1004 |#1|) (-381 |#5|) (-381 |#5|) (-696 |#5| |#6| |#7|)) (T -531)) +((-4209 (*1 *2 *3) (-12 (|has| *9 (-6 -4456)) (-4 *4 (-565)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) (-4 *7 (-1004 *4)) (-4 *8 (-381 *7)) (-4 *9 (-381 *7)) (-5 *2 (-653 *6)) (-5 *1 (-531 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-696 *4 *5 *6)) (-4 *10 (-696 *7 *8 *9)))) (-3299 (*1 *2 *3) (|partial| -12 (-4 *4 (-565)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) (-4 *7 (-1004 *4)) (-4 *2 (-696 *7 *8 *9)) (-5 *1 (-531 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-696 *4 *5 *6)) (-4 *8 (-381 *7)) (-4 *9 (-381 *7)))) (-2801 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) (-4 *7 (-1004 *4)) (-4 *2 (-696 *7 *8 *9)) (-5 *1 (-531 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-696 *4 *5 *6)) (-4 *8 (-381 *7)) (-4 *9 (-381 *7))))) +(-10 -7 (-15 -2801 (|#8| |#4|)) (-15 -3299 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4456)) (-15 -4209 ((-653 |#3|) |#4|)) |%noBranch|)) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2215 (($ (-780) (-780)) NIL)) (-3596 (($ $ $) NIL)) (-1724 (($ (-611 |#1| |#3|)) NIL) (($ $) NIL)) (-2932 (((-112) $) NIL)) (-1734 (($ $ (-573) (-573)) 21)) (-4107 (($ $ (-573) (-573)) NIL)) (-3975 (($ $ (-573) (-573) (-573) (-573)) NIL)) (-3321 (($ $) NIL)) (-1916 (((-112) $) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-2598 (($ $ (-573) (-573) $) NIL)) (-3142 ((|#1| $ (-573) (-573) |#1|) NIL) (($ $ (-653 (-573)) (-653 (-573)) $) NIL)) (-3601 (($ $ (-573) (-611 |#1| |#3|)) NIL)) (-2790 (($ $ (-573) (-611 |#1| |#2|)) NIL)) (-1681 (($ (-780) |#1|) NIL)) (-2579 (($) NIL T CONST)) (-2801 (($ $) 30 (|has| |#1| (-314)))) (-3229 (((-611 |#1| |#3|) $ (-573)) NIL)) (-3583 (((-780) $) 33 (|has| |#1| (-565)))) (-2457 ((|#1| $ (-573) (-573) |#1|) NIL)) (-2384 ((|#1| $ (-573) (-573)) NIL)) (-1863 (((-653 |#1|) $) NIL)) (-2928 (((-780) $) 35 (|has| |#1| (-565)))) (-4209 (((-653 (-611 |#1| |#2|)) $) 38 (|has| |#1| (-565)))) (-2188 (((-780) $) NIL)) (-3789 (($ (-780) (-780) |#1|) NIL)) (-2197 (((-780) $) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-2431 ((|#1| $) 28 (|has| |#1| (-6 (-4457 "*"))))) (-1319 (((-573) $) 10)) (-4011 (((-573) $) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3124 (((-573) $) 13)) (-2326 (((-573) $) NIL)) (-2913 (($ (-653 (-653 |#1|))) NIL)) (-2446 (($ (-1 |#1| |#1|) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1612 (((-653 (-653 |#1|)) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3299 (((-3 $ "failed") $) 42 (|has| |#1| (-371)))) (-2150 (($ $ $) NIL)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-3112 (($ $ |#1|) NIL)) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#1| $ (-573) (-573)) NIL) ((|#1| $ (-573) (-573) |#1|) NIL) (($ $ (-653 (-573)) (-653 (-573))) NIL)) (-1633 (($ (-653 |#1|)) NIL) (($ (-653 $)) NIL)) (-2530 (((-112) $) NIL)) (-2529 ((|#1| $) 26 (|has| |#1| (-6 (-4457 "*"))))) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) NIL)) (-1921 (((-611 |#1| |#2|) $ (-573)) NIL)) (-2942 (($ (-611 |#1| |#2|)) NIL) (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-1494 (((-112) $) NIL)) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371)))) (-3093 (($ $ $) NIL) (($ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-780)) NIL) (($ $ (-573)) NIL (|has| |#1| (-371)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-573) $) NIL) (((-611 |#1| |#2|) $ (-611 |#1| |#2|)) NIL) (((-611 |#1| |#3|) (-611 |#1| |#3|) $) NIL)) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-532 |#1| |#2| |#3|) (-696 |#1| (-611 |#1| |#3|) (-611 |#1| |#2|)) (-1061) (-573) (-573)) (T -532)) +NIL +(-696 |#1| (-611 |#1| |#3|) (-611 |#1| |#2|)) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3564 (((-653 (-1229)) $) 13)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 19) (($ (-1194)) NIL) (((-1194) $) NIL) (($ (-653 (-1229))) 11)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-533) (-13 (-1095) (-10 -8 (-15 -2942 ($ (-653 (-1229)))) (-15 -3564 ((-653 (-1229)) $))))) (T -533)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-653 (-1229))) (-5 *1 (-533)))) (-3564 (*1 *2 *1) (-12 (-5 *2 (-653 (-1229))) (-5 *1 (-533))))) +(-13 (-1095) (-10 -8 (-15 -2942 ($ (-653 (-1229)))) (-15 -3564 ((-653 (-1229)) $)))) +((-2848 (((-112) $ $) NIL)) (-3969 (((-1147) $) 14)) (-3180 (((-1171) $) NIL)) (-1807 (((-515) $) 11)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 21) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-534) (-13 (-1095) (-10 -8 (-15 -1807 ((-515) $)) (-15 -3969 ((-1147) $))))) (T -534)) +((-1807 (*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-534)))) (-3969 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-534))))) +(-13 (-1095) (-10 -8 (-15 -1807 ((-515) $)) (-15 -3969 ((-1147) $)))) +((-3769 (((-700 (-1238)) $) 15)) (-4370 (((-700 (-1236)) $) 38)) (-3464 (((-700 (-1235)) $) 29)) (-3310 (((-700 (-558)) $) 12)) (-4395 (((-700 (-556)) $) 42)) (-2731 (((-700 (-555)) $) 33)) (-3983 (((-780) $ (-129)) 54))) +(((-535 |#1|) (-10 -8 (-15 -3983 ((-780) |#1| (-129))) (-15 -4370 ((-700 (-1236)) |#1|)) (-15 -4395 ((-700 (-556)) |#1|)) (-15 -3464 ((-700 (-1235)) |#1|)) (-15 -2731 ((-700 (-555)) |#1|)) (-15 -3769 ((-700 (-1238)) |#1|)) (-15 -3310 ((-700 (-558)) |#1|))) (-536)) (T -535)) +NIL +(-10 -8 (-15 -3983 ((-780) |#1| (-129))) (-15 -4370 ((-700 (-1236)) |#1|)) (-15 -4395 ((-700 (-556)) |#1|)) (-15 -3464 ((-700 (-1235)) |#1|)) (-15 -2731 ((-700 (-555)) |#1|)) (-15 -3769 ((-700 (-1238)) |#1|)) (-15 -3310 ((-700 (-558)) |#1|))) +((-3769 (((-700 (-1238)) $) 12)) (-4370 (((-700 (-1236)) $) 8)) (-3464 (((-700 (-1235)) $) 10)) (-3310 (((-700 (-558)) $) 13)) (-4395 (((-700 (-556)) $) 9)) (-2731 (((-700 (-555)) $) 11)) (-3983 (((-780) $ (-129)) 7)) (-1870 (((-700 (-130)) $) 14)) (-1981 (($ $) 6))) +(((-536) (-141)) (T -536)) +((-1870 (*1 *2 *1) (-12 (-4 *1 (-536)) (-5 *2 (-700 (-130))))) (-3310 (*1 *2 *1) (-12 (-4 *1 (-536)) (-5 *2 (-700 (-558))))) (-3769 (*1 *2 *1) (-12 (-4 *1 (-536)) (-5 *2 (-700 (-1238))))) (-2731 (*1 *2 *1) (-12 (-4 *1 (-536)) (-5 *2 (-700 (-555))))) (-3464 (*1 *2 *1) (-12 (-4 *1 (-536)) (-5 *2 (-700 (-1235))))) (-4395 (*1 *2 *1) (-12 (-4 *1 (-536)) (-5 *2 (-700 (-556))))) (-4370 (*1 *2 *1) (-12 (-4 *1 (-536)) (-5 *2 (-700 (-1236))))) (-3983 (*1 *2 *1 *3) (-12 (-4 *1 (-536)) (-5 *3 (-129)) (-5 *2 (-780))))) +(-13 (-175) (-10 -8 (-15 -1870 ((-700 (-130)) $)) (-15 -3310 ((-700 (-558)) $)) (-15 -3769 ((-700 (-1238)) $)) (-15 -2731 ((-700 (-555)) $)) (-15 -3464 ((-700 (-1235)) $)) (-15 -4395 ((-700 (-556)) $)) (-15 -4370 ((-700 (-1236)) $)) (-15 -3983 ((-780) $ (-129))))) (((-175) . T)) -((-1439 (((-1186 |#1|) (-781)) 115)) (-1636 (((-1281 |#1|) (-1281 |#1|) (-932)) 108)) (-3425 (((-1286) (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))) |#1|) 123)) (-1832 (((-1281 |#1|) (-1281 |#1|) (-781)) 53)) (-2820 (((-1281 |#1|) (-932)) 110)) (-3439 (((-1281 |#1|) (-1281 |#1|) (-574)) 30)) (-4086 (((-1186 |#1|) (-1281 |#1|)) 116)) (-2606 (((-1281 |#1|) (-932)) 137)) (-2066 (((-112) (-1281 |#1|)) 120)) (-2236 (((-1281 |#1|) (-1281 |#1|) (-932)) 100)) (-1972 (((-1186 |#1|) (-1281 |#1|)) 131)) (-4115 (((-932) (-1281 |#1|)) 96)) (-1324 (((-1281 |#1|) (-1281 |#1|)) 38)) (-2576 (((-1281 |#1|) (-932) (-932)) 140)) (-3058 (((-1281 |#1|) (-1281 |#1|) (-1133) (-1133)) 29)) (-3543 (((-1281 |#1|) (-1281 |#1|) (-781) (-1133)) 54)) (-1882 (((-1281 (-1281 |#1|)) (-932)) 136)) (-3108 (((-1281 |#1|) (-1281 |#1|) (-1281 |#1|)) 121)) (** (((-1281 |#1|) (-1281 |#1|) (-574)) 67)) (* (((-1281 |#1|) (-1281 |#1|) (-1281 |#1|)) 31))) -(((-538 |#1|) (-10 -7 (-15 -3425 ((-1286) (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))) |#1|)) (-15 -2820 ((-1281 |#1|) (-932))) (-15 -2576 ((-1281 |#1|) (-932) (-932))) (-15 -4086 ((-1186 |#1|) (-1281 |#1|))) (-15 -1439 ((-1186 |#1|) (-781))) (-15 -3543 ((-1281 |#1|) (-1281 |#1|) (-781) (-1133))) (-15 -1832 ((-1281 |#1|) (-1281 |#1|) (-781))) (-15 -3058 ((-1281 |#1|) (-1281 |#1|) (-1133) (-1133))) (-15 -3439 ((-1281 |#1|) (-1281 |#1|) (-574))) (-15 ** ((-1281 |#1|) (-1281 |#1|) (-574))) (-15 * ((-1281 |#1|) (-1281 |#1|) (-1281 |#1|))) (-15 -3108 ((-1281 |#1|) (-1281 |#1|) (-1281 |#1|))) (-15 -2236 ((-1281 |#1|) (-1281 |#1|) (-932))) (-15 -1636 ((-1281 |#1|) (-1281 |#1|) (-932))) (-15 -1324 ((-1281 |#1|) (-1281 |#1|))) (-15 -4115 ((-932) (-1281 |#1|))) (-15 -2066 ((-112) (-1281 |#1|))) (-15 -1882 ((-1281 (-1281 |#1|)) (-932))) (-15 -2606 ((-1281 |#1|) (-932))) (-15 -1972 ((-1186 |#1|) (-1281 |#1|)))) (-358)) (T -538)) -((-1972 (*1 *2 *3) (-12 (-5 *3 (-1281 *4)) (-4 *4 (-358)) (-5 *2 (-1186 *4)) (-5 *1 (-538 *4)))) (-2606 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1281 *4)) (-5 *1 (-538 *4)) (-4 *4 (-358)))) (-1882 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1281 (-1281 *4))) (-5 *1 (-538 *4)) (-4 *4 (-358)))) (-2066 (*1 *2 *3) (-12 (-5 *3 (-1281 *4)) (-4 *4 (-358)) (-5 *2 (-112)) (-5 *1 (-538 *4)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-1281 *4)) (-4 *4 (-358)) (-5 *2 (-932)) (-5 *1 (-538 *4)))) (-1324 (*1 *2 *2) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3)))) (-1636 (*1 *2 *2 *3) (-12 (-5 *2 (-1281 *4)) (-5 *3 (-932)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-2236 (*1 *2 *2 *3) (-12 (-5 *2 (-1281 *4)) (-5 *3 (-932)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-3108 (*1 *2 *2 *2) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1281 *4)) (-5 *3 (-574)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-3439 (*1 *2 *2 *3) (-12 (-5 *2 (-1281 *4)) (-5 *3 (-574)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-3058 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1281 *4)) (-5 *3 (-1133)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-1832 (*1 *2 *2 *3) (-12 (-5 *2 (-1281 *4)) (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-3543 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1281 *5)) (-5 *3 (-781)) (-5 *4 (-1133)) (-4 *5 (-358)) (-5 *1 (-538 *5)))) (-1439 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1186 *4)) (-5 *1 (-538 *4)) (-4 *4 (-358)))) (-4086 (*1 *2 *3) (-12 (-5 *3 (-1281 *4)) (-4 *4 (-358)) (-5 *2 (-1186 *4)) (-5 *1 (-538 *4)))) (-2576 (*1 *2 *3 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1281 *4)) (-5 *1 (-538 *4)) (-4 *4 (-358)))) (-2820 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1281 *4)) (-5 *1 (-538 *4)) (-4 *4 (-358)))) (-3425 (*1 *2 *3 *4) (-12 (-5 *3 (-1281 (-654 (-2 (|:| -3083 *4) (|:| -2576 (-1133)))))) (-4 *4 (-358)) (-5 *2 (-1286)) (-5 *1 (-538 *4))))) -(-10 -7 (-15 -3425 ((-1286) (-1281 (-654 (-2 (|:| -3083 |#1|) (|:| -2576 (-1133))))) |#1|)) (-15 -2820 ((-1281 |#1|) (-932))) (-15 -2576 ((-1281 |#1|) (-932) (-932))) (-15 -4086 ((-1186 |#1|) (-1281 |#1|))) (-15 -1439 ((-1186 |#1|) (-781))) (-15 -3543 ((-1281 |#1|) (-1281 |#1|) (-781) (-1133))) (-15 -1832 ((-1281 |#1|) (-1281 |#1|) (-781))) (-15 -3058 ((-1281 |#1|) (-1281 |#1|) (-1133) (-1133))) (-15 -3439 ((-1281 |#1|) (-1281 |#1|) (-574))) (-15 ** ((-1281 |#1|) (-1281 |#1|) (-574))) (-15 * ((-1281 |#1|) (-1281 |#1|) (-1281 |#1|))) (-15 -3108 ((-1281 |#1|) (-1281 |#1|) (-1281 |#1|))) (-15 -2236 ((-1281 |#1|) (-1281 |#1|) (-932))) (-15 -1636 ((-1281 |#1|) (-1281 |#1|) (-932))) (-15 -1324 ((-1281 |#1|) (-1281 |#1|))) (-15 -4115 ((-932) (-1281 |#1|))) (-15 -2066 ((-112) (-1281 |#1|))) (-15 -1882 ((-1281 (-1281 |#1|)) (-932))) (-15 -2606 ((-1281 |#1|) (-932))) (-15 -1972 ((-1186 |#1|) (-1281 |#1|)))) -((-3123 (((-701 (-1239)) $) NIL)) (-2084 (((-701 (-1237)) $) NIL)) (-2518 (((-701 (-1236)) $) NIL)) (-1412 (((-701 (-559)) $) NIL)) (-1466 (((-701 (-557)) $) NIL)) (-2776 (((-701 (-556)) $) NIL)) (-2027 (((-781) $ (-129)) NIL)) (-3198 (((-701 (-130)) $) 26)) (-3052 (((-1133) $ (-1133)) 31)) (-1441 (((-1133) $) 30)) (-3264 (((-112) $) 20)) (-2953 (($ (-398)) 14) (($ (-1172)) 16)) (-2139 (((-112) $) 27)) (-2943 (((-872) $) 34)) (-3646 (($ $) 28))) -(((-539) (-13 (-537) (-623 (-872)) (-10 -8 (-15 -2953 ($ (-398))) (-15 -2953 ($ (-1172))) (-15 -2139 ((-112) $)) (-15 -3264 ((-112) $)) (-15 -1441 ((-1133) $)) (-15 -3052 ((-1133) $ (-1133)))))) (T -539)) -((-2953 (*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-539)))) (-2953 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-539)))) (-2139 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-539)))) (-3264 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-539)))) (-1441 (*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-539)))) (-3052 (*1 *2 *1 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-539))))) -(-13 (-537) (-623 (-872)) (-10 -8 (-15 -2953 ($ (-398))) (-15 -2953 ($ (-1172))) (-15 -2139 ((-112) $)) (-15 -3264 ((-112) $)) (-15 -1441 ((-1133) $)) (-15 -3052 ((-1133) $ (-1133))))) -((-2116 (((-1 |#1| |#1|) |#1|) 11)) (-2626 (((-1 |#1| |#1|)) 10))) -(((-540 |#1|) (-10 -7 (-15 -2626 ((-1 |#1| |#1|))) (-15 -2116 ((-1 |#1| |#1|) |#1|))) (-13 (-736) (-25))) (T -540)) -((-2116 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-540 *3)) (-4 *3 (-13 (-736) (-25))))) (-2626 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-540 *3)) (-4 *3 (-13 (-736) (-25)))))) -(-10 -7 (-15 -2626 ((-1 |#1| |#1|))) (-15 -2116 ((-1 |#1| |#1|) |#1|))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3663 (($ $ $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-1392 (($ $) NIL)) (-4335 (($ (-781) |#1|) NIL)) (-3659 (($ $ $) NIL)) (-4257 (($ $ $) NIL)) (-1777 (($ (-1 (-781) (-781)) $) NIL)) (-4155 ((|#1| $) NIL)) (-1370 (((-781) $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 27)) (-3284 (((-112) $ $) NIL)) (-2133 (($) NIL T CONST)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) NIL)) (-3079 (($ $ $) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL))) -(((-541 |#1|) (-13 (-803) (-519 (-781) |#1|)) (-860)) (T -541)) -NIL -(-13 (-803) (-519 (-781) |#1|)) -((-1772 (((-654 |#2|) (-1186 |#1|) |#3|) 98)) (-2218 (((-654 (-2 (|:| |outval| |#2|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#2|))))) (-699 |#1|) |#3| (-1 (-428 (-1186 |#1|)) (-1186 |#1|))) 114)) (-4222 (((-1186 |#1|) (-699 |#1|)) 110))) -(((-542 |#1| |#2| |#3|) (-10 -7 (-15 -4222 ((-1186 |#1|) (-699 |#1|))) (-15 -1772 ((-654 |#2|) (-1186 |#1|) |#3|)) (-15 -2218 ((-654 (-2 (|:| |outval| |#2|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#2|))))) (-699 |#1|) |#3| (-1 (-428 (-1186 |#1|)) (-1186 |#1|))))) (-372) (-372) (-13 (-372) (-858))) (T -542)) -((-2218 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *6)) (-5 *5 (-1 (-428 (-1186 *6)) (-1186 *6))) (-4 *6 (-372)) (-5 *2 (-654 (-2 (|:| |outval| *7) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 *7)))))) (-5 *1 (-542 *6 *7 *4)) (-4 *7 (-372)) (-4 *4 (-13 (-372) (-858))))) (-1772 (*1 *2 *3 *4) (-12 (-5 *3 (-1186 *5)) (-4 *5 (-372)) (-5 *2 (-654 *6)) (-5 *1 (-542 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858))))) (-4222 (*1 *2 *3) (-12 (-5 *3 (-699 *4)) (-4 *4 (-372)) (-5 *2 (-1186 *4)) (-5 *1 (-542 *4 *5 *6)) (-4 *5 (-372)) (-4 *6 (-13 (-372) (-858)))))) -(-10 -7 (-15 -4222 ((-1186 |#1|) (-699 |#1|))) (-15 -1772 ((-654 |#2|) (-1186 |#1|) |#3|)) (-15 -2218 ((-654 (-2 (|:| |outval| |#2|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#2|))))) (-699 |#1|) |#3| (-1 (-428 (-1186 |#1|)) (-1186 |#1|))))) -((-2238 (((-701 (-1239)) $ (-1239)) NIL)) (-1767 (((-701 (-559)) $ (-559)) NIL)) (-3734 (((-781) $ (-129)) 39)) (-3353 (((-701 (-130)) $ (-130)) 40)) (-3123 (((-701 (-1239)) $) NIL)) (-2084 (((-701 (-1237)) $) NIL)) (-2518 (((-701 (-1236)) $) NIL)) (-1412 (((-701 (-559)) $) NIL)) (-1466 (((-701 (-557)) $) NIL)) (-2776 (((-701 (-556)) $) NIL)) (-2027 (((-781) $ (-129)) 35)) (-3198 (((-701 (-130)) $) 37)) (-3537 (((-112) $) 27)) (-2997 (((-701 $) (-589) (-965)) 18) (((-701 $) (-501) (-965)) 24)) (-2943 (((-872) $) 48)) (-3646 (($ $) 42))) -(((-543) (-13 (-777 (-589)) (-623 (-872)) (-10 -8 (-15 -2997 ((-701 $) (-501) (-965)))))) (T -543)) -((-2997 (*1 *2 *3 *4) (-12 (-5 *3 (-501)) (-5 *4 (-965)) (-5 *2 (-701 (-543))) (-5 *1 (-543))))) -(-13 (-777 (-589)) (-623 (-872)) (-10 -8 (-15 -2997 ((-701 $) (-501) (-965))))) -((-2304 (((-853 (-574))) 12)) (-2317 (((-853 (-574))) 14)) (-1745 (((-843 (-574))) 9))) -(((-544) (-10 -7 (-15 -1745 ((-843 (-574)))) (-15 -2304 ((-853 (-574)))) (-15 -2317 ((-853 (-574)))))) (T -544)) -((-2317 (*1 *2) (-12 (-5 *2 (-853 (-574))) (-5 *1 (-544)))) (-2304 (*1 *2) (-12 (-5 *2 (-853 (-574))) (-5 *1 (-544)))) (-1745 (*1 *2) (-12 (-5 *2 (-843 (-574))) (-5 *1 (-544))))) -(-10 -7 (-15 -1745 ((-843 (-574)))) (-15 -2304 ((-853 (-574)))) (-15 -2317 ((-853 (-574))))) -((-2204 (((-546) (-1190)) 15)) (-2285 ((|#1| (-546)) 20))) -(((-545 |#1|) (-10 -7 (-15 -2204 ((-546) (-1190))) (-15 -2285 (|#1| (-546)))) (-1231)) (T -545)) -((-2285 (*1 *2 *3) (-12 (-5 *3 (-546)) (-5 *1 (-545 *2)) (-4 *2 (-1231)))) (-2204 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-546)) (-5 *1 (-545 *4)) (-4 *4 (-1231))))) -(-10 -7 (-15 -2204 ((-546) (-1190))) (-15 -2285 (|#1| (-546)))) -((-2849 (((-112) $ $) NIL)) (-3004 (((-1172) $) 55)) (-4108 (((-112) $) 51)) (-4005 (((-1190) $) 52)) (-1986 (((-112) $) 49)) (-3249 (((-1172) $) 50)) (-3362 (($ (-1172)) 56)) (-2460 (((-112) $) NIL)) (-2731 (((-112) $) NIL)) (-3881 (((-112) $) NIL)) (-4136 (((-1172) $) NIL)) (-2156 (($ $ (-654 (-1190))) 21)) (-2285 (((-52) $) 23)) (-2819 (((-112) $) NIL)) (-4026 (((-574) $) NIL)) (-3966 (((-1133) $) NIL)) (-2707 (($ $ (-654 (-1190)) (-1190)) 73)) (-2774 (((-112) $) NIL)) (-2381 (((-227) $) NIL)) (-3808 (($ $) 44)) (-1444 (((-872) $) NIL)) (-4122 (((-112) $ $) NIL)) (-2199 (($ $ (-574)) NIL) (($ $ (-654 (-574))) NIL)) (-4293 (((-654 $) $) 30)) (-4251 (((-1190) (-654 $)) 57)) (-1836 (($ (-1172)) NIL) (($ (-1190)) 19) (($ (-574)) 8) (($ (-227)) 28) (($ (-872)) NIL) (($ (-654 $)) 65) (((-1117) $) 12) (($ (-1117)) 13)) (-2425 (((-1190) (-1190) (-654 $)) 60)) (-2943 (((-872) $) 54)) (-4313 (($ $) 59)) (-2928 (($ $) 58)) (-3455 (($ $ (-654 $)) 66)) (-3284 (((-112) $ $) NIL)) (-4246 (((-112) $) 29)) (-2133 (($) 9 T CONST)) (-2145 (($) 11 T CONST)) (-2981 (((-112) $ $) 74)) (-3108 (($ $ $) 82)) (-3079 (($ $ $) 75)) (** (($ $ (-781)) 81) (($ $ (-574)) 80)) (* (($ $ $) 76)) (-2863 (((-574) $) NIL))) -(((-546) (-13 (-1116 (-1172) (-1190) (-574) (-227) (-872)) (-624 (-1117)) (-10 -8 (-15 -2285 ((-52) $)) (-15 -1836 ($ (-1117))) (-15 -3455 ($ $ (-654 $))) (-15 -2707 ($ $ (-654 (-1190)) (-1190))) (-15 -2156 ($ $ (-654 (-1190)))) (-15 -3079 ($ $ $)) (-15 * ($ $ $)) (-15 -3108 ($ $ $)) (-15 ** ($ $ (-781))) (-15 ** ($ $ (-574))) (-15 0 ($) -1706) (-15 1 ($) -1706) (-15 -3808 ($ $)) (-15 -3004 ((-1172) $)) (-15 -3362 ($ (-1172))) (-15 -4251 ((-1190) (-654 $))) (-15 -2425 ((-1190) (-1190) (-654 $)))))) (T -546)) -((-2285 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-546)))) (-1836 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-546)))) (-3455 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-546))) (-5 *1 (-546)))) (-2707 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1190))) (-5 *3 (-1190)) (-5 *1 (-546)))) (-2156 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-546)))) (-3079 (*1 *1 *1 *1) (-5 *1 (-546))) (* (*1 *1 *1 *1) (-5 *1 (-546))) (-3108 (*1 *1 *1 *1) (-5 *1 (-546))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-546)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-546)))) (-2133 (*1 *1) (-5 *1 (-546))) (-2145 (*1 *1) (-5 *1 (-546))) (-3808 (*1 *1 *1) (-5 *1 (-546))) (-3004 (*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-546)))) (-3362 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-546)))) (-4251 (*1 *2 *3) (-12 (-5 *3 (-654 (-546))) (-5 *2 (-1190)) (-5 *1 (-546)))) (-2425 (*1 *2 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-654 (-546))) (-5 *1 (-546))))) -(-13 (-1116 (-1172) (-1190) (-574) (-227) (-872)) (-624 (-1117)) (-10 -8 (-15 -2285 ((-52) $)) (-15 -1836 ($ (-1117))) (-15 -3455 ($ $ (-654 $))) (-15 -2707 ($ $ (-654 (-1190)) (-1190))) (-15 -2156 ($ $ (-654 (-1190)))) (-15 -3079 ($ $ $)) (-15 * ($ $ $)) (-15 -3108 ($ $ $)) (-15 ** ($ $ (-781))) (-15 ** ($ $ (-574))) (-15 (-2133) ($) -1706) (-15 (-2145) ($) -1706) (-15 -3808 ($ $)) (-15 -3004 ((-1172) $)) (-15 -3362 ($ (-1172))) (-15 -4251 ((-1190) (-654 $))) (-15 -2425 ((-1190) (-1190) (-654 $))))) -((-4164 ((|#2| |#2|) 17)) (-2998 ((|#2| |#2|) 13)) (-1807 ((|#2| |#2| (-574) (-574)) 20)) (-2597 ((|#2| |#2|) 15))) -(((-547 |#1| |#2|) (-10 -7 (-15 -2998 (|#2| |#2|)) (-15 -2597 (|#2| |#2|)) (-15 -4164 (|#2| |#2|)) (-15 -1807 (|#2| |#2| (-574) (-574)))) (-13 (-566) (-148)) (-1272 |#1|)) (T -547)) -((-1807 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-574)) (-4 *4 (-13 (-566) (-148))) (-5 *1 (-547 *4 *2)) (-4 *2 (-1272 *4)))) (-4164 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1272 *3)))) (-2597 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1272 *3)))) (-2998 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1272 *3))))) -(-10 -7 (-15 -2998 (|#2| |#2|)) (-15 -2597 (|#2| |#2|)) (-15 -4164 (|#2| |#2|)) (-15 -1807 (|#2| |#2| (-574) (-574)))) -((-2696 (((-654 (-302 (-963 |#2|))) (-654 |#2|) (-654 (-1190))) 32)) (-4022 (((-654 |#2|) (-963 |#1|) |#3|) 54) (((-654 |#2|) (-1186 |#1|) |#3|) 53)) (-4426 (((-654 (-654 |#2|)) (-654 (-963 |#1|)) (-654 (-963 |#1|)) (-654 (-1190)) |#3|) 106))) -(((-548 |#1| |#2| |#3|) (-10 -7 (-15 -4022 ((-654 |#2|) (-1186 |#1|) |#3|)) (-15 -4022 ((-654 |#2|) (-963 |#1|) |#3|)) (-15 -4426 ((-654 (-654 |#2|)) (-654 (-963 |#1|)) (-654 (-963 |#1|)) (-654 (-1190)) |#3|)) (-15 -2696 ((-654 (-302 (-963 |#2|))) (-654 |#2|) (-654 (-1190))))) (-462) (-372) (-13 (-372) (-858))) (T -548)) -((-2696 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-1190))) (-4 *6 (-372)) (-5 *2 (-654 (-302 (-963 *6)))) (-5 *1 (-548 *5 *6 *7)) (-4 *5 (-462)) (-4 *7 (-13 (-372) (-858))))) (-4426 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-654 (-963 *6))) (-5 *4 (-654 (-1190))) (-4 *6 (-462)) (-5 *2 (-654 (-654 *7))) (-5 *1 (-548 *6 *7 *5)) (-4 *7 (-372)) (-4 *5 (-13 (-372) (-858))))) (-4022 (*1 *2 *3 *4) (-12 (-5 *3 (-963 *5)) (-4 *5 (-462)) (-5 *2 (-654 *6)) (-5 *1 (-548 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858))))) (-4022 (*1 *2 *3 *4) (-12 (-5 *3 (-1186 *5)) (-4 *5 (-462)) (-5 *2 (-654 *6)) (-5 *1 (-548 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858)))))) -(-10 -7 (-15 -4022 ((-654 |#2|) (-1186 |#1|) |#3|)) (-15 -4022 ((-654 |#2|) (-963 |#1|) |#3|)) (-15 -4426 ((-654 (-654 |#2|)) (-654 (-963 |#1|)) (-654 (-963 |#1|)) (-654 (-1190)) |#3|)) (-15 -2696 ((-654 (-302 (-963 |#2|))) (-654 |#2|) (-654 (-1190))))) -((-2666 ((|#2| |#2| |#1|) 17)) (-3968 ((|#2| (-654 |#2|)) 31)) (-2481 ((|#2| (-654 |#2|)) 52))) -(((-549 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3968 (|#2| (-654 |#2|))) (-15 -2481 (|#2| (-654 |#2|))) (-15 -2666 (|#2| |#2| |#1|))) (-315) (-1257 |#1|) |#1| (-1 |#1| |#1| (-781))) (T -549)) -((-2666 (*1 *2 *2 *3) (-12 (-4 *3 (-315)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-781))) (-5 *1 (-549 *3 *2 *4 *5)) (-4 *2 (-1257 *3)))) (-2481 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-1257 *4)) (-5 *1 (-549 *4 *2 *5 *6)) (-4 *4 (-315)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-781))))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-1257 *4)) (-5 *1 (-549 *4 *2 *5 *6)) (-4 *4 (-315)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-781)))))) -(-10 -7 (-15 -3968 (|#2| (-654 |#2|))) (-15 -2481 (|#2| (-654 |#2|))) (-15 -2666 (|#2| |#2| |#1|))) -((-4220 (((-428 (-1186 |#4|)) (-1186 |#4|) (-1 (-428 (-1186 |#3|)) (-1186 |#3|))) 89) (((-428 |#4|) |#4| (-1 (-428 (-1186 |#3|)) (-1186 |#3|))) 210))) -(((-550 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4220 ((-428 |#4|) |#4| (-1 (-428 (-1186 |#3|)) (-1186 |#3|)))) (-15 -4220 ((-428 (-1186 |#4|)) (-1186 |#4|) (-1 (-428 (-1186 |#3|)) (-1186 |#3|))))) (-860) (-803) (-13 (-315) (-148)) (-960 |#3| |#2| |#1|)) (T -550)) -((-4220 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-428 (-1186 *7)) (-1186 *7))) (-4 *7 (-13 (-315) (-148))) (-4 *5 (-860)) (-4 *6 (-803)) (-4 *8 (-960 *7 *6 *5)) (-5 *2 (-428 (-1186 *8))) (-5 *1 (-550 *5 *6 *7 *8)) (-5 *3 (-1186 *8)))) (-4220 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-428 (-1186 *7)) (-1186 *7))) (-4 *7 (-13 (-315) (-148))) (-4 *5 (-860)) (-4 *6 (-803)) (-5 *2 (-428 *3)) (-5 *1 (-550 *5 *6 *7 *3)) (-4 *3 (-960 *7 *6 *5))))) -(-10 -7 (-15 -4220 ((-428 |#4|) |#4| (-1 (-428 (-1186 |#3|)) (-1186 |#3|)))) (-15 -4220 ((-428 (-1186 |#4|)) (-1186 |#4|) (-1 (-428 (-1186 |#3|)) (-1186 |#3|))))) -((-4164 ((|#4| |#4|) 74)) (-2998 ((|#4| |#4|) 70)) (-1807 ((|#4| |#4| (-574) (-574)) 76)) (-2597 ((|#4| |#4|) 72))) -(((-551 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2998 (|#4| |#4|)) (-15 -2597 (|#4| |#4|)) (-15 -4164 (|#4| |#4|)) (-15 -1807 (|#4| |#4| (-574) (-574)))) (-13 (-372) (-377) (-624 (-574))) (-1257 |#1|) (-734 |#1| |#2|) (-1272 |#3|)) (T -551)) -((-1807 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-574)) (-4 *4 (-13 (-372) (-377) (-624 *3))) (-4 *5 (-1257 *4)) (-4 *6 (-734 *4 *5)) (-5 *1 (-551 *4 *5 *6 *2)) (-4 *2 (-1272 *6)))) (-4164 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1257 *3)) (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1272 *5)))) (-2597 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1257 *3)) (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1272 *5)))) (-2998 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1257 *3)) (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1272 *5))))) -(-10 -7 (-15 -2998 (|#4| |#4|)) (-15 -2597 (|#4| |#4|)) (-15 -4164 (|#4| |#4|)) (-15 -1807 (|#4| |#4| (-574) (-574)))) -((-4164 ((|#2| |#2|) 27)) (-2998 ((|#2| |#2|) 23)) (-1807 ((|#2| |#2| (-574) (-574)) 29)) (-2597 ((|#2| |#2|) 25))) -(((-552 |#1| |#2|) (-10 -7 (-15 -2998 (|#2| |#2|)) (-15 -2597 (|#2| |#2|)) (-15 -4164 (|#2| |#2|)) (-15 -1807 (|#2| |#2| (-574) (-574)))) (-13 (-372) (-377) (-624 (-574))) (-1272 |#1|)) (T -552)) -((-1807 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-574)) (-4 *4 (-13 (-372) (-377) (-624 *3))) (-5 *1 (-552 *4 *2)) (-4 *2 (-1272 *4)))) (-4164 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2)) (-4 *2 (-1272 *3)))) (-2597 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2)) (-4 *2 (-1272 *3)))) (-2998 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2)) (-4 *2 (-1272 *3))))) -(-10 -7 (-15 -2998 (|#2| |#2|)) (-15 -2597 (|#2| |#2|)) (-15 -4164 (|#2| |#2|)) (-15 -1807 (|#2| |#2| (-574) (-574)))) -((-2681 (((-3 (-574) "failed") |#2| |#1| (-1 (-3 (-574) "failed") |#1|)) 18) (((-3 (-574) "failed") |#2| |#1| (-574) (-1 (-3 (-574) "failed") |#1|)) 14) (((-3 (-574) "failed") |#2| (-574) (-1 (-3 (-574) "failed") |#1|)) 32))) -(((-553 |#1| |#2|) (-10 -7 (-15 -2681 ((-3 (-574) "failed") |#2| (-574) (-1 (-3 (-574) "failed") |#1|))) (-15 -2681 ((-3 (-574) "failed") |#2| |#1| (-574) (-1 (-3 (-574) "failed") |#1|))) (-15 -2681 ((-3 (-574) "failed") |#2| |#1| (-1 (-3 (-574) "failed") |#1|)))) (-1062) (-1257 |#1|)) (T -553)) -((-2681 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-574) "failed") *4)) (-4 *4 (-1062)) (-5 *2 (-574)) (-5 *1 (-553 *4 *3)) (-4 *3 (-1257 *4)))) (-2681 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-574) "failed") *4)) (-4 *4 (-1062)) (-5 *2 (-574)) (-5 *1 (-553 *4 *3)) (-4 *3 (-1257 *4)))) (-2681 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-574) "failed") *5)) (-4 *5 (-1062)) (-5 *2 (-574)) (-5 *1 (-553 *5 *3)) (-4 *3 (-1257 *5))))) -(-10 -7 (-15 -2681 ((-3 (-574) "failed") |#2| (-574) (-1 (-3 (-574) "failed") |#1|))) (-15 -2681 ((-3 (-574) "failed") |#2| |#1| (-574) (-1 (-3 (-574) "failed") |#1|))) (-15 -2681 ((-3 (-574) "failed") |#2| |#1| (-1 (-3 (-574) "failed") |#1|)))) -((-1726 (($ $ $) 84)) (-2827 (((-428 $) $) 52)) (-1696 (((-3 (-574) "failed") $) 64)) (-2206 (((-574) $) 42)) (-1880 (((-3 (-417 (-574)) "failed") $) 79)) (-4414 (((-112) $) 26)) (-4339 (((-417 (-574)) $) 77)) (-2257 (((-112) $) 55)) (-1361 (($ $ $ $) 92)) (-2756 (((-112) $) 17)) (-3792 (($ $ $) 62)) (-3625 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 74)) (-2748 (((-3 $ "failed") $) 69)) (-3810 (($ $) 24)) (-3318 (($ $ $) 90)) (-3818 (($) 65)) (-2150 (($ $) 58)) (-4220 (((-428 $) $) 50)) (-3476 (((-112) $) 15)) (-1730 (((-781) $) 32)) (-3905 (($ $ (-781)) NIL) (($ $) 11)) (-3167 (($ $) 18)) (-1836 (((-574) $) NIL) (((-546) $) 41) (((-903 (-574)) $) 45) (((-388) $) 35) (((-227) $) 38)) (-1364 (((-781)) 9)) (-1467 (((-112) $ $) 21)) (-1616 (($ $ $) 60))) -(((-554 |#1|) (-10 -8 (-15 -3318 (|#1| |#1| |#1|)) (-15 -1361 (|#1| |#1| |#1| |#1|)) (-15 -3810 (|#1| |#1|)) (-15 -3167 (|#1| |#1|)) (-15 -1880 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -4339 ((-417 (-574)) |#1|)) (-15 -4414 ((-112) |#1|)) (-15 -1726 (|#1| |#1| |#1|)) (-15 -1467 ((-112) |#1| |#1|)) (-15 -3476 ((-112) |#1|)) (-15 -3818 (|#1|)) (-15 -2748 ((-3 |#1| "failed") |#1|)) (-15 -1836 ((-227) |#1|)) (-15 -1836 ((-388) |#1|)) (-15 -3792 (|#1| |#1| |#1|)) (-15 -2150 (|#1| |#1|)) (-15 -1616 (|#1| |#1| |#1|)) (-15 -3625 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1836 ((-903 (-574)) |#1|)) (-15 -1836 ((-546) |#1|)) (-15 -1696 ((-3 (-574) "failed") |#1|)) (-15 -2206 ((-574) |#1|)) (-15 -1836 ((-574) |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -2756 ((-112) |#1|)) (-15 -1730 ((-781) |#1|)) (-15 -4220 ((-428 |#1|) |#1|)) (-15 -2827 ((-428 |#1|) |#1|)) (-15 -2257 ((-112) |#1|)) (-15 -1364 ((-781)))) (-555)) (T -554)) -((-1364 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-554 *3)) (-4 *3 (-555))))) -(-10 -8 (-15 -3318 (|#1| |#1| |#1|)) (-15 -1361 (|#1| |#1| |#1| |#1|)) (-15 -3810 (|#1| |#1|)) (-15 -3167 (|#1| |#1|)) (-15 -1880 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -4339 ((-417 (-574)) |#1|)) (-15 -4414 ((-112) |#1|)) (-15 -1726 (|#1| |#1| |#1|)) (-15 -1467 ((-112) |#1| |#1|)) (-15 -3476 ((-112) |#1|)) (-15 -3818 (|#1|)) (-15 -2748 ((-3 |#1| "failed") |#1|)) (-15 -1836 ((-227) |#1|)) (-15 -1836 ((-388) |#1|)) (-15 -3792 (|#1| |#1| |#1|)) (-15 -2150 (|#1| |#1|)) (-15 -1616 (|#1| |#1| |#1|)) (-15 -3625 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1836 ((-903 (-574)) |#1|)) (-15 -1836 ((-546) |#1|)) (-15 -1696 ((-3 (-574) "failed") |#1|)) (-15 -2206 ((-574) |#1|)) (-15 -1836 ((-574) |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -2756 ((-112) |#1|)) (-15 -1730 ((-781) |#1|)) (-15 -4220 ((-428 |#1|) |#1|)) (-15 -2827 ((-428 |#1|) |#1|)) (-15 -2257 ((-112) |#1|)) (-15 -1364 ((-781)))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-1575 (($ $) 46)) (-2085 (((-112) $) 44)) (-1726 (($ $ $) 92)) (-3524 (((-3 $ "failed") $ $) 20)) (-4178 (($ $ $ $) 81)) (-2568 (($ $) 57)) (-2827 (((-428 $) $) 58)) (-1600 (((-112) $ $) 134)) (-2846 (((-574) $) 123)) (-3958 (($ $ $) 95)) (-3426 (($) 18 T CONST)) (-1696 (((-3 (-574) "failed") $) 115)) (-2206 (((-574) $) 116)) (-2786 (($ $ $) 138)) (-2590 (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 113) (((-699 (-574)) (-699 $)) 112) (((-699 (-574)) (-1281 $)) 111)) (-3434 (((-3 $ "failed") $) 37)) (-1880 (((-3 (-417 (-574)) "failed") $) 89)) (-4414 (((-112) $) 91)) (-4339 (((-417 (-574)) $) 90)) (-2820 (($) 88) (($ $) 87)) (-2797 (($ $ $) 137)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) 132)) (-2257 (((-112) $) 59)) (-1361 (($ $ $ $) 79)) (-3742 (($ $ $) 93)) (-2756 (((-112) $) 125)) (-3792 (($ $ $) 104)) (-3625 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 107)) (-3199 (((-112) $) 35)) (-4410 (((-112) $) 99)) (-2748 (((-3 $ "failed") $) 101)) (-1335 (((-112) $) 124)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) 141)) (-4201 (($ $ $ $) 80)) (-3659 (($ $ $) 126)) (-4257 (($ $ $) 127)) (-3810 (($ $) 83)) (-4135 (($ $) 96)) (-2832 (($ $ $) 52) (($ (-654 $)) 51)) (-4136 (((-1172) $) 10)) (-3318 (($ $ $) 78)) (-3818 (($) 100 T CONST)) (-1605 (($ $) 85)) (-3966 (((-1133) $) 11)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2873 (($ $ $) 54) (($ (-654 $)) 53)) (-2150 (($ $) 105)) (-4220 (((-428 $) $) 56)) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 140) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 139)) (-2838 (((-3 $ "failed") $ $) 48)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) 133)) (-3476 (((-112) $) 98)) (-1730 (((-781) $) 135)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 136)) (-3905 (($ $ (-781)) 120) (($ $) 119)) (-2295 (($ $) 84)) (-3167 (($ $) 86)) (-1836 (((-574) $) 117) (((-546) $) 109) (((-903 (-574)) $) 108) (((-388) $) 103) (((-227) $) 102)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-574)) 114)) (-1364 (((-781)) 32 T CONST)) (-1467 (((-112) $ $) 94)) (-1616 (($ $ $) 106)) (-3284 (((-112) $ $) 9)) (-2630 (($) 97)) (-2069 (((-112) $ $) 45)) (-4344 (($ $ $ $) 82)) (-3482 (($ $) 122)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-3610 (($ $ (-781)) 121) (($ $) 118)) (-3042 (((-112) $ $) 129)) (-3018 (((-112) $ $) 130)) (-2981 (((-112) $ $) 6)) (-3030 (((-112) $ $) 128)) (-3007 (((-112) $ $) 131)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ (-574) $) 110))) -(((-555) (-141)) (T -555)) -((-4410 (*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) (-3476 (*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) (-2630 (*1 *1) (-4 *1 (-555))) (-4135 (*1 *1 *1) (-4 *1 (-555))) (-3958 (*1 *1 *1 *1) (-4 *1 (-555))) (-1467 (*1 *2 *1 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) (-3742 (*1 *1 *1 *1) (-4 *1 (-555))) (-1726 (*1 *1 *1 *1) (-4 *1 (-555))) (-4414 (*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) (-4339 (*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-417 (-574))))) (-1880 (*1 *2 *1) (|partial| -12 (-4 *1 (-555)) (-5 *2 (-417 (-574))))) (-2820 (*1 *1) (-4 *1 (-555))) (-2820 (*1 *1 *1) (-4 *1 (-555))) (-3167 (*1 *1 *1) (-4 *1 (-555))) (-1605 (*1 *1 *1) (-4 *1 (-555))) (-2295 (*1 *1 *1) (-4 *1 (-555))) (-3810 (*1 *1 *1) (-4 *1 (-555))) (-4344 (*1 *1 *1 *1 *1) (-4 *1 (-555))) (-4178 (*1 *1 *1 *1 *1) (-4 *1 (-555))) (-4201 (*1 *1 *1 *1 *1) (-4 *1 (-555))) (-1361 (*1 *1 *1 *1 *1) (-4 *1 (-555))) (-3318 (*1 *1 *1 *1) (-4 *1 (-555)))) -(-13 (-1235) (-315) (-830) (-239) (-624 (-574)) (-1051 (-574)) (-649 (-574)) (-624 (-546)) (-624 (-903 (-574))) (-897 (-574)) (-144) (-1035) (-148) (-1165) (-10 -8 (-15 -4410 ((-112) $)) (-15 -3476 ((-112) $)) (-6 -4455) (-15 -2630 ($)) (-15 -4135 ($ $)) (-15 -3958 ($ $ $)) (-15 -1467 ((-112) $ $)) (-15 -3742 ($ $ $)) (-15 -1726 ($ $ $)) (-15 -4414 ((-112) $)) (-15 -4339 ((-417 (-574)) $)) (-15 -1880 ((-3 (-417 (-574)) "failed") $)) (-15 -2820 ($)) (-15 -2820 ($ $)) (-15 -3167 ($ $)) (-15 -1605 ($ $)) (-15 -2295 ($ $)) (-15 -3810 ($ $)) (-15 -4344 ($ $ $ $)) (-15 -4178 ($ $ $ $)) (-15 -4201 ($ $ $ $)) (-15 -1361 ($ $ $ $)) (-15 -3318 ($ $ $)) (-6 -4454))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-144) . T) ((-174) . T) ((-624 (-227)) . T) ((-624 (-388)) . T) ((-624 (-546)) . T) ((-624 (-574)) . T) ((-624 (-903 (-574))) . T) ((-235 $) . T) ((-239) . T) ((-298) . T) ((-315) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0=(-574)) . T) ((-658 $) . T) ((-650 $) . T) ((-649 #0#) . T) ((-727 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-830) . T) ((-858) . T) ((-860) . T) ((-897 (-574)) . T) ((-931) . T) ((-1035) . T) ((-1051 (-574)) . T) ((-1064 $) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1165) . T) ((-1231) . T) ((-1235) . T)) -((-2849 (((-112) $ $) NIL)) (-1487 (((-781)) NIL)) (-3426 (($) NIL T CONST)) (-2820 (($) NIL)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-4257 (($ $ $) NIL) (($) NIL T CONST)) (-4115 (((-932) $) NIL)) (-4136 (((-1172) $) NIL)) (-2576 (($ (-932)) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) NIL))) -(((-556) (-13 (-854) (-10 -8 (-15 -3426 ($) -1706)))) (T -556)) -((-3426 (*1 *1) (-5 *1 (-556)))) -(-13 (-854) (-10 -8 (-15 -3426 ($) -1706))) +((-1766 (((-1185 |#1|) (-780)) 115)) (-1635 (((-1280 |#1|) (-1280 |#1|) (-931)) 108)) (-2448 (((-1285) (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))) |#1|) 123)) (-1416 (((-1280 |#1|) (-1280 |#1|) (-780)) 53)) (-2819 (((-1280 |#1|) (-931)) 110)) (-1555 (((-1280 |#1|) (-1280 |#1|) (-573)) 30)) (-3881 (((-1185 |#1|) (-1280 |#1|)) 116)) (-4081 (((-1280 |#1|) (-931)) 137)) (-3514 (((-112) (-1280 |#1|)) 120)) (-3421 (((-1280 |#1|) (-1280 |#1|) (-931)) 100)) (-2297 (((-1185 |#1|) (-1280 |#1|)) 131)) (-3589 (((-931) (-1280 |#1|)) 96)) (-1323 (((-1280 |#1|) (-1280 |#1|)) 38)) (-2575 (((-1280 |#1|) (-931) (-931)) 140)) (-4276 (((-1280 |#1|) (-1280 |#1|) (-1132) (-1132)) 29)) (-3314 (((-1280 |#1|) (-1280 |#1|) (-780) (-1132)) 54)) (-3914 (((-1280 (-1280 |#1|)) (-931)) 136)) (-3103 (((-1280 |#1|) (-1280 |#1|) (-1280 |#1|)) 121)) (** (((-1280 |#1|) (-1280 |#1|) (-573)) 67)) (* (((-1280 |#1|) (-1280 |#1|) (-1280 |#1|)) 31))) +(((-537 |#1|) (-10 -7 (-15 -2448 ((-1285) (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))) |#1|)) (-15 -2819 ((-1280 |#1|) (-931))) (-15 -2575 ((-1280 |#1|) (-931) (-931))) (-15 -3881 ((-1185 |#1|) (-1280 |#1|))) (-15 -1766 ((-1185 |#1|) (-780))) (-15 -3314 ((-1280 |#1|) (-1280 |#1|) (-780) (-1132))) (-15 -1416 ((-1280 |#1|) (-1280 |#1|) (-780))) (-15 -4276 ((-1280 |#1|) (-1280 |#1|) (-1132) (-1132))) (-15 -1555 ((-1280 |#1|) (-1280 |#1|) (-573))) (-15 ** ((-1280 |#1|) (-1280 |#1|) (-573))) (-15 * ((-1280 |#1|) (-1280 |#1|) (-1280 |#1|))) (-15 -3103 ((-1280 |#1|) (-1280 |#1|) (-1280 |#1|))) (-15 -3421 ((-1280 |#1|) (-1280 |#1|) (-931))) (-15 -1635 ((-1280 |#1|) (-1280 |#1|) (-931))) (-15 -1323 ((-1280 |#1|) (-1280 |#1|))) (-15 -3589 ((-931) (-1280 |#1|))) (-15 -3514 ((-112) (-1280 |#1|))) (-15 -3914 ((-1280 (-1280 |#1|)) (-931))) (-15 -4081 ((-1280 |#1|) (-931))) (-15 -2297 ((-1185 |#1|) (-1280 |#1|)))) (-357)) (T -537)) +((-2297 (*1 *2 *3) (-12 (-5 *3 (-1280 *4)) (-4 *4 (-357)) (-5 *2 (-1185 *4)) (-5 *1 (-537 *4)))) (-4081 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1280 *4)) (-5 *1 (-537 *4)) (-4 *4 (-357)))) (-3914 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1280 (-1280 *4))) (-5 *1 (-537 *4)) (-4 *4 (-357)))) (-3514 (*1 *2 *3) (-12 (-5 *3 (-1280 *4)) (-4 *4 (-357)) (-5 *2 (-112)) (-5 *1 (-537 *4)))) (-3589 (*1 *2 *3) (-12 (-5 *3 (-1280 *4)) (-4 *4 (-357)) (-5 *2 (-931)) (-5 *1 (-537 *4)))) (-1323 (*1 *2 *2) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-357)) (-5 *1 (-537 *3)))) (-1635 (*1 *2 *2 *3) (-12 (-5 *2 (-1280 *4)) (-5 *3 (-931)) (-4 *4 (-357)) (-5 *1 (-537 *4)))) (-3421 (*1 *2 *2 *3) (-12 (-5 *2 (-1280 *4)) (-5 *3 (-931)) (-4 *4 (-357)) (-5 *1 (-537 *4)))) (-3103 (*1 *2 *2 *2) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-357)) (-5 *1 (-537 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-357)) (-5 *1 (-537 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1280 *4)) (-5 *3 (-573)) (-4 *4 (-357)) (-5 *1 (-537 *4)))) (-1555 (*1 *2 *2 *3) (-12 (-5 *2 (-1280 *4)) (-5 *3 (-573)) (-4 *4 (-357)) (-5 *1 (-537 *4)))) (-4276 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1280 *4)) (-5 *3 (-1132)) (-4 *4 (-357)) (-5 *1 (-537 *4)))) (-1416 (*1 *2 *2 *3) (-12 (-5 *2 (-1280 *4)) (-5 *3 (-780)) (-4 *4 (-357)) (-5 *1 (-537 *4)))) (-3314 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1280 *5)) (-5 *3 (-780)) (-5 *4 (-1132)) (-4 *5 (-357)) (-5 *1 (-537 *5)))) (-1766 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1185 *4)) (-5 *1 (-537 *4)) (-4 *4 (-357)))) (-3881 (*1 *2 *3) (-12 (-5 *3 (-1280 *4)) (-4 *4 (-357)) (-5 *2 (-1185 *4)) (-5 *1 (-537 *4)))) (-2575 (*1 *2 *3 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1280 *4)) (-5 *1 (-537 *4)) (-4 *4 (-357)))) (-2819 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1280 *4)) (-5 *1 (-537 *4)) (-4 *4 (-357)))) (-2448 (*1 *2 *3 *4) (-12 (-5 *3 (-1280 (-653 (-2 (|:| -3082 *4) (|:| -2575 (-1132)))))) (-4 *4 (-357)) (-5 *2 (-1285)) (-5 *1 (-537 *4))))) +(-10 -7 (-15 -2448 ((-1285) (-1280 (-653 (-2 (|:| -3082 |#1|) (|:| -2575 (-1132))))) |#1|)) (-15 -2819 ((-1280 |#1|) (-931))) (-15 -2575 ((-1280 |#1|) (-931) (-931))) (-15 -3881 ((-1185 |#1|) (-1280 |#1|))) (-15 -1766 ((-1185 |#1|) (-780))) (-15 -3314 ((-1280 |#1|) (-1280 |#1|) (-780) (-1132))) (-15 -1416 ((-1280 |#1|) (-1280 |#1|) (-780))) (-15 -4276 ((-1280 |#1|) (-1280 |#1|) (-1132) (-1132))) (-15 -1555 ((-1280 |#1|) (-1280 |#1|) (-573))) (-15 ** ((-1280 |#1|) (-1280 |#1|) (-573))) (-15 * ((-1280 |#1|) (-1280 |#1|) (-1280 |#1|))) (-15 -3103 ((-1280 |#1|) (-1280 |#1|) (-1280 |#1|))) (-15 -3421 ((-1280 |#1|) (-1280 |#1|) (-931))) (-15 -1635 ((-1280 |#1|) (-1280 |#1|) (-931))) (-15 -1323 ((-1280 |#1|) (-1280 |#1|))) (-15 -3589 ((-931) (-1280 |#1|))) (-15 -3514 ((-112) (-1280 |#1|))) (-15 -3914 ((-1280 (-1280 |#1|)) (-931))) (-15 -4081 ((-1280 |#1|) (-931))) (-15 -2297 ((-1185 |#1|) (-1280 |#1|)))) +((-3769 (((-700 (-1238)) $) NIL)) (-4370 (((-700 (-1236)) $) NIL)) (-3464 (((-700 (-1235)) $) NIL)) (-3310 (((-700 (-558)) $) NIL)) (-4395 (((-700 (-556)) $) NIL)) (-2731 (((-700 (-555)) $) NIL)) (-3983 (((-780) $ (-129)) NIL)) (-1870 (((-700 (-130)) $) 26)) (-2855 (((-1132) $ (-1132)) 31)) (-1440 (((-1132) $) 30)) (-3549 (((-112) $) 20)) (-1560 (($ (-397)) 14) (($ (-1171)) 16)) (-3482 (((-112) $) 27)) (-2942 (((-871) $) 34)) (-1981 (($ $) 28))) +(((-538) (-13 (-536) (-622 (-871)) (-10 -8 (-15 -1560 ($ (-397))) (-15 -1560 ($ (-1171))) (-15 -3482 ((-112) $)) (-15 -3549 ((-112) $)) (-15 -1440 ((-1132) $)) (-15 -2855 ((-1132) $ (-1132)))))) (T -538)) +((-1560 (*1 *1 *2) (-12 (-5 *2 (-397)) (-5 *1 (-538)))) (-1560 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-538)))) (-3482 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-538)))) (-3549 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-538)))) (-1440 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-538)))) (-2855 (*1 *2 *1 *2) (-12 (-5 *2 (-1132)) (-5 *1 (-538))))) +(-13 (-536) (-622 (-871)) (-10 -8 (-15 -1560 ($ (-397))) (-15 -1560 ($ (-1171))) (-15 -3482 ((-112) $)) (-15 -3549 ((-112) $)) (-15 -1440 ((-1132) $)) (-15 -2855 ((-1132) $ (-1132))))) +((-2115 (((-1 |#1| |#1|) |#1|) 11)) (-2083 (((-1 |#1| |#1|)) 10))) +(((-539 |#1|) (-10 -7 (-15 -2083 ((-1 |#1| |#1|))) (-15 -2115 ((-1 |#1| |#1|) |#1|))) (-13 (-735) (-25))) (T -539)) +((-2115 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-539 *3)) (-4 *3 (-13 (-735) (-25))))) (-2083 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-539 *3)) (-4 *3 (-13 (-735) (-25)))))) +(-10 -7 (-15 -2083 ((-1 |#1| |#1|))) (-15 -2115 ((-1 |#1| |#1|) |#1|))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3280 (($ $ $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1391 (($ $) NIL)) (-4334 (($ (-780) |#1|) NIL)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-1776 (($ (-1 (-780) (-780)) $) NIL)) (-1481 ((|#1| $) NIL)) (-1369 (((-780) $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 27)) (-3507 (((-112) $ $) NIL)) (-2132 (($) NIL T CONST)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL))) +(((-540 |#1|) (-13 (-802) (-518 (-780) |#1|)) (-859)) (T -540)) +NIL +(-13 (-802) (-518 (-780) |#1|)) +((-3658 (((-653 |#2|) (-1185 |#1|) |#3|) 98)) (-2558 (((-653 (-2 (|:| |outval| |#2|) (|:| |outmult| (-573)) (|:| |outvect| (-653 (-698 |#2|))))) (-698 |#1|) |#3| (-1 (-427 (-1185 |#1|)) (-1185 |#1|))) 114)) (-3840 (((-1185 |#1|) (-698 |#1|)) 110))) +(((-541 |#1| |#2| |#3|) (-10 -7 (-15 -3840 ((-1185 |#1|) (-698 |#1|))) (-15 -3658 ((-653 |#2|) (-1185 |#1|) |#3|)) (-15 -2558 ((-653 (-2 (|:| |outval| |#2|) (|:| |outmult| (-573)) (|:| |outvect| (-653 (-698 |#2|))))) (-698 |#1|) |#3| (-1 (-427 (-1185 |#1|)) (-1185 |#1|))))) (-371) (-371) (-13 (-371) (-857))) (T -541)) +((-2558 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-698 *6)) (-5 *5 (-1 (-427 (-1185 *6)) (-1185 *6))) (-4 *6 (-371)) (-5 *2 (-653 (-2 (|:| |outval| *7) (|:| |outmult| (-573)) (|:| |outvect| (-653 (-698 *7)))))) (-5 *1 (-541 *6 *7 *4)) (-4 *7 (-371)) (-4 *4 (-13 (-371) (-857))))) (-3658 (*1 *2 *3 *4) (-12 (-5 *3 (-1185 *5)) (-4 *5 (-371)) (-5 *2 (-653 *6)) (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-371)) (-4 *4 (-13 (-371) (-857))))) (-3840 (*1 *2 *3) (-12 (-5 *3 (-698 *4)) (-4 *4 (-371)) (-5 *2 (-1185 *4)) (-5 *1 (-541 *4 *5 *6)) (-4 *5 (-371)) (-4 *6 (-13 (-371) (-857)))))) +(-10 -7 (-15 -3840 ((-1185 |#1|) (-698 |#1|))) (-15 -3658 ((-653 |#2|) (-1185 |#1|) |#3|)) (-15 -2558 ((-653 (-2 (|:| |outval| |#2|) (|:| |outmult| (-573)) (|:| |outvect| (-653 (-698 |#2|))))) (-698 |#1|) |#3| (-1 (-427 (-1185 |#1|)) (-1185 |#1|))))) +((-3534 (((-700 (-1238)) $ (-1238)) NIL)) (-4340 (((-700 (-558)) $ (-558)) NIL)) (-1960 (((-780) $ (-129)) 39)) (-2034 (((-700 (-130)) $ (-130)) 40)) (-3769 (((-700 (-1238)) $) NIL)) (-4370 (((-700 (-1236)) $) NIL)) (-3464 (((-700 (-1235)) $) NIL)) (-3310 (((-700 (-558)) $) NIL)) (-4395 (((-700 (-556)) $) NIL)) (-2731 (((-700 (-555)) $) NIL)) (-3983 (((-780) $ (-129)) 35)) (-1870 (((-700 (-130)) $) 37)) (-1577 (((-112) $) 27)) (-2833 (((-700 $) (-588) (-964)) 18) (((-700 $) (-500) (-964)) 24)) (-2942 (((-871) $) 48)) (-1981 (($ $) 42))) +(((-542) (-13 (-776 (-588)) (-622 (-871)) (-10 -8 (-15 -2833 ((-700 $) (-500) (-964)))))) (T -542)) +((-2833 (*1 *2 *3 *4) (-12 (-5 *3 (-500)) (-5 *4 (-964)) (-5 *2 (-700 (-542))) (-5 *1 (-542))))) +(-13 (-776 (-588)) (-622 (-871)) (-10 -8 (-15 -2833 ((-700 $) (-500) (-964))))) +((-2305 (((-852 (-573))) 12)) (-2315 (((-852 (-573))) 14)) (-1743 (((-842 (-573))) 9))) +(((-543) (-10 -7 (-15 -1743 ((-842 (-573)))) (-15 -2305 ((-852 (-573)))) (-15 -2315 ((-852 (-573)))))) (T -543)) +((-2315 (*1 *2) (-12 (-5 *2 (-852 (-573))) (-5 *1 (-543)))) (-2305 (*1 *2) (-12 (-5 *2 (-852 (-573))) (-5 *1 (-543)))) (-1743 (*1 *2) (-12 (-5 *2 (-842 (-573))) (-5 *1 (-543))))) +(-10 -7 (-15 -1743 ((-842 (-573)))) (-15 -2305 ((-852 (-573)))) (-15 -2315 ((-852 (-573))))) +((-3973 (((-545) (-1189)) 15)) (-2283 ((|#1| (-545)) 20))) +(((-544 |#1|) (-10 -7 (-15 -3973 ((-545) (-1189))) (-15 -2283 (|#1| (-545)))) (-1230)) (T -544)) +((-2283 (*1 *2 *3) (-12 (-5 *3 (-545)) (-5 *1 (-544 *2)) (-4 *2 (-1230)))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-545)) (-5 *1 (-544 *4)) (-4 *4 (-1230))))) +(-10 -7 (-15 -3973 ((-545) (-1189))) (-15 -2283 (|#1| (-545)))) +((-2848 (((-112) $ $) NIL)) (-2136 (((-1171) $) 55)) (-2146 (((-112) $) 51)) (-4004 (((-1189) $) 52)) (-4203 (((-112) $) 49)) (-3248 (((-1171) $) 50)) (-3666 (($ (-1171)) 56)) (-3476 (((-112) $) NIL)) (-2328 (((-112) $) NIL)) (-2245 (((-112) $) NIL)) (-3180 (((-1171) $) NIL)) (-2155 (($ $ (-653 (-1189))) 21)) (-2283 (((-52) $) 23)) (-3159 (((-112) $) NIL)) (-4025 (((-573) $) NIL)) (-3965 (((-1132) $) NIL)) (-2708 (($ $ (-653 (-1189)) (-1189)) 73)) (-2532 (((-112) $) NIL)) (-2383 (((-227) $) NIL)) (-3806 (($ $) 44)) (-1444 (((-871) $) NIL)) (-4122 (((-112) $ $) NIL)) (-2198 (($ $ (-573)) NIL) (($ $ (-653 (-573))) NIL)) (-4292 (((-653 $) $) 30)) (-4250 (((-1189) (-653 $)) 57)) (-1835 (($ (-1171)) NIL) (($ (-1189)) 19) (($ (-573)) 8) (($ (-227)) 28) (($ (-871)) NIL) (($ (-653 $)) 65) (((-1116) $) 12) (($ (-1116)) 13)) (-2420 (((-1189) (-1189) (-653 $)) 60)) (-2942 (((-871) $) 54)) (-4347 (($ $) 59)) (-4051 (($ $) 58)) (-1874 (($ $ (-653 $)) 66)) (-3507 (((-112) $ $) NIL)) (-2267 (((-112) $) 29)) (-2132 (($) 9 T CONST)) (-2144 (($) 11 T CONST)) (-2981 (((-112) $ $) 74)) (-3103 (($ $ $) 82)) (-3077 (($ $ $) 75)) (** (($ $ (-780)) 81) (($ $ (-573)) 80)) (* (($ $ $) 76)) (-2862 (((-573) $) NIL))) +(((-545) (-13 (-1115 (-1171) (-1189) (-573) (-227) (-871)) (-623 (-1116)) (-10 -8 (-15 -2283 ((-52) $)) (-15 -1835 ($ (-1116))) (-15 -1874 ($ $ (-653 $))) (-15 -2708 ($ $ (-653 (-1189)) (-1189))) (-15 -2155 ($ $ (-653 (-1189)))) (-15 -3077 ($ $ $)) (-15 * ($ $ $)) (-15 -3103 ($ $ $)) (-15 ** ($ $ (-780))) (-15 ** ($ $ (-573))) (-15 0 ($) -1705) (-15 1 ($) -1705) (-15 -3806 ($ $)) (-15 -2136 ((-1171) $)) (-15 -3666 ($ (-1171))) (-15 -4250 ((-1189) (-653 $))) (-15 -2420 ((-1189) (-1189) (-653 $)))))) (T -545)) +((-2283 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-545)))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-1116)) (-5 *1 (-545)))) (-1874 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-545))) (-5 *1 (-545)))) (-2708 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 (-1189))) (-5 *3 (-1189)) (-5 *1 (-545)))) (-2155 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-545)))) (-3077 (*1 *1 *1 *1) (-5 *1 (-545))) (* (*1 *1 *1 *1) (-5 *1 (-545))) (-3103 (*1 *1 *1 *1) (-5 *1 (-545))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-545)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-545)))) (-2132 (*1 *1) (-5 *1 (-545))) (-2144 (*1 *1) (-5 *1 (-545))) (-3806 (*1 *1 *1) (-5 *1 (-545))) (-2136 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-545)))) (-3666 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-545)))) (-4250 (*1 *2 *3) (-12 (-5 *3 (-653 (-545))) (-5 *2 (-1189)) (-5 *1 (-545)))) (-2420 (*1 *2 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-653 (-545))) (-5 *1 (-545))))) +(-13 (-1115 (-1171) (-1189) (-573) (-227) (-871)) (-623 (-1116)) (-10 -8 (-15 -2283 ((-52) $)) (-15 -1835 ($ (-1116))) (-15 -1874 ($ $ (-653 $))) (-15 -2708 ($ $ (-653 (-1189)) (-1189))) (-15 -2155 ($ $ (-653 (-1189)))) (-15 -3077 ($ $ $)) (-15 * ($ $ $)) (-15 -3103 ($ $ $)) (-15 ** ($ $ (-780))) (-15 ** ($ $ (-573))) (-15 (-2132) ($) -1705) (-15 (-2144) ($) -1705) (-15 -3806 ($ $)) (-15 -2136 ((-1171) $)) (-15 -3666 ($ (-1171))) (-15 -4250 ((-1189) (-653 $))) (-15 -2420 ((-1189) (-1189) (-653 $))))) +((-4001 ((|#2| |#2|) 17)) (-1719 ((|#2| |#2|) 13)) (-2970 ((|#2| |#2| (-573) (-573)) 20)) (-4190 ((|#2| |#2|) 15))) +(((-546 |#1| |#2|) (-10 -7 (-15 -1719 (|#2| |#2|)) (-15 -4190 (|#2| |#2|)) (-15 -4001 (|#2| |#2|)) (-15 -2970 (|#2| |#2| (-573) (-573)))) (-13 (-565) (-148)) (-1271 |#1|)) (T -546)) +((-2970 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-573)) (-4 *4 (-13 (-565) (-148))) (-5 *1 (-546 *4 *2)) (-4 *2 (-1271 *4)))) (-4001 (*1 *2 *2) (-12 (-4 *3 (-13 (-565) (-148))) (-5 *1 (-546 *3 *2)) (-4 *2 (-1271 *3)))) (-4190 (*1 *2 *2) (-12 (-4 *3 (-13 (-565) (-148))) (-5 *1 (-546 *3 *2)) (-4 *2 (-1271 *3)))) (-1719 (*1 *2 *2) (-12 (-4 *3 (-13 (-565) (-148))) (-5 *1 (-546 *3 *2)) (-4 *2 (-1271 *3))))) +(-10 -7 (-15 -1719 (|#2| |#2|)) (-15 -4190 (|#2| |#2|)) (-15 -4001 (|#2| |#2|)) (-15 -2970 (|#2| |#2| (-573) (-573)))) +((-3993 (((-653 (-301 (-962 |#2|))) (-653 |#2|) (-653 (-1189))) 32)) (-4375 (((-653 |#2|) (-962 |#1|) |#3|) 54) (((-653 |#2|) (-1185 |#1|) |#3|) 53)) (-4227 (((-653 (-653 |#2|)) (-653 (-962 |#1|)) (-653 (-962 |#1|)) (-653 (-1189)) |#3|) 106))) +(((-547 |#1| |#2| |#3|) (-10 -7 (-15 -4375 ((-653 |#2|) (-1185 |#1|) |#3|)) (-15 -4375 ((-653 |#2|) (-962 |#1|) |#3|)) (-15 -4227 ((-653 (-653 |#2|)) (-653 (-962 |#1|)) (-653 (-962 |#1|)) (-653 (-1189)) |#3|)) (-15 -3993 ((-653 (-301 (-962 |#2|))) (-653 |#2|) (-653 (-1189))))) (-461) (-371) (-13 (-371) (-857))) (T -547)) +((-3993 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *6)) (-5 *4 (-653 (-1189))) (-4 *6 (-371)) (-5 *2 (-653 (-301 (-962 *6)))) (-5 *1 (-547 *5 *6 *7)) (-4 *5 (-461)) (-4 *7 (-13 (-371) (-857))))) (-4227 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-653 (-962 *6))) (-5 *4 (-653 (-1189))) (-4 *6 (-461)) (-5 *2 (-653 (-653 *7))) (-5 *1 (-547 *6 *7 *5)) (-4 *7 (-371)) (-4 *5 (-13 (-371) (-857))))) (-4375 (*1 *2 *3 *4) (-12 (-5 *3 (-962 *5)) (-4 *5 (-461)) (-5 *2 (-653 *6)) (-5 *1 (-547 *5 *6 *4)) (-4 *6 (-371)) (-4 *4 (-13 (-371) (-857))))) (-4375 (*1 *2 *3 *4) (-12 (-5 *3 (-1185 *5)) (-4 *5 (-461)) (-5 *2 (-653 *6)) (-5 *1 (-547 *5 *6 *4)) (-4 *6 (-371)) (-4 *4 (-13 (-371) (-857)))))) +(-10 -7 (-15 -4375 ((-653 |#2|) (-1185 |#1|) |#3|)) (-15 -4375 ((-653 |#2|) (-962 |#1|) |#3|)) (-15 -4227 ((-653 (-653 |#2|)) (-653 (-962 |#1|)) (-653 (-962 |#1|)) (-653 (-1189)) |#3|)) (-15 -3993 ((-653 (-301 (-962 |#2|))) (-653 |#2|) (-653 (-1189))))) +((-4115 ((|#2| |#2| |#1|) 17)) (-4257 ((|#2| (-653 |#2|)) 31)) (-3284 ((|#2| (-653 |#2|)) 52))) +(((-548 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4257 (|#2| (-653 |#2|))) (-15 -3284 (|#2| (-653 |#2|))) (-15 -4115 (|#2| |#2| |#1|))) (-314) (-1256 |#1|) |#1| (-1 |#1| |#1| (-780))) (T -548)) +((-4115 (*1 *2 *2 *3) (-12 (-4 *3 (-314)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-780))) (-5 *1 (-548 *3 *2 *4 *5)) (-4 *2 (-1256 *3)))) (-3284 (*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-1256 *4)) (-5 *1 (-548 *4 *2 *5 *6)) (-4 *4 (-314)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-780))))) (-4257 (*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-1256 *4)) (-5 *1 (-548 *4 *2 *5 *6)) (-4 *4 (-314)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-780)))))) +(-10 -7 (-15 -4257 (|#2| (-653 |#2|))) (-15 -3284 (|#2| (-653 |#2|))) (-15 -4115 (|#2| |#2| |#1|))) +((-4218 (((-427 (-1185 |#4|)) (-1185 |#4|) (-1 (-427 (-1185 |#3|)) (-1185 |#3|))) 89) (((-427 |#4|) |#4| (-1 (-427 (-1185 |#3|)) (-1185 |#3|))) 210))) +(((-549 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4218 ((-427 |#4|) |#4| (-1 (-427 (-1185 |#3|)) (-1185 |#3|)))) (-15 -4218 ((-427 (-1185 |#4|)) (-1185 |#4|) (-1 (-427 (-1185 |#3|)) (-1185 |#3|))))) (-859) (-802) (-13 (-314) (-148)) (-959 |#3| |#2| |#1|)) (T -549)) +((-4218 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-427 (-1185 *7)) (-1185 *7))) (-4 *7 (-13 (-314) (-148))) (-4 *5 (-859)) (-4 *6 (-802)) (-4 *8 (-959 *7 *6 *5)) (-5 *2 (-427 (-1185 *8))) (-5 *1 (-549 *5 *6 *7 *8)) (-5 *3 (-1185 *8)))) (-4218 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-427 (-1185 *7)) (-1185 *7))) (-4 *7 (-13 (-314) (-148))) (-4 *5 (-859)) (-4 *6 (-802)) (-5 *2 (-427 *3)) (-5 *1 (-549 *5 *6 *7 *3)) (-4 *3 (-959 *7 *6 *5))))) +(-10 -7 (-15 -4218 ((-427 |#4|) |#4| (-1 (-427 (-1185 |#3|)) (-1185 |#3|)))) (-15 -4218 ((-427 (-1185 |#4|)) (-1185 |#4|) (-1 (-427 (-1185 |#3|)) (-1185 |#3|))))) +((-4001 ((|#4| |#4|) 74)) (-1719 ((|#4| |#4|) 70)) (-2970 ((|#4| |#4| (-573) (-573)) 76)) (-4190 ((|#4| |#4|) 72))) +(((-550 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1719 (|#4| |#4|)) (-15 -4190 (|#4| |#4|)) (-15 -4001 (|#4| |#4|)) (-15 -2970 (|#4| |#4| (-573) (-573)))) (-13 (-371) (-376) (-623 (-573))) (-1256 |#1|) (-733 |#1| |#2|) (-1271 |#3|)) (T -550)) +((-2970 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-573)) (-4 *4 (-13 (-371) (-376) (-623 *3))) (-4 *5 (-1256 *4)) (-4 *6 (-733 *4 *5)) (-5 *1 (-550 *4 *5 *6 *2)) (-4 *2 (-1271 *6)))) (-4001 (*1 *2 *2) (-12 (-4 *3 (-13 (-371) (-376) (-623 (-573)))) (-4 *4 (-1256 *3)) (-4 *5 (-733 *3 *4)) (-5 *1 (-550 *3 *4 *5 *2)) (-4 *2 (-1271 *5)))) (-4190 (*1 *2 *2) (-12 (-4 *3 (-13 (-371) (-376) (-623 (-573)))) (-4 *4 (-1256 *3)) (-4 *5 (-733 *3 *4)) (-5 *1 (-550 *3 *4 *5 *2)) (-4 *2 (-1271 *5)))) (-1719 (*1 *2 *2) (-12 (-4 *3 (-13 (-371) (-376) (-623 (-573)))) (-4 *4 (-1256 *3)) (-4 *5 (-733 *3 *4)) (-5 *1 (-550 *3 *4 *5 *2)) (-4 *2 (-1271 *5))))) +(-10 -7 (-15 -1719 (|#4| |#4|)) (-15 -4190 (|#4| |#4|)) (-15 -4001 (|#4| |#4|)) (-15 -2970 (|#4| |#4| (-573) (-573)))) +((-4001 ((|#2| |#2|) 27)) (-1719 ((|#2| |#2|) 23)) (-2970 ((|#2| |#2| (-573) (-573)) 29)) (-4190 ((|#2| |#2|) 25))) +(((-551 |#1| |#2|) (-10 -7 (-15 -1719 (|#2| |#2|)) (-15 -4190 (|#2| |#2|)) (-15 -4001 (|#2| |#2|)) (-15 -2970 (|#2| |#2| (-573) (-573)))) (-13 (-371) (-376) (-623 (-573))) (-1271 |#1|)) (T -551)) +((-2970 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-573)) (-4 *4 (-13 (-371) (-376) (-623 *3))) (-5 *1 (-551 *4 *2)) (-4 *2 (-1271 *4)))) (-4001 (*1 *2 *2) (-12 (-4 *3 (-13 (-371) (-376) (-623 (-573)))) (-5 *1 (-551 *3 *2)) (-4 *2 (-1271 *3)))) (-4190 (*1 *2 *2) (-12 (-4 *3 (-13 (-371) (-376) (-623 (-573)))) (-5 *1 (-551 *3 *2)) (-4 *2 (-1271 *3)))) (-1719 (*1 *2 *2) (-12 (-4 *3 (-13 (-371) (-376) (-623 (-573)))) (-5 *1 (-551 *3 *2)) (-4 *2 (-1271 *3))))) +(-10 -7 (-15 -1719 (|#2| |#2|)) (-15 -4190 (|#2| |#2|)) (-15 -4001 (|#2| |#2|)) (-15 -2970 (|#2| |#2| (-573) (-573)))) +((-1860 (((-3 (-573) "failed") |#2| |#1| (-1 (-3 (-573) "failed") |#1|)) 18) (((-3 (-573) "failed") |#2| |#1| (-573) (-1 (-3 (-573) "failed") |#1|)) 14) (((-3 (-573) "failed") |#2| (-573) (-1 (-3 (-573) "failed") |#1|)) 32))) +(((-552 |#1| |#2|) (-10 -7 (-15 -1860 ((-3 (-573) "failed") |#2| (-573) (-1 (-3 (-573) "failed") |#1|))) (-15 -1860 ((-3 (-573) "failed") |#2| |#1| (-573) (-1 (-3 (-573) "failed") |#1|))) (-15 -1860 ((-3 (-573) "failed") |#2| |#1| (-1 (-3 (-573) "failed") |#1|)))) (-1061) (-1256 |#1|)) (T -552)) +((-1860 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-573) "failed") *4)) (-4 *4 (-1061)) (-5 *2 (-573)) (-5 *1 (-552 *4 *3)) (-4 *3 (-1256 *4)))) (-1860 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-573) "failed") *4)) (-4 *4 (-1061)) (-5 *2 (-573)) (-5 *1 (-552 *4 *3)) (-4 *3 (-1256 *4)))) (-1860 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-573) "failed") *5)) (-4 *5 (-1061)) (-5 *2 (-573)) (-5 *1 (-552 *5 *3)) (-4 *3 (-1256 *5))))) +(-10 -7 (-15 -1860 ((-3 (-573) "failed") |#2| (-573) (-1 (-3 (-573) "failed") |#1|))) (-15 -1860 ((-3 (-573) "failed") |#2| |#1| (-573) (-1 (-3 (-573) "failed") |#1|))) (-15 -1860 ((-3 (-573) "failed") |#2| |#1| (-1 (-3 (-573) "failed") |#1|)))) +((-1783 (($ $ $) 84)) (-2427 (((-427 $) $) 52)) (-1695 (((-3 (-573) "failed") $) 64)) (-2205 (((-573) $) 42)) (-3810 (((-3 (-416 (-573)) "failed") $) 79)) (-2551 (((-112) $) 26)) (-4434 (((-416 (-573)) $) 77)) (-2696 (((-112) $) 55)) (-3643 (($ $ $ $) 92)) (-4152 (((-112) $) 17)) (-2637 (($ $ $) 62)) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 74)) (-1470 (((-3 $ "failed") $) 69)) (-3808 (($ $) 24)) (-2585 (($ $ $) 90)) (-3816 (($) 65)) (-4264 (($ $) 58)) (-4218 (((-427 $) $) 50)) (-2270 (((-112) $) 15)) (-2163 (((-780) $) 32)) (-3904 (($ $) 11) (($ $ (-780)) NIL)) (-3166 (($ $) 18)) (-1835 (((-573) $) NIL) (((-545) $) 41) (((-902 (-573)) $) 45) (((-387) $) 35) (((-227) $) 38)) (-1545 (((-780)) 9)) (-1373 (((-112) $ $) 21)) (-1677 (($ $ $) 60))) +(((-553 |#1|) (-10 -8 (-15 -2585 (|#1| |#1| |#1|)) (-15 -3643 (|#1| |#1| |#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3166 (|#1| |#1|)) (-15 -3810 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -4434 ((-416 (-573)) |#1|)) (-15 -2551 ((-112) |#1|)) (-15 -1783 (|#1| |#1| |#1|)) (-15 -1373 ((-112) |#1| |#1|)) (-15 -2270 ((-112) |#1|)) (-15 -3816 (|#1|)) (-15 -1470 ((-3 |#1| "failed") |#1|)) (-15 -1835 ((-227) |#1|)) (-15 -1835 ((-387) |#1|)) (-15 -2637 (|#1| |#1| |#1|)) (-15 -4264 (|#1| |#1|)) (-15 -1677 (|#1| |#1| |#1|)) (-15 -1352 ((-899 (-573) |#1|) |#1| (-902 (-573)) (-899 (-573) |#1|))) (-15 -1835 ((-902 (-573)) |#1|)) (-15 -1835 ((-545) |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1835 ((-573) |#1|)) (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -4152 ((-112) |#1|)) (-15 -2163 ((-780) |#1|)) (-15 -4218 ((-427 |#1|) |#1|)) (-15 -2427 ((-427 |#1|) |#1|)) (-15 -2696 ((-112) |#1|)) (-15 -1545 ((-780)))) (-554)) (T -553)) +((-1545 (*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-553 *3)) (-4 *3 (-554))))) +(-10 -8 (-15 -2585 (|#1| |#1| |#1|)) (-15 -3643 (|#1| |#1| |#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3166 (|#1| |#1|)) (-15 -3810 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -4434 ((-416 (-573)) |#1|)) (-15 -2551 ((-112) |#1|)) (-15 -1783 (|#1| |#1| |#1|)) (-15 -1373 ((-112) |#1| |#1|)) (-15 -2270 ((-112) |#1|)) (-15 -3816 (|#1|)) (-15 -1470 ((-3 |#1| "failed") |#1|)) (-15 -1835 ((-227) |#1|)) (-15 -1835 ((-387) |#1|)) (-15 -2637 (|#1| |#1| |#1|)) (-15 -4264 (|#1| |#1|)) (-15 -1677 (|#1| |#1| |#1|)) (-15 -1352 ((-899 (-573) |#1|) |#1| (-902 (-573)) (-899 (-573) |#1|))) (-15 -1835 ((-902 (-573)) |#1|)) (-15 -1835 ((-545) |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1835 ((-573) |#1|)) (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -4152 ((-112) |#1|)) (-15 -2163 ((-780) |#1|)) (-15 -4218 ((-427 |#1|) |#1|)) (-15 -2427 ((-427 |#1|) |#1|)) (-15 -2696 ((-112) |#1|)) (-15 -1545 ((-780)))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-1783 (($ $ $) 92)) (-2983 (((-3 $ "failed") $ $) 20)) (-3519 (($ $ $ $) 81)) (-4285 (($ $) 57)) (-2427 (((-427 $) $) 58)) (-2800 (((-112) $ $) 134)) (-1983 (((-573) $) 123)) (-3958 (($ $ $) 95)) (-2579 (($) 18 T CONST)) (-1695 (((-3 (-573) "failed") $) 115)) (-2205 (((-573) $) 116)) (-2784 (($ $ $) 138)) (-2759 (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 113) (((-698 (-573)) (-698 $)) 112) (((-698 (-573)) (-1280 $)) 111)) (-2232 (((-3 $ "failed") $) 37)) (-3810 (((-3 (-416 (-573)) "failed") $) 89)) (-2551 (((-112) $) 91)) (-4434 (((-416 (-573)) $) 90)) (-2819 (($) 88) (($ $) 87)) (-2796 (($ $ $) 137)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 132)) (-2696 (((-112) $) 59)) (-3643 (($ $ $ $) 79)) (-1420 (($ $ $) 93)) (-4152 (((-112) $) 125)) (-2637 (($ $ $) 104)) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 107)) (-1959 (((-112) $) 35)) (-2250 (((-112) $) 99)) (-1470 (((-3 $ "failed") $) 101)) (-3339 (((-112) $) 124)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 141)) (-2460 (($ $ $ $) 80)) (-3659 (($ $ $) 126)) (-3751 (($ $ $) 127)) (-3808 (($ $) 83)) (-4134 (($ $) 96)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-2585 (($ $ $) 78)) (-3816 (($) 100 T CONST)) (-1605 (($ $) 85)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-4264 (($ $) 105)) (-4218 (((-427 $) $) 56)) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 140) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 139)) (-2837 (((-3 $ "failed") $ $) 48)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 133)) (-2270 (((-112) $) 98)) (-2163 (((-780) $) 135)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 136)) (-3904 (($ $) 121) (($ $ (-780)) 119)) (-2294 (($ $) 84)) (-3166 (($ $) 86)) (-1835 (((-573) $) 117) (((-545) $) 109) (((-902 (-573)) $) 108) (((-387) $) 103) (((-227) $) 102)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49) (($ (-573)) 114)) (-1545 (((-780)) 32 T CONST)) (-1373 (((-112) $ $) 94)) (-1677 (($ $ $) 106)) (-3507 (((-112) $ $) 9)) (-2629 (($) 97)) (-2516 (((-112) $ $) 45)) (-3813 (($ $ $ $) 82)) (-1660 (($ $) 122)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $) 120) (($ $ (-780)) 118)) (-3040 (((-112) $ $) 129)) (-3015 (((-112) $ $) 130)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 128)) (-3005 (((-112) $ $) 131)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ (-573) $) 110))) +(((-554) (-141)) (T -554)) +((-2250 (*1 *2 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112)))) (-2270 (*1 *2 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112)))) (-2629 (*1 *1) (-4 *1 (-554))) (-4134 (*1 *1 *1) (-4 *1 (-554))) (-3958 (*1 *1 *1 *1) (-4 *1 (-554))) (-1373 (*1 *2 *1 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112)))) (-1420 (*1 *1 *1 *1) (-4 *1 (-554))) (-1783 (*1 *1 *1 *1) (-4 *1 (-554))) (-2551 (*1 *2 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112)))) (-4434 (*1 *2 *1) (-12 (-4 *1 (-554)) (-5 *2 (-416 (-573))))) (-3810 (*1 *2 *1) (|partial| -12 (-4 *1 (-554)) (-5 *2 (-416 (-573))))) (-2819 (*1 *1) (-4 *1 (-554))) (-2819 (*1 *1 *1) (-4 *1 (-554))) (-3166 (*1 *1 *1) (-4 *1 (-554))) (-1605 (*1 *1 *1) (-4 *1 (-554))) (-2294 (*1 *1 *1) (-4 *1 (-554))) (-3808 (*1 *1 *1) (-4 *1 (-554))) (-3813 (*1 *1 *1 *1 *1) (-4 *1 (-554))) (-3519 (*1 *1 *1 *1 *1) (-4 *1 (-554))) (-2460 (*1 *1 *1 *1 *1) (-4 *1 (-554))) (-3643 (*1 *1 *1 *1 *1) (-4 *1 (-554))) (-2585 (*1 *1 *1 *1) (-4 *1 (-554)))) +(-13 (-1234) (-314) (-829) (-238) (-623 (-573)) (-1050 (-573)) (-648 (-573)) (-623 (-545)) (-623 (-902 (-573))) (-896 (-573)) (-144) (-1034) (-148) (-1164) (-10 -8 (-15 -2250 ((-112) $)) (-15 -2270 ((-112) $)) (-6 -4454) (-15 -2629 ($)) (-15 -4134 ($ $)) (-15 -3958 ($ $ $)) (-15 -1373 ((-112) $ $)) (-15 -1420 ($ $ $)) (-15 -1783 ($ $ $)) (-15 -2551 ((-112) $)) (-15 -4434 ((-416 (-573)) $)) (-15 -3810 ((-3 (-416 (-573)) "failed") $)) (-15 -2819 ($)) (-15 -2819 ($ $)) (-15 -3166 ($ $)) (-15 -1605 ($ $)) (-15 -2294 ($ $)) (-15 -3808 ($ $)) (-15 -3813 ($ $ $ $)) (-15 -3519 ($ $ $ $)) (-15 -2460 ($ $ $ $)) (-15 -3643 ($ $ $ $)) (-15 -2585 ($ $ $)) (-6 -4453))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-144) . T) ((-174) . T) ((-623 (-227)) . T) ((-623 (-387)) . T) ((-623 (-545)) . T) ((-623 (-573)) . T) ((-623 (-902 (-573))) . T) ((-235 $) . T) ((-238) . T) ((-237) . T) ((-297) . T) ((-314) . T) ((-461) . T) ((-565) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 #0=(-573)) . T) ((-657 $) . T) ((-649 $) . T) ((-648 #0#) . T) ((-726 $) . T) ((-735) . T) ((-800) . T) ((-801) . T) ((-803) . T) ((-804) . T) ((-829) . T) ((-857) . T) ((-859) . T) ((-896 (-573)) . T) ((-930) . T) ((-1034) . T) ((-1050 (-573)) . T) ((-1063 $) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1164) . T) ((-1230) . T) ((-1234) . T)) +((-2848 (((-112) $ $) NIL)) (-1486 (((-780)) NIL)) (-2579 (($) NIL T CONST)) (-2819 (($) NIL)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-3751 (($ $ $) NIL) (($) NIL T CONST)) (-3589 (((-931) $) NIL)) (-3180 (((-1171) $) NIL)) (-2575 (($ (-931)) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL))) +(((-555) (-13 (-853) (-10 -8 (-15 -2579 ($) -1705)))) (T -555)) +((-2579 (*1 *1) (-5 *1 (-555)))) +(-13 (-853) (-10 -8 (-15 -2579 ($) -1705))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 16))) -((-2849 (((-112) $ $) NIL)) (-1487 (((-781)) NIL)) (-3426 (($) NIL T CONST)) (-2820 (($) NIL)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-4257 (($ $ $) NIL) (($) NIL T CONST)) (-4115 (((-932) $) NIL)) (-4136 (((-1172) $) NIL)) (-2576 (($ (-932)) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) NIL))) -(((-557) (-13 (-854) (-10 -8 (-15 -3426 ($) -1706)))) (T -557)) -((-3426 (*1 *1) (-5 *1 (-557)))) -(-13 (-854) (-10 -8 (-15 -3426 ($) -1706))) +((-2848 (((-112) $ $) NIL)) (-1486 (((-780)) NIL)) (-2579 (($) NIL T CONST)) (-2819 (($) NIL)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-3751 (($ $ $) NIL) (($) NIL T CONST)) (-3589 (((-931) $) NIL)) (-3180 (((-1171) $) NIL)) (-2575 (($ (-931)) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL))) +(((-556) (-13 (-853) (-10 -8 (-15 -2579 ($) -1705)))) (T -556)) +((-2579 (*1 *1) (-5 *1 (-556)))) +(-13 (-853) (-10 -8 (-15 -2579 ($) -1705))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 32))) -((-2849 (((-112) $ $) NIL)) (-1487 (((-781)) NIL)) (-3426 (($) NIL T CONST)) (-2820 (($) NIL)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-4257 (($ $ $) NIL) (($) NIL T CONST)) (-4115 (((-932) $) NIL)) (-4136 (((-1172) $) NIL)) (-2576 (($ (-932)) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) NIL))) -(((-558) (-13 (-854) (-10 -8 (-15 -3426 ($) -1706)))) (T -558)) -((-3426 (*1 *1) (-5 *1 (-558)))) -(-13 (-854) (-10 -8 (-15 -3426 ($) -1706))) +((-2848 (((-112) $ $) NIL)) (-1486 (((-780)) NIL)) (-2579 (($) NIL T CONST)) (-2819 (($) NIL)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-3751 (($ $ $) NIL) (($) NIL T CONST)) (-3589 (((-931) $) NIL)) (-3180 (((-1171) $) NIL)) (-2575 (($ (-931)) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL))) +(((-557) (-13 (-853) (-10 -8 (-15 -2579 ($) -1705)))) (T -557)) +((-2579 (*1 *1) (-5 *1 (-557)))) +(-13 (-853) (-10 -8 (-15 -2579 ($) -1705))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 64))) -((-2849 (((-112) $ $) NIL)) (-1487 (((-781)) NIL)) (-3426 (($) NIL T CONST)) (-2820 (($) NIL)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-4257 (($ $ $) NIL) (($) NIL T CONST)) (-4115 (((-932) $) NIL)) (-4136 (((-1172) $) NIL)) (-2576 (($ (-932)) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) NIL))) -(((-559) (-13 (-854) (-10 -8 (-15 -3426 ($) -1706)))) (T -559)) -((-3426 (*1 *1) (-5 *1 (-559)))) -(-13 (-854) (-10 -8 (-15 -3426 ($) -1706))) +((-2848 (((-112) $ $) NIL)) (-1486 (((-780)) NIL)) (-2579 (($) NIL T CONST)) (-2819 (($) NIL)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-3751 (($ $ $) NIL) (($) NIL T CONST)) (-3589 (((-931) $) NIL)) (-3180 (((-1171) $) NIL)) (-2575 (($ (-931)) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL))) +(((-558) (-13 (-853) (-10 -8 (-15 -2579 ($) -1705)))) (T -558)) +((-2579 (*1 *1) (-5 *1 (-558)))) +(-13 (-853) (-10 -8 (-15 -2579 ($) -1705))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 8))) -((-2849 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-3778 (($) NIL) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL)) (-3714 (((-1286) $ |#1| |#1|) NIL (|has| $ (-6 -4457)))) (-3034 (((-112) $ (-781)) NIL)) (-3143 ((|#2| $ |#1| |#2|) NIL)) (-3572 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2165 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2163 (((-3 |#2| "failed") |#1| $) NIL)) (-3426 (($) NIL T CONST)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))))) (-2876 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-3 |#2| "failed") |#1| $) NIL)) (-3335 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2868 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2458 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#2| $ |#1|) NIL)) (-1864 (((-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-2742 (((-112) $ (-781)) NIL)) (-3618 ((|#1| $) NIL (|has| |#1| (-860)))) (-1606 (((-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-2702 ((|#1| $) NIL (|has| |#1| (-860)))) (-2449 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4457))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-1763 (((-654 |#1|) $) NIL)) (-1732 (((-112) |#1| $) NIL)) (-2937 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL)) (-2798 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL)) (-4308 (((-654 |#1|) $) NIL)) (-3336 (((-112) |#1| $) NIL)) (-3966 (((-1133) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2915 ((|#2| $) NIL (|has| |#1| (-860)))) (-1549 (((-3 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) "failed") (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL)) (-1942 (($ $ |#2|) NIL (|has| $ (-6 -4457)))) (-1785 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL)) (-2540 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-302 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-4371 (((-654 |#2|) $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1662 (($) NIL) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL)) (-3975 (((-781) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) NIL)) (-1836 (((-546) $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-624 (-546))))) (-2956 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL)) (-2943 (((-872) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-3284 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-1599 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL)) (-3390 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-560 |#1| |#2| |#3|) (-13 (-1207 |#1| |#2|) (-10 -7 (-6 -4456))) (-1113) (-1113) (-13 (-1207 |#1| |#2|) (-10 -7 (-6 -4456)))) (T -560)) -NIL -(-13 (-1207 |#1| |#2|) (-10 -7 (-6 -4456))) -((-2059 (((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-1 (-1186 |#2|) (-1186 |#2|))) 50))) -(((-561 |#1| |#2|) (-10 -7 (-15 -2059 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-1 (-1186 |#2|) (-1186 |#2|))))) (-566) (-13 (-27) (-440 |#1|))) (T -561)) -((-2059 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-622 *3)) (-5 *5 (-1 (-1186 *3) (-1186 *3))) (-4 *3 (-13 (-27) (-440 *6))) (-4 *6 (-566)) (-5 *2 (-596 *3)) (-5 *1 (-561 *6 *3))))) -(-10 -7 (-15 -2059 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-1 (-1186 |#2|) (-1186 |#2|))))) -((-3665 (((-596 |#5|) |#5| (-1 |#3| |#3|)) 216)) (-4255 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212)) (-3134 (((-596 |#5|) |#5| (-1 |#3| |#3|)) 220))) -(((-562 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3134 ((-596 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3665 ((-596 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4255 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-566) (-1051 (-574))) (-13 (-27) (-440 |#1|)) (-1257 |#2|) (-1257 (-417 |#3|)) (-351 |#2| |#3| |#4|)) (T -562)) -((-4255 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-13 (-27) (-440 *4))) (-4 *4 (-13 (-566) (-1051 (-574)))) (-4 *7 (-1257 (-417 *6))) (-5 *1 (-562 *4 *5 *6 *7 *2)) (-4 *2 (-351 *5 *6 *7)))) (-3665 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1257 *6)) (-4 *6 (-13 (-27) (-440 *5))) (-4 *5 (-13 (-566) (-1051 (-574)))) (-4 *8 (-1257 (-417 *7))) (-5 *2 (-596 *3)) (-5 *1 (-562 *5 *6 *7 *8 *3)) (-4 *3 (-351 *6 *7 *8)))) (-3134 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1257 *6)) (-4 *6 (-13 (-27) (-440 *5))) (-4 *5 (-13 (-566) (-1051 (-574)))) (-4 *8 (-1257 (-417 *7))) (-5 *2 (-596 *3)) (-5 *1 (-562 *5 *6 *7 *8 *3)) (-4 *3 (-351 *6 *7 *8))))) -(-10 -7 (-15 -3134 ((-596 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3665 ((-596 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4255 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-1422 (((-112) (-574) (-574)) 12)) (-2744 (((-574) (-574)) 7)) (-2701 (((-574) (-574) (-574)) 10))) -(((-563) (-10 -7 (-15 -2744 ((-574) (-574))) (-15 -2701 ((-574) (-574) (-574))) (-15 -1422 ((-112) (-574) (-574))))) (T -563)) -((-1422 (*1 *2 *3 *3) (-12 (-5 *3 (-574)) (-5 *2 (-112)) (-5 *1 (-563)))) (-2701 (*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-563)))) (-2744 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-563))))) -(-10 -7 (-15 -2744 ((-574) (-574))) (-15 -2701 ((-574) (-574) (-574))) (-15 -1422 ((-112) (-574) (-574)))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3014 ((|#1| $) 67)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-1575 (($ $) 46)) (-2085 (((-112) $) 44)) (-2364 (($ $) 97)) (-2247 (($ $) 80)) (-3663 ((|#1| $) 68)) (-3524 (((-3 $ "failed") $ $) 20)) (-4229 (($ $) 79)) (-2343 (($ $) 96)) (-2227 (($ $) 81)) (-2389 (($ $) 95)) (-2267 (($ $) 82)) (-3426 (($) 18 T CONST)) (-1696 (((-3 (-574) "failed") $) 75)) (-2206 (((-574) $) 76)) (-3434 (((-3 $ "failed") $) 37)) (-1760 (($ |#1| |#1|) 72)) (-2756 (((-112) $) 66)) (-3000 (($) 107)) (-3199 (((-112) $) 35)) (-3460 (($ $ (-574)) 78)) (-1335 (((-112) $) 65)) (-3659 (($ $ $) 113)) (-4257 (($ $ $) 112)) (-3119 (($ $) 104)) (-2832 (($ $ $) 52) (($ (-654 $)) 51)) (-4136 (((-1172) $) 10)) (-4379 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-417 (-574))) 70)) (-3269 ((|#1| $) 69)) (-3966 (((-1133) $) 11)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2873 (($ $ $) 54) (($ (-654 $)) 53)) (-2838 (((-3 $ "failed") $ $) 48)) (-1609 (($ $) 105)) (-2402 (($ $) 94)) (-2275 (($ $) 83)) (-2375 (($ $) 93)) (-2256 (($ $) 84)) (-2352 (($ $) 92)) (-2237 (($ $) 85)) (-2945 (((-112) $ |#1|) 64)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-574)) 74)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2441 (($ $) 103)) (-2305 (($ $) 91)) (-2069 (((-112) $ $) 45)) (-2414 (($ $) 102)) (-2287 (($ $) 90)) (-2465 (($ $) 101)) (-2325 (($ $) 89)) (-2521 (($ $) 100)) (-2334 (($ $) 88)) (-2452 (($ $) 99)) (-2315 (($ $) 87)) (-2428 (($ $) 98)) (-2297 (($ $) 86)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-3042 (((-112) $ $) 110)) (-3018 (((-112) $ $) 109)) (-2981 (((-112) $ $) 6)) (-3030 (((-112) $ $) 111)) (-3007 (((-112) $ $) 108)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ $) 106) (($ $ (-417 (-574))) 77)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) -(((-564 |#1|) (-141) (-13 (-414) (-1216))) (T -564)) -((-4379 (*1 *1 *2 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1216))))) (-1760 (*1 *1 *2 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1216))))) (-4379 (*1 *1 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1216))))) (-4379 (*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1216))))) (-3269 (*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1216))))) (-3663 (*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1216))))) (-3014 (*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1216))))) (-2756 (*1 *2 *1) (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1216))) (-5 *2 (-112)))) (-1335 (*1 *2 *1) (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1216))) (-5 *2 (-112)))) (-2945 (*1 *2 *1 *3) (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1216))) (-5 *2 (-112))))) -(-13 (-462) (-860) (-1216) (-1015) (-1051 (-574)) (-10 -8 (-6 -3551) (-15 -4379 ($ |t#1| |t#1|)) (-15 -1760 ($ |t#1| |t#1|)) (-15 -4379 ($ |t#1|)) (-15 -4379 ($ (-417 (-574)))) (-15 -3269 (|t#1| $)) (-15 -3663 (|t#1| $)) (-15 -3014 (|t#1| $)) (-15 -2756 ((-112) $)) (-15 -1335 ((-112) $)) (-15 -2945 ((-112) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-292) . T) ((-298) . T) ((-462) . T) ((-503) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-860) . T) ((-1015) . T) ((-1051 (-574)) . T) ((-1064 $) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1216) . T) ((-1219) . T)) -((-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 9)) (-1575 (($ $) 11)) (-2085 (((-112) $) 20)) (-3434 (((-3 $ "failed") $) 16)) (-2069 (((-112) $ $) 22))) -(((-565 |#1|) (-10 -8 (-15 -2085 ((-112) |#1|)) (-15 -2069 ((-112) |#1| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -1776 ((-2 (|:| -2785 |#1|) (|:| -4443 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3434 ((-3 |#1| "failed") |#1|))) (-566)) (T -565)) -NIL -(-10 -8 (-15 -2085 ((-112) |#1|)) (-15 -2069 ((-112) |#1| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -1776 ((-2 (|:| -2785 |#1|) (|:| -4443 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3434 ((-3 |#1| "failed") |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-1575 (($ $) 46)) (-2085 (((-112) $) 44)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-3434 (((-3 $ "failed") $) 37)) (-3199 (((-112) $) 35)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2838 (((-3 $ "failed") $ $) 48)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2069 (((-112) $ $) 45)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) -(((-566) (-141)) (T -566)) -((-2838 (*1 *1 *1 *1) (|partial| -4 *1 (-566))) (-1776 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2785 *1) (|:| -4443 *1) (|:| |associate| *1))) (-4 *1 (-566)))) (-1575 (*1 *1 *1) (-4 *1 (-566))) (-2069 (*1 *2 *1 *1) (-12 (-4 *1 (-566)) (-5 *2 (-112)))) (-2085 (*1 *2 *1) (-12 (-4 *1 (-566)) (-5 *2 (-112))))) -(-13 (-174) (-38 $) (-298) (-10 -8 (-15 -2838 ((-3 $ "failed") $ $)) (-15 -1776 ((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $)) (-15 -1575 ($ $)) (-15 -2069 ((-112) $ $)) (-15 -2085 ((-112) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-1064 $) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T)) -((-3773 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1190) (-654 |#2|)) 38)) (-3852 (((-596 |#2|) |#2| (-1190)) 63)) (-3647 (((-3 |#2| "failed") |#2| (-1190)) 156)) (-4140 (((-3 (-2 (|:| -2399 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1190) (-622 |#2|) (-654 (-622 |#2|))) 159)) (-2390 (((-3 (-2 (|:| -2399 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1190) |#2|) 41))) -(((-567 |#1| |#2|) (-10 -7 (-15 -2390 ((-3 (-2 (|:| -2399 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1190) |#2|)) (-15 -3773 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1190) (-654 |#2|))) (-15 -3647 ((-3 |#2| "failed") |#2| (-1190))) (-15 -3852 ((-596 |#2|) |#2| (-1190))) (-15 -4140 ((-3 (-2 (|:| -2399 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1190) (-622 |#2|) (-654 (-622 |#2|))))) (-13 (-462) (-148) (-1051 (-574)) (-649 (-574))) (-13 (-27) (-1216) (-440 |#1|))) (T -567)) -((-4140 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1190)) (-5 *6 (-654 (-622 *3))) (-5 *5 (-622 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *7))) (-4 *7 (-13 (-462) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-2 (|:| -2399 *3) (|:| |coeff| *3))) (-5 *1 (-567 *7 *3)))) (-3852 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-4 *5 (-13 (-462) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-567 *5 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5))))) (-3647 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1190)) (-4 *4 (-13 (-462) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-567 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *4))))) (-3773 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1190)) (-5 *5 (-654 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *6))) (-4 *6 (-13 (-462) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-567 *6 *3)))) (-2390 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1190)) (-4 *5 (-13 (-462) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-2 (|:| -2399 *3) (|:| |coeff| *3))) (-5 *1 (-567 *5 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5)))))) -(-10 -7 (-15 -2390 ((-3 (-2 (|:| -2399 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1190) |#2|)) (-15 -3773 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1190) (-654 |#2|))) (-15 -3647 ((-3 |#2| "failed") |#2| (-1190))) (-15 -3852 ((-596 |#2|) |#2| (-1190))) (-15 -4140 ((-3 (-2 (|:| -2399 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1190) (-622 |#2|) (-654 (-622 |#2|))))) -((-2827 (((-428 |#1|) |#1|) 19)) (-4220 (((-428 |#1|) |#1|) 34)) (-1999 (((-3 |#1| "failed") |#1|) 49)) (-1983 (((-428 |#1|) |#1|) 60))) -(((-568 |#1|) (-10 -7 (-15 -4220 ((-428 |#1|) |#1|)) (-15 -2827 ((-428 |#1|) |#1|)) (-15 -1983 ((-428 |#1|) |#1|)) (-15 -1999 ((-3 |#1| "failed") |#1|))) (-555)) (T -568)) -((-1999 (*1 *2 *2) (|partial| -12 (-5 *1 (-568 *2)) (-4 *2 (-555)))) (-1983 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555)))) (-2827 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555)))) (-4220 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555))))) -(-10 -7 (-15 -4220 ((-428 |#1|) |#1|)) (-15 -2827 ((-428 |#1|) |#1|)) (-15 -1983 ((-428 |#1|) |#1|)) (-15 -1999 ((-3 |#1| "failed") |#1|))) -((-4000 (($) 9)) (-2007 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2367 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 34)) (-1763 (((-654 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 31)) (-2798 (($ (-2 (|:| -3693 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1908 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2367 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28)) (-2589 (($ (-654 (-2 (|:| -3693 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1908 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2367 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26)) (-1908 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2367 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 38)) (-4371 (((-654 (-2 (|:| -3693 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1908 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2367 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36)) (-1482 (((-1286)) 11))) -(((-569) (-10 -8 (-15 -4000 ($)) (-15 -1482 ((-1286))) (-15 -1763 ((-654 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2589 ($ (-654 (-2 (|:| -3693 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1908 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2367 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2798 ($ (-2 (|:| -3693 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1908 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2367 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2007 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2367 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4371 ((-654 (-2 (|:| -3693 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1908 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2367 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1908 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2367 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -569)) -((-1908 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2367 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-569)))) (-4371 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| -3693 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1908 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2367 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-569)))) (-2007 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2367 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-569)))) (-2798 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3693 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1908 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2367 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-569)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3693 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1908 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2367 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-569)))) (-1763 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-569)))) (-1482 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-569)))) (-4000 (*1 *1) (-5 *1 (-569)))) -(-10 -8 (-15 -4000 ($)) (-15 -1482 ((-1286))) (-15 -1763 ((-654 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2589 ($ (-654 (-2 (|:| -3693 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1908 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2367 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2798 ($ (-2 (|:| -3693 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1908 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2367 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2007 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2367 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4371 ((-654 (-2 (|:| -3693 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1908 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2367 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1908 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1170 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2367 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-4194 (((-1186 (-417 (-1186 |#2|))) |#2| (-622 |#2|) (-622 |#2|) (-1186 |#2|)) 35)) (-2659 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) (-622 |#2|) |#2| (-417 (-1186 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) |#2| (-1186 |#2|)) 115)) (-2125 (((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1186 |#2|))) 85) (((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) |#2| (-1186 |#2|)) 55)) (-3404 (((-3 (-2 (|:| -2399 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| (-622 |#2|) |#2| (-417 (-1186 |#2|))) 92) (((-3 (-2 (|:| -2399 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| |#2| (-1186 |#2|)) 114)) (-1804 (((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1190)) (-622 |#2|) |#2| (-417 (-1186 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1190)) |#2| (-1186 |#2|)) 116)) (-2921 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1882 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1186 |#2|))) 133 (|has| |#3| (-666 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1882 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) |#2| (-1186 |#2|)) 132 (|has| |#3| (-666 |#2|)))) (-4345 ((|#2| (-1186 (-417 (-1186 |#2|))) (-622 |#2|) |#2|) 53)) (-2854 (((-1186 (-417 (-1186 |#2|))) (-1186 |#2|) (-622 |#2|)) 34))) -(((-570 |#1| |#2| |#3|) (-10 -7 (-15 -2125 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) |#2| (-1186 |#2|))) (-15 -2125 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1186 |#2|)))) (-15 -3404 ((-3 (-2 (|:| -2399 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| |#2| (-1186 |#2|))) (-15 -3404 ((-3 (-2 (|:| -2399 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| (-622 |#2|) |#2| (-417 (-1186 |#2|)))) (-15 -2659 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) |#2| (-1186 |#2|))) (-15 -2659 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) (-622 |#2|) |#2| (-417 (-1186 |#2|)))) (-15 -1804 ((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1190)) |#2| (-1186 |#2|))) (-15 -1804 ((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1190)) (-622 |#2|) |#2| (-417 (-1186 |#2|)))) (-15 -4194 ((-1186 (-417 (-1186 |#2|))) |#2| (-622 |#2|) (-622 |#2|) (-1186 |#2|))) (-15 -4345 (|#2| (-1186 (-417 (-1186 |#2|))) (-622 |#2|) |#2|)) (-15 -2854 ((-1186 (-417 (-1186 |#2|))) (-1186 |#2|) (-622 |#2|))) (IF (|has| |#3| (-666 |#2|)) (PROGN (-15 -2921 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1882 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) |#2| (-1186 |#2|))) (-15 -2921 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1882 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1186 |#2|))))) |%noBranch|)) (-13 (-462) (-1051 (-574)) (-148) (-649 (-574))) (-13 (-440 |#1|) (-27) (-1216)) (-1113)) (T -570)) -((-2921 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-622 *4)) (-5 *6 (-417 (-1186 *4))) (-4 *4 (-13 (-440 *7) (-27) (-1216))) (-4 *7 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1882 (-654 *4)))) (-5 *1 (-570 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1113)))) (-2921 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-622 *4)) (-5 *6 (-1186 *4)) (-4 *4 (-13 (-440 *7) (-27) (-1216))) (-4 *7 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1882 (-654 *4)))) (-5 *1 (-570 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1113)))) (-2854 (*1 *2 *3 *4) (-12 (-5 *4 (-622 *6)) (-4 *6 (-13 (-440 *5) (-27) (-1216))) (-4 *5 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *2 (-1186 (-417 (-1186 *6)))) (-5 *1 (-570 *5 *6 *7)) (-5 *3 (-1186 *6)) (-4 *7 (-1113)))) (-4345 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1186 (-417 (-1186 *2)))) (-5 *4 (-622 *2)) (-4 *2 (-13 (-440 *5) (-27) (-1216))) (-4 *5 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *1 (-570 *5 *2 *6)) (-4 *6 (-1113)))) (-4194 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-440 *6) (-27) (-1216))) (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *2 (-1186 (-417 (-1186 *3)))) (-5 *1 (-570 *6 *3 *7)) (-5 *5 (-1186 *3)) (-4 *7 (-1113)))) (-1804 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-622 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1190))) (-5 *5 (-417 (-1186 *2))) (-4 *2 (-13 (-440 *6) (-27) (-1216))) (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *1 (-570 *6 *2 *7)) (-4 *7 (-1113)))) (-1804 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-622 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1190))) (-5 *5 (-1186 *2)) (-4 *2 (-13 (-440 *6) (-27) (-1216))) (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *1 (-570 *6 *2 *7)) (-4 *7 (-1113)))) (-2659 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) (-5 *6 (-417 (-1186 *3))) (-4 *3 (-13 (-440 *7) (-27) (-1216))) (-4 *7 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *7 *3 *8)) (-4 *8 (-1113)))) (-2659 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) (-5 *6 (-1186 *3)) (-4 *3 (-13 (-440 *7) (-27) (-1216))) (-4 *7 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *7 *3 *8)) (-4 *8 (-1113)))) (-3404 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-417 (-1186 *3))) (-4 *3 (-13 (-440 *6) (-27) (-1216))) (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| -2399 *3) (|:| |coeff| *3))) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1113)))) (-3404 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-1186 *3)) (-4 *3 (-13 (-440 *6) (-27) (-1216))) (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| -2399 *3) (|:| |coeff| *3))) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1113)))) (-2125 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-622 *3)) (-5 *5 (-417 (-1186 *3))) (-4 *3 (-13 (-440 *6) (-27) (-1216))) (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1113)))) (-2125 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-622 *3)) (-5 *5 (-1186 *3)) (-4 *3 (-13 (-440 *6) (-27) (-1216))) (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1113))))) -(-10 -7 (-15 -2125 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) |#2| (-1186 |#2|))) (-15 -2125 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1186 |#2|)))) (-15 -3404 ((-3 (-2 (|:| -2399 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| |#2| (-1186 |#2|))) (-15 -3404 ((-3 (-2 (|:| -2399 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| (-622 |#2|) |#2| (-417 (-1186 |#2|)))) (-15 -2659 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) |#2| (-1186 |#2|))) (-15 -2659 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) (-622 |#2|) |#2| (-417 (-1186 |#2|)))) (-15 -1804 ((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1190)) |#2| (-1186 |#2|))) (-15 -1804 ((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1190)) (-622 |#2|) |#2| (-417 (-1186 |#2|)))) (-15 -4194 ((-1186 (-417 (-1186 |#2|))) |#2| (-622 |#2|) (-622 |#2|) (-1186 |#2|))) (-15 -4345 (|#2| (-1186 (-417 (-1186 |#2|))) (-622 |#2|) |#2|)) (-15 -2854 ((-1186 (-417 (-1186 |#2|))) (-1186 |#2|) (-622 |#2|))) (IF (|has| |#3| (-666 |#2|)) (PROGN (-15 -2921 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1882 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) |#2| (-1186 |#2|))) (-15 -2921 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1882 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1186 |#2|))))) |%noBranch|)) -((-3987 (((-574) (-574) (-781)) 85)) (-2492 (((-574) (-574)) 83)) (-3096 (((-574) (-574)) 81)) (-4333 (((-574) (-574)) 87)) (-3753 (((-574) (-574) (-574)) 65)) (-4069 (((-574) (-574) (-574)) 62)) (-2105 (((-417 (-574)) (-574)) 30)) (-3417 (((-574) (-574)) 34)) (-3086 (((-574) (-574)) 74)) (-3700 (((-574) (-574)) 46)) (-3029 (((-654 (-574)) (-574)) 80)) (-2799 (((-574) (-574) (-574) (-574) (-574)) 58)) (-3440 (((-417 (-574)) (-574)) 55))) -(((-571) (-10 -7 (-15 -3440 ((-417 (-574)) (-574))) (-15 -2799 ((-574) (-574) (-574) (-574) (-574))) (-15 -3029 ((-654 (-574)) (-574))) (-15 -3700 ((-574) (-574))) (-15 -3086 ((-574) (-574))) (-15 -3417 ((-574) (-574))) (-15 -2105 ((-417 (-574)) (-574))) (-15 -4069 ((-574) (-574) (-574))) (-15 -3753 ((-574) (-574) (-574))) (-15 -4333 ((-574) (-574))) (-15 -3096 ((-574) (-574))) (-15 -2492 ((-574) (-574))) (-15 -3987 ((-574) (-574) (-781))))) (T -571)) -((-3987 (*1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-781)) (-5 *1 (-571)))) (-2492 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-3096 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-4333 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-3753 (*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-4069 (*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-2105 (*1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-571)) (-5 *3 (-574)))) (-3417 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-3086 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-3700 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-3029 (*1 *2 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-571)) (-5 *3 (-574)))) (-2799 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-3440 (*1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-571)) (-5 *3 (-574))))) -(-10 -7 (-15 -3440 ((-417 (-574)) (-574))) (-15 -2799 ((-574) (-574) (-574) (-574) (-574))) (-15 -3029 ((-654 (-574)) (-574))) (-15 -3700 ((-574) (-574))) (-15 -3086 ((-574) (-574))) (-15 -3417 ((-574) (-574))) (-15 -2105 ((-417 (-574)) (-574))) (-15 -4069 ((-574) (-574) (-574))) (-15 -3753 ((-574) (-574) (-574))) (-15 -4333 ((-574) (-574))) (-15 -3096 ((-574) (-574))) (-15 -2492 ((-574) (-574))) (-15 -3987 ((-574) (-574) (-781)))) -((-3328 (((-2 (|:| |answer| |#4|) (|:| -2153 |#4|)) |#4| (-1 |#2| |#2|)) 56))) -(((-572 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3328 ((-2 (|:| |answer| |#4|) (|:| -2153 |#4|)) |#4| (-1 |#2| |#2|)))) (-372) (-1257 |#1|) (-1257 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -572)) -((-3328 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-372)) (-4 *7 (-1257 (-417 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2153 *3))) (-5 *1 (-572 *5 *6 *7 *3)) (-4 *3 (-351 *5 *6 *7))))) -(-10 -7 (-15 -3328 ((-2 (|:| |answer| |#4|) (|:| -2153 |#4|)) |#4| (-1 |#2| |#2|)))) -((-3328 (((-2 (|:| |answer| (-417 |#2|)) (|:| -2153 (-417 |#2|)) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|)) 18))) -(((-573 |#1| |#2|) (-10 -7 (-15 -3328 ((-2 (|:| |answer| (-417 |#2|)) (|:| -2153 (-417 |#2|)) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|)))) (-372) (-1257 |#1|)) (T -573)) -((-3328 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| |answer| (-417 *6)) (|:| -2153 (-417 *6)) (|:| |specpart| (-417 *6)) (|:| |polypart| *6))) (-5 *1 (-573 *5 *6)) (-5 *3 (-417 *6))))) -(-10 -7 (-15 -3328 ((-2 (|:| |answer| (-417 |#2|)) (|:| -2153 (-417 |#2|)) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 30)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 96)) (-1575 (($ $) 97)) (-2085 (((-112) $) NIL)) (-1726 (($ $ $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-4178 (($ $ $ $) 52)) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2846 (((-574) $) NIL)) (-3958 (($ $ $) 91)) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-574) "failed") $) NIL)) (-2206 (((-574) $) NIL)) (-2786 (($ $ $) 54)) (-2590 (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 77) (((-699 (-574)) (-699 $)) 73) (((-699 (-574)) (-1281 $)) NIL)) (-3434 (((-3 $ "failed") $) 93)) (-1880 (((-3 (-417 (-574)) "failed") $) NIL)) (-4414 (((-112) $) NIL)) (-4339 (((-417 (-574)) $) NIL)) (-2820 (($) 79) (($ $) 80)) (-2797 (($ $ $) 90)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-2257 (((-112) $) NIL)) (-1361 (($ $ $ $) NIL)) (-3742 (($ $ $) 70)) (-2756 (((-112) $) NIL)) (-3792 (($ $ $) NIL)) (-3625 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL)) (-3199 (((-112) $) 34)) (-4410 (((-112) $) 85)) (-2748 (((-3 $ "failed") $) NIL)) (-1335 (((-112) $) 43)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4201 (($ $ $ $) 55)) (-3659 (($ $ $) 87)) (-4257 (($ $ $) 86)) (-3810 (($ $) NIL)) (-4135 (($ $) 49)) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) 69)) (-3318 (($ $ $) NIL)) (-3818 (($) NIL T CONST)) (-1605 (($ $) 38)) (-3966 (((-1133) $) 42)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 128)) (-2873 (($ $ $) 94) (($ (-654 $)) NIL)) (-2150 (($ $) NIL)) (-4220 (((-428 $) $) 114)) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL)) (-2838 (((-3 $ "failed") $ $) 112)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3476 (((-112) $) NIL)) (-1730 (((-781) $) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 89)) (-3905 (($ $ (-781)) NIL) (($ $) NIL)) (-2295 (($ $) 40)) (-3167 (($ $) 36)) (-1836 (((-574) $) 48) (((-546) $) 64) (((-903 (-574)) $) NIL) (((-388) $) 58) (((-227) $) 61) (((-1172) $) 66)) (-2943 (((-872) $) 46) (($ (-574)) 47) (($ $) NIL) (($ (-574)) 47)) (-1364 (((-781)) NIL T CONST)) (-1467 (((-112) $ $) NIL)) (-1616 (($ $ $) NIL)) (-3284 (((-112) $ $) NIL)) (-2630 (($) 35)) (-2069 (((-112) $ $) NIL)) (-4344 (($ $ $ $) 51)) (-3482 (($ $) 78)) (-2133 (($) 6 T CONST)) (-2145 (($) 31 T CONST)) (-1544 (((-1172) $) 26) (((-1172) $ (-112)) 27) (((-1286) (-832) $) 28) (((-1286) (-832) $ (-112)) 29)) (-3610 (($ $ (-781)) NIL) (($ $) NIL)) (-3042 (((-112) $ $) 50)) (-3018 (((-112) $ $) 81)) (-2981 (((-112) $ $) 33)) (-3030 (((-112) $ $) 82)) (-3007 (((-112) $ $) 10)) (-3094 (($ $) 16) (($ $ $) 39)) (-3079 (($ $ $) 37)) (** (($ $ (-932)) NIL) (($ $ (-781)) 84)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 83) (($ $ $) 53) (($ (-574) $) 83))) -(((-574) (-13 (-555) (-624 (-1172)) (-838) (-10 -7 (-6 -4443) (-6 -4448) (-6 -4444) (-6 -4438)))) (T -574)) -NIL -(-13 (-555) (-624 (-1172)) (-838) (-10 -7 (-6 -4443) (-6 -4448) (-6 -4444) (-6 -4438))) -((-3678 (((-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))) (|:| |extra| (-1048))) (-779) (-1076)) 116) (((-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))) (|:| |extra| (-1048))) (-779)) 118)) (-2379 (((-3 (-1048) "failed") (-324 (-388)) (-1105 (-853 (-388))) (-1190)) 195) (((-3 (-1048) "failed") (-324 (-388)) (-1105 (-853 (-388))) (-1172)) 194) (((-1048) (-324 (-388)) (-654 (-1107 (-853 (-388)))) (-388) (-388) (-1076)) 199) (((-1048) (-324 (-388)) (-654 (-1107 (-853 (-388)))) (-388) (-388)) 200) (((-1048) (-324 (-388)) (-654 (-1107 (-853 (-388)))) (-388)) 201) (((-1048) (-324 (-388)) (-654 (-1107 (-853 (-388))))) 202) (((-1048) (-324 (-388)) (-1107 (-853 (-388)))) 190) (((-1048) (-324 (-388)) (-1107 (-853 (-388))) (-388)) 189) (((-1048) (-324 (-388)) (-1107 (-853 (-388))) (-388) (-388)) 185) (((-1048) (-779)) 177) (((-1048) (-324 (-388)) (-1107 (-853 (-388))) (-388) (-388) (-1076)) 184))) -(((-575) (-10 -7 (-15 -2379 ((-1048) (-324 (-388)) (-1107 (-853 (-388))) (-388) (-388) (-1076))) (-15 -2379 ((-1048) (-779))) (-15 -2379 ((-1048) (-324 (-388)) (-1107 (-853 (-388))) (-388) (-388))) (-15 -2379 ((-1048) (-324 (-388)) (-1107 (-853 (-388))) (-388))) (-15 -2379 ((-1048) (-324 (-388)) (-1107 (-853 (-388))))) (-15 -2379 ((-1048) (-324 (-388)) (-654 (-1107 (-853 (-388)))))) (-15 -2379 ((-1048) (-324 (-388)) (-654 (-1107 (-853 (-388)))) (-388))) (-15 -2379 ((-1048) (-324 (-388)) (-654 (-1107 (-853 (-388)))) (-388) (-388))) (-15 -2379 ((-1048) (-324 (-388)) (-654 (-1107 (-853 (-388)))) (-388) (-388) (-1076))) (-15 -3678 ((-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))) (|:| |extra| (-1048))) (-779))) (-15 -3678 ((-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))) (|:| |extra| (-1048))) (-779) (-1076))) (-15 -2379 ((-3 (-1048) "failed") (-324 (-388)) (-1105 (-853 (-388))) (-1172))) (-15 -2379 ((-3 (-1048) "failed") (-324 (-388)) (-1105 (-853 (-388))) (-1190))))) (T -575)) -((-2379 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-324 (-388))) (-5 *4 (-1105 (-853 (-388)))) (-5 *5 (-1190)) (-5 *2 (-1048)) (-5 *1 (-575)))) (-2379 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-324 (-388))) (-5 *4 (-1105 (-853 (-388)))) (-5 *5 (-1172)) (-5 *2 (-1048)) (-5 *1 (-575)))) (-3678 (*1 *2 *3 *4) (-12 (-5 *3 (-779)) (-5 *4 (-1076)) (-5 *2 (-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))) (|:| |extra| (-1048)))) (-5 *1 (-575)))) (-3678 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))) (|:| |extra| (-1048)))) (-5 *1 (-575)))) (-2379 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1107 (-853 (-388))))) (-5 *5 (-388)) (-5 *6 (-1076)) (-5 *2 (-1048)) (-5 *1 (-575)))) (-2379 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1107 (-853 (-388))))) (-5 *5 (-388)) (-5 *2 (-1048)) (-5 *1 (-575)))) (-2379 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1107 (-853 (-388))))) (-5 *5 (-388)) (-5 *2 (-1048)) (-5 *1 (-575)))) (-2379 (*1 *2 *3 *4) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1107 (-853 (-388))))) (-5 *2 (-1048)) (-5 *1 (-575)))) (-2379 (*1 *2 *3 *4) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1107 (-853 (-388)))) (-5 *2 (-1048)) (-5 *1 (-575)))) (-2379 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1107 (-853 (-388)))) (-5 *5 (-388)) (-5 *2 (-1048)) (-5 *1 (-575)))) (-2379 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1107 (-853 (-388)))) (-5 *5 (-388)) (-5 *2 (-1048)) (-5 *1 (-575)))) (-2379 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1048)) (-5 *1 (-575)))) (-2379 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1107 (-853 (-388)))) (-5 *5 (-388)) (-5 *6 (-1076)) (-5 *2 (-1048)) (-5 *1 (-575))))) -(-10 -7 (-15 -2379 ((-1048) (-324 (-388)) (-1107 (-853 (-388))) (-388) (-388) (-1076))) (-15 -2379 ((-1048) (-779))) (-15 -2379 ((-1048) (-324 (-388)) (-1107 (-853 (-388))) (-388) (-388))) (-15 -2379 ((-1048) (-324 (-388)) (-1107 (-853 (-388))) (-388))) (-15 -2379 ((-1048) (-324 (-388)) (-1107 (-853 (-388))))) (-15 -2379 ((-1048) (-324 (-388)) (-654 (-1107 (-853 (-388)))))) (-15 -2379 ((-1048) (-324 (-388)) (-654 (-1107 (-853 (-388)))) (-388))) (-15 -2379 ((-1048) (-324 (-388)) (-654 (-1107 (-853 (-388)))) (-388) (-388))) (-15 -2379 ((-1048) (-324 (-388)) (-654 (-1107 (-853 (-388)))) (-388) (-388) (-1076))) (-15 -3678 ((-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))) (|:| |extra| (-1048))) (-779))) (-15 -3678 ((-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))) (|:| |extra| (-1048))) (-779) (-1076))) (-15 -2379 ((-3 (-1048) "failed") (-324 (-388)) (-1105 (-853 (-388))) (-1172))) (-15 -2379 ((-3 (-1048) "failed") (-324 (-388)) (-1105 (-853 (-388))) (-1190)))) -((-2911 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|)) 196)) (-2572 (((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|)) 99)) (-2245 (((-3 (-2 (|:| -2399 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2|) 192)) (-3238 (((-3 |#2| "failed") |#2| |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1190))) 201)) (-4391 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1882 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-1190)) 210 (|has| |#3| (-666 |#2|))))) -(((-576 |#1| |#2| |#3|) (-10 -7 (-15 -2572 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|))) (-15 -2245 ((-3 (-2 (|:| -2399 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2|)) (-15 -2911 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|))) (-15 -3238 ((-3 |#2| "failed") |#2| |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1190)))) (IF (|has| |#3| (-666 |#2|)) (-15 -4391 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1882 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-1190))) |%noBranch|)) (-13 (-462) (-1051 (-574)) (-148) (-649 (-574))) (-13 (-440 |#1|) (-27) (-1216)) (-1113)) (T -576)) -((-4391 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-622 *4)) (-5 *6 (-1190)) (-4 *4 (-13 (-440 *7) (-27) (-1216))) (-4 *7 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1882 (-654 *4)))) (-5 *1 (-576 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1113)))) (-3238 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-622 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1190))) (-4 *2 (-13 (-440 *5) (-27) (-1216))) (-4 *5 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *1 (-576 *5 *2 *6)) (-4 *6 (-1113)))) (-2911 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) (-4 *3 (-13 (-440 *6) (-27) (-1216))) (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-576 *6 *3 *7)) (-4 *7 (-1113)))) (-2245 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-440 *5) (-27) (-1216))) (-4 *5 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| -2399 *3) (|:| |coeff| *3))) (-5 *1 (-576 *5 *3 *6)) (-4 *6 (-1113)))) (-2572 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-440 *5) (-27) (-1216))) (-4 *5 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-576 *5 *3 *6)) (-4 *6 (-1113))))) -(-10 -7 (-15 -2572 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|))) (-15 -2245 ((-3 (-2 (|:| -2399 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2|)) (-15 -2911 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|))) (-15 -3238 ((-3 |#2| "failed") |#2| |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1190)))) (IF (|has| |#3| (-666 |#2|)) (-15 -4391 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1882 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-1190))) |%noBranch|)) -((-2693 (((-2 (|:| -2493 |#2|) (|:| |nconst| |#2|)) |#2| (-1190)) 64)) (-2778 (((-3 |#2| "failed") |#2| (-1190) (-853 |#2|) (-853 |#2|)) 175 (-12 (|has| |#2| (-1152)) (|has| |#1| (-624 (-903 (-574)))) (|has| |#1| (-897 (-574))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1190)) 154 (-12 (|has| |#2| (-639)) (|has| |#1| (-624 (-903 (-574)))) (|has| |#1| (-897 (-574)))))) (-1653 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1190)) 156 (-12 (|has| |#2| (-639)) (|has| |#1| (-624 (-903 (-574)))) (|has| |#1| (-897 (-574))))))) -(((-577 |#1| |#2|) (-10 -7 (-15 -2693 ((-2 (|:| -2493 |#2|) (|:| |nconst| |#2|)) |#2| (-1190))) (IF (|has| |#1| (-624 (-903 (-574)))) (IF (|has| |#1| (-897 (-574))) (PROGN (IF (|has| |#2| (-639)) (PROGN (-15 -1653 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1190))) (-15 -2778 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1190)))) |%noBranch|) (IF (|has| |#2| (-1152)) (-15 -2778 ((-3 |#2| "failed") |#2| (-1190) (-853 |#2|) (-853 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1051 (-574)) (-462) (-649 (-574))) (-13 (-27) (-1216) (-440 |#1|))) (T -577)) -((-2778 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1190)) (-5 *4 (-853 *2)) (-4 *2 (-1152)) (-4 *2 (-13 (-27) (-1216) (-440 *5))) (-4 *5 (-624 (-903 (-574)))) (-4 *5 (-897 (-574))) (-4 *5 (-13 (-1051 (-574)) (-462) (-649 (-574)))) (-5 *1 (-577 *5 *2)))) (-2778 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1190)) (-4 *5 (-624 (-903 (-574)))) (-4 *5 (-897 (-574))) (-4 *5 (-13 (-1051 (-574)) (-462) (-649 (-574)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-577 *5 *3)) (-4 *3 (-639)) (-4 *3 (-13 (-27) (-1216) (-440 *5))))) (-1653 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1190)) (-4 *5 (-624 (-903 (-574)))) (-4 *5 (-897 (-574))) (-4 *5 (-13 (-1051 (-574)) (-462) (-649 (-574)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-577 *5 *3)) (-4 *3 (-639)) (-4 *3 (-13 (-27) (-1216) (-440 *5))))) (-2693 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-4 *5 (-13 (-1051 (-574)) (-462) (-649 (-574)))) (-5 *2 (-2 (|:| -2493 *3) (|:| |nconst| *3))) (-5 *1 (-577 *5 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5)))))) -(-10 -7 (-15 -2693 ((-2 (|:| -2493 |#2|) (|:| |nconst| |#2|)) |#2| (-1190))) (IF (|has| |#1| (-624 (-903 (-574)))) (IF (|has| |#1| (-897 (-574))) (PROGN (IF (|has| |#2| (-639)) (PROGN (-15 -1653 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1190))) (-15 -2778 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1190)))) |%noBranch|) (IF (|has| |#2| (-1152)) (-15 -2778 ((-3 |#2| "failed") |#2| (-1190) (-853 |#2|) (-853 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-1570 (((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-654 (-417 |#2|))) 41)) (-2379 (((-596 (-417 |#2|)) (-417 |#2|)) 28)) (-3419 (((-3 (-417 |#2|) "failed") (-417 |#2|)) 17)) (-3986 (((-3 (-2 (|:| -2399 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-417 |#2|)) 48))) -(((-578 |#1| |#2|) (-10 -7 (-15 -2379 ((-596 (-417 |#2|)) (-417 |#2|))) (-15 -3419 ((-3 (-417 |#2|) "failed") (-417 |#2|))) (-15 -3986 ((-3 (-2 (|:| -2399 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-417 |#2|))) (-15 -1570 ((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-654 (-417 |#2|))))) (-13 (-372) (-148) (-1051 (-574))) (-1257 |#1|)) (T -578)) -((-1570 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-654 (-417 *6))) (-5 *3 (-417 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-13 (-372) (-148) (-1051 (-574)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-578 *5 *6)))) (-3986 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-372) (-148) (-1051 (-574)))) (-4 *5 (-1257 *4)) (-5 *2 (-2 (|:| -2399 (-417 *5)) (|:| |coeff| (-417 *5)))) (-5 *1 (-578 *4 *5)) (-5 *3 (-417 *5)))) (-3419 (*1 *2 *2) (|partial| -12 (-5 *2 (-417 *4)) (-4 *4 (-1257 *3)) (-4 *3 (-13 (-372) (-148) (-1051 (-574)))) (-5 *1 (-578 *3 *4)))) (-2379 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1051 (-574)))) (-4 *5 (-1257 *4)) (-5 *2 (-596 (-417 *5))) (-5 *1 (-578 *4 *5)) (-5 *3 (-417 *5))))) -(-10 -7 (-15 -2379 ((-596 (-417 |#2|)) (-417 |#2|))) (-15 -3419 ((-3 (-417 |#2|) "failed") (-417 |#2|))) (-15 -3986 ((-3 (-2 (|:| -2399 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-417 |#2|))) (-15 -1570 ((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-654 (-417 |#2|))))) -((-2468 (((-3 (-574) "failed") |#1|) 14)) (-2819 (((-112) |#1|) 13)) (-4026 (((-574) |#1|) 9))) -(((-579 |#1|) (-10 -7 (-15 -4026 ((-574) |#1|)) (-15 -2819 ((-112) |#1|)) (-15 -2468 ((-3 (-574) "failed") |#1|))) (-1051 (-574))) (T -579)) -((-2468 (*1 *2 *3) (|partial| -12 (-5 *2 (-574)) (-5 *1 (-579 *3)) (-4 *3 (-1051 *2)))) (-2819 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-579 *3)) (-4 *3 (-1051 (-574))))) (-4026 (*1 *2 *3) (-12 (-5 *2 (-574)) (-5 *1 (-579 *3)) (-4 *3 (-1051 *2))))) -(-10 -7 (-15 -4026 ((-574) |#1|)) (-15 -2819 ((-112) |#1|)) (-15 -2468 ((-3 (-574) "failed") |#1|))) -((-4263 (((-3 (-2 (|:| |mainpart| (-417 (-963 |#1|))) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 (-963 |#1|))) (|:| |logand| (-417 (-963 |#1|))))))) "failed") (-417 (-963 |#1|)) (-1190) (-654 (-417 (-963 |#1|)))) 48)) (-2671 (((-596 (-417 (-963 |#1|))) (-417 (-963 |#1|)) (-1190)) 28)) (-1492 (((-3 (-417 (-963 |#1|)) "failed") (-417 (-963 |#1|)) (-1190)) 23)) (-2975 (((-3 (-2 (|:| -2399 (-417 (-963 |#1|))) (|:| |coeff| (-417 (-963 |#1|)))) "failed") (-417 (-963 |#1|)) (-1190) (-417 (-963 |#1|))) 35))) -(((-580 |#1|) (-10 -7 (-15 -2671 ((-596 (-417 (-963 |#1|))) (-417 (-963 |#1|)) (-1190))) (-15 -1492 ((-3 (-417 (-963 |#1|)) "failed") (-417 (-963 |#1|)) (-1190))) (-15 -4263 ((-3 (-2 (|:| |mainpart| (-417 (-963 |#1|))) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 (-963 |#1|))) (|:| |logand| (-417 (-963 |#1|))))))) "failed") (-417 (-963 |#1|)) (-1190) (-654 (-417 (-963 |#1|))))) (-15 -2975 ((-3 (-2 (|:| -2399 (-417 (-963 |#1|))) (|:| |coeff| (-417 (-963 |#1|)))) "failed") (-417 (-963 |#1|)) (-1190) (-417 (-963 |#1|))))) (-13 (-566) (-1051 (-574)) (-148))) (T -580)) -((-2975 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1190)) (-4 *5 (-13 (-566) (-1051 (-574)) (-148))) (-5 *2 (-2 (|:| -2399 (-417 (-963 *5))) (|:| |coeff| (-417 (-963 *5))))) (-5 *1 (-580 *5)) (-5 *3 (-417 (-963 *5))))) (-4263 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1190)) (-5 *5 (-654 (-417 (-963 *6)))) (-5 *3 (-417 (-963 *6))) (-4 *6 (-13 (-566) (-1051 (-574)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-580 *6)))) (-1492 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-417 (-963 *4))) (-5 *3 (-1190)) (-4 *4 (-13 (-566) (-1051 (-574)) (-148))) (-5 *1 (-580 *4)))) (-2671 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-4 *5 (-13 (-566) (-1051 (-574)) (-148))) (-5 *2 (-596 (-417 (-963 *5)))) (-5 *1 (-580 *5)) (-5 *3 (-417 (-963 *5)))))) -(-10 -7 (-15 -2671 ((-596 (-417 (-963 |#1|))) (-417 (-963 |#1|)) (-1190))) (-15 -1492 ((-3 (-417 (-963 |#1|)) "failed") (-417 (-963 |#1|)) (-1190))) (-15 -4263 ((-3 (-2 (|:| |mainpart| (-417 (-963 |#1|))) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 (-963 |#1|))) (|:| |logand| (-417 (-963 |#1|))))))) "failed") (-417 (-963 |#1|)) (-1190) (-654 (-417 (-963 |#1|))))) (-15 -2975 ((-3 (-2 (|:| -2399 (-417 (-963 |#1|))) (|:| |coeff| (-417 (-963 |#1|)))) "failed") (-417 (-963 |#1|)) (-1190) (-417 (-963 |#1|))))) -((-2849 (((-112) $ $) 75)) (-3138 (((-112) $) 48)) (-3014 ((|#1| $) 39)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) 79)) (-2364 (($ $) 139)) (-2247 (($ $) 118)) (-3663 ((|#1| $) 37)) (-3524 (((-3 $ "failed") $ $) NIL)) (-4229 (($ $) NIL)) (-2343 (($ $) 141)) (-2227 (($ $) 114)) (-2389 (($ $) 143)) (-2267 (($ $) 122)) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-574) "failed") $) 93)) (-2206 (((-574) $) 95)) (-3434 (((-3 $ "failed") $) 78)) (-1760 (($ |#1| |#1|) 35)) (-2756 (((-112) $) 44)) (-3000 (($) 104)) (-3199 (((-112) $) 55)) (-3460 (($ $ (-574)) NIL)) (-1335 (((-112) $) 45)) (-3659 (($ $ $) NIL)) (-4257 (($ $ $) NIL)) (-3119 (($ $) 106)) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-4379 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-417 (-574))) 92)) (-3269 ((|#1| $) 36)) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) 81) (($ (-654 $)) NIL)) (-2838 (((-3 $ "failed") $ $) 80)) (-1609 (($ $) 108)) (-2402 (($ $) 147)) (-2275 (($ $) 120)) (-2375 (($ $) 149)) (-2256 (($ $) 124)) (-2352 (($ $) 145)) (-2237 (($ $) 116)) (-2945 (((-112) $ |#1|) 42)) (-2943 (((-872) $) 100) (($ (-574)) 83) (($ $) NIL) (($ (-574)) 83)) (-1364 (((-781)) 102 T CONST)) (-3284 (((-112) $ $) NIL)) (-2441 (($ $) 161)) (-2305 (($ $) 130)) (-2069 (((-112) $ $) NIL)) (-2414 (($ $) 159)) (-2287 (($ $) 126)) (-2465 (($ $) 157)) (-2325 (($ $) 137)) (-2521 (($ $) 155)) (-2334 (($ $) 135)) (-2452 (($ $) 153)) (-2315 (($ $) 132)) (-2428 (($ $) 151)) (-2297 (($ $) 128)) (-2133 (($) 30 T CONST)) (-2145 (($) 10 T CONST)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 49)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) 47)) (-3094 (($ $) 53) (($ $ $) 54)) (-3079 (($ $ $) 52)) (** (($ $ (-932)) 71) (($ $ (-781)) NIL) (($ $ $) 110) (($ $ (-417 (-574))) 163)) (* (($ (-932) $) 66) (($ (-781) $) NIL) (($ (-574) $) 65) (($ $ $) 61))) -(((-581 |#1|) (-564 |#1|) (-13 (-414) (-1216))) (T -581)) -NIL -(-564 |#1|) -((-1879 (((-3 (-654 (-1186 (-574))) "failed") (-654 (-1186 (-574))) (-1186 (-574))) 27))) -(((-582) (-10 -7 (-15 -1879 ((-3 (-654 (-1186 (-574))) "failed") (-654 (-1186 (-574))) (-1186 (-574)))))) (T -582)) -((-1879 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1186 (-574)))) (-5 *3 (-1186 (-574))) (-5 *1 (-582))))) -(-10 -7 (-15 -1879 ((-3 (-654 (-1186 (-574))) "failed") (-654 (-1186 (-574))) (-1186 (-574))))) -((-3894 (((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-1190)) 19)) (-1494 (((-654 (-622 |#2|)) (-654 |#2|) (-1190)) 23)) (-4359 (((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-654 (-622 |#2|))) 11)) (-4399 ((|#2| |#2| (-1190)) 59 (|has| |#1| (-566)))) (-3970 ((|#2| |#2| (-1190)) 87 (-12 (|has| |#2| (-292)) (|has| |#1| (-462))))) (-3674 (((-622 |#2|) (-622 |#2|) (-654 (-622 |#2|)) (-1190)) 25)) (-2328 (((-622 |#2|) (-654 (-622 |#2|))) 24)) (-2842 (((-596 |#2|) |#2| (-1190) (-1 (-596 |#2|) |#2| (-1190)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1190))) 115 (-12 (|has| |#2| (-292)) (|has| |#2| (-639)) (|has| |#2| (-1051 (-1190))) (|has| |#1| (-624 (-903 (-574)))) (|has| |#1| (-462)) (|has| |#1| (-897 (-574))))))) -(((-583 |#1| |#2|) (-10 -7 (-15 -3894 ((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-1190))) (-15 -2328 ((-622 |#2|) (-654 (-622 |#2|)))) (-15 -3674 ((-622 |#2|) (-622 |#2|) (-654 (-622 |#2|)) (-1190))) (-15 -4359 ((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-654 (-622 |#2|)))) (-15 -1494 ((-654 (-622 |#2|)) (-654 |#2|) (-1190))) (IF (|has| |#1| (-566)) (-15 -4399 (|#2| |#2| (-1190))) |%noBranch|) (IF (|has| |#1| (-462)) (IF (|has| |#2| (-292)) (PROGN (-15 -3970 (|#2| |#2| (-1190))) (IF (|has| |#1| (-624 (-903 (-574)))) (IF (|has| |#1| (-897 (-574))) (IF (|has| |#2| (-639)) (IF (|has| |#2| (-1051 (-1190))) (-15 -2842 ((-596 |#2|) |#2| (-1190) (-1 (-596 |#2|) |#2| (-1190)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1190)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1113) (-440 |#1|)) (T -583)) -((-2842 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-596 *3) *3 (-1190))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1190))) (-4 *3 (-292)) (-4 *3 (-639)) (-4 *3 (-1051 *4)) (-4 *3 (-440 *7)) (-5 *4 (-1190)) (-4 *7 (-624 (-903 (-574)))) (-4 *7 (-462)) (-4 *7 (-897 (-574))) (-4 *7 (-1113)) (-5 *2 (-596 *3)) (-5 *1 (-583 *7 *3)))) (-3970 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-462)) (-4 *4 (-1113)) (-5 *1 (-583 *4 *2)) (-4 *2 (-292)) (-4 *2 (-440 *4)))) (-4399 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-566)) (-4 *4 (-1113)) (-5 *1 (-583 *4 *2)) (-4 *2 (-440 *4)))) (-1494 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-1190)) (-4 *6 (-440 *5)) (-4 *5 (-1113)) (-5 *2 (-654 (-622 *6))) (-5 *1 (-583 *5 *6)))) (-4359 (*1 *2 *2 *2) (-12 (-5 *2 (-654 (-622 *4))) (-4 *4 (-440 *3)) (-4 *3 (-1113)) (-5 *1 (-583 *3 *4)))) (-3674 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-654 (-622 *6))) (-5 *4 (-1190)) (-5 *2 (-622 *6)) (-4 *6 (-440 *5)) (-4 *5 (-1113)) (-5 *1 (-583 *5 *6)))) (-2328 (*1 *2 *3) (-12 (-5 *3 (-654 (-622 *5))) (-4 *4 (-1113)) (-5 *2 (-622 *5)) (-5 *1 (-583 *4 *5)) (-4 *5 (-440 *4)))) (-3894 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-622 *5))) (-5 *3 (-1190)) (-4 *5 (-440 *4)) (-4 *4 (-1113)) (-5 *1 (-583 *4 *5))))) -(-10 -7 (-15 -3894 ((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-1190))) (-15 -2328 ((-622 |#2|) (-654 (-622 |#2|)))) (-15 -3674 ((-622 |#2|) (-622 |#2|) (-654 (-622 |#2|)) (-1190))) (-15 -4359 ((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-654 (-622 |#2|)))) (-15 -1494 ((-654 (-622 |#2|)) (-654 |#2|) (-1190))) (IF (|has| |#1| (-566)) (-15 -4399 (|#2| |#2| (-1190))) |%noBranch|) (IF (|has| |#1| (-462)) (IF (|has| |#2| (-292)) (PROGN (-15 -3970 (|#2| |#2| (-1190))) (IF (|has| |#1| (-624 (-903 (-574)))) (IF (|has| |#1| (-897 (-574))) (IF (|has| |#2| (-639)) (IF (|has| |#2| (-1051 (-1190))) (-15 -2842 ((-596 |#2|) |#2| (-1190) (-1 (-596 |#2|) |#2| (-1190)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1190)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-4047 (((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-654 |#1|) "failed") (-574) |#1| |#1|)) 199)) (-3539 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2399 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-654 (-417 |#2|))) 174)) (-2093 (((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-654 (-417 |#2|))) 171)) (-3515 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2399 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162)) (-2946 (((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2399 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185)) (-1409 (((-3 (-2 (|:| -2399 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-417 |#2|)) 202)) (-2466 (((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2399 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2399 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-417 |#2|)) 205)) (-3783 (((-2 (|:| |ir| (-596 (-417 |#2|))) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|)) 88)) (-1368 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-4416 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3904 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-654 (-417 |#2|))) 178)) (-2895 (((-3 (-633 |#1| |#2|) "failed") (-633 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3904 |#1|) (|:| |sol?| (-112))) (-574) |#1|)) 166)) (-1991 (((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3904 |#1|) (|:| |sol?| (-112))) (-574) |#1|)) 189)) (-3911 (((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2399 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3904 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-417 |#2|)) 210))) -(((-584 |#1| |#2|) (-10 -7 (-15 -2946 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2399 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1991 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3904 |#1|) (|:| |sol?| (-112))) (-574) |#1|))) (-15 -4047 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-654 |#1|) "failed") (-574) |#1| |#1|))) (-15 -2466 ((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2399 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2399 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-417 |#2|))) (-15 -3911 ((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2399 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3904 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-417 |#2|))) (-15 -3539 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2399 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-654 (-417 |#2|)))) (-15 -4416 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3904 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-654 (-417 |#2|)))) (-15 -1409 ((-3 (-2 (|:| -2399 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-417 |#2|))) (-15 -2093 ((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-654 (-417 |#2|)))) (-15 -3515 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2399 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2895 ((-3 (-633 |#1| |#2|) "failed") (-633 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3904 |#1|) (|:| |sol?| (-112))) (-574) |#1|))) (-15 -3783 ((-2 (|:| |ir| (-596 (-417 |#2|))) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|))) (-15 -1368 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-372) (-1257 |#1|)) (T -584)) -((-1368 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1257 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-584 *5 *3)))) (-3783 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| |ir| (-596 (-417 *6))) (|:| |specpart| (-417 *6)) (|:| |polypart| *6))) (-5 *1 (-584 *5 *6)) (-5 *3 (-417 *6)))) (-2895 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-633 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3904 *4) (|:| |sol?| (-112))) (-574) *4)) (-4 *4 (-372)) (-4 *5 (-1257 *4)) (-5 *1 (-584 *4 *5)))) (-3515 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2399 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-372)) (-5 *1 (-584 *4 *2)) (-4 *2 (-1257 *4)))) (-2093 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-654 (-417 *7))) (-4 *7 (-1257 *6)) (-5 *3 (-417 *7)) (-4 *6 (-372)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-584 *6 *7)))) (-1409 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| -2399 (-417 *6)) (|:| |coeff| (-417 *6)))) (-5 *1 (-584 *5 *6)) (-5 *3 (-417 *6)))) (-4416 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3904 *7) (|:| |sol?| (-112))) (-574) *7)) (-5 *6 (-654 (-417 *8))) (-4 *7 (-372)) (-4 *8 (-1257 *7)) (-5 *3 (-417 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-584 *7 *8)))) (-3539 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2399 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-654 (-417 *8))) (-4 *7 (-372)) (-4 *8 (-1257 *7)) (-5 *3 (-417 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-584 *7 *8)))) (-3911 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3904 *6) (|:| |sol?| (-112))) (-574) *6)) (-4 *6 (-372)) (-4 *7 (-1257 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-417 *7)) (|:| |a0| *6)) (-2 (|:| -2399 (-417 *7)) (|:| |coeff| (-417 *7))) "failed")) (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))) (-2466 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2399 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-372)) (-4 *7 (-1257 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-417 *7)) (|:| |a0| *6)) (-2 (|:| -2399 (-417 *7)) (|:| |coeff| (-417 *7))) "failed")) (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))) (-4047 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-654 *6) "failed") (-574) *6 *6)) (-4 *6 (-372)) (-4 *7 (-1257 *6)) (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6))) (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))) (-1991 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3904 *6) (|:| |sol?| (-112))) (-574) *6)) (-4 *6 (-372)) (-4 *7 (-1257 *6)) (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6))) (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))) (-2946 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2399 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-372)) (-4 *7 (-1257 *6)) (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6))) (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7))))) -(-10 -7 (-15 -2946 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2399 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1991 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3904 |#1|) (|:| |sol?| (-112))) (-574) |#1|))) (-15 -4047 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-654 |#1|) "failed") (-574) |#1| |#1|))) (-15 -2466 ((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2399 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2399 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-417 |#2|))) (-15 -3911 ((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2399 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3904 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-417 |#2|))) (-15 -3539 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2399 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-654 (-417 |#2|)))) (-15 -4416 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3904 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-654 (-417 |#2|)))) (-15 -1409 ((-3 (-2 (|:| -2399 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-417 |#2|))) (-15 -2093 ((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-654 (-417 |#2|)))) (-15 -3515 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2399 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2895 ((-3 (-633 |#1| |#2|) "failed") (-633 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3904 |#1|) (|:| |sol?| (-112))) (-574) |#1|))) (-15 -3783 ((-2 (|:| |ir| (-596 (-417 |#2|))) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|))) (-15 -1368 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-1384 (((-3 |#2| "failed") |#2| (-1190) (-1190)) 10))) -(((-585 |#1| |#2|) (-10 -7 (-15 -1384 ((-3 |#2| "failed") |#2| (-1190) (-1190)))) (-13 (-315) (-148) (-1051 (-574)) (-649 (-574))) (-13 (-1216) (-970) (-1152) (-29 |#1|))) (T -585)) -((-1384 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1190)) (-4 *4 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-585 *4 *2)) (-4 *2 (-13 (-1216) (-970) (-1152) (-29 *4)))))) -(-10 -7 (-15 -1384 ((-3 |#2| "failed") |#2| (-1190) (-1190)))) -((-2238 (((-701 (-1239)) $ (-1239)) 26)) (-1767 (((-701 (-559)) $ (-559)) 25)) (-3734 (((-781) $ (-129)) 27)) (-3353 (((-701 (-130)) $ (-130)) 24)) (-3123 (((-701 (-1239)) $) 12)) (-2084 (((-701 (-1237)) $) 8)) (-2518 (((-701 (-1236)) $) 10)) (-1412 (((-701 (-559)) $) 13)) (-1466 (((-701 (-557)) $) 9)) (-2776 (((-701 (-556)) $) 11)) (-2027 (((-781) $ (-129)) 7)) (-3198 (((-701 (-130)) $) 14)) (-3646 (($ $) 6))) -(((-586) (-141)) (T -586)) -NIL -(-13 (-537) (-870)) -(((-175) . T) ((-537) . T) ((-870) . T)) -((-2238 (((-701 (-1239)) $ (-1239)) NIL)) (-1767 (((-701 (-559)) $ (-559)) NIL)) (-3734 (((-781) $ (-129)) NIL)) (-3353 (((-701 (-130)) $ (-130)) NIL)) (-3123 (((-701 (-1239)) $) NIL)) (-2084 (((-701 (-1237)) $) NIL)) (-2518 (((-701 (-1236)) $) NIL)) (-1412 (((-701 (-559)) $) NIL)) (-1466 (((-701 (-557)) $) NIL)) (-2776 (((-701 (-556)) $) NIL)) (-2027 (((-781) $ (-129)) NIL)) (-3198 (((-701 (-130)) $) NIL)) (-3264 (((-112) $) NIL)) (-1799 (($ (-398)) 14) (($ (-1172)) 16)) (-2943 (((-872) $) NIL)) (-3646 (($ $) NIL))) -(((-587) (-13 (-586) (-623 (-872)) (-10 -8 (-15 -1799 ($ (-398))) (-15 -1799 ($ (-1172))) (-15 -3264 ((-112) $))))) (T -587)) -((-1799 (*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-587)))) (-1799 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-587)))) (-3264 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-587))))) -(-13 (-586) (-623 (-872)) (-10 -8 (-15 -1799 ($ (-398))) (-15 -1799 ($ (-1172))) (-15 -3264 ((-112) $)))) -((-2849 (((-112) $ $) NIL)) (-3248 (($) 7 T CONST)) (-4136 (((-1172) $) NIL)) (-1452 (($) 6 T CONST)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 15)) (-3635 (($) 9 T CONST)) (-3088 (($) 8 T CONST)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 11))) -(((-588) (-13 (-1113) (-10 -8 (-15 -1452 ($) -1706) (-15 -3248 ($) -1706) (-15 -3088 ($) -1706) (-15 -3635 ($) -1706)))) (T -588)) -((-1452 (*1 *1) (-5 *1 (-588))) (-3248 (*1 *1) (-5 *1 (-588))) (-3088 (*1 *1) (-5 *1 (-588))) (-3635 (*1 *1) (-5 *1 (-588)))) -(-13 (-1113) (-10 -8 (-15 -1452 ($) -1706) (-15 -3248 ($) -1706) (-15 -3088 ($) -1706) (-15 -3635 ($) -1706))) -((-2849 (((-112) $ $) NIL)) (-1805 (((-701 $) (-501)) 21)) (-4136 (((-1172) $) NIL)) (-2222 (($ (-1172)) 14)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 33)) (-2732 (((-215 4 (-130)) $) 24)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 26))) -(((-589) (-13 (-1113) (-10 -8 (-15 -2222 ($ (-1172))) (-15 -2732 ((-215 4 (-130)) $)) (-15 -1805 ((-701 $) (-501)))))) (T -589)) -((-2222 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-589)))) (-2732 (*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-589)))) (-1805 (*1 *2 *3) (-12 (-5 *3 (-501)) (-5 *2 (-701 (-589))) (-5 *1 (-589))))) -(-13 (-1113) (-10 -8 (-15 -2222 ($ (-1172))) (-15 -2732 ((-215 4 (-130)) $)) (-15 -1805 ((-701 $) (-501))))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-4229 (($ $ (-574)) 75)) (-1600 (((-112) $ $) NIL)) (-3426 (($) NIL T CONST)) (-1497 (($ (-1186 (-574)) (-574)) 81)) (-2786 (($ $ $) NIL)) (-3434 (((-3 $ "failed") $) 66)) (-3055 (($ $) 43)) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3884 (((-781) $) 16)) (-3199 (((-112) $) NIL)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2089 (((-574)) 37)) (-2370 (((-574) $) 41)) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2533 (($ $ (-574)) 24)) (-2838 (((-3 $ "failed") $ $) 71)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1730 (((-781) $) 17)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 72)) (-2173 (((-1170 (-574)) $) 19)) (-1651 (($ $) 26)) (-2943 (((-872) $) 102) (($ (-574)) 61) (($ $) NIL)) (-1364 (((-781)) 15 T CONST)) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL)) (-3551 (((-574) $ (-574)) 46)) (-2133 (($) 44 T CONST)) (-2145 (($) 21 T CONST)) (-2981 (((-112) $ $) 52)) (-3094 (($ $) 60) (($ $ $) 48)) (-3079 (($ $ $) 59)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 62) (($ $ $) 63))) -(((-590 |#1| |#2|) (-879 |#1|) (-574) (-112)) (T -590)) -NIL -(-879 |#1|) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 30)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-4297 (((-112) $) NIL)) (-2549 (((-781)) NIL)) (-1636 (($ $ (-932)) NIL (|has| $ (-377))) (($ $) NIL)) (-1664 (((-1203 (-932) (-781)) (-574)) 59)) (-3524 (((-3 $ "failed") $ $) NIL)) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-1600 (((-112) $ $) NIL)) (-1487 (((-781)) NIL)) (-3426 (($) NIL T CONST)) (-1696 (((-3 $ "failed") $) 95)) (-2206 (($ $) 94)) (-2737 (($ (-1281 $)) 93)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2786 (($ $ $) NIL)) (-3434 (((-3 $ "failed") $) 44)) (-2820 (($) NIL)) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3812 (($) 61)) (-4044 (((-112) $) NIL)) (-1647 (($ $) NIL) (($ $ (-781)) NIL)) (-2257 (((-112) $) NIL)) (-3884 (((-843 (-932)) $) NIL) (((-932) $) NIL)) (-3199 (((-112) $) NIL)) (-2606 (($) 49 (|has| $ (-377)))) (-2066 (((-112) $) NIL (|has| $ (-377)))) (-2236 (($ $ (-932)) NIL (|has| $ (-377))) (($ $) NIL)) (-2748 (((-3 $ "failed") $) NIL)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1972 (((-1186 $) $ (-932)) NIL (|has| $ (-377))) (((-1186 $) $) 104)) (-4115 (((-932) $) 67)) (-1533 (((-1186 $) $) NIL (|has| $ (-377)))) (-2037 (((-3 (-1186 $) "failed") $ $) NIL (|has| $ (-377))) (((-1186 $) $) NIL (|has| $ (-377)))) (-2559 (($ $ (-1186 $)) NIL (|has| $ (-377)))) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL T CONST)) (-2576 (($ (-932)) 60)) (-4204 (((-112) $) 87)) (-3966 (((-1133) $) NIL)) (-2970 (($) 28 (|has| $ (-377)))) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1417 (((-654 (-2 (|:| -4220 (-574)) (|:| -3715 (-574))))) 54)) (-4220 (((-428 $) $) NIL)) (-2989 (((-932)) 86) (((-843 (-932))) NIL)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1730 (((-781) $) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-4342 (((-3 (-781) "failed") $ $) NIL) (((-781) $) NIL)) (-4133 (((-135)) NIL)) (-3905 (($ $ (-781)) NIL) (($ $) NIL)) (-4202 (((-932) $) 85) (((-843 (-932)) $) NIL)) (-4185 (((-1186 $)) 102)) (-3074 (($) 66)) (-2765 (($) 50 (|has| $ (-377)))) (-3487 (((-699 $) (-1281 $)) NIL) (((-1281 $) $) 91)) (-1836 (((-574) $) 40)) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) 42) (($ $) NIL) (($ (-417 (-574))) NIL)) (-3298 (((-3 $ "failed") $) NIL) (($ $) 105)) (-1364 (((-781)) 51 T CONST)) (-3284 (((-112) $ $) 107)) (-1882 (((-1281 $) (-932)) 97) (((-1281 $)) 96)) (-2069 (((-112) $ $) NIL)) (-3587 (((-112) $) NIL)) (-2133 (($) 31 T CONST)) (-2145 (($) 27 T CONST)) (-2661 (($ $ (-781)) NIL (|has| $ (-377))) (($ $) NIL (|has| $ (-377)))) (-3610 (($ $ (-781)) NIL) (($ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 34)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 81) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) -(((-591 |#1|) (-13 (-358) (-337 $) (-624 (-574))) (-932)) (T -591)) -NIL -(-13 (-358) (-337 $) (-624 (-574))) -((-2497 (((-1286) (-1172)) 10))) -(((-592) (-10 -7 (-15 -2497 ((-1286) (-1172))))) (T -592)) -((-2497 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-592))))) -(-10 -7 (-15 -2497 ((-1286) (-1172)))) -((-4320 (((-596 |#2|) (-596 |#2|)) 42)) (-2128 (((-654 |#2|) (-596 |#2|)) 44)) (-2973 ((|#2| (-596 |#2|)) 50))) -(((-593 |#1| |#2|) (-10 -7 (-15 -4320 ((-596 |#2|) (-596 |#2|))) (-15 -2128 ((-654 |#2|) (-596 |#2|))) (-15 -2973 (|#2| (-596 |#2|)))) (-13 (-462) (-1051 (-574)) (-649 (-574))) (-13 (-29 |#1|) (-1216))) (T -593)) -((-2973 (*1 *2 *3) (-12 (-5 *3 (-596 *2)) (-4 *2 (-13 (-29 *4) (-1216))) (-5 *1 (-593 *4 *2)) (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))))) (-2128 (*1 *2 *3) (-12 (-5 *3 (-596 *5)) (-4 *5 (-13 (-29 *4) (-1216))) (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-654 *5)) (-5 *1 (-593 *4 *5)))) (-4320 (*1 *2 *2) (-12 (-5 *2 (-596 *4)) (-4 *4 (-13 (-29 *3) (-1216))) (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-593 *3 *4))))) -(-10 -7 (-15 -4320 ((-596 |#2|) (-596 |#2|))) (-15 -2128 ((-654 |#2|) (-596 |#2|))) (-15 -2973 (|#2| (-596 |#2|)))) -((-1777 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2399 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2399 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-596 |#2|) (-1 |#2| |#1|) (-596 |#1|)) 30))) -(((-594 |#1| |#2|) (-10 -7 (-15 -1777 ((-596 |#2|) (-1 |#2| |#1|) (-596 |#1|))) (-15 -1777 ((-3 (-2 (|:| -2399 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2399 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1777 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1777 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-372) (-372)) (T -594)) -((-1777 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-372)) (-4 *6 (-372)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-594 *5 *6)))) (-1777 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-372)) (-4 *2 (-372)) (-5 *1 (-594 *5 *2)))) (-1777 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2399 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-372)) (-4 *6 (-372)) (-5 *2 (-2 (|:| -2399 *6) (|:| |coeff| *6))) (-5 *1 (-594 *5 *6)))) (-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-596 *5)) (-4 *5 (-372)) (-4 *6 (-372)) (-5 *2 (-596 *6)) (-5 *1 (-594 *5 *6))))) -(-10 -7 (-15 -1777 ((-596 |#2|) (-1 |#2| |#1|) (-596 |#1|))) (-15 -1777 ((-3 (-2 (|:| -2399 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2399 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1777 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1777 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3484 (($ (-516) (-607)) 14)) (-3619 (($ (-516) (-607) $) 16)) (-1536 (($ (-516) (-607)) 15)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL) (($ (-1195)) 7) (((-1195) $) 6)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-595) (-13 (-1113) (-500 (-1195)) (-10 -8 (-15 -3484 ($ (-516) (-607))) (-15 -1536 ($ (-516) (-607))) (-15 -3619 ($ (-516) (-607) $))))) (T -595)) -((-3484 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595)))) (-1536 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595)))) (-3619 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595))))) -(-13 (-1113) (-500 (-1195)) (-10 -8 (-15 -3484 ($ (-516) (-607))) (-15 -1536 ($ (-516) (-607))) (-15 -3619 ($ (-516) (-607) $)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#1| "failed") $) 76)) (-2206 ((|#1| $) NIL)) (-2399 ((|#1| $) 30)) (-2102 (((-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-4360 (($ |#1| (-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1186 |#1|)) (|:| |logand| (-1186 |#1|)))) (-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-2153 (((-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1186 |#1|)) (|:| |logand| (-1186 |#1|)))) $) 31)) (-4136 (((-1172) $) NIL)) (-3097 (($ |#1| |#1|) 38) (($ |#1| (-1190)) 49 (|has| |#1| (-1051 (-1190))))) (-3966 (((-1133) $) NIL)) (-2171 (((-112) $) 35)) (-3905 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1190)) 89 (|has| |#1| (-911 (-1190))))) (-2943 (((-872) $) 110) (($ |#1|) 29)) (-3284 (((-112) $ $) NIL)) (-2133 (($) 18 T CONST)) (-2981 (((-112) $ $) NIL)) (-3094 (($ $) 17) (($ $ $) NIL)) (-3079 (($ $ $) 85)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 16) (($ (-417 (-574)) $) 41) (($ $ (-417 (-574))) NIL))) -(((-596 |#1|) (-13 (-727 (-417 (-574))) (-1051 |#1|) (-10 -8 (-15 -4360 ($ |#1| (-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1186 |#1|)) (|:| |logand| (-1186 |#1|)))) (-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2399 (|#1| $)) (-15 -2153 ((-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1186 |#1|)) (|:| |logand| (-1186 |#1|)))) $)) (-15 -2102 ((-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2171 ((-112) $)) (-15 -3097 ($ |#1| |#1|)) (-15 -3905 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-911 (-1190))) (-15 -3905 (|#1| $ (-1190))) |%noBranch|) (IF (|has| |#1| (-1051 (-1190))) (-15 -3097 ($ |#1| (-1190))) |%noBranch|))) (-372)) (T -596)) -((-4360 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1186 *2)) (|:| |logand| (-1186 *2))))) (-5 *4 (-654 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-372)) (-5 *1 (-596 *2)))) (-2399 (*1 *2 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-372)))) (-2153 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1186 *3)) (|:| |logand| (-1186 *3))))) (-5 *1 (-596 *3)) (-4 *3 (-372)))) (-2102 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-596 *3)) (-4 *3 (-372)))) (-2171 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-372)))) (-3097 (*1 *1 *2 *2) (-12 (-5 *1 (-596 *2)) (-4 *2 (-372)))) (-3905 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-596 *2)) (-4 *2 (-372)))) (-3905 (*1 *2 *1 *3) (-12 (-4 *2 (-372)) (-4 *2 (-911 *3)) (-5 *1 (-596 *2)) (-5 *3 (-1190)))) (-3097 (*1 *1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *1 (-596 *2)) (-4 *2 (-1051 *3)) (-4 *2 (-372))))) -(-13 (-727 (-417 (-574))) (-1051 |#1|) (-10 -8 (-15 -4360 ($ |#1| (-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1186 |#1|)) (|:| |logand| (-1186 |#1|)))) (-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2399 (|#1| $)) (-15 -2153 ((-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1186 |#1|)) (|:| |logand| (-1186 |#1|)))) $)) (-15 -2102 ((-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2171 ((-112) $)) (-15 -3097 ($ |#1| |#1|)) (-15 -3905 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-911 (-1190))) (-15 -3905 (|#1| $ (-1190))) |%noBranch|) (IF (|has| |#1| (-1051 (-1190))) (-15 -3097 ($ |#1| (-1190))) |%noBranch|))) -((-1440 (((-112) |#1|) 16)) (-1791 (((-3 |#1| "failed") |#1|) 14)) (-4397 (((-2 (|:| -2630 |#1|) (|:| -3715 (-781))) |#1|) 38) (((-3 |#1| "failed") |#1| (-781)) 18)) (-3443 (((-112) |#1| (-781)) 19)) (-1863 ((|#1| |#1|) 42)) (-3795 ((|#1| |#1| (-781)) 45))) -(((-597 |#1|) (-10 -7 (-15 -3443 ((-112) |#1| (-781))) (-15 -4397 ((-3 |#1| "failed") |#1| (-781))) (-15 -4397 ((-2 (|:| -2630 |#1|) (|:| -3715 (-781))) |#1|)) (-15 -3795 (|#1| |#1| (-781))) (-15 -1440 ((-112) |#1|)) (-15 -1791 ((-3 |#1| "failed") |#1|)) (-15 -1863 (|#1| |#1|))) (-555)) (T -597)) -((-1863 (*1 *2 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-555)))) (-1791 (*1 *2 *2) (|partial| -12 (-5 *1 (-597 *2)) (-4 *2 (-555)))) (-1440 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-555)))) (-3795 (*1 *2 *2 *3) (-12 (-5 *3 (-781)) (-5 *1 (-597 *2)) (-4 *2 (-555)))) (-4397 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2630 *3) (|:| -3715 (-781)))) (-5 *1 (-597 *3)) (-4 *3 (-555)))) (-4397 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-781)) (-5 *1 (-597 *2)) (-4 *2 (-555)))) (-3443 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-555))))) -(-10 -7 (-15 -3443 ((-112) |#1| (-781))) (-15 -4397 ((-3 |#1| "failed") |#1| (-781))) (-15 -4397 ((-2 (|:| -2630 |#1|) (|:| -3715 (-781))) |#1|)) (-15 -3795 (|#1| |#1| (-781))) (-15 -1440 ((-112) |#1|)) (-15 -1791 ((-3 |#1| "failed") |#1|)) (-15 -1863 (|#1| |#1|))) -((-2948 (((-1186 |#1|) (-932)) 44))) -(((-598 |#1|) (-10 -7 (-15 -2948 ((-1186 |#1|) (-932)))) (-358)) (T -598)) -((-2948 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-598 *4)) (-4 *4 (-358))))) -(-10 -7 (-15 -2948 ((-1186 |#1|) (-932)))) -((-4320 (((-596 (-417 (-963 |#1|))) (-596 (-417 (-963 |#1|)))) 27)) (-2379 (((-3 (-324 |#1|) (-654 (-324 |#1|))) (-417 (-963 |#1|)) (-1190)) 34 (|has| |#1| (-148)))) (-2128 (((-654 (-324 |#1|)) (-596 (-417 (-963 |#1|)))) 19)) (-2363 (((-324 |#1|) (-417 (-963 |#1|)) (-1190)) 32 (|has| |#1| (-148)))) (-2973 (((-324 |#1|) (-596 (-417 (-963 |#1|)))) 21))) -(((-599 |#1|) (-10 -7 (-15 -4320 ((-596 (-417 (-963 |#1|))) (-596 (-417 (-963 |#1|))))) (-15 -2128 ((-654 (-324 |#1|)) (-596 (-417 (-963 |#1|))))) (-15 -2973 ((-324 |#1|) (-596 (-417 (-963 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -2379 ((-3 (-324 |#1|) (-654 (-324 |#1|))) (-417 (-963 |#1|)) (-1190))) (-15 -2363 ((-324 |#1|) (-417 (-963 |#1|)) (-1190)))) |%noBranch|)) (-13 (-462) (-1051 (-574)) (-649 (-574)))) (T -599)) -((-2363 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-1190)) (-4 *5 (-148)) (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-324 *5)) (-5 *1 (-599 *5)))) (-2379 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-1190)) (-4 *5 (-148)) (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-3 (-324 *5) (-654 (-324 *5)))) (-5 *1 (-599 *5)))) (-2973 (*1 *2 *3) (-12 (-5 *3 (-596 (-417 (-963 *4)))) (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-324 *4)) (-5 *1 (-599 *4)))) (-2128 (*1 *2 *3) (-12 (-5 *3 (-596 (-417 (-963 *4)))) (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-654 (-324 *4))) (-5 *1 (-599 *4)))) (-4320 (*1 *2 *2) (-12 (-5 *2 (-596 (-417 (-963 *3)))) (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-599 *3))))) -(-10 -7 (-15 -4320 ((-596 (-417 (-963 |#1|))) (-596 (-417 (-963 |#1|))))) (-15 -2128 ((-654 (-324 |#1|)) (-596 (-417 (-963 |#1|))))) (-15 -2973 ((-324 |#1|) (-596 (-417 (-963 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -2379 ((-3 (-324 |#1|) (-654 (-324 |#1|))) (-417 (-963 |#1|)) (-1190))) (-15 -2363 ((-324 |#1|) (-417 (-963 |#1|)) (-1190)))) |%noBranch|)) -((-3573 (((-654 (-699 (-574))) (-654 (-932)) (-654 (-916 (-574)))) 78) (((-654 (-699 (-574))) (-654 (-932))) 79) (((-699 (-574)) (-654 (-932)) (-916 (-574))) 72)) (-1992 (((-781) (-654 (-932))) 69))) -(((-600) (-10 -7 (-15 -1992 ((-781) (-654 (-932)))) (-15 -3573 ((-699 (-574)) (-654 (-932)) (-916 (-574)))) (-15 -3573 ((-654 (-699 (-574))) (-654 (-932)))) (-15 -3573 ((-654 (-699 (-574))) (-654 (-932)) (-654 (-916 (-574))))))) (T -600)) -((-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-932))) (-5 *4 (-654 (-916 (-574)))) (-5 *2 (-654 (-699 (-574)))) (-5 *1 (-600)))) (-3573 (*1 *2 *3) (-12 (-5 *3 (-654 (-932))) (-5 *2 (-654 (-699 (-574)))) (-5 *1 (-600)))) (-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-932))) (-5 *4 (-916 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-600)))) (-1992 (*1 *2 *3) (-12 (-5 *3 (-654 (-932))) (-5 *2 (-781)) (-5 *1 (-600))))) -(-10 -7 (-15 -1992 ((-781) (-654 (-932)))) (-15 -3573 ((-699 (-574)) (-654 (-932)) (-916 (-574)))) (-15 -3573 ((-654 (-699 (-574))) (-654 (-932)))) (-15 -3573 ((-654 (-699 (-574))) (-654 (-932)) (-654 (-916 (-574)))))) -((-4425 (((-654 |#5|) |#5| (-112)) 100)) (-1527 (((-112) |#5| (-654 |#5|)) 34))) -(((-601 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4425 ((-654 |#5|) |#5| (-112))) (-15 -1527 ((-112) |#5| (-654 |#5|)))) (-13 (-315) (-148)) (-803) (-860) (-1078 |#1| |#2| |#3|) (-1122 |#1| |#2| |#3| |#4|)) (T -601)) -((-1527 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-1122 *5 *6 *7 *8)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1078 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-601 *5 *6 *7 *8 *3)))) (-4425 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1078 *5 *6 *7)) (-5 *2 (-654 *3)) (-5 *1 (-601 *5 *6 *7 *8 *3)) (-4 *3 (-1122 *5 *6 *7 *8))))) -(-10 -7 (-15 -4425 ((-654 |#5|) |#5| (-112))) (-15 -1527 ((-112) |#5| (-654 |#5|)))) -((-2849 (((-112) $ $) NIL)) (-1809 (((-1148) $) 11)) (-1796 (((-1148) $) 9)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 17) (($ (-1195)) NIL) (((-1195) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-602) (-13 (-1096) (-10 -8 (-15 -1796 ((-1148) $)) (-15 -1809 ((-1148) $))))) (T -602)) -((-1796 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-602)))) (-1809 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-602))))) -(-13 (-1096) (-10 -8 (-15 -1796 ((-1148) $)) (-15 -1809 ((-1148) $)))) -((-2849 (((-112) $ $) NIL (|has| (-145) (-1113)))) (-2507 (($ $) 38)) (-2874 (($ $) NIL)) (-1563 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3714 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-3711 (((-112) $ $) 67)) (-3686 (((-112) $ $ (-574)) 62)) (-4320 (((-654 $) $ (-145)) 75) (((-654 $) $ (-142)) 76)) (-1357 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-860)))) (-3642 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4457))) (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| (-145) (-860))))) (-2771 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-860)))) (-3034 (((-112) $ (-781)) NIL)) (-3143 (((-145) $ (-574) (-145)) 59 (|has| $ (-6 -4457))) (((-145) $ (-1248 (-574)) (-145)) NIL (|has| $ (-6 -4457)))) (-2165 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456)))) (-3426 (($) NIL T CONST)) (-2617 (($ $ (-145)) 79) (($ $ (-142)) 80)) (-2627 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-2903 (($ $ (-1248 (-574)) $) 57)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113))))) (-3335 (($ (-145) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456)))) (-2868 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4456))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4456)))) (-2458 (((-145) $ (-574) (-145)) NIL (|has| $ (-6 -4457)))) (-2385 (((-145) $ (-574)) NIL)) (-3733 (((-112) $ $) 88)) (-1441 (((-574) (-1 (-112) (-145)) $) NIL) (((-574) (-145) $) NIL (|has| (-145) (-1113))) (((-574) (-145) $ (-574)) 64 (|has| (-145) (-1113))) (((-574) $ $ (-574)) 63) (((-574) (-142) $ (-574)) 66)) (-1864 (((-654 (-145)) $) NIL (|has| $ (-6 -4456)))) (-3790 (($ (-781) (-145)) 9)) (-2742 (((-112) $ (-781)) NIL)) (-3618 (((-574) $) 32 (|has| (-574) (-860)))) (-3659 (($ $ $) NIL (|has| (-145) (-860)))) (-4430 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-860)))) (-1606 (((-654 (-145)) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113))))) (-2702 (((-574) $) 47 (|has| (-574) (-860)))) (-4257 (($ $ $) NIL (|has| (-145) (-860)))) (-1326 (((-112) $ $ (-145)) 89)) (-2683 (((-781) $ $ (-145)) 86)) (-2449 (($ (-1 (-145) (-145)) $) 37 (|has| $ (-6 -4457)))) (-1777 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-1859 (($ $) 41)) (-2092 (($ $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-2631 (($ $ (-145)) 77) (($ $ (-142)) 78)) (-4136 (((-1172) $) 43 (|has| (-145) (-1113)))) (-1594 (($ (-145) $ (-574)) NIL) (($ $ $ (-574)) 27)) (-4308 (((-654 (-574)) $) NIL)) (-3336 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) 85 (|has| (-145) (-1113)))) (-2915 (((-145) $) NIL (|has| (-574) (-860)))) (-1549 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-1942 (($ $ (-145)) NIL (|has| $ (-6 -4457)))) (-2540 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-145)))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113)))) (($ $ (-302 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113)))) (($ $ (-654 (-145)) (-654 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113))))) (-4371 (((-654 (-145)) $) NIL)) (-1584 (((-112) $) 15)) (-2672 (($) 10)) (-2199 (((-145) $ (-574) (-145)) NIL) (((-145) $ (-574)) 68) (($ $ (-1248 (-574))) 25) (($ $ $) NIL)) (-2840 (($ $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-3975 (((-781) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456))) (((-781) (-145) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113))))) (-3506 (($ $ $ (-574)) 81 (|has| $ (-6 -4457)))) (-3167 (($ $) 20)) (-1836 (((-546) $) NIL (|has| (-145) (-624 (-546))))) (-2956 (($ (-654 (-145))) NIL)) (-4157 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) 19) (($ (-654 $)) 82)) (-2943 (($ (-145)) NIL) (((-872) $) 31 (|has| (-145) (-623 (-872))))) (-3284 (((-112) $ $) NIL (|has| (-145) (-1113)))) (-3390 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456)))) (-3042 (((-112) $ $) NIL (|has| (-145) (-860)))) (-3018 (((-112) $ $) NIL (|has| (-145) (-860)))) (-2981 (((-112) $ $) 17 (|has| (-145) (-1113)))) (-3030 (((-112) $ $) NIL (|has| (-145) (-860)))) (-3007 (((-112) $ $) 18 (|has| (-145) (-860)))) (-2863 (((-781) $) 16 (|has| $ (-6 -4456))))) -(((-603 |#1|) (-1157) (-574)) (T -603)) -NIL -(-1157) -((-3561 (((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2| (-1107 |#4|)) 32))) -(((-604 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3561 ((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2| (-1107 |#4|))) (-15 -3561 ((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2|))) (-803) (-860) (-566) (-960 |#3| |#1| |#2|)) (T -604)) -((-3561 (*1 *2 *3 *4) (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-566)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-574)))) (-5 *1 (-604 *5 *4 *6 *3)) (-4 *3 (-960 *6 *5 *4)))) (-3561 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1107 *3)) (-4 *3 (-960 *7 *6 *4)) (-4 *6 (-803)) (-4 *4 (-860)) (-4 *7 (-566)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-574)))) (-5 *1 (-604 *6 *4 *7 *3))))) -(-10 -7 (-15 -3561 ((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2| (-1107 |#4|))) (-15 -3561 ((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2|))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 71)) (-4355 (((-654 (-1095)) $) NIL)) (-1488 (((-1190) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-1575 (($ $) NIL (|has| |#1| (-566)))) (-2085 (((-112) $) NIL (|has| |#1| (-566)))) (-2052 (($ $ (-574)) 58) (($ $ (-574) (-574)) 59)) (-1878 (((-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) 65)) (-3370 (($ $) 109)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3784 (((-872) (-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) (-1039 (-853 (-574))) (-1190) |#1| (-417 (-574))) 241)) (-3623 (($ (-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) 36)) (-3426 (($) NIL T CONST)) (-1392 (($ $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2892 (((-112) $) NIL)) (-3884 (((-574) $) 63) (((-574) $ (-574)) 64)) (-3199 (((-112) $) NIL)) (-4240 (($ $ (-932)) 83)) (-2503 (($ (-1 |#1| (-574)) $) 80)) (-3869 (((-112) $) 26)) (-4335 (($ |#1| (-574)) 22) (($ $ (-1095) (-574)) NIL) (($ $ (-654 (-1095)) (-654 (-574))) NIL)) (-1777 (($ (-1 |#1| |#1|) $) 75)) (-1774 (($ (-1039 (-853 (-574))) (-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) 13)) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-4136 (((-1172) $) NIL)) (-2379 (($ $) 161 (|has| |#1| (-38 (-417 (-574)))))) (-4011 (((-3 $ "failed") $ $ (-112)) 108)) (-2583 (($ $ $) 116)) (-3966 (((-1133) $) NIL)) (-1373 (((-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) 15)) (-4169 (((-1039 (-853 (-574))) $) 14)) (-2533 (($ $ (-574)) 47)) (-2838 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2646 (((-1170 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-574)))))) (-2199 ((|#1| $ (-574)) 62) (($ $ $) NIL (|has| (-574) (-1125)))) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-574) |#1|)))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (-4202 (((-574) $) NIL)) (-1651 (($ $) 48)) (-2943 (((-872) $) NIL) (($ (-574)) 29) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566))) (($ |#1|) 28 (|has| |#1| (-174)))) (-3087 ((|#1| $ (-574)) 61)) (-3298 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1364 (((-781)) 39 T CONST)) (-3359 ((|#1| $) NIL)) (-3829 (($ $) 198 (|has| |#1| (-38 (-417 (-574)))))) (-2054 (($ $) 169 (|has| |#1| (-38 (-417 (-574)))))) (-2144 (($ $) 202 (|has| |#1| (-38 (-417 (-574)))))) (-2120 (($ $) 174 (|has| |#1| (-38 (-417 (-574)))))) (-2232 (($ $) 201 (|has| |#1| (-38 (-417 (-574)))))) (-1987 (($ $) 173 (|has| |#1| (-38 (-417 (-574)))))) (-3406 (($ $ (-417 (-574))) 177 (|has| |#1| (-38 (-417 (-574)))))) (-2979 (($ $ |#1|) 157 (|has| |#1| (-38 (-417 (-574)))))) (-3175 (($ $) 204 (|has| |#1| (-38 (-417 (-574)))))) (-3246 (($ $) 160 (|has| |#1| (-38 (-417 (-574)))))) (-3887 (($ $) 203 (|has| |#1| (-38 (-417 (-574)))))) (-3839 (($ $) 175 (|has| |#1| (-38 (-417 (-574)))))) (-3222 (($ $) 199 (|has| |#1| (-38 (-417 (-574)))))) (-3296 (($ $) 171 (|has| |#1| (-38 (-417 (-574)))))) (-4064 (($ $) 200 (|has| |#1| (-38 (-417 (-574)))))) (-4068 (($ $) 172 (|has| |#1| (-38 (-417 (-574)))))) (-1945 (($ $) 209 (|has| |#1| (-38 (-417 (-574)))))) (-1545 (($ $) 185 (|has| |#1| (-38 (-417 (-574)))))) (-2210 (($ $) 206 (|has| |#1| (-38 (-417 (-574)))))) (-2783 (($ $) 181 (|has| |#1| (-38 (-417 (-574)))))) (-3977 (($ $) 213 (|has| |#1| (-38 (-417 (-574)))))) (-2457 (($ $) 189 (|has| |#1| (-38 (-417 (-574)))))) (-3332 (($ $) 215 (|has| |#1| (-38 (-417 (-574)))))) (-3217 (($ $) 191 (|has| |#1| (-38 (-417 (-574)))))) (-2664 (($ $) 211 (|has| |#1| (-38 (-417 (-574)))))) (-3885 (($ $) 187 (|has| |#1| (-38 (-417 (-574)))))) (-3152 (($ $) 208 (|has| |#1| (-38 (-417 (-574)))))) (-2738 (($ $) 183 (|has| |#1| (-38 (-417 (-574)))))) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3551 ((|#1| $ (-574)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2133 (($) 30 T CONST)) (-2145 (($) 40 T CONST)) (-3610 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-574) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (-2981 (((-112) $ $) 73)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3094 (($ $) 91) (($ $ $) 72)) (-3079 (($ $ $) 88)) (** (($ $ (-932)) NIL) (($ $ (-781)) 111)) (* (($ (-932) $) 98) (($ (-781) $) 96) (($ (-574) $) 93) (($ $ $) 104) (($ $ |#1|) NIL) (($ |#1| $) 123) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) -(((-605 |#1|) (-13 (-1259 |#1| (-574)) (-10 -8 (-15 -1774 ($ (-1039 (-853 (-574))) (-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))))) (-15 -4169 ((-1039 (-853 (-574))) $)) (-15 -1373 ((-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $)) (-15 -3623 ($ (-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))))) (-15 -3869 ((-112) $)) (-15 -2503 ($ (-1 |#1| (-574)) $)) (-15 -4011 ((-3 $ "failed") $ $ (-112))) (-15 -3370 ($ $)) (-15 -2583 ($ $ $)) (-15 -3784 ((-872) (-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) (-1039 (-853 (-574))) (-1190) |#1| (-417 (-574)))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -2379 ($ $)) (-15 -2979 ($ $ |#1|)) (-15 -3406 ($ $ (-417 (-574)))) (-15 -3246 ($ $)) (-15 -3175 ($ $)) (-15 -2120 ($ $)) (-15 -4068 ($ $)) (-15 -2054 ($ $)) (-15 -3296 ($ $)) (-15 -1987 ($ $)) (-15 -3839 ($ $)) (-15 -2783 ($ $)) (-15 -2738 ($ $)) (-15 -1545 ($ $)) (-15 -3885 ($ $)) (-15 -2457 ($ $)) (-15 -3217 ($ $)) (-15 -2144 ($ $)) (-15 -4064 ($ $)) (-15 -3829 ($ $)) (-15 -3222 ($ $)) (-15 -2232 ($ $)) (-15 -3887 ($ $)) (-15 -2210 ($ $)) (-15 -3152 ($ $)) (-15 -1945 ($ $)) (-15 -2664 ($ $)) (-15 -3977 ($ $)) (-15 -3332 ($ $))) |%noBranch|))) (-1062)) (T -605)) -((-3869 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-605 *3)) (-4 *3 (-1062)))) (-1774 (*1 *1 *2 *3) (-12 (-5 *2 (-1039 (-853 (-574)))) (-5 *3 (-1170 (-2 (|:| |k| (-574)) (|:| |c| *4)))) (-4 *4 (-1062)) (-5 *1 (-605 *4)))) (-4169 (*1 *2 *1) (-12 (-5 *2 (-1039 (-853 (-574)))) (-5 *1 (-605 *3)) (-4 *3 (-1062)))) (-1373 (*1 *2 *1) (-12 (-5 *2 (-1170 (-2 (|:| |k| (-574)) (|:| |c| *3)))) (-5 *1 (-605 *3)) (-4 *3 (-1062)))) (-3623 (*1 *1 *2) (-12 (-5 *2 (-1170 (-2 (|:| |k| (-574)) (|:| |c| *3)))) (-4 *3 (-1062)) (-5 *1 (-605 *3)))) (-2503 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-574))) (-4 *3 (-1062)) (-5 *1 (-605 *3)))) (-4011 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-605 *3)) (-4 *3 (-1062)))) (-3370 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1062)))) (-2583 (*1 *1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1062)))) (-3784 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1170 (-2 (|:| |k| (-574)) (|:| |c| *6)))) (-5 *4 (-1039 (-853 (-574)))) (-5 *5 (-1190)) (-5 *7 (-417 (-574))) (-4 *6 (-1062)) (-5 *2 (-872)) (-5 *1 (-605 *6)))) (-2379 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-2979 (*1 *1 *1 *2) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-3406 (*1 *1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-605 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1062)))) (-3246 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-3175 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-2120 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-4068 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-2054 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-3296 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-1987 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-3839 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-2783 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-2738 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-1545 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-3885 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-2457 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-3217 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-2144 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-4064 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-3829 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-3222 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-2232 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-3887 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-2210 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-3152 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-1945 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-2664 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-3977 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) (-3332 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062))))) -(-13 (-1259 |#1| (-574)) (-10 -8 (-15 -1774 ($ (-1039 (-853 (-574))) (-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))))) (-15 -4169 ((-1039 (-853 (-574))) $)) (-15 -1373 ((-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $)) (-15 -3623 ($ (-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))))) (-15 -3869 ((-112) $)) (-15 -2503 ($ (-1 |#1| (-574)) $)) (-15 -4011 ((-3 $ "failed") $ $ (-112))) (-15 -3370 ($ $)) (-15 -2583 ($ $ $)) (-15 -3784 ((-872) (-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) (-1039 (-853 (-574))) (-1190) |#1| (-417 (-574)))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -2379 ($ $)) (-15 -2979 ($ $ |#1|)) (-15 -3406 ($ $ (-417 (-574)))) (-15 -3246 ($ $)) (-15 -3175 ($ $)) (-15 -2120 ($ $)) (-15 -4068 ($ $)) (-15 -2054 ($ $)) (-15 -3296 ($ $)) (-15 -1987 ($ $)) (-15 -3839 ($ $)) (-15 -2783 ($ $)) (-15 -2738 ($ $)) (-15 -1545 ($ $)) (-15 -3885 ($ $)) (-15 -2457 ($ $)) (-15 -3217 ($ $)) (-15 -2144 ($ $)) (-15 -4064 ($ $)) (-15 -3829 ($ $)) (-15 -3222 ($ $)) (-15 -2232 ($ $)) (-15 -3887 ($ $)) (-15 -2210 ($ $)) (-15 -3152 ($ $)) (-15 -1945 ($ $)) (-15 -2664 ($ $)) (-15 -3977 ($ $)) (-15 -3332 ($ $))) |%noBranch|))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 63)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-1575 (($ $) NIL (|has| |#1| (-566)))) (-2085 (((-112) $) NIL (|has| |#1| (-566)))) (-3524 (((-3 $ "failed") $ $) NIL)) (-3623 (($ (-1170 |#1|)) 9)) (-3426 (($) NIL T CONST)) (-3434 (((-3 $ "failed") $) 44)) (-2892 (((-112) $) 56)) (-3884 (((-781) $) 61) (((-781) $ (-781)) 60)) (-3199 (((-112) $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2838 (((-3 $ "failed") $ $) 46 (|has| |#1| (-566)))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL (|has| |#1| (-566)))) (-2530 (((-1170 |#1|) $) 25)) (-1364 (((-781)) 55 T CONST)) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2133 (($) 10 T CONST)) (-2145 (($) 14 T CONST)) (-2981 (((-112) $ $) 24)) (-3094 (($ $) 32) (($ $ $) 16)) (-3079 (($ $ $) 27)) (** (($ $ (-932)) NIL) (($ $ (-781)) 53)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 36) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-574)) 38))) -(((-606 |#1|) (-13 (-1062) (-111 |#1| |#1|) (-10 -8 (-15 -2530 ((-1170 |#1|) $)) (-15 -3623 ($ (-1170 |#1|))) (-15 -2892 ((-112) $)) (-15 -3884 ((-781) $)) (-15 -3884 ((-781) $ (-781))) (-15 * ($ $ (-574))) (IF (|has| |#1| (-566)) (-6 (-566)) |%noBranch|))) (-1062)) (T -606)) -((-2530 (*1 *2 *1) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-606 *3)) (-4 *3 (-1062)))) (-3623 (*1 *1 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-606 *3)))) (-2892 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-606 *3)) (-4 *3 (-1062)))) (-3884 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-606 *3)) (-4 *3 (-1062)))) (-3884 (*1 *2 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-606 *3)) (-4 *3 (-1062)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-606 *3)) (-4 *3 (-1062))))) -(-13 (-1062) (-111 |#1| |#1|) (-10 -8 (-15 -2530 ((-1170 |#1|) $)) (-15 -3623 ($ (-1170 |#1|))) (-15 -2892 ((-112) $)) (-15 -3884 ((-781) $)) (-15 -3884 ((-781) $ (-781))) (-15 * ($ $ (-574))) (IF (|has| |#1| (-566)) (-6 (-566)) |%noBranch|))) -((-2849 (((-112) $ $) NIL)) (-3289 (($) 8 T CONST)) (-1975 (($) 7 T CONST)) (-4127 (($ $ (-654 $)) 16)) (-4136 (((-1172) $) NIL)) (-4189 (($) 6 T CONST)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL) (($ (-1195)) 15) (((-1195) $) 10)) (-2843 (($) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-607) (-13 (-1113) (-500 (-1195)) (-10 -8 (-15 -4189 ($) -1706) (-15 -1975 ($) -1706) (-15 -3289 ($) -1706) (-15 -2843 ($) -1706) (-15 -4127 ($ $ (-654 $)))))) (T -607)) -((-4189 (*1 *1) (-5 *1 (-607))) (-1975 (*1 *1) (-5 *1 (-607))) (-3289 (*1 *1) (-5 *1 (-607))) (-2843 (*1 *1) (-5 *1 (-607))) (-4127 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-607))) (-5 *1 (-607))))) -(-13 (-1113) (-500 (-1195)) (-10 -8 (-15 -4189 ($) -1706) (-15 -1975 ($) -1706) (-15 -3289 ($) -1706) (-15 -2843 ($) -1706) (-15 -4127 ($ $ (-654 $))))) -((-1777 (((-611 |#2|) (-1 |#2| |#1|) (-611 |#1|)) 15))) -(((-608 |#1| |#2|) (-10 -7 (-15 -1777 ((-611 |#2|) (-1 |#2| |#1|) (-611 |#1|)))) (-1231) (-1231)) (T -608)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-611 *5)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-611 *6)) (-5 *1 (-608 *5 *6))))) -(-10 -7 (-15 -1777 ((-611 |#2|) (-1 |#2| |#1|) (-611 |#1|)))) -((-1777 (((-1170 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-1170 |#2|)) 20) (((-1170 |#3|) (-1 |#3| |#1| |#2|) (-1170 |#1|) (-611 |#2|)) 19) (((-611 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-611 |#2|)) 18))) -(((-609 |#1| |#2| |#3|) (-10 -7 (-15 -1777 ((-611 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-611 |#2|))) (-15 -1777 ((-1170 |#3|) (-1 |#3| |#1| |#2|) (-1170 |#1|) (-611 |#2|))) (-15 -1777 ((-1170 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-1170 |#2|)))) (-1231) (-1231) (-1231)) (T -609)) -((-1777 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-611 *6)) (-5 *5 (-1170 *7)) (-4 *6 (-1231)) (-4 *7 (-1231)) (-4 *8 (-1231)) (-5 *2 (-1170 *8)) (-5 *1 (-609 *6 *7 *8)))) (-1777 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1170 *6)) (-5 *5 (-611 *7)) (-4 *6 (-1231)) (-4 *7 (-1231)) (-4 *8 (-1231)) (-5 *2 (-1170 *8)) (-5 *1 (-609 *6 *7 *8)))) (-1777 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-611 *6)) (-5 *5 (-611 *7)) (-4 *6 (-1231)) (-4 *7 (-1231)) (-4 *8 (-1231)) (-5 *2 (-611 *8)) (-5 *1 (-609 *6 *7 *8))))) -(-10 -7 (-15 -1777 ((-611 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-611 |#2|))) (-15 -1777 ((-1170 |#3|) (-1 |#3| |#1| |#2|) (-1170 |#1|) (-611 |#2|))) (-15 -1777 ((-1170 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-1170 |#2|)))) -((-3600 ((|#3| |#3| (-654 (-622 |#3|)) (-654 (-1190))) 57)) (-2804 (((-171 |#2|) |#3|) 122)) (-2695 ((|#3| (-171 |#2|)) 46)) (-3718 ((|#2| |#3|) 21)) (-1679 ((|#3| |#2|) 35))) -(((-610 |#1| |#2| |#3|) (-10 -7 (-15 -2695 (|#3| (-171 |#2|))) (-15 -3718 (|#2| |#3|)) (-15 -1679 (|#3| |#2|)) (-15 -2804 ((-171 |#2|) |#3|)) (-15 -3600 (|#3| |#3| (-654 (-622 |#3|)) (-654 (-1190))))) (-566) (-13 (-440 |#1|) (-1015) (-1216)) (-13 (-440 (-171 |#1|)) (-1015) (-1216))) (T -610)) -((-3600 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-654 (-622 *2))) (-5 *4 (-654 (-1190))) (-4 *2 (-13 (-440 (-171 *5)) (-1015) (-1216))) (-4 *5 (-566)) (-5 *1 (-610 *5 *6 *2)) (-4 *6 (-13 (-440 *5) (-1015) (-1216))))) (-2804 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-171 *5)) (-5 *1 (-610 *4 *5 *3)) (-4 *5 (-13 (-440 *4) (-1015) (-1216))) (-4 *3 (-13 (-440 (-171 *4)) (-1015) (-1216))))) (-1679 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *2 (-13 (-440 (-171 *4)) (-1015) (-1216))) (-5 *1 (-610 *4 *3 *2)) (-4 *3 (-13 (-440 *4) (-1015) (-1216))))) (-3718 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *2 (-13 (-440 *4) (-1015) (-1216))) (-5 *1 (-610 *4 *2 *3)) (-4 *3 (-13 (-440 (-171 *4)) (-1015) (-1216))))) (-2695 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-440 *4) (-1015) (-1216))) (-4 *4 (-566)) (-4 *2 (-13 (-440 (-171 *4)) (-1015) (-1216))) (-5 *1 (-610 *4 *5 *2))))) -(-10 -7 (-15 -2695 (|#3| (-171 |#2|))) (-15 -3718 (|#2| |#3|)) (-15 -1679 (|#3| |#2|)) (-15 -2804 ((-171 |#2|) |#3|)) (-15 -3600 (|#3| |#3| (-654 (-622 |#3|)) (-654 (-1190))))) -((-2165 (($ (-1 (-112) |#1|) $) 17)) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-2094 (($ (-1 |#1| |#1|) |#1|) 9)) (-2140 (($ (-1 (-112) |#1|) $) 13)) (-2151 (($ (-1 (-112) |#1|) $) 15)) (-2956 (((-1170 |#1|) $) 18)) (-2943 (((-872) $) NIL))) -(((-611 |#1|) (-13 (-623 (-872)) (-10 -8 (-15 -1777 ($ (-1 |#1| |#1|) $)) (-15 -2140 ($ (-1 (-112) |#1|) $)) (-15 -2151 ($ (-1 (-112) |#1|) $)) (-15 -2165 ($ (-1 (-112) |#1|) $)) (-15 -2094 ($ (-1 |#1| |#1|) |#1|)) (-15 -2956 ((-1170 |#1|) $)))) (-1231)) (T -611)) -((-1777 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1231)) (-5 *1 (-611 *3)))) (-2140 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1231)) (-5 *1 (-611 *3)))) (-2151 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1231)) (-5 *1 (-611 *3)))) (-2165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1231)) (-5 *1 (-611 *3)))) (-2094 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1231)) (-5 *1 (-611 *3)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-611 *3)) (-4 *3 (-1231))))) -(-13 (-623 (-872)) (-10 -8 (-15 -1777 ($ (-1 |#1| |#1|) $)) (-15 -2140 ($ (-1 (-112) |#1|) $)) (-15 -2151 ($ (-1 (-112) |#1|) $)) (-15 -2165 ($ (-1 (-112) |#1|) $)) (-15 -2094 ($ (-1 |#1| |#1|) |#1|)) (-15 -2956 ((-1170 |#1|) $)))) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2216 (($ (-781)) NIL (|has| |#1| (-23)))) (-3714 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-1357 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-3642 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4457))) (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| |#1| (-860))))) (-2771 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-3034 (((-112) $ (-781)) NIL)) (-3143 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) NIL (|has| $ (-6 -4457)))) (-2165 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3426 (($) NIL T CONST)) (-2627 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3335 (($ |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-2458 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) NIL)) (-1441 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1113))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1113)))) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3899 (((-699 |#1|) $ $) NIL (|has| |#1| (-1062)))) (-3790 (($ (-781) |#1|) NIL)) (-2742 (((-112) $ (-781)) NIL)) (-3618 (((-574) $) NIL (|has| (-574) (-860)))) (-3659 (($ $ $) NIL (|has| |#1| (-860)))) (-4430 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2702 (((-574) $) NIL (|has| (-574) (-860)))) (-4257 (($ $ $) NIL (|has| |#1| (-860)))) (-2449 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2963 ((|#1| $) NIL (-12 (|has| |#1| (-1015)) (|has| |#1| (-1062))))) (-4203 (((-112) $ (-781)) NIL)) (-4135 ((|#1| $) NIL (-12 (|has| |#1| (-1015)) (|has| |#1| (-1062))))) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-1594 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-4308 (((-654 (-574)) $) NIL)) (-3336 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2915 ((|#1| $) NIL (|has| (-574) (-860)))) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1942 (($ $ |#1|) NIL (|has| $ (-6 -4457)))) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-4371 (((-654 |#1|) $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-4236 ((|#1| $ $) NIL (|has| |#1| (-1062)))) (-2840 (($ $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-1585 (($ $ $) NIL (|has| |#1| (-1062)))) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3506 (($ $ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3167 (($ $) NIL)) (-1836 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) NIL)) (-4157 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3007 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3094 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3079 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-574) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-736))) (($ $ |#1|) NIL (|has| |#1| (-736)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-612 |#1| |#2|) (-1279 |#1|) (-1231) (-574)) (T -612)) -NIL -(-1279 |#1|) -((-3714 (((-1286) $ |#2| |#2|) 35)) (-3618 ((|#2| $) 23)) (-2702 ((|#2| $) 21)) (-2449 (($ (-1 |#3| |#3|) $) 32)) (-1777 (($ (-1 |#3| |#3|) $) 30)) (-2915 ((|#3| $) 26)) (-1942 (($ $ |#3|) 33)) (-3398 (((-112) |#3| $) 17)) (-4371 (((-654 |#3|) $) 15)) (-2199 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-613 |#1| |#2| |#3|) (-10 -8 (-15 -3714 ((-1286) |#1| |#2| |#2|)) (-15 -1942 (|#1| |#1| |#3|)) (-15 -2915 (|#3| |#1|)) (-15 -3618 (|#2| |#1|)) (-15 -2702 (|#2| |#1|)) (-15 -3398 ((-112) |#3| |#1|)) (-15 -4371 ((-654 |#3|) |#1|)) (-15 -2199 (|#3| |#1| |#2|)) (-15 -2199 (|#3| |#1| |#2| |#3|)) (-15 -2449 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1777 (|#1| (-1 |#3| |#3|) |#1|))) (-614 |#2| |#3|) (-1113) (-1231)) (T -613)) -NIL -(-10 -8 (-15 -3714 ((-1286) |#1| |#2| |#2|)) (-15 -1942 (|#1| |#1| |#3|)) (-15 -2915 (|#3| |#1|)) (-15 -3618 (|#2| |#1|)) (-15 -2702 (|#2| |#1|)) (-15 -3398 ((-112) |#3| |#1|)) (-15 -4371 ((-654 |#3|) |#1|)) (-15 -2199 (|#3| |#1| |#2|)) (-15 -2199 (|#3| |#1| |#2| |#3|)) (-15 -2449 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1777 (|#1| (-1 |#3| |#3|) |#1|))) -((-2849 (((-112) $ $) 19 (|has| |#2| (-1113)))) (-3714 (((-1286) $ |#1| |#1|) 41 (|has| $ (-6 -4457)))) (-3034 (((-112) $ (-781)) 8)) (-3143 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4457)))) (-3426 (($) 7 T CONST)) (-2458 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4457)))) (-2385 ((|#2| $ |#1|) 52)) (-1864 (((-654 |#2|) $) 31 (|has| $ (-6 -4456)))) (-2742 (((-112) $ (-781)) 9)) (-3618 ((|#1| $) 44 (|has| |#1| (-860)))) (-1606 (((-654 |#2|) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1113)) (|has| $ (-6 -4456))))) (-2702 ((|#1| $) 45 (|has| |#1| (-860)))) (-2449 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#2| |#2|) $) 36)) (-4203 (((-112) $ (-781)) 10)) (-4136 (((-1172) $) 22 (|has| |#2| (-1113)))) (-4308 (((-654 |#1|) $) 47)) (-3336 (((-112) |#1| $) 48)) (-3966 (((-1133) $) 21 (|has| |#2| (-1113)))) (-2915 ((|#2| $) 43 (|has| |#1| (-860)))) (-1942 (($ $ |#2|) 42 (|has| $ (-6 -4457)))) (-2540 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#2|))) 27 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) 26 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) 24 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))) (-4017 (((-112) $ $) 14)) (-3398 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-4371 (((-654 |#2|) $) 49)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-2199 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-3975 (((-781) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4456))) (((-781) |#2| $) 29 (-12 (|has| |#2| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-2943 (((-872) $) 18 (|has| |#2| (-623 (-872))))) (-3284 (((-112) $ $) 23 (|has| |#2| (-1113)))) (-3390 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 20 (|has| |#2| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-614 |#1| |#2|) (-141) (-1113) (-1231)) (T -614)) -((-4371 (*1 *2 *1) (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1231)) (-5 *2 (-654 *4)))) (-3336 (*1 *2 *3 *1) (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1231)) (-5 *2 (-112)))) (-4308 (*1 *2 *1) (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1231)) (-5 *2 (-654 *3)))) (-3398 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-614 *4 *3)) (-4 *4 (-1113)) (-4 *3 (-1231)) (-4 *3 (-1113)) (-5 *2 (-112)))) (-2702 (*1 *2 *1) (-12 (-4 *1 (-614 *2 *3)) (-4 *3 (-1231)) (-4 *2 (-1113)) (-4 *2 (-860)))) (-3618 (*1 *2 *1) (-12 (-4 *1 (-614 *2 *3)) (-4 *3 (-1231)) (-4 *2 (-1113)) (-4 *2 (-860)))) (-2915 (*1 *2 *1) (-12 (-4 *1 (-614 *3 *2)) (-4 *3 (-1113)) (-4 *3 (-860)) (-4 *2 (-1231)))) (-1942 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-614 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1231)))) (-3714 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-614 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1231)) (-5 *2 (-1286))))) -(-13 (-499 |t#2|) (-296 |t#1| |t#2|) (-10 -8 (-15 -4371 ((-654 |t#2|) $)) (-15 -3336 ((-112) |t#1| $)) (-15 -4308 ((-654 |t#1|) $)) (IF (|has| |t#2| (-1113)) (IF (|has| $ (-6 -4456)) (-15 -3398 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-860)) (PROGN (-15 -2702 (|t#1| $)) (-15 -3618 (|t#1| $)) (-15 -2915 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4457)) (PROGN (-15 -1942 ($ $ |t#2|)) (-15 -3714 ((-1286) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#2| (-1113)) ((-623 (-872)) -2818 (|has| |#2| (-1113)) (|has| |#2| (-623 (-872)))) ((-294 |#1| |#2|) . T) ((-296 |#1| |#2|) . T) ((-317 |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((-499 |#2|) . T) ((-524 |#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((-1113) |has| |#2| (-1113)) ((-1231) . T)) -((-2943 (((-872) $) 19) (($ (-130)) 13) (((-130) $) 14))) -(((-615) (-13 (-623 (-872)) (-500 (-130)))) (T -615)) -NIL -(-13 (-623 (-872)) (-500 (-130))) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL) (($ (-1195)) NIL) (((-1195) $) NIL) (((-1230) $) 14) (($ (-654 (-1230))) 13)) (-4289 (((-654 (-1230)) $) 10)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-616) (-13 (-1096) (-623 (-1230)) (-10 -8 (-15 -2943 ($ (-654 (-1230)))) (-15 -4289 ((-654 (-1230)) $))))) (T -616)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-654 (-1230))) (-5 *1 (-616)))) (-4289 (*1 *2 *1) (-12 (-5 *2 (-654 (-1230))) (-5 *1 (-616))))) -(-13 (-1096) (-623 (-1230)) (-10 -8 (-15 -2943 ($ (-654 (-1230)))) (-15 -4289 ((-654 (-1230)) $)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-2785 (((-3 $ "failed")) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3524 (((-3 $ "failed") $ $) NIL)) (-2174 (((-1281 (-699 |#1|))) NIL (|has| |#2| (-427 |#1|))) (((-1281 (-699 |#1|)) (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-4274 (((-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-3426 (($) NIL T CONST)) (-1666 (((-3 (-2 (|:| |particular| $) (|:| -1882 (-654 $))) "failed")) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1854 (((-3 $ "failed")) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2301 (((-699 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-2538 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-3208 (((-699 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) $ (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-2784 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2378 (((-1186 (-963 |#1|))) NIL (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-372))))) (-2397 (($ $ (-932)) NIL)) (-3870 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-3664 (((-1186 |#1|) $) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1565 ((|#1|) NIL (|has| |#2| (-427 |#1|))) ((|#1| (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-1436 (((-1186 |#1|) $) NIL (|has| |#2| (-376 |#1|)))) (-3287 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2737 (($ (-1281 |#1|)) NIL (|has| |#2| (-427 |#1|))) (($ (-1281 |#1|) (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-3434 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3584 (((-932)) NIL (|has| |#2| (-376 |#1|)))) (-2542 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2817 (($ $ (-932)) NIL)) (-1514 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3168 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3531 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2269 (((-3 (-2 (|:| |particular| $) (|:| -1882 (-654 $))) "failed")) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1484 (((-3 $ "failed")) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2284 (((-699 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-1450 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-2787 (((-699 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) $ (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-4271 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1451 (((-1186 (-963 |#1|))) NIL (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-372))))) (-2422 (($ $ (-932)) NIL)) (-2552 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-1460 (((-1186 |#1|) $) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1810 ((|#1|) NIL (|has| |#2| (-427 |#1|))) ((|#1| (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-1943 (((-1186 |#1|) $) NIL (|has| |#2| (-376 |#1|)))) (-4037 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-4136 (((-1172) $) NIL)) (-1342 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3227 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2949 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3966 (((-1133) $) NIL)) (-3604 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2199 ((|#1| $ (-574)) NIL (|has| |#2| (-427 |#1|)))) (-3487 (((-699 |#1|) (-1281 $)) NIL (|has| |#2| (-427 |#1|))) (((-1281 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1281 $) (-1281 $)) NIL (|has| |#2| (-376 |#1|))) (((-1281 |#1|) $ (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-1836 (($ (-1281 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-1281 |#1|) $) NIL (|has| |#2| (-427 |#1|)))) (-3760 (((-654 (-963 |#1|))) NIL (|has| |#2| (-427 |#1|))) (((-654 (-963 |#1|)) (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-3204 (($ $ $) NIL)) (-3163 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2943 (((-872) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3284 (((-112) $ $) NIL)) (-1882 (((-1281 $)) NIL (|has| |#2| (-427 |#1|)))) (-2735 (((-654 (-1281 |#1|))) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1320 (($ $ $ $) NIL)) (-2525 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2901 (($ (-699 |#1|) $) NIL (|has| |#2| (-427 |#1|)))) (-2299 (($ $ $) NIL)) (-3971 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3545 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-1950 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2133 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) 24)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-617 |#1| |#2|) (-13 (-754 |#1|) (-623 |#2|) (-10 -8 (-15 -2943 ($ |#2|)) (IF (|has| |#2| (-427 |#1|)) (-6 (-427 |#1|)) |%noBranch|) (IF (|has| |#2| (-376 |#1|)) (-6 (-376 |#1|)) |%noBranch|))) (-174) (-754 |#1|)) (T -617)) -((-2943 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-617 *3 *2)) (-4 *2 (-754 *3))))) -(-13 (-754 |#1|) (-623 |#2|) (-10 -8 (-15 -2943 ($ |#2|)) (IF (|has| |#2| (-427 |#1|)) (-6 (-427 |#1|)) |%noBranch|) (IF (|has| |#2| (-376 |#1|)) (-6 (-376 |#1|)) |%noBranch|))) -((-2849 (((-112) $ $) NIL)) (-3203 (((-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) $ (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) 39)) (-3778 (($ (-654 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)))) NIL) (($) NIL)) (-3714 (((-1286) $ (-1172) (-1172)) NIL (|has| $ (-6 -4457)))) (-3034 (((-112) $ (-781)) NIL)) (-3143 ((|#1| $ (-1172) |#1|) 49)) (-3572 (($ (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) $) NIL (|has| $ (-6 -4456)))) (-2165 (($ (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) $) NIL (|has| $ (-6 -4456)))) (-2163 (((-3 |#1| "failed") (-1172) $) 52)) (-3426 (($) NIL T CONST)) (-2263 (($ $ (-1172)) 25)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-1113))))) (-2876 (((-3 |#1| "failed") (-1172) $) 53) (($ (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) $) NIL (|has| $ (-6 -4456))) (($ (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) $) NIL (|has| $ (-6 -4456)))) (-3335 (($ (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) $) NIL (|has| $ (-6 -4456))) (($ (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-1113))))) (-2868 (((-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-1 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) $) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-1 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) $ (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-1 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) $ (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-1113))))) (-3259 (((-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) $) 38)) (-2458 ((|#1| $ (-1172) |#1|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-1172)) NIL)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456))) (((-654 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) $) NIL (|has| $ (-6 -4456)))) (-3120 (($ $) 54)) (-1675 (($ (-398)) 23) (($ (-398) (-1172)) 22)) (-2032 (((-398) $) 40)) (-2742 (((-112) $ (-781)) NIL)) (-3618 (((-1172) $) NIL (|has| (-1172) (-860)))) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456))) (((-654 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) (((-112) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-1113))))) (-2702 (((-1172) $) NIL (|has| (-1172) (-860)))) (-2449 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457))) (($ (-1 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL)) (-1763 (((-654 (-1172)) $) 45)) (-1732 (((-112) (-1172) $) NIL)) (-3766 (((-1172) $) 41)) (-2937 (((-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) $) NIL)) (-2798 (($ (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) $) NIL)) (-4308 (((-654 (-1172)) $) NIL)) (-3336 (((-112) (-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2915 ((|#1| $) NIL (|has| (-1172) (-860)))) (-1549 (((-3 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) "failed") (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) $) NIL)) (-1942 (($ $ |#1|) NIL (|has| $ (-6 -4457)))) (-1785 (((-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) $) NIL)) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) (-654 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)))) NIL (-12 (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-317 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)))) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-1113)))) (($ $ (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) NIL (-12 (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-317 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)))) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-1113)))) (($ $ (-302 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)))) NIL (-12 (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-317 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)))) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-1113)))) (($ $ (-654 (-302 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))))) NIL (-12 (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-317 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)))) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-4371 (((-654 |#1|) $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) 43)) (-2199 ((|#1| $ (-1172) |#1|) NIL) ((|#1| $ (-1172)) 48)) (-1662 (($ (-654 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)))) NIL) (($) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) (((-781) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-1113)))) (((-781) (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) NIL)) (-1836 (((-546) $) NIL (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-624 (-546))))) (-2956 (($ (-654 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)))) NIL)) (-2943 (((-872) $) 21)) (-3646 (($ $) 26)) (-3284 (((-112) $ $) NIL)) (-1599 (($ (-654 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)))) NIL)) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) $) NIL (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 20)) (-2863 (((-781) $) 47 (|has| $ (-6 -4456))))) -(((-618 |#1|) (-13 (-373 (-398) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) (-1207 (-1172) |#1|) (-10 -8 (-6 -4456) (-15 -3120 ($ $)))) (-1113)) (T -618)) -((-3120 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1113))))) -(-13 (-373 (-398) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) (-1207 (-1172) |#1|) (-10 -8 (-6 -4456) (-15 -3120 ($ $)))) -((-1710 (((-112) (-2 (|:| -3693 |#2|) (|:| -1908 |#3|)) $) 16)) (-1763 (((-654 |#2|) $) 20)) (-1732 (((-112) |#2| $) 12))) -(((-619 |#1| |#2| |#3|) (-10 -8 (-15 -1763 ((-654 |#2|) |#1|)) (-15 -1732 ((-112) |#2| |#1|)) (-15 -1710 ((-112) (-2 (|:| -3693 |#2|) (|:| -1908 |#3|)) |#1|))) (-620 |#2| |#3|) (-1113) (-1113)) (T -619)) -NIL -(-10 -8 (-15 -1763 ((-654 |#2|) |#1|)) (-15 -1732 ((-112) |#2| |#1|)) (-15 -1710 ((-112) (-2 (|:| -3693 |#2|) (|:| -1908 |#3|)) |#1|))) -((-2849 (((-112) $ $) 19 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (-3034 (((-112) $ (-781)) 8)) (-3572 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 46 (|has| $ (-6 -4456)))) (-2165 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 56 (|has| $ (-6 -4456)))) (-2163 (((-3 |#2| "failed") |#1| $) 62)) (-3426 (($) 7 T CONST)) (-1543 (($ $) 59 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| $ (-6 -4456))))) (-2876 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 48 (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 47 (|has| $ (-6 -4456))) (((-3 |#2| "failed") |#1| $) 63)) (-3335 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 55 (|has| $ (-6 -4456)))) (-2868 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) 57 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| $ (-6 -4456)))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) 54 (|has| $ (-6 -4456))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 53 (|has| $ (-6 -4456)))) (-1864 (((-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 31 (|has| $ (-6 -4456)))) (-2742 (((-112) $ (-781)) 9)) (-1606 (((-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| $ (-6 -4456))))) (-2449 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 36)) (-4203 (((-112) $ (-781)) 10)) (-4136 (((-1172) $) 22 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (-1763 (((-654 |#1|) $) 64)) (-1732 (((-112) |#1| $) 65)) (-2937 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 40)) (-2798 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 41)) (-3966 (((-1133) $) 21 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (-1549 (((-3 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) "failed") (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 52)) (-1785 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 42)) (-2540 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))))) 27 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-302 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) 26 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) 25 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) 24 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))))) (-4017 (((-112) $ $) 14)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-1662 (($) 50) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) 49)) (-3975 (((-781) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 32 (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-1836 (((-546) $) 60 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-624 (-546))))) (-2956 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) 51)) (-2943 (((-872) $) 18 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-623 (-872))))) (-3284 (((-112) $ $) 23 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (-1599 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) 43)) (-3390 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 34 (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 20 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-620 |#1| |#2|) (-141) (-1113) (-1113)) (T -620)) -((-1732 (*1 *2 *3 *1) (-12 (-4 *1 (-620 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-5 *2 (-112)))) (-1763 (*1 *2 *1) (-12 (-4 *1 (-620 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-5 *2 (-654 *3)))) (-2876 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-620 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1113)))) (-2163 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-620 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1113))))) -(-13 (-231 (-2 (|:| -3693 |t#1|) (|:| -1908 |t#2|))) (-10 -8 (-15 -1732 ((-112) |t#1| $)) (-15 -1763 ((-654 |t#1|) $)) (-15 -2876 ((-3 |t#2| "failed") |t#1| $)) (-15 -2163 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T) ((-102) |has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) ((-623 (-872)) -2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-623 (-872)))) ((-152 #0#) . T) ((-624 (-546)) |has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-624 (-546))) ((-231 #0#) . T) ((-241 #0#) . T) ((-317 #0#) -12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))) ((-499 #0#) . T) ((-524 #0# #0#) -12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))) ((-1113) |has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) ((-1231) . T)) -((-3331 (((-622 |#2|) |#1|) 17)) (-1693 (((-3 |#1| "failed") (-622 |#2|)) 21))) -(((-621 |#1| |#2|) (-10 -7 (-15 -3331 ((-622 |#2|) |#1|)) (-15 -1693 ((-3 |#1| "failed") (-622 |#2|)))) (-1113) (-1113)) (T -621)) -((-1693 (*1 *2 *3) (|partial| -12 (-5 *3 (-622 *4)) (-4 *4 (-1113)) (-4 *2 (-1113)) (-5 *1 (-621 *2 *4)))) (-3331 (*1 *2 *3) (-12 (-5 *2 (-622 *4)) (-5 *1 (-621 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113))))) -(-10 -7 (-15 -3331 ((-622 |#2|) |#1|)) (-15 -1693 ((-3 |#1| "failed") (-622 |#2|)))) -((-2849 (((-112) $ $) NIL)) (-4023 (((-3 (-1190) "failed") $) 46)) (-2048 (((-1286) $ (-781)) 22)) (-1441 (((-781) $) 20)) (-4175 (((-115) $) 9)) (-3659 (($ $ $) NIL)) (-4257 (($ $ $) NIL)) (-4136 (((-1172) $) NIL)) (-1775 (($ (-115) (-654 |#1|) (-781)) 32) (($ (-1190)) 33)) (-4103 (((-112) $ (-115)) 15) (((-112) $ (-1190)) 13)) (-1839 (((-781) $) 17)) (-3966 (((-1133) $) NIL)) (-1836 (((-903 (-574)) $) 95 (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) 102 (|has| |#1| (-624 (-903 (-388))))) (((-546) $) 88 (|has| |#1| (-624 (-546))))) (-2943 (((-872) $) 72)) (-3284 (((-112) $ $) NIL)) (-3725 (((-654 |#1|) $) 19)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 51)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) 53))) -(((-622 |#1|) (-13 (-133) (-860) (-895 |#1|) (-10 -8 (-15 -4175 ((-115) $)) (-15 -3725 ((-654 |#1|) $)) (-15 -1839 ((-781) $)) (-15 -1775 ($ (-115) (-654 |#1|) (-781))) (-15 -1775 ($ (-1190))) (-15 -4023 ((-3 (-1190) "failed") $)) (-15 -4103 ((-112) $ (-115))) (-15 -4103 ((-112) $ (-1190))) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|))) (-1113)) (T -622)) -((-4175 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-622 *3)) (-4 *3 (-1113)))) (-3725 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-622 *3)) (-4 *3 (-1113)))) (-1839 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-622 *3)) (-4 *3 (-1113)))) (-1775 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-654 *5)) (-5 *4 (-781)) (-4 *5 (-1113)) (-5 *1 (-622 *5)))) (-1775 (*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-622 *3)) (-4 *3 (-1113)))) (-4023 (*1 *2 *1) (|partial| -12 (-5 *2 (-1190)) (-5 *1 (-622 *3)) (-4 *3 (-1113)))) (-4103 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-622 *4)) (-4 *4 (-1113)))) (-4103 (*1 *2 *1 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-112)) (-5 *1 (-622 *4)) (-4 *4 (-1113))))) -(-13 (-133) (-860) (-895 |#1|) (-10 -8 (-15 -4175 ((-115) $)) (-15 -3725 ((-654 |#1|) $)) (-15 -1839 ((-781) $)) (-15 -1775 ($ (-115) (-654 |#1|) (-781))) (-15 -1775 ($ (-1190))) (-15 -4023 ((-3 (-1190) "failed") $)) (-15 -4103 ((-112) $ (-115))) (-15 -4103 ((-112) $ (-1190))) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|))) -((-2943 ((|#1| $) 6))) -(((-623 |#1|) (-141) (-1231)) (T -623)) -((-2943 (*1 *2 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1231))))) -(-13 (-10 -8 (-15 -2943 (|t#1| $)))) -((-1836 ((|#1| $) 6))) -(((-624 |#1|) (-141) (-1231)) (T -624)) -((-1836 (*1 *2 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1231))))) -(-13 (-10 -8 (-15 -1836 (|t#1| $)))) -((-1948 (((-3 (-1186 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 (-428 |#2|) |#2|)) 15) (((-3 (-1186 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|)) 16))) -(((-625 |#1| |#2|) (-10 -7 (-15 -1948 ((-3 (-1186 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|))) (-15 -1948 ((-3 (-1186 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 (-428 |#2|) |#2|)))) (-13 (-148) (-27) (-1051 (-574)) (-1051 (-417 (-574)))) (-1257 |#1|)) (T -625)) -((-1948 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1257 *5)) (-4 *5 (-13 (-148) (-27) (-1051 (-574)) (-1051 (-417 (-574))))) (-5 *2 (-1186 (-417 *6))) (-5 *1 (-625 *5 *6)) (-5 *3 (-417 *6)))) (-1948 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1051 (-574)) (-1051 (-417 (-574))))) (-4 *5 (-1257 *4)) (-5 *2 (-1186 (-417 *5))) (-5 *1 (-625 *4 *5)) (-5 *3 (-417 *5))))) -(-10 -7 (-15 -1948 ((-3 (-1186 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|))) (-15 -1948 ((-3 (-1186 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 (-428 |#2|) |#2|)))) -((-2943 (($ |#1|) 6))) -(((-626 |#1|) (-141) (-1231)) (T -626)) -((-2943 (*1 *1 *2) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1231))))) -(-13 (-10 -8 (-15 -2943 ($ |t#1|)))) -((-2849 (((-112) $ $) NIL)) (-2034 (($) 14 T CONST)) (-1562 (($) 15 T CONST)) (-2098 (($ $ $) 29)) (-2076 (($ $) 27)) (-4136 (((-1172) $) NIL)) (-1721 (($ $ $) 30)) (-3966 (((-1133) $) NIL)) (-2883 (($) 11 T CONST)) (-3953 (($ $ $) 31)) (-2943 (((-872) $) 35)) (-2122 (((-112) $ (|[\|\|]| -2883)) 24) (((-112) $ (|[\|\|]| -2034)) 26) (((-112) $ (|[\|\|]| -1562)) 21)) (-3284 (((-112) $ $) NIL)) (-2087 (($ $ $) 28)) (-2981 (((-112) $ $) 18))) -(((-627) (-13 (-980) (-10 -8 (-15 -2034 ($) -1706) (-15 -2122 ((-112) $ (|[\|\|]| -2883))) (-15 -2122 ((-112) $ (|[\|\|]| -2034))) (-15 -2122 ((-112) $ (|[\|\|]| -1562)))))) (T -627)) -((-2034 (*1 *1) (-5 *1 (-627))) (-2122 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2883)) (-5 *2 (-112)) (-5 *1 (-627)))) (-2122 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2034)) (-5 *2 (-112)) (-5 *1 (-627)))) (-2122 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1562)) (-5 *2 (-112)) (-5 *1 (-627))))) -(-13 (-980) (-10 -8 (-15 -2034 ($) -1706) (-15 -2122 ((-112) $ (|[\|\|]| -2883))) (-15 -2122 ((-112) $ (|[\|\|]| -2034))) (-15 -2122 ((-112) $ (|[\|\|]| -1562))))) -((-1836 (($ |#1|) 6))) -(((-628 |#1|) (-141) (-1231)) (T -628)) -((-1836 (*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1231))))) -(-13 (-10 -8 (-15 -1836 ($ |t#1|)))) -((-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) 10))) -(((-629 |#1| |#2|) (-10 -8 (-15 -2943 (|#1| |#2|)) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|))) (-630 |#2|) (-1062)) (T -629)) -NIL -(-10 -8 (-15 -2943 (|#1| |#2|)) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-3434 (((-3 $ "failed") $) 37)) (-3199 (((-112) $) 35)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 41)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ |#1| $) 42))) -(((-630 |#1|) (-141) (-1062)) (T -630)) -((-2943 (*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1062))))) -(-13 (-1062) (-658 |t#1|) (-10 -8 (-15 -2943 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-736) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-2846 (((-574) $) NIL (|has| |#1| (-858)))) (-3426 (($) NIL T CONST)) (-3434 (((-3 $ "failed") $) NIL)) (-2756 (((-112) $) NIL (|has| |#1| (-858)))) (-3199 (((-112) $) NIL)) (-2966 ((|#1| $) 13)) (-1335 (((-112) $) NIL (|has| |#1| (-858)))) (-3659 (($ $ $) NIL (|has| |#1| (-858)))) (-4257 (($ $ $) NIL (|has| |#1| (-858)))) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2977 ((|#3| $) 15)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL)) (-1364 (((-781)) 20 T CONST)) (-3284 (((-112) $ $) NIL)) (-3482 (($ $) NIL (|has| |#1| (-858)))) (-2133 (($) NIL T CONST)) (-2145 (($) 12 T CONST)) (-3042 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3007 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3108 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-631 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (-15 -3108 ($ $ |#3|)) (-15 -3108 ($ |#1| |#3|)) (-15 -2966 (|#1| $)) (-15 -2977 (|#3| $)))) (-38 |#2|) (-174) (|SubsetCategory| (-736) |#2|)) (T -631)) -((-3108 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-631 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-736) *4)))) (-3108 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-631 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-736) *4)))) (-2966 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-631 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-736) *3)))) (-2977 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-736) *4)) (-5 *1 (-631 *3 *4 *2)) (-4 *3 (-38 *4))))) -(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (-15 -3108 ($ $ |#3|)) (-15 -3108 ($ |#1| |#3|)) (-15 -2966 (|#1| $)) (-15 -2977 (|#3| $)))) -((-3196 ((|#2| |#2| (-1190) (-1190)) 16))) -(((-632 |#1| |#2|) (-10 -7 (-15 -3196 (|#2| |#2| (-1190) (-1190)))) (-13 (-315) (-148) (-1051 (-574)) (-649 (-574))) (-13 (-1216) (-970) (-29 |#1|))) (T -632)) -((-3196 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-632 *4 *2)) (-4 *2 (-13 (-1216) (-970) (-29 *4)))))) -(-10 -7 (-15 -3196 (|#2| |#2| (-1190) (-1190)))) -((-2849 (((-112) $ $) 64)) (-3138 (((-112) $) 58)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-3272 ((|#1| $) 55)) (-3524 (((-3 $ "failed") $ $) NIL)) (-1600 (((-112) $ $) NIL (|has| |#1| (-372)))) (-3777 (((-2 (|:| -3578 $) (|:| -3275 (-417 |#2|))) (-417 |#2|)) 111 (|has| |#1| (-372)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-2206 (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2786 (($ $ $) NIL (|has| |#1| (-372)))) (-1392 (($ $) 27)) (-3434 (((-3 $ "failed") $) 88)) (-2797 (($ $ $) NIL (|has| |#1| (-372)))) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-3884 (((-574) $) 22)) (-3199 (((-112) $) NIL)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3869 (((-112) $) 40)) (-4335 (($ |#1| (-574)) 24)) (-1370 ((|#1| $) 57)) (-2832 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-372)))) (-2873 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) 101 (|has| |#1| (-372)))) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-2838 (((-3 $ "failed") $ $) 93)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1730 (((-781) $) 115 (|has| |#1| (-372)))) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 114 (|has| |#1| (-372)))) (-3905 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-781)) NIL (|has| |#2| (-239))) (($ $) NIL (|has| |#2| (-239)))) (-4202 (((-574) $) 38)) (-1836 (((-417 |#2|) $) 47)) (-2943 (((-872) $) 69) (($ (-574)) 35) (($ $) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-1051 (-417 (-574))))) (($ |#1|) 34) (($ |#2|) 25)) (-3087 ((|#1| $ (-574)) 72)) (-3298 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL)) (-2133 (($) 9 T CONST)) (-2145 (($) 14 T CONST)) (-3610 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-781)) NIL (|has| |#2| (-239))) (($ $) NIL (|has| |#2| (-239)))) (-2981 (((-112) $ $) 21)) (-3094 (($ $) 51) (($ $ $) NIL)) (-3079 (($ $ $) 90)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 29) (($ $ $) 49))) -(((-633 |#1| |#2|) (-13 (-233 |#2|) (-566) (-624 (-417 |#2|)) (-421 |#1|) (-1051 |#2|) (-10 -8 (-15 -3869 ((-112) $)) (-15 -4202 ((-574) $)) (-15 -3884 ((-574) $)) (-15 -1392 ($ $)) (-15 -1370 (|#1| $)) (-15 -3272 (|#1| $)) (-15 -3087 (|#1| $ (-574))) (-15 -4335 ($ |#1| (-574))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-6 (-315)) (-15 -3777 ((-2 (|:| -3578 $) (|:| -3275 (-417 |#2|))) (-417 |#2|)))) |%noBranch|))) (-566) (-1257 |#1|)) (T -633)) -((-3869 (*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-112)) (-5 *1 (-633 *3 *4)) (-4 *4 (-1257 *3)))) (-4202 (*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-574)) (-5 *1 (-633 *3 *4)) (-4 *4 (-1257 *3)))) (-3884 (*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-574)) (-5 *1 (-633 *3 *4)) (-4 *4 (-1257 *3)))) (-1392 (*1 *1 *1) (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1257 *2)))) (-1370 (*1 *2 *1) (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1257 *2)))) (-3272 (*1 *2 *1) (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1257 *2)))) (-3087 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *2 (-566)) (-5 *1 (-633 *2 *4)) (-4 *4 (-1257 *2)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-4 *2 (-566)) (-5 *1 (-633 *2 *4)) (-4 *4 (-1257 *2)))) (-3777 (*1 *2 *3) (-12 (-4 *4 (-372)) (-4 *4 (-566)) (-4 *5 (-1257 *4)) (-5 *2 (-2 (|:| -3578 (-633 *4 *5)) (|:| -3275 (-417 *5)))) (-5 *1 (-633 *4 *5)) (-5 *3 (-417 *5))))) -(-13 (-233 |#2|) (-566) (-624 (-417 |#2|)) (-421 |#1|) (-1051 |#2|) (-10 -8 (-15 -3869 ((-112) $)) (-15 -4202 ((-574) $)) (-15 -3884 ((-574) $)) (-15 -1392 ($ $)) (-15 -1370 (|#1| $)) (-15 -3272 (|#1| $)) (-15 -3087 (|#1| $ (-574))) (-15 -4335 ($ |#1| (-574))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-6 (-315)) (-15 -3777 ((-2 (|:| -3578 $) (|:| -3275 (-417 |#2|))) (-417 |#2|)))) |%noBranch|))) -((-3954 (((-654 |#6|) (-654 |#4|) (-112)) 54)) (-3527 ((|#6| |#6|) 48))) -(((-634 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3527 (|#6| |#6|)) (-15 -3954 ((-654 |#6|) (-654 |#4|) (-112)))) (-462) (-803) (-860) (-1078 |#1| |#2| |#3|) (-1084 |#1| |#2| |#3| |#4|) (-1122 |#1| |#2| |#3| |#4|)) (T -634)) -((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 *10)) (-5 *1 (-634 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1084 *5 *6 *7 *8)) (-4 *10 (-1122 *5 *6 *7 *8)))) (-3527 (*1 *2 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *1 (-634 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1084 *3 *4 *5 *6)) (-4 *2 (-1122 *3 *4 *5 *6))))) -(-10 -7 (-15 -3527 (|#6| |#6|)) (-15 -3954 ((-654 |#6|) (-654 |#4|) (-112)))) -((-2607 (((-112) |#3| (-781) (-654 |#3|)) 29)) (-1495 (((-3 (-2 (|:| |polfac| (-654 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-654 (-1186 |#3|)))) "failed") |#3| (-654 (-1186 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4219 (-654 (-2 (|:| |irr| |#4|) (|:| -3186 (-574)))))) (-654 |#3|) (-654 |#1|) (-654 |#3|)) 69))) -(((-635 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2607 ((-112) |#3| (-781) (-654 |#3|))) (-15 -1495 ((-3 (-2 (|:| |polfac| (-654 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-654 (-1186 |#3|)))) "failed") |#3| (-654 (-1186 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4219 (-654 (-2 (|:| |irr| |#4|) (|:| -3186 (-574)))))) (-654 |#3|) (-654 |#1|) (-654 |#3|)))) (-860) (-803) (-315) (-960 |#3| |#2| |#1|)) (T -635)) -((-1495 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -4219 (-654 (-2 (|:| |irr| *10) (|:| -3186 (-574))))))) (-5 *6 (-654 *3)) (-5 *7 (-654 *8)) (-4 *8 (-860)) (-4 *3 (-315)) (-4 *10 (-960 *3 *9 *8)) (-4 *9 (-803)) (-5 *2 (-2 (|:| |polfac| (-654 *10)) (|:| |correct| *3) (|:| |corrfact| (-654 (-1186 *3))))) (-5 *1 (-635 *8 *9 *3 *10)) (-5 *4 (-654 (-1186 *3))))) (-2607 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-781)) (-5 *5 (-654 *3)) (-4 *3 (-315)) (-4 *6 (-860)) (-4 *7 (-803)) (-5 *2 (-112)) (-5 *1 (-635 *6 *7 *3 *8)) (-4 *8 (-960 *3 *7 *6))))) -(-10 -7 (-15 -2607 ((-112) |#3| (-781) (-654 |#3|))) (-15 -1495 ((-3 (-2 (|:| |polfac| (-654 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-654 (-1186 |#3|)))) "failed") |#3| (-654 (-1186 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4219 (-654 (-2 (|:| |irr| |#4|) (|:| -3186 (-574)))))) (-654 |#3|) (-654 |#1|) (-654 |#3|)))) -((-2849 (((-112) $ $) NIL)) (-1809 (((-1148) $) 11)) (-1796 (((-1148) $) 9)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 17) (($ (-1195)) NIL) (((-1195) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-636) (-13 (-1096) (-10 -8 (-15 -1796 ((-1148) $)) (-15 -1809 ((-1148) $))))) (T -636)) -((-1796 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-636)))) (-1809 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-636))))) -(-13 (-1096) (-10 -8 (-15 -1796 ((-1148) $)) (-15 -1809 ((-1148) $)))) -((-2849 (((-112) $ $) NIL)) (-1655 (((-654 |#1|) $) NIL)) (-3426 (($) NIL T CONST)) (-3434 (((-3 $ "failed") $) NIL)) (-3199 (((-112) $) NIL)) (-4248 (($ $) 77)) (-3119 (((-674 |#1| |#2|) $) 60)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) 81)) (-3006 (((-654 (-302 |#2|)) $ $) 42)) (-3966 (((-1133) $) NIL)) (-1609 (($ (-674 |#1| |#2|)) 56)) (-1479 (($ $ $) NIL)) (-3204 (($ $ $) NIL)) (-2943 (((-872) $) 66) (((-1296 |#1| |#2|) $) NIL) (((-1301 |#1| |#2|) $) 74)) (-3284 (((-112) $ $) NIL)) (-2145 (($) 61 T CONST)) (-2279 (((-654 (-2 (|:| |k| (-682 |#1|)) (|:| |c| |#2|))) $) 41)) (-1820 (((-654 (-674 |#1| |#2|)) (-654 |#1|)) 73)) (-1388 (((-654 (-2 (|:| |k| (-904 |#1|)) (|:| |c| |#2|))) $) 46)) (-2981 (((-112) $ $) 62)) (-3108 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ $ $) 52))) -(((-637 |#1| |#2| |#3|) (-13 (-483) (-10 -8 (-15 -1609 ($ (-674 |#1| |#2|))) (-15 -3119 ((-674 |#1| |#2|) $)) (-15 -1388 ((-654 (-2 (|:| |k| (-904 |#1|)) (|:| |c| |#2|))) $)) (-15 -2943 ((-1296 |#1| |#2|) $)) (-15 -2943 ((-1301 |#1| |#2|) $)) (-15 -4248 ($ $)) (-15 -1655 ((-654 |#1|) $)) (-15 -1820 ((-654 (-674 |#1| |#2|)) (-654 |#1|))) (-15 -2279 ((-654 (-2 (|:| |k| (-682 |#1|)) (|:| |c| |#2|))) $)) (-15 -3006 ((-654 (-302 |#2|)) $ $)))) (-860) (-13 (-174) (-727 (-417 (-574)))) (-932)) (T -637)) -((-1609 (*1 *1 *2) (-12 (-5 *2 (-674 *3 *4)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-5 *1 (-637 *3 *4 *5)) (-14 *5 (-932)))) (-3119 (*1 *2 *1) (-12 (-5 *2 (-674 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-932)))) (-1388 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |k| (-904 *3)) (|:| |c| *4)))) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-932)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-1296 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-932)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-1301 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-932)))) (-4248 (*1 *1 *1) (-12 (-5 *1 (-637 *2 *3 *4)) (-4 *2 (-860)) (-4 *3 (-13 (-174) (-727 (-417 (-574))))) (-14 *4 (-932)))) (-1655 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-932)))) (-1820 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-860)) (-5 *2 (-654 (-674 *4 *5))) (-5 *1 (-637 *4 *5 *6)) (-4 *5 (-13 (-174) (-727 (-417 (-574))))) (-14 *6 (-932)))) (-2279 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |k| (-682 *3)) (|:| |c| *4)))) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-932)))) (-3006 (*1 *2 *1 *1) (-12 (-5 *2 (-654 (-302 *4))) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-932))))) -(-13 (-483) (-10 -8 (-15 -1609 ($ (-674 |#1| |#2|))) (-15 -3119 ((-674 |#1| |#2|) $)) (-15 -1388 ((-654 (-2 (|:| |k| (-904 |#1|)) (|:| |c| |#2|))) $)) (-15 -2943 ((-1296 |#1| |#2|) $)) (-15 -2943 ((-1301 |#1| |#2|) $)) (-15 -4248 ($ $)) (-15 -1655 ((-654 |#1|) $)) (-15 -1820 ((-654 (-674 |#1| |#2|)) (-654 |#1|))) (-15 -2279 ((-654 (-2 (|:| |k| (-682 |#1|)) (|:| |c| |#2|))) $)) (-15 -3006 ((-654 (-302 |#2|)) $ $)))) -((-3954 (((-654 (-1159 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112)) 103) (((-654 (-1059 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112)) 77)) (-2904 (((-112) (-654 (-790 |#1| (-874 |#2|)))) 26)) (-3131 (((-654 (-1159 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112)) 102)) (-3363 (((-654 (-1059 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112)) 76)) (-3821 (((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|)))) 30)) (-1699 (((-3 (-654 (-790 |#1| (-874 |#2|))) "failed") (-654 (-790 |#1| (-874 |#2|)))) 29))) -(((-638 |#1| |#2|) (-10 -7 (-15 -2904 ((-112) (-654 (-790 |#1| (-874 |#2|))))) (-15 -1699 ((-3 (-654 (-790 |#1| (-874 |#2|))) "failed") (-654 (-790 |#1| (-874 |#2|))))) (-15 -3821 ((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|))))) (-15 -3363 ((-654 (-1059 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -3131 ((-654 (-1159 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -3954 ((-654 (-1059 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -3954 ((-654 (-1159 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112)))) (-462) (-654 (-1190))) (T -638)) -((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) (-14 *6 (-654 (-1190))) (-5 *2 (-654 (-1159 *5 (-541 (-874 *6)) (-874 *6) (-790 *5 (-874 *6))))) (-5 *1 (-638 *5 *6)))) (-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) (-14 *6 (-654 (-1190))) (-5 *2 (-654 (-1059 *5 *6))) (-5 *1 (-638 *5 *6)))) (-3131 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) (-14 *6 (-654 (-1190))) (-5 *2 (-654 (-1159 *5 (-541 (-874 *6)) (-874 *6) (-790 *5 (-874 *6))))) (-5 *1 (-638 *5 *6)))) (-3363 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) (-14 *6 (-654 (-1190))) (-5 *2 (-654 (-1059 *5 *6))) (-5 *1 (-638 *5 *6)))) (-3821 (*1 *2 *2) (-12 (-5 *2 (-654 (-790 *3 (-874 *4)))) (-4 *3 (-462)) (-14 *4 (-654 (-1190))) (-5 *1 (-638 *3 *4)))) (-1699 (*1 *2 *2) (|partial| -12 (-5 *2 (-654 (-790 *3 (-874 *4)))) (-4 *3 (-462)) (-14 *4 (-654 (-1190))) (-5 *1 (-638 *3 *4)))) (-2904 (*1 *2 *3) (-12 (-5 *3 (-654 (-790 *4 (-874 *5)))) (-4 *4 (-462)) (-14 *5 (-654 (-1190))) (-5 *2 (-112)) (-5 *1 (-638 *4 *5))))) -(-10 -7 (-15 -2904 ((-112) (-654 (-790 |#1| (-874 |#2|))))) (-15 -1699 ((-3 (-654 (-790 |#1| (-874 |#2|))) "failed") (-654 (-790 |#1| (-874 |#2|))))) (-15 -3821 ((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|))))) (-15 -3363 ((-654 (-1059 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -3131 ((-654 (-1159 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -3954 ((-654 (-1059 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -3954 ((-654 (-1159 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112)))) -((-2364 (($ $) 38)) (-2247 (($ $) 21)) (-2343 (($ $) 37)) (-2227 (($ $) 22)) (-2389 (($ $) 36)) (-2267 (($ $) 23)) (-3000 (($) 48)) (-3119 (($ $) 45)) (-4079 (($ $) 17)) (-3097 (($ $ (-1105 $)) 7) (($ $ (-1190)) 6)) (-1609 (($ $) 46)) (-4070 (($ $) 15)) (-2214 (($ $) 16)) (-2402 (($ $) 35)) (-2275 (($ $) 24)) (-2375 (($ $) 34)) (-2256 (($ $) 25)) (-2352 (($ $) 33)) (-2237 (($ $) 26)) (-2441 (($ $) 44)) (-2305 (($ $) 32)) (-2414 (($ $) 43)) (-2287 (($ $) 31)) (-2465 (($ $) 42)) (-2325 (($ $) 30)) (-2521 (($ $) 41)) (-2334 (($ $) 29)) (-2452 (($ $) 40)) (-2315 (($ $) 28)) (-2428 (($ $) 39)) (-2297 (($ $) 27)) (-1648 (($ $) 19)) (-4007 (($ $) 20)) (-3240 (($ $) 18)) (** (($ $ $) 47))) -(((-639) (-141)) (T -639)) -((-4007 (*1 *1 *1) (-4 *1 (-639))) (-1648 (*1 *1 *1) (-4 *1 (-639))) (-3240 (*1 *1 *1) (-4 *1 (-639))) (-4079 (*1 *1 *1) (-4 *1 (-639))) (-2214 (*1 *1 *1) (-4 *1 (-639))) (-4070 (*1 *1 *1) (-4 *1 (-639)))) -(-13 (-970) (-1216) (-10 -8 (-15 -4007 ($ $)) (-15 -1648 ($ $)) (-15 -3240 ($ $)) (-15 -4079 ($ $)) (-15 -2214 ($ $)) (-15 -4070 ($ $)))) -(((-35) . T) ((-95) . T) ((-292) . T) ((-503) . T) ((-970) . T) ((-1216) . T) ((-1219) . T)) -((-4175 (((-115) (-115)) 88)) (-4079 ((|#2| |#2|) 28)) (-3097 ((|#2| |#2| (-1105 |#2|)) 84) ((|#2| |#2| (-1190)) 50)) (-4070 ((|#2| |#2|) 27)) (-2214 ((|#2| |#2|) 29)) (-3225 (((-112) (-115)) 33)) (-1648 ((|#2| |#2|) 24)) (-4007 ((|#2| |#2|) 26)) (-3240 ((|#2| |#2|) 25))) -(((-640 |#1| |#2|) (-10 -7 (-15 -3225 ((-112) (-115))) (-15 -4175 ((-115) (-115))) (-15 -4007 (|#2| |#2|)) (-15 -1648 (|#2| |#2|)) (-15 -3240 (|#2| |#2|)) (-15 -4079 (|#2| |#2|)) (-15 -4070 (|#2| |#2|)) (-15 -2214 (|#2| |#2|)) (-15 -3097 (|#2| |#2| (-1190))) (-15 -3097 (|#2| |#2| (-1105 |#2|)))) (-566) (-13 (-440 |#1|) (-1015) (-1216))) (T -640)) -((-3097 (*1 *2 *2 *3) (-12 (-5 *3 (-1105 *2)) (-4 *2 (-13 (-440 *4) (-1015) (-1216))) (-4 *4 (-566)) (-5 *1 (-640 *4 *2)))) (-3097 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-566)) (-5 *1 (-640 *4 *2)) (-4 *2 (-13 (-440 *4) (-1015) (-1216))))) (-2214 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015) (-1216))))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015) (-1216))))) (-4079 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015) (-1216))))) (-3240 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015) (-1216))))) (-1648 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015) (-1216))))) (-4007 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1015) (-1216))))) (-4175 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-640 *3 *4)) (-4 *4 (-13 (-440 *3) (-1015) (-1216))))) (-3225 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-640 *4 *5)) (-4 *5 (-13 (-440 *4) (-1015) (-1216)))))) -(-10 -7 (-15 -3225 ((-112) (-115))) (-15 -4175 ((-115) (-115))) (-15 -4007 (|#2| |#2|)) (-15 -1648 (|#2| |#2|)) (-15 -3240 (|#2| |#2|)) (-15 -4079 (|#2| |#2|)) (-15 -4070 (|#2| |#2|)) (-15 -2214 (|#2| |#2|)) (-15 -3097 (|#2| |#2| (-1190))) (-15 -3097 (|#2| |#2| (-1105 |#2|)))) -((-4325 (((-491 |#1| |#2|) (-253 |#1| |#2|)) 63)) (-2292 (((-654 (-253 |#1| |#2|)) (-654 (-491 |#1| |#2|))) 89)) (-2751 (((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-874 |#1|)) 91) (((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)) (-874 |#1|)) 90)) (-3281 (((-2 (|:| |gblist| (-654 (-253 |#1| |#2|))) (|:| |gvlist| (-654 (-574)))) (-654 (-491 |#1| |#2|))) 134)) (-2326 (((-654 (-491 |#1| |#2|)) (-874 |#1|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|))) 104)) (-1778 (((-2 (|:| |glbase| (-654 (-253 |#1| |#2|))) (|:| |glval| (-654 (-574)))) (-654 (-253 |#1| |#2|))) 145)) (-1321 (((-1281 |#2|) (-491 |#1| |#2|) (-654 (-491 |#1| |#2|))) 68)) (-4149 (((-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|))) 47)) (-3368 (((-253 |#1| |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|))) 60)) (-3321 (((-253 |#1| |#2|) (-654 |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|))) 112))) -(((-641 |#1| |#2|) (-10 -7 (-15 -3281 ((-2 (|:| |gblist| (-654 (-253 |#1| |#2|))) (|:| |gvlist| (-654 (-574)))) (-654 (-491 |#1| |#2|)))) (-15 -1778 ((-2 (|:| |glbase| (-654 (-253 |#1| |#2|))) (|:| |glval| (-654 (-574)))) (-654 (-253 |#1| |#2|)))) (-15 -2292 ((-654 (-253 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -2751 ((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)) (-874 |#1|))) (-15 -2751 ((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-874 |#1|))) (-15 -4149 ((-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -1321 ((-1281 |#2|) (-491 |#1| |#2|) (-654 (-491 |#1| |#2|)))) (-15 -3321 ((-253 |#1| |#2|) (-654 |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|)))) (-15 -2326 ((-654 (-491 |#1| |#2|)) (-874 |#1|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -3368 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|)))) (-15 -4325 ((-491 |#1| |#2|) (-253 |#1| |#2|)))) (-654 (-1190)) (-462)) (T -641)) -((-4325 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1190))) (-4 *5 (-462)) (-5 *2 (-491 *4 *5)) (-5 *1 (-641 *4 *5)))) (-3368 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) (-14 *4 (-654 (-1190))) (-4 *5 (-462)) (-5 *1 (-641 *4 *5)))) (-2326 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-654 (-491 *4 *5))) (-5 *3 (-874 *4)) (-14 *4 (-654 (-1190))) (-4 *5 (-462)) (-5 *1 (-641 *4 *5)))) (-3321 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-253 *5 *6))) (-4 *6 (-462)) (-5 *2 (-253 *5 *6)) (-14 *5 (-654 (-1190))) (-5 *1 (-641 *5 *6)))) (-1321 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-491 *5 *6))) (-5 *3 (-491 *5 *6)) (-14 *5 (-654 (-1190))) (-4 *6 (-462)) (-5 *2 (-1281 *6)) (-5 *1 (-641 *5 *6)))) (-4149 (*1 *2 *2) (-12 (-5 *2 (-654 (-491 *3 *4))) (-14 *3 (-654 (-1190))) (-4 *4 (-462)) (-5 *1 (-641 *3 *4)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-491 *5 *6))) (-5 *4 (-874 *5)) (-14 *5 (-654 (-1190))) (-5 *2 (-491 *5 *6)) (-5 *1 (-641 *5 *6)) (-4 *6 (-462)))) (-2751 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-654 (-491 *5 *6))) (-5 *4 (-874 *5)) (-14 *5 (-654 (-1190))) (-5 *2 (-491 *5 *6)) (-5 *1 (-641 *5 *6)) (-4 *6 (-462)))) (-2292 (*1 *2 *3) (-12 (-5 *3 (-654 (-491 *4 *5))) (-14 *4 (-654 (-1190))) (-4 *5 (-462)) (-5 *2 (-654 (-253 *4 *5))) (-5 *1 (-641 *4 *5)))) (-1778 (*1 *2 *3) (-12 (-14 *4 (-654 (-1190))) (-4 *5 (-462)) (-5 *2 (-2 (|:| |glbase| (-654 (-253 *4 *5))) (|:| |glval| (-654 (-574))))) (-5 *1 (-641 *4 *5)) (-5 *3 (-654 (-253 *4 *5))))) (-3281 (*1 *2 *3) (-12 (-5 *3 (-654 (-491 *4 *5))) (-14 *4 (-654 (-1190))) (-4 *5 (-462)) (-5 *2 (-2 (|:| |gblist| (-654 (-253 *4 *5))) (|:| |gvlist| (-654 (-574))))) (-5 *1 (-641 *4 *5))))) -(-10 -7 (-15 -3281 ((-2 (|:| |gblist| (-654 (-253 |#1| |#2|))) (|:| |gvlist| (-654 (-574)))) (-654 (-491 |#1| |#2|)))) (-15 -1778 ((-2 (|:| |glbase| (-654 (-253 |#1| |#2|))) (|:| |glval| (-654 (-574)))) (-654 (-253 |#1| |#2|)))) (-15 -2292 ((-654 (-253 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -2751 ((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)) (-874 |#1|))) (-15 -2751 ((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-874 |#1|))) (-15 -4149 ((-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -1321 ((-1281 |#2|) (-491 |#1| |#2|) (-654 (-491 |#1| |#2|)))) (-15 -3321 ((-253 |#1| |#2|) (-654 |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|)))) (-15 -2326 ((-654 (-491 |#1| |#2|)) (-874 |#1|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -3368 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|)))) (-15 -4325 ((-491 |#1| |#2|) (-253 |#1| |#2|)))) -((-2849 (((-112) $ $) NIL (-2818 (|has| (-52) (-1113)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-1113))))) (-3778 (($) NIL) (($ (-654 (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))))) NIL)) (-3714 (((-1286) $ (-1172) (-1172)) NIL (|has| $ (-6 -4457)))) (-3034 (((-112) $ (-781)) NIL)) (-3143 (((-52) $ (-1172) (-52)) 16) (((-52) $ (-1190) (-52)) 17)) (-3572 (($ (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1908 (-52)))) $) NIL (|has| $ (-6 -4456)))) (-2165 (($ (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1908 (-52)))) $) NIL (|has| $ (-6 -4456)))) (-2163 (((-3 (-52) "failed") (-1172) $) NIL)) (-3426 (($) NIL T CONST)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-1113))))) (-2876 (($ (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1908 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-3 (-52) "failed") (-1172) $) NIL)) (-3335 (($ (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-1113)))) (($ (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1908 (-52)))) $) NIL (|has| $ (-6 -4456)))) (-2868 (((-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-1 (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-2 (|:| -3693 (-1172)) (|:| -1908 (-52)))) $ (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-2 (|:| -3693 (-1172)) (|:| -1908 (-52)))) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-1113)))) (((-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-1 (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-2 (|:| -3693 (-1172)) (|:| -1908 (-52)))) $ (-2 (|:| -3693 (-1172)) (|:| -1908 (-52)))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-1 (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-2 (|:| -3693 (-1172)) (|:| -1908 (-52)))) $) NIL (|has| $ (-6 -4456)))) (-2458 (((-52) $ (-1172) (-52)) NIL (|has| $ (-6 -4457)))) (-2385 (((-52) $ (-1172)) NIL)) (-1864 (((-654 (-2 (|:| -3693 (-1172)) (|:| -1908 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-654 (-52)) $) NIL (|has| $ (-6 -4456)))) (-3120 (($ $) NIL)) (-2742 (((-112) $ (-781)) NIL)) (-3618 (((-1172) $) NIL (|has| (-1172) (-860)))) (-1606 (((-654 (-2 (|:| -3693 (-1172)) (|:| -1908 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-654 (-52)) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-1113)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-52) (-1113))))) (-2702 (((-1172) $) NIL (|has| (-1172) (-860)))) (-2449 (($ (-1 (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-2 (|:| -3693 (-1172)) (|:| -1908 (-52)))) $) NIL (|has| $ (-6 -4457))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-2 (|:| -3693 (-1172)) (|:| -1908 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1464 (($ (-398)) 9)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL (-2818 (|has| (-52) (-1113)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-1113))))) (-1763 (((-654 (-1172)) $) NIL)) (-1732 (((-112) (-1172) $) NIL)) (-2937 (((-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) $) NIL)) (-2798 (($ (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) $) NIL)) (-4308 (((-654 (-1172)) $) NIL)) (-3336 (((-112) (-1172) $) NIL)) (-3966 (((-1133) $) NIL (-2818 (|has| (-52) (-1113)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-1113))))) (-2915 (((-52) $) NIL (|has| (-1172) (-860)))) (-1549 (((-3 (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) "failed") (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1908 (-52)))) $) NIL)) (-1942 (($ $ (-52)) NIL (|has| $ (-6 -4457)))) (-1785 (((-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) $) NIL)) (-2540 (((-112) (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1908 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-2 (|:| -3693 (-1172)) (|:| -1908 (-52)))))) NIL (-12 (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-317 (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))))) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-1113)))) (($ $ (-302 (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))))) NIL (-12 (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-317 (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))))) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-1113)))) (($ $ (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-2 (|:| -3693 (-1172)) (|:| -1908 (-52)))) NIL (-12 (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-317 (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))))) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-1113)))) (($ $ (-654 (-2 (|:| -3693 (-1172)) (|:| -1908 (-52)))) (-654 (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))))) NIL (-12 (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-317 (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))))) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-1113)))) (($ $ (-654 (-52)) (-654 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1113)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1113)))) (($ $ (-302 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1113)))) (($ $ (-654 (-302 (-52)))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-52) (-1113))))) (-4371 (((-654 (-52)) $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 (((-52) $ (-1172)) 14) (((-52) $ (-1172) (-52)) NIL) (((-52) $ (-1190)) 15)) (-1662 (($) NIL) (($ (-654 (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))))) NIL)) (-3975 (((-781) (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1908 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-1113)))) (((-781) (-52) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-52) (-1113)))) (((-781) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) NIL)) (-1836 (((-546) $) NIL (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-624 (-546))))) (-2956 (($ (-654 (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))))) NIL)) (-2943 (((-872) $) NIL (-2818 (|has| (-52) (-623 (-872))) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-623 (-872)))))) (-3284 (((-112) $ $) NIL (-2818 (|has| (-52) (-1113)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-1113))))) (-1599 (($ (-654 (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))))) NIL)) (-3390 (((-112) (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1908 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) NIL (-2818 (|has| (-52) (-1113)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 (-52))) (-1113))))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-642) (-13 (-1207 (-1172) (-52)) (-294 (-1190) (-52)) (-10 -8 (-15 -1464 ($ (-398))) (-15 -3120 ($ $)) (-15 -3143 ((-52) $ (-1190) (-52)))))) (T -642)) -((-1464 (*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-642)))) (-3120 (*1 *1 *1) (-5 *1 (-642))) (-3143 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1190)) (-5 *1 (-642))))) -(-13 (-1207 (-1172) (-52)) (-294 (-1190) (-52)) (-10 -8 (-15 -1464 ($ (-398))) (-15 -3120 ($ $)) (-15 -3143 ((-52) $ (-1190) (-52))))) -((-3108 (($ $ |#2|) 10))) -(((-643 |#1| |#2|) (-10 -8 (-15 -3108 (|#1| |#1| |#2|))) (-644 |#2|) (-174)) (T -643)) -NIL -(-10 -8 (-15 -3108 (|#1| |#1| |#2|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2956 (($ $ $) 34)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3108 (($ $ |#1|) 33 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-644 |#1|) (-141) (-174)) (T -644)) -((-2956 (*1 *1 *1 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-174)))) (-3108 (*1 *1 *1 *2) (-12 (-4 *1 (-644 *2)) (-4 *2 (-174)) (-4 *2 (-372))))) -(-13 (-727 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2956 ($ $ $)) (IF (|has| |t#1| (-372)) (-15 -3108 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-1064 |#1|) . T) ((-1069 |#1|) . T) ((-1113) . T)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-2785 (((-3 $ "failed")) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3524 (((-3 $ "failed") $ $) NIL)) (-2174 (((-1281 (-699 |#1|))) NIL (|has| |#2| (-427 |#1|))) (((-1281 (-699 |#1|)) (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-4274 (((-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-3426 (($) NIL T CONST)) (-1666 (((-3 (-2 (|:| |particular| $) (|:| -1882 (-654 $))) "failed")) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1854 (((-3 $ "failed")) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2301 (((-699 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-2538 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-3208 (((-699 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) $ (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-2784 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2378 (((-1186 (-963 |#1|))) NIL (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-372))))) (-2397 (($ $ (-932)) NIL)) (-3870 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-3664 (((-1186 |#1|) $) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1565 ((|#1|) NIL (|has| |#2| (-427 |#1|))) ((|#1| (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-1436 (((-1186 |#1|) $) NIL (|has| |#2| (-376 |#1|)))) (-3287 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2737 (($ (-1281 |#1|)) NIL (|has| |#2| (-427 |#1|))) (($ (-1281 |#1|) (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-3434 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3584 (((-932)) NIL (|has| |#2| (-376 |#1|)))) (-2542 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2817 (($ $ (-932)) NIL)) (-1514 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3168 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3531 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2269 (((-3 (-2 (|:| |particular| $) (|:| -1882 (-654 $))) "failed")) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1484 (((-3 $ "failed")) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2284 (((-699 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-1450 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-2787 (((-699 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) $ (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-4271 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1451 (((-1186 (-963 |#1|))) NIL (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-372))))) (-2422 (($ $ (-932)) NIL)) (-2552 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-1460 (((-1186 |#1|) $) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1810 ((|#1|) NIL (|has| |#2| (-427 |#1|))) ((|#1| (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-1943 (((-1186 |#1|) $) NIL (|has| |#2| (-376 |#1|)))) (-4037 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-4136 (((-1172) $) NIL)) (-1342 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3227 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2949 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3966 (((-1133) $) NIL)) (-3604 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2199 ((|#1| $ (-574)) NIL (|has| |#2| (-427 |#1|)))) (-3487 (((-699 |#1|) (-1281 $)) NIL (|has| |#2| (-427 |#1|))) (((-1281 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1281 $) (-1281 $)) NIL (|has| |#2| (-376 |#1|))) (((-1281 |#1|) $ (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-1836 (($ (-1281 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-1281 |#1|) $) NIL (|has| |#2| (-427 |#1|)))) (-3760 (((-654 (-963 |#1|))) NIL (|has| |#2| (-427 |#1|))) (((-654 (-963 |#1|)) (-1281 $)) NIL (|has| |#2| (-376 |#1|)))) (-3204 (($ $ $) NIL)) (-3163 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2943 (((-872) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3284 (((-112) $ $) NIL)) (-1882 (((-1281 $)) NIL (|has| |#2| (-427 |#1|)))) (-2735 (((-654 (-1281 |#1|))) NIL (-2818 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1320 (($ $ $ $) NIL)) (-2525 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2901 (($ (-699 |#1|) $) NIL (|has| |#2| (-427 |#1|)))) (-2299 (($ $ $) NIL)) (-3971 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3545 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-1950 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2133 (($) 19 T CONST)) (-2981 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) 20)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-645 |#1| |#2|) (-13 (-754 |#1|) (-623 |#2|) (-10 -8 (-15 -2943 ($ |#2|)) (IF (|has| |#2| (-427 |#1|)) (-6 (-427 |#1|)) |%noBranch|) (IF (|has| |#2| (-376 |#1|)) (-6 (-376 |#1|)) |%noBranch|))) (-174) (-754 |#1|)) (T -645)) -((-2943 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-645 *3 *2)) (-4 *2 (-754 *3))))) -(-13 (-754 |#1|) (-623 |#2|) (-10 -8 (-15 -2943 ($ |#2|)) (IF (|has| |#2| (-427 |#1|)) (-6 (-427 |#1|)) |%noBranch|) (IF (|has| |#2| (-376 |#1|)) (-6 (-376 |#1|)) |%noBranch|))) -((-1940 (((-3 (-853 |#2|) "failed") |#2| (-302 |#2|) (-1172)) 106) (((-3 (-853 |#2|) (-2 (|:| |leftHandLimit| (-3 (-853 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-853 |#2|) "failed"))) "failed") |#2| (-302 (-853 |#2|))) 131)) (-3754 (((-3 (-843 |#2|) "failed") |#2| (-302 (-843 |#2|))) 136))) -(((-646 |#1| |#2|) (-10 -7 (-15 -1940 ((-3 (-853 |#2|) (-2 (|:| |leftHandLimit| (-3 (-853 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-853 |#2|) "failed"))) "failed") |#2| (-302 (-853 |#2|)))) (-15 -3754 ((-3 (-843 |#2|) "failed") |#2| (-302 (-843 |#2|)))) (-15 -1940 ((-3 (-853 |#2|) "failed") |#2| (-302 |#2|) (-1172)))) (-13 (-462) (-1051 (-574)) (-649 (-574))) (-13 (-27) (-1216) (-440 |#1|))) (T -646)) -((-1940 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-302 *3)) (-5 *5 (-1172)) (-4 *3 (-13 (-27) (-1216) (-440 *6))) (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-853 *3)) (-5 *1 (-646 *6 *3)))) (-3754 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-302 (-843 *3))) (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-843 *3)) (-5 *1 (-646 *5 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5))))) (-1940 (*1 *2 *3 *4) (-12 (-5 *4 (-302 (-853 *3))) (-4 *3 (-13 (-27) (-1216) (-440 *5))) (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-3 (-853 *3) (-2 (|:| |leftHandLimit| (-3 (-853 *3) "failed")) (|:| |rightHandLimit| (-3 (-853 *3) "failed"))) "failed")) (-5 *1 (-646 *5 *3))))) -(-10 -7 (-15 -1940 ((-3 (-853 |#2|) (-2 (|:| |leftHandLimit| (-3 (-853 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-853 |#2|) "failed"))) "failed") |#2| (-302 (-853 |#2|)))) (-15 -3754 ((-3 (-843 |#2|) "failed") |#2| (-302 (-843 |#2|)))) (-15 -1940 ((-3 (-853 |#2|) "failed") |#2| (-302 |#2|) (-1172)))) -((-1940 (((-3 (-853 (-417 (-963 |#1|))) "failed") (-417 (-963 |#1|)) (-302 (-417 (-963 |#1|))) (-1172)) 86) (((-3 (-853 (-417 (-963 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-963 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-963 |#1|))) "failed"))) "failed") (-417 (-963 |#1|)) (-302 (-417 (-963 |#1|)))) 20) (((-3 (-853 (-417 (-963 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-963 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-963 |#1|))) "failed"))) "failed") (-417 (-963 |#1|)) (-302 (-853 (-963 |#1|)))) 35)) (-3754 (((-843 (-417 (-963 |#1|))) (-417 (-963 |#1|)) (-302 (-417 (-963 |#1|)))) 23) (((-843 (-417 (-963 |#1|))) (-417 (-963 |#1|)) (-302 (-843 (-963 |#1|)))) 43))) -(((-647 |#1|) (-10 -7 (-15 -1940 ((-3 (-853 (-417 (-963 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-963 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-963 |#1|))) "failed"))) "failed") (-417 (-963 |#1|)) (-302 (-853 (-963 |#1|))))) (-15 -1940 ((-3 (-853 (-417 (-963 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-963 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-963 |#1|))) "failed"))) "failed") (-417 (-963 |#1|)) (-302 (-417 (-963 |#1|))))) (-15 -3754 ((-843 (-417 (-963 |#1|))) (-417 (-963 |#1|)) (-302 (-843 (-963 |#1|))))) (-15 -3754 ((-843 (-417 (-963 |#1|))) (-417 (-963 |#1|)) (-302 (-417 (-963 |#1|))))) (-15 -1940 ((-3 (-853 (-417 (-963 |#1|))) "failed") (-417 (-963 |#1|)) (-302 (-417 (-963 |#1|))) (-1172)))) (-462)) (T -647)) -((-1940 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-302 (-417 (-963 *6)))) (-5 *5 (-1172)) (-5 *3 (-417 (-963 *6))) (-4 *6 (-462)) (-5 *2 (-853 *3)) (-5 *1 (-647 *6)))) (-3754 (*1 *2 *3 *4) (-12 (-5 *4 (-302 (-417 (-963 *5)))) (-5 *3 (-417 (-963 *5))) (-4 *5 (-462)) (-5 *2 (-843 *3)) (-5 *1 (-647 *5)))) (-3754 (*1 *2 *3 *4) (-12 (-5 *4 (-302 (-843 (-963 *5)))) (-4 *5 (-462)) (-5 *2 (-843 (-417 (-963 *5)))) (-5 *1 (-647 *5)) (-5 *3 (-417 (-963 *5))))) (-1940 (*1 *2 *3 *4) (-12 (-5 *4 (-302 (-417 (-963 *5)))) (-5 *3 (-417 (-963 *5))) (-4 *5 (-462)) (-5 *2 (-3 (-853 *3) (-2 (|:| |leftHandLimit| (-3 (-853 *3) "failed")) (|:| |rightHandLimit| (-3 (-853 *3) "failed"))) "failed")) (-5 *1 (-647 *5)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *4 (-302 (-853 (-963 *5)))) (-4 *5 (-462)) (-5 *2 (-3 (-853 (-417 (-963 *5))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-963 *5))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-963 *5))) "failed"))) "failed")) (-5 *1 (-647 *5)) (-5 *3 (-417 (-963 *5)))))) -(-10 -7 (-15 -1940 ((-3 (-853 (-417 (-963 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-963 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-963 |#1|))) "failed"))) "failed") (-417 (-963 |#1|)) (-302 (-853 (-963 |#1|))))) (-15 -1940 ((-3 (-853 (-417 (-963 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-963 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-963 |#1|))) "failed"))) "failed") (-417 (-963 |#1|)) (-302 (-417 (-963 |#1|))))) (-15 -3754 ((-843 (-417 (-963 |#1|))) (-417 (-963 |#1|)) (-302 (-843 (-963 |#1|))))) (-15 -3754 ((-843 (-417 (-963 |#1|))) (-417 (-963 |#1|)) (-302 (-417 (-963 |#1|))))) (-15 -1940 ((-3 (-853 (-417 (-963 |#1|))) "failed") (-417 (-963 |#1|)) (-302 (-417 (-963 |#1|))) (-1172)))) -((-3698 (((-3 (-1281 (-417 |#1|)) "failed") (-1281 |#2|) |#2|) 64 (-2076 (|has| |#1| (-372)))) (((-3 (-1281 |#1|) "failed") (-1281 |#2|) |#2|) 49 (|has| |#1| (-372)))) (-3017 (((-112) (-1281 |#2|)) 33)) (-2802 (((-3 (-1281 |#1|) "failed") (-1281 |#2|)) 40))) -(((-648 |#1| |#2|) (-10 -7 (-15 -3017 ((-112) (-1281 |#2|))) (-15 -2802 ((-3 (-1281 |#1|) "failed") (-1281 |#2|))) (IF (|has| |#1| (-372)) (-15 -3698 ((-3 (-1281 |#1|) "failed") (-1281 |#2|) |#2|)) (-15 -3698 ((-3 (-1281 (-417 |#1|)) "failed") (-1281 |#2|) |#2|)))) (-566) (-13 (-1062) (-649 |#1|))) (T -648)) -((-3698 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1281 *4)) (-4 *4 (-13 (-1062) (-649 *5))) (-2076 (-4 *5 (-372))) (-4 *5 (-566)) (-5 *2 (-1281 (-417 *5))) (-5 *1 (-648 *5 *4)))) (-3698 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1281 *4)) (-4 *4 (-13 (-1062) (-649 *5))) (-4 *5 (-372)) (-4 *5 (-566)) (-5 *2 (-1281 *5)) (-5 *1 (-648 *5 *4)))) (-2802 (*1 *2 *3) (|partial| -12 (-5 *3 (-1281 *5)) (-4 *5 (-13 (-1062) (-649 *4))) (-4 *4 (-566)) (-5 *2 (-1281 *4)) (-5 *1 (-648 *4 *5)))) (-3017 (*1 *2 *3) (-12 (-5 *3 (-1281 *5)) (-4 *5 (-13 (-1062) (-649 *4))) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-648 *4 *5))))) -(-10 -7 (-15 -3017 ((-112) (-1281 |#2|))) (-15 -2802 ((-3 (-1281 |#1|) "failed") (-1281 |#2|))) (IF (|has| |#1| (-372)) (-15 -3698 ((-3 (-1281 |#1|) "failed") (-1281 |#2|) |#2|)) (-15 -3698 ((-3 (-1281 (-417 |#1|)) "failed") (-1281 |#2|) |#2|)))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-2590 (((-699 |#1|) (-1281 $)) 31) (((-699 |#1|) (-699 $)) 30) (((-2 (|:| -4340 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) 29)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27))) -(((-649 |#1|) (-141) (-1062)) (T -649)) -((-2590 (*1 *2 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-649 *4)) (-4 *4 (-1062)) (-5 *2 (-699 *4)))) (-2590 (*1 *2 *3) (-12 (-5 *3 (-699 *1)) (-4 *1 (-649 *4)) (-4 *4 (-1062)) (-5 *2 (-699 *4)))) (-2590 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *1)) (-5 *4 (-1281 *1)) (-4 *1 (-649 *5)) (-4 *5 (-1062)) (-5 *2 (-2 (|:| -4340 (-699 *5)) (|:| |vec| (-1281 *5))))))) -(-13 (-658 |t#1|) (-10 -8 (-15 -2590 ((-699 |t#1|) (-1281 $))) (-15 -2590 ((-699 |t#1|) (-699 $))) (-15 -2590 ((-2 (|:| -4340 (-699 |t#1|)) (|:| |vec| (-1281 |t#1|))) (-699 $) (-1281 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-1113) . T)) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 15)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2133 (($) 16 T CONST)) (-2981 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19))) -(((-650 |#1|) (-141) (-1071)) (T -650)) -NIL -(-13 (-656 |t#1|) (-1064 |t#1|)) -(((-102) . T) ((-623 (-872)) . T) ((-656 |#1|) . T) ((-1064 |#1|) . T) ((-1113) . T)) -((-2683 ((|#2| (-654 |#1|) (-654 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-654 |#1|) (-654 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) |#2|) 17) ((|#2| (-654 |#1|) (-654 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|)) 12))) -(((-651 |#1| |#2|) (-10 -7 (-15 -2683 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|))) (-15 -2683 (|#2| (-654 |#1|) (-654 |#2|) |#1|)) (-15 -2683 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) |#2|)) (-15 -2683 (|#2| (-654 |#1|) (-654 |#2|) |#1| |#2|)) (-15 -2683 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) (-1 |#2| |#1|))) (-15 -2683 (|#2| (-654 |#1|) (-654 |#2|) |#1| (-1 |#2| |#1|)))) (-1113) (-1231)) (T -651)) -((-2683 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1113)) (-4 *2 (-1231)) (-5 *1 (-651 *5 *2)))) (-2683 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-654 *5)) (-5 *4 (-654 *6)) (-4 *5 (-1113)) (-4 *6 (-1231)) (-5 *1 (-651 *5 *6)))) (-2683 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-4 *5 (-1113)) (-4 *2 (-1231)) (-5 *1 (-651 *5 *2)))) (-2683 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 *5)) (-4 *6 (-1113)) (-4 *5 (-1231)) (-5 *2 (-1 *5 *6)) (-5 *1 (-651 *6 *5)))) (-2683 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-4 *5 (-1113)) (-4 *2 (-1231)) (-5 *1 (-651 *5 *2)))) (-2683 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *6)) (-4 *5 (-1113)) (-4 *6 (-1231)) (-5 *2 (-1 *6 *5)) (-5 *1 (-651 *5 *6))))) -(-10 -7 (-15 -2683 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|))) (-15 -2683 (|#2| (-654 |#1|) (-654 |#2|) |#1|)) (-15 -2683 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) |#2|)) (-15 -2683 (|#2| (-654 |#1|) (-654 |#2|) |#1| |#2|)) (-15 -2683 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) (-1 |#2| |#1|))) (-15 -2683 (|#2| (-654 |#1|) (-654 |#2|) |#1| (-1 |#2| |#1|)))) -((-4034 (((-654 |#2|) (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|) 16)) (-2868 ((|#2| (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|) 18)) (-1777 (((-654 |#2|) (-1 |#2| |#1|) (-654 |#1|)) 13))) -(((-652 |#1| |#2|) (-10 -7 (-15 -4034 ((-654 |#2|) (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|)) (-15 -2868 (|#2| (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|)) (-15 -1777 ((-654 |#2|) (-1 |#2| |#1|) (-654 |#1|)))) (-1231) (-1231)) (T -652)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-654 *5)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-654 *6)) (-5 *1 (-652 *5 *6)))) (-2868 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-654 *5)) (-4 *5 (-1231)) (-4 *2 (-1231)) (-5 *1 (-652 *5 *2)))) (-4034 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-654 *6)) (-4 *6 (-1231)) (-4 *5 (-1231)) (-5 *2 (-654 *5)) (-5 *1 (-652 *6 *5))))) -(-10 -7 (-15 -4034 ((-654 |#2|) (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|)) (-15 -2868 (|#2| (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|)) (-15 -1777 ((-654 |#2|) (-1 |#2| |#1|) (-654 |#1|)))) -((-1777 (((-654 |#3|) (-1 |#3| |#1| |#2|) (-654 |#1|) (-654 |#2|)) 21))) -(((-653 |#1| |#2| |#3|) (-10 -7 (-15 -1777 ((-654 |#3|) (-1 |#3| |#1| |#2|) (-654 |#1|) (-654 |#2|)))) (-1231) (-1231) (-1231)) (T -653)) -((-1777 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-654 *6)) (-5 *5 (-654 *7)) (-4 *6 (-1231)) (-4 *7 (-1231)) (-4 *8 (-1231)) (-5 *2 (-654 *8)) (-5 *1 (-653 *6 *7 *8))))) -(-10 -7 (-15 -1777 ((-654 |#3|) (-1 |#3| |#1| |#2|) (-654 |#1|) (-654 |#2|)))) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3083 ((|#1| $) NIL)) (-2406 ((|#1| $) NIL)) (-1970 (($ $) NIL)) (-3714 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-3617 (($ $ (-574)) NIL (|has| $ (-6 -4457)))) (-1357 (((-112) $) NIL (|has| |#1| (-860))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3642 (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| |#1| (-860)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-2771 (($ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3034 (((-112) $ (-781)) NIL)) (-3316 ((|#1| $ |#1|) NIL (|has| $ (-6 -4457)))) (-3575 (($ $ $) NIL (|has| $ (-6 -4457)))) (-3582 ((|#1| $ |#1|) NIL (|has| $ (-6 -4457)))) (-3630 ((|#1| $ |#1|) NIL (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4457))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4457))) (($ $ "rest" $) NIL (|has| $ (-6 -4457))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) NIL (|has| $ (-6 -4457))) ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457)))) (-2183 (($ $ (-654 $)) NIL (|has| $ (-6 -4457)))) (-3921 (($ $ $) 37 (|has| |#1| (-1113)))) (-3054 (($ $ $) 41 (|has| |#1| (-1113)))) (-3951 (($ $ $) 44 (|has| |#1| (-1113)))) (-3572 (($ (-1 (-112) |#1|) $) NIL)) (-2165 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2393 ((|#1| $) NIL)) (-3426 (($) NIL T CONST)) (-2627 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-2926 (($ $) 23) (($ $ (-781)) NIL)) (-1771 (($ $) NIL (|has| |#1| (-1113)))) (-1543 (($ $) 36 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2876 (($ |#1| $) NIL (|has| |#1| (-1113))) (($ (-1 (-112) |#1|) $) NIL)) (-3335 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2458 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) NIL)) (-1688 (((-112) $) NIL)) (-1441 (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1113))) (((-574) |#1| $) NIL (|has| |#1| (-1113))) (((-574) (-1 (-112) |#1|) $) NIL)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-2065 (((-112) $) 11)) (-3820 (((-654 $) $) NIL)) (-2278 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3521 (($) 9 T CONST)) (-3790 (($ (-781) |#1|) NIL)) (-2742 (((-112) $ (-781)) NIL)) (-3618 (((-574) $) NIL (|has| (-574) (-860)))) (-3659 (($ $ $) NIL (|has| |#1| (-860)))) (-2628 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4430 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2702 (((-574) $) NIL (|has| (-574) (-860)))) (-4257 (($ $ $) NIL (|has| |#1| (-860)))) (-2449 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1788 (($ |#1|) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-3507 (((-654 |#1|) $) NIL)) (-3632 (((-112) $) NIL)) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-3360 ((|#1| $) NIL) (($ $ (-781)) NIL)) (-2798 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1594 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-4308 (((-654 (-574)) $) NIL)) (-3336 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2915 ((|#1| $) 20) (($ $ (-781)) NIL)) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1942 (($ $ |#1|) NIL (|has| $ (-6 -4457)))) (-4073 (((-112) $) NIL)) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-4371 (((-654 |#1|) $) NIL)) (-1584 (((-112) $) 39)) (-2672 (($) 38)) (-2199 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1248 (-574))) NIL) ((|#1| $ (-574)) 42) ((|#1| $ (-574) |#1|) NIL)) (-3867 (((-574) $ $) NIL)) (-2932 (($ $ (-1248 (-574))) NIL) (($ $ (-574)) NIL)) (-2840 (($ $ (-1248 (-574))) NIL) (($ $ (-574)) NIL)) (-2479 (((-112) $) NIL)) (-2595 (($ $) NIL)) (-4434 (($ $) NIL (|has| $ (-6 -4457)))) (-3066 (((-781) $) NIL)) (-2807 (($ $) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3506 (($ $ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3167 (($ $) NIL)) (-1836 (((-546) $) 53 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) NIL)) (-2226 (($ |#1| $) 12)) (-1995 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4157 (($ $ $) 35) (($ |#1| $) 43) (($ (-654 $)) NIL) (($ $ |#1|) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2321 (((-654 $) $) NIL)) (-4418 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2857 (($ $ $) 13)) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-1544 (((-1172) $) 31 (|has| |#1| (-838))) (((-1172) $ (-112)) 32 (|has| |#1| (-838))) (((-1286) (-832) $) 33 (|has| |#1| (-838))) (((-1286) (-832) $ (-112)) 34 (|has| |#1| (-838)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3007 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-654 |#1|) (-13 (-676 |#1|) (-10 -8 (-15 -3521 ($) -1706) (-15 -2065 ((-112) $)) (-15 -2226 ($ |#1| $)) (-15 -2857 ($ $ $)) (IF (|has| |#1| (-1113)) (PROGN (-15 -3921 ($ $ $)) (-15 -3054 ($ $ $)) (-15 -3951 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|))) (-1231)) (T -654)) -((-3521 (*1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1231)))) (-2065 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-654 *3)) (-4 *3 (-1231)))) (-2226 (*1 *1 *2 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1231)))) (-2857 (*1 *1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1231)))) (-3921 (*1 *1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1113)) (-4 *2 (-1231)))) (-3054 (*1 *1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1113)) (-4 *2 (-1231)))) (-3951 (*1 *1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1113)) (-4 *2 (-1231))))) -(-13 (-676 |#1|) (-10 -8 (-15 -3521 ($) -1706) (-15 -2065 ((-112) $)) (-15 -2226 ($ |#1| $)) (-15 -2857 ($ $ $)) (IF (|has| |#1| (-1113)) (PROGN (-15 -3921 ($ $ $)) (-15 -3054 ($ $ $)) (-15 -3951 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|))) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 11) (($ (-1195)) NIL) (((-1195) $) NIL) ((|#1| $) 8)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-655 |#1|) (-13 (-1096) (-623 |#1|)) (-1113)) (T -655)) -NIL -(-13 (-1096) (-623 |#1|)) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 15)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2133 (($) 16 T CONST)) (-2981 (((-112) $ $) 6)) (* (($ |#1| $) 14))) -(((-656 |#1|) (-141) (-1071)) (T -656)) -((-2133 (*1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1071)))) (-3138 (*1 *2 *1) (-12 (-4 *1 (-656 *3)) (-4 *3 (-1071)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1071))))) -(-13 (-1113) (-10 -8 (-15 (-2133) ($) -1706) (-15 -3138 ((-112) $)) (-15 * ($ |t#1| $)))) -(((-102) . T) ((-623 (-872)) . T) ((-1113) . T)) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-1883 (($ |#1| |#1| $) 43)) (-3034 (((-112) $ (-781)) NIL)) (-3572 (($ (-1 (-112) |#1|) $) 59 (|has| $ (-6 -4456)))) (-2165 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3426 (($) NIL T CONST)) (-1771 (($ $) 45)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2876 (($ |#1| $) 56 (|has| $ (-6 -4456))) (($ (-1 (-112) |#1|) $) 58 (|has| $ (-6 -4456)))) (-3335 (($ |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1864 (((-654 |#1|) $) 9 (|has| $ (-6 -4456)))) (-2742 (((-112) $ (-781)) NIL)) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2449 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 37)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-2937 ((|#1| $) 47)) (-2798 (($ |#1| $) 29) (($ |#1| $ (-781)) 42)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1785 ((|#1| $) 50)) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) NIL)) (-1584 (((-112) $) 23)) (-2672 (($) 28)) (-1977 (((-112) $) 54)) (-4099 (((-654 (-2 (|:| -1908 |#1|) (|:| -3975 (-781)))) $) 67)) (-1662 (($) 26) (($ (-654 |#1|)) 19)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) 63 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) 20)) (-1836 (((-546) $) 34 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) NIL)) (-2943 (((-872) $) 14 (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-1599 (($ (-654 |#1|)) 24)) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 69 (|has| |#1| (-1113)))) (-2863 (((-781) $) 17 (|has| $ (-6 -4456))))) -(((-657 |#1|) (-13 (-705 |#1|) (-10 -8 (-6 -4456) (-15 -1977 ((-112) $)) (-15 -1883 ($ |#1| |#1| $)))) (-1113)) (T -657)) -((-1977 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-1113)))) (-1883 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1113))))) -(-13 (-705 |#1|) (-10 -8 (-6 -4456) (-15 -1977 ((-112) $)) (-15 -1883 ($ |#1| |#1| $)))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27))) -(((-658 |#1|) (-141) (-1071)) (T -658)) -NIL -(-13 (-21) (-656 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-1113) . T)) -((-2849 (((-112) $ $) NIL)) (-1487 (((-781) $) 17)) (-3277 (($ $ |#1|) 69)) (-2627 (($ $) 39)) (-4423 (($ $) 37)) (-1696 (((-3 |#1| "failed") $) 61)) (-2206 ((|#1| $) NIL)) (-3746 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-2212 (((-872) $ (-1 (-872) (-872) (-872)) (-1 (-872) (-872) (-872)) (-574)) 56)) (-1915 ((|#1| $ (-574)) 35)) (-3948 ((|#2| $ (-574)) 34)) (-2354 (($ (-1 |#1| |#1|) $) 41)) (-1539 (($ (-1 |#2| |#2|) $) 47)) (-1369 (($) 11)) (-4234 (($ |#1| |#2|) 24)) (-2570 (($ (-654 (-2 (|:| |gen| |#1|) (|:| -1609 |#2|)))) 25)) (-1447 (((-654 (-2 (|:| |gen| |#1|) (|:| -1609 |#2|))) $) 14)) (-3662 (($ |#1| $) 71)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2510 (((-112) $ $) 76)) (-2943 (((-872) $) 21) (($ |#1|) 18)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 27))) -(((-659 |#1| |#2| |#3|) (-13 (-1113) (-1051 |#1|) (-10 -8 (-15 -2212 ((-872) $ (-1 (-872) (-872) (-872)) (-1 (-872) (-872) (-872)) (-574))) (-15 -1447 ((-654 (-2 (|:| |gen| |#1|) (|:| -1609 |#2|))) $)) (-15 -4234 ($ |#1| |#2|)) (-15 -2570 ($ (-654 (-2 (|:| |gen| |#1|) (|:| -1609 |#2|))))) (-15 -3948 (|#2| $ (-574))) (-15 -1915 (|#1| $ (-574))) (-15 -4423 ($ $)) (-15 -2627 ($ $)) (-15 -1487 ((-781) $)) (-15 -1369 ($)) (-15 -3277 ($ $ |#1|)) (-15 -3662 ($ |#1| $)) (-15 -3746 ($ |#1| |#2| $)) (-15 -3746 ($ $ $)) (-15 -2510 ((-112) $ $)) (-15 -1539 ($ (-1 |#2| |#2|) $)) (-15 -2354 ($ (-1 |#1| |#1|) $)))) (-1113) (-23) |#2|) (T -659)) -((-2212 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-872) (-872) (-872))) (-5 *4 (-574)) (-5 *2 (-872)) (-5 *1 (-659 *5 *6 *7)) (-4 *5 (-1113)) (-4 *6 (-23)) (-14 *7 *6))) (-1447 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1609 *4)))) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-23)) (-14 *5 *4))) (-4234 (*1 *1 *2 *3) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23)) (-14 *4 *3))) (-2570 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1609 *4)))) (-4 *3 (-1113)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-659 *3 *4 *5)))) (-3948 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *2 (-23)) (-5 *1 (-659 *4 *2 *5)) (-4 *4 (-1113)) (-14 *5 *2))) (-1915 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *2 (-1113)) (-5 *1 (-659 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-4423 (*1 *1 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23)) (-14 *4 *3))) (-2627 (*1 *1 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23)) (-14 *4 *3))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-23)) (-14 *5 *4))) (-1369 (*1 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23)) (-14 *4 *3))) (-3277 (*1 *1 *1 *2) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23)) (-14 *4 *3))) (-3662 (*1 *1 *2 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23)) (-14 *4 *3))) (-3746 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23)) (-14 *4 *3))) (-3746 (*1 *1 *1 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23)) (-14 *4 *3))) (-2510 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-23)) (-14 *5 *4))) (-1539 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1113)))) (-2354 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1113)) (-5 *1 (-659 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1113) (-1051 |#1|) (-10 -8 (-15 -2212 ((-872) $ (-1 (-872) (-872) (-872)) (-1 (-872) (-872) (-872)) (-574))) (-15 -1447 ((-654 (-2 (|:| |gen| |#1|) (|:| -1609 |#2|))) $)) (-15 -4234 ($ |#1| |#2|)) (-15 -2570 ($ (-654 (-2 (|:| |gen| |#1|) (|:| -1609 |#2|))))) (-15 -3948 (|#2| $ (-574))) (-15 -1915 (|#1| $ (-574))) (-15 -4423 ($ $)) (-15 -2627 ($ $)) (-15 -1487 ((-781) $)) (-15 -1369 ($)) (-15 -3277 ($ $ |#1|)) (-15 -3662 ($ |#1| $)) (-15 -3746 ($ |#1| |#2| $)) (-15 -3746 ($ $ $)) (-15 -2510 ((-112) $ $)) (-15 -1539 ($ (-1 |#2| |#2|) $)) (-15 -2354 ($ (-1 |#1| |#1|) $)))) -((-2702 (((-574) $) 31)) (-1594 (($ |#2| $ (-574)) 27) (($ $ $ (-574)) NIL)) (-4308 (((-654 (-574)) $) 12)) (-3336 (((-112) (-574) $) 18)) (-4157 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-654 $)) NIL))) -(((-660 |#1| |#2|) (-10 -8 (-15 -1594 (|#1| |#1| |#1| (-574))) (-15 -1594 (|#1| |#2| |#1| (-574))) (-15 -4157 (|#1| (-654 |#1|))) (-15 -4157 (|#1| |#1| |#1|)) (-15 -4157 (|#1| |#2| |#1|)) (-15 -4157 (|#1| |#1| |#2|)) (-15 -2702 ((-574) |#1|)) (-15 -4308 ((-654 (-574)) |#1|)) (-15 -3336 ((-112) (-574) |#1|))) (-661 |#2|) (-1231)) (T -660)) -NIL -(-10 -8 (-15 -1594 (|#1| |#1| |#1| (-574))) (-15 -1594 (|#1| |#2| |#1| (-574))) (-15 -4157 (|#1| (-654 |#1|))) (-15 -4157 (|#1| |#1| |#1|)) (-15 -4157 (|#1| |#2| |#1|)) (-15 -4157 (|#1| |#1| |#2|)) (-15 -2702 ((-574) |#1|)) (-15 -4308 ((-654 (-574)) |#1|)) (-15 -3336 ((-112) (-574) |#1|))) -((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3714 (((-1286) $ (-574) (-574)) 41 (|has| $ (-6 -4457)))) (-3034 (((-112) $ (-781)) 8)) (-3143 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) 60 (|has| $ (-6 -4457)))) (-2165 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4456)))) (-3426 (($) 7 T CONST)) (-1543 (($ $) 80 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ |#1| $) 79 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4456)))) (-2458 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) 52)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3790 (($ (-781) |#1|) 70)) (-2742 (((-112) $ (-781)) 9)) (-3618 (((-574) $) 44 (|has| (-574) (-860)))) (-1606 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2702 (((-574) $) 45 (|has| (-574) (-860)))) (-2449 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4203 (((-112) $ (-781)) 10)) (-4136 (((-1172) $) 22 (|has| |#1| (-1113)))) (-1594 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-4308 (((-654 (-574)) $) 47)) (-3336 (((-112) (-574) $) 48)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-2915 ((|#1| $) 43 (|has| (-574) (-860)))) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1942 (($ $ |#1|) 42 (|has| $ (-6 -4457)))) (-2540 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 14)) (-3398 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-4371 (((-654 |#1|) $) 49)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-2199 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1248 (-574))) 71)) (-2840 (($ $ (-574)) 64) (($ $ (-1248 (-574))) 63)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-1836 (((-546) $) 81 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 72)) (-4157 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-661 |#1|) (-141) (-1231)) (T -661)) -((-3790 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-4 *1 (-661 *3)) (-4 *3 (-1231)))) (-4157 (*1 *1 *1 *2) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1231)))) (-4157 (*1 *1 *2 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1231)))) (-4157 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1231)))) (-4157 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-661 *3)) (-4 *3 (-1231)))) (-1777 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-661 *3)) (-4 *3 (-1231)))) (-2840 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-661 *3)) (-4 *3 (-1231)))) (-2840 (*1 *1 *1 *2) (-12 (-5 *2 (-1248 (-574))) (-4 *1 (-661 *3)) (-4 *3 (-1231)))) (-1594 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-661 *2)) (-4 *2 (-1231)))) (-1594 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-661 *3)) (-4 *3 (-1231)))) (-3143 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1248 (-574))) (|has| *1 (-6 -4457)) (-4 *1 (-661 *2)) (-4 *2 (-1231))))) -(-13 (-614 (-574) |t#1|) (-152 |t#1|) (-294 (-1248 (-574)) $) (-10 -8 (-15 -3790 ($ (-781) |t#1|)) (-15 -4157 ($ $ |t#1|)) (-15 -4157 ($ |t#1| $)) (-15 -4157 ($ $ $)) (-15 -4157 ($ (-654 $))) (-15 -1777 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2840 ($ $ (-574))) (-15 -2840 ($ $ (-1248 (-574)))) (-15 -1594 ($ |t#1| $ (-574))) (-15 -1594 ($ $ $ (-574))) (IF (|has| $ (-6 -4457)) (-15 -3143 (|t#1| $ (-1248 (-574)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1248 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1113) |has| |#1| (-1113)) ((-1231) . T)) -((-1701 (((-3 |#2| "failed") |#3| |#2| (-1190) |#2| (-654 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -1882 (-654 |#2|))) "failed") |#3| |#2| (-1190)) 44))) -(((-662 |#1| |#2| |#3|) (-10 -7 (-15 -1701 ((-3 (-2 (|:| |particular| |#2|) (|:| -1882 (-654 |#2|))) "failed") |#3| |#2| (-1190))) (-15 -1701 ((-3 |#2| "failed") |#3| |#2| (-1190) |#2| (-654 |#2|)))) (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148)) (-13 (-29 |#1|) (-1216) (-970)) (-666 |#2|)) (T -662)) -((-1701 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1190)) (-5 *5 (-654 *2)) (-4 *2 (-13 (-29 *6) (-1216) (-970))) (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *1 (-662 *6 *2 *3)) (-4 *3 (-666 *2)))) (-1701 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1190)) (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-4 *4 (-13 (-29 *6) (-1216) (-970))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1882 (-654 *4)))) (-5 *1 (-662 *6 *4 *3)) (-4 *3 (-666 *4))))) -(-10 -7 (-15 -1701 ((-3 (-2 (|:| |particular| |#2|) (|:| -1882 (-654 |#2|))) "failed") |#3| |#2| (-1190))) (-15 -1701 ((-3 |#2| "failed") |#3| |#2| (-1190) |#2| (-654 |#2|)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3044 (($ $) NIL (|has| |#1| (-372)))) (-2632 (($ $ $) NIL (|has| |#1| (-372)))) (-3383 (($ $ (-781)) NIL (|has| |#1| (-372)))) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-2909 (($ $ $) NIL (|has| |#1| (-372)))) (-3978 (($ $ $) NIL (|has| |#1| (-372)))) (-3520 (($ $ $) NIL (|has| |#1| (-372)))) (-3386 (($ $ $) NIL (|has| |#1| (-372)))) (-1806 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-3480 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-1615 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#1| (-372)))) (-1696 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2206 (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) NIL)) (-1392 (($ $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-1569 (($ $) NIL (|has| |#1| (-462)))) (-3199 (((-112) $) NIL)) (-4335 (($ |#1| (-781)) NIL)) (-4168 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#1| (-566)))) (-2723 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#1| (-566)))) (-1742 (((-781) $) NIL)) (-2711 (($ $ $) NIL (|has| |#1| (-372)))) (-4188 (($ $ $) NIL (|has| |#1| (-372)))) (-1818 (($ $ $) NIL (|has| |#1| (-372)))) (-3863 (($ $ $) NIL (|has| |#1| (-372)))) (-3838 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-1518 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-2962 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#1| (-372)))) (-1370 ((|#1| $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2838 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-2199 ((|#1| $ |#1|) NIL)) (-3011 (($ $ $) NIL (|has| |#1| (-372)))) (-4202 (((-781) $) NIL)) (-3069 ((|#1| $) NIL (|has| |#1| (-462)))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-1051 (-417 (-574))))) (($ |#1|) NIL)) (-2530 (((-654 |#1|) $) NIL)) (-3087 ((|#1| $ (-781)) NIL)) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-2901 ((|#1| $ |#1| |#1|) NIL)) (-2194 (($ $) NIL)) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-3610 (($) NIL)) (-2981 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-663 |#1|) (-666 |#1|) (-239)) (T -663)) -NIL -(-666 |#1|) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3044 (($ $) NIL (|has| |#1| (-372)))) (-2632 (($ $ $) NIL (|has| |#1| (-372)))) (-3383 (($ $ (-781)) NIL (|has| |#1| (-372)))) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-2909 (($ $ $) NIL (|has| |#1| (-372)))) (-3978 (($ $ $) NIL (|has| |#1| (-372)))) (-3520 (($ $ $) NIL (|has| |#1| (-372)))) (-3386 (($ $ $) NIL (|has| |#1| (-372)))) (-1806 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-3480 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-1615 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#1| (-372)))) (-1696 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2206 (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) NIL)) (-1392 (($ $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-1569 (($ $) NIL (|has| |#1| (-462)))) (-3199 (((-112) $) NIL)) (-4335 (($ |#1| (-781)) NIL)) (-4168 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#1| (-566)))) (-2723 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#1| (-566)))) (-1742 (((-781) $) NIL)) (-2711 (($ $ $) NIL (|has| |#1| (-372)))) (-4188 (($ $ $) NIL (|has| |#1| (-372)))) (-1818 (($ $ $) NIL (|has| |#1| (-372)))) (-3863 (($ $ $) NIL (|has| |#1| (-372)))) (-3838 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-1518 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-2962 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#1| (-372)))) (-1370 ((|#1| $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2838 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-2199 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3011 (($ $ $) NIL (|has| |#1| (-372)))) (-4202 (((-781) $) NIL)) (-3069 ((|#1| $) NIL (|has| |#1| (-462)))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-1051 (-417 (-574))))) (($ |#1|) NIL)) (-2530 (((-654 |#1|) $) NIL)) (-3087 ((|#1| $ (-781)) NIL)) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-2901 ((|#1| $ |#1| |#1|) NIL)) (-2194 (($ $) NIL)) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-3610 (($) NIL)) (-2981 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-664 |#1| |#2|) (-13 (-666 |#1|) (-294 |#2| |#2|)) (-239) (-13 (-658 |#1|) (-10 -8 (-15 -3905 ($ $))))) (T -664)) -NIL -(-13 (-666 |#1|) (-294 |#2| |#2|)) -((-3044 (($ $) 29)) (-2194 (($ $) 27)) (-3610 (($) 13))) -(((-665 |#1| |#2|) (-10 -8 (-15 -3044 (|#1| |#1|)) (-15 -2194 (|#1| |#1|)) (-15 -3610 (|#1|))) (-666 |#2|) (-1062)) (T -665)) -NIL -(-10 -8 (-15 -3044 (|#1| |#1|)) (-15 -2194 (|#1| |#1|)) (-15 -3610 (|#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3044 (($ $) 87 (|has| |#1| (-372)))) (-2632 (($ $ $) 89 (|has| |#1| (-372)))) (-3383 (($ $ (-781)) 88 (|has| |#1| (-372)))) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-2909 (($ $ $) 50 (|has| |#1| (-372)))) (-3978 (($ $ $) 51 (|has| |#1| (-372)))) (-3520 (($ $ $) 53 (|has| |#1| (-372)))) (-3386 (($ $ $) 48 (|has| |#1| (-372)))) (-1806 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 47 (|has| |#1| (-372)))) (-3480 (((-3 $ "failed") $ $) 49 (|has| |#1| (-372)))) (-1615 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 52 (|has| |#1| (-372)))) (-1696 (((-3 (-574) "failed") $) 80 (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) 77 (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) 74)) (-2206 (((-574) $) 79 (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) 76 (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) 75)) (-1392 (($ $) 69)) (-3434 (((-3 $ "failed") $) 37)) (-1569 (($ $) 60 (|has| |#1| (-462)))) (-3199 (((-112) $) 35)) (-4335 (($ |#1| (-781)) 67)) (-4168 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 62 (|has| |#1| (-566)))) (-2723 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 63 (|has| |#1| (-566)))) (-1742 (((-781) $) 71)) (-2711 (($ $ $) 57 (|has| |#1| (-372)))) (-4188 (($ $ $) 58 (|has| |#1| (-372)))) (-1818 (($ $ $) 46 (|has| |#1| (-372)))) (-3863 (($ $ $) 55 (|has| |#1| (-372)))) (-3838 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 54 (|has| |#1| (-372)))) (-1518 (((-3 $ "failed") $ $) 56 (|has| |#1| (-372)))) (-2962 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 59 (|has| |#1| (-372)))) (-1370 ((|#1| $) 70)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2838 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-566)))) (-2199 ((|#1| $ |#1|) 92)) (-3011 (($ $ $) 86 (|has| |#1| (-372)))) (-4202 (((-781) $) 72)) (-3069 ((|#1| $) 61 (|has| |#1| (-462)))) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 78 (|has| |#1| (-1051 (-417 (-574))))) (($ |#1|) 73)) (-2530 (((-654 |#1|) $) 66)) (-3087 ((|#1| $ (-781)) 68)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2901 ((|#1| $ |#1| |#1|) 65)) (-2194 (($ $) 90)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-3610 (($) 91)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) -(((-666 |#1|) (-141) (-1062)) (T -666)) -((-3610 (*1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1062)))) (-2194 (*1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1062)))) (-2632 (*1 *1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))) (-3383 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-666 *3)) (-4 *3 (-1062)) (-4 *3 (-372)))) (-3044 (*1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))) (-3011 (*1 *1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1062)) (-4 *2 (-372))))) -(-13 (-862 |t#1|) (-294 |t#1| |t#1|) (-10 -8 (-15 -3610 ($)) (-15 -2194 ($ $)) (IF (|has| |t#1| (-372)) (PROGN (-15 -2632 ($ $ $)) (-15 -3383 ($ $ (-781))) (-15 -3044 ($ $)) (-15 -3011 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 #0=(-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-294 |#1| |#1|) . T) ((-421 |#1|) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) |has| |#1| (-174)) ((-727 |#1|) |has| |#1| (-174)) ((-736) . T) ((-1051 #0#) |has| |#1| (-1051 (-417 (-574)))) ((-1051 (-574)) |has| |#1| (-1051 (-574))) ((-1051 |#1|) . T) ((-1064 |#1|) . T) ((-1069 |#1|) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1231) . T) ((-862 |#1|) . T)) -((-1978 (((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|))) 85 (|has| |#1| (-27)))) (-4220 (((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|))) 84 (|has| |#1| (-27))) (((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|)) 19))) -(((-667 |#1| |#2|) (-10 -7 (-15 -4220 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4220 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|)))) (-15 -1978 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|))))) |%noBranch|)) (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574)))) (-1257 |#1|)) (T -667)) -((-1978 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-4 *5 (-1257 *4)) (-5 *2 (-654 (-663 (-417 *5)))) (-5 *1 (-667 *4 *5)) (-5 *3 (-663 (-417 *5))))) (-4220 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-4 *5 (-1257 *4)) (-5 *2 (-654 (-663 (-417 *5)))) (-5 *1 (-667 *4 *5)) (-5 *3 (-663 (-417 *5))))) (-4220 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-4 *6 (-1257 *5)) (-5 *2 (-654 (-663 (-417 *6)))) (-5 *1 (-667 *5 *6)) (-5 *3 (-663 (-417 *6)))))) -(-10 -7 (-15 -4220 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4220 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|)))) (-15 -1978 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|))))) |%noBranch|)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3044 (($ $) NIL (|has| |#1| (-372)))) (-2632 (($ $ $) 28 (|has| |#1| (-372)))) (-3383 (($ $ (-781)) 31 (|has| |#1| (-372)))) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-2909 (($ $ $) NIL (|has| |#1| (-372)))) (-3978 (($ $ $) NIL (|has| |#1| (-372)))) (-3520 (($ $ $) NIL (|has| |#1| (-372)))) (-3386 (($ $ $) NIL (|has| |#1| (-372)))) (-1806 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-3480 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-1615 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#1| (-372)))) (-1696 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2206 (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) NIL)) (-1392 (($ $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-1569 (($ $) NIL (|has| |#1| (-462)))) (-3199 (((-112) $) NIL)) (-4335 (($ |#1| (-781)) NIL)) (-4168 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#1| (-566)))) (-2723 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#1| (-566)))) (-1742 (((-781) $) NIL)) (-2711 (($ $ $) NIL (|has| |#1| (-372)))) (-4188 (($ $ $) NIL (|has| |#1| (-372)))) (-1818 (($ $ $) NIL (|has| |#1| (-372)))) (-3863 (($ $ $) NIL (|has| |#1| (-372)))) (-3838 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-1518 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-2962 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#1| (-372)))) (-1370 ((|#1| $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2838 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-2199 ((|#1| $ |#1|) 24)) (-3011 (($ $ $) 33 (|has| |#1| (-372)))) (-4202 (((-781) $) NIL)) (-3069 ((|#1| $) NIL (|has| |#1| (-462)))) (-2943 (((-872) $) 20) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-1051 (-417 (-574))))) (($ |#1|) NIL)) (-2530 (((-654 |#1|) $) NIL)) (-3087 ((|#1| $ (-781)) NIL)) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-2901 ((|#1| $ |#1| |#1|) 23)) (-2194 (($ $) NIL)) (-2133 (($) 21 T CONST)) (-2145 (($) 8 T CONST)) (-3610 (($) NIL)) (-2981 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-668 |#1| |#2|) (-666 |#1|) (-1062) (-1 |#1| |#1|)) (T -668)) -NIL -(-666 |#1|) -((-2632 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65)) (-3383 ((|#2| |#2| (-781) (-1 |#1| |#1|)) 45)) (-3011 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67))) -(((-669 |#1| |#2|) (-10 -7 (-15 -2632 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3383 (|#2| |#2| (-781) (-1 |#1| |#1|))) (-15 -3011 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-372) (-666 |#1|)) (T -669)) -((-3011 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-372)) (-5 *1 (-669 *4 *2)) (-4 *2 (-666 *4)))) (-3383 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-1 *5 *5)) (-4 *5 (-372)) (-5 *1 (-669 *5 *2)) (-4 *2 (-666 *5)))) (-2632 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-372)) (-5 *1 (-669 *4 *2)) (-4 *2 (-666 *4))))) -(-10 -7 (-15 -2632 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3383 (|#2| |#2| (-781) (-1 |#1| |#1|))) (-15 -3011 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-2925 (($ $ $) 9))) -(((-670 |#1|) (-10 -8 (-15 -2925 (|#1| |#1| |#1|))) (-671)) (T -670)) -NIL -(-10 -8 (-15 -2925 (|#1| |#1| |#1|))) -((-2849 (((-112) $ $) 7)) (-2877 (($ $) 10)) (-2925 (($ $ $) 8)) (-2981 (((-112) $ $) 6)) (-2912 (($ $ $) 9))) -(((-671) (-141)) (T -671)) -((-2877 (*1 *1 *1) (-4 *1 (-671))) (-2912 (*1 *1 *1 *1) (-4 *1 (-671))) (-2925 (*1 *1 *1 *1) (-4 *1 (-671)))) -(-13 (-102) (-10 -8 (-15 -2877 ($ $)) (-15 -2912 ($ $ $)) (-15 -2925 ($ $ $)))) +((-2848 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-3777 (($) NIL) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3791 (((-1285) $ |#1| |#1|) NIL (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#2| $ |#1| |#2|) NIL)) (-3557 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2161 (((-3 |#2| "failed") |#1| $) NIL)) (-2579 (($) NIL T CONST)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-2596 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-3 |#2| "failed") |#1| $) NIL)) (-3334 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2867 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#2| $ |#1|) NIL)) (-1863 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-1968 ((|#1| $) NIL (|has| |#1| (-859)))) (-3214 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3470 ((|#1| $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4456))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-1762 (((-653 |#1|) $) NIL)) (-4201 (((-112) |#1| $) NIL)) (-2487 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-3181 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1977 (((-653 |#1|) $) NIL)) (-2560 (((-112) |#1| $) NIL)) (-3965 (((-1132) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2914 ((|#2| $) NIL (|has| |#1| (-859)))) (-2036 (((-3 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL)) (-3112 (($ $ |#2|) NIL (|has| $ (-6 -4456)))) (-3815 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1575 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 (-301 |#2|))) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-1535 (((-653 |#2|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2428 (($) NIL) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3974 (((-780) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-780) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112)))) (((-780) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-623 (-545))))) (-2955 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-2942 (((-871) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-622 (-871))) (|has| |#2| (-622 (-871)))))) (-3507 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2679 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-1646 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-559 |#1| |#2| |#3|) (-13 (-1206 |#1| |#2|) (-10 -7 (-6 -4455))) (-1112) (-1112) (-13 (-1206 |#1| |#2|) (-10 -7 (-6 -4455)))) (T -559)) +NIL +(-13 (-1206 |#1| |#2|) (-10 -7 (-6 -4455))) +((-4075 (((-595 |#2|) |#2| (-621 |#2|) (-621 |#2|) (-1 (-1185 |#2|) (-1185 |#2|))) 50))) +(((-560 |#1| |#2|) (-10 -7 (-15 -4075 ((-595 |#2|) |#2| (-621 |#2|) (-621 |#2|) (-1 (-1185 |#2|) (-1185 |#2|))))) (-565) (-13 (-27) (-439 |#1|))) (T -560)) +((-4075 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-621 *3)) (-5 *5 (-1 (-1185 *3) (-1185 *3))) (-4 *3 (-13 (-27) (-439 *6))) (-4 *6 (-565)) (-5 *2 (-595 *3)) (-5 *1 (-560 *6 *3))))) +(-10 -7 (-15 -4075 ((-595 |#2|) |#2| (-621 |#2|) (-621 |#2|) (-1 (-1185 |#2|) (-1185 |#2|))))) +((-3501 (((-595 |#5|) |#5| (-1 |#3| |#3|)) 216)) (-1630 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212)) (-2494 (((-595 |#5|) |#5| (-1 |#3| |#3|)) 220))) +(((-561 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2494 ((-595 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3501 ((-595 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1630 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-565) (-1050 (-573))) (-13 (-27) (-439 |#1|)) (-1256 |#2|) (-1256 (-416 |#3|)) (-350 |#2| |#3| |#4|)) (T -561)) +((-1630 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-13 (-27) (-439 *4))) (-4 *4 (-13 (-565) (-1050 (-573)))) (-4 *7 (-1256 (-416 *6))) (-5 *1 (-561 *4 *5 *6 *7 *2)) (-4 *2 (-350 *5 *6 *7)))) (-3501 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1256 *6)) (-4 *6 (-13 (-27) (-439 *5))) (-4 *5 (-13 (-565) (-1050 (-573)))) (-4 *8 (-1256 (-416 *7))) (-5 *2 (-595 *3)) (-5 *1 (-561 *5 *6 *7 *8 *3)) (-4 *3 (-350 *6 *7 *8)))) (-2494 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1256 *6)) (-4 *6 (-13 (-27) (-439 *5))) (-4 *5 (-13 (-565) (-1050 (-573)))) (-4 *8 (-1256 (-416 *7))) (-5 *2 (-595 *3)) (-5 *1 (-561 *5 *6 *7 *8 *3)) (-4 *3 (-350 *6 *7 *8))))) +(-10 -7 (-15 -2494 ((-595 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3501 ((-595 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1630 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-3580 (((-112) (-573) (-573)) 12)) (-4206 (((-573) (-573)) 7)) (-3354 (((-573) (-573) (-573)) 10))) +(((-562) (-10 -7 (-15 -4206 ((-573) (-573))) (-15 -3354 ((-573) (-573) (-573))) (-15 -3580 ((-112) (-573) (-573))))) (T -562)) +((-3580 (*1 *2 *3 *3) (-12 (-5 *3 (-573)) (-5 *2 (-112)) (-5 *1 (-562)))) (-3354 (*1 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-562)))) (-4206 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-562))))) +(-10 -7 (-15 -4206 ((-573) (-573))) (-15 -3354 ((-573) (-573) (-573))) (-15 -3580 ((-112) (-573) (-573)))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-3013 ((|#1| $) 67)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-2363 (($ $) 97)) (-2246 (($ $) 80)) (-3280 ((|#1| $) 68)) (-2983 (((-3 $ "failed") $ $) 20)) (-4228 (($ $) 79)) (-2342 (($ $) 96)) (-2225 (($ $) 81)) (-2388 (($ $) 95)) (-2266 (($ $) 82)) (-2579 (($) 18 T CONST)) (-1695 (((-3 (-573) "failed") $) 75)) (-2205 (((-573) $) 76)) (-2232 (((-3 $ "failed") $) 37)) (-1824 (($ |#1| |#1|) 72)) (-4152 (((-112) $) 66)) (-2999 (($) 107)) (-1959 (((-112) $) 35)) (-4325 (($ $ (-573)) 78)) (-3339 (((-112) $) 65)) (-3659 (($ $ $) 113)) (-3751 (($ $ $) 112)) (-3118 (($ $) 104)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-3151 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-416 (-573))) 70)) (-4040 ((|#1| $) 69)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-2837 (((-3 $ "failed") $ $) 48)) (-1608 (($ $) 105)) (-2401 (($ $) 94)) (-2274 (($ $) 83)) (-2374 (($ $) 93)) (-2255 (($ $) 84)) (-2352 (($ $) 92)) (-2236 (($ $) 85)) (-1914 (((-112) $ |#1|) 64)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49) (($ (-573)) 74)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2439 (($ $) 103)) (-2304 (($ $) 91)) (-2516 (((-112) $ $) 45)) (-2413 (($ $) 102)) (-2286 (($ $) 90)) (-2464 (($ $) 101)) (-2324 (($ $) 89)) (-2520 (($ $) 100)) (-2333 (($ $) 88)) (-2452 (($ $) 99)) (-2314 (($ $) 87)) (-2426 (($ $) 98)) (-2296 (($ $) 86)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3040 (((-112) $ $) 110)) (-3015 (((-112) $ $) 109)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 111)) (-3005 (((-112) $ $) 108)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ $) 106) (($ $ (-416 (-573))) 77)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) +(((-563 |#1|) (-141) (-13 (-413) (-1215))) (T -563)) +((-3151 (*1 *1 *2 *2) (-12 (-4 *1 (-563 *2)) (-4 *2 (-13 (-413) (-1215))))) (-1824 (*1 *1 *2 *2) (-12 (-4 *1 (-563 *2)) (-4 *2 (-13 (-413) (-1215))))) (-3151 (*1 *1 *2) (-12 (-4 *1 (-563 *2)) (-4 *2 (-13 (-413) (-1215))))) (-3151 (*1 *1 *2) (-12 (-5 *2 (-416 (-573))) (-4 *1 (-563 *3)) (-4 *3 (-13 (-413) (-1215))))) (-4040 (*1 *2 *1) (-12 (-4 *1 (-563 *2)) (-4 *2 (-13 (-413) (-1215))))) (-3280 (*1 *2 *1) (-12 (-4 *1 (-563 *2)) (-4 *2 (-13 (-413) (-1215))))) (-3013 (*1 *2 *1) (-12 (-4 *1 (-563 *2)) (-4 *2 (-13 (-413) (-1215))))) (-4152 (*1 *2 *1) (-12 (-4 *1 (-563 *3)) (-4 *3 (-13 (-413) (-1215))) (-5 *2 (-112)))) (-3339 (*1 *2 *1) (-12 (-4 *1 (-563 *3)) (-4 *3 (-13 (-413) (-1215))) (-5 *2 (-112)))) (-1914 (*1 *2 *1 *3) (-12 (-4 *1 (-563 *3)) (-4 *3 (-13 (-413) (-1215))) (-5 *2 (-112))))) +(-13 (-461) (-859) (-1215) (-1014) (-1050 (-573)) (-10 -8 (-6 -3550) (-15 -3151 ($ |t#1| |t#1|)) (-15 -1824 ($ |t#1| |t#1|)) (-15 -3151 ($ |t#1|)) (-15 -3151 ($ (-416 (-573)))) (-15 -4040 (|t#1| $)) (-15 -3280 (|t#1| $)) (-15 -3013 (|t#1| $)) (-15 -4152 ((-112) $)) (-15 -3339 ((-112) $)) (-15 -1914 ((-112) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-291) . T) ((-297) . T) ((-461) . T) ((-502) . T) ((-565) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-649 $) . T) ((-726 $) . T) ((-735) . T) ((-859) . T) ((-1014) . T) ((-1050 (-573)) . T) ((-1063 $) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1215) . T) ((-1218) . T)) +((-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 9)) (-2456 (($ $) 11)) (-1345 (((-112) $) 20)) (-2232 (((-3 $ "failed") $) 16)) (-2516 (((-112) $ $) 22))) +(((-564 |#1|) (-10 -8 (-15 -1345 ((-112) |#1|)) (-15 -2516 ((-112) |#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -4359 ((-2 (|:| -1642 |#1|) (|:| -4442 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1|))) (-565)) (T -564)) +NIL +(-10 -8 (-15 -1345 ((-112) |#1|)) (-15 -2516 ((-112) |#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -4359 ((-2 (|:| -1642 |#1|) (|:| -4442 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2837 (((-3 $ "failed") $ $) 48)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) +(((-565) (-141)) (T -565)) +((-2837 (*1 *1 *1 *1) (|partial| -4 *1 (-565))) (-4359 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1642 *1) (|:| -4442 *1) (|:| |associate| *1))) (-4 *1 (-565)))) (-2456 (*1 *1 *1) (-4 *1 (-565))) (-2516 (*1 *2 *1 *1) (-12 (-4 *1 (-565)) (-5 *2 (-112)))) (-1345 (*1 *2 *1) (-12 (-4 *1 (-565)) (-5 *2 (-112))))) +(-13 (-174) (-38 $) (-297) (-10 -8 (-15 -2837 ((-3 $ "failed") $ $)) (-15 -4359 ((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $)) (-15 -2456 ($ $)) (-15 -2516 ((-112) $ $)) (-15 -1345 ((-112) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-297) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-649 $) . T) ((-726 $) . T) ((-735) . T) ((-1063 $) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) +((-3625 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1189) (-653 |#2|)) 38)) (-3344 (((-595 |#2|) |#2| (-1189)) 63)) (-2122 (((-3 |#2| "failed") |#2| (-1189)) 156)) (-3578 (((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1189) (-621 |#2|) (-653 (-621 |#2|))) 159)) (-4315 (((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1189) |#2|) 41))) +(((-566 |#1| |#2|) (-10 -7 (-15 -4315 ((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1189) |#2|)) (-15 -3625 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1189) (-653 |#2|))) (-15 -2122 ((-3 |#2| "failed") |#2| (-1189))) (-15 -3344 ((-595 |#2|) |#2| (-1189))) (-15 -3578 ((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1189) (-621 |#2|) (-653 (-621 |#2|))))) (-13 (-461) (-148) (-1050 (-573)) (-648 (-573))) (-13 (-27) (-1215) (-439 |#1|))) (T -566)) +((-3578 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1189)) (-5 *6 (-653 (-621 *3))) (-5 *5 (-621 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *7))) (-4 *7 (-13 (-461) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-2 (|:| -3861 *3) (|:| |coeff| *3))) (-5 *1 (-566 *7 *3)))) (-3344 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-4 *5 (-13 (-461) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-595 *3)) (-5 *1 (-566 *5 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))))) (-2122 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1189)) (-4 *4 (-13 (-461) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-566 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *4))))) (-3625 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1189)) (-5 *5 (-653 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *6))) (-4 *6 (-13 (-461) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-566 *6 *3)))) (-4315 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1189)) (-4 *5 (-13 (-461) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-2 (|:| -3861 *3) (|:| |coeff| *3))) (-5 *1 (-566 *5 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5)))))) +(-10 -7 (-15 -4315 ((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1189) |#2|)) (-15 -3625 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1189) (-653 |#2|))) (-15 -2122 ((-3 |#2| "failed") |#2| (-1189))) (-15 -3344 ((-595 |#2|) |#2| (-1189))) (-15 -3578 ((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1189) (-621 |#2|) (-653 (-621 |#2|))))) +((-2427 (((-427 |#1|) |#1|) 19)) (-4218 (((-427 |#1|) |#1|) 34)) (-2978 (((-3 |#1| "failed") |#1|) 49)) (-2072 (((-427 |#1|) |#1|) 60))) +(((-567 |#1|) (-10 -7 (-15 -4218 ((-427 |#1|) |#1|)) (-15 -2427 ((-427 |#1|) |#1|)) (-15 -2072 ((-427 |#1|) |#1|)) (-15 -2978 ((-3 |#1| "failed") |#1|))) (-554)) (T -567)) +((-2978 (*1 *2 *2) (|partial| -12 (-5 *1 (-567 *2)) (-4 *2 (-554)))) (-2072 (*1 *2 *3) (-12 (-5 *2 (-427 *3)) (-5 *1 (-567 *3)) (-4 *3 (-554)))) (-2427 (*1 *2 *3) (-12 (-5 *2 (-427 *3)) (-5 *1 (-567 *3)) (-4 *3 (-554)))) (-4218 (*1 *2 *3) (-12 (-5 *2 (-427 *3)) (-5 *1 (-567 *3)) (-4 *3 (-554))))) +(-10 -7 (-15 -4218 ((-427 |#1|) |#1|)) (-15 -2427 ((-427 |#1|) |#1|)) (-15 -2072 ((-427 |#1|) |#1|)) (-15 -2978 ((-3 |#1| "failed") |#1|))) +((-1570 (($) 9)) (-2007 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 34)) (-1762 (((-653 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 31)) (-3181 (($ (-2 (|:| -3692 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28)) (-2624 (($ (-653 (-2 (|:| -3692 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26)) (-1907 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 38)) (-1535 (((-653 (-2 (|:| -3692 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36)) (-3498 (((-1285)) 11))) +(((-568) (-10 -8 (-15 -1570 ($)) (-15 -3498 ((-1285))) (-15 -1762 ((-653 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2624 ($ (-653 (-2 (|:| -3692 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3181 ($ (-2 (|:| -3692 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2007 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1535 ((-653 (-2 (|:| -3692 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1907 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -568)) +((-1907 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-568)))) (-1535 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| -3692 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-568)))) (-2007 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-568)))) (-3181 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3692 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-568)))) (-2624 (*1 *1 *2) (-12 (-5 *2 (-653 (-2 (|:| -3692 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-568)))) (-1762 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-568)))) (-3498 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-568)))) (-1570 (*1 *1) (-5 *1 (-568)))) +(-10 -8 (-15 -1570 ($)) (-15 -3498 ((-1285))) (-15 -1762 ((-653 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2624 ($ (-653 (-2 (|:| -3692 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3181 ($ (-2 (|:| -3692 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2007 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1535 ((-653 (-2 (|:| -3692 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1907 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-4193 (((-1185 (-416 (-1185 |#2|))) |#2| (-621 |#2|) (-621 |#2|) (-1185 |#2|)) 35)) (-1414 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-621 |#2|) (-621 |#2|) (-653 |#2|) (-621 |#2|) |#2| (-416 (-1185 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-621 |#2|) (-621 |#2|) (-653 |#2|) |#2| (-1185 |#2|)) 115)) (-3031 (((-595 |#2|) |#2| (-621 |#2|) (-621 |#2|) (-621 |#2|) |#2| (-416 (-1185 |#2|))) 85) (((-595 |#2|) |#2| (-621 |#2|) (-621 |#2|) |#2| (-1185 |#2|)) 55)) (-1915 (((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-621 |#2|) (-621 |#2|) |#2| (-621 |#2|) |#2| (-416 (-1185 |#2|))) 92) (((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-621 |#2|) (-621 |#2|) |#2| |#2| (-1185 |#2|)) 114)) (-2752 (((-3 |#2| "failed") |#2| |#2| (-621 |#2|) (-621 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1189)) (-621 |#2|) |#2| (-416 (-1185 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-621 |#2|) (-621 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1189)) |#2| (-1185 |#2|)) 116)) (-1479 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3914 (-653 |#2|))) |#3| |#2| (-621 |#2|) (-621 |#2|) (-621 |#2|) |#2| (-416 (-1185 |#2|))) 133 (|has| |#3| (-665 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3914 (-653 |#2|))) |#3| |#2| (-621 |#2|) (-621 |#2|) |#2| (-1185 |#2|)) 132 (|has| |#3| (-665 |#2|)))) (-4344 ((|#2| (-1185 (-416 (-1185 |#2|))) (-621 |#2|) |#2|) 53)) (-2853 (((-1185 (-416 (-1185 |#2|))) (-1185 |#2|) (-621 |#2|)) 34))) +(((-569 |#1| |#2| |#3|) (-10 -7 (-15 -3031 ((-595 |#2|) |#2| (-621 |#2|) (-621 |#2|) |#2| (-1185 |#2|))) (-15 -3031 ((-595 |#2|) |#2| (-621 |#2|) (-621 |#2|) (-621 |#2|) |#2| (-416 (-1185 |#2|)))) (-15 -1915 ((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-621 |#2|) (-621 |#2|) |#2| |#2| (-1185 |#2|))) (-15 -1915 ((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-621 |#2|) (-621 |#2|) |#2| (-621 |#2|) |#2| (-416 (-1185 |#2|)))) (-15 -1414 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-621 |#2|) (-621 |#2|) (-653 |#2|) |#2| (-1185 |#2|))) (-15 -1414 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-621 |#2|) (-621 |#2|) (-653 |#2|) (-621 |#2|) |#2| (-416 (-1185 |#2|)))) (-15 -2752 ((-3 |#2| "failed") |#2| |#2| (-621 |#2|) (-621 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1189)) |#2| (-1185 |#2|))) (-15 -2752 ((-3 |#2| "failed") |#2| |#2| (-621 |#2|) (-621 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1189)) (-621 |#2|) |#2| (-416 (-1185 |#2|)))) (-15 -4193 ((-1185 (-416 (-1185 |#2|))) |#2| (-621 |#2|) (-621 |#2|) (-1185 |#2|))) (-15 -4344 (|#2| (-1185 (-416 (-1185 |#2|))) (-621 |#2|) |#2|)) (-15 -2853 ((-1185 (-416 (-1185 |#2|))) (-1185 |#2|) (-621 |#2|))) (IF (|has| |#3| (-665 |#2|)) (PROGN (-15 -1479 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3914 (-653 |#2|))) |#3| |#2| (-621 |#2|) (-621 |#2|) |#2| (-1185 |#2|))) (-15 -1479 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3914 (-653 |#2|))) |#3| |#2| (-621 |#2|) (-621 |#2|) (-621 |#2|) |#2| (-416 (-1185 |#2|))))) |%noBranch|)) (-13 (-461) (-1050 (-573)) (-148) (-648 (-573))) (-13 (-439 |#1|) (-27) (-1215)) (-1112)) (T -569)) +((-1479 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-621 *4)) (-5 *6 (-416 (-1185 *4))) (-4 *4 (-13 (-439 *7) (-27) (-1215))) (-4 *7 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) (-5 *1 (-569 *7 *4 *3)) (-4 *3 (-665 *4)) (-4 *3 (-1112)))) (-1479 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-621 *4)) (-5 *6 (-1185 *4)) (-4 *4 (-13 (-439 *7) (-27) (-1215))) (-4 *7 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) (-5 *1 (-569 *7 *4 *3)) (-4 *3 (-665 *4)) (-4 *3 (-1112)))) (-2853 (*1 *2 *3 *4) (-12 (-5 *4 (-621 *6)) (-4 *6 (-13 (-439 *5) (-27) (-1215))) (-4 *5 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *2 (-1185 (-416 (-1185 *6)))) (-5 *1 (-569 *5 *6 *7)) (-5 *3 (-1185 *6)) (-4 *7 (-1112)))) (-4344 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1185 (-416 (-1185 *2)))) (-5 *4 (-621 *2)) (-4 *2 (-13 (-439 *5) (-27) (-1215))) (-4 *5 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *1 (-569 *5 *2 *6)) (-4 *6 (-1112)))) (-4193 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-621 *3)) (-4 *3 (-13 (-439 *6) (-27) (-1215))) (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *2 (-1185 (-416 (-1185 *3)))) (-5 *1 (-569 *6 *3 *7)) (-5 *5 (-1185 *3)) (-4 *7 (-1112)))) (-2752 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-621 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1189))) (-5 *5 (-416 (-1185 *2))) (-4 *2 (-13 (-439 *6) (-27) (-1215))) (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *1 (-569 *6 *2 *7)) (-4 *7 (-1112)))) (-2752 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-621 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1189))) (-5 *5 (-1185 *2)) (-4 *2 (-13 (-439 *6) (-27) (-1215))) (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *1 (-569 *6 *2 *7)) (-4 *7 (-1112)))) (-1414 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-621 *3)) (-5 *5 (-653 *3)) (-5 *6 (-416 (-1185 *3))) (-4 *3 (-13 (-439 *7) (-27) (-1215))) (-4 *7 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-569 *7 *3 *8)) (-4 *8 (-1112)))) (-1414 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-621 *3)) (-5 *5 (-653 *3)) (-5 *6 (-1185 *3)) (-4 *3 (-13 (-439 *7) (-27) (-1215))) (-4 *7 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-569 *7 *3 *8)) (-4 *8 (-1112)))) (-1915 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-621 *3)) (-5 *5 (-416 (-1185 *3))) (-4 *3 (-13 (-439 *6) (-27) (-1215))) (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *2 (-2 (|:| -3861 *3) (|:| |coeff| *3))) (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1112)))) (-1915 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-621 *3)) (-5 *5 (-1185 *3)) (-4 *3 (-13 (-439 *6) (-27) (-1215))) (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *2 (-2 (|:| -3861 *3) (|:| |coeff| *3))) (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1112)))) (-3031 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-621 *3)) (-5 *5 (-416 (-1185 *3))) (-4 *3 (-13 (-439 *6) (-27) (-1215))) (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *2 (-595 *3)) (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1112)))) (-3031 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-621 *3)) (-5 *5 (-1185 *3)) (-4 *3 (-13 (-439 *6) (-27) (-1215))) (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *2 (-595 *3)) (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1112))))) +(-10 -7 (-15 -3031 ((-595 |#2|) |#2| (-621 |#2|) (-621 |#2|) |#2| (-1185 |#2|))) (-15 -3031 ((-595 |#2|) |#2| (-621 |#2|) (-621 |#2|) (-621 |#2|) |#2| (-416 (-1185 |#2|)))) (-15 -1915 ((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-621 |#2|) (-621 |#2|) |#2| |#2| (-1185 |#2|))) (-15 -1915 ((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-621 |#2|) (-621 |#2|) |#2| (-621 |#2|) |#2| (-416 (-1185 |#2|)))) (-15 -1414 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-621 |#2|) (-621 |#2|) (-653 |#2|) |#2| (-1185 |#2|))) (-15 -1414 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-621 |#2|) (-621 |#2|) (-653 |#2|) (-621 |#2|) |#2| (-416 (-1185 |#2|)))) (-15 -2752 ((-3 |#2| "failed") |#2| |#2| (-621 |#2|) (-621 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1189)) |#2| (-1185 |#2|))) (-15 -2752 ((-3 |#2| "failed") |#2| |#2| (-621 |#2|) (-621 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1189)) (-621 |#2|) |#2| (-416 (-1185 |#2|)))) (-15 -4193 ((-1185 (-416 (-1185 |#2|))) |#2| (-621 |#2|) (-621 |#2|) (-1185 |#2|))) (-15 -4344 (|#2| (-1185 (-416 (-1185 |#2|))) (-621 |#2|) |#2|)) (-15 -2853 ((-1185 (-416 (-1185 |#2|))) (-1185 |#2|) (-621 |#2|))) (IF (|has| |#3| (-665 |#2|)) (PROGN (-15 -1479 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3914 (-653 |#2|))) |#3| |#2| (-621 |#2|) (-621 |#2|) |#2| (-1185 |#2|))) (-15 -1479 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3914 (-653 |#2|))) |#3| |#2| (-621 |#2|) (-621 |#2|) (-621 |#2|) |#2| (-416 (-1185 |#2|))))) |%noBranch|)) +((-2605 (((-573) (-573) (-780)) 85)) (-4339 (((-573) (-573)) 83)) (-3268 (((-573) (-573)) 81)) (-1976 (((-573) (-573)) 87)) (-3127 (((-573) (-573) (-573)) 65)) (-2595 (((-573) (-573) (-573)) 62)) (-4116 (((-416 (-573)) (-573)) 30)) (-4065 (((-573) (-573)) 34)) (-4211 (((-573) (-573)) 74)) (-1866 (((-573) (-573)) 46)) (-4172 (((-653 (-573)) (-573)) 80)) (-3276 (((-573) (-573) (-573) (-573) (-573)) 58)) (-1669 (((-416 (-573)) (-573)) 55))) +(((-570) (-10 -7 (-15 -1669 ((-416 (-573)) (-573))) (-15 -3276 ((-573) (-573) (-573) (-573) (-573))) (-15 -4172 ((-653 (-573)) (-573))) (-15 -1866 ((-573) (-573))) (-15 -4211 ((-573) (-573))) (-15 -4065 ((-573) (-573))) (-15 -4116 ((-416 (-573)) (-573))) (-15 -2595 ((-573) (-573) (-573))) (-15 -3127 ((-573) (-573) (-573))) (-15 -1976 ((-573) (-573))) (-15 -3268 ((-573) (-573))) (-15 -4339 ((-573) (-573))) (-15 -2605 ((-573) (-573) (-780))))) (T -570)) +((-2605 (*1 *2 *2 *3) (-12 (-5 *2 (-573)) (-5 *3 (-780)) (-5 *1 (-570)))) (-4339 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570)))) (-3268 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570)))) (-1976 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570)))) (-3127 (*1 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570)))) (-2595 (*1 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570)))) (-4116 (*1 *2 *3) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-570)) (-5 *3 (-573)))) (-4065 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570)))) (-4211 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570)))) (-1866 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570)))) (-4172 (*1 *2 *3) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-570)) (-5 *3 (-573)))) (-3276 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570)))) (-1669 (*1 *2 *3) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-570)) (-5 *3 (-573))))) +(-10 -7 (-15 -1669 ((-416 (-573)) (-573))) (-15 -3276 ((-573) (-573) (-573) (-573) (-573))) (-15 -4172 ((-653 (-573)) (-573))) (-15 -1866 ((-573) (-573))) (-15 -4211 ((-573) (-573))) (-15 -4065 ((-573) (-573))) (-15 -4116 ((-416 (-573)) (-573))) (-15 -2595 ((-573) (-573) (-573))) (-15 -3127 ((-573) (-573) (-573))) (-15 -1976 ((-573) (-573))) (-15 -3268 ((-573) (-573))) (-15 -4339 ((-573) (-573))) (-15 -2605 ((-573) (-573) (-780)))) +((-2299 (((-2 (|:| |answer| |#4|) (|:| -1353 |#4|)) |#4| (-1 |#2| |#2|)) 56))) +(((-571 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2299 ((-2 (|:| |answer| |#4|) (|:| -1353 |#4|)) |#4| (-1 |#2| |#2|)))) (-371) (-1256 |#1|) (-1256 (-416 |#2|)) (-350 |#1| |#2| |#3|)) (T -571)) +((-2299 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-371)) (-4 *7 (-1256 (-416 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -1353 *3))) (-5 *1 (-571 *5 *6 *7 *3)) (-4 *3 (-350 *5 *6 *7))))) +(-10 -7 (-15 -2299 ((-2 (|:| |answer| |#4|) (|:| -1353 |#4|)) |#4| (-1 |#2| |#2|)))) +((-2299 (((-2 (|:| |answer| (-416 |#2|)) (|:| -1353 (-416 |#2|)) (|:| |specpart| (-416 |#2|)) (|:| |polypart| |#2|)) (-416 |#2|) (-1 |#2| |#2|)) 18))) +(((-572 |#1| |#2|) (-10 -7 (-15 -2299 ((-2 (|:| |answer| (-416 |#2|)) (|:| -1353 (-416 |#2|)) (|:| |specpart| (-416 |#2|)) (|:| |polypart| |#2|)) (-416 |#2|) (-1 |#2| |#2|)))) (-371) (-1256 |#1|)) (T -572)) +((-2299 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-371)) (-5 *2 (-2 (|:| |answer| (-416 *6)) (|:| -1353 (-416 *6)) (|:| |specpart| (-416 *6)) (|:| |polypart| *6))) (-5 *1 (-572 *5 *6)) (-5 *3 (-416 *6))))) +(-10 -7 (-15 -2299 ((-2 (|:| |answer| (-416 |#2|)) (|:| -1353 (-416 |#2|)) (|:| |specpart| (-416 |#2|)) (|:| |polypart| |#2|)) (-416 |#2|) (-1 |#2| |#2|)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 30)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 96)) (-2456 (($ $) 97)) (-1345 (((-112) $) NIL)) (-1783 (($ $ $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-3519 (($ $ $ $) 52)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-1983 (((-573) $) NIL)) (-3958 (($ $ $) 91)) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL)) (-2205 (((-573) $) NIL)) (-2784 (($ $ $) 54)) (-2759 (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 77) (((-698 (-573)) (-698 $)) 73) (((-698 (-573)) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) 93)) (-3810 (((-3 (-416 (-573)) "failed") $) NIL)) (-2551 (((-112) $) NIL)) (-4434 (((-416 (-573)) $) NIL)) (-2819 (($) 79) (($ $) 80)) (-2796 (($ $ $) 90)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-3643 (($ $ $ $) NIL)) (-1420 (($ $ $) 70)) (-4152 (((-112) $) NIL)) (-2637 (($ $ $) NIL)) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL)) (-1959 (((-112) $) 34)) (-2250 (((-112) $) 85)) (-1470 (((-3 $ "failed") $) NIL)) (-3339 (((-112) $) 43)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2460 (($ $ $ $) 55)) (-3659 (($ $ $) 87)) (-3751 (($ $ $) 86)) (-3808 (($ $) NIL)) (-4134 (($ $) 49)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) 69)) (-2585 (($ $ $) NIL)) (-3816 (($) NIL T CONST)) (-1605 (($ $) 38)) (-3965 (((-1132) $) 42)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 128)) (-2872 (($ $ $) 94) (($ (-653 $)) NIL)) (-4264 (($ $) NIL)) (-4218 (((-427 $) $) 114)) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL)) (-2837 (((-3 $ "failed") $ $) 112)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2270 (((-112) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 89)) (-3904 (($ $) NIL) (($ $ (-780)) NIL)) (-2294 (($ $) 40)) (-3166 (($ $) 36)) (-1835 (((-573) $) 48) (((-545) $) 64) (((-902 (-573)) $) NIL) (((-387) $) 58) (((-227) $) 61) (((-1171) $) 66)) (-2942 (((-871) $) 46) (($ (-573)) 47) (($ $) NIL) (($ (-573)) 47)) (-1545 (((-780)) NIL T CONST)) (-1373 (((-112) $ $) NIL)) (-1677 (($ $ $) NIL)) (-3507 (((-112) $ $) NIL)) (-2629 (($) 35)) (-2516 (((-112) $ $) NIL)) (-3813 (($ $ $ $) 51)) (-1660 (($ $) 78)) (-2132 (($) 6 T CONST)) (-2144 (($) 31 T CONST)) (-2808 (((-1171) $) 26) (((-1171) $ (-112)) 27) (((-1285) (-831) $) 28) (((-1285) (-831) $ (-112)) 29)) (-3609 (($ $) NIL) (($ $ (-780)) NIL)) (-3040 (((-112) $ $) 50)) (-3015 (((-112) $ $) 81)) (-2981 (((-112) $ $) 33)) (-3027 (((-112) $ $) 82)) (-3005 (((-112) $ $) 10)) (-3093 (($ $) 16) (($ $ $) 39)) (-3077 (($ $ $) 37)) (** (($ $ (-931)) NIL) (($ $ (-780)) 84)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 83) (($ $ $) 53) (($ (-573) $) 83))) +(((-573) (-13 (-554) (-623 (-1171)) (-837) (-10 -7 (-6 -4442) (-6 -4447) (-6 -4443) (-6 -4437)))) (T -573)) +NIL +(-13 (-554) (-623 (-1171)) (-837) (-10 -7 (-6 -4442) (-6 -4447) (-6 -4443) (-6 -4437))) +((-4223 (((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))) (|:| |extra| (-1047))) (-778) (-1075)) 116) (((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))) (|:| |extra| (-1047))) (-778)) 118)) (-1626 (((-3 (-1047) "failed") (-323 (-387)) (-1104 (-852 (-387))) (-1189)) 195) (((-3 (-1047) "failed") (-323 (-387)) (-1104 (-852 (-387))) (-1171)) 194) (((-1047) (-323 (-387)) (-653 (-1106 (-852 (-387)))) (-387) (-387) (-1075)) 199) (((-1047) (-323 (-387)) (-653 (-1106 (-852 (-387)))) (-387) (-387)) 200) (((-1047) (-323 (-387)) (-653 (-1106 (-852 (-387)))) (-387)) 201) (((-1047) (-323 (-387)) (-653 (-1106 (-852 (-387))))) 202) (((-1047) (-323 (-387)) (-1106 (-852 (-387)))) 190) (((-1047) (-323 (-387)) (-1106 (-852 (-387))) (-387)) 189) (((-1047) (-323 (-387)) (-1106 (-852 (-387))) (-387) (-387)) 185) (((-1047) (-778)) 177) (((-1047) (-323 (-387)) (-1106 (-852 (-387))) (-387) (-387) (-1075)) 184))) +(((-574) (-10 -7 (-15 -1626 ((-1047) (-323 (-387)) (-1106 (-852 (-387))) (-387) (-387) (-1075))) (-15 -1626 ((-1047) (-778))) (-15 -1626 ((-1047) (-323 (-387)) (-1106 (-852 (-387))) (-387) (-387))) (-15 -1626 ((-1047) (-323 (-387)) (-1106 (-852 (-387))) (-387))) (-15 -1626 ((-1047) (-323 (-387)) (-1106 (-852 (-387))))) (-15 -1626 ((-1047) (-323 (-387)) (-653 (-1106 (-852 (-387)))))) (-15 -1626 ((-1047) (-323 (-387)) (-653 (-1106 (-852 (-387)))) (-387))) (-15 -1626 ((-1047) (-323 (-387)) (-653 (-1106 (-852 (-387)))) (-387) (-387))) (-15 -1626 ((-1047) (-323 (-387)) (-653 (-1106 (-852 (-387)))) (-387) (-387) (-1075))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))) (|:| |extra| (-1047))) (-778))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))) (|:| |extra| (-1047))) (-778) (-1075))) (-15 -1626 ((-3 (-1047) "failed") (-323 (-387)) (-1104 (-852 (-387))) (-1171))) (-15 -1626 ((-3 (-1047) "failed") (-323 (-387)) (-1104 (-852 (-387))) (-1189))))) (T -574)) +((-1626 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-323 (-387))) (-5 *4 (-1104 (-852 (-387)))) (-5 *5 (-1189)) (-5 *2 (-1047)) (-5 *1 (-574)))) (-1626 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-323 (-387))) (-5 *4 (-1104 (-852 (-387)))) (-5 *5 (-1171)) (-5 *2 (-1047)) (-5 *1 (-574)))) (-4223 (*1 *2 *3 *4) (-12 (-5 *3 (-778)) (-5 *4 (-1075)) (-5 *2 (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))) (|:| |extra| (-1047)))) (-5 *1 (-574)))) (-4223 (*1 *2 *3) (-12 (-5 *3 (-778)) (-5 *2 (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))) (|:| |extra| (-1047)))) (-5 *1 (-574)))) (-1626 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-323 (-387))) (-5 *4 (-653 (-1106 (-852 (-387))))) (-5 *5 (-387)) (-5 *6 (-1075)) (-5 *2 (-1047)) (-5 *1 (-574)))) (-1626 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-323 (-387))) (-5 *4 (-653 (-1106 (-852 (-387))))) (-5 *5 (-387)) (-5 *2 (-1047)) (-5 *1 (-574)))) (-1626 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-323 (-387))) (-5 *4 (-653 (-1106 (-852 (-387))))) (-5 *5 (-387)) (-5 *2 (-1047)) (-5 *1 (-574)))) (-1626 (*1 *2 *3 *4) (-12 (-5 *3 (-323 (-387))) (-5 *4 (-653 (-1106 (-852 (-387))))) (-5 *2 (-1047)) (-5 *1 (-574)))) (-1626 (*1 *2 *3 *4) (-12 (-5 *3 (-323 (-387))) (-5 *4 (-1106 (-852 (-387)))) (-5 *2 (-1047)) (-5 *1 (-574)))) (-1626 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-323 (-387))) (-5 *4 (-1106 (-852 (-387)))) (-5 *5 (-387)) (-5 *2 (-1047)) (-5 *1 (-574)))) (-1626 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-323 (-387))) (-5 *4 (-1106 (-852 (-387)))) (-5 *5 (-387)) (-5 *2 (-1047)) (-5 *1 (-574)))) (-1626 (*1 *2 *3) (-12 (-5 *3 (-778)) (-5 *2 (-1047)) (-5 *1 (-574)))) (-1626 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-323 (-387))) (-5 *4 (-1106 (-852 (-387)))) (-5 *5 (-387)) (-5 *6 (-1075)) (-5 *2 (-1047)) (-5 *1 (-574))))) +(-10 -7 (-15 -1626 ((-1047) (-323 (-387)) (-1106 (-852 (-387))) (-387) (-387) (-1075))) (-15 -1626 ((-1047) (-778))) (-15 -1626 ((-1047) (-323 (-387)) (-1106 (-852 (-387))) (-387) (-387))) (-15 -1626 ((-1047) (-323 (-387)) (-1106 (-852 (-387))) (-387))) (-15 -1626 ((-1047) (-323 (-387)) (-1106 (-852 (-387))))) (-15 -1626 ((-1047) (-323 (-387)) (-653 (-1106 (-852 (-387)))))) (-15 -1626 ((-1047) (-323 (-387)) (-653 (-1106 (-852 (-387)))) (-387))) (-15 -1626 ((-1047) (-323 (-387)) (-653 (-1106 (-852 (-387)))) (-387) (-387))) (-15 -1626 ((-1047) (-323 (-387)) (-653 (-1106 (-852 (-387)))) (-387) (-387) (-1075))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))) (|:| |extra| (-1047))) (-778))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))) (|:| |extra| (-1047))) (-778) (-1075))) (-15 -1626 ((-3 (-1047) "failed") (-323 (-387)) (-1104 (-852 (-387))) (-1171))) (-15 -1626 ((-3 (-1047) "failed") (-323 (-387)) (-1104 (-852 (-387))) (-1189)))) +((-1825 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-621 |#2|) (-621 |#2|) (-653 |#2|)) 196)) (-1415 (((-595 |#2|) |#2| (-621 |#2|) (-621 |#2|)) 99)) (-2953 (((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-621 |#2|) (-621 |#2|) |#2|) 192)) (-1862 (((-3 |#2| "failed") |#2| |#2| |#2| (-621 |#2|) (-621 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1189))) 201)) (-4184 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3914 (-653 |#2|))) |#3| |#2| (-621 |#2|) (-621 |#2|) (-1189)) 210 (|has| |#3| (-665 |#2|))))) +(((-575 |#1| |#2| |#3|) (-10 -7 (-15 -1415 ((-595 |#2|) |#2| (-621 |#2|) (-621 |#2|))) (-15 -2953 ((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-621 |#2|) (-621 |#2|) |#2|)) (-15 -1825 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-621 |#2|) (-621 |#2|) (-653 |#2|))) (-15 -1862 ((-3 |#2| "failed") |#2| |#2| |#2| (-621 |#2|) (-621 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1189)))) (IF (|has| |#3| (-665 |#2|)) (-15 -4184 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3914 (-653 |#2|))) |#3| |#2| (-621 |#2|) (-621 |#2|) (-1189))) |%noBranch|)) (-13 (-461) (-1050 (-573)) (-148) (-648 (-573))) (-13 (-439 |#1|) (-27) (-1215)) (-1112)) (T -575)) +((-4184 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-621 *4)) (-5 *6 (-1189)) (-4 *4 (-13 (-439 *7) (-27) (-1215))) (-4 *7 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) (-5 *1 (-575 *7 *4 *3)) (-4 *3 (-665 *4)) (-4 *3 (-1112)))) (-1862 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-621 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1189))) (-4 *2 (-13 (-439 *5) (-27) (-1215))) (-4 *5 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *1 (-575 *5 *2 *6)) (-4 *6 (-1112)))) (-1825 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-621 *3)) (-5 *5 (-653 *3)) (-4 *3 (-13 (-439 *6) (-27) (-1215))) (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-575 *6 *3 *7)) (-4 *7 (-1112)))) (-2953 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-621 *3)) (-4 *3 (-13 (-439 *5) (-27) (-1215))) (-4 *5 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *2 (-2 (|:| -3861 *3) (|:| |coeff| *3))) (-5 *1 (-575 *5 *3 *6)) (-4 *6 (-1112)))) (-1415 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-621 *3)) (-4 *3 (-13 (-439 *5) (-27) (-1215))) (-4 *5 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *2 (-595 *3)) (-5 *1 (-575 *5 *3 *6)) (-4 *6 (-1112))))) +(-10 -7 (-15 -1415 ((-595 |#2|) |#2| (-621 |#2|) (-621 |#2|))) (-15 -2953 ((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-621 |#2|) (-621 |#2|) |#2|)) (-15 -1825 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-621 |#2|) (-621 |#2|) (-653 |#2|))) (-15 -1862 ((-3 |#2| "failed") |#2| |#2| |#2| (-621 |#2|) (-621 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1189)))) (IF (|has| |#3| (-665 |#2|)) (-15 -4184 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3914 (-653 |#2|))) |#3| |#2| (-621 |#2|) (-621 |#2|) (-1189))) |%noBranch|)) +((-3679 (((-2 (|:| -1317 |#2|) (|:| |nconst| |#2|)) |#2| (-1189)) 64)) (-2947 (((-3 |#2| "failed") |#2| (-1189) (-852 |#2|) (-852 |#2|)) 175 (-12 (|has| |#2| (-1151)) (|has| |#1| (-623 (-902 (-573)))) (|has| |#1| (-896 (-573))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1189)) 154 (-12 (|has| |#2| (-638)) (|has| |#1| (-623 (-902 (-573)))) (|has| |#1| (-896 (-573)))))) (-3033 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1189)) 156 (-12 (|has| |#2| (-638)) (|has| |#1| (-623 (-902 (-573)))) (|has| |#1| (-896 (-573))))))) +(((-576 |#1| |#2|) (-10 -7 (-15 -3679 ((-2 (|:| -1317 |#2|) (|:| |nconst| |#2|)) |#2| (-1189))) (IF (|has| |#1| (-623 (-902 (-573)))) (IF (|has| |#1| (-896 (-573))) (PROGN (IF (|has| |#2| (-638)) (PROGN (-15 -3033 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1189))) (-15 -2947 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1189)))) |%noBranch|) (IF (|has| |#2| (-1151)) (-15 -2947 ((-3 |#2| "failed") |#2| (-1189) (-852 |#2|) (-852 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1050 (-573)) (-461) (-648 (-573))) (-13 (-27) (-1215) (-439 |#1|))) (T -576)) +((-2947 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1189)) (-5 *4 (-852 *2)) (-4 *2 (-1151)) (-4 *2 (-13 (-27) (-1215) (-439 *5))) (-4 *5 (-623 (-902 (-573)))) (-4 *5 (-896 (-573))) (-4 *5 (-13 (-1050 (-573)) (-461) (-648 (-573)))) (-5 *1 (-576 *5 *2)))) (-2947 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1189)) (-4 *5 (-623 (-902 (-573)))) (-4 *5 (-896 (-573))) (-4 *5 (-13 (-1050 (-573)) (-461) (-648 (-573)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-576 *5 *3)) (-4 *3 (-638)) (-4 *3 (-13 (-27) (-1215) (-439 *5))))) (-3033 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1189)) (-4 *5 (-623 (-902 (-573)))) (-4 *5 (-896 (-573))) (-4 *5 (-13 (-1050 (-573)) (-461) (-648 (-573)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-576 *5 *3)) (-4 *3 (-638)) (-4 *3 (-13 (-27) (-1215) (-439 *5))))) (-3679 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-4 *5 (-13 (-1050 (-573)) (-461) (-648 (-573)))) (-5 *2 (-2 (|:| -1317 *3) (|:| |nconst| *3))) (-5 *1 (-576 *5 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5)))))) +(-10 -7 (-15 -3679 ((-2 (|:| -1317 |#2|) (|:| |nconst| |#2|)) |#2| (-1189))) (IF (|has| |#1| (-623 (-902 (-573)))) (IF (|has| |#1| (-896 (-573))) (PROGN (IF (|has| |#2| (-638)) (PROGN (-15 -3033 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1189))) (-15 -2947 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1189)))) |%noBranch|) (IF (|has| |#2| (-1151)) (-15 -2947 ((-3 |#2| "failed") |#2| (-1189) (-852 |#2|) (-852 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-3355 (((-3 (-2 (|:| |mainpart| (-416 |#2|)) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| (-416 |#2|)) (|:| |logand| (-416 |#2|)))))) "failed") (-416 |#2|) (-653 (-416 |#2|))) 41)) (-1626 (((-595 (-416 |#2|)) (-416 |#2|)) 28)) (-3053 (((-3 (-416 |#2|) "failed") (-416 |#2|)) 17)) (-2500 (((-3 (-2 (|:| -3861 (-416 |#2|)) (|:| |coeff| (-416 |#2|))) "failed") (-416 |#2|) (-416 |#2|)) 48))) +(((-577 |#1| |#2|) (-10 -7 (-15 -1626 ((-595 (-416 |#2|)) (-416 |#2|))) (-15 -3053 ((-3 (-416 |#2|) "failed") (-416 |#2|))) (-15 -2500 ((-3 (-2 (|:| -3861 (-416 |#2|)) (|:| |coeff| (-416 |#2|))) "failed") (-416 |#2|) (-416 |#2|))) (-15 -3355 ((-3 (-2 (|:| |mainpart| (-416 |#2|)) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| (-416 |#2|)) (|:| |logand| (-416 |#2|)))))) "failed") (-416 |#2|) (-653 (-416 |#2|))))) (-13 (-371) (-148) (-1050 (-573))) (-1256 |#1|)) (T -577)) +((-3355 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-653 (-416 *6))) (-5 *3 (-416 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-577 *5 *6)))) (-2500 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-371) (-148) (-1050 (-573)))) (-4 *5 (-1256 *4)) (-5 *2 (-2 (|:| -3861 (-416 *5)) (|:| |coeff| (-416 *5)))) (-5 *1 (-577 *4 *5)) (-5 *3 (-416 *5)))) (-3053 (*1 *2 *2) (|partial| -12 (-5 *2 (-416 *4)) (-4 *4 (-1256 *3)) (-4 *3 (-13 (-371) (-148) (-1050 (-573)))) (-5 *1 (-577 *3 *4)))) (-1626 (*1 *2 *3) (-12 (-4 *4 (-13 (-371) (-148) (-1050 (-573)))) (-4 *5 (-1256 *4)) (-5 *2 (-595 (-416 *5))) (-5 *1 (-577 *4 *5)) (-5 *3 (-416 *5))))) +(-10 -7 (-15 -1626 ((-595 (-416 |#2|)) (-416 |#2|))) (-15 -3053 ((-3 (-416 |#2|) "failed") (-416 |#2|))) (-15 -2500 ((-3 (-2 (|:| -3861 (-416 |#2|)) (|:| |coeff| (-416 |#2|))) "failed") (-416 |#2|) (-416 |#2|))) (-15 -3355 ((-3 (-2 (|:| |mainpart| (-416 |#2|)) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| (-416 |#2|)) (|:| |logand| (-416 |#2|)))))) "failed") (-416 |#2|) (-653 (-416 |#2|))))) +((-2874 (((-3 (-573) "failed") |#1|) 14)) (-3159 (((-112) |#1|) 13)) (-4025 (((-573) |#1|) 9))) +(((-578 |#1|) (-10 -7 (-15 -4025 ((-573) |#1|)) (-15 -3159 ((-112) |#1|)) (-15 -2874 ((-3 (-573) "failed") |#1|))) (-1050 (-573))) (T -578)) +((-2874 (*1 *2 *3) (|partial| -12 (-5 *2 (-573)) (-5 *1 (-578 *3)) (-4 *3 (-1050 *2)))) (-3159 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-578 *3)) (-4 *3 (-1050 (-573))))) (-4025 (*1 *2 *3) (-12 (-5 *2 (-573)) (-5 *1 (-578 *3)) (-4 *3 (-1050 *2))))) +(-10 -7 (-15 -4025 ((-573) |#1|)) (-15 -3159 ((-112) |#1|)) (-15 -2874 ((-3 (-573) "failed") |#1|))) +((-4187 (((-3 (-2 (|:| |mainpart| (-416 (-962 |#1|))) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| (-416 (-962 |#1|))) (|:| |logand| (-416 (-962 |#1|))))))) "failed") (-416 (-962 |#1|)) (-1189) (-653 (-416 (-962 |#1|)))) 48)) (-3390 (((-595 (-416 (-962 |#1|))) (-416 (-962 |#1|)) (-1189)) 28)) (-3019 (((-3 (-416 (-962 |#1|)) "failed") (-416 (-962 |#1|)) (-1189)) 23)) (-4271 (((-3 (-2 (|:| -3861 (-416 (-962 |#1|))) (|:| |coeff| (-416 (-962 |#1|)))) "failed") (-416 (-962 |#1|)) (-1189) (-416 (-962 |#1|))) 35))) +(((-579 |#1|) (-10 -7 (-15 -3390 ((-595 (-416 (-962 |#1|))) (-416 (-962 |#1|)) (-1189))) (-15 -3019 ((-3 (-416 (-962 |#1|)) "failed") (-416 (-962 |#1|)) (-1189))) (-15 -4187 ((-3 (-2 (|:| |mainpart| (-416 (-962 |#1|))) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| (-416 (-962 |#1|))) (|:| |logand| (-416 (-962 |#1|))))))) "failed") (-416 (-962 |#1|)) (-1189) (-653 (-416 (-962 |#1|))))) (-15 -4271 ((-3 (-2 (|:| -3861 (-416 (-962 |#1|))) (|:| |coeff| (-416 (-962 |#1|)))) "failed") (-416 (-962 |#1|)) (-1189) (-416 (-962 |#1|))))) (-13 (-565) (-1050 (-573)) (-148))) (T -579)) +((-4271 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1189)) (-4 *5 (-13 (-565) (-1050 (-573)) (-148))) (-5 *2 (-2 (|:| -3861 (-416 (-962 *5))) (|:| |coeff| (-416 (-962 *5))))) (-5 *1 (-579 *5)) (-5 *3 (-416 (-962 *5))))) (-4187 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1189)) (-5 *5 (-653 (-416 (-962 *6)))) (-5 *3 (-416 (-962 *6))) (-4 *6 (-13 (-565) (-1050 (-573)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-579 *6)))) (-3019 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-416 (-962 *4))) (-5 *3 (-1189)) (-4 *4 (-13 (-565) (-1050 (-573)) (-148))) (-5 *1 (-579 *4)))) (-3390 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-4 *5 (-13 (-565) (-1050 (-573)) (-148))) (-5 *2 (-595 (-416 (-962 *5)))) (-5 *1 (-579 *5)) (-5 *3 (-416 (-962 *5)))))) +(-10 -7 (-15 -3390 ((-595 (-416 (-962 |#1|))) (-416 (-962 |#1|)) (-1189))) (-15 -3019 ((-3 (-416 (-962 |#1|)) "failed") (-416 (-962 |#1|)) (-1189))) (-15 -4187 ((-3 (-2 (|:| |mainpart| (-416 (-962 |#1|))) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| (-416 (-962 |#1|))) (|:| |logand| (-416 (-962 |#1|))))))) "failed") (-416 (-962 |#1|)) (-1189) (-653 (-416 (-962 |#1|))))) (-15 -4271 ((-3 (-2 (|:| -3861 (-416 (-962 |#1|))) (|:| |coeff| (-416 (-962 |#1|)))) "failed") (-416 (-962 |#1|)) (-1189) (-416 (-962 |#1|))))) +((-2848 (((-112) $ $) 75)) (-1748 (((-112) $) 48)) (-3013 ((|#1| $) 39)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) 79)) (-2363 (($ $) 139)) (-2246 (($ $) 118)) (-3280 ((|#1| $) 37)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4228 (($ $) NIL)) (-2342 (($ $) 141)) (-2225 (($ $) 114)) (-2388 (($ $) 143)) (-2266 (($ $) 122)) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) 93)) (-2205 (((-573) $) 95)) (-2232 (((-3 $ "failed") $) 78)) (-1824 (($ |#1| |#1|) 35)) (-4152 (((-112) $) 44)) (-2999 (($) 104)) (-1959 (((-112) $) 55)) (-4325 (($ $ (-573)) NIL)) (-3339 (((-112) $) 45)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-3118 (($ $) 106)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-3151 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-416 (-573))) 92)) (-4040 ((|#1| $) 36)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) 81) (($ (-653 $)) NIL)) (-2837 (((-3 $ "failed") $ $) 80)) (-1608 (($ $) 108)) (-2401 (($ $) 147)) (-2274 (($ $) 120)) (-2374 (($ $) 149)) (-2255 (($ $) 124)) (-2352 (($ $) 145)) (-2236 (($ $) 116)) (-1914 (((-112) $ |#1|) 42)) (-2942 (((-871) $) 100) (($ (-573)) 83) (($ $) NIL) (($ (-573)) 83)) (-1545 (((-780)) 102 T CONST)) (-3507 (((-112) $ $) NIL)) (-2439 (($ $) 161)) (-2304 (($ $) 130)) (-2516 (((-112) $ $) NIL)) (-2413 (($ $) 159)) (-2286 (($ $) 126)) (-2464 (($ $) 157)) (-2324 (($ $) 137)) (-2520 (($ $) 155)) (-2333 (($ $) 135)) (-2452 (($ $) 153)) (-2314 (($ $) 132)) (-2426 (($ $) 151)) (-2296 (($ $) 128)) (-2132 (($) 30 T CONST)) (-2144 (($) 10 T CONST)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 49)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 47)) (-3093 (($ $) 53) (($ $ $) 54)) (-3077 (($ $ $) 52)) (** (($ $ (-931)) 71) (($ $ (-780)) NIL) (($ $ $) 110) (($ $ (-416 (-573))) 163)) (* (($ (-931) $) 66) (($ (-780) $) NIL) (($ (-573) $) 65) (($ $ $) 61))) +(((-580 |#1|) (-563 |#1|) (-13 (-413) (-1215))) (T -580)) +NIL +(-563 |#1|) +((-3711 (((-3 (-653 (-1185 (-573))) "failed") (-653 (-1185 (-573))) (-1185 (-573))) 27))) +(((-581) (-10 -7 (-15 -3711 ((-3 (-653 (-1185 (-573))) "failed") (-653 (-1185 (-573))) (-1185 (-573)))))) (T -581)) +((-3711 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-653 (-1185 (-573)))) (-5 *3 (-1185 (-573))) (-5 *1 (-581))))) +(-10 -7 (-15 -3711 ((-3 (-653 (-1185 (-573))) "failed") (-653 (-1185 (-573))) (-1185 (-573))))) +((-2626 (((-653 (-621 |#2|)) (-653 (-621 |#2|)) (-1189)) 19)) (-1940 (((-653 (-621 |#2|)) (-653 |#2|) (-1189)) 23)) (-4357 (((-653 (-621 |#2|)) (-653 (-621 |#2|)) (-653 (-621 |#2|))) 11)) (-3842 ((|#2| |#2| (-1189)) 59 (|has| |#1| (-565)))) (-1366 ((|#2| |#2| (-1189)) 87 (-12 (|has| |#2| (-291)) (|has| |#1| (-461))))) (-1855 (((-621 |#2|) (-621 |#2|) (-653 (-621 |#2|)) (-1189)) 25)) (-4356 (((-621 |#2|) (-653 (-621 |#2|))) 24)) (-2794 (((-595 |#2|) |#2| (-1189) (-1 (-595 |#2|) |#2| (-1189)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1189))) 115 (-12 (|has| |#2| (-291)) (|has| |#2| (-638)) (|has| |#2| (-1050 (-1189))) (|has| |#1| (-623 (-902 (-573)))) (|has| |#1| (-461)) (|has| |#1| (-896 (-573))))))) +(((-582 |#1| |#2|) (-10 -7 (-15 -2626 ((-653 (-621 |#2|)) (-653 (-621 |#2|)) (-1189))) (-15 -4356 ((-621 |#2|) (-653 (-621 |#2|)))) (-15 -1855 ((-621 |#2|) (-621 |#2|) (-653 (-621 |#2|)) (-1189))) (-15 -4357 ((-653 (-621 |#2|)) (-653 (-621 |#2|)) (-653 (-621 |#2|)))) (-15 -1940 ((-653 (-621 |#2|)) (-653 |#2|) (-1189))) (IF (|has| |#1| (-565)) (-15 -3842 (|#2| |#2| (-1189))) |%noBranch|) (IF (|has| |#1| (-461)) (IF (|has| |#2| (-291)) (PROGN (-15 -1366 (|#2| |#2| (-1189))) (IF (|has| |#1| (-623 (-902 (-573)))) (IF (|has| |#1| (-896 (-573))) (IF (|has| |#2| (-638)) (IF (|has| |#2| (-1050 (-1189))) (-15 -2794 ((-595 |#2|) |#2| (-1189) (-1 (-595 |#2|) |#2| (-1189)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1189)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1112) (-439 |#1|)) (T -582)) +((-2794 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-595 *3) *3 (-1189))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1189))) (-4 *3 (-291)) (-4 *3 (-638)) (-4 *3 (-1050 *4)) (-4 *3 (-439 *7)) (-5 *4 (-1189)) (-4 *7 (-623 (-902 (-573)))) (-4 *7 (-461)) (-4 *7 (-896 (-573))) (-4 *7 (-1112)) (-5 *2 (-595 *3)) (-5 *1 (-582 *7 *3)))) (-1366 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-461)) (-4 *4 (-1112)) (-5 *1 (-582 *4 *2)) (-4 *2 (-291)) (-4 *2 (-439 *4)))) (-3842 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-565)) (-4 *4 (-1112)) (-5 *1 (-582 *4 *2)) (-4 *2 (-439 *4)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *6)) (-5 *4 (-1189)) (-4 *6 (-439 *5)) (-4 *5 (-1112)) (-5 *2 (-653 (-621 *6))) (-5 *1 (-582 *5 *6)))) (-4357 (*1 *2 *2 *2) (-12 (-5 *2 (-653 (-621 *4))) (-4 *4 (-439 *3)) (-4 *3 (-1112)) (-5 *1 (-582 *3 *4)))) (-1855 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-653 (-621 *6))) (-5 *4 (-1189)) (-5 *2 (-621 *6)) (-4 *6 (-439 *5)) (-4 *5 (-1112)) (-5 *1 (-582 *5 *6)))) (-4356 (*1 *2 *3) (-12 (-5 *3 (-653 (-621 *5))) (-4 *4 (-1112)) (-5 *2 (-621 *5)) (-5 *1 (-582 *4 *5)) (-4 *5 (-439 *4)))) (-2626 (*1 *2 *2 *3) (-12 (-5 *2 (-653 (-621 *5))) (-5 *3 (-1189)) (-4 *5 (-439 *4)) (-4 *4 (-1112)) (-5 *1 (-582 *4 *5))))) +(-10 -7 (-15 -2626 ((-653 (-621 |#2|)) (-653 (-621 |#2|)) (-1189))) (-15 -4356 ((-621 |#2|) (-653 (-621 |#2|)))) (-15 -1855 ((-621 |#2|) (-621 |#2|) (-653 (-621 |#2|)) (-1189))) (-15 -4357 ((-653 (-621 |#2|)) (-653 (-621 |#2|)) (-653 (-621 |#2|)))) (-15 -1940 ((-653 (-621 |#2|)) (-653 |#2|) (-1189))) (IF (|has| |#1| (-565)) (-15 -3842 (|#2| |#2| (-1189))) |%noBranch|) (IF (|has| |#1| (-461)) (IF (|has| |#2| (-291)) (PROGN (-15 -1366 (|#2| |#2| (-1189))) (IF (|has| |#1| (-623 (-902 (-573)))) (IF (|has| |#1| (-896 (-573))) (IF (|has| |#2| (-638)) (IF (|has| |#2| (-1050 (-1189))) (-15 -2794 ((-595 |#2|) |#2| (-1189) (-1 (-595 |#2|) |#2| (-1189)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1189)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2037 (((-2 (|:| |answer| (-595 (-416 |#2|))) (|:| |a0| |#1|)) (-416 |#2|) (-1 |#2| |#2|) (-1 (-3 (-653 |#1|) "failed") (-573) |#1| |#1|)) 199)) (-2856 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-416 |#2|)) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| (-416 |#2|)) (|:| |logand| (-416 |#2|))))))) (|:| |a0| |#1|)) "failed") (-416 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3861 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-653 (-416 |#2|))) 174)) (-3971 (((-3 (-2 (|:| |mainpart| (-416 |#2|)) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| (-416 |#2|)) (|:| |logand| (-416 |#2|)))))) "failed") (-416 |#2|) (-1 |#2| |#2|) (-653 (-416 |#2|))) 171)) (-3466 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3861 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162)) (-2019 (((-2 (|:| |answer| (-595 (-416 |#2|))) (|:| |a0| |#1|)) (-416 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3861 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185)) (-2956 (((-3 (-2 (|:| -3861 (-416 |#2|)) (|:| |coeff| (-416 |#2|))) "failed") (-416 |#2|) (-1 |#2| |#2|) (-416 |#2|)) 202)) (-2663 (((-3 (-2 (|:| |answer| (-416 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3861 (-416 |#2|)) (|:| |coeff| (-416 |#2|))) "failed") (-416 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3861 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-416 |#2|)) 205)) (-3320 (((-2 (|:| |ir| (-595 (-416 |#2|))) (|:| |specpart| (-416 |#2|)) (|:| |polypart| |#2|)) (-416 |#2|) (-1 |#2| |#2|)) 88)) (-3685 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-2758 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-416 |#2|)) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| (-416 |#2|)) (|:| |logand| (-416 |#2|))))))) (|:| |a0| |#1|)) "failed") (-416 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3903 |#1|) (|:| |sol?| (-112))) (-573) |#1|) (-653 (-416 |#2|))) 178)) (-3704 (((-3 (-632 |#1| |#2|) "failed") (-632 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3903 |#1|) (|:| |sol?| (-112))) (-573) |#1|)) 166)) (-1595 (((-2 (|:| |answer| (-595 (-416 |#2|))) (|:| |a0| |#1|)) (-416 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3903 |#1|) (|:| |sol?| (-112))) (-573) |#1|)) 189)) (-1356 (((-3 (-2 (|:| |answer| (-416 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3861 (-416 |#2|)) (|:| |coeff| (-416 |#2|))) "failed") (-416 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3903 |#1|) (|:| |sol?| (-112))) (-573) |#1|) (-416 |#2|)) 210))) +(((-583 |#1| |#2|) (-10 -7 (-15 -2019 ((-2 (|:| |answer| (-595 (-416 |#2|))) (|:| |a0| |#1|)) (-416 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3861 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1595 ((-2 (|:| |answer| (-595 (-416 |#2|))) (|:| |a0| |#1|)) (-416 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3903 |#1|) (|:| |sol?| (-112))) (-573) |#1|))) (-15 -2037 ((-2 (|:| |answer| (-595 (-416 |#2|))) (|:| |a0| |#1|)) (-416 |#2|) (-1 |#2| |#2|) (-1 (-3 (-653 |#1|) "failed") (-573) |#1| |#1|))) (-15 -2663 ((-3 (-2 (|:| |answer| (-416 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3861 (-416 |#2|)) (|:| |coeff| (-416 |#2|))) "failed") (-416 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3861 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-416 |#2|))) (-15 -1356 ((-3 (-2 (|:| |answer| (-416 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3861 (-416 |#2|)) (|:| |coeff| (-416 |#2|))) "failed") (-416 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3903 |#1|) (|:| |sol?| (-112))) (-573) |#1|) (-416 |#2|))) (-15 -2856 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-416 |#2|)) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| (-416 |#2|)) (|:| |logand| (-416 |#2|))))))) (|:| |a0| |#1|)) "failed") (-416 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3861 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-653 (-416 |#2|)))) (-15 -2758 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-416 |#2|)) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| (-416 |#2|)) (|:| |logand| (-416 |#2|))))))) (|:| |a0| |#1|)) "failed") (-416 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3903 |#1|) (|:| |sol?| (-112))) (-573) |#1|) (-653 (-416 |#2|)))) (-15 -2956 ((-3 (-2 (|:| -3861 (-416 |#2|)) (|:| |coeff| (-416 |#2|))) "failed") (-416 |#2|) (-1 |#2| |#2|) (-416 |#2|))) (-15 -3971 ((-3 (-2 (|:| |mainpart| (-416 |#2|)) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| (-416 |#2|)) (|:| |logand| (-416 |#2|)))))) "failed") (-416 |#2|) (-1 |#2| |#2|) (-653 (-416 |#2|)))) (-15 -3466 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3861 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3704 ((-3 (-632 |#1| |#2|) "failed") (-632 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3903 |#1|) (|:| |sol?| (-112))) (-573) |#1|))) (-15 -3320 ((-2 (|:| |ir| (-595 (-416 |#2|))) (|:| |specpart| (-416 |#2|)) (|:| |polypart| |#2|)) (-416 |#2|) (-1 |#2| |#2|))) (-15 -3685 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-371) (-1256 |#1|)) (T -583)) +((-3685 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1256 *5)) (-4 *5 (-371)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-583 *5 *3)))) (-3320 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-371)) (-5 *2 (-2 (|:| |ir| (-595 (-416 *6))) (|:| |specpart| (-416 *6)) (|:| |polypart| *6))) (-5 *1 (-583 *5 *6)) (-5 *3 (-416 *6)))) (-3704 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-632 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3903 *4) (|:| |sol?| (-112))) (-573) *4)) (-4 *4 (-371)) (-4 *5 (-1256 *4)) (-5 *1 (-583 *4 *5)))) (-3466 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3861 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-371)) (-5 *1 (-583 *4 *2)) (-4 *2 (-1256 *4)))) (-3971 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-653 (-416 *7))) (-4 *7 (-1256 *6)) (-5 *3 (-416 *7)) (-4 *6 (-371)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-583 *6 *7)))) (-2956 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-371)) (-5 *2 (-2 (|:| -3861 (-416 *6)) (|:| |coeff| (-416 *6)))) (-5 *1 (-583 *5 *6)) (-5 *3 (-416 *6)))) (-2758 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3903 *7) (|:| |sol?| (-112))) (-573) *7)) (-5 *6 (-653 (-416 *8))) (-4 *7 (-371)) (-4 *8 (-1256 *7)) (-5 *3 (-416 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-583 *7 *8)))) (-2856 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3861 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-653 (-416 *8))) (-4 *7 (-371)) (-4 *8 (-1256 *7)) (-5 *3 (-416 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-583 *7 *8)))) (-1356 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3903 *6) (|:| |sol?| (-112))) (-573) *6)) (-4 *6 (-371)) (-4 *7 (-1256 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-416 *7)) (|:| |a0| *6)) (-2 (|:| -3861 (-416 *7)) (|:| |coeff| (-416 *7))) "failed")) (-5 *1 (-583 *6 *7)) (-5 *3 (-416 *7)))) (-2663 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3861 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-371)) (-4 *7 (-1256 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-416 *7)) (|:| |a0| *6)) (-2 (|:| -3861 (-416 *7)) (|:| |coeff| (-416 *7))) "failed")) (-5 *1 (-583 *6 *7)) (-5 *3 (-416 *7)))) (-2037 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-653 *6) "failed") (-573) *6 *6)) (-4 *6 (-371)) (-4 *7 (-1256 *6)) (-5 *2 (-2 (|:| |answer| (-595 (-416 *7))) (|:| |a0| *6))) (-5 *1 (-583 *6 *7)) (-5 *3 (-416 *7)))) (-1595 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3903 *6) (|:| |sol?| (-112))) (-573) *6)) (-4 *6 (-371)) (-4 *7 (-1256 *6)) (-5 *2 (-2 (|:| |answer| (-595 (-416 *7))) (|:| |a0| *6))) (-5 *1 (-583 *6 *7)) (-5 *3 (-416 *7)))) (-2019 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3861 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-371)) (-4 *7 (-1256 *6)) (-5 *2 (-2 (|:| |answer| (-595 (-416 *7))) (|:| |a0| *6))) (-5 *1 (-583 *6 *7)) (-5 *3 (-416 *7))))) +(-10 -7 (-15 -2019 ((-2 (|:| |answer| (-595 (-416 |#2|))) (|:| |a0| |#1|)) (-416 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3861 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1595 ((-2 (|:| |answer| (-595 (-416 |#2|))) (|:| |a0| |#1|)) (-416 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3903 |#1|) (|:| |sol?| (-112))) (-573) |#1|))) (-15 -2037 ((-2 (|:| |answer| (-595 (-416 |#2|))) (|:| |a0| |#1|)) (-416 |#2|) (-1 |#2| |#2|) (-1 (-3 (-653 |#1|) "failed") (-573) |#1| |#1|))) (-15 -2663 ((-3 (-2 (|:| |answer| (-416 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3861 (-416 |#2|)) (|:| |coeff| (-416 |#2|))) "failed") (-416 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3861 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-416 |#2|))) (-15 -1356 ((-3 (-2 (|:| |answer| (-416 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3861 (-416 |#2|)) (|:| |coeff| (-416 |#2|))) "failed") (-416 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3903 |#1|) (|:| |sol?| (-112))) (-573) |#1|) (-416 |#2|))) (-15 -2856 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-416 |#2|)) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| (-416 |#2|)) (|:| |logand| (-416 |#2|))))))) (|:| |a0| |#1|)) "failed") (-416 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3861 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-653 (-416 |#2|)))) (-15 -2758 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-416 |#2|)) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| (-416 |#2|)) (|:| |logand| (-416 |#2|))))))) (|:| |a0| |#1|)) "failed") (-416 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3903 |#1|) (|:| |sol?| (-112))) (-573) |#1|) (-653 (-416 |#2|)))) (-15 -2956 ((-3 (-2 (|:| -3861 (-416 |#2|)) (|:| |coeff| (-416 |#2|))) "failed") (-416 |#2|) (-1 |#2| |#2|) (-416 |#2|))) (-15 -3971 ((-3 (-2 (|:| |mainpart| (-416 |#2|)) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| (-416 |#2|)) (|:| |logand| (-416 |#2|)))))) "failed") (-416 |#2|) (-1 |#2| |#2|) (-653 (-416 |#2|)))) (-15 -3466 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3861 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3704 ((-3 (-632 |#1| |#2|) "failed") (-632 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3903 |#1|) (|:| |sol?| (-112))) (-573) |#1|))) (-15 -3320 ((-2 (|:| |ir| (-595 (-416 |#2|))) (|:| |specpart| (-416 |#2|)) (|:| |polypart| |#2|)) (-416 |#2|) (-1 |#2| |#2|))) (-15 -3685 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-4066 (((-3 |#2| "failed") |#2| (-1189) (-1189)) 10))) +(((-584 |#1| |#2|) (-10 -7 (-15 -4066 ((-3 |#2| "failed") |#2| (-1189) (-1189)))) (-13 (-314) (-148) (-1050 (-573)) (-648 (-573))) (-13 (-1215) (-969) (-1151) (-29 |#1|))) (T -584)) +((-4066 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1189)) (-4 *4 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-584 *4 *2)) (-4 *2 (-13 (-1215) (-969) (-1151) (-29 *4)))))) +(-10 -7 (-15 -4066 ((-3 |#2| "failed") |#2| (-1189) (-1189)))) +((-3534 (((-700 (-1238)) $ (-1238)) 26)) (-4340 (((-700 (-558)) $ (-558)) 25)) (-1960 (((-780) $ (-129)) 27)) (-2034 (((-700 (-130)) $ (-130)) 24)) (-3769 (((-700 (-1238)) $) 12)) (-4370 (((-700 (-1236)) $) 8)) (-3464 (((-700 (-1235)) $) 10)) (-3310 (((-700 (-558)) $) 13)) (-4395 (((-700 (-556)) $) 9)) (-2731 (((-700 (-555)) $) 11)) (-3983 (((-780) $ (-129)) 7)) (-1870 (((-700 (-130)) $) 14)) (-1981 (($ $) 6))) +(((-585) (-141)) (T -585)) +NIL +(-13 (-536) (-869)) +(((-175) . T) ((-536) . T) ((-869) . T)) +((-3534 (((-700 (-1238)) $ (-1238)) NIL)) (-4340 (((-700 (-558)) $ (-558)) NIL)) (-1960 (((-780) $ (-129)) NIL)) (-2034 (((-700 (-130)) $ (-130)) NIL)) (-3769 (((-700 (-1238)) $) NIL)) (-4370 (((-700 (-1236)) $) NIL)) (-3464 (((-700 (-1235)) $) NIL)) (-3310 (((-700 (-558)) $) NIL)) (-4395 (((-700 (-556)) $) NIL)) (-2731 (((-700 (-555)) $) NIL)) (-3983 (((-780) $ (-129)) NIL)) (-1870 (((-700 (-130)) $) NIL)) (-3549 (((-112) $) NIL)) (-3637 (($ (-397)) 14) (($ (-1171)) 16)) (-2942 (((-871) $) NIL)) (-1981 (($ $) NIL))) +(((-586) (-13 (-585) (-622 (-871)) (-10 -8 (-15 -3637 ($ (-397))) (-15 -3637 ($ (-1171))) (-15 -3549 ((-112) $))))) (T -586)) +((-3637 (*1 *1 *2) (-12 (-5 *2 (-397)) (-5 *1 (-586)))) (-3637 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-586)))) (-3549 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-586))))) +(-13 (-585) (-622 (-871)) (-10 -8 (-15 -3637 ($ (-397))) (-15 -3637 ($ (-1171))) (-15 -3549 ((-112) $)))) +((-2848 (((-112) $ $) NIL)) (-3247 (($) 7 T CONST)) (-3180 (((-1171) $) NIL)) (-1451 (($) 6 T CONST)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 15)) (-3176 (($) 9 T CONST)) (-4404 (($) 8 T CONST)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 11))) +(((-587) (-13 (-1112) (-10 -8 (-15 -1451 ($) -1705) (-15 -3247 ($) -1705) (-15 -4404 ($) -1705) (-15 -3176 ($) -1705)))) (T -587)) +((-1451 (*1 *1) (-5 *1 (-587))) (-3247 (*1 *1) (-5 *1 (-587))) (-4404 (*1 *1) (-5 *1 (-587))) (-3176 (*1 *1) (-5 *1 (-587)))) +(-13 (-1112) (-10 -8 (-15 -1451 ($) -1705) (-15 -3247 ($) -1705) (-15 -4404 ($) -1705) (-15 -3176 ($) -1705))) +((-2848 (((-112) $ $) NIL)) (-1801 (((-700 $) (-500)) 21)) (-3180 (((-1171) $) NIL)) (-2987 (($ (-1171)) 14)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 33)) (-2421 (((-215 4 (-130)) $) 24)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 26))) +(((-588) (-13 (-1112) (-10 -8 (-15 -2987 ($ (-1171))) (-15 -2421 ((-215 4 (-130)) $)) (-15 -1801 ((-700 $) (-500)))))) (T -588)) +((-2987 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-588)))) (-2421 (*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-588)))) (-1801 (*1 *2 *3) (-12 (-5 *3 (-500)) (-5 *2 (-700 (-588))) (-5 *1 (-588))))) +(-13 (-1112) (-10 -8 (-15 -2987 ($ (-1171))) (-15 -2421 ((-215 4 (-130)) $)) (-15 -1801 ((-700 $) (-500))))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4228 (($ $ (-573)) 75)) (-2800 (((-112) $ $) NIL)) (-2579 (($) NIL T CONST)) (-1504 (($ (-1185 (-573)) (-573)) 81)) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) 66)) (-1970 (($ $) 43)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2534 (((-780) $) 16)) (-1959 (((-112) $) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3621 (((-573)) 37)) (-4054 (((-573) $) 41)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2212 (($ $ (-573)) 24)) (-2837 (((-3 $ "failed") $ $) 71)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) 17)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 72)) (-3006 (((-1169 (-573)) $) 19)) (-4101 (($ $) 26)) (-2942 (((-871) $) 102) (($ (-573)) 61) (($ $) NIL)) (-1545 (((-780)) 15 T CONST)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-3550 (((-573) $ (-573)) 46)) (-2132 (($) 44 T CONST)) (-2144 (($) 21 T CONST)) (-2981 (((-112) $ $) 52)) (-3093 (($ $) 60) (($ $ $) 48)) (-3077 (($ $ $) 59)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 62) (($ $ $) 63))) +(((-589 |#1| |#2|) (-878 |#1|) (-573) (-112)) (T -589)) +NIL +(-878 |#1|) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 30)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-3511 (((-112) $) NIL)) (-3115 (((-780)) NIL)) (-1635 (($ $ (-931)) NIL (|has| $ (-376))) (($ $) NIL)) (-2604 (((-1202 (-931) (-780)) (-573)) 59)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-1486 (((-780)) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 $ "failed") $) 95)) (-2205 (($ $) 94)) (-2854 (($ (-1280 $)) 93)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) 44)) (-2819 (($) NIL)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-3731 (($) 61)) (-1708 (((-112) $) NIL)) (-2104 (($ $) NIL) (($ $ (-780)) NIL)) (-2696 (((-112) $) NIL)) (-2534 (((-842 (-931)) $) NIL) (((-931) $) NIL)) (-1959 (((-112) $) NIL)) (-4081 (($) 49 (|has| $ (-376)))) (-3514 (((-112) $) NIL (|has| $ (-376)))) (-3421 (($ $ (-931)) NIL (|has| $ (-376))) (($ $) NIL)) (-1470 (((-3 $ "failed") $) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2297 (((-1185 $) $ (-931)) NIL (|has| $ (-376))) (((-1185 $) $) 104)) (-3589 (((-931) $) 67)) (-2991 (((-1185 $) $) NIL (|has| $ (-376)))) (-2700 (((-3 (-1185 $) "failed") $ $) NIL (|has| $ (-376))) (((-1185 $) $) NIL (|has| $ (-376)))) (-2840 (($ $ (-1185 $)) NIL (|has| $ (-376)))) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL T CONST)) (-2575 (($ (-931)) 60)) (-2772 (((-112) $) 87)) (-3965 (((-1132) $) NIL)) (-2969 (($) 28 (|has| $ (-376)))) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) 54)) (-4218 (((-427 $) $) NIL)) (-3216 (((-931)) 86) (((-842 (-931))) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-1637 (((-3 (-780) "failed") $ $) NIL) (((-780) $) NIL)) (-2365 (((-135)) NIL)) (-3904 (($ $) NIL) (($ $ (-780)) NIL)) (-2565 (((-931) $) 85) (((-842 (-931)) $) NIL)) (-2984 (((-1185 $)) 102)) (-2510 (($) 66)) (-4232 (($) 50 (|has| $ (-376)))) (-2123 (((-698 $) (-1280 $)) NIL) (((-1280 $) $) 91)) (-1835 (((-573) $) 40)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) 42) (($ $) NIL) (($ (-416 (-573))) NIL)) (-4279 (((-3 $ "failed") $) NIL) (($ $) 105)) (-1545 (((-780)) 51 T CONST)) (-3507 (((-112) $ $) 107)) (-3914 (((-1280 $) (-931)) 97) (((-1280 $)) 96)) (-2516 (((-112) $ $) NIL)) (-4333 (((-112) $) NIL)) (-2132 (($) 31 T CONST)) (-2144 (($) 27 T CONST)) (-1629 (($ $ (-780)) NIL (|has| $ (-376))) (($ $) NIL (|has| $ (-376)))) (-3609 (($ $) NIL) (($ $ (-780)) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) 34)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 81) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL))) +(((-590 |#1|) (-13 (-357) (-336 $) (-623 (-573))) (-931)) (T -590)) +NIL +(-13 (-357) (-336 $) (-623 (-573))) +((-3611 (((-1285) (-1171)) 10))) +(((-591) (-10 -7 (-15 -3611 ((-1285) (-1171))))) (T -591)) +((-3611 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-591))))) +(-10 -7 (-15 -3611 ((-1285) (-1171)))) +((-3834 (((-595 |#2|) (-595 |#2|)) 42)) (-2127 (((-653 |#2|) (-595 |#2|)) 44)) (-2129 ((|#2| (-595 |#2|)) 50))) +(((-592 |#1| |#2|) (-10 -7 (-15 -3834 ((-595 |#2|) (-595 |#2|))) (-15 -2127 ((-653 |#2|) (-595 |#2|))) (-15 -2129 (|#2| (-595 |#2|)))) (-13 (-461) (-1050 (-573)) (-648 (-573))) (-13 (-29 |#1|) (-1215))) (T -592)) +((-2129 (*1 *2 *3) (-12 (-5 *3 (-595 *2)) (-4 *2 (-13 (-29 *4) (-1215))) (-5 *1 (-592 *4 *2)) (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))))) (-2127 (*1 *2 *3) (-12 (-5 *3 (-595 *5)) (-4 *5 (-13 (-29 *4) (-1215))) (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-653 *5)) (-5 *1 (-592 *4 *5)))) (-3834 (*1 *2 *2) (-12 (-5 *2 (-595 *4)) (-4 *4 (-13 (-29 *3) (-1215))) (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-592 *3 *4))))) +(-10 -7 (-15 -3834 ((-595 |#2|) (-595 |#2|))) (-15 -2127 ((-653 |#2|) (-595 |#2|))) (-15 -2129 (|#2| (-595 |#2|)))) +((-1776 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3861 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-595 |#2|) (-1 |#2| |#1|) (-595 |#1|)) 30))) +(((-593 |#1| |#2|) (-10 -7 (-15 -1776 ((-595 |#2|) (-1 |#2| |#1|) (-595 |#1|))) (-15 -1776 ((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3861 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1776 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1776 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-371) (-371)) (T -593)) +((-1776 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-371)) (-4 *6 (-371)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-593 *5 *6)))) (-1776 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-371)) (-4 *2 (-371)) (-5 *1 (-593 *5 *2)))) (-1776 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3861 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-371)) (-4 *6 (-371)) (-5 *2 (-2 (|:| -3861 *6) (|:| |coeff| *6))) (-5 *1 (-593 *5 *6)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-595 *5)) (-4 *5 (-371)) (-4 *6 (-371)) (-5 *2 (-595 *6)) (-5 *1 (-593 *5 *6))))) +(-10 -7 (-15 -1776 ((-595 |#2|) (-1 |#2| |#1|) (-595 |#1|))) (-15 -1776 ((-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3861 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1776 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1776 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-1847 (($ (-515) (-606)) 14)) (-2063 (($ (-515) (-606) $) 16)) (-3300 (($ (-515) (-606)) 15)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL) (($ (-1194)) 7) (((-1194) $) 6)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-594) (-13 (-1112) (-499 (-1194)) (-10 -8 (-15 -1847 ($ (-515) (-606))) (-15 -3300 ($ (-515) (-606))) (-15 -2063 ($ (-515) (-606) $))))) (T -594)) +((-1847 (*1 *1 *2 *3) (-12 (-5 *2 (-515)) (-5 *3 (-606)) (-5 *1 (-594)))) (-3300 (*1 *1 *2 *3) (-12 (-5 *2 (-515)) (-5 *3 (-606)) (-5 *1 (-594)))) (-2063 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-515)) (-5 *3 (-606)) (-5 *1 (-594))))) +(-13 (-1112) (-499 (-1194)) (-10 -8 (-15 -1847 ($ (-515) (-606))) (-15 -3300 ($ (-515) (-606))) (-15 -2063 ($ (-515) (-606) $)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) 76)) (-2205 ((|#1| $) NIL)) (-3861 ((|#1| $) 30)) (-3864 (((-653 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-2782 (($ |#1| (-653 (-2 (|:| |scalar| (-416 (-573))) (|:| |coeff| (-1185 |#1|)) (|:| |logand| (-1185 |#1|)))) (-653 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-1353 (((-653 (-2 (|:| |scalar| (-416 (-573))) (|:| |coeff| (-1185 |#1|)) (|:| |logand| (-1185 |#1|)))) $) 31)) (-3180 (((-1171) $) NIL)) (-3376 (($ |#1| |#1|) 38) (($ |#1| (-1189)) 49 (|has| |#1| (-1050 (-1189))))) (-3965 (((-1132) $) NIL)) (-4047 (((-112) $) 35)) (-3904 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1189)) 89 (|has| |#1| (-910 (-1189))))) (-2942 (((-871) $) 110) (($ |#1|) 29)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 18 T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) 17) (($ $ $) NIL)) (-3077 (($ $ $) 85)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 16) (($ (-416 (-573)) $) 41) (($ $ (-416 (-573))) NIL))) +(((-595 |#1|) (-13 (-726 (-416 (-573))) (-1050 |#1|) (-10 -8 (-15 -2782 ($ |#1| (-653 (-2 (|:| |scalar| (-416 (-573))) (|:| |coeff| (-1185 |#1|)) (|:| |logand| (-1185 |#1|)))) (-653 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3861 (|#1| $)) (-15 -1353 ((-653 (-2 (|:| |scalar| (-416 (-573))) (|:| |coeff| (-1185 |#1|)) (|:| |logand| (-1185 |#1|)))) $)) (-15 -3864 ((-653 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -4047 ((-112) $)) (-15 -3376 ($ |#1| |#1|)) (-15 -3904 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-910 (-1189))) (-15 -3904 (|#1| $ (-1189))) |%noBranch|) (IF (|has| |#1| (-1050 (-1189))) (-15 -3376 ($ |#1| (-1189))) |%noBranch|))) (-371)) (T -595)) +((-2782 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-653 (-2 (|:| |scalar| (-416 (-573))) (|:| |coeff| (-1185 *2)) (|:| |logand| (-1185 *2))))) (-5 *4 (-653 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-371)) (-5 *1 (-595 *2)))) (-3861 (*1 *2 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-371)))) (-1353 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| |scalar| (-416 (-573))) (|:| |coeff| (-1185 *3)) (|:| |logand| (-1185 *3))))) (-5 *1 (-595 *3)) (-4 *3 (-371)))) (-3864 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-595 *3)) (-4 *3 (-371)))) (-4047 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-595 *3)) (-4 *3 (-371)))) (-3376 (*1 *1 *2 *2) (-12 (-5 *1 (-595 *2)) (-4 *2 (-371)))) (-3904 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-595 *2)) (-4 *2 (-371)))) (-3904 (*1 *2 *1 *3) (-12 (-4 *2 (-371)) (-4 *2 (-910 *3)) (-5 *1 (-595 *2)) (-5 *3 (-1189)))) (-3376 (*1 *1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *1 (-595 *2)) (-4 *2 (-1050 *3)) (-4 *2 (-371))))) +(-13 (-726 (-416 (-573))) (-1050 |#1|) (-10 -8 (-15 -2782 ($ |#1| (-653 (-2 (|:| |scalar| (-416 (-573))) (|:| |coeff| (-1185 |#1|)) (|:| |logand| (-1185 |#1|)))) (-653 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3861 (|#1| $)) (-15 -1353 ((-653 (-2 (|:| |scalar| (-416 (-573))) (|:| |coeff| (-1185 |#1|)) (|:| |logand| (-1185 |#1|)))) $)) (-15 -3864 ((-653 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -4047 ((-112) $)) (-15 -3376 ($ |#1| |#1|)) (-15 -3904 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-910 (-1189))) (-15 -3904 (|#1| $ (-1189))) |%noBranch|) (IF (|has| |#1| (-1050 (-1189))) (-15 -3376 ($ |#1| (-1189))) |%noBranch|))) +((-1898 (((-112) |#1|) 16)) (-4242 (((-3 |#1| "failed") |#1|) 14)) (-3651 (((-2 (|:| -2629 |#1|) (|:| -3907 (-780))) |#1|) 38) (((-3 |#1| "failed") |#1| (-780)) 18)) (-3934 (((-112) |#1| (-780)) 19)) (-2857 ((|#1| |#1|) 42)) (-1696 ((|#1| |#1| (-780)) 45))) +(((-596 |#1|) (-10 -7 (-15 -3934 ((-112) |#1| (-780))) (-15 -3651 ((-3 |#1| "failed") |#1| (-780))) (-15 -3651 ((-2 (|:| -2629 |#1|) (|:| -3907 (-780))) |#1|)) (-15 -1696 (|#1| |#1| (-780))) (-15 -1898 ((-112) |#1|)) (-15 -4242 ((-3 |#1| "failed") |#1|)) (-15 -2857 (|#1| |#1|))) (-554)) (T -596)) +((-2857 (*1 *2 *2) (-12 (-5 *1 (-596 *2)) (-4 *2 (-554)))) (-4242 (*1 *2 *2) (|partial| -12 (-5 *1 (-596 *2)) (-4 *2 (-554)))) (-1898 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-554)))) (-1696 (*1 *2 *2 *3) (-12 (-5 *3 (-780)) (-5 *1 (-596 *2)) (-4 *2 (-554)))) (-3651 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2629 *3) (|:| -3907 (-780)))) (-5 *1 (-596 *3)) (-4 *3 (-554)))) (-3651 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-780)) (-5 *1 (-596 *2)) (-4 *2 (-554)))) (-3934 (*1 *2 *3 *4) (-12 (-5 *4 (-780)) (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-554))))) +(-10 -7 (-15 -3934 ((-112) |#1| (-780))) (-15 -3651 ((-3 |#1| "failed") |#1| (-780))) (-15 -3651 ((-2 (|:| -2629 |#1|) (|:| -3907 (-780))) |#1|)) (-15 -1696 (|#1| |#1| (-780))) (-15 -1898 ((-112) |#1|)) (-15 -4242 ((-3 |#1| "failed") |#1|)) (-15 -2857 (|#1| |#1|))) +((-4202 (((-1185 |#1|) (-931)) 44))) +(((-597 |#1|) (-10 -7 (-15 -4202 ((-1185 |#1|) (-931)))) (-357)) (T -597)) +((-4202 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-597 *4)) (-4 *4 (-357))))) +(-10 -7 (-15 -4202 ((-1185 |#1|) (-931)))) +((-3834 (((-595 (-416 (-962 |#1|))) (-595 (-416 (-962 |#1|)))) 27)) (-1626 (((-3 (-323 |#1|) (-653 (-323 |#1|))) (-416 (-962 |#1|)) (-1189)) 34 (|has| |#1| (-148)))) (-2127 (((-653 (-323 |#1|)) (-595 (-416 (-962 |#1|)))) 19)) (-1567 (((-323 |#1|) (-416 (-962 |#1|)) (-1189)) 32 (|has| |#1| (-148)))) (-2129 (((-323 |#1|) (-595 (-416 (-962 |#1|)))) 21))) +(((-598 |#1|) (-10 -7 (-15 -3834 ((-595 (-416 (-962 |#1|))) (-595 (-416 (-962 |#1|))))) (-15 -2127 ((-653 (-323 |#1|)) (-595 (-416 (-962 |#1|))))) (-15 -2129 ((-323 |#1|) (-595 (-416 (-962 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -1626 ((-3 (-323 |#1|) (-653 (-323 |#1|))) (-416 (-962 |#1|)) (-1189))) (-15 -1567 ((-323 |#1|) (-416 (-962 |#1|)) (-1189)))) |%noBranch|)) (-13 (-461) (-1050 (-573)) (-648 (-573)))) (T -598)) +((-1567 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-1189)) (-4 *5 (-148)) (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-323 *5)) (-5 *1 (-598 *5)))) (-1626 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-1189)) (-4 *5 (-148)) (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-3 (-323 *5) (-653 (-323 *5)))) (-5 *1 (-598 *5)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-595 (-416 (-962 *4)))) (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-323 *4)) (-5 *1 (-598 *4)))) (-2127 (*1 *2 *3) (-12 (-5 *3 (-595 (-416 (-962 *4)))) (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-653 (-323 *4))) (-5 *1 (-598 *4)))) (-3834 (*1 *2 *2) (-12 (-5 *2 (-595 (-416 (-962 *3)))) (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-598 *3))))) +(-10 -7 (-15 -3834 ((-595 (-416 (-962 |#1|))) (-595 (-416 (-962 |#1|))))) (-15 -2127 ((-653 (-323 |#1|)) (-595 (-416 (-962 |#1|))))) (-15 -2129 ((-323 |#1|) (-595 (-416 (-962 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -1626 ((-3 (-323 |#1|) (-653 (-323 |#1|))) (-416 (-962 |#1|)) (-1189))) (-15 -1567 ((-323 |#1|) (-416 (-962 |#1|)) (-1189)))) |%noBranch|)) +((-2339 (((-653 (-698 (-573))) (-653 (-931)) (-653 (-915 (-573)))) 78) (((-653 (-698 (-573))) (-653 (-931))) 79) (((-698 (-573)) (-653 (-931)) (-915 (-573))) 72)) (-3673 (((-780) (-653 (-931))) 69))) +(((-599) (-10 -7 (-15 -3673 ((-780) (-653 (-931)))) (-15 -2339 ((-698 (-573)) (-653 (-931)) (-915 (-573)))) (-15 -2339 ((-653 (-698 (-573))) (-653 (-931)))) (-15 -2339 ((-653 (-698 (-573))) (-653 (-931)) (-653 (-915 (-573))))))) (T -599)) +((-2339 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-931))) (-5 *4 (-653 (-915 (-573)))) (-5 *2 (-653 (-698 (-573)))) (-5 *1 (-599)))) (-2339 (*1 *2 *3) (-12 (-5 *3 (-653 (-931))) (-5 *2 (-653 (-698 (-573)))) (-5 *1 (-599)))) (-2339 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-931))) (-5 *4 (-915 (-573))) (-5 *2 (-698 (-573))) (-5 *1 (-599)))) (-3673 (*1 *2 *3) (-12 (-5 *3 (-653 (-931))) (-5 *2 (-780)) (-5 *1 (-599))))) +(-10 -7 (-15 -3673 ((-780) (-653 (-931)))) (-15 -2339 ((-698 (-573)) (-653 (-931)) (-915 (-573)))) (-15 -2339 ((-653 (-698 (-573))) (-653 (-931)))) (-15 -2339 ((-653 (-698 (-573))) (-653 (-931)) (-653 (-915 (-573)))))) +((-2199 (((-653 |#5|) |#5| (-112)) 100)) (-3674 (((-112) |#5| (-653 |#5|)) 34))) +(((-600 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2199 ((-653 |#5|) |#5| (-112))) (-15 -3674 ((-112) |#5| (-653 |#5|)))) (-13 (-314) (-148)) (-802) (-859) (-1077 |#1| |#2| |#3|) (-1121 |#1| |#2| |#3| |#4|)) (T -600)) +((-3674 (*1 *2 *3 *4) (-12 (-5 *4 (-653 *3)) (-4 *3 (-1121 *5 *6 *7 *8)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-1077 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-600 *5 *6 *7 *8 *3)))) (-2199 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-1077 *5 *6 *7)) (-5 *2 (-653 *3)) (-5 *1 (-600 *5 *6 *7 *8 *3)) (-4 *3 (-1121 *5 *6 *7 *8))))) +(-10 -7 (-15 -2199 ((-653 |#5|) |#5| (-112))) (-15 -3674 ((-112) |#5| (-653 |#5|)))) +((-2848 (((-112) $ $) NIL)) (-1808 (((-1147) $) 11)) (-1795 (((-1147) $) 9)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 17) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-601) (-13 (-1095) (-10 -8 (-15 -1795 ((-1147) $)) (-15 -1808 ((-1147) $))))) (T -601)) +((-1795 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-601)))) (-1808 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-601))))) +(-13 (-1095) (-10 -8 (-15 -1795 ((-1147) $)) (-15 -1808 ((-1147) $)))) +((-2848 (((-112) $ $) NIL (|has| (-145) (-1112)))) (-3315 (($ $) 38)) (-2391 (($ $) NIL)) (-3952 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-3710 (((-112) $ $) 67)) (-3689 (((-112) $ $ (-573)) 62)) (-3834 (((-653 $) $ (-145)) 75) (((-653 $) $ (-142)) 76)) (-1473 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-859)))) (-2748 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4456))) (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-859))))) (-2770 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-859)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 (((-145) $ (-573) (-145)) 59 (|has| $ (-6 -4456))) (((-145) $ (-1247 (-573)) (-145)) NIL (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2616 (($ $ (-145)) 79) (($ $ (-142)) 80)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-3403 (($ $ (-1247 (-573)) $) 57)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112))))) (-3334 (($ (-145) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455)))) (-2867 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4455))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4455)))) (-2457 (((-145) $ (-573) (-145)) NIL (|has| $ (-6 -4456)))) (-2384 (((-145) $ (-573)) NIL)) (-3732 (((-112) $ $) 88)) (-1440 (((-573) (-1 (-112) (-145)) $) NIL) (((-573) (-145) $) NIL (|has| (-145) (-1112))) (((-573) (-145) $ (-573)) 64 (|has| (-145) (-1112))) (((-573) $ $ (-573)) 63) (((-573) (-142) $ (-573)) 66)) (-1863 (((-653 (-145)) $) NIL (|has| $ (-6 -4455)))) (-3789 (($ (-780) (-145)) 9)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) 32 (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (|has| (-145) (-859)))) (-1480 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-859)))) (-3214 (((-653 (-145)) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112))))) (-3470 (((-573) $) 47 (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| (-145) (-859)))) (-1325 (((-112) $ $ (-145)) 89)) (-2682 (((-780) $ $ (-145)) 86)) (-2446 (($ (-1 (-145) (-145)) $) 37 (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-2422 (($ $) 41)) (-3878 (($ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-2630 (($ $ (-145)) 77) (($ $ (-142)) 78)) (-3180 (((-1171) $) 43 (|has| (-145) (-1112)))) (-1593 (($ (-145) $ (-573)) NIL) (($ $ $ (-573)) 27)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) 85 (|has| (-145) (-1112)))) (-2914 (((-145) $) NIL (|has| (-573) (-859)))) (-2036 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-3112 (($ $ (-145)) NIL (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-145)))) NIL (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112)))) (($ $ (-301 (-145))) NIL (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112)))) (($ $ (-653 (-145)) (-653 (-145))) NIL (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112))))) (-1535 (((-653 (-145)) $) NIL)) (-3811 (((-112) $) 15)) (-3508 (($) 10)) (-2198 (((-145) $ (-573) (-145)) NIL) (((-145) $ (-573)) 68) (($ $ (-1247 (-573))) 25) (($ $ $) NIL)) (-2836 (($ $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-3974 (((-780) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455))) (((-780) (-145) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112))))) (-3919 (($ $ $ (-573)) 81 (|has| $ (-6 -4456)))) (-3166 (($ $) 20)) (-1835 (((-545) $) NIL (|has| (-145) (-623 (-545))))) (-2955 (($ (-653 (-145))) NIL)) (-4156 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) 19) (($ (-653 $)) 82)) (-2942 (($ (-145)) NIL) (((-871) $) 31 (|has| (-145) (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| (-145) (-1112)))) (-1646 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) NIL (|has| (-145) (-859)))) (-3015 (((-112) $ $) NIL (|has| (-145) (-859)))) (-2981 (((-112) $ $) 17 (|has| (-145) (-1112)))) (-3027 (((-112) $ $) NIL (|has| (-145) (-859)))) (-3005 (((-112) $ $) 18 (|has| (-145) (-859)))) (-2862 (((-780) $) 16 (|has| $ (-6 -4455))))) +(((-602 |#1|) (-1156) (-573)) (T -602)) +NIL +(-1156) +((-3559 (((-2 (|:| |num| |#4|) (|:| |den| (-573))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-573))) |#4| |#2| (-1106 |#4|)) 32))) +(((-603 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3559 ((-2 (|:| |num| |#4|) (|:| |den| (-573))) |#4| |#2| (-1106 |#4|))) (-15 -3559 ((-2 (|:| |num| |#4|) (|:| |den| (-573))) |#4| |#2|))) (-802) (-859) (-565) (-959 |#3| |#1| |#2|)) (T -603)) +((-3559 (*1 *2 *3 *4) (-12 (-4 *5 (-802)) (-4 *4 (-859)) (-4 *6 (-565)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-573)))) (-5 *1 (-603 *5 *4 *6 *3)) (-4 *3 (-959 *6 *5 *4)))) (-3559 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1106 *3)) (-4 *3 (-959 *7 *6 *4)) (-4 *6 (-802)) (-4 *4 (-859)) (-4 *7 (-565)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-573)))) (-5 *1 (-603 *6 *4 *7 *3))))) +(-10 -7 (-15 -3559 ((-2 (|:| |num| |#4|) (|:| |den| (-573))) |#4| |#2| (-1106 |#4|))) (-15 -3559 ((-2 (|:| |num| |#4|) (|:| |den| (-573))) |#4| |#2|))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 71)) (-4354 (((-653 (-1094)) $) NIL)) (-1487 (((-1189) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-1442 (($ $ (-573)) 58) (($ $ (-573) (-573)) 59)) (-1662 (((-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))) $) 65)) (-3316 (($ $) 109)) (-2983 (((-3 $ "failed") $ $) NIL)) (-3442 (((-871) (-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))) (-1038 (-852 (-573))) (-1189) |#1| (-416 (-573))) 241)) (-3622 (($ (-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|)))) 36)) (-2579 (($) NIL T CONST)) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-1488 (((-112) $) NIL)) (-2534 (((-573) $) 63) (((-573) $ (-573)) 64)) (-1959 (((-112) $) NIL)) (-2976 (($ $ (-931)) 83)) (-2861 (($ (-1 |#1| (-573)) $) 80)) (-3676 (((-112) $) 26)) (-4334 (($ |#1| (-573)) 22) (($ $ (-1094) (-573)) NIL) (($ $ (-653 (-1094)) (-653 (-573))) NIL)) (-1776 (($ (-1 |#1| |#1|) $) 75)) (-2327 (($ (-1038 (-852 (-573))) (-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|)))) 13)) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-1626 (($ $) 161 (|has| |#1| (-38 (-416 (-573)))))) (-2656 (((-3 $ "failed") $ $ (-112)) 108)) (-3188 (($ $ $) 116)) (-3965 (((-1132) $) NIL)) (-3292 (((-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))) $) 15)) (-3121 (((-1038 (-852 (-573))) $) 14)) (-2212 (($ $ (-573)) 47)) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-565)))) (-2645 (((-1169 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-573)))))) (-2198 ((|#1| $ (-573)) 62) (($ $ $) NIL (|has| (-573) (-1124)))) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-573) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (-2565 (((-573) $) NIL)) (-4101 (($ $) 48)) (-2942 (((-871) $) NIL) (($ (-573)) 29) (($ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $) NIL (|has| |#1| (-565))) (($ |#1|) 28 (|has| |#1| (-174)))) (-4317 ((|#1| $ (-573)) 61)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) 39 T CONST)) (-3358 ((|#1| $) NIL)) (-3239 (($ $) 198 (|has| |#1| (-38 (-416 (-573)))))) (-3606 (($ $) 169 (|has| |#1| (-38 (-416 (-573)))))) (-3030 (($ $) 202 (|has| |#1| (-38 (-416 (-573)))))) (-2710 (($ $) 174 (|has| |#1| (-38 (-416 (-573)))))) (-4328 (($ $) 201 (|has| |#1| (-38 (-416 (-573)))))) (-4295 (($ $) 173 (|has| |#1| (-38 (-416 (-573)))))) (-2105 (($ $ (-416 (-573))) 177 (|has| |#1| (-38 (-416 (-573)))))) (-1475 (($ $ |#1|) 157 (|has| |#1| (-38 (-416 (-573)))))) (-1431 (($ $) 204 (|has| |#1| (-38 (-416 (-573)))))) (-1802 (($ $) 160 (|has| |#1| (-38 (-416 (-573)))))) (-3434 (($ $) 203 (|has| |#1| (-38 (-416 (-573)))))) (-2835 (($ $) 175 (|has| |#1| (-38 (-416 (-573)))))) (-4029 (($ $) 199 (|has| |#1| (-38 (-416 (-573)))))) (-2159 (($ $) 171 (|has| |#1| (-38 (-416 (-573)))))) (-3308 (($ $) 200 (|has| |#1| (-38 (-416 (-573)))))) (-2468 (($ $) 172 (|has| |#1| (-38 (-416 (-573)))))) (-3468 (($ $) 209 (|has| |#1| (-38 (-416 (-573)))))) (-2905 (($ $) 185 (|has| |#1| (-38 (-416 (-573)))))) (-3258 (($ $) 206 (|has| |#1| (-38 (-416 (-573)))))) (-2174 (($ $) 181 (|has| |#1| (-38 (-416 (-573)))))) (-4041 (($ $) 213 (|has| |#1| (-38 (-416 (-573)))))) (-3277 (($ $) 189 (|has| |#1| (-38 (-416 (-573)))))) (-3523 (($ $) 215 (|has| |#1| (-38 (-416 (-573)))))) (-1648 (($ $) 191 (|has| |#1| (-38 (-416 (-573)))))) (-3893 (($ $) 211 (|has| |#1| (-38 (-416 (-573)))))) (-2631 (($ $) 187 (|has| |#1| (-38 (-416 (-573)))))) (-3756 (($ $) 208 (|has| |#1| (-38 (-416 (-573)))))) (-1707 (($ $) 183 (|has| |#1| (-38 (-416 (-573)))))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-3550 ((|#1| $ (-573)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-573)))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2132 (($) 30 T CONST)) (-2144 (($) 40 T CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-573) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (-2981 (((-112) $ $) 73)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371)))) (-3093 (($ $) 91) (($ $ $) 72)) (-3077 (($ $ $) 88)) (** (($ $ (-931)) NIL) (($ $ (-780)) 111)) (* (($ (-931) $) 98) (($ (-780) $) 96) (($ (-573) $) 93) (($ $ $) 104) (($ $ |#1|) NIL) (($ |#1| $) 123) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))))) +(((-604 |#1|) (-13 (-1258 |#1| (-573)) (-10 -8 (-15 -2327 ($ (-1038 (-852 (-573))) (-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))))) (-15 -3121 ((-1038 (-852 (-573))) $)) (-15 -3292 ((-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))) $)) (-15 -3622 ($ (-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))))) (-15 -3676 ((-112) $)) (-15 -2861 ($ (-1 |#1| (-573)) $)) (-15 -2656 ((-3 $ "failed") $ $ (-112))) (-15 -3316 ($ $)) (-15 -3188 ($ $ $)) (-15 -3442 ((-871) (-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))) (-1038 (-852 (-573))) (-1189) |#1| (-416 (-573)))) (IF (|has| |#1| (-38 (-416 (-573)))) (PROGN (-15 -1626 ($ $)) (-15 -1475 ($ $ |#1|)) (-15 -2105 ($ $ (-416 (-573)))) (-15 -1802 ($ $)) (-15 -1431 ($ $)) (-15 -2710 ($ $)) (-15 -2468 ($ $)) (-15 -3606 ($ $)) (-15 -2159 ($ $)) (-15 -4295 ($ $)) (-15 -2835 ($ $)) (-15 -2174 ($ $)) (-15 -1707 ($ $)) (-15 -2905 ($ $)) (-15 -2631 ($ $)) (-15 -3277 ($ $)) (-15 -1648 ($ $)) (-15 -3030 ($ $)) (-15 -3308 ($ $)) (-15 -3239 ($ $)) (-15 -4029 ($ $)) (-15 -4328 ($ $)) (-15 -3434 ($ $)) (-15 -3258 ($ $)) (-15 -3756 ($ $)) (-15 -3468 ($ $)) (-15 -3893 ($ $)) (-15 -4041 ($ $)) (-15 -3523 ($ $))) |%noBranch|))) (-1061)) (T -604)) +((-3676 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-604 *3)) (-4 *3 (-1061)))) (-2327 (*1 *1 *2 *3) (-12 (-5 *2 (-1038 (-852 (-573)))) (-5 *3 (-1169 (-2 (|:| |k| (-573)) (|:| |c| *4)))) (-4 *4 (-1061)) (-5 *1 (-604 *4)))) (-3121 (*1 *2 *1) (-12 (-5 *2 (-1038 (-852 (-573)))) (-5 *1 (-604 *3)) (-4 *3 (-1061)))) (-3292 (*1 *2 *1) (-12 (-5 *2 (-1169 (-2 (|:| |k| (-573)) (|:| |c| *3)))) (-5 *1 (-604 *3)) (-4 *3 (-1061)))) (-3622 (*1 *1 *2) (-12 (-5 *2 (-1169 (-2 (|:| |k| (-573)) (|:| |c| *3)))) (-4 *3 (-1061)) (-5 *1 (-604 *3)))) (-2861 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-573))) (-4 *3 (-1061)) (-5 *1 (-604 *3)))) (-2656 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-604 *3)) (-4 *3 (-1061)))) (-3316 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-1061)))) (-3188 (*1 *1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-1061)))) (-3442 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1169 (-2 (|:| |k| (-573)) (|:| |c| *6)))) (-5 *4 (-1038 (-852 (-573)))) (-5 *5 (-1189)) (-5 *7 (-416 (-573))) (-4 *6 (-1061)) (-5 *2 (-871)) (-5 *1 (-604 *6)))) (-1626 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-1475 (*1 *1 *1 *2) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-2105 (*1 *1 *1 *2) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-604 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1061)))) (-1802 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-1431 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-2710 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-2468 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-3606 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-2159 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-4295 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-2835 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-2174 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-1707 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-2905 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-2631 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-3277 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-1648 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-3030 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-3308 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-3239 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-4029 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-4328 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-3434 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-3258 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-3756 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-3468 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-3893 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-4041 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) (-3523 (*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) +(-13 (-1258 |#1| (-573)) (-10 -8 (-15 -2327 ($ (-1038 (-852 (-573))) (-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))))) (-15 -3121 ((-1038 (-852 (-573))) $)) (-15 -3292 ((-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))) $)) (-15 -3622 ($ (-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))))) (-15 -3676 ((-112) $)) (-15 -2861 ($ (-1 |#1| (-573)) $)) (-15 -2656 ((-3 $ "failed") $ $ (-112))) (-15 -3316 ($ $)) (-15 -3188 ($ $ $)) (-15 -3442 ((-871) (-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))) (-1038 (-852 (-573))) (-1189) |#1| (-416 (-573)))) (IF (|has| |#1| (-38 (-416 (-573)))) (PROGN (-15 -1626 ($ $)) (-15 -1475 ($ $ |#1|)) (-15 -2105 ($ $ (-416 (-573)))) (-15 -1802 ($ $)) (-15 -1431 ($ $)) (-15 -2710 ($ $)) (-15 -2468 ($ $)) (-15 -3606 ($ $)) (-15 -2159 ($ $)) (-15 -4295 ($ $)) (-15 -2835 ($ $)) (-15 -2174 ($ $)) (-15 -1707 ($ $)) (-15 -2905 ($ $)) (-15 -2631 ($ $)) (-15 -3277 ($ $)) (-15 -1648 ($ $)) (-15 -3030 ($ $)) (-15 -3308 ($ $)) (-15 -3239 ($ $)) (-15 -4029 ($ $)) (-15 -4328 ($ $)) (-15 -3434 ($ $)) (-15 -3258 ($ $)) (-15 -3756 ($ $)) (-15 -3468 ($ $)) (-15 -3893 ($ $)) (-15 -4041 ($ $)) (-15 -3523 ($ $))) |%noBranch|))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 63)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-3622 (($ (-1169 |#1|)) 9)) (-2579 (($) NIL T CONST)) (-2232 (((-3 $ "failed") $) 44)) (-1488 (((-112) $) 56)) (-2534 (((-780) $) 61) (((-780) $ (-780)) 60)) (-1959 (((-112) $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2837 (((-3 $ "failed") $ $) 46 (|has| |#1| (-565)))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL (|has| |#1| (-565)))) (-1920 (((-1169 |#1|) $) 25)) (-1545 (((-780)) 55 T CONST)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2132 (($) 10 T CONST)) (-2144 (($) 14 T CONST)) (-2981 (((-112) $ $) 24)) (-3093 (($ $) 32) (($ $ $) 16)) (-3077 (($ $ $) 27)) (** (($ $ (-931)) NIL) (($ $ (-780)) 53)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 36) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-573)) 38))) +(((-605 |#1|) (-13 (-1061) (-111 |#1| |#1|) (-10 -8 (-15 -1920 ((-1169 |#1|) $)) (-15 -3622 ($ (-1169 |#1|))) (-15 -1488 ((-112) $)) (-15 -2534 ((-780) $)) (-15 -2534 ((-780) $ (-780))) (-15 * ($ $ (-573))) (IF (|has| |#1| (-565)) (-6 (-565)) |%noBranch|))) (-1061)) (T -605)) +((-1920 (*1 *2 *1) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-605 *3)) (-4 *3 (-1061)))) (-3622 (*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-605 *3)))) (-1488 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-605 *3)) (-4 *3 (-1061)))) (-2534 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-605 *3)) (-4 *3 (-1061)))) (-2534 (*1 *2 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-605 *3)) (-4 *3 (-1061)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-605 *3)) (-4 *3 (-1061))))) +(-13 (-1061) (-111 |#1| |#1|) (-10 -8 (-15 -1920 ((-1169 |#1|) $)) (-15 -3622 ($ (-1169 |#1|))) (-15 -1488 ((-112) $)) (-15 -2534 ((-780) $)) (-15 -2534 ((-780) $ (-780))) (-15 * ($ $ (-573))) (IF (|has| |#1| (-565)) (-6 (-565)) |%noBranch|))) +((-2848 (((-112) $ $) NIL)) (-2706 (($) 8 T CONST)) (-2568 (($) 7 T CONST)) (-3353 (($ $ (-653 $)) 16)) (-3180 (((-1171) $) NIL)) (-3417 (($) 6 T CONST)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL) (($ (-1194)) 15) (((-1194) $) 10)) (-2957 (($) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-606) (-13 (-1112) (-499 (-1194)) (-10 -8 (-15 -3417 ($) -1705) (-15 -2568 ($) -1705) (-15 -2706 ($) -1705) (-15 -2957 ($) -1705) (-15 -3353 ($ $ (-653 $)))))) (T -606)) +((-3417 (*1 *1) (-5 *1 (-606))) (-2568 (*1 *1) (-5 *1 (-606))) (-2706 (*1 *1) (-5 *1 (-606))) (-2957 (*1 *1) (-5 *1 (-606))) (-3353 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-606))) (-5 *1 (-606))))) +(-13 (-1112) (-499 (-1194)) (-10 -8 (-15 -3417 ($) -1705) (-15 -2568 ($) -1705) (-15 -2706 ($) -1705) (-15 -2957 ($) -1705) (-15 -3353 ($ $ (-653 $))))) +((-1776 (((-610 |#2|) (-1 |#2| |#1|) (-610 |#1|)) 15))) +(((-607 |#1| |#2|) (-10 -7 (-15 -1776 ((-610 |#2|) (-1 |#2| |#1|) (-610 |#1|)))) (-1230) (-1230)) (T -607)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-610 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-610 *6)) (-5 *1 (-607 *5 *6))))) +(-10 -7 (-15 -1776 ((-610 |#2|) (-1 |#2| |#1|) (-610 |#1|)))) +((-1776 (((-1169 |#3|) (-1 |#3| |#1| |#2|) (-610 |#1|) (-1169 |#2|)) 20) (((-1169 |#3|) (-1 |#3| |#1| |#2|) (-1169 |#1|) (-610 |#2|)) 19) (((-610 |#3|) (-1 |#3| |#1| |#2|) (-610 |#1|) (-610 |#2|)) 18))) +(((-608 |#1| |#2| |#3|) (-10 -7 (-15 -1776 ((-610 |#3|) (-1 |#3| |#1| |#2|) (-610 |#1|) (-610 |#2|))) (-15 -1776 ((-1169 |#3|) (-1 |#3| |#1| |#2|) (-1169 |#1|) (-610 |#2|))) (-15 -1776 ((-1169 |#3|) (-1 |#3| |#1| |#2|) (-610 |#1|) (-1169 |#2|)))) (-1230) (-1230) (-1230)) (T -608)) +((-1776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-610 *6)) (-5 *5 (-1169 *7)) (-4 *6 (-1230)) (-4 *7 (-1230)) (-4 *8 (-1230)) (-5 *2 (-1169 *8)) (-5 *1 (-608 *6 *7 *8)))) (-1776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1169 *6)) (-5 *5 (-610 *7)) (-4 *6 (-1230)) (-4 *7 (-1230)) (-4 *8 (-1230)) (-5 *2 (-1169 *8)) (-5 *1 (-608 *6 *7 *8)))) (-1776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-610 *6)) (-5 *5 (-610 *7)) (-4 *6 (-1230)) (-4 *7 (-1230)) (-4 *8 (-1230)) (-5 *2 (-610 *8)) (-5 *1 (-608 *6 *7 *8))))) +(-10 -7 (-15 -1776 ((-610 |#3|) (-1 |#3| |#1| |#2|) (-610 |#1|) (-610 |#2|))) (-15 -1776 ((-1169 |#3|) (-1 |#3| |#1| |#2|) (-1169 |#1|) (-610 |#2|))) (-15 -1776 ((-1169 |#3|) (-1 |#3| |#1| |#2|) (-610 |#1|) (-1169 |#2|)))) +((-4111 ((|#3| |#3| (-653 (-621 |#3|)) (-653 (-1189))) 57)) (-4407 (((-171 |#2|) |#3|) 122)) (-3869 ((|#3| (-171 |#2|)) 46)) (-3004 ((|#2| |#3|) 21)) (-1647 ((|#3| |#2|) 35))) +(((-609 |#1| |#2| |#3|) (-10 -7 (-15 -3869 (|#3| (-171 |#2|))) (-15 -3004 (|#2| |#3|)) (-15 -1647 (|#3| |#2|)) (-15 -4407 ((-171 |#2|) |#3|)) (-15 -4111 (|#3| |#3| (-653 (-621 |#3|)) (-653 (-1189))))) (-565) (-13 (-439 |#1|) (-1014) (-1215)) (-13 (-439 (-171 |#1|)) (-1014) (-1215))) (T -609)) +((-4111 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-653 (-621 *2))) (-5 *4 (-653 (-1189))) (-4 *2 (-13 (-439 (-171 *5)) (-1014) (-1215))) (-4 *5 (-565)) (-5 *1 (-609 *5 *6 *2)) (-4 *6 (-13 (-439 *5) (-1014) (-1215))))) (-4407 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-171 *5)) (-5 *1 (-609 *4 *5 *3)) (-4 *5 (-13 (-439 *4) (-1014) (-1215))) (-4 *3 (-13 (-439 (-171 *4)) (-1014) (-1215))))) (-1647 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *2 (-13 (-439 (-171 *4)) (-1014) (-1215))) (-5 *1 (-609 *4 *3 *2)) (-4 *3 (-13 (-439 *4) (-1014) (-1215))))) (-3004 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *2 (-13 (-439 *4) (-1014) (-1215))) (-5 *1 (-609 *4 *2 *3)) (-4 *3 (-13 (-439 (-171 *4)) (-1014) (-1215))))) (-3869 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-439 *4) (-1014) (-1215))) (-4 *4 (-565)) (-4 *2 (-13 (-439 (-171 *4)) (-1014) (-1215))) (-5 *1 (-609 *4 *5 *2))))) +(-10 -7 (-15 -3869 (|#3| (-171 |#2|))) (-15 -3004 (|#2| |#3|)) (-15 -1647 (|#3| |#2|)) (-15 -4407 ((-171 |#2|) |#3|)) (-15 -4111 (|#3| |#3| (-653 (-621 |#3|)) (-653 (-1189))))) +((-2164 (($ (-1 (-112) |#1|) $) 17)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2092 (($ (-1 |#1| |#1|) |#1|) 9)) (-2139 (($ (-1 (-112) |#1|) $) 13)) (-2151 (($ (-1 (-112) |#1|) $) 15)) (-2955 (((-1169 |#1|) $) 18)) (-2942 (((-871) $) NIL))) +(((-610 |#1|) (-13 (-622 (-871)) (-10 -8 (-15 -1776 ($ (-1 |#1| |#1|) $)) (-15 -2139 ($ (-1 (-112) |#1|) $)) (-15 -2151 ($ (-1 (-112) |#1|) $)) (-15 -2164 ($ (-1 (-112) |#1|) $)) (-15 -2092 ($ (-1 |#1| |#1|) |#1|)) (-15 -2955 ((-1169 |#1|) $)))) (-1230)) (T -610)) +((-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1230)) (-5 *1 (-610 *3)))) (-2139 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1230)) (-5 *1 (-610 *3)))) (-2151 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1230)) (-5 *1 (-610 *3)))) (-2164 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1230)) (-5 *1 (-610 *3)))) (-2092 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1230)) (-5 *1 (-610 *3)))) (-2955 (*1 *2 *1) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-610 *3)) (-4 *3 (-1230))))) +(-13 (-622 (-871)) (-10 -8 (-15 -1776 ($ (-1 |#1| |#1|) $)) (-15 -2139 ($ (-1 (-112) |#1|) $)) (-15 -2151 ($ (-1 (-112) |#1|) $)) (-15 -2164 ($ (-1 (-112) |#1|) $)) (-15 -2092 ($ (-1 |#1| |#1|) |#1|)) (-15 -2955 ((-1169 |#1|) $)))) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2215 (($ (-780)) NIL (|has| |#1| (-23)))) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-1473 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-859)))) (-2748 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4456))) (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-859))))) (-2770 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-859)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) NIL (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3334 (($ |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) NIL)) (-1440 (((-573) (-1 (-112) |#1|) $) NIL) (((-573) |#1| $) NIL (|has| |#1| (-1112))) (((-573) |#1| $ (-573)) NIL (|has| |#1| (-1112)))) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-3898 (((-698 |#1|) $ $) NIL (|has| |#1| (-1061)))) (-3789 (($ (-780) |#1|) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) NIL (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-1480 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-859)))) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3155 ((|#1| $) NIL (-12 (|has| |#1| (-1014)) (|has| |#1| (-1061))))) (-2673 (((-112) $ (-780)) NIL)) (-4134 ((|#1| $) NIL (-12 (|has| |#1| (-1014)) (|has| |#1| (-1061))))) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-1593 (($ |#1| $ (-573)) NIL) (($ $ $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2914 ((|#1| $) NIL (|has| (-573) (-859)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3112 (($ $ |#1|) NIL (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#1| $ (-573) |#1|) NIL) ((|#1| $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-2658 ((|#1| $ $) NIL (|has| |#1| (-1061)))) (-2836 (($ $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-3925 (($ $ $) NIL (|has| |#1| (-1061)))) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3919 (($ $ $ (-573)) NIL (|has| $ (-6 -4456)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) NIL)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-653 $)) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3093 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3077 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-573) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-735))) (($ $ |#1|) NIL (|has| |#1| (-735)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-611 |#1| |#2|) (-1278 |#1|) (-1230) (-573)) (T -611)) +NIL +(-1278 |#1|) +((-3791 (((-1285) $ |#2| |#2|) 35)) (-1968 ((|#2| $) 23)) (-3470 ((|#2| $) 21)) (-2446 (($ (-1 |#3| |#3|) $) 32)) (-1776 (($ (-1 |#3| |#3|) $) 30)) (-2914 ((|#3| $) 26)) (-3112 (($ $ |#3|) 33)) (-2547 (((-112) |#3| $) 17)) (-1535 (((-653 |#3|) $) 15)) (-2198 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-612 |#1| |#2| |#3|) (-10 -8 (-15 -3791 ((-1285) |#1| |#2| |#2|)) (-15 -3112 (|#1| |#1| |#3|)) (-15 -2914 (|#3| |#1|)) (-15 -1968 (|#2| |#1|)) (-15 -3470 (|#2| |#1|)) (-15 -2547 ((-112) |#3| |#1|)) (-15 -1535 ((-653 |#3|) |#1|)) (-15 -2198 (|#3| |#1| |#2|)) (-15 -2198 (|#3| |#1| |#2| |#3|)) (-15 -2446 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1776 (|#1| (-1 |#3| |#3|) |#1|))) (-613 |#2| |#3|) (-1112) (-1230)) (T -612)) +NIL +(-10 -8 (-15 -3791 ((-1285) |#1| |#2| |#2|)) (-15 -3112 (|#1| |#1| |#3|)) (-15 -2914 (|#3| |#1|)) (-15 -1968 (|#2| |#1|)) (-15 -3470 (|#2| |#1|)) (-15 -2547 ((-112) |#3| |#1|)) (-15 -1535 ((-653 |#3|) |#1|)) (-15 -2198 (|#3| |#1| |#2|)) (-15 -2198 (|#3| |#1| |#2| |#3|)) (-15 -2446 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1776 (|#1| (-1 |#3| |#3|) |#1|))) +((-2848 (((-112) $ $) 19 (|has| |#2| (-1112)))) (-3791 (((-1285) $ |#1| |#1|) 41 (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) 8)) (-3142 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4456)))) (-2579 (($) 7 T CONST)) (-2457 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4456)))) (-2384 ((|#2| $ |#1|) 52)) (-1863 (((-653 |#2|) $) 31 (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) 9)) (-1968 ((|#1| $) 44 (|has| |#1| (-859)))) (-3214 (((-653 |#2|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1112)) (|has| $ (-6 -4455))))) (-3470 ((|#1| $) 45 (|has| |#1| (-859)))) (-2446 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#2| |#2|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#2| (-1112)))) (-1977 (((-653 |#1|) $) 47)) (-2560 (((-112) |#1| $) 48)) (-3965 (((-1132) $) 21 (|has| |#2| (-1112)))) (-2914 ((|#2| $) 43 (|has| |#1| (-859)))) (-3112 (($ $ |#2|) 42 (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#2|))) 27 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) 26 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) 24 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))))) (-1885 (((-112) $ $) 14)) (-2547 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-1535 (((-653 |#2|) $) 49)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-3974 (((-780) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4455))) (((-780) |#2| $) 29 (-12 (|has| |#2| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-2942 (((-871) $) 18 (|has| |#2| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#2| (-1112)))) (-1646 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#2| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-613 |#1| |#2|) (-141) (-1112) (-1230)) (T -613)) +((-1535 (*1 *2 *1) (-12 (-4 *1 (-613 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1230)) (-5 *2 (-653 *4)))) (-2560 (*1 *2 *3 *1) (-12 (-4 *1 (-613 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1230)) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-613 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1230)) (-5 *2 (-653 *3)))) (-2547 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-613 *4 *3)) (-4 *4 (-1112)) (-4 *3 (-1230)) (-4 *3 (-1112)) (-5 *2 (-112)))) (-3470 (*1 *2 *1) (-12 (-4 *1 (-613 *2 *3)) (-4 *3 (-1230)) (-4 *2 (-1112)) (-4 *2 (-859)))) (-1968 (*1 *2 *1) (-12 (-4 *1 (-613 *2 *3)) (-4 *3 (-1230)) (-4 *2 (-1112)) (-4 *2 (-859)))) (-2914 (*1 *2 *1) (-12 (-4 *1 (-613 *3 *2)) (-4 *3 (-1112)) (-4 *3 (-859)) (-4 *2 (-1230)))) (-3112 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-613 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1230)))) (-3791 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-613 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1230)) (-5 *2 (-1285))))) +(-13 (-498 |t#2|) (-295 |t#1| |t#2|) (-10 -8 (-15 -1535 ((-653 |t#2|) $)) (-15 -2560 ((-112) |t#1| $)) (-15 -1977 ((-653 |t#1|) $)) (IF (|has| |t#2| (-1112)) (IF (|has| $ (-6 -4455)) (-15 -2547 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-859)) (PROGN (-15 -3470 (|t#1| $)) (-15 -1968 (|t#1| $)) (-15 -2914 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4456)) (PROGN (-15 -3112 ($ $ |t#2|)) (-15 -3791 ((-1285) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#2| (-1112)) ((-622 (-871)) -2817 (|has| |#2| (-1112)) (|has| |#2| (-622 (-871)))) ((-293 |#1| |#2|) . T) ((-295 |#1| |#2|) . T) ((-316 |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((-498 |#2|) . T) ((-523 |#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((-1112) |has| |#2| (-1112)) ((-1230) . T)) +((-2942 (((-871) $) 19) (($ (-130)) 13) (((-130) $) 14))) +(((-614) (-13 (-622 (-871)) (-499 (-130)))) (T -614)) +NIL +(-13 (-622 (-871)) (-499 (-130))) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL) (($ (-1194)) NIL) (((-1194) $) NIL) (((-1229) $) 14) (($ (-653 (-1229))) 13)) (-4289 (((-653 (-1229)) $) 10)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-615) (-13 (-1095) (-622 (-1229)) (-10 -8 (-15 -2942 ($ (-653 (-1229)))) (-15 -4289 ((-653 (-1229)) $))))) (T -615)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-653 (-1229))) (-5 *1 (-615)))) (-4289 (*1 *2 *1) (-12 (-5 *2 (-653 (-1229))) (-5 *1 (-615))))) +(-13 (-1095) (-622 (-1229)) (-10 -8 (-15 -2942 ($ (-653 (-1229)))) (-15 -4289 ((-653 (-1229)) $)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-1642 (((-3 $ "failed")) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-2983 (((-3 $ "failed") $ $) NIL)) (-3119 (((-1280 (-698 |#1|))) NIL (|has| |#2| (-426 |#1|))) (((-1280 (-698 |#1|)) (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-1888 (((-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-2579 (($) NIL T CONST)) (-2811 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-3360 (((-3 $ "failed")) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-1454 (((-698 |#1|)) NIL (|has| |#2| (-426 |#1|))) (((-698 |#1|) (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-1390 ((|#1| $) NIL (|has| |#2| (-375 |#1|)))) (-3612 (((-698 |#1|) $) NIL (|has| |#2| (-426 |#1|))) (((-698 |#1|) $ (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-1546 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-2743 (((-1185 (-962 |#1|))) NIL (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-371))))) (-3681 (($ $ (-931)) NIL)) (-3729 ((|#1| $) NIL (|has| |#2| (-375 |#1|)))) (-3397 (((-1185 |#1|) $) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-4053 ((|#1|) NIL (|has| |#2| (-426 |#1|))) ((|#1| (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-2650 (((-1185 |#1|) $) NIL (|has| |#2| (-375 |#1|)))) (-2492 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-2854 (($ (-1280 |#1|)) NIL (|has| |#2| (-426 |#1|))) (($ (-1280 |#1|) (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-2232 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-3583 (((-931)) NIL (|has| |#2| (-375 |#1|)))) (-3720 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-3009 (($ $ (-931)) NIL)) (-4275 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-1922 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-1565 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-1447 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-3675 (((-3 $ "failed")) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-2582 (((-698 |#1|)) NIL (|has| |#2| (-426 |#1|))) (((-698 |#1|) (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-3619 ((|#1| $) NIL (|has| |#2| (-375 |#1|)))) (-1729 (((-698 |#1|) $) NIL (|has| |#2| (-426 |#1|))) (((-698 |#1|) $ (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-2780 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-3753 (((-1185 (-962 |#1|))) NIL (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-371))))) (-2022 (($ $ (-931)) NIL)) (-3420 ((|#1| $) NIL (|has| |#2| (-375 |#1|)))) (-2000 (((-1185 |#1|) $) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-1912 ((|#1|) NIL (|has| |#2| (-426 |#1|))) ((|#1| (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-3242 (((-1185 |#1|) $) NIL (|has| |#2| (-375 |#1|)))) (-3455 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-3180 (((-1171) $) NIL)) (-2509 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-3313 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-4293 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-3965 (((-1132) $) NIL)) (-3209 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-2198 ((|#1| $ (-573)) NIL (|has| |#2| (-426 |#1|)))) (-2123 (((-698 |#1|) (-1280 $)) NIL (|has| |#2| (-426 |#1|))) (((-1280 |#1|) $) NIL (|has| |#2| (-426 |#1|))) (((-698 |#1|) (-1280 $) (-1280 $)) NIL (|has| |#2| (-375 |#1|))) (((-1280 |#1|) $ (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-1835 (($ (-1280 |#1|)) NIL (|has| |#2| (-426 |#1|))) (((-1280 |#1|) $) NIL (|has| |#2| (-426 |#1|)))) (-1664 (((-653 (-962 |#1|))) NIL (|has| |#2| (-426 |#1|))) (((-653 (-962 |#1|)) (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-4380 (($ $ $) NIL)) (-2774 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-2942 (((-871) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) NIL (|has| |#2| (-426 |#1|)))) (-2649 (((-653 (-1280 |#1|))) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-3531 (($ $ $ $) NIL)) (-2661 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-2900 (($ (-698 |#1|) $) NIL (|has| |#2| (-426 |#1|)))) (-4366 (($ $ $) NIL)) (-1469 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-4243 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-2744 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-2132 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) 24)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-616 |#1| |#2|) (-13 (-753 |#1|) (-622 |#2|) (-10 -8 (-15 -2942 ($ |#2|)) (IF (|has| |#2| (-426 |#1|)) (-6 (-426 |#1|)) |%noBranch|) (IF (|has| |#2| (-375 |#1|)) (-6 (-375 |#1|)) |%noBranch|))) (-174) (-753 |#1|)) (T -616)) +((-2942 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-616 *3 *2)) (-4 *2 (-753 *3))))) +(-13 (-753 |#1|) (-622 |#2|) (-10 -8 (-15 -2942 ($ |#2|)) (IF (|has| |#2| (-426 |#1|)) (-6 (-426 |#1|)) |%noBranch|) (IF (|has| |#2| (-375 |#1|)) (-6 (-375 |#1|)) |%noBranch|))) +((-2848 (((-112) $ $) NIL)) (-4288 (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $ (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) 39)) (-3777 (($ (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) NIL) (($) NIL)) (-3791 (((-1285) $ (-1171) (-1171)) NIL (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#1| $ (-1171) |#1|) 49)) (-3557 (($ (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455)))) (-2161 (((-3 |#1| "failed") (-1171) $) 52)) (-2579 (($) NIL T CONST)) (-2169 (($ $ (-1171)) 25)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112))))) (-2596 (((-3 |#1| "failed") (-1171) $) 53) (($ (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455))) (($ (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $) NIL (|has| $ (-6 -4455)))) (-3334 (($ (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455))) (($ (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112))))) (-2867 (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $ (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $ (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112))))) (-4188 (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $) 38)) (-2457 ((|#1| $ (-1171) |#1|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-1171)) NIL)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455))) (((-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455)))) (-1508 (($ $) 54)) (-1674 (($ (-397)) 23) (($ (-397) (-1171)) 22)) (-2031 (((-397) $) 40)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-1171) $) NIL (|has| (-1171) (-859)))) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455))) (((-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) (((-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112))))) (-3470 (((-1171) $) NIL (|has| (-1171) (-859)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-1762 (((-653 (-1171)) $) 45)) (-4201 (((-112) (-1171) $) NIL)) (-4175 (((-1171) $) 41)) (-2487 (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $) NIL)) (-3181 (($ (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $) NIL)) (-1977 (((-653 (-1171)) $) NIL)) (-2560 (((-112) (-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2914 ((|#1| $) NIL (|has| (-1171) (-859)))) (-2036 (((-3 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) "failed") (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL)) (-3112 (($ $ |#1|) NIL (|has| $ (-6 -4456)))) (-3815 (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $) NIL)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) NIL (-12 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)))) (($ $ (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) NIL (-12 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)))) (($ $ (-301 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) NIL (-12 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)))) (($ $ (-653 (-301 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))))) NIL (-12 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) 43)) (-2198 ((|#1| $ (-1171) |#1|) NIL) ((|#1| $ (-1171)) 48)) (-2428 (($ (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) NIL) (($) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) (((-780) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)))) (((-780) (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-623 (-545))))) (-2955 (($ (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) NIL)) (-2942 (((-871) $) 21)) (-1981 (($ $) 26)) (-3507 (((-112) $ $) NIL)) (-2679 (($ (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) NIL)) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20)) (-2862 (((-780) $) 47 (|has| $ (-6 -4455))))) +(((-617 |#1|) (-13 (-372 (-397) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) (-1206 (-1171) |#1|) (-10 -8 (-6 -4455) (-15 -1508 ($ $)))) (-1112)) (T -617)) +((-1508 (*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-1112))))) +(-13 (-372 (-397) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) (-1206 (-1171) |#1|) (-10 -8 (-6 -4455) (-15 -1508 ($ $)))) +((-1547 (((-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) $) 16)) (-1762 (((-653 |#2|) $) 20)) (-4201 (((-112) |#2| $) 12))) +(((-618 |#1| |#2| |#3|) (-10 -8 (-15 -1762 ((-653 |#2|) |#1|)) (-15 -4201 ((-112) |#2| |#1|)) (-15 -1547 ((-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) |#1|))) (-619 |#2| |#3|) (-1112) (-1112)) (T -618)) +NIL +(-10 -8 (-15 -1762 ((-653 |#2|) |#1|)) (-15 -4201 ((-112) |#2| |#1|)) (-15 -1547 ((-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) |#1|))) +((-2848 (((-112) $ $) 19 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (-3450 (((-112) $ (-780)) 8)) (-3557 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 46 (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 56 (|has| $ (-6 -4455)))) (-2161 (((-3 |#2| "failed") |#1| $) 62)) (-2579 (($) 7 T CONST)) (-2685 (($ $) 59 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455))))) (-2596 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 48 (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 47 (|has| $ (-6 -4455))) (((-3 |#2| "failed") |#1| $) 63)) (-3334 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 55 (|has| $ (-6 -4455)))) (-2867 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 57 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455)))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 54 (|has| $ (-6 -4455))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 53 (|has| $ (-6 -4455)))) (-1863 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 31 (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (-1762 (((-653 |#1|) $) 64)) (-4201 (((-112) |#1| $) 65)) (-2487 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 40)) (-3181 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 41)) (-3965 (((-1132) $) 21 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (-2036 (((-3 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 52)) (-3815 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 42)) (-1575 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) 27 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 26 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 25 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 24 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2428 (($) 50) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 49)) (-3974 (((-780) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 32 (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-1835 (((-545) $) 60 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-623 (-545))))) (-2955 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 51)) (-2942 (((-871) $) 18 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (-2679 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 43)) (-1646 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-619 |#1| |#2|) (-141) (-1112) (-1112)) (T -619)) +((-4201 (*1 *2 *3 *1) (-12 (-4 *1 (-619 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-5 *2 (-112)))) (-1762 (*1 *2 *1) (-12 (-4 *1 (-619 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-5 *2 (-653 *3)))) (-2596 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-619 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1112)))) (-2161 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-619 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1112))))) +(-13 (-231 (-2 (|:| -3692 |t#1|) (|:| -1907 |t#2|))) (-10 -8 (-15 -4201 ((-112) |t#1| $)) (-15 -1762 ((-653 |t#1|) $)) (-15 -2596 ((-3 |t#2| "failed") |t#1| $)) (-15 -2161 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T) ((-102) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) ((-622 (-871)) -2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-622 (-871)))) ((-152 #0#) . T) ((-623 (-545)) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-623 (-545))) ((-231 #0#) . T) ((-240 #0#) . T) ((-316 #0#) -12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))) ((-498 #0#) . T) ((-523 #0# #0#) -12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))) ((-1112) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) ((-1230) . T)) +((-3411 (((-621 |#2|) |#1|) 17)) (-2672 (((-3 |#1| "failed") (-621 |#2|)) 21))) +(((-620 |#1| |#2|) (-10 -7 (-15 -3411 ((-621 |#2|) |#1|)) (-15 -2672 ((-3 |#1| "failed") (-621 |#2|)))) (-1112) (-1112)) (T -620)) +((-2672 (*1 *2 *3) (|partial| -12 (-5 *3 (-621 *4)) (-4 *4 (-1112)) (-4 *2 (-1112)) (-5 *1 (-620 *2 *4)))) (-3411 (*1 *2 *3) (-12 (-5 *2 (-621 *4)) (-5 *1 (-620 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112))))) +(-10 -7 (-15 -3411 ((-621 |#2|) |#1|)) (-15 -2672 ((-3 |#1| "failed") (-621 |#2|)))) +((-2848 (((-112) $ $) NIL)) (-1371 (((-3 (-1189) "failed") $) 46)) (-4239 (((-1285) $ (-780)) 22)) (-1440 (((-780) $) 20)) (-4173 (((-115) $) 9)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-1774 (($ (-115) (-653 |#1|) (-780)) 32) (($ (-1189)) 33)) (-1667 (((-112) $ (-115)) 15) (((-112) $ (-1189)) 13)) (-1839 (((-780) $) 17)) (-3965 (((-1132) $) NIL)) (-1835 (((-902 (-573)) $) 95 (|has| |#1| (-623 (-902 (-573))))) (((-902 (-387)) $) 102 (|has| |#1| (-623 (-902 (-387))))) (((-545) $) 88 (|has| |#1| (-623 (-545))))) (-2942 (((-871) $) 72)) (-3507 (((-112) $ $) NIL)) (-3607 (((-653 |#1|) $) 19)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 51)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 53))) +(((-621 |#1|) (-13 (-133) (-859) (-894 |#1|) (-10 -8 (-15 -4173 ((-115) $)) (-15 -3607 ((-653 |#1|) $)) (-15 -1839 ((-780) $)) (-15 -1774 ($ (-115) (-653 |#1|) (-780))) (-15 -1774 ($ (-1189))) (-15 -1371 ((-3 (-1189) "failed") $)) (-15 -1667 ((-112) $ (-115))) (-15 -1667 ((-112) $ (-1189))) (IF (|has| |#1| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|))) (-1112)) (T -621)) +((-4173 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-621 *3)) (-4 *3 (-1112)))) (-3607 (*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-621 *3)) (-4 *3 (-1112)))) (-1839 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-621 *3)) (-4 *3 (-1112)))) (-1774 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-653 *5)) (-5 *4 (-780)) (-4 *5 (-1112)) (-5 *1 (-621 *5)))) (-1774 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-621 *3)) (-4 *3 (-1112)))) (-1371 (*1 *2 *1) (|partial| -12 (-5 *2 (-1189)) (-5 *1 (-621 *3)) (-4 *3 (-1112)))) (-1667 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-621 *4)) (-4 *4 (-1112)))) (-1667 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-112)) (-5 *1 (-621 *4)) (-4 *4 (-1112))))) +(-13 (-133) (-859) (-894 |#1|) (-10 -8 (-15 -4173 ((-115) $)) (-15 -3607 ((-653 |#1|) $)) (-15 -1839 ((-780) $)) (-15 -1774 ($ (-115) (-653 |#1|) (-780))) (-15 -1774 ($ (-1189))) (-15 -1371 ((-3 (-1189) "failed") $)) (-15 -1667 ((-112) $ (-115))) (-15 -1667 ((-112) $ (-1189))) (IF (|has| |#1| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|))) +((-2942 ((|#1| $) 6))) +(((-622 |#1|) (-141) (-1230)) (T -622)) +((-2942 (*1 *2 *1) (-12 (-4 *1 (-622 *2)) (-4 *2 (-1230))))) +(-13 (-10 -8 (-15 -2942 (|t#1| $)))) +((-1835 ((|#1| $) 6))) +(((-623 |#1|) (-141) (-1230)) (T -623)) +((-1835 (*1 *2 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1230))))) +(-13 (-10 -8 (-15 -1835 (|t#1| $)))) +((-2524 (((-3 (-1185 (-416 |#2|)) "failed") (-416 |#2|) (-416 |#2|) (-416 |#2|) (-1 (-427 |#2|) |#2|)) 15) (((-3 (-1185 (-416 |#2|)) "failed") (-416 |#2|) (-416 |#2|) (-416 |#2|)) 16))) +(((-624 |#1| |#2|) (-10 -7 (-15 -2524 ((-3 (-1185 (-416 |#2|)) "failed") (-416 |#2|) (-416 |#2|) (-416 |#2|))) (-15 -2524 ((-3 (-1185 (-416 |#2|)) "failed") (-416 |#2|) (-416 |#2|) (-416 |#2|) (-1 (-427 |#2|) |#2|)))) (-13 (-148) (-27) (-1050 (-573)) (-1050 (-416 (-573)))) (-1256 |#1|)) (T -624)) +((-2524 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-427 *6) *6)) (-4 *6 (-1256 *5)) (-4 *5 (-13 (-148) (-27) (-1050 (-573)) (-1050 (-416 (-573))))) (-5 *2 (-1185 (-416 *6))) (-5 *1 (-624 *5 *6)) (-5 *3 (-416 *6)))) (-2524 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1050 (-573)) (-1050 (-416 (-573))))) (-4 *5 (-1256 *4)) (-5 *2 (-1185 (-416 *5))) (-5 *1 (-624 *4 *5)) (-5 *3 (-416 *5))))) +(-10 -7 (-15 -2524 ((-3 (-1185 (-416 |#2|)) "failed") (-416 |#2|) (-416 |#2|) (-416 |#2|))) (-15 -2524 ((-3 (-1185 (-416 |#2|)) "failed") (-416 |#2|) (-416 |#2|) (-416 |#2|) (-1 (-427 |#2|) |#2|)))) +((-2942 (($ |#1|) 6))) +(((-625 |#1|) (-141) (-1230)) (T -625)) +((-2942 (*1 *1 *2) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1230))))) +(-13 (-10 -8 (-15 -2942 ($ |t#1|)))) +((-2848 (((-112) $ $) NIL)) (-2032 (($) 14 T CONST)) (-1561 (($) 15 T CONST)) (-2097 (($ $ $) 29)) (-2075 (($ $) 27)) (-3180 (((-1171) $) NIL)) (-2546 (($ $ $) 30)) (-3965 (((-1132) $) NIL)) (-2883 (($) 11 T CONST)) (-3391 (($ $ $) 31)) (-2942 (((-871) $) 35)) (-2121 (((-112) $ (|[\|\|]| -2883)) 24) (((-112) $ (|[\|\|]| -2032)) 26) (((-112) $ (|[\|\|]| -1561)) 21)) (-3507 (((-112) $ $) NIL)) (-2086 (($ $ $) 28)) (-2981 (((-112) $ $) 18))) +(((-626) (-13 (-979) (-10 -8 (-15 -2032 ($) -1705) (-15 -2121 ((-112) $ (|[\|\|]| -2883))) (-15 -2121 ((-112) $ (|[\|\|]| -2032))) (-15 -2121 ((-112) $ (|[\|\|]| -1561)))))) (T -626)) +((-2032 (*1 *1) (-5 *1 (-626))) (-2121 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2883)) (-5 *2 (-112)) (-5 *1 (-626)))) (-2121 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2032)) (-5 *2 (-112)) (-5 *1 (-626)))) (-2121 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1561)) (-5 *2 (-112)) (-5 *1 (-626))))) +(-13 (-979) (-10 -8 (-15 -2032 ($) -1705) (-15 -2121 ((-112) $ (|[\|\|]| -2883))) (-15 -2121 ((-112) $ (|[\|\|]| -2032))) (-15 -2121 ((-112) $ (|[\|\|]| -1561))))) +((-1835 (($ |#1|) 6))) +(((-627 |#1|) (-141) (-1230)) (T -627)) +((-1835 (*1 *1 *2) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1230))))) +(-13 (-10 -8 (-15 -1835 ($ |t#1|)))) +((-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#2|) 10))) +(((-628 |#1| |#2|) (-10 -8 (-15 -2942 (|#1| |#2|)) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) (-629 |#2|) (-1061)) (T -628)) +NIL +(-10 -8 (-15 -2942 (|#1| |#2|)) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 41)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ |#1| $) 42))) +(((-629 |#1|) (-141) (-1061)) (T -629)) +((-2942 (*1 *1 *2) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1061))))) +(-13 (-1061) (-657 |t#1|) (-10 -8 (-15 -2942 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-573)) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-735) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1983 (((-573) $) NIL (|has| |#1| (-857)))) (-2579 (($) NIL T CONST)) (-2232 (((-3 $ "failed") $) NIL)) (-4152 (((-112) $) NIL (|has| |#1| (-857)))) (-1959 (((-112) $) NIL)) (-2965 ((|#1| $) 13)) (-3339 (((-112) $) NIL (|has| |#1| (-857)))) (-3659 (($ $ $) NIL (|has| |#1| (-857)))) (-3751 (($ $ $) NIL (|has| |#1| (-857)))) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2975 ((|#3| $) 15)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#2|) NIL)) (-1545 (((-780)) 20 T CONST)) (-3507 (((-112) $ $) NIL)) (-1660 (($ $) NIL (|has| |#1| (-857)))) (-2132 (($) NIL T CONST)) (-2144 (($) 12 T CONST)) (-3040 (((-112) $ $) NIL (|has| |#1| (-857)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-857)))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (|has| |#1| (-857)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-857)))) (-3103 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-630 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-857)) (-6 (-857)) |%noBranch|) (-15 -3103 ($ $ |#3|)) (-15 -3103 ($ |#1| |#3|)) (-15 -2965 (|#1| $)) (-15 -2975 (|#3| $)))) (-38 |#2|) (-174) (|SubsetCategory| (-735) |#2|)) (T -630)) +((-3103 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-630 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-735) *4)))) (-3103 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-630 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-735) *4)))) (-2965 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-630 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-735) *3)))) (-2975 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-735) *4)) (-5 *1 (-630 *3 *4 *2)) (-4 *3 (-38 *4))))) +(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-857)) (-6 (-857)) |%noBranch|) (-15 -3103 ($ $ |#3|)) (-15 -3103 ($ |#1| |#3|)) (-15 -2965 (|#1| $)) (-15 -2975 (|#3| $)))) +((-1676 ((|#2| |#2| (-1189) (-1189)) 16))) +(((-631 |#1| |#2|) (-10 -7 (-15 -1676 (|#2| |#2| (-1189) (-1189)))) (-13 (-314) (-148) (-1050 (-573)) (-648 (-573))) (-13 (-1215) (-969) (-29 |#1|))) (T -631)) +((-1676 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-631 *4 *2)) (-4 *2 (-13 (-1215) (-969) (-29 *4)))))) +(-10 -7 (-15 -1676 (|#2| |#2| (-1189) (-1189)))) +((-2848 (((-112) $ $) 64)) (-1748 (((-112) $) 58)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-3123 ((|#1| $) 55)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2800 (((-112) $ $) NIL (|has| |#1| (-371)))) (-4016 (((-2 (|:| -2868 $) (|:| -3954 (-416 |#2|))) (-416 |#2|)) 111 (|has| |#1| (-371)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-2205 (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2784 (($ $ $) NIL (|has| |#1| (-371)))) (-1391 (($ $) 27)) (-2232 (((-3 $ "failed") $) 88)) (-2796 (($ $ $) NIL (|has| |#1| (-371)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#1| (-371)))) (-2534 (((-573) $) 22)) (-1959 (((-112) $) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-3676 (((-112) $) 40)) (-4334 (($ |#1| (-573)) 24)) (-1369 ((|#1| $) 57)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-371)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) 101 (|has| |#1| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2837 (((-3 $ "failed") $ $) 93)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-2163 (((-780) $) 115 (|has| |#1| (-371)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 114 (|has| |#1| (-371)))) (-3904 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189)) NIL (|has| |#2| (-910 (-1189)))) (($ $) NIL (|has| |#2| (-238))) (($ $ (-780)) NIL (|has| |#2| (-238)))) (-2565 (((-573) $) 38)) (-1835 (((-416 |#2|) $) 47)) (-2942 (((-871) $) 69) (($ (-573)) 35) (($ $) NIL) (($ (-416 (-573))) NIL (|has| |#1| (-1050 (-416 (-573))))) (($ |#1|) 34) (($ |#2|) 25)) (-4317 ((|#1| $ (-573)) 72)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-2132 (($) 9 T CONST)) (-2144 (($) 14 T CONST)) (-3609 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189)) NIL (|has| |#2| (-910 (-1189)))) (($ $) NIL (|has| |#2| (-238))) (($ $ (-780)) NIL (|has| |#2| (-238)))) (-2981 (((-112) $ $) 21)) (-3093 (($ $) 51) (($ $ $) NIL)) (-3077 (($ $ $) 90)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 29) (($ $ $) 49))) +(((-632 |#1| |#2|) (-13 (-233 |#2|) (-565) (-623 (-416 |#2|)) (-420 |#1|) (-1050 |#2|) (-10 -8 (-15 -3676 ((-112) $)) (-15 -2565 ((-573) $)) (-15 -2534 ((-573) $)) (-15 -1391 ($ $)) (-15 -1369 (|#1| $)) (-15 -3123 (|#1| $)) (-15 -4317 (|#1| $ (-573))) (-15 -4334 ($ |#1| (-573))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-371)) (PROGN (-6 (-314)) (-15 -4016 ((-2 (|:| -2868 $) (|:| -3954 (-416 |#2|))) (-416 |#2|)))) |%noBranch|))) (-565) (-1256 |#1|)) (T -632)) +((-3676 (*1 *2 *1) (-12 (-4 *3 (-565)) (-5 *2 (-112)) (-5 *1 (-632 *3 *4)) (-4 *4 (-1256 *3)))) (-2565 (*1 *2 *1) (-12 (-4 *3 (-565)) (-5 *2 (-573)) (-5 *1 (-632 *3 *4)) (-4 *4 (-1256 *3)))) (-2534 (*1 *2 *1) (-12 (-4 *3 (-565)) (-5 *2 (-573)) (-5 *1 (-632 *3 *4)) (-4 *4 (-1256 *3)))) (-1391 (*1 *1 *1) (-12 (-4 *2 (-565)) (-5 *1 (-632 *2 *3)) (-4 *3 (-1256 *2)))) (-1369 (*1 *2 *1) (-12 (-4 *2 (-565)) (-5 *1 (-632 *2 *3)) (-4 *3 (-1256 *2)))) (-3123 (*1 *2 *1) (-12 (-4 *2 (-565)) (-5 *1 (-632 *2 *3)) (-4 *3 (-1256 *2)))) (-4317 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-4 *2 (-565)) (-5 *1 (-632 *2 *4)) (-4 *4 (-1256 *2)))) (-4334 (*1 *1 *2 *3) (-12 (-5 *3 (-573)) (-4 *2 (-565)) (-5 *1 (-632 *2 *4)) (-4 *4 (-1256 *2)))) (-4016 (*1 *2 *3) (-12 (-4 *4 (-371)) (-4 *4 (-565)) (-4 *5 (-1256 *4)) (-5 *2 (-2 (|:| -2868 (-632 *4 *5)) (|:| -3954 (-416 *5)))) (-5 *1 (-632 *4 *5)) (-5 *3 (-416 *5))))) +(-13 (-233 |#2|) (-565) (-623 (-416 |#2|)) (-420 |#1|) (-1050 |#2|) (-10 -8 (-15 -3676 ((-112) $)) (-15 -2565 ((-573) $)) (-15 -2534 ((-573) $)) (-15 -1391 ($ $)) (-15 -1369 (|#1| $)) (-15 -3123 (|#1| $)) (-15 -4317 (|#1| $ (-573))) (-15 -4334 ($ |#1| (-573))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-371)) (PROGN (-6 (-314)) (-15 -4016 ((-2 (|:| -2868 $) (|:| -3954 (-416 |#2|))) (-416 |#2|)))) |%noBranch|))) +((-3527 (((-653 |#6|) (-653 |#4|) (-112)) 54)) (-2017 ((|#6| |#6|) 48))) +(((-633 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2017 (|#6| |#6|)) (-15 -3527 ((-653 |#6|) (-653 |#4|) (-112)))) (-461) (-802) (-859) (-1077 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3| |#4|) (-1121 |#1| |#2| |#3| |#4|)) (T -633)) +((-3527 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-653 *10)) (-5 *1 (-633 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1083 *5 *6 *7 *8)) (-4 *10 (-1121 *5 *6 *7 *8)))) (-2017 (*1 *2 *2) (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *1 (-633 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1083 *3 *4 *5 *6)) (-4 *2 (-1121 *3 *4 *5 *6))))) +(-10 -7 (-15 -2017 (|#6| |#6|)) (-15 -3527 ((-653 |#6|) (-653 |#4|) (-112)))) +((-2996 (((-112) |#3| (-780) (-653 |#3|)) 29)) (-2038 (((-3 (-2 (|:| |polfac| (-653 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-653 (-1185 |#3|)))) "failed") |#3| (-653 (-1185 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1687 (-653 (-2 (|:| |irr| |#4|) (|:| -3287 (-573)))))) (-653 |#3|) (-653 |#1|) (-653 |#3|)) 69))) +(((-634 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2996 ((-112) |#3| (-780) (-653 |#3|))) (-15 -2038 ((-3 (-2 (|:| |polfac| (-653 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-653 (-1185 |#3|)))) "failed") |#3| (-653 (-1185 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1687 (-653 (-2 (|:| |irr| |#4|) (|:| -3287 (-573)))))) (-653 |#3|) (-653 |#1|) (-653 |#3|)))) (-859) (-802) (-314) (-959 |#3| |#2| |#1|)) (T -634)) +((-2038 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1687 (-653 (-2 (|:| |irr| *10) (|:| -3287 (-573))))))) (-5 *6 (-653 *3)) (-5 *7 (-653 *8)) (-4 *8 (-859)) (-4 *3 (-314)) (-4 *10 (-959 *3 *9 *8)) (-4 *9 (-802)) (-5 *2 (-2 (|:| |polfac| (-653 *10)) (|:| |correct| *3) (|:| |corrfact| (-653 (-1185 *3))))) (-5 *1 (-634 *8 *9 *3 *10)) (-5 *4 (-653 (-1185 *3))))) (-2996 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-780)) (-5 *5 (-653 *3)) (-4 *3 (-314)) (-4 *6 (-859)) (-4 *7 (-802)) (-5 *2 (-112)) (-5 *1 (-634 *6 *7 *3 *8)) (-4 *8 (-959 *3 *7 *6))))) +(-10 -7 (-15 -2996 ((-112) |#3| (-780) (-653 |#3|))) (-15 -2038 ((-3 (-2 (|:| |polfac| (-653 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-653 (-1185 |#3|)))) "failed") |#3| (-653 (-1185 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1687 (-653 (-2 (|:| |irr| |#4|) (|:| -3287 (-573)))))) (-653 |#3|) (-653 |#1|) (-653 |#3|)))) +((-2848 (((-112) $ $) NIL)) (-1808 (((-1147) $) 11)) (-1795 (((-1147) $) 9)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 17) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-635) (-13 (-1095) (-10 -8 (-15 -1795 ((-1147) $)) (-15 -1808 ((-1147) $))))) (T -635)) +((-1795 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-635)))) (-1808 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-635))))) +(-13 (-1095) (-10 -8 (-15 -1795 ((-1147) $)) (-15 -1808 ((-1147) $)))) +((-2848 (((-112) $ $) NIL)) (-1653 (((-653 |#1|) $) NIL)) (-2579 (($) NIL T CONST)) (-2232 (((-3 $ "failed") $) NIL)) (-1959 (((-112) $) NIL)) (-4386 (($ $) 77)) (-3118 (((-673 |#1| |#2|) $) 60)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 81)) (-4278 (((-653 (-301 |#2|)) $ $) 42)) (-3965 (((-1132) $) NIL)) (-1608 (($ (-673 |#1| |#2|)) 56)) (-3204 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-2942 (((-871) $) 66) (((-1295 |#1| |#2|) $) NIL) (((-1300 |#1| |#2|) $) 74)) (-3507 (((-112) $ $) NIL)) (-2144 (($) 61 T CONST)) (-3328 (((-653 (-2 (|:| |k| (-681 |#1|)) (|:| |c| |#2|))) $) 41)) (-3271 (((-653 (-673 |#1| |#2|)) (-653 |#1|)) 73)) (-3256 (((-653 (-2 (|:| |k| (-903 |#1|)) (|:| |c| |#2|))) $) 46)) (-2981 (((-112) $ $) 62)) (-3103 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ $ $) 52))) +(((-636 |#1| |#2| |#3|) (-13 (-482) (-10 -8 (-15 -1608 ($ (-673 |#1| |#2|))) (-15 -3118 ((-673 |#1| |#2|) $)) (-15 -3256 ((-653 (-2 (|:| |k| (-903 |#1|)) (|:| |c| |#2|))) $)) (-15 -2942 ((-1295 |#1| |#2|) $)) (-15 -2942 ((-1300 |#1| |#2|) $)) (-15 -4386 ($ $)) (-15 -1653 ((-653 |#1|) $)) (-15 -3271 ((-653 (-673 |#1| |#2|)) (-653 |#1|))) (-15 -3328 ((-653 (-2 (|:| |k| (-681 |#1|)) (|:| |c| |#2|))) $)) (-15 -4278 ((-653 (-301 |#2|)) $ $)))) (-859) (-13 (-174) (-726 (-416 (-573)))) (-931)) (T -636)) +((-1608 (*1 *1 *2) (-12 (-5 *2 (-673 *3 *4)) (-4 *3 (-859)) (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-5 *1 (-636 *3 *4 *5)) (-14 *5 (-931)))) (-3118 (*1 *2 *1) (-12 (-5 *2 (-673 *3 *4)) (-5 *1 (-636 *3 *4 *5)) (-4 *3 (-859)) (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-14 *5 (-931)))) (-3256 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| |k| (-903 *3)) (|:| |c| *4)))) (-5 *1 (-636 *3 *4 *5)) (-4 *3 (-859)) (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-14 *5 (-931)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-1295 *3 *4)) (-5 *1 (-636 *3 *4 *5)) (-4 *3 (-859)) (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-14 *5 (-931)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-1300 *3 *4)) (-5 *1 (-636 *3 *4 *5)) (-4 *3 (-859)) (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-14 *5 (-931)))) (-4386 (*1 *1 *1) (-12 (-5 *1 (-636 *2 *3 *4)) (-4 *2 (-859)) (-4 *3 (-13 (-174) (-726 (-416 (-573))))) (-14 *4 (-931)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-636 *3 *4 *5)) (-4 *3 (-859)) (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-14 *5 (-931)))) (-3271 (*1 *2 *3) (-12 (-5 *3 (-653 *4)) (-4 *4 (-859)) (-5 *2 (-653 (-673 *4 *5))) (-5 *1 (-636 *4 *5 *6)) (-4 *5 (-13 (-174) (-726 (-416 (-573))))) (-14 *6 (-931)))) (-3328 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| |k| (-681 *3)) (|:| |c| *4)))) (-5 *1 (-636 *3 *4 *5)) (-4 *3 (-859)) (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-14 *5 (-931)))) (-4278 (*1 *2 *1 *1) (-12 (-5 *2 (-653 (-301 *4))) (-5 *1 (-636 *3 *4 *5)) (-4 *3 (-859)) (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-14 *5 (-931))))) +(-13 (-482) (-10 -8 (-15 -1608 ($ (-673 |#1| |#2|))) (-15 -3118 ((-673 |#1| |#2|) $)) (-15 -3256 ((-653 (-2 (|:| |k| (-903 |#1|)) (|:| |c| |#2|))) $)) (-15 -2942 ((-1295 |#1| |#2|) $)) (-15 -2942 ((-1300 |#1| |#2|) $)) (-15 -4386 ($ $)) (-15 -1653 ((-653 |#1|) $)) (-15 -3271 ((-653 (-673 |#1| |#2|)) (-653 |#1|))) (-15 -3328 ((-653 (-2 (|:| |k| (-681 |#1|)) (|:| |c| |#2|))) $)) (-15 -4278 ((-653 (-301 |#2|)) $ $)))) +((-3527 (((-653 (-1158 |#1| (-540 (-873 |#2|)) (-873 |#2|) (-789 |#1| (-873 |#2|)))) (-653 (-789 |#1| (-873 |#2|))) (-112)) 103) (((-653 (-1058 |#1| |#2|)) (-653 (-789 |#1| (-873 |#2|))) (-112)) 77)) (-3483 (((-112) (-653 (-789 |#1| (-873 |#2|)))) 26)) (-3474 (((-653 (-1158 |#1| (-540 (-873 |#2|)) (-873 |#2|) (-789 |#1| (-873 |#2|)))) (-653 (-789 |#1| (-873 |#2|))) (-112)) 102)) (-3783 (((-653 (-1058 |#1| |#2|)) (-653 (-789 |#1| (-873 |#2|))) (-112)) 76)) (-3207 (((-653 (-789 |#1| (-873 |#2|))) (-653 (-789 |#1| (-873 |#2|)))) 30)) (-1890 (((-3 (-653 (-789 |#1| (-873 |#2|))) "failed") (-653 (-789 |#1| (-873 |#2|)))) 29))) +(((-637 |#1| |#2|) (-10 -7 (-15 -3483 ((-112) (-653 (-789 |#1| (-873 |#2|))))) (-15 -1890 ((-3 (-653 (-789 |#1| (-873 |#2|))) "failed") (-653 (-789 |#1| (-873 |#2|))))) (-15 -3207 ((-653 (-789 |#1| (-873 |#2|))) (-653 (-789 |#1| (-873 |#2|))))) (-15 -3783 ((-653 (-1058 |#1| |#2|)) (-653 (-789 |#1| (-873 |#2|))) (-112))) (-15 -3474 ((-653 (-1158 |#1| (-540 (-873 |#2|)) (-873 |#2|) (-789 |#1| (-873 |#2|)))) (-653 (-789 |#1| (-873 |#2|))) (-112))) (-15 -3527 ((-653 (-1058 |#1| |#2|)) (-653 (-789 |#1| (-873 |#2|))) (-112))) (-15 -3527 ((-653 (-1158 |#1| (-540 (-873 |#2|)) (-873 |#2|) (-789 |#1| (-873 |#2|)))) (-653 (-789 |#1| (-873 |#2|))) (-112)))) (-461) (-653 (-1189))) (T -637)) +((-3527 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-789 *5 (-873 *6)))) (-5 *4 (-112)) (-4 *5 (-461)) (-14 *6 (-653 (-1189))) (-5 *2 (-653 (-1158 *5 (-540 (-873 *6)) (-873 *6) (-789 *5 (-873 *6))))) (-5 *1 (-637 *5 *6)))) (-3527 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-789 *5 (-873 *6)))) (-5 *4 (-112)) (-4 *5 (-461)) (-14 *6 (-653 (-1189))) (-5 *2 (-653 (-1058 *5 *6))) (-5 *1 (-637 *5 *6)))) (-3474 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-789 *5 (-873 *6)))) (-5 *4 (-112)) (-4 *5 (-461)) (-14 *6 (-653 (-1189))) (-5 *2 (-653 (-1158 *5 (-540 (-873 *6)) (-873 *6) (-789 *5 (-873 *6))))) (-5 *1 (-637 *5 *6)))) (-3783 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-789 *5 (-873 *6)))) (-5 *4 (-112)) (-4 *5 (-461)) (-14 *6 (-653 (-1189))) (-5 *2 (-653 (-1058 *5 *6))) (-5 *1 (-637 *5 *6)))) (-3207 (*1 *2 *2) (-12 (-5 *2 (-653 (-789 *3 (-873 *4)))) (-4 *3 (-461)) (-14 *4 (-653 (-1189))) (-5 *1 (-637 *3 *4)))) (-1890 (*1 *2 *2) (|partial| -12 (-5 *2 (-653 (-789 *3 (-873 *4)))) (-4 *3 (-461)) (-14 *4 (-653 (-1189))) (-5 *1 (-637 *3 *4)))) (-3483 (*1 *2 *3) (-12 (-5 *3 (-653 (-789 *4 (-873 *5)))) (-4 *4 (-461)) (-14 *5 (-653 (-1189))) (-5 *2 (-112)) (-5 *1 (-637 *4 *5))))) +(-10 -7 (-15 -3483 ((-112) (-653 (-789 |#1| (-873 |#2|))))) (-15 -1890 ((-3 (-653 (-789 |#1| (-873 |#2|))) "failed") (-653 (-789 |#1| (-873 |#2|))))) (-15 -3207 ((-653 (-789 |#1| (-873 |#2|))) (-653 (-789 |#1| (-873 |#2|))))) (-15 -3783 ((-653 (-1058 |#1| |#2|)) (-653 (-789 |#1| (-873 |#2|))) (-112))) (-15 -3474 ((-653 (-1158 |#1| (-540 (-873 |#2|)) (-873 |#2|) (-789 |#1| (-873 |#2|)))) (-653 (-789 |#1| (-873 |#2|))) (-112))) (-15 -3527 ((-653 (-1058 |#1| |#2|)) (-653 (-789 |#1| (-873 |#2|))) (-112))) (-15 -3527 ((-653 (-1158 |#1| (-540 (-873 |#2|)) (-873 |#2|) (-789 |#1| (-873 |#2|)))) (-653 (-789 |#1| (-873 |#2|))) (-112)))) +((-2363 (($ $) 38)) (-2246 (($ $) 21)) (-2342 (($ $) 37)) (-2225 (($ $) 22)) (-2388 (($ $) 36)) (-2266 (($ $) 23)) (-2999 (($) 48)) (-3118 (($ $) 45)) (-4078 (($ $) 17)) (-3376 (($ $ (-1104 $)) 7) (($ $ (-1189)) 6)) (-1608 (($ $) 46)) (-4068 (($ $) 15)) (-2213 (($ $) 16)) (-2401 (($ $) 35)) (-2274 (($ $) 24)) (-2374 (($ $) 34)) (-2255 (($ $) 25)) (-2352 (($ $) 33)) (-2236 (($ $) 26)) (-2439 (($ $) 44)) (-2304 (($ $) 32)) (-2413 (($ $) 43)) (-2286 (($ $) 31)) (-2464 (($ $) 42)) (-2324 (($ $) 30)) (-2520 (($ $) 41)) (-2333 (($ $) 29)) (-2452 (($ $) 40)) (-2314 (($ $) 28)) (-2426 (($ $) 39)) (-2296 (($ $) 27)) (-2228 (($ $) 19)) (-4076 (($ $) 20)) (-2050 (($ $) 18)) (** (($ $ $) 47))) +(((-638) (-141)) (T -638)) +((-4076 (*1 *1 *1) (-4 *1 (-638))) (-2228 (*1 *1 *1) (-4 *1 (-638))) (-2050 (*1 *1 *1) (-4 *1 (-638))) (-4078 (*1 *1 *1) (-4 *1 (-638))) (-2213 (*1 *1 *1) (-4 *1 (-638))) (-4068 (*1 *1 *1) (-4 *1 (-638)))) +(-13 (-969) (-1215) (-10 -8 (-15 -4076 ($ $)) (-15 -2228 ($ $)) (-15 -2050 ($ $)) (-15 -4078 ($ $)) (-15 -2213 ($ $)) (-15 -4068 ($ $)))) +(((-35) . T) ((-95) . T) ((-291) . T) ((-502) . T) ((-969) . T) ((-1215) . T) ((-1218) . T)) +((-4173 (((-115) (-115)) 88)) (-4078 ((|#2| |#2|) 28)) (-3376 ((|#2| |#2| (-1104 |#2|)) 84) ((|#2| |#2| (-1189)) 50)) (-4068 ((|#2| |#2|) 27)) (-2213 ((|#2| |#2|) 29)) (-3109 (((-112) (-115)) 33)) (-2228 ((|#2| |#2|) 24)) (-4076 ((|#2| |#2|) 26)) (-2050 ((|#2| |#2|) 25))) +(((-639 |#1| |#2|) (-10 -7 (-15 -3109 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 -4076 (|#2| |#2|)) (-15 -2228 (|#2| |#2|)) (-15 -2050 (|#2| |#2|)) (-15 -4078 (|#2| |#2|)) (-15 -4068 (|#2| |#2|)) (-15 -2213 (|#2| |#2|)) (-15 -3376 (|#2| |#2| (-1189))) (-15 -3376 (|#2| |#2| (-1104 |#2|)))) (-565) (-13 (-439 |#1|) (-1014) (-1215))) (T -639)) +((-3376 (*1 *2 *2 *3) (-12 (-5 *3 (-1104 *2)) (-4 *2 (-13 (-439 *4) (-1014) (-1215))) (-4 *4 (-565)) (-5 *1 (-639 *4 *2)))) (-3376 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-565)) (-5 *1 (-639 *4 *2)) (-4 *2 (-13 (-439 *4) (-1014) (-1215))))) (-2213 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-639 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014) (-1215))))) (-4068 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-639 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014) (-1215))))) (-4078 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-639 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014) (-1215))))) (-2050 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-639 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014) (-1215))))) (-2228 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-639 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014) (-1215))))) (-4076 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-639 *3 *2)) (-4 *2 (-13 (-439 *3) (-1014) (-1215))))) (-4173 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-565)) (-5 *1 (-639 *3 *4)) (-4 *4 (-13 (-439 *3) (-1014) (-1215))))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-565)) (-5 *2 (-112)) (-5 *1 (-639 *4 *5)) (-4 *5 (-13 (-439 *4) (-1014) (-1215)))))) +(-10 -7 (-15 -3109 ((-112) (-115))) (-15 -4173 ((-115) (-115))) (-15 -4076 (|#2| |#2|)) (-15 -2228 (|#2| |#2|)) (-15 -2050 (|#2| |#2|)) (-15 -4078 (|#2| |#2|)) (-15 -4068 (|#2| |#2|)) (-15 -2213 (|#2| |#2|)) (-15 -3376 (|#2| |#2| (-1189))) (-15 -3376 (|#2| |#2| (-1104 |#2|)))) +((-2980 (((-490 |#1| |#2|) (-252 |#1| |#2|)) 63)) (-1905 (((-653 (-252 |#1| |#2|)) (-653 (-490 |#1| |#2|))) 89)) (-3719 (((-490 |#1| |#2|) (-653 (-490 |#1| |#2|)) (-873 |#1|)) 91) (((-490 |#1| |#2|) (-653 (-490 |#1| |#2|)) (-653 (-490 |#1| |#2|)) (-873 |#1|)) 90)) (-3226 (((-2 (|:| |gblist| (-653 (-252 |#1| |#2|))) (|:| |gvlist| (-653 (-573)))) (-653 (-490 |#1| |#2|))) 134)) (-2229 (((-653 (-490 |#1| |#2|)) (-873 |#1|) (-653 (-490 |#1| |#2|)) (-653 (-490 |#1| |#2|))) 104)) (-1329 (((-2 (|:| |glbase| (-653 (-252 |#1| |#2|))) (|:| |glval| (-653 (-573)))) (-653 (-252 |#1| |#2|))) 145)) (-3667 (((-1280 |#2|) (-490 |#1| |#2|) (-653 (-490 |#1| |#2|))) 68)) (-2896 (((-653 (-490 |#1| |#2|)) (-653 (-490 |#1| |#2|))) 47)) (-3195 (((-252 |#1| |#2|) (-252 |#1| |#2|) (-653 (-252 |#1| |#2|))) 60)) (-2901 (((-252 |#1| |#2|) (-653 |#2|) (-252 |#1| |#2|) (-653 (-252 |#1| |#2|))) 112))) +(((-640 |#1| |#2|) (-10 -7 (-15 -3226 ((-2 (|:| |gblist| (-653 (-252 |#1| |#2|))) (|:| |gvlist| (-653 (-573)))) (-653 (-490 |#1| |#2|)))) (-15 -1329 ((-2 (|:| |glbase| (-653 (-252 |#1| |#2|))) (|:| |glval| (-653 (-573)))) (-653 (-252 |#1| |#2|)))) (-15 -1905 ((-653 (-252 |#1| |#2|)) (-653 (-490 |#1| |#2|)))) (-15 -3719 ((-490 |#1| |#2|) (-653 (-490 |#1| |#2|)) (-653 (-490 |#1| |#2|)) (-873 |#1|))) (-15 -3719 ((-490 |#1| |#2|) (-653 (-490 |#1| |#2|)) (-873 |#1|))) (-15 -2896 ((-653 (-490 |#1| |#2|)) (-653 (-490 |#1| |#2|)))) (-15 -3667 ((-1280 |#2|) (-490 |#1| |#2|) (-653 (-490 |#1| |#2|)))) (-15 -2901 ((-252 |#1| |#2|) (-653 |#2|) (-252 |#1| |#2|) (-653 (-252 |#1| |#2|)))) (-15 -2229 ((-653 (-490 |#1| |#2|)) (-873 |#1|) (-653 (-490 |#1| |#2|)) (-653 (-490 |#1| |#2|)))) (-15 -3195 ((-252 |#1| |#2|) (-252 |#1| |#2|) (-653 (-252 |#1| |#2|)))) (-15 -2980 ((-490 |#1| |#2|) (-252 |#1| |#2|)))) (-653 (-1189)) (-461)) (T -640)) +((-2980 (*1 *2 *3) (-12 (-5 *3 (-252 *4 *5)) (-14 *4 (-653 (-1189))) (-4 *5 (-461)) (-5 *2 (-490 *4 *5)) (-5 *1 (-640 *4 *5)))) (-3195 (*1 *2 *2 *3) (-12 (-5 *3 (-653 (-252 *4 *5))) (-5 *2 (-252 *4 *5)) (-14 *4 (-653 (-1189))) (-4 *5 (-461)) (-5 *1 (-640 *4 *5)))) (-2229 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-653 (-490 *4 *5))) (-5 *3 (-873 *4)) (-14 *4 (-653 (-1189))) (-4 *5 (-461)) (-5 *1 (-640 *4 *5)))) (-2901 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-653 *6)) (-5 *4 (-653 (-252 *5 *6))) (-4 *6 (-461)) (-5 *2 (-252 *5 *6)) (-14 *5 (-653 (-1189))) (-5 *1 (-640 *5 *6)))) (-3667 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-490 *5 *6))) (-5 *3 (-490 *5 *6)) (-14 *5 (-653 (-1189))) (-4 *6 (-461)) (-5 *2 (-1280 *6)) (-5 *1 (-640 *5 *6)))) (-2896 (*1 *2 *2) (-12 (-5 *2 (-653 (-490 *3 *4))) (-14 *3 (-653 (-1189))) (-4 *4 (-461)) (-5 *1 (-640 *3 *4)))) (-3719 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-490 *5 *6))) (-5 *4 (-873 *5)) (-14 *5 (-653 (-1189))) (-5 *2 (-490 *5 *6)) (-5 *1 (-640 *5 *6)) (-4 *6 (-461)))) (-3719 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-653 (-490 *5 *6))) (-5 *4 (-873 *5)) (-14 *5 (-653 (-1189))) (-5 *2 (-490 *5 *6)) (-5 *1 (-640 *5 *6)) (-4 *6 (-461)))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-653 (-490 *4 *5))) (-14 *4 (-653 (-1189))) (-4 *5 (-461)) (-5 *2 (-653 (-252 *4 *5))) (-5 *1 (-640 *4 *5)))) (-1329 (*1 *2 *3) (-12 (-14 *4 (-653 (-1189))) (-4 *5 (-461)) (-5 *2 (-2 (|:| |glbase| (-653 (-252 *4 *5))) (|:| |glval| (-653 (-573))))) (-5 *1 (-640 *4 *5)) (-5 *3 (-653 (-252 *4 *5))))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-653 (-490 *4 *5))) (-14 *4 (-653 (-1189))) (-4 *5 (-461)) (-5 *2 (-2 (|:| |gblist| (-653 (-252 *4 *5))) (|:| |gvlist| (-653 (-573))))) (-5 *1 (-640 *4 *5))))) +(-10 -7 (-15 -3226 ((-2 (|:| |gblist| (-653 (-252 |#1| |#2|))) (|:| |gvlist| (-653 (-573)))) (-653 (-490 |#1| |#2|)))) (-15 -1329 ((-2 (|:| |glbase| (-653 (-252 |#1| |#2|))) (|:| |glval| (-653 (-573)))) (-653 (-252 |#1| |#2|)))) (-15 -1905 ((-653 (-252 |#1| |#2|)) (-653 (-490 |#1| |#2|)))) (-15 -3719 ((-490 |#1| |#2|) (-653 (-490 |#1| |#2|)) (-653 (-490 |#1| |#2|)) (-873 |#1|))) (-15 -3719 ((-490 |#1| |#2|) (-653 (-490 |#1| |#2|)) (-873 |#1|))) (-15 -2896 ((-653 (-490 |#1| |#2|)) (-653 (-490 |#1| |#2|)))) (-15 -3667 ((-1280 |#2|) (-490 |#1| |#2|) (-653 (-490 |#1| |#2|)))) (-15 -2901 ((-252 |#1| |#2|) (-653 |#2|) (-252 |#1| |#2|) (-653 (-252 |#1| |#2|)))) (-15 -2229 ((-653 (-490 |#1| |#2|)) (-873 |#1|) (-653 (-490 |#1| |#2|)) (-653 (-490 |#1| |#2|)))) (-15 -3195 ((-252 |#1| |#2|) (-252 |#1| |#2|) (-653 (-252 |#1| |#2|)))) (-15 -2980 ((-490 |#1| |#2|) (-252 |#1| |#2|)))) +((-2848 (((-112) $ $) NIL (-2817 (|has| (-52) (-1112)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1112))))) (-3777 (($) NIL) (($ (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))))) NIL)) (-3791 (((-1285) $ (-1171) (-1171)) NIL (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 (((-52) $ (-1171) (-52)) 16) (((-52) $ (-1189) (-52)) 17)) (-3557 (($ (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455)))) (-2161 (((-3 (-52) "failed") (-1171) $) NIL)) (-2579 (($) NIL T CONST)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1112))))) (-2596 (($ (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-3 (-52) "failed") (-1171) $) NIL)) (-3334 (($ (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1112)))) (($ (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455)))) (-2867 (((-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) $ (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1112)))) (((-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) $ (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455)))) (-2457 (((-52) $ (-1171) (-52)) NIL (|has| $ (-6 -4456)))) (-2384 (((-52) $ (-1171)) NIL)) (-1863 (((-653 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-653 (-52)) $) NIL (|has| $ (-6 -4455)))) (-1508 (($ $) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-1171) $) NIL (|has| (-1171) (-859)))) (-3214 (((-653 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-653 (-52)) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1112)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-52) (-1112))))) (-3470 (((-1171) $) NIL (|has| (-1171) (-859)))) (-2446 (($ (-1 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1463 (($ (-397)) 9)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (-2817 (|has| (-52) (-1112)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1112))))) (-1762 (((-653 (-1171)) $) NIL)) (-4201 (((-112) (-1171) $) NIL)) (-2487 (((-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) $) NIL)) (-3181 (($ (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) $) NIL)) (-1977 (((-653 (-1171)) $) NIL)) (-2560 (((-112) (-1171) $) NIL)) (-3965 (((-1132) $) NIL (-2817 (|has| (-52) (-1112)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1112))))) (-2914 (((-52) $) NIL (|has| (-1171) (-859)))) (-2036 (((-3 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) "failed") (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) $) NIL)) (-3112 (($ $ (-52)) NIL (|has| $ (-6 -4456)))) (-3815 (((-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) $) NIL)) (-1575 (((-112) (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))))) NIL (-12 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1112)))) (($ $ (-301 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))))) NIL (-12 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1112)))) (($ $ (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) NIL (-12 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1112)))) (($ $ (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))))) NIL (-12 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1112)))) (($ $ (-653 (-52)) (-653 (-52))) NIL (-12 (|has| (-52) (-316 (-52))) (|has| (-52) (-1112)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-316 (-52))) (|has| (-52) (-1112)))) (($ $ (-301 (-52))) NIL (-12 (|has| (-52) (-316 (-52))) (|has| (-52) (-1112)))) (($ $ (-653 (-301 (-52)))) NIL (-12 (|has| (-52) (-316 (-52))) (|has| (-52) (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-52) (-1112))))) (-1535 (((-653 (-52)) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 (((-52) $ (-1171)) 14) (((-52) $ (-1171) (-52)) NIL) (((-52) $ (-1189)) 15)) (-2428 (($) NIL) (($ (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))))) NIL)) (-3974 (((-780) (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1112)))) (((-780) (-52) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-52) (-1112)))) (((-780) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-623 (-545))))) (-2955 (($ (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))))) NIL)) (-2942 (((-871) $) NIL (-2817 (|has| (-52) (-622 (-871))) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-622 (-871)))))) (-3507 (((-112) $ $) NIL (-2817 (|has| (-52) (-1112)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1112))))) (-2679 (($ (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))))) NIL)) (-1646 (((-112) (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (-2817 (|has| (-52) (-1112)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 (-52))) (-1112))))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-641) (-13 (-1206 (-1171) (-52)) (-293 (-1189) (-52)) (-10 -8 (-15 -1463 ($ (-397))) (-15 -1508 ($ $)) (-15 -3142 ((-52) $ (-1189) (-52)))))) (T -641)) +((-1463 (*1 *1 *2) (-12 (-5 *2 (-397)) (-5 *1 (-641)))) (-1508 (*1 *1 *1) (-5 *1 (-641))) (-3142 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1189)) (-5 *1 (-641))))) +(-13 (-1206 (-1171) (-52)) (-293 (-1189) (-52)) (-10 -8 (-15 -1463 ($ (-397))) (-15 -1508 ($ $)) (-15 -3142 ((-52) $ (-1189) (-52))))) +((-3103 (($ $ |#2|) 10))) +(((-642 |#1| |#2|) (-10 -8 (-15 -3103 (|#1| |#1| |#2|))) (-643 |#2|) (-174)) (T -642)) +NIL +(-10 -8 (-15 -3103 (|#1| |#1| |#2|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2955 (($ $ $) 34)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 33 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-643 |#1|) (-141) (-174)) (T -643)) +((-2955 (*1 *1 *1 *1) (-12 (-4 *1 (-643 *2)) (-4 *2 (-174)))) (-3103 (*1 *1 *1 *2) (-12 (-4 *1 (-643 *2)) (-4 *2 (-174)) (-4 *2 (-371))))) +(-13 (-726 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2955 ($ $ $)) (IF (|has| |t#1| (-371)) (-15 -3103 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-657 |#1|) . T) ((-649 |#1|) . T) ((-726 |#1|) . T) ((-1063 |#1|) . T) ((-1068 |#1|) . T) ((-1112) . T)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-1642 (((-3 $ "failed")) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-2983 (((-3 $ "failed") $ $) NIL)) (-3119 (((-1280 (-698 |#1|))) NIL (|has| |#2| (-426 |#1|))) (((-1280 (-698 |#1|)) (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-1888 (((-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-2579 (($) NIL T CONST)) (-2811 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-3360 (((-3 $ "failed")) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-1454 (((-698 |#1|)) NIL (|has| |#2| (-426 |#1|))) (((-698 |#1|) (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-1390 ((|#1| $) NIL (|has| |#2| (-375 |#1|)))) (-3612 (((-698 |#1|) $) NIL (|has| |#2| (-426 |#1|))) (((-698 |#1|) $ (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-1546 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-2743 (((-1185 (-962 |#1|))) NIL (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-371))))) (-3681 (($ $ (-931)) NIL)) (-3729 ((|#1| $) NIL (|has| |#2| (-375 |#1|)))) (-3397 (((-1185 |#1|) $) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-4053 ((|#1|) NIL (|has| |#2| (-426 |#1|))) ((|#1| (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-2650 (((-1185 |#1|) $) NIL (|has| |#2| (-375 |#1|)))) (-2492 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-2854 (($ (-1280 |#1|)) NIL (|has| |#2| (-426 |#1|))) (($ (-1280 |#1|) (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-2232 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-3583 (((-931)) NIL (|has| |#2| (-375 |#1|)))) (-3720 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-3009 (($ $ (-931)) NIL)) (-4275 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-1922 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-1565 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-1447 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-3675 (((-3 $ "failed")) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-2582 (((-698 |#1|)) NIL (|has| |#2| (-426 |#1|))) (((-698 |#1|) (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-3619 ((|#1| $) NIL (|has| |#2| (-375 |#1|)))) (-1729 (((-698 |#1|) $) NIL (|has| |#2| (-426 |#1|))) (((-698 |#1|) $ (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-2780 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-3753 (((-1185 (-962 |#1|))) NIL (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-371))))) (-2022 (($ $ (-931)) NIL)) (-3420 ((|#1| $) NIL (|has| |#2| (-375 |#1|)))) (-2000 (((-1185 |#1|) $) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-1912 ((|#1|) NIL (|has| |#2| (-426 |#1|))) ((|#1| (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-3242 (((-1185 |#1|) $) NIL (|has| |#2| (-375 |#1|)))) (-3455 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-3180 (((-1171) $) NIL)) (-2509 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-3313 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-4293 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-3965 (((-1132) $) NIL)) (-3209 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-2198 ((|#1| $ (-573)) NIL (|has| |#2| (-426 |#1|)))) (-2123 (((-698 |#1|) (-1280 $)) NIL (|has| |#2| (-426 |#1|))) (((-1280 |#1|) $) NIL (|has| |#2| (-426 |#1|))) (((-698 |#1|) (-1280 $) (-1280 $)) NIL (|has| |#2| (-375 |#1|))) (((-1280 |#1|) $ (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-1835 (($ (-1280 |#1|)) NIL (|has| |#2| (-426 |#1|))) (((-1280 |#1|) $) NIL (|has| |#2| (-426 |#1|)))) (-1664 (((-653 (-962 |#1|))) NIL (|has| |#2| (-426 |#1|))) (((-653 (-962 |#1|)) (-1280 $)) NIL (|has| |#2| (-375 |#1|)))) (-4380 (($ $ $) NIL)) (-2774 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-2942 (((-871) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) NIL (|has| |#2| (-426 |#1|)))) (-2649 (((-653 (-1280 |#1|))) NIL (-2817 (-12 (|has| |#2| (-375 |#1|)) (|has| |#1| (-565))) (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-565)))))) (-3531 (($ $ $ $) NIL)) (-2661 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-2900 (($ (-698 |#1|) $) NIL (|has| |#2| (-426 |#1|)))) (-4366 (($ $ $) NIL)) (-1469 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-4243 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-2744 (((-112)) NIL (|has| |#2| (-375 |#1|)))) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) 20)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-644 |#1| |#2|) (-13 (-753 |#1|) (-622 |#2|) (-10 -8 (-15 -2942 ($ |#2|)) (IF (|has| |#2| (-426 |#1|)) (-6 (-426 |#1|)) |%noBranch|) (IF (|has| |#2| (-375 |#1|)) (-6 (-375 |#1|)) |%noBranch|))) (-174) (-753 |#1|)) (T -644)) +((-2942 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-644 *3 *2)) (-4 *2 (-753 *3))))) +(-13 (-753 |#1|) (-622 |#2|) (-10 -8 (-15 -2942 ($ |#2|)) (IF (|has| |#2| (-426 |#1|)) (-6 (-426 |#1|)) |%noBranch|) (IF (|has| |#2| (-375 |#1|)) (-6 (-375 |#1|)) |%noBranch|))) +((-4061 (((-3 (-852 |#2|) "failed") |#2| (-301 |#2|) (-1171)) 106) (((-3 (-852 |#2|) (-2 (|:| |leftHandLimit| (-3 (-852 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-852 |#2|) "failed"))) "failed") |#2| (-301 (-852 |#2|))) 131)) (-3244 (((-3 (-842 |#2|) "failed") |#2| (-301 (-842 |#2|))) 136))) +(((-645 |#1| |#2|) (-10 -7 (-15 -4061 ((-3 (-852 |#2|) (-2 (|:| |leftHandLimit| (-3 (-852 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-852 |#2|) "failed"))) "failed") |#2| (-301 (-852 |#2|)))) (-15 -3244 ((-3 (-842 |#2|) "failed") |#2| (-301 (-842 |#2|)))) (-15 -4061 ((-3 (-852 |#2|) "failed") |#2| (-301 |#2|) (-1171)))) (-13 (-461) (-1050 (-573)) (-648 (-573))) (-13 (-27) (-1215) (-439 |#1|))) (T -645)) +((-4061 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-301 *3)) (-5 *5 (-1171)) (-4 *3 (-13 (-27) (-1215) (-439 *6))) (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-852 *3)) (-5 *1 (-645 *6 *3)))) (-3244 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-301 (-842 *3))) (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-842 *3)) (-5 *1 (-645 *5 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))))) (-4061 (*1 *2 *3 *4) (-12 (-5 *4 (-301 (-852 *3))) (-4 *3 (-13 (-27) (-1215) (-439 *5))) (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-3 (-852 *3) (-2 (|:| |leftHandLimit| (-3 (-852 *3) "failed")) (|:| |rightHandLimit| (-3 (-852 *3) "failed"))) "failed")) (-5 *1 (-645 *5 *3))))) +(-10 -7 (-15 -4061 ((-3 (-852 |#2|) (-2 (|:| |leftHandLimit| (-3 (-852 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-852 |#2|) "failed"))) "failed") |#2| (-301 (-852 |#2|)))) (-15 -3244 ((-3 (-842 |#2|) "failed") |#2| (-301 (-842 |#2|)))) (-15 -4061 ((-3 (-852 |#2|) "failed") |#2| (-301 |#2|) (-1171)))) +((-4061 (((-3 (-852 (-416 (-962 |#1|))) "failed") (-416 (-962 |#1|)) (-301 (-416 (-962 |#1|))) (-1171)) 86) (((-3 (-852 (-416 (-962 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-852 (-416 (-962 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-852 (-416 (-962 |#1|))) "failed"))) "failed") (-416 (-962 |#1|)) (-301 (-416 (-962 |#1|)))) 20) (((-3 (-852 (-416 (-962 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-852 (-416 (-962 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-852 (-416 (-962 |#1|))) "failed"))) "failed") (-416 (-962 |#1|)) (-301 (-852 (-962 |#1|)))) 35)) (-3244 (((-842 (-416 (-962 |#1|))) (-416 (-962 |#1|)) (-301 (-416 (-962 |#1|)))) 23) (((-842 (-416 (-962 |#1|))) (-416 (-962 |#1|)) (-301 (-842 (-962 |#1|)))) 43))) +(((-646 |#1|) (-10 -7 (-15 -4061 ((-3 (-852 (-416 (-962 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-852 (-416 (-962 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-852 (-416 (-962 |#1|))) "failed"))) "failed") (-416 (-962 |#1|)) (-301 (-852 (-962 |#1|))))) (-15 -4061 ((-3 (-852 (-416 (-962 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-852 (-416 (-962 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-852 (-416 (-962 |#1|))) "failed"))) "failed") (-416 (-962 |#1|)) (-301 (-416 (-962 |#1|))))) (-15 -3244 ((-842 (-416 (-962 |#1|))) (-416 (-962 |#1|)) (-301 (-842 (-962 |#1|))))) (-15 -3244 ((-842 (-416 (-962 |#1|))) (-416 (-962 |#1|)) (-301 (-416 (-962 |#1|))))) (-15 -4061 ((-3 (-852 (-416 (-962 |#1|))) "failed") (-416 (-962 |#1|)) (-301 (-416 (-962 |#1|))) (-1171)))) (-461)) (T -646)) +((-4061 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-301 (-416 (-962 *6)))) (-5 *5 (-1171)) (-5 *3 (-416 (-962 *6))) (-4 *6 (-461)) (-5 *2 (-852 *3)) (-5 *1 (-646 *6)))) (-3244 (*1 *2 *3 *4) (-12 (-5 *4 (-301 (-416 (-962 *5)))) (-5 *3 (-416 (-962 *5))) (-4 *5 (-461)) (-5 *2 (-842 *3)) (-5 *1 (-646 *5)))) (-3244 (*1 *2 *3 *4) (-12 (-5 *4 (-301 (-842 (-962 *5)))) (-4 *5 (-461)) (-5 *2 (-842 (-416 (-962 *5)))) (-5 *1 (-646 *5)) (-5 *3 (-416 (-962 *5))))) (-4061 (*1 *2 *3 *4) (-12 (-5 *4 (-301 (-416 (-962 *5)))) (-5 *3 (-416 (-962 *5))) (-4 *5 (-461)) (-5 *2 (-3 (-852 *3) (-2 (|:| |leftHandLimit| (-3 (-852 *3) "failed")) (|:| |rightHandLimit| (-3 (-852 *3) "failed"))) "failed")) (-5 *1 (-646 *5)))) (-4061 (*1 *2 *3 *4) (-12 (-5 *4 (-301 (-852 (-962 *5)))) (-4 *5 (-461)) (-5 *2 (-3 (-852 (-416 (-962 *5))) (-2 (|:| |leftHandLimit| (-3 (-852 (-416 (-962 *5))) "failed")) (|:| |rightHandLimit| (-3 (-852 (-416 (-962 *5))) "failed"))) "failed")) (-5 *1 (-646 *5)) (-5 *3 (-416 (-962 *5)))))) +(-10 -7 (-15 -4061 ((-3 (-852 (-416 (-962 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-852 (-416 (-962 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-852 (-416 (-962 |#1|))) "failed"))) "failed") (-416 (-962 |#1|)) (-301 (-852 (-962 |#1|))))) (-15 -4061 ((-3 (-852 (-416 (-962 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-852 (-416 (-962 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-852 (-416 (-962 |#1|))) "failed"))) "failed") (-416 (-962 |#1|)) (-301 (-416 (-962 |#1|))))) (-15 -3244 ((-842 (-416 (-962 |#1|))) (-416 (-962 |#1|)) (-301 (-842 (-962 |#1|))))) (-15 -3244 ((-842 (-416 (-962 |#1|))) (-416 (-962 |#1|)) (-301 (-416 (-962 |#1|))))) (-15 -4061 ((-3 (-852 (-416 (-962 |#1|))) "failed") (-416 (-962 |#1|)) (-301 (-416 (-962 |#1|))) (-1171)))) +((-2898 (((-3 (-1280 (-416 |#1|)) "failed") (-1280 |#2|) |#2|) 64 (-2075 (|has| |#1| (-371)))) (((-3 (-1280 |#1|) "failed") (-1280 |#2|) |#2|) 49 (|has| |#1| (-371)))) (-4062 (((-112) (-1280 |#2|)) 33)) (-4287 (((-3 (-1280 |#1|) "failed") (-1280 |#2|)) 40))) +(((-647 |#1| |#2|) (-10 -7 (-15 -4062 ((-112) (-1280 |#2|))) (-15 -4287 ((-3 (-1280 |#1|) "failed") (-1280 |#2|))) (IF (|has| |#1| (-371)) (-15 -2898 ((-3 (-1280 |#1|) "failed") (-1280 |#2|) |#2|)) (-15 -2898 ((-3 (-1280 (-416 |#1|)) "failed") (-1280 |#2|) |#2|)))) (-565) (-13 (-1061) (-648 |#1|))) (T -647)) +((-2898 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1280 *4)) (-4 *4 (-13 (-1061) (-648 *5))) (-2075 (-4 *5 (-371))) (-4 *5 (-565)) (-5 *2 (-1280 (-416 *5))) (-5 *1 (-647 *5 *4)))) (-2898 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1280 *4)) (-4 *4 (-13 (-1061) (-648 *5))) (-4 *5 (-371)) (-4 *5 (-565)) (-5 *2 (-1280 *5)) (-5 *1 (-647 *5 *4)))) (-4287 (*1 *2 *3) (|partial| -12 (-5 *3 (-1280 *5)) (-4 *5 (-13 (-1061) (-648 *4))) (-4 *4 (-565)) (-5 *2 (-1280 *4)) (-5 *1 (-647 *4 *5)))) (-4062 (*1 *2 *3) (-12 (-5 *3 (-1280 *5)) (-4 *5 (-13 (-1061) (-648 *4))) (-4 *4 (-565)) (-5 *2 (-112)) (-5 *1 (-647 *4 *5))))) +(-10 -7 (-15 -4062 ((-112) (-1280 |#2|))) (-15 -4287 ((-3 (-1280 |#1|) "failed") (-1280 |#2|))) (IF (|has| |#1| (-371)) (-15 -2898 ((-3 (-1280 |#1|) "failed") (-1280 |#2|) |#2|)) (-15 -2898 ((-3 (-1280 (-416 |#1|)) "failed") (-1280 |#2|) |#2|)))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2759 (((-698 |#1|) (-1280 $)) 31) (((-698 |#1|) (-698 $)) 30) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) 29)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ |#1| $) 27))) +(((-648 |#1|) (-141) (-1061)) (T -648)) +((-2759 (*1 *2 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-648 *4)) (-4 *4 (-1061)) (-5 *2 (-698 *4)))) (-2759 (*1 *2 *3) (-12 (-5 *3 (-698 *1)) (-4 *1 (-648 *4)) (-4 *4 (-1061)) (-5 *2 (-698 *4)))) (-2759 (*1 *2 *3 *4) (-12 (-5 *3 (-698 *1)) (-5 *4 (-1280 *1)) (-4 *1 (-648 *5)) (-4 *5 (-1061)) (-5 *2 (-2 (|:| -1423 (-698 *5)) (|:| |vec| (-1280 *5))))))) +(-13 (-657 |t#1|) (-10 -8 (-15 -2759 ((-698 |t#1|) (-1280 $))) (-15 -2759 ((-698 |t#1|) (-698 $))) (-15 -2759 ((-2 (|:| -1423 (-698 |t#1|)) (|:| |vec| (-1280 |t#1|))) (-698 $) (-1280 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-657 |#1|) . T) ((-1112) . T)) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 16 T CONST)) (-2981 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19))) +(((-649 |#1|) (-141) (-1070)) (T -649)) +NIL +(-13 (-655 |t#1|) (-1063 |t#1|)) +(((-102) . T) ((-622 (-871)) . T) ((-655 |#1|) . T) ((-1063 |#1|) . T) ((-1112) . T)) +((-2682 ((|#2| (-653 |#1|) (-653 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-653 |#1|) (-653 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-653 |#1|) (-653 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-653 |#1|) (-653 |#2|) |#2|) 17) ((|#2| (-653 |#1|) (-653 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-653 |#1|) (-653 |#2|)) 12))) +(((-650 |#1| |#2|) (-10 -7 (-15 -2682 ((-1 |#2| |#1|) (-653 |#1|) (-653 |#2|))) (-15 -2682 (|#2| (-653 |#1|) (-653 |#2|) |#1|)) (-15 -2682 ((-1 |#2| |#1|) (-653 |#1|) (-653 |#2|) |#2|)) (-15 -2682 (|#2| (-653 |#1|) (-653 |#2|) |#1| |#2|)) (-15 -2682 ((-1 |#2| |#1|) (-653 |#1|) (-653 |#2|) (-1 |#2| |#1|))) (-15 -2682 (|#2| (-653 |#1|) (-653 |#2|) |#1| (-1 |#2| |#1|)))) (-1112) (-1230)) (T -650)) +((-2682 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-653 *5)) (-5 *4 (-653 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1112)) (-4 *2 (-1230)) (-5 *1 (-650 *5 *2)))) (-2682 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-653 *5)) (-5 *4 (-653 *6)) (-4 *5 (-1112)) (-4 *6 (-1230)) (-5 *1 (-650 *5 *6)))) (-2682 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-653 *5)) (-5 *4 (-653 *2)) (-4 *5 (-1112)) (-4 *2 (-1230)) (-5 *1 (-650 *5 *2)))) (-2682 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 *6)) (-5 *4 (-653 *5)) (-4 *6 (-1112)) (-4 *5 (-1230)) (-5 *2 (-1 *5 *6)) (-5 *1 (-650 *6 *5)))) (-2682 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 *5)) (-5 *4 (-653 *2)) (-4 *5 (-1112)) (-4 *2 (-1230)) (-5 *1 (-650 *5 *2)))) (-2682 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *5)) (-5 *4 (-653 *6)) (-4 *5 (-1112)) (-4 *6 (-1230)) (-5 *2 (-1 *6 *5)) (-5 *1 (-650 *5 *6))))) +(-10 -7 (-15 -2682 ((-1 |#2| |#1|) (-653 |#1|) (-653 |#2|))) (-15 -2682 (|#2| (-653 |#1|) (-653 |#2|) |#1|)) (-15 -2682 ((-1 |#2| |#1|) (-653 |#1|) (-653 |#2|) |#2|)) (-15 -2682 (|#2| (-653 |#1|) (-653 |#2|) |#1| |#2|)) (-15 -2682 ((-1 |#2| |#1|) (-653 |#1|) (-653 |#2|) (-1 |#2| |#1|))) (-15 -2682 (|#2| (-653 |#1|) (-653 |#2|) |#1| (-1 |#2| |#1|)))) +((-3094 (((-653 |#2|) (-1 |#2| |#1| |#2|) (-653 |#1|) |#2|) 16)) (-2867 ((|#2| (-1 |#2| |#1| |#2|) (-653 |#1|) |#2|) 18)) (-1776 (((-653 |#2|) (-1 |#2| |#1|) (-653 |#1|)) 13))) +(((-651 |#1| |#2|) (-10 -7 (-15 -3094 ((-653 |#2|) (-1 |#2| |#1| |#2|) (-653 |#1|) |#2|)) (-15 -2867 (|#2| (-1 |#2| |#1| |#2|) (-653 |#1|) |#2|)) (-15 -1776 ((-653 |#2|) (-1 |#2| |#1|) (-653 |#1|)))) (-1230) (-1230)) (T -651)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-653 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-653 *6)) (-5 *1 (-651 *5 *6)))) (-2867 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-653 *5)) (-4 *5 (-1230)) (-4 *2 (-1230)) (-5 *1 (-651 *5 *2)))) (-3094 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-653 *6)) (-4 *6 (-1230)) (-4 *5 (-1230)) (-5 *2 (-653 *5)) (-5 *1 (-651 *6 *5))))) +(-10 -7 (-15 -3094 ((-653 |#2|) (-1 |#2| |#1| |#2|) (-653 |#1|) |#2|)) (-15 -2867 (|#2| (-1 |#2| |#1| |#2|) (-653 |#1|) |#2|)) (-15 -1776 ((-653 |#2|) (-1 |#2| |#1|) (-653 |#1|)))) +((-1776 (((-653 |#3|) (-1 |#3| |#1| |#2|) (-653 |#1|) (-653 |#2|)) 21))) +(((-652 |#1| |#2| |#3|) (-10 -7 (-15 -1776 ((-653 |#3|) (-1 |#3| |#1| |#2|) (-653 |#1|) (-653 |#2|)))) (-1230) (-1230) (-1230)) (T -652)) +((-1776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-653 *6)) (-5 *5 (-653 *7)) (-4 *6 (-1230)) (-4 *7 (-1230)) (-4 *8 (-1230)) (-5 *2 (-653 *8)) (-5 *1 (-652 *6 *7 *8))))) +(-10 -7 (-15 -1776 ((-653 |#3|) (-1 |#3| |#1| |#2|) (-653 |#1|) (-653 |#2|)))) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3082 ((|#1| $) NIL)) (-2404 ((|#1| $) NIL)) (-1969 (($ $) NIL)) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-1896 (($ $ (-573)) NIL (|has| $ (-6 -4456)))) (-1473 (((-112) $) NIL (|has| |#1| (-859))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2748 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-859)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-2770 (($ $) NIL (|has| |#1| (-859))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-2367 ((|#1| $ |#1|) NIL (|has| $ (-6 -4456)))) (-2554 (($ $ $) NIL (|has| $ (-6 -4456)))) (-2016 ((|#1| $ |#1|) NIL (|has| $ (-6 -4456)))) (-2647 ((|#1| $ |#1|) NIL (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4456))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4456))) (($ $ "rest" $) NIL (|has| $ (-6 -4456))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) NIL (|has| $ (-6 -4456))) ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) NIL (|has| $ (-6 -4456)))) (-3059 (($ $ $) 37 (|has| |#1| (-1112)))) (-1848 (($ $ $) 41 (|has| |#1| (-1112)))) (-3116 (($ $ $) 44 (|has| |#1| (-1112)))) (-3557 (($ (-1 (-112) |#1|) $) NIL)) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2392 ((|#1| $) NIL)) (-2579 (($) NIL T CONST)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-2925 (($ $) 23) (($ $ (-780)) NIL)) (-1599 (($ $) NIL (|has| |#1| (-1112)))) (-2685 (($ $) 36 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2596 (($ |#1| $) NIL (|has| |#1| (-1112))) (($ (-1 (-112) |#1|) $) NIL)) (-3334 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2457 ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) NIL)) (-3435 (((-112) $) NIL)) (-1440 (((-573) |#1| $ (-573)) NIL (|has| |#1| (-1112))) (((-573) |#1| $) NIL (|has| |#1| (-1112))) (((-573) (-1 (-112) |#1|) $) NIL)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-2064 (((-112) $) 11)) (-3113 (((-653 $) $) NIL)) (-3208 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3520 (($) 9 T CONST)) (-3789 (($ (-780) |#1|) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) NIL (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-4241 (($ $ $) NIL (|has| |#1| (-859))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1480 (($ $ $) NIL (|has| |#1| (-859))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1787 (($ |#1|) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3505 (((-653 |#1|) $) NIL)) (-2880 (((-112) $) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3359 ((|#1| $) NIL) (($ $ (-780)) NIL)) (-3181 (($ $ $ (-573)) NIL) (($ |#1| $ (-573)) NIL)) (-1593 (($ $ $ (-573)) NIL) (($ |#1| $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2914 ((|#1| $) 20) (($ $ (-780)) NIL)) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3112 (($ $ |#1|) NIL (|has| $ (-6 -4456)))) (-1903 (((-112) $) NIL)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) NIL)) (-3811 (((-112) $) 39)) (-3508 (($) 38)) (-2198 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1247 (-573))) NIL) ((|#1| $ (-573)) 42) ((|#1| $ (-573) |#1|) NIL)) (-1501 (((-573) $ $) NIL)) (-3220 (($ $ (-1247 (-573))) NIL) (($ $ (-573)) NIL)) (-2836 (($ $ (-1247 (-573))) NIL) (($ $ (-573)) NIL)) (-1628 (((-112) $) NIL)) (-1992 (($ $) NIL)) (-3839 (($ $) NIL (|has| $ (-6 -4456)))) (-4072 (((-780) $) NIL)) (-1512 (($ $) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3919 (($ $ $ (-573)) NIL (|has| $ (-6 -4456)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) 53 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) NIL)) (-2224 (($ |#1| $) 12)) (-3996 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4156 (($ $ $) 35) (($ |#1| $) 43) (($ (-653 $)) NIL) (($ $ |#1|) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) NIL)) (-1716 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2858 (($ $ $) 13)) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2808 (((-1171) $) 31 (|has| |#1| (-837))) (((-1171) $ (-112)) 32 (|has| |#1| (-837))) (((-1285) (-831) $) 33 (|has| |#1| (-837))) (((-1285) (-831) $ (-112)) 34 (|has| |#1| (-837)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-653 |#1|) (-13 (-675 |#1|) (-10 -8 (-15 -3520 ($) -1705) (-15 -2064 ((-112) $)) (-15 -2224 ($ |#1| $)) (-15 -2858 ($ $ $)) (IF (|has| |#1| (-1112)) (PROGN (-15 -3059 ($ $ $)) (-15 -1848 ($ $ $)) (-15 -3116 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-837)) (-6 (-837)) |%noBranch|))) (-1230)) (T -653)) +((-3520 (*1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1230)))) (-2064 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-653 *3)) (-4 *3 (-1230)))) (-2224 (*1 *1 *2 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1230)))) (-2858 (*1 *1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1230)))) (-3059 (*1 *1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1112)) (-4 *2 (-1230)))) (-1848 (*1 *1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1112)) (-4 *2 (-1230)))) (-3116 (*1 *1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1112)) (-4 *2 (-1230))))) +(-13 (-675 |#1|) (-10 -8 (-15 -3520 ($) -1705) (-15 -2064 ((-112) $)) (-15 -2224 ($ |#1| $)) (-15 -2858 ($ $ $)) (IF (|has| |#1| (-1112)) (PROGN (-15 -3059 ($ $ $)) (-15 -1848 ($ $ $)) (-15 -3116 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-837)) (-6 (-837)) |%noBranch|))) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 11) (($ (-1194)) NIL) (((-1194) $) NIL) ((|#1| $) 8)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-654 |#1|) (-13 (-1095) (-622 |#1|)) (-1112)) (T -654)) +NIL +(-13 (-1095) (-622 |#1|)) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 16 T CONST)) (-2981 (((-112) $ $) 6)) (* (($ |#1| $) 14))) +(((-655 |#1|) (-141) (-1070)) (T -655)) +((-2132 (*1 *1) (-12 (-4 *1 (-655 *2)) (-4 *2 (-1070)))) (-1748 (*1 *2 *1) (-12 (-4 *1 (-655 *3)) (-4 *3 (-1070)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-655 *2)) (-4 *2 (-1070))))) +(-13 (-1112) (-10 -8 (-15 (-2132) ($) -1705) (-15 -1748 ((-112) $)) (-15 * ($ |t#1| $)))) +(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-4013 (($ |#1| |#1| $) 43)) (-3450 (((-112) $ (-780)) NIL)) (-3557 (($ (-1 (-112) |#1|) $) 59 (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-1599 (($ $) 45)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2596 (($ |#1| $) 56 (|has| $ (-6 -4455))) (($ (-1 (-112) |#1|) $) 58 (|has| $ (-6 -4455)))) (-3334 (($ |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-1863 (((-653 |#1|) $) 9 (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2446 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 37)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-2487 ((|#1| $) 47)) (-3181 (($ |#1| $) 29) (($ |#1| $ (-780)) 42)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3815 ((|#1| $) 50)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) 23)) (-3508 (($) 28)) (-2765 (((-112) $) 54)) (-2493 (((-653 (-2 (|:| -1907 |#1|) (|:| -3974 (-780)))) $) 67)) (-2428 (($) 26) (($ (-653 |#1|)) 19)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) 63 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) 20)) (-1835 (((-545) $) 34 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) NIL)) (-2942 (((-871) $) 14 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2679 (($ (-653 |#1|)) 24)) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 69 (|has| |#1| (-1112)))) (-2862 (((-780) $) 17 (|has| $ (-6 -4455))))) +(((-656 |#1|) (-13 (-704 |#1|) (-10 -8 (-6 -4455) (-15 -2765 ((-112) $)) (-15 -4013 ($ |#1| |#1| $)))) (-1112)) (T -656)) +((-2765 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-656 *3)) (-4 *3 (-1112)))) (-4013 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1112))))) +(-13 (-704 |#1|) (-10 -8 (-6 -4455) (-15 -2765 ((-112) $)) (-15 -4013 ($ |#1| |#1| $)))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ |#1| $) 27))) +(((-657 |#1|) (-141) (-1070)) (T -657)) +NIL +(-13 (-21) (-655 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-1112) . T)) +((-2848 (((-112) $ $) NIL)) (-1486 (((-780) $) 17)) (-4123 (($ $ |#1|) 69)) (-2176 (($ $) 39)) (-4422 (($ $) 37)) (-1695 (((-3 |#1| "failed") $) 61)) (-2205 ((|#1| $) NIL)) (-3739 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-3471 (((-871) $ (-1 (-871) (-871) (-871)) (-1 (-871) (-871) (-871)) (-573)) 56)) (-2841 ((|#1| $ (-573)) 35)) (-3884 ((|#2| $ (-573)) 34)) (-1911 (($ (-1 |#1| |#1|) $) 41)) (-3584 (($ (-1 |#2| |#2|) $) 47)) (-3827 (($) 11)) (-2443 (($ |#1| |#2|) 24)) (-1342 (($ (-653 (-2 (|:| |gen| |#1|) (|:| -1608 |#2|)))) 25)) (-4418 (((-653 (-2 (|:| |gen| |#1|) (|:| -1608 |#2|))) $) 14)) (-3135 (($ |#1| $) 71)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-3488 (((-112) $ $) 76)) (-2942 (((-871) $) 21) (($ |#1|) 18)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 27))) +(((-658 |#1| |#2| |#3|) (-13 (-1112) (-1050 |#1|) (-10 -8 (-15 -3471 ((-871) $ (-1 (-871) (-871) (-871)) (-1 (-871) (-871) (-871)) (-573))) (-15 -4418 ((-653 (-2 (|:| |gen| |#1|) (|:| -1608 |#2|))) $)) (-15 -2443 ($ |#1| |#2|)) (-15 -1342 ($ (-653 (-2 (|:| |gen| |#1|) (|:| -1608 |#2|))))) (-15 -3884 (|#2| $ (-573))) (-15 -2841 (|#1| $ (-573))) (-15 -4422 ($ $)) (-15 -2176 ($ $)) (-15 -1486 ((-780) $)) (-15 -3827 ($)) (-15 -4123 ($ $ |#1|)) (-15 -3135 ($ |#1| $)) (-15 -3739 ($ |#1| |#2| $)) (-15 -3739 ($ $ $)) (-15 -3488 ((-112) $ $)) (-15 -3584 ($ (-1 |#2| |#2|) $)) (-15 -1911 ($ (-1 |#1| |#1|) $)))) (-1112) (-23) |#2|) (T -658)) +((-3471 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-871) (-871) (-871))) (-5 *4 (-573)) (-5 *2 (-871)) (-5 *1 (-658 *5 *6 *7)) (-4 *5 (-1112)) (-4 *6 (-23)) (-14 *7 *6))) (-4418 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| |gen| *3) (|:| -1608 *4)))) (-5 *1 (-658 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-23)) (-14 *5 *4))) (-2443 (*1 *1 *2 *3) (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) (-14 *4 *3))) (-1342 (*1 *1 *2) (-12 (-5 *2 (-653 (-2 (|:| |gen| *3) (|:| -1608 *4)))) (-4 *3 (-1112)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-658 *3 *4 *5)))) (-3884 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-4 *2 (-23)) (-5 *1 (-658 *4 *2 *5)) (-4 *4 (-1112)) (-14 *5 *2))) (-2841 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-4 *2 (-1112)) (-5 *1 (-658 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-4422 (*1 *1 *1) (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) (-14 *4 *3))) (-2176 (*1 *1 *1) (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) (-14 *4 *3))) (-1486 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-658 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-23)) (-14 *5 *4))) (-3827 (*1 *1) (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) (-14 *4 *3))) (-4123 (*1 *1 *1 *2) (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) (-14 *4 *3))) (-3135 (*1 *1 *2 *1) (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) (-14 *4 *3))) (-3739 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) (-14 *4 *3))) (-3739 (*1 *1 *1 *1) (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) (-14 *4 *3))) (-3488 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-658 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-23)) (-14 *5 *4))) (-3584 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-658 *3 *4 *5)) (-4 *3 (-1112)))) (-1911 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1112)) (-5 *1 (-658 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1112) (-1050 |#1|) (-10 -8 (-15 -3471 ((-871) $ (-1 (-871) (-871) (-871)) (-1 (-871) (-871) (-871)) (-573))) (-15 -4418 ((-653 (-2 (|:| |gen| |#1|) (|:| -1608 |#2|))) $)) (-15 -2443 ($ |#1| |#2|)) (-15 -1342 ($ (-653 (-2 (|:| |gen| |#1|) (|:| -1608 |#2|))))) (-15 -3884 (|#2| $ (-573))) (-15 -2841 (|#1| $ (-573))) (-15 -4422 ($ $)) (-15 -2176 ($ $)) (-15 -1486 ((-780) $)) (-15 -3827 ($)) (-15 -4123 ($ $ |#1|)) (-15 -3135 ($ |#1| $)) (-15 -3739 ($ |#1| |#2| $)) (-15 -3739 ($ $ $)) (-15 -3488 ((-112) $ $)) (-15 -3584 ($ (-1 |#2| |#2|) $)) (-15 -1911 ($ (-1 |#1| |#1|) $)))) +((-3470 (((-573) $) 31)) (-1593 (($ |#2| $ (-573)) 27) (($ $ $ (-573)) NIL)) (-1977 (((-653 (-573)) $) 12)) (-2560 (((-112) (-573) $) 18)) (-4156 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-653 $)) NIL))) +(((-659 |#1| |#2|) (-10 -8 (-15 -1593 (|#1| |#1| |#1| (-573))) (-15 -1593 (|#1| |#2| |#1| (-573))) (-15 -4156 (|#1| (-653 |#1|))) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -3470 ((-573) |#1|)) (-15 -1977 ((-653 (-573)) |#1|)) (-15 -2560 ((-112) (-573) |#1|))) (-660 |#2|) (-1230)) (T -659)) +NIL +(-10 -8 (-15 -1593 (|#1| |#1| |#1| (-573))) (-15 -1593 (|#1| |#2| |#1| (-573))) (-15 -4156 (|#1| (-653 |#1|))) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -3470 ((-573) |#1|)) (-15 -1977 ((-653 (-573)) |#1|)) (-15 -2560 ((-112) (-573) |#1|))) +((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3791 (((-1285) $ (-573) (-573)) 41 (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) 8)) (-3142 ((|#1| $ (-573) |#1|) 53 (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) 60 (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4455)))) (-2579 (($) 7 T CONST)) (-2685 (($ $) 80 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ |#1| $) 79 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4455)))) (-2457 ((|#1| $ (-573) |#1|) 54 (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) 52)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-3789 (($ (-780) |#1|) 70)) (-2078 (((-112) $ (-780)) 9)) (-1968 (((-573) $) 44 (|has| (-573) (-859)))) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3470 (((-573) $) 45 (|has| (-573) (-859)))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-1593 (($ |#1| $ (-573)) 62) (($ $ $ (-573)) 61)) (-1977 (((-653 (-573)) $) 47)) (-2560 (((-112) (-573) $) 48)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-2914 ((|#1| $) 43 (|has| (-573) (-859)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-3112 (($ $ |#1|) 42 (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-2547 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) 49)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ (-573) |#1|) 51) ((|#1| $ (-573)) 50) (($ $ (-1247 (-573))) 71)) (-2836 (($ $ (-573)) 64) (($ $ (-1247 (-573))) 63)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-1835 (((-545) $) 81 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 72)) (-4156 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-653 $)) 66)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-660 |#1|) (-141) (-1230)) (T -660)) +((-3789 (*1 *1 *2 *3) (-12 (-5 *2 (-780)) (-4 *1 (-660 *3)) (-4 *3 (-1230)))) (-4156 (*1 *1 *1 *2) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1230)))) (-4156 (*1 *1 *2 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1230)))) (-4156 (*1 *1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1230)))) (-4156 (*1 *1 *2) (-12 (-5 *2 (-653 *1)) (-4 *1 (-660 *3)) (-4 *3 (-1230)))) (-1776 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-660 *3)) (-4 *3 (-1230)))) (-2836 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-660 *3)) (-4 *3 (-1230)))) (-2836 (*1 *1 *1 *2) (-12 (-5 *2 (-1247 (-573))) (-4 *1 (-660 *3)) (-4 *3 (-1230)))) (-1593 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-573)) (-4 *1 (-660 *2)) (-4 *2 (-1230)))) (-1593 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-660 *3)) (-4 *3 (-1230)))) (-3142 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1247 (-573))) (|has| *1 (-6 -4456)) (-4 *1 (-660 *2)) (-4 *2 (-1230))))) +(-13 (-613 (-573) |t#1|) (-152 |t#1|) (-293 (-1247 (-573)) $) (-10 -8 (-15 -3789 ($ (-780) |t#1|)) (-15 -4156 ($ $ |t#1|)) (-15 -4156 ($ |t#1| $)) (-15 -4156 ($ $ $)) (-15 -4156 ($ (-653 $))) (-15 -1776 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2836 ($ $ (-573))) (-15 -2836 ($ $ (-1247 (-573)))) (-15 -1593 ($ |t#1| $ (-573))) (-15 -1593 ($ $ $ (-573))) (IF (|has| $ (-6 -4456)) (-15 -3142 (|t#1| $ (-1247 (-573)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-152 |#1|) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-293 #0=(-573) |#1|) . T) ((-293 (-1247 (-573)) $) . T) ((-295 #0# |#1|) . T) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-613 #0# |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) +((-1994 (((-3 |#2| "failed") |#3| |#2| (-1189) |#2| (-653 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -3914 (-653 |#2|))) "failed") |#3| |#2| (-1189)) 44))) +(((-661 |#1| |#2| |#3|) (-10 -7 (-15 -1994 ((-3 (-2 (|:| |particular| |#2|) (|:| -3914 (-653 |#2|))) "failed") |#3| |#2| (-1189))) (-15 -1994 ((-3 |#2| "failed") |#3| |#2| (-1189) |#2| (-653 |#2|)))) (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148)) (-13 (-29 |#1|) (-1215) (-969)) (-665 |#2|)) (T -661)) +((-1994 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1189)) (-5 *5 (-653 *2)) (-4 *2 (-13 (-29 *6) (-1215) (-969))) (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *1 (-661 *6 *2 *3)) (-4 *3 (-665 *2)))) (-1994 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1189)) (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-4 *4 (-13 (-29 *6) (-1215) (-969))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3914 (-653 *4)))) (-5 *1 (-661 *6 *4 *3)) (-4 *3 (-665 *4))))) +(-10 -7 (-15 -1994 ((-3 (-2 (|:| |particular| |#2|) (|:| -3914 (-653 |#2|))) "failed") |#3| |#2| (-1189))) (-15 -1994 ((-3 |#2| "failed") |#3| |#2| (-1189) |#2| (-653 |#2|)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3164 (($ $) NIL (|has| |#1| (-371)))) (-4426 (($ $ $) NIL (|has| |#1| (-371)))) (-2130 (($ $ (-780)) NIL (|has| |#1| (-371)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-2843 (($ $ $) NIL (|has| |#1| (-371)))) (-4151 (($ $ $) NIL (|has| |#1| (-371)))) (-2674 (($ $ $) NIL (|has| |#1| (-371)))) (-4376 (($ $ $) NIL (|has| |#1| (-371)))) (-2860 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2683 (((-3 $ "failed") $ $) NIL (|has| |#1| (-371)))) (-2792 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) NIL)) (-2205 (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) NIL)) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#1| (-461)))) (-1959 (((-112) $) NIL)) (-4334 (($ |#1| (-780)) NIL)) (-3007 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-565)))) (-4005 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-565)))) (-4036 (((-780) $) NIL)) (-2128 (($ $ $) NIL (|has| |#1| (-371)))) (-3326 (($ $ $) NIL (|has| |#1| (-371)))) (-2606 (($ $ $) NIL (|has| |#1| (-371)))) (-4319 (($ $ $) NIL (|has| |#1| (-371)))) (-2742 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-3541 (((-3 $ "failed") $ $) NIL (|has| |#1| (-371)))) (-3028 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565)))) (-2198 ((|#1| $ |#1|) NIL)) (-1576 (($ $ $) NIL (|has| |#1| (-371)))) (-2565 (((-780) $) NIL)) (-3257 ((|#1| $) NIL (|has| |#1| (-461)))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ (-416 (-573))) NIL (|has| |#1| (-1050 (-416 (-573))))) (($ |#1|) NIL)) (-1920 (((-653 |#1|) $) NIL)) (-4317 ((|#1| $ (-780)) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2900 ((|#1| $ |#1| |#1|) NIL)) (-4372 (($ $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($) NIL)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-662 |#1|) (-665 |#1|) (-238)) (T -662)) +NIL +(-665 |#1|) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3164 (($ $) NIL (|has| |#1| (-371)))) (-4426 (($ $ $) NIL (|has| |#1| (-371)))) (-2130 (($ $ (-780)) NIL (|has| |#1| (-371)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-2843 (($ $ $) NIL (|has| |#1| (-371)))) (-4151 (($ $ $) NIL (|has| |#1| (-371)))) (-2674 (($ $ $) NIL (|has| |#1| (-371)))) (-4376 (($ $ $) NIL (|has| |#1| (-371)))) (-2860 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2683 (((-3 $ "failed") $ $) NIL (|has| |#1| (-371)))) (-2792 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) NIL)) (-2205 (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) NIL)) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#1| (-461)))) (-1959 (((-112) $) NIL)) (-4334 (($ |#1| (-780)) NIL)) (-3007 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-565)))) (-4005 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-565)))) (-4036 (((-780) $) NIL)) (-2128 (($ $ $) NIL (|has| |#1| (-371)))) (-3326 (($ $ $) NIL (|has| |#1| (-371)))) (-2606 (($ $ $) NIL (|has| |#1| (-371)))) (-4319 (($ $ $) NIL (|has| |#1| (-371)))) (-2742 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-3541 (((-3 $ "failed") $ $) NIL (|has| |#1| (-371)))) (-3028 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565)))) (-2198 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-1576 (($ $ $) NIL (|has| |#1| (-371)))) (-2565 (((-780) $) NIL)) (-3257 ((|#1| $) NIL (|has| |#1| (-461)))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ (-416 (-573))) NIL (|has| |#1| (-1050 (-416 (-573))))) (($ |#1|) NIL)) (-1920 (((-653 |#1|) $) NIL)) (-4317 ((|#1| $ (-780)) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2900 ((|#1| $ |#1| |#1|) NIL)) (-4372 (($ $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($) NIL)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-663 |#1| |#2|) (-13 (-665 |#1|) (-293 |#2| |#2|)) (-238) (-13 (-657 |#1|) (-10 -8 (-15 -3904 ($ $))))) (T -663)) +NIL +(-13 (-665 |#1|) (-293 |#2| |#2|)) +((-3164 (($ $) 29)) (-4372 (($ $) 27)) (-3609 (($) 13))) +(((-664 |#1| |#2|) (-10 -8 (-15 -3164 (|#1| |#1|)) (-15 -4372 (|#1| |#1|)) (-15 -3609 (|#1|))) (-665 |#2|) (-1061)) (T -664)) +NIL +(-10 -8 (-15 -3164 (|#1| |#1|)) (-15 -4372 (|#1| |#1|)) (-15 -3609 (|#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-3164 (($ $) 87 (|has| |#1| (-371)))) (-4426 (($ $ $) 89 (|has| |#1| (-371)))) (-2130 (($ $ (-780)) 88 (|has| |#1| (-371)))) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2843 (($ $ $) 50 (|has| |#1| (-371)))) (-4151 (($ $ $) 51 (|has| |#1| (-371)))) (-2674 (($ $ $) 53 (|has| |#1| (-371)))) (-4376 (($ $ $) 48 (|has| |#1| (-371)))) (-2860 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 47 (|has| |#1| (-371)))) (-2683 (((-3 $ "failed") $ $) 49 (|has| |#1| (-371)))) (-2792 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 52 (|has| |#1| (-371)))) (-1695 (((-3 (-573) "failed") $) 80 (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) 77 (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) 74)) (-2205 (((-573) $) 79 (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) 76 (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) 75)) (-1391 (($ $) 69)) (-2232 (((-3 $ "failed") $) 37)) (-3246 (($ $) 60 (|has| |#1| (-461)))) (-1959 (((-112) $) 35)) (-4334 (($ |#1| (-780)) 67)) (-3007 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 62 (|has| |#1| (-565)))) (-4005 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 63 (|has| |#1| (-565)))) (-4036 (((-780) $) 71)) (-2128 (($ $ $) 57 (|has| |#1| (-371)))) (-3326 (($ $ $) 58 (|has| |#1| (-371)))) (-2606 (($ $ $) 46 (|has| |#1| (-371)))) (-4319 (($ $ $) 55 (|has| |#1| (-371)))) (-2742 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 54 (|has| |#1| (-371)))) (-3541 (((-3 $ "failed") $ $) 56 (|has| |#1| (-371)))) (-3028 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 59 (|has| |#1| (-371)))) (-1369 ((|#1| $) 70)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2837 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-565)))) (-2198 ((|#1| $ |#1|) 92)) (-1576 (($ $ $) 86 (|has| |#1| (-371)))) (-2565 (((-780) $) 72)) (-3257 ((|#1| $) 61 (|has| |#1| (-461)))) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ (-416 (-573))) 78 (|has| |#1| (-1050 (-416 (-573))))) (($ |#1|) 73)) (-1920 (((-653 |#1|) $) 66)) (-4317 ((|#1| $ (-780)) 68)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2900 ((|#1| $ |#1| |#1|) 65)) (-4372 (($ $) 90)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($) 91)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) +(((-665 |#1|) (-141) (-1061)) (T -665)) +((-3609 (*1 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-1061)))) (-4372 (*1 *1 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-1061)))) (-4426 (*1 *1 *1 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-1061)) (-4 *2 (-371)))) (-2130 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-665 *3)) (-4 *3 (-1061)) (-4 *3 (-371)))) (-3164 (*1 *1 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-1061)) (-4 *2 (-371)))) (-1576 (*1 *1 *1 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-1061)) (-4 *2 (-371))))) +(-13 (-861 |t#1|) (-293 |t#1| |t#1|) (-10 -8 (-15 -3609 ($)) (-15 -4372 ($ $)) (IF (|has| |t#1| (-371)) (PROGN (-15 -4426 ($ $ $)) (-15 -2130 ($ $ (-780))) (-15 -3164 ($ $)) (-15 -1576 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 #0=(-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-622 (-871)) . T) ((-293 |#1| |#1|) . T) ((-420 |#1|) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-649 |#1|) |has| |#1| (-174)) ((-726 |#1|) |has| |#1| (-174)) ((-735) . T) ((-1050 #0#) |has| |#1| (-1050 (-416 (-573)))) ((-1050 (-573)) |has| |#1| (-1050 (-573))) ((-1050 |#1|) . T) ((-1063 |#1|) . T) ((-1068 |#1|) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1230) . T) ((-861 |#1|) . T)) +((-2877 (((-653 (-662 (-416 |#2|))) (-662 (-416 |#2|))) 85 (|has| |#1| (-27)))) (-4218 (((-653 (-662 (-416 |#2|))) (-662 (-416 |#2|))) 84 (|has| |#1| (-27))) (((-653 (-662 (-416 |#2|))) (-662 (-416 |#2|)) (-1 (-653 |#1|) |#2|)) 19))) +(((-666 |#1| |#2|) (-10 -7 (-15 -4218 ((-653 (-662 (-416 |#2|))) (-662 (-416 |#2|)) (-1 (-653 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4218 ((-653 (-662 (-416 |#2|))) (-662 (-416 |#2|)))) (-15 -2877 ((-653 (-662 (-416 |#2|))) (-662 (-416 |#2|))))) |%noBranch|)) (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573)))) (-1256 |#1|)) (T -666)) +((-2877 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-4 *5 (-1256 *4)) (-5 *2 (-653 (-662 (-416 *5)))) (-5 *1 (-666 *4 *5)) (-5 *3 (-662 (-416 *5))))) (-4218 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-4 *5 (-1256 *4)) (-5 *2 (-653 (-662 (-416 *5)))) (-5 *1 (-666 *4 *5)) (-5 *3 (-662 (-416 *5))))) (-4218 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-653 *5) *6)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-4 *6 (-1256 *5)) (-5 *2 (-653 (-662 (-416 *6)))) (-5 *1 (-666 *5 *6)) (-5 *3 (-662 (-416 *6)))))) +(-10 -7 (-15 -4218 ((-653 (-662 (-416 |#2|))) (-662 (-416 |#2|)) (-1 (-653 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4218 ((-653 (-662 (-416 |#2|))) (-662 (-416 |#2|)))) (-15 -2877 ((-653 (-662 (-416 |#2|))) (-662 (-416 |#2|))))) |%noBranch|)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3164 (($ $) NIL (|has| |#1| (-371)))) (-4426 (($ $ $) 28 (|has| |#1| (-371)))) (-2130 (($ $ (-780)) 31 (|has| |#1| (-371)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-2843 (($ $ $) NIL (|has| |#1| (-371)))) (-4151 (($ $ $) NIL (|has| |#1| (-371)))) (-2674 (($ $ $) NIL (|has| |#1| (-371)))) (-4376 (($ $ $) NIL (|has| |#1| (-371)))) (-2860 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2683 (((-3 $ "failed") $ $) NIL (|has| |#1| (-371)))) (-2792 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) NIL)) (-2205 (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) NIL)) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#1| (-461)))) (-1959 (((-112) $) NIL)) (-4334 (($ |#1| (-780)) NIL)) (-3007 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-565)))) (-4005 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-565)))) (-4036 (((-780) $) NIL)) (-2128 (($ $ $) NIL (|has| |#1| (-371)))) (-3326 (($ $ $) NIL (|has| |#1| (-371)))) (-2606 (($ $ $) NIL (|has| |#1| (-371)))) (-4319 (($ $ $) NIL (|has| |#1| (-371)))) (-2742 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-3541 (((-3 $ "failed") $ $) NIL (|has| |#1| (-371)))) (-3028 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565)))) (-2198 ((|#1| $ |#1|) 24)) (-1576 (($ $ $) 33 (|has| |#1| (-371)))) (-2565 (((-780) $) NIL)) (-3257 ((|#1| $) NIL (|has| |#1| (-461)))) (-2942 (((-871) $) 20) (($ (-573)) NIL) (($ (-416 (-573))) NIL (|has| |#1| (-1050 (-416 (-573))))) (($ |#1|) NIL)) (-1920 (((-653 |#1|) $) NIL)) (-4317 ((|#1| $ (-780)) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2900 ((|#1| $ |#1| |#1|) 23)) (-4372 (($ $) NIL)) (-2132 (($) 21 T CONST)) (-2144 (($) 8 T CONST)) (-3609 (($) NIL)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-667 |#1| |#2|) (-665 |#1|) (-1061) (-1 |#1| |#1|)) (T -667)) +NIL +(-665 |#1|) +((-4426 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65)) (-2130 ((|#2| |#2| (-780) (-1 |#1| |#1|)) 45)) (-1576 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67))) +(((-668 |#1| |#2|) (-10 -7 (-15 -4426 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2130 (|#2| |#2| (-780) (-1 |#1| |#1|))) (-15 -1576 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-371) (-665 |#1|)) (T -668)) +((-1576 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-371)) (-5 *1 (-668 *4 *2)) (-4 *2 (-665 *4)))) (-2130 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-780)) (-5 *4 (-1 *5 *5)) (-4 *5 (-371)) (-5 *1 (-668 *5 *2)) (-4 *2 (-665 *5)))) (-4426 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-371)) (-5 *1 (-668 *4 *2)) (-4 *2 (-665 *4))))) +(-10 -7 (-15 -4426 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2130 (|#2| |#2| (-780) (-1 |#1| |#1|))) (-15 -1576 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-2924 (($ $ $) 9))) +(((-669 |#1|) (-10 -8 (-15 -2924 (|#1| |#1| |#1|))) (-670)) (T -669)) +NIL +(-10 -8 (-15 -2924 (|#1| |#1| |#1|))) +((-2848 (((-112) $ $) 7)) (-2876 (($ $) 10)) (-2924 (($ $ $) 8)) (-2981 (((-112) $ $) 6)) (-2909 (($ $ $) 9))) +(((-670) (-141)) (T -670)) +((-2876 (*1 *1 *1) (-4 *1 (-670))) (-2909 (*1 *1 *1 *1) (-4 *1 (-670))) (-2924 (*1 *1 *1 *1) (-4 *1 (-670)))) +(-13 (-102) (-10 -8 (-15 -2876 ($ $)) (-15 -2909 ($ $ $)) (-15 -2924 ($ $ $)))) (((-102) . T)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 15)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-2966 ((|#1| $) 23)) (-3659 (($ $ $) NIL (|has| |#1| (-801)))) (-4257 (($ $ $) NIL (|has| |#1| (-801)))) (-4136 (((-1172) $) 48)) (-3966 (((-1133) $) NIL)) (-2977 ((|#3| $) 24)) (-2943 (((-872) $) 43)) (-3284 (((-112) $ $) 22)) (-2133 (($) 10 T CONST)) (-3042 (((-112) $ $) NIL (|has| |#1| (-801)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-801)))) (-2981 (((-112) $ $) 20)) (-3030 (((-112) $ $) NIL (|has| |#1| (-801)))) (-3007 (((-112) $ $) 26 (|has| |#1| (-801)))) (-3108 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-3094 (($ $) 17) (($ $ $) NIL)) (-3079 (($ $ $) 29)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL))) -(((-672 |#1| |#2| |#3|) (-13 (-727 |#2|) (-10 -8 (IF (|has| |#1| (-801)) (-6 (-801)) |%noBranch|) (-15 -3108 ($ $ |#3|)) (-15 -3108 ($ |#1| |#3|)) (-15 -2966 (|#1| $)) (-15 -2977 (|#3| $)))) (-727 |#2|) (-174) (|SubsetCategory| (-736) |#2|)) (T -672)) -((-3108 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-672 *3 *4 *2)) (-4 *3 (-727 *4)) (-4 *2 (|SubsetCategory| (-736) *4)))) (-3108 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-672 *2 *4 *3)) (-4 *2 (-727 *4)) (-4 *3 (|SubsetCategory| (-736) *4)))) (-2966 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-727 *3)) (-5 *1 (-672 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-736) *3)))) (-2977 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-736) *4)) (-5 *1 (-672 *3 *4 *2)) (-4 *3 (-727 *4))))) -(-13 (-727 |#2|) (-10 -8 (IF (|has| |#1| (-801)) (-6 (-801)) |%noBranch|) (-15 -3108 ($ $ |#3|)) (-15 -3108 ($ |#1| |#3|)) (-15 -2966 (|#1| $)) (-15 -2977 (|#3| $)))) -((-3343 (((-3 (-654 (-1186 |#1|)) "failed") (-654 (-1186 |#1|)) (-1186 |#1|)) 33))) -(((-673 |#1|) (-10 -7 (-15 -3343 ((-3 (-654 (-1186 |#1|)) "failed") (-654 (-1186 |#1|)) (-1186 |#1|)))) (-920)) (T -673)) -((-3343 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1186 *4))) (-5 *3 (-1186 *4)) (-4 *4 (-920)) (-5 *1 (-673 *4))))) -(-10 -7 (-15 -3343 ((-3 (-654 (-1186 |#1|)) "failed") (-654 (-1186 |#1|)) (-1186 |#1|)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1655 (((-654 |#1|) $) 84)) (-3805 (($ $ (-781)) 94)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-3593 (((-1305 |#1| |#2|) (-1305 |#1| |#2|) $) 50)) (-1696 (((-3 (-682 |#1|) "failed") $) NIL)) (-2206 (((-682 |#1|) $) NIL)) (-1392 (($ $) 93)) (-1322 (((-781) $) NIL)) (-3727 (((-654 $) $) NIL)) (-3869 (((-112) $) NIL)) (-3832 (($ (-682 |#1|) |#2|) 70)) (-4248 (($ $) 89)) (-1777 (($ (-1 |#2| |#2|) $) NIL)) (-3548 (((-1305 |#1| |#2|) (-1305 |#1| |#2|) $) 49)) (-2767 (((-2 (|:| |k| (-682 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1359 (((-682 |#1|) $) NIL)) (-1370 ((|#2| $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2646 (($ $ |#1| $) 32) (($ $ (-654 |#1|) (-654 $)) 34)) (-4202 (((-781) $) 91)) (-2956 (($ $ $) 20) (($ (-682 |#1|) (-682 |#1|)) 79) (($ (-682 |#1|) $) 77) (($ $ (-682 |#1|)) 78)) (-2943 (((-872) $) NIL) (($ |#1|) 76) (((-1296 |#1| |#2|) $) 60) (((-1305 |#1| |#2|) $) 43) (($ (-682 |#1|)) 27)) (-2530 (((-654 |#2|) $) NIL)) (-3087 ((|#2| $ (-682 |#1|)) NIL)) (-1858 ((|#2| (-1305 |#1| |#2|) $) 45)) (-3284 (((-112) $ $) NIL)) (-2133 (($) 23 T CONST)) (-1388 (((-654 (-2 (|:| |k| (-682 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4021 (((-3 $ "failed") (-1296 |#1| |#2|)) 62)) (-1756 (($ (-682 |#1|)) 14)) (-2981 (((-112) $ $) 46)) (-3108 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3094 (($ $) 68) (($ $ $) NIL)) (-3079 (($ $ $) 31)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-682 |#1|)) NIL))) -(((-674 |#1| |#2|) (-13 (-383 |#1| |#2|) (-391 |#2| (-682 |#1|)) (-10 -8 (-15 -4021 ((-3 $ "failed") (-1296 |#1| |#2|))) (-15 -2956 ($ (-682 |#1|) (-682 |#1|))) (-15 -2956 ($ (-682 |#1|) $)) (-15 -2956 ($ $ (-682 |#1|))))) (-860) (-174)) (T -674)) -((-4021 (*1 *1 *2) (|partial| -12 (-5 *2 (-1296 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *1 (-674 *3 *4)))) (-2956 (*1 *1 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4)) (-4 *4 (-174)))) (-2956 (*1 *1 *2 *1) (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4)) (-4 *4 (-174)))) (-2956 (*1 *1 *1 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4)) (-4 *4 (-174))))) -(-13 (-383 |#1| |#2|) (-391 |#2| (-682 |#1|)) (-10 -8 (-15 -4021 ((-3 $ "failed") (-1296 |#1| |#2|))) (-15 -2956 ($ (-682 |#1|) (-682 |#1|))) (-15 -2956 ($ (-682 |#1|) $)) (-15 -2956 ($ $ (-682 |#1|))))) -((-1357 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 59)) (-3642 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-3572 (($ (-1 (-112) |#2|) $) 29)) (-2627 (($ $) 65)) (-1771 (($ $) 74)) (-2876 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-2868 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62)) (-1441 (((-574) |#2| $ (-574)) 71) (((-574) |#2| $) NIL) (((-574) (-1 (-112) |#2|) $) 54)) (-3790 (($ (-781) |#2|) 63)) (-2628 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-4430 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-1777 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 64)) (-1788 (($ |#2|) 15)) (-2798 (($ $ $ (-574)) 42) (($ |#2| $ (-574)) 40)) (-1549 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-2932 (($ $ (-1248 (-574))) 51) (($ $ (-574)) 44)) (-3506 (($ $ $ (-574)) 70)) (-3167 (($ $) 68)) (-3007 (((-112) $ $) 76))) -(((-675 |#1| |#2|) (-10 -8 (-15 -1788 (|#1| |#2|)) (-15 -2932 (|#1| |#1| (-574))) (-15 -2932 (|#1| |#1| (-1248 (-574)))) (-15 -2876 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2798 (|#1| |#2| |#1| (-574))) (-15 -2798 (|#1| |#1| |#1| (-574))) (-15 -2628 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3572 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2876 (|#1| |#2| |#1|)) (-15 -1771 (|#1| |#1|)) (-15 -2628 (|#1| |#1| |#1|)) (-15 -4430 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1357 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1441 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -1441 ((-574) |#2| |#1|)) (-15 -1441 ((-574) |#2| |#1| (-574))) (-15 -4430 (|#1| |#1| |#1|)) (-15 -1357 ((-112) |#1|)) (-15 -3506 (|#1| |#1| |#1| (-574))) (-15 -2627 (|#1| |#1|)) (-15 -3642 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3642 (|#1| |#1|)) (-15 -3007 ((-112) |#1| |#1|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1549 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3790 (|#1| (-781) |#2|)) (-15 -1777 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1777 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3167 (|#1| |#1|))) (-676 |#2|) (-1231)) (T -675)) -NIL -(-10 -8 (-15 -1788 (|#1| |#2|)) (-15 -2932 (|#1| |#1| (-574))) (-15 -2932 (|#1| |#1| (-1248 (-574)))) (-15 -2876 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2798 (|#1| |#2| |#1| (-574))) (-15 -2798 (|#1| |#1| |#1| (-574))) (-15 -2628 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3572 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2876 (|#1| |#2| |#1|)) (-15 -1771 (|#1| |#1|)) (-15 -2628 (|#1| |#1| |#1|)) (-15 -4430 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1357 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1441 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -1441 ((-574) |#2| |#1|)) (-15 -1441 ((-574) |#2| |#1| (-574))) (-15 -4430 (|#1| |#1| |#1|)) (-15 -1357 ((-112) |#1|)) (-15 -3506 (|#1| |#1| |#1| (-574))) (-15 -2627 (|#1| |#1|)) (-15 -3642 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3642 (|#1| |#1|)) (-15 -3007 ((-112) |#1| |#1|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2868 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1549 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3790 (|#1| (-781) |#2|)) (-15 -1777 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1777 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3167 (|#1| |#1|))) -((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3083 ((|#1| $) 49)) (-2406 ((|#1| $) 66)) (-1970 (($ $) 68)) (-3714 (((-1286) $ (-574) (-574)) 99 (|has| $ (-6 -4457)))) (-3617 (($ $ (-574)) 53 (|has| $ (-6 -4457)))) (-1357 (((-112) $) 144 (|has| |#1| (-860))) (((-112) (-1 (-112) |#1| |#1|) $) 138)) (-3642 (($ $) 148 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4457)))) (($ (-1 (-112) |#1| |#1|) $) 147 (|has| $ (-6 -4457)))) (-2771 (($ $) 143 (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $) 137)) (-3034 (((-112) $ (-781)) 8)) (-3316 ((|#1| $ |#1|) 40 (|has| $ (-6 -4457)))) (-3575 (($ $ $) 57 (|has| $ (-6 -4457)))) (-3582 ((|#1| $ |#1|) 55 (|has| $ (-6 -4457)))) (-3630 ((|#1| $ |#1|) 59 (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4457))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4457))) (($ $ "rest" $) 56 (|has| $ (-6 -4457))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) 119 (|has| $ (-6 -4457))) ((|#1| $ (-574) |#1|) 88 (|has| $ (-6 -4457)))) (-2183 (($ $ (-654 $)) 42 (|has| $ (-6 -4457)))) (-3572 (($ (-1 (-112) |#1|) $) 131)) (-2165 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4456)))) (-2393 ((|#1| $) 67)) (-3426 (($) 7 T CONST)) (-2627 (($ $) 146 (|has| $ (-6 -4457)))) (-4423 (($ $) 136)) (-2926 (($ $) 74) (($ $ (-781)) 72)) (-1771 (($ $) 133 (|has| |#1| (-1113)))) (-1543 (($ $) 101 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2876 (($ |#1| $) 132 (|has| |#1| (-1113))) (($ (-1 (-112) |#1|) $) 127)) (-3335 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4456))) (($ |#1| $) 102 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2458 ((|#1| $ (-574) |#1|) 87 (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) 89)) (-1688 (((-112) $) 85)) (-1441 (((-574) |#1| $ (-574)) 141 (|has| |#1| (-1113))) (((-574) |#1| $) 140 (|has| |#1| (-1113))) (((-574) (-1 (-112) |#1|) $) 139)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3820 (((-654 $) $) 51)) (-2278 (((-112) $ $) 43 (|has| |#1| (-1113)))) (-3790 (($ (-781) |#1|) 111)) (-2742 (((-112) $ (-781)) 9)) (-3618 (((-574) $) 97 (|has| (-574) (-860)))) (-3659 (($ $ $) 149 (|has| |#1| (-860)))) (-2628 (($ $ $) 134 (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) 130)) (-4430 (($ $ $) 142 (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) 135)) (-1606 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2702 (((-574) $) 96 (|has| (-574) (-860)))) (-4257 (($ $ $) 150 (|has| |#1| (-860)))) (-2449 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1788 (($ |#1|) 124)) (-4203 (((-112) $ (-781)) 10)) (-3507 (((-654 |#1|) $) 46)) (-3632 (((-112) $) 50)) (-4136 (((-1172) $) 22 (|has| |#1| (-1113)))) (-3360 ((|#1| $) 71) (($ $ (-781)) 69)) (-2798 (($ $ $ (-574)) 129) (($ |#1| $ (-574)) 128)) (-1594 (($ $ $ (-574)) 118) (($ |#1| $ (-574)) 117)) (-4308 (((-654 (-574)) $) 94)) (-3336 (((-112) (-574) $) 93)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-2915 ((|#1| $) 77) (($ $ (-781)) 75)) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-1942 (($ $ |#1|) 98 (|has| $ (-6 -4457)))) (-4073 (((-112) $) 86)) (-2540 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 14)) (-3398 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-4371 (((-654 |#1|) $) 92)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-2199 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1248 (-574))) 110) ((|#1| $ (-574)) 91) ((|#1| $ (-574) |#1|) 90)) (-3867 (((-574) $ $) 45)) (-2932 (($ $ (-1248 (-574))) 126) (($ $ (-574)) 125)) (-2840 (($ $ (-1248 (-574))) 116) (($ $ (-574)) 115)) (-2479 (((-112) $) 47)) (-2595 (($ $) 63)) (-4434 (($ $) 60 (|has| $ (-6 -4457)))) (-3066 (((-781) $) 64)) (-2807 (($ $) 65)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3506 (($ $ $ (-574)) 145 (|has| $ (-6 -4457)))) (-3167 (($ $) 13)) (-1836 (((-546) $) 100 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 109)) (-1995 (($ $ $) 62) (($ $ |#1|) 61)) (-4157 (($ $ $) 79) (($ |#1| $) 78) (($ (-654 $)) 113) (($ $ |#1|) 112)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2321 (((-654 $) $) 52)) (-4418 (((-112) $ $) 44 (|has| |#1| (-1113)))) (-3284 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-3042 (((-112) $ $) 152 (|has| |#1| (-860)))) (-3018 (((-112) $ $) 153 (|has| |#1| (-860)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-3030 (((-112) $ $) 151 (|has| |#1| (-860)))) (-3007 (((-112) $ $) 154 (|has| |#1| (-860)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-676 |#1|) (-141) (-1231)) (T -676)) -((-1788 (*1 *1 *2) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1231))))) -(-13 (-1162 |t#1|) (-382 |t#1|) (-290 |t#1|) (-10 -8 (-15 -1788 ($ |t#1|)))) -(((-34) . T) ((-102) -2818 (|has| |#1| (-1113)) (|has| |#1| (-860))) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-860)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1248 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-290 |#1|) . T) ((-382 |#1|) . T) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-661 |#1|) . T) ((-860) |has| |#1| (-860)) ((-1023 |#1|) . T) ((-1113) -2818 (|has| |#1| (-1113)) (|has| |#1| (-860))) ((-1162 |#1|) . T) ((-1231) . T) ((-1269 |#1|) . T)) -((-1701 (((-654 (-2 (|:| |particular| (-3 (-1281 |#1|) "failed")) (|:| -1882 (-654 (-1281 |#1|))))) (-654 (-654 |#1|)) (-654 (-1281 |#1|))) 22) (((-654 (-2 (|:| |particular| (-3 (-1281 |#1|) "failed")) (|:| -1882 (-654 (-1281 |#1|))))) (-699 |#1|) (-654 (-1281 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1281 |#1|) "failed")) (|:| -1882 (-654 (-1281 |#1|)))) (-654 (-654 |#1|)) (-1281 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1281 |#1|) "failed")) (|:| -1882 (-654 (-1281 |#1|)))) (-699 |#1|) (-1281 |#1|)) 14)) (-3584 (((-781) (-699 |#1|) (-1281 |#1|)) 30)) (-3358 (((-3 (-1281 |#1|) "failed") (-699 |#1|) (-1281 |#1|)) 24)) (-2083 (((-112) (-699 |#1|) (-1281 |#1|)) 27))) -(((-677 |#1|) (-10 -7 (-15 -1701 ((-2 (|:| |particular| (-3 (-1281 |#1|) "failed")) (|:| -1882 (-654 (-1281 |#1|)))) (-699 |#1|) (-1281 |#1|))) (-15 -1701 ((-2 (|:| |particular| (-3 (-1281 |#1|) "failed")) (|:| -1882 (-654 (-1281 |#1|)))) (-654 (-654 |#1|)) (-1281 |#1|))) (-15 -1701 ((-654 (-2 (|:| |particular| (-3 (-1281 |#1|) "failed")) (|:| -1882 (-654 (-1281 |#1|))))) (-699 |#1|) (-654 (-1281 |#1|)))) (-15 -1701 ((-654 (-2 (|:| |particular| (-3 (-1281 |#1|) "failed")) (|:| -1882 (-654 (-1281 |#1|))))) (-654 (-654 |#1|)) (-654 (-1281 |#1|)))) (-15 -3358 ((-3 (-1281 |#1|) "failed") (-699 |#1|) (-1281 |#1|))) (-15 -2083 ((-112) (-699 |#1|) (-1281 |#1|))) (-15 -3584 ((-781) (-699 |#1|) (-1281 |#1|)))) (-372)) (T -677)) -((-3584 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *5)) (-5 *4 (-1281 *5)) (-4 *5 (-372)) (-5 *2 (-781)) (-5 *1 (-677 *5)))) (-2083 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *5)) (-5 *4 (-1281 *5)) (-4 *5 (-372)) (-5 *2 (-112)) (-5 *1 (-677 *5)))) (-3358 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1281 *4)) (-5 *3 (-699 *4)) (-4 *4 (-372)) (-5 *1 (-677 *4)))) (-1701 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-654 *5))) (-4 *5 (-372)) (-5 *2 (-654 (-2 (|:| |particular| (-3 (-1281 *5) "failed")) (|:| -1882 (-654 (-1281 *5)))))) (-5 *1 (-677 *5)) (-5 *4 (-654 (-1281 *5))))) (-1701 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *5)) (-4 *5 (-372)) (-5 *2 (-654 (-2 (|:| |particular| (-3 (-1281 *5) "failed")) (|:| -1882 (-654 (-1281 *5)))))) (-5 *1 (-677 *5)) (-5 *4 (-654 (-1281 *5))))) (-1701 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-654 *5))) (-4 *5 (-372)) (-5 *2 (-2 (|:| |particular| (-3 (-1281 *5) "failed")) (|:| -1882 (-654 (-1281 *5))))) (-5 *1 (-677 *5)) (-5 *4 (-1281 *5)))) (-1701 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| |particular| (-3 (-1281 *5) "failed")) (|:| -1882 (-654 (-1281 *5))))) (-5 *1 (-677 *5)) (-5 *4 (-1281 *5))))) -(-10 -7 (-15 -1701 ((-2 (|:| |particular| (-3 (-1281 |#1|) "failed")) (|:| -1882 (-654 (-1281 |#1|)))) (-699 |#1|) (-1281 |#1|))) (-15 -1701 ((-2 (|:| |particular| (-3 (-1281 |#1|) "failed")) (|:| -1882 (-654 (-1281 |#1|)))) (-654 (-654 |#1|)) (-1281 |#1|))) (-15 -1701 ((-654 (-2 (|:| |particular| (-3 (-1281 |#1|) "failed")) (|:| -1882 (-654 (-1281 |#1|))))) (-699 |#1|) (-654 (-1281 |#1|)))) (-15 -1701 ((-654 (-2 (|:| |particular| (-3 (-1281 |#1|) "failed")) (|:| -1882 (-654 (-1281 |#1|))))) (-654 (-654 |#1|)) (-654 (-1281 |#1|)))) (-15 -3358 ((-3 (-1281 |#1|) "failed") (-699 |#1|) (-1281 |#1|))) (-15 -2083 ((-112) (-699 |#1|) (-1281 |#1|))) (-15 -3584 ((-781) (-699 |#1|) (-1281 |#1|)))) -((-1701 (((-654 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1882 (-654 |#3|)))) |#4| (-654 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1882 (-654 |#3|))) |#4| |#3|) 60)) (-3584 (((-781) |#4| |#3|) 18)) (-3358 (((-3 |#3| "failed") |#4| |#3|) 21)) (-2083 (((-112) |#4| |#3|) 14))) -(((-678 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1701 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1882 (-654 |#3|))) |#4| |#3|)) (-15 -1701 ((-654 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1882 (-654 |#3|)))) |#4| (-654 |#3|))) (-15 -3358 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2083 ((-112) |#4| |#3|)) (-15 -3584 ((-781) |#4| |#3|))) (-372) (-13 (-382 |#1|) (-10 -7 (-6 -4457))) (-13 (-382 |#1|) (-10 -7 (-6 -4457))) (-697 |#1| |#2| |#3|)) (T -678)) -((-3584 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4457)))) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4457)))) (-5 *2 (-781)) (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4)))) (-2083 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4457)))) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4457)))) (-5 *2 (-112)) (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4)))) (-3358 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-372)) (-4 *5 (-13 (-382 *4) (-10 -7 (-6 -4457)))) (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4457)))) (-5 *1 (-678 *4 *5 *2 *3)) (-4 *3 (-697 *4 *5 *2)))) (-1701 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4457)))) (-4 *7 (-13 (-382 *5) (-10 -7 (-6 -4457)))) (-5 *2 (-654 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1882 (-654 *7))))) (-5 *1 (-678 *5 *6 *7 *3)) (-5 *4 (-654 *7)) (-4 *3 (-697 *5 *6 *7)))) (-1701 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4457)))) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4457)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1882 (-654 *4)))) (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4))))) -(-10 -7 (-15 -1701 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1882 (-654 |#3|))) |#4| |#3|)) (-15 -1701 ((-654 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1882 (-654 |#3|)))) |#4| (-654 |#3|))) (-15 -3358 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2083 ((-112) |#4| |#3|)) (-15 -3584 ((-781) |#4| |#3|))) -((-4262 (((-2 (|:| |particular| (-3 (-1281 (-417 |#4|)) "failed")) (|:| -1882 (-654 (-1281 (-417 |#4|))))) (-654 |#4|) (-654 |#3|)) 51))) -(((-679 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4262 ((-2 (|:| |particular| (-3 (-1281 (-417 |#4|)) "failed")) (|:| -1882 (-654 (-1281 (-417 |#4|))))) (-654 |#4|) (-654 |#3|)))) (-566) (-803) (-860) (-960 |#1| |#2| |#3|)) (T -679)) -((-4262 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *7)) (-4 *7 (-860)) (-4 *8 (-960 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-5 *2 (-2 (|:| |particular| (-3 (-1281 (-417 *8)) "failed")) (|:| -1882 (-654 (-1281 (-417 *8)))))) (-5 *1 (-679 *5 *6 *7 *8))))) -(-10 -7 (-15 -4262 ((-2 (|:| |particular| (-3 (-1281 (-417 |#4|)) "failed")) (|:| -1882 (-654 (-1281 (-417 |#4|))))) (-654 |#4|) (-654 |#3|)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-2785 (((-3 $ "failed")) NIL (|has| |#2| (-566)))) (-1636 ((|#2| $) NIL)) (-3291 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-2174 (((-1281 (-699 |#2|))) NIL) (((-1281 (-699 |#2|)) (-1281 $)) NIL)) (-2224 (((-112) $) NIL)) (-4274 (((-1281 $)) 42)) (-3034 (((-112) $ (-781)) NIL)) (-1346 (($ |#2|) NIL)) (-3426 (($) NIL T CONST)) (-2879 (($ $) NIL (|has| |#2| (-315)))) (-4170 (((-246 |#1| |#2|) $ (-574)) NIL)) (-1666 (((-3 (-2 (|:| |particular| $) (|:| -1882 (-654 $))) "failed")) NIL (|has| |#2| (-566)))) (-1854 (((-3 $ "failed")) NIL (|has| |#2| (-566)))) (-2301 (((-699 |#2|)) NIL) (((-699 |#2|) (-1281 $)) NIL)) (-2538 ((|#2| $) NIL)) (-3208 (((-699 |#2|) $) NIL) (((-699 |#2|) $ (-1281 $)) NIL)) (-2784 (((-3 $ "failed") $) NIL (|has| |#2| (-566)))) (-2378 (((-1186 (-963 |#2|))) NIL (|has| |#2| (-372)))) (-2397 (($ $ (-932)) NIL)) (-3870 ((|#2| $) NIL)) (-3664 (((-1186 |#2|) $) NIL (|has| |#2| (-566)))) (-1565 ((|#2|) NIL) ((|#2| (-1281 $)) NIL)) (-1436 (((-1186 |#2|) $) NIL)) (-3287 (((-112)) NIL)) (-1696 (((-3 (-574) "failed") $) NIL (|has| |#2| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1051 (-417 (-574))))) (((-3 |#2| "failed") $) NIL)) (-2206 (((-574) $) NIL (|has| |#2| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#2| (-1051 (-417 (-574))))) ((|#2| $) NIL)) (-2737 (($ (-1281 |#2|)) NIL) (($ (-1281 |#2|) (-1281 $)) NIL)) (-2590 (((-699 (-574)) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1281 $)) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-3584 (((-781) $) NIL (|has| |#2| (-566))) (((-932)) 43)) (-2385 ((|#2| $ (-574) (-574)) NIL)) (-2542 (((-112)) NIL)) (-2817 (($ $ (-932)) NIL)) (-1864 (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-3199 (((-112) $) NIL)) (-1602 (((-781) $) NIL (|has| |#2| (-566)))) (-2548 (((-654 (-246 |#1| |#2|)) $) NIL (|has| |#2| (-566)))) (-2189 (((-781) $) NIL)) (-1514 (((-112)) NIL)) (-2198 (((-781) $) NIL)) (-2742 (((-112) $ (-781)) NIL)) (-3609 ((|#2| $) NIL (|has| |#2| (-6 (-4458 "*"))))) (-3491 (((-574) $) NIL)) (-1630 (((-574) $) NIL)) (-1606 (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-3068 (((-574) $) NIL)) (-3691 (((-574) $) NIL)) (-2914 (($ (-654 (-654 |#2|))) NIL)) (-2449 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1394 (((-654 (-654 |#2|)) $) NIL)) (-3168 (((-112)) NIL)) (-3531 (((-112)) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-2269 (((-3 (-2 (|:| |particular| $) (|:| -1882 (-654 $))) "failed")) NIL (|has| |#2| (-566)))) (-1484 (((-3 $ "failed")) NIL (|has| |#2| (-566)))) (-2284 (((-699 |#2|)) NIL) (((-699 |#2|) (-1281 $)) NIL)) (-1450 ((|#2| $) NIL)) (-2787 (((-699 |#2|) $) NIL) (((-699 |#2|) $ (-1281 $)) NIL)) (-4271 (((-3 $ "failed") $) NIL (|has| |#2| (-566)))) (-1451 (((-1186 (-963 |#2|))) NIL (|has| |#2| (-372)))) (-2422 (($ $ (-932)) NIL)) (-2552 ((|#2| $) NIL)) (-1460 (((-1186 |#2|) $) NIL (|has| |#2| (-566)))) (-1810 ((|#2|) NIL) ((|#2| (-1281 $)) NIL)) (-1943 (((-1186 |#2|) $) NIL)) (-4037 (((-112)) NIL)) (-4136 (((-1172) $) NIL)) (-1342 (((-112)) NIL)) (-3227 (((-112)) NIL)) (-2949 (((-112)) NIL)) (-2063 (((-3 $ "failed") $) NIL (|has| |#2| (-372)))) (-3966 (((-1133) $) NIL)) (-3604 (((-112)) NIL)) (-2838 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566)))) (-2540 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))) (-4017 (((-112) $ $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 ((|#2| $ (-574) (-574) |#2|) NIL) ((|#2| $ (-574) (-574)) 28) ((|#2| $ (-574)) NIL)) (-3905 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-781)) NIL (|has| |#2| (-239))) (($ $) NIL (|has| |#2| (-239)))) (-2159 ((|#2| $) NIL)) (-2691 (($ (-654 |#2|)) NIL)) (-2675 (((-112) $) NIL)) (-3130 (((-246 |#1| |#2|) $) NIL)) (-3192 ((|#2| $) NIL (|has| |#2| (-6 (-4458 "*"))))) (-3975 (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-3167 (($ $) NIL)) (-3487 (((-699 |#2|) (-1281 $)) NIL) (((-1281 |#2|) $) NIL) (((-699 |#2|) (-1281 $) (-1281 $)) NIL) (((-1281 |#2|) $ (-1281 $)) 31)) (-1836 (($ (-1281 |#2|)) NIL) (((-1281 |#2|) $) NIL)) (-3760 (((-654 (-963 |#2|))) NIL) (((-654 (-963 |#2|)) (-1281 $)) NIL)) (-3204 (($ $ $) NIL)) (-3163 (((-112)) NIL)) (-2471 (((-246 |#1| |#2|) $ (-574)) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#2| (-1051 (-417 (-574))))) (($ |#2|) NIL) (((-699 |#2|) $) NIL)) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-1882 (((-1281 $)) 41)) (-2735 (((-654 (-1281 |#2|))) NIL (|has| |#2| (-566)))) (-1320 (($ $ $ $) NIL)) (-2525 (((-112)) NIL)) (-2901 (($ (-699 |#2|) $) NIL)) (-3390 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2539 (((-112) $) NIL)) (-2299 (($ $ $) NIL)) (-3971 (((-112)) NIL)) (-3545 (((-112)) NIL)) (-1950 (((-112)) NIL)) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-3610 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-781)) NIL (|has| |#2| (-239))) (($ $) NIL (|has| |#2| (-239)))) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#2| (-372)))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) NIL) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) NIL)) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-680 |#1| |#2|) (-13 (-1136 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-623 (-699 |#2|)) (-427 |#2|)) (-932) (-174)) (T -680)) -NIL -(-13 (-1136 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-623 (-699 |#2|)) (-427 |#2|)) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-4422 (((-654 (-1148)) $) 10)) (-2943 (((-872) $) 16) (($ (-1195)) NIL) (((-1195) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-681) (-13 (-1096) (-10 -8 (-15 -4422 ((-654 (-1148)) $))))) (T -681)) -((-4422 (*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-681))))) -(-13 (-1096) (-10 -8 (-15 -4422 ((-654 (-1148)) $)))) -((-2849 (((-112) $ $) NIL)) (-1655 (((-654 |#1|) $) NIL)) (-3904 (($ $) 62)) (-3865 (((-112) $) NIL)) (-1696 (((-3 |#1| "failed") $) NIL)) (-2206 ((|#1| $) NIL)) (-3659 (($ $ $) NIL)) (-4257 (($ $ $) NIL)) (-2761 (((-3 $ "failed") (-829 |#1|)) 27)) (-2526 (((-112) (-829 |#1|)) 17)) (-3326 (($ (-829 |#1|)) 28)) (-4144 (((-112) $ $) 36)) (-4135 (((-932) $) 43)) (-3891 (($ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-4220 (((-654 $) (-829 |#1|)) 19)) (-2943 (((-872) $) 51) (($ |#1|) 40) (((-829 |#1|) $) 47) (((-687 |#1|) $) 52)) (-3284 (((-112) $ $) NIL)) (-1640 (((-59 (-654 $)) (-654 |#1|) (-932)) 67)) (-3064 (((-654 $) (-654 |#1|) (-932)) 70)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 63)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) 46))) -(((-682 |#1|) (-13 (-860) (-1051 |#1|) (-10 -8 (-15 -3865 ((-112) $)) (-15 -3891 ($ $)) (-15 -3904 ($ $)) (-15 -4135 ((-932) $)) (-15 -4144 ((-112) $ $)) (-15 -2943 ((-829 |#1|) $)) (-15 -2943 ((-687 |#1|) $)) (-15 -4220 ((-654 $) (-829 |#1|))) (-15 -2526 ((-112) (-829 |#1|))) (-15 -3326 ($ (-829 |#1|))) (-15 -2761 ((-3 $ "failed") (-829 |#1|))) (-15 -1655 ((-654 |#1|) $)) (-15 -1640 ((-59 (-654 $)) (-654 |#1|) (-932))) (-15 -3064 ((-654 $) (-654 |#1|) (-932))))) (-860)) (T -682)) -((-3865 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-3891 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-860)))) (-3904 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-860)))) (-4135 (*1 *2 *1) (-12 (-5 *2 (-932)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-4144 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-687 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-4220 (*1 *2 *3) (-12 (-5 *3 (-829 *4)) (-4 *4 (-860)) (-5 *2 (-654 (-682 *4))) (-5 *1 (-682 *4)))) (-2526 (*1 *2 *3) (-12 (-5 *3 (-829 *4)) (-4 *4 (-860)) (-5 *2 (-112)) (-5 *1 (-682 *4)))) (-3326 (*1 *1 *2) (-12 (-5 *2 (-829 *3)) (-4 *3 (-860)) (-5 *1 (-682 *3)))) (-2761 (*1 *1 *2) (|partial| -12 (-5 *2 (-829 *3)) (-4 *3 (-860)) (-5 *1 (-682 *3)))) (-1655 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-1640 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-932)) (-4 *5 (-860)) (-5 *2 (-59 (-654 (-682 *5)))) (-5 *1 (-682 *5)))) (-3064 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-932)) (-4 *5 (-860)) (-5 *2 (-654 (-682 *5))) (-5 *1 (-682 *5))))) -(-13 (-860) (-1051 |#1|) (-10 -8 (-15 -3865 ((-112) $)) (-15 -3891 ($ $)) (-15 -3904 ($ $)) (-15 -4135 ((-932) $)) (-15 -4144 ((-112) $ $)) (-15 -2943 ((-829 |#1|) $)) (-15 -2943 ((-687 |#1|) $)) (-15 -4220 ((-654 $) (-829 |#1|))) (-15 -2526 ((-112) (-829 |#1|))) (-15 -3326 ($ (-829 |#1|))) (-15 -2761 ((-3 $ "failed") (-829 |#1|))) (-15 -1655 ((-654 |#1|) $)) (-15 -1640 ((-59 (-654 $)) (-654 |#1|) (-932))) (-15 -3064 ((-654 $) (-654 |#1|) (-932))))) -((-3083 ((|#2| $) 100)) (-1970 (($ $) 121)) (-3034 (((-112) $ (-781)) 35)) (-2926 (($ $) 109) (($ $ (-781)) 112)) (-1688 (((-112) $) 122)) (-3820 (((-654 $) $) 96)) (-2278 (((-112) $ $) 92)) (-2742 (((-112) $ (-781)) 33)) (-3618 (((-574) $) 66)) (-2702 (((-574) $) 65)) (-4203 (((-112) $ (-781)) 31)) (-3632 (((-112) $) 98)) (-3360 ((|#2| $) 113) (($ $ (-781)) 117)) (-1594 (($ $ $ (-574)) 83) (($ |#2| $ (-574)) 82)) (-4308 (((-654 (-574)) $) 64)) (-3336 (((-112) (-574) $) 59)) (-2915 ((|#2| $) NIL) (($ $ (-781)) 108)) (-2533 (($ $ (-574)) 125)) (-4073 (((-112) $) 124)) (-2540 (((-112) (-1 (-112) |#2|) $) 42)) (-4371 (((-654 |#2|) $) 46)) (-2199 ((|#2| $ "value") NIL) ((|#2| $ "first") 107) (($ $ "rest") 111) ((|#2| $ "last") 120) (($ $ (-1248 (-574))) 79) ((|#2| $ (-574)) 57) ((|#2| $ (-574) |#2|) 58)) (-3867 (((-574) $ $) 91)) (-2840 (($ $ (-1248 (-574))) 78) (($ $ (-574)) 72)) (-2479 (((-112) $) 87)) (-2595 (($ $) 105)) (-3066 (((-781) $) 104)) (-2807 (($ $) 103)) (-2956 (($ (-654 |#2|)) 53)) (-1651 (($ $) 126)) (-2321 (((-654 $) $) 90)) (-4418 (((-112) $ $) 89)) (-3390 (((-112) (-1 (-112) |#2|) $) 41)) (-2981 (((-112) $ $) 20)) (-2863 (((-781) $) 39))) -(((-683 |#1| |#2|) (-10 -8 (-15 -1651 (|#1| |#1|)) (-15 -2533 (|#1| |#1| (-574))) (-15 -1688 ((-112) |#1|)) (-15 -4073 ((-112) |#1|)) (-15 -2199 (|#2| |#1| (-574) |#2|)) (-15 -2199 (|#2| |#1| (-574))) (-15 -4371 ((-654 |#2|) |#1|)) (-15 -3336 ((-112) (-574) |#1|)) (-15 -4308 ((-654 (-574)) |#1|)) (-15 -2702 ((-574) |#1|)) (-15 -3618 ((-574) |#1|)) (-15 -2956 (|#1| (-654 |#2|))) (-15 -2199 (|#1| |#1| (-1248 (-574)))) (-15 -2840 (|#1| |#1| (-574))) (-15 -2840 (|#1| |#1| (-1248 (-574)))) (-15 -1594 (|#1| |#2| |#1| (-574))) (-15 -1594 (|#1| |#1| |#1| (-574))) (-15 -2595 (|#1| |#1|)) (-15 -3066 ((-781) |#1|)) (-15 -2807 (|#1| |#1|)) (-15 -1970 (|#1| |#1|)) (-15 -3360 (|#1| |#1| (-781))) (-15 -2199 (|#2| |#1| "last")) (-15 -3360 (|#2| |#1|)) (-15 -2926 (|#1| |#1| (-781))) (-15 -2199 (|#1| |#1| "rest")) (-15 -2926 (|#1| |#1|)) (-15 -2915 (|#1| |#1| (-781))) (-15 -2199 (|#2| |#1| "first")) (-15 -2915 (|#2| |#1|)) (-15 -2278 ((-112) |#1| |#1|)) (-15 -4418 ((-112) |#1| |#1|)) (-15 -3867 ((-574) |#1| |#1|)) (-15 -2479 ((-112) |#1|)) (-15 -2199 (|#2| |#1| "value")) (-15 -3083 (|#2| |#1|)) (-15 -3632 ((-112) |#1|)) (-15 -3820 ((-654 |#1|) |#1|)) (-15 -2321 ((-654 |#1|) |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -2540 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3390 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2863 ((-781) |#1|)) (-15 -3034 ((-112) |#1| (-781))) (-15 -2742 ((-112) |#1| (-781))) (-15 -4203 ((-112) |#1| (-781)))) (-684 |#2|) (-1231)) (T -683)) -NIL -(-10 -8 (-15 -1651 (|#1| |#1|)) (-15 -2533 (|#1| |#1| (-574))) (-15 -1688 ((-112) |#1|)) (-15 -4073 ((-112) |#1|)) (-15 -2199 (|#2| |#1| (-574) |#2|)) (-15 -2199 (|#2| |#1| (-574))) (-15 -4371 ((-654 |#2|) |#1|)) (-15 -3336 ((-112) (-574) |#1|)) (-15 -4308 ((-654 (-574)) |#1|)) (-15 -2702 ((-574) |#1|)) (-15 -3618 ((-574) |#1|)) (-15 -2956 (|#1| (-654 |#2|))) (-15 -2199 (|#1| |#1| (-1248 (-574)))) (-15 -2840 (|#1| |#1| (-574))) (-15 -2840 (|#1| |#1| (-1248 (-574)))) (-15 -1594 (|#1| |#2| |#1| (-574))) (-15 -1594 (|#1| |#1| |#1| (-574))) (-15 -2595 (|#1| |#1|)) (-15 -3066 ((-781) |#1|)) (-15 -2807 (|#1| |#1|)) (-15 -1970 (|#1| |#1|)) (-15 -3360 (|#1| |#1| (-781))) (-15 -2199 (|#2| |#1| "last")) (-15 -3360 (|#2| |#1|)) (-15 -2926 (|#1| |#1| (-781))) (-15 -2199 (|#1| |#1| "rest")) (-15 -2926 (|#1| |#1|)) (-15 -2915 (|#1| |#1| (-781))) (-15 -2199 (|#2| |#1| "first")) (-15 -2915 (|#2| |#1|)) (-15 -2278 ((-112) |#1| |#1|)) (-15 -4418 ((-112) |#1| |#1|)) (-15 -3867 ((-574) |#1| |#1|)) (-15 -2479 ((-112) |#1|)) (-15 -2199 (|#2| |#1| "value")) (-15 -3083 (|#2| |#1|)) (-15 -3632 ((-112) |#1|)) (-15 -3820 ((-654 |#1|) |#1|)) (-15 -2321 ((-654 |#1|) |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -2540 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3390 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2863 ((-781) |#1|)) (-15 -3034 ((-112) |#1| (-781))) (-15 -2742 ((-112) |#1| (-781))) (-15 -4203 ((-112) |#1| (-781)))) -((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3083 ((|#1| $) 49)) (-2406 ((|#1| $) 66)) (-1970 (($ $) 68)) (-3714 (((-1286) $ (-574) (-574)) 99 (|has| $ (-6 -4457)))) (-3617 (($ $ (-574)) 53 (|has| $ (-6 -4457)))) (-3034 (((-112) $ (-781)) 8)) (-3316 ((|#1| $ |#1|) 40 (|has| $ (-6 -4457)))) (-3575 (($ $ $) 57 (|has| $ (-6 -4457)))) (-3582 ((|#1| $ |#1|) 55 (|has| $ (-6 -4457)))) (-3630 ((|#1| $ |#1|) 59 (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4457))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4457))) (($ $ "rest" $) 56 (|has| $ (-6 -4457))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) 119 (|has| $ (-6 -4457))) ((|#1| $ (-574) |#1|) 88 (|has| $ (-6 -4457)))) (-2183 (($ $ (-654 $)) 42 (|has| $ (-6 -4457)))) (-2165 (($ (-1 (-112) |#1|) $) 104)) (-2393 ((|#1| $) 67)) (-3426 (($) 7 T CONST)) (-2016 (($ $) 126)) (-2926 (($ $) 74) (($ $ (-781)) 72)) (-1543 (($ $) 101 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ |#1| $) 102 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#1|) $) 105)) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2458 ((|#1| $ (-574) |#1|) 87 (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) 89)) (-1688 (((-112) $) 85)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-1491 (((-781) $) 125)) (-3820 (((-654 $) $) 51)) (-2278 (((-112) $ $) 43 (|has| |#1| (-1113)))) (-3790 (($ (-781) |#1|) 111)) (-2742 (((-112) $ (-781)) 9)) (-3618 (((-574) $) 97 (|has| (-574) (-860)))) (-1606 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2702 (((-574) $) 96 (|has| (-574) (-860)))) (-2449 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-4203 (((-112) $ (-781)) 10)) (-3507 (((-654 |#1|) $) 46)) (-3632 (((-112) $) 50)) (-4223 (($ $) 128)) (-1952 (((-112) $) 129)) (-4136 (((-1172) $) 22 (|has| |#1| (-1113)))) (-3360 ((|#1| $) 71) (($ $ (-781)) 69)) (-1594 (($ $ $ (-574)) 118) (($ |#1| $ (-574)) 117)) (-4308 (((-654 (-574)) $) 94)) (-3336 (((-112) (-574) $) 93)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-3400 ((|#1| $) 127)) (-2915 ((|#1| $) 77) (($ $ (-781)) 75)) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-1942 (($ $ |#1|) 98 (|has| $ (-6 -4457)))) (-2533 (($ $ (-574)) 124)) (-4073 (((-112) $) 86)) (-1542 (((-112) $) 130)) (-4145 (((-112) $) 131)) (-2540 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 14)) (-3398 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-4371 (((-654 |#1|) $) 92)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-2199 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1248 (-574))) 110) ((|#1| $ (-574)) 91) ((|#1| $ (-574) |#1|) 90)) (-3867 (((-574) $ $) 45)) (-2840 (($ $ (-1248 (-574))) 116) (($ $ (-574)) 115)) (-2479 (((-112) $) 47)) (-2595 (($ $) 63)) (-4434 (($ $) 60 (|has| $ (-6 -4457)))) (-3066 (((-781) $) 64)) (-2807 (($ $) 65)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-1836 (((-546) $) 100 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 109)) (-1995 (($ $ $) 62 (|has| $ (-6 -4457))) (($ $ |#1|) 61 (|has| $ (-6 -4457)))) (-4157 (($ $ $) 79) (($ |#1| $) 78) (($ (-654 $)) 113) (($ $ |#1|) 112)) (-1651 (($ $) 123)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2321 (((-654 $) $) 52)) (-4418 (((-112) $ $) 44 (|has| |#1| (-1113)))) (-3284 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-684 |#1|) (-141) (-1231)) (T -684)) -((-3335 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-684 *3)) (-4 *3 (-1231)))) (-2165 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-684 *3)) (-4 *3 (-1231)))) (-4145 (*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1231)) (-5 *2 (-112)))) (-1542 (*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1231)) (-5 *2 (-112)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1231)) (-5 *2 (-112)))) (-4223 (*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1231)))) (-3400 (*1 *2 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1231)))) (-2016 (*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1231)))) (-1491 (*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1231)) (-5 *2 (-781)))) (-2533 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-684 *3)) (-4 *3 (-1231)))) (-1651 (*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1231))))) -(-13 (-1162 |t#1|) (-10 -8 (-15 -3335 ($ (-1 (-112) |t#1|) $)) (-15 -2165 ($ (-1 (-112) |t#1|) $)) (-15 -4145 ((-112) $)) (-15 -1542 ((-112) $)) (-15 -1952 ((-112) $)) (-15 -4223 ($ $)) (-15 -3400 (|t#1| $)) (-15 -2016 ($ $)) (-15 -1491 ((-781) $)) (-15 -2533 ($ $ (-574))) (-15 -1651 ($ $)))) -(((-34) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1248 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-661 |#1|) . T) ((-1023 |#1|) . T) ((-1113) |has| |#1| (-1113)) ((-1162 |#1|) . T) ((-1231) . T) ((-1269 |#1|) . T)) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2261 (($ (-781) (-781) (-781)) 53 (|has| |#1| (-1062)))) (-3034 (((-112) $ (-781)) NIL)) (-3846 ((|#1| $ (-781) (-781) (-781) |#1|) 47)) (-3426 (($) NIL T CONST)) (-3746 (($ $ $) 57 (|has| |#1| (-1062)))) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-2742 (((-112) $ (-781)) NIL)) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-4084 (((-1281 (-781)) $) 12)) (-1812 (($ (-1190) $ $) 34)) (-2449 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-3960 (($ (-781)) 55 (|has| |#1| (-1062)))) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 ((|#1| $ (-781) (-781) (-781)) 44)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) NIL)) (-2956 (($ (-654 (-654 (-654 |#1|)))) 67)) (-2943 (($ (-969 (-969 (-969 |#1|)))) 23) (((-969 (-969 (-969 |#1|))) $) 19) (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-685 |#1|) (-13 (-499 |#1|) (-10 -8 (IF (|has| |#1| (-1062)) (PROGN (-15 -2261 ($ (-781) (-781) (-781))) (-15 -3960 ($ (-781))) (-15 -3746 ($ $ $))) |%noBranch|) (-15 -2956 ($ (-654 (-654 (-654 |#1|))))) (-15 -2199 (|#1| $ (-781) (-781) (-781))) (-15 -3846 (|#1| $ (-781) (-781) (-781) |#1|)) (-15 -2943 ($ (-969 (-969 (-969 |#1|))))) (-15 -2943 ((-969 (-969 (-969 |#1|))) $)) (-15 -1812 ($ (-1190) $ $)) (-15 -4084 ((-1281 (-781)) $)))) (-1113)) (T -685)) -((-2261 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-781)) (-5 *1 (-685 *3)) (-4 *3 (-1062)) (-4 *3 (-1113)))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-685 *3)) (-4 *3 (-1062)) (-4 *3 (-1113)))) (-3746 (*1 *1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-1062)) (-4 *2 (-1113)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-654 *3)))) (-4 *3 (-1113)) (-5 *1 (-685 *3)))) (-2199 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-781)) (-5 *1 (-685 *2)) (-4 *2 (-1113)))) (-3846 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-685 *2)) (-4 *2 (-1113)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-969 (-969 (-969 *3)))) (-4 *3 (-1113)) (-5 *1 (-685 *3)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-969 (-969 (-969 *3)))) (-5 *1 (-685 *3)) (-4 *3 (-1113)))) (-1812 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-685 *3)) (-4 *3 (-1113)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-1281 (-781))) (-5 *1 (-685 *3)) (-4 *3 (-1113))))) -(-13 (-499 |#1|) (-10 -8 (IF (|has| |#1| (-1062)) (PROGN (-15 -2261 ($ (-781) (-781) (-781))) (-15 -3960 ($ (-781))) (-15 -3746 ($ $ $))) |%noBranch|) (-15 -2956 ($ (-654 (-654 (-654 |#1|))))) (-15 -2199 (|#1| $ (-781) (-781) (-781))) (-15 -3846 (|#1| $ (-781) (-781) (-781) |#1|)) (-15 -2943 ($ (-969 (-969 (-969 |#1|))))) (-15 -2943 ((-969 (-969 (-969 |#1|))) $)) (-15 -1812 ($ (-1190) $ $)) (-15 -4084 ((-1281 (-781)) $)))) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-2972 (((-493) $) 10)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 19) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2044 (((-1148) $) 12)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-686) (-13 (-1096) (-10 -8 (-15 -2972 ((-493) $)) (-15 -2044 ((-1148) $))))) (T -686)) -((-2972 (*1 *2 *1) (-12 (-5 *2 (-493)) (-5 *1 (-686)))) (-2044 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-686))))) -(-13 (-1096) (-10 -8 (-15 -2972 ((-493) $)) (-15 -2044 ((-1148) $)))) -((-2849 (((-112) $ $) NIL)) (-1655 (((-654 |#1|) $) 15)) (-3904 (($ $) 19)) (-3865 (((-112) $) 20)) (-1696 (((-3 |#1| "failed") $) 23)) (-2206 ((|#1| $) 21)) (-2926 (($ $) 37)) (-4248 (($ $) 25)) (-3659 (($ $ $) NIL)) (-4257 (($ $ $) NIL)) (-4144 (((-112) $ $) 47)) (-4135 (((-932) $) 40)) (-3891 (($ $) 18)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2915 ((|#1| $) 36)) (-2943 (((-872) $) 32) (($ |#1|) 24) (((-829 |#1|) $) 28)) (-3284 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 13)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) 44)) (* (($ $ $) 35))) -(((-687 |#1|) (-13 (-860) (-1051 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2943 ((-829 |#1|) $)) (-15 -2915 (|#1| $)) (-15 -3891 ($ $)) (-15 -4135 ((-932) $)) (-15 -4144 ((-112) $ $)) (-15 -4248 ($ $)) (-15 -2926 ($ $)) (-15 -3865 ((-112) $)) (-15 -3904 ($ $)) (-15 -1655 ((-654 |#1|) $)))) (-860)) (T -687)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) (-2915 (*1 *2 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-3891 (*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-4135 (*1 *2 *1) (-12 (-5 *2 (-932)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) (-4144 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) (-4248 (*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-2926 (*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) (-3904 (*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-1655 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-687 *3)) (-4 *3 (-860))))) -(-13 (-860) (-1051 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2943 ((-829 |#1|) $)) (-15 -2915 (|#1| $)) (-15 -3891 ($ $)) (-15 -4135 ((-932) $)) (-15 -4144 ((-112) $ $)) (-15 -4248 ($ $)) (-15 -2926 ($ $)) (-15 -3865 ((-112) $)) (-15 -3904 ($ $)) (-15 -1655 ((-654 |#1|) $)))) -((-3541 ((|#1| (-1 |#1| (-781) |#1|) (-781) |#1|) 11)) (-4131 ((|#1| (-1 |#1| |#1|) (-781) |#1|) 9))) -(((-688 |#1|) (-10 -7 (-15 -4131 (|#1| (-1 |#1| |#1|) (-781) |#1|)) (-15 -3541 (|#1| (-1 |#1| (-781) |#1|) (-781) |#1|))) (-1113)) (T -688)) -((-3541 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-781) *2)) (-5 *4 (-781)) (-4 *2 (-1113)) (-5 *1 (-688 *2)))) (-4131 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-781)) (-4 *2 (-1113)) (-5 *1 (-688 *2))))) -(-10 -7 (-15 -4131 (|#1| (-1 |#1| |#1|) (-781) |#1|)) (-15 -3541 (|#1| (-1 |#1| (-781) |#1|) (-781) |#1|))) -((-2649 ((|#2| |#1| |#2|) 9)) (-2637 ((|#1| |#1| |#2|) 8))) -(((-689 |#1| |#2|) (-10 -7 (-15 -2637 (|#1| |#1| |#2|)) (-15 -2649 (|#2| |#1| |#2|))) (-1113) (-1113)) (T -689)) -((-2649 (*1 *2 *3 *2) (-12 (-5 *1 (-689 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1113)))) (-2637 (*1 *2 *2 *3) (-12 (-5 *1 (-689 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113))))) -(-10 -7 (-15 -2637 (|#1| |#1| |#2|)) (-15 -2649 (|#2| |#1| |#2|))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 15)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-2965 ((|#1| $) 23)) (-3659 (($ $ $) NIL (|has| |#1| (-800)))) (-3751 (($ $ $) NIL (|has| |#1| (-800)))) (-3180 (((-1171) $) 48)) (-3965 (((-1132) $) NIL)) (-2975 ((|#3| $) 24)) (-2942 (((-871) $) 43)) (-3507 (((-112) $ $) 22)) (-2132 (($) 10 T CONST)) (-3040 (((-112) $ $) NIL (|has| |#1| (-800)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-800)))) (-2981 (((-112) $ $) 20)) (-3027 (((-112) $ $) NIL (|has| |#1| (-800)))) (-3005 (((-112) $ $) 26 (|has| |#1| (-800)))) (-3103 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-3093 (($ $) 17) (($ $ $) NIL)) (-3077 (($ $ $) 29)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL))) +(((-671 |#1| |#2| |#3|) (-13 (-726 |#2|) (-10 -8 (IF (|has| |#1| (-800)) (-6 (-800)) |%noBranch|) (-15 -3103 ($ $ |#3|)) (-15 -3103 ($ |#1| |#3|)) (-15 -2965 (|#1| $)) (-15 -2975 (|#3| $)))) (-726 |#2|) (-174) (|SubsetCategory| (-735) |#2|)) (T -671)) +((-3103 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-671 *3 *4 *2)) (-4 *3 (-726 *4)) (-4 *2 (|SubsetCategory| (-735) *4)))) (-3103 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-671 *2 *4 *3)) (-4 *2 (-726 *4)) (-4 *3 (|SubsetCategory| (-735) *4)))) (-2965 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-726 *3)) (-5 *1 (-671 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-735) *3)))) (-2975 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-735) *4)) (-5 *1 (-671 *3 *4 *2)) (-4 *3 (-726 *4))))) +(-13 (-726 |#2|) (-10 -8 (IF (|has| |#1| (-800)) (-6 (-800)) |%noBranch|) (-15 -3103 ($ $ |#3|)) (-15 -3103 ($ |#1| |#3|)) (-15 -2965 (|#1| $)) (-15 -2975 (|#3| $)))) +((-3370 (((-3 (-653 (-1185 |#1|)) "failed") (-653 (-1185 |#1|)) (-1185 |#1|)) 33))) +(((-672 |#1|) (-10 -7 (-15 -3370 ((-3 (-653 (-1185 |#1|)) "failed") (-653 (-1185 |#1|)) (-1185 |#1|)))) (-919)) (T -672)) +((-3370 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-653 (-1185 *4))) (-5 *3 (-1185 *4)) (-4 *4 (-919)) (-5 *1 (-672 *4))))) +(-10 -7 (-15 -3370 ((-3 (-653 (-1185 |#1|)) "failed") (-653 (-1185 |#1|)) (-1185 |#1|)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-1653 (((-653 |#1|) $) 84)) (-4398 (($ $ (-780)) 94)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1680 (((-1304 |#1| |#2|) (-1304 |#1| |#2|) $) 50)) (-1695 (((-3 (-681 |#1|) "failed") $) NIL)) (-2205 (((-681 |#1|) $) NIL)) (-1391 (($ $) 93)) (-3772 (((-780) $) NIL)) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-3831 (($ (-681 |#1|) |#2|) 70)) (-4386 (($ $) 89)) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-1435 (((-1304 |#1| |#2|) (-1304 |#1| |#2|) $) 49)) (-3228 (((-2 (|:| |k| (-681 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1358 (((-681 |#1|) $) NIL)) (-1369 ((|#2| $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2645 (($ $ |#1| $) 32) (($ $ (-653 |#1|) (-653 $)) 34)) (-2565 (((-780) $) 91)) (-2955 (($ $ $) 20) (($ (-681 |#1|) (-681 |#1|)) 79) (($ (-681 |#1|) $) 77) (($ $ (-681 |#1|)) 78)) (-2942 (((-871) $) NIL) (($ |#1|) 76) (((-1295 |#1| |#2|) $) 60) (((-1304 |#1| |#2|) $) 43) (($ (-681 |#1|)) 27)) (-1920 (((-653 |#2|) $) NIL)) (-4317 ((|#2| $ (-681 |#1|)) NIL)) (-1857 ((|#2| (-1304 |#1| |#2|) $) 45)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 23 T CONST)) (-3256 (((-653 (-2 (|:| |k| (-681 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4284 (((-3 $ "failed") (-1295 |#1| |#2|)) 62)) (-2670 (($ (-681 |#1|)) 14)) (-2981 (((-112) $ $) 46)) (-3103 (($ $ |#2|) NIL (|has| |#2| (-371)))) (-3093 (($ $) 68) (($ $ $) NIL)) (-3077 (($ $ $) 31)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-681 |#1|)) NIL))) +(((-673 |#1| |#2|) (-13 (-382 |#1| |#2|) (-390 |#2| (-681 |#1|)) (-10 -8 (-15 -4284 ((-3 $ "failed") (-1295 |#1| |#2|))) (-15 -2955 ($ (-681 |#1|) (-681 |#1|))) (-15 -2955 ($ (-681 |#1|) $)) (-15 -2955 ($ $ (-681 |#1|))))) (-859) (-174)) (T -673)) +((-4284 (*1 *1 *2) (|partial| -12 (-5 *2 (-1295 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)) (-5 *1 (-673 *3 *4)))) (-2955 (*1 *1 *2 *2) (-12 (-5 *2 (-681 *3)) (-4 *3 (-859)) (-5 *1 (-673 *3 *4)) (-4 *4 (-174)))) (-2955 (*1 *1 *2 *1) (-12 (-5 *2 (-681 *3)) (-4 *3 (-859)) (-5 *1 (-673 *3 *4)) (-4 *4 (-174)))) (-2955 (*1 *1 *1 *2) (-12 (-5 *2 (-681 *3)) (-4 *3 (-859)) (-5 *1 (-673 *3 *4)) (-4 *4 (-174))))) +(-13 (-382 |#1| |#2|) (-390 |#2| (-681 |#1|)) (-10 -8 (-15 -4284 ((-3 $ "failed") (-1295 |#1| |#2|))) (-15 -2955 ($ (-681 |#1|) (-681 |#1|))) (-15 -2955 ($ (-681 |#1|) $)) (-15 -2955 ($ $ (-681 |#1|))))) +((-1473 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 59)) (-2748 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-3557 (($ (-1 (-112) |#2|) $) 29)) (-2176 (($ $) 65)) (-1599 (($ $) 74)) (-2596 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-2867 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62)) (-1440 (((-573) |#2| $ (-573)) 71) (((-573) |#2| $) NIL) (((-573) (-1 (-112) |#2|) $) 54)) (-3789 (($ (-780) |#2|) 63)) (-4241 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-1480 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-1776 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 64)) (-1787 (($ |#2|) 15)) (-3181 (($ $ $ (-573)) 42) (($ |#2| $ (-573)) 40)) (-2036 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-3220 (($ $ (-1247 (-573))) 51) (($ $ (-573)) 44)) (-3919 (($ $ $ (-573)) 70)) (-3166 (($ $) 68)) (-3005 (((-112) $ $) 76))) +(((-674 |#1| |#2|) (-10 -8 (-15 -1787 (|#1| |#2|)) (-15 -3220 (|#1| |#1| (-573))) (-15 -3220 (|#1| |#1| (-1247 (-573)))) (-15 -2596 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3181 (|#1| |#2| |#1| (-573))) (-15 -3181 (|#1| |#1| |#1| (-573))) (-15 -4241 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3557 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2596 (|#1| |#2| |#1|)) (-15 -1599 (|#1| |#1|)) (-15 -4241 (|#1| |#1| |#1|)) (-15 -1480 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1473 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1440 ((-573) (-1 (-112) |#2|) |#1|)) (-15 -1440 ((-573) |#2| |#1|)) (-15 -1440 ((-573) |#2| |#1| (-573))) (-15 -1480 (|#1| |#1| |#1|)) (-15 -1473 ((-112) |#1|)) (-15 -3919 (|#1| |#1| |#1| (-573))) (-15 -2176 (|#1| |#1|)) (-15 -2748 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2748 (|#1| |#1|)) (-15 -3005 ((-112) |#1| |#1|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2036 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3789 (|#1| (-780) |#2|)) (-15 -1776 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3166 (|#1| |#1|))) (-675 |#2|) (-1230)) (T -674)) +NIL +(-10 -8 (-15 -1787 (|#1| |#2|)) (-15 -3220 (|#1| |#1| (-573))) (-15 -3220 (|#1| |#1| (-1247 (-573)))) (-15 -2596 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3181 (|#1| |#2| |#1| (-573))) (-15 -3181 (|#1| |#1| |#1| (-573))) (-15 -4241 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3557 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2596 (|#1| |#2| |#1|)) (-15 -1599 (|#1| |#1|)) (-15 -4241 (|#1| |#1| |#1|)) (-15 -1480 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1473 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1440 ((-573) (-1 (-112) |#2|) |#1|)) (-15 -1440 ((-573) |#2| |#1|)) (-15 -1440 ((-573) |#2| |#1| (-573))) (-15 -1480 (|#1| |#1| |#1|)) (-15 -1473 ((-112) |#1|)) (-15 -3919 (|#1| |#1| |#1| (-573))) (-15 -2176 (|#1| |#1|)) (-15 -2748 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2748 (|#1| |#1|)) (-15 -3005 ((-112) |#1| |#1|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2867 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2036 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3789 (|#1| (-780) |#2|)) (-15 -1776 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3166 (|#1| |#1|))) +((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3082 ((|#1| $) 49)) (-2404 ((|#1| $) 66)) (-1969 (($ $) 68)) (-3791 (((-1285) $ (-573) (-573)) 99 (|has| $ (-6 -4456)))) (-1896 (($ $ (-573)) 53 (|has| $ (-6 -4456)))) (-1473 (((-112) $) 144 (|has| |#1| (-859))) (((-112) (-1 (-112) |#1| |#1|) $) 138)) (-2748 (($ $) 148 (-12 (|has| |#1| (-859)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#1| |#1|) $) 147 (|has| $ (-6 -4456)))) (-2770 (($ $) 143 (|has| |#1| (-859))) (($ (-1 (-112) |#1| |#1|) $) 137)) (-3450 (((-112) $ (-780)) 8)) (-2367 ((|#1| $ |#1|) 40 (|has| $ (-6 -4456)))) (-2554 (($ $ $) 57 (|has| $ (-6 -4456)))) (-2016 ((|#1| $ |#1|) 55 (|has| $ (-6 -4456)))) (-2647 ((|#1| $ |#1|) 59 (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4456))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4456))) (($ $ "rest" $) 56 (|has| $ (-6 -4456))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) 119 (|has| $ (-6 -4456))) ((|#1| $ (-573) |#1|) 88 (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) 42 (|has| $ (-6 -4456)))) (-3557 (($ (-1 (-112) |#1|) $) 131)) (-2164 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4455)))) (-2392 ((|#1| $) 67)) (-2579 (($) 7 T CONST)) (-2176 (($ $) 146 (|has| $ (-6 -4456)))) (-4422 (($ $) 136)) (-2925 (($ $) 74) (($ $ (-780)) 72)) (-1599 (($ $) 133 (|has| |#1| (-1112)))) (-2685 (($ $) 101 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2596 (($ |#1| $) 132 (|has| |#1| (-1112))) (($ (-1 (-112) |#1|) $) 127)) (-3334 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4455))) (($ |#1| $) 102 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2457 ((|#1| $ (-573) |#1|) 87 (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) 89)) (-3435 (((-112) $) 85)) (-1440 (((-573) |#1| $ (-573)) 141 (|has| |#1| (-1112))) (((-573) |#1| $) 140 (|has| |#1| (-1112))) (((-573) (-1 (-112) |#1|) $) 139)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) 51)) (-3208 (((-112) $ $) 43 (|has| |#1| (-1112)))) (-3789 (($ (-780) |#1|) 111)) (-2078 (((-112) $ (-780)) 9)) (-1968 (((-573) $) 97 (|has| (-573) (-859)))) (-3659 (($ $ $) 149 (|has| |#1| (-859)))) (-4241 (($ $ $) 134 (|has| |#1| (-859))) (($ (-1 (-112) |#1| |#1|) $ $) 130)) (-1480 (($ $ $) 142 (|has| |#1| (-859))) (($ (-1 (-112) |#1| |#1|) $ $) 135)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3470 (((-573) $) 96 (|has| (-573) (-859)))) (-3751 (($ $ $) 150 (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1787 (($ |#1|) 124)) (-2673 (((-112) $ (-780)) 10)) (-3505 (((-653 |#1|) $) 46)) (-2880 (((-112) $) 50)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-3359 ((|#1| $) 71) (($ $ (-780)) 69)) (-3181 (($ $ $ (-573)) 129) (($ |#1| $ (-573)) 128)) (-1593 (($ $ $ (-573)) 118) (($ |#1| $ (-573)) 117)) (-1977 (((-653 (-573)) $) 94)) (-2560 (((-112) (-573) $) 93)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-2914 ((|#1| $) 77) (($ $ (-780)) 75)) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-3112 (($ $ |#1|) 98 (|has| $ (-6 -4456)))) (-1903 (((-112) $) 86)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-2547 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) 92)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1247 (-573))) 110) ((|#1| $ (-573)) 91) ((|#1| $ (-573) |#1|) 90)) (-1501 (((-573) $ $) 45)) (-3220 (($ $ (-1247 (-573))) 126) (($ $ (-573)) 125)) (-2836 (($ $ (-1247 (-573))) 116) (($ $ (-573)) 115)) (-1628 (((-112) $) 47)) (-1992 (($ $) 63)) (-3839 (($ $) 60 (|has| $ (-6 -4456)))) (-4072 (((-780) $) 64)) (-1512 (($ $) 65)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3919 (($ $ $ (-573)) 145 (|has| $ (-6 -4456)))) (-3166 (($ $) 13)) (-1835 (((-545) $) 100 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 109)) (-3996 (($ $ $) 62) (($ $ |#1|) 61)) (-4156 (($ $ $) 79) (($ |#1| $) 78) (($ (-653 $)) 113) (($ $ |#1|) 112)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) 52)) (-1716 (((-112) $ $) 44 (|has| |#1| (-1112)))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) 152 (|has| |#1| (-859)))) (-3015 (((-112) $ $) 153 (|has| |#1| (-859)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-3027 (((-112) $ $) 151 (|has| |#1| (-859)))) (-3005 (((-112) $ $) 154 (|has| |#1| (-859)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-675 |#1|) (-141) (-1230)) (T -675)) +((-1787 (*1 *1 *2) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1230))))) +(-13 (-1161 |t#1|) (-381 |t#1|) (-289 |t#1|) (-10 -8 (-15 -1787 ($ |t#1|)))) +(((-34) . T) ((-102) -2817 (|has| |#1| (-1112)) (|has| |#1| (-859))) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-859)) (|has| |#1| (-622 (-871)))) ((-152 |#1|) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-293 #0=(-573) |#1|) . T) ((-293 (-1247 (-573)) $) . T) ((-295 #0# |#1|) . T) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-289 |#1|) . T) ((-381 |#1|) . T) ((-498 |#1|) . T) ((-613 #0# |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-660 |#1|) . T) ((-859) |has| |#1| (-859)) ((-1022 |#1|) . T) ((-1112) -2817 (|has| |#1| (-1112)) (|has| |#1| (-859))) ((-1161 |#1|) . T) ((-1230) . T) ((-1268 |#1|) . T)) +((-1994 (((-653 (-2 (|:| |particular| (-3 (-1280 |#1|) "failed")) (|:| -3914 (-653 (-1280 |#1|))))) (-653 (-653 |#1|)) (-653 (-1280 |#1|))) 22) (((-653 (-2 (|:| |particular| (-3 (-1280 |#1|) "failed")) (|:| -3914 (-653 (-1280 |#1|))))) (-698 |#1|) (-653 (-1280 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1280 |#1|) "failed")) (|:| -3914 (-653 (-1280 |#1|)))) (-653 (-653 |#1|)) (-1280 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1280 |#1|) "failed")) (|:| -3914 (-653 (-1280 |#1|)))) (-698 |#1|) (-1280 |#1|)) 14)) (-3583 (((-780) (-698 |#1|) (-1280 |#1|)) 30)) (-1460 (((-3 (-1280 |#1|) "failed") (-698 |#1|) (-1280 |#1|)) 24)) (-4298 (((-112) (-698 |#1|) (-1280 |#1|)) 27))) +(((-676 |#1|) (-10 -7 (-15 -1994 ((-2 (|:| |particular| (-3 (-1280 |#1|) "failed")) (|:| -3914 (-653 (-1280 |#1|)))) (-698 |#1|) (-1280 |#1|))) (-15 -1994 ((-2 (|:| |particular| (-3 (-1280 |#1|) "failed")) (|:| -3914 (-653 (-1280 |#1|)))) (-653 (-653 |#1|)) (-1280 |#1|))) (-15 -1994 ((-653 (-2 (|:| |particular| (-3 (-1280 |#1|) "failed")) (|:| -3914 (-653 (-1280 |#1|))))) (-698 |#1|) (-653 (-1280 |#1|)))) (-15 -1994 ((-653 (-2 (|:| |particular| (-3 (-1280 |#1|) "failed")) (|:| -3914 (-653 (-1280 |#1|))))) (-653 (-653 |#1|)) (-653 (-1280 |#1|)))) (-15 -1460 ((-3 (-1280 |#1|) "failed") (-698 |#1|) (-1280 |#1|))) (-15 -4298 ((-112) (-698 |#1|) (-1280 |#1|))) (-15 -3583 ((-780) (-698 |#1|) (-1280 |#1|)))) (-371)) (T -676)) +((-3583 (*1 *2 *3 *4) (-12 (-5 *3 (-698 *5)) (-5 *4 (-1280 *5)) (-4 *5 (-371)) (-5 *2 (-780)) (-5 *1 (-676 *5)))) (-4298 (*1 *2 *3 *4) (-12 (-5 *3 (-698 *5)) (-5 *4 (-1280 *5)) (-4 *5 (-371)) (-5 *2 (-112)) (-5 *1 (-676 *5)))) (-1460 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1280 *4)) (-5 *3 (-698 *4)) (-4 *4 (-371)) (-5 *1 (-676 *4)))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-653 *5))) (-4 *5 (-371)) (-5 *2 (-653 (-2 (|:| |particular| (-3 (-1280 *5) "failed")) (|:| -3914 (-653 (-1280 *5)))))) (-5 *1 (-676 *5)) (-5 *4 (-653 (-1280 *5))))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-698 *5)) (-4 *5 (-371)) (-5 *2 (-653 (-2 (|:| |particular| (-3 (-1280 *5) "failed")) (|:| -3914 (-653 (-1280 *5)))))) (-5 *1 (-676 *5)) (-5 *4 (-653 (-1280 *5))))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-653 *5))) (-4 *5 (-371)) (-5 *2 (-2 (|:| |particular| (-3 (-1280 *5) "failed")) (|:| -3914 (-653 (-1280 *5))))) (-5 *1 (-676 *5)) (-5 *4 (-1280 *5)))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-698 *5)) (-4 *5 (-371)) (-5 *2 (-2 (|:| |particular| (-3 (-1280 *5) "failed")) (|:| -3914 (-653 (-1280 *5))))) (-5 *1 (-676 *5)) (-5 *4 (-1280 *5))))) +(-10 -7 (-15 -1994 ((-2 (|:| |particular| (-3 (-1280 |#1|) "failed")) (|:| -3914 (-653 (-1280 |#1|)))) (-698 |#1|) (-1280 |#1|))) (-15 -1994 ((-2 (|:| |particular| (-3 (-1280 |#1|) "failed")) (|:| -3914 (-653 (-1280 |#1|)))) (-653 (-653 |#1|)) (-1280 |#1|))) (-15 -1994 ((-653 (-2 (|:| |particular| (-3 (-1280 |#1|) "failed")) (|:| -3914 (-653 (-1280 |#1|))))) (-698 |#1|) (-653 (-1280 |#1|)))) (-15 -1994 ((-653 (-2 (|:| |particular| (-3 (-1280 |#1|) "failed")) (|:| -3914 (-653 (-1280 |#1|))))) (-653 (-653 |#1|)) (-653 (-1280 |#1|)))) (-15 -1460 ((-3 (-1280 |#1|) "failed") (-698 |#1|) (-1280 |#1|))) (-15 -4298 ((-112) (-698 |#1|) (-1280 |#1|))) (-15 -3583 ((-780) (-698 |#1|) (-1280 |#1|)))) +((-1994 (((-653 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3914 (-653 |#3|)))) |#4| (-653 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3914 (-653 |#3|))) |#4| |#3|) 60)) (-3583 (((-780) |#4| |#3|) 18)) (-1460 (((-3 |#3| "failed") |#4| |#3|) 21)) (-4298 (((-112) |#4| |#3|) 14))) +(((-677 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1994 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3914 (-653 |#3|))) |#4| |#3|)) (-15 -1994 ((-653 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3914 (-653 |#3|)))) |#4| (-653 |#3|))) (-15 -1460 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4298 ((-112) |#4| |#3|)) (-15 -3583 ((-780) |#4| |#3|))) (-371) (-13 (-381 |#1|) (-10 -7 (-6 -4456))) (-13 (-381 |#1|) (-10 -7 (-6 -4456))) (-696 |#1| |#2| |#3|)) (T -677)) +((-3583 (*1 *2 *3 *4) (-12 (-4 *5 (-371)) (-4 *6 (-13 (-381 *5) (-10 -7 (-6 -4456)))) (-4 *4 (-13 (-381 *5) (-10 -7 (-6 -4456)))) (-5 *2 (-780)) (-5 *1 (-677 *5 *6 *4 *3)) (-4 *3 (-696 *5 *6 *4)))) (-4298 (*1 *2 *3 *4) (-12 (-4 *5 (-371)) (-4 *6 (-13 (-381 *5) (-10 -7 (-6 -4456)))) (-4 *4 (-13 (-381 *5) (-10 -7 (-6 -4456)))) (-5 *2 (-112)) (-5 *1 (-677 *5 *6 *4 *3)) (-4 *3 (-696 *5 *6 *4)))) (-1460 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-371)) (-4 *5 (-13 (-381 *4) (-10 -7 (-6 -4456)))) (-4 *2 (-13 (-381 *4) (-10 -7 (-6 -4456)))) (-5 *1 (-677 *4 *5 *2 *3)) (-4 *3 (-696 *4 *5 *2)))) (-1994 (*1 *2 *3 *4) (-12 (-4 *5 (-371)) (-4 *6 (-13 (-381 *5) (-10 -7 (-6 -4456)))) (-4 *7 (-13 (-381 *5) (-10 -7 (-6 -4456)))) (-5 *2 (-653 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3914 (-653 *7))))) (-5 *1 (-677 *5 *6 *7 *3)) (-5 *4 (-653 *7)) (-4 *3 (-696 *5 *6 *7)))) (-1994 (*1 *2 *3 *4) (-12 (-4 *5 (-371)) (-4 *6 (-13 (-381 *5) (-10 -7 (-6 -4456)))) (-4 *4 (-13 (-381 *5) (-10 -7 (-6 -4456)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) (-5 *1 (-677 *5 *6 *4 *3)) (-4 *3 (-696 *5 *6 *4))))) +(-10 -7 (-15 -1994 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3914 (-653 |#3|))) |#4| |#3|)) (-15 -1994 ((-653 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3914 (-653 |#3|)))) |#4| (-653 |#3|))) (-15 -1460 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4298 ((-112) |#4| |#3|)) (-15 -3583 ((-780) |#4| |#3|))) +((-4098 (((-2 (|:| |particular| (-3 (-1280 (-416 |#4|)) "failed")) (|:| -3914 (-653 (-1280 (-416 |#4|))))) (-653 |#4|) (-653 |#3|)) 51))) +(((-678 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4098 ((-2 (|:| |particular| (-3 (-1280 (-416 |#4|)) "failed")) (|:| -3914 (-653 (-1280 (-416 |#4|))))) (-653 |#4|) (-653 |#3|)))) (-565) (-802) (-859) (-959 |#1| |#2| |#3|)) (T -678)) +((-4098 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-653 *7)) (-4 *7 (-859)) (-4 *8 (-959 *5 *6 *7)) (-4 *5 (-565)) (-4 *6 (-802)) (-5 *2 (-2 (|:| |particular| (-3 (-1280 (-416 *8)) "failed")) (|:| -3914 (-653 (-1280 (-416 *8)))))) (-5 *1 (-678 *5 *6 *7 *8))))) +(-10 -7 (-15 -4098 ((-2 (|:| |particular| (-3 (-1280 (-416 |#4|)) "failed")) (|:| -3914 (-653 (-1280 (-416 |#4|))))) (-653 |#4|) (-653 |#3|)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-1642 (((-3 $ "failed")) NIL (|has| |#2| (-565)))) (-1635 ((|#2| $) NIL)) (-2932 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-3119 (((-1280 (-698 |#2|))) NIL) (((-1280 (-698 |#2|)) (-1280 $)) NIL)) (-1916 (((-112) $) NIL)) (-1888 (((-1280 $)) 42)) (-3450 (((-112) $ (-780)) NIL)) (-1681 (($ |#2|) NIL)) (-2579 (($) NIL T CONST)) (-2801 (($ $) NIL (|has| |#2| (-314)))) (-3229 (((-245 |#1| |#2|) $ (-573)) NIL)) (-2811 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) NIL (|has| |#2| (-565)))) (-3360 (((-3 $ "failed")) NIL (|has| |#2| (-565)))) (-1454 (((-698 |#2|)) NIL) (((-698 |#2|) (-1280 $)) NIL)) (-1390 ((|#2| $) NIL)) (-3612 (((-698 |#2|) $) NIL) (((-698 |#2|) $ (-1280 $)) NIL)) (-1546 (((-3 $ "failed") $) NIL (|has| |#2| (-565)))) (-2743 (((-1185 (-962 |#2|))) NIL (|has| |#2| (-371)))) (-3681 (($ $ (-931)) NIL)) (-3729 ((|#2| $) NIL)) (-3397 (((-1185 |#2|) $) NIL (|has| |#2| (-565)))) (-4053 ((|#2|) NIL) ((|#2| (-1280 $)) NIL)) (-2650 (((-1185 |#2|) $) NIL)) (-2492 (((-112)) NIL)) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#2| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#2| (-1050 (-416 (-573))))) (((-3 |#2| "failed") $) NIL)) (-2205 (((-573) $) NIL (|has| |#2| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#2| (-1050 (-416 (-573))))) ((|#2| $) NIL)) (-2854 (($ (-1280 |#2|)) NIL) (($ (-1280 |#2|) (-1280 $)) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) NIL) (((-698 |#2|) (-698 $)) NIL) (((-698 |#2|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3583 (((-780) $) NIL (|has| |#2| (-565))) (((-931)) 43)) (-2384 ((|#2| $ (-573) (-573)) NIL)) (-3720 (((-112)) NIL)) (-3009 (($ $ (-931)) NIL)) (-1863 (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-1959 (((-112) $) NIL)) (-2928 (((-780) $) NIL (|has| |#2| (-565)))) (-4209 (((-653 (-245 |#1| |#2|)) $) NIL (|has| |#2| (-565)))) (-2188 (((-780) $) NIL)) (-4275 (((-112)) NIL)) (-2197 (((-780) $) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-2431 ((|#2| $) NIL (|has| |#2| (-6 (-4457 "*"))))) (-1319 (((-573) $) NIL)) (-4011 (((-573) $) NIL)) (-3214 (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3124 (((-573) $) NIL)) (-2326 (((-573) $) NIL)) (-2913 (($ (-653 (-653 |#2|))) NIL)) (-2446 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1612 (((-653 (-653 |#2|)) $) NIL)) (-1922 (((-112)) NIL)) (-1565 (((-112)) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-1447 (((-3 (-2 (|:| |particular| $) (|:| -3914 (-653 $))) "failed")) NIL (|has| |#2| (-565)))) (-3675 (((-3 $ "failed")) NIL (|has| |#2| (-565)))) (-2582 (((-698 |#2|)) NIL) (((-698 |#2|) (-1280 $)) NIL)) (-3619 ((|#2| $) NIL)) (-1729 (((-698 |#2|) $) NIL) (((-698 |#2|) $ (-1280 $)) NIL)) (-2780 (((-3 $ "failed") $) NIL (|has| |#2| (-565)))) (-3753 (((-1185 (-962 |#2|))) NIL (|has| |#2| (-371)))) (-2022 (($ $ (-931)) NIL)) (-3420 ((|#2| $) NIL)) (-2000 (((-1185 |#2|) $) NIL (|has| |#2| (-565)))) (-1912 ((|#2|) NIL) ((|#2| (-1280 $)) NIL)) (-3242 (((-1185 |#2|) $) NIL)) (-3455 (((-112)) NIL)) (-3180 (((-1171) $) NIL)) (-2509 (((-112)) NIL)) (-3313 (((-112)) NIL)) (-4293 (((-112)) NIL)) (-3299 (((-3 $ "failed") $) NIL (|has| |#2| (-371)))) (-3965 (((-1132) $) NIL)) (-3209 (((-112)) NIL)) (-2837 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-565)))) (-1575 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#2|))) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#2| $ (-573) (-573) |#2|) NIL) ((|#2| $ (-573) (-573)) 28) ((|#2| $ (-573)) NIL)) (-3904 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189)) NIL (|has| |#2| (-910 (-1189)))) (($ $) NIL (|has| |#2| (-238))) (($ $ (-780)) NIL (|has| |#2| (-238)))) (-3856 ((|#2| $) NIL)) (-1633 (($ (-653 |#2|)) NIL)) (-2530 (((-112) $) NIL)) (-3372 (((-245 |#1| |#2|) $) NIL)) (-2529 ((|#2| $) NIL (|has| |#2| (-6 (-4457 "*"))))) (-3974 (((-780) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455))) (((-780) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3166 (($ $) NIL)) (-2123 (((-698 |#2|) (-1280 $)) NIL) (((-1280 |#2|) $) NIL) (((-698 |#2|) (-1280 $) (-1280 $)) NIL) (((-1280 |#2|) $ (-1280 $)) 31)) (-1835 (($ (-1280 |#2|)) NIL) (((-1280 |#2|) $) NIL)) (-1664 (((-653 (-962 |#2|))) NIL) (((-653 (-962 |#2|)) (-1280 $)) NIL)) (-4380 (($ $ $) NIL)) (-2774 (((-112)) NIL)) (-1921 (((-245 |#1| |#2|) $ (-573)) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ (-416 (-573))) NIL (|has| |#2| (-1050 (-416 (-573))))) (($ |#2|) NIL) (((-698 |#2|) $) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) 41)) (-2649 (((-653 (-1280 |#2|))) NIL (|has| |#2| (-565)))) (-3531 (($ $ $ $) NIL)) (-2661 (((-112)) NIL)) (-2900 (($ (-698 |#2|) $) NIL)) (-1646 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-1494 (((-112) $) NIL)) (-4366 (($ $ $) NIL)) (-1469 (((-112)) NIL)) (-4243 (((-112)) NIL)) (-2744 (((-112)) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189)) NIL (|has| |#2| (-910 (-1189)))) (($ $) NIL (|has| |#2| (-238))) (($ $ (-780)) NIL (|has| |#2| (-238)))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#2|) NIL (|has| |#2| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL (|has| |#2| (-371)))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-245 |#1| |#2|) $ (-245 |#1| |#2|)) NIL) (((-245 |#1| |#2|) (-245 |#1| |#2|) $) NIL)) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-679 |#1| |#2|) (-13 (-1135 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-622 (-698 |#2|)) (-426 |#2|)) (-931) (-174)) (T -679)) +NIL +(-13 (-1135 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-622 (-698 |#2|)) (-426 |#2|)) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2099 (((-653 (-1147)) $) 10)) (-2942 (((-871) $) 16) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-680) (-13 (-1095) (-10 -8 (-15 -2099 ((-653 (-1147)) $))))) (T -680)) +((-2099 (*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-680))))) +(-13 (-1095) (-10 -8 (-15 -2099 ((-653 (-1147)) $)))) +((-2848 (((-112) $ $) NIL)) (-1653 (((-653 |#1|) $) NIL)) (-3903 (($ $) 62)) (-1407 (((-112) $) NIL)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2205 ((|#1| $) NIL)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-3398 (((-3 $ "failed") (-828 |#1|)) 27)) (-2761 (((-112) (-828 |#1|)) 17)) (-2106 (($ (-828 |#1|)) 28)) (-2580 (((-112) $ $) 36)) (-4134 (((-931) $) 43)) (-3890 (($ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-4218 (((-653 $) (-828 |#1|)) 19)) (-2942 (((-871) $) 51) (($ |#1|) 40) (((-828 |#1|) $) 47) (((-686 |#1|) $) 52)) (-3507 (((-112) $ $) NIL)) (-2571 (((-59 (-653 $)) (-653 |#1|) (-931)) 67)) (-3848 (((-653 $) (-653 |#1|) (-931)) 70)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 63)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 46))) +(((-681 |#1|) (-13 (-859) (-1050 |#1|) (-10 -8 (-15 -1407 ((-112) $)) (-15 -3890 ($ $)) (-15 -3903 ($ $)) (-15 -4134 ((-931) $)) (-15 -2580 ((-112) $ $)) (-15 -2942 ((-828 |#1|) $)) (-15 -2942 ((-686 |#1|) $)) (-15 -4218 ((-653 $) (-828 |#1|))) (-15 -2761 ((-112) (-828 |#1|))) (-15 -2106 ($ (-828 |#1|))) (-15 -3398 ((-3 $ "failed") (-828 |#1|))) (-15 -1653 ((-653 |#1|) $)) (-15 -2571 ((-59 (-653 $)) (-653 |#1|) (-931))) (-15 -3848 ((-653 $) (-653 |#1|) (-931))))) (-859)) (T -681)) +((-1407 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-681 *3)) (-4 *3 (-859)))) (-3890 (*1 *1 *1) (-12 (-5 *1 (-681 *2)) (-4 *2 (-859)))) (-3903 (*1 *1 *1) (-12 (-5 *1 (-681 *2)) (-4 *2 (-859)))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-931)) (-5 *1 (-681 *3)) (-4 *3 (-859)))) (-2580 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-681 *3)) (-4 *3 (-859)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-828 *3)) (-5 *1 (-681 *3)) (-4 *3 (-859)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-686 *3)) (-5 *1 (-681 *3)) (-4 *3 (-859)))) (-4218 (*1 *2 *3) (-12 (-5 *3 (-828 *4)) (-4 *4 (-859)) (-5 *2 (-653 (-681 *4))) (-5 *1 (-681 *4)))) (-2761 (*1 *2 *3) (-12 (-5 *3 (-828 *4)) (-4 *4 (-859)) (-5 *2 (-112)) (-5 *1 (-681 *4)))) (-2106 (*1 *1 *2) (-12 (-5 *2 (-828 *3)) (-4 *3 (-859)) (-5 *1 (-681 *3)))) (-3398 (*1 *1 *2) (|partial| -12 (-5 *2 (-828 *3)) (-4 *3 (-859)) (-5 *1 (-681 *3)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-681 *3)) (-4 *3 (-859)))) (-2571 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *5)) (-5 *4 (-931)) (-4 *5 (-859)) (-5 *2 (-59 (-653 (-681 *5)))) (-5 *1 (-681 *5)))) (-3848 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *5)) (-5 *4 (-931)) (-4 *5 (-859)) (-5 *2 (-653 (-681 *5))) (-5 *1 (-681 *5))))) +(-13 (-859) (-1050 |#1|) (-10 -8 (-15 -1407 ((-112) $)) (-15 -3890 ($ $)) (-15 -3903 ($ $)) (-15 -4134 ((-931) $)) (-15 -2580 ((-112) $ $)) (-15 -2942 ((-828 |#1|) $)) (-15 -2942 ((-686 |#1|) $)) (-15 -4218 ((-653 $) (-828 |#1|))) (-15 -2761 ((-112) (-828 |#1|))) (-15 -2106 ($ (-828 |#1|))) (-15 -3398 ((-3 $ "failed") (-828 |#1|))) (-15 -1653 ((-653 |#1|) $)) (-15 -2571 ((-59 (-653 $)) (-653 |#1|) (-931))) (-15 -3848 ((-653 $) (-653 |#1|) (-931))))) +((-3082 ((|#2| $) 100)) (-1969 (($ $) 121)) (-3450 (((-112) $ (-780)) 35)) (-2925 (($ $) 109) (($ $ (-780)) 112)) (-3435 (((-112) $) 122)) (-3113 (((-653 $) $) 96)) (-3208 (((-112) $ $) 92)) (-2078 (((-112) $ (-780)) 33)) (-1968 (((-573) $) 66)) (-3470 (((-573) $) 65)) (-2673 (((-112) $ (-780)) 31)) (-2880 (((-112) $) 98)) (-3359 ((|#2| $) 113) (($ $ (-780)) 117)) (-1593 (($ $ $ (-573)) 83) (($ |#2| $ (-573)) 82)) (-1977 (((-653 (-573)) $) 64)) (-2560 (((-112) (-573) $) 59)) (-2914 ((|#2| $) NIL) (($ $ (-780)) 108)) (-2212 (($ $ (-573)) 125)) (-1903 (((-112) $) 124)) (-1575 (((-112) (-1 (-112) |#2|) $) 42)) (-1535 (((-653 |#2|) $) 46)) (-2198 ((|#2| $ "value") NIL) ((|#2| $ "first") 107) (($ $ "rest") 111) ((|#2| $ "last") 120) (($ $ (-1247 (-573))) 79) ((|#2| $ (-573)) 57) ((|#2| $ (-573) |#2|) 58)) (-1501 (((-573) $ $) 91)) (-2836 (($ $ (-1247 (-573))) 78) (($ $ (-573)) 72)) (-1628 (((-112) $) 87)) (-1992 (($ $) 105)) (-4072 (((-780) $) 104)) (-1512 (($ $) 103)) (-2955 (($ (-653 |#2|)) 53)) (-4101 (($ $) 126)) (-1811 (((-653 $) $) 90)) (-1716 (((-112) $ $) 89)) (-1646 (((-112) (-1 (-112) |#2|) $) 41)) (-2981 (((-112) $ $) 20)) (-2862 (((-780) $) 39))) +(((-682 |#1| |#2|) (-10 -8 (-15 -4101 (|#1| |#1|)) (-15 -2212 (|#1| |#1| (-573))) (-15 -3435 ((-112) |#1|)) (-15 -1903 ((-112) |#1|)) (-15 -2198 (|#2| |#1| (-573) |#2|)) (-15 -2198 (|#2| |#1| (-573))) (-15 -1535 ((-653 |#2|) |#1|)) (-15 -2560 ((-112) (-573) |#1|)) (-15 -1977 ((-653 (-573)) |#1|)) (-15 -3470 ((-573) |#1|)) (-15 -1968 ((-573) |#1|)) (-15 -2955 (|#1| (-653 |#2|))) (-15 -2198 (|#1| |#1| (-1247 (-573)))) (-15 -2836 (|#1| |#1| (-573))) (-15 -2836 (|#1| |#1| (-1247 (-573)))) (-15 -1593 (|#1| |#2| |#1| (-573))) (-15 -1593 (|#1| |#1| |#1| (-573))) (-15 -1992 (|#1| |#1|)) (-15 -4072 ((-780) |#1|)) (-15 -1512 (|#1| |#1|)) (-15 -1969 (|#1| |#1|)) (-15 -3359 (|#1| |#1| (-780))) (-15 -2198 (|#2| |#1| "last")) (-15 -3359 (|#2| |#1|)) (-15 -2925 (|#1| |#1| (-780))) (-15 -2198 (|#1| |#1| "rest")) (-15 -2925 (|#1| |#1|)) (-15 -2914 (|#1| |#1| (-780))) (-15 -2198 (|#2| |#1| "first")) (-15 -2914 (|#2| |#1|)) (-15 -3208 ((-112) |#1| |#1|)) (-15 -1716 ((-112) |#1| |#1|)) (-15 -1501 ((-573) |#1| |#1|)) (-15 -1628 ((-112) |#1|)) (-15 -2198 (|#2| |#1| "value")) (-15 -3082 (|#2| |#1|)) (-15 -2880 ((-112) |#1|)) (-15 -3113 ((-653 |#1|) |#1|)) (-15 -1811 ((-653 |#1|) |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -1575 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1646 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2862 ((-780) |#1|)) (-15 -3450 ((-112) |#1| (-780))) (-15 -2078 ((-112) |#1| (-780))) (-15 -2673 ((-112) |#1| (-780)))) (-683 |#2|) (-1230)) (T -682)) +NIL +(-10 -8 (-15 -4101 (|#1| |#1|)) (-15 -2212 (|#1| |#1| (-573))) (-15 -3435 ((-112) |#1|)) (-15 -1903 ((-112) |#1|)) (-15 -2198 (|#2| |#1| (-573) |#2|)) (-15 -2198 (|#2| |#1| (-573))) (-15 -1535 ((-653 |#2|) |#1|)) (-15 -2560 ((-112) (-573) |#1|)) (-15 -1977 ((-653 (-573)) |#1|)) (-15 -3470 ((-573) |#1|)) (-15 -1968 ((-573) |#1|)) (-15 -2955 (|#1| (-653 |#2|))) (-15 -2198 (|#1| |#1| (-1247 (-573)))) (-15 -2836 (|#1| |#1| (-573))) (-15 -2836 (|#1| |#1| (-1247 (-573)))) (-15 -1593 (|#1| |#2| |#1| (-573))) (-15 -1593 (|#1| |#1| |#1| (-573))) (-15 -1992 (|#1| |#1|)) (-15 -4072 ((-780) |#1|)) (-15 -1512 (|#1| |#1|)) (-15 -1969 (|#1| |#1|)) (-15 -3359 (|#1| |#1| (-780))) (-15 -2198 (|#2| |#1| "last")) (-15 -3359 (|#2| |#1|)) (-15 -2925 (|#1| |#1| (-780))) (-15 -2198 (|#1| |#1| "rest")) (-15 -2925 (|#1| |#1|)) (-15 -2914 (|#1| |#1| (-780))) (-15 -2198 (|#2| |#1| "first")) (-15 -2914 (|#2| |#1|)) (-15 -3208 ((-112) |#1| |#1|)) (-15 -1716 ((-112) |#1| |#1|)) (-15 -1501 ((-573) |#1| |#1|)) (-15 -1628 ((-112) |#1|)) (-15 -2198 (|#2| |#1| "value")) (-15 -3082 (|#2| |#1|)) (-15 -2880 ((-112) |#1|)) (-15 -3113 ((-653 |#1|) |#1|)) (-15 -1811 ((-653 |#1|) |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -1575 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1646 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2862 ((-780) |#1|)) (-15 -3450 ((-112) |#1| (-780))) (-15 -2078 ((-112) |#1| (-780))) (-15 -2673 ((-112) |#1| (-780)))) +((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3082 ((|#1| $) 49)) (-2404 ((|#1| $) 66)) (-1969 (($ $) 68)) (-3791 (((-1285) $ (-573) (-573)) 99 (|has| $ (-6 -4456)))) (-1896 (($ $ (-573)) 53 (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) 8)) (-2367 ((|#1| $ |#1|) 40 (|has| $ (-6 -4456)))) (-2554 (($ $ $) 57 (|has| $ (-6 -4456)))) (-2016 ((|#1| $ |#1|) 55 (|has| $ (-6 -4456)))) (-2647 ((|#1| $ |#1|) 59 (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4456))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4456))) (($ $ "rest" $) 56 (|has| $ (-6 -4456))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) 119 (|has| $ (-6 -4456))) ((|#1| $ (-573) |#1|) 88 (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) 42 (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) |#1|) $) 104)) (-2392 ((|#1| $) 67)) (-2579 (($) 7 T CONST)) (-2048 (($ $) 126)) (-2925 (($ $) 74) (($ $ (-780)) 72)) (-2685 (($ $) 101 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ |#1| $) 102 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#1|) $) 105)) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2457 ((|#1| $ (-573) |#1|) 87 (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) 89)) (-3435 (((-112) $) 85)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-2908 (((-780) $) 125)) (-3113 (((-653 $) $) 51)) (-3208 (((-112) $ $) 43 (|has| |#1| (-1112)))) (-3789 (($ (-780) |#1|) 111)) (-2078 (((-112) $ (-780)) 9)) (-1968 (((-573) $) 97 (|has| (-573) (-859)))) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3470 (((-573) $) 96 (|has| (-573) (-859)))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-2673 (((-112) $ (-780)) 10)) (-3505 (((-653 |#1|) $) 46)) (-2880 (((-112) $) 50)) (-3942 (($ $) 128)) (-1722 (((-112) $) 129)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-3359 ((|#1| $) 71) (($ $ (-780)) 69)) (-1593 (($ $ $ (-573)) 118) (($ |#1| $ (-573)) 117)) (-1977 (((-653 (-573)) $) 94)) (-2560 (((-112) (-573) $) 93)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-2723 ((|#1| $) 127)) (-2914 ((|#1| $) 77) (($ $ (-780)) 75)) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-3112 (($ $ |#1|) 98 (|has| $ (-6 -4456)))) (-2212 (($ $ (-573)) 124)) (-1903 (((-112) $) 86)) (-2578 (((-112) $) 130)) (-2687 (((-112) $) 131)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-2547 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) 92)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1247 (-573))) 110) ((|#1| $ (-573)) 91) ((|#1| $ (-573) |#1|) 90)) (-1501 (((-573) $ $) 45)) (-2836 (($ $ (-1247 (-573))) 116) (($ $ (-573)) 115)) (-1628 (((-112) $) 47)) (-1992 (($ $) 63)) (-3839 (($ $) 60 (|has| $ (-6 -4456)))) (-4072 (((-780) $) 64)) (-1512 (($ $) 65)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-1835 (((-545) $) 100 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 109)) (-3996 (($ $ $) 62 (|has| $ (-6 -4456))) (($ $ |#1|) 61 (|has| $ (-6 -4456)))) (-4156 (($ $ $) 79) (($ |#1| $) 78) (($ (-653 $)) 113) (($ $ |#1|) 112)) (-4101 (($ $) 123)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) 52)) (-1716 (((-112) $ $) 44 (|has| |#1| (-1112)))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-683 |#1|) (-141) (-1230)) (T -683)) +((-3334 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-683 *3)) (-4 *3 (-1230)))) (-2164 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-683 *3)) (-4 *3 (-1230)))) (-2687 (*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1230)) (-5 *2 (-112)))) (-2578 (*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1230)) (-5 *2 (-112)))) (-1722 (*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1230)) (-5 *2 (-112)))) (-3942 (*1 *1 *1) (-12 (-4 *1 (-683 *2)) (-4 *2 (-1230)))) (-2723 (*1 *2 *1) (-12 (-4 *1 (-683 *2)) (-4 *2 (-1230)))) (-2048 (*1 *1 *1) (-12 (-4 *1 (-683 *2)) (-4 *2 (-1230)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1230)) (-5 *2 (-780)))) (-2212 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-683 *3)) (-4 *3 (-1230)))) (-4101 (*1 *1 *1) (-12 (-4 *1 (-683 *2)) (-4 *2 (-1230))))) +(-13 (-1161 |t#1|) (-10 -8 (-15 -3334 ($ (-1 (-112) |t#1|) $)) (-15 -2164 ($ (-1 (-112) |t#1|) $)) (-15 -2687 ((-112) $)) (-15 -2578 ((-112) $)) (-15 -1722 ((-112) $)) (-15 -3942 ($ $)) (-15 -2723 (|t#1| $)) (-15 -2048 ($ $)) (-15 -2908 ((-780) $)) (-15 -2212 ($ $ (-573))) (-15 -4101 ($ $)))) +(((-34) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-152 |#1|) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-293 #0=(-573) |#1|) . T) ((-293 (-1247 (-573)) $) . T) ((-295 #0# |#1|) . T) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-613 #0# |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-660 |#1|) . T) ((-1022 |#1|) . T) ((-1112) |has| |#1| (-1112)) ((-1161 |#1|) . T) ((-1230) . T) ((-1268 |#1|) . T)) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1918 (($ (-780) (-780) (-780)) 53 (|has| |#1| (-1061)))) (-3450 (((-112) $ (-780)) NIL)) (-2183 ((|#1| $ (-780) (-780) (-780) |#1|) 47)) (-2579 (($) NIL T CONST)) (-3739 (($ $ $) 57 (|has| |#1| (-1061)))) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3691 (((-1280 (-780)) $) 12)) (-2091 (($ (-1189) $ $) 34)) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-2831 (($ (-780)) 55 (|has| |#1| (-1061)))) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#1| $ (-780) (-780) (-780)) 44)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) NIL)) (-2955 (($ (-653 (-653 (-653 |#1|)))) 67)) (-2942 (($ (-968 (-968 (-968 |#1|)))) 23) (((-968 (-968 (-968 |#1|))) $) 19) (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-684 |#1|) (-13 (-498 |#1|) (-10 -8 (IF (|has| |#1| (-1061)) (PROGN (-15 -1918 ($ (-780) (-780) (-780))) (-15 -2831 ($ (-780))) (-15 -3739 ($ $ $))) |%noBranch|) (-15 -2955 ($ (-653 (-653 (-653 |#1|))))) (-15 -2198 (|#1| $ (-780) (-780) (-780))) (-15 -2183 (|#1| $ (-780) (-780) (-780) |#1|)) (-15 -2942 ($ (-968 (-968 (-968 |#1|))))) (-15 -2942 ((-968 (-968 (-968 |#1|))) $)) (-15 -2091 ($ (-1189) $ $)) (-15 -3691 ((-1280 (-780)) $)))) (-1112)) (T -684)) +((-1918 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-780)) (-5 *1 (-684 *3)) (-4 *3 (-1061)) (-4 *3 (-1112)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-684 *3)) (-4 *3 (-1061)) (-4 *3 (-1112)))) (-3739 (*1 *1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-1061)) (-4 *2 (-1112)))) (-2955 (*1 *1 *2) (-12 (-5 *2 (-653 (-653 (-653 *3)))) (-4 *3 (-1112)) (-5 *1 (-684 *3)))) (-2198 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-780)) (-5 *1 (-684 *2)) (-4 *2 (-1112)))) (-2183 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-684 *2)) (-4 *2 (-1112)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-968 (-968 (-968 *3)))) (-4 *3 (-1112)) (-5 *1 (-684 *3)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-968 (-968 (-968 *3)))) (-5 *1 (-684 *3)) (-4 *3 (-1112)))) (-2091 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-684 *3)) (-4 *3 (-1112)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-1280 (-780))) (-5 *1 (-684 *3)) (-4 *3 (-1112))))) +(-13 (-498 |#1|) (-10 -8 (IF (|has| |#1| (-1061)) (PROGN (-15 -1918 ($ (-780) (-780) (-780))) (-15 -2831 ($ (-780))) (-15 -3739 ($ $ $))) |%noBranch|) (-15 -2955 ($ (-653 (-653 (-653 |#1|))))) (-15 -2198 (|#1| $ (-780) (-780) (-780))) (-15 -2183 (|#1| $ (-780) (-780) (-780) |#1|)) (-15 -2942 ($ (-968 (-968 (-968 |#1|))))) (-15 -2942 ((-968 (-968 (-968 |#1|))) $)) (-15 -2091 ($ (-1189) $ $)) (-15 -3691 ((-1280 (-780)) $)))) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-2030 (((-492) $) 10)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 19) (($ (-1194)) NIL) (((-1194) $) NIL)) (-2043 (((-1147) $) 12)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-685) (-13 (-1095) (-10 -8 (-15 -2030 ((-492) $)) (-15 -2043 ((-1147) $))))) (T -685)) +((-2030 (*1 *2 *1) (-12 (-5 *2 (-492)) (-5 *1 (-685)))) (-2043 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-685))))) +(-13 (-1095) (-10 -8 (-15 -2030 ((-492) $)) (-15 -2043 ((-1147) $)))) +((-2848 (((-112) $ $) NIL)) (-1653 (((-653 |#1|) $) 15)) (-3903 (($ $) 19)) (-1407 (((-112) $) 20)) (-1695 (((-3 |#1| "failed") $) 23)) (-2205 ((|#1| $) 21)) (-2925 (($ $) 37)) (-4386 (($ $) 25)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-2580 (((-112) $ $) 47)) (-4134 (((-931) $) 40)) (-3890 (($ $) 18)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2914 ((|#1| $) 36)) (-2942 (((-871) $) 32) (($ |#1|) 24) (((-828 |#1|) $) 28)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 13)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 44)) (* (($ $ $) 35))) +(((-686 |#1|) (-13 (-859) (-1050 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2942 ((-828 |#1|) $)) (-15 -2914 (|#1| $)) (-15 -3890 ($ $)) (-15 -4134 ((-931) $)) (-15 -2580 ((-112) $ $)) (-15 -4386 ($ $)) (-15 -2925 ($ $)) (-15 -1407 ((-112) $)) (-15 -3903 ($ $)) (-15 -1653 ((-653 |#1|) $)))) (-859)) (T -686)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-859)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-828 *3)) (-5 *1 (-686 *3)) (-4 *3 (-859)))) (-2914 (*1 *2 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-859)))) (-3890 (*1 *1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-859)))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-931)) (-5 *1 (-686 *3)) (-4 *3 (-859)))) (-2580 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-686 *3)) (-4 *3 (-859)))) (-4386 (*1 *1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-859)))) (-2925 (*1 *1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-859)))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-686 *3)) (-4 *3 (-859)))) (-3903 (*1 *1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-859)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-686 *3)) (-4 *3 (-859))))) +(-13 (-859) (-1050 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2942 ((-828 |#1|) $)) (-15 -2914 (|#1| $)) (-15 -3890 ($ $)) (-15 -4134 ((-931) $)) (-15 -2580 ((-112) $ $)) (-15 -4386 ($ $)) (-15 -2925 ($ $)) (-15 -1407 ((-112) $)) (-15 -3903 ($ $)) (-15 -1653 ((-653 |#1|) $)))) +((-3096 ((|#1| (-1 |#1| (-780) |#1|) (-780) |#1|) 11)) (-4128 ((|#1| (-1 |#1| |#1|) (-780) |#1|) 9))) +(((-687 |#1|) (-10 -7 (-15 -4128 (|#1| (-1 |#1| |#1|) (-780) |#1|)) (-15 -3096 (|#1| (-1 |#1| (-780) |#1|) (-780) |#1|))) (-1112)) (T -687)) +((-3096 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-780) *2)) (-5 *4 (-780)) (-4 *2 (-1112)) (-5 *1 (-687 *2)))) (-4128 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-780)) (-4 *2 (-1112)) (-5 *1 (-687 *2))))) +(-10 -7 (-15 -4128 (|#1| (-1 |#1| |#1|) (-780) |#1|)) (-15 -3096 (|#1| (-1 |#1| (-780) |#1|) (-780) |#1|))) +((-2648 ((|#2| |#1| |#2|) 9)) (-2636 ((|#1| |#1| |#2|) 8))) +(((-688 |#1| |#2|) (-10 -7 (-15 -2636 (|#1| |#1| |#2|)) (-15 -2648 (|#2| |#1| |#2|))) (-1112) (-1112)) (T -688)) +((-2648 (*1 *2 *3 *2) (-12 (-5 *1 (-688 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1112)))) (-2636 (*1 *2 *2 *3) (-12 (-5 *1 (-688 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112))))) +(-10 -7 (-15 -2636 (|#1| |#1| |#2|)) (-15 -2648 (|#2| |#1| |#2|))) ((-4405 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-690 |#1| |#2| |#3|) (-10 -7 (-15 -4405 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1113) (-1113) (-1113)) (T -690)) -((-4405 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *2 (-1113)) (-5 *1 (-690 *5 *6 *2))))) +(((-689 |#1| |#2| |#3|) (-10 -7 (-15 -4405 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1112) (-1112) (-1112)) (T -689)) +((-4405 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *2 (-1112)) (-5 *1 (-689 *5 *6 *2))))) (-10 -7 (-15 -4405 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-2849 (((-112) $ $) NIL)) (-2335 (((-1230) $) 21)) (-2286 (((-654 (-1230)) $) 19)) (-1969 (($ (-654 (-1230)) (-1230)) 14)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 29) (($ (-1195)) NIL) (((-1195) $) NIL) (((-1230) $) 22) (($ (-1131)) 10)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-691) (-13 (-1096) (-623 (-1230)) (-10 -8 (-15 -2943 ($ (-1131))) (-15 -1969 ($ (-654 (-1230)) (-1230))) (-15 -2286 ((-654 (-1230)) $)) (-15 -2335 ((-1230) $))))) (T -691)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-691)))) (-1969 (*1 *1 *2 *3) (-12 (-5 *2 (-654 (-1230))) (-5 *3 (-1230)) (-5 *1 (-691)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-654 (-1230))) (-5 *1 (-691)))) (-2335 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-691))))) -(-13 (-1096) (-623 (-1230)) (-10 -8 (-15 -2943 ($ (-1131))) (-15 -1969 ($ (-654 (-1230)) (-1230))) (-15 -2286 ((-654 (-1230)) $)) (-15 -2335 ((-1230) $)))) -((-3541 (((-1 |#1| (-781) |#1|) (-1 |#1| (-781) |#1|)) 26)) (-1462 (((-1 |#1|) |#1|) 8)) (-2803 ((|#1| |#1|) 19)) (-3060 (((-654 |#1|) (-1 (-654 |#1|) (-654 |#1|)) (-574)) 18) ((|#1| (-1 |#1| |#1|)) 11)) (-2943 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-781)) 23))) -(((-692 |#1|) (-10 -7 (-15 -1462 ((-1 |#1|) |#1|)) (-15 -2943 ((-1 |#1|) |#1|)) (-15 -3060 (|#1| (-1 |#1| |#1|))) (-15 -3060 ((-654 |#1|) (-1 (-654 |#1|) (-654 |#1|)) (-574))) (-15 -2803 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-781))) (-15 -3541 ((-1 |#1| (-781) |#1|) (-1 |#1| (-781) |#1|)))) (-1113)) (T -692)) -((-3541 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-781) *3)) (-4 *3 (-1113)) (-5 *1 (-692 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *4 (-1113)) (-5 *1 (-692 *4)))) (-2803 (*1 *2 *2) (-12 (-5 *1 (-692 *2)) (-4 *2 (-1113)))) (-3060 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-654 *5) (-654 *5))) (-5 *4 (-574)) (-5 *2 (-654 *5)) (-5 *1 (-692 *5)) (-4 *5 (-1113)))) (-3060 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-692 *2)) (-4 *2 (-1113)))) (-2943 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-692 *3)) (-4 *3 (-1113)))) (-1462 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-692 *3)) (-4 *3 (-1113))))) -(-10 -7 (-15 -1462 ((-1 |#1|) |#1|)) (-15 -2943 ((-1 |#1|) |#1|)) (-15 -3060 (|#1| (-1 |#1| |#1|))) (-15 -3060 ((-654 |#1|) (-1 (-654 |#1|) (-654 |#1|)) (-574))) (-15 -2803 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-781))) (-15 -3541 ((-1 |#1| (-781) |#1|) (-1 |#1| (-781) |#1|)))) -((-3540 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-1728 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1706 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2493 (((-1 |#2| |#1|) |#2|) 11))) -(((-693 |#1| |#2|) (-10 -7 (-15 -2493 ((-1 |#2| |#1|) |#2|)) (-15 -1728 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1706 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3540 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1113) (-1113)) (T -693)) -((-3540 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-5 *2 (-1 *5 *4)) (-5 *1 (-693 *4 *5)))) (-1706 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1113)) (-5 *2 (-1 *5 *4)) (-5 *1 (-693 *4 *5)) (-4 *4 (-1113)))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-5 *2 (-1 *5)) (-5 *1 (-693 *4 *5)))) (-2493 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-693 *4 *3)) (-4 *4 (-1113)) (-4 *3 (-1113))))) -(-10 -7 (-15 -2493 ((-1 |#2| |#1|) |#2|)) (-15 -1728 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1706 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3540 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-4326 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3761 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-1525 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3743 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2355 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-694 |#1| |#2| |#3|) (-10 -7 (-15 -3761 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1525 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3743 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2355 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -4326 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1113) (-1113) (-1113)) (T -694)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-1 *7 *5)) (-5 *1 (-694 *5 *6 *7)))) (-4326 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-694 *4 *5 *6)))) (-2355 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-694 *4 *5 *6)) (-4 *4 (-1113)))) (-3743 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1113)) (-4 *6 (-1113)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-694 *4 *5 *6)) (-4 *5 (-1113)))) (-1525 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-5 *2 (-1 *6 *5)) (-5 *1 (-694 *4 *5 *6)))) (-3761 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1113)) (-4 *4 (-1113)) (-4 *6 (-1113)) (-5 *2 (-1 *6 *5)) (-5 *1 (-694 *5 *4 *6))))) -(-10 -7 (-15 -3761 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1525 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3743 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2355 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -4326 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-2868 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1777 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-695 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1777 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1777 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2868 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1062) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|) (-1062) (-382 |#5|) (-382 |#5|) (-697 |#5| |#6| |#7|)) (T -695)) -((-2868 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1062)) (-4 *2 (-1062)) (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) (-4 *8 (-382 *2)) (-4 *9 (-382 *2)) (-5 *1 (-695 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-697 *5 *6 *7)) (-4 *10 (-697 *2 *8 *9)))) (-1777 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1062)) (-4 *8 (-1062)) (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) (-4 *2 (-697 *8 *9 *10)) (-5 *1 (-695 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-697 *5 *6 *7)) (-4 *9 (-382 *8)) (-4 *10 (-382 *8)))) (-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1062)) (-4 *8 (-1062)) (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) (-4 *2 (-697 *8 *9 *10)) (-5 *1 (-695 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-697 *5 *6 *7)) (-4 *9 (-382 *8)) (-4 *10 (-382 *8))))) -(-10 -7 (-15 -1777 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1777 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2868 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-2216 (($ (-781) (-781)) 42)) (-3285 (($ $ $) 71)) (-2100 (($ |#3|) 66) (($ $) 67)) (-3291 (((-112) $) 36)) (-3053 (($ $ (-574) (-574)) 82)) (-1476 (($ $ (-574) (-574)) 83)) (-4087 (($ $ (-574) (-574) (-574) (-574)) 88)) (-2584 (($ $) 69)) (-2224 (((-112) $) 15)) (-4100 (($ $ (-574) (-574) $) 89)) (-3143 ((|#2| $ (-574) (-574) |#2|) NIL) (($ $ (-654 (-574)) (-654 (-574)) $) 87)) (-1346 (($ (-781) |#2|) 53)) (-2914 (($ (-654 (-654 |#2|))) 51)) (-1394 (((-654 (-654 |#2|)) $) 78)) (-1352 (($ $ $) 70)) (-2838 (((-3 $ "failed") $ |#2|) 120)) (-2199 ((|#2| $ (-574) (-574)) NIL) ((|#2| $ (-574) (-574) |#2|) NIL) (($ $ (-654 (-574)) (-654 (-574))) 86)) (-2691 (($ (-654 |#2|)) 54) (($ (-654 $)) 56)) (-2675 (((-112) $) 28)) (-2943 (($ |#4|) 61) (((-872) $) NIL)) (-2539 (((-112) $) 38)) (-3108 (($ $ |#2|) 122)) (-3094 (($ $ $) 93) (($ $) 96)) (-3079 (($ $ $) 91)) (** (($ $ (-781)) 109) (($ $ (-574)) 126)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-574) $) 101) ((|#4| $ |#4|) 113) ((|#3| |#3| $) 117))) -(((-696 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2943 ((-872) |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -3108 (|#1| |#1| |#2|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-781))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 -3094 (|#1| |#1| |#1|)) (-15 -3079 (|#1| |#1| |#1|)) (-15 -4100 (|#1| |#1| (-574) (-574) |#1|)) (-15 -4087 (|#1| |#1| (-574) (-574) (-574) (-574))) (-15 -1476 (|#1| |#1| (-574) (-574))) (-15 -3053 (|#1| |#1| (-574) (-574))) (-15 -3143 (|#1| |#1| (-654 (-574)) (-654 (-574)) |#1|)) (-15 -2199 (|#1| |#1| (-654 (-574)) (-654 (-574)))) (-15 -1394 ((-654 (-654 |#2|)) |#1|)) (-15 -3285 (|#1| |#1| |#1|)) (-15 -1352 (|#1| |#1| |#1|)) (-15 -2584 (|#1| |#1|)) (-15 -2100 (|#1| |#1|)) (-15 -2100 (|#1| |#3|)) (-15 -2943 (|#1| |#4|)) (-15 -2691 (|#1| (-654 |#1|))) (-15 -2691 (|#1| (-654 |#2|))) (-15 -1346 (|#1| (-781) |#2|)) (-15 -2914 (|#1| (-654 (-654 |#2|)))) (-15 -2216 (|#1| (-781) (-781))) (-15 -2539 ((-112) |#1|)) (-15 -3291 ((-112) |#1|)) (-15 -2675 ((-112) |#1|)) (-15 -2224 ((-112) |#1|)) (-15 -3143 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2199 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2199 (|#2| |#1| (-574) (-574)))) (-697 |#2| |#3| |#4|) (-1062) (-382 |#2|) (-382 |#2|)) (T -696)) -NIL -(-10 -8 (-15 -2943 ((-872) |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -3108 (|#1| |#1| |#2|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-781))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 -3094 (|#1| |#1| |#1|)) (-15 -3079 (|#1| |#1| |#1|)) (-15 -4100 (|#1| |#1| (-574) (-574) |#1|)) (-15 -4087 (|#1| |#1| (-574) (-574) (-574) (-574))) (-15 -1476 (|#1| |#1| (-574) (-574))) (-15 -3053 (|#1| |#1| (-574) (-574))) (-15 -3143 (|#1| |#1| (-654 (-574)) (-654 (-574)) |#1|)) (-15 -2199 (|#1| |#1| (-654 (-574)) (-654 (-574)))) (-15 -1394 ((-654 (-654 |#2|)) |#1|)) (-15 -3285 (|#1| |#1| |#1|)) (-15 -1352 (|#1| |#1| |#1|)) (-15 -2584 (|#1| |#1|)) (-15 -2100 (|#1| |#1|)) (-15 -2100 (|#1| |#3|)) (-15 -2943 (|#1| |#4|)) (-15 -2691 (|#1| (-654 |#1|))) (-15 -2691 (|#1| (-654 |#2|))) (-15 -1346 (|#1| (-781) |#2|)) (-15 -2914 (|#1| (-654 (-654 |#2|)))) (-15 -2216 (|#1| (-781) (-781))) (-15 -2539 ((-112) |#1|)) (-15 -3291 ((-112) |#1|)) (-15 -2675 ((-112) |#1|)) (-15 -2224 ((-112) |#1|)) (-15 -3143 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2199 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2199 (|#2| |#1| (-574) (-574)))) -((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-2216 (($ (-781) (-781)) 98)) (-3285 (($ $ $) 88)) (-2100 (($ |#2|) 92) (($ $) 91)) (-3291 (((-112) $) 100)) (-3053 (($ $ (-574) (-574)) 84)) (-1476 (($ $ (-574) (-574)) 83)) (-4087 (($ $ (-574) (-574) (-574) (-574)) 82)) (-2584 (($ $) 90)) (-2224 (((-112) $) 102)) (-3034 (((-112) $ (-781)) 8)) (-4100 (($ $ (-574) (-574) $) 81)) (-3143 ((|#1| $ (-574) (-574) |#1|) 45) (($ $ (-654 (-574)) (-654 (-574)) $) 85)) (-1365 (($ $ (-574) |#2|) 43)) (-1694 (($ $ (-574) |#3|) 42)) (-1346 (($ (-781) |#1|) 96)) (-3426 (($) 7 T CONST)) (-2879 (($ $) 68 (|has| |#1| (-315)))) (-4170 ((|#2| $ (-574)) 47)) (-3584 (((-781) $) 67 (|has| |#1| (-566)))) (-2458 ((|#1| $ (-574) (-574) |#1|) 44)) (-2385 ((|#1| $ (-574) (-574)) 49)) (-1864 (((-654 |#1|) $) 31)) (-1602 (((-781) $) 66 (|has| |#1| (-566)))) (-2548 (((-654 |#3|) $) 65 (|has| |#1| (-566)))) (-2189 (((-781) $) 52)) (-3790 (($ (-781) (-781) |#1|) 58)) (-2198 (((-781) $) 51)) (-2742 (((-112) $ (-781)) 9)) (-3609 ((|#1| $) 63 (|has| |#1| (-6 (-4458 "*"))))) (-3491 (((-574) $) 56)) (-1630 (((-574) $) 54)) (-1606 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3068 (((-574) $) 55)) (-3691 (((-574) $) 53)) (-2914 (($ (-654 (-654 |#1|))) 97)) (-2449 (($ (-1 |#1| |#1|) $) 35)) (-1777 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-1394 (((-654 (-654 |#1|)) $) 87)) (-4203 (((-112) $ (-781)) 10)) (-4136 (((-1172) $) 22 (|has| |#1| (-1113)))) (-2063 (((-3 $ "failed") $) 62 (|has| |#1| (-372)))) (-1352 (($ $ $) 89)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-1942 (($ $ |#1|) 57)) (-2838 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-566)))) (-2540 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 14)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-2199 ((|#1| $ (-574) (-574)) 50) ((|#1| $ (-574) (-574) |#1|) 48) (($ $ (-654 (-574)) (-654 (-574))) 86)) (-2691 (($ (-654 |#1|)) 95) (($ (-654 $)) 94)) (-2675 (((-112) $) 101)) (-3192 ((|#1| $) 64 (|has| |#1| (-6 (-4458 "*"))))) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-2471 ((|#3| $ (-574)) 46)) (-2943 (($ |#3|) 93) (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2539 (((-112) $) 99)) (-2981 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-3108 (($ $ |#1|) 69 (|has| |#1| (-372)))) (-3094 (($ $ $) 79) (($ $) 78)) (-3079 (($ $ $) 80)) (** (($ $ (-781)) 71) (($ $ (-574)) 61 (|has| |#1| (-372)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-574) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-697 |#1| |#2| |#3|) (-141) (-1062) (-382 |t#1|) (-382 |t#1|)) (T -697)) -((-2224 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-112)))) (-2675 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-112)))) (-3291 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-112)))) (-2539 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-112)))) (-2216 (*1 *1 *2 *2) (-12 (-5 *2 (-781)) (-4 *3 (-1062)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-2914 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1062)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-1346 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-4 *3 (-1062)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-2691 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1062)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-2691 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *3 (-1062)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-2943 (*1 *1 *2) (-12 (-4 *3 (-1062)) (-4 *1 (-697 *3 *4 *2)) (-4 *4 (-382 *3)) (-4 *2 (-382 *3)))) (-2100 (*1 *1 *2) (-12 (-4 *3 (-1062)) (-4 *1 (-697 *3 *2 *4)) (-4 *2 (-382 *3)) (-4 *4 (-382 *3)))) (-2100 (*1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-2584 (*1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-1352 (*1 *1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-3285 (*1 *1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-1394 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-654 (-654 *3))))) (-2199 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-654 (-574))) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3143 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-654 (-574))) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3053 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-1476 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-4087 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-4100 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3079 (*1 *1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-3094 (*1 *1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-3094 (*1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-697 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *2 (-382 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-697 *3 *2 *4)) (-4 *3 (-1062)) (-4 *2 (-382 *3)) (-4 *4 (-382 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-2838 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-566)))) (-3108 (*1 *1 *1 *2) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-372)))) (-2879 (*1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-315)))) (-3584 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-781)))) (-1602 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-781)))) (-2548 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-654 *5)))) (-3192 (*1 *2 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (|has| *2 (-6 (-4458 "*"))) (-4 *2 (-1062)))) (-3609 (*1 *2 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (|has| *2 (-6 (-4458 "*"))) (-4 *2 (-1062)))) (-2063 (*1 *1 *1) (|partial| -12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-372)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-4 *3 (-372))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4457) (-6 -4456) (-15 -2224 ((-112) $)) (-15 -2675 ((-112) $)) (-15 -3291 ((-112) $)) (-15 -2539 ((-112) $)) (-15 -2216 ($ (-781) (-781))) (-15 -2914 ($ (-654 (-654 |t#1|)))) (-15 -1346 ($ (-781) |t#1|)) (-15 -2691 ($ (-654 |t#1|))) (-15 -2691 ($ (-654 $))) (-15 -2943 ($ |t#3|)) (-15 -2100 ($ |t#2|)) (-15 -2100 ($ $)) (-15 -2584 ($ $)) (-15 -1352 ($ $ $)) (-15 -3285 ($ $ $)) (-15 -1394 ((-654 (-654 |t#1|)) $)) (-15 -2199 ($ $ (-654 (-574)) (-654 (-574)))) (-15 -3143 ($ $ (-654 (-574)) (-654 (-574)) $)) (-15 -3053 ($ $ (-574) (-574))) (-15 -1476 ($ $ (-574) (-574))) (-15 -4087 ($ $ (-574) (-574) (-574) (-574))) (-15 -4100 ($ $ (-574) (-574) $)) (-15 -3079 ($ $ $)) (-15 -3094 ($ $ $)) (-15 -3094 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-574) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-781))) (IF (|has| |t#1| (-566)) (-15 -2838 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-372)) (-15 -3108 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-315)) (-15 -2879 ($ $)) |%noBranch|) (IF (|has| |t#1| (-566)) (PROGN (-15 -3584 ((-781) $)) (-15 -1602 ((-781) $)) (-15 -2548 ((-654 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4458 "*"))) (PROGN (-15 -3192 (|t#1| $)) (-15 -3609 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-372)) (PROGN (-15 -2063 ((-3 $ "failed") $)) (-15 ** ($ $ (-574)))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1113) |has| |#1| (-1113)) ((-57 |#1| |#2| |#3|) . T) ((-1231) . T)) -((-2879 ((|#4| |#4|) 92 (|has| |#1| (-315)))) (-3584 (((-781) |#4|) 120 (|has| |#1| (-566)))) (-1602 (((-781) |#4|) 96 (|has| |#1| (-566)))) (-2548 (((-654 |#3|) |#4|) 103 (|has| |#1| (-566)))) (-1626 (((-2 (|:| -1411 |#1|) (|:| -2766 |#1|)) |#1| |#1|) 135 (|has| |#1| (-315)))) (-3609 ((|#1| |#4|) 52)) (-1371 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-566)))) (-2063 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-372)))) (-2620 ((|#4| |#4|) 88 (|has| |#1| (-566)))) (-3075 ((|#4| |#4| |#1| (-574) (-574)) 60)) (-2634 ((|#4| |#4| (-574) (-574)) 55)) (-4209 ((|#4| |#4| |#1| (-574) (-574)) 65)) (-3192 ((|#1| |#4|) 98)) (-2194 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-566))))) -(((-698 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3192 (|#1| |#4|)) (-15 -3609 (|#1| |#4|)) (-15 -2634 (|#4| |#4| (-574) (-574))) (-15 -3075 (|#4| |#4| |#1| (-574) (-574))) (-15 -4209 (|#4| |#4| |#1| (-574) (-574))) (IF (|has| |#1| (-566)) (PROGN (-15 -3584 ((-781) |#4|)) (-15 -1602 ((-781) |#4|)) (-15 -2548 ((-654 |#3|) |#4|)) (-15 -2620 (|#4| |#4|)) (-15 -1371 ((-3 |#4| "failed") |#4|)) (-15 -2194 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-315)) (PROGN (-15 -2879 (|#4| |#4|)) (-15 -1626 ((-2 (|:| -1411 |#1|) (|:| -2766 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -2063 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-174) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|)) (T -698)) -((-2063 (*1 *2 *2) (|partial| -12 (-4 *3 (-372)) (-4 *3 (-174)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-1626 (*1 *2 *3 *3) (-12 (-4 *3 (-315)) (-4 *3 (-174)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-2 (|:| -1411 *3) (|:| -2766 *3))) (-5 *1 (-698 *3 *4 *5 *6)) (-4 *6 (-697 *3 *4 *5)))) (-2879 (*1 *2 *2) (-12 (-4 *3 (-315)) (-4 *3 (-174)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-2194 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-1371 (*1 *2 *2) (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-2620 (*1 *2 *2) (-12 (-4 *3 (-566)) (-4 *3 (-174)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-2548 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-654 *6)) (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-1602 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-3584 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-4209 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-574)) (-4 *3 (-174)) (-4 *5 (-382 *3)) (-4 *6 (-382 *3)) (-5 *1 (-698 *3 *5 *6 *2)) (-4 *2 (-697 *3 *5 *6)))) (-3075 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-574)) (-4 *3 (-174)) (-4 *5 (-382 *3)) (-4 *6 (-382 *3)) (-5 *1 (-698 *3 *5 *6 *2)) (-4 *2 (-697 *3 *5 *6)))) (-2634 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-574)) (-4 *4 (-174)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *1 (-698 *4 *5 *6 *2)) (-4 *2 (-697 *4 *5 *6)))) (-3609 (*1 *2 *3) (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-174)) (-5 *1 (-698 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5)))) (-3192 (*1 *2 *3) (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-174)) (-5 *1 (-698 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5))))) -(-10 -7 (-15 -3192 (|#1| |#4|)) (-15 -3609 (|#1| |#4|)) (-15 -2634 (|#4| |#4| (-574) (-574))) (-15 -3075 (|#4| |#4| |#1| (-574) (-574))) (-15 -4209 (|#4| |#4| |#1| (-574) (-574))) (IF (|has| |#1| (-566)) (PROGN (-15 -3584 ((-781) |#4|)) (-15 -1602 ((-781) |#4|)) (-15 -2548 ((-654 |#3|) |#4|)) (-15 -2620 (|#4| |#4|)) (-15 -1371 ((-3 |#4| "failed") |#4|)) (-15 -2194 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-315)) (PROGN (-15 -2879 (|#4| |#4|)) (-15 -1626 ((-2 (|:| -1411 |#1|) (|:| -2766 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -2063 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2216 (($ (-781) (-781)) 64)) (-3285 (($ $ $) NIL)) (-2100 (($ (-1281 |#1|)) NIL) (($ $) NIL)) (-3291 (((-112) $) NIL)) (-3053 (($ $ (-574) (-574)) 22)) (-1476 (($ $ (-574) (-574)) NIL)) (-4087 (($ $ (-574) (-574) (-574) (-574)) NIL)) (-2584 (($ $) NIL)) (-2224 (((-112) $) NIL)) (-3034 (((-112) $ (-781)) NIL)) (-4100 (($ $ (-574) (-574) $) NIL)) (-3143 ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574)) $) NIL)) (-1365 (($ $ (-574) (-1281 |#1|)) NIL)) (-1694 (($ $ (-574) (-1281 |#1|)) NIL)) (-1346 (($ (-781) |#1|) 37)) (-3426 (($) NIL T CONST)) (-2879 (($ $) 46 (|has| |#1| (-315)))) (-4170 (((-1281 |#1|) $ (-574)) NIL)) (-3584 (((-781) $) 48 (|has| |#1| (-566)))) (-2458 ((|#1| $ (-574) (-574) |#1|) 69)) (-2385 ((|#1| $ (-574) (-574)) NIL)) (-1864 (((-654 |#1|) $) NIL)) (-1602 (((-781) $) 50 (|has| |#1| (-566)))) (-2548 (((-654 (-1281 |#1|)) $) 53 (|has| |#1| (-566)))) (-2189 (((-781) $) 32)) (-3790 (($ (-781) (-781) |#1|) 28)) (-2198 (((-781) $) 33)) (-2742 (((-112) $ (-781)) NIL)) (-3609 ((|#1| $) 44 (|has| |#1| (-6 (-4458 "*"))))) (-3491 (((-574) $) 10)) (-1630 (((-574) $) 11)) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3068 (((-574) $) 14)) (-3691 (((-574) $) 65)) (-2914 (($ (-654 (-654 |#1|))) NIL)) (-2449 (($ (-1 |#1| |#1|) $) NIL)) (-1777 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1394 (((-654 (-654 |#1|)) $) 76)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-2063 (((-3 $ "failed") $) 60 (|has| |#1| (-372)))) (-1352 (($ $ $) NIL)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-1942 (($ $ |#1|) NIL)) (-2838 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 ((|#1| $ (-574) (-574)) NIL) ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574))) NIL)) (-2691 (($ (-654 |#1|)) NIL) (($ (-654 $)) NIL) (($ (-1281 |#1|)) 70)) (-2675 (((-112) $) NIL)) (-3192 ((|#1| $) 42 (|has| |#1| (-6 (-4458 "*"))))) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) NIL)) (-1836 (((-546) $) 80 (|has| |#1| (-624 (-546))))) (-2471 (((-1281 |#1|) $ (-574)) NIL)) (-2943 (($ (-1281 |#1|)) NIL) (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2539 (((-112) $) NIL)) (-2981 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3108 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3094 (($ $ $) NIL) (($ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-781)) 38) (($ $ (-574)) 62 (|has| |#1| (-372)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-574) $) NIL) (((-1281 |#1|) $ (-1281 |#1|)) NIL) (((-1281 |#1|) (-1281 |#1|) $) NIL)) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-699 |#1|) (-13 (-697 |#1| (-1281 |#1|) (-1281 |#1|)) (-10 -8 (-15 -2691 ($ (-1281 |#1|))) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -2063 ((-3 $ "failed") $)) |%noBranch|))) (-1062)) (T -699)) -((-2063 (*1 *1 *1) (|partial| -12 (-5 *1 (-699 *2)) (-4 *2 (-372)) (-4 *2 (-1062)))) (-2691 (*1 *1 *2) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-1062)) (-5 *1 (-699 *3))))) -(-13 (-697 |#1| (-1281 |#1|) (-1281 |#1|)) (-10 -8 (-15 -2691 ($ (-1281 |#1|))) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -2063 ((-3 $ "failed") $)) |%noBranch|))) -((-2629 (((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|)) 37)) (-1410 (((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|) 32)) (-2990 (((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-781)) 43)) (-2202 (((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|)) 25)) (-3475 (((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|)) 29) (((-699 |#1|) (-699 |#1|) (-699 |#1|)) 27)) (-2003 (((-699 |#1|) (-699 |#1|) |#1| (-699 |#1|)) 31)) (-2459 (((-699 |#1|) (-699 |#1|) (-699 |#1|)) 23)) (** (((-699 |#1|) (-699 |#1|) (-781)) 46))) -(((-700 |#1|) (-10 -7 (-15 -2459 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2202 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3475 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3475 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2003 ((-699 |#1|) (-699 |#1|) |#1| (-699 |#1|))) (-15 -1410 ((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|)) (-15 -2629 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2990 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-781))) (-15 ** ((-699 |#1|) (-699 |#1|) (-781)))) (-1062)) (T -700)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-699 *4)) (-5 *3 (-781)) (-4 *4 (-1062)) (-5 *1 (-700 *4)))) (-2990 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-699 *4)) (-5 *3 (-781)) (-4 *4 (-1062)) (-5 *1 (-700 *4)))) (-2629 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-700 *3)))) (-1410 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-700 *3)))) (-2003 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-700 *3)))) (-3475 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-700 *3)))) (-3475 (*1 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-700 *3)))) (-2202 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-700 *3)))) (-2459 (*1 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-700 *3))))) -(-10 -7 (-15 -2459 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2202 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3475 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3475 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2003 ((-699 |#1|) (-699 |#1|) |#1| (-699 |#1|))) (-15 -1410 ((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|)) (-15 -2629 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2990 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-781))) (-15 ** ((-699 |#1|) (-699 |#1|) (-781)))) -((-1696 (((-3 |#1| "failed") $) 18)) (-2206 ((|#1| $) NIL)) (-2234 (($) 7 T CONST)) (-4151 (($ |#1|) 8)) (-2943 (($ |#1|) 16) (((-872) $) 23)) (-2122 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -2234)) 11)) (-1331 ((|#1| $) 15))) -(((-701 |#1|) (-13 (-1276) (-1051 |#1|) (-623 (-872)) (-10 -8 (-15 -4151 ($ |#1|)) (-15 -2122 ((-112) $ (|[\|\|]| |#1|))) (-15 -2122 ((-112) $ (|[\|\|]| -2234))) (-15 -1331 (|#1| $)) (-15 -2234 ($) -1706))) (-623 (-872))) (T -701)) -((-4151 (*1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872))))) (-2122 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-623 (-872))) (-5 *2 (-112)) (-5 *1 (-701 *4)))) (-2122 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2234)) (-5 *2 (-112)) (-5 *1 (-701 *4)) (-4 *4 (-623 (-872))))) (-1331 (*1 *2 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872))))) (-2234 (*1 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872)))))) -(-13 (-1276) (-1051 |#1|) (-623 (-872)) (-10 -8 (-15 -4151 ($ |#1|)) (-15 -2122 ((-112) $ (|[\|\|]| |#1|))) (-15 -2122 ((-112) $ (|[\|\|]| -2234))) (-15 -1331 (|#1| $)) (-15 -2234 ($) -1706))) -((-1676 ((|#2| |#2| |#4|) 29)) (-3451 (((-699 |#2|) |#3| |#4|) 35)) (-3497 (((-699 |#2|) |#2| |#4|) 34)) (-2823 (((-1281 |#2|) |#2| |#4|) 16)) (-1960 ((|#2| |#3| |#4|) 28)) (-2573 (((-699 |#2|) |#3| |#4| (-781) (-781)) 47)) (-1632 (((-699 |#2|) |#2| |#4| (-781)) 46))) -(((-702 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2823 ((-1281 |#2|) |#2| |#4|)) (-15 -1960 (|#2| |#3| |#4|)) (-15 -1676 (|#2| |#2| |#4|)) (-15 -3497 ((-699 |#2|) |#2| |#4|)) (-15 -1632 ((-699 |#2|) |#2| |#4| (-781))) (-15 -3451 ((-699 |#2|) |#3| |#4|)) (-15 -2573 ((-699 |#2|) |#3| |#4| (-781) (-781)))) (-1113) (-911 |#1|) (-382 |#2|) (-13 (-382 |#1|) (-10 -7 (-6 -4456)))) (T -702)) -((-2573 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-781)) (-4 *6 (-1113)) (-4 *7 (-911 *6)) (-5 *2 (-699 *7)) (-5 *1 (-702 *6 *7 *3 *4)) (-4 *3 (-382 *7)) (-4 *4 (-13 (-382 *6) (-10 -7 (-6 -4456)))))) (-3451 (*1 *2 *3 *4) (-12 (-4 *5 (-1113)) (-4 *6 (-911 *5)) (-5 *2 (-699 *6)) (-5 *1 (-702 *5 *6 *3 *4)) (-4 *3 (-382 *6)) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4456)))))) (-1632 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-781)) (-4 *6 (-1113)) (-4 *3 (-911 *6)) (-5 *2 (-699 *3)) (-5 *1 (-702 *6 *3 *7 *4)) (-4 *7 (-382 *3)) (-4 *4 (-13 (-382 *6) (-10 -7 (-6 -4456)))))) (-3497 (*1 *2 *3 *4) (-12 (-4 *5 (-1113)) (-4 *3 (-911 *5)) (-5 *2 (-699 *3)) (-5 *1 (-702 *5 *3 *6 *4)) (-4 *6 (-382 *3)) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4456)))))) (-1676 (*1 *2 *2 *3) (-12 (-4 *4 (-1113)) (-4 *2 (-911 *4)) (-5 *1 (-702 *4 *2 *5 *3)) (-4 *5 (-382 *2)) (-4 *3 (-13 (-382 *4) (-10 -7 (-6 -4456)))))) (-1960 (*1 *2 *3 *4) (-12 (-4 *5 (-1113)) (-4 *2 (-911 *5)) (-5 *1 (-702 *5 *2 *3 *4)) (-4 *3 (-382 *2)) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4456)))))) (-2823 (*1 *2 *3 *4) (-12 (-4 *5 (-1113)) (-4 *3 (-911 *5)) (-5 *2 (-1281 *3)) (-5 *1 (-702 *5 *3 *6 *4)) (-4 *6 (-382 *3)) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4456))))))) -(-10 -7 (-15 -2823 ((-1281 |#2|) |#2| |#4|)) (-15 -1960 (|#2| |#3| |#4|)) (-15 -1676 (|#2| |#2| |#4|)) (-15 -3497 ((-699 |#2|) |#2| |#4|)) (-15 -1632 ((-699 |#2|) |#2| |#4| (-781))) (-15 -3451 ((-699 |#2|) |#3| |#4|)) (-15 -2573 ((-699 |#2|) |#3| |#4| (-781) (-781)))) -((-4098 (((-2 (|:| |num| (-699 |#1|)) (|:| |den| |#1|)) (-699 |#2|)) 20)) (-1907 ((|#1| (-699 |#2|)) 9)) (-2790 (((-699 |#1|) (-699 |#2|)) 18))) -(((-703 |#1| |#2|) (-10 -7 (-15 -1907 (|#1| (-699 |#2|))) (-15 -2790 ((-699 |#1|) (-699 |#2|))) (-15 -4098 ((-2 (|:| |num| (-699 |#1|)) (|:| |den| |#1|)) (-699 |#2|)))) (-566) (-1005 |#1|)) (T -703)) -((-4098 (*1 *2 *3) (-12 (-5 *3 (-699 *5)) (-4 *5 (-1005 *4)) (-4 *4 (-566)) (-5 *2 (-2 (|:| |num| (-699 *4)) (|:| |den| *4))) (-5 *1 (-703 *4 *5)))) (-2790 (*1 *2 *3) (-12 (-5 *3 (-699 *5)) (-4 *5 (-1005 *4)) (-4 *4 (-566)) (-5 *2 (-699 *4)) (-5 *1 (-703 *4 *5)))) (-1907 (*1 *2 *3) (-12 (-5 *3 (-699 *4)) (-4 *4 (-1005 *2)) (-4 *2 (-566)) (-5 *1 (-703 *2 *4))))) -(-10 -7 (-15 -1907 (|#1| (-699 |#2|))) (-15 -2790 ((-699 |#1|) (-699 |#2|))) (-15 -4098 ((-2 (|:| |num| (-699 |#1|)) (|:| |den| |#1|)) (-699 |#2|)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-2294 (((-699 (-709))) NIL) (((-699 (-709)) (-1281 $)) NIL)) (-1636 (((-709) $) NIL)) (-2364 (($ $) NIL (|has| (-709) (-1216)))) (-2247 (($ $) NIL (|has| (-709) (-1216)))) (-1664 (((-1203 (-932) (-781)) (-574)) NIL (|has| (-709) (-358)))) (-3524 (((-3 $ "failed") $ $) NIL)) (-3972 (((-428 (-1186 $)) (-1186 $)) NIL (-12 (|has| (-709) (-315)) (|has| (-709) (-920))))) (-2568 (($ $) NIL (-2818 (-12 (|has| (-709) (-315)) (|has| (-709) (-920))) (|has| (-709) (-372))))) (-2827 (((-428 $) $) NIL (-2818 (-12 (|has| (-709) (-315)) (|has| (-709) (-920))) (|has| (-709) (-372))))) (-4229 (($ $) NIL (-12 (|has| (-709) (-1015)) (|has| (-709) (-1216))))) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (-12 (|has| (-709) (-315)) (|has| (-709) (-920))))) (-1600 (((-112) $ $) NIL (|has| (-709) (-315)))) (-1487 (((-781)) NIL (|has| (-709) (-377)))) (-2343 (($ $) NIL (|has| (-709) (-1216)))) (-2227 (($ $) NIL (|has| (-709) (-1216)))) (-2389 (($ $) NIL (|has| (-709) (-1216)))) (-2267 (($ $) NIL (|has| (-709) (-1216)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-574) "failed") $) NIL) (((-3 (-709) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-709) (-1051 (-417 (-574)))))) (-2206 (((-574) $) NIL) (((-709) $) NIL) (((-417 (-574)) $) NIL (|has| (-709) (-1051 (-417 (-574)))))) (-2737 (($ (-1281 (-709))) NIL) (($ (-1281 (-709)) (-1281 $)) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-709) (-358)))) (-2786 (($ $ $) NIL (|has| (-709) (-315)))) (-2134 (((-699 (-709)) $) NIL) (((-699 (-709)) $ (-1281 $)) NIL)) (-2590 (((-699 (-709)) (-1281 $)) NIL) (((-699 (-709)) (-699 $)) NIL) (((-2 (|:| -4340 (-699 (-709))) (|:| |vec| (-1281 (-709)))) (-699 $) (-1281 $)) NIL) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| (-709) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-709) (-649 (-574)))) (((-699 (-574)) (-1281 $)) NIL (|has| (-709) (-649 (-574))))) (-2868 (((-3 $ "failed") (-417 (-1186 (-709)))) NIL (|has| (-709) (-372))) (($ (-1186 (-709))) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-4239 (((-709) $) 29)) (-1880 (((-3 (-417 (-574)) "failed") $) NIL (|has| (-709) (-555)))) (-4414 (((-112) $) NIL (|has| (-709) (-555)))) (-4339 (((-417 (-574)) $) NIL (|has| (-709) (-555)))) (-3584 (((-932)) NIL)) (-2820 (($) NIL (|has| (-709) (-377)))) (-2797 (($ $ $) NIL (|has| (-709) (-315)))) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| (-709) (-315)))) (-3812 (($) NIL (|has| (-709) (-358)))) (-4044 (((-112) $) NIL (|has| (-709) (-358)))) (-1647 (($ $) NIL (|has| (-709) (-358))) (($ $ (-781)) NIL (|has| (-709) (-358)))) (-2257 (((-112) $) NIL (-2818 (-12 (|has| (-709) (-315)) (|has| (-709) (-920))) (|has| (-709) (-372))))) (-3494 (((-2 (|:| |r| (-709)) (|:| |phi| (-709))) $) NIL (-12 (|has| (-709) (-1073)) (|has| (-709) (-1216))))) (-3000 (($) NIL (|has| (-709) (-1216)))) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-709) (-897 (-388)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-709) (-897 (-574))))) (-3884 (((-843 (-932)) $) NIL (|has| (-709) (-358))) (((-932) $) NIL (|has| (-709) (-358)))) (-3199 (((-112) $) NIL)) (-3460 (($ $ (-574)) NIL (-12 (|has| (-709) (-1015)) (|has| (-709) (-1216))))) (-2236 (((-709) $) NIL)) (-2748 (((-3 $ "failed") $) NIL (|has| (-709) (-358)))) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-709) (-315)))) (-1972 (((-1186 (-709)) $) NIL (|has| (-709) (-372)))) (-3659 (($ $ $) NIL)) (-4257 (($ $ $) NIL)) (-1777 (($ (-1 (-709) (-709)) $) NIL)) (-4115 (((-932) $) NIL (|has| (-709) (-377)))) (-3119 (($ $) NIL (|has| (-709) (-1216)))) (-2854 (((-1186 (-709)) $) NIL)) (-2832 (($ (-654 $)) NIL (|has| (-709) (-315))) (($ $ $) NIL (|has| (-709) (-315)))) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL (|has| (-709) (-372)))) (-3818 (($) NIL (|has| (-709) (-358)) CONST)) (-2576 (($ (-932)) NIL (|has| (-709) (-377)))) (-3463 (($) NIL)) (-4249 (((-709) $) 31)) (-3966 (((-1133) $) NIL)) (-2970 (($) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| (-709) (-315)))) (-2873 (($ (-654 $)) NIL (|has| (-709) (-315))) (($ $ $) NIL (|has| (-709) (-315)))) (-1417 (((-654 (-2 (|:| -4220 (-574)) (|:| -3715 (-574))))) NIL (|has| (-709) (-358)))) (-2560 (((-428 (-1186 $)) (-1186 $)) NIL (-12 (|has| (-709) (-315)) (|has| (-709) (-920))))) (-2039 (((-428 (-1186 $)) (-1186 $)) NIL (-12 (|has| (-709) (-315)) (|has| (-709) (-920))))) (-4220 (((-428 $) $) NIL (-2818 (-12 (|has| (-709) (-315)) (|has| (-709) (-920))) (|has| (-709) (-372))))) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-709) (-315))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| (-709) (-315)))) (-2838 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-709)) NIL (|has| (-709) (-566)))) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-709) (-315)))) (-1609 (($ $) NIL (|has| (-709) (-1216)))) (-2646 (($ $ (-1190) (-709)) NIL (|has| (-709) (-524 (-1190) (-709)))) (($ $ (-654 (-1190)) (-654 (-709))) NIL (|has| (-709) (-524 (-1190) (-709)))) (($ $ (-654 (-302 (-709)))) NIL (|has| (-709) (-317 (-709)))) (($ $ (-302 (-709))) NIL (|has| (-709) (-317 (-709)))) (($ $ (-709) (-709)) NIL (|has| (-709) (-317 (-709)))) (($ $ (-654 (-709)) (-654 (-709))) NIL (|has| (-709) (-317 (-709))))) (-1730 (((-781) $) NIL (|has| (-709) (-315)))) (-2199 (($ $ (-709)) NIL (|has| (-709) (-294 (-709) (-709))))) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| (-709) (-315)))) (-2872 (((-709)) NIL) (((-709) (-1281 $)) NIL)) (-4342 (((-3 (-781) "failed") $ $) NIL (|has| (-709) (-358))) (((-781) $) NIL (|has| (-709) (-358)))) (-3905 (($ $ (-1 (-709) (-709))) NIL) (($ $ (-1 (-709) (-709)) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-709) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-709) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-709) (-911 (-1190)))) (($ $ (-1190)) NIL (|has| (-709) (-911 (-1190)))) (($ $ (-781)) NIL (|has| (-709) (-239))) (($ $) NIL (|has| (-709) (-239)))) (-3146 (((-699 (-709)) (-1281 $) (-1 (-709) (-709))) NIL (|has| (-709) (-372)))) (-4185 (((-1186 (-709))) NIL)) (-2402 (($ $) NIL (|has| (-709) (-1216)))) (-2275 (($ $) NIL (|has| (-709) (-1216)))) (-3074 (($) NIL (|has| (-709) (-358)))) (-2375 (($ $) NIL (|has| (-709) (-1216)))) (-2256 (($ $) NIL (|has| (-709) (-1216)))) (-2352 (($ $) NIL (|has| (-709) (-1216)))) (-2237 (($ $) NIL (|has| (-709) (-1216)))) (-3487 (((-699 (-709)) (-1281 $)) NIL) (((-1281 (-709)) $) NIL) (((-699 (-709)) (-1281 $) (-1281 $)) NIL) (((-1281 (-709)) $ (-1281 $)) NIL)) (-1836 (((-546) $) NIL (|has| (-709) (-624 (-546)))) (((-171 (-227)) $) NIL (|has| (-709) (-1035))) (((-171 (-388)) $) NIL (|has| (-709) (-1035))) (((-903 (-388)) $) NIL (|has| (-709) (-624 (-903 (-388))))) (((-903 (-574)) $) NIL (|has| (-709) (-624 (-903 (-574))))) (($ (-1186 (-709))) NIL) (((-1186 (-709)) $) NIL) (($ (-1281 (-709))) NIL) (((-1281 (-709)) $) NIL)) (-1479 (($ $) NIL)) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (-2818 (-12 (|has| (-709) (-315)) (|has| $ (-146)) (|has| (-709) (-920))) (|has| (-709) (-358))))) (-3562 (($ (-709) (-709)) 12)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-574)) NIL) (($ (-709)) NIL) (($ (-171 (-388))) 13) (($ (-171 (-574))) 19) (($ (-171 (-709))) 28) (($ (-171 (-711))) 25) (((-171 (-388)) $) 33) (($ (-417 (-574))) NIL (-2818 (|has| (-709) (-1051 (-417 (-574)))) (|has| (-709) (-372))))) (-3298 (($ $) NIL (|has| (-709) (-358))) (((-3 $ "failed") $) NIL (-2818 (-12 (|has| (-709) (-315)) (|has| $ (-146)) (|has| (-709) (-920))) (|has| (-709) (-146))))) (-1435 (((-1186 (-709)) $) NIL)) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-1882 (((-1281 $)) NIL)) (-2441 (($ $) NIL (|has| (-709) (-1216)))) (-2305 (($ $) NIL (|has| (-709) (-1216)))) (-2069 (((-112) $ $) NIL)) (-2414 (($ $) NIL (|has| (-709) (-1216)))) (-2287 (($ $) NIL (|has| (-709) (-1216)))) (-2465 (($ $) NIL (|has| (-709) (-1216)))) (-2325 (($ $) NIL (|has| (-709) (-1216)))) (-3725 (((-709) $) NIL (|has| (-709) (-1216)))) (-2521 (($ $) NIL (|has| (-709) (-1216)))) (-2334 (($ $) NIL (|has| (-709) (-1216)))) (-2452 (($ $) NIL (|has| (-709) (-1216)))) (-2315 (($ $) NIL (|has| (-709) (-1216)))) (-2428 (($ $) NIL (|has| (-709) (-1216)))) (-2297 (($ $) NIL (|has| (-709) (-1216)))) (-3482 (($ $) NIL (|has| (-709) (-1073)))) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-3610 (($ $ (-1 (-709) (-709))) NIL) (($ $ (-1 (-709) (-709)) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-709) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-709) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-709) (-911 (-1190)))) (($ $ (-1190)) NIL (|has| (-709) (-911 (-1190)))) (($ $ (-781)) NIL (|has| (-709) (-239))) (($ $) NIL (|has| (-709) (-239)))) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL (|has| (-709) (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ $) NIL (|has| (-709) (-1216))) (($ $ (-417 (-574))) NIL (-12 (|has| (-709) (-1015)) (|has| (-709) (-1216)))) (($ $ (-574)) NIL (|has| (-709) (-372)))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ (-709) $) NIL) (($ $ (-709)) NIL) (($ (-417 (-574)) $) NIL (|has| (-709) (-372))) (($ $ (-417 (-574))) NIL (|has| (-709) (-372))))) -(((-704) (-13 (-397) (-167 (-709)) (-10 -8 (-15 -2943 ($ (-171 (-388)))) (-15 -2943 ($ (-171 (-574)))) (-15 -2943 ($ (-171 (-709)))) (-15 -2943 ($ (-171 (-711)))) (-15 -2943 ((-171 (-388)) $))))) (T -704)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-171 (-388))) (-5 *1 (-704)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-171 (-574))) (-5 *1 (-704)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-171 (-709))) (-5 *1 (-704)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-171 (-711))) (-5 *1 (-704)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-171 (-388))) (-5 *1 (-704))))) -(-13 (-397) (-167 (-709)) (-10 -8 (-15 -2943 ($ (-171 (-388)))) (-15 -2943 ($ (-171 (-574)))) (-15 -2943 ($ (-171 (-709)))) (-15 -2943 ($ (-171 (-711)))) (-15 -2943 ((-171 (-388)) $)))) -((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3034 (((-112) $ (-781)) 8)) (-3572 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4456)))) (-2165 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4456)))) (-3426 (($) 7 T CONST)) (-1771 (($ $) 63)) (-1543 (($ $) 59 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2876 (($ |#1| $) 48 (|has| $ (-6 -4456))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4456)))) (-3335 (($ |#1| $) 58 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4456)))) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-2742 (((-112) $ (-781)) 9)) (-1606 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2449 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 36)) (-4203 (((-112) $ (-781)) 10)) (-4136 (((-1172) $) 22 (|has| |#1| (-1113)))) (-2937 ((|#1| $) 40)) (-2798 (($ |#1| $) 41) (($ |#1| $ (-781)) 64)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1785 ((|#1| $) 42)) (-2540 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 14)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-4099 (((-654 (-2 (|:| -1908 |#1|) (|:| -3975 (-781)))) $) 62)) (-1662 (($) 50) (($ (-654 |#1|)) 49)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-1836 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 51)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-1599 (($ (-654 |#1|)) 43)) (-3390 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-705 |#1|) (-141) (-1113)) (T -705)) -((-2798 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-705 *2)) (-4 *2 (-1113)))) (-1771 (*1 *1 *1) (-12 (-4 *1 (-705 *2)) (-4 *2 (-1113)))) (-4099 (*1 *2 *1) (-12 (-4 *1 (-705 *3)) (-4 *3 (-1113)) (-5 *2 (-654 (-2 (|:| -1908 *3) (|:| -3975 (-781)))))))) -(-13 (-241 |t#1|) (-10 -8 (-15 -2798 ($ |t#1| $ (-781))) (-15 -1771 ($ $)) (-15 -4099 ((-654 (-2 (|:| -1908 |t#1|) (|:| -3975 (-781)))) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-241 |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1113) |has| |#1| (-1113)) ((-1231) . T)) -((-1340 (((-654 |#1|) (-654 (-2 (|:| -4220 |#1|) (|:| -4202 (-574)))) (-574)) 65)) (-2400 ((|#1| |#1| (-574)) 62)) (-2873 ((|#1| |#1| |#1| (-574)) 46)) (-4220 (((-654 |#1|) |#1| (-574)) 49)) (-1673 ((|#1| |#1| (-574) |#1| (-574)) 40)) (-1628 (((-654 (-2 (|:| -4220 |#1|) (|:| -4202 (-574)))) |#1| (-574)) 61))) -(((-706 |#1|) (-10 -7 (-15 -2873 (|#1| |#1| |#1| (-574))) (-15 -2400 (|#1| |#1| (-574))) (-15 -4220 ((-654 |#1|) |#1| (-574))) (-15 -1628 ((-654 (-2 (|:| -4220 |#1|) (|:| -4202 (-574)))) |#1| (-574))) (-15 -1340 ((-654 |#1|) (-654 (-2 (|:| -4220 |#1|) (|:| -4202 (-574)))) (-574))) (-15 -1673 (|#1| |#1| (-574) |#1| (-574)))) (-1257 (-574))) (T -706)) -((-1673 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1257 *3)))) (-1340 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-2 (|:| -4220 *5) (|:| -4202 (-574))))) (-5 *4 (-574)) (-4 *5 (-1257 *4)) (-5 *2 (-654 *5)) (-5 *1 (-706 *5)))) (-1628 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-5 *2 (-654 (-2 (|:| -4220 *3) (|:| -4202 *4)))) (-5 *1 (-706 *3)) (-4 *3 (-1257 *4)))) (-4220 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-5 *2 (-654 *3)) (-5 *1 (-706 *3)) (-4 *3 (-1257 *4)))) (-2400 (*1 *2 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1257 *3)))) (-2873 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1257 *3))))) -(-10 -7 (-15 -2873 (|#1| |#1| |#1| (-574))) (-15 -2400 (|#1| |#1| (-574))) (-15 -4220 ((-654 |#1|) |#1| (-574))) (-15 -1628 ((-654 (-2 (|:| -4220 |#1|) (|:| -4202 (-574)))) |#1| (-574))) (-15 -1340 ((-654 |#1|) (-654 (-2 (|:| -4220 |#1|) (|:| -4202 (-574)))) (-574))) (-15 -1673 (|#1| |#1| (-574) |#1| (-574)))) -((-3626 (((-1 (-954 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 17)) (-2117 (((-1146 (-227)) (-1146 (-227)) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-227)) (-1107 (-227)) (-654 (-270))) 53) (((-1146 (-227)) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-227)) (-1107 (-227)) (-654 (-270))) 55) (((-1146 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1107 (-227)) (-1107 (-227)) (-654 (-270))) 57)) (-3092 (((-1146 (-227)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1107 (-227)) (-654 (-270))) NIL)) (-3394 (((-1146 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1107 (-227)) (-1107 (-227)) (-654 (-270))) 58))) -(((-707) (-10 -7 (-15 -2117 ((-1146 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1107 (-227)) (-1107 (-227)) (-654 (-270)))) (-15 -2117 ((-1146 (-227)) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-227)) (-1107 (-227)) (-654 (-270)))) (-15 -2117 ((-1146 (-227)) (-1146 (-227)) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-227)) (-1107 (-227)) (-654 (-270)))) (-15 -3394 ((-1146 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1107 (-227)) (-1107 (-227)) (-654 (-270)))) (-15 -3092 ((-1146 (-227)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1107 (-227)) (-654 (-270)))) (-15 -3626 ((-1 (-954 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -707)) -((-3626 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1 (-227) (-227) (-227) (-227))) (-5 *2 (-1 (-954 (-227)) (-227) (-227))) (-5 *1 (-707)))) (-3092 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1107 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-707)))) (-3394 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1107 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-707)))) (-2117 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1146 (-227))) (-5 *3 (-1 (-954 (-227)) (-227) (-227))) (-5 *4 (-1107 (-227))) (-5 *5 (-654 (-270))) (-5 *1 (-707)))) (-2117 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-954 (-227)) (-227) (-227))) (-5 *4 (-1107 (-227))) (-5 *5 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-707)))) (-2117 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1107 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-707))))) -(-10 -7 (-15 -2117 ((-1146 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1107 (-227)) (-1107 (-227)) (-654 (-270)))) (-15 -2117 ((-1146 (-227)) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-227)) (-1107 (-227)) (-654 (-270)))) (-15 -2117 ((-1146 (-227)) (-1146 (-227)) (-1 (-954 (-227)) (-227) (-227)) (-1107 (-227)) (-1107 (-227)) (-654 (-270)))) (-15 -3394 ((-1146 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1107 (-227)) (-1107 (-227)) (-654 (-270)))) (-15 -3092 ((-1146 (-227)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1107 (-227)) (-654 (-270)))) (-15 -3626 ((-1 (-954 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) -((-4220 (((-428 (-1186 |#4|)) (-1186 |#4|)) 86) (((-428 |#4|) |#4|) 266))) -(((-708 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4220 ((-428 |#4|) |#4|)) (-15 -4220 ((-428 (-1186 |#4|)) (-1186 |#4|)))) (-860) (-803) (-358) (-960 |#3| |#2| |#1|)) (T -708)) -((-4220 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-358)) (-4 *7 (-960 *6 *5 *4)) (-5 *2 (-428 (-1186 *7))) (-5 *1 (-708 *4 *5 *6 *7)) (-5 *3 (-1186 *7)))) (-4220 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-358)) (-5 *2 (-428 *3)) (-5 *1 (-708 *4 *5 *6 *3)) (-4 *3 (-960 *6 *5 *4))))) -(-10 -7 (-15 -4220 ((-428 |#4|) |#4|)) (-15 -4220 ((-428 (-1186 |#4|)) (-1186 |#4|)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 97)) (-1528 (((-574) $) 34)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-2052 (($ $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-4229 (($ $) NIL)) (-1600 (((-112) $ $) NIL)) (-2846 (((-574) $) NIL)) (-3426 (($) NIL T CONST)) (-4039 (($ $) NIL)) (-1696 (((-3 (-574) "failed") $) 85) (((-3 (-417 (-574)) "failed") $) 28) (((-3 (-388) "failed") $) 82)) (-2206 (((-574) $) 87) (((-417 (-574)) $) 79) (((-388) $) 80)) (-2786 (($ $ $) 109)) (-3434 (((-3 $ "failed") $) 100)) (-2797 (($ $ $) 108)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-2257 (((-112) $) NIL)) (-3785 (((-932)) 89) (((-932) (-932)) 88)) (-2756 (((-112) $) NIL)) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL)) (-3884 (((-574) $) NIL)) (-3199 (((-112) $) NIL)) (-3460 (($ $ (-574)) NIL)) (-2236 (($ $) NIL)) (-1335 (((-112) $) NIL)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3729 (((-574) (-574)) 94) (((-574)) 95)) (-3659 (($ $ $) NIL) (($) NIL (-12 (-2076 (|has| $ (-6 -4439))) (-2076 (|has| $ (-6 -4447)))))) (-1468 (((-574) (-574)) 92) (((-574)) 93)) (-4257 (($ $ $) NIL) (($) NIL (-12 (-2076 (|has| $ (-6 -4439))) (-2076 (|has| $ (-6 -4447)))))) (-4300 (((-574) $) 17)) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) 104)) (-3338 (((-932) (-574)) NIL (|has| $ (-6 -4447)))) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3191 (($ $) NIL)) (-3595 (($ $) NIL)) (-2381 (($ (-574) (-574)) NIL) (($ (-574) (-574) (-932)) NIL)) (-4220 (((-428 $) $) NIL)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) 105)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3715 (((-574) $) 24)) (-1730 (((-781) $) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 107)) (-2173 (((-932)) NIL) (((-932) (-932)) NIL (|has| $ (-6 -4447)))) (-3661 (((-932) (-574)) NIL (|has| $ (-6 -4447)))) (-1836 (((-388) $) NIL) (((-227) $) NIL) (((-903 (-388)) $) NIL)) (-2943 (((-872) $) 63) (($ (-574)) 75) (($ $) NIL) (($ (-417 (-574))) 78) (($ (-574)) 75) (($ (-417 (-574))) 78) (($ (-388)) 72) (((-388) $) 61) (($ (-711)) 66)) (-1364 (((-781)) 119 T CONST)) (-3260 (($ (-574) (-574) (-932)) 54)) (-1801 (($ $) NIL)) (-3837 (((-932)) NIL) (((-932) (-932)) NIL (|has| $ (-6 -4447)))) (-3284 (((-112) $ $) NIL)) (-2630 (((-932)) 91) (((-932) (-932)) 90)) (-2069 (((-112) $ $) NIL)) (-3482 (($ $) NIL)) (-2133 (($) 37 T CONST)) (-2145 (($) 18 T CONST)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 96)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) 118)) (-3108 (($ $ $) 77)) (-3094 (($ $) 115) (($ $ $) 116)) (-3079 (($ $ $) 114)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL) (($ $ (-417 (-574))) 103)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 110) (($ $ $) 101) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) -(((-709) (-13 (-414) (-397) (-372) (-1051 (-388)) (-1051 (-417 (-574))) (-148) (-10 -8 (-15 -3785 ((-932) (-932))) (-15 -3785 ((-932))) (-15 -2630 ((-932) (-932))) (-15 -1468 ((-574) (-574))) (-15 -1468 ((-574))) (-15 -3729 ((-574) (-574))) (-15 -3729 ((-574))) (-15 -2943 ((-388) $)) (-15 -2943 ($ (-711))) (-15 -4300 ((-574) $)) (-15 -3715 ((-574) $)) (-15 -3260 ($ (-574) (-574) (-932)))))) (T -709)) -((-3715 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-3785 (*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-709)))) (-3785 (*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-709)))) (-2630 (*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-709)))) (-1468 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-1468 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-3729 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-3729 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-388)) (-5 *1 (-709)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-711)) (-5 *1 (-709)))) (-3260 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-932)) (-5 *1 (-709))))) -(-13 (-414) (-397) (-372) (-1051 (-388)) (-1051 (-417 (-574))) (-148) (-10 -8 (-15 -3785 ((-932) (-932))) (-15 -3785 ((-932))) (-15 -2630 ((-932) (-932))) (-15 -1468 ((-574) (-574))) (-15 -1468 ((-574))) (-15 -3729 ((-574) (-574))) (-15 -3729 ((-574))) (-15 -2943 ((-388) $)) (-15 -2943 ($ (-711))) (-15 -4300 ((-574) $)) (-15 -3715 ((-574) $)) (-15 -3260 ($ (-574) (-574) (-932))))) -((-3351 (((-699 |#1|) (-699 |#1|) |#1| |#1|) 85)) (-2879 (((-699 |#1|) (-699 |#1|) |#1|) 66)) (-2643 (((-699 |#1|) (-699 |#1|) |#1|) 86)) (-3456 (((-699 |#1|) (-699 |#1|)) 67)) (-1626 (((-2 (|:| -1411 |#1|) (|:| -2766 |#1|)) |#1| |#1|) 84))) -(((-710 |#1|) (-10 -7 (-15 -3456 ((-699 |#1|) (-699 |#1|))) (-15 -2879 ((-699 |#1|) (-699 |#1|) |#1|)) (-15 -2643 ((-699 |#1|) (-699 |#1|) |#1|)) (-15 -3351 ((-699 |#1|) (-699 |#1|) |#1| |#1|)) (-15 -1626 ((-2 (|:| -1411 |#1|) (|:| -2766 |#1|)) |#1| |#1|))) (-315)) (T -710)) -((-1626 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1411 *3) (|:| -2766 *3))) (-5 *1 (-710 *3)) (-4 *3 (-315)))) (-3351 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3)))) (-2643 (*1 *2 *2 *3) (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3)))) (-2879 (*1 *2 *2 *3) (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3)))) (-3456 (*1 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3))))) -(-10 -7 (-15 -3456 ((-699 |#1|) (-699 |#1|))) (-15 -2879 ((-699 |#1|) (-699 |#1|) |#1|)) (-15 -2643 ((-699 |#1|) (-699 |#1|) |#1|)) (-15 -3351 ((-699 |#1|) (-699 |#1|) |#1| |#1|)) (-15 -1626 ((-2 (|:| -1411 |#1|) (|:| -2766 |#1|)) |#1| |#1|))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-1726 (($ $ $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-4178 (($ $ $ $) NIL)) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2846 (((-574) $) NIL)) (-3958 (($ $ $) NIL)) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-574) "failed") $) 31)) (-2206 (((-574) $) 29)) (-2786 (($ $ $) NIL)) (-2590 (((-699 (-574)) (-1281 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-1880 (((-3 (-417 (-574)) "failed") $) NIL)) (-4414 (((-112) $) NIL)) (-4339 (((-417 (-574)) $) NIL)) (-2820 (($ $) NIL) (($) NIL)) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-2257 (((-112) $) NIL)) (-1361 (($ $ $ $) NIL)) (-3742 (($ $ $) NIL)) (-2756 (((-112) $) NIL)) (-3792 (($ $ $) NIL)) (-3625 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL)) (-3199 (((-112) $) NIL)) (-4410 (((-112) $) NIL)) (-2748 (((-3 $ "failed") $) NIL)) (-1335 (((-112) $) NIL)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4201 (($ $ $ $) NIL)) (-3659 (($ $ $) NIL)) (-4171 (((-932) (-932)) 10) (((-932)) 9)) (-4257 (($ $ $) NIL)) (-3810 (($ $) NIL)) (-4135 (($ $) NIL)) (-2832 (($ (-654 $)) NIL) (($ $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3318 (($ $ $) NIL)) (-3818 (($) NIL T CONST)) (-1605 (($ $) NIL)) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ (-654 $)) NIL) (($ $ $) NIL)) (-2150 (($ $) NIL)) (-4220 (((-428 $) $) NIL)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3476 (((-112) $) NIL)) (-1730 (((-781) $) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-3905 (($ $) NIL) (($ $ (-781)) NIL)) (-2295 (($ $) NIL)) (-3167 (($ $) NIL)) (-1836 (((-227) $) NIL) (((-388) $) NIL) (((-903 (-574)) $) NIL) (((-546) $) NIL) (((-574) $) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) 28) (($ $) NIL) (($ (-574)) 28) (((-324 $) (-324 (-574))) 18)) (-1364 (((-781)) NIL T CONST)) (-1467 (((-112) $ $) NIL)) (-1616 (($ $ $) NIL)) (-3284 (((-112) $ $) NIL)) (-2630 (($) NIL)) (-2069 (((-112) $ $) NIL)) (-4344 (($ $ $ $) NIL)) (-3482 (($ $) NIL)) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-3610 (($ $) NIL) (($ $ (-781)) NIL)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL))) -(((-711) (-13 (-397) (-555) (-10 -8 (-15 -4171 ((-932) (-932))) (-15 -4171 ((-932))) (-15 -2943 ((-324 $) (-324 (-574))))))) (T -711)) -((-4171 (*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-711)))) (-4171 (*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-711)))) (-2943 (*1 *2 *3) (-12 (-5 *3 (-324 (-574))) (-5 *2 (-324 (-711))) (-5 *1 (-711))))) -(-13 (-397) (-555) (-10 -8 (-15 -4171 ((-932) (-932))) (-15 -4171 ((-932))) (-15 -2943 ((-324 $) (-324 (-574)))))) -((-3613 (((-1 |#4| |#2| |#3|) |#1| (-1190) (-1190)) 19)) (-2967 (((-1 |#4| |#2| |#3|) (-1190)) 12))) -(((-712 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2967 ((-1 |#4| |#2| |#3|) (-1190))) (-15 -3613 ((-1 |#4| |#2| |#3|) |#1| (-1190) (-1190)))) (-624 (-546)) (-1231) (-1231) (-1231)) (T -712)) -((-3613 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1190)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-712 *3 *5 *6 *7)) (-4 *3 (-624 (-546))) (-4 *5 (-1231)) (-4 *6 (-1231)) (-4 *7 (-1231)))) (-2967 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-712 *4 *5 *6 *7)) (-4 *4 (-624 (-546))) (-4 *5 (-1231)) (-4 *6 (-1231)) (-4 *7 (-1231))))) -(-10 -7 (-15 -2967 ((-1 |#4| |#2| |#3|) (-1190))) (-15 -3613 ((-1 |#4| |#2| |#3|) |#1| (-1190) (-1190)))) -((-1868 (((-1 (-227) (-227) (-227)) |#1| (-1190) (-1190)) 43) (((-1 (-227) (-227)) |#1| (-1190)) 48))) -(((-713 |#1|) (-10 -7 (-15 -1868 ((-1 (-227) (-227)) |#1| (-1190))) (-15 -1868 ((-1 (-227) (-227) (-227)) |#1| (-1190) (-1190)))) (-624 (-546))) (T -713)) -((-1868 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1190)) (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-713 *3)) (-4 *3 (-624 (-546))))) (-1868 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-713 *3)) (-4 *3 (-624 (-546)))))) -(-10 -7 (-15 -1868 ((-1 (-227) (-227)) |#1| (-1190))) (-15 -1868 ((-1 (-227) (-227) (-227)) |#1| (-1190) (-1190)))) -((-2707 (((-1190) |#1| (-1190) (-654 (-1190))) 10) (((-1190) |#1| (-1190) (-1190) (-1190)) 13) (((-1190) |#1| (-1190) (-1190)) 12) (((-1190) |#1| (-1190)) 11))) -(((-714 |#1|) (-10 -7 (-15 -2707 ((-1190) |#1| (-1190))) (-15 -2707 ((-1190) |#1| (-1190) (-1190))) (-15 -2707 ((-1190) |#1| (-1190) (-1190) (-1190))) (-15 -2707 ((-1190) |#1| (-1190) (-654 (-1190))))) (-624 (-546))) (T -714)) -((-2707 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-654 (-1190))) (-5 *2 (-1190)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))) (-2707 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))) (-2707 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))) (-2707 (*1 *2 *3 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546)))))) -(-10 -7 (-15 -2707 ((-1190) |#1| (-1190))) (-15 -2707 ((-1190) |#1| (-1190) (-1190))) (-15 -2707 ((-1190) |#1| (-1190) (-1190) (-1190))) (-15 -2707 ((-1190) |#1| (-1190) (-654 (-1190))))) -((-2228 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-715 |#1| |#2|) (-10 -7 (-15 -2228 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1231) (-1231)) (T -715)) -((-2228 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-715 *3 *4)) (-4 *3 (-1231)) (-4 *4 (-1231))))) -(-10 -7 (-15 -2228 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-2346 (((-1 |#3| |#2|) (-1190)) 11)) (-3613 (((-1 |#3| |#2|) |#1| (-1190)) 21))) -(((-716 |#1| |#2| |#3|) (-10 -7 (-15 -2346 ((-1 |#3| |#2|) (-1190))) (-15 -3613 ((-1 |#3| |#2|) |#1| (-1190)))) (-624 (-546)) (-1231) (-1231)) (T -716)) -((-3613 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-5 *2 (-1 *6 *5)) (-5 *1 (-716 *3 *5 *6)) (-4 *3 (-624 (-546))) (-4 *5 (-1231)) (-4 *6 (-1231)))) (-2346 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-1 *6 *5)) (-5 *1 (-716 *4 *5 *6)) (-4 *4 (-624 (-546))) (-4 *5 (-1231)) (-4 *6 (-1231))))) -(-10 -7 (-15 -2346 ((-1 |#3| |#2|) (-1190))) (-15 -3613 ((-1 |#3| |#2|) |#1| (-1190)))) -((-4329 (((-3 (-654 (-1186 |#4|)) "failed") (-1186 |#4|) (-654 |#2|) (-654 (-1186 |#4|)) (-654 |#3|) (-654 |#4|) (-654 (-654 (-2 (|:| -3334 (-781)) (|:| |pcoef| |#4|)))) (-654 (-781)) (-1281 (-654 (-1186 |#3|))) |#3|) 92)) (-4111 (((-3 (-654 (-1186 |#4|)) "failed") (-1186 |#4|) (-654 |#2|) (-654 (-1186 |#3|)) (-654 |#3|) (-654 |#4|) (-654 (-781)) |#3|) 110)) (-2017 (((-3 (-654 (-1186 |#4|)) "failed") (-1186 |#4|) (-654 |#2|) (-654 |#3|) (-654 (-781)) (-654 (-1186 |#4|)) (-1281 (-654 (-1186 |#3|))) |#3|) 47))) -(((-717 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2017 ((-3 (-654 (-1186 |#4|)) "failed") (-1186 |#4|) (-654 |#2|) (-654 |#3|) (-654 (-781)) (-654 (-1186 |#4|)) (-1281 (-654 (-1186 |#3|))) |#3|)) (-15 -4111 ((-3 (-654 (-1186 |#4|)) "failed") (-1186 |#4|) (-654 |#2|) (-654 (-1186 |#3|)) (-654 |#3|) (-654 |#4|) (-654 (-781)) |#3|)) (-15 -4329 ((-3 (-654 (-1186 |#4|)) "failed") (-1186 |#4|) (-654 |#2|) (-654 (-1186 |#4|)) (-654 |#3|) (-654 |#4|) (-654 (-654 (-2 (|:| -3334 (-781)) (|:| |pcoef| |#4|)))) (-654 (-781)) (-1281 (-654 (-1186 |#3|))) |#3|))) (-803) (-860) (-315) (-960 |#3| |#1| |#2|)) (T -717)) -((-4329 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-654 (-1186 *13))) (-5 *3 (-1186 *13)) (-5 *4 (-654 *12)) (-5 *5 (-654 *10)) (-5 *6 (-654 *13)) (-5 *7 (-654 (-654 (-2 (|:| -3334 (-781)) (|:| |pcoef| *13))))) (-5 *8 (-654 (-781))) (-5 *9 (-1281 (-654 (-1186 *10)))) (-4 *12 (-860)) (-4 *10 (-315)) (-4 *13 (-960 *10 *11 *12)) (-4 *11 (-803)) (-5 *1 (-717 *11 *12 *10 *13)))) (-4111 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-654 *11)) (-5 *5 (-654 (-1186 *9))) (-5 *6 (-654 *9)) (-5 *7 (-654 *12)) (-5 *8 (-654 (-781))) (-4 *11 (-860)) (-4 *9 (-315)) (-4 *12 (-960 *9 *10 *11)) (-4 *10 (-803)) (-5 *2 (-654 (-1186 *12))) (-5 *1 (-717 *10 *11 *9 *12)) (-5 *3 (-1186 *12)))) (-2017 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-654 (-1186 *11))) (-5 *3 (-1186 *11)) (-5 *4 (-654 *10)) (-5 *5 (-654 *8)) (-5 *6 (-654 (-781))) (-5 *7 (-1281 (-654 (-1186 *8)))) (-4 *10 (-860)) (-4 *8 (-315)) (-4 *11 (-960 *8 *9 *10)) (-4 *9 (-803)) (-5 *1 (-717 *9 *10 *8 *11))))) -(-10 -7 (-15 -2017 ((-3 (-654 (-1186 |#4|)) "failed") (-1186 |#4|) (-654 |#2|) (-654 |#3|) (-654 (-781)) (-654 (-1186 |#4|)) (-1281 (-654 (-1186 |#3|))) |#3|)) (-15 -4111 ((-3 (-654 (-1186 |#4|)) "failed") (-1186 |#4|) (-654 |#2|) (-654 (-1186 |#3|)) (-654 |#3|) (-654 |#4|) (-654 (-781)) |#3|)) (-15 -4329 ((-3 (-654 (-1186 |#4|)) "failed") (-1186 |#4|) (-654 |#2|) (-654 (-1186 |#4|)) (-654 |#3|) (-654 |#4|) (-654 (-654 (-2 (|:| -3334 (-781)) (|:| |pcoef| |#4|)))) (-654 (-781)) (-1281 (-654 (-1186 |#3|))) |#3|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-1392 (($ $) 48)) (-3434 (((-3 $ "failed") $) 37)) (-3199 (((-112) $) 35)) (-4335 (($ |#1| (-781)) 46)) (-1742 (((-781) $) 50)) (-1370 ((|#1| $) 49)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-4202 (((-781) $) 51)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 45 (|has| |#1| (-174)))) (-3087 ((|#1| $ (-781)) 47)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52))) -(((-718 |#1|) (-141) (-1062)) (T -718)) -((-4202 (*1 *2 *1) (-12 (-4 *1 (-718 *3)) (-4 *3 (-1062)) (-5 *2 (-781)))) (-1742 (*1 *2 *1) (-12 (-4 *1 (-718 *3)) (-4 *3 (-1062)) (-5 *2 (-781)))) (-1370 (*1 *2 *1) (-12 (-4 *1 (-718 *2)) (-4 *2 (-1062)))) (-1392 (*1 *1 *1) (-12 (-4 *1 (-718 *2)) (-4 *2 (-1062)))) (-3087 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-718 *2)) (-4 *2 (-1062)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-718 *2)) (-4 *2 (-1062))))) -(-13 (-1062) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4202 ((-781) $)) (-15 -1742 ((-781) $)) (-15 -1370 (|t#1| $)) (-15 -1392 ($ $)) (-15 -3087 (|t#1| $ (-781))) (-15 -4335 ($ |t#1| (-781))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) |has| |#1| (-174)) ((-727 |#1|) |has| |#1| (-174)) ((-736) . T) ((-1064 |#1|) . T) ((-1069 |#1|) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T)) -((-1777 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-719 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1777 (|#6| (-1 |#4| |#1|) |#3|))) (-566) (-1257 |#1|) (-1257 (-417 |#2|)) (-566) (-1257 |#4|) (-1257 (-417 |#5|))) (T -719)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-566)) (-4 *7 (-566)) (-4 *6 (-1257 *5)) (-4 *2 (-1257 (-417 *8))) (-5 *1 (-719 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1257 (-417 *6))) (-4 *8 (-1257 *7))))) -(-10 -7 (-15 -1777 (|#6| (-1 |#4| |#1|) |#3|))) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2086 (((-1172) (-872)) 38)) (-1403 (((-1286) (-1172)) 31)) (-4245 (((-1172) (-872)) 28)) (-2792 (((-1172) (-872)) 29)) (-2943 (((-872) $) NIL) (((-1172) (-872)) 27)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-720) (-13 (-1113) (-10 -7 (-15 -2943 ((-1172) (-872))) (-15 -4245 ((-1172) (-872))) (-15 -2792 ((-1172) (-872))) (-15 -2086 ((-1172) (-872))) (-15 -1403 ((-1286) (-1172)))))) (T -720)) -((-2943 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1172)) (-5 *1 (-720)))) (-4245 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1172)) (-5 *1 (-720)))) (-2792 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1172)) (-5 *1 (-720)))) (-2086 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1172)) (-5 *1 (-720)))) (-1403 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-720))))) -(-13 (-1113) (-10 -7 (-15 -2943 ((-1172) (-872))) (-15 -4245 ((-1172) (-872))) (-15 -2792 ((-1172) (-872))) (-15 -2086 ((-1172) (-872))) (-15 -1403 ((-1286) (-1172))))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-1600 (((-112) $ $) NIL)) (-3426 (($) NIL T CONST)) (-2786 (($ $ $) NIL)) (-2868 (($ |#1| |#2|) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-2257 (((-112) $) NIL)) (-3199 (((-112) $) NIL)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2089 ((|#2| $) NIL)) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4220 (((-428 $) $) NIL)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3449 (((-3 $ "failed") $ $) NIL)) (-1730 (((-781) $) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) ((|#1| $) NIL)) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL)) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) -(((-721 |#1| |#2| |#3| |#4| |#5|) (-13 (-372) (-10 -8 (-15 -2089 (|#2| $)) (-15 -2943 (|#1| $)) (-15 -2868 ($ |#1| |#2|)) (-15 -3449 ((-3 $ "failed") $ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -721)) -((-2089 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-721 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2943 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2868 (*1 *1 *2 *3) (-12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3449 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-372) (-10 -8 (-15 -2089 (|#2| $)) (-15 -2943 (|#1| $)) (-15 -2868 ($ |#1| |#2|)) (-15 -3449 ((-3 $ "failed") $ $)))) -((-2849 (((-112) $ $) 87)) (-3138 (((-112) $) 36)) (-2882 (((-1281 |#1|) $ (-781)) NIL)) (-4355 (((-654 (-1095)) $) NIL)) (-4176 (($ (-1186 |#1|)) NIL)) (-4194 (((-1186 $) $ (-1095)) NIL) (((-1186 |#1|) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-1575 (($ $) NIL (|has| |#1| (-566)))) (-2085 (((-112) $) NIL (|has| |#1| (-566)))) (-1757 (((-781) $) NIL) (((-781) $ (-654 (-1095))) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-1904 (($ $ $) NIL (|has| |#1| (-566)))) (-3972 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-2568 (($ $) NIL (|has| |#1| (-462)))) (-2827 (((-428 $) $) NIL (|has| |#1| (-462)))) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-1600 (((-112) $ $) NIL (|has| |#1| (-372)))) (-1487 (((-781)) 54 (|has| |#1| (-377)))) (-1852 (($ $ (-781)) NIL)) (-1690 (($ $ (-781)) NIL)) (-3993 ((|#2| |#2|) 50)) (-3777 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-462)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-1095) "failed") $) NIL)) (-2206 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-1095) $) NIL)) (-1463 (($ $ $ (-1095)) NIL (|has| |#1| (-174))) ((|#1| $ $) NIL (|has| |#1| (-174)))) (-2786 (($ $ $) NIL (|has| |#1| (-372)))) (-1392 (($ $) 40)) (-2590 (((-699 (-574)) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-2868 (($ |#2|) 48)) (-3434 (((-3 $ "failed") $) 97)) (-2820 (($) 58 (|has| |#1| (-377)))) (-2797 (($ $ $) NIL (|has| |#1| (-372)))) (-3385 (($ $ $) NIL)) (-1903 (($ $ $) NIL (|has| |#1| (-566)))) (-2853 (((-2 (|:| -1858 |#1|) (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#1| (-566)))) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-1569 (($ $) NIL (|has| |#1| (-462))) (($ $ (-1095)) NIL (|has| |#1| (-462)))) (-1380 (((-654 $) $) NIL)) (-2257 (((-112) $) NIL (|has| |#1| (-920)))) (-3186 (((-969 $)) 89)) (-1661 (($ $ |#1| (-781) $) NIL)) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1095) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1095) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3884 (((-781) $ $) NIL (|has| |#1| (-566)))) (-3199 (((-112) $) NIL)) (-1322 (((-781) $) NIL)) (-2748 (((-3 $ "failed") $) NIL (|has| |#1| (-1165)))) (-4345 (($ (-1186 |#1|) (-1095)) NIL) (($ (-1186 $) (-1095)) NIL)) (-4240 (($ $ (-781)) NIL)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3727 (((-654 $) $) NIL)) (-3869 (((-112) $) NIL)) (-4335 (($ |#1| (-781)) 85) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL)) (-2773 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $ (-1095)) NIL) (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-2089 ((|#2|) 51)) (-1742 (((-781) $) NIL) (((-781) $ (-1095)) NIL) (((-654 (-781)) $ (-654 (-1095))) NIL)) (-3708 (($ (-1 (-781) (-781)) $) NIL)) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-4377 (((-1186 |#1|) $) NIL)) (-2717 (((-3 (-1095) "failed") $) NIL)) (-4115 (((-932) $) NIL (|has| |#1| (-377)))) (-2854 ((|#2| $) 47)) (-1359 (($ $) NIL)) (-1370 ((|#1| $) 34)) (-2832 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-4136 (((-1172) $) NIL)) (-3408 (((-2 (|:| -1411 $) (|:| -2766 $)) $ (-781)) NIL)) (-2755 (((-3 (-654 $) "failed") $) NIL)) (-2415 (((-3 (-654 $) "failed") $) NIL)) (-2241 (((-3 (-2 (|:| |var| (-1095)) (|:| -3715 (-781))) "failed") $) NIL)) (-2379 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3818 (($) NIL (|has| |#1| (-1165)) CONST)) (-2576 (($ (-932)) NIL (|has| |#1| (-377)))) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) NIL)) (-1349 ((|#1| $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-462)))) (-2873 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-3813 (($ $) 88 (|has| |#1| (-358)))) (-2560 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-2039 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4220 (((-428 $) $) NIL (|has| |#1| (-920)))) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-2838 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-566)))) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2646 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1095) |#1|) NIL) (($ $ (-654 (-1095)) (-654 |#1|)) NIL) (($ $ (-1095) $) NIL) (($ $ (-654 (-1095)) (-654 $)) NIL)) (-1730 (((-781) $) NIL (|has| |#1| (-372)))) (-2199 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-417 $) (-417 $) (-417 $)) NIL (|has| |#1| (-566))) ((|#1| (-417 $) |#1|) NIL (|has| |#1| (-372))) (((-417 $) $ (-417 $)) NIL (|has| |#1| (-566)))) (-3001 (((-3 $ "failed") $ (-781)) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 98 (|has| |#1| (-372)))) (-2872 (($ $ (-1095)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-3905 (($ $ (-1095)) NIL) (($ $ (-654 (-1095))) NIL) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL) (($ $ (-781)) NIL) (($ $) NIL) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4202 (((-781) $) 38) (((-781) $ (-1095)) NIL) (((-654 (-781)) $ (-654 (-1095))) NIL)) (-1836 (((-903 (-388)) $) NIL (-12 (|has| (-1095) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1095) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1095) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-3069 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ (-1095)) NIL (|has| |#1| (-462)))) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-920))))) (-1635 (((-969 $)) 42)) (-2484 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566))) (((-3 (-417 $) "failed") (-417 $) $) NIL (|has| |#1| (-566)))) (-2943 (((-872) $) 68) (($ (-574)) NIL) (($ |#1|) 65) (($ (-1095)) NIL) (($ |#2|) 75) (($ (-417 (-574))) NIL (-2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-2530 (((-654 |#1|) $) NIL)) (-3087 ((|#1| $ (-781)) 70) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL)) (-3298 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#1| (-920))) (|has| |#1| (-146))))) (-1364 (((-781)) NIL T CONST)) (-3772 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2133 (($) 25 T CONST)) (-2179 (((-1281 |#1|) $) 83)) (-1485 (($ (-1281 |#1|)) 57)) (-2145 (($) 8 T CONST)) (-3610 (($ $ (-1095)) NIL) (($ $ (-654 (-1095))) NIL) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL) (($ $ (-781)) NIL) (($ $) NIL) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2078 (((-1281 |#1|) $) NIL)) (-2981 (((-112) $ $) 76)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3094 (($ $) 79) (($ $ $) NIL)) (-3079 (($ $ $) 39)) (** (($ $ (-932)) NIL) (($ $ (-781)) 92)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 64) (($ $ $) 82) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 62) (($ $ |#1|) NIL))) -(((-722 |#1| |#2|) (-13 (-1257 |#1|) (-626 |#2|) (-10 -8 (-15 -3993 (|#2| |#2|)) (-15 -2089 (|#2|)) (-15 -2868 ($ |#2|)) (-15 -2854 (|#2| $)) (-15 -2179 ((-1281 |#1|) $)) (-15 -1485 ($ (-1281 |#1|))) (-15 -2078 ((-1281 |#1|) $)) (-15 -3186 ((-969 $))) (-15 -1635 ((-969 $))) (IF (|has| |#1| (-358)) (-15 -3813 ($ $)) |%noBranch|) (IF (|has| |#1| (-377)) (-6 (-377)) |%noBranch|))) (-1062) (-1257 |#1|)) (T -722)) -((-3993 (*1 *2 *2) (-12 (-4 *3 (-1062)) (-5 *1 (-722 *3 *2)) (-4 *2 (-1257 *3)))) (-2089 (*1 *2) (-12 (-4 *2 (-1257 *3)) (-5 *1 (-722 *3 *2)) (-4 *3 (-1062)))) (-2868 (*1 *1 *2) (-12 (-4 *3 (-1062)) (-5 *1 (-722 *3 *2)) (-4 *2 (-1257 *3)))) (-2854 (*1 *2 *1) (-12 (-4 *2 (-1257 *3)) (-5 *1 (-722 *3 *2)) (-4 *3 (-1062)))) (-2179 (*1 *2 *1) (-12 (-4 *3 (-1062)) (-5 *2 (-1281 *3)) (-5 *1 (-722 *3 *4)) (-4 *4 (-1257 *3)))) (-1485 (*1 *1 *2) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-1062)) (-5 *1 (-722 *3 *4)) (-4 *4 (-1257 *3)))) (-2078 (*1 *2 *1) (-12 (-4 *3 (-1062)) (-5 *2 (-1281 *3)) (-5 *1 (-722 *3 *4)) (-4 *4 (-1257 *3)))) (-3186 (*1 *2) (-12 (-4 *3 (-1062)) (-5 *2 (-969 (-722 *3 *4))) (-5 *1 (-722 *3 *4)) (-4 *4 (-1257 *3)))) (-1635 (*1 *2) (-12 (-4 *3 (-1062)) (-5 *2 (-969 (-722 *3 *4))) (-5 *1 (-722 *3 *4)) (-4 *4 (-1257 *3)))) (-3813 (*1 *1 *1) (-12 (-4 *2 (-358)) (-4 *2 (-1062)) (-5 *1 (-722 *2 *3)) (-4 *3 (-1257 *2))))) -(-13 (-1257 |#1|) (-626 |#2|) (-10 -8 (-15 -3993 (|#2| |#2|)) (-15 -2089 (|#2|)) (-15 -2868 ($ |#2|)) (-15 -2854 (|#2| $)) (-15 -2179 ((-1281 |#1|) $)) (-15 -1485 ($ (-1281 |#1|))) (-15 -2078 ((-1281 |#1|) $)) (-15 -3186 ((-969 $))) (-15 -1635 ((-969 $))) (IF (|has| |#1| (-358)) (-15 -3813 ($ $)) |%noBranch|) (IF (|has| |#1| (-377)) (-6 (-377)) |%noBranch|))) -((-2849 (((-112) $ $) NIL)) (-3659 (($ $ $) NIL)) (-4257 (($ $ $) NIL)) (-4136 (((-1172) $) NIL)) (-2576 ((|#1| $) 13)) (-3966 (((-1133) $) NIL)) (-3715 ((|#2| $) 12)) (-2956 (($ |#1| |#2|) 16)) (-2943 (((-872) $) NIL) (($ (-2 (|:| -2576 |#1|) (|:| -3715 |#2|))) 15) (((-2 (|:| -2576 |#1|) (|:| -3715 |#2|)) $) 14)) (-3284 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) 11))) -(((-723 |#1| |#2| |#3|) (-13 (-860) (-500 (-2 (|:| -2576 |#1|) (|:| -3715 |#2|))) (-10 -8 (-15 -3715 (|#2| $)) (-15 -2576 (|#1| $)) (-15 -2956 ($ |#1| |#2|)))) (-860) (-1113) (-1 (-112) (-2 (|:| -2576 |#1|) (|:| -3715 |#2|)) (-2 (|:| -2576 |#1|) (|:| -3715 |#2|)))) (T -723)) -((-3715 (*1 *2 *1) (-12 (-4 *2 (-1113)) (-5 *1 (-723 *3 *2 *4)) (-4 *3 (-860)) (-14 *4 (-1 (-112) (-2 (|:| -2576 *3) (|:| -3715 *2)) (-2 (|:| -2576 *3) (|:| -3715 *2)))))) (-2576 (*1 *2 *1) (-12 (-4 *2 (-860)) (-5 *1 (-723 *2 *3 *4)) (-4 *3 (-1113)) (-14 *4 (-1 (-112) (-2 (|:| -2576 *2) (|:| -3715 *3)) (-2 (|:| -2576 *2) (|:| -3715 *3)))))) (-2956 (*1 *1 *2 *3) (-12 (-5 *1 (-723 *2 *3 *4)) (-4 *2 (-860)) (-4 *3 (-1113)) (-14 *4 (-1 (-112) (-2 (|:| -2576 *2) (|:| -3715 *3)) (-2 (|:| -2576 *2) (|:| -3715 *3))))))) -(-13 (-860) (-500 (-2 (|:| -2576 |#1|) (|:| -3715 |#2|))) (-10 -8 (-15 -3715 (|#2| $)) (-15 -2576 (|#1| $)) (-15 -2956 ($ |#1| |#2|)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 66)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#1| "failed") $) 102) (((-3 (-115) "failed") $) 108)) (-2206 ((|#1| $) NIL) (((-115) $) 39)) (-3434 (((-3 $ "failed") $) 103)) (-3705 ((|#2| (-115) |#2|) 93)) (-3199 (((-112) $) NIL)) (-2477 (($ |#1| (-370 (-115))) 14)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2332 (($ $ (-1 |#2| |#2|)) 65)) (-3811 (($ $ (-1 |#2| |#2|)) 44)) (-2199 ((|#2| $ |#2|) 33)) (-3567 ((|#1| |#1|) 118 (|has| |#1| (-174)))) (-2943 (((-872) $) 73) (($ (-574)) 18) (($ |#1|) 17) (($ (-115)) 23)) (-3298 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1364 (((-781)) 37 T CONST)) (-3284 (((-112) $ $) NIL)) (-2194 (($ $) 112 (|has| |#1| (-174))) (($ $ $) 116 (|has| |#1| (-174)))) (-2133 (($) 21 T CONST)) (-2145 (($) 9 T CONST)) (-2981 (((-112) $ $) NIL)) (-3094 (($ $) 48) (($ $ $) NIL)) (-3079 (($ $ $) 83)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ (-115) (-574)) NIL) (($ $ (-574)) 64)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 111) (($ $ $) 53) (($ |#1| $) 109 (|has| |#1| (-174))) (($ $ |#1|) 110 (|has| |#1| (-174))))) -(((-724 |#1| |#2|) (-13 (-1062) (-1051 |#1|) (-1051 (-115)) (-294 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2194 ($ $)) (-15 -2194 ($ $ $)) (-15 -3567 (|#1| |#1|))) |%noBranch|) (-15 -3811 ($ $ (-1 |#2| |#2|))) (-15 -2332 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-574))) (-15 ** ($ $ (-574))) (-15 -3705 (|#2| (-115) |#2|)) (-15 -2477 ($ |#1| (-370 (-115)))))) (-1062) (-658 |#1|)) (T -724)) -((-2194 (*1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1062)) (-5 *1 (-724 *2 *3)) (-4 *3 (-658 *2)))) (-2194 (*1 *1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1062)) (-5 *1 (-724 *2 *3)) (-4 *3 (-658 *2)))) (-3567 (*1 *2 *2) (-12 (-4 *2 (-174)) (-4 *2 (-1062)) (-5 *1 (-724 *2 *3)) (-4 *3 (-658 *2)))) (-3811 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-658 *3)) (-4 *3 (-1062)) (-5 *1 (-724 *3 *4)))) (-2332 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-658 *3)) (-4 *3 (-1062)) (-5 *1 (-724 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-574)) (-4 *4 (-1062)) (-5 *1 (-724 *4 *5)) (-4 *5 (-658 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *3 (-1062)) (-5 *1 (-724 *3 *4)) (-4 *4 (-658 *3)))) (-3705 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1062)) (-5 *1 (-724 *4 *2)) (-4 *2 (-658 *4)))) (-2477 (*1 *1 *2 *3) (-12 (-5 *3 (-370 (-115))) (-4 *2 (-1062)) (-5 *1 (-724 *2 *4)) (-4 *4 (-658 *2))))) -(-13 (-1062) (-1051 |#1|) (-1051 (-115)) (-294 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2194 ($ $)) (-15 -2194 ($ $ $)) (-15 -3567 (|#1| |#1|))) |%noBranch|) (-15 -3811 ($ $ (-1 |#2| |#2|))) (-15 -2332 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-574))) (-15 ** ($ $ (-574))) (-15 -3705 (|#2| (-115) |#2|)) (-15 -2477 ($ |#1| (-370 (-115)))))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 33)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-2868 (($ |#1| |#2|) 25)) (-3434 (((-3 $ "failed") $) 51)) (-3199 (((-112) $) 35)) (-2089 ((|#2| $) 12)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) 52)) (-3966 (((-1133) $) NIL)) (-3449 (((-3 $ "failed") $ $) 50)) (-2943 (((-872) $) 24) (($ (-574)) 19) ((|#1| $) 13)) (-1364 (((-781)) 28 T CONST)) (-3284 (((-112) $ $) NIL)) (-2133 (($) 16 T CONST)) (-2145 (($) 30 T CONST)) (-2981 (((-112) $ $) 41)) (-3094 (($ $) 46) (($ $ $) 40)) (-3079 (($ $ $) 43)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 21) (($ $ $) 20))) -(((-725 |#1| |#2| |#3| |#4| |#5|) (-13 (-1062) (-10 -8 (-15 -2089 (|#2| $)) (-15 -2943 (|#1| $)) (-15 -2868 ($ |#1| |#2|)) (-15 -3449 ((-3 $ "failed") $ $)) (-15 -3434 ((-3 $ "failed") $)) (-15 -1324 ($ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -725)) -((-3434 (*1 *1 *1) (|partial| -12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2089 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-725 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2943 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2868 (*1 *1 *2 *3) (-12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3449 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1324 (*1 *1 *1) (-12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-1062) (-10 -8 (-15 -2089 (|#2| $)) (-15 -2943 (|#1| $)) (-15 -2868 ($ |#1| |#2|)) (-15 -3449 ((-3 $ "failed") $ $)) (-15 -3434 ((-3 $ "failed") $)) (-15 -1324 ($ $)))) -((* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) -(((-726 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-932) |#1|))) (-727 |#2|) (-174)) (T -726)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-932) |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-727 |#1|) (-141) (-174)) (T -727)) -NIL -(-13 (-111 |t#1| |t#1|) (-650 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-1064 |#1|) . T) ((-1069 |#1|) . T) ((-1113) . T)) -((-2849 (((-112) $ $) NIL)) (-3958 (($ |#1|) 17) (($ $ |#1|) 20)) (-2991 (($ |#1|) 18) (($ $ |#1|) 21)) (-3426 (($) NIL T CONST)) (-3434 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3199 (((-112) $) NIL)) (-2965 (($ |#1| |#1| |#1| |#1|) 8)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) 16)) (-3966 (((-1133) $) NIL)) (-2646 ((|#1| $ |#1|) 24) (((-843 |#1|) $ (-843 |#1|)) 32)) (-1479 (($ $ $) NIL)) (-3204 (($ $ $) NIL)) (-2943 (((-872) $) 39)) (-3284 (((-112) $ $) NIL)) (-2145 (($) 9 T CONST)) (-2981 (((-112) $ $) 48)) (-3108 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ $ $) 14))) -(((-728 |#1|) (-13 (-483) (-10 -8 (-15 -2965 ($ |#1| |#1| |#1| |#1|)) (-15 -3958 ($ |#1|)) (-15 -2991 ($ |#1|)) (-15 -3434 ($)) (-15 -3958 ($ $ |#1|)) (-15 -2991 ($ $ |#1|)) (-15 -3434 ($ $)) (-15 -2646 (|#1| $ |#1|)) (-15 -2646 ((-843 |#1|) $ (-843 |#1|))))) (-372)) (T -728)) -((-2965 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-3958 (*1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-2991 (*1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-3434 (*1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-3958 (*1 *1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-2991 (*1 *1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-3434 (*1 *1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-2646 (*1 *2 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-2646 (*1 *2 *1 *2) (-12 (-5 *2 (-843 *3)) (-4 *3 (-372)) (-5 *1 (-728 *3))))) -(-13 (-483) (-10 -8 (-15 -2965 ($ |#1| |#1| |#1| |#1|)) (-15 -3958 ($ |#1|)) (-15 -2991 ($ |#1|)) (-15 -3434 ($)) (-15 -3958 ($ $ |#1|)) (-15 -2991 ($ $ |#1|)) (-15 -3434 ($ $)) (-15 -2646 (|#1| $ |#1|)) (-15 -2646 ((-843 |#1|) $ (-843 |#1|))))) -((-2397 (($ $ (-932)) 19)) (-2422 (($ $ (-932)) 20)) (** (($ $ (-932)) 10))) -(((-729 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-932))) (-15 -2422 (|#1| |#1| (-932))) (-15 -2397 (|#1| |#1| (-932)))) (-730)) (T -729)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-932))) (-15 -2422 (|#1| |#1| (-932))) (-15 -2397 (|#1| |#1| (-932)))) -((-2849 (((-112) $ $) 7)) (-2397 (($ $ (-932)) 16)) (-2422 (($ $ (-932)) 15)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6)) (** (($ $ (-932)) 14)) (* (($ $ $) 17))) -(((-730) (-141)) (T -730)) -((* (*1 *1 *1 *1) (-4 *1 (-730))) (-2397 (*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-932)))) (-2422 (*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-932)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-932))))) -(-13 (-1113) (-10 -8 (-15 * ($ $ $)) (-15 -2397 ($ $ (-932))) (-15 -2422 ($ $ (-932))) (-15 ** ($ $ (-932))))) -(((-102) . T) ((-623 (-872)) . T) ((-1113) . T)) -((-2397 (($ $ (-932)) NIL) (($ $ (-781)) 18)) (-3199 (((-112) $) 10)) (-2422 (($ $ (-932)) NIL) (($ $ (-781)) 19)) (** (($ $ (-932)) NIL) (($ $ (-781)) 16))) -(((-731 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-781))) (-15 -2422 (|#1| |#1| (-781))) (-15 -2397 (|#1| |#1| (-781))) (-15 -3199 ((-112) |#1|)) (-15 ** (|#1| |#1| (-932))) (-15 -2422 (|#1| |#1| (-932))) (-15 -2397 (|#1| |#1| (-932)))) (-732)) (T -731)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-781))) (-15 -2422 (|#1| |#1| (-781))) (-15 -2397 (|#1| |#1| (-781))) (-15 -3199 ((-112) |#1|)) (-15 ** (|#1| |#1| (-932))) (-15 -2422 (|#1| |#1| (-932))) (-15 -2397 (|#1| |#1| (-932)))) -((-2849 (((-112) $ $) 7)) (-2784 (((-3 $ "failed") $) 18)) (-2397 (($ $ (-932)) 16) (($ $ (-781)) 23)) (-3434 (((-3 $ "failed") $) 20)) (-3199 (((-112) $) 24)) (-4271 (((-3 $ "failed") $) 19)) (-2422 (($ $ (-932)) 15) (($ $ (-781)) 22)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2145 (($) 25 T CONST)) (-2981 (((-112) $ $) 6)) (** (($ $ (-932)) 14) (($ $ (-781)) 21)) (* (($ $ $) 17))) -(((-732) (-141)) (T -732)) -((-2145 (*1 *1) (-4 *1 (-732))) (-3199 (*1 *2 *1) (-12 (-4 *1 (-732)) (-5 *2 (-112)))) (-2397 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781)))) (-2422 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781)))) (-3434 (*1 *1 *1) (|partial| -4 *1 (-732))) (-4271 (*1 *1 *1) (|partial| -4 *1 (-732))) (-2784 (*1 *1 *1) (|partial| -4 *1 (-732)))) -(-13 (-730) (-10 -8 (-15 (-2145) ($) -1706) (-15 -3199 ((-112) $)) (-15 -2397 ($ $ (-781))) (-15 -2422 ($ $ (-781))) (-15 ** ($ $ (-781))) (-15 -3434 ((-3 $ "failed") $)) (-15 -4271 ((-3 $ "failed") $)) (-15 -2784 ((-3 $ "failed") $)))) -(((-102) . T) ((-623 (-872)) . T) ((-730) . T) ((-1113) . T)) -((-1487 (((-781)) 39)) (-1696 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2206 (((-574) $) NIL) (((-417 (-574)) $) NIL) ((|#2| $) 23)) (-2868 (($ |#3|) NIL) (((-3 $ "failed") (-417 |#3|)) 49)) (-3434 (((-3 $ "failed") $) 69)) (-2820 (($) 43)) (-2236 ((|#2| $) 21)) (-2970 (($) 18)) (-3905 (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 57) (($ $ (-654 (-1190)) (-654 (-781))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190)) NIL) (($ $ (-781)) NIL) (($ $) NIL)) (-3146 (((-699 |#2|) (-1281 $) (-1 |#2| |#2|)) 64)) (-1836 (((-1281 |#2|) $) NIL) (($ (-1281 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-1435 ((|#3| $) 36)) (-1882 (((-1281 $)) 33))) -(((-733 |#1| |#2| |#3|) (-10 -8 (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -2820 (|#1|)) (-15 -1487 ((-781))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3146 ((-699 |#2|) (-1281 |#1|) (-1 |#2| |#2|))) (-15 -2868 ((-3 |#1| "failed") (-417 |#3|))) (-15 -1836 (|#1| |#3|)) (-15 -2868 (|#1| |#3|)) (-15 -2970 (|#1|)) (-15 -1696 ((-3 |#2| "failed") |#1|)) (-15 -2206 (|#2| |#1|)) (-15 -2206 ((-417 (-574)) |#1|)) (-15 -1696 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2206 ((-574) |#1|)) (-15 -1696 ((-3 (-574) "failed") |#1|)) (-15 -1836 (|#3| |#1|)) (-15 -1836 (|#1| (-1281 |#2|))) (-15 -1836 ((-1281 |#2|) |#1|)) (-15 -1882 ((-1281 |#1|))) (-15 -1435 (|#3| |#1|)) (-15 -2236 (|#2| |#1|)) (-15 -3434 ((-3 |#1| "failed") |#1|))) (-734 |#2| |#3|) (-174) (-1257 |#2|)) (T -733)) -((-1487 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1257 *4)) (-5 *2 (-781)) (-5 *1 (-733 *3 *4 *5)) (-4 *3 (-734 *4 *5))))) -(-10 -8 (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -2820 (|#1|)) (-15 -1487 ((-781))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3146 ((-699 |#2|) (-1281 |#1|) (-1 |#2| |#2|))) (-15 -2868 ((-3 |#1| "failed") (-417 |#3|))) (-15 -1836 (|#1| |#3|)) (-15 -2868 (|#1| |#3|)) (-15 -2970 (|#1|)) (-15 -1696 ((-3 |#2| "failed") |#1|)) (-15 -2206 (|#2| |#1|)) (-15 -2206 ((-417 (-574)) |#1|)) (-15 -1696 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2206 ((-574) |#1|)) (-15 -1696 ((-3 (-574) "failed") |#1|)) (-15 -1836 (|#3| |#1|)) (-15 -1836 (|#1| (-1281 |#2|))) (-15 -1836 ((-1281 |#2|) |#1|)) (-15 -1882 ((-1281 |#1|))) (-15 -1435 (|#3| |#1|)) (-15 -2236 (|#2| |#1|)) (-15 -3434 ((-3 |#1| "failed") |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 103 (|has| |#1| (-372)))) (-1575 (($ $) 104 (|has| |#1| (-372)))) (-2085 (((-112) $) 106 (|has| |#1| (-372)))) (-2294 (((-699 |#1|) (-1281 $)) 53) (((-699 |#1|)) 68)) (-1636 ((|#1| $) 59)) (-1664 (((-1203 (-932) (-781)) (-574)) 156 (|has| |#1| (-358)))) (-3524 (((-3 $ "failed") $ $) 20)) (-2568 (($ $) 123 (|has| |#1| (-372)))) (-2827 (((-428 $) $) 124 (|has| |#1| (-372)))) (-1600 (((-112) $ $) 114 (|has| |#1| (-372)))) (-1487 (((-781)) 97 (|has| |#1| (-377)))) (-3426 (($) 18 T CONST)) (-1696 (((-3 (-574) "failed") $) 181 (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) 179 (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) 176)) (-2206 (((-574) $) 180 (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) 178 (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) 177)) (-2737 (($ (-1281 |#1|) (-1281 $)) 55) (($ (-1281 |#1|)) 71)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) 162 (|has| |#1| (-358)))) (-2786 (($ $ $) 118 (|has| |#1| (-372)))) (-2134 (((-699 |#1|) $ (-1281 $)) 60) (((-699 |#1|) $) 66)) (-2590 (((-699 (-574)) (-1281 $)) 175 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 174 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 173 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) 172) (((-699 |#1|) (-699 $)) 171) (((-699 |#1|) (-1281 $)) 170)) (-2868 (($ |#2|) 167) (((-3 $ "failed") (-417 |#2|)) 164 (|has| |#1| (-372)))) (-3434 (((-3 $ "failed") $) 37)) (-3584 (((-932)) 61)) (-2820 (($) 100 (|has| |#1| (-377)))) (-2797 (($ $ $) 117 (|has| |#1| (-372)))) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) 112 (|has| |#1| (-372)))) (-3812 (($) 158 (|has| |#1| (-358)))) (-4044 (((-112) $) 159 (|has| |#1| (-358)))) (-1647 (($ $ (-781)) 150 (|has| |#1| (-358))) (($ $) 149 (|has| |#1| (-358)))) (-2257 (((-112) $) 125 (|has| |#1| (-372)))) (-3884 (((-932) $) 161 (|has| |#1| (-358))) (((-843 (-932)) $) 147 (|has| |#1| (-358)))) (-3199 (((-112) $) 35)) (-2236 ((|#1| $) 58)) (-2748 (((-3 $ "failed") $) 151 (|has| |#1| (-358)))) (-4403 (((-3 (-654 $) "failed") (-654 $) $) 121 (|has| |#1| (-372)))) (-1972 ((|#2| $) 51 (|has| |#1| (-372)))) (-4115 (((-932) $) 99 (|has| |#1| (-377)))) (-2854 ((|#2| $) 165)) (-2832 (($ (-654 $)) 110 (|has| |#1| (-372))) (($ $ $) 109 (|has| |#1| (-372)))) (-4136 (((-1172) $) 10)) (-1324 (($ $) 126 (|has| |#1| (-372)))) (-3818 (($) 152 (|has| |#1| (-358)) CONST)) (-2576 (($ (-932)) 98 (|has| |#1| (-377)))) (-3966 (((-1133) $) 11)) (-2970 (($) 169)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 111 (|has| |#1| (-372)))) (-2873 (($ (-654 $)) 108 (|has| |#1| (-372))) (($ $ $) 107 (|has| |#1| (-372)))) (-1417 (((-654 (-2 (|:| -4220 (-574)) (|:| -3715 (-574))))) 155 (|has| |#1| (-358)))) (-4220 (((-428 $) $) 122 (|has| |#1| (-372)))) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 119 (|has| |#1| (-372)))) (-2838 (((-3 $ "failed") $ $) 102 (|has| |#1| (-372)))) (-3471 (((-3 (-654 $) "failed") (-654 $) $) 113 (|has| |#1| (-372)))) (-1730 (((-781) $) 115 (|has| |#1| (-372)))) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 116 (|has| |#1| (-372)))) (-2872 ((|#1| (-1281 $)) 54) ((|#1|) 67)) (-4342 (((-781) $) 160 (|has| |#1| (-358))) (((-3 (-781) "failed") $ $) 148 (|has| |#1| (-358)))) (-3905 (($ $) 145 (-2818 (-2087 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-781)) 144 (-2818 (-2087 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-1190)) 142 (-2087 (|has| |#1| (-911 (-1190))) (|has| |#1| (-372)))) (($ $ (-654 (-1190))) 141 (-2087 (|has| |#1| (-911 (-1190))) (|has| |#1| (-372)))) (($ $ (-1190) (-781)) 140 (-2087 (|has| |#1| (-911 (-1190))) (|has| |#1| (-372)))) (($ $ (-654 (-1190)) (-654 (-781))) 139 (-2087 (|has| |#1| (-911 (-1190))) (|has| |#1| (-372)))) (($ $ (-1 |#1| |#1|) (-781)) 132 (|has| |#1| (-372))) (($ $ (-1 |#1| |#1|)) 131 (|has| |#1| (-372)))) (-3146 (((-699 |#1|) (-1281 $) (-1 |#1| |#1|)) 163 (|has| |#1| (-372)))) (-4185 ((|#2|) 168)) (-3074 (($) 157 (|has| |#1| (-358)))) (-3487 (((-1281 |#1|) $ (-1281 $)) 57) (((-699 |#1|) (-1281 $) (-1281 $)) 56) (((-1281 |#1|) $) 73) (((-699 |#1|) (-1281 $)) 72)) (-1836 (((-1281 |#1|) $) 70) (($ (-1281 |#1|)) 69) ((|#2| $) 182) (($ |#2|) 166)) (-1524 (((-3 (-1281 $) "failed") (-699 $)) 154 (|has| |#1| (-358)))) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44) (($ $) 101 (|has| |#1| (-372))) (($ (-417 (-574))) 96 (-2818 (|has| |#1| (-372)) (|has| |#1| (-1051 (-417 (-574))))))) (-3298 (($ $) 153 (|has| |#1| (-358))) (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-1435 ((|#2| $) 52)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-1882 (((-1281 $)) 74)) (-2069 (((-112) $ $) 105 (|has| |#1| (-372)))) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-3610 (($ $) 146 (-2818 (-2087 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-781)) 143 (-2818 (-2087 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-1190)) 138 (-2087 (|has| |#1| (-911 (-1190))) (|has| |#1| (-372)))) (($ $ (-654 (-1190))) 137 (-2087 (|has| |#1| (-911 (-1190))) (|has| |#1| (-372)))) (($ $ (-1190) (-781)) 136 (-2087 (|has| |#1| (-911 (-1190))) (|has| |#1| (-372)))) (($ $ (-654 (-1190)) (-654 (-781))) 135 (-2087 (|has| |#1| (-911 (-1190))) (|has| |#1| (-372)))) (($ $ (-1 |#1| |#1|) (-781)) 134 (|has| |#1| (-372))) (($ $ (-1 |#1| |#1|)) 133 (|has| |#1| (-372)))) (-2981 (((-112) $ $) 6)) (-3108 (($ $ $) 130 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 127 (|has| |#1| (-372)))) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-417 (-574)) $) 129 (|has| |#1| (-372))) (($ $ (-417 (-574))) 128 (|has| |#1| (-372))))) -(((-734 |#1| |#2|) (-141) (-174) (-1257 |t#1|)) (T -734)) -((-2970 (*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-734 *2 *3)) (-4 *3 (-1257 *2)))) (-4185 (*1 *2) (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1257 *3)))) (-2868 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-734 *3 *2)) (-4 *2 (-1257 *3)))) (-1836 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-734 *3 *2)) (-4 *2 (-1257 *3)))) (-2854 (*1 *2 *1) (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1257 *3)))) (-2868 (*1 *1 *2) (|partial| -12 (-5 *2 (-417 *4)) (-4 *4 (-1257 *3)) (-4 *3 (-372)) (-4 *3 (-174)) (-4 *1 (-734 *3 *4)))) (-3146 (*1 *2 *3 *4) (-12 (-5 *3 (-1281 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-372)) (-4 *1 (-734 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1257 *5)) (-5 *2 (-699 *5))))) -(-13 (-419 |t#1| |t#2|) (-174) (-624 |t#2|) (-421 |t#1|) (-386 |t#1|) (-10 -8 (-15 -2970 ($)) (-15 -4185 (|t#2|)) (-15 -2868 ($ |t#2|)) (-15 -1836 ($ |t#2|)) (-15 -2854 (|t#2| $)) (IF (|has| |t#1| (-377)) (-6 (-377)) |%noBranch|) (IF (|has| |t#1| (-372)) (PROGN (-6 (-372)) (-6 (-233 |t#1|)) (-15 -2868 ((-3 $ "failed") (-417 |t#2|))) (-15 -3146 ((-699 |t#1|) (-1281 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-358)) (-6 (-358)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-38 |#1|) . T) ((-38 $) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-102) . T) ((-111 #0# #0#) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2818 (|has| |#1| (-358)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-626 #0#) -2818 (|has| |#1| (-1051 (-417 (-574)))) (|has| |#1| (-358)) (|has| |#1| (-372))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 $) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) . T) ((-624 |#2|) . T) ((-235 $) -2818 (|has| |#1| (-358)) (-12 (|has| |#1| (-239)) (|has| |#1| (-372)))) ((-233 |#1|) |has| |#1| (-372)) ((-239) -2818 (|has| |#1| (-358)) (-12 (|has| |#1| (-239)) (|has| |#1| (-372)))) ((-249) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-298) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-315) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-372) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-412) |has| |#1| (-358)) ((-377) -2818 (|has| |#1| (-377)) (|has| |#1| (-358))) ((-358) |has| |#1| (-358)) ((-379 |#1| |#2|) . T) ((-419 |#1| |#2|) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-462) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-566) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-656 #0#) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-658 #1=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-650 |#1|) . T) ((-650 $) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-649 #1#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-727 |#1|) . T) ((-727 $) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-736) . T) ((-911 (-1190)) -12 (|has| |#1| (-372)) (|has| |#1| (-911 (-1190)))) ((-931) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-1051 (-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((-1051 (-574)) |has| |#1| (-1051 (-574))) ((-1051 |#1|) . T) ((-1064 #0#) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-1064 |#1|) . T) ((-1064 $) . T) ((-1069 #0#) -2818 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-1069 |#1|) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1165) |has| |#1| (-358)) ((-1231) -2818 (|has| |#1| (-358)) (-12 (|has| |#1| (-239)) (|has| |#1| (-372)))) ((-1235) -2818 (|has| |#1| (-358)) (|has| |#1| (-372)))) -((-3426 (($) 11)) (-3434 (((-3 $ "failed") $) 14)) (-3199 (((-112) $) 10)) (** (($ $ (-932)) NIL) (($ $ (-781)) 20))) -(((-735 |#1|) (-10 -8 (-15 -3434 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 -3199 ((-112) |#1|)) (-15 -3426 (|#1|)) (-15 ** (|#1| |#1| (-932)))) (-736)) (T -735)) -NIL -(-10 -8 (-15 -3434 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 -3199 ((-112) |#1|)) (-15 -3426 (|#1|)) (-15 ** (|#1| |#1| (-932)))) -((-2849 (((-112) $ $) 7)) (-3426 (($) 19 T CONST)) (-3434 (((-3 $ "failed") $) 16)) (-3199 (((-112) $) 18)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2145 (($) 20 T CONST)) (-2981 (((-112) $ $) 6)) (** (($ $ (-932)) 14) (($ $ (-781)) 17)) (* (($ $ $) 15))) -(((-736) (-141)) (T -736)) -((-2145 (*1 *1) (-4 *1 (-736))) (-3426 (*1 *1) (-4 *1 (-736))) (-3199 (*1 *2 *1) (-12 (-4 *1 (-736)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-736)) (-5 *2 (-781)))) (-3434 (*1 *1 *1) (|partial| -4 *1 (-736)))) -(-13 (-1125) (-10 -8 (-15 (-2145) ($) -1706) (-15 -3426 ($) -1706) (-15 -3199 ((-112) $)) (-15 ** ($ $ (-781))) (-15 -3434 ((-3 $ "failed") $)))) -(((-102) . T) ((-623 (-872)) . T) ((-1125) . T) ((-1113) . T)) -((-2775 (((-2 (|:| -1360 (-428 |#2|)) (|:| |special| (-428 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-4320 (((-2 (|:| -1360 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-3352 ((|#2| (-417 |#2|) (-1 |#2| |#2|)) 13)) (-2217 (((-2 (|:| |poly| |#2|) (|:| -1360 (-417 |#2|)) (|:| |special| (-417 |#2|))) (-417 |#2|) (-1 |#2| |#2|)) 48))) -(((-737 |#1| |#2|) (-10 -7 (-15 -4320 ((-2 (|:| -1360 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2775 ((-2 (|:| -1360 (-428 |#2|)) (|:| |special| (-428 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3352 (|#2| (-417 |#2|) (-1 |#2| |#2|))) (-15 -2217 ((-2 (|:| |poly| |#2|) (|:| -1360 (-417 |#2|)) (|:| |special| (-417 |#2|))) (-417 |#2|) (-1 |#2| |#2|)))) (-372) (-1257 |#1|)) (T -737)) -((-2217 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| |poly| *6) (|:| -1360 (-417 *6)) (|:| |special| (-417 *6)))) (-5 *1 (-737 *5 *6)) (-5 *3 (-417 *6)))) (-3352 (*1 *2 *3 *4) (-12 (-5 *3 (-417 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1257 *5)) (-5 *1 (-737 *5 *2)) (-4 *5 (-372)))) (-2775 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1257 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| -1360 (-428 *3)) (|:| |special| (-428 *3)))) (-5 *1 (-737 *5 *3)))) (-4320 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1257 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| -1360 *3) (|:| |special| *3))) (-5 *1 (-737 *5 *3))))) -(-10 -7 (-15 -4320 ((-2 (|:| -1360 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2775 ((-2 (|:| -1360 (-428 |#2|)) (|:| |special| (-428 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3352 (|#2| (-417 |#2|) (-1 |#2| |#2|))) (-15 -2217 ((-2 (|:| |poly| |#2|) (|:| -1360 (-417 |#2|)) (|:| |special| (-417 |#2|))) (-417 |#2|) (-1 |#2| |#2|)))) -((-1339 ((|#7| (-654 |#5|) |#6|) NIL)) (-1777 ((|#7| (-1 |#5| |#4|) |#6|) 27))) -(((-738 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1777 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1339 (|#7| (-654 |#5|) |#6|))) (-860) (-803) (-803) (-1062) (-1062) (-960 |#4| |#2| |#1|) (-960 |#5| |#3| |#1|)) (T -738)) -((-1339 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *9)) (-4 *9 (-1062)) (-4 *5 (-860)) (-4 *6 (-803)) (-4 *8 (-1062)) (-4 *2 (-960 *9 *7 *5)) (-5 *1 (-738 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-803)) (-4 *4 (-960 *8 *6 *5)))) (-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1062)) (-4 *9 (-1062)) (-4 *5 (-860)) (-4 *6 (-803)) (-4 *2 (-960 *9 *7 *5)) (-5 *1 (-738 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-803)) (-4 *4 (-960 *8 *6 *5))))) -(-10 -7 (-15 -1777 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1339 (|#7| (-654 |#5|) |#6|))) -((-1777 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-739 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1777 (|#7| (-1 |#2| |#1|) |#6|))) (-860) (-860) (-803) (-803) (-1062) (-960 |#5| |#3| |#1|) (-960 |#5| |#4| |#2|)) (T -739)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-860)) (-4 *6 (-860)) (-4 *7 (-803)) (-4 *9 (-1062)) (-4 *2 (-960 *9 *8 *6)) (-5 *1 (-739 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-803)) (-4 *4 (-960 *9 *7 *5))))) -(-10 -7 (-15 -1777 (|#7| (-1 |#2| |#1|) |#6|))) -((-4220 (((-428 |#4|) |#4|) 42))) -(((-740 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4220 ((-428 |#4|) |#4|))) (-803) (-13 (-860) (-10 -8 (-15 -1836 ((-1190) $)) (-15 -1488 ((-3 $ "failed") (-1190))))) (-315) (-960 (-963 |#3|) |#1| |#2|)) (T -740)) -((-4220 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-13 (-860) (-10 -8 (-15 -1836 ((-1190) $)) (-15 -1488 ((-3 $ "failed") (-1190)))))) (-4 *6 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-740 *4 *5 *6 *3)) (-4 *3 (-960 (-963 *6) *4 *5))))) -(-10 -7 (-15 -4220 ((-428 |#4|) |#4|))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-4355 (((-654 (-874 |#1|)) $) NIL)) (-4194 (((-1186 $) $ (-874 |#1|)) NIL) (((-1186 |#2|) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#2| (-566)))) (-1575 (($ $) NIL (|has| |#2| (-566)))) (-2085 (((-112) $) NIL (|has| |#2| (-566)))) (-1757 (((-781) $) NIL) (((-781) $ (-654 (-874 |#1|))) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3972 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-2568 (($ $) NIL (|has| |#2| (-462)))) (-2827 (((-428 $) $) NIL (|has| |#2| (-462)))) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1051 (-574)))) (((-3 (-874 |#1|) "failed") $) NIL)) (-2206 ((|#2| $) NIL) (((-417 (-574)) $) NIL (|has| |#2| (-1051 (-417 (-574))))) (((-574) $) NIL (|has| |#2| (-1051 (-574)))) (((-874 |#1|) $) NIL)) (-1463 (($ $ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-1392 (($ $) NIL)) (-2590 (((-699 (-574)) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1281 $)) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-1569 (($ $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1380 (((-654 $) $) NIL)) (-2257 (((-112) $) NIL (|has| |#2| (-920)))) (-1661 (($ $ |#2| (-541 (-874 |#1|)) $) NIL)) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-3199 (((-112) $) NIL)) (-1322 (((-781) $) NIL)) (-4345 (($ (-1186 |#2|) (-874 |#1|)) NIL) (($ (-1186 $) (-874 |#1|)) NIL)) (-3727 (((-654 $) $) NIL)) (-3869 (((-112) $) NIL)) (-4335 (($ |#2| (-541 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2773 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $ (-874 |#1|)) NIL)) (-1742 (((-541 (-874 |#1|)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-3708 (($ (-1 (-541 (-874 |#1|)) (-541 (-874 |#1|))) $) NIL)) (-1777 (($ (-1 |#2| |#2|) $) NIL)) (-2717 (((-3 (-874 |#1|) "failed") $) NIL)) (-1359 (($ $) NIL)) (-1370 ((|#2| $) NIL)) (-2832 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-4136 (((-1172) $) NIL)) (-2755 (((-3 (-654 $) "failed") $) NIL)) (-2415 (((-3 (-654 $) "failed") $) NIL)) (-2241 (((-3 (-2 (|:| |var| (-874 |#1|)) (|:| -3715 (-781))) "failed") $) NIL)) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) NIL)) (-1349 ((|#2| $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#2| (-462)))) (-2873 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-2560 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-2039 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-4220 (((-428 $) $) NIL (|has| |#2| (-920)))) (-2838 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-566)))) (-2646 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-874 |#1|) |#2|) NIL) (($ $ (-654 (-874 |#1|)) (-654 |#2|)) NIL) (($ $ (-874 |#1|) $) NIL) (($ $ (-654 (-874 |#1|)) (-654 $)) NIL)) (-2872 (($ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3905 (($ $ (-874 |#1|)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-4202 (((-541 (-874 |#1|)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-1836 (((-903 (-388)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-874 |#1|) (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-3069 ((|#2| $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-920))))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-874 |#1|)) NIL) (($ $) NIL (|has| |#2| (-566))) (($ (-417 (-574))) NIL (-2818 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1051 (-417 (-574))))))) (-2530 (((-654 |#2|) $) NIL)) (-3087 ((|#2| $ (-541 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-3298 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#2| (-920))) (|has| |#2| (-146))))) (-1364 (((-781)) NIL T CONST)) (-3772 (($ $ $ (-781)) NIL (|has| |#2| (-174)))) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL (|has| |#2| (-566)))) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-3610 (($ $ (-874 |#1|)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#2| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#2| (-38 (-417 (-574))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-741 |#1| |#2|) (-960 |#2| (-541 (-874 |#1|)) (-874 |#1|)) (-654 (-1190)) (-1062)) (T -741)) -NIL -(-960 |#2| (-541 (-874 |#1|)) (-874 |#1|)) -((-2099 (((-2 (|:| -3663 (-963 |#3|)) (|:| -3269 (-963 |#3|))) |#4|) 14)) (-2660 ((|#4| |#4| |#2|) 33)) (-3641 ((|#4| (-417 (-963 |#3|)) |#2|) 64)) (-2736 ((|#4| (-1186 (-963 |#3|)) |#2|) 77)) (-2923 ((|#4| (-1186 |#4|) |#2|) 51)) (-2443 ((|#4| |#4| |#2|) 54)) (-4220 (((-428 |#4|) |#4|) 40))) -(((-742 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2099 ((-2 (|:| -3663 (-963 |#3|)) (|:| -3269 (-963 |#3|))) |#4|)) (-15 -2443 (|#4| |#4| |#2|)) (-15 -2923 (|#4| (-1186 |#4|) |#2|)) (-15 -2660 (|#4| |#4| |#2|)) (-15 -2736 (|#4| (-1186 (-963 |#3|)) |#2|)) (-15 -3641 (|#4| (-417 (-963 |#3|)) |#2|)) (-15 -4220 ((-428 |#4|) |#4|))) (-803) (-13 (-860) (-10 -8 (-15 -1836 ((-1190) $)))) (-566) (-960 (-417 (-963 |#3|)) |#1| |#2|)) (T -742)) -((-4220 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-13 (-860) (-10 -8 (-15 -1836 ((-1190) $))))) (-4 *6 (-566)) (-5 *2 (-428 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-960 (-417 (-963 *6)) *4 *5)))) (-3641 (*1 *2 *3 *4) (-12 (-4 *6 (-566)) (-4 *2 (-960 *3 *5 *4)) (-5 *1 (-742 *5 *4 *6 *2)) (-5 *3 (-417 (-963 *6))) (-4 *5 (-803)) (-4 *4 (-13 (-860) (-10 -8 (-15 -1836 ((-1190) $))))))) (-2736 (*1 *2 *3 *4) (-12 (-5 *3 (-1186 (-963 *6))) (-4 *6 (-566)) (-4 *2 (-960 (-417 (-963 *6)) *5 *4)) (-5 *1 (-742 *5 *4 *6 *2)) (-4 *5 (-803)) (-4 *4 (-13 (-860) (-10 -8 (-15 -1836 ((-1190) $))))))) (-2660 (*1 *2 *2 *3) (-12 (-4 *4 (-803)) (-4 *3 (-13 (-860) (-10 -8 (-15 -1836 ((-1190) $))))) (-4 *5 (-566)) (-5 *1 (-742 *4 *3 *5 *2)) (-4 *2 (-960 (-417 (-963 *5)) *4 *3)))) (-2923 (*1 *2 *3 *4) (-12 (-5 *3 (-1186 *2)) (-4 *2 (-960 (-417 (-963 *6)) *5 *4)) (-5 *1 (-742 *5 *4 *6 *2)) (-4 *5 (-803)) (-4 *4 (-13 (-860) (-10 -8 (-15 -1836 ((-1190) $))))) (-4 *6 (-566)))) (-2443 (*1 *2 *2 *3) (-12 (-4 *4 (-803)) (-4 *3 (-13 (-860) (-10 -8 (-15 -1836 ((-1190) $))))) (-4 *5 (-566)) (-5 *1 (-742 *4 *3 *5 *2)) (-4 *2 (-960 (-417 (-963 *5)) *4 *3)))) (-2099 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-13 (-860) (-10 -8 (-15 -1836 ((-1190) $))))) (-4 *6 (-566)) (-5 *2 (-2 (|:| -3663 (-963 *6)) (|:| -3269 (-963 *6)))) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-960 (-417 (-963 *6)) *4 *5))))) -(-10 -7 (-15 -2099 ((-2 (|:| -3663 (-963 |#3|)) (|:| -3269 (-963 |#3|))) |#4|)) (-15 -2443 (|#4| |#4| |#2|)) (-15 -2923 (|#4| (-1186 |#4|) |#2|)) (-15 -2660 (|#4| |#4| |#2|)) (-15 -2736 (|#4| (-1186 (-963 |#3|)) |#2|)) (-15 -3641 (|#4| (-417 (-963 |#3|)) |#2|)) (-15 -4220 ((-428 |#4|) |#4|))) -((-4220 (((-428 |#4|) |#4|) 54))) -(((-743 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4220 ((-428 |#4|) |#4|))) (-803) (-860) (-13 (-315) (-148)) (-960 (-417 |#3|) |#1| |#2|)) (T -743)) -((-4220 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-13 (-315) (-148))) (-5 *2 (-428 *3)) (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-960 (-417 *6) *4 *5))))) -(-10 -7 (-15 -4220 ((-428 |#4|) |#4|))) -((-1777 (((-745 |#2| |#3|) (-1 |#2| |#1|) (-745 |#1| |#3|)) 18))) -(((-744 |#1| |#2| |#3|) (-10 -7 (-15 -1777 ((-745 |#2| |#3|) (-1 |#2| |#1|) (-745 |#1| |#3|)))) (-1062) (-1062) (-736)) (T -744)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5 *7)) (-4 *5 (-1062)) (-4 *6 (-1062)) (-4 *7 (-736)) (-5 *2 (-745 *6 *7)) (-5 *1 (-744 *5 *6 *7))))) -(-10 -7 (-15 -1777 ((-745 |#2| |#3|) (-1 |#2| |#1|) (-745 |#1| |#3|)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 36)) (-1878 (((-654 (-2 (|:| -1858 |#1|) (|:| -3832 |#2|))) $) 37)) (-3524 (((-3 $ "failed") $ $) NIL)) (-1487 (((-781)) 22 (-12 (|has| |#2| (-377)) (|has| |#1| (-377))))) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#2| "failed") $) 76) (((-3 |#1| "failed") $) 79)) (-2206 ((|#2| $) NIL) ((|#1| $) NIL)) (-1392 (($ $) 102 (|has| |#2| (-860)))) (-3434 (((-3 $ "failed") $) 85)) (-2820 (($) 48 (-12 (|has| |#2| (-377)) (|has| |#1| (-377))))) (-3199 (((-112) $) NIL)) (-1322 (((-781) $) 70)) (-3727 (((-654 $) $) 52)) (-3869 (((-112) $) NIL)) (-4335 (($ |#1| |#2|) 17)) (-1777 (($ (-1 |#1| |#1|) $) 68)) (-4115 (((-932) $) 43 (-12 (|has| |#2| (-377)) (|has| |#1| (-377))))) (-1359 ((|#2| $) 101 (|has| |#2| (-860)))) (-1370 ((|#1| $) 100 (|has| |#2| (-860)))) (-4136 (((-1172) $) NIL)) (-2576 (($ (-932)) 35 (-12 (|has| |#2| (-377)) (|has| |#1| (-377))))) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 99) (($ (-574)) 59) (($ |#2|) 55) (($ |#1|) 56) (($ (-654 (-2 (|:| -1858 |#1|) (|:| -3832 |#2|)))) 11)) (-2530 (((-654 |#1|) $) 54)) (-3087 ((|#1| $ |#2|) 115)) (-3298 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-2133 (($) 12 T CONST)) (-2145 (($) 44 T CONST)) (-2981 (((-112) $ $) 105)) (-3094 (($ $) 61) (($ $ $) NIL)) (-3079 (($ $ $) 33)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 66) (($ $ $) 118) (($ |#1| $) 63 (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-745 |#1| |#2|) (-13 (-1062) (-1051 |#2|) (-1051 |#1|) (-10 -8 (-15 -4335 ($ |#1| |#2|)) (-15 -3087 (|#1| $ |#2|)) (-15 -2943 ($ (-654 (-2 (|:| -1858 |#1|) (|:| -3832 |#2|))))) (-15 -1878 ((-654 (-2 (|:| -1858 |#1|) (|:| -3832 |#2|))) $)) (-15 -1777 ($ (-1 |#1| |#1|) $)) (-15 -3869 ((-112) $)) (-15 -2530 ((-654 |#1|) $)) (-15 -3727 ((-654 $) $)) (-15 -1322 ((-781) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-377)) (IF (|has| |#2| (-377)) (-6 (-377)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-860)) (PROGN (-15 -1359 (|#2| $)) (-15 -1370 (|#1| $)) (-15 -1392 ($ $))) |%noBranch|))) (-1062) (-736)) (T -745)) -((-4335 (*1 *1 *2 *3) (-12 (-5 *1 (-745 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-736)))) (-3087 (*1 *2 *1 *3) (-12 (-4 *2 (-1062)) (-5 *1 (-745 *2 *3)) (-4 *3 (-736)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -1858 *3) (|:| -3832 *4)))) (-4 *3 (-1062)) (-4 *4 (-736)) (-5 *1 (-745 *3 *4)))) (-1878 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| -1858 *3) (|:| -3832 *4)))) (-5 *1 (-745 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-736)))) (-1777 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1062)) (-5 *1 (-745 *3 *4)) (-4 *4 (-736)))) (-3869 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-736)))) (-2530 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-736)))) (-3727 (*1 *2 *1) (-12 (-5 *2 (-654 (-745 *3 *4))) (-5 *1 (-745 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-736)))) (-1322 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-736)))) (-1359 (*1 *2 *1) (-12 (-4 *2 (-736)) (-4 *2 (-860)) (-5 *1 (-745 *3 *2)) (-4 *3 (-1062)))) (-1370 (*1 *2 *1) (-12 (-4 *2 (-1062)) (-5 *1 (-745 *2 *3)) (-4 *3 (-860)) (-4 *3 (-736)))) (-1392 (*1 *1 *1) (-12 (-5 *1 (-745 *2 *3)) (-4 *3 (-860)) (-4 *2 (-1062)) (-4 *3 (-736))))) -(-13 (-1062) (-1051 |#2|) (-1051 |#1|) (-10 -8 (-15 -4335 ($ |#1| |#2|)) (-15 -3087 (|#1| $ |#2|)) (-15 -2943 ($ (-654 (-2 (|:| -1858 |#1|) (|:| -3832 |#2|))))) (-15 -1878 ((-654 (-2 (|:| -1858 |#1|) (|:| -3832 |#2|))) $)) (-15 -1777 ($ (-1 |#1| |#1|) $)) (-15 -3869 ((-112) $)) (-15 -2530 ((-654 |#1|) $)) (-15 -3727 ((-654 $) $)) (-15 -1322 ((-781) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-377)) (IF (|has| |#2| (-377)) (-6 (-377)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-860)) (PROGN (-15 -1359 (|#2| $)) (-15 -1370 (|#1| $)) (-15 -1392 ($ $))) |%noBranch|))) -((-2849 (((-112) $ $) 19)) (-4359 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2743 (($ $ $) 73)) (-3605 (((-112) $ $) 74)) (-3034 (((-112) $ (-781)) 8)) (-1507 (($ (-654 |#1|)) 69) (($) 68)) (-3572 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4456)))) (-2165 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4456)))) (-3426 (($) 7 T CONST)) (-1771 (($ $) 63)) (-1543 (($ $) 59 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2876 (($ |#1| $) 48 (|has| $ (-6 -4456))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4456)))) (-3335 (($ |#1| $) 58 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4456)))) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3270 (((-112) $ $) 65)) (-2742 (((-112) $ (-781)) 9)) (-1606 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2449 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 36)) (-4203 (((-112) $ (-781)) 10)) (-4136 (((-1172) $) 22)) (-1784 (($ $ $) 70)) (-2937 ((|#1| $) 40)) (-2798 (($ |#1| $) 41) (($ |#1| $ (-781)) 64)) (-3966 (((-1133) $) 21)) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1785 ((|#1| $) 42)) (-2540 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 14)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-4099 (((-654 (-2 (|:| -1908 |#1|) (|:| -3975 (-781)))) $) 62)) (-4285 (($ $ |#1|) 72) (($ $ $) 71)) (-1662 (($) 50) (($ (-654 |#1|)) 49)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-1836 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 51)) (-2943 (((-872) $) 18)) (-4281 (($ (-654 |#1|)) 67) (($) 66)) (-3284 (((-112) $ $) 23)) (-1599 (($ (-654 |#1|)) 43)) (-3390 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 20)) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-746 |#1|) (-141) (-1113)) (T -746)) -NIL -(-13 (-705 |t#1|) (-1111 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-623 (-872)) . T) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-241 |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-705 |#1|) . T) ((-1111 |#1|) . T) ((-1113) . T) ((-1231) . T)) -((-2849 (((-112) $ $) NIL)) (-4359 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 92)) (-2743 (($ $ $) 96)) (-3605 (((-112) $ $) 104)) (-3034 (((-112) $ (-781)) NIL)) (-1507 (($ (-654 |#1|)) 26) (($) 17)) (-3572 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4456)))) (-2165 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3426 (($) NIL T CONST)) (-1771 (($ $) 85)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2876 (($ |#1| $) 70 (|has| $ (-6 -4456))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4456))) (($ |#1| $ (-574)) 75) (($ (-1 (-112) |#1|) $ (-574)) 78)) (-3335 (($ |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (($ |#1| $ (-574)) 80) (($ (-1 (-112) |#1|) $ (-574)) 81)) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1864 (((-654 |#1|) $) 32 (|has| $ (-6 -4456)))) (-3270 (((-112) $ $) 103)) (-2175 (($) 15) (($ |#1|) 28) (($ (-654 |#1|)) 23)) (-2742 (((-112) $ (-781)) NIL)) (-1606 (((-654 |#1|) $) 38)) (-1710 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2449 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 89)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL)) (-1784 (($ $ $) 94)) (-2937 ((|#1| $) 62)) (-2798 (($ |#1| $) 63) (($ |#1| $ (-781)) 86)) (-3966 (((-1133) $) NIL)) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1785 ((|#1| $) 61)) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) NIL)) (-1584 (((-112) $) 56)) (-2672 (($) 14)) (-4099 (((-654 (-2 (|:| -1908 |#1|) (|:| -3975 (-781)))) $) 55)) (-4285 (($ $ |#1|) NIL) (($ $ $) 95)) (-1662 (($) 16) (($ (-654 |#1|)) 25)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) 68 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) 79)) (-1836 (((-546) $) 36 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 22)) (-2943 (((-872) $) 49)) (-4281 (($ (-654 |#1|)) 27) (($) 18)) (-3284 (((-112) $ $) NIL)) (-1599 (($ (-654 |#1|)) 24)) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 100)) (-2863 (((-781) $) 67 (|has| $ (-6 -4456))))) -(((-747 |#1|) (-13 (-746 |#1|) (-10 -8 (-6 -4456) (-6 -4457) (-15 -2175 ($)) (-15 -2175 ($ |#1|)) (-15 -2175 ($ (-654 |#1|))) (-15 -1606 ((-654 |#1|) $)) (-15 -3335 ($ |#1| $ (-574))) (-15 -3335 ($ (-1 (-112) |#1|) $ (-574))) (-15 -2876 ($ |#1| $ (-574))) (-15 -2876 ($ (-1 (-112) |#1|) $ (-574))))) (-1113)) (T -747)) -((-2175 (*1 *1) (-12 (-5 *1 (-747 *2)) (-4 *2 (-1113)))) (-2175 (*1 *1 *2) (-12 (-5 *1 (-747 *2)) (-4 *2 (-1113)))) (-2175 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-747 *3)))) (-1606 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-747 *3)) (-4 *3 (-1113)))) (-3335 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-747 *2)) (-4 *2 (-1113)))) (-3335 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-574)) (-4 *4 (-1113)) (-5 *1 (-747 *4)))) (-2876 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-747 *2)) (-4 *2 (-1113)))) (-2876 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-574)) (-4 *4 (-1113)) (-5 *1 (-747 *4))))) -(-13 (-746 |#1|) (-10 -8 (-6 -4456) (-6 -4457) (-15 -2175 ($)) (-15 -2175 ($ |#1|)) (-15 -2175 ($ (-654 |#1|))) (-15 -1606 ((-654 |#1|) $)) (-15 -3335 ($ |#1| $ (-574))) (-15 -3335 ($ (-1 (-112) |#1|) $ (-574))) (-15 -2876 ($ |#1| $ (-574))) (-15 -2876 ($ (-1 (-112) |#1|) $ (-574))))) -((-1323 (((-1286) (-1172)) 8))) -(((-748) (-10 -7 (-15 -1323 ((-1286) (-1172))))) (T -748)) -((-1323 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-748))))) -(-10 -7 (-15 -1323 ((-1286) (-1172)))) -((-1933 (((-654 |#1|) (-654 |#1|) (-654 |#1|)) 15))) -(((-749 |#1|) (-10 -7 (-15 -1933 ((-654 |#1|) (-654 |#1|) (-654 |#1|)))) (-860)) (T -749)) -((-1933 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-749 *3))))) -(-10 -7 (-15 -1933 ((-654 |#1|) (-654 |#1|) (-654 |#1|)))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-4355 (((-654 |#2|) $) 148)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 141 (|has| |#1| (-566)))) (-1575 (($ $) 140 (|has| |#1| (-566)))) (-2085 (((-112) $) 138 (|has| |#1| (-566)))) (-2364 (($ $) 97 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 80 (|has| |#1| (-38 (-417 (-574)))))) (-3524 (((-3 $ "failed") $ $) 20)) (-4229 (($ $) 79 (|has| |#1| (-38 (-417 (-574)))))) (-2343 (($ $) 96 (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) 81 (|has| |#1| (-38 (-417 (-574)))))) (-2389 (($ $) 95 (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) 82 (|has| |#1| (-38 (-417 (-574)))))) (-3426 (($) 18 T CONST)) (-1392 (($ $) 132)) (-3434 (((-3 $ "failed") $) 37)) (-4053 (((-963 |#1|) $ (-781)) 110) (((-963 |#1|) $ (-781) (-781)) 109)) (-2892 (((-112) $) 149)) (-3000 (($) 107 (|has| |#1| (-38 (-417 (-574)))))) (-3884 (((-781) $ |#2|) 112) (((-781) $ |#2| (-781)) 111)) (-3199 (((-112) $) 35)) (-3460 (($ $ (-574)) 78 (|has| |#1| (-38 (-417 (-574)))))) (-3869 (((-112) $) 130)) (-4335 (($ $ (-654 |#2|) (-654 (-541 |#2|))) 147) (($ $ |#2| (-541 |#2|)) 146) (($ |#1| (-541 |#2|)) 131) (($ $ |#2| (-781)) 114) (($ $ (-654 |#2|) (-654 (-781))) 113)) (-1777 (($ (-1 |#1| |#1|) $) 129)) (-3119 (($ $) 104 (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) 127)) (-1370 ((|#1| $) 126)) (-4136 (((-1172) $) 10)) (-2379 (($ $ |#2|) 108 (|has| |#1| (-38 (-417 (-574)))))) (-3966 (((-1133) $) 11)) (-2533 (($ $ (-781)) 115)) (-2838 (((-3 $ "failed") $ $) 142 (|has| |#1| (-566)))) (-1609 (($ $) 105 (|has| |#1| (-38 (-417 (-574)))))) (-2646 (($ $ |#2| $) 123) (($ $ (-654 |#2|) (-654 $)) 122) (($ $ (-654 (-302 $))) 121) (($ $ (-302 $)) 120) (($ $ $ $) 119) (($ $ (-654 $) (-654 $)) 118)) (-3905 (($ $ |#2|) 46) (($ $ (-654 |#2|)) 45) (($ $ |#2| (-781)) 44) (($ $ (-654 |#2|) (-654 (-781))) 43)) (-4202 (((-541 |#2|) $) 128)) (-2402 (($ $) 94 (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) 83 (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) 93 (|has| |#1| (-38 (-417 (-574)))))) (-2256 (($ $) 84 (|has| |#1| (-38 (-417 (-574)))))) (-2352 (($ $) 92 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 85 (|has| |#1| (-38 (-417 (-574)))))) (-1651 (($ $) 150)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 145 (|has| |#1| (-174))) (($ $) 143 (|has| |#1| (-566))) (($ (-417 (-574))) 135 (|has| |#1| (-38 (-417 (-574)))))) (-3087 ((|#1| $ (-541 |#2|)) 133) (($ $ |#2| (-781)) 117) (($ $ (-654 |#2|) (-654 (-781))) 116)) (-3298 (((-3 $ "failed") $) 144 (|has| |#1| (-146)))) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2441 (($ $) 103 (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) 91 (|has| |#1| (-38 (-417 (-574)))))) (-2069 (((-112) $ $) 139 (|has| |#1| (-566)))) (-2414 (($ $) 102 (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) 90 (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) 101 (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) 89 (|has| |#1| (-38 (-417 (-574)))))) (-2521 (($ $) 100 (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) 88 (|has| |#1| (-38 (-417 (-574)))))) (-2452 (($ $) 99 (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) 87 (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) 98 (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) 86 (|has| |#1| (-38 (-417 (-574)))))) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-3610 (($ $ |#2|) 42) (($ $ (-654 |#2|)) 41) (($ $ |#2| (-781)) 40) (($ $ (-654 |#2|) (-654 (-781))) 39)) (-2981 (((-112) $ $) 6)) (-3108 (($ $ |#1|) 134 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ $) 106 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 77 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 137 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 136 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 125) (($ $ |#1|) 124))) -(((-750 |#1| |#2|) (-141) (-1062) (-860)) (T -750)) -((-3087 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *2)) (-4 *4 (-1062)) (-4 *2 (-860)))) (-3087 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *5)) (-5 *3 (-654 (-781))) (-4 *1 (-750 *4 *5)) (-4 *4 (-1062)) (-4 *5 (-860)))) (-2533 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-750 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-860)))) (-4335 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *2)) (-4 *4 (-1062)) (-4 *2 (-860)))) (-4335 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *5)) (-5 *3 (-654 (-781))) (-4 *1 (-750 *4 *5)) (-4 *4 (-1062)) (-4 *5 (-860)))) (-3884 (*1 *2 *1 *3) (-12 (-4 *1 (-750 *4 *3)) (-4 *4 (-1062)) (-4 *3 (-860)) (-5 *2 (-781)))) (-3884 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-781)) (-4 *1 (-750 *4 *3)) (-4 *4 (-1062)) (-4 *3 (-860)))) (-4053 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *5)) (-4 *4 (-1062)) (-4 *5 (-860)) (-5 *2 (-963 *4)))) (-4053 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *5)) (-4 *4 (-1062)) (-4 *5 (-860)) (-5 *2 (-963 *4)))) (-2379 (*1 *1 *1 *2) (-12 (-4 *1 (-750 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-860)) (-4 *3 (-38 (-417 (-574))))))) -(-13 (-911 |t#2|) (-986 |t#1| (-541 |t#2|) |t#2|) (-524 |t#2| $) (-317 $) (-10 -8 (-15 -3087 ($ $ |t#2| (-781))) (-15 -3087 ($ $ (-654 |t#2|) (-654 (-781)))) (-15 -2533 ($ $ (-781))) (-15 -4335 ($ $ |t#2| (-781))) (-15 -4335 ($ $ (-654 |t#2|) (-654 (-781)))) (-15 -3884 ((-781) $ |t#2|)) (-15 -3884 ((-781) $ |t#2| (-781))) (-15 -4053 ((-963 |t#1|) $ (-781))) (-15 -4053 ((-963 |t#1|) $ (-781) (-781))) (IF (|has| |t#1| (-38 (-417 (-574)))) (PROGN (-15 -2379 ($ $ |t#2|)) (-6 (-1015)) (-6 (-1216))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-541 |#2|)) . T) ((-25) . T) ((-38 #1=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) |has| |#1| (-38 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-298) |has| |#1| (-566)) ((-317 $) . T) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-524 |#2| $) . T) ((-524 $ $) . T) ((-566) |has| |#1| (-566)) ((-656 #1#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #1#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-911 |#2|) . T) ((-986 |#1| #0# |#2|) . T) ((-1015) |has| |#1| (-38 (-417 (-574)))) ((-1064 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1064 |#1|) . T) ((-1064 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1069 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1069 |#1|) . T) ((-1069 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1216) |has| |#1| (-38 (-417 (-574)))) ((-1219) |has| |#1| (-38 (-417 (-574))))) -((-4220 (((-428 (-1186 |#4|)) (-1186 |#4|)) 30) (((-428 |#4|) |#4|) 26))) -(((-751 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4220 ((-428 |#4|) |#4|)) (-15 -4220 ((-428 (-1186 |#4|)) (-1186 |#4|)))) (-860) (-803) (-13 (-315) (-148)) (-960 |#3| |#2| |#1|)) (T -751)) -((-4220 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-960 *6 *5 *4)) (-5 *2 (-428 (-1186 *7))) (-5 *1 (-751 *4 *5 *6 *7)) (-5 *3 (-1186 *7)))) (-4220 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-13 (-315) (-148))) (-5 *2 (-428 *3)) (-5 *1 (-751 *4 *5 *6 *3)) (-4 *3 (-960 *6 *5 *4))))) -(-10 -7 (-15 -4220 ((-428 |#4|) |#4|)) (-15 -4220 ((-428 (-1186 |#4|)) (-1186 |#4|)))) -((-2250 (((-428 |#4|) |#4| |#2|) 140)) (-2587 (((-428 |#4|) |#4|) NIL)) (-2827 (((-428 (-1186 |#4|)) (-1186 |#4|)) 127) (((-428 |#4|) |#4|) 52)) (-2684 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-654 (-2 (|:| -4220 (-1186 |#4|)) (|:| -3715 (-574)))))) (-1186 |#4|) (-654 |#2|) (-654 (-654 |#3|))) 81)) (-1505 (((-1186 |#3|) (-1186 |#3|) (-574)) 166)) (-2534 (((-654 (-781)) (-1186 |#4|) (-654 |#2|) (-781)) 75)) (-2854 (((-3 (-654 (-1186 |#4|)) "failed") (-1186 |#4|) (-1186 |#3|) (-1186 |#3|) |#4| (-654 |#2|) (-654 (-781)) (-654 |#3|)) 79)) (-2709 (((-2 (|:| |upol| (-1186 |#3|)) (|:| |Lval| (-654 |#3|)) (|:| |Lfact| (-654 (-2 (|:| -4220 (-1186 |#3|)) (|:| -3715 (-574))))) (|:| |ctpol| |#3|)) (-1186 |#4|) (-654 |#2|) (-654 (-654 |#3|))) 27)) (-4304 (((-2 (|:| -4086 (-1186 |#4|)) (|:| |polval| (-1186 |#3|))) (-1186 |#4|) (-1186 |#3|) (-574)) 72)) (-3544 (((-574) (-654 (-2 (|:| -4220 (-1186 |#3|)) (|:| -3715 (-574))))) 162)) (-3005 ((|#4| (-574) (-428 |#4|)) 73)) (-2809 (((-112) (-654 (-2 (|:| -4220 (-1186 |#3|)) (|:| -3715 (-574)))) (-654 (-2 (|:| -4220 (-1186 |#3|)) (|:| -3715 (-574))))) NIL))) -(((-752 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2827 ((-428 |#4|) |#4|)) (-15 -2827 ((-428 (-1186 |#4|)) (-1186 |#4|))) (-15 -2587 ((-428 |#4|) |#4|)) (-15 -3544 ((-574) (-654 (-2 (|:| -4220 (-1186 |#3|)) (|:| -3715 (-574)))))) (-15 -2250 ((-428 |#4|) |#4| |#2|)) (-15 -4304 ((-2 (|:| -4086 (-1186 |#4|)) (|:| |polval| (-1186 |#3|))) (-1186 |#4|) (-1186 |#3|) (-574))) (-15 -2684 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-654 (-2 (|:| -4220 (-1186 |#4|)) (|:| -3715 (-574)))))) (-1186 |#4|) (-654 |#2|) (-654 (-654 |#3|)))) (-15 -2709 ((-2 (|:| |upol| (-1186 |#3|)) (|:| |Lval| (-654 |#3|)) (|:| |Lfact| (-654 (-2 (|:| -4220 (-1186 |#3|)) (|:| -3715 (-574))))) (|:| |ctpol| |#3|)) (-1186 |#4|) (-654 |#2|) (-654 (-654 |#3|)))) (-15 -3005 (|#4| (-574) (-428 |#4|))) (-15 -2809 ((-112) (-654 (-2 (|:| -4220 (-1186 |#3|)) (|:| -3715 (-574)))) (-654 (-2 (|:| -4220 (-1186 |#3|)) (|:| -3715 (-574)))))) (-15 -2854 ((-3 (-654 (-1186 |#4|)) "failed") (-1186 |#4|) (-1186 |#3|) (-1186 |#3|) |#4| (-654 |#2|) (-654 (-781)) (-654 |#3|))) (-15 -2534 ((-654 (-781)) (-1186 |#4|) (-654 |#2|) (-781))) (-15 -1505 ((-1186 |#3|) (-1186 |#3|) (-574)))) (-803) (-860) (-315) (-960 |#3| |#1| |#2|)) (T -752)) -((-1505 (*1 *2 *2 *3) (-12 (-5 *2 (-1186 *6)) (-5 *3 (-574)) (-4 *6 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-960 *6 *4 *5)))) (-2534 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1186 *9)) (-5 *4 (-654 *7)) (-4 *7 (-860)) (-4 *9 (-960 *8 *6 *7)) (-4 *6 (-803)) (-4 *8 (-315)) (-5 *2 (-654 (-781))) (-5 *1 (-752 *6 *7 *8 *9)) (-5 *5 (-781)))) (-2854 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1186 *11)) (-5 *6 (-654 *10)) (-5 *7 (-654 (-781))) (-5 *8 (-654 *11)) (-4 *10 (-860)) (-4 *11 (-315)) (-4 *9 (-803)) (-4 *5 (-960 *11 *9 *10)) (-5 *2 (-654 (-1186 *5))) (-5 *1 (-752 *9 *10 *11 *5)) (-5 *3 (-1186 *5)))) (-2809 (*1 *2 *3 *3) (-12 (-5 *3 (-654 (-2 (|:| -4220 (-1186 *6)) (|:| -3715 (-574))))) (-4 *6 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-960 *6 *4 *5)))) (-3005 (*1 *2 *3 *4) (-12 (-5 *3 (-574)) (-5 *4 (-428 *2)) (-4 *2 (-960 *7 *5 *6)) (-5 *1 (-752 *5 *6 *7 *2)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-315)))) (-2709 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1186 *9)) (-5 *4 (-654 *7)) (-5 *5 (-654 (-654 *8))) (-4 *7 (-860)) (-4 *8 (-315)) (-4 *9 (-960 *8 *6 *7)) (-4 *6 (-803)) (-5 *2 (-2 (|:| |upol| (-1186 *8)) (|:| |Lval| (-654 *8)) (|:| |Lfact| (-654 (-2 (|:| -4220 (-1186 *8)) (|:| -3715 (-574))))) (|:| |ctpol| *8))) (-5 *1 (-752 *6 *7 *8 *9)))) (-2684 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-654 *7)) (-5 *5 (-654 (-654 *8))) (-4 *7 (-860)) (-4 *8 (-315)) (-4 *6 (-803)) (-4 *9 (-960 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-654 (-2 (|:| -4220 (-1186 *9)) (|:| -3715 (-574))))))) (-5 *1 (-752 *6 *7 *8 *9)) (-5 *3 (-1186 *9)))) (-4304 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-574)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-315)) (-4 *9 (-960 *8 *6 *7)) (-5 *2 (-2 (|:| -4086 (-1186 *9)) (|:| |polval| (-1186 *8)))) (-5 *1 (-752 *6 *7 *8 *9)) (-5 *3 (-1186 *9)) (-5 *4 (-1186 *8)))) (-2250 (*1 *2 *3 *4) (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-752 *5 *4 *6 *3)) (-4 *3 (-960 *6 *5 *4)))) (-3544 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -4220 (-1186 *6)) (|:| -3715 (-574))))) (-4 *6 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-574)) (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-960 *6 *4 *5)))) (-2587 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-960 *6 *4 *5)))) (-2827 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-4 *7 (-960 *6 *4 *5)) (-5 *2 (-428 (-1186 *7))) (-5 *1 (-752 *4 *5 *6 *7)) (-5 *3 (-1186 *7)))) (-2827 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-960 *6 *4 *5))))) -(-10 -7 (-15 -2827 ((-428 |#4|) |#4|)) (-15 -2827 ((-428 (-1186 |#4|)) (-1186 |#4|))) (-15 -2587 ((-428 |#4|) |#4|)) (-15 -3544 ((-574) (-654 (-2 (|:| -4220 (-1186 |#3|)) (|:| -3715 (-574)))))) (-15 -2250 ((-428 |#4|) |#4| |#2|)) (-15 -4304 ((-2 (|:| -4086 (-1186 |#4|)) (|:| |polval| (-1186 |#3|))) (-1186 |#4|) (-1186 |#3|) (-574))) (-15 -2684 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-654 (-2 (|:| -4220 (-1186 |#4|)) (|:| -3715 (-574)))))) (-1186 |#4|) (-654 |#2|) (-654 (-654 |#3|)))) (-15 -2709 ((-2 (|:| |upol| (-1186 |#3|)) (|:| |Lval| (-654 |#3|)) (|:| |Lfact| (-654 (-2 (|:| -4220 (-1186 |#3|)) (|:| -3715 (-574))))) (|:| |ctpol| |#3|)) (-1186 |#4|) (-654 |#2|) (-654 (-654 |#3|)))) (-15 -3005 (|#4| (-574) (-428 |#4|))) (-15 -2809 ((-112) (-654 (-2 (|:| -4220 (-1186 |#3|)) (|:| -3715 (-574)))) (-654 (-2 (|:| -4220 (-1186 |#3|)) (|:| -3715 (-574)))))) (-15 -2854 ((-3 (-654 (-1186 |#4|)) "failed") (-1186 |#4|) (-1186 |#3|) (-1186 |#3|) |#4| (-654 |#2|) (-654 (-781)) (-654 |#3|))) (-15 -2534 ((-654 (-781)) (-1186 |#4|) (-654 |#2|) (-781))) (-15 -1505 ((-1186 |#3|) (-1186 |#3|) (-574)))) -((-2817 (($ $ (-932)) 17))) -(((-753 |#1| |#2|) (-10 -8 (-15 -2817 (|#1| |#1| (-932)))) (-754 |#2|) (-174)) (T -753)) -NIL -(-10 -8 (-15 -2817 (|#1| |#1| (-932)))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-2397 (($ $ (-932)) 31)) (-2817 (($ $ (-932)) 38)) (-2422 (($ $ (-932)) 32)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-3204 (($ $ $) 28)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-1320 (($ $ $ $) 29)) (-2299 (($ $ $) 27)) (-2133 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 33)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-754 |#1|) (-141) (-174)) (T -754)) -((-2817 (*1 *1 *1 *2) (-12 (-5 *2 (-932)) (-4 *1 (-754 *3)) (-4 *3 (-174))))) -(-13 (-771) (-727 |t#1|) (-10 -8 (-15 -2817 ($ $ (-932))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-730) . T) ((-771) . T) ((-1064 |#1|) . T) ((-1069 |#1|) . T) ((-1113) . T)) -((-1633 (((-1048) (-699 (-227)) (-574) (-112) (-574)) 25)) (-2398 (((-1048) (-699 (-227)) (-574) (-112) (-574)) 24))) -(((-755) (-10 -7 (-15 -2398 ((-1048) (-699 (-227)) (-574) (-112) (-574))) (-15 -1633 ((-1048) (-699 (-227)) (-574) (-112) (-574))))) (T -755)) -((-1633 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-112)) (-5 *2 (-1048)) (-5 *1 (-755)))) (-2398 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-112)) (-5 *2 (-1048)) (-5 *1 (-755))))) -(-10 -7 (-15 -2398 ((-1048) (-699 (-227)) (-574) (-112) (-574))) (-15 -1633 ((-1048) (-699 (-227)) (-574) (-112) (-574)))) -((-3388 (((-1048) (-574) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-74 FCN)))) 43)) (-4152 (((-1048) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-81 FCN)))) 39)) (-4348 (((-1048) (-227) (-227) (-227) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386)))) 32))) -(((-756) (-10 -7 (-15 -4348 ((-1048) (-227) (-227) (-227) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386))))) (-15 -4152 ((-1048) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-81 FCN))))) (-15 -3388 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-74 FCN))))))) (T -756)) -((-3388 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1048)) (-5 *1 (-756)))) (-4152 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1048)) (-5 *1 (-756)))) (-4348 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386)))) (-5 *2 (-1048)) (-5 *1 (-756))))) -(-10 -7 (-15 -4348 ((-1048) (-227) (-227) (-227) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386))))) (-15 -4152 ((-1048) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-81 FCN))))) (-15 -3388 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-74 FCN)))))) -((-2588 (((-1048) (-574) (-574) (-699 (-227)) (-574)) 34)) (-3164 (((-1048) (-574) (-574) (-699 (-227)) (-574)) 33)) (-2875 (((-1048) (-574) (-699 (-227)) (-574)) 32)) (-2685 (((-1048) (-574) (-699 (-227)) (-574)) 31)) (-2864 (((-1048) (-574) (-574) (-1172) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 30)) (-3444 (((-1048) (-574) (-574) (-1172) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 29)) (-4301 (((-1048) (-574) (-574) (-1172) (-699 (-227)) (-699 (-227)) (-574)) 28)) (-3170 (((-1048) (-574) (-574) (-1172) (-699 (-227)) (-699 (-227)) (-574)) 27)) (-2180 (((-1048) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 24)) (-3116 (((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574)) 23)) (-2330 (((-1048) (-574) (-699 (-227)) (-574)) 22)) (-2298 (((-1048) (-574) (-699 (-227)) (-574)) 21))) -(((-757) (-10 -7 (-15 -2298 ((-1048) (-574) (-699 (-227)) (-574))) (-15 -2330 ((-1048) (-574) (-699 (-227)) (-574))) (-15 -3116 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2180 ((-1048) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3170 ((-1048) (-574) (-574) (-1172) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4301 ((-1048) (-574) (-574) (-1172) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3444 ((-1048) (-574) (-574) (-1172) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2864 ((-1048) (-574) (-574) (-1172) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2685 ((-1048) (-574) (-699 (-227)) (-574))) (-15 -2875 ((-1048) (-574) (-699 (-227)) (-574))) (-15 -3164 ((-1048) (-574) (-574) (-699 (-227)) (-574))) (-15 -2588 ((-1048) (-574) (-574) (-699 (-227)) (-574))))) (T -757)) -((-2588 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-757)))) (-3164 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-757)))) (-2875 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-757)))) (-2685 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-757)))) (-2864 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-1172)) (-5 *5 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-757)))) (-3444 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-1172)) (-5 *5 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-757)))) (-4301 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-1172)) (-5 *5 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-757)))) (-3170 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-1172)) (-5 *5 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-757)))) (-2180 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-757)))) (-3116 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-757)))) (-2330 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-757)))) (-2298 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-757))))) -(-10 -7 (-15 -2298 ((-1048) (-574) (-699 (-227)) (-574))) (-15 -2330 ((-1048) (-574) (-699 (-227)) (-574))) (-15 -3116 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2180 ((-1048) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3170 ((-1048) (-574) (-574) (-1172) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4301 ((-1048) (-574) (-574) (-1172) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3444 ((-1048) (-574) (-574) (-1172) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2864 ((-1048) (-574) (-574) (-1172) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2685 ((-1048) (-574) (-699 (-227)) (-574))) (-15 -2875 ((-1048) (-574) (-699 (-227)) (-574))) (-15 -3164 ((-1048) (-574) (-574) (-699 (-227)) (-574))) (-15 -2588 ((-1048) (-574) (-574) (-699 (-227)) (-574)))) -((-2028 (((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) 52)) (-1875 (((-1048) (-699 (-227)) (-699 (-227)) (-574) (-574)) 51)) (-4395 (((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) 50)) (-4106 (((-1048) (-227) (-227) (-574) (-574) (-574) (-574)) 46)) (-3602 (((-1048) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) 45)) (-4076 (((-1048) (-227) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) 44)) (-3649 (((-1048) (-227) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) 43)) (-3364 (((-1048) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) 42)) (-2553 (((-1048) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386)))) 38)) (-3474 (((-1048) (-227) (-227) (-574) (-699 (-227)) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386)))) 37)) (-3185 (((-1048) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386)))) 33)) (-4419 (((-1048) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386)))) 32))) -(((-758) (-10 -7 (-15 -4419 ((-1048) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386))))) (-15 -3185 ((-1048) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386))))) (-15 -3474 ((-1048) (-227) (-227) (-574) (-699 (-227)) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386))))) (-15 -2553 ((-1048) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386))))) (-15 -3364 ((-1048) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -3649 ((-1048) (-227) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -4076 ((-1048) (-227) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -3602 ((-1048) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -4106 ((-1048) (-227) (-227) (-574) (-574) (-574) (-574))) (-15 -4395 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN))))) (-15 -1875 ((-1048) (-699 (-227)) (-699 (-227)) (-574) (-574))) (-15 -2028 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN))))))) (T -758)) -((-2028 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1048)) (-5 *1 (-758)))) (-1875 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-758)))) (-4395 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1048)) (-5 *1 (-758)))) (-4106 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-758)))) (-3602 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1048)) (-5 *1 (-758)))) (-4076 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1048)) (-5 *1 (-758)))) (-3649 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1048)) (-5 *1 (-758)))) (-3364 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1048)) (-5 *1 (-758)))) (-2553 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386)))) (-5 *2 (-1048)) (-5 *1 (-758)))) (-3474 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386)))) (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-758)))) (-3185 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386)))) (-5 *2 (-1048)) (-5 *1 (-758)))) (-4419 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386)))) (-5 *2 (-1048)) (-5 *1 (-758))))) -(-10 -7 (-15 -4419 ((-1048) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386))))) (-15 -3185 ((-1048) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386))))) (-15 -3474 ((-1048) (-227) (-227) (-574) (-699 (-227)) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386))))) (-15 -2553 ((-1048) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386))))) (-15 -3364 ((-1048) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -3649 ((-1048) (-227) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -4076 ((-1048) (-227) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -3602 ((-1048) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -4106 ((-1048) (-227) (-227) (-574) (-574) (-574) (-574))) (-15 -4395 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN))))) (-15 -1875 ((-1048) (-699 (-227)) (-699 (-227)) (-574) (-574))) (-15 -2028 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))))) -((-3341 (((-1048) (-574) (-574) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-398)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-2772 (((-1048) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))) (-398) (-398)) 69) (((-1048) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL)))) 68)) (-4288 (((-1048) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-85 FCNG)))) 57)) (-3814 (((-1048) (-699 (-227)) (-699 (-227)) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) 50)) (-4267 (((-1048) (-227) (-574) (-574) (-1172) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) 49)) (-3286 (((-1048) (-227) (-574) (-574) (-227) (-1172) (-227) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) 45)) (-2531 (((-1048) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) 42)) (-3603 (((-1048) (-227) (-574) (-574) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) 38))) -(((-759) (-10 -7 (-15 -3603 ((-1048) (-227) (-574) (-574) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -2531 ((-1048) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))))) (-15 -3286 ((-1048) (-227) (-574) (-574) (-227) (-1172) (-227) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -4267 ((-1048) (-227) (-574) (-574) (-1172) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -3814 ((-1048) (-699 (-227)) (-699 (-227)) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))))) (-15 -4288 ((-1048) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-85 FCNG))))) (-15 -2772 ((-1048) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))))) (-15 -2772 ((-1048) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))) (-398) (-398))) (-15 -3341 ((-1048) (-574) (-574) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-398)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -759)) -((-3341 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-759)))) (-2772 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-398)) (-5 *2 (-1048)) (-5 *1 (-759)))) (-2772 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1048)) (-5 *1 (-759)))) (-4288 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-759)))) (-3814 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1048)) (-5 *1 (-759)))) (-4267 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-574)) (-5 *5 (-1172)) (-5 *6 (-699 (-227))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-759)))) (-3286 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-574)) (-5 *5 (-1172)) (-5 *6 (-699 (-227))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-759)))) (-2531 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-759)))) (-3603 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-759))))) -(-10 -7 (-15 -3603 ((-1048) (-227) (-574) (-574) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -2531 ((-1048) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))))) (-15 -3286 ((-1048) (-227) (-574) (-574) (-227) (-1172) (-227) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -4267 ((-1048) (-227) (-574) (-574) (-1172) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -3814 ((-1048) (-699 (-227)) (-699 (-227)) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))))) (-15 -4288 ((-1048) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-85 FCNG))))) (-15 -2772 ((-1048) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))))) (-15 -2772 ((-1048) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))) (-398) (-398))) (-15 -3341 ((-1048) (-574) (-574) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-398)) (|:| |fp| (-76 G JACOBG JACGEP)))))) -((-1733 (((-1048) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-685 (-227)) (-574)) 45)) (-4056 (((-1048) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-1172) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-83 BNDY)))) 41)) (-2191 (((-1048) (-574) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 23))) -(((-760) (-10 -7 (-15 -2191 ((-1048) (-574) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4056 ((-1048) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-1172) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-83 BNDY))))) (-15 -1733 ((-1048) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-685 (-227)) (-574))))) (T -760)) -((-1733 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-685 (-227))) (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-760)))) (-4056 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-1172)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1048)) (-5 *1 (-760)))) (-2191 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-760))))) -(-10 -7 (-15 -2191 ((-1048) (-574) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4056 ((-1048) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-1172) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-83 BNDY))))) (-15 -1733 ((-1048) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-685 (-227)) (-574)))) -((-3039 (((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-699 (-227)) (-227) (-227) (-574)) 35)) (-3016 (((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-227) (-227) (-574)) 34)) (-1426 (((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-699 (-227)) (-227) (-227) (-574)) 33)) (-2403 (((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 29)) (-3452 (((-1048) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 28)) (-4156 (((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574)) 27)) (-1318 (((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574)) 24)) (-3704 (((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574)) 23)) (-3735 (((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574)) 22)) (-3730 (((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574)) 21))) -(((-761) (-10 -7 (-15 -3730 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))) (-15 -3735 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3704 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -1318 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -4156 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574))) (-15 -3452 ((-1048) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2403 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1426 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-699 (-227)) (-227) (-227) (-574))) (-15 -3016 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-227) (-227) (-574))) (-15 -3039 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-699 (-227)) (-227) (-227) (-574))))) (T -761)) -((-3039 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1048)) (-5 *1 (-761)))) (-3016 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1048)) (-5 *1 (-761)))) (-1426 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *6 (-227)) (-5 *3 (-574)) (-5 *2 (-1048)) (-5 *1 (-761)))) (-2403 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-761)))) (-3452 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-761)))) (-4156 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1048)) (-5 *1 (-761)))) (-1318 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-761)))) (-3704 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-761)))) (-3735 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-761)))) (-3730 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-761))))) -(-10 -7 (-15 -3730 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))) (-15 -3735 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3704 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -1318 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -4156 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574))) (-15 -3452 ((-1048) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2403 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1426 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-699 (-227)) (-227) (-227) (-574))) (-15 -3016 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-227) (-227) (-574))) (-15 -3039 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-699 (-227)) (-227) (-227) (-574)))) -((-2142 (((-1048) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574)) 45)) (-3183 (((-1048) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-574)) 44)) (-3530 (((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574)) 43)) (-3414 (((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 42)) (-4080 (((-1048) (-1172) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574)) 41)) (-3093 (((-1048) (-1172) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574)) 40)) (-4074 (((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574) (-574) (-574) (-227) (-699 (-227)) (-574)) 39)) (-2365 (((-1048) (-1172) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574))) 38)) (-4001 (((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574)) 35)) (-1454 (((-1048) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574)) 34)) (-3565 (((-1048) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574)) 33)) (-4388 (((-1048) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 32)) (-4351 (((-1048) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574)) 31)) (-2600 (((-1048) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-574)) 30)) (-2494 (((-1048) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-574) (-574) (-574)) 29)) (-2345 (((-1048) (-574) (-574) (-574) (-227) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-574)) (-574) (-574) (-574)) 28)) (-2811 (((-1048) (-574) (-699 (-227)) (-227) (-574)) 24)) (-1702 (((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 21))) -(((-762) (-10 -7 (-15 -1702 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2811 ((-1048) (-574) (-699 (-227)) (-227) (-574))) (-15 -2345 ((-1048) (-574) (-574) (-574) (-227) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-574)) (-574) (-574) (-574))) (-15 -2494 ((-1048) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-574) (-574) (-574))) (-15 -2600 ((-1048) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-574))) (-15 -4351 ((-1048) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574))) (-15 -4388 ((-1048) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3565 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574))) (-15 -1454 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574))) (-15 -4001 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2365 ((-1048) (-1172) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574)))) (-15 -4074 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574) (-574) (-574) (-227) (-699 (-227)) (-574))) (-15 -3093 ((-1048) (-1172) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574))) (-15 -4080 ((-1048) (-1172) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3414 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3530 ((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))) (-15 -3183 ((-1048) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2142 ((-1048) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))))) (T -762)) -((-2142 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-762)))) (-3183 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-762)))) (-3530 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-762)))) (-3414 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-762)))) (-4080 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1172)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-227)) (-5 *2 (-1048)) (-5 *1 (-762)))) (-3093 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1172)) (-5 *5 (-699 (-227))) (-5 *6 (-227)) (-5 *7 (-699 (-574))) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-762)))) (-4074 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *6 (-227)) (-5 *3 (-574)) (-5 *2 (-1048)) (-5 *1 (-762)))) (-2365 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1172)) (-5 *5 (-699 (-227))) (-5 *6 (-227)) (-5 *7 (-699 (-574))) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-762)))) (-4001 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-762)))) (-1454 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1048)) (-5 *1 (-762)))) (-3565 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1048)) (-5 *1 (-762)))) (-4388 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-762)))) (-4351 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-762)))) (-2600 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-762)))) (-2494 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-762)))) (-2345 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-699 (-227))) (-5 *6 (-699 (-574))) (-5 *3 (-574)) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-762)))) (-2811 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1048)) (-5 *1 (-762)))) (-1702 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-762))))) -(-10 -7 (-15 -1702 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2811 ((-1048) (-574) (-699 (-227)) (-227) (-574))) (-15 -2345 ((-1048) (-574) (-574) (-574) (-227) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-574)) (-574) (-574) (-574))) (-15 -2494 ((-1048) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-574) (-574) (-574))) (-15 -2600 ((-1048) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-574))) (-15 -4351 ((-1048) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574))) (-15 -4388 ((-1048) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3565 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574))) (-15 -1454 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574))) (-15 -4001 ((-1048) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2365 ((-1048) (-1172) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574)))) (-15 -4074 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574) (-574) (-574) (-227) (-699 (-227)) (-574))) (-15 -3093 ((-1048) (-1172) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574))) (-15 -4080 ((-1048) (-1172) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3414 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3530 ((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))) (-15 -3183 ((-1048) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2142 ((-1048) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574)))) -((-2219 (((-1048) (-574) (-574) (-574) (-227) (-699 (-227)) (-574) (-699 (-227)) (-574)) 63)) (-2091 (((-1048) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-112) (-227) (-574) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-574) (-574) (-574) (-574) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) 62)) (-3858 (((-1048) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-112) (-112) (-574) (-574) (-699 (-227)) (-699 (-574)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-65 QPHESS)))) 58)) (-3378 (((-1048) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-574) (-574) (-699 (-227)) (-574)) 51)) (-3144 (((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-66 FUNCT1)))) 50)) (-1712 (((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-63 LSFUN2)))) 46)) (-2356 (((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-79 LSFUN1)))) 42)) (-2922 (((-1048) (-574) (-227) (-227) (-574) (-227) (-112) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) 38))) -(((-763) (-10 -7 (-15 -2922 ((-1048) (-574) (-227) (-227) (-574) (-227) (-112) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN))))) (-15 -2356 ((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-79 LSFUN1))))) (-15 -1712 ((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-63 LSFUN2))))) (-15 -3144 ((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-66 FUNCT1))))) (-15 -3378 ((-1048) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-574) (-574) (-699 (-227)) (-574))) (-15 -3858 ((-1048) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-112) (-112) (-574) (-574) (-699 (-227)) (-699 (-574)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-65 QPHESS))))) (-15 -2091 ((-1048) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-112) (-227) (-574) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-574) (-574) (-574) (-574) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN))))) (-15 -2219 ((-1048) (-574) (-574) (-574) (-227) (-699 (-227)) (-574) (-699 (-227)) (-574))))) (T -763)) -((-2219 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-763)))) (-2091 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-699 (-574))) (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-574)) (-5 *2 (-1048)) (-5 *1 (-763)))) (-3858 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-699 (-227))) (-5 *6 (-112)) (-5 *7 (-699 (-574))) (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-574)) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-763)))) (-3378 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-112)) (-5 *2 (-1048)) (-5 *1 (-763)))) (-3144 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1048)) (-5 *1 (-763)))) (-1712 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1048)) (-5 *1 (-763)))) (-2356 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1048)) (-5 *1 (-763)))) (-2922 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-574)) (-5 *5 (-112)) (-5 *6 (-699 (-227))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-763))))) -(-10 -7 (-15 -2922 ((-1048) (-574) (-227) (-227) (-574) (-227) (-112) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN))))) (-15 -2356 ((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-79 LSFUN1))))) (-15 -1712 ((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-63 LSFUN2))))) (-15 -3144 ((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-66 FUNCT1))))) (-15 -3378 ((-1048) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-574) (-574) (-699 (-227)) (-574))) (-15 -3858 ((-1048) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-112) (-112) (-574) (-574) (-699 (-227)) (-699 (-574)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-65 QPHESS))))) (-15 -2091 ((-1048) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-112) (-227) (-574) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-574) (-574) (-574) (-574) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN))))) (-15 -2219 ((-1048) (-574) (-574) (-574) (-227) (-699 (-227)) (-574) (-699 (-227)) (-574)))) -((-2824 (((-1048) (-1172) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574)) 47)) (-1566 (((-1048) (-1172) (-1172) (-574) (-574) (-699 (-171 (-227))) (-574) (-699 (-171 (-227))) (-574) (-574) (-699 (-171 (-227))) (-574)) 46)) (-3258 (((-1048) (-574) (-574) (-574) (-699 (-171 (-227))) (-574)) 45)) (-3375 (((-1048) (-1172) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 40)) (-1813 (((-1048) (-1172) (-1172) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-699 (-227)) (-574)) 39)) (-3301 (((-1048) (-574) (-574) (-574) (-699 (-227)) (-574)) 36)) (-4172 (((-1048) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574)) 35)) (-3756 (((-1048) (-574) (-574) (-574) (-574) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-227) (-227) (-574)) 34)) (-3796 (((-1048) (-574) (-574) (-574) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-112) (-227) (-112) (-699 (-574)) (-699 (-227)) (-574)) 33)) (-1674 (((-1048) (-574) (-574) (-574) (-574) (-227) (-112) (-112) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-574)) 32))) -(((-764) (-10 -7 (-15 -1674 ((-1048) (-574) (-574) (-574) (-574) (-227) (-112) (-112) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-574))) (-15 -3796 ((-1048) (-574) (-574) (-574) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-112) (-227) (-112) (-699 (-574)) (-699 (-227)) (-574))) (-15 -3756 ((-1048) (-574) (-574) (-574) (-574) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-227) (-227) (-574))) (-15 -4172 ((-1048) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574))) (-15 -3301 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-574))) (-15 -1813 ((-1048) (-1172) (-1172) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-699 (-227)) (-574))) (-15 -3375 ((-1048) (-1172) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3258 ((-1048) (-574) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -1566 ((-1048) (-1172) (-1172) (-574) (-574) (-699 (-171 (-227))) (-574) (-699 (-171 (-227))) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -2824 ((-1048) (-1172) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574))))) (T -764)) -((-2824 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1172)) (-5 *4 (-574)) (-5 *5 (-699 (-171 (-227)))) (-5 *2 (-1048)) (-5 *1 (-764)))) (-1566 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1172)) (-5 *4 (-574)) (-5 *5 (-699 (-171 (-227)))) (-5 *2 (-1048)) (-5 *1 (-764)))) (-3258 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-171 (-227)))) (-5 *2 (-1048)) (-5 *1 (-764)))) (-3375 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1172)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-764)))) (-1813 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1172)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-764)))) (-3301 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-764)))) (-4172 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) (-5 *2 (-1048)) (-5 *1 (-764)))) (-3756 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-654 (-112))) (-5 *5 (-699 (-227))) (-5 *6 (-699 (-574))) (-5 *7 (-227)) (-5 *3 (-574)) (-5 *2 (-1048)) (-5 *1 (-764)))) (-3796 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-699 (-574))) (-5 *5 (-112)) (-5 *7 (-699 (-227))) (-5 *3 (-574)) (-5 *6 (-227)) (-5 *2 (-1048)) (-5 *1 (-764)))) (-1674 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-654 (-112))) (-5 *7 (-699 (-227))) (-5 *8 (-699 (-574))) (-5 *3 (-574)) (-5 *4 (-227)) (-5 *5 (-112)) (-5 *2 (-1048)) (-5 *1 (-764))))) -(-10 -7 (-15 -1674 ((-1048) (-574) (-574) (-574) (-574) (-227) (-112) (-112) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-574))) (-15 -3796 ((-1048) (-574) (-574) (-574) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-112) (-227) (-112) (-699 (-574)) (-699 (-227)) (-574))) (-15 -3756 ((-1048) (-574) (-574) (-574) (-574) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-227) (-227) (-574))) (-15 -4172 ((-1048) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574))) (-15 -3301 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-574))) (-15 -1813 ((-1048) (-1172) (-1172) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-699 (-227)) (-574))) (-15 -3375 ((-1048) (-1172) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3258 ((-1048) (-574) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -1566 ((-1048) (-1172) (-1172) (-574) (-574) (-699 (-171 (-227))) (-574) (-699 (-171 (-227))) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -2824 ((-1048) (-1172) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574)))) -((-1428 (((-1048) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574)) 79)) (-2889 (((-1048) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574)) 68)) (-2581 (((-1048) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE))) (-398)) 56) (((-1048) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE)))) 55)) (-4173 (((-1048) (-574) (-574) (-574) (-227) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574)) 37)) (-2347 (((-1048) (-574) (-574) (-227) (-227) (-574) (-574) (-699 (-227)) (-574)) 33)) (-1391 (((-1048) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574) (-574)) 30)) (-3614 (((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 29)) (-3836 (((-1048) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 28)) (-1894 (((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 27)) (-2312 (((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-574)) 26)) (-2848 (((-1048) (-574) (-574) (-699 (-227)) (-574)) 25)) (-2565 (((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 24)) (-2137 (((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 23)) (-3786 (((-1048) (-699 (-227)) (-574) (-574) (-574) (-574)) 22)) (-3731 (((-1048) (-574) (-574) (-699 (-227)) (-574)) 21))) -(((-765) (-10 -7 (-15 -3731 ((-1048) (-574) (-574) (-699 (-227)) (-574))) (-15 -3786 ((-1048) (-699 (-227)) (-574) (-574) (-574) (-574))) (-15 -2137 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2565 ((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2848 ((-1048) (-574) (-574) (-699 (-227)) (-574))) (-15 -2312 ((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-574))) (-15 -1894 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3836 ((-1048) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3614 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1391 ((-1048) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574) (-574))) (-15 -2347 ((-1048) (-574) (-574) (-227) (-227) (-574) (-574) (-699 (-227)) (-574))) (-15 -4173 ((-1048) (-574) (-574) (-574) (-227) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2581 ((-1048) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE))))) (-15 -2581 ((-1048) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE))) (-398))) (-15 -2889 ((-1048) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1428 ((-1048) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574))))) (T -765)) -((-1428 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-112)) (-5 *5 (-699 (-171 (-227)))) (-5 *2 (-1048)) (-5 *1 (-765)))) (-2889 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-112)) (-5 *5 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-765)))) (-2581 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-398)) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-765)))) (-2581 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-765)))) (-4173 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-574)) (-5 *5 (-112)) (-5 *6 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-765)))) (-2347 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-765)))) (-1391 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-765)))) (-3614 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-765)))) (-3836 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-765)))) (-1894 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-765)))) (-2312 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-765)))) (-2848 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-765)))) (-2565 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-765)))) (-2137 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-765)))) (-3786 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-765)))) (-3731 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-765))))) -(-10 -7 (-15 -3731 ((-1048) (-574) (-574) (-699 (-227)) (-574))) (-15 -3786 ((-1048) (-699 (-227)) (-574) (-574) (-574) (-574))) (-15 -2137 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2565 ((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2848 ((-1048) (-574) (-574) (-699 (-227)) (-574))) (-15 -2312 ((-1048) (-574) (-574) (-574) (-574) (-699 (-227)) (-574))) (-15 -1894 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3836 ((-1048) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3614 ((-1048) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1391 ((-1048) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574) (-574))) (-15 -2347 ((-1048) (-574) (-574) (-227) (-227) (-574) (-574) (-699 (-227)) (-574))) (-15 -4173 ((-1048) (-574) (-574) (-574) (-227) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2581 ((-1048) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE))))) (-15 -2581 ((-1048) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE))) (-398))) (-15 -2889 ((-1048) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1428 ((-1048) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574)))) -((-4048 (((-1048) (-574) (-574) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-70 APROD)))) 64)) (-2858 (((-1048) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574)) 60)) (-3737 (((-1048) (-574) (-699 (-227)) (-112) (-227) (-574) (-574) (-574) (-574) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-398)) (|:| |fp| (-73 MSOLVE)))) 59)) (-3658 (((-1048) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574)) 37)) (-2556 (((-1048) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-574)) 36)) (-4190 (((-1048) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 33)) (-2694 (((-1048) (-574) (-699 (-227)) (-574) (-699 (-574)) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227))) 32)) (-1847 (((-1048) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574)) 28)) (-3598 (((-1048) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574)) 27)) (-3672 (((-1048) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574)) 26)) (-2470 (((-1048) (-574) (-699 (-171 (-227))) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-574)) 22))) -(((-766) (-10 -7 (-15 -2470 ((-1048) (-574) (-699 (-171 (-227))) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -3672 ((-1048) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -3598 ((-1048) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -1847 ((-1048) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574))) (-15 -2694 ((-1048) (-574) (-699 (-227)) (-574) (-699 (-574)) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227)))) (-15 -4190 ((-1048) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2556 ((-1048) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3658 ((-1048) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574))) (-15 -3737 ((-1048) (-574) (-699 (-227)) (-112) (-227) (-574) (-574) (-574) (-574) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-398)) (|:| |fp| (-73 MSOLVE))))) (-15 -2858 ((-1048) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574))) (-15 -4048 ((-1048) (-574) (-574) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-70 APROD))))))) (T -766)) -((-4048 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-766)))) (-2858 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) (-5 *2 (-1048)) (-5 *1 (-766)))) (-3737 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1048)) (-5 *1 (-766)))) (-3658 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) (-5 *2 (-1048)) (-5 *1 (-766)))) (-2556 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-766)))) (-4190 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-766)))) (-2694 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) (-5 *2 (-1048)) (-5 *1 (-766)))) (-1847 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-766)))) (-3598 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-766)))) (-3672 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-766)))) (-2470 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-171 (-227)))) (-5 *2 (-1048)) (-5 *1 (-766))))) -(-10 -7 (-15 -2470 ((-1048) (-574) (-699 (-171 (-227))) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -3672 ((-1048) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -3598 ((-1048) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -1847 ((-1048) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574))) (-15 -2694 ((-1048) (-574) (-699 (-227)) (-574) (-699 (-574)) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227)))) (-15 -4190 ((-1048) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2556 ((-1048) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3658 ((-1048) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574))) (-15 -3737 ((-1048) (-574) (-699 (-227)) (-112) (-227) (-574) (-574) (-574) (-574) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-398)) (|:| |fp| (-73 MSOLVE))))) (-15 -2858 ((-1048) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574))) (-15 -4048 ((-1048) (-574) (-574) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-70 APROD)))))) -((-1896 (((-1048) (-1172) (-574) (-574) (-699 (-227)) (-574) (-574) (-699 (-227))) 29)) (-2008 (((-1048) (-1172) (-574) (-574) (-699 (-227))) 28)) (-1872 (((-1048) (-1172) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-227))) 27)) (-3696 (((-1048) (-574) (-574) (-574) (-699 (-227))) 21))) -(((-767) (-10 -7 (-15 -3696 ((-1048) (-574) (-574) (-574) (-699 (-227)))) (-15 -1872 ((-1048) (-1172) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-227)))) (-15 -2008 ((-1048) (-1172) (-574) (-574) (-699 (-227)))) (-15 -1896 ((-1048) (-1172) (-574) (-574) (-699 (-227)) (-574) (-574) (-699 (-227)))))) (T -767)) -((-1896 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1172)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-767)))) (-2008 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1172)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-767)))) (-1872 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1172)) (-5 *5 (-699 (-227))) (-5 *6 (-699 (-574))) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-767)))) (-3696 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) (-5 *1 (-767))))) -(-10 -7 (-15 -3696 ((-1048) (-574) (-574) (-574) (-699 (-227)))) (-15 -1872 ((-1048) (-1172) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-227)))) (-15 -2008 ((-1048) (-1172) (-574) (-574) (-699 (-227)))) (-15 -1896 ((-1048) (-1172) (-574) (-574) (-699 (-227)) (-574) (-574) (-699 (-227))))) -((-2986 (((-1048) (-227) (-227) (-227) (-227) (-574)) 62)) (-1897 (((-1048) (-227) (-227) (-227) (-574)) 61)) (-2697 (((-1048) (-227) (-227) (-227) (-574)) 60)) (-3556 (((-1048) (-227) (-227) (-574)) 59)) (-3393 (((-1048) (-227) (-574)) 58)) (-3592 (((-1048) (-227) (-574)) 57)) (-3779 (((-1048) (-227) (-574)) 56)) (-2316 (((-1048) (-227) (-574)) 55)) (-3230 (((-1048) (-227) (-574)) 54)) (-1567 (((-1048) (-227) (-574)) 53)) (-3833 (((-1048) (-227) (-171 (-227)) (-574) (-1172) (-574)) 52)) (-3914 (((-1048) (-227) (-171 (-227)) (-574) (-1172) (-574)) 51)) (-3453 (((-1048) (-227) (-574)) 50)) (-4337 (((-1048) (-227) (-574)) 49)) (-4097 (((-1048) (-227) (-574)) 48)) (-3710 (((-1048) (-227) (-574)) 47)) (-3022 (((-1048) (-574) (-227) (-171 (-227)) (-574) (-1172) (-574)) 46)) (-1787 (((-1048) (-1172) (-171 (-227)) (-1172) (-574)) 45)) (-4276 (((-1048) (-1172) (-171 (-227)) (-1172) (-574)) 44)) (-3944 (((-1048) (-227) (-171 (-227)) (-574) (-1172) (-574)) 43)) (-2710 (((-1048) (-227) (-171 (-227)) (-574) (-1172) (-574)) 42)) (-4407 (((-1048) (-227) (-574)) 39)) (-4331 (((-1048) (-227) (-574)) 38)) (-1916 (((-1048) (-227) (-574)) 37)) (-1677 (((-1048) (-227) (-574)) 36)) (-2205 (((-1048) (-227) (-574)) 35)) (-2698 (((-1048) (-227) (-574)) 34)) (-4139 (((-1048) (-227) (-574)) 33)) (-1449 (((-1048) (-227) (-574)) 32)) (-1703 (((-1048) (-227) (-574)) 31)) (-2924 (((-1048) (-227) (-574)) 30)) (-4225 (((-1048) (-227) (-227) (-227) (-574)) 29)) (-1344 (((-1048) (-227) (-574)) 28)) (-3934 (((-1048) (-227) (-574)) 27)) (-3648 (((-1048) (-227) (-574)) 26)) (-4318 (((-1048) (-227) (-574)) 25)) (-2961 (((-1048) (-227) (-574)) 24)) (-2708 (((-1048) (-171 (-227)) (-574)) 21))) -(((-768) (-10 -7 (-15 -2708 ((-1048) (-171 (-227)) (-574))) (-15 -2961 ((-1048) (-227) (-574))) (-15 -4318 ((-1048) (-227) (-574))) (-15 -3648 ((-1048) (-227) (-574))) (-15 -3934 ((-1048) (-227) (-574))) (-15 -1344 ((-1048) (-227) (-574))) (-15 -4225 ((-1048) (-227) (-227) (-227) (-574))) (-15 -2924 ((-1048) (-227) (-574))) (-15 -1703 ((-1048) (-227) (-574))) (-15 -1449 ((-1048) (-227) (-574))) (-15 -4139 ((-1048) (-227) (-574))) (-15 -2698 ((-1048) (-227) (-574))) (-15 -2205 ((-1048) (-227) (-574))) (-15 -1677 ((-1048) (-227) (-574))) (-15 -1916 ((-1048) (-227) (-574))) (-15 -4331 ((-1048) (-227) (-574))) (-15 -4407 ((-1048) (-227) (-574))) (-15 -2710 ((-1048) (-227) (-171 (-227)) (-574) (-1172) (-574))) (-15 -3944 ((-1048) (-227) (-171 (-227)) (-574) (-1172) (-574))) (-15 -4276 ((-1048) (-1172) (-171 (-227)) (-1172) (-574))) (-15 -1787 ((-1048) (-1172) (-171 (-227)) (-1172) (-574))) (-15 -3022 ((-1048) (-574) (-227) (-171 (-227)) (-574) (-1172) (-574))) (-15 -3710 ((-1048) (-227) (-574))) (-15 -4097 ((-1048) (-227) (-574))) (-15 -4337 ((-1048) (-227) (-574))) (-15 -3453 ((-1048) (-227) (-574))) (-15 -3914 ((-1048) (-227) (-171 (-227)) (-574) (-1172) (-574))) (-15 -3833 ((-1048) (-227) (-171 (-227)) (-574) (-1172) (-574))) (-15 -1567 ((-1048) (-227) (-574))) (-15 -3230 ((-1048) (-227) (-574))) (-15 -2316 ((-1048) (-227) (-574))) (-15 -3779 ((-1048) (-227) (-574))) (-15 -3592 ((-1048) (-227) (-574))) (-15 -3393 ((-1048) (-227) (-574))) (-15 -3556 ((-1048) (-227) (-227) (-574))) (-15 -2697 ((-1048) (-227) (-227) (-227) (-574))) (-15 -1897 ((-1048) (-227) (-227) (-227) (-574))) (-15 -2986 ((-1048) (-227) (-227) (-227) (-227) (-574))))) (T -768)) -((-2986 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-1897 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-2697 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-3556 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-3393 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-3592 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-3779 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-2316 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-3230 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-1567 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-3833 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1172)) (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-3914 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1172)) (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-3453 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-4337 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-4097 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-3710 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-3022 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-574)) (-5 *5 (-171 (-227))) (-5 *6 (-1172)) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-1787 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1172)) (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-4276 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1172)) (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-3944 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1172)) (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-2710 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1172)) (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-4407 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-4331 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-1677 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-2205 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-2698 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-4139 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-1449 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-1703 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-2924 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-4225 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-3648 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-2961 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768)))) (-2708 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-227))) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768))))) -(-10 -7 (-15 -2708 ((-1048) (-171 (-227)) (-574))) (-15 -2961 ((-1048) (-227) (-574))) (-15 -4318 ((-1048) (-227) (-574))) (-15 -3648 ((-1048) (-227) (-574))) (-15 -3934 ((-1048) (-227) (-574))) (-15 -1344 ((-1048) (-227) (-574))) (-15 -4225 ((-1048) (-227) (-227) (-227) (-574))) (-15 -2924 ((-1048) (-227) (-574))) (-15 -1703 ((-1048) (-227) (-574))) (-15 -1449 ((-1048) (-227) (-574))) (-15 -4139 ((-1048) (-227) (-574))) (-15 -2698 ((-1048) (-227) (-574))) (-15 -2205 ((-1048) (-227) (-574))) (-15 -1677 ((-1048) (-227) (-574))) (-15 -1916 ((-1048) (-227) (-574))) (-15 -4331 ((-1048) (-227) (-574))) (-15 -4407 ((-1048) (-227) (-574))) (-15 -2710 ((-1048) (-227) (-171 (-227)) (-574) (-1172) (-574))) (-15 -3944 ((-1048) (-227) (-171 (-227)) (-574) (-1172) (-574))) (-15 -4276 ((-1048) (-1172) (-171 (-227)) (-1172) (-574))) (-15 -1787 ((-1048) (-1172) (-171 (-227)) (-1172) (-574))) (-15 -3022 ((-1048) (-574) (-227) (-171 (-227)) (-574) (-1172) (-574))) (-15 -3710 ((-1048) (-227) (-574))) (-15 -4097 ((-1048) (-227) (-574))) (-15 -4337 ((-1048) (-227) (-574))) (-15 -3453 ((-1048) (-227) (-574))) (-15 -3914 ((-1048) (-227) (-171 (-227)) (-574) (-1172) (-574))) (-15 -3833 ((-1048) (-227) (-171 (-227)) (-574) (-1172) (-574))) (-15 -1567 ((-1048) (-227) (-574))) (-15 -3230 ((-1048) (-227) (-574))) (-15 -2316 ((-1048) (-227) (-574))) (-15 -3779 ((-1048) (-227) (-574))) (-15 -3592 ((-1048) (-227) (-574))) (-15 -3393 ((-1048) (-227) (-574))) (-15 -3556 ((-1048) (-227) (-227) (-574))) (-15 -2697 ((-1048) (-227) (-227) (-227) (-574))) (-15 -1897 ((-1048) (-227) (-227) (-227) (-574))) (-15 -2986 ((-1048) (-227) (-227) (-227) (-227) (-574)))) -((-2220 (((-1286)) 20)) (-1817 (((-1172)) 31)) (-2519 (((-1172)) 30)) (-4279 (((-1117) (-1190) (-699 (-574))) 45) (((-1117) (-1190) (-699 (-227))) 41)) (-3685 (((-112)) 19)) (-1420 (((-1172) (-1172)) 34))) -(((-769) (-10 -7 (-15 -2519 ((-1172))) (-15 -1817 ((-1172))) (-15 -1420 ((-1172) (-1172))) (-15 -4279 ((-1117) (-1190) (-699 (-227)))) (-15 -4279 ((-1117) (-1190) (-699 (-574)))) (-15 -3685 ((-112))) (-15 -2220 ((-1286))))) (T -769)) -((-2220 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-769)))) (-3685 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-769)))) (-4279 (*1 *2 *3 *4) (-12 (-5 *3 (-1190)) (-5 *4 (-699 (-574))) (-5 *2 (-1117)) (-5 *1 (-769)))) (-4279 (*1 *2 *3 *4) (-12 (-5 *3 (-1190)) (-5 *4 (-699 (-227))) (-5 *2 (-1117)) (-5 *1 (-769)))) (-1420 (*1 *2 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-769)))) (-1817 (*1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-769)))) (-2519 (*1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-769))))) -(-10 -7 (-15 -2519 ((-1172))) (-15 -1817 ((-1172))) (-15 -1420 ((-1172) (-1172))) (-15 -4279 ((-1117) (-1190) (-699 (-227)))) (-15 -4279 ((-1117) (-1190) (-699 (-574)))) (-15 -3685 ((-112))) (-15 -2220 ((-1286)))) -((-3204 (($ $ $) 10)) (-1320 (($ $ $ $) 9)) (-2299 (($ $ $) 12))) -(((-770 |#1|) (-10 -8 (-15 -2299 (|#1| |#1| |#1|)) (-15 -3204 (|#1| |#1| |#1|)) (-15 -1320 (|#1| |#1| |#1| |#1|))) (-771)) (T -770)) -NIL -(-10 -8 (-15 -2299 (|#1| |#1| |#1|)) (-15 -3204 (|#1| |#1| |#1|)) (-15 -1320 (|#1| |#1| |#1| |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-2397 (($ $ (-932)) 31)) (-2422 (($ $ (-932)) 32)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-3204 (($ $ $) 28)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-1320 (($ $ $ $) 29)) (-2299 (($ $ $) 27)) (-2133 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 33)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 30))) -(((-771) (-141)) (T -771)) -((-1320 (*1 *1 *1 *1 *1) (-4 *1 (-771))) (-3204 (*1 *1 *1 *1) (-4 *1 (-771))) (-2299 (*1 *1 *1 *1) (-4 *1 (-771)))) -(-13 (-21) (-730) (-10 -8 (-15 -1320 ($ $ $ $)) (-15 -3204 ($ $ $)) (-15 -2299 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-730) . T) ((-1113) . T)) -((-2943 (((-872) $) NIL) (($ (-574)) 10))) -(((-772 |#1|) (-10 -8 (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|))) (-773)) (T -772)) -NIL -(-10 -8 (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-2784 (((-3 $ "failed") $) 43)) (-2397 (($ $ (-932)) 31) (($ $ (-781)) 38)) (-3434 (((-3 $ "failed") $) 41)) (-3199 (((-112) $) 37)) (-4271 (((-3 $ "failed") $) 42)) (-2422 (($ $ (-932)) 32) (($ $ (-781)) 39)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-3204 (($ $ $) 28)) (-2943 (((-872) $) 12) (($ (-574)) 34)) (-1364 (((-781)) 35 T CONST)) (-3284 (((-112) $ $) 9)) (-1320 (($ $ $ $) 29)) (-2299 (($ $ $) 27)) (-2133 (($) 19 T CONST)) (-2145 (($) 36 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 33) (($ $ (-781)) 40)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 30))) -(((-773) (-141)) (T -773)) -((-1364 (*1 *2) (-12 (-4 *1 (-773)) (-5 *2 (-781)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-773))))) -(-13 (-771) (-732) (-10 -8 (-15 -1364 ((-781)) -1706) (-15 -2943 ($ (-574))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-730) . T) ((-732) . T) ((-771) . T) ((-1113) . T)) -((-1930 (((-654 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 (-171 |#1|)))))) (-699 (-171 (-417 (-574)))) |#1|) 33)) (-3915 (((-654 (-171 |#1|)) (-699 (-171 (-417 (-574)))) |#1|) 23)) (-1435 (((-963 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574)))) (-1190)) 20) (((-963 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574))))) 19))) -(((-774 |#1|) (-10 -7 (-15 -1435 ((-963 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574)))))) (-15 -1435 ((-963 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574)))) (-1190))) (-15 -3915 ((-654 (-171 |#1|)) (-699 (-171 (-417 (-574)))) |#1|)) (-15 -1930 ((-654 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 (-171 |#1|)))))) (-699 (-171 (-417 (-574)))) |#1|))) (-13 (-372) (-858))) (T -774)) -((-1930 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *2 (-654 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 (-171 *4))))))) (-5 *1 (-774 *4)) (-4 *4 (-13 (-372) (-858))))) (-3915 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *2 (-654 (-171 *4))) (-5 *1 (-774 *4)) (-4 *4 (-13 (-372) (-858))))) (-1435 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *4 (-1190)) (-5 *2 (-963 (-171 (-417 (-574))))) (-5 *1 (-774 *5)) (-4 *5 (-13 (-372) (-858))))) (-1435 (*1 *2 *3) (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *2 (-963 (-171 (-417 (-574))))) (-5 *1 (-774 *4)) (-4 *4 (-13 (-372) (-858)))))) -(-10 -7 (-15 -1435 ((-963 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574)))))) (-15 -1435 ((-963 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574)))) (-1190))) (-15 -3915 ((-654 (-171 |#1|)) (-699 (-171 (-417 (-574)))) |#1|)) (-15 -1930 ((-654 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 (-171 |#1|)))))) (-699 (-171 (-417 (-574)))) |#1|))) -((-1517 (((-176 (-574)) |#1|) 27))) -(((-775 |#1|) (-10 -7 (-15 -1517 ((-176 (-574)) |#1|))) (-414)) (T -775)) -((-1517 (*1 *2 *3) (-12 (-5 *2 (-176 (-574))) (-5 *1 (-775 *3)) (-4 *3 (-414))))) -(-10 -7 (-15 -1517 ((-176 (-574)) |#1|))) -((-2711 ((|#1| |#1| |#1|) 28)) (-4188 ((|#1| |#1| |#1|) 27)) (-1818 ((|#1| |#1| |#1|) 38)) (-3863 ((|#1| |#1| |#1|) 34)) (-1518 (((-3 |#1| "failed") |#1| |#1|) 31)) (-2962 (((-2 (|:| -1411 |#1|) (|:| -2766 |#1|)) |#1| |#1|) 26))) -(((-776 |#1| |#2|) (-10 -7 (-15 -2962 ((-2 (|:| -1411 |#1|) (|:| -2766 |#1|)) |#1| |#1|)) (-15 -4188 (|#1| |#1| |#1|)) (-15 -2711 (|#1| |#1| |#1|)) (-15 -1518 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3863 (|#1| |#1| |#1|)) (-15 -1818 (|#1| |#1| |#1|))) (-718 |#2|) (-372)) (T -776)) -((-1818 (*1 *2 *2 *2) (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) (-3863 (*1 *2 *2 *2) (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) (-1518 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) (-2711 (*1 *2 *2 *2) (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) (-4188 (*1 *2 *2 *2) (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) (-2962 (*1 *2 *3 *3) (-12 (-4 *4 (-372)) (-5 *2 (-2 (|:| -1411 *3) (|:| -2766 *3))) (-5 *1 (-776 *3 *4)) (-4 *3 (-718 *4))))) -(-10 -7 (-15 -2962 ((-2 (|:| -1411 |#1|) (|:| -2766 |#1|)) |#1| |#1|)) (-15 -4188 (|#1| |#1| |#1|)) (-15 -2711 (|#1| |#1| |#1|)) (-15 -1518 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3863 (|#1| |#1| |#1|)) (-15 -1818 (|#1| |#1| |#1|))) -((-2238 (((-701 (-1239)) $ (-1239)) 26)) (-1767 (((-701 (-559)) $ (-559)) 25)) (-3734 (((-781) $ (-129)) 27)) (-3353 (((-701 (-130)) $ (-130)) 24)) (-3123 (((-701 (-1239)) $) 12)) (-2084 (((-701 (-1237)) $) 8)) (-2518 (((-701 (-1236)) $) 10)) (-1412 (((-701 (-559)) $) 13)) (-1466 (((-701 (-557)) $) 9)) (-2776 (((-701 (-556)) $) 11)) (-2027 (((-781) $ (-129)) 7)) (-3198 (((-701 (-130)) $) 14)) (-3537 (((-112) $) 31)) (-2997 (((-701 $) |#1| (-965)) 32)) (-3646 (($ $) 6))) -(((-777 |#1|) (-141) (-1113)) (T -777)) -((-2997 (*1 *2 *3 *4) (-12 (-5 *4 (-965)) (-4 *3 (-1113)) (-5 *2 (-701 *1)) (-4 *1 (-777 *3)))) (-3537 (*1 *2 *1) (-12 (-4 *1 (-777 *3)) (-4 *3 (-1113)) (-5 *2 (-112))))) -(-13 (-586) (-10 -8 (-15 -2997 ((-701 $) |t#1| (-965))) (-15 -3537 ((-112) $)))) -(((-175) . T) ((-537) . T) ((-586) . T) ((-870) . T)) -((-2213 (((-2 (|:| -1882 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574)))) (-574)) 71)) (-1689 (((-2 (|:| -1882 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574))))) 69)) (-2872 (((-574)) 85))) -(((-778 |#1| |#2|) (-10 -7 (-15 -2872 ((-574))) (-15 -1689 ((-2 (|:| -1882 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574)))))) (-15 -2213 ((-2 (|:| -1882 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574)))) (-574)))) (-1257 (-574)) (-419 (-574) |#1|)) (T -778)) -((-2213 (*1 *2 *3) (-12 (-5 *3 (-574)) (-4 *4 (-1257 *3)) (-5 *2 (-2 (|:| -1882 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-5 *1 (-778 *4 *5)) (-4 *5 (-419 *3 *4)))) (-1689 (*1 *2) (-12 (-4 *3 (-1257 (-574))) (-5 *2 (-2 (|:| -1882 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574))))) (-5 *1 (-778 *3 *4)) (-4 *4 (-419 (-574) *3)))) (-2872 (*1 *2) (-12 (-4 *3 (-1257 *2)) (-5 *2 (-574)) (-5 *1 (-778 *3 *4)) (-4 *4 (-419 *2 *3))))) -(-10 -7 (-15 -2872 ((-574))) (-15 -1689 ((-2 (|:| -1882 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574)))))) (-15 -2213 ((-2 (|:| -1882 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574)))) (-574)))) -((-2849 (((-112) $ $) NIL)) (-2206 (((-3 (|:| |nia| (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $) 21)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 20) (($ (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 13) (($ (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) 18)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-779) (-13 (-1113) (-10 -8 (-15 -2943 ($ (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2943 ($ (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2943 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2206 ((-3 (|:| |nia| (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))) (T -779)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-779)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-779)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-779)))) (-2206 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-779))))) -(-13 (-1113) (-10 -8 (-15 -2943 ($ (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2943 ($ (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2943 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2206 ((-3 (|:| |nia| (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $)))) -((-3666 (((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-963 |#1|))) 18) (((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-963 |#1|)) (-654 (-1190))) 17)) (-1701 (((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-963 |#1|))) 20) (((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-963 |#1|)) (-654 (-1190))) 19))) -(((-780 |#1|) (-10 -7 (-15 -3666 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-963 |#1|)) (-654 (-1190)))) (-15 -3666 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-963 |#1|)))) (-15 -1701 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-963 |#1|)) (-654 (-1190)))) (-15 -1701 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-963 |#1|))))) (-566)) (T -780)) -((-1701 (*1 *2 *3) (-12 (-5 *3 (-654 (-963 *4))) (-4 *4 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-963 *4)))))) (-5 *1 (-780 *4)))) (-1701 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-654 (-1190))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-963 *5)))))) (-5 *1 (-780 *5)))) (-3666 (*1 *2 *3) (-12 (-5 *3 (-654 (-963 *4))) (-4 *4 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-963 *4)))))) (-5 *1 (-780 *4)))) (-3666 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-654 (-1190))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-963 *5)))))) (-5 *1 (-780 *5))))) -(-10 -7 (-15 -3666 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-963 |#1|)) (-654 (-1190)))) (-15 -3666 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-963 |#1|)))) (-15 -1701 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-963 |#1|)) (-654 (-1190)))) (-15 -1701 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-963 |#1|))))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3663 (($ $ $) 10)) (-3524 (((-3 $ "failed") $ $) 15)) (-3958 (($ $ (-574)) 11)) (-3426 (($) NIL T CONST)) (-2786 (($ $ $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2820 (($ $) NIL)) (-2797 (($ $ $) NIL)) (-3199 (((-112) $) NIL)) (-3659 (($ $ $) NIL)) (-4257 (($ $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2873 (($ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2133 (($) 6 T CONST)) (-2145 (($) NIL T CONST)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-932)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ $ $) NIL))) -(((-781) (-13 (-803) (-736) (-10 -8 (-15 -2797 ($ $ $)) (-15 -2786 ($ $ $)) (-15 -2873 ($ $ $)) (-15 -1989 ((-2 (|:| -1411 $) (|:| -2766 $)) $ $)) (-15 -2838 ((-3 $ "failed") $ $)) (-15 -3958 ($ $ (-574))) (-15 -2820 ($ $)) (-6 (-4458 "*"))))) (T -781)) -((-2797 (*1 *1 *1 *1) (-5 *1 (-781))) (-2786 (*1 *1 *1 *1) (-5 *1 (-781))) (-2873 (*1 *1 *1 *1) (-5 *1 (-781))) (-1989 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1411 (-781)) (|:| -2766 (-781)))) (-5 *1 (-781)))) (-2838 (*1 *1 *1 *1) (|partial| -5 *1 (-781))) (-3958 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-781)))) (-2820 (*1 *1 *1) (-5 *1 (-781)))) -(-13 (-803) (-736) (-10 -8 (-15 -2797 ($ $ $)) (-15 -2786 ($ $ $)) (-15 -2873 ($ $ $)) (-15 -1989 ((-2 (|:| -1411 $) (|:| -2766 $)) $ $)) (-15 -2838 ((-3 $ "failed") $ $)) (-15 -3958 ($ $ (-574))) (-15 -2820 ($ $)) (-6 (-4458 "*")))) +((-2848 (((-112) $ $) NIL)) (-2334 (((-1229) $) 21)) (-2285 (((-653 (-1229)) $) 19)) (-3469 (($ (-653 (-1229)) (-1229)) 14)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 29) (($ (-1194)) NIL) (((-1194) $) NIL) (((-1229) $) 22) (($ (-1130)) 10)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-690) (-13 (-1095) (-622 (-1229)) (-10 -8 (-15 -2942 ($ (-1130))) (-15 -3469 ($ (-653 (-1229)) (-1229))) (-15 -2285 ((-653 (-1229)) $)) (-15 -2334 ((-1229) $))))) (T -690)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-1130)) (-5 *1 (-690)))) (-3469 (*1 *1 *2 *3) (-12 (-5 *2 (-653 (-1229))) (-5 *3 (-1229)) (-5 *1 (-690)))) (-2285 (*1 *2 *1) (-12 (-5 *2 (-653 (-1229))) (-5 *1 (-690)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-1229)) (-5 *1 (-690))))) +(-13 (-1095) (-622 (-1229)) (-10 -8 (-15 -2942 ($ (-1130))) (-15 -3469 ($ (-653 (-1229)) (-1229))) (-15 -2285 ((-653 (-1229)) $)) (-15 -2334 ((-1229) $)))) +((-3096 (((-1 |#1| (-780) |#1|) (-1 |#1| (-780) |#1|)) 26)) (-2196 (((-1 |#1|) |#1|) 8)) (-2802 ((|#1| |#1|) 19)) (-1387 (((-653 |#1|) (-1 (-653 |#1|) (-653 |#1|)) (-573)) 18) ((|#1| (-1 |#1| |#1|)) 11)) (-2942 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-780)) 23))) +(((-691 |#1|) (-10 -7 (-15 -2196 ((-1 |#1|) |#1|)) (-15 -2942 ((-1 |#1|) |#1|)) (-15 -1387 (|#1| (-1 |#1| |#1|))) (-15 -1387 ((-653 |#1|) (-1 (-653 |#1|) (-653 |#1|)) (-573))) (-15 -2802 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-780))) (-15 -3096 ((-1 |#1| (-780) |#1|) (-1 |#1| (-780) |#1|)))) (-1112)) (T -691)) +((-3096 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-780) *3)) (-4 *3 (-1112)) (-5 *1 (-691 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-780)) (-4 *4 (-1112)) (-5 *1 (-691 *4)))) (-2802 (*1 *2 *2) (-12 (-5 *1 (-691 *2)) (-4 *2 (-1112)))) (-1387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-653 *5) (-653 *5))) (-5 *4 (-573)) (-5 *2 (-653 *5)) (-5 *1 (-691 *5)) (-4 *5 (-1112)))) (-1387 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-691 *2)) (-4 *2 (-1112)))) (-2942 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-691 *3)) (-4 *3 (-1112)))) (-2196 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-691 *3)) (-4 *3 (-1112))))) +(-10 -7 (-15 -2196 ((-1 |#1|) |#1|)) (-15 -2942 ((-1 |#1|) |#1|)) (-15 -1387 (|#1| (-1 |#1| |#1|))) (-15 -1387 ((-653 |#1|) (-1 (-653 |#1|) (-653 |#1|)) (-573))) (-15 -2802 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-780))) (-15 -3096 ((-1 |#1| (-780) |#1|) (-1 |#1| (-780) |#1|)))) +((-2993 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-1964 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1705 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1317 (((-1 |#2| |#1|) |#2|) 11))) +(((-692 |#1| |#2|) (-10 -7 (-15 -1317 ((-1 |#2| |#1|) |#2|)) (-15 -1964 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1705 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2993 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1112) (-1112)) (T -692)) +((-2993 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-5 *2 (-1 *5 *4)) (-5 *1 (-692 *4 *5)))) (-1705 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1112)) (-5 *2 (-1 *5 *4)) (-5 *1 (-692 *4 *5)) (-4 *4 (-1112)))) (-1964 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-5 *2 (-1 *5)) (-5 *1 (-692 *4 *5)))) (-1317 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-692 *4 *3)) (-4 *4 (-1112)) (-4 *3 (-1112))))) +(-10 -7 (-15 -1317 ((-1 |#2| |#1|) |#2|)) (-15 -1964 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1705 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2993 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-3089 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-1760 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-1530 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-1526 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2015 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-693 |#1| |#2| |#3|) (-10 -7 (-15 -1760 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1530 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1526 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2015 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3089 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1112) (-1112) (-1112)) (T -693)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-1 *7 *5)) (-5 *1 (-693 *5 *6 *7)))) (-3089 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-693 *4 *5 *6)))) (-2015 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-693 *4 *5 *6)) (-4 *4 (-1112)))) (-1526 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1112)) (-4 *6 (-1112)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-693 *4 *5 *6)) (-4 *5 (-1112)))) (-1530 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-1 *6 *5)) (-5 *1 (-693 *4 *5 *6)))) (-1760 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1112)) (-4 *4 (-1112)) (-4 *6 (-1112)) (-5 *2 (-1 *6 *5)) (-5 *1 (-693 *5 *4 *6))))) +(-10 -7 (-15 -1760 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1530 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1526 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2015 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3089 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-2867 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1776 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-694 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1776 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1776 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2867 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1061) (-381 |#1|) (-381 |#1|) (-696 |#1| |#2| |#3|) (-1061) (-381 |#5|) (-381 |#5|) (-696 |#5| |#6| |#7|)) (T -694)) +((-2867 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1061)) (-4 *2 (-1061)) (-4 *6 (-381 *5)) (-4 *7 (-381 *5)) (-4 *8 (-381 *2)) (-4 *9 (-381 *2)) (-5 *1 (-694 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-696 *5 *6 *7)) (-4 *10 (-696 *2 *8 *9)))) (-1776 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1061)) (-4 *8 (-1061)) (-4 *6 (-381 *5)) (-4 *7 (-381 *5)) (-4 *2 (-696 *8 *9 *10)) (-5 *1 (-694 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-696 *5 *6 *7)) (-4 *9 (-381 *8)) (-4 *10 (-381 *8)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1061)) (-4 *8 (-1061)) (-4 *6 (-381 *5)) (-4 *7 (-381 *5)) (-4 *2 (-696 *8 *9 *10)) (-5 *1 (-694 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-696 *5 *6 *7)) (-4 *9 (-381 *8)) (-4 *10 (-381 *8))))) +(-10 -7 (-15 -1776 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1776 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2867 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-2215 (($ (-780) (-780)) 42)) (-3596 (($ $ $) 71)) (-1724 (($ |#3|) 66) (($ $) 67)) (-2932 (((-112) $) 36)) (-1734 (($ $ (-573) (-573)) 82)) (-4107 (($ $ (-573) (-573)) 83)) (-3975 (($ $ (-573) (-573) (-573) (-573)) 88)) (-3321 (($ $) 69)) (-1916 (((-112) $) 15)) (-2598 (($ $ (-573) (-573) $) 89)) (-3142 ((|#2| $ (-573) (-573) |#2|) NIL) (($ $ (-653 (-573)) (-653 (-573)) $) 87)) (-1681 (($ (-780) |#2|) 53)) (-2913 (($ (-653 (-653 |#2|))) 51)) (-1612 (((-653 (-653 |#2|)) $) 78)) (-2150 (($ $ $) 70)) (-2837 (((-3 $ "failed") $ |#2|) 120)) (-2198 ((|#2| $ (-573) (-573)) NIL) ((|#2| $ (-573) (-573) |#2|) NIL) (($ $ (-653 (-573)) (-653 (-573))) 86)) (-1633 (($ (-653 |#2|)) 54) (($ (-653 $)) 56)) (-2530 (((-112) $) 28)) (-2942 (($ |#4|) 61) (((-871) $) NIL)) (-1494 (((-112) $) 38)) (-3103 (($ $ |#2|) 122)) (-3093 (($ $ $) 93) (($ $) 96)) (-3077 (($ $ $) 91)) (** (($ $ (-780)) 109) (($ $ (-573)) 126)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-573) $) 101) ((|#4| $ |#4|) 113) ((|#3| |#3| $) 117))) +(((-695 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2942 ((-871) |#1|)) (-15 ** (|#1| |#1| (-573))) (-15 -3103 (|#1| |#1| |#2|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-780))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 -3093 (|#1| |#1| |#1|)) (-15 -3077 (|#1| |#1| |#1|)) (-15 -2598 (|#1| |#1| (-573) (-573) |#1|)) (-15 -3975 (|#1| |#1| (-573) (-573) (-573) (-573))) (-15 -4107 (|#1| |#1| (-573) (-573))) (-15 -1734 (|#1| |#1| (-573) (-573))) (-15 -3142 (|#1| |#1| (-653 (-573)) (-653 (-573)) |#1|)) (-15 -2198 (|#1| |#1| (-653 (-573)) (-653 (-573)))) (-15 -1612 ((-653 (-653 |#2|)) |#1|)) (-15 -3596 (|#1| |#1| |#1|)) (-15 -2150 (|#1| |#1| |#1|)) (-15 -3321 (|#1| |#1|)) (-15 -1724 (|#1| |#1|)) (-15 -1724 (|#1| |#3|)) (-15 -2942 (|#1| |#4|)) (-15 -1633 (|#1| (-653 |#1|))) (-15 -1633 (|#1| (-653 |#2|))) (-15 -1681 (|#1| (-780) |#2|)) (-15 -2913 (|#1| (-653 (-653 |#2|)))) (-15 -2215 (|#1| (-780) (-780))) (-15 -1494 ((-112) |#1|)) (-15 -2932 ((-112) |#1|)) (-15 -2530 ((-112) |#1|)) (-15 -1916 ((-112) |#1|)) (-15 -3142 (|#2| |#1| (-573) (-573) |#2|)) (-15 -2198 (|#2| |#1| (-573) (-573) |#2|)) (-15 -2198 (|#2| |#1| (-573) (-573)))) (-696 |#2| |#3| |#4|) (-1061) (-381 |#2|) (-381 |#2|)) (T -695)) +NIL +(-10 -8 (-15 -2942 ((-871) |#1|)) (-15 ** (|#1| |#1| (-573))) (-15 -3103 (|#1| |#1| |#2|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-780))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 -3093 (|#1| |#1| |#1|)) (-15 -3077 (|#1| |#1| |#1|)) (-15 -2598 (|#1| |#1| (-573) (-573) |#1|)) (-15 -3975 (|#1| |#1| (-573) (-573) (-573) (-573))) (-15 -4107 (|#1| |#1| (-573) (-573))) (-15 -1734 (|#1| |#1| (-573) (-573))) (-15 -3142 (|#1| |#1| (-653 (-573)) (-653 (-573)) |#1|)) (-15 -2198 (|#1| |#1| (-653 (-573)) (-653 (-573)))) (-15 -1612 ((-653 (-653 |#2|)) |#1|)) (-15 -3596 (|#1| |#1| |#1|)) (-15 -2150 (|#1| |#1| |#1|)) (-15 -3321 (|#1| |#1|)) (-15 -1724 (|#1| |#1|)) (-15 -1724 (|#1| |#3|)) (-15 -2942 (|#1| |#4|)) (-15 -1633 (|#1| (-653 |#1|))) (-15 -1633 (|#1| (-653 |#2|))) (-15 -1681 (|#1| (-780) |#2|)) (-15 -2913 (|#1| (-653 (-653 |#2|)))) (-15 -2215 (|#1| (-780) (-780))) (-15 -1494 ((-112) |#1|)) (-15 -2932 ((-112) |#1|)) (-15 -2530 ((-112) |#1|)) (-15 -1916 ((-112) |#1|)) (-15 -3142 (|#2| |#1| (-573) (-573) |#2|)) (-15 -2198 (|#2| |#1| (-573) (-573) |#2|)) (-15 -2198 (|#2| |#1| (-573) (-573)))) +((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-2215 (($ (-780) (-780)) 98)) (-3596 (($ $ $) 88)) (-1724 (($ |#2|) 92) (($ $) 91)) (-2932 (((-112) $) 100)) (-1734 (($ $ (-573) (-573)) 84)) (-4107 (($ $ (-573) (-573)) 83)) (-3975 (($ $ (-573) (-573) (-573) (-573)) 82)) (-3321 (($ $) 90)) (-1916 (((-112) $) 102)) (-3450 (((-112) $ (-780)) 8)) (-2598 (($ $ (-573) (-573) $) 81)) (-3142 ((|#1| $ (-573) (-573) |#1|) 45) (($ $ (-653 (-573)) (-653 (-573)) $) 85)) (-3601 (($ $ (-573) |#2|) 43)) (-2790 (($ $ (-573) |#3|) 42)) (-1681 (($ (-780) |#1|) 96)) (-2579 (($) 7 T CONST)) (-2801 (($ $) 68 (|has| |#1| (-314)))) (-3229 ((|#2| $ (-573)) 47)) (-3583 (((-780) $) 67 (|has| |#1| (-565)))) (-2457 ((|#1| $ (-573) (-573) |#1|) 44)) (-2384 ((|#1| $ (-573) (-573)) 49)) (-1863 (((-653 |#1|) $) 31)) (-2928 (((-780) $) 66 (|has| |#1| (-565)))) (-4209 (((-653 |#3|) $) 65 (|has| |#1| (-565)))) (-2188 (((-780) $) 52)) (-3789 (($ (-780) (-780) |#1|) 58)) (-2197 (((-780) $) 51)) (-2078 (((-112) $ (-780)) 9)) (-2431 ((|#1| $) 63 (|has| |#1| (-6 (-4457 "*"))))) (-1319 (((-573) $) 56)) (-4011 (((-573) $) 54)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3124 (((-573) $) 55)) (-2326 (((-573) $) 53)) (-2913 (($ (-653 (-653 |#1|))) 97)) (-2446 (($ (-1 |#1| |#1|) $) 35)) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-1612 (((-653 (-653 |#1|)) $) 87)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-3299 (((-3 $ "failed") $) 62 (|has| |#1| (-371)))) (-2150 (($ $ $) 89)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-3112 (($ $ |#1|) 57)) (-2837 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-565)))) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ (-573) (-573)) 50) ((|#1| $ (-573) (-573) |#1|) 48) (($ $ (-653 (-573)) (-653 (-573))) 86)) (-1633 (($ (-653 |#1|)) 95) (($ (-653 $)) 94)) (-2530 (((-112) $) 101)) (-2529 ((|#1| $) 64 (|has| |#1| (-6 (-4457 "*"))))) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-1921 ((|#3| $ (-573)) 46)) (-2942 (($ |#3|) 93) (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-1494 (((-112) $) 99)) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-3103 (($ $ |#1|) 69 (|has| |#1| (-371)))) (-3093 (($ $ $) 79) (($ $) 78)) (-3077 (($ $ $) 80)) (** (($ $ (-780)) 71) (($ $ (-573)) 61 (|has| |#1| (-371)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-573) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-696 |#1| |#2| |#3|) (-141) (-1061) (-381 |t#1|) (-381 |t#1|)) (T -696)) +((-1916 (*1 *2 *1) (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *2 (-112)))) (-2530 (*1 *2 *1) (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *2 (-112)))) (-2932 (*1 *2 *1) (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *2 (-112)))) (-1494 (*1 *2 *1) (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *2 (-112)))) (-2215 (*1 *1 *2 *2) (-12 (-5 *2 (-780)) (-4 *3 (-1061)) (-4 *1 (-696 *3 *4 *5)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-2913 (*1 *1 *2) (-12 (-5 *2 (-653 (-653 *3))) (-4 *3 (-1061)) (-4 *1 (-696 *3 *4 *5)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-1681 (*1 *1 *2 *3) (-12 (-5 *2 (-780)) (-4 *3 (-1061)) (-4 *1 (-696 *3 *4 *5)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-1633 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1061)) (-4 *1 (-696 *3 *4 *5)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-1633 (*1 *1 *2) (-12 (-5 *2 (-653 *1)) (-4 *3 (-1061)) (-4 *1 (-696 *3 *4 *5)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-2942 (*1 *1 *2) (-12 (-4 *3 (-1061)) (-4 *1 (-696 *3 *4 *2)) (-4 *4 (-381 *3)) (-4 *2 (-381 *3)))) (-1724 (*1 *1 *2) (-12 (-4 *3 (-1061)) (-4 *1 (-696 *3 *2 *4)) (-4 *2 (-381 *3)) (-4 *4 (-381 *3)))) (-1724 (*1 *1 *1) (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)))) (-3321 (*1 *1 *1) (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)))) (-2150 (*1 *1 *1 *1) (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)))) (-3596 (*1 *1 *1 *1) (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)))) (-1612 (*1 *2 *1) (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *2 (-653 (-653 *3))))) (-2198 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-653 (-573))) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-3142 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-653 (-573))) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-1734 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-573)) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-4107 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-573)) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-3975 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-573)) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-2598 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-573)) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-3077 (*1 *1 *1 *1) (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)))) (-3093 (*1 *1 *1 *1) (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)))) (-3093 (*1 *1 *1) (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-573)) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-696 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *2 (-381 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-696 *3 *2 *4)) (-4 *3 (-1061)) (-4 *2 (-381 *3)) (-4 *4 (-381 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) (-2837 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)) (-4 *2 (-565)))) (-3103 (*1 *1 *1 *2) (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)) (-4 *2 (-371)))) (-2801 (*1 *1 *1) (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)) (-4 *2 (-314)))) (-3583 (*1 *2 *1) (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-4 *3 (-565)) (-5 *2 (-780)))) (-2928 (*1 *2 *1) (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-4 *3 (-565)) (-5 *2 (-780)))) (-4209 (*1 *2 *1) (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-4 *3 (-565)) (-5 *2 (-653 *5)))) (-2529 (*1 *2 *1) (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)) (|has| *2 (-6 (-4457 "*"))) (-4 *2 (-1061)))) (-2431 (*1 *2 *1) (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)) (|has| *2 (-6 (-4457 "*"))) (-4 *2 (-1061)))) (-3299 (*1 *1 *1) (|partial| -12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)) (-4 *2 (-371)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-4 *3 (-371))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4456) (-6 -4455) (-15 -1916 ((-112) $)) (-15 -2530 ((-112) $)) (-15 -2932 ((-112) $)) (-15 -1494 ((-112) $)) (-15 -2215 ($ (-780) (-780))) (-15 -2913 ($ (-653 (-653 |t#1|)))) (-15 -1681 ($ (-780) |t#1|)) (-15 -1633 ($ (-653 |t#1|))) (-15 -1633 ($ (-653 $))) (-15 -2942 ($ |t#3|)) (-15 -1724 ($ |t#2|)) (-15 -1724 ($ $)) (-15 -3321 ($ $)) (-15 -2150 ($ $ $)) (-15 -3596 ($ $ $)) (-15 -1612 ((-653 (-653 |t#1|)) $)) (-15 -2198 ($ $ (-653 (-573)) (-653 (-573)))) (-15 -3142 ($ $ (-653 (-573)) (-653 (-573)) $)) (-15 -1734 ($ $ (-573) (-573))) (-15 -4107 ($ $ (-573) (-573))) (-15 -3975 ($ $ (-573) (-573) (-573) (-573))) (-15 -2598 ($ $ (-573) (-573) $)) (-15 -3077 ($ $ $)) (-15 -3093 ($ $ $)) (-15 -3093 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-573) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-780))) (IF (|has| |t#1| (-565)) (-15 -2837 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-371)) (-15 -3103 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-314)) (-15 -2801 ($ $)) |%noBranch|) (IF (|has| |t#1| (-565)) (PROGN (-15 -3583 ((-780) $)) (-15 -2928 ((-780) $)) (-15 -4209 ((-653 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4457 "*"))) (PROGN (-15 -2529 (|t#1| $)) (-15 -2431 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-371)) (PROGN (-15 -3299 ((-3 $ "failed") $)) (-15 ** ($ $ (-573)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1112) |has| |#1| (-1112)) ((-57 |#1| |#2| |#3|) . T) ((-1230) . T)) +((-2801 ((|#4| |#4|) 92 (|has| |#1| (-314)))) (-3583 (((-780) |#4|) 120 (|has| |#1| (-565)))) (-2928 (((-780) |#4|) 96 (|has| |#1| (-565)))) (-4209 (((-653 |#3|) |#4|) 103 (|has| |#1| (-565)))) (-1553 (((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|) 135 (|has| |#1| (-314)))) (-2431 ((|#1| |#4|) 52)) (-3311 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-565)))) (-3299 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-371)))) (-2887 ((|#4| |#4|) 88 (|has| |#1| (-565)))) (-2632 ((|#4| |#4| |#1| (-573) (-573)) 60)) (-1509 ((|#4| |#4| (-573) (-573)) 55)) (-2025 ((|#4| |#4| |#1| (-573) (-573)) 65)) (-2529 ((|#1| |#4|) 98)) (-4372 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-565))))) +(((-697 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2529 (|#1| |#4|)) (-15 -2431 (|#1| |#4|)) (-15 -1509 (|#4| |#4| (-573) (-573))) (-15 -2632 (|#4| |#4| |#1| (-573) (-573))) (-15 -2025 (|#4| |#4| |#1| (-573) (-573))) (IF (|has| |#1| (-565)) (PROGN (-15 -3583 ((-780) |#4|)) (-15 -2928 ((-780) |#4|)) (-15 -4209 ((-653 |#3|) |#4|)) (-15 -2887 (|#4| |#4|)) (-15 -3311 ((-3 |#4| "failed") |#4|)) (-15 -4372 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-314)) (PROGN (-15 -2801 (|#4| |#4|)) (-15 -1553 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-371)) (-15 -3299 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-174) (-381 |#1|) (-381 |#1|) (-696 |#1| |#2| |#3|)) (T -697)) +((-3299 (*1 *2 *2) (|partial| -12 (-4 *3 (-371)) (-4 *3 (-174)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *1 (-697 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5)))) (-1553 (*1 *2 *3 *3) (-12 (-4 *3 (-314)) (-4 *3 (-174)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-697 *3 *4 *5 *6)) (-4 *6 (-696 *3 *4 *5)))) (-2801 (*1 *2 *2) (-12 (-4 *3 (-314)) (-4 *3 (-174)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *1 (-697 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5)))) (-4372 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *4 (-174)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-697 *4 *5 *6 *3)) (-4 *3 (-696 *4 *5 *6)))) (-3311 (*1 *2 *2) (|partial| -12 (-4 *3 (-565)) (-4 *3 (-174)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *1 (-697 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5)))) (-2887 (*1 *2 *2) (-12 (-4 *3 (-565)) (-4 *3 (-174)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *1 (-697 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5)))) (-4209 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *4 (-174)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) (-5 *2 (-653 *6)) (-5 *1 (-697 *4 *5 *6 *3)) (-4 *3 (-696 *4 *5 *6)))) (-2928 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *4 (-174)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) (-5 *2 (-780)) (-5 *1 (-697 *4 *5 *6 *3)) (-4 *3 (-696 *4 *5 *6)))) (-3583 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *4 (-174)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) (-5 *2 (-780)) (-5 *1 (-697 *4 *5 *6 *3)) (-4 *3 (-696 *4 *5 *6)))) (-2025 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-573)) (-4 *3 (-174)) (-4 *5 (-381 *3)) (-4 *6 (-381 *3)) (-5 *1 (-697 *3 *5 *6 *2)) (-4 *2 (-696 *3 *5 *6)))) (-2632 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-573)) (-4 *3 (-174)) (-4 *5 (-381 *3)) (-4 *6 (-381 *3)) (-5 *1 (-697 *3 *5 *6 *2)) (-4 *2 (-696 *3 *5 *6)))) (-1509 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-573)) (-4 *4 (-174)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) (-5 *1 (-697 *4 *5 *6 *2)) (-4 *2 (-696 *4 *5 *6)))) (-2431 (*1 *2 *3) (-12 (-4 *4 (-381 *2)) (-4 *5 (-381 *2)) (-4 *2 (-174)) (-5 *1 (-697 *2 *4 *5 *3)) (-4 *3 (-696 *2 *4 *5)))) (-2529 (*1 *2 *3) (-12 (-4 *4 (-381 *2)) (-4 *5 (-381 *2)) (-4 *2 (-174)) (-5 *1 (-697 *2 *4 *5 *3)) (-4 *3 (-696 *2 *4 *5))))) +(-10 -7 (-15 -2529 (|#1| |#4|)) (-15 -2431 (|#1| |#4|)) (-15 -1509 (|#4| |#4| (-573) (-573))) (-15 -2632 (|#4| |#4| |#1| (-573) (-573))) (-15 -2025 (|#4| |#4| |#1| (-573) (-573))) (IF (|has| |#1| (-565)) (PROGN (-15 -3583 ((-780) |#4|)) (-15 -2928 ((-780) |#4|)) (-15 -4209 ((-653 |#3|) |#4|)) (-15 -2887 (|#4| |#4|)) (-15 -3311 ((-3 |#4| "failed") |#4|)) (-15 -4372 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-314)) (PROGN (-15 -2801 (|#4| |#4|)) (-15 -1553 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-371)) (-15 -3299 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2215 (($ (-780) (-780)) 64)) (-3596 (($ $ $) NIL)) (-1724 (($ (-1280 |#1|)) NIL) (($ $) NIL)) (-2932 (((-112) $) NIL)) (-1734 (($ $ (-573) (-573)) 22)) (-4107 (($ $ (-573) (-573)) NIL)) (-3975 (($ $ (-573) (-573) (-573) (-573)) NIL)) (-3321 (($ $) NIL)) (-1916 (((-112) $) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-2598 (($ $ (-573) (-573) $) NIL)) (-3142 ((|#1| $ (-573) (-573) |#1|) NIL) (($ $ (-653 (-573)) (-653 (-573)) $) NIL)) (-3601 (($ $ (-573) (-1280 |#1|)) NIL)) (-2790 (($ $ (-573) (-1280 |#1|)) NIL)) (-1681 (($ (-780) |#1|) 37)) (-2579 (($) NIL T CONST)) (-2801 (($ $) 46 (|has| |#1| (-314)))) (-3229 (((-1280 |#1|) $ (-573)) NIL)) (-3583 (((-780) $) 48 (|has| |#1| (-565)))) (-2457 ((|#1| $ (-573) (-573) |#1|) 69)) (-2384 ((|#1| $ (-573) (-573)) NIL)) (-1863 (((-653 |#1|) $) NIL)) (-2928 (((-780) $) 50 (|has| |#1| (-565)))) (-4209 (((-653 (-1280 |#1|)) $) 53 (|has| |#1| (-565)))) (-2188 (((-780) $) 32)) (-3789 (($ (-780) (-780) |#1|) 28)) (-2197 (((-780) $) 33)) (-2078 (((-112) $ (-780)) NIL)) (-2431 ((|#1| $) 44 (|has| |#1| (-6 (-4457 "*"))))) (-1319 (((-573) $) 10)) (-4011 (((-573) $) 11)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3124 (((-573) $) 14)) (-2326 (((-573) $) 65)) (-2913 (($ (-653 (-653 |#1|))) NIL)) (-2446 (($ (-1 |#1| |#1|) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1612 (((-653 (-653 |#1|)) $) 76)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3299 (((-3 $ "failed") $) 60 (|has| |#1| (-371)))) (-2150 (($ $ $) NIL)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-3112 (($ $ |#1|) NIL)) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#1| $ (-573) (-573)) NIL) ((|#1| $ (-573) (-573) |#1|) NIL) (($ $ (-653 (-573)) (-653 (-573))) NIL)) (-1633 (($ (-653 |#1|)) NIL) (($ (-653 $)) NIL) (($ (-1280 |#1|)) 70)) (-2530 (((-112) $) NIL)) (-2529 ((|#1| $) 42 (|has| |#1| (-6 (-4457 "*"))))) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) NIL)) (-1835 (((-545) $) 80 (|has| |#1| (-623 (-545))))) (-1921 (((-1280 |#1|) $ (-573)) NIL)) (-2942 (($ (-1280 |#1|)) NIL) (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-1494 (((-112) $) NIL)) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371)))) (-3093 (($ $ $) NIL) (($ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-780)) 38) (($ $ (-573)) 62 (|has| |#1| (-371)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-573) $) NIL) (((-1280 |#1|) $ (-1280 |#1|)) NIL) (((-1280 |#1|) (-1280 |#1|) $) NIL)) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-698 |#1|) (-13 (-696 |#1| (-1280 |#1|) (-1280 |#1|)) (-10 -8 (-15 -1633 ($ (-1280 |#1|))) (IF (|has| |#1| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|) (IF (|has| |#1| (-371)) (-15 -3299 ((-3 $ "failed") $)) |%noBranch|))) (-1061)) (T -698)) +((-3299 (*1 *1 *1) (|partial| -12 (-5 *1 (-698 *2)) (-4 *2 (-371)) (-4 *2 (-1061)))) (-1633 (*1 *1 *2) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-1061)) (-5 *1 (-698 *3))))) +(-13 (-696 |#1| (-1280 |#1|) (-1280 |#1|)) (-10 -8 (-15 -1633 ($ (-1280 |#1|))) (IF (|has| |#1| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|) (IF (|has| |#1| (-371)) (-15 -3299 ((-3 $ "failed") $)) |%noBranch|))) +((-4326 (((-698 |#1|) (-698 |#1|) (-698 |#1|) (-698 |#1|)) 37)) (-3012 (((-698 |#1|) (-698 |#1|) (-698 |#1|) |#1|) 32)) (-3336 (((-698 |#1|) (-698 |#1|) (-698 |#1|) (-698 |#1|) (-698 |#1|) (-780)) 43)) (-3765 (((-698 |#1|) (-698 |#1|) (-698 |#1|) (-698 |#1|)) 25)) (-3472 (((-698 |#1|) (-698 |#1|) (-698 |#1|) (-698 |#1|)) 29) (((-698 |#1|) (-698 |#1|) (-698 |#1|)) 27)) (-3361 (((-698 |#1|) (-698 |#1|) |#1| (-698 |#1|)) 31)) (-3362 (((-698 |#1|) (-698 |#1|) (-698 |#1|)) 23)) (** (((-698 |#1|) (-698 |#1|) (-780)) 46))) +(((-699 |#1|) (-10 -7 (-15 -3362 ((-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -3765 ((-698 |#1|) (-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -3472 ((-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -3472 ((-698 |#1|) (-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -3361 ((-698 |#1|) (-698 |#1|) |#1| (-698 |#1|))) (-15 -3012 ((-698 |#1|) (-698 |#1|) (-698 |#1|) |#1|)) (-15 -4326 ((-698 |#1|) (-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -3336 ((-698 |#1|) (-698 |#1|) (-698 |#1|) (-698 |#1|) (-698 |#1|) (-780))) (-15 ** ((-698 |#1|) (-698 |#1|) (-780)))) (-1061)) (T -699)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-698 *4)) (-5 *3 (-780)) (-4 *4 (-1061)) (-5 *1 (-699 *4)))) (-3336 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-698 *4)) (-5 *3 (-780)) (-4 *4 (-1061)) (-5 *1 (-699 *4)))) (-4326 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-699 *3)))) (-3012 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-699 *3)))) (-3361 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-699 *3)))) (-3472 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-699 *3)))) (-3472 (*1 *2 *2 *2) (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-699 *3)))) (-3765 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-699 *3)))) (-3362 (*1 *2 *2 *2) (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-699 *3))))) +(-10 -7 (-15 -3362 ((-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -3765 ((-698 |#1|) (-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -3472 ((-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -3472 ((-698 |#1|) (-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -3361 ((-698 |#1|) (-698 |#1|) |#1| (-698 |#1|))) (-15 -3012 ((-698 |#1|) (-698 |#1|) (-698 |#1|) |#1|)) (-15 -4326 ((-698 |#1|) (-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -3336 ((-698 |#1|) (-698 |#1|) (-698 |#1|) (-698 |#1|) (-698 |#1|) (-780))) (-15 ** ((-698 |#1|) (-698 |#1|) (-780)))) +((-1695 (((-3 |#1| "failed") $) 18)) (-2205 ((|#1| $) NIL)) (-2233 (($) 7 T CONST)) (-1840 (($ |#1|) 8)) (-2942 (($ |#1|) 16) (((-871) $) 23)) (-2121 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -2233)) 11)) (-1331 ((|#1| $) 15))) +(((-700 |#1|) (-13 (-1275) (-1050 |#1|) (-622 (-871)) (-10 -8 (-15 -1840 ($ |#1|)) (-15 -2121 ((-112) $ (|[\|\|]| |#1|))) (-15 -2121 ((-112) $ (|[\|\|]| -2233))) (-15 -1331 (|#1| $)) (-15 -2233 ($) -1705))) (-622 (-871))) (T -700)) +((-1840 (*1 *1 *2) (-12 (-5 *1 (-700 *2)) (-4 *2 (-622 (-871))))) (-2121 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-622 (-871))) (-5 *2 (-112)) (-5 *1 (-700 *4)))) (-2121 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2233)) (-5 *2 (-112)) (-5 *1 (-700 *4)) (-4 *4 (-622 (-871))))) (-1331 (*1 *2 *1) (-12 (-5 *1 (-700 *2)) (-4 *2 (-622 (-871))))) (-2233 (*1 *1) (-12 (-5 *1 (-700 *2)) (-4 *2 (-622 (-871)))))) +(-13 (-1275) (-1050 |#1|) (-622 (-871)) (-10 -8 (-15 -1840 ($ |#1|)) (-15 -2121 ((-112) $ (|[\|\|]| |#1|))) (-15 -2121 ((-112) $ (|[\|\|]| -2233))) (-15 -1331 (|#1| $)) (-15 -2233 ($) -1705))) +((-1328 ((|#2| |#2| |#4|) 29)) (-2753 (((-698 |#2|) |#3| |#4|) 35)) (-3858 (((-698 |#2|) |#2| |#4|) 34)) (-3457 (((-1280 |#2|) |#2| |#4|) 16)) (-4415 ((|#2| |#3| |#4|) 28)) (-1510 (((-698 |#2|) |#3| |#4| (-780) (-780)) 47)) (-3034 (((-698 |#2|) |#2| |#4| (-780)) 46))) +(((-701 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3457 ((-1280 |#2|) |#2| |#4|)) (-15 -4415 (|#2| |#3| |#4|)) (-15 -1328 (|#2| |#2| |#4|)) (-15 -3858 ((-698 |#2|) |#2| |#4|)) (-15 -3034 ((-698 |#2|) |#2| |#4| (-780))) (-15 -2753 ((-698 |#2|) |#3| |#4|)) (-15 -1510 ((-698 |#2|) |#3| |#4| (-780) (-780)))) (-1112) (-910 |#1|) (-381 |#2|) (-13 (-381 |#1|) (-10 -7 (-6 -4455)))) (T -701)) +((-1510 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-780)) (-4 *6 (-1112)) (-4 *7 (-910 *6)) (-5 *2 (-698 *7)) (-5 *1 (-701 *6 *7 *3 *4)) (-4 *3 (-381 *7)) (-4 *4 (-13 (-381 *6) (-10 -7 (-6 -4455)))))) (-2753 (*1 *2 *3 *4) (-12 (-4 *5 (-1112)) (-4 *6 (-910 *5)) (-5 *2 (-698 *6)) (-5 *1 (-701 *5 *6 *3 *4)) (-4 *3 (-381 *6)) (-4 *4 (-13 (-381 *5) (-10 -7 (-6 -4455)))))) (-3034 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-780)) (-4 *6 (-1112)) (-4 *3 (-910 *6)) (-5 *2 (-698 *3)) (-5 *1 (-701 *6 *3 *7 *4)) (-4 *7 (-381 *3)) (-4 *4 (-13 (-381 *6) (-10 -7 (-6 -4455)))))) (-3858 (*1 *2 *3 *4) (-12 (-4 *5 (-1112)) (-4 *3 (-910 *5)) (-5 *2 (-698 *3)) (-5 *1 (-701 *5 *3 *6 *4)) (-4 *6 (-381 *3)) (-4 *4 (-13 (-381 *5) (-10 -7 (-6 -4455)))))) (-1328 (*1 *2 *2 *3) (-12 (-4 *4 (-1112)) (-4 *2 (-910 *4)) (-5 *1 (-701 *4 *2 *5 *3)) (-4 *5 (-381 *2)) (-4 *3 (-13 (-381 *4) (-10 -7 (-6 -4455)))))) (-4415 (*1 *2 *3 *4) (-12 (-4 *5 (-1112)) (-4 *2 (-910 *5)) (-5 *1 (-701 *5 *2 *3 *4)) (-4 *3 (-381 *2)) (-4 *4 (-13 (-381 *5) (-10 -7 (-6 -4455)))))) (-3457 (*1 *2 *3 *4) (-12 (-4 *5 (-1112)) (-4 *3 (-910 *5)) (-5 *2 (-1280 *3)) (-5 *1 (-701 *5 *3 *6 *4)) (-4 *6 (-381 *3)) (-4 *4 (-13 (-381 *5) (-10 -7 (-6 -4455))))))) +(-10 -7 (-15 -3457 ((-1280 |#2|) |#2| |#4|)) (-15 -4415 (|#2| |#3| |#4|)) (-15 -1328 (|#2| |#2| |#4|)) (-15 -3858 ((-698 |#2|) |#2| |#4|)) (-15 -3034 ((-698 |#2|) |#2| |#4| (-780))) (-15 -2753 ((-698 |#2|) |#3| |#4|)) (-15 -1510 ((-698 |#2|) |#3| |#4| (-780) (-780)))) +((-2382 (((-2 (|:| |num| (-698 |#1|)) (|:| |den| |#1|)) (-698 |#2|)) 20)) (-3343 ((|#1| (-698 |#2|)) 9)) (-1946 (((-698 |#1|) (-698 |#2|)) 18))) +(((-702 |#1| |#2|) (-10 -7 (-15 -3343 (|#1| (-698 |#2|))) (-15 -1946 ((-698 |#1|) (-698 |#2|))) (-15 -2382 ((-2 (|:| |num| (-698 |#1|)) (|:| |den| |#1|)) (-698 |#2|)))) (-565) (-1004 |#1|)) (T -702)) +((-2382 (*1 *2 *3) (-12 (-5 *3 (-698 *5)) (-4 *5 (-1004 *4)) (-4 *4 (-565)) (-5 *2 (-2 (|:| |num| (-698 *4)) (|:| |den| *4))) (-5 *1 (-702 *4 *5)))) (-1946 (*1 *2 *3) (-12 (-5 *3 (-698 *5)) (-4 *5 (-1004 *4)) (-4 *4 (-565)) (-5 *2 (-698 *4)) (-5 *1 (-702 *4 *5)))) (-3343 (*1 *2 *3) (-12 (-5 *3 (-698 *4)) (-4 *4 (-1004 *2)) (-4 *2 (-565)) (-5 *1 (-702 *2 *4))))) +(-10 -7 (-15 -3343 (|#1| (-698 |#2|))) (-15 -1946 ((-698 |#1|) (-698 |#2|))) (-15 -2382 ((-2 (|:| |num| (-698 |#1|)) (|:| |den| |#1|)) (-698 |#2|)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2114 (((-698 (-708))) NIL) (((-698 (-708)) (-1280 $)) NIL)) (-1635 (((-708) $) NIL)) (-2363 (($ $) NIL (|has| (-708) (-1215)))) (-2246 (($ $) NIL (|has| (-708) (-1215)))) (-2604 (((-1202 (-931) (-780)) (-573)) NIL (|has| (-708) (-357)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (-12 (|has| (-708) (-314)) (|has| (-708) (-919))))) (-4285 (($ $) NIL (-2817 (-12 (|has| (-708) (-314)) (|has| (-708) (-919))) (|has| (-708) (-371))))) (-2427 (((-427 $) $) NIL (-2817 (-12 (|has| (-708) (-314)) (|has| (-708) (-919))) (|has| (-708) (-371))))) (-4228 (($ $) NIL (-12 (|has| (-708) (-1014)) (|has| (-708) (-1215))))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (-12 (|has| (-708) (-314)) (|has| (-708) (-919))))) (-2800 (((-112) $ $) NIL (|has| (-708) (-314)))) (-1486 (((-780)) NIL (|has| (-708) (-376)))) (-2342 (($ $) NIL (|has| (-708) (-1215)))) (-2225 (($ $) NIL (|has| (-708) (-1215)))) (-2388 (($ $) NIL (|has| (-708) (-1215)))) (-2266 (($ $) NIL (|has| (-708) (-1215)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL) (((-3 (-708) "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL (|has| (-708) (-1050 (-416 (-573)))))) (-2205 (((-573) $) NIL) (((-708) $) NIL) (((-416 (-573)) $) NIL (|has| (-708) (-1050 (-416 (-573)))))) (-2854 (($ (-1280 (-708))) NIL) (($ (-1280 (-708)) (-1280 $)) NIL)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-708) (-357)))) (-2784 (($ $ $) NIL (|has| (-708) (-314)))) (-1720 (((-698 (-708)) $) NIL) (((-698 (-708)) $ (-1280 $)) NIL)) (-2759 (((-698 (-708)) (-1280 $)) NIL) (((-698 (-708)) (-698 $)) NIL) (((-2 (|:| -1423 (-698 (-708))) (|:| |vec| (-1280 (-708)))) (-698 $) (-1280 $)) NIL) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| (-708) (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| (-708) (-648 (-573)))) (((-698 (-573)) (-1280 $)) NIL (|has| (-708) (-648 (-573))))) (-2867 (((-3 $ "failed") (-416 (-1185 (-708)))) NIL (|has| (-708) (-371))) (($ (-1185 (-708))) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-4238 (((-708) $) 29)) (-3810 (((-3 (-416 (-573)) "failed") $) NIL (|has| (-708) (-554)))) (-2551 (((-112) $) NIL (|has| (-708) (-554)))) (-4434 (((-416 (-573)) $) NIL (|has| (-708) (-554)))) (-3583 (((-931)) NIL)) (-2819 (($) NIL (|has| (-708) (-376)))) (-2796 (($ $ $) NIL (|has| (-708) (-314)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| (-708) (-314)))) (-3731 (($) NIL (|has| (-708) (-357)))) (-1708 (((-112) $) NIL (|has| (-708) (-357)))) (-2104 (($ $) NIL (|has| (-708) (-357))) (($ $ (-780)) NIL (|has| (-708) (-357)))) (-2696 (((-112) $) NIL (-2817 (-12 (|has| (-708) (-314)) (|has| (-708) (-919))) (|has| (-708) (-371))))) (-1610 (((-2 (|:| |r| (-708)) (|:| |phi| (-708))) $) NIL (-12 (|has| (-708) (-1072)) (|has| (-708) (-1215))))) (-2999 (($) NIL (|has| (-708) (-1215)))) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (|has| (-708) (-896 (-387)))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (|has| (-708) (-896 (-573))))) (-2534 (((-842 (-931)) $) NIL (|has| (-708) (-357))) (((-931) $) NIL (|has| (-708) (-357)))) (-1959 (((-112) $) NIL)) (-4325 (($ $ (-573)) NIL (-12 (|has| (-708) (-1014)) (|has| (-708) (-1215))))) (-3421 (((-708) $) NIL)) (-1470 (((-3 $ "failed") $) NIL (|has| (-708) (-357)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| (-708) (-314)))) (-2297 (((-1185 (-708)) $) NIL (|has| (-708) (-371)))) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-1776 (($ (-1 (-708) (-708)) $) NIL)) (-3589 (((-931) $) NIL (|has| (-708) (-376)))) (-3118 (($ $) NIL (|has| (-708) (-1215)))) (-2853 (((-1185 (-708)) $) NIL)) (-2829 (($ (-653 $)) NIL (|has| (-708) (-314))) (($ $ $) NIL (|has| (-708) (-314)))) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL (|has| (-708) (-371)))) (-3816 (($) NIL (|has| (-708) (-357)) CONST)) (-2575 (($ (-931)) NIL (|has| (-708) (-376)))) (-1507 (($) NIL)) (-4248 (((-708) $) 31)) (-3965 (((-1132) $) NIL)) (-2969 (($) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| (-708) (-314)))) (-2872 (($ (-653 $)) NIL (|has| (-708) (-314))) (($ $ $) NIL (|has| (-708) (-314)))) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) NIL (|has| (-708) (-357)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (-12 (|has| (-708) (-314)) (|has| (-708) (-919))))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (-12 (|has| (-708) (-314)) (|has| (-708) (-919))))) (-4218 (((-427 $) $) NIL (-2817 (-12 (|has| (-708) (-314)) (|has| (-708) (-919))) (|has| (-708) (-371))))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-708) (-314))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| (-708) (-314)))) (-2837 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-708)) NIL (|has| (-708) (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| (-708) (-314)))) (-1608 (($ $) NIL (|has| (-708) (-1215)))) (-2645 (($ $ (-1189) (-708)) NIL (|has| (-708) (-523 (-1189) (-708)))) (($ $ (-653 (-1189)) (-653 (-708))) NIL (|has| (-708) (-523 (-1189) (-708)))) (($ $ (-653 (-301 (-708)))) NIL (|has| (-708) (-316 (-708)))) (($ $ (-301 (-708))) NIL (|has| (-708) (-316 (-708)))) (($ $ (-708) (-708)) NIL (|has| (-708) (-316 (-708)))) (($ $ (-653 (-708)) (-653 (-708))) NIL (|has| (-708) (-316 (-708))))) (-2163 (((-780) $) NIL (|has| (-708) (-314)))) (-2198 (($ $ (-708)) NIL (|has| (-708) (-293 (-708) (-708))))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| (-708) (-314)))) (-3592 (((-708)) NIL) (((-708) (-1280 $)) NIL)) (-1637 (((-3 (-780) "failed") $ $) NIL (|has| (-708) (-357))) (((-780) $) NIL (|has| (-708) (-357)))) (-3904 (($ $ (-1 (-708) (-708))) NIL) (($ $ (-1 (-708) (-708)) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-708) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-708) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-708) (-910 (-1189)))) (($ $ (-1189)) NIL (|has| (-708) (-910 (-1189)))) (($ $) NIL (|has| (-708) (-238))) (($ $ (-780)) NIL (|has| (-708) (-238)))) (-4303 (((-698 (-708)) (-1280 $) (-1 (-708) (-708))) NIL (|has| (-708) (-371)))) (-2984 (((-1185 (-708))) NIL)) (-2401 (($ $) NIL (|has| (-708) (-1215)))) (-2274 (($ $) NIL (|has| (-708) (-1215)))) (-2510 (($) NIL (|has| (-708) (-357)))) (-2374 (($ $) NIL (|has| (-708) (-1215)))) (-2255 (($ $) NIL (|has| (-708) (-1215)))) (-2352 (($ $) NIL (|has| (-708) (-1215)))) (-2236 (($ $) NIL (|has| (-708) (-1215)))) (-2123 (((-698 (-708)) (-1280 $)) NIL) (((-1280 (-708)) $) NIL) (((-698 (-708)) (-1280 $) (-1280 $)) NIL) (((-1280 (-708)) $ (-1280 $)) NIL)) (-1835 (((-545) $) NIL (|has| (-708) (-623 (-545)))) (((-171 (-227)) $) NIL (|has| (-708) (-1034))) (((-171 (-387)) $) NIL (|has| (-708) (-1034))) (((-902 (-387)) $) NIL (|has| (-708) (-623 (-902 (-387))))) (((-902 (-573)) $) NIL (|has| (-708) (-623 (-902 (-573))))) (($ (-1185 (-708))) NIL) (((-1185 (-708)) $) NIL) (($ (-1280 (-708))) NIL) (((-1280 (-708)) $) NIL)) (-3204 (($ $) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-2817 (-12 (|has| (-708) (-314)) (|has| $ (-146)) (|has| (-708) (-919))) (|has| (-708) (-357))))) (-3561 (($ (-708) (-708)) 12)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-573)) NIL) (($ (-708)) NIL) (($ (-171 (-387))) 13) (($ (-171 (-573))) 19) (($ (-171 (-708))) 28) (($ (-171 (-710))) 25) (((-171 (-387)) $) 33) (($ (-416 (-573))) NIL (-2817 (|has| (-708) (-1050 (-416 (-573)))) (|has| (-708) (-371))))) (-4279 (($ $) NIL (|has| (-708) (-357))) (((-3 $ "failed") $) NIL (-2817 (-12 (|has| (-708) (-314)) (|has| $ (-146)) (|has| (-708) (-919))) (|has| (-708) (-146))))) (-2517 (((-1185 (-708)) $) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) NIL)) (-2439 (($ $) NIL (|has| (-708) (-1215)))) (-2304 (($ $) NIL (|has| (-708) (-1215)))) (-2516 (((-112) $ $) NIL)) (-2413 (($ $) NIL (|has| (-708) (-1215)))) (-2286 (($ $) NIL (|has| (-708) (-1215)))) (-2464 (($ $) NIL (|has| (-708) (-1215)))) (-2324 (($ $) NIL (|has| (-708) (-1215)))) (-3607 (((-708) $) NIL (|has| (-708) (-1215)))) (-2520 (($ $) NIL (|has| (-708) (-1215)))) (-2333 (($ $) NIL (|has| (-708) (-1215)))) (-2452 (($ $) NIL (|has| (-708) (-1215)))) (-2314 (($ $) NIL (|has| (-708) (-1215)))) (-2426 (($ $) NIL (|has| (-708) (-1215)))) (-2296 (($ $) NIL (|has| (-708) (-1215)))) (-1660 (($ $) NIL (|has| (-708) (-1072)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-1 (-708) (-708))) NIL) (($ $ (-1 (-708) (-708)) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-708) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-708) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-708) (-910 (-1189)))) (($ $ (-1189)) NIL (|has| (-708) (-910 (-1189)))) (($ $) NIL (|has| (-708) (-238))) (($ $ (-780)) NIL (|has| (-708) (-238)))) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL (|has| (-708) (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ $) NIL (|has| (-708) (-1215))) (($ $ (-416 (-573))) NIL (-12 (|has| (-708) (-1014)) (|has| (-708) (-1215)))) (($ $ (-573)) NIL (|has| (-708) (-371)))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ (-708) $) NIL) (($ $ (-708)) NIL) (($ (-416 (-573)) $) NIL (|has| (-708) (-371))) (($ $ (-416 (-573))) NIL (|has| (-708) (-371))))) +(((-703) (-13 (-396) (-167 (-708)) (-10 -8 (-15 -2942 ($ (-171 (-387)))) (-15 -2942 ($ (-171 (-573)))) (-15 -2942 ($ (-171 (-708)))) (-15 -2942 ($ (-171 (-710)))) (-15 -2942 ((-171 (-387)) $))))) (T -703)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-171 (-387))) (-5 *1 (-703)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-171 (-573))) (-5 *1 (-703)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-171 (-708))) (-5 *1 (-703)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-171 (-710))) (-5 *1 (-703)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-171 (-387))) (-5 *1 (-703))))) +(-13 (-396) (-167 (-708)) (-10 -8 (-15 -2942 ($ (-171 (-387)))) (-15 -2942 ($ (-171 (-573)))) (-15 -2942 ($ (-171 (-708)))) (-15 -2942 ($ (-171 (-710)))) (-15 -2942 ((-171 (-387)) $)))) +((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3450 (((-112) $ (-780)) 8)) (-3557 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4455)))) (-2579 (($) 7 T CONST)) (-1599 (($ $) 63)) (-2685 (($ $) 59 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2596 (($ |#1| $) 48 (|has| $ (-6 -4455))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4455)))) (-3334 (($ |#1| $) 58 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4455)))) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-2487 ((|#1| $) 40)) (-3181 (($ |#1| $) 41) (($ |#1| $ (-780)) 64)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3815 ((|#1| $) 42)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2493 (((-653 (-2 (|:| -1907 |#1|) (|:| -3974 (-780)))) $) 62)) (-2428 (($) 50) (($ (-653 |#1|)) 49)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-1835 (((-545) $) 60 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 51)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-2679 (($ (-653 |#1|)) 43)) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-704 |#1|) (-141) (-1112)) (T -704)) +((-3181 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-780)) (-4 *1 (-704 *2)) (-4 *2 (-1112)))) (-1599 (*1 *1 *1) (-12 (-4 *1 (-704 *2)) (-4 *2 (-1112)))) (-2493 (*1 *2 *1) (-12 (-4 *1 (-704 *3)) (-4 *3 (-1112)) (-5 *2 (-653 (-2 (|:| -1907 *3) (|:| -3974 (-780)))))))) +(-13 (-240 |t#1|) (-10 -8 (-15 -3181 ($ |t#1| $ (-780))) (-15 -1599 ($ $)) (-15 -2493 ((-653 (-2 (|:| -1907 |t#1|) (|:| -3974 (-780)))) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-152 |#1|) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-240 |#1|) . T) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) +((-2332 (((-653 |#1|) (-653 (-2 (|:| -4218 |#1|) (|:| -2565 (-573)))) (-573)) 65)) (-3953 ((|#1| |#1| (-573)) 62)) (-2872 ((|#1| |#1| |#1| (-573)) 46)) (-4218 (((-653 |#1|) |#1| (-573)) 49)) (-4240 ((|#1| |#1| (-573) |#1| (-573)) 40)) (-3773 (((-653 (-2 (|:| -4218 |#1|) (|:| -2565 (-573)))) |#1| (-573)) 61))) +(((-705 |#1|) (-10 -7 (-15 -2872 (|#1| |#1| |#1| (-573))) (-15 -3953 (|#1| |#1| (-573))) (-15 -4218 ((-653 |#1|) |#1| (-573))) (-15 -3773 ((-653 (-2 (|:| -4218 |#1|) (|:| -2565 (-573)))) |#1| (-573))) (-15 -2332 ((-653 |#1|) (-653 (-2 (|:| -4218 |#1|) (|:| -2565 (-573)))) (-573))) (-15 -4240 (|#1| |#1| (-573) |#1| (-573)))) (-1256 (-573))) (T -705)) +((-4240 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-573)) (-5 *1 (-705 *2)) (-4 *2 (-1256 *3)))) (-2332 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-2 (|:| -4218 *5) (|:| -2565 (-573))))) (-5 *4 (-573)) (-4 *5 (-1256 *4)) (-5 *2 (-653 *5)) (-5 *1 (-705 *5)))) (-3773 (*1 *2 *3 *4) (-12 (-5 *4 (-573)) (-5 *2 (-653 (-2 (|:| -4218 *3) (|:| -2565 *4)))) (-5 *1 (-705 *3)) (-4 *3 (-1256 *4)))) (-4218 (*1 *2 *3 *4) (-12 (-5 *4 (-573)) (-5 *2 (-653 *3)) (-5 *1 (-705 *3)) (-4 *3 (-1256 *4)))) (-3953 (*1 *2 *2 *3) (-12 (-5 *3 (-573)) (-5 *1 (-705 *2)) (-4 *2 (-1256 *3)))) (-2872 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-573)) (-5 *1 (-705 *2)) (-4 *2 (-1256 *3))))) +(-10 -7 (-15 -2872 (|#1| |#1| |#1| (-573))) (-15 -3953 (|#1| |#1| (-573))) (-15 -4218 ((-653 |#1|) |#1| (-573))) (-15 -3773 ((-653 (-2 (|:| -4218 |#1|) (|:| -2565 (-573)))) |#1| (-573))) (-15 -2332 ((-653 |#1|) (-653 (-2 (|:| -4218 |#1|) (|:| -2565 (-573)))) (-573))) (-15 -4240 (|#1| |#1| (-573) |#1| (-573)))) +((-1425 (((-1 (-953 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 17)) (-2496 (((-1145 (-227)) (-1145 (-227)) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-227)) (-1106 (-227)) (-653 (-269))) 53) (((-1145 (-227)) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-227)) (-1106 (-227)) (-653 (-269))) 55) (((-1145 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1106 (-227)) (-1106 (-227)) (-653 (-269))) 57)) (-2986 (((-1145 (-227)) (-323 (-573)) (-323 (-573)) (-323 (-573)) (-1 (-227) (-227)) (-1106 (-227)) (-653 (-269))) NIL)) (-3522 (((-1145 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1106 (-227)) (-1106 (-227)) (-653 (-269))) 58))) +(((-706) (-10 -7 (-15 -2496 ((-1145 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1106 (-227)) (-1106 (-227)) (-653 (-269)))) (-15 -2496 ((-1145 (-227)) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-227)) (-1106 (-227)) (-653 (-269)))) (-15 -2496 ((-1145 (-227)) (-1145 (-227)) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-227)) (-1106 (-227)) (-653 (-269)))) (-15 -3522 ((-1145 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1106 (-227)) (-1106 (-227)) (-653 (-269)))) (-15 -2986 ((-1145 (-227)) (-323 (-573)) (-323 (-573)) (-323 (-573)) (-1 (-227) (-227)) (-1106 (-227)) (-653 (-269)))) (-15 -1425 ((-1 (-953 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -706)) +((-1425 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1 (-227) (-227) (-227) (-227))) (-5 *2 (-1 (-953 (-227)) (-227) (-227))) (-5 *1 (-706)))) (-2986 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-323 (-573))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1106 (-227))) (-5 *6 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-706)))) (-3522 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1106 (-227))) (-5 *6 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-706)))) (-2496 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1145 (-227))) (-5 *3 (-1 (-953 (-227)) (-227) (-227))) (-5 *4 (-1106 (-227))) (-5 *5 (-653 (-269))) (-5 *1 (-706)))) (-2496 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-953 (-227)) (-227) (-227))) (-5 *4 (-1106 (-227))) (-5 *5 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-706)))) (-2496 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1106 (-227))) (-5 *6 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-706))))) +(-10 -7 (-15 -2496 ((-1145 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1106 (-227)) (-1106 (-227)) (-653 (-269)))) (-15 -2496 ((-1145 (-227)) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-227)) (-1106 (-227)) (-653 (-269)))) (-15 -2496 ((-1145 (-227)) (-1145 (-227)) (-1 (-953 (-227)) (-227) (-227)) (-1106 (-227)) (-1106 (-227)) (-653 (-269)))) (-15 -3522 ((-1145 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1106 (-227)) (-1106 (-227)) (-653 (-269)))) (-15 -2986 ((-1145 (-227)) (-323 (-573)) (-323 (-573)) (-323 (-573)) (-1 (-227) (-227)) (-1106 (-227)) (-653 (-269)))) (-15 -1425 ((-1 (-953 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) +((-4218 (((-427 (-1185 |#4|)) (-1185 |#4|)) 86) (((-427 |#4|) |#4|) 266))) +(((-707 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4218 ((-427 |#4|) |#4|)) (-15 -4218 ((-427 (-1185 |#4|)) (-1185 |#4|)))) (-859) (-802) (-357) (-959 |#3| |#2| |#1|)) (T -707)) +((-4218 (*1 *2 *3) (-12 (-4 *4 (-859)) (-4 *5 (-802)) (-4 *6 (-357)) (-4 *7 (-959 *6 *5 *4)) (-5 *2 (-427 (-1185 *7))) (-5 *1 (-707 *4 *5 *6 *7)) (-5 *3 (-1185 *7)))) (-4218 (*1 *2 *3) (-12 (-4 *4 (-859)) (-4 *5 (-802)) (-4 *6 (-357)) (-5 *2 (-427 *3)) (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-959 *6 *5 *4))))) +(-10 -7 (-15 -4218 ((-427 |#4|) |#4|)) (-15 -4218 ((-427 (-1185 |#4|)) (-1185 |#4|)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 97)) (-3770 (((-573) $) 34)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-1442 (($ $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-4228 (($ $) NIL)) (-2800 (((-112) $ $) NIL)) (-1983 (((-573) $) NIL)) (-2579 (($) NIL T CONST)) (-2350 (($ $) NIL)) (-1695 (((-3 (-573) "failed") $) 85) (((-3 (-416 (-573)) "failed") $) 28) (((-3 (-387) "failed") $) 82)) (-2205 (((-573) $) 87) (((-416 (-573)) $) 79) (((-387) $) 80)) (-2784 (($ $ $) 109)) (-2232 (((-3 $ "failed") $) 100)) (-2796 (($ $ $) 108)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-3785 (((-931)) 89) (((-931) (-931)) 88)) (-4152 (((-112) $) NIL)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL)) (-2534 (((-573) $) NIL)) (-1959 (((-112) $) NIL)) (-4325 (($ $ (-573)) NIL)) (-3421 (($ $) NIL)) (-3339 (((-112) $) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2771 (((-573) (-573)) 94) (((-573)) 95)) (-3659 (($ $ $) NIL) (($) NIL (-12 (-2075 (|has| $ (-6 -4438))) (-2075 (|has| $ (-6 -4446)))))) (-1445 (((-573) (-573)) 92) (((-573)) 93)) (-3751 (($ $ $) NIL) (($) NIL (-12 (-2075 (|has| $ (-6 -4438))) (-2075 (|has| $ (-6 -4446)))))) (-4299 (((-573) $) 17)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 104)) (-2827 (((-931) (-573)) NIL (|has| $ (-6 -4446)))) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-2408 (($ $) NIL)) (-3733 (($ $) NIL)) (-2383 (($ (-573) (-573)) NIL) (($ (-573) (-573) (-931)) NIL)) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) 105)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3907 (((-573) $) 24)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 107)) (-3006 (((-931)) NIL) (((-931) (-931)) NIL (|has| $ (-6 -4446)))) (-2985 (((-931) (-573)) NIL (|has| $ (-6 -4446)))) (-1835 (((-387) $) NIL) (((-227) $) NIL) (((-902 (-387)) $) NIL)) (-2942 (((-871) $) 63) (($ (-573)) 75) (($ $) NIL) (($ (-416 (-573))) 78) (($ (-573)) 75) (($ (-416 (-573))) 78) (($ (-387)) 72) (((-387) $) 61) (($ (-710)) 66)) (-1545 (((-780)) 119 T CONST)) (-4300 (($ (-573) (-573) (-931)) 54)) (-2437 (($ $) NIL)) (-2628 (((-931)) NIL) (((-931) (-931)) NIL (|has| $ (-6 -4446)))) (-3507 (((-112) $ $) NIL)) (-2629 (((-931)) 91) (((-931) (-931)) 90)) (-2516 (((-112) $ $) NIL)) (-1660 (($ $) NIL)) (-2132 (($) 37 T CONST)) (-2144 (($) 18 T CONST)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 96)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 118)) (-3103 (($ $ $) 77)) (-3093 (($ $) 115) (($ $ $) 116)) (-3077 (($ $ $) 114)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL) (($ $ (-416 (-573))) 103)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 110) (($ $ $) 101) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL))) +(((-708) (-13 (-413) (-396) (-371) (-1050 (-387)) (-1050 (-416 (-573))) (-148) (-10 -8 (-15 -3785 ((-931) (-931))) (-15 -3785 ((-931))) (-15 -2629 ((-931) (-931))) (-15 -1445 ((-573) (-573))) (-15 -1445 ((-573))) (-15 -2771 ((-573) (-573))) (-15 -2771 ((-573))) (-15 -2942 ((-387) $)) (-15 -2942 ($ (-710))) (-15 -4299 ((-573) $)) (-15 -3907 ((-573) $)) (-15 -4300 ($ (-573) (-573) (-931)))))) (T -708)) +((-3907 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-708)))) (-4299 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-708)))) (-3785 (*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-708)))) (-3785 (*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-708)))) (-2629 (*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-708)))) (-1445 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-708)))) (-1445 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-708)))) (-2771 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-708)))) (-2771 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-708)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-387)) (-5 *1 (-708)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-708)))) (-4300 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-573)) (-5 *3 (-931)) (-5 *1 (-708))))) +(-13 (-413) (-396) (-371) (-1050 (-387)) (-1050 (-416 (-573))) (-148) (-10 -8 (-15 -3785 ((-931) (-931))) (-15 -3785 ((-931))) (-15 -2629 ((-931) (-931))) (-15 -1445 ((-573) (-573))) (-15 -1445 ((-573))) (-15 -2771 ((-573) (-573))) (-15 -2771 ((-573))) (-15 -2942 ((-387) $)) (-15 -2942 ($ (-710))) (-15 -4299 ((-573) $)) (-15 -3907 ((-573) $)) (-15 -4300 ($ (-573) (-573) (-931))))) +((-1803 (((-698 |#1|) (-698 |#1|) |#1| |#1|) 85)) (-2801 (((-698 |#1|) (-698 |#1|) |#1|) 66)) (-2400 (((-698 |#1|) (-698 |#1|) |#1|) 86)) (-1975 (((-698 |#1|) (-698 |#1|)) 67)) (-1553 (((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|) 84))) +(((-709 |#1|) (-10 -7 (-15 -1975 ((-698 |#1|) (-698 |#1|))) (-15 -2801 ((-698 |#1|) (-698 |#1|) |#1|)) (-15 -2400 ((-698 |#1|) (-698 |#1|) |#1|)) (-15 -1803 ((-698 |#1|) (-698 |#1|) |#1| |#1|)) (-15 -1553 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|))) (-314)) (T -709)) +((-1553 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-709 *3)) (-4 *3 (-314)))) (-1803 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-698 *3)) (-4 *3 (-314)) (-5 *1 (-709 *3)))) (-2400 (*1 *2 *2 *3) (-12 (-5 *2 (-698 *3)) (-4 *3 (-314)) (-5 *1 (-709 *3)))) (-2801 (*1 *2 *2 *3) (-12 (-5 *2 (-698 *3)) (-4 *3 (-314)) (-5 *1 (-709 *3)))) (-1975 (*1 *2 *2) (-12 (-5 *2 (-698 *3)) (-4 *3 (-314)) (-5 *1 (-709 *3))))) +(-10 -7 (-15 -1975 ((-698 |#1|) (-698 |#1|))) (-15 -2801 ((-698 |#1|) (-698 |#1|) |#1|)) (-15 -2400 ((-698 |#1|) (-698 |#1|) |#1|)) (-15 -1803 ((-698 |#1|) (-698 |#1|) |#1| |#1|)) (-15 -1553 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-1783 (($ $ $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-3519 (($ $ $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-1983 (((-573) $) NIL)) (-3958 (($ $ $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) 31)) (-2205 (((-573) $) 29)) (-2784 (($ $ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL) (((-698 (-573)) (-698 $)) NIL) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3810 (((-3 (-416 (-573)) "failed") $) NIL)) (-2551 (((-112) $) NIL)) (-4434 (((-416 (-573)) $) NIL)) (-2819 (($ $) NIL) (($) NIL)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-3643 (($ $ $ $) NIL)) (-1420 (($ $ $) NIL)) (-4152 (((-112) $) NIL)) (-2637 (($ $ $) NIL)) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL)) (-1959 (((-112) $) NIL)) (-2250 (((-112) $) NIL)) (-1470 (((-3 $ "failed") $) NIL)) (-3339 (((-112) $) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2460 (($ $ $ $) NIL)) (-3659 (($ $ $) NIL)) (-3337 (((-931) (-931)) 10) (((-931)) 9)) (-3751 (($ $ $) NIL)) (-3808 (($ $) NIL)) (-4134 (($ $) NIL)) (-2829 (($ (-653 $)) NIL) (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-2585 (($ $ $) NIL)) (-3816 (($) NIL T CONST)) (-1605 (($ $) NIL)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ (-653 $)) NIL) (($ $ $) NIL)) (-4264 (($ $) NIL)) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2270 (((-112) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3904 (($ $ (-780)) NIL) (($ $) NIL)) (-2294 (($ $) NIL)) (-3166 (($ $) NIL)) (-1835 (((-227) $) NIL) (((-387) $) NIL) (((-902 (-573)) $) NIL) (((-545) $) NIL) (((-573) $) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) 28) (($ $) NIL) (($ (-573)) 28) (((-323 $) (-323 (-573))) 18)) (-1545 (((-780)) NIL T CONST)) (-1373 (((-112) $ $) NIL)) (-1677 (($ $ $) NIL)) (-3507 (((-112) $ $) NIL)) (-2629 (($) NIL)) (-2516 (((-112) $ $) NIL)) (-3813 (($ $ $ $) NIL)) (-1660 (($ $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-780)) NIL) (($ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL))) +(((-710) (-13 (-396) (-554) (-10 -8 (-15 -3337 ((-931) (-931))) (-15 -3337 ((-931))) (-15 -2942 ((-323 $) (-323 (-573))))))) (T -710)) +((-3337 (*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-710)))) (-3337 (*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-710)))) (-2942 (*1 *2 *3) (-12 (-5 *3 (-323 (-573))) (-5 *2 (-323 (-710))) (-5 *1 (-710))))) +(-13 (-396) (-554) (-10 -8 (-15 -3337 ((-931) (-931))) (-15 -3337 ((-931))) (-15 -2942 ((-323 $) (-323 (-573)))))) +((-2747 (((-1 |#4| |#2| |#3|) |#1| (-1189) (-1189)) 19)) (-2849 (((-1 |#4| |#2| |#3|) (-1189)) 12))) +(((-711 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2849 ((-1 |#4| |#2| |#3|) (-1189))) (-15 -2747 ((-1 |#4| |#2| |#3|) |#1| (-1189) (-1189)))) (-623 (-545)) (-1230) (-1230) (-1230)) (T -711)) +((-2747 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1189)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-711 *3 *5 *6 *7)) (-4 *3 (-623 (-545))) (-4 *5 (-1230)) (-4 *6 (-1230)) (-4 *7 (-1230)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-711 *4 *5 *6 *7)) (-4 *4 (-623 (-545))) (-4 *5 (-1230)) (-4 *6 (-1230)) (-4 *7 (-1230))))) +(-10 -7 (-15 -2849 ((-1 |#4| |#2| |#3|) (-1189))) (-15 -2747 ((-1 |#4| |#2| |#3|) |#1| (-1189) (-1189)))) +((-1993 (((-1 (-227) (-227) (-227)) |#1| (-1189) (-1189)) 43) (((-1 (-227) (-227)) |#1| (-1189)) 48))) +(((-712 |#1|) (-10 -7 (-15 -1993 ((-1 (-227) (-227)) |#1| (-1189))) (-15 -1993 ((-1 (-227) (-227) (-227)) |#1| (-1189) (-1189)))) (-623 (-545))) (T -712)) +((-1993 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1189)) (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-712 *3)) (-4 *3 (-623 (-545))))) (-1993 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-712 *3)) (-4 *3 (-623 (-545)))))) +(-10 -7 (-15 -1993 ((-1 (-227) (-227)) |#1| (-1189))) (-15 -1993 ((-1 (-227) (-227) (-227)) |#1| (-1189) (-1189)))) +((-2708 (((-1189) |#1| (-1189) (-653 (-1189))) 10) (((-1189) |#1| (-1189) (-1189) (-1189)) 13) (((-1189) |#1| (-1189) (-1189)) 12) (((-1189) |#1| (-1189)) 11))) +(((-713 |#1|) (-10 -7 (-15 -2708 ((-1189) |#1| (-1189))) (-15 -2708 ((-1189) |#1| (-1189) (-1189))) (-15 -2708 ((-1189) |#1| (-1189) (-1189) (-1189))) (-15 -2708 ((-1189) |#1| (-1189) (-653 (-1189))))) (-623 (-545))) (T -713)) +((-2708 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-653 (-1189))) (-5 *2 (-1189)) (-5 *1 (-713 *3)) (-4 *3 (-623 (-545))))) (-2708 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-713 *3)) (-4 *3 (-623 (-545))))) (-2708 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-713 *3)) (-4 *3 (-623 (-545))))) (-2708 (*1 *2 *3 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-713 *3)) (-4 *3 (-623 (-545)))))) +(-10 -7 (-15 -2708 ((-1189) |#1| (-1189))) (-15 -2708 ((-1189) |#1| (-1189) (-1189))) (-15 -2708 ((-1189) |#1| (-1189) (-1189) (-1189))) (-15 -2708 ((-1189) |#1| (-1189) (-653 (-1189))))) +((-2227 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-714 |#1| |#2|) (-10 -7 (-15 -2227 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1230) (-1230)) (T -714)) +((-2227 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-714 *3 *4)) (-4 *3 (-1230)) (-4 *4 (-1230))))) +(-10 -7 (-15 -2227 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-2340 (((-1 |#3| |#2|) (-1189)) 11)) (-2747 (((-1 |#3| |#2|) |#1| (-1189)) 21))) +(((-715 |#1| |#2| |#3|) (-10 -7 (-15 -2340 ((-1 |#3| |#2|) (-1189))) (-15 -2747 ((-1 |#3| |#2|) |#1| (-1189)))) (-623 (-545)) (-1230) (-1230)) (T -715)) +((-2747 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-5 *2 (-1 *6 *5)) (-5 *1 (-715 *3 *5 *6)) (-4 *3 (-623 (-545))) (-4 *5 (-1230)) (-4 *6 (-1230)))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1 *6 *5)) (-5 *1 (-715 *4 *5 *6)) (-4 *4 (-623 (-545))) (-4 *5 (-1230)) (-4 *6 (-1230))))) +(-10 -7 (-15 -2340 ((-1 |#3| |#2|) (-1189))) (-15 -2747 ((-1 |#3| |#2|) |#1| (-1189)))) +((-3393 (((-3 (-653 (-1185 |#4|)) "failed") (-1185 |#4|) (-653 |#2|) (-653 (-1185 |#4|)) (-653 |#3|) (-653 |#4|) (-653 (-653 (-2 (|:| -2444 (-780)) (|:| |pcoef| |#4|)))) (-653 (-780)) (-1280 (-653 (-1185 |#3|))) |#3|) 92)) (-4361 (((-3 (-653 (-1185 |#4|)) "failed") (-1185 |#4|) (-653 |#2|) (-653 (-1185 |#3|)) (-653 |#3|) (-653 |#4|) (-653 (-780)) |#3|) 110)) (-2160 (((-3 (-653 (-1185 |#4|)) "failed") (-1185 |#4|) (-653 |#2|) (-653 |#3|) (-653 (-780)) (-653 (-1185 |#4|)) (-1280 (-653 (-1185 |#3|))) |#3|) 47))) +(((-716 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2160 ((-3 (-653 (-1185 |#4|)) "failed") (-1185 |#4|) (-653 |#2|) (-653 |#3|) (-653 (-780)) (-653 (-1185 |#4|)) (-1280 (-653 (-1185 |#3|))) |#3|)) (-15 -4361 ((-3 (-653 (-1185 |#4|)) "failed") (-1185 |#4|) (-653 |#2|) (-653 (-1185 |#3|)) (-653 |#3|) (-653 |#4|) (-653 (-780)) |#3|)) (-15 -3393 ((-3 (-653 (-1185 |#4|)) "failed") (-1185 |#4|) (-653 |#2|) (-653 (-1185 |#4|)) (-653 |#3|) (-653 |#4|) (-653 (-653 (-2 (|:| -2444 (-780)) (|:| |pcoef| |#4|)))) (-653 (-780)) (-1280 (-653 (-1185 |#3|))) |#3|))) (-802) (-859) (-314) (-959 |#3| |#1| |#2|)) (T -716)) +((-3393 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-653 (-1185 *13))) (-5 *3 (-1185 *13)) (-5 *4 (-653 *12)) (-5 *5 (-653 *10)) (-5 *6 (-653 *13)) (-5 *7 (-653 (-653 (-2 (|:| -2444 (-780)) (|:| |pcoef| *13))))) (-5 *8 (-653 (-780))) (-5 *9 (-1280 (-653 (-1185 *10)))) (-4 *12 (-859)) (-4 *10 (-314)) (-4 *13 (-959 *10 *11 *12)) (-4 *11 (-802)) (-5 *1 (-716 *11 *12 *10 *13)))) (-4361 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-653 *11)) (-5 *5 (-653 (-1185 *9))) (-5 *6 (-653 *9)) (-5 *7 (-653 *12)) (-5 *8 (-653 (-780))) (-4 *11 (-859)) (-4 *9 (-314)) (-4 *12 (-959 *9 *10 *11)) (-4 *10 (-802)) (-5 *2 (-653 (-1185 *12))) (-5 *1 (-716 *10 *11 *9 *12)) (-5 *3 (-1185 *12)))) (-2160 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-653 (-1185 *11))) (-5 *3 (-1185 *11)) (-5 *4 (-653 *10)) (-5 *5 (-653 *8)) (-5 *6 (-653 (-780))) (-5 *7 (-1280 (-653 (-1185 *8)))) (-4 *10 (-859)) (-4 *8 (-314)) (-4 *11 (-959 *8 *9 *10)) (-4 *9 (-802)) (-5 *1 (-716 *9 *10 *8 *11))))) +(-10 -7 (-15 -2160 ((-3 (-653 (-1185 |#4|)) "failed") (-1185 |#4|) (-653 |#2|) (-653 |#3|) (-653 (-780)) (-653 (-1185 |#4|)) (-1280 (-653 (-1185 |#3|))) |#3|)) (-15 -4361 ((-3 (-653 (-1185 |#4|)) "failed") (-1185 |#4|) (-653 |#2|) (-653 (-1185 |#3|)) (-653 |#3|) (-653 |#4|) (-653 (-780)) |#3|)) (-15 -3393 ((-3 (-653 (-1185 |#4|)) "failed") (-1185 |#4|) (-653 |#2|) (-653 (-1185 |#4|)) (-653 |#3|) (-653 |#4|) (-653 (-653 (-2 (|:| -2444 (-780)) (|:| |pcoef| |#4|)))) (-653 (-780)) (-1280 (-653 (-1185 |#3|))) |#3|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-1391 (($ $) 48)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-4334 (($ |#1| (-780)) 46)) (-4036 (((-780) $) 50)) (-1369 ((|#1| $) 49)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2565 (((-780) $) 51)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 45 (|has| |#1| (-174)))) (-4317 ((|#1| $ (-780)) 47)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52))) +(((-717 |#1|) (-141) (-1061)) (T -717)) +((-2565 (*1 *2 *1) (-12 (-4 *1 (-717 *3)) (-4 *3 (-1061)) (-5 *2 (-780)))) (-4036 (*1 *2 *1) (-12 (-4 *1 (-717 *3)) (-4 *3 (-1061)) (-5 *2 (-780)))) (-1369 (*1 *2 *1) (-12 (-4 *1 (-717 *2)) (-4 *2 (-1061)))) (-1391 (*1 *1 *1) (-12 (-4 *1 (-717 *2)) (-4 *2 (-1061)))) (-4317 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-4 *1 (-717 *2)) (-4 *2 (-1061)))) (-4334 (*1 *1 *2 *3) (-12 (-5 *3 (-780)) (-4 *1 (-717 *2)) (-4 *2 (-1061))))) +(-13 (-1061) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -2565 ((-780) $)) (-15 -4036 ((-780) $)) (-15 -1369 (|t#1| $)) (-15 -1391 ($ $)) (-15 -4317 (|t#1| $ (-780))) (-15 -4334 ($ |t#1| (-780))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-573)) . T) ((-625 |#1|) |has| |#1| (-174)) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-649 |#1|) |has| |#1| (-174)) ((-726 |#1|) |has| |#1| (-174)) ((-735) . T) ((-1063 |#1|) . T) ((-1068 |#1|) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) +((-1776 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-718 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1776 (|#6| (-1 |#4| |#1|) |#3|))) (-565) (-1256 |#1|) (-1256 (-416 |#2|)) (-565) (-1256 |#4|) (-1256 (-416 |#5|))) (T -718)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-565)) (-4 *7 (-565)) (-4 *6 (-1256 *5)) (-4 *2 (-1256 (-416 *8))) (-5 *1 (-718 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1256 (-416 *6))) (-4 *8 (-1256 *7))))) +(-10 -7 (-15 -1776 (|#6| (-1 |#4| |#1|) |#3|))) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-1437 (((-1171) (-871)) 38)) (-1402 (((-1285) (-1171)) 31)) (-2187 (((-1171) (-871)) 28)) (-3211 (((-1171) (-871)) 29)) (-2942 (((-871) $) NIL) (((-1171) (-871)) 27)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-719) (-13 (-1112) (-10 -7 (-15 -2942 ((-1171) (-871))) (-15 -2187 ((-1171) (-871))) (-15 -3211 ((-1171) (-871))) (-15 -1437 ((-1171) (-871))) (-15 -1402 ((-1285) (-1171)))))) (T -719)) +((-2942 (*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1171)) (-5 *1 (-719)))) (-2187 (*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1171)) (-5 *1 (-719)))) (-3211 (*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1171)) (-5 *1 (-719)))) (-1437 (*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1171)) (-5 *1 (-719)))) (-1402 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-719))))) +(-13 (-1112) (-10 -7 (-15 -2942 ((-1171) (-871))) (-15 -2187 ((-1171) (-871))) (-15 -3211 ((-1171) (-871))) (-15 -1437 ((-1171) (-871))) (-15 -1402 ((-1285) (-1171))))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-2579 (($) NIL T CONST)) (-2784 (($ $ $) NIL)) (-2867 (($ |#1| |#2|) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-1959 (((-112) $) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3621 ((|#2| $) NIL)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2569 (((-3 $ "failed") $ $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) ((|#1| $) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL))) +(((-720 |#1| |#2| |#3| |#4| |#5|) (-13 (-371) (-10 -8 (-15 -3621 (|#2| $)) (-15 -2942 (|#1| $)) (-15 -2867 ($ |#1| |#2|)) (-15 -2569 ((-3 $ "failed") $ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -720)) +((-3621 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-720 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2942 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2867 (*1 *1 *2 *3) (-12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2569 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-371) (-10 -8 (-15 -3621 (|#2| $)) (-15 -2942 (|#1| $)) (-15 -2867 ($ |#1| |#2|)) (-15 -2569 ((-3 $ "failed") $ $)))) +((-2848 (((-112) $ $) 87)) (-1748 (((-112) $) 36)) (-1867 (((-1280 |#1|) $ (-780)) NIL)) (-4354 (((-653 (-1094)) $) NIL)) (-1343 (($ (-1185 |#1|)) NIL)) (-4193 (((-1185 $) $ (-1094)) NIL) (((-1185 |#1|) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-2769 (((-780) $) NIL) (((-780) $ (-653 (-1094))) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4183 (($ $ $) NIL (|has| |#1| (-565)))) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4285 (($ $) NIL (|has| |#1| (-461)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-2800 (((-112) $ $) NIL (|has| |#1| (-371)))) (-1486 (((-780)) 54 (|has| |#1| (-376)))) (-3168 (($ $ (-780)) NIL)) (-2331 (($ $ (-780)) NIL)) (-2027 ((|#2| |#2|) 50)) (-4016 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-461)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-1094) "failed") $) NIL)) (-2205 ((|#1| $) NIL) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-1094) $) NIL)) (-2277 (($ $ $ (-1094)) NIL (|has| |#1| (-174))) ((|#1| $ $) NIL (|has| |#1| (-174)))) (-2784 (($ $ $) NIL (|has| |#1| (-371)))) (-1391 (($ $) 40)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) NIL) (((-698 |#1|) (-698 $)) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-2867 (($ |#2|) 48)) (-2232 (((-3 $ "failed") $) 97)) (-2819 (($) 58 (|has| |#1| (-376)))) (-2796 (($ $ $) NIL (|has| |#1| (-371)))) (-4272 (($ $ $) NIL)) (-2154 (($ $ $) NIL (|has| |#1| (-565)))) (-1368 (((-2 (|:| -1857 |#1|) (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-565)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#1| (-371)))) (-3246 (($ $) NIL (|has| |#1| (-461))) (($ $ (-1094)) NIL (|has| |#1| (-461)))) (-1379 (((-653 $) $) NIL)) (-2696 (((-112) $) NIL (|has| |#1| (-919)))) (-3287 (((-968 $)) 89)) (-2343 (($ $ |#1| (-780) $) NIL)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| (-1094) (-896 (-387))) (|has| |#1| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| (-1094) (-896 (-573))) (|has| |#1| (-896 (-573)))))) (-2534 (((-780) $ $) NIL (|has| |#1| (-565)))) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) NIL)) (-1470 (((-3 $ "failed") $) NIL (|has| |#1| (-1164)))) (-4344 (($ (-1185 |#1|) (-1094)) NIL) (($ (-1185 $) (-1094)) NIL)) (-2976 (($ $ (-780)) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-780)) 85) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ (-1094)) NIL) (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3621 ((|#2|) 51)) (-4036 (((-780) $) NIL) (((-780) $ (-1094)) NIL) (((-653 (-780)) $ (-653 (-1094))) NIL)) (-1382 (($ (-1 (-780) (-780)) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-4112 (((-1185 |#1|) $) NIL)) (-1453 (((-3 (-1094) "failed") $) NIL)) (-3589 (((-931) $) NIL (|has| |#1| (-376)))) (-2853 ((|#2| $) 47)) (-1358 (($ $) NIL)) (-1369 ((|#1| $) 34)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-3180 (((-1171) $) NIL)) (-4263 (((-2 (|:| -3152 $) (|:| -3132 $)) $ (-780)) NIL)) (-4082 (((-3 (-653 $) "failed") $) NIL)) (-2586 (((-3 (-653 $) "failed") $) NIL)) (-2573 (((-3 (-2 (|:| |var| (-1094)) (|:| -3907 (-780))) "failed") $) NIL)) (-1626 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3816 (($) NIL (|has| |#1| (-1164)) CONST)) (-2575 (($ (-931)) NIL (|has| |#1| (-376)))) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) NIL)) (-1348 ((|#1| $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-461)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-3818 (($ $) 88 (|has| |#1| (-357)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4218 (((-427 $) $) NIL (|has| |#1| (-919)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-2645 (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-1094) |#1|) NIL) (($ $ (-653 (-1094)) (-653 |#1|)) NIL) (($ $ (-1094) $) NIL) (($ $ (-653 (-1094)) (-653 $)) NIL)) (-2163 (((-780) $) NIL (|has| |#1| (-371)))) (-2198 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-416 $) (-416 $) (-416 $)) NIL (|has| |#1| (-565))) ((|#1| (-416 $) |#1|) NIL (|has| |#1| (-371))) (((-416 $) $ (-416 $)) NIL (|has| |#1| (-565)))) (-1929 (((-3 $ "failed") $ (-780)) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 98 (|has| |#1| (-371)))) (-3592 (($ $ (-1094)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-3904 (($ $ (-1094)) NIL) (($ $ (-653 (-1094))) NIL) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL) (($ $) NIL) (($ $ (-780)) NIL) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2565 (((-780) $) 38) (((-780) $ (-1094)) NIL) (((-653 (-780)) $ (-653 (-1094))) NIL)) (-1835 (((-902 (-387)) $) NIL (-12 (|has| (-1094) (-623 (-902 (-387)))) (|has| |#1| (-623 (-902 (-387)))))) (((-902 (-573)) $) NIL (-12 (|has| (-1094) (-623 (-902 (-573)))) (|has| |#1| (-623 (-902 (-573)))))) (((-545) $) NIL (-12 (|has| (-1094) (-623 (-545))) (|has| |#1| (-623 (-545)))))) (-3257 ((|#1| $) NIL (|has| |#1| (-461))) (($ $ (-1094)) NIL (|has| |#1| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-919))))) (-3418 (((-968 $)) 42)) (-2871 (((-3 $ "failed") $ $) NIL (|has| |#1| (-565))) (((-3 (-416 $) "failed") (-416 $) $) NIL (|has| |#1| (-565)))) (-2942 (((-871) $) 68) (($ (-573)) NIL) (($ |#1|) 65) (($ (-1094)) NIL) (($ |#2|) 75) (($ (-416 (-573))) NIL (-2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573)))))) (($ $) NIL (|has| |#1| (-565)))) (-1920 (((-653 |#1|) $) NIL)) (-4317 ((|#1| $ (-780)) 70) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#1| (-919))) (|has| |#1| (-146))))) (-1545 (((-780)) NIL T CONST)) (-1538 (($ $ $ (-780)) NIL (|has| |#1| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2132 (($) 25 T CONST)) (-3608 (((-1280 |#1|) $) 83)) (-2484 (($ (-1280 |#1|)) 57)) (-2144 (($) 8 T CONST)) (-3609 (($ $ (-1094)) NIL) (($ $ (-653 (-1094))) NIL) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL) (($ $) NIL) (($ $ (-780)) NIL) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1878 (((-1280 |#1|) $) NIL)) (-2981 (((-112) $ $) 76)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371)))) (-3093 (($ $) 79) (($ $ $) NIL)) (-3077 (($ $ $) 39)) (** (($ $ (-931)) NIL) (($ $ (-780)) 92)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 64) (($ $ $) 82) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) 62) (($ $ |#1|) NIL))) +(((-721 |#1| |#2|) (-13 (-1256 |#1|) (-625 |#2|) (-10 -8 (-15 -2027 (|#2| |#2|)) (-15 -3621 (|#2|)) (-15 -2867 ($ |#2|)) (-15 -2853 (|#2| $)) (-15 -3608 ((-1280 |#1|) $)) (-15 -2484 ($ (-1280 |#1|))) (-15 -1878 ((-1280 |#1|) $)) (-15 -3287 ((-968 $))) (-15 -3418 ((-968 $))) (IF (|has| |#1| (-357)) (-15 -3818 ($ $)) |%noBranch|) (IF (|has| |#1| (-376)) (-6 (-376)) |%noBranch|))) (-1061) (-1256 |#1|)) (T -721)) +((-2027 (*1 *2 *2) (-12 (-4 *3 (-1061)) (-5 *1 (-721 *3 *2)) (-4 *2 (-1256 *3)))) (-3621 (*1 *2) (-12 (-4 *2 (-1256 *3)) (-5 *1 (-721 *3 *2)) (-4 *3 (-1061)))) (-2867 (*1 *1 *2) (-12 (-4 *3 (-1061)) (-5 *1 (-721 *3 *2)) (-4 *2 (-1256 *3)))) (-2853 (*1 *2 *1) (-12 (-4 *2 (-1256 *3)) (-5 *1 (-721 *3 *2)) (-4 *3 (-1061)))) (-3608 (*1 *2 *1) (-12 (-4 *3 (-1061)) (-5 *2 (-1280 *3)) (-5 *1 (-721 *3 *4)) (-4 *4 (-1256 *3)))) (-2484 (*1 *1 *2) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-1061)) (-5 *1 (-721 *3 *4)) (-4 *4 (-1256 *3)))) (-1878 (*1 *2 *1) (-12 (-4 *3 (-1061)) (-5 *2 (-1280 *3)) (-5 *1 (-721 *3 *4)) (-4 *4 (-1256 *3)))) (-3287 (*1 *2) (-12 (-4 *3 (-1061)) (-5 *2 (-968 (-721 *3 *4))) (-5 *1 (-721 *3 *4)) (-4 *4 (-1256 *3)))) (-3418 (*1 *2) (-12 (-4 *3 (-1061)) (-5 *2 (-968 (-721 *3 *4))) (-5 *1 (-721 *3 *4)) (-4 *4 (-1256 *3)))) (-3818 (*1 *1 *1) (-12 (-4 *2 (-357)) (-4 *2 (-1061)) (-5 *1 (-721 *2 *3)) (-4 *3 (-1256 *2))))) +(-13 (-1256 |#1|) (-625 |#2|) (-10 -8 (-15 -2027 (|#2| |#2|)) (-15 -3621 (|#2|)) (-15 -2867 ($ |#2|)) (-15 -2853 (|#2| $)) (-15 -3608 ((-1280 |#1|) $)) (-15 -2484 ($ (-1280 |#1|))) (-15 -1878 ((-1280 |#1|) $)) (-15 -3287 ((-968 $))) (-15 -3418 ((-968 $))) (IF (|has| |#1| (-357)) (-15 -3818 ($ $)) |%noBranch|) (IF (|has| |#1| (-376)) (-6 (-376)) |%noBranch|))) +((-2848 (((-112) $ $) NIL)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-2575 ((|#1| $) 13)) (-3965 (((-1132) $) NIL)) (-3907 ((|#2| $) 12)) (-2955 (($ |#1| |#2|) 16)) (-2942 (((-871) $) NIL) (($ (-2 (|:| -2575 |#1|) (|:| -3907 |#2|))) 15) (((-2 (|:| -2575 |#1|) (|:| -3907 |#2|)) $) 14)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 11))) +(((-722 |#1| |#2| |#3|) (-13 (-859) (-499 (-2 (|:| -2575 |#1|) (|:| -3907 |#2|))) (-10 -8 (-15 -3907 (|#2| $)) (-15 -2575 (|#1| $)) (-15 -2955 ($ |#1| |#2|)))) (-859) (-1112) (-1 (-112) (-2 (|:| -2575 |#1|) (|:| -3907 |#2|)) (-2 (|:| -2575 |#1|) (|:| -3907 |#2|)))) (T -722)) +((-3907 (*1 *2 *1) (-12 (-4 *2 (-1112)) (-5 *1 (-722 *3 *2 *4)) (-4 *3 (-859)) (-14 *4 (-1 (-112) (-2 (|:| -2575 *3) (|:| -3907 *2)) (-2 (|:| -2575 *3) (|:| -3907 *2)))))) (-2575 (*1 *2 *1) (-12 (-4 *2 (-859)) (-5 *1 (-722 *2 *3 *4)) (-4 *3 (-1112)) (-14 *4 (-1 (-112) (-2 (|:| -2575 *2) (|:| -3907 *3)) (-2 (|:| -2575 *2) (|:| -3907 *3)))))) (-2955 (*1 *1 *2 *3) (-12 (-5 *1 (-722 *2 *3 *4)) (-4 *2 (-859)) (-4 *3 (-1112)) (-14 *4 (-1 (-112) (-2 (|:| -2575 *2) (|:| -3907 *3)) (-2 (|:| -2575 *2) (|:| -3907 *3))))))) +(-13 (-859) (-499 (-2 (|:| -2575 |#1|) (|:| -3907 |#2|))) (-10 -8 (-15 -3907 (|#2| $)) (-15 -2575 (|#1| $)) (-15 -2955 ($ |#1| |#2|)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 66)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) 102) (((-3 (-115) "failed") $) 108)) (-2205 ((|#1| $) NIL) (((-115) $) 39)) (-2232 (((-3 $ "failed") $) 103)) (-4316 ((|#2| (-115) |#2|) 93)) (-1959 (((-112) $) NIL)) (-1769 (($ |#1| (-369 (-115))) 14)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-3627 (($ $ (-1 |#2| |#2|)) 65)) (-3630 (($ $ (-1 |#2| |#2|)) 44)) (-2198 ((|#2| $ |#2|) 33)) (-3078 ((|#1| |#1|) 118 (|has| |#1| (-174)))) (-2942 (((-871) $) 73) (($ (-573)) 18) (($ |#1|) 17) (($ (-115)) 23)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) 37 T CONST)) (-3507 (((-112) $ $) NIL)) (-4372 (($ $) 112 (|has| |#1| (-174))) (($ $ $) 116 (|has| |#1| (-174)))) (-2132 (($) 21 T CONST)) (-2144 (($) 9 T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) 48) (($ $ $) NIL)) (-3077 (($ $ $) 83)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ (-115) (-573)) NIL) (($ $ (-573)) 64)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 111) (($ $ $) 53) (($ |#1| $) 109 (|has| |#1| (-174))) (($ $ |#1|) 110 (|has| |#1| (-174))))) +(((-723 |#1| |#2|) (-13 (-1061) (-1050 |#1|) (-1050 (-115)) (-293 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -4372 ($ $)) (-15 -4372 ($ $ $)) (-15 -3078 (|#1| |#1|))) |%noBranch|) (-15 -3630 ($ $ (-1 |#2| |#2|))) (-15 -3627 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-573))) (-15 ** ($ $ (-573))) (-15 -4316 (|#2| (-115) |#2|)) (-15 -1769 ($ |#1| (-369 (-115)))))) (-1061) (-657 |#1|)) (T -723)) +((-4372 (*1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1061)) (-5 *1 (-723 *2 *3)) (-4 *3 (-657 *2)))) (-4372 (*1 *1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1061)) (-5 *1 (-723 *2 *3)) (-4 *3 (-657 *2)))) (-3078 (*1 *2 *2) (-12 (-4 *2 (-174)) (-4 *2 (-1061)) (-5 *1 (-723 *2 *3)) (-4 *3 (-657 *2)))) (-3630 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-657 *3)) (-4 *3 (-1061)) (-5 *1 (-723 *3 *4)))) (-3627 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-657 *3)) (-4 *3 (-1061)) (-5 *1 (-723 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-573)) (-4 *4 (-1061)) (-5 *1 (-723 *4 *5)) (-4 *5 (-657 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-4 *3 (-1061)) (-5 *1 (-723 *3 *4)) (-4 *4 (-657 *3)))) (-4316 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1061)) (-5 *1 (-723 *4 *2)) (-4 *2 (-657 *4)))) (-1769 (*1 *1 *2 *3) (-12 (-5 *3 (-369 (-115))) (-4 *2 (-1061)) (-5 *1 (-723 *2 *4)) (-4 *4 (-657 *2))))) +(-13 (-1061) (-1050 |#1|) (-1050 (-115)) (-293 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -4372 ($ $)) (-15 -4372 ($ $ $)) (-15 -3078 (|#1| |#1|))) |%noBranch|) (-15 -3630 ($ $ (-1 |#2| |#2|))) (-15 -3627 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-573))) (-15 ** ($ $ (-573))) (-15 -4316 (|#2| (-115) |#2|)) (-15 -1769 ($ |#1| (-369 (-115)))))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 33)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-2867 (($ |#1| |#2|) 25)) (-2232 (((-3 $ "failed") $) 51)) (-1959 (((-112) $) 35)) (-3621 ((|#2| $) 12)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 52)) (-3965 (((-1132) $) NIL)) (-2569 (((-3 $ "failed") $ $) 50)) (-2942 (((-871) $) 24) (($ (-573)) 19) ((|#1| $) 13)) (-1545 (((-780)) 28 T CONST)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 16 T CONST)) (-2144 (($) 30 T CONST)) (-2981 (((-112) $ $) 41)) (-3093 (($ $) 46) (($ $ $) 40)) (-3077 (($ $ $) 43)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 21) (($ $ $) 20))) +(((-724 |#1| |#2| |#3| |#4| |#5|) (-13 (-1061) (-10 -8 (-15 -3621 (|#2| $)) (-15 -2942 (|#1| $)) (-15 -2867 ($ |#1| |#2|)) (-15 -2569 ((-3 $ "failed") $ $)) (-15 -2232 ((-3 $ "failed") $)) (-15 -1323 ($ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -724)) +((-2232 (*1 *1 *1) (|partial| -12 (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3621 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-724 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2942 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2867 (*1 *1 *2 *3) (-12 (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2569 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1323 (*1 *1 *1) (-12 (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-1061) (-10 -8 (-15 -3621 (|#2| $)) (-15 -2942 (|#1| $)) (-15 -2867 ($ |#1| |#2|)) (-15 -2569 ((-3 $ "failed") $ $)) (-15 -2232 ((-3 $ "failed") $)) (-15 -1323 ($ $)))) +((* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) +(((-725 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-931) |#1|))) (-726 |#2|) (-174)) (T -725)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-931) |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-726 |#1|) (-141) (-174)) (T -726)) +NIL +(-13 (-111 |t#1| |t#1|) (-649 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-657 |#1|) . T) ((-649 |#1|) . T) ((-1063 |#1|) . T) ((-1068 |#1|) . T) ((-1112) . T)) +((-2848 (((-112) $ $) NIL)) (-3958 (($ |#1|) 17) (($ $ |#1|) 20)) (-3465 (($ |#1|) 18) (($ $ |#1|) 21)) (-2579 (($) NIL T CONST)) (-2232 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-1959 (((-112) $) NIL)) (-2745 (($ |#1| |#1| |#1| |#1|) 8)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 16)) (-3965 (((-1132) $) NIL)) (-2645 ((|#1| $ |#1|) 24) (((-842 |#1|) $ (-842 |#1|)) 32)) (-3204 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-2942 (((-871) $) 39)) (-3507 (((-112) $ $) NIL)) (-2144 (($) 9 T CONST)) (-2981 (((-112) $ $) 48)) (-3103 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ $ $) 14))) +(((-727 |#1|) (-13 (-482) (-10 -8 (-15 -2745 ($ |#1| |#1| |#1| |#1|)) (-15 -3958 ($ |#1|)) (-15 -3465 ($ |#1|)) (-15 -2232 ($)) (-15 -3958 ($ $ |#1|)) (-15 -3465 ($ $ |#1|)) (-15 -2232 ($ $)) (-15 -2645 (|#1| $ |#1|)) (-15 -2645 ((-842 |#1|) $ (-842 |#1|))))) (-371)) (T -727)) +((-2745 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371)))) (-3958 (*1 *1 *2) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371)))) (-3465 (*1 *1 *2) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371)))) (-2232 (*1 *1) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371)))) (-3958 (*1 *1 *1 *2) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371)))) (-3465 (*1 *1 *1 *2) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371)))) (-2232 (*1 *1 *1) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371)))) (-2645 (*1 *2 *1 *2) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371)))) (-2645 (*1 *2 *1 *2) (-12 (-5 *2 (-842 *3)) (-4 *3 (-371)) (-5 *1 (-727 *3))))) +(-13 (-482) (-10 -8 (-15 -2745 ($ |#1| |#1| |#1| |#1|)) (-15 -3958 ($ |#1|)) (-15 -3465 ($ |#1|)) (-15 -2232 ($)) (-15 -3958 ($ $ |#1|)) (-15 -3465 ($ $ |#1|)) (-15 -2232 ($ $)) (-15 -2645 (|#1| $ |#1|)) (-15 -2645 ((-842 |#1|) $ (-842 |#1|))))) +((-3681 (($ $ (-931)) 19)) (-2022 (($ $ (-931)) 20)) (** (($ $ (-931)) 10))) +(((-728 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-931))) (-15 -2022 (|#1| |#1| (-931))) (-15 -3681 (|#1| |#1| (-931)))) (-729)) (T -728)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-931))) (-15 -2022 (|#1| |#1| (-931))) (-15 -3681 (|#1| |#1| (-931)))) +((-2848 (((-112) $ $) 7)) (-3681 (($ $ (-931)) 16)) (-2022 (($ $ (-931)) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6)) (** (($ $ (-931)) 14)) (* (($ $ $) 17))) +(((-729) (-141)) (T -729)) +((* (*1 *1 *1 *1) (-4 *1 (-729))) (-3681 (*1 *1 *1 *2) (-12 (-4 *1 (-729)) (-5 *2 (-931)))) (-2022 (*1 *1 *1 *2) (-12 (-4 *1 (-729)) (-5 *2 (-931)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-729)) (-5 *2 (-931))))) +(-13 (-1112) (-10 -8 (-15 * ($ $ $)) (-15 -3681 ($ $ (-931))) (-15 -2022 ($ $ (-931))) (-15 ** ($ $ (-931))))) +(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) +((-3681 (($ $ (-931)) NIL) (($ $ (-780)) 18)) (-1959 (((-112) $) 10)) (-2022 (($ $ (-931)) NIL) (($ $ (-780)) 19)) (** (($ $ (-931)) NIL) (($ $ (-780)) 16))) +(((-730 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-780))) (-15 -2022 (|#1| |#1| (-780))) (-15 -3681 (|#1| |#1| (-780))) (-15 -1959 ((-112) |#1|)) (-15 ** (|#1| |#1| (-931))) (-15 -2022 (|#1| |#1| (-931))) (-15 -3681 (|#1| |#1| (-931)))) (-731)) (T -730)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-780))) (-15 -2022 (|#1| |#1| (-780))) (-15 -3681 (|#1| |#1| (-780))) (-15 -1959 ((-112) |#1|)) (-15 ** (|#1| |#1| (-931))) (-15 -2022 (|#1| |#1| (-931))) (-15 -3681 (|#1| |#1| (-931)))) +((-2848 (((-112) $ $) 7)) (-1546 (((-3 $ "failed") $) 18)) (-3681 (($ $ (-931)) 16) (($ $ (-780)) 23)) (-2232 (((-3 $ "failed") $) 20)) (-1959 (((-112) $) 24)) (-2780 (((-3 $ "failed") $) 19)) (-2022 (($ $ (-931)) 15) (($ $ (-780)) 22)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2144 (($) 25 T CONST)) (-2981 (((-112) $ $) 6)) (** (($ $ (-931)) 14) (($ $ (-780)) 21)) (* (($ $ $) 17))) +(((-731) (-141)) (T -731)) +((-2144 (*1 *1) (-4 *1 (-731))) (-1959 (*1 *2 *1) (-12 (-4 *1 (-731)) (-5 *2 (-112)))) (-3681 (*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-780)))) (-2022 (*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-780)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-780)))) (-2232 (*1 *1 *1) (|partial| -4 *1 (-731))) (-2780 (*1 *1 *1) (|partial| -4 *1 (-731))) (-1546 (*1 *1 *1) (|partial| -4 *1 (-731)))) +(-13 (-729) (-10 -8 (-15 (-2144) ($) -1705) (-15 -1959 ((-112) $)) (-15 -3681 ($ $ (-780))) (-15 -2022 ($ $ (-780))) (-15 ** ($ $ (-780))) (-15 -2232 ((-3 $ "failed") $)) (-15 -2780 ((-3 $ "failed") $)) (-15 -1546 ((-3 $ "failed") $)))) +(((-102) . T) ((-622 (-871)) . T) ((-729) . T) ((-1112) . T)) +((-1486 (((-780)) 39)) (-1695 (((-3 (-573) "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2205 (((-573) $) NIL) (((-416 (-573)) $) NIL) ((|#2| $) 23)) (-2867 (($ |#3|) NIL) (((-3 $ "failed") (-416 |#3|)) 49)) (-2232 (((-3 $ "failed") $) 69)) (-2819 (($) 43)) (-3421 ((|#2| $) 21)) (-2969 (($) 18)) (-3904 (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-1 |#2| |#2|)) 57) (($ $ (-653 (-1189)) (-653 (-780))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189)) NIL) (($ $) NIL) (($ $ (-780)) NIL)) (-4303 (((-698 |#2|) (-1280 $) (-1 |#2| |#2|)) 64)) (-1835 (((-1280 |#2|) $) NIL) (($ (-1280 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2517 ((|#3| $) 36)) (-3914 (((-1280 $)) 33))) +(((-732 |#1| |#2| |#3|) (-10 -8 (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -2819 (|#1|)) (-15 -1486 ((-780))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -4303 ((-698 |#2|) (-1280 |#1|) (-1 |#2| |#2|))) (-15 -2867 ((-3 |#1| "failed") (-416 |#3|))) (-15 -1835 (|#1| |#3|)) (-15 -2867 (|#1| |#3|)) (-15 -2969 (|#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -1835 (|#3| |#1|)) (-15 -1835 (|#1| (-1280 |#2|))) (-15 -1835 ((-1280 |#2|) |#1|)) (-15 -3914 ((-1280 |#1|))) (-15 -2517 (|#3| |#1|)) (-15 -3421 (|#2| |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1|))) (-733 |#2| |#3|) (-174) (-1256 |#2|)) (T -732)) +((-1486 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1256 *4)) (-5 *2 (-780)) (-5 *1 (-732 *3 *4 *5)) (-4 *3 (-733 *4 *5))))) +(-10 -8 (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -2819 (|#1|)) (-15 -1486 ((-780))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -4303 ((-698 |#2|) (-1280 |#1|) (-1 |#2| |#2|))) (-15 -2867 ((-3 |#1| "failed") (-416 |#3|))) (-15 -1835 (|#1| |#3|)) (-15 -2867 (|#1| |#3|)) (-15 -2969 (|#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -1835 (|#3| |#1|)) (-15 -1835 (|#1| (-1280 |#2|))) (-15 -1835 ((-1280 |#2|) |#1|)) (-15 -3914 ((-1280 |#1|))) (-15 -2517 (|#3| |#1|)) (-15 -3421 (|#2| |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 103 (|has| |#1| (-371)))) (-2456 (($ $) 104 (|has| |#1| (-371)))) (-1345 (((-112) $) 106 (|has| |#1| (-371)))) (-2114 (((-698 |#1|) (-1280 $)) 53) (((-698 |#1|)) 68)) (-1635 ((|#1| $) 59)) (-2604 (((-1202 (-931) (-780)) (-573)) 156 (|has| |#1| (-357)))) (-2983 (((-3 $ "failed") $ $) 20)) (-4285 (($ $) 123 (|has| |#1| (-371)))) (-2427 (((-427 $) $) 124 (|has| |#1| (-371)))) (-2800 (((-112) $ $) 114 (|has| |#1| (-371)))) (-1486 (((-780)) 97 (|has| |#1| (-376)))) (-2579 (($) 18 T CONST)) (-1695 (((-3 (-573) "failed") $) 181 (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) 179 (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) 176)) (-2205 (((-573) $) 180 (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) 178 (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) 177)) (-2854 (($ (-1280 |#1|) (-1280 $)) 55) (($ (-1280 |#1|)) 71)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) 162 (|has| |#1| (-357)))) (-2784 (($ $ $) 118 (|has| |#1| (-371)))) (-1720 (((-698 |#1|) $ (-1280 $)) 60) (((-698 |#1|) $) 66)) (-2759 (((-698 (-573)) (-1280 $)) 175 (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) 174 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 173 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) 172) (((-698 |#1|) (-698 $)) 171) (((-698 |#1|) (-1280 $)) 170)) (-2867 (($ |#2|) 167) (((-3 $ "failed") (-416 |#2|)) 164 (|has| |#1| (-371)))) (-2232 (((-3 $ "failed") $) 37)) (-3583 (((-931)) 61)) (-2819 (($) 100 (|has| |#1| (-376)))) (-2796 (($ $ $) 117 (|has| |#1| (-371)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 112 (|has| |#1| (-371)))) (-3731 (($) 158 (|has| |#1| (-357)))) (-1708 (((-112) $) 159 (|has| |#1| (-357)))) (-2104 (($ $ (-780)) 150 (|has| |#1| (-357))) (($ $) 149 (|has| |#1| (-357)))) (-2696 (((-112) $) 125 (|has| |#1| (-371)))) (-2534 (((-931) $) 161 (|has| |#1| (-357))) (((-842 (-931)) $) 147 (|has| |#1| (-357)))) (-1959 (((-112) $) 35)) (-3421 ((|#1| $) 58)) (-1470 (((-3 $ "failed") $) 151 (|has| |#1| (-357)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 121 (|has| |#1| (-371)))) (-2297 ((|#2| $) 51 (|has| |#1| (-371)))) (-3589 (((-931) $) 99 (|has| |#1| (-376)))) (-2853 ((|#2| $) 165)) (-2829 (($ (-653 $)) 110 (|has| |#1| (-371))) (($ $ $) 109 (|has| |#1| (-371)))) (-3180 (((-1171) $) 10)) (-1323 (($ $) 126 (|has| |#1| (-371)))) (-3816 (($) 152 (|has| |#1| (-357)) CONST)) (-2575 (($ (-931)) 98 (|has| |#1| (-376)))) (-3965 (((-1132) $) 11)) (-2969 (($) 169)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 111 (|has| |#1| (-371)))) (-2872 (($ (-653 $)) 108 (|has| |#1| (-371))) (($ $ $) 107 (|has| |#1| (-371)))) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) 155 (|has| |#1| (-357)))) (-4218 (((-427 $) $) 122 (|has| |#1| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120 (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 119 (|has| |#1| (-371)))) (-2837 (((-3 $ "failed") $ $) 102 (|has| |#1| (-371)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 113 (|has| |#1| (-371)))) (-2163 (((-780) $) 115 (|has| |#1| (-371)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 116 (|has| |#1| (-371)))) (-3592 ((|#1| (-1280 $)) 54) ((|#1|) 67)) (-1637 (((-780) $) 160 (|has| |#1| (-357))) (((-3 (-780) "failed") $ $) 148 (|has| |#1| (-357)))) (-3904 (($ $ (-780)) 145 (-2817 (-2086 (|has| |#1| (-238)) (|has| |#1| (-371))) (|has| |#1| (-357)))) (($ $) 143 (-2817 (-2086 (|has| |#1| (-238)) (|has| |#1| (-371))) (|has| |#1| (-357)))) (($ $ (-1189)) 142 (-2086 (|has| |#1| (-910 (-1189))) (|has| |#1| (-371)))) (($ $ (-653 (-1189))) 141 (-2086 (|has| |#1| (-910 (-1189))) (|has| |#1| (-371)))) (($ $ (-1189) (-780)) 140 (-2086 (|has| |#1| (-910 (-1189))) (|has| |#1| (-371)))) (($ $ (-653 (-1189)) (-653 (-780))) 139 (-2086 (|has| |#1| (-910 (-1189))) (|has| |#1| (-371)))) (($ $ (-1 |#1| |#1|) (-780)) 132 (|has| |#1| (-371))) (($ $ (-1 |#1| |#1|)) 131 (|has| |#1| (-371)))) (-4303 (((-698 |#1|) (-1280 $) (-1 |#1| |#1|)) 163 (|has| |#1| (-371)))) (-2984 ((|#2|) 168)) (-2510 (($) 157 (|has| |#1| (-357)))) (-2123 (((-1280 |#1|) $ (-1280 $)) 57) (((-698 |#1|) (-1280 $) (-1280 $)) 56) (((-1280 |#1|) $) 73) (((-698 |#1|) (-1280 $)) 72)) (-1835 (((-1280 |#1|) $) 70) (($ (-1280 |#1|)) 69) ((|#2| $) 182) (($ |#2|) 166)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) 154 (|has| |#1| (-357)))) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 44) (($ $) 101 (|has| |#1| (-371))) (($ (-416 (-573))) 96 (-2817 (|has| |#1| (-371)) (|has| |#1| (-1050 (-416 (-573))))))) (-4279 (($ $) 153 (|has| |#1| (-357))) (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-2517 ((|#2| $) 52)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-3914 (((-1280 $)) 74)) (-2516 (((-112) $ $) 105 (|has| |#1| (-371)))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-780)) 146 (-2817 (-2086 (|has| |#1| (-238)) (|has| |#1| (-371))) (|has| |#1| (-357)))) (($ $) 144 (-2817 (-2086 (|has| |#1| (-238)) (|has| |#1| (-371))) (|has| |#1| (-357)))) (($ $ (-1189)) 138 (-2086 (|has| |#1| (-910 (-1189))) (|has| |#1| (-371)))) (($ $ (-653 (-1189))) 137 (-2086 (|has| |#1| (-910 (-1189))) (|has| |#1| (-371)))) (($ $ (-1189) (-780)) 136 (-2086 (|has| |#1| (-910 (-1189))) (|has| |#1| (-371)))) (($ $ (-653 (-1189)) (-653 (-780))) 135 (-2086 (|has| |#1| (-910 (-1189))) (|has| |#1| (-371)))) (($ $ (-1 |#1| |#1|) (-780)) 134 (|has| |#1| (-371))) (($ $ (-1 |#1| |#1|)) 133 (|has| |#1| (-371)))) (-2981 (((-112) $ $) 6)) (-3103 (($ $ $) 130 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 127 (|has| |#1| (-371)))) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-416 (-573)) $) 129 (|has| |#1| (-371))) (($ $ (-416 (-573))) 128 (|has| |#1| (-371))))) +(((-733 |#1| |#2|) (-141) (-174) (-1256 |t#1|)) (T -733)) +((-2969 (*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-733 *2 *3)) (-4 *3 (-1256 *2)))) (-2984 (*1 *2) (-12 (-4 *1 (-733 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1256 *3)))) (-2867 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-733 *3 *2)) (-4 *2 (-1256 *3)))) (-1835 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-733 *3 *2)) (-4 *2 (-1256 *3)))) (-2853 (*1 *2 *1) (-12 (-4 *1 (-733 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1256 *3)))) (-2867 (*1 *1 *2) (|partial| -12 (-5 *2 (-416 *4)) (-4 *4 (-1256 *3)) (-4 *3 (-371)) (-4 *3 (-174)) (-4 *1 (-733 *3 *4)))) (-4303 (*1 *2 *3 *4) (-12 (-5 *3 (-1280 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-371)) (-4 *1 (-733 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1256 *5)) (-5 *2 (-698 *5))))) +(-13 (-418 |t#1| |t#2|) (-174) (-623 |t#2|) (-420 |t#1|) (-385 |t#1|) (-10 -8 (-15 -2969 ($)) (-15 -2984 (|t#2|)) (-15 -2867 ($ |t#2|)) (-15 -1835 ($ |t#2|)) (-15 -2853 (|t#2| $)) (IF (|has| |t#1| (-376)) (-6 (-376)) |%noBranch|) (IF (|has| |t#1| (-371)) (PROGN (-6 (-371)) (-6 (-233 |t#1|)) (-15 -2867 ((-3 $ "failed") (-416 |t#2|))) (-15 -4303 ((-698 |t#1|) (-1280 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-357)) (-6 (-357)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-38 |#1|) . T) ((-38 $) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-102) . T) ((-111 #0# #0#) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2817 (|has| |#1| (-357)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-625 #0#) -2817 (|has| |#1| (-1050 (-416 (-573)))) (|has| |#1| (-357)) (|has| |#1| (-371))) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-625 $) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-622 (-871)) . T) ((-174) . T) ((-623 |#2|) . T) ((-235 $) -2817 (|has| |#1| (-357)) (-12 (|has| |#1| (-238)) (|has| |#1| (-371)))) ((-233 |#1|) |has| |#1| (-371)) ((-238) -2817 (|has| |#1| (-357)) (-12 (|has| |#1| (-238)) (|has| |#1| (-371)))) ((-237) -2817 (|has| |#1| (-357)) (-12 (|has| |#1| (-238)) (|has| |#1| (-371)))) ((-248) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-297) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-314) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-371) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-411) |has| |#1| (-357)) ((-376) -2817 (|has| |#1| (-376)) (|has| |#1| (-357))) ((-357) |has| |#1| (-357)) ((-378 |#1| |#2|) . T) ((-418 |#1| |#2|) . T) ((-385 |#1|) . T) ((-420 |#1|) . T) ((-461) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-565) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-655 #0#) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #0#) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-657 #1=(-573)) |has| |#1| (-648 (-573))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #0#) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-649 |#1|) . T) ((-649 $) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-648 #1#) |has| |#1| (-648 (-573))) ((-648 |#1|) . T) ((-726 #0#) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-726 |#1|) . T) ((-726 $) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-735) . T) ((-910 (-1189)) -12 (|has| |#1| (-371)) (|has| |#1| (-910 (-1189)))) ((-930) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-1050 (-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((-1050 (-573)) |has| |#1| (-1050 (-573))) ((-1050 |#1|) . T) ((-1063 #0#) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-1063 |#1|) . T) ((-1063 $) . T) ((-1068 #0#) -2817 (|has| |#1| (-357)) (|has| |#1| (-371))) ((-1068 |#1|) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1164) |has| |#1| (-357)) ((-1230) -2817 (|has| |#1| (-357)) (-12 (|has| |#1| (-238)) (|has| |#1| (-371)))) ((-1234) -2817 (|has| |#1| (-357)) (|has| |#1| (-371)))) +((-2579 (($) 11)) (-2232 (((-3 $ "failed") $) 14)) (-1959 (((-112) $) 10)) (** (($ $ (-931)) NIL) (($ $ (-780)) 20))) +(((-734 |#1|) (-10 -8 (-15 -2232 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-780))) (-15 -1959 ((-112) |#1|)) (-15 -2579 (|#1|)) (-15 ** (|#1| |#1| (-931)))) (-735)) (T -734)) +NIL +(-10 -8 (-15 -2232 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-780))) (-15 -1959 ((-112) |#1|)) (-15 -2579 (|#1|)) (-15 ** (|#1| |#1| (-931)))) +((-2848 (((-112) $ $) 7)) (-2579 (($) 19 T CONST)) (-2232 (((-3 $ "failed") $) 16)) (-1959 (((-112) $) 18)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2144 (($) 20 T CONST)) (-2981 (((-112) $ $) 6)) (** (($ $ (-931)) 14) (($ $ (-780)) 17)) (* (($ $ $) 15))) +(((-735) (-141)) (T -735)) +((-2144 (*1 *1) (-4 *1 (-735))) (-2579 (*1 *1) (-4 *1 (-735))) (-1959 (*1 *2 *1) (-12 (-4 *1 (-735)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-735)) (-5 *2 (-780)))) (-2232 (*1 *1 *1) (|partial| -4 *1 (-735)))) +(-13 (-1124) (-10 -8 (-15 (-2144) ($) -1705) (-15 -2579 ($) -1705) (-15 -1959 ((-112) $)) (-15 ** ($ $ (-780))) (-15 -2232 ((-3 $ "failed") $)))) +(((-102) . T) ((-622 (-871)) . T) ((-1124) . T) ((-1112) . T)) +((-2641 (((-2 (|:| -1359 (-427 |#2|)) (|:| |special| (-427 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-3834 (((-2 (|:| -1359 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-1927 ((|#2| (-416 |#2|) (-1 |#2| |#2|)) 13)) (-2478 (((-2 (|:| |poly| |#2|) (|:| -1359 (-416 |#2|)) (|:| |special| (-416 |#2|))) (-416 |#2|) (-1 |#2| |#2|)) 48))) +(((-736 |#1| |#2|) (-10 -7 (-15 -3834 ((-2 (|:| -1359 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2641 ((-2 (|:| -1359 (-427 |#2|)) (|:| |special| (-427 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1927 (|#2| (-416 |#2|) (-1 |#2| |#2|))) (-15 -2478 ((-2 (|:| |poly| |#2|) (|:| -1359 (-416 |#2|)) (|:| |special| (-416 |#2|))) (-416 |#2|) (-1 |#2| |#2|)))) (-371) (-1256 |#1|)) (T -736)) +((-2478 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-371)) (-5 *2 (-2 (|:| |poly| *6) (|:| -1359 (-416 *6)) (|:| |special| (-416 *6)))) (-5 *1 (-736 *5 *6)) (-5 *3 (-416 *6)))) (-1927 (*1 *2 *3 *4) (-12 (-5 *3 (-416 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1256 *5)) (-5 *1 (-736 *5 *2)) (-4 *5 (-371)))) (-2641 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1256 *5)) (-4 *5 (-371)) (-5 *2 (-2 (|:| -1359 (-427 *3)) (|:| |special| (-427 *3)))) (-5 *1 (-736 *5 *3)))) (-3834 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1256 *5)) (-4 *5 (-371)) (-5 *2 (-2 (|:| -1359 *3) (|:| |special| *3))) (-5 *1 (-736 *5 *3))))) +(-10 -7 (-15 -3834 ((-2 (|:| -1359 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2641 ((-2 (|:| -1359 (-427 |#2|)) (|:| |special| (-427 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1927 (|#2| (-416 |#2|) (-1 |#2| |#2|))) (-15 -2478 ((-2 (|:| |poly| |#2|) (|:| -1359 (-416 |#2|)) (|:| |special| (-416 |#2|))) (-416 |#2|) (-1 |#2| |#2|)))) +((-1338 ((|#7| (-653 |#5|) |#6|) NIL)) (-1776 ((|#7| (-1 |#5| |#4|) |#6|) 27))) +(((-737 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1776 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1338 (|#7| (-653 |#5|) |#6|))) (-859) (-802) (-802) (-1061) (-1061) (-959 |#4| |#2| |#1|) (-959 |#5| |#3| |#1|)) (T -737)) +((-1338 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *9)) (-4 *9 (-1061)) (-4 *5 (-859)) (-4 *6 (-802)) (-4 *8 (-1061)) (-4 *2 (-959 *9 *7 *5)) (-5 *1 (-737 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-802)) (-4 *4 (-959 *8 *6 *5)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1061)) (-4 *9 (-1061)) (-4 *5 (-859)) (-4 *6 (-802)) (-4 *2 (-959 *9 *7 *5)) (-5 *1 (-737 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-802)) (-4 *4 (-959 *8 *6 *5))))) +(-10 -7 (-15 -1776 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1338 (|#7| (-653 |#5|) |#6|))) +((-1776 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-738 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1776 (|#7| (-1 |#2| |#1|) |#6|))) (-859) (-859) (-802) (-802) (-1061) (-959 |#5| |#3| |#1|) (-959 |#5| |#4| |#2|)) (T -738)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-859)) (-4 *6 (-859)) (-4 *7 (-802)) (-4 *9 (-1061)) (-4 *2 (-959 *9 *8 *6)) (-5 *1 (-738 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-802)) (-4 *4 (-959 *9 *7 *5))))) +(-10 -7 (-15 -1776 (|#7| (-1 |#2| |#1|) |#6|))) +((-4218 (((-427 |#4|) |#4|) 42))) +(((-739 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4218 ((-427 |#4|) |#4|))) (-802) (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $)) (-15 -1487 ((-3 $ "failed") (-1189))))) (-314) (-959 (-962 |#3|) |#1| |#2|)) (T -739)) +((-4218 (*1 *2 *3) (-12 (-4 *4 (-802)) (-4 *5 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $)) (-15 -1487 ((-3 $ "failed") (-1189)))))) (-4 *6 (-314)) (-5 *2 (-427 *3)) (-5 *1 (-739 *4 *5 *6 *3)) (-4 *3 (-959 (-962 *6) *4 *5))))) +(-10 -7 (-15 -4218 ((-427 |#4|) |#4|))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4354 (((-653 (-873 |#1|)) $) NIL)) (-4193 (((-1185 $) $ (-873 |#1|)) NIL) (((-1185 |#2|) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#2| (-565)))) (-2456 (($ $) NIL (|has| |#2| (-565)))) (-1345 (((-112) $) NIL (|has| |#2| (-565)))) (-2769 (((-780) $) NIL) (((-780) $ (-653 (-873 |#1|))) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-4285 (($ $) NIL (|has| |#2| (-461)))) (-2427 (((-427 $) $) NIL (|has| |#2| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#2| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) NIL (|has| |#2| (-1050 (-573)))) (((-3 (-873 |#1|) "failed") $) NIL)) (-2205 ((|#2| $) NIL) (((-416 (-573)) $) NIL (|has| |#2| (-1050 (-416 (-573))))) (((-573) $) NIL (|has| |#2| (-1050 (-573)))) (((-873 |#1|) $) NIL)) (-2277 (($ $ $ (-873 |#1|)) NIL (|has| |#2| (-174)))) (-1391 (($ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) NIL) (((-698 |#2|) (-698 $)) NIL) (((-698 |#2|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#2| (-461))) (($ $ (-873 |#1|)) NIL (|has| |#2| (-461)))) (-1379 (((-653 $) $) NIL)) (-2696 (((-112) $) NIL (|has| |#2| (-919)))) (-2343 (($ $ |#2| (-540 (-873 |#1|)) $) NIL)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| (-873 |#1|) (-896 (-387))) (|has| |#2| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| (-873 |#1|) (-896 (-573))) (|has| |#2| (-896 (-573)))))) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) NIL)) (-4344 (($ (-1185 |#2|) (-873 |#1|)) NIL) (($ (-1185 $) (-873 |#1|)) NIL)) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-4334 (($ |#2| (-540 (-873 |#1|))) NIL) (($ $ (-873 |#1|) (-780)) NIL) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ (-873 |#1|)) NIL)) (-4036 (((-540 (-873 |#1|)) $) NIL) (((-780) $ (-873 |#1|)) NIL) (((-653 (-780)) $ (-653 (-873 |#1|))) NIL)) (-1382 (($ (-1 (-540 (-873 |#1|)) (-540 (-873 |#1|))) $) NIL)) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-1453 (((-3 (-873 |#1|) "failed") $) NIL)) (-1358 (($ $) NIL)) (-1369 ((|#2| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#2| (-461))) (($ $ $) NIL (|has| |#2| (-461)))) (-3180 (((-1171) $) NIL)) (-4082 (((-3 (-653 $) "failed") $) NIL)) (-2586 (((-3 (-653 $) "failed") $) NIL)) (-2573 (((-3 (-2 (|:| |var| (-873 |#1|)) (|:| -3907 (-780))) "failed") $) NIL)) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) NIL)) (-1348 ((|#2| $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#2| (-461)))) (-2872 (($ (-653 $)) NIL (|has| |#2| (-461))) (($ $ $) NIL (|has| |#2| (-461)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-4218 (((-427 $) $) NIL (|has| |#2| (-919)))) (-2837 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-565))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-565)))) (-2645 (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-873 |#1|) |#2|) NIL) (($ $ (-653 (-873 |#1|)) (-653 |#2|)) NIL) (($ $ (-873 |#1|) $) NIL) (($ $ (-653 (-873 |#1|)) (-653 $)) NIL)) (-3592 (($ $ (-873 |#1|)) NIL (|has| |#2| (-174)))) (-3904 (($ $ (-873 |#1|)) NIL) (($ $ (-653 (-873 |#1|))) NIL) (($ $ (-873 |#1|) (-780)) NIL) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-2565 (((-540 (-873 |#1|)) $) NIL) (((-780) $ (-873 |#1|)) NIL) (((-653 (-780)) $ (-653 (-873 |#1|))) NIL)) (-1835 (((-902 (-387)) $) NIL (-12 (|has| (-873 |#1|) (-623 (-902 (-387)))) (|has| |#2| (-623 (-902 (-387)))))) (((-902 (-573)) $) NIL (-12 (|has| (-873 |#1|) (-623 (-902 (-573)))) (|has| |#2| (-623 (-902 (-573)))))) (((-545) $) NIL (-12 (|has| (-873 |#1|) (-623 (-545))) (|has| |#2| (-623 (-545)))))) (-3257 ((|#2| $) NIL (|has| |#2| (-461))) (($ $ (-873 |#1|)) NIL (|has| |#2| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-919))))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#2|) NIL) (($ (-873 |#1|)) NIL) (($ $) NIL (|has| |#2| (-565))) (($ (-416 (-573))) NIL (-2817 (|has| |#2| (-38 (-416 (-573)))) (|has| |#2| (-1050 (-416 (-573))))))) (-1920 (((-653 |#2|) $) NIL)) (-4317 ((|#2| $ (-540 (-873 |#1|))) NIL) (($ $ (-873 |#1|) (-780)) NIL) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#2| (-919))) (|has| |#2| (-146))))) (-1545 (((-780)) NIL T CONST)) (-1538 (($ $ $ (-780)) NIL (|has| |#2| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#2| (-565)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-873 |#1|)) NIL) (($ $ (-653 (-873 |#1|))) NIL) (($ $ (-873 |#1|) (-780)) NIL) (($ $ (-653 (-873 |#1|)) (-653 (-780))) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#2|) NIL (|has| |#2| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL (|has| |#2| (-38 (-416 (-573))))) (($ (-416 (-573)) $) NIL (|has| |#2| (-38 (-416 (-573))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-740 |#1| |#2|) (-959 |#2| (-540 (-873 |#1|)) (-873 |#1|)) (-653 (-1189)) (-1061)) (T -740)) +NIL +(-959 |#2| (-540 (-873 |#1|)) (-873 |#1|)) +((-1658 (((-2 (|:| -3280 (-962 |#3|)) (|:| -4040 (-962 |#3|))) |#4|) 14)) (-1519 ((|#4| |#4| |#2|) 33)) (-2638 ((|#4| (-416 (-962 |#3|)) |#2|) 64)) (-2738 ((|#4| (-1185 (-962 |#3|)) |#2|) 77)) (-3677 ((|#4| (-1185 |#4|) |#2|) 51)) (-4120 ((|#4| |#4| |#2|) 54)) (-4218 (((-427 |#4|) |#4|) 40))) +(((-741 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1658 ((-2 (|:| -3280 (-962 |#3|)) (|:| -4040 (-962 |#3|))) |#4|)) (-15 -4120 (|#4| |#4| |#2|)) (-15 -3677 (|#4| (-1185 |#4|) |#2|)) (-15 -1519 (|#4| |#4| |#2|)) (-15 -2738 (|#4| (-1185 (-962 |#3|)) |#2|)) (-15 -2638 (|#4| (-416 (-962 |#3|)) |#2|)) (-15 -4218 ((-427 |#4|) |#4|))) (-802) (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $)))) (-565) (-959 (-416 (-962 |#3|)) |#1| |#2|)) (T -741)) +((-4218 (*1 *2 *3) (-12 (-4 *4 (-802)) (-4 *5 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $))))) (-4 *6 (-565)) (-5 *2 (-427 *3)) (-5 *1 (-741 *4 *5 *6 *3)) (-4 *3 (-959 (-416 (-962 *6)) *4 *5)))) (-2638 (*1 *2 *3 *4) (-12 (-4 *6 (-565)) (-4 *2 (-959 *3 *5 *4)) (-5 *1 (-741 *5 *4 *6 *2)) (-5 *3 (-416 (-962 *6))) (-4 *5 (-802)) (-4 *4 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $))))))) (-2738 (*1 *2 *3 *4) (-12 (-5 *3 (-1185 (-962 *6))) (-4 *6 (-565)) (-4 *2 (-959 (-416 (-962 *6)) *5 *4)) (-5 *1 (-741 *5 *4 *6 *2)) (-4 *5 (-802)) (-4 *4 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $))))))) (-1519 (*1 *2 *2 *3) (-12 (-4 *4 (-802)) (-4 *3 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $))))) (-4 *5 (-565)) (-5 *1 (-741 *4 *3 *5 *2)) (-4 *2 (-959 (-416 (-962 *5)) *4 *3)))) (-3677 (*1 *2 *3 *4) (-12 (-5 *3 (-1185 *2)) (-4 *2 (-959 (-416 (-962 *6)) *5 *4)) (-5 *1 (-741 *5 *4 *6 *2)) (-4 *5 (-802)) (-4 *4 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $))))) (-4 *6 (-565)))) (-4120 (*1 *2 *2 *3) (-12 (-4 *4 (-802)) (-4 *3 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $))))) (-4 *5 (-565)) (-5 *1 (-741 *4 *3 *5 *2)) (-4 *2 (-959 (-416 (-962 *5)) *4 *3)))) (-1658 (*1 *2 *3) (-12 (-4 *4 (-802)) (-4 *5 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $))))) (-4 *6 (-565)) (-5 *2 (-2 (|:| -3280 (-962 *6)) (|:| -4040 (-962 *6)))) (-5 *1 (-741 *4 *5 *6 *3)) (-4 *3 (-959 (-416 (-962 *6)) *4 *5))))) +(-10 -7 (-15 -1658 ((-2 (|:| -3280 (-962 |#3|)) (|:| -4040 (-962 |#3|))) |#4|)) (-15 -4120 (|#4| |#4| |#2|)) (-15 -3677 (|#4| (-1185 |#4|) |#2|)) (-15 -1519 (|#4| |#4| |#2|)) (-15 -2738 (|#4| (-1185 (-962 |#3|)) |#2|)) (-15 -2638 (|#4| (-416 (-962 |#3|)) |#2|)) (-15 -4218 ((-427 |#4|) |#4|))) +((-4218 (((-427 |#4|) |#4|) 54))) +(((-742 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4218 ((-427 |#4|) |#4|))) (-802) (-859) (-13 (-314) (-148)) (-959 (-416 |#3|) |#1| |#2|)) (T -742)) +((-4218 (*1 *2 *3) (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-13 (-314) (-148))) (-5 *2 (-427 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-959 (-416 *6) *4 *5))))) +(-10 -7 (-15 -4218 ((-427 |#4|) |#4|))) +((-1776 (((-744 |#2| |#3|) (-1 |#2| |#1|) (-744 |#1| |#3|)) 18))) +(((-743 |#1| |#2| |#3|) (-10 -7 (-15 -1776 ((-744 |#2| |#3|) (-1 |#2| |#1|) (-744 |#1| |#3|)))) (-1061) (-1061) (-735)) (T -743)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5 *7)) (-4 *5 (-1061)) (-4 *6 (-1061)) (-4 *7 (-735)) (-5 *2 (-744 *6 *7)) (-5 *1 (-743 *5 *6 *7))))) +(-10 -7 (-15 -1776 ((-744 |#2| |#3|) (-1 |#2| |#1|) (-744 |#1| |#3|)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 36)) (-1662 (((-653 (-2 (|:| -1857 |#1|) (|:| -3831 |#2|))) $) 37)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1486 (((-780)) 22 (-12 (|has| |#2| (-376)) (|has| |#1| (-376))))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) 76) (((-3 |#1| "failed") $) 79)) (-2205 ((|#2| $) NIL) ((|#1| $) NIL)) (-1391 (($ $) 102 (|has| |#2| (-859)))) (-2232 (((-3 $ "failed") $) 85)) (-2819 (($) 48 (-12 (|has| |#2| (-376)) (|has| |#1| (-376))))) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) 70)) (-2518 (((-653 $) $) 52)) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| |#2|) 17)) (-1776 (($ (-1 |#1| |#1|) $) 68)) (-3589 (((-931) $) 43 (-12 (|has| |#2| (-376)) (|has| |#1| (-376))))) (-1358 ((|#2| $) 101 (|has| |#2| (-859)))) (-1369 ((|#1| $) 100 (|has| |#2| (-859)))) (-3180 (((-1171) $) NIL)) (-2575 (($ (-931)) 35 (-12 (|has| |#2| (-376)) (|has| |#1| (-376))))) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 99) (($ (-573)) 59) (($ |#2|) 55) (($ |#1|) 56) (($ (-653 (-2 (|:| -1857 |#1|) (|:| -3831 |#2|)))) 11)) (-1920 (((-653 |#1|) $) 54)) (-4317 ((|#1| $ |#2|) 115)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 12 T CONST)) (-2144 (($) 44 T CONST)) (-2981 (((-112) $ $) 105)) (-3093 (($ $) 61) (($ $ $) NIL)) (-3077 (($ $ $) 33)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 66) (($ $ $) 118) (($ |#1| $) 63 (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-744 |#1| |#2|) (-13 (-1061) (-1050 |#2|) (-1050 |#1|) (-10 -8 (-15 -4334 ($ |#1| |#2|)) (-15 -4317 (|#1| $ |#2|)) (-15 -2942 ($ (-653 (-2 (|:| -1857 |#1|) (|:| -3831 |#2|))))) (-15 -1662 ((-653 (-2 (|:| -1857 |#1|) (|:| -3831 |#2|))) $)) (-15 -1776 ($ (-1 |#1| |#1|) $)) (-15 -3676 ((-112) $)) (-15 -1920 ((-653 |#1|) $)) (-15 -2518 ((-653 $) $)) (-15 -3772 ((-780) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-376)) (IF (|has| |#2| (-376)) (-6 (-376)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-859)) (PROGN (-15 -1358 (|#2| $)) (-15 -1369 (|#1| $)) (-15 -1391 ($ $))) |%noBranch|))) (-1061) (-735)) (T -744)) +((-4334 (*1 *1 *2 *3) (-12 (-5 *1 (-744 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-735)))) (-4317 (*1 *2 *1 *3) (-12 (-4 *2 (-1061)) (-5 *1 (-744 *2 *3)) (-4 *3 (-735)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-653 (-2 (|:| -1857 *3) (|:| -3831 *4)))) (-4 *3 (-1061)) (-4 *4 (-735)) (-5 *1 (-744 *3 *4)))) (-1662 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| -1857 *3) (|:| -3831 *4)))) (-5 *1 (-744 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-735)))) (-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1061)) (-5 *1 (-744 *3 *4)) (-4 *4 (-735)))) (-3676 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-744 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-735)))) (-1920 (*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-744 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-735)))) (-2518 (*1 *2 *1) (-12 (-5 *2 (-653 (-744 *3 *4))) (-5 *1 (-744 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-735)))) (-3772 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-744 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-735)))) (-1358 (*1 *2 *1) (-12 (-4 *2 (-735)) (-4 *2 (-859)) (-5 *1 (-744 *3 *2)) (-4 *3 (-1061)))) (-1369 (*1 *2 *1) (-12 (-4 *2 (-1061)) (-5 *1 (-744 *2 *3)) (-4 *3 (-859)) (-4 *3 (-735)))) (-1391 (*1 *1 *1) (-12 (-5 *1 (-744 *2 *3)) (-4 *3 (-859)) (-4 *2 (-1061)) (-4 *3 (-735))))) +(-13 (-1061) (-1050 |#2|) (-1050 |#1|) (-10 -8 (-15 -4334 ($ |#1| |#2|)) (-15 -4317 (|#1| $ |#2|)) (-15 -2942 ($ (-653 (-2 (|:| -1857 |#1|) (|:| -3831 |#2|))))) (-15 -1662 ((-653 (-2 (|:| -1857 |#1|) (|:| -3831 |#2|))) $)) (-15 -1776 ($ (-1 |#1| |#1|) $)) (-15 -3676 ((-112) $)) (-15 -1920 ((-653 |#1|) $)) (-15 -2518 ((-653 $) $)) (-15 -3772 ((-780) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-376)) (IF (|has| |#2| (-376)) (-6 (-376)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-859)) (PROGN (-15 -1358 (|#2| $)) (-15 -1369 (|#1| $)) (-15 -1391 ($ $))) |%noBranch|))) +((-2848 (((-112) $ $) 19)) (-4357 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2180 (($ $ $) 73)) (-3319 (((-112) $ $) 74)) (-3450 (((-112) $ (-780)) 8)) (-1506 (($ (-653 |#1|)) 69) (($) 68)) (-3557 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4455)))) (-2579 (($) 7 T CONST)) (-1599 (($ $) 63)) (-2685 (($ $) 59 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2596 (($ |#1| $) 48 (|has| $ (-6 -4455))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4455)))) (-3334 (($ |#1| $) 58 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4455)))) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-2897 (((-112) $ $) 65)) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22)) (-3716 (($ $ $) 70)) (-2487 ((|#1| $) 40)) (-3181 (($ |#1| $) 41) (($ |#1| $ (-780)) 64)) (-3965 (((-1132) $) 21)) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3815 ((|#1| $) 42)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2493 (((-653 (-2 (|:| -1907 |#1|) (|:| -3974 (-780)))) $) 62)) (-3631 (($ $ |#1|) 72) (($ $ $) 71)) (-2428 (($) 50) (($ (-653 |#1|)) 49)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-1835 (((-545) $) 60 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 51)) (-2942 (((-871) $) 18)) (-4280 (($ (-653 |#1|)) 67) (($) 66)) (-3507 (((-112) $ $) 23)) (-2679 (($ (-653 |#1|)) 43)) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20)) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-745 |#1|) (-141) (-1112)) (T -745)) +NIL +(-13 (-704 |t#1|) (-1110 |t#1|)) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-622 (-871)) . T) ((-152 |#1|) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-240 |#1|) . T) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-704 |#1|) . T) ((-1110 |#1|) . T) ((-1112) . T) ((-1230) . T)) +((-2848 (((-112) $ $) NIL)) (-4357 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 92)) (-2180 (($ $ $) 96)) (-3319 (((-112) $ $) 104)) (-3450 (((-112) $ (-780)) NIL)) (-1506 (($ (-653 |#1|)) 26) (($) 17)) (-3557 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-1599 (($ $) 85)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2596 (($ |#1| $) 70 (|has| $ (-6 -4455))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4455))) (($ |#1| $ (-573)) 75) (($ (-1 (-112) |#1|) $ (-573)) 78)) (-3334 (($ |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (($ |#1| $ (-573)) 80) (($ (-1 (-112) |#1|) $ (-573)) 81)) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-1863 (((-653 |#1|) $) 32 (|has| $ (-6 -4455)))) (-2897 (((-112) $ $) 103)) (-3237 (($) 15) (($ |#1|) 28) (($ (-653 |#1|)) 23)) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#1|) $) 38)) (-1547 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2446 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 89)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-3716 (($ $ $) 94)) (-2487 ((|#1| $) 62)) (-3181 (($ |#1| $) 63) (($ |#1| $ (-780)) 86)) (-3965 (((-1132) $) NIL)) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3815 ((|#1| $) 61)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) 56)) (-3508 (($) 14)) (-2493 (((-653 (-2 (|:| -1907 |#1|) (|:| -3974 (-780)))) $) 55)) (-3631 (($ $ |#1|) NIL) (($ $ $) 95)) (-2428 (($) 16) (($ (-653 |#1|)) 25)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) 68 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) 79)) (-1835 (((-545) $) 36 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 22)) (-2942 (((-871) $) 49)) (-4280 (($ (-653 |#1|)) 27) (($) 18)) (-3507 (((-112) $ $) NIL)) (-2679 (($ (-653 |#1|)) 24)) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 100)) (-2862 (((-780) $) 67 (|has| $ (-6 -4455))))) +(((-746 |#1|) (-13 (-745 |#1|) (-10 -8 (-6 -4455) (-6 -4456) (-15 -3237 ($)) (-15 -3237 ($ |#1|)) (-15 -3237 ($ (-653 |#1|))) (-15 -3214 ((-653 |#1|) $)) (-15 -3334 ($ |#1| $ (-573))) (-15 -3334 ($ (-1 (-112) |#1|) $ (-573))) (-15 -2596 ($ |#1| $ (-573))) (-15 -2596 ($ (-1 (-112) |#1|) $ (-573))))) (-1112)) (T -746)) +((-3237 (*1 *1) (-12 (-5 *1 (-746 *2)) (-4 *2 (-1112)))) (-3237 (*1 *1 *2) (-12 (-5 *1 (-746 *2)) (-4 *2 (-1112)))) (-3237 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-746 *3)))) (-3214 (*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-746 *3)) (-4 *3 (-1112)))) (-3334 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-573)) (-5 *1 (-746 *2)) (-4 *2 (-1112)))) (-3334 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-573)) (-4 *4 (-1112)) (-5 *1 (-746 *4)))) (-2596 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-573)) (-5 *1 (-746 *2)) (-4 *2 (-1112)))) (-2596 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-573)) (-4 *4 (-1112)) (-5 *1 (-746 *4))))) +(-13 (-745 |#1|) (-10 -8 (-6 -4455) (-6 -4456) (-15 -3237 ($)) (-15 -3237 ($ |#1|)) (-15 -3237 ($ (-653 |#1|))) (-15 -3214 ((-653 |#1|) $)) (-15 -3334 ($ |#1| $ (-573))) (-15 -3334 ($ (-1 (-112) |#1|) $ (-573))) (-15 -2596 ($ |#1| $ (-573))) (-15 -2596 ($ (-1 (-112) |#1|) $ (-573))))) +((-1322 (((-1285) (-1171)) 8))) +(((-747) (-10 -7 (-15 -1322 ((-1285) (-1171))))) (T -747)) +((-1322 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-747))))) +(-10 -7 (-15 -1322 ((-1285) (-1171)))) +((-4379 (((-653 |#1|) (-653 |#1|) (-653 |#1|)) 15))) +(((-748 |#1|) (-10 -7 (-15 -4379 ((-653 |#1|) (-653 |#1|) (-653 |#1|)))) (-859)) (T -748)) +((-4379 (*1 *2 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-859)) (-5 *1 (-748 *3))))) +(-10 -7 (-15 -4379 ((-653 |#1|) (-653 |#1|) (-653 |#1|)))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4354 (((-653 |#2|) $) 148)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 141 (|has| |#1| (-565)))) (-2456 (($ $) 140 (|has| |#1| (-565)))) (-1345 (((-112) $) 138 (|has| |#1| (-565)))) (-2363 (($ $) 97 (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) 80 (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) 20)) (-4228 (($ $) 79 (|has| |#1| (-38 (-416 (-573)))))) (-2342 (($ $) 96 (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) 81 (|has| |#1| (-38 (-416 (-573)))))) (-2388 (($ $) 95 (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) 82 (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) 18 T CONST)) (-1391 (($ $) 132)) (-2232 (((-3 $ "failed") $) 37)) (-4052 (((-962 |#1|) $ (-780)) 110) (((-962 |#1|) $ (-780) (-780)) 109)) (-1488 (((-112) $) 149)) (-2999 (($) 107 (|has| |#1| (-38 (-416 (-573)))))) (-2534 (((-780) $ |#2|) 112) (((-780) $ |#2| (-780)) 111)) (-1959 (((-112) $) 35)) (-4325 (($ $ (-573)) 78 (|has| |#1| (-38 (-416 (-573)))))) (-3676 (((-112) $) 130)) (-4334 (($ $ (-653 |#2|) (-653 (-540 |#2|))) 147) (($ $ |#2| (-540 |#2|)) 146) (($ |#1| (-540 |#2|)) 131) (($ $ |#2| (-780)) 114) (($ $ (-653 |#2|) (-653 (-780))) 113)) (-1776 (($ (-1 |#1| |#1|) $) 129)) (-3118 (($ $) 104 (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) 127)) (-1369 ((|#1| $) 126)) (-3180 (((-1171) $) 10)) (-1626 (($ $ |#2|) 108 (|has| |#1| (-38 (-416 (-573)))))) (-3965 (((-1132) $) 11)) (-2212 (($ $ (-780)) 115)) (-2837 (((-3 $ "failed") $ $) 142 (|has| |#1| (-565)))) (-1608 (($ $) 105 (|has| |#1| (-38 (-416 (-573)))))) (-2645 (($ $ |#2| $) 123) (($ $ (-653 |#2|) (-653 $)) 122) (($ $ (-653 (-301 $))) 121) (($ $ (-301 $)) 120) (($ $ $ $) 119) (($ $ (-653 $) (-653 $)) 118)) (-3904 (($ $ |#2|) 46) (($ $ (-653 |#2|)) 45) (($ $ |#2| (-780)) 44) (($ $ (-653 |#2|) (-653 (-780))) 43)) (-2565 (((-540 |#2|) $) 128)) (-2401 (($ $) 94 (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) 83 (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) 93 (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) 84 (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) 92 (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) 85 (|has| |#1| (-38 (-416 (-573)))))) (-4101 (($ $) 150)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 145 (|has| |#1| (-174))) (($ $) 143 (|has| |#1| (-565))) (($ (-416 (-573))) 135 (|has| |#1| (-38 (-416 (-573)))))) (-4317 ((|#1| $ (-540 |#2|)) 133) (($ $ |#2| (-780)) 117) (($ $ (-653 |#2|) (-653 (-780))) 116)) (-4279 (((-3 $ "failed") $) 144 (|has| |#1| (-146)))) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2439 (($ $) 103 (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) 91 (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) 139 (|has| |#1| (-565)))) (-2413 (($ $) 102 (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) 90 (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) 101 (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) 89 (|has| |#1| (-38 (-416 (-573)))))) (-2520 (($ $) 100 (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) 88 (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) 99 (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) 87 (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) 98 (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) 86 (|has| |#1| (-38 (-416 (-573)))))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ |#2|) 42) (($ $ (-653 |#2|)) 41) (($ $ |#2| (-780)) 40) (($ $ (-653 |#2|) (-653 (-780))) 39)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 134 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ $) 106 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 77 (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 (-573))) 137 (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) 136 (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) 125) (($ $ |#1|) 124))) +(((-749 |#1| |#2|) (-141) (-1061) (-859)) (T -749)) +((-4317 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-780)) (-4 *1 (-749 *4 *2)) (-4 *4 (-1061)) (-4 *2 (-859)))) (-4317 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 *5)) (-5 *3 (-653 (-780))) (-4 *1 (-749 *4 *5)) (-4 *4 (-1061)) (-4 *5 (-859)))) (-2212 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-749 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-859)))) (-4334 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-780)) (-4 *1 (-749 *4 *2)) (-4 *4 (-1061)) (-4 *2 (-859)))) (-4334 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 *5)) (-5 *3 (-653 (-780))) (-4 *1 (-749 *4 *5)) (-4 *4 (-1061)) (-4 *5 (-859)))) (-2534 (*1 *2 *1 *3) (-12 (-4 *1 (-749 *4 *3)) (-4 *4 (-1061)) (-4 *3 (-859)) (-5 *2 (-780)))) (-2534 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-780)) (-4 *1 (-749 *4 *3)) (-4 *4 (-1061)) (-4 *3 (-859)))) (-4052 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-4 *1 (-749 *4 *5)) (-4 *4 (-1061)) (-4 *5 (-859)) (-5 *2 (-962 *4)))) (-4052 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-780)) (-4 *1 (-749 *4 *5)) (-4 *4 (-1061)) (-4 *5 (-859)) (-5 *2 (-962 *4)))) (-1626 (*1 *1 *1 *2) (-12 (-4 *1 (-749 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-859)) (-4 *3 (-38 (-416 (-573))))))) +(-13 (-910 |t#2|) (-985 |t#1| (-540 |t#2|) |t#2|) (-523 |t#2| $) (-316 $) (-10 -8 (-15 -4317 ($ $ |t#2| (-780))) (-15 -4317 ($ $ (-653 |t#2|) (-653 (-780)))) (-15 -2212 ($ $ (-780))) (-15 -4334 ($ $ |t#2| (-780))) (-15 -4334 ($ $ (-653 |t#2|) (-653 (-780)))) (-15 -2534 ((-780) $ |t#2|)) (-15 -2534 ((-780) $ |t#2| (-780))) (-15 -4052 ((-962 |t#1|) $ (-780))) (-15 -4052 ((-962 |t#1|) $ (-780) (-780))) (IF (|has| |t#1| (-38 (-416 (-573)))) (PROGN (-15 -1626 ($ $ |t#2|)) (-6 (-1014)) (-6 (-1215))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-540 |#2|)) . T) ((-25) . T) ((-38 #1=(-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-565)) ((-35) |has| |#1| (-38 (-416 (-573)))) ((-95) |has| |#1| (-38 (-416 (-573)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-416 (-573)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #1#) |has| |#1| (-38 (-416 (-573)))) ((-625 (-573)) . T) ((-625 |#1|) |has| |#1| (-174)) ((-625 $) |has| |#1| (-565)) ((-622 (-871)) . T) ((-174) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-291) |has| |#1| (-38 (-416 (-573)))) ((-297) |has| |#1| (-565)) ((-316 $) . T) ((-502) |has| |#1| (-38 (-416 (-573)))) ((-523 |#2| $) . T) ((-523 $ $) . T) ((-565) |has| |#1| (-565)) ((-655 #1#) |has| |#1| (-38 (-416 (-573)))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #1#) |has| |#1| (-38 (-416 (-573)))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #1#) |has| |#1| (-38 (-416 (-573)))) ((-649 |#1|) |has| |#1| (-174)) ((-649 $) |has| |#1| (-565)) ((-726 #1#) |has| |#1| (-38 (-416 (-573)))) ((-726 |#1|) |has| |#1| (-174)) ((-726 $) |has| |#1| (-565)) ((-735) . T) ((-910 |#2|) . T) ((-985 |#1| #0# |#2|) . T) ((-1014) |has| |#1| (-38 (-416 (-573)))) ((-1063 #1#) |has| |#1| (-38 (-416 (-573)))) ((-1063 |#1|) . T) ((-1063 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-1068 #1#) |has| |#1| (-38 (-416 (-573)))) ((-1068 |#1|) . T) ((-1068 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1215) |has| |#1| (-38 (-416 (-573)))) ((-1218) |has| |#1| (-38 (-416 (-573))))) +((-4218 (((-427 (-1185 |#4|)) (-1185 |#4|)) 30) (((-427 |#4|) |#4|) 26))) +(((-750 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4218 ((-427 |#4|) |#4|)) (-15 -4218 ((-427 (-1185 |#4|)) (-1185 |#4|)))) (-859) (-802) (-13 (-314) (-148)) (-959 |#3| |#2| |#1|)) (T -750)) +((-4218 (*1 *2 *3) (-12 (-4 *4 (-859)) (-4 *5 (-802)) (-4 *6 (-13 (-314) (-148))) (-4 *7 (-959 *6 *5 *4)) (-5 *2 (-427 (-1185 *7))) (-5 *1 (-750 *4 *5 *6 *7)) (-5 *3 (-1185 *7)))) (-4218 (*1 *2 *3) (-12 (-4 *4 (-859)) (-4 *5 (-802)) (-4 *6 (-13 (-314) (-148))) (-5 *2 (-427 *3)) (-5 *1 (-750 *4 *5 *6 *3)) (-4 *3 (-959 *6 *5 *4))))) +(-10 -7 (-15 -4218 ((-427 |#4|) |#4|)) (-15 -4218 ((-427 (-1185 |#4|)) (-1185 |#4|)))) +((-3380 (((-427 |#4|) |#4| |#2|) 140)) (-2369 (((-427 |#4|) |#4|) NIL)) (-2427 (((-427 (-1185 |#4|)) (-1185 |#4|)) 127) (((-427 |#4|) |#4|) 52)) (-2067 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-653 (-2 (|:| -4218 (-1185 |#4|)) (|:| -3907 (-573)))))) (-1185 |#4|) (-653 |#2|) (-653 (-653 |#3|))) 81)) (-3394 (((-1185 |#3|) (-1185 |#3|) (-573)) 166)) (-2292 (((-653 (-780)) (-1185 |#4|) (-653 |#2|) (-780)) 75)) (-2853 (((-3 (-653 (-1185 |#4|)) "failed") (-1185 |#4|) (-1185 |#3|) (-1185 |#3|) |#4| (-653 |#2|) (-653 (-780)) (-653 |#3|)) 79)) (-1942 (((-2 (|:| |upol| (-1185 |#3|)) (|:| |Lval| (-653 |#3|)) (|:| |Lfact| (-653 (-2 (|:| -4218 (-1185 |#3|)) (|:| -3907 (-573))))) (|:| |ctpol| |#3|)) (-1185 |#4|) (-653 |#2|) (-653 (-653 |#3|))) 27)) (-2787 (((-2 (|:| -3881 (-1185 |#4|)) (|:| |polval| (-1185 |#3|))) (-1185 |#4|) (-1185 |#3|) (-573)) 72)) (-4160 (((-573) (-653 (-2 (|:| -4218 (-1185 |#3|)) (|:| -3907 (-573))))) 162)) (-2252 ((|#4| (-573) (-427 |#4|)) 73)) (-3579 (((-112) (-653 (-2 (|:| -4218 (-1185 |#3|)) (|:| -3907 (-573)))) (-653 (-2 (|:| -4218 (-1185 |#3|)) (|:| -3907 (-573))))) NIL))) +(((-751 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2427 ((-427 |#4|) |#4|)) (-15 -2427 ((-427 (-1185 |#4|)) (-1185 |#4|))) (-15 -2369 ((-427 |#4|) |#4|)) (-15 -4160 ((-573) (-653 (-2 (|:| -4218 (-1185 |#3|)) (|:| -3907 (-573)))))) (-15 -3380 ((-427 |#4|) |#4| |#2|)) (-15 -2787 ((-2 (|:| -3881 (-1185 |#4|)) (|:| |polval| (-1185 |#3|))) (-1185 |#4|) (-1185 |#3|) (-573))) (-15 -2067 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-653 (-2 (|:| -4218 (-1185 |#4|)) (|:| -3907 (-573)))))) (-1185 |#4|) (-653 |#2|) (-653 (-653 |#3|)))) (-15 -1942 ((-2 (|:| |upol| (-1185 |#3|)) (|:| |Lval| (-653 |#3|)) (|:| |Lfact| (-653 (-2 (|:| -4218 (-1185 |#3|)) (|:| -3907 (-573))))) (|:| |ctpol| |#3|)) (-1185 |#4|) (-653 |#2|) (-653 (-653 |#3|)))) (-15 -2252 (|#4| (-573) (-427 |#4|))) (-15 -3579 ((-112) (-653 (-2 (|:| -4218 (-1185 |#3|)) (|:| -3907 (-573)))) (-653 (-2 (|:| -4218 (-1185 |#3|)) (|:| -3907 (-573)))))) (-15 -2853 ((-3 (-653 (-1185 |#4|)) "failed") (-1185 |#4|) (-1185 |#3|) (-1185 |#3|) |#4| (-653 |#2|) (-653 (-780)) (-653 |#3|))) (-15 -2292 ((-653 (-780)) (-1185 |#4|) (-653 |#2|) (-780))) (-15 -3394 ((-1185 |#3|) (-1185 |#3|) (-573)))) (-802) (-859) (-314) (-959 |#3| |#1| |#2|)) (T -751)) +((-3394 (*1 *2 *2 *3) (-12 (-5 *2 (-1185 *6)) (-5 *3 (-573)) (-4 *6 (-314)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-751 *4 *5 *6 *7)) (-4 *7 (-959 *6 *4 *5)))) (-2292 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1185 *9)) (-5 *4 (-653 *7)) (-4 *7 (-859)) (-4 *9 (-959 *8 *6 *7)) (-4 *6 (-802)) (-4 *8 (-314)) (-5 *2 (-653 (-780))) (-5 *1 (-751 *6 *7 *8 *9)) (-5 *5 (-780)))) (-2853 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1185 *11)) (-5 *6 (-653 *10)) (-5 *7 (-653 (-780))) (-5 *8 (-653 *11)) (-4 *10 (-859)) (-4 *11 (-314)) (-4 *9 (-802)) (-4 *5 (-959 *11 *9 *10)) (-5 *2 (-653 (-1185 *5))) (-5 *1 (-751 *9 *10 *11 *5)) (-5 *3 (-1185 *5)))) (-3579 (*1 *2 *3 *3) (-12 (-5 *3 (-653 (-2 (|:| -4218 (-1185 *6)) (|:| -3907 (-573))))) (-4 *6 (-314)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) (-5 *1 (-751 *4 *5 *6 *7)) (-4 *7 (-959 *6 *4 *5)))) (-2252 (*1 *2 *3 *4) (-12 (-5 *3 (-573)) (-5 *4 (-427 *2)) (-4 *2 (-959 *7 *5 *6)) (-5 *1 (-751 *5 *6 *7 *2)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-314)))) (-1942 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1185 *9)) (-5 *4 (-653 *7)) (-5 *5 (-653 (-653 *8))) (-4 *7 (-859)) (-4 *8 (-314)) (-4 *9 (-959 *8 *6 *7)) (-4 *6 (-802)) (-5 *2 (-2 (|:| |upol| (-1185 *8)) (|:| |Lval| (-653 *8)) (|:| |Lfact| (-653 (-2 (|:| -4218 (-1185 *8)) (|:| -3907 (-573))))) (|:| |ctpol| *8))) (-5 *1 (-751 *6 *7 *8 *9)))) (-2067 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-653 *7)) (-5 *5 (-653 (-653 *8))) (-4 *7 (-859)) (-4 *8 (-314)) (-4 *6 (-802)) (-4 *9 (-959 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-653 (-2 (|:| -4218 (-1185 *9)) (|:| -3907 (-573))))))) (-5 *1 (-751 *6 *7 *8 *9)) (-5 *3 (-1185 *9)))) (-2787 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-573)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-314)) (-4 *9 (-959 *8 *6 *7)) (-5 *2 (-2 (|:| -3881 (-1185 *9)) (|:| |polval| (-1185 *8)))) (-5 *1 (-751 *6 *7 *8 *9)) (-5 *3 (-1185 *9)) (-5 *4 (-1185 *8)))) (-3380 (*1 *2 *3 *4) (-12 (-4 *5 (-802)) (-4 *4 (-859)) (-4 *6 (-314)) (-5 *2 (-427 *3)) (-5 *1 (-751 *5 *4 *6 *3)) (-4 *3 (-959 *6 *5 *4)))) (-4160 (*1 *2 *3) (-12 (-5 *3 (-653 (-2 (|:| -4218 (-1185 *6)) (|:| -3907 (-573))))) (-4 *6 (-314)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-573)) (-5 *1 (-751 *4 *5 *6 *7)) (-4 *7 (-959 *6 *4 *5)))) (-2369 (*1 *2 *3) (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-314)) (-5 *2 (-427 *3)) (-5 *1 (-751 *4 *5 *6 *3)) (-4 *3 (-959 *6 *4 *5)))) (-2427 (*1 *2 *3) (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-314)) (-4 *7 (-959 *6 *4 *5)) (-5 *2 (-427 (-1185 *7))) (-5 *1 (-751 *4 *5 *6 *7)) (-5 *3 (-1185 *7)))) (-2427 (*1 *2 *3) (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-314)) (-5 *2 (-427 *3)) (-5 *1 (-751 *4 *5 *6 *3)) (-4 *3 (-959 *6 *4 *5))))) +(-10 -7 (-15 -2427 ((-427 |#4|) |#4|)) (-15 -2427 ((-427 (-1185 |#4|)) (-1185 |#4|))) (-15 -2369 ((-427 |#4|) |#4|)) (-15 -4160 ((-573) (-653 (-2 (|:| -4218 (-1185 |#3|)) (|:| -3907 (-573)))))) (-15 -3380 ((-427 |#4|) |#4| |#2|)) (-15 -2787 ((-2 (|:| -3881 (-1185 |#4|)) (|:| |polval| (-1185 |#3|))) (-1185 |#4|) (-1185 |#3|) (-573))) (-15 -2067 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-653 (-2 (|:| -4218 (-1185 |#4|)) (|:| -3907 (-573)))))) (-1185 |#4|) (-653 |#2|) (-653 (-653 |#3|)))) (-15 -1942 ((-2 (|:| |upol| (-1185 |#3|)) (|:| |Lval| (-653 |#3|)) (|:| |Lfact| (-653 (-2 (|:| -4218 (-1185 |#3|)) (|:| -3907 (-573))))) (|:| |ctpol| |#3|)) (-1185 |#4|) (-653 |#2|) (-653 (-653 |#3|)))) (-15 -2252 (|#4| (-573) (-427 |#4|))) (-15 -3579 ((-112) (-653 (-2 (|:| -4218 (-1185 |#3|)) (|:| -3907 (-573)))) (-653 (-2 (|:| -4218 (-1185 |#3|)) (|:| -3907 (-573)))))) (-15 -2853 ((-3 (-653 (-1185 |#4|)) "failed") (-1185 |#4|) (-1185 |#3|) (-1185 |#3|) |#4| (-653 |#2|) (-653 (-780)) (-653 |#3|))) (-15 -2292 ((-653 (-780)) (-1185 |#4|) (-653 |#2|) (-780))) (-15 -3394 ((-1185 |#3|) (-1185 |#3|) (-573)))) +((-3009 (($ $ (-931)) 17))) +(((-752 |#1| |#2|) (-10 -8 (-15 -3009 (|#1| |#1| (-931)))) (-753 |#2|) (-174)) (T -752)) +NIL +(-10 -8 (-15 -3009 (|#1| |#1| (-931)))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-3681 (($ $ (-931)) 31)) (-3009 (($ $ (-931)) 38)) (-2022 (($ $ (-931)) 32)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-4380 (($ $ $) 28)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-3531 (($ $ $ $) 29)) (-4366 (($ $ $) 27)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 33)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-753 |#1|) (-141) (-174)) (T -753)) +((-3009 (*1 *1 *1 *2) (-12 (-5 *2 (-931)) (-4 *1 (-753 *3)) (-4 *3 (-174))))) +(-13 (-770) (-726 |t#1|) (-10 -8 (-15 -3009 ($ $ (-931))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-657 |#1|) . T) ((-649 |#1|) . T) ((-726 |#1|) . T) ((-729) . T) ((-770) . T) ((-1063 |#1|) . T) ((-1068 |#1|) . T) ((-1112) . T)) +((-3183 (((-1047) (-698 (-227)) (-573) (-112) (-573)) 25)) (-3768 (((-1047) (-698 (-227)) (-573) (-112) (-573)) 24))) +(((-754) (-10 -7 (-15 -3768 ((-1047) (-698 (-227)) (-573) (-112) (-573))) (-15 -3183 ((-1047) (-698 (-227)) (-573) (-112) (-573))))) (T -754)) +((-3183 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *5 (-112)) (-5 *2 (-1047)) (-5 *1 (-754)))) (-3768 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *5 (-112)) (-5 *2 (-1047)) (-5 *1 (-754))))) +(-10 -7 (-15 -3768 ((-1047) (-698 (-227)) (-573) (-112) (-573))) (-15 -3183 ((-1047) (-698 (-227)) (-573) (-112) (-573)))) +((-1466 (((-1047) (-573) (-573) (-573) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-74 FCN)))) 43)) (-1931 (((-1047) (-573) (-573) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-81 FCN)))) 39)) (-4135 (((-1047) (-227) (-227) (-227) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385)))) 32))) +(((-755) (-10 -7 (-15 -4135 ((-1047) (-227) (-227) (-227) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385))))) (-15 -1931 ((-1047) (-573) (-573) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-81 FCN))))) (-15 -1466 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-74 FCN))))))) (T -755)) +((-1466 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1047)) (-5 *1 (-755)))) (-1931 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1047)) (-5 *1 (-755)))) (-4135 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385)))) (-5 *2 (-1047)) (-5 *1 (-755))))) +(-10 -7 (-15 -4135 ((-1047) (-227) (-227) (-227) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385))))) (-15 -1931 ((-1047) (-573) (-573) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-81 FCN))))) (-15 -1466 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-74 FCN)))))) +((-2504 (((-1047) (-573) (-573) (-698 (-227)) (-573)) 34)) (-1645 (((-1047) (-573) (-573) (-698 (-227)) (-573)) 33)) (-2501 (((-1047) (-573) (-698 (-227)) (-573)) 32)) (-2181 (((-1047) (-573) (-698 (-227)) (-573)) 31)) (-4084 (((-1047) (-573) (-573) (-1171) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573)) 30)) (-4043 (((-1047) (-573) (-573) (-1171) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573)) 29)) (-2559 (((-1047) (-573) (-573) (-1171) (-698 (-227)) (-698 (-227)) (-573)) 28)) (-2103 (((-1047) (-573) (-573) (-1171) (-698 (-227)) (-698 (-227)) (-573)) 27)) (-2372 (((-1047) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573)) 24)) (-4307 (((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573)) 23)) (-1455 (((-1047) (-573) (-698 (-227)) (-573)) 22)) (-4262 (((-1047) (-573) (-698 (-227)) (-573)) 21))) +(((-756) (-10 -7 (-15 -4262 ((-1047) (-573) (-698 (-227)) (-573))) (-15 -1455 ((-1047) (-573) (-698 (-227)) (-573))) (-15 -4307 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2372 ((-1047) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2103 ((-1047) (-573) (-573) (-1171) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2559 ((-1047) (-573) (-573) (-1171) (-698 (-227)) (-698 (-227)) (-573))) (-15 -4043 ((-1047) (-573) (-573) (-1171) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -4084 ((-1047) (-573) (-573) (-1171) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2181 ((-1047) (-573) (-698 (-227)) (-573))) (-15 -2501 ((-1047) (-573) (-698 (-227)) (-573))) (-15 -1645 ((-1047) (-573) (-573) (-698 (-227)) (-573))) (-15 -2504 ((-1047) (-573) (-573) (-698 (-227)) (-573))))) (T -756)) +((-2504 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-756)))) (-1645 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-756)))) (-2501 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-756)))) (-2181 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-756)))) (-4084 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-573)) (-5 *4 (-1171)) (-5 *5 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-756)))) (-4043 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-573)) (-5 *4 (-1171)) (-5 *5 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-756)))) (-2559 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-573)) (-5 *4 (-1171)) (-5 *5 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-756)))) (-2103 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-573)) (-5 *4 (-1171)) (-5 *5 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-756)))) (-2372 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-756)))) (-4307 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-756)))) (-1455 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-756)))) (-4262 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-756))))) +(-10 -7 (-15 -4262 ((-1047) (-573) (-698 (-227)) (-573))) (-15 -1455 ((-1047) (-573) (-698 (-227)) (-573))) (-15 -4307 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2372 ((-1047) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2103 ((-1047) (-573) (-573) (-1171) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2559 ((-1047) (-573) (-573) (-1171) (-698 (-227)) (-698 (-227)) (-573))) (-15 -4043 ((-1047) (-573) (-573) (-1171) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -4084 ((-1047) (-573) (-573) (-1171) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2181 ((-1047) (-573) (-698 (-227)) (-573))) (-15 -2501 ((-1047) (-573) (-698 (-227)) (-573))) (-15 -1645 ((-1047) (-573) (-573) (-698 (-227)) (-573))) (-15 -2504 ((-1047) (-573) (-573) (-698 (-227)) (-573)))) +((-3437 (((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573) (-227) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-78 FUNCTN)))) 52)) (-1377 (((-1047) (-698 (-227)) (-698 (-227)) (-573) (-573)) 51)) (-1485 (((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-78 FUNCTN)))) 50)) (-1947 (((-1047) (-227) (-227) (-573) (-573) (-573) (-573)) 46)) (-4200 (((-1047) (-227) (-227) (-573) (-227) (-573) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G)))) 45)) (-4133 (((-1047) (-227) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G)))) 44)) (-4301 (((-1047) (-227) (-227) (-227) (-227) (-573) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G)))) 43)) (-3912 (((-1047) (-227) (-227) (-227) (-573) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G)))) 42)) (-3524 (((-1047) (-227) (-573) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385)))) 38)) (-3381 (((-1047) (-227) (-227) (-573) (-698 (-227)) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385)))) 37)) (-3165 (((-1047) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385)))) 33)) (-1813 (((-1047) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385)))) 32))) +(((-757) (-10 -7 (-15 -1813 ((-1047) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385))))) (-15 -3165 ((-1047) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385))))) (-15 -3381 ((-1047) (-227) (-227) (-573) (-698 (-227)) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385))))) (-15 -3524 ((-1047) (-227) (-573) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385))))) (-15 -3912 ((-1047) (-227) (-227) (-227) (-573) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G))))) (-15 -4301 ((-1047) (-227) (-227) (-227) (-227) (-573) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G))))) (-15 -4133 ((-1047) (-227) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G))))) (-15 -4200 ((-1047) (-227) (-227) (-573) (-227) (-573) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G))))) (-15 -1947 ((-1047) (-227) (-227) (-573) (-573) (-573) (-573))) (-15 -1485 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-78 FUNCTN))))) (-15 -1377 ((-1047) (-698 (-227)) (-698 (-227)) (-573) (-573))) (-15 -3437 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573) (-227) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-78 FUNCTN))))))) (T -757)) +((-3437 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1047)) (-5 *1 (-757)))) (-1377 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-757)))) (-1485 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1047)) (-5 *1 (-757)))) (-1947 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-757)))) (-4200 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G)))) (-5 *2 (-1047)) (-5 *1 (-757)))) (-4133 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G)))) (-5 *2 (-1047)) (-5 *1 (-757)))) (-4301 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G)))) (-5 *2 (-1047)) (-5 *1 (-757)))) (-3912 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G)))) (-5 *2 (-1047)) (-5 *1 (-757)))) (-3524 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385)))) (-5 *2 (-1047)) (-5 *1 (-757)))) (-3381 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-573)) (-5 *5 (-698 (-227))) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385)))) (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-757)))) (-3165 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385)))) (-5 *2 (-1047)) (-5 *1 (-757)))) (-1813 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385)))) (-5 *2 (-1047)) (-5 *1 (-757))))) +(-10 -7 (-15 -1813 ((-1047) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385))))) (-15 -3165 ((-1047) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385))))) (-15 -3381 ((-1047) (-227) (-227) (-573) (-698 (-227)) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385))))) (-15 -3524 ((-1047) (-227) (-573) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385))))) (-15 -3912 ((-1047) (-227) (-227) (-227) (-573) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G))))) (-15 -4301 ((-1047) (-227) (-227) (-227) (-227) (-573) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G))))) (-15 -4133 ((-1047) (-227) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G))))) (-15 -4200 ((-1047) (-227) (-227) (-573) (-227) (-573) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G))))) (-15 -1947 ((-1047) (-227) (-227) (-573) (-573) (-573) (-573))) (-15 -1485 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573) (-227) (-573) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-78 FUNCTN))))) (-15 -1377 ((-1047) (-698 (-227)) (-698 (-227)) (-573) (-573))) (-15 -3437 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573) (-227) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-78 FUNCTN)))))) +((-3091 (((-1047) (-573) (-573) (-573) (-573) (-227) (-573) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-397)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-3618 (((-1047) (-698 (-227)) (-573) (-573) (-227) (-573) (-573) (-227) (-227) (-698 (-227)) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-87 BDYVAL))) (-397) (-397)) 69) (((-1047) (-698 (-227)) (-573) (-573) (-227) (-573) (-573) (-227) (-227) (-698 (-227)) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-87 BDYVAL)))) 68)) (-3998 (((-1047) (-227) (-227) (-573) (-227) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-397)) (|:| |fp| (-85 FCNG)))) 57)) (-3899 (((-1047) (-698 (-227)) (-698 (-227)) (-573) (-227) (-227) (-227) (-573) (-573) (-573) (-698 (-227)) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN)))) 50)) (-2279 (((-1047) (-227) (-573) (-573) (-1171) (-573) (-227) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-397)) (|:| |fp| (-88 OUTPUT)))) 49)) (-2381 (((-1047) (-227) (-573) (-573) (-227) (-1171) (-227) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-88 OUTPUT)))) 45)) (-2005 (((-1047) (-227) (-573) (-573) (-227) (-227) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN)))) 42)) (-3102 (((-1047) (-227) (-573) (-573) (-573) (-227) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-88 OUTPUT)))) 38))) +(((-758) (-10 -7 (-15 -3102 ((-1047) (-227) (-573) (-573) (-573) (-227) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-88 OUTPUT))))) (-15 -2005 ((-1047) (-227) (-573) (-573) (-227) (-227) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN))))) (-15 -2381 ((-1047) (-227) (-573) (-573) (-227) (-1171) (-227) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-88 OUTPUT))))) (-15 -2279 ((-1047) (-227) (-573) (-573) (-1171) (-573) (-227) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-397)) (|:| |fp| (-88 OUTPUT))))) (-15 -3899 ((-1047) (-698 (-227)) (-698 (-227)) (-573) (-227) (-227) (-227) (-573) (-573) (-573) (-698 (-227)) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN))))) (-15 -3998 ((-1047) (-227) (-227) (-573) (-227) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-397)) (|:| |fp| (-85 FCNG))))) (-15 -3618 ((-1047) (-698 (-227)) (-573) (-573) (-227) (-573) (-573) (-227) (-227) (-698 (-227)) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-87 BDYVAL))))) (-15 -3618 ((-1047) (-698 (-227)) (-573) (-573) (-227) (-573) (-573) (-227) (-227) (-698 (-227)) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-87 BDYVAL))) (-397) (-397))) (-15 -3091 ((-1047) (-573) (-573) (-573) (-573) (-227) (-573) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-397)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -758)) +((-3091 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-758)))) (-3618 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-397)) (-5 *2 (-1047)) (-5 *1 (-758)))) (-3618 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1047)) (-5 *1 (-758)))) (-3998 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-573)) (-5 *5 (-698 (-227))) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-758)))) (-3899 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1047)) (-5 *1 (-758)))) (-2279 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-573)) (-5 *5 (-1171)) (-5 *6 (-698 (-227))) (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-397)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-397)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-758)))) (-2381 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-573)) (-5 *5 (-1171)) (-5 *6 (-698 (-227))) (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-397)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-758)))) (-2005 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-573)) (-5 *5 (-698 (-227))) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-758)))) (-3102 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-573)) (-5 *5 (-698 (-227))) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-758))))) +(-10 -7 (-15 -3102 ((-1047) (-227) (-573) (-573) (-573) (-227) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-88 OUTPUT))))) (-15 -2005 ((-1047) (-227) (-573) (-573) (-227) (-227) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN))))) (-15 -2381 ((-1047) (-227) (-573) (-573) (-227) (-1171) (-227) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-88 OUTPUT))))) (-15 -2279 ((-1047) (-227) (-573) (-573) (-1171) (-573) (-227) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-397)) (|:| |fp| (-88 OUTPUT))))) (-15 -3899 ((-1047) (-698 (-227)) (-698 (-227)) (-573) (-227) (-227) (-227) (-573) (-573) (-573) (-698 (-227)) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN))))) (-15 -3998 ((-1047) (-227) (-227) (-573) (-227) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-397)) (|:| |fp| (-85 FCNG))))) (-15 -3618 ((-1047) (-698 (-227)) (-573) (-573) (-227) (-573) (-573) (-227) (-227) (-698 (-227)) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-87 BDYVAL))))) (-15 -3618 ((-1047) (-698 (-227)) (-573) (-573) (-227) (-573) (-573) (-227) (-227) (-698 (-227)) (-573) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-87 BDYVAL))) (-397) (-397))) (-15 -3091 ((-1047) (-573) (-573) (-573) (-573) (-227) (-573) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-397)) (|:| |fp| (-76 G JACOBG JACGEP)))))) +((-4305 (((-1047) (-227) (-227) (-573) (-573) (-698 (-227)) (-698 (-227)) (-227) (-227) (-573) (-573) (-698 (-227)) (-698 (-227)) (-227) (-227) (-573) (-573) (-698 (-227)) (-698 (-227)) (-227) (-573) (-573) (-573) (-684 (-227)) (-573)) 45)) (-1679 (((-1047) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-1171) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-397)) (|:| |fp| (-83 BNDY)))) 41)) (-2172 (((-1047) (-573) (-573) (-573) (-573) (-227) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573)) 23))) +(((-759) (-10 -7 (-15 -2172 ((-1047) (-573) (-573) (-573) (-573) (-227) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -1679 ((-1047) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-1171) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-397)) (|:| |fp| (-83 BNDY))))) (-15 -4305 ((-1047) (-227) (-227) (-573) (-573) (-698 (-227)) (-698 (-227)) (-227) (-227) (-573) (-573) (-698 (-227)) (-698 (-227)) (-227) (-227) (-573) (-573) (-698 (-227)) (-698 (-227)) (-227) (-573) (-573) (-573) (-684 (-227)) (-573))))) (T -759)) +((-4305 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-573)) (-5 *5 (-698 (-227))) (-5 *6 (-684 (-227))) (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-759)))) (-1679 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *5 (-1171)) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1047)) (-5 *1 (-759)))) (-2172 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-759))))) +(-10 -7 (-15 -2172 ((-1047) (-573) (-573) (-573) (-573) (-227) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -1679 ((-1047) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-1171) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-397)) (|:| |fp| (-83 BNDY))))) (-15 -4305 ((-1047) (-227) (-227) (-573) (-573) (-698 (-227)) (-698 (-227)) (-227) (-227) (-573) (-573) (-698 (-227)) (-698 (-227)) (-227) (-227) (-573) (-573) (-698 (-227)) (-698 (-227)) (-227) (-573) (-573) (-573) (-684 (-227)) (-573)))) +((-2756 (((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-227) (-698 (-227)) (-227) (-227) (-573)) 35)) (-3951 (((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-573) (-227) (-227) (-573)) 34)) (-2777 (((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-573)) (-698 (-227)) (-227) (-227) (-573)) 33)) (-2903 (((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573)) 29)) (-1616 (((-1047) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573)) 28)) (-1587 (((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-227) (-227) (-573)) 27)) (-1374 (((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-698 (-227)) (-573)) 24)) (-4212 (((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-698 (-227)) (-573)) 23)) (-2079 (((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573)) 22)) (-2894 (((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573) (-573) (-573)) 21))) +(((-760) (-10 -7 (-15 -2894 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573) (-573) (-573))) (-15 -2079 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -4212 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-698 (-227)) (-573))) (-15 -1374 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-698 (-227)) (-573))) (-15 -1587 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-227) (-227) (-573))) (-15 -1616 ((-1047) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2903 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2777 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-573)) (-698 (-227)) (-227) (-227) (-573))) (-15 -3951 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-573) (-227) (-227) (-573))) (-15 -2756 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-227) (-698 (-227)) (-227) (-227) (-573))))) (T -760)) +((-2756 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) (-5 *2 (-1047)) (-5 *1 (-760)))) (-3951 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) (-5 *2 (-1047)) (-5 *1 (-760)))) (-2777 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-698 (-227))) (-5 *5 (-698 (-573))) (-5 *6 (-227)) (-5 *3 (-573)) (-5 *2 (-1047)) (-5 *1 (-760)))) (-2903 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-760)))) (-1616 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-760)))) (-1587 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) (-5 *2 (-1047)) (-5 *1 (-760)))) (-1374 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-760)))) (-4212 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-760)))) (-2079 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-760)))) (-2894 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-760))))) +(-10 -7 (-15 -2894 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573) (-573) (-573))) (-15 -2079 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -4212 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-698 (-227)) (-573))) (-15 -1374 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-698 (-227)) (-573))) (-15 -1587 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-227) (-227) (-573))) (-15 -1616 ((-1047) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2903 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2777 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-573)) (-698 (-227)) (-227) (-227) (-573))) (-15 -3951 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-573) (-227) (-227) (-573))) (-15 -2756 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-227) (-698 (-227)) (-227) (-227) (-573)))) +((-2906 (((-1047) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573) (-698 (-227)) (-698 (-227)) (-573) (-573) (-573)) 45)) (-2941 (((-1047) (-573) (-573) (-573) (-227) (-698 (-227)) (-698 (-227)) (-573)) 44)) (-2214 (((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-573) (-573)) 43)) (-3737 (((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573)) 42)) (-4433 (((-1047) (-1171) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-227) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-698 (-227)) (-698 (-227)) (-573)) 41)) (-3085 (((-1047) (-1171) (-573) (-698 (-227)) (-573) (-698 (-227)) (-698 (-227)) (-227) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-698 (-227)) (-698 (-227)) (-698 (-573)) (-573)) 40)) (-1997 (((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-573)) (-573) (-573) (-573) (-227) (-698 (-227)) (-573)) 39)) (-1661 (((-1047) (-1171) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-227) (-573) (-573) (-573) (-698 (-227)) (-573) (-698 (-227)) (-698 (-573))) 38)) (-3626 (((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573)) 35)) (-3886 (((-1047) (-573) (-698 (-227)) (-698 (-227)) (-227) (-573) (-573)) 34)) (-2284 (((-1047) (-573) (-698 (-227)) (-698 (-227)) (-227) (-573)) 33)) (-2902 (((-1047) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573)) 32)) (-3274 (((-1047) (-573) (-227) (-227) (-698 (-227)) (-573) (-573) (-227) (-573)) 31)) (-1399 (((-1047) (-573) (-227) (-227) (-698 (-227)) (-573) (-573) (-227) (-573) (-573) (-573)) 30)) (-1426 (((-1047) (-573) (-227) (-227) (-698 (-227)) (-573) (-573) (-573) (-573) (-573)) 29)) (-3546 (((-1047) (-573) (-573) (-573) (-227) (-227) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-698 (-227)) (-698 (-227)) (-573) (-698 (-573)) (-573) (-573) (-573)) 28)) (-3784 (((-1047) (-573) (-698 (-227)) (-227) (-573)) 24)) (-2101 (((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573)) 21))) +(((-761) (-10 -7 (-15 -2101 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -3784 ((-1047) (-573) (-698 (-227)) (-227) (-573))) (-15 -3546 ((-1047) (-573) (-573) (-573) (-227) (-227) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-698 (-227)) (-698 (-227)) (-573) (-698 (-573)) (-573) (-573) (-573))) (-15 -1426 ((-1047) (-573) (-227) (-227) (-698 (-227)) (-573) (-573) (-573) (-573) (-573))) (-15 -1399 ((-1047) (-573) (-227) (-227) (-698 (-227)) (-573) (-573) (-227) (-573) (-573) (-573))) (-15 -3274 ((-1047) (-573) (-227) (-227) (-698 (-227)) (-573) (-573) (-227) (-573))) (-15 -2902 ((-1047) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2284 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-227) (-573))) (-15 -3886 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-227) (-573) (-573))) (-15 -3626 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -1661 ((-1047) (-1171) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-227) (-573) (-573) (-573) (-698 (-227)) (-573) (-698 (-227)) (-698 (-573)))) (-15 -1997 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-573)) (-573) (-573) (-573) (-227) (-698 (-227)) (-573))) (-15 -3085 ((-1047) (-1171) (-573) (-698 (-227)) (-573) (-698 (-227)) (-698 (-227)) (-227) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-698 (-227)) (-698 (-227)) (-698 (-573)) (-573))) (-15 -4433 ((-1047) (-1171) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-227) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -3737 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2214 ((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-573) (-573))) (-15 -2941 ((-1047) (-573) (-573) (-573) (-227) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2906 ((-1047) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573) (-698 (-227)) (-698 (-227)) (-573) (-573) (-573))))) (T -761)) +((-2906 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-761)))) (-2941 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-761)))) (-2214 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-761)))) (-3737 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-761)))) (-4433 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1171)) (-5 *4 (-573)) (-5 *5 (-698 (-227))) (-5 *6 (-227)) (-5 *2 (-1047)) (-5 *1 (-761)))) (-3085 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1171)) (-5 *5 (-698 (-227))) (-5 *6 (-227)) (-5 *7 (-698 (-573))) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-761)))) (-1997 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-698 (-227))) (-5 *5 (-698 (-573))) (-5 *6 (-227)) (-5 *3 (-573)) (-5 *2 (-1047)) (-5 *1 (-761)))) (-1661 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1171)) (-5 *5 (-698 (-227))) (-5 *6 (-227)) (-5 *7 (-698 (-573))) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-761)))) (-3626 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-761)))) (-3886 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) (-5 *2 (-1047)) (-5 *1 (-761)))) (-2284 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) (-5 *2 (-1047)) (-5 *1 (-761)))) (-2902 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-761)))) (-3274 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-761)))) (-1399 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-761)))) (-1426 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-761)))) (-3546 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-698 (-227))) (-5 *6 (-698 (-573))) (-5 *3 (-573)) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-761)))) (-3784 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) (-5 *2 (-1047)) (-5 *1 (-761)))) (-2101 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-761))))) +(-10 -7 (-15 -2101 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -3784 ((-1047) (-573) (-698 (-227)) (-227) (-573))) (-15 -3546 ((-1047) (-573) (-573) (-573) (-227) (-227) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-698 (-227)) (-698 (-227)) (-573) (-698 (-573)) (-573) (-573) (-573))) (-15 -1426 ((-1047) (-573) (-227) (-227) (-698 (-227)) (-573) (-573) (-573) (-573) (-573))) (-15 -1399 ((-1047) (-573) (-227) (-227) (-698 (-227)) (-573) (-573) (-227) (-573) (-573) (-573))) (-15 -3274 ((-1047) (-573) (-227) (-227) (-698 (-227)) (-573) (-573) (-227) (-573))) (-15 -2902 ((-1047) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2284 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-227) (-573))) (-15 -3886 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-227) (-573) (-573))) (-15 -3626 ((-1047) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -1661 ((-1047) (-1171) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-227) (-573) (-573) (-573) (-698 (-227)) (-573) (-698 (-227)) (-698 (-573)))) (-15 -1997 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-573)) (-573) (-573) (-573) (-227) (-698 (-227)) (-573))) (-15 -3085 ((-1047) (-1171) (-573) (-698 (-227)) (-573) (-698 (-227)) (-698 (-227)) (-227) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-698 (-227)) (-698 (-227)) (-698 (-573)) (-573))) (-15 -4433 ((-1047) (-1171) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-227) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -3737 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2214 ((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-573) (-573))) (-15 -2941 ((-1047) (-573) (-573) (-573) (-227) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2906 ((-1047) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573) (-698 (-227)) (-698 (-227)) (-573) (-573) (-573)))) +((-2692 (((-1047) (-573) (-573) (-573) (-227) (-698 (-227)) (-573) (-698 (-227)) (-573)) 63)) (-3809 (((-1047) (-573) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-573) (-112) (-227) (-573) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-573) (-573) (-573) (-573) (-573) (-227) (-227) (-227) (-573) (-573) (-573) (-573) (-573) (-698 (-573)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-77 OBJFUN)))) 62)) (-3169 (((-1047) (-573) (-573) (-573) (-573) (-573) (-573) (-573) (-573) (-227) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-112) (-112) (-112) (-573) (-573) (-698 (-227)) (-698 (-573)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-65 QPHESS)))) 58)) (-1683 (((-1047) (-573) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-112) (-573) (-573) (-698 (-227)) (-573)) 51)) (-2173 (((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-66 FUNCT1)))) 50)) (-3056 (((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-63 LSFUN2)))) 46)) (-2124 (((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-79 LSFUN1)))) 42)) (-1588 (((-1047) (-573) (-227) (-227) (-573) (-227) (-112) (-227) (-227) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-77 OBJFUN)))) 38))) +(((-762) (-10 -7 (-15 -1588 ((-1047) (-573) (-227) (-227) (-573) (-227) (-112) (-227) (-227) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-77 OBJFUN))))) (-15 -2124 ((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-79 LSFUN1))))) (-15 -3056 ((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-63 LSFUN2))))) (-15 -2173 ((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-66 FUNCT1))))) (-15 -1683 ((-1047) (-573) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-112) (-573) (-573) (-698 (-227)) (-573))) (-15 -3169 ((-1047) (-573) (-573) (-573) (-573) (-573) (-573) (-573) (-573) (-227) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-112) (-112) (-112) (-573) (-573) (-698 (-227)) (-698 (-573)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-65 QPHESS))))) (-15 -3809 ((-1047) (-573) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-573) (-112) (-227) (-573) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-573) (-573) (-573) (-573) (-573) (-227) (-227) (-227) (-573) (-573) (-573) (-573) (-573) (-698 (-573)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-77 OBJFUN))))) (-15 -2692 ((-1047) (-573) (-573) (-573) (-227) (-698 (-227)) (-573) (-698 (-227)) (-573))))) (T -762)) +((-2692 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-762)))) (-3809 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-698 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-698 (-573))) (-5 *8 (-3 (|:| |fn| (-397)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-397)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-573)) (-5 *2 (-1047)) (-5 *1 (-762)))) (-3169 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-698 (-227))) (-5 *6 (-112)) (-5 *7 (-698 (-573))) (-5 *8 (-3 (|:| |fn| (-397)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-573)) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-762)))) (-1683 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-112)) (-5 *2 (-1047)) (-5 *1 (-762)))) (-2173 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1047)) (-5 *1 (-762)))) (-3056 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1047)) (-5 *1 (-762)))) (-2124 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1047)) (-5 *1 (-762)))) (-1588 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-573)) (-5 *5 (-112)) (-5 *6 (-698 (-227))) (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-762))))) +(-10 -7 (-15 -1588 ((-1047) (-573) (-227) (-227) (-573) (-227) (-112) (-227) (-227) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-77 OBJFUN))))) (-15 -2124 ((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-79 LSFUN1))))) (-15 -3056 ((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-63 LSFUN2))))) (-15 -2173 ((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-66 FUNCT1))))) (-15 -1683 ((-1047) (-573) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-112) (-573) (-573) (-698 (-227)) (-573))) (-15 -3169 ((-1047) (-573) (-573) (-573) (-573) (-573) (-573) (-573) (-573) (-227) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-112) (-112) (-112) (-573) (-573) (-698 (-227)) (-698 (-573)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-65 QPHESS))))) (-15 -3809 ((-1047) (-573) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-573) (-112) (-227) (-573) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-573) (-573) (-573) (-573) (-573) (-227) (-227) (-227) (-573) (-573) (-573) (-573) (-573) (-698 (-573)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-397)) (|:| |fp| (-77 OBJFUN))))) (-15 -2692 ((-1047) (-573) (-573) (-573) (-227) (-698 (-227)) (-573) (-698 (-227)) (-573)))) +((-2234 (((-1047) (-1171) (-573) (-573) (-573) (-573) (-698 (-171 (-227))) (-698 (-171 (-227))) (-573)) 47)) (-4140 (((-1047) (-1171) (-1171) (-573) (-573) (-698 (-171 (-227))) (-573) (-698 (-171 (-227))) (-573) (-573) (-698 (-171 (-227))) (-573)) 46)) (-4108 (((-1047) (-573) (-573) (-573) (-698 (-171 (-227))) (-573)) 45)) (-2593 (((-1047) (-1171) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573)) 40)) (-2193 (((-1047) (-1171) (-1171) (-573) (-573) (-698 (-227)) (-573) (-698 (-227)) (-573) (-573) (-698 (-227)) (-573)) 39)) (-1438 (((-1047) (-573) (-573) (-573) (-698 (-227)) (-573)) 36)) (-4169 (((-1047) (-573) (-698 (-227)) (-573) (-698 (-573)) (-573)) 35)) (-3481 (((-1047) (-573) (-573) (-573) (-573) (-653 (-112)) (-698 (-227)) (-698 (-573)) (-698 (-573)) (-227) (-227) (-573)) 34)) (-1804 (((-1047) (-573) (-573) (-573) (-698 (-573)) (-698 (-573)) (-698 (-573)) (-698 (-573)) (-112) (-227) (-112) (-698 (-573)) (-698 (-227)) (-573)) 33)) (-4346 (((-1047) (-573) (-573) (-573) (-573) (-227) (-112) (-112) (-653 (-112)) (-698 (-227)) (-698 (-573)) (-698 (-573)) (-573)) 32))) +(((-763) (-10 -7 (-15 -4346 ((-1047) (-573) (-573) (-573) (-573) (-227) (-112) (-112) (-653 (-112)) (-698 (-227)) (-698 (-573)) (-698 (-573)) (-573))) (-15 -1804 ((-1047) (-573) (-573) (-573) (-698 (-573)) (-698 (-573)) (-698 (-573)) (-698 (-573)) (-112) (-227) (-112) (-698 (-573)) (-698 (-227)) (-573))) (-15 -3481 ((-1047) (-573) (-573) (-573) (-573) (-653 (-112)) (-698 (-227)) (-698 (-573)) (-698 (-573)) (-227) (-227) (-573))) (-15 -4169 ((-1047) (-573) (-698 (-227)) (-573) (-698 (-573)) (-573))) (-15 -1438 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-573))) (-15 -2193 ((-1047) (-1171) (-1171) (-573) (-573) (-698 (-227)) (-573) (-698 (-227)) (-573) (-573) (-698 (-227)) (-573))) (-15 -2593 ((-1047) (-1171) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -4108 ((-1047) (-573) (-573) (-573) (-698 (-171 (-227))) (-573))) (-15 -4140 ((-1047) (-1171) (-1171) (-573) (-573) (-698 (-171 (-227))) (-573) (-698 (-171 (-227))) (-573) (-573) (-698 (-171 (-227))) (-573))) (-15 -2234 ((-1047) (-1171) (-573) (-573) (-573) (-573) (-698 (-171 (-227))) (-698 (-171 (-227))) (-573))))) (T -763)) +((-2234 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1171)) (-5 *4 (-573)) (-5 *5 (-698 (-171 (-227)))) (-5 *2 (-1047)) (-5 *1 (-763)))) (-4140 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1171)) (-5 *4 (-573)) (-5 *5 (-698 (-171 (-227)))) (-5 *2 (-1047)) (-5 *1 (-763)))) (-4108 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-171 (-227)))) (-5 *2 (-1047)) (-5 *1 (-763)))) (-2593 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1171)) (-5 *4 (-573)) (-5 *5 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-763)))) (-2193 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1171)) (-5 *4 (-573)) (-5 *5 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-763)))) (-1438 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-763)))) (-4169 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-698 (-227))) (-5 *5 (-698 (-573))) (-5 *3 (-573)) (-5 *2 (-1047)) (-5 *1 (-763)))) (-3481 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-653 (-112))) (-5 *5 (-698 (-227))) (-5 *6 (-698 (-573))) (-5 *7 (-227)) (-5 *3 (-573)) (-5 *2 (-1047)) (-5 *1 (-763)))) (-1804 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-698 (-573))) (-5 *5 (-112)) (-5 *7 (-698 (-227))) (-5 *3 (-573)) (-5 *6 (-227)) (-5 *2 (-1047)) (-5 *1 (-763)))) (-4346 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-653 (-112))) (-5 *7 (-698 (-227))) (-5 *8 (-698 (-573))) (-5 *3 (-573)) (-5 *4 (-227)) (-5 *5 (-112)) (-5 *2 (-1047)) (-5 *1 (-763))))) +(-10 -7 (-15 -4346 ((-1047) (-573) (-573) (-573) (-573) (-227) (-112) (-112) (-653 (-112)) (-698 (-227)) (-698 (-573)) (-698 (-573)) (-573))) (-15 -1804 ((-1047) (-573) (-573) (-573) (-698 (-573)) (-698 (-573)) (-698 (-573)) (-698 (-573)) (-112) (-227) (-112) (-698 (-573)) (-698 (-227)) (-573))) (-15 -3481 ((-1047) (-573) (-573) (-573) (-573) (-653 (-112)) (-698 (-227)) (-698 (-573)) (-698 (-573)) (-227) (-227) (-573))) (-15 -4169 ((-1047) (-573) (-698 (-227)) (-573) (-698 (-573)) (-573))) (-15 -1438 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-573))) (-15 -2193 ((-1047) (-1171) (-1171) (-573) (-573) (-698 (-227)) (-573) (-698 (-227)) (-573) (-573) (-698 (-227)) (-573))) (-15 -2593 ((-1047) (-1171) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -4108 ((-1047) (-573) (-573) (-573) (-698 (-171 (-227))) (-573))) (-15 -4140 ((-1047) (-1171) (-1171) (-573) (-573) (-698 (-171 (-227))) (-573) (-698 (-171 (-227))) (-573) (-573) (-698 (-171 (-227))) (-573))) (-15 -2234 ((-1047) (-1171) (-573) (-573) (-573) (-573) (-698 (-171 (-227))) (-698 (-171 (-227))) (-573)))) +((-2904 (((-1047) (-573) (-573) (-573) (-573) (-573) (-112) (-573) (-112) (-573) (-698 (-171 (-227))) (-698 (-171 (-227))) (-573)) 79)) (-4348 (((-1047) (-573) (-573) (-573) (-573) (-573) (-112) (-573) (-112) (-573) (-698 (-227)) (-698 (-227)) (-573)) 68)) (-2891 (((-1047) (-573) (-573) (-227) (-573) (-573) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-397)) (|:| |fp| (-68 IMAGE))) (-397)) 56) (((-1047) (-573) (-573) (-227) (-573) (-573) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-397)) (|:| |fp| (-68 IMAGE)))) 55)) (-4255 (((-1047) (-573) (-573) (-573) (-227) (-112) (-573) (-698 (-227)) (-698 (-227)) (-573)) 37)) (-2461 (((-1047) (-573) (-573) (-227) (-227) (-573) (-573) (-698 (-227)) (-573)) 33)) (-2210 (((-1047) (-698 (-227)) (-573) (-698 (-227)) (-573) (-573) (-573) (-573) (-573)) 30)) (-2851 (((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573)) 29)) (-2521 (((-1047) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573)) 28)) (-2621 (((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573)) 27)) (-2442 (((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-573)) 26)) (-2182 (((-1047) (-573) (-573) (-698 (-227)) (-573)) 25)) (-2178 (((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573)) 24)) (-3332 (((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573)) 23)) (-3537 (((-1047) (-698 (-227)) (-573) (-573) (-573) (-573)) 22)) (-1757 (((-1047) (-573) (-573) (-698 (-227)) (-573)) 21))) +(((-764) (-10 -7 (-15 -1757 ((-1047) (-573) (-573) (-698 (-227)) (-573))) (-15 -3537 ((-1047) (-698 (-227)) (-573) (-573) (-573) (-573))) (-15 -3332 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2178 ((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2182 ((-1047) (-573) (-573) (-698 (-227)) (-573))) (-15 -2442 ((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-573))) (-15 -2621 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2521 ((-1047) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2851 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2210 ((-1047) (-698 (-227)) (-573) (-698 (-227)) (-573) (-573) (-573) (-573) (-573))) (-15 -2461 ((-1047) (-573) (-573) (-227) (-227) (-573) (-573) (-698 (-227)) (-573))) (-15 -4255 ((-1047) (-573) (-573) (-573) (-227) (-112) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2891 ((-1047) (-573) (-573) (-227) (-573) (-573) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-397)) (|:| |fp| (-68 IMAGE))))) (-15 -2891 ((-1047) (-573) (-573) (-227) (-573) (-573) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-397)) (|:| |fp| (-68 IMAGE))) (-397))) (-15 -4348 ((-1047) (-573) (-573) (-573) (-573) (-573) (-112) (-573) (-112) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2904 ((-1047) (-573) (-573) (-573) (-573) (-573) (-112) (-573) (-112) (-573) (-698 (-171 (-227))) (-698 (-171 (-227))) (-573))))) (T -764)) +((-2904 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-573)) (-5 *4 (-112)) (-5 *5 (-698 (-171 (-227)))) (-5 *2 (-1047)) (-5 *1 (-764)))) (-4348 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-573)) (-5 *4 (-112)) (-5 *5 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-764)))) (-2891 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-397)) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-764)))) (-2891 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-764)))) (-4255 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-573)) (-5 *5 (-112)) (-5 *6 (-698 (-227))) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-764)))) (-2461 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-764)))) (-2210 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-764)))) (-2851 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-764)))) (-2521 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-764)))) (-2621 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-764)))) (-2442 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-764)))) (-2182 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-764)))) (-2178 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-764)))) (-3332 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-764)))) (-3537 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-764)))) (-1757 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-764))))) +(-10 -7 (-15 -1757 ((-1047) (-573) (-573) (-698 (-227)) (-573))) (-15 -3537 ((-1047) (-698 (-227)) (-573) (-573) (-573) (-573))) (-15 -3332 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2178 ((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2182 ((-1047) (-573) (-573) (-698 (-227)) (-573))) (-15 -2442 ((-1047) (-573) (-573) (-573) (-573) (-698 (-227)) (-573))) (-15 -2621 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2521 ((-1047) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2851 ((-1047) (-573) (-573) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2210 ((-1047) (-698 (-227)) (-573) (-698 (-227)) (-573) (-573) (-573) (-573) (-573))) (-15 -2461 ((-1047) (-573) (-573) (-227) (-227) (-573) (-573) (-698 (-227)) (-573))) (-15 -4255 ((-1047) (-573) (-573) (-573) (-227) (-112) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2891 ((-1047) (-573) (-573) (-227) (-573) (-573) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-397)) (|:| |fp| (-68 IMAGE))))) (-15 -2891 ((-1047) (-573) (-573) (-227) (-573) (-573) (-573) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-397)) (|:| |fp| (-68 IMAGE))) (-397))) (-15 -4348 ((-1047) (-573) (-573) (-573) (-573) (-573) (-112) (-573) (-112) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2904 ((-1047) (-573) (-573) (-573) (-573) (-573) (-112) (-573) (-112) (-573) (-698 (-171 (-227))) (-698 (-171 (-227))) (-573)))) +((-2148 (((-1047) (-573) (-573) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-70 APROD)))) 64)) (-1643 (((-1047) (-573) (-698 (-227)) (-573) (-698 (-227)) (-698 (-573)) (-573) (-698 (-227)) (-573) (-573) (-573) (-573)) 60)) (-2192 (((-1047) (-573) (-698 (-227)) (-112) (-227) (-573) (-573) (-573) (-573) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-397)) (|:| |fp| (-73 MSOLVE)))) 59)) (-3981 (((-1047) (-573) (-573) (-698 (-227)) (-573) (-698 (-573)) (-573) (-698 (-573)) (-698 (-227)) (-698 (-573)) (-698 (-573)) (-698 (-227)) (-698 (-227)) (-698 (-573)) (-573)) 37)) (-2525 (((-1047) (-573) (-573) (-573) (-227) (-573) (-698 (-227)) (-698 (-227)) (-573)) 36)) (-2204 (((-1047) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573)) 33)) (-3775 (((-1047) (-573) (-698 (-227)) (-573) (-698 (-573)) (-698 (-573)) (-573) (-698 (-573)) (-698 (-227))) 32)) (-3894 (((-1047) (-698 (-227)) (-573) (-698 (-227)) (-573) (-573) (-573)) 28)) (-4034 (((-1047) (-573) (-698 (-227)) (-573) (-698 (-227)) (-573)) 27)) (-2899 (((-1047) (-573) (-698 (-227)) (-573) (-698 (-227)) (-573)) 26)) (-1828 (((-1047) (-573) (-698 (-171 (-227))) (-573) (-573) (-573) (-573) (-698 (-171 (-227))) (-573)) 22))) +(((-765) (-10 -7 (-15 -1828 ((-1047) (-573) (-698 (-171 (-227))) (-573) (-573) (-573) (-573) (-698 (-171 (-227))) (-573))) (-15 -2899 ((-1047) (-573) (-698 (-227)) (-573) (-698 (-227)) (-573))) (-15 -4034 ((-1047) (-573) (-698 (-227)) (-573) (-698 (-227)) (-573))) (-15 -3894 ((-1047) (-698 (-227)) (-573) (-698 (-227)) (-573) (-573) (-573))) (-15 -3775 ((-1047) (-573) (-698 (-227)) (-573) (-698 (-573)) (-698 (-573)) (-573) (-698 (-573)) (-698 (-227)))) (-15 -2204 ((-1047) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2525 ((-1047) (-573) (-573) (-573) (-227) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -3981 ((-1047) (-573) (-573) (-698 (-227)) (-573) (-698 (-573)) (-573) (-698 (-573)) (-698 (-227)) (-698 (-573)) (-698 (-573)) (-698 (-227)) (-698 (-227)) (-698 (-573)) (-573))) (-15 -2192 ((-1047) (-573) (-698 (-227)) (-112) (-227) (-573) (-573) (-573) (-573) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-397)) (|:| |fp| (-73 MSOLVE))))) (-15 -1643 ((-1047) (-573) (-698 (-227)) (-573) (-698 (-227)) (-698 (-573)) (-573) (-698 (-227)) (-573) (-573) (-573) (-573))) (-15 -2148 ((-1047) (-573) (-573) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-70 APROD))))))) (T -765)) +((-2148 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-765)))) (-1643 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-698 (-227))) (-5 *5 (-698 (-573))) (-5 *3 (-573)) (-5 *2 (-1047)) (-5 *1 (-765)))) (-2192 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-397)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1047)) (-5 *1 (-765)))) (-3981 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-698 (-227))) (-5 *5 (-698 (-573))) (-5 *3 (-573)) (-5 *2 (-1047)) (-5 *1 (-765)))) (-2525 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-765)))) (-2204 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-765)))) (-3775 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-698 (-227))) (-5 *5 (-698 (-573))) (-5 *3 (-573)) (-5 *2 (-1047)) (-5 *1 (-765)))) (-3894 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-765)))) (-4034 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-765)))) (-2899 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-765)))) (-1828 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-171 (-227)))) (-5 *2 (-1047)) (-5 *1 (-765))))) +(-10 -7 (-15 -1828 ((-1047) (-573) (-698 (-171 (-227))) (-573) (-573) (-573) (-573) (-698 (-171 (-227))) (-573))) (-15 -2899 ((-1047) (-573) (-698 (-227)) (-573) (-698 (-227)) (-573))) (-15 -4034 ((-1047) (-573) (-698 (-227)) (-573) (-698 (-227)) (-573))) (-15 -3894 ((-1047) (-698 (-227)) (-573) (-698 (-227)) (-573) (-573) (-573))) (-15 -3775 ((-1047) (-573) (-698 (-227)) (-573) (-698 (-573)) (-698 (-573)) (-573) (-698 (-573)) (-698 (-227)))) (-15 -2204 ((-1047) (-573) (-573) (-698 (-227)) (-698 (-227)) (-698 (-227)) (-573))) (-15 -2525 ((-1047) (-573) (-573) (-573) (-227) (-573) (-698 (-227)) (-698 (-227)) (-573))) (-15 -3981 ((-1047) (-573) (-573) (-698 (-227)) (-573) (-698 (-573)) (-573) (-698 (-573)) (-698 (-227)) (-698 (-573)) (-698 (-573)) (-698 (-227)) (-698 (-227)) (-698 (-573)) (-573))) (-15 -2192 ((-1047) (-573) (-698 (-227)) (-112) (-227) (-573) (-573) (-573) (-573) (-227) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-397)) (|:| |fp| (-73 MSOLVE))))) (-15 -1643 ((-1047) (-573) (-698 (-227)) (-573) (-698 (-227)) (-698 (-573)) (-573) (-698 (-227)) (-573) (-573) (-573) (-573))) (-15 -2148 ((-1047) (-573) (-573) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-573) (-698 (-227)) (-573) (-3 (|:| |fn| (-397)) (|:| |fp| (-70 APROD)))))) +((-2828 (((-1047) (-1171) (-573) (-573) (-698 (-227)) (-573) (-573) (-698 (-227))) 29)) (-2505 (((-1047) (-1171) (-573) (-573) (-698 (-227))) 28)) (-2282 (((-1047) (-1171) (-573) (-573) (-698 (-227)) (-573) (-698 (-573)) (-573) (-698 (-227))) 27)) (-2702 (((-1047) (-573) (-573) (-573) (-698 (-227))) 21))) +(((-766) (-10 -7 (-15 -2702 ((-1047) (-573) (-573) (-573) (-698 (-227)))) (-15 -2282 ((-1047) (-1171) (-573) (-573) (-698 (-227)) (-573) (-698 (-573)) (-573) (-698 (-227)))) (-15 -2505 ((-1047) (-1171) (-573) (-573) (-698 (-227)))) (-15 -2828 ((-1047) (-1171) (-573) (-573) (-698 (-227)) (-573) (-573) (-698 (-227)))))) (T -766)) +((-2828 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1171)) (-5 *4 (-573)) (-5 *5 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-766)))) (-2505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1171)) (-5 *4 (-573)) (-5 *5 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-766)))) (-2282 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1171)) (-5 *5 (-698 (-227))) (-5 *6 (-698 (-573))) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-766)))) (-2702 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-766))))) +(-10 -7 (-15 -2702 ((-1047) (-573) (-573) (-573) (-698 (-227)))) (-15 -2282 ((-1047) (-1171) (-573) (-573) (-698 (-227)) (-573) (-698 (-573)) (-573) (-698 (-227)))) (-15 -2505 ((-1047) (-1171) (-573) (-573) (-698 (-227)))) (-15 -2828 ((-1047) (-1171) (-573) (-573) (-698 (-227)) (-573) (-573) (-698 (-227))))) +((-4077 (((-1047) (-227) (-227) (-227) (-227) (-573)) 62)) (-2938 (((-1047) (-227) (-227) (-227) (-573)) 61)) (-4093 (((-1047) (-227) (-227) (-227) (-573)) 60)) (-2847 (((-1047) (-227) (-227) (-573)) 59)) (-3429 (((-1047) (-227) (-573)) 58)) (-1589 (((-1047) (-227) (-573)) 57)) (-4104 (((-1047) (-227) (-573)) 56)) (-2734 (((-1047) (-227) (-573)) 55)) (-3597 (((-1047) (-227) (-573)) 54)) (-3024 (((-1047) (-227) (-573)) 53)) (-3530 (((-1047) (-227) (-171 (-227)) (-573) (-1171) (-573)) 52)) (-1652 (((-1047) (-227) (-171 (-227)) (-573) (-1171) (-573)) 51)) (-1700 (((-1047) (-227) (-573)) 50)) (-4230 (((-1047) (-227) (-573)) 49)) (-2291 (((-1047) (-227) (-573)) 48)) (-1607 (((-1047) (-227) (-573)) 47)) (-3318 (((-1047) (-573) (-227) (-171 (-227)) (-573) (-1171) (-573)) 46)) (-3979 (((-1047) (-1171) (-171 (-227)) (-1171) (-573)) 45)) (-2133 (((-1047) (-1171) (-171 (-227)) (-1171) (-573)) 44)) (-1572 (((-1047) (-227) (-171 (-227)) (-573) (-1171) (-573)) 43)) (-2028 (((-1047) (-227) (-171 (-227)) (-573) (-1171) (-573)) 42)) (-3224 (((-1047) (-227) (-573)) 39)) (-1761 (((-1047) (-227) (-573)) 38)) (-2988 (((-1047) (-227) (-573)) 37)) (-1432 (((-1047) (-227) (-573)) 36)) (-4063 (((-1047) (-227) (-573)) 35)) (-4208 (((-1047) (-227) (-573)) 34)) (-3487 (((-1047) (-227) (-573)) 33)) (-1544 (((-1047) (-227) (-573)) 32)) (-2211 (((-1047) (-227) (-573)) 31)) (-3819 (((-1047) (-227) (-573)) 30)) (-4129 (((-1047) (-227) (-227) (-227) (-573)) 29)) (-2722 (((-1047) (-227) (-573)) 28)) (-1856 (((-1047) (-227) (-573)) 27)) (-4180 (((-1047) (-227) (-573)) 26)) (-3664 (((-1047) (-227) (-573)) 25)) (-4148 (((-1047) (-227) (-573)) 24)) (-1842 (((-1047) (-171 (-227)) (-573)) 21))) +(((-767) (-10 -7 (-15 -1842 ((-1047) (-171 (-227)) (-573))) (-15 -4148 ((-1047) (-227) (-573))) (-15 -3664 ((-1047) (-227) (-573))) (-15 -4180 ((-1047) (-227) (-573))) (-15 -1856 ((-1047) (-227) (-573))) (-15 -2722 ((-1047) (-227) (-573))) (-15 -4129 ((-1047) (-227) (-227) (-227) (-573))) (-15 -3819 ((-1047) (-227) (-573))) (-15 -2211 ((-1047) (-227) (-573))) (-15 -1544 ((-1047) (-227) (-573))) (-15 -3487 ((-1047) (-227) (-573))) (-15 -4208 ((-1047) (-227) (-573))) (-15 -4063 ((-1047) (-227) (-573))) (-15 -1432 ((-1047) (-227) (-573))) (-15 -2988 ((-1047) (-227) (-573))) (-15 -1761 ((-1047) (-227) (-573))) (-15 -3224 ((-1047) (-227) (-573))) (-15 -2028 ((-1047) (-227) (-171 (-227)) (-573) (-1171) (-573))) (-15 -1572 ((-1047) (-227) (-171 (-227)) (-573) (-1171) (-573))) (-15 -2133 ((-1047) (-1171) (-171 (-227)) (-1171) (-573))) (-15 -3979 ((-1047) (-1171) (-171 (-227)) (-1171) (-573))) (-15 -3318 ((-1047) (-573) (-227) (-171 (-227)) (-573) (-1171) (-573))) (-15 -1607 ((-1047) (-227) (-573))) (-15 -2291 ((-1047) (-227) (-573))) (-15 -4230 ((-1047) (-227) (-573))) (-15 -1700 ((-1047) (-227) (-573))) (-15 -1652 ((-1047) (-227) (-171 (-227)) (-573) (-1171) (-573))) (-15 -3530 ((-1047) (-227) (-171 (-227)) (-573) (-1171) (-573))) (-15 -3024 ((-1047) (-227) (-573))) (-15 -3597 ((-1047) (-227) (-573))) (-15 -2734 ((-1047) (-227) (-573))) (-15 -4104 ((-1047) (-227) (-573))) (-15 -1589 ((-1047) (-227) (-573))) (-15 -3429 ((-1047) (-227) (-573))) (-15 -2847 ((-1047) (-227) (-227) (-573))) (-15 -4093 ((-1047) (-227) (-227) (-227) (-573))) (-15 -2938 ((-1047) (-227) (-227) (-227) (-573))) (-15 -4077 ((-1047) (-227) (-227) (-227) (-227) (-573))))) (T -767)) +((-4077 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-2938 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-4093 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-2847 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-3429 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-1589 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-4104 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-2734 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-3597 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-3024 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-3530 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-573)) (-5 *6 (-1171)) (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-1652 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-573)) (-5 *6 (-1171)) (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-1700 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-4230 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-2291 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-3318 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-573)) (-5 *5 (-171 (-227))) (-5 *6 (-1171)) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-3979 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1171)) (-5 *4 (-171 (-227))) (-5 *5 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-2133 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1171)) (-5 *4 (-171 (-227))) (-5 *5 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-1572 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-573)) (-5 *6 (-1171)) (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-2028 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-573)) (-5 *6 (-1171)) (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-3224 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-1761 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-2988 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-1432 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-4063 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-4208 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-3487 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-1544 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-2211 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-3819 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-4129 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-2722 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-1856 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-4180 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-3664 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-4148 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767)))) (-1842 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-227))) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) +(-10 -7 (-15 -1842 ((-1047) (-171 (-227)) (-573))) (-15 -4148 ((-1047) (-227) (-573))) (-15 -3664 ((-1047) (-227) (-573))) (-15 -4180 ((-1047) (-227) (-573))) (-15 -1856 ((-1047) (-227) (-573))) (-15 -2722 ((-1047) (-227) (-573))) (-15 -4129 ((-1047) (-227) (-227) (-227) (-573))) (-15 -3819 ((-1047) (-227) (-573))) (-15 -2211 ((-1047) (-227) (-573))) (-15 -1544 ((-1047) (-227) (-573))) (-15 -3487 ((-1047) (-227) (-573))) (-15 -4208 ((-1047) (-227) (-573))) (-15 -4063 ((-1047) (-227) (-573))) (-15 -1432 ((-1047) (-227) (-573))) (-15 -2988 ((-1047) (-227) (-573))) (-15 -1761 ((-1047) (-227) (-573))) (-15 -3224 ((-1047) (-227) (-573))) (-15 -2028 ((-1047) (-227) (-171 (-227)) (-573) (-1171) (-573))) (-15 -1572 ((-1047) (-227) (-171 (-227)) (-573) (-1171) (-573))) (-15 -2133 ((-1047) (-1171) (-171 (-227)) (-1171) (-573))) (-15 -3979 ((-1047) (-1171) (-171 (-227)) (-1171) (-573))) (-15 -3318 ((-1047) (-573) (-227) (-171 (-227)) (-573) (-1171) (-573))) (-15 -1607 ((-1047) (-227) (-573))) (-15 -2291 ((-1047) (-227) (-573))) (-15 -4230 ((-1047) (-227) (-573))) (-15 -1700 ((-1047) (-227) (-573))) (-15 -1652 ((-1047) (-227) (-171 (-227)) (-573) (-1171) (-573))) (-15 -3530 ((-1047) (-227) (-171 (-227)) (-573) (-1171) (-573))) (-15 -3024 ((-1047) (-227) (-573))) (-15 -3597 ((-1047) (-227) (-573))) (-15 -2734 ((-1047) (-227) (-573))) (-15 -4104 ((-1047) (-227) (-573))) (-15 -1589 ((-1047) (-227) (-573))) (-15 -3429 ((-1047) (-227) (-573))) (-15 -2847 ((-1047) (-227) (-227) (-573))) (-15 -4093 ((-1047) (-227) (-227) (-227) (-573))) (-15 -2938 ((-1047) (-227) (-227) (-227) (-573))) (-15 -4077 ((-1047) (-227) (-227) (-227) (-227) (-573)))) +((-2766 (((-1285)) 20)) (-1851 (((-1171)) 31)) (-3568 (((-1171)) 30)) (-4321 (((-1116) (-1189) (-698 (-573))) 45) (((-1116) (-1189) (-698 (-227))) 41)) (-3686 (((-112)) 19)) (-3366 (((-1171) (-1171)) 34))) +(((-768) (-10 -7 (-15 -3568 ((-1171))) (-15 -1851 ((-1171))) (-15 -3366 ((-1171) (-1171))) (-15 -4321 ((-1116) (-1189) (-698 (-227)))) (-15 -4321 ((-1116) (-1189) (-698 (-573)))) (-15 -3686 ((-112))) (-15 -2766 ((-1285))))) (T -768)) +((-2766 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-768)))) (-3686 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-768)))) (-4321 (*1 *2 *3 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-698 (-573))) (-5 *2 (-1116)) (-5 *1 (-768)))) (-4321 (*1 *2 *3 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-698 (-227))) (-5 *2 (-1116)) (-5 *1 (-768)))) (-3366 (*1 *2 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-768)))) (-1851 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-768)))) (-3568 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-768))))) +(-10 -7 (-15 -3568 ((-1171))) (-15 -1851 ((-1171))) (-15 -3366 ((-1171) (-1171))) (-15 -4321 ((-1116) (-1189) (-698 (-227)))) (-15 -4321 ((-1116) (-1189) (-698 (-573)))) (-15 -3686 ((-112))) (-15 -2766 ((-1285)))) +((-4380 (($ $ $) 10)) (-3531 (($ $ $ $) 9)) (-4366 (($ $ $) 12))) +(((-769 |#1|) (-10 -8 (-15 -4366 (|#1| |#1| |#1|)) (-15 -4380 (|#1| |#1| |#1|)) (-15 -3531 (|#1| |#1| |#1| |#1|))) (-770)) (T -769)) +NIL +(-10 -8 (-15 -4366 (|#1| |#1| |#1|)) (-15 -4380 (|#1| |#1| |#1|)) (-15 -3531 (|#1| |#1| |#1| |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-3681 (($ $ (-931)) 31)) (-2022 (($ $ (-931)) 32)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-4380 (($ $ $) 28)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-3531 (($ $ $ $) 29)) (-4366 (($ $ $) 27)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 33)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 30))) +(((-770) (-141)) (T -770)) +((-3531 (*1 *1 *1 *1 *1) (-4 *1 (-770))) (-4380 (*1 *1 *1 *1) (-4 *1 (-770))) (-4366 (*1 *1 *1 *1) (-4 *1 (-770)))) +(-13 (-21) (-729) (-10 -8 (-15 -3531 ($ $ $ $)) (-15 -4380 ($ $ $)) (-15 -4366 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-729) . T) ((-1112) . T)) +((-2942 (((-871) $) NIL) (($ (-573)) 10))) +(((-771 |#1|) (-10 -8 (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) (-772)) (T -771)) +NIL +(-10 -8 (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-1546 (((-3 $ "failed") $) 43)) (-3681 (($ $ (-931)) 31) (($ $ (-780)) 38)) (-2232 (((-3 $ "failed") $) 41)) (-1959 (((-112) $) 37)) (-2780 (((-3 $ "failed") $) 42)) (-2022 (($ $ (-931)) 32) (($ $ (-780)) 39)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-4380 (($ $ $) 28)) (-2942 (((-871) $) 12) (($ (-573)) 34)) (-1545 (((-780)) 35 T CONST)) (-3507 (((-112) $ $) 9)) (-3531 (($ $ $ $) 29)) (-4366 (($ $ $) 27)) (-2132 (($) 19 T CONST)) (-2144 (($) 36 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 33) (($ $ (-780)) 40)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 30))) +(((-772) (-141)) (T -772)) +((-1545 (*1 *2) (-12 (-4 *1 (-772)) (-5 *2 (-780)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-772))))) +(-13 (-770) (-731) (-10 -8 (-15 -1545 ((-780)) -1705) (-15 -2942 ($ (-573))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-729) . T) ((-731) . T) ((-770) . T) ((-1112) . T)) +((-2087 (((-653 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-573)) (|:| |outvect| (-653 (-698 (-171 |#1|)))))) (-698 (-171 (-416 (-573)))) |#1|) 33)) (-3687 (((-653 (-171 |#1|)) (-698 (-171 (-416 (-573)))) |#1|) 23)) (-2517 (((-962 (-171 (-416 (-573)))) (-698 (-171 (-416 (-573)))) (-1189)) 20) (((-962 (-171 (-416 (-573)))) (-698 (-171 (-416 (-573))))) 19))) +(((-773 |#1|) (-10 -7 (-15 -2517 ((-962 (-171 (-416 (-573)))) (-698 (-171 (-416 (-573)))))) (-15 -2517 ((-962 (-171 (-416 (-573)))) (-698 (-171 (-416 (-573)))) (-1189))) (-15 -3687 ((-653 (-171 |#1|)) (-698 (-171 (-416 (-573)))) |#1|)) (-15 -2087 ((-653 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-573)) (|:| |outvect| (-653 (-698 (-171 |#1|)))))) (-698 (-171 (-416 (-573)))) |#1|))) (-13 (-371) (-857))) (T -773)) +((-2087 (*1 *2 *3 *4) (-12 (-5 *3 (-698 (-171 (-416 (-573))))) (-5 *2 (-653 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-573)) (|:| |outvect| (-653 (-698 (-171 *4))))))) (-5 *1 (-773 *4)) (-4 *4 (-13 (-371) (-857))))) (-3687 (*1 *2 *3 *4) (-12 (-5 *3 (-698 (-171 (-416 (-573))))) (-5 *2 (-653 (-171 *4))) (-5 *1 (-773 *4)) (-4 *4 (-13 (-371) (-857))))) (-2517 (*1 *2 *3 *4) (-12 (-5 *3 (-698 (-171 (-416 (-573))))) (-5 *4 (-1189)) (-5 *2 (-962 (-171 (-416 (-573))))) (-5 *1 (-773 *5)) (-4 *5 (-13 (-371) (-857))))) (-2517 (*1 *2 *3) (-12 (-5 *3 (-698 (-171 (-416 (-573))))) (-5 *2 (-962 (-171 (-416 (-573))))) (-5 *1 (-773 *4)) (-4 *4 (-13 (-371) (-857)))))) +(-10 -7 (-15 -2517 ((-962 (-171 (-416 (-573)))) (-698 (-171 (-416 (-573)))))) (-15 -2517 ((-962 (-171 (-416 (-573)))) (-698 (-171 (-416 (-573)))) (-1189))) (-15 -3687 ((-653 (-171 |#1|)) (-698 (-171 (-416 (-573)))) |#1|)) (-15 -2087 ((-653 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-573)) (|:| |outvect| (-653 (-698 (-171 |#1|)))))) (-698 (-171 (-416 (-573)))) |#1|))) +((-1468 (((-176 (-573)) |#1|) 27))) +(((-774 |#1|) (-10 -7 (-15 -1468 ((-176 (-573)) |#1|))) (-413)) (T -774)) +((-1468 (*1 *2 *3) (-12 (-5 *2 (-176 (-573))) (-5 *1 (-774 *3)) (-4 *3 (-413))))) +(-10 -7 (-15 -1468 ((-176 (-573)) |#1|))) +((-2128 ((|#1| |#1| |#1|) 28)) (-3326 ((|#1| |#1| |#1|) 27)) (-2606 ((|#1| |#1| |#1|) 38)) (-4319 ((|#1| |#1| |#1|) 34)) (-3541 (((-3 |#1| "failed") |#1| |#1|) 31)) (-3028 (((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|) 26))) +(((-775 |#1| |#2|) (-10 -7 (-15 -3028 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -3326 (|#1| |#1| |#1|)) (-15 -2128 (|#1| |#1| |#1|)) (-15 -3541 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4319 (|#1| |#1| |#1|)) (-15 -2606 (|#1| |#1| |#1|))) (-717 |#2|) (-371)) (T -775)) +((-2606 (*1 *2 *2 *2) (-12 (-4 *3 (-371)) (-5 *1 (-775 *2 *3)) (-4 *2 (-717 *3)))) (-4319 (*1 *2 *2 *2) (-12 (-4 *3 (-371)) (-5 *1 (-775 *2 *3)) (-4 *2 (-717 *3)))) (-3541 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-371)) (-5 *1 (-775 *2 *3)) (-4 *2 (-717 *3)))) (-2128 (*1 *2 *2 *2) (-12 (-4 *3 (-371)) (-5 *1 (-775 *2 *3)) (-4 *2 (-717 *3)))) (-3326 (*1 *2 *2 *2) (-12 (-4 *3 (-371)) (-5 *1 (-775 *2 *3)) (-4 *2 (-717 *3)))) (-3028 (*1 *2 *3 *3) (-12 (-4 *4 (-371)) (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-775 *3 *4)) (-4 *3 (-717 *4))))) +(-10 -7 (-15 -3028 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -3326 (|#1| |#1| |#1|)) (-15 -2128 (|#1| |#1| |#1|)) (-15 -3541 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4319 (|#1| |#1| |#1|)) (-15 -2606 (|#1| |#1| |#1|))) +((-3534 (((-700 (-1238)) $ (-1238)) 26)) (-4340 (((-700 (-558)) $ (-558)) 25)) (-1960 (((-780) $ (-129)) 27)) (-2034 (((-700 (-130)) $ (-130)) 24)) (-3769 (((-700 (-1238)) $) 12)) (-4370 (((-700 (-1236)) $) 8)) (-3464 (((-700 (-1235)) $) 10)) (-3310 (((-700 (-558)) $) 13)) (-4395 (((-700 (-556)) $) 9)) (-2731 (((-700 (-555)) $) 11)) (-3983 (((-780) $ (-129)) 7)) (-1870 (((-700 (-130)) $) 14)) (-1577 (((-112) $) 31)) (-2833 (((-700 $) |#1| (-964)) 32)) (-1981 (($ $) 6))) +(((-776 |#1|) (-141) (-1112)) (T -776)) +((-2833 (*1 *2 *3 *4) (-12 (-5 *4 (-964)) (-4 *3 (-1112)) (-5 *2 (-700 *1)) (-4 *1 (-776 *3)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-776 *3)) (-4 *3 (-1112)) (-5 *2 (-112))))) +(-13 (-585) (-10 -8 (-15 -2833 ((-700 $) |t#1| (-964))) (-15 -1577 ((-112) $)))) +(((-175) . T) ((-536) . T) ((-585) . T) ((-869) . T)) +((-3574 (((-2 (|:| -3914 (-698 (-573))) (|:| |basisDen| (-573)) (|:| |basisInv| (-698 (-573)))) (-573)) 71)) (-3529 (((-2 (|:| -3914 (-698 (-573))) (|:| |basisDen| (-573)) (|:| |basisInv| (-698 (-573))))) 69)) (-3592 (((-573)) 85))) +(((-777 |#1| |#2|) (-10 -7 (-15 -3592 ((-573))) (-15 -3529 ((-2 (|:| -3914 (-698 (-573))) (|:| |basisDen| (-573)) (|:| |basisInv| (-698 (-573)))))) (-15 -3574 ((-2 (|:| -3914 (-698 (-573))) (|:| |basisDen| (-573)) (|:| |basisInv| (-698 (-573)))) (-573)))) (-1256 (-573)) (-418 (-573) |#1|)) (T -777)) +((-3574 (*1 *2 *3) (-12 (-5 *3 (-573)) (-4 *4 (-1256 *3)) (-5 *2 (-2 (|:| -3914 (-698 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-698 *3)))) (-5 *1 (-777 *4 *5)) (-4 *5 (-418 *3 *4)))) (-3529 (*1 *2) (-12 (-4 *3 (-1256 (-573))) (-5 *2 (-2 (|:| -3914 (-698 (-573))) (|:| |basisDen| (-573)) (|:| |basisInv| (-698 (-573))))) (-5 *1 (-777 *3 *4)) (-4 *4 (-418 (-573) *3)))) (-3592 (*1 *2) (-12 (-4 *3 (-1256 *2)) (-5 *2 (-573)) (-5 *1 (-777 *3 *4)) (-4 *4 (-418 *2 *3))))) +(-10 -7 (-15 -3592 ((-573))) (-15 -3529 ((-2 (|:| -3914 (-698 (-573))) (|:| |basisDen| (-573)) (|:| |basisInv| (-698 (-573)))))) (-15 -3574 ((-2 (|:| -3914 (-698 (-573))) (|:| |basisDen| (-573)) (|:| |basisInv| (-698 (-573)))) (-573)))) +((-2848 (((-112) $ $) NIL)) (-2205 (((-3 (|:| |nia| (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $) 21)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 20) (($ (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 13) (($ (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) 18)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-778) (-13 (-1112) (-10 -8 (-15 -2942 ($ (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2942 ($ (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2942 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2205 ((-3 (|:| |nia| (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))) (T -778)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-778)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-778)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-778)))) (-2205 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-778))))) +(-13 (-1112) (-10 -8 (-15 -2942 ($ (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2942 ($ (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2942 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2205 ((-3 (|:| |nia| (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $)))) +((-2298 (((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-962 |#1|))) 18) (((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-962 |#1|)) (-653 (-1189))) 17)) (-1994 (((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-962 |#1|))) 20) (((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-962 |#1|)) (-653 (-1189))) 19))) +(((-779 |#1|) (-10 -7 (-15 -2298 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-962 |#1|)) (-653 (-1189)))) (-15 -2298 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-962 |#1|)))) (-15 -1994 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-962 |#1|)) (-653 (-1189)))) (-15 -1994 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-962 |#1|))))) (-565)) (T -779)) +((-1994 (*1 *2 *3) (-12 (-5 *3 (-653 (-962 *4))) (-4 *4 (-565)) (-5 *2 (-653 (-653 (-301 (-416 (-962 *4)))))) (-5 *1 (-779 *4)))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-653 (-1189))) (-4 *5 (-565)) (-5 *2 (-653 (-653 (-301 (-416 (-962 *5)))))) (-5 *1 (-779 *5)))) (-2298 (*1 *2 *3) (-12 (-5 *3 (-653 (-962 *4))) (-4 *4 (-565)) (-5 *2 (-653 (-653 (-301 (-416 (-962 *4)))))) (-5 *1 (-779 *4)))) (-2298 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-653 (-1189))) (-4 *5 (-565)) (-5 *2 (-653 (-653 (-301 (-416 (-962 *5)))))) (-5 *1 (-779 *5))))) +(-10 -7 (-15 -2298 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-962 |#1|)) (-653 (-1189)))) (-15 -2298 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-962 |#1|)))) (-15 -1994 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-962 |#1|)) (-653 (-1189)))) (-15 -1994 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-962 |#1|))))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3280 (($ $ $) 10)) (-2983 (((-3 $ "failed") $ $) 15)) (-3958 (($ $ (-573)) 11)) (-2579 (($) NIL T CONST)) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($ $) NIL)) (-2796 (($ $ $) NIL)) (-1959 (((-112) $) NIL)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2872 (($ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 6 T CONST)) (-2144 (($) NIL T CONST)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-780)) NIL) (($ $ (-931)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ $ $) NIL))) +(((-780) (-13 (-802) (-735) (-10 -8 (-15 -2796 ($ $ $)) (-15 -2784 ($ $ $)) (-15 -2872 ($ $ $)) (-15 -1405 ((-2 (|:| -3152 $) (|:| -3132 $)) $ $)) (-15 -2837 ((-3 $ "failed") $ $)) (-15 -3958 ($ $ (-573))) (-15 -2819 ($ $)) (-6 (-4457 "*"))))) (T -780)) +((-2796 (*1 *1 *1 *1) (-5 *1 (-780))) (-2784 (*1 *1 *1 *1) (-5 *1 (-780))) (-2872 (*1 *1 *1 *1) (-5 *1 (-780))) (-1405 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3152 (-780)) (|:| -3132 (-780)))) (-5 *1 (-780)))) (-2837 (*1 *1 *1 *1) (|partial| -5 *1 (-780))) (-3958 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-780)))) (-2819 (*1 *1 *1) (-5 *1 (-780)))) +(-13 (-802) (-735) (-10 -8 (-15 -2796 ($ $ $)) (-15 -2784 ($ $ $)) (-15 -2872 ($ $ $)) (-15 -1405 ((-2 (|:| -3152 $) (|:| -3132 $)) $ $)) (-15 -2837 ((-3 $ "failed") $ $)) (-15 -3958 ($ $ (-573))) (-15 -2819 ($ $)) (-6 (-4457 "*")))) ((|Integer|) (|%ige| |#1| 0)) -((-1701 (((-3 |#2| "failed") |#2| |#2| (-115) (-1190)) 37))) -(((-782 |#1| |#2|) (-10 -7 (-15 -1701 ((-3 |#2| "failed") |#2| |#2| (-115) (-1190)))) (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148)) (-13 (-29 |#1|) (-1216) (-970))) (T -782)) -((-1701 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1190)) (-4 *5 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *1 (-782 *5 *2)) (-4 *2 (-13 (-29 *5) (-1216) (-970)))))) -(-10 -7 (-15 -1701 ((-3 |#2| "failed") |#2| |#2| (-115) (-1190)))) -((-2943 (((-784) |#1|) 8))) -(((-783 |#1|) (-10 -7 (-15 -2943 ((-784) |#1|))) (-1231)) (T -783)) -((-2943 (*1 *2 *3) (-12 (-5 *2 (-784)) (-5 *1 (-783 *3)) (-4 *3 (-1231))))) -(-10 -7 (-15 -2943 ((-784) |#1|))) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 7)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 9))) -(((-784) (-1113)) (T -784)) -NIL -(-1113) -((-2236 ((|#2| |#4|) 35))) -(((-785 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2236 (|#2| |#4|))) (-462) (-1257 |#1|) (-734 |#1| |#2|) (-1257 |#3|)) (T -785)) -((-2236 (*1 *2 *3) (-12 (-4 *4 (-462)) (-4 *5 (-734 *4 *2)) (-4 *2 (-1257 *4)) (-5 *1 (-785 *4 *2 *5 *3)) (-4 *3 (-1257 *5))))) -(-10 -7 (-15 -2236 (|#2| |#4|))) -((-3434 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-3941 (((-1286) (-1172) (-1172) |#4| |#5|) 33)) (-3510 ((|#4| |#4| |#5|) 74)) (-2580 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#5|) 79)) (-4120 (((-654 (-2 (|:| |val| (-112)) (|:| -4091 |#5|))) |#4| |#5|) 16))) -(((-786 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3434 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3510 (|#4| |#4| |#5|)) (-15 -2580 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#5|)) (-15 -3941 ((-1286) (-1172) (-1172) |#4| |#5|)) (-15 -4120 ((-654 (-2 (|:| |val| (-112)) (|:| -4091 |#5|))) |#4| |#5|))) (-462) (-803) (-860) (-1078 |#1| |#2| |#3|) (-1084 |#1| |#2| |#3| |#4|)) (T -786)) -((-4120 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4091 *4)))) (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-3941 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1172)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *4 (-1078 *6 *7 *8)) (-5 *2 (-1286)) (-5 *1 (-786 *6 *7 *8 *4 *5)) (-4 *5 (-1084 *6 *7 *8 *4)))) (-2580 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4)))) (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-3510 (*1 *2 *2 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *2 (-1078 *4 *5 *6)) (-5 *1 (-786 *4 *5 *6 *2 *3)) (-4 *3 (-1084 *4 *5 *6 *2)))) (-3434 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3))))) -(-10 -7 (-15 -3434 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3510 (|#4| |#4| |#5|)) (-15 -2580 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#5|)) (-15 -3941 ((-1286) (-1172) (-1172) |#4| |#5|)) (-15 -4120 ((-654 (-2 (|:| |val| (-112)) (|:| -4091 |#5|))) |#4| |#5|))) -((-1696 (((-3 (-1186 (-1186 |#1|)) "failed") |#4|) 51)) (-3165 (((-654 |#4|) |#4|) 22)) (-2661 ((|#4| |#4|) 17))) -(((-787 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3165 ((-654 |#4|) |#4|)) (-15 -1696 ((-3 (-1186 (-1186 |#1|)) "failed") |#4|)) (-15 -2661 (|#4| |#4|))) (-358) (-337 |#1|) (-1257 |#2|) (-1257 |#3|) (-932)) (T -787)) -((-2661 (*1 *2 *2) (-12 (-4 *3 (-358)) (-4 *4 (-337 *3)) (-4 *5 (-1257 *4)) (-5 *1 (-787 *3 *4 *5 *2 *6)) (-4 *2 (-1257 *5)) (-14 *6 (-932)))) (-1696 (*1 *2 *3) (|partial| -12 (-4 *4 (-358)) (-4 *5 (-337 *4)) (-4 *6 (-1257 *5)) (-5 *2 (-1186 (-1186 *4))) (-5 *1 (-787 *4 *5 *6 *3 *7)) (-4 *3 (-1257 *6)) (-14 *7 (-932)))) (-3165 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *5 (-337 *4)) (-4 *6 (-1257 *5)) (-5 *2 (-654 *3)) (-5 *1 (-787 *4 *5 *6 *3 *7)) (-4 *3 (-1257 *6)) (-14 *7 (-932))))) -(-10 -7 (-15 -3165 ((-654 |#4|) |#4|)) (-15 -1696 ((-3 (-1186 (-1186 |#1|)) "failed") |#4|)) (-15 -2661 (|#4| |#4|))) -((-1515 (((-2 (|:| |deter| (-654 (-1186 |#5|))) (|:| |dterm| (-654 (-654 (-2 (|:| -3334 (-781)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-654 |#1|)) (|:| |nlead| (-654 |#5|))) (-1186 |#5|) (-654 |#1|) (-654 |#5|)) 72)) (-3828 (((-654 (-781)) |#1|) 20))) -(((-788 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1515 ((-2 (|:| |deter| (-654 (-1186 |#5|))) (|:| |dterm| (-654 (-654 (-2 (|:| -3334 (-781)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-654 |#1|)) (|:| |nlead| (-654 |#5|))) (-1186 |#5|) (-654 |#1|) (-654 |#5|))) (-15 -3828 ((-654 (-781)) |#1|))) (-1257 |#4|) (-803) (-860) (-315) (-960 |#4| |#2| |#3|)) (T -788)) -((-3828 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-654 (-781))) (-5 *1 (-788 *3 *4 *5 *6 *7)) (-4 *3 (-1257 *6)) (-4 *7 (-960 *6 *4 *5)))) (-1515 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1257 *9)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-315)) (-4 *10 (-960 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-654 (-1186 *10))) (|:| |dterm| (-654 (-654 (-2 (|:| -3334 (-781)) (|:| |pcoef| *10))))) (|:| |nfacts| (-654 *6)) (|:| |nlead| (-654 *10)))) (-5 *1 (-788 *6 *7 *8 *9 *10)) (-5 *3 (-1186 *10)) (-5 *4 (-654 *6)) (-5 *5 (-654 *10))))) -(-10 -7 (-15 -1515 ((-2 (|:| |deter| (-654 (-1186 |#5|))) (|:| |dterm| (-654 (-654 (-2 (|:| -3334 (-781)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-654 |#1|)) (|:| |nlead| (-654 |#5|))) (-1186 |#5|) (-654 |#1|) (-654 |#5|))) (-15 -3828 ((-654 (-781)) |#1|))) -((-4174 (((-654 (-2 (|:| |outval| |#1|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#1|))))) (-699 (-417 (-574))) |#1|) 31)) (-3148 (((-654 |#1|) (-699 (-417 (-574))) |#1|) 21)) (-1435 (((-963 (-417 (-574))) (-699 (-417 (-574))) (-1190)) 18) (((-963 (-417 (-574))) (-699 (-417 (-574)))) 17))) -(((-789 |#1|) (-10 -7 (-15 -1435 ((-963 (-417 (-574))) (-699 (-417 (-574))))) (-15 -1435 ((-963 (-417 (-574))) (-699 (-417 (-574))) (-1190))) (-15 -3148 ((-654 |#1|) (-699 (-417 (-574))) |#1|)) (-15 -4174 ((-654 (-2 (|:| |outval| |#1|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#1|))))) (-699 (-417 (-574))) |#1|))) (-13 (-372) (-858))) (T -789)) -((-4174 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *2 (-654 (-2 (|:| |outval| *4) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 *4)))))) (-5 *1 (-789 *4)) (-4 *4 (-13 (-372) (-858))))) (-3148 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *2 (-654 *4)) (-5 *1 (-789 *4)) (-4 *4 (-13 (-372) (-858))))) (-1435 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *4 (-1190)) (-5 *2 (-963 (-417 (-574)))) (-5 *1 (-789 *5)) (-4 *5 (-13 (-372) (-858))))) (-1435 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *2 (-963 (-417 (-574)))) (-5 *1 (-789 *4)) (-4 *4 (-13 (-372) (-858)))))) -(-10 -7 (-15 -1435 ((-963 (-417 (-574))) (-699 (-417 (-574))))) (-15 -1435 ((-963 (-417 (-574))) (-699 (-417 (-574))) (-1190))) (-15 -3148 ((-654 |#1|) (-699 (-417 (-574))) |#1|)) (-15 -4174 ((-654 (-2 (|:| |outval| |#1|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#1|))))) (-699 (-417 (-574))) |#1|))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 36)) (-4355 (((-654 |#2|) $) NIL)) (-4194 (((-1186 $) $ |#2|) NIL) (((-1186 |#1|) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-1575 (($ $) NIL (|has| |#1| (-566)))) (-2085 (((-112) $) NIL (|has| |#1| (-566)))) (-1757 (((-781) $) NIL) (((-781) $ (-654 |#2|)) NIL)) (-1970 (($ $) 30)) (-4311 (((-112) $ $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-1904 (($ $ $) 110 (|has| |#1| (-566)))) (-3427 (((-654 $) $ $) 123 (|has| |#1| (-566)))) (-3972 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-2568 (($ $) NIL (|has| |#1| (-462)))) (-2827 (((-428 $) $) NIL (|has| |#1| (-462)))) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-963 (-417 (-574)))) NIL (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1190))))) (((-3 $ "failed") (-963 (-574))) NIL (-2818 (-12 (|has| |#1| (-38 (-574))) (|has| |#2| (-624 (-1190))) (-2076 (|has| |#1| (-38 (-417 (-574)))))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1190)))))) (((-3 $ "failed") (-963 |#1|)) NIL (-2818 (-12 (|has| |#2| (-624 (-1190))) (-2076 (|has| |#1| (-38 (-417 (-574))))) (-2076 (|has| |#1| (-38 (-574))))) (-12 (|has| |#1| (-38 (-574))) (|has| |#2| (-624 (-1190))) (-2076 (|has| |#1| (-38 (-417 (-574))))) (-2076 (|has| |#1| (-555)))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1190))) (-2076 (|has| |#1| (-1005 (-574))))))) (((-3 (-1138 |#1| |#2|) "failed") $) 21)) (-2206 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1051 (-574)))) ((|#2| $) NIL) (($ (-963 (-417 (-574)))) NIL (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1190))))) (($ (-963 (-574))) NIL (-2818 (-12 (|has| |#1| (-38 (-574))) (|has| |#2| (-624 (-1190))) (-2076 (|has| |#1| (-38 (-417 (-574)))))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1190)))))) (($ (-963 |#1|)) NIL (-2818 (-12 (|has| |#2| (-624 (-1190))) (-2076 (|has| |#1| (-38 (-417 (-574))))) (-2076 (|has| |#1| (-38 (-574))))) (-12 (|has| |#1| (-38 (-574))) (|has| |#2| (-624 (-1190))) (-2076 (|has| |#1| (-38 (-417 (-574))))) (-2076 (|has| |#1| (-555)))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1190))) (-2076 (|has| |#1| (-1005 (-574))))))) (((-1138 |#1| |#2|) $) NIL)) (-1463 (($ $ $ |#2|) NIL (|has| |#1| (-174))) (($ $ $) 121 (|has| |#1| (-566)))) (-1392 (($ $) NIL) (($ $ |#2|) NIL)) (-2590 (((-699 (-574)) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-1315 (((-112) $ $) NIL) (((-112) $ (-654 $)) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2537 (((-112) $) NIL)) (-2853 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 81)) (-2900 (($ $) 136 (|has| |#1| (-462)))) (-1569 (($ $) NIL (|has| |#1| (-462))) (($ $ |#2|) NIL (|has| |#1| (-462)))) (-1380 (((-654 $) $) NIL)) (-2257 (((-112) $) NIL (|has| |#1| (-920)))) (-4230 (($ $) NIL (|has| |#1| (-566)))) (-2264 (($ $) NIL (|has| |#1| (-566)))) (-2463 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-3566 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-1661 (($ $ |#1| (-541 |#2|) $) NIL)) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| |#1| (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| |#1| (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-3199 (((-112) $) 57)) (-1322 (((-781) $) NIL)) (-4436 (((-112) $ $) NIL) (((-112) $ (-654 $)) NIL)) (-2461 (($ $ $ $ $) 107 (|has| |#1| (-566)))) (-3830 ((|#2| $) 22)) (-4345 (($ (-1186 |#1|) |#2|) NIL) (($ (-1186 $) |#2|) NIL)) (-3727 (((-654 $) $) NIL)) (-3869 (((-112) $) NIL)) (-4335 (($ |#1| (-541 |#2|)) NIL) (($ $ |#2| (-781)) 38) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-3169 (($ $ $) 63)) (-2773 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $ |#2|) NIL)) (-4075 (((-112) $) NIL)) (-1742 (((-541 |#2|) $) NIL) (((-781) $ |#2|) NIL) (((-654 (-781)) $ (-654 |#2|)) NIL)) (-1844 (((-781) $) 23)) (-3708 (($ (-1 (-541 |#2|) (-541 |#2|)) $) NIL)) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-2717 (((-3 |#2| "failed") $) NIL)) (-3981 (($ $) NIL (|has| |#1| (-462)))) (-2188 (($ $) NIL (|has| |#1| (-462)))) (-1697 (((-654 $) $) NIL)) (-2835 (($ $) 39)) (-2046 (($ $) NIL (|has| |#1| (-462)))) (-2324 (((-654 $) $) 43)) (-1330 (($ $) 41)) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL) (($ $ |#2|) 48)) (-2832 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2934 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3103 (-781))) $ $) 96)) (-3534 (((-2 (|:| -1858 $) (|:| |gap| (-781)) (|:| -1411 $) (|:| -2766 $)) $ $) 78) (((-2 (|:| -1858 $) (|:| |gap| (-781)) (|:| -1411 $) (|:| -2766 $)) $ $ |#2|) NIL)) (-1994 (((-2 (|:| -1858 $) (|:| |gap| (-781)) (|:| -2766 $)) $ $) NIL) (((-2 (|:| -1858 $) (|:| |gap| (-781)) (|:| -2766 $)) $ $ |#2|) NIL)) (-4078 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-2788 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-4136 (((-1172) $) NIL)) (-4268 (($ $ $) 125 (|has| |#1| (-566)))) (-1910 (((-654 $) $) 32)) (-2755 (((-3 (-654 $) "failed") $) NIL)) (-2415 (((-3 (-654 $) "failed") $) NIL)) (-2241 (((-3 (-2 (|:| |var| |#2|) (|:| -3715 (-781))) "failed") $) NIL)) (-4292 (((-112) $ $) NIL) (((-112) $ (-654 $)) NIL)) (-3023 (($ $ $) NIL)) (-3818 (($ $) 24)) (-2119 (((-112) $ $) NIL)) (-2682 (((-112) $ $) NIL) (((-112) $ (-654 $)) NIL)) (-3206 (($ $ $) NIL)) (-2972 (($ $) 26)) (-3966 (((-1133) $) NIL)) (-2126 (((-2 (|:| -2873 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-566)))) (-2454 (((-2 (|:| -2873 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-566)))) (-1338 (((-112) $) 56)) (-1349 ((|#1| $) 58)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-462)))) (-2873 ((|#1| |#1| $) 133 (|has| |#1| (-462))) (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2560 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-2039 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4220 (((-428 $) $) NIL (|has| |#1| (-920)))) (-4166 (((-2 (|:| -2873 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-566)))) (-2838 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-566)))) (-4408 (($ $ |#1|) 129 (|has| |#1| (-566))) (($ $ $) NIL (|has| |#1| (-566)))) (-3215 (($ $ |#1|) 128 (|has| |#1| (-566))) (($ $ $) NIL (|has| |#1| (-566)))) (-2646 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-654 |#2|) (-654 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-654 |#2|) (-654 $)) NIL)) (-2872 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-3905 (($ $ |#2|) NIL) (($ $ (-654 |#2|)) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-4202 (((-541 |#2|) $) NIL) (((-781) $ |#2|) 45) (((-654 (-781)) $ (-654 |#2|)) NIL)) (-2024 (($ $) NIL)) (-4264 (($ $) 35)) (-1836 (((-903 (-388)) $) NIL (-12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| |#1| (-624 (-546))) (|has| |#2| (-624 (-546))))) (($ (-963 (-417 (-574)))) NIL (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1190))))) (($ (-963 (-574))) NIL (-2818 (-12 (|has| |#1| (-38 (-574))) (|has| |#2| (-624 (-1190))) (-2076 (|has| |#1| (-38 (-417 (-574)))))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1190)))))) (($ (-963 |#1|)) NIL (|has| |#2| (-624 (-1190)))) (((-1172) $) NIL (-12 (|has| |#1| (-1051 (-574))) (|has| |#2| (-624 (-1190))))) (((-963 |#1|) $) NIL (|has| |#2| (-624 (-1190))))) (-3069 ((|#1| $) 132 (|has| |#1| (-462))) (($ $ |#2|) NIL (|has| |#1| (-462)))) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-920))))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-963 |#1|) $) NIL (|has| |#2| (-624 (-1190)))) (((-1138 |#1| |#2|) $) 18) (($ (-1138 |#1| |#2|)) 19) (($ (-417 (-574))) NIL (-2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-2530 (((-654 |#1|) $) NIL)) (-3087 ((|#1| $ (-541 |#2|)) NIL) (($ $ |#2| (-781)) 47) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-3298 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#1| (-920))) (|has| |#1| (-146))))) (-1364 (((-781)) NIL T CONST)) (-3772 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2133 (($) 13 T CONST)) (-1853 (((-3 (-112) "failed") $ $) NIL)) (-2145 (($) 37 T CONST)) (-3101 (($ $ $ $ (-781)) 105 (|has| |#1| (-566)))) (-1634 (($ $ $ (-781)) 104 (|has| |#1| (-566)))) (-3610 (($ $ |#2|) NIL) (($ $ (-654 |#2|)) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) 75)) (-3079 (($ $ $) 85)) (** (($ $ (-932)) NIL) (($ $ (-781)) 70)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 62) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 61) (($ $ |#1|) NIL))) -(((-790 |#1| |#2|) (-13 (-1078 |#1| (-541 |#2|) |#2|) (-623 (-1138 |#1| |#2|)) (-1051 (-1138 |#1| |#2|))) (-1062) (-860)) (T -790)) -NIL -(-13 (-1078 |#1| (-541 |#2|) |#2|) (-623 (-1138 |#1| |#2|)) (-1051 (-1138 |#1| |#2|))) -((-1777 (((-792 |#2|) (-1 |#2| |#1|) (-792 |#1|)) 13))) -(((-791 |#1| |#2|) (-10 -7 (-15 -1777 ((-792 |#2|) (-1 |#2| |#1|) (-792 |#1|)))) (-1062) (-1062)) (T -791)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-792 *5)) (-4 *5 (-1062)) (-4 *6 (-1062)) (-5 *2 (-792 *6)) (-5 *1 (-791 *5 *6))))) -(-10 -7 (-15 -1777 ((-792 |#2|) (-1 |#2| |#1|) (-792 |#1|)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 12)) (-2882 (((-1281 |#1|) $ (-781)) NIL)) (-4355 (((-654 (-1095)) $) NIL)) (-4176 (($ (-1186 |#1|)) NIL)) (-4194 (((-1186 $) $ (-1095)) NIL) (((-1186 |#1|) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-1575 (($ $) NIL (|has| |#1| (-566)))) (-2085 (((-112) $) NIL (|has| |#1| (-566)))) (-1757 (((-781) $) NIL) (((-781) $ (-654 (-1095))) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-2833 (((-654 $) $ $) 54 (|has| |#1| (-566)))) (-1904 (($ $ $) 50 (|has| |#1| (-566)))) (-3972 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-2568 (($ $) NIL (|has| |#1| (-462)))) (-2827 (((-428 $) $) NIL (|has| |#1| (-462)))) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-1600 (((-112) $ $) NIL (|has| |#1| (-372)))) (-1852 (($ $ (-781)) NIL)) (-1690 (($ $ (-781)) NIL)) (-3777 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-462)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-1095) "failed") $) NIL) (((-3 (-1186 |#1|) "failed") $) 10)) (-2206 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-1095) $) NIL) (((-1186 |#1|) $) NIL)) (-1463 (($ $ $ (-1095)) NIL (|has| |#1| (-174))) ((|#1| $ $) 58 (|has| |#1| (-174)))) (-2786 (($ $ $) NIL (|has| |#1| (-372)))) (-1392 (($ $) NIL)) (-2590 (((-699 (-574)) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2797 (($ $ $) NIL (|has| |#1| (-372)))) (-3385 (($ $ $) NIL)) (-1903 (($ $ $) 87 (|has| |#1| (-566)))) (-2853 (((-2 (|:| -1858 |#1|) (|:| -1411 $) (|:| -2766 $)) $ $) 86 (|has| |#1| (-566)))) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-1569 (($ $) NIL (|has| |#1| (-462))) (($ $ (-1095)) NIL (|has| |#1| (-462)))) (-1380 (((-654 $) $) NIL)) (-2257 (((-112) $) NIL (|has| |#1| (-920)))) (-1661 (($ $ |#1| (-781) $) NIL)) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1095) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1095) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3884 (((-781) $ $) NIL (|has| |#1| (-566)))) (-3199 (((-112) $) NIL)) (-1322 (((-781) $) NIL)) (-2748 (((-3 $ "failed") $) NIL (|has| |#1| (-1165)))) (-4345 (($ (-1186 |#1|) (-1095)) NIL) (($ (-1186 $) (-1095)) NIL)) (-4240 (($ $ (-781)) NIL)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3727 (((-654 $) $) NIL)) (-3869 (((-112) $) NIL)) (-4335 (($ |#1| (-781)) NIL) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL)) (-3169 (($ $ $) 27)) (-2773 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $ (-1095)) NIL) (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-1742 (((-781) $) NIL) (((-781) $ (-1095)) NIL) (((-654 (-781)) $ (-654 (-1095))) NIL)) (-3708 (($ (-1 (-781) (-781)) $) NIL)) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-4377 (((-1186 |#1|) $) NIL)) (-2717 (((-3 (-1095) "failed") $) NIL)) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-2832 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2934 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3103 (-781))) $ $) 37)) (-2340 (($ $ $) 41)) (-2233 (($ $ $) 47)) (-3534 (((-2 (|:| -1858 |#1|) (|:| |gap| (-781)) (|:| -1411 $) (|:| -2766 $)) $ $) 46)) (-4136 (((-1172) $) NIL)) (-4268 (($ $ $) 56 (|has| |#1| (-566)))) (-3408 (((-2 (|:| -1411 $) (|:| -2766 $)) $ (-781)) NIL)) (-2755 (((-3 (-654 $) "failed") $) NIL)) (-2415 (((-3 (-654 $) "failed") $) NIL)) (-2241 (((-3 (-2 (|:| |var| (-1095)) (|:| -3715 (-781))) "failed") $) NIL)) (-2379 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3818 (($) NIL (|has| |#1| (-1165)) CONST)) (-3966 (((-1133) $) NIL)) (-2126 (((-2 (|:| -2873 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-566)))) (-2454 (((-2 (|:| -2873 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-566)))) (-2726 (((-2 (|:| -1463 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-566)))) (-4243 (((-2 (|:| -1463 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-566)))) (-1338 (((-112) $) 13)) (-1349 ((|#1| $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-462)))) (-2873 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2289 (($ $ (-781) |#1| $) 26)) (-2560 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-2039 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4220 (((-428 $) $) NIL (|has| |#1| (-920)))) (-4166 (((-2 (|:| -2873 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-566)))) (-2184 (((-2 (|:| -1463 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-566)))) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-2838 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2646 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1095) |#1|) NIL) (($ $ (-654 (-1095)) (-654 |#1|)) NIL) (($ $ (-1095) $) NIL) (($ $ (-654 (-1095)) (-654 $)) NIL)) (-1730 (((-781) $) NIL (|has| |#1| (-372)))) (-2199 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-417 $) (-417 $) (-417 $)) NIL (|has| |#1| (-566))) ((|#1| (-417 $) |#1|) NIL (|has| |#1| (-372))) (((-417 $) $ (-417 $)) NIL (|has| |#1| (-566)))) (-3001 (((-3 $ "failed") $ (-781)) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#1| (-372)))) (-2872 (($ $ (-1095)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-3905 (($ $ (-1095)) NIL) (($ $ (-654 (-1095))) NIL) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL) (($ $ (-781)) NIL) (($ $) NIL) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4202 (((-781) $) NIL) (((-781) $ (-1095)) NIL) (((-654 (-781)) $ (-654 (-1095))) NIL)) (-1836 (((-903 (-388)) $) NIL (-12 (|has| (-1095) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1095) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1095) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-3069 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ (-1095)) NIL (|has| |#1| (-462)))) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-920))))) (-2484 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566))) (((-3 (-417 $) "failed") (-417 $) $) NIL (|has| |#1| (-566)))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-1095)) NIL) (((-1186 |#1|) $) 7) (($ (-1186 |#1|)) 8) (($ (-417 (-574))) NIL (-2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-2530 (((-654 |#1|) $) NIL)) (-3087 ((|#1| $ (-781)) NIL) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL)) (-3298 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#1| (-920))) (|has| |#1| (-146))))) (-1364 (((-781)) NIL T CONST)) (-3772 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2133 (($) 28 T CONST)) (-2145 (($) 32 T CONST)) (-3610 (($ $ (-1095)) NIL) (($ $ (-654 (-1095))) NIL) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL) (($ $ (-781)) NIL) (($ $) NIL) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3094 (($ $) 40) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) -(((-792 |#1|) (-13 (-1257 |#1|) (-623 (-1186 |#1|)) (-1051 (-1186 |#1|)) (-10 -8 (-15 -2289 ($ $ (-781) |#1| $)) (-15 -3169 ($ $ $)) (-15 -2934 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3103 (-781))) $ $)) (-15 -2340 ($ $ $)) (-15 -3534 ((-2 (|:| -1858 |#1|) (|:| |gap| (-781)) (|:| -1411 $) (|:| -2766 $)) $ $)) (-15 -2233 ($ $ $)) (IF (|has| |#1| (-566)) (PROGN (-15 -2833 ((-654 $) $ $)) (-15 -4268 ($ $ $)) (-15 -4166 ((-2 (|:| -2873 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2454 ((-2 (|:| -2873 $) (|:| |coef1| $)) $ $)) (-15 -2126 ((-2 (|:| -2873 $) (|:| |coef2| $)) $ $)) (-15 -2184 ((-2 (|:| -1463 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4243 ((-2 (|:| -1463 |#1|) (|:| |coef1| $)) $ $)) (-15 -2726 ((-2 (|:| -1463 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1062)) (T -792)) -((-2289 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-781)) (-5 *1 (-792 *3)) (-4 *3 (-1062)))) (-3169 (*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1062)))) (-2934 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-792 *3)) (|:| |polden| *3) (|:| -3103 (-781)))) (-5 *1 (-792 *3)) (-4 *3 (-1062)))) (-2340 (*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1062)))) (-3534 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1858 *3) (|:| |gap| (-781)) (|:| -1411 (-792 *3)) (|:| -2766 (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-1062)))) (-2233 (*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1062)))) (-2833 (*1 *2 *1 *1) (-12 (-5 *2 (-654 (-792 *3))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1062)))) (-4268 (*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-566)) (-4 *2 (-1062)))) (-4166 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2873 (-792 *3)) (|:| |coef1| (-792 *3)) (|:| |coef2| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1062)))) (-2454 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2873 (-792 *3)) (|:| |coef1| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1062)))) (-2126 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2873 (-792 *3)) (|:| |coef2| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1062)))) (-2184 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1463 *3) (|:| |coef1| (-792 *3)) (|:| |coef2| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1062)))) (-4243 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1463 *3) (|:| |coef1| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1062)))) (-2726 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1463 *3) (|:| |coef2| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1062))))) -(-13 (-1257 |#1|) (-623 (-1186 |#1|)) (-1051 (-1186 |#1|)) (-10 -8 (-15 -2289 ($ $ (-781) |#1| $)) (-15 -3169 ($ $ $)) (-15 -2934 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3103 (-781))) $ $)) (-15 -2340 ($ $ $)) (-15 -3534 ((-2 (|:| -1858 |#1|) (|:| |gap| (-781)) (|:| -1411 $) (|:| -2766 $)) $ $)) (-15 -2233 ($ $ $)) (IF (|has| |#1| (-566)) (PROGN (-15 -2833 ((-654 $) $ $)) (-15 -4268 ($ $ $)) (-15 -4166 ((-2 (|:| -2873 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2454 ((-2 (|:| -2873 $) (|:| |coef1| $)) $ $)) (-15 -2126 ((-2 (|:| -2873 $) (|:| |coef2| $)) $ $)) (-15 -2184 ((-2 (|:| -1463 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4243 ((-2 (|:| -1463 |#1|) (|:| |coef1| $)) $ $)) (-15 -2726 ((-2 (|:| -1463 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-3177 ((|#1| (-781) |#1|) 33 (|has| |#1| (-38 (-417 (-574)))))) (-1459 ((|#1| (-781) |#1|) 23)) (-2272 ((|#1| (-781) |#1|) 35 (|has| |#1| (-38 (-417 (-574))))))) -(((-793 |#1|) (-10 -7 (-15 -1459 (|#1| (-781) |#1|)) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -2272 (|#1| (-781) |#1|)) (-15 -3177 (|#1| (-781) |#1|))) |%noBranch|)) (-174)) (T -793)) -((-3177 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-174)))) (-2272 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-174)))) (-1459 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-174))))) -(-10 -7 (-15 -1459 (|#1| (-781) |#1|)) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -2272 (|#1| (-781) |#1|)) (-15 -3177 (|#1| (-781) |#1|))) |%noBranch|)) -((-2849 (((-112) $ $) 7)) (-2410 (((-654 (-2 (|:| -1381 $) (|:| -1675 (-654 |#4|)))) (-654 |#4|)) 86)) (-3954 (((-654 $) (-654 |#4|)) 87) (((-654 $) (-654 |#4|) (-112)) 112)) (-4355 (((-654 |#3|) $) 34)) (-2907 (((-112) $) 27)) (-4018 (((-112) $) 18 (|has| |#1| (-566)))) (-1751 (((-112) |#4| $) 102) (((-112) $) 98)) (-3207 ((|#4| |#4| $) 93)) (-2568 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 $))) |#4| $) 127)) (-2771 (((-2 (|:| |under| $) (|:| -3595 $) (|:| |upper| $)) $ |#3|) 28)) (-3034 (((-112) $ (-781)) 45)) (-2165 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4456))) (((-3 |#4| "failed") $ |#3|) 80)) (-3426 (($) 46 T CONST)) (-4336 (((-112) $) 23 (|has| |#1| (-566)))) (-1547 (((-112) $ $) 25 (|has| |#1| (-566)))) (-2318 (((-112) $ $) 24 (|has| |#1| (-566)))) (-1792 (((-112) $) 26 (|has| |#1| (-566)))) (-3908 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3025 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-1974 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1696 (((-3 $ "failed") (-654 |#4|)) 37)) (-2206 (($ (-654 |#4|)) 36)) (-2926 (((-3 $ "failed") $) 83)) (-1402 ((|#4| |#4| $) 90)) (-1543 (($ $) 69 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ |#4| $) 68 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4456)))) (-2766 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-1315 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1747 ((|#4| |#4| $) 88)) (-2868 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4456))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4456))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4270 (((-2 (|:| -1381 (-654 |#4|)) (|:| -1675 (-654 |#4|))) $) 106)) (-4062 (((-112) |#4| $) 137)) (-2288 (((-112) |#4| $) 134)) (-1421 (((-112) |#4| $) 138) (((-112) $) 135)) (-1864 (((-654 |#4|) $) 53 (|has| $ (-6 -4456)))) (-4436 (((-112) |#4| $) 105) (((-112) $) 104)) (-3830 ((|#3| $) 35)) (-2742 (((-112) $ (-781)) 44)) (-1606 (((-654 |#4|) $) 54 (|has| $ (-6 -4456)))) (-1710 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456))))) (-2449 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#4| |#4|) $) 48)) (-3963 (((-654 |#3|) $) 33)) (-4158 (((-112) |#3| $) 32)) (-4203 (((-112) $ (-781)) 43)) (-4136 (((-1172) $) 10)) (-3660 (((-3 |#4| (-654 $)) |#4| |#4| $) 129)) (-4268 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 $))) |#4| |#4| $) 128)) (-3360 (((-3 |#4| "failed") $) 84)) (-2290 (((-654 $) |#4| $) 130)) (-3945 (((-3 (-112) (-654 $)) |#4| $) 133)) (-2514 (((-654 (-2 (|:| |val| (-112)) (|:| -4091 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1784 (((-654 $) |#4| $) 126) (((-654 $) (-654 |#4|) $) 125) (((-654 $) (-654 |#4|) (-654 $)) 124) (((-654 $) |#4| (-654 $)) 123)) (-1954 (($ |#4| $) 118) (($ (-654 |#4|) $) 117)) (-4417 (((-654 |#4|) $) 108)) (-4292 (((-112) |#4| $) 100) (((-112) $) 96)) (-3023 ((|#4| |#4| $) 91)) (-2119 (((-112) $ $) 111)) (-2396 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-2682 (((-112) |#4| $) 101) (((-112) $) 97)) (-3206 ((|#4| |#4| $) 92)) (-3966 (((-1133) $) 11)) (-2915 (((-3 |#4| "failed") $) 85)) (-1549 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3040 (((-3 $ "failed") $ |#4|) 79)) (-2533 (($ $ |#4|) 78) (((-654 $) |#4| $) 116) (((-654 $) |#4| (-654 $)) 115) (((-654 $) (-654 |#4|) $) 114) (((-654 $) (-654 |#4|) (-654 $)) 113)) (-2540 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))) (-4017 (((-112) $ $) 39)) (-1584 (((-112) $) 42)) (-2672 (($) 41)) (-4202 (((-781) $) 107)) (-3975 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4456)))) (-3167 (($ $) 40)) (-1836 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2956 (($ (-654 |#4|)) 61)) (-3650 (($ $ |#3|) 29)) (-3722 (($ $ |#3|) 31)) (-4429 (($ $) 89)) (-2096 (($ $ |#3|) 30)) (-2943 (((-872) $) 12) (((-654 |#4|) $) 38)) (-4435 (((-781) $) 77 (|has| |#3| (-377)))) (-3284 (((-112) $ $) 9)) (-3416 (((-3 (-2 (|:| |bas| $) (|:| -2002 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2002 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2582 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) 99)) (-1379 (((-654 $) |#4| $) 122) (((-654 $) |#4| (-654 $)) 121) (((-654 $) (-654 |#4|) $) 120) (((-654 $) (-654 |#4|) (-654 $)) 119)) (-3390 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4456)))) (-2720 (((-654 |#3|) $) 82)) (-4221 (((-112) |#4| $) 136)) (-3587 (((-112) |#3| $) 81)) (-2981 (((-112) $ $) 6)) (-2863 (((-781) $) 47 (|has| $ (-6 -4456))))) -(((-794 |#1| |#2| |#3| |#4|) (-141) (-462) (-803) (-860) (-1078 |t#1| |t#2| |t#3|)) (T -794)) -NIL -(-13 (-1084 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))) ((-989 |#1| |#2| |#3| |#4|) . T) ((-1084 |#1| |#2| |#3| |#4|) . T) ((-1113) . T) ((-1224 |#1| |#2| |#3| |#4|) . T) ((-1231) . T)) -((-2747 (((-3 (-388) "failed") (-324 |#1|) (-932)) 62 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-388) "failed") (-324 |#1|)) 54 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-388) "failed") (-417 (-963 |#1|)) (-932)) 41 (|has| |#1| (-566))) (((-3 (-388) "failed") (-417 (-963 |#1|))) 40 (|has| |#1| (-566))) (((-3 (-388) "failed") (-963 |#1|) (-932)) 31 (|has| |#1| (-1062))) (((-3 (-388) "failed") (-963 |#1|)) 30 (|has| |#1| (-1062)))) (-3089 (((-388) (-324 |#1|) (-932)) 99 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-388) (-324 |#1|)) 94 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-388) (-417 (-963 |#1|)) (-932)) 91 (|has| |#1| (-566))) (((-388) (-417 (-963 |#1|))) 90 (|has| |#1| (-566))) (((-388) (-963 |#1|) (-932)) 86 (|has| |#1| (-1062))) (((-388) (-963 |#1|)) 85 (|has| |#1| (-1062))) (((-388) |#1| (-932)) 76) (((-388) |#1|) 22)) (-2182 (((-3 (-171 (-388)) "failed") (-324 (-171 |#1|)) (-932)) 71 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-171 (-388)) "failed") (-324 (-171 |#1|))) 70 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-171 (-388)) "failed") (-324 |#1|) (-932)) 63 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-171 (-388)) "failed") (-324 |#1|)) 61 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-171 (-388)) "failed") (-417 (-963 (-171 |#1|))) (-932)) 46 (|has| |#1| (-566))) (((-3 (-171 (-388)) "failed") (-417 (-963 (-171 |#1|)))) 45 (|has| |#1| (-566))) (((-3 (-171 (-388)) "failed") (-417 (-963 |#1|)) (-932)) 39 (|has| |#1| (-566))) (((-3 (-171 (-388)) "failed") (-417 (-963 |#1|))) 38 (|has| |#1| (-566))) (((-3 (-171 (-388)) "failed") (-963 |#1|) (-932)) 28 (|has| |#1| (-1062))) (((-3 (-171 (-388)) "failed") (-963 |#1|)) 26 (|has| |#1| (-1062))) (((-3 (-171 (-388)) "failed") (-963 (-171 |#1|)) (-932)) 18 (|has| |#1| (-174))) (((-3 (-171 (-388)) "failed") (-963 (-171 |#1|))) 15 (|has| |#1| (-174)))) (-4141 (((-171 (-388)) (-324 (-171 |#1|)) (-932)) 102 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-171 (-388)) (-324 (-171 |#1|))) 101 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-171 (-388)) (-324 |#1|) (-932)) 100 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-171 (-388)) (-324 |#1|)) 98 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-171 (-388)) (-417 (-963 (-171 |#1|))) (-932)) 93 (|has| |#1| (-566))) (((-171 (-388)) (-417 (-963 (-171 |#1|)))) 92 (|has| |#1| (-566))) (((-171 (-388)) (-417 (-963 |#1|)) (-932)) 89 (|has| |#1| (-566))) (((-171 (-388)) (-417 (-963 |#1|))) 88 (|has| |#1| (-566))) (((-171 (-388)) (-963 |#1|) (-932)) 84 (|has| |#1| (-1062))) (((-171 (-388)) (-963 |#1|)) 83 (|has| |#1| (-1062))) (((-171 (-388)) (-963 (-171 |#1|)) (-932)) 78 (|has| |#1| (-174))) (((-171 (-388)) (-963 (-171 |#1|))) 77 (|has| |#1| (-174))) (((-171 (-388)) (-171 |#1|) (-932)) 80 (|has| |#1| (-174))) (((-171 (-388)) (-171 |#1|)) 79 (|has| |#1| (-174))) (((-171 (-388)) |#1| (-932)) 27) (((-171 (-388)) |#1|) 25))) -(((-795 |#1|) (-10 -7 (-15 -3089 ((-388) |#1|)) (-15 -3089 ((-388) |#1| (-932))) (-15 -4141 ((-171 (-388)) |#1|)) (-15 -4141 ((-171 (-388)) |#1| (-932))) (IF (|has| |#1| (-174)) (PROGN (-15 -4141 ((-171 (-388)) (-171 |#1|))) (-15 -4141 ((-171 (-388)) (-171 |#1|) (-932))) (-15 -4141 ((-171 (-388)) (-963 (-171 |#1|)))) (-15 -4141 ((-171 (-388)) (-963 (-171 |#1|)) (-932)))) |%noBranch|) (IF (|has| |#1| (-1062)) (PROGN (-15 -3089 ((-388) (-963 |#1|))) (-15 -3089 ((-388) (-963 |#1|) (-932))) (-15 -4141 ((-171 (-388)) (-963 |#1|))) (-15 -4141 ((-171 (-388)) (-963 |#1|) (-932)))) |%noBranch|) (IF (|has| |#1| (-566)) (PROGN (-15 -3089 ((-388) (-417 (-963 |#1|)))) (-15 -3089 ((-388) (-417 (-963 |#1|)) (-932))) (-15 -4141 ((-171 (-388)) (-417 (-963 |#1|)))) (-15 -4141 ((-171 (-388)) (-417 (-963 |#1|)) (-932))) (-15 -4141 ((-171 (-388)) (-417 (-963 (-171 |#1|))))) (-15 -4141 ((-171 (-388)) (-417 (-963 (-171 |#1|))) (-932))) (IF (|has| |#1| (-860)) (PROGN (-15 -3089 ((-388) (-324 |#1|))) (-15 -3089 ((-388) (-324 |#1|) (-932))) (-15 -4141 ((-171 (-388)) (-324 |#1|))) (-15 -4141 ((-171 (-388)) (-324 |#1|) (-932))) (-15 -4141 ((-171 (-388)) (-324 (-171 |#1|)))) (-15 -4141 ((-171 (-388)) (-324 (-171 |#1|)) (-932)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -2182 ((-3 (-171 (-388)) "failed") (-963 (-171 |#1|)))) (-15 -2182 ((-3 (-171 (-388)) "failed") (-963 (-171 |#1|)) (-932)))) |%noBranch|) (IF (|has| |#1| (-1062)) (PROGN (-15 -2747 ((-3 (-388) "failed") (-963 |#1|))) (-15 -2747 ((-3 (-388) "failed") (-963 |#1|) (-932))) (-15 -2182 ((-3 (-171 (-388)) "failed") (-963 |#1|))) (-15 -2182 ((-3 (-171 (-388)) "failed") (-963 |#1|) (-932)))) |%noBranch|) (IF (|has| |#1| (-566)) (PROGN (-15 -2747 ((-3 (-388) "failed") (-417 (-963 |#1|)))) (-15 -2747 ((-3 (-388) "failed") (-417 (-963 |#1|)) (-932))) (-15 -2182 ((-3 (-171 (-388)) "failed") (-417 (-963 |#1|)))) (-15 -2182 ((-3 (-171 (-388)) "failed") (-417 (-963 |#1|)) (-932))) (-15 -2182 ((-3 (-171 (-388)) "failed") (-417 (-963 (-171 |#1|))))) (-15 -2182 ((-3 (-171 (-388)) "failed") (-417 (-963 (-171 |#1|))) (-932))) (IF (|has| |#1| (-860)) (PROGN (-15 -2747 ((-3 (-388) "failed") (-324 |#1|))) (-15 -2747 ((-3 (-388) "failed") (-324 |#1|) (-932))) (-15 -2182 ((-3 (-171 (-388)) "failed") (-324 |#1|))) (-15 -2182 ((-3 (-171 (-388)) "failed") (-324 |#1|) (-932))) (-15 -2182 ((-3 (-171 (-388)) "failed") (-324 (-171 |#1|)))) (-15 -2182 ((-3 (-171 (-388)) "failed") (-324 (-171 |#1|)) (-932)))) |%noBranch|)) |%noBranch|)) (-624 (-388))) (T -795)) -((-2182 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-324 (-171 *5))) (-5 *4 (-932)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-2182 (*1 *2 *3) (|partial| -12 (-5 *3 (-324 (-171 *4))) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-2182 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-324 *5)) (-5 *4 (-932)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-2182 (*1 *2 *3) (|partial| -12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-2747 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-324 *5)) (-5 *4 (-932)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-2747 (*1 *2 *3) (|partial| -12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-2182 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-417 (-963 (-171 *5)))) (-5 *4 (-932)) (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-2182 (*1 *2 *3) (|partial| -12 (-5 *3 (-417 (-963 (-171 *4)))) (-4 *4 (-566)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-2182 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-932)) (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-2182 (*1 *2 *3) (|partial| -12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-566)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-2747 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-932)) (-4 *5 (-566)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-2747 (*1 *2 *3) (|partial| -12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-566)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-2182 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-963 *5)) (-5 *4 (-932)) (-4 *5 (-1062)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-2182 (*1 *2 *3) (|partial| -12 (-5 *3 (-963 *4)) (-4 *4 (-1062)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-2747 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-963 *5)) (-5 *4 (-932)) (-4 *5 (-1062)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-2747 (*1 *2 *3) (|partial| -12 (-5 *3 (-963 *4)) (-4 *4 (-1062)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-2182 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-963 (-171 *5))) (-5 *4 (-932)) (-4 *5 (-174)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-2182 (*1 *2 *3) (|partial| -12 (-5 *3 (-963 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4141 (*1 *2 *3 *4) (-12 (-5 *3 (-324 (-171 *5))) (-5 *4 (-932)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4141 (*1 *2 *3) (-12 (-5 *3 (-324 (-171 *4))) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4141 (*1 *2 *3 *4) (-12 (-5 *3 (-324 *5)) (-5 *4 (-932)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4141 (*1 *2 *3) (-12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3089 (*1 *2 *3 *4) (-12 (-5 *3 (-324 *5)) (-5 *4 (-932)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-3089 (*1 *2 *3) (-12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-4141 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-963 (-171 *5)))) (-5 *4 (-932)) (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4141 (*1 *2 *3) (-12 (-5 *3 (-417 (-963 (-171 *4)))) (-4 *4 (-566)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4141 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-932)) (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4141 (*1 *2 *3) (-12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-566)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3089 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-932)) (-4 *5 (-566)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-3089 (*1 *2 *3) (-12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-566)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-4141 (*1 *2 *3 *4) (-12 (-5 *3 (-963 *5)) (-5 *4 (-932)) (-4 *5 (-1062)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4141 (*1 *2 *3) (-12 (-5 *3 (-963 *4)) (-4 *4 (-1062)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3089 (*1 *2 *3 *4) (-12 (-5 *3 (-963 *5)) (-5 *4 (-932)) (-4 *5 (-1062)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-3089 (*1 *2 *3) (-12 (-5 *3 (-963 *4)) (-4 *4 (-1062)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-4141 (*1 *2 *3 *4) (-12 (-5 *3 (-963 (-171 *5))) (-5 *4 (-932)) (-4 *5 (-174)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4141 (*1 *2 *3) (-12 (-5 *3 (-963 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4141 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-932)) (-4 *5 (-174)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4141 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4141 (*1 *2 *3 *4) (-12 (-5 *4 (-932)) (-5 *2 (-171 (-388))) (-5 *1 (-795 *3)) (-4 *3 (-624 (-388))))) (-4141 (*1 *2 *3) (-12 (-5 *2 (-171 (-388))) (-5 *1 (-795 *3)) (-4 *3 (-624 (-388))))) (-3089 (*1 *2 *3 *4) (-12 (-5 *4 (-932)) (-5 *2 (-388)) (-5 *1 (-795 *3)) (-4 *3 (-624 *2)))) (-3089 (*1 *2 *3) (-12 (-5 *2 (-388)) (-5 *1 (-795 *3)) (-4 *3 (-624 *2))))) -(-10 -7 (-15 -3089 ((-388) |#1|)) (-15 -3089 ((-388) |#1| (-932))) (-15 -4141 ((-171 (-388)) |#1|)) (-15 -4141 ((-171 (-388)) |#1| (-932))) (IF (|has| |#1| (-174)) (PROGN (-15 -4141 ((-171 (-388)) (-171 |#1|))) (-15 -4141 ((-171 (-388)) (-171 |#1|) (-932))) (-15 -4141 ((-171 (-388)) (-963 (-171 |#1|)))) (-15 -4141 ((-171 (-388)) (-963 (-171 |#1|)) (-932)))) |%noBranch|) (IF (|has| |#1| (-1062)) (PROGN (-15 -3089 ((-388) (-963 |#1|))) (-15 -3089 ((-388) (-963 |#1|) (-932))) (-15 -4141 ((-171 (-388)) (-963 |#1|))) (-15 -4141 ((-171 (-388)) (-963 |#1|) (-932)))) |%noBranch|) (IF (|has| |#1| (-566)) (PROGN (-15 -3089 ((-388) (-417 (-963 |#1|)))) (-15 -3089 ((-388) (-417 (-963 |#1|)) (-932))) (-15 -4141 ((-171 (-388)) (-417 (-963 |#1|)))) (-15 -4141 ((-171 (-388)) (-417 (-963 |#1|)) (-932))) (-15 -4141 ((-171 (-388)) (-417 (-963 (-171 |#1|))))) (-15 -4141 ((-171 (-388)) (-417 (-963 (-171 |#1|))) (-932))) (IF (|has| |#1| (-860)) (PROGN (-15 -3089 ((-388) (-324 |#1|))) (-15 -3089 ((-388) (-324 |#1|) (-932))) (-15 -4141 ((-171 (-388)) (-324 |#1|))) (-15 -4141 ((-171 (-388)) (-324 |#1|) (-932))) (-15 -4141 ((-171 (-388)) (-324 (-171 |#1|)))) (-15 -4141 ((-171 (-388)) (-324 (-171 |#1|)) (-932)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -2182 ((-3 (-171 (-388)) "failed") (-963 (-171 |#1|)))) (-15 -2182 ((-3 (-171 (-388)) "failed") (-963 (-171 |#1|)) (-932)))) |%noBranch|) (IF (|has| |#1| (-1062)) (PROGN (-15 -2747 ((-3 (-388) "failed") (-963 |#1|))) (-15 -2747 ((-3 (-388) "failed") (-963 |#1|) (-932))) (-15 -2182 ((-3 (-171 (-388)) "failed") (-963 |#1|))) (-15 -2182 ((-3 (-171 (-388)) "failed") (-963 |#1|) (-932)))) |%noBranch|) (IF (|has| |#1| (-566)) (PROGN (-15 -2747 ((-3 (-388) "failed") (-417 (-963 |#1|)))) (-15 -2747 ((-3 (-388) "failed") (-417 (-963 |#1|)) (-932))) (-15 -2182 ((-3 (-171 (-388)) "failed") (-417 (-963 |#1|)))) (-15 -2182 ((-3 (-171 (-388)) "failed") (-417 (-963 |#1|)) (-932))) (-15 -2182 ((-3 (-171 (-388)) "failed") (-417 (-963 (-171 |#1|))))) (-15 -2182 ((-3 (-171 (-388)) "failed") (-417 (-963 (-171 |#1|))) (-932))) (IF (|has| |#1| (-860)) (PROGN (-15 -2747 ((-3 (-388) "failed") (-324 |#1|))) (-15 -2747 ((-3 (-388) "failed") (-324 |#1|) (-932))) (-15 -2182 ((-3 (-171 (-388)) "failed") (-324 |#1|))) (-15 -2182 ((-3 (-171 (-388)) "failed") (-324 |#1|) (-932))) (-15 -2182 ((-3 (-171 (-388)) "failed") (-324 (-171 |#1|)))) (-15 -2182 ((-3 (-171 (-388)) "failed") (-324 (-171 |#1|)) (-932)))) |%noBranch|)) |%noBranch|)) -((-2536 (((-932) (-1172)) 89)) (-2186 (((-3 (-388) "failed") (-1172)) 36)) (-2413 (((-388) (-1172)) 34)) (-1500 (((-932) (-1172)) 63)) (-3841 (((-1172) (-932)) 73)) (-1716 (((-1172) (-932)) 62))) -(((-796) (-10 -7 (-15 -1716 ((-1172) (-932))) (-15 -1500 ((-932) (-1172))) (-15 -3841 ((-1172) (-932))) (-15 -2536 ((-932) (-1172))) (-15 -2413 ((-388) (-1172))) (-15 -2186 ((-3 (-388) "failed") (-1172))))) (T -796)) -((-2186 (*1 *2 *3) (|partial| -12 (-5 *3 (-1172)) (-5 *2 (-388)) (-5 *1 (-796)))) (-2413 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-388)) (-5 *1 (-796)))) (-2536 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-932)) (-5 *1 (-796)))) (-3841 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1172)) (-5 *1 (-796)))) (-1500 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-932)) (-5 *1 (-796)))) (-1716 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1172)) (-5 *1 (-796))))) -(-10 -7 (-15 -1716 ((-1172) (-932))) (-15 -1500 ((-932) (-1172))) (-15 -3841 ((-1172) (-932))) (-15 -2536 ((-932) (-1172))) (-15 -2413 ((-388) (-1172))) (-15 -2186 ((-3 (-388) "failed") (-1172)))) -((-2849 (((-112) $ $) 7)) (-3624 (((-1048) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) 16) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048)) 14)) (-3678 (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 17) (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) -(((-797) (-141)) (T -797)) -((-3678 (*1 *2 *3 *4) (-12 (-4 *1 (-797)) (-5 *3 (-1076)) (-5 *4 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048)))))) (-3624 (*1 *2 *3 *2) (-12 (-4 *1 (-797)) (-5 *2 (-1048)) (-5 *3 (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-3678 (*1 *2 *3 *4) (-12 (-4 *1 (-797)) (-5 *3 (-1076)) (-5 *4 (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048)))))) (-3624 (*1 *2 *3 *2) (-12 (-4 *1 (-797)) (-5 *2 (-1048)) (-5 *3 (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) -(-13 (-1113) (-10 -7 (-15 -3678 ((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3624 ((-1048) (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048))) (-15 -3678 ((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)) (|:| |extra| (-1048))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3624 ((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1048))))) -(((-102) . T) ((-623 (-872)) . T) ((-1113) . T)) -((-4142 (((-1286) (-1281 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3979 (-388))) (-388) (-1281 (-388)) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388))) 55) (((-1286) (-1281 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3979 (-388))) (-388) (-1281 (-388)) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388))) 52)) (-2258 (((-1286) (-1281 (-388)) (-574) (-388) (-388) (-574) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388))) 61)) (-3757 (((-1286) (-1281 (-388)) (-574) (-388) (-388) (-388) (-388) (-574) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388))) 50)) (-3329 (((-1286) (-1281 (-388)) (-574) (-388) (-388) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388))) 63) (((-1286) (-1281 (-388)) (-574) (-388) (-388) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388))) 62))) -(((-798) (-10 -7 (-15 -3329 ((-1286) (-1281 (-388)) (-574) (-388) (-388) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388)))) (-15 -3329 ((-1286) (-1281 (-388)) (-574) (-388) (-388) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)))) (-15 -3757 ((-1286) (-1281 (-388)) (-574) (-388) (-388) (-388) (-388) (-574) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388)))) (-15 -4142 ((-1286) (-1281 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3979 (-388))) (-388) (-1281 (-388)) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388)))) (-15 -4142 ((-1286) (-1281 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3979 (-388))) (-388) (-1281 (-388)) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)))) (-15 -2258 ((-1286) (-1281 (-388)) (-574) (-388) (-388) (-574) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388)))))) (T -798)) -((-2258 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1286) (-1281 *5) (-1281 *5) (-388))) (-5 *3 (-1281 (-388))) (-5 *5 (-388)) (-5 *2 (-1286)) (-5 *1 (-798)))) (-4142 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-574)) (-5 *6 (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3979 (-388)))) (-5 *7 (-1 (-1286) (-1281 *5) (-1281 *5) (-388))) (-5 *3 (-1281 (-388))) (-5 *5 (-388)) (-5 *2 (-1286)) (-5 *1 (-798)))) (-4142 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-574)) (-5 *6 (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3979 (-388)))) (-5 *7 (-1 (-1286) (-1281 *5) (-1281 *5) (-388))) (-5 *3 (-1281 (-388))) (-5 *5 (-388)) (-5 *2 (-1286)) (-5 *1 (-798)))) (-3757 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1286) (-1281 *5) (-1281 *5) (-388))) (-5 *3 (-1281 (-388))) (-5 *5 (-388)) (-5 *2 (-1286)) (-5 *1 (-798)))) (-3329 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1286) (-1281 *5) (-1281 *5) (-388))) (-5 *3 (-1281 (-388))) (-5 *5 (-388)) (-5 *2 (-1286)) (-5 *1 (-798)))) (-3329 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1286) (-1281 *5) (-1281 *5) (-388))) (-5 *3 (-1281 (-388))) (-5 *5 (-388)) (-5 *2 (-1286)) (-5 *1 (-798))))) -(-10 -7 (-15 -3329 ((-1286) (-1281 (-388)) (-574) (-388) (-388) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388)))) (-15 -3329 ((-1286) (-1281 (-388)) (-574) (-388) (-388) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)))) (-15 -3757 ((-1286) (-1281 (-388)) (-574) (-388) (-388) (-388) (-388) (-574) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388)))) (-15 -4142 ((-1286) (-1281 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3979 (-388))) (-388) (-1281 (-388)) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388)))) (-15 -4142 ((-1286) (-1281 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3979 (-388))) (-388) (-1281 (-388)) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)) (-1281 (-388)))) (-15 -2258 ((-1286) (-1281 (-388)) (-574) (-388) (-388) (-574) (-1 (-1286) (-1281 (-388)) (-1281 (-388)) (-388))))) -((-2844 (((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 64)) (-4372 (((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 40)) (-1486 (((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 63)) (-3859 (((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 38)) (-3420 (((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 62)) (-3834 (((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 24)) (-2104 (((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574)) 41)) (-2547 (((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574)) 39)) (-1571 (((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574)) 37))) -(((-799) (-10 -7 (-15 -1571 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -2547 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -2104 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -3834 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -3859 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -4372 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -3420 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -1486 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -2844 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))))) (T -799)) -((-2844 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-1486 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-3420 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-4372 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-3859 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-3834 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-2104 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-2547 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-1571 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574))))) -(-10 -7 (-15 -1571 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -2547 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -2104 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -3834 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -3859 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -4372 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -3420 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -1486 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -2844 ((-2 (|:| -3083 (-388)) (|:| -2678 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)))) -((-4420 (((-1226 |#1|) |#1| (-227) (-574)) 69))) -(((-800 |#1|) (-10 -7 (-15 -4420 ((-1226 |#1|) |#1| (-227) (-574)))) (-987)) (T -800)) -((-4420 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-227)) (-5 *5 (-574)) (-5 *2 (-1226 *3)) (-5 *1 (-800 *3)) (-4 *3 (-987))))) -(-10 -7 (-15 -4420 ((-1226 |#1|) |#1| (-227) (-574)))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 25)) (-3524 (((-3 $ "failed") $ $) 27)) (-3426 (($) 24 T CONST)) (-3659 (($ $ $) 14)) (-4257 (($ $ $) 15)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2133 (($) 23 T CONST)) (-3042 (((-112) $ $) 17)) (-3018 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3030 (((-112) $ $) 16)) (-3007 (((-112) $ $) 19)) (-3094 (($ $ $) 31) (($ $) 30)) (-3079 (($ $ $) 21)) (* (($ (-932) $) 22) (($ (-781) $) 26) (($ (-574) $) 29))) +((-1994 (((-3 |#2| "failed") |#2| |#2| (-115) (-1189)) 37))) +(((-781 |#1| |#2|) (-10 -7 (-15 -1994 ((-3 |#2| "failed") |#2| |#2| (-115) (-1189)))) (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148)) (-13 (-29 |#1|) (-1215) (-969))) (T -781)) +((-1994 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1189)) (-4 *5 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *1 (-781 *5 *2)) (-4 *2 (-13 (-29 *5) (-1215) (-969)))))) +(-10 -7 (-15 -1994 ((-3 |#2| "failed") |#2| |#2| (-115) (-1189)))) +((-2942 (((-783) |#1|) 8))) +(((-782 |#1|) (-10 -7 (-15 -2942 ((-783) |#1|))) (-1230)) (T -782)) +((-2942 (*1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-782 *3)) (-4 *3 (-1230))))) +(-10 -7 (-15 -2942 ((-783) |#1|))) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 7)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 9))) +(((-783) (-1112)) (T -783)) +NIL +(-1112) +((-3421 ((|#2| |#4|) 35))) +(((-784 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3421 (|#2| |#4|))) (-461) (-1256 |#1|) (-733 |#1| |#2|) (-1256 |#3|)) (T -784)) +((-3421 (*1 *2 *3) (-12 (-4 *4 (-461)) (-4 *5 (-733 *4 *2)) (-4 *2 (-1256 *4)) (-5 *1 (-784 *4 *2 *5 *3)) (-4 *3 (-1256 *5))))) +(-10 -7 (-15 -3421 (|#2| |#4|))) +((-2232 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-4427 (((-1285) (-1171) (-1171) |#4| |#5|) 33)) (-4168 ((|#4| |#4| |#5|) 74)) (-2852 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#5|) 79)) (-4049 (((-653 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|) 16))) +(((-785 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2232 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -4168 (|#4| |#4| |#5|)) (-15 -2852 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#5|)) (-15 -4427 ((-1285) (-1171) (-1171) |#4| |#5|)) (-15 -4049 ((-653 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|))) (-461) (-802) (-859) (-1077 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3| |#4|)) (T -785)) +((-4049 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 (-2 (|:| |val| (-112)) (|:| -4090 *4)))) (-5 *1 (-785 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-4427 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1171)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) (-4 *4 (-1077 *6 *7 *8)) (-5 *2 (-1285)) (-5 *1 (-785 *6 *7 *8 *4 *5)) (-4 *5 (-1083 *6 *7 *8 *4)))) (-2852 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) (-5 *1 (-785 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-4168 (*1 *2 *2 *3) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *2 (-1077 *4 *5 *6)) (-5 *1 (-785 *4 *5 *6 *2 *3)) (-4 *3 (-1083 *4 *5 *6 *2)))) (-2232 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-785 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) +(-10 -7 (-15 -2232 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -4168 (|#4| |#4| |#5|)) (-15 -2852 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#5|)) (-15 -4427 ((-1285) (-1171) (-1171) |#4| |#5|)) (-15 -4049 ((-653 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|))) +((-1695 (((-3 (-1185 (-1185 |#1|)) "failed") |#4|) 51)) (-1740 (((-653 |#4|) |#4|) 22)) (-1629 ((|#4| |#4|) 17))) +(((-786 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1740 ((-653 |#4|) |#4|)) (-15 -1695 ((-3 (-1185 (-1185 |#1|)) "failed") |#4|)) (-15 -1629 (|#4| |#4|))) (-357) (-336 |#1|) (-1256 |#2|) (-1256 |#3|) (-931)) (T -786)) +((-1629 (*1 *2 *2) (-12 (-4 *3 (-357)) (-4 *4 (-336 *3)) (-4 *5 (-1256 *4)) (-5 *1 (-786 *3 *4 *5 *2 *6)) (-4 *2 (-1256 *5)) (-14 *6 (-931)))) (-1695 (*1 *2 *3) (|partial| -12 (-4 *4 (-357)) (-4 *5 (-336 *4)) (-4 *6 (-1256 *5)) (-5 *2 (-1185 (-1185 *4))) (-5 *1 (-786 *4 *5 *6 *3 *7)) (-4 *3 (-1256 *6)) (-14 *7 (-931)))) (-1740 (*1 *2 *3) (-12 (-4 *4 (-357)) (-4 *5 (-336 *4)) (-4 *6 (-1256 *5)) (-5 *2 (-653 *3)) (-5 *1 (-786 *4 *5 *6 *3 *7)) (-4 *3 (-1256 *6)) (-14 *7 (-931))))) +(-10 -7 (-15 -1740 ((-653 |#4|) |#4|)) (-15 -1695 ((-3 (-1185 (-1185 |#1|)) "failed") |#4|)) (-15 -1629 (|#4| |#4|))) +((-4378 (((-2 (|:| |deter| (-653 (-1185 |#5|))) (|:| |dterm| (-653 (-653 (-2 (|:| -2444 (-780)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-653 |#1|)) (|:| |nlead| (-653 |#5|))) (-1185 |#5|) (-653 |#1|) (-653 |#5|)) 72)) (-3122 (((-653 (-780)) |#1|) 20))) +(((-787 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4378 ((-2 (|:| |deter| (-653 (-1185 |#5|))) (|:| |dterm| (-653 (-653 (-2 (|:| -2444 (-780)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-653 |#1|)) (|:| |nlead| (-653 |#5|))) (-1185 |#5|) (-653 |#1|) (-653 |#5|))) (-15 -3122 ((-653 (-780)) |#1|))) (-1256 |#4|) (-802) (-859) (-314) (-959 |#4| |#2| |#3|)) (T -787)) +((-3122 (*1 *2 *3) (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-314)) (-5 *2 (-653 (-780))) (-5 *1 (-787 *3 *4 *5 *6 *7)) (-4 *3 (-1256 *6)) (-4 *7 (-959 *6 *4 *5)))) (-4378 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1256 *9)) (-4 *7 (-802)) (-4 *8 (-859)) (-4 *9 (-314)) (-4 *10 (-959 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-653 (-1185 *10))) (|:| |dterm| (-653 (-653 (-2 (|:| -2444 (-780)) (|:| |pcoef| *10))))) (|:| |nfacts| (-653 *6)) (|:| |nlead| (-653 *10)))) (-5 *1 (-787 *6 *7 *8 *9 *10)) (-5 *3 (-1185 *10)) (-5 *4 (-653 *6)) (-5 *5 (-653 *10))))) +(-10 -7 (-15 -4378 ((-2 (|:| |deter| (-653 (-1185 |#5|))) (|:| |dterm| (-653 (-653 (-2 (|:| -2444 (-780)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-653 |#1|)) (|:| |nlead| (-653 |#5|))) (-1185 |#5|) (-653 |#1|) (-653 |#5|))) (-15 -3122 ((-653 (-780)) |#1|))) +((-4360 (((-653 (-2 (|:| |outval| |#1|) (|:| |outmult| (-573)) (|:| |outvect| (-653 (-698 |#1|))))) (-698 (-416 (-573))) |#1|) 31)) (-1400 (((-653 |#1|) (-698 (-416 (-573))) |#1|) 21)) (-2517 (((-962 (-416 (-573))) (-698 (-416 (-573))) (-1189)) 18) (((-962 (-416 (-573))) (-698 (-416 (-573)))) 17))) +(((-788 |#1|) (-10 -7 (-15 -2517 ((-962 (-416 (-573))) (-698 (-416 (-573))))) (-15 -2517 ((-962 (-416 (-573))) (-698 (-416 (-573))) (-1189))) (-15 -1400 ((-653 |#1|) (-698 (-416 (-573))) |#1|)) (-15 -4360 ((-653 (-2 (|:| |outval| |#1|) (|:| |outmult| (-573)) (|:| |outvect| (-653 (-698 |#1|))))) (-698 (-416 (-573))) |#1|))) (-13 (-371) (-857))) (T -788)) +((-4360 (*1 *2 *3 *4) (-12 (-5 *3 (-698 (-416 (-573)))) (-5 *2 (-653 (-2 (|:| |outval| *4) (|:| |outmult| (-573)) (|:| |outvect| (-653 (-698 *4)))))) (-5 *1 (-788 *4)) (-4 *4 (-13 (-371) (-857))))) (-1400 (*1 *2 *3 *4) (-12 (-5 *3 (-698 (-416 (-573)))) (-5 *2 (-653 *4)) (-5 *1 (-788 *4)) (-4 *4 (-13 (-371) (-857))))) (-2517 (*1 *2 *3 *4) (-12 (-5 *3 (-698 (-416 (-573)))) (-5 *4 (-1189)) (-5 *2 (-962 (-416 (-573)))) (-5 *1 (-788 *5)) (-4 *5 (-13 (-371) (-857))))) (-2517 (*1 *2 *3) (-12 (-5 *3 (-698 (-416 (-573)))) (-5 *2 (-962 (-416 (-573)))) (-5 *1 (-788 *4)) (-4 *4 (-13 (-371) (-857)))))) +(-10 -7 (-15 -2517 ((-962 (-416 (-573))) (-698 (-416 (-573))))) (-15 -2517 ((-962 (-416 (-573))) (-698 (-416 (-573))) (-1189))) (-15 -1400 ((-653 |#1|) (-698 (-416 (-573))) |#1|)) (-15 -4360 ((-653 (-2 (|:| |outval| |#1|) (|:| |outmult| (-573)) (|:| |outvect| (-653 (-698 |#1|))))) (-698 (-416 (-573))) |#1|))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 36)) (-4354 (((-653 |#2|) $) NIL)) (-4193 (((-1185 $) $ |#2|) NIL) (((-1185 |#1|) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-2769 (((-780) $) NIL) (((-780) $ (-653 |#2|)) NIL)) (-1969 (($ $) 30)) (-2218 (((-112) $ $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4183 (($ $ $) 110 (|has| |#1| (-565)))) (-2698 (((-653 $) $ $) 123 (|has| |#1| (-565)))) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4285 (($ $) NIL (|has| |#1| (-461)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-962 (-416 (-573)))) NIL (-12 (|has| |#1| (-38 (-416 (-573)))) (|has| |#2| (-623 (-1189))))) (((-3 $ "failed") (-962 (-573))) NIL (-2817 (-12 (|has| |#1| (-38 (-573))) (|has| |#2| (-623 (-1189))) (-2075 (|has| |#1| (-38 (-416 (-573)))))) (-12 (|has| |#1| (-38 (-416 (-573)))) (|has| |#2| (-623 (-1189)))))) (((-3 $ "failed") (-962 |#1|)) NIL (-2817 (-12 (|has| |#2| (-623 (-1189))) (-2075 (|has| |#1| (-38 (-416 (-573))))) (-2075 (|has| |#1| (-38 (-573))))) (-12 (|has| |#1| (-38 (-573))) (|has| |#2| (-623 (-1189))) (-2075 (|has| |#1| (-38 (-416 (-573))))) (-2075 (|has| |#1| (-554)))) (-12 (|has| |#1| (-38 (-416 (-573)))) (|has| |#2| (-623 (-1189))) (-2075 (|has| |#1| (-1004 (-573))))))) (((-3 (-1137 |#1| |#2|) "failed") $) 21)) (-2205 ((|#1| $) NIL) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-573) $) NIL (|has| |#1| (-1050 (-573)))) ((|#2| $) NIL) (($ (-962 (-416 (-573)))) NIL (-12 (|has| |#1| (-38 (-416 (-573)))) (|has| |#2| (-623 (-1189))))) (($ (-962 (-573))) NIL (-2817 (-12 (|has| |#1| (-38 (-573))) (|has| |#2| (-623 (-1189))) (-2075 (|has| |#1| (-38 (-416 (-573)))))) (-12 (|has| |#1| (-38 (-416 (-573)))) (|has| |#2| (-623 (-1189)))))) (($ (-962 |#1|)) NIL (-2817 (-12 (|has| |#2| (-623 (-1189))) (-2075 (|has| |#1| (-38 (-416 (-573))))) (-2075 (|has| |#1| (-38 (-573))))) (-12 (|has| |#1| (-38 (-573))) (|has| |#2| (-623 (-1189))) (-2075 (|has| |#1| (-38 (-416 (-573))))) (-2075 (|has| |#1| (-554)))) (-12 (|has| |#1| (-38 (-416 (-573)))) (|has| |#2| (-623 (-1189))) (-2075 (|has| |#1| (-1004 (-573))))))) (((-1137 |#1| |#2|) $) NIL)) (-2277 (($ $ $ |#2|) NIL (|has| |#1| (-174))) (($ $ $) 121 (|has| |#1| (-565)))) (-1391 (($ $) NIL) (($ $ |#2|) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) NIL) (((-698 |#1|) (-698 $)) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-4310 (((-112) $ $) NIL) (((-112) $ (-653 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-4421 (((-112) $) NIL)) (-1368 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 81)) (-3128 (($ $) 136 (|has| |#1| (-461)))) (-3246 (($ $) NIL (|has| |#1| (-461))) (($ $ |#2|) NIL (|has| |#1| (-461)))) (-1379 (((-653 $) $) NIL)) (-2696 (((-112) $) NIL (|has| |#1| (-919)))) (-3342 (($ $) NIL (|has| |#1| (-565)))) (-4235 (($ $) NIL (|has| |#1| (-565)))) (-2450 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-4176 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-2343 (($ $ |#1| (-540 |#2|) $) NIL)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| |#1| (-896 (-387))) (|has| |#2| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| |#1| (-896 (-573))) (|has| |#2| (-896 (-573)))))) (-1959 (((-112) $) 57)) (-3772 (((-780) $) NIL)) (-4022 (((-112) $ $) NIL) (((-112) $ (-653 $)) NIL)) (-3558 (($ $ $ $ $) 107 (|has| |#1| (-565)))) (-3338 ((|#2| $) 22)) (-4344 (($ (-1185 |#1|) |#2|) NIL) (($ (-1185 $) |#2|) NIL)) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-540 |#2|)) NIL) (($ $ |#2| (-780)) 38) (($ $ (-653 |#2|) (-653 (-780))) NIL)) (-2018 (($ $ $) 63)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ |#2|) NIL)) (-2093 (((-112) $) NIL)) (-4036 (((-540 |#2|) $) NIL) (((-780) $ |#2|) NIL) (((-653 (-780)) $ (-653 |#2|)) NIL)) (-3726 (((-780) $) 23)) (-1382 (($ (-1 (-540 |#2|) (-540 |#2|)) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1453 (((-3 |#2| "failed") $) NIL)) (-3232 (($ $) NIL (|has| |#1| (-461)))) (-1972 (($ $) NIL (|has| |#1| (-461)))) (-2933 (((-653 $) $) NIL)) (-2311 (($ $) 39)) (-2116 (($ $) NIL (|has| |#1| (-461)))) (-2118 (((-653 $) $) 43)) (-2923 (($ $) 41)) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL) (($ $ |#2|) 48)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-3459 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2488 (-780))) $ $) 96)) (-1941 (((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3152 $) (|:| -3132 $)) $ $) 78) (((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3152 $) (|:| -3132 $)) $ $ |#2|) NIL)) (-3882 (((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3132 $)) $ $) NIL) (((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3132 $)) $ $ |#2|) NIL)) (-4335 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-1841 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-3180 (((-1171) $) NIL)) (-2395 (($ $ $) 125 (|has| |#1| (-565)))) (-3565 (((-653 $) $) 32)) (-4082 (((-3 (-653 $) "failed") $) NIL)) (-2586 (((-3 (-653 $) "failed") $) NIL)) (-2573 (((-3 (-2 (|:| |var| |#2|) (|:| -3907 (-780))) "failed") $) NIL)) (-3161 (((-112) $ $) NIL) (((-112) $ (-653 $)) NIL)) (-3430 (($ $ $) NIL)) (-3816 (($ $) 24)) (-2614 (((-112) $ $) NIL)) (-1973 (((-112) $ $) NIL) (((-112) $ (-653 $)) NIL)) (-1448 (($ $ $) NIL)) (-2030 (($ $) 26)) (-3965 (((-1132) $) NIL)) (-1873 (((-2 (|:| -2872 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-565)))) (-4178 (((-2 (|:| -2872 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-565)))) (-1337 (((-112) $) 56)) (-1348 ((|#1| $) 58)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-461)))) (-2872 ((|#1| |#1| $) 133 (|has| |#1| (-461))) (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4218 (((-427 $) $) NIL (|has| |#1| (-919)))) (-2694 (((-2 (|:| -2872 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-565)))) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-565)))) (-3333 (($ $ |#1|) 129 (|has| |#1| (-565))) (($ $ $) NIL (|has| |#1| (-565)))) (-1467 (($ $ |#1|) 128 (|has| |#1| (-565))) (($ $ $) NIL (|has| |#1| (-565)))) (-2645 (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-653 |#2|) (-653 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-653 |#2|) (-653 $)) NIL)) (-3592 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-3904 (($ $ |#2|) NIL) (($ $ (-653 |#2|)) NIL) (($ $ |#2| (-780)) NIL) (($ $ (-653 |#2|) (-653 (-780))) NIL)) (-2565 (((-540 |#2|) $) NIL) (((-780) $ |#2|) 45) (((-653 (-780)) $ (-653 |#2|)) NIL)) (-3671 (($ $) NIL)) (-3346 (($ $) 35)) (-1835 (((-902 (-387)) $) NIL (-12 (|has| |#1| (-623 (-902 (-387)))) (|has| |#2| (-623 (-902 (-387)))))) (((-902 (-573)) $) NIL (-12 (|has| |#1| (-623 (-902 (-573)))) (|has| |#2| (-623 (-902 (-573)))))) (((-545) $) NIL (-12 (|has| |#1| (-623 (-545))) (|has| |#2| (-623 (-545))))) (($ (-962 (-416 (-573)))) NIL (-12 (|has| |#1| (-38 (-416 (-573)))) (|has| |#2| (-623 (-1189))))) (($ (-962 (-573))) NIL (-2817 (-12 (|has| |#1| (-38 (-573))) (|has| |#2| (-623 (-1189))) (-2075 (|has| |#1| (-38 (-416 (-573)))))) (-12 (|has| |#1| (-38 (-416 (-573)))) (|has| |#2| (-623 (-1189)))))) (($ (-962 |#1|)) NIL (|has| |#2| (-623 (-1189)))) (((-1171) $) NIL (-12 (|has| |#1| (-1050 (-573))) (|has| |#2| (-623 (-1189))))) (((-962 |#1|) $) NIL (|has| |#2| (-623 (-1189))))) (-3257 ((|#1| $) 132 (|has| |#1| (-461))) (($ $ |#2|) NIL (|has| |#1| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-919))))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-962 |#1|) $) NIL (|has| |#2| (-623 (-1189)))) (((-1137 |#1| |#2|) $) 18) (($ (-1137 |#1| |#2|)) 19) (($ (-416 (-573))) NIL (-2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573)))))) (($ $) NIL (|has| |#1| (-565)))) (-1920 (((-653 |#1|) $) NIL)) (-4317 ((|#1| $ (-540 |#2|)) NIL) (($ $ |#2| (-780)) 47) (($ $ (-653 |#2|) (-653 (-780))) NIL)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#1| (-919))) (|has| |#1| (-146))))) (-1545 (((-780)) NIL T CONST)) (-1538 (($ $ $ (-780)) NIL (|has| |#1| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2132 (($) 13 T CONST)) (-3251 (((-3 (-112) "failed") $ $) NIL)) (-2144 (($) 37 T CONST)) (-2389 (($ $ $ $ (-780)) 105 (|has| |#1| (-565)))) (-3306 (($ $ $ (-780)) 104 (|has| |#1| (-565)))) (-3609 (($ $ |#2|) NIL) (($ $ (-653 |#2|)) NIL) (($ $ |#2| (-780)) NIL) (($ $ (-653 |#2|) (-653 (-780))) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) 75)) (-3077 (($ $ $) 85)) (** (($ $ (-931)) NIL) (($ $ (-780)) 70)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 62) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) 61) (($ $ |#1|) NIL))) +(((-789 |#1| |#2|) (-13 (-1077 |#1| (-540 |#2|) |#2|) (-622 (-1137 |#1| |#2|)) (-1050 (-1137 |#1| |#2|))) (-1061) (-859)) (T -789)) +NIL +(-13 (-1077 |#1| (-540 |#2|) |#2|) (-622 (-1137 |#1| |#2|)) (-1050 (-1137 |#1| |#2|))) +((-1776 (((-791 |#2|) (-1 |#2| |#1|) (-791 |#1|)) 13))) +(((-790 |#1| |#2|) (-10 -7 (-15 -1776 ((-791 |#2|) (-1 |#2| |#1|) (-791 |#1|)))) (-1061) (-1061)) (T -790)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-791 *5)) (-4 *5 (-1061)) (-4 *6 (-1061)) (-5 *2 (-791 *6)) (-5 *1 (-790 *5 *6))))) +(-10 -7 (-15 -1776 ((-791 |#2|) (-1 |#2| |#1|) (-791 |#1|)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 12)) (-1867 (((-1280 |#1|) $ (-780)) NIL)) (-4354 (((-653 (-1094)) $) NIL)) (-1343 (($ (-1185 |#1|)) NIL)) (-4193 (((-1185 $) $ (-1094)) NIL) (((-1185 |#1|) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-2769 (((-780) $) NIL) (((-780) $ (-653 (-1094))) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-3445 (((-653 $) $ $) 54 (|has| |#1| (-565)))) (-4183 (($ $ $) 50 (|has| |#1| (-565)))) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4285 (($ $) NIL (|has| |#1| (-461)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-2800 (((-112) $ $) NIL (|has| |#1| (-371)))) (-3168 (($ $ (-780)) NIL)) (-2331 (($ $ (-780)) NIL)) (-4016 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-461)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-1094) "failed") $) NIL) (((-3 (-1185 |#1|) "failed") $) 10)) (-2205 ((|#1| $) NIL) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-1094) $) NIL) (((-1185 |#1|) $) NIL)) (-2277 (($ $ $ (-1094)) NIL (|has| |#1| (-174))) ((|#1| $ $) 58 (|has| |#1| (-174)))) (-2784 (($ $ $) NIL (|has| |#1| (-371)))) (-1391 (($ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) NIL) (((-698 |#1|) (-698 $)) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2796 (($ $ $) NIL (|has| |#1| (-371)))) (-4272 (($ $ $) NIL)) (-2154 (($ $ $) 87 (|has| |#1| (-565)))) (-1368 (((-2 (|:| -1857 |#1|) (|:| -3152 $) (|:| -3132 $)) $ $) 86 (|has| |#1| (-565)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#1| (-371)))) (-3246 (($ $) NIL (|has| |#1| (-461))) (($ $ (-1094)) NIL (|has| |#1| (-461)))) (-1379 (((-653 $) $) NIL)) (-2696 (((-112) $) NIL (|has| |#1| (-919)))) (-2343 (($ $ |#1| (-780) $) NIL)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| (-1094) (-896 (-387))) (|has| |#1| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| (-1094) (-896 (-573))) (|has| |#1| (-896 (-573)))))) (-2534 (((-780) $ $) NIL (|has| |#1| (-565)))) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) NIL)) (-1470 (((-3 $ "failed") $) NIL (|has| |#1| (-1164)))) (-4344 (($ (-1185 |#1|) (-1094)) NIL) (($ (-1185 $) (-1094)) NIL)) (-2976 (($ $ (-780)) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-780)) NIL) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL)) (-2018 (($ $ $) 27)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ (-1094)) NIL) (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-4036 (((-780) $) NIL) (((-780) $ (-1094)) NIL) (((-653 (-780)) $ (-653 (-1094))) NIL)) (-1382 (($ (-1 (-780) (-780)) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-4112 (((-1185 |#1|) $) NIL)) (-1453 (((-3 (-1094) "failed") $) NIL)) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-3459 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2488 (-780))) $ $) 37)) (-3064 (($ $ $) 41)) (-4416 (($ $ $) 47)) (-1941 (((-2 (|:| -1857 |#1|) (|:| |gap| (-780)) (|:| -3152 $) (|:| -3132 $)) $ $) 46)) (-3180 (((-1171) $) NIL)) (-2395 (($ $ $) 56 (|has| |#1| (-565)))) (-4263 (((-2 (|:| -3152 $) (|:| -3132 $)) $ (-780)) NIL)) (-4082 (((-3 (-653 $) "failed") $) NIL)) (-2586 (((-3 (-653 $) "failed") $) NIL)) (-2573 (((-3 (-2 (|:| |var| (-1094)) (|:| -3907 (-780))) "failed") $) NIL)) (-1626 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3816 (($) NIL (|has| |#1| (-1164)) CONST)) (-3965 (((-1132) $) NIL)) (-1873 (((-2 (|:| -2872 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-565)))) (-4178 (((-2 (|:| -2872 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-565)))) (-3074 (((-2 (|:| -2277 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-565)))) (-1989 (((-2 (|:| -2277 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-565)))) (-1337 (((-112) $) 13)) (-1348 ((|#1| $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-461)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-2826 (($ $ (-780) |#1| $) 26)) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4218 (((-427 $) $) NIL (|has| |#1| (-919)))) (-2694 (((-2 (|:| -2872 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-565)))) (-2821 (((-2 (|:| -2277 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-565)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-2645 (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-1094) |#1|) NIL) (($ $ (-653 (-1094)) (-653 |#1|)) NIL) (($ $ (-1094) $) NIL) (($ $ (-653 (-1094)) (-653 $)) NIL)) (-2163 (((-780) $) NIL (|has| |#1| (-371)))) (-2198 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-416 $) (-416 $) (-416 $)) NIL (|has| |#1| (-565))) ((|#1| (-416 $) |#1|) NIL (|has| |#1| (-371))) (((-416 $) $ (-416 $)) NIL (|has| |#1| (-565)))) (-1929 (((-3 $ "failed") $ (-780)) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-3592 (($ $ (-1094)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-3904 (($ $ (-1094)) NIL) (($ $ (-653 (-1094))) NIL) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL) (($ $) NIL) (($ $ (-780)) NIL) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2565 (((-780) $) NIL) (((-780) $ (-1094)) NIL) (((-653 (-780)) $ (-653 (-1094))) NIL)) (-1835 (((-902 (-387)) $) NIL (-12 (|has| (-1094) (-623 (-902 (-387)))) (|has| |#1| (-623 (-902 (-387)))))) (((-902 (-573)) $) NIL (-12 (|has| (-1094) (-623 (-902 (-573)))) (|has| |#1| (-623 (-902 (-573)))))) (((-545) $) NIL (-12 (|has| (-1094) (-623 (-545))) (|has| |#1| (-623 (-545)))))) (-3257 ((|#1| $) NIL (|has| |#1| (-461))) (($ $ (-1094)) NIL (|has| |#1| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-919))))) (-2871 (((-3 $ "failed") $ $) NIL (|has| |#1| (-565))) (((-3 (-416 $) "failed") (-416 $) $) NIL (|has| |#1| (-565)))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#1|) NIL) (($ (-1094)) NIL) (((-1185 |#1|) $) 7) (($ (-1185 |#1|)) 8) (($ (-416 (-573))) NIL (-2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573)))))) (($ $) NIL (|has| |#1| (-565)))) (-1920 (((-653 |#1|) $) NIL)) (-4317 ((|#1| $ (-780)) NIL) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#1| (-919))) (|has| |#1| (-146))))) (-1545 (((-780)) NIL T CONST)) (-1538 (($ $ $ (-780)) NIL (|has| |#1| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2132 (($) 28 T CONST)) (-2144 (($) 32 T CONST)) (-3609 (($ $ (-1094)) NIL) (($ $ (-653 (-1094))) NIL) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL) (($ $) NIL) (($ $ (-780)) NIL) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371)))) (-3093 (($ $) 40) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) +(((-791 |#1|) (-13 (-1256 |#1|) (-622 (-1185 |#1|)) (-1050 (-1185 |#1|)) (-10 -8 (-15 -2826 ($ $ (-780) |#1| $)) (-15 -2018 ($ $ $)) (-15 -3459 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2488 (-780))) $ $)) (-15 -3064 ($ $ $)) (-15 -1941 ((-2 (|:| -1857 |#1|) (|:| |gap| (-780)) (|:| -3152 $) (|:| -3132 $)) $ $)) (-15 -4416 ($ $ $)) (IF (|has| |#1| (-565)) (PROGN (-15 -3445 ((-653 $) $ $)) (-15 -2395 ($ $ $)) (-15 -2694 ((-2 (|:| -2872 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4178 ((-2 (|:| -2872 $) (|:| |coef1| $)) $ $)) (-15 -1873 ((-2 (|:| -2872 $) (|:| |coef2| $)) $ $)) (-15 -2821 ((-2 (|:| -2277 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1989 ((-2 (|:| -2277 |#1|) (|:| |coef1| $)) $ $)) (-15 -3074 ((-2 (|:| -2277 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1061)) (T -791)) +((-2826 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-780)) (-5 *1 (-791 *3)) (-4 *3 (-1061)))) (-2018 (*1 *1 *1 *1) (-12 (-5 *1 (-791 *2)) (-4 *2 (-1061)))) (-3459 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-791 *3)) (|:| |polden| *3) (|:| -2488 (-780)))) (-5 *1 (-791 *3)) (-4 *3 (-1061)))) (-3064 (*1 *1 *1 *1) (-12 (-5 *1 (-791 *2)) (-4 *2 (-1061)))) (-1941 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1857 *3) (|:| |gap| (-780)) (|:| -3152 (-791 *3)) (|:| -3132 (-791 *3)))) (-5 *1 (-791 *3)) (-4 *3 (-1061)))) (-4416 (*1 *1 *1 *1) (-12 (-5 *1 (-791 *2)) (-4 *2 (-1061)))) (-3445 (*1 *2 *1 *1) (-12 (-5 *2 (-653 (-791 *3))) (-5 *1 (-791 *3)) (-4 *3 (-565)) (-4 *3 (-1061)))) (-2395 (*1 *1 *1 *1) (-12 (-5 *1 (-791 *2)) (-4 *2 (-565)) (-4 *2 (-1061)))) (-2694 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2872 (-791 *3)) (|:| |coef1| (-791 *3)) (|:| |coef2| (-791 *3)))) (-5 *1 (-791 *3)) (-4 *3 (-565)) (-4 *3 (-1061)))) (-4178 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2872 (-791 *3)) (|:| |coef1| (-791 *3)))) (-5 *1 (-791 *3)) (-4 *3 (-565)) (-4 *3 (-1061)))) (-1873 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2872 (-791 *3)) (|:| |coef2| (-791 *3)))) (-5 *1 (-791 *3)) (-4 *3 (-565)) (-4 *3 (-1061)))) (-2821 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2277 *3) (|:| |coef1| (-791 *3)) (|:| |coef2| (-791 *3)))) (-5 *1 (-791 *3)) (-4 *3 (-565)) (-4 *3 (-1061)))) (-1989 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2277 *3) (|:| |coef1| (-791 *3)))) (-5 *1 (-791 *3)) (-4 *3 (-565)) (-4 *3 (-1061)))) (-3074 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2277 *3) (|:| |coef2| (-791 *3)))) (-5 *1 (-791 *3)) (-4 *3 (-565)) (-4 *3 (-1061))))) +(-13 (-1256 |#1|) (-622 (-1185 |#1|)) (-1050 (-1185 |#1|)) (-10 -8 (-15 -2826 ($ $ (-780) |#1| $)) (-15 -2018 ($ $ $)) (-15 -3459 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2488 (-780))) $ $)) (-15 -3064 ($ $ $)) (-15 -1941 ((-2 (|:| -1857 |#1|) (|:| |gap| (-780)) (|:| -3152 $) (|:| -3132 $)) $ $)) (-15 -4416 ($ $ $)) (IF (|has| |#1| (-565)) (PROGN (-15 -3445 ((-653 $) $ $)) (-15 -2395 ($ $ $)) (-15 -2694 ((-2 (|:| -2872 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4178 ((-2 (|:| -2872 $) (|:| |coef1| $)) $ $)) (-15 -1873 ((-2 (|:| -2872 $) (|:| |coef2| $)) $ $)) (-15 -2821 ((-2 (|:| -2277 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1989 ((-2 (|:| -2277 |#1|) (|:| |coef1| $)) $ $)) (-15 -3074 ((-2 (|:| -2277 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-3617 ((|#1| (-780) |#1|) 33 (|has| |#1| (-38 (-416 (-573)))))) (-3172 ((|#1| (-780) |#1|) 23)) (-3796 ((|#1| (-780) |#1|) 35 (|has| |#1| (-38 (-416 (-573))))))) +(((-792 |#1|) (-10 -7 (-15 -3172 (|#1| (-780) |#1|)) (IF (|has| |#1| (-38 (-416 (-573)))) (PROGN (-15 -3796 (|#1| (-780) |#1|)) (-15 -3617 (|#1| (-780) |#1|))) |%noBranch|)) (-174)) (T -792)) +((-3617 (*1 *2 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-792 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-174)))) (-3796 (*1 *2 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-792 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-174)))) (-3172 (*1 *2 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-792 *2)) (-4 *2 (-174))))) +(-10 -7 (-15 -3172 (|#1| (-780) |#1|)) (IF (|has| |#1| (-38 (-416 (-573)))) (PROGN (-15 -3796 (|#1| (-780) |#1|)) (-15 -3617 (|#1| (-780) |#1|))) |%noBranch|)) +((-2848 (((-112) $ $) 7)) (-2280 (((-653 (-2 (|:| -1380 $) (|:| -1674 (-653 |#4|)))) (-653 |#4|)) 86)) (-3527 (((-653 $) (-653 |#4|)) 87) (((-653 $) (-653 |#4|) (-112)) 112)) (-4354 (((-653 |#3|) $) 34)) (-2577 (((-112) $) 27)) (-2020 (((-112) $) 18 (|has| |#1| (-565)))) (-2261 (((-112) |#4| $) 102) (((-112) $) 98)) (-1554 ((|#4| |#4| $) 93)) (-4285 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| $) 127)) (-2770 (((-2 (|:| |under| $) (|:| -3733 $) (|:| |upper| $)) $ |#3|) 28)) (-3450 (((-112) $ (-780)) 45)) (-2164 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4455))) (((-3 |#4| "failed") $ |#3|) 80)) (-2579 (($) 46 T CONST)) (-2194 (((-112) $) 23 (|has| |#1| (-565)))) (-1849 (((-112) $ $) 25 (|has| |#1| (-565)))) (-2838 (((-112) $ $) 24 (|has| |#1| (-565)))) (-3145 (((-112) $) 26 (|has| |#1| (-565)))) (-4304 (((-653 |#4|) (-653 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2346 (((-653 |#4|) (-653 |#4|) $) 19 (|has| |#1| (-565)))) (-2475 (((-653 |#4|) (-653 |#4|) $) 20 (|has| |#1| (-565)))) (-1695 (((-3 $ "failed") (-653 |#4|)) 37)) (-2205 (($ (-653 |#4|)) 36)) (-2925 (((-3 $ "failed") $) 83)) (-3760 ((|#4| |#4| $) 90)) (-2685 (($ $) 69 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ |#4| $) 68 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4455)))) (-3132 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-565)))) (-4310 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3117 ((|#4| |#4| $) 88)) (-2867 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4455))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4455))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2660 (((-2 (|:| -1380 (-653 |#4|)) (|:| -1674 (-653 |#4|))) $) 106)) (-3060 (((-112) |#4| $) 137)) (-2714 (((-112) |#4| $) 134)) (-3491 (((-112) |#4| $) 138) (((-112) $) 135)) (-1863 (((-653 |#4|) $) 53 (|has| $ (-6 -4455)))) (-4022 (((-112) |#4| $) 105) (((-112) $) 104)) (-3338 ((|#3| $) 35)) (-2078 (((-112) $ (-780)) 44)) (-3214 (((-653 |#4|) $) 54 (|has| $ (-6 -4455)))) (-1547 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#4| |#4|) $) 48)) (-1937 (((-653 |#3|) $) 33)) (-1689 (((-112) |#3| $) 32)) (-2673 (((-112) $ (-780)) 43)) (-3180 (((-1171) $) 10)) (-4092 (((-3 |#4| (-653 $)) |#4| |#4| $) 129)) (-2395 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| |#4| $) 128)) (-3359 (((-3 |#4| "failed") $) 84)) (-1692 (((-653 $) |#4| $) 130)) (-1675 (((-3 (-112) (-653 $)) |#4| $) 133)) (-3190 (((-653 (-2 (|:| |val| (-112)) (|:| -4090 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3716 (((-653 $) |#4| $) 126) (((-653 $) (-653 |#4|) $) 125) (((-653 $) (-653 |#4|) (-653 $)) 124) (((-653 $) |#4| (-653 $)) 123)) (-1844 (($ |#4| $) 118) (($ (-653 |#4|) $) 117)) (-2870 (((-653 |#4|) $) 108)) (-3161 (((-112) |#4| $) 100) (((-112) $) 96)) (-3430 ((|#4| |#4| $) 91)) (-2614 (((-112) $ $) 111)) (-3582 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-565)))) (-1973 (((-112) |#4| $) 101) (((-112) $) 97)) (-1448 ((|#4| |#4| $) 92)) (-3965 (((-1132) $) 11)) (-2914 (((-3 |#4| "failed") $) 85)) (-2036 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2865 (((-3 $ "failed") $ |#4|) 79)) (-2212 (($ $ |#4|) 78) (((-653 $) |#4| $) 116) (((-653 $) |#4| (-653 $)) 115) (((-653 $) (-653 |#4|) $) 114) (((-653 $) (-653 |#4|) (-653 $)) 113)) (-1575 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 |#4|) (-653 |#4|)) 60 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-301 |#4|)) 58 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-653 (-301 |#4|))) 57 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))))) (-1885 (((-112) $ $) 39)) (-3811 (((-112) $) 42)) (-3508 (($) 41)) (-2565 (((-780) $) 107)) (-3974 (((-780) |#4| $) 55 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) (((-780) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4455)))) (-3166 (($ $) 40)) (-1835 (((-545) $) 70 (|has| |#4| (-623 (-545))))) (-2955 (($ (-653 |#4|)) 61)) (-4409 (($ $ |#3|) 29)) (-3496 (($ $ |#3|) 31)) (-1388 (($ $) 89)) (-1456 (($ $ |#3|) 30)) (-2942 (((-871) $) 12) (((-653 |#4|) $) 38)) (-3922 (((-780) $) 77 (|has| |#3| (-376)))) (-3507 (((-112) $ $) 9)) (-3955 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3039 (((-112) $ (-1 (-112) |#4| (-653 |#4|))) 99)) (-3402 (((-653 $) |#4| $) 122) (((-653 $) |#4| (-653 $)) 121) (((-653 $) (-653 |#4|) $) 120) (((-653 $) (-653 |#4|) (-653 $)) 119)) (-1646 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4455)))) (-3734 (((-653 |#3|) $) 82)) (-3746 (((-112) |#4| $) 136)) (-4333 (((-112) |#3| $) 81)) (-2981 (((-112) $ $) 6)) (-2862 (((-780) $) 47 (|has| $ (-6 -4455))))) +(((-793 |#1| |#2| |#3| |#4|) (-141) (-461) (-802) (-859) (-1077 |t#1| |t#2| |t#3|)) (T -793)) +NIL +(-13 (-1083 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-622 (-653 |#4|)) . T) ((-622 (-871)) . T) ((-152 |#4|) . T) ((-623 (-545)) |has| |#4| (-623 (-545))) ((-316 |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))) ((-498 |#4|) . T) ((-523 |#4| |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))) ((-988 |#1| |#2| |#3| |#4|) . T) ((-1083 |#1| |#2| |#3| |#4|) . T) ((-1112) . T) ((-1223 |#1| |#2| |#3| |#4|) . T) ((-1230) . T)) +((-1376 (((-3 (-387) "failed") (-323 |#1|) (-931)) 62 (-12 (|has| |#1| (-565)) (|has| |#1| (-859)))) (((-3 (-387) "failed") (-323 |#1|)) 54 (-12 (|has| |#1| (-565)) (|has| |#1| (-859)))) (((-3 (-387) "failed") (-416 (-962 |#1|)) (-931)) 41 (|has| |#1| (-565))) (((-3 (-387) "failed") (-416 (-962 |#1|))) 40 (|has| |#1| (-565))) (((-3 (-387) "failed") (-962 |#1|) (-931)) 31 (|has| |#1| (-1061))) (((-3 (-387) "failed") (-962 |#1|)) 30 (|has| |#1| (-1061)))) (-3088 (((-387) (-323 |#1|) (-931)) 99 (-12 (|has| |#1| (-565)) (|has| |#1| (-859)))) (((-387) (-323 |#1|)) 94 (-12 (|has| |#1| (-565)) (|has| |#1| (-859)))) (((-387) (-416 (-962 |#1|)) (-931)) 91 (|has| |#1| (-565))) (((-387) (-416 (-962 |#1|))) 90 (|has| |#1| (-565))) (((-387) (-962 |#1|) (-931)) 86 (|has| |#1| (-1061))) (((-387) (-962 |#1|)) 85 (|has| |#1| (-1061))) (((-387) |#1| (-931)) 76) (((-387) |#1|) 22)) (-2589 (((-3 (-171 (-387)) "failed") (-323 (-171 |#1|)) (-931)) 71 (-12 (|has| |#1| (-565)) (|has| |#1| (-859)))) (((-3 (-171 (-387)) "failed") (-323 (-171 |#1|))) 70 (-12 (|has| |#1| (-565)) (|has| |#1| (-859)))) (((-3 (-171 (-387)) "failed") (-323 |#1|) (-931)) 63 (-12 (|has| |#1| (-565)) (|has| |#1| (-859)))) (((-3 (-171 (-387)) "failed") (-323 |#1|)) 61 (-12 (|has| |#1| (-565)) (|has| |#1| (-859)))) (((-3 (-171 (-387)) "failed") (-416 (-962 (-171 |#1|))) (-931)) 46 (|has| |#1| (-565))) (((-3 (-171 (-387)) "failed") (-416 (-962 (-171 |#1|)))) 45 (|has| |#1| (-565))) (((-3 (-171 (-387)) "failed") (-416 (-962 |#1|)) (-931)) 39 (|has| |#1| (-565))) (((-3 (-171 (-387)) "failed") (-416 (-962 |#1|))) 38 (|has| |#1| (-565))) (((-3 (-171 (-387)) "failed") (-962 |#1|) (-931)) 28 (|has| |#1| (-1061))) (((-3 (-171 (-387)) "failed") (-962 |#1|)) 26 (|has| |#1| (-1061))) (((-3 (-171 (-387)) "failed") (-962 (-171 |#1|)) (-931)) 18 (|has| |#1| (-174))) (((-3 (-171 (-387)) "failed") (-962 (-171 |#1|))) 15 (|has| |#1| (-174)))) (-4142 (((-171 (-387)) (-323 (-171 |#1|)) (-931)) 102 (-12 (|has| |#1| (-565)) (|has| |#1| (-859)))) (((-171 (-387)) (-323 (-171 |#1|))) 101 (-12 (|has| |#1| (-565)) (|has| |#1| (-859)))) (((-171 (-387)) (-323 |#1|) (-931)) 100 (-12 (|has| |#1| (-565)) (|has| |#1| (-859)))) (((-171 (-387)) (-323 |#1|)) 98 (-12 (|has| |#1| (-565)) (|has| |#1| (-859)))) (((-171 (-387)) (-416 (-962 (-171 |#1|))) (-931)) 93 (|has| |#1| (-565))) (((-171 (-387)) (-416 (-962 (-171 |#1|)))) 92 (|has| |#1| (-565))) (((-171 (-387)) (-416 (-962 |#1|)) (-931)) 89 (|has| |#1| (-565))) (((-171 (-387)) (-416 (-962 |#1|))) 88 (|has| |#1| (-565))) (((-171 (-387)) (-962 |#1|) (-931)) 84 (|has| |#1| (-1061))) (((-171 (-387)) (-962 |#1|)) 83 (|has| |#1| (-1061))) (((-171 (-387)) (-962 (-171 |#1|)) (-931)) 78 (|has| |#1| (-174))) (((-171 (-387)) (-962 (-171 |#1|))) 77 (|has| |#1| (-174))) (((-171 (-387)) (-171 |#1|) (-931)) 80 (|has| |#1| (-174))) (((-171 (-387)) (-171 |#1|)) 79 (|has| |#1| (-174))) (((-171 (-387)) |#1| (-931)) 27) (((-171 (-387)) |#1|) 25))) +(((-794 |#1|) (-10 -7 (-15 -3088 ((-387) |#1|)) (-15 -3088 ((-387) |#1| (-931))) (-15 -4142 ((-171 (-387)) |#1|)) (-15 -4142 ((-171 (-387)) |#1| (-931))) (IF (|has| |#1| (-174)) (PROGN (-15 -4142 ((-171 (-387)) (-171 |#1|))) (-15 -4142 ((-171 (-387)) (-171 |#1|) (-931))) (-15 -4142 ((-171 (-387)) (-962 (-171 |#1|)))) (-15 -4142 ((-171 (-387)) (-962 (-171 |#1|)) (-931)))) |%noBranch|) (IF (|has| |#1| (-1061)) (PROGN (-15 -3088 ((-387) (-962 |#1|))) (-15 -3088 ((-387) (-962 |#1|) (-931))) (-15 -4142 ((-171 (-387)) (-962 |#1|))) (-15 -4142 ((-171 (-387)) (-962 |#1|) (-931)))) |%noBranch|) (IF (|has| |#1| (-565)) (PROGN (-15 -3088 ((-387) (-416 (-962 |#1|)))) (-15 -3088 ((-387) (-416 (-962 |#1|)) (-931))) (-15 -4142 ((-171 (-387)) (-416 (-962 |#1|)))) (-15 -4142 ((-171 (-387)) (-416 (-962 |#1|)) (-931))) (-15 -4142 ((-171 (-387)) (-416 (-962 (-171 |#1|))))) (-15 -4142 ((-171 (-387)) (-416 (-962 (-171 |#1|))) (-931))) (IF (|has| |#1| (-859)) (PROGN (-15 -3088 ((-387) (-323 |#1|))) (-15 -3088 ((-387) (-323 |#1|) (-931))) (-15 -4142 ((-171 (-387)) (-323 |#1|))) (-15 -4142 ((-171 (-387)) (-323 |#1|) (-931))) (-15 -4142 ((-171 (-387)) (-323 (-171 |#1|)))) (-15 -4142 ((-171 (-387)) (-323 (-171 |#1|)) (-931)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -2589 ((-3 (-171 (-387)) "failed") (-962 (-171 |#1|)))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-962 (-171 |#1|)) (-931)))) |%noBranch|) (IF (|has| |#1| (-1061)) (PROGN (-15 -1376 ((-3 (-387) "failed") (-962 |#1|))) (-15 -1376 ((-3 (-387) "failed") (-962 |#1|) (-931))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-962 |#1|))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-962 |#1|) (-931)))) |%noBranch|) (IF (|has| |#1| (-565)) (PROGN (-15 -1376 ((-3 (-387) "failed") (-416 (-962 |#1|)))) (-15 -1376 ((-3 (-387) "failed") (-416 (-962 |#1|)) (-931))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-416 (-962 |#1|)))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-416 (-962 |#1|)) (-931))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-416 (-962 (-171 |#1|))))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-416 (-962 (-171 |#1|))) (-931))) (IF (|has| |#1| (-859)) (PROGN (-15 -1376 ((-3 (-387) "failed") (-323 |#1|))) (-15 -1376 ((-3 (-387) "failed") (-323 |#1|) (-931))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-323 |#1|))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-323 |#1|) (-931))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-323 (-171 |#1|)))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-323 (-171 |#1|)) (-931)))) |%noBranch|)) |%noBranch|)) (-623 (-387))) (T -794)) +((-2589 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-323 (-171 *5))) (-5 *4 (-931)) (-4 *5 (-565)) (-4 *5 (-859)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) (-2589 (*1 *2 *3) (|partial| -12 (-5 *3 (-323 (-171 *4))) (-4 *4 (-565)) (-4 *4 (-859)) (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) (-2589 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-323 *5)) (-5 *4 (-931)) (-4 *5 (-565)) (-4 *5 (-859)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) (-2589 (*1 *2 *3) (|partial| -12 (-5 *3 (-323 *4)) (-4 *4 (-565)) (-4 *4 (-859)) (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) (-1376 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-323 *5)) (-5 *4 (-931)) (-4 *5 (-565)) (-4 *5 (-859)) (-4 *5 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *5)))) (-1376 (*1 *2 *3) (|partial| -12 (-5 *3 (-323 *4)) (-4 *4 (-565)) (-4 *4 (-859)) (-4 *4 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *4)))) (-2589 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-416 (-962 (-171 *5)))) (-5 *4 (-931)) (-4 *5 (-565)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) (-2589 (*1 *2 *3) (|partial| -12 (-5 *3 (-416 (-962 (-171 *4)))) (-4 *4 (-565)) (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) (-2589 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-931)) (-4 *5 (-565)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) (-2589 (*1 *2 *3) (|partial| -12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-565)) (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) (-1376 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-931)) (-4 *5 (-565)) (-4 *5 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *5)))) (-1376 (*1 *2 *3) (|partial| -12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-565)) (-4 *4 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *4)))) (-2589 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-962 *5)) (-5 *4 (-931)) (-4 *5 (-1061)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) (-2589 (*1 *2 *3) (|partial| -12 (-5 *3 (-962 *4)) (-4 *4 (-1061)) (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) (-1376 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-962 *5)) (-5 *4 (-931)) (-4 *5 (-1061)) (-4 *5 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *5)))) (-1376 (*1 *2 *3) (|partial| -12 (-5 *3 (-962 *4)) (-4 *4 (-1061)) (-4 *4 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *4)))) (-2589 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-962 (-171 *5))) (-5 *4 (-931)) (-4 *5 (-174)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) (-2589 (*1 *2 *3) (|partial| -12 (-5 *3 (-962 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-323 (-171 *5))) (-5 *4 (-931)) (-4 *5 (-565)) (-4 *5 (-859)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-323 (-171 *4))) (-4 *4 (-565)) (-4 *4 (-859)) (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-323 *5)) (-5 *4 (-931)) (-4 *5 (-565)) (-4 *5 (-859)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-323 *4)) (-4 *4 (-565)) (-4 *4 (-859)) (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) (-3088 (*1 *2 *3 *4) (-12 (-5 *3 (-323 *5)) (-5 *4 (-931)) (-4 *5 (-565)) (-4 *5 (-859)) (-4 *5 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *5)))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-323 *4)) (-4 *4 (-565)) (-4 *4 (-859)) (-4 *4 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *4)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-962 (-171 *5)))) (-5 *4 (-931)) (-4 *5 (-565)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-416 (-962 (-171 *4)))) (-4 *4 (-565)) (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-931)) (-4 *5 (-565)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-565)) (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) (-3088 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-931)) (-4 *5 (-565)) (-4 *5 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *5)))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-565)) (-4 *4 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *4)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-962 *5)) (-5 *4 (-931)) (-4 *5 (-1061)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-962 *4)) (-4 *4 (-1061)) (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) (-3088 (*1 *2 *3 *4) (-12 (-5 *3 (-962 *5)) (-5 *4 (-931)) (-4 *5 (-1061)) (-4 *5 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *5)))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-962 *4)) (-4 *4 (-1061)) (-4 *4 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *4)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-962 (-171 *5))) (-5 *4 (-931)) (-4 *5 (-174)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-962 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-931)) (-4 *5 (-174)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *4 (-931)) (-5 *2 (-171 (-387))) (-5 *1 (-794 *3)) (-4 *3 (-623 (-387))))) (-4142 (*1 *2 *3) (-12 (-5 *2 (-171 (-387))) (-5 *1 (-794 *3)) (-4 *3 (-623 (-387))))) (-3088 (*1 *2 *3 *4) (-12 (-5 *4 (-931)) (-5 *2 (-387)) (-5 *1 (-794 *3)) (-4 *3 (-623 *2)))) (-3088 (*1 *2 *3) (-12 (-5 *2 (-387)) (-5 *1 (-794 *3)) (-4 *3 (-623 *2))))) +(-10 -7 (-15 -3088 ((-387) |#1|)) (-15 -3088 ((-387) |#1| (-931))) (-15 -4142 ((-171 (-387)) |#1|)) (-15 -4142 ((-171 (-387)) |#1| (-931))) (IF (|has| |#1| (-174)) (PROGN (-15 -4142 ((-171 (-387)) (-171 |#1|))) (-15 -4142 ((-171 (-387)) (-171 |#1|) (-931))) (-15 -4142 ((-171 (-387)) (-962 (-171 |#1|)))) (-15 -4142 ((-171 (-387)) (-962 (-171 |#1|)) (-931)))) |%noBranch|) (IF (|has| |#1| (-1061)) (PROGN (-15 -3088 ((-387) (-962 |#1|))) (-15 -3088 ((-387) (-962 |#1|) (-931))) (-15 -4142 ((-171 (-387)) (-962 |#1|))) (-15 -4142 ((-171 (-387)) (-962 |#1|) (-931)))) |%noBranch|) (IF (|has| |#1| (-565)) (PROGN (-15 -3088 ((-387) (-416 (-962 |#1|)))) (-15 -3088 ((-387) (-416 (-962 |#1|)) (-931))) (-15 -4142 ((-171 (-387)) (-416 (-962 |#1|)))) (-15 -4142 ((-171 (-387)) (-416 (-962 |#1|)) (-931))) (-15 -4142 ((-171 (-387)) (-416 (-962 (-171 |#1|))))) (-15 -4142 ((-171 (-387)) (-416 (-962 (-171 |#1|))) (-931))) (IF (|has| |#1| (-859)) (PROGN (-15 -3088 ((-387) (-323 |#1|))) (-15 -3088 ((-387) (-323 |#1|) (-931))) (-15 -4142 ((-171 (-387)) (-323 |#1|))) (-15 -4142 ((-171 (-387)) (-323 |#1|) (-931))) (-15 -4142 ((-171 (-387)) (-323 (-171 |#1|)))) (-15 -4142 ((-171 (-387)) (-323 (-171 |#1|)) (-931)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -2589 ((-3 (-171 (-387)) "failed") (-962 (-171 |#1|)))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-962 (-171 |#1|)) (-931)))) |%noBranch|) (IF (|has| |#1| (-1061)) (PROGN (-15 -1376 ((-3 (-387) "failed") (-962 |#1|))) (-15 -1376 ((-3 (-387) "failed") (-962 |#1|) (-931))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-962 |#1|))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-962 |#1|) (-931)))) |%noBranch|) (IF (|has| |#1| (-565)) (PROGN (-15 -1376 ((-3 (-387) "failed") (-416 (-962 |#1|)))) (-15 -1376 ((-3 (-387) "failed") (-416 (-962 |#1|)) (-931))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-416 (-962 |#1|)))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-416 (-962 |#1|)) (-931))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-416 (-962 (-171 |#1|))))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-416 (-962 (-171 |#1|))) (-931))) (IF (|has| |#1| (-859)) (PROGN (-15 -1376 ((-3 (-387) "failed") (-323 |#1|))) (-15 -1376 ((-3 (-387) "failed") (-323 |#1|) (-931))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-323 |#1|))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-323 |#1|) (-931))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-323 (-171 |#1|)))) (-15 -2589 ((-3 (-171 (-387)) "failed") (-323 (-171 |#1|)) (-931)))) |%noBranch|)) |%noBranch|)) +((-4323 (((-931) (-1171)) 89)) (-1758 (((-3 (-387) "failed") (-1171)) 36)) (-2470 (((-387) (-1171)) 34)) (-1698 (((-931) (-1171)) 63)) (-1781 (((-1171) (-931)) 73)) (-3374 (((-1171) (-931)) 62))) +(((-795) (-10 -7 (-15 -3374 ((-1171) (-931))) (-15 -1698 ((-931) (-1171))) (-15 -1781 ((-1171) (-931))) (-15 -4323 ((-931) (-1171))) (-15 -2470 ((-387) (-1171))) (-15 -1758 ((-3 (-387) "failed") (-1171))))) (T -795)) +((-1758 (*1 *2 *3) (|partial| -12 (-5 *3 (-1171)) (-5 *2 (-387)) (-5 *1 (-795)))) (-2470 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-387)) (-5 *1 (-795)))) (-4323 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-931)) (-5 *1 (-795)))) (-1781 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1171)) (-5 *1 (-795)))) (-1698 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-931)) (-5 *1 (-795)))) (-3374 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1171)) (-5 *1 (-795))))) +(-10 -7 (-15 -3374 ((-1171) (-931))) (-15 -1698 ((-931) (-1171))) (-15 -1781 ((-1171) (-931))) (-15 -4323 ((-931) (-1171))) (-15 -2470 ((-387) (-1171))) (-15 -1758 ((-3 (-387) "failed") (-1171)))) +((-2848 (((-112) $ $) 7)) (-4377 (((-1047) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) 16) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047)) 14)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 17) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) +(((-796) (-141)) (T -796)) +((-4223 (*1 *2 *3 *4) (-12 (-4 *1 (-796)) (-5 *3 (-1075)) (-5 *4 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047)))))) (-4377 (*1 *2 *3 *2) (-12 (-4 *1 (-796)) (-5 *2 (-1047)) (-5 *3 (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-4223 (*1 *2 *3 *4) (-12 (-4 *1 (-796)) (-5 *3 (-1075)) (-5 *4 (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047)))))) (-4377 (*1 *2 *3 *2) (-12 (-4 *1 (-796)) (-5 *2 (-1047)) (-5 *3 (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) +(-13 (-1112) (-10 -7 (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4377 ((-1047) (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) (|:| |extra| (-1047))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4377 ((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1047))))) +(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) +((-3665 (((-1285) (-1280 (-387)) (-573) (-387) (-2 (|:| |try| (-387)) (|:| |did| (-387)) (|:| -3978 (-387))) (-387) (-1280 (-387)) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387))) 55) (((-1285) (-1280 (-387)) (-573) (-387) (-2 (|:| |try| (-387)) (|:| |did| (-387)) (|:| -3978 (-387))) (-387) (-1280 (-387)) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387))) 52)) (-2805 (((-1285) (-1280 (-387)) (-573) (-387) (-387) (-573) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387))) 61)) (-3591 (((-1285) (-1280 (-387)) (-573) (-387) (-387) (-387) (-387) (-573) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387))) 50)) (-4338 (((-1285) (-1280 (-387)) (-573) (-387) (-387) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387))) 63) (((-1285) (-1280 (-387)) (-573) (-387) (-387) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387))) 62))) +(((-797) (-10 -7 (-15 -4338 ((-1285) (-1280 (-387)) (-573) (-387) (-387) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387)))) (-15 -4338 ((-1285) (-1280 (-387)) (-573) (-387) (-387) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)))) (-15 -3591 ((-1285) (-1280 (-387)) (-573) (-387) (-387) (-387) (-387) (-573) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387)))) (-15 -3665 ((-1285) (-1280 (-387)) (-573) (-387) (-2 (|:| |try| (-387)) (|:| |did| (-387)) (|:| -3978 (-387))) (-387) (-1280 (-387)) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387)))) (-15 -3665 ((-1285) (-1280 (-387)) (-573) (-387) (-2 (|:| |try| (-387)) (|:| |did| (-387)) (|:| -3978 (-387))) (-387) (-1280 (-387)) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)))) (-15 -2805 ((-1285) (-1280 (-387)) (-573) (-387) (-387) (-573) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387)))))) (T -797)) +((-2805 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-573)) (-5 *6 (-1 (-1285) (-1280 *5) (-1280 *5) (-387))) (-5 *3 (-1280 (-387))) (-5 *5 (-387)) (-5 *2 (-1285)) (-5 *1 (-797)))) (-3665 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-573)) (-5 *6 (-2 (|:| |try| (-387)) (|:| |did| (-387)) (|:| -3978 (-387)))) (-5 *7 (-1 (-1285) (-1280 *5) (-1280 *5) (-387))) (-5 *3 (-1280 (-387))) (-5 *5 (-387)) (-5 *2 (-1285)) (-5 *1 (-797)))) (-3665 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-573)) (-5 *6 (-2 (|:| |try| (-387)) (|:| |did| (-387)) (|:| -3978 (-387)))) (-5 *7 (-1 (-1285) (-1280 *5) (-1280 *5) (-387))) (-5 *3 (-1280 (-387))) (-5 *5 (-387)) (-5 *2 (-1285)) (-5 *1 (-797)))) (-3591 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-573)) (-5 *6 (-1 (-1285) (-1280 *5) (-1280 *5) (-387))) (-5 *3 (-1280 (-387))) (-5 *5 (-387)) (-5 *2 (-1285)) (-5 *1 (-797)))) (-4338 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-573)) (-5 *6 (-1 (-1285) (-1280 *5) (-1280 *5) (-387))) (-5 *3 (-1280 (-387))) (-5 *5 (-387)) (-5 *2 (-1285)) (-5 *1 (-797)))) (-4338 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-573)) (-5 *6 (-1 (-1285) (-1280 *5) (-1280 *5) (-387))) (-5 *3 (-1280 (-387))) (-5 *5 (-387)) (-5 *2 (-1285)) (-5 *1 (-797))))) +(-10 -7 (-15 -4338 ((-1285) (-1280 (-387)) (-573) (-387) (-387) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387)))) (-15 -4338 ((-1285) (-1280 (-387)) (-573) (-387) (-387) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)))) (-15 -3591 ((-1285) (-1280 (-387)) (-573) (-387) (-387) (-387) (-387) (-573) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387)))) (-15 -3665 ((-1285) (-1280 (-387)) (-573) (-387) (-2 (|:| |try| (-387)) (|:| |did| (-387)) (|:| -3978 (-387))) (-387) (-1280 (-387)) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387)))) (-15 -3665 ((-1285) (-1280 (-387)) (-573) (-387) (-2 (|:| |try| (-387)) (|:| |did| (-387)) (|:| -3978 (-387))) (-387) (-1280 (-387)) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)) (-1280 (-387)))) (-15 -2805 ((-1285) (-1280 (-387)) (-573) (-387) (-387) (-573) (-1 (-1285) (-1280 (-387)) (-1280 (-387)) (-387))))) +((-1792 (((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573)) 64)) (-1644 (((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573)) 40)) (-2591 (((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573)) 63)) (-3291 (((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573)) 38)) (-3178 (((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573)) 62)) (-3628 (((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573)) 24)) (-4039 (((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573) (-573)) 41)) (-4121 (((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573) (-573)) 39)) (-3451 (((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573) (-573)) 37))) +(((-798) (-10 -7 (-15 -3451 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573) (-573))) (-15 -4121 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573) (-573))) (-15 -4039 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573) (-573))) (-15 -3628 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573))) (-15 -3291 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573))) (-15 -1644 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573))) (-15 -3178 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573))) (-15 -2591 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573))) (-15 -1792 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573))))) (T -798)) +((-1792 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) (-5 *2 (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) (|:| |success| (-112)))) (-5 *1 (-798)) (-5 *5 (-573)))) (-2591 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) (-5 *2 (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) (|:| |success| (-112)))) (-5 *1 (-798)) (-5 *5 (-573)))) (-3178 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) (-5 *2 (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) (|:| |success| (-112)))) (-5 *1 (-798)) (-5 *5 (-573)))) (-1644 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) (-5 *2 (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) (|:| |success| (-112)))) (-5 *1 (-798)) (-5 *5 (-573)))) (-3291 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) (-5 *2 (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) (|:| |success| (-112)))) (-5 *1 (-798)) (-5 *5 (-573)))) (-3628 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) (-5 *2 (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) (|:| |success| (-112)))) (-5 *1 (-798)) (-5 *5 (-573)))) (-4039 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) (-5 *2 (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) (|:| |success| (-112)))) (-5 *1 (-798)) (-5 *5 (-573)))) (-4121 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) (-5 *2 (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) (|:| |success| (-112)))) (-5 *1 (-798)) (-5 *5 (-573)))) (-3451 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) (-5 *2 (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) (|:| |success| (-112)))) (-5 *1 (-798)) (-5 *5 (-573))))) +(-10 -7 (-15 -3451 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573) (-573))) (-15 -4121 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573) (-573))) (-15 -4039 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573) (-573))) (-15 -3628 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573))) (-15 -3291 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573))) (-15 -1644 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573))) (-15 -3178 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573))) (-15 -2591 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573))) (-15 -1792 ((-2 (|:| -3082 (-387)) (|:| -2675 (-387)) (|:| |totalpts| (-573)) (|:| |success| (-112))) (-1 (-387) (-387)) (-387) (-387) (-387) (-387) (-573) (-573)))) +((-1909 (((-1225 |#1|) |#1| (-227) (-573)) 69))) +(((-799 |#1|) (-10 -7 (-15 -1909 ((-1225 |#1|) |#1| (-227) (-573)))) (-986)) (T -799)) +((-1909 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-227)) (-5 *5 (-573)) (-5 *2 (-1225 *3)) (-5 *1 (-799 *3)) (-4 *3 (-986))))) +(-10 -7 (-15 -1909 ((-1225 |#1|) |#1| (-227) (-573)))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 25)) (-2983 (((-3 $ "failed") $ $) 27)) (-2579 (($) 24 T CONST)) (-3659 (($ $ $) 14)) (-3751 (($ $ $) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 23 T CONST)) (-3040 (((-112) $ $) 17)) (-3015 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19)) (-3093 (($ $ $) 31) (($ $) 30)) (-3077 (($ $ $) 21)) (* (($ (-931) $) 22) (($ (-780) $) 26) (($ (-573) $) 29))) +(((-800) (-141)) (T -800)) +NIL +(-13 (-804) (-21)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-801) . T) ((-803) . T) ((-804) . T) ((-859) . T) ((-1112) . T)) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 25)) (-2579 (($) 24 T CONST)) (-3659 (($ $ $) 14)) (-3751 (($ $ $) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 23 T CONST)) (-3040 (((-112) $ $) 17)) (-3015 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19)) (-3077 (($ $ $) 21)) (* (($ (-931) $) 22) (($ (-780) $) 26))) (((-801) (-141)) (T -801)) NIL -(-13 (-805) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-860) . T) ((-1113) . T)) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 25)) (-3426 (($) 24 T CONST)) (-3659 (($ $ $) 14)) (-4257 (($ $ $) 15)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2133 (($) 23 T CONST)) (-3042 (((-112) $ $) 17)) (-3018 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3030 (((-112) $ $) 16)) (-3007 (((-112) $ $) 19)) (-3079 (($ $ $) 21)) (* (($ (-932) $) 22) (($ (-781) $) 26))) +(-13 (-803) (-23)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-622 (-871)) . T) ((-803) . T) ((-859) . T) ((-1112) . T)) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 25)) (-3280 (($ $ $) 28)) (-2983 (((-3 $ "failed") $ $) 27)) (-2579 (($) 24 T CONST)) (-3659 (($ $ $) 14)) (-3751 (($ $ $) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 23 T CONST)) (-3040 (((-112) $ $) 17)) (-3015 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19)) (-3077 (($ $ $) 21)) (* (($ (-931) $) 22) (($ (-780) $) 26))) (((-802) (-141)) (T -802)) -NIL -(-13 (-804) (-23)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-804) . T) ((-860) . T) ((-1113) . T)) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 25)) (-3663 (($ $ $) 28)) (-3524 (((-3 $ "failed") $ $) 27)) (-3426 (($) 24 T CONST)) (-3659 (($ $ $) 14)) (-4257 (($ $ $) 15)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2133 (($) 23 T CONST)) (-3042 (((-112) $ $) 17)) (-3018 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3030 (((-112) $ $) 16)) (-3007 (((-112) $ $) 19)) (-3079 (($ $ $) 21)) (* (($ (-932) $) 22) (($ (-781) $) 26))) +((-3280 (*1 *1 *1 *1) (-4 *1 (-802)))) +(-13 (-804) (-10 -8 (-15 -3280 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-871)) . T) ((-801) . T) ((-803) . T) ((-804) . T) ((-859) . T) ((-1112) . T)) +((-2848 (((-112) $ $) 7)) (-3659 (($ $ $) 14)) (-3751 (($ $ $) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-3040 (((-112) $ $) 17)) (-3015 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19)) (-3077 (($ $ $) 21)) (* (($ (-931) $) 22))) (((-803) (-141)) (T -803)) -((-3663 (*1 *1 *1 *1) (-4 *1 (-803)))) -(-13 (-805) (-10 -8 (-15 -3663 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-860) . T) ((-1113) . T)) -((-2849 (((-112) $ $) 7)) (-3659 (($ $ $) 14)) (-4257 (($ $ $) 15)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-3042 (((-112) $ $) 17)) (-3018 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3030 (((-112) $ $) 16)) (-3007 (((-112) $ $) 19)) (-3079 (($ $ $) 21)) (* (($ (-932) $) 22))) +NIL +(-13 (-859) (-25)) +(((-25) . T) ((-102) . T) ((-622 (-871)) . T) ((-859) . T) ((-1112) . T)) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 25)) (-2983 (((-3 $ "failed") $ $) 27)) (-2579 (($) 24 T CONST)) (-3659 (($ $ $) 14)) (-3751 (($ $ $) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 23 T CONST)) (-3040 (((-112) $ $) 17)) (-3015 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19)) (-3077 (($ $ $) 21)) (* (($ (-931) $) 22) (($ (-780) $) 26))) (((-804) (-141)) (T -804)) NIL -(-13 (-860) (-25)) -(((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-860) . T) ((-1113) . T)) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 25)) (-3524 (((-3 $ "failed") $ $) 27)) (-3426 (($) 24 T CONST)) (-3659 (($ $ $) 14)) (-4257 (($ $ $) 15)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2133 (($) 23 T CONST)) (-3042 (((-112) $ $) 17)) (-3018 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3030 (((-112) $ $) 16)) (-3007 (((-112) $ $) 19)) (-3079 (($ $ $) 21)) (* (($ (-932) $) 22) (($ (-781) $) 26))) -(((-805) (-141)) (T -805)) -NIL -(-13 (-802) (-132)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-802) . T) ((-804) . T) ((-860) . T) ((-1113) . T)) -((-3138 (((-112) $) 42)) (-1696 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2206 (((-574) $) NIL) (((-417 (-574)) $) NIL) ((|#2| $) 43)) (-1880 (((-3 (-417 (-574)) "failed") $) 78)) (-4414 (((-112) $) 72)) (-4339 (((-417 (-574)) $) 76)) (-2236 ((|#2| $) 26)) (-1777 (($ (-1 |#2| |#2|) $) 23)) (-1324 (($ $) 58)) (-1836 (((-546) $) 67)) (-1479 (($ $) 21)) (-2943 (((-872) $) 53) (($ (-574)) 40) (($ |#2|) 38) (($ (-417 (-574))) NIL)) (-1364 (((-781)) 10)) (-3482 ((|#2| $) 71)) (-2981 (((-112) $ $) 30)) (-3007 (((-112) $ $) 69)) (-3094 (($ $) 32) (($ $ $) NIL)) (-3079 (($ $ $) 31)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) -(((-806 |#1| |#2|) (-10 -8 (-15 -3007 ((-112) |#1| |#1|)) (-15 -1836 ((-546) |#1|)) (-15 -1324 (|#1| |#1|)) (-15 -1880 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -4339 ((-417 (-574)) |#1|)) (-15 -4414 ((-112) |#1|)) (-15 -3482 (|#2| |#1|)) (-15 -2236 (|#2| |#1|)) (-15 -1479 (|#1| |#1|)) (-15 -1777 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1696 ((-3 |#2| "failed") |#1|)) (-15 -2206 (|#2| |#1|)) (-15 -2206 ((-417 (-574)) |#1|)) (-15 -1696 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2206 ((-574) |#1|)) (-15 -1696 ((-3 (-574) "failed") |#1|)) (-15 -2943 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1364 ((-781))) (-15 -2943 (|#1| (-574))) (-15 * (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 -3138 ((-112) |#1|)) (-15 * (|#1| (-932) |#1|)) (-15 -3079 (|#1| |#1| |#1|)) (-15 -2943 ((-872) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) (-807 |#2|) (-174)) (T -806)) -((-1364 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-806 *3 *4)) (-4 *3 (-807 *4))))) -(-10 -8 (-15 -3007 ((-112) |#1| |#1|)) (-15 -1836 ((-546) |#1|)) (-15 -1324 (|#1| |#1|)) (-15 -1880 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -4339 ((-417 (-574)) |#1|)) (-15 -4414 ((-112) |#1|)) (-15 -3482 (|#2| |#1|)) (-15 -2236 (|#2| |#1|)) (-15 -1479 (|#1| |#1|)) (-15 -1777 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1696 ((-3 |#2| "failed") |#1|)) (-15 -2206 (|#2| |#1|)) (-15 -2206 ((-417 (-574)) |#1|)) (-15 -1696 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2206 ((-574) |#1|)) (-15 -1696 ((-3 (-574) "failed") |#1|)) (-15 -2943 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1364 ((-781))) (-15 -2943 (|#1| (-574))) (-15 * (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 -3138 ((-112) |#1|)) (-15 * (|#1| (-932) |#1|)) (-15 -3079 (|#1| |#1| |#1|)) (-15 -2943 ((-872) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-1487 (((-781)) 58 (|has| |#1| (-377)))) (-3426 (($) 18 T CONST)) (-1696 (((-3 (-574) "failed") $) 100 (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) 97 (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) 94)) (-2206 (((-574) $) 99 (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) 96 (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) 95)) (-3434 (((-3 $ "failed") $) 37)) (-4239 ((|#1| $) 84)) (-1880 (((-3 (-417 (-574)) "failed") $) 71 (|has| |#1| (-555)))) (-4414 (((-112) $) 73 (|has| |#1| (-555)))) (-4339 (((-417 (-574)) $) 72 (|has| |#1| (-555)))) (-2820 (($) 61 (|has| |#1| (-377)))) (-3199 (((-112) $) 35)) (-2025 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-2236 ((|#1| $) 76)) (-3659 (($ $ $) 67 (|has| |#1| (-860)))) (-4257 (($ $ $) 66 (|has| |#1| (-860)))) (-1777 (($ (-1 |#1| |#1|) $) 86)) (-4115 (((-932) $) 60 (|has| |#1| (-377)))) (-4136 (((-1172) $) 10)) (-1324 (($ $) 70 (|has| |#1| (-372)))) (-2576 (($ (-932)) 59 (|has| |#1| (-377)))) (-2070 ((|#1| $) 81)) (-3129 ((|#1| $) 82)) (-2106 ((|#1| $) 83)) (-1958 ((|#1| $) 77)) (-3871 ((|#1| $) 78)) (-3901 ((|#1| $) 79)) (-4143 ((|#1| $) 80)) (-3966 (((-1133) $) 11)) (-2646 (($ $ (-654 |#1|) (-654 |#1|)) 92 (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) 90 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) 89 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1190)) (-654 |#1|)) 88 (|has| |#1| (-524 (-1190) |#1|))) (($ $ (-1190) |#1|) 87 (|has| |#1| (-524 (-1190) |#1|)))) (-2199 (($ $ |#1|) 93 (|has| |#1| (-294 |#1| |#1|)))) (-1836 (((-546) $) 68 (|has| |#1| (-624 (-546))))) (-1479 (($ $) 85)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44) (($ (-417 (-574))) 98 (|has| |#1| (-1051 (-417 (-574)))))) (-3298 (((-3 $ "failed") $) 69 (|has| |#1| (-146)))) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-3482 ((|#1| $) 74 (|has| |#1| (-1073)))) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-3042 (((-112) $ $) 64 (|has| |#1| (-860)))) (-3018 (((-112) $ $) 63 (|has| |#1| (-860)))) (-2981 (((-112) $ $) 6)) (-3030 (((-112) $ $) 65 (|has| |#1| (-860)))) (-3007 (((-112) $ $) 62 (|has| |#1| (-860)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-807 |#1|) (-141) (-174)) (T -807)) -((-1479 (*1 *1 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-4239 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-2106 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-3129 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-2070 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-4143 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-3901 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-1958 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-2236 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-2025 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-3482 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)) (-4 *2 (-1073)))) (-4414 (*1 *2 *1) (-12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112)))) (-4339 (*1 *2 *1) (-12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574))))) (-1880 (*1 *2 *1) (|partial| -12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574))))) (-1324 (*1 *1 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)) (-4 *2 (-372))))) -(-13 (-38 |t#1|) (-421 |t#1|) (-347 |t#1|) (-10 -8 (-15 -1479 ($ $)) (-15 -4239 (|t#1| $)) (-15 -2106 (|t#1| $)) (-15 -3129 (|t#1| $)) (-15 -2070 (|t#1| $)) (-15 -4143 (|t#1| $)) (-15 -3901 (|t#1| $)) (-15 -3871 (|t#1| $)) (-15 -1958 (|t#1| $)) (-15 -2236 (|t#1| $)) (-15 -2025 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-377)) (-6 (-377)) |%noBranch|) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1073)) (-15 -3482 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -4414 ((-112) $)) (-15 -4339 ((-417 (-574)) $)) (-15 -1880 ((-3 (-417 (-574)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-372)) (-15 -1324 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0=(-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 |#1| $) |has| |#1| (-294 |#1| |#1|)) ((-317 |#1|) |has| |#1| (-317 |#1|)) ((-377) |has| |#1| (-377)) ((-347 |#1|) . T) ((-421 |#1|) . T) ((-524 (-1190) |#1|) |has| |#1| (-524 (-1190) |#1|)) ((-524 |#1| |#1|) |has| |#1| (-317 |#1|)) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-736) . T) ((-860) |has| |#1| (-860)) ((-1051 #0#) |has| |#1| (-1051 (-417 (-574)))) ((-1051 (-574)) |has| |#1| (-1051 (-574))) ((-1051 |#1|) . T) ((-1064 |#1|) . T) ((-1069 |#1|) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1231) |has| |#1| (-294 |#1| |#1|))) -((-1777 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-808 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1777 (|#3| (-1 |#4| |#2|) |#1|))) (-807 |#2|) (-174) (-807 |#4|) (-174)) (T -808)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-807 *6)) (-5 *1 (-808 *4 *5 *2 *6)) (-4 *4 (-807 *5))))) -(-10 -7 (-15 -1777 (|#3| (-1 |#4| |#2|) |#1|))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-1487 (((-781)) NIL (|has| |#1| (-377)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#1| "failed") $) NIL) (((-3 (-1012 |#1|) "failed") $) 35) (((-3 (-574) "failed") $) NIL (-2818 (|has| (-1012 |#1|) (-1051 (-574))) (|has| |#1| (-1051 (-574))))) (((-3 (-417 (-574)) "failed") $) NIL (-2818 (|has| (-1012 |#1|) (-1051 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))))) (-2206 ((|#1| $) NIL) (((-1012 |#1|) $) 33) (((-574) $) NIL (-2818 (|has| (-1012 |#1|) (-1051 (-574))) (|has| |#1| (-1051 (-574))))) (((-417 (-574)) $) NIL (-2818 (|has| (-1012 |#1|) (-1051 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))))) (-3434 (((-3 $ "failed") $) NIL)) (-4239 ((|#1| $) 16)) (-1880 (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-555)))) (-4414 (((-112) $) NIL (|has| |#1| (-555)))) (-4339 (((-417 (-574)) $) NIL (|has| |#1| (-555)))) (-2820 (($) NIL (|has| |#1| (-377)))) (-3199 (((-112) $) NIL)) (-2025 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1012 |#1|) (-1012 |#1|)) 29)) (-2236 ((|#1| $) NIL)) (-3659 (($ $ $) NIL (|has| |#1| (-860)))) (-4257 (($ $ $) NIL (|has| |#1| (-860)))) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-4115 (((-932) $) NIL (|has| |#1| (-377)))) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL (|has| |#1| (-372)))) (-2576 (($ (-932)) NIL (|has| |#1| (-377)))) (-2070 ((|#1| $) 22)) (-3129 ((|#1| $) 20)) (-2106 ((|#1| $) 18)) (-1958 ((|#1| $) 26)) (-3871 ((|#1| $) 25)) (-3901 ((|#1| $) 24)) (-4143 ((|#1| $) 23)) (-3966 (((-1133) $) NIL)) (-2646 (($ $ (-654 |#1|) (-654 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1190)) (-654 |#1|)) NIL (|has| |#1| (-524 (-1190) |#1|))) (($ $ (-1190) |#1|) NIL (|has| |#1| (-524 (-1190) |#1|)))) (-2199 (($ $ |#1|) NIL (|has| |#1| (-294 |#1| |#1|)))) (-1836 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-1479 (($ $) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-1012 |#1|)) 30) (($ (-417 (-574))) NIL (-2818 (|has| (-1012 |#1|) (-1051 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))))) (-3298 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-3482 ((|#1| $) NIL (|has| |#1| (-1073)))) (-2133 (($) 8 T CONST)) (-2145 (($) 12 T CONST)) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3007 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-809 |#1|) (-13 (-807 |#1|) (-421 (-1012 |#1|)) (-10 -8 (-15 -2025 ($ (-1012 |#1|) (-1012 |#1|))))) (-174)) (T -809)) -((-2025 (*1 *1 *2 *2) (-12 (-5 *2 (-1012 *3)) (-4 *3 (-174)) (-5 *1 (-809 *3))))) -(-13 (-807 |#1|) (-421 (-1012 |#1|)) (-10 -8 (-15 -2025 ($ (-1012 |#1|) (-1012 |#1|))))) -((-2849 (((-112) $ $) 7)) (-3678 (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-3467 (((-1048) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 14)) (-2981 (((-112) $ $) 6))) -(((-810) (-141)) (T -810)) -((-3678 (*1 *2 *3 *4) (-12 (-4 *1 (-810)) (-5 *3 (-1076)) (-5 *4 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)))))) (-3467 (*1 *2 *3) (-12 (-4 *1 (-810)) (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1048))))) -(-13 (-1113) (-10 -7 (-15 -3678 ((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3467 ((-1048) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) -(((-102) . T) ((-623 (-872)) . T) ((-1113) . T)) -((-3557 (((-2 (|:| |particular| |#2|) (|:| -1882 (-654 |#2|))) |#3| |#2| (-1190)) 19))) -(((-811 |#1| |#2| |#3|) (-10 -7 (-15 -3557 ((-2 (|:| |particular| |#2|) (|:| -1882 (-654 |#2|))) |#3| |#2| (-1190)))) (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148)) (-13 (-29 |#1|) (-1216) (-970)) (-666 |#2|)) (T -811)) -((-3557 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1190)) (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-4 *4 (-13 (-29 *6) (-1216) (-970))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1882 (-654 *4)))) (-5 *1 (-811 *6 *4 *3)) (-4 *3 (-666 *4))))) -(-10 -7 (-15 -3557 ((-2 (|:| |particular| |#2|) (|:| -1882 (-654 |#2|))) |#3| |#2| (-1190)))) -((-1701 (((-3 |#2| "failed") |#2| (-115) (-302 |#2|) (-654 |#2|)) 28) (((-3 |#2| "failed") (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -1882 (-654 |#2|))) |#2| "failed") |#2| (-115) (-1190)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -1882 (-654 |#2|))) |#2| "failed") (-302 |#2|) (-115) (-1190)) 18) (((-3 (-2 (|:| |particular| (-1281 |#2|)) (|:| -1882 (-654 (-1281 |#2|)))) "failed") (-654 |#2|) (-654 (-115)) (-1190)) 24) (((-3 (-2 (|:| |particular| (-1281 |#2|)) (|:| -1882 (-654 (-1281 |#2|)))) "failed") (-654 (-302 |#2|)) (-654 (-115)) (-1190)) 26) (((-3 (-654 (-1281 |#2|)) "failed") (-699 |#2|) (-1190)) 37) (((-3 (-2 (|:| |particular| (-1281 |#2|)) (|:| -1882 (-654 (-1281 |#2|)))) "failed") (-699 |#2|) (-1281 |#2|) (-1190)) 35))) -(((-812 |#1| |#2|) (-10 -7 (-15 -1701 ((-3 (-2 (|:| |particular| (-1281 |#2|)) (|:| -1882 (-654 (-1281 |#2|)))) "failed") (-699 |#2|) (-1281 |#2|) (-1190))) (-15 -1701 ((-3 (-654 (-1281 |#2|)) "failed") (-699 |#2|) (-1190))) (-15 -1701 ((-3 (-2 (|:| |particular| (-1281 |#2|)) (|:| -1882 (-654 (-1281 |#2|)))) "failed") (-654 (-302 |#2|)) (-654 (-115)) (-1190))) (-15 -1701 ((-3 (-2 (|:| |particular| (-1281 |#2|)) (|:| -1882 (-654 (-1281 |#2|)))) "failed") (-654 |#2|) (-654 (-115)) (-1190))) (-15 -1701 ((-3 (-2 (|:| |particular| |#2|) (|:| -1882 (-654 |#2|))) |#2| "failed") (-302 |#2|) (-115) (-1190))) (-15 -1701 ((-3 (-2 (|:| |particular| |#2|) (|:| -1882 (-654 |#2|))) |#2| "failed") |#2| (-115) (-1190))) (-15 -1701 ((-3 |#2| "failed") (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|))) (-15 -1701 ((-3 |#2| "failed") |#2| (-115) (-302 |#2|) (-654 |#2|)))) (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148)) (-13 (-29 |#1|) (-1216) (-970))) (T -812)) -((-1701 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-302 *2)) (-5 *5 (-654 *2)) (-4 *2 (-13 (-29 *6) (-1216) (-970))) (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *1 (-812 *6 *2)))) (-1701 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-302 *2)) (-5 *4 (-115)) (-5 *5 (-654 *2)) (-4 *2 (-13 (-29 *6) (-1216) (-970))) (-5 *1 (-812 *6 *2)) (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))))) (-1701 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1190)) (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1882 (-654 *3))) *3 "failed")) (-5 *1 (-812 *6 *3)) (-4 *3 (-13 (-29 *6) (-1216) (-970))))) (-1701 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-302 *7)) (-5 *4 (-115)) (-5 *5 (-1190)) (-4 *7 (-13 (-29 *6) (-1216) (-970))) (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1882 (-654 *7))) *7 "failed")) (-5 *1 (-812 *6 *7)))) (-1701 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-654 *7)) (-5 *4 (-654 (-115))) (-5 *5 (-1190)) (-4 *7 (-13 (-29 *6) (-1216) (-970))) (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *2 (-2 (|:| |particular| (-1281 *7)) (|:| -1882 (-654 (-1281 *7))))) (-5 *1 (-812 *6 *7)))) (-1701 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-654 (-302 *7))) (-5 *4 (-654 (-115))) (-5 *5 (-1190)) (-4 *7 (-13 (-29 *6) (-1216) (-970))) (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *2 (-2 (|:| |particular| (-1281 *7)) (|:| -1882 (-654 (-1281 *7))))) (-5 *1 (-812 *6 *7)))) (-1701 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-699 *6)) (-5 *4 (-1190)) (-4 *6 (-13 (-29 *5) (-1216) (-970))) (-4 *5 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-1281 *6))) (-5 *1 (-812 *5 *6)))) (-1701 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-699 *7)) (-5 *5 (-1190)) (-4 *7 (-13 (-29 *6) (-1216) (-970))) (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *2 (-2 (|:| |particular| (-1281 *7)) (|:| -1882 (-654 (-1281 *7))))) (-5 *1 (-812 *6 *7)) (-5 *4 (-1281 *7))))) -(-10 -7 (-15 -1701 ((-3 (-2 (|:| |particular| (-1281 |#2|)) (|:| -1882 (-654 (-1281 |#2|)))) "failed") (-699 |#2|) (-1281 |#2|) (-1190))) (-15 -1701 ((-3 (-654 (-1281 |#2|)) "failed") (-699 |#2|) (-1190))) (-15 -1701 ((-3 (-2 (|:| |particular| (-1281 |#2|)) (|:| -1882 (-654 (-1281 |#2|)))) "failed") (-654 (-302 |#2|)) (-654 (-115)) (-1190))) (-15 -1701 ((-3 (-2 (|:| |particular| (-1281 |#2|)) (|:| -1882 (-654 (-1281 |#2|)))) "failed") (-654 |#2|) (-654 (-115)) (-1190))) (-15 -1701 ((-3 (-2 (|:| |particular| |#2|) (|:| -1882 (-654 |#2|))) |#2| "failed") (-302 |#2|) (-115) (-1190))) (-15 -1701 ((-3 (-2 (|:| |particular| |#2|) (|:| -1882 (-654 |#2|))) |#2| "failed") |#2| (-115) (-1190))) (-15 -1701 ((-3 |#2| "failed") (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|))) (-15 -1701 ((-3 |#2| "failed") |#2| (-115) (-302 |#2|) (-654 |#2|)))) -((-3935 (($) 9)) (-2473 (((-3 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 30)) (-1763 (((-654 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 27)) (-2798 (($ (-2 (|:| -3693 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1908 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))))) 24)) (-1516 (($ (-654 (-2 (|:| -3693 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1908 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))))) 22)) (-1848 (((-1286)) 11))) -(((-813) (-10 -8 (-15 -3935 ($)) (-15 -1848 ((-1286))) (-15 -1763 ((-654 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -1516 ($ (-654 (-2 (|:| -3693 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1908 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))))))) (-15 -2798 ($ (-2 (|:| -3693 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1908 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))))) (-15 -2473 ((-3 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -813)) -((-2473 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))) (-5 *1 (-813)))) (-2798 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3693 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1908 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))))) (-5 *1 (-813)))) (-1516 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3693 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1908 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))))) (-5 *1 (-813)))) (-1763 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-813)))) (-1848 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-813)))) (-3935 (*1 *1) (-5 *1 (-813)))) -(-10 -8 (-15 -3935 ($)) (-15 -1848 ((-1286))) (-15 -1763 ((-654 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -1516 ($ (-654 (-2 (|:| -3693 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1908 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))))))) (-15 -2798 ($ (-2 (|:| -3693 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1908 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))))) (-15 -2473 ((-3 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-3091 ((|#2| |#2| (-1190)) 17)) (-2668 ((|#2| |#2| (-1190)) 56)) (-2727 (((-1 |#2| |#2|) (-1190)) 11))) -(((-814 |#1| |#2|) (-10 -7 (-15 -3091 (|#2| |#2| (-1190))) (-15 -2668 (|#2| |#2| (-1190))) (-15 -2727 ((-1 |#2| |#2|) (-1190)))) (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148)) (-13 (-29 |#1|) (-1216) (-970))) (T -814)) -((-2727 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-814 *4 *5)) (-4 *5 (-13 (-29 *4) (-1216) (-970))))) (-2668 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *1 (-814 *4 *2)) (-4 *2 (-13 (-29 *4) (-1216) (-970))))) (-3091 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *1 (-814 *4 *2)) (-4 *2 (-13 (-29 *4) (-1216) (-970)))))) -(-10 -7 (-15 -3091 (|#2| |#2| (-1190))) (-15 -2668 (|#2| |#2| (-1190))) (-15 -2727 ((-1 |#2| |#2|) (-1190)))) -((-1701 (((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388) (-388)) 128) (((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388)) 129) (((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)) (-654 (-388)) (-388)) 131) (((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-388)) 133) (((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)) (-388)) 134) (((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388))) 136) (((-1048) (-818) (-1076)) 120) (((-1048) (-818)) 121)) (-3678 (((-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-818) (-1076)) 80) (((-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-818)) 82))) -(((-815) (-10 -7 (-15 -1701 ((-1048) (-818))) (-15 -1701 ((-1048) (-818) (-1076))) (-15 -1701 ((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)))) (-15 -1701 ((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)) (-388))) (-15 -1701 ((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-388))) (-15 -1701 ((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)) (-654 (-388)) (-388))) (-15 -1701 ((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388))) (-15 -1701 ((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388) (-388))) (-15 -3678 ((-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-818))) (-15 -3678 ((-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-818) (-1076))))) (T -815)) -((-3678 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-1076)) (-5 *2 (-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))))) (-5 *1 (-815)))) (-3678 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))))) (-5 *1 (-815)))) (-1701 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1281 (-324 *4))) (-5 *5 (-654 (-388))) (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1048)) (-5 *1 (-815)))) (-1701 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1281 (-324 *4))) (-5 *5 (-654 (-388))) (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1048)) (-5 *1 (-815)))) (-1701 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1281 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4)) (-5 *2 (-1048)) (-5 *1 (-815)))) (-1701 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1281 (-324 *4))) (-5 *5 (-654 (-388))) (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1048)) (-5 *1 (-815)))) (-1701 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1281 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4)) (-5 *2 (-1048)) (-5 *1 (-815)))) (-1701 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1281 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4)) (-5 *2 (-1048)) (-5 *1 (-815)))) (-1701 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-1076)) (-5 *2 (-1048)) (-5 *1 (-815)))) (-1701 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1048)) (-5 *1 (-815))))) -(-10 -7 (-15 -1701 ((-1048) (-818))) (-15 -1701 ((-1048) (-818) (-1076))) (-15 -1701 ((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)))) (-15 -1701 ((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)) (-388))) (-15 -1701 ((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-388))) (-15 -1701 ((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)) (-654 (-388)) (-388))) (-15 -1701 ((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388))) (-15 -1701 ((-1048) (-1281 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388) (-388))) (-15 -3678 ((-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-818))) (-15 -3678 ((-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-818) (-1076)))) -((-3458 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1882 (-654 |#4|))) (-663 |#4|) |#4|) 33))) -(((-816 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3458 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1882 (-654 |#4|))) (-663 |#4|) |#4|))) (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574)))) (-1257 |#1|) (-1257 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -816)) -((-3458 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *4)) (-4 *4 (-351 *5 *6 *7)) (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-4 *6 (-1257 *5)) (-4 *7 (-1257 (-417 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1882 (-654 *4)))) (-5 *1 (-816 *5 *6 *7 *4))))) -(-10 -7 (-15 -3458 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1882 (-654 |#4|))) (-663 |#4|) |#4|))) -((-4098 (((-2 (|:| -4122 |#3|) (|:| |rh| (-654 (-417 |#2|)))) |#4| (-654 (-417 |#2|))) 53)) (-4051 (((-654 (-2 (|:| -3359 |#2|) (|:| -2692 |#2|))) |#4| |#2|) 62) (((-654 (-2 (|:| -3359 |#2|) (|:| -2692 |#2|))) |#4|) 61) (((-654 (-2 (|:| -3359 |#2|) (|:| -2692 |#2|))) |#3| |#2|) 20) (((-654 (-2 (|:| -3359 |#2|) (|:| -2692 |#2|))) |#3|) 21)) (-4046 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-3214 ((|#2| |#3| (-654 (-417 |#2|))) 109) (((-3 |#2| "failed") |#3| (-417 |#2|)) 105))) -(((-817 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3214 ((-3 |#2| "failed") |#3| (-417 |#2|))) (-15 -3214 (|#2| |#3| (-654 (-417 |#2|)))) (-15 -4051 ((-654 (-2 (|:| -3359 |#2|) (|:| -2692 |#2|))) |#3|)) (-15 -4051 ((-654 (-2 (|:| -3359 |#2|) (|:| -2692 |#2|))) |#3| |#2|)) (-15 -4046 (|#2| |#3| |#1|)) (-15 -4051 ((-654 (-2 (|:| -3359 |#2|) (|:| -2692 |#2|))) |#4|)) (-15 -4051 ((-654 (-2 (|:| -3359 |#2|) (|:| -2692 |#2|))) |#4| |#2|)) (-15 -4046 (|#2| |#4| |#1|)) (-15 -4098 ((-2 (|:| -4122 |#3|) (|:| |rh| (-654 (-417 |#2|)))) |#4| (-654 (-417 |#2|))))) (-13 (-372) (-148) (-1051 (-417 (-574)))) (-1257 |#1|) (-666 |#2|) (-666 (-417 |#2|))) (T -817)) -((-4098 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *6 (-1257 *5)) (-5 *2 (-2 (|:| -4122 *7) (|:| |rh| (-654 (-417 *6))))) (-5 *1 (-817 *5 *6 *7 *3)) (-5 *4 (-654 (-417 *6))) (-4 *7 (-666 *6)) (-4 *3 (-666 (-417 *6))))) (-4046 (*1 *2 *3 *4) (-12 (-4 *2 (-1257 *4)) (-5 *1 (-817 *4 *2 *5 *3)) (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *5 (-666 *2)) (-4 *3 (-666 (-417 *2))))) (-4051 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *4 (-1257 *5)) (-5 *2 (-654 (-2 (|:| -3359 *4) (|:| -2692 *4)))) (-5 *1 (-817 *5 *4 *6 *3)) (-4 *6 (-666 *4)) (-4 *3 (-666 (-417 *4))))) (-4051 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *5 (-1257 *4)) (-5 *2 (-654 (-2 (|:| -3359 *5) (|:| -2692 *5)))) (-5 *1 (-817 *4 *5 *6 *3)) (-4 *6 (-666 *5)) (-4 *3 (-666 (-417 *5))))) (-4046 (*1 *2 *3 *4) (-12 (-4 *2 (-1257 *4)) (-5 *1 (-817 *4 *2 *3 *5)) (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *3 (-666 *2)) (-4 *5 (-666 (-417 *2))))) (-4051 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *4 (-1257 *5)) (-5 *2 (-654 (-2 (|:| -3359 *4) (|:| -2692 *4)))) (-5 *1 (-817 *5 *4 *3 *6)) (-4 *3 (-666 *4)) (-4 *6 (-666 (-417 *4))))) (-4051 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *5 (-1257 *4)) (-5 *2 (-654 (-2 (|:| -3359 *5) (|:| -2692 *5)))) (-5 *1 (-817 *4 *5 *3 *6)) (-4 *3 (-666 *5)) (-4 *6 (-666 (-417 *5))))) (-3214 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-417 *2))) (-4 *2 (-1257 *5)) (-5 *1 (-817 *5 *2 *3 *6)) (-4 *5 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *3 (-666 *2)) (-4 *6 (-666 (-417 *2))))) (-3214 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-417 *2)) (-4 *2 (-1257 *5)) (-5 *1 (-817 *5 *2 *3 *6)) (-4 *5 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *3 (-666 *2)) (-4 *6 (-666 *4))))) -(-10 -7 (-15 -3214 ((-3 |#2| "failed") |#3| (-417 |#2|))) (-15 -3214 (|#2| |#3| (-654 (-417 |#2|)))) (-15 -4051 ((-654 (-2 (|:| -3359 |#2|) (|:| -2692 |#2|))) |#3|)) (-15 -4051 ((-654 (-2 (|:| -3359 |#2|) (|:| -2692 |#2|))) |#3| |#2|)) (-15 -4046 (|#2| |#3| |#1|)) (-15 -4051 ((-654 (-2 (|:| -3359 |#2|) (|:| -2692 |#2|))) |#4|)) (-15 -4051 ((-654 (-2 (|:| -3359 |#2|) (|:| -2692 |#2|))) |#4| |#2|)) (-15 -4046 (|#2| |#4| |#1|)) (-15 -4098 ((-2 (|:| -4122 |#3|) (|:| |rh| (-654 (-417 |#2|)))) |#4| (-654 (-417 |#2|))))) -((-2849 (((-112) $ $) NIL)) (-2206 (((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $) 13)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 15) (($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 12)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-818) (-13 (-1113) (-10 -8 (-15 -2943 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2206 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))) (T -818)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-818)))) (-2206 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-818))))) -(-13 (-1113) (-10 -8 (-15 -2943 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2206 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $)))) -((-3357 (((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4122 |#3|))) |#3| (-1 (-654 |#2|) |#2| (-1186 |#2|)) (-1 (-428 |#2|) |#2|)) 154)) (-3568 (((-654 (-2 (|:| |poly| |#2|) (|:| -4122 |#3|))) |#3| (-1 (-654 |#1|) |#2|)) 52)) (-3547 (((-654 (-2 (|:| |deg| (-781)) (|:| -4122 |#2|))) |#3|) 122)) (-1355 ((|#2| |#3|) 42)) (-1568 (((-654 (-2 (|:| -1706 |#1|) (|:| -4122 |#3|))) |#3| (-1 (-654 |#1|) |#2|)) 99)) (-1998 ((|#3| |#3| (-417 |#2|)) 72) ((|#3| |#3| |#2|) 96))) -(((-819 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1355 (|#2| |#3|)) (-15 -3547 ((-654 (-2 (|:| |deg| (-781)) (|:| -4122 |#2|))) |#3|)) (-15 -1568 ((-654 (-2 (|:| -1706 |#1|) (|:| -4122 |#3|))) |#3| (-1 (-654 |#1|) |#2|))) (-15 -3568 ((-654 (-2 (|:| |poly| |#2|) (|:| -4122 |#3|))) |#3| (-1 (-654 |#1|) |#2|))) (-15 -3357 ((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4122 |#3|))) |#3| (-1 (-654 |#2|) |#2| (-1186 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -1998 (|#3| |#3| |#2|)) (-15 -1998 (|#3| |#3| (-417 |#2|)))) (-13 (-372) (-148) (-1051 (-417 (-574)))) (-1257 |#1|) (-666 |#2|) (-666 (-417 |#2|))) (T -819)) -((-1998 (*1 *2 *2 *3) (-12 (-5 *3 (-417 *5)) (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *5 (-1257 *4)) (-5 *1 (-819 *4 *5 *2 *6)) (-4 *2 (-666 *5)) (-4 *6 (-666 *3)))) (-1998 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *3 (-1257 *4)) (-5 *1 (-819 *4 *3 *2 *5)) (-4 *2 (-666 *3)) (-4 *5 (-666 (-417 *3))))) (-3357 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-654 *7) *7 (-1186 *7))) (-5 *5 (-1 (-428 *7) *7)) (-4 *7 (-1257 *6)) (-4 *6 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-5 *2 (-654 (-2 (|:| |frac| (-417 *7)) (|:| -4122 *3)))) (-5 *1 (-819 *6 *7 *3 *8)) (-4 *3 (-666 *7)) (-4 *8 (-666 (-417 *7))))) (-3568 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *6 (-1257 *5)) (-5 *2 (-654 (-2 (|:| |poly| *6) (|:| -4122 *3)))) (-5 *1 (-819 *5 *6 *3 *7)) (-4 *3 (-666 *6)) (-4 *7 (-666 (-417 *6))))) (-1568 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *6 (-1257 *5)) (-5 *2 (-654 (-2 (|:| -1706 *5) (|:| -4122 *3)))) (-5 *1 (-819 *5 *6 *3 *7)) (-4 *3 (-666 *6)) (-4 *7 (-666 (-417 *6))))) (-3547 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *5 (-1257 *4)) (-5 *2 (-654 (-2 (|:| |deg| (-781)) (|:| -4122 *5)))) (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-666 *5)) (-4 *6 (-666 (-417 *5))))) (-1355 (*1 *2 *3) (-12 (-4 *2 (-1257 *4)) (-5 *1 (-819 *4 *2 *3 *5)) (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *3 (-666 *2)) (-4 *5 (-666 (-417 *2)))))) -(-10 -7 (-15 -1355 (|#2| |#3|)) (-15 -3547 ((-654 (-2 (|:| |deg| (-781)) (|:| -4122 |#2|))) |#3|)) (-15 -1568 ((-654 (-2 (|:| -1706 |#1|) (|:| -4122 |#3|))) |#3| (-1 (-654 |#1|) |#2|))) (-15 -3568 ((-654 (-2 (|:| |poly| |#2|) (|:| -4122 |#3|))) |#3| (-1 (-654 |#1|) |#2|))) (-15 -3357 ((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4122 |#3|))) |#3| (-1 (-654 |#2|) |#2| (-1186 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -1998 (|#3| |#3| |#2|)) (-15 -1998 (|#3| |#3| (-417 |#2|)))) -((-3939 (((-2 (|:| -1882 (-654 (-417 |#2|))) (|:| -4340 (-699 |#1|))) (-664 |#2| (-417 |#2|)) (-654 (-417 |#2|))) 147) (((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -1882 (-654 (-417 |#2|)))) (-664 |#2| (-417 |#2|)) (-417 |#2|)) 146) (((-2 (|:| -1882 (-654 (-417 |#2|))) (|:| -4340 (-699 |#1|))) (-663 (-417 |#2|)) (-654 (-417 |#2|))) 141) (((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -1882 (-654 (-417 |#2|)))) (-663 (-417 |#2|)) (-417 |#2|)) 139)) (-1966 ((|#2| (-664 |#2| (-417 |#2|))) 88) ((|#2| (-663 (-417 |#2|))) 91))) -(((-820 |#1| |#2|) (-10 -7 (-15 -3939 ((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -1882 (-654 (-417 |#2|)))) (-663 (-417 |#2|)) (-417 |#2|))) (-15 -3939 ((-2 (|:| -1882 (-654 (-417 |#2|))) (|:| -4340 (-699 |#1|))) (-663 (-417 |#2|)) (-654 (-417 |#2|)))) (-15 -3939 ((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -1882 (-654 (-417 |#2|)))) (-664 |#2| (-417 |#2|)) (-417 |#2|))) (-15 -3939 ((-2 (|:| -1882 (-654 (-417 |#2|))) (|:| -4340 (-699 |#1|))) (-664 |#2| (-417 |#2|)) (-654 (-417 |#2|)))) (-15 -1966 (|#2| (-663 (-417 |#2|)))) (-15 -1966 (|#2| (-664 |#2| (-417 |#2|))))) (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574)))) (-1257 |#1|)) (T -820)) -((-1966 (*1 *2 *3) (-12 (-5 *3 (-664 *2 (-417 *2))) (-4 *2 (-1257 *4)) (-5 *1 (-820 *4 *2)) (-4 *4 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))))) (-1966 (*1 *2 *3) (-12 (-5 *3 (-663 (-417 *2))) (-4 *2 (-1257 *4)) (-5 *1 (-820 *4 *2)) (-4 *4 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))))) (-3939 (*1 *2 *3 *4) (-12 (-5 *3 (-664 *6 (-417 *6))) (-4 *6 (-1257 *5)) (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-5 *2 (-2 (|:| -1882 (-654 (-417 *6))) (|:| -4340 (-699 *5)))) (-5 *1 (-820 *5 *6)) (-5 *4 (-654 (-417 *6))))) (-3939 (*1 *2 *3 *4) (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-417 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1882 (-654 *4)))) (-5 *1 (-820 *5 *6)))) (-3939 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-417 *6))) (-4 *6 (-1257 *5)) (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-5 *2 (-2 (|:| -1882 (-654 (-417 *6))) (|:| -4340 (-699 *5)))) (-5 *1 (-820 *5 *6)) (-5 *4 (-654 (-417 *6))))) (-3939 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-417 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1882 (-654 *4)))) (-5 *1 (-820 *5 *6))))) -(-10 -7 (-15 -3939 ((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -1882 (-654 (-417 |#2|)))) (-663 (-417 |#2|)) (-417 |#2|))) (-15 -3939 ((-2 (|:| -1882 (-654 (-417 |#2|))) (|:| -4340 (-699 |#1|))) (-663 (-417 |#2|)) (-654 (-417 |#2|)))) (-15 -3939 ((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -1882 (-654 (-417 |#2|)))) (-664 |#2| (-417 |#2|)) (-417 |#2|))) (-15 -3939 ((-2 (|:| -1882 (-654 (-417 |#2|))) (|:| -4340 (-699 |#1|))) (-664 |#2| (-417 |#2|)) (-654 (-417 |#2|)))) (-15 -1966 (|#2| (-663 (-417 |#2|)))) (-15 -1966 (|#2| (-664 |#2| (-417 |#2|))))) -((-4057 (((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#1|))) |#5| |#4|) 49))) -(((-821 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4057 ((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#1|))) |#5| |#4|))) (-372) (-666 |#1|) (-1257 |#1|) (-734 |#1| |#3|) (-666 |#4|)) (T -821)) -((-4057 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *7 (-1257 *5)) (-4 *4 (-734 *5 *7)) (-5 *2 (-2 (|:| -4340 (-699 *6)) (|:| |vec| (-1281 *5)))) (-5 *1 (-821 *5 *6 *7 *4 *3)) (-4 *6 (-666 *5)) (-4 *3 (-666 *4))))) -(-10 -7 (-15 -4057 ((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#1|))) |#5| |#4|))) -((-3357 (((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4122 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|)) 47)) (-3065 (((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|)) 167 (|has| |#1| (-27))) (((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|))) 164 (|has| |#1| (-27))) (((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-428 |#2|) |#2|)) 168 (|has| |#1| (-27))) (((-654 (-417 |#2|)) (-663 (-417 |#2|))) 166 (|has| |#1| (-27))) (((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|)) 38) (((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|)) 39) (((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|)) 36) (((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|)) 37)) (-3568 (((-654 (-2 (|:| |poly| |#2|) (|:| -4122 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|)) 96))) -(((-822 |#1| |#2|) (-10 -7 (-15 -3065 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (-15 -3065 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|))) (-15 -3065 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (-15 -3065 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|))) (-15 -3357 ((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4122 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -3568 ((-654 (-2 (|:| |poly| |#2|) (|:| -4122 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3065 ((-654 (-417 |#2|)) (-663 (-417 |#2|)))) (-15 -3065 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -3065 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)))) (-15 -3065 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|)))) |%noBranch|)) (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574)))) (-1257 |#1|)) (T -822)) -((-3065 (*1 *2 *3 *4) (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1257 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))) (-3065 (*1 *2 *3) (-12 (-5 *3 (-664 *5 (-417 *5))) (-4 *5 (-1257 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-5 *2 (-654 (-417 *5))) (-5 *1 (-822 *4 *5)))) (-3065 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1257 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))) (-3065 (*1 *2 *3) (-12 (-5 *3 (-663 (-417 *5))) (-4 *5 (-1257 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-5 *2 (-654 (-417 *5))) (-5 *1 (-822 *4 *5)))) (-3568 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-4 *6 (-1257 *5)) (-5 *2 (-654 (-2 (|:| |poly| *6) (|:| -4122 (-664 *6 (-417 *6)))))) (-5 *1 (-822 *5 *6)) (-5 *3 (-664 *6 (-417 *6))))) (-3357 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1257 *5)) (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-5 *2 (-654 (-2 (|:| |frac| (-417 *6)) (|:| -4122 (-664 *6 (-417 *6)))))) (-5 *1 (-822 *5 *6)) (-5 *3 (-664 *6 (-417 *6))))) (-3065 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-664 *7 (-417 *7))) (-5 *4 (-1 (-654 *6) *7)) (-5 *5 (-1 (-428 *7) *7)) (-4 *6 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-4 *7 (-1257 *6)) (-5 *2 (-654 (-417 *7))) (-5 *1 (-822 *6 *7)))) (-3065 (*1 *2 *3 *4) (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-4 *6 (-1257 *5)) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))) (-3065 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 (-417 *7))) (-5 *4 (-1 (-654 *6) *7)) (-5 *5 (-1 (-428 *7) *7)) (-4 *6 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-4 *7 (-1257 *6)) (-5 *2 (-654 (-417 *7))) (-5 *1 (-822 *6 *7)))) (-3065 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) (-4 *6 (-1257 *5)) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6))))) -(-10 -7 (-15 -3065 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (-15 -3065 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|))) (-15 -3065 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (-15 -3065 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|))) (-15 -3357 ((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4122 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -3568 ((-654 (-2 (|:| |poly| |#2|) (|:| -4122 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3065 ((-654 (-417 |#2|)) (-663 (-417 |#2|)))) (-15 -3065 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -3065 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)))) (-15 -3065 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|)))) |%noBranch|)) -((-3142 (((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#1|))) (-699 |#2|) (-1281 |#1|)) 110) (((-2 (|:| A (-699 |#1|)) (|:| |eqs| (-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1281 |#1|)) (|:| -4122 |#2|) (|:| |rh| |#1|))))) (-699 |#1|) (-1281 |#1|)) 15)) (-3666 (((-2 (|:| |particular| (-3 (-1281 |#1|) "failed")) (|:| -1882 (-654 (-1281 |#1|)))) (-699 |#2|) (-1281 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1882 (-654 |#1|))) |#2| |#1|)) 116)) (-1701 (((-3 (-2 (|:| |particular| (-1281 |#1|)) (|:| -1882 (-699 |#1|))) "failed") (-699 |#1|) (-1281 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1882 (-654 |#1|))) "failed") |#2| |#1|)) 54))) -(((-823 |#1| |#2|) (-10 -7 (-15 -3142 ((-2 (|:| A (-699 |#1|)) (|:| |eqs| (-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1281 |#1|)) (|:| -4122 |#2|) (|:| |rh| |#1|))))) (-699 |#1|) (-1281 |#1|))) (-15 -3142 ((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#1|))) (-699 |#2|) (-1281 |#1|))) (-15 -1701 ((-3 (-2 (|:| |particular| (-1281 |#1|)) (|:| -1882 (-699 |#1|))) "failed") (-699 |#1|) (-1281 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1882 (-654 |#1|))) "failed") |#2| |#1|))) (-15 -3666 ((-2 (|:| |particular| (-3 (-1281 |#1|) "failed")) (|:| -1882 (-654 (-1281 |#1|)))) (-699 |#2|) (-1281 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1882 (-654 |#1|))) |#2| |#1|)))) (-372) (-666 |#1|)) (T -823)) -((-3666 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1882 (-654 *6))) *7 *6)) (-4 *6 (-372)) (-4 *7 (-666 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1281 *6) "failed")) (|:| -1882 (-654 (-1281 *6))))) (-5 *1 (-823 *6 *7)) (-5 *4 (-1281 *6)))) (-1701 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -1882 (-654 *6))) "failed") *7 *6)) (-4 *6 (-372)) (-4 *7 (-666 *6)) (-5 *2 (-2 (|:| |particular| (-1281 *6)) (|:| -1882 (-699 *6)))) (-5 *1 (-823 *6 *7)) (-5 *3 (-699 *6)) (-5 *4 (-1281 *6)))) (-3142 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *6 (-666 *5)) (-5 *2 (-2 (|:| -4340 (-699 *6)) (|:| |vec| (-1281 *5)))) (-5 *1 (-823 *5 *6)) (-5 *3 (-699 *6)) (-5 *4 (-1281 *5)))) (-3142 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-5 *2 (-2 (|:| A (-699 *5)) (|:| |eqs| (-654 (-2 (|:| C (-699 *5)) (|:| |g| (-1281 *5)) (|:| -4122 *6) (|:| |rh| *5)))))) (-5 *1 (-823 *5 *6)) (-5 *3 (-699 *5)) (-5 *4 (-1281 *5)) (-4 *6 (-666 *5))))) -(-10 -7 (-15 -3142 ((-2 (|:| A (-699 |#1|)) (|:| |eqs| (-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1281 |#1|)) (|:| -4122 |#2|) (|:| |rh| |#1|))))) (-699 |#1|) (-1281 |#1|))) (-15 -3142 ((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#1|))) (-699 |#2|) (-1281 |#1|))) (-15 -1701 ((-3 (-2 (|:| |particular| (-1281 |#1|)) (|:| -1882 (-699 |#1|))) "failed") (-699 |#1|) (-1281 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1882 (-654 |#1|))) "failed") |#2| |#1|))) (-15 -3666 ((-2 (|:| |particular| (-3 (-1281 |#1|) "failed")) (|:| -1882 (-654 (-1281 |#1|)))) (-699 |#2|) (-1281 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1882 (-654 |#1|))) |#2| |#1|)))) -((-3132 (((-699 |#1|) (-654 |#1|) (-781)) 14) (((-699 |#1|) (-654 |#1|)) 15)) (-3854 (((-3 (-1281 |#1|) "failed") |#2| |#1| (-654 |#1|)) 39)) (-3358 (((-3 |#1| "failed") |#2| |#1| (-654 |#1|) (-1 |#1| |#1|)) 46))) -(((-824 |#1| |#2|) (-10 -7 (-15 -3132 ((-699 |#1|) (-654 |#1|))) (-15 -3132 ((-699 |#1|) (-654 |#1|) (-781))) (-15 -3854 ((-3 (-1281 |#1|) "failed") |#2| |#1| (-654 |#1|))) (-15 -3358 ((-3 |#1| "failed") |#2| |#1| (-654 |#1|) (-1 |#1| |#1|)))) (-372) (-666 |#1|)) (T -824)) -((-3358 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-654 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-372)) (-5 *1 (-824 *2 *3)) (-4 *3 (-666 *2)))) (-3854 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-654 *4)) (-4 *4 (-372)) (-5 *2 (-1281 *4)) (-5 *1 (-824 *4 *3)) (-4 *3 (-666 *4)))) (-3132 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-781)) (-4 *5 (-372)) (-5 *2 (-699 *5)) (-5 *1 (-824 *5 *6)) (-4 *6 (-666 *5)))) (-3132 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-372)) (-5 *2 (-699 *4)) (-5 *1 (-824 *4 *5)) (-4 *5 (-666 *4))))) -(-10 -7 (-15 -3132 ((-699 |#1|) (-654 |#1|))) (-15 -3132 ((-699 |#1|) (-654 |#1|) (-781))) (-15 -3854 ((-3 (-1281 |#1|) "failed") |#2| |#1| (-654 |#1|))) (-15 -3358 ((-3 |#1| "failed") |#2| |#1| (-654 |#1|) (-1 |#1| |#1|)))) -((-2849 (((-112) $ $) NIL (|has| |#2| (-1113)))) (-3138 (((-112) $) NIL (|has| |#2| (-132)))) (-3745 (($ (-932)) NIL (|has| |#2| (-1062)))) (-3714 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-3663 (($ $ $) NIL (|has| |#2| (-803)))) (-3524 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-3034 (((-112) $ (-781)) NIL)) (-1487 (((-781)) NIL (|has| |#2| (-377)))) (-2846 (((-574) $) NIL (|has| |#2| (-858)))) (-3143 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4457)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-574) "failed") $) NIL (-12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1113)))) (-2206 (((-574) $) NIL (-12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113)))) (((-417 (-574)) $) NIL (-12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113)))) ((|#2| $) NIL (|has| |#2| (-1113)))) (-2590 (((-699 (-574)) (-1281 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1062)))) (((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) NIL (|has| |#2| (-1062))) (((-699 |#2|) (-699 $)) NIL (|has| |#2| (-1062))) (((-699 |#2|) (-1281 $)) NIL (|has| |#2| (-1062)))) (-3434 (((-3 $ "failed") $) NIL (|has| |#2| (-736)))) (-2820 (($) NIL (|has| |#2| (-377)))) (-2458 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#2| $ (-574)) NIL)) (-2756 (((-112) $) NIL (|has| |#2| (-858)))) (-1864 (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-3199 (((-112) $) NIL (|has| |#2| (-736)))) (-1335 (((-112) $) NIL (|has| |#2| (-858)))) (-2742 (((-112) $ (-781)) NIL)) (-3618 (((-574) $) NIL (|has| (-574) (-860)))) (-3659 (($ $ $) NIL (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-1606 (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-2702 (((-574) $) NIL (|has| (-574) (-860)))) (-4257 (($ $ $) NIL (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-2449 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#2| |#2|) $) NIL)) (-4115 (((-932) $) NIL (|has| |#2| (-377)))) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL (|has| |#2| (-1113)))) (-4308 (((-654 (-574)) $) NIL)) (-3336 (((-112) (-574) $) NIL)) (-2576 (($ (-932)) NIL (|has| |#2| (-377)))) (-3966 (((-1133) $) NIL (|has| |#2| (-1113)))) (-2915 ((|#2| $) NIL (|has| (-574) (-860)))) (-1942 (($ $ |#2|) NIL (|has| $ (-6 -4457)))) (-2540 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-4371 (((-654 |#2|) $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 ((|#2| $ (-574) |#2|) NIL) ((|#2| $ (-574)) NIL)) (-4236 ((|#2| $ $) NIL (|has| |#2| (-1062)))) (-4261 (($ (-1281 |#2|)) NIL)) (-4133 (((-135)) NIL (|has| |#2| (-372)))) (-3905 (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-1190)) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1062))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1062)))) (-3975 (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-3167 (($ $) NIL)) (-2943 (((-1281 |#2|) $) NIL) (($ (-574)) NIL (-2818 (-12 (|has| |#2| (-1051 (-574))) (|has| |#2| (-1113))) (|has| |#2| (-1062)))) (($ (-417 (-574))) NIL (-12 (|has| |#2| (-1051 (-417 (-574)))) (|has| |#2| (-1113)))) (($ |#2|) NIL (|has| |#2| (-1113))) (((-872) $) NIL (|has| |#2| (-623 (-872))))) (-1364 (((-781)) NIL (|has| |#2| (-1062)) CONST)) (-3284 (((-112) $ $) NIL (|has| |#2| (-1113)))) (-3390 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-3482 (($ $) NIL (|has| |#2| (-858)))) (-2133 (($) NIL (|has| |#2| (-132)) CONST)) (-2145 (($) NIL (|has| |#2| (-736)) CONST)) (-3610 (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1062)))) (($ $ (-1190)) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#2| (-911 (-1190))) (|has| |#2| (-1062)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1062))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1062)))) (-3042 (((-112) $ $) NIL (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-3018 (((-112) $ $) NIL (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-2981 (((-112) $ $) NIL (|has| |#2| (-1113)))) (-3030 (((-112) $ $) NIL (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-3007 (((-112) $ $) 11 (-2818 (|has| |#2| (-803)) (|has| |#2| (-858))))) (-3108 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3094 (($ $ $) NIL (|has| |#2| (-1062))) (($ $) NIL (|has| |#2| (-1062)))) (-3079 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-781)) NIL (|has| |#2| (-736))) (($ $ (-932)) NIL (|has| |#2| (-736)))) (* (($ (-574) $) NIL (|has| |#2| (-1062))) (($ $ $) NIL (|has| |#2| (-736))) (($ $ |#2|) NIL (|has| |#2| (-736))) (($ |#2| $) NIL (|has| |#2| (-736))) (($ (-781) $) NIL (|has| |#2| (-132))) (($ (-932) $) NIL (|has| |#2| (-25)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-825 |#1| |#2| |#3|) (-244 |#1| |#2|) (-781) (-803) (-1 (-112) (-1281 |#2|) (-1281 |#2|))) (T -825)) -NIL -(-244 |#1| |#2|) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-4299 (((-654 (-781)) $) NIL) (((-654 (-781)) $ (-1190)) NIL)) (-1336 (((-781) $) NIL) (((-781) $ (-1190)) NIL)) (-4355 (((-654 (-828 (-1190))) $) NIL)) (-4194 (((-1186 $) $ (-828 (-1190))) NIL) (((-1186 |#1|) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-1575 (($ $) NIL (|has| |#1| (-566)))) (-2085 (((-112) $) NIL (|has| |#1| (-566)))) (-1757 (((-781) $) NIL) (((-781) $ (-654 (-828 (-1190)))) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3972 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-2568 (($ $) NIL (|has| |#1| (-462)))) (-2827 (((-428 $) $) NIL (|has| |#1| (-462)))) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-2040 (($ $) NIL)) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-828 (-1190)) "failed") $) NIL) (((-3 (-1190) "failed") $) NIL) (((-3 (-1138 |#1| (-1190)) "failed") $) NIL)) (-2206 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-828 (-1190)) $) NIL) (((-1190) $) NIL) (((-1138 |#1| (-1190)) $) NIL)) (-1463 (($ $ $ (-828 (-1190))) NIL (|has| |#1| (-174)))) (-1392 (($ $) NIL)) (-2590 (((-699 (-574)) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-1569 (($ $) NIL (|has| |#1| (-462))) (($ $ (-828 (-1190))) NIL (|has| |#1| (-462)))) (-1380 (((-654 $) $) NIL)) (-2257 (((-112) $) NIL (|has| |#1| (-920)))) (-1661 (($ $ |#1| (-541 (-828 (-1190))) $) NIL)) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-828 (-1190)) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-828 (-1190)) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3884 (((-781) $ (-1190)) NIL) (((-781) $) NIL)) (-3199 (((-112) $) NIL)) (-1322 (((-781) $) NIL)) (-4345 (($ (-1186 |#1|) (-828 (-1190))) NIL) (($ (-1186 $) (-828 (-1190))) NIL)) (-3727 (((-654 $) $) NIL)) (-3869 (((-112) $) NIL)) (-4335 (($ |#1| (-541 (-828 (-1190)))) NIL) (($ $ (-828 (-1190)) (-781)) NIL) (($ $ (-654 (-828 (-1190))) (-654 (-781))) NIL)) (-2773 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $ (-828 (-1190))) NIL)) (-1742 (((-541 (-828 (-1190))) $) NIL) (((-781) $ (-828 (-1190))) NIL) (((-654 (-781)) $ (-654 (-828 (-1190)))) NIL)) (-3708 (($ (-1 (-541 (-828 (-1190))) (-541 (-828 (-1190)))) $) NIL)) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-2168 (((-1 $ (-781)) (-1190)) NIL) (((-1 $ (-781)) $) NIL (|has| |#1| (-239)))) (-2717 (((-3 (-828 (-1190)) "failed") $) NIL)) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-3706 (((-828 (-1190)) $) NIL)) (-2832 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-4136 (((-1172) $) NIL)) (-2782 (((-112) $) NIL)) (-2755 (((-3 (-654 $) "failed") $) NIL)) (-2415 (((-3 (-654 $) "failed") $) NIL)) (-2241 (((-3 (-2 (|:| |var| (-828 (-1190))) (|:| -3715 (-781))) "failed") $) NIL)) (-2591 (($ $) NIL)) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) NIL)) (-1349 ((|#1| $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-462)))) (-2873 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2560 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-2039 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4220 (((-428 $) $) NIL (|has| |#1| (-920)))) (-2838 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2646 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-828 (-1190)) |#1|) NIL) (($ $ (-654 (-828 (-1190))) (-654 |#1|)) NIL) (($ $ (-828 (-1190)) $) NIL) (($ $ (-654 (-828 (-1190))) (-654 $)) NIL) (($ $ (-1190) $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1190)) (-654 $)) NIL (|has| |#1| (-239))) (($ $ (-1190) |#1|) NIL (|has| |#1| (-239))) (($ $ (-654 (-1190)) (-654 |#1|)) NIL (|has| |#1| (-239)))) (-2872 (($ $ (-828 (-1190))) NIL (|has| |#1| (-174)))) (-3905 (($ $ (-828 (-1190))) NIL) (($ $ (-654 (-828 (-1190)))) NIL) (($ $ (-828 (-1190)) (-781)) NIL) (($ $ (-654 (-828 (-1190))) (-654 (-781))) NIL) (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2243 (((-654 (-1190)) $) NIL)) (-4202 (((-541 (-828 (-1190))) $) NIL) (((-781) $ (-828 (-1190))) NIL) (((-654 (-781)) $ (-654 (-828 (-1190)))) NIL) (((-781) $ (-1190)) NIL)) (-1836 (((-903 (-388)) $) NIL (-12 (|has| (-828 (-1190)) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-828 (-1190)) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-828 (-1190)) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-3069 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ (-828 (-1190))) NIL (|has| |#1| (-462)))) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-920))))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-828 (-1190))) NIL) (($ (-1190)) NIL) (($ (-1138 |#1| (-1190))) NIL) (($ (-417 (-574))) NIL (-2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-2530 (((-654 |#1|) $) NIL)) (-3087 ((|#1| $ (-541 (-828 (-1190)))) NIL) (($ $ (-828 (-1190)) (-781)) NIL) (($ $ (-654 (-828 (-1190))) (-654 (-781))) NIL)) (-3298 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#1| (-920))) (|has| |#1| (-146))))) (-1364 (((-781)) NIL T CONST)) (-3772 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-3610 (($ $ (-828 (-1190))) NIL) (($ $ (-654 (-828 (-1190)))) NIL) (($ $ (-828 (-1190)) (-781)) NIL) (($ $ (-654 (-828 (-1190))) (-654 (-781))) NIL) (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-826 |#1|) (-13 (-260 |#1| (-1190) (-828 (-1190)) (-541 (-828 (-1190)))) (-1051 (-1138 |#1| (-1190)))) (-1062)) (T -826)) -NIL -(-13 (-260 |#1| (-1190) (-828 (-1190)) (-541 (-828 (-1190)))) (-1051 (-1138 |#1| (-1190)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#2| (-372)))) (-1575 (($ $) NIL (|has| |#2| (-372)))) (-2085 (((-112) $) NIL (|has| |#2| (-372)))) (-3524 (((-3 $ "failed") $ $) NIL)) (-2568 (($ $) NIL (|has| |#2| (-372)))) (-2827 (((-428 $) $) NIL (|has| |#2| (-372)))) (-1600 (((-112) $ $) NIL (|has| |#2| (-372)))) (-3426 (($) NIL T CONST)) (-2786 (($ $ $) NIL (|has| |#2| (-372)))) (-3434 (((-3 $ "failed") $) NIL)) (-2797 (($ $ $) NIL (|has| |#2| (-372)))) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#2| (-372)))) (-2257 (((-112) $) NIL (|has| |#2| (-372)))) (-3199 (((-112) $) NIL)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#2| (-372)))) (-2832 (($ (-654 $)) NIL (|has| |#2| (-372))) (($ $ $) NIL (|has| |#2| (-372)))) (-4136 (((-1172) $) NIL)) (-1324 (($ $) 20 (|has| |#2| (-372)))) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#2| (-372)))) (-2873 (($ (-654 $)) NIL (|has| |#2| (-372))) (($ $ $) NIL (|has| |#2| (-372)))) (-4220 (((-428 $) $) NIL (|has| |#2| (-372)))) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#2| (-372)))) (-2838 (((-3 $ "failed") $ $) NIL (|has| |#2| (-372)))) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#2| (-372)))) (-1730 (((-781) $) NIL (|has| |#2| (-372)))) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#2| (-372)))) (-3905 (($ $ (-781)) NIL) (($ $) 13)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-417 (-574))) NIL (|has| |#2| (-372))) (($ $) NIL (|has| |#2| (-372)))) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL (|has| |#2| (-372)))) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-3610 (($ $ (-781)) NIL) (($ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ $) 15 (|has| |#2| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-932)) NIL) (($ $ (-574)) 18 (|has| |#2| (-372)))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-417 (-574)) $) NIL (|has| |#2| (-372))) (($ $ (-417 (-574))) NIL (|has| |#2| (-372))))) -(((-827 |#1| |#2| |#3|) (-13 (-111 $ $) (-239) (-500 |#2|) (-10 -7 (IF (|has| |#2| (-372)) (-6 (-372)) |%noBranch|))) (-1113) (-911 |#1|) |#1|) (T -827)) -NIL -(-13 (-111 $ $) (-239) (-500 |#2|) (-10 -7 (IF (|has| |#2| (-372)) (-6 (-372)) |%noBranch|))) -((-2849 (((-112) $ $) NIL)) (-1336 (((-781) $) NIL)) (-1488 ((|#1| $) 10)) (-1696 (((-3 |#1| "failed") $) NIL)) (-2206 ((|#1| $) NIL)) (-3884 (((-781) $) 11)) (-3659 (($ $ $) NIL)) (-4257 (($ $ $) NIL)) (-2168 (($ |#1| (-781)) 9)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3905 (($ $ (-781)) NIL) (($ $) NIL)) (-2943 (((-872) $) NIL) (($ |#1|) NIL)) (-3284 (((-112) $ $) NIL)) (-3610 (($ $ (-781)) NIL) (($ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) NIL))) -(((-828 |#1|) (-273 |#1|) (-860)) (T -828)) -NIL -(-273 |#1|) -((-2849 (((-112) $ $) NIL)) (-1655 (((-654 |#1|) $) 38)) (-1487 (((-781) $) NIL)) (-3426 (($) NIL T CONST)) (-3593 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-1696 (((-3 |#1| "failed") $) NIL)) (-2206 ((|#1| $) NIL)) (-2926 (($ $) 42)) (-3434 (((-3 $ "failed") $) NIL)) (-3441 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3199 (((-112) $) NIL)) (-1915 ((|#1| $ (-574)) NIL)) (-3948 (((-781) $ (-574)) NIL)) (-4248 (($ $) 54)) (-3659 (($ $ $) NIL)) (-4257 (($ $ $) NIL)) (-2354 (($ (-1 |#1| |#1|) $) NIL)) (-1539 (($ (-1 (-781) (-781)) $) NIL)) (-3548 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-4144 (((-112) $ $) 51)) (-4135 (((-781) $) 34)) (-4136 (((-1172) $) NIL)) (-3257 (($ $ $) NIL)) (-1556 (($ $ $) NIL)) (-3966 (((-1133) $) NIL)) (-2915 ((|#1| $) 41)) (-4219 (((-654 (-2 (|:| |gen| |#1|) (|:| -1609 (-781)))) $) NIL)) (-1989 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2825 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2943 (((-872) $) NIL) (($ |#1|) NIL)) (-3284 (((-112) $ $) NIL)) (-2145 (($) 20 T CONST)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) 53)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ |#1| (-781)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-829 |#1|) (-13 (-395 |#1|) (-856) (-10 -8 (-15 -2915 (|#1| $)) (-15 -2926 ($ $)) (-15 -4248 ($ $)) (-15 -4144 ((-112) $ $)) (-15 -3548 ((-3 $ "failed") $ |#1|)) (-15 -3593 ((-3 $ "failed") $ |#1|)) (-15 -2825 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4135 ((-781) $)) (-15 -1655 ((-654 |#1|) $)))) (-860)) (T -829)) -((-2915 (*1 *2 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) (-2926 (*1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) (-4248 (*1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) (-4144 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-860)))) (-3548 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) (-3593 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) (-2825 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-829 *3)) (|:| |rm| (-829 *3)))) (-5 *1 (-829 *3)) (-4 *3 (-860)))) (-4135 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-829 *3)) (-4 *3 (-860)))) (-1655 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-829 *3)) (-4 *3 (-860))))) -(-13 (-395 |#1|) (-856) (-10 -8 (-15 -2915 (|#1| $)) (-15 -2926 ($ $)) (-15 -4248 ($ $)) (-15 -4144 ((-112) $ $)) (-15 -3548 ((-3 $ "failed") $ |#1|)) (-15 -3593 ((-3 $ "failed") $ |#1|)) (-15 -2825 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4135 ((-781) $)) (-15 -1655 ((-654 |#1|) $)))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-1575 (($ $) 46)) (-2085 (((-112) $) 44)) (-3524 (((-3 $ "failed") $ $) 20)) (-2846 (((-574) $) 59)) (-3426 (($) 18 T CONST)) (-3434 (((-3 $ "failed") $) 37)) (-2756 (((-112) $) 57)) (-3199 (((-112) $) 35)) (-1335 (((-112) $) 58)) (-3659 (($ $ $) 56)) (-4257 (($ $ $) 55)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2838 (((-3 $ "failed") $ $) 48)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2069 (((-112) $ $) 45)) (-3482 (($ $) 60)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-3042 (((-112) $ $) 53)) (-3018 (((-112) $ $) 52)) (-2981 (((-112) $ $) 6)) (-3030 (((-112) $ $) 54)) (-3007 (((-112) $ $) 51)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) -(((-830) (-141)) (T -830)) -NIL -(-13 (-566) (-858)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-858) . T) ((-860) . T) ((-1064 $) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T)) -((-2146 (($ (-1133)) 7)) (-3282 (((-112) $ (-1172) (-1133)) 15)) (-3980 (((-832) $) 12)) (-3755 (((-832) $) 11)) (-4012 (((-1286) $) 9)) (-1814 (((-112) $ (-1133)) 16))) -(((-831) (-10 -8 (-15 -2146 ($ (-1133))) (-15 -4012 ((-1286) $)) (-15 -3755 ((-832) $)) (-15 -3980 ((-832) $)) (-15 -3282 ((-112) $ (-1172) (-1133))) (-15 -1814 ((-112) $ (-1133))))) (T -831)) -((-1814 (*1 *2 *1 *3) (-12 (-5 *3 (-1133)) (-5 *2 (-112)) (-5 *1 (-831)))) (-3282 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1172)) (-5 *4 (-1133)) (-5 *2 (-112)) (-5 *1 (-831)))) (-3980 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-831)))) (-3755 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-831)))) (-4012 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-831)))) (-2146 (*1 *1 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-831))))) -(-10 -8 (-15 -2146 ($ (-1133))) (-15 -4012 ((-1286) $)) (-15 -3755 ((-832) $)) (-15 -3980 ((-832) $)) (-15 -3282 ((-112) $ (-1172) (-1133))) (-15 -1814 ((-112) $ (-1133)))) -((-4045 (((-1286) $ (-833)) 12)) (-2847 (((-1286) $ (-1190)) 32)) (-2806 (((-1286) $ (-1172) (-1172)) 34)) (-3920 (((-1286) $ (-1172)) 33)) (-1849 (((-1286) $) 19)) (-2984 (((-1286) $ (-574)) 28)) (-3384 (((-1286) $ (-227)) 30)) (-3153 (((-1286) $) 18)) (-1397 (((-1286) $) 26)) (-4006 (((-1286) $) 25)) (-3558 (((-1286) $) 23)) (-1669 (((-1286) $) 24)) (-3962 (((-1286) $) 22)) (-2067 (((-1286) $) 21)) (-2502 (((-1286) $) 20)) (-3234 (((-1286) $) 16)) (-3652 (((-1286) $) 17)) (-1493 (((-1286) $) 15)) (-4208 (((-1286) $) 14)) (-1949 (((-1286) $) 13)) (-4186 (($ (-1172) (-833)) 9)) (-2358 (($ (-1172) (-1172) (-833)) 8)) (-2613 (((-1190) $) 51)) (-1782 (((-1190) $) 55)) (-3283 (((-2 (|:| |cd| (-1172)) (|:| -2032 (-1172))) $) 54)) (-2395 (((-1172) $) 52)) (-1443 (((-1286) $) 41)) (-2302 (((-574) $) 49)) (-4409 (((-227) $) 50)) (-2866 (((-1286) $) 40)) (-2467 (((-1286) $) 48)) (-1423 (((-1286) $) 47)) (-3732 (((-1286) $) 45)) (-1438 (((-1286) $) 46)) (-4312 (((-1286) $) 44)) (-4113 (((-1286) $) 43)) (-1358 (((-1286) $) 42)) (-1546 (((-1286) $) 38)) (-4233 (((-1286) $) 39)) (-1819 (((-1286) $) 37)) (-3787 (((-1286) $) 36)) (-3072 (((-1286) $) 35)) (-3397 (((-1286) $) 11))) -(((-832) (-10 -8 (-15 -2358 ($ (-1172) (-1172) (-833))) (-15 -4186 ($ (-1172) (-833))) (-15 -3397 ((-1286) $)) (-15 -4045 ((-1286) $ (-833))) (-15 -1949 ((-1286) $)) (-15 -4208 ((-1286) $)) (-15 -1493 ((-1286) $)) (-15 -3234 ((-1286) $)) (-15 -3652 ((-1286) $)) (-15 -3153 ((-1286) $)) (-15 -1849 ((-1286) $)) (-15 -2502 ((-1286) $)) (-15 -2067 ((-1286) $)) (-15 -3962 ((-1286) $)) (-15 -3558 ((-1286) $)) (-15 -1669 ((-1286) $)) (-15 -4006 ((-1286) $)) (-15 -1397 ((-1286) $)) (-15 -2984 ((-1286) $ (-574))) (-15 -3384 ((-1286) $ (-227))) (-15 -2847 ((-1286) $ (-1190))) (-15 -3920 ((-1286) $ (-1172))) (-15 -2806 ((-1286) $ (-1172) (-1172))) (-15 -3072 ((-1286) $)) (-15 -3787 ((-1286) $)) (-15 -1819 ((-1286) $)) (-15 -1546 ((-1286) $)) (-15 -4233 ((-1286) $)) (-15 -2866 ((-1286) $)) (-15 -1443 ((-1286) $)) (-15 -1358 ((-1286) $)) (-15 -4113 ((-1286) $)) (-15 -4312 ((-1286) $)) (-15 -3732 ((-1286) $)) (-15 -1438 ((-1286) $)) (-15 -1423 ((-1286) $)) (-15 -2467 ((-1286) $)) (-15 -2302 ((-574) $)) (-15 -4409 ((-227) $)) (-15 -2613 ((-1190) $)) (-15 -2395 ((-1172) $)) (-15 -3283 ((-2 (|:| |cd| (-1172)) (|:| -2032 (-1172))) $)) (-15 -1782 ((-1190) $)))) (T -832)) -((-1782 (*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-832)))) (-3283 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1172)) (|:| -2032 (-1172)))) (-5 *1 (-832)))) (-2395 (*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-832)))) (-2613 (*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-832)))) (-4409 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-832)))) (-2302 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-832)))) (-2467 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-1423 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-1438 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-3732 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-1358 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-1443 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-2866 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-1546 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-1819 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-3787 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-3072 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-2806 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-832)))) (-3920 (*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-832)))) (-2847 (*1 *2 *1 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-1286)) (-5 *1 (-832)))) (-3384 (*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1286)) (-5 *1 (-832)))) (-2984 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1286)) (-5 *1 (-832)))) (-1397 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-4006 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-1669 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-3558 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-3962 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-2067 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-2502 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-1849 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-3153 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-3652 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-1493 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-4208 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-1949 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-4045 (*1 *2 *1 *3) (-12 (-5 *3 (-833)) (-5 *2 (-1286)) (-5 *1 (-832)))) (-3397 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832)))) (-4186 (*1 *1 *2 *3) (-12 (-5 *2 (-1172)) (-5 *3 (-833)) (-5 *1 (-832)))) (-2358 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1172)) (-5 *3 (-833)) (-5 *1 (-832))))) -(-10 -8 (-15 -2358 ($ (-1172) (-1172) (-833))) (-15 -4186 ($ (-1172) (-833))) (-15 -3397 ((-1286) $)) (-15 -4045 ((-1286) $ (-833))) (-15 -1949 ((-1286) $)) (-15 -4208 ((-1286) $)) (-15 -1493 ((-1286) $)) (-15 -3234 ((-1286) $)) (-15 -3652 ((-1286) $)) (-15 -3153 ((-1286) $)) (-15 -1849 ((-1286) $)) (-15 -2502 ((-1286) $)) (-15 -2067 ((-1286) $)) (-15 -3962 ((-1286) $)) (-15 -3558 ((-1286) $)) (-15 -1669 ((-1286) $)) (-15 -4006 ((-1286) $)) (-15 -1397 ((-1286) $)) (-15 -2984 ((-1286) $ (-574))) (-15 -3384 ((-1286) $ (-227))) (-15 -2847 ((-1286) $ (-1190))) (-15 -3920 ((-1286) $ (-1172))) (-15 -2806 ((-1286) $ (-1172) (-1172))) (-15 -3072 ((-1286) $)) (-15 -3787 ((-1286) $)) (-15 -1819 ((-1286) $)) (-15 -1546 ((-1286) $)) (-15 -4233 ((-1286) $)) (-15 -2866 ((-1286) $)) (-15 -1443 ((-1286) $)) (-15 -1358 ((-1286) $)) (-15 -4113 ((-1286) $)) (-15 -4312 ((-1286) $)) (-15 -3732 ((-1286) $)) (-15 -1438 ((-1286) $)) (-15 -1423 ((-1286) $)) (-15 -2467 ((-1286) $)) (-15 -2302 ((-574) $)) (-15 -4409 ((-227) $)) (-15 -2613 ((-1190) $)) (-15 -2395 ((-1172) $)) (-15 -3283 ((-2 (|:| |cd| (-1172)) (|:| -2032 (-1172))) $)) (-15 -1782 ((-1190) $))) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 13)) (-3284 (((-112) $ $) NIL)) (-4433 (($) 16)) (-2566 (($) 14)) (-3997 (($) 17)) (-1686 (($) 15)) (-2981 (((-112) $ $) 9))) -(((-833) (-13 (-1113) (-10 -8 (-15 -2566 ($)) (-15 -4433 ($)) (-15 -3997 ($)) (-15 -1686 ($))))) (T -833)) -((-2566 (*1 *1) (-5 *1 (-833))) (-4433 (*1 *1) (-5 *1 (-833))) (-3997 (*1 *1) (-5 *1 (-833))) (-1686 (*1 *1) (-5 *1 (-833)))) -(-13 (-1113) (-10 -8 (-15 -2566 ($)) (-15 -4433 ($)) (-15 -3997 ($)) (-15 -1686 ($)))) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 23) (($ (-1190)) 19)) (-3284 (((-112) $ $) NIL)) (-3840 (((-112) $) 10)) (-2014 (((-112) $) 9)) (-2834 (((-112) $) 11)) (-2916 (((-112) $) 8)) (-2981 (((-112) $ $) 21))) -(((-834) (-13 (-1113) (-10 -8 (-15 -2943 ($ (-1190))) (-15 -2916 ((-112) $)) (-15 -2014 ((-112) $)) (-15 -3840 ((-112) $)) (-15 -2834 ((-112) $))))) (T -834)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-834)))) (-2916 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))) (-2014 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))) (-3840 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))) (-2834 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834))))) -(-13 (-1113) (-10 -8 (-15 -2943 ($ (-1190))) (-15 -2916 ((-112) $)) (-15 -2014 ((-112) $)) (-15 -3840 ((-112) $)) (-15 -2834 ((-112) $)))) -((-2849 (((-112) $ $) NIL)) (-3560 (($ (-834) (-654 (-1190))) 32)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3114 (((-834) $) 33)) (-2160 (((-654 (-1190)) $) 34)) (-2943 (((-872) $) 31)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-835) (-13 (-1113) (-10 -8 (-15 -3114 ((-834) $)) (-15 -2160 ((-654 (-1190)) $)) (-15 -3560 ($ (-834) (-654 (-1190))))))) (T -835)) -((-3114 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-835)))) (-2160 (*1 *2 *1) (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-835)))) (-3560 (*1 *1 *2 *3) (-12 (-5 *2 (-834)) (-5 *3 (-654 (-1190))) (-5 *1 (-835))))) -(-13 (-1113) (-10 -8 (-15 -3114 ((-834) $)) (-15 -2160 ((-654 (-1190)) $)) (-15 -3560 ($ (-834) (-654 (-1190)))))) -((-1544 (((-1286) (-832) (-324 |#1|) (-112)) 23) (((-1286) (-832) (-324 |#1|)) 89) (((-1172) (-324 |#1|) (-112)) 88) (((-1172) (-324 |#1|)) 87))) -(((-836 |#1|) (-10 -7 (-15 -1544 ((-1172) (-324 |#1|))) (-15 -1544 ((-1172) (-324 |#1|) (-112))) (-15 -1544 ((-1286) (-832) (-324 |#1|))) (-15 -1544 ((-1286) (-832) (-324 |#1|) (-112)))) (-13 (-838) (-1062))) (T -836)) -((-1544 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-832)) (-5 *4 (-324 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-838) (-1062))) (-5 *2 (-1286)) (-5 *1 (-836 *6)))) (-1544 (*1 *2 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-324 *5)) (-4 *5 (-13 (-838) (-1062))) (-5 *2 (-1286)) (-5 *1 (-836 *5)))) (-1544 (*1 *2 *3 *4) (-12 (-5 *3 (-324 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-838) (-1062))) (-5 *2 (-1172)) (-5 *1 (-836 *5)))) (-1544 (*1 *2 *3) (-12 (-5 *3 (-324 *4)) (-4 *4 (-13 (-838) (-1062))) (-5 *2 (-1172)) (-5 *1 (-836 *4))))) -(-10 -7 (-15 -1544 ((-1172) (-324 |#1|))) (-15 -1544 ((-1172) (-324 |#1|) (-112))) (-15 -1544 ((-1286) (-832) (-324 |#1|))) (-15 -1544 ((-1286) (-832) (-324 |#1|) (-112)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-1392 (($ $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-3468 ((|#1| $) 10)) (-4296 (($ |#1|) 9)) (-3199 (((-112) $) NIL)) (-4335 (($ |#2| (-781)) NIL)) (-1742 (((-781) $) NIL)) (-1370 ((|#2| $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3905 (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239)))) (-4202 (((-781) $) NIL)) (-2943 (((-872) $) 17) (($ (-574)) NIL) (($ |#2|) NIL (|has| |#2| (-174)))) (-3087 ((|#2| $ (-781)) NIL)) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-3610 (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239)))) (-2981 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-837 |#1| |#2|) (-13 (-718 |#2|) (-10 -8 (IF (|has| |#1| (-239)) (-6 (-239)) |%noBranch|) (-15 -4296 ($ |#1|)) (-15 -3468 (|#1| $)))) (-718 |#2|) (-1062)) (T -837)) -((-4296 (*1 *1 *2) (-12 (-4 *3 (-1062)) (-5 *1 (-837 *2 *3)) (-4 *2 (-718 *3)))) (-3468 (*1 *2 *1) (-12 (-4 *2 (-718 *3)) (-5 *1 (-837 *2 *3)) (-4 *3 (-1062))))) -(-13 (-718 |#2|) (-10 -8 (IF (|has| |#1| (-239)) (-6 (-239)) |%noBranch|) (-15 -4296 ($ |#1|)) (-15 -3468 (|#1| $)))) -((-1544 (((-1286) (-832) $ (-112)) 9) (((-1286) (-832) $) 8) (((-1172) $ (-112)) 7) (((-1172) $) 6))) -(((-838) (-141)) (T -838)) -((-1544 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-838)) (-5 *3 (-832)) (-5 *4 (-112)) (-5 *2 (-1286)))) (-1544 (*1 *2 *3 *1) (-12 (-4 *1 (-838)) (-5 *3 (-832)) (-5 *2 (-1286)))) (-1544 (*1 *2 *1 *3) (-12 (-4 *1 (-838)) (-5 *3 (-112)) (-5 *2 (-1172)))) (-1544 (*1 *2 *1) (-12 (-4 *1 (-838)) (-5 *2 (-1172))))) -(-13 (-10 -8 (-15 -1544 ((-1172) $)) (-15 -1544 ((-1172) $ (-112))) (-15 -1544 ((-1286) (-832) $)) (-15 -1544 ((-1286) (-832) $ (-112))))) -((-2543 (((-320) (-1172) (-1172)) 12)) (-3569 (((-112) (-1172) (-1172)) 34)) (-2789 (((-112) (-1172)) 33)) (-2957 (((-52) (-1172)) 25)) (-2655 (((-52) (-1172)) 23)) (-2176 (((-52) (-832)) 17)) (-4367 (((-654 (-1172)) (-1172)) 28)) (-1744 (((-654 (-1172))) 27))) -(((-839) (-10 -7 (-15 -2176 ((-52) (-832))) (-15 -2655 ((-52) (-1172))) (-15 -2957 ((-52) (-1172))) (-15 -1744 ((-654 (-1172)))) (-15 -4367 ((-654 (-1172)) (-1172))) (-15 -2789 ((-112) (-1172))) (-15 -3569 ((-112) (-1172) (-1172))) (-15 -2543 ((-320) (-1172) (-1172))))) (T -839)) -((-2543 (*1 *2 *3 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-320)) (-5 *1 (-839)))) (-3569 (*1 *2 *3 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-112)) (-5 *1 (-839)))) (-2789 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-112)) (-5 *1 (-839)))) (-4367 (*1 *2 *3) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-839)) (-5 *3 (-1172)))) (-1744 (*1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-839)))) (-2957 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-52)) (-5 *1 (-839)))) (-2655 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-52)) (-5 *1 (-839)))) (-2176 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-52)) (-5 *1 (-839))))) -(-10 -7 (-15 -2176 ((-52) (-832))) (-15 -2655 ((-52) (-1172))) (-15 -2957 ((-52) (-1172))) (-15 -1744 ((-654 (-1172)))) (-15 -4367 ((-654 (-1172)) (-1172))) (-15 -2789 ((-112) (-1172))) (-15 -3569 ((-112) (-1172) (-1172))) (-15 -2543 ((-320) (-1172) (-1172)))) -((-2849 (((-112) $ $) 19)) (-4359 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2743 (($ $ $) 73)) (-3605 (((-112) $ $) 74)) (-3034 (((-112) $ (-781)) 8)) (-1507 (($ (-654 |#1|)) 69) (($) 68)) (-3572 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4456)))) (-2165 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4456)))) (-3426 (($) 7 T CONST)) (-1771 (($ $) 63)) (-1543 (($ $) 59 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2876 (($ |#1| $) 48 (|has| $ (-6 -4456))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4456)))) (-3335 (($ |#1| $) 58 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4456)))) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3270 (((-112) $ $) 65)) (-2742 (((-112) $ (-781)) 9)) (-3659 ((|#1| $) 79)) (-2628 (($ $ $) 82)) (-4430 (($ $ $) 81)) (-1606 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-4257 ((|#1| $) 80)) (-2449 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 36)) (-4203 (((-112) $ (-781)) 10)) (-4136 (((-1172) $) 22)) (-1784 (($ $ $) 70)) (-2937 ((|#1| $) 40)) (-2798 (($ |#1| $) 41) (($ |#1| $ (-781)) 64)) (-3966 (((-1133) $) 21)) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1785 ((|#1| $) 42)) (-2540 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 14)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-4099 (((-654 (-2 (|:| -1908 |#1|) (|:| -3975 (-781)))) $) 62)) (-4285 (($ $ |#1|) 72) (($ $ $) 71)) (-1662 (($) 50) (($ (-654 |#1|)) 49)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-1836 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 51)) (-2943 (((-872) $) 18)) (-4281 (($ (-654 |#1|)) 67) (($) 66)) (-3284 (((-112) $ $) 23)) (-1599 (($ (-654 |#1|)) 43)) (-3390 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 20)) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-840 |#1|) (-141) (-860)) (T -840)) -((-3659 (*1 *2 *1) (-12 (-4 *1 (-840 *2)) (-4 *2 (-860))))) -(-13 (-746 |t#1|) (-981 |t#1|) (-10 -8 (-15 -3659 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-623 (-872)) . T) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-241 |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-705 |#1|) . T) ((-746 |#1|) . T) ((-981 |#1|) . T) ((-1111 |#1|) . T) ((-1113) . T) ((-1231) . T)) -((-2154 (((-1286) (-1133) (-1133)) 48)) (-2527 (((-1286) (-831) (-52)) 45)) (-3990 (((-52) (-831)) 16))) -(((-841) (-10 -7 (-15 -3990 ((-52) (-831))) (-15 -2527 ((-1286) (-831) (-52))) (-15 -2154 ((-1286) (-1133) (-1133))))) (T -841)) -((-2154 (*1 *2 *3 *3) (-12 (-5 *3 (-1133)) (-5 *2 (-1286)) (-5 *1 (-841)))) (-2527 (*1 *2 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-52)) (-5 *2 (-1286)) (-5 *1 (-841)))) (-3990 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-52)) (-5 *1 (-841))))) -(-10 -7 (-15 -3990 ((-52) (-831))) (-15 -2527 ((-1286) (-831) (-52))) (-15 -2154 ((-1286) (-1133) (-1133)))) -((-1777 (((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|)) 12) (((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|)) 13))) -(((-842 |#1| |#2|) (-10 -7 (-15 -1777 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|))) (-15 -1777 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|)))) (-1113) (-1113)) (T -842)) -((-1777 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-843 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-5 *1 (-842 *5 *6)))) (-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-5 *2 (-843 *6)) (-5 *1 (-842 *5 *6))))) -(-10 -7 (-15 -1777 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|))) (-15 -1777 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL (|has| |#1| (-21)))) (-3524 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2846 (((-574) $) NIL (|has| |#1| (-858)))) (-3426 (($) NIL (|has| |#1| (-21)) CONST)) (-1696 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) 15)) (-2206 (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) 9)) (-3434 (((-3 $ "failed") $) 42 (|has| |#1| (-858)))) (-1880 (((-3 (-417 (-574)) "failed") $) 52 (|has| |#1| (-555)))) (-4414 (((-112) $) 46 (|has| |#1| (-555)))) (-4339 (((-417 (-574)) $) 49 (|has| |#1| (-555)))) (-2756 (((-112) $) NIL (|has| |#1| (-858)))) (-3199 (((-112) $) NIL (|has| |#1| (-858)))) (-1335 (((-112) $) NIL (|has| |#1| (-858)))) (-3659 (($ $ $) NIL (|has| |#1| (-858)))) (-4257 (($ $ $) NIL (|has| |#1| (-858)))) (-4136 (((-1172) $) NIL)) (-1745 (($) 13)) (-2207 (((-112) $) 12)) (-3966 (((-1133) $) NIL)) (-1473 (((-112) $) 11)) (-2943 (((-872) $) 18) (($ (-417 (-574))) NIL (|has| |#1| (-1051 (-417 (-574))))) (($ |#1|) 8) (($ (-574)) NIL (-2818 (|has| |#1| (-858)) (|has| |#1| (-1051 (-574)))))) (-1364 (((-781)) 36 (|has| |#1| (-858)) CONST)) (-3284 (((-112) $ $) 54)) (-3482 (($ $) NIL (|has| |#1| (-858)))) (-2133 (($) 23 (|has| |#1| (-21)) CONST)) (-2145 (($) 33 (|has| |#1| (-858)) CONST)) (-3042 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2981 (((-112) $ $) 21)) (-3030 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3007 (((-112) $ $) 45 (|has| |#1| (-858)))) (-3094 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3079 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-932)) NIL (|has| |#1| (-858))) (($ $ (-781)) NIL (|has| |#1| (-858)))) (* (($ $ $) 39 (|has| |#1| (-858))) (($ (-574) $) 27 (|has| |#1| (-21))) (($ (-781) $) NIL (|has| |#1| (-21))) (($ (-932) $) NIL (|has| |#1| (-21))))) -(((-843 |#1|) (-13 (-1113) (-421 |#1|) (-10 -8 (-15 -1745 ($)) (-15 -1473 ((-112) $)) (-15 -2207 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -4414 ((-112) $)) (-15 -4339 ((-417 (-574)) $)) (-15 -1880 ((-3 (-417 (-574)) "failed") $))) |%noBranch|))) (-1113)) (T -843)) -((-1745 (*1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-1113)))) (-1473 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1113)))) (-2207 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1113)))) (-4414 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-555)) (-4 *3 (-1113)))) (-4339 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-843 *3)) (-4 *3 (-555)) (-4 *3 (-1113)))) (-1880 (*1 *2 *1) (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-843 *3)) (-4 *3 (-555)) (-4 *3 (-1113))))) -(-13 (-1113) (-421 |#1|) (-10 -8 (-15 -1745 ($)) (-15 -1473 ((-112) $)) (-15 -2207 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -4414 ((-112) $)) (-15 -4339 ((-417 (-574)) $)) (-15 -1880 ((-3 (-417 (-574)) "failed") $))) |%noBranch|))) -((-4103 (((-112) $ |#2|) 14)) (-2943 (((-872) $) 11))) -(((-844 |#1| |#2|) (-10 -8 (-15 -4103 ((-112) |#1| |#2|)) (-15 -2943 ((-872) |#1|))) (-845 |#2|) (-1113)) (T -844)) -NIL -(-10 -8 (-15 -4103 ((-112) |#1| |#2|)) (-15 -2943 ((-872) |#1|))) -((-2849 (((-112) $ $) 7)) (-2032 ((|#1| $) 16)) (-4136 (((-1172) $) 10)) (-4103 (((-112) $ |#1|) 14)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-4183 (((-55) $) 15)) (-2981 (((-112) $ $) 6))) -(((-845 |#1|) (-141) (-1113)) (T -845)) -((-2032 (*1 *2 *1) (-12 (-4 *1 (-845 *2)) (-4 *2 (-1113)))) (-4183 (*1 *2 *1) (-12 (-4 *1 (-845 *3)) (-4 *3 (-1113)) (-5 *2 (-55)))) (-4103 (*1 *2 *1 *3) (-12 (-4 *1 (-845 *3)) (-4 *3 (-1113)) (-5 *2 (-112))))) -(-13 (-1113) (-10 -8 (-15 -2032 (|t#1| $)) (-15 -4183 ((-55) $)) (-15 -4103 ((-112) $ |t#1|)))) -(((-102) . T) ((-623 (-872)) . T) ((-1113) . T)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#1| "failed") $) NIL) (((-3 (-115) "failed") $) NIL)) (-2206 ((|#1| $) NIL) (((-115) $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-3705 ((|#1| (-115) |#1|) NIL)) (-3199 (((-112) $) NIL)) (-2477 (($ |#1| (-370 (-115))) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2332 (($ $ (-1 |#1| |#1|)) NIL)) (-3811 (($ $ (-1 |#1| |#1|)) NIL)) (-2199 ((|#1| $ |#1|) NIL)) (-3567 ((|#1| |#1|) NIL (|has| |#1| (-174)))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-115)) NIL)) (-3298 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-2194 (($ $) NIL (|has| |#1| (-174))) (($ $ $) NIL (|has| |#1| (-174)))) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ (-115) (-574)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-846 |#1|) (-13 (-1062) (-1051 |#1|) (-1051 (-115)) (-294 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2194 ($ $)) (-15 -2194 ($ $ $)) (-15 -3567 (|#1| |#1|))) |%noBranch|) (-15 -3811 ($ $ (-1 |#1| |#1|))) (-15 -2332 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-574))) (-15 ** ($ $ (-574))) (-15 -3705 (|#1| (-115) |#1|)) (-15 -2477 ($ |#1| (-370 (-115)))))) (-1062)) (T -846)) -((-2194 (*1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1062)))) (-2194 (*1 *1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1062)))) (-3567 (*1 *2 *2) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1062)))) (-3811 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1062)) (-5 *1 (-846 *3)))) (-2332 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1062)) (-5 *1 (-846 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-574)) (-5 *1 (-846 *4)) (-4 *4 (-1062)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-846 *3)) (-4 *3 (-1062)))) (-3705 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-846 *2)) (-4 *2 (-1062)))) (-2477 (*1 *1 *2 *3) (-12 (-5 *3 (-370 (-115))) (-5 *1 (-846 *2)) (-4 *2 (-1062))))) -(-13 (-1062) (-1051 |#1|) (-1051 (-115)) (-294 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2194 ($ $)) (-15 -2194 ($ $ $)) (-15 -3567 (|#1| |#1|))) |%noBranch|) (-15 -3811 ($ $ (-1 |#1| |#1|))) (-15 -2332 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-574))) (-15 ** ($ $ (-574))) (-15 -3705 (|#1| (-115) |#1|)) (-15 -2477 ($ |#1| (-370 (-115)))))) -((-3057 (((-216 (-512)) (-1172)) 9))) -(((-847) (-10 -7 (-15 -3057 ((-216 (-512)) (-1172))))) (T -847)) -((-3057 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-216 (-512))) (-5 *1 (-847))))) -(-10 -7 (-15 -3057 ((-216 (-512)) (-1172)))) -((-2849 (((-112) $ $) NIL)) (-3140 (((-1131) $) 10)) (-2032 (((-516) $) 9)) (-4136 (((-1172) $) NIL)) (-4103 (((-112) $ (-516)) NIL)) (-3966 (((-1133) $) NIL)) (-2956 (($ (-516) (-1131)) 8)) (-2943 (((-872) $) 25)) (-3284 (((-112) $ $) NIL)) (-4183 (((-55) $) 20)) (-2981 (((-112) $ $) 12))) -(((-848) (-13 (-845 (-516)) (-10 -8 (-15 -3140 ((-1131) $)) (-15 -2956 ($ (-516) (-1131)))))) (T -848)) -((-3140 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-848)))) (-2956 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1131)) (-5 *1 (-848))))) -(-13 (-845 (-516)) (-10 -8 (-15 -3140 ((-1131) $)) (-15 -2956 ($ (-516) (-1131))))) -((-2849 (((-112) $ $) 7)) (-2158 (((-1048) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) 15) (((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 14)) (-3678 (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 17) (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) 16)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) -(((-849) (-141)) (T -849)) -((-3678 (*1 *2 *3 *4) (-12 (-4 *1 (-849)) (-5 *3 (-1076)) (-5 *4 (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (-5 *2 (-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)))))) (-3678 (*1 *2 *3 *4) (-12 (-4 *1 (-849)) (-5 *3 (-1076)) (-5 *4 (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) (-5 *2 (-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)))))) (-2158 (*1 *2 *3) (-12 (-4 *1 (-849)) (-5 *3 (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) (-5 *2 (-1048)))) (-2158 (*1 *2 *3) (-12 (-4 *1 (-849)) (-5 *3 (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (-5 *2 (-1048))))) -(-13 (-1113) (-10 -7 (-15 -3678 ((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))) (-15 -3678 ((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))) (-15 -2158 ((-1048) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))) (-15 -2158 ((-1048) (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))))) -(((-102) . T) ((-623 (-872)) . T) ((-1113) . T)) -((-2712 (((-1048) (-654 (-324 (-388))) (-654 (-388))) 166) (((-1048) (-324 (-388)) (-654 (-388))) 164) (((-1048) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-853 (-388)))) 162) (((-1048) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-324 (-388))) (-654 (-853 (-388)))) 160) (((-1048) (-851)) 125) (((-1048) (-851) (-1076)) 124)) (-3678 (((-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-851) (-1076)) 85) (((-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-851)) 87)) (-3501 (((-1048) (-654 (-324 (-388))) (-654 (-388))) 167) (((-1048) (-851)) 150))) -(((-850) (-10 -7 (-15 -3678 ((-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-851))) (-15 -3678 ((-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-851) (-1076))) (-15 -2712 ((-1048) (-851) (-1076))) (-15 -2712 ((-1048) (-851))) (-15 -3501 ((-1048) (-851))) (-15 -2712 ((-1048) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-324 (-388))) (-654 (-853 (-388))))) (-15 -2712 ((-1048) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-853 (-388))))) (-15 -2712 ((-1048) (-324 (-388)) (-654 (-388)))) (-15 -2712 ((-1048) (-654 (-324 (-388))) (-654 (-388)))) (-15 -3501 ((-1048) (-654 (-324 (-388))) (-654 (-388)))))) (T -850)) -((-3501 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-324 (-388)))) (-5 *4 (-654 (-388))) (-5 *2 (-1048)) (-5 *1 (-850)))) (-2712 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-324 (-388)))) (-5 *4 (-654 (-388))) (-5 *2 (-1048)) (-5 *1 (-850)))) (-2712 (*1 *2 *3 *4) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-388))) (-5 *2 (-1048)) (-5 *1 (-850)))) (-2712 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-388))) (-5 *5 (-654 (-853 (-388)))) (-5 *2 (-1048)) (-5 *1 (-850)))) (-2712 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-654 (-388))) (-5 *5 (-654 (-853 (-388)))) (-5 *6 (-654 (-324 (-388)))) (-5 *3 (-324 (-388))) (-5 *2 (-1048)) (-5 *1 (-850)))) (-3501 (*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-1048)) (-5 *1 (-850)))) (-2712 (*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-1048)) (-5 *1 (-850)))) (-2712 (*1 *2 *3 *4) (-12 (-5 *3 (-851)) (-5 *4 (-1076)) (-5 *2 (-1048)) (-5 *1 (-850)))) (-3678 (*1 *2 *3 *4) (-12 (-5 *3 (-851)) (-5 *4 (-1076)) (-5 *2 (-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))))) (-5 *1 (-850)))) (-3678 (*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))))) (-5 *1 (-850))))) -(-10 -7 (-15 -3678 ((-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-851))) (-15 -3678 ((-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-851) (-1076))) (-15 -2712 ((-1048) (-851) (-1076))) (-15 -2712 ((-1048) (-851))) (-15 -3501 ((-1048) (-851))) (-15 -2712 ((-1048) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-324 (-388))) (-654 (-853 (-388))))) (-15 -2712 ((-1048) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-853 (-388))))) (-15 -2712 ((-1048) (-324 (-388)) (-654 (-388)))) (-15 -2712 ((-1048) (-654 (-324 (-388))) (-654 (-388)))) (-15 -3501 ((-1048) (-654 (-324 (-388))) (-654 (-388))))) -((-2849 (((-112) $ $) NIL)) (-2206 (((-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))) $) 21)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 20) (($ (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 14) (($ (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))))) 18)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-851) (-13 (-1113) (-10 -8 (-15 -2943 ($ (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))) (-15 -2943 ($ (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))) (-15 -2943 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))))) (-15 -2206 ((-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))) $))))) (T -851)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (-5 *1 (-851)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) (-5 *1 (-851)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))))) (-5 *1 (-851)))) (-2206 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))))) (-5 *1 (-851))))) -(-13 (-1113) (-10 -8 (-15 -2943 ($ (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))) (-15 -2943 ($ (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))) (-15 -2943 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))))) (-15 -2206 ((-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227)))))) $)))) -((-1777 (((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|) (-853 |#2|) (-853 |#2|)) 13) (((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)) 14))) -(((-852 |#1| |#2|) (-10 -7 (-15 -1777 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|))) (-15 -1777 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|) (-853 |#2|) (-853 |#2|)))) (-1113) (-1113)) (T -852)) -((-1777 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-853 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-5 *1 (-852 *5 *6)))) (-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6))))) -(-10 -7 (-15 -1777 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|))) (-15 -1777 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|) (-853 |#2|) (-853 |#2|)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL (|has| |#1| (-21)))) (-4283 (((-1133) $) 31)) (-3524 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2846 (((-574) $) NIL (|has| |#1| (-858)))) (-3426 (($) NIL (|has| |#1| (-21)) CONST)) (-1696 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) 18)) (-2206 (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) 9)) (-3434 (((-3 $ "failed") $) 58 (|has| |#1| (-858)))) (-1880 (((-3 (-417 (-574)) "failed") $) 65 (|has| |#1| (-555)))) (-4414 (((-112) $) 60 (|has| |#1| (-555)))) (-4339 (((-417 (-574)) $) 63 (|has| |#1| (-555)))) (-2756 (((-112) $) NIL (|has| |#1| (-858)))) (-2304 (($) 14)) (-3199 (((-112) $) NIL (|has| |#1| (-858)))) (-1335 (((-112) $) NIL (|has| |#1| (-858)))) (-2317 (($) 16)) (-3659 (($ $ $) NIL (|has| |#1| (-858)))) (-4257 (($ $ $) NIL (|has| |#1| (-858)))) (-4136 (((-1172) $) NIL)) (-2207 (((-112) $) 12)) (-3966 (((-1133) $) NIL)) (-1473 (((-112) $) 11)) (-2943 (((-872) $) 24) (($ (-417 (-574))) NIL (|has| |#1| (-1051 (-417 (-574))))) (($ |#1|) 8) (($ (-574)) NIL (-2818 (|has| |#1| (-858)) (|has| |#1| (-1051 (-574)))))) (-1364 (((-781)) 51 (|has| |#1| (-858)) CONST)) (-3284 (((-112) $ $) NIL)) (-3482 (($ $) NIL (|has| |#1| (-858)))) (-2133 (($) 37 (|has| |#1| (-21)) CONST)) (-2145 (($) 48 (|has| |#1| (-858)) CONST)) (-3042 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2981 (((-112) $ $) 35)) (-3030 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3007 (((-112) $ $) 59 (|has| |#1| (-858)))) (-3094 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-3079 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-932)) NIL (|has| |#1| (-858))) (($ $ (-781)) NIL (|has| |#1| (-858)))) (* (($ $ $) 55 (|has| |#1| (-858))) (($ (-574) $) 42 (|has| |#1| (-21))) (($ (-781) $) NIL (|has| |#1| (-21))) (($ (-932) $) NIL (|has| |#1| (-21))))) -(((-853 |#1|) (-13 (-1113) (-421 |#1|) (-10 -8 (-15 -2304 ($)) (-15 -2317 ($)) (-15 -1473 ((-112) $)) (-15 -2207 ((-112) $)) (-15 -4283 ((-1133) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -4414 ((-112) $)) (-15 -4339 ((-417 (-574)) $)) (-15 -1880 ((-3 (-417 (-574)) "failed") $))) |%noBranch|))) (-1113)) (T -853)) -((-2304 (*1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1113)))) (-2317 (*1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1113)))) (-1473 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-1113)))) (-2207 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-1113)))) (-4283 (*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-853 *3)) (-4 *3 (-1113)))) (-4414 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-555)) (-4 *3 (-1113)))) (-4339 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-853 *3)) (-4 *3 (-555)) (-4 *3 (-1113)))) (-1880 (*1 *2 *1) (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-853 *3)) (-4 *3 (-555)) (-4 *3 (-1113))))) -(-13 (-1113) (-421 |#1|) (-10 -8 (-15 -2304 ($)) (-15 -2317 ($)) (-15 -1473 ((-112) $)) (-15 -2207 ((-112) $)) (-15 -4283 ((-1133) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -4414 ((-112) $)) (-15 -4339 ((-417 (-574)) $)) (-15 -1880 ((-3 (-417 (-574)) "failed") $))) |%noBranch|))) -((-2849 (((-112) $ $) 7)) (-1487 (((-781)) 23)) (-2820 (($) 26)) (-3659 (($ $ $) 14) (($) 22 T CONST)) (-4257 (($ $ $) 15) (($) 21 T CONST)) (-4115 (((-932) $) 25)) (-4136 (((-1172) $) 10)) (-2576 (($ (-932)) 24)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-3042 (((-112) $ $) 17)) (-3018 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3030 (((-112) $ $) 16)) (-3007 (((-112) $ $) 19))) -(((-854) (-141)) (T -854)) -((-3659 (*1 *1) (-4 *1 (-854))) (-4257 (*1 *1) (-4 *1 (-854)))) -(-13 (-860) (-377) (-10 -8 (-15 -3659 ($) -1706) (-15 -4257 ($) -1706))) -(((-102) . T) ((-623 (-872)) . T) ((-377) . T) ((-860) . T) ((-1113) . T)) -((-1718 (((-112) (-1281 |#2|) (-1281 |#2|)) 19)) (-3396 (((-112) (-1281 |#2|) (-1281 |#2|)) 20)) (-3589 (((-112) (-1281 |#2|) (-1281 |#2|)) 16))) -(((-855 |#1| |#2|) (-10 -7 (-15 -3589 ((-112) (-1281 |#2|) (-1281 |#2|))) (-15 -1718 ((-112) (-1281 |#2|) (-1281 |#2|))) (-15 -3396 ((-112) (-1281 |#2|) (-1281 |#2|)))) (-781) (-802)) (T -855)) -((-3396 (*1 *2 *3 *3) (-12 (-5 *3 (-1281 *5)) (-4 *5 (-802)) (-5 *2 (-112)) (-5 *1 (-855 *4 *5)) (-14 *4 (-781)))) (-1718 (*1 *2 *3 *3) (-12 (-5 *3 (-1281 *5)) (-4 *5 (-802)) (-5 *2 (-112)) (-5 *1 (-855 *4 *5)) (-14 *4 (-781)))) (-3589 (*1 *2 *3 *3) (-12 (-5 *3 (-1281 *5)) (-4 *5 (-802)) (-5 *2 (-112)) (-5 *1 (-855 *4 *5)) (-14 *4 (-781))))) -(-10 -7 (-15 -3589 ((-112) (-1281 |#2|) (-1281 |#2|))) (-15 -1718 ((-112) (-1281 |#2|) (-1281 |#2|))) (-15 -3396 ((-112) (-1281 |#2|) (-1281 |#2|)))) -((-2849 (((-112) $ $) 7)) (-3426 (($) 24 T CONST)) (-3434 (((-3 $ "failed") $) 27)) (-3199 (((-112) $) 25)) (-3659 (($ $ $) 14)) (-4257 (($ $ $) 15)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2145 (($) 23 T CONST)) (-3042 (((-112) $ $) 17)) (-3018 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3030 (((-112) $ $) 16)) (-3007 (((-112) $ $) 19)) (** (($ $ (-932)) 22) (($ $ (-781)) 26)) (* (($ $ $) 21))) -(((-856) (-141)) (T -856)) -NIL -(-13 (-867) (-736)) -(((-102) . T) ((-623 (-872)) . T) ((-736) . T) ((-867) . T) ((-860) . T) ((-1125) . T) ((-1113) . T)) -((-2846 (((-574) $) 21)) (-2756 (((-112) $) 10)) (-1335 (((-112) $) 12)) (-3482 (($ $) 23))) -(((-857 |#1|) (-10 -8 (-15 -3482 (|#1| |#1|)) (-15 -2846 ((-574) |#1|)) (-15 -1335 ((-112) |#1|)) (-15 -2756 ((-112) |#1|))) (-858)) (T -857)) -NIL -(-10 -8 (-15 -3482 (|#1| |#1|)) (-15 -2846 ((-574) |#1|)) (-15 -1335 ((-112) |#1|)) (-15 -2756 ((-112) |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 25)) (-3524 (((-3 $ "failed") $ $) 27)) (-2846 (((-574) $) 37)) (-3426 (($) 24 T CONST)) (-3434 (((-3 $ "failed") $) 42)) (-2756 (((-112) $) 39)) (-3199 (((-112) $) 44)) (-1335 (((-112) $) 38)) (-3659 (($ $ $) 14)) (-4257 (($ $ $) 15)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12) (($ (-574)) 46)) (-1364 (((-781)) 47 T CONST)) (-3284 (((-112) $ $) 9)) (-3482 (($ $) 36)) (-2133 (($) 23 T CONST)) (-2145 (($) 45 T CONST)) (-3042 (((-112) $ $) 17)) (-3018 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3030 (((-112) $ $) 16)) (-3007 (((-112) $ $) 19)) (-3094 (($ $ $) 31) (($ $) 30)) (-3079 (($ $ $) 21)) (** (($ $ (-781)) 43) (($ $ (-932)) 40)) (* (($ (-932) $) 22) (($ (-781) $) 26) (($ (-574) $) 29) (($ $ $) 41))) -(((-858) (-141)) (T -858)) -((-2756 (*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112)))) (-1335 (*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112)))) (-2846 (*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-574)))) (-3482 (*1 *1 *1) (-4 *1 (-858)))) -(-13 (-801) (-1062) (-736) (-10 -8 (-15 -2756 ((-112) $)) (-15 -1335 ((-112) $)) (-15 -2846 ((-574) $)) (-15 -3482 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-860) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T)) -((-3659 (($ $ $) 12)) (-4257 (($ $ $) 11)) (-3284 (((-112) $ $) 9)) (-3042 (((-112) $ $) 15)) (-3018 (((-112) $ $) 13)) (-3030 (((-112) $ $) 16))) -(((-859 |#1|) (-10 -8 (-15 -3659 (|#1| |#1| |#1|)) (-15 -4257 (|#1| |#1| |#1|)) (-15 -3030 ((-112) |#1| |#1|)) (-15 -3042 ((-112) |#1| |#1|)) (-15 -3018 ((-112) |#1| |#1|)) (-15 -3284 ((-112) |#1| |#1|))) (-860)) (T -859)) -NIL -(-10 -8 (-15 -3659 (|#1| |#1| |#1|)) (-15 -4257 (|#1| |#1| |#1|)) (-15 -3030 ((-112) |#1| |#1|)) (-15 -3042 ((-112) |#1| |#1|)) (-15 -3018 ((-112) |#1| |#1|)) (-15 -3284 ((-112) |#1| |#1|))) -((-2849 (((-112) $ $) 7)) (-3659 (($ $ $) 14)) (-4257 (($ $ $) 15)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-3042 (((-112) $ $) 17)) (-3018 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3030 (((-112) $ $) 16)) (-3007 (((-112) $ $) 19))) -(((-860) (-141)) (T -860)) -((-3007 (*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-3018 (*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-3042 (*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-3030 (*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-4257 (*1 *1 *1 *1) (-4 *1 (-860))) (-3659 (*1 *1 *1 *1) (-4 *1 (-860)))) -(-13 (-1113) (-10 -8 (-15 -3007 ((-112) $ $)) (-15 -3018 ((-112) $ $)) (-15 -3042 ((-112) $ $)) (-15 -3030 ((-112) $ $)) (-15 -4257 ($ $ $)) (-15 -3659 ($ $ $)))) -(((-102) . T) ((-623 (-872)) . T) ((-1113) . T)) -((-2909 (($ $ $) 49)) (-3978 (($ $ $) 48)) (-3520 (($ $ $) 46)) (-3386 (($ $ $) 55)) (-1806 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 50)) (-3480 (((-3 $ "failed") $ $) 53)) (-1696 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-1569 (($ $) 39)) (-2711 (($ $ $) 43)) (-4188 (($ $ $) 42)) (-1818 (($ $ $) 51)) (-3863 (($ $ $) 57)) (-3838 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 45)) (-1518 (((-3 $ "failed") $ $) 52)) (-2838 (((-3 $ "failed") $ |#2|) 32)) (-3069 ((|#2| $) 36)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL) (($ |#2|) 13)) (-2530 (((-654 |#2|) $) 21)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) -(((-861 |#1| |#2|) (-10 -8 (-15 -1818 (|#1| |#1| |#1|)) (-15 -1806 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2970 |#1|)) |#1| |#1|)) (-15 -3386 (|#1| |#1| |#1|)) (-15 -3480 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2909 (|#1| |#1| |#1|)) (-15 -3978 (|#1| |#1| |#1|)) (-15 -3520 (|#1| |#1| |#1|)) (-15 -3838 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2970 |#1|)) |#1| |#1|)) (-15 -3863 (|#1| |#1| |#1|)) (-15 -1518 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2711 (|#1| |#1| |#1|)) (-15 -4188 (|#1| |#1| |#1|)) (-15 -1569 (|#1| |#1|)) (-15 -3069 (|#2| |#1|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2530 ((-654 |#2|) |#1|)) (-15 -2943 (|#1| |#2|)) (-15 -1696 ((-3 |#2| "failed") |#1|)) (-15 -1696 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -1696 ((-3 (-574) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2943 (|#1| (-574))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-932) |#1|)) (-15 -2943 ((-872) |#1|))) (-862 |#2|) (-1062)) (T -861)) -NIL -(-10 -8 (-15 -1818 (|#1| |#1| |#1|)) (-15 -1806 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2970 |#1|)) |#1| |#1|)) (-15 -3386 (|#1| |#1| |#1|)) (-15 -3480 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2909 (|#1| |#1| |#1|)) (-15 -3978 (|#1| |#1| |#1|)) (-15 -3520 (|#1| |#1| |#1|)) (-15 -3838 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2970 |#1|)) |#1| |#1|)) (-15 -3863 (|#1| |#1| |#1|)) (-15 -1518 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2711 (|#1| |#1| |#1|)) (-15 -4188 (|#1| |#1| |#1|)) (-15 -1569 (|#1| |#1|)) (-15 -3069 (|#2| |#1|)) (-15 -2838 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2530 ((-654 |#2|) |#1|)) (-15 -2943 (|#1| |#2|)) (-15 -1696 ((-3 |#2| "failed") |#1|)) (-15 -1696 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -1696 ((-3 (-574) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2943 (|#1| (-574))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-932) |#1|)) (-15 -2943 ((-872) |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-2909 (($ $ $) 50 (|has| |#1| (-372)))) (-3978 (($ $ $) 51 (|has| |#1| (-372)))) (-3520 (($ $ $) 53 (|has| |#1| (-372)))) (-3386 (($ $ $) 48 (|has| |#1| (-372)))) (-1806 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 47 (|has| |#1| (-372)))) (-3480 (((-3 $ "failed") $ $) 49 (|has| |#1| (-372)))) (-1615 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 52 (|has| |#1| (-372)))) (-1696 (((-3 (-574) "failed") $) 80 (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) 77 (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) 74)) (-2206 (((-574) $) 79 (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) 76 (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) 75)) (-1392 (($ $) 69)) (-3434 (((-3 $ "failed") $) 37)) (-1569 (($ $) 60 (|has| |#1| (-462)))) (-3199 (((-112) $) 35)) (-4335 (($ |#1| (-781)) 67)) (-4168 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 62 (|has| |#1| (-566)))) (-2723 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 63 (|has| |#1| (-566)))) (-1742 (((-781) $) 71)) (-2711 (($ $ $) 57 (|has| |#1| (-372)))) (-4188 (($ $ $) 58 (|has| |#1| (-372)))) (-1818 (($ $ $) 46 (|has| |#1| (-372)))) (-3863 (($ $ $) 55 (|has| |#1| (-372)))) (-3838 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 54 (|has| |#1| (-372)))) (-1518 (((-3 $ "failed") $ $) 56 (|has| |#1| (-372)))) (-2962 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 59 (|has| |#1| (-372)))) (-1370 ((|#1| $) 70)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2838 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-566)))) (-4202 (((-781) $) 72)) (-3069 ((|#1| $) 61 (|has| |#1| (-462)))) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 78 (|has| |#1| (-1051 (-417 (-574))))) (($ |#1|) 73)) (-2530 (((-654 |#1|) $) 66)) (-3087 ((|#1| $ (-781)) 68)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2901 ((|#1| $ |#1| |#1|) 65)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) -(((-862 |#1|) (-141) (-1062)) (T -862)) -((-4202 (*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1062)) (-5 *2 (-781)))) (-1742 (*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1062)) (-5 *2 (-781)))) (-1370 (*1 *2 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)))) (-1392 (*1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)))) (-3087 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-862 *2)) (-4 *2 (-1062)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-862 *2)) (-4 *2 (-1062)))) (-2530 (*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1062)) (-5 *2 (-654 *3)))) (-2901 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)))) (-2838 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-566)))) (-2723 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1062)) (-5 *2 (-2 (|:| -1411 *1) (|:| -2766 *1))) (-4 *1 (-862 *3)))) (-4168 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1062)) (-5 *2 (-2 (|:| -1411 *1) (|:| -2766 *1))) (-4 *1 (-862 *3)))) (-3069 (*1 *2 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-462)))) (-1569 (*1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-462)))) (-2962 (*1 *2 *1 *1) (-12 (-4 *3 (-372)) (-4 *3 (-1062)) (-5 *2 (-2 (|:| -1411 *1) (|:| -2766 *1))) (-4 *1 (-862 *3)))) (-4188 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))) (-2711 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))) (-1518 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))) (-3863 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))) (-3838 (*1 *2 *1 *1) (-12 (-4 *3 (-372)) (-4 *3 (-1062)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2970 *1))) (-4 *1 (-862 *3)))) (-3520 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))) (-1615 (*1 *2 *1 *1) (-12 (-4 *3 (-372)) (-4 *3 (-1062)) (-5 *2 (-2 (|:| -1411 *1) (|:| -2766 *1))) (-4 *1 (-862 *3)))) (-3978 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))) (-2909 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))) (-3480 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))) (-3386 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))) (-1806 (*1 *2 *1 *1) (-12 (-4 *3 (-372)) (-4 *3 (-1062)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2970 *1))) (-4 *1 (-862 *3)))) (-1818 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372))))) -(-13 (-1062) (-111 |t#1| |t#1|) (-421 |t#1|) (-10 -8 (-15 -4202 ((-781) $)) (-15 -1742 ((-781) $)) (-15 -1370 (|t#1| $)) (-15 -1392 ($ $)) (-15 -3087 (|t#1| $ (-781))) (-15 -4335 ($ |t#1| (-781))) (-15 -2530 ((-654 |t#1|) $)) (-15 -2901 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-566)) (PROGN (-15 -2838 ((-3 $ "failed") $ |t#1|)) (-15 -2723 ((-2 (|:| -1411 $) (|:| -2766 $)) $ $)) (-15 -4168 ((-2 (|:| -1411 $) (|:| -2766 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-462)) (PROGN (-15 -3069 (|t#1| $)) (-15 -1569 ($ $))) |%noBranch|) (IF (|has| |t#1| (-372)) (PROGN (-15 -2962 ((-2 (|:| -1411 $) (|:| -2766 $)) $ $)) (-15 -4188 ($ $ $)) (-15 -2711 ($ $ $)) (-15 -1518 ((-3 $ "failed") $ $)) (-15 -3863 ($ $ $)) (-15 -3838 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $)) (-15 -3520 ($ $ $)) (-15 -1615 ((-2 (|:| -1411 $) (|:| -2766 $)) $ $)) (-15 -3978 ($ $ $)) (-15 -2909 ($ $ $)) (-15 -3480 ((-3 $ "failed") $ $)) (-15 -3386 ($ $ $)) (-15 -1806 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $)) (-15 -1818 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 #0=(-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-421 |#1|) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) |has| |#1| (-174)) ((-727 |#1|) |has| |#1| (-174)) ((-736) . T) ((-1051 #0#) |has| |#1| (-1051 (-417 (-574)))) ((-1051 (-574)) |has| |#1| (-1051 (-574))) ((-1051 |#1|) . T) ((-1064 |#1|) . T) ((-1069 |#1|) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T)) -((-3788 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-1615 (((-2 (|:| -1411 |#2|) (|:| -2766 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-372)))) (-4168 (((-2 (|:| -1411 |#2|) (|:| -2766 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-566)))) (-2723 (((-2 (|:| -1411 |#2|) (|:| -2766 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-566)))) (-2962 (((-2 (|:| -1411 |#2|) (|:| -2766 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-372)))) (-2901 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33))) -(((-863 |#1| |#2|) (-10 -7 (-15 -3788 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2901 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-566)) (PROGN (-15 -2723 ((-2 (|:| -1411 |#2|) (|:| -2766 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4168 ((-2 (|:| -1411 |#2|) (|:| -2766 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -2962 ((-2 (|:| -1411 |#2|) (|:| -2766 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1615 ((-2 (|:| -1411 |#2|) (|:| -2766 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1062) (-862 |#1|)) (T -863)) -((-1615 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-372)) (-4 *5 (-1062)) (-5 *2 (-2 (|:| -1411 *3) (|:| -2766 *3))) (-5 *1 (-863 *5 *3)) (-4 *3 (-862 *5)))) (-2962 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-372)) (-4 *5 (-1062)) (-5 *2 (-2 (|:| -1411 *3) (|:| -2766 *3))) (-5 *1 (-863 *5 *3)) (-4 *3 (-862 *5)))) (-4168 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-566)) (-4 *5 (-1062)) (-5 *2 (-2 (|:| -1411 *3) (|:| -2766 *3))) (-5 *1 (-863 *5 *3)) (-4 *3 (-862 *5)))) (-2723 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-566)) (-4 *5 (-1062)) (-5 *2 (-2 (|:| -1411 *3) (|:| -2766 *3))) (-5 *1 (-863 *5 *3)) (-4 *3 (-862 *5)))) (-2901 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1062)) (-5 *1 (-863 *2 *3)) (-4 *3 (-862 *2)))) (-3788 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1062)) (-5 *1 (-863 *5 *2)) (-4 *2 (-862 *5))))) -(-10 -7 (-15 -3788 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2901 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-566)) (PROGN (-15 -2723 ((-2 (|:| -1411 |#2|) (|:| -2766 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4168 ((-2 (|:| -1411 |#2|) (|:| -2766 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -2962 ((-2 (|:| -1411 |#2|) (|:| -2766 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1615 ((-2 (|:| -1411 |#2|) (|:| -2766 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-2909 (($ $ $) NIL (|has| |#1| (-372)))) (-3978 (($ $ $) NIL (|has| |#1| (-372)))) (-3520 (($ $ $) NIL (|has| |#1| (-372)))) (-3386 (($ $ $) NIL (|has| |#1| (-372)))) (-1806 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-3480 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-1615 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 34 (|has| |#1| (-372)))) (-1696 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2206 (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) NIL)) (-1392 (($ $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-1569 (($ $) NIL (|has| |#1| (-462)))) (-2212 (((-872) $ (-872)) NIL)) (-3199 (((-112) $) NIL)) (-4335 (($ |#1| (-781)) NIL)) (-4168 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 30 (|has| |#1| (-566)))) (-2723 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 28 (|has| |#1| (-566)))) (-1742 (((-781) $) NIL)) (-2711 (($ $ $) NIL (|has| |#1| (-372)))) (-4188 (($ $ $) NIL (|has| |#1| (-372)))) (-1818 (($ $ $) NIL (|has| |#1| (-372)))) (-3863 (($ $ $) NIL (|has| |#1| (-372)))) (-3838 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-1518 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-2962 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 32 (|has| |#1| (-372)))) (-1370 ((|#1| $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2838 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-4202 (((-781) $) NIL)) (-3069 ((|#1| $) NIL (|has| |#1| (-462)))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-1051 (-417 (-574))))) (($ |#1|) NIL)) (-2530 (((-654 |#1|) $) NIL)) (-3087 ((|#1| $ (-781)) NIL)) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-2901 ((|#1| $ |#1| |#1|) 15)) (-2133 (($) NIL T CONST)) (-2145 (($) 23 T CONST)) (-2981 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) 19) (($ $ (-781)) 24)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-864 |#1| |#2| |#3|) (-13 (-862 |#1|) (-10 -8 (-15 -2212 ((-872) $ (-872))))) (-1062) (-99 |#1|) (-1 |#1| |#1|)) (T -864)) -((-2212 (*1 *2 *1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-864 *3 *4 *5)) (-4 *3 (-1062)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-862 |#1|) (-10 -8 (-15 -2212 ((-872) $ (-872))))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-2909 (($ $ $) NIL (|has| |#2| (-372)))) (-3978 (($ $ $) NIL (|has| |#2| (-372)))) (-3520 (($ $ $) NIL (|has| |#2| (-372)))) (-3386 (($ $ $) NIL (|has| |#2| (-372)))) (-1806 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#2| (-372)))) (-3480 (((-3 $ "failed") $ $) NIL (|has| |#2| (-372)))) (-1615 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#2| (-372)))) (-1696 (((-3 (-574) "failed") $) NIL (|has| |#2| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1051 (-417 (-574))))) (((-3 |#2| "failed") $) NIL)) (-2206 (((-574) $) NIL (|has| |#2| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#2| (-1051 (-417 (-574))))) ((|#2| $) NIL)) (-1392 (($ $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-1569 (($ $) NIL (|has| |#2| (-462)))) (-3199 (((-112) $) NIL)) (-4335 (($ |#2| (-781)) 17)) (-4168 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#2| (-566)))) (-2723 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#2| (-566)))) (-1742 (((-781) $) NIL)) (-2711 (($ $ $) NIL (|has| |#2| (-372)))) (-4188 (($ $ $) NIL (|has| |#2| (-372)))) (-1818 (($ $ $) NIL (|has| |#2| (-372)))) (-3863 (($ $ $) NIL (|has| |#2| (-372)))) (-3838 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#2| (-372)))) (-1518 (((-3 $ "failed") $ $) NIL (|has| |#2| (-372)))) (-2962 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#2| (-372)))) (-1370 ((|#2| $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2838 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566)))) (-4202 (((-781) $) NIL)) (-3069 ((|#2| $) NIL (|has| |#2| (-462)))) (-2943 (((-872) $) 24) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#2| (-1051 (-417 (-574))))) (($ |#2|) NIL) (($ (-1277 |#1|)) 19)) (-2530 (((-654 |#2|) $) NIL)) (-3087 ((|#2| $ (-781)) NIL)) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-2901 ((|#2| $ |#2| |#2|) NIL)) (-2133 (($) NIL T CONST)) (-2145 (($) 13 T CONST)) (-2981 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-865 |#1| |#2| |#3| |#4|) (-13 (-862 |#2|) (-626 (-1277 |#1|))) (-1190) (-1062) (-99 |#2|) (-1 |#2| |#2|)) (T -865)) -NIL -(-13 (-862 |#2|) (-626 (-1277 |#1|))) -((-3401 ((|#1| (-781) |#1|) 45 (|has| |#1| (-38 (-417 (-574)))))) (-1561 ((|#1| (-781) (-781) |#1|) 36) ((|#1| (-781) |#1|) 24)) (-2599 ((|#1| (-781) |#1|) 40)) (-3983 ((|#1| (-781) |#1|) 38)) (-4030 ((|#1| (-781) |#1|) 37))) -(((-866 |#1|) (-10 -7 (-15 -4030 (|#1| (-781) |#1|)) (-15 -3983 (|#1| (-781) |#1|)) (-15 -2599 (|#1| (-781) |#1|)) (-15 -1561 (|#1| (-781) |#1|)) (-15 -1561 (|#1| (-781) (-781) |#1|)) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3401 (|#1| (-781) |#1|)) |%noBranch|)) (-174)) (T -866)) -((-3401 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-174)))) (-1561 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) (-1561 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) (-2599 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) (-3983 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) (-4030 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174))))) -(-10 -7 (-15 -4030 (|#1| (-781) |#1|)) (-15 -3983 (|#1| (-781) |#1|)) (-15 -2599 (|#1| (-781) |#1|)) (-15 -1561 (|#1| (-781) |#1|)) (-15 -1561 (|#1| (-781) (-781) |#1|)) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3401 (|#1| (-781) |#1|)) |%noBranch|)) -((-2849 (((-112) $ $) 7)) (-3659 (($ $ $) 14)) (-4257 (($ $ $) 15)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-3042 (((-112) $ $) 17)) (-3018 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3030 (((-112) $ $) 16)) (-3007 (((-112) $ $) 19)) (** (($ $ (-932)) 22)) (* (($ $ $) 21))) -(((-867) (-141)) (T -867)) -NIL -(-13 (-860) (-1125)) -(((-102) . T) ((-623 (-872)) . T) ((-860) . T) ((-1125) . T) ((-1113) . T)) -((-2849 (((-112) $ $) NIL)) (-3083 (((-574) $) 14)) (-3659 (($ $ $) NIL)) (-4257 (($ $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 20) (($ (-574)) 13)) (-3284 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 9)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) 11))) -(((-868) (-13 (-860) (-10 -8 (-15 -2943 ($ (-574))) (-15 -3083 ((-574) $))))) (T -868)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-868)))) (-3083 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-868))))) -(-13 (-860) (-10 -8 (-15 -2943 ($ (-574))) (-15 -3083 ((-574) $)))) -((-2238 (((-701 (-1239)) $ (-1239)) 15)) (-1767 (((-701 (-559)) $ (-559)) 12)) (-3734 (((-781) $ (-129)) 30))) -(((-869 |#1|) (-10 -8 (-15 -3734 ((-781) |#1| (-129))) (-15 -2238 ((-701 (-1239)) |#1| (-1239))) (-15 -1767 ((-701 (-559)) |#1| (-559)))) (-870)) (T -869)) -NIL -(-10 -8 (-15 -3734 ((-781) |#1| (-129))) (-15 -2238 ((-701 (-1239)) |#1| (-1239))) (-15 -1767 ((-701 (-559)) |#1| (-559)))) -((-2238 (((-701 (-1239)) $ (-1239)) 8)) (-1767 (((-701 (-559)) $ (-559)) 9)) (-3734 (((-781) $ (-129)) 7)) (-3353 (((-701 (-130)) $ (-130)) 10)) (-3646 (($ $) 6))) -(((-870) (-141)) (T -870)) -((-3353 (*1 *2 *1 *3) (-12 (-4 *1 (-870)) (-5 *2 (-701 (-130))) (-5 *3 (-130)))) (-1767 (*1 *2 *1 *3) (-12 (-4 *1 (-870)) (-5 *2 (-701 (-559))) (-5 *3 (-559)))) (-2238 (*1 *2 *1 *3) (-12 (-4 *1 (-870)) (-5 *2 (-701 (-1239))) (-5 *3 (-1239)))) (-3734 (*1 *2 *1 *3) (-12 (-4 *1 (-870)) (-5 *3 (-129)) (-5 *2 (-781))))) -(-13 (-175) (-10 -8 (-15 -3353 ((-701 (-130)) $ (-130))) (-15 -1767 ((-701 (-559)) $ (-559))) (-15 -2238 ((-701 (-1239)) $ (-1239))) (-15 -3734 ((-781) $ (-129))))) +(-13 (-801) (-132)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-871)) . T) ((-801) . T) ((-803) . T) ((-859) . T) ((-1112) . T)) +((-1748 (((-112) $) 42)) (-1695 (((-3 (-573) "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2205 (((-573) $) NIL) (((-416 (-573)) $) NIL) ((|#2| $) 43)) (-3810 (((-3 (-416 (-573)) "failed") $) 78)) (-2551 (((-112) $) 72)) (-4434 (((-416 (-573)) $) 76)) (-3421 ((|#2| $) 26)) (-1776 (($ (-1 |#2| |#2|) $) 23)) (-1323 (($ $) 58)) (-1835 (((-545) $) 67)) (-3204 (($ $) 21)) (-2942 (((-871) $) 53) (($ (-573)) 40) (($ |#2|) 38) (($ (-416 (-573))) NIL)) (-1545 (((-780)) 10)) (-1660 ((|#2| $) 71)) (-2981 (((-112) $ $) 30)) (-3005 (((-112) $ $) 69)) (-3093 (($ $) 32) (($ $ $) NIL)) (-3077 (($ $ $) 31)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) +(((-805 |#1| |#2|) (-10 -8 (-15 -3005 ((-112) |#1| |#1|)) (-15 -1835 ((-545) |#1|)) (-15 -1323 (|#1| |#1|)) (-15 -3810 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -4434 ((-416 (-573)) |#1|)) (-15 -2551 ((-112) |#1|)) (-15 -1660 (|#2| |#1|)) (-15 -3421 (|#2| |#1|)) (-15 -3204 (|#1| |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2942 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1545 ((-780))) (-15 -2942 (|#1| (-573))) (-15 * (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 -1748 ((-112) |#1|)) (-15 * (|#1| (-931) |#1|)) (-15 -3077 (|#1| |#1| |#1|)) (-15 -2942 ((-871) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) (-806 |#2|) (-174)) (T -805)) +((-1545 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-780)) (-5 *1 (-805 *3 *4)) (-4 *3 (-806 *4))))) +(-10 -8 (-15 -3005 ((-112) |#1| |#1|)) (-15 -1835 ((-545) |#1|)) (-15 -1323 (|#1| |#1|)) (-15 -3810 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -4434 ((-416 (-573)) |#1|)) (-15 -2551 ((-112) |#1|)) (-15 -1660 (|#2| |#1|)) (-15 -3421 (|#2| |#1|)) (-15 -3204 (|#1| |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2942 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1545 ((-780))) (-15 -2942 (|#1| (-573))) (-15 * (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 -1748 ((-112) |#1|)) (-15 * (|#1| (-931) |#1|)) (-15 -3077 (|#1| |#1| |#1|)) (-15 -2942 ((-871) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-1486 (((-780)) 58 (|has| |#1| (-376)))) (-2579 (($) 18 T CONST)) (-1695 (((-3 (-573) "failed") $) 100 (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) 97 (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) 94)) (-2205 (((-573) $) 99 (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) 96 (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) 95)) (-2232 (((-3 $ "failed") $) 37)) (-4238 ((|#1| $) 84)) (-3810 (((-3 (-416 (-573)) "failed") $) 71 (|has| |#1| (-554)))) (-2551 (((-112) $) 73 (|has| |#1| (-554)))) (-4434 (((-416 (-573)) $) 72 (|has| |#1| (-554)))) (-2819 (($) 61 (|has| |#1| (-376)))) (-1959 (((-112) $) 35)) (-3766 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-3421 ((|#1| $) 76)) (-3659 (($ $ $) 67 (|has| |#1| (-859)))) (-3751 (($ $ $) 66 (|has| |#1| (-859)))) (-1776 (($ (-1 |#1| |#1|) $) 86)) (-3589 (((-931) $) 60 (|has| |#1| (-376)))) (-3180 (((-1171) $) 10)) (-1323 (($ $) 70 (|has| |#1| (-371)))) (-2575 (($ (-931)) 59 (|has| |#1| (-376)))) (-2625 ((|#1| $) 81)) (-3227 ((|#1| $) 82)) (-4204 ((|#1| $) 83)) (-4231 ((|#1| $) 77)) (-3875 ((|#1| $) 78)) (-1881 ((|#1| $) 79)) (-2473 ((|#1| $) 80)) (-3965 (((-1132) $) 11)) (-2645 (($ $ (-653 |#1|) (-653 |#1|)) 92 (|has| |#1| (-316 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-316 |#1|))) (($ $ (-301 |#1|)) 90 (|has| |#1| (-316 |#1|))) (($ $ (-653 (-301 |#1|))) 89 (|has| |#1| (-316 |#1|))) (($ $ (-653 (-1189)) (-653 |#1|)) 88 (|has| |#1| (-523 (-1189) |#1|))) (($ $ (-1189) |#1|) 87 (|has| |#1| (-523 (-1189) |#1|)))) (-2198 (($ $ |#1|) 93 (|has| |#1| (-293 |#1| |#1|)))) (-1835 (((-545) $) 68 (|has| |#1| (-623 (-545))))) (-3204 (($ $) 85)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 44) (($ (-416 (-573))) 98 (|has| |#1| (-1050 (-416 (-573)))))) (-4279 (((-3 $ "failed") $) 69 (|has| |#1| (-146)))) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-1660 ((|#1| $) 74 (|has| |#1| (-1072)))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3040 (((-112) $ $) 64 (|has| |#1| (-859)))) (-3015 (((-112) $ $) 63 (|has| |#1| (-859)))) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 65 (|has| |#1| (-859)))) (-3005 (((-112) $ $) 62 (|has| |#1| (-859)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-806 |#1|) (-141) (-174)) (T -806)) +((-3204 (*1 *1 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) (-4238 (*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) (-4204 (*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) (-3227 (*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) (-2625 (*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) (-2473 (*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) (-1881 (*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) (-3875 (*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) (-4231 (*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) (-3421 (*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) (-3766 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) (-1660 (*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)) (-4 *2 (-1072)))) (-2551 (*1 *2 *1) (-12 (-4 *1 (-806 *3)) (-4 *3 (-174)) (-4 *3 (-554)) (-5 *2 (-112)))) (-4434 (*1 *2 *1) (-12 (-4 *1 (-806 *3)) (-4 *3 (-174)) (-4 *3 (-554)) (-5 *2 (-416 (-573))))) (-3810 (*1 *2 *1) (|partial| -12 (-4 *1 (-806 *3)) (-4 *3 (-174)) (-4 *3 (-554)) (-5 *2 (-416 (-573))))) (-1323 (*1 *1 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)) (-4 *2 (-371))))) +(-13 (-38 |t#1|) (-420 |t#1|) (-346 |t#1|) (-10 -8 (-15 -3204 ($ $)) (-15 -4238 (|t#1| $)) (-15 -4204 (|t#1| $)) (-15 -3227 (|t#1| $)) (-15 -2625 (|t#1| $)) (-15 -2473 (|t#1| $)) (-15 -1881 (|t#1| $)) (-15 -3875 (|t#1| $)) (-15 -4231 (|t#1| $)) (-15 -3421 (|t#1| $)) (-15 -3766 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-376)) (-6 (-376)) |%noBranch|) (IF (|has| |t#1| (-859)) (-6 (-859)) |%noBranch|) (IF (|has| |t#1| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1072)) (-15 -1660 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-15 -2551 ((-112) $)) (-15 -4434 ((-416 (-573)) $)) (-15 -3810 ((-3 (-416 (-573)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-371)) (-15 -1323 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #0=(-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-622 (-871)) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-293 |#1| $) |has| |#1| (-293 |#1| |#1|)) ((-316 |#1|) |has| |#1| (-316 |#1|)) ((-376) |has| |#1| (-376)) ((-346 |#1|) . T) ((-420 |#1|) . T) ((-523 (-1189) |#1|) |has| |#1| (-523 (-1189) |#1|)) ((-523 |#1| |#1|) |has| |#1| (-316 |#1|)) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-649 |#1|) . T) ((-726 |#1|) . T) ((-735) . T) ((-859) |has| |#1| (-859)) ((-1050 #0#) |has| |#1| (-1050 (-416 (-573)))) ((-1050 (-573)) |has| |#1| (-1050 (-573))) ((-1050 |#1|) . T) ((-1063 |#1|) . T) ((-1068 |#1|) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1230) |has| |#1| (-293 |#1| |#1|))) +((-1776 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-807 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1776 (|#3| (-1 |#4| |#2|) |#1|))) (-806 |#2|) (-174) (-806 |#4|) (-174)) (T -807)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-806 *6)) (-5 *1 (-807 *4 *5 *2 *6)) (-4 *4 (-806 *5))))) +(-10 -7 (-15 -1776 (|#3| (-1 |#4| |#2|) |#1|))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1486 (((-780)) NIL (|has| |#1| (-376)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL) (((-3 (-1011 |#1|) "failed") $) 35) (((-3 (-573) "failed") $) NIL (-2817 (|has| (-1011 |#1|) (-1050 (-573))) (|has| |#1| (-1050 (-573))))) (((-3 (-416 (-573)) "failed") $) NIL (-2817 (|has| (-1011 |#1|) (-1050 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573))))))) (-2205 ((|#1| $) NIL) (((-1011 |#1|) $) 33) (((-573) $) NIL (-2817 (|has| (-1011 |#1|) (-1050 (-573))) (|has| |#1| (-1050 (-573))))) (((-416 (-573)) $) NIL (-2817 (|has| (-1011 |#1|) (-1050 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573))))))) (-2232 (((-3 $ "failed") $) NIL)) (-4238 ((|#1| $) 16)) (-3810 (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-554)))) (-2551 (((-112) $) NIL (|has| |#1| (-554)))) (-4434 (((-416 (-573)) $) NIL (|has| |#1| (-554)))) (-2819 (($) NIL (|has| |#1| (-376)))) (-1959 (((-112) $) NIL)) (-3766 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1011 |#1|) (-1011 |#1|)) 29)) (-3421 ((|#1| $) NIL)) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3589 (((-931) $) NIL (|has| |#1| (-376)))) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL (|has| |#1| (-371)))) (-2575 (($ (-931)) NIL (|has| |#1| (-376)))) (-2625 ((|#1| $) 22)) (-3227 ((|#1| $) 20)) (-4204 ((|#1| $) 18)) (-4231 ((|#1| $) 26)) (-3875 ((|#1| $) 25)) (-1881 ((|#1| $) 24)) (-2473 ((|#1| $) 23)) (-3965 (((-1132) $) NIL)) (-2645 (($ $ (-653 |#1|) (-653 |#1|)) NIL (|has| |#1| (-316 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-316 |#1|))) (($ $ (-301 |#1|)) NIL (|has| |#1| (-316 |#1|))) (($ $ (-653 (-301 |#1|))) NIL (|has| |#1| (-316 |#1|))) (($ $ (-653 (-1189)) (-653 |#1|)) NIL (|has| |#1| (-523 (-1189) |#1|))) (($ $ (-1189) |#1|) NIL (|has| |#1| (-523 (-1189) |#1|)))) (-2198 (($ $ |#1|) NIL (|has| |#1| (-293 |#1| |#1|)))) (-1835 (((-545) $) NIL (|has| |#1| (-623 (-545))))) (-3204 (($ $) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#1|) NIL) (($ (-1011 |#1|)) 30) (($ (-416 (-573))) NIL (-2817 (|has| (-1011 |#1|) (-1050 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573))))))) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-1660 ((|#1| $) NIL (|has| |#1| (-1072)))) (-2132 (($) 8 T CONST)) (-2144 (($) 12 T CONST)) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-808 |#1|) (-13 (-806 |#1|) (-420 (-1011 |#1|)) (-10 -8 (-15 -3766 ($ (-1011 |#1|) (-1011 |#1|))))) (-174)) (T -808)) +((-3766 (*1 *1 *2 *2) (-12 (-5 *2 (-1011 *3)) (-4 *3 (-174)) (-5 *1 (-808 *3))))) +(-13 (-806 |#1|) (-420 (-1011 |#1|)) (-10 -8 (-15 -3766 ($ (-1011 |#1|) (-1011 |#1|))))) +((-2848 (((-112) $ $) 7)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-3871 (((-1047) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 14)) (-2981 (((-112) $ $) 6))) +(((-809) (-141)) (T -809)) +((-4223 (*1 *2 *3 *4) (-12 (-4 *1 (-809)) (-5 *3 (-1075)) (-5 *4 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)))))) (-3871 (*1 *2 *3) (-12 (-4 *1 (-809)) (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1047))))) +(-13 (-1112) (-10 -7 (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3871 ((-1047) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) +(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) +((-2960 (((-2 (|:| |particular| |#2|) (|:| -3914 (-653 |#2|))) |#3| |#2| (-1189)) 19))) +(((-810 |#1| |#2| |#3|) (-10 -7 (-15 -2960 ((-2 (|:| |particular| |#2|) (|:| -3914 (-653 |#2|))) |#3| |#2| (-1189)))) (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148)) (-13 (-29 |#1|) (-1215) (-969)) (-665 |#2|)) (T -810)) +((-2960 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1189)) (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-4 *4 (-13 (-29 *6) (-1215) (-969))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3914 (-653 *4)))) (-5 *1 (-810 *6 *4 *3)) (-4 *3 (-665 *4))))) +(-10 -7 (-15 -2960 ((-2 (|:| |particular| |#2|) (|:| -3914 (-653 |#2|))) |#3| |#2| (-1189)))) +((-1994 (((-3 |#2| "failed") |#2| (-115) (-301 |#2|) (-653 |#2|)) 28) (((-3 |#2| "failed") (-301 |#2|) (-115) (-301 |#2|) (-653 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -3914 (-653 |#2|))) |#2| "failed") |#2| (-115) (-1189)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -3914 (-653 |#2|))) |#2| "failed") (-301 |#2|) (-115) (-1189)) 18) (((-3 (-2 (|:| |particular| (-1280 |#2|)) (|:| -3914 (-653 (-1280 |#2|)))) "failed") (-653 |#2|) (-653 (-115)) (-1189)) 24) (((-3 (-2 (|:| |particular| (-1280 |#2|)) (|:| -3914 (-653 (-1280 |#2|)))) "failed") (-653 (-301 |#2|)) (-653 (-115)) (-1189)) 26) (((-3 (-653 (-1280 |#2|)) "failed") (-698 |#2|) (-1189)) 37) (((-3 (-2 (|:| |particular| (-1280 |#2|)) (|:| -3914 (-653 (-1280 |#2|)))) "failed") (-698 |#2|) (-1280 |#2|) (-1189)) 35))) +(((-811 |#1| |#2|) (-10 -7 (-15 -1994 ((-3 (-2 (|:| |particular| (-1280 |#2|)) (|:| -3914 (-653 (-1280 |#2|)))) "failed") (-698 |#2|) (-1280 |#2|) (-1189))) (-15 -1994 ((-3 (-653 (-1280 |#2|)) "failed") (-698 |#2|) (-1189))) (-15 -1994 ((-3 (-2 (|:| |particular| (-1280 |#2|)) (|:| -3914 (-653 (-1280 |#2|)))) "failed") (-653 (-301 |#2|)) (-653 (-115)) (-1189))) (-15 -1994 ((-3 (-2 (|:| |particular| (-1280 |#2|)) (|:| -3914 (-653 (-1280 |#2|)))) "failed") (-653 |#2|) (-653 (-115)) (-1189))) (-15 -1994 ((-3 (-2 (|:| |particular| |#2|) (|:| -3914 (-653 |#2|))) |#2| "failed") (-301 |#2|) (-115) (-1189))) (-15 -1994 ((-3 (-2 (|:| |particular| |#2|) (|:| -3914 (-653 |#2|))) |#2| "failed") |#2| (-115) (-1189))) (-15 -1994 ((-3 |#2| "failed") (-301 |#2|) (-115) (-301 |#2|) (-653 |#2|))) (-15 -1994 ((-3 |#2| "failed") |#2| (-115) (-301 |#2|) (-653 |#2|)))) (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148)) (-13 (-29 |#1|) (-1215) (-969))) (T -811)) +((-1994 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-301 *2)) (-5 *5 (-653 *2)) (-4 *2 (-13 (-29 *6) (-1215) (-969))) (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *1 (-811 *6 *2)))) (-1994 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-301 *2)) (-5 *4 (-115)) (-5 *5 (-653 *2)) (-4 *2 (-13 (-29 *6) (-1215) (-969))) (-5 *1 (-811 *6 *2)) (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))))) (-1994 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1189)) (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3914 (-653 *3))) *3 "failed")) (-5 *1 (-811 *6 *3)) (-4 *3 (-13 (-29 *6) (-1215) (-969))))) (-1994 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-301 *7)) (-5 *4 (-115)) (-5 *5 (-1189)) (-4 *7 (-13 (-29 *6) (-1215) (-969))) (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3914 (-653 *7))) *7 "failed")) (-5 *1 (-811 *6 *7)))) (-1994 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-653 *7)) (-5 *4 (-653 (-115))) (-5 *5 (-1189)) (-4 *7 (-13 (-29 *6) (-1215) (-969))) (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *2 (-2 (|:| |particular| (-1280 *7)) (|:| -3914 (-653 (-1280 *7))))) (-5 *1 (-811 *6 *7)))) (-1994 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-653 (-301 *7))) (-5 *4 (-653 (-115))) (-5 *5 (-1189)) (-4 *7 (-13 (-29 *6) (-1215) (-969))) (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *2 (-2 (|:| |particular| (-1280 *7)) (|:| -3914 (-653 (-1280 *7))))) (-5 *1 (-811 *6 *7)))) (-1994 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-698 *6)) (-5 *4 (-1189)) (-4 *6 (-13 (-29 *5) (-1215) (-969))) (-4 *5 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *2 (-653 (-1280 *6))) (-5 *1 (-811 *5 *6)))) (-1994 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-698 *7)) (-5 *5 (-1189)) (-4 *7 (-13 (-29 *6) (-1215) (-969))) (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *2 (-2 (|:| |particular| (-1280 *7)) (|:| -3914 (-653 (-1280 *7))))) (-5 *1 (-811 *6 *7)) (-5 *4 (-1280 *7))))) +(-10 -7 (-15 -1994 ((-3 (-2 (|:| |particular| (-1280 |#2|)) (|:| -3914 (-653 (-1280 |#2|)))) "failed") (-698 |#2|) (-1280 |#2|) (-1189))) (-15 -1994 ((-3 (-653 (-1280 |#2|)) "failed") (-698 |#2|) (-1189))) (-15 -1994 ((-3 (-2 (|:| |particular| (-1280 |#2|)) (|:| -3914 (-653 (-1280 |#2|)))) "failed") (-653 (-301 |#2|)) (-653 (-115)) (-1189))) (-15 -1994 ((-3 (-2 (|:| |particular| (-1280 |#2|)) (|:| -3914 (-653 (-1280 |#2|)))) "failed") (-653 |#2|) (-653 (-115)) (-1189))) (-15 -1994 ((-3 (-2 (|:| |particular| |#2|) (|:| -3914 (-653 |#2|))) |#2| "failed") (-301 |#2|) (-115) (-1189))) (-15 -1994 ((-3 (-2 (|:| |particular| |#2|) (|:| -3914 (-653 |#2|))) |#2| "failed") |#2| (-115) (-1189))) (-15 -1994 ((-3 |#2| "failed") (-301 |#2|) (-115) (-301 |#2|) (-653 |#2|))) (-15 -1994 ((-3 |#2| "failed") |#2| (-115) (-301 |#2|) (-653 |#2|)))) +((-1935 (($) 9)) (-2102 (((-3 (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 30)) (-1762 (((-653 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 27)) (-3181 (($ (-2 (|:| -3692 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387)))))) 24)) (-1364 (($ (-653 (-2 (|:| -3692 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387))))))) 22)) (-3995 (((-1285)) 11))) +(((-812) (-10 -8 (-15 -1935 ($)) (-15 -3995 ((-1285))) (-15 -1762 ((-653 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -1364 ($ (-653 (-2 (|:| -3692 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387)))))))) (-15 -3181 ($ (-2 (|:| -3692 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387))))))) (-15 -2102 ((-3 (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -812)) +((-2102 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387)))) (-5 *1 (-812)))) (-3181 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3692 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387)))))) (-5 *1 (-812)))) (-1364 (*1 *1 *2) (-12 (-5 *2 (-653 (-2 (|:| -3692 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387))))))) (-5 *1 (-812)))) (-1762 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-812)))) (-3995 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-812)))) (-1935 (*1 *1) (-5 *1 (-812)))) +(-10 -8 (-15 -1935 ($)) (-15 -3995 ((-1285))) (-15 -1762 ((-653 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -1364 ($ (-653 (-2 (|:| -3692 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387)))))))) (-15 -3181 ($ (-2 (|:| -3692 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1907 (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387))))))) (-15 -2102 ((-3 (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) (|:| |expense| (-387)) (|:| |accuracy| (-387)) (|:| |intermediateResults| (-387))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-3090 ((|#2| |#2| (-1189)) 17)) (-3130 ((|#2| |#2| (-1189)) 56)) (-3189 (((-1 |#2| |#2|) (-1189)) 11))) +(((-813 |#1| |#2|) (-10 -7 (-15 -3090 (|#2| |#2| (-1189))) (-15 -3130 (|#2| |#2| (-1189))) (-15 -3189 ((-1 |#2| |#2|) (-1189)))) (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148)) (-13 (-29 |#1|) (-1215) (-969))) (T -813)) +((-3189 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-813 *4 *5)) (-4 *5 (-13 (-29 *4) (-1215) (-969))))) (-3130 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *1 (-813 *4 *2)) (-4 *2 (-13 (-29 *4) (-1215) (-969))))) (-3090 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *1 (-813 *4 *2)) (-4 *2 (-13 (-29 *4) (-1215) (-969)))))) +(-10 -7 (-15 -3090 (|#2| |#2| (-1189))) (-15 -3130 (|#2| |#2| (-1189))) (-15 -3189 ((-1 |#2| |#2|) (-1189)))) +((-1994 (((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)) (-323 (-387)) (-653 (-387)) (-387) (-387)) 128) (((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)) (-323 (-387)) (-653 (-387)) (-387)) 129) (((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)) (-653 (-387)) (-387)) 131) (((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)) (-323 (-387)) (-387)) 133) (((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)) (-387)) 134) (((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387))) 136) (((-1047) (-817) (-1075)) 120) (((-1047) (-817)) 121)) (-4223 (((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-817) (-1075)) 80) (((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-817)) 82))) +(((-814) (-10 -7 (-15 -1994 ((-1047) (-817))) (-15 -1994 ((-1047) (-817) (-1075))) (-15 -1994 ((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)))) (-15 -1994 ((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)) (-387))) (-15 -1994 ((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)) (-323 (-387)) (-387))) (-15 -1994 ((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)) (-653 (-387)) (-387))) (-15 -1994 ((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)) (-323 (-387)) (-653 (-387)) (-387))) (-15 -1994 ((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)) (-323 (-387)) (-653 (-387)) (-387) (-387))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-817))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-817) (-1075))))) (T -814)) +((-4223 (*1 *2 *3 *4) (-12 (-5 *3 (-817)) (-5 *4 (-1075)) (-5 *2 (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))))) (-5 *1 (-814)))) (-4223 (*1 *2 *3) (-12 (-5 *3 (-817)) (-5 *2 (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))))) (-5 *1 (-814)))) (-1994 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1280 (-323 *4))) (-5 *5 (-653 (-387))) (-5 *6 (-323 (-387))) (-5 *4 (-387)) (-5 *2 (-1047)) (-5 *1 (-814)))) (-1994 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1280 (-323 *4))) (-5 *5 (-653 (-387))) (-5 *6 (-323 (-387))) (-5 *4 (-387)) (-5 *2 (-1047)) (-5 *1 (-814)))) (-1994 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1280 (-323 (-387)))) (-5 *4 (-387)) (-5 *5 (-653 *4)) (-5 *2 (-1047)) (-5 *1 (-814)))) (-1994 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1280 (-323 *4))) (-5 *5 (-653 (-387))) (-5 *6 (-323 (-387))) (-5 *4 (-387)) (-5 *2 (-1047)) (-5 *1 (-814)))) (-1994 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1280 (-323 (-387)))) (-5 *4 (-387)) (-5 *5 (-653 *4)) (-5 *2 (-1047)) (-5 *1 (-814)))) (-1994 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1280 (-323 (-387)))) (-5 *4 (-387)) (-5 *5 (-653 *4)) (-5 *2 (-1047)) (-5 *1 (-814)))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-817)) (-5 *4 (-1075)) (-5 *2 (-1047)) (-5 *1 (-814)))) (-1994 (*1 *2 *3) (-12 (-5 *3 (-817)) (-5 *2 (-1047)) (-5 *1 (-814))))) +(-10 -7 (-15 -1994 ((-1047) (-817))) (-15 -1994 ((-1047) (-817) (-1075))) (-15 -1994 ((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)))) (-15 -1994 ((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)) (-387))) (-15 -1994 ((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)) (-323 (-387)) (-387))) (-15 -1994 ((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)) (-653 (-387)) (-387))) (-15 -1994 ((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)) (-323 (-387)) (-653 (-387)) (-387))) (-15 -1994 ((-1047) (-1280 (-323 (-387))) (-387) (-387) (-653 (-387)) (-323 (-387)) (-653 (-387)) (-387) (-387))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-817))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-817) (-1075)))) +((-2184 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3914 (-653 |#4|))) (-662 |#4|) |#4|) 33))) +(((-815 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2184 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3914 (-653 |#4|))) (-662 |#4|) |#4|))) (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573)))) (-1256 |#1|) (-1256 (-416 |#2|)) (-350 |#1| |#2| |#3|)) (T -815)) +((-2184 (*1 *2 *3 *4) (-12 (-5 *3 (-662 *4)) (-4 *4 (-350 *5 *6 *7)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-4 *6 (-1256 *5)) (-4 *7 (-1256 (-416 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) (-5 *1 (-815 *5 *6 *7 *4))))) +(-10 -7 (-15 -2184 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3914 (-653 |#4|))) (-662 |#4|) |#4|))) +((-2382 (((-2 (|:| -4122 |#3|) (|:| |rh| (-653 (-416 |#2|)))) |#4| (-653 (-416 |#2|))) 53)) (-4381 (((-653 (-2 (|:| -3358 |#2|) (|:| -2691 |#2|))) |#4| |#2|) 62) (((-653 (-2 (|:| -3358 |#2|) (|:| -2691 |#2|))) |#4|) 61) (((-653 (-2 (|:| -3358 |#2|) (|:| -2691 |#2|))) |#3| |#2|) 20) (((-653 (-2 (|:| -3358 |#2|) (|:| -2691 |#2|))) |#3|) 21)) (-1919 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-4071 ((|#2| |#3| (-653 (-416 |#2|))) 109) (((-3 |#2| "failed") |#3| (-416 |#2|)) 105))) +(((-816 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4071 ((-3 |#2| "failed") |#3| (-416 |#2|))) (-15 -4071 (|#2| |#3| (-653 (-416 |#2|)))) (-15 -4381 ((-653 (-2 (|:| -3358 |#2|) (|:| -2691 |#2|))) |#3|)) (-15 -4381 ((-653 (-2 (|:| -3358 |#2|) (|:| -2691 |#2|))) |#3| |#2|)) (-15 -1919 (|#2| |#3| |#1|)) (-15 -4381 ((-653 (-2 (|:| -3358 |#2|) (|:| -2691 |#2|))) |#4|)) (-15 -4381 ((-653 (-2 (|:| -3358 |#2|) (|:| -2691 |#2|))) |#4| |#2|)) (-15 -1919 (|#2| |#4| |#1|)) (-15 -2382 ((-2 (|:| -4122 |#3|) (|:| |rh| (-653 (-416 |#2|)))) |#4| (-653 (-416 |#2|))))) (-13 (-371) (-148) (-1050 (-416 (-573)))) (-1256 |#1|) (-665 |#2|) (-665 (-416 |#2|))) (T -816)) +((-2382 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *6 (-1256 *5)) (-5 *2 (-2 (|:| -4122 *7) (|:| |rh| (-653 (-416 *6))))) (-5 *1 (-816 *5 *6 *7 *3)) (-5 *4 (-653 (-416 *6))) (-4 *7 (-665 *6)) (-4 *3 (-665 (-416 *6))))) (-1919 (*1 *2 *3 *4) (-12 (-4 *2 (-1256 *4)) (-5 *1 (-816 *4 *2 *5 *3)) (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *5 (-665 *2)) (-4 *3 (-665 (-416 *2))))) (-4381 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *4 (-1256 *5)) (-5 *2 (-653 (-2 (|:| -3358 *4) (|:| -2691 *4)))) (-5 *1 (-816 *5 *4 *6 *3)) (-4 *6 (-665 *4)) (-4 *3 (-665 (-416 *4))))) (-4381 (*1 *2 *3) (-12 (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *5 (-1256 *4)) (-5 *2 (-653 (-2 (|:| -3358 *5) (|:| -2691 *5)))) (-5 *1 (-816 *4 *5 *6 *3)) (-4 *6 (-665 *5)) (-4 *3 (-665 (-416 *5))))) (-1919 (*1 *2 *3 *4) (-12 (-4 *2 (-1256 *4)) (-5 *1 (-816 *4 *2 *3 *5)) (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *3 (-665 *2)) (-4 *5 (-665 (-416 *2))))) (-4381 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *4 (-1256 *5)) (-5 *2 (-653 (-2 (|:| -3358 *4) (|:| -2691 *4)))) (-5 *1 (-816 *5 *4 *3 *6)) (-4 *3 (-665 *4)) (-4 *6 (-665 (-416 *4))))) (-4381 (*1 *2 *3) (-12 (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *5 (-1256 *4)) (-5 *2 (-653 (-2 (|:| -3358 *5) (|:| -2691 *5)))) (-5 *1 (-816 *4 *5 *3 *6)) (-4 *3 (-665 *5)) (-4 *6 (-665 (-416 *5))))) (-4071 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-416 *2))) (-4 *2 (-1256 *5)) (-5 *1 (-816 *5 *2 *3 *6)) (-4 *5 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *3 (-665 *2)) (-4 *6 (-665 (-416 *2))))) (-4071 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-416 *2)) (-4 *2 (-1256 *5)) (-5 *1 (-816 *5 *2 *3 *6)) (-4 *5 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *3 (-665 *2)) (-4 *6 (-665 *4))))) +(-10 -7 (-15 -4071 ((-3 |#2| "failed") |#3| (-416 |#2|))) (-15 -4071 (|#2| |#3| (-653 (-416 |#2|)))) (-15 -4381 ((-653 (-2 (|:| -3358 |#2|) (|:| -2691 |#2|))) |#3|)) (-15 -4381 ((-653 (-2 (|:| -3358 |#2|) (|:| -2691 |#2|))) |#3| |#2|)) (-15 -1919 (|#2| |#3| |#1|)) (-15 -4381 ((-653 (-2 (|:| -3358 |#2|) (|:| -2691 |#2|))) |#4|)) (-15 -4381 ((-653 (-2 (|:| -3358 |#2|) (|:| -2691 |#2|))) |#4| |#2|)) (-15 -1919 (|#2| |#4| |#1|)) (-15 -2382 ((-2 (|:| -4122 |#3|) (|:| |rh| (-653 (-416 |#2|)))) |#4| (-653 (-416 |#2|))))) +((-2848 (((-112) $ $) NIL)) (-2205 (((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $) 13)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 15) (($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 12)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-817) (-13 (-1112) (-10 -8 (-15 -2942 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2205 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))) (T -817)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-817)))) (-2205 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-817))))) +(-13 (-1112) (-10 -8 (-15 -2942 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2205 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $)))) +((-1354 (((-653 (-2 (|:| |frac| (-416 |#2|)) (|:| -4122 |#3|))) |#3| (-1 (-653 |#2|) |#2| (-1185 |#2|)) (-1 (-427 |#2|) |#2|)) 154)) (-3179 (((-653 (-2 (|:| |poly| |#2|) (|:| -4122 |#3|))) |#3| (-1 (-653 |#1|) |#2|)) 52)) (-1332 (((-653 (-2 (|:| |deg| (-780)) (|:| -4122 |#2|))) |#3|) 122)) (-4392 ((|#2| |#3|) 42)) (-3137 (((-653 (-2 (|:| -1705 |#1|) (|:| -4122 |#3|))) |#3| (-1 (-653 |#1|) |#2|)) 99)) (-4096 ((|#3| |#3| (-416 |#2|)) 72) ((|#3| |#3| |#2|) 96))) +(((-818 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4392 (|#2| |#3|)) (-15 -1332 ((-653 (-2 (|:| |deg| (-780)) (|:| -4122 |#2|))) |#3|)) (-15 -3137 ((-653 (-2 (|:| -1705 |#1|) (|:| -4122 |#3|))) |#3| (-1 (-653 |#1|) |#2|))) (-15 -3179 ((-653 (-2 (|:| |poly| |#2|) (|:| -4122 |#3|))) |#3| (-1 (-653 |#1|) |#2|))) (-15 -1354 ((-653 (-2 (|:| |frac| (-416 |#2|)) (|:| -4122 |#3|))) |#3| (-1 (-653 |#2|) |#2| (-1185 |#2|)) (-1 (-427 |#2|) |#2|))) (-15 -4096 (|#3| |#3| |#2|)) (-15 -4096 (|#3| |#3| (-416 |#2|)))) (-13 (-371) (-148) (-1050 (-416 (-573)))) (-1256 |#1|) (-665 |#2|) (-665 (-416 |#2|))) (T -818)) +((-4096 (*1 *2 *2 *3) (-12 (-5 *3 (-416 *5)) (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *5 (-1256 *4)) (-5 *1 (-818 *4 *5 *2 *6)) (-4 *2 (-665 *5)) (-4 *6 (-665 *3)))) (-4096 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *3 (-1256 *4)) (-5 *1 (-818 *4 *3 *2 *5)) (-4 *2 (-665 *3)) (-4 *5 (-665 (-416 *3))))) (-1354 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-653 *7) *7 (-1185 *7))) (-5 *5 (-1 (-427 *7) *7)) (-4 *7 (-1256 *6)) (-4 *6 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-5 *2 (-653 (-2 (|:| |frac| (-416 *7)) (|:| -4122 *3)))) (-5 *1 (-818 *6 *7 *3 *8)) (-4 *3 (-665 *7)) (-4 *8 (-665 (-416 *7))))) (-3179 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-653 *5) *6)) (-4 *5 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *6 (-1256 *5)) (-5 *2 (-653 (-2 (|:| |poly| *6) (|:| -4122 *3)))) (-5 *1 (-818 *5 *6 *3 *7)) (-4 *3 (-665 *6)) (-4 *7 (-665 (-416 *6))))) (-3137 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-653 *5) *6)) (-4 *5 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *6 (-1256 *5)) (-5 *2 (-653 (-2 (|:| -1705 *5) (|:| -4122 *3)))) (-5 *1 (-818 *5 *6 *3 *7)) (-4 *3 (-665 *6)) (-4 *7 (-665 (-416 *6))))) (-1332 (*1 *2 *3) (-12 (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *5 (-1256 *4)) (-5 *2 (-653 (-2 (|:| |deg| (-780)) (|:| -4122 *5)))) (-5 *1 (-818 *4 *5 *3 *6)) (-4 *3 (-665 *5)) (-4 *6 (-665 (-416 *5))))) (-4392 (*1 *2 *3) (-12 (-4 *2 (-1256 *4)) (-5 *1 (-818 *4 *2 *3 *5)) (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *3 (-665 *2)) (-4 *5 (-665 (-416 *2)))))) +(-10 -7 (-15 -4392 (|#2| |#3|)) (-15 -1332 ((-653 (-2 (|:| |deg| (-780)) (|:| -4122 |#2|))) |#3|)) (-15 -3137 ((-653 (-2 (|:| -1705 |#1|) (|:| -4122 |#3|))) |#3| (-1 (-653 |#1|) |#2|))) (-15 -3179 ((-653 (-2 (|:| |poly| |#2|) (|:| -4122 |#3|))) |#3| (-1 (-653 |#1|) |#2|))) (-15 -1354 ((-653 (-2 (|:| |frac| (-416 |#2|)) (|:| -4122 |#3|))) |#3| (-1 (-653 |#2|) |#2| (-1185 |#2|)) (-1 (-427 |#2|) |#2|))) (-15 -4096 (|#3| |#3| |#2|)) (-15 -4096 (|#3| |#3| (-416 |#2|)))) +((-2317 (((-2 (|:| -3914 (-653 (-416 |#2|))) (|:| -1423 (-698 |#1|))) (-663 |#2| (-416 |#2|)) (-653 (-416 |#2|))) 147) (((-2 (|:| |particular| (-3 (-416 |#2|) "failed")) (|:| -3914 (-653 (-416 |#2|)))) (-663 |#2| (-416 |#2|)) (-416 |#2|)) 146) (((-2 (|:| -3914 (-653 (-416 |#2|))) (|:| -1423 (-698 |#1|))) (-662 (-416 |#2|)) (-653 (-416 |#2|))) 141) (((-2 (|:| |particular| (-3 (-416 |#2|) "failed")) (|:| -3914 (-653 (-416 |#2|)))) (-662 (-416 |#2|)) (-416 |#2|)) 139)) (-3184 ((|#2| (-663 |#2| (-416 |#2|))) 88) ((|#2| (-662 (-416 |#2|))) 91))) +(((-819 |#1| |#2|) (-10 -7 (-15 -2317 ((-2 (|:| |particular| (-3 (-416 |#2|) "failed")) (|:| -3914 (-653 (-416 |#2|)))) (-662 (-416 |#2|)) (-416 |#2|))) (-15 -2317 ((-2 (|:| -3914 (-653 (-416 |#2|))) (|:| -1423 (-698 |#1|))) (-662 (-416 |#2|)) (-653 (-416 |#2|)))) (-15 -2317 ((-2 (|:| |particular| (-3 (-416 |#2|) "failed")) (|:| -3914 (-653 (-416 |#2|)))) (-663 |#2| (-416 |#2|)) (-416 |#2|))) (-15 -2317 ((-2 (|:| -3914 (-653 (-416 |#2|))) (|:| -1423 (-698 |#1|))) (-663 |#2| (-416 |#2|)) (-653 (-416 |#2|)))) (-15 -3184 (|#2| (-662 (-416 |#2|)))) (-15 -3184 (|#2| (-663 |#2| (-416 |#2|))))) (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573)))) (-1256 |#1|)) (T -819)) +((-3184 (*1 *2 *3) (-12 (-5 *3 (-663 *2 (-416 *2))) (-4 *2 (-1256 *4)) (-5 *1 (-819 *4 *2)) (-4 *4 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-662 (-416 *2))) (-4 *2 (-1256 *4)) (-5 *1 (-819 *4 *2)) (-4 *4 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))))) (-2317 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *6 (-416 *6))) (-4 *6 (-1256 *5)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-5 *2 (-2 (|:| -3914 (-653 (-416 *6))) (|:| -1423 (-698 *5)))) (-5 *1 (-819 *5 *6)) (-5 *4 (-653 (-416 *6))))) (-2317 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *6 (-416 *6))) (-5 *4 (-416 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) (-5 *1 (-819 *5 *6)))) (-2317 (*1 *2 *3 *4) (-12 (-5 *3 (-662 (-416 *6))) (-4 *6 (-1256 *5)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-5 *2 (-2 (|:| -3914 (-653 (-416 *6))) (|:| -1423 (-698 *5)))) (-5 *1 (-819 *5 *6)) (-5 *4 (-653 (-416 *6))))) (-2317 (*1 *2 *3 *4) (-12 (-5 *3 (-662 (-416 *6))) (-5 *4 (-416 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) (-5 *1 (-819 *5 *6))))) +(-10 -7 (-15 -2317 ((-2 (|:| |particular| (-3 (-416 |#2|) "failed")) (|:| -3914 (-653 (-416 |#2|)))) (-662 (-416 |#2|)) (-416 |#2|))) (-15 -2317 ((-2 (|:| -3914 (-653 (-416 |#2|))) (|:| -1423 (-698 |#1|))) (-662 (-416 |#2|)) (-653 (-416 |#2|)))) (-15 -2317 ((-2 (|:| |particular| (-3 (-416 |#2|) "failed")) (|:| -3914 (-653 (-416 |#2|)))) (-663 |#2| (-416 |#2|)) (-416 |#2|))) (-15 -2317 ((-2 (|:| -3914 (-653 (-416 |#2|))) (|:| -1423 (-698 |#1|))) (-663 |#2| (-416 |#2|)) (-653 (-416 |#2|)))) (-15 -3184 (|#2| (-662 (-416 |#2|)))) (-15 -3184 (|#2| (-663 |#2| (-416 |#2|))))) +((-3745 (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#1|))) |#5| |#4|) 49))) +(((-820 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3745 ((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#1|))) |#5| |#4|))) (-371) (-665 |#1|) (-1256 |#1|) (-733 |#1| |#3|) (-665 |#4|)) (T -820)) +((-3745 (*1 *2 *3 *4) (-12 (-4 *5 (-371)) (-4 *7 (-1256 *5)) (-4 *4 (-733 *5 *7)) (-5 *2 (-2 (|:| -1423 (-698 *6)) (|:| |vec| (-1280 *5)))) (-5 *1 (-820 *5 *6 *7 *4 *3)) (-4 *6 (-665 *5)) (-4 *3 (-665 *4))))) +(-10 -7 (-15 -3745 ((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#1|))) |#5| |#4|))) +((-1354 (((-653 (-2 (|:| |frac| (-416 |#2|)) (|:| -4122 (-663 |#2| (-416 |#2|))))) (-663 |#2| (-416 |#2|)) (-1 (-427 |#2|) |#2|)) 47)) (-3960 (((-653 (-416 |#2|)) (-663 |#2| (-416 |#2|)) (-1 (-427 |#2|) |#2|)) 167 (|has| |#1| (-27))) (((-653 (-416 |#2|)) (-663 |#2| (-416 |#2|))) 164 (|has| |#1| (-27))) (((-653 (-416 |#2|)) (-662 (-416 |#2|)) (-1 (-427 |#2|) |#2|)) 168 (|has| |#1| (-27))) (((-653 (-416 |#2|)) (-662 (-416 |#2|))) 166 (|has| |#1| (-27))) (((-653 (-416 |#2|)) (-663 |#2| (-416 |#2|)) (-1 (-653 |#1|) |#2|) (-1 (-427 |#2|) |#2|)) 38) (((-653 (-416 |#2|)) (-663 |#2| (-416 |#2|)) (-1 (-653 |#1|) |#2|)) 39) (((-653 (-416 |#2|)) (-662 (-416 |#2|)) (-1 (-653 |#1|) |#2|) (-1 (-427 |#2|) |#2|)) 36) (((-653 (-416 |#2|)) (-662 (-416 |#2|)) (-1 (-653 |#1|) |#2|)) 37)) (-3179 (((-653 (-2 (|:| |poly| |#2|) (|:| -4122 (-663 |#2| (-416 |#2|))))) (-663 |#2| (-416 |#2|)) (-1 (-653 |#1|) |#2|)) 96))) +(((-821 |#1| |#2|) (-10 -7 (-15 -3960 ((-653 (-416 |#2|)) (-662 (-416 |#2|)) (-1 (-653 |#1|) |#2|))) (-15 -3960 ((-653 (-416 |#2|)) (-662 (-416 |#2|)) (-1 (-653 |#1|) |#2|) (-1 (-427 |#2|) |#2|))) (-15 -3960 ((-653 (-416 |#2|)) (-663 |#2| (-416 |#2|)) (-1 (-653 |#1|) |#2|))) (-15 -3960 ((-653 (-416 |#2|)) (-663 |#2| (-416 |#2|)) (-1 (-653 |#1|) |#2|) (-1 (-427 |#2|) |#2|))) (-15 -1354 ((-653 (-2 (|:| |frac| (-416 |#2|)) (|:| -4122 (-663 |#2| (-416 |#2|))))) (-663 |#2| (-416 |#2|)) (-1 (-427 |#2|) |#2|))) (-15 -3179 ((-653 (-2 (|:| |poly| |#2|) (|:| -4122 (-663 |#2| (-416 |#2|))))) (-663 |#2| (-416 |#2|)) (-1 (-653 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3960 ((-653 (-416 |#2|)) (-662 (-416 |#2|)))) (-15 -3960 ((-653 (-416 |#2|)) (-662 (-416 |#2|)) (-1 (-427 |#2|) |#2|))) (-15 -3960 ((-653 (-416 |#2|)) (-663 |#2| (-416 |#2|)))) (-15 -3960 ((-653 (-416 |#2|)) (-663 |#2| (-416 |#2|)) (-1 (-427 |#2|) |#2|)))) |%noBranch|)) (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573)))) (-1256 |#1|)) (T -821)) +((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *6 (-416 *6))) (-5 *4 (-1 (-427 *6) *6)) (-4 *6 (-1256 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-5 *2 (-653 (-416 *6))) (-5 *1 (-821 *5 *6)))) (-3960 (*1 *2 *3) (-12 (-5 *3 (-663 *5 (-416 *5))) (-4 *5 (-1256 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-5 *2 (-653 (-416 *5))) (-5 *1 (-821 *4 *5)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-662 (-416 *6))) (-5 *4 (-1 (-427 *6) *6)) (-4 *6 (-1256 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-5 *2 (-653 (-416 *6))) (-5 *1 (-821 *5 *6)))) (-3960 (*1 *2 *3) (-12 (-5 *3 (-662 (-416 *5))) (-4 *5 (-1256 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-5 *2 (-653 (-416 *5))) (-5 *1 (-821 *4 *5)))) (-3179 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-653 *5) *6)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-4 *6 (-1256 *5)) (-5 *2 (-653 (-2 (|:| |poly| *6) (|:| -4122 (-663 *6 (-416 *6)))))) (-5 *1 (-821 *5 *6)) (-5 *3 (-663 *6 (-416 *6))))) (-1354 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-427 *6) *6)) (-4 *6 (-1256 *5)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-5 *2 (-653 (-2 (|:| |frac| (-416 *6)) (|:| -4122 (-663 *6 (-416 *6)))))) (-5 *1 (-821 *5 *6)) (-5 *3 (-663 *6 (-416 *6))))) (-3960 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *7 (-416 *7))) (-5 *4 (-1 (-653 *6) *7)) (-5 *5 (-1 (-427 *7) *7)) (-4 *6 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-4 *7 (-1256 *6)) (-5 *2 (-653 (-416 *7))) (-5 *1 (-821 *6 *7)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *6 (-416 *6))) (-5 *4 (-1 (-653 *5) *6)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-4 *6 (-1256 *5)) (-5 *2 (-653 (-416 *6))) (-5 *1 (-821 *5 *6)))) (-3960 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-662 (-416 *7))) (-5 *4 (-1 (-653 *6) *7)) (-5 *5 (-1 (-427 *7) *7)) (-4 *6 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-4 *7 (-1256 *6)) (-5 *2 (-653 (-416 *7))) (-5 *1 (-821 *6 *7)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-662 (-416 *6))) (-5 *4 (-1 (-653 *5) *6)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-4 *6 (-1256 *5)) (-5 *2 (-653 (-416 *6))) (-5 *1 (-821 *5 *6))))) +(-10 -7 (-15 -3960 ((-653 (-416 |#2|)) (-662 (-416 |#2|)) (-1 (-653 |#1|) |#2|))) (-15 -3960 ((-653 (-416 |#2|)) (-662 (-416 |#2|)) (-1 (-653 |#1|) |#2|) (-1 (-427 |#2|) |#2|))) (-15 -3960 ((-653 (-416 |#2|)) (-663 |#2| (-416 |#2|)) (-1 (-653 |#1|) |#2|))) (-15 -3960 ((-653 (-416 |#2|)) (-663 |#2| (-416 |#2|)) (-1 (-653 |#1|) |#2|) (-1 (-427 |#2|) |#2|))) (-15 -1354 ((-653 (-2 (|:| |frac| (-416 |#2|)) (|:| -4122 (-663 |#2| (-416 |#2|))))) (-663 |#2| (-416 |#2|)) (-1 (-427 |#2|) |#2|))) (-15 -3179 ((-653 (-2 (|:| |poly| |#2|) (|:| -4122 (-663 |#2| (-416 |#2|))))) (-663 |#2| (-416 |#2|)) (-1 (-653 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3960 ((-653 (-416 |#2|)) (-662 (-416 |#2|)))) (-15 -3960 ((-653 (-416 |#2|)) (-662 (-416 |#2|)) (-1 (-427 |#2|) |#2|))) (-15 -3960 ((-653 (-416 |#2|)) (-663 |#2| (-416 |#2|)))) (-15 -3960 ((-653 (-416 |#2|)) (-663 |#2| (-416 |#2|)) (-1 (-427 |#2|) |#2|)))) |%noBranch|)) +((-2058 (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#1|))) (-698 |#2|) (-1280 |#1|)) 110) (((-2 (|:| A (-698 |#1|)) (|:| |eqs| (-653 (-2 (|:| C (-698 |#1|)) (|:| |g| (-1280 |#1|)) (|:| -4122 |#2|) (|:| |rh| |#1|))))) (-698 |#1|) (-1280 |#1|)) 15)) (-2298 (((-2 (|:| |particular| (-3 (-1280 |#1|) "failed")) (|:| -3914 (-653 (-1280 |#1|)))) (-698 |#2|) (-1280 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3914 (-653 |#1|))) |#2| |#1|)) 116)) (-1994 (((-3 (-2 (|:| |particular| (-1280 |#1|)) (|:| -3914 (-698 |#1|))) "failed") (-698 |#1|) (-1280 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3914 (-653 |#1|))) "failed") |#2| |#1|)) 54))) +(((-822 |#1| |#2|) (-10 -7 (-15 -2058 ((-2 (|:| A (-698 |#1|)) (|:| |eqs| (-653 (-2 (|:| C (-698 |#1|)) (|:| |g| (-1280 |#1|)) (|:| -4122 |#2|) (|:| |rh| |#1|))))) (-698 |#1|) (-1280 |#1|))) (-15 -2058 ((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#1|))) (-698 |#2|) (-1280 |#1|))) (-15 -1994 ((-3 (-2 (|:| |particular| (-1280 |#1|)) (|:| -3914 (-698 |#1|))) "failed") (-698 |#1|) (-1280 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3914 (-653 |#1|))) "failed") |#2| |#1|))) (-15 -2298 ((-2 (|:| |particular| (-3 (-1280 |#1|) "failed")) (|:| -3914 (-653 (-1280 |#1|)))) (-698 |#2|) (-1280 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3914 (-653 |#1|))) |#2| |#1|)))) (-371) (-665 |#1|)) (T -822)) +((-2298 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-698 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3914 (-653 *6))) *7 *6)) (-4 *6 (-371)) (-4 *7 (-665 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1280 *6) "failed")) (|:| -3914 (-653 (-1280 *6))))) (-5 *1 (-822 *6 *7)) (-5 *4 (-1280 *6)))) (-1994 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3914 (-653 *6))) "failed") *7 *6)) (-4 *6 (-371)) (-4 *7 (-665 *6)) (-5 *2 (-2 (|:| |particular| (-1280 *6)) (|:| -3914 (-698 *6)))) (-5 *1 (-822 *6 *7)) (-5 *3 (-698 *6)) (-5 *4 (-1280 *6)))) (-2058 (*1 *2 *3 *4) (-12 (-4 *5 (-371)) (-4 *6 (-665 *5)) (-5 *2 (-2 (|:| -1423 (-698 *6)) (|:| |vec| (-1280 *5)))) (-5 *1 (-822 *5 *6)) (-5 *3 (-698 *6)) (-5 *4 (-1280 *5)))) (-2058 (*1 *2 *3 *4) (-12 (-4 *5 (-371)) (-5 *2 (-2 (|:| A (-698 *5)) (|:| |eqs| (-653 (-2 (|:| C (-698 *5)) (|:| |g| (-1280 *5)) (|:| -4122 *6) (|:| |rh| *5)))))) (-5 *1 (-822 *5 *6)) (-5 *3 (-698 *5)) (-5 *4 (-1280 *5)) (-4 *6 (-665 *5))))) +(-10 -7 (-15 -2058 ((-2 (|:| A (-698 |#1|)) (|:| |eqs| (-653 (-2 (|:| C (-698 |#1|)) (|:| |g| (-1280 |#1|)) (|:| -4122 |#2|) (|:| |rh| |#1|))))) (-698 |#1|) (-1280 |#1|))) (-15 -2058 ((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#1|))) (-698 |#2|) (-1280 |#1|))) (-15 -1994 ((-3 (-2 (|:| |particular| (-1280 |#1|)) (|:| -3914 (-698 |#1|))) "failed") (-698 |#1|) (-1280 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3914 (-653 |#1|))) "failed") |#2| |#1|))) (-15 -2298 ((-2 (|:| |particular| (-3 (-1280 |#1|) "failed")) (|:| -3914 (-653 (-1280 |#1|)))) (-698 |#2|) (-1280 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3914 (-653 |#1|))) |#2| |#1|)))) +((-3585 (((-698 |#1|) (-653 |#1|) (-780)) 14) (((-698 |#1|) (-653 |#1|)) 15)) (-3497 (((-3 (-1280 |#1|) "failed") |#2| |#1| (-653 |#1|)) 39)) (-1460 (((-3 |#1| "failed") |#2| |#1| (-653 |#1|) (-1 |#1| |#1|)) 46))) +(((-823 |#1| |#2|) (-10 -7 (-15 -3585 ((-698 |#1|) (-653 |#1|))) (-15 -3585 ((-698 |#1|) (-653 |#1|) (-780))) (-15 -3497 ((-3 (-1280 |#1|) "failed") |#2| |#1| (-653 |#1|))) (-15 -1460 ((-3 |#1| "failed") |#2| |#1| (-653 |#1|) (-1 |#1| |#1|)))) (-371) (-665 |#1|)) (T -823)) +((-1460 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-653 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-371)) (-5 *1 (-823 *2 *3)) (-4 *3 (-665 *2)))) (-3497 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-653 *4)) (-4 *4 (-371)) (-5 *2 (-1280 *4)) (-5 *1 (-823 *4 *3)) (-4 *3 (-665 *4)))) (-3585 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *5)) (-5 *4 (-780)) (-4 *5 (-371)) (-5 *2 (-698 *5)) (-5 *1 (-823 *5 *6)) (-4 *6 (-665 *5)))) (-3585 (*1 *2 *3) (-12 (-5 *3 (-653 *4)) (-4 *4 (-371)) (-5 *2 (-698 *4)) (-5 *1 (-823 *4 *5)) (-4 *5 (-665 *4))))) +(-10 -7 (-15 -3585 ((-698 |#1|) (-653 |#1|))) (-15 -3585 ((-698 |#1|) (-653 |#1|) (-780))) (-15 -3497 ((-3 (-1280 |#1|) "failed") |#2| |#1| (-653 |#1|))) (-15 -1460 ((-3 |#1| "failed") |#2| |#1| (-653 |#1|) (-1 |#1| |#1|)))) +((-2848 (((-112) $ $) NIL (|has| |#2| (-1112)))) (-1748 (((-112) $) NIL (|has| |#2| (-132)))) (-3690 (($ (-931)) NIL (|has| |#2| (-1061)))) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-3280 (($ $ $) NIL (|has| |#2| (-802)))) (-2983 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-3450 (((-112) $ (-780)) NIL)) (-1486 (((-780)) NIL (|has| |#2| (-376)))) (-1983 (((-573) $) NIL (|has| |#2| (-857)))) (-3142 ((|#2| $ (-573) |#2|) NIL (|has| $ (-6 -4456)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL (-12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112)))) (((-3 (-416 (-573)) "failed") $) NIL (-12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1112)))) (-2205 (((-573) $) NIL (-12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112)))) (((-416 (-573)) $) NIL (-12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) ((|#2| $) NIL (|has| |#2| (-1112)))) (-2759 (((-698 (-573)) (-1280 $)) NIL (-12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) (((-698 (-573)) (-698 $)) NIL (-12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (-12 (|has| |#2| (-648 (-573))) (|has| |#2| (-1061)))) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) NIL (|has| |#2| (-1061))) (((-698 |#2|) (-698 $)) NIL (|has| |#2| (-1061))) (((-698 |#2|) (-1280 $)) NIL (|has| |#2| (-1061)))) (-2232 (((-3 $ "failed") $) NIL (|has| |#2| (-735)))) (-2819 (($) NIL (|has| |#2| (-376)))) (-2457 ((|#2| $ (-573) |#2|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#2| $ (-573)) NIL)) (-4152 (((-112) $) NIL (|has| |#2| (-857)))) (-1863 (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-1959 (((-112) $) NIL (|has| |#2| (-735)))) (-3339 (((-112) $) NIL (|has| |#2| (-857)))) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) NIL (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-3214 (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-2446 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-3589 (((-931) $) NIL (|has| |#2| (-376)))) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#2| (-1112)))) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-2575 (($ (-931)) NIL (|has| |#2| (-376)))) (-3965 (((-1132) $) NIL (|has| |#2| (-1112)))) (-2914 ((|#2| $) NIL (|has| (-573) (-859)))) (-3112 (($ $ |#2|) NIL (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#2|))) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-1535 (((-653 |#2|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#2| $ (-573) |#2|) NIL) ((|#2| $ (-573)) NIL)) (-2658 ((|#2| $ $) NIL (|has| |#2| (-1061)))) (-4260 (($ (-1280 |#2|)) NIL)) (-2365 (((-135)) NIL (|has| |#2| (-371)))) (-3904 (($ $ (-780)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $ (-1189)) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1 |#2| |#2|) (-780)) NIL (|has| |#2| (-1061))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1061)))) (-3974 (((-780) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455))) (((-780) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3166 (($ $) NIL)) (-2942 (((-1280 |#2|) $) NIL) (($ (-573)) NIL (-2817 (-12 (|has| |#2| (-1050 (-573))) (|has| |#2| (-1112))) (|has| |#2| (-1061)))) (($ (-416 (-573))) NIL (-12 (|has| |#2| (-1050 (-416 (-573)))) (|has| |#2| (-1112)))) (($ |#2|) NIL (|has| |#2| (-1112))) (((-871) $) NIL (|has| |#2| (-622 (-871))))) (-1545 (((-780)) NIL (|has| |#2| (-1061)) CONST)) (-3507 (((-112) $ $) NIL (|has| |#2| (-1112)))) (-1646 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-1660 (($ $) NIL (|has| |#2| (-857)))) (-2132 (($) NIL (|has| |#2| (-132)) CONST)) (-2144 (($) NIL (|has| |#2| (-735)) CONST)) (-3609 (($ $ (-780)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1061)))) (($ $ (-1189)) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#2| (-910 (-1189))) (|has| |#2| (-1061)))) (($ $ (-1 |#2| |#2|) (-780)) NIL (|has| |#2| (-1061))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1061)))) (-3040 (((-112) $ $) NIL (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-3015 (((-112) $ $) NIL (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-2981 (((-112) $ $) NIL (|has| |#2| (-1112)))) (-3027 (((-112) $ $) NIL (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-3005 (((-112) $ $) 11 (-2817 (|has| |#2| (-802)) (|has| |#2| (-857))))) (-3103 (($ $ |#2|) NIL (|has| |#2| (-371)))) (-3093 (($ $ $) NIL (|has| |#2| (-1061))) (($ $) NIL (|has| |#2| (-1061)))) (-3077 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-780)) NIL (|has| |#2| (-735))) (($ $ (-931)) NIL (|has| |#2| (-735)))) (* (($ (-573) $) NIL (|has| |#2| (-1061))) (($ $ $) NIL (|has| |#2| (-735))) (($ $ |#2|) NIL (|has| |#2| (-735))) (($ |#2| $) NIL (|has| |#2| (-735))) (($ (-780) $) NIL (|has| |#2| (-132))) (($ (-931) $) NIL (|has| |#2| (-25)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-824 |#1| |#2| |#3|) (-243 |#1| |#2|) (-780) (-802) (-1 (-112) (-1280 |#2|) (-1280 |#2|))) (T -824)) +NIL +(-243 |#1| |#2|) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2438 (((-653 (-780)) $) NIL) (((-653 (-780)) $ (-1189)) NIL)) (-3447 (((-780) $) NIL) (((-780) $ (-1189)) NIL)) (-4354 (((-653 (-827 (-1189))) $) NIL)) (-4193 (((-1185 $) $ (-827 (-1189))) NIL) (((-1185 |#1|) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-2769 (((-780) $) NIL) (((-780) $ (-653 (-827 (-1189)))) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4285 (($ $) NIL (|has| |#1| (-461)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-1730 (($ $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-827 (-1189)) "failed") $) NIL) (((-3 (-1189) "failed") $) NIL) (((-3 (-1137 |#1| (-1189)) "failed") $) NIL)) (-2205 ((|#1| $) NIL) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-827 (-1189)) $) NIL) (((-1189) $) NIL) (((-1137 |#1| (-1189)) $) NIL)) (-2277 (($ $ $ (-827 (-1189))) NIL (|has| |#1| (-174)))) (-1391 (($ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) NIL) (((-698 |#1|) (-698 $)) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#1| (-461))) (($ $ (-827 (-1189))) NIL (|has| |#1| (-461)))) (-1379 (((-653 $) $) NIL)) (-2696 (((-112) $) NIL (|has| |#1| (-919)))) (-2343 (($ $ |#1| (-540 (-827 (-1189))) $) NIL)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| (-827 (-1189)) (-896 (-387))) (|has| |#1| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| (-827 (-1189)) (-896 (-573))) (|has| |#1| (-896 (-573)))))) (-2534 (((-780) $ (-1189)) NIL) (((-780) $) NIL)) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) NIL)) (-4344 (($ (-1185 |#1|) (-827 (-1189))) NIL) (($ (-1185 $) (-827 (-1189))) NIL)) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-540 (-827 (-1189)))) NIL) (($ $ (-827 (-1189)) (-780)) NIL) (($ $ (-653 (-827 (-1189))) (-653 (-780))) NIL)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ (-827 (-1189))) NIL)) (-4036 (((-540 (-827 (-1189))) $) NIL) (((-780) $ (-827 (-1189))) NIL) (((-653 (-780)) $ (-653 (-827 (-1189)))) NIL)) (-1382 (($ (-1 (-540 (-827 (-1189))) (-540 (-827 (-1189)))) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3844 (((-1 $ (-780)) (-1189)) NIL) (((-1 $ (-780)) $) NIL (|has| |#1| (-238)))) (-1453 (((-3 (-827 (-1189)) "failed") $) NIL)) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-3705 (((-827 (-1189)) $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-3180 (((-1171) $) NIL)) (-2069 (((-112) $) NIL)) (-4082 (((-3 (-653 $) "failed") $) NIL)) (-2586 (((-3 (-653 $) "failed") $) NIL)) (-2573 (((-3 (-2 (|:| |var| (-827 (-1189))) (|:| -3907 (-780))) "failed") $) NIL)) (-2590 (($ $) NIL)) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) NIL)) (-1348 ((|#1| $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-461)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4218 (((-427 $) $) NIL (|has| |#1| (-919)))) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-565)))) (-2645 (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-827 (-1189)) |#1|) NIL) (($ $ (-653 (-827 (-1189))) (-653 |#1|)) NIL) (($ $ (-827 (-1189)) $) NIL) (($ $ (-653 (-827 (-1189))) (-653 $)) NIL) (($ $ (-1189) $) NIL (|has| |#1| (-238))) (($ $ (-653 (-1189)) (-653 $)) NIL (|has| |#1| (-238))) (($ $ (-1189) |#1|) NIL (|has| |#1| (-238))) (($ $ (-653 (-1189)) (-653 |#1|)) NIL (|has| |#1| (-238)))) (-3592 (($ $ (-827 (-1189))) NIL (|has| |#1| (-174)))) (-3904 (($ $ (-827 (-1189))) NIL) (($ $ (-653 (-827 (-1189)))) NIL) (($ $ (-827 (-1189)) (-780)) NIL) (($ $ (-653 (-827 (-1189))) (-653 (-780))) NIL) (($ $ (-780)) NIL (|has| |#1| (-238))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2813 (((-653 (-1189)) $) NIL)) (-2565 (((-540 (-827 (-1189))) $) NIL) (((-780) $ (-827 (-1189))) NIL) (((-653 (-780)) $ (-653 (-827 (-1189)))) NIL) (((-780) $ (-1189)) NIL)) (-1835 (((-902 (-387)) $) NIL (-12 (|has| (-827 (-1189)) (-623 (-902 (-387)))) (|has| |#1| (-623 (-902 (-387)))))) (((-902 (-573)) $) NIL (-12 (|has| (-827 (-1189)) (-623 (-902 (-573)))) (|has| |#1| (-623 (-902 (-573)))))) (((-545) $) NIL (-12 (|has| (-827 (-1189)) (-623 (-545))) (|has| |#1| (-623 (-545)))))) (-3257 ((|#1| $) NIL (|has| |#1| (-461))) (($ $ (-827 (-1189))) NIL (|has| |#1| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-919))))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#1|) NIL) (($ (-827 (-1189))) NIL) (($ (-1189)) NIL) (($ (-1137 |#1| (-1189))) NIL) (($ (-416 (-573))) NIL (-2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573)))))) (($ $) NIL (|has| |#1| (-565)))) (-1920 (((-653 |#1|) $) NIL)) (-4317 ((|#1| $ (-540 (-827 (-1189)))) NIL) (($ $ (-827 (-1189)) (-780)) NIL) (($ $ (-653 (-827 (-1189))) (-653 (-780))) NIL)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#1| (-919))) (|has| |#1| (-146))))) (-1545 (((-780)) NIL T CONST)) (-1538 (($ $ $ (-780)) NIL (|has| |#1| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-827 (-1189))) NIL) (($ $ (-653 (-827 (-1189)))) NIL) (($ $ (-827 (-1189)) (-780)) NIL) (($ $ (-653 (-827 (-1189))) (-653 (-780))) NIL) (($ $ (-780)) NIL (|has| |#1| (-238))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-825 |#1|) (-13 (-259 |#1| (-1189) (-827 (-1189)) (-540 (-827 (-1189)))) (-1050 (-1137 |#1| (-1189)))) (-1061)) (T -825)) +NIL +(-13 (-259 |#1| (-1189) (-827 (-1189)) (-540 (-827 (-1189)))) (-1050 (-1137 |#1| (-1189)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#2| (-371)))) (-2456 (($ $) NIL (|has| |#2| (-371)))) (-1345 (((-112) $) NIL (|has| |#2| (-371)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL (|has| |#2| (-371)))) (-2427 (((-427 $) $) NIL (|has| |#2| (-371)))) (-2800 (((-112) $ $) NIL (|has| |#2| (-371)))) (-2579 (($) NIL T CONST)) (-2784 (($ $ $) NIL (|has| |#2| (-371)))) (-2232 (((-3 $ "failed") $) NIL)) (-2796 (($ $ $) NIL (|has| |#2| (-371)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#2| (-371)))) (-2696 (((-112) $) NIL (|has| |#2| (-371)))) (-1959 (((-112) $) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#2| (-371)))) (-2829 (($ (-653 $)) NIL (|has| |#2| (-371))) (($ $ $) NIL (|has| |#2| (-371)))) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 20 (|has| |#2| (-371)))) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#2| (-371)))) (-2872 (($ (-653 $)) NIL (|has| |#2| (-371))) (($ $ $) NIL (|has| |#2| (-371)))) (-4218 (((-427 $) $) NIL (|has| |#2| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#2| (-371)))) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#2| (-371)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#2| (-371)))) (-2163 (((-780) $) NIL (|has| |#2| (-371)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#2| (-371)))) (-3904 (($ $) 13) (($ $ (-780)) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-416 (-573))) NIL (|has| |#2| (-371))) (($ $) NIL (|has| |#2| (-371)))) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#2| (-371)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $) NIL) (($ $ (-780)) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) 15 (|has| |#2| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-780)) NIL) (($ $ (-931)) NIL) (($ $ (-573)) 18 (|has| |#2| (-371)))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-416 (-573)) $) NIL (|has| |#2| (-371))) (($ $ (-416 (-573))) NIL (|has| |#2| (-371))))) +(((-826 |#1| |#2| |#3|) (-13 (-111 $ $) (-238) (-499 |#2|) (-10 -7 (IF (|has| |#2| (-371)) (-6 (-371)) |%noBranch|))) (-1112) (-910 |#1|) |#1|) (T -826)) +NIL +(-13 (-111 $ $) (-238) (-499 |#2|) (-10 -7 (IF (|has| |#2| (-371)) (-6 (-371)) |%noBranch|))) +((-2848 (((-112) $ $) NIL)) (-3447 (((-780) $) NIL)) (-1487 ((|#1| $) 10)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2205 ((|#1| $) NIL)) (-2534 (((-780) $) 11)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-3844 (($ |#1| (-780)) 9)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-3904 (($ $ (-780)) NIL) (($ $) NIL)) (-2942 (((-871) $) NIL) (($ |#1|) NIL)) (-3507 (((-112) $ $) NIL)) (-3609 (($ $ (-780)) NIL) (($ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL))) +(((-827 |#1|) (-272 |#1|) (-859)) (T -827)) +NIL +(-272 |#1|) +((-2848 (((-112) $ $) NIL)) (-1653 (((-653 |#1|) $) 38)) (-1486 (((-780) $) NIL)) (-2579 (($) NIL T CONST)) (-1680 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2205 ((|#1| $) NIL)) (-2925 (($ $) 42)) (-2232 (((-3 $ "failed") $) NIL)) (-3708 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-1959 (((-112) $) NIL)) (-2841 ((|#1| $ (-573)) NIL)) (-3884 (((-780) $ (-573)) NIL)) (-4386 (($ $) 54)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-1911 (($ (-1 |#1| |#1|) $) NIL)) (-3584 (($ (-1 (-780) (-780)) $) NIL)) (-1435 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-2580 (((-112) $ $) 51)) (-4134 (((-780) $) 34)) (-3180 (((-1171) $) NIL)) (-3254 (($ $ $) NIL)) (-1513 (($ $ $) NIL)) (-3965 (((-1132) $) NIL)) (-2914 ((|#1| $) 41)) (-1687 (((-653 (-2 (|:| |gen| |#1|) (|:| -1608 (-780)))) $) NIL)) (-1405 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2823 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2942 (((-871) $) NIL) (($ |#1|) NIL)) (-3507 (((-112) $ $) NIL)) (-2144 (($) 20 T CONST)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 53)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ |#1| (-780)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-828 |#1|) (-13 (-394 |#1|) (-855) (-10 -8 (-15 -2914 (|#1| $)) (-15 -2925 ($ $)) (-15 -4386 ($ $)) (-15 -2580 ((-112) $ $)) (-15 -1435 ((-3 $ "failed") $ |#1|)) (-15 -1680 ((-3 $ "failed") $ |#1|)) (-15 -2823 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4134 ((-780) $)) (-15 -1653 ((-653 |#1|) $)))) (-859)) (T -828)) +((-2914 (*1 *2 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-859)))) (-2925 (*1 *1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-859)))) (-4386 (*1 *1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-859)))) (-2580 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828 *3)) (-4 *3 (-859)))) (-1435 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-828 *2)) (-4 *2 (-859)))) (-1680 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-828 *2)) (-4 *2 (-859)))) (-2823 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-828 *3)) (|:| |rm| (-828 *3)))) (-5 *1 (-828 *3)) (-4 *3 (-859)))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-828 *3)) (-4 *3 (-859)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-828 *3)) (-4 *3 (-859))))) +(-13 (-394 |#1|) (-855) (-10 -8 (-15 -2914 (|#1| $)) (-15 -2925 ($ $)) (-15 -4386 ($ $)) (-15 -2580 ((-112) $ $)) (-15 -1435 ((-3 $ "failed") $ |#1|)) (-15 -1680 ((-3 $ "failed") $ |#1|)) (-15 -2823 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4134 ((-780) $)) (-15 -1653 ((-653 |#1|) $)))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-2983 (((-3 $ "failed") $ $) 20)) (-1983 (((-573) $) 59)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-4152 (((-112) $) 57)) (-1959 (((-112) $) 35)) (-3339 (((-112) $) 58)) (-3659 (($ $ $) 56)) (-3751 (($ $ $) 55)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2837 (((-3 $ "failed") $ $) 48)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-1660 (($ $) 60)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3040 (((-112) $ $) 53)) (-3015 (((-112) $ $) 52)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 54)) (-3005 (((-112) $ $) 51)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) +(((-829) (-141)) (T -829)) +NIL +(-13 (-565) (-857)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-297) . T) ((-565) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-649 $) . T) ((-726 $) . T) ((-735) . T) ((-800) . T) ((-801) . T) ((-803) . T) ((-804) . T) ((-857) . T) ((-859) . T) ((-1063 $) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) +((-3146 (($ (-1132)) 7)) (-3312 (((-112) $ (-1171) (-1132)) 15)) (-3069 (((-831) $) 12)) (-3377 (((-831) $) 11)) (-2754 (((-1285) $) 9)) (-1556 (((-112) $ (-1132)) 16))) +(((-830) (-10 -8 (-15 -3146 ($ (-1132))) (-15 -2754 ((-1285) $)) (-15 -3377 ((-831) $)) (-15 -3069 ((-831) $)) (-15 -3312 ((-112) $ (-1171) (-1132))) (-15 -1556 ((-112) $ (-1132))))) (T -830)) +((-1556 (*1 *2 *1 *3) (-12 (-5 *3 (-1132)) (-5 *2 (-112)) (-5 *1 (-830)))) (-3312 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1171)) (-5 *4 (-1132)) (-5 *2 (-112)) (-5 *1 (-830)))) (-3069 (*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-830)))) (-3377 (*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-830)))) (-2754 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-830)))) (-3146 (*1 *1 *2) (-12 (-5 *2 (-1132)) (-5 *1 (-830))))) +(-10 -8 (-15 -3146 ($ (-1132))) (-15 -2754 ((-1285) $)) (-15 -3377 ((-831) $)) (-15 -3069 ((-831) $)) (-15 -3312 ((-112) $ (-1171) (-1132))) (-15 -1556 ((-112) $ (-1132)))) +((-1816 (((-1285) $ (-832)) 12)) (-2068 (((-1285) $ (-1189)) 32)) (-1397 (((-1285) $ (-1171) (-1171)) 34)) (-4174 (((-1285) $ (-1171)) 33)) (-4097 (((-1285) $) 19)) (-3852 (((-1285) $ (-573)) 28)) (-2238 (((-1285) $ (-227)) 30)) (-3879 (((-1285) $) 18)) (-2910 (((-1285) $) 26)) (-3976 (((-1285) $) 25)) (-3068 (((-1285) $) 23)) (-1895 (((-1285) $) 24)) (-1837 (((-1285) $) 22)) (-2300 (((-1285) $) 21)) (-3989 (((-1285) $) 20)) (-2721 (((-1285) $) 16)) (-1408 (((-1285) $) 17)) (-1852 (((-1285) $) 15)) (-1928 (((-1285) $) 14)) (-2644 (((-1285) $) 13)) (-3098 (($ (-1171) (-832)) 9)) (-4259 (($ (-1171) (-1171) (-832)) 8)) (-2303 (((-1189) $) 51)) (-1596 (((-1189) $) 55)) (-3425 (((-2 (|:| |cd| (-1171)) (|:| -2031 (-1171))) $) 54)) (-1517 (((-1171) $) 52)) (-2145 (((-1285) $) 41)) (-1550 (((-573) $) 49)) (-3452 (((-227) $) 50)) (-3071 (((-1285) $) 40)) (-2773 (((-1285) $) 48)) (-2386 (((-1285) $) 47)) (-1871 (((-1285) $) 45)) (-1666 (((-1285) $) 46)) (-4251 (((-1285) $) 44)) (-1427 (((-1285) $) 43)) (-3555 (((-1285) $) 42)) (-1747 (((-1285) $) 38)) (-3632 (((-1285) $) 39)) (-1957 (((-1285) $) 37)) (-2319 (((-1285) $) 36)) (-2275 (((-1285) $) 35)) (-2454 (((-1285) $) 11))) +(((-831) (-10 -8 (-15 -4259 ($ (-1171) (-1171) (-832))) (-15 -3098 ($ (-1171) (-832))) (-15 -2454 ((-1285) $)) (-15 -1816 ((-1285) $ (-832))) (-15 -2644 ((-1285) $)) (-15 -1928 ((-1285) $)) (-15 -1852 ((-1285) $)) (-15 -2721 ((-1285) $)) (-15 -1408 ((-1285) $)) (-15 -3879 ((-1285) $)) (-15 -4097 ((-1285) $)) (-15 -3989 ((-1285) $)) (-15 -2300 ((-1285) $)) (-15 -1837 ((-1285) $)) (-15 -3068 ((-1285) $)) (-15 -1895 ((-1285) $)) (-15 -3976 ((-1285) $)) (-15 -2910 ((-1285) $)) (-15 -3852 ((-1285) $ (-573))) (-15 -2238 ((-1285) $ (-227))) (-15 -2068 ((-1285) $ (-1189))) (-15 -4174 ((-1285) $ (-1171))) (-15 -1397 ((-1285) $ (-1171) (-1171))) (-15 -2275 ((-1285) $)) (-15 -2319 ((-1285) $)) (-15 -1957 ((-1285) $)) (-15 -1747 ((-1285) $)) (-15 -3632 ((-1285) $)) (-15 -3071 ((-1285) $)) (-15 -2145 ((-1285) $)) (-15 -3555 ((-1285) $)) (-15 -1427 ((-1285) $)) (-15 -4251 ((-1285) $)) (-15 -1871 ((-1285) $)) (-15 -1666 ((-1285) $)) (-15 -2386 ((-1285) $)) (-15 -2773 ((-1285) $)) (-15 -1550 ((-573) $)) (-15 -3452 ((-227) $)) (-15 -2303 ((-1189) $)) (-15 -1517 ((-1171) $)) (-15 -3425 ((-2 (|:| |cd| (-1171)) (|:| -2031 (-1171))) $)) (-15 -1596 ((-1189) $)))) (T -831)) +((-1596 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-831)))) (-3425 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1171)) (|:| -2031 (-1171)))) (-5 *1 (-831)))) (-1517 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-831)))) (-2303 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-831)))) (-3452 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-831)))) (-1550 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-831)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-2386 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-1666 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-1871 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-4251 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-1427 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-3555 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-2145 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-3071 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-3632 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-1747 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-1957 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-2319 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-2275 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-1397 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-831)))) (-4174 (*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-831)))) (-2068 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1285)) (-5 *1 (-831)))) (-2238 (*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1285)) (-5 *1 (-831)))) (-3852 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-5 *2 (-1285)) (-5 *1 (-831)))) (-2910 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-3976 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-1895 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-3068 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-1837 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-2300 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-3989 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-4097 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-3879 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-1408 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-2721 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-1852 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-1816 (*1 *2 *1 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1285)) (-5 *1 (-831)))) (-2454 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831)))) (-3098 (*1 *1 *2 *3) (-12 (-5 *2 (-1171)) (-5 *3 (-832)) (-5 *1 (-831)))) (-4259 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1171)) (-5 *3 (-832)) (-5 *1 (-831))))) +(-10 -8 (-15 -4259 ($ (-1171) (-1171) (-832))) (-15 -3098 ($ (-1171) (-832))) (-15 -2454 ((-1285) $)) (-15 -1816 ((-1285) $ (-832))) (-15 -2644 ((-1285) $)) (-15 -1928 ((-1285) $)) (-15 -1852 ((-1285) $)) (-15 -2721 ((-1285) $)) (-15 -1408 ((-1285) $)) (-15 -3879 ((-1285) $)) (-15 -4097 ((-1285) $)) (-15 -3989 ((-1285) $)) (-15 -2300 ((-1285) $)) (-15 -1837 ((-1285) $)) (-15 -3068 ((-1285) $)) (-15 -1895 ((-1285) $)) (-15 -3976 ((-1285) $)) (-15 -2910 ((-1285) $)) (-15 -3852 ((-1285) $ (-573))) (-15 -2238 ((-1285) $ (-227))) (-15 -2068 ((-1285) $ (-1189))) (-15 -4174 ((-1285) $ (-1171))) (-15 -1397 ((-1285) $ (-1171) (-1171))) (-15 -2275 ((-1285) $)) (-15 -2319 ((-1285) $)) (-15 -1957 ((-1285) $)) (-15 -1747 ((-1285) $)) (-15 -3632 ((-1285) $)) (-15 -3071 ((-1285) $)) (-15 -2145 ((-1285) $)) (-15 -3555 ((-1285) $)) (-15 -1427 ((-1285) $)) (-15 -4251 ((-1285) $)) (-15 -1871 ((-1285) $)) (-15 -1666 ((-1285) $)) (-15 -2386 ((-1285) $)) (-15 -2773 ((-1285) $)) (-15 -1550 ((-573) $)) (-15 -3452 ((-227) $)) (-15 -2303 ((-1189) $)) (-15 -1517 ((-1171) $)) (-15 -3425 ((-2 (|:| |cd| (-1171)) (|:| -2031 (-1171))) $)) (-15 -1596 ((-1189) $))) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 13)) (-3507 (((-112) $ $) NIL)) (-3741 (($) 16)) (-2249 (($) 14)) (-4394 (($) 17)) (-3167 (($) 15)) (-2981 (((-112) $ $) 9))) +(((-832) (-13 (-1112) (-10 -8 (-15 -2249 ($)) (-15 -3741 ($)) (-15 -4394 ($)) (-15 -3167 ($))))) (T -832)) +((-2249 (*1 *1) (-5 *1 (-832))) (-3741 (*1 *1) (-5 *1 (-832))) (-4394 (*1 *1) (-5 *1 (-832))) (-3167 (*1 *1) (-5 *1 (-832)))) +(-13 (-1112) (-10 -8 (-15 -2249 ($)) (-15 -3741 ($)) (-15 -4394 ($)) (-15 -3167 ($)))) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 23) (($ (-1189)) 19)) (-3507 (((-112) $ $) NIL)) (-2959 (((-112) $) 10)) (-1838 (((-112) $) 9)) (-3528 (((-112) $) 11)) (-2055 (((-112) $) 8)) (-2981 (((-112) $ $) 21))) +(((-833) (-13 (-1112) (-10 -8 (-15 -2942 ($ (-1189))) (-15 -2055 ((-112) $)) (-15 -1838 ((-112) $)) (-15 -2959 ((-112) $)) (-15 -3528 ((-112) $))))) (T -833)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-833)))) (-2055 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833)))) (-1838 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833)))) (-2959 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833))))) +(-13 (-1112) (-10 -8 (-15 -2942 ($ (-1189))) (-15 -2055 ((-112) $)) (-15 -1838 ((-112) $)) (-15 -2959 ((-112) $)) (-15 -3528 ((-112) $)))) +((-2848 (((-112) $ $) NIL)) (-3304 (($ (-833) (-653 (-1189))) 32)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2166 (((-833) $) 33)) (-3948 (((-653 (-1189)) $) 34)) (-2942 (((-871) $) 31)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-834) (-13 (-1112) (-10 -8 (-15 -2166 ((-833) $)) (-15 -3948 ((-653 (-1189)) $)) (-15 -3304 ($ (-833) (-653 (-1189))))))) (T -834)) +((-2166 (*1 *2 *1) (-12 (-5 *2 (-833)) (-5 *1 (-834)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-834)))) (-3304 (*1 *1 *2 *3) (-12 (-5 *2 (-833)) (-5 *3 (-653 (-1189))) (-5 *1 (-834))))) +(-13 (-1112) (-10 -8 (-15 -2166 ((-833) $)) (-15 -3948 ((-653 (-1189)) $)) (-15 -3304 ($ (-833) (-653 (-1189)))))) +((-2808 (((-1285) (-831) (-323 |#1|) (-112)) 23) (((-1285) (-831) (-323 |#1|)) 89) (((-1171) (-323 |#1|) (-112)) 88) (((-1171) (-323 |#1|)) 87))) +(((-835 |#1|) (-10 -7 (-15 -2808 ((-1171) (-323 |#1|))) (-15 -2808 ((-1171) (-323 |#1|) (-112))) (-15 -2808 ((-1285) (-831) (-323 |#1|))) (-15 -2808 ((-1285) (-831) (-323 |#1|) (-112)))) (-13 (-837) (-1061))) (T -835)) +((-2808 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-831)) (-5 *4 (-323 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-837) (-1061))) (-5 *2 (-1285)) (-5 *1 (-835 *6)))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-323 *5)) (-4 *5 (-13 (-837) (-1061))) (-5 *2 (-1285)) (-5 *1 (-835 *5)))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-323 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-837) (-1061))) (-5 *2 (-1171)) (-5 *1 (-835 *5)))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-323 *4)) (-4 *4 (-13 (-837) (-1061))) (-5 *2 (-1171)) (-5 *1 (-835 *4))))) +(-10 -7 (-15 -2808 ((-1171) (-323 |#1|))) (-15 -2808 ((-1171) (-323 |#1|) (-112))) (-15 -2808 ((-1285) (-831) (-323 |#1|))) (-15 -2808 ((-1285) (-831) (-323 |#1|) (-112)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3964 ((|#1| $) 10)) (-4296 (($ |#1|) 9)) (-1959 (((-112) $) NIL)) (-4334 (($ |#2| (-780)) NIL)) (-4036 (((-780) $) NIL)) (-1369 ((|#2| $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-3904 (($ $) NIL (|has| |#1| (-238))) (($ $ (-780)) NIL (|has| |#1| (-238)))) (-2565 (((-780) $) NIL)) (-2942 (((-871) $) 17) (($ (-573)) NIL) (($ |#2|) NIL (|has| |#2| (-174)))) (-4317 ((|#2| $ (-780)) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $) NIL (|has| |#1| (-238))) (($ $ (-780)) NIL (|has| |#1| (-238)))) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-836 |#1| |#2|) (-13 (-717 |#2|) (-10 -8 (IF (|has| |#1| (-238)) (-6 (-238)) |%noBranch|) (-15 -4296 ($ |#1|)) (-15 -3964 (|#1| $)))) (-717 |#2|) (-1061)) (T -836)) +((-4296 (*1 *1 *2) (-12 (-4 *3 (-1061)) (-5 *1 (-836 *2 *3)) (-4 *2 (-717 *3)))) (-3964 (*1 *2 *1) (-12 (-4 *2 (-717 *3)) (-5 *1 (-836 *2 *3)) (-4 *3 (-1061))))) +(-13 (-717 |#2|) (-10 -8 (IF (|has| |#1| (-238)) (-6 (-238)) |%noBranch|) (-15 -4296 ($ |#1|)) (-15 -3964 (|#1| $)))) +((-2808 (((-1285) (-831) $ (-112)) 9) (((-1285) (-831) $) 8) (((-1171) $ (-112)) 7) (((-1171) $) 6))) +(((-837) (-141)) (T -837)) +((-2808 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-837)) (-5 *3 (-831)) (-5 *4 (-112)) (-5 *2 (-1285)))) (-2808 (*1 *2 *3 *1) (-12 (-4 *1 (-837)) (-5 *3 (-831)) (-5 *2 (-1285)))) (-2808 (*1 *2 *1 *3) (-12 (-4 *1 (-837)) (-5 *3 (-112)) (-5 *2 (-1171)))) (-2808 (*1 *2 *1) (-12 (-4 *1 (-837)) (-5 *2 (-1171))))) +(-13 (-10 -8 (-15 -2808 ((-1171) $)) (-15 -2808 ((-1171) $ (-112))) (-15 -2808 ((-1285) (-831) $)) (-15 -2808 ((-1285) (-831) $ (-112))))) +((-3828 (((-319) (-1171) (-1171)) 12)) (-3275 (((-112) (-1171) (-1171)) 34)) (-3285 (((-112) (-1171)) 33)) (-3779 (((-52) (-1171)) 25)) (-2185 (((-52) (-1171)) 23)) (-3322 (((-52) (-831)) 17)) (-4236 (((-653 (-1171)) (-1171)) 28)) (-2892 (((-653 (-1171))) 27))) +(((-838) (-10 -7 (-15 -3322 ((-52) (-831))) (-15 -2185 ((-52) (-1171))) (-15 -3779 ((-52) (-1171))) (-15 -2892 ((-653 (-1171)))) (-15 -4236 ((-653 (-1171)) (-1171))) (-15 -3285 ((-112) (-1171))) (-15 -3275 ((-112) (-1171) (-1171))) (-15 -3828 ((-319) (-1171) (-1171))))) (T -838)) +((-3828 (*1 *2 *3 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-319)) (-5 *1 (-838)))) (-3275 (*1 *2 *3 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-112)) (-5 *1 (-838)))) (-3285 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-112)) (-5 *1 (-838)))) (-4236 (*1 *2 *3) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-838)) (-5 *3 (-1171)))) (-2892 (*1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-838)))) (-3779 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-52)) (-5 *1 (-838)))) (-2185 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-52)) (-5 *1 (-838)))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-52)) (-5 *1 (-838))))) +(-10 -7 (-15 -3322 ((-52) (-831))) (-15 -2185 ((-52) (-1171))) (-15 -3779 ((-52) (-1171))) (-15 -2892 ((-653 (-1171)))) (-15 -4236 ((-653 (-1171)) (-1171))) (-15 -3285 ((-112) (-1171))) (-15 -3275 ((-112) (-1171) (-1171))) (-15 -3828 ((-319) (-1171) (-1171)))) +((-2848 (((-112) $ $) 19)) (-4357 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2180 (($ $ $) 73)) (-3319 (((-112) $ $) 74)) (-3450 (((-112) $ (-780)) 8)) (-1506 (($ (-653 |#1|)) 69) (($) 68)) (-3557 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4455)))) (-2579 (($) 7 T CONST)) (-1599 (($ $) 63)) (-2685 (($ $) 59 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2596 (($ |#1| $) 48 (|has| $ (-6 -4455))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4455)))) (-3334 (($ |#1| $) 58 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4455)))) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-2897 (((-112) $ $) 65)) (-2078 (((-112) $ (-780)) 9)) (-3659 ((|#1| $) 79)) (-4241 (($ $ $) 82)) (-1480 (($ $ $) 81)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3751 ((|#1| $) 80)) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22)) (-3716 (($ $ $) 70)) (-2487 ((|#1| $) 40)) (-3181 (($ |#1| $) 41) (($ |#1| $ (-780)) 64)) (-3965 (((-1132) $) 21)) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3815 ((|#1| $) 42)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2493 (((-653 (-2 (|:| -1907 |#1|) (|:| -3974 (-780)))) $) 62)) (-3631 (($ $ |#1|) 72) (($ $ $) 71)) (-2428 (($) 50) (($ (-653 |#1|)) 49)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-1835 (((-545) $) 60 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 51)) (-2942 (((-871) $) 18)) (-4280 (($ (-653 |#1|)) 67) (($) 66)) (-3507 (((-112) $ $) 23)) (-2679 (($ (-653 |#1|)) 43)) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20)) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-839 |#1|) (-141) (-859)) (T -839)) +((-3659 (*1 *2 *1) (-12 (-4 *1 (-839 *2)) (-4 *2 (-859))))) +(-13 (-745 |t#1|) (-980 |t#1|) (-10 -8 (-15 -3659 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-622 (-871)) . T) ((-152 |#1|) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-240 |#1|) . T) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-704 |#1|) . T) ((-745 |#1|) . T) ((-980 |#1|) . T) ((-1110 |#1|) . T) ((-1112) . T) ((-1230) . T)) +((-1490 (((-1285) (-1132) (-1132)) 48)) (-2882 (((-1285) (-830) (-52)) 45)) (-1712 (((-52) (-830)) 16))) +(((-840) (-10 -7 (-15 -1712 ((-52) (-830))) (-15 -2882 ((-1285) (-830) (-52))) (-15 -1490 ((-1285) (-1132) (-1132))))) (T -840)) +((-1490 (*1 *2 *3 *3) (-12 (-5 *3 (-1132)) (-5 *2 (-1285)) (-5 *1 (-840)))) (-2882 (*1 *2 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-52)) (-5 *2 (-1285)) (-5 *1 (-840)))) (-1712 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-52)) (-5 *1 (-840))))) +(-10 -7 (-15 -1712 ((-52) (-830))) (-15 -2882 ((-1285) (-830) (-52))) (-15 -1490 ((-1285) (-1132) (-1132)))) +((-1776 (((-842 |#2|) (-1 |#2| |#1|) (-842 |#1|) (-842 |#2|)) 12) (((-842 |#2|) (-1 |#2| |#1|) (-842 |#1|)) 13))) +(((-841 |#1| |#2|) (-10 -7 (-15 -1776 ((-842 |#2|) (-1 |#2| |#1|) (-842 |#1|))) (-15 -1776 ((-842 |#2|) (-1 |#2| |#1|) (-842 |#1|) (-842 |#2|)))) (-1112) (-1112)) (T -841)) +((-1776 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-842 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-842 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *1 (-841 *5 *6)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-842 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-842 *6)) (-5 *1 (-841 *5 *6))))) +(-10 -7 (-15 -1776 ((-842 |#2|) (-1 |#2| |#1|) (-842 |#1|))) (-15 -1776 ((-842 |#2|) (-1 |#2| |#1|) (-842 |#1|) (-842 |#2|)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL (|has| |#1| (-21)))) (-2983 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1983 (((-573) $) NIL (|has| |#1| (-857)))) (-2579 (($) NIL (|has| |#1| (-21)) CONST)) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) 15)) (-2205 (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) 9)) (-2232 (((-3 $ "failed") $) 42 (|has| |#1| (-857)))) (-3810 (((-3 (-416 (-573)) "failed") $) 52 (|has| |#1| (-554)))) (-2551 (((-112) $) 46 (|has| |#1| (-554)))) (-4434 (((-416 (-573)) $) 49 (|has| |#1| (-554)))) (-4152 (((-112) $) NIL (|has| |#1| (-857)))) (-1959 (((-112) $) NIL (|has| |#1| (-857)))) (-3339 (((-112) $) NIL (|has| |#1| (-857)))) (-3659 (($ $ $) NIL (|has| |#1| (-857)))) (-3751 (($ $ $) NIL (|has| |#1| (-857)))) (-3180 (((-1171) $) NIL)) (-1743 (($) 13)) (-4154 (((-112) $) 12)) (-3965 (((-1132) $) NIL)) (-3854 (((-112) $) 11)) (-2942 (((-871) $) 18) (($ (-416 (-573))) NIL (|has| |#1| (-1050 (-416 (-573))))) (($ |#1|) 8) (($ (-573)) NIL (-2817 (|has| |#1| (-857)) (|has| |#1| (-1050 (-573)))))) (-1545 (((-780)) 36 (|has| |#1| (-857)) CONST)) (-3507 (((-112) $ $) 54)) (-1660 (($ $) NIL (|has| |#1| (-857)))) (-2132 (($) 23 (|has| |#1| (-21)) CONST)) (-2144 (($) 33 (|has| |#1| (-857)) CONST)) (-3040 (((-112) $ $) NIL (|has| |#1| (-857)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-857)))) (-2981 (((-112) $ $) 21)) (-3027 (((-112) $ $) NIL (|has| |#1| (-857)))) (-3005 (((-112) $ $) 45 (|has| |#1| (-857)))) (-3093 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3077 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-931)) NIL (|has| |#1| (-857))) (($ $ (-780)) NIL (|has| |#1| (-857)))) (* (($ $ $) 39 (|has| |#1| (-857))) (($ (-573) $) 27 (|has| |#1| (-21))) (($ (-780) $) NIL (|has| |#1| (-21))) (($ (-931) $) NIL (|has| |#1| (-21))))) +(((-842 |#1|) (-13 (-1112) (-420 |#1|) (-10 -8 (-15 -1743 ($)) (-15 -3854 ((-112) $)) (-15 -4154 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-857)) (-6 (-857)) |%noBranch|) (IF (|has| |#1| (-554)) (PROGN (-15 -2551 ((-112) $)) (-15 -4434 ((-416 (-573)) $)) (-15 -3810 ((-3 (-416 (-573)) "failed") $))) |%noBranch|))) (-1112)) (T -842)) +((-1743 (*1 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-1112)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-842 *3)) (-4 *3 (-1112)))) (-4154 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-842 *3)) (-4 *3 (-1112)))) (-2551 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-842 *3)) (-4 *3 (-554)) (-4 *3 (-1112)))) (-4434 (*1 *2 *1) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-842 *3)) (-4 *3 (-554)) (-4 *3 (-1112)))) (-3810 (*1 *2 *1) (|partial| -12 (-5 *2 (-416 (-573))) (-5 *1 (-842 *3)) (-4 *3 (-554)) (-4 *3 (-1112))))) +(-13 (-1112) (-420 |#1|) (-10 -8 (-15 -1743 ($)) (-15 -3854 ((-112) $)) (-15 -4154 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-857)) (-6 (-857)) |%noBranch|) (IF (|has| |#1| (-554)) (PROGN (-15 -2551 ((-112) $)) (-15 -4434 ((-416 (-573)) $)) (-15 -3810 ((-3 (-416 (-573)) "failed") $))) |%noBranch|))) +((-1667 (((-112) $ |#2|) 14)) (-2942 (((-871) $) 11))) +(((-843 |#1| |#2|) (-10 -8 (-15 -1667 ((-112) |#1| |#2|)) (-15 -2942 ((-871) |#1|))) (-844 |#2|) (-1112)) (T -843)) +NIL +(-10 -8 (-15 -1667 ((-112) |#1| |#2|)) (-15 -2942 ((-871) |#1|))) +((-2848 (((-112) $ $) 7)) (-2031 ((|#1| $) 16)) (-3180 (((-1171) $) 10)) (-1667 (((-112) $ |#1|) 14)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-4010 (((-55) $) 15)) (-2981 (((-112) $ $) 6))) +(((-844 |#1|) (-141) (-1112)) (T -844)) +((-2031 (*1 *2 *1) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1112)))) (-4010 (*1 *2 *1) (-12 (-4 *1 (-844 *3)) (-4 *3 (-1112)) (-5 *2 (-55)))) (-1667 (*1 *2 *1 *3) (-12 (-4 *1 (-844 *3)) (-4 *3 (-1112)) (-5 *2 (-112))))) +(-13 (-1112) (-10 -8 (-15 -2031 (|t#1| $)) (-15 -4010 ((-55) $)) (-15 -1667 ((-112) $ |t#1|)))) +(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL) (((-3 (-115) "failed") $) NIL)) (-2205 ((|#1| $) NIL) (((-115) $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-4316 ((|#1| (-115) |#1|) NIL)) (-1959 (((-112) $) NIL)) (-1769 (($ |#1| (-369 (-115))) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-3627 (($ $ (-1 |#1| |#1|)) NIL)) (-3630 (($ $ (-1 |#1| |#1|)) NIL)) (-2198 ((|#1| $ |#1|) NIL)) (-3078 ((|#1| |#1|) NIL (|has| |#1| (-174)))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#1|) NIL) (($ (-115)) NIL)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-4372 (($ $) NIL (|has| |#1| (-174))) (($ $ $) NIL (|has| |#1| (-174)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ (-115) (-573)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-845 |#1|) (-13 (-1061) (-1050 |#1|) (-1050 (-115)) (-293 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -4372 ($ $)) (-15 -4372 ($ $ $)) (-15 -3078 (|#1| |#1|))) |%noBranch|) (-15 -3630 ($ $ (-1 |#1| |#1|))) (-15 -3627 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-573))) (-15 ** ($ $ (-573))) (-15 -4316 (|#1| (-115) |#1|)) (-15 -1769 ($ |#1| (-369 (-115)))))) (-1061)) (T -845)) +((-4372 (*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-174)) (-4 *2 (-1061)))) (-4372 (*1 *1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-174)) (-4 *2 (-1061)))) (-3078 (*1 *2 *2) (-12 (-5 *1 (-845 *2)) (-4 *2 (-174)) (-4 *2 (-1061)))) (-3630 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1061)) (-5 *1 (-845 *3)))) (-3627 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1061)) (-5 *1 (-845 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-573)) (-5 *1 (-845 *4)) (-4 *4 (-1061)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-845 *3)) (-4 *3 (-1061)))) (-4316 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-845 *2)) (-4 *2 (-1061)))) (-1769 (*1 *1 *2 *3) (-12 (-5 *3 (-369 (-115))) (-5 *1 (-845 *2)) (-4 *2 (-1061))))) +(-13 (-1061) (-1050 |#1|) (-1050 (-115)) (-293 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -4372 ($ $)) (-15 -4372 ($ $ $)) (-15 -3078 (|#1| |#1|))) |%noBranch|) (-15 -3630 ($ $ (-1 |#1| |#1|))) (-15 -3627 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-573))) (-15 ** ($ $ (-573))) (-15 -4316 (|#1| (-115) |#1|)) (-15 -1769 ($ |#1| (-369 (-115)))))) +((-4170 (((-216 (-511)) (-1171)) 9))) +(((-846) (-10 -7 (-15 -4170 ((-216 (-511)) (-1171))))) (T -846)) +((-4170 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-216 (-511))) (-5 *1 (-846))))) +(-10 -7 (-15 -4170 ((-216 (-511)) (-1171)))) +((-2848 (((-112) $ $) NIL)) (-3139 (((-1130) $) 10)) (-2031 (((-515) $) 9)) (-3180 (((-1171) $) NIL)) (-1667 (((-112) $ (-515)) NIL)) (-3965 (((-1132) $) NIL)) (-2955 (($ (-515) (-1130)) 8)) (-2942 (((-871) $) 25)) (-3507 (((-112) $ $) NIL)) (-4010 (((-55) $) 20)) (-2981 (((-112) $ $) 12))) +(((-847) (-13 (-844 (-515)) (-10 -8 (-15 -3139 ((-1130) $)) (-15 -2955 ($ (-515) (-1130)))))) (T -847)) +((-3139 (*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-847)))) (-2955 (*1 *1 *2 *3) (-12 (-5 *2 (-515)) (-5 *3 (-1130)) (-5 *1 (-847))))) +(-13 (-844 (-515)) (-10 -8 (-15 -3139 ((-1130) $)) (-15 -2955 ($ (-515) (-1130))))) +((-2848 (((-112) $ $) 7)) (-3752 (((-1047) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) 15) (((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 14)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 17) (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) 16)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) +(((-848) (-141)) (T -848)) +((-4223 (*1 *2 *3 *4) (-12 (-4 *1 (-848)) (-5 *3 (-1075)) (-5 *4 (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (-5 *2 (-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)))))) (-4223 (*1 *2 *3 *4) (-12 (-4 *1 (-848)) (-5 *3 (-1075)) (-5 *4 (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) (-5 *2 (-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)))))) (-3752 (*1 *2 *3) (-12 (-4 *1 (-848)) (-5 *3 (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) (-5 *2 (-1047)))) (-3752 (*1 *2 *3) (-12 (-4 *1 (-848)) (-5 *3 (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (-5 *2 (-1047))))) +(-13 (-1112) (-10 -7 (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227))))))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227)))))) (-15 -3752 ((-1047) (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227)))))) (-15 -3752 ((-1047) (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227))))))))) +(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) +((-2711 (((-1047) (-653 (-323 (-387))) (-653 (-387))) 166) (((-1047) (-323 (-387)) (-653 (-387))) 164) (((-1047) (-323 (-387)) (-653 (-387)) (-653 (-852 (-387))) (-653 (-852 (-387)))) 162) (((-1047) (-323 (-387)) (-653 (-387)) (-653 (-852 (-387))) (-653 (-323 (-387))) (-653 (-852 (-387)))) 160) (((-1047) (-850)) 125) (((-1047) (-850) (-1075)) 124)) (-4223 (((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-850) (-1075)) 85) (((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-850)) 87)) (-2961 (((-1047) (-653 (-323 (-387))) (-653 (-387))) 167) (((-1047) (-850)) 150))) +(((-849) (-10 -7 (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-850))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-850) (-1075))) (-15 -2711 ((-1047) (-850) (-1075))) (-15 -2711 ((-1047) (-850))) (-15 -2961 ((-1047) (-850))) (-15 -2711 ((-1047) (-323 (-387)) (-653 (-387)) (-653 (-852 (-387))) (-653 (-323 (-387))) (-653 (-852 (-387))))) (-15 -2711 ((-1047) (-323 (-387)) (-653 (-387)) (-653 (-852 (-387))) (-653 (-852 (-387))))) (-15 -2711 ((-1047) (-323 (-387)) (-653 (-387)))) (-15 -2711 ((-1047) (-653 (-323 (-387))) (-653 (-387)))) (-15 -2961 ((-1047) (-653 (-323 (-387))) (-653 (-387)))))) (T -849)) +((-2961 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-323 (-387)))) (-5 *4 (-653 (-387))) (-5 *2 (-1047)) (-5 *1 (-849)))) (-2711 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-323 (-387)))) (-5 *4 (-653 (-387))) (-5 *2 (-1047)) (-5 *1 (-849)))) (-2711 (*1 *2 *3 *4) (-12 (-5 *3 (-323 (-387))) (-5 *4 (-653 (-387))) (-5 *2 (-1047)) (-5 *1 (-849)))) (-2711 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-323 (-387))) (-5 *4 (-653 (-387))) (-5 *5 (-653 (-852 (-387)))) (-5 *2 (-1047)) (-5 *1 (-849)))) (-2711 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-653 (-387))) (-5 *5 (-653 (-852 (-387)))) (-5 *6 (-653 (-323 (-387)))) (-5 *3 (-323 (-387))) (-5 *2 (-1047)) (-5 *1 (-849)))) (-2961 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1047)) (-5 *1 (-849)))) (-2711 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1047)) (-5 *1 (-849)))) (-2711 (*1 *2 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-1075)) (-5 *2 (-1047)) (-5 *1 (-849)))) (-4223 (*1 *2 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-1075)) (-5 *2 (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))))) (-5 *1 (-849)))) (-4223 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))))) (-5 *1 (-849))))) +(-10 -7 (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-850))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-850) (-1075))) (-15 -2711 ((-1047) (-850) (-1075))) (-15 -2711 ((-1047) (-850))) (-15 -2961 ((-1047) (-850))) (-15 -2711 ((-1047) (-323 (-387)) (-653 (-387)) (-653 (-852 (-387))) (-653 (-323 (-387))) (-653 (-852 (-387))))) (-15 -2711 ((-1047) (-323 (-387)) (-653 (-387)) (-653 (-852 (-387))) (-653 (-852 (-387))))) (-15 -2711 ((-1047) (-323 (-387)) (-653 (-387)))) (-15 -2711 ((-1047) (-653 (-323 (-387))) (-653 (-387)))) (-15 -2961 ((-1047) (-653 (-323 (-387))) (-653 (-387))))) +((-2848 (((-112) $ $) NIL)) (-2205 (((-3 (|:| |noa| (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227)))))) $) 21)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 20) (($ (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) 14) (($ (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))))) 18)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-850) (-13 (-1112) (-10 -8 (-15 -2942 ($ (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227))))))) (-15 -2942 ($ (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227)))))) (-15 -2942 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227)))))))) (-15 -2205 ((-3 (|:| |noa| (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227)))))) $))))) (T -850)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (-5 *1 (-850)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) (-5 *1 (-850)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))))) (-5 *1 (-850)))) (-2205 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))))) (-5 *1 (-850))))) +(-13 (-1112) (-10 -8 (-15 -2942 ($ (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227))))))) (-15 -2942 ($ (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227)))))) (-15 -2942 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227)))))))) (-15 -2205 ((-3 (|:| |noa| (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) (|:| |ub| (-653 (-852 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227)))))) $)))) +((-1776 (((-852 |#2|) (-1 |#2| |#1|) (-852 |#1|) (-852 |#2|) (-852 |#2|)) 13) (((-852 |#2|) (-1 |#2| |#1|) (-852 |#1|)) 14))) +(((-851 |#1| |#2|) (-10 -7 (-15 -1776 ((-852 |#2|) (-1 |#2| |#1|) (-852 |#1|))) (-15 -1776 ((-852 |#2|) (-1 |#2| |#1|) (-852 |#1|) (-852 |#2|) (-852 |#2|)))) (-1112) (-1112)) (T -851)) +((-1776 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-852 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-852 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *1 (-851 *5 *6)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-852 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-852 *6)) (-5 *1 (-851 *5 *6))))) +(-10 -7 (-15 -1776 ((-852 |#2|) (-1 |#2| |#1|) (-852 |#1|))) (-15 -1776 ((-852 |#2|) (-1 |#2| |#1|) (-852 |#1|) (-852 |#2|) (-852 |#2|)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL (|has| |#1| (-21)))) (-1428 (((-1132) $) 31)) (-2983 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1983 (((-573) $) NIL (|has| |#1| (-857)))) (-2579 (($) NIL (|has| |#1| (-21)) CONST)) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) 18)) (-2205 (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) 9)) (-2232 (((-3 $ "failed") $) 58 (|has| |#1| (-857)))) (-3810 (((-3 (-416 (-573)) "failed") $) 65 (|has| |#1| (-554)))) (-2551 (((-112) $) 60 (|has| |#1| (-554)))) (-4434 (((-416 (-573)) $) 63 (|has| |#1| (-554)))) (-4152 (((-112) $) NIL (|has| |#1| (-857)))) (-2305 (($) 14)) (-1959 (((-112) $) NIL (|has| |#1| (-857)))) (-3339 (((-112) $) NIL (|has| |#1| (-857)))) (-2315 (($) 16)) (-3659 (($ $ $) NIL (|has| |#1| (-857)))) (-3751 (($ $ $) NIL (|has| |#1| (-857)))) (-3180 (((-1171) $) NIL)) (-4154 (((-112) $) 12)) (-3965 (((-1132) $) NIL)) (-3854 (((-112) $) 11)) (-2942 (((-871) $) 24) (($ (-416 (-573))) NIL (|has| |#1| (-1050 (-416 (-573))))) (($ |#1|) 8) (($ (-573)) NIL (-2817 (|has| |#1| (-857)) (|has| |#1| (-1050 (-573)))))) (-1545 (((-780)) 51 (|has| |#1| (-857)) CONST)) (-3507 (((-112) $ $) NIL)) (-1660 (($ $) NIL (|has| |#1| (-857)))) (-2132 (($) 37 (|has| |#1| (-21)) CONST)) (-2144 (($) 48 (|has| |#1| (-857)) CONST)) (-3040 (((-112) $ $) NIL (|has| |#1| (-857)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-857)))) (-2981 (((-112) $ $) 35)) (-3027 (((-112) $ $) NIL (|has| |#1| (-857)))) (-3005 (((-112) $ $) 59 (|has| |#1| (-857)))) (-3093 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-3077 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-931)) NIL (|has| |#1| (-857))) (($ $ (-780)) NIL (|has| |#1| (-857)))) (* (($ $ $) 55 (|has| |#1| (-857))) (($ (-573) $) 42 (|has| |#1| (-21))) (($ (-780) $) NIL (|has| |#1| (-21))) (($ (-931) $) NIL (|has| |#1| (-21))))) +(((-852 |#1|) (-13 (-1112) (-420 |#1|) (-10 -8 (-15 -2305 ($)) (-15 -2315 ($)) (-15 -3854 ((-112) $)) (-15 -4154 ((-112) $)) (-15 -1428 ((-1132) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-857)) (-6 (-857)) |%noBranch|) (IF (|has| |#1| (-554)) (PROGN (-15 -2551 ((-112) $)) (-15 -4434 ((-416 (-573)) $)) (-15 -3810 ((-3 (-416 (-573)) "failed") $))) |%noBranch|))) (-1112)) (T -852)) +((-2305 (*1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-1112)))) (-2315 (*1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-1112)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-852 *3)) (-4 *3 (-1112)))) (-4154 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-852 *3)) (-4 *3 (-1112)))) (-1428 (*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-852 *3)) (-4 *3 (-1112)))) (-2551 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-852 *3)) (-4 *3 (-554)) (-4 *3 (-1112)))) (-4434 (*1 *2 *1) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-852 *3)) (-4 *3 (-554)) (-4 *3 (-1112)))) (-3810 (*1 *2 *1) (|partial| -12 (-5 *2 (-416 (-573))) (-5 *1 (-852 *3)) (-4 *3 (-554)) (-4 *3 (-1112))))) +(-13 (-1112) (-420 |#1|) (-10 -8 (-15 -2305 ($)) (-15 -2315 ($)) (-15 -3854 ((-112) $)) (-15 -4154 ((-112) $)) (-15 -1428 ((-1132) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-857)) (-6 (-857)) |%noBranch|) (IF (|has| |#1| (-554)) (PROGN (-15 -2551 ((-112) $)) (-15 -4434 ((-416 (-573)) $)) (-15 -3810 ((-3 (-416 (-573)) "failed") $))) |%noBranch|))) +((-2848 (((-112) $ $) 7)) (-1486 (((-780)) 23)) (-2819 (($) 26)) (-3659 (($ $ $) 14) (($) 22 T CONST)) (-3751 (($ $ $) 15) (($) 21 T CONST)) (-3589 (((-931) $) 25)) (-3180 (((-1171) $) 10)) (-2575 (($ (-931)) 24)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-3040 (((-112) $ $) 17)) (-3015 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19))) +(((-853) (-141)) (T -853)) +((-3659 (*1 *1) (-4 *1 (-853))) (-3751 (*1 *1) (-4 *1 (-853)))) +(-13 (-859) (-376) (-10 -8 (-15 -3659 ($) -1705) (-15 -3751 ($) -1705))) +(((-102) . T) ((-622 (-871)) . T) ((-376) . T) ((-859) . T) ((-1112) . T)) +((-2265 (((-112) (-1280 |#2|) (-1280 |#2|)) 19)) (-2353 (((-112) (-1280 |#2|) (-1280 |#2|)) 20)) (-1401 (((-112) (-1280 |#2|) (-1280 |#2|)) 16))) +(((-854 |#1| |#2|) (-10 -7 (-15 -1401 ((-112) (-1280 |#2|) (-1280 |#2|))) (-15 -2265 ((-112) (-1280 |#2|) (-1280 |#2|))) (-15 -2353 ((-112) (-1280 |#2|) (-1280 |#2|)))) (-780) (-801)) (T -854)) +((-2353 (*1 *2 *3 *3) (-12 (-5 *3 (-1280 *5)) (-4 *5 (-801)) (-5 *2 (-112)) (-5 *1 (-854 *4 *5)) (-14 *4 (-780)))) (-2265 (*1 *2 *3 *3) (-12 (-5 *3 (-1280 *5)) (-4 *5 (-801)) (-5 *2 (-112)) (-5 *1 (-854 *4 *5)) (-14 *4 (-780)))) (-1401 (*1 *2 *3 *3) (-12 (-5 *3 (-1280 *5)) (-4 *5 (-801)) (-5 *2 (-112)) (-5 *1 (-854 *4 *5)) (-14 *4 (-780))))) +(-10 -7 (-15 -1401 ((-112) (-1280 |#2|) (-1280 |#2|))) (-15 -2265 ((-112) (-1280 |#2|) (-1280 |#2|))) (-15 -2353 ((-112) (-1280 |#2|) (-1280 |#2|)))) +((-2848 (((-112) $ $) 7)) (-2579 (($) 24 T CONST)) (-2232 (((-3 $ "failed") $) 27)) (-1959 (((-112) $) 25)) (-3659 (($ $ $) 14)) (-3751 (($ $ $) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2144 (($) 23 T CONST)) (-3040 (((-112) $ $) 17)) (-3015 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19)) (** (($ $ (-931)) 22) (($ $ (-780)) 26)) (* (($ $ $) 21))) +(((-855) (-141)) (T -855)) +NIL +(-13 (-866) (-735)) +(((-102) . T) ((-622 (-871)) . T) ((-735) . T) ((-866) . T) ((-859) . T) ((-1124) . T) ((-1112) . T)) +((-1983 (((-573) $) 21)) (-4152 (((-112) $) 10)) (-3339 (((-112) $) 12)) (-1660 (($ $) 23))) +(((-856 |#1|) (-10 -8 (-15 -1660 (|#1| |#1|)) (-15 -1983 ((-573) |#1|)) (-15 -3339 ((-112) |#1|)) (-15 -4152 ((-112) |#1|))) (-857)) (T -856)) +NIL +(-10 -8 (-15 -1660 (|#1| |#1|)) (-15 -1983 ((-573) |#1|)) (-15 -3339 ((-112) |#1|)) (-15 -4152 ((-112) |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 25)) (-2983 (((-3 $ "failed") $ $) 27)) (-1983 (((-573) $) 37)) (-2579 (($) 24 T CONST)) (-2232 (((-3 $ "failed") $) 42)) (-4152 (((-112) $) 39)) (-1959 (((-112) $) 44)) (-3339 (((-112) $) 38)) (-3659 (($ $ $) 14)) (-3751 (($ $ $) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12) (($ (-573)) 46)) (-1545 (((-780)) 47 T CONST)) (-3507 (((-112) $ $) 9)) (-1660 (($ $) 36)) (-2132 (($) 23 T CONST)) (-2144 (($) 45 T CONST)) (-3040 (((-112) $ $) 17)) (-3015 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19)) (-3093 (($ $ $) 31) (($ $) 30)) (-3077 (($ $ $) 21)) (** (($ $ (-780)) 43) (($ $ (-931)) 40)) (* (($ (-931) $) 22) (($ (-780) $) 26) (($ (-573) $) 29) (($ $ $) 41))) +(((-857) (-141)) (T -857)) +((-4152 (*1 *2 *1) (-12 (-4 *1 (-857)) (-5 *2 (-112)))) (-3339 (*1 *2 *1) (-12 (-4 *1 (-857)) (-5 *2 (-112)))) (-1983 (*1 *2 *1) (-12 (-4 *1 (-857)) (-5 *2 (-573)))) (-1660 (*1 *1 *1) (-4 *1 (-857)))) +(-13 (-800) (-1061) (-735) (-10 -8 (-15 -4152 ((-112) $)) (-15 -3339 ((-112) $)) (-15 -1983 ((-573) $)) (-15 -1660 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-573)) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-735) . T) ((-800) . T) ((-801) . T) ((-803) . T) ((-804) . T) ((-859) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) +((-3659 (($ $ $) 12)) (-3751 (($ $ $) 11)) (-3507 (((-112) $ $) 9)) (-3040 (((-112) $ $) 15)) (-3015 (((-112) $ $) 13)) (-3027 (((-112) $ $) 16))) +(((-858 |#1|) (-10 -8 (-15 -3659 (|#1| |#1| |#1|)) (-15 -3751 (|#1| |#1| |#1|)) (-15 -3027 ((-112) |#1| |#1|)) (-15 -3040 ((-112) |#1| |#1|)) (-15 -3015 ((-112) |#1| |#1|)) (-15 -3507 ((-112) |#1| |#1|))) (-859)) (T -858)) +NIL +(-10 -8 (-15 -3659 (|#1| |#1| |#1|)) (-15 -3751 (|#1| |#1| |#1|)) (-15 -3027 ((-112) |#1| |#1|)) (-15 -3040 ((-112) |#1| |#1|)) (-15 -3015 ((-112) |#1| |#1|)) (-15 -3507 ((-112) |#1| |#1|))) +((-2848 (((-112) $ $) 7)) (-3659 (($ $ $) 14)) (-3751 (($ $ $) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-3040 (((-112) $ $) 17)) (-3015 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19))) +(((-859) (-141)) (T -859)) +((-3005 (*1 *2 *1 *1) (-12 (-4 *1 (-859)) (-5 *2 (-112)))) (-3015 (*1 *2 *1 *1) (-12 (-4 *1 (-859)) (-5 *2 (-112)))) (-3040 (*1 *2 *1 *1) (-12 (-4 *1 (-859)) (-5 *2 (-112)))) (-3027 (*1 *2 *1 *1) (-12 (-4 *1 (-859)) (-5 *2 (-112)))) (-3751 (*1 *1 *1 *1) (-4 *1 (-859))) (-3659 (*1 *1 *1 *1) (-4 *1 (-859)))) +(-13 (-1112) (-10 -8 (-15 -3005 ((-112) $ $)) (-15 -3015 ((-112) $ $)) (-15 -3040 ((-112) $ $)) (-15 -3027 ((-112) $ $)) (-15 -3751 ($ $ $)) (-15 -3659 ($ $ $)))) +(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) +((-2843 (($ $ $) 49)) (-4151 (($ $ $) 48)) (-2674 (($ $ $) 46)) (-4376 (($ $ $) 55)) (-2860 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 50)) (-2683 (((-3 $ "failed") $ $) 53)) (-1695 (((-3 (-573) "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-3246 (($ $) 39)) (-2128 (($ $ $) 43)) (-3326 (($ $ $) 42)) (-2606 (($ $ $) 51)) (-4319 (($ $ $) 57)) (-2742 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 45)) (-3541 (((-3 $ "failed") $ $) 52)) (-2837 (((-3 $ "failed") $ |#2|) 32)) (-3257 ((|#2| $) 36)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ (-416 (-573))) NIL) (($ |#2|) 13)) (-1920 (((-653 |#2|) $) 21)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) +(((-860 |#1| |#2|) (-10 -8 (-15 -2606 (|#1| |#1| |#1|)) (-15 -2860 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2969 |#1|)) |#1| |#1|)) (-15 -4376 (|#1| |#1| |#1|)) (-15 -2683 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2843 (|#1| |#1| |#1|)) (-15 -4151 (|#1| |#1| |#1|)) (-15 -2674 (|#1| |#1| |#1|)) (-15 -2742 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2969 |#1|)) |#1| |#1|)) (-15 -4319 (|#1| |#1| |#1|)) (-15 -3541 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2128 (|#1| |#1| |#1|)) (-15 -3326 (|#1| |#1| |#1|)) (-15 -3246 (|#1| |#1|)) (-15 -3257 (|#2| |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1920 ((-653 |#2|) |#1|)) (-15 -2942 (|#1| |#2|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2942 (|#1| (-573))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-931) |#1|)) (-15 -2942 ((-871) |#1|))) (-861 |#2|) (-1061)) (T -860)) +NIL +(-10 -8 (-15 -2606 (|#1| |#1| |#1|)) (-15 -2860 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2969 |#1|)) |#1| |#1|)) (-15 -4376 (|#1| |#1| |#1|)) (-15 -2683 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2843 (|#1| |#1| |#1|)) (-15 -4151 (|#1| |#1| |#1|)) (-15 -2674 (|#1| |#1| |#1|)) (-15 -2742 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2969 |#1|)) |#1| |#1|)) (-15 -4319 (|#1| |#1| |#1|)) (-15 -3541 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2128 (|#1| |#1| |#1|)) (-15 -3326 (|#1| |#1| |#1|)) (-15 -3246 (|#1| |#1|)) (-15 -3257 (|#2| |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1920 ((-653 |#2|) |#1|)) (-15 -2942 (|#1| |#2|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2942 (|#1| (-573))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-931) |#1|)) (-15 -2942 ((-871) |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2843 (($ $ $) 50 (|has| |#1| (-371)))) (-4151 (($ $ $) 51 (|has| |#1| (-371)))) (-2674 (($ $ $) 53 (|has| |#1| (-371)))) (-4376 (($ $ $) 48 (|has| |#1| (-371)))) (-2860 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 47 (|has| |#1| (-371)))) (-2683 (((-3 $ "failed") $ $) 49 (|has| |#1| (-371)))) (-2792 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 52 (|has| |#1| (-371)))) (-1695 (((-3 (-573) "failed") $) 80 (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) 77 (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) 74)) (-2205 (((-573) $) 79 (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) 76 (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) 75)) (-1391 (($ $) 69)) (-2232 (((-3 $ "failed") $) 37)) (-3246 (($ $) 60 (|has| |#1| (-461)))) (-1959 (((-112) $) 35)) (-4334 (($ |#1| (-780)) 67)) (-3007 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 62 (|has| |#1| (-565)))) (-4005 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 63 (|has| |#1| (-565)))) (-4036 (((-780) $) 71)) (-2128 (($ $ $) 57 (|has| |#1| (-371)))) (-3326 (($ $ $) 58 (|has| |#1| (-371)))) (-2606 (($ $ $) 46 (|has| |#1| (-371)))) (-4319 (($ $ $) 55 (|has| |#1| (-371)))) (-2742 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 54 (|has| |#1| (-371)))) (-3541 (((-3 $ "failed") $ $) 56 (|has| |#1| (-371)))) (-3028 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 59 (|has| |#1| (-371)))) (-1369 ((|#1| $) 70)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2837 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-565)))) (-2565 (((-780) $) 72)) (-3257 ((|#1| $) 61 (|has| |#1| (-461)))) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ (-416 (-573))) 78 (|has| |#1| (-1050 (-416 (-573))))) (($ |#1|) 73)) (-1920 (((-653 |#1|) $) 66)) (-4317 ((|#1| $ (-780)) 68)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2900 ((|#1| $ |#1| |#1|) 65)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) +(((-861 |#1|) (-141) (-1061)) (T -861)) +((-2565 (*1 *2 *1) (-12 (-4 *1 (-861 *3)) (-4 *3 (-1061)) (-5 *2 (-780)))) (-4036 (*1 *2 *1) (-12 (-4 *1 (-861 *3)) (-4 *3 (-1061)) (-5 *2 (-780)))) (-1369 (*1 *2 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)))) (-1391 (*1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)))) (-4317 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-4 *1 (-861 *2)) (-4 *2 (-1061)))) (-4334 (*1 *1 *2 *3) (-12 (-5 *3 (-780)) (-4 *1 (-861 *2)) (-4 *2 (-1061)))) (-1920 (*1 *2 *1) (-12 (-4 *1 (-861 *3)) (-4 *3 (-1061)) (-5 *2 (-653 *3)))) (-2900 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)))) (-2837 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-565)))) (-4005 (*1 *2 *1 *1) (-12 (-4 *3 (-565)) (-4 *3 (-1061)) (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-861 *3)))) (-3007 (*1 *2 *1 *1) (-12 (-4 *3 (-565)) (-4 *3 (-1061)) (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-861 *3)))) (-3257 (*1 *2 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-461)))) (-3246 (*1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-461)))) (-3028 (*1 *2 *1 *1) (-12 (-4 *3 (-371)) (-4 *3 (-1061)) (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-861 *3)))) (-3326 (*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371)))) (-2128 (*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371)))) (-3541 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371)))) (-4319 (*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371)))) (-2742 (*1 *2 *1 *1) (-12 (-4 *3 (-371)) (-4 *3 (-1061)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2969 *1))) (-4 *1 (-861 *3)))) (-2674 (*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371)))) (-2792 (*1 *2 *1 *1) (-12 (-4 *3 (-371)) (-4 *3 (-1061)) (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-861 *3)))) (-4151 (*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371)))) (-2843 (*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371)))) (-2683 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371)))) (-4376 (*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371)))) (-2860 (*1 *2 *1 *1) (-12 (-4 *3 (-371)) (-4 *3 (-1061)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2969 *1))) (-4 *1 (-861 *3)))) (-2606 (*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371))))) +(-13 (-1061) (-111 |t#1| |t#1|) (-420 |t#1|) (-10 -8 (-15 -2565 ((-780) $)) (-15 -4036 ((-780) $)) (-15 -1369 (|t#1| $)) (-15 -1391 ($ $)) (-15 -4317 (|t#1| $ (-780))) (-15 -4334 ($ |t#1| (-780))) (-15 -1920 ((-653 |t#1|) $)) (-15 -2900 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-565)) (PROGN (-15 -2837 ((-3 $ "failed") $ |t#1|)) (-15 -4005 ((-2 (|:| -3152 $) (|:| -3132 $)) $ $)) (-15 -3007 ((-2 (|:| -3152 $) (|:| -3132 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-461)) (PROGN (-15 -3257 (|t#1| $)) (-15 -3246 ($ $))) |%noBranch|) (IF (|has| |t#1| (-371)) (PROGN (-15 -3028 ((-2 (|:| -3152 $) (|:| -3132 $)) $ $)) (-15 -3326 ($ $ $)) (-15 -2128 ($ $ $)) (-15 -3541 ((-3 $ "failed") $ $)) (-15 -4319 ($ $ $)) (-15 -2742 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $)) (-15 -2674 ($ $ $)) (-15 -2792 ((-2 (|:| -3152 $) (|:| -3132 $)) $ $)) (-15 -4151 ($ $ $)) (-15 -2843 ($ $ $)) (-15 -2683 ((-3 $ "failed") $ $)) (-15 -4376 ($ $ $)) (-15 -2860 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $)) (-15 -2606 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 #0=(-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-622 (-871)) . T) ((-420 |#1|) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-649 |#1|) |has| |#1| (-174)) ((-726 |#1|) |has| |#1| (-174)) ((-735) . T) ((-1050 #0#) |has| |#1| (-1050 (-416 (-573)))) ((-1050 (-573)) |has| |#1| (-1050 (-573))) ((-1050 |#1|) . T) ((-1063 |#1|) . T) ((-1068 |#1|) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) +((-3786 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-2792 (((-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-371)))) (-3007 (((-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-565)))) (-4005 (((-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-565)))) (-3028 (((-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-371)))) (-2900 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33))) +(((-862 |#1| |#2|) (-10 -7 (-15 -3786 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2900 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-565)) (PROGN (-15 -4005 ((-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3007 ((-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-371)) (PROGN (-15 -3028 ((-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2792 ((-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1061) (-861 |#1|)) (T -862)) +((-2792 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-371)) (-4 *5 (-1061)) (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-862 *5 *3)) (-4 *3 (-861 *5)))) (-3028 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-371)) (-4 *5 (-1061)) (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-862 *5 *3)) (-4 *3 (-861 *5)))) (-3007 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-565)) (-4 *5 (-1061)) (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-862 *5 *3)) (-4 *3 (-861 *5)))) (-4005 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-565)) (-4 *5 (-1061)) (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-862 *5 *3)) (-4 *3 (-861 *5)))) (-2900 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1061)) (-5 *1 (-862 *2 *3)) (-4 *3 (-861 *2)))) (-3786 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1061)) (-5 *1 (-862 *5 *2)) (-4 *2 (-861 *5))))) +(-10 -7 (-15 -3786 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2900 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-565)) (PROGN (-15 -4005 ((-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3007 ((-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-371)) (PROGN (-15 -3028 ((-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2792 ((-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-2843 (($ $ $) NIL (|has| |#1| (-371)))) (-4151 (($ $ $) NIL (|has| |#1| (-371)))) (-2674 (($ $ $) NIL (|has| |#1| (-371)))) (-4376 (($ $ $) NIL (|has| |#1| (-371)))) (-2860 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2683 (((-3 $ "failed") $ $) NIL (|has| |#1| (-371)))) (-2792 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 34 (|has| |#1| (-371)))) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) NIL)) (-2205 (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) NIL)) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#1| (-461)))) (-3471 (((-871) $ (-871)) NIL)) (-1959 (((-112) $) NIL)) (-4334 (($ |#1| (-780)) NIL)) (-3007 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 30 (|has| |#1| (-565)))) (-4005 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 28 (|has| |#1| (-565)))) (-4036 (((-780) $) NIL)) (-2128 (($ $ $) NIL (|has| |#1| (-371)))) (-3326 (($ $ $) NIL (|has| |#1| (-371)))) (-2606 (($ $ $) NIL (|has| |#1| (-371)))) (-4319 (($ $ $) NIL (|has| |#1| (-371)))) (-2742 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-3541 (((-3 $ "failed") $ $) NIL (|has| |#1| (-371)))) (-3028 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 32 (|has| |#1| (-371)))) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565)))) (-2565 (((-780) $) NIL)) (-3257 ((|#1| $) NIL (|has| |#1| (-461)))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ (-416 (-573))) NIL (|has| |#1| (-1050 (-416 (-573))))) (($ |#1|) NIL)) (-1920 (((-653 |#1|) $) NIL)) (-4317 ((|#1| $ (-780)) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2900 ((|#1| $ |#1| |#1|) 15)) (-2132 (($) NIL T CONST)) (-2144 (($) 23 T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) 19) (($ $ (-780)) 24)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-863 |#1| |#2| |#3|) (-13 (-861 |#1|) (-10 -8 (-15 -3471 ((-871) $ (-871))))) (-1061) (-99 |#1|) (-1 |#1| |#1|)) (T -863)) +((-3471 (*1 *2 *1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-863 *3 *4 *5)) (-4 *3 (-1061)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-861 |#1|) (-10 -8 (-15 -3471 ((-871) $ (-871))))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-2843 (($ $ $) NIL (|has| |#2| (-371)))) (-4151 (($ $ $) NIL (|has| |#2| (-371)))) (-2674 (($ $ $) NIL (|has| |#2| (-371)))) (-4376 (($ $ $) NIL (|has| |#2| (-371)))) (-2860 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#2| (-371)))) (-2683 (((-3 $ "failed") $ $) NIL (|has| |#2| (-371)))) (-2792 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#2| (-371)))) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#2| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#2| (-1050 (-416 (-573))))) (((-3 |#2| "failed") $) NIL)) (-2205 (((-573) $) NIL (|has| |#2| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#2| (-1050 (-416 (-573))))) ((|#2| $) NIL)) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#2| (-461)))) (-1959 (((-112) $) NIL)) (-4334 (($ |#2| (-780)) 17)) (-3007 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#2| (-565)))) (-4005 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#2| (-565)))) (-4036 (((-780) $) NIL)) (-2128 (($ $ $) NIL (|has| |#2| (-371)))) (-3326 (($ $ $) NIL (|has| |#2| (-371)))) (-2606 (($ $ $) NIL (|has| |#2| (-371)))) (-4319 (($ $ $) NIL (|has| |#2| (-371)))) (-2742 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#2| (-371)))) (-3541 (((-3 $ "failed") $ $) NIL (|has| |#2| (-371)))) (-3028 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#2| (-371)))) (-1369 ((|#2| $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2837 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-565)))) (-2565 (((-780) $) NIL)) (-3257 ((|#2| $) NIL (|has| |#2| (-461)))) (-2942 (((-871) $) 24) (($ (-573)) NIL) (($ (-416 (-573))) NIL (|has| |#2| (-1050 (-416 (-573))))) (($ |#2|) NIL) (($ (-1276 |#1|)) 19)) (-1920 (((-653 |#2|) $) NIL)) (-4317 ((|#2| $ (-780)) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2900 ((|#2| $ |#2| |#2|) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) 13 T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-864 |#1| |#2| |#3| |#4|) (-13 (-861 |#2|) (-625 (-1276 |#1|))) (-1189) (-1061) (-99 |#2|) (-1 |#2| |#2|)) (T -864)) +NIL +(-13 (-861 |#2|) (-625 (-1276 |#1|))) +((-2825 ((|#1| (-780) |#1|) 45 (|has| |#1| (-38 (-416 (-573)))))) (-3849 ((|#1| (-780) (-780) |#1|) 36) ((|#1| (-780) |#1|) 24)) (-4397 ((|#1| (-780) |#1|) 40)) (-3449 ((|#1| (-780) |#1|) 38)) (-3946 ((|#1| (-780) |#1|) 37))) +(((-865 |#1|) (-10 -7 (-15 -3946 (|#1| (-780) |#1|)) (-15 -3449 (|#1| (-780) |#1|)) (-15 -4397 (|#1| (-780) |#1|)) (-15 -3849 (|#1| (-780) |#1|)) (-15 -3849 (|#1| (-780) (-780) |#1|)) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -2825 (|#1| (-780) |#1|)) |%noBranch|)) (-174)) (T -865)) +((-2825 (*1 *2 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-865 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-174)))) (-3849 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-865 *2)) (-4 *2 (-174)))) (-3849 (*1 *2 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-865 *2)) (-4 *2 (-174)))) (-4397 (*1 *2 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-865 *2)) (-4 *2 (-174)))) (-3449 (*1 *2 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-865 *2)) (-4 *2 (-174)))) (-3946 (*1 *2 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-865 *2)) (-4 *2 (-174))))) +(-10 -7 (-15 -3946 (|#1| (-780) |#1|)) (-15 -3449 (|#1| (-780) |#1|)) (-15 -4397 (|#1| (-780) |#1|)) (-15 -3849 (|#1| (-780) |#1|)) (-15 -3849 (|#1| (-780) (-780) |#1|)) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -2825 (|#1| (-780) |#1|)) |%noBranch|)) +((-2848 (((-112) $ $) 7)) (-3659 (($ $ $) 14)) (-3751 (($ $ $) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-3040 (((-112) $ $) 17)) (-3015 (((-112) $ $) 18)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 16)) (-3005 (((-112) $ $) 19)) (** (($ $ (-931)) 22)) (* (($ $ $) 21))) +(((-866) (-141)) (T -866)) +NIL +(-13 (-859) (-1124)) +(((-102) . T) ((-622 (-871)) . T) ((-859) . T) ((-1124) . T) ((-1112) . T)) +((-2848 (((-112) $ $) NIL)) (-3082 (((-573) $) 14)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 20) (($ (-573)) 13)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 9)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 11))) +(((-867) (-13 (-859) (-10 -8 (-15 -2942 ($ (-573))) (-15 -3082 ((-573) $))))) (T -867)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-867)))) (-3082 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-867))))) +(-13 (-859) (-10 -8 (-15 -2942 ($ (-573))) (-15 -3082 ((-573) $)))) +((-3534 (((-700 (-1238)) $ (-1238)) 15)) (-4340 (((-700 (-558)) $ (-558)) 12)) (-1960 (((-780) $ (-129)) 30))) +(((-868 |#1|) (-10 -8 (-15 -1960 ((-780) |#1| (-129))) (-15 -3534 ((-700 (-1238)) |#1| (-1238))) (-15 -4340 ((-700 (-558)) |#1| (-558)))) (-869)) (T -868)) +NIL +(-10 -8 (-15 -1960 ((-780) |#1| (-129))) (-15 -3534 ((-700 (-1238)) |#1| (-1238))) (-15 -4340 ((-700 (-558)) |#1| (-558)))) +((-3534 (((-700 (-1238)) $ (-1238)) 8)) (-4340 (((-700 (-558)) $ (-558)) 9)) (-1960 (((-780) $ (-129)) 7)) (-2034 (((-700 (-130)) $ (-130)) 10)) (-1981 (($ $) 6))) +(((-869) (-141)) (T -869)) +((-2034 (*1 *2 *1 *3) (-12 (-4 *1 (-869)) (-5 *2 (-700 (-130))) (-5 *3 (-130)))) (-4340 (*1 *2 *1 *3) (-12 (-4 *1 (-869)) (-5 *2 (-700 (-558))) (-5 *3 (-558)))) (-3534 (*1 *2 *1 *3) (-12 (-4 *1 (-869)) (-5 *2 (-700 (-1238))) (-5 *3 (-1238)))) (-1960 (*1 *2 *1 *3) (-12 (-4 *1 (-869)) (-5 *3 (-129)) (-5 *2 (-780))))) +(-13 (-175) (-10 -8 (-15 -2034 ((-700 (-130)) $ (-130))) (-15 -4340 ((-700 (-558)) $ (-558))) (-15 -3534 ((-700 (-1238)) $ (-1238))) (-15 -1960 ((-780) $ (-129))))) (((-175) . T)) -((-2238 (((-701 (-1239)) $ (-1239)) NIL)) (-1767 (((-701 (-559)) $ (-559)) NIL)) (-3734 (((-781) $ (-129)) NIL)) (-3353 (((-701 (-130)) $ (-130)) 22)) (-1354 (($ (-398)) 12) (($ (-1172)) 14)) (-3264 (((-112) $) 19)) (-2943 (((-872) $) 26)) (-3646 (($ $) 23))) -(((-871) (-13 (-870) (-623 (-872)) (-10 -8 (-15 -1354 ($ (-398))) (-15 -1354 ($ (-1172))) (-15 -3264 ((-112) $))))) (T -871)) -((-1354 (*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-871)))) (-1354 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-871)))) (-3264 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-871))))) -(-13 (-870) (-623 (-872)) (-10 -8 (-15 -1354 ($ (-398))) (-15 -1354 ($ (-1172))) (-15 -3264 ((-112) $)))) -((-2849 (((-112) $ $) NIL) (($ $ $) 85)) (-3780 (($ $ $) 125)) (-3014 (((-574) $) 31) (((-574)) 36)) (-2482 (($ (-574)) 53)) (-3430 (($ $ $) 54) (($ (-654 $)) 84)) (-2730 (($ $ (-654 $)) 82)) (-1327 (((-574) $) 34)) (-3651 (($ $ $) 73)) (-3561 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-2642 (((-574) $) 33)) (-3888 (($ $ $) 72)) (-3249 (($ $) 114)) (-1874 (($ $ $) 129)) (-2215 (($ (-654 $)) 61)) (-4147 (($ $ (-654 $)) 79)) (-3305 (($ (-574) (-574)) 55)) (-1497 (($ $) 126) (($ $ $) 127)) (-3904 (($ $ (-574)) 43) (($ $) 46)) (-2786 (($ $ $) 97)) (-4042 (($ $ $) 132)) (-3797 (($ $) 115)) (-2797 (($ $ $) 98)) (-1644 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-1793 (((-1286) $) 10)) (-2715 (($ $) 118) (($ $ (-781)) 122)) (-4107 (($ $ $) 75)) (-4286 (($ $ $) 74)) (-4215 (($ $ (-654 $)) 110)) (-2656 (($ $ $) 113)) (-4428 (($ (-654 $)) 59)) (-3574 (($ $) 70) (($ (-654 $)) 71)) (-4349 (($ $ $) 123)) (-2996 (($ $) 116)) (-1603 (($ $ $) 128)) (-2212 (($ (-574)) 21) (($ (-1190)) 23) (($ (-1172)) 30) (($ (-227)) 25)) (-2098 (($ $ $) 101)) (-2076 (($ $) 102)) (-3459 (((-1286) (-1172)) 15)) (-2169 (($ (-1172)) 14)) (-2914 (($ (-654 (-654 $))) 58)) (-3891 (($ $ (-574)) 42) (($ $) 45)) (-4136 (((-1172) $) NIL)) (-1898 (($ $ $) 131)) (-3091 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-3800 (((-112) $) 108)) (-2867 (($ $ (-654 $)) 111) (($ $ $ $) 112)) (-2880 (($ (-574)) 39)) (-1839 (((-574) $) 32) (((-574)) 35)) (-4389 (($ $ $) 40) (($ (-654 $)) 83)) (-3966 (((-1133) $) NIL)) (-2838 (($ $ $) 99)) (-2672 (($) 13)) (-2199 (($ $ (-654 $)) 109)) (-2749 (((-1172) (-1172)) 8)) (-4236 (($ $) 117) (($ $ (-781)) 121)) (-2825 (($ $ $) 96)) (-3905 (($ $ (-781)) 139)) (-1534 (($ (-654 $)) 60)) (-2943 (((-872) $) 19)) (-3359 (($ $ (-574)) 41) (($ $) 44)) (-3149 (($ $) 68) (($ (-654 $)) 69)) (-4281 (($ $) 66) (($ (-654 $)) 67)) (-2029 (($ $) 124)) (-3815 (($ (-654 $)) 65)) (-1616 (($ $ $) 105)) (-3284 (((-112) $ $) NIL)) (-1691 (($ $ $) 130)) (-2087 (($ $ $) 100)) (-4277 (($ $ $) 103) (($ $) 104)) (-3042 (($ $ $) 89)) (-3018 (($ $ $) 87)) (-2981 (((-112) $ $) 16) (($ $ $) 17)) (-3030 (($ $ $) 88)) (-3007 (($ $ $) 86)) (-3108 (($ $ $) 94)) (-3094 (($ $ $) 91) (($ $) 92)) (-3079 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93))) -(((-872) (-13 (-1113) (-10 -8 (-15 -1793 ((-1286) $)) (-15 -2169 ($ (-1172))) (-15 -3459 ((-1286) (-1172))) (-15 -2212 ($ (-574))) (-15 -2212 ($ (-1190))) (-15 -2212 ($ (-1172))) (-15 -2212 ($ (-227))) (-15 -2672 ($)) (-15 -2749 ((-1172) (-1172))) (-15 -3014 ((-574) $)) (-15 -1839 ((-574) $)) (-15 -3014 ((-574))) (-15 -1839 ((-574))) (-15 -2642 ((-574) $)) (-15 -1327 ((-574) $)) (-15 -2880 ($ (-574))) (-15 -2482 ($ (-574))) (-15 -3305 ($ (-574) (-574))) (-15 -3891 ($ $ (-574))) (-15 -3904 ($ $ (-574))) (-15 -3359 ($ $ (-574))) (-15 -3891 ($ $)) (-15 -3904 ($ $)) (-15 -3359 ($ $)) (-15 -4389 ($ $ $)) (-15 -3430 ($ $ $)) (-15 -4389 ($ (-654 $))) (-15 -3430 ($ (-654 $))) (-15 -4215 ($ $ (-654 $))) (-15 -2867 ($ $ (-654 $))) (-15 -2867 ($ $ $ $)) (-15 -2656 ($ $ $)) (-15 -3800 ((-112) $)) (-15 -2199 ($ $ (-654 $))) (-15 -3249 ($ $)) (-15 -1898 ($ $ $)) (-15 -2029 ($ $)) (-15 -2914 ($ (-654 (-654 $)))) (-15 -3780 ($ $ $)) (-15 -1497 ($ $)) (-15 -1497 ($ $ $)) (-15 -1603 ($ $ $)) (-15 -1874 ($ $ $)) (-15 -1691 ($ $ $)) (-15 -4042 ($ $ $)) (-15 -3905 ($ $ (-781))) (-15 -1616 ($ $ $)) (-15 -3888 ($ $ $)) (-15 -3651 ($ $ $)) (-15 -4286 ($ $ $)) (-15 -4107 ($ $ $)) (-15 -4147 ($ $ (-654 $))) (-15 -2730 ($ $ (-654 $))) (-15 -3797 ($ $)) (-15 -4236 ($ $)) (-15 -4236 ($ $ (-781))) (-15 -2715 ($ $)) (-15 -2715 ($ $ (-781))) (-15 -2996 ($ $)) (-15 -4349 ($ $ $)) (-15 -3561 ($ $)) (-15 -3561 ($ $ $)) (-15 -3561 ($ $ $ $)) (-15 -1644 ($ $)) (-15 -1644 ($ $ $)) (-15 -1644 ($ $ $ $)) (-15 -3091 ($ $)) (-15 -3091 ($ $ $)) (-15 -3091 ($ $ $ $)) (-15 -4281 ($ $)) (-15 -4281 ($ (-654 $))) (-15 -3149 ($ $)) (-15 -3149 ($ (-654 $))) (-15 -3574 ($ $)) (-15 -3574 ($ (-654 $))) (-15 -4428 ($ (-654 $))) (-15 -1534 ($ (-654 $))) (-15 -2215 ($ (-654 $))) (-15 -3815 ($ (-654 $))) (-15 -2981 ($ $ $)) (-15 -2849 ($ $ $)) (-15 -3007 ($ $ $)) (-15 -3018 ($ $ $)) (-15 -3030 ($ $ $)) (-15 -3042 ($ $ $)) (-15 -3079 ($ $ $)) (-15 -3094 ($ $ $)) (-15 -3094 ($ $)) (-15 * ($ $ $)) (-15 -3108 ($ $ $)) (-15 ** ($ $ $)) (-15 -2825 ($ $ $)) (-15 -2786 ($ $ $)) (-15 -2797 ($ $ $)) (-15 -2838 ($ $ $)) (-15 -2087 ($ $ $)) (-15 -2098 ($ $ $)) (-15 -2076 ($ $)) (-15 -4277 ($ $ $)) (-15 -4277 ($ $))))) (T -872)) -((-1793 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-872)))) (-2169 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-872)))) (-3459 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-872)))) (-2212 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-2212 (*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-872)))) (-2212 (*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-872)))) (-2212 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-872)))) (-2672 (*1 *1) (-5 *1 (-872))) (-2749 (*1 *2 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-872)))) (-3014 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-1839 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3014 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-1839 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-2642 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-1327 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-2880 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-2482 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3305 (*1 *1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3891 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3904 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3359 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3891 (*1 *1 *1) (-5 *1 (-872))) (-3904 (*1 *1 *1) (-5 *1 (-872))) (-3359 (*1 *1 *1) (-5 *1 (-872))) (-4389 (*1 *1 *1 *1) (-5 *1 (-872))) (-3430 (*1 *1 *1 *1) (-5 *1 (-872))) (-4389 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-3430 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-4215 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-2867 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-2867 (*1 *1 *1 *1 *1) (-5 *1 (-872))) (-2656 (*1 *1 *1 *1) (-5 *1 (-872))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-872)))) (-2199 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-3249 (*1 *1 *1) (-5 *1 (-872))) (-1898 (*1 *1 *1 *1) (-5 *1 (-872))) (-2029 (*1 *1 *1) (-5 *1 (-872))) (-2914 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-872)))) (-5 *1 (-872)))) (-3780 (*1 *1 *1 *1) (-5 *1 (-872))) (-1497 (*1 *1 *1) (-5 *1 (-872))) (-1497 (*1 *1 *1 *1) (-5 *1 (-872))) (-1603 (*1 *1 *1 *1) (-5 *1 (-872))) (-1874 (*1 *1 *1 *1) (-5 *1 (-872))) (-1691 (*1 *1 *1 *1) (-5 *1 (-872))) (-4042 (*1 *1 *1 *1) (-5 *1 (-872))) (-3905 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872)))) (-1616 (*1 *1 *1 *1) (-5 *1 (-872))) (-3888 (*1 *1 *1 *1) (-5 *1 (-872))) (-3651 (*1 *1 *1 *1) (-5 *1 (-872))) (-4286 (*1 *1 *1 *1) (-5 *1 (-872))) (-4107 (*1 *1 *1 *1) (-5 *1 (-872))) (-4147 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-2730 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-3797 (*1 *1 *1) (-5 *1 (-872))) (-4236 (*1 *1 *1) (-5 *1 (-872))) (-4236 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872)))) (-2715 (*1 *1 *1) (-5 *1 (-872))) (-2715 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872)))) (-2996 (*1 *1 *1) (-5 *1 (-872))) (-4349 (*1 *1 *1 *1) (-5 *1 (-872))) (-3561 (*1 *1 *1) (-5 *1 (-872))) (-3561 (*1 *1 *1 *1) (-5 *1 (-872))) (-3561 (*1 *1 *1 *1 *1) (-5 *1 (-872))) (-1644 (*1 *1 *1) (-5 *1 (-872))) (-1644 (*1 *1 *1 *1) (-5 *1 (-872))) (-1644 (*1 *1 *1 *1 *1) (-5 *1 (-872))) (-3091 (*1 *1 *1) (-5 *1 (-872))) (-3091 (*1 *1 *1 *1) (-5 *1 (-872))) (-3091 (*1 *1 *1 *1 *1) (-5 *1 (-872))) (-4281 (*1 *1 *1) (-5 *1 (-872))) (-4281 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-3149 (*1 *1 *1) (-5 *1 (-872))) (-3149 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-3574 (*1 *1 *1) (-5 *1 (-872))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-4428 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-1534 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-2215 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-3815 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-2981 (*1 *1 *1 *1) (-5 *1 (-872))) (-2849 (*1 *1 *1 *1) (-5 *1 (-872))) (-3007 (*1 *1 *1 *1) (-5 *1 (-872))) (-3018 (*1 *1 *1 *1) (-5 *1 (-872))) (-3030 (*1 *1 *1 *1) (-5 *1 (-872))) (-3042 (*1 *1 *1 *1) (-5 *1 (-872))) (-3079 (*1 *1 *1 *1) (-5 *1 (-872))) (-3094 (*1 *1 *1 *1) (-5 *1 (-872))) (-3094 (*1 *1 *1) (-5 *1 (-872))) (* (*1 *1 *1 *1) (-5 *1 (-872))) (-3108 (*1 *1 *1 *1) (-5 *1 (-872))) (** (*1 *1 *1 *1) (-5 *1 (-872))) (-2825 (*1 *1 *1 *1) (-5 *1 (-872))) (-2786 (*1 *1 *1 *1) (-5 *1 (-872))) (-2797 (*1 *1 *1 *1) (-5 *1 (-872))) (-2838 (*1 *1 *1 *1) (-5 *1 (-872))) (-2087 (*1 *1 *1 *1) (-5 *1 (-872))) (-2098 (*1 *1 *1 *1) (-5 *1 (-872))) (-2076 (*1 *1 *1) (-5 *1 (-872))) (-4277 (*1 *1 *1 *1) (-5 *1 (-872))) (-4277 (*1 *1 *1) (-5 *1 (-872)))) -(-13 (-1113) (-10 -8 (-15 -1793 ((-1286) $)) (-15 -2169 ($ (-1172))) (-15 -3459 ((-1286) (-1172))) (-15 -2212 ($ (-574))) (-15 -2212 ($ (-1190))) (-15 -2212 ($ (-1172))) (-15 -2212 ($ (-227))) (-15 -2672 ($)) (-15 -2749 ((-1172) (-1172))) (-15 -3014 ((-574) $)) (-15 -1839 ((-574) $)) (-15 -3014 ((-574))) (-15 -1839 ((-574))) (-15 -2642 ((-574) $)) (-15 -1327 ((-574) $)) (-15 -2880 ($ (-574))) (-15 -2482 ($ (-574))) (-15 -3305 ($ (-574) (-574))) (-15 -3891 ($ $ (-574))) (-15 -3904 ($ $ (-574))) (-15 -3359 ($ $ (-574))) (-15 -3891 ($ $)) (-15 -3904 ($ $)) (-15 -3359 ($ $)) (-15 -4389 ($ $ $)) (-15 -3430 ($ $ $)) (-15 -4389 ($ (-654 $))) (-15 -3430 ($ (-654 $))) (-15 -4215 ($ $ (-654 $))) (-15 -2867 ($ $ (-654 $))) (-15 -2867 ($ $ $ $)) (-15 -2656 ($ $ $)) (-15 -3800 ((-112) $)) (-15 -2199 ($ $ (-654 $))) (-15 -3249 ($ $)) (-15 -1898 ($ $ $)) (-15 -2029 ($ $)) (-15 -2914 ($ (-654 (-654 $)))) (-15 -3780 ($ $ $)) (-15 -1497 ($ $)) (-15 -1497 ($ $ $)) (-15 -1603 ($ $ $)) (-15 -1874 ($ $ $)) (-15 -1691 ($ $ $)) (-15 -4042 ($ $ $)) (-15 -3905 ($ $ (-781))) (-15 -1616 ($ $ $)) (-15 -3888 ($ $ $)) (-15 -3651 ($ $ $)) (-15 -4286 ($ $ $)) (-15 -4107 ($ $ $)) (-15 -4147 ($ $ (-654 $))) (-15 -2730 ($ $ (-654 $))) (-15 -3797 ($ $)) (-15 -4236 ($ $)) (-15 -4236 ($ $ (-781))) (-15 -2715 ($ $)) (-15 -2715 ($ $ (-781))) (-15 -2996 ($ $)) (-15 -4349 ($ $ $)) (-15 -3561 ($ $)) (-15 -3561 ($ $ $)) (-15 -3561 ($ $ $ $)) (-15 -1644 ($ $)) (-15 -1644 ($ $ $)) (-15 -1644 ($ $ $ $)) (-15 -3091 ($ $)) (-15 -3091 ($ $ $)) (-15 -3091 ($ $ $ $)) (-15 -4281 ($ $)) (-15 -4281 ($ (-654 $))) (-15 -3149 ($ $)) (-15 -3149 ($ (-654 $))) (-15 -3574 ($ $)) (-15 -3574 ($ (-654 $))) (-15 -4428 ($ (-654 $))) (-15 -1534 ($ (-654 $))) (-15 -2215 ($ (-654 $))) (-15 -3815 ($ (-654 $))) (-15 -2981 ($ $ $)) (-15 -2849 ($ $ $)) (-15 -3007 ($ $ $)) (-15 -3018 ($ $ $)) (-15 -3030 ($ $ $)) (-15 -3042 ($ $ $)) (-15 -3079 ($ $ $)) (-15 -3094 ($ $ $)) (-15 -3094 ($ $)) (-15 * ($ $ $)) (-15 -3108 ($ $ $)) (-15 ** ($ $ $)) (-15 -2825 ($ $ $)) (-15 -2786 ($ $ $)) (-15 -2797 ($ $ $)) (-15 -2838 ($ $ $)) (-15 -2087 ($ $ $)) (-15 -2098 ($ $ $)) (-15 -2076 ($ $)) (-15 -4277 ($ $ $)) (-15 -4277 ($ $)))) -((-2369 (((-1286) (-654 (-52))) 23)) (-3248 (((-1286) (-1172) (-872)) 13) (((-1286) (-872)) 8) (((-1286) (-1172)) 10))) -(((-873) (-10 -7 (-15 -3248 ((-1286) (-1172))) (-15 -3248 ((-1286) (-872))) (-15 -3248 ((-1286) (-1172) (-872))) (-15 -2369 ((-1286) (-654 (-52)))))) (T -873)) -((-2369 (*1 *2 *3) (-12 (-5 *3 (-654 (-52))) (-5 *2 (-1286)) (-5 *1 (-873)))) (-3248 (*1 *2 *3 *4) (-12 (-5 *3 (-1172)) (-5 *4 (-872)) (-5 *2 (-1286)) (-5 *1 (-873)))) (-3248 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1286)) (-5 *1 (-873)))) (-3248 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-873))))) -(-10 -7 (-15 -3248 ((-1286) (-1172))) (-15 -3248 ((-1286) (-872))) (-15 -3248 ((-1286) (-1172) (-872))) (-15 -2369 ((-1286) (-654 (-52))))) -((-2849 (((-112) $ $) NIL)) (-1488 (((-3 $ "failed") (-1190)) 36)) (-1487 (((-781)) 32)) (-2820 (($) NIL)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-4257 (($ $ $) NIL) (($) NIL T CONST)) (-4115 (((-932) $) 29)) (-4136 (((-1172) $) 43)) (-2576 (($ (-932)) 28)) (-3966 (((-1133) $) NIL)) (-1836 (((-1190) $) 13) (((-546) $) 19) (((-903 (-388)) $) 26) (((-903 (-574)) $) 22)) (-2943 (((-872) $) 16)) (-3284 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 40)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) 38))) -(((-874 |#1|) (-13 (-854) (-624 (-1190)) (-624 (-546)) (-624 (-903 (-388))) (-624 (-903 (-574))) (-10 -8 (-15 -1488 ((-3 $ "failed") (-1190))))) (-654 (-1190))) (T -874)) -((-1488 (*1 *1 *2) (|partial| -12 (-5 *2 (-1190)) (-5 *1 (-874 *3)) (-14 *3 (-654 *2))))) -(-13 (-854) (-624 (-1190)) (-624 (-546)) (-624 (-903 (-388))) (-624 (-903 (-574))) (-10 -8 (-15 -1488 ((-3 $ "failed") (-1190))))) -((-2849 (((-112) $ $) NIL)) (-2032 (((-516) $) 9)) (-1606 (((-654 (-449)) $) 13)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 21)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 16))) -(((-875) (-13 (-1113) (-10 -8 (-15 -2032 ((-516) $)) (-15 -1606 ((-654 (-449)) $))))) (T -875)) -((-2032 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-875)))) (-1606 (*1 *2 *1) (-12 (-5 *2 (-654 (-449))) (-5 *1 (-875))))) -(-13 (-1113) (-10 -8 (-15 -2032 ((-516) $)) (-15 -1606 ((-654 (-449)) $)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-3434 (((-3 $ "failed") $) NIL)) (-3199 (((-112) $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ (-963 |#1|)) NIL) (((-963 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-174)))) (-1364 (((-781)) NIL T CONST)) (-4050 (((-1286) (-781)) NIL)) (-3284 (((-112) $ $) NIL)) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3108 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-876 |#1| |#2| |#3| |#4|) (-13 (-1062) (-500 (-963 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3108 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4050 ((-1286) (-781))))) (-1062) (-654 (-1190)) (-654 (-781)) (-781)) (T -876)) -((-3108 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-876 *2 *3 *4 *5)) (-4 *2 (-372)) (-4 *2 (-1062)) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-781))) (-14 *5 (-781)))) (-4050 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1286)) (-5 *1 (-876 *4 *5 *6 *7)) (-4 *4 (-1062)) (-14 *5 (-654 (-1190))) (-14 *6 (-654 *3)) (-14 *7 *3)))) -(-13 (-1062) (-500 (-963 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3108 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4050 ((-1286) (-781))))) -((-3868 (((-3 (-176 |#3|) "failed") (-781) (-781) |#2| |#2|) 38)) (-3739 (((-3 (-417 |#3|) "failed") (-781) (-781) |#2| |#2|) 29))) -(((-877 |#1| |#2| |#3|) (-10 -7 (-15 -3739 ((-3 (-417 |#3|) "failed") (-781) (-781) |#2| |#2|)) (-15 -3868 ((-3 (-176 |#3|) "failed") (-781) (-781) |#2| |#2|))) (-372) (-1272 |#1|) (-1257 |#1|)) (T -877)) -((-3868 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-781)) (-4 *5 (-372)) (-5 *2 (-176 *6)) (-5 *1 (-877 *5 *4 *6)) (-4 *4 (-1272 *5)) (-4 *6 (-1257 *5)))) (-3739 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-781)) (-4 *5 (-372)) (-5 *2 (-417 *6)) (-5 *1 (-877 *5 *4 *6)) (-4 *4 (-1272 *5)) (-4 *6 (-1257 *5))))) -(-10 -7 (-15 -3739 ((-3 (-417 |#3|) "failed") (-781) (-781) |#2| |#2|)) (-15 -3868 ((-3 (-176 |#3|) "failed") (-781) (-781) |#2| |#2|))) -((-3739 (((-3 (-417 (-1254 |#2| |#1|)) "failed") (-781) (-781) (-1273 |#1| |#2| |#3|)) 30) (((-3 (-417 (-1254 |#2| |#1|)) "failed") (-781) (-781) (-1273 |#1| |#2| |#3|) (-1273 |#1| |#2| |#3|)) 28))) -(((-878 |#1| |#2| |#3|) (-10 -7 (-15 -3739 ((-3 (-417 (-1254 |#2| |#1|)) "failed") (-781) (-781) (-1273 |#1| |#2| |#3|) (-1273 |#1| |#2| |#3|))) (-15 -3739 ((-3 (-417 (-1254 |#2| |#1|)) "failed") (-781) (-781) (-1273 |#1| |#2| |#3|)))) (-372) (-1190) |#1|) (T -878)) -((-3739 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-781)) (-5 *4 (-1273 *5 *6 *7)) (-4 *5 (-372)) (-14 *6 (-1190)) (-14 *7 *5) (-5 *2 (-417 (-1254 *6 *5))) (-5 *1 (-878 *5 *6 *7)))) (-3739 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-781)) (-5 *4 (-1273 *5 *6 *7)) (-4 *5 (-372)) (-14 *6 (-1190)) (-14 *7 *5) (-5 *2 (-417 (-1254 *6 *5))) (-5 *1 (-878 *5 *6 *7))))) -(-10 -7 (-15 -3739 ((-3 (-417 (-1254 |#2| |#1|)) "failed") (-781) (-781) (-1273 |#1| |#2| |#3|) (-1273 |#1| |#2| |#3|))) (-15 -3739 ((-3 (-417 (-1254 |#2| |#1|)) "failed") (-781) (-781) (-1273 |#1| |#2| |#3|)))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-1575 (($ $) 46)) (-2085 (((-112) $) 44)) (-3524 (((-3 $ "failed") $ $) 20)) (-4229 (($ $ (-574)) 68)) (-1600 (((-112) $ $) 65)) (-3426 (($) 18 T CONST)) (-1497 (($ (-1186 (-574)) (-574)) 67)) (-2786 (($ $ $) 61)) (-3434 (((-3 $ "failed") $) 37)) (-3055 (($ $) 70)) (-2797 (($ $ $) 62)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) 57)) (-3884 (((-781) $) 75)) (-3199 (((-112) $) 35)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2089 (((-574)) 72)) (-2370 (((-574) $) 71)) (-2832 (($ $ $) 52) (($ (-654 $)) 51)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2873 (($ $ $) 54) (($ (-654 $)) 53)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2533 (($ $ (-574)) 74)) (-2838 (((-3 $ "failed") $ $) 48)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-1730 (((-781) $) 64)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 63)) (-2173 (((-1170 (-574)) $) 76)) (-1651 (($ $) 73)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2069 (((-112) $ $) 45)) (-3551 (((-574) $ (-574)) 69)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) -(((-879 |#1|) (-141) (-574)) (T -879)) -((-2173 (*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-1170 (-574))))) (-3884 (*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-781)))) (-2533 (*1 *1 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) (-1651 (*1 *1 *1) (-4 *1 (-879 *2))) (-2089 (*1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) (-2370 (*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) (-3055 (*1 *1 *1) (-4 *1 (-879 *2))) (-3551 (*1 *2 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) (-4229 (*1 *1 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) (-1497 (*1 *1 *2 *3) (-12 (-5 *2 (-1186 (-574))) (-5 *3 (-574)) (-4 *1 (-879 *4))))) -(-13 (-315) (-148) (-10 -8 (-15 -2173 ((-1170 (-574)) $)) (-15 -3884 ((-781) $)) (-15 -2533 ($ $ (-574))) (-15 -1651 ($ $)) (-15 -2089 ((-574))) (-15 -2370 ((-574) $)) (-15 -3055 ($ $)) (-15 -3551 ((-574) $ (-574))) (-15 -4229 ($ $ (-574))) (-15 -1497 ($ (-1186 (-574)) (-574))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-315) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-931) . T) ((-1064 $) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-4229 (($ $ (-574)) NIL)) (-1600 (((-112) $ $) NIL)) (-3426 (($) NIL T CONST)) (-1497 (($ (-1186 (-574)) (-574)) NIL)) (-2786 (($ $ $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-3055 (($ $) NIL)) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3884 (((-781) $) NIL)) (-3199 (((-112) $) NIL)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2089 (((-574)) NIL)) (-2370 (((-574) $) NIL)) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2533 (($ $ (-574)) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1730 (((-781) $) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-2173 (((-1170 (-574)) $) NIL)) (-1651 (($ $) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL)) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL)) (-3551 (((-574) $ (-574)) NIL)) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL))) -(((-880 |#1|) (-879 |#1|) (-574)) (T -880)) -NIL -(-879 |#1|) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1528 (((-880 |#1|) $) NIL (|has| (-880 |#1|) (-315)))) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3972 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-880 |#1|) (-920)))) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| (-880 |#1|) (-920)))) (-1600 (((-112) $ $) NIL)) (-2846 (((-574) $) NIL (|has| (-880 |#1|) (-830)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-880 |#1|) "failed") $) NIL) (((-3 (-1190) "failed") $) NIL (|has| (-880 |#1|) (-1051 (-1190)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-880 |#1|) (-1051 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-880 |#1|) (-1051 (-574))))) (-2206 (((-880 |#1|) $) NIL) (((-1190) $) NIL (|has| (-880 |#1|) (-1051 (-1190)))) (((-417 (-574)) $) NIL (|has| (-880 |#1|) (-1051 (-574)))) (((-574) $) NIL (|has| (-880 |#1|) (-1051 (-574))))) (-3327 (($ $) NIL) (($ (-574) $) NIL)) (-2786 (($ $ $) NIL)) (-2590 (((-699 (-574)) (-1281 $)) NIL (|has| (-880 |#1|) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-880 |#1|) (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| (-880 |#1|) (-649 (-574)))) (((-2 (|:| -4340 (-699 (-880 |#1|))) (|:| |vec| (-1281 (-880 |#1|)))) (-699 $) (-1281 $)) NIL) (((-699 (-880 |#1|)) (-699 $)) NIL) (((-699 (-880 |#1|)) (-1281 $)) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2820 (($) NIL (|has| (-880 |#1|) (-555)))) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-2257 (((-112) $) NIL)) (-2756 (((-112) $) NIL (|has| (-880 |#1|) (-830)))) (-3625 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-880 |#1|) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-880 |#1|) (-897 (-388))))) (-3199 (((-112) $) NIL)) (-2141 (($ $) NIL)) (-2966 (((-880 |#1|) $) NIL)) (-2748 (((-3 $ "failed") $) NIL (|has| (-880 |#1|) (-1165)))) (-1335 (((-112) $) NIL (|has| (-880 |#1|) (-830)))) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3659 (($ $ $) NIL (|has| (-880 |#1|) (-860)))) (-4257 (($ $ $) NIL (|has| (-880 |#1|) (-860)))) (-1777 (($ (-1 (-880 |#1|) (-880 |#1|)) $) NIL)) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| (-880 |#1|) (-1165)) CONST)) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3191 (($ $) NIL (|has| (-880 |#1|) (-315)))) (-3595 (((-880 |#1|) $) NIL (|has| (-880 |#1|) (-555)))) (-2560 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-880 |#1|) (-920)))) (-2039 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-880 |#1|) (-920)))) (-4220 (((-428 $) $) NIL)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2646 (($ $ (-654 (-880 |#1|)) (-654 (-880 |#1|))) NIL (|has| (-880 |#1|) (-317 (-880 |#1|)))) (($ $ (-880 |#1|) (-880 |#1|)) NIL (|has| (-880 |#1|) (-317 (-880 |#1|)))) (($ $ (-302 (-880 |#1|))) NIL (|has| (-880 |#1|) (-317 (-880 |#1|)))) (($ $ (-654 (-302 (-880 |#1|)))) NIL (|has| (-880 |#1|) (-317 (-880 |#1|)))) (($ $ (-654 (-1190)) (-654 (-880 |#1|))) NIL (|has| (-880 |#1|) (-524 (-1190) (-880 |#1|)))) (($ $ (-1190) (-880 |#1|)) NIL (|has| (-880 |#1|) (-524 (-1190) (-880 |#1|))))) (-1730 (((-781) $) NIL)) (-2199 (($ $ (-880 |#1|)) NIL (|has| (-880 |#1|) (-294 (-880 |#1|) (-880 |#1|))))) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-3905 (($ $) NIL (|has| (-880 |#1|) (-239))) (($ $ (-781)) NIL (|has| (-880 |#1|) (-239))) (($ $ (-1190)) NIL (|has| (-880 |#1|) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-880 |#1|) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-880 |#1|) (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-880 |#1|) (-911 (-1190)))) (($ $ (-1 (-880 |#1|) (-880 |#1|)) (-781)) NIL) (($ $ (-1 (-880 |#1|) (-880 |#1|))) NIL)) (-4358 (($ $) NIL)) (-2977 (((-880 |#1|) $) NIL)) (-1836 (((-903 (-574)) $) NIL (|has| (-880 |#1|) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-880 |#1|) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-880 |#1|) (-624 (-546)))) (((-388) $) NIL (|has| (-880 |#1|) (-1035))) (((-227) $) NIL (|has| (-880 |#1|) (-1035)))) (-1517 (((-176 (-417 (-574))) $) NIL)) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-880 |#1|) (-920))))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-880 |#1|)) NIL) (($ (-1190)) NIL (|has| (-880 |#1|) (-1051 (-1190))))) (-3298 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| (-880 |#1|) (-920))) (|has| (-880 |#1|) (-146))))) (-1364 (((-781)) NIL T CONST)) (-1801 (((-880 |#1|) $) NIL (|has| (-880 |#1|) (-555)))) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL)) (-3551 (((-417 (-574)) $ (-574)) NIL)) (-3482 (($ $) NIL (|has| (-880 |#1|) (-830)))) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-3610 (($ $) NIL (|has| (-880 |#1|) (-239))) (($ $ (-781)) NIL (|has| (-880 |#1|) (-239))) (($ $ (-1190)) NIL (|has| (-880 |#1|) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-880 |#1|) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-880 |#1|) (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-880 |#1|) (-911 (-1190)))) (($ $ (-1 (-880 |#1|) (-880 |#1|)) (-781)) NIL) (($ $ (-1 (-880 |#1|) (-880 |#1|))) NIL)) (-3042 (((-112) $ $) NIL (|has| (-880 |#1|) (-860)))) (-3018 (((-112) $ $) NIL (|has| (-880 |#1|) (-860)))) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (|has| (-880 |#1|) (-860)))) (-3007 (((-112) $ $) NIL (|has| (-880 |#1|) (-860)))) (-3108 (($ $ $) NIL) (($ (-880 |#1|) (-880 |#1|)) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-880 |#1|) $) NIL) (($ $ (-880 |#1|)) NIL))) -(((-881 |#1|) (-13 (-1005 (-880 |#1|)) (-10 -8 (-15 -3551 ((-417 (-574)) $ (-574))) (-15 -1517 ((-176 (-417 (-574))) $)) (-15 -3327 ($ $)) (-15 -3327 ($ (-574) $)))) (-574)) (T -881)) -((-3551 (*1 *2 *1 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-881 *4)) (-14 *4 *3) (-5 *3 (-574)))) (-1517 (*1 *2 *1) (-12 (-5 *2 (-176 (-417 (-574)))) (-5 *1 (-881 *3)) (-14 *3 (-574)))) (-3327 (*1 *1 *1) (-12 (-5 *1 (-881 *2)) (-14 *2 (-574)))) (-3327 (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-881 *3)) (-14 *3 *2)))) -(-13 (-1005 (-880 |#1|)) (-10 -8 (-15 -3551 ((-417 (-574)) $ (-574))) (-15 -1517 ((-176 (-417 (-574))) $)) (-15 -3327 ($ $)) (-15 -3327 ($ (-574) $)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1528 ((|#2| $) NIL (|has| |#2| (-315)))) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3972 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-1600 (((-112) $ $) NIL)) (-2846 (((-574) $) NIL (|has| |#2| (-830)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#2| "failed") $) NIL) (((-3 (-1190) "failed") $) NIL (|has| |#2| (-1051 (-1190)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1051 (-574)))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1051 (-574))))) (-2206 ((|#2| $) NIL) (((-1190) $) NIL (|has| |#2| (-1051 (-1190)))) (((-417 (-574)) $) NIL (|has| |#2| (-1051 (-574)))) (((-574) $) NIL (|has| |#2| (-1051 (-574))))) (-3327 (($ $) 35) (($ (-574) $) 38)) (-2786 (($ $ $) NIL)) (-2590 (((-699 (-574)) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1281 $)) NIL)) (-3434 (((-3 $ "failed") $) 64)) (-2820 (($) NIL (|has| |#2| (-555)))) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-2257 (((-112) $) NIL)) (-2756 (((-112) $) NIL (|has| |#2| (-830)))) (-3625 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| |#2| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| |#2| (-897 (-388))))) (-3199 (((-112) $) NIL)) (-2141 (($ $) NIL)) (-2966 ((|#2| $) NIL)) (-2748 (((-3 $ "failed") $) NIL (|has| |#2| (-1165)))) (-1335 (((-112) $) NIL (|has| |#2| (-830)))) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3659 (($ $ $) NIL (|has| |#2| (-860)))) (-4257 (($ $ $) NIL (|has| |#2| (-860)))) (-1777 (($ (-1 |#2| |#2|) $) NIL)) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) 60)) (-3818 (($) NIL (|has| |#2| (-1165)) CONST)) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3191 (($ $) NIL (|has| |#2| (-315)))) (-3595 ((|#2| $) NIL (|has| |#2| (-555)))) (-2560 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-2039 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-4220 (((-428 $) $) NIL)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2646 (($ $ (-654 |#2|) (-654 |#2|)) NIL (|has| |#2| (-317 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-317 |#2|))) (($ $ (-302 |#2|)) NIL (|has| |#2| (-317 |#2|))) (($ $ (-654 (-302 |#2|))) NIL (|has| |#2| (-317 |#2|))) (($ $ (-654 (-1190)) (-654 |#2|)) NIL (|has| |#2| (-524 (-1190) |#2|))) (($ $ (-1190) |#2|) NIL (|has| |#2| (-524 (-1190) |#2|)))) (-1730 (((-781) $) NIL)) (-2199 (($ $ |#2|) NIL (|has| |#2| (-294 |#2| |#2|)))) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-3905 (($ $) NIL (|has| |#2| (-239))) (($ $ (-781)) NIL (|has| |#2| (-239))) (($ $ (-1190)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-4358 (($ $) NIL)) (-2977 ((|#2| $) NIL)) (-1836 (((-903 (-574)) $) NIL (|has| |#2| (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| |#2| (-624 (-903 (-388))))) (((-546) $) NIL (|has| |#2| (-624 (-546)))) (((-388) $) NIL (|has| |#2| (-1035))) (((-227) $) NIL (|has| |#2| (-1035)))) (-1517 (((-176 (-417 (-574))) $) 78)) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-920))))) (-2943 (((-872) $) 106) (($ (-574)) 20) (($ $) NIL) (($ (-417 (-574))) 25) (($ |#2|) 19) (($ (-1190)) NIL (|has| |#2| (-1051 (-1190))))) (-3298 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#2| (-920))) (|has| |#2| (-146))))) (-1364 (((-781)) NIL T CONST)) (-1801 ((|#2| $) NIL (|has| |#2| (-555)))) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL)) (-3551 (((-417 (-574)) $ (-574)) 71)) (-3482 (($ $) NIL (|has| |#2| (-830)))) (-2133 (($) 15 T CONST)) (-2145 (($) 17 T CONST)) (-3610 (($ $) NIL (|has| |#2| (-239))) (($ $ (-781)) NIL (|has| |#2| (-239))) (($ $ (-1190)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3042 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#2| (-860)))) (-2981 (((-112) $ $) 46)) (-3030 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3007 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3108 (($ $ $) 24) (($ |#2| |#2|) 65)) (-3094 (($ $) 50) (($ $ $) 52)) (-3079 (($ $ $) 48)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 61)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 53) (($ $ $) 55) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL))) -(((-882 |#1| |#2|) (-13 (-1005 |#2|) (-10 -8 (-15 -3551 ((-417 (-574)) $ (-574))) (-15 -1517 ((-176 (-417 (-574))) $)) (-15 -3327 ($ $)) (-15 -3327 ($ (-574) $)))) (-574) (-879 |#1|)) (T -882)) -((-3551 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-417 (-574))) (-5 *1 (-882 *4 *5)) (-5 *3 (-574)) (-4 *5 (-879 *4)))) (-1517 (*1 *2 *1) (-12 (-14 *3 (-574)) (-5 *2 (-176 (-417 (-574)))) (-5 *1 (-882 *3 *4)) (-4 *4 (-879 *3)))) (-3327 (*1 *1 *1) (-12 (-14 *2 (-574)) (-5 *1 (-882 *2 *3)) (-4 *3 (-879 *2)))) (-3327 (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-14 *3 *2) (-5 *1 (-882 *3 *4)) (-4 *4 (-879 *3))))) -(-13 (-1005 |#2|) (-10 -8 (-15 -3551 ((-417 (-574)) $ (-574))) (-15 -1517 ((-176 (-417 (-574))) $)) (-15 -3327 ($ $)) (-15 -3327 ($ (-574) $)))) -((-2849 (((-112) $ $) NIL (-12 (|has| |#1| (-1113)) (|has| |#2| (-1113))))) (-2393 ((|#2| $) 12)) (-2609 (($ |#1| |#2|) 9)) (-4136 (((-1172) $) NIL (-12 (|has| |#1| (-1113)) (|has| |#2| (-1113))))) (-3966 (((-1133) $) NIL (-12 (|has| |#1| (-1113)) (|has| |#2| (-1113))))) (-2915 ((|#1| $) 11)) (-2956 (($ |#1| |#2|) 10)) (-2943 (((-872) $) 18 (-2818 (-12 (|has| |#1| (-623 (-872))) (|has| |#2| (-623 (-872)))) (-12 (|has| |#1| (-1113)) (|has| |#2| (-1113)))))) (-3284 (((-112) $ $) NIL (-12 (|has| |#1| (-1113)) (|has| |#2| (-1113))))) (-2981 (((-112) $ $) 23 (-12 (|has| |#1| (-1113)) (|has| |#2| (-1113)))))) -(((-883 |#1| |#2|) (-13 (-1231) (-10 -8 (IF (|has| |#1| (-623 (-872))) (IF (|has| |#2| (-623 (-872))) (-6 (-623 (-872))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1113)) (IF (|has| |#2| (-1113)) (-6 (-1113)) |%noBranch|) |%noBranch|) (-15 -2609 ($ |#1| |#2|)) (-15 -2956 ($ |#1| |#2|)) (-15 -2915 (|#1| $)) (-15 -2393 (|#2| $)))) (-1231) (-1231)) (T -883)) -((-2609 (*1 *1 *2 *3) (-12 (-5 *1 (-883 *2 *3)) (-4 *2 (-1231)) (-4 *3 (-1231)))) (-2956 (*1 *1 *2 *3) (-12 (-5 *1 (-883 *2 *3)) (-4 *2 (-1231)) (-4 *3 (-1231)))) (-2915 (*1 *2 *1) (-12 (-4 *2 (-1231)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1231)))) (-2393 (*1 *2 *1) (-12 (-4 *2 (-1231)) (-5 *1 (-883 *3 *2)) (-4 *3 (-1231))))) -(-13 (-1231) (-10 -8 (IF (|has| |#1| (-623 (-872))) (IF (|has| |#2| (-623 (-872))) (-6 (-623 (-872))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1113)) (IF (|has| |#2| (-1113)) (-6 (-1113)) |%noBranch|) |%noBranch|) (-15 -2609 ($ |#1| |#2|)) (-15 -2956 ($ |#1| |#2|)) (-15 -2915 (|#1| $)) (-15 -2393 (|#2| $)))) -((-2849 (((-112) $ $) NIL)) (-2374 (((-574) $) 16)) (-1538 (($ (-158)) 13)) (-4105 (($ (-158)) 14)) (-4136 (((-1172) $) NIL)) (-3965 (((-158) $) 15)) (-3966 (((-1133) $) NIL)) (-4132 (($ (-158)) 11)) (-3299 (($ (-158)) 10)) (-2943 (((-872) $) 24) (($ (-158)) 17)) (-2621 (($ (-158)) 12)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-884) (-13 (-1113) (-10 -8 (-15 -3299 ($ (-158))) (-15 -4132 ($ (-158))) (-15 -2621 ($ (-158))) (-15 -1538 ($ (-158))) (-15 -4105 ($ (-158))) (-15 -3965 ((-158) $)) (-15 -2374 ((-574) $)) (-15 -2943 ($ (-158)))))) (T -884)) -((-3299 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-2621 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-1538 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-3965 (*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-2374 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-884)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884))))) -(-13 (-1113) (-10 -8 (-15 -3299 ($ (-158))) (-15 -4132 ($ (-158))) (-15 -2621 ($ (-158))) (-15 -1538 ($ (-158))) (-15 -4105 ($ (-158))) (-15 -3965 ((-158) $)) (-15 -2374 ((-574) $)) (-15 -2943 ($ (-158))))) -((-2943 (((-324 (-574)) (-417 (-963 (-48)))) 23) (((-324 (-574)) (-963 (-48))) 18))) -(((-885) (-10 -7 (-15 -2943 ((-324 (-574)) (-963 (-48)))) (-15 -2943 ((-324 (-574)) (-417 (-963 (-48))))))) (T -885)) -((-2943 (*1 *2 *3) (-12 (-5 *3 (-417 (-963 (-48)))) (-5 *2 (-324 (-574))) (-5 *1 (-885)))) (-2943 (*1 *2 *3) (-12 (-5 *3 (-963 (-48))) (-5 *2 (-324 (-574))) (-5 *1 (-885))))) -(-10 -7 (-15 -2943 ((-324 (-574)) (-963 (-48)))) (-15 -2943 ((-324 (-574)) (-417 (-963 (-48)))))) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 18) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2122 (((-112) $ (|[\|\|]| (-516))) 9) (((-112) $ (|[\|\|]| (-1172))) 13)) (-3284 (((-112) $ $) NIL)) (-1331 (((-516) $) 10) (((-1172) $) 14)) (-2981 (((-112) $ $) 15))) -(((-886) (-13 (-1096) (-1276) (-10 -8 (-15 -2122 ((-112) $ (|[\|\|]| (-516)))) (-15 -1331 ((-516) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-1172)))) (-15 -1331 ((-1172) $))))) (T -886)) -((-2122 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)) (-5 *1 (-886)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-886)))) (-2122 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1172))) (-5 *2 (-112)) (-5 *1 (-886)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-886))))) -(-13 (-1096) (-1276) (-10 -8 (-15 -2122 ((-112) $ (|[\|\|]| (-516)))) (-15 -1331 ((-516) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-1172)))) (-15 -1331 ((-1172) $)))) -((-1777 (((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)) 15))) -(((-887 |#1| |#2|) (-10 -7 (-15 -1777 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) (-1231) (-1231)) (T -887)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6))))) -(-10 -7 (-15 -1777 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) -((-3677 (($ |#1| |#1|) 8)) (-3512 ((|#1| $ (-781)) 15))) -(((-888 |#1|) (-10 -8 (-15 -3677 ($ |#1| |#1|)) (-15 -3512 (|#1| $ (-781)))) (-1231)) (T -888)) -((-3512 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-888 *2)) (-4 *2 (-1231)))) (-3677 (*1 *1 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1231))))) -(-10 -8 (-15 -3677 ($ |#1| |#1|)) (-15 -3512 (|#1| $ (-781)))) -((-1777 (((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)) 15))) -(((-889 |#1| |#2|) (-10 -7 (-15 -1777 ((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)))) (-1231) (-1231)) (T -889)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-890 *5)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-890 *6)) (-5 *1 (-889 *5 *6))))) -(-10 -7 (-15 -1777 ((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)))) -((-3677 (($ |#1| |#1| |#1|) 8)) (-3512 ((|#1| $ (-781)) 15))) -(((-890 |#1|) (-10 -8 (-15 -3677 ($ |#1| |#1| |#1|)) (-15 -3512 (|#1| $ (-781)))) (-1231)) (T -890)) -((-3512 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-890 *2)) (-4 *2 (-1231)))) (-3677 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1231))))) -(-10 -8 (-15 -3677 ($ |#1| |#1| |#1|)) (-15 -3512 (|#1| $ (-781)))) -((-2351 (((-654 (-1195)) (-1172)) 9))) -(((-891) (-10 -7 (-15 -2351 ((-654 (-1195)) (-1172))))) (T -891)) -((-2351 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-654 (-1195))) (-5 *1 (-891))))) -(-10 -7 (-15 -2351 ((-654 (-1195)) (-1172)))) -((-1777 (((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)) 15))) -(((-892 |#1| |#2|) (-10 -7 (-15 -1777 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)))) (-1231) (-1231)) (T -892)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-893 *6)) (-5 *1 (-892 *5 *6))))) -(-10 -7 (-15 -1777 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)))) -((-3339 (($ |#1| |#1| |#1|) 8)) (-3512 ((|#1| $ (-781)) 15))) -(((-893 |#1|) (-10 -8 (-15 -3339 ($ |#1| |#1| |#1|)) (-15 -3512 (|#1| $ (-781)))) (-1231)) (T -893)) -((-3512 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-893 *2)) (-4 *2 (-1231)))) (-3339 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1231))))) -(-10 -8 (-15 -3339 ($ |#1| |#1| |#1|)) (-15 -3512 (|#1| $ (-781)))) -((-3656 (((-1170 (-654 (-574))) (-654 (-574)) (-1170 (-654 (-574)))) 41)) (-2505 (((-1170 (-654 (-574))) (-654 (-574)) (-654 (-574))) 31)) (-3917 (((-1170 (-654 (-574))) (-654 (-574))) 53) (((-1170 (-654 (-574))) (-654 (-574)) (-654 (-574))) 50)) (-4369 (((-1170 (-654 (-574))) (-574)) 55)) (-1395 (((-1170 (-654 (-932))) (-1170 (-654 (-932)))) 22)) (-1479 (((-654 (-932)) (-654 (-932))) 18))) -(((-894) (-10 -7 (-15 -1479 ((-654 (-932)) (-654 (-932)))) (-15 -1395 ((-1170 (-654 (-932))) (-1170 (-654 (-932))))) (-15 -2505 ((-1170 (-654 (-574))) (-654 (-574)) (-654 (-574)))) (-15 -3656 ((-1170 (-654 (-574))) (-654 (-574)) (-1170 (-654 (-574))))) (-15 -3917 ((-1170 (-654 (-574))) (-654 (-574)) (-654 (-574)))) (-15 -3917 ((-1170 (-654 (-574))) (-654 (-574)))) (-15 -4369 ((-1170 (-654 (-574))) (-574))))) (T -894)) -((-4369 (*1 *2 *3) (-12 (-5 *2 (-1170 (-654 (-574)))) (-5 *1 (-894)) (-5 *3 (-574)))) (-3917 (*1 *2 *3) (-12 (-5 *2 (-1170 (-654 (-574)))) (-5 *1 (-894)) (-5 *3 (-654 (-574))))) (-3917 (*1 *2 *3 *3) (-12 (-5 *2 (-1170 (-654 (-574)))) (-5 *1 (-894)) (-5 *3 (-654 (-574))))) (-3656 (*1 *2 *3 *2) (-12 (-5 *2 (-1170 (-654 (-574)))) (-5 *3 (-654 (-574))) (-5 *1 (-894)))) (-2505 (*1 *2 *3 *3) (-12 (-5 *2 (-1170 (-654 (-574)))) (-5 *1 (-894)) (-5 *3 (-654 (-574))))) (-1395 (*1 *2 *2) (-12 (-5 *2 (-1170 (-654 (-932)))) (-5 *1 (-894)))) (-1479 (*1 *2 *2) (-12 (-5 *2 (-654 (-932))) (-5 *1 (-894))))) -(-10 -7 (-15 -1479 ((-654 (-932)) (-654 (-932)))) (-15 -1395 ((-1170 (-654 (-932))) (-1170 (-654 (-932))))) (-15 -2505 ((-1170 (-654 (-574))) (-654 (-574)) (-654 (-574)))) (-15 -3656 ((-1170 (-654 (-574))) (-654 (-574)) (-1170 (-654 (-574))))) (-15 -3917 ((-1170 (-654 (-574))) (-654 (-574)) (-654 (-574)))) (-15 -3917 ((-1170 (-654 (-574))) (-654 (-574)))) (-15 -4369 ((-1170 (-654 (-574))) (-574)))) -((-1836 (((-903 (-388)) $) 9 (|has| |#1| (-624 (-903 (-388))))) (((-903 (-574)) $) 8 (|has| |#1| (-624 (-903 (-574))))))) -(((-895 |#1|) (-141) (-1231)) (T -895)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-624 (-903 (-574)))) (-6 (-624 (-903 (-574)))) |%noBranch|) (IF (|has| |t#1| (-624 (-903 (-388)))) (-6 (-624 (-903 (-388)))) |%noBranch|))) -(((-624 (-903 (-388))) |has| |#1| (-624 (-903 (-388)))) ((-624 (-903 (-574))) |has| |#1| (-624 (-903 (-574))))) -((-2849 (((-112) $ $) NIL)) (-3790 (($) 14)) (-2366 (($ (-900 |#1| |#2|) (-900 |#1| |#3|)) 28)) (-3653 (((-900 |#1| |#3|) $) 16)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2999 (((-112) $) 22)) (-3601 (($) 19)) (-2943 (((-872) $) 31)) (-3284 (((-112) $ $) NIL)) (-3523 (((-900 |#1| |#2|) $) 15)) (-2981 (((-112) $ $) 26))) -(((-896 |#1| |#2| |#3|) (-13 (-1113) (-10 -8 (-15 -2999 ((-112) $)) (-15 -3601 ($)) (-15 -3790 ($)) (-15 -2366 ($ (-900 |#1| |#2|) (-900 |#1| |#3|))) (-15 -3523 ((-900 |#1| |#2|) $)) (-15 -3653 ((-900 |#1| |#3|) $)))) (-1113) (-1113) (-676 |#2|)) (T -896)) -((-2999 (*1 *2 *1) (-12 (-4 *4 (-1113)) (-5 *2 (-112)) (-5 *1 (-896 *3 *4 *5)) (-4 *3 (-1113)) (-4 *5 (-676 *4)))) (-3601 (*1 *1) (-12 (-4 *3 (-1113)) (-5 *1 (-896 *2 *3 *4)) (-4 *2 (-1113)) (-4 *4 (-676 *3)))) (-3790 (*1 *1) (-12 (-4 *3 (-1113)) (-5 *1 (-896 *2 *3 *4)) (-4 *2 (-1113)) (-4 *4 (-676 *3)))) (-2366 (*1 *1 *2 *3) (-12 (-5 *2 (-900 *4 *5)) (-5 *3 (-900 *4 *6)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-676 *5)) (-5 *1 (-896 *4 *5 *6)))) (-3523 (*1 *2 *1) (-12 (-4 *4 (-1113)) (-5 *2 (-900 *3 *4)) (-5 *1 (-896 *3 *4 *5)) (-4 *3 (-1113)) (-4 *5 (-676 *4)))) (-3653 (*1 *2 *1) (-12 (-4 *4 (-1113)) (-5 *2 (-900 *3 *5)) (-5 *1 (-896 *3 *4 *5)) (-4 *3 (-1113)) (-4 *5 (-676 *4))))) -(-13 (-1113) (-10 -8 (-15 -2999 ((-112) $)) (-15 -3601 ($)) (-15 -3790 ($)) (-15 -2366 ($ (-900 |#1| |#2|) (-900 |#1| |#3|))) (-15 -3523 ((-900 |#1| |#2|) $)) (-15 -3653 ((-900 |#1| |#3|) $)))) -((-2849 (((-112) $ $) 7)) (-3625 (((-900 |#1| $) $ (-903 |#1|) (-900 |#1| $)) 14)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) -(((-897 |#1|) (-141) (-1113)) (T -897)) -((-3625 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-900 *4 *1)) (-5 *3 (-903 *4)) (-4 *1 (-897 *4)) (-4 *4 (-1113))))) -(-13 (-1113) (-10 -8 (-15 -3625 ((-900 |t#1| $) $ (-903 |t#1|) (-900 |t#1| $))))) -(((-102) . T) ((-623 (-872)) . T) ((-1113) . T)) -((-4103 (((-112) (-654 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-3864 (((-900 |#1| |#2|) |#2| |#3|) 45 (-12 (-2076 (|has| |#2| (-1051 (-1190)))) (-2076 (|has| |#2| (-1062))))) (((-654 (-302 (-963 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1062)) (-2076 (|has| |#2| (-1051 (-1190)))))) (((-654 (-302 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1051 (-1190)))) (((-896 |#1| |#2| (-654 |#2|)) (-654 |#2|) |#3|) 21))) -(((-898 |#1| |#2| |#3|) (-10 -7 (-15 -4103 ((-112) |#2| |#3|)) (-15 -4103 ((-112) (-654 |#2|) |#3|)) (-15 -3864 ((-896 |#1| |#2| (-654 |#2|)) (-654 |#2|) |#3|)) (IF (|has| |#2| (-1051 (-1190))) (-15 -3864 ((-654 (-302 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1062)) (-15 -3864 ((-654 (-302 (-963 |#2|))) |#2| |#3|)) (-15 -3864 ((-900 |#1| |#2|) |#2| |#3|))))) (-1113) (-897 |#1|) (-624 (-903 |#1|))) (T -898)) -((-3864 (*1 *2 *3 *4) (-12 (-4 *5 (-1113)) (-5 *2 (-900 *5 *3)) (-5 *1 (-898 *5 *3 *4)) (-2076 (-4 *3 (-1051 (-1190)))) (-2076 (-4 *3 (-1062))) (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5))))) (-3864 (*1 *2 *3 *4) (-12 (-4 *5 (-1113)) (-5 *2 (-654 (-302 (-963 *3)))) (-5 *1 (-898 *5 *3 *4)) (-4 *3 (-1062)) (-2076 (-4 *3 (-1051 (-1190)))) (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5))))) (-3864 (*1 *2 *3 *4) (-12 (-4 *5 (-1113)) (-5 *2 (-654 (-302 *3))) (-5 *1 (-898 *5 *3 *4)) (-4 *3 (-1051 (-1190))) (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5))))) (-3864 (*1 *2 *3 *4) (-12 (-4 *5 (-1113)) (-4 *6 (-897 *5)) (-5 *2 (-896 *5 *6 (-654 *6))) (-5 *1 (-898 *5 *6 *4)) (-5 *3 (-654 *6)) (-4 *4 (-624 (-903 *5))))) (-4103 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6)) (-4 *6 (-897 *5)) (-4 *5 (-1113)) (-5 *2 (-112)) (-5 *1 (-898 *5 *6 *4)) (-4 *4 (-624 (-903 *5))))) (-4103 (*1 *2 *3 *4) (-12 (-4 *5 (-1113)) (-5 *2 (-112)) (-5 *1 (-898 *5 *3 *4)) (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5)))))) -(-10 -7 (-15 -4103 ((-112) |#2| |#3|)) (-15 -4103 ((-112) (-654 |#2|) |#3|)) (-15 -3864 ((-896 |#1| |#2| (-654 |#2|)) (-654 |#2|) |#3|)) (IF (|has| |#2| (-1051 (-1190))) (-15 -3864 ((-654 (-302 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1062)) (-15 -3864 ((-654 (-302 (-963 |#2|))) |#2| |#3|)) (-15 -3864 ((-900 |#1| |#2|) |#2| |#3|))))) -((-1777 (((-900 |#1| |#3|) (-1 |#3| |#2|) (-900 |#1| |#2|)) 22))) -(((-899 |#1| |#2| |#3|) (-10 -7 (-15 -1777 ((-900 |#1| |#3|) (-1 |#3| |#2|) (-900 |#1| |#2|)))) (-1113) (-1113) (-1113)) (T -899)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-900 *5 *6)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-900 *5 *7)) (-5 *1 (-899 *5 *6 *7))))) -(-10 -7 (-15 -1777 ((-900 |#1| |#3|) (-1 |#3| |#2|) (-900 |#1| |#2|)))) -((-2849 (((-112) $ $) NIL)) (-4359 (($ $ $) 40)) (-2306 (((-3 (-112) "failed") $ (-903 |#1|)) 37)) (-3790 (($) 12)) (-4136 (((-1172) $) NIL)) (-1405 (($ (-903 |#1|) |#2| $) 20)) (-3966 (((-1133) $) NIL)) (-3223 (((-3 |#2| "failed") (-903 |#1|) $) 51)) (-2999 (((-112) $) 15)) (-3601 (($) 13)) (-4293 (((-654 (-2 (|:| -3693 (-1190)) (|:| -1908 |#2|))) $) 25)) (-2956 (($ (-654 (-2 (|:| -3693 (-1190)) (|:| -1908 |#2|)))) 23)) (-2943 (((-872) $) 45)) (-3284 (((-112) $ $) NIL)) (-1376 (($ (-903 |#1|) |#2| $ |#2|) 49)) (-1645 (($ (-903 |#1|) |#2| $) 48)) (-2981 (((-112) $ $) 42))) -(((-900 |#1| |#2|) (-13 (-1113) (-10 -8 (-15 -2999 ((-112) $)) (-15 -3601 ($)) (-15 -3790 ($)) (-15 -4359 ($ $ $)) (-15 -3223 ((-3 |#2| "failed") (-903 |#1|) $)) (-15 -1645 ($ (-903 |#1|) |#2| $)) (-15 -1405 ($ (-903 |#1|) |#2| $)) (-15 -1376 ($ (-903 |#1|) |#2| $ |#2|)) (-15 -4293 ((-654 (-2 (|:| -3693 (-1190)) (|:| -1908 |#2|))) $)) (-15 -2956 ($ (-654 (-2 (|:| -3693 (-1190)) (|:| -1908 |#2|))))) (-15 -2306 ((-3 (-112) "failed") $ (-903 |#1|))))) (-1113) (-1113)) (T -900)) -((-2999 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)))) (-3601 (*1 *1) (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113)))) (-3790 (*1 *1) (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113)))) (-4359 (*1 *1 *1 *1) (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113)))) (-3223 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-903 *4)) (-4 *4 (-1113)) (-4 *2 (-1113)) (-5 *1 (-900 *4 *2)))) (-1645 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-903 *4)) (-4 *4 (-1113)) (-5 *1 (-900 *4 *3)) (-4 *3 (-1113)))) (-1405 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-903 *4)) (-4 *4 (-1113)) (-5 *1 (-900 *4 *3)) (-4 *3 (-1113)))) (-1376 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-903 *4)) (-4 *4 (-1113)) (-5 *1 (-900 *4 *3)) (-4 *3 (-1113)))) (-4293 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| -3693 (-1190)) (|:| -1908 *4)))) (-5 *1 (-900 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3693 (-1190)) (|:| -1908 *4)))) (-4 *4 (-1113)) (-5 *1 (-900 *3 *4)) (-4 *3 (-1113)))) (-2306 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-903 *4)) (-4 *4 (-1113)) (-5 *2 (-112)) (-5 *1 (-900 *4 *5)) (-4 *5 (-1113))))) -(-13 (-1113) (-10 -8 (-15 -2999 ((-112) $)) (-15 -3601 ($)) (-15 -3790 ($)) (-15 -4359 ($ $ $)) (-15 -3223 ((-3 |#2| "failed") (-903 |#1|) $)) (-15 -1645 ($ (-903 |#1|) |#2| $)) (-15 -1405 ($ (-903 |#1|) |#2| $)) (-15 -1376 ($ (-903 |#1|) |#2| $ |#2|)) (-15 -4293 ((-654 (-2 (|:| -3693 (-1190)) (|:| -1908 |#2|))) $)) (-15 -2956 ($ (-654 (-2 (|:| -3693 (-1190)) (|:| -1908 |#2|))))) (-15 -2306 ((-3 (-112) "failed") $ (-903 |#1|))))) -((-2571 (((-903 |#1|) (-903 |#1|) (-654 (-1190)) (-1 (-112) (-654 |#2|))) 32) (((-903 |#1|) (-903 |#1|) (-654 (-1 (-112) |#2|))) 46) (((-903 |#1|) (-903 |#1|) (-1 (-112) |#2|)) 35)) (-2306 (((-112) (-654 |#2|) (-903 |#1|)) 42) (((-112) |#2| (-903 |#1|)) 36)) (-2515 (((-1 (-112) |#2|) (-903 |#1|)) 16)) (-3538 (((-654 |#2|) (-903 |#1|)) 24)) (-1586 (((-903 |#1|) (-903 |#1|) |#2|) 20))) -(((-901 |#1| |#2|) (-10 -7 (-15 -2571 ((-903 |#1|) (-903 |#1|) (-1 (-112) |#2|))) (-15 -2571 ((-903 |#1|) (-903 |#1|) (-654 (-1 (-112) |#2|)))) (-15 -2571 ((-903 |#1|) (-903 |#1|) (-654 (-1190)) (-1 (-112) (-654 |#2|)))) (-15 -2515 ((-1 (-112) |#2|) (-903 |#1|))) (-15 -2306 ((-112) |#2| (-903 |#1|))) (-15 -2306 ((-112) (-654 |#2|) (-903 |#1|))) (-15 -1586 ((-903 |#1|) (-903 |#1|) |#2|)) (-15 -3538 ((-654 |#2|) (-903 |#1|)))) (-1113) (-1231)) (T -901)) -((-3538 (*1 *2 *3) (-12 (-5 *3 (-903 *4)) (-4 *4 (-1113)) (-5 *2 (-654 *5)) (-5 *1 (-901 *4 *5)) (-4 *5 (-1231)))) (-1586 (*1 *2 *2 *3) (-12 (-5 *2 (-903 *4)) (-4 *4 (-1113)) (-5 *1 (-901 *4 *3)) (-4 *3 (-1231)))) (-2306 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-903 *5)) (-4 *5 (-1113)) (-4 *6 (-1231)) (-5 *2 (-112)) (-5 *1 (-901 *5 *6)))) (-2306 (*1 *2 *3 *4) (-12 (-5 *4 (-903 *5)) (-4 *5 (-1113)) (-5 *2 (-112)) (-5 *1 (-901 *5 *3)) (-4 *3 (-1231)))) (-2515 (*1 *2 *3) (-12 (-5 *3 (-903 *4)) (-4 *4 (-1113)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-901 *4 *5)) (-4 *5 (-1231)))) (-2571 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-903 *5)) (-5 *3 (-654 (-1190))) (-5 *4 (-1 (-112) (-654 *6))) (-4 *5 (-1113)) (-4 *6 (-1231)) (-5 *1 (-901 *5 *6)))) (-2571 (*1 *2 *2 *3) (-12 (-5 *2 (-903 *4)) (-5 *3 (-654 (-1 (-112) *5))) (-4 *4 (-1113)) (-4 *5 (-1231)) (-5 *1 (-901 *4 *5)))) (-2571 (*1 *2 *2 *3) (-12 (-5 *2 (-903 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1113)) (-4 *5 (-1231)) (-5 *1 (-901 *4 *5))))) -(-10 -7 (-15 -2571 ((-903 |#1|) (-903 |#1|) (-1 (-112) |#2|))) (-15 -2571 ((-903 |#1|) (-903 |#1|) (-654 (-1 (-112) |#2|)))) (-15 -2571 ((-903 |#1|) (-903 |#1|) (-654 (-1190)) (-1 (-112) (-654 |#2|)))) (-15 -2515 ((-1 (-112) |#2|) (-903 |#1|))) (-15 -2306 ((-112) |#2| (-903 |#1|))) (-15 -2306 ((-112) (-654 |#2|) (-903 |#1|))) (-15 -1586 ((-903 |#1|) (-903 |#1|) |#2|)) (-15 -3538 ((-654 |#2|) (-903 |#1|)))) -((-1777 (((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|)) 19))) -(((-902 |#1| |#2|) (-10 -7 (-15 -1777 ((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|)))) (-1113) (-1113)) (T -902)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-903 *5)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-5 *2 (-903 *6)) (-5 *1 (-902 *5 *6))))) -(-10 -7 (-15 -1777 ((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|)))) -((-2849 (((-112) $ $) NIL)) (-3955 (($ $ (-654 (-52))) 74)) (-4355 (((-654 $) $) 139)) (-2650 (((-2 (|:| |var| (-654 (-1190))) (|:| |pred| (-52))) $) 30)) (-4108 (((-112) $) 35)) (-1477 (($ $ (-654 (-1190)) (-52)) 31)) (-2641 (($ $ (-654 (-52))) 73)) (-1696 (((-3 |#1| "failed") $) 71) (((-3 (-1190) "failed") $) 164)) (-2206 ((|#1| $) 68) (((-1190) $) NIL)) (-2674 (($ $) 126)) (-2815 (((-112) $) 55)) (-2859 (((-654 (-52)) $) 50)) (-2111 (($ (-1190) (-112) (-112) (-112)) 75)) (-4123 (((-3 (-654 $) "failed") (-654 $)) 82)) (-1884 (((-112) $) 58)) (-1981 (((-112) $) 57)) (-4136 (((-1172) $) NIL)) (-2755 (((-3 (-654 $) "failed") $) 41)) (-1779 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-2127 (((-3 (-2 (|:| |val| $) (|:| -3715 $)) "failed") $) 97)) (-2415 (((-3 (-654 $) "failed") $) 40)) (-3293 (((-3 (-654 $) "failed") $ (-115)) 124) (((-3 (-2 (|:| -4296 (-115)) (|:| |arg| (-654 $))) "failed") $) 107)) (-1456 (((-3 (-654 $) "failed") $) 42)) (-2241 (((-3 (-2 (|:| |val| $) (|:| -3715 (-781))) "failed") $) 45)) (-3056 (((-112) $) 34)) (-3966 (((-1133) $) NIL)) (-3712 (((-112) $) 28)) (-3147 (((-112) $) 52)) (-4290 (((-654 (-52)) $) 130)) (-4235 (((-112) $) 56)) (-2199 (($ (-115) (-654 $)) 104)) (-4302 (((-781) $) 33)) (-3167 (($ $) 72)) (-1836 (($ (-654 $)) 69)) (-4224 (((-112) $) 32)) (-2943 (((-872) $) 63) (($ |#1|) 23) (($ (-1190)) 76)) (-3284 (((-112) $ $) NIL)) (-1586 (($ $ (-52)) 129)) (-2133 (($) 103 T CONST)) (-2145 (($) 83 T CONST)) (-2981 (((-112) $ $) 93)) (-3108 (($ $ $) 117)) (-3079 (($ $ $) 121)) (** (($ $ (-781)) 115) (($ $ $) 64)) (* (($ $ $) 122))) -(((-903 |#1|) (-13 (-1113) (-1051 |#1|) (-1051 (-1190)) (-10 -8 (-15 0 ($) -1706) (-15 1 ($) -1706) (-15 -2415 ((-3 (-654 $) "failed") $)) (-15 -2755 ((-3 (-654 $) "failed") $)) (-15 -3293 ((-3 (-654 $) "failed") $ (-115))) (-15 -3293 ((-3 (-2 (|:| -4296 (-115)) (|:| |arg| (-654 $))) "failed") $)) (-15 -2241 ((-3 (-2 (|:| |val| $) (|:| -3715 (-781))) "failed") $)) (-15 -1779 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1456 ((-3 (-654 $) "failed") $)) (-15 -2127 ((-3 (-2 (|:| |val| $) (|:| -3715 $)) "failed") $)) (-15 -2199 ($ (-115) (-654 $))) (-15 -3079 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-781))) (-15 ** ($ $ $)) (-15 -3108 ($ $ $)) (-15 -4302 ((-781) $)) (-15 -1836 ($ (-654 $))) (-15 -3167 ($ $)) (-15 -3056 ((-112) $)) (-15 -2815 ((-112) $)) (-15 -4108 ((-112) $)) (-15 -4224 ((-112) $)) (-15 -4235 ((-112) $)) (-15 -1981 ((-112) $)) (-15 -1884 ((-112) $)) (-15 -3147 ((-112) $)) (-15 -2859 ((-654 (-52)) $)) (-15 -2641 ($ $ (-654 (-52)))) (-15 -3955 ($ $ (-654 (-52)))) (-15 -2111 ($ (-1190) (-112) (-112) (-112))) (-15 -1477 ($ $ (-654 (-1190)) (-52))) (-15 -2650 ((-2 (|:| |var| (-654 (-1190))) (|:| |pred| (-52))) $)) (-15 -3712 ((-112) $)) (-15 -2674 ($ $)) (-15 -1586 ($ $ (-52))) (-15 -4290 ((-654 (-52)) $)) (-15 -4355 ((-654 $) $)) (-15 -4123 ((-3 (-654 $) "failed") (-654 $))))) (-1113)) (T -903)) -((-2133 (*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113)))) (-2145 (*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113)))) (-2415 (*1 *2 *1) (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-2755 (*1 *2 *1) (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-3293 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-654 (-903 *4))) (-5 *1 (-903 *4)) (-4 *4 (-1113)))) (-3293 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -4296 (-115)) (|:| |arg| (-654 (-903 *3))))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-2241 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-903 *3)) (|:| -3715 (-781)))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-1779 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-903 *3)) (|:| |den| (-903 *3)))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-1456 (*1 *2 *1) (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-2127 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-903 *3)) (|:| -3715 (-903 *3)))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-2199 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 (-903 *4))) (-5 *1 (-903 *4)) (-4 *4 (-1113)))) (-3079 (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113)))) (-3108 (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113)))) (-4302 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-1836 (*1 *1 *2) (-12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-3167 (*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113)))) (-3056 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-2815 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-4108 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-4224 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-4235 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-1981 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-1884 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-3147 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-2859 (*1 *2 *1) (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-2641 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-3955 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-2111 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-112)) (-5 *1 (-903 *4)) (-4 *4 (-1113)))) (-1477 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1190))) (-5 *3 (-52)) (-5 *1 (-903 *4)) (-4 *4 (-1113)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-654 (-1190))) (|:| |pred| (-52)))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-3712 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-2674 (*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113)))) (-1586 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-4290 (*1 *2 *1) (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-4355 (*1 *2 *1) (-12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) (-4123 (*1 *2 *2) (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1113))))) -(-13 (-1113) (-1051 |#1|) (-1051 (-1190)) (-10 -8 (-15 (-2133) ($) -1706) (-15 (-2145) ($) -1706) (-15 -2415 ((-3 (-654 $) "failed") $)) (-15 -2755 ((-3 (-654 $) "failed") $)) (-15 -3293 ((-3 (-654 $) "failed") $ (-115))) (-15 -3293 ((-3 (-2 (|:| -4296 (-115)) (|:| |arg| (-654 $))) "failed") $)) (-15 -2241 ((-3 (-2 (|:| |val| $) (|:| -3715 (-781))) "failed") $)) (-15 -1779 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1456 ((-3 (-654 $) "failed") $)) (-15 -2127 ((-3 (-2 (|:| |val| $) (|:| -3715 $)) "failed") $)) (-15 -2199 ($ (-115) (-654 $))) (-15 -3079 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-781))) (-15 ** ($ $ $)) (-15 -3108 ($ $ $)) (-15 -4302 ((-781) $)) (-15 -1836 ($ (-654 $))) (-15 -3167 ($ $)) (-15 -3056 ((-112) $)) (-15 -2815 ((-112) $)) (-15 -4108 ((-112) $)) (-15 -4224 ((-112) $)) (-15 -4235 ((-112) $)) (-15 -1981 ((-112) $)) (-15 -1884 ((-112) $)) (-15 -3147 ((-112) $)) (-15 -2859 ((-654 (-52)) $)) (-15 -2641 ($ $ (-654 (-52)))) (-15 -3955 ($ $ (-654 (-52)))) (-15 -2111 ($ (-1190) (-112) (-112) (-112))) (-15 -1477 ($ $ (-654 (-1190)) (-52))) (-15 -2650 ((-2 (|:| |var| (-654 (-1190))) (|:| |pred| (-52))) $)) (-15 -3712 ((-112) $)) (-15 -2674 ($ $)) (-15 -1586 ($ $ (-52))) (-15 -4290 ((-654 (-52)) $)) (-15 -4355 ((-654 $) $)) (-15 -4123 ((-3 (-654 $) "failed") (-654 $))))) -((-2849 (((-112) $ $) NIL)) (-1655 (((-654 |#1|) $) 19)) (-3865 (((-112) $) 49)) (-1696 (((-3 (-682 |#1|) "failed") $) 56)) (-2206 (((-682 |#1|) $) 54)) (-2926 (($ $) 23)) (-3659 (($ $ $) NIL)) (-4257 (($ $ $) NIL)) (-4135 (((-781) $) 61)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2915 (((-682 |#1|) $) 21)) (-2943 (((-872) $) 47) (($ (-682 |#1|)) 26) (((-829 |#1|) $) 36) (($ |#1|) 25)) (-3284 (((-112) $ $) NIL)) (-2145 (($) 9 T CONST)) (-1388 (((-654 (-682 |#1|)) $) 28)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 12)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) 67))) -(((-904 |#1|) (-13 (-860) (-1051 (-682 |#1|)) (-10 -8 (-15 1 ($) -1706) (-15 -2943 ((-829 |#1|) $)) (-15 -2943 ($ |#1|)) (-15 -2915 ((-682 |#1|) $)) (-15 -4135 ((-781) $)) (-15 -1388 ((-654 (-682 |#1|)) $)) (-15 -2926 ($ $)) (-15 -3865 ((-112) $)) (-15 -1655 ((-654 |#1|) $)))) (-860)) (T -904)) -((-2145 (*1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) (-2943 (*1 *1 *2) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860)))) (-2915 (*1 *2 *1) (-12 (-5 *2 (-682 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) (-4135 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) (-1388 (*1 *2 *1) (-12 (-5 *2 (-654 (-682 *3))) (-5 *1 (-904 *3)) (-4 *3 (-860)))) (-2926 (*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) (-1655 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860))))) -(-13 (-860) (-1051 (-682 |#1|)) (-10 -8 (-15 (-2145) ($) -1706) (-15 -2943 ((-829 |#1|) $)) (-15 -2943 ($ |#1|)) (-15 -2915 ((-682 |#1|) $)) (-15 -4135 ((-781) $)) (-15 -1388 ((-654 (-682 |#1|)) $)) (-15 -2926 ($ $)) (-15 -3865 ((-112) $)) (-15 -1655 ((-654 |#1|) $)))) -((-3200 ((|#1| |#1| |#1|) 19))) -(((-905 |#1| |#2|) (-10 -7 (-15 -3200 (|#1| |#1| |#1|))) (-1257 |#2|) (-1062)) (T -905)) -((-3200 (*1 *2 *2 *2) (-12 (-4 *3 (-1062)) (-5 *1 (-905 *2 *3)) (-4 *2 (-1257 *3))))) -(-10 -7 (-15 -3200 (|#1| |#1| |#1|))) -((-2849 (((-112) $ $) 7)) (-3678 (((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227)))) 15)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-1465 (((-1048) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227)))) 14)) (-2981 (((-112) $ $) 6))) -(((-906) (-141)) (T -906)) -((-3678 (*1 *2 *3 *4) (-12 (-4 *1 (-906)) (-5 *3 (-1076)) (-5 *4 (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227)))) (-5 *2 (-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)))))) (-1465 (*1 *2 *3) (-12 (-4 *1 (-906)) (-5 *3 (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227)))) (-5 *2 (-1048))))) -(-13 (-1113) (-10 -7 (-15 -3678 ((-2 (|:| -3678 (-388)) (|:| |explanations| (-1172))) (-1076) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227))))) (-15 -1465 ((-1048) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227))))))) -(((-102) . T) ((-623 (-872)) . T) ((-1113) . T)) -((-1825 ((|#1| |#1| (-781)) 27)) (-3883 (((-3 |#1| "failed") |#1| |#1|) 24)) (-2217 (((-3 (-2 (|:| -3891 |#1|) (|:| -3904 |#1|)) "failed") |#1| (-781) (-781)) 30) (((-654 |#1|) |#1|) 38))) -(((-907 |#1| |#2|) (-10 -7 (-15 -2217 ((-654 |#1|) |#1|)) (-15 -2217 ((-3 (-2 (|:| -3891 |#1|) (|:| -3904 |#1|)) "failed") |#1| (-781) (-781))) (-15 -3883 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1825 (|#1| |#1| (-781)))) (-1257 |#2|) (-372)) (T -907)) -((-1825 (*1 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-372)) (-5 *1 (-907 *2 *4)) (-4 *2 (-1257 *4)))) (-3883 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-372)) (-5 *1 (-907 *2 *3)) (-4 *2 (-1257 *3)))) (-2217 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-781)) (-4 *5 (-372)) (-5 *2 (-2 (|:| -3891 *3) (|:| -3904 *3))) (-5 *1 (-907 *3 *5)) (-4 *3 (-1257 *5)))) (-2217 (*1 *2 *3) (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-907 *3 *4)) (-4 *3 (-1257 *4))))) -(-10 -7 (-15 -2217 ((-654 |#1|) |#1|)) (-15 -2217 ((-3 (-2 (|:| -3891 |#1|) (|:| -3904 |#1|)) "failed") |#1| (-781) (-781))) (-15 -3883 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1825 (|#1| |#1| (-781)))) -((-1701 (((-1048) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1172)) 104) (((-1048) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1172) (-227)) 100) (((-1048) (-909) (-1076)) 92) (((-1048) (-909)) 93)) (-3678 (((-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-909) (-1076)) 62) (((-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-909)) 64))) -(((-908) (-10 -7 (-15 -1701 ((-1048) (-909))) (-15 -1701 ((-1048) (-909) (-1076))) (-15 -1701 ((-1048) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1172) (-227))) (-15 -1701 ((-1048) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1172))) (-15 -3678 ((-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-909))) (-15 -3678 ((-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-909) (-1076))))) (T -908)) -((-3678 (*1 *2 *3 *4) (-12 (-5 *3 (-909)) (-5 *4 (-1076)) (-5 *2 (-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))))) (-5 *1 (-908)))) (-3678 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172))))) (-5 *1 (-908)))) (-1701 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-781)) (-5 *6 (-654 (-654 (-324 *3)))) (-5 *7 (-1172)) (-5 *5 (-654 (-324 (-388)))) (-5 *3 (-388)) (-5 *2 (-1048)) (-5 *1 (-908)))) (-1701 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-781)) (-5 *6 (-654 (-654 (-324 *3)))) (-5 *7 (-1172)) (-5 *8 (-227)) (-5 *5 (-654 (-324 (-388)))) (-5 *3 (-388)) (-5 *2 (-1048)) (-5 *1 (-908)))) (-1701 (*1 *2 *3 *4) (-12 (-5 *3 (-909)) (-5 *4 (-1076)) (-5 *2 (-1048)) (-5 *1 (-908)))) (-1701 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1048)) (-5 *1 (-908))))) -(-10 -7 (-15 -1701 ((-1048) (-909))) (-15 -1701 ((-1048) (-909) (-1076))) (-15 -1701 ((-1048) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1172) (-227))) (-15 -1701 ((-1048) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1172))) (-15 -3678 ((-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-909))) (-15 -3678 ((-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) (|:| |explanations| (-654 (-1172)))) (-909) (-1076)))) -((-2849 (((-112) $ $) NIL)) (-2206 (((-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227))) $) 19)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 21) (($ (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227)))) 18)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-909) (-13 (-1113) (-10 -8 (-15 -2943 ($ (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227))))) (-15 -2206 ((-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227))) $))))) (T -909)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227)))) (-5 *1 (-909)))) (-2206 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227)))) (-5 *1 (-909))))) -(-13 (-1113) (-10 -8 (-15 -2943 ($ (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227))))) (-15 -2206 ((-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) (|:| |tol| (-227))) $)))) -((-3905 (($ $ |#2|) NIL) (($ $ (-654 |#2|)) 10) (($ $ |#2| (-781)) 12) (($ $ (-654 |#2|) (-654 (-781))) 15)) (-3610 (($ $ |#2|) 16) (($ $ (-654 |#2|)) 18) (($ $ |#2| (-781)) 19) (($ $ (-654 |#2|) (-654 (-781))) 21))) -(((-910 |#1| |#2|) (-10 -8 (-15 -3610 (|#1| |#1| (-654 |#2|) (-654 (-781)))) (-15 -3610 (|#1| |#1| |#2| (-781))) (-15 -3610 (|#1| |#1| (-654 |#2|))) (-15 -3610 (|#1| |#1| |#2|)) (-15 -3905 (|#1| |#1| (-654 |#2|) (-654 (-781)))) (-15 -3905 (|#1| |#1| |#2| (-781))) (-15 -3905 (|#1| |#1| (-654 |#2|))) (-15 -3905 (|#1| |#1| |#2|))) (-911 |#2|) (-1113)) (T -910)) -NIL -(-10 -8 (-15 -3610 (|#1| |#1| (-654 |#2|) (-654 (-781)))) (-15 -3610 (|#1| |#1| |#2| (-781))) (-15 -3610 (|#1| |#1| (-654 |#2|))) (-15 -3610 (|#1| |#1| |#2|)) (-15 -3905 (|#1| |#1| (-654 |#2|) (-654 (-781)))) (-15 -3905 (|#1| |#1| |#2| (-781))) (-15 -3905 (|#1| |#1| (-654 |#2|))) (-15 -3905 (|#1| |#1| |#2|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-3434 (((-3 $ "failed") $) 37)) (-3199 (((-112) $) 35)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-3905 (($ $ |#1|) 46) (($ $ (-654 |#1|)) 45) (($ $ |#1| (-781)) 44) (($ $ (-654 |#1|) (-654 (-781))) 43)) (-2943 (((-872) $) 12) (($ (-574)) 33)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-3610 (($ $ |#1|) 42) (($ $ (-654 |#1|)) 41) (($ $ |#1| (-781)) 40) (($ $ (-654 |#1|) (-654 (-781))) 39)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) -(((-911 |#1|) (-141) (-1113)) (T -911)) -((-3905 (*1 *1 *1 *2) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1113)))) (-3905 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *1 (-911 *3)) (-4 *3 (-1113)))) (-3905 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-911 *2)) (-4 *2 (-1113)))) (-3905 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 (-781))) (-4 *1 (-911 *4)) (-4 *4 (-1113)))) (-3610 (*1 *1 *1 *2) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1113)))) (-3610 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *1 (-911 *3)) (-4 *3 (-1113)))) (-3610 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-911 *2)) (-4 *2 (-1113)))) (-3610 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 (-781))) (-4 *1 (-911 *4)) (-4 *4 (-1113))))) -(-13 (-1062) (-10 -8 (-15 -3905 ($ $ |t#1|)) (-15 -3905 ($ $ (-654 |t#1|))) (-15 -3905 ($ $ |t#1| (-781))) (-15 -3905 ($ $ (-654 |t#1|) (-654 (-781)))) (-15 -3610 ($ $ |t#1|)) (-15 -3610 ($ $ (-654 |t#1|))) (-15 -3610 ($ $ |t#1| (-781))) (-15 -3610 ($ $ (-654 |t#1|) (-654 (-781)))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T)) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3083 ((|#1| $) 26)) (-3034 (((-112) $ (-781)) NIL)) (-3316 ((|#1| $ |#1|) NIL (|has| $ (-6 -4457)))) (-2412 (($ $ $) NIL (|has| $ (-6 -4457)))) (-1938 (($ $ $) NIL (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4457))) (($ $ "left" $) NIL (|has| $ (-6 -4457))) (($ $ "right" $) NIL (|has| $ (-6 -4457)))) (-2183 (($ $ (-654 $)) NIL (|has| $ (-6 -4457)))) (-3426 (($) NIL T CONST)) (-3904 (($ $) 25)) (-3801 (($ |#1|) 12) (($ $ $) 17)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3820 (((-654 $) $) NIL)) (-2278 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2742 (((-112) $ (-781)) NIL)) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2449 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-3891 (($ $) 23)) (-3507 (((-654 |#1|) $) NIL)) (-3632 (((-112) $) 20)) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3867 (((-574) $ $) NIL)) (-2479 (((-112) $) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) NIL)) (-2943 (((-1217 |#1|) $) 9) (((-872) $) 29 (|has| |#1| (-623 (-872))))) (-2321 (((-654 $) $) NIL)) (-4418 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 21 (|has| |#1| (-1113)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-912 |#1|) (-13 (-120 |#1|) (-623 (-1217 |#1|)) (-10 -8 (-15 -3801 ($ |#1|)) (-15 -3801 ($ $ $)))) (-1113)) (T -912)) -((-3801 (*1 *1 *2) (-12 (-5 *1 (-912 *2)) (-4 *2 (-1113)))) (-3801 (*1 *1 *1 *1) (-12 (-5 *1 (-912 *2)) (-4 *2 (-1113))))) -(-13 (-120 |#1|) (-623 (-1217 |#1|)) (-10 -8 (-15 -3801 ($ |#1|)) (-15 -3801 ($ $ $)))) -((-2657 ((|#2| (-1155 |#1| |#2|)) 48))) -(((-913 |#1| |#2|) (-10 -7 (-15 -2657 (|#2| (-1155 |#1| |#2|)))) (-932) (-13 (-1062) (-10 -7 (-6 (-4458 "*"))))) (T -913)) -((-2657 (*1 *2 *3) (-12 (-5 *3 (-1155 *4 *2)) (-14 *4 (-932)) (-4 *2 (-13 (-1062) (-10 -7 (-6 (-4458 "*"))))) (-5 *1 (-913 *4 *2))))) -(-10 -7 (-15 -2657 (|#2| (-1155 |#1| |#2|)))) -((-2849 (((-112) $ $) 7)) (-3076 (((-1115 |#1|) $) 35)) (-3426 (($) 19 T CONST)) (-3434 (((-3 $ "failed") $) 16)) (-4305 (((-1115 |#1|) $ |#1|) 34)) (-3199 (((-112) $) 18)) (-3659 (($ $ $) 32 (-2818 (|has| |#1| (-860)) (|has| |#1| (-377))))) (-4257 (($ $ $) 31 (-2818 (|has| |#1| (-860)) (|has| |#1| (-377))))) (-4136 (((-1172) $) 10)) (-1324 (($ $) 25)) (-3966 (((-1133) $) 11)) (-2199 ((|#1| $ |#1|) 38)) (-2750 (($ (-654 (-654 |#1|))) 36)) (-4191 (($ (-654 |#1|)) 37)) (-1479 (($ $ $) 22)) (-3204 (($ $ $) 21)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2145 (($) 20 T CONST)) (-3042 (((-112) $ $) 29 (-2818 (|has| |#1| (-860)) (|has| |#1| (-377))))) (-3018 (((-112) $ $) 28 (-2818 (|has| |#1| (-860)) (|has| |#1| (-377))))) (-2981 (((-112) $ $) 6)) (-3030 (((-112) $ $) 30 (-2818 (|has| |#1| (-860)) (|has| |#1| (-377))))) (-3007 (((-112) $ $) 33)) (-3108 (($ $ $) 24)) (** (($ $ (-932)) 14) (($ $ (-781)) 17) (($ $ (-574)) 23)) (* (($ $ $) 15))) -(((-914 |#1|) (-141) (-1113)) (T -914)) -((-4191 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-4 *1 (-914 *3)))) (-2750 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1113)) (-4 *1 (-914 *3)))) (-3076 (*1 *2 *1) (-12 (-4 *1 (-914 *3)) (-4 *3 (-1113)) (-5 *2 (-1115 *3)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *1 (-914 *3)) (-4 *3 (-1113)) (-5 *2 (-1115 *3)))) (-3007 (*1 *2 *1 *1) (-12 (-4 *1 (-914 *3)) (-4 *3 (-1113)) (-5 *2 (-112))))) -(-13 (-483) (-294 |t#1| |t#1|) (-10 -8 (-15 -4191 ($ (-654 |t#1|))) (-15 -2750 ($ (-654 (-654 |t#1|)))) (-15 -3076 ((-1115 |t#1|) $)) (-15 -4305 ((-1115 |t#1|) $ |t#1|)) (-15 -3007 ((-112) $ $)) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#1| (-377)) (-6 (-860)) |%noBranch|))) -(((-102) . T) ((-623 (-872)) . T) ((-294 |#1| |#1|) . T) ((-483) . T) ((-736) . T) ((-860) -2818 (|has| |#1| (-860)) (|has| |#1| (-377))) ((-1125) . T) ((-1113) . T) ((-1231) . T)) -((-2849 (((-112) $ $) NIL)) (-2015 (((-654 (-654 (-781))) $) 160)) (-3880 (((-654 (-781)) (-916 |#1|) $) 188)) (-4272 (((-654 (-781)) (-916 |#1|) $) 189)) (-3076 (((-1115 |#1|) $) 152)) (-3942 (((-654 (-916 |#1|)) $) 149)) (-2820 (((-916 |#1|) $ (-574)) 154) (((-916 |#1|) $) 155)) (-3622 (($ (-654 (-916 |#1|))) 162)) (-3884 (((-781) $) 156)) (-1578 (((-1115 (-1115 |#1|)) $) 186)) (-4305 (((-1115 |#1|) $ |#1|) 177) (((-1115 (-1115 |#1|)) $ (-1115 |#1|)) 197) (((-1115 (-654 |#1|)) $ (-654 |#1|)) 200)) (-1710 (((-112) (-916 |#1|) $) 137)) (-4136 (((-1172) $) NIL)) (-1619 (((-1286) $) 142) (((-1286) $ (-574) (-574)) 201)) (-3966 (((-1133) $) NIL)) (-3261 (((-654 (-916 |#1|)) $) 143)) (-2199 (((-916 |#1|) $ (-781)) 150)) (-4202 (((-781) $) 157)) (-2943 (((-872) $) 174) (((-654 (-916 |#1|)) $) 28) (($ (-654 (-916 |#1|))) 161)) (-3284 (((-112) $ $) NIL)) (-2630 (((-654 |#1|) $) 159)) (-2981 (((-112) $ $) 194)) (-3030 (((-112) $ $) 192)) (-3007 (((-112) $ $) 191))) -(((-915 |#1|) (-13 (-1113) (-10 -8 (-15 -2943 ((-654 (-916 |#1|)) $)) (-15 -3261 ((-654 (-916 |#1|)) $)) (-15 -2199 ((-916 |#1|) $ (-781))) (-15 -2820 ((-916 |#1|) $ (-574))) (-15 -2820 ((-916 |#1|) $)) (-15 -3884 ((-781) $)) (-15 -4202 ((-781) $)) (-15 -2630 ((-654 |#1|) $)) (-15 -3942 ((-654 (-916 |#1|)) $)) (-15 -2015 ((-654 (-654 (-781))) $)) (-15 -2943 ($ (-654 (-916 |#1|)))) (-15 -3622 ($ (-654 (-916 |#1|)))) (-15 -4305 ((-1115 |#1|) $ |#1|)) (-15 -1578 ((-1115 (-1115 |#1|)) $)) (-15 -4305 ((-1115 (-1115 |#1|)) $ (-1115 |#1|))) (-15 -4305 ((-1115 (-654 |#1|)) $ (-654 |#1|))) (-15 -1710 ((-112) (-916 |#1|) $)) (-15 -3880 ((-654 (-781)) (-916 |#1|) $)) (-15 -4272 ((-654 (-781)) (-916 |#1|) $)) (-15 -3076 ((-1115 |#1|) $)) (-15 -3007 ((-112) $ $)) (-15 -3030 ((-112) $ $)) (-15 -1619 ((-1286) $)) (-15 -1619 ((-1286) $ (-574) (-574))))) (-1113)) (T -915)) -((-2943 (*1 *2 *1) (-12 (-5 *2 (-654 (-916 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) (-3261 (*1 *2 *1) (-12 (-5 *2 (-654 (-916 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) (-2199 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-916 *4)) (-5 *1 (-915 *4)) (-4 *4 (-1113)))) (-2820 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-916 *4)) (-5 *1 (-915 *4)) (-4 *4 (-1113)))) (-2820 (*1 *2 *1) (-12 (-5 *2 (-916 *3)) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) (-3884 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) (-2630 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-654 (-916 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) (-2015 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-781)))) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-654 (-916 *3))) (-4 *3 (-1113)) (-5 *1 (-915 *3)))) (-3622 (*1 *1 *2) (-12 (-5 *2 (-654 (-916 *3))) (-4 *3 (-1113)) (-5 *1 (-915 *3)))) (-4305 (*1 *2 *1 *3) (-12 (-5 *2 (-1115 *3)) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) (-1578 (*1 *2 *1) (-12 (-5 *2 (-1115 (-1115 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *4 (-1113)) (-5 *2 (-1115 (-1115 *4))) (-5 *1 (-915 *4)) (-5 *3 (-1115 *4)))) (-4305 (*1 *2 *1 *3) (-12 (-4 *4 (-1113)) (-5 *2 (-1115 (-654 *4))) (-5 *1 (-915 *4)) (-5 *3 (-654 *4)))) (-1710 (*1 *2 *3 *1) (-12 (-5 *3 (-916 *4)) (-4 *4 (-1113)) (-5 *2 (-112)) (-5 *1 (-915 *4)))) (-3880 (*1 *2 *3 *1) (-12 (-5 *3 (-916 *4)) (-4 *4 (-1113)) (-5 *2 (-654 (-781))) (-5 *1 (-915 *4)))) (-4272 (*1 *2 *3 *1) (-12 (-5 *3 (-916 *4)) (-4 *4 (-1113)) (-5 *2 (-654 (-781))) (-5 *1 (-915 *4)))) (-3076 (*1 *2 *1) (-12 (-5 *2 (-1115 *3)) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) (-3007 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) (-3030 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) (-1619 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) (-1619 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1286)) (-5 *1 (-915 *4)) (-4 *4 (-1113))))) -(-13 (-1113) (-10 -8 (-15 -2943 ((-654 (-916 |#1|)) $)) (-15 -3261 ((-654 (-916 |#1|)) $)) (-15 -2199 ((-916 |#1|) $ (-781))) (-15 -2820 ((-916 |#1|) $ (-574))) (-15 -2820 ((-916 |#1|) $)) (-15 -3884 ((-781) $)) (-15 -4202 ((-781) $)) (-15 -2630 ((-654 |#1|) $)) (-15 -3942 ((-654 (-916 |#1|)) $)) (-15 -2015 ((-654 (-654 (-781))) $)) (-15 -2943 ($ (-654 (-916 |#1|)))) (-15 -3622 ($ (-654 (-916 |#1|)))) (-15 -4305 ((-1115 |#1|) $ |#1|)) (-15 -1578 ((-1115 (-1115 |#1|)) $)) (-15 -4305 ((-1115 (-1115 |#1|)) $ (-1115 |#1|))) (-15 -4305 ((-1115 (-654 |#1|)) $ (-654 |#1|))) (-15 -1710 ((-112) (-916 |#1|) $)) (-15 -3880 ((-654 (-781)) (-916 |#1|) $)) (-15 -4272 ((-654 (-781)) (-916 |#1|) $)) (-15 -3076 ((-1115 |#1|) $)) (-15 -3007 ((-112) $ $)) (-15 -3030 ((-112) $ $)) (-15 -1619 ((-1286) $)) (-15 -1619 ((-1286) $ (-574) (-574))))) -((-2849 (((-112) $ $) NIL)) (-3076 (((-1115 |#1|) $) 60)) (-2771 (((-654 $) (-654 $)) 103)) (-2846 (((-574) $) 83)) (-3426 (($) NIL T CONST)) (-3434 (((-3 $ "failed") $) NIL)) (-3884 (((-781) $) 80)) (-4305 (((-1115 |#1|) $ |#1|) 70)) (-3199 (((-112) $) NIL)) (-4410 (((-112) $) 88)) (-3111 (((-781) $) 84)) (-3659 (($ $ $) NIL (-2818 (|has| |#1| (-377)) (|has| |#1| (-860))))) (-4257 (($ $ $) NIL (-2818 (|has| |#1| (-377)) (|has| |#1| (-860))))) (-2435 (((-2 (|:| |preimage| (-654 |#1|)) (|:| |image| (-654 |#1|))) $) 55)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) 130)) (-3966 (((-1133) $) NIL)) (-2704 (((-1115 |#1|) $) 136 (|has| |#1| (-377)))) (-3476 (((-112) $) 81)) (-2199 ((|#1| $ |#1|) 68)) (-4202 (((-781) $) 62)) (-2750 (($ (-654 (-654 |#1|))) 118)) (-3789 (((-984) $) 74)) (-4191 (($ (-654 |#1|)) 32)) (-1479 (($ $ $) NIL)) (-3204 (($ $ $) NIL)) (-2114 (($ (-654 (-654 |#1|))) 57)) (-2073 (($ (-654 (-654 |#1|))) 123)) (-2281 (($ (-654 |#1|)) 132)) (-2943 (((-872) $) 117) (($ (-654 (-654 |#1|))) 91) (($ (-654 |#1|)) 92)) (-3284 (((-112) $ $) NIL)) (-2145 (($) 24 T CONST)) (-3042 (((-112) $ $) NIL (-2818 (|has| |#1| (-377)) (|has| |#1| (-860))))) (-3018 (((-112) $ $) NIL (-2818 (|has| |#1| (-377)) (|has| |#1| (-860))))) (-2981 (((-112) $ $) 66)) (-3030 (((-112) $ $) NIL (-2818 (|has| |#1| (-377)) (|has| |#1| (-860))))) (-3007 (((-112) $ $) 90)) (-3108 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ $ $) 33))) -(((-916 |#1|) (-13 (-914 |#1|) (-10 -8 (-15 -2435 ((-2 (|:| |preimage| (-654 |#1|)) (|:| |image| (-654 |#1|))) $)) (-15 -2114 ($ (-654 (-654 |#1|)))) (-15 -2943 ($ (-654 (-654 |#1|)))) (-15 -2943 ($ (-654 |#1|))) (-15 -2073 ($ (-654 (-654 |#1|)))) (-15 -4202 ((-781) $)) (-15 -3789 ((-984) $)) (-15 -3884 ((-781) $)) (-15 -3111 ((-781) $)) (-15 -2846 ((-574) $)) (-15 -3476 ((-112) $)) (-15 -4410 ((-112) $)) (-15 -2771 ((-654 $) (-654 $))) (IF (|has| |#1| (-377)) (-15 -2704 ((-1115 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-555)) (-15 -2281 ($ (-654 |#1|))) (IF (|has| |#1| (-377)) (-15 -2281 ($ (-654 |#1|))) |%noBranch|)))) (-1113)) (T -916)) -((-2435 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-654 *3)) (|:| |image| (-654 *3)))) (-5 *1 (-916 *3)) (-4 *3 (-1113)))) (-2114 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1113)) (-5 *1 (-916 *3)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1113)) (-5 *1 (-916 *3)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-916 *3)))) (-2073 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1113)) (-5 *1 (-916 *3)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-916 *3)) (-4 *3 (-1113)))) (-3789 (*1 *2 *1) (-12 (-5 *2 (-984)) (-5 *1 (-916 *3)) (-4 *3 (-1113)))) (-3884 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-916 *3)) (-4 *3 (-1113)))) (-3111 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-916 *3)) (-4 *3 (-1113)))) (-2846 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-916 *3)) (-4 *3 (-1113)))) (-3476 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1113)))) (-4410 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1113)))) (-2771 (*1 *2 *2) (-12 (-5 *2 (-654 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1113)))) (-2704 (*1 *2 *1) (-12 (-5 *2 (-1115 *3)) (-5 *1 (-916 *3)) (-4 *3 (-377)) (-4 *3 (-1113)))) (-2281 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-916 *3))))) -(-13 (-914 |#1|) (-10 -8 (-15 -2435 ((-2 (|:| |preimage| (-654 |#1|)) (|:| |image| (-654 |#1|))) $)) (-15 -2114 ($ (-654 (-654 |#1|)))) (-15 -2943 ($ (-654 (-654 |#1|)))) (-15 -2943 ($ (-654 |#1|))) (-15 -2073 ($ (-654 (-654 |#1|)))) (-15 -4202 ((-781) $)) (-15 -3789 ((-984) $)) (-15 -3884 ((-781) $)) (-15 -3111 ((-781) $)) (-15 -2846 ((-574) $)) (-15 -3476 ((-112) $)) (-15 -4410 ((-112) $)) (-15 -2771 ((-654 $) (-654 $))) (IF (|has| |#1| (-377)) (-15 -2704 ((-1115 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-555)) (-15 -2281 ($ (-654 |#1|))) (IF (|has| |#1| (-377)) (-15 -2281 ($ (-654 |#1|))) |%noBranch|)))) -((-3631 (((-3 (-654 (-1186 |#4|)) "failed") (-654 (-1186 |#4|)) (-1186 |#4|)) 160)) (-1667 ((|#1|) 97)) (-4252 (((-428 (-1186 |#4|)) (-1186 |#4|)) 169)) (-2623 (((-428 (-1186 |#4|)) (-654 |#3|) (-1186 |#4|)) 84)) (-1378 (((-428 (-1186 |#4|)) (-1186 |#4|)) 179)) (-2779 (((-3 (-654 (-1186 |#4|)) "failed") (-654 (-1186 |#4|)) (-1186 |#4|) |#3|) 113))) -(((-917 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3631 ((-3 (-654 (-1186 |#4|)) "failed") (-654 (-1186 |#4|)) (-1186 |#4|))) (-15 -1378 ((-428 (-1186 |#4|)) (-1186 |#4|))) (-15 -4252 ((-428 (-1186 |#4|)) (-1186 |#4|))) (-15 -1667 (|#1|)) (-15 -2779 ((-3 (-654 (-1186 |#4|)) "failed") (-654 (-1186 |#4|)) (-1186 |#4|) |#3|)) (-15 -2623 ((-428 (-1186 |#4|)) (-654 |#3|) (-1186 |#4|)))) (-920) (-803) (-860) (-960 |#1| |#2| |#3|)) (T -917)) -((-2623 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *7)) (-4 *7 (-860)) (-4 *5 (-920)) (-4 *6 (-803)) (-4 *8 (-960 *5 *6 *7)) (-5 *2 (-428 (-1186 *8))) (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-1186 *8)))) (-2779 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-654 (-1186 *7))) (-5 *3 (-1186 *7)) (-4 *7 (-960 *5 *6 *4)) (-4 *5 (-920)) (-4 *6 (-803)) (-4 *4 (-860)) (-5 *1 (-917 *5 *6 *4 *7)))) (-1667 (*1 *2) (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-920)) (-5 *1 (-917 *2 *3 *4 *5)) (-4 *5 (-960 *2 *3 *4)))) (-4252 (*1 *2 *3) (-12 (-4 *4 (-920)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-960 *4 *5 *6)) (-5 *2 (-428 (-1186 *7))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-1186 *7)))) (-1378 (*1 *2 *3) (-12 (-4 *4 (-920)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-960 *4 *5 *6)) (-5 *2 (-428 (-1186 *7))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-1186 *7)))) (-3631 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1186 *7))) (-5 *3 (-1186 *7)) (-4 *7 (-960 *4 *5 *6)) (-4 *4 (-920)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-917 *4 *5 *6 *7))))) -(-10 -7 (-15 -3631 ((-3 (-654 (-1186 |#4|)) "failed") (-654 (-1186 |#4|)) (-1186 |#4|))) (-15 -1378 ((-428 (-1186 |#4|)) (-1186 |#4|))) (-15 -4252 ((-428 (-1186 |#4|)) (-1186 |#4|))) (-15 -1667 (|#1|)) (-15 -2779 ((-3 (-654 (-1186 |#4|)) "failed") (-654 (-1186 |#4|)) (-1186 |#4|) |#3|)) (-15 -2623 ((-428 (-1186 |#4|)) (-654 |#3|) (-1186 |#4|)))) -((-3631 (((-3 (-654 (-1186 |#2|)) "failed") (-654 (-1186 |#2|)) (-1186 |#2|)) 39)) (-1667 ((|#1|) 72)) (-4252 (((-428 (-1186 |#2|)) (-1186 |#2|)) 121)) (-2623 (((-428 (-1186 |#2|)) (-1186 |#2|)) 105)) (-1378 (((-428 (-1186 |#2|)) (-1186 |#2|)) 132))) -(((-918 |#1| |#2|) (-10 -7 (-15 -3631 ((-3 (-654 (-1186 |#2|)) "failed") (-654 (-1186 |#2|)) (-1186 |#2|))) (-15 -1378 ((-428 (-1186 |#2|)) (-1186 |#2|))) (-15 -4252 ((-428 (-1186 |#2|)) (-1186 |#2|))) (-15 -1667 (|#1|)) (-15 -2623 ((-428 (-1186 |#2|)) (-1186 |#2|)))) (-920) (-1257 |#1|)) (T -918)) -((-2623 (*1 *2 *3) (-12 (-4 *4 (-920)) (-4 *5 (-1257 *4)) (-5 *2 (-428 (-1186 *5))) (-5 *1 (-918 *4 *5)) (-5 *3 (-1186 *5)))) (-1667 (*1 *2) (-12 (-4 *2 (-920)) (-5 *1 (-918 *2 *3)) (-4 *3 (-1257 *2)))) (-4252 (*1 *2 *3) (-12 (-4 *4 (-920)) (-4 *5 (-1257 *4)) (-5 *2 (-428 (-1186 *5))) (-5 *1 (-918 *4 *5)) (-5 *3 (-1186 *5)))) (-1378 (*1 *2 *3) (-12 (-4 *4 (-920)) (-4 *5 (-1257 *4)) (-5 *2 (-428 (-1186 *5))) (-5 *1 (-918 *4 *5)) (-5 *3 (-1186 *5)))) (-3631 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1186 *5))) (-5 *3 (-1186 *5)) (-4 *5 (-1257 *4)) (-4 *4 (-920)) (-5 *1 (-918 *4 *5))))) -(-10 -7 (-15 -3631 ((-3 (-654 (-1186 |#2|)) "failed") (-654 (-1186 |#2|)) (-1186 |#2|))) (-15 -1378 ((-428 (-1186 |#2|)) (-1186 |#2|))) (-15 -4252 ((-428 (-1186 |#2|)) (-1186 |#2|))) (-15 -1667 (|#1|)) (-15 -2623 ((-428 (-1186 |#2|)) (-1186 |#2|)))) -((-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) 42)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 18)) (-3298 (((-3 $ "failed") $) 36))) -(((-919 |#1|) (-10 -8 (-15 -3298 ((-3 |#1| "failed") |#1|)) (-15 -1879 ((-3 (-654 (-1186 |#1|)) "failed") (-654 (-1186 |#1|)) (-1186 |#1|))) (-15 -3109 ((-1186 |#1|) (-1186 |#1|) (-1186 |#1|)))) (-920)) (T -919)) -NIL -(-10 -8 (-15 -3298 ((-3 |#1| "failed") |#1|)) (-15 -1879 ((-3 (-654 (-1186 |#1|)) "failed") (-654 (-1186 |#1|)) (-1186 |#1|))) (-15 -3109 ((-1186 |#1|) (-1186 |#1|) (-1186 |#1|)))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-1575 (($ $) 46)) (-2085 (((-112) $) 44)) (-3524 (((-3 $ "failed") $ $) 20)) (-3972 (((-428 (-1186 $)) (-1186 $)) 66)) (-2568 (($ $) 57)) (-2827 (((-428 $) $) 58)) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) 63)) (-3426 (($) 18 T CONST)) (-3434 (((-3 $ "failed") $) 37)) (-2257 (((-112) $) 59)) (-3199 (((-112) $) 35)) (-2832 (($ $ $) 52) (($ (-654 $)) 51)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2873 (($ $ $) 54) (($ (-654 $)) 53)) (-2560 (((-428 (-1186 $)) (-1186 $)) 64)) (-2039 (((-428 (-1186 $)) (-1186 $)) 65)) (-4220 (((-428 $) $) 56)) (-2838 (((-3 $ "failed") $ $) 48)) (-1524 (((-3 (-1281 $) "failed") (-699 $)) 62 (|has| $ (-146)))) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-3298 (((-3 $ "failed") $) 61 (|has| $ (-146)))) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2069 (((-112) $ $) 45)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) -(((-920) (-141)) (T -920)) -((-3109 (*1 *2 *2 *2) (-12 (-5 *2 (-1186 *1)) (-4 *1 (-920)))) (-3972 (*1 *2 *3) (-12 (-4 *1 (-920)) (-5 *2 (-428 (-1186 *1))) (-5 *3 (-1186 *1)))) (-2039 (*1 *2 *3) (-12 (-4 *1 (-920)) (-5 *2 (-428 (-1186 *1))) (-5 *3 (-1186 *1)))) (-2560 (*1 *2 *3) (-12 (-4 *1 (-920)) (-5 *2 (-428 (-1186 *1))) (-5 *3 (-1186 *1)))) (-1879 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1186 *1))) (-5 *3 (-1186 *1)) (-4 *1 (-920)))) (-1524 (*1 *2 *3) (|partial| -12 (-5 *3 (-699 *1)) (-4 *1 (-146)) (-4 *1 (-920)) (-5 *2 (-1281 *1)))) (-3298 (*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-920))))) -(-13 (-1235) (-10 -8 (-15 -3972 ((-428 (-1186 $)) (-1186 $))) (-15 -2039 ((-428 (-1186 $)) (-1186 $))) (-15 -2560 ((-428 (-1186 $)) (-1186 $))) (-15 -3109 ((-1186 $) (-1186 $) (-1186 $))) (-15 -1879 ((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $))) (IF (|has| $ (-146)) (PROGN (-15 -1524 ((-3 (-1281 $) "failed") (-699 $))) (-15 -3298 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-1064 $) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1235) . T)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-4297 (((-112) $) NIL)) (-2549 (((-781)) NIL)) (-1636 (($ $ (-932)) NIL (|has| $ (-377))) (($ $) NIL)) (-1664 (((-1203 (-932) (-781)) (-574)) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-1600 (((-112) $ $) NIL)) (-1487 (((-781)) NIL)) (-3426 (($) NIL T CONST)) (-1696 (((-3 $ "failed") $) NIL)) (-2206 (($ $) NIL)) (-2737 (($ (-1281 $)) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2786 (($ $ $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2820 (($) NIL)) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-3812 (($) NIL)) (-4044 (((-112) $) NIL)) (-1647 (($ $) NIL) (($ $ (-781)) NIL)) (-2257 (((-112) $) NIL)) (-3884 (((-843 (-932)) $) NIL) (((-932) $) NIL)) (-3199 (((-112) $) NIL)) (-2606 (($) NIL (|has| $ (-377)))) (-2066 (((-112) $) NIL (|has| $ (-377)))) (-2236 (($ $ (-932)) NIL (|has| $ (-377))) (($ $) NIL)) (-2748 (((-3 $ "failed") $) NIL)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1972 (((-1186 $) $ (-932)) NIL (|has| $ (-377))) (((-1186 $) $) NIL)) (-4115 (((-932) $) NIL)) (-1533 (((-1186 $) $) NIL (|has| $ (-377)))) (-2037 (((-3 (-1186 $) "failed") $ $) NIL (|has| $ (-377))) (((-1186 $) $) NIL (|has| $ (-377)))) (-2559 (($ $ (-1186 $)) NIL (|has| $ (-377)))) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL T CONST)) (-2576 (($ (-932)) NIL)) (-4204 (((-112) $) NIL)) (-3966 (((-1133) $) NIL)) (-2970 (($) NIL (|has| $ (-377)))) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1417 (((-654 (-2 (|:| -4220 (-574)) (|:| -3715 (-574))))) NIL)) (-4220 (((-428 $) $) NIL)) (-2989 (((-932)) NIL) (((-843 (-932))) NIL)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1730 (((-781) $) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-4342 (((-3 (-781) "failed") $ $) NIL) (((-781) $) NIL)) (-4133 (((-135)) NIL)) (-3905 (($ $ (-781)) NIL) (($ $) NIL)) (-4202 (((-932) $) NIL) (((-843 (-932)) $) NIL)) (-4185 (((-1186 $)) NIL)) (-3074 (($) NIL)) (-2765 (($) NIL (|has| $ (-377)))) (-3487 (((-699 $) (-1281 $)) NIL) (((-1281 $) $) NIL)) (-1836 (((-574) $) NIL)) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL)) (-3298 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-1882 (((-1281 $) (-932)) NIL) (((-1281 $)) NIL)) (-2069 (((-112) $ $) NIL)) (-3587 (((-112) $) NIL)) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-2661 (($ $ (-781)) NIL (|has| $ (-377))) (($ $) NIL (|has| $ (-377)))) (-3610 (($ $ (-781)) NIL) (($ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) -(((-921 |#1|) (-13 (-358) (-337 $) (-624 (-574))) (-932)) (T -921)) -NIL -(-13 (-358) (-337 $) (-624 (-574))) -((-1356 (((-3 (-2 (|:| -3884 (-781)) (|:| -2707 |#5|)) "failed") (-345 |#2| |#3| |#4| |#5|)) 77)) (-4242 (((-112) (-345 |#2| |#3| |#4| |#5|)) 17)) (-3884 (((-3 (-781) "failed") (-345 |#2| |#3| |#4| |#5|)) 15))) -(((-922 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3884 ((-3 (-781) "failed") (-345 |#2| |#3| |#4| |#5|))) (-15 -4242 ((-112) (-345 |#2| |#3| |#4| |#5|))) (-15 -1356 ((-3 (-2 (|:| -3884 (-781)) (|:| -2707 |#5|)) "failed") (-345 |#2| |#3| |#4| |#5|)))) (-13 (-566) (-1051 (-574))) (-440 |#1|) (-1257 |#2|) (-1257 (-417 |#3|)) (-351 |#2| |#3| |#4|)) (T -922)) -((-1356 (*1 *2 *3) (|partial| -12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) (-4 *6 (-1257 *5)) (-4 *7 (-1257 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *2 (-2 (|:| -3884 (-781)) (|:| -2707 *8))) (-5 *1 (-922 *4 *5 *6 *7 *8)))) (-4242 (*1 *2 *3) (-12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) (-4 *6 (-1257 *5)) (-4 *7 (-1257 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *2 (-112)) (-5 *1 (-922 *4 *5 *6 *7 *8)))) (-3884 (*1 *2 *3) (|partial| -12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) (-4 *6 (-1257 *5)) (-4 *7 (-1257 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *2 (-781)) (-5 *1 (-922 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -3884 ((-3 (-781) "failed") (-345 |#2| |#3| |#4| |#5|))) (-15 -4242 ((-112) (-345 |#2| |#3| |#4| |#5|))) (-15 -1356 ((-3 (-2 (|:| -3884 (-781)) (|:| -2707 |#5|)) "failed") (-345 |#2| |#3| |#4| |#5|)))) -((-1356 (((-3 (-2 (|:| -3884 (-781)) (|:| -2707 |#3|)) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|)) 64)) (-4242 (((-112) (-345 (-417 (-574)) |#1| |#2| |#3|)) 16)) (-3884 (((-3 (-781) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|)) 14))) -(((-923 |#1| |#2| |#3|) (-10 -7 (-15 -3884 ((-3 (-781) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|))) (-15 -4242 ((-112) (-345 (-417 (-574)) |#1| |#2| |#3|))) (-15 -1356 ((-3 (-2 (|:| -3884 (-781)) (|:| -2707 |#3|)) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|)))) (-1257 (-417 (-574))) (-1257 (-417 |#1|)) (-351 (-417 (-574)) |#1| |#2|)) (T -923)) -((-1356 (*1 *2 *3) (|partial| -12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6)) (-4 *4 (-1257 (-417 (-574)))) (-4 *5 (-1257 (-417 *4))) (-4 *6 (-351 (-417 (-574)) *4 *5)) (-5 *2 (-2 (|:| -3884 (-781)) (|:| -2707 *6))) (-5 *1 (-923 *4 *5 *6)))) (-4242 (*1 *2 *3) (-12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6)) (-4 *4 (-1257 (-417 (-574)))) (-4 *5 (-1257 (-417 *4))) (-4 *6 (-351 (-417 (-574)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-923 *4 *5 *6)))) (-3884 (*1 *2 *3) (|partial| -12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6)) (-4 *4 (-1257 (-417 (-574)))) (-4 *5 (-1257 (-417 *4))) (-4 *6 (-351 (-417 (-574)) *4 *5)) (-5 *2 (-781)) (-5 *1 (-923 *4 *5 *6))))) -(-10 -7 (-15 -3884 ((-3 (-781) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|))) (-15 -4242 ((-112) (-345 (-417 (-574)) |#1| |#2| |#3|))) (-15 -1356 ((-3 (-2 (|:| -3884 (-781)) (|:| -2707 |#3|)) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|)))) -((-2112 ((|#2| |#2|) 26)) (-2023 (((-574) (-654 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))))) 15)) (-4253 (((-932) (-574)) 38)) (-4260 (((-574) |#2|) 45)) (-1887 (((-574) |#2|) 21) (((-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))) |#1|) 20))) -(((-924 |#1| |#2|) (-10 -7 (-15 -4253 ((-932) (-574))) (-15 -1887 ((-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))) |#1|)) (-15 -1887 ((-574) |#2|)) (-15 -2023 ((-574) (-654 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574)))))) (-15 -4260 ((-574) |#2|)) (-15 -2112 (|#2| |#2|))) (-1257 (-417 (-574))) (-1257 (-417 |#1|))) (T -924)) -((-2112 (*1 *2 *2) (-12 (-4 *3 (-1257 (-417 (-574)))) (-5 *1 (-924 *3 *2)) (-4 *2 (-1257 (-417 *3))))) (-4260 (*1 *2 *3) (-12 (-4 *4 (-1257 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-924 *4 *3)) (-4 *3 (-1257 (-417 *4))))) (-2023 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))))) (-4 *4 (-1257 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-924 *4 *5)) (-4 *5 (-1257 (-417 *4))))) (-1887 (*1 *2 *3) (-12 (-4 *4 (-1257 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-924 *4 *3)) (-4 *3 (-1257 (-417 *4))))) (-1887 (*1 *2 *3) (-12 (-4 *3 (-1257 (-417 (-574)))) (-5 *2 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574)))) (-5 *1 (-924 *3 *4)) (-4 *4 (-1257 (-417 *3))))) (-4253 (*1 *2 *3) (-12 (-5 *3 (-574)) (-4 *4 (-1257 (-417 *3))) (-5 *2 (-932)) (-5 *1 (-924 *4 *5)) (-4 *5 (-1257 (-417 *4)))))) -(-10 -7 (-15 -4253 ((-932) (-574))) (-15 -1887 ((-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))) |#1|)) (-15 -1887 ((-574) |#2|)) (-15 -2023 ((-574) (-654 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574)))))) (-15 -4260 ((-574) |#2|)) (-15 -2112 (|#2| |#2|))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1528 ((|#1| $) 100)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-1600 (((-112) $ $) NIL)) (-3426 (($) NIL T CONST)) (-2786 (($ $ $) NIL)) (-3434 (((-3 $ "failed") $) 94)) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-2257 (((-112) $) NIL)) (-2663 (($ |#1| (-428 |#1|)) 92)) (-3106 (((-1186 |#1|) |#1| |#1|) 53)) (-3278 (($ $) 61)) (-3199 (((-112) $) NIL)) (-4182 (((-574) $) 97)) (-2896 (($ $ (-574)) 99)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3112 ((|#1| $) 96)) (-1646 (((-428 |#1|) $) 95)) (-4220 (((-428 $) $) NIL)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) 93)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1730 (((-781) $) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-2211 (($ $) 50)) (-2943 (((-872) $) 124) (($ (-574)) 73) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 41) (((-417 |#1|) $) 78) (($ (-417 (-428 |#1|))) 86)) (-1364 (((-781)) 71 T CONST)) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL)) (-2133 (($) 26 T CONST)) (-2145 (($) 15 T CONST)) (-2981 (((-112) $ $) 87)) (-3108 (($ $ $) NIL)) (-3094 (($ $) 108) (($ $ $) NIL)) (-3079 (($ $ $) 49)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 110) (($ $ $) 48) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL))) -(((-925 |#1|) (-13 (-372) (-38 |#1|) (-10 -8 (-15 -2943 ((-417 |#1|) $)) (-15 -2943 ($ (-417 (-428 |#1|)))) (-15 -2211 ($ $)) (-15 -1646 ((-428 |#1|) $)) (-15 -3112 (|#1| $)) (-15 -2896 ($ $ (-574))) (-15 -4182 ((-574) $)) (-15 -3106 ((-1186 |#1|) |#1| |#1|)) (-15 -3278 ($ $)) (-15 -2663 ($ |#1| (-428 |#1|))) (-15 -1528 (|#1| $)))) (-315)) (T -925)) -((-2943 (*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-925 *3)) (-4 *3 (-315)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-417 (-428 *3))) (-4 *3 (-315)) (-5 *1 (-925 *3)))) (-2211 (*1 *1 *1) (-12 (-5 *1 (-925 *2)) (-4 *2 (-315)))) (-1646 (*1 *2 *1) (-12 (-5 *2 (-428 *3)) (-5 *1 (-925 *3)) (-4 *3 (-315)))) (-3112 (*1 *2 *1) (-12 (-5 *1 (-925 *2)) (-4 *2 (-315)))) (-2896 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-925 *3)) (-4 *3 (-315)))) (-4182 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-925 *3)) (-4 *3 (-315)))) (-3106 (*1 *2 *3 *3) (-12 (-5 *2 (-1186 *3)) (-5 *1 (-925 *3)) (-4 *3 (-315)))) (-3278 (*1 *1 *1) (-12 (-5 *1 (-925 *2)) (-4 *2 (-315)))) (-2663 (*1 *1 *2 *3) (-12 (-5 *3 (-428 *2)) (-4 *2 (-315)) (-5 *1 (-925 *2)))) (-1528 (*1 *2 *1) (-12 (-5 *1 (-925 *2)) (-4 *2 (-315))))) -(-13 (-372) (-38 |#1|) (-10 -8 (-15 -2943 ((-417 |#1|) $)) (-15 -2943 ($ (-417 (-428 |#1|)))) (-15 -2211 ($ $)) (-15 -1646 ((-428 |#1|) $)) (-15 -3112 (|#1| $)) (-15 -2896 ($ $ (-574))) (-15 -4182 ((-574) $)) (-15 -3106 ((-1186 |#1|) |#1| |#1|)) (-15 -3278 ($ $)) (-15 -2663 ($ |#1| (-428 |#1|))) (-15 -1528 (|#1| $)))) -((-2663 (((-52) (-963 |#1|) (-428 (-963 |#1|)) (-1190)) 17) (((-52) (-417 (-963 |#1|)) (-1190)) 18))) -(((-926 |#1|) (-10 -7 (-15 -2663 ((-52) (-417 (-963 |#1|)) (-1190))) (-15 -2663 ((-52) (-963 |#1|) (-428 (-963 |#1|)) (-1190)))) (-13 (-315) (-148))) (T -926)) -((-2663 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-428 (-963 *6))) (-5 *5 (-1190)) (-5 *3 (-963 *6)) (-4 *6 (-13 (-315) (-148))) (-5 *2 (-52)) (-5 *1 (-926 *6)))) (-2663 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-1190)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-52)) (-5 *1 (-926 *5))))) -(-10 -7 (-15 -2663 ((-52) (-417 (-963 |#1|)) (-1190))) (-15 -2663 ((-52) (-963 |#1|) (-428 (-963 |#1|)) (-1190)))) -((-3850 ((|#4| (-654 |#4|)) 147) (((-1186 |#4|) (-1186 |#4|) (-1186 |#4|)) 84) ((|#4| |#4| |#4|) 146)) (-2873 (((-1186 |#4|) (-654 (-1186 |#4|))) 140) (((-1186 |#4|) (-1186 |#4|) (-1186 |#4|)) 61) ((|#4| (-654 |#4|)) 69) ((|#4| |#4| |#4|) 107))) -(((-927 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2873 (|#4| |#4| |#4|)) (-15 -2873 (|#4| (-654 |#4|))) (-15 -2873 ((-1186 |#4|) (-1186 |#4|) (-1186 |#4|))) (-15 -2873 ((-1186 |#4|) (-654 (-1186 |#4|)))) (-15 -3850 (|#4| |#4| |#4|)) (-15 -3850 ((-1186 |#4|) (-1186 |#4|) (-1186 |#4|))) (-15 -3850 (|#4| (-654 |#4|)))) (-803) (-860) (-315) (-960 |#3| |#1| |#2|)) (T -927)) -((-3850 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-960 *6 *4 *5)) (-5 *1 (-927 *4 *5 *6 *2)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)))) (-3850 (*1 *2 *2 *2) (-12 (-5 *2 (-1186 *6)) (-4 *6 (-960 *5 *3 *4)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-927 *3 *4 *5 *6)))) (-3850 (*1 *2 *2 *2) (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-927 *3 *4 *5 *2)) (-4 *2 (-960 *5 *3 *4)))) (-2873 (*1 *2 *3) (-12 (-5 *3 (-654 (-1186 *7))) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-1186 *7)) (-5 *1 (-927 *4 *5 *6 *7)) (-4 *7 (-960 *6 *4 *5)))) (-2873 (*1 *2 *2 *2) (-12 (-5 *2 (-1186 *6)) (-4 *6 (-960 *5 *3 *4)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-927 *3 *4 *5 *6)))) (-2873 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-960 *6 *4 *5)) (-5 *1 (-927 *4 *5 *6 *2)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)))) (-2873 (*1 *2 *2 *2) (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-927 *3 *4 *5 *2)) (-4 *2 (-960 *5 *3 *4))))) -(-10 -7 (-15 -2873 (|#4| |#4| |#4|)) (-15 -2873 (|#4| (-654 |#4|))) (-15 -2873 ((-1186 |#4|) (-1186 |#4|) (-1186 |#4|))) (-15 -2873 ((-1186 |#4|) (-654 (-1186 |#4|)))) (-15 -3850 (|#4| |#4| |#4|)) (-15 -3850 ((-1186 |#4|) (-1186 |#4|) (-1186 |#4|))) (-15 -3850 (|#4| (-654 |#4|)))) -((-1833 (((-915 (-574)) (-984)) 38) (((-915 (-574)) (-654 (-574))) 34)) (-4406 (((-915 (-574)) (-654 (-574))) 67) (((-915 (-574)) (-932)) 68)) (-2757 (((-915 (-574))) 39)) (-2434 (((-915 (-574))) 53) (((-915 (-574)) (-654 (-574))) 52)) (-1576 (((-915 (-574))) 51) (((-915 (-574)) (-654 (-574))) 50)) (-3719 (((-915 (-574))) 49) (((-915 (-574)) (-654 (-574))) 48)) (-4102 (((-915 (-574))) 47) (((-915 (-574)) (-654 (-574))) 46)) (-1827 (((-915 (-574))) 45) (((-915 (-574)) (-654 (-574))) 44)) (-2382 (((-915 (-574))) 55) (((-915 (-574)) (-654 (-574))) 54)) (-3879 (((-915 (-574)) (-654 (-574))) 72) (((-915 (-574)) (-932)) 74)) (-1925 (((-915 (-574)) (-654 (-574))) 69) (((-915 (-574)) (-932)) 70)) (-3749 (((-915 (-574)) (-654 (-574))) 65) (((-915 (-574)) (-932)) 66)) (-2562 (((-915 (-574)) (-654 (-932))) 57))) -(((-928) (-10 -7 (-15 -4406 ((-915 (-574)) (-932))) (-15 -4406 ((-915 (-574)) (-654 (-574)))) (-15 -3749 ((-915 (-574)) (-932))) (-15 -3749 ((-915 (-574)) (-654 (-574)))) (-15 -2562 ((-915 (-574)) (-654 (-932)))) (-15 -1925 ((-915 (-574)) (-932))) (-15 -1925 ((-915 (-574)) (-654 (-574)))) (-15 -3879 ((-915 (-574)) (-932))) (-15 -3879 ((-915 (-574)) (-654 (-574)))) (-15 -1827 ((-915 (-574)) (-654 (-574)))) (-15 -1827 ((-915 (-574)))) (-15 -4102 ((-915 (-574)) (-654 (-574)))) (-15 -4102 ((-915 (-574)))) (-15 -3719 ((-915 (-574)) (-654 (-574)))) (-15 -3719 ((-915 (-574)))) (-15 -1576 ((-915 (-574)) (-654 (-574)))) (-15 -1576 ((-915 (-574)))) (-15 -2434 ((-915 (-574)) (-654 (-574)))) (-15 -2434 ((-915 (-574)))) (-15 -2382 ((-915 (-574)) (-654 (-574)))) (-15 -2382 ((-915 (-574)))) (-15 -2757 ((-915 (-574)))) (-15 -1833 ((-915 (-574)) (-654 (-574)))) (-15 -1833 ((-915 (-574)) (-984))))) (T -928)) -((-1833 (*1 *2 *3) (-12 (-5 *3 (-984)) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-1833 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-2757 (*1 *2) (-12 (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-2382 (*1 *2) (-12 (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-2382 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-2434 (*1 *2) (-12 (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-2434 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-1576 (*1 *2) (-12 (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-1576 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-3719 (*1 *2) (-12 (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-3719 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-4102 (*1 *2) (-12 (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-4102 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-1827 (*1 *2) (-12 (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-1827 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-3879 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-3879 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-1925 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-1925 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-2562 (*1 *2 *3) (-12 (-5 *3 (-654 (-932))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-3749 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-3749 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-4406 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) (-4406 (*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-915 (-574))) (-5 *1 (-928))))) -(-10 -7 (-15 -4406 ((-915 (-574)) (-932))) (-15 -4406 ((-915 (-574)) (-654 (-574)))) (-15 -3749 ((-915 (-574)) (-932))) (-15 -3749 ((-915 (-574)) (-654 (-574)))) (-15 -2562 ((-915 (-574)) (-654 (-932)))) (-15 -1925 ((-915 (-574)) (-932))) (-15 -1925 ((-915 (-574)) (-654 (-574)))) (-15 -3879 ((-915 (-574)) (-932))) (-15 -3879 ((-915 (-574)) (-654 (-574)))) (-15 -1827 ((-915 (-574)) (-654 (-574)))) (-15 -1827 ((-915 (-574)))) (-15 -4102 ((-915 (-574)) (-654 (-574)))) (-15 -4102 ((-915 (-574)))) (-15 -3719 ((-915 (-574)) (-654 (-574)))) (-15 -3719 ((-915 (-574)))) (-15 -1576 ((-915 (-574)) (-654 (-574)))) (-15 -1576 ((-915 (-574)))) (-15 -2434 ((-915 (-574)) (-654 (-574)))) (-15 -2434 ((-915 (-574)))) (-15 -2382 ((-915 (-574)) (-654 (-574)))) (-15 -2382 ((-915 (-574)))) (-15 -2757 ((-915 (-574)))) (-15 -1833 ((-915 (-574)) (-654 (-574)))) (-15 -1833 ((-915 (-574)) (-984)))) -((-3100 (((-654 (-963 |#1|)) (-654 (-963 |#1|)) (-654 (-1190))) 14)) (-3912 (((-654 (-963 |#1|)) (-654 (-963 |#1|)) (-654 (-1190))) 13))) -(((-929 |#1|) (-10 -7 (-15 -3912 ((-654 (-963 |#1|)) (-654 (-963 |#1|)) (-654 (-1190)))) (-15 -3100 ((-654 (-963 |#1|)) (-654 (-963 |#1|)) (-654 (-1190))))) (-462)) (T -929)) -((-3100 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-963 *4))) (-5 *3 (-654 (-1190))) (-4 *4 (-462)) (-5 *1 (-929 *4)))) (-3912 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-963 *4))) (-5 *3 (-654 (-1190))) (-4 *4 (-462)) (-5 *1 (-929 *4))))) -(-10 -7 (-15 -3912 ((-654 (-963 |#1|)) (-654 (-963 |#1|)) (-654 (-1190)))) (-15 -3100 ((-654 (-963 |#1|)) (-654 (-963 |#1|)) (-654 (-1190))))) -((-2943 (((-324 |#1|) (-487)) 16))) -(((-930 |#1|) (-10 -7 (-15 -2943 ((-324 |#1|) (-487)))) (-566)) (T -930)) -((-2943 (*1 *2 *3) (-12 (-5 *3 (-487)) (-5 *2 (-324 *4)) (-5 *1 (-930 *4)) (-4 *4 (-566))))) -(-10 -7 (-15 -2943 ((-324 |#1|) (-487)))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-1575 (($ $) 46)) (-2085 (((-112) $) 44)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-3434 (((-3 $ "failed") $) 37)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) 57)) (-3199 (((-112) $) 35)) (-2832 (($ $ $) 52) (($ (-654 $)) 51)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2873 (($ $ $) 54) (($ (-654 $)) 53)) (-2838 (((-3 $ "failed") $ $) 48)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2069 (((-112) $ $) 45)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) -(((-931) (-141)) (T -931)) -((-1665 (*1 *2 *3) (-12 (-4 *1 (-931)) (-5 *2 (-2 (|:| -1858 (-654 *1)) (|:| -2970 *1))) (-5 *3 (-654 *1)))) (-3471 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-654 *1)) (-4 *1 (-931))))) -(-13 (-462) (-10 -8 (-15 -1665 ((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $))) (-15 -3471 ((-3 (-654 $) "failed") (-654 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-1064 $) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T)) -((-2849 (((-112) $ $) NIL)) (-3426 (($) NIL T CONST)) (-3434 (((-3 $ "failed") $) NIL)) (-3199 (((-112) $) NIL)) (-3659 (($ $ $) NIL)) (-4257 (($ $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2873 (($ $ $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2145 (($) NIL T CONST)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-932)) NIL)) (* (($ (-932) $) NIL) (($ $ $) NIL))) -(((-932) (-13 (-804) (-736) (-10 -8 (-15 -2873 ($ $ $)) (-6 (-4458 "*"))))) (T -932)) -((-2873 (*1 *1 *1 *1) (-5 *1 (-932)))) -(-13 (-804) (-736) (-10 -8 (-15 -2873 ($ $ $)) (-6 (-4458 "*")))) +((-3534 (((-700 (-1238)) $ (-1238)) NIL)) (-4340 (((-700 (-558)) $ (-558)) NIL)) (-1960 (((-780) $ (-129)) NIL)) (-2034 (((-700 (-130)) $ (-130)) 22)) (-4294 (($ (-397)) 12) (($ (-1171)) 14)) (-3549 (((-112) $) 19)) (-2942 (((-871) $) 26)) (-1981 (($ $) 23))) +(((-870) (-13 (-869) (-622 (-871)) (-10 -8 (-15 -4294 ($ (-397))) (-15 -4294 ($ (-1171))) (-15 -3549 ((-112) $))))) (T -870)) +((-4294 (*1 *1 *2) (-12 (-5 *2 (-397)) (-5 *1 (-870)))) (-4294 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-870)))) (-3549 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-870))))) +(-13 (-869) (-622 (-871)) (-10 -8 (-15 -4294 ($ (-397))) (-15 -4294 ($ (-1171))) (-15 -3549 ((-112) $)))) +((-2848 (((-112) $ $) NIL) (($ $ $) 85)) (-2979 (($ $ $) 125)) (-3013 (((-573) $) 31) (((-573)) 36)) (-2561 (($ (-573)) 53)) (-1793 (($ $ $) 54) (($ (-653 $)) 84)) (-2241 (($ $ (-653 $)) 82)) (-3866 (((-573) $) 34)) (-3650 (($ $ $) 73)) (-3559 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-2316 (((-573) $) 33)) (-3539 (($ $ $) 72)) (-3248 (($ $) 114)) (-4400 (($ $ $) 129)) (-2355 (($ (-653 $)) 61)) (-4146 (($ $ (-653 $)) 79)) (-3776 (($ (-573) (-573)) 55)) (-1504 (($ $) 126) (($ $ $) 127)) (-3903 (($ $ (-573)) 43) (($ $) 46)) (-2784 (($ $ $) 97)) (-2719 (($ $ $) 132)) (-1889 (($ $) 115)) (-2796 (($ $ $) 98)) (-1772 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-1794 (((-1285) $) 10)) (-4383 (($ $) 118) (($ $ (-780)) 122)) (-2045 (($ $ $) 75)) (-3763 (($ $ $) 74)) (-4214 (($ $ (-653 $)) 110)) (-4222 (($ $ $) 113)) (-4408 (($ (-653 $)) 59)) (-2449 (($ $) 70) (($ (-653 $)) 71)) (-3029 (($ $ $) 123)) (-2709 (($ $) 116)) (-3075 (($ $ $) 128)) (-3471 (($ (-573)) 21) (($ (-1189)) 23) (($ (-1171)) 30) (($ (-227)) 25)) (-2097 (($ $ $) 101)) (-2075 (($ $) 102)) (-4221 (((-1285) (-1171)) 15)) (-2168 (($ (-1171)) 14)) (-2913 (($ (-653 (-653 $))) 58)) (-3890 (($ $ (-573)) 42) (($ $) 45)) (-3180 (((-1171) $) NIL)) (-1897 (($ $ $) 131)) (-3090 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-3799 (((-112) $) 108)) (-3174 (($ $ (-653 $)) 111) (($ $ $ $) 112)) (-2926 (($ (-573)) 39)) (-1839 (((-573) $) 32) (((-573)) 35)) (-2917 (($ $ $) 40) (($ (-653 $)) 83)) (-3965 (((-1132) $) NIL)) (-2837 (($ $ $) 99)) (-3508 (($) 13)) (-2198 (($ $ (-653 $)) 109)) (-1578 (((-1171) (-1171)) 8)) (-2658 (($ $) 117) (($ $ (-780)) 121)) (-2823 (($ $ $) 96)) (-3904 (($ $ (-780)) 139)) (-3107 (($ (-653 $)) 60)) (-2942 (((-871) $) 19)) (-3358 (($ $ (-573)) 41) (($ $) 44)) (-1505 (($ $) 68) (($ (-653 $)) 69)) (-4280 (($ $) 66) (($ (-653 $)) 67)) (-2029 (($ $) 124)) (-4000 (($ (-653 $)) 65)) (-1677 (($ $ $) 105)) (-3507 (((-112) $ $) NIL)) (-2435 (($ $ $) 130)) (-2086 (($ $ $) 100)) (-4277 (($ $ $) 103) (($ $) 104)) (-3040 (($ $ $) 89)) (-3015 (($ $ $) 87)) (-2981 (((-112) $ $) 16) (($ $ $) 17)) (-3027 (($ $ $) 88)) (-3005 (($ $ $) 86)) (-3103 (($ $ $) 94)) (-3093 (($ $ $) 91) (($ $) 92)) (-3077 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93))) +(((-871) (-13 (-1112) (-10 -8 (-15 -1794 ((-1285) $)) (-15 -2168 ($ (-1171))) (-15 -4221 ((-1285) (-1171))) (-15 -3471 ($ (-573))) (-15 -3471 ($ (-1189))) (-15 -3471 ($ (-1171))) (-15 -3471 ($ (-227))) (-15 -3508 ($)) (-15 -1578 ((-1171) (-1171))) (-15 -3013 ((-573) $)) (-15 -1839 ((-573) $)) (-15 -3013 ((-573))) (-15 -1839 ((-573))) (-15 -2316 ((-573) $)) (-15 -3866 ((-573) $)) (-15 -2926 ($ (-573))) (-15 -2561 ($ (-573))) (-15 -3776 ($ (-573) (-573))) (-15 -3890 ($ $ (-573))) (-15 -3903 ($ $ (-573))) (-15 -3358 ($ $ (-573))) (-15 -3890 ($ $)) (-15 -3903 ($ $)) (-15 -3358 ($ $)) (-15 -2917 ($ $ $)) (-15 -1793 ($ $ $)) (-15 -2917 ($ (-653 $))) (-15 -1793 ($ (-653 $))) (-15 -4214 ($ $ (-653 $))) (-15 -3174 ($ $ (-653 $))) (-15 -3174 ($ $ $ $)) (-15 -4222 ($ $ $)) (-15 -3799 ((-112) $)) (-15 -2198 ($ $ (-653 $))) (-15 -3248 ($ $)) (-15 -1897 ($ $ $)) (-15 -2029 ($ $)) (-15 -2913 ($ (-653 (-653 $)))) (-15 -2979 ($ $ $)) (-15 -1504 ($ $)) (-15 -1504 ($ $ $)) (-15 -3075 ($ $ $)) (-15 -4400 ($ $ $)) (-15 -2435 ($ $ $)) (-15 -2719 ($ $ $)) (-15 -3904 ($ $ (-780))) (-15 -1677 ($ $ $)) (-15 -3539 ($ $ $)) (-15 -3650 ($ $ $)) (-15 -3763 ($ $ $)) (-15 -2045 ($ $ $)) (-15 -4146 ($ $ (-653 $))) (-15 -2241 ($ $ (-653 $))) (-15 -1889 ($ $)) (-15 -2658 ($ $)) (-15 -2658 ($ $ (-780))) (-15 -4383 ($ $)) (-15 -4383 ($ $ (-780))) (-15 -2709 ($ $)) (-15 -3029 ($ $ $)) (-15 -3559 ($ $)) (-15 -3559 ($ $ $)) (-15 -3559 ($ $ $ $)) (-15 -1772 ($ $)) (-15 -1772 ($ $ $)) (-15 -1772 ($ $ $ $)) (-15 -3090 ($ $)) (-15 -3090 ($ $ $)) (-15 -3090 ($ $ $ $)) (-15 -4280 ($ $)) (-15 -4280 ($ (-653 $))) (-15 -1505 ($ $)) (-15 -1505 ($ (-653 $))) (-15 -2449 ($ $)) (-15 -2449 ($ (-653 $))) (-15 -4408 ($ (-653 $))) (-15 -3107 ($ (-653 $))) (-15 -2355 ($ (-653 $))) (-15 -4000 ($ (-653 $))) (-15 -2981 ($ $ $)) (-15 -2848 ($ $ $)) (-15 -3005 ($ $ $)) (-15 -3015 ($ $ $)) (-15 -3027 ($ $ $)) (-15 -3040 ($ $ $)) (-15 -3077 ($ $ $)) (-15 -3093 ($ $ $)) (-15 -3093 ($ $)) (-15 * ($ $ $)) (-15 -3103 ($ $ $)) (-15 ** ($ $ $)) (-15 -2823 ($ $ $)) (-15 -2784 ($ $ $)) (-15 -2796 ($ $ $)) (-15 -2837 ($ $ $)) (-15 -2086 ($ $ $)) (-15 -2097 ($ $ $)) (-15 -2075 ($ $)) (-15 -4277 ($ $ $)) (-15 -4277 ($ $))))) (T -871)) +((-1794 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-871)))) (-2168 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-871)))) (-4221 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-871)))) (-3471 (*1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) (-3471 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-871)))) (-3471 (*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-871)))) (-3471 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-871)))) (-3508 (*1 *1) (-5 *1 (-871))) (-1578 (*1 *2 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-871)))) (-3013 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) (-1839 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) (-3013 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) (-1839 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) (-2316 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) (-3866 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) (-2926 (*1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) (-2561 (*1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) (-3776 (*1 *1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) (-3890 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) (-3903 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) (-3358 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) (-3890 (*1 *1 *1) (-5 *1 (-871))) (-3903 (*1 *1 *1) (-5 *1 (-871))) (-3358 (*1 *1 *1) (-5 *1 (-871))) (-2917 (*1 *1 *1 *1) (-5 *1 (-871))) (-1793 (*1 *1 *1 *1) (-5 *1 (-871))) (-2917 (*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) (-1793 (*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) (-4214 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) (-3174 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) (-3174 (*1 *1 *1 *1 *1) (-5 *1 (-871))) (-4222 (*1 *1 *1 *1) (-5 *1 (-871))) (-3799 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-871)))) (-2198 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) (-3248 (*1 *1 *1) (-5 *1 (-871))) (-1897 (*1 *1 *1 *1) (-5 *1 (-871))) (-2029 (*1 *1 *1) (-5 *1 (-871))) (-2913 (*1 *1 *2) (-12 (-5 *2 (-653 (-653 (-871)))) (-5 *1 (-871)))) (-2979 (*1 *1 *1 *1) (-5 *1 (-871))) (-1504 (*1 *1 *1) (-5 *1 (-871))) (-1504 (*1 *1 *1 *1) (-5 *1 (-871))) (-3075 (*1 *1 *1 *1) (-5 *1 (-871))) (-4400 (*1 *1 *1 *1) (-5 *1 (-871))) (-2435 (*1 *1 *1 *1) (-5 *1 (-871))) (-2719 (*1 *1 *1 *1) (-5 *1 (-871))) (-3904 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-871)))) (-1677 (*1 *1 *1 *1) (-5 *1 (-871))) (-3539 (*1 *1 *1 *1) (-5 *1 (-871))) (-3650 (*1 *1 *1 *1) (-5 *1 (-871))) (-3763 (*1 *1 *1 *1) (-5 *1 (-871))) (-2045 (*1 *1 *1 *1) (-5 *1 (-871))) (-4146 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) (-2241 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) (-1889 (*1 *1 *1) (-5 *1 (-871))) (-2658 (*1 *1 *1) (-5 *1 (-871))) (-2658 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-871)))) (-4383 (*1 *1 *1) (-5 *1 (-871))) (-4383 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-871)))) (-2709 (*1 *1 *1) (-5 *1 (-871))) (-3029 (*1 *1 *1 *1) (-5 *1 (-871))) (-3559 (*1 *1 *1) (-5 *1 (-871))) (-3559 (*1 *1 *1 *1) (-5 *1 (-871))) (-3559 (*1 *1 *1 *1 *1) (-5 *1 (-871))) (-1772 (*1 *1 *1) (-5 *1 (-871))) (-1772 (*1 *1 *1 *1) (-5 *1 (-871))) (-1772 (*1 *1 *1 *1 *1) (-5 *1 (-871))) (-3090 (*1 *1 *1) (-5 *1 (-871))) (-3090 (*1 *1 *1 *1) (-5 *1 (-871))) (-3090 (*1 *1 *1 *1 *1) (-5 *1 (-871))) (-4280 (*1 *1 *1) (-5 *1 (-871))) (-4280 (*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) (-1505 (*1 *1 *1) (-5 *1 (-871))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) (-2449 (*1 *1 *1) (-5 *1 (-871))) (-2449 (*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) (-4408 (*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) (-3107 (*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) (-2355 (*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) (-4000 (*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) (-2981 (*1 *1 *1 *1) (-5 *1 (-871))) (-2848 (*1 *1 *1 *1) (-5 *1 (-871))) (-3005 (*1 *1 *1 *1) (-5 *1 (-871))) (-3015 (*1 *1 *1 *1) (-5 *1 (-871))) (-3027 (*1 *1 *1 *1) (-5 *1 (-871))) (-3040 (*1 *1 *1 *1) (-5 *1 (-871))) (-3077 (*1 *1 *1 *1) (-5 *1 (-871))) (-3093 (*1 *1 *1 *1) (-5 *1 (-871))) (-3093 (*1 *1 *1) (-5 *1 (-871))) (* (*1 *1 *1 *1) (-5 *1 (-871))) (-3103 (*1 *1 *1 *1) (-5 *1 (-871))) (** (*1 *1 *1 *1) (-5 *1 (-871))) (-2823 (*1 *1 *1 *1) (-5 *1 (-871))) (-2784 (*1 *1 *1 *1) (-5 *1 (-871))) (-2796 (*1 *1 *1 *1) (-5 *1 (-871))) (-2837 (*1 *1 *1 *1) (-5 *1 (-871))) (-2086 (*1 *1 *1 *1) (-5 *1 (-871))) (-2097 (*1 *1 *1 *1) (-5 *1 (-871))) (-2075 (*1 *1 *1) (-5 *1 (-871))) (-4277 (*1 *1 *1 *1) (-5 *1 (-871))) (-4277 (*1 *1 *1) (-5 *1 (-871)))) +(-13 (-1112) (-10 -8 (-15 -1794 ((-1285) $)) (-15 -2168 ($ (-1171))) (-15 -4221 ((-1285) (-1171))) (-15 -3471 ($ (-573))) (-15 -3471 ($ (-1189))) (-15 -3471 ($ (-1171))) (-15 -3471 ($ (-227))) (-15 -3508 ($)) (-15 -1578 ((-1171) (-1171))) (-15 -3013 ((-573) $)) (-15 -1839 ((-573) $)) (-15 -3013 ((-573))) (-15 -1839 ((-573))) (-15 -2316 ((-573) $)) (-15 -3866 ((-573) $)) (-15 -2926 ($ (-573))) (-15 -2561 ($ (-573))) (-15 -3776 ($ (-573) (-573))) (-15 -3890 ($ $ (-573))) (-15 -3903 ($ $ (-573))) (-15 -3358 ($ $ (-573))) (-15 -3890 ($ $)) (-15 -3903 ($ $)) (-15 -3358 ($ $)) (-15 -2917 ($ $ $)) (-15 -1793 ($ $ $)) (-15 -2917 ($ (-653 $))) (-15 -1793 ($ (-653 $))) (-15 -4214 ($ $ (-653 $))) (-15 -3174 ($ $ (-653 $))) (-15 -3174 ($ $ $ $)) (-15 -4222 ($ $ $)) (-15 -3799 ((-112) $)) (-15 -2198 ($ $ (-653 $))) (-15 -3248 ($ $)) (-15 -1897 ($ $ $)) (-15 -2029 ($ $)) (-15 -2913 ($ (-653 (-653 $)))) (-15 -2979 ($ $ $)) (-15 -1504 ($ $)) (-15 -1504 ($ $ $)) (-15 -3075 ($ $ $)) (-15 -4400 ($ $ $)) (-15 -2435 ($ $ $)) (-15 -2719 ($ $ $)) (-15 -3904 ($ $ (-780))) (-15 -1677 ($ $ $)) (-15 -3539 ($ $ $)) (-15 -3650 ($ $ $)) (-15 -3763 ($ $ $)) (-15 -2045 ($ $ $)) (-15 -4146 ($ $ (-653 $))) (-15 -2241 ($ $ (-653 $))) (-15 -1889 ($ $)) (-15 -2658 ($ $)) (-15 -2658 ($ $ (-780))) (-15 -4383 ($ $)) (-15 -4383 ($ $ (-780))) (-15 -2709 ($ $)) (-15 -3029 ($ $ $)) (-15 -3559 ($ $)) (-15 -3559 ($ $ $)) (-15 -3559 ($ $ $ $)) (-15 -1772 ($ $)) (-15 -1772 ($ $ $)) (-15 -1772 ($ $ $ $)) (-15 -3090 ($ $)) (-15 -3090 ($ $ $)) (-15 -3090 ($ $ $ $)) (-15 -4280 ($ $)) (-15 -4280 ($ (-653 $))) (-15 -1505 ($ $)) (-15 -1505 ($ (-653 $))) (-15 -2449 ($ $)) (-15 -2449 ($ (-653 $))) (-15 -4408 ($ (-653 $))) (-15 -3107 ($ (-653 $))) (-15 -2355 ($ (-653 $))) (-15 -4000 ($ (-653 $))) (-15 -2981 ($ $ $)) (-15 -2848 ($ $ $)) (-15 -3005 ($ $ $)) (-15 -3015 ($ $ $)) (-15 -3027 ($ $ $)) (-15 -3040 ($ $ $)) (-15 -3077 ($ $ $)) (-15 -3093 ($ $ $)) (-15 -3093 ($ $)) (-15 * ($ $ $)) (-15 -3103 ($ $ $)) (-15 ** ($ $ $)) (-15 -2823 ($ $ $)) (-15 -2784 ($ $ $)) (-15 -2796 ($ $ $)) (-15 -2837 ($ $ $)) (-15 -2086 ($ $ $)) (-15 -2097 ($ $ $)) (-15 -2075 ($ $)) (-15 -4277 ($ $ $)) (-15 -4277 ($ $)))) +((-2368 (((-1285) (-653 (-52))) 23)) (-3247 (((-1285) (-1171) (-871)) 13) (((-1285) (-871)) 8) (((-1285) (-1171)) 10))) +(((-872) (-10 -7 (-15 -3247 ((-1285) (-1171))) (-15 -3247 ((-1285) (-871))) (-15 -3247 ((-1285) (-1171) (-871))) (-15 -2368 ((-1285) (-653 (-52)))))) (T -872)) +((-2368 (*1 *2 *3) (-12 (-5 *3 (-653 (-52))) (-5 *2 (-1285)) (-5 *1 (-872)))) (-3247 (*1 *2 *3 *4) (-12 (-5 *3 (-1171)) (-5 *4 (-871)) (-5 *2 (-1285)) (-5 *1 (-872)))) (-3247 (*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1285)) (-5 *1 (-872)))) (-3247 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-872))))) +(-10 -7 (-15 -3247 ((-1285) (-1171))) (-15 -3247 ((-1285) (-871))) (-15 -3247 ((-1285) (-1171) (-871))) (-15 -2368 ((-1285) (-653 (-52))))) +((-2848 (((-112) $ $) NIL)) (-1487 (((-3 $ "failed") (-1189)) 36)) (-1486 (((-780)) 32)) (-2819 (($) NIL)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-3751 (($ $ $) NIL) (($) NIL T CONST)) (-3589 (((-931) $) 29)) (-3180 (((-1171) $) 43)) (-2575 (($ (-931)) 28)) (-3965 (((-1132) $) NIL)) (-1835 (((-1189) $) 13) (((-545) $) 19) (((-902 (-387)) $) 26) (((-902 (-573)) $) 22)) (-2942 (((-871) $) 16)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 40)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 38))) +(((-873 |#1|) (-13 (-853) (-623 (-1189)) (-623 (-545)) (-623 (-902 (-387))) (-623 (-902 (-573))) (-10 -8 (-15 -1487 ((-3 $ "failed") (-1189))))) (-653 (-1189))) (T -873)) +((-1487 (*1 *1 *2) (|partial| -12 (-5 *2 (-1189)) (-5 *1 (-873 *3)) (-14 *3 (-653 *2))))) +(-13 (-853) (-623 (-1189)) (-623 (-545)) (-623 (-902 (-387))) (-623 (-902 (-573))) (-10 -8 (-15 -1487 ((-3 $ "failed") (-1189))))) +((-2848 (((-112) $ $) NIL)) (-2031 (((-515) $) 9)) (-3214 (((-653 (-448)) $) 13)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 21)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 16))) +(((-874) (-13 (-1112) (-10 -8 (-15 -2031 ((-515) $)) (-15 -3214 ((-653 (-448)) $))))) (T -874)) +((-2031 (*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-874)))) (-3214 (*1 *2 *1) (-12 (-5 *2 (-653 (-448))) (-5 *1 (-874))))) +(-13 (-1112) (-10 -8 (-15 -2031 ((-515) $)) (-15 -3214 ((-653 (-448)) $)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-2232 (((-3 $ "failed") $) NIL)) (-1959 (((-112) $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ (-962 |#1|)) NIL) (((-962 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-174)))) (-1545 (((-780)) NIL T CONST)) (-4291 (((-1285) (-780)) NIL)) (-3507 (((-112) $ $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3103 (((-3 $ "failed") $ $) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-875 |#1| |#2| |#3| |#4|) (-13 (-1061) (-499 (-962 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-371)) (-15 -3103 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4291 ((-1285) (-780))))) (-1061) (-653 (-1189)) (-653 (-780)) (-780)) (T -875)) +((-3103 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-875 *2 *3 *4 *5)) (-4 *2 (-371)) (-4 *2 (-1061)) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-780))) (-14 *5 (-780)))) (-4291 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1285)) (-5 *1 (-875 *4 *5 *6 *7)) (-4 *4 (-1061)) (-14 *5 (-653 (-1189))) (-14 *6 (-653 *3)) (-14 *7 *3)))) +(-13 (-1061) (-499 (-962 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-371)) (-15 -3103 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4291 ((-1285) (-780))))) +((-3570 (((-3 (-176 |#3|) "failed") (-780) (-780) |#2| |#2|) 38)) (-4324 (((-3 (-416 |#3|) "failed") (-780) (-780) |#2| |#2|) 29))) +(((-876 |#1| |#2| |#3|) (-10 -7 (-15 -4324 ((-3 (-416 |#3|) "failed") (-780) (-780) |#2| |#2|)) (-15 -3570 ((-3 (-176 |#3|) "failed") (-780) (-780) |#2| |#2|))) (-371) (-1271 |#1|) (-1256 |#1|)) (T -876)) +((-3570 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-780)) (-4 *5 (-371)) (-5 *2 (-176 *6)) (-5 *1 (-876 *5 *4 *6)) (-4 *4 (-1271 *5)) (-4 *6 (-1256 *5)))) (-4324 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-780)) (-4 *5 (-371)) (-5 *2 (-416 *6)) (-5 *1 (-876 *5 *4 *6)) (-4 *4 (-1271 *5)) (-4 *6 (-1256 *5))))) +(-10 -7 (-15 -4324 ((-3 (-416 |#3|) "failed") (-780) (-780) |#2| |#2|)) (-15 -3570 ((-3 (-176 |#3|) "failed") (-780) (-780) |#2| |#2|))) +((-4324 (((-3 (-416 (-1253 |#2| |#1|)) "failed") (-780) (-780) (-1272 |#1| |#2| |#3|)) 30) (((-3 (-416 (-1253 |#2| |#1|)) "failed") (-780) (-780) (-1272 |#1| |#2| |#3|) (-1272 |#1| |#2| |#3|)) 28))) +(((-877 |#1| |#2| |#3|) (-10 -7 (-15 -4324 ((-3 (-416 (-1253 |#2| |#1|)) "failed") (-780) (-780) (-1272 |#1| |#2| |#3|) (-1272 |#1| |#2| |#3|))) (-15 -4324 ((-3 (-416 (-1253 |#2| |#1|)) "failed") (-780) (-780) (-1272 |#1| |#2| |#3|)))) (-371) (-1189) |#1|) (T -877)) +((-4324 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-780)) (-5 *4 (-1272 *5 *6 *7)) (-4 *5 (-371)) (-14 *6 (-1189)) (-14 *7 *5) (-5 *2 (-416 (-1253 *6 *5))) (-5 *1 (-877 *5 *6 *7)))) (-4324 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-780)) (-5 *4 (-1272 *5 *6 *7)) (-4 *5 (-371)) (-14 *6 (-1189)) (-14 *7 *5) (-5 *2 (-416 (-1253 *6 *5))) (-5 *1 (-877 *5 *6 *7))))) +(-10 -7 (-15 -4324 ((-3 (-416 (-1253 |#2| |#1|)) "failed") (-780) (-780) (-1272 |#1| |#2| |#3|) (-1272 |#1| |#2| |#3|))) (-15 -4324 ((-3 (-416 (-1253 |#2| |#1|)) "failed") (-780) (-780) (-1272 |#1| |#2| |#3|)))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-2983 (((-3 $ "failed") $ $) 20)) (-4228 (($ $ (-573)) 68)) (-2800 (((-112) $ $) 65)) (-2579 (($) 18 T CONST)) (-1504 (($ (-1185 (-573)) (-573)) 67)) (-2784 (($ $ $) 61)) (-2232 (((-3 $ "failed") $) 37)) (-1970 (($ $) 70)) (-2796 (($ $ $) 62)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 57)) (-2534 (((-780) $) 75)) (-1959 (((-112) $) 35)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 58)) (-3621 (((-573)) 72)) (-4054 (((-573) $) 71)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2212 (($ $ (-573)) 74)) (-2837 (((-3 $ "failed") $ $) 48)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 56)) (-2163 (((-780) $) 64)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 63)) (-3006 (((-1169 (-573)) $) 76)) (-4101 (($ $) 73)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-3550 (((-573) $ (-573)) 69)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) +(((-878 |#1|) (-141) (-573)) (T -878)) +((-3006 (*1 *2 *1) (-12 (-4 *1 (-878 *3)) (-5 *2 (-1169 (-573))))) (-2534 (*1 *2 *1) (-12 (-4 *1 (-878 *3)) (-5 *2 (-780)))) (-2212 (*1 *1 *1 *2) (-12 (-4 *1 (-878 *3)) (-5 *2 (-573)))) (-4101 (*1 *1 *1) (-4 *1 (-878 *2))) (-3621 (*1 *2) (-12 (-4 *1 (-878 *3)) (-5 *2 (-573)))) (-4054 (*1 *2 *1) (-12 (-4 *1 (-878 *3)) (-5 *2 (-573)))) (-1970 (*1 *1 *1) (-4 *1 (-878 *2))) (-3550 (*1 *2 *1 *2) (-12 (-4 *1 (-878 *3)) (-5 *2 (-573)))) (-4228 (*1 *1 *1 *2) (-12 (-4 *1 (-878 *3)) (-5 *2 (-573)))) (-1504 (*1 *1 *2 *3) (-12 (-5 *2 (-1185 (-573))) (-5 *3 (-573)) (-4 *1 (-878 *4))))) +(-13 (-314) (-148) (-10 -8 (-15 -3006 ((-1169 (-573)) $)) (-15 -2534 ((-780) $)) (-15 -2212 ($ $ (-573))) (-15 -4101 ($ $)) (-15 -3621 ((-573))) (-15 -4054 ((-573) $)) (-15 -1970 ($ $)) (-15 -3550 ((-573) $ (-573))) (-15 -4228 ($ $ (-573))) (-15 -1504 ($ (-1185 (-573)) (-573))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-297) . T) ((-314) . T) ((-461) . T) ((-565) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-649 $) . T) ((-726 $) . T) ((-735) . T) ((-930) . T) ((-1063 $) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4228 (($ $ (-573)) NIL)) (-2800 (((-112) $ $) NIL)) (-2579 (($) NIL T CONST)) (-1504 (($ (-1185 (-573)) (-573)) NIL)) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-1970 (($ $) NIL)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2534 (((-780) $) NIL)) (-1959 (((-112) $) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3621 (((-573)) NIL)) (-4054 (((-573) $) NIL)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2212 (($ $ (-573)) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3006 (((-1169 (-573)) $) NIL)) (-4101 (($ $) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-3550 (((-573) $ (-573)) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL))) +(((-879 |#1|) (-878 |#1|) (-573)) (T -879)) +NIL +(-878 |#1|) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3770 (((-879 |#1|) $) NIL (|has| (-879 |#1|) (-314)))) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-879 |#1|) (-919)))) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| (-879 |#1|) (-919)))) (-2800 (((-112) $ $) NIL)) (-1983 (((-573) $) NIL (|has| (-879 |#1|) (-829)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-879 |#1|) "failed") $) NIL) (((-3 (-1189) "failed") $) NIL (|has| (-879 |#1|) (-1050 (-1189)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| (-879 |#1|) (-1050 (-573)))) (((-3 (-573) "failed") $) NIL (|has| (-879 |#1|) (-1050 (-573))))) (-2205 (((-879 |#1|) $) NIL) (((-1189) $) NIL (|has| (-879 |#1|) (-1050 (-1189)))) (((-416 (-573)) $) NIL (|has| (-879 |#1|) (-1050 (-573)))) (((-573) $) NIL (|has| (-879 |#1|) (-1050 (-573))))) (-2230 (($ $) NIL) (($ (-573) $) NIL)) (-2784 (($ $ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| (-879 |#1|) (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| (-879 |#1|) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| (-879 |#1|) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-879 |#1|))) (|:| |vec| (-1280 (-879 |#1|)))) (-698 $) (-1280 $)) NIL) (((-698 (-879 |#1|)) (-698 $)) NIL) (((-698 (-879 |#1|)) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) NIL (|has| (-879 |#1|) (-554)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-4152 (((-112) $) NIL (|has| (-879 |#1|) (-829)))) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (|has| (-879 |#1|) (-896 (-573)))) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (|has| (-879 |#1|) (-896 (-387))))) (-1959 (((-112) $) NIL)) (-3041 (($ $) NIL)) (-2965 (((-879 |#1|) $) NIL)) (-1470 (((-3 $ "failed") $) NIL (|has| (-879 |#1|) (-1164)))) (-3339 (((-112) $) NIL (|has| (-879 |#1|) (-829)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3659 (($ $ $) NIL (|has| (-879 |#1|) (-859)))) (-3751 (($ $ $) NIL (|has| (-879 |#1|) (-859)))) (-1776 (($ (-1 (-879 |#1|) (-879 |#1|)) $) NIL)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| (-879 |#1|) (-1164)) CONST)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-2408 (($ $) NIL (|has| (-879 |#1|) (-314)))) (-3733 (((-879 |#1|) $) NIL (|has| (-879 |#1|) (-554)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-879 |#1|) (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-879 |#1|) (-919)))) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2645 (($ $ (-653 (-879 |#1|)) (-653 (-879 |#1|))) NIL (|has| (-879 |#1|) (-316 (-879 |#1|)))) (($ $ (-879 |#1|) (-879 |#1|)) NIL (|has| (-879 |#1|) (-316 (-879 |#1|)))) (($ $ (-301 (-879 |#1|))) NIL (|has| (-879 |#1|) (-316 (-879 |#1|)))) (($ $ (-653 (-301 (-879 |#1|)))) NIL (|has| (-879 |#1|) (-316 (-879 |#1|)))) (($ $ (-653 (-1189)) (-653 (-879 |#1|))) NIL (|has| (-879 |#1|) (-523 (-1189) (-879 |#1|)))) (($ $ (-1189) (-879 |#1|)) NIL (|has| (-879 |#1|) (-523 (-1189) (-879 |#1|))))) (-2163 (((-780) $) NIL)) (-2198 (($ $ (-879 |#1|)) NIL (|has| (-879 |#1|) (-293 (-879 |#1|) (-879 |#1|))))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3904 (($ $ (-780)) NIL (|has| (-879 |#1|) (-238))) (($ $) NIL (|has| (-879 |#1|) (-238))) (($ $ (-1189)) NIL (|has| (-879 |#1|) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-879 |#1|) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-879 |#1|) (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-879 |#1|) (-910 (-1189)))) (($ $ (-1 (-879 |#1|) (-879 |#1|)) (-780)) NIL) (($ $ (-1 (-879 |#1|) (-879 |#1|))) NIL)) (-2662 (($ $) NIL)) (-2975 (((-879 |#1|) $) NIL)) (-1835 (((-902 (-573)) $) NIL (|has| (-879 |#1|) (-623 (-902 (-573))))) (((-902 (-387)) $) NIL (|has| (-879 |#1|) (-623 (-902 (-387))))) (((-545) $) NIL (|has| (-879 |#1|) (-623 (-545)))) (((-387) $) NIL (|has| (-879 |#1|) (-1034))) (((-227) $) NIL (|has| (-879 |#1|) (-1034)))) (-1468 (((-176 (-416 (-573))) $) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| (-879 |#1|) (-919))))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL) (($ (-879 |#1|)) NIL) (($ (-1189)) NIL (|has| (-879 |#1|) (-1050 (-1189))))) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| (-879 |#1|) (-919))) (|has| (-879 |#1|) (-146))))) (-1545 (((-780)) NIL T CONST)) (-2437 (((-879 |#1|) $) NIL (|has| (-879 |#1|) (-554)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-3550 (((-416 (-573)) $ (-573)) NIL)) (-1660 (($ $) NIL (|has| (-879 |#1|) (-829)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-780)) NIL (|has| (-879 |#1|) (-238))) (($ $) NIL (|has| (-879 |#1|) (-238))) (($ $ (-1189)) NIL (|has| (-879 |#1|) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-879 |#1|) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-879 |#1|) (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-879 |#1|) (-910 (-1189)))) (($ $ (-1 (-879 |#1|) (-879 |#1|)) (-780)) NIL) (($ $ (-1 (-879 |#1|) (-879 |#1|))) NIL)) (-3040 (((-112) $ $) NIL (|has| (-879 |#1|) (-859)))) (-3015 (((-112) $ $) NIL (|has| (-879 |#1|) (-859)))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (|has| (-879 |#1|) (-859)))) (-3005 (((-112) $ $) NIL (|has| (-879 |#1|) (-859)))) (-3103 (($ $ $) NIL) (($ (-879 |#1|) (-879 |#1|)) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ (-879 |#1|) $) NIL) (($ $ (-879 |#1|)) NIL))) +(((-880 |#1|) (-13 (-1004 (-879 |#1|)) (-10 -8 (-15 -3550 ((-416 (-573)) $ (-573))) (-15 -1468 ((-176 (-416 (-573))) $)) (-15 -2230 ($ $)) (-15 -2230 ($ (-573) $)))) (-573)) (T -880)) +((-3550 (*1 *2 *1 *3) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-880 *4)) (-14 *4 *3) (-5 *3 (-573)))) (-1468 (*1 *2 *1) (-12 (-5 *2 (-176 (-416 (-573)))) (-5 *1 (-880 *3)) (-14 *3 (-573)))) (-2230 (*1 *1 *1) (-12 (-5 *1 (-880 *2)) (-14 *2 (-573)))) (-2230 (*1 *1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-880 *3)) (-14 *3 *2)))) +(-13 (-1004 (-879 |#1|)) (-10 -8 (-15 -3550 ((-416 (-573)) $ (-573))) (-15 -1468 ((-176 (-416 (-573))) $)) (-15 -2230 ($ $)) (-15 -2230 ($ (-573) $)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3770 ((|#2| $) NIL (|has| |#2| (-314)))) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-2800 (((-112) $ $) NIL)) (-1983 (((-573) $) NIL (|has| |#2| (-829)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) NIL) (((-3 (-1189) "failed") $) NIL (|has| |#2| (-1050 (-1189)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#2| (-1050 (-573)))) (((-3 (-573) "failed") $) NIL (|has| |#2| (-1050 (-573))))) (-2205 ((|#2| $) NIL) (((-1189) $) NIL (|has| |#2| (-1050 (-1189)))) (((-416 (-573)) $) NIL (|has| |#2| (-1050 (-573)))) (((-573) $) NIL (|has| |#2| (-1050 (-573))))) (-2230 (($ $) 35) (($ (-573) $) 38)) (-2784 (($ $ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) NIL) (((-698 |#2|) (-698 $)) NIL) (((-698 |#2|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) 64)) (-2819 (($) NIL (|has| |#2| (-554)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-4152 (((-112) $) NIL (|has| |#2| (-829)))) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (|has| |#2| (-896 (-573)))) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (|has| |#2| (-896 (-387))))) (-1959 (((-112) $) NIL)) (-3041 (($ $) NIL)) (-2965 ((|#2| $) NIL)) (-1470 (((-3 $ "failed") $) NIL (|has| |#2| (-1164)))) (-3339 (((-112) $) NIL (|has| |#2| (-829)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3659 (($ $ $) NIL (|has| |#2| (-859)))) (-3751 (($ $ $) NIL (|has| |#2| (-859)))) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 60)) (-3816 (($) NIL (|has| |#2| (-1164)) CONST)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-2408 (($ $) NIL (|has| |#2| (-314)))) (-3733 ((|#2| $) NIL (|has| |#2| (-554)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2645 (($ $ (-653 |#2|) (-653 |#2|)) NIL (|has| |#2| (-316 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-316 |#2|))) (($ $ (-301 |#2|)) NIL (|has| |#2| (-316 |#2|))) (($ $ (-653 (-301 |#2|))) NIL (|has| |#2| (-316 |#2|))) (($ $ (-653 (-1189)) (-653 |#2|)) NIL (|has| |#2| (-523 (-1189) |#2|))) (($ $ (-1189) |#2|) NIL (|has| |#2| (-523 (-1189) |#2|)))) (-2163 (((-780) $) NIL)) (-2198 (($ $ |#2|) NIL (|has| |#2| (-293 |#2| |#2|)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3904 (($ $ (-780)) NIL (|has| |#2| (-238))) (($ $) NIL (|has| |#2| (-238))) (($ $ (-1189)) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2662 (($ $) NIL)) (-2975 ((|#2| $) NIL)) (-1835 (((-902 (-573)) $) NIL (|has| |#2| (-623 (-902 (-573))))) (((-902 (-387)) $) NIL (|has| |#2| (-623 (-902 (-387))))) (((-545) $) NIL (|has| |#2| (-623 (-545)))) (((-387) $) NIL (|has| |#2| (-1034))) (((-227) $) NIL (|has| |#2| (-1034)))) (-1468 (((-176 (-416 (-573))) $) 78)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-919))))) (-2942 (((-871) $) 106) (($ (-573)) 20) (($ $) NIL) (($ (-416 (-573))) 25) (($ |#2|) 19) (($ (-1189)) NIL (|has| |#2| (-1050 (-1189))))) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#2| (-919))) (|has| |#2| (-146))))) (-1545 (((-780)) NIL T CONST)) (-2437 ((|#2| $) NIL (|has| |#2| (-554)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-3550 (((-416 (-573)) $ (-573)) 71)) (-1660 (($ $) NIL (|has| |#2| (-829)))) (-2132 (($) 15 T CONST)) (-2144 (($) 17 T CONST)) (-3609 (($ $ (-780)) NIL (|has| |#2| (-238))) (($ $) NIL (|has| |#2| (-238))) (($ $ (-1189)) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3040 (((-112) $ $) NIL (|has| |#2| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#2| (-859)))) (-2981 (((-112) $ $) 46)) (-3027 (((-112) $ $) NIL (|has| |#2| (-859)))) (-3005 (((-112) $ $) NIL (|has| |#2| (-859)))) (-3103 (($ $ $) 24) (($ |#2| |#2|) 65)) (-3093 (($ $) 50) (($ $ $) 52)) (-3077 (($ $ $) 48)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) 61)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 53) (($ $ $) 55) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL))) +(((-881 |#1| |#2|) (-13 (-1004 |#2|) (-10 -8 (-15 -3550 ((-416 (-573)) $ (-573))) (-15 -1468 ((-176 (-416 (-573))) $)) (-15 -2230 ($ $)) (-15 -2230 ($ (-573) $)))) (-573) (-878 |#1|)) (T -881)) +((-3550 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-416 (-573))) (-5 *1 (-881 *4 *5)) (-5 *3 (-573)) (-4 *5 (-878 *4)))) (-1468 (*1 *2 *1) (-12 (-14 *3 (-573)) (-5 *2 (-176 (-416 (-573)))) (-5 *1 (-881 *3 *4)) (-4 *4 (-878 *3)))) (-2230 (*1 *1 *1) (-12 (-14 *2 (-573)) (-5 *1 (-881 *2 *3)) (-4 *3 (-878 *2)))) (-2230 (*1 *1 *2 *1) (-12 (-5 *2 (-573)) (-14 *3 *2) (-5 *1 (-881 *3 *4)) (-4 *4 (-878 *3))))) +(-13 (-1004 |#2|) (-10 -8 (-15 -3550 ((-416 (-573)) $ (-573))) (-15 -1468 ((-176 (-416 (-573))) $)) (-15 -2230 ($ $)) (-15 -2230 ($ (-573) $)))) +((-2848 (((-112) $ $) NIL (-12 (|has| |#1| (-1112)) (|has| |#2| (-1112))))) (-2392 ((|#2| $) 12)) (-2608 (($ |#1| |#2|) 9)) (-3180 (((-1171) $) NIL (-12 (|has| |#1| (-1112)) (|has| |#2| (-1112))))) (-3965 (((-1132) $) NIL (-12 (|has| |#1| (-1112)) (|has| |#2| (-1112))))) (-2914 ((|#1| $) 11)) (-2955 (($ |#1| |#2|) 10)) (-2942 (((-871) $) 18 (-2817 (-12 (|has| |#1| (-622 (-871))) (|has| |#2| (-622 (-871)))) (-12 (|has| |#1| (-1112)) (|has| |#2| (-1112)))))) (-3507 (((-112) $ $) NIL (-12 (|has| |#1| (-1112)) (|has| |#2| (-1112))))) (-2981 (((-112) $ $) 23 (-12 (|has| |#1| (-1112)) (|has| |#2| (-1112)))))) +(((-882 |#1| |#2|) (-13 (-1230) (-10 -8 (IF (|has| |#1| (-622 (-871))) (IF (|has| |#2| (-622 (-871))) (-6 (-622 (-871))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1112)) (IF (|has| |#2| (-1112)) (-6 (-1112)) |%noBranch|) |%noBranch|) (-15 -2608 ($ |#1| |#2|)) (-15 -2955 ($ |#1| |#2|)) (-15 -2914 (|#1| $)) (-15 -2392 (|#2| $)))) (-1230) (-1230)) (T -882)) +((-2608 (*1 *1 *2 *3) (-12 (-5 *1 (-882 *2 *3)) (-4 *2 (-1230)) (-4 *3 (-1230)))) (-2955 (*1 *1 *2 *3) (-12 (-5 *1 (-882 *2 *3)) (-4 *2 (-1230)) (-4 *3 (-1230)))) (-2914 (*1 *2 *1) (-12 (-4 *2 (-1230)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1230)))) (-2392 (*1 *2 *1) (-12 (-4 *2 (-1230)) (-5 *1 (-882 *3 *2)) (-4 *3 (-1230))))) +(-13 (-1230) (-10 -8 (IF (|has| |#1| (-622 (-871))) (IF (|has| |#2| (-622 (-871))) (-6 (-622 (-871))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1112)) (IF (|has| |#2| (-1112)) (-6 (-1112)) |%noBranch|) |%noBranch|) (-15 -2608 ($ |#1| |#2|)) (-15 -2955 ($ |#1| |#2|)) (-15 -2914 (|#1| $)) (-15 -2392 (|#2| $)))) +((-2848 (((-112) $ $) NIL)) (-2451 (((-573) $) 16)) (-3493 (($ (-158)) 13)) (-1858 (($ (-158)) 14)) (-3180 (((-1171) $) NIL)) (-2065 (((-158) $) 15)) (-3965 (((-1132) $) NIL)) (-4131 (($ (-158)) 11)) (-4382 (($ (-158)) 10)) (-2942 (((-871) $) 24) (($ (-158)) 17)) (-2619 (($ (-158)) 12)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-883) (-13 (-1112) (-10 -8 (-15 -4382 ($ (-158))) (-15 -4131 ($ (-158))) (-15 -2619 ($ (-158))) (-15 -3493 ($ (-158))) (-15 -1858 ($ (-158))) (-15 -2065 ((-158) $)) (-15 -2451 ((-573) $)) (-15 -2942 ($ (-158)))))) (T -883)) +((-4382 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-883)))) (-4131 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-883)))) (-2619 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-883)))) (-3493 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-883)))) (-1858 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-883)))) (-2065 (*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-883)))) (-2451 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-883)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-883))))) +(-13 (-1112) (-10 -8 (-15 -4382 ($ (-158))) (-15 -4131 ($ (-158))) (-15 -2619 ($ (-158))) (-15 -3493 ($ (-158))) (-15 -1858 ($ (-158))) (-15 -2065 ((-158) $)) (-15 -2451 ((-573) $)) (-15 -2942 ($ (-158))))) +((-2942 (((-323 (-573)) (-416 (-962 (-48)))) 23) (((-323 (-573)) (-962 (-48))) 18))) +(((-884) (-10 -7 (-15 -2942 ((-323 (-573)) (-962 (-48)))) (-15 -2942 ((-323 (-573)) (-416 (-962 (-48))))))) (T -884)) +((-2942 (*1 *2 *3) (-12 (-5 *3 (-416 (-962 (-48)))) (-5 *2 (-323 (-573))) (-5 *1 (-884)))) (-2942 (*1 *2 *3) (-12 (-5 *3 (-962 (-48))) (-5 *2 (-323 (-573))) (-5 *1 (-884))))) +(-10 -7 (-15 -2942 ((-323 (-573)) (-962 (-48)))) (-15 -2942 ((-323 (-573)) (-416 (-962 (-48)))))) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 18) (($ (-1194)) NIL) (((-1194) $) NIL)) (-2121 (((-112) $ (|[\|\|]| (-515))) 9) (((-112) $ (|[\|\|]| (-1171))) 13)) (-3507 (((-112) $ $) NIL)) (-1331 (((-515) $) 10) (((-1171) $) 14)) (-2981 (((-112) $ $) 15))) +(((-885) (-13 (-1095) (-1275) (-10 -8 (-15 -2121 ((-112) $ (|[\|\|]| (-515)))) (-15 -1331 ((-515) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-1171)))) (-15 -1331 ((-1171) $))))) (T -885)) +((-2121 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)) (-5 *1 (-885)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-885)))) (-2121 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1171))) (-5 *2 (-112)) (-5 *1 (-885)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-885))))) +(-13 (-1095) (-1275) (-10 -8 (-15 -2121 ((-112) $ (|[\|\|]| (-515)))) (-15 -1331 ((-515) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-1171)))) (-15 -1331 ((-1171) $)))) +((-1776 (((-887 |#2|) (-1 |#2| |#1|) (-887 |#1|)) 15))) +(((-886 |#1| |#2|) (-10 -7 (-15 -1776 ((-887 |#2|) (-1 |#2| |#1|) (-887 |#1|)))) (-1230) (-1230)) (T -886)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-887 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-887 *6)) (-5 *1 (-886 *5 *6))))) +(-10 -7 (-15 -1776 ((-887 |#2|) (-1 |#2| |#1|) (-887 |#1|)))) +((-2195 (($ |#1| |#1|) 8)) (-3170 ((|#1| $ (-780)) 15))) +(((-887 |#1|) (-10 -8 (-15 -2195 ($ |#1| |#1|)) (-15 -3170 (|#1| $ (-780)))) (-1230)) (T -887)) +((-3170 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-5 *1 (-887 *2)) (-4 *2 (-1230)))) (-2195 (*1 *1 *2 *2) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1230))))) +(-10 -8 (-15 -2195 ($ |#1| |#1|)) (-15 -3170 (|#1| $ (-780)))) +((-1776 (((-889 |#2|) (-1 |#2| |#1|) (-889 |#1|)) 15))) +(((-888 |#1| |#2|) (-10 -7 (-15 -1776 ((-889 |#2|) (-1 |#2| |#1|) (-889 |#1|)))) (-1230) (-1230)) (T -888)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-889 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-889 *6)) (-5 *1 (-888 *5 *6))))) +(-10 -7 (-15 -1776 ((-889 |#2|) (-1 |#2| |#1|) (-889 |#1|)))) +((-2195 (($ |#1| |#1| |#1|) 8)) (-3170 ((|#1| $ (-780)) 15))) +(((-889 |#1|) (-10 -8 (-15 -2195 ($ |#1| |#1| |#1|)) (-15 -3170 (|#1| $ (-780)))) (-1230)) (T -889)) +((-3170 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-5 *1 (-889 *2)) (-4 *2 (-1230)))) (-2195 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1230))))) +(-10 -8 (-15 -2195 ($ |#1| |#1| |#1|)) (-15 -3170 (|#1| $ (-780)))) +((-2958 (((-653 (-1194)) (-1171)) 9))) +(((-890) (-10 -7 (-15 -2958 ((-653 (-1194)) (-1171))))) (T -890)) +((-2958 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-653 (-1194))) (-5 *1 (-890))))) +(-10 -7 (-15 -2958 ((-653 (-1194)) (-1171)))) +((-1776 (((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)) 15))) +(((-891 |#1| |#2|) (-10 -7 (-15 -1776 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) (-1230) (-1230)) (T -891)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6))))) +(-10 -7 (-15 -1776 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) +((-2927 (($ |#1| |#1| |#1|) 8)) (-3170 ((|#1| $ (-780)) 15))) +(((-892 |#1|) (-10 -8 (-15 -2927 ($ |#1| |#1| |#1|)) (-15 -3170 (|#1| $ (-780)))) (-1230)) (T -892)) +((-3170 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-5 *1 (-892 *2)) (-4 *2 (-1230)))) (-2927 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1230))))) +(-10 -8 (-15 -2927 ($ |#1| |#1| |#1|)) (-15 -3170 (|#1| $ (-780)))) +((-3743 (((-1169 (-653 (-573))) (-653 (-573)) (-1169 (-653 (-573)))) 41)) (-3083 (((-1169 (-653 (-573))) (-653 (-573)) (-653 (-573))) 31)) (-3888 (((-1169 (-653 (-573))) (-653 (-573))) 53) (((-1169 (-653 (-573))) (-653 (-573)) (-653 (-573))) 50)) (-1321 (((-1169 (-653 (-573))) (-573)) 55)) (-3698 (((-1169 (-653 (-931))) (-1169 (-653 (-931)))) 22)) (-3204 (((-653 (-931)) (-653 (-931))) 18))) +(((-893) (-10 -7 (-15 -3204 ((-653 (-931)) (-653 (-931)))) (-15 -3698 ((-1169 (-653 (-931))) (-1169 (-653 (-931))))) (-15 -3083 ((-1169 (-653 (-573))) (-653 (-573)) (-653 (-573)))) (-15 -3743 ((-1169 (-653 (-573))) (-653 (-573)) (-1169 (-653 (-573))))) (-15 -3888 ((-1169 (-653 (-573))) (-653 (-573)) (-653 (-573)))) (-15 -3888 ((-1169 (-653 (-573))) (-653 (-573)))) (-15 -1321 ((-1169 (-653 (-573))) (-573))))) (T -893)) +((-1321 (*1 *2 *3) (-12 (-5 *2 (-1169 (-653 (-573)))) (-5 *1 (-893)) (-5 *3 (-573)))) (-3888 (*1 *2 *3) (-12 (-5 *2 (-1169 (-653 (-573)))) (-5 *1 (-893)) (-5 *3 (-653 (-573))))) (-3888 (*1 *2 *3 *3) (-12 (-5 *2 (-1169 (-653 (-573)))) (-5 *1 (-893)) (-5 *3 (-653 (-573))))) (-3743 (*1 *2 *3 *2) (-12 (-5 *2 (-1169 (-653 (-573)))) (-5 *3 (-653 (-573))) (-5 *1 (-893)))) (-3083 (*1 *2 *3 *3) (-12 (-5 *2 (-1169 (-653 (-573)))) (-5 *1 (-893)) (-5 *3 (-653 (-573))))) (-3698 (*1 *2 *2) (-12 (-5 *2 (-1169 (-653 (-931)))) (-5 *1 (-893)))) (-3204 (*1 *2 *2) (-12 (-5 *2 (-653 (-931))) (-5 *1 (-893))))) +(-10 -7 (-15 -3204 ((-653 (-931)) (-653 (-931)))) (-15 -3698 ((-1169 (-653 (-931))) (-1169 (-653 (-931))))) (-15 -3083 ((-1169 (-653 (-573))) (-653 (-573)) (-653 (-573)))) (-15 -3743 ((-1169 (-653 (-573))) (-653 (-573)) (-1169 (-653 (-573))))) (-15 -3888 ((-1169 (-653 (-573))) (-653 (-573)) (-653 (-573)))) (-15 -3888 ((-1169 (-653 (-573))) (-653 (-573)))) (-15 -1321 ((-1169 (-653 (-573))) (-573)))) +((-1835 (((-902 (-387)) $) 9 (|has| |#1| (-623 (-902 (-387))))) (((-902 (-573)) $) 8 (|has| |#1| (-623 (-902 (-573))))))) +(((-894 |#1|) (-141) (-1230)) (T -894)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-623 (-902 (-573)))) (-6 (-623 (-902 (-573)))) |%noBranch|) (IF (|has| |t#1| (-623 (-902 (-387)))) (-6 (-623 (-902 (-387)))) |%noBranch|))) +(((-623 (-902 (-387))) |has| |#1| (-623 (-902 (-387)))) ((-623 (-902 (-573))) |has| |#1| (-623 (-902 (-573))))) +((-2848 (((-112) $ $) NIL)) (-3789 (($) 14)) (-3721 (($ (-899 |#1| |#2|) (-899 |#1| |#3|)) 28)) (-3652 (((-899 |#1| |#3|) $) 16)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-1826 (((-112) $) 22)) (-3600 (($) 19)) (-2942 (((-871) $) 31)) (-3507 (((-112) $ $) NIL)) (-2885 (((-899 |#1| |#2|) $) 15)) (-2981 (((-112) $ $) 26))) +(((-895 |#1| |#2| |#3|) (-13 (-1112) (-10 -8 (-15 -1826 ((-112) $)) (-15 -3600 ($)) (-15 -3789 ($)) (-15 -3721 ($ (-899 |#1| |#2|) (-899 |#1| |#3|))) (-15 -2885 ((-899 |#1| |#2|) $)) (-15 -3652 ((-899 |#1| |#3|) $)))) (-1112) (-1112) (-675 |#2|)) (T -895)) +((-1826 (*1 *2 *1) (-12 (-4 *4 (-1112)) (-5 *2 (-112)) (-5 *1 (-895 *3 *4 *5)) (-4 *3 (-1112)) (-4 *5 (-675 *4)))) (-3600 (*1 *1) (-12 (-4 *3 (-1112)) (-5 *1 (-895 *2 *3 *4)) (-4 *2 (-1112)) (-4 *4 (-675 *3)))) (-3789 (*1 *1) (-12 (-4 *3 (-1112)) (-5 *1 (-895 *2 *3 *4)) (-4 *2 (-1112)) (-4 *4 (-675 *3)))) (-3721 (*1 *1 *2 *3) (-12 (-5 *2 (-899 *4 *5)) (-5 *3 (-899 *4 *6)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-675 *5)) (-5 *1 (-895 *4 *5 *6)))) (-2885 (*1 *2 *1) (-12 (-4 *4 (-1112)) (-5 *2 (-899 *3 *4)) (-5 *1 (-895 *3 *4 *5)) (-4 *3 (-1112)) (-4 *5 (-675 *4)))) (-3652 (*1 *2 *1) (-12 (-4 *4 (-1112)) (-5 *2 (-899 *3 *5)) (-5 *1 (-895 *3 *4 *5)) (-4 *3 (-1112)) (-4 *5 (-675 *4))))) +(-13 (-1112) (-10 -8 (-15 -1826 ((-112) $)) (-15 -3600 ($)) (-15 -3789 ($)) (-15 -3721 ($ (-899 |#1| |#2|) (-899 |#1| |#3|))) (-15 -2885 ((-899 |#1| |#2|) $)) (-15 -3652 ((-899 |#1| |#3|) $)))) +((-2848 (((-112) $ $) 7)) (-1352 (((-899 |#1| $) $ (-902 |#1|) (-899 |#1| $)) 14)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) +(((-896 |#1|) (-141) (-1112)) (T -896)) +((-1352 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-899 *4 *1)) (-5 *3 (-902 *4)) (-4 *1 (-896 *4)) (-4 *4 (-1112))))) +(-13 (-1112) (-10 -8 (-15 -1352 ((-899 |t#1| $) $ (-902 |t#1|) (-899 |t#1| $))))) +(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) +((-1667 (((-112) (-653 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-4417 (((-899 |#1| |#2|) |#2| |#3|) 45 (-12 (-2075 (|has| |#2| (-1050 (-1189)))) (-2075 (|has| |#2| (-1061))))) (((-653 (-301 (-962 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1061)) (-2075 (|has| |#2| (-1050 (-1189)))))) (((-653 (-301 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1050 (-1189)))) (((-895 |#1| |#2| (-653 |#2|)) (-653 |#2|) |#3|) 21))) +(((-897 |#1| |#2| |#3|) (-10 -7 (-15 -1667 ((-112) |#2| |#3|)) (-15 -1667 ((-112) (-653 |#2|) |#3|)) (-15 -4417 ((-895 |#1| |#2| (-653 |#2|)) (-653 |#2|) |#3|)) (IF (|has| |#2| (-1050 (-1189))) (-15 -4417 ((-653 (-301 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1061)) (-15 -4417 ((-653 (-301 (-962 |#2|))) |#2| |#3|)) (-15 -4417 ((-899 |#1| |#2|) |#2| |#3|))))) (-1112) (-896 |#1|) (-623 (-902 |#1|))) (T -897)) +((-4417 (*1 *2 *3 *4) (-12 (-4 *5 (-1112)) (-5 *2 (-899 *5 *3)) (-5 *1 (-897 *5 *3 *4)) (-2075 (-4 *3 (-1050 (-1189)))) (-2075 (-4 *3 (-1061))) (-4 *3 (-896 *5)) (-4 *4 (-623 (-902 *5))))) (-4417 (*1 *2 *3 *4) (-12 (-4 *5 (-1112)) (-5 *2 (-653 (-301 (-962 *3)))) (-5 *1 (-897 *5 *3 *4)) (-4 *3 (-1061)) (-2075 (-4 *3 (-1050 (-1189)))) (-4 *3 (-896 *5)) (-4 *4 (-623 (-902 *5))))) (-4417 (*1 *2 *3 *4) (-12 (-4 *5 (-1112)) (-5 *2 (-653 (-301 *3))) (-5 *1 (-897 *5 *3 *4)) (-4 *3 (-1050 (-1189))) (-4 *3 (-896 *5)) (-4 *4 (-623 (-902 *5))))) (-4417 (*1 *2 *3 *4) (-12 (-4 *5 (-1112)) (-4 *6 (-896 *5)) (-5 *2 (-895 *5 *6 (-653 *6))) (-5 *1 (-897 *5 *6 *4)) (-5 *3 (-653 *6)) (-4 *4 (-623 (-902 *5))))) (-1667 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *6)) (-4 *6 (-896 *5)) (-4 *5 (-1112)) (-5 *2 (-112)) (-5 *1 (-897 *5 *6 *4)) (-4 *4 (-623 (-902 *5))))) (-1667 (*1 *2 *3 *4) (-12 (-4 *5 (-1112)) (-5 *2 (-112)) (-5 *1 (-897 *5 *3 *4)) (-4 *3 (-896 *5)) (-4 *4 (-623 (-902 *5)))))) +(-10 -7 (-15 -1667 ((-112) |#2| |#3|)) (-15 -1667 ((-112) (-653 |#2|) |#3|)) (-15 -4417 ((-895 |#1| |#2| (-653 |#2|)) (-653 |#2|) |#3|)) (IF (|has| |#2| (-1050 (-1189))) (-15 -4417 ((-653 (-301 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1061)) (-15 -4417 ((-653 (-301 (-962 |#2|))) |#2| |#3|)) (-15 -4417 ((-899 |#1| |#2|) |#2| |#3|))))) +((-1776 (((-899 |#1| |#3|) (-1 |#3| |#2|) (-899 |#1| |#2|)) 22))) +(((-898 |#1| |#2| |#3|) (-10 -7 (-15 -1776 ((-899 |#1| |#3|) (-1 |#3| |#2|) (-899 |#1| |#2|)))) (-1112) (-1112) (-1112)) (T -898)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-899 *5 *6)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-899 *5 *7)) (-5 *1 (-898 *5 *6 *7))))) +(-10 -7 (-15 -1776 ((-899 |#1| |#3|) (-1 |#3| |#2|) (-899 |#1| |#2|)))) +((-2848 (((-112) $ $) NIL)) (-4357 (($ $ $) 40)) (-3694 (((-3 (-112) "failed") $ (-902 |#1|)) 37)) (-3789 (($) 12)) (-3180 (((-1171) $) NIL)) (-4086 (($ (-902 |#1|) |#2| $) 20)) (-3965 (((-1132) $) NIL)) (-4125 (((-3 |#2| "failed") (-902 |#1|) $) 51)) (-1826 (((-112) $) 15)) (-3600 (($) 13)) (-4292 (((-653 (-2 (|:| -3692 (-1189)) (|:| -1907 |#2|))) $) 25)) (-2955 (($ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 |#2|)))) 23)) (-2942 (((-871) $) 45)) (-3507 (((-112) $ $) NIL)) (-1601 (($ (-902 |#1|) |#2| $ |#2|) 49)) (-1886 (($ (-902 |#1|) |#2| $) 48)) (-2981 (((-112) $ $) 42))) +(((-899 |#1| |#2|) (-13 (-1112) (-10 -8 (-15 -1826 ((-112) $)) (-15 -3600 ($)) (-15 -3789 ($)) (-15 -4357 ($ $ $)) (-15 -4125 ((-3 |#2| "failed") (-902 |#1|) $)) (-15 -1886 ($ (-902 |#1|) |#2| $)) (-15 -4086 ($ (-902 |#1|) |#2| $)) (-15 -1601 ($ (-902 |#1|) |#2| $ |#2|)) (-15 -4292 ((-653 (-2 (|:| -3692 (-1189)) (|:| -1907 |#2|))) $)) (-15 -2955 ($ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 |#2|))))) (-15 -3694 ((-3 (-112) "failed") $ (-902 |#1|))))) (-1112) (-1112)) (T -899)) +((-1826 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)))) (-3600 (*1 *1) (-12 (-5 *1 (-899 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112)))) (-3789 (*1 *1) (-12 (-5 *1 (-899 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112)))) (-4357 (*1 *1 *1 *1) (-12 (-5 *1 (-899 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112)))) (-4125 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-902 *4)) (-4 *4 (-1112)) (-4 *2 (-1112)) (-5 *1 (-899 *4 *2)))) (-1886 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-902 *4)) (-4 *4 (-1112)) (-5 *1 (-899 *4 *3)) (-4 *3 (-1112)))) (-4086 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-902 *4)) (-4 *4 (-1112)) (-5 *1 (-899 *4 *3)) (-4 *3 (-1112)))) (-1601 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-902 *4)) (-4 *4 (-1112)) (-5 *1 (-899 *4 *3)) (-4 *3 (-1112)))) (-4292 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 *4)))) (-5 *1 (-899 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)))) (-2955 (*1 *1 *2) (-12 (-5 *2 (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 *4)))) (-4 *4 (-1112)) (-5 *1 (-899 *3 *4)) (-4 *3 (-1112)))) (-3694 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-902 *4)) (-4 *4 (-1112)) (-5 *2 (-112)) (-5 *1 (-899 *4 *5)) (-4 *5 (-1112))))) +(-13 (-1112) (-10 -8 (-15 -1826 ((-112) $)) (-15 -3600 ($)) (-15 -3789 ($)) (-15 -4357 ($ $ $)) (-15 -4125 ((-3 |#2| "failed") (-902 |#1|) $)) (-15 -1886 ($ (-902 |#1|) |#2| $)) (-15 -4086 ($ (-902 |#1|) |#2| $)) (-15 -1601 ($ (-902 |#1|) |#2| $ |#2|)) (-15 -4292 ((-653 (-2 (|:| -3692 (-1189)) (|:| -1907 |#2|))) $)) (-15 -2955 ($ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 |#2|))))) (-15 -3694 ((-3 (-112) "failed") $ (-902 |#1|))))) +((-2570 (((-902 |#1|) (-902 |#1|) (-653 (-1189)) (-1 (-112) (-653 |#2|))) 32) (((-902 |#1|) (-902 |#1|) (-653 (-1 (-112) |#2|))) 46) (((-902 |#1|) (-902 |#1|) (-1 (-112) |#2|)) 35)) (-3694 (((-112) (-653 |#2|) (-902 |#1|)) 42) (((-112) |#2| (-902 |#1|)) 36)) (-2514 (((-1 (-112) |#2|) (-902 |#1|)) 16)) (-2681 (((-653 |#2|) (-902 |#1|)) 24)) (-4035 (((-902 |#1|) (-902 |#1|) |#2|) 20))) +(((-900 |#1| |#2|) (-10 -7 (-15 -2570 ((-902 |#1|) (-902 |#1|) (-1 (-112) |#2|))) (-15 -2570 ((-902 |#1|) (-902 |#1|) (-653 (-1 (-112) |#2|)))) (-15 -2570 ((-902 |#1|) (-902 |#1|) (-653 (-1189)) (-1 (-112) (-653 |#2|)))) (-15 -2514 ((-1 (-112) |#2|) (-902 |#1|))) (-15 -3694 ((-112) |#2| (-902 |#1|))) (-15 -3694 ((-112) (-653 |#2|) (-902 |#1|))) (-15 -4035 ((-902 |#1|) (-902 |#1|) |#2|)) (-15 -2681 ((-653 |#2|) (-902 |#1|)))) (-1112) (-1230)) (T -900)) +((-2681 (*1 *2 *3) (-12 (-5 *3 (-902 *4)) (-4 *4 (-1112)) (-5 *2 (-653 *5)) (-5 *1 (-900 *4 *5)) (-4 *5 (-1230)))) (-4035 (*1 *2 *2 *3) (-12 (-5 *2 (-902 *4)) (-4 *4 (-1112)) (-5 *1 (-900 *4 *3)) (-4 *3 (-1230)))) (-3694 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *6)) (-5 *4 (-902 *5)) (-4 *5 (-1112)) (-4 *6 (-1230)) (-5 *2 (-112)) (-5 *1 (-900 *5 *6)))) (-3694 (*1 *2 *3 *4) (-12 (-5 *4 (-902 *5)) (-4 *5 (-1112)) (-5 *2 (-112)) (-5 *1 (-900 *5 *3)) (-4 *3 (-1230)))) (-2514 (*1 *2 *3) (-12 (-5 *3 (-902 *4)) (-4 *4 (-1112)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-900 *4 *5)) (-4 *5 (-1230)))) (-2570 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-902 *5)) (-5 *3 (-653 (-1189))) (-5 *4 (-1 (-112) (-653 *6))) (-4 *5 (-1112)) (-4 *6 (-1230)) (-5 *1 (-900 *5 *6)))) (-2570 (*1 *2 *2 *3) (-12 (-5 *2 (-902 *4)) (-5 *3 (-653 (-1 (-112) *5))) (-4 *4 (-1112)) (-4 *5 (-1230)) (-5 *1 (-900 *4 *5)))) (-2570 (*1 *2 *2 *3) (-12 (-5 *2 (-902 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1112)) (-4 *5 (-1230)) (-5 *1 (-900 *4 *5))))) +(-10 -7 (-15 -2570 ((-902 |#1|) (-902 |#1|) (-1 (-112) |#2|))) (-15 -2570 ((-902 |#1|) (-902 |#1|) (-653 (-1 (-112) |#2|)))) (-15 -2570 ((-902 |#1|) (-902 |#1|) (-653 (-1189)) (-1 (-112) (-653 |#2|)))) (-15 -2514 ((-1 (-112) |#2|) (-902 |#1|))) (-15 -3694 ((-112) |#2| (-902 |#1|))) (-15 -3694 ((-112) (-653 |#2|) (-902 |#1|))) (-15 -4035 ((-902 |#1|) (-902 |#1|) |#2|)) (-15 -2681 ((-653 |#2|) (-902 |#1|)))) +((-1776 (((-902 |#2|) (-1 |#2| |#1|) (-902 |#1|)) 19))) +(((-901 |#1| |#2|) (-10 -7 (-15 -1776 ((-902 |#2|) (-1 |#2| |#1|) (-902 |#1|)))) (-1112) (-1112)) (T -901)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-902 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-902 *6)) (-5 *1 (-901 *5 *6))))) +(-10 -7 (-15 -1776 ((-902 |#2|) (-1 |#2| |#1|) (-902 |#1|)))) +((-2848 (((-112) $ $) NIL)) (-2320 (($ $ (-653 (-52))) 74)) (-4354 (((-653 $) $) 139)) (-2911 (((-2 (|:| |var| (-653 (-1189))) (|:| |pred| (-52))) $) 30)) (-2146 (((-112) $) 35)) (-4195 (($ $ (-653 (-1189)) (-52)) 31)) (-4006 (($ $ (-653 (-52))) 73)) (-1695 (((-3 |#1| "failed") $) 71) (((-3 (-1189) "failed") $) 164)) (-2205 ((|#1| $) 68) (((-1189) $) NIL)) (-2407 (($ $) 126)) (-2935 (((-112) $) 55)) (-3700 (((-653 (-52)) $) 50)) (-3426 (($ (-1189) (-112) (-112) (-112)) 75)) (-2972 (((-3 (-653 $) "failed") (-653 $)) 82)) (-4102 (((-112) $) 58)) (-1832 (((-112) $) 57)) (-3180 (((-1171) $) NIL)) (-4082 (((-3 (-653 $) "failed") $) 41)) (-1779 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-1951 (((-3 (-2 (|:| |val| $) (|:| -3907 $)) "failed") $) 97)) (-2586 (((-3 (-653 $) "failed") $) 40)) (-1861 (((-3 (-653 $) "failed") $ (-115)) 124) (((-3 (-2 (|:| -4296 (-115)) (|:| |arg| (-653 $))) "failed") $) 107)) (-4110 (((-3 (-653 $) "failed") $) 42)) (-2573 (((-3 (-2 (|:| |val| $) (|:| -3907 (-780))) "failed") $) 45)) (-2098 (((-112) $) 34)) (-3965 (((-1132) $) NIL)) (-3683 (((-112) $) 28)) (-4411 (((-112) $) 52)) (-4100 (((-653 (-52)) $) 130)) (-2549 (((-112) $) 56)) (-2198 (($ (-115) (-653 $)) 104)) (-4302 (((-780) $) 33)) (-3166 (($ $) 72)) (-1835 (($ (-653 $)) 69)) (-4044 (((-112) $) 32)) (-2942 (((-871) $) 63) (($ |#1|) 23) (($ (-1189)) 76)) (-3507 (((-112) $ $) NIL)) (-4035 (($ $ (-52)) 129)) (-2132 (($) 103 T CONST)) (-2144 (($) 83 T CONST)) (-2981 (((-112) $ $) 93)) (-3103 (($ $ $) 117)) (-3077 (($ $ $) 121)) (** (($ $ (-780)) 115) (($ $ $) 64)) (* (($ $ $) 122))) +(((-902 |#1|) (-13 (-1112) (-1050 |#1|) (-1050 (-1189)) (-10 -8 (-15 0 ($) -1705) (-15 1 ($) -1705) (-15 -2586 ((-3 (-653 $) "failed") $)) (-15 -4082 ((-3 (-653 $) "failed") $)) (-15 -1861 ((-3 (-653 $) "failed") $ (-115))) (-15 -1861 ((-3 (-2 (|:| -4296 (-115)) (|:| |arg| (-653 $))) "failed") $)) (-15 -2573 ((-3 (-2 (|:| |val| $) (|:| -3907 (-780))) "failed") $)) (-15 -1779 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -4110 ((-3 (-653 $) "failed") $)) (-15 -1951 ((-3 (-2 (|:| |val| $) (|:| -3907 $)) "failed") $)) (-15 -2198 ($ (-115) (-653 $))) (-15 -3077 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-780))) (-15 ** ($ $ $)) (-15 -3103 ($ $ $)) (-15 -4302 ((-780) $)) (-15 -1835 ($ (-653 $))) (-15 -3166 ($ $)) (-15 -2098 ((-112) $)) (-15 -2935 ((-112) $)) (-15 -2146 ((-112) $)) (-15 -4044 ((-112) $)) (-15 -2549 ((-112) $)) (-15 -1832 ((-112) $)) (-15 -4102 ((-112) $)) (-15 -4411 ((-112) $)) (-15 -3700 ((-653 (-52)) $)) (-15 -4006 ($ $ (-653 (-52)))) (-15 -2320 ($ $ (-653 (-52)))) (-15 -3426 ($ (-1189) (-112) (-112) (-112))) (-15 -4195 ($ $ (-653 (-1189)) (-52))) (-15 -2911 ((-2 (|:| |var| (-653 (-1189))) (|:| |pred| (-52))) $)) (-15 -3683 ((-112) $)) (-15 -2407 ($ $)) (-15 -4035 ($ $ (-52))) (-15 -4100 ((-653 (-52)) $)) (-15 -4354 ((-653 $) $)) (-15 -2972 ((-3 (-653 $) "failed") (-653 $))))) (-1112)) (T -902)) +((-2132 (*1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112)))) (-2144 (*1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112)))) (-2586 (*1 *2 *1) (|partial| -12 (-5 *2 (-653 (-902 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-4082 (*1 *2 *1) (|partial| -12 (-5 *2 (-653 (-902 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-1861 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-653 (-902 *4))) (-5 *1 (-902 *4)) (-4 *4 (-1112)))) (-1861 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -4296 (-115)) (|:| |arg| (-653 (-902 *3))))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-2573 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-902 *3)) (|:| -3907 (-780)))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-1779 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-902 *3)) (|:| |den| (-902 *3)))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-4110 (*1 *2 *1) (|partial| -12 (-5 *2 (-653 (-902 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-1951 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-902 *3)) (|:| -3907 (-902 *3)))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-2198 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-653 (-902 *4))) (-5 *1 (-902 *4)) (-4 *4 (-1112)))) (-3077 (*1 *1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112)))) (-3103 (*1 *1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112)))) (-4302 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-653 (-902 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-3166 (*1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112)))) (-2098 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-2935 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-2146 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-2549 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-1832 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-4102 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-4411 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-3700 (*1 *2 *1) (-12 (-5 *2 (-653 (-52))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-4006 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-52))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-2320 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-52))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-3426 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-112)) (-5 *1 (-902 *4)) (-4 *4 (-1112)))) (-4195 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 (-1189))) (-5 *3 (-52)) (-5 *1 (-902 *4)) (-4 *4 (-1112)))) (-2911 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-653 (-1189))) (|:| |pred| (-52)))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-3683 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-2407 (*1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112)))) (-4035 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-653 (-52))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-4354 (*1 *2 *1) (-12 (-5 *2 (-653 (-902 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) (-2972 (*1 *2 *2) (|partial| -12 (-5 *2 (-653 (-902 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1112))))) +(-13 (-1112) (-1050 |#1|) (-1050 (-1189)) (-10 -8 (-15 (-2132) ($) -1705) (-15 (-2144) ($) -1705) (-15 -2586 ((-3 (-653 $) "failed") $)) (-15 -4082 ((-3 (-653 $) "failed") $)) (-15 -1861 ((-3 (-653 $) "failed") $ (-115))) (-15 -1861 ((-3 (-2 (|:| -4296 (-115)) (|:| |arg| (-653 $))) "failed") $)) (-15 -2573 ((-3 (-2 (|:| |val| $) (|:| -3907 (-780))) "failed") $)) (-15 -1779 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -4110 ((-3 (-653 $) "failed") $)) (-15 -1951 ((-3 (-2 (|:| |val| $) (|:| -3907 $)) "failed") $)) (-15 -2198 ($ (-115) (-653 $))) (-15 -3077 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-780))) (-15 ** ($ $ $)) (-15 -3103 ($ $ $)) (-15 -4302 ((-780) $)) (-15 -1835 ($ (-653 $))) (-15 -3166 ($ $)) (-15 -2098 ((-112) $)) (-15 -2935 ((-112) $)) (-15 -2146 ((-112) $)) (-15 -4044 ((-112) $)) (-15 -2549 ((-112) $)) (-15 -1832 ((-112) $)) (-15 -4102 ((-112) $)) (-15 -4411 ((-112) $)) (-15 -3700 ((-653 (-52)) $)) (-15 -4006 ($ $ (-653 (-52)))) (-15 -2320 ($ $ (-653 (-52)))) (-15 -3426 ($ (-1189) (-112) (-112) (-112))) (-15 -4195 ($ $ (-653 (-1189)) (-52))) (-15 -2911 ((-2 (|:| |var| (-653 (-1189))) (|:| |pred| (-52))) $)) (-15 -3683 ((-112) $)) (-15 -2407 ($ $)) (-15 -4035 ($ $ (-52))) (-15 -4100 ((-653 (-52)) $)) (-15 -4354 ((-653 $) $)) (-15 -2972 ((-3 (-653 $) "failed") (-653 $))))) +((-2848 (((-112) $ $) NIL)) (-1653 (((-653 |#1|) $) 19)) (-1407 (((-112) $) 49)) (-1695 (((-3 (-681 |#1|) "failed") $) 56)) (-2205 (((-681 |#1|) $) 54)) (-2925 (($ $) 23)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-4134 (((-780) $) 61)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2914 (((-681 |#1|) $) 21)) (-2942 (((-871) $) 47) (($ (-681 |#1|)) 26) (((-828 |#1|) $) 36) (($ |#1|) 25)) (-3507 (((-112) $ $) NIL)) (-2144 (($) 9 T CONST)) (-3256 (((-653 (-681 |#1|)) $) 28)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 12)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 67))) +(((-903 |#1|) (-13 (-859) (-1050 (-681 |#1|)) (-10 -8 (-15 1 ($) -1705) (-15 -2942 ((-828 |#1|) $)) (-15 -2942 ($ |#1|)) (-15 -2914 ((-681 |#1|) $)) (-15 -4134 ((-780) $)) (-15 -3256 ((-653 (-681 |#1|)) $)) (-15 -2925 ($ $)) (-15 -1407 ((-112) $)) (-15 -1653 ((-653 |#1|) $)))) (-859)) (T -903)) +((-2144 (*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-859)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-828 *3)) (-5 *1 (-903 *3)) (-4 *3 (-859)))) (-2942 (*1 *1 *2) (-12 (-5 *1 (-903 *2)) (-4 *2 (-859)))) (-2914 (*1 *2 *1) (-12 (-5 *2 (-681 *3)) (-5 *1 (-903 *3)) (-4 *3 (-859)))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-903 *3)) (-4 *3 (-859)))) (-3256 (*1 *2 *1) (-12 (-5 *2 (-653 (-681 *3))) (-5 *1 (-903 *3)) (-4 *3 (-859)))) (-2925 (*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-859)))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-859)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-903 *3)) (-4 *3 (-859))))) +(-13 (-859) (-1050 (-681 |#1|)) (-10 -8 (-15 (-2144) ($) -1705) (-15 -2942 ((-828 |#1|) $)) (-15 -2942 ($ |#1|)) (-15 -2914 ((-681 |#1|) $)) (-15 -4134 ((-780) $)) (-15 -3256 ((-653 (-681 |#1|)) $)) (-15 -2925 ($ $)) (-15 -1407 ((-112) $)) (-15 -1653 ((-653 |#1|) $)))) +((-2066 ((|#1| |#1| |#1|) 19))) +(((-904 |#1| |#2|) (-10 -7 (-15 -2066 (|#1| |#1| |#1|))) (-1256 |#2|) (-1061)) (T -904)) +((-2066 (*1 *2 *2 *2) (-12 (-4 *3 (-1061)) (-5 *1 (-904 *2 *3)) (-4 *2 (-1256 *3))))) +(-10 -7 (-15 -2066 (|#1| |#1| |#1|))) +((-2848 (((-112) $ $) 7)) (-4223 (((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227)))) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-4308 (((-1047) (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227)))) 14)) (-2981 (((-112) $ $) 6))) +(((-905) (-141)) (T -905)) +((-4223 (*1 *2 *3 *4) (-12 (-4 *1 (-905)) (-5 *3 (-1075)) (-5 *4 (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227)))) (-5 *2 (-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)))))) (-4308 (*1 *2 *3) (-12 (-4 *1 (-905)) (-5 *3 (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227)))) (-5 *2 (-1047))))) +(-13 (-1112) (-10 -7 (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| |explanations| (-1171))) (-1075) (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227))))) (-15 -4308 ((-1047) (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227))))))) +(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) +((-3080 ((|#1| |#1| (-780)) 27)) (-2412 (((-3 |#1| "failed") |#1| |#1|) 24)) (-2478 (((-3 (-2 (|:| -3890 |#1|) (|:| -3903 |#1|)) "failed") |#1| (-780) (-780)) 30) (((-653 |#1|) |#1|) 38))) +(((-906 |#1| |#2|) (-10 -7 (-15 -2478 ((-653 |#1|) |#1|)) (-15 -2478 ((-3 (-2 (|:| -3890 |#1|) (|:| -3903 |#1|)) "failed") |#1| (-780) (-780))) (-15 -2412 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3080 (|#1| |#1| (-780)))) (-1256 |#2|) (-371)) (T -906)) +((-3080 (*1 *2 *2 *3) (-12 (-5 *3 (-780)) (-4 *4 (-371)) (-5 *1 (-906 *2 *4)) (-4 *2 (-1256 *4)))) (-2412 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-371)) (-5 *1 (-906 *2 *3)) (-4 *2 (-1256 *3)))) (-2478 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-780)) (-4 *5 (-371)) (-5 *2 (-2 (|:| -3890 *3) (|:| -3903 *3))) (-5 *1 (-906 *3 *5)) (-4 *3 (-1256 *5)))) (-2478 (*1 *2 *3) (-12 (-4 *4 (-371)) (-5 *2 (-653 *3)) (-5 *1 (-906 *3 *4)) (-4 *3 (-1256 *4))))) +(-10 -7 (-15 -2478 ((-653 |#1|) |#1|)) (-15 -2478 ((-3 (-2 (|:| -3890 |#1|) (|:| -3903 |#1|)) "failed") |#1| (-780) (-780))) (-15 -2412 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3080 (|#1| |#1| (-780)))) +((-1994 (((-1047) (-387) (-387) (-387) (-387) (-780) (-780) (-653 (-323 (-387))) (-653 (-653 (-323 (-387)))) (-1171)) 104) (((-1047) (-387) (-387) (-387) (-387) (-780) (-780) (-653 (-323 (-387))) (-653 (-653 (-323 (-387)))) (-1171) (-227)) 100) (((-1047) (-908) (-1075)) 92) (((-1047) (-908)) 93)) (-4223 (((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-908) (-1075)) 62) (((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-908)) 64))) +(((-907) (-10 -7 (-15 -1994 ((-1047) (-908))) (-15 -1994 ((-1047) (-908) (-1075))) (-15 -1994 ((-1047) (-387) (-387) (-387) (-387) (-780) (-780) (-653 (-323 (-387))) (-653 (-653 (-323 (-387)))) (-1171) (-227))) (-15 -1994 ((-1047) (-387) (-387) (-387) (-387) (-780) (-780) (-653 (-323 (-387))) (-653 (-653 (-323 (-387)))) (-1171))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-908))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-908) (-1075))))) (T -907)) +((-4223 (*1 *2 *3 *4) (-12 (-5 *3 (-908)) (-5 *4 (-1075)) (-5 *2 (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))))) (-5 *1 (-907)))) (-4223 (*1 *2 *3) (-12 (-5 *3 (-908)) (-5 *2 (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171))))) (-5 *1 (-907)))) (-1994 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-780)) (-5 *6 (-653 (-653 (-323 *3)))) (-5 *7 (-1171)) (-5 *5 (-653 (-323 (-387)))) (-5 *3 (-387)) (-5 *2 (-1047)) (-5 *1 (-907)))) (-1994 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-780)) (-5 *6 (-653 (-653 (-323 *3)))) (-5 *7 (-1171)) (-5 *8 (-227)) (-5 *5 (-653 (-323 (-387)))) (-5 *3 (-387)) (-5 *2 (-1047)) (-5 *1 (-907)))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-908)) (-5 *4 (-1075)) (-5 *2 (-1047)) (-5 *1 (-907)))) (-1994 (*1 *2 *3) (-12 (-5 *3 (-908)) (-5 *2 (-1047)) (-5 *1 (-907))))) +(-10 -7 (-15 -1994 ((-1047) (-908))) (-15 -1994 ((-1047) (-908) (-1075))) (-15 -1994 ((-1047) (-387) (-387) (-387) (-387) (-780) (-780) (-653 (-323 (-387))) (-653 (-653 (-323 (-387)))) (-1171) (-227))) (-15 -1994 ((-1047) (-387) (-387) (-387) (-387) (-780) (-780) (-653 (-323 (-387))) (-653 (-653 (-323 (-387)))) (-1171))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-908))) (-15 -4223 ((-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) (|:| |explanations| (-653 (-1171)))) (-908) (-1075)))) +((-2848 (((-112) $ $) NIL)) (-2205 (((-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227))) $) 19)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 21) (($ (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227)))) 18)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-908) (-13 (-1112) (-10 -8 (-15 -2942 ($ (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227))))) (-15 -2205 ((-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227))) $))))) (T -908)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227)))) (-5 *1 (-908)))) (-2205 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227)))) (-5 *1 (-908))))) +(-13 (-1112) (-10 -8 (-15 -2942 ($ (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227))))) (-15 -2205 ((-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-780)) (|:| |boundaryType| (-573)) (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227))) $)))) +((-3904 (($ $ |#2|) NIL) (($ $ (-653 |#2|)) 10) (($ $ |#2| (-780)) 12) (($ $ (-653 |#2|) (-653 (-780))) 15)) (-3609 (($ $ |#2|) 16) (($ $ (-653 |#2|)) 18) (($ $ |#2| (-780)) 19) (($ $ (-653 |#2|) (-653 (-780))) 21))) +(((-909 |#1| |#2|) (-10 -8 (-15 -3609 (|#1| |#1| (-653 |#2|) (-653 (-780)))) (-15 -3609 (|#1| |#1| |#2| (-780))) (-15 -3609 (|#1| |#1| (-653 |#2|))) (-15 -3609 (|#1| |#1| |#2|)) (-15 -3904 (|#1| |#1| (-653 |#2|) (-653 (-780)))) (-15 -3904 (|#1| |#1| |#2| (-780))) (-15 -3904 (|#1| |#1| (-653 |#2|))) (-15 -3904 (|#1| |#1| |#2|))) (-910 |#2|) (-1112)) (T -909)) +NIL +(-10 -8 (-15 -3609 (|#1| |#1| (-653 |#2|) (-653 (-780)))) (-15 -3609 (|#1| |#1| |#2| (-780))) (-15 -3609 (|#1| |#1| (-653 |#2|))) (-15 -3609 (|#1| |#1| |#2|)) (-15 -3904 (|#1| |#1| (-653 |#2|) (-653 (-780)))) (-15 -3904 (|#1| |#1| |#2| (-780))) (-15 -3904 (|#1| |#1| (-653 |#2|))) (-15 -3904 (|#1| |#1| |#2|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-3904 (($ $ |#1|) 46) (($ $ (-653 |#1|)) 45) (($ $ |#1| (-780)) 44) (($ $ (-653 |#1|) (-653 (-780))) 43)) (-2942 (((-871) $) 12) (($ (-573)) 33)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ |#1|) 42) (($ $ (-653 |#1|)) 41) (($ $ |#1| (-780)) 40) (($ $ (-653 |#1|) (-653 (-780))) 39)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) +(((-910 |#1|) (-141) (-1112)) (T -910)) +((-3904 (*1 *1 *1 *2) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1112)))) (-3904 (*1 *1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *1 (-910 *3)) (-4 *3 (-1112)))) (-3904 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-780)) (-4 *1 (-910 *2)) (-4 *2 (-1112)))) (-3904 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 *4)) (-5 *3 (-653 (-780))) (-4 *1 (-910 *4)) (-4 *4 (-1112)))) (-3609 (*1 *1 *1 *2) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1112)))) (-3609 (*1 *1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *1 (-910 *3)) (-4 *3 (-1112)))) (-3609 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-780)) (-4 *1 (-910 *2)) (-4 *2 (-1112)))) (-3609 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 *4)) (-5 *3 (-653 (-780))) (-4 *1 (-910 *4)) (-4 *4 (-1112))))) +(-13 (-1061) (-10 -8 (-15 -3904 ($ $ |t#1|)) (-15 -3904 ($ $ (-653 |t#1|))) (-15 -3904 ($ $ |t#1| (-780))) (-15 -3904 ($ $ (-653 |t#1|) (-653 (-780)))) (-15 -3609 ($ $ |t#1|)) (-15 -3609 ($ $ (-653 |t#1|))) (-15 -3609 ($ $ |t#1| (-780))) (-15 -3609 ($ $ (-653 |t#1|) (-653 (-780)))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-573)) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-735) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3082 ((|#1| $) 26)) (-3450 (((-112) $ (-780)) NIL)) (-2367 ((|#1| $ |#1|) NIL (|has| $ (-6 -4456)))) (-2357 (($ $ $) NIL (|has| $ (-6 -4456)))) (-3837 (($ $ $) NIL (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4456))) (($ $ "left" $) NIL (|has| $ (-6 -4456))) (($ $ "right" $) NIL (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) NIL (|has| $ (-6 -4456)))) (-2579 (($) NIL T CONST)) (-3903 (($ $) 25)) (-3800 (($ |#1|) 12) (($ $ $) 17)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) NIL)) (-3208 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3890 (($ $) 23)) (-3505 (((-653 |#1|) $) NIL)) (-2880 (((-112) $) 20)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1501 (((-573) $ $) NIL)) (-1628 (((-112) $) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) NIL)) (-2942 (((-1216 |#1|) $) 9) (((-871) $) 29 (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) NIL)) (-1716 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 21 (|has| |#1| (-1112)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-911 |#1|) (-13 (-120 |#1|) (-622 (-1216 |#1|)) (-10 -8 (-15 -3800 ($ |#1|)) (-15 -3800 ($ $ $)))) (-1112)) (T -911)) +((-3800 (*1 *1 *2) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1112)))) (-3800 (*1 *1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1112))))) +(-13 (-120 |#1|) (-622 (-1216 |#1|)) (-10 -8 (-15 -3800 ($ |#1|)) (-15 -3800 ($ $ $)))) +((-4327 ((|#2| (-1154 |#1| |#2|)) 48))) +(((-912 |#1| |#2|) (-10 -7 (-15 -4327 (|#2| (-1154 |#1| |#2|)))) (-931) (-13 (-1061) (-10 -7 (-6 (-4457 "*"))))) (T -912)) +((-4327 (*1 *2 *3) (-12 (-5 *3 (-1154 *4 *2)) (-14 *4 (-931)) (-4 *2 (-13 (-1061) (-10 -7 (-6 (-4457 "*"))))) (-5 *1 (-912 *4 *2))))) +(-10 -7 (-15 -4327 (|#2| (-1154 |#1| |#2|)))) +((-2848 (((-112) $ $) 7)) (-2755 (((-1114 |#1|) $) 35)) (-2579 (($) 19 T CONST)) (-2232 (((-3 $ "failed") $) 16)) (-2912 (((-1114 |#1|) $ |#1|) 34)) (-1959 (((-112) $) 18)) (-3659 (($ $ $) 32 (-2817 (|has| |#1| (-859)) (|has| |#1| (-376))))) (-3751 (($ $ $) 31 (-2817 (|has| |#1| (-859)) (|has| |#1| (-376))))) (-3180 (((-1171) $) 10)) (-1323 (($ $) 25)) (-3965 (((-1132) $) 11)) (-2198 ((|#1| $ |#1|) 38)) (-3640 (($ (-653 (-653 |#1|))) 36)) (-2295 (($ (-653 |#1|)) 37)) (-3204 (($ $ $) 22)) (-4380 (($ $ $) 21)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2144 (($) 20 T CONST)) (-3040 (((-112) $ $) 29 (-2817 (|has| |#1| (-859)) (|has| |#1| (-376))))) (-3015 (((-112) $ $) 28 (-2817 (|has| |#1| (-859)) (|has| |#1| (-376))))) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 30 (-2817 (|has| |#1| (-859)) (|has| |#1| (-376))))) (-3005 (((-112) $ $) 33)) (-3103 (($ $ $) 24)) (** (($ $ (-931)) 14) (($ $ (-780)) 17) (($ $ (-573)) 23)) (* (($ $ $) 15))) +(((-913 |#1|) (-141) (-1112)) (T -913)) +((-2295 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-4 *1 (-913 *3)))) (-3640 (*1 *1 *2) (-12 (-5 *2 (-653 (-653 *3))) (-4 *3 (-1112)) (-4 *1 (-913 *3)))) (-2755 (*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-1112)) (-5 *2 (-1114 *3)))) (-2912 (*1 *2 *1 *3) (-12 (-4 *1 (-913 *3)) (-4 *3 (-1112)) (-5 *2 (-1114 *3)))) (-3005 (*1 *2 *1 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-1112)) (-5 *2 (-112))))) +(-13 (-482) (-293 |t#1| |t#1|) (-10 -8 (-15 -2295 ($ (-653 |t#1|))) (-15 -3640 ($ (-653 (-653 |t#1|)))) (-15 -2755 ((-1114 |t#1|) $)) (-15 -2912 ((-1114 |t#1|) $ |t#1|)) (-15 -3005 ((-112) $ $)) (IF (|has| |t#1| (-859)) (-6 (-859)) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-859)) |%noBranch|))) +(((-102) . T) ((-622 (-871)) . T) ((-293 |#1| |#1|) . T) ((-482) . T) ((-735) . T) ((-859) -2817 (|has| |#1| (-859)) (|has| |#1| (-376))) ((-1124) . T) ((-1112) . T) ((-1230) . T)) +((-2848 (((-112) $ $) NIL)) (-1950 (((-653 (-653 (-780))) $) 160)) (-3467 (((-653 (-780)) (-915 |#1|) $) 188)) (-1659 (((-653 (-780)) (-915 |#1|) $) 189)) (-2755 (((-1114 |#1|) $) 152)) (-1384 (((-653 (-915 |#1|)) $) 149)) (-2819 (((-915 |#1|) $ (-573)) 154) (((-915 |#1|) $) 155)) (-4273 (($ (-653 (-915 |#1|))) 162)) (-2534 (((-780) $) 156)) (-2778 (((-1114 (-1114 |#1|)) $) 186)) (-2912 (((-1114 |#1|) $ |#1|) 177) (((-1114 (-1114 |#1|)) $ (-1114 |#1|)) 197) (((-1114 (-653 |#1|)) $ (-653 |#1|)) 200)) (-1547 (((-112) (-915 |#1|) $) 137)) (-3180 (((-1171) $) NIL)) (-1908 (((-1285) $) 142) (((-1285) $ (-573) (-573)) 201)) (-3965 (((-1132) $) NIL)) (-4387 (((-653 (-915 |#1|)) $) 143)) (-2198 (((-915 |#1|) $ (-780)) 150)) (-2565 (((-780) $) 157)) (-2942 (((-871) $) 174) (((-653 (-915 |#1|)) $) 28) (($ (-653 (-915 |#1|))) 161)) (-3507 (((-112) $ $) NIL)) (-2629 (((-653 |#1|) $) 159)) (-2981 (((-112) $ $) 194)) (-3027 (((-112) $ $) 192)) (-3005 (((-112) $ $) 191))) +(((-914 |#1|) (-13 (-1112) (-10 -8 (-15 -2942 ((-653 (-915 |#1|)) $)) (-15 -4387 ((-653 (-915 |#1|)) $)) (-15 -2198 ((-915 |#1|) $ (-780))) (-15 -2819 ((-915 |#1|) $ (-573))) (-15 -2819 ((-915 |#1|) $)) (-15 -2534 ((-780) $)) (-15 -2565 ((-780) $)) (-15 -2629 ((-653 |#1|) $)) (-15 -1384 ((-653 (-915 |#1|)) $)) (-15 -1950 ((-653 (-653 (-780))) $)) (-15 -2942 ($ (-653 (-915 |#1|)))) (-15 -4273 ($ (-653 (-915 |#1|)))) (-15 -2912 ((-1114 |#1|) $ |#1|)) (-15 -2778 ((-1114 (-1114 |#1|)) $)) (-15 -2912 ((-1114 (-1114 |#1|)) $ (-1114 |#1|))) (-15 -2912 ((-1114 (-653 |#1|)) $ (-653 |#1|))) (-15 -1547 ((-112) (-915 |#1|) $)) (-15 -3467 ((-653 (-780)) (-915 |#1|) $)) (-15 -1659 ((-653 (-780)) (-915 |#1|) $)) (-15 -2755 ((-1114 |#1|) $)) (-15 -3005 ((-112) $ $)) (-15 -3027 ((-112) $ $)) (-15 -1908 ((-1285) $)) (-15 -1908 ((-1285) $ (-573) (-573))))) (-1112)) (T -914)) +((-2942 (*1 *2 *1) (-12 (-5 *2 (-653 (-915 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) (-4387 (*1 *2 *1) (-12 (-5 *2 (-653 (-915 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) (-2198 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-5 *2 (-915 *4)) (-5 *1 (-914 *4)) (-4 *4 (-1112)))) (-2819 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-5 *2 (-915 *4)) (-5 *1 (-914 *4)) (-4 *4 (-1112)))) (-2819 (*1 *2 *1) (-12 (-5 *2 (-915 *3)) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) (-2534 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) (-2565 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) (-2629 (*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-653 (-915 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) (-1950 (*1 *2 *1) (-12 (-5 *2 (-653 (-653 (-780)))) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-653 (-915 *3))) (-4 *3 (-1112)) (-5 *1 (-914 *3)))) (-4273 (*1 *1 *2) (-12 (-5 *2 (-653 (-915 *3))) (-4 *3 (-1112)) (-5 *1 (-914 *3)))) (-2912 (*1 *2 *1 *3) (-12 (-5 *2 (-1114 *3)) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) (-2778 (*1 *2 *1) (-12 (-5 *2 (-1114 (-1114 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) (-2912 (*1 *2 *1 *3) (-12 (-4 *4 (-1112)) (-5 *2 (-1114 (-1114 *4))) (-5 *1 (-914 *4)) (-5 *3 (-1114 *4)))) (-2912 (*1 *2 *1 *3) (-12 (-4 *4 (-1112)) (-5 *2 (-1114 (-653 *4))) (-5 *1 (-914 *4)) (-5 *3 (-653 *4)))) (-1547 (*1 *2 *3 *1) (-12 (-5 *3 (-915 *4)) (-4 *4 (-1112)) (-5 *2 (-112)) (-5 *1 (-914 *4)))) (-3467 (*1 *2 *3 *1) (-12 (-5 *3 (-915 *4)) (-4 *4 (-1112)) (-5 *2 (-653 (-780))) (-5 *1 (-914 *4)))) (-1659 (*1 *2 *3 *1) (-12 (-5 *3 (-915 *4)) (-4 *4 (-1112)) (-5 *2 (-653 (-780))) (-5 *1 (-914 *4)))) (-2755 (*1 *2 *1) (-12 (-5 *2 (-1114 *3)) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) (-3005 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) (-3027 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) (-1908 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-573)) (-5 *2 (-1285)) (-5 *1 (-914 *4)) (-4 *4 (-1112))))) +(-13 (-1112) (-10 -8 (-15 -2942 ((-653 (-915 |#1|)) $)) (-15 -4387 ((-653 (-915 |#1|)) $)) (-15 -2198 ((-915 |#1|) $ (-780))) (-15 -2819 ((-915 |#1|) $ (-573))) (-15 -2819 ((-915 |#1|) $)) (-15 -2534 ((-780) $)) (-15 -2565 ((-780) $)) (-15 -2629 ((-653 |#1|) $)) (-15 -1384 ((-653 (-915 |#1|)) $)) (-15 -1950 ((-653 (-653 (-780))) $)) (-15 -2942 ($ (-653 (-915 |#1|)))) (-15 -4273 ($ (-653 (-915 |#1|)))) (-15 -2912 ((-1114 |#1|) $ |#1|)) (-15 -2778 ((-1114 (-1114 |#1|)) $)) (-15 -2912 ((-1114 (-1114 |#1|)) $ (-1114 |#1|))) (-15 -2912 ((-1114 (-653 |#1|)) $ (-653 |#1|))) (-15 -1547 ((-112) (-915 |#1|) $)) (-15 -3467 ((-653 (-780)) (-915 |#1|) $)) (-15 -1659 ((-653 (-780)) (-915 |#1|) $)) (-15 -2755 ((-1114 |#1|) $)) (-15 -3005 ((-112) $ $)) (-15 -3027 ((-112) $ $)) (-15 -1908 ((-1285) $)) (-15 -1908 ((-1285) $ (-573) (-573))))) +((-2848 (((-112) $ $) NIL)) (-2755 (((-1114 |#1|) $) 60)) (-2770 (((-653 $) (-653 $)) 103)) (-1983 (((-573) $) 83)) (-2579 (($) NIL T CONST)) (-2232 (((-3 $ "failed") $) NIL)) (-2534 (((-780) $) 80)) (-2912 (((-1114 |#1|) $ |#1|) 70)) (-1959 (((-112) $) NIL)) (-2250 (((-112) $) 88)) (-1843 (((-780) $) 84)) (-3659 (($ $ $) NIL (-2817 (|has| |#1| (-376)) (|has| |#1| (-859))))) (-3751 (($ $ $) NIL (-2817 (|has| |#1| (-376)) (|has| |#1| (-859))))) (-3668 (((-2 (|:| |preimage| (-653 |#1|)) (|:| |image| (-653 |#1|))) $) 55)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 130)) (-3965 (((-1132) $) NIL)) (-2797 (((-1114 |#1|) $) 136 (|has| |#1| (-376)))) (-2270 (((-112) $) 81)) (-2198 ((|#1| $ |#1|) 68)) (-2565 (((-780) $) 62)) (-3640 (($ (-653 (-653 |#1|))) 118)) (-2433 (((-983) $) 74)) (-2295 (($ (-653 |#1|)) 32)) (-3204 (($ $ $) NIL)) (-4380 (($ $ $) NIL)) (-3610 (($ (-653 (-653 |#1|))) 57)) (-1686 (($ (-653 (-653 |#1|))) 123)) (-3543 (($ (-653 |#1|)) 132)) (-2942 (((-871) $) 117) (($ (-653 (-653 |#1|))) 91) (($ (-653 |#1|)) 92)) (-3507 (((-112) $ $) NIL)) (-2144 (($) 24 T CONST)) (-3040 (((-112) $ $) NIL (-2817 (|has| |#1| (-376)) (|has| |#1| (-859))))) (-3015 (((-112) $ $) NIL (-2817 (|has| |#1| (-376)) (|has| |#1| (-859))))) (-2981 (((-112) $ $) 66)) (-3027 (((-112) $ $) NIL (-2817 (|has| |#1| (-376)) (|has| |#1| (-859))))) (-3005 (((-112) $ $) 90)) (-3103 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ $ $) 33))) +(((-915 |#1|) (-13 (-913 |#1|) (-10 -8 (-15 -3668 ((-2 (|:| |preimage| (-653 |#1|)) (|:| |image| (-653 |#1|))) $)) (-15 -3610 ($ (-653 (-653 |#1|)))) (-15 -2942 ($ (-653 (-653 |#1|)))) (-15 -2942 ($ (-653 |#1|))) (-15 -1686 ($ (-653 (-653 |#1|)))) (-15 -2565 ((-780) $)) (-15 -2433 ((-983) $)) (-15 -2534 ((-780) $)) (-15 -1843 ((-780) $)) (-15 -1983 ((-573) $)) (-15 -2270 ((-112) $)) (-15 -2250 ((-112) $)) (-15 -2770 ((-653 $) (-653 $))) (IF (|has| |#1| (-376)) (-15 -2797 ((-1114 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-554)) (-15 -3543 ($ (-653 |#1|))) (IF (|has| |#1| (-376)) (-15 -3543 ($ (-653 |#1|))) |%noBranch|)))) (-1112)) (T -915)) +((-3668 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-653 *3)) (|:| |image| (-653 *3)))) (-5 *1 (-915 *3)) (-4 *3 (-1112)))) (-3610 (*1 *1 *2) (-12 (-5 *2 (-653 (-653 *3))) (-4 *3 (-1112)) (-5 *1 (-915 *3)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-653 (-653 *3))) (-4 *3 (-1112)) (-5 *1 (-915 *3)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-915 *3)))) (-1686 (*1 *1 *2) (-12 (-5 *2 (-653 (-653 *3))) (-4 *3 (-1112)) (-5 *1 (-915 *3)))) (-2565 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-915 *3)) (-4 *3 (-1112)))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-983)) (-5 *1 (-915 *3)) (-4 *3 (-1112)))) (-2534 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-915 *3)) (-4 *3 (-1112)))) (-1843 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-915 *3)) (-4 *3 (-1112)))) (-1983 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-915 *3)) (-4 *3 (-1112)))) (-2270 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-915 *3)) (-4 *3 (-1112)))) (-2250 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-915 *3)) (-4 *3 (-1112)))) (-2770 (*1 *2 *2) (-12 (-5 *2 (-653 (-915 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1112)))) (-2797 (*1 *2 *1) (-12 (-5 *2 (-1114 *3)) (-5 *1 (-915 *3)) (-4 *3 (-376)) (-4 *3 (-1112)))) (-3543 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-915 *3))))) +(-13 (-913 |#1|) (-10 -8 (-15 -3668 ((-2 (|:| |preimage| (-653 |#1|)) (|:| |image| (-653 |#1|))) $)) (-15 -3610 ($ (-653 (-653 |#1|)))) (-15 -2942 ($ (-653 (-653 |#1|)))) (-15 -2942 ($ (-653 |#1|))) (-15 -1686 ($ (-653 (-653 |#1|)))) (-15 -2565 ((-780) $)) (-15 -2433 ((-983) $)) (-15 -2534 ((-780) $)) (-15 -1843 ((-780) $)) (-15 -1983 ((-573) $)) (-15 -2270 ((-112) $)) (-15 -2250 ((-112) $)) (-15 -2770 ((-653 $) (-653 $))) (IF (|has| |#1| (-376)) (-15 -2797 ((-1114 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-554)) (-15 -3543 ($ (-653 |#1|))) (IF (|has| |#1| (-376)) (-15 -3543 ($ (-653 |#1|))) |%noBranch|)))) +((-2767 (((-3 (-653 (-1185 |#4|)) "failed") (-653 (-1185 |#4|)) (-1185 |#4|)) 160)) (-1673 ((|#1|) 97)) (-1434 (((-427 (-1185 |#4|)) (-1185 |#4|)) 169)) (-1865 (((-427 (-1185 |#4|)) (-653 |#3|) (-1185 |#4|)) 84)) (-3099 (((-427 (-1185 |#4|)) (-1185 |#4|)) 179)) (-1790 (((-3 (-653 (-1185 |#4|)) "failed") (-653 (-1185 |#4|)) (-1185 |#4|) |#3|) 113))) +(((-916 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2767 ((-3 (-653 (-1185 |#4|)) "failed") (-653 (-1185 |#4|)) (-1185 |#4|))) (-15 -3099 ((-427 (-1185 |#4|)) (-1185 |#4|))) (-15 -1434 ((-427 (-1185 |#4|)) (-1185 |#4|))) (-15 -1673 (|#1|)) (-15 -1790 ((-3 (-653 (-1185 |#4|)) "failed") (-653 (-1185 |#4|)) (-1185 |#4|) |#3|)) (-15 -1865 ((-427 (-1185 |#4|)) (-653 |#3|) (-1185 |#4|)))) (-919) (-802) (-859) (-959 |#1| |#2| |#3|)) (T -916)) +((-1865 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *7)) (-4 *7 (-859)) (-4 *5 (-919)) (-4 *6 (-802)) (-4 *8 (-959 *5 *6 *7)) (-5 *2 (-427 (-1185 *8))) (-5 *1 (-916 *5 *6 *7 *8)) (-5 *4 (-1185 *8)))) (-1790 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-653 (-1185 *7))) (-5 *3 (-1185 *7)) (-4 *7 (-959 *5 *6 *4)) (-4 *5 (-919)) (-4 *6 (-802)) (-4 *4 (-859)) (-5 *1 (-916 *5 *6 *4 *7)))) (-1673 (*1 *2) (-12 (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-919)) (-5 *1 (-916 *2 *3 *4 *5)) (-4 *5 (-959 *2 *3 *4)))) (-1434 (*1 *2 *3) (-12 (-4 *4 (-919)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-959 *4 *5 *6)) (-5 *2 (-427 (-1185 *7))) (-5 *1 (-916 *4 *5 *6 *7)) (-5 *3 (-1185 *7)))) (-3099 (*1 *2 *3) (-12 (-4 *4 (-919)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-959 *4 *5 *6)) (-5 *2 (-427 (-1185 *7))) (-5 *1 (-916 *4 *5 *6 *7)) (-5 *3 (-1185 *7)))) (-2767 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-653 (-1185 *7))) (-5 *3 (-1185 *7)) (-4 *7 (-959 *4 *5 *6)) (-4 *4 (-919)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-916 *4 *5 *6 *7))))) +(-10 -7 (-15 -2767 ((-3 (-653 (-1185 |#4|)) "failed") (-653 (-1185 |#4|)) (-1185 |#4|))) (-15 -3099 ((-427 (-1185 |#4|)) (-1185 |#4|))) (-15 -1434 ((-427 (-1185 |#4|)) (-1185 |#4|))) (-15 -1673 (|#1|)) (-15 -1790 ((-3 (-653 (-1185 |#4|)) "failed") (-653 (-1185 |#4|)) (-1185 |#4|) |#3|)) (-15 -1865 ((-427 (-1185 |#4|)) (-653 |#3|) (-1185 |#4|)))) +((-2767 (((-3 (-653 (-1185 |#2|)) "failed") (-653 (-1185 |#2|)) (-1185 |#2|)) 39)) (-1673 ((|#1|) 72)) (-1434 (((-427 (-1185 |#2|)) (-1185 |#2|)) 121)) (-1865 (((-427 (-1185 |#2|)) (-1185 |#2|)) 105)) (-3099 (((-427 (-1185 |#2|)) (-1185 |#2|)) 132))) +(((-917 |#1| |#2|) (-10 -7 (-15 -2767 ((-3 (-653 (-1185 |#2|)) "failed") (-653 (-1185 |#2|)) (-1185 |#2|))) (-15 -3099 ((-427 (-1185 |#2|)) (-1185 |#2|))) (-15 -1434 ((-427 (-1185 |#2|)) (-1185 |#2|))) (-15 -1673 (|#1|)) (-15 -1865 ((-427 (-1185 |#2|)) (-1185 |#2|)))) (-919) (-1256 |#1|)) (T -917)) +((-1865 (*1 *2 *3) (-12 (-4 *4 (-919)) (-4 *5 (-1256 *4)) (-5 *2 (-427 (-1185 *5))) (-5 *1 (-917 *4 *5)) (-5 *3 (-1185 *5)))) (-1673 (*1 *2) (-12 (-4 *2 (-919)) (-5 *1 (-917 *2 *3)) (-4 *3 (-1256 *2)))) (-1434 (*1 *2 *3) (-12 (-4 *4 (-919)) (-4 *5 (-1256 *4)) (-5 *2 (-427 (-1185 *5))) (-5 *1 (-917 *4 *5)) (-5 *3 (-1185 *5)))) (-3099 (*1 *2 *3) (-12 (-4 *4 (-919)) (-4 *5 (-1256 *4)) (-5 *2 (-427 (-1185 *5))) (-5 *1 (-917 *4 *5)) (-5 *3 (-1185 *5)))) (-2767 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-653 (-1185 *5))) (-5 *3 (-1185 *5)) (-4 *5 (-1256 *4)) (-4 *4 (-919)) (-5 *1 (-917 *4 *5))))) +(-10 -7 (-15 -2767 ((-3 (-653 (-1185 |#2|)) "failed") (-653 (-1185 |#2|)) (-1185 |#2|))) (-15 -3099 ((-427 (-1185 |#2|)) (-1185 |#2|))) (-15 -1434 ((-427 (-1185 |#2|)) (-1185 |#2|))) (-15 -1673 (|#1|)) (-15 -1865 ((-427 (-1185 |#2|)) (-1185 |#2|)))) +((-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) 42)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 18)) (-4279 (((-3 $ "failed") $) 36))) +(((-918 |#1|) (-10 -8 (-15 -4279 ((-3 |#1| "failed") |#1|)) (-15 -3711 ((-3 (-653 (-1185 |#1|)) "failed") (-653 (-1185 |#1|)) (-1185 |#1|))) (-15 -2888 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)))) (-919)) (T -918)) +NIL +(-10 -8 (-15 -4279 ((-3 |#1| "failed") |#1|)) (-15 -3711 ((-3 (-653 (-1185 |#1|)) "failed") (-653 (-1185 |#1|)) (-1185 |#1|))) (-15 -2888 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-2983 (((-3 $ "failed") $ $) 20)) (-1600 (((-427 (-1185 $)) (-1185 $)) 66)) (-4285 (($ $) 57)) (-2427 (((-427 $) $) 58)) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) 63)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-2696 (((-112) $) 59)) (-1959 (((-112) $) 35)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-2963 (((-427 (-1185 $)) (-1185 $)) 64)) (-1655 (((-427 (-1185 $)) (-1185 $)) 65)) (-4218 (((-427 $) $) 56)) (-2837 (((-3 $ "failed") $ $) 48)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) 62 (|has| $ (-146)))) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49)) (-4279 (((-3 $ "failed") $) 61 (|has| $ (-146)))) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) +(((-919) (-141)) (T -919)) +((-2888 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *1)) (-4 *1 (-919)))) (-1600 (*1 *2 *3) (-12 (-4 *1 (-919)) (-5 *2 (-427 (-1185 *1))) (-5 *3 (-1185 *1)))) (-1655 (*1 *2 *3) (-12 (-4 *1 (-919)) (-5 *2 (-427 (-1185 *1))) (-5 *3 (-1185 *1)))) (-2963 (*1 *2 *3) (-12 (-4 *1 (-919)) (-5 *2 (-427 (-1185 *1))) (-5 *3 (-1185 *1)))) (-3711 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-653 (-1185 *1))) (-5 *3 (-1185 *1)) (-4 *1 (-919)))) (-1443 (*1 *2 *3) (|partial| -12 (-5 *3 (-698 *1)) (-4 *1 (-146)) (-4 *1 (-919)) (-5 *2 (-1280 *1)))) (-4279 (*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-919))))) +(-13 (-1234) (-10 -8 (-15 -1600 ((-427 (-1185 $)) (-1185 $))) (-15 -1655 ((-427 (-1185 $)) (-1185 $))) (-15 -2963 ((-427 (-1185 $)) (-1185 $))) (-15 -2888 ((-1185 $) (-1185 $) (-1185 $))) (-15 -3711 ((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $))) (IF (|has| $ (-146)) (PROGN (-15 -1443 ((-3 (-1280 $) "failed") (-698 $))) (-15 -4279 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-297) . T) ((-461) . T) ((-565) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-649 $) . T) ((-726 $) . T) ((-735) . T) ((-1063 $) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1234) . T)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-3511 (((-112) $) NIL)) (-3115 (((-780)) NIL)) (-1635 (($ $ (-931)) NIL (|has| $ (-376))) (($ $) NIL)) (-2604 (((-1202 (-931) (-780)) (-573)) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-1486 (((-780)) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 $ "failed") $) NIL)) (-2205 (($ $) NIL)) (-2854 (($ (-1280 $)) NIL)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) NIL)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-3731 (($) NIL)) (-1708 (((-112) $) NIL)) (-2104 (($ $) NIL) (($ $ (-780)) NIL)) (-2696 (((-112) $) NIL)) (-2534 (((-842 (-931)) $) NIL) (((-931) $) NIL)) (-1959 (((-112) $) NIL)) (-4081 (($) NIL (|has| $ (-376)))) (-3514 (((-112) $) NIL (|has| $ (-376)))) (-3421 (($ $ (-931)) NIL (|has| $ (-376))) (($ $) NIL)) (-1470 (((-3 $ "failed") $) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2297 (((-1185 $) $ (-931)) NIL (|has| $ (-376))) (((-1185 $) $) NIL)) (-3589 (((-931) $) NIL)) (-2991 (((-1185 $) $) NIL (|has| $ (-376)))) (-2700 (((-3 (-1185 $) "failed") $ $) NIL (|has| $ (-376))) (((-1185 $) $) NIL (|has| $ (-376)))) (-2840 (($ $ (-1185 $)) NIL (|has| $ (-376)))) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL T CONST)) (-2575 (($ (-931)) NIL)) (-2772 (((-112) $) NIL)) (-3965 (((-1132) $) NIL)) (-2969 (($) NIL (|has| $ (-376)))) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) NIL)) (-4218 (((-427 $) $) NIL)) (-3216 (((-931)) NIL) (((-842 (-931))) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-1637 (((-3 (-780) "failed") $ $) NIL) (((-780) $) NIL)) (-2365 (((-135)) NIL)) (-3904 (($ $) NIL) (($ $ (-780)) NIL)) (-2565 (((-931) $) NIL) (((-842 (-931)) $) NIL)) (-2984 (((-1185 $)) NIL)) (-2510 (($) NIL)) (-4232 (($) NIL (|has| $ (-376)))) (-2123 (((-698 $) (-1280 $)) NIL) (((-1280 $) $) NIL)) (-1835 (((-573) $) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL)) (-4279 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $) (-931)) NIL) (((-1280 $)) NIL)) (-2516 (((-112) $ $) NIL)) (-4333 (((-112) $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-1629 (($ $ (-780)) NIL (|has| $ (-376))) (($ $) NIL (|has| $ (-376)))) (-3609 (($ $) NIL) (($ $ (-780)) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL))) +(((-920 |#1|) (-13 (-357) (-336 $) (-623 (-573))) (-931)) (T -920)) +NIL +(-13 (-357) (-336 $) (-623 (-573))) +((-1381 (((-3 (-2 (|:| -2534 (-780)) (|:| -2708 |#5|)) "failed") (-344 |#2| |#3| |#4| |#5|)) 77)) (-1906 (((-112) (-344 |#2| |#3| |#4| |#5|)) 17)) (-2534 (((-3 (-780) "failed") (-344 |#2| |#3| |#4| |#5|)) 15))) +(((-921 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2534 ((-3 (-780) "failed") (-344 |#2| |#3| |#4| |#5|))) (-15 -1906 ((-112) (-344 |#2| |#3| |#4| |#5|))) (-15 -1381 ((-3 (-2 (|:| -2534 (-780)) (|:| -2708 |#5|)) "failed") (-344 |#2| |#3| |#4| |#5|)))) (-13 (-565) (-1050 (-573))) (-439 |#1|) (-1256 |#2|) (-1256 (-416 |#3|)) (-350 |#2| |#3| |#4|)) (T -921)) +((-1381 (*1 *2 *3) (|partial| -12 (-5 *3 (-344 *5 *6 *7 *8)) (-4 *5 (-439 *4)) (-4 *6 (-1256 *5)) (-4 *7 (-1256 (-416 *6))) (-4 *8 (-350 *5 *6 *7)) (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *2 (-2 (|:| -2534 (-780)) (|:| -2708 *8))) (-5 *1 (-921 *4 *5 *6 *7 *8)))) (-1906 (*1 *2 *3) (-12 (-5 *3 (-344 *5 *6 *7 *8)) (-4 *5 (-439 *4)) (-4 *6 (-1256 *5)) (-4 *7 (-1256 (-416 *6))) (-4 *8 (-350 *5 *6 *7)) (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *2 (-112)) (-5 *1 (-921 *4 *5 *6 *7 *8)))) (-2534 (*1 *2 *3) (|partial| -12 (-5 *3 (-344 *5 *6 *7 *8)) (-4 *5 (-439 *4)) (-4 *6 (-1256 *5)) (-4 *7 (-1256 (-416 *6))) (-4 *8 (-350 *5 *6 *7)) (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *2 (-780)) (-5 *1 (-921 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -2534 ((-3 (-780) "failed") (-344 |#2| |#3| |#4| |#5|))) (-15 -1906 ((-112) (-344 |#2| |#3| |#4| |#5|))) (-15 -1381 ((-3 (-2 (|:| -2534 (-780)) (|:| -2708 |#5|)) "failed") (-344 |#2| |#3| |#4| |#5|)))) +((-1381 (((-3 (-2 (|:| -2534 (-780)) (|:| -2708 |#3|)) "failed") (-344 (-416 (-573)) |#1| |#2| |#3|)) 64)) (-1906 (((-112) (-344 (-416 (-573)) |#1| |#2| |#3|)) 16)) (-2534 (((-3 (-780) "failed") (-344 (-416 (-573)) |#1| |#2| |#3|)) 14))) +(((-922 |#1| |#2| |#3|) (-10 -7 (-15 -2534 ((-3 (-780) "failed") (-344 (-416 (-573)) |#1| |#2| |#3|))) (-15 -1906 ((-112) (-344 (-416 (-573)) |#1| |#2| |#3|))) (-15 -1381 ((-3 (-2 (|:| -2534 (-780)) (|:| -2708 |#3|)) "failed") (-344 (-416 (-573)) |#1| |#2| |#3|)))) (-1256 (-416 (-573))) (-1256 (-416 |#1|)) (-350 (-416 (-573)) |#1| |#2|)) (T -922)) +((-1381 (*1 *2 *3) (|partial| -12 (-5 *3 (-344 (-416 (-573)) *4 *5 *6)) (-4 *4 (-1256 (-416 (-573)))) (-4 *5 (-1256 (-416 *4))) (-4 *6 (-350 (-416 (-573)) *4 *5)) (-5 *2 (-2 (|:| -2534 (-780)) (|:| -2708 *6))) (-5 *1 (-922 *4 *5 *6)))) (-1906 (*1 *2 *3) (-12 (-5 *3 (-344 (-416 (-573)) *4 *5 *6)) (-4 *4 (-1256 (-416 (-573)))) (-4 *5 (-1256 (-416 *4))) (-4 *6 (-350 (-416 (-573)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-922 *4 *5 *6)))) (-2534 (*1 *2 *3) (|partial| -12 (-5 *3 (-344 (-416 (-573)) *4 *5 *6)) (-4 *4 (-1256 (-416 (-573)))) (-4 *5 (-1256 (-416 *4))) (-4 *6 (-350 (-416 (-573)) *4 *5)) (-5 *2 (-780)) (-5 *1 (-922 *4 *5 *6))))) +(-10 -7 (-15 -2534 ((-3 (-780) "failed") (-344 (-416 (-573)) |#1| |#2| |#3|))) (-15 -1906 ((-112) (-344 (-416 (-573)) |#1| |#2| |#3|))) (-15 -1381 ((-3 (-2 (|:| -2534 (-780)) (|:| -2708 |#3|)) "failed") (-344 (-416 (-573)) |#1| |#2| |#3|)))) +((-3518 ((|#2| |#2|) 26)) (-1603 (((-573) (-653 (-2 (|:| |den| (-573)) (|:| |gcdnum| (-573))))) 15)) (-1531 (((-931) (-573)) 38)) (-4008 (((-573) |#2|) 45)) (-3198 (((-573) |#2|) 21) (((-2 (|:| |den| (-573)) (|:| |gcdnum| (-573))) |#1|) 20))) +(((-923 |#1| |#2|) (-10 -7 (-15 -1531 ((-931) (-573))) (-15 -3198 ((-2 (|:| |den| (-573)) (|:| |gcdnum| (-573))) |#1|)) (-15 -3198 ((-573) |#2|)) (-15 -1603 ((-573) (-653 (-2 (|:| |den| (-573)) (|:| |gcdnum| (-573)))))) (-15 -4008 ((-573) |#2|)) (-15 -3518 (|#2| |#2|))) (-1256 (-416 (-573))) (-1256 (-416 |#1|))) (T -923)) +((-3518 (*1 *2 *2) (-12 (-4 *3 (-1256 (-416 (-573)))) (-5 *1 (-923 *3 *2)) (-4 *2 (-1256 (-416 *3))))) (-4008 (*1 *2 *3) (-12 (-4 *4 (-1256 (-416 *2))) (-5 *2 (-573)) (-5 *1 (-923 *4 *3)) (-4 *3 (-1256 (-416 *4))))) (-1603 (*1 *2 *3) (-12 (-5 *3 (-653 (-2 (|:| |den| (-573)) (|:| |gcdnum| (-573))))) (-4 *4 (-1256 (-416 *2))) (-5 *2 (-573)) (-5 *1 (-923 *4 *5)) (-4 *5 (-1256 (-416 *4))))) (-3198 (*1 *2 *3) (-12 (-4 *4 (-1256 (-416 *2))) (-5 *2 (-573)) (-5 *1 (-923 *4 *3)) (-4 *3 (-1256 (-416 *4))))) (-3198 (*1 *2 *3) (-12 (-4 *3 (-1256 (-416 (-573)))) (-5 *2 (-2 (|:| |den| (-573)) (|:| |gcdnum| (-573)))) (-5 *1 (-923 *3 *4)) (-4 *4 (-1256 (-416 *3))))) (-1531 (*1 *2 *3) (-12 (-5 *3 (-573)) (-4 *4 (-1256 (-416 *3))) (-5 *2 (-931)) (-5 *1 (-923 *4 *5)) (-4 *5 (-1256 (-416 *4)))))) +(-10 -7 (-15 -1531 ((-931) (-573))) (-15 -3198 ((-2 (|:| |den| (-573)) (|:| |gcdnum| (-573))) |#1|)) (-15 -3198 ((-573) |#2|)) (-15 -1603 ((-573) (-653 (-2 (|:| |den| (-573)) (|:| |gcdnum| (-573)))))) (-15 -4008 ((-573) |#2|)) (-15 -3518 (|#2| |#2|))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3770 ((|#1| $) 100)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-2579 (($) NIL T CONST)) (-2784 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $) 94)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-3802 (($ |#1| (-427 |#1|)) 92)) (-2677 (((-1185 |#1|) |#1| |#1|) 53)) (-3016 (($ $) 61)) (-1959 (((-112) $) NIL)) (-3920 (((-573) $) 97)) (-3804 (($ $ (-573)) 99)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-1944 ((|#1| $) 96)) (-1987 (((-427 |#1|) $) 95)) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) 93)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3367 (($ $) 50)) (-2942 (((-871) $) 124) (($ (-573)) 73) (($ $) NIL) (($ (-416 (-573))) NIL) (($ |#1|) 41) (((-416 |#1|) $) 78) (($ (-416 (-427 |#1|))) 86)) (-1545 (((-780)) 71 T CONST)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-2132 (($) 26 T CONST)) (-2144 (($) 15 T CONST)) (-2981 (((-112) $ $) 87)) (-3103 (($ $ $) NIL)) (-3093 (($ $) 108) (($ $ $) NIL)) (-3077 (($ $ $) 49)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 110) (($ $ $) 48) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL))) +(((-924 |#1|) (-13 (-371) (-38 |#1|) (-10 -8 (-15 -2942 ((-416 |#1|) $)) (-15 -2942 ($ (-416 (-427 |#1|)))) (-15 -3367 ($ $)) (-15 -1987 ((-427 |#1|) $)) (-15 -1944 (|#1| $)) (-15 -3804 ($ $ (-573))) (-15 -3920 ((-573) $)) (-15 -2677 ((-1185 |#1|) |#1| |#1|)) (-15 -3016 ($ $)) (-15 -3802 ($ |#1| (-427 |#1|))) (-15 -3770 (|#1| $)))) (-314)) (T -924)) +((-2942 (*1 *2 *1) (-12 (-5 *2 (-416 *3)) (-5 *1 (-924 *3)) (-4 *3 (-314)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-416 (-427 *3))) (-4 *3 (-314)) (-5 *1 (-924 *3)))) (-3367 (*1 *1 *1) (-12 (-5 *1 (-924 *2)) (-4 *2 (-314)))) (-1987 (*1 *2 *1) (-12 (-5 *2 (-427 *3)) (-5 *1 (-924 *3)) (-4 *3 (-314)))) (-1944 (*1 *2 *1) (-12 (-5 *1 (-924 *2)) (-4 *2 (-314)))) (-3804 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-924 *3)) (-4 *3 (-314)))) (-3920 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-924 *3)) (-4 *3 (-314)))) (-2677 (*1 *2 *3 *3) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-924 *3)) (-4 *3 (-314)))) (-3016 (*1 *1 *1) (-12 (-5 *1 (-924 *2)) (-4 *2 (-314)))) (-3802 (*1 *1 *2 *3) (-12 (-5 *3 (-427 *2)) (-4 *2 (-314)) (-5 *1 (-924 *2)))) (-3770 (*1 *2 *1) (-12 (-5 *1 (-924 *2)) (-4 *2 (-314))))) +(-13 (-371) (-38 |#1|) (-10 -8 (-15 -2942 ((-416 |#1|) $)) (-15 -2942 ($ (-416 (-427 |#1|)))) (-15 -3367 ($ $)) (-15 -1987 ((-427 |#1|) $)) (-15 -1944 (|#1| $)) (-15 -3804 ($ $ (-573))) (-15 -3920 ((-573) $)) (-15 -2677 ((-1185 |#1|) |#1| |#1|)) (-15 -3016 ($ $)) (-15 -3802 ($ |#1| (-427 |#1|))) (-15 -3770 (|#1| $)))) +((-3802 (((-52) (-962 |#1|) (-427 (-962 |#1|)) (-1189)) 17) (((-52) (-416 (-962 |#1|)) (-1189)) 18))) +(((-925 |#1|) (-10 -7 (-15 -3802 ((-52) (-416 (-962 |#1|)) (-1189))) (-15 -3802 ((-52) (-962 |#1|) (-427 (-962 |#1|)) (-1189)))) (-13 (-314) (-148))) (T -925)) +((-3802 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-427 (-962 *6))) (-5 *5 (-1189)) (-5 *3 (-962 *6)) (-4 *6 (-13 (-314) (-148))) (-5 *2 (-52)) (-5 *1 (-925 *6)))) (-3802 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-1189)) (-4 *5 (-13 (-314) (-148))) (-5 *2 (-52)) (-5 *1 (-925 *5))))) +(-10 -7 (-15 -3802 ((-52) (-416 (-962 |#1|)) (-1189))) (-15 -3802 ((-52) (-962 |#1|) (-427 (-962 |#1|)) (-1189)))) +((-1829 ((|#4| (-653 |#4|)) 147) (((-1185 |#4|) (-1185 |#4|) (-1185 |#4|)) 84) ((|#4| |#4| |#4|) 146)) (-2872 (((-1185 |#4|) (-653 (-1185 |#4|))) 140) (((-1185 |#4|) (-1185 |#4|) (-1185 |#4|)) 61) ((|#4| (-653 |#4|)) 69) ((|#4| |#4| |#4|) 107))) +(((-926 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2872 (|#4| |#4| |#4|)) (-15 -2872 (|#4| (-653 |#4|))) (-15 -2872 ((-1185 |#4|) (-1185 |#4|) (-1185 |#4|))) (-15 -2872 ((-1185 |#4|) (-653 (-1185 |#4|)))) (-15 -1829 (|#4| |#4| |#4|)) (-15 -1829 ((-1185 |#4|) (-1185 |#4|) (-1185 |#4|))) (-15 -1829 (|#4| (-653 |#4|)))) (-802) (-859) (-314) (-959 |#3| |#1| |#2|)) (T -926)) +((-1829 (*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-959 *6 *4 *5)) (-5 *1 (-926 *4 *5 *6 *2)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-314)))) (-1829 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *6)) (-4 *6 (-959 *5 *3 *4)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *5 (-314)) (-5 *1 (-926 *3 *4 *5 *6)))) (-1829 (*1 *2 *2 *2) (-12 (-4 *3 (-802)) (-4 *4 (-859)) (-4 *5 (-314)) (-5 *1 (-926 *3 *4 *5 *2)) (-4 *2 (-959 *5 *3 *4)))) (-2872 (*1 *2 *3) (-12 (-5 *3 (-653 (-1185 *7))) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-314)) (-5 *2 (-1185 *7)) (-5 *1 (-926 *4 *5 *6 *7)) (-4 *7 (-959 *6 *4 *5)))) (-2872 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *6)) (-4 *6 (-959 *5 *3 *4)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *5 (-314)) (-5 *1 (-926 *3 *4 *5 *6)))) (-2872 (*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-959 *6 *4 *5)) (-5 *1 (-926 *4 *5 *6 *2)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-314)))) (-2872 (*1 *2 *2 *2) (-12 (-4 *3 (-802)) (-4 *4 (-859)) (-4 *5 (-314)) (-5 *1 (-926 *3 *4 *5 *2)) (-4 *2 (-959 *5 *3 *4))))) +(-10 -7 (-15 -2872 (|#4| |#4| |#4|)) (-15 -2872 (|#4| (-653 |#4|))) (-15 -2872 ((-1185 |#4|) (-1185 |#4|) (-1185 |#4|))) (-15 -2872 ((-1185 |#4|) (-653 (-1185 |#4|)))) (-15 -1829 (|#4| |#4| |#4|)) (-15 -1829 ((-1185 |#4|) (-1185 |#4|) (-1185 |#4|))) (-15 -1829 (|#4| (-653 |#4|)))) +((-1523 (((-914 (-573)) (-983)) 38) (((-914 (-573)) (-653 (-573))) 34)) (-3105 (((-914 (-573)) (-653 (-573))) 67) (((-914 (-573)) (-931)) 68)) (-3011 (((-914 (-573))) 39)) (-1623 (((-914 (-573))) 53) (((-914 (-573)) (-653 (-573))) 52)) (-2572 (((-914 (-573))) 51) (((-914 (-573)) (-653 (-573))) 50)) (-3144 (((-914 (-573))) 49) (((-914 (-573)) (-653 (-573))) 48)) (-2806 (((-914 (-573))) 47) (((-914 (-573)) (-653 (-573))) 46)) (-3303 (((-914 (-573))) 45) (((-914 (-573)) (-653 (-573))) 44)) (-1796 (((-914 (-573))) 55) (((-914 (-573)) (-653 (-573))) 54)) (-3351 (((-914 (-573)) (-653 (-573))) 72) (((-914 (-573)) (-931)) 74)) (-2739 (((-914 (-573)) (-653 (-573))) 69) (((-914 (-573)) (-931)) 70)) (-3901 (((-914 (-573)) (-653 (-573))) 65) (((-914 (-573)) (-931)) 66)) (-1887 (((-914 (-573)) (-653 (-931))) 57))) +(((-927) (-10 -7 (-15 -3105 ((-914 (-573)) (-931))) (-15 -3105 ((-914 (-573)) (-653 (-573)))) (-15 -3901 ((-914 (-573)) (-931))) (-15 -3901 ((-914 (-573)) (-653 (-573)))) (-15 -1887 ((-914 (-573)) (-653 (-931)))) (-15 -2739 ((-914 (-573)) (-931))) (-15 -2739 ((-914 (-573)) (-653 (-573)))) (-15 -3351 ((-914 (-573)) (-931))) (-15 -3351 ((-914 (-573)) (-653 (-573)))) (-15 -3303 ((-914 (-573)) (-653 (-573)))) (-15 -3303 ((-914 (-573)))) (-15 -2806 ((-914 (-573)) (-653 (-573)))) (-15 -2806 ((-914 (-573)))) (-15 -3144 ((-914 (-573)) (-653 (-573)))) (-15 -3144 ((-914 (-573)))) (-15 -2572 ((-914 (-573)) (-653 (-573)))) (-15 -2572 ((-914 (-573)))) (-15 -1623 ((-914 (-573)) (-653 (-573)))) (-15 -1623 ((-914 (-573)))) (-15 -1796 ((-914 (-573)) (-653 (-573)))) (-15 -1796 ((-914 (-573)))) (-15 -3011 ((-914 (-573)))) (-15 -1523 ((-914 (-573)) (-653 (-573)))) (-15 -1523 ((-914 (-573)) (-983))))) (T -927)) +((-1523 (*1 *2 *3) (-12 (-5 *3 (-983)) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-3011 (*1 *2) (-12 (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-1796 (*1 *2) (-12 (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-1623 (*1 *2) (-12 (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-1623 (*1 *2 *3) (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-2572 (*1 *2) (-12 (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-2572 (*1 *2 *3) (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-3144 (*1 *2) (-12 (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-3144 (*1 *2 *3) (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-2806 (*1 *2) (-12 (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-2806 (*1 *2 *3) (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-3303 (*1 *2) (-12 (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-3303 (*1 *2 *3) (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-2739 (*1 *2 *3) (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-2739 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-1887 (*1 *2 *3) (-12 (-5 *3 (-653 (-931))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-3901 (*1 *2 *3) (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-3901 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-3105 (*1 *2 *3) (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) (-3105 (*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-914 (-573))) (-5 *1 (-927))))) +(-10 -7 (-15 -3105 ((-914 (-573)) (-931))) (-15 -3105 ((-914 (-573)) (-653 (-573)))) (-15 -3901 ((-914 (-573)) (-931))) (-15 -3901 ((-914 (-573)) (-653 (-573)))) (-15 -1887 ((-914 (-573)) (-653 (-931)))) (-15 -2739 ((-914 (-573)) (-931))) (-15 -2739 ((-914 (-573)) (-653 (-573)))) (-15 -3351 ((-914 (-573)) (-931))) (-15 -3351 ((-914 (-573)) (-653 (-573)))) (-15 -3303 ((-914 (-573)) (-653 (-573)))) (-15 -3303 ((-914 (-573)))) (-15 -2806 ((-914 (-573)) (-653 (-573)))) (-15 -2806 ((-914 (-573)))) (-15 -3144 ((-914 (-573)) (-653 (-573)))) (-15 -3144 ((-914 (-573)))) (-15 -2572 ((-914 (-573)) (-653 (-573)))) (-15 -2572 ((-914 (-573)))) (-15 -1623 ((-914 (-573)) (-653 (-573)))) (-15 -1623 ((-914 (-573)))) (-15 -1796 ((-914 (-573)) (-653 (-573)))) (-15 -1796 ((-914 (-573)))) (-15 -3011 ((-914 (-573)))) (-15 -1523 ((-914 (-573)) (-653 (-573)))) (-15 -1523 ((-914 (-573)) (-983)))) +((-2306 (((-653 (-962 |#1|)) (-653 (-962 |#1|)) (-653 (-1189))) 14)) (-1461 (((-653 (-962 |#1|)) (-653 (-962 |#1|)) (-653 (-1189))) 13))) +(((-928 |#1|) (-10 -7 (-15 -1461 ((-653 (-962 |#1|)) (-653 (-962 |#1|)) (-653 (-1189)))) (-15 -2306 ((-653 (-962 |#1|)) (-653 (-962 |#1|)) (-653 (-1189))))) (-461)) (T -928)) +((-2306 (*1 *2 *2 *3) (-12 (-5 *2 (-653 (-962 *4))) (-5 *3 (-653 (-1189))) (-4 *4 (-461)) (-5 *1 (-928 *4)))) (-1461 (*1 *2 *2 *3) (-12 (-5 *2 (-653 (-962 *4))) (-5 *3 (-653 (-1189))) (-4 *4 (-461)) (-5 *1 (-928 *4))))) +(-10 -7 (-15 -1461 ((-653 (-962 |#1|)) (-653 (-962 |#1|)) (-653 (-1189)))) (-15 -2306 ((-653 (-962 |#1|)) (-653 (-962 |#1|)) (-653 (-1189))))) +((-2942 (((-323 |#1|) (-486)) 16))) +(((-929 |#1|) (-10 -7 (-15 -2942 ((-323 |#1|) (-486)))) (-565)) (T -929)) +((-2942 (*1 *2 *3) (-12 (-5 *3 (-486)) (-5 *2 (-323 *4)) (-5 *1 (-929 *4)) (-4 *4 (-565))))) +(-10 -7 (-15 -2942 ((-323 |#1|) (-486)))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 57)) (-1959 (((-112) $) 35)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-2837 (((-3 $ "failed") $ $) 48)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 56)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) +(((-930) (-141)) (T -930)) +((-2713 (*1 *2 *3) (-12 (-4 *1 (-930)) (-5 *2 (-2 (|:| -1857 (-653 *1)) (|:| -2969 *1))) (-5 *3 (-653 *1)))) (-3014 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-653 *1)) (-4 *1 (-930))))) +(-13 (-461) (-10 -8 (-15 -2713 ((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $))) (-15 -3014 ((-3 (-653 $) "failed") (-653 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-297) . T) ((-461) . T) ((-565) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-649 $) . T) ((-726 $) . T) ((-735) . T) ((-1063 $) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) +((-2848 (((-112) $ $) NIL)) (-2579 (($) NIL T CONST)) (-2232 (((-3 $ "failed") $) NIL)) (-1959 (((-112) $) NIL)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2872 (($ $ $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2144 (($) NIL T CONST)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-780)) NIL) (($ $ (-931)) NIL)) (* (($ (-931) $) NIL) (($ $ $) NIL))) +(((-931) (-13 (-803) (-735) (-10 -8 (-15 -2872 ($ $ $)) (-6 (-4457 "*"))))) (T -931)) +((-2872 (*1 *1 *1 *1) (-5 *1 (-931)))) +(-13 (-803) (-735) (-10 -8 (-15 -2872 ($ $ $)) (-6 (-4457 "*")))) ((|NonNegativeInteger|) (|%igt| |#1| 0)) -((-4315 ((|#2| (-654 |#1|) (-654 |#1|)) 28))) -(((-933 |#1| |#2|) (-10 -7 (-15 -4315 (|#2| (-654 |#1|) (-654 |#1|)))) (-372) (-1257 |#1|)) (T -933)) -((-4315 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-372)) (-4 *2 (-1257 *4)) (-5 *1 (-933 *4 *2))))) -(-10 -7 (-15 -4315 (|#2| (-654 |#1|) (-654 |#1|)))) -((-3896 (((-1186 |#2|) (-654 |#2|) (-654 |#2|)) 17) (((-1254 |#1| |#2|) (-1254 |#1| |#2|) (-654 |#2|) (-654 |#2|)) 13))) -(((-934 |#1| |#2|) (-10 -7 (-15 -3896 ((-1254 |#1| |#2|) (-1254 |#1| |#2|) (-654 |#2|) (-654 |#2|))) (-15 -3896 ((-1186 |#2|) (-654 |#2|) (-654 |#2|)))) (-1190) (-372)) (T -934)) -((-3896 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *5)) (-4 *5 (-372)) (-5 *2 (-1186 *5)) (-5 *1 (-934 *4 *5)) (-14 *4 (-1190)))) (-3896 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1254 *4 *5)) (-5 *3 (-654 *5)) (-14 *4 (-1190)) (-4 *5 (-372)) (-5 *1 (-934 *4 *5))))) -(-10 -7 (-15 -3896 ((-1254 |#1| |#2|) (-1254 |#1| |#2|) (-654 |#2|) (-654 |#2|))) (-15 -3896 ((-1186 |#2|) (-654 |#2|) (-654 |#2|)))) -((-2890 (((-574) (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|))))))))) (-1172)) 174)) (-4116 ((|#4| |#4|) 193)) (-2687 (((-654 (-417 (-963 |#1|))) (-654 (-1190))) 146)) (-2929 (((-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))) (-699 |#4|) (-654 (-417 (-963 |#1|))) (-654 (-654 |#4|)) (-781) (-781) (-574)) 88)) (-2469 (((-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|)))))) (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|)))))) (-654 |#4|)) 69)) (-3949 (((-699 |#4|) (-699 |#4|) (-654 |#4|)) 65)) (-2852 (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|))))))))) (-1172)) 186)) (-4121 (((-574) (-699 |#4|) (-932) (-1172)) 166) (((-574) (-699 |#4|) (-654 (-1190)) (-932) (-1172)) 165) (((-574) (-699 |#4|) (-654 |#4|) (-932) (-1172)) 164) (((-574) (-699 |#4|) (-1172)) 154) (((-574) (-699 |#4|) (-654 (-1190)) (-1172)) 153) (((-574) (-699 |#4|) (-654 |#4|) (-1172)) 152) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|) (-932)) 151) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|) (-654 (-1190)) (-932)) 150) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|) (-654 |#4|) (-932)) 149) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|)) 148) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|) (-654 (-1190))) 147) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|) (-654 |#4|)) 143)) (-2532 ((|#4| (-963 |#1|)) 80)) (-3571 (((-112) (-654 |#4|) (-654 (-654 |#4|))) 190)) (-2927 (((-654 (-654 (-574))) (-574) (-574)) 159)) (-2935 (((-654 (-654 |#4|)) (-654 (-654 |#4|))) 106)) (-2172 (((-781) (-654 (-2 (|:| -3584 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|))))) 100)) (-3308 (((-781) (-654 (-2 (|:| -3584 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|))))) 99)) (-2860 (((-112) (-654 (-963 |#1|))) 19) (((-112) (-654 |#4|)) 15)) (-2947 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-654 |#4|)) (|:| |n0| (-654 |#4|))) (-654 |#4|) (-654 |#4|)) 84)) (-1736 (((-654 |#4|) |#4|) 57)) (-4058 (((-654 (-417 (-963 |#1|))) (-654 |#4|)) 142) (((-699 (-417 (-963 |#1|))) (-699 |#4|)) 66) (((-417 (-963 |#1|)) |#4|) 139)) (-3306 (((-2 (|:| |rgl| (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|)))))))))) (|:| |rgsz| (-574))) (-699 |#4|) (-654 (-417 (-963 |#1|))) (-781) (-1172) (-574)) 112)) (-3495 (((-654 (-2 (|:| -3584 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))) (-699 |#4|) (-781)) 98)) (-3485 (((-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) (-699 |#4|) (-781)) 121)) (-2529 (((-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|)))))) (-2 (|:| -4340 (-699 (-417 (-963 |#1|)))) (|:| |vec| (-654 (-417 (-963 |#1|)))) (|:| -3584 (-781)) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) 56))) -(((-935 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4121 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|) (-654 |#4|))) (-15 -4121 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|) (-654 (-1190)))) (-15 -4121 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|))) (-15 -4121 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|) (-654 |#4|) (-932))) (-15 -4121 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|) (-654 (-1190)) (-932))) (-15 -4121 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|) (-932))) (-15 -4121 ((-574) (-699 |#4|) (-654 |#4|) (-1172))) (-15 -4121 ((-574) (-699 |#4|) (-654 (-1190)) (-1172))) (-15 -4121 ((-574) (-699 |#4|) (-1172))) (-15 -4121 ((-574) (-699 |#4|) (-654 |#4|) (-932) (-1172))) (-15 -4121 ((-574) (-699 |#4|) (-654 (-1190)) (-932) (-1172))) (-15 -4121 ((-574) (-699 |#4|) (-932) (-1172))) (-15 -2890 ((-574) (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|))))))))) (-1172))) (-15 -2852 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|))))))))) (-1172))) (-15 -3306 ((-2 (|:| |rgl| (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|)))))))))) (|:| |rgsz| (-574))) (-699 |#4|) (-654 (-417 (-963 |#1|))) (-781) (-1172) (-574))) (-15 -4058 ((-417 (-963 |#1|)) |#4|)) (-15 -4058 ((-699 (-417 (-963 |#1|))) (-699 |#4|))) (-15 -4058 ((-654 (-417 (-963 |#1|))) (-654 |#4|))) (-15 -2687 ((-654 (-417 (-963 |#1|))) (-654 (-1190)))) (-15 -2532 (|#4| (-963 |#1|))) (-15 -2947 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-654 |#4|)) (|:| |n0| (-654 |#4|))) (-654 |#4|) (-654 |#4|))) (-15 -3495 ((-654 (-2 (|:| -3584 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))) (-699 |#4|) (-781))) (-15 -2469 ((-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|)))))) (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|)))))) (-654 |#4|))) (-15 -2529 ((-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|)))))) (-2 (|:| -4340 (-699 (-417 (-963 |#1|)))) (|:| |vec| (-654 (-417 (-963 |#1|)))) (|:| -3584 (-781)) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (-15 -1736 ((-654 |#4|) |#4|)) (-15 -3308 ((-781) (-654 (-2 (|:| -3584 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))))) (-15 -2172 ((-781) (-654 (-2 (|:| -3584 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))))) (-15 -2935 ((-654 (-654 |#4|)) (-654 (-654 |#4|)))) (-15 -2927 ((-654 (-654 (-574))) (-574) (-574))) (-15 -3571 ((-112) (-654 |#4|) (-654 (-654 |#4|)))) (-15 -3485 ((-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) (-699 |#4|) (-781))) (-15 -3949 ((-699 |#4|) (-699 |#4|) (-654 |#4|))) (-15 -2929 ((-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))) (-699 |#4|) (-654 (-417 (-963 |#1|))) (-654 (-654 |#4|)) (-781) (-781) (-574))) (-15 -4116 (|#4| |#4|)) (-15 -2860 ((-112) (-654 |#4|))) (-15 -2860 ((-112) (-654 (-963 |#1|))))) (-13 (-315) (-148)) (-13 (-860) (-624 (-1190))) (-803) (-960 |#1| |#3| |#2|)) (T -935)) -((-2860 (*1 *2 *3) (-12 (-5 *3 (-654 (-963 *4))) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-112)) (-5 *1 (-935 *4 *5 *6 *7)) (-4 *7 (-960 *4 *6 *5)))) (-2860 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-960 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-112)) (-5 *1 (-935 *4 *5 *6 *7)))) (-4116 (*1 *2 *2) (-12 (-4 *3 (-13 (-315) (-148))) (-4 *4 (-13 (-860) (-624 (-1190)))) (-4 *5 (-803)) (-5 *1 (-935 *3 *4 *5 *2)) (-4 *2 (-960 *3 *5 *4)))) (-2929 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) (-5 *4 (-699 *12)) (-5 *5 (-654 (-417 (-963 *9)))) (-5 *6 (-654 (-654 *12))) (-5 *7 (-781)) (-5 *8 (-574)) (-4 *9 (-13 (-315) (-148))) (-4 *12 (-960 *9 *11 *10)) (-4 *10 (-13 (-860) (-624 (-1190)))) (-4 *11 (-803)) (-5 *2 (-2 (|:| |eqzro| (-654 *12)) (|:| |neqzro| (-654 *12)) (|:| |wcond| (-654 (-963 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 *9)))) (|:| -1882 (-654 (-1281 (-417 (-963 *9))))))))) (-5 *1 (-935 *9 *10 *11 *12)))) (-3949 (*1 *2 *2 *3) (-12 (-5 *2 (-699 *7)) (-5 *3 (-654 *7)) (-4 *7 (-960 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *1 (-935 *4 *5 *6 *7)))) (-3485 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-5 *4 (-781)) (-4 *8 (-960 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1190)))) (-4 *7 (-803)) (-5 *2 (-654 (-2 (|:| |det| *8) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (-5 *1 (-935 *5 *6 *7 *8)))) (-3571 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-654 *8))) (-5 *3 (-654 *8)) (-4 *8 (-960 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1190)))) (-4 *7 (-803)) (-5 *2 (-112)) (-5 *1 (-935 *5 *6 *7 *8)))) (-2927 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-654 (-654 (-574)))) (-5 *1 (-935 *4 *5 *6 *7)) (-5 *3 (-574)) (-4 *7 (-960 *4 *6 *5)))) (-2935 (*1 *2 *2) (-12 (-5 *2 (-654 (-654 *6))) (-4 *6 (-960 *3 *5 *4)) (-4 *3 (-13 (-315) (-148))) (-4 *4 (-13 (-860) (-624 (-1190)))) (-4 *5 (-803)) (-5 *1 (-935 *3 *4 *5 *6)))) (-2172 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -3584 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| *7) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 *7))))) (-4 *7 (-960 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-781)) (-5 *1 (-935 *4 *5 *6 *7)))) (-3308 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -3584 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| *7) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 *7))))) (-4 *7 (-960 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-781)) (-5 *1 (-935 *4 *5 *6 *7)))) (-1736 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-654 *3)) (-5 *1 (-935 *4 *5 *6 *3)) (-4 *3 (-960 *4 *6 *5)))) (-2529 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4340 (-699 (-417 (-963 *4)))) (|:| |vec| (-654 (-417 (-963 *4)))) (|:| -3584 (-781)) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-2 (|:| |partsol| (-1281 (-417 (-963 *4)))) (|:| -1882 (-654 (-1281 (-417 (-963 *4))))))) (-5 *1 (-935 *4 *5 *6 *7)) (-4 *7 (-960 *4 *6 *5)))) (-2469 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1281 (-417 (-963 *4)))) (|:| -1882 (-654 (-1281 (-417 (-963 *4))))))) (-5 *3 (-654 *7)) (-4 *4 (-13 (-315) (-148))) (-4 *7 (-960 *4 *6 *5)) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *1 (-935 *4 *5 *6 *7)))) (-3495 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-4 *8 (-960 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1190)))) (-4 *7 (-803)) (-5 *2 (-654 (-2 (|:| -3584 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| *8) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 *8))))) (-5 *1 (-935 *5 *6 *7 *8)) (-5 *4 (-781)))) (-2947 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-4 *7 (-960 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-654 *7)) (|:| |n0| (-654 *7)))) (-5 *1 (-935 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-2532 (*1 *2 *3) (-12 (-5 *3 (-963 *4)) (-4 *4 (-13 (-315) (-148))) (-4 *2 (-960 *4 *6 *5)) (-5 *1 (-935 *4 *5 *6 *2)) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)))) (-2687 (*1 *2 *3) (-12 (-5 *3 (-654 (-1190))) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-654 (-417 (-963 *4)))) (-5 *1 (-935 *4 *5 *6 *7)) (-4 *7 (-960 *4 *6 *5)))) (-4058 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-960 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-654 (-417 (-963 *4)))) (-5 *1 (-935 *4 *5 *6 *7)))) (-4058 (*1 *2 *3) (-12 (-5 *3 (-699 *7)) (-4 *7 (-960 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-699 (-417 (-963 *4)))) (-5 *1 (-935 *4 *5 *6 *7)))) (-4058 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-417 (-963 *4))) (-5 *1 (-935 *4 *5 *6 *3)) (-4 *3 (-960 *4 *6 *5)))) (-3306 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-699 *11)) (-5 *4 (-654 (-417 (-963 *8)))) (-5 *5 (-781)) (-5 *6 (-1172)) (-4 *8 (-13 (-315) (-148))) (-4 *11 (-960 *8 *10 *9)) (-4 *9 (-13 (-860) (-624 (-1190)))) (-4 *10 (-803)) (-5 *2 (-2 (|:| |rgl| (-654 (-2 (|:| |eqzro| (-654 *11)) (|:| |neqzro| (-654 *11)) (|:| |wcond| (-654 (-963 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 *8)))) (|:| -1882 (-654 (-1281 (-417 (-963 *8)))))))))) (|:| |rgsz| (-574)))) (-5 *1 (-935 *8 *9 *10 *11)) (-5 *7 (-574)))) (-2852 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *7)) (|:| |neqzro| (-654 *7)) (|:| |wcond| (-654 (-963 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 *4)))) (|:| -1882 (-654 (-1281 (-417 (-963 *4)))))))))) (-5 *1 (-935 *4 *5 *6 *7)) (-4 *7 (-960 *4 *6 *5)))) (-2890 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) (|:| |wcond| (-654 (-963 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 *5)))) (|:| -1882 (-654 (-1281 (-417 (-963 *5)))))))))) (-5 *4 (-1172)) (-4 *5 (-13 (-315) (-148))) (-4 *8 (-960 *5 *7 *6)) (-4 *6 (-13 (-860) (-624 (-1190)))) (-4 *7 (-803)) (-5 *2 (-574)) (-5 *1 (-935 *5 *6 *7 *8)))) (-4121 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *9)) (-5 *4 (-932)) (-5 *5 (-1172)) (-4 *9 (-960 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1190)))) (-4 *8 (-803)) (-5 *2 (-574)) (-5 *1 (-935 *6 *7 *8 *9)))) (-4121 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-699 *10)) (-5 *4 (-654 (-1190))) (-5 *5 (-932)) (-5 *6 (-1172)) (-4 *10 (-960 *7 *9 *8)) (-4 *7 (-13 (-315) (-148))) (-4 *8 (-13 (-860) (-624 (-1190)))) (-4 *9 (-803)) (-5 *2 (-574)) (-5 *1 (-935 *7 *8 *9 *10)))) (-4121 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-699 *10)) (-5 *4 (-654 *10)) (-5 *5 (-932)) (-5 *6 (-1172)) (-4 *10 (-960 *7 *9 *8)) (-4 *7 (-13 (-315) (-148))) (-4 *8 (-13 (-860) (-624 (-1190)))) (-4 *9 (-803)) (-5 *2 (-574)) (-5 *1 (-935 *7 *8 *9 *10)))) (-4121 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-5 *4 (-1172)) (-4 *8 (-960 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1190)))) (-4 *7 (-803)) (-5 *2 (-574)) (-5 *1 (-935 *5 *6 *7 *8)))) (-4121 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 (-1190))) (-5 *5 (-1172)) (-4 *9 (-960 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1190)))) (-4 *8 (-803)) (-5 *2 (-574)) (-5 *1 (-935 *6 *7 *8 *9)))) (-4121 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 *9)) (-5 *5 (-1172)) (-4 *9 (-960 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1190)))) (-4 *8 (-803)) (-5 *2 (-574)) (-5 *1 (-935 *6 *7 *8 *9)))) (-4121 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-5 *4 (-932)) (-4 *8 (-960 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1190)))) (-4 *7 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) (|:| |wcond| (-654 (-963 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 *5)))) (|:| -1882 (-654 (-1281 (-417 (-963 *5)))))))))) (-5 *1 (-935 *5 *6 *7 *8)))) (-4121 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 (-1190))) (-5 *5 (-932)) (-4 *9 (-960 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1190)))) (-4 *8 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *9)) (|:| |neqzro| (-654 *9)) (|:| |wcond| (-654 (-963 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 *6)))) (|:| -1882 (-654 (-1281 (-417 (-963 *6)))))))))) (-5 *1 (-935 *6 *7 *8 *9)))) (-4121 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *9)) (-5 *5 (-932)) (-4 *9 (-960 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1190)))) (-4 *8 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *9)) (|:| |neqzro| (-654 *9)) (|:| |wcond| (-654 (-963 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 *6)))) (|:| -1882 (-654 (-1281 (-417 (-963 *6)))))))))) (-5 *1 (-935 *6 *7 *8 *9)) (-5 *4 (-654 *9)))) (-4121 (*1 *2 *3) (-12 (-5 *3 (-699 *7)) (-4 *7 (-960 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *7)) (|:| |neqzro| (-654 *7)) (|:| |wcond| (-654 (-963 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 *4)))) (|:| -1882 (-654 (-1281 (-417 (-963 *4)))))))))) (-5 *1 (-935 *4 *5 *6 *7)))) (-4121 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-5 *4 (-654 (-1190))) (-4 *8 (-960 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1190)))) (-4 *7 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) (|:| |wcond| (-654 (-963 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 *5)))) (|:| -1882 (-654 (-1281 (-417 (-963 *5)))))))))) (-5 *1 (-935 *5 *6 *7 *8)))) (-4121 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-4 *8 (-960 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1190)))) (-4 *7 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) (|:| |wcond| (-654 (-963 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 *5)))) (|:| -1882 (-654 (-1281 (-417 (-963 *5)))))))))) (-5 *1 (-935 *5 *6 *7 *8)) (-5 *4 (-654 *8))))) -(-10 -7 (-15 -4121 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|) (-654 |#4|))) (-15 -4121 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|) (-654 (-1190)))) (-15 -4121 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|))) (-15 -4121 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|) (-654 |#4|) (-932))) (-15 -4121 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|) (-654 (-1190)) (-932))) (-15 -4121 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|))))))))) (-699 |#4|) (-932))) (-15 -4121 ((-574) (-699 |#4|) (-654 |#4|) (-1172))) (-15 -4121 ((-574) (-699 |#4|) (-654 (-1190)) (-1172))) (-15 -4121 ((-574) (-699 |#4|) (-1172))) (-15 -4121 ((-574) (-699 |#4|) (-654 |#4|) (-932) (-1172))) (-15 -4121 ((-574) (-699 |#4|) (-654 (-1190)) (-932) (-1172))) (-15 -4121 ((-574) (-699 |#4|) (-932) (-1172))) (-15 -2890 ((-574) (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|))))))))) (-1172))) (-15 -2852 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|))))))))) (-1172))) (-15 -3306 ((-2 (|:| |rgl| (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|)))))))))) (|:| |rgsz| (-574))) (-699 |#4|) (-654 (-417 (-963 |#1|))) (-781) (-1172) (-574))) (-15 -4058 ((-417 (-963 |#1|)) |#4|)) (-15 -4058 ((-699 (-417 (-963 |#1|))) (-699 |#4|))) (-15 -4058 ((-654 (-417 (-963 |#1|))) (-654 |#4|))) (-15 -2687 ((-654 (-417 (-963 |#1|))) (-654 (-1190)))) (-15 -2532 (|#4| (-963 |#1|))) (-15 -2947 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-654 |#4|)) (|:| |n0| (-654 |#4|))) (-654 |#4|) (-654 |#4|))) (-15 -3495 ((-654 (-2 (|:| -3584 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))) (-699 |#4|) (-781))) (-15 -2469 ((-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|)))))) (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|)))))) (-654 |#4|))) (-15 -2529 ((-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|)))))) (-2 (|:| -4340 (-699 (-417 (-963 |#1|)))) (|:| |vec| (-654 (-417 (-963 |#1|)))) (|:| -3584 (-781)) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (-15 -1736 ((-654 |#4|) |#4|)) (-15 -3308 ((-781) (-654 (-2 (|:| -3584 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))))) (-15 -2172 ((-781) (-654 (-2 (|:| -3584 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))))) (-15 -2935 ((-654 (-654 |#4|)) (-654 (-654 |#4|)))) (-15 -2927 ((-654 (-654 (-574))) (-574) (-574))) (-15 -3571 ((-112) (-654 |#4|) (-654 (-654 |#4|)))) (-15 -3485 ((-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) (-699 |#4|) (-781))) (-15 -3949 ((-699 |#4|) (-699 |#4|) (-654 |#4|))) (-15 -2929 ((-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-963 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1281 (-417 (-963 |#1|)))) (|:| -1882 (-654 (-1281 (-417 (-963 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))) (-699 |#4|) (-654 (-417 (-963 |#1|))) (-654 (-654 |#4|)) (-781) (-781) (-574))) (-15 -4116 (|#4| |#4|)) (-15 -2860 ((-112) (-654 |#4|))) (-15 -2860 ((-112) (-654 (-963 |#1|))))) -((-2500 (((-938) |#1| (-1190)) 17) (((-938) |#1| (-1190) (-1107 (-227))) 21)) (-1873 (((-938) |#1| |#1| (-1190) (-1107 (-227))) 19) (((-938) |#1| (-1190) (-1107 (-227))) 15))) -(((-936 |#1|) (-10 -7 (-15 -1873 ((-938) |#1| (-1190) (-1107 (-227)))) (-15 -1873 ((-938) |#1| |#1| (-1190) (-1107 (-227)))) (-15 -2500 ((-938) |#1| (-1190) (-1107 (-227)))) (-15 -2500 ((-938) |#1| (-1190)))) (-624 (-546))) (T -936)) -((-2500 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-5 *2 (-938)) (-5 *1 (-936 *3)) (-4 *3 (-624 (-546))))) (-2500 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1190)) (-5 *5 (-1107 (-227))) (-5 *2 (-938)) (-5 *1 (-936 *3)) (-4 *3 (-624 (-546))))) (-1873 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1190)) (-5 *5 (-1107 (-227))) (-5 *2 (-938)) (-5 *1 (-936 *3)) (-4 *3 (-624 (-546))))) (-1873 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1190)) (-5 *5 (-1107 (-227))) (-5 *2 (-938)) (-5 *1 (-936 *3)) (-4 *3 (-624 (-546)))))) -(-10 -7 (-15 -1873 ((-938) |#1| (-1190) (-1107 (-227)))) (-15 -1873 ((-938) |#1| |#1| (-1190) (-1107 (-227)))) (-15 -2500 ((-938) |#1| (-1190) (-1107 (-227)))) (-15 -2500 ((-938) |#1| (-1190)))) -((-2277 (($ $ (-1107 (-227)) (-1107 (-227)) (-1107 (-227))) 121)) (-2437 (((-1107 (-227)) $) 64)) (-2424 (((-1107 (-227)) $) 63)) (-2411 (((-1107 (-227)) $) 62)) (-1581 (((-654 (-654 (-227))) $) 69)) (-3379 (((-1107 (-227)) $) 65)) (-2440 (((-574) (-574)) 57)) (-3438 (((-574) (-574)) 52)) (-2976 (((-574) (-574)) 55)) (-3344 (((-112) (-112)) 59)) (-1541 (((-574)) 56)) (-3445 (($ $ (-1107 (-227))) 124) (($ $) 125)) (-3882 (($ (-1 (-954 (-227)) (-227)) (-1107 (-227))) 131) (($ (-1 (-954 (-227)) (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227))) 132)) (-1873 (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1107 (-227))) 134) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227))) 135) (($ $ (-1107 (-227))) 127)) (-1734 (((-574)) 60)) (-2129 (((-574)) 50)) (-1375 (((-574)) 53)) (-1851 (((-654 (-654 (-954 (-227)))) $) 151)) (-4052 (((-112) (-112)) 61)) (-2943 (((-872) $) 149)) (-3695 (((-112)) 58))) -(((-937) (-13 (-987) (-10 -8 (-15 -3882 ($ (-1 (-954 (-227)) (-227)) (-1107 (-227)))) (-15 -3882 ($ (-1 (-954 (-227)) (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227)))) (-15 -1873 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1107 (-227)))) (-15 -1873 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227)))) (-15 -1873 ($ $ (-1107 (-227)))) (-15 -2277 ($ $ (-1107 (-227)) (-1107 (-227)) (-1107 (-227)))) (-15 -3445 ($ $ (-1107 (-227)))) (-15 -3445 ($ $)) (-15 -3379 ((-1107 (-227)) $)) (-15 -1581 ((-654 (-654 (-227))) $)) (-15 -2129 ((-574))) (-15 -3438 ((-574) (-574))) (-15 -1375 ((-574))) (-15 -2976 ((-574) (-574))) (-15 -1541 ((-574))) (-15 -2440 ((-574) (-574))) (-15 -3695 ((-112))) (-15 -3344 ((-112) (-112))) (-15 -1734 ((-574))) (-15 -4052 ((-112) (-112)))))) (T -937)) -((-3882 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-954 (-227)) (-227))) (-5 *3 (-1107 (-227))) (-5 *1 (-937)))) (-3882 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-954 (-227)) (-227))) (-5 *3 (-1107 (-227))) (-5 *1 (-937)))) (-1873 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1107 (-227))) (-5 *1 (-937)))) (-1873 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1107 (-227))) (-5 *1 (-937)))) (-1873 (*1 *1 *1 *2) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-937)))) (-2277 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-937)))) (-3445 (*1 *1 *1 *2) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-937)))) (-3445 (*1 *1 *1) (-5 *1 (-937))) (-3379 (*1 *2 *1) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-937)))) (-1581 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-227)))) (-5 *1 (-937)))) (-2129 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-937)))) (-3438 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-937)))) (-1375 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-937)))) (-2976 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-937)))) (-1541 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-937)))) (-2440 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-937)))) (-3695 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-937)))) (-3344 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-937)))) (-1734 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-937)))) (-4052 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-937))))) -(-13 (-987) (-10 -8 (-15 -3882 ($ (-1 (-954 (-227)) (-227)) (-1107 (-227)))) (-15 -3882 ($ (-1 (-954 (-227)) (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227)))) (-15 -1873 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1107 (-227)))) (-15 -1873 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227)))) (-15 -1873 ($ $ (-1107 (-227)))) (-15 -2277 ($ $ (-1107 (-227)) (-1107 (-227)) (-1107 (-227)))) (-15 -3445 ($ $ (-1107 (-227)))) (-15 -3445 ($ $)) (-15 -3379 ((-1107 (-227)) $)) (-15 -1581 ((-654 (-654 (-227))) $)) (-15 -2129 ((-574))) (-15 -3438 ((-574) (-574))) (-15 -1375 ((-574))) (-15 -2976 ((-574) (-574))) (-15 -1541 ((-574))) (-15 -2440 ((-574) (-574))) (-15 -3695 ((-112))) (-15 -3344 ((-112) (-112))) (-15 -1734 ((-574))) (-15 -4052 ((-112) (-112))))) -((-2277 (($ $ (-1107 (-227))) 122) (($ $ (-1107 (-227)) (-1107 (-227))) 123)) (-2424 (((-1107 (-227)) $) 73)) (-2411 (((-1107 (-227)) $) 72)) (-3379 (((-1107 (-227)) $) 74)) (-3848 (((-574) (-574)) 66)) (-2719 (((-574) (-574)) 61)) (-1752 (((-574) (-574)) 64)) (-1821 (((-112) (-112)) 68)) (-1526 (((-574)) 65)) (-3445 (($ $ (-1107 (-227))) 126) (($ $) 127)) (-3882 (($ (-1 (-954 (-227)) (-227)) (-1107 (-227))) 141) (($ (-1 (-954 (-227)) (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227))) 142)) (-2500 (($ (-1 (-227) (-227)) (-1107 (-227))) 149) (($ (-1 (-227) (-227))) 153)) (-1873 (($ (-1 (-227) (-227)) (-1107 (-227))) 137) (($ (-1 (-227) (-227)) (-1107 (-227)) (-1107 (-227))) 138) (($ (-654 (-1 (-227) (-227))) (-1107 (-227))) 146) (($ (-654 (-1 (-227) (-227))) (-1107 (-227)) (-1107 (-227))) 147) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1107 (-227))) 139) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227))) 140) (($ $ (-1107 (-227))) 128)) (-1862 (((-112) $) 69)) (-3342 (((-574)) 70)) (-1729 (((-574)) 59)) (-4153 (((-574)) 62)) (-1851 (((-654 (-654 (-954 (-227)))) $) 35)) (-3599 (((-112) (-112)) 71)) (-2943 (((-872) $) 167)) (-3028 (((-112)) 67))) -(((-938) (-13 (-966) (-10 -8 (-15 -1873 ($ (-1 (-227) (-227)) (-1107 (-227)))) (-15 -1873 ($ (-1 (-227) (-227)) (-1107 (-227)) (-1107 (-227)))) (-15 -1873 ($ (-654 (-1 (-227) (-227))) (-1107 (-227)))) (-15 -1873 ($ (-654 (-1 (-227) (-227))) (-1107 (-227)) (-1107 (-227)))) (-15 -1873 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1107 (-227)))) (-15 -1873 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227)))) (-15 -3882 ($ (-1 (-954 (-227)) (-227)) (-1107 (-227)))) (-15 -3882 ($ (-1 (-954 (-227)) (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227)))) (-15 -2500 ($ (-1 (-227) (-227)) (-1107 (-227)))) (-15 -2500 ($ (-1 (-227) (-227)))) (-15 -1873 ($ $ (-1107 (-227)))) (-15 -1862 ((-112) $)) (-15 -2277 ($ $ (-1107 (-227)))) (-15 -2277 ($ $ (-1107 (-227)) (-1107 (-227)))) (-15 -3445 ($ $ (-1107 (-227)))) (-15 -3445 ($ $)) (-15 -3379 ((-1107 (-227)) $)) (-15 -1729 ((-574))) (-15 -2719 ((-574) (-574))) (-15 -4153 ((-574))) (-15 -1752 ((-574) (-574))) (-15 -1526 ((-574))) (-15 -3848 ((-574) (-574))) (-15 -3028 ((-112))) (-15 -1821 ((-112) (-112))) (-15 -3342 ((-574))) (-15 -3599 ((-112) (-112)))))) (T -938)) -((-1873 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1107 (-227))) (-5 *1 (-938)))) (-1873 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1107 (-227))) (-5 *1 (-938)))) (-1873 (*1 *1 *2 *3) (-12 (-5 *2 (-654 (-1 (-227) (-227)))) (-5 *3 (-1107 (-227))) (-5 *1 (-938)))) (-1873 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-654 (-1 (-227) (-227)))) (-5 *3 (-1107 (-227))) (-5 *1 (-938)))) (-1873 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1107 (-227))) (-5 *1 (-938)))) (-1873 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1107 (-227))) (-5 *1 (-938)))) (-3882 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-954 (-227)) (-227))) (-5 *3 (-1107 (-227))) (-5 *1 (-938)))) (-3882 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-954 (-227)) (-227))) (-5 *3 (-1107 (-227))) (-5 *1 (-938)))) (-2500 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1107 (-227))) (-5 *1 (-938)))) (-2500 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-938)))) (-1873 (*1 *1 *1 *2) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-938)))) (-1862 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-938)))) (-2277 (*1 *1 *1 *2) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-938)))) (-2277 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-938)))) (-3445 (*1 *1 *1 *2) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-938)))) (-3445 (*1 *1 *1) (-5 *1 (-938))) (-3379 (*1 *2 *1) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-938)))) (-1729 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-938)))) (-2719 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-938)))) (-4153 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-938)))) (-1752 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-938)))) (-1526 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-938)))) (-3848 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-938)))) (-3028 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-938)))) (-1821 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-938)))) (-3342 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-938)))) (-3599 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-938))))) -(-13 (-966) (-10 -8 (-15 -1873 ($ (-1 (-227) (-227)) (-1107 (-227)))) (-15 -1873 ($ (-1 (-227) (-227)) (-1107 (-227)) (-1107 (-227)))) (-15 -1873 ($ (-654 (-1 (-227) (-227))) (-1107 (-227)))) (-15 -1873 ($ (-654 (-1 (-227) (-227))) (-1107 (-227)) (-1107 (-227)))) (-15 -1873 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1107 (-227)))) (-15 -1873 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227)))) (-15 -3882 ($ (-1 (-954 (-227)) (-227)) (-1107 (-227)))) (-15 -3882 ($ (-1 (-954 (-227)) (-227)) (-1107 (-227)) (-1107 (-227)) (-1107 (-227)))) (-15 -2500 ($ (-1 (-227) (-227)) (-1107 (-227)))) (-15 -2500 ($ (-1 (-227) (-227)))) (-15 -1873 ($ $ (-1107 (-227)))) (-15 -1862 ((-112) $)) (-15 -2277 ($ $ (-1107 (-227)))) (-15 -2277 ($ $ (-1107 (-227)) (-1107 (-227)))) (-15 -3445 ($ $ (-1107 (-227)))) (-15 -3445 ($ $)) (-15 -3379 ((-1107 (-227)) $)) (-15 -1729 ((-574))) (-15 -2719 ((-574) (-574))) (-15 -4153 ((-574))) (-15 -1752 ((-574) (-574))) (-15 -1526 ((-574))) (-15 -3848 ((-574) (-574))) (-15 -3028 ((-112))) (-15 -1821 ((-112) (-112))) (-15 -3342 ((-574))) (-15 -3599 ((-112) (-112))))) -((-3590 (((-654 (-1107 (-227))) (-654 (-654 (-954 (-227))))) 34))) -(((-939) (-10 -7 (-15 -3590 ((-654 (-1107 (-227))) (-654 (-654 (-954 (-227)))))))) (T -939)) -((-3590 (*1 *2 *3) (-12 (-5 *3 (-654 (-654 (-954 (-227))))) (-5 *2 (-654 (-1107 (-227)))) (-5 *1 (-939))))) -(-10 -7 (-15 -3590 ((-654 (-1107 (-227))) (-654 (-654 (-954 (-227))))))) -((-3105 ((|#2| |#2|) 28)) (-2486 ((|#2| |#2|) 29)) (-1706 ((|#2| |#2|) 27)) (-2113 ((|#2| |#2| (-516)) 26))) -(((-940 |#1| |#2|) (-10 -7 (-15 -2113 (|#2| |#2| (-516))) (-15 -1706 (|#2| |#2|)) (-15 -3105 (|#2| |#2|)) (-15 -2486 (|#2| |#2|))) (-1113) (-440 |#1|)) (T -940)) -((-2486 (*1 *2 *2) (-12 (-4 *3 (-1113)) (-5 *1 (-940 *3 *2)) (-4 *2 (-440 *3)))) (-3105 (*1 *2 *2) (-12 (-4 *3 (-1113)) (-5 *1 (-940 *3 *2)) (-4 *2 (-440 *3)))) (-1706 (*1 *2 *2) (-12 (-4 *3 (-1113)) (-5 *1 (-940 *3 *2)) (-4 *2 (-440 *3)))) (-2113 (*1 *2 *2 *3) (-12 (-5 *3 (-516)) (-4 *4 (-1113)) (-5 *1 (-940 *4 *2)) (-4 *2 (-440 *4))))) -(-10 -7 (-15 -2113 (|#2| |#2| (-516))) (-15 -1706 (|#2| |#2|)) (-15 -3105 (|#2| |#2|)) (-15 -2486 (|#2| |#2|))) -((-3105 (((-324 (-574)) (-1190)) 16)) (-2486 (((-324 (-574)) (-1190)) 14)) (-1706 (((-324 (-574)) (-1190)) 12)) (-2113 (((-324 (-574)) (-1190) (-516)) 19))) -(((-941) (-10 -7 (-15 -2113 ((-324 (-574)) (-1190) (-516))) (-15 -1706 ((-324 (-574)) (-1190))) (-15 -3105 ((-324 (-574)) (-1190))) (-15 -2486 ((-324 (-574)) (-1190))))) (T -941)) -((-2486 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-324 (-574))) (-5 *1 (-941)))) (-3105 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-324 (-574))) (-5 *1 (-941)))) (-1706 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-324 (-574))) (-5 *1 (-941)))) (-2113 (*1 *2 *3 *4) (-12 (-5 *3 (-1190)) (-5 *4 (-516)) (-5 *2 (-324 (-574))) (-5 *1 (-941))))) -(-10 -7 (-15 -2113 ((-324 (-574)) (-1190) (-516))) (-15 -1706 ((-324 (-574)) (-1190))) (-15 -3105 ((-324 (-574)) (-1190))) (-15 -2486 ((-324 (-574)) (-1190)))) -((-3625 (((-900 |#1| |#3|) |#2| (-903 |#1|) (-900 |#1| |#3|)) 25)) (-3496 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) -(((-942 |#1| |#2| |#3|) (-10 -7 (-15 -3496 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3625 ((-900 |#1| |#3|) |#2| (-903 |#1|) (-900 |#1| |#3|)))) (-1113) (-897 |#1|) (-13 (-1113) (-1051 |#2|))) (T -942)) -((-3625 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *6)) (-5 *4 (-903 *5)) (-4 *5 (-1113)) (-4 *6 (-13 (-1113) (-1051 *3))) (-4 *3 (-897 *5)) (-5 *1 (-942 *5 *3 *6)))) (-3496 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1113) (-1051 *5))) (-4 *5 (-897 *4)) (-4 *4 (-1113)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-942 *4 *5 *6))))) -(-10 -7 (-15 -3496 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3625 ((-900 |#1| |#3|) |#2| (-903 |#1|) (-900 |#1| |#3|)))) -((-3625 (((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)) 30))) -(((-943 |#1| |#2| |#3|) (-10 -7 (-15 -3625 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) (-1113) (-13 (-566) (-897 |#1|)) (-13 (-440 |#2|) (-624 (-903 |#1|)) (-897 |#1|) (-1051 (-622 $)))) (T -943)) -((-3625 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1113)) (-4 *3 (-13 (-440 *6) (-624 *4) (-897 *5) (-1051 (-622 $)))) (-5 *4 (-903 *5)) (-4 *6 (-13 (-566) (-897 *5))) (-5 *1 (-943 *5 *6 *3))))) -(-10 -7 (-15 -3625 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) -((-3625 (((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|)) 13))) -(((-944 |#1|) (-10 -7 (-15 -3625 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|)))) (-555)) (T -944)) -((-3625 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 (-574) *3)) (-5 *4 (-903 (-574))) (-4 *3 (-555)) (-5 *1 (-944 *3))))) -(-10 -7 (-15 -3625 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|)))) -((-3625 (((-900 |#1| |#2|) (-622 |#2|) (-903 |#1|) (-900 |#1| |#2|)) 57))) -(((-945 |#1| |#2|) (-10 -7 (-15 -3625 ((-900 |#1| |#2|) (-622 |#2|) (-903 |#1|) (-900 |#1| |#2|)))) (-1113) (-13 (-1113) (-1051 (-622 $)) (-624 (-903 |#1|)) (-897 |#1|))) (T -945)) -((-3625 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *6)) (-5 *3 (-622 *6)) (-4 *5 (-1113)) (-4 *6 (-13 (-1113) (-1051 (-622 $)) (-624 *4) (-897 *5))) (-5 *4 (-903 *5)) (-5 *1 (-945 *5 *6))))) -(-10 -7 (-15 -3625 ((-900 |#1| |#2|) (-622 |#2|) (-903 |#1|) (-900 |#1| |#2|)))) -((-3625 (((-896 |#1| |#2| |#3|) |#3| (-903 |#1|) (-896 |#1| |#2| |#3|)) 17))) -(((-946 |#1| |#2| |#3|) (-10 -7 (-15 -3625 ((-896 |#1| |#2| |#3|) |#3| (-903 |#1|) (-896 |#1| |#2| |#3|)))) (-1113) (-897 |#1|) (-676 |#2|)) (T -946)) -((-3625 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-896 *5 *6 *3)) (-5 *4 (-903 *5)) (-4 *5 (-1113)) (-4 *6 (-897 *5)) (-4 *3 (-676 *6)) (-5 *1 (-946 *5 *6 *3))))) -(-10 -7 (-15 -3625 ((-896 |#1| |#2| |#3|) |#3| (-903 |#1|) (-896 |#1| |#2| |#3|)))) -((-3625 (((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|)) 17 (|has| |#3| (-897 |#1|))) (((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|) (-1 (-900 |#1| |#5|) |#3| (-903 |#1|) (-900 |#1| |#5|))) 16))) -(((-947 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3625 ((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|) (-1 (-900 |#1| |#5|) |#3| (-903 |#1|) (-900 |#1| |#5|)))) (IF (|has| |#3| (-897 |#1|)) (-15 -3625 ((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|))) |%noBranch|)) (-1113) (-803) (-860) (-13 (-1062) (-897 |#1|)) (-13 (-960 |#4| |#2| |#3|) (-624 (-903 |#1|)))) (T -947)) -((-3625 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1113)) (-4 *3 (-13 (-960 *8 *6 *7) (-624 *4))) (-5 *4 (-903 *5)) (-4 *7 (-897 *5)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-13 (-1062) (-897 *5))) (-5 *1 (-947 *5 *6 *7 *8 *3)))) (-3625 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-900 *6 *3) *8 (-903 *6) (-900 *6 *3))) (-4 *8 (-860)) (-5 *2 (-900 *6 *3)) (-5 *4 (-903 *6)) (-4 *6 (-1113)) (-4 *3 (-13 (-960 *9 *7 *8) (-624 *4))) (-4 *7 (-803)) (-4 *9 (-13 (-1062) (-897 *6))) (-5 *1 (-947 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -3625 ((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|) (-1 (-900 |#1| |#5|) |#3| (-903 |#1|) (-900 |#1| |#5|)))) (IF (|has| |#3| (-897 |#1|)) (-15 -3625 ((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|))) |%noBranch|)) -((-2571 ((|#2| |#2| (-654 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) -(((-948 |#1| |#2| |#3|) (-10 -7 (-15 -2571 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2571 (|#2| |#2| (-654 (-1 (-112) |#3|))))) (-1113) (-440 |#1|) (-1231)) (T -948)) -((-2571 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-1 (-112) *5))) (-4 *5 (-1231)) (-4 *4 (-1113)) (-5 *1 (-948 *4 *2 *5)) (-4 *2 (-440 *4)))) (-2571 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1231)) (-4 *4 (-1113)) (-5 *1 (-948 *4 *2 *5)) (-4 *2 (-440 *4))))) -(-10 -7 (-15 -2571 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2571 (|#2| |#2| (-654 (-1 (-112) |#3|))))) -((-2571 (((-324 (-574)) (-1190) (-654 (-1 (-112) |#1|))) 18) (((-324 (-574)) (-1190) (-1 (-112) |#1|)) 15))) -(((-949 |#1|) (-10 -7 (-15 -2571 ((-324 (-574)) (-1190) (-1 (-112) |#1|))) (-15 -2571 ((-324 (-574)) (-1190) (-654 (-1 (-112) |#1|))))) (-1231)) (T -949)) -((-2571 (*1 *2 *3 *4) (-12 (-5 *3 (-1190)) (-5 *4 (-654 (-1 (-112) *5))) (-4 *5 (-1231)) (-5 *2 (-324 (-574))) (-5 *1 (-949 *5)))) (-2571 (*1 *2 *3 *4) (-12 (-5 *3 (-1190)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1231)) (-5 *2 (-324 (-574))) (-5 *1 (-949 *5))))) -(-10 -7 (-15 -2571 ((-324 (-574)) (-1190) (-1 (-112) |#1|))) (-15 -2571 ((-324 (-574)) (-1190) (-654 (-1 (-112) |#1|))))) -((-3625 (((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)) 25))) -(((-950 |#1| |#2| |#3|) (-10 -7 (-15 -3625 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) (-1113) (-13 (-566) (-897 |#1|) (-624 (-903 |#1|))) (-1005 |#2|)) (T -950)) -((-3625 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1113)) (-4 *3 (-1005 *6)) (-4 *6 (-13 (-566) (-897 *5) (-624 *4))) (-5 *4 (-903 *5)) (-5 *1 (-950 *5 *6 *3))))) -(-10 -7 (-15 -3625 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) -((-3625 (((-900 |#1| (-1190)) (-1190) (-903 |#1|) (-900 |#1| (-1190))) 18))) -(((-951 |#1|) (-10 -7 (-15 -3625 ((-900 |#1| (-1190)) (-1190) (-903 |#1|) (-900 |#1| (-1190))))) (-1113)) (T -951)) -((-3625 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 (-1190))) (-5 *3 (-1190)) (-5 *4 (-903 *5)) (-4 *5 (-1113)) (-5 *1 (-951 *5))))) -(-10 -7 (-15 -3625 ((-900 |#1| (-1190)) (-1190) (-903 |#1|) (-900 |#1| (-1190))))) -((-1404 (((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))) 34)) (-3625 (((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-1 |#3| (-654 |#3|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))) 33))) -(((-952 |#1| |#2| |#3|) (-10 -7 (-15 -3625 ((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-1 |#3| (-654 |#3|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) (-15 -1404 ((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))))) (-1113) (-1062) (-13 (-1062) (-624 (-903 |#1|)) (-1051 |#2|))) (T -952)) -((-1404 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 (-903 *6))) (-5 *5 (-1 (-900 *6 *8) *8 (-903 *6) (-900 *6 *8))) (-4 *6 (-1113)) (-4 *8 (-13 (-1062) (-624 (-903 *6)) (-1051 *7))) (-5 *2 (-900 *6 *8)) (-4 *7 (-1062)) (-5 *1 (-952 *6 *7 *8)))) (-3625 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-654 (-903 *7))) (-5 *5 (-1 *9 (-654 *9))) (-5 *6 (-1 (-900 *7 *9) *9 (-903 *7) (-900 *7 *9))) (-4 *7 (-1113)) (-4 *9 (-13 (-1062) (-624 (-903 *7)) (-1051 *8))) (-5 *2 (-900 *7 *9)) (-5 *3 (-654 *9)) (-4 *8 (-1062)) (-5 *1 (-952 *7 *8 *9))))) -(-10 -7 (-15 -3625 ((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-1 |#3| (-654 |#3|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) (-15 -1404 ((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))))) -((-3753 (((-1186 (-417 (-574))) (-574)) 79)) (-1748 (((-1186 (-574)) (-574)) 82)) (-2800 (((-1186 (-574)) (-574)) 76)) (-2259 (((-574) (-1186 (-574))) 72)) (-3700 (((-1186 (-417 (-574))) (-574)) 65)) (-1459 (((-1186 (-574)) (-574)) 49)) (-3983 (((-1186 (-574)) (-574)) 84)) (-4030 (((-1186 (-574)) (-574)) 83)) (-3440 (((-1186 (-417 (-574))) (-574)) 67))) -(((-953) (-10 -7 (-15 -3440 ((-1186 (-417 (-574))) (-574))) (-15 -4030 ((-1186 (-574)) (-574))) (-15 -3983 ((-1186 (-574)) (-574))) (-15 -1459 ((-1186 (-574)) (-574))) (-15 -3700 ((-1186 (-417 (-574))) (-574))) (-15 -2259 ((-574) (-1186 (-574)))) (-15 -2800 ((-1186 (-574)) (-574))) (-15 -1748 ((-1186 (-574)) (-574))) (-15 -3753 ((-1186 (-417 (-574))) (-574))))) (T -953)) -((-3753 (*1 *2 *3) (-12 (-5 *2 (-1186 (-417 (-574)))) (-5 *1 (-953)) (-5 *3 (-574)))) (-1748 (*1 *2 *3) (-12 (-5 *2 (-1186 (-574))) (-5 *1 (-953)) (-5 *3 (-574)))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-1186 (-574))) (-5 *1 (-953)) (-5 *3 (-574)))) (-2259 (*1 *2 *3) (-12 (-5 *3 (-1186 (-574))) (-5 *2 (-574)) (-5 *1 (-953)))) (-3700 (*1 *2 *3) (-12 (-5 *2 (-1186 (-417 (-574)))) (-5 *1 (-953)) (-5 *3 (-574)))) (-1459 (*1 *2 *3) (-12 (-5 *2 (-1186 (-574))) (-5 *1 (-953)) (-5 *3 (-574)))) (-3983 (*1 *2 *3) (-12 (-5 *2 (-1186 (-574))) (-5 *1 (-953)) (-5 *3 (-574)))) (-4030 (*1 *2 *3) (-12 (-5 *2 (-1186 (-574))) (-5 *1 (-953)) (-5 *3 (-574)))) (-3440 (*1 *2 *3) (-12 (-5 *2 (-1186 (-417 (-574)))) (-5 *1 (-953)) (-5 *3 (-574))))) -(-10 -7 (-15 -3440 ((-1186 (-417 (-574))) (-574))) (-15 -4030 ((-1186 (-574)) (-574))) (-15 -3983 ((-1186 (-574)) (-574))) (-15 -1459 ((-1186 (-574)) (-574))) (-15 -3700 ((-1186 (-417 (-574))) (-574))) (-15 -2259 ((-574) (-1186 (-574)))) (-15 -2800 ((-1186 (-574)) (-574))) (-15 -1748 ((-1186 (-574)) (-574))) (-15 -3753 ((-1186 (-417 (-574))) (-574)))) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2216 (($ (-781)) NIL (|has| |#1| (-23)))) (-3714 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-1357 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-3642 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4457))) (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| |#1| (-860))))) (-2771 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-3034 (((-112) $ (-781)) NIL)) (-3143 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) NIL (|has| $ (-6 -4457)))) (-2165 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3426 (($) NIL T CONST)) (-2627 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3335 (($ |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-2458 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) NIL)) (-1441 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1113))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1113)))) (-3591 (($ (-654 |#1|)) 9)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3899 (((-699 |#1|) $ $) NIL (|has| |#1| (-1062)))) (-3790 (($ (-781) |#1|) NIL)) (-2742 (((-112) $ (-781)) NIL)) (-3618 (((-574) $) NIL (|has| (-574) (-860)))) (-3659 (($ $ $) NIL (|has| |#1| (-860)))) (-4430 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2702 (((-574) $) NIL (|has| (-574) (-860)))) (-4257 (($ $ $) NIL (|has| |#1| (-860)))) (-2449 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2963 ((|#1| $) NIL (-12 (|has| |#1| (-1015)) (|has| |#1| (-1062))))) (-4203 (((-112) $ (-781)) NIL)) (-4135 ((|#1| $) NIL (-12 (|has| |#1| (-1015)) (|has| |#1| (-1062))))) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-1594 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-4308 (((-654 (-574)) $) NIL)) (-3336 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2915 ((|#1| $) NIL (|has| (-574) (-860)))) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1942 (($ $ |#1|) NIL (|has| $ (-6 -4457)))) (-2533 (($ $ (-654 |#1|)) 25)) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-4371 (((-654 |#1|) $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) 18) (($ $ (-1248 (-574))) NIL)) (-4236 ((|#1| $ $) NIL (|has| |#1| (-1062)))) (-4133 (((-932) $) 13)) (-2840 (($ $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-1585 (($ $ $) 23)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3506 (($ $ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3167 (($ $) NIL)) (-1836 (((-546) $) NIL (|has| |#1| (-624 (-546)))) (($ (-654 |#1|)) 14)) (-2956 (($ (-654 |#1|)) NIL)) (-4157 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-654 $)) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3007 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3094 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3079 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-574) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-736))) (($ $ |#1|) NIL (|has| |#1| (-736)))) (-2863 (((-781) $) 11 (|has| $ (-6 -4456))))) -(((-954 |#1|) (-993 |#1|) (-1062)) (T -954)) -NIL -(-993 |#1|) -((-2373 (((-491 |#1| |#2|) (-963 |#2|)) 22)) (-3354 (((-253 |#1| |#2|) (-963 |#2|)) 35)) (-2418 (((-963 |#2|) (-491 |#1| |#2|)) 27)) (-1913 (((-253 |#1| |#2|) (-491 |#1| |#2|)) 57)) (-3528 (((-963 |#2|) (-253 |#1| |#2|)) 32)) (-1483 (((-491 |#1| |#2|) (-253 |#1| |#2|)) 48))) -(((-955 |#1| |#2|) (-10 -7 (-15 -1483 ((-491 |#1| |#2|) (-253 |#1| |#2|))) (-15 -1913 ((-253 |#1| |#2|) (-491 |#1| |#2|))) (-15 -2373 ((-491 |#1| |#2|) (-963 |#2|))) (-15 -2418 ((-963 |#2|) (-491 |#1| |#2|))) (-15 -3528 ((-963 |#2|) (-253 |#1| |#2|))) (-15 -3354 ((-253 |#1| |#2|) (-963 |#2|)))) (-654 (-1190)) (-1062)) (T -955)) -((-3354 (*1 *2 *3) (-12 (-5 *3 (-963 *5)) (-4 *5 (-1062)) (-5 *2 (-253 *4 *5)) (-5 *1 (-955 *4 *5)) (-14 *4 (-654 (-1190))))) (-3528 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1190))) (-4 *5 (-1062)) (-5 *2 (-963 *5)) (-5 *1 (-955 *4 *5)))) (-2418 (*1 *2 *3) (-12 (-5 *3 (-491 *4 *5)) (-14 *4 (-654 (-1190))) (-4 *5 (-1062)) (-5 *2 (-963 *5)) (-5 *1 (-955 *4 *5)))) (-2373 (*1 *2 *3) (-12 (-5 *3 (-963 *5)) (-4 *5 (-1062)) (-5 *2 (-491 *4 *5)) (-5 *1 (-955 *4 *5)) (-14 *4 (-654 (-1190))))) (-1913 (*1 *2 *3) (-12 (-5 *3 (-491 *4 *5)) (-14 *4 (-654 (-1190))) (-4 *5 (-1062)) (-5 *2 (-253 *4 *5)) (-5 *1 (-955 *4 *5)))) (-1483 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1190))) (-4 *5 (-1062)) (-5 *2 (-491 *4 *5)) (-5 *1 (-955 *4 *5))))) -(-10 -7 (-15 -1483 ((-491 |#1| |#2|) (-253 |#1| |#2|))) (-15 -1913 ((-253 |#1| |#2|) (-491 |#1| |#2|))) (-15 -2373 ((-491 |#1| |#2|) (-963 |#2|))) (-15 -2418 ((-963 |#2|) (-491 |#1| |#2|))) (-15 -3528 ((-963 |#2|) (-253 |#1| |#2|))) (-15 -3354 ((-253 |#1| |#2|) (-963 |#2|)))) -((-3033 (((-654 |#2|) |#2| |#2|) 10)) (-3067 (((-781) (-654 |#1|)) 48 (|has| |#1| (-858)))) (-1415 (((-654 |#2|) |#2|) 11)) (-1671 (((-781) (-654 |#1|) (-574) (-574)) 52 (|has| |#1| (-858)))) (-3517 ((|#1| |#2|) 38 (|has| |#1| (-858))))) -(((-956 |#1| |#2|) (-10 -7 (-15 -3033 ((-654 |#2|) |#2| |#2|)) (-15 -1415 ((-654 |#2|) |#2|)) (IF (|has| |#1| (-858)) (PROGN (-15 -3517 (|#1| |#2|)) (-15 -3067 ((-781) (-654 |#1|))) (-15 -1671 ((-781) (-654 |#1|) (-574) (-574)))) |%noBranch|)) (-372) (-1257 |#1|)) (T -956)) -((-1671 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-574)) (-4 *5 (-858)) (-4 *5 (-372)) (-5 *2 (-781)) (-5 *1 (-956 *5 *6)) (-4 *6 (-1257 *5)))) (-3067 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-858)) (-4 *4 (-372)) (-5 *2 (-781)) (-5 *1 (-956 *4 *5)) (-4 *5 (-1257 *4)))) (-3517 (*1 *2 *3) (-12 (-4 *2 (-372)) (-4 *2 (-858)) (-5 *1 (-956 *2 *3)) (-4 *3 (-1257 *2)))) (-1415 (*1 *2 *3) (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-956 *4 *3)) (-4 *3 (-1257 *4)))) (-3033 (*1 *2 *3 *3) (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-956 *4 *3)) (-4 *3 (-1257 *4))))) -(-10 -7 (-15 -3033 ((-654 |#2|) |#2| |#2|)) (-15 -1415 ((-654 |#2|) |#2|)) (IF (|has| |#1| (-858)) (PROGN (-15 -3517 (|#1| |#2|)) (-15 -3067 ((-781) (-654 |#1|))) (-15 -1671 ((-781) (-654 |#1|) (-574) (-574)))) |%noBranch|)) -((-1777 (((-963 |#2|) (-1 |#2| |#1|) (-963 |#1|)) 19))) -(((-957 |#1| |#2|) (-10 -7 (-15 -1777 ((-963 |#2|) (-1 |#2| |#1|) (-963 |#1|)))) (-1062) (-1062)) (T -957)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-963 *5)) (-4 *5 (-1062)) (-4 *6 (-1062)) (-5 *2 (-963 *6)) (-5 *1 (-957 *5 *6))))) -(-10 -7 (-15 -1777 ((-963 |#2|) (-1 |#2| |#1|) (-963 |#1|)))) -((-4194 (((-1254 |#1| (-963 |#2|)) (-963 |#2|) (-1277 |#1|)) 18))) -(((-958 |#1| |#2|) (-10 -7 (-15 -4194 ((-1254 |#1| (-963 |#2|)) (-963 |#2|) (-1277 |#1|)))) (-1190) (-1062)) (T -958)) -((-4194 (*1 *2 *3 *4) (-12 (-5 *4 (-1277 *5)) (-14 *5 (-1190)) (-4 *6 (-1062)) (-5 *2 (-1254 *5 (-963 *6))) (-5 *1 (-958 *5 *6)) (-5 *3 (-963 *6))))) -(-10 -7 (-15 -4194 ((-1254 |#1| (-963 |#2|)) (-963 |#2|) (-1277 |#1|)))) -((-1757 (((-781) $) 88) (((-781) $ (-654 |#4|)) 93)) (-2568 (($ $) 203)) (-2827 (((-428 $) $) 195)) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) 141)) (-1696 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-2206 ((|#2| $) NIL) (((-417 (-574)) $) NIL) (((-574) $) NIL) ((|#4| $) 73)) (-1463 (($ $ $ |#4|) 95)) (-2590 (((-699 (-574)) (-1281 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL) (((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) 131) (((-699 |#2|) (-699 $)) 121) (((-699 |#2|) (-1281 $)) NIL)) (-1569 (($ $) 210) (($ $ |#4|) 213)) (-1380 (((-654 $) $) 77)) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 229) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 222)) (-3727 (((-654 $) $) 34)) (-4335 (($ |#2| |#3|) NIL) (($ $ |#4| (-781)) NIL) (($ $ (-654 |#4|) (-654 (-781))) 71)) (-2773 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $ |#4|) 192)) (-2755 (((-3 (-654 $) "failed") $) 52)) (-2415 (((-3 (-654 $) "failed") $) 39)) (-2241 (((-3 (-2 (|:| |var| |#4|) (|:| -3715 (-781))) "failed") $) 57)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 134)) (-2560 (((-428 (-1186 $)) (-1186 $)) 147)) (-2039 (((-428 (-1186 $)) (-1186 $)) 145)) (-4220 (((-428 $) $) 165)) (-2646 (($ $ (-654 (-302 $))) 24) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-654 |#4|) (-654 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-654 |#4|) (-654 $)) NIL)) (-2872 (($ $ |#4|) 97)) (-1836 (((-903 (-388)) $) 243) (((-903 (-574)) $) 236) (((-546) $) 251)) (-3069 ((|#2| $) NIL) (($ $ |#4|) 205)) (-1524 (((-3 (-1281 $) "failed") (-699 $)) 184)) (-3087 ((|#2| $ |#3|) NIL) (($ $ |#4| (-781)) 62) (($ $ (-654 |#4|) (-654 (-781))) 69)) (-3298 (((-3 $ "failed") $) 186)) (-3284 (((-112) $ $) 216))) -(((-959 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3109 ((-1186 |#1|) (-1186 |#1|) (-1186 |#1|))) (-15 -2827 ((-428 |#1|) |#1|)) (-15 -2568 (|#1| |#1|)) (-15 -3298 ((-3 |#1| "failed") |#1|)) (-15 -1836 ((-546) |#1|)) (-15 -1836 ((-903 (-574)) |#1|)) (-15 -1836 ((-903 (-388)) |#1|)) (-15 -3625 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -3625 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -4220 ((-428 |#1|) |#1|)) (-15 -2039 ((-428 (-1186 |#1|)) (-1186 |#1|))) (-15 -2560 ((-428 (-1186 |#1|)) (-1186 |#1|))) (-15 -1879 ((-3 (-654 (-1186 |#1|)) "failed") (-654 (-1186 |#1|)) (-1186 |#1|))) (-15 -1524 ((-3 (-1281 |#1|) "failed") (-699 |#1|))) (-15 -1569 (|#1| |#1| |#4|)) (-15 -3069 (|#1| |#1| |#4|)) (-15 -2872 (|#1| |#1| |#4|)) (-15 -1463 (|#1| |#1| |#1| |#4|)) (-15 -1380 ((-654 |#1|) |#1|)) (-15 -1757 ((-781) |#1| (-654 |#4|))) (-15 -1757 ((-781) |#1|)) (-15 -2241 ((-3 (-2 (|:| |var| |#4|) (|:| -3715 (-781))) "failed") |#1|)) (-15 -2755 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -2415 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -4335 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -4335 (|#1| |#1| |#4| (-781))) (-15 -2773 ((-2 (|:| -1411 |#1|) (|:| -2766 |#1|)) |#1| |#1| |#4|)) (-15 -3727 ((-654 |#1|) |#1|)) (-15 -3087 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -3087 (|#1| |#1| |#4| (-781))) (-15 -2590 ((-699 |#2|) (-1281 |#1|))) (-15 -2590 ((-699 |#2|) (-699 |#1|))) (-15 -2590 ((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 |#1|) (-1281 |#1|))) (-15 -2590 ((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 |#1|) (-1281 |#1|))) (-15 -2590 ((-699 (-574)) (-699 |#1|))) (-15 -2590 ((-699 (-574)) (-1281 |#1|))) (-15 -1696 ((-3 |#4| "failed") |#1|)) (-15 -2206 (|#4| |#1|)) (-15 -2646 (|#1| |#1| (-654 |#4|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#4| |#1|)) (-15 -2646 (|#1| |#1| (-654 |#4|) (-654 |#2|))) (-15 -2646 (|#1| |#1| |#4| |#2|)) (-15 -2646 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#1| |#1|)) (-15 -2646 (|#1| |#1| (-302 |#1|))) (-15 -2646 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -4335 (|#1| |#2| |#3|)) (-15 -3087 (|#2| |#1| |#3|)) (-15 -1696 ((-3 (-574) "failed") |#1|)) (-15 -2206 ((-574) |#1|)) (-15 -1696 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2206 ((-417 (-574)) |#1|)) (-15 -2206 (|#2| |#1|)) (-15 -1696 ((-3 |#2| "failed") |#1|)) (-15 -3069 (|#2| |#1|)) (-15 -1569 (|#1| |#1|)) (-15 -3284 ((-112) |#1| |#1|))) (-960 |#2| |#3| |#4|) (-1062) (-803) (-860)) (T -959)) -NIL -(-10 -8 (-15 -3109 ((-1186 |#1|) (-1186 |#1|) (-1186 |#1|))) (-15 -2827 ((-428 |#1|) |#1|)) (-15 -2568 (|#1| |#1|)) (-15 -3298 ((-3 |#1| "failed") |#1|)) (-15 -1836 ((-546) |#1|)) (-15 -1836 ((-903 (-574)) |#1|)) (-15 -1836 ((-903 (-388)) |#1|)) (-15 -3625 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -3625 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -4220 ((-428 |#1|) |#1|)) (-15 -2039 ((-428 (-1186 |#1|)) (-1186 |#1|))) (-15 -2560 ((-428 (-1186 |#1|)) (-1186 |#1|))) (-15 -1879 ((-3 (-654 (-1186 |#1|)) "failed") (-654 (-1186 |#1|)) (-1186 |#1|))) (-15 -1524 ((-3 (-1281 |#1|) "failed") (-699 |#1|))) (-15 -1569 (|#1| |#1| |#4|)) (-15 -3069 (|#1| |#1| |#4|)) (-15 -2872 (|#1| |#1| |#4|)) (-15 -1463 (|#1| |#1| |#1| |#4|)) (-15 -1380 ((-654 |#1|) |#1|)) (-15 -1757 ((-781) |#1| (-654 |#4|))) (-15 -1757 ((-781) |#1|)) (-15 -2241 ((-3 (-2 (|:| |var| |#4|) (|:| -3715 (-781))) "failed") |#1|)) (-15 -2755 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -2415 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -4335 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -4335 (|#1| |#1| |#4| (-781))) (-15 -2773 ((-2 (|:| -1411 |#1|) (|:| -2766 |#1|)) |#1| |#1| |#4|)) (-15 -3727 ((-654 |#1|) |#1|)) (-15 -3087 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -3087 (|#1| |#1| |#4| (-781))) (-15 -2590 ((-699 |#2|) (-1281 |#1|))) (-15 -2590 ((-699 |#2|) (-699 |#1|))) (-15 -2590 ((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 |#1|) (-1281 |#1|))) (-15 -2590 ((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 |#1|) (-1281 |#1|))) (-15 -2590 ((-699 (-574)) (-699 |#1|))) (-15 -2590 ((-699 (-574)) (-1281 |#1|))) (-15 -1696 ((-3 |#4| "failed") |#1|)) (-15 -2206 (|#4| |#1|)) (-15 -2646 (|#1| |#1| (-654 |#4|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#4| |#1|)) (-15 -2646 (|#1| |#1| (-654 |#4|) (-654 |#2|))) (-15 -2646 (|#1| |#1| |#4| |#2|)) (-15 -2646 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#1| |#1|)) (-15 -2646 (|#1| |#1| (-302 |#1|))) (-15 -2646 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -4335 (|#1| |#2| |#3|)) (-15 -3087 (|#2| |#1| |#3|)) (-15 -1696 ((-3 (-574) "failed") |#1|)) (-15 -2206 ((-574) |#1|)) (-15 -1696 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2206 ((-417 (-574)) |#1|)) (-15 -2206 (|#2| |#1|)) (-15 -1696 ((-3 |#2| "failed") |#1|)) (-15 -3069 (|#2| |#1|)) (-15 -1569 (|#1| |#1|)) (-15 -3284 ((-112) |#1| |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-4355 (((-654 |#3|) $) 112)) (-4194 (((-1186 $) $ |#3|) 127) (((-1186 |#1|) $) 126)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 89 (|has| |#1| (-566)))) (-1575 (($ $) 90 (|has| |#1| (-566)))) (-2085 (((-112) $) 92 (|has| |#1| (-566)))) (-1757 (((-781) $) 114) (((-781) $ (-654 |#3|)) 113)) (-3524 (((-3 $ "failed") $ $) 20)) (-3972 (((-428 (-1186 $)) (-1186 $)) 102 (|has| |#1| (-920)))) (-2568 (($ $) 100 (|has| |#1| (-462)))) (-2827 (((-428 $) $) 99 (|has| |#1| (-462)))) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) 105 (|has| |#1| (-920)))) (-3426 (($) 18 T CONST)) (-1696 (((-3 |#1| "failed") $) 168) (((-3 (-417 (-574)) "failed") $) 165 (|has| |#1| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) 163 (|has| |#1| (-1051 (-574)))) (((-3 |#3| "failed") $) 140)) (-2206 ((|#1| $) 167) (((-417 (-574)) $) 166 (|has| |#1| (-1051 (-417 (-574))))) (((-574) $) 164 (|has| |#1| (-1051 (-574)))) ((|#3| $) 141)) (-1463 (($ $ $ |#3|) 110 (|has| |#1| (-174)))) (-1392 (($ $) 158)) (-2590 (((-699 (-574)) (-1281 $)) 138 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 137 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 136 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) 135) (((-699 |#1|) (-699 $)) 134) (((-699 |#1|) (-1281 $)) 133)) (-3434 (((-3 $ "failed") $) 37)) (-1569 (($ $) 180 (|has| |#1| (-462))) (($ $ |#3|) 107 (|has| |#1| (-462)))) (-1380 (((-654 $) $) 111)) (-2257 (((-112) $) 98 (|has| |#1| (-920)))) (-1661 (($ $ |#1| |#2| $) 176)) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 86 (-12 (|has| |#3| (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 85 (-12 (|has| |#3| (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3199 (((-112) $) 35)) (-1322 (((-781) $) 173)) (-4345 (($ (-1186 |#1|) |#3|) 119) (($ (-1186 $) |#3|) 118)) (-3727 (((-654 $) $) 128)) (-3869 (((-112) $) 156)) (-4335 (($ |#1| |#2|) 157) (($ $ |#3| (-781)) 121) (($ $ (-654 |#3|) (-654 (-781))) 120)) (-2773 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $ |#3|) 122)) (-1742 ((|#2| $) 174) (((-781) $ |#3|) 124) (((-654 (-781)) $ (-654 |#3|)) 123)) (-3708 (($ (-1 |#2| |#2|) $) 175)) (-1777 (($ (-1 |#1| |#1|) $) 155)) (-2717 (((-3 |#3| "failed") $) 125)) (-1359 (($ $) 153)) (-1370 ((|#1| $) 152)) (-2832 (($ (-654 $)) 96 (|has| |#1| (-462))) (($ $ $) 95 (|has| |#1| (-462)))) (-4136 (((-1172) $) 10)) (-2755 (((-3 (-654 $) "failed") $) 116)) (-2415 (((-3 (-654 $) "failed") $) 117)) (-2241 (((-3 (-2 (|:| |var| |#3|) (|:| -3715 (-781))) "failed") $) 115)) (-3966 (((-1133) $) 11)) (-1338 (((-112) $) 170)) (-1349 ((|#1| $) 171)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 97 (|has| |#1| (-462)))) (-2873 (($ (-654 $)) 94 (|has| |#1| (-462))) (($ $ $) 93 (|has| |#1| (-462)))) (-2560 (((-428 (-1186 $)) (-1186 $)) 104 (|has| |#1| (-920)))) (-2039 (((-428 (-1186 $)) (-1186 $)) 103 (|has| |#1| (-920)))) (-4220 (((-428 $) $) 101 (|has| |#1| (-920)))) (-2838 (((-3 $ "failed") $ |#1|) 178 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-566)))) (-2646 (($ $ (-654 (-302 $))) 149) (($ $ (-302 $)) 148) (($ $ $ $) 147) (($ $ (-654 $) (-654 $)) 146) (($ $ |#3| |#1|) 145) (($ $ (-654 |#3|) (-654 |#1|)) 144) (($ $ |#3| $) 143) (($ $ (-654 |#3|) (-654 $)) 142)) (-2872 (($ $ |#3|) 109 (|has| |#1| (-174)))) (-3905 (($ $ |#3|) 46) (($ $ (-654 |#3|)) 45) (($ $ |#3| (-781)) 44) (($ $ (-654 |#3|) (-654 (-781))) 43)) (-4202 ((|#2| $) 154) (((-781) $ |#3|) 132) (((-654 (-781)) $ (-654 |#3|)) 131)) (-1836 (((-903 (-388)) $) 84 (-12 (|has| |#3| (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) 83 (-12 (|has| |#3| (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) 82 (-12 (|has| |#3| (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-3069 ((|#1| $) 179 (|has| |#1| (-462))) (($ $ |#3|) 108 (|has| |#1| (-462)))) (-1524 (((-3 (-1281 $) "failed") (-699 $)) 106 (-2087 (|has| $ (-146)) (|has| |#1| (-920))))) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 169) (($ |#3|) 139) (($ $) 87 (|has| |#1| (-566))) (($ (-417 (-574))) 80 (-2818 (|has| |#1| (-1051 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))))) (-2530 (((-654 |#1|) $) 172)) (-3087 ((|#1| $ |#2|) 159) (($ $ |#3| (-781)) 130) (($ $ (-654 |#3|) (-654 (-781))) 129)) (-3298 (((-3 $ "failed") $) 81 (-2818 (-2087 (|has| $ (-146)) (|has| |#1| (-920))) (|has| |#1| (-146))))) (-1364 (((-781)) 32 T CONST)) (-3772 (($ $ $ (-781)) 177 (|has| |#1| (-174)))) (-3284 (((-112) $ $) 9)) (-2069 (((-112) $ $) 91 (|has| |#1| (-566)))) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-3610 (($ $ |#3|) 42) (($ $ (-654 |#3|)) 41) (($ $ |#3| (-781)) 40) (($ $ (-654 |#3|) (-654 (-781))) 39)) (-2981 (((-112) $ $) 6)) (-3108 (($ $ |#1|) 160 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 162 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 161 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 151) (($ $ |#1|) 150))) -(((-960 |#1| |#2| |#3|) (-141) (-1062) (-803) (-860)) (T -960)) -((-1569 (*1 *1 *1) (-12 (-4 *1 (-960 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-4202 (*1 *2 *1 *3) (-12 (-4 *1 (-960 *4 *5 *3)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-781)))) (-4202 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *1 (-960 *4 *5 *6)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-781))))) (-3087 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-960 *4 *5 *2)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *2 (-860)))) (-3087 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 (-781))) (-4 *1 (-960 *4 *5 *6)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *6 (-860)))) (-3727 (*1 *2 *1) (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-960 *3 *4 *5)))) (-4194 (*1 *2 *1 *3) (-12 (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-1186 *1)) (-4 *1 (-960 *4 *5 *3)))) (-4194 (*1 *2 *1) (-12 (-4 *1 (-960 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-1186 *3)))) (-2717 (*1 *2 *1) (|partial| -12 (-4 *1 (-960 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *2 (-860)))) (-1742 (*1 *2 *1 *3) (-12 (-4 *1 (-960 *4 *5 *3)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-781)))) (-1742 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *1 (-960 *4 *5 *6)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-781))))) (-2773 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-2 (|:| -1411 *1) (|:| -2766 *1))) (-4 *1 (-960 *4 *5 *3)))) (-4335 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-960 *4 *5 *2)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *2 (-860)))) (-4335 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 (-781))) (-4 *1 (-960 *4 *5 *6)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *6 (-860)))) (-4345 (*1 *1 *2 *3) (-12 (-5 *2 (-1186 *4)) (-4 *4 (-1062)) (-4 *1 (-960 *4 *5 *3)) (-4 *5 (-803)) (-4 *3 (-860)))) (-4345 (*1 *1 *2 *3) (-12 (-5 *2 (-1186 *1)) (-4 *1 (-960 *4 *5 *3)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-860)))) (-2415 (*1 *2 *1) (|partial| -12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-960 *3 *4 *5)))) (-2755 (*1 *2 *1) (|partial| -12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-960 *3 *4 *5)))) (-2241 (*1 *2 *1) (|partial| -12 (-4 *1 (-960 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| |var| *5) (|:| -3715 (-781)))))) (-1757 (*1 *2 *1) (-12 (-4 *1 (-960 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-781)))) (-1757 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *1 (-960 *4 *5 *6)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-781)))) (-4355 (*1 *2 *1) (-12 (-4 *1 (-960 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *5)))) (-1380 (*1 *2 *1) (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-960 *3 *4 *5)))) (-1463 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-960 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *3 (-174)))) (-2872 (*1 *1 *1 *2) (-12 (-4 *1 (-960 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *3 (-174)))) (-3069 (*1 *1 *1 *2) (-12 (-4 *1 (-960 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *3 (-462)))) (-1569 (*1 *1 *1 *2) (-12 (-4 *1 (-960 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *3 (-462)))) (-2568 (*1 *1 *1) (-12 (-4 *1 (-960 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-2827 (*1 *2 *1) (-12 (-4 *3 (-462)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-428 *1)) (-4 *1 (-960 *3 *4 *5))))) -(-13 (-911 |t#3|) (-334 |t#1| |t#2|) (-317 $) (-524 |t#3| |t#1|) (-524 |t#3| $) (-1051 |t#3|) (-386 |t#1|) (-10 -8 (-15 -4202 ((-781) $ |t#3|)) (-15 -4202 ((-654 (-781)) $ (-654 |t#3|))) (-15 -3087 ($ $ |t#3| (-781))) (-15 -3087 ($ $ (-654 |t#3|) (-654 (-781)))) (-15 -3727 ((-654 $) $)) (-15 -4194 ((-1186 $) $ |t#3|)) (-15 -4194 ((-1186 |t#1|) $)) (-15 -2717 ((-3 |t#3| "failed") $)) (-15 -1742 ((-781) $ |t#3|)) (-15 -1742 ((-654 (-781)) $ (-654 |t#3|))) (-15 -2773 ((-2 (|:| -1411 $) (|:| -2766 $)) $ $ |t#3|)) (-15 -4335 ($ $ |t#3| (-781))) (-15 -4335 ($ $ (-654 |t#3|) (-654 (-781)))) (-15 -4345 ($ (-1186 |t#1|) |t#3|)) (-15 -4345 ($ (-1186 $) |t#3|)) (-15 -2415 ((-3 (-654 $) "failed") $)) (-15 -2755 ((-3 (-654 $) "failed") $)) (-15 -2241 ((-3 (-2 (|:| |var| |t#3|) (|:| -3715 (-781))) "failed") $)) (-15 -1757 ((-781) $)) (-15 -1757 ((-781) $ (-654 |t#3|))) (-15 -4355 ((-654 |t#3|) $)) (-15 -1380 ((-654 $) $)) (IF (|has| |t#1| (-624 (-546))) (IF (|has| |t#3| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-624 (-903 (-574)))) (IF (|has| |t#3| (-624 (-903 (-574)))) (-6 (-624 (-903 (-574)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-624 (-903 (-388)))) (IF (|has| |t#3| (-624 (-903 (-388)))) (-6 (-624 (-903 (-388)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-897 (-574))) (IF (|has| |t#3| (-897 (-574))) (-6 (-897 (-574))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-897 (-388))) (IF (|has| |t#3| (-897 (-388))) (-6 (-897 (-388))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -1463 ($ $ $ |t#3|)) (-15 -2872 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-462)) (PROGN (-6 (-462)) (-15 -3069 ($ $ |t#3|)) (-15 -1569 ($ $)) (-15 -1569 ($ $ |t#3|)) (-15 -2827 ((-428 $) $)) (-15 -2568 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4454)) (-6 -4454) |%noBranch|) (IF (|has| |t#1| (-920)) (-6 (-920)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2818 (|has| |#1| (-1051 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 |#3|) . T) ((-626 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-623 (-872)) . T) ((-174) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-624 (-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#3| (-624 (-546)))) ((-624 (-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#3| (-624 (-903 (-388))))) ((-624 (-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#3| (-624 (-903 (-574))))) ((-298) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-317 $) . T) ((-334 |#1| |#2|) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-462) -2818 (|has| |#1| (-920)) (|has| |#1| (-462))) ((-524 |#3| |#1|) . T) ((-524 |#3| $) . T) ((-524 $ $) . T) ((-566) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 #1=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-649 #1#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-736) . T) ((-911 |#3|) . T) ((-897 (-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#3| (-897 (-388)))) ((-897 (-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#3| (-897 (-574)))) ((-920) |has| |#1| (-920)) ((-1051 (-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((-1051 (-574)) |has| |#1| (-1051 (-574))) ((-1051 |#1|) . T) ((-1051 |#3|) . T) ((-1064 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1064 |#1|) . T) ((-1064 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1069 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1069 |#1|) . T) ((-1069 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1235) |has| |#1| (-920))) -((-4355 (((-654 |#2|) |#5|) 40)) (-4194 (((-1186 |#5|) |#5| |#2| (-1186 |#5|)) 23) (((-417 (-1186 |#5|)) |#5| |#2|) 16)) (-4345 ((|#5| (-417 (-1186 |#5|)) |#2|) 30)) (-2717 (((-3 |#2| "failed") |#5|) 71)) (-2755 (((-3 (-654 |#5|) "failed") |#5|) 65)) (-2127 (((-3 (-2 (|:| |val| |#5|) (|:| -3715 (-574))) "failed") |#5|) 53)) (-2415 (((-3 (-654 |#5|) "failed") |#5|) 67)) (-2241 (((-3 (-2 (|:| |var| |#2|) (|:| -3715 (-574))) "failed") |#5|) 57))) -(((-961 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4355 ((-654 |#2|) |#5|)) (-15 -2717 ((-3 |#2| "failed") |#5|)) (-15 -4194 ((-417 (-1186 |#5|)) |#5| |#2|)) (-15 -4345 (|#5| (-417 (-1186 |#5|)) |#2|)) (-15 -4194 ((-1186 |#5|) |#5| |#2| (-1186 |#5|))) (-15 -2415 ((-3 (-654 |#5|) "failed") |#5|)) (-15 -2755 ((-3 (-654 |#5|) "failed") |#5|)) (-15 -2241 ((-3 (-2 (|:| |var| |#2|) (|:| -3715 (-574))) "failed") |#5|)) (-15 -2127 ((-3 (-2 (|:| |val| |#5|) (|:| -3715 (-574))) "failed") |#5|))) (-803) (-860) (-1062) (-960 |#3| |#1| |#2|) (-13 (-372) (-10 -8 (-15 -2943 ($ |#4|)) (-15 -2966 (|#4| $)) (-15 -2977 (|#4| $))))) (T -961)) -((-2127 (*1 *2 *3) (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1062)) (-4 *7 (-960 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3715 (-574)))) (-5 *1 (-961 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2943 ($ *7)) (-15 -2966 (*7 $)) (-15 -2977 (*7 $))))))) (-2241 (*1 *2 *3) (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1062)) (-4 *7 (-960 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3715 (-574)))) (-5 *1 (-961 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2943 ($ *7)) (-15 -2966 (*7 $)) (-15 -2977 (*7 $))))))) (-2755 (*1 *2 *3) (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1062)) (-4 *7 (-960 *6 *4 *5)) (-5 *2 (-654 *3)) (-5 *1 (-961 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2943 ($ *7)) (-15 -2966 (*7 $)) (-15 -2977 (*7 $))))))) (-2415 (*1 *2 *3) (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1062)) (-4 *7 (-960 *6 *4 *5)) (-5 *2 (-654 *3)) (-5 *1 (-961 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2943 ($ *7)) (-15 -2966 (*7 $)) (-15 -2977 (*7 $))))))) (-4194 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1186 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2943 ($ *7)) (-15 -2966 (*7 $)) (-15 -2977 (*7 $))))) (-4 *7 (-960 *6 *5 *4)) (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-1062)) (-5 *1 (-961 *5 *4 *6 *7 *3)))) (-4345 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-1186 *2))) (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-1062)) (-4 *2 (-13 (-372) (-10 -8 (-15 -2943 ($ *7)) (-15 -2966 (*7 $)) (-15 -2977 (*7 $))))) (-5 *1 (-961 *5 *4 *6 *7 *2)) (-4 *7 (-960 *6 *5 *4)))) (-4194 (*1 *2 *3 *4) (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-1062)) (-4 *7 (-960 *6 *5 *4)) (-5 *2 (-417 (-1186 *3))) (-5 *1 (-961 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2943 ($ *7)) (-15 -2966 (*7 $)) (-15 -2977 (*7 $))))))) (-2717 (*1 *2 *3) (|partial| -12 (-4 *4 (-803)) (-4 *5 (-1062)) (-4 *6 (-960 *5 *4 *2)) (-4 *2 (-860)) (-5 *1 (-961 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2943 ($ *6)) (-15 -2966 (*6 $)) (-15 -2977 (*6 $))))))) (-4355 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1062)) (-4 *7 (-960 *6 *4 *5)) (-5 *2 (-654 *5)) (-5 *1 (-961 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2943 ($ *7)) (-15 -2966 (*7 $)) (-15 -2977 (*7 $)))))))) -(-10 -7 (-15 -4355 ((-654 |#2|) |#5|)) (-15 -2717 ((-3 |#2| "failed") |#5|)) (-15 -4194 ((-417 (-1186 |#5|)) |#5| |#2|)) (-15 -4345 (|#5| (-417 (-1186 |#5|)) |#2|)) (-15 -4194 ((-1186 |#5|) |#5| |#2| (-1186 |#5|))) (-15 -2415 ((-3 (-654 |#5|) "failed") |#5|)) (-15 -2755 ((-3 (-654 |#5|) "failed") |#5|)) (-15 -2241 ((-3 (-2 (|:| |var| |#2|) (|:| -3715 (-574))) "failed") |#5|)) (-15 -2127 ((-3 (-2 (|:| |val| |#5|) (|:| -3715 (-574))) "failed") |#5|))) -((-1777 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) -(((-962 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1777 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-803) (-860) (-1062) (-960 |#3| |#1| |#2|) (-13 (-1113) (-10 -8 (-15 -3079 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-781)))))) (T -962)) -((-1777 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-860)) (-4 *8 (-1062)) (-4 *6 (-803)) (-4 *2 (-13 (-1113) (-10 -8 (-15 -3079 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-781)))))) (-5 *1 (-962 *6 *7 *8 *5 *2)) (-4 *5 (-960 *8 *6 *7))))) -(-10 -7 (-15 -1777 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-4355 (((-654 (-1190)) $) 16)) (-4194 (((-1186 $) $ (-1190)) 21) (((-1186 |#1|) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-1575 (($ $) NIL (|has| |#1| (-566)))) (-2085 (((-112) $) NIL (|has| |#1| (-566)))) (-1757 (((-781) $) NIL) (((-781) $ (-654 (-1190))) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3972 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-2568 (($ $) NIL (|has| |#1| (-462)))) (-2827 (((-428 $) $) NIL (|has| |#1| (-462)))) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#1| "failed") $) 8) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-1190) "failed") $) NIL)) (-2206 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-1190) $) NIL)) (-1463 (($ $ $ (-1190)) NIL (|has| |#1| (-174)))) (-1392 (($ $) NIL)) (-2590 (((-699 (-574)) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-1569 (($ $) NIL (|has| |#1| (-462))) (($ $ (-1190)) NIL (|has| |#1| (-462)))) (-1380 (((-654 $) $) NIL)) (-2257 (((-112) $) NIL (|has| |#1| (-920)))) (-1661 (($ $ |#1| (-541 (-1190)) $) NIL)) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1190) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1190) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3199 (((-112) $) NIL)) (-1322 (((-781) $) NIL)) (-4345 (($ (-1186 |#1|) (-1190)) NIL) (($ (-1186 $) (-1190)) NIL)) (-3727 (((-654 $) $) NIL)) (-3869 (((-112) $) NIL)) (-4335 (($ |#1| (-541 (-1190))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL)) (-2773 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $ (-1190)) NIL)) (-1742 (((-541 (-1190)) $) NIL) (((-781) $ (-1190)) NIL) (((-654 (-781)) $ (-654 (-1190))) NIL)) (-3708 (($ (-1 (-541 (-1190)) (-541 (-1190))) $) NIL)) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-2717 (((-3 (-1190) "failed") $) 19)) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-2832 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-4136 (((-1172) $) NIL)) (-2755 (((-3 (-654 $) "failed") $) NIL)) (-2415 (((-3 (-654 $) "failed") $) NIL)) (-2241 (((-3 (-2 (|:| |var| (-1190)) (|:| -3715 (-781))) "failed") $) NIL)) (-2379 (($ $ (-1190)) 29 (|has| |#1| (-38 (-417 (-574)))))) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) NIL)) (-1349 ((|#1| $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-462)))) (-2873 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2560 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-2039 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4220 (((-428 $) $) NIL (|has| |#1| (-920)))) (-2838 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2646 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1190) |#1|) NIL) (($ $ (-654 (-1190)) (-654 |#1|)) NIL) (($ $ (-1190) $) NIL) (($ $ (-654 (-1190)) (-654 $)) NIL)) (-2872 (($ $ (-1190)) NIL (|has| |#1| (-174)))) (-3905 (($ $ (-1190)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL)) (-4202 (((-541 (-1190)) $) NIL) (((-781) $ (-1190)) NIL) (((-654 (-781)) $ (-654 (-1190))) NIL)) (-1836 (((-903 (-388)) $) NIL (-12 (|has| (-1190) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1190) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1190) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-3069 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ (-1190)) NIL (|has| |#1| (-462)))) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-920))))) (-2943 (((-872) $) 25) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-1190)) 27) (($ (-417 (-574))) NIL (-2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-2530 (((-654 |#1|) $) NIL)) (-3087 ((|#1| $ (-541 (-1190))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL)) (-3298 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#1| (-920))) (|has| |#1| (-146))))) (-1364 (((-781)) NIL T CONST)) (-3772 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-3610 (($ $ (-1190)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL)) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-963 |#1|) (-13 (-960 |#1| (-541 (-1190)) (-1190)) (-10 -8 (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2379 ($ $ (-1190))) |%noBranch|))) (-1062)) (T -963)) -((-2379 (*1 *1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-963 *3)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062))))) -(-13 (-960 |#1| (-541 (-1190)) (-1190)) (-10 -8 (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2379 ($ $ (-1190))) |%noBranch|))) -((-2009 (((-2 (|:| -3715 (-781)) (|:| -1858 |#5|) (|:| |radicand| |#5|)) |#3| (-781)) 49)) (-2862 (((-2 (|:| -3715 (-781)) (|:| -1858 |#5|) (|:| |radicand| |#5|)) (-417 (-574)) (-781)) 44)) (-3819 (((-2 (|:| -3715 (-781)) (|:| -1858 |#4|) (|:| |radicand| (-654 |#4|))) |#4| (-781)) 65)) (-3178 (((-2 (|:| -3715 (-781)) (|:| -1858 |#5|) (|:| |radicand| |#5|)) |#5| (-781)) 74 (|has| |#3| (-462))))) -(((-964 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2009 ((-2 (|:| -3715 (-781)) (|:| -1858 |#5|) (|:| |radicand| |#5|)) |#3| (-781))) (-15 -2862 ((-2 (|:| -3715 (-781)) (|:| -1858 |#5|) (|:| |radicand| |#5|)) (-417 (-574)) (-781))) (IF (|has| |#3| (-462)) (-15 -3178 ((-2 (|:| -3715 (-781)) (|:| -1858 |#5|) (|:| |radicand| |#5|)) |#5| (-781))) |%noBranch|) (-15 -3819 ((-2 (|:| -3715 (-781)) (|:| -1858 |#4|) (|:| |radicand| (-654 |#4|))) |#4| (-781)))) (-803) (-860) (-566) (-960 |#3| |#1| |#2|) (-13 (-372) (-10 -8 (-15 -2943 ($ |#4|)) (-15 -2966 (|#4| $)) (-15 -2977 (|#4| $))))) (T -964)) -((-3819 (*1 *2 *3 *4) (-12 (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-566)) (-4 *3 (-960 *7 *5 *6)) (-5 *2 (-2 (|:| -3715 (-781)) (|:| -1858 *3) (|:| |radicand| (-654 *3)))) (-5 *1 (-964 *5 *6 *7 *3 *8)) (-5 *4 (-781)) (-4 *8 (-13 (-372) (-10 -8 (-15 -2943 ($ *3)) (-15 -2966 (*3 $)) (-15 -2977 (*3 $))))))) (-3178 (*1 *2 *3 *4) (-12 (-4 *7 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-566)) (-4 *8 (-960 *7 *5 *6)) (-5 *2 (-2 (|:| -3715 (-781)) (|:| -1858 *3) (|:| |radicand| *3))) (-5 *1 (-964 *5 *6 *7 *8 *3)) (-5 *4 (-781)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2943 ($ *8)) (-15 -2966 (*8 $)) (-15 -2977 (*8 $))))))) (-2862 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-574))) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-566)) (-4 *8 (-960 *7 *5 *6)) (-5 *2 (-2 (|:| -3715 (-781)) (|:| -1858 *9) (|:| |radicand| *9))) (-5 *1 (-964 *5 *6 *7 *8 *9)) (-5 *4 (-781)) (-4 *9 (-13 (-372) (-10 -8 (-15 -2943 ($ *8)) (-15 -2966 (*8 $)) (-15 -2977 (*8 $))))))) (-2009 (*1 *2 *3 *4) (-12 (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-566)) (-4 *7 (-960 *3 *5 *6)) (-5 *2 (-2 (|:| -3715 (-781)) (|:| -1858 *8) (|:| |radicand| *8))) (-5 *1 (-964 *5 *6 *3 *7 *8)) (-5 *4 (-781)) (-4 *8 (-13 (-372) (-10 -8 (-15 -2943 ($ *7)) (-15 -2966 (*7 $)) (-15 -2977 (*7 $)))))))) -(-10 -7 (-15 -2009 ((-2 (|:| -3715 (-781)) (|:| -1858 |#5|) (|:| |radicand| |#5|)) |#3| (-781))) (-15 -2862 ((-2 (|:| -3715 (-781)) (|:| -1858 |#5|) (|:| |radicand| |#5|)) (-417 (-574)) (-781))) (IF (|has| |#3| (-462)) (-15 -3178 ((-2 (|:| -3715 (-781)) (|:| -1858 |#5|) (|:| |radicand| |#5|)) |#5| (-781))) |%noBranch|) (-15 -3819 ((-2 (|:| -3715 (-781)) (|:| -1858 |#4|) (|:| |radicand| (-654 |#4|))) |#4| (-781)))) -((-2849 (((-112) $ $) NIL)) (-2118 (($ (-1133)) 8)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 15) (((-1133) $) 12)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 11))) -(((-965) (-13 (-1113) (-623 (-1133)) (-10 -8 (-15 -2118 ($ (-1133)))))) (T -965)) -((-2118 (*1 *1 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-965))))) -(-13 (-1113) (-623 (-1133)) (-10 -8 (-15 -2118 ($ (-1133))))) -((-2424 (((-1107 (-227)) $) 8)) (-2411 (((-1107 (-227)) $) 9)) (-1851 (((-654 (-654 (-954 (-227)))) $) 10)) (-2943 (((-872) $) 6))) -(((-966) (-141)) (T -966)) -((-1851 (*1 *2 *1) (-12 (-4 *1 (-966)) (-5 *2 (-654 (-654 (-954 (-227))))))) (-2411 (*1 *2 *1) (-12 (-4 *1 (-966)) (-5 *2 (-1107 (-227))))) (-2424 (*1 *2 *1) (-12 (-4 *1 (-966)) (-5 *2 (-1107 (-227)))))) -(-13 (-623 (-872)) (-10 -8 (-15 -1851 ((-654 (-654 (-954 (-227)))) $)) (-15 -2411 ((-1107 (-227)) $)) (-15 -2424 ((-1107 (-227)) $)))) -(((-623 (-872)) . T)) -((-4081 (((-3 (-699 |#1|) "failed") |#2| (-932)) 18))) -(((-967 |#1| |#2|) (-10 -7 (-15 -4081 ((-3 (-699 |#1|) "failed") |#2| (-932)))) (-566) (-666 |#1|)) (T -967)) -((-4081 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-932)) (-4 *5 (-566)) (-5 *2 (-699 *5)) (-5 *1 (-967 *5 *3)) (-4 *3 (-666 *5))))) -(-10 -7 (-15 -4081 ((-3 (-699 |#1|) "failed") |#2| (-932)))) -((-4034 (((-969 |#2|) (-1 |#2| |#1| |#2|) (-969 |#1|) |#2|) 16)) (-2868 ((|#2| (-1 |#2| |#1| |#2|) (-969 |#1|) |#2|) 18)) (-1777 (((-969 |#2|) (-1 |#2| |#1|) (-969 |#1|)) 13))) -(((-968 |#1| |#2|) (-10 -7 (-15 -4034 ((-969 |#2|) (-1 |#2| |#1| |#2|) (-969 |#1|) |#2|)) (-15 -2868 (|#2| (-1 |#2| |#1| |#2|) (-969 |#1|) |#2|)) (-15 -1777 ((-969 |#2|) (-1 |#2| |#1|) (-969 |#1|)))) (-1231) (-1231)) (T -968)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-969 *5)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-969 *6)) (-5 *1 (-968 *5 *6)))) (-2868 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-969 *5)) (-4 *5 (-1231)) (-4 *2 (-1231)) (-5 *1 (-968 *5 *2)))) (-4034 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-969 *6)) (-4 *6 (-1231)) (-4 *5 (-1231)) (-5 *2 (-969 *5)) (-5 *1 (-968 *6 *5))))) -(-10 -7 (-15 -4034 ((-969 |#2|) (-1 |#2| |#1| |#2|) (-969 |#1|) |#2|)) (-15 -2868 (|#2| (-1 |#2| |#1| |#2|) (-969 |#1|) |#2|)) (-15 -1777 ((-969 |#2|) (-1 |#2| |#1|) (-969 |#1|)))) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3714 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-1357 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-3642 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4457))) (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| |#1| (-860))))) (-2771 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-3034 (((-112) $ (-781)) NIL)) (-3143 ((|#1| $ (-574) |#1|) 19 (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) NIL (|has| $ (-6 -4457)))) (-2165 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3426 (($) NIL T CONST)) (-2627 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3335 (($ |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-2458 ((|#1| $ (-574) |#1|) 18 (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) 16)) (-1441 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1113))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1113)))) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3790 (($ (-781) |#1|) 15)) (-2742 (((-112) $ (-781)) NIL)) (-3618 (((-574) $) 11 (|has| (-574) (-860)))) (-3659 (($ $ $) NIL (|has| |#1| (-860)))) (-4430 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2702 (((-574) $) NIL (|has| (-574) (-860)))) (-4257 (($ $ $) NIL (|has| |#1| (-860)))) (-2449 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-1594 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-4308 (((-654 (-574)) $) NIL)) (-3336 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2915 ((|#1| $) NIL (|has| (-574) (-860)))) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1942 (($ $ |#1|) 20 (|has| $ (-6 -4457)))) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-4371 (((-654 |#1|) $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) 12)) (-2199 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) 17) (($ $ (-1248 (-574))) NIL)) (-2840 (($ $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3506 (($ $ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3167 (($ $) 21)) (-1836 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 14)) (-4157 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3007 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2863 (((-781) $) 8 (|has| $ (-6 -4456))))) -(((-969 |#1|) (-19 |#1|) (-1231)) (T -969)) +((-1433 ((|#2| (-653 |#1|) (-653 |#1|)) 28))) +(((-932 |#1| |#2|) (-10 -7 (-15 -1433 (|#2| (-653 |#1|) (-653 |#1|)))) (-371) (-1256 |#1|)) (T -932)) +((-1433 (*1 *2 *3 *3) (-12 (-5 *3 (-653 *4)) (-4 *4 (-371)) (-4 *2 (-1256 *4)) (-5 *1 (-932 *4 *2))))) +(-10 -7 (-15 -1433 (|#2| (-653 |#1|) (-653 |#1|)))) +((-2844 (((-1185 |#2|) (-653 |#2|) (-653 |#2|)) 17) (((-1253 |#1| |#2|) (-1253 |#1| |#2|) (-653 |#2|) (-653 |#2|)) 13))) +(((-933 |#1| |#2|) (-10 -7 (-15 -2844 ((-1253 |#1| |#2|) (-1253 |#1| |#2|) (-653 |#2|) (-653 |#2|))) (-15 -2844 ((-1185 |#2|) (-653 |#2|) (-653 |#2|)))) (-1189) (-371)) (T -933)) +((-2844 (*1 *2 *3 *3) (-12 (-5 *3 (-653 *5)) (-4 *5 (-371)) (-5 *2 (-1185 *5)) (-5 *1 (-933 *4 *5)) (-14 *4 (-1189)))) (-2844 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1253 *4 *5)) (-5 *3 (-653 *5)) (-14 *4 (-1189)) (-4 *5 (-371)) (-5 *1 (-933 *4 *5))))) +(-10 -7 (-15 -2844 ((-1253 |#1| |#2|) (-1253 |#1| |#2|) (-653 |#2|) (-653 |#2|))) (-15 -2844 ((-1185 |#2|) (-653 |#2|) (-653 |#2|)))) +((-1314 (((-573) (-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-1171)) 174)) (-3688 ((|#4| |#4|) 193)) (-4332 (((-653 (-416 (-962 |#1|))) (-653 (-1189))) 146)) (-2937 (((-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))) (-698 |#4|) (-653 (-416 (-962 |#1|))) (-653 (-653 |#4|)) (-780) (-780) (-573)) 88)) (-2994 (((-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|)))))) (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|)))))) (-653 |#4|)) 69)) (-2964 (((-698 |#4|) (-698 |#4|) (-653 |#4|)) 65)) (-4363 (((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-1171)) 186)) (-4130 (((-573) (-698 |#4|) (-931) (-1171)) 166) (((-573) (-698 |#4|) (-653 (-1189)) (-931) (-1171)) 165) (((-573) (-698 |#4|) (-653 |#4|) (-931) (-1171)) 164) (((-573) (-698 |#4|) (-1171)) 154) (((-573) (-698 |#4|) (-653 (-1189)) (-1171)) 153) (((-573) (-698 |#4|) (-653 |#4|) (-1171)) 152) (((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|) (-931)) 151) (((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|) (-653 (-1189)) (-931)) 150) (((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|) (-653 |#4|) (-931)) 149) (((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|)) 148) (((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|) (-653 (-1189))) 147) (((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|) (-653 |#4|)) 143)) (-2111 ((|#4| (-962 |#1|)) 80)) (-3475 (((-112) (-653 |#4|) (-653 (-653 |#4|))) 190)) (-3932 (((-653 (-653 (-573))) (-573) (-573)) 159)) (-3563 (((-653 (-653 |#4|)) (-653 (-653 |#4|))) 106)) (-4136 (((-780) (-653 (-2 (|:| -3583 (-780)) (|:| |eqns| (-653 (-2 (|:| |det| |#4|) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))))) (|:| |fgb| (-653 |#4|))))) 100)) (-4073 (((-780) (-653 (-2 (|:| -3583 (-780)) (|:| |eqns| (-653 (-2 (|:| |det| |#4|) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))))) (|:| |fgb| (-653 |#4|))))) 99)) (-3787 (((-112) (-653 (-962 |#1|))) 19) (((-112) (-653 |#4|)) 15)) (-2138 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-653 |#4|)) (|:| |n0| (-653 |#4|))) (-653 |#4|) (-653 |#4|)) 84)) (-1496 (((-653 |#4|) |#4|) 57)) (-3850 (((-653 (-416 (-962 |#1|))) (-653 |#4|)) 142) (((-698 (-416 (-962 |#1|))) (-698 |#4|)) 66) (((-416 (-962 |#1|)) |#4|) 139)) (-3870 (((-2 (|:| |rgl| (-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|)))))))))) (|:| |rgsz| (-573))) (-698 |#4|) (-653 (-416 (-962 |#1|))) (-780) (-1171) (-573)) 112)) (-3678 (((-653 (-2 (|:| -3583 (-780)) (|:| |eqns| (-653 (-2 (|:| |det| |#4|) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))))) (|:| |fgb| (-653 |#4|)))) (-698 |#4|) (-780)) 98)) (-1936 (((-653 (-2 (|:| |det| |#4|) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573))))) (-698 |#4|) (-780)) 121)) (-1827 (((-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|)))))) (-2 (|:| -1423 (-698 (-416 (-962 |#1|)))) (|:| |vec| (-653 (-416 (-962 |#1|)))) (|:| -3583 (-780)) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573))))) 56))) +(((-934 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4130 ((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|) (-653 |#4|))) (-15 -4130 ((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|) (-653 (-1189)))) (-15 -4130 ((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|))) (-15 -4130 ((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|) (-653 |#4|) (-931))) (-15 -4130 ((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|) (-653 (-1189)) (-931))) (-15 -4130 ((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|) (-931))) (-15 -4130 ((-573) (-698 |#4|) (-653 |#4|) (-1171))) (-15 -4130 ((-573) (-698 |#4|) (-653 (-1189)) (-1171))) (-15 -4130 ((-573) (-698 |#4|) (-1171))) (-15 -4130 ((-573) (-698 |#4|) (-653 |#4|) (-931) (-1171))) (-15 -4130 ((-573) (-698 |#4|) (-653 (-1189)) (-931) (-1171))) (-15 -4130 ((-573) (-698 |#4|) (-931) (-1171))) (-15 -1314 ((-573) (-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-1171))) (-15 -4363 ((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-1171))) (-15 -3870 ((-2 (|:| |rgl| (-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|)))))))))) (|:| |rgsz| (-573))) (-698 |#4|) (-653 (-416 (-962 |#1|))) (-780) (-1171) (-573))) (-15 -3850 ((-416 (-962 |#1|)) |#4|)) (-15 -3850 ((-698 (-416 (-962 |#1|))) (-698 |#4|))) (-15 -3850 ((-653 (-416 (-962 |#1|))) (-653 |#4|))) (-15 -4332 ((-653 (-416 (-962 |#1|))) (-653 (-1189)))) (-15 -2111 (|#4| (-962 |#1|))) (-15 -2138 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-653 |#4|)) (|:| |n0| (-653 |#4|))) (-653 |#4|) (-653 |#4|))) (-15 -3678 ((-653 (-2 (|:| -3583 (-780)) (|:| |eqns| (-653 (-2 (|:| |det| |#4|) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))))) (|:| |fgb| (-653 |#4|)))) (-698 |#4|) (-780))) (-15 -2994 ((-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|)))))) (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|)))))) (-653 |#4|))) (-15 -1827 ((-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|)))))) (-2 (|:| -1423 (-698 (-416 (-962 |#1|)))) (|:| |vec| (-653 (-416 (-962 |#1|)))) (|:| -3583 (-780)) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))))) (-15 -1496 ((-653 |#4|) |#4|)) (-15 -4073 ((-780) (-653 (-2 (|:| -3583 (-780)) (|:| |eqns| (-653 (-2 (|:| |det| |#4|) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))))) (|:| |fgb| (-653 |#4|)))))) (-15 -4136 ((-780) (-653 (-2 (|:| -3583 (-780)) (|:| |eqns| (-653 (-2 (|:| |det| |#4|) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))))) (|:| |fgb| (-653 |#4|)))))) (-15 -3563 ((-653 (-653 |#4|)) (-653 (-653 |#4|)))) (-15 -3932 ((-653 (-653 (-573))) (-573) (-573))) (-15 -3475 ((-112) (-653 |#4|) (-653 (-653 |#4|)))) (-15 -1936 ((-653 (-2 (|:| |det| |#4|) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573))))) (-698 |#4|) (-780))) (-15 -2964 ((-698 |#4|) (-698 |#4|) (-653 |#4|))) (-15 -2937 ((-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))) (-698 |#4|) (-653 (-416 (-962 |#1|))) (-653 (-653 |#4|)) (-780) (-780) (-573))) (-15 -3688 (|#4| |#4|)) (-15 -3787 ((-112) (-653 |#4|))) (-15 -3787 ((-112) (-653 (-962 |#1|))))) (-13 (-314) (-148)) (-13 (-859) (-623 (-1189))) (-802) (-959 |#1| |#3| |#2|)) (T -934)) +((-3787 (*1 *2 *3) (-12 (-5 *3 (-653 (-962 *4))) (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-112)) (-5 *1 (-934 *4 *5 *6 *7)) (-4 *7 (-959 *4 *6 *5)))) (-3787 (*1 *2 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-959 *4 *6 *5)) (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-112)) (-5 *1 (-934 *4 *5 *6 *7)))) (-3688 (*1 *2 *2) (-12 (-4 *3 (-13 (-314) (-148))) (-4 *4 (-13 (-859) (-623 (-1189)))) (-4 *5 (-802)) (-5 *1 (-934 *3 *4 *5 *2)) (-4 *2 (-959 *3 *5 *4)))) (-2937 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573))))) (-5 *4 (-698 *12)) (-5 *5 (-653 (-416 (-962 *9)))) (-5 *6 (-653 (-653 *12))) (-5 *7 (-780)) (-5 *8 (-573)) (-4 *9 (-13 (-314) (-148))) (-4 *12 (-959 *9 *11 *10)) (-4 *10 (-13 (-859) (-623 (-1189)))) (-4 *11 (-802)) (-5 *2 (-2 (|:| |eqzro| (-653 *12)) (|:| |neqzro| (-653 *12)) (|:| |wcond| (-653 (-962 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 *9)))) (|:| -3914 (-653 (-1280 (-416 (-962 *9))))))))) (-5 *1 (-934 *9 *10 *11 *12)))) (-2964 (*1 *2 *2 *3) (-12 (-5 *2 (-698 *7)) (-5 *3 (-653 *7)) (-4 *7 (-959 *4 *6 *5)) (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *1 (-934 *4 *5 *6 *7)))) (-1936 (*1 *2 *3 *4) (-12 (-5 *3 (-698 *8)) (-5 *4 (-780)) (-4 *8 (-959 *5 *7 *6)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-13 (-859) (-623 (-1189)))) (-4 *7 (-802)) (-5 *2 (-653 (-2 (|:| |det| *8) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))))) (-5 *1 (-934 *5 *6 *7 *8)))) (-3475 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-653 *8))) (-5 *3 (-653 *8)) (-4 *8 (-959 *5 *7 *6)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-13 (-859) (-623 (-1189)))) (-4 *7 (-802)) (-5 *2 (-112)) (-5 *1 (-934 *5 *6 *7 *8)))) (-3932 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-653 (-653 (-573)))) (-5 *1 (-934 *4 *5 *6 *7)) (-5 *3 (-573)) (-4 *7 (-959 *4 *6 *5)))) (-3563 (*1 *2 *2) (-12 (-5 *2 (-653 (-653 *6))) (-4 *6 (-959 *3 *5 *4)) (-4 *3 (-13 (-314) (-148))) (-4 *4 (-13 (-859) (-623 (-1189)))) (-4 *5 (-802)) (-5 *1 (-934 *3 *4 *5 *6)))) (-4136 (*1 *2 *3) (-12 (-5 *3 (-653 (-2 (|:| -3583 (-780)) (|:| |eqns| (-653 (-2 (|:| |det| *7) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))))) (|:| |fgb| (-653 *7))))) (-4 *7 (-959 *4 *6 *5)) (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-780)) (-5 *1 (-934 *4 *5 *6 *7)))) (-4073 (*1 *2 *3) (-12 (-5 *3 (-653 (-2 (|:| -3583 (-780)) (|:| |eqns| (-653 (-2 (|:| |det| *7) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))))) (|:| |fgb| (-653 *7))))) (-4 *7 (-959 *4 *6 *5)) (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-780)) (-5 *1 (-934 *4 *5 *6 *7)))) (-1496 (*1 *2 *3) (-12 (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-653 *3)) (-5 *1 (-934 *4 *5 *6 *3)) (-4 *3 (-959 *4 *6 *5)))) (-1827 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1423 (-698 (-416 (-962 *4)))) (|:| |vec| (-653 (-416 (-962 *4)))) (|:| -3583 (-780)) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573))))) (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-2 (|:| |partsol| (-1280 (-416 (-962 *4)))) (|:| -3914 (-653 (-1280 (-416 (-962 *4))))))) (-5 *1 (-934 *4 *5 *6 *7)) (-4 *7 (-959 *4 *6 *5)))) (-2994 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1280 (-416 (-962 *4)))) (|:| -3914 (-653 (-1280 (-416 (-962 *4))))))) (-5 *3 (-653 *7)) (-4 *4 (-13 (-314) (-148))) (-4 *7 (-959 *4 *6 *5)) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *1 (-934 *4 *5 *6 *7)))) (-3678 (*1 *2 *3 *4) (-12 (-5 *3 (-698 *8)) (-4 *8 (-959 *5 *7 *6)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-13 (-859) (-623 (-1189)))) (-4 *7 (-802)) (-5 *2 (-653 (-2 (|:| -3583 (-780)) (|:| |eqns| (-653 (-2 (|:| |det| *8) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))))) (|:| |fgb| (-653 *8))))) (-5 *1 (-934 *5 *6 *7 *8)) (-5 *4 (-780)))) (-2138 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-4 *7 (-959 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-653 *7)) (|:| |n0| (-653 *7)))) (-5 *1 (-934 *4 *5 *6 *7)) (-5 *3 (-653 *7)))) (-2111 (*1 *2 *3) (-12 (-5 *3 (-962 *4)) (-4 *4 (-13 (-314) (-148))) (-4 *2 (-959 *4 *6 *5)) (-5 *1 (-934 *4 *5 *6 *2)) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)))) (-4332 (*1 *2 *3) (-12 (-5 *3 (-653 (-1189))) (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-653 (-416 (-962 *4)))) (-5 *1 (-934 *4 *5 *6 *7)) (-4 *7 (-959 *4 *6 *5)))) (-3850 (*1 *2 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-959 *4 *6 *5)) (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-653 (-416 (-962 *4)))) (-5 *1 (-934 *4 *5 *6 *7)))) (-3850 (*1 *2 *3) (-12 (-5 *3 (-698 *7)) (-4 *7 (-959 *4 *6 *5)) (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-698 (-416 (-962 *4)))) (-5 *1 (-934 *4 *5 *6 *7)))) (-3850 (*1 *2 *3) (-12 (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-416 (-962 *4))) (-5 *1 (-934 *4 *5 *6 *3)) (-4 *3 (-959 *4 *6 *5)))) (-3870 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-698 *11)) (-5 *4 (-653 (-416 (-962 *8)))) (-5 *5 (-780)) (-5 *6 (-1171)) (-4 *8 (-13 (-314) (-148))) (-4 *11 (-959 *8 *10 *9)) (-4 *9 (-13 (-859) (-623 (-1189)))) (-4 *10 (-802)) (-5 *2 (-2 (|:| |rgl| (-653 (-2 (|:| |eqzro| (-653 *11)) (|:| |neqzro| (-653 *11)) (|:| |wcond| (-653 (-962 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 *8)))) (|:| -3914 (-653 (-1280 (-416 (-962 *8)))))))))) (|:| |rgsz| (-573)))) (-5 *1 (-934 *8 *9 *10 *11)) (-5 *7 (-573)))) (-4363 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-653 (-2 (|:| |eqzro| (-653 *7)) (|:| |neqzro| (-653 *7)) (|:| |wcond| (-653 (-962 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 *4)))) (|:| -3914 (-653 (-1280 (-416 (-962 *4)))))))))) (-5 *1 (-934 *4 *5 *6 *7)) (-4 *7 (-959 *4 *6 *5)))) (-1314 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-2 (|:| |eqzro| (-653 *8)) (|:| |neqzro| (-653 *8)) (|:| |wcond| (-653 (-962 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 *5)))) (|:| -3914 (-653 (-1280 (-416 (-962 *5)))))))))) (-5 *4 (-1171)) (-4 *5 (-13 (-314) (-148))) (-4 *8 (-959 *5 *7 *6)) (-4 *6 (-13 (-859) (-623 (-1189)))) (-4 *7 (-802)) (-5 *2 (-573)) (-5 *1 (-934 *5 *6 *7 *8)))) (-4130 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-698 *9)) (-5 *4 (-931)) (-5 *5 (-1171)) (-4 *9 (-959 *6 *8 *7)) (-4 *6 (-13 (-314) (-148))) (-4 *7 (-13 (-859) (-623 (-1189)))) (-4 *8 (-802)) (-5 *2 (-573)) (-5 *1 (-934 *6 *7 *8 *9)))) (-4130 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-698 *10)) (-5 *4 (-653 (-1189))) (-5 *5 (-931)) (-5 *6 (-1171)) (-4 *10 (-959 *7 *9 *8)) (-4 *7 (-13 (-314) (-148))) (-4 *8 (-13 (-859) (-623 (-1189)))) (-4 *9 (-802)) (-5 *2 (-573)) (-5 *1 (-934 *7 *8 *9 *10)))) (-4130 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-698 *10)) (-5 *4 (-653 *10)) (-5 *5 (-931)) (-5 *6 (-1171)) (-4 *10 (-959 *7 *9 *8)) (-4 *7 (-13 (-314) (-148))) (-4 *8 (-13 (-859) (-623 (-1189)))) (-4 *9 (-802)) (-5 *2 (-573)) (-5 *1 (-934 *7 *8 *9 *10)))) (-4130 (*1 *2 *3 *4) (-12 (-5 *3 (-698 *8)) (-5 *4 (-1171)) (-4 *8 (-959 *5 *7 *6)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-13 (-859) (-623 (-1189)))) (-4 *7 (-802)) (-5 *2 (-573)) (-5 *1 (-934 *5 *6 *7 *8)))) (-4130 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-698 *9)) (-5 *4 (-653 (-1189))) (-5 *5 (-1171)) (-4 *9 (-959 *6 *8 *7)) (-4 *6 (-13 (-314) (-148))) (-4 *7 (-13 (-859) (-623 (-1189)))) (-4 *8 (-802)) (-5 *2 (-573)) (-5 *1 (-934 *6 *7 *8 *9)))) (-4130 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-698 *9)) (-5 *4 (-653 *9)) (-5 *5 (-1171)) (-4 *9 (-959 *6 *8 *7)) (-4 *6 (-13 (-314) (-148))) (-4 *7 (-13 (-859) (-623 (-1189)))) (-4 *8 (-802)) (-5 *2 (-573)) (-5 *1 (-934 *6 *7 *8 *9)))) (-4130 (*1 *2 *3 *4) (-12 (-5 *3 (-698 *8)) (-5 *4 (-931)) (-4 *8 (-959 *5 *7 *6)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-13 (-859) (-623 (-1189)))) (-4 *7 (-802)) (-5 *2 (-653 (-2 (|:| |eqzro| (-653 *8)) (|:| |neqzro| (-653 *8)) (|:| |wcond| (-653 (-962 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 *5)))) (|:| -3914 (-653 (-1280 (-416 (-962 *5)))))))))) (-5 *1 (-934 *5 *6 *7 *8)))) (-4130 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-698 *9)) (-5 *4 (-653 (-1189))) (-5 *5 (-931)) (-4 *9 (-959 *6 *8 *7)) (-4 *6 (-13 (-314) (-148))) (-4 *7 (-13 (-859) (-623 (-1189)))) (-4 *8 (-802)) (-5 *2 (-653 (-2 (|:| |eqzro| (-653 *9)) (|:| |neqzro| (-653 *9)) (|:| |wcond| (-653 (-962 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 *6)))) (|:| -3914 (-653 (-1280 (-416 (-962 *6)))))))))) (-5 *1 (-934 *6 *7 *8 *9)))) (-4130 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-698 *9)) (-5 *5 (-931)) (-4 *9 (-959 *6 *8 *7)) (-4 *6 (-13 (-314) (-148))) (-4 *7 (-13 (-859) (-623 (-1189)))) (-4 *8 (-802)) (-5 *2 (-653 (-2 (|:| |eqzro| (-653 *9)) (|:| |neqzro| (-653 *9)) (|:| |wcond| (-653 (-962 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 *6)))) (|:| -3914 (-653 (-1280 (-416 (-962 *6)))))))))) (-5 *1 (-934 *6 *7 *8 *9)) (-5 *4 (-653 *9)))) (-4130 (*1 *2 *3) (-12 (-5 *3 (-698 *7)) (-4 *7 (-959 *4 *6 *5)) (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-653 (-2 (|:| |eqzro| (-653 *7)) (|:| |neqzro| (-653 *7)) (|:| |wcond| (-653 (-962 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 *4)))) (|:| -3914 (-653 (-1280 (-416 (-962 *4)))))))))) (-5 *1 (-934 *4 *5 *6 *7)))) (-4130 (*1 *2 *3 *4) (-12 (-5 *3 (-698 *8)) (-5 *4 (-653 (-1189))) (-4 *8 (-959 *5 *7 *6)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-13 (-859) (-623 (-1189)))) (-4 *7 (-802)) (-5 *2 (-653 (-2 (|:| |eqzro| (-653 *8)) (|:| |neqzro| (-653 *8)) (|:| |wcond| (-653 (-962 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 *5)))) (|:| -3914 (-653 (-1280 (-416 (-962 *5)))))))))) (-5 *1 (-934 *5 *6 *7 *8)))) (-4130 (*1 *2 *3 *4) (-12 (-5 *3 (-698 *8)) (-4 *8 (-959 *5 *7 *6)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-13 (-859) (-623 (-1189)))) (-4 *7 (-802)) (-5 *2 (-653 (-2 (|:| |eqzro| (-653 *8)) (|:| |neqzro| (-653 *8)) (|:| |wcond| (-653 (-962 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 *5)))) (|:| -3914 (-653 (-1280 (-416 (-962 *5)))))))))) (-5 *1 (-934 *5 *6 *7 *8)) (-5 *4 (-653 *8))))) +(-10 -7 (-15 -4130 ((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|) (-653 |#4|))) (-15 -4130 ((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|) (-653 (-1189)))) (-15 -4130 ((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|))) (-15 -4130 ((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|) (-653 |#4|) (-931))) (-15 -4130 ((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|) (-653 (-1189)) (-931))) (-15 -4130 ((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-698 |#4|) (-931))) (-15 -4130 ((-573) (-698 |#4|) (-653 |#4|) (-1171))) (-15 -4130 ((-573) (-698 |#4|) (-653 (-1189)) (-1171))) (-15 -4130 ((-573) (-698 |#4|) (-1171))) (-15 -4130 ((-573) (-698 |#4|) (-653 |#4|) (-931) (-1171))) (-15 -4130 ((-573) (-698 |#4|) (-653 (-1189)) (-931) (-1171))) (-15 -4130 ((-573) (-698 |#4|) (-931) (-1171))) (-15 -1314 ((-573) (-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-1171))) (-15 -4363 ((-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|))))))))) (-1171))) (-15 -3870 ((-2 (|:| |rgl| (-653 (-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|)))))))))) (|:| |rgsz| (-573))) (-698 |#4|) (-653 (-416 (-962 |#1|))) (-780) (-1171) (-573))) (-15 -3850 ((-416 (-962 |#1|)) |#4|)) (-15 -3850 ((-698 (-416 (-962 |#1|))) (-698 |#4|))) (-15 -3850 ((-653 (-416 (-962 |#1|))) (-653 |#4|))) (-15 -4332 ((-653 (-416 (-962 |#1|))) (-653 (-1189)))) (-15 -2111 (|#4| (-962 |#1|))) (-15 -2138 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-653 |#4|)) (|:| |n0| (-653 |#4|))) (-653 |#4|) (-653 |#4|))) (-15 -3678 ((-653 (-2 (|:| -3583 (-780)) (|:| |eqns| (-653 (-2 (|:| |det| |#4|) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))))) (|:| |fgb| (-653 |#4|)))) (-698 |#4|) (-780))) (-15 -2994 ((-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|)))))) (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|)))))) (-653 |#4|))) (-15 -1827 ((-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|)))))) (-2 (|:| -1423 (-698 (-416 (-962 |#1|)))) (|:| |vec| (-653 (-416 (-962 |#1|)))) (|:| -3583 (-780)) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))))) (-15 -1496 ((-653 |#4|) |#4|)) (-15 -4073 ((-780) (-653 (-2 (|:| -3583 (-780)) (|:| |eqns| (-653 (-2 (|:| |det| |#4|) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))))) (|:| |fgb| (-653 |#4|)))))) (-15 -4136 ((-780) (-653 (-2 (|:| -3583 (-780)) (|:| |eqns| (-653 (-2 (|:| |det| |#4|) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))))) (|:| |fgb| (-653 |#4|)))))) (-15 -3563 ((-653 (-653 |#4|)) (-653 (-653 |#4|)))) (-15 -3932 ((-653 (-653 (-573))) (-573) (-573))) (-15 -3475 ((-112) (-653 |#4|) (-653 (-653 |#4|)))) (-15 -1936 ((-653 (-2 (|:| |det| |#4|) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573))))) (-698 |#4|) (-780))) (-15 -2964 ((-698 |#4|) (-698 |#4|) (-653 |#4|))) (-15 -2937 ((-2 (|:| |eqzro| (-653 |#4|)) (|:| |neqzro| (-653 |#4|)) (|:| |wcond| (-653 (-962 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1280 (-416 (-962 |#1|)))) (|:| -3914 (-653 (-1280 (-416 (-962 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573)))) (-698 |#4|) (-653 (-416 (-962 |#1|))) (-653 (-653 |#4|)) (-780) (-780) (-573))) (-15 -3688 (|#4| |#4|)) (-15 -3787 ((-112) (-653 |#4|))) (-15 -3787 ((-112) (-653 (-962 |#1|))))) +((-3807 (((-937) |#1| (-1189)) 17) (((-937) |#1| (-1189) (-1106 (-227))) 21)) (-4313 (((-937) |#1| |#1| (-1189) (-1106 (-227))) 19) (((-937) |#1| (-1189) (-1106 (-227))) 15))) +(((-935 |#1|) (-10 -7 (-15 -4313 ((-937) |#1| (-1189) (-1106 (-227)))) (-15 -4313 ((-937) |#1| |#1| (-1189) (-1106 (-227)))) (-15 -3807 ((-937) |#1| (-1189) (-1106 (-227)))) (-15 -3807 ((-937) |#1| (-1189)))) (-623 (-545))) (T -935)) +((-3807 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-5 *2 (-937)) (-5 *1 (-935 *3)) (-4 *3 (-623 (-545))))) (-3807 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1189)) (-5 *5 (-1106 (-227))) (-5 *2 (-937)) (-5 *1 (-935 *3)) (-4 *3 (-623 (-545))))) (-4313 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1189)) (-5 *5 (-1106 (-227))) (-5 *2 (-937)) (-5 *1 (-935 *3)) (-4 *3 (-623 (-545))))) (-4313 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1189)) (-5 *5 (-1106 (-227))) (-5 *2 (-937)) (-5 *1 (-935 *3)) (-4 *3 (-623 (-545)))))) +(-10 -7 (-15 -4313 ((-937) |#1| (-1189) (-1106 (-227)))) (-15 -4313 ((-937) |#1| |#1| (-1189) (-1106 (-227)))) (-15 -3807 ((-937) |#1| (-1189) (-1106 (-227)))) (-15 -3807 ((-937) |#1| (-1189)))) +((-3058 (($ $ (-1106 (-227)) (-1106 (-227)) (-1106 (-227))) 121)) (-2436 (((-1106 (-227)) $) 64)) (-2423 (((-1106 (-227)) $) 63)) (-2410 (((-1106 (-227)) $) 62)) (-2998 (((-653 (-653 (-227))) $) 69)) (-1798 (((-1106 (-227)) $) 65)) (-4042 (((-573) (-573)) 57)) (-1449 (((-573) (-573)) 52)) (-4385 (((-573) (-573)) 55)) (-3506 (((-112) (-112)) 59)) (-2479 (((-573)) 56)) (-4143 (($ $ (-1106 (-227))) 124) (($ $) 125)) (-2341 (($ (-1 (-953 (-227)) (-227)) (-1106 (-227))) 131) (($ (-1 (-953 (-227)) (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227))) 132)) (-4313 (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1106 (-227))) 134) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227))) 135) (($ $ (-1106 (-227))) 127)) (-4403 (((-573)) 60)) (-2059 (((-573)) 50)) (-1515 (((-573)) 53)) (-3054 (((-653 (-653 (-953 (-227)))) $) 151)) (-1378 (((-112) (-112)) 61)) (-2942 (((-871) $) 149)) (-2583 (((-112)) 58))) +(((-936) (-13 (-986) (-10 -8 (-15 -2341 ($ (-1 (-953 (-227)) (-227)) (-1106 (-227)))) (-15 -2341 ($ (-1 (-953 (-227)) (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227)))) (-15 -4313 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1106 (-227)))) (-15 -4313 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227)))) (-15 -4313 ($ $ (-1106 (-227)))) (-15 -3058 ($ $ (-1106 (-227)) (-1106 (-227)) (-1106 (-227)))) (-15 -4143 ($ $ (-1106 (-227)))) (-15 -4143 ($ $)) (-15 -1798 ((-1106 (-227)) $)) (-15 -2998 ((-653 (-653 (-227))) $)) (-15 -2059 ((-573))) (-15 -1449 ((-573) (-573))) (-15 -1515 ((-573))) (-15 -4385 ((-573) (-573))) (-15 -2479 ((-573))) (-15 -4042 ((-573) (-573))) (-15 -2583 ((-112))) (-15 -3506 ((-112) (-112))) (-15 -4403 ((-573))) (-15 -1378 ((-112) (-112)))))) (T -936)) +((-2341 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-953 (-227)) (-227))) (-5 *3 (-1106 (-227))) (-5 *1 (-936)))) (-2341 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-953 (-227)) (-227))) (-5 *3 (-1106 (-227))) (-5 *1 (-936)))) (-4313 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1106 (-227))) (-5 *1 (-936)))) (-4313 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1106 (-227))) (-5 *1 (-936)))) (-4313 (*1 *1 *1 *2) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-936)))) (-3058 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-936)))) (-4143 (*1 *1 *1 *2) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-936)))) (-4143 (*1 *1 *1) (-5 *1 (-936))) (-1798 (*1 *2 *1) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-936)))) (-2998 (*1 *2 *1) (-12 (-5 *2 (-653 (-653 (-227)))) (-5 *1 (-936)))) (-2059 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-936)))) (-1449 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-936)))) (-1515 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-936)))) (-4385 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-936)))) (-2479 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-936)))) (-4042 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-936)))) (-2583 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-936)))) (-3506 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-936)))) (-4403 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-936)))) (-1378 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-936))))) +(-13 (-986) (-10 -8 (-15 -2341 ($ (-1 (-953 (-227)) (-227)) (-1106 (-227)))) (-15 -2341 ($ (-1 (-953 (-227)) (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227)))) (-15 -4313 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1106 (-227)))) (-15 -4313 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227)))) (-15 -4313 ($ $ (-1106 (-227)))) (-15 -3058 ($ $ (-1106 (-227)) (-1106 (-227)) (-1106 (-227)))) (-15 -4143 ($ $ (-1106 (-227)))) (-15 -4143 ($ $)) (-15 -1798 ((-1106 (-227)) $)) (-15 -2998 ((-653 (-653 (-227))) $)) (-15 -2059 ((-573))) (-15 -1449 ((-573) (-573))) (-15 -1515 ((-573))) (-15 -4385 ((-573) (-573))) (-15 -2479 ((-573))) (-15 -4042 ((-573) (-573))) (-15 -2583 ((-112))) (-15 -3506 ((-112) (-112))) (-15 -4403 ((-573))) (-15 -1378 ((-112) (-112))))) +((-3058 (($ $ (-1106 (-227))) 122) (($ $ (-1106 (-227)) (-1106 (-227))) 123)) (-2423 (((-1106 (-227)) $) 73)) (-2410 (((-1106 (-227)) $) 72)) (-1798 (((-1106 (-227)) $) 74)) (-1654 (((-573) (-573)) 66)) (-3634 (((-573) (-573)) 61)) (-2348 (((-573) (-573)) 64)) (-2550 (((-112) (-112)) 68)) (-1627 (((-573)) 65)) (-4143 (($ $ (-1106 (-227))) 126) (($ $) 127)) (-2341 (($ (-1 (-953 (-227)) (-227)) (-1106 (-227))) 141) (($ (-1 (-953 (-227)) (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227))) 142)) (-3807 (($ (-1 (-227) (-227)) (-1106 (-227))) 149) (($ (-1 (-227) (-227))) 153)) (-4313 (($ (-1 (-227) (-227)) (-1106 (-227))) 137) (($ (-1 (-227) (-227)) (-1106 (-227)) (-1106 (-227))) 138) (($ (-653 (-1 (-227) (-227))) (-1106 (-227))) 146) (($ (-653 (-1 (-227) (-227))) (-1106 (-227)) (-1106 (-227))) 147) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1106 (-227))) 139) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227))) 140) (($ $ (-1106 (-227))) 128)) (-2741 (((-112) $) 69)) (-3225 (((-573)) 70)) (-2070 (((-573)) 59)) (-2026 (((-573)) 62)) (-3054 (((-653 (-653 (-953 (-227)))) $) 35)) (-3598 (((-112) (-112)) 71)) (-2942 (((-871) $) 167)) (-2715 (((-112)) 67))) +(((-937) (-13 (-965) (-10 -8 (-15 -4313 ($ (-1 (-227) (-227)) (-1106 (-227)))) (-15 -4313 ($ (-1 (-227) (-227)) (-1106 (-227)) (-1106 (-227)))) (-15 -4313 ($ (-653 (-1 (-227) (-227))) (-1106 (-227)))) (-15 -4313 ($ (-653 (-1 (-227) (-227))) (-1106 (-227)) (-1106 (-227)))) (-15 -4313 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1106 (-227)))) (-15 -4313 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227)))) (-15 -2341 ($ (-1 (-953 (-227)) (-227)) (-1106 (-227)))) (-15 -2341 ($ (-1 (-953 (-227)) (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227)))) (-15 -3807 ($ (-1 (-227) (-227)) (-1106 (-227)))) (-15 -3807 ($ (-1 (-227) (-227)))) (-15 -4313 ($ $ (-1106 (-227)))) (-15 -2741 ((-112) $)) (-15 -3058 ($ $ (-1106 (-227)))) (-15 -3058 ($ $ (-1106 (-227)) (-1106 (-227)))) (-15 -4143 ($ $ (-1106 (-227)))) (-15 -4143 ($ $)) (-15 -1798 ((-1106 (-227)) $)) (-15 -2070 ((-573))) (-15 -3634 ((-573) (-573))) (-15 -2026 ((-573))) (-15 -2348 ((-573) (-573))) (-15 -1627 ((-573))) (-15 -1654 ((-573) (-573))) (-15 -2715 ((-112))) (-15 -2550 ((-112) (-112))) (-15 -3225 ((-573))) (-15 -3598 ((-112) (-112)))))) (T -937)) +((-4313 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1106 (-227))) (-5 *1 (-937)))) (-4313 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1106 (-227))) (-5 *1 (-937)))) (-4313 (*1 *1 *2 *3) (-12 (-5 *2 (-653 (-1 (-227) (-227)))) (-5 *3 (-1106 (-227))) (-5 *1 (-937)))) (-4313 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-653 (-1 (-227) (-227)))) (-5 *3 (-1106 (-227))) (-5 *1 (-937)))) (-4313 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1106 (-227))) (-5 *1 (-937)))) (-4313 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1106 (-227))) (-5 *1 (-937)))) (-2341 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-953 (-227)) (-227))) (-5 *3 (-1106 (-227))) (-5 *1 (-937)))) (-2341 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-953 (-227)) (-227))) (-5 *3 (-1106 (-227))) (-5 *1 (-937)))) (-3807 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1106 (-227))) (-5 *1 (-937)))) (-3807 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-937)))) (-4313 (*1 *1 *1 *2) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-937)))) (-2741 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937)))) (-3058 (*1 *1 *1 *2) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-937)))) (-3058 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-937)))) (-4143 (*1 *1 *1 *2) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-937)))) (-4143 (*1 *1 *1) (-5 *1 (-937))) (-1798 (*1 *2 *1) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-937)))) (-2070 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-937)))) (-3634 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-937)))) (-2026 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-937)))) (-2348 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-937)))) (-1627 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-937)))) (-1654 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-937)))) (-2715 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-937)))) (-2550 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-937)))) (-3225 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-937)))) (-3598 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-937))))) +(-13 (-965) (-10 -8 (-15 -4313 ($ (-1 (-227) (-227)) (-1106 (-227)))) (-15 -4313 ($ (-1 (-227) (-227)) (-1106 (-227)) (-1106 (-227)))) (-15 -4313 ($ (-653 (-1 (-227) (-227))) (-1106 (-227)))) (-15 -4313 ($ (-653 (-1 (-227) (-227))) (-1106 (-227)) (-1106 (-227)))) (-15 -4313 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1106 (-227)))) (-15 -4313 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227)))) (-15 -2341 ($ (-1 (-953 (-227)) (-227)) (-1106 (-227)))) (-15 -2341 ($ (-1 (-953 (-227)) (-227)) (-1106 (-227)) (-1106 (-227)) (-1106 (-227)))) (-15 -3807 ($ (-1 (-227) (-227)) (-1106 (-227)))) (-15 -3807 ($ (-1 (-227) (-227)))) (-15 -4313 ($ $ (-1106 (-227)))) (-15 -2741 ((-112) $)) (-15 -3058 ($ $ (-1106 (-227)))) (-15 -3058 ($ $ (-1106 (-227)) (-1106 (-227)))) (-15 -4143 ($ $ (-1106 (-227)))) (-15 -4143 ($ $)) (-15 -1798 ((-1106 (-227)) $)) (-15 -2070 ((-573))) (-15 -3634 ((-573) (-573))) (-15 -2026 ((-573))) (-15 -2348 ((-573) (-573))) (-15 -1627 ((-573))) (-15 -1654 ((-573) (-573))) (-15 -2715 ((-112))) (-15 -2550 ((-112) (-112))) (-15 -3225 ((-573))) (-15 -3598 ((-112) (-112))))) +((-1482 (((-653 (-1106 (-227))) (-653 (-653 (-953 (-227))))) 34))) +(((-938) (-10 -7 (-15 -1482 ((-653 (-1106 (-227))) (-653 (-653 (-953 (-227)))))))) (T -938)) +((-1482 (*1 *2 *3) (-12 (-5 *3 (-653 (-653 (-953 (-227))))) (-5 *2 (-653 (-1106 (-227)))) (-5 *1 (-938))))) +(-10 -7 (-15 -1482 ((-653 (-1106 (-227))) (-653 (-653 (-953 (-227))))))) +((-3104 ((|#2| |#2|) 28)) (-2486 ((|#2| |#2|) 29)) (-1705 ((|#2| |#2|) 27)) (-2112 ((|#2| |#2| (-515)) 26))) +(((-939 |#1| |#2|) (-10 -7 (-15 -2112 (|#2| |#2| (-515))) (-15 -1705 (|#2| |#2|)) (-15 -3104 (|#2| |#2|)) (-15 -2486 (|#2| |#2|))) (-1112) (-439 |#1|)) (T -939)) +((-2486 (*1 *2 *2) (-12 (-4 *3 (-1112)) (-5 *1 (-939 *3 *2)) (-4 *2 (-439 *3)))) (-3104 (*1 *2 *2) (-12 (-4 *3 (-1112)) (-5 *1 (-939 *3 *2)) (-4 *2 (-439 *3)))) (-1705 (*1 *2 *2) (-12 (-4 *3 (-1112)) (-5 *1 (-939 *3 *2)) (-4 *2 (-439 *3)))) (-2112 (*1 *2 *2 *3) (-12 (-5 *3 (-515)) (-4 *4 (-1112)) (-5 *1 (-939 *4 *2)) (-4 *2 (-439 *4))))) +(-10 -7 (-15 -2112 (|#2| |#2| (-515))) (-15 -1705 (|#2| |#2|)) (-15 -3104 (|#2| |#2|)) (-15 -2486 (|#2| |#2|))) +((-3104 (((-323 (-573)) (-1189)) 16)) (-2486 (((-323 (-573)) (-1189)) 14)) (-1705 (((-323 (-573)) (-1189)) 12)) (-2112 (((-323 (-573)) (-1189) (-515)) 19))) +(((-940) (-10 -7 (-15 -2112 ((-323 (-573)) (-1189) (-515))) (-15 -1705 ((-323 (-573)) (-1189))) (-15 -3104 ((-323 (-573)) (-1189))) (-15 -2486 ((-323 (-573)) (-1189))))) (T -940)) +((-2486 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-323 (-573))) (-5 *1 (-940)))) (-3104 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-323 (-573))) (-5 *1 (-940)))) (-1705 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-323 (-573))) (-5 *1 (-940)))) (-2112 (*1 *2 *3 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-515)) (-5 *2 (-323 (-573))) (-5 *1 (-940))))) +(-10 -7 (-15 -2112 ((-323 (-573)) (-1189) (-515))) (-15 -1705 ((-323 (-573)) (-1189))) (-15 -3104 ((-323 (-573)) (-1189))) (-15 -2486 ((-323 (-573)) (-1189)))) +((-1352 (((-899 |#1| |#3|) |#2| (-902 |#1|) (-899 |#1| |#3|)) 25)) (-3764 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) +(((-941 |#1| |#2| |#3|) (-10 -7 (-15 -3764 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1352 ((-899 |#1| |#3|) |#2| (-902 |#1|) (-899 |#1| |#3|)))) (-1112) (-896 |#1|) (-13 (-1112) (-1050 |#2|))) (T -941)) +((-1352 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-899 *5 *6)) (-5 *4 (-902 *5)) (-4 *5 (-1112)) (-4 *6 (-13 (-1112) (-1050 *3))) (-4 *3 (-896 *5)) (-5 *1 (-941 *5 *3 *6)))) (-3764 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1112) (-1050 *5))) (-4 *5 (-896 *4)) (-4 *4 (-1112)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-941 *4 *5 *6))))) +(-10 -7 (-15 -3764 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1352 ((-899 |#1| |#3|) |#2| (-902 |#1|) (-899 |#1| |#3|)))) +((-1352 (((-899 |#1| |#3|) |#3| (-902 |#1|) (-899 |#1| |#3|)) 30))) +(((-942 |#1| |#2| |#3|) (-10 -7 (-15 -1352 ((-899 |#1| |#3|) |#3| (-902 |#1|) (-899 |#1| |#3|)))) (-1112) (-13 (-565) (-896 |#1|)) (-13 (-439 |#2|) (-623 (-902 |#1|)) (-896 |#1|) (-1050 (-621 $)))) (T -942)) +((-1352 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-899 *5 *3)) (-4 *5 (-1112)) (-4 *3 (-13 (-439 *6) (-623 *4) (-896 *5) (-1050 (-621 $)))) (-5 *4 (-902 *5)) (-4 *6 (-13 (-565) (-896 *5))) (-5 *1 (-942 *5 *6 *3))))) +(-10 -7 (-15 -1352 ((-899 |#1| |#3|) |#3| (-902 |#1|) (-899 |#1| |#3|)))) +((-1352 (((-899 (-573) |#1|) |#1| (-902 (-573)) (-899 (-573) |#1|)) 13))) +(((-943 |#1|) (-10 -7 (-15 -1352 ((-899 (-573) |#1|) |#1| (-902 (-573)) (-899 (-573) |#1|)))) (-554)) (T -943)) +((-1352 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-899 (-573) *3)) (-5 *4 (-902 (-573))) (-4 *3 (-554)) (-5 *1 (-943 *3))))) +(-10 -7 (-15 -1352 ((-899 (-573) |#1|) |#1| (-902 (-573)) (-899 (-573) |#1|)))) +((-1352 (((-899 |#1| |#2|) (-621 |#2|) (-902 |#1|) (-899 |#1| |#2|)) 57))) +(((-944 |#1| |#2|) (-10 -7 (-15 -1352 ((-899 |#1| |#2|) (-621 |#2|) (-902 |#1|) (-899 |#1| |#2|)))) (-1112) (-13 (-1112) (-1050 (-621 $)) (-623 (-902 |#1|)) (-896 |#1|))) (T -944)) +((-1352 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-899 *5 *6)) (-5 *3 (-621 *6)) (-4 *5 (-1112)) (-4 *6 (-13 (-1112) (-1050 (-621 $)) (-623 *4) (-896 *5))) (-5 *4 (-902 *5)) (-5 *1 (-944 *5 *6))))) +(-10 -7 (-15 -1352 ((-899 |#1| |#2|) (-621 |#2|) (-902 |#1|) (-899 |#1| |#2|)))) +((-1352 (((-895 |#1| |#2| |#3|) |#3| (-902 |#1|) (-895 |#1| |#2| |#3|)) 17))) +(((-945 |#1| |#2| |#3|) (-10 -7 (-15 -1352 ((-895 |#1| |#2| |#3|) |#3| (-902 |#1|) (-895 |#1| |#2| |#3|)))) (-1112) (-896 |#1|) (-675 |#2|)) (T -945)) +((-1352 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 *5 *6 *3)) (-5 *4 (-902 *5)) (-4 *5 (-1112)) (-4 *6 (-896 *5)) (-4 *3 (-675 *6)) (-5 *1 (-945 *5 *6 *3))))) +(-10 -7 (-15 -1352 ((-895 |#1| |#2| |#3|) |#3| (-902 |#1|) (-895 |#1| |#2| |#3|)))) +((-1352 (((-899 |#1| |#5|) |#5| (-902 |#1|) (-899 |#1| |#5|)) 17 (|has| |#3| (-896 |#1|))) (((-899 |#1| |#5|) |#5| (-902 |#1|) (-899 |#1| |#5|) (-1 (-899 |#1| |#5|) |#3| (-902 |#1|) (-899 |#1| |#5|))) 16))) +(((-946 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1352 ((-899 |#1| |#5|) |#5| (-902 |#1|) (-899 |#1| |#5|) (-1 (-899 |#1| |#5|) |#3| (-902 |#1|) (-899 |#1| |#5|)))) (IF (|has| |#3| (-896 |#1|)) (-15 -1352 ((-899 |#1| |#5|) |#5| (-902 |#1|) (-899 |#1| |#5|))) |%noBranch|)) (-1112) (-802) (-859) (-13 (-1061) (-896 |#1|)) (-13 (-959 |#4| |#2| |#3|) (-623 (-902 |#1|)))) (T -946)) +((-1352 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-899 *5 *3)) (-4 *5 (-1112)) (-4 *3 (-13 (-959 *8 *6 *7) (-623 *4))) (-5 *4 (-902 *5)) (-4 *7 (-896 *5)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-13 (-1061) (-896 *5))) (-5 *1 (-946 *5 *6 *7 *8 *3)))) (-1352 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-899 *6 *3) *8 (-902 *6) (-899 *6 *3))) (-4 *8 (-859)) (-5 *2 (-899 *6 *3)) (-5 *4 (-902 *6)) (-4 *6 (-1112)) (-4 *3 (-13 (-959 *9 *7 *8) (-623 *4))) (-4 *7 (-802)) (-4 *9 (-13 (-1061) (-896 *6))) (-5 *1 (-946 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -1352 ((-899 |#1| |#5|) |#5| (-902 |#1|) (-899 |#1| |#5|) (-1 (-899 |#1| |#5|) |#3| (-902 |#1|) (-899 |#1| |#5|)))) (IF (|has| |#3| (-896 |#1|)) (-15 -1352 ((-899 |#1| |#5|) |#5| (-902 |#1|) (-899 |#1| |#5|))) |%noBranch|)) +((-2570 ((|#2| |#2| (-653 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) +(((-947 |#1| |#2| |#3|) (-10 -7 (-15 -2570 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2570 (|#2| |#2| (-653 (-1 (-112) |#3|))))) (-1112) (-439 |#1|) (-1230)) (T -947)) +((-2570 (*1 *2 *2 *3) (-12 (-5 *3 (-653 (-1 (-112) *5))) (-4 *5 (-1230)) (-4 *4 (-1112)) (-5 *1 (-947 *4 *2 *5)) (-4 *2 (-439 *4)))) (-2570 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1230)) (-4 *4 (-1112)) (-5 *1 (-947 *4 *2 *5)) (-4 *2 (-439 *4))))) +(-10 -7 (-15 -2570 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2570 (|#2| |#2| (-653 (-1 (-112) |#3|))))) +((-2570 (((-323 (-573)) (-1189) (-653 (-1 (-112) |#1|))) 18) (((-323 (-573)) (-1189) (-1 (-112) |#1|)) 15))) +(((-948 |#1|) (-10 -7 (-15 -2570 ((-323 (-573)) (-1189) (-1 (-112) |#1|))) (-15 -2570 ((-323 (-573)) (-1189) (-653 (-1 (-112) |#1|))))) (-1230)) (T -948)) +((-2570 (*1 *2 *3 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-653 (-1 (-112) *5))) (-4 *5 (-1230)) (-5 *2 (-323 (-573))) (-5 *1 (-948 *5)))) (-2570 (*1 *2 *3 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1230)) (-5 *2 (-323 (-573))) (-5 *1 (-948 *5))))) +(-10 -7 (-15 -2570 ((-323 (-573)) (-1189) (-1 (-112) |#1|))) (-15 -2570 ((-323 (-573)) (-1189) (-653 (-1 (-112) |#1|))))) +((-1352 (((-899 |#1| |#3|) |#3| (-902 |#1|) (-899 |#1| |#3|)) 25))) +(((-949 |#1| |#2| |#3|) (-10 -7 (-15 -1352 ((-899 |#1| |#3|) |#3| (-902 |#1|) (-899 |#1| |#3|)))) (-1112) (-13 (-565) (-896 |#1|) (-623 (-902 |#1|))) (-1004 |#2|)) (T -949)) +((-1352 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-899 *5 *3)) (-4 *5 (-1112)) (-4 *3 (-1004 *6)) (-4 *6 (-13 (-565) (-896 *5) (-623 *4))) (-5 *4 (-902 *5)) (-5 *1 (-949 *5 *6 *3))))) +(-10 -7 (-15 -1352 ((-899 |#1| |#3|) |#3| (-902 |#1|) (-899 |#1| |#3|)))) +((-1352 (((-899 |#1| (-1189)) (-1189) (-902 |#1|) (-899 |#1| (-1189))) 18))) +(((-950 |#1|) (-10 -7 (-15 -1352 ((-899 |#1| (-1189)) (-1189) (-902 |#1|) (-899 |#1| (-1189))))) (-1112)) (T -950)) +((-1352 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-899 *5 (-1189))) (-5 *3 (-1189)) (-5 *4 (-902 *5)) (-4 *5 (-1112)) (-5 *1 (-950 *5))))) +(-10 -7 (-15 -1352 ((-899 |#1| (-1189)) (-1189) (-902 |#1|) (-899 |#1| (-1189))))) +((-3977 (((-899 |#1| |#3|) (-653 |#3|) (-653 (-902 |#1|)) (-899 |#1| |#3|) (-1 (-899 |#1| |#3|) |#3| (-902 |#1|) (-899 |#1| |#3|))) 34)) (-1352 (((-899 |#1| |#3|) (-653 |#3|) (-653 (-902 |#1|)) (-1 |#3| (-653 |#3|)) (-899 |#1| |#3|) (-1 (-899 |#1| |#3|) |#3| (-902 |#1|) (-899 |#1| |#3|))) 33))) +(((-951 |#1| |#2| |#3|) (-10 -7 (-15 -1352 ((-899 |#1| |#3|) (-653 |#3|) (-653 (-902 |#1|)) (-1 |#3| (-653 |#3|)) (-899 |#1| |#3|) (-1 (-899 |#1| |#3|) |#3| (-902 |#1|) (-899 |#1| |#3|)))) (-15 -3977 ((-899 |#1| |#3|) (-653 |#3|) (-653 (-902 |#1|)) (-899 |#1| |#3|) (-1 (-899 |#1| |#3|) |#3| (-902 |#1|) (-899 |#1| |#3|))))) (-1112) (-1061) (-13 (-1061) (-623 (-902 |#1|)) (-1050 |#2|))) (T -951)) +((-3977 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-653 *8)) (-5 *4 (-653 (-902 *6))) (-5 *5 (-1 (-899 *6 *8) *8 (-902 *6) (-899 *6 *8))) (-4 *6 (-1112)) (-4 *8 (-13 (-1061) (-623 (-902 *6)) (-1050 *7))) (-5 *2 (-899 *6 *8)) (-4 *7 (-1061)) (-5 *1 (-951 *6 *7 *8)))) (-1352 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-653 (-902 *7))) (-5 *5 (-1 *9 (-653 *9))) (-5 *6 (-1 (-899 *7 *9) *9 (-902 *7) (-899 *7 *9))) (-4 *7 (-1112)) (-4 *9 (-13 (-1061) (-623 (-902 *7)) (-1050 *8))) (-5 *2 (-899 *7 *9)) (-5 *3 (-653 *9)) (-4 *8 (-1061)) (-5 *1 (-951 *7 *8 *9))))) +(-10 -7 (-15 -1352 ((-899 |#1| |#3|) (-653 |#3|) (-653 (-902 |#1|)) (-1 |#3| (-653 |#3|)) (-899 |#1| |#3|) (-1 (-899 |#1| |#3|) |#3| (-902 |#1|) (-899 |#1| |#3|)))) (-15 -3977 ((-899 |#1| |#3|) (-653 |#3|) (-653 (-902 |#1|)) (-899 |#1| |#3|) (-1 (-899 |#1| |#3|) |#3| (-902 |#1|) (-899 |#1| |#3|))))) +((-3127 (((-1185 (-416 (-573))) (-573)) 79)) (-3235 (((-1185 (-573)) (-573)) 82)) (-4126 (((-1185 (-573)) (-573)) 76)) (-1697 (((-573) (-1185 (-573))) 72)) (-1866 (((-1185 (-416 (-573))) (-573)) 65)) (-3172 (((-1185 (-573)) (-573)) 49)) (-3449 (((-1185 (-573)) (-573)) 84)) (-3946 (((-1185 (-573)) (-573)) 83)) (-1669 (((-1185 (-416 (-573))) (-573)) 67))) +(((-952) (-10 -7 (-15 -1669 ((-1185 (-416 (-573))) (-573))) (-15 -3946 ((-1185 (-573)) (-573))) (-15 -3449 ((-1185 (-573)) (-573))) (-15 -3172 ((-1185 (-573)) (-573))) (-15 -1866 ((-1185 (-416 (-573))) (-573))) (-15 -1697 ((-573) (-1185 (-573)))) (-15 -4126 ((-1185 (-573)) (-573))) (-15 -3235 ((-1185 (-573)) (-573))) (-15 -3127 ((-1185 (-416 (-573))) (-573))))) (T -952)) +((-3127 (*1 *2 *3) (-12 (-5 *2 (-1185 (-416 (-573)))) (-5 *1 (-952)) (-5 *3 (-573)))) (-3235 (*1 *2 *3) (-12 (-5 *2 (-1185 (-573))) (-5 *1 (-952)) (-5 *3 (-573)))) (-4126 (*1 *2 *3) (-12 (-5 *2 (-1185 (-573))) (-5 *1 (-952)) (-5 *3 (-573)))) (-1697 (*1 *2 *3) (-12 (-5 *3 (-1185 (-573))) (-5 *2 (-573)) (-5 *1 (-952)))) (-1866 (*1 *2 *3) (-12 (-5 *2 (-1185 (-416 (-573)))) (-5 *1 (-952)) (-5 *3 (-573)))) (-3172 (*1 *2 *3) (-12 (-5 *2 (-1185 (-573))) (-5 *1 (-952)) (-5 *3 (-573)))) (-3449 (*1 *2 *3) (-12 (-5 *2 (-1185 (-573))) (-5 *1 (-952)) (-5 *3 (-573)))) (-3946 (*1 *2 *3) (-12 (-5 *2 (-1185 (-573))) (-5 *1 (-952)) (-5 *3 (-573)))) (-1669 (*1 *2 *3) (-12 (-5 *2 (-1185 (-416 (-573)))) (-5 *1 (-952)) (-5 *3 (-573))))) +(-10 -7 (-15 -1669 ((-1185 (-416 (-573))) (-573))) (-15 -3946 ((-1185 (-573)) (-573))) (-15 -3449 ((-1185 (-573)) (-573))) (-15 -3172 ((-1185 (-573)) (-573))) (-15 -1866 ((-1185 (-416 (-573))) (-573))) (-15 -1697 ((-573) (-1185 (-573)))) (-15 -4126 ((-1185 (-573)) (-573))) (-15 -3235 ((-1185 (-573)) (-573))) (-15 -3127 ((-1185 (-416 (-573))) (-573)))) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2215 (($ (-780)) NIL (|has| |#1| (-23)))) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-1473 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-859)))) (-2748 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4456))) (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-859))))) (-2770 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-859)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) NIL (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3334 (($ |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) NIL)) (-1440 (((-573) (-1 (-112) |#1|) $) NIL) (((-573) |#1| $) NIL (|has| |#1| (-1112))) (((-573) |#1| $ (-573)) NIL (|has| |#1| (-1112)))) (-3590 (($ (-653 |#1|)) 9)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-3898 (((-698 |#1|) $ $) NIL (|has| |#1| (-1061)))) (-3789 (($ (-780) |#1|) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) NIL (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-1480 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-859)))) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3155 ((|#1| $) NIL (-12 (|has| |#1| (-1014)) (|has| |#1| (-1061))))) (-2673 (((-112) $ (-780)) NIL)) (-4134 ((|#1| $) NIL (-12 (|has| |#1| (-1014)) (|has| |#1| (-1061))))) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-1593 (($ |#1| $ (-573)) NIL) (($ $ $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2914 ((|#1| $) NIL (|has| (-573) (-859)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3112 (($ $ |#1|) NIL (|has| $ (-6 -4456)))) (-2212 (($ $ (-653 |#1|)) 25)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#1| $ (-573) |#1|) NIL) ((|#1| $ (-573)) 18) (($ $ (-1247 (-573))) NIL)) (-2658 ((|#1| $ $) NIL (|has| |#1| (-1061)))) (-2365 (((-931) $) 13)) (-2836 (($ $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-3925 (($ $ $) 23)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3919 (($ $ $ (-573)) NIL (|has| $ (-6 -4456)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| |#1| (-623 (-545)))) (($ (-653 |#1|)) 14)) (-2955 (($ (-653 |#1|)) NIL)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-653 $)) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3093 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3077 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-573) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-735))) (($ $ |#1|) NIL (|has| |#1| (-735)))) (-2862 (((-780) $) 11 (|has| $ (-6 -4455))))) +(((-953 |#1|) (-992 |#1|) (-1061)) (T -953)) +NIL +(-992 |#1|) +((-3175 (((-490 |#1| |#2|) (-962 |#2|)) 22)) (-2179 (((-252 |#1| |#2|) (-962 |#2|)) 35)) (-1649 (((-962 |#2|) (-490 |#1| |#2|)) 27)) (-2622 (((-252 |#1| |#2|) (-490 |#1| |#2|)) 57)) (-2113 (((-962 |#2|) (-252 |#1| |#2|)) 32)) (-3586 (((-490 |#1| |#2|) (-252 |#1| |#2|)) 48))) +(((-954 |#1| |#2|) (-10 -7 (-15 -3586 ((-490 |#1| |#2|) (-252 |#1| |#2|))) (-15 -2622 ((-252 |#1| |#2|) (-490 |#1| |#2|))) (-15 -3175 ((-490 |#1| |#2|) (-962 |#2|))) (-15 -1649 ((-962 |#2|) (-490 |#1| |#2|))) (-15 -2113 ((-962 |#2|) (-252 |#1| |#2|))) (-15 -2179 ((-252 |#1| |#2|) (-962 |#2|)))) (-653 (-1189)) (-1061)) (T -954)) +((-2179 (*1 *2 *3) (-12 (-5 *3 (-962 *5)) (-4 *5 (-1061)) (-5 *2 (-252 *4 *5)) (-5 *1 (-954 *4 *5)) (-14 *4 (-653 (-1189))))) (-2113 (*1 *2 *3) (-12 (-5 *3 (-252 *4 *5)) (-14 *4 (-653 (-1189))) (-4 *5 (-1061)) (-5 *2 (-962 *5)) (-5 *1 (-954 *4 *5)))) (-1649 (*1 *2 *3) (-12 (-5 *3 (-490 *4 *5)) (-14 *4 (-653 (-1189))) (-4 *5 (-1061)) (-5 *2 (-962 *5)) (-5 *1 (-954 *4 *5)))) (-3175 (*1 *2 *3) (-12 (-5 *3 (-962 *5)) (-4 *5 (-1061)) (-5 *2 (-490 *4 *5)) (-5 *1 (-954 *4 *5)) (-14 *4 (-653 (-1189))))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-490 *4 *5)) (-14 *4 (-653 (-1189))) (-4 *5 (-1061)) (-5 *2 (-252 *4 *5)) (-5 *1 (-954 *4 *5)))) (-3586 (*1 *2 *3) (-12 (-5 *3 (-252 *4 *5)) (-14 *4 (-653 (-1189))) (-4 *5 (-1061)) (-5 *2 (-490 *4 *5)) (-5 *1 (-954 *4 *5))))) +(-10 -7 (-15 -3586 ((-490 |#1| |#2|) (-252 |#1| |#2|))) (-15 -2622 ((-252 |#1| |#2|) (-490 |#1| |#2|))) (-15 -3175 ((-490 |#1| |#2|) (-962 |#2|))) (-15 -1649 ((-962 |#2|) (-490 |#1| |#2|))) (-15 -2113 ((-962 |#2|) (-252 |#1| |#2|))) (-15 -2179 ((-252 |#1| |#2|) (-962 |#2|)))) +((-3329 (((-653 |#2|) |#2| |#2|) 10)) (-2973 (((-780) (-653 |#1|)) 48 (|has| |#1| (-857)))) (-4014 (((-653 |#2|) |#2|) 11)) (-2095 (((-780) (-653 |#1|) (-573) (-573)) 52 (|has| |#1| (-857)))) (-3646 ((|#1| |#2|) 38 (|has| |#1| (-857))))) +(((-955 |#1| |#2|) (-10 -7 (-15 -3329 ((-653 |#2|) |#2| |#2|)) (-15 -4014 ((-653 |#2|) |#2|)) (IF (|has| |#1| (-857)) (PROGN (-15 -3646 (|#1| |#2|)) (-15 -2973 ((-780) (-653 |#1|))) (-15 -2095 ((-780) (-653 |#1|) (-573) (-573)))) |%noBranch|)) (-371) (-1256 |#1|)) (T -955)) +((-2095 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-653 *5)) (-5 *4 (-573)) (-4 *5 (-857)) (-4 *5 (-371)) (-5 *2 (-780)) (-5 *1 (-955 *5 *6)) (-4 *6 (-1256 *5)))) (-2973 (*1 *2 *3) (-12 (-5 *3 (-653 *4)) (-4 *4 (-857)) (-4 *4 (-371)) (-5 *2 (-780)) (-5 *1 (-955 *4 *5)) (-4 *5 (-1256 *4)))) (-3646 (*1 *2 *3) (-12 (-4 *2 (-371)) (-4 *2 (-857)) (-5 *1 (-955 *2 *3)) (-4 *3 (-1256 *2)))) (-4014 (*1 *2 *3) (-12 (-4 *4 (-371)) (-5 *2 (-653 *3)) (-5 *1 (-955 *4 *3)) (-4 *3 (-1256 *4)))) (-3329 (*1 *2 *3 *3) (-12 (-4 *4 (-371)) (-5 *2 (-653 *3)) (-5 *1 (-955 *4 *3)) (-4 *3 (-1256 *4))))) +(-10 -7 (-15 -3329 ((-653 |#2|) |#2| |#2|)) (-15 -4014 ((-653 |#2|) |#2|)) (IF (|has| |#1| (-857)) (PROGN (-15 -3646 (|#1| |#2|)) (-15 -2973 ((-780) (-653 |#1|))) (-15 -2095 ((-780) (-653 |#1|) (-573) (-573)))) |%noBranch|)) +((-1776 (((-962 |#2|) (-1 |#2| |#1|) (-962 |#1|)) 19))) +(((-956 |#1| |#2|) (-10 -7 (-15 -1776 ((-962 |#2|) (-1 |#2| |#1|) (-962 |#1|)))) (-1061) (-1061)) (T -956)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-962 *5)) (-4 *5 (-1061)) (-4 *6 (-1061)) (-5 *2 (-962 *6)) (-5 *1 (-956 *5 *6))))) +(-10 -7 (-15 -1776 ((-962 |#2|) (-1 |#2| |#1|) (-962 |#1|)))) +((-4193 (((-1253 |#1| (-962 |#2|)) (-962 |#2|) (-1276 |#1|)) 18))) +(((-957 |#1| |#2|) (-10 -7 (-15 -4193 ((-1253 |#1| (-962 |#2|)) (-962 |#2|) (-1276 |#1|)))) (-1189) (-1061)) (T -957)) +((-4193 (*1 *2 *3 *4) (-12 (-5 *4 (-1276 *5)) (-14 *5 (-1189)) (-4 *6 (-1061)) (-5 *2 (-1253 *5 (-962 *6))) (-5 *1 (-957 *5 *6)) (-5 *3 (-962 *6))))) +(-10 -7 (-15 -4193 ((-1253 |#1| (-962 |#2|)) (-962 |#2|) (-1276 |#1|)))) +((-2769 (((-780) $) 88) (((-780) $ (-653 |#4|)) 93)) (-4285 (($ $) 203)) (-2427 (((-427 $) $) 195)) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) 141)) (-1695 (((-3 |#2| "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL) (((-3 (-573) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-2205 ((|#2| $) NIL) (((-416 (-573)) $) NIL) (((-573) $) NIL) ((|#4| $) 73)) (-2277 (($ $ $ |#4|) 95)) (-2759 (((-698 (-573)) (-1280 $)) NIL) (((-698 (-573)) (-698 $)) NIL) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) 131) (((-698 |#2|) (-698 $)) 121) (((-698 |#2|) (-1280 $)) NIL)) (-3246 (($ $) 210) (($ $ |#4|) 213)) (-1379 (((-653 $) $) 77)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 229) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 222)) (-2518 (((-653 $) $) 34)) (-4334 (($ |#2| |#3|) NIL) (($ $ |#4| (-780)) NIL) (($ $ (-653 |#4|) (-653 (-780))) 71)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ |#4|) 192)) (-4082 (((-3 (-653 $) "failed") $) 52)) (-2586 (((-3 (-653 $) "failed") $) 39)) (-2573 (((-3 (-2 (|:| |var| |#4|) (|:| -3907 (-780))) "failed") $) 57)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 134)) (-2963 (((-427 (-1185 $)) (-1185 $)) 147)) (-1655 (((-427 (-1185 $)) (-1185 $)) 145)) (-4218 (((-427 $) $) 165)) (-2645 (($ $ (-653 (-301 $))) 24) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-653 |#4|) (-653 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-653 |#4|) (-653 $)) NIL)) (-3592 (($ $ |#4|) 97)) (-1835 (((-902 (-387)) $) 243) (((-902 (-573)) $) 236) (((-545) $) 251)) (-3257 ((|#2| $) NIL) (($ $ |#4|) 205)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) 184)) (-4317 ((|#2| $ |#3|) NIL) (($ $ |#4| (-780)) 62) (($ $ (-653 |#4|) (-653 (-780))) 69)) (-4279 (((-3 $ "failed") $) 186)) (-3507 (((-112) $ $) 216))) +(((-958 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2888 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2427 ((-427 |#1|) |#1|)) (-15 -4285 (|#1| |#1|)) (-15 -4279 ((-3 |#1| "failed") |#1|)) (-15 -1835 ((-545) |#1|)) (-15 -1835 ((-902 (-573)) |#1|)) (-15 -1835 ((-902 (-387)) |#1|)) (-15 -1352 ((-899 (-573) |#1|) |#1| (-902 (-573)) (-899 (-573) |#1|))) (-15 -1352 ((-899 (-387) |#1|) |#1| (-902 (-387)) (-899 (-387) |#1|))) (-15 -4218 ((-427 |#1|) |#1|)) (-15 -1655 ((-427 (-1185 |#1|)) (-1185 |#1|))) (-15 -2963 ((-427 (-1185 |#1|)) (-1185 |#1|))) (-15 -3711 ((-3 (-653 (-1185 |#1|)) "failed") (-653 (-1185 |#1|)) (-1185 |#1|))) (-15 -1443 ((-3 (-1280 |#1|) "failed") (-698 |#1|))) (-15 -3246 (|#1| |#1| |#4|)) (-15 -3257 (|#1| |#1| |#4|)) (-15 -3592 (|#1| |#1| |#4|)) (-15 -2277 (|#1| |#1| |#1| |#4|)) (-15 -1379 ((-653 |#1|) |#1|)) (-15 -2769 ((-780) |#1| (-653 |#4|))) (-15 -2769 ((-780) |#1|)) (-15 -2573 ((-3 (-2 (|:| |var| |#4|) (|:| -3907 (-780))) "failed") |#1|)) (-15 -4082 ((-3 (-653 |#1|) "failed") |#1|)) (-15 -2586 ((-3 (-653 |#1|) "failed") |#1|)) (-15 -4334 (|#1| |#1| (-653 |#4|) (-653 (-780)))) (-15 -4334 (|#1| |#1| |#4| (-780))) (-15 -2424 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1| |#4|)) (-15 -2518 ((-653 |#1|) |#1|)) (-15 -4317 (|#1| |#1| (-653 |#4|) (-653 (-780)))) (-15 -4317 (|#1| |#1| |#4| (-780))) (-15 -2759 ((-698 |#2|) (-1280 |#1|))) (-15 -2759 ((-698 |#2|) (-698 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-698 (-573)) (-698 |#1|))) (-15 -2759 ((-698 (-573)) (-1280 |#1|))) (-15 -1695 ((-3 |#4| "failed") |#1|)) (-15 -2205 (|#4| |#1|)) (-15 -2645 (|#1| |#1| (-653 |#4|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#4| |#1|)) (-15 -2645 (|#1| |#1| (-653 |#4|) (-653 |#2|))) (-15 -2645 (|#1| |#1| |#4| |#2|)) (-15 -2645 (|#1| |#1| (-653 |#1|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#1| |#1|)) (-15 -2645 (|#1| |#1| (-301 |#1|))) (-15 -2645 (|#1| |#1| (-653 (-301 |#1|)))) (-15 -4334 (|#1| |#2| |#3|)) (-15 -4317 (|#2| |#1| |#3|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -3257 (|#2| |#1|)) (-15 -3246 (|#1| |#1|)) (-15 -3507 ((-112) |#1| |#1|))) (-959 |#2| |#3| |#4|) (-1061) (-802) (-859)) (T -958)) +NIL +(-10 -8 (-15 -2888 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2427 ((-427 |#1|) |#1|)) (-15 -4285 (|#1| |#1|)) (-15 -4279 ((-3 |#1| "failed") |#1|)) (-15 -1835 ((-545) |#1|)) (-15 -1835 ((-902 (-573)) |#1|)) (-15 -1835 ((-902 (-387)) |#1|)) (-15 -1352 ((-899 (-573) |#1|) |#1| (-902 (-573)) (-899 (-573) |#1|))) (-15 -1352 ((-899 (-387) |#1|) |#1| (-902 (-387)) (-899 (-387) |#1|))) (-15 -4218 ((-427 |#1|) |#1|)) (-15 -1655 ((-427 (-1185 |#1|)) (-1185 |#1|))) (-15 -2963 ((-427 (-1185 |#1|)) (-1185 |#1|))) (-15 -3711 ((-3 (-653 (-1185 |#1|)) "failed") (-653 (-1185 |#1|)) (-1185 |#1|))) (-15 -1443 ((-3 (-1280 |#1|) "failed") (-698 |#1|))) (-15 -3246 (|#1| |#1| |#4|)) (-15 -3257 (|#1| |#1| |#4|)) (-15 -3592 (|#1| |#1| |#4|)) (-15 -2277 (|#1| |#1| |#1| |#4|)) (-15 -1379 ((-653 |#1|) |#1|)) (-15 -2769 ((-780) |#1| (-653 |#4|))) (-15 -2769 ((-780) |#1|)) (-15 -2573 ((-3 (-2 (|:| |var| |#4|) (|:| -3907 (-780))) "failed") |#1|)) (-15 -4082 ((-3 (-653 |#1|) "failed") |#1|)) (-15 -2586 ((-3 (-653 |#1|) "failed") |#1|)) (-15 -4334 (|#1| |#1| (-653 |#4|) (-653 (-780)))) (-15 -4334 (|#1| |#1| |#4| (-780))) (-15 -2424 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1| |#4|)) (-15 -2518 ((-653 |#1|) |#1|)) (-15 -4317 (|#1| |#1| (-653 |#4|) (-653 (-780)))) (-15 -4317 (|#1| |#1| |#4| (-780))) (-15 -2759 ((-698 |#2|) (-1280 |#1|))) (-15 -2759 ((-698 |#2|) (-698 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-698 (-573)) (-698 |#1|))) (-15 -2759 ((-698 (-573)) (-1280 |#1|))) (-15 -1695 ((-3 |#4| "failed") |#1|)) (-15 -2205 (|#4| |#1|)) (-15 -2645 (|#1| |#1| (-653 |#4|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#4| |#1|)) (-15 -2645 (|#1| |#1| (-653 |#4|) (-653 |#2|))) (-15 -2645 (|#1| |#1| |#4| |#2|)) (-15 -2645 (|#1| |#1| (-653 |#1|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#1| |#1|)) (-15 -2645 (|#1| |#1| (-301 |#1|))) (-15 -2645 (|#1| |#1| (-653 (-301 |#1|)))) (-15 -4334 (|#1| |#2| |#3|)) (-15 -4317 (|#2| |#1| |#3|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -3257 (|#2| |#1|)) (-15 -3246 (|#1| |#1|)) (-15 -3507 ((-112) |#1| |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4354 (((-653 |#3|) $) 112)) (-4193 (((-1185 $) $ |#3|) 127) (((-1185 |#1|) $) 126)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 89 (|has| |#1| (-565)))) (-2456 (($ $) 90 (|has| |#1| (-565)))) (-1345 (((-112) $) 92 (|has| |#1| (-565)))) (-2769 (((-780) $) 114) (((-780) $ (-653 |#3|)) 113)) (-2983 (((-3 $ "failed") $ $) 20)) (-1600 (((-427 (-1185 $)) (-1185 $)) 102 (|has| |#1| (-919)))) (-4285 (($ $) 100 (|has| |#1| (-461)))) (-2427 (((-427 $) $) 99 (|has| |#1| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) 105 (|has| |#1| (-919)))) (-2579 (($) 18 T CONST)) (-1695 (((-3 |#1| "failed") $) 168) (((-3 (-416 (-573)) "failed") $) 165 (|has| |#1| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) 163 (|has| |#1| (-1050 (-573)))) (((-3 |#3| "failed") $) 140)) (-2205 ((|#1| $) 167) (((-416 (-573)) $) 166 (|has| |#1| (-1050 (-416 (-573))))) (((-573) $) 164 (|has| |#1| (-1050 (-573)))) ((|#3| $) 141)) (-2277 (($ $ $ |#3|) 110 (|has| |#1| (-174)))) (-1391 (($ $) 158)) (-2759 (((-698 (-573)) (-1280 $)) 138 (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) 137 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 136 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) 135) (((-698 |#1|) (-698 $)) 134) (((-698 |#1|) (-1280 $)) 133)) (-2232 (((-3 $ "failed") $) 37)) (-3246 (($ $) 180 (|has| |#1| (-461))) (($ $ |#3|) 107 (|has| |#1| (-461)))) (-1379 (((-653 $) $) 111)) (-2696 (((-112) $) 98 (|has| |#1| (-919)))) (-2343 (($ $ |#1| |#2| $) 176)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 86 (-12 (|has| |#3| (-896 (-387))) (|has| |#1| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 85 (-12 (|has| |#3| (-896 (-573))) (|has| |#1| (-896 (-573)))))) (-1959 (((-112) $) 35)) (-3772 (((-780) $) 173)) (-4344 (($ (-1185 |#1|) |#3|) 119) (($ (-1185 $) |#3|) 118)) (-2518 (((-653 $) $) 128)) (-3676 (((-112) $) 156)) (-4334 (($ |#1| |#2|) 157) (($ $ |#3| (-780)) 121) (($ $ (-653 |#3|) (-653 (-780))) 120)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ |#3|) 122)) (-4036 ((|#2| $) 174) (((-780) $ |#3|) 124) (((-653 (-780)) $ (-653 |#3|)) 123)) (-1382 (($ (-1 |#2| |#2|) $) 175)) (-1776 (($ (-1 |#1| |#1|) $) 155)) (-1453 (((-3 |#3| "failed") $) 125)) (-1358 (($ $) 153)) (-1369 ((|#1| $) 152)) (-2829 (($ (-653 $)) 96 (|has| |#1| (-461))) (($ $ $) 95 (|has| |#1| (-461)))) (-3180 (((-1171) $) 10)) (-4082 (((-3 (-653 $) "failed") $) 116)) (-2586 (((-3 (-653 $) "failed") $) 117)) (-2573 (((-3 (-2 (|:| |var| |#3|) (|:| -3907 (-780))) "failed") $) 115)) (-3965 (((-1132) $) 11)) (-1337 (((-112) $) 170)) (-1348 ((|#1| $) 171)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 97 (|has| |#1| (-461)))) (-2872 (($ (-653 $)) 94 (|has| |#1| (-461))) (($ $ $) 93 (|has| |#1| (-461)))) (-2963 (((-427 (-1185 $)) (-1185 $)) 104 (|has| |#1| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) 103 (|has| |#1| (-919)))) (-4218 (((-427 $) $) 101 (|has| |#1| (-919)))) (-2837 (((-3 $ "failed") $ |#1|) 178 (|has| |#1| (-565))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-565)))) (-2645 (($ $ (-653 (-301 $))) 149) (($ $ (-301 $)) 148) (($ $ $ $) 147) (($ $ (-653 $) (-653 $)) 146) (($ $ |#3| |#1|) 145) (($ $ (-653 |#3|) (-653 |#1|)) 144) (($ $ |#3| $) 143) (($ $ (-653 |#3|) (-653 $)) 142)) (-3592 (($ $ |#3|) 109 (|has| |#1| (-174)))) (-3904 (($ $ |#3|) 46) (($ $ (-653 |#3|)) 45) (($ $ |#3| (-780)) 44) (($ $ (-653 |#3|) (-653 (-780))) 43)) (-2565 ((|#2| $) 154) (((-780) $ |#3|) 132) (((-653 (-780)) $ (-653 |#3|)) 131)) (-1835 (((-902 (-387)) $) 84 (-12 (|has| |#3| (-623 (-902 (-387)))) (|has| |#1| (-623 (-902 (-387)))))) (((-902 (-573)) $) 83 (-12 (|has| |#3| (-623 (-902 (-573)))) (|has| |#1| (-623 (-902 (-573)))))) (((-545) $) 82 (-12 (|has| |#3| (-623 (-545))) (|has| |#1| (-623 (-545)))))) (-3257 ((|#1| $) 179 (|has| |#1| (-461))) (($ $ |#3|) 108 (|has| |#1| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) 106 (-2086 (|has| $ (-146)) (|has| |#1| (-919))))) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 169) (($ |#3|) 139) (($ $) 87 (|has| |#1| (-565))) (($ (-416 (-573))) 80 (-2817 (|has| |#1| (-1050 (-416 (-573)))) (|has| |#1| (-38 (-416 (-573))))))) (-1920 (((-653 |#1|) $) 172)) (-4317 ((|#1| $ |#2|) 159) (($ $ |#3| (-780)) 130) (($ $ (-653 |#3|) (-653 (-780))) 129)) (-4279 (((-3 $ "failed") $) 81 (-2817 (-2086 (|has| $ (-146)) (|has| |#1| (-919))) (|has| |#1| (-146))))) (-1545 (((-780)) 32 T CONST)) (-1538 (($ $ $ (-780)) 177 (|has| |#1| (-174)))) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 91 (|has| |#1| (-565)))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ |#3|) 42) (($ $ (-653 |#3|)) 41) (($ $ |#3| (-780)) 40) (($ $ (-653 |#3|) (-653 (-780))) 39)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 160 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 (-573))) 162 (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) 161 (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) 151) (($ $ |#1|) 150))) +(((-959 |#1| |#2| |#3|) (-141) (-1061) (-802) (-859)) (T -959)) +((-3246 (*1 *1 *1) (-12 (-4 *1 (-959 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-461)))) (-2565 (*1 *2 *1 *3) (-12 (-4 *1 (-959 *4 *5 *3)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-859)) (-5 *2 (-780)))) (-2565 (*1 *2 *1 *3) (-12 (-5 *3 (-653 *6)) (-4 *1 (-959 *4 *5 *6)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 (-780))))) (-4317 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-780)) (-4 *1 (-959 *4 *5 *2)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *2 (-859)))) (-4317 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 *6)) (-5 *3 (-653 (-780))) (-4 *1 (-959 *4 *5 *6)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *6 (-859)))) (-2518 (*1 *2 *1) (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *1)) (-4 *1 (-959 *3 *4 *5)))) (-4193 (*1 *2 *1 *3) (-12 (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-859)) (-5 *2 (-1185 *1)) (-4 *1 (-959 *4 *5 *3)))) (-4193 (*1 *2 *1) (-12 (-4 *1 (-959 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-1185 *3)))) (-1453 (*1 *2 *1) (|partial| -12 (-4 *1 (-959 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *2 (-859)))) (-4036 (*1 *2 *1 *3) (-12 (-4 *1 (-959 *4 *5 *3)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-859)) (-5 *2 (-780)))) (-4036 (*1 *2 *1 *3) (-12 (-5 *3 (-653 *6)) (-4 *1 (-959 *4 *5 *6)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 (-780))))) (-2424 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-859)) (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-959 *4 *5 *3)))) (-4334 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-780)) (-4 *1 (-959 *4 *5 *2)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *2 (-859)))) (-4334 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 *6)) (-5 *3 (-653 (-780))) (-4 *1 (-959 *4 *5 *6)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *6 (-859)))) (-4344 (*1 *1 *2 *3) (-12 (-5 *2 (-1185 *4)) (-4 *4 (-1061)) (-4 *1 (-959 *4 *5 *3)) (-4 *5 (-802)) (-4 *3 (-859)))) (-4344 (*1 *1 *2 *3) (-12 (-5 *2 (-1185 *1)) (-4 *1 (-959 *4 *5 *3)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-859)))) (-2586 (*1 *2 *1) (|partial| -12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *1)) (-4 *1 (-959 *3 *4 *5)))) (-4082 (*1 *2 *1) (|partial| -12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *1)) (-4 *1 (-959 *3 *4 *5)))) (-2573 (*1 *2 *1) (|partial| -12 (-4 *1 (-959 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-2 (|:| |var| *5) (|:| -3907 (-780)))))) (-2769 (*1 *2 *1) (-12 (-4 *1 (-959 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-780)))) (-2769 (*1 *2 *1 *3) (-12 (-5 *3 (-653 *6)) (-4 *1 (-959 *4 *5 *6)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-780)))) (-4354 (*1 *2 *1) (-12 (-4 *1 (-959 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *5)))) (-1379 (*1 *2 *1) (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *1)) (-4 *1 (-959 *3 *4 *5)))) (-2277 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-959 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *2 (-859)) (-4 *3 (-174)))) (-3592 (*1 *1 *1 *2) (-12 (-4 *1 (-959 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *2 (-859)) (-4 *3 (-174)))) (-3257 (*1 *1 *1 *2) (-12 (-4 *1 (-959 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *2 (-859)) (-4 *3 (-461)))) (-3246 (*1 *1 *1 *2) (-12 (-4 *1 (-959 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *2 (-859)) (-4 *3 (-461)))) (-4285 (*1 *1 *1) (-12 (-4 *1 (-959 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-461)))) (-2427 (*1 *2 *1) (-12 (-4 *3 (-461)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-427 *1)) (-4 *1 (-959 *3 *4 *5))))) +(-13 (-910 |t#3|) (-333 |t#1| |t#2|) (-316 $) (-523 |t#3| |t#1|) (-523 |t#3| $) (-1050 |t#3|) (-385 |t#1|) (-10 -8 (-15 -2565 ((-780) $ |t#3|)) (-15 -2565 ((-653 (-780)) $ (-653 |t#3|))) (-15 -4317 ($ $ |t#3| (-780))) (-15 -4317 ($ $ (-653 |t#3|) (-653 (-780)))) (-15 -2518 ((-653 $) $)) (-15 -4193 ((-1185 $) $ |t#3|)) (-15 -4193 ((-1185 |t#1|) $)) (-15 -1453 ((-3 |t#3| "failed") $)) (-15 -4036 ((-780) $ |t#3|)) (-15 -4036 ((-653 (-780)) $ (-653 |t#3|))) (-15 -2424 ((-2 (|:| -3152 $) (|:| -3132 $)) $ $ |t#3|)) (-15 -4334 ($ $ |t#3| (-780))) (-15 -4334 ($ $ (-653 |t#3|) (-653 (-780)))) (-15 -4344 ($ (-1185 |t#1|) |t#3|)) (-15 -4344 ($ (-1185 $) |t#3|)) (-15 -2586 ((-3 (-653 $) "failed") $)) (-15 -4082 ((-3 (-653 $) "failed") $)) (-15 -2573 ((-3 (-2 (|:| |var| |t#3|) (|:| -3907 (-780))) "failed") $)) (-15 -2769 ((-780) $)) (-15 -2769 ((-780) $ (-653 |t#3|))) (-15 -4354 ((-653 |t#3|) $)) (-15 -1379 ((-653 $) $)) (IF (|has| |t#1| (-623 (-545))) (IF (|has| |t#3| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-623 (-902 (-573)))) (IF (|has| |t#3| (-623 (-902 (-573)))) (-6 (-623 (-902 (-573)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-623 (-902 (-387)))) (IF (|has| |t#3| (-623 (-902 (-387)))) (-6 (-623 (-902 (-387)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-896 (-573))) (IF (|has| |t#3| (-896 (-573))) (-6 (-896 (-573))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-896 (-387))) (IF (|has| |t#3| (-896 (-387))) (-6 (-896 (-387))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -2277 ($ $ $ |t#3|)) (-15 -3592 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-461)) (PROGN (-6 (-461)) (-15 -3257 ($ $ |t#3|)) (-15 -3246 ($ $)) (-15 -3246 ($ $ |t#3|)) (-15 -2427 ((-427 $) $)) (-15 -4285 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4453)) (-6 -4453) |%noBranch|) (IF (|has| |t#1| (-919)) (-6 (-919)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-416 (-573)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #0#) -2817 (|has| |#1| (-1050 (-416 (-573)))) (|has| |#1| (-38 (-416 (-573))))) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-625 |#3|) . T) ((-625 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-622 (-871)) . T) ((-174) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-174))) ((-623 (-545)) -12 (|has| |#1| (-623 (-545))) (|has| |#3| (-623 (-545)))) ((-623 (-902 (-387))) -12 (|has| |#1| (-623 (-902 (-387)))) (|has| |#3| (-623 (-902 (-387))))) ((-623 (-902 (-573))) -12 (|has| |#1| (-623 (-902 (-573)))) (|has| |#3| (-623 (-902 (-573))))) ((-297) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-316 $) . T) ((-333 |#1| |#2|) . T) ((-385 |#1|) . T) ((-420 |#1|) . T) ((-461) -2817 (|has| |#1| (-919)) (|has| |#1| (-461))) ((-523 |#3| |#1|) . T) ((-523 |#3| $) . T) ((-523 $ $) . T) ((-565) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-655 #0#) |has| |#1| (-38 (-416 (-573)))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #0#) |has| |#1| (-38 (-416 (-573)))) ((-657 #1=(-573)) |has| |#1| (-648 (-573))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #0#) |has| |#1| (-38 (-416 (-573)))) ((-649 |#1|) |has| |#1| (-174)) ((-649 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-648 #1#) |has| |#1| (-648 (-573))) ((-648 |#1|) . T) ((-726 #0#) |has| |#1| (-38 (-416 (-573)))) ((-726 |#1|) |has| |#1| (-174)) ((-726 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-735) . T) ((-910 |#3|) . T) ((-896 (-387)) -12 (|has| |#1| (-896 (-387))) (|has| |#3| (-896 (-387)))) ((-896 (-573)) -12 (|has| |#1| (-896 (-573))) (|has| |#3| (-896 (-573)))) ((-919) |has| |#1| (-919)) ((-1050 (-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((-1050 (-573)) |has| |#1| (-1050 (-573))) ((-1050 |#1|) . T) ((-1050 |#3|) . T) ((-1063 #0#) |has| |#1| (-38 (-416 (-573)))) ((-1063 |#1|) . T) ((-1063 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-174))) ((-1068 #0#) |has| |#1| (-38 (-416 (-573)))) ((-1068 |#1|) . T) ((-1068 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-174))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1234) |has| |#1| (-919))) +((-4354 (((-653 |#2|) |#5|) 40)) (-4193 (((-1185 |#5|) |#5| |#2| (-1185 |#5|)) 23) (((-416 (-1185 |#5|)) |#5| |#2|) 16)) (-4344 ((|#5| (-416 (-1185 |#5|)) |#2|) 30)) (-1453 (((-3 |#2| "failed") |#5|) 71)) (-4082 (((-3 (-653 |#5|) "failed") |#5|) 65)) (-1951 (((-3 (-2 (|:| |val| |#5|) (|:| -3907 (-573))) "failed") |#5|) 53)) (-2586 (((-3 (-653 |#5|) "failed") |#5|) 67)) (-2573 (((-3 (-2 (|:| |var| |#2|) (|:| -3907 (-573))) "failed") |#5|) 57))) +(((-960 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4354 ((-653 |#2|) |#5|)) (-15 -1453 ((-3 |#2| "failed") |#5|)) (-15 -4193 ((-416 (-1185 |#5|)) |#5| |#2|)) (-15 -4344 (|#5| (-416 (-1185 |#5|)) |#2|)) (-15 -4193 ((-1185 |#5|) |#5| |#2| (-1185 |#5|))) (-15 -2586 ((-3 (-653 |#5|) "failed") |#5|)) (-15 -4082 ((-3 (-653 |#5|) "failed") |#5|)) (-15 -2573 ((-3 (-2 (|:| |var| |#2|) (|:| -3907 (-573))) "failed") |#5|)) (-15 -1951 ((-3 (-2 (|:| |val| |#5|) (|:| -3907 (-573))) "failed") |#5|))) (-802) (-859) (-1061) (-959 |#3| |#1| |#2|) (-13 (-371) (-10 -8 (-15 -2942 ($ |#4|)) (-15 -2965 (|#4| $)) (-15 -2975 (|#4| $))))) (T -960)) +((-1951 (*1 *2 *3) (|partial| -12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1061)) (-4 *7 (-959 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3907 (-573)))) (-5 *1 (-960 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-371) (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) (-15 -2975 (*7 $))))))) (-2573 (*1 *2 *3) (|partial| -12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1061)) (-4 *7 (-959 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3907 (-573)))) (-5 *1 (-960 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-371) (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) (-15 -2975 (*7 $))))))) (-4082 (*1 *2 *3) (|partial| -12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1061)) (-4 *7 (-959 *6 *4 *5)) (-5 *2 (-653 *3)) (-5 *1 (-960 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-371) (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) (-15 -2975 (*7 $))))))) (-2586 (*1 *2 *3) (|partial| -12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1061)) (-4 *7 (-959 *6 *4 *5)) (-5 *2 (-653 *3)) (-5 *1 (-960 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-371) (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) (-15 -2975 (*7 $))))))) (-4193 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-13 (-371) (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) (-15 -2975 (*7 $))))) (-4 *7 (-959 *6 *5 *4)) (-4 *5 (-802)) (-4 *4 (-859)) (-4 *6 (-1061)) (-5 *1 (-960 *5 *4 *6 *7 *3)))) (-4344 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-1185 *2))) (-4 *5 (-802)) (-4 *4 (-859)) (-4 *6 (-1061)) (-4 *2 (-13 (-371) (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) (-15 -2975 (*7 $))))) (-5 *1 (-960 *5 *4 *6 *7 *2)) (-4 *7 (-959 *6 *5 *4)))) (-4193 (*1 *2 *3 *4) (-12 (-4 *5 (-802)) (-4 *4 (-859)) (-4 *6 (-1061)) (-4 *7 (-959 *6 *5 *4)) (-5 *2 (-416 (-1185 *3))) (-5 *1 (-960 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-371) (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) (-15 -2975 (*7 $))))))) (-1453 (*1 *2 *3) (|partial| -12 (-4 *4 (-802)) (-4 *5 (-1061)) (-4 *6 (-959 *5 *4 *2)) (-4 *2 (-859)) (-5 *1 (-960 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-371) (-10 -8 (-15 -2942 ($ *6)) (-15 -2965 (*6 $)) (-15 -2975 (*6 $))))))) (-4354 (*1 *2 *3) (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1061)) (-4 *7 (-959 *6 *4 *5)) (-5 *2 (-653 *5)) (-5 *1 (-960 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-371) (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) (-15 -2975 (*7 $)))))))) +(-10 -7 (-15 -4354 ((-653 |#2|) |#5|)) (-15 -1453 ((-3 |#2| "failed") |#5|)) (-15 -4193 ((-416 (-1185 |#5|)) |#5| |#2|)) (-15 -4344 (|#5| (-416 (-1185 |#5|)) |#2|)) (-15 -4193 ((-1185 |#5|) |#5| |#2| (-1185 |#5|))) (-15 -2586 ((-3 (-653 |#5|) "failed") |#5|)) (-15 -4082 ((-3 (-653 |#5|) "failed") |#5|)) (-15 -2573 ((-3 (-2 (|:| |var| |#2|) (|:| -3907 (-573))) "failed") |#5|)) (-15 -1951 ((-3 (-2 (|:| |val| |#5|) (|:| -3907 (-573))) "failed") |#5|))) +((-1776 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) +(((-961 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1776 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-802) (-859) (-1061) (-959 |#3| |#1| |#2|) (-13 (-1112) (-10 -8 (-15 -3077 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-780)))))) (T -961)) +((-1776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-859)) (-4 *8 (-1061)) (-4 *6 (-802)) (-4 *2 (-13 (-1112) (-10 -8 (-15 -3077 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-780)))))) (-5 *1 (-961 *6 *7 *8 *5 *2)) (-4 *5 (-959 *8 *6 *7))))) +(-10 -7 (-15 -1776 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4354 (((-653 (-1189)) $) 16)) (-4193 (((-1185 $) $ (-1189)) 21) (((-1185 |#1|) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-2769 (((-780) $) NIL) (((-780) $ (-653 (-1189))) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4285 (($ $) NIL (|has| |#1| (-461)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) 8) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-1189) "failed") $) NIL)) (-2205 ((|#1| $) NIL) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-1189) $) NIL)) (-2277 (($ $ $ (-1189)) NIL (|has| |#1| (-174)))) (-1391 (($ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) NIL) (((-698 |#1|) (-698 $)) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#1| (-461))) (($ $ (-1189)) NIL (|has| |#1| (-461)))) (-1379 (((-653 $) $) NIL)) (-2696 (((-112) $) NIL (|has| |#1| (-919)))) (-2343 (($ $ |#1| (-540 (-1189)) $) NIL)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| (-1189) (-896 (-387))) (|has| |#1| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| (-1189) (-896 (-573))) (|has| |#1| (-896 (-573)))))) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) NIL)) (-4344 (($ (-1185 |#1|) (-1189)) NIL) (($ (-1185 $) (-1189)) NIL)) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-540 (-1189))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ (-1189)) NIL)) (-4036 (((-540 (-1189)) $) NIL) (((-780) $ (-1189)) NIL) (((-653 (-780)) $ (-653 (-1189))) NIL)) (-1382 (($ (-1 (-540 (-1189)) (-540 (-1189))) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1453 (((-3 (-1189) "failed") $) 19)) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-3180 (((-1171) $) NIL)) (-4082 (((-3 (-653 $) "failed") $) NIL)) (-2586 (((-3 (-653 $) "failed") $) NIL)) (-2573 (((-3 (-2 (|:| |var| (-1189)) (|:| -3907 (-780))) "failed") $) NIL)) (-1626 (($ $ (-1189)) 29 (|has| |#1| (-38 (-416 (-573)))))) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) NIL)) (-1348 ((|#1| $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-461)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4218 (((-427 $) $) NIL (|has| |#1| (-919)))) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-565)))) (-2645 (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-1189) |#1|) NIL) (($ $ (-653 (-1189)) (-653 |#1|)) NIL) (($ $ (-1189) $) NIL) (($ $ (-653 (-1189)) (-653 $)) NIL)) (-3592 (($ $ (-1189)) NIL (|has| |#1| (-174)))) (-3904 (($ $ (-1189)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL)) (-2565 (((-540 (-1189)) $) NIL) (((-780) $ (-1189)) NIL) (((-653 (-780)) $ (-653 (-1189))) NIL)) (-1835 (((-902 (-387)) $) NIL (-12 (|has| (-1189) (-623 (-902 (-387)))) (|has| |#1| (-623 (-902 (-387)))))) (((-902 (-573)) $) NIL (-12 (|has| (-1189) (-623 (-902 (-573)))) (|has| |#1| (-623 (-902 (-573)))))) (((-545) $) NIL (-12 (|has| (-1189) (-623 (-545))) (|has| |#1| (-623 (-545)))))) (-3257 ((|#1| $) NIL (|has| |#1| (-461))) (($ $ (-1189)) NIL (|has| |#1| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-919))))) (-2942 (((-871) $) 25) (($ (-573)) NIL) (($ |#1|) NIL) (($ (-1189)) 27) (($ (-416 (-573))) NIL (-2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573)))))) (($ $) NIL (|has| |#1| (-565)))) (-1920 (((-653 |#1|) $) NIL)) (-4317 ((|#1| $ (-540 (-1189))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#1| (-919))) (|has| |#1| (-146))))) (-1545 (((-780)) NIL T CONST)) (-1538 (($ $ $ (-780)) NIL (|has| |#1| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-1189)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-962 |#1|) (-13 (-959 |#1| (-540 (-1189)) (-1189)) (-10 -8 (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1189))) |%noBranch|))) (-1061)) (T -962)) +((-1626 (*1 *1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-962 *3)) (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061))))) +(-13 (-959 |#1| (-540 (-1189)) (-1189)) (-10 -8 (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1189))) |%noBranch|))) +((-2627 (((-2 (|:| -3907 (-780)) (|:| -1857 |#5|) (|:| |radicand| |#5|)) |#3| (-780)) 49)) (-4002 (((-2 (|:| -3907 (-780)) (|:| -1857 |#5|) (|:| |radicand| |#5|)) (-416 (-573)) (-780)) 44)) (-3021 (((-2 (|:| -3907 (-780)) (|:| -1857 |#4|) (|:| |radicand| (-653 |#4|))) |#4| (-780)) 65)) (-3701 (((-2 (|:| -3907 (-780)) (|:| -1857 |#5|) (|:| |radicand| |#5|)) |#5| (-780)) 74 (|has| |#3| (-461))))) +(((-963 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2627 ((-2 (|:| -3907 (-780)) (|:| -1857 |#5|) (|:| |radicand| |#5|)) |#3| (-780))) (-15 -4002 ((-2 (|:| -3907 (-780)) (|:| -1857 |#5|) (|:| |radicand| |#5|)) (-416 (-573)) (-780))) (IF (|has| |#3| (-461)) (-15 -3701 ((-2 (|:| -3907 (-780)) (|:| -1857 |#5|) (|:| |radicand| |#5|)) |#5| (-780))) |%noBranch|) (-15 -3021 ((-2 (|:| -3907 (-780)) (|:| -1857 |#4|) (|:| |radicand| (-653 |#4|))) |#4| (-780)))) (-802) (-859) (-565) (-959 |#3| |#1| |#2|) (-13 (-371) (-10 -8 (-15 -2942 ($ |#4|)) (-15 -2965 (|#4| $)) (-15 -2975 (|#4| $))))) (T -963)) +((-3021 (*1 *2 *3 *4) (-12 (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-565)) (-4 *3 (-959 *7 *5 *6)) (-5 *2 (-2 (|:| -3907 (-780)) (|:| -1857 *3) (|:| |radicand| (-653 *3)))) (-5 *1 (-963 *5 *6 *7 *3 *8)) (-5 *4 (-780)) (-4 *8 (-13 (-371) (-10 -8 (-15 -2942 ($ *3)) (-15 -2965 (*3 $)) (-15 -2975 (*3 $))))))) (-3701 (*1 *2 *3 *4) (-12 (-4 *7 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-565)) (-4 *8 (-959 *7 *5 *6)) (-5 *2 (-2 (|:| -3907 (-780)) (|:| -1857 *3) (|:| |radicand| *3))) (-5 *1 (-963 *5 *6 *7 *8 *3)) (-5 *4 (-780)) (-4 *3 (-13 (-371) (-10 -8 (-15 -2942 ($ *8)) (-15 -2965 (*8 $)) (-15 -2975 (*8 $))))))) (-4002 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-573))) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-565)) (-4 *8 (-959 *7 *5 *6)) (-5 *2 (-2 (|:| -3907 (-780)) (|:| -1857 *9) (|:| |radicand| *9))) (-5 *1 (-963 *5 *6 *7 *8 *9)) (-5 *4 (-780)) (-4 *9 (-13 (-371) (-10 -8 (-15 -2942 ($ *8)) (-15 -2965 (*8 $)) (-15 -2975 (*8 $))))))) (-2627 (*1 *2 *3 *4) (-12 (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-565)) (-4 *7 (-959 *3 *5 *6)) (-5 *2 (-2 (|:| -3907 (-780)) (|:| -1857 *8) (|:| |radicand| *8))) (-5 *1 (-963 *5 *6 *3 *7 *8)) (-5 *4 (-780)) (-4 *8 (-13 (-371) (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) (-15 -2975 (*7 $)))))))) +(-10 -7 (-15 -2627 ((-2 (|:| -3907 (-780)) (|:| -1857 |#5|) (|:| |radicand| |#5|)) |#3| (-780))) (-15 -4002 ((-2 (|:| -3907 (-780)) (|:| -1857 |#5|) (|:| |radicand| |#5|)) (-416 (-573)) (-780))) (IF (|has| |#3| (-461)) (-15 -3701 ((-2 (|:| -3907 (-780)) (|:| -1857 |#5|) (|:| |radicand| |#5|)) |#5| (-780))) |%noBranch|) (-15 -3021 ((-2 (|:| -3907 (-780)) (|:| -1857 |#4|) (|:| |radicand| (-653 |#4|))) |#4| (-780)))) +((-2848 (((-112) $ $) NIL)) (-2117 (($ (-1132)) 8)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 15) (((-1132) $) 12)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 11))) +(((-964) (-13 (-1112) (-622 (-1132)) (-10 -8 (-15 -2117 ($ (-1132)))))) (T -964)) +((-2117 (*1 *1 *2) (-12 (-5 *2 (-1132)) (-5 *1 (-964))))) +(-13 (-1112) (-622 (-1132)) (-10 -8 (-15 -2117 ($ (-1132))))) +((-2423 (((-1106 (-227)) $) 8)) (-2410 (((-1106 (-227)) $) 9)) (-3054 (((-653 (-653 (-953 (-227)))) $) 10)) (-2942 (((-871) $) 6))) +(((-965) (-141)) (T -965)) +((-3054 (*1 *2 *1) (-12 (-4 *1 (-965)) (-5 *2 (-653 (-653 (-953 (-227))))))) (-2410 (*1 *2 *1) (-12 (-4 *1 (-965)) (-5 *2 (-1106 (-227))))) (-2423 (*1 *2 *1) (-12 (-4 *1 (-965)) (-5 *2 (-1106 (-227)))))) +(-13 (-622 (-871)) (-10 -8 (-15 -3054 ((-653 (-653 (-953 (-227)))) $)) (-15 -2410 ((-1106 (-227)) $)) (-15 -2423 ((-1106 (-227)) $)))) +(((-622 (-871)) . T)) +((-1422 (((-3 (-698 |#1|) "failed") |#2| (-931)) 18))) +(((-966 |#1| |#2|) (-10 -7 (-15 -1422 ((-3 (-698 |#1|) "failed") |#2| (-931)))) (-565) (-665 |#1|)) (T -966)) +((-1422 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-931)) (-4 *5 (-565)) (-5 *2 (-698 *5)) (-5 *1 (-966 *5 *3)) (-4 *3 (-665 *5))))) +(-10 -7 (-15 -1422 ((-3 (-698 |#1|) "failed") |#2| (-931)))) +((-3094 (((-968 |#2|) (-1 |#2| |#1| |#2|) (-968 |#1|) |#2|) 16)) (-2867 ((|#2| (-1 |#2| |#1| |#2|) (-968 |#1|) |#2|) 18)) (-1776 (((-968 |#2|) (-1 |#2| |#1|) (-968 |#1|)) 13))) +(((-967 |#1| |#2|) (-10 -7 (-15 -3094 ((-968 |#2|) (-1 |#2| |#1| |#2|) (-968 |#1|) |#2|)) (-15 -2867 (|#2| (-1 |#2| |#1| |#2|) (-968 |#1|) |#2|)) (-15 -1776 ((-968 |#2|) (-1 |#2| |#1|) (-968 |#1|)))) (-1230) (-1230)) (T -967)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-968 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-968 *6)) (-5 *1 (-967 *5 *6)))) (-2867 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-968 *5)) (-4 *5 (-1230)) (-4 *2 (-1230)) (-5 *1 (-967 *5 *2)))) (-3094 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-968 *6)) (-4 *6 (-1230)) (-4 *5 (-1230)) (-5 *2 (-968 *5)) (-5 *1 (-967 *6 *5))))) +(-10 -7 (-15 -3094 ((-968 |#2|) (-1 |#2| |#1| |#2|) (-968 |#1|) |#2|)) (-15 -2867 (|#2| (-1 |#2| |#1| |#2|) (-968 |#1|) |#2|)) (-15 -1776 ((-968 |#2|) (-1 |#2| |#1|) (-968 |#1|)))) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-1473 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-859)))) (-2748 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4456))) (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-859))))) (-2770 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-859)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#1| $ (-573) |#1|) 19 (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) NIL (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3334 (($ |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#1| $ (-573) |#1|) 18 (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) 16)) (-1440 (((-573) (-1 (-112) |#1|) $) NIL) (((-573) |#1| $) NIL (|has| |#1| (-1112))) (((-573) |#1| $ (-573)) NIL (|has| |#1| (-1112)))) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-3789 (($ (-780) |#1|) 15)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) 11 (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-1480 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-859)))) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-1593 (($ |#1| $ (-573)) NIL) (($ $ $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2914 ((|#1| $) NIL (|has| (-573) (-859)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3112 (($ $ |#1|) 20 (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) 12)) (-2198 ((|#1| $ (-573) |#1|) NIL) ((|#1| $ (-573)) 17) (($ $ (-1247 (-573))) NIL)) (-2836 (($ $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3919 (($ $ $ (-573)) NIL (|has| $ (-6 -4456)))) (-3166 (($ $) 21)) (-1835 (((-545) $) NIL (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 14)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-653 $)) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2862 (((-780) $) 8 (|has| $ (-6 -4455))))) +(((-968 |#1|) (-19 |#1|) (-1230)) (T -968)) NIL (-19 |#1|) -((-3097 (($ $ (-1105 $)) 7) (($ $ (-1190)) 6))) -(((-970) (-141)) (T -970)) -((-3097 (*1 *1 *1 *2) (-12 (-5 *2 (-1105 *1)) (-4 *1 (-970)))) (-3097 (*1 *1 *1 *2) (-12 (-4 *1 (-970)) (-5 *2 (-1190))))) -(-13 (-10 -8 (-15 -3097 ($ $ (-1190))) (-15 -3097 ($ $ (-1105 $))))) -((-3812 (((-2 (|:| -1858 (-654 (-574))) (|:| |poly| (-654 (-1186 |#1|))) (|:| |prim| (-1186 |#1|))) (-654 (-963 |#1|)) (-654 (-1190)) (-1190)) 26) (((-2 (|:| -1858 (-654 (-574))) (|:| |poly| (-654 (-1186 |#1|))) (|:| |prim| (-1186 |#1|))) (-654 (-963 |#1|)) (-654 (-1190))) 27) (((-2 (|:| |coef1| (-574)) (|:| |coef2| (-574)) (|:| |prim| (-1186 |#1|))) (-963 |#1|) (-1190) (-963 |#1|) (-1190)) 49))) -(((-971 |#1|) (-10 -7 (-15 -3812 ((-2 (|:| |coef1| (-574)) (|:| |coef2| (-574)) (|:| |prim| (-1186 |#1|))) (-963 |#1|) (-1190) (-963 |#1|) (-1190))) (-15 -3812 ((-2 (|:| -1858 (-654 (-574))) (|:| |poly| (-654 (-1186 |#1|))) (|:| |prim| (-1186 |#1|))) (-654 (-963 |#1|)) (-654 (-1190)))) (-15 -3812 ((-2 (|:| -1858 (-654 (-574))) (|:| |poly| (-654 (-1186 |#1|))) (|:| |prim| (-1186 |#1|))) (-654 (-963 |#1|)) (-654 (-1190)) (-1190)))) (-13 (-372) (-148))) (T -971)) -((-3812 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-963 *6))) (-5 *4 (-654 (-1190))) (-5 *5 (-1190)) (-4 *6 (-13 (-372) (-148))) (-5 *2 (-2 (|:| -1858 (-654 (-574))) (|:| |poly| (-654 (-1186 *6))) (|:| |prim| (-1186 *6)))) (-5 *1 (-971 *6)))) (-3812 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-654 (-1190))) (-4 *5 (-13 (-372) (-148))) (-5 *2 (-2 (|:| -1858 (-654 (-574))) (|:| |poly| (-654 (-1186 *5))) (|:| |prim| (-1186 *5)))) (-5 *1 (-971 *5)))) (-3812 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-963 *5)) (-5 *4 (-1190)) (-4 *5 (-13 (-372) (-148))) (-5 *2 (-2 (|:| |coef1| (-574)) (|:| |coef2| (-574)) (|:| |prim| (-1186 *5)))) (-5 *1 (-971 *5))))) -(-10 -7 (-15 -3812 ((-2 (|:| |coef1| (-574)) (|:| |coef2| (-574)) (|:| |prim| (-1186 |#1|))) (-963 |#1|) (-1190) (-963 |#1|) (-1190))) (-15 -3812 ((-2 (|:| -1858 (-654 (-574))) (|:| |poly| (-654 (-1186 |#1|))) (|:| |prim| (-1186 |#1|))) (-654 (-963 |#1|)) (-654 (-1190)))) (-15 -3812 ((-2 (|:| -1858 (-654 (-574))) (|:| |poly| (-654 (-1186 |#1|))) (|:| |prim| (-1186 |#1|))) (-654 (-963 |#1|)) (-654 (-1190)) (-1190)))) -((-3232 (((-654 |#1|) |#1| |#1|) 47)) (-2257 (((-112) |#1|) 44)) (-2870 ((|#1| |#1|) 79)) (-3454 ((|#1| |#1|) 78))) -(((-972 |#1|) (-10 -7 (-15 -2257 ((-112) |#1|)) (-15 -3454 (|#1| |#1|)) (-15 -2870 (|#1| |#1|)) (-15 -3232 ((-654 |#1|) |#1| |#1|))) (-555)) (T -972)) -((-3232 (*1 *2 *3 *3) (-12 (-5 *2 (-654 *3)) (-5 *1 (-972 *3)) (-4 *3 (-555)))) (-2870 (*1 *2 *2) (-12 (-5 *1 (-972 *2)) (-4 *2 (-555)))) (-3454 (*1 *2 *2) (-12 (-5 *1 (-972 *2)) (-4 *2 (-555)))) (-2257 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-972 *3)) (-4 *3 (-555))))) -(-10 -7 (-15 -2257 ((-112) |#1|)) (-15 -3454 (|#1| |#1|)) (-15 -2870 (|#1| |#1|)) (-15 -3232 ((-654 |#1|) |#1| |#1|))) -((-1793 (((-1286) (-872)) 9))) -(((-973) (-10 -7 (-15 -1793 ((-1286) (-872))))) (T -973)) -((-1793 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1286)) (-5 *1 (-973))))) -(-10 -7 (-15 -1793 ((-1286) (-872)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 78 (|has| |#1| (-566)))) (-1575 (($ $) 79 (|has| |#1| (-566)))) (-2085 (((-112) $) NIL (|has| |#1| (-566)))) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) 34)) (-2206 (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) NIL)) (-1392 (($ $) 31)) (-3434 (((-3 $ "failed") $) 42)) (-1569 (($ $) NIL (|has| |#1| (-462)))) (-1661 (($ $ |#1| |#2| $) 62)) (-3199 (((-112) $) NIL)) (-1322 (((-781) $) 17)) (-3869 (((-112) $) NIL)) (-4335 (($ |#1| |#2|) NIL)) (-1742 ((|#2| $) 24)) (-3708 (($ (-1 |#2| |#2|) $) NIL)) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-1359 (($ $) 28)) (-1370 ((|#1| $) 26)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) 51)) (-1349 ((|#1| $) NIL)) (-2289 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-132)) (|has| |#1| (-566))))) (-2838 (((-3 $ "failed") $ $) 91 (|has| |#1| (-566))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-566)))) (-4202 ((|#2| $) 22)) (-3069 ((|#1| $) NIL (|has| |#1| (-462)))) (-2943 (((-872) $) NIL) (($ (-574)) 46) (($ $) NIL (|has| |#1| (-566))) (($ |#1|) 41) (($ (-417 (-574))) NIL (-2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))))) (-2530 (((-654 |#1|) $) NIL)) (-3087 ((|#1| $ |#2|) 37)) (-3298 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1364 (((-781)) 15 T CONST)) (-3772 (($ $ $ (-781)) 74 (|has| |#1| (-174)))) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) 84 (|has| |#1| (-566)))) (-2133 (($) 27 T CONST)) (-2145 (($) 12 T CONST)) (-2981 (((-112) $ $) 83)) (-3108 (($ $ |#1|) 92 (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) 69) (($ $ (-781)) 67)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) -(((-974 |#1| |#2|) (-13 (-334 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-566)) (IF (|has| |#2| (-132)) (-15 -2289 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4454)) (-6 -4454) |%noBranch|))) (-1062) (-802)) (T -974)) -((-2289 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-974 *3 *2)) (-4 *2 (-132)) (-4 *3 (-566)) (-4 *3 (-1062)) (-4 *2 (-802))))) -(-13 (-334 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-566)) (IF (|has| |#2| (-132)) (-15 -2289 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4454)) (-6 -4454) |%noBranch|))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL (-2818 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))))) (-3663 (($ $ $) 65 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))))) (-3524 (((-3 $ "failed") $ $) 52 (-2818 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))))) (-1487 (((-781)) 36 (-12 (|has| |#1| (-377)) (|has| |#2| (-377))))) (-2231 ((|#2| $) 22)) (-4059 ((|#1| $) 21)) (-3426 (($) NIL (-2818 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))) CONST)) (-3434 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))))) (-2820 (($) NIL (-12 (|has| |#1| (-377)) (|has| |#2| (-377))))) (-3199 (((-112) $) NIL (-2818 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))))) (-3659 (($ $ $) NIL (-2818 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-4257 (($ $ $) NIL (-2818 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-3462 (($ |#1| |#2|) 20)) (-4115 (((-932) $) NIL (-12 (|has| |#1| (-377)) (|has| |#2| (-377))))) (-4136 (((-1172) $) NIL)) (-1324 (($ $) 39 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))))) (-2576 (($ (-932)) NIL (-12 (|has| |#1| (-377)) (|has| |#2| (-377))))) (-3966 (((-1133) $) NIL)) (-1479 (($ $ $) NIL (-12 (|has| |#1| (-483)) (|has| |#2| (-483))))) (-3204 (($ $ $) NIL (-12 (|has| |#1| (-483)) (|has| |#2| (-483))))) (-2943 (((-872) $) 14)) (-3284 (((-112) $ $) NIL)) (-2133 (($) 42 (-2818 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))) CONST)) (-2145 (($) 25 (-2818 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))) CONST)) (-3042 (((-112) $ $) NIL (-2818 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-3018 (((-112) $ $) NIL (-2818 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-2981 (((-112) $ $) 19)) (-3030 (((-112) $ $) NIL (-2818 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-3007 (((-112) $ $) 69 (-2818 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-3108 (($ $ $) NIL (-12 (|has| |#1| (-483)) (|has| |#2| (-483))))) (-3094 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3079 (($ $ $) 45 (-2818 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))))) (** (($ $ (-574)) NIL (-12 (|has| |#1| (-483)) (|has| |#2| (-483)))) (($ $ (-781)) 32 (-2818 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736))))) (($ $ (-932)) NIL (-2818 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))))) (* (($ (-574) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-781) $) 48 (-2818 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803))))) (($ (-932) $) NIL (-2818 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803))))) (($ $ $) 28 (-2818 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736))))))) -(((-975 |#1| |#2|) (-13 (-1113) (-10 -8 (IF (|has| |#1| (-377)) (IF (|has| |#2| (-377)) (-6 (-377)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-736)) (IF (|has| |#2| (-736)) (-6 (-736)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-483)) (IF (|has| |#2| (-483)) (-6 (-483)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-803)) (IF (|has| |#2| (-803)) (-6 (-803)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-860)) (IF (|has| |#2| (-860)) (-6 (-860)) |%noBranch|) |%noBranch|) (-15 -3462 ($ |#1| |#2|)) (-15 -4059 (|#1| $)) (-15 -2231 (|#2| $)))) (-1113) (-1113)) (T -975)) -((-3462 (*1 *1 *2 *3) (-12 (-5 *1 (-975 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113)))) (-4059 (*1 *2 *1) (-12 (-4 *2 (-1113)) (-5 *1 (-975 *2 *3)) (-4 *3 (-1113)))) (-2231 (*1 *2 *1) (-12 (-4 *2 (-1113)) (-5 *1 (-975 *3 *2)) (-4 *3 (-1113))))) -(-13 (-1113) (-10 -8 (IF (|has| |#1| (-377)) (IF (|has| |#2| (-377)) (-6 (-377)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-736)) (IF (|has| |#2| (-736)) (-6 (-736)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-483)) (IF (|has| |#2| (-483)) (-6 (-483)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-803)) (IF (|has| |#2| (-803)) (-6 (-803)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-860)) (IF (|has| |#2| (-860)) (-6 (-860)) |%noBranch|) |%noBranch|) (-15 -3462 ($ |#1| |#2|)) (-15 -4059 (|#1| $)) (-15 -2231 (|#2| $)))) -((-3083 (((-1117) $) 12)) (-3118 (($ (-516) (-1117)) 14)) (-2032 (((-516) $) 9)) (-2943 (((-872) $) 24))) -(((-976) (-13 (-623 (-872)) (-10 -8 (-15 -2032 ((-516) $)) (-15 -3083 ((-1117) $)) (-15 -3118 ($ (-516) (-1117)))))) (T -976)) -((-2032 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-976)))) (-3083 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-976)))) (-3118 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1117)) (-5 *1 (-976))))) -(-13 (-623 (-872)) (-10 -8 (-15 -2032 ((-516) $)) (-15 -3083 ((-1117) $)) (-15 -3118 ($ (-516) (-1117))))) -((-2849 (((-112) $ $) NIL)) (-1562 (($) NIL T CONST)) (-2098 (($ $ $) 30)) (-2076 (($ $) 24)) (-4136 (((-1172) $) NIL)) (-1780 (((-701 (-883 $ $)) $) 55)) (-3816 (((-701 $) $) 45)) (-3337 (((-701 (-883 $ $)) $) 56)) (-2703 (((-701 (-883 $ $)) $) 57)) (-1906 (((-701 |#1|) $) 36)) (-2763 (((-701 (-883 $ $)) $) 54)) (-1721 (($ $ $) 31)) (-3966 (((-1133) $) NIL)) (-2883 (($) NIL T CONST)) (-3953 (($ $ $) 32)) (-1629 (($ $ $) 29)) (-3679 (($ $ $) 27)) (-2943 (((-872) $) 59) (($ |#1|) 12)) (-3284 (((-112) $ $) NIL)) (-2087 (($ $ $) 28)) (-2981 (((-112) $ $) NIL))) -(((-977 |#1|) (-13 (-980) (-626 |#1|) (-10 -8 (-15 -1906 ((-701 |#1|) $)) (-15 -3816 ((-701 $) $)) (-15 -2763 ((-701 (-883 $ $)) $)) (-15 -1780 ((-701 (-883 $ $)) $)) (-15 -3337 ((-701 (-883 $ $)) $)) (-15 -2703 ((-701 (-883 $ $)) $)) (-15 -3679 ($ $ $)) (-15 -1629 ($ $ $)))) (-1113)) (T -977)) -((-1906 (*1 *2 *1) (-12 (-5 *2 (-701 *3)) (-5 *1 (-977 *3)) (-4 *3 (-1113)))) (-3816 (*1 *2 *1) (-12 (-5 *2 (-701 (-977 *3))) (-5 *1 (-977 *3)) (-4 *3 (-1113)))) (-2763 (*1 *2 *1) (-12 (-5 *2 (-701 (-883 (-977 *3) (-977 *3)))) (-5 *1 (-977 *3)) (-4 *3 (-1113)))) (-1780 (*1 *2 *1) (-12 (-5 *2 (-701 (-883 (-977 *3) (-977 *3)))) (-5 *1 (-977 *3)) (-4 *3 (-1113)))) (-3337 (*1 *2 *1) (-12 (-5 *2 (-701 (-883 (-977 *3) (-977 *3)))) (-5 *1 (-977 *3)) (-4 *3 (-1113)))) (-2703 (*1 *2 *1) (-12 (-5 *2 (-701 (-883 (-977 *3) (-977 *3)))) (-5 *1 (-977 *3)) (-4 *3 (-1113)))) (-3679 (*1 *1 *1 *1) (-12 (-5 *1 (-977 *2)) (-4 *2 (-1113)))) (-1629 (*1 *1 *1 *1) (-12 (-5 *1 (-977 *2)) (-4 *2 (-1113))))) -(-13 (-980) (-626 |#1|) (-10 -8 (-15 -1906 ((-701 |#1|) $)) (-15 -3816 ((-701 $) $)) (-15 -2763 ((-701 (-883 $ $)) $)) (-15 -1780 ((-701 (-883 $ $)) $)) (-15 -3337 ((-701 (-883 $ $)) $)) (-15 -2703 ((-701 (-883 $ $)) $)) (-15 -3679 ($ $ $)) (-15 -1629 ($ $ $)))) -((-1350 (((-977 |#1|) (-977 |#1|)) 46)) (-4338 (((-977 |#1|) (-977 |#1|)) 22)) (-3523 (((-1115 |#1|) (-977 |#1|)) 41))) -(((-978 |#1|) (-13 (-1231) (-10 -7 (-15 -4338 ((-977 |#1|) (-977 |#1|))) (-15 -3523 ((-1115 |#1|) (-977 |#1|))) (-15 -1350 ((-977 |#1|) (-977 |#1|))))) (-1113)) (T -978)) -((-4338 (*1 *2 *2) (-12 (-5 *2 (-977 *3)) (-4 *3 (-1113)) (-5 *1 (-978 *3)))) (-3523 (*1 *2 *3) (-12 (-5 *3 (-977 *4)) (-4 *4 (-1113)) (-5 *2 (-1115 *4)) (-5 *1 (-978 *4)))) (-1350 (*1 *2 *2) (-12 (-5 *2 (-977 *3)) (-4 *3 (-1113)) (-5 *1 (-978 *3))))) -(-13 (-1231) (-10 -7 (-15 -4338 ((-977 |#1|) (-977 |#1|))) (-15 -3523 ((-1115 |#1|) (-977 |#1|))) (-15 -1350 ((-977 |#1|) (-977 |#1|))))) -((-1777 (((-977 |#2|) (-1 |#2| |#1|) (-977 |#1|)) 29))) -(((-979 |#1| |#2|) (-13 (-1231) (-10 -7 (-15 -1777 ((-977 |#2|) (-1 |#2| |#1|) (-977 |#1|))))) (-1113) (-1113)) (T -979)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-977 *5)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-5 *2 (-977 *6)) (-5 *1 (-979 *5 *6))))) -(-13 (-1231) (-10 -7 (-15 -1777 ((-977 |#2|) (-1 |#2| |#1|) (-977 |#1|))))) -((-2849 (((-112) $ $) 15)) (-1562 (($) 14 T CONST)) (-2098 (($ $ $) 6)) (-2076 (($ $) 8)) (-4136 (((-1172) $) 19)) (-1721 (($ $ $) 12)) (-3966 (((-1133) $) 18)) (-2883 (($) 13 T CONST)) (-3953 (($ $ $) 11)) (-2943 (((-872) $) 17)) (-3284 (((-112) $ $) 20)) (-2087 (($ $ $) 7)) (-2981 (((-112) $ $) 16))) -(((-980) (-141)) (T -980)) -((-1562 (*1 *1) (-4 *1 (-980))) (-2883 (*1 *1) (-4 *1 (-980))) (-1721 (*1 *1 *1 *1) (-4 *1 (-980))) (-3953 (*1 *1 *1 *1) (-4 *1 (-980)))) -(-13 (-113) (-1113) (-10 -8 (-15 -1562 ($) -1706) (-15 -2883 ($) -1706) (-15 -1721 ($ $ $)) (-15 -3953 ($ $ $)))) -(((-102) . T) ((-113) . T) ((-623 (-872)) . T) ((-1113) . T) ((-1231) . T)) -((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3034 (((-112) $ (-781)) 8)) (-3426 (($) 7 T CONST)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-2742 (((-112) $ (-781)) 9)) (-2628 (($ $ $) 44)) (-4430 (($ $ $) 45)) (-1606 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-4257 ((|#1| $) 46)) (-2449 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 36)) (-4203 (((-112) $ (-781)) 10)) (-4136 (((-1172) $) 22 (|has| |#1| (-1113)))) (-2937 ((|#1| $) 40)) (-2798 (($ |#1| $) 41)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-1785 ((|#1| $) 42)) (-2540 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 14)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-1599 (($ (-654 |#1|)) 43)) (-3390 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-981 |#1|) (-141) (-860)) (T -981)) -((-4257 (*1 *2 *1) (-12 (-4 *1 (-981 *2)) (-4 *2 (-860)))) (-4430 (*1 *1 *1 *1) (-12 (-4 *1 (-981 *2)) (-4 *2 (-860)))) (-2628 (*1 *1 *1 *1) (-12 (-4 *1 (-981 *2)) (-4 *2 (-860))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4456) (-15 -4257 (|t#1| $)) (-15 -4430 ($ $ $)) (-15 -2628 ($ $ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1113) |has| |#1| (-1113)) ((-1231) . T)) -((-3179 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2873 |#2|)) |#2| |#2|) 105)) (-1904 ((|#2| |#2| |#2|) 103)) (-2061 (((-2 (|:| |coef2| |#2|) (|:| -2873 |#2|)) |#2| |#2|) 107)) (-2592 (((-2 (|:| |coef1| |#2|) (|:| -2873 |#2|)) |#2| |#2|) 109)) (-2239 (((-2 (|:| |coef2| |#2|) (|:| -2495 |#1|)) |#2| |#2|) 131 (|has| |#1| (-462)))) (-4352 (((-2 (|:| |coef2| |#2|) (|:| -1463 |#1|)) |#2| |#2|) 56)) (-1377 (((-2 (|:| |coef2| |#2|) (|:| -1463 |#1|)) |#2| |#2|) 80)) (-2563 (((-2 (|:| |coef1| |#2|) (|:| -1463 |#1|)) |#2| |#2|) 82)) (-3049 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-2377 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781)) 89)) (-2080 (((-2 (|:| |coef2| |#2|) (|:| -2872 |#1|)) |#2|) 121)) (-4003 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781)) 92)) (-4008 (((-654 (-781)) |#2| |#2|) 102)) (-2982 ((|#1| |#2| |#2|) 50)) (-3373 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2495 |#1|)) |#2| |#2|) 129 (|has| |#1| (-462)))) (-2495 ((|#1| |#2| |#2|) 127 (|has| |#1| (-462)))) (-2759 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1463 |#1|)) |#2| |#2|) 54)) (-2062 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1463 |#1|)) |#2| |#2|) 79)) (-1463 ((|#1| |#2| |#2|) 76)) (-2853 (((-2 (|:| -1858 |#1|) (|:| -1411 |#2|) (|:| -2766 |#2|)) |#2| |#2|) 41)) (-3824 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-2342 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-4268 ((|#2| |#2| |#2|) 93)) (-1345 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781)) 87)) (-2705 ((|#2| |#2| |#2| (-781)) 85)) (-2873 ((|#2| |#2| |#2|) 135 (|has| |#1| (-462)))) (-2838 (((-1281 |#2|) (-1281 |#2|) |#1|) 22)) (-1989 (((-2 (|:| -1411 |#2|) (|:| -2766 |#2|)) |#2| |#2|) 46)) (-3764 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2872 |#1|)) |#2|) 119)) (-2872 ((|#1| |#2|) 116)) (-2602 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781)) 91)) (-3503 ((|#2| |#2| |#2| (-781)) 90)) (-3233 (((-654 |#2|) |#2| |#2|) 99)) (-1709 ((|#2| |#2| |#1| |#1| (-781)) 62)) (-2308 ((|#1| |#1| |#1| (-781)) 61)) (* (((-1281 |#2|) |#1| (-1281 |#2|)) 17))) -(((-982 |#1| |#2|) (-10 -7 (-15 -1463 (|#1| |#2| |#2|)) (-15 -2062 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1463 |#1|)) |#2| |#2|)) (-15 -1377 ((-2 (|:| |coef2| |#2|) (|:| -1463 |#1|)) |#2| |#2|)) (-15 -2563 ((-2 (|:| |coef1| |#2|) (|:| -1463 |#1|)) |#2| |#2|)) (-15 -2705 (|#2| |#2| |#2| (-781))) (-15 -1345 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -2377 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -3503 (|#2| |#2| |#2| (-781))) (-15 -2602 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -4003 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -4268 (|#2| |#2| |#2|)) (-15 -2342 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3049 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1904 (|#2| |#2| |#2|)) (-15 -3179 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2873 |#2|)) |#2| |#2|)) (-15 -2061 ((-2 (|:| |coef2| |#2|) (|:| -2873 |#2|)) |#2| |#2|)) (-15 -2592 ((-2 (|:| |coef1| |#2|) (|:| -2873 |#2|)) |#2| |#2|)) (-15 -2872 (|#1| |#2|)) (-15 -3764 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2872 |#1|)) |#2|)) (-15 -2080 ((-2 (|:| |coef2| |#2|) (|:| -2872 |#1|)) |#2|)) (-15 -3233 ((-654 |#2|) |#2| |#2|)) (-15 -4008 ((-654 (-781)) |#2| |#2|)) (IF (|has| |#1| (-462)) (PROGN (-15 -2495 (|#1| |#2| |#2|)) (-15 -3373 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2495 |#1|)) |#2| |#2|)) (-15 -2239 ((-2 (|:| |coef2| |#2|) (|:| -2495 |#1|)) |#2| |#2|)) (-15 -2873 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1281 |#2|) |#1| (-1281 |#2|))) (-15 -2838 ((-1281 |#2|) (-1281 |#2|) |#1|)) (-15 -2853 ((-2 (|:| -1858 |#1|) (|:| -1411 |#2|) (|:| -2766 |#2|)) |#2| |#2|)) (-15 -1989 ((-2 (|:| -1411 |#2|) (|:| -2766 |#2|)) |#2| |#2|)) (-15 -2308 (|#1| |#1| |#1| (-781))) (-15 -1709 (|#2| |#2| |#1| |#1| (-781))) (-15 -3824 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2982 (|#1| |#2| |#2|)) (-15 -2759 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1463 |#1|)) |#2| |#2|)) (-15 -4352 ((-2 (|:| |coef2| |#2|) (|:| -1463 |#1|)) |#2| |#2|))) (-566) (-1257 |#1|)) (T -982)) -((-4352 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1463 *4))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-2759 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1463 *4))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-2982 (*1 *2 *3 *3) (-12 (-4 *2 (-566)) (-5 *1 (-982 *2 *3)) (-4 *3 (-1257 *2)))) (-3824 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-566)) (-5 *1 (-982 *3 *2)) (-4 *2 (-1257 *3)))) (-1709 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-781)) (-4 *3 (-566)) (-5 *1 (-982 *3 *2)) (-4 *2 (-1257 *3)))) (-2308 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *2 (-566)) (-5 *1 (-982 *2 *4)) (-4 *4 (-1257 *2)))) (-1989 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| -1411 *3) (|:| -2766 *3))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-2853 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| -1858 *4) (|:| -1411 *3) (|:| -2766 *3))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-2838 (*1 *2 *2 *3) (-12 (-5 *2 (-1281 *4)) (-4 *4 (-1257 *3)) (-4 *3 (-566)) (-5 *1 (-982 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1281 *4)) (-4 *4 (-1257 *3)) (-4 *3 (-566)) (-5 *1 (-982 *3 *4)))) (-2873 (*1 *2 *2 *2) (-12 (-4 *3 (-462)) (-4 *3 (-566)) (-5 *1 (-982 *3 *2)) (-4 *2 (-1257 *3)))) (-2239 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2495 *4))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-3373 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2495 *4))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-2495 (*1 *2 *3 *3) (-12 (-4 *2 (-566)) (-4 *2 (-462)) (-5 *1 (-982 *2 *3)) (-4 *3 (-1257 *2)))) (-4008 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 (-781))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-3233 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-2080 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2872 *4))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-3764 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2872 *4))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-2872 (*1 *2 *3) (-12 (-4 *2 (-566)) (-5 *1 (-982 *2 *3)) (-4 *3 (-1257 *2)))) (-2592 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2873 *3))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-2061 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2873 *3))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-3179 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2873 *3))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-1904 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-982 *3 *2)) (-4 *2 (-1257 *3)))) (-3049 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-2342 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-4268 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-982 *3 *2)) (-4 *2 (-1257 *3)))) (-4003 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-982 *5 *3)) (-4 *3 (-1257 *5)))) (-2602 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-982 *5 *3)) (-4 *3 (-1257 *5)))) (-3503 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-566)) (-5 *1 (-982 *4 *2)) (-4 *2 (-1257 *4)))) (-2377 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-982 *5 *3)) (-4 *3 (-1257 *5)))) (-1345 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-982 *5 *3)) (-4 *3 (-1257 *5)))) (-2705 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-566)) (-5 *1 (-982 *4 *2)) (-4 *2 (-1257 *4)))) (-2563 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1463 *4))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-1377 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1463 *4))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-2062 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1463 *4))) (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) (-1463 (*1 *2 *3 *3) (-12 (-4 *2 (-566)) (-5 *1 (-982 *2 *3)) (-4 *3 (-1257 *2))))) -(-10 -7 (-15 -1463 (|#1| |#2| |#2|)) (-15 -2062 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1463 |#1|)) |#2| |#2|)) (-15 -1377 ((-2 (|:| |coef2| |#2|) (|:| -1463 |#1|)) |#2| |#2|)) (-15 -2563 ((-2 (|:| |coef1| |#2|) (|:| -1463 |#1|)) |#2| |#2|)) (-15 -2705 (|#2| |#2| |#2| (-781))) (-15 -1345 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -2377 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -3503 (|#2| |#2| |#2| (-781))) (-15 -2602 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -4003 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -4268 (|#2| |#2| |#2|)) (-15 -2342 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3049 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1904 (|#2| |#2| |#2|)) (-15 -3179 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2873 |#2|)) |#2| |#2|)) (-15 -2061 ((-2 (|:| |coef2| |#2|) (|:| -2873 |#2|)) |#2| |#2|)) (-15 -2592 ((-2 (|:| |coef1| |#2|) (|:| -2873 |#2|)) |#2| |#2|)) (-15 -2872 (|#1| |#2|)) (-15 -3764 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2872 |#1|)) |#2|)) (-15 -2080 ((-2 (|:| |coef2| |#2|) (|:| -2872 |#1|)) |#2|)) (-15 -3233 ((-654 |#2|) |#2| |#2|)) (-15 -4008 ((-654 (-781)) |#2| |#2|)) (IF (|has| |#1| (-462)) (PROGN (-15 -2495 (|#1| |#2| |#2|)) (-15 -3373 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2495 |#1|)) |#2| |#2|)) (-15 -2239 ((-2 (|:| |coef2| |#2|) (|:| -2495 |#1|)) |#2| |#2|)) (-15 -2873 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1281 |#2|) |#1| (-1281 |#2|))) (-15 -2838 ((-1281 |#2|) (-1281 |#2|) |#1|)) (-15 -2853 ((-2 (|:| -1858 |#1|) (|:| -1411 |#2|) (|:| -2766 |#2|)) |#2| |#2|)) (-15 -1989 ((-2 (|:| -1411 |#2|) (|:| -2766 |#2|)) |#2| |#2|)) (-15 -2308 (|#1| |#1| |#1| (-781))) (-15 -1709 (|#2| |#2| |#1| |#1| (-781))) (-15 -3824 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2982 (|#1| |#2| |#2|)) (-15 -2759 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1463 |#1|)) |#2| |#2|)) (-15 -4352 ((-2 (|:| |coef2| |#2|) (|:| -1463 |#1|)) |#2| |#2|))) -((-2849 (((-112) $ $) NIL)) (-2335 (((-1230) $) 13)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-4016 (((-1148) $) 10)) (-2943 (((-872) $) 20) (($ (-1195)) NIL) (((-1195) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-983) (-13 (-1096) (-10 -8 (-15 -4016 ((-1148) $)) (-15 -2335 ((-1230) $))))) (T -983)) -((-4016 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-983)))) (-2335 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-983))))) -(-13 (-1096) (-10 -8 (-15 -4016 ((-1148) $)) (-15 -2335 ((-1230) $)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 40)) (-3524 (((-3 $ "failed") $ $) 54)) (-3426 (($) NIL T CONST)) (-3782 (((-654 (-883 (-932) (-932))) $) 67)) (-1506 (((-932) $) 94)) (-1864 (((-654 (-932)) $) 17)) (-2045 (((-1170 $) (-781)) 39)) (-2036 (($ (-654 (-932))) 16)) (-3659 (($ $ $) NIL)) (-4257 (($ $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-1479 (($ $) 70)) (-2943 (((-872) $) 90) (((-654 (-932)) $) 11)) (-3284 (((-112) $ $) NIL)) (-2133 (($) 8 T CONST)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 44)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) 42)) (-3079 (($ $ $) 46)) (* (($ (-932) $) NIL) (($ (-781) $) 49)) (-2863 (((-781) $) 22))) -(((-984) (-13 (-805) (-623 (-654 (-932))) (-10 -8 (-15 -2036 ($ (-654 (-932)))) (-15 -1864 ((-654 (-932)) $)) (-15 -2863 ((-781) $)) (-15 -2045 ((-1170 $) (-781))) (-15 -3782 ((-654 (-883 (-932) (-932))) $)) (-15 -1506 ((-932) $)) (-15 -1479 ($ $))))) (T -984)) -((-2036 (*1 *1 *2) (-12 (-5 *2 (-654 (-932))) (-5 *1 (-984)))) (-1864 (*1 *2 *1) (-12 (-5 *2 (-654 (-932))) (-5 *1 (-984)))) (-2863 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-984)))) (-2045 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1170 (-984))) (-5 *1 (-984)))) (-3782 (*1 *2 *1) (-12 (-5 *2 (-654 (-883 (-932) (-932)))) (-5 *1 (-984)))) (-1506 (*1 *2 *1) (-12 (-5 *2 (-932)) (-5 *1 (-984)))) (-1479 (*1 *1 *1) (-5 *1 (-984)))) -(-13 (-805) (-623 (-654 (-932))) (-10 -8 (-15 -2036 ($ (-654 (-932)))) (-15 -1864 ((-654 (-932)) $)) (-15 -2863 ((-781) $)) (-15 -2045 ((-1170 $) (-781))) (-15 -3782 ((-654 (-883 (-932) (-932))) $)) (-15 -1506 ((-932) $)) (-15 -1479 ($ $)))) -((-3108 (($ $ |#2|) 31)) (-3094 (($ $) 23) (($ $ $) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-417 (-574)) $) 27) (($ $ (-417 (-574))) 29))) -(((-985 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -3108 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-932) |#1|))) (-986 |#2| |#3| |#4|) (-1062) (-802) (-860)) (T -985)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -3108 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-932) |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-4355 (((-654 |#3|) $) 86)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-1575 (($ $) 64 (|has| |#1| (-566)))) (-2085 (((-112) $) 66 (|has| |#1| (-566)))) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-1392 (($ $) 72)) (-3434 (((-3 $ "failed") $) 37)) (-2892 (((-112) $) 85)) (-3199 (((-112) $) 35)) (-3869 (((-112) $) 74)) (-4335 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-654 |#3|) (-654 |#2|)) 87)) (-1777 (($ (-1 |#1| |#1|) $) 75)) (-1359 (($ $) 77)) (-1370 ((|#1| $) 78)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2838 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-4202 ((|#2| $) 76)) (-1651 (($ $) 84)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3087 ((|#1| $ |#2|) 71)) (-3298 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2069 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3108 (($ $ |#1|) 70 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) -(((-986 |#1| |#2| |#3|) (-141) (-1062) (-802) (-860)) (T -986)) -((-1370 (*1 *2 *1) (-12 (-4 *1 (-986 *2 *3 *4)) (-4 *3 (-802)) (-4 *4 (-860)) (-4 *2 (-1062)))) (-1359 (*1 *1 *1) (-12 (-4 *1 (-986 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-802)) (-4 *4 (-860)))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-986 *3 *2 *4)) (-4 *3 (-1062)) (-4 *4 (-860)) (-4 *2 (-802)))) (-4335 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-986 *4 *3 *2)) (-4 *4 (-1062)) (-4 *3 (-802)) (-4 *2 (-860)))) (-4335 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 *5)) (-4 *1 (-986 *4 *5 *6)) (-4 *4 (-1062)) (-4 *5 (-802)) (-4 *6 (-860)))) (-4355 (*1 *2 *1) (-12 (-4 *1 (-986 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-802)) (-4 *5 (-860)) (-5 *2 (-654 *5)))) (-2892 (*1 *2 *1) (-12 (-4 *1 (-986 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-802)) (-4 *5 (-860)) (-5 *2 (-112)))) (-1651 (*1 *1 *1) (-12 (-4 *1 (-986 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-802)) (-4 *4 (-860))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -4335 ($ $ |t#3| |t#2|)) (-15 -4335 ($ $ (-654 |t#3|) (-654 |t#2|))) (-15 -1359 ($ $)) (-15 -1370 (|t#1| $)) (-15 -4202 (|t#2| $)) (-15 -4355 ((-654 |t#3|) $)) (-15 -2892 ((-112) $)) (-15 -1651 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) |has| |#1| (-38 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-298) |has| |#1| (-566)) ((-566) |has| |#1| (-566)) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-1064 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1064 |#1|) . T) ((-1064 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1069 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1069 |#1|) . T) ((-1069 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T)) -((-2437 (((-1107 (-227)) $) 8)) (-2424 (((-1107 (-227)) $) 9)) (-2411 (((-1107 (-227)) $) 10)) (-1851 (((-654 (-654 (-954 (-227)))) $) 11)) (-2943 (((-872) $) 6))) -(((-987) (-141)) (T -987)) -((-1851 (*1 *2 *1) (-12 (-4 *1 (-987)) (-5 *2 (-654 (-654 (-954 (-227))))))) (-2411 (*1 *2 *1) (-12 (-4 *1 (-987)) (-5 *2 (-1107 (-227))))) (-2424 (*1 *2 *1) (-12 (-4 *1 (-987)) (-5 *2 (-1107 (-227))))) (-2437 (*1 *2 *1) (-12 (-4 *1 (-987)) (-5 *2 (-1107 (-227)))))) -(-13 (-623 (-872)) (-10 -8 (-15 -1851 ((-654 (-654 (-954 (-227)))) $)) (-15 -2411 ((-1107 (-227)) $)) (-15 -2424 ((-1107 (-227)) $)) (-15 -2437 ((-1107 (-227)) $)))) -(((-623 (-872)) . T)) -((-4355 (((-654 |#4|) $) 23)) (-2907 (((-112) $) 55)) (-4018 (((-112) $) 54)) (-2771 (((-2 (|:| |under| $) (|:| -3595 $) (|:| |upper| $)) $ |#4|) 42)) (-4336 (((-112) $) 56)) (-1547 (((-112) $ $) 62)) (-2318 (((-112) $ $) 65)) (-1792 (((-112) $) 60)) (-3025 (((-654 |#5|) (-654 |#5|) $) 98)) (-1974 (((-654 |#5|) (-654 |#5|) $) 95)) (-2766 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-3963 (((-654 |#4|) $) 27)) (-4158 (((-112) |#4| $) 34)) (-2396 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3650 (($ $ |#4|) 39)) (-3722 (($ $ |#4|) 38)) (-2096 (($ $ |#4|) 40)) (-2981 (((-112) $ $) 46))) -(((-988 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4018 ((-112) |#1|)) (-15 -3025 ((-654 |#5|) (-654 |#5|) |#1|)) (-15 -1974 ((-654 |#5|) (-654 |#5|) |#1|)) (-15 -2766 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2396 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4336 ((-112) |#1|)) (-15 -2318 ((-112) |#1| |#1|)) (-15 -1547 ((-112) |#1| |#1|)) (-15 -1792 ((-112) |#1|)) (-15 -2907 ((-112) |#1|)) (-15 -2771 ((-2 (|:| |under| |#1|) (|:| -3595 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3650 (|#1| |#1| |#4|)) (-15 -2096 (|#1| |#1| |#4|)) (-15 -3722 (|#1| |#1| |#4|)) (-15 -4158 ((-112) |#4| |#1|)) (-15 -3963 ((-654 |#4|) |#1|)) (-15 -4355 ((-654 |#4|) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) (-989 |#2| |#3| |#4| |#5|) (-1062) (-803) (-860) (-1078 |#2| |#3| |#4|)) (T -988)) -NIL -(-10 -8 (-15 -4018 ((-112) |#1|)) (-15 -3025 ((-654 |#5|) (-654 |#5|) |#1|)) (-15 -1974 ((-654 |#5|) (-654 |#5|) |#1|)) (-15 -2766 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2396 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4336 ((-112) |#1|)) (-15 -2318 ((-112) |#1| |#1|)) (-15 -1547 ((-112) |#1| |#1|)) (-15 -1792 ((-112) |#1|)) (-15 -2907 ((-112) |#1|)) (-15 -2771 ((-2 (|:| |under| |#1|) (|:| -3595 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3650 (|#1| |#1| |#4|)) (-15 -2096 (|#1| |#1| |#4|)) (-15 -3722 (|#1| |#1| |#4|)) (-15 -4158 ((-112) |#4| |#1|)) (-15 -3963 ((-654 |#4|) |#1|)) (-15 -4355 ((-654 |#4|) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) -((-2849 (((-112) $ $) 7)) (-4355 (((-654 |#3|) $) 34)) (-2907 (((-112) $) 27)) (-4018 (((-112) $) 18 (|has| |#1| (-566)))) (-2771 (((-2 (|:| |under| $) (|:| -3595 $) (|:| |upper| $)) $ |#3|) 28)) (-3034 (((-112) $ (-781)) 45)) (-2165 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4456)))) (-3426 (($) 46 T CONST)) (-4336 (((-112) $) 23 (|has| |#1| (-566)))) (-1547 (((-112) $ $) 25 (|has| |#1| (-566)))) (-2318 (((-112) $ $) 24 (|has| |#1| (-566)))) (-1792 (((-112) $) 26 (|has| |#1| (-566)))) (-3025 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-1974 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1696 (((-3 $ "failed") (-654 |#4|)) 37)) (-2206 (($ (-654 |#4|)) 36)) (-1543 (($ $) 69 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ |#4| $) 68 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4456)))) (-2766 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-2868 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4456))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4456)))) (-1864 (((-654 |#4|) $) 53 (|has| $ (-6 -4456)))) (-3830 ((|#3| $) 35)) (-2742 (((-112) $ (-781)) 44)) (-1606 (((-654 |#4|) $) 54 (|has| $ (-6 -4456)))) (-1710 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456))))) (-2449 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#4| |#4|) $) 48)) (-3963 (((-654 |#3|) $) 33)) (-4158 (((-112) |#3| $) 32)) (-4203 (((-112) $ (-781)) 43)) (-4136 (((-1172) $) 10)) (-2396 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-3966 (((-1133) $) 11)) (-1549 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2540 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))) (-4017 (((-112) $ $) 39)) (-1584 (((-112) $) 42)) (-2672 (($) 41)) (-3975 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4456)))) (-3167 (($ $) 40)) (-1836 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2956 (($ (-654 |#4|)) 61)) (-3650 (($ $ |#3|) 29)) (-3722 (($ $ |#3|) 31)) (-2096 (($ $ |#3|) 30)) (-2943 (((-872) $) 12) (((-654 |#4|) $) 38)) (-3284 (((-112) $ $) 9)) (-3390 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 6)) (-2863 (((-781) $) 47 (|has| $ (-6 -4456))))) -(((-989 |#1| |#2| |#3| |#4|) (-141) (-1062) (-803) (-860) (-1078 |t#1| |t#2| |t#3|)) (T -989)) -((-1696 (*1 *1 *2) (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *1 (-989 *3 *4 *5 *6)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *1 (-989 *3 *4 *5 *6)))) (-3830 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *2 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-1078 *3 *4 *2)) (-4 *2 (-860)))) (-4355 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-654 *5)))) (-3963 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-654 *5)))) (-4158 (*1 *2 *3 *1) (-12 (-4 *1 (-989 *4 *5 *3 *6)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-860)) (-4 *6 (-1078 *4 *5 *3)) (-5 *2 (-112)))) (-3722 (*1 *1 *1 *2) (-12 (-4 *1 (-989 *3 *4 *2 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *5 (-1078 *3 *4 *2)))) (-2096 (*1 *1 *1 *2) (-12 (-4 *1 (-989 *3 *4 *2 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *5 (-1078 *3 *4 *2)))) (-3650 (*1 *1 *1 *2) (-12 (-4 *1 (-989 *3 *4 *2 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *5 (-1078 *3 *4 *2)))) (-2771 (*1 *2 *1 *3) (-12 (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-860)) (-4 *6 (-1078 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3595 *1) (|:| |upper| *1))) (-4 *1 (-989 *4 *5 *3 *6)))) (-2907 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-112)))) (-1792 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) (-5 *2 (-112)))) (-1547 (*1 *2 *1 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) (-5 *2 (-112)))) (-2318 (*1 *2 *1 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) (-5 *2 (-112)))) (-4336 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) (-5 *2 (-112)))) (-2396 (*1 *2 *3 *1) (-12 (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-4 *4 (-566)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2766 (*1 *2 *3 *1) (-12 (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-4 *4 (-566)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-1974 (*1 *2 *2 *1) (-12 (-5 *2 (-654 *6)) (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)))) (-3025 (*1 *2 *2 *1) (-12 (-5 *2 (-654 *6)) (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)))) (-4018 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) (-5 *2 (-112))))) -(-13 (-1113) (-152 |t#4|) (-623 (-654 |t#4|)) (-10 -8 (-6 -4456) (-15 -1696 ((-3 $ "failed") (-654 |t#4|))) (-15 -2206 ($ (-654 |t#4|))) (-15 -3830 (|t#3| $)) (-15 -4355 ((-654 |t#3|) $)) (-15 -3963 ((-654 |t#3|) $)) (-15 -4158 ((-112) |t#3| $)) (-15 -3722 ($ $ |t#3|)) (-15 -2096 ($ $ |t#3|)) (-15 -3650 ($ $ |t#3|)) (-15 -2771 ((-2 (|:| |under| $) (|:| -3595 $) (|:| |upper| $)) $ |t#3|)) (-15 -2907 ((-112) $)) (IF (|has| |t#1| (-566)) (PROGN (-15 -1792 ((-112) $)) (-15 -1547 ((-112) $ $)) (-15 -2318 ((-112) $ $)) (-15 -4336 ((-112) $)) (-15 -2396 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2766 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1974 ((-654 |t#4|) (-654 |t#4|) $)) (-15 -3025 ((-654 |t#4|) (-654 |t#4|) $)) (-15 -4018 ((-112) $))) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))) ((-1113) . T) ((-1231) . T)) -((-4040 (((-654 |#4|) |#4| |#4|) 136)) (-3197 (((-654 |#4|) (-654 |#4|) (-112)) 125 (|has| |#1| (-462))) (((-654 |#4|) (-654 |#4|)) 126 (|has| |#1| (-462)))) (-2251 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|)) 44)) (-1332 (((-112) |#4|) 43)) (-3608 (((-654 |#4|) |#4|) 121 (|has| |#1| (-462)))) (-2667 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-1 (-112) |#4|) (-654 |#4|)) 24)) (-3470 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|)) 30)) (-4412 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|)) 31)) (-1967 (((-3 (-2 (|:| |bas| (-486 |#1| |#2| |#3| |#4|)) (|:| -2002 (-654 |#4|))) "failed") (-654 |#4|)) 90)) (-3849 (((-654 |#4|) (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-2752 (((-654 |#4|) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-3988 (((-654 |#4|) (-654 |#4|)) 128)) (-1511 (((-654 |#4|) (-654 |#4|) (-654 |#4|) (-112)) 59) (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 61)) (-4029 ((|#4| |#4| (-654 |#4|)) 60)) (-3312 (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 132 (|has| |#1| (-462)))) (-3916 (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 135 (|has| |#1| (-462)))) (-4019 (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 134 (|has| |#1| (-462)))) (-4368 (((-654 |#4|) (-654 |#4|) (-654 |#4|) (-1 (-654 |#4|) (-654 |#4|))) 105) (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 107) (((-654 |#4|) (-654 |#4|) |#4|) 140) (((-654 |#4|) |#4| |#4|) 137) (((-654 |#4|) (-654 |#4|)) 106)) (-1348 (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 118 (-12 (|has| |#1| (-148)) (|has| |#1| (-315))))) (-1856 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|)) 52)) (-3690 (((-112) (-654 |#4|)) 79)) (-3822 (((-112) (-654 |#4|) (-654 (-654 |#4|))) 67)) (-2760 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|)) 37)) (-3160 (((-112) |#4|) 36)) (-2392 (((-654 |#4|) (-654 |#4|)) 116 (-12 (|has| |#1| (-148)) (|has| |#1| (-315))))) (-4032 (((-654 |#4|) (-654 |#4|)) 117 (-12 (|has| |#1| (-148)) (|has| |#1| (-315))))) (-3992 (((-654 |#4|) (-654 |#4|)) 83)) (-2167 (((-654 |#4|) (-654 |#4|)) 97)) (-1657 (((-112) (-654 |#4|) (-654 |#4|)) 65)) (-2404 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|)) 50)) (-2475 (((-112) |#4|) 45))) -(((-990 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4368 ((-654 |#4|) (-654 |#4|))) (-15 -4368 ((-654 |#4|) |#4| |#4|)) (-15 -3988 ((-654 |#4|) (-654 |#4|))) (-15 -4040 ((-654 |#4|) |#4| |#4|)) (-15 -4368 ((-654 |#4|) (-654 |#4|) |#4|)) (-15 -4368 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -4368 ((-654 |#4|) (-654 |#4|) (-654 |#4|) (-1 (-654 |#4|) (-654 |#4|)))) (-15 -1657 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3822 ((-112) (-654 |#4|) (-654 (-654 |#4|)))) (-15 -3690 ((-112) (-654 |#4|))) (-15 -2667 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-1 (-112) |#4|) (-654 |#4|))) (-15 -3470 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|))) (-15 -4412 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|))) (-15 -1856 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -1332 ((-112) |#4|)) (-15 -2251 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -3160 ((-112) |#4|)) (-15 -2760 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -2475 ((-112) |#4|)) (-15 -2404 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -1511 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -1511 ((-654 |#4|) (-654 |#4|) (-654 |#4|) (-112))) (-15 -4029 (|#4| |#4| (-654 |#4|))) (-15 -3992 ((-654 |#4|) (-654 |#4|))) (-15 -1967 ((-3 (-2 (|:| |bas| (-486 |#1| |#2| |#3| |#4|)) (|:| -2002 (-654 |#4|))) "failed") (-654 |#4|))) (-15 -2167 ((-654 |#4|) (-654 |#4|))) (-15 -3849 ((-654 |#4|) (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2752 ((-654 |#4|) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-462)) (PROGN (-15 -3608 ((-654 |#4|) |#4|)) (-15 -3197 ((-654 |#4|) (-654 |#4|))) (-15 -3197 ((-654 |#4|) (-654 |#4|) (-112))) (-15 -3312 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -4019 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -3916 ((-654 |#4|) (-654 |#4|) (-654 |#4|)))) |%noBranch|) (IF (|has| |#1| (-315)) (IF (|has| |#1| (-148)) (PROGN (-15 -4032 ((-654 |#4|) (-654 |#4|))) (-15 -2392 ((-654 |#4|) (-654 |#4|))) (-15 -1348 ((-654 |#4|) (-654 |#4|) (-654 |#4|)))) |%noBranch|) |%noBranch|)) (-566) (-803) (-860) (-1078 |#1| |#2| |#3|)) (T -990)) -((-1348 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6)))) (-2392 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6)))) (-4032 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6)))) (-3916 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-462)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6)))) (-4019 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-462)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6)))) (-3312 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-462)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6)))) (-3197 (*1 *2 *2 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-112)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-990 *4 *5 *6 *7)))) (-3197 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-462)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6)))) (-3608 (*1 *2 *3) (-12 (-4 *4 (-462)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *3)) (-5 *1 (-990 *4 *5 *6 *3)) (-4 *3 (-1078 *4 *5 *6)))) (-2752 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-990 *5 *6 *7 *8)))) (-3849 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-654 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1078 *6 *7 *8)) (-4 *6 (-566)) (-4 *7 (-803)) (-4 *8 (-860)) (-5 *1 (-990 *6 *7 *8 *9)))) (-2167 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6)))) (-1967 (*1 *2 *3) (|partial| -12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-486 *4 *5 *6 *7)) (|:| -2002 (-654 *7)))) (-5 *1 (-990 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-3992 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6)))) (-4029 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-1078 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-990 *4 *5 *6 *2)))) (-1511 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-112)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-990 *4 *5 *6 *7)))) (-1511 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6)))) (-2404 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) (-5 *1 (-990 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-2475 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *3)) (-4 *3 (-1078 *4 *5 *6)))) (-2760 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) (-5 *1 (-990 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-3160 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *3)) (-4 *3 (-1078 *4 *5 *6)))) (-2251 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) (-5 *1 (-990 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-1332 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *3)) (-4 *3 (-1078 *4 *5 *6)))) (-1856 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) (-5 *1 (-990 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-4412 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-1 (-112) *8))) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8)))) (-5 *1 (-990 *5 *6 *7 *8)) (-5 *4 (-654 *8)))) (-3470 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-1 (-112) *8))) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8)))) (-5 *1 (-990 *5 *6 *7 *8)) (-5 *4 (-654 *8)))) (-2667 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8)))) (-5 *1 (-990 *5 *6 *7 *8)) (-5 *4 (-654 *8)))) (-3690 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-654 *8))) (-5 *3 (-654 *8)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-112)) (-5 *1 (-990 *5 *6 *7 *8)))) (-1657 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7)))) (-4368 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-654 *7) (-654 *7))) (-5 *2 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-990 *4 *5 *6 *7)))) (-4368 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6)))) (-4368 (*1 *2 *2 *3) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1078 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-990 *4 *5 *6 *3)))) (-4040 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *3)) (-5 *1 (-990 *4 *5 *6 *3)) (-4 *3 (-1078 *4 *5 *6)))) (-3988 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6)))) (-4368 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *3)) (-5 *1 (-990 *4 *5 *6 *3)) (-4 *3 (-1078 *4 *5 *6)))) (-4368 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6))))) -(-10 -7 (-15 -4368 ((-654 |#4|) (-654 |#4|))) (-15 -4368 ((-654 |#4|) |#4| |#4|)) (-15 -3988 ((-654 |#4|) (-654 |#4|))) (-15 -4040 ((-654 |#4|) |#4| |#4|)) (-15 -4368 ((-654 |#4|) (-654 |#4|) |#4|)) (-15 -4368 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -4368 ((-654 |#4|) (-654 |#4|) (-654 |#4|) (-1 (-654 |#4|) (-654 |#4|)))) (-15 -1657 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3822 ((-112) (-654 |#4|) (-654 (-654 |#4|)))) (-15 -3690 ((-112) (-654 |#4|))) (-15 -2667 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-1 (-112) |#4|) (-654 |#4|))) (-15 -3470 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|))) (-15 -4412 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|))) (-15 -1856 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -1332 ((-112) |#4|)) (-15 -2251 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -3160 ((-112) |#4|)) (-15 -2760 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -2475 ((-112) |#4|)) (-15 -2404 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -1511 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -1511 ((-654 |#4|) (-654 |#4|) (-654 |#4|) (-112))) (-15 -4029 (|#4| |#4| (-654 |#4|))) (-15 -3992 ((-654 |#4|) (-654 |#4|))) (-15 -1967 ((-3 (-2 (|:| |bas| (-486 |#1| |#2| |#3| |#4|)) (|:| -2002 (-654 |#4|))) "failed") (-654 |#4|))) (-15 -2167 ((-654 |#4|) (-654 |#4|))) (-15 -3849 ((-654 |#4|) (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2752 ((-654 |#4|) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-462)) (PROGN (-15 -3608 ((-654 |#4|) |#4|)) (-15 -3197 ((-654 |#4|) (-654 |#4|))) (-15 -3197 ((-654 |#4|) (-654 |#4|) (-112))) (-15 -3312 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -4019 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -3916 ((-654 |#4|) (-654 |#4|) (-654 |#4|)))) |%noBranch|) (IF (|has| |#1| (-315)) (IF (|has| |#1| (-148)) (PROGN (-15 -4032 ((-654 |#4|) (-654 |#4|))) (-15 -2392 ((-654 |#4|) (-654 |#4|))) (-15 -1348 ((-654 |#4|) (-654 |#4|) (-654 |#4|)))) |%noBranch|) |%noBranch|)) -((-1843 (((-2 (|:| R (-699 |#1|)) (|:| A (-699 |#1|)) (|:| |Ainv| (-699 |#1|))) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-4004 (((-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1281 |#1|)))) (-699 |#1|) (-1281 |#1|)) 46)) (-3260 (((-699 |#1|) (-699 |#1|) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) -(((-991 |#1|) (-10 -7 (-15 -1843 ((-2 (|:| R (-699 |#1|)) (|:| A (-699 |#1|)) (|:| |Ainv| (-699 |#1|))) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3260 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4004 ((-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1281 |#1|)))) (-699 |#1|) (-1281 |#1|)))) (-372)) (T -991)) -((-4004 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-5 *2 (-654 (-2 (|:| C (-699 *5)) (|:| |g| (-1281 *5))))) (-5 *1 (-991 *5)) (-5 *3 (-699 *5)) (-5 *4 (-1281 *5)))) (-3260 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-699 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-372)) (-5 *1 (-991 *5)))) (-1843 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-372)) (-5 *2 (-2 (|:| R (-699 *6)) (|:| A (-699 *6)) (|:| |Ainv| (-699 *6)))) (-5 *1 (-991 *6)) (-5 *3 (-699 *6))))) -(-10 -7 (-15 -1843 ((-2 (|:| R (-699 |#1|)) (|:| A (-699 |#1|)) (|:| |Ainv| (-699 |#1|))) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3260 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4004 ((-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1281 |#1|)))) (-699 |#1|) (-1281 |#1|)))) -((-2827 (((-428 |#4|) |#4|) 56))) -(((-992 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2827 ((-428 |#4|) |#4|))) (-860) (-803) (-462) (-960 |#3| |#2| |#1|)) (T -992)) -((-2827 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-462)) (-5 *2 (-428 *3)) (-5 *1 (-992 *4 *5 *6 *3)) (-4 *3 (-960 *6 *5 *4))))) -(-10 -7 (-15 -2827 ((-428 |#4|) |#4|))) -((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-2216 (($ (-781)) 115 (|has| |#1| (-23)))) (-3714 (((-1286) $ (-574) (-574)) 41 (|has| $ (-6 -4457)))) (-1357 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-860)))) (-3642 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4457))) (($ $) 91 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4457))))) (-2771 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-860)))) (-3034 (((-112) $ (-781)) 8)) (-3143 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) 60 (|has| $ (-6 -4457)))) (-2165 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4456)))) (-3426 (($) 7 T CONST)) (-2627 (($ $) 93 (|has| $ (-6 -4457)))) (-4423 (($ $) 103)) (-1543 (($ $) 80 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ |#1| $) 79 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4456)))) (-2458 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) 52)) (-1441 (((-574) (-1 (-112) |#1|) $) 100) (((-574) |#1| $) 99 (|has| |#1| (-1113))) (((-574) |#1| $ (-574)) 98 (|has| |#1| (-1113)))) (-3591 (($ (-654 |#1|)) 121)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3899 (((-699 |#1|) $ $) 108 (|has| |#1| (-1062)))) (-3790 (($ (-781) |#1|) 70)) (-2742 (((-112) $ (-781)) 9)) (-3618 (((-574) $) 44 (|has| (-574) (-860)))) (-3659 (($ $ $) 90 (|has| |#1| (-860)))) (-4430 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-860)))) (-1606 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2702 (((-574) $) 45 (|has| (-574) (-860)))) (-4257 (($ $ $) 89 (|has| |#1| (-860)))) (-2449 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2963 ((|#1| $) 105 (-12 (|has| |#1| (-1062)) (|has| |#1| (-1015))))) (-4203 (((-112) $ (-781)) 10)) (-4135 ((|#1| $) 106 (-12 (|has| |#1| (-1062)) (|has| |#1| (-1015))))) (-4136 (((-1172) $) 22 (|has| |#1| (-1113)))) (-1594 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-4308 (((-654 (-574)) $) 47)) (-3336 (((-112) (-574) $) 48)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-2915 ((|#1| $) 43 (|has| (-574) (-860)))) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1942 (($ $ |#1|) 42 (|has| $ (-6 -4457)))) (-2533 (($ $ (-654 |#1|)) 119)) (-2540 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 14)) (-3398 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-4371 (((-654 |#1|) $) 49)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-2199 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1248 (-574))) 71)) (-4236 ((|#1| $ $) 109 (|has| |#1| (-1062)))) (-4133 (((-932) $) 120)) (-2840 (($ $ (-574)) 64) (($ $ (-1248 (-574))) 63)) (-1585 (($ $ $) 107)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3506 (($ $ $ (-574)) 94 (|has| $ (-6 -4457)))) (-3167 (($ $) 13)) (-1836 (((-546) $) 81 (|has| |#1| (-624 (-546)))) (($ (-654 |#1|)) 122)) (-2956 (($ (-654 |#1|)) 72)) (-4157 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-3042 (((-112) $ $) 87 (|has| |#1| (-860)))) (-3018 (((-112) $ $) 86 (|has| |#1| (-860)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-3030 (((-112) $ $) 88 (|has| |#1| (-860)))) (-3007 (((-112) $ $) 85 (|has| |#1| (-860)))) (-3094 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3079 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-574) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-736))) (($ $ |#1|) 110 (|has| |#1| (-736)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-993 |#1|) (-141) (-1062)) (T -993)) -((-3591 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1062)) (-4 *1 (-993 *3)))) (-4133 (*1 *2 *1) (-12 (-4 *1 (-993 *3)) (-4 *3 (-1062)) (-5 *2 (-932)))) (-1585 (*1 *1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-1062)))) (-2533 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *1 (-993 *3)) (-4 *3 (-1062))))) -(-13 (-1279 |t#1|) (-628 (-654 |t#1|)) (-10 -8 (-15 -3591 ($ (-654 |t#1|))) (-15 -4133 ((-932) $)) (-15 -1585 ($ $ $)) (-15 -2533 ($ $ (-654 |t#1|))))) -(((-34) . T) ((-102) -2818 (|has| |#1| (-1113)) (|has| |#1| (-860))) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-860)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-628 (-654 |#1|)) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1248 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-382 |#1|) . T) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-661 |#1|) . T) ((-19 |#1|) . T) ((-860) |has| |#1| (-860)) ((-1113) -2818 (|has| |#1| (-1113)) (|has| |#1| (-860))) ((-1231) . T) ((-1279 |#1|) . T)) -((-1777 (((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|)) 17))) -(((-994 |#1| |#2|) (-10 -7 (-15 -1777 ((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|)))) (-1062) (-1062)) (T -994)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-954 *5)) (-4 *5 (-1062)) (-4 *6 (-1062)) (-5 *2 (-954 *6)) (-5 *1 (-994 *5 *6))))) -(-10 -7 (-15 -1777 ((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|)))) -((-1658 ((|#1| (-954 |#1|)) 14)) (-1529 ((|#1| (-954 |#1|)) 13)) (-2000 ((|#1| (-954 |#1|)) 12)) (-4124 ((|#1| (-954 |#1|)) 16)) (-2374 ((|#1| (-954 |#1|)) 24)) (-3861 ((|#1| (-954 |#1|)) 15)) (-2550 ((|#1| (-954 |#1|)) 17)) (-3965 ((|#1| (-954 |#1|)) 23)) (-1866 ((|#1| (-954 |#1|)) 22))) -(((-995 |#1|) (-10 -7 (-15 -2000 (|#1| (-954 |#1|))) (-15 -1529 (|#1| (-954 |#1|))) (-15 -1658 (|#1| (-954 |#1|))) (-15 -3861 (|#1| (-954 |#1|))) (-15 -4124 (|#1| (-954 |#1|))) (-15 -2550 (|#1| (-954 |#1|))) (-15 -1866 (|#1| (-954 |#1|))) (-15 -3965 (|#1| (-954 |#1|))) (-15 -2374 (|#1| (-954 |#1|)))) (-1062)) (T -995)) -((-2374 (*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062)))) (-3965 (*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062)))) (-1866 (*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062)))) (-2550 (*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062)))) (-4124 (*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062)))) (-3861 (*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062)))) (-1658 (*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062)))) (-1529 (*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062)))) (-2000 (*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062))))) -(-10 -7 (-15 -2000 (|#1| (-954 |#1|))) (-15 -1529 (|#1| (-954 |#1|))) (-15 -1658 (|#1| (-954 |#1|))) (-15 -3861 (|#1| (-954 |#1|))) (-15 -4124 (|#1| (-954 |#1|))) (-15 -2550 (|#1| (-954 |#1|))) (-15 -1866 (|#1| (-954 |#1|))) (-15 -3965 (|#1| (-954 |#1|))) (-15 -2374 (|#1| (-954 |#1|)))) -((-2149 (((-3 |#1| "failed") |#1|) 18)) (-4187 (((-3 |#1| "failed") |#1|) 6)) (-2821 (((-3 |#1| "failed") |#1|) 16)) (-1333 (((-3 |#1| "failed") |#1|) 4)) (-3478 (((-3 |#1| "failed") |#1|) 20)) (-2865 (((-3 |#1| "failed") |#1|) 8)) (-2266 (((-3 |#1| "failed") |#1| (-781)) 1)) (-2644 (((-3 |#1| "failed") |#1|) 3)) (-4280 (((-3 |#1| "failed") |#1|) 2)) (-3043 (((-3 |#1| "failed") |#1|) 21)) (-2604 (((-3 |#1| "failed") |#1|) 9)) (-1713 (((-3 |#1| "failed") |#1|) 19)) (-3409 (((-3 |#1| "failed") |#1|) 7)) (-3189 (((-3 |#1| "failed") |#1|) 17)) (-4159 (((-3 |#1| "failed") |#1|) 5)) (-2555 (((-3 |#1| "failed") |#1|) 24)) (-2448 (((-3 |#1| "failed") |#1|) 12)) (-3095 (((-3 |#1| "failed") |#1|) 22)) (-2995 (((-3 |#1| "failed") |#1|) 10)) (-3181 (((-3 |#1| "failed") |#1|) 26)) (-3851 (((-3 |#1| "failed") |#1|) 14)) (-3107 (((-3 |#1| "failed") |#1|) 27)) (-3926 (((-3 |#1| "failed") |#1|) 15)) (-1590 (((-3 |#1| "failed") |#1|) 25)) (-4014 (((-3 |#1| "failed") |#1|) 13)) (-2371 (((-3 |#1| "failed") |#1|) 23)) (-3202 (((-3 |#1| "failed") |#1|) 11))) -(((-996 |#1|) (-141) (-1216)) (T -996)) -((-3107 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-3181 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-1590 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-2555 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-2371 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-3095 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-3043 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-3478 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-1713 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-2149 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-3189 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-2821 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-3926 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-3851 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-4014 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-2448 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-3202 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-2995 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-2604 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-2865 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-3409 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-4187 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-4159 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-1333 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-2644 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-4280 (*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-2266 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-781)) (-4 *1 (-996 *2)) (-4 *2 (-1216))))) -(-13 (-10 -7 (-15 -2266 ((-3 |t#1| "failed") |t#1| (-781))) (-15 -4280 ((-3 |t#1| "failed") |t#1|)) (-15 -2644 ((-3 |t#1| "failed") |t#1|)) (-15 -1333 ((-3 |t#1| "failed") |t#1|)) (-15 -4159 ((-3 |t#1| "failed") |t#1|)) (-15 -4187 ((-3 |t#1| "failed") |t#1|)) (-15 -3409 ((-3 |t#1| "failed") |t#1|)) (-15 -2865 ((-3 |t#1| "failed") |t#1|)) (-15 -2604 ((-3 |t#1| "failed") |t#1|)) (-15 -2995 ((-3 |t#1| "failed") |t#1|)) (-15 -3202 ((-3 |t#1| "failed") |t#1|)) (-15 -2448 ((-3 |t#1| "failed") |t#1|)) (-15 -4014 ((-3 |t#1| "failed") |t#1|)) (-15 -3851 ((-3 |t#1| "failed") |t#1|)) (-15 -3926 ((-3 |t#1| "failed") |t#1|)) (-15 -2821 ((-3 |t#1| "failed") |t#1|)) (-15 -3189 ((-3 |t#1| "failed") |t#1|)) (-15 -2149 ((-3 |t#1| "failed") |t#1|)) (-15 -1713 ((-3 |t#1| "failed") |t#1|)) (-15 -3478 ((-3 |t#1| "failed") |t#1|)) (-15 -3043 ((-3 |t#1| "failed") |t#1|)) (-15 -3095 ((-3 |t#1| "failed") |t#1|)) (-15 -2371 ((-3 |t#1| "failed") |t#1|)) (-15 -2555 ((-3 |t#1| "failed") |t#1|)) (-15 -1590 ((-3 |t#1| "failed") |t#1|)) (-15 -3181 ((-3 |t#1| "failed") |t#1|)) (-15 -3107 ((-3 |t#1| "failed") |t#1|)))) -((-2660 ((|#4| |#4| (-654 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-2443 ((|#4| |#4| (-654 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-1777 ((|#4| (-1 |#4| (-963 |#1|)) |#4|) 31))) -(((-997 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2443 (|#4| |#4| |#3|)) (-15 -2443 (|#4| |#4| (-654 |#3|))) (-15 -2660 (|#4| |#4| |#3|)) (-15 -2660 (|#4| |#4| (-654 |#3|))) (-15 -1777 (|#4| (-1 |#4| (-963 |#1|)) |#4|))) (-1062) (-803) (-13 (-860) (-10 -8 (-15 -1836 ((-1190) $)) (-15 -1488 ((-3 $ "failed") (-1190))))) (-960 (-963 |#1|) |#2| |#3|)) (T -997)) -((-1777 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-963 *4))) (-4 *4 (-1062)) (-4 *2 (-960 (-963 *4) *5 *6)) (-4 *5 (-803)) (-4 *6 (-13 (-860) (-10 -8 (-15 -1836 ((-1190) $)) (-15 -1488 ((-3 $ "failed") (-1190)))))) (-5 *1 (-997 *4 *5 *6 *2)))) (-2660 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-13 (-860) (-10 -8 (-15 -1836 ((-1190) $)) (-15 -1488 ((-3 $ "failed") (-1190)))))) (-4 *4 (-1062)) (-4 *5 (-803)) (-5 *1 (-997 *4 *5 *6 *2)) (-4 *2 (-960 (-963 *4) *5 *6)))) (-2660 (*1 *2 *2 *3) (-12 (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-13 (-860) (-10 -8 (-15 -1836 ((-1190) $)) (-15 -1488 ((-3 $ "failed") (-1190)))))) (-5 *1 (-997 *4 *5 *3 *2)) (-4 *2 (-960 (-963 *4) *5 *3)))) (-2443 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-13 (-860) (-10 -8 (-15 -1836 ((-1190) $)) (-15 -1488 ((-3 $ "failed") (-1190)))))) (-4 *4 (-1062)) (-4 *5 (-803)) (-5 *1 (-997 *4 *5 *6 *2)) (-4 *2 (-960 (-963 *4) *5 *6)))) (-2443 (*1 *2 *2 *3) (-12 (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-13 (-860) (-10 -8 (-15 -1836 ((-1190) $)) (-15 -1488 ((-3 $ "failed") (-1190)))))) (-5 *1 (-997 *4 *5 *3 *2)) (-4 *2 (-960 (-963 *4) *5 *3))))) -(-10 -7 (-15 -2443 (|#4| |#4| |#3|)) (-15 -2443 (|#4| |#4| (-654 |#3|))) (-15 -2660 (|#4| |#4| |#3|)) (-15 -2660 (|#4| |#4| (-654 |#3|))) (-15 -1777 (|#4| (-1 |#4| (-963 |#1|)) |#4|))) -((-2012 ((|#2| |#3|) 35)) (-2213 (((-2 (|:| -1882 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|) 79)) (-1689 (((-2 (|:| -1882 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) 100))) -(((-998 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1689 ((-2 (|:| -1882 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))))) (-15 -2213 ((-2 (|:| -1882 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|)) (-15 -2012 (|#2| |#3|))) (-358) (-1257 |#1|) (-1257 |#2|) (-734 |#2| |#3|)) (T -998)) -((-2012 (*1 *2 *3) (-12 (-4 *3 (-1257 *2)) (-4 *2 (-1257 *4)) (-5 *1 (-998 *4 *2 *3 *5)) (-4 *4 (-358)) (-4 *5 (-734 *2 *3)))) (-2213 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *3 (-1257 *4)) (-4 *5 (-1257 *3)) (-5 *2 (-2 (|:| -1882 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-5 *1 (-998 *4 *3 *5 *6)) (-4 *6 (-734 *3 *5)))) (-1689 (*1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 *4)) (-5 *2 (-2 (|:| -1882 (-699 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-699 *4)))) (-5 *1 (-998 *3 *4 *5 *6)) (-4 *6 (-734 *4 *5))))) -(-10 -7 (-15 -1689 ((-2 (|:| -1882 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))))) (-15 -2213 ((-2 (|:| -1882 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|)) (-15 -2012 (|#2| |#3|))) -((-2891 (((-1000 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574)))) (-1000 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574))))) 82))) -(((-999 |#1| |#2|) (-10 -7 (-15 -2891 ((-1000 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574)))) (-1000 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574))))))) (-654 (-1190)) (-781)) (T -999)) -((-2891 (*1 *2 *2) (-12 (-5 *2 (-1000 (-417 (-574)) (-874 *3) (-246 *4 (-781)) (-253 *3 (-417 (-574))))) (-14 *3 (-654 (-1190))) (-14 *4 (-781)) (-5 *1 (-999 *3 *4))))) -(-10 -7 (-15 -2891 ((-1000 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574)))) (-1000 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574))))))) -((-2849 (((-112) $ $) NIL)) (-1947 (((-3 (-112) "failed") $) 71)) (-1350 (($ $) 36 (-12 (|has| |#1| (-148)) (|has| |#1| (-315))))) (-3502 (($ $ (-3 (-112) "failed")) 72)) (-1946 (($ (-654 |#4|) |#4|) 25)) (-4136 (((-1172) $) NIL)) (-1795 (($ $) 69)) (-3966 (((-1133) $) NIL)) (-1584 (((-112) $) 70)) (-2672 (($) 30)) (-3927 ((|#4| $) 74)) (-3356 (((-654 |#4|) $) 73)) (-2943 (((-872) $) 68)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1000 |#1| |#2| |#3| |#4|) (-13 (-1113) (-623 (-872)) (-10 -8 (-15 -2672 ($)) (-15 -1946 ($ (-654 |#4|) |#4|)) (-15 -1947 ((-3 (-112) "failed") $)) (-15 -3502 ($ $ (-3 (-112) "failed"))) (-15 -1584 ((-112) $)) (-15 -3356 ((-654 |#4|) $)) (-15 -3927 (|#4| $)) (-15 -1795 ($ $)) (IF (|has| |#1| (-315)) (IF (|has| |#1| (-148)) (-15 -1350 ($ $)) |%noBranch|) |%noBranch|))) (-462) (-860) (-803) (-960 |#1| |#3| |#2|)) (T -1000)) -((-2672 (*1 *1) (-12 (-4 *2 (-462)) (-4 *3 (-860)) (-4 *4 (-803)) (-5 *1 (-1000 *2 *3 *4 *5)) (-4 *5 (-960 *2 *4 *3)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-654 *3)) (-4 *3 (-960 *4 *6 *5)) (-4 *4 (-462)) (-4 *5 (-860)) (-4 *6 (-803)) (-5 *1 (-1000 *4 *5 *6 *3)))) (-1947 (*1 *2 *1) (|partial| -12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *2 (-112)) (-5 *1 (-1000 *3 *4 *5 *6)) (-4 *6 (-960 *3 *5 *4)))) (-3502 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *1 (-1000 *3 *4 *5 *6)) (-4 *6 (-960 *3 *5 *4)))) (-1584 (*1 *2 *1) (-12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *2 (-112)) (-5 *1 (-1000 *3 *4 *5 *6)) (-4 *6 (-960 *3 *5 *4)))) (-3356 (*1 *2 *1) (-12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *2 (-654 *6)) (-5 *1 (-1000 *3 *4 *5 *6)) (-4 *6 (-960 *3 *5 *4)))) (-3927 (*1 *2 *1) (-12 (-4 *2 (-960 *3 *5 *4)) (-5 *1 (-1000 *3 *4 *5 *2)) (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)))) (-1795 (*1 *1 *1) (-12 (-4 *2 (-462)) (-4 *3 (-860)) (-4 *4 (-803)) (-5 *1 (-1000 *2 *3 *4 *5)) (-4 *5 (-960 *2 *4 *3)))) (-1350 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-315)) (-4 *2 (-462)) (-4 *3 (-860)) (-4 *4 (-803)) (-5 *1 (-1000 *2 *3 *4 *5)) (-4 *5 (-960 *2 *4 *3))))) -(-13 (-1113) (-623 (-872)) (-10 -8 (-15 -2672 ($)) (-15 -1946 ($ (-654 |#4|) |#4|)) (-15 -1947 ((-3 (-112) "failed") $)) (-15 -3502 ($ $ (-3 (-112) "failed"))) (-15 -1584 ((-112) $)) (-15 -3356 ((-654 |#4|) $)) (-15 -3927 (|#4| $)) (-15 -1795 ($ $)) (IF (|has| |#1| (-315)) (IF (|has| |#1| (-148)) (-15 -1350 ($ $)) |%noBranch|) |%noBranch|))) -((-1614 (((-112) |#5| |#5|) 44)) (-2357 (((-112) |#5| |#5|) 59)) (-3374 (((-112) |#5| (-654 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-3220 (((-112) (-654 |#4|) (-654 |#4|)) 65)) (-3012 (((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) 70)) (-3680 (((-1286)) 32)) (-2861 (((-1286) (-1172) (-1172) (-1172)) 28)) (-3959 (((-654 |#5|) (-654 |#5|)) 100)) (-1591 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)))) 92)) (-2021 (((-654 (-2 (|:| -4122 (-654 |#4|)) (|:| -4091 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112)) 122)) (-4109 (((-112) |#5| |#5|) 53)) (-3297 (((-3 (-112) "failed") |#5| |#5|) 78)) (-1957 (((-112) (-654 |#4|) (-654 |#4|)) 64)) (-2528 (((-112) (-654 |#4|) (-654 |#4|)) 66)) (-2119 (((-112) (-654 |#4|) (-654 |#4|)) 67)) (-2229 (((-3 (-2 (|:| -4122 (-654 |#4|)) (|:| -4091 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-3446 (((-654 |#5|) (-654 |#5|)) 49))) -(((-1001 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2861 ((-1286) (-1172) (-1172) (-1172))) (-15 -3680 ((-1286))) (-15 -1614 ((-112) |#5| |#5|)) (-15 -3446 ((-654 |#5|) (-654 |#5|))) (-15 -4109 ((-112) |#5| |#5|)) (-15 -2357 ((-112) |#5| |#5|)) (-15 -3220 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -1957 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -2528 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -2119 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3297 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3374 ((-112) |#5| |#5|)) (-15 -3374 ((-112) |#5| (-654 |#5|))) (-15 -3959 ((-654 |#5|) (-654 |#5|))) (-15 -3012 ((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)))) (-15 -1591 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) (-15 -2021 ((-654 (-2 (|:| -4122 (-654 |#4|)) (|:| -4091 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -2229 ((-3 (-2 (|:| -4122 (-654 |#4|)) (|:| -4091 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-462) (-803) (-860) (-1078 |#1| |#2| |#3|) (-1084 |#1| |#2| |#3| |#4|)) (T -1001)) -((-2229 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-1078 *6 *7 *8)) (-5 *2 (-2 (|:| -4122 (-654 *9)) (|:| -4091 *4) (|:| |ineq| (-654 *9)))) (-5 *1 (-1001 *6 *7 *8 *9 *4)) (-5 *3 (-654 *9)) (-4 *4 (-1084 *6 *7 *8 *9)))) (-2021 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-654 *10)) (-5 *5 (-112)) (-4 *10 (-1084 *6 *7 *8 *9)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-1078 *6 *7 *8)) (-5 *2 (-654 (-2 (|:| -4122 (-654 *9)) (|:| -4091 *10) (|:| |ineq| (-654 *9))))) (-5 *1 (-1001 *6 *7 *8 *9 *10)) (-5 *3 (-654 *9)))) (-1591 (*1 *2 *2) (-12 (-5 *2 (-654 (-2 (|:| |val| (-654 *6)) (|:| -4091 *7)))) (-4 *6 (-1078 *3 *4 *5)) (-4 *7 (-1084 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1001 *3 *4 *5 *6 *7)))) (-3012 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4091 *8))) (-4 *7 (-1078 *4 *5 *6)) (-4 *8 (-1084 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1001 *4 *5 *6 *7 *8)))) (-3959 (*1 *2 *2) (-12 (-5 *2 (-654 *7)) (-4 *7 (-1084 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *1 (-1001 *3 *4 *5 *6 *7)))) (-3374 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-1084 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1078 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1001 *5 *6 *7 *8 *3)))) (-3374 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1001 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7)))) (-3297 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1001 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7)))) (-2119 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1001 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))) (-2528 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1001 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))) (-1957 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1001 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))) (-3220 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1001 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))) (-2357 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1001 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7)))) (-4109 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1001 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7)))) (-3446 (*1 *2 *2) (-12 (-5 *2 (-654 *7)) (-4 *7 (-1084 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *1 (-1001 *3 *4 *5 *6 *7)))) (-1614 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1001 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7)))) (-3680 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-1286)) (-5 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *7 (-1084 *3 *4 *5 *6)))) (-2861 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1172)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-1286)) (-5 *1 (-1001 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7))))) -(-10 -7 (-15 -2861 ((-1286) (-1172) (-1172) (-1172))) (-15 -3680 ((-1286))) (-15 -1614 ((-112) |#5| |#5|)) (-15 -3446 ((-654 |#5|) (-654 |#5|))) (-15 -4109 ((-112) |#5| |#5|)) (-15 -2357 ((-112) |#5| |#5|)) (-15 -3220 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -1957 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -2528 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -2119 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3297 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3374 ((-112) |#5| |#5|)) (-15 -3374 ((-112) |#5| (-654 |#5|))) (-15 -3959 ((-654 |#5|) (-654 |#5|))) (-15 -3012 ((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)))) (-15 -1591 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) (-15 -2021 ((-654 (-2 (|:| -4122 (-654 |#4|)) (|:| -4091 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -2229 ((-3 (-2 (|:| -4122 (-654 |#4|)) (|:| -4091 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-1488 (((-1190) $) 15)) (-3083 (((-1172) $) 16)) (-2692 (($ (-1190) (-1172)) 14)) (-2943 (((-872) $) 13))) -(((-1002) (-13 (-623 (-872)) (-10 -8 (-15 -2692 ($ (-1190) (-1172))) (-15 -1488 ((-1190) $)) (-15 -3083 ((-1172) $))))) (T -1002)) -((-2692 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1172)) (-5 *1 (-1002)))) (-1488 (*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-1002)))) (-3083 (*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-1002))))) -(-13 (-623 (-872)) (-10 -8 (-15 -2692 ($ (-1190) (-1172))) (-15 -1488 ((-1190) $)) (-15 -3083 ((-1172) $)))) -((-1777 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-1003 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1777 (|#4| (-1 |#2| |#1|) |#3|))) (-566) (-566) (-1005 |#1|) (-1005 |#2|)) (T -1003)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-566)) (-4 *6 (-566)) (-4 *2 (-1005 *6)) (-5 *1 (-1003 *5 *6 *4 *2)) (-4 *4 (-1005 *5))))) -(-10 -7 (-15 -1777 (|#4| (-1 |#2| |#1|) |#3|))) -((-1696 (((-3 |#2| "failed") $) NIL) (((-3 (-1190) "failed") $) 66) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) 96)) (-2206 ((|#2| $) NIL) (((-1190) $) 61) (((-417 (-574)) $) NIL) (((-574) $) 93)) (-2590 (((-699 (-574)) (-1281 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL) (((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) 115) (((-699 |#2|) (-699 $)) 28) (((-699 |#2|) (-1281 $)) NIL)) (-2820 (($) 99)) (-3625 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 76) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 85)) (-2141 (($ $) 10)) (-2748 (((-3 $ "failed") $) 20)) (-1777 (($ (-1 |#2| |#2|) $) 22)) (-3818 (($) 16)) (-3191 (($ $) 55)) (-3905 (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-1190)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-4358 (($ $) 12)) (-1836 (((-903 (-574)) $) 71) (((-903 (-388)) $) 80) (((-546) $) 40) (((-388) $) 44) (((-227) $) 48)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) 91) (($ |#2|) NIL) (($ (-1190)) 58)) (-1364 (((-781)) 31)) (-3007 (((-112) $ $) 51))) -(((-1004 |#1| |#2|) (-10 -8 (-15 -3007 ((-112) |#1| |#1|)) (-15 -3818 (|#1|)) (-15 -2748 ((-3 |#1| "failed") |#1|)) (-15 -1696 ((-3 (-574) "failed") |#1|)) (-15 -2206 ((-574) |#1|)) (-15 -1696 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2206 ((-417 (-574)) |#1|)) (-15 -1836 ((-227) |#1|)) (-15 -1836 ((-388) |#1|)) (-15 -1836 ((-546) |#1|)) (-15 -2943 (|#1| (-1190))) (-15 -1696 ((-3 (-1190) "failed") |#1|)) (-15 -2206 ((-1190) |#1|)) (-15 -2820 (|#1|)) (-15 -3191 (|#1| |#1|)) (-15 -4358 (|#1| |#1|)) (-15 -2141 (|#1| |#1|)) (-15 -3625 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -3625 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1836 ((-903 (-388)) |#1|)) (-15 -1836 ((-903 (-574)) |#1|)) (-15 -2590 ((-699 |#2|) (-1281 |#1|))) (-15 -2590 ((-699 |#2|) (-699 |#1|))) (-15 -2590 ((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 |#1|) (-1281 |#1|))) (-15 -2590 ((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 |#1|) (-1281 |#1|))) (-15 -2590 ((-699 (-574)) (-699 |#1|))) (-15 -2590 ((-699 (-574)) (-1281 |#1|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1|)) (-15 -1777 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1696 ((-3 |#2| "failed") |#1|)) (-15 -2206 (|#2| |#1|)) (-15 -2943 (|#1| |#2|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2943 (|#1| |#1|)) (-15 -1364 ((-781))) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|))) (-1005 |#2|) (-566)) (T -1004)) -((-1364 (*1 *2) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-1004 *3 *4)) (-4 *3 (-1005 *4))))) -(-10 -8 (-15 -3007 ((-112) |#1| |#1|)) (-15 -3818 (|#1|)) (-15 -2748 ((-3 |#1| "failed") |#1|)) (-15 -1696 ((-3 (-574) "failed") |#1|)) (-15 -2206 ((-574) |#1|)) (-15 -1696 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2206 ((-417 (-574)) |#1|)) (-15 -1836 ((-227) |#1|)) (-15 -1836 ((-388) |#1|)) (-15 -1836 ((-546) |#1|)) (-15 -2943 (|#1| (-1190))) (-15 -1696 ((-3 (-1190) "failed") |#1|)) (-15 -2206 ((-1190) |#1|)) (-15 -2820 (|#1|)) (-15 -3191 (|#1| |#1|)) (-15 -4358 (|#1| |#1|)) (-15 -2141 (|#1| |#1|)) (-15 -3625 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -3625 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1836 ((-903 (-388)) |#1|)) (-15 -1836 ((-903 (-574)) |#1|)) (-15 -2590 ((-699 |#2|) (-1281 |#1|))) (-15 -2590 ((-699 |#2|) (-699 |#1|))) (-15 -2590 ((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 |#1|) (-1281 |#1|))) (-15 -2590 ((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 |#1|) (-1281 |#1|))) (-15 -2590 ((-699 (-574)) (-699 |#1|))) (-15 -2590 ((-699 (-574)) (-1281 |#1|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1|)) (-15 -1777 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1696 ((-3 |#2| "failed") |#1|)) (-15 -2206 (|#2| |#1|)) (-15 -2943 (|#1| |#2|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2943 (|#1| |#1|)) (-15 -1364 ((-781))) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-1528 ((|#1| $) 148 (|has| |#1| (-315)))) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-1575 (($ $) 46)) (-2085 (((-112) $) 44)) (-3524 (((-3 $ "failed") $ $) 20)) (-3972 (((-428 (-1186 $)) (-1186 $)) 139 (|has| |#1| (-920)))) (-2568 (($ $) 81)) (-2827 (((-428 $) $) 80)) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) 142 (|has| |#1| (-920)))) (-1600 (((-112) $ $) 65)) (-2846 (((-574) $) 129 (|has| |#1| (-830)))) (-3426 (($) 18 T CONST)) (-1696 (((-3 |#1| "failed") $) 188) (((-3 (-1190) "failed") $) 137 (|has| |#1| (-1051 (-1190)))) (((-3 (-417 (-574)) "failed") $) 120 (|has| |#1| (-1051 (-574)))) (((-3 (-574) "failed") $) 118 (|has| |#1| (-1051 (-574))))) (-2206 ((|#1| $) 189) (((-1190) $) 138 (|has| |#1| (-1051 (-1190)))) (((-417 (-574)) $) 121 (|has| |#1| (-1051 (-574)))) (((-574) $) 119 (|has| |#1| (-1051 (-574))))) (-2786 (($ $ $) 61)) (-2590 (((-699 (-574)) (-1281 $)) 163 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 162 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 161 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) 160) (((-699 |#1|) (-699 $)) 159) (((-699 |#1|) (-1281 $)) 158)) (-3434 (((-3 $ "failed") $) 37)) (-2820 (($) 146 (|has| |#1| (-555)))) (-2797 (($ $ $) 62)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) 57)) (-2257 (((-112) $) 79)) (-2756 (((-112) $) 131 (|has| |#1| (-830)))) (-3625 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 155 (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 154 (|has| |#1| (-897 (-388))))) (-3199 (((-112) $) 35)) (-2141 (($ $) 150)) (-2966 ((|#1| $) 152)) (-2748 (((-3 $ "failed") $) 117 (|has| |#1| (-1165)))) (-1335 (((-112) $) 130 (|has| |#1| (-830)))) (-4403 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-3659 (($ $ $) 127 (|has| |#1| (-860)))) (-4257 (($ $ $) 126 (|has| |#1| (-860)))) (-1777 (($ (-1 |#1| |#1|) $) 180)) (-2832 (($ $ $) 52) (($ (-654 $)) 51)) (-4136 (((-1172) $) 10)) (-1324 (($ $) 78)) (-3818 (($) 116 (|has| |#1| (-1165)) CONST)) (-3966 (((-1133) $) 11)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2873 (($ $ $) 54) (($ (-654 $)) 53)) (-3191 (($ $) 147 (|has| |#1| (-315)))) (-3595 ((|#1| $) 144 (|has| |#1| (-555)))) (-2560 (((-428 (-1186 $)) (-1186 $)) 141 (|has| |#1| (-920)))) (-2039 (((-428 (-1186 $)) (-1186 $)) 140 (|has| |#1| (-920)))) (-4220 (((-428 $) $) 82)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2838 (((-3 $ "failed") $ $) 48)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-2646 (($ $ (-654 |#1|) (-654 |#1|)) 186 (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) 185 (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) 184 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) 183 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1190)) (-654 |#1|)) 182 (|has| |#1| (-524 (-1190) |#1|))) (($ $ (-1190) |#1|) 181 (|has| |#1| (-524 (-1190) |#1|)))) (-1730 (((-781) $) 64)) (-2199 (($ $ |#1|) 187 (|has| |#1| (-294 |#1| |#1|)))) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 63)) (-3905 (($ $) 178 (|has| |#1| (-239))) (($ $ (-781)) 177 (|has| |#1| (-239))) (($ $ (-1190)) 175 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) 174 (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) 173 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) 172 (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) 165) (($ $ (-1 |#1| |#1|)) 164)) (-4358 (($ $) 149)) (-2977 ((|#1| $) 151)) (-1836 (((-903 (-574)) $) 157 (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) 156 (|has| |#1| (-624 (-903 (-388))))) (((-546) $) 134 (|has| |#1| (-624 (-546)))) (((-388) $) 133 (|has| |#1| (-1035))) (((-227) $) 132 (|has| |#1| (-1035)))) (-1524 (((-3 (-1281 $) "failed") (-699 $)) 143 (-2087 (|has| $ (-146)) (|has| |#1| (-920))))) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ |#1|) 192) (($ (-1190)) 136 (|has| |#1| (-1051 (-1190))))) (-3298 (((-3 $ "failed") $) 135 (-2818 (|has| |#1| (-146)) (-2087 (|has| $ (-146)) (|has| |#1| (-920)))))) (-1364 (((-781)) 32 T CONST)) (-1801 ((|#1| $) 145 (|has| |#1| (-555)))) (-3284 (((-112) $ $) 9)) (-2069 (((-112) $ $) 45)) (-3482 (($ $) 128 (|has| |#1| (-830)))) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-3610 (($ $) 179 (|has| |#1| (-239))) (($ $ (-781)) 176 (|has| |#1| (-239))) (($ $ (-1190)) 171 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) 170 (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) 169 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) 168 (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) 167) (($ $ (-1 |#1| |#1|)) 166)) (-3042 (((-112) $ $) 124 (|has| |#1| (-860)))) (-3018 (((-112) $ $) 123 (|has| |#1| (-860)))) (-2981 (((-112) $ $) 6)) (-3030 (((-112) $ $) 125 (|has| |#1| (-860)))) (-3007 (((-112) $ $) 122 (|has| |#1| (-860)))) (-3108 (($ $ $) 73) (($ |#1| |#1|) 153)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75) (($ |#1| $) 191) (($ $ |#1|) 190))) -(((-1005 |#1|) (-141) (-566)) (T -1005)) -((-3108 (*1 *1 *2 *2) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566)))) (-2966 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566)))) (-2977 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566)))) (-2141 (*1 *1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566)))) (-4358 (*1 *1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566)))) (-1528 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566)) (-4 *2 (-315)))) (-3191 (*1 *1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566)) (-4 *2 (-315)))) (-2820 (*1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-555)) (-4 *2 (-566)))) (-1801 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566)) (-4 *2 (-555)))) (-3595 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566)) (-4 *2 (-555))))) -(-13 (-372) (-38 |t#1|) (-1051 |t#1|) (-347 |t#1|) (-233 |t#1|) (-386 |t#1|) (-895 |t#1|) (-410 |t#1|) (-10 -8 (-15 -3108 ($ |t#1| |t#1|)) (-15 -2966 (|t#1| $)) (-15 -2977 (|t#1| $)) (-15 -2141 ($ $)) (-15 -4358 ($ $)) (IF (|has| |t#1| (-1165)) (-6 (-1165)) |%noBranch|) (IF (|has| |t#1| (-1051 (-574))) (PROGN (-6 (-1051 (-574))) (-6 (-1051 (-417 (-574))))) |%noBranch|) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#1| (-830)) (-6 (-830)) |%noBranch|) (IF (|has| |t#1| (-1035)) (-6 (-1035)) |%noBranch|) (IF (|has| |t#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1051 (-1190))) (-6 (-1051 (-1190))) |%noBranch|) (IF (|has| |t#1| (-315)) (PROGN (-15 -1528 (|t#1| $)) (-15 -3191 ($ $))) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -2820 ($)) (-15 -1801 (|t#1| $)) (-15 -3595 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-920)) (-6 (-920)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 #1=(-1190)) |has| |#1| (-1051 (-1190))) ((-626 |#1|) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-624 (-227)) |has| |#1| (-1035)) ((-624 (-388)) |has| |#1| (-1035)) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-624 (-903 (-388))) |has| |#1| (-624 (-903 (-388)))) ((-624 (-903 (-574))) |has| |#1| (-624 (-903 (-574)))) ((-235 $) |has| |#1| (-239)) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-249) . T) ((-294 |#1| $) |has| |#1| (-294 |#1| |#1|)) ((-298) . T) ((-315) . T) ((-317 |#1|) |has| |#1| (-317 |#1|)) ((-372) . T) ((-347 |#1|) . T) ((-386 |#1|) . T) ((-410 |#1|) . T) ((-462) . T) ((-524 (-1190) |#1|) |has| |#1| (-524 (-1190) |#1|)) ((-524 |#1| |#1|) |has| |#1| (-317 |#1|)) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 #2=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-649 #2#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) . T) ((-727 |#1|) . T) ((-727 $) . T) ((-736) . T) ((-801) |has| |#1| (-830)) ((-802) |has| |#1| (-830)) ((-804) |has| |#1| (-830)) ((-805) |has| |#1| (-830)) ((-830) |has| |#1| (-830)) ((-858) |has| |#1| (-830)) ((-860) -2818 (|has| |#1| (-860)) (|has| |#1| (-830))) ((-911 (-1190)) |has| |#1| (-911 (-1190))) ((-897 (-388)) |has| |#1| (-897 (-388))) ((-897 (-574)) |has| |#1| (-897 (-574))) ((-895 |#1|) . T) ((-920) |has| |#1| (-920)) ((-931) . T) ((-1035) |has| |#1| (-1035)) ((-1051 (-417 (-574))) |has| |#1| (-1051 (-574))) ((-1051 (-574)) |has| |#1| (-1051 (-574))) ((-1051 #1#) |has| |#1| (-1051 (-1190))) ((-1051 |#1|) . T) ((-1064 #0#) . T) ((-1064 |#1|) . T) ((-1064 $) . T) ((-1069 #0#) . T) ((-1069 |#1|) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1165) |has| |#1| (-1165)) ((-1231) . T) ((-1235) . T)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-2639 (($ (-1155 |#1| |#2|)) 11)) (-2914 (((-1155 |#1| |#2|) $) 12)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2199 ((|#2| $ (-246 |#1| |#2|)) 16)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2133 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL))) -(((-1006 |#1| |#2|) (-13 (-21) (-294 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -2639 ($ (-1155 |#1| |#2|))) (-15 -2914 ((-1155 |#1| |#2|) $)))) (-932) (-372)) (T -1006)) -((-2639 (*1 *1 *2) (-12 (-5 *2 (-1155 *3 *4)) (-14 *3 (-932)) (-4 *4 (-372)) (-5 *1 (-1006 *3 *4)))) (-2914 (*1 *2 *1) (-12 (-5 *2 (-1155 *3 *4)) (-5 *1 (-1006 *3 *4)) (-14 *3 (-932)) (-4 *4 (-372))))) -(-13 (-21) (-294 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -2639 ($ (-1155 |#1| |#2|))) (-15 -2914 ((-1155 |#1| |#2|) $)))) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-4016 (((-1148) $) 9)) (-2943 (((-872) $) 15) (($ (-1195)) NIL) (((-1195) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1007) (-13 (-1096) (-10 -8 (-15 -4016 ((-1148) $))))) (T -1007)) -((-4016 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1007))))) -(-13 (-1096) (-10 -8 (-15 -4016 ((-1148) $)))) -((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3034 (((-112) $ (-781)) 8)) (-3426 (($) 7 T CONST)) (-3876 (($ $) 47)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-2742 (((-112) $ (-781)) 9)) (-1606 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2449 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 36)) (-4203 (((-112) $ (-781)) 10)) (-4135 (((-781) $) 46)) (-4136 (((-1172) $) 22 (|has| |#1| (-1113)))) (-2937 ((|#1| $) 40)) (-2798 (($ |#1| $) 41)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-2501 ((|#1| $) 45)) (-1785 ((|#1| $) 42)) (-2540 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 14)) (-4035 ((|#1| |#1| $) 49)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-3668 ((|#1| $) 48)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-1599 (($ (-654 |#1|)) 43)) (-3835 ((|#1| $) 44)) (-3390 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-1008 |#1|) (-141) (-1231)) (T -1008)) -((-4035 (*1 *2 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1231)))) (-3668 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1231)))) (-3876 (*1 *1 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1231)))) (-4135 (*1 *2 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1231)) (-5 *2 (-781)))) (-2501 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1231)))) (-3835 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1231))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4456) (-15 -4035 (|t#1| |t#1| $)) (-15 -3668 (|t#1| $)) (-15 -3876 ($ $)) (-15 -4135 ((-781) $)) (-15 -2501 (|t#1| $)) (-15 -3835 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1113) |has| |#1| (-1113)) ((-1231) . T)) -((-3138 (((-112) $) 43)) (-1696 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-2206 (((-574) $) NIL) (((-417 (-574)) $) NIL) ((|#2| $) 44)) (-1880 (((-3 (-417 (-574)) "failed") $) 78)) (-4414 (((-112) $) 72)) (-4339 (((-417 (-574)) $) 76)) (-3199 (((-112) $) 42)) (-2236 ((|#2| $) 22)) (-1777 (($ (-1 |#2| |#2|) $) 19)) (-1324 (($ $) 58)) (-3905 (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-1190)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-1836 (((-546) $) 67)) (-1479 (($ $) 17)) (-2943 (((-872) $) 53) (($ (-574)) 39) (($ |#2|) 37) (($ (-417 (-574))) NIL)) (-1364 (((-781)) 10)) (-3482 ((|#2| $) 71)) (-2981 (((-112) $ $) 26)) (-3007 (((-112) $ $) 69)) (-3094 (($ $) 30) (($ $ $) 29)) (-3079 (($ $ $) 27)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL))) -(((-1009 |#1| |#2|) (-10 -8 (-15 -2943 (|#1| (-417 (-574)))) (-15 -3007 ((-112) |#1| |#1|)) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 * (|#1| |#1| (-417 (-574)))) (-15 -1324 (|#1| |#1|)) (-15 -1836 ((-546) |#1|)) (-15 -1880 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -4339 ((-417 (-574)) |#1|)) (-15 -4414 ((-112) |#1|)) (-15 -3482 (|#2| |#1|)) (-15 -2236 (|#2| |#1|)) (-15 -1479 (|#1| |#1|)) (-15 -1777 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1|)) (-15 -1696 ((-3 |#2| "failed") |#1|)) (-15 -2206 (|#2| |#1|)) (-15 -2206 ((-417 (-574)) |#1|)) (-15 -1696 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2206 ((-574) |#1|)) (-15 -1696 ((-3 (-574) "failed") |#1|)) (-15 -2943 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1364 ((-781))) (-15 -2943 (|#1| (-574))) (-15 -3199 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 -3138 ((-112) |#1|)) (-15 * (|#1| (-932) |#1|)) (-15 -3079 (|#1| |#1| |#1|)) (-15 -2943 ((-872) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) (-1010 |#2|) (-174)) (T -1009)) -((-1364 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-1009 *3 *4)) (-4 *3 (-1010 *4))))) -(-10 -8 (-15 -2943 (|#1| (-417 (-574)))) (-15 -3007 ((-112) |#1| |#1|)) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 * (|#1| |#1| (-417 (-574)))) (-15 -1324 (|#1| |#1|)) (-15 -1836 ((-546) |#1|)) (-15 -1880 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -4339 ((-417 (-574)) |#1|)) (-15 -4414 ((-112) |#1|)) (-15 -3482 (|#2| |#1|)) (-15 -2236 (|#2| |#1|)) (-15 -1479 (|#1| |#1|)) (-15 -1777 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1|)) (-15 -1696 ((-3 |#2| "failed") |#1|)) (-15 -2206 (|#2| |#1|)) (-15 -2206 ((-417 (-574)) |#1|)) (-15 -1696 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2206 ((-574) |#1|)) (-15 -1696 ((-3 (-574) "failed") |#1|)) (-15 -2943 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1364 ((-781))) (-15 -2943 (|#1| (-574))) (-15 -3199 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 -3138 ((-112) |#1|)) (-15 * (|#1| (-932) |#1|)) (-15 -3079 (|#1| |#1| |#1|)) (-15 -2943 ((-872) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-1696 (((-3 (-574) "failed") $) 130 (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) 128 (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) 125)) (-2206 (((-574) $) 129 (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) 127 (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) 126)) (-2590 (((-699 (-574)) (-1281 $)) 100 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 99 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 98 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) 97) (((-699 |#1|) (-699 $)) 96) (((-699 |#1|) (-1281 $)) 95)) (-3434 (((-3 $ "failed") $) 37)) (-4239 ((|#1| $) 88)) (-1880 (((-3 (-417 (-574)) "failed") $) 84 (|has| |#1| (-555)))) (-4414 (((-112) $) 86 (|has| |#1| (-555)))) (-4339 (((-417 (-574)) $) 85 (|has| |#1| (-555)))) (-3627 (($ |#1| |#1| |#1| |#1|) 89)) (-3199 (((-112) $) 35)) (-2236 ((|#1| $) 90)) (-3659 (($ $ $) 77 (|has| |#1| (-860)))) (-4257 (($ $ $) 76 (|has| |#1| (-860)))) (-1777 (($ (-1 |#1| |#1|) $) 101)) (-4136 (((-1172) $) 10)) (-1324 (($ $) 81 (|has| |#1| (-372)))) (-1958 ((|#1| $) 91)) (-3871 ((|#1| $) 92)) (-3901 ((|#1| $) 93)) (-3966 (((-1133) $) 11)) (-2646 (($ $ (-654 |#1|) (-654 |#1|)) 107 (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) 106 (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) 105 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) 104 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1190)) (-654 |#1|)) 103 (|has| |#1| (-524 (-1190) |#1|))) (($ $ (-1190) |#1|) 102 (|has| |#1| (-524 (-1190) |#1|)))) (-2199 (($ $ |#1|) 108 (|has| |#1| (-294 |#1| |#1|)))) (-3905 (($ $) 123 (|has| |#1| (-239))) (($ $ (-781)) 122 (|has| |#1| (-239))) (($ $ (-1190)) 120 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) 119 (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) 118 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) 117 (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) 110) (($ $ (-1 |#1| |#1|)) 109)) (-1836 (((-546) $) 82 (|has| |#1| (-624 (-546))))) (-1479 (($ $) 94)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44) (($ (-417 (-574))) 71 (-2818 (|has| |#1| (-372)) (|has| |#1| (-1051 (-417 (-574))))))) (-3298 (((-3 $ "failed") $) 83 (|has| |#1| (-146)))) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-3482 ((|#1| $) 87 (|has| |#1| (-1073)))) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-3610 (($ $) 124 (|has| |#1| (-239))) (($ $ (-781)) 121 (|has| |#1| (-239))) (($ $ (-1190)) 116 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) 115 (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) 114 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) 113 (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) 112) (($ $ (-1 |#1| |#1|)) 111)) (-3042 (((-112) $ $) 74 (|has| |#1| (-860)))) (-3018 (((-112) $ $) 73 (|has| |#1| (-860)))) (-2981 (((-112) $ $) 6)) (-3030 (((-112) $ $) 75 (|has| |#1| (-860)))) (-3007 (((-112) $ $) 72 (|has| |#1| (-860)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 80 (|has| |#1| (-372)))) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-417 (-574))) 79 (|has| |#1| (-372))) (($ (-417 (-574)) $) 78 (|has| |#1| (-372))))) -(((-1010 |#1|) (-141) (-174)) (T -1010)) -((-1479 (*1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174)))) (-3901 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174)))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174)))) (-1958 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174)))) (-2236 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174)))) (-3627 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174)))) (-4239 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174)))) (-3482 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174)) (-4 *2 (-1073)))) (-4414 (*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112)))) (-4339 (*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574))))) (-1880 (*1 *2 *1) (|partial| -12 (-4 *1 (-1010 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574)))))) -(-13 (-38 |t#1|) (-421 |t#1|) (-233 |t#1|) (-347 |t#1|) (-386 |t#1|) (-10 -8 (-15 -1479 ($ $)) (-15 -3901 (|t#1| $)) (-15 -3871 (|t#1| $)) (-15 -1958 (|t#1| $)) (-15 -2236 (|t#1| $)) (-15 -3627 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4239 (|t#1| $)) (IF (|has| |t#1| (-298)) (-6 (-298)) |%noBranch|) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#1| (-372)) (-6 (-249)) |%noBranch|) (IF (|has| |t#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1073)) (-15 -3482 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -4414 ((-112) $)) (-15 -4339 ((-417 (-574)) $)) (-15 -1880 ((-3 (-417 (-574)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-372)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-372)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2818 (|has| |#1| (-372)) (|has| |#1| (-298))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2818 (|has| |#1| (-1051 (-417 (-574)))) (|has| |#1| (-372))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-235 $) |has| |#1| (-239)) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-249) |has| |#1| (-372)) ((-294 |#1| $) |has| |#1| (-294 |#1| |#1|)) ((-298) -2818 (|has| |#1| (-372)) (|has| |#1| (-298))) ((-317 |#1|) |has| |#1| (-317 |#1|)) ((-347 |#1|) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-524 (-1190) |#1|) |has| |#1| (-524 (-1190) |#1|)) ((-524 |#1| |#1|) |has| |#1| (-317 |#1|)) ((-656 #0#) |has| |#1| (-372)) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-372)) ((-658 #1=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-372)) ((-650 |#1|) . T) ((-649 #1#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) |has| |#1| (-372)) ((-727 |#1|) . T) ((-736) . T) ((-860) |has| |#1| (-860)) ((-911 (-1190)) |has| |#1| (-911 (-1190))) ((-1051 (-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((-1051 (-574)) |has| |#1| (-1051 (-574))) ((-1051 |#1|) . T) ((-1064 #0#) |has| |#1| (-372)) ((-1064 |#1|) . T) ((-1064 $) -2818 (|has| |#1| (-372)) (|has| |#1| (-298))) ((-1069 #0#) |has| |#1| (-372)) ((-1069 |#1|) . T) ((-1069 $) -2818 (|has| |#1| (-372)) (|has| |#1| (-298))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1231) -2818 (|has| |#1| (-294 |#1| |#1|)) (|has| |#1| (-239)))) -((-1777 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-1011 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1777 (|#3| (-1 |#4| |#2|) |#1|))) (-1010 |#2|) (-174) (-1010 |#4|) (-174)) (T -1011)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-1010 *6)) (-5 *1 (-1011 *4 *5 *2 *6)) (-4 *4 (-1010 *5))))) -(-10 -7 (-15 -1777 (|#3| (-1 |#4| |#2|) |#1|))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2206 (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) NIL)) (-2590 (((-699 (-574)) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-4239 ((|#1| $) 12)) (-1880 (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-555)))) (-4414 (((-112) $) NIL (|has| |#1| (-555)))) (-4339 (((-417 (-574)) $) NIL (|has| |#1| (-555)))) (-3627 (($ |#1| |#1| |#1| |#1|) 16)) (-3199 (((-112) $) NIL)) (-2236 ((|#1| $) NIL)) (-3659 (($ $ $) NIL (|has| |#1| (-860)))) (-4257 (($ $ $) NIL (|has| |#1| (-860)))) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL (|has| |#1| (-372)))) (-1958 ((|#1| $) 15)) (-3871 ((|#1| $) 14)) (-3901 ((|#1| $) 13)) (-3966 (((-1133) $) NIL)) (-2646 (($ $ (-654 |#1|) (-654 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1190)) (-654 |#1|)) NIL (|has| |#1| (-524 (-1190) |#1|))) (($ $ (-1190) |#1|) NIL (|has| |#1| (-524 (-1190) |#1|)))) (-2199 (($ $ |#1|) NIL (|has| |#1| (-294 |#1| |#1|)))) (-3905 (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1836 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-1479 (($ $) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-417 (-574))) NIL (-2818 (|has| |#1| (-372)) (|has| |#1| (-1051 (-417 (-574))))))) (-3298 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-3482 ((|#1| $) NIL (|has| |#1| (-1073)))) (-2133 (($) 8 T CONST)) (-2145 (($) 10 T CONST)) (-3610 (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3007 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372)))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-372))) (($ (-417 (-574)) $) NIL (|has| |#1| (-372))))) -(((-1012 |#1|) (-1010 |#1|) (-174)) (T -1012)) -NIL -(-1010 |#1|) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3034 (((-112) $ (-781)) NIL)) (-3426 (($) NIL T CONST)) (-3876 (($ $) 23)) (-3498 (($ (-654 |#1|)) 33)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-2742 (((-112) $ (-781)) NIL)) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2449 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4135 (((-781) $) 26)) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-2937 ((|#1| $) 28)) (-2798 (($ |#1| $) 17)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2501 ((|#1| $) 27)) (-1785 ((|#1| $) 22)) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) NIL)) (-4035 ((|#1| |#1| $) 16)) (-1584 (((-112) $) 18)) (-2672 (($) NIL)) (-3668 ((|#1| $) 21)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-1599 (($ (-654 |#1|)) NIL)) (-3835 ((|#1| $) 30)) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-1013 |#1|) (-13 (-1008 |#1|) (-10 -8 (-15 -3498 ($ (-654 |#1|))))) (-1113)) (T -1013)) -((-3498 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-1013 *3))))) -(-13 (-1008 |#1|) (-10 -8 (-15 -3498 ($ (-654 |#1|))))) -((-4229 (($ $) 12)) (-3460 (($ $ (-574)) 13))) -(((-1014 |#1|) (-10 -8 (-15 -4229 (|#1| |#1|)) (-15 -3460 (|#1| |#1| (-574)))) (-1015)) (T -1014)) -NIL -(-10 -8 (-15 -4229 (|#1| |#1|)) (-15 -3460 (|#1| |#1| (-574)))) -((-4229 (($ $) 6)) (-3460 (($ $ (-574)) 7)) (** (($ $ (-417 (-574))) 8))) -(((-1015) (-141)) (T -1015)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-417 (-574))))) (-3460 (*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-574)))) (-4229 (*1 *1 *1) (-4 *1 (-1015)))) -(-13 (-10 -8 (-15 -4229 ($ $)) (-15 -3460 ($ $ (-574))) (-15 ** ($ $ (-417 (-574)))))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3081 (((-2 (|:| |num| (-1281 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| (-417 |#2|) (-372)))) (-1575 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-2085 (((-112) $) NIL (|has| (-417 |#2|) (-372)))) (-2294 (((-699 (-417 |#2|)) (-1281 $)) NIL) (((-699 (-417 |#2|))) NIL)) (-1636 (((-417 |#2|) $) NIL)) (-1664 (((-1203 (-932) (-781)) (-574)) NIL (|has| (-417 |#2|) (-358)))) (-3524 (((-3 $ "failed") $ $) NIL)) (-2568 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-2827 (((-428 $) $) NIL (|has| (-417 |#2|) (-372)))) (-1600 (((-112) $ $) NIL (|has| (-417 |#2|) (-372)))) (-1487 (((-781)) NIL (|has| (-417 |#2|) (-377)))) (-4211 (((-112)) NIL)) (-1855 (((-112) |#1|) 162) (((-112) |#2|) 166)) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-574) "failed") $) NIL (|has| (-417 |#2|) (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-417 |#2|) (-1051 (-417 (-574))))) (((-3 (-417 |#2|) "failed") $) NIL)) (-2206 (((-574) $) NIL (|has| (-417 |#2|) (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| (-417 |#2|) (-1051 (-417 (-574))))) (((-417 |#2|) $) NIL)) (-2737 (($ (-1281 (-417 |#2|)) (-1281 $)) NIL) (($ (-1281 (-417 |#2|))) 79) (($ (-1281 |#2|) |#2|) NIL)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-417 |#2|) (-358)))) (-2786 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-2134 (((-699 (-417 |#2|)) $ (-1281 $)) NIL) (((-699 (-417 |#2|)) $) NIL)) (-2590 (((-699 (-574)) (-1281 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -4340 (-699 (-417 |#2|))) (|:| |vec| (-1281 (-417 |#2|)))) (-699 $) (-1281 $)) NIL) (((-699 (-417 |#2|)) (-699 $)) NIL) (((-699 (-417 |#2|)) (-1281 $)) NIL)) (-3645 (((-1281 $) (-1281 $)) NIL)) (-2868 (($ |#3|) 73) (((-3 $ "failed") (-417 |#3|)) NIL (|has| (-417 |#2|) (-372)))) (-3434 (((-3 $ "failed") $) NIL)) (-1917 (((-654 (-654 |#1|))) NIL (|has| |#1| (-377)))) (-1480 (((-112) |#1| |#1|) NIL)) (-3584 (((-932)) NIL)) (-2820 (($) NIL (|has| (-417 |#2|) (-377)))) (-3245 (((-112)) NIL)) (-2042 (((-112) |#1|) 61) (((-112) |#2|) 164)) (-2797 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| (-417 |#2|) (-372)))) (-1569 (($ $) NIL)) (-3812 (($) NIL (|has| (-417 |#2|) (-358)))) (-4044 (((-112) $) NIL (|has| (-417 |#2|) (-358)))) (-1647 (($ $ (-781)) NIL (|has| (-417 |#2|) (-358))) (($ $) NIL (|has| (-417 |#2|) (-358)))) (-2257 (((-112) $) NIL (|has| (-417 |#2|) (-372)))) (-3884 (((-932) $) NIL (|has| (-417 |#2|) (-358))) (((-843 (-932)) $) NIL (|has| (-417 |#2|) (-358)))) (-3199 (((-112) $) NIL)) (-3936 (((-781)) NIL)) (-3500 (((-1281 $) (-1281 $)) NIL)) (-2236 (((-417 |#2|) $) NIL)) (-4366 (((-654 (-963 |#1|)) (-1190)) NIL (|has| |#1| (-372)))) (-2748 (((-3 $ "failed") $) NIL (|has| (-417 |#2|) (-358)))) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-417 |#2|) (-372)))) (-1972 ((|#3| $) NIL (|has| (-417 |#2|) (-372)))) (-4115 (((-932) $) NIL (|has| (-417 |#2|) (-377)))) (-2854 ((|#3| $) NIL)) (-2832 (($ (-654 $)) NIL (|has| (-417 |#2|) (-372))) (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-4136 (((-1172) $) NIL)) (-2636 (((-699 (-417 |#2|))) 57)) (-1797 (((-699 (-417 |#2|))) 56)) (-1324 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-4024 (($ (-1281 |#2|) |#2|) 80)) (-1885 (((-699 (-417 |#2|))) 55)) (-2498 (((-699 (-417 |#2|))) 54)) (-1663 (((-2 (|:| |num| (-699 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95)) (-2209 (((-2 (|:| |num| (-1281 |#2|)) (|:| |den| |#2|)) $) 86)) (-2794 (((-1281 $)) 51)) (-1689 (((-1281 $)) 50)) (-2729 (((-112) $) NIL)) (-4041 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3818 (($) NIL (|has| (-417 |#2|) (-358)) CONST)) (-2576 (($ (-932)) NIL (|has| (-417 |#2|) (-377)))) (-4411 (((-3 |#2| "failed")) 70)) (-3966 (((-1133) $) NIL)) (-2071 (((-781)) NIL)) (-2970 (($) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| (-417 |#2|) (-372)))) (-2873 (($ (-654 $)) NIL (|has| (-417 |#2|) (-372))) (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-1417 (((-654 (-2 (|:| -4220 (-574)) (|:| -3715 (-574))))) NIL (|has| (-417 |#2|) (-358)))) (-4220 (((-428 $) $) NIL (|has| (-417 |#2|) (-372)))) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-417 |#2|) (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| (-417 |#2|) (-372)))) (-2838 (((-3 $ "failed") $ $) NIL (|has| (-417 |#2|) (-372)))) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-417 |#2|) (-372)))) (-1730 (((-781) $) NIL (|has| (-417 |#2|) (-372)))) (-2199 ((|#1| $ |#1| |#1|) NIL)) (-4347 (((-3 |#2| "failed")) 68)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| (-417 |#2|) (-372)))) (-2872 (((-417 |#2|) (-1281 $)) NIL) (((-417 |#2|)) 47)) (-4342 (((-781) $) NIL (|has| (-417 |#2|) (-358))) (((-3 (-781) "failed") $ $) NIL (|has| (-417 |#2|) (-358)))) (-3905 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-781)) NIL (-2818 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $) NIL (-2818 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-3146 (((-699 (-417 |#2|)) (-1281 $) (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372)))) (-4185 ((|#3|) 58)) (-3074 (($) NIL (|has| (-417 |#2|) (-358)))) (-3487 (((-1281 (-417 |#2|)) $ (-1281 $)) NIL) (((-699 (-417 |#2|)) (-1281 $) (-1281 $)) NIL) (((-1281 (-417 |#2|)) $) 81) (((-699 (-417 |#2|)) (-1281 $)) NIL)) (-1836 (((-1281 (-417 |#2|)) $) NIL) (($ (-1281 (-417 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (|has| (-417 |#2|) (-358)))) (-3694 (((-1281 $) (-1281 $)) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 |#2|)) NIL) (($ (-417 (-574))) NIL (-2818 (|has| (-417 |#2|) (-1051 (-417 (-574)))) (|has| (-417 |#2|) (-372)))) (($ $) NIL (|has| (-417 |#2|) (-372)))) (-3298 (($ $) NIL (|has| (-417 |#2|) (-358))) (((-3 $ "failed") $) NIL (|has| (-417 |#2|) (-146)))) (-1435 ((|#3| $) NIL)) (-1364 (((-781)) NIL T CONST)) (-2185 (((-112)) 65)) (-4328 (((-112) |#1|) 167) (((-112) |#2|) 168)) (-3284 (((-112) $ $) NIL)) (-1882 (((-1281 $)) NIL)) (-2069 (((-112) $ $) NIL (|has| (-417 |#2|) (-372)))) (-4195 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1431 (((-112)) NIL)) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-3610 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-911 (-1190))))) (($ $ (-781)) NIL (-2818 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $) NIL (-2818 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| (-417 |#2|) (-372)))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 |#2|)) NIL) (($ (-417 |#2|) $) NIL) (($ (-417 (-574)) $) NIL (|has| (-417 |#2|) (-372))) (($ $ (-417 (-574))) NIL (|has| (-417 |#2|) (-372))))) -(((-1016 |#1| |#2| |#3| |#4| |#5|) (-351 |#1| |#2| |#3|) (-1235) (-1257 |#1|) (-1257 (-417 |#2|)) (-417 |#2|) (-781)) (T -1016)) -NIL -(-351 |#1| |#2| |#3|) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3313 (((-654 (-574)) $) 73)) (-1366 (($ (-654 (-574))) 81)) (-1528 (((-574) $) 48 (|has| (-574) (-315)))) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3972 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-1600 (((-112) $ $) NIL)) (-2846 (((-574) $) NIL (|has| (-574) (-830)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-574) "failed") $) 60) (((-3 (-1190) "failed") $) NIL (|has| (-574) (-1051 (-1190)))) (((-3 (-417 (-574)) "failed") $) 57 (|has| (-574) (-1051 (-574)))) (((-3 (-574) "failed") $) 60 (|has| (-574) (-1051 (-574))))) (-2206 (((-574) $) NIL) (((-1190) $) NIL (|has| (-574) (-1051 (-1190)))) (((-417 (-574)) $) NIL (|has| (-574) (-1051 (-574)))) (((-574) $) NIL (|has| (-574) (-1051 (-574))))) (-2786 (($ $ $) NIL)) (-2590 (((-699 (-574)) (-1281 $)) NIL (|has| (-574) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1281 $)) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2820 (($) NIL (|has| (-574) (-555)))) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-2257 (((-112) $) NIL)) (-1984 (((-654 (-574)) $) 79)) (-2756 (((-112) $) NIL (|has| (-574) (-830)))) (-3625 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-574) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-574) (-897 (-388))))) (-3199 (((-112) $) NIL)) (-2141 (($ $) NIL)) (-2966 (((-574) $) 45)) (-2748 (((-3 $ "failed") $) NIL (|has| (-574) (-1165)))) (-1335 (((-112) $) NIL (|has| (-574) (-830)))) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3659 (($ $ $) NIL (|has| (-574) (-860)))) (-4257 (($ $ $) NIL (|has| (-574) (-860)))) (-1777 (($ (-1 (-574) (-574)) $) NIL)) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL)) (-3818 (($) NIL (|has| (-574) (-1165)) CONST)) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3191 (($ $) NIL (|has| (-574) (-315))) (((-417 (-574)) $) 50)) (-3099 (((-1170 (-574)) $) 78)) (-2574 (($ (-654 (-574)) (-654 (-574))) 82)) (-3595 (((-574) $) 64 (|has| (-574) (-555)))) (-2560 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-2039 (((-428 (-1186 $)) (-1186 $)) NIL (|has| (-574) (-920)))) (-4220 (((-428 $) $) NIL)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2646 (($ $ (-654 (-574)) (-654 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-574) (-574)) NIL (|has| (-574) (-317 (-574)))) (($ $ (-302 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-302 (-574)))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-1190)) (-654 (-574))) NIL (|has| (-574) (-524 (-1190) (-574)))) (($ $ (-1190) (-574)) NIL (|has| (-574) (-524 (-1190) (-574))))) (-1730 (((-781) $) NIL)) (-2199 (($ $ (-574)) NIL (|has| (-574) (-294 (-574) (-574))))) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-3905 (($ $) 15 (|has| (-574) (-239))) (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $ (-1190)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-4358 (($ $) NIL)) (-2977 (((-574) $) 47)) (-3395 (((-654 (-574)) $) 80)) (-1836 (((-903 (-574)) $) NIL (|has| (-574) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-574) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-574) (-624 (-546)))) (((-388) $) NIL (|has| (-574) (-1035))) (((-227) $) NIL (|has| (-574) (-1035)))) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-574) (-920))))) (-2943 (((-872) $) 107) (($ (-574)) 51) (($ $) NIL) (($ (-417 (-574))) 27) (($ (-574)) 51) (($ (-1190)) NIL (|has| (-574) (-1051 (-1190)))) (((-417 (-574)) $) 25)) (-3298 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| (-574) (-920))) (|has| (-574) (-146))))) (-1364 (((-781)) 13 T CONST)) (-1801 (((-574) $) 62 (|has| (-574) (-555)))) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL)) (-3482 (($ $) NIL (|has| (-574) (-830)))) (-2133 (($) 14 T CONST)) (-2145 (($) 17 T CONST)) (-3610 (($ $) NIL (|has| (-574) (-239))) (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $ (-1190)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| (-574) (-911 (-1190)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-3042 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3018 (((-112) $ $) NIL (|has| (-574) (-860)))) (-2981 (((-112) $ $) 21)) (-3030 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3007 (((-112) $ $) 40 (|has| (-574) (-860)))) (-3108 (($ $ $) 36) (($ (-574) (-574)) 38)) (-3094 (($ $) 23) (($ $ $) 30)) (-3079 (($ $ $) 28)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 32) (($ $ $) 34) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-574) $) 32) (($ $ (-574)) NIL))) -(((-1017 |#1|) (-13 (-1005 (-574)) (-623 (-417 (-574))) (-10 -8 (-15 -3191 ((-417 (-574)) $)) (-15 -3313 ((-654 (-574)) $)) (-15 -3099 ((-1170 (-574)) $)) (-15 -1984 ((-654 (-574)) $)) (-15 -3395 ((-654 (-574)) $)) (-15 -1366 ($ (-654 (-574)))) (-15 -2574 ($ (-654 (-574)) (-654 (-574)))))) (-574)) (T -1017)) -((-3191 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1017 *3)) (-14 *3 (-574)))) (-3313 (*1 *2 *1) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1017 *3)) (-14 *3 (-574)))) (-3099 (*1 *2 *1) (-12 (-5 *2 (-1170 (-574))) (-5 *1 (-1017 *3)) (-14 *3 (-574)))) (-1984 (*1 *2 *1) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1017 *3)) (-14 *3 (-574)))) (-3395 (*1 *2 *1) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1017 *3)) (-14 *3 (-574)))) (-1366 (*1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1017 *3)) (-14 *3 (-574)))) (-2574 (*1 *1 *2 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1017 *3)) (-14 *3 (-574))))) -(-13 (-1005 (-574)) (-623 (-417 (-574))) (-10 -8 (-15 -3191 ((-417 (-574)) $)) (-15 -3313 ((-654 (-574)) $)) (-15 -3099 ((-1170 (-574)) $)) (-15 -1984 ((-654 (-574)) $)) (-15 -3395 ((-654 (-574)) $)) (-15 -1366 ($ (-654 (-574)))) (-15 -2574 ($ (-654 (-574)) (-654 (-574)))))) -((-1909 (((-52) (-417 (-574)) (-574)) 9))) -(((-1018) (-10 -7 (-15 -1909 ((-52) (-417 (-574)) (-574))))) (T -1018)) -((-1909 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-574))) (-5 *4 (-574)) (-5 *2 (-52)) (-5 *1 (-1018))))) -(-10 -7 (-15 -1909 ((-52) (-417 (-574)) (-574)))) -((-1487 (((-574)) 23)) (-3717 (((-574)) 28)) (-1551 (((-1286) (-574)) 26)) (-2010 (((-574) (-574)) 29) (((-574)) 22))) -(((-1019) (-10 -7 (-15 -2010 ((-574))) (-15 -1487 ((-574))) (-15 -2010 ((-574) (-574))) (-15 -1551 ((-1286) (-574))) (-15 -3717 ((-574))))) (T -1019)) -((-3717 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1019)))) (-1551 (*1 *2 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1286)) (-5 *1 (-1019)))) (-2010 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1019)))) (-1487 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1019)))) (-2010 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1019))))) -(-10 -7 (-15 -2010 ((-574))) (-15 -1487 ((-574))) (-15 -2010 ((-574) (-574))) (-15 -1551 ((-1286) (-574))) (-15 -3717 ((-574)))) -((-3629 (((-428 |#1|) |#1|) 43)) (-4220 (((-428 |#1|) |#1|) 41))) -(((-1020 |#1|) (-10 -7 (-15 -4220 ((-428 |#1|) |#1|)) (-15 -3629 ((-428 |#1|) |#1|))) (-1257 (-417 (-574)))) (T -1020)) -((-3629 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-1020 *3)) (-4 *3 (-1257 (-417 (-574)))))) (-4220 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-1020 *3)) (-4 *3 (-1257 (-417 (-574))))))) -(-10 -7 (-15 -4220 ((-428 |#1|) |#1|)) (-15 -3629 ((-428 |#1|) |#1|))) -((-1880 (((-3 (-417 (-574)) "failed") |#1|) 15)) (-4414 (((-112) |#1|) 14)) (-4339 (((-417 (-574)) |#1|) 10))) -(((-1021 |#1|) (-10 -7 (-15 -4339 ((-417 (-574)) |#1|)) (-15 -4414 ((-112) |#1|)) (-15 -1880 ((-3 (-417 (-574)) "failed") |#1|))) (-1051 (-417 (-574)))) (T -1021)) -((-1880 (*1 *2 *3) (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-1021 *3)) (-4 *3 (-1051 *2)))) (-4414 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1021 *3)) (-4 *3 (-1051 (-417 (-574)))))) (-4339 (*1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1021 *3)) (-4 *3 (-1051 *2))))) -(-10 -7 (-15 -4339 ((-417 (-574)) |#1|)) (-15 -4414 ((-112) |#1|)) (-15 -1880 ((-3 (-417 (-574)) "failed") |#1|))) -((-3143 ((|#2| $ "value" |#2|) 12)) (-2199 ((|#2| $ "value") 10)) (-4418 (((-112) $ $) 18))) -(((-1022 |#1| |#2|) (-10 -8 (-15 -3143 (|#2| |#1| "value" |#2|)) (-15 -4418 ((-112) |#1| |#1|)) (-15 -2199 (|#2| |#1| "value"))) (-1023 |#2|) (-1231)) (T -1022)) -NIL -(-10 -8 (-15 -3143 (|#2| |#1| "value" |#2|)) (-15 -4418 ((-112) |#1| |#1|)) (-15 -2199 (|#2| |#1| "value"))) -((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3083 ((|#1| $) 49)) (-3034 (((-112) $ (-781)) 8)) (-3316 ((|#1| $ |#1|) 40 (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4457)))) (-2183 (($ $ (-654 $)) 42 (|has| $ (-6 -4457)))) (-3426 (($) 7 T CONST)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3820 (((-654 $) $) 51)) (-2278 (((-112) $ $) 43 (|has| |#1| (-1113)))) (-2742 (((-112) $ (-781)) 9)) (-1606 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2449 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 36)) (-4203 (((-112) $ (-781)) 10)) (-3507 (((-654 |#1|) $) 46)) (-3632 (((-112) $) 50)) (-4136 (((-1172) $) 22 (|has| |#1| (-1113)))) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-2540 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 14)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-2199 ((|#1| $ "value") 48)) (-3867 (((-574) $ $) 45)) (-2479 (((-112) $) 47)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2321 (((-654 $) $) 52)) (-4418 (((-112) $ $) 44 (|has| |#1| (-1113)))) (-3284 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-1023 |#1|) (-141) (-1231)) (T -1023)) -((-2321 (*1 *2 *1) (-12 (-4 *3 (-1231)) (-5 *2 (-654 *1)) (-4 *1 (-1023 *3)))) (-3820 (*1 *2 *1) (-12 (-4 *3 (-1231)) (-5 *2 (-654 *1)) (-4 *1 (-1023 *3)))) (-3632 (*1 *2 *1) (-12 (-4 *1 (-1023 *3)) (-4 *3 (-1231)) (-5 *2 (-112)))) (-3083 (*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-1231)))) (-2199 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1023 *2)) (-4 *2 (-1231)))) (-2479 (*1 *2 *1) (-12 (-4 *1 (-1023 *3)) (-4 *3 (-1231)) (-5 *2 (-112)))) (-3507 (*1 *2 *1) (-12 (-4 *1 (-1023 *3)) (-4 *3 (-1231)) (-5 *2 (-654 *3)))) (-3867 (*1 *2 *1 *1) (-12 (-4 *1 (-1023 *3)) (-4 *3 (-1231)) (-5 *2 (-574)))) (-4418 (*1 *2 *1 *1) (-12 (-4 *1 (-1023 *3)) (-4 *3 (-1231)) (-4 *3 (-1113)) (-5 *2 (-112)))) (-2278 (*1 *2 *1 *1) (-12 (-4 *1 (-1023 *3)) (-4 *3 (-1231)) (-4 *3 (-1113)) (-5 *2 (-112)))) (-2183 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *1)) (|has| *1 (-6 -4457)) (-4 *1 (-1023 *3)) (-4 *3 (-1231)))) (-3143 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4457)) (-4 *1 (-1023 *2)) (-4 *2 (-1231)))) (-3316 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-1023 *2)) (-4 *2 (-1231))))) -(-13 (-499 |t#1|) (-10 -8 (-15 -2321 ((-654 $) $)) (-15 -3820 ((-654 $) $)) (-15 -3632 ((-112) $)) (-15 -3083 (|t#1| $)) (-15 -2199 (|t#1| $ "value")) (-15 -2479 ((-112) $)) (-15 -3507 ((-654 |t#1|) $)) (-15 -3867 ((-574) $ $)) (IF (|has| |t#1| (-1113)) (PROGN (-15 -4418 ((-112) $ $)) (-15 -2278 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4457)) (PROGN (-15 -2183 ($ $ (-654 $))) (-15 -3143 (|t#1| $ "value" |t#1|)) (-15 -3316 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1113) |has| |#1| (-1113)) ((-1231) . T)) -((-4229 (($ $) 9) (($ $ (-932)) 49) (($ (-417 (-574))) 13) (($ (-574)) 15)) (-3078 (((-3 $ "failed") (-1186 $) (-932) (-872)) 24) (((-3 $ "failed") (-1186 $) (-932)) 32)) (-3460 (($ $ (-574)) 58)) (-1364 (((-781)) 18)) (-2131 (((-654 $) (-1186 $)) NIL) (((-654 $) (-1186 (-417 (-574)))) 63) (((-654 $) (-1186 (-574))) 68) (((-654 $) (-963 $)) 72) (((-654 $) (-963 (-417 (-574)))) 76) (((-654 $) (-963 (-574))) 80)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL) (($ $ (-417 (-574))) 53))) -(((-1024 |#1|) (-10 -8 (-15 -4229 (|#1| (-574))) (-15 -4229 (|#1| (-417 (-574)))) (-15 -4229 (|#1| |#1| (-932))) (-15 -2131 ((-654 |#1|) (-963 (-574)))) (-15 -2131 ((-654 |#1|) (-963 (-417 (-574))))) (-15 -2131 ((-654 |#1|) (-963 |#1|))) (-15 -2131 ((-654 |#1|) (-1186 (-574)))) (-15 -2131 ((-654 |#1|) (-1186 (-417 (-574))))) (-15 -2131 ((-654 |#1|) (-1186 |#1|))) (-15 -3078 ((-3 |#1| "failed") (-1186 |#1|) (-932))) (-15 -3078 ((-3 |#1| "failed") (-1186 |#1|) (-932) (-872))) (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -3460 (|#1| |#1| (-574))) (-15 -4229 (|#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -1364 ((-781))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-932)))) (-1025)) (T -1024)) -((-1364 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1024 *3)) (-4 *3 (-1025))))) -(-10 -8 (-15 -4229 (|#1| (-574))) (-15 -4229 (|#1| (-417 (-574)))) (-15 -4229 (|#1| |#1| (-932))) (-15 -2131 ((-654 |#1|) (-963 (-574)))) (-15 -2131 ((-654 |#1|) (-963 (-417 (-574))))) (-15 -2131 ((-654 |#1|) (-963 |#1|))) (-15 -2131 ((-654 |#1|) (-1186 (-574)))) (-15 -2131 ((-654 |#1|) (-1186 (-417 (-574))))) (-15 -2131 ((-654 |#1|) (-1186 |#1|))) (-15 -3078 ((-3 |#1| "failed") (-1186 |#1|) (-932))) (-15 -3078 ((-3 |#1| "failed") (-1186 |#1|) (-932) (-872))) (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -3460 (|#1| |#1| (-574))) (-15 -4229 (|#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -1364 ((-781))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-932)))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 102)) (-1575 (($ $) 103)) (-2085 (((-112) $) 105)) (-3524 (((-3 $ "failed") $ $) 20)) (-2568 (($ $) 122)) (-2827 (((-428 $) $) 123)) (-4229 (($ $) 86) (($ $ (-932)) 72) (($ (-417 (-574))) 71) (($ (-574)) 70)) (-1600 (((-112) $ $) 113)) (-2846 (((-574) $) 139)) (-3426 (($) 18 T CONST)) (-3078 (((-3 $ "failed") (-1186 $) (-932) (-872)) 80) (((-3 $ "failed") (-1186 $) (-932)) 79)) (-1696 (((-3 (-574) "failed") $) 99 (|has| (-417 (-574)) (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) 97 (|has| (-417 (-574)) (-1051 (-417 (-574))))) (((-3 (-417 (-574)) "failed") $) 94)) (-2206 (((-574) $) 98 (|has| (-417 (-574)) (-1051 (-574)))) (((-417 (-574)) $) 96 (|has| (-417 (-574)) (-1051 (-417 (-574))))) (((-417 (-574)) $) 95)) (-1900 (($ $ (-872)) 69)) (-1577 (($ $ (-872)) 68)) (-2786 (($ $ $) 117)) (-3434 (((-3 $ "failed") $) 37)) (-2797 (($ $ $) 116)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) 111)) (-2257 (((-112) $) 124)) (-2756 (((-112) $) 137)) (-3199 (((-112) $) 35)) (-3460 (($ $ (-574)) 85)) (-1335 (((-112) $) 138)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) 120)) (-3659 (($ $ $) 136)) (-4257 (($ $ $) 135)) (-1928 (((-3 (-1186 $) "failed") $) 81)) (-1815 (((-3 (-872) "failed") $) 83)) (-1601 (((-3 (-1186 $) "failed") $) 82)) (-2832 (($ (-654 $)) 109) (($ $ $) 108)) (-4136 (((-1172) $) 10)) (-1324 (($ $) 125)) (-3966 (((-1133) $) 11)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 110)) (-2873 (($ (-654 $)) 107) (($ $ $) 106)) (-4220 (((-428 $) $) 121)) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 118)) (-2838 (((-3 $ "failed") $ $) 101)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) 112)) (-1730 (((-781) $) 114)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 115)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 129) (($ $) 100) (($ (-417 (-574))) 93) (($ (-574)) 92) (($ (-417 (-574))) 89)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2069 (((-112) $ $) 104)) (-3551 (((-417 (-574)) $ $) 67)) (-2131 (((-654 $) (-1186 $)) 78) (((-654 $) (-1186 (-417 (-574)))) 77) (((-654 $) (-1186 (-574))) 76) (((-654 $) (-963 $)) 75) (((-654 $) (-963 (-417 (-574)))) 74) (((-654 $) (-963 (-574))) 73)) (-3482 (($ $) 140)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-3042 (((-112) $ $) 133)) (-3018 (((-112) $ $) 132)) (-2981 (((-112) $ $) 6)) (-3030 (((-112) $ $) 134)) (-3007 (((-112) $ $) 131)) (-3108 (($ $ $) 130)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 126) (($ $ (-417 (-574))) 84)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ (-417 (-574)) $) 128) (($ $ (-417 (-574))) 127) (($ (-574) $) 91) (($ $ (-574)) 90) (($ (-417 (-574)) $) 88) (($ $ (-417 (-574))) 87))) -(((-1025) (-141)) (T -1025)) -((-4229 (*1 *1 *1) (-4 *1 (-1025))) (-1815 (*1 *2 *1) (|partial| -12 (-4 *1 (-1025)) (-5 *2 (-872)))) (-1601 (*1 *2 *1) (|partial| -12 (-5 *2 (-1186 *1)) (-4 *1 (-1025)))) (-1928 (*1 *2 *1) (|partial| -12 (-5 *2 (-1186 *1)) (-4 *1 (-1025)))) (-3078 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1186 *1)) (-5 *3 (-932)) (-5 *4 (-872)) (-4 *1 (-1025)))) (-3078 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1186 *1)) (-5 *3 (-932)) (-4 *1 (-1025)))) (-2131 (*1 *2 *3) (-12 (-5 *3 (-1186 *1)) (-4 *1 (-1025)) (-5 *2 (-654 *1)))) (-2131 (*1 *2 *3) (-12 (-5 *3 (-1186 (-417 (-574)))) (-5 *2 (-654 *1)) (-4 *1 (-1025)))) (-2131 (*1 *2 *3) (-12 (-5 *3 (-1186 (-574))) (-5 *2 (-654 *1)) (-4 *1 (-1025)))) (-2131 (*1 *2 *3) (-12 (-5 *3 (-963 *1)) (-4 *1 (-1025)) (-5 *2 (-654 *1)))) (-2131 (*1 *2 *3) (-12 (-5 *3 (-963 (-417 (-574)))) (-5 *2 (-654 *1)) (-4 *1 (-1025)))) (-2131 (*1 *2 *3) (-12 (-5 *3 (-963 (-574))) (-5 *2 (-654 *1)) (-4 *1 (-1025)))) (-4229 (*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-932)))) (-4229 (*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-4 *1 (-1025)))) (-4229 (*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1025)))) (-1900 (*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-872)))) (-1577 (*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-872)))) (-3551 (*1 *2 *1 *1) (-12 (-4 *1 (-1025)) (-5 *2 (-417 (-574)))))) -(-13 (-148) (-858) (-174) (-372) (-421 (-417 (-574))) (-38 (-574)) (-38 (-417 (-574))) (-1015) (-10 -8 (-15 -1815 ((-3 (-872) "failed") $)) (-15 -1601 ((-3 (-1186 $) "failed") $)) (-15 -1928 ((-3 (-1186 $) "failed") $)) (-15 -3078 ((-3 $ "failed") (-1186 $) (-932) (-872))) (-15 -3078 ((-3 $ "failed") (-1186 $) (-932))) (-15 -2131 ((-654 $) (-1186 $))) (-15 -2131 ((-654 $) (-1186 (-417 (-574))))) (-15 -2131 ((-654 $) (-1186 (-574)))) (-15 -2131 ((-654 $) (-963 $))) (-15 -2131 ((-654 $) (-963 (-417 (-574))))) (-15 -2131 ((-654 $) (-963 (-574)))) (-15 -4229 ($ $ (-932))) (-15 -4229 ($ $)) (-15 -4229 ($ (-417 (-574)))) (-15 -4229 ($ (-574))) (-15 -1900 ($ $ (-872))) (-15 -1577 ($ $ (-872))) (-15 -3551 ((-417 (-574)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 #1=(-574)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-421 (-417 (-574))) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 #1#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 #1#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 #1#) . T) ((-727 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-858) . T) ((-860) . T) ((-931) . T) ((-1015) . T) ((-1051 (-417 (-574))) . T) ((-1051 (-574)) |has| (-417 (-574)) (-1051 (-574))) ((-1064 #0#) . T) ((-1064 #1#) . T) ((-1064 $) . T) ((-1069 #0#) . T) ((-1069 #1#) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1235) . T)) -((-3180 (((-2 (|:| |ans| |#2|) (|:| -3904 |#2|) (|:| |sol?| (-112))) (-574) |#2| |#2| (-1190) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -2399 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) -(((-1026 |#1| |#2|) (-10 -7 (-15 -3180 ((-2 (|:| |ans| |#2|) (|:| -3904 |#2|) (|:| |sol?| (-112))) (-574) |#2| |#2| (-1190) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -2399 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-462) (-148) (-1051 (-574)) (-649 (-574))) (-13 (-1216) (-27) (-440 |#1|))) (T -1026)) -((-3180 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1190)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-654 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2399 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1216) (-27) (-440 *8))) (-4 *8 (-13 (-462) (-148) (-1051 *3) (-649 *3))) (-5 *3 (-574)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3904 *4) (|:| |sol?| (-112)))) (-5 *1 (-1026 *8 *4))))) -(-10 -7 (-15 -3180 ((-2 (|:| |ans| |#2|) (|:| -3904 |#2|) (|:| |sol?| (-112))) (-574) |#2| |#2| (-1190) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -2399 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-2936 (((-3 (-654 |#2|) "failed") (-574) |#2| |#2| |#2| (-1190) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -2399 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) -(((-1027 |#1| |#2|) (-10 -7 (-15 -2936 ((-3 (-654 |#2|) "failed") (-574) |#2| |#2| |#2| (-1190) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -2399 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-462) (-148) (-1051 (-574)) (-649 (-574))) (-13 (-1216) (-27) (-440 |#1|))) (T -1027)) -((-2936 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1190)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-654 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2399 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1216) (-27) (-440 *8))) (-4 *8 (-13 (-462) (-148) (-1051 *3) (-649 *3))) (-5 *3 (-574)) (-5 *2 (-654 *4)) (-5 *1 (-1027 *8 *4))))) -(-10 -7 (-15 -2936 ((-3 (-654 |#2|) "failed") (-574) |#2| |#2| |#2| (-1190) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -2399 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-2260 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4122 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-574)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-574) (-1 |#2| |#2|)) 38)) (-2777 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |c| (-417 |#2|)) (|:| -2143 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|)) 69)) (-1877 (((-2 (|:| |ans| (-417 |#2|)) (|:| |nosol| (-112))) (-417 |#2|) (-417 |#2|)) 74))) -(((-1028 |#1| |#2|) (-10 -7 (-15 -2777 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |c| (-417 |#2|)) (|:| -2143 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|))) (-15 -1877 ((-2 (|:| |ans| (-417 |#2|)) (|:| |nosol| (-112))) (-417 |#2|) (-417 |#2|))) (-15 -2260 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4122 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-574)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-574) (-1 |#2| |#2|)))) (-13 (-372) (-148) (-1051 (-574))) (-1257 |#1|)) (T -1028)) -((-2260 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1257 *6)) (-4 *6 (-13 (-372) (-148) (-1051 *4))) (-5 *4 (-574)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -4122 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1028 *6 *3)))) (-1877 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1051 (-574)))) (-4 *5 (-1257 *4)) (-5 *2 (-2 (|:| |ans| (-417 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1028 *4 *5)) (-5 *3 (-417 *5)))) (-2777 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-13 (-372) (-148) (-1051 (-574)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-417 *6)) (|:| |c| (-417 *6)) (|:| -2143 *6))) (-5 *1 (-1028 *5 *6)) (-5 *3 (-417 *6))))) -(-10 -7 (-15 -2777 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |c| (-417 |#2|)) (|:| -2143 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|))) (-15 -1877 ((-2 (|:| |ans| (-417 |#2|)) (|:| |nosol| (-112))) (-417 |#2|) (-417 |#2|))) (-15 -2260 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4122 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-574)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-574) (-1 |#2| |#2|)))) -((-1353 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |h| |#2|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| -2143 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|)) 22)) (-4096 (((-3 (-654 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|)) 34))) -(((-1029 |#1| |#2|) (-10 -7 (-15 -1353 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |h| |#2|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| -2143 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|))) (-15 -4096 ((-3 (-654 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|)))) (-13 (-372) (-148) (-1051 (-574))) (-1257 |#1|)) (T -1029)) -((-4096 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-372) (-148) (-1051 (-574)))) (-4 *5 (-1257 *4)) (-5 *2 (-654 (-417 *5))) (-5 *1 (-1029 *4 *5)) (-5 *3 (-417 *5)))) (-1353 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-13 (-372) (-148) (-1051 (-574)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-417 *6)) (|:| |h| *6) (|:| |c1| (-417 *6)) (|:| |c2| (-417 *6)) (|:| -2143 *6))) (-5 *1 (-1029 *5 *6)) (-5 *3 (-417 *6))))) -(-10 -7 (-15 -1353 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |h| |#2|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| -2143 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|))) (-15 -4096 ((-3 (-654 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|)))) -((-2780 (((-1 |#1|) (-654 (-2 (|:| -3083 |#1|) (|:| -1336 (-574))))) 34)) (-3077 (((-1 |#1|) (-1115 |#1|)) 42)) (-2887 (((-1 |#1|) (-1281 |#1|) (-1281 (-574)) (-574)) 31))) -(((-1030 |#1|) (-10 -7 (-15 -3077 ((-1 |#1|) (-1115 |#1|))) (-15 -2780 ((-1 |#1|) (-654 (-2 (|:| -3083 |#1|) (|:| -1336 (-574)))))) (-15 -2887 ((-1 |#1|) (-1281 |#1|) (-1281 (-574)) (-574)))) (-1113)) (T -1030)) -((-2887 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1281 *6)) (-5 *4 (-1281 (-574))) (-5 *5 (-574)) (-4 *6 (-1113)) (-5 *2 (-1 *6)) (-5 *1 (-1030 *6)))) (-2780 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -3083 *4) (|:| -1336 (-574))))) (-4 *4 (-1113)) (-5 *2 (-1 *4)) (-5 *1 (-1030 *4)))) (-3077 (*1 *2 *3) (-12 (-5 *3 (-1115 *4)) (-4 *4 (-1113)) (-5 *2 (-1 *4)) (-5 *1 (-1030 *4))))) -(-10 -7 (-15 -3077 ((-1 |#1|) (-1115 |#1|))) (-15 -2780 ((-1 |#1|) (-654 (-2 (|:| -3083 |#1|) (|:| -1336 (-574)))))) (-15 -2887 ((-1 |#1|) (-1281 |#1|) (-1281 (-574)) (-574)))) -((-3884 (((-781) (-345 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-1031 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3884 ((-781) (-345 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-372) (-1257 |#1|) (-1257 (-417 |#2|)) (-351 |#1| |#2| |#3|) (-13 (-377) (-372))) (T -1031)) -((-3884 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-345 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-372)) (-4 *7 (-1257 *6)) (-4 *4 (-1257 (-417 *7))) (-4 *8 (-351 *6 *7 *4)) (-4 *9 (-13 (-377) (-372))) (-5 *2 (-781)) (-5 *1 (-1031 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -3884 ((-781) (-345 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-2849 (((-112) $ $) NIL)) (-4175 (((-1148) $) 9)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2044 (((-1148) $) 11)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1032) (-13 (-1096) (-10 -8 (-15 -4175 ((-1148) $)) (-15 -2044 ((-1148) $))))) (T -1032)) -((-4175 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1032)))) (-2044 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1032))))) -(-13 (-1096) (-10 -8 (-15 -4175 ((-1148) $)) (-15 -2044 ((-1148) $)))) -((-3445 (((-3 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) "failed") |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) 32) (((-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-417 (-574))) 29)) (-1842 (((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-417 (-574))) 34) (((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-417 (-574))) 30) (((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) 33) (((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1|) 28)) (-3492 (((-654 (-417 (-574))) (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) 20)) (-2339 (((-417 (-574)) (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) 17))) -(((-1033 |#1|) (-10 -7 (-15 -1842 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1|)) (-15 -1842 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) (-15 -1842 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-417 (-574)))) (-15 -1842 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-417 (-574)))) (-15 -3445 ((-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-417 (-574)))) (-15 -3445 ((-3 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) "failed") |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) (-15 -2339 ((-417 (-574)) (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) (-15 -3492 ((-654 (-417 (-574))) (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))))) (-1257 (-574))) (T -1033)) -((-3492 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) (-5 *2 (-654 (-417 (-574)))) (-5 *1 (-1033 *4)) (-4 *4 (-1257 (-574))))) (-2339 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) (-5 *2 (-417 (-574))) (-5 *1 (-1033 *4)) (-4 *4 (-1257 (-574))))) (-3445 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) (-5 *1 (-1033 *3)) (-4 *3 (-1257 (-574))))) (-3445 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) (-5 *4 (-417 (-574))) (-5 *1 (-1033 *3)) (-4 *3 (-1257 (-574))))) (-1842 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-417 (-574))) (-5 *2 (-654 (-2 (|:| -3891 *5) (|:| -3904 *5)))) (-5 *1 (-1033 *3)) (-4 *3 (-1257 (-574))) (-5 *4 (-2 (|:| -3891 *5) (|:| -3904 *5))))) (-1842 (*1 *2 *3 *4) (-12 (-5 *2 (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) (-5 *1 (-1033 *3)) (-4 *3 (-1257 (-574))) (-5 *4 (-417 (-574))))) (-1842 (*1 *2 *3 *4) (-12 (-5 *2 (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) (-5 *1 (-1033 *3)) (-4 *3 (-1257 (-574))) (-5 *4 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))))) (-1842 (*1 *2 *3) (-12 (-5 *2 (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) (-5 *1 (-1033 *3)) (-4 *3 (-1257 (-574)))))) -(-10 -7 (-15 -1842 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1|)) (-15 -1842 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) (-15 -1842 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-417 (-574)))) (-15 -1842 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-417 (-574)))) (-15 -3445 ((-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-417 (-574)))) (-15 -3445 ((-3 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) "failed") |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) (-15 -2339 ((-417 (-574)) (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) (-15 -3492 ((-654 (-417 (-574))) (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))))) -((-3445 (((-3 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) "failed") |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) 35) (((-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-417 (-574))) 32)) (-1842 (((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-417 (-574))) 30) (((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-417 (-574))) 26) (((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) 28) (((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1|) 24))) -(((-1034 |#1|) (-10 -7 (-15 -1842 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1|)) (-15 -1842 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) (-15 -1842 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-417 (-574)))) (-15 -1842 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-417 (-574)))) (-15 -3445 ((-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-417 (-574)))) (-15 -3445 ((-3 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) "failed") |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))))) (-1257 (-417 (-574)))) (T -1034)) -((-3445 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) (-5 *1 (-1034 *3)) (-4 *3 (-1257 (-417 (-574)))))) (-3445 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) (-5 *4 (-417 (-574))) (-5 *1 (-1034 *3)) (-4 *3 (-1257 *4)))) (-1842 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-417 (-574))) (-5 *2 (-654 (-2 (|:| -3891 *5) (|:| -3904 *5)))) (-5 *1 (-1034 *3)) (-4 *3 (-1257 *5)) (-5 *4 (-2 (|:| -3891 *5) (|:| -3904 *5))))) (-1842 (*1 *2 *3 *4) (-12 (-5 *4 (-417 (-574))) (-5 *2 (-654 (-2 (|:| -3891 *4) (|:| -3904 *4)))) (-5 *1 (-1034 *3)) (-4 *3 (-1257 *4)))) (-1842 (*1 *2 *3 *4) (-12 (-5 *2 (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) (-5 *1 (-1034 *3)) (-4 *3 (-1257 (-417 (-574)))) (-5 *4 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))))) (-1842 (*1 *2 *3) (-12 (-5 *2 (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) (-5 *1 (-1034 *3)) (-4 *3 (-1257 (-417 (-574))))))) -(-10 -7 (-15 -1842 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1|)) (-15 -1842 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) (-15 -1842 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-417 (-574)))) (-15 -1842 ((-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-417 (-574)))) (-15 -3445 ((-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-417 (-574)))) (-15 -3445 ((-3 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) "failed") |#1| (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))) (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))))) -((-1836 (((-227) $) 6) (((-388) $) 9))) -(((-1035) (-141)) (T -1035)) -NIL -(-13 (-624 (-227)) (-624 (-388))) -(((-624 (-227)) . T) ((-624 (-388)) . T)) -((-1701 (((-654 (-388)) (-963 (-574)) (-388)) 28) (((-654 (-388)) (-963 (-417 (-574))) (-388)) 27)) (-3450 (((-654 (-654 (-388))) (-654 (-963 (-574))) (-654 (-1190)) (-388)) 37))) -(((-1036) (-10 -7 (-15 -1701 ((-654 (-388)) (-963 (-417 (-574))) (-388))) (-15 -1701 ((-654 (-388)) (-963 (-574)) (-388))) (-15 -3450 ((-654 (-654 (-388))) (-654 (-963 (-574))) (-654 (-1190)) (-388))))) (T -1036)) -((-3450 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-963 (-574)))) (-5 *4 (-654 (-1190))) (-5 *2 (-654 (-654 (-388)))) (-5 *1 (-1036)) (-5 *5 (-388)))) (-1701 (*1 *2 *3 *4) (-12 (-5 *3 (-963 (-574))) (-5 *2 (-654 (-388))) (-5 *1 (-1036)) (-5 *4 (-388)))) (-1701 (*1 *2 *3 *4) (-12 (-5 *3 (-963 (-417 (-574)))) (-5 *2 (-654 (-388))) (-5 *1 (-1036)) (-5 *4 (-388))))) -(-10 -7 (-15 -1701 ((-654 (-388)) (-963 (-417 (-574))) (-388))) (-15 -1701 ((-654 (-388)) (-963 (-574)) (-388))) (-15 -3450 ((-654 (-654 (-388))) (-654 (-963 (-574))) (-654 (-1190)) (-388)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 75)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-4229 (($ $) NIL) (($ $ (-932)) NIL) (($ (-417 (-574))) NIL) (($ (-574)) NIL)) (-1600 (((-112) $ $) NIL)) (-2846 (((-574) $) 70)) (-3426 (($) NIL T CONST)) (-3078 (((-3 $ "failed") (-1186 $) (-932) (-872)) NIL) (((-3 $ "failed") (-1186 $) (-932)) 55)) (-1696 (((-3 (-417 (-574)) "failed") $) NIL (|has| (-417 (-574)) (-1051 (-417 (-574))))) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-574) "failed") $) NIL (-2818 (|has| (-417 (-574)) (-1051 (-574))) (|has| |#1| (-1051 (-574)))))) (-2206 (((-417 (-574)) $) 17 (|has| (-417 (-574)) (-1051 (-417 (-574))))) (((-417 (-574)) $) 17) ((|#1| $) 117) (((-574) $) NIL (-2818 (|has| (-417 (-574)) (-1051 (-574))) (|has| |#1| (-1051 (-574)))))) (-1900 (($ $ (-872)) 47)) (-1577 (($ $ (-872)) 48)) (-2786 (($ $ $) NIL)) (-2161 (((-417 (-574)) $ $) 21)) (-3434 (((-3 $ "failed") $) 88)) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-2257 (((-112) $) NIL)) (-2756 (((-112) $) 66)) (-3199 (((-112) $) NIL)) (-3460 (($ $ (-574)) NIL)) (-1335 (((-112) $) 69)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3659 (($ $ $) NIL)) (-4257 (($ $ $) NIL)) (-1928 (((-3 (-1186 $) "failed") $) 83)) (-1815 (((-3 (-872) "failed") $) 82)) (-1601 (((-3 (-1186 $) "failed") $) 80)) (-1781 (((-3 (-1074 $ (-1186 $)) "failed") $) 78)) (-2832 (($ (-654 $)) NIL) (($ $ $) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) 89)) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ (-654 $)) NIL) (($ $ $) NIL)) (-4220 (((-428 $) $) NIL)) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1730 (((-781) $) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-2943 (((-872) $) 87) (($ (-574)) NIL) (($ (-417 (-574))) NIL) (($ $) 63) (($ (-417 (-574))) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 119)) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL)) (-3551 (((-417 (-574)) $ $) 27)) (-2131 (((-654 $) (-1186 $)) 61) (((-654 $) (-1186 (-417 (-574)))) NIL) (((-654 $) (-1186 (-574))) NIL) (((-654 $) (-963 $)) NIL) (((-654 $) (-963 (-417 (-574)))) NIL) (((-654 $) (-963 (-574))) NIL)) (-4396 (($ (-1074 $ (-1186 $)) (-872)) 46)) (-3482 (($ $) 22)) (-2133 (($) 32 T CONST)) (-2145 (($) 39 T CONST)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 76)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) 24)) (-3108 (($ $ $) 37)) (-3094 (($ $) 38) (($ $ $) 74)) (-3079 (($ $ $) 112)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL) (($ $ (-417 (-574))) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 98) (($ $ $) 104) (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL) (($ (-574) $) 98) (($ $ (-574)) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) -(((-1037 |#1|) (-13 (-1025) (-421 |#1|) (-38 |#1|) (-10 -8 (-15 -4396 ($ (-1074 $ (-1186 $)) (-872))) (-15 -1781 ((-3 (-1074 $ (-1186 $)) "failed") $)) (-15 -2161 ((-417 (-574)) $ $)))) (-13 (-858) (-372) (-1035))) (T -1037)) -((-4396 (*1 *1 *2 *3) (-12 (-5 *2 (-1074 (-1037 *4) (-1186 (-1037 *4)))) (-5 *3 (-872)) (-5 *1 (-1037 *4)) (-4 *4 (-13 (-858) (-372) (-1035))))) (-1781 (*1 *2 *1) (|partial| -12 (-5 *2 (-1074 (-1037 *3) (-1186 (-1037 *3)))) (-5 *1 (-1037 *3)) (-4 *3 (-13 (-858) (-372) (-1035))))) (-2161 (*1 *2 *1 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1037 *3)) (-4 *3 (-13 (-858) (-372) (-1035)))))) -(-13 (-1025) (-421 |#1|) (-38 |#1|) (-10 -8 (-15 -4396 ($ (-1074 $ (-1186 $)) (-872))) (-15 -1781 ((-3 (-1074 $ (-1186 $)) "failed") $)) (-15 -2161 ((-417 (-574)) $ $)))) -((-3798 (((-2 (|:| -4122 |#2|) (|:| -4296 (-654 |#1|))) |#2| (-654 |#1|)) 32) ((|#2| |#2| |#1|) 27))) -(((-1038 |#1| |#2|) (-10 -7 (-15 -3798 (|#2| |#2| |#1|)) (-15 -3798 ((-2 (|:| -4122 |#2|) (|:| -4296 (-654 |#1|))) |#2| (-654 |#1|)))) (-372) (-666 |#1|)) (T -1038)) -((-3798 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-5 *2 (-2 (|:| -4122 *3) (|:| -4296 (-654 *5)))) (-5 *1 (-1038 *5 *3)) (-5 *4 (-654 *5)) (-4 *3 (-666 *5)))) (-3798 (*1 *2 *2 *3) (-12 (-4 *3 (-372)) (-5 *1 (-1038 *3 *2)) (-4 *2 (-666 *3))))) -(-10 -7 (-15 -3798 (|#2| |#2| |#1|)) (-15 -3798 ((-2 (|:| -4122 |#2|) (|:| -4296 (-654 |#1|))) |#2| (-654 |#1|)))) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3150 ((|#1| $ |#1|) 14)) (-3143 ((|#1| $ |#1|) 12)) (-1750 (($ |#1|) 10)) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2199 ((|#1| $) 11)) (-2960 ((|#1| $) 13)) (-2943 (((-872) $) 21 (|has| |#1| (-1113)))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2981 (((-112) $ $) 9))) -(((-1039 |#1|) (-13 (-1231) (-10 -8 (-15 -1750 ($ |#1|)) (-15 -2199 (|#1| $)) (-15 -3143 (|#1| $ |#1|)) (-15 -2960 (|#1| $)) (-15 -3150 (|#1| $ |#1|)) (-15 -2981 ((-112) $ $)) (IF (|has| |#1| (-1113)) (-6 (-1113)) |%noBranch|))) (-1231)) (T -1039)) -((-1750 (*1 *1 *2) (-12 (-5 *1 (-1039 *2)) (-4 *2 (-1231)))) (-2199 (*1 *2 *1) (-12 (-5 *1 (-1039 *2)) (-4 *2 (-1231)))) (-3143 (*1 *2 *1 *2) (-12 (-5 *1 (-1039 *2)) (-4 *2 (-1231)))) (-2960 (*1 *2 *1) (-12 (-5 *1 (-1039 *2)) (-4 *2 (-1231)))) (-3150 (*1 *2 *1 *2) (-12 (-5 *1 (-1039 *2)) (-4 *2 (-1231)))) (-2981 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1039 *3)) (-4 *3 (-1231))))) -(-13 (-1231) (-10 -8 (-15 -1750 ($ |#1|)) (-15 -2199 (|#1| $)) (-15 -3143 (|#1| $ |#1|)) (-15 -2960 (|#1| $)) (-15 -3150 (|#1| $ |#1|)) (-15 -2981 ((-112) $ $)) (IF (|has| |#1| (-1113)) (-6 (-1113)) |%noBranch|))) -((-2849 (((-112) $ $) NIL)) (-2410 (((-654 (-2 (|:| -1381 $) (|:| -1675 (-654 |#4|)))) (-654 |#4|)) NIL)) (-3954 (((-654 $) (-654 |#4|)) 118) (((-654 $) (-654 |#4|) (-112)) 119) (((-654 $) (-654 |#4|) (-112) (-112)) 117) (((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112)) 120)) (-4355 (((-654 |#3|) $) NIL)) (-2907 (((-112) $) NIL)) (-4018 (((-112) $) NIL (|has| |#1| (-566)))) (-1751 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3207 ((|#4| |#4| $) NIL)) (-2568 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 $))) |#4| $) 112)) (-2771 (((-2 (|:| |under| $) (|:| -3595 $) (|:| |upper| $)) $ |#3|) NIL)) (-3034 (((-112) $ (-781)) NIL)) (-2165 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456))) (((-3 |#4| "failed") $ |#3|) 66)) (-3426 (($) NIL T CONST)) (-4336 (((-112) $) 29 (|has| |#1| (-566)))) (-1547 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2318 (((-112) $ $) NIL (|has| |#1| (-566)))) (-1792 (((-112) $) NIL (|has| |#1| (-566)))) (-3908 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3025 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1974 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1696 (((-3 $ "failed") (-654 |#4|)) NIL)) (-2206 (($ (-654 |#4|)) NIL)) (-2926 (((-3 $ "failed") $) 45)) (-1402 ((|#4| |#4| $) 69)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113))))) (-3335 (($ |#4| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-2766 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-566)))) (-1315 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1747 ((|#4| |#4| $) NIL)) (-2868 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4456))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4456))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4270 (((-2 (|:| -1381 (-654 |#4|)) (|:| -1675 (-654 |#4|))) $) NIL)) (-4062 (((-112) |#4| $) NIL)) (-2288 (((-112) |#4| $) NIL)) (-1421 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2341 (((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112)) 133)) (-1864 (((-654 |#4|) $) 18 (|has| $ (-6 -4456)))) (-4436 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3830 ((|#3| $) 38)) (-2742 (((-112) $ (-781)) NIL)) (-1606 (((-654 |#4|) $) 19 (|has| $ (-6 -4456)))) (-1710 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113))))) (-2449 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#4| |#4|) $) 23)) (-3963 (((-654 |#3|) $) NIL)) (-4158 (((-112) |#3| $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL)) (-3660 (((-3 |#4| (-654 $)) |#4| |#4| $) NIL)) (-4268 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 $))) |#4| |#4| $) 110)) (-3360 (((-3 |#4| "failed") $) 42)) (-2290 (((-654 $) |#4| $) 93)) (-3945 (((-3 (-112) (-654 $)) |#4| $) NIL)) (-2514 (((-654 (-2 (|:| |val| (-112)) (|:| -4091 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-1784 (((-654 $) |#4| $) 115) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) 116) (((-654 $) |#4| (-654 $)) NIL)) (-2031 (((-654 $) (-654 |#4|) (-112) (-112) (-112)) 128)) (-1954 (($ |#4| $) 82) (($ (-654 |#4|) $) 83) (((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-4417 (((-654 |#4|) $) NIL)) (-4292 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3023 ((|#4| |#4| $) NIL)) (-2119 (((-112) $ $) NIL)) (-2396 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-2682 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3206 ((|#4| |#4| $) NIL)) (-3966 (((-1133) $) NIL)) (-2915 (((-3 |#4| "failed") $) 40)) (-1549 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3040 (((-3 $ "failed") $ |#4|) 59)) (-2533 (($ $ |#4|) NIL) (((-654 $) |#4| $) 95) (((-654 $) |#4| (-654 $)) NIL) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) 89)) (-2540 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))) (-4017 (((-112) $ $) NIL)) (-1584 (((-112) $) 17)) (-2672 (($) 14)) (-4202 (((-781) $) NIL)) (-3975 (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113)))) (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) 13)) (-1836 (((-546) $) NIL (|has| |#4| (-624 (-546))))) (-2956 (($ (-654 |#4|)) 22)) (-3650 (($ $ |#3|) 52)) (-3722 (($ $ |#3|) 54)) (-4429 (($ $) NIL)) (-2096 (($ $ |#3|) NIL)) (-2943 (((-872) $) 35) (((-654 |#4|) $) 46)) (-4435 (((-781) $) NIL (|has| |#3| (-377)))) (-3284 (((-112) $ $) NIL)) (-3416 (((-3 (-2 (|:| |bas| $) (|:| -2002 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2002 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2582 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) NIL)) (-1379 (((-654 $) |#4| $) 92) (((-654 $) |#4| (-654 $)) NIL) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) NIL)) (-3390 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-2720 (((-654 |#3|) $) NIL)) (-4221 (((-112) |#4| $) NIL)) (-3587 (((-112) |#3| $) 65)) (-2981 (((-112) $ $) NIL)) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-1040 |#1| |#2| |#3| |#4|) (-13 (-1084 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1954 ((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3954 ((-654 $) (-654 |#4|) (-112) (-112))) (-15 -3954 ((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112))) (-15 -2031 ((-654 $) (-654 |#4|) (-112) (-112) (-112))) (-15 -2341 ((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112))))) (-462) (-803) (-860) (-1078 |#1| |#2| |#3|)) (T -1040)) -((-1954 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1040 *5 *6 *7 *3))) (-5 *1 (-1040 *5 *6 *7 *3)) (-4 *3 (-1078 *5 *6 *7)))) (-3954 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1040 *5 *6 *7 *8))) (-5 *1 (-1040 *5 *6 *7 *8)))) (-3954 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1040 *5 *6 *7 *8))) (-5 *1 (-1040 *5 *6 *7 *8)))) (-2031 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1040 *5 *6 *7 *8))) (-5 *1 (-1040 *5 *6 *7 *8)))) (-2341 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1078 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-654 *8)) (|:| |towers| (-654 (-1040 *5 *6 *7 *8))))) (-5 *1 (-1040 *5 *6 *7 *8)) (-5 *3 (-654 *8))))) -(-13 (-1084 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1954 ((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3954 ((-654 $) (-654 |#4|) (-112) (-112))) (-15 -3954 ((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112))) (-15 -2031 ((-654 $) (-654 |#4|) (-112) (-112) (-112))) (-15 -2341 ((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112))))) -((-2955 (((-654 (-699 |#1|)) (-654 (-699 |#1|))) 70) (((-699 |#1|) (-699 |#1|)) 69) (((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-654 (-699 |#1|))) 68) (((-699 |#1|) (-699 |#1|) (-699 |#1|)) 65)) (-1687 (((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-932)) 63) (((-699 |#1|) (-699 |#1|) (-932)) 62)) (-1329 (((-654 (-699 (-574))) (-654 (-654 (-574)))) 81) (((-654 (-699 (-574))) (-654 (-916 (-574))) (-574)) 80) (((-699 (-574)) (-654 (-574))) 77) (((-699 (-574)) (-916 (-574)) (-574)) 75)) (-2152 (((-699 (-963 |#1|)) (-781)) 95)) (-2380 (((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-932)) 49 (|has| |#1| (-6 (-4458 "*")))) (((-699 |#1|) (-699 |#1|) (-932)) 47 (|has| |#1| (-6 (-4458 "*")))))) -(((-1041 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4458 "*"))) (-15 -2380 ((-699 |#1|) (-699 |#1|) (-932))) |%noBranch|) (IF (|has| |#1| (-6 (-4458 "*"))) (-15 -2380 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-932))) |%noBranch|) (-15 -2152 ((-699 (-963 |#1|)) (-781))) (-15 -1687 ((-699 |#1|) (-699 |#1|) (-932))) (-15 -1687 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-932))) (-15 -2955 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2955 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -2955 ((-699 |#1|) (-699 |#1|))) (-15 -2955 ((-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -1329 ((-699 (-574)) (-916 (-574)) (-574))) (-15 -1329 ((-699 (-574)) (-654 (-574)))) (-15 -1329 ((-654 (-699 (-574))) (-654 (-916 (-574))) (-574))) (-15 -1329 ((-654 (-699 (-574))) (-654 (-654 (-574)))))) (-1062)) (T -1041)) -((-1329 (*1 *2 *3) (-12 (-5 *3 (-654 (-654 (-574)))) (-5 *2 (-654 (-699 (-574)))) (-5 *1 (-1041 *4)) (-4 *4 (-1062)))) (-1329 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-916 (-574)))) (-5 *4 (-574)) (-5 *2 (-654 (-699 *4))) (-5 *1 (-1041 *5)) (-4 *5 (-1062)))) (-1329 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-1041 *4)) (-4 *4 (-1062)))) (-1329 (*1 *2 *3 *4) (-12 (-5 *3 (-916 (-574))) (-5 *4 (-574)) (-5 *2 (-699 *4)) (-5 *1 (-1041 *5)) (-4 *5 (-1062)))) (-2955 (*1 *2 *2) (-12 (-5 *2 (-654 (-699 *3))) (-4 *3 (-1062)) (-5 *1 (-1041 *3)))) (-2955 (*1 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-1041 *3)))) (-2955 (*1 *2 *2 *2) (-12 (-5 *2 (-654 (-699 *3))) (-4 *3 (-1062)) (-5 *1 (-1041 *3)))) (-2955 (*1 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-1041 *3)))) (-1687 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-699 *4))) (-5 *3 (-932)) (-4 *4 (-1062)) (-5 *1 (-1041 *4)))) (-1687 (*1 *2 *2 *3) (-12 (-5 *2 (-699 *4)) (-5 *3 (-932)) (-4 *4 (-1062)) (-5 *1 (-1041 *4)))) (-2152 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-699 (-963 *4))) (-5 *1 (-1041 *4)) (-4 *4 (-1062)))) (-2380 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-699 *4))) (-5 *3 (-932)) (|has| *4 (-6 (-4458 "*"))) (-4 *4 (-1062)) (-5 *1 (-1041 *4)))) (-2380 (*1 *2 *2 *3) (-12 (-5 *2 (-699 *4)) (-5 *3 (-932)) (|has| *4 (-6 (-4458 "*"))) (-4 *4 (-1062)) (-5 *1 (-1041 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4458 "*"))) (-15 -2380 ((-699 |#1|) (-699 |#1|) (-932))) |%noBranch|) (IF (|has| |#1| (-6 (-4458 "*"))) (-15 -2380 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-932))) |%noBranch|) (-15 -2152 ((-699 (-963 |#1|)) (-781))) (-15 -1687 ((-699 |#1|) (-699 |#1|) (-932))) (-15 -1687 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-932))) (-15 -2955 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2955 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -2955 ((-699 |#1|) (-699 |#1|))) (-15 -2955 ((-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -1329 ((-699 (-574)) (-916 (-574)) (-574))) (-15 -1329 ((-699 (-574)) (-654 (-574)))) (-15 -1329 ((-654 (-699 (-574))) (-654 (-916 (-574))) (-574))) (-15 -1329 ((-654 (-699 (-574))) (-654 (-654 (-574)))))) -((-3435 (((-699 |#1|) (-654 (-699 |#1|)) (-1281 |#1|)) 70 (|has| |#1| (-315)))) (-4320 (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1281 (-1281 |#1|))) 110 (|has| |#1| (-372))) (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1281 |#1|)) 117 (|has| |#1| (-372)))) (-3922 (((-1281 |#1|) (-654 (-1281 |#1|)) (-574)) 135 (-12 (|has| |#1| (-372)) (|has| |#1| (-377))))) (-2391 (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-932)) 123 (-12 (|has| |#1| (-372)) (|has| |#1| (-377)))) (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112)) 122 (-12 (|has| |#1| (-372)) (|has| |#1| (-377)))) (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|))) 121 (-12 (|has| |#1| (-372)) (|has| |#1| (-377)))) (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112) (-574) (-574)) 120 (-12 (|has| |#1| (-372)) (|has| |#1| (-377))))) (-2244 (((-112) (-654 (-699 |#1|))) 103 (|has| |#1| (-372))) (((-112) (-654 (-699 |#1|)) (-574)) 106 (|has| |#1| (-372)))) (-1401 (((-1281 (-1281 |#1|)) (-654 (-699 |#1|)) (-1281 |#1|)) 67 (|has| |#1| (-315)))) (-2018 (((-699 |#1|) (-654 (-699 |#1|)) (-699 |#1|)) 47)) (-2240 (((-699 |#1|) (-1281 (-1281 |#1|))) 40)) (-2079 (((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-574)) 94 (|has| |#1| (-372))) (((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|))) 93 (|has| |#1| (-372))) (((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-112) (-574)) 101 (|has| |#1| (-372))))) -(((-1042 |#1|) (-10 -7 (-15 -2240 ((-699 |#1|) (-1281 (-1281 |#1|)))) (-15 -2018 ((-699 |#1|) (-654 (-699 |#1|)) (-699 |#1|))) (IF (|has| |#1| (-315)) (PROGN (-15 -1401 ((-1281 (-1281 |#1|)) (-654 (-699 |#1|)) (-1281 |#1|))) (-15 -3435 ((-699 |#1|) (-654 (-699 |#1|)) (-1281 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -2079 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-112) (-574))) (-15 -2079 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -2079 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-574))) (-15 -2244 ((-112) (-654 (-699 |#1|)) (-574))) (-15 -2244 ((-112) (-654 (-699 |#1|)))) (-15 -4320 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1281 |#1|))) (-15 -4320 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1281 (-1281 |#1|))))) |%noBranch|) (IF (|has| |#1| (-377)) (IF (|has| |#1| (-372)) (PROGN (-15 -2391 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112) (-574) (-574))) (-15 -2391 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)))) (-15 -2391 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112))) (-15 -2391 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-932))) (-15 -3922 ((-1281 |#1|) (-654 (-1281 |#1|)) (-574)))) |%noBranch|) |%noBranch|)) (-1062)) (T -1042)) -((-3922 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-1281 *5))) (-5 *4 (-574)) (-5 *2 (-1281 *5)) (-5 *1 (-1042 *5)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1062)))) (-2391 (*1 *2 *3 *4) (-12 (-5 *4 (-932)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1062)) (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1042 *5)) (-5 *3 (-654 (-699 *5))))) (-2391 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1062)) (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1042 *5)) (-5 *3 (-654 (-699 *5))))) (-2391 (*1 *2 *3) (-12 (-4 *4 (-372)) (-4 *4 (-377)) (-4 *4 (-1062)) (-5 *2 (-654 (-654 (-699 *4)))) (-5 *1 (-1042 *4)) (-5 *3 (-654 (-699 *4))))) (-2391 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-574)) (-4 *6 (-372)) (-4 *6 (-377)) (-4 *6 (-1062)) (-5 *2 (-654 (-654 (-699 *6)))) (-5 *1 (-1042 *6)) (-5 *3 (-654 (-699 *6))))) (-4320 (*1 *2 *3 *4) (-12 (-5 *4 (-1281 (-1281 *5))) (-4 *5 (-372)) (-4 *5 (-1062)) (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1042 *5)) (-5 *3 (-654 (-699 *5))))) (-4320 (*1 *2 *3 *4) (-12 (-5 *4 (-1281 *5)) (-4 *5 (-372)) (-4 *5 (-1062)) (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1042 *5)) (-5 *3 (-654 (-699 *5))))) (-2244 (*1 *2 *3) (-12 (-5 *3 (-654 (-699 *4))) (-4 *4 (-372)) (-4 *4 (-1062)) (-5 *2 (-112)) (-5 *1 (-1042 *4)))) (-2244 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-574)) (-4 *5 (-372)) (-4 *5 (-1062)) (-5 *2 (-112)) (-5 *1 (-1042 *5)))) (-2079 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-574)) (-5 *2 (-699 *5)) (-5 *1 (-1042 *5)) (-4 *5 (-372)) (-4 *5 (-1062)))) (-2079 (*1 *2 *3 *3) (-12 (-5 *3 (-654 (-699 *4))) (-5 *2 (-699 *4)) (-5 *1 (-1042 *4)) (-4 *4 (-372)) (-4 *4 (-1062)))) (-2079 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-654 (-699 *6))) (-5 *4 (-112)) (-5 *5 (-574)) (-5 *2 (-699 *6)) (-5 *1 (-1042 *6)) (-4 *6 (-372)) (-4 *6 (-1062)))) (-3435 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-1281 *5)) (-4 *5 (-315)) (-4 *5 (-1062)) (-5 *2 (-699 *5)) (-5 *1 (-1042 *5)))) (-1401 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-699 *5))) (-4 *5 (-315)) (-4 *5 (-1062)) (-5 *2 (-1281 (-1281 *5))) (-5 *1 (-1042 *5)) (-5 *4 (-1281 *5)))) (-2018 (*1 *2 *3 *2) (-12 (-5 *3 (-654 (-699 *4))) (-5 *2 (-699 *4)) (-4 *4 (-1062)) (-5 *1 (-1042 *4)))) (-2240 (*1 *2 *3) (-12 (-5 *3 (-1281 (-1281 *4))) (-4 *4 (-1062)) (-5 *2 (-699 *4)) (-5 *1 (-1042 *4))))) -(-10 -7 (-15 -2240 ((-699 |#1|) (-1281 (-1281 |#1|)))) (-15 -2018 ((-699 |#1|) (-654 (-699 |#1|)) (-699 |#1|))) (IF (|has| |#1| (-315)) (PROGN (-15 -1401 ((-1281 (-1281 |#1|)) (-654 (-699 |#1|)) (-1281 |#1|))) (-15 -3435 ((-699 |#1|) (-654 (-699 |#1|)) (-1281 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -2079 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-112) (-574))) (-15 -2079 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -2079 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-574))) (-15 -2244 ((-112) (-654 (-699 |#1|)) (-574))) (-15 -2244 ((-112) (-654 (-699 |#1|)))) (-15 -4320 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1281 |#1|))) (-15 -4320 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1281 (-1281 |#1|))))) |%noBranch|) (IF (|has| |#1| (-377)) (IF (|has| |#1| (-372)) (PROGN (-15 -2391 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112) (-574) (-574))) (-15 -2391 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)))) (-15 -2391 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112))) (-15 -2391 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-932))) (-15 -3922 ((-1281 |#1|) (-654 (-1281 |#1|)) (-574)))) |%noBranch|) |%noBranch|)) -((-1700 ((|#1| (-932) |#1|) 18))) -(((-1043 |#1|) (-10 -7 (-15 -1700 (|#1| (-932) |#1|))) (-13 (-1113) (-10 -8 (-15 -3079 ($ $ $))))) (T -1043)) -((-1700 (*1 *2 *3 *2) (-12 (-5 *3 (-932)) (-5 *1 (-1043 *2)) (-4 *2 (-13 (-1113) (-10 -8 (-15 -3079 ($ $ $)))))))) -(-10 -7 (-15 -1700 (|#1| (-932) |#1|))) -((-3288 (((-654 (-2 (|:| |radval| (-324 (-574))) (|:| |radmult| (-574)) (|:| |radvect| (-654 (-699 (-324 (-574))))))) (-699 (-417 (-963 (-574))))) 67)) (-2793 (((-654 (-699 (-324 (-574)))) (-324 (-574)) (-699 (-417 (-963 (-574))))) 52)) (-3121 (((-654 (-324 (-574))) (-699 (-417 (-963 (-574))))) 45)) (-2781 (((-654 (-699 (-324 (-574)))) (-699 (-417 (-963 (-574))))) 85)) (-2323 (((-699 (-324 (-574))) (-699 (-324 (-574)))) 38)) (-2987 (((-654 (-699 (-324 (-574)))) (-654 (-699 (-324 (-574))))) 74)) (-1727 (((-3 (-699 (-324 (-574))) "failed") (-699 (-417 (-963 (-574))))) 82))) -(((-1044) (-10 -7 (-15 -3288 ((-654 (-2 (|:| |radval| (-324 (-574))) (|:| |radmult| (-574)) (|:| |radvect| (-654 (-699 (-324 (-574))))))) (-699 (-417 (-963 (-574)))))) (-15 -2793 ((-654 (-699 (-324 (-574)))) (-324 (-574)) (-699 (-417 (-963 (-574)))))) (-15 -3121 ((-654 (-324 (-574))) (-699 (-417 (-963 (-574)))))) (-15 -1727 ((-3 (-699 (-324 (-574))) "failed") (-699 (-417 (-963 (-574)))))) (-15 -2323 ((-699 (-324 (-574))) (-699 (-324 (-574))))) (-15 -2987 ((-654 (-699 (-324 (-574)))) (-654 (-699 (-324 (-574)))))) (-15 -2781 ((-654 (-699 (-324 (-574)))) (-699 (-417 (-963 (-574)))))))) (T -1044)) -((-2781 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-963 (-574))))) (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1044)))) (-2987 (*1 *2 *2) (-12 (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1044)))) (-2323 (*1 *2 *2) (-12 (-5 *2 (-699 (-324 (-574)))) (-5 *1 (-1044)))) (-1727 (*1 *2 *3) (|partial| -12 (-5 *3 (-699 (-417 (-963 (-574))))) (-5 *2 (-699 (-324 (-574)))) (-5 *1 (-1044)))) (-3121 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-963 (-574))))) (-5 *2 (-654 (-324 (-574)))) (-5 *1 (-1044)))) (-2793 (*1 *2 *3 *4) (-12 (-5 *4 (-699 (-417 (-963 (-574))))) (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1044)) (-5 *3 (-324 (-574))))) (-3288 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-963 (-574))))) (-5 *2 (-654 (-2 (|:| |radval| (-324 (-574))) (|:| |radmult| (-574)) (|:| |radvect| (-654 (-699 (-324 (-574)))))))) (-5 *1 (-1044))))) -(-10 -7 (-15 -3288 ((-654 (-2 (|:| |radval| (-324 (-574))) (|:| |radmult| (-574)) (|:| |radvect| (-654 (-699 (-324 (-574))))))) (-699 (-417 (-963 (-574)))))) (-15 -2793 ((-654 (-699 (-324 (-574)))) (-324 (-574)) (-699 (-417 (-963 (-574)))))) (-15 -3121 ((-654 (-324 (-574))) (-699 (-417 (-963 (-574)))))) (-15 -1727 ((-3 (-699 (-324 (-574))) "failed") (-699 (-417 (-963 (-574)))))) (-15 -2323 ((-699 (-324 (-574))) (-699 (-324 (-574))))) (-15 -2987 ((-654 (-699 (-324 (-574)))) (-654 (-699 (-324 (-574)))))) (-15 -2781 ((-654 (-699 (-324 (-574)))) (-699 (-417 (-963 (-574))))))) -((-3334 ((|#1| |#1| (-932)) 18))) -(((-1045 |#1|) (-10 -7 (-15 -3334 (|#1| |#1| (-932)))) (-13 (-1113) (-10 -8 (-15 * ($ $ $))))) (T -1045)) -((-3334 (*1 *2 *2 *3) (-12 (-5 *3 (-932)) (-5 *1 (-1045 *2)) (-4 *2 (-13 (-1113) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -3334 (|#1| |#1| (-932)))) -((-2943 ((|#1| (-320)) 11) (((-1286) |#1|) 9))) -(((-1046 |#1|) (-10 -7 (-15 -2943 ((-1286) |#1|)) (-15 -2943 (|#1| (-320)))) (-1231)) (T -1046)) -((-2943 (*1 *2 *3) (-12 (-5 *3 (-320)) (-5 *1 (-1046 *2)) (-4 *2 (-1231)))) (-2943 (*1 *2 *3) (-12 (-5 *2 (-1286)) (-5 *1 (-1046 *3)) (-4 *3 (-1231))))) -(-10 -7 (-15 -2943 ((-1286) |#1|)) (-15 -2943 (|#1| (-320)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-2868 (($ |#4|) 25)) (-3434 (((-3 $ "failed") $) NIL)) (-3199 (((-112) $) NIL)) (-2854 ((|#4| $) 27)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 46) (($ (-574)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-1364 (((-781)) 43 T CONST)) (-3284 (((-112) $ $) NIL)) (-2133 (($) 21 T CONST)) (-2145 (($) 23 T CONST)) (-2981 (((-112) $ $) 40)) (-3094 (($ $) 31) (($ $ $) NIL)) (-3079 (($ $ $) 29)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-1047 |#1| |#2| |#3| |#4| |#5|) (-13 (-174) (-38 |#1|) (-10 -8 (-15 -2868 ($ |#4|)) (-15 -2943 ($ |#4|)) (-15 -2854 (|#4| $)))) (-372) (-803) (-860) (-960 |#1| |#2| |#3|) (-654 |#4|)) (T -1047)) -((-2868 (*1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1047 *3 *4 *5 *2 *6)) (-4 *2 (-960 *3 *4 *5)) (-14 *6 (-654 *2)))) (-2943 (*1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1047 *3 *4 *5 *2 *6)) (-4 *2 (-960 *3 *4 *5)) (-14 *6 (-654 *2)))) (-2854 (*1 *2 *1) (-12 (-4 *2 (-960 *3 *4 *5)) (-5 *1 (-1047 *3 *4 *5 *2 *6)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-14 *6 (-654 *2))))) -(-13 (-174) (-38 |#1|) (-10 -8 (-15 -2868 ($ |#4|)) (-15 -2943 ($ |#4|)) (-15 -2854 (|#4| $)))) -((-2849 (((-112) $ $) NIL (-2818 (|has| (-52) (-1113)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1113))))) (-3778 (($) NIL) (($ (-654 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))))) NIL)) (-3714 (((-1286) $ (-1190) (-1190)) NIL (|has| $ (-6 -4457)))) (-3034 (((-112) $ (-781)) NIL)) (-4404 (((-112) (-112)) 43)) (-3781 (((-112) (-112)) 42)) (-3143 (((-52) $ (-1190) (-52)) NIL)) (-3572 (($ (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) $) NIL (|has| $ (-6 -4456)))) (-2165 (($ (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) $) NIL (|has| $ (-6 -4456)))) (-2163 (((-3 (-52) "failed") (-1190) $) NIL)) (-3426 (($) NIL T CONST)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1113))))) (-2876 (($ (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-3 (-52) "failed") (-1190) $) NIL)) (-3335 (($ (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1113)))) (($ (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) $) NIL (|has| $ (-6 -4456)))) (-2868 (((-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) $ (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1113)))) (((-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) $ (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) $) NIL (|has| $ (-6 -4456)))) (-2458 (((-52) $ (-1190) (-52)) NIL (|has| $ (-6 -4457)))) (-2385 (((-52) $ (-1190)) NIL)) (-1864 (((-654 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-654 (-52)) $) NIL (|has| $ (-6 -4456)))) (-2742 (((-112) $ (-781)) NIL)) (-3618 (((-1190) $) NIL (|has| (-1190) (-860)))) (-1606 (((-654 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-654 (-52)) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1113)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-52) (-1113))))) (-2702 (((-1190) $) NIL (|has| (-1190) (-860)))) (-2449 (($ (-1 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) $) NIL (|has| $ (-6 -4457))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL (-2818 (|has| (-52) (-1113)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1113))))) (-1763 (((-654 (-1190)) $) 37)) (-1732 (((-112) (-1190) $) NIL)) (-2937 (((-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) $) NIL)) (-2798 (($ (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) $) NIL)) (-4308 (((-654 (-1190)) $) NIL)) (-3336 (((-112) (-1190) $) NIL)) (-3966 (((-1133) $) NIL (-2818 (|has| (-52) (-1113)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1113))))) (-2915 (((-52) $) NIL (|has| (-1190) (-860)))) (-1549 (((-3 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) "failed") (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) $) NIL)) (-1942 (($ $ (-52)) NIL (|has| $ (-6 -4457)))) (-1785 (((-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) $) NIL)) (-2540 (((-112) (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))))) NIL (-12 (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-317 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))))) (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1113)))) (($ $ (-302 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))))) NIL (-12 (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-317 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))))) (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1113)))) (($ $ (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) NIL (-12 (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-317 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))))) (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1113)))) (($ $ (-654 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) (-654 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))))) NIL (-12 (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-317 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))))) (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1113)))) (($ $ (-654 (-52)) (-654 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1113)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1113)))) (($ $ (-302 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1113)))) (($ $ (-654 (-302 (-52)))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-52) (-1113))))) (-4371 (((-654 (-52)) $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 (((-52) $ (-1190)) 39) (((-52) $ (-1190) (-52)) NIL)) (-1662 (($) NIL) (($ (-654 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))))) NIL)) (-3975 (((-781) (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1113)))) (((-781) (-52) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-52) (-1113)))) (((-781) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) NIL)) (-1836 (((-546) $) NIL (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-624 (-546))))) (-2956 (($ (-654 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))))) NIL)) (-2943 (((-872) $) 41 (-2818 (|has| (-52) (-623 (-872))) (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-623 (-872)))))) (-3284 (((-112) $ $) NIL (-2818 (|has| (-52) (-1113)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1113))))) (-1599 (($ (-654 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))))) NIL)) (-3390 (((-112) (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) NIL (-2818 (|has| (-52) (-1113)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1113))))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-1048) (-13 (-1207 (-1190) (-52)) (-10 -7 (-15 -4404 ((-112) (-112))) (-15 -3781 ((-112) (-112))) (-6 -4456)))) (T -1048)) -((-4404 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1048)))) (-3781 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1048))))) -(-13 (-1207 (-1190) (-52)) (-10 -7 (-15 -4404 ((-112) (-112))) (-15 -3781 ((-112) (-112))) (-6 -4456))) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-4016 (((-1148) $) 9)) (-2943 (((-872) $) 15) (($ (-1195)) NIL) (((-1195) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1049) (-13 (-1096) (-10 -8 (-15 -4016 ((-1148) $))))) (T -1049)) -((-4016 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1049))))) -(-13 (-1096) (-10 -8 (-15 -4016 ((-1148) $)))) -((-2206 ((|#2| $) 10))) -(((-1050 |#1| |#2|) (-10 -8 (-15 -2206 (|#2| |#1|))) (-1051 |#2|) (-1231)) (T -1050)) -NIL -(-10 -8 (-15 -2206 (|#2| |#1|))) -((-1696 (((-3 |#1| "failed") $) 9)) (-2206 ((|#1| $) 8)) (-2943 (($ |#1|) 6))) -(((-1051 |#1|) (-141) (-1231)) (T -1051)) -((-1696 (*1 *2 *1) (|partial| -12 (-4 *1 (-1051 *2)) (-4 *2 (-1231)))) (-2206 (*1 *2 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-1231))))) -(-13 (-626 |t#1|) (-10 -8 (-15 -1696 ((-3 |t#1| "failed") $)) (-15 -2206 (|t#1| $)))) -(((-626 |#1|) . T)) -((-2939 (((-654 (-654 (-302 (-417 (-963 |#2|))))) (-654 (-963 |#2|)) (-654 (-1190))) 38))) -(((-1052 |#1| |#2|) (-10 -7 (-15 -2939 ((-654 (-654 (-302 (-417 (-963 |#2|))))) (-654 (-963 |#2|)) (-654 (-1190))))) (-566) (-13 (-566) (-1051 |#1|))) (T -1052)) -((-2939 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-963 *6))) (-5 *4 (-654 (-1190))) (-4 *6 (-13 (-566) (-1051 *5))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-963 *6)))))) (-5 *1 (-1052 *5 *6))))) -(-10 -7 (-15 -2939 ((-654 (-654 (-302 (-417 (-963 |#2|))))) (-654 (-963 |#2|)) (-654 (-1190))))) -((-3762 (((-388)) 17)) (-3077 (((-1 (-388)) (-388) (-388)) 22)) (-2143 (((-1 (-388)) (-781)) 48)) (-2699 (((-388)) 37)) (-1360 (((-1 (-388)) (-388) (-388)) 38)) (-3744 (((-388)) 29)) (-1890 (((-1 (-388)) (-388)) 30)) (-1901 (((-388) (-781)) 43)) (-3126 (((-1 (-388)) (-781)) 44)) (-1386 (((-1 (-388)) (-781) (-781)) 47)) (-3061 (((-1 (-388)) (-781) (-781)) 45))) -(((-1053) (-10 -7 (-15 -3762 ((-388))) (-15 -2699 ((-388))) (-15 -3744 ((-388))) (-15 -1901 ((-388) (-781))) (-15 -3077 ((-1 (-388)) (-388) (-388))) (-15 -1360 ((-1 (-388)) (-388) (-388))) (-15 -1890 ((-1 (-388)) (-388))) (-15 -3126 ((-1 (-388)) (-781))) (-15 -3061 ((-1 (-388)) (-781) (-781))) (-15 -1386 ((-1 (-388)) (-781) (-781))) (-15 -2143 ((-1 (-388)) (-781))))) (T -1053)) -((-2143 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1053)))) (-1386 (*1 *2 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1053)))) (-3061 (*1 *2 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1053)))) (-3126 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1053)))) (-1890 (*1 *2 *3) (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1053)) (-5 *3 (-388)))) (-1360 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1053)) (-5 *3 (-388)))) (-3077 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1053)) (-5 *3 (-388)))) (-1901 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-388)) (-5 *1 (-1053)))) (-3744 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1053)))) (-2699 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1053)))) (-3762 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1053))))) -(-10 -7 (-15 -3762 ((-388))) (-15 -2699 ((-388))) (-15 -3744 ((-388))) (-15 -1901 ((-388) (-781))) (-15 -3077 ((-1 (-388)) (-388) (-388))) (-15 -1360 ((-1 (-388)) (-388) (-388))) (-15 -1890 ((-1 (-388)) (-388))) (-15 -3126 ((-1 (-388)) (-781))) (-15 -3061 ((-1 (-388)) (-781) (-781))) (-15 -1386 ((-1 (-388)) (-781) (-781))) (-15 -2143 ((-1 (-388)) (-781)))) -((-4220 (((-428 |#1|) |#1|) 33))) -(((-1054 |#1|) (-10 -7 (-15 -4220 ((-428 |#1|) |#1|))) (-1257 (-417 (-963 (-574))))) (T -1054)) -((-4220 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-1054 *3)) (-4 *3 (-1257 (-417 (-963 (-574)))))))) -(-10 -7 (-15 -4220 ((-428 |#1|) |#1|))) -((-3226 (((-417 (-428 (-963 |#1|))) (-417 (-963 |#1|))) 14))) -(((-1055 |#1|) (-10 -7 (-15 -3226 ((-417 (-428 (-963 |#1|))) (-417 (-963 |#1|))))) (-315)) (T -1055)) -((-3226 (*1 *2 *3) (-12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-315)) (-5 *2 (-417 (-428 (-963 *4)))) (-5 *1 (-1055 *4))))) -(-10 -7 (-15 -3226 ((-417 (-428 (-963 |#1|))) (-417 (-963 |#1|))))) -((-4355 (((-654 (-1190)) (-417 (-963 |#1|))) 17)) (-4194 (((-417 (-1186 (-417 (-963 |#1|)))) (-417 (-963 |#1|)) (-1190)) 24)) (-4345 (((-417 (-963 |#1|)) (-417 (-1186 (-417 (-963 |#1|)))) (-1190)) 26)) (-2717 (((-3 (-1190) "failed") (-417 (-963 |#1|))) 20)) (-2646 (((-417 (-963 |#1|)) (-417 (-963 |#1|)) (-654 (-302 (-417 (-963 |#1|))))) 32) (((-417 (-963 |#1|)) (-417 (-963 |#1|)) (-302 (-417 (-963 |#1|)))) 33) (((-417 (-963 |#1|)) (-417 (-963 |#1|)) (-654 (-1190)) (-654 (-417 (-963 |#1|)))) 28) (((-417 (-963 |#1|)) (-417 (-963 |#1|)) (-1190) (-417 (-963 |#1|))) 29)) (-2943 (((-417 (-963 |#1|)) |#1|) 11))) -(((-1056 |#1|) (-10 -7 (-15 -4355 ((-654 (-1190)) (-417 (-963 |#1|)))) (-15 -2717 ((-3 (-1190) "failed") (-417 (-963 |#1|)))) (-15 -4194 ((-417 (-1186 (-417 (-963 |#1|)))) (-417 (-963 |#1|)) (-1190))) (-15 -4345 ((-417 (-963 |#1|)) (-417 (-1186 (-417 (-963 |#1|)))) (-1190))) (-15 -2646 ((-417 (-963 |#1|)) (-417 (-963 |#1|)) (-1190) (-417 (-963 |#1|)))) (-15 -2646 ((-417 (-963 |#1|)) (-417 (-963 |#1|)) (-654 (-1190)) (-654 (-417 (-963 |#1|))))) (-15 -2646 ((-417 (-963 |#1|)) (-417 (-963 |#1|)) (-302 (-417 (-963 |#1|))))) (-15 -2646 ((-417 (-963 |#1|)) (-417 (-963 |#1|)) (-654 (-302 (-417 (-963 |#1|)))))) (-15 -2943 ((-417 (-963 |#1|)) |#1|))) (-566)) (T -1056)) -((-2943 (*1 *2 *3) (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-1056 *3)) (-4 *3 (-566)))) (-2646 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-302 (-417 (-963 *4))))) (-5 *2 (-417 (-963 *4))) (-4 *4 (-566)) (-5 *1 (-1056 *4)))) (-2646 (*1 *2 *2 *3) (-12 (-5 *3 (-302 (-417 (-963 *4)))) (-5 *2 (-417 (-963 *4))) (-4 *4 (-566)) (-5 *1 (-1056 *4)))) (-2646 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-654 (-1190))) (-5 *4 (-654 (-417 (-963 *5)))) (-5 *2 (-417 (-963 *5))) (-4 *5 (-566)) (-5 *1 (-1056 *5)))) (-2646 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-417 (-963 *4))) (-5 *3 (-1190)) (-4 *4 (-566)) (-5 *1 (-1056 *4)))) (-4345 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-1186 (-417 (-963 *5))))) (-5 *4 (-1190)) (-5 *2 (-417 (-963 *5))) (-5 *1 (-1056 *5)) (-4 *5 (-566)))) (-4194 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-4 *5 (-566)) (-5 *2 (-417 (-1186 (-417 (-963 *5))))) (-5 *1 (-1056 *5)) (-5 *3 (-417 (-963 *5))))) (-2717 (*1 *2 *3) (|partial| -12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-566)) (-5 *2 (-1190)) (-5 *1 (-1056 *4)))) (-4355 (*1 *2 *3) (-12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-566)) (-5 *2 (-654 (-1190))) (-5 *1 (-1056 *4))))) -(-10 -7 (-15 -4355 ((-654 (-1190)) (-417 (-963 |#1|)))) (-15 -2717 ((-3 (-1190) "failed") (-417 (-963 |#1|)))) (-15 -4194 ((-417 (-1186 (-417 (-963 |#1|)))) (-417 (-963 |#1|)) (-1190))) (-15 -4345 ((-417 (-963 |#1|)) (-417 (-1186 (-417 (-963 |#1|)))) (-1190))) (-15 -2646 ((-417 (-963 |#1|)) (-417 (-963 |#1|)) (-1190) (-417 (-963 |#1|)))) (-15 -2646 ((-417 (-963 |#1|)) (-417 (-963 |#1|)) (-654 (-1190)) (-654 (-417 (-963 |#1|))))) (-15 -2646 ((-417 (-963 |#1|)) (-417 (-963 |#1|)) (-302 (-417 (-963 |#1|))))) (-15 -2646 ((-417 (-963 |#1|)) (-417 (-963 |#1|)) (-654 (-302 (-417 (-963 |#1|)))))) (-15 -2943 ((-417 (-963 |#1|)) |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3426 (($) 18 T CONST)) (-4015 ((|#1| $) 23)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-1509 ((|#1| $) 22)) (-3791 ((|#1|) 20 T CONST)) (-2943 (((-872) $) 12)) (-2983 ((|#1| $) 21)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3079 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16))) +((-3376 (($ $ (-1104 $)) 7) (($ $ (-1189)) 6))) +(((-969) (-141)) (T -969)) +((-3376 (*1 *1 *1 *2) (-12 (-5 *2 (-1104 *1)) (-4 *1 (-969)))) (-3376 (*1 *1 *1 *2) (-12 (-4 *1 (-969)) (-5 *2 (-1189))))) +(-13 (-10 -8 (-15 -3376 ($ $ (-1189))) (-15 -3376 ($ $ (-1104 $))))) +((-3731 (((-2 (|:| -1857 (-653 (-573))) (|:| |poly| (-653 (-1185 |#1|))) (|:| |prim| (-1185 |#1|))) (-653 (-962 |#1|)) (-653 (-1189)) (-1189)) 26) (((-2 (|:| -1857 (-653 (-573))) (|:| |poly| (-653 (-1185 |#1|))) (|:| |prim| (-1185 |#1|))) (-653 (-962 |#1|)) (-653 (-1189))) 27) (((-2 (|:| |coef1| (-573)) (|:| |coef2| (-573)) (|:| |prim| (-1185 |#1|))) (-962 |#1|) (-1189) (-962 |#1|) (-1189)) 49))) +(((-970 |#1|) (-10 -7 (-15 -3731 ((-2 (|:| |coef1| (-573)) (|:| |coef2| (-573)) (|:| |prim| (-1185 |#1|))) (-962 |#1|) (-1189) (-962 |#1|) (-1189))) (-15 -3731 ((-2 (|:| -1857 (-653 (-573))) (|:| |poly| (-653 (-1185 |#1|))) (|:| |prim| (-1185 |#1|))) (-653 (-962 |#1|)) (-653 (-1189)))) (-15 -3731 ((-2 (|:| -1857 (-653 (-573))) (|:| |poly| (-653 (-1185 |#1|))) (|:| |prim| (-1185 |#1|))) (-653 (-962 |#1|)) (-653 (-1189)) (-1189)))) (-13 (-371) (-148))) (T -970)) +((-3731 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 (-962 *6))) (-5 *4 (-653 (-1189))) (-5 *5 (-1189)) (-4 *6 (-13 (-371) (-148))) (-5 *2 (-2 (|:| -1857 (-653 (-573))) (|:| |poly| (-653 (-1185 *6))) (|:| |prim| (-1185 *6)))) (-5 *1 (-970 *6)))) (-3731 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-653 (-1189))) (-4 *5 (-13 (-371) (-148))) (-5 *2 (-2 (|:| -1857 (-653 (-573))) (|:| |poly| (-653 (-1185 *5))) (|:| |prim| (-1185 *5)))) (-5 *1 (-970 *5)))) (-3731 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-962 *5)) (-5 *4 (-1189)) (-4 *5 (-13 (-371) (-148))) (-5 *2 (-2 (|:| |coef1| (-573)) (|:| |coef2| (-573)) (|:| |prim| (-1185 *5)))) (-5 *1 (-970 *5))))) +(-10 -7 (-15 -3731 ((-2 (|:| |coef1| (-573)) (|:| |coef2| (-573)) (|:| |prim| (-1185 |#1|))) (-962 |#1|) (-1189) (-962 |#1|) (-1189))) (-15 -3731 ((-2 (|:| -1857 (-653 (-573))) (|:| |poly| (-653 (-1185 |#1|))) (|:| |prim| (-1185 |#1|))) (-653 (-962 |#1|)) (-653 (-1189)))) (-15 -3731 ((-2 (|:| -1857 (-653 (-573))) (|:| |poly| (-653 (-1185 |#1|))) (|:| |prim| (-1185 |#1|))) (-653 (-962 |#1|)) (-653 (-1189)) (-1189)))) +((-2508 (((-653 |#1|) |#1| |#1|) 47)) (-2696 (((-112) |#1|) 44)) (-3389 ((|#1| |#1|) 79)) (-1809 ((|#1| |#1|) 78))) +(((-971 |#1|) (-10 -7 (-15 -2696 ((-112) |#1|)) (-15 -1809 (|#1| |#1|)) (-15 -3389 (|#1| |#1|)) (-15 -2508 ((-653 |#1|) |#1| |#1|))) (-554)) (T -971)) +((-2508 (*1 *2 *3 *3) (-12 (-5 *2 (-653 *3)) (-5 *1 (-971 *3)) (-4 *3 (-554)))) (-3389 (*1 *2 *2) (-12 (-5 *1 (-971 *2)) (-4 *2 (-554)))) (-1809 (*1 *2 *2) (-12 (-5 *1 (-971 *2)) (-4 *2 (-554)))) (-2696 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-971 *3)) (-4 *3 (-554))))) +(-10 -7 (-15 -2696 ((-112) |#1|)) (-15 -1809 (|#1| |#1|)) (-15 -3389 (|#1| |#1|)) (-15 -2508 ((-653 |#1|) |#1| |#1|))) +((-1794 (((-1285) (-871)) 9))) +(((-972) (-10 -7 (-15 -1794 ((-1285) (-871))))) (T -972)) +((-1794 (*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1285)) (-5 *1 (-972))))) +(-10 -7 (-15 -1794 ((-1285) (-871)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 78 (|has| |#1| (-565)))) (-2456 (($ $) 79 (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) 34)) (-2205 (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) NIL)) (-1391 (($ $) 31)) (-2232 (((-3 $ "failed") $) 42)) (-3246 (($ $) NIL (|has| |#1| (-461)))) (-2343 (($ $ |#1| |#2| $) 62)) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) 17)) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| |#2|) NIL)) (-4036 ((|#2| $) 24)) (-1382 (($ (-1 |#2| |#2|) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1358 (($ $) 28)) (-1369 ((|#1| $) 26)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) 51)) (-1348 ((|#1| $) NIL)) (-2826 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-132)) (|has| |#1| (-565))))) (-2837 (((-3 $ "failed") $ $) 91 (|has| |#1| (-565))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-565)))) (-2565 ((|#2| $) 22)) (-3257 ((|#1| $) NIL (|has| |#1| (-461)))) (-2942 (((-871) $) NIL) (($ (-573)) 46) (($ $) NIL (|has| |#1| (-565))) (($ |#1|) 41) (($ (-416 (-573))) NIL (-2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573))))))) (-1920 (((-653 |#1|) $) NIL)) (-4317 ((|#1| $ |#2|) 37)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) 15 T CONST)) (-1538 (($ $ $ (-780)) 74 (|has| |#1| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) 84 (|has| |#1| (-565)))) (-2132 (($) 27 T CONST)) (-2144 (($) 12 T CONST)) (-2981 (((-112) $ $) 83)) (-3103 (($ $ |#1|) 92 (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) 69) (($ $ (-780)) 67)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))))) +(((-973 |#1| |#2|) (-13 (-333 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-565)) (IF (|has| |#2| (-132)) (-15 -2826 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4453)) (-6 -4453) |%noBranch|))) (-1061) (-801)) (T -973)) +((-2826 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-973 *3 *2)) (-4 *2 (-132)) (-4 *3 (-565)) (-4 *3 (-1061)) (-4 *2 (-801))))) +(-13 (-333 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-565)) (IF (|has| |#2| (-132)) (-15 -2826 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4453)) (-6 -4453) |%noBranch|))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL (-2817 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-802)) (|has| |#2| (-802)))))) (-3280 (($ $ $) 65 (-12 (|has| |#1| (-802)) (|has| |#2| (-802))))) (-2983 (((-3 $ "failed") $ $) 52 (-2817 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-802)) (|has| |#2| (-802)))))) (-1486 (((-780)) 36 (-12 (|has| |#1| (-376)) (|has| |#2| (-376))))) (-2307 ((|#2| $) 22)) (-3961 ((|#1| $) 21)) (-2579 (($) NIL (-2817 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-482)) (|has| |#2| (-482))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-802)) (|has| |#2| (-802)))) CONST)) (-2232 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| |#1| (-482)) (|has| |#2| (-482))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))))) (-2819 (($) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-376))))) (-1959 (((-112) $) NIL (-2817 (-12 (|has| |#1| (-482)) (|has| |#2| (-482))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))))) (-3659 (($ $ $) NIL (-2817 (-12 (|has| |#1| (-802)) (|has| |#2| (-802))) (-12 (|has| |#1| (-859)) (|has| |#2| (-859)))))) (-3751 (($ $ $) NIL (-2817 (-12 (|has| |#1| (-802)) (|has| |#2| (-802))) (-12 (|has| |#1| (-859)) (|has| |#2| (-859)))))) (-1403 (($ |#1| |#2|) 20)) (-3589 (((-931) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-376))))) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 39 (-12 (|has| |#1| (-482)) (|has| |#2| (-482))))) (-2575 (($ (-931)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-376))))) (-3965 (((-1132) $) NIL)) (-3204 (($ $ $) NIL (-12 (|has| |#1| (-482)) (|has| |#2| (-482))))) (-4380 (($ $ $) NIL (-12 (|has| |#1| (-482)) (|has| |#2| (-482))))) (-2942 (((-871) $) 14)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 42 (-2817 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-802)) (|has| |#2| (-802)))) CONST)) (-2144 (($) 25 (-2817 (-12 (|has| |#1| (-482)) (|has| |#2| (-482))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))) CONST)) (-3040 (((-112) $ $) NIL (-2817 (-12 (|has| |#1| (-802)) (|has| |#2| (-802))) (-12 (|has| |#1| (-859)) (|has| |#2| (-859)))))) (-3015 (((-112) $ $) NIL (-2817 (-12 (|has| |#1| (-802)) (|has| |#2| (-802))) (-12 (|has| |#1| (-859)) (|has| |#2| (-859)))))) (-2981 (((-112) $ $) 19)) (-3027 (((-112) $ $) NIL (-2817 (-12 (|has| |#1| (-802)) (|has| |#2| (-802))) (-12 (|has| |#1| (-859)) (|has| |#2| (-859)))))) (-3005 (((-112) $ $) 69 (-2817 (-12 (|has| |#1| (-802)) (|has| |#2| (-802))) (-12 (|has| |#1| (-859)) (|has| |#2| (-859)))))) (-3103 (($ $ $) NIL (-12 (|has| |#1| (-482)) (|has| |#2| (-482))))) (-3093 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3077 (($ $ $) 45 (-2817 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-802)) (|has| |#2| (-802)))))) (** (($ $ (-573)) NIL (-12 (|has| |#1| (-482)) (|has| |#2| (-482)))) (($ $ (-780)) 32 (-2817 (-12 (|has| |#1| (-482)) (|has| |#2| (-482))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735))))) (($ $ (-931)) NIL (-2817 (-12 (|has| |#1| (-482)) (|has| |#2| (-482))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))))) (* (($ (-573) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-780) $) 48 (-2817 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-802)) (|has| |#2| (-802))))) (($ (-931) $) NIL (-2817 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-802)) (|has| |#2| (-802))))) (($ $ $) 28 (-2817 (-12 (|has| |#1| (-482)) (|has| |#2| (-482))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735))))))) +(((-974 |#1| |#2|) (-13 (-1112) (-10 -8 (IF (|has| |#1| (-376)) (IF (|has| |#2| (-376)) (-6 (-376)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-735)) (IF (|has| |#2| (-735)) (-6 (-735)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-482)) (IF (|has| |#2| (-482)) (-6 (-482)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-802)) (IF (|has| |#2| (-802)) (-6 (-802)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-859)) (IF (|has| |#2| (-859)) (-6 (-859)) |%noBranch|) |%noBranch|) (-15 -1403 ($ |#1| |#2|)) (-15 -3961 (|#1| $)) (-15 -2307 (|#2| $)))) (-1112) (-1112)) (T -974)) +((-1403 (*1 *1 *2 *3) (-12 (-5 *1 (-974 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112)))) (-3961 (*1 *2 *1) (-12 (-4 *2 (-1112)) (-5 *1 (-974 *2 *3)) (-4 *3 (-1112)))) (-2307 (*1 *2 *1) (-12 (-4 *2 (-1112)) (-5 *1 (-974 *3 *2)) (-4 *3 (-1112))))) +(-13 (-1112) (-10 -8 (IF (|has| |#1| (-376)) (IF (|has| |#2| (-376)) (-6 (-376)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-735)) (IF (|has| |#2| (-735)) (-6 (-735)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-482)) (IF (|has| |#2| (-482)) (-6 (-482)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-802)) (IF (|has| |#2| (-802)) (-6 (-802)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-859)) (IF (|has| |#2| (-859)) (-6 (-859)) |%noBranch|) |%noBranch|) (-15 -1403 ($ |#1| |#2|)) (-15 -3961 (|#1| $)) (-15 -2307 (|#2| $)))) +((-3082 (((-1116) $) 12)) (-1395 (($ (-515) (-1116)) 14)) (-2031 (((-515) $) 9)) (-2942 (((-871) $) 24))) +(((-975) (-13 (-622 (-871)) (-10 -8 (-15 -2031 ((-515) $)) (-15 -3082 ((-1116) $)) (-15 -1395 ($ (-515) (-1116)))))) (T -975)) +((-2031 (*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-975)))) (-3082 (*1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-975)))) (-1395 (*1 *1 *2 *3) (-12 (-5 *2 (-515)) (-5 *3 (-1116)) (-5 *1 (-975))))) +(-13 (-622 (-871)) (-10 -8 (-15 -2031 ((-515) $)) (-15 -3082 ((-1116) $)) (-15 -1395 ($ (-515) (-1116))))) +((-2848 (((-112) $ $) NIL)) (-1561 (($) NIL T CONST)) (-2097 (($ $ $) 30)) (-2075 (($ $) 24)) (-3180 (((-1171) $) NIL)) (-1406 (((-700 (-882 $ $)) $) 55)) (-4091 (((-700 $) $) 45)) (-2693 (((-700 (-882 $ $)) $) 56)) (-3605 (((-700 (-882 $ $)) $) 57)) (-3233 (((-700 |#1|) $) 36)) (-4048 (((-700 (-882 $ $)) $) 54)) (-2546 (($ $ $) 31)) (-3965 (((-1132) $) NIL)) (-2883 (($) NIL T CONST)) (-3391 (($ $ $) 32)) (-3900 (($ $ $) 29)) (-4336 (($ $ $) 27)) (-2942 (((-871) $) 59) (($ |#1|) 12)) (-3507 (((-112) $ $) NIL)) (-2086 (($ $ $) 28)) (-2981 (((-112) $ $) NIL))) +(((-976 |#1|) (-13 (-979) (-625 |#1|) (-10 -8 (-15 -3233 ((-700 |#1|) $)) (-15 -4091 ((-700 $) $)) (-15 -4048 ((-700 (-882 $ $)) $)) (-15 -1406 ((-700 (-882 $ $)) $)) (-15 -2693 ((-700 (-882 $ $)) $)) (-15 -3605 ((-700 (-882 $ $)) $)) (-15 -4336 ($ $ $)) (-15 -3900 ($ $ $)))) (-1112)) (T -976)) +((-3233 (*1 *2 *1) (-12 (-5 *2 (-700 *3)) (-5 *1 (-976 *3)) (-4 *3 (-1112)))) (-4091 (*1 *2 *1) (-12 (-5 *2 (-700 (-976 *3))) (-5 *1 (-976 *3)) (-4 *3 (-1112)))) (-4048 (*1 *2 *1) (-12 (-5 *2 (-700 (-882 (-976 *3) (-976 *3)))) (-5 *1 (-976 *3)) (-4 *3 (-1112)))) (-1406 (*1 *2 *1) (-12 (-5 *2 (-700 (-882 (-976 *3) (-976 *3)))) (-5 *1 (-976 *3)) (-4 *3 (-1112)))) (-2693 (*1 *2 *1) (-12 (-5 *2 (-700 (-882 (-976 *3) (-976 *3)))) (-5 *1 (-976 *3)) (-4 *3 (-1112)))) (-3605 (*1 *2 *1) (-12 (-5 *2 (-700 (-882 (-976 *3) (-976 *3)))) (-5 *1 (-976 *3)) (-4 *3 (-1112)))) (-4336 (*1 *1 *1 *1) (-12 (-5 *1 (-976 *2)) (-4 *2 (-1112)))) (-3900 (*1 *1 *1 *1) (-12 (-5 *1 (-976 *2)) (-4 *2 (-1112))))) +(-13 (-979) (-625 |#1|) (-10 -8 (-15 -3233 ((-700 |#1|) $)) (-15 -4091 ((-700 $) $)) (-15 -4048 ((-700 (-882 $ $)) $)) (-15 -1406 ((-700 (-882 $ $)) $)) (-15 -2693 ((-700 (-882 $ $)) $)) (-15 -3605 ((-700 (-882 $ $)) $)) (-15 -4336 ($ $ $)) (-15 -3900 ($ $ $)))) +((-1953 (((-976 |#1|) (-976 |#1|)) 46)) (-4337 (((-976 |#1|) (-976 |#1|)) 22)) (-2885 (((-1114 |#1|) (-976 |#1|)) 41))) +(((-977 |#1|) (-13 (-1230) (-10 -7 (-15 -4337 ((-976 |#1|) (-976 |#1|))) (-15 -2885 ((-1114 |#1|) (-976 |#1|))) (-15 -1953 ((-976 |#1|) (-976 |#1|))))) (-1112)) (T -977)) +((-4337 (*1 *2 *2) (-12 (-5 *2 (-976 *3)) (-4 *3 (-1112)) (-5 *1 (-977 *3)))) (-2885 (*1 *2 *3) (-12 (-5 *3 (-976 *4)) (-4 *4 (-1112)) (-5 *2 (-1114 *4)) (-5 *1 (-977 *4)))) (-1953 (*1 *2 *2) (-12 (-5 *2 (-976 *3)) (-4 *3 (-1112)) (-5 *1 (-977 *3))))) +(-13 (-1230) (-10 -7 (-15 -4337 ((-976 |#1|) (-976 |#1|))) (-15 -2885 ((-1114 |#1|) (-976 |#1|))) (-15 -1953 ((-976 |#1|) (-976 |#1|))))) +((-1776 (((-976 |#2|) (-1 |#2| |#1|) (-976 |#1|)) 29))) +(((-978 |#1| |#2|) (-13 (-1230) (-10 -7 (-15 -1776 ((-976 |#2|) (-1 |#2| |#1|) (-976 |#1|))))) (-1112) (-1112)) (T -978)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-976 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-976 *6)) (-5 *1 (-978 *5 *6))))) +(-13 (-1230) (-10 -7 (-15 -1776 ((-976 |#2|) (-1 |#2| |#1|) (-976 |#1|))))) +((-2848 (((-112) $ $) 15)) (-1561 (($) 14 T CONST)) (-2097 (($ $ $) 6)) (-2075 (($ $) 8)) (-3180 (((-1171) $) 19)) (-2546 (($ $ $) 12)) (-3965 (((-1132) $) 18)) (-2883 (($) 13 T CONST)) (-3391 (($ $ $) 11)) (-2942 (((-871) $) 17)) (-3507 (((-112) $ $) 20)) (-2086 (($ $ $) 7)) (-2981 (((-112) $ $) 16))) +(((-979) (-141)) (T -979)) +((-1561 (*1 *1) (-4 *1 (-979))) (-2883 (*1 *1) (-4 *1 (-979))) (-2546 (*1 *1 *1 *1) (-4 *1 (-979))) (-3391 (*1 *1 *1 *1) (-4 *1 (-979)))) +(-13 (-113) (-1112) (-10 -8 (-15 -1561 ($) -1705) (-15 -2883 ($) -1705) (-15 -2546 ($ $ $)) (-15 -3391 ($ $ $)))) +(((-102) . T) ((-113) . T) ((-622 (-871)) . T) ((-1112) . T) ((-1230) . T)) +((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3450 (((-112) $ (-780)) 8)) (-2579 (($) 7 T CONST)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) 9)) (-4241 (($ $ $) 44)) (-1480 (($ $ $) 45)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3751 ((|#1| $) 46)) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-2487 ((|#1| $) 40)) (-3181 (($ |#1| $) 41)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-3815 ((|#1| $) 42)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-2679 (($ (-653 |#1|)) 43)) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-980 |#1|) (-141) (-859)) (T -980)) +((-3751 (*1 *2 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-859)))) (-1480 (*1 *1 *1 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-859)))) (-4241 (*1 *1 *1 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-859))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4455) (-15 -3751 (|t#1| $)) (-15 -1480 ($ $ $)) (-15 -4241 ($ $ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) +((-3812 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2872 |#2|)) |#2| |#2|) 105)) (-4183 ((|#2| |#2| |#2|) 103)) (-3062 (((-2 (|:| |coef2| |#2|) (|:| -2872 |#2|)) |#2| |#2|) 107)) (-1650 (((-2 (|:| |coef1| |#2|) (|:| -2872 |#2|)) |#2| |#2|) 109)) (-3633 (((-2 (|:| |coef2| |#2|) (|:| -1543 |#1|)) |#2| |#2|) 131 (|has| |#1| (-461)))) (-3405 (((-2 (|:| |coef2| |#2|) (|:| -2277 |#1|)) |#2| |#2|) 56)) (-2962 (((-2 (|:| |coef2| |#2|) (|:| -2277 |#1|)) |#2| |#2|) 80)) (-1978 (((-2 (|:| |coef1| |#2|) (|:| -2277 |#1|)) |#2| |#2|) 82)) (-2480 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-2664 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-780)) 89)) (-2056 (((-2 (|:| |coef2| |#2|) (|:| -3592 |#1|)) |#2|) 121)) (-3792 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-780)) 92)) (-4157 (((-653 (-780)) |#2| |#2|) 102)) (-3645 ((|#1| |#2| |#2|) 50)) (-2344 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1543 |#1|)) |#2| |#2|) 129 (|has| |#1| (-461)))) (-1543 ((|#1| |#2| |#2|) 127 (|has| |#1| (-461)))) (-3221 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2277 |#1|)) |#2| |#2|) 54)) (-3177 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2277 |#1|)) |#2| |#2|) 79)) (-2277 ((|#1| |#2| |#2|) 76)) (-1368 (((-2 (|:| -1857 |#1|) (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2|) 41)) (-3478 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-3323 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-2395 ((|#2| |#2| |#2|) 93)) (-2824 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-780)) 87)) (-1671 ((|#2| |#2| |#2| (-780)) 85)) (-2872 ((|#2| |#2| |#2|) 135 (|has| |#1| (-461)))) (-2837 (((-1280 |#2|) (-1280 |#2|) |#1|) 22)) (-1405 (((-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2|) 46)) (-2041 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3592 |#1|)) |#2|) 119)) (-3592 ((|#1| |#2|) 116)) (-3602 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-780)) 91)) (-3160 ((|#2| |#2| |#2| (-780)) 90)) (-2601 (((-653 |#2|) |#2| |#2|) 99)) (-1439 ((|#2| |#2| |#1| |#1| (-780)) 62)) (-3438 ((|#1| |#1| |#1| (-780)) 61)) (* (((-1280 |#2|) |#1| (-1280 |#2|)) 17))) +(((-981 |#1| |#2|) (-10 -7 (-15 -2277 (|#1| |#2| |#2|)) (-15 -3177 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2277 |#1|)) |#2| |#2|)) (-15 -2962 ((-2 (|:| |coef2| |#2|) (|:| -2277 |#1|)) |#2| |#2|)) (-15 -1978 ((-2 (|:| |coef1| |#2|) (|:| -2277 |#1|)) |#2| |#2|)) (-15 -1671 (|#2| |#2| |#2| (-780))) (-15 -2824 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-780))) (-15 -2664 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-780))) (-15 -3160 (|#2| |#2| |#2| (-780))) (-15 -3602 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-780))) (-15 -3792 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-780))) (-15 -2395 (|#2| |#2| |#2|)) (-15 -3323 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2480 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4183 (|#2| |#2| |#2|)) (-15 -3812 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2872 |#2|)) |#2| |#2|)) (-15 -3062 ((-2 (|:| |coef2| |#2|) (|:| -2872 |#2|)) |#2| |#2|)) (-15 -1650 ((-2 (|:| |coef1| |#2|) (|:| -2872 |#2|)) |#2| |#2|)) (-15 -3592 (|#1| |#2|)) (-15 -2041 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3592 |#1|)) |#2|)) (-15 -2056 ((-2 (|:| |coef2| |#2|) (|:| -3592 |#1|)) |#2|)) (-15 -2601 ((-653 |#2|) |#2| |#2|)) (-15 -4157 ((-653 (-780)) |#2| |#2|)) (IF (|has| |#1| (-461)) (PROGN (-15 -1543 (|#1| |#2| |#2|)) (-15 -2344 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1543 |#1|)) |#2| |#2|)) (-15 -3633 ((-2 (|:| |coef2| |#2|) (|:| -1543 |#1|)) |#2| |#2|)) (-15 -2872 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1280 |#2|) |#1| (-1280 |#2|))) (-15 -2837 ((-1280 |#2|) (-1280 |#2|) |#1|)) (-15 -1368 ((-2 (|:| -1857 |#1|) (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2|)) (-15 -1405 ((-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2|)) (-15 -3438 (|#1| |#1| |#1| (-780))) (-15 -1439 (|#2| |#2| |#1| |#1| (-780))) (-15 -3478 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3645 (|#1| |#2| |#2|)) (-15 -3221 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2277 |#1|)) |#2| |#2|)) (-15 -3405 ((-2 (|:| |coef2| |#2|) (|:| -2277 |#1|)) |#2| |#2|))) (-565) (-1256 |#1|)) (T -981)) +((-3405 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2277 *4))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-3221 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2277 *4))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-3645 (*1 *2 *3 *3) (-12 (-4 *2 (-565)) (-5 *1 (-981 *2 *3)) (-4 *3 (-1256 *2)))) (-3478 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-565)) (-5 *1 (-981 *3 *2)) (-4 *2 (-1256 *3)))) (-1439 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-780)) (-4 *3 (-565)) (-5 *1 (-981 *3 *2)) (-4 *2 (-1256 *3)))) (-3438 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-780)) (-4 *2 (-565)) (-5 *1 (-981 *2 *4)) (-4 *4 (-1256 *2)))) (-1405 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-1368 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| -1857 *4) (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-2837 (*1 *2 *2 *3) (-12 (-5 *2 (-1280 *4)) (-4 *4 (-1256 *3)) (-4 *3 (-565)) (-5 *1 (-981 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1280 *4)) (-4 *4 (-1256 *3)) (-4 *3 (-565)) (-5 *1 (-981 *3 *4)))) (-2872 (*1 *2 *2 *2) (-12 (-4 *3 (-461)) (-4 *3 (-565)) (-5 *1 (-981 *3 *2)) (-4 *2 (-1256 *3)))) (-3633 (*1 *2 *3 *3) (-12 (-4 *4 (-461)) (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1543 *4))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-2344 (*1 *2 *3 *3) (-12 (-4 *4 (-461)) (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1543 *4))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-1543 (*1 *2 *3 *3) (-12 (-4 *2 (-565)) (-4 *2 (-461)) (-5 *1 (-981 *2 *3)) (-4 *3 (-1256 *2)))) (-4157 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-5 *2 (-653 (-780))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-2601 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-5 *2 (-653 *3)) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-2056 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3592 *4))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-2041 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3592 *4))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-3592 (*1 *2 *3) (-12 (-4 *2 (-565)) (-5 *1 (-981 *2 *3)) (-4 *3 (-1256 *2)))) (-1650 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2872 *3))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-3062 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2872 *3))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-3812 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2872 *3))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-4183 (*1 *2 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-981 *3 *2)) (-4 *2 (-1256 *3)))) (-2480 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-3323 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-2395 (*1 *2 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-981 *3 *2)) (-4 *2 (-1256 *3)))) (-3792 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-780)) (-4 *5 (-565)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-981 *5 *3)) (-4 *3 (-1256 *5)))) (-3602 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-780)) (-4 *5 (-565)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-981 *5 *3)) (-4 *3 (-1256 *5)))) (-3160 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-780)) (-4 *4 (-565)) (-5 *1 (-981 *4 *2)) (-4 *2 (-1256 *4)))) (-2664 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-780)) (-4 *5 (-565)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-981 *5 *3)) (-4 *3 (-1256 *5)))) (-2824 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-780)) (-4 *5 (-565)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-981 *5 *3)) (-4 *3 (-1256 *5)))) (-1671 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-780)) (-4 *4 (-565)) (-5 *1 (-981 *4 *2)) (-4 *2 (-1256 *4)))) (-1978 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2277 *4))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-2962 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2277 *4))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-3177 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2277 *4))) (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) (-2277 (*1 *2 *3 *3) (-12 (-4 *2 (-565)) (-5 *1 (-981 *2 *3)) (-4 *3 (-1256 *2))))) +(-10 -7 (-15 -2277 (|#1| |#2| |#2|)) (-15 -3177 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2277 |#1|)) |#2| |#2|)) (-15 -2962 ((-2 (|:| |coef2| |#2|) (|:| -2277 |#1|)) |#2| |#2|)) (-15 -1978 ((-2 (|:| |coef1| |#2|) (|:| -2277 |#1|)) |#2| |#2|)) (-15 -1671 (|#2| |#2| |#2| (-780))) (-15 -2824 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-780))) (-15 -2664 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-780))) (-15 -3160 (|#2| |#2| |#2| (-780))) (-15 -3602 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-780))) (-15 -3792 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-780))) (-15 -2395 (|#2| |#2| |#2|)) (-15 -3323 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2480 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4183 (|#2| |#2| |#2|)) (-15 -3812 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2872 |#2|)) |#2| |#2|)) (-15 -3062 ((-2 (|:| |coef2| |#2|) (|:| -2872 |#2|)) |#2| |#2|)) (-15 -1650 ((-2 (|:| |coef1| |#2|) (|:| -2872 |#2|)) |#2| |#2|)) (-15 -3592 (|#1| |#2|)) (-15 -2041 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3592 |#1|)) |#2|)) (-15 -2056 ((-2 (|:| |coef2| |#2|) (|:| -3592 |#1|)) |#2|)) (-15 -2601 ((-653 |#2|) |#2| |#2|)) (-15 -4157 ((-653 (-780)) |#2| |#2|)) (IF (|has| |#1| (-461)) (PROGN (-15 -1543 (|#1| |#2| |#2|)) (-15 -2344 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1543 |#1|)) |#2| |#2|)) (-15 -3633 ((-2 (|:| |coef2| |#2|) (|:| -1543 |#1|)) |#2| |#2|)) (-15 -2872 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1280 |#2|) |#1| (-1280 |#2|))) (-15 -2837 ((-1280 |#2|) (-1280 |#2|) |#1|)) (-15 -1368 ((-2 (|:| -1857 |#1|) (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2|)) (-15 -1405 ((-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) |#2| |#2|)) (-15 -3438 (|#1| |#1| |#1| (-780))) (-15 -1439 (|#2| |#2| |#1| |#1| (-780))) (-15 -3478 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3645 (|#1| |#2| |#2|)) (-15 -3221 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2277 |#1|)) |#2| |#2|)) (-15 -3405 ((-2 (|:| |coef2| |#2|) (|:| -2277 |#1|)) |#2| |#2|))) +((-2848 (((-112) $ $) NIL)) (-2334 (((-1229) $) 13)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-4015 (((-1147) $) 10)) (-2942 (((-871) $) 20) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-982) (-13 (-1095) (-10 -8 (-15 -4015 ((-1147) $)) (-15 -2334 ((-1229) $))))) (T -982)) +((-4015 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-982)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-1229)) (-5 *1 (-982))))) +(-13 (-1095) (-10 -8 (-15 -4015 ((-1147) $)) (-15 -2334 ((-1229) $)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 40)) (-2983 (((-3 $ "failed") $ $) 54)) (-2579 (($) NIL T CONST)) (-3201 (((-653 (-882 (-931) (-931))) $) 67)) (-3744 (((-931) $) 94)) (-1863 (((-653 (-931)) $) 17)) (-2008 (((-1169 $) (-780)) 39)) (-2603 (($ (-653 (-931))) 16)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-3204 (($ $) 70)) (-2942 (((-871) $) 90) (((-653 (-931)) $) 11)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 8 T CONST)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 44)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 42)) (-3077 (($ $ $) 46)) (* (($ (-931) $) NIL) (($ (-780) $) 49)) (-2862 (((-780) $) 22))) +(((-983) (-13 (-804) (-622 (-653 (-931))) (-10 -8 (-15 -2603 ($ (-653 (-931)))) (-15 -1863 ((-653 (-931)) $)) (-15 -2862 ((-780) $)) (-15 -2008 ((-1169 $) (-780))) (-15 -3201 ((-653 (-882 (-931) (-931))) $)) (-15 -3744 ((-931) $)) (-15 -3204 ($ $))))) (T -983)) +((-2603 (*1 *1 *2) (-12 (-5 *2 (-653 (-931))) (-5 *1 (-983)))) (-1863 (*1 *2 *1) (-12 (-5 *2 (-653 (-931))) (-5 *1 (-983)))) (-2862 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-983)))) (-2008 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1169 (-983))) (-5 *1 (-983)))) (-3201 (*1 *2 *1) (-12 (-5 *2 (-653 (-882 (-931) (-931)))) (-5 *1 (-983)))) (-3744 (*1 *2 *1) (-12 (-5 *2 (-931)) (-5 *1 (-983)))) (-3204 (*1 *1 *1) (-5 *1 (-983)))) +(-13 (-804) (-622 (-653 (-931))) (-10 -8 (-15 -2603 ($ (-653 (-931)))) (-15 -1863 ((-653 (-931)) $)) (-15 -2862 ((-780) $)) (-15 -2008 ((-1169 $) (-780))) (-15 -3201 ((-653 (-882 (-931) (-931))) $)) (-15 -3744 ((-931) $)) (-15 -3204 ($ $)))) +((-3103 (($ $ |#2|) 31)) (-3093 (($ $) 23) (($ $ $) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-416 (-573)) $) 27) (($ $ (-416 (-573))) 29))) +(((-984 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-416 (-573)))) (-15 * (|#1| (-416 (-573)) |#1|)) (-15 -3103 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-931) |#1|))) (-985 |#2| |#3| |#4|) (-1061) (-801) (-859)) (T -984)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-416 (-573)))) (-15 * (|#1| (-416 (-573)) |#1|)) (-15 -3103 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 * (|#1| (-931) |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4354 (((-653 |#3|) $) 86)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 63 (|has| |#1| (-565)))) (-2456 (($ $) 64 (|has| |#1| (-565)))) (-1345 (((-112) $) 66 (|has| |#1| (-565)))) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-1391 (($ $) 72)) (-2232 (((-3 $ "failed") $) 37)) (-1488 (((-112) $) 85)) (-1959 (((-112) $) 35)) (-3676 (((-112) $) 74)) (-4334 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-653 |#3|) (-653 |#2|)) 87)) (-1776 (($ (-1 |#1| |#1|) $) 75)) (-1358 (($ $) 77)) (-1369 ((|#1| $) 78)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2837 (((-3 $ "failed") $ $) 62 (|has| |#1| (-565)))) (-2565 ((|#2| $) 76)) (-4101 (($ $) 84)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ (-416 (-573))) 69 (|has| |#1| (-38 (-416 (-573))))) (($ $) 61 (|has| |#1| (-565))) (($ |#1|) 59 (|has| |#1| (-174)))) (-4317 ((|#1| $ |#2|) 71)) (-4279 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 65 (|has| |#1| (-565)))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 70 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-416 (-573)) $) 68 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 67 (|has| |#1| (-38 (-416 (-573))))))) +(((-985 |#1| |#2| |#3|) (-141) (-1061) (-801) (-859)) (T -985)) +((-1369 (*1 *2 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *3 (-801)) (-4 *4 (-859)) (-4 *2 (-1061)))) (-1358 (*1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-801)) (-4 *4 (-859)))) (-2565 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *2 *4)) (-4 *3 (-1061)) (-4 *4 (-859)) (-4 *2 (-801)))) (-4334 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-985 *4 *3 *2)) (-4 *4 (-1061)) (-4 *3 (-801)) (-4 *2 (-859)))) (-4334 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 *6)) (-5 *3 (-653 *5)) (-4 *1 (-985 *4 *5 *6)) (-4 *4 (-1061)) (-4 *5 (-801)) (-4 *6 (-859)))) (-4354 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-801)) (-4 *5 (-859)) (-5 *2 (-653 *5)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-801)) (-4 *5 (-859)) (-5 *2 (-112)))) (-4101 (*1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-801)) (-4 *4 (-859))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -4334 ($ $ |t#3| |t#2|)) (-15 -4334 ($ $ (-653 |t#3|) (-653 |t#2|))) (-15 -1358 ($ $)) (-15 -1369 (|t#1| $)) (-15 -2565 (|t#2| $)) (-15 -4354 ((-653 |t#3|) $)) (-15 -1488 ((-112) $)) (-15 -4101 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-565)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-416 (-573)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #0#) |has| |#1| (-38 (-416 (-573)))) ((-625 (-573)) . T) ((-625 |#1|) |has| |#1| (-174)) ((-625 $) |has| |#1| (-565)) ((-622 (-871)) . T) ((-174) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-297) |has| |#1| (-565)) ((-565) |has| |#1| (-565)) ((-655 #0#) |has| |#1| (-38 (-416 (-573)))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #0#) |has| |#1| (-38 (-416 (-573)))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #0#) |has| |#1| (-38 (-416 (-573)))) ((-649 |#1|) |has| |#1| (-174)) ((-649 $) |has| |#1| (-565)) ((-726 #0#) |has| |#1| (-38 (-416 (-573)))) ((-726 |#1|) |has| |#1| (-174)) ((-726 $) |has| |#1| (-565)) ((-735) . T) ((-1063 #0#) |has| |#1| (-38 (-416 (-573)))) ((-1063 |#1|) . T) ((-1063 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-1068 #0#) |has| |#1| (-38 (-416 (-573)))) ((-1068 |#1|) . T) ((-1068 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) +((-2436 (((-1106 (-227)) $) 8)) (-2423 (((-1106 (-227)) $) 9)) (-2410 (((-1106 (-227)) $) 10)) (-3054 (((-653 (-653 (-953 (-227)))) $) 11)) (-2942 (((-871) $) 6))) +(((-986) (-141)) (T -986)) +((-3054 (*1 *2 *1) (-12 (-4 *1 (-986)) (-5 *2 (-653 (-653 (-953 (-227))))))) (-2410 (*1 *2 *1) (-12 (-4 *1 (-986)) (-5 *2 (-1106 (-227))))) (-2423 (*1 *2 *1) (-12 (-4 *1 (-986)) (-5 *2 (-1106 (-227))))) (-2436 (*1 *2 *1) (-12 (-4 *1 (-986)) (-5 *2 (-1106 (-227)))))) +(-13 (-622 (-871)) (-10 -8 (-15 -3054 ((-653 (-653 (-953 (-227)))) $)) (-15 -2410 ((-1106 (-227)) $)) (-15 -2423 ((-1106 (-227)) $)) (-15 -2436 ((-1106 (-227)) $)))) +(((-622 (-871)) . T)) +((-4354 (((-653 |#4|) $) 23)) (-2577 (((-112) $) 55)) (-2020 (((-112) $) 54)) (-2770 (((-2 (|:| |under| $) (|:| -3733 $) (|:| |upper| $)) $ |#4|) 42)) (-2194 (((-112) $) 56)) (-1849 (((-112) $ $) 62)) (-2838 (((-112) $ $) 65)) (-3145 (((-112) $) 60)) (-2346 (((-653 |#5|) (-653 |#5|) $) 98)) (-2475 (((-653 |#5|) (-653 |#5|) $) 95)) (-3132 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-1937 (((-653 |#4|) $) 27)) (-1689 (((-112) |#4| $) 34)) (-3582 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-4409 (($ $ |#4|) 39)) (-3496 (($ $ |#4|) 38)) (-1456 (($ $ |#4|) 40)) (-2981 (((-112) $ $) 46))) +(((-987 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2020 ((-112) |#1|)) (-15 -2346 ((-653 |#5|) (-653 |#5|) |#1|)) (-15 -2475 ((-653 |#5|) (-653 |#5|) |#1|)) (-15 -3132 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3582 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2194 ((-112) |#1|)) (-15 -2838 ((-112) |#1| |#1|)) (-15 -1849 ((-112) |#1| |#1|)) (-15 -3145 ((-112) |#1|)) (-15 -2577 ((-112) |#1|)) (-15 -2770 ((-2 (|:| |under| |#1|) (|:| -3733 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -4409 (|#1| |#1| |#4|)) (-15 -1456 (|#1| |#1| |#4|)) (-15 -3496 (|#1| |#1| |#4|)) (-15 -1689 ((-112) |#4| |#1|)) (-15 -1937 ((-653 |#4|) |#1|)) (-15 -4354 ((-653 |#4|) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) (-988 |#2| |#3| |#4| |#5|) (-1061) (-802) (-859) (-1077 |#2| |#3| |#4|)) (T -987)) +NIL +(-10 -8 (-15 -2020 ((-112) |#1|)) (-15 -2346 ((-653 |#5|) (-653 |#5|) |#1|)) (-15 -2475 ((-653 |#5|) (-653 |#5|) |#1|)) (-15 -3132 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3582 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2194 ((-112) |#1|)) (-15 -2838 ((-112) |#1| |#1|)) (-15 -1849 ((-112) |#1| |#1|)) (-15 -3145 ((-112) |#1|)) (-15 -2577 ((-112) |#1|)) (-15 -2770 ((-2 (|:| |under| |#1|) (|:| -3733 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -4409 (|#1| |#1| |#4|)) (-15 -1456 (|#1| |#1| |#4|)) (-15 -3496 (|#1| |#1| |#4|)) (-15 -1689 ((-112) |#4| |#1|)) (-15 -1937 ((-653 |#4|) |#1|)) (-15 -4354 ((-653 |#4|) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) +((-2848 (((-112) $ $) 7)) (-4354 (((-653 |#3|) $) 34)) (-2577 (((-112) $) 27)) (-2020 (((-112) $) 18 (|has| |#1| (-565)))) (-2770 (((-2 (|:| |under| $) (|:| -3733 $) (|:| |upper| $)) $ |#3|) 28)) (-3450 (((-112) $ (-780)) 45)) (-2164 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4455)))) (-2579 (($) 46 T CONST)) (-2194 (((-112) $) 23 (|has| |#1| (-565)))) (-1849 (((-112) $ $) 25 (|has| |#1| (-565)))) (-2838 (((-112) $ $) 24 (|has| |#1| (-565)))) (-3145 (((-112) $) 26 (|has| |#1| (-565)))) (-2346 (((-653 |#4|) (-653 |#4|) $) 19 (|has| |#1| (-565)))) (-2475 (((-653 |#4|) (-653 |#4|) $) 20 (|has| |#1| (-565)))) (-1695 (((-3 $ "failed") (-653 |#4|)) 37)) (-2205 (($ (-653 |#4|)) 36)) (-2685 (($ $) 69 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ |#4| $) 68 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4455)))) (-3132 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-565)))) (-2867 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4455))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4455)))) (-1863 (((-653 |#4|) $) 53 (|has| $ (-6 -4455)))) (-3338 ((|#3| $) 35)) (-2078 (((-112) $ (-780)) 44)) (-3214 (((-653 |#4|) $) 54 (|has| $ (-6 -4455)))) (-1547 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#4| |#4|) $) 48)) (-1937 (((-653 |#3|) $) 33)) (-1689 (((-112) |#3| $) 32)) (-2673 (((-112) $ (-780)) 43)) (-3180 (((-1171) $) 10)) (-3582 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-565)))) (-3965 (((-1132) $) 11)) (-2036 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1575 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 |#4|) (-653 |#4|)) 60 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-301 |#4|)) 58 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-653 (-301 |#4|))) 57 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))))) (-1885 (((-112) $ $) 39)) (-3811 (((-112) $) 42)) (-3508 (($) 41)) (-3974 (((-780) |#4| $) 55 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) (((-780) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4455)))) (-3166 (($ $) 40)) (-1835 (((-545) $) 70 (|has| |#4| (-623 (-545))))) (-2955 (($ (-653 |#4|)) 61)) (-4409 (($ $ |#3|) 29)) (-3496 (($ $ |#3|) 31)) (-1456 (($ $ |#3|) 30)) (-2942 (((-871) $) 12) (((-653 |#4|) $) 38)) (-3507 (((-112) $ $) 9)) (-1646 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 6)) (-2862 (((-780) $) 47 (|has| $ (-6 -4455))))) +(((-988 |#1| |#2| |#3| |#4|) (-141) (-1061) (-802) (-859) (-1077 |t#1| |t#2| |t#3|)) (T -988)) +((-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *1 (-988 *3 *4 *5 *6)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *1 (-988 *3 *4 *5 *6)))) (-3338 (*1 *2 *1) (-12 (-4 *1 (-988 *3 *4 *2 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-1077 *3 *4 *2)) (-4 *2 (-859)))) (-4354 (*1 *2 *1) (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-653 *5)))) (-1937 (*1 *2 *1) (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-653 *5)))) (-1689 (*1 *2 *3 *1) (-12 (-4 *1 (-988 *4 *5 *3 *6)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-859)) (-4 *6 (-1077 *4 *5 *3)) (-5 *2 (-112)))) (-3496 (*1 *1 *1 *2) (-12 (-4 *1 (-988 *3 *4 *2 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *2 (-859)) (-4 *5 (-1077 *3 *4 *2)))) (-1456 (*1 *1 *1 *2) (-12 (-4 *1 (-988 *3 *4 *2 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *2 (-859)) (-4 *5 (-1077 *3 *4 *2)))) (-4409 (*1 *1 *1 *2) (-12 (-4 *1 (-988 *3 *4 *2 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *2 (-859)) (-4 *5 (-1077 *3 *4 *2)))) (-2770 (*1 *2 *1 *3) (-12 (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-859)) (-4 *6 (-1077 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3733 *1) (|:| |upper| *1))) (-4 *1 (-988 *4 *5 *3 *6)))) (-2577 (*1 *2 *1) (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-112)))) (-3145 (*1 *2 *1) (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) (-5 *2 (-112)))) (-1849 (*1 *2 *1 *1) (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) (-5 *2 (-112)))) (-2838 (*1 *2 *1 *1) (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) (-5 *2 (-112)))) (-2194 (*1 *2 *1) (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) (-5 *2 (-112)))) (-3582 (*1 *2 *3 *1) (-12 (-4 *1 (-988 *4 *5 *6 *3)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-4 *4 (-565)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3132 (*1 *2 *3 *1) (-12 (-4 *1 (-988 *4 *5 *6 *3)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-4 *4 (-565)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2475 (*1 *2 *2 *1) (-12 (-5 *2 (-653 *6)) (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)))) (-2346 (*1 *2 *2 *1) (-12 (-5 *2 (-653 *6)) (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)))) (-2020 (*1 *2 *1) (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) (-5 *2 (-112))))) +(-13 (-1112) (-152 |t#4|) (-622 (-653 |t#4|)) (-10 -8 (-6 -4455) (-15 -1695 ((-3 $ "failed") (-653 |t#4|))) (-15 -2205 ($ (-653 |t#4|))) (-15 -3338 (|t#3| $)) (-15 -4354 ((-653 |t#3|) $)) (-15 -1937 ((-653 |t#3|) $)) (-15 -1689 ((-112) |t#3| $)) (-15 -3496 ($ $ |t#3|)) (-15 -1456 ($ $ |t#3|)) (-15 -4409 ($ $ |t#3|)) (-15 -2770 ((-2 (|:| |under| $) (|:| -3733 $) (|:| |upper| $)) $ |t#3|)) (-15 -2577 ((-112) $)) (IF (|has| |t#1| (-565)) (PROGN (-15 -3145 ((-112) $)) (-15 -1849 ((-112) $ $)) (-15 -2838 ((-112) $ $)) (-15 -2194 ((-112) $)) (-15 -3582 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3132 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2475 ((-653 |t#4|) (-653 |t#4|) $)) (-15 -2346 ((-653 |t#4|) (-653 |t#4|) $)) (-15 -2020 ((-112) $))) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-622 (-653 |#4|)) . T) ((-622 (-871)) . T) ((-152 |#4|) . T) ((-623 (-545)) |has| |#4| (-623 (-545))) ((-316 |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))) ((-498 |#4|) . T) ((-523 |#4| |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))) ((-1112) . T) ((-1230) . T)) +((-2472 (((-653 |#4|) |#4| |#4|) 136)) (-1777 (((-653 |#4|) (-653 |#4|) (-112)) 125 (|has| |#1| (-461))) (((-653 |#4|) (-653 |#4|)) 126 (|has| |#1| (-461)))) (-3515 (((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 |#4|)) 44)) (-3032 (((-112) |#4|) 43)) (-3624 (((-653 |#4|) |#4|) 121 (|has| |#1| (-461)))) (-3017 (((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-1 (-112) |#4|) (-653 |#4|)) 24)) (-2918 (((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 (-1 (-112) |#4|)) (-653 |#4|)) 30)) (-2447 (((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 (-1 (-112) |#4|)) (-653 |#4|)) 31)) (-3281 (((-3 (-2 (|:| |bas| (-485 |#1| |#2| |#3| |#4|)) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|)) 90)) (-1738 (((-653 |#4|) (-653 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-3829 (((-653 |#4|) (-653 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-2724 (((-653 |#4|) (-653 |#4|)) 128)) (-3240 (((-653 |#4|) (-653 |#4|) (-653 |#4|) (-112)) 59) (((-653 |#4|) (-653 |#4|) (-653 |#4|)) 61)) (-3862 ((|#4| |#4| (-653 |#4|)) 60)) (-3269 (((-653 |#4|) (-653 |#4|) (-653 |#4|)) 132 (|has| |#1| (-461)))) (-3797 (((-653 |#4|) (-653 |#4|) (-653 |#4|)) 135 (|has| |#1| (-461)))) (-2141 (((-653 |#4|) (-653 |#4|) (-653 |#4|)) 134 (|has| |#1| (-461)))) (-4342 (((-653 |#4|) (-653 |#4|) (-653 |#4|) (-1 (-653 |#4|) (-653 |#4|))) 105) (((-653 |#4|) (-653 |#4|) (-653 |#4|)) 107) (((-653 |#4|) (-653 |#4|) |#4|) 140) (((-653 |#4|) |#4| |#4|) 137) (((-653 |#4|) (-653 |#4|)) 106)) (-1864 (((-653 |#4|) (-653 |#4|) (-653 |#4|)) 118 (-12 (|has| |#1| (-148)) (|has| |#1| (-314))))) (-3547 (((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 |#4|)) 52)) (-4017 (((-112) (-653 |#4|)) 79)) (-3294 (((-112) (-653 |#4|) (-653 (-653 |#4|))) 67)) (-3305 (((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 |#4|)) 37)) (-2498 (((-112) |#4|) 36)) (-1412 (((-653 |#4|) (-653 |#4|)) 116 (-12 (|has| |#1| (-148)) (|has| |#1| (-314))))) (-4158 (((-653 |#4|) (-653 |#4|)) 117 (-12 (|has| |#1| (-148)) (|has| |#1| (-314))))) (-1923 (((-653 |#4|) (-653 |#4|)) 83)) (-3243 (((-653 |#4|) (-653 |#4|)) 97)) (-3317 (((-112) (-653 |#4|) (-653 |#4|)) 65)) (-3025 (((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 |#4|)) 50)) (-1579 (((-112) |#4|) 45))) +(((-989 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4342 ((-653 |#4|) (-653 |#4|))) (-15 -4342 ((-653 |#4|) |#4| |#4|)) (-15 -2724 ((-653 |#4|) (-653 |#4|))) (-15 -2472 ((-653 |#4|) |#4| |#4|)) (-15 -4342 ((-653 |#4|) (-653 |#4|) |#4|)) (-15 -4342 ((-653 |#4|) (-653 |#4|) (-653 |#4|))) (-15 -4342 ((-653 |#4|) (-653 |#4|) (-653 |#4|) (-1 (-653 |#4|) (-653 |#4|)))) (-15 -3317 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -3294 ((-112) (-653 |#4|) (-653 (-653 |#4|)))) (-15 -4017 ((-112) (-653 |#4|))) (-15 -3017 ((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-1 (-112) |#4|) (-653 |#4|))) (-15 -2918 ((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 (-1 (-112) |#4|)) (-653 |#4|))) (-15 -2447 ((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 (-1 (-112) |#4|)) (-653 |#4|))) (-15 -3547 ((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 |#4|))) (-15 -3032 ((-112) |#4|)) (-15 -3515 ((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 |#4|))) (-15 -2498 ((-112) |#4|)) (-15 -3305 ((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 |#4|))) (-15 -1579 ((-112) |#4|)) (-15 -3025 ((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 |#4|))) (-15 -3240 ((-653 |#4|) (-653 |#4|) (-653 |#4|))) (-15 -3240 ((-653 |#4|) (-653 |#4|) (-653 |#4|) (-112))) (-15 -3862 (|#4| |#4| (-653 |#4|))) (-15 -1923 ((-653 |#4|) (-653 |#4|))) (-15 -3281 ((-3 (-2 (|:| |bas| (-485 |#1| |#2| |#3| |#4|)) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|))) (-15 -3243 ((-653 |#4|) (-653 |#4|))) (-15 -1738 ((-653 |#4|) (-653 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3829 ((-653 |#4|) (-653 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-461)) (PROGN (-15 -3624 ((-653 |#4|) |#4|)) (-15 -1777 ((-653 |#4|) (-653 |#4|))) (-15 -1777 ((-653 |#4|) (-653 |#4|) (-112))) (-15 -3269 ((-653 |#4|) (-653 |#4|) (-653 |#4|))) (-15 -2141 ((-653 |#4|) (-653 |#4|) (-653 |#4|))) (-15 -3797 ((-653 |#4|) (-653 |#4|) (-653 |#4|)))) |%noBranch|) (IF (|has| |#1| (-314)) (IF (|has| |#1| (-148)) (PROGN (-15 -4158 ((-653 |#4|) (-653 |#4|))) (-15 -1412 ((-653 |#4|) (-653 |#4|))) (-15 -1864 ((-653 |#4|) (-653 |#4|) (-653 |#4|)))) |%noBranch|) |%noBranch|)) (-565) (-802) (-859) (-1077 |#1| |#2| |#3|)) (T -989)) +((-1864 (*1 *2 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-314)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6)))) (-1412 (*1 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-314)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6)))) (-4158 (*1 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-314)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6)))) (-3797 (*1 *2 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-461)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6)))) (-2141 (*1 *2 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-461)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6)))) (-3269 (*1 *2 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-461)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6)))) (-1777 (*1 *2 *2 *3) (-12 (-5 *2 (-653 *7)) (-5 *3 (-112)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-989 *4 *5 *6 *7)))) (-1777 (*1 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-461)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6)))) (-3624 (*1 *2 *3) (-12 (-4 *4 (-461)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 *3)) (-5 *1 (-989 *4 *5 *6 *3)) (-4 *3 (-1077 *4 *5 *6)))) (-3829 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-653 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-565)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *1 (-989 *5 *6 *7 *8)))) (-1738 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-653 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1077 *6 *7 *8)) (-4 *6 (-565)) (-4 *7 (-802)) (-4 *8 (-859)) (-5 *1 (-989 *6 *7 *8 *9)))) (-3243 (*1 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6)))) (-3281 (*1 *2 *3) (|partial| -12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-485 *4 *5 *6 *7)) (|:| -2001 (-653 *7)))) (-5 *1 (-989 *4 *5 *6 *7)) (-5 *3 (-653 *7)))) (-1923 (*1 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6)))) (-3862 (*1 *2 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-1077 *4 *5 *6)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-989 *4 *5 *6 *2)))) (-3240 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-653 *7)) (-5 *3 (-112)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-989 *4 *5 *6 *7)))) (-3240 (*1 *2 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6)))) (-3025 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-653 *7)) (|:| |badPols| (-653 *7)))) (-5 *1 (-989 *4 *5 *6 *7)) (-5 *3 (-653 *7)))) (-1579 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-989 *4 *5 *6 *3)) (-4 *3 (-1077 *4 *5 *6)))) (-3305 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-653 *7)) (|:| |badPols| (-653 *7)))) (-5 *1 (-989 *4 *5 *6 *7)) (-5 *3 (-653 *7)))) (-2498 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-989 *4 *5 *6 *3)) (-4 *3 (-1077 *4 *5 *6)))) (-3515 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-653 *7)) (|:| |badPols| (-653 *7)))) (-5 *1 (-989 *4 *5 *6 *7)) (-5 *3 (-653 *7)))) (-3032 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-989 *4 *5 *6 *3)) (-4 *3 (-1077 *4 *5 *6)))) (-3547 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-653 *7)) (|:| |badPols| (-653 *7)))) (-5 *1 (-989 *4 *5 *6 *7)) (-5 *3 (-653 *7)))) (-2447 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-1 (-112) *8))) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-565)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-2 (|:| |goodPols| (-653 *8)) (|:| |badPols| (-653 *8)))) (-5 *1 (-989 *5 *6 *7 *8)) (-5 *4 (-653 *8)))) (-2918 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-1 (-112) *8))) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-565)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-2 (|:| |goodPols| (-653 *8)) (|:| |badPols| (-653 *8)))) (-5 *1 (-989 *5 *6 *7 *8)) (-5 *4 (-653 *8)))) (-3017 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-565)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-2 (|:| |goodPols| (-653 *8)) (|:| |badPols| (-653 *8)))) (-5 *1 (-989 *5 *6 *7 *8)) (-5 *4 (-653 *8)))) (-4017 (*1 *2 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-989 *4 *5 *6 *7)))) (-3294 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-653 *8))) (-5 *3 (-653 *8)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-565)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-112)) (-5 *1 (-989 *5 *6 *7 *8)))) (-3317 (*1 *2 *3 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-989 *4 *5 *6 *7)))) (-4342 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-653 *7) (-653 *7))) (-5 *2 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-989 *4 *5 *6 *7)))) (-4342 (*1 *2 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6)))) (-4342 (*1 *2 *2 *3) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1077 *4 *5 *6)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-989 *4 *5 *6 *3)))) (-2472 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 *3)) (-5 *1 (-989 *4 *5 *6 *3)) (-4 *3 (-1077 *4 *5 *6)))) (-2724 (*1 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6)))) (-4342 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 *3)) (-5 *1 (-989 *4 *5 *6 *3)) (-4 *3 (-1077 *4 *5 *6)))) (-4342 (*1 *2 *2) (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6))))) +(-10 -7 (-15 -4342 ((-653 |#4|) (-653 |#4|))) (-15 -4342 ((-653 |#4|) |#4| |#4|)) (-15 -2724 ((-653 |#4|) (-653 |#4|))) (-15 -2472 ((-653 |#4|) |#4| |#4|)) (-15 -4342 ((-653 |#4|) (-653 |#4|) |#4|)) (-15 -4342 ((-653 |#4|) (-653 |#4|) (-653 |#4|))) (-15 -4342 ((-653 |#4|) (-653 |#4|) (-653 |#4|) (-1 (-653 |#4|) (-653 |#4|)))) (-15 -3317 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -3294 ((-112) (-653 |#4|) (-653 (-653 |#4|)))) (-15 -4017 ((-112) (-653 |#4|))) (-15 -3017 ((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-1 (-112) |#4|) (-653 |#4|))) (-15 -2918 ((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 (-1 (-112) |#4|)) (-653 |#4|))) (-15 -2447 ((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 (-1 (-112) |#4|)) (-653 |#4|))) (-15 -3547 ((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 |#4|))) (-15 -3032 ((-112) |#4|)) (-15 -3515 ((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 |#4|))) (-15 -2498 ((-112) |#4|)) (-15 -3305 ((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 |#4|))) (-15 -1579 ((-112) |#4|)) (-15 -3025 ((-2 (|:| |goodPols| (-653 |#4|)) (|:| |badPols| (-653 |#4|))) (-653 |#4|))) (-15 -3240 ((-653 |#4|) (-653 |#4|) (-653 |#4|))) (-15 -3240 ((-653 |#4|) (-653 |#4|) (-653 |#4|) (-112))) (-15 -3862 (|#4| |#4| (-653 |#4|))) (-15 -1923 ((-653 |#4|) (-653 |#4|))) (-15 -3281 ((-3 (-2 (|:| |bas| (-485 |#1| |#2| |#3| |#4|)) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|))) (-15 -3243 ((-653 |#4|) (-653 |#4|))) (-15 -1738 ((-653 |#4|) (-653 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3829 ((-653 |#4|) (-653 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-461)) (PROGN (-15 -3624 ((-653 |#4|) |#4|)) (-15 -1777 ((-653 |#4|) (-653 |#4|))) (-15 -1777 ((-653 |#4|) (-653 |#4|) (-112))) (-15 -3269 ((-653 |#4|) (-653 |#4|) (-653 |#4|))) (-15 -2141 ((-653 |#4|) (-653 |#4|) (-653 |#4|))) (-15 -3797 ((-653 |#4|) (-653 |#4|) (-653 |#4|)))) |%noBranch|) (IF (|has| |#1| (-314)) (IF (|has| |#1| (-148)) (PROGN (-15 -4158 ((-653 |#4|) (-653 |#4|))) (-15 -1412 ((-653 |#4|) (-653 |#4|))) (-15 -1864 ((-653 |#4|) (-653 |#4|) (-653 |#4|)))) |%noBranch|) |%noBranch|)) +((-3636 (((-2 (|:| R (-698 |#1|)) (|:| A (-698 |#1|)) (|:| |Ainv| (-698 |#1|))) (-698 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-3873 (((-653 (-2 (|:| C (-698 |#1|)) (|:| |g| (-1280 |#1|)))) (-698 |#1|) (-1280 |#1|)) 46)) (-4300 (((-698 |#1|) (-698 |#1|) (-698 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) +(((-990 |#1|) (-10 -7 (-15 -3636 ((-2 (|:| R (-698 |#1|)) (|:| A (-698 |#1|)) (|:| |Ainv| (-698 |#1|))) (-698 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4300 ((-698 |#1|) (-698 |#1|) (-698 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3873 ((-653 (-2 (|:| C (-698 |#1|)) (|:| |g| (-1280 |#1|)))) (-698 |#1|) (-1280 |#1|)))) (-371)) (T -990)) +((-3873 (*1 *2 *3 *4) (-12 (-4 *5 (-371)) (-5 *2 (-653 (-2 (|:| C (-698 *5)) (|:| |g| (-1280 *5))))) (-5 *1 (-990 *5)) (-5 *3 (-698 *5)) (-5 *4 (-1280 *5)))) (-4300 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-698 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-371)) (-5 *1 (-990 *5)))) (-3636 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-371)) (-5 *2 (-2 (|:| R (-698 *6)) (|:| A (-698 *6)) (|:| |Ainv| (-698 *6)))) (-5 *1 (-990 *6)) (-5 *3 (-698 *6))))) +(-10 -7 (-15 -3636 ((-2 (|:| R (-698 |#1|)) (|:| A (-698 |#1|)) (|:| |Ainv| (-698 |#1|))) (-698 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4300 ((-698 |#1|) (-698 |#1|) (-698 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3873 ((-653 (-2 (|:| C (-698 |#1|)) (|:| |g| (-1280 |#1|)))) (-698 |#1|) (-1280 |#1|)))) +((-2427 (((-427 |#4|) |#4|) 56))) +(((-991 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2427 ((-427 |#4|) |#4|))) (-859) (-802) (-461) (-959 |#3| |#2| |#1|)) (T -991)) +((-2427 (*1 *2 *3) (-12 (-4 *4 (-859)) (-4 *5 (-802)) (-4 *6 (-461)) (-5 *2 (-427 *3)) (-5 *1 (-991 *4 *5 *6 *3)) (-4 *3 (-959 *6 *5 *4))))) +(-10 -7 (-15 -2427 ((-427 |#4|) |#4|))) +((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-2215 (($ (-780)) 115 (|has| |#1| (-23)))) (-3791 (((-1285) $ (-573) (-573)) 41 (|has| $ (-6 -4456)))) (-1473 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-859)))) (-2748 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4456))) (($ $) 91 (-12 (|has| |#1| (-859)) (|has| $ (-6 -4456))))) (-2770 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-859)))) (-3450 (((-112) $ (-780)) 8)) (-3142 ((|#1| $ (-573) |#1|) 53 (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) 60 (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4455)))) (-2579 (($) 7 T CONST)) (-2176 (($ $) 93 (|has| $ (-6 -4456)))) (-4422 (($ $) 103)) (-2685 (($ $) 80 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ |#1| $) 79 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4455)))) (-2457 ((|#1| $ (-573) |#1|) 54 (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) 52)) (-1440 (((-573) (-1 (-112) |#1|) $) 100) (((-573) |#1| $) 99 (|has| |#1| (-1112))) (((-573) |#1| $ (-573)) 98 (|has| |#1| (-1112)))) (-3590 (($ (-653 |#1|)) 121)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-3898 (((-698 |#1|) $ $) 108 (|has| |#1| (-1061)))) (-3789 (($ (-780) |#1|) 70)) (-2078 (((-112) $ (-780)) 9)) (-1968 (((-573) $) 44 (|has| (-573) (-859)))) (-3659 (($ $ $) 90 (|has| |#1| (-859)))) (-1480 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-859)))) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3470 (((-573) $) 45 (|has| (-573) (-859)))) (-3751 (($ $ $) 89 (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3155 ((|#1| $) 105 (-12 (|has| |#1| (-1061)) (|has| |#1| (-1014))))) (-2673 (((-112) $ (-780)) 10)) (-4134 ((|#1| $) 106 (-12 (|has| |#1| (-1061)) (|has| |#1| (-1014))))) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-1593 (($ |#1| $ (-573)) 62) (($ $ $ (-573)) 61)) (-1977 (((-653 (-573)) $) 47)) (-2560 (((-112) (-573) $) 48)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-2914 ((|#1| $) 43 (|has| (-573) (-859)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-3112 (($ $ |#1|) 42 (|has| $ (-6 -4456)))) (-2212 (($ $ (-653 |#1|)) 119)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-2547 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) 49)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ (-573) |#1|) 51) ((|#1| $ (-573)) 50) (($ $ (-1247 (-573))) 71)) (-2658 ((|#1| $ $) 109 (|has| |#1| (-1061)))) (-2365 (((-931) $) 120)) (-2836 (($ $ (-573)) 64) (($ $ (-1247 (-573))) 63)) (-3925 (($ $ $) 107)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3919 (($ $ $ (-573)) 94 (|has| $ (-6 -4456)))) (-3166 (($ $) 13)) (-1835 (((-545) $) 81 (|has| |#1| (-623 (-545)))) (($ (-653 |#1|)) 122)) (-2955 (($ (-653 |#1|)) 72)) (-4156 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-653 $)) 66)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) 87 (|has| |#1| (-859)))) (-3015 (((-112) $ $) 86 (|has| |#1| (-859)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-3027 (((-112) $ $) 88 (|has| |#1| (-859)))) (-3005 (((-112) $ $) 85 (|has| |#1| (-859)))) (-3093 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3077 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-573) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-735))) (($ $ |#1|) 110 (|has| |#1| (-735)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-992 |#1|) (-141) (-1061)) (T -992)) +((-3590 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1061)) (-4 *1 (-992 *3)))) (-2365 (*1 *2 *1) (-12 (-4 *1 (-992 *3)) (-4 *3 (-1061)) (-5 *2 (-931)))) (-3925 (*1 *1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1061)))) (-2212 (*1 *1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *1 (-992 *3)) (-4 *3 (-1061))))) +(-13 (-1278 |t#1|) (-627 (-653 |t#1|)) (-10 -8 (-15 -3590 ($ (-653 |t#1|))) (-15 -2365 ((-931) $)) (-15 -3925 ($ $ $)) (-15 -2212 ($ $ (-653 |t#1|))))) +(((-34) . T) ((-102) -2817 (|has| |#1| (-1112)) (|has| |#1| (-859))) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-859)) (|has| |#1| (-622 (-871)))) ((-152 |#1|) . T) ((-627 (-653 |#1|)) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-293 #0=(-573) |#1|) . T) ((-293 (-1247 (-573)) $) . T) ((-295 #0# |#1|) . T) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-381 |#1|) . T) ((-498 |#1|) . T) ((-613 #0# |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-660 |#1|) . T) ((-19 |#1|) . T) ((-859) |has| |#1| (-859)) ((-1112) -2817 (|has| |#1| (-1112)) (|has| |#1| (-859))) ((-1230) . T) ((-1278 |#1|) . T)) +((-1776 (((-953 |#2|) (-1 |#2| |#1|) (-953 |#1|)) 17))) +(((-993 |#1| |#2|) (-10 -7 (-15 -1776 ((-953 |#2|) (-1 |#2| |#1|) (-953 |#1|)))) (-1061) (-1061)) (T -993)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-953 *5)) (-4 *5 (-1061)) (-4 *6 (-1061)) (-5 *2 (-953 *6)) (-5 *1 (-993 *5 *6))))) +(-10 -7 (-15 -1776 ((-953 |#2|) (-1 |#2| |#1|) (-953 |#1|)))) +((-3419 ((|#1| (-953 |#1|)) 14)) (-3853 ((|#1| (-953 |#1|)) 13)) (-3108 ((|#1| (-953 |#1|)) 12)) (-3070 ((|#1| (-953 |#1|)) 16)) (-2451 ((|#1| (-953 |#1|)) 24)) (-4117 ((|#1| (-953 |#1|)) 15)) (-3223 ((|#1| (-953 |#1|)) 17)) (-2065 ((|#1| (-953 |#1|)) 23)) (-1805 ((|#1| (-953 |#1|)) 22))) +(((-994 |#1|) (-10 -7 (-15 -3108 (|#1| (-953 |#1|))) (-15 -3853 (|#1| (-953 |#1|))) (-15 -3419 (|#1| (-953 |#1|))) (-15 -4117 (|#1| (-953 |#1|))) (-15 -3070 (|#1| (-953 |#1|))) (-15 -3223 (|#1| (-953 |#1|))) (-15 -1805 (|#1| (-953 |#1|))) (-15 -2065 (|#1| (-953 |#1|))) (-15 -2451 (|#1| (-953 |#1|)))) (-1061)) (T -994)) +((-2451 (*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061)))) (-2065 (*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061)))) (-1805 (*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061)))) (-3223 (*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061)))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061)))) (-4117 (*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061)))) (-3419 (*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061)))) (-3853 (*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061)))) (-3108 (*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061))))) +(-10 -7 (-15 -3108 (|#1| (-953 |#1|))) (-15 -3853 (|#1| (-953 |#1|))) (-15 -3419 (|#1| (-953 |#1|))) (-15 -4117 (|#1| (-953 |#1|))) (-15 -3070 (|#1| (-953 |#1|))) (-15 -3223 (|#1| (-953 |#1|))) (-15 -1805 (|#1| (-953 |#1|))) (-15 -2065 (|#1| (-953 |#1|))) (-15 -2451 (|#1| (-953 |#1|)))) +((-4196 (((-3 |#1| "failed") |#1|) 18)) (-3206 (((-3 |#1| "failed") |#1|) 6)) (-3266 (((-3 |#1| "failed") |#1|) 16)) (-3134 (((-3 |#1| "failed") |#1|) 4)) (-2481 (((-3 |#1| "failed") |#1|) 20)) (-4182 (((-3 |#1| "failed") |#1|) 8)) (-4341 (((-3 |#1| "failed") |#1| (-780)) 1)) (-2511 (((-3 |#1| "failed") |#1|) 3)) (-4430 (((-3 |#1| "failed") |#1|) 2)) (-3026 (((-3 |#1| "failed") |#1|) 21)) (-3868 (((-3 |#1| "failed") |#1|) 9)) (-3171 (((-3 |#1| "failed") |#1|) 19)) (-4367 (((-3 |#1| "failed") |#1|) 7)) (-3526 (((-3 |#1| "failed") |#1|) 17)) (-1782 (((-3 |#1| "failed") |#1|) 5)) (-2416 (((-3 |#1| "failed") |#1|) 24)) (-3835 (((-3 |#1| "failed") |#1|) 12)) (-3196 (((-3 |#1| "failed") |#1|) 22)) (-2599 (((-3 |#1| "failed") |#1|) 10)) (-3994 (((-3 |#1| "failed") |#1|) 26)) (-3297 (((-3 |#1| "failed") |#1|) 14)) (-2775 (((-3 |#1| "failed") |#1|) 27)) (-3581 (((-3 |#1| "failed") |#1|) 15)) (-3162 (((-3 |#1| "failed") |#1|) 25)) (-1702 (((-3 |#1| "failed") |#1|) 13)) (-4132 (((-3 |#1| "failed") |#1|) 23)) (-4189 (((-3 |#1| "failed") |#1|) 11))) +(((-995 |#1|) (-141) (-1215)) (T -995)) +((-2775 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-3994 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-3162 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-2416 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-4132 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-3196 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-3026 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-2481 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-3171 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-4196 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-3526 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-3266 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-3581 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-3297 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-1702 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-3835 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-4189 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-2599 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-3868 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-4182 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-4367 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-3206 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-1782 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-3134 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-2511 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-4430 (*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-4341 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-780)) (-4 *1 (-995 *2)) (-4 *2 (-1215))))) +(-13 (-10 -7 (-15 -4341 ((-3 |t#1| "failed") |t#1| (-780))) (-15 -4430 ((-3 |t#1| "failed") |t#1|)) (-15 -2511 ((-3 |t#1| "failed") |t#1|)) (-15 -3134 ((-3 |t#1| "failed") |t#1|)) (-15 -1782 ((-3 |t#1| "failed") |t#1|)) (-15 -3206 ((-3 |t#1| "failed") |t#1|)) (-15 -4367 ((-3 |t#1| "failed") |t#1|)) (-15 -4182 ((-3 |t#1| "failed") |t#1|)) (-15 -3868 ((-3 |t#1| "failed") |t#1|)) (-15 -2599 ((-3 |t#1| "failed") |t#1|)) (-15 -4189 ((-3 |t#1| "failed") |t#1|)) (-15 -3835 ((-3 |t#1| "failed") |t#1|)) (-15 -1702 ((-3 |t#1| "failed") |t#1|)) (-15 -3297 ((-3 |t#1| "failed") |t#1|)) (-15 -3581 ((-3 |t#1| "failed") |t#1|)) (-15 -3266 ((-3 |t#1| "failed") |t#1|)) (-15 -3526 ((-3 |t#1| "failed") |t#1|)) (-15 -4196 ((-3 |t#1| "failed") |t#1|)) (-15 -3171 ((-3 |t#1| "failed") |t#1|)) (-15 -2481 ((-3 |t#1| "failed") |t#1|)) (-15 -3026 ((-3 |t#1| "failed") |t#1|)) (-15 -3196 ((-3 |t#1| "failed") |t#1|)) (-15 -4132 ((-3 |t#1| "failed") |t#1|)) (-15 -2416 ((-3 |t#1| "failed") |t#1|)) (-15 -3162 ((-3 |t#1| "failed") |t#1|)) (-15 -3994 ((-3 |t#1| "failed") |t#1|)) (-15 -2775 ((-3 |t#1| "failed") |t#1|)))) +((-1519 ((|#4| |#4| (-653 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-4120 ((|#4| |#4| (-653 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-1776 ((|#4| (-1 |#4| (-962 |#1|)) |#4|) 31))) +(((-996 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4120 (|#4| |#4| |#3|)) (-15 -4120 (|#4| |#4| (-653 |#3|))) (-15 -1519 (|#4| |#4| |#3|)) (-15 -1519 (|#4| |#4| (-653 |#3|))) (-15 -1776 (|#4| (-1 |#4| (-962 |#1|)) |#4|))) (-1061) (-802) (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $)) (-15 -1487 ((-3 $ "failed") (-1189))))) (-959 (-962 |#1|) |#2| |#3|)) (T -996)) +((-1776 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-962 *4))) (-4 *4 (-1061)) (-4 *2 (-959 (-962 *4) *5 *6)) (-4 *5 (-802)) (-4 *6 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $)) (-15 -1487 ((-3 $ "failed") (-1189)))))) (-5 *1 (-996 *4 *5 *6 *2)))) (-1519 (*1 *2 *2 *3) (-12 (-5 *3 (-653 *6)) (-4 *6 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $)) (-15 -1487 ((-3 $ "failed") (-1189)))))) (-4 *4 (-1061)) (-4 *5 (-802)) (-5 *1 (-996 *4 *5 *6 *2)) (-4 *2 (-959 (-962 *4) *5 *6)))) (-1519 (*1 *2 *2 *3) (-12 (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $)) (-15 -1487 ((-3 $ "failed") (-1189)))))) (-5 *1 (-996 *4 *5 *3 *2)) (-4 *2 (-959 (-962 *4) *5 *3)))) (-4120 (*1 *2 *2 *3) (-12 (-5 *3 (-653 *6)) (-4 *6 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $)) (-15 -1487 ((-3 $ "failed") (-1189)))))) (-4 *4 (-1061)) (-4 *5 (-802)) (-5 *1 (-996 *4 *5 *6 *2)) (-4 *2 (-959 (-962 *4) *5 *6)))) (-4120 (*1 *2 *2 *3) (-12 (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $)) (-15 -1487 ((-3 $ "failed") (-1189)))))) (-5 *1 (-996 *4 *5 *3 *2)) (-4 *2 (-959 (-962 *4) *5 *3))))) +(-10 -7 (-15 -4120 (|#4| |#4| |#3|)) (-15 -4120 (|#4| |#4| (-653 |#3|))) (-15 -1519 (|#4| |#4| |#3|)) (-15 -1519 (|#4| |#4| (-653 |#3|))) (-15 -1776 (|#4| (-1 |#4| (-962 |#1|)) |#4|))) +((-1736 ((|#2| |#3|) 35)) (-3574 (((-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))) |#2|) 79)) (-3529 (((-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|)))) 100))) +(((-997 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3529 ((-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))))) (-15 -3574 ((-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))) |#2|)) (-15 -1736 (|#2| |#3|))) (-357) (-1256 |#1|) (-1256 |#2|) (-733 |#2| |#3|)) (T -997)) +((-1736 (*1 *2 *3) (-12 (-4 *3 (-1256 *2)) (-4 *2 (-1256 *4)) (-5 *1 (-997 *4 *2 *3 *5)) (-4 *4 (-357)) (-4 *5 (-733 *2 *3)))) (-3574 (*1 *2 *3) (-12 (-4 *4 (-357)) (-4 *3 (-1256 *4)) (-4 *5 (-1256 *3)) (-5 *2 (-2 (|:| -3914 (-698 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-698 *3)))) (-5 *1 (-997 *4 *3 *5 *6)) (-4 *6 (-733 *3 *5)))) (-3529 (*1 *2) (-12 (-4 *3 (-357)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 *4)) (-5 *2 (-2 (|:| -3914 (-698 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-698 *4)))) (-5 *1 (-997 *3 *4 *5 *6)) (-4 *6 (-733 *4 *5))))) +(-10 -7 (-15 -3529 ((-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))))) (-15 -3574 ((-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))) |#2|)) (-15 -1736 (|#2| |#3|))) +((-1396 (((-999 (-416 (-573)) (-873 |#1|) (-245 |#2| (-780)) (-252 |#1| (-416 (-573)))) (-999 (-416 (-573)) (-873 |#1|) (-245 |#2| (-780)) (-252 |#1| (-416 (-573))))) 82))) +(((-998 |#1| |#2|) (-10 -7 (-15 -1396 ((-999 (-416 (-573)) (-873 |#1|) (-245 |#2| (-780)) (-252 |#1| (-416 (-573)))) (-999 (-416 (-573)) (-873 |#1|) (-245 |#2| (-780)) (-252 |#1| (-416 (-573))))))) (-653 (-1189)) (-780)) (T -998)) +((-1396 (*1 *2 *2) (-12 (-5 *2 (-999 (-416 (-573)) (-873 *3) (-245 *4 (-780)) (-252 *3 (-416 (-573))))) (-14 *3 (-653 (-1189))) (-14 *4 (-780)) (-5 *1 (-998 *3 *4))))) +(-10 -7 (-15 -1396 ((-999 (-416 (-573)) (-873 |#1|) (-245 |#2| (-780)) (-252 |#1| (-416 (-573)))) (-999 (-416 (-573)) (-873 |#1|) (-245 |#2| (-780)) (-252 |#1| (-416 (-573))))))) +((-2848 (((-112) $ $) NIL)) (-2390 (((-3 (-112) "failed") $) 71)) (-1953 (($ $) 36 (-12 (|has| |#1| (-148)) (|has| |#1| (-314))))) (-3057 (($ $ (-3 (-112) "failed")) 72)) (-2288 (($ (-653 |#4|) |#4|) 25)) (-3180 (((-1171) $) NIL)) (-3373 (($ $) 69)) (-3965 (((-1132) $) NIL)) (-3811 (((-112) $) 70)) (-3508 (($) 30)) (-2377 ((|#4| $) 74)) (-4350 (((-653 |#4|) $) 73)) (-2942 (((-871) $) 68)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-999 |#1| |#2| |#3| |#4|) (-13 (-1112) (-622 (-871)) (-10 -8 (-15 -3508 ($)) (-15 -2288 ($ (-653 |#4|) |#4|)) (-15 -2390 ((-3 (-112) "failed") $)) (-15 -3057 ($ $ (-3 (-112) "failed"))) (-15 -3811 ((-112) $)) (-15 -4350 ((-653 |#4|) $)) (-15 -2377 (|#4| $)) (-15 -3373 ($ $)) (IF (|has| |#1| (-314)) (IF (|has| |#1| (-148)) (-15 -1953 ($ $)) |%noBranch|) |%noBranch|))) (-461) (-859) (-802) (-959 |#1| |#3| |#2|)) (T -999)) +((-3508 (*1 *1) (-12 (-4 *2 (-461)) (-4 *3 (-859)) (-4 *4 (-802)) (-5 *1 (-999 *2 *3 *4 *5)) (-4 *5 (-959 *2 *4 *3)))) (-2288 (*1 *1 *2 *3) (-12 (-5 *2 (-653 *3)) (-4 *3 (-959 *4 *6 *5)) (-4 *4 (-461)) (-4 *5 (-859)) (-4 *6 (-802)) (-5 *1 (-999 *4 *5 *6 *3)))) (-2390 (*1 *2 *1) (|partial| -12 (-4 *3 (-461)) (-4 *4 (-859)) (-4 *5 (-802)) (-5 *2 (-112)) (-5 *1 (-999 *3 *4 *5 *6)) (-4 *6 (-959 *3 *5 *4)))) (-3057 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-461)) (-4 *4 (-859)) (-4 *5 (-802)) (-5 *1 (-999 *3 *4 *5 *6)) (-4 *6 (-959 *3 *5 *4)))) (-3811 (*1 *2 *1) (-12 (-4 *3 (-461)) (-4 *4 (-859)) (-4 *5 (-802)) (-5 *2 (-112)) (-5 *1 (-999 *3 *4 *5 *6)) (-4 *6 (-959 *3 *5 *4)))) (-4350 (*1 *2 *1) (-12 (-4 *3 (-461)) (-4 *4 (-859)) (-4 *5 (-802)) (-5 *2 (-653 *6)) (-5 *1 (-999 *3 *4 *5 *6)) (-4 *6 (-959 *3 *5 *4)))) (-2377 (*1 *2 *1) (-12 (-4 *2 (-959 *3 *5 *4)) (-5 *1 (-999 *3 *4 *5 *2)) (-4 *3 (-461)) (-4 *4 (-859)) (-4 *5 (-802)))) (-3373 (*1 *1 *1) (-12 (-4 *2 (-461)) (-4 *3 (-859)) (-4 *4 (-802)) (-5 *1 (-999 *2 *3 *4 *5)) (-4 *5 (-959 *2 *4 *3)))) (-1953 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-314)) (-4 *2 (-461)) (-4 *3 (-859)) (-4 *4 (-802)) (-5 *1 (-999 *2 *3 *4 *5)) (-4 *5 (-959 *2 *4 *3))))) +(-13 (-1112) (-622 (-871)) (-10 -8 (-15 -3508 ($)) (-15 -2288 ($ (-653 |#4|) |#4|)) (-15 -2390 ((-3 (-112) "failed") $)) (-15 -3057 ($ $ (-3 (-112) "failed"))) (-15 -3811 ((-112) $)) (-15 -4350 ((-653 |#4|) $)) (-15 -2377 (|#4| $)) (-15 -3373 ($ $)) (IF (|has| |#1| (-314)) (IF (|has| |#1| (-148)) (-15 -1953 ($ $)) |%noBranch|) |%noBranch|))) +((-2671 (((-112) |#5| |#5|) 44)) (-2223 (((-112) |#5| |#5|) 59)) (-2476 (((-112) |#5| (-653 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-3874 (((-112) (-653 |#4|) (-653 |#4|)) 65)) (-1688 (((-112) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) 70)) (-4435 (((-1285)) 32)) (-3902 (((-1285) (-1171) (-1171) (-1171)) 28)) (-2707 (((-653 |#5|) (-653 |#5|)) 100)) (-3295 (((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)))) 92)) (-1410 (((-653 (-2 (|:| -4122 (-653 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-653 |#4|)))) (-653 |#4|) (-653 |#5|) (-112) (-112)) 122)) (-4181 (((-112) |#5| |#5|) 53)) (-2243 (((-3 (-112) "failed") |#5| |#5|) 78)) (-2186 (((-112) (-653 |#4|) (-653 |#4|)) 64)) (-1728 (((-112) (-653 |#4|) (-653 |#4|)) 66)) (-2614 (((-112) (-653 |#4|) (-653 |#4|)) 67)) (-2119 (((-3 (-2 (|:| -4122 (-653 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-653 |#4|))) "failed") (-653 |#4|) |#5| (-653 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-3049 (((-653 |#5|) (-653 |#5|)) 49))) +(((-1000 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3902 ((-1285) (-1171) (-1171) (-1171))) (-15 -4435 ((-1285))) (-15 -2671 ((-112) |#5| |#5|)) (-15 -3049 ((-653 |#5|) (-653 |#5|))) (-15 -4181 ((-112) |#5| |#5|)) (-15 -2223 ((-112) |#5| |#5|)) (-15 -3874 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -2186 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -1728 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -2614 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -2243 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2476 ((-112) |#5| |#5|)) (-15 -2476 ((-112) |#5| (-653 |#5|))) (-15 -2707 ((-653 |#5|) (-653 |#5|))) (-15 -1688 ((-112) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)))) (-15 -3295 ((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) (-15 -1410 ((-653 (-2 (|:| -4122 (-653 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-653 |#4|)))) (-653 |#4|) (-653 |#5|) (-112) (-112))) (-15 -2119 ((-3 (-2 (|:| -4122 (-653 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-653 |#4|))) "failed") (-653 |#4|) |#5| (-653 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-461) (-802) (-859) (-1077 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3| |#4|)) (T -1000)) +((-2119 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) (-4 *9 (-1077 *6 *7 *8)) (-5 *2 (-2 (|:| -4122 (-653 *9)) (|:| -4090 *4) (|:| |ineq| (-653 *9)))) (-5 *1 (-1000 *6 *7 *8 *9 *4)) (-5 *3 (-653 *9)) (-4 *4 (-1083 *6 *7 *8 *9)))) (-1410 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-653 *10)) (-5 *5 (-112)) (-4 *10 (-1083 *6 *7 *8 *9)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) (-4 *9 (-1077 *6 *7 *8)) (-5 *2 (-653 (-2 (|:| -4122 (-653 *9)) (|:| -4090 *10) (|:| |ineq| (-653 *9))))) (-5 *1 (-1000 *6 *7 *8 *9 *10)) (-5 *3 (-653 *9)))) (-3295 (*1 *2 *2) (-12 (-5 *2 (-653 (-2 (|:| |val| (-653 *6)) (|:| -4090 *7)))) (-4 *6 (-1077 *3 *4 *5)) (-4 *7 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-1000 *3 *4 *5 *6 *7)))) (-1688 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-653 *7)) (|:| -4090 *8))) (-4 *7 (-1077 *4 *5 *6)) (-4 *8 (-1083 *4 *5 *6 *7)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-1000 *4 *5 *6 *7 *8)))) (-2707 (*1 *2 *2) (-12 (-5 *2 (-653 *7)) (-4 *7 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *1 (-1000 *3 *4 *5 *6 *7)))) (-2476 (*1 *2 *3 *4) (-12 (-5 *4 (-653 *3)) (-4 *3 (-1083 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-1077 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1000 *5 *6 *7 *8 *3)))) (-2476 (*1 *2 *3 *3) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1000 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) (-2243 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1000 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) (-2614 (*1 *2 *3 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-1000 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) (-1728 (*1 *2 *3 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-1000 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) (-2186 (*1 *2 *3 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-1000 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) (-3874 (*1 *2 *3 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-1000 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) (-2223 (*1 *2 *3 *3) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1000 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) (-4181 (*1 *2 *3 *3) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1000 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) (-3049 (*1 *2 *2) (-12 (-5 *2 (-653 *7)) (-4 *7 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *1 (-1000 *3 *4 *5 *6 *7)))) (-2671 (*1 *2 *3 *3) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1000 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) (-4435 (*1 *2) (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-1285)) (-5 *1 (-1000 *3 *4 *5 *6 *7)) (-4 *7 (-1083 *3 *4 *5 *6)))) (-3902 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1171)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-1285)) (-5 *1 (-1000 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7))))) +(-10 -7 (-15 -3902 ((-1285) (-1171) (-1171) (-1171))) (-15 -4435 ((-1285))) (-15 -2671 ((-112) |#5| |#5|)) (-15 -3049 ((-653 |#5|) (-653 |#5|))) (-15 -4181 ((-112) |#5| |#5|)) (-15 -2223 ((-112) |#5| |#5|)) (-15 -3874 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -2186 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -1728 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -2614 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -2243 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2476 ((-112) |#5| |#5|)) (-15 -2476 ((-112) |#5| (-653 |#5|))) (-15 -2707 ((-653 |#5|) (-653 |#5|))) (-15 -1688 ((-112) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)))) (-15 -3295 ((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) (-15 -1410 ((-653 (-2 (|:| -4122 (-653 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-653 |#4|)))) (-653 |#4|) (-653 |#5|) (-112) (-112))) (-15 -2119 ((-3 (-2 (|:| -4122 (-653 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-653 |#4|))) "failed") (-653 |#4|) |#5| (-653 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-1487 (((-1189) $) 15)) (-3082 (((-1171) $) 16)) (-2691 (($ (-1189) (-1171)) 14)) (-2942 (((-871) $) 13))) +(((-1001) (-13 (-622 (-871)) (-10 -8 (-15 -2691 ($ (-1189) (-1171))) (-15 -1487 ((-1189) $)) (-15 -3082 ((-1171) $))))) (T -1001)) +((-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1171)) (-5 *1 (-1001)))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1001)))) (-3082 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1001))))) +(-13 (-622 (-871)) (-10 -8 (-15 -2691 ($ (-1189) (-1171))) (-15 -1487 ((-1189) $)) (-15 -3082 ((-1171) $)))) +((-1776 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-1002 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1776 (|#4| (-1 |#2| |#1|) |#3|))) (-565) (-565) (-1004 |#1|) (-1004 |#2|)) (T -1002)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-565)) (-4 *6 (-565)) (-4 *2 (-1004 *6)) (-5 *1 (-1002 *5 *6 *4 *2)) (-4 *4 (-1004 *5))))) +(-10 -7 (-15 -1776 (|#4| (-1 |#2| |#1|) |#3|))) +((-1695 (((-3 |#2| "failed") $) NIL) (((-3 (-1189) "failed") $) 66) (((-3 (-416 (-573)) "failed") $) NIL) (((-3 (-573) "failed") $) 96)) (-2205 ((|#2| $) NIL) (((-1189) $) 61) (((-416 (-573)) $) NIL) (((-573) $) 93)) (-2759 (((-698 (-573)) (-1280 $)) NIL) (((-698 (-573)) (-698 $)) NIL) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) 115) (((-698 |#2|) (-698 $)) 28) (((-698 |#2|) (-1280 $)) NIL)) (-2819 (($) 99)) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 76) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 85)) (-3041 (($ $) 10)) (-1470 (((-3 $ "failed") $) 20)) (-1776 (($ (-1 |#2| |#2|) $) 22)) (-3816 (($) 16)) (-2408 (($ $) 55)) (-3904 (($ $ (-780)) NIL) (($ $) NIL) (($ $ (-1189)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL) (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2662 (($ $) 12)) (-1835 (((-902 (-573)) $) 71) (((-902 (-387)) $) 80) (((-545) $) 40) (((-387) $) 44) (((-227) $) 48)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) 91) (($ |#2|) NIL) (($ (-1189)) 58)) (-1545 (((-780)) 31)) (-3005 (((-112) $ $) 51))) +(((-1003 |#1| |#2|) (-10 -8 (-15 -3005 ((-112) |#1| |#1|)) (-15 -3816 (|#1|)) (-15 -1470 ((-3 |#1| "failed") |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -1835 ((-227) |#1|)) (-15 -1835 ((-387) |#1|)) (-15 -1835 ((-545) |#1|)) (-15 -2942 (|#1| (-1189))) (-15 -1695 ((-3 (-1189) "failed") |#1|)) (-15 -2205 ((-1189) |#1|)) (-15 -2819 (|#1|)) (-15 -2408 (|#1| |#1|)) (-15 -2662 (|#1| |#1|)) (-15 -3041 (|#1| |#1|)) (-15 -1352 ((-899 (-387) |#1|) |#1| (-902 (-387)) (-899 (-387) |#1|))) (-15 -1352 ((-899 (-573) |#1|) |#1| (-902 (-573)) (-899 (-573) |#1|))) (-15 -1835 ((-902 (-387)) |#1|)) (-15 -1835 ((-902 (-573)) |#1|)) (-15 -2759 ((-698 |#2|) (-1280 |#1|))) (-15 -2759 ((-698 |#2|) (-698 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-698 (-573)) (-698 |#1|))) (-15 -2759 ((-698 (-573)) (-1280 |#1|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-780))) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -2942 (|#1| |#2|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2942 (|#1| |#1|)) (-15 -1545 ((-780))) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) (-1004 |#2|) (-565)) (T -1003)) +((-1545 (*1 *2) (-12 (-4 *4 (-565)) (-5 *2 (-780)) (-5 *1 (-1003 *3 *4)) (-4 *3 (-1004 *4))))) +(-10 -8 (-15 -3005 ((-112) |#1| |#1|)) (-15 -3816 (|#1|)) (-15 -1470 ((-3 |#1| "failed") |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -1835 ((-227) |#1|)) (-15 -1835 ((-387) |#1|)) (-15 -1835 ((-545) |#1|)) (-15 -2942 (|#1| (-1189))) (-15 -1695 ((-3 (-1189) "failed") |#1|)) (-15 -2205 ((-1189) |#1|)) (-15 -2819 (|#1|)) (-15 -2408 (|#1| |#1|)) (-15 -2662 (|#1| |#1|)) (-15 -3041 (|#1| |#1|)) (-15 -1352 ((-899 (-387) |#1|) |#1| (-902 (-387)) (-899 (-387) |#1|))) (-15 -1352 ((-899 (-573) |#1|) |#1| (-902 (-573)) (-899 (-573) |#1|))) (-15 -1835 ((-902 (-387)) |#1|)) (-15 -1835 ((-902 (-573)) |#1|)) (-15 -2759 ((-698 |#2|) (-1280 |#1|))) (-15 -2759 ((-698 |#2|) (-698 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-698 (-573)) (-698 |#1|))) (-15 -2759 ((-698 (-573)) (-1280 |#1|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-780))) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -2942 (|#1| |#2|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2942 (|#1| |#1|)) (-15 -1545 ((-780))) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-3770 ((|#1| $) 148 (|has| |#1| (-314)))) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-2983 (((-3 $ "failed") $ $) 20)) (-1600 (((-427 (-1185 $)) (-1185 $)) 139 (|has| |#1| (-919)))) (-4285 (($ $) 81)) (-2427 (((-427 $) $) 80)) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) 142 (|has| |#1| (-919)))) (-2800 (((-112) $ $) 65)) (-1983 (((-573) $) 129 (|has| |#1| (-829)))) (-2579 (($) 18 T CONST)) (-1695 (((-3 |#1| "failed") $) 188) (((-3 (-1189) "failed") $) 137 (|has| |#1| (-1050 (-1189)))) (((-3 (-416 (-573)) "failed") $) 120 (|has| |#1| (-1050 (-573)))) (((-3 (-573) "failed") $) 118 (|has| |#1| (-1050 (-573))))) (-2205 ((|#1| $) 189) (((-1189) $) 138 (|has| |#1| (-1050 (-1189)))) (((-416 (-573)) $) 121 (|has| |#1| (-1050 (-573)))) (((-573) $) 119 (|has| |#1| (-1050 (-573))))) (-2784 (($ $ $) 61)) (-2759 (((-698 (-573)) (-1280 $)) 163 (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) 162 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 161 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) 160) (((-698 |#1|) (-698 $)) 159) (((-698 |#1|) (-1280 $)) 158)) (-2232 (((-3 $ "failed") $) 37)) (-2819 (($) 146 (|has| |#1| (-554)))) (-2796 (($ $ $) 62)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 57)) (-2696 (((-112) $) 79)) (-4152 (((-112) $) 131 (|has| |#1| (-829)))) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 155 (|has| |#1| (-896 (-573)))) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 154 (|has| |#1| (-896 (-387))))) (-1959 (((-112) $) 35)) (-3041 (($ $) 150)) (-2965 ((|#1| $) 152)) (-1470 (((-3 $ "failed") $) 117 (|has| |#1| (-1164)))) (-3339 (((-112) $) 130 (|has| |#1| (-829)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 58)) (-3659 (($ $ $) 127 (|has| |#1| (-859)))) (-3751 (($ $ $) 126 (|has| |#1| (-859)))) (-1776 (($ (-1 |#1| |#1|) $) 180)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-1323 (($ $) 78)) (-3816 (($) 116 (|has| |#1| (-1164)) CONST)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-2408 (($ $) 147 (|has| |#1| (-314)))) (-3733 ((|#1| $) 144 (|has| |#1| (-554)))) (-2963 (((-427 (-1185 $)) (-1185 $)) 141 (|has| |#1| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) 140 (|has| |#1| (-919)))) (-4218 (((-427 $) $) 82)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 56)) (-2645 (($ $ (-653 |#1|) (-653 |#1|)) 186 (|has| |#1| (-316 |#1|))) (($ $ |#1| |#1|) 185 (|has| |#1| (-316 |#1|))) (($ $ (-301 |#1|)) 184 (|has| |#1| (-316 |#1|))) (($ $ (-653 (-301 |#1|))) 183 (|has| |#1| (-316 |#1|))) (($ $ (-653 (-1189)) (-653 |#1|)) 182 (|has| |#1| (-523 (-1189) |#1|))) (($ $ (-1189) |#1|) 181 (|has| |#1| (-523 (-1189) |#1|)))) (-2163 (((-780) $) 64)) (-2198 (($ $ |#1|) 187 (|has| |#1| (-293 |#1| |#1|)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 63)) (-3904 (($ $ (-780)) 178 (|has| |#1| (-238))) (($ $) 176 (|has| |#1| (-238))) (($ $ (-1189)) 175 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) 174 (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) 173 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) 172 (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) 165) (($ $ (-1 |#1| |#1|)) 164)) (-2662 (($ $) 149)) (-2975 ((|#1| $) 151)) (-1835 (((-902 (-573)) $) 157 (|has| |#1| (-623 (-902 (-573))))) (((-902 (-387)) $) 156 (|has| |#1| (-623 (-902 (-387))))) (((-545) $) 134 (|has| |#1| (-623 (-545)))) (((-387) $) 133 (|has| |#1| (-1034))) (((-227) $) 132 (|has| |#1| (-1034)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) 143 (-2086 (|has| $ (-146)) (|has| |#1| (-919))))) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49) (($ (-416 (-573))) 74) (($ |#1|) 192) (($ (-1189)) 136 (|has| |#1| (-1050 (-1189))))) (-4279 (((-3 $ "failed") $) 135 (-2817 (|has| |#1| (-146)) (-2086 (|has| $ (-146)) (|has| |#1| (-919)))))) (-1545 (((-780)) 32 T CONST)) (-2437 ((|#1| $) 145 (|has| |#1| (-554)))) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-1660 (($ $) 128 (|has| |#1| (-829)))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-780)) 179 (|has| |#1| (-238))) (($ $) 177 (|has| |#1| (-238))) (($ $ (-1189)) 171 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) 170 (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) 169 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) 168 (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) 167) (($ $ (-1 |#1| |#1|)) 166)) (-3040 (((-112) $ $) 124 (|has| |#1| (-859)))) (-3015 (((-112) $ $) 123 (|has| |#1| (-859)))) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 125 (|has| |#1| (-859)))) (-3005 (((-112) $ $) 122 (|has| |#1| (-859)))) (-3103 (($ $ $) 73) (($ |#1| |#1|) 153)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 77)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 (-573))) 76) (($ (-416 (-573)) $) 75) (($ |#1| $) 191) (($ $ |#1|) 190))) +(((-1004 |#1|) (-141) (-565)) (T -1004)) +((-3103 (*1 *1 *2 *2) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565)))) (-2965 (*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565)))) (-2975 (*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565)))) (-3041 (*1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565)))) (-2662 (*1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565)))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565)) (-4 *2 (-314)))) (-2408 (*1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565)) (-4 *2 (-314)))) (-2819 (*1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-554)) (-4 *2 (-565)))) (-2437 (*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565)) (-4 *2 (-554)))) (-3733 (*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565)) (-4 *2 (-554))))) +(-13 (-371) (-38 |t#1|) (-1050 |t#1|) (-346 |t#1|) (-233 |t#1|) (-385 |t#1|) (-894 |t#1|) (-409 |t#1|) (-10 -8 (-15 -3103 ($ |t#1| |t#1|)) (-15 -2965 (|t#1| $)) (-15 -2975 (|t#1| $)) (-15 -3041 ($ $)) (-15 -2662 ($ $)) (IF (|has| |t#1| (-1164)) (-6 (-1164)) |%noBranch|) (IF (|has| |t#1| (-1050 (-573))) (PROGN (-6 (-1050 (-573))) (-6 (-1050 (-416 (-573))))) |%noBranch|) (IF (|has| |t#1| (-859)) (-6 (-859)) |%noBranch|) (IF (|has| |t#1| (-829)) (-6 (-829)) |%noBranch|) (IF (|has| |t#1| (-1034)) (-6 (-1034)) |%noBranch|) (IF (|has| |t#1| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1050 (-1189))) (-6 (-1050 (-1189))) |%noBranch|) (IF (|has| |t#1| (-314)) (PROGN (-15 -3770 (|t#1| $)) (-15 -2408 ($ $))) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-15 -2819 ($)) (-15 -2437 (|t#1| $)) (-15 -3733 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-919)) (-6 (-919)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #0#) . T) ((-625 (-573)) . T) ((-625 #1=(-1189)) |has| |#1| (-1050 (-1189))) ((-625 |#1|) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-623 (-227)) |has| |#1| (-1034)) ((-623 (-387)) |has| |#1| (-1034)) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-623 (-902 (-387))) |has| |#1| (-623 (-902 (-387)))) ((-623 (-902 (-573))) |has| |#1| (-623 (-902 (-573)))) ((-235 $) |has| |#1| (-238)) ((-233 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) |has| |#1| (-238)) ((-248) . T) ((-293 |#1| $) |has| |#1| (-293 |#1| |#1|)) ((-297) . T) ((-314) . T) ((-316 |#1|) |has| |#1| (-316 |#1|)) ((-371) . T) ((-346 |#1|) . T) ((-385 |#1|) . T) ((-409 |#1|) . T) ((-461) . T) ((-523 (-1189) |#1|) |has| |#1| (-523 (-1189) |#1|)) ((-523 |#1| |#1|) |has| |#1| (-316 |#1|)) ((-565) . T) ((-655 #0#) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #0#) . T) ((-657 #2=(-573)) |has| |#1| (-648 (-573))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #0#) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-648 #2#) |has| |#1| (-648 (-573))) ((-648 |#1|) . T) ((-726 #0#) . T) ((-726 |#1|) . T) ((-726 $) . T) ((-735) . T) ((-800) |has| |#1| (-829)) ((-801) |has| |#1| (-829)) ((-803) |has| |#1| (-829)) ((-804) |has| |#1| (-829)) ((-829) |has| |#1| (-829)) ((-857) |has| |#1| (-829)) ((-859) -2817 (|has| |#1| (-859)) (|has| |#1| (-829))) ((-910 (-1189)) |has| |#1| (-910 (-1189))) ((-896 (-387)) |has| |#1| (-896 (-387))) ((-896 (-573)) |has| |#1| (-896 (-573))) ((-894 |#1|) . T) ((-919) |has| |#1| (-919)) ((-930) . T) ((-1034) |has| |#1| (-1034)) ((-1050 (-416 (-573))) |has| |#1| (-1050 (-573))) ((-1050 (-573)) |has| |#1| (-1050 (-573))) ((-1050 #1#) |has| |#1| (-1050 (-1189))) ((-1050 |#1|) . T) ((-1063 #0#) . T) ((-1063 |#1|) . T) ((-1063 $) . T) ((-1068 #0#) . T) ((-1068 |#1|) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1164) |has| |#1| (-1164)) ((-1230) . T) ((-1234) . T)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-3814 (($ (-1154 |#1| |#2|)) 11)) (-2913 (((-1154 |#1| |#2|) $) 12)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2198 ((|#2| $ (-245 |#1| |#2|)) 16)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2132 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL))) +(((-1005 |#1| |#2|) (-13 (-21) (-293 (-245 |#1| |#2|) |#2|) (-10 -8 (-15 -3814 ($ (-1154 |#1| |#2|))) (-15 -2913 ((-1154 |#1| |#2|) $)))) (-931) (-371)) (T -1005)) +((-3814 (*1 *1 *2) (-12 (-5 *2 (-1154 *3 *4)) (-14 *3 (-931)) (-4 *4 (-371)) (-5 *1 (-1005 *3 *4)))) (-2913 (*1 *2 *1) (-12 (-5 *2 (-1154 *3 *4)) (-5 *1 (-1005 *3 *4)) (-14 *3 (-931)) (-4 *4 (-371))))) +(-13 (-21) (-293 (-245 |#1| |#2|) |#2|) (-10 -8 (-15 -3814 ($ (-1154 |#1| |#2|))) (-15 -2913 ((-1154 |#1| |#2|) $)))) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-4015 (((-1147) $) 9)) (-2942 (((-871) $) 15) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-1006) (-13 (-1095) (-10 -8 (-15 -4015 ((-1147) $))))) (T -1006)) +((-4015 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1006))))) +(-13 (-1095) (-10 -8 (-15 -4015 ((-1147) $)))) +((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3450 (((-112) $ (-780)) 8)) (-2579 (($) 7 T CONST)) (-3147 (($ $) 47)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-4134 (((-780) $) 46)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-2487 ((|#1| $) 40)) (-3181 (($ |#1| $) 41)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-3897 ((|#1| $) 45)) (-3815 ((|#1| $) 42)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3203 ((|#1| |#1| $) 49)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2548 ((|#1| $) 48)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-2679 (($ (-653 |#1|)) 43)) (-2411 ((|#1| $) 44)) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-1007 |#1|) (-141) (-1230)) (T -1007)) +((-3203 (*1 *2 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1230)))) (-2548 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1230)))) (-3147 (*1 *1 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1230)))) (-4134 (*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1230)) (-5 *2 (-780)))) (-3897 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1230)))) (-2411 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1230))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4455) (-15 -3203 (|t#1| |t#1| $)) (-15 -2548 (|t#1| $)) (-15 -3147 ($ $)) (-15 -4134 ((-780) $)) (-15 -3897 (|t#1| $)) (-15 -2411 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) +((-1748 (((-112) $) 43)) (-1695 (((-3 (-573) "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-2205 (((-573) $) NIL) (((-416 (-573)) $) NIL) ((|#2| $) 44)) (-3810 (((-3 (-416 (-573)) "failed") $) 78)) (-2551 (((-112) $) 72)) (-4434 (((-416 (-573)) $) 76)) (-1959 (((-112) $) 42)) (-3421 ((|#2| $) 22)) (-1776 (($ (-1 |#2| |#2|) $) 19)) (-1323 (($ $) 58)) (-3904 (($ $ (-780)) NIL) (($ $) NIL) (($ $ (-1189)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL) (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-1835 (((-545) $) 67)) (-3204 (($ $) 17)) (-2942 (((-871) $) 53) (($ (-573)) 39) (($ |#2|) 37) (($ (-416 (-573))) NIL)) (-1545 (((-780)) 10)) (-1660 ((|#2| $) 71)) (-2981 (((-112) $ $) 26)) (-3005 (((-112) $ $) 69)) (-3093 (($ $) 30) (($ $ $) 29)) (-3077 (($ $ $) 27)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL))) +(((-1008 |#1| |#2|) (-10 -8 (-15 -2942 (|#1| (-416 (-573)))) (-15 -3005 ((-112) |#1| |#1|)) (-15 * (|#1| (-416 (-573)) |#1|)) (-15 * (|#1| |#1| (-416 (-573)))) (-15 -1323 (|#1| |#1|)) (-15 -1835 ((-545) |#1|)) (-15 -3810 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -4434 ((-416 (-573)) |#1|)) (-15 -2551 ((-112) |#1|)) (-15 -1660 (|#2| |#1|)) (-15 -3421 (|#2| |#1|)) (-15 -3204 (|#1| |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-780))) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2942 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1545 ((-780))) (-15 -2942 (|#1| (-573))) (-15 -1959 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 -1748 ((-112) |#1|)) (-15 * (|#1| (-931) |#1|)) (-15 -3077 (|#1| |#1| |#1|)) (-15 -2942 ((-871) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) (-1009 |#2|) (-174)) (T -1008)) +((-1545 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-780)) (-5 *1 (-1008 *3 *4)) (-4 *3 (-1009 *4))))) +(-10 -8 (-15 -2942 (|#1| (-416 (-573)))) (-15 -3005 ((-112) |#1| |#1|)) (-15 * (|#1| (-416 (-573)) |#1|)) (-15 * (|#1| |#1| (-416 (-573)))) (-15 -1323 (|#1| |#1|)) (-15 -1835 ((-545) |#1|)) (-15 -3810 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -4434 ((-416 (-573)) |#1|)) (-15 -2551 ((-112) |#1|)) (-15 -1660 (|#2| |#1|)) (-15 -3421 (|#2| |#1|)) (-15 -3204 (|#1| |#1|)) (-15 -1776 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-780))) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2942 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1545 ((-780))) (-15 -2942 (|#1| (-573))) (-15 -1959 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 * (|#1| (-780) |#1|)) (-15 -1748 ((-112) |#1|)) (-15 * (|#1| (-931) |#1|)) (-15 -3077 (|#1| |#1| |#1|)) (-15 -2942 ((-871) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-1695 (((-3 (-573) "failed") $) 130 (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) 128 (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) 125)) (-2205 (((-573) $) 129 (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) 127 (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) 126)) (-2759 (((-698 (-573)) (-1280 $)) 100 (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) 99 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 98 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) 97) (((-698 |#1|) (-698 $)) 96) (((-698 |#1|) (-1280 $)) 95)) (-2232 (((-3 $ "failed") $) 37)) (-4238 ((|#1| $) 88)) (-3810 (((-3 (-416 (-573)) "failed") $) 84 (|has| |#1| (-554)))) (-2551 (((-112) $) 86 (|has| |#1| (-554)))) (-4434 (((-416 (-573)) $) 85 (|has| |#1| (-554)))) (-1520 (($ |#1| |#1| |#1| |#1|) 89)) (-1959 (((-112) $) 35)) (-3421 ((|#1| $) 90)) (-3659 (($ $ $) 77 (|has| |#1| (-859)))) (-3751 (($ $ $) 76 (|has| |#1| (-859)))) (-1776 (($ (-1 |#1| |#1|) $) 101)) (-3180 (((-1171) $) 10)) (-1323 (($ $) 81 (|has| |#1| (-371)))) (-4231 ((|#1| $) 91)) (-3875 ((|#1| $) 92)) (-1881 ((|#1| $) 93)) (-3965 (((-1132) $) 11)) (-2645 (($ $ (-653 |#1|) (-653 |#1|)) 107 (|has| |#1| (-316 |#1|))) (($ $ |#1| |#1|) 106 (|has| |#1| (-316 |#1|))) (($ $ (-301 |#1|)) 105 (|has| |#1| (-316 |#1|))) (($ $ (-653 (-301 |#1|))) 104 (|has| |#1| (-316 |#1|))) (($ $ (-653 (-1189)) (-653 |#1|)) 103 (|has| |#1| (-523 (-1189) |#1|))) (($ $ (-1189) |#1|) 102 (|has| |#1| (-523 (-1189) |#1|)))) (-2198 (($ $ |#1|) 108 (|has| |#1| (-293 |#1| |#1|)))) (-3904 (($ $ (-780)) 123 (|has| |#1| (-238))) (($ $) 121 (|has| |#1| (-238))) (($ $ (-1189)) 120 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) 119 (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) 118 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) 117 (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) 110) (($ $ (-1 |#1| |#1|)) 109)) (-1835 (((-545) $) 82 (|has| |#1| (-623 (-545))))) (-3204 (($ $) 94)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 44) (($ (-416 (-573))) 71 (-2817 (|has| |#1| (-371)) (|has| |#1| (-1050 (-416 (-573))))))) (-4279 (((-3 $ "failed") $) 83 (|has| |#1| (-146)))) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-1660 ((|#1| $) 87 (|has| |#1| (-1072)))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-780)) 124 (|has| |#1| (-238))) (($ $) 122 (|has| |#1| (-238))) (($ $ (-1189)) 116 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) 115 (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) 114 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) 113 (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) 112) (($ $ (-1 |#1| |#1|)) 111)) (-3040 (((-112) $ $) 74 (|has| |#1| (-859)))) (-3015 (((-112) $ $) 73 (|has| |#1| (-859)))) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 75 (|has| |#1| (-859)))) (-3005 (((-112) $ $) 72 (|has| |#1| (-859)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 80 (|has| |#1| (-371)))) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-416 (-573))) 79 (|has| |#1| (-371))) (($ (-416 (-573)) $) 78 (|has| |#1| (-371))))) +(((-1009 |#1|) (-141) (-174)) (T -1009)) +((-3204 (*1 *1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174)))) (-1881 (*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174)))) (-3875 (*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174)))) (-4231 (*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174)))) (-3421 (*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174)))) (-1520 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174)))) (-4238 (*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174)))) (-1660 (*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174)) (-4 *2 (-1072)))) (-2551 (*1 *2 *1) (-12 (-4 *1 (-1009 *3)) (-4 *3 (-174)) (-4 *3 (-554)) (-5 *2 (-112)))) (-4434 (*1 *2 *1) (-12 (-4 *1 (-1009 *3)) (-4 *3 (-174)) (-4 *3 (-554)) (-5 *2 (-416 (-573))))) (-3810 (*1 *2 *1) (|partial| -12 (-4 *1 (-1009 *3)) (-4 *3 (-174)) (-4 *3 (-554)) (-5 *2 (-416 (-573)))))) +(-13 (-38 |t#1|) (-420 |t#1|) (-233 |t#1|) (-346 |t#1|) (-385 |t#1|) (-10 -8 (-15 -3204 ($ $)) (-15 -1881 (|t#1| $)) (-15 -3875 (|t#1| $)) (-15 -4231 (|t#1| $)) (-15 -3421 (|t#1| $)) (-15 -1520 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4238 (|t#1| $)) (IF (|has| |t#1| (-297)) (-6 (-297)) |%noBranch|) (IF (|has| |t#1| (-859)) (-6 (-859)) |%noBranch|) (IF (|has| |t#1| (-371)) (-6 (-248)) |%noBranch|) (IF (|has| |t#1| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1072)) (-15 -1660 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-554)) (PROGN (-15 -2551 ((-112) $)) (-15 -4434 ((-416 (-573)) $)) (-15 -3810 ((-3 (-416 (-573)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) |has| |#1| (-371)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-371)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2817 (|has| |#1| (-371)) (|has| |#1| (-297))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #0#) -2817 (|has| |#1| (-1050 (-416 (-573)))) (|has| |#1| (-371))) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-622 (-871)) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-235 $) |has| |#1| (-238)) ((-233 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) |has| |#1| (-238)) ((-248) |has| |#1| (-371)) ((-293 |#1| $) |has| |#1| (-293 |#1| |#1|)) ((-297) -2817 (|has| |#1| (-371)) (|has| |#1| (-297))) ((-316 |#1|) |has| |#1| (-316 |#1|)) ((-346 |#1|) . T) ((-385 |#1|) . T) ((-420 |#1|) . T) ((-523 (-1189) |#1|) |has| |#1| (-523 (-1189) |#1|)) ((-523 |#1| |#1|) |has| |#1| (-316 |#1|)) ((-655 #0#) |has| |#1| (-371)) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #0#) |has| |#1| (-371)) ((-657 #1=(-573)) |has| |#1| (-648 (-573))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #0#) |has| |#1| (-371)) ((-649 |#1|) . T) ((-648 #1#) |has| |#1| (-648 (-573))) ((-648 |#1|) . T) ((-726 #0#) |has| |#1| (-371)) ((-726 |#1|) . T) ((-735) . T) ((-859) |has| |#1| (-859)) ((-910 (-1189)) |has| |#1| (-910 (-1189))) ((-1050 (-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((-1050 (-573)) |has| |#1| (-1050 (-573))) ((-1050 |#1|) . T) ((-1063 #0#) |has| |#1| (-371)) ((-1063 |#1|) . T) ((-1063 $) -2817 (|has| |#1| (-371)) (|has| |#1| (-297))) ((-1068 #0#) |has| |#1| (-371)) ((-1068 |#1|) . T) ((-1068 $) -2817 (|has| |#1| (-371)) (|has| |#1| (-297))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1230) -2817 (|has| |#1| (-293 |#1| |#1|)) (|has| |#1| (-238)))) +((-1776 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-1010 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1776 (|#3| (-1 |#4| |#2|) |#1|))) (-1009 |#2|) (-174) (-1009 |#4|) (-174)) (T -1010)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-1009 *6)) (-5 *1 (-1010 *4 *5 *2 *6)) (-4 *4 (-1009 *5))))) +(-10 -7 (-15 -1776 (|#3| (-1 |#4| |#2|) |#1|))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) NIL)) (-2205 (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) NIL) (((-698 |#1|) (-698 $)) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-4238 ((|#1| $) 12)) (-3810 (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-554)))) (-2551 (((-112) $) NIL (|has| |#1| (-554)))) (-4434 (((-416 (-573)) $) NIL (|has| |#1| (-554)))) (-1520 (($ |#1| |#1| |#1| |#1|) 16)) (-1959 (((-112) $) NIL)) (-3421 ((|#1| $) NIL)) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL (|has| |#1| (-371)))) (-4231 ((|#1| $) 15)) (-3875 ((|#1| $) 14)) (-1881 ((|#1| $) 13)) (-3965 (((-1132) $) NIL)) (-2645 (($ $ (-653 |#1|) (-653 |#1|)) NIL (|has| |#1| (-316 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-316 |#1|))) (($ $ (-301 |#1|)) NIL (|has| |#1| (-316 |#1|))) (($ $ (-653 (-301 |#1|))) NIL (|has| |#1| (-316 |#1|))) (($ $ (-653 (-1189)) (-653 |#1|)) NIL (|has| |#1| (-523 (-1189) |#1|))) (($ $ (-1189) |#1|) NIL (|has| |#1| (-523 (-1189) |#1|)))) (-2198 (($ $ |#1|) NIL (|has| |#1| (-293 |#1| |#1|)))) (-3904 (($ $ (-780)) NIL (|has| |#1| (-238))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1835 (((-545) $) NIL (|has| |#1| (-623 (-545))))) (-3204 (($ $) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#1|) NIL) (($ (-416 (-573))) NIL (-2817 (|has| |#1| (-371)) (|has| |#1| (-1050 (-416 (-573))))))) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-1660 ((|#1| $) NIL (|has| |#1| (-1072)))) (-2132 (($) 8 T CONST)) (-2144 (($) 10 T CONST)) (-3609 (($ $ (-780)) NIL (|has| |#1| (-238))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL (|has| |#1| (-371)))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-416 (-573))) NIL (|has| |#1| (-371))) (($ (-416 (-573)) $) NIL (|has| |#1| (-371))))) +(((-1011 |#1|) (-1009 |#1|) (-174)) (T -1011)) +NIL +(-1009 |#1|) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3450 (((-112) $ (-780)) NIL)) (-2579 (($) NIL T CONST)) (-3147 (($ $) 23)) (-3950 (($ (-653 |#1|)) 33)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-4134 (((-780) $) 26)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-2487 ((|#1| $) 28)) (-3181 (($ |#1| $) 17)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-3897 ((|#1| $) 27)) (-3815 ((|#1| $) 22)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3203 ((|#1| |#1| $) 16)) (-3811 (((-112) $) 18)) (-3508 (($) NIL)) (-2548 ((|#1| $) 21)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2679 (($ (-653 |#1|)) NIL)) (-2411 ((|#1| $) 30)) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-1012 |#1|) (-13 (-1007 |#1|) (-10 -8 (-15 -3950 ($ (-653 |#1|))))) (-1112)) (T -1012)) +((-3950 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-1012 *3))))) +(-13 (-1007 |#1|) (-10 -8 (-15 -3950 ($ (-653 |#1|))))) +((-4228 (($ $) 12)) (-4325 (($ $ (-573)) 13))) +(((-1013 |#1|) (-10 -8 (-15 -4228 (|#1| |#1|)) (-15 -4325 (|#1| |#1| (-573)))) (-1014)) (T -1013)) +NIL +(-10 -8 (-15 -4228 (|#1| |#1|)) (-15 -4325 (|#1| |#1| (-573)))) +((-4228 (($ $) 6)) (-4325 (($ $ (-573)) 7)) (** (($ $ (-416 (-573))) 8))) +(((-1014) (-141)) (T -1014)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-1014)) (-5 *2 (-416 (-573))))) (-4325 (*1 *1 *1 *2) (-12 (-4 *1 (-1014)) (-5 *2 (-573)))) (-4228 (*1 *1 *1) (-4 *1 (-1014)))) +(-13 (-10 -8 (-15 -4228 ($ $)) (-15 -4325 ($ $ (-573))) (-15 ** ($ $ (-416 (-573)))))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-1943 (((-2 (|:| |num| (-1280 |#2|)) (|:| |den| |#2|)) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| (-416 |#2|) (-371)))) (-2456 (($ $) NIL (|has| (-416 |#2|) (-371)))) (-1345 (((-112) $) NIL (|has| (-416 |#2|) (-371)))) (-2114 (((-698 (-416 |#2|)) (-1280 $)) NIL) (((-698 (-416 |#2|))) NIL)) (-1635 (((-416 |#2|) $) NIL)) (-2604 (((-1202 (-931) (-780)) (-573)) NIL (|has| (-416 |#2|) (-357)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL (|has| (-416 |#2|) (-371)))) (-2427 (((-427 $) $) NIL (|has| (-416 |#2|) (-371)))) (-2800 (((-112) $ $) NIL (|has| (-416 |#2|) (-371)))) (-1486 (((-780)) NIL (|has| (-416 |#2|) (-376)))) (-2222 (((-112)) NIL)) (-3454 (((-112) |#1|) 162) (((-112) |#2|) 166)) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL (|has| (-416 |#2|) (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| (-416 |#2|) (-1050 (-416 (-573))))) (((-3 (-416 |#2|) "failed") $) NIL)) (-2205 (((-573) $) NIL (|has| (-416 |#2|) (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| (-416 |#2|) (-1050 (-416 (-573))))) (((-416 |#2|) $) NIL)) (-2854 (($ (-1280 (-416 |#2|)) (-1280 $)) NIL) (($ (-1280 (-416 |#2|))) 79) (($ (-1280 |#2|) |#2|) NIL)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-416 |#2|) (-357)))) (-2784 (($ $ $) NIL (|has| (-416 |#2|) (-371)))) (-1720 (((-698 (-416 |#2|)) $ (-1280 $)) NIL) (((-698 (-416 |#2|)) $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| (-416 |#2|) (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| (-416 |#2|) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| (-416 |#2|) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-416 |#2|))) (|:| |vec| (-1280 (-416 |#2|)))) (-698 $) (-1280 $)) NIL) (((-698 (-416 |#2|)) (-698 $)) NIL) (((-698 (-416 |#2|)) (-1280 $)) NIL)) (-1869 (((-1280 $) (-1280 $)) NIL)) (-2867 (($ |#3|) 73) (((-3 $ "failed") (-416 |#3|)) NIL (|has| (-416 |#2|) (-371)))) (-2232 (((-3 $ "failed") $) NIL)) (-2989 (((-653 (-653 |#1|))) NIL (|has| |#1| (-376)))) (-3302 (((-112) |#1| |#1|) NIL)) (-3583 (((-931)) NIL)) (-2819 (($) NIL (|has| (-416 |#2|) (-376)))) (-1710 (((-112)) NIL)) (-1819 (((-112) |#1|) 61) (((-112) |#2|) 164)) (-2796 (($ $ $) NIL (|has| (-416 |#2|) (-371)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| (-416 |#2|) (-371)))) (-3246 (($ $) NIL)) (-3731 (($) NIL (|has| (-416 |#2|) (-357)))) (-1708 (((-112) $) NIL (|has| (-416 |#2|) (-357)))) (-2104 (($ $ (-780)) NIL (|has| (-416 |#2|) (-357))) (($ $) NIL (|has| (-416 |#2|) (-357)))) (-2696 (((-112) $) NIL (|has| (-416 |#2|) (-371)))) (-2534 (((-931) $) NIL (|has| (-416 |#2|) (-357))) (((-842 (-931)) $) NIL (|has| (-416 |#2|) (-357)))) (-1959 (((-112) $) NIL)) (-2033 (((-780)) NIL)) (-4109 (((-1280 $) (-1280 $)) NIL)) (-3421 (((-416 |#2|) $) NIL)) (-2201 (((-653 (-962 |#1|)) (-1189)) NIL (|has| |#1| (-371)))) (-1470 (((-3 $ "failed") $) NIL (|has| (-416 |#2|) (-357)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| (-416 |#2|) (-371)))) (-2297 ((|#3| $) NIL (|has| (-416 |#2|) (-371)))) (-3589 (((-931) $) NIL (|has| (-416 |#2|) (-376)))) (-2853 ((|#3| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| (-416 |#2|) (-371))) (($ $ $) NIL (|has| (-416 |#2|) (-371)))) (-3180 (((-1171) $) NIL)) (-3644 (((-698 (-416 |#2|))) 57)) (-3456 (((-698 (-416 |#2|))) 56)) (-1323 (($ $) NIL (|has| (-416 |#2|) (-371)))) (-1465 (($ (-1280 |#2|) |#2|) 80)) (-4192 (((-698 (-416 |#2|))) 55)) (-3707 (((-698 (-416 |#2|))) 54)) (-2522 (((-2 (|:| |num| (-698 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95)) (-3150 (((-2 (|:| |num| (-1280 |#2|)) (|:| |den| |#2|)) $) 86)) (-3051 (((-1280 $)) 51)) (-3529 (((-1280 $)) 50)) (-3432 (((-112) $) NIL)) (-2588 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3816 (($) NIL (|has| (-416 |#2|) (-357)) CONST)) (-2575 (($ (-931)) NIL (|has| (-416 |#2|) (-376)))) (-2338 (((-3 |#2| "failed")) 70)) (-3965 (((-1132) $) NIL)) (-2717 (((-780)) NIL)) (-2969 (($) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| (-416 |#2|) (-371)))) (-2872 (($ (-653 $)) NIL (|has| (-416 |#2|) (-371))) (($ $ $) NIL (|has| (-416 |#2|) (-371)))) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) NIL (|has| (-416 |#2|) (-357)))) (-4218 (((-427 $) $) NIL (|has| (-416 |#2|) (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-416 |#2|) (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| (-416 |#2|) (-371)))) (-2837 (((-3 $ "failed") $ $) NIL (|has| (-416 |#2|) (-371)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| (-416 |#2|) (-371)))) (-2163 (((-780) $) NIL (|has| (-416 |#2|) (-371)))) (-2198 ((|#1| $ |#1| |#1|) NIL)) (-4027 (((-3 |#2| "failed")) 68)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| (-416 |#2|) (-371)))) (-3592 (((-416 |#2|) (-1280 $)) NIL) (((-416 |#2|)) 47)) (-1637 (((-780) $) NIL (|has| (-416 |#2|) (-357))) (((-3 (-780) "failed") $ $) NIL (|has| (-416 |#2|) (-357)))) (-3904 (($ $ (-1 (-416 |#2|) (-416 |#2|)) (-780)) NIL (|has| (-416 |#2|) (-371))) (($ $ (-1 (-416 |#2|) (-416 |#2|))) NIL (|has| (-416 |#2|) (-371))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $) NIL (-2817 (-12 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371))) (|has| (-416 |#2|) (-357)))) (($ $ (-780)) NIL (-2817 (-12 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371))) (|has| (-416 |#2|) (-357))))) (-4303 (((-698 (-416 |#2|)) (-1280 $) (-1 (-416 |#2|) (-416 |#2|))) NIL (|has| (-416 |#2|) (-371)))) (-2984 ((|#3|) 58)) (-2510 (($) NIL (|has| (-416 |#2|) (-357)))) (-2123 (((-1280 (-416 |#2|)) $ (-1280 $)) NIL) (((-698 (-416 |#2|)) (-1280 $) (-1280 $)) NIL) (((-1280 (-416 |#2|)) $) 81) (((-698 (-416 |#2|)) (-1280 $)) NIL)) (-1835 (((-1280 (-416 |#2|)) $) NIL) (($ (-1280 (-416 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (|has| (-416 |#2|) (-357)))) (-2499 (((-1280 $) (-1280 $)) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ (-416 |#2|)) NIL) (($ (-416 (-573))) NIL (-2817 (|has| (-416 |#2|) (-1050 (-416 (-573)))) (|has| (-416 |#2|) (-371)))) (($ $) NIL (|has| (-416 |#2|) (-371)))) (-4279 (($ $) NIL (|has| (-416 |#2|) (-357))) (((-3 $ "failed") $) NIL (|has| (-416 |#2|) (-146)))) (-2517 ((|#3| $) NIL)) (-1545 (((-780)) NIL T CONST)) (-2919 (((-112)) 65)) (-3289 (((-112) |#1|) 167) (((-112) |#2|) 168)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) NIL)) (-2516 (((-112) $ $) NIL (|has| (-416 |#2|) (-371)))) (-2581 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3331 (((-112)) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-1 (-416 |#2|) (-416 |#2|)) (-780)) NIL (|has| (-416 |#2|) (-371))) (($ $ (-1 (-416 |#2|) (-416 |#2|))) NIL (|has| (-416 |#2|) (-371))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| (-416 |#2|) (-371)) (|has| (-416 |#2|) (-910 (-1189))))) (($ $) NIL (-2817 (-12 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371))) (|has| (-416 |#2|) (-357)))) (($ $ (-780)) NIL (-2817 (-12 (|has| (-416 |#2|) (-238)) (|has| (-416 |#2|) (-371))) (|has| (-416 |#2|) (-357))))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ $) NIL (|has| (-416 |#2|) (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL (|has| (-416 |#2|) (-371)))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 |#2|)) NIL) (($ (-416 |#2|) $) NIL) (($ (-416 (-573)) $) NIL (|has| (-416 |#2|) (-371))) (($ $ (-416 (-573))) NIL (|has| (-416 |#2|) (-371))))) +(((-1015 |#1| |#2| |#3| |#4| |#5|) (-350 |#1| |#2| |#3|) (-1234) (-1256 |#1|) (-1256 (-416 |#2|)) (-416 |#2|) (-780)) (T -1015)) +NIL +(-350 |#1| |#2| |#3|) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3378 (((-653 (-573)) $) 73)) (-3860 (($ (-653 (-573))) 81)) (-3770 (((-573) $) 48 (|has| (-573) (-314)))) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-2800 (((-112) $ $) NIL)) (-1983 (((-573) $) NIL (|has| (-573) (-829)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) 60) (((-3 (-1189) "failed") $) NIL (|has| (-573) (-1050 (-1189)))) (((-3 (-416 (-573)) "failed") $) 57 (|has| (-573) (-1050 (-573)))) (((-3 (-573) "failed") $) 60 (|has| (-573) (-1050 (-573))))) (-2205 (((-573) $) NIL) (((-1189) $) NIL (|has| (-573) (-1050 (-1189)))) (((-416 (-573)) $) NIL (|has| (-573) (-1050 (-573)))) (((-573) $) NIL (|has| (-573) (-1050 (-573))))) (-2784 (($ $ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| (-573) (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| (-573) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| (-573) (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL) (((-698 (-573)) (-698 $)) NIL) (((-698 (-573)) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2819 (($) NIL (|has| (-573) (-554)))) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-2177 (((-653 (-573)) $) 79)) (-4152 (((-112) $) NIL (|has| (-573) (-829)))) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (|has| (-573) (-896 (-573)))) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (|has| (-573) (-896 (-387))))) (-1959 (((-112) $) NIL)) (-3041 (($ $) NIL)) (-2965 (((-573) $) 45)) (-1470 (((-3 $ "failed") $) NIL (|has| (-573) (-1164)))) (-3339 (((-112) $) NIL (|has| (-573) (-829)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3659 (($ $ $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| (-573) (-859)))) (-1776 (($ (-1 (-573) (-573)) $) NIL)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL)) (-3816 (($) NIL (|has| (-573) (-1164)) CONST)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-2408 (($ $) NIL (|has| (-573) (-314))) (((-416 (-573)) $) 50)) (-3552 (((-1169 (-573)) $) 78)) (-1609 (($ (-653 (-573)) (-653 (-573))) 82)) (-3733 (((-573) $) 64 (|has| (-573) (-554)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| (-573) (-919)))) (-4218 (((-427 $) $) NIL)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2645 (($ $ (-653 (-573)) (-653 (-573))) NIL (|has| (-573) (-316 (-573)))) (($ $ (-573) (-573)) NIL (|has| (-573) (-316 (-573)))) (($ $ (-301 (-573))) NIL (|has| (-573) (-316 (-573)))) (($ $ (-653 (-301 (-573)))) NIL (|has| (-573) (-316 (-573)))) (($ $ (-653 (-1189)) (-653 (-573))) NIL (|has| (-573) (-523 (-1189) (-573)))) (($ $ (-1189) (-573)) NIL (|has| (-573) (-523 (-1189) (-573))))) (-2163 (((-780) $) NIL)) (-2198 (($ $ (-573)) NIL (|has| (-573) (-293 (-573) (-573))))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3904 (($ $ (-780)) NIL (|has| (-573) (-238))) (($ $) 15 (|has| (-573) (-238))) (($ $ (-1189)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1 (-573) (-573)) (-780)) NIL) (($ $ (-1 (-573) (-573))) NIL)) (-2662 (($ $) NIL)) (-2975 (((-573) $) 47)) (-2276 (((-653 (-573)) $) 80)) (-1835 (((-902 (-573)) $) NIL (|has| (-573) (-623 (-902 (-573))))) (((-902 (-387)) $) NIL (|has| (-573) (-623 (-902 (-387))))) (((-545) $) NIL (|has| (-573) (-623 (-545)))) (((-387) $) NIL (|has| (-573) (-1034))) (((-227) $) NIL (|has| (-573) (-1034)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| (-573) (-919))))) (-2942 (((-871) $) 107) (($ (-573)) 51) (($ $) NIL) (($ (-416 (-573))) 27) (($ (-573)) 51) (($ (-1189)) NIL (|has| (-573) (-1050 (-1189)))) (((-416 (-573)) $) 25)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| (-573) (-919))) (|has| (-573) (-146))))) (-1545 (((-780)) 13 T CONST)) (-2437 (((-573) $) 62 (|has| (-573) (-554)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-1660 (($ $) NIL (|has| (-573) (-829)))) (-2132 (($) 14 T CONST)) (-2144 (($) 17 T CONST)) (-3609 (($ $ (-780)) NIL (|has| (-573) (-238))) (($ $) NIL (|has| (-573) (-238))) (($ $ (-1189)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| (-573) (-910 (-1189)))) (($ $ (-1 (-573) (-573)) (-780)) NIL) (($ $ (-1 (-573) (-573))) NIL)) (-3040 (((-112) $ $) NIL (|has| (-573) (-859)))) (-3015 (((-112) $ $) NIL (|has| (-573) (-859)))) (-2981 (((-112) $ $) 21)) (-3027 (((-112) $ $) NIL (|has| (-573) (-859)))) (-3005 (((-112) $ $) 40 (|has| (-573) (-859)))) (-3103 (($ $ $) 36) (($ (-573) (-573)) 38)) (-3093 (($ $) 23) (($ $ $) 30)) (-3077 (($ $ $) 28)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 32) (($ $ $) 34) (($ $ (-416 (-573))) NIL) (($ (-416 (-573)) $) NIL) (($ (-573) $) 32) (($ $ (-573)) NIL))) +(((-1016 |#1|) (-13 (-1004 (-573)) (-622 (-416 (-573))) (-10 -8 (-15 -2408 ((-416 (-573)) $)) (-15 -3378 ((-653 (-573)) $)) (-15 -3552 ((-1169 (-573)) $)) (-15 -2177 ((-653 (-573)) $)) (-15 -2276 ((-653 (-573)) $)) (-15 -3860 ($ (-653 (-573)))) (-15 -1609 ($ (-653 (-573)) (-653 (-573)))))) (-573)) (T -1016)) +((-2408 (*1 *2 *1) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-1016 *3)) (-14 *3 (-573)))) (-3378 (*1 *2 *1) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1016 *3)) (-14 *3 (-573)))) (-3552 (*1 *2 *1) (-12 (-5 *2 (-1169 (-573))) (-5 *1 (-1016 *3)) (-14 *3 (-573)))) (-2177 (*1 *2 *1) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1016 *3)) (-14 *3 (-573)))) (-2276 (*1 *2 *1) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1016 *3)) (-14 *3 (-573)))) (-3860 (*1 *1 *2) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1016 *3)) (-14 *3 (-573)))) (-1609 (*1 *1 *2 *2) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1016 *3)) (-14 *3 (-573))))) +(-13 (-1004 (-573)) (-622 (-416 (-573))) (-10 -8 (-15 -2408 ((-416 (-573)) $)) (-15 -3378 ((-653 (-573)) $)) (-15 -3552 ((-1169 (-573)) $)) (-15 -2177 ((-653 (-573)) $)) (-15 -2276 ((-653 (-573)) $)) (-15 -3860 ($ (-653 (-573)))) (-15 -1609 ($ (-653 (-573)) (-653 (-573)))))) +((-3461 (((-52) (-416 (-573)) (-573)) 9))) +(((-1017) (-10 -7 (-15 -3461 ((-52) (-416 (-573)) (-573))))) (T -1017)) +((-3461 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-573))) (-5 *4 (-573)) (-5 *2 (-52)) (-5 *1 (-1017))))) +(-10 -7 (-15 -3461 ((-52) (-416 (-573)) (-573)))) +((-1486 (((-573)) 23)) (-4124 (((-573)) 28)) (-2231 (((-1285) (-573)) 26)) (-2751 (((-573) (-573)) 29) (((-573)) 22))) +(((-1018) (-10 -7 (-15 -2751 ((-573))) (-15 -1486 ((-573))) (-15 -2751 ((-573) (-573))) (-15 -2231 ((-1285) (-573))) (-15 -4124 ((-573))))) (T -1018)) +((-4124 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-1018)))) (-2231 (*1 *2 *3) (-12 (-5 *3 (-573)) (-5 *2 (-1285)) (-5 *1 (-1018)))) (-2751 (*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-1018)))) (-1486 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-1018)))) (-2751 (*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-1018))))) +(-10 -7 (-15 -2751 ((-573))) (-15 -1486 ((-573))) (-15 -2751 ((-573) (-573))) (-15 -2231 ((-1285) (-573))) (-15 -4124 ((-573)))) +((-2513 (((-427 |#1|) |#1|) 43)) (-4218 (((-427 |#1|) |#1|) 41))) +(((-1019 |#1|) (-10 -7 (-15 -4218 ((-427 |#1|) |#1|)) (-15 -2513 ((-427 |#1|) |#1|))) (-1256 (-416 (-573)))) (T -1019)) +((-2513 (*1 *2 *3) (-12 (-5 *2 (-427 *3)) (-5 *1 (-1019 *3)) (-4 *3 (-1256 (-416 (-573)))))) (-4218 (*1 *2 *3) (-12 (-5 *2 (-427 *3)) (-5 *1 (-1019 *3)) (-4 *3 (-1256 (-416 (-573))))))) +(-10 -7 (-15 -4218 ((-427 |#1|) |#1|)) (-15 -2513 ((-427 |#1|) |#1|))) +((-3810 (((-3 (-416 (-573)) "failed") |#1|) 15)) (-2551 (((-112) |#1|) 14)) (-4434 (((-416 (-573)) |#1|) 10))) +(((-1020 |#1|) (-10 -7 (-15 -4434 ((-416 (-573)) |#1|)) (-15 -2551 ((-112) |#1|)) (-15 -3810 ((-3 (-416 (-573)) "failed") |#1|))) (-1050 (-416 (-573)))) (T -1020)) +((-3810 (*1 *2 *3) (|partial| -12 (-5 *2 (-416 (-573))) (-5 *1 (-1020 *3)) (-4 *3 (-1050 *2)))) (-2551 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1020 *3)) (-4 *3 (-1050 (-416 (-573)))))) (-4434 (*1 *2 *3) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-1020 *3)) (-4 *3 (-1050 *2))))) +(-10 -7 (-15 -4434 ((-416 (-573)) |#1|)) (-15 -2551 ((-112) |#1|)) (-15 -3810 ((-3 (-416 (-573)) "failed") |#1|))) +((-3142 ((|#2| $ "value" |#2|) 12)) (-2198 ((|#2| $ "value") 10)) (-1716 (((-112) $ $) 18))) +(((-1021 |#1| |#2|) (-10 -8 (-15 -3142 (|#2| |#1| "value" |#2|)) (-15 -1716 ((-112) |#1| |#1|)) (-15 -2198 (|#2| |#1| "value"))) (-1022 |#2|) (-1230)) (T -1021)) +NIL +(-10 -8 (-15 -3142 (|#2| |#1| "value" |#2|)) (-15 -1716 ((-112) |#1| |#1|)) (-15 -2198 (|#2| |#1| "value"))) +((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3082 ((|#1| $) 49)) (-3450 (((-112) $ (-780)) 8)) (-2367 ((|#1| $ |#1|) 40 (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) 42 (|has| $ (-6 -4456)))) (-2579 (($) 7 T CONST)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) 51)) (-3208 (((-112) $ $) 43 (|has| |#1| (-1112)))) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3505 (((-653 |#1|) $) 46)) (-2880 (((-112) $) 50)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ "value") 48)) (-1501 (((-573) $ $) 45)) (-1628 (((-112) $) 47)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) 52)) (-1716 (((-112) $ $) 44 (|has| |#1| (-1112)))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-1022 |#1|) (-141) (-1230)) (T -1022)) +((-1811 (*1 *2 *1) (-12 (-4 *3 (-1230)) (-5 *2 (-653 *1)) (-4 *1 (-1022 *3)))) (-3113 (*1 *2 *1) (-12 (-4 *3 (-1230)) (-5 *2 (-653 *1)) (-4 *1 (-1022 *3)))) (-2880 (*1 *2 *1) (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1230)) (-5 *2 (-112)))) (-3082 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1230)))) (-2198 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1022 *2)) (-4 *2 (-1230)))) (-1628 (*1 *2 *1) (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1230)) (-5 *2 (-112)))) (-3505 (*1 *2 *1) (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1230)) (-5 *2 (-653 *3)))) (-1501 (*1 *2 *1 *1) (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1230)) (-5 *2 (-573)))) (-1716 (*1 *2 *1 *1) (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1230)) (-4 *3 (-1112)) (-5 *2 (-112)))) (-3208 (*1 *2 *1 *1) (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1230)) (-4 *3 (-1112)) (-5 *2 (-112)))) (-2720 (*1 *1 *1 *2) (-12 (-5 *2 (-653 *1)) (|has| *1 (-6 -4456)) (-4 *1 (-1022 *3)) (-4 *3 (-1230)))) (-3142 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4456)) (-4 *1 (-1022 *2)) (-4 *2 (-1230)))) (-2367 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-1022 *2)) (-4 *2 (-1230))))) +(-13 (-498 |t#1|) (-10 -8 (-15 -1811 ((-653 $) $)) (-15 -3113 ((-653 $) $)) (-15 -2880 ((-112) $)) (-15 -3082 (|t#1| $)) (-15 -2198 (|t#1| $ "value")) (-15 -1628 ((-112) $)) (-15 -3505 ((-653 |t#1|) $)) (-15 -1501 ((-573) $ $)) (IF (|has| |t#1| (-1112)) (PROGN (-15 -1716 ((-112) $ $)) (-15 -3208 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4456)) (PROGN (-15 -2720 ($ $ (-653 $))) (-15 -3142 (|t#1| $ "value" |t#1|)) (-15 -2367 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) +((-4228 (($ $) 9) (($ $ (-931)) 49) (($ (-416 (-573))) 13) (($ (-573)) 15)) (-1732 (((-3 $ "failed") (-1185 $) (-931) (-871)) 24) (((-3 $ "failed") (-1185 $) (-931)) 32)) (-4325 (($ $ (-573)) 58)) (-1545 (((-780)) 18)) (-1536 (((-653 $) (-1185 $)) NIL) (((-653 $) (-1185 (-416 (-573)))) 63) (((-653 $) (-1185 (-573))) 68) (((-653 $) (-962 $)) 72) (((-653 $) (-962 (-416 (-573)))) 76) (((-653 $) (-962 (-573))) 80)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL) (($ $ (-416 (-573))) 53))) +(((-1023 |#1|) (-10 -8 (-15 -4228 (|#1| (-573))) (-15 -4228 (|#1| (-416 (-573)))) (-15 -4228 (|#1| |#1| (-931))) (-15 -1536 ((-653 |#1|) (-962 (-573)))) (-15 -1536 ((-653 |#1|) (-962 (-416 (-573))))) (-15 -1536 ((-653 |#1|) (-962 |#1|))) (-15 -1536 ((-653 |#1|) (-1185 (-573)))) (-15 -1536 ((-653 |#1|) (-1185 (-416 (-573))))) (-15 -1536 ((-653 |#1|) (-1185 |#1|))) (-15 -1732 ((-3 |#1| "failed") (-1185 |#1|) (-931))) (-15 -1732 ((-3 |#1| "failed") (-1185 |#1|) (-931) (-871))) (-15 ** (|#1| |#1| (-416 (-573)))) (-15 -4325 (|#1| |#1| (-573))) (-15 -4228 (|#1| |#1|)) (-15 ** (|#1| |#1| (-573))) (-15 -1545 ((-780))) (-15 ** (|#1| |#1| (-780))) (-15 ** (|#1| |#1| (-931)))) (-1024)) (T -1023)) +((-1545 (*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-1023 *3)) (-4 *3 (-1024))))) +(-10 -8 (-15 -4228 (|#1| (-573))) (-15 -4228 (|#1| (-416 (-573)))) (-15 -4228 (|#1| |#1| (-931))) (-15 -1536 ((-653 |#1|) (-962 (-573)))) (-15 -1536 ((-653 |#1|) (-962 (-416 (-573))))) (-15 -1536 ((-653 |#1|) (-962 |#1|))) (-15 -1536 ((-653 |#1|) (-1185 (-573)))) (-15 -1536 ((-653 |#1|) (-1185 (-416 (-573))))) (-15 -1536 ((-653 |#1|) (-1185 |#1|))) (-15 -1732 ((-3 |#1| "failed") (-1185 |#1|) (-931))) (-15 -1732 ((-3 |#1| "failed") (-1185 |#1|) (-931) (-871))) (-15 ** (|#1| |#1| (-416 (-573)))) (-15 -4325 (|#1| |#1| (-573))) (-15 -4228 (|#1| |#1|)) (-15 ** (|#1| |#1| (-573))) (-15 -1545 ((-780))) (-15 ** (|#1| |#1| (-780))) (-15 ** (|#1| |#1| (-931)))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 102)) (-2456 (($ $) 103)) (-1345 (((-112) $) 105)) (-2983 (((-3 $ "failed") $ $) 20)) (-4285 (($ $) 122)) (-2427 (((-427 $) $) 123)) (-4228 (($ $) 86) (($ $ (-931)) 72) (($ (-416 (-573))) 71) (($ (-573)) 70)) (-2800 (((-112) $ $) 113)) (-1983 (((-573) $) 139)) (-2579 (($) 18 T CONST)) (-1732 (((-3 $ "failed") (-1185 $) (-931) (-871)) 80) (((-3 $ "failed") (-1185 $) (-931)) 79)) (-1695 (((-3 (-573) "failed") $) 99 (|has| (-416 (-573)) (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) 97 (|has| (-416 (-573)) (-1050 (-416 (-573))))) (((-3 (-416 (-573)) "failed") $) 94)) (-2205 (((-573) $) 98 (|has| (-416 (-573)) (-1050 (-573)))) (((-416 (-573)) $) 96 (|has| (-416 (-573)) (-1050 (-416 (-573))))) (((-416 (-573)) $) 95)) (-1877 (($ $ (-871)) 69)) (-2667 (($ $ (-871)) 68)) (-2784 (($ $ $) 117)) (-2232 (((-3 $ "failed") $) 37)) (-2796 (($ $ $) 116)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 111)) (-2696 (((-112) $) 124)) (-4152 (((-112) $) 137)) (-1959 (((-112) $) 35)) (-4325 (($ $ (-573)) 85)) (-3339 (((-112) $) 138)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 120)) (-3659 (($ $ $) 136)) (-3751 (($ $ $) 135)) (-1859 (((-3 (-1185 $) "failed") $) 81)) (-1663 (((-3 (-871) "failed") $) 83)) (-2916 (((-3 (-1185 $) "failed") $) 82)) (-2829 (($ (-653 $)) 109) (($ $ $) 108)) (-3180 (((-1171) $) 10)) (-1323 (($ $) 125)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 110)) (-2872 (($ (-653 $)) 107) (($ $ $) 106)) (-4218 (((-427 $) $) 121)) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 118)) (-2837 (((-3 $ "failed") $ $) 101)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 112)) (-2163 (((-780) $) 114)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 115)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ (-416 (-573))) 129) (($ $) 100) (($ (-416 (-573))) 93) (($ (-573)) 92) (($ (-416 (-573))) 89)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 104)) (-3550 (((-416 (-573)) $ $) 67)) (-1536 (((-653 $) (-1185 $)) 78) (((-653 $) (-1185 (-416 (-573)))) 77) (((-653 $) (-1185 (-573))) 76) (((-653 $) (-962 $)) 75) (((-653 $) (-962 (-416 (-573)))) 74) (((-653 $) (-962 (-573))) 73)) (-1660 (($ $) 140)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3040 (((-112) $ $) 133)) (-3015 (((-112) $ $) 132)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 134)) (-3005 (((-112) $ $) 131)) (-3103 (($ $ $) 130)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 126) (($ $ (-416 (-573))) 84)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ (-416 (-573)) $) 128) (($ $ (-416 (-573))) 127) (($ (-573) $) 91) (($ $ (-573)) 90) (($ (-416 (-573)) $) 88) (($ $ (-416 (-573))) 87))) +(((-1024) (-141)) (T -1024)) +((-4228 (*1 *1 *1) (-4 *1 (-1024))) (-1663 (*1 *2 *1) (|partial| -12 (-4 *1 (-1024)) (-5 *2 (-871)))) (-2916 (*1 *2 *1) (|partial| -12 (-5 *2 (-1185 *1)) (-4 *1 (-1024)))) (-1859 (*1 *2 *1) (|partial| -12 (-5 *2 (-1185 *1)) (-4 *1 (-1024)))) (-1732 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1185 *1)) (-5 *3 (-931)) (-5 *4 (-871)) (-4 *1 (-1024)))) (-1732 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1185 *1)) (-5 *3 (-931)) (-4 *1 (-1024)))) (-1536 (*1 *2 *3) (-12 (-5 *3 (-1185 *1)) (-4 *1 (-1024)) (-5 *2 (-653 *1)))) (-1536 (*1 *2 *3) (-12 (-5 *3 (-1185 (-416 (-573)))) (-5 *2 (-653 *1)) (-4 *1 (-1024)))) (-1536 (*1 *2 *3) (-12 (-5 *3 (-1185 (-573))) (-5 *2 (-653 *1)) (-4 *1 (-1024)))) (-1536 (*1 *2 *3) (-12 (-5 *3 (-962 *1)) (-4 *1 (-1024)) (-5 *2 (-653 *1)))) (-1536 (*1 *2 *3) (-12 (-5 *3 (-962 (-416 (-573)))) (-5 *2 (-653 *1)) (-4 *1 (-1024)))) (-1536 (*1 *2 *3) (-12 (-5 *3 (-962 (-573))) (-5 *2 (-653 *1)) (-4 *1 (-1024)))) (-4228 (*1 *1 *1 *2) (-12 (-4 *1 (-1024)) (-5 *2 (-931)))) (-4228 (*1 *1 *2) (-12 (-5 *2 (-416 (-573))) (-4 *1 (-1024)))) (-4228 (*1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-1024)))) (-1877 (*1 *1 *1 *2) (-12 (-4 *1 (-1024)) (-5 *2 (-871)))) (-2667 (*1 *1 *1 *2) (-12 (-4 *1 (-1024)) (-5 *2 (-871)))) (-3550 (*1 *2 *1 *1) (-12 (-4 *1 (-1024)) (-5 *2 (-416 (-573)))))) +(-13 (-148) (-857) (-174) (-371) (-420 (-416 (-573))) (-38 (-573)) (-38 (-416 (-573))) (-1014) (-10 -8 (-15 -1663 ((-3 (-871) "failed") $)) (-15 -2916 ((-3 (-1185 $) "failed") $)) (-15 -1859 ((-3 (-1185 $) "failed") $)) (-15 -1732 ((-3 $ "failed") (-1185 $) (-931) (-871))) (-15 -1732 ((-3 $ "failed") (-1185 $) (-931))) (-15 -1536 ((-653 $) (-1185 $))) (-15 -1536 ((-653 $) (-1185 (-416 (-573))))) (-15 -1536 ((-653 $) (-1185 (-573)))) (-15 -1536 ((-653 $) (-962 $))) (-15 -1536 ((-653 $) (-962 (-416 (-573))))) (-15 -1536 ((-653 $) (-962 (-573)))) (-15 -4228 ($ $ (-931))) (-15 -4228 ($ $)) (-15 -4228 ($ (-416 (-573)))) (-15 -4228 ($ (-573))) (-15 -1877 ($ $ (-871))) (-15 -2667 ($ $ (-871))) (-15 -3550 ((-416 (-573)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) . T) ((-38 #1=(-573)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-625 #0#) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-248) . T) ((-297) . T) ((-314) . T) ((-371) . T) ((-420 (-416 (-573))) . T) ((-461) . T) ((-565) . T) ((-655 #0#) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 #0#) . T) ((-657 #1#) . T) ((-657 $) . T) ((-649 #0#) . T) ((-649 #1#) . T) ((-649 $) . T) ((-726 #0#) . T) ((-726 #1#) . T) ((-726 $) . T) ((-735) . T) ((-800) . T) ((-801) . T) ((-803) . T) ((-804) . T) ((-857) . T) ((-859) . T) ((-930) . T) ((-1014) . T) ((-1050 (-416 (-573))) . T) ((-1050 (-573)) |has| (-416 (-573)) (-1050 (-573))) ((-1063 #0#) . T) ((-1063 #1#) . T) ((-1063 $) . T) ((-1068 #0#) . T) ((-1068 #1#) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1234) . T)) +((-3905 (((-2 (|:| |ans| |#2|) (|:| -3903 |#2|) (|:| |sol?| (-112))) (-573) |#2| |#2| (-1189) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-653 |#2|)) (-1 (-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) +(((-1025 |#1| |#2|) (-10 -7 (-15 -3905 ((-2 (|:| |ans| |#2|) (|:| -3903 |#2|) (|:| |sol?| (-112))) (-573) |#2| |#2| (-1189) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-653 |#2|)) (-1 (-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-461) (-148) (-1050 (-573)) (-648 (-573))) (-13 (-1215) (-27) (-439 |#1|))) (T -1025)) +((-3905 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1189)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-653 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3861 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1215) (-27) (-439 *8))) (-4 *8 (-13 (-461) (-148) (-1050 *3) (-648 *3))) (-5 *3 (-573)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3903 *4) (|:| |sol?| (-112)))) (-5 *1 (-1025 *8 *4))))) +(-10 -7 (-15 -3905 ((-2 (|:| |ans| |#2|) (|:| -3903 |#2|) (|:| |sol?| (-112))) (-573) |#2| |#2| (-1189) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-653 |#2|)) (-1 (-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-2354 (((-3 (-653 |#2|) "failed") (-573) |#2| |#2| |#2| (-1189) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-653 |#2|)) (-1 (-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) +(((-1026 |#1| |#2|) (-10 -7 (-15 -2354 ((-3 (-653 |#2|) "failed") (-573) |#2| |#2| |#2| (-1189) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-653 |#2|)) (-1 (-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-461) (-148) (-1050 (-573)) (-648 (-573))) (-13 (-1215) (-27) (-439 |#1|))) (T -1026)) +((-2354 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1189)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-653 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3861 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1215) (-27) (-439 *8))) (-4 *8 (-13 (-461) (-148) (-1050 *3) (-648 *3))) (-5 *3 (-573)) (-5 *2 (-653 *4)) (-5 *1 (-1026 *8 *4))))) +(-10 -7 (-15 -2354 ((-3 (-653 |#2|) "failed") (-573) |#2| |#2| |#2| (-1189) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-653 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-653 |#2|)) (-1 (-3 (-2 (|:| -3861 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-1814 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4122 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-573)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-573) (-1 |#2| |#2|)) 38)) (-2846 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-416 |#2|)) (|:| |c| (-416 |#2|)) (|:| -2142 |#2|)) "failed") (-416 |#2|) (-416 |#2|) (-1 |#2| |#2|)) 69)) (-1568 (((-2 (|:| |ans| (-416 |#2|)) (|:| |nosol| (-112))) (-416 |#2|) (-416 |#2|)) 74))) +(((-1027 |#1| |#2|) (-10 -7 (-15 -2846 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-416 |#2|)) (|:| |c| (-416 |#2|)) (|:| -2142 |#2|)) "failed") (-416 |#2|) (-416 |#2|) (-1 |#2| |#2|))) (-15 -1568 ((-2 (|:| |ans| (-416 |#2|)) (|:| |nosol| (-112))) (-416 |#2|) (-416 |#2|))) (-15 -1814 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4122 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-573)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-573) (-1 |#2| |#2|)))) (-13 (-371) (-148) (-1050 (-573))) (-1256 |#1|)) (T -1027)) +((-1814 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1256 *6)) (-4 *6 (-13 (-371) (-148) (-1050 *4))) (-5 *4 (-573)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -4122 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1027 *6 *3)))) (-1568 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-371) (-148) (-1050 (-573)))) (-4 *5 (-1256 *4)) (-5 *2 (-2 (|:| |ans| (-416 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1027 *4 *5)) (-5 *3 (-416 *5)))) (-2846 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-416 *6)) (|:| |c| (-416 *6)) (|:| -2142 *6))) (-5 *1 (-1027 *5 *6)) (-5 *3 (-416 *6))))) +(-10 -7 (-15 -2846 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-416 |#2|)) (|:| |c| (-416 |#2|)) (|:| -2142 |#2|)) "failed") (-416 |#2|) (-416 |#2|) (-1 |#2| |#2|))) (-15 -1568 ((-2 (|:| |ans| (-416 |#2|)) (|:| |nosol| (-112))) (-416 |#2|) (-416 |#2|))) (-15 -1814 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4122 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-573)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-573) (-1 |#2| |#2|)))) +((-4194 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-416 |#2|)) (|:| |h| |#2|) (|:| |c1| (-416 |#2|)) (|:| |c2| (-416 |#2|)) (|:| -2142 |#2|)) "failed") (-416 |#2|) (-416 |#2|) (-416 |#2|) (-1 |#2| |#2|)) 22)) (-3494 (((-3 (-653 (-416 |#2|)) "failed") (-416 |#2|) (-416 |#2|) (-416 |#2|)) 34))) +(((-1028 |#1| |#2|) (-10 -7 (-15 -4194 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-416 |#2|)) (|:| |h| |#2|) (|:| |c1| (-416 |#2|)) (|:| |c2| (-416 |#2|)) (|:| -2142 |#2|)) "failed") (-416 |#2|) (-416 |#2|) (-416 |#2|) (-1 |#2| |#2|))) (-15 -3494 ((-3 (-653 (-416 |#2|)) "failed") (-416 |#2|) (-416 |#2|) (-416 |#2|)))) (-13 (-371) (-148) (-1050 (-573))) (-1256 |#1|)) (T -1028)) +((-3494 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-371) (-148) (-1050 (-573)))) (-4 *5 (-1256 *4)) (-5 *2 (-653 (-416 *5))) (-5 *1 (-1028 *4 *5)) (-5 *3 (-416 *5)))) (-4194 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-416 *6)) (|:| |h| *6) (|:| |c1| (-416 *6)) (|:| |c2| (-416 *6)) (|:| -2142 *6))) (-5 *1 (-1028 *5 *6)) (-5 *3 (-416 *6))))) +(-10 -7 (-15 -4194 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-416 |#2|)) (|:| |h| |#2|) (|:| |c1| (-416 |#2|)) (|:| |c2| (-416 |#2|)) (|:| -2142 |#2|)) "failed") (-416 |#2|) (-416 |#2|) (-416 |#2|) (-1 |#2| |#2|))) (-15 -3494 ((-3 (-653 (-416 |#2|)) "failed") (-416 |#2|) (-416 |#2|) (-416 |#2|)))) +((-1883 (((-1 |#1|) (-653 (-2 (|:| -3082 |#1|) (|:| -3447 (-573))))) 34)) (-2863 (((-1 |#1|) (-1114 |#1|)) 42)) (-2239 (((-1 |#1|) (-1280 |#1|) (-1280 (-573)) (-573)) 31))) +(((-1029 |#1|) (-10 -7 (-15 -2863 ((-1 |#1|) (-1114 |#1|))) (-15 -1883 ((-1 |#1|) (-653 (-2 (|:| -3082 |#1|) (|:| -3447 (-573)))))) (-15 -2239 ((-1 |#1|) (-1280 |#1|) (-1280 (-573)) (-573)))) (-1112)) (T -1029)) +((-2239 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1280 *6)) (-5 *4 (-1280 (-573))) (-5 *5 (-573)) (-4 *6 (-1112)) (-5 *2 (-1 *6)) (-5 *1 (-1029 *6)))) (-1883 (*1 *2 *3) (-12 (-5 *3 (-653 (-2 (|:| -3082 *4) (|:| -3447 (-573))))) (-4 *4 (-1112)) (-5 *2 (-1 *4)) (-5 *1 (-1029 *4)))) (-2863 (*1 *2 *3) (-12 (-5 *3 (-1114 *4)) (-4 *4 (-1112)) (-5 *2 (-1 *4)) (-5 *1 (-1029 *4))))) +(-10 -7 (-15 -2863 ((-1 |#1|) (-1114 |#1|))) (-15 -1883 ((-1 |#1|) (-653 (-2 (|:| -3082 |#1|) (|:| -3447 (-573)))))) (-15 -2239 ((-1 |#1|) (-1280 |#1|) (-1280 (-573)) (-573)))) +((-2534 (((-780) (-344 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-1030 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2534 ((-780) (-344 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-371) (-1256 |#1|) (-1256 (-416 |#2|)) (-350 |#1| |#2| |#3|) (-13 (-376) (-371))) (T -1030)) +((-2534 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-344 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-371)) (-4 *7 (-1256 *6)) (-4 *4 (-1256 (-416 *7))) (-4 *8 (-350 *6 *7 *4)) (-4 *9 (-13 (-376) (-371))) (-5 *2 (-780)) (-5 *1 (-1030 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -2534 ((-780) (-344 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-2848 (((-112) $ $) NIL)) (-4173 (((-1147) $) 9)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL) (($ (-1194)) NIL) (((-1194) $) NIL)) (-2043 (((-1147) $) 11)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-1031) (-13 (-1095) (-10 -8 (-15 -4173 ((-1147) $)) (-15 -2043 ((-1147) $))))) (T -1031)) +((-4173 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1031)))) (-2043 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1031))))) +(-13 (-1095) (-10 -8 (-15 -4173 ((-1147) $)) (-15 -2043 ((-1147) $)))) +((-4143 (((-3 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) "failed") |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) 32) (((-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-416 (-573))) 29)) (-1583 (((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-416 (-573))) 34) (((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-416 (-573))) 30) (((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) 33) (((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1|) 28)) (-1418 (((-653 (-416 (-573))) (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) 20)) (-4167 (((-416 (-573)) (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) 17))) +(((-1032 |#1|) (-10 -7 (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1|)) (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-416 (-573)))) (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-416 (-573)))) (-15 -4143 ((-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-416 (-573)))) (-15 -4143 ((-3 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) "failed") |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) (-15 -4167 ((-416 (-573)) (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) (-15 -1418 ((-653 (-416 (-573))) (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))))) (-1256 (-573))) (T -1032)) +((-1418 (*1 *2 *3) (-12 (-5 *3 (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) (-5 *2 (-653 (-416 (-573)))) (-5 *1 (-1032 *4)) (-4 *4 (-1256 (-573))))) (-4167 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) (-5 *2 (-416 (-573))) (-5 *1 (-1032 *4)) (-4 *4 (-1256 (-573))))) (-4143 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) (-5 *1 (-1032 *3)) (-4 *3 (-1256 (-573))))) (-4143 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) (-5 *4 (-416 (-573))) (-5 *1 (-1032 *3)) (-4 *3 (-1256 (-573))))) (-1583 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-416 (-573))) (-5 *2 (-653 (-2 (|:| -3890 *5) (|:| -3903 *5)))) (-5 *1 (-1032 *3)) (-4 *3 (-1256 (-573))) (-5 *4 (-2 (|:| -3890 *5) (|:| -3903 *5))))) (-1583 (*1 *2 *3 *4) (-12 (-5 *2 (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) (-5 *1 (-1032 *3)) (-4 *3 (-1256 (-573))) (-5 *4 (-416 (-573))))) (-1583 (*1 *2 *3 *4) (-12 (-5 *2 (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) (-5 *1 (-1032 *3)) (-4 *3 (-1256 (-573))) (-5 *4 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))))) (-1583 (*1 *2 *3) (-12 (-5 *2 (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) (-5 *1 (-1032 *3)) (-4 *3 (-1256 (-573)))))) +(-10 -7 (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1|)) (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-416 (-573)))) (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-416 (-573)))) (-15 -4143 ((-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-416 (-573)))) (-15 -4143 ((-3 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) "failed") |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) (-15 -4167 ((-416 (-573)) (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) (-15 -1418 ((-653 (-416 (-573))) (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))))) +((-4143 (((-3 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) "failed") |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) 35) (((-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-416 (-573))) 32)) (-1583 (((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-416 (-573))) 30) (((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-416 (-573))) 26) (((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) 28) (((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1|) 24))) +(((-1033 |#1|) (-10 -7 (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1|)) (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-416 (-573)))) (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-416 (-573)))) (-15 -4143 ((-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-416 (-573)))) (-15 -4143 ((-3 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) "failed") |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))))) (-1256 (-416 (-573)))) (T -1033)) +((-4143 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) (-5 *1 (-1033 *3)) (-4 *3 (-1256 (-416 (-573)))))) (-4143 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) (-5 *4 (-416 (-573))) (-5 *1 (-1033 *3)) (-4 *3 (-1256 *4)))) (-1583 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-416 (-573))) (-5 *2 (-653 (-2 (|:| -3890 *5) (|:| -3903 *5)))) (-5 *1 (-1033 *3)) (-4 *3 (-1256 *5)) (-5 *4 (-2 (|:| -3890 *5) (|:| -3903 *5))))) (-1583 (*1 *2 *3 *4) (-12 (-5 *4 (-416 (-573))) (-5 *2 (-653 (-2 (|:| -3890 *4) (|:| -3903 *4)))) (-5 *1 (-1033 *3)) (-4 *3 (-1256 *4)))) (-1583 (*1 *2 *3 *4) (-12 (-5 *2 (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) (-5 *1 (-1033 *3)) (-4 *3 (-1256 (-416 (-573)))) (-5 *4 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))))) (-1583 (*1 *2 *3) (-12 (-5 *2 (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) (-5 *1 (-1033 *3)) (-4 *3 (-1256 (-416 (-573))))))) +(-10 -7 (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1|)) (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-416 (-573)))) (-15 -1583 ((-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-416 (-573)))) (-15 -4143 ((-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-416 (-573)))) (-15 -4143 ((-3 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) "failed") |#1| (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))) (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))))) +((-1835 (((-227) $) 6) (((-387) $) 9))) +(((-1034) (-141)) (T -1034)) +NIL +(-13 (-623 (-227)) (-623 (-387))) +(((-623 (-227)) . T) ((-623 (-387)) . T)) +((-1994 (((-653 (-387)) (-962 (-573)) (-387)) 28) (((-653 (-387)) (-962 (-416 (-573))) (-387)) 27)) (-2676 (((-653 (-653 (-387))) (-653 (-962 (-573))) (-653 (-1189)) (-387)) 37))) +(((-1035) (-10 -7 (-15 -1994 ((-653 (-387)) (-962 (-416 (-573))) (-387))) (-15 -1994 ((-653 (-387)) (-962 (-573)) (-387))) (-15 -2676 ((-653 (-653 (-387))) (-653 (-962 (-573))) (-653 (-1189)) (-387))))) (T -1035)) +((-2676 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 (-962 (-573)))) (-5 *4 (-653 (-1189))) (-5 *2 (-653 (-653 (-387)))) (-5 *1 (-1035)) (-5 *5 (-387)))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-962 (-573))) (-5 *2 (-653 (-387))) (-5 *1 (-1035)) (-5 *4 (-387)))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-962 (-416 (-573)))) (-5 *2 (-653 (-387))) (-5 *1 (-1035)) (-5 *4 (-387))))) +(-10 -7 (-15 -1994 ((-653 (-387)) (-962 (-416 (-573))) (-387))) (-15 -1994 ((-653 (-387)) (-962 (-573)) (-387))) (-15 -2676 ((-653 (-653 (-387))) (-653 (-962 (-573))) (-653 (-1189)) (-387)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 75)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-4228 (($ $) NIL) (($ $ (-931)) NIL) (($ (-416 (-573))) NIL) (($ (-573)) NIL)) (-2800 (((-112) $ $) NIL)) (-1983 (((-573) $) 70)) (-2579 (($) NIL T CONST)) (-1732 (((-3 $ "failed") (-1185 $) (-931) (-871)) NIL) (((-3 $ "failed") (-1185 $) (-931)) 55)) (-1695 (((-3 (-416 (-573)) "failed") $) NIL (|has| (-416 (-573)) (-1050 (-416 (-573))))) (((-3 (-416 (-573)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-573) "failed") $) NIL (-2817 (|has| (-416 (-573)) (-1050 (-573))) (|has| |#1| (-1050 (-573)))))) (-2205 (((-416 (-573)) $) 17 (|has| (-416 (-573)) (-1050 (-416 (-573))))) (((-416 (-573)) $) 17) ((|#1| $) 117) (((-573) $) NIL (-2817 (|has| (-416 (-573)) (-1050 (-573))) (|has| |#1| (-1050 (-573)))))) (-1877 (($ $ (-871)) 47)) (-2667 (($ $ (-871)) 48)) (-2784 (($ $ $) NIL)) (-4050 (((-416 (-573)) $ $) 21)) (-2232 (((-3 $ "failed") $) 88)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-4152 (((-112) $) 66)) (-1959 (((-112) $) NIL)) (-4325 (($ $ (-573)) NIL)) (-3339 (((-112) $) 69)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-1859 (((-3 (-1185 $) "failed") $) 83)) (-1663 (((-3 (-871) "failed") $) 82)) (-2916 (((-3 (-1185 $) "failed") $) 80)) (-1499 (((-3 (-1073 $ (-1185 $)) "failed") $) 78)) (-2829 (($ (-653 $)) NIL) (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 89)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ (-653 $)) NIL) (($ $ $) NIL)) (-4218 (((-427 $) $) NIL)) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-2942 (((-871) $) 87) (($ (-573)) NIL) (($ (-416 (-573))) NIL) (($ $) 63) (($ (-416 (-573))) NIL) (($ (-573)) NIL) (($ (-416 (-573))) NIL) (($ |#1|) 119)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-3550 (((-416 (-573)) $ $) 27)) (-1536 (((-653 $) (-1185 $)) 61) (((-653 $) (-1185 (-416 (-573)))) NIL) (((-653 $) (-1185 (-573))) NIL) (((-653 $) (-962 $)) NIL) (((-653 $) (-962 (-416 (-573)))) NIL) (((-653 $) (-962 (-573))) NIL)) (-1582 (($ (-1073 $ (-1185 $)) (-871)) 46)) (-1660 (($ $) 22)) (-2132 (($) 32 T CONST)) (-2144 (($) 39 T CONST)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 76)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 24)) (-3103 (($ $ $) 37)) (-3093 (($ $) 38) (($ $ $) 74)) (-3077 (($ $ $) 112)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL) (($ $ (-416 (-573))) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 98) (($ $ $) 104) (($ (-416 (-573)) $) NIL) (($ $ (-416 (-573))) NIL) (($ (-573) $) 98) (($ $ (-573)) NIL) (($ (-416 (-573)) $) NIL) (($ $ (-416 (-573))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) +(((-1036 |#1|) (-13 (-1024) (-420 |#1|) (-38 |#1|) (-10 -8 (-15 -1582 ($ (-1073 $ (-1185 $)) (-871))) (-15 -1499 ((-3 (-1073 $ (-1185 $)) "failed") $)) (-15 -4050 ((-416 (-573)) $ $)))) (-13 (-857) (-371) (-1034))) (T -1036)) +((-1582 (*1 *1 *2 *3) (-12 (-5 *2 (-1073 (-1036 *4) (-1185 (-1036 *4)))) (-5 *3 (-871)) (-5 *1 (-1036 *4)) (-4 *4 (-13 (-857) (-371) (-1034))))) (-1499 (*1 *2 *1) (|partial| -12 (-5 *2 (-1073 (-1036 *3) (-1185 (-1036 *3)))) (-5 *1 (-1036 *3)) (-4 *3 (-13 (-857) (-371) (-1034))))) (-4050 (*1 *2 *1 *1) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-1036 *3)) (-4 *3 (-13 (-857) (-371) (-1034)))))) +(-13 (-1024) (-420 |#1|) (-38 |#1|) (-10 -8 (-15 -1582 ($ (-1073 $ (-1185 $)) (-871))) (-15 -1499 ((-3 (-1073 $ (-1185 $)) "failed") $)) (-15 -4050 ((-416 (-573)) $ $)))) +((-1991 (((-2 (|:| -4122 |#2|) (|:| -4296 (-653 |#1|))) |#2| (-653 |#1|)) 32) ((|#2| |#2| |#1|) 27))) +(((-1037 |#1| |#2|) (-10 -7 (-15 -1991 (|#2| |#2| |#1|)) (-15 -1991 ((-2 (|:| -4122 |#2|) (|:| -4296 (-653 |#1|))) |#2| (-653 |#1|)))) (-371) (-665 |#1|)) (T -1037)) +((-1991 (*1 *2 *3 *4) (-12 (-4 *5 (-371)) (-5 *2 (-2 (|:| -4122 *3) (|:| -4296 (-653 *5)))) (-5 *1 (-1037 *5 *3)) (-5 *4 (-653 *5)) (-4 *3 (-665 *5)))) (-1991 (*1 *2 *2 *3) (-12 (-4 *3 (-371)) (-5 *1 (-1037 *3 *2)) (-4 *2 (-665 *3))))) +(-10 -7 (-15 -1991 (|#2| |#2| |#1|)) (-15 -1991 ((-2 (|:| -4122 |#2|) (|:| -4296 (-653 |#1|))) |#2| (-653 |#1|)))) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1614 ((|#1| $ |#1|) 14)) (-3142 ((|#1| $ |#1|) 12)) (-3463 (($ |#1|) 10)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2198 ((|#1| $) 11)) (-4087 ((|#1| $) 13)) (-2942 (((-871) $) 21 (|has| |#1| (-1112)))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2981 (((-112) $ $) 9))) +(((-1038 |#1|) (-13 (-1230) (-10 -8 (-15 -3463 ($ |#1|)) (-15 -2198 (|#1| $)) (-15 -3142 (|#1| $ |#1|)) (-15 -4087 (|#1| $)) (-15 -1614 (|#1| $ |#1|)) (-15 -2981 ((-112) $ $)) (IF (|has| |#1| (-1112)) (-6 (-1112)) |%noBranch|))) (-1230)) (T -1038)) +((-3463 (*1 *1 *2) (-12 (-5 *1 (-1038 *2)) (-4 *2 (-1230)))) (-2198 (*1 *2 *1) (-12 (-5 *1 (-1038 *2)) (-4 *2 (-1230)))) (-3142 (*1 *2 *1 *2) (-12 (-5 *1 (-1038 *2)) (-4 *2 (-1230)))) (-4087 (*1 *2 *1) (-12 (-5 *1 (-1038 *2)) (-4 *2 (-1230)))) (-1614 (*1 *2 *1 *2) (-12 (-5 *1 (-1038 *2)) (-4 *2 (-1230)))) (-2981 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1038 *3)) (-4 *3 (-1230))))) +(-13 (-1230) (-10 -8 (-15 -3463 ($ |#1|)) (-15 -2198 (|#1| $)) (-15 -3142 (|#1| $ |#1|)) (-15 -4087 (|#1| $)) (-15 -1614 (|#1| $ |#1|)) (-15 -2981 ((-112) $ $)) (IF (|has| |#1| (-1112)) (-6 (-1112)) |%noBranch|))) +((-2848 (((-112) $ $) NIL)) (-2280 (((-653 (-2 (|:| -1380 $) (|:| -1674 (-653 |#4|)))) (-653 |#4|)) NIL)) (-3527 (((-653 $) (-653 |#4|)) 118) (((-653 $) (-653 |#4|) (-112)) 119) (((-653 $) (-653 |#4|) (-112) (-112)) 117) (((-653 $) (-653 |#4|) (-112) (-112) (-112) (-112)) 120)) (-4354 (((-653 |#3|) $) NIL)) (-2577 (((-112) $) NIL)) (-2020 (((-112) $) NIL (|has| |#1| (-565)))) (-2261 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1554 ((|#4| |#4| $) NIL)) (-4285 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| $) 112)) (-2770 (((-2 (|:| |under| $) (|:| -3733 $) (|:| |upper| $)) $ |#3|) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-2164 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455))) (((-3 |#4| "failed") $ |#3|) 66)) (-2579 (($) NIL T CONST)) (-2194 (((-112) $) 29 (|has| |#1| (-565)))) (-1849 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2838 (((-112) $ $) NIL (|has| |#1| (-565)))) (-3145 (((-112) $) NIL (|has| |#1| (-565)))) (-4304 (((-653 |#4|) (-653 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2346 (((-653 |#4|) (-653 |#4|) $) NIL (|has| |#1| (-565)))) (-2475 (((-653 |#4|) (-653 |#4|) $) NIL (|has| |#1| (-565)))) (-1695 (((-3 $ "failed") (-653 |#4|)) NIL)) (-2205 (($ (-653 |#4|)) NIL)) (-2925 (((-3 $ "failed") $) 45)) (-3760 ((|#4| |#4| $) 69)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112))))) (-3334 (($ |#4| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-3132 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-565)))) (-4310 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3117 ((|#4| |#4| $) NIL)) (-2867 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4455))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4455))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2660 (((-2 (|:| -1380 (-653 |#4|)) (|:| -1674 (-653 |#4|))) $) NIL)) (-3060 (((-112) |#4| $) NIL)) (-2714 (((-112) |#4| $) NIL)) (-3491 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3191 (((-2 (|:| |val| (-653 |#4|)) (|:| |towers| (-653 $))) (-653 |#4|) (-112) (-112)) 133)) (-1863 (((-653 |#4|) $) 18 (|has| $ (-6 -4455)))) (-4022 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3338 ((|#3| $) 38)) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#4|) $) 19 (|has| $ (-6 -4455)))) (-1547 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112))))) (-2446 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#4| |#4|) $) 23)) (-1937 (((-653 |#3|) $) NIL)) (-1689 (((-112) |#3| $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-4092 (((-3 |#4| (-653 $)) |#4| |#4| $) NIL)) (-2395 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| |#4| $) 110)) (-3359 (((-3 |#4| "failed") $) 42)) (-1692 (((-653 $) |#4| $) 93)) (-1675 (((-3 (-112) (-653 $)) |#4| $) NIL)) (-3190 (((-653 (-2 (|:| |val| (-112)) (|:| -4090 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-3716 (((-653 $) |#4| $) 115) (((-653 $) (-653 |#4|) $) NIL) (((-653 $) (-653 |#4|) (-653 $)) 116) (((-653 $) |#4| (-653 $)) NIL)) (-2313 (((-653 $) (-653 |#4|) (-112) (-112) (-112)) 128)) (-1844 (($ |#4| $) 82) (($ (-653 |#4|) $) 83) (((-653 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-2870 (((-653 |#4|) $) NIL)) (-3161 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3430 ((|#4| |#4| $) NIL)) (-2614 (((-112) $ $) NIL)) (-3582 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-565)))) (-1973 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1448 ((|#4| |#4| $) NIL)) (-3965 (((-1132) $) NIL)) (-2914 (((-3 |#4| "failed") $) 40)) (-2036 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2865 (((-3 $ "failed") $ |#4|) 59)) (-2212 (($ $ |#4|) NIL) (((-653 $) |#4| $) 95) (((-653 $) |#4| (-653 $)) NIL) (((-653 $) (-653 |#4|) $) NIL) (((-653 $) (-653 |#4|) (-653 $)) 89)) (-1575 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 |#4|) (-653 |#4|)) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-301 |#4|)) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-653 (-301 |#4|))) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) 17)) (-3508 (($) 14)) (-2565 (((-780) $) NIL)) (-3974 (((-780) |#4| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112)))) (((-780) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) 13)) (-1835 (((-545) $) NIL (|has| |#4| (-623 (-545))))) (-2955 (($ (-653 |#4|)) 22)) (-4409 (($ $ |#3|) 52)) (-3496 (($ $ |#3|) 54)) (-1388 (($ $) NIL)) (-1456 (($ $ |#3|) NIL)) (-2942 (((-871) $) 35) (((-653 |#4|) $) 46)) (-3922 (((-780) $) NIL (|has| |#3| (-376)))) (-3507 (((-112) $ $) NIL)) (-3955 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3039 (((-112) $ (-1 (-112) |#4| (-653 |#4|))) NIL)) (-3402 (((-653 $) |#4| $) 92) (((-653 $) |#4| (-653 $)) NIL) (((-653 $) (-653 |#4|) $) NIL) (((-653 $) (-653 |#4|) (-653 $)) NIL)) (-1646 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-3734 (((-653 |#3|) $) NIL)) (-3746 (((-112) |#4| $) NIL)) (-4333 (((-112) |#3| $) 65)) (-2981 (((-112) $ $) NIL)) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-1039 |#1| |#2| |#3| |#4|) (-13 (-1083 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1844 ((-653 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3527 ((-653 $) (-653 |#4|) (-112) (-112))) (-15 -3527 ((-653 $) (-653 |#4|) (-112) (-112) (-112) (-112))) (-15 -2313 ((-653 $) (-653 |#4|) (-112) (-112) (-112))) (-15 -3191 ((-2 (|:| |val| (-653 |#4|)) (|:| |towers| (-653 $))) (-653 |#4|) (-112) (-112))))) (-461) (-802) (-859) (-1077 |#1| |#2| |#3|)) (T -1039)) +((-1844 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-653 (-1039 *5 *6 *7 *3))) (-5 *1 (-1039 *5 *6 *7 *3)) (-4 *3 (-1077 *5 *6 *7)))) (-3527 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-653 (-1039 *5 *6 *7 *8))) (-5 *1 (-1039 *5 *6 *7 *8)))) (-3527 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-653 (-1039 *5 *6 *7 *8))) (-5 *1 (-1039 *5 *6 *7 *8)))) (-2313 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-653 (-1039 *5 *6 *7 *8))) (-5 *1 (-1039 *5 *6 *7 *8)))) (-3191 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-1077 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-653 *8)) (|:| |towers| (-653 (-1039 *5 *6 *7 *8))))) (-5 *1 (-1039 *5 *6 *7 *8)) (-5 *3 (-653 *8))))) +(-13 (-1083 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1844 ((-653 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3527 ((-653 $) (-653 |#4|) (-112) (-112))) (-15 -3527 ((-653 $) (-653 |#4|) (-112) (-112) (-112) (-112))) (-15 -2313 ((-653 $) (-653 |#4|) (-112) (-112) (-112))) (-15 -3191 ((-2 (|:| |val| (-653 |#4|)) (|:| |towers| (-653 $))) (-653 |#4|) (-112) (-112))))) +((-3703 (((-653 (-698 |#1|)) (-653 (-698 |#1|))) 70) (((-698 |#1|) (-698 |#1|)) 69) (((-653 (-698 |#1|)) (-653 (-698 |#1|)) (-653 (-698 |#1|))) 68) (((-698 |#1|) (-698 |#1|) (-698 |#1|)) 65)) (-3301 (((-653 (-698 |#1|)) (-653 (-698 |#1|)) (-931)) 63) (((-698 |#1|) (-698 |#1|) (-931)) 62)) (-4059 (((-653 (-698 (-573))) (-653 (-653 (-573)))) 81) (((-653 (-698 (-573))) (-653 (-915 (-573))) (-573)) 80) (((-698 (-573)) (-653 (-573))) 77) (((-698 (-573)) (-915 (-573)) (-573)) 75)) (-4396 (((-698 (-962 |#1|)) (-780)) 95)) (-1711 (((-653 (-698 |#1|)) (-653 (-698 |#1|)) (-931)) 49 (|has| |#1| (-6 (-4457 "*")))) (((-698 |#1|) (-698 |#1|) (-931)) 47 (|has| |#1| (-6 (-4457 "*")))))) +(((-1040 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4457 "*"))) (-15 -1711 ((-698 |#1|) (-698 |#1|) (-931))) |%noBranch|) (IF (|has| |#1| (-6 (-4457 "*"))) (-15 -1711 ((-653 (-698 |#1|)) (-653 (-698 |#1|)) (-931))) |%noBranch|) (-15 -4396 ((-698 (-962 |#1|)) (-780))) (-15 -3301 ((-698 |#1|) (-698 |#1|) (-931))) (-15 -3301 ((-653 (-698 |#1|)) (-653 (-698 |#1|)) (-931))) (-15 -3703 ((-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -3703 ((-653 (-698 |#1|)) (-653 (-698 |#1|)) (-653 (-698 |#1|)))) (-15 -3703 ((-698 |#1|) (-698 |#1|))) (-15 -3703 ((-653 (-698 |#1|)) (-653 (-698 |#1|)))) (-15 -4059 ((-698 (-573)) (-915 (-573)) (-573))) (-15 -4059 ((-698 (-573)) (-653 (-573)))) (-15 -4059 ((-653 (-698 (-573))) (-653 (-915 (-573))) (-573))) (-15 -4059 ((-653 (-698 (-573))) (-653 (-653 (-573)))))) (-1061)) (T -1040)) +((-4059 (*1 *2 *3) (-12 (-5 *3 (-653 (-653 (-573)))) (-5 *2 (-653 (-698 (-573)))) (-5 *1 (-1040 *4)) (-4 *4 (-1061)))) (-4059 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-915 (-573)))) (-5 *4 (-573)) (-5 *2 (-653 (-698 *4))) (-5 *1 (-1040 *5)) (-4 *5 (-1061)))) (-4059 (*1 *2 *3) (-12 (-5 *3 (-653 (-573))) (-5 *2 (-698 (-573))) (-5 *1 (-1040 *4)) (-4 *4 (-1061)))) (-4059 (*1 *2 *3 *4) (-12 (-5 *3 (-915 (-573))) (-5 *4 (-573)) (-5 *2 (-698 *4)) (-5 *1 (-1040 *5)) (-4 *5 (-1061)))) (-3703 (*1 *2 *2) (-12 (-5 *2 (-653 (-698 *3))) (-4 *3 (-1061)) (-5 *1 (-1040 *3)))) (-3703 (*1 *2 *2) (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-1040 *3)))) (-3703 (*1 *2 *2 *2) (-12 (-5 *2 (-653 (-698 *3))) (-4 *3 (-1061)) (-5 *1 (-1040 *3)))) (-3703 (*1 *2 *2 *2) (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-1040 *3)))) (-3301 (*1 *2 *2 *3) (-12 (-5 *2 (-653 (-698 *4))) (-5 *3 (-931)) (-4 *4 (-1061)) (-5 *1 (-1040 *4)))) (-3301 (*1 *2 *2 *3) (-12 (-5 *2 (-698 *4)) (-5 *3 (-931)) (-4 *4 (-1061)) (-5 *1 (-1040 *4)))) (-4396 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-698 (-962 *4))) (-5 *1 (-1040 *4)) (-4 *4 (-1061)))) (-1711 (*1 *2 *2 *3) (-12 (-5 *2 (-653 (-698 *4))) (-5 *3 (-931)) (|has| *4 (-6 (-4457 "*"))) (-4 *4 (-1061)) (-5 *1 (-1040 *4)))) (-1711 (*1 *2 *2 *3) (-12 (-5 *2 (-698 *4)) (-5 *3 (-931)) (|has| *4 (-6 (-4457 "*"))) (-4 *4 (-1061)) (-5 *1 (-1040 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4457 "*"))) (-15 -1711 ((-698 |#1|) (-698 |#1|) (-931))) |%noBranch|) (IF (|has| |#1| (-6 (-4457 "*"))) (-15 -1711 ((-653 (-698 |#1|)) (-653 (-698 |#1|)) (-931))) |%noBranch|) (-15 -4396 ((-698 (-962 |#1|)) (-780))) (-15 -3301 ((-698 |#1|) (-698 |#1|) (-931))) (-15 -3301 ((-653 (-698 |#1|)) (-653 (-698 |#1|)) (-931))) (-15 -3703 ((-698 |#1|) (-698 |#1|) (-698 |#1|))) (-15 -3703 ((-653 (-698 |#1|)) (-653 (-698 |#1|)) (-653 (-698 |#1|)))) (-15 -3703 ((-698 |#1|) (-698 |#1|))) (-15 -3703 ((-653 (-698 |#1|)) (-653 (-698 |#1|)))) (-15 -4059 ((-698 (-573)) (-915 (-573)) (-573))) (-15 -4059 ((-698 (-573)) (-653 (-573)))) (-15 -4059 ((-653 (-698 (-573))) (-653 (-915 (-573))) (-573))) (-15 -4059 ((-653 (-698 (-573))) (-653 (-653 (-573)))))) +((-4268 (((-698 |#1|) (-653 (-698 |#1|)) (-1280 |#1|)) 70 (|has| |#1| (-314)))) (-3834 (((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)) (-1280 (-1280 |#1|))) 110 (|has| |#1| (-371))) (((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)) (-1280 |#1|)) 117 (|has| |#1| (-371)))) (-3185 (((-1280 |#1|) (-653 (-1280 |#1|)) (-573)) 135 (-12 (|has| |#1| (-371)) (|has| |#1| (-376))))) (-4424 (((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)) (-931)) 123 (-12 (|has| |#1| (-371)) (|has| |#1| (-376)))) (((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)) (-112)) 122 (-12 (|has| |#1| (-371)) (|has| |#1| (-376)))) (((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|))) 121 (-12 (|has| |#1| (-371)) (|has| |#1| (-376)))) (((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)) (-112) (-573) (-573)) 120 (-12 (|has| |#1| (-371)) (|has| |#1| (-376))))) (-2939 (((-112) (-653 (-698 |#1|))) 103 (|has| |#1| (-371))) (((-112) (-653 (-698 |#1|)) (-573)) 106 (|has| |#1| (-371)))) (-2206 (((-1280 (-1280 |#1|)) (-653 (-698 |#1|)) (-1280 |#1|)) 67 (|has| |#1| (-314)))) (-2263 (((-698 |#1|) (-653 (-698 |#1|)) (-698 |#1|)) 47)) (-2430 (((-698 |#1|) (-1280 (-1280 |#1|))) 40)) (-1971 (((-698 |#1|) (-653 (-698 |#1|)) (-653 (-698 |#1|)) (-573)) 94 (|has| |#1| (-371))) (((-698 |#1|) (-653 (-698 |#1|)) (-653 (-698 |#1|))) 93 (|has| |#1| (-371))) (((-698 |#1|) (-653 (-698 |#1|)) (-653 (-698 |#1|)) (-112) (-573)) 101 (|has| |#1| (-371))))) +(((-1041 |#1|) (-10 -7 (-15 -2430 ((-698 |#1|) (-1280 (-1280 |#1|)))) (-15 -2263 ((-698 |#1|) (-653 (-698 |#1|)) (-698 |#1|))) (IF (|has| |#1| (-314)) (PROGN (-15 -2206 ((-1280 (-1280 |#1|)) (-653 (-698 |#1|)) (-1280 |#1|))) (-15 -4268 ((-698 |#1|) (-653 (-698 |#1|)) (-1280 |#1|)))) |%noBranch|) (IF (|has| |#1| (-371)) (PROGN (-15 -1971 ((-698 |#1|) (-653 (-698 |#1|)) (-653 (-698 |#1|)) (-112) (-573))) (-15 -1971 ((-698 |#1|) (-653 (-698 |#1|)) (-653 (-698 |#1|)))) (-15 -1971 ((-698 |#1|) (-653 (-698 |#1|)) (-653 (-698 |#1|)) (-573))) (-15 -2939 ((-112) (-653 (-698 |#1|)) (-573))) (-15 -2939 ((-112) (-653 (-698 |#1|)))) (-15 -3834 ((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)) (-1280 |#1|))) (-15 -3834 ((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)) (-1280 (-1280 |#1|))))) |%noBranch|) (IF (|has| |#1| (-376)) (IF (|has| |#1| (-371)) (PROGN (-15 -4424 ((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)) (-112) (-573) (-573))) (-15 -4424 ((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)))) (-15 -4424 ((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)) (-112))) (-15 -4424 ((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)) (-931))) (-15 -3185 ((-1280 |#1|) (-653 (-1280 |#1|)) (-573)))) |%noBranch|) |%noBranch|)) (-1061)) (T -1041)) +((-3185 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-1280 *5))) (-5 *4 (-573)) (-5 *2 (-1280 *5)) (-5 *1 (-1041 *5)) (-4 *5 (-371)) (-4 *5 (-376)) (-4 *5 (-1061)))) (-4424 (*1 *2 *3 *4) (-12 (-5 *4 (-931)) (-4 *5 (-371)) (-4 *5 (-376)) (-4 *5 (-1061)) (-5 *2 (-653 (-653 (-698 *5)))) (-5 *1 (-1041 *5)) (-5 *3 (-653 (-698 *5))))) (-4424 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-371)) (-4 *5 (-376)) (-4 *5 (-1061)) (-5 *2 (-653 (-653 (-698 *5)))) (-5 *1 (-1041 *5)) (-5 *3 (-653 (-698 *5))))) (-4424 (*1 *2 *3) (-12 (-4 *4 (-371)) (-4 *4 (-376)) (-4 *4 (-1061)) (-5 *2 (-653 (-653 (-698 *4)))) (-5 *1 (-1041 *4)) (-5 *3 (-653 (-698 *4))))) (-4424 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-573)) (-4 *6 (-371)) (-4 *6 (-376)) (-4 *6 (-1061)) (-5 *2 (-653 (-653 (-698 *6)))) (-5 *1 (-1041 *6)) (-5 *3 (-653 (-698 *6))))) (-3834 (*1 *2 *3 *4) (-12 (-5 *4 (-1280 (-1280 *5))) (-4 *5 (-371)) (-4 *5 (-1061)) (-5 *2 (-653 (-653 (-698 *5)))) (-5 *1 (-1041 *5)) (-5 *3 (-653 (-698 *5))))) (-3834 (*1 *2 *3 *4) (-12 (-5 *4 (-1280 *5)) (-4 *5 (-371)) (-4 *5 (-1061)) (-5 *2 (-653 (-653 (-698 *5)))) (-5 *1 (-1041 *5)) (-5 *3 (-653 (-698 *5))))) (-2939 (*1 *2 *3) (-12 (-5 *3 (-653 (-698 *4))) (-4 *4 (-371)) (-4 *4 (-1061)) (-5 *2 (-112)) (-5 *1 (-1041 *4)))) (-2939 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-698 *5))) (-5 *4 (-573)) (-4 *5 (-371)) (-4 *5 (-1061)) (-5 *2 (-112)) (-5 *1 (-1041 *5)))) (-1971 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-653 (-698 *5))) (-5 *4 (-573)) (-5 *2 (-698 *5)) (-5 *1 (-1041 *5)) (-4 *5 (-371)) (-4 *5 (-1061)))) (-1971 (*1 *2 *3 *3) (-12 (-5 *3 (-653 (-698 *4))) (-5 *2 (-698 *4)) (-5 *1 (-1041 *4)) (-4 *4 (-371)) (-4 *4 (-1061)))) (-1971 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-653 (-698 *6))) (-5 *4 (-112)) (-5 *5 (-573)) (-5 *2 (-698 *6)) (-5 *1 (-1041 *6)) (-4 *6 (-371)) (-4 *6 (-1061)))) (-4268 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-698 *5))) (-5 *4 (-1280 *5)) (-4 *5 (-314)) (-4 *5 (-1061)) (-5 *2 (-698 *5)) (-5 *1 (-1041 *5)))) (-2206 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-698 *5))) (-4 *5 (-314)) (-4 *5 (-1061)) (-5 *2 (-1280 (-1280 *5))) (-5 *1 (-1041 *5)) (-5 *4 (-1280 *5)))) (-2263 (*1 *2 *3 *2) (-12 (-5 *3 (-653 (-698 *4))) (-5 *2 (-698 *4)) (-4 *4 (-1061)) (-5 *1 (-1041 *4)))) (-2430 (*1 *2 *3) (-12 (-5 *3 (-1280 (-1280 *4))) (-4 *4 (-1061)) (-5 *2 (-698 *4)) (-5 *1 (-1041 *4))))) +(-10 -7 (-15 -2430 ((-698 |#1|) (-1280 (-1280 |#1|)))) (-15 -2263 ((-698 |#1|) (-653 (-698 |#1|)) (-698 |#1|))) (IF (|has| |#1| (-314)) (PROGN (-15 -2206 ((-1280 (-1280 |#1|)) (-653 (-698 |#1|)) (-1280 |#1|))) (-15 -4268 ((-698 |#1|) (-653 (-698 |#1|)) (-1280 |#1|)))) |%noBranch|) (IF (|has| |#1| (-371)) (PROGN (-15 -1971 ((-698 |#1|) (-653 (-698 |#1|)) (-653 (-698 |#1|)) (-112) (-573))) (-15 -1971 ((-698 |#1|) (-653 (-698 |#1|)) (-653 (-698 |#1|)))) (-15 -1971 ((-698 |#1|) (-653 (-698 |#1|)) (-653 (-698 |#1|)) (-573))) (-15 -2939 ((-112) (-653 (-698 |#1|)) (-573))) (-15 -2939 ((-112) (-653 (-698 |#1|)))) (-15 -3834 ((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)) (-1280 |#1|))) (-15 -3834 ((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)) (-1280 (-1280 |#1|))))) |%noBranch|) (IF (|has| |#1| (-376)) (IF (|has| |#1| (-371)) (PROGN (-15 -4424 ((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)) (-112) (-573) (-573))) (-15 -4424 ((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)))) (-15 -4424 ((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)) (-112))) (-15 -4424 ((-653 (-653 (-698 |#1|))) (-653 (-698 |#1|)) (-931))) (-15 -3185 ((-1280 |#1|) (-653 (-1280 |#1|)) (-573)))) |%noBranch|) |%noBranch|)) +((-1699 ((|#1| (-931) |#1|) 18))) +(((-1042 |#1|) (-10 -7 (-15 -1699 (|#1| (-931) |#1|))) (-13 (-1112) (-10 -8 (-15 -3077 ($ $ $))))) (T -1042)) +((-1699 (*1 *2 *3 *2) (-12 (-5 *3 (-931)) (-5 *1 (-1042 *2)) (-4 *2 (-13 (-1112) (-10 -8 (-15 -3077 ($ $ $)))))))) +(-10 -7 (-15 -1699 (|#1| (-931) |#1|))) +((-2600 (((-653 (-2 (|:| |radval| (-323 (-573))) (|:| |radmult| (-573)) (|:| |radvect| (-653 (-698 (-323 (-573))))))) (-698 (-416 (-962 (-573))))) 67)) (-2527 (((-653 (-698 (-323 (-573)))) (-323 (-573)) (-698 (-416 (-962 (-573))))) 52)) (-1619 (((-653 (-323 (-573))) (-698 (-416 (-962 (-573))))) 45)) (-1985 (((-653 (-698 (-323 (-573)))) (-698 (-416 (-962 (-573))))) 85)) (-2009 (((-698 (-323 (-573))) (-698 (-323 (-573)))) 38)) (-4185 (((-653 (-698 (-323 (-573)))) (-653 (-698 (-323 (-573))))) 74)) (-1884 (((-3 (-698 (-323 (-573))) "failed") (-698 (-416 (-962 (-573))))) 82))) +(((-1043) (-10 -7 (-15 -2600 ((-653 (-2 (|:| |radval| (-323 (-573))) (|:| |radmult| (-573)) (|:| |radvect| (-653 (-698 (-323 (-573))))))) (-698 (-416 (-962 (-573)))))) (-15 -2527 ((-653 (-698 (-323 (-573)))) (-323 (-573)) (-698 (-416 (-962 (-573)))))) (-15 -1619 ((-653 (-323 (-573))) (-698 (-416 (-962 (-573)))))) (-15 -1884 ((-3 (-698 (-323 (-573))) "failed") (-698 (-416 (-962 (-573)))))) (-15 -2009 ((-698 (-323 (-573))) (-698 (-323 (-573))))) (-15 -4185 ((-653 (-698 (-323 (-573)))) (-653 (-698 (-323 (-573)))))) (-15 -1985 ((-653 (-698 (-323 (-573)))) (-698 (-416 (-962 (-573)))))))) (T -1043)) +((-1985 (*1 *2 *3) (-12 (-5 *3 (-698 (-416 (-962 (-573))))) (-5 *2 (-653 (-698 (-323 (-573))))) (-5 *1 (-1043)))) (-4185 (*1 *2 *2) (-12 (-5 *2 (-653 (-698 (-323 (-573))))) (-5 *1 (-1043)))) (-2009 (*1 *2 *2) (-12 (-5 *2 (-698 (-323 (-573)))) (-5 *1 (-1043)))) (-1884 (*1 *2 *3) (|partial| -12 (-5 *3 (-698 (-416 (-962 (-573))))) (-5 *2 (-698 (-323 (-573)))) (-5 *1 (-1043)))) (-1619 (*1 *2 *3) (-12 (-5 *3 (-698 (-416 (-962 (-573))))) (-5 *2 (-653 (-323 (-573)))) (-5 *1 (-1043)))) (-2527 (*1 *2 *3 *4) (-12 (-5 *4 (-698 (-416 (-962 (-573))))) (-5 *2 (-653 (-698 (-323 (-573))))) (-5 *1 (-1043)) (-5 *3 (-323 (-573))))) (-2600 (*1 *2 *3) (-12 (-5 *3 (-698 (-416 (-962 (-573))))) (-5 *2 (-653 (-2 (|:| |radval| (-323 (-573))) (|:| |radmult| (-573)) (|:| |radvect| (-653 (-698 (-323 (-573)))))))) (-5 *1 (-1043))))) +(-10 -7 (-15 -2600 ((-653 (-2 (|:| |radval| (-323 (-573))) (|:| |radmult| (-573)) (|:| |radvect| (-653 (-698 (-323 (-573))))))) (-698 (-416 (-962 (-573)))))) (-15 -2527 ((-653 (-698 (-323 (-573)))) (-323 (-573)) (-698 (-416 (-962 (-573)))))) (-15 -1619 ((-653 (-323 (-573))) (-698 (-416 (-962 (-573)))))) (-15 -1884 ((-3 (-698 (-323 (-573))) "failed") (-698 (-416 (-962 (-573)))))) (-15 -2009 ((-698 (-323 (-573))) (-698 (-323 (-573))))) (-15 -4185 ((-653 (-698 (-323 (-573)))) (-653 (-698 (-323 (-573)))))) (-15 -1985 ((-653 (-698 (-323 (-573)))) (-698 (-416 (-962 (-573))))))) +((-2444 ((|#1| |#1| (-931)) 18))) +(((-1044 |#1|) (-10 -7 (-15 -2444 (|#1| |#1| (-931)))) (-13 (-1112) (-10 -8 (-15 * ($ $ $))))) (T -1044)) +((-2444 (*1 *2 *2 *3) (-12 (-5 *3 (-931)) (-5 *1 (-1044 *2)) (-4 *2 (-13 (-1112) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -2444 (|#1| |#1| (-931)))) +((-2942 ((|#1| (-319)) 11) (((-1285) |#1|) 9))) +(((-1045 |#1|) (-10 -7 (-15 -2942 ((-1285) |#1|)) (-15 -2942 (|#1| (-319)))) (-1230)) (T -1045)) +((-2942 (*1 *2 *3) (-12 (-5 *3 (-319)) (-5 *1 (-1045 *2)) (-4 *2 (-1230)))) (-2942 (*1 *2 *3) (-12 (-5 *2 (-1285)) (-5 *1 (-1045 *3)) (-4 *3 (-1230))))) +(-10 -7 (-15 -2942 ((-1285) |#1|)) (-15 -2942 (|#1| (-319)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-2867 (($ |#4|) 25)) (-2232 (((-3 $ "failed") $) NIL)) (-1959 (((-112) $) NIL)) (-2853 ((|#4| $) 27)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 46) (($ (-573)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-1545 (((-780)) 43 T CONST)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 21 T CONST)) (-2144 (($) 23 T CONST)) (-2981 (((-112) $ $) 40)) (-3093 (($ $) 31) (($ $ $) NIL)) (-3077 (($ $ $) 29)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-1046 |#1| |#2| |#3| |#4| |#5|) (-13 (-174) (-38 |#1|) (-10 -8 (-15 -2867 ($ |#4|)) (-15 -2942 ($ |#4|)) (-15 -2853 (|#4| $)))) (-371) (-802) (-859) (-959 |#1| |#2| |#3|) (-653 |#4|)) (T -1046)) +((-2867 (*1 *1 *2) (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-1046 *3 *4 *5 *2 *6)) (-4 *2 (-959 *3 *4 *5)) (-14 *6 (-653 *2)))) (-2942 (*1 *1 *2) (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-1046 *3 *4 *5 *2 *6)) (-4 *2 (-959 *3 *4 *5)) (-14 *6 (-653 *2)))) (-2853 (*1 *2 *1) (-12 (-4 *2 (-959 *3 *4 *5)) (-5 *1 (-1046 *3 *4 *5 *2 *6)) (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-14 *6 (-653 *2))))) +(-13 (-174) (-38 |#1|) (-10 -8 (-15 -2867 ($ |#4|)) (-15 -2942 ($ |#4|)) (-15 -2853 (|#4| $)))) +((-2848 (((-112) $ $) NIL (-2817 (|has| (-52) (-1112)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112))))) (-3777 (($) NIL) (($ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) NIL)) (-3791 (((-1285) $ (-1189) (-1189)) NIL (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) NIL)) (-2990 (((-112) (-112)) 43)) (-3092 (((-112) (-112)) 42)) (-3142 (((-52) $ (-1189) (-52)) NIL)) (-3557 (($ (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455)))) (-2161 (((-3 (-52) "failed") (-1189) $) NIL)) (-2579 (($) NIL T CONST)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112))))) (-2596 (($ (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-3 (-52) "failed") (-1189) $) NIL)) (-3334 (($ (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (($ (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455)))) (-2867 (((-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $ (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (((-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $ (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455)))) (-2457 (((-52) $ (-1189) (-52)) NIL (|has| $ (-6 -4456)))) (-2384 (((-52) $ (-1189)) NIL)) (-1863 (((-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-653 (-52)) $) NIL (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-1189) $) NIL (|has| (-1189) (-859)))) (-3214 (((-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-653 (-52)) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-52) (-1112))))) (-3470 (((-1189) $) NIL (|has| (-1189) (-859)))) (-2446 (($ (-1 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (-2817 (|has| (-52) (-1112)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112))))) (-1762 (((-653 (-1189)) $) 37)) (-4201 (((-112) (-1189) $) NIL)) (-2487 (((-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) $) NIL)) (-3181 (($ (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) $) NIL)) (-1977 (((-653 (-1189)) $) NIL)) (-2560 (((-112) (-1189) $) NIL)) (-3965 (((-1132) $) NIL (-2817 (|has| (-52) (-1112)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112))))) (-2914 (((-52) $) NIL (|has| (-1189) (-859)))) (-2036 (((-3 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) "failed") (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL)) (-3112 (($ $ (-52)) NIL (|has| $ (-6 -4456)))) (-3815 (((-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) $) NIL)) (-1575 (((-112) (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))))) NIL (-12 (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (($ $ (-301 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) NIL (-12 (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (($ $ (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) NIL (-12 (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (($ $ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) NIL (-12 (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (($ $ (-653 (-52)) (-653 (-52))) NIL (-12 (|has| (-52) (-316 (-52))) (|has| (-52) (-1112)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-316 (-52))) (|has| (-52) (-1112)))) (($ $ (-301 (-52))) NIL (-12 (|has| (-52) (-316 (-52))) (|has| (-52) (-1112)))) (($ $ (-653 (-301 (-52)))) NIL (-12 (|has| (-52) (-316 (-52))) (|has| (-52) (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-52) (-1112))))) (-1535 (((-653 (-52)) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 (((-52) $ (-1189)) 39) (((-52) $ (-1189) (-52)) NIL)) (-2428 (($) NIL) (($ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) NIL)) (-3974 (((-780) (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (((-780) (-52) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-52) (-1112)))) (((-780) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-623 (-545))))) (-2955 (($ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) NIL)) (-2942 (((-871) $) 41 (-2817 (|has| (-52) (-622 (-871))) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-622 (-871)))))) (-3507 (((-112) $ $) NIL (-2817 (|has| (-52) (-1112)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112))))) (-2679 (($ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) NIL)) (-1646 (((-112) (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (-2817 (|has| (-52) (-1112)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112))))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-1047) (-13 (-1206 (-1189) (-52)) (-10 -7 (-15 -2990 ((-112) (-112))) (-15 -3092 ((-112) (-112))) (-6 -4455)))) (T -1047)) +((-2990 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1047)))) (-3092 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1047))))) +(-13 (-1206 (-1189) (-52)) (-10 -7 (-15 -2990 ((-112) (-112))) (-15 -3092 ((-112) (-112))) (-6 -4455))) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-4015 (((-1147) $) 9)) (-2942 (((-871) $) 15) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-1048) (-13 (-1095) (-10 -8 (-15 -4015 ((-1147) $))))) (T -1048)) +((-4015 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1048))))) +(-13 (-1095) (-10 -8 (-15 -4015 ((-1147) $)))) +((-2205 ((|#2| $) 10))) +(((-1049 |#1| |#2|) (-10 -8 (-15 -2205 (|#2| |#1|))) (-1050 |#2|) (-1230)) (T -1049)) +NIL +(-10 -8 (-15 -2205 (|#2| |#1|))) +((-1695 (((-3 |#1| "failed") $) 9)) (-2205 ((|#1| $) 8)) (-2942 (($ |#1|) 6))) +(((-1050 |#1|) (-141) (-1230)) (T -1050)) +((-1695 (*1 *2 *1) (|partial| -12 (-4 *1 (-1050 *2)) (-4 *2 (-1230)))) (-2205 (*1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1230))))) +(-13 (-625 |t#1|) (-10 -8 (-15 -1695 ((-3 |t#1| "failed") $)) (-15 -2205 (|t#1| $)))) +(((-625 |#1|) . T)) +((-2735 (((-653 (-653 (-301 (-416 (-962 |#2|))))) (-653 (-962 |#2|)) (-653 (-1189))) 38))) +(((-1051 |#1| |#2|) (-10 -7 (-15 -2735 ((-653 (-653 (-301 (-416 (-962 |#2|))))) (-653 (-962 |#2|)) (-653 (-1189))))) (-565) (-13 (-565) (-1050 |#1|))) (T -1051)) +((-2735 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-962 *6))) (-5 *4 (-653 (-1189))) (-4 *6 (-13 (-565) (-1050 *5))) (-4 *5 (-565)) (-5 *2 (-653 (-653 (-301 (-416 (-962 *6)))))) (-5 *1 (-1051 *5 *6))))) +(-10 -7 (-15 -2735 ((-653 (-653 (-301 (-416 (-962 |#2|))))) (-653 (-962 |#2|)) (-653 (-1189))))) +((-1853 (((-387)) 17)) (-2863 (((-1 (-387)) (-387) (-387)) 22)) (-2142 (((-1 (-387)) (-780)) 48)) (-3138 (((-387)) 37)) (-1359 (((-1 (-387)) (-387) (-387)) 38)) (-1625 (((-387)) 29)) (-3502 (((-1 (-387)) (-387)) 30)) (-1956 (((-387) (-780)) 43)) (-4106 (((-1 (-387)) (-780)) 44)) (-1385 (((-1 (-387)) (-780) (-780)) 47)) (-1503 (((-1 (-387)) (-780) (-780)) 45))) +(((-1052) (-10 -7 (-15 -1853 ((-387))) (-15 -3138 ((-387))) (-15 -1625 ((-387))) (-15 -1956 ((-387) (-780))) (-15 -2863 ((-1 (-387)) (-387) (-387))) (-15 -1359 ((-1 (-387)) (-387) (-387))) (-15 -3502 ((-1 (-387)) (-387))) (-15 -4106 ((-1 (-387)) (-780))) (-15 -1503 ((-1 (-387)) (-780) (-780))) (-15 -1385 ((-1 (-387)) (-780) (-780))) (-15 -2142 ((-1 (-387)) (-780))))) (T -1052)) +((-2142 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1 (-387))) (-5 *1 (-1052)))) (-1385 (*1 *2 *3 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1 (-387))) (-5 *1 (-1052)))) (-1503 (*1 *2 *3 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1 (-387))) (-5 *1 (-1052)))) (-4106 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1 (-387))) (-5 *1 (-1052)))) (-3502 (*1 *2 *3) (-12 (-5 *2 (-1 (-387))) (-5 *1 (-1052)) (-5 *3 (-387)))) (-1359 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-387))) (-5 *1 (-1052)) (-5 *3 (-387)))) (-2863 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-387))) (-5 *1 (-1052)) (-5 *3 (-387)))) (-1956 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-387)) (-5 *1 (-1052)))) (-1625 (*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1052)))) (-3138 (*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1052)))) (-1853 (*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1052))))) +(-10 -7 (-15 -1853 ((-387))) (-15 -3138 ((-387))) (-15 -1625 ((-387))) (-15 -1956 ((-387) (-780))) (-15 -2863 ((-1 (-387)) (-387) (-387))) (-15 -1359 ((-1 (-387)) (-387) (-387))) (-15 -3502 ((-1 (-387)) (-387))) (-15 -4106 ((-1 (-387)) (-780))) (-15 -1503 ((-1 (-387)) (-780) (-780))) (-15 -1385 ((-1 (-387)) (-780) (-780))) (-15 -2142 ((-1 (-387)) (-780)))) +((-4218 (((-427 |#1|) |#1|) 33))) +(((-1053 |#1|) (-10 -7 (-15 -4218 ((-427 |#1|) |#1|))) (-1256 (-416 (-962 (-573))))) (T -1053)) +((-4218 (*1 *2 *3) (-12 (-5 *2 (-427 *3)) (-5 *1 (-1053 *3)) (-4 *3 (-1256 (-416 (-962 (-573)))))))) +(-10 -7 (-15 -4218 ((-427 |#1|) |#1|))) +((-3218 (((-416 (-427 (-962 |#1|))) (-416 (-962 |#1|))) 14))) +(((-1054 |#1|) (-10 -7 (-15 -3218 ((-416 (-427 (-962 |#1|))) (-416 (-962 |#1|))))) (-314)) (T -1054)) +((-3218 (*1 *2 *3) (-12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-314)) (-5 *2 (-416 (-427 (-962 *4)))) (-5 *1 (-1054 *4))))) +(-10 -7 (-15 -3218 ((-416 (-427 (-962 |#1|))) (-416 (-962 |#1|))))) +((-4354 (((-653 (-1189)) (-416 (-962 |#1|))) 17)) (-4193 (((-416 (-1185 (-416 (-962 |#1|)))) (-416 (-962 |#1|)) (-1189)) 24)) (-4344 (((-416 (-962 |#1|)) (-416 (-1185 (-416 (-962 |#1|)))) (-1189)) 26)) (-1453 (((-3 (-1189) "failed") (-416 (-962 |#1|))) 20)) (-2645 (((-416 (-962 |#1|)) (-416 (-962 |#1|)) (-653 (-301 (-416 (-962 |#1|))))) 32) (((-416 (-962 |#1|)) (-416 (-962 |#1|)) (-301 (-416 (-962 |#1|)))) 33) (((-416 (-962 |#1|)) (-416 (-962 |#1|)) (-653 (-1189)) (-653 (-416 (-962 |#1|)))) 28) (((-416 (-962 |#1|)) (-416 (-962 |#1|)) (-1189) (-416 (-962 |#1|))) 29)) (-2942 (((-416 (-962 |#1|)) |#1|) 11))) +(((-1055 |#1|) (-10 -7 (-15 -4354 ((-653 (-1189)) (-416 (-962 |#1|)))) (-15 -1453 ((-3 (-1189) "failed") (-416 (-962 |#1|)))) (-15 -4193 ((-416 (-1185 (-416 (-962 |#1|)))) (-416 (-962 |#1|)) (-1189))) (-15 -4344 ((-416 (-962 |#1|)) (-416 (-1185 (-416 (-962 |#1|)))) (-1189))) (-15 -2645 ((-416 (-962 |#1|)) (-416 (-962 |#1|)) (-1189) (-416 (-962 |#1|)))) (-15 -2645 ((-416 (-962 |#1|)) (-416 (-962 |#1|)) (-653 (-1189)) (-653 (-416 (-962 |#1|))))) (-15 -2645 ((-416 (-962 |#1|)) (-416 (-962 |#1|)) (-301 (-416 (-962 |#1|))))) (-15 -2645 ((-416 (-962 |#1|)) (-416 (-962 |#1|)) (-653 (-301 (-416 (-962 |#1|)))))) (-15 -2942 ((-416 (-962 |#1|)) |#1|))) (-565)) (T -1055)) +((-2942 (*1 *2 *3) (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-1055 *3)) (-4 *3 (-565)))) (-2645 (*1 *2 *2 *3) (-12 (-5 *3 (-653 (-301 (-416 (-962 *4))))) (-5 *2 (-416 (-962 *4))) (-4 *4 (-565)) (-5 *1 (-1055 *4)))) (-2645 (*1 *2 *2 *3) (-12 (-5 *3 (-301 (-416 (-962 *4)))) (-5 *2 (-416 (-962 *4))) (-4 *4 (-565)) (-5 *1 (-1055 *4)))) (-2645 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-653 (-1189))) (-5 *4 (-653 (-416 (-962 *5)))) (-5 *2 (-416 (-962 *5))) (-4 *5 (-565)) (-5 *1 (-1055 *5)))) (-2645 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-416 (-962 *4))) (-5 *3 (-1189)) (-4 *4 (-565)) (-5 *1 (-1055 *4)))) (-4344 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-1185 (-416 (-962 *5))))) (-5 *4 (-1189)) (-5 *2 (-416 (-962 *5))) (-5 *1 (-1055 *5)) (-4 *5 (-565)))) (-4193 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-4 *5 (-565)) (-5 *2 (-416 (-1185 (-416 (-962 *5))))) (-5 *1 (-1055 *5)) (-5 *3 (-416 (-962 *5))))) (-1453 (*1 *2 *3) (|partial| -12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-565)) (-5 *2 (-1189)) (-5 *1 (-1055 *4)))) (-4354 (*1 *2 *3) (-12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-565)) (-5 *2 (-653 (-1189))) (-5 *1 (-1055 *4))))) +(-10 -7 (-15 -4354 ((-653 (-1189)) (-416 (-962 |#1|)))) (-15 -1453 ((-3 (-1189) "failed") (-416 (-962 |#1|)))) (-15 -4193 ((-416 (-1185 (-416 (-962 |#1|)))) (-416 (-962 |#1|)) (-1189))) (-15 -4344 ((-416 (-962 |#1|)) (-416 (-1185 (-416 (-962 |#1|)))) (-1189))) (-15 -2645 ((-416 (-962 |#1|)) (-416 (-962 |#1|)) (-1189) (-416 (-962 |#1|)))) (-15 -2645 ((-416 (-962 |#1|)) (-416 (-962 |#1|)) (-653 (-1189)) (-653 (-416 (-962 |#1|))))) (-15 -2645 ((-416 (-962 |#1|)) (-416 (-962 |#1|)) (-301 (-416 (-962 |#1|))))) (-15 -2645 ((-416 (-962 |#1|)) (-416 (-962 |#1|)) (-653 (-301 (-416 (-962 |#1|)))))) (-15 -2942 ((-416 (-962 |#1|)) |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2579 (($) 18 T CONST)) (-1821 ((|#1| $) 23)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-3018 ((|#1| $) 22)) (-2540 ((|#1|) 20 T CONST)) (-2942 (((-871) $) 12)) (-3749 ((|#1| $) 21)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16))) +(((-1056 |#1|) (-141) (-23)) (T -1056)) +((-1821 (*1 *2 *1) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-23)))) (-3018 (*1 *2 *1) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-23)))) (-3749 (*1 *2 *1) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-23)))) (-2540 (*1 *2) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -1821 (|t#1| $)) (-15 -3018 (|t#1| $)) (-15 -3749 (|t#1| $)) (-15 -2540 (|t#1|) -1705))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2364 (($) 25 T CONST)) (-2579 (($) 18 T CONST)) (-1821 ((|#1| $) 23)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-3018 ((|#1| $) 22)) (-2540 ((|#1|) 20 T CONST)) (-2942 (((-871) $) 12)) (-3749 ((|#1| $) 21)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16))) (((-1057 |#1|) (-141) (-23)) (T -1057)) -((-4015 (*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-23)))) (-1509 (*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-23)))) (-2983 (*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-23)))) (-3791 (*1 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -4015 (|t#1| $)) (-15 -1509 (|t#1| $)) (-15 -2983 (|t#1| $)) (-15 -3791 (|t#1|) -1706))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-1113) . T)) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3985 (($) 25 T CONST)) (-3426 (($) 18 T CONST)) (-4015 ((|#1| $) 23)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-1509 ((|#1| $) 22)) (-3791 ((|#1|) 20 T CONST)) (-2943 (((-872) $) 12)) (-2983 ((|#1| $) 21)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3079 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16))) -(((-1058 |#1|) (-141) (-23)) (T -1058)) -((-3985 (*1 *1) (-12 (-4 *1 (-1058 *2)) (-4 *2 (-23))))) -(-13 (-1057 |t#1|) (-10 -8 (-15 -3985 ($) -1706))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-1057 |#1|) . T) ((-1113) . T)) -((-2849 (((-112) $ $) NIL)) (-2410 (((-654 (-2 (|:| -1381 $) (|:| -1675 (-654 (-790 |#1| (-874 |#2|)))))) (-654 (-790 |#1| (-874 |#2|)))) NIL)) (-3954 (((-654 $) (-654 (-790 |#1| (-874 |#2|)))) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-112)) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-112) (-112)) NIL)) (-4355 (((-654 (-874 |#2|)) $) NIL)) (-2907 (((-112) $) NIL)) (-4018 (((-112) $) NIL (|has| |#1| (-566)))) (-1751 (((-112) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) $) NIL)) (-3207 (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-2568 (((-654 (-2 (|:| |val| (-790 |#1| (-874 |#2|))) (|:| -4091 $))) (-790 |#1| (-874 |#2|)) $) NIL)) (-2771 (((-2 (|:| |under| $) (|:| -3595 $) (|:| |upper| $)) $ (-874 |#2|)) NIL)) (-3034 (((-112) $ (-781)) NIL)) (-2165 (($ (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-3 (-790 |#1| (-874 |#2|)) "failed") $ (-874 |#2|)) NIL)) (-3426 (($) NIL T CONST)) (-4336 (((-112) $) NIL (|has| |#1| (-566)))) (-1547 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2318 (((-112) $ $) NIL (|has| |#1| (-566)))) (-1792 (((-112) $) NIL (|has| |#1| (-566)))) (-3908 (((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|))) $ (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) (-1 (-112) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)))) NIL)) (-3025 (((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|))) $) NIL (|has| |#1| (-566)))) (-1974 (((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|))) $) NIL (|has| |#1| (-566)))) (-1696 (((-3 $ "failed") (-654 (-790 |#1| (-874 |#2|)))) NIL)) (-2206 (($ (-654 (-790 |#1| (-874 |#2|)))) NIL)) (-2926 (((-3 $ "failed") $) NIL)) (-1402 (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-790 |#1| (-874 |#2|)) (-1113))))) (-3335 (($ (-790 |#1| (-874 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-790 |#1| (-874 |#2|)) (-1113)))) (($ (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2766 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-790 |#1| (-874 |#2|))) (|:| |den| |#1|)) (-790 |#1| (-874 |#2|)) $) NIL (|has| |#1| (-566)))) (-1315 (((-112) (-790 |#1| (-874 |#2|)) $ (-1 (-112) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)))) NIL)) (-1747 (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-2868 (((-790 |#1| (-874 |#2|)) (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) $ (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) NIL (-12 (|has| $ (-6 -4456)) (|has| (-790 |#1| (-874 |#2|)) (-1113)))) (((-790 |#1| (-874 |#2|)) (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) $ (-790 |#1| (-874 |#2|))) NIL (|has| $ (-6 -4456))) (((-790 |#1| (-874 |#2|)) (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $ (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) (-1 (-112) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)))) NIL)) (-4270 (((-2 (|:| -1381 (-654 (-790 |#1| (-874 |#2|)))) (|:| -1675 (-654 (-790 |#1| (-874 |#2|))))) $) NIL)) (-4062 (((-112) (-790 |#1| (-874 |#2|)) $) NIL)) (-2288 (((-112) (-790 |#1| (-874 |#2|)) $) NIL)) (-1421 (((-112) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) $) NIL)) (-1864 (((-654 (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-4436 (((-112) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) $) NIL)) (-3830 (((-874 |#2|) $) NIL)) (-2742 (((-112) $ (-781)) NIL)) (-1606 (((-654 (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) (-790 |#1| (-874 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-790 |#1| (-874 |#2|)) (-1113))))) (-2449 (($ (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) $) NIL)) (-3963 (((-654 (-874 |#2|)) $) NIL)) (-4158 (((-112) (-874 |#2|) $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL)) (-3660 (((-3 (-790 |#1| (-874 |#2|)) (-654 $)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-4268 (((-654 (-2 (|:| |val| (-790 |#1| (-874 |#2|))) (|:| -4091 $))) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-3360 (((-3 (-790 |#1| (-874 |#2|)) "failed") $) NIL)) (-2290 (((-654 $) (-790 |#1| (-874 |#2|)) $) NIL)) (-3945 (((-3 (-112) (-654 $)) (-790 |#1| (-874 |#2|)) $) NIL)) (-2514 (((-654 (-2 (|:| |val| (-112)) (|:| -4091 $))) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) (-790 |#1| (-874 |#2|)) $) NIL)) (-1784 (((-654 $) (-790 |#1| (-874 |#2|)) $) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) $) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-654 $)) NIL) (((-654 $) (-790 |#1| (-874 |#2|)) (-654 $)) NIL)) (-1954 (($ (-790 |#1| (-874 |#2|)) $) NIL) (($ (-654 (-790 |#1| (-874 |#2|))) $) NIL)) (-4417 (((-654 (-790 |#1| (-874 |#2|))) $) NIL)) (-4292 (((-112) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) $) NIL)) (-3023 (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-2119 (((-112) $ $) NIL)) (-2396 (((-2 (|:| |num| (-790 |#1| (-874 |#2|))) (|:| |den| |#1|)) (-790 |#1| (-874 |#2|)) $) NIL (|has| |#1| (-566)))) (-2682 (((-112) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) $) NIL)) (-3206 (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-3966 (((-1133) $) NIL)) (-2915 (((-3 (-790 |#1| (-874 |#2|)) "failed") $) NIL)) (-1549 (((-3 (-790 |#1| (-874 |#2|)) "failed") (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL)) (-3040 (((-3 $ "failed") $ (-790 |#1| (-874 |#2|))) NIL)) (-2533 (($ $ (-790 |#1| (-874 |#2|))) NIL) (((-654 $) (-790 |#1| (-874 |#2|)) $) NIL) (((-654 $) (-790 |#1| (-874 |#2|)) (-654 $)) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) $) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-654 $)) NIL)) (-2540 (((-112) (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|)))) NIL (-12 (|has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|)))) (|has| (-790 |#1| (-874 |#2|)) (-1113)))) (($ $ (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) NIL (-12 (|has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|)))) (|has| (-790 |#1| (-874 |#2|)) (-1113)))) (($ $ (-302 (-790 |#1| (-874 |#2|)))) NIL (-12 (|has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|)))) (|has| (-790 |#1| (-874 |#2|)) (-1113)))) (($ $ (-654 (-302 (-790 |#1| (-874 |#2|))))) NIL (-12 (|has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|)))) (|has| (-790 |#1| (-874 |#2|)) (-1113))))) (-4017 (((-112) $ $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-4202 (((-781) $) NIL)) (-3975 (((-781) (-790 |#1| (-874 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-790 |#1| (-874 |#2|)) (-1113)))) (((-781) (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) NIL)) (-1836 (((-546) $) NIL (|has| (-790 |#1| (-874 |#2|)) (-624 (-546))))) (-2956 (($ (-654 (-790 |#1| (-874 |#2|)))) NIL)) (-3650 (($ $ (-874 |#2|)) NIL)) (-3722 (($ $ (-874 |#2|)) NIL)) (-4429 (($ $) NIL)) (-2096 (($ $ (-874 |#2|)) NIL)) (-2943 (((-872) $) NIL) (((-654 (-790 |#1| (-874 |#2|))) $) NIL)) (-4435 (((-781) $) NIL (|has| (-874 |#2|) (-377)))) (-3284 (((-112) $ $) NIL)) (-3416 (((-3 (-2 (|:| |bas| $) (|:| -2002 (-654 (-790 |#1| (-874 |#2|))))) "failed") (-654 (-790 |#1| (-874 |#2|))) (-1 (-112) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2002 (-654 (-790 |#1| (-874 |#2|))))) "failed") (-654 (-790 |#1| (-874 |#2|))) (-1 (-112) (-790 |#1| (-874 |#2|))) (-1 (-112) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)))) NIL)) (-2582 (((-112) $ (-1 (-112) (-790 |#1| (-874 |#2|)) (-654 (-790 |#1| (-874 |#2|))))) NIL)) (-1379 (((-654 $) (-790 |#1| (-874 |#2|)) $) NIL) (((-654 $) (-790 |#1| (-874 |#2|)) (-654 $)) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) $) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-654 $)) NIL)) (-3390 (((-112) (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2720 (((-654 (-874 |#2|)) $) NIL)) (-4221 (((-112) (-790 |#1| (-874 |#2|)) $) NIL)) (-3587 (((-112) (-874 |#2|) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-1059 |#1| |#2|) (-13 (-1084 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|))) (-10 -8 (-15 -3954 ((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-112) (-112))))) (-462) (-654 (-1190))) (T -1059)) -((-3954 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) (-14 *6 (-654 (-1190))) (-5 *2 (-654 (-1059 *5 *6))) (-5 *1 (-1059 *5 *6))))) -(-13 (-1084 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|))) (-10 -8 (-15 -3954 ((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-112) (-112))))) -((-3077 (((-1 (-574)) (-1107 (-574))) 32)) (-4179 (((-574) (-574) (-574) (-574) (-574)) 29)) (-2349 (((-1 (-574)) |RationalNumber|) NIL)) (-1704 (((-1 (-574)) |RationalNumber|) NIL)) (-1616 (((-1 (-574)) (-574) |RationalNumber|) NIL))) -(((-1060) (-10 -7 (-15 -3077 ((-1 (-574)) (-1107 (-574)))) (-15 -1616 ((-1 (-574)) (-574) |RationalNumber|)) (-15 -2349 ((-1 (-574)) |RationalNumber|)) (-15 -1704 ((-1 (-574)) |RationalNumber|)) (-15 -4179 ((-574) (-574) (-574) (-574) (-574))))) (T -1060)) -((-4179 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1060)))) (-1704 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1060)))) (-2349 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1060)))) (-1616 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1060)) (-5 *3 (-574)))) (-3077 (*1 *2 *3) (-12 (-5 *3 (-1107 (-574))) (-5 *2 (-1 (-574))) (-5 *1 (-1060))))) -(-10 -7 (-15 -3077 ((-1 (-574)) (-1107 (-574)))) (-15 -1616 ((-1 (-574)) (-574) |RationalNumber|)) (-15 -2349 ((-1 (-574)) |RationalNumber|)) (-15 -1704 ((-1 (-574)) |RationalNumber|)) (-15 -4179 ((-574) (-574) (-574) (-574) (-574)))) -((-2943 (((-872) $) NIL) (($ (-574)) 10))) -(((-1061 |#1|) (-10 -8 (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|))) (-1062)) (T -1061)) -NIL -(-10 -8 (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-3434 (((-3 $ "failed") $) 37)) (-3199 (((-112) $) 35)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12) (($ (-574)) 33)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) -(((-1062) (-141)) (T -1062)) -((-1364 (*1 *2) (-12 (-4 *1 (-1062)) (-5 *2 (-781))))) -(-13 (-1071) (-736) (-658 $) (-626 (-574)) (-10 -7 (-15 -1364 ((-781)) -1706) (-6 -4453))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T)) -((-3896 (((-417 (-963 |#2|)) (-654 |#2|) (-654 |#2|) (-781) (-781)) 54))) -(((-1063 |#1| |#2|) (-10 -7 (-15 -3896 ((-417 (-963 |#2|)) (-654 |#2|) (-654 |#2|) (-781) (-781)))) (-1190) (-372)) (T -1063)) -((-3896 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-781)) (-4 *6 (-372)) (-5 *2 (-417 (-963 *6))) (-5 *1 (-1063 *5 *6)) (-14 *5 (-1190))))) -(-10 -7 (-15 -3896 ((-417 (-963 |#2|)) (-654 |#2|) (-654 |#2|) (-781) (-781)))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 15)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2133 (($) 16 T CONST)) (-2981 (((-112) $ $) 6)) (* (($ $ |#1|) 14))) -(((-1064 |#1|) (-141) (-1071)) (T -1064)) -((-2133 (*1 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-1071)))) (-3138 (*1 *2 *1) (-12 (-4 *1 (-1064 *3)) (-4 *3 (-1071)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-1071))))) -(-13 (-1113) (-10 -8 (-15 (-2133) ($) -1706) (-15 -3138 ((-112) $)) (-15 * ($ $ |t#1|)))) -(((-102) . T) ((-623 (-872)) . T) ((-1113) . T)) -((-3291 (((-112) $) 38)) (-2224 (((-112) $) 17)) (-2189 (((-781) $) 13)) (-2198 (((-781) $) 14)) (-2675 (((-112) $) 30)) (-2539 (((-112) $) 40))) -(((-1065 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2198 ((-781) |#1|)) (-15 -2189 ((-781) |#1|)) (-15 -2539 ((-112) |#1|)) (-15 -3291 ((-112) |#1|)) (-15 -2675 ((-112) |#1|)) (-15 -2224 ((-112) |#1|))) (-1066 |#2| |#3| |#4| |#5| |#6|) (-781) (-781) (-1062) (-244 |#3| |#4|) (-244 |#2| |#4|)) (T -1065)) -NIL -(-10 -8 (-15 -2198 ((-781) |#1|)) (-15 -2189 ((-781) |#1|)) (-15 -2539 ((-112) |#1|)) (-15 -3291 ((-112) |#1|)) (-15 -2675 ((-112) |#1|)) (-15 -2224 ((-112) |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3291 (((-112) $) 56)) (-3524 (((-3 $ "failed") $ $) 20)) (-2224 (((-112) $) 58)) (-3034 (((-112) $ (-781)) 66)) (-3426 (($) 18 T CONST)) (-2879 (($ $) 39 (|has| |#3| (-315)))) (-4170 ((|#4| $ (-574)) 44)) (-3584 (((-781) $) 38 (|has| |#3| (-566)))) (-2385 ((|#3| $ (-574) (-574)) 46)) (-1864 (((-654 |#3|) $) 73 (|has| $ (-6 -4456)))) (-1602 (((-781) $) 37 (|has| |#3| (-566)))) (-2548 (((-654 |#5|) $) 36 (|has| |#3| (-566)))) (-2189 (((-781) $) 50)) (-2198 (((-781) $) 49)) (-2742 (((-112) $ (-781)) 65)) (-3491 (((-574) $) 54)) (-1630 (((-574) $) 52)) (-1606 (((-654 |#3|) $) 74 (|has| $ (-6 -4456)))) (-1710 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1113)) (|has| $ (-6 -4456))))) (-3068 (((-574) $) 53)) (-3691 (((-574) $) 51)) (-2914 (($ (-654 (-654 |#3|))) 59)) (-2449 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-1394 (((-654 (-654 |#3|)) $) 48)) (-4203 (((-112) $ (-781)) 64)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2838 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-566)))) (-2540 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 |#3|) (-654 |#3|)) 80 (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113)))) (($ $ (-302 |#3|)) 78 (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113)))) (($ $ (-654 (-302 |#3|))) 77 (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113))))) (-4017 (((-112) $ $) 60)) (-1584 (((-112) $) 63)) (-2672 (($) 62)) (-2199 ((|#3| $ (-574) (-574)) 47) ((|#3| $ (-574) (-574) |#3|) 45)) (-2675 (((-112) $) 57)) (-3975 (((-781) |#3| $) 75 (-12 (|has| |#3| (-1113)) (|has| $ (-6 -4456)))) (((-781) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4456)))) (-3167 (($ $) 61)) (-2471 ((|#5| $ (-574)) 43)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-3390 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4456)))) (-2539 (((-112) $) 55)) (-2133 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3108 (($ $ |#3|) 40 (|has| |#3| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-2863 (((-781) $) 67 (|has| $ (-6 -4456))))) -(((-1066 |#1| |#2| |#3| |#4| |#5|) (-141) (-781) (-781) (-1062) (-244 |t#2| |t#3|) (-244 |t#1| |t#3|)) (T -1066)) -((-1777 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-2914 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *5))) (-4 *5 (-1062)) (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-2224 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-2675 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-3291 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-2539 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-3491 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))) (-3068 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))) (-1630 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))) (-2189 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-781)))) (-2198 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-781)))) (-1394 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-654 (-654 *5))))) (-2199 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1066 *4 *5 *2 *6 *7)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1062)))) (-2385 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1066 *4 *5 *2 *6 *7)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1062)))) (-2199 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-574)) (-4 *1 (-1066 *4 *5 *2 *6 *7)) (-4 *2 (-1062)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)))) (-4170 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1066 *4 *5 *6 *2 *7)) (-4 *6 (-1062)) (-4 *7 (-244 *4 *6)) (-4 *2 (-244 *5 *6)))) (-2471 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1066 *4 *5 *6 *7 *2)) (-4 *6 (-1062)) (-4 *7 (-244 *5 *6)) (-4 *2 (-244 *4 *6)))) (-1777 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-2838 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1066 *3 *4 *2 *5 *6)) (-4 *2 (-1062)) (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-566)))) (-3108 (*1 *1 *1 *2) (-12 (-4 *1 (-1066 *3 *4 *2 *5 *6)) (-4 *2 (-1062)) (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-372)))) (-2879 (*1 *1 *1) (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *4 (-1062)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *2 *4)) (-4 *4 (-315)))) (-3584 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566)) (-5 *2 (-781)))) (-1602 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566)) (-5 *2 (-781)))) (-2548 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566)) (-5 *2 (-654 *7))))) -(-13 (-111 |t#3| |t#3|) (-499 |t#3|) (-10 -8 (-6 -4456) (IF (|has| |t#3| (-174)) (-6 (-727 |t#3|)) |%noBranch|) (-15 -2914 ($ (-654 (-654 |t#3|)))) (-15 -2224 ((-112) $)) (-15 -2675 ((-112) $)) (-15 -3291 ((-112) $)) (-15 -2539 ((-112) $)) (-15 -3491 ((-574) $)) (-15 -3068 ((-574) $)) (-15 -1630 ((-574) $)) (-15 -3691 ((-574) $)) (-15 -2189 ((-781) $)) (-15 -2198 ((-781) $)) (-15 -1394 ((-654 (-654 |t#3|)) $)) (-15 -2199 (|t#3| $ (-574) (-574))) (-15 -2385 (|t#3| $ (-574) (-574))) (-15 -2199 (|t#3| $ (-574) (-574) |t#3|)) (-15 -4170 (|t#4| $ (-574))) (-15 -2471 (|t#5| $ (-574))) (-15 -1777 ($ (-1 |t#3| |t#3|) $)) (-15 -1777 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-566)) (-15 -2838 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-372)) (-15 -3108 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-315)) (-15 -2879 ($ $)) |%noBranch|) (IF (|has| |t#3| (-566)) (PROGN (-15 -3584 ((-781) $)) (-15 -1602 ((-781) $)) (-15 -2548 ((-654 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-132) . T) ((-623 (-872)) . T) ((-317 |#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113))) ((-499 |#3|) . T) ((-524 |#3| |#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113))) ((-656 (-574)) . T) ((-656 |#3|) . T) ((-658 |#3|) . T) ((-650 |#3|) |has| |#3| (-174)) ((-727 |#3|) |has| |#3| (-174)) ((-1064 |#3|) . T) ((-1069 |#3|) . T) ((-1113) . T) ((-1231) . T)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3291 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-2224 (((-112) $) NIL)) (-3034 (((-112) $ (-781)) NIL)) (-3426 (($) NIL T CONST)) (-2879 (($ $) 47 (|has| |#3| (-315)))) (-4170 (((-246 |#2| |#3|) $ (-574)) 36)) (-1739 (($ (-699 |#3|)) 45)) (-3584 (((-781) $) 49 (|has| |#3| (-566)))) (-2385 ((|#3| $ (-574) (-574)) NIL)) (-1864 (((-654 |#3|) $) NIL (|has| $ (-6 -4456)))) (-1602 (((-781) $) 51 (|has| |#3| (-566)))) (-2548 (((-654 (-246 |#1| |#3|)) $) 55 (|has| |#3| (-566)))) (-2189 (((-781) $) NIL)) (-2198 (((-781) $) NIL)) (-2742 (((-112) $ (-781)) NIL)) (-3491 (((-574) $) NIL)) (-1630 (((-574) $) NIL)) (-1606 (((-654 |#3|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#3| (-1113))))) (-3068 (((-574) $) NIL)) (-3691 (((-574) $) NIL)) (-2914 (($ (-654 (-654 |#3|))) 31)) (-2449 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-1394 (((-654 (-654 |#3|)) $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2838 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-566)))) (-2540 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 |#3|) (-654 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113)))) (($ $ (-302 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113)))) (($ $ (-654 (-302 |#3|))) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113))))) (-4017 (((-112) $ $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 ((|#3| $ (-574) (-574)) NIL) ((|#3| $ (-574) (-574) |#3|) NIL)) (-4133 (((-135)) 59 (|has| |#3| (-372)))) (-2675 (((-112) $) NIL)) (-3975 (((-781) |#3| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#3| (-1113)))) (((-781) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) NIL)) (-1836 (((-546) $) 65 (|has| |#3| (-624 (-546))))) (-2471 (((-246 |#1| |#3|) $ (-574)) 40)) (-2943 (((-872) $) 19) (((-699 |#3|) $) 42)) (-3284 (((-112) $ $) NIL)) (-3390 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4456)))) (-2539 (((-112) $) NIL)) (-2133 (($) 16 T CONST)) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ |#3|) NIL (|has| |#3| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-1067 |#1| |#2| |#3|) (-13 (-1066 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-623 (-699 |#3|)) (-10 -8 (IF (|has| |#3| (-372)) (-6 (-1288 |#3|)) |%noBranch|) (IF (|has| |#3| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (-15 -1739 ($ (-699 |#3|))))) (-781) (-781) (-1062)) (T -1067)) -((-1739 (*1 *1 *2) (-12 (-5 *2 (-699 *5)) (-4 *5 (-1062)) (-5 *1 (-1067 *3 *4 *5)) (-14 *3 (-781)) (-14 *4 (-781))))) -(-13 (-1066 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-623 (-699 |#3|)) (-10 -8 (IF (|has| |#3| (-372)) (-6 (-1288 |#3|)) |%noBranch|) (IF (|has| |#3| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (-15 -1739 ($ (-699 |#3|))))) -((-2868 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-1777 ((|#10| (-1 |#7| |#3|) |#6|) 34))) -(((-1068 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1777 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2868 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-781) (-781) (-1062) (-244 |#2| |#3|) (-244 |#1| |#3|) (-1066 |#1| |#2| |#3| |#4| |#5|) (-1062) (-244 |#2| |#7|) (-244 |#1| |#7|) (-1066 |#1| |#2| |#7| |#8| |#9|)) (T -1068)) -((-2868 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1062)) (-4 *2 (-1062)) (-14 *5 (-781)) (-14 *6 (-781)) (-4 *8 (-244 *6 *7)) (-4 *9 (-244 *5 *7)) (-4 *10 (-244 *6 *2)) (-4 *11 (-244 *5 *2)) (-5 *1 (-1068 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1066 *5 *6 *7 *8 *9)) (-4 *12 (-1066 *5 *6 *2 *10 *11)))) (-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1062)) (-4 *10 (-1062)) (-14 *5 (-781)) (-14 *6 (-781)) (-4 *8 (-244 *6 *7)) (-4 *9 (-244 *5 *7)) (-4 *2 (-1066 *5 *6 *10 *11 *12)) (-5 *1 (-1068 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1066 *5 *6 *7 *8 *9)) (-4 *11 (-244 *6 *10)) (-4 *12 (-244 *5 *10))))) -(-10 -7 (-15 -1777 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2868 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ |#1|) 27))) -(((-1069 |#1|) (-141) (-1071)) (T -1069)) -NIL -(-13 (-21) (-1064 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-1064 |#1|) . T) ((-1113) . T)) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-1488 (((-1190) $) 11)) (-3242 ((|#1| $) 12)) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2692 (($ (-1190) |#1|) 10)) (-2943 (((-872) $) 22 (|has| |#1| (-1113)))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2981 (((-112) $ $) 17 (|has| |#1| (-1113))))) -(((-1070 |#1| |#2|) (-13 (-1231) (-10 -8 (-15 -2692 ($ (-1190) |#1|)) (-15 -1488 ((-1190) $)) (-15 -3242 (|#1| $)) (IF (|has| |#1| (-1113)) (-6 (-1113)) |%noBranch|))) (-1106 |#2|) (-1231)) (T -1070)) -((-2692 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-4 *4 (-1231)) (-5 *1 (-1070 *3 *4)) (-4 *3 (-1106 *4)))) (-1488 (*1 *2 *1) (-12 (-4 *4 (-1231)) (-5 *2 (-1190)) (-5 *1 (-1070 *3 *4)) (-4 *3 (-1106 *4)))) (-3242 (*1 *2 *1) (-12 (-4 *2 (-1106 *3)) (-5 *1 (-1070 *2 *3)) (-4 *3 (-1231))))) -(-13 (-1231) (-10 -8 (-15 -2692 ($ (-1190) |#1|)) (-15 -1488 ((-1190) $)) (-15 -3242 (|#1| $)) (IF (|has| |#1| (-1113)) (-6 (-1113)) |%noBranch|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) -(((-1071) (-141)) (T -1071)) -NIL -(-13 (-21) (-1125)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-1125) . T) ((-1113) . T)) -((-2052 (($ $) 17)) (-4039 (($ $) 25)) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 55)) (-2236 (($ $) 27)) (-3191 (($ $) 12)) (-3595 (($ $) 43)) (-1836 (((-388) $) NIL) (((-227) $) NIL) (((-903 (-388)) $) 36)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) 31) (($ (-574)) NIL) (($ (-417 (-574))) 31)) (-1364 (((-781)) 9)) (-1801 (($ $) 45))) -(((-1072 |#1|) (-10 -8 (-15 -4039 (|#1| |#1|)) (-15 -2052 (|#1| |#1|)) (-15 -3191 (|#1| |#1|)) (-15 -3595 (|#1| |#1|)) (-15 -1801 (|#1| |#1|)) (-15 -2236 (|#1| |#1|)) (-15 -3625 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -1836 ((-903 (-388)) |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2943 (|#1| (-574))) (-15 -1836 ((-227) |#1|)) (-15 -1836 ((-388) |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2943 (|#1| |#1|)) (-15 -1364 ((-781))) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|))) (-1073)) (T -1072)) -((-1364 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1072 *3)) (-4 *3 (-1073))))) -(-10 -8 (-15 -4039 (|#1| |#1|)) (-15 -2052 (|#1| |#1|)) (-15 -3191 (|#1| |#1|)) (-15 -3595 (|#1| |#1|)) (-15 -1801 (|#1| |#1|)) (-15 -2236 (|#1| |#1|)) (-15 -3625 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -1836 ((-903 (-388)) |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2943 (|#1| (-574))) (-15 -1836 ((-227) |#1|)) (-15 -1836 ((-388) |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2943 (|#1| |#1|)) (-15 -1364 ((-781))) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-1528 (((-574) $) 97)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-1575 (($ $) 46)) (-2085 (((-112) $) 44)) (-2052 (($ $) 95)) (-3524 (((-3 $ "failed") $ $) 20)) (-2568 (($ $) 81)) (-2827 (((-428 $) $) 80)) (-4229 (($ $) 105)) (-1600 (((-112) $ $) 65)) (-2846 (((-574) $) 122)) (-3426 (($) 18 T CONST)) (-4039 (($ $) 94)) (-1696 (((-3 (-574) "failed") $) 110) (((-3 (-417 (-574)) "failed") $) 107)) (-2206 (((-574) $) 111) (((-417 (-574)) $) 108)) (-2786 (($ $ $) 61)) (-3434 (((-3 $ "failed") $) 37)) (-2797 (($ $ $) 62)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) 57)) (-2257 (((-112) $) 79)) (-2756 (((-112) $) 120)) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 101)) (-3199 (((-112) $) 35)) (-3460 (($ $ (-574)) 104)) (-2236 (($ $) 100)) (-1335 (((-112) $) 121)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-3659 (($ $ $) 119)) (-4257 (($ $ $) 118)) (-2832 (($ $ $) 52) (($ (-654 $)) 51)) (-4136 (((-1172) $) 10)) (-1324 (($ $) 78)) (-3966 (((-1133) $) 11)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2873 (($ $ $) 54) (($ (-654 $)) 53)) (-3191 (($ $) 96)) (-3595 (($ $) 98)) (-4220 (((-428 $) $) 82)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2838 (((-3 $ "failed") $ $) 48)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-1730 (((-781) $) 64)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 63)) (-1836 (((-388) $) 113) (((-227) $) 112) (((-903 (-388)) $) 102)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ (-574)) 109) (($ (-417 (-574))) 106)) (-1364 (((-781)) 32 T CONST)) (-1801 (($ $) 99)) (-3284 (((-112) $ $) 9)) (-2069 (((-112) $ $) 45)) (-3482 (($ $) 123)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-3042 (((-112) $ $) 116)) (-3018 (((-112) $ $) 115)) (-2981 (((-112) $ $) 6)) (-3030 (((-112) $ $) 117)) (-3007 (((-112) $ $) 114)) (-3108 (($ $ $) 73)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77) (($ $ (-417 (-574))) 103)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75))) -(((-1073) (-141)) (T -1073)) -((-3482 (*1 *1 *1) (-4 *1 (-1073))) (-2236 (*1 *1 *1) (-4 *1 (-1073))) (-1801 (*1 *1 *1) (-4 *1 (-1073))) (-3595 (*1 *1 *1) (-4 *1 (-1073))) (-1528 (*1 *2 *1) (-12 (-4 *1 (-1073)) (-5 *2 (-574)))) (-3191 (*1 *1 *1) (-4 *1 (-1073))) (-2052 (*1 *1 *1) (-4 *1 (-1073))) (-4039 (*1 *1 *1) (-4 *1 (-1073)))) -(-13 (-372) (-858) (-1035) (-1051 (-574)) (-1051 (-417 (-574))) (-1015) (-624 (-903 (-388))) (-897 (-388)) (-148) (-10 -8 (-15 -2236 ($ $)) (-15 -1801 ($ $)) (-15 -3595 ($ $)) (-15 -1528 ((-574) $)) (-15 -3191 ($ $)) (-15 -2052 ($ $)) (-15 -4039 ($ $)) (-15 -3482 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-624 (-227)) . T) ((-624 (-388)) . T) ((-624 (-903 (-388))) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-858) . T) ((-860) . T) ((-897 (-388)) . T) ((-931) . T) ((-1015) . T) ((-1035) . T) ((-1051 (-417 (-574))) . T) ((-1051 (-574)) . T) ((-1064 #0#) . T) ((-1064 $) . T) ((-1069 #0#) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1235) . T)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) |#2| $) 26)) (-1487 ((|#1| $) 10)) (-2846 (((-574) |#2| $) 116)) (-3078 (((-3 $ "failed") |#2| (-932)) 75)) (-3904 ((|#1| $) 31)) (-2161 ((|#1| |#2| $ |#1|) 40)) (-3445 (($ $) 28)) (-3434 (((-3 |#2| "failed") |#2| $) 111)) (-2756 (((-112) |#2| $) NIL)) (-1335 (((-112) |#2| $) NIL)) (-1680 (((-112) |#2| $) 27)) (-1548 ((|#1| $) 117)) (-3891 ((|#1| $) 30)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-4185 ((|#2| $) 102)) (-2943 (((-872) $) 92)) (-3284 (((-112) $ $) NIL)) (-3551 ((|#1| |#2| $ |#1|) 41)) (-2131 (((-654 $) |#2|) 77)) (-2981 (((-112) $ $) 97))) -(((-1074 |#1| |#2|) (-13 (-1081 |#1| |#2|) (-10 -8 (-15 -3891 (|#1| $)) (-15 -3904 (|#1| $)) (-15 -1487 (|#1| $)) (-15 -1548 (|#1| $)) (-15 -3445 ($ $)) (-15 -1680 ((-112) |#2| $)) (-15 -2161 (|#1| |#2| $ |#1|)))) (-13 (-858) (-372)) (-1257 |#1|)) (T -1074)) -((-2161 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1074 *2 *3)) (-4 *3 (-1257 *2)))) (-3891 (*1 *2 *1) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1074 *2 *3)) (-4 *3 (-1257 *2)))) (-3904 (*1 *2 *1) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1074 *2 *3)) (-4 *3 (-1257 *2)))) (-1487 (*1 *2 *1) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1074 *2 *3)) (-4 *3 (-1257 *2)))) (-1548 (*1 *2 *1) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1074 *2 *3)) (-4 *3 (-1257 *2)))) (-3445 (*1 *1 *1) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1074 *2 *3)) (-4 *3 (-1257 *2)))) (-1680 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-858) (-372))) (-5 *2 (-112)) (-5 *1 (-1074 *4 *3)) (-4 *3 (-1257 *4))))) -(-13 (-1081 |#1| |#2|) (-10 -8 (-15 -3891 (|#1| $)) (-15 -3904 (|#1| $)) (-15 -1487 (|#1| $)) (-15 -1548 (|#1| $)) (-15 -3445 ($ $)) (-15 -1680 ((-112) |#2| $)) (-15 -2161 (|#1| |#2| $ |#1|)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-1726 (($ $ $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-4178 (($ $ $ $) NIL)) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-1600 (((-112) $ $) NIL)) (-2846 (((-574) $) NIL)) (-3958 (($ $ $) NIL)) (-3426 (($) NIL T CONST)) (-3158 (($ (-1190)) 10) (($ (-574)) 7)) (-1696 (((-3 (-574) "failed") $) NIL)) (-2206 (((-574) $) NIL)) (-2786 (($ $ $) NIL)) (-2590 (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1281 $)) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-1880 (((-3 (-417 (-574)) "failed") $) NIL)) (-4414 (((-112) $) NIL)) (-4339 (((-417 (-574)) $) NIL)) (-2820 (($) NIL) (($ $) NIL)) (-2797 (($ $ $) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-2257 (((-112) $) NIL)) (-1361 (($ $ $ $) NIL)) (-3742 (($ $ $) NIL)) (-2756 (((-112) $) NIL)) (-3792 (($ $ $) NIL)) (-3625 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL)) (-3199 (((-112) $) NIL)) (-4410 (((-112) $) NIL)) (-2748 (((-3 $ "failed") $) NIL)) (-1335 (((-112) $) NIL)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4201 (($ $ $ $) NIL)) (-3659 (($ $ $) NIL)) (-4257 (($ $ $) NIL)) (-3810 (($ $) NIL)) (-4135 (($ $) NIL)) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-3318 (($ $ $) NIL)) (-3818 (($) NIL T CONST)) (-1605 (($ $) NIL)) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2150 (($ $) NIL)) (-4220 (((-428 $) $) NIL)) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3476 (((-112) $) NIL)) (-1730 (((-781) $) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-3905 (($ $ (-781)) NIL) (($ $) NIL)) (-2295 (($ $) NIL)) (-3167 (($ $) NIL)) (-1836 (((-574) $) 16) (((-546) $) NIL) (((-903 (-574)) $) NIL) (((-388) $) NIL) (((-227) $) NIL) (($ (-1190)) 9)) (-2943 (((-872) $) 23) (($ (-574)) 6) (($ $) NIL) (($ (-574)) 6)) (-1364 (((-781)) NIL T CONST)) (-1467 (((-112) $ $) NIL)) (-1616 (($ $ $) NIL)) (-3284 (((-112) $ $) NIL)) (-2630 (($) NIL)) (-2069 (((-112) $ $) NIL)) (-4344 (($ $ $ $) NIL)) (-3482 (($ $) NIL)) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-3610 (($ $ (-781)) NIL) (($ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) NIL)) (-3094 (($ $) 22) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ (-574) $) NIL))) -(((-1075) (-13 (-555) (-628 (-1190)) (-10 -8 (-6 -4443) (-6 -4448) (-6 -4444) (-15 -3158 ($ (-1190))) (-15 -3158 ($ (-574)))))) (T -1075)) -((-3158 (*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-1075)))) (-3158 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1075))))) -(-13 (-555) (-628 (-1190)) (-10 -8 (-6 -4443) (-6 -4448) (-6 -4444) (-15 -3158 ($ (-1190))) (-15 -3158 ($ (-574))))) -((-2849 (((-112) $ $) NIL (-2818 (|has| (-52) (-1113)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1113))))) (-3778 (($) NIL) (($ (-654 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))))) NIL)) (-3714 (((-1286) $ (-1190) (-1190)) NIL (|has| $ (-6 -4457)))) (-3034 (((-112) $ (-781)) NIL)) (-1617 (($) 9)) (-3143 (((-52) $ (-1190) (-52)) NIL)) (-3442 (($ $) 32)) (-3486 (($ $) 30)) (-1579 (($ $) 29)) (-3251 (($ $) 31)) (-2436 (($ $) 35)) (-1956 (($ $) 36)) (-1363 (($ $) 28)) (-3765 (($ $) 33)) (-3572 (($ (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) $) NIL (|has| $ (-6 -4456)))) (-2165 (($ (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) $) 27 (|has| $ (-6 -4456)))) (-2163 (((-3 (-52) "failed") (-1190) $) 43)) (-3426 (($) NIL T CONST)) (-3875 (($) 7)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1113))))) (-2876 (($ (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) $) 53 (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-3 (-52) "failed") (-1190) $) NIL)) (-3335 (($ (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1113)))) (($ (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) $) NIL (|has| $ (-6 -4456)))) (-2868 (((-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) $ (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1113)))) (((-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) $ (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) $) NIL (|has| $ (-6 -4456)))) (-2208 (((-3 (-1172) "failed") $ (-1172) (-574)) 72)) (-2458 (((-52) $ (-1190) (-52)) NIL (|has| $ (-6 -4457)))) (-2385 (((-52) $ (-1190)) NIL)) (-1864 (((-654 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-654 (-52)) $) NIL (|has| $ (-6 -4456)))) (-2742 (((-112) $ (-781)) NIL)) (-3618 (((-1190) $) NIL (|has| (-1190) (-860)))) (-1606 (((-654 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) $) 38 (|has| $ (-6 -4456))) (((-654 (-52)) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1113)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-52) (-1113))))) (-2702 (((-1190) $) NIL (|has| (-1190) (-860)))) (-2449 (($ (-1 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) $) NIL (|has| $ (-6 -4457))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL (-2818 (|has| (-52) (-1113)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1113))))) (-1763 (((-654 (-1190)) $) NIL)) (-1732 (((-112) (-1190) $) NIL)) (-2937 (((-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) $) NIL)) (-2798 (($ (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) $) 46)) (-4308 (((-654 (-1190)) $) NIL)) (-3336 (((-112) (-1190) $) NIL)) (-3966 (((-1133) $) NIL (-2818 (|has| (-52) (-1113)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1113))))) (-3244 (((-388) $ (-1190)) 52)) (-2359 (((-654 (-1172)) $ (-1172)) 74)) (-2915 (((-52) $) NIL (|has| (-1190) (-860)))) (-1549 (((-3 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) "failed") (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) $) NIL)) (-1942 (($ $ (-52)) NIL (|has| $ (-6 -4457)))) (-1785 (((-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) $) NIL)) (-2540 (((-112) (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))))) NIL (-12 (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-317 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))))) (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1113)))) (($ $ (-302 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))))) NIL (-12 (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-317 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))))) (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1113)))) (($ $ (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) NIL (-12 (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-317 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))))) (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1113)))) (($ $ (-654 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) (-654 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))))) NIL (-12 (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-317 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))))) (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1113)))) (($ $ (-654 (-52)) (-654 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1113)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1113)))) (($ $ (-302 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1113)))) (($ $ (-654 (-302 (-52)))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-52) (-1113))))) (-4371 (((-654 (-52)) $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 (((-52) $ (-1190)) NIL) (((-52) $ (-1190) (-52)) NIL)) (-1662 (($) NIL) (($ (-654 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))))) NIL)) (-4237 (($ $ (-1190)) 54)) (-3975 (((-781) (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1113)))) (((-781) (-52) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-52) (-1113)))) (((-781) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) NIL)) (-1836 (((-546) $) NIL (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-624 (-546))))) (-2956 (($ (-654 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))))) 40)) (-4157 (($ $ $) 41)) (-2943 (((-872) $) NIL (-2818 (|has| (-52) (-623 (-872))) (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-623 (-872)))))) (-2361 (($ $ (-1190) (-388)) 50)) (-1951 (($ $ (-1190) (-388)) 51)) (-3284 (((-112) $ $) NIL (-2818 (|has| (-52) (-1113)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1113))))) (-1599 (($ (-654 (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))))) NIL)) (-3390 (((-112) (-1 (-112) (-2 (|:| -3693 (-1190)) (|:| -1908 (-52)))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) NIL (-2818 (|has| (-52) (-1113)) (|has| (-2 (|:| -3693 (-1190)) (|:| -1908 (-52))) (-1113))))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-1076) (-13 (-1207 (-1190) (-52)) (-10 -8 (-15 -4157 ($ $ $)) (-15 -3875 ($)) (-15 -1363 ($ $)) (-15 -1579 ($ $)) (-15 -3486 ($ $)) (-15 -3251 ($ $)) (-15 -3765 ($ $)) (-15 -3442 ($ $)) (-15 -2436 ($ $)) (-15 -1956 ($ $)) (-15 -2361 ($ $ (-1190) (-388))) (-15 -1951 ($ $ (-1190) (-388))) (-15 -3244 ((-388) $ (-1190))) (-15 -2359 ((-654 (-1172)) $ (-1172))) (-15 -4237 ($ $ (-1190))) (-15 -1617 ($)) (-15 -2208 ((-3 (-1172) "failed") $ (-1172) (-574))) (-6 -4456)))) (T -1076)) -((-4157 (*1 *1 *1 *1) (-5 *1 (-1076))) (-3875 (*1 *1) (-5 *1 (-1076))) (-1363 (*1 *1 *1) (-5 *1 (-1076))) (-1579 (*1 *1 *1) (-5 *1 (-1076))) (-3486 (*1 *1 *1) (-5 *1 (-1076))) (-3251 (*1 *1 *1) (-5 *1 (-1076))) (-3765 (*1 *1 *1) (-5 *1 (-1076))) (-3442 (*1 *1 *1) (-5 *1 (-1076))) (-2436 (*1 *1 *1) (-5 *1 (-1076))) (-1956 (*1 *1 *1) (-5 *1 (-1076))) (-2361 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-388)) (-5 *1 (-1076)))) (-1951 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-388)) (-5 *1 (-1076)))) (-3244 (*1 *2 *1 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-388)) (-5 *1 (-1076)))) (-2359 (*1 *2 *1 *3) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1076)) (-5 *3 (-1172)))) (-4237 (*1 *1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-1076)))) (-1617 (*1 *1) (-5 *1 (-1076))) (-2208 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1172)) (-5 *3 (-574)) (-5 *1 (-1076))))) -(-13 (-1207 (-1190) (-52)) (-10 -8 (-15 -4157 ($ $ $)) (-15 -3875 ($)) (-15 -1363 ($ $)) (-15 -1579 ($ $)) (-15 -3486 ($ $)) (-15 -3251 ($ $)) (-15 -3765 ($ $)) (-15 -3442 ($ $)) (-15 -2436 ($ $)) (-15 -1956 ($ $)) (-15 -2361 ($ $ (-1190) (-388))) (-15 -1951 ($ $ (-1190) (-388))) (-15 -3244 ((-388) $ (-1190))) (-15 -2359 ((-654 (-1172)) $ (-1172))) (-15 -4237 ($ $ (-1190))) (-15 -1617 ($)) (-15 -2208 ((-3 (-1172) "failed") $ (-1172) (-574))) (-6 -4456))) -((-1970 (($ $) 46)) (-4311 (((-112) $ $) 82)) (-1696 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-963 (-417 (-574)))) 251) (((-3 $ "failed") (-963 (-574))) 250) (((-3 $ "failed") (-963 |#2|)) 253)) (-2206 ((|#2| $) NIL) (((-417 (-574)) $) NIL) (((-574) $) NIL) ((|#4| $) NIL) (($ (-963 (-417 (-574)))) 239) (($ (-963 (-574))) 235) (($ (-963 |#2|)) 255)) (-1392 (($ $) NIL) (($ $ |#4|) 44)) (-1315 (((-112) $ $) 131) (((-112) $ (-654 $)) 135)) (-2537 (((-112) $) 60)) (-2853 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 125)) (-2900 (($ $) 160)) (-4230 (($ $) 156)) (-2264 (($ $) 155)) (-2463 (($ $ $) 87) (($ $ $ |#4|) 92)) (-3566 (($ $ $) 90) (($ $ $ |#4|) 94)) (-4436 (((-112) $ $) 143) (((-112) $ (-654 $)) 144)) (-3830 ((|#4| $) 32)) (-3169 (($ $ $) 128)) (-4075 (((-112) $) 59)) (-1844 (((-781) $) 35)) (-3981 (($ $) 174)) (-2188 (($ $) 171)) (-1697 (((-654 $) $) 72)) (-2835 (($ $) 62)) (-2046 (($ $) 167)) (-2324 (((-654 $) $) 69)) (-1330 (($ $) 64)) (-1370 ((|#2| $) NIL) (($ $ |#4|) 39)) (-2934 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3103 (-781))) $ $) 130)) (-3534 (((-2 (|:| -1858 $) (|:| |gap| (-781)) (|:| -1411 $) (|:| -2766 $)) $ $) 126) (((-2 (|:| -1858 $) (|:| |gap| (-781)) (|:| -1411 $) (|:| -2766 $)) $ $ |#4|) 127)) (-1994 (((-2 (|:| -1858 $) (|:| |gap| (-781)) (|:| -2766 $)) $ $) 121) (((-2 (|:| -1858 $) (|:| |gap| (-781)) (|:| -2766 $)) $ $ |#4|) 123)) (-4078 (($ $ $) 97) (($ $ $ |#4|) 106)) (-2788 (($ $ $) 98) (($ $ $ |#4|) 107)) (-1910 (((-654 $) $) 54)) (-4292 (((-112) $ $) 140) (((-112) $ (-654 $)) 141)) (-3023 (($ $ $) 116)) (-3818 (($ $) 37)) (-2119 (((-112) $ $) 80)) (-2682 (((-112) $ $) 136) (((-112) $ (-654 $)) 138)) (-3206 (($ $ $) 112)) (-2972 (($ $) 41)) (-2873 ((|#2| |#2| $) 164) (($ (-654 $)) NIL) (($ $ $) NIL)) (-4408 (($ $ |#2|) NIL) (($ $ $) 153)) (-3215 (($ $ |#2|) 148) (($ $ $) 151)) (-2024 (($ $) 49)) (-4264 (($ $) 55)) (-1836 (((-903 (-388)) $) NIL) (((-903 (-574)) $) NIL) (((-546) $) NIL) (($ (-963 (-417 (-574)))) 241) (($ (-963 (-574))) 237) (($ (-963 |#2|)) 252) (((-1172) $) 279) (((-963 |#2|) $) 184)) (-2943 (((-872) $) 29) (($ (-574)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-963 |#2|) $) 185) (($ (-417 (-574))) NIL) (($ $) NIL)) (-1853 (((-3 (-112) "failed") $ $) 79))) -(((-1077 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2943 (|#1| |#1|)) (-15 -2873 (|#1| |#1| |#1|)) (-15 -2873 (|#1| (-654 |#1|))) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2943 ((-963 |#2|) |#1|)) (-15 -1836 ((-963 |#2|) |#1|)) (-15 -1836 ((-1172) |#1|)) (-15 -3981 (|#1| |#1|)) (-15 -2188 (|#1| |#1|)) (-15 -2046 (|#1| |#1|)) (-15 -2900 (|#1| |#1|)) (-15 -2873 (|#2| |#2| |#1|)) (-15 -4408 (|#1| |#1| |#1|)) (-15 -3215 (|#1| |#1| |#1|)) (-15 -4408 (|#1| |#1| |#2|)) (-15 -3215 (|#1| |#1| |#2|)) (-15 -4230 (|#1| |#1|)) (-15 -2264 (|#1| |#1|)) (-15 -1836 (|#1| (-963 |#2|))) (-15 -2206 (|#1| (-963 |#2|))) (-15 -1696 ((-3 |#1| "failed") (-963 |#2|))) (-15 -1836 (|#1| (-963 (-574)))) (-15 -2206 (|#1| (-963 (-574)))) (-15 -1696 ((-3 |#1| "failed") (-963 (-574)))) (-15 -1836 (|#1| (-963 (-417 (-574))))) (-15 -2206 (|#1| (-963 (-417 (-574))))) (-15 -1696 ((-3 |#1| "failed") (-963 (-417 (-574))))) (-15 -3023 (|#1| |#1| |#1|)) (-15 -3206 (|#1| |#1| |#1|)) (-15 -2934 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3103 (-781))) |#1| |#1|)) (-15 -3169 (|#1| |#1| |#1|)) (-15 -2853 ((-2 (|:| -1411 |#1|) (|:| -2766 |#1|)) |#1| |#1|)) (-15 -3534 ((-2 (|:| -1858 |#1|) (|:| |gap| (-781)) (|:| -1411 |#1|) (|:| -2766 |#1|)) |#1| |#1| |#4|)) (-15 -3534 ((-2 (|:| -1858 |#1|) (|:| |gap| (-781)) (|:| -1411 |#1|) (|:| -2766 |#1|)) |#1| |#1|)) (-15 -1994 ((-2 (|:| -1858 |#1|) (|:| |gap| (-781)) (|:| -2766 |#1|)) |#1| |#1| |#4|)) (-15 -1994 ((-2 (|:| -1858 |#1|) (|:| |gap| (-781)) (|:| -2766 |#1|)) |#1| |#1|)) (-15 -2788 (|#1| |#1| |#1| |#4|)) (-15 -4078 (|#1| |#1| |#1| |#4|)) (-15 -2788 (|#1| |#1| |#1|)) (-15 -4078 (|#1| |#1| |#1|)) (-15 -3566 (|#1| |#1| |#1| |#4|)) (-15 -2463 (|#1| |#1| |#1| |#4|)) (-15 -3566 (|#1| |#1| |#1|)) (-15 -2463 (|#1| |#1| |#1|)) (-15 -4436 ((-112) |#1| (-654 |#1|))) (-15 -4436 ((-112) |#1| |#1|)) (-15 -4292 ((-112) |#1| (-654 |#1|))) (-15 -4292 ((-112) |#1| |#1|)) (-15 -2682 ((-112) |#1| (-654 |#1|))) (-15 -2682 ((-112) |#1| |#1|)) (-15 -1315 ((-112) |#1| (-654 |#1|))) (-15 -1315 ((-112) |#1| |#1|)) (-15 -4311 ((-112) |#1| |#1|)) (-15 -2119 ((-112) |#1| |#1|)) (-15 -1853 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1697 ((-654 |#1|) |#1|)) (-15 -2324 ((-654 |#1|) |#1|)) (-15 -1330 (|#1| |#1|)) (-15 -2835 (|#1| |#1|)) (-15 -2537 ((-112) |#1|)) (-15 -4075 ((-112) |#1|)) (-15 -1392 (|#1| |#1| |#4|)) (-15 -1370 (|#1| |#1| |#4|)) (-15 -4264 (|#1| |#1|)) (-15 -1910 ((-654 |#1|) |#1|)) (-15 -2024 (|#1| |#1|)) (-15 -1970 (|#1| |#1|)) (-15 -2972 (|#1| |#1|)) (-15 -3818 (|#1| |#1|)) (-15 -1844 ((-781) |#1|)) (-15 -3830 (|#4| |#1|)) (-15 -1836 ((-546) |#1|)) (-15 -1836 ((-903 (-574)) |#1|)) (-15 -1836 ((-903 (-388)) |#1|)) (-15 -2943 (|#1| |#4|)) (-15 -1696 ((-3 |#4| "failed") |#1|)) (-15 -2206 (|#4| |#1|)) (-15 -1370 (|#2| |#1|)) (-15 -1392 (|#1| |#1|)) (-15 -1696 ((-3 (-574) "failed") |#1|)) (-15 -2206 ((-574) |#1|)) (-15 -1696 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2206 ((-417 (-574)) |#1|)) (-15 -2206 (|#2| |#1|)) (-15 -1696 ((-3 |#2| "failed") |#1|)) (-15 -2943 (|#1| |#2|)) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|))) (-1078 |#2| |#3| |#4|) (-1062) (-803) (-860)) (T -1077)) -NIL -(-10 -8 (-15 -2943 (|#1| |#1|)) (-15 -2873 (|#1| |#1| |#1|)) (-15 -2873 (|#1| (-654 |#1|))) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2943 ((-963 |#2|) |#1|)) (-15 -1836 ((-963 |#2|) |#1|)) (-15 -1836 ((-1172) |#1|)) (-15 -3981 (|#1| |#1|)) (-15 -2188 (|#1| |#1|)) (-15 -2046 (|#1| |#1|)) (-15 -2900 (|#1| |#1|)) (-15 -2873 (|#2| |#2| |#1|)) (-15 -4408 (|#1| |#1| |#1|)) (-15 -3215 (|#1| |#1| |#1|)) (-15 -4408 (|#1| |#1| |#2|)) (-15 -3215 (|#1| |#1| |#2|)) (-15 -4230 (|#1| |#1|)) (-15 -2264 (|#1| |#1|)) (-15 -1836 (|#1| (-963 |#2|))) (-15 -2206 (|#1| (-963 |#2|))) (-15 -1696 ((-3 |#1| "failed") (-963 |#2|))) (-15 -1836 (|#1| (-963 (-574)))) (-15 -2206 (|#1| (-963 (-574)))) (-15 -1696 ((-3 |#1| "failed") (-963 (-574)))) (-15 -1836 (|#1| (-963 (-417 (-574))))) (-15 -2206 (|#1| (-963 (-417 (-574))))) (-15 -1696 ((-3 |#1| "failed") (-963 (-417 (-574))))) (-15 -3023 (|#1| |#1| |#1|)) (-15 -3206 (|#1| |#1| |#1|)) (-15 -2934 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3103 (-781))) |#1| |#1|)) (-15 -3169 (|#1| |#1| |#1|)) (-15 -2853 ((-2 (|:| -1411 |#1|) (|:| -2766 |#1|)) |#1| |#1|)) (-15 -3534 ((-2 (|:| -1858 |#1|) (|:| |gap| (-781)) (|:| -1411 |#1|) (|:| -2766 |#1|)) |#1| |#1| |#4|)) (-15 -3534 ((-2 (|:| -1858 |#1|) (|:| |gap| (-781)) (|:| -1411 |#1|) (|:| -2766 |#1|)) |#1| |#1|)) (-15 -1994 ((-2 (|:| -1858 |#1|) (|:| |gap| (-781)) (|:| -2766 |#1|)) |#1| |#1| |#4|)) (-15 -1994 ((-2 (|:| -1858 |#1|) (|:| |gap| (-781)) (|:| -2766 |#1|)) |#1| |#1|)) (-15 -2788 (|#1| |#1| |#1| |#4|)) (-15 -4078 (|#1| |#1| |#1| |#4|)) (-15 -2788 (|#1| |#1| |#1|)) (-15 -4078 (|#1| |#1| |#1|)) (-15 -3566 (|#1| |#1| |#1| |#4|)) (-15 -2463 (|#1| |#1| |#1| |#4|)) (-15 -3566 (|#1| |#1| |#1|)) (-15 -2463 (|#1| |#1| |#1|)) (-15 -4436 ((-112) |#1| (-654 |#1|))) (-15 -4436 ((-112) |#1| |#1|)) (-15 -4292 ((-112) |#1| (-654 |#1|))) (-15 -4292 ((-112) |#1| |#1|)) (-15 -2682 ((-112) |#1| (-654 |#1|))) (-15 -2682 ((-112) |#1| |#1|)) (-15 -1315 ((-112) |#1| (-654 |#1|))) (-15 -1315 ((-112) |#1| |#1|)) (-15 -4311 ((-112) |#1| |#1|)) (-15 -2119 ((-112) |#1| |#1|)) (-15 -1853 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1697 ((-654 |#1|) |#1|)) (-15 -2324 ((-654 |#1|) |#1|)) (-15 -1330 (|#1| |#1|)) (-15 -2835 (|#1| |#1|)) (-15 -2537 ((-112) |#1|)) (-15 -4075 ((-112) |#1|)) (-15 -1392 (|#1| |#1| |#4|)) (-15 -1370 (|#1| |#1| |#4|)) (-15 -4264 (|#1| |#1|)) (-15 -1910 ((-654 |#1|) |#1|)) (-15 -2024 (|#1| |#1|)) (-15 -1970 (|#1| |#1|)) (-15 -2972 (|#1| |#1|)) (-15 -3818 (|#1| |#1|)) (-15 -1844 ((-781) |#1|)) (-15 -3830 (|#4| |#1|)) (-15 -1836 ((-546) |#1|)) (-15 -1836 ((-903 (-574)) |#1|)) (-15 -1836 ((-903 (-388)) |#1|)) (-15 -2943 (|#1| |#4|)) (-15 -1696 ((-3 |#4| "failed") |#1|)) (-15 -2206 (|#4| |#1|)) (-15 -1370 (|#2| |#1|)) (-15 -1392 (|#1| |#1|)) (-15 -1696 ((-3 (-574) "failed") |#1|)) (-15 -2206 ((-574) |#1|)) (-15 -1696 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2206 ((-417 (-574)) |#1|)) (-15 -2206 (|#2| |#1|)) (-15 -1696 ((-3 |#2| "failed") |#1|)) (-15 -2943 (|#1| |#2|)) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-4355 (((-654 |#3|) $) 112)) (-4194 (((-1186 $) $ |#3|) 127) (((-1186 |#1|) $) 126)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 89 (|has| |#1| (-566)))) (-1575 (($ $) 90 (|has| |#1| (-566)))) (-2085 (((-112) $) 92 (|has| |#1| (-566)))) (-1757 (((-781) $) 114) (((-781) $ (-654 |#3|)) 113)) (-1970 (($ $) 275)) (-4311 (((-112) $ $) 261)) (-3524 (((-3 $ "failed") $ $) 20)) (-1904 (($ $ $) 220 (|has| |#1| (-566)))) (-3427 (((-654 $) $ $) 215 (|has| |#1| (-566)))) (-3972 (((-428 (-1186 $)) (-1186 $)) 102 (|has| |#1| (-920)))) (-2568 (($ $) 100 (|has| |#1| (-462)))) (-2827 (((-428 $) $) 99 (|has| |#1| (-462)))) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) 105 (|has| |#1| (-920)))) (-3426 (($) 18 T CONST)) (-1696 (((-3 |#1| "failed") $) 168) (((-3 (-417 (-574)) "failed") $) 165 (|has| |#1| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) 163 (|has| |#1| (-1051 (-574)))) (((-3 |#3| "failed") $) 140) (((-3 $ "failed") (-963 (-417 (-574)))) 235 (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1190))))) (((-3 $ "failed") (-963 (-574))) 232 (-2818 (-12 (-2076 (|has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-38 (-574))) (|has| |#3| (-624 (-1190)))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1190)))))) (((-3 $ "failed") (-963 |#1|)) 229 (-2818 (-12 (-2076 (|has| |#1| (-38 (-417 (-574))))) (-2076 (|has| |#1| (-38 (-574)))) (|has| |#3| (-624 (-1190)))) (-12 (-2076 (|has| |#1| (-555))) (-2076 (|has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-38 (-574))) (|has| |#3| (-624 (-1190)))) (-12 (-2076 (|has| |#1| (-1005 (-574)))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1190))))))) (-2206 ((|#1| $) 167) (((-417 (-574)) $) 166 (|has| |#1| (-1051 (-417 (-574))))) (((-574) $) 164 (|has| |#1| (-1051 (-574)))) ((|#3| $) 141) (($ (-963 (-417 (-574)))) 234 (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1190))))) (($ (-963 (-574))) 231 (-2818 (-12 (-2076 (|has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-38 (-574))) (|has| |#3| (-624 (-1190)))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1190)))))) (($ (-963 |#1|)) 228 (-2818 (-12 (-2076 (|has| |#1| (-38 (-417 (-574))))) (-2076 (|has| |#1| (-38 (-574)))) (|has| |#3| (-624 (-1190)))) (-12 (-2076 (|has| |#1| (-555))) (-2076 (|has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-38 (-574))) (|has| |#3| (-624 (-1190)))) (-12 (-2076 (|has| |#1| (-1005 (-574)))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1190))))))) (-1463 (($ $ $ |#3|) 110 (|has| |#1| (-174))) (($ $ $) 216 (|has| |#1| (-566)))) (-1392 (($ $) 158) (($ $ |#3|) 270)) (-2590 (((-699 (-574)) (-1281 $)) 138 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 137 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 136 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) 135) (((-699 |#1|) (-699 $)) 134) (((-699 |#1|) (-1281 $)) 133)) (-1315 (((-112) $ $) 260) (((-112) $ (-654 $)) 259)) (-3434 (((-3 $ "failed") $) 37)) (-2537 (((-112) $) 268)) (-2853 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 240)) (-2900 (($ $) 209 (|has| |#1| (-462)))) (-1569 (($ $) 180 (|has| |#1| (-462))) (($ $ |#3|) 107 (|has| |#1| (-462)))) (-1380 (((-654 $) $) 111)) (-2257 (((-112) $) 98 (|has| |#1| (-920)))) (-4230 (($ $) 225 (|has| |#1| (-566)))) (-2264 (($ $) 226 (|has| |#1| (-566)))) (-2463 (($ $ $) 252) (($ $ $ |#3|) 250)) (-3566 (($ $ $) 251) (($ $ $ |#3|) 249)) (-1661 (($ $ |#1| |#2| $) 176)) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 86 (-12 (|has| |#3| (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 85 (-12 (|has| |#3| (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3199 (((-112) $) 35)) (-1322 (((-781) $) 173)) (-4436 (((-112) $ $) 254) (((-112) $ (-654 $)) 253)) (-2461 (($ $ $ $ $) 211 (|has| |#1| (-566)))) (-3830 ((|#3| $) 279)) (-4345 (($ (-1186 |#1|) |#3|) 119) (($ (-1186 $) |#3|) 118)) (-3727 (((-654 $) $) 128)) (-3869 (((-112) $) 156)) (-4335 (($ |#1| |#2|) 157) (($ $ |#3| (-781)) 121) (($ $ (-654 |#3|) (-654 (-781))) 120)) (-3169 (($ $ $) 239)) (-2773 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $ |#3|) 122)) (-4075 (((-112) $) 269)) (-1742 ((|#2| $) 174) (((-781) $ |#3|) 124) (((-654 (-781)) $ (-654 |#3|)) 123)) (-1844 (((-781) $) 278)) (-3708 (($ (-1 |#2| |#2|) $) 175)) (-1777 (($ (-1 |#1| |#1|) $) 155)) (-2717 (((-3 |#3| "failed") $) 125)) (-3981 (($ $) 206 (|has| |#1| (-462)))) (-2188 (($ $) 207 (|has| |#1| (-462)))) (-1697 (((-654 $) $) 264)) (-2835 (($ $) 267)) (-2046 (($ $) 208 (|has| |#1| (-462)))) (-2324 (((-654 $) $) 265)) (-1330 (($ $) 266)) (-1359 (($ $) 153)) (-1370 ((|#1| $) 152) (($ $ |#3|) 271)) (-2832 (($ (-654 $)) 96 (|has| |#1| (-462))) (($ $ $) 95 (|has| |#1| (-462)))) (-2934 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3103 (-781))) $ $) 238)) (-3534 (((-2 (|:| -1858 $) (|:| |gap| (-781)) (|:| -1411 $) (|:| -2766 $)) $ $) 242) (((-2 (|:| -1858 $) (|:| |gap| (-781)) (|:| -1411 $) (|:| -2766 $)) $ $ |#3|) 241)) (-1994 (((-2 (|:| -1858 $) (|:| |gap| (-781)) (|:| -2766 $)) $ $) 244) (((-2 (|:| -1858 $) (|:| |gap| (-781)) (|:| -2766 $)) $ $ |#3|) 243)) (-4078 (($ $ $) 248) (($ $ $ |#3|) 246)) (-2788 (($ $ $) 247) (($ $ $ |#3|) 245)) (-4136 (((-1172) $) 10)) (-4268 (($ $ $) 214 (|has| |#1| (-566)))) (-1910 (((-654 $) $) 273)) (-2755 (((-3 (-654 $) "failed") $) 116)) (-2415 (((-3 (-654 $) "failed") $) 117)) (-2241 (((-3 (-2 (|:| |var| |#3|) (|:| -3715 (-781))) "failed") $) 115)) (-4292 (((-112) $ $) 256) (((-112) $ (-654 $)) 255)) (-3023 (($ $ $) 236)) (-3818 (($ $) 277)) (-2119 (((-112) $ $) 262)) (-2682 (((-112) $ $) 258) (((-112) $ (-654 $)) 257)) (-3206 (($ $ $) 237)) (-2972 (($ $) 276)) (-3966 (((-1133) $) 11)) (-2126 (((-2 (|:| -2873 $) (|:| |coef2| $)) $ $) 217 (|has| |#1| (-566)))) (-2454 (((-2 (|:| -2873 $) (|:| |coef1| $)) $ $) 218 (|has| |#1| (-566)))) (-1338 (((-112) $) 170)) (-1349 ((|#1| $) 171)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 97 (|has| |#1| (-462)))) (-2873 ((|#1| |#1| $) 210 (|has| |#1| (-462))) (($ (-654 $)) 94 (|has| |#1| (-462))) (($ $ $) 93 (|has| |#1| (-462)))) (-2560 (((-428 (-1186 $)) (-1186 $)) 104 (|has| |#1| (-920)))) (-2039 (((-428 (-1186 $)) (-1186 $)) 103 (|has| |#1| (-920)))) (-4220 (((-428 $) $) 101 (|has| |#1| (-920)))) (-4166 (((-2 (|:| -2873 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 219 (|has| |#1| (-566)))) (-2838 (((-3 $ "failed") $ |#1|) 178 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-566)))) (-4408 (($ $ |#1|) 223 (|has| |#1| (-566))) (($ $ $) 221 (|has| |#1| (-566)))) (-3215 (($ $ |#1|) 224 (|has| |#1| (-566))) (($ $ $) 222 (|has| |#1| (-566)))) (-2646 (($ $ (-654 (-302 $))) 149) (($ $ (-302 $)) 148) (($ $ $ $) 147) (($ $ (-654 $) (-654 $)) 146) (($ $ |#3| |#1|) 145) (($ $ (-654 |#3|) (-654 |#1|)) 144) (($ $ |#3| $) 143) (($ $ (-654 |#3|) (-654 $)) 142)) (-2872 (($ $ |#3|) 109 (|has| |#1| (-174)))) (-3905 (($ $ |#3|) 46) (($ $ (-654 |#3|)) 45) (($ $ |#3| (-781)) 44) (($ $ (-654 |#3|) (-654 (-781))) 43)) (-4202 ((|#2| $) 154) (((-781) $ |#3|) 132) (((-654 (-781)) $ (-654 |#3|)) 131)) (-2024 (($ $) 274)) (-4264 (($ $) 272)) (-1836 (((-903 (-388)) $) 84 (-12 (|has| |#3| (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) 83 (-12 (|has| |#3| (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) 82 (-12 (|has| |#3| (-624 (-546))) (|has| |#1| (-624 (-546))))) (($ (-963 (-417 (-574)))) 233 (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1190))))) (($ (-963 (-574))) 230 (-2818 (-12 (-2076 (|has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-38 (-574))) (|has| |#3| (-624 (-1190)))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1190)))))) (($ (-963 |#1|)) 227 (|has| |#3| (-624 (-1190)))) (((-1172) $) 205 (-12 (|has| |#1| (-1051 (-574))) (|has| |#3| (-624 (-1190))))) (((-963 |#1|) $) 204 (|has| |#3| (-624 (-1190))))) (-3069 ((|#1| $) 179 (|has| |#1| (-462))) (($ $ |#3|) 108 (|has| |#1| (-462)))) (-1524 (((-3 (-1281 $) "failed") (-699 $)) 106 (-2087 (|has| $ (-146)) (|has| |#1| (-920))))) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 169) (($ |#3|) 139) (((-963 |#1|) $) 203 (|has| |#3| (-624 (-1190)))) (($ (-417 (-574))) 80 (-2818 (|has| |#1| (-1051 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))))) (($ $) 87 (|has| |#1| (-566)))) (-2530 (((-654 |#1|) $) 172)) (-3087 ((|#1| $ |#2|) 159) (($ $ |#3| (-781)) 130) (($ $ (-654 |#3|) (-654 (-781))) 129)) (-3298 (((-3 $ "failed") $) 81 (-2818 (-2087 (|has| $ (-146)) (|has| |#1| (-920))) (|has| |#1| (-146))))) (-1364 (((-781)) 32 T CONST)) (-3772 (($ $ $ (-781)) 177 (|has| |#1| (-174)))) (-3284 (((-112) $ $) 9)) (-2069 (((-112) $ $) 91 (|has| |#1| (-566)))) (-2133 (($) 19 T CONST)) (-1853 (((-3 (-112) "failed") $ $) 263)) (-2145 (($) 34 T CONST)) (-3101 (($ $ $ $ (-781)) 212 (|has| |#1| (-566)))) (-1634 (($ $ $ (-781)) 213 (|has| |#1| (-566)))) (-3610 (($ $ |#3|) 42) (($ $ (-654 |#3|)) 41) (($ $ |#3| (-781)) 40) (($ $ (-654 |#3|) (-654 (-781))) 39)) (-2981 (((-112) $ $) 6)) (-3108 (($ $ |#1|) 160 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 162 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 161 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 151) (($ $ |#1|) 150))) -(((-1078 |#1| |#2| |#3|) (-141) (-1062) (-803) (-860)) (T -1078)) -((-3830 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *2 (-860)))) (-1844 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-781)))) (-3818 (*1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)))) (-2972 (*1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)))) (-1970 (*1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)))) (-2024 (*1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)))) (-1910 (*1 *2 *1) (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1078 *3 *4 *5)))) (-4264 (*1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)))) (-1370 (*1 *1 *1 *2) (-12 (-4 *1 (-1078 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *2 (-860)))) (-1392 (*1 *1 *1 *2) (-12 (-4 *1 (-1078 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *2 (-860)))) (-4075 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-2537 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-2835 (*1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)))) (-1330 (*1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)))) (-2324 (*1 *2 *1) (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1078 *3 *4 *5)))) (-1697 (*1 *2 *1) (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1078 *3 *4 *5)))) (-1853 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-2119 (*1 *2 *1 *1) (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-4311 (*1 *2 *1 *1) (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-1315 (*1 *2 *1 *1) (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-1315 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *1)) (-4 *1 (-1078 *4 *5 *6)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) (-2682 (*1 *2 *1 *1) (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-2682 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *1)) (-4 *1 (-1078 *4 *5 *6)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) (-4292 (*1 *2 *1 *1) (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-4292 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *1)) (-4 *1 (-1078 *4 *5 *6)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) (-4436 (*1 *2 *1 *1) (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-4436 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *1)) (-4 *1 (-1078 *4 *5 *6)) (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) (-2463 (*1 *1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)))) (-3566 (*1 *1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)))) (-2463 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1078 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *2 (-860)))) (-3566 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1078 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *2 (-860)))) (-4078 (*1 *1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)))) (-2788 (*1 *1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)))) (-4078 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1078 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *2 (-860)))) (-2788 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1078 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *2 (-860)))) (-1994 (*1 *2 *1 *1) (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -1858 *1) (|:| |gap| (-781)) (|:| -2766 *1))) (-4 *1 (-1078 *3 *4 *5)))) (-1994 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-2 (|:| -1858 *1) (|:| |gap| (-781)) (|:| -2766 *1))) (-4 *1 (-1078 *4 *5 *3)))) (-3534 (*1 *2 *1 *1) (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -1858 *1) (|:| |gap| (-781)) (|:| -1411 *1) (|:| -2766 *1))) (-4 *1 (-1078 *3 *4 *5)))) (-3534 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-2 (|:| -1858 *1) (|:| |gap| (-781)) (|:| -1411 *1) (|:| -2766 *1))) (-4 *1 (-1078 *4 *5 *3)))) (-2853 (*1 *2 *1 *1) (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -1411 *1) (|:| -2766 *1))) (-4 *1 (-1078 *3 *4 *5)))) (-3169 (*1 *1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)))) (-2934 (*1 *2 *1 *1) (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3103 (-781)))) (-4 *1 (-1078 *3 *4 *5)))) (-3206 (*1 *1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)))) (-3023 (*1 *1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)))) (-1696 (*1 *1 *2) (|partial| -12 (-5 *2 (-963 (-417 (-574)))) (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1190))) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)))) (-2206 (*1 *1 *2) (-12 (-5 *2 (-963 (-417 (-574)))) (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1190))) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)))) (-1836 (*1 *1 *2) (-12 (-5 *2 (-963 (-417 (-574)))) (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1190))) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)))) (-1696 (*1 *1 *2) (|partial| -2818 (-12 (-5 *2 (-963 (-574))) (-4 *1 (-1078 *3 *4 *5)) (-12 (-2076 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1190)))) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-963 (-574))) (-4 *1 (-1078 *3 *4 *5)) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1190)))) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))))) (-2206 (*1 *1 *2) (-2818 (-12 (-5 *2 (-963 (-574))) (-4 *1 (-1078 *3 *4 *5)) (-12 (-2076 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1190)))) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-963 (-574))) (-4 *1 (-1078 *3 *4 *5)) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1190)))) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))))) (-1836 (*1 *1 *2) (-2818 (-12 (-5 *2 (-963 (-574))) (-4 *1 (-1078 *3 *4 *5)) (-12 (-2076 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1190)))) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-963 (-574))) (-4 *1 (-1078 *3 *4 *5)) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1190)))) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))))) (-1696 (*1 *1 *2) (|partial| -2818 (-12 (-5 *2 (-963 *3)) (-12 (-2076 (-4 *3 (-38 (-417 (-574))))) (-2076 (-4 *3 (-38 (-574)))) (-4 *5 (-624 (-1190)))) (-4 *3 (-1062)) (-4 *1 (-1078 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-963 *3)) (-12 (-2076 (-4 *3 (-555))) (-2076 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1190)))) (-4 *3 (-1062)) (-4 *1 (-1078 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-963 *3)) (-12 (-2076 (-4 *3 (-1005 (-574)))) (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1190)))) (-4 *3 (-1062)) (-4 *1 (-1078 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))))) (-2206 (*1 *1 *2) (-2818 (-12 (-5 *2 (-963 *3)) (-12 (-2076 (-4 *3 (-38 (-417 (-574))))) (-2076 (-4 *3 (-38 (-574)))) (-4 *5 (-624 (-1190)))) (-4 *3 (-1062)) (-4 *1 (-1078 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-963 *3)) (-12 (-2076 (-4 *3 (-555))) (-2076 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1190)))) (-4 *3 (-1062)) (-4 *1 (-1078 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-963 *3)) (-12 (-2076 (-4 *3 (-1005 (-574)))) (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1190)))) (-4 *3 (-1062)) (-4 *1 (-1078 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))))) (-1836 (*1 *1 *2) (-12 (-5 *2 (-963 *3)) (-4 *3 (-1062)) (-4 *1 (-1078 *3 *4 *5)) (-4 *5 (-624 (-1190))) (-4 *4 (-803)) (-4 *5 (-860)))) (-2264 (*1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-4230 (*1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-3215 (*1 *1 *1 *2) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-4408 (*1 *1 *1 *2) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-3215 (*1 *1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-4408 (*1 *1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-1904 (*1 *1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-4166 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -2873 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1078 *3 *4 *5)))) (-2454 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -2873 *1) (|:| |coef1| *1))) (-4 *1 (-1078 *3 *4 *5)))) (-2126 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -2873 *1) (|:| |coef2| *1))) (-4 *1 (-1078 *3 *4 *5)))) (-1463 (*1 *1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-3427 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1078 *3 *4 *5)))) (-4268 (*1 *1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-1634 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *3 (-566)))) (-3101 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *3 (-566)))) (-2461 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-2873 (*1 *2 *2 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-2900 (*1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-2046 (*1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-2188 (*1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-3981 (*1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462))))) -(-13 (-960 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3830 (|t#3| $)) (-15 -1844 ((-781) $)) (-15 -3818 ($ $)) (-15 -2972 ($ $)) (-15 -1970 ($ $)) (-15 -2024 ($ $)) (-15 -1910 ((-654 $) $)) (-15 -4264 ($ $)) (-15 -1370 ($ $ |t#3|)) (-15 -1392 ($ $ |t#3|)) (-15 -4075 ((-112) $)) (-15 -2537 ((-112) $)) (-15 -2835 ($ $)) (-15 -1330 ($ $)) (-15 -2324 ((-654 $) $)) (-15 -1697 ((-654 $) $)) (-15 -1853 ((-3 (-112) "failed") $ $)) (-15 -2119 ((-112) $ $)) (-15 -4311 ((-112) $ $)) (-15 -1315 ((-112) $ $)) (-15 -1315 ((-112) $ (-654 $))) (-15 -2682 ((-112) $ $)) (-15 -2682 ((-112) $ (-654 $))) (-15 -4292 ((-112) $ $)) (-15 -4292 ((-112) $ (-654 $))) (-15 -4436 ((-112) $ $)) (-15 -4436 ((-112) $ (-654 $))) (-15 -2463 ($ $ $)) (-15 -3566 ($ $ $)) (-15 -2463 ($ $ $ |t#3|)) (-15 -3566 ($ $ $ |t#3|)) (-15 -4078 ($ $ $)) (-15 -2788 ($ $ $)) (-15 -4078 ($ $ $ |t#3|)) (-15 -2788 ($ $ $ |t#3|)) (-15 -1994 ((-2 (|:| -1858 $) (|:| |gap| (-781)) (|:| -2766 $)) $ $)) (-15 -1994 ((-2 (|:| -1858 $) (|:| |gap| (-781)) (|:| -2766 $)) $ $ |t#3|)) (-15 -3534 ((-2 (|:| -1858 $) (|:| |gap| (-781)) (|:| -1411 $) (|:| -2766 $)) $ $)) (-15 -3534 ((-2 (|:| -1858 $) (|:| |gap| (-781)) (|:| -1411 $) (|:| -2766 $)) $ $ |t#3|)) (-15 -2853 ((-2 (|:| -1411 $) (|:| -2766 $)) $ $)) (-15 -3169 ($ $ $)) (-15 -2934 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3103 (-781))) $ $)) (-15 -3206 ($ $ $)) (-15 -3023 ($ $ $)) (IF (|has| |t#3| (-624 (-1190))) (PROGN (-6 (-623 (-963 |t#1|))) (-6 (-624 (-963 |t#1|))) (IF (|has| |t#1| (-38 (-417 (-574)))) (PROGN (-15 -1696 ((-3 $ "failed") (-963 (-417 (-574))))) (-15 -2206 ($ (-963 (-417 (-574))))) (-15 -1836 ($ (-963 (-417 (-574))))) (-15 -1696 ((-3 $ "failed") (-963 (-574)))) (-15 -2206 ($ (-963 (-574)))) (-15 -1836 ($ (-963 (-574)))) (IF (|has| |t#1| (-1005 (-574))) |%noBranch| (PROGN (-15 -1696 ((-3 $ "failed") (-963 |t#1|))) (-15 -2206 ($ (-963 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-574))) (IF (|has| |t#1| (-38 (-417 (-574)))) |%noBranch| (PROGN (-15 -1696 ((-3 $ "failed") (-963 (-574)))) (-15 -2206 ($ (-963 (-574)))) (-15 -1836 ($ (-963 (-574)))) (IF (|has| |t#1| (-555)) |%noBranch| (PROGN (-15 -1696 ((-3 $ "failed") (-963 |t#1|))) (-15 -2206 ($ (-963 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-574))) |%noBranch| (IF (|has| |t#1| (-38 (-417 (-574)))) |%noBranch| (PROGN (-15 -1696 ((-3 $ "failed") (-963 |t#1|))) (-15 -2206 ($ (-963 |t#1|)))))) (-15 -1836 ($ (-963 |t#1|))) (IF (|has| |t#1| (-1051 (-574))) (-6 (-624 (-1172))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-566)) (PROGN (-15 -2264 ($ $)) (-15 -4230 ($ $)) (-15 -3215 ($ $ |t#1|)) (-15 -4408 ($ $ |t#1|)) (-15 -3215 ($ $ $)) (-15 -4408 ($ $ $)) (-15 -1904 ($ $ $)) (-15 -4166 ((-2 (|:| -2873 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2454 ((-2 (|:| -2873 $) (|:| |coef1| $)) $ $)) (-15 -2126 ((-2 (|:| -2873 $) (|:| |coef2| $)) $ $)) (-15 -1463 ($ $ $)) (-15 -3427 ((-654 $) $ $)) (-15 -4268 ($ $ $)) (-15 -1634 ($ $ $ (-781))) (-15 -3101 ($ $ $ $ (-781))) (-15 -2461 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-462)) (PROGN (-15 -2873 (|t#1| |t#1| $)) (-15 -2900 ($ $)) (-15 -2046 ($ $)) (-15 -2188 ($ $)) (-15 -3981 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2818 (|has| |#1| (-1051 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 |#3|) . T) ((-626 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-623 (-872)) . T) ((-623 (-963 |#1|)) |has| |#3| (-624 (-1190))) ((-174) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-624 (-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#3| (-624 (-546)))) ((-624 (-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#3| (-624 (-903 (-388))))) ((-624 (-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#3| (-624 (-903 (-574))))) ((-624 (-963 |#1|)) |has| |#3| (-624 (-1190))) ((-624 (-1172)) -12 (|has| |#1| (-1051 (-574))) (|has| |#3| (-624 (-1190)))) ((-298) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-317 $) . T) ((-334 |#1| |#2|) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-462) -2818 (|has| |#1| (-920)) (|has| |#1| (-462))) ((-524 |#3| |#1|) . T) ((-524 |#3| $) . T) ((-524 $ $) . T) ((-566) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 #1=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-649 #1#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-736) . T) ((-911 |#3|) . T) ((-897 (-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#3| (-897 (-388)))) ((-897 (-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#3| (-897 (-574)))) ((-960 |#1| |#2| |#3|) . T) ((-920) |has| |#1| (-920)) ((-1051 (-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((-1051 (-574)) |has| |#1| (-1051 (-574))) ((-1051 |#1|) . T) ((-1051 |#3|) . T) ((-1064 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1064 |#1|) . T) ((-1064 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1069 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1069 |#1|) . T) ((-1069 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1235) |has| |#1| (-920))) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-1498 (((-654 (-1148)) $) 18)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 27) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2044 (((-1148) $) 20)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1079) (-13 (-1096) (-10 -8 (-15 -1498 ((-654 (-1148)) $)) (-15 -2044 ((-1148) $))))) (T -1079)) -((-1498 (*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-1079)))) (-2044 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1079))))) -(-13 (-1096) (-10 -8 (-15 -1498 ((-654 (-1148)) $)) (-15 -2044 ((-1148) $)))) -((-3138 (((-112) |#3| $) 15)) (-3078 (((-3 $ "failed") |#3| (-932)) 29)) (-3434 (((-3 |#3| "failed") |#3| $) 45)) (-2756 (((-112) |#3| $) 19)) (-1335 (((-112) |#3| $) 17))) -(((-1080 |#1| |#2| |#3|) (-10 -8 (-15 -3078 ((-3 |#1| "failed") |#3| (-932))) (-15 -3434 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2756 ((-112) |#3| |#1|)) (-15 -1335 ((-112) |#3| |#1|)) (-15 -3138 ((-112) |#3| |#1|))) (-1081 |#2| |#3|) (-13 (-858) (-372)) (-1257 |#2|)) (T -1080)) -NIL -(-10 -8 (-15 -3078 ((-3 |#1| "failed") |#3| (-932))) (-15 -3434 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2756 ((-112) |#3| |#1|)) (-15 -1335 ((-112) |#3| |#1|)) (-15 -3138 ((-112) |#3| |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) |#2| $) 22)) (-2846 (((-574) |#2| $) 23)) (-3078 (((-3 $ "failed") |#2| (-932)) 16)) (-2161 ((|#1| |#2| $ |#1|) 14)) (-3434 (((-3 |#2| "failed") |#2| $) 19)) (-2756 (((-112) |#2| $) 20)) (-1335 (((-112) |#2| $) 21)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-4185 ((|#2| $) 18)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-3551 ((|#1| |#2| $ |#1|) 15)) (-2131 (((-654 $) |#2|) 17)) (-2981 (((-112) $ $) 6))) -(((-1081 |#1| |#2|) (-141) (-13 (-858) (-372)) (-1257 |t#1|)) (T -1081)) -((-2846 (*1 *2 *3 *1) (-12 (-4 *1 (-1081 *4 *3)) (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1257 *4)) (-5 *2 (-574)))) (-3138 (*1 *2 *3 *1) (-12 (-4 *1 (-1081 *4 *3)) (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1257 *4)) (-5 *2 (-112)))) (-1335 (*1 *2 *3 *1) (-12 (-4 *1 (-1081 *4 *3)) (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1257 *4)) (-5 *2 (-112)))) (-2756 (*1 *2 *3 *1) (-12 (-4 *1 (-1081 *4 *3)) (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1257 *4)) (-5 *2 (-112)))) (-3434 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1081 *3 *2)) (-4 *3 (-13 (-858) (-372))) (-4 *2 (-1257 *3)))) (-4185 (*1 *2 *1) (-12 (-4 *1 (-1081 *3 *2)) (-4 *3 (-13 (-858) (-372))) (-4 *2 (-1257 *3)))) (-2131 (*1 *2 *3) (-12 (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1257 *4)) (-5 *2 (-654 *1)) (-4 *1 (-1081 *4 *3)))) (-3078 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-932)) (-4 *4 (-13 (-858) (-372))) (-4 *1 (-1081 *4 *2)) (-4 *2 (-1257 *4)))) (-3551 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1081 *2 *3)) (-4 *2 (-13 (-858) (-372))) (-4 *3 (-1257 *2)))) (-2161 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1081 *2 *3)) (-4 *2 (-13 (-858) (-372))) (-4 *3 (-1257 *2))))) -(-13 (-1113) (-10 -8 (-15 -2846 ((-574) |t#2| $)) (-15 -3138 ((-112) |t#2| $)) (-15 -1335 ((-112) |t#2| $)) (-15 -2756 ((-112) |t#2| $)) (-15 -3434 ((-3 |t#2| "failed") |t#2| $)) (-15 -4185 (|t#2| $)) (-15 -2131 ((-654 $) |t#2|)) (-15 -3078 ((-3 $ "failed") |t#2| (-932))) (-15 -3551 (|t#1| |t#2| $ |t#1|)) (-15 -2161 (|t#1| |t#2| $ |t#1|)))) -(((-102) . T) ((-623 (-872)) . T) ((-1113) . T)) -((-2959 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) (-781)) 114)) (-2645 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781)) 63)) (-3670 (((-1286) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-781)) 99)) (-1922 (((-781) (-654 |#4|) (-654 |#5|)) 30)) (-3514 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781)) 65) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781) (-112)) 67)) (-2217 (((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112)) 87)) (-1836 (((-1172) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) 92)) (-2551 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-112)) 62)) (-3616 (((-781) (-654 |#4|) (-654 |#5|)) 21))) -(((-1082 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3616 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -1922 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -2551 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-112))) (-15 -2645 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781))) (-15 -2645 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5|)) (-15 -3514 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781) (-112))) (-15 -3514 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781))) (-15 -3514 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5|)) (-15 -2217 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -2217 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2959 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) (-781))) (-15 -1836 ((-1172) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)))) (-15 -3670 ((-1286) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-781)))) (-462) (-803) (-860) (-1078 |#1| |#2| |#3|) (-1084 |#1| |#2| |#3| |#4|)) (T -1082)) -((-3670 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4091 *9)))) (-5 *4 (-781)) (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1084 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-1286)) (-5 *1 (-1082 *5 *6 *7 *8 *9)))) (-1836 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4091 *8))) (-4 *7 (-1078 *4 *5 *6)) (-4 *8 (-1084 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1172)) (-5 *1 (-1082 *4 *5 *6 *7 *8)))) (-2959 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-654 *11)) (|:| |todo| (-654 (-2 (|:| |val| *3) (|:| -4091 *11)))))) (-5 *6 (-781)) (-5 *2 (-654 (-2 (|:| |val| (-654 *10)) (|:| -4091 *11)))) (-5 *3 (-654 *10)) (-5 *4 (-654 *11)) (-4 *10 (-1078 *7 *8 *9)) (-4 *11 (-1084 *7 *8 *9 *10)) (-4 *7 (-462)) (-4 *8 (-803)) (-4 *9 (-860)) (-5 *1 (-1082 *7 *8 *9 *10 *11)))) (-2217 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1084 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1082 *5 *6 *7 *8 *9)))) (-2217 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1084 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1082 *5 *6 *7 *8 *9)))) (-3514 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) (-5 *1 (-1082 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-3514 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1078 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) (-5 *1 (-1082 *6 *7 *8 *3 *4)) (-4 *4 (-1084 *6 *7 *8 *3)))) (-3514 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-781)) (-5 *6 (-112)) (-4 *7 (-462)) (-4 *8 (-803)) (-4 *9 (-860)) (-4 *3 (-1078 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) (-5 *1 (-1082 *7 *8 *9 *3 *4)) (-4 *4 (-1084 *7 *8 *9 *3)))) (-2645 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) (-5 *1 (-1082 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-2645 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1078 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) (-5 *1 (-1082 *6 *7 *8 *3 *4)) (-4 *4 (-1084 *6 *7 *8 *3)))) (-2551 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1078 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) (-5 *1 (-1082 *6 *7 *8 *3 *4)) (-4 *4 (-1084 *6 *7 *8 *3)))) (-1922 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1084 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1082 *5 *6 *7 *8 *9)))) (-3616 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1084 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1082 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3616 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -1922 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -2551 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-112))) (-15 -2645 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781))) (-15 -2645 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5|)) (-15 -3514 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781) (-112))) (-15 -3514 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781))) (-15 -3514 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5|)) (-15 -2217 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -2217 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2959 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) (-781))) (-15 -1836 ((-1172) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)))) (-15 -3670 ((-1286) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-781)))) -((-4062 (((-112) |#5| $) 26)) (-2288 (((-112) |#5| $) 29)) (-1421 (((-112) |#5| $) 18) (((-112) $) 52)) (-1784 (((-654 $) |#5| $) NIL) (((-654 $) (-654 |#5|) $) 94) (((-654 $) (-654 |#5|) (-654 $)) 92) (((-654 $) |#5| (-654 $)) 95)) (-2533 (($ $ |#5|) NIL) (((-654 $) |#5| $) NIL) (((-654 $) |#5| (-654 $)) 73) (((-654 $) (-654 |#5|) $) 75) (((-654 $) (-654 |#5|) (-654 $)) 77)) (-1379 (((-654 $) |#5| $) NIL) (((-654 $) |#5| (-654 $)) 64) (((-654 $) (-654 |#5|) $) 69) (((-654 $) (-654 |#5|) (-654 $)) 71)) (-4221 (((-112) |#5| $) 32))) -(((-1083 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2533 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -2533 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -2533 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -2533 ((-654 |#1|) |#5| |#1|)) (-15 -1379 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -1379 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -1379 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -1379 ((-654 |#1|) |#5| |#1|)) (-15 -1784 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -1784 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -1784 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -1784 ((-654 |#1|) |#5| |#1|)) (-15 -2288 ((-112) |#5| |#1|)) (-15 -1421 ((-112) |#1|)) (-15 -4221 ((-112) |#5| |#1|)) (-15 -4062 ((-112) |#5| |#1|)) (-15 -1421 ((-112) |#5| |#1|)) (-15 -2533 (|#1| |#1| |#5|))) (-1084 |#2| |#3| |#4| |#5|) (-462) (-803) (-860) (-1078 |#2| |#3| |#4|)) (T -1083)) -NIL -(-10 -8 (-15 -2533 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -2533 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -2533 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -2533 ((-654 |#1|) |#5| |#1|)) (-15 -1379 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -1379 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -1379 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -1379 ((-654 |#1|) |#5| |#1|)) (-15 -1784 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -1784 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -1784 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -1784 ((-654 |#1|) |#5| |#1|)) (-15 -2288 ((-112) |#5| |#1|)) (-15 -1421 ((-112) |#1|)) (-15 -4221 ((-112) |#5| |#1|)) (-15 -4062 ((-112) |#5| |#1|)) (-15 -1421 ((-112) |#5| |#1|)) (-15 -2533 (|#1| |#1| |#5|))) -((-2849 (((-112) $ $) 7)) (-2410 (((-654 (-2 (|:| -1381 $) (|:| -1675 (-654 |#4|)))) (-654 |#4|)) 86)) (-3954 (((-654 $) (-654 |#4|)) 87) (((-654 $) (-654 |#4|) (-112)) 112)) (-4355 (((-654 |#3|) $) 34)) (-2907 (((-112) $) 27)) (-4018 (((-112) $) 18 (|has| |#1| (-566)))) (-1751 (((-112) |#4| $) 102) (((-112) $) 98)) (-3207 ((|#4| |#4| $) 93)) (-2568 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 $))) |#4| $) 127)) (-2771 (((-2 (|:| |under| $) (|:| -3595 $) (|:| |upper| $)) $ |#3|) 28)) (-3034 (((-112) $ (-781)) 45)) (-2165 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4456))) (((-3 |#4| "failed") $ |#3|) 80)) (-3426 (($) 46 T CONST)) (-4336 (((-112) $) 23 (|has| |#1| (-566)))) (-1547 (((-112) $ $) 25 (|has| |#1| (-566)))) (-2318 (((-112) $ $) 24 (|has| |#1| (-566)))) (-1792 (((-112) $) 26 (|has| |#1| (-566)))) (-3908 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3025 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-1974 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1696 (((-3 $ "failed") (-654 |#4|)) 37)) (-2206 (($ (-654 |#4|)) 36)) (-2926 (((-3 $ "failed") $) 83)) (-1402 ((|#4| |#4| $) 90)) (-1543 (($ $) 69 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ |#4| $) 68 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4456)))) (-2766 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-1315 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1747 ((|#4| |#4| $) 88)) (-2868 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4456))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4456))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4270 (((-2 (|:| -1381 (-654 |#4|)) (|:| -1675 (-654 |#4|))) $) 106)) (-4062 (((-112) |#4| $) 137)) (-2288 (((-112) |#4| $) 134)) (-1421 (((-112) |#4| $) 138) (((-112) $) 135)) (-1864 (((-654 |#4|) $) 53 (|has| $ (-6 -4456)))) (-4436 (((-112) |#4| $) 105) (((-112) $) 104)) (-3830 ((|#3| $) 35)) (-2742 (((-112) $ (-781)) 44)) (-1606 (((-654 |#4|) $) 54 (|has| $ (-6 -4456)))) (-1710 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456))))) (-2449 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#4| |#4|) $) 48)) (-3963 (((-654 |#3|) $) 33)) (-4158 (((-112) |#3| $) 32)) (-4203 (((-112) $ (-781)) 43)) (-4136 (((-1172) $) 10)) (-3660 (((-3 |#4| (-654 $)) |#4| |#4| $) 129)) (-4268 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 $))) |#4| |#4| $) 128)) (-3360 (((-3 |#4| "failed") $) 84)) (-2290 (((-654 $) |#4| $) 130)) (-3945 (((-3 (-112) (-654 $)) |#4| $) 133)) (-2514 (((-654 (-2 (|:| |val| (-112)) (|:| -4091 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1784 (((-654 $) |#4| $) 126) (((-654 $) (-654 |#4|) $) 125) (((-654 $) (-654 |#4|) (-654 $)) 124) (((-654 $) |#4| (-654 $)) 123)) (-1954 (($ |#4| $) 118) (($ (-654 |#4|) $) 117)) (-4417 (((-654 |#4|) $) 108)) (-4292 (((-112) |#4| $) 100) (((-112) $) 96)) (-3023 ((|#4| |#4| $) 91)) (-2119 (((-112) $ $) 111)) (-2396 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-2682 (((-112) |#4| $) 101) (((-112) $) 97)) (-3206 ((|#4| |#4| $) 92)) (-3966 (((-1133) $) 11)) (-2915 (((-3 |#4| "failed") $) 85)) (-1549 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3040 (((-3 $ "failed") $ |#4|) 79)) (-2533 (($ $ |#4|) 78) (((-654 $) |#4| $) 116) (((-654 $) |#4| (-654 $)) 115) (((-654 $) (-654 |#4|) $) 114) (((-654 $) (-654 |#4|) (-654 $)) 113)) (-2540 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))) (-4017 (((-112) $ $) 39)) (-1584 (((-112) $) 42)) (-2672 (($) 41)) (-4202 (((-781) $) 107)) (-3975 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4456)))) (-3167 (($ $) 40)) (-1836 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2956 (($ (-654 |#4|)) 61)) (-3650 (($ $ |#3|) 29)) (-3722 (($ $ |#3|) 31)) (-4429 (($ $) 89)) (-2096 (($ $ |#3|) 30)) (-2943 (((-872) $) 12) (((-654 |#4|) $) 38)) (-4435 (((-781) $) 77 (|has| |#3| (-377)))) (-3284 (((-112) $ $) 9)) (-3416 (((-3 (-2 (|:| |bas| $) (|:| -2002 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2002 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2582 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) 99)) (-1379 (((-654 $) |#4| $) 122) (((-654 $) |#4| (-654 $)) 121) (((-654 $) (-654 |#4|) $) 120) (((-654 $) (-654 |#4|) (-654 $)) 119)) (-3390 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4456)))) (-2720 (((-654 |#3|) $) 82)) (-4221 (((-112) |#4| $) 136)) (-3587 (((-112) |#3| $) 81)) (-2981 (((-112) $ $) 6)) (-2863 (((-781) $) 47 (|has| $ (-6 -4456))))) -(((-1084 |#1| |#2| |#3| |#4|) (-141) (-462) (-803) (-860) (-1078 |t#1| |t#2| |t#3|)) (T -1084)) -((-1421 (*1 *2 *3 *1) (-12 (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112)))) (-4062 (*1 *2 *3 *1) (-12 (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112)))) (-4221 (*1 *2 *3 *1) (-12 (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112)))) (-1421 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-112)))) (-2288 (*1 *2 *3 *1) (-12 (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112)))) (-3945 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-3 (-112) (-654 *1))) (-4 *1 (-1084 *4 *5 *6 *3)))) (-2514 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4091 *1)))) (-4 *1 (-1084 *4 *5 *6 *3)))) (-2514 (*1 *2 *3 *1) (-12 (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112)))) (-2290 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-654 *1)) (-4 *1 (-1084 *4 *5 *6 *3)))) (-3660 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-3 *3 (-654 *1))) (-4 *1 (-1084 *4 *5 *6 *3)))) (-4268 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *1)))) (-4 *1 (-1084 *4 *5 *6 *3)))) (-2568 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *1)))) (-4 *1 (-1084 *4 *5 *6 *3)))) (-1784 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-654 *1)) (-4 *1 (-1084 *4 *5 *6 *3)))) (-1784 (*1 *2 *3 *1) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1084 *4 *5 *6 *7)))) (-1784 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1084 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)))) (-1784 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)))) (-1379 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-654 *1)) (-4 *1 (-1084 *4 *5 *6 *3)))) (-1379 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)))) (-1379 (*1 *2 *3 *1) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1084 *4 *5 *6 *7)))) (-1379 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1084 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)))) (-1954 (*1 *1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *2)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5)))) (-1954 (*1 *1 *2 *1) (-12 (-5 *2 (-654 *6)) (-4 *1 (-1084 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)))) (-2533 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-654 *1)) (-4 *1 (-1084 *4 *5 *6 *3)))) (-2533 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)))) (-2533 (*1 *2 *3 *1) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1084 *4 *5 *6 *7)))) (-2533 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1084 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)))) (-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1084 *5 *6 *7 *8))))) -(-13 (-1224 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1421 ((-112) |t#4| $)) (-15 -4062 ((-112) |t#4| $)) (-15 -4221 ((-112) |t#4| $)) (-15 -1421 ((-112) $)) (-15 -2288 ((-112) |t#4| $)) (-15 -3945 ((-3 (-112) (-654 $)) |t#4| $)) (-15 -2514 ((-654 (-2 (|:| |val| (-112)) (|:| -4091 $))) |t#4| $)) (-15 -2514 ((-112) |t#4| $)) (-15 -2290 ((-654 $) |t#4| $)) (-15 -3660 ((-3 |t#4| (-654 $)) |t#4| |t#4| $)) (-15 -4268 ((-654 (-2 (|:| |val| |t#4|) (|:| -4091 $))) |t#4| |t#4| $)) (-15 -2568 ((-654 (-2 (|:| |val| |t#4|) (|:| -4091 $))) |t#4| $)) (-15 -1784 ((-654 $) |t#4| $)) (-15 -1784 ((-654 $) (-654 |t#4|) $)) (-15 -1784 ((-654 $) (-654 |t#4|) (-654 $))) (-15 -1784 ((-654 $) |t#4| (-654 $))) (-15 -1379 ((-654 $) |t#4| $)) (-15 -1379 ((-654 $) |t#4| (-654 $))) (-15 -1379 ((-654 $) (-654 |t#4|) $)) (-15 -1379 ((-654 $) (-654 |t#4|) (-654 $))) (-15 -1954 ($ |t#4| $)) (-15 -1954 ($ (-654 |t#4|) $)) (-15 -2533 ((-654 $) |t#4| $)) (-15 -2533 ((-654 $) |t#4| (-654 $))) (-15 -2533 ((-654 $) (-654 |t#4|) $)) (-15 -2533 ((-654 $) (-654 |t#4|) (-654 $))) (-15 -3954 ((-654 $) (-654 |t#4|) (-112))))) -(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))) ((-989 |#1| |#2| |#3| |#4|) . T) ((-1113) . T) ((-1224 |#1| |#2| |#3| |#4|) . T) ((-1231) . T)) -((-2601 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#5|) 86)) (-3236 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5|) 127)) (-3436 (((-654 |#5|) |#4| |#5|) 74)) (-3448 (((-654 (-2 (|:| |val| (-112)) (|:| -4091 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-4094 (((-1286)) 36)) (-4085 (((-1286)) 25)) (-4269 (((-1286) (-1172) (-1172) (-1172)) 32)) (-2455 (((-1286) (-1172) (-1172) (-1172)) 21)) (-4093 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) |#4| |#4| |#5|) 107)) (-2951 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) |#3| (-112)) 118) (((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-3989 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5|) 113))) -(((-1085 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2455 ((-1286) (-1172) (-1172) (-1172))) (-15 -4085 ((-1286))) (-15 -4269 ((-1286) (-1172) (-1172) (-1172))) (-15 -4094 ((-1286))) (-15 -4093 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) |#4| |#4| |#5|)) (-15 -2951 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2951 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) |#3| (-112))) (-15 -3989 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5|)) (-15 -3236 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5|)) (-15 -3448 ((-112) |#4| |#5|)) (-15 -3448 ((-654 (-2 (|:| |val| (-112)) (|:| -4091 |#5|))) |#4| |#5|)) (-15 -3436 ((-654 |#5|) |#4| |#5|)) (-15 -2601 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#5|))) (-462) (-803) (-860) (-1078 |#1| |#2| |#3|) (-1084 |#1| |#2| |#3| |#4|)) (T -1085)) -((-2601 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4)))) (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-3436 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 *4)) (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-3448 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4091 *4)))) (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-3448 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-3236 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4)))) (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-3989 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4)))) (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-2951 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4091 *9)))) (-5 *5 (-112)) (-4 *8 (-1078 *6 *7 *4)) (-4 *9 (-1084 *6 *7 *4 *8)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *4 (-860)) (-5 *2 (-654 (-2 (|:| |val| *8) (|:| -4091 *9)))) (-5 *1 (-1085 *6 *7 *4 *8 *9)))) (-2951 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1078 *6 *7 *8)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4)))) (-5 *1 (-1085 *6 *7 *8 *3 *4)) (-4 *4 (-1084 *6 *7 *8 *3)))) (-4093 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))) (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-4094 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-1286)) (-5 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *7 (-1084 *3 *4 *5 *6)))) (-4269 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1172)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-1286)) (-5 *1 (-1085 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))) (-4085 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-1286)) (-5 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *7 (-1084 *3 *4 *5 *6)))) (-2455 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1172)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-1286)) (-5 *1 (-1085 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7))))) -(-10 -7 (-15 -2455 ((-1286) (-1172) (-1172) (-1172))) (-15 -4085 ((-1286))) (-15 -4269 ((-1286) (-1172) (-1172) (-1172))) (-15 -4094 ((-1286))) (-15 -4093 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) |#4| |#4| |#5|)) (-15 -2951 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2951 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) |#3| (-112))) (-15 -3989 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5|)) (-15 -3236 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5|)) (-15 -3448 ((-112) |#4| |#5|)) (-15 -3448 ((-654 (-2 (|:| |val| (-112)) (|:| -4091 |#5|))) |#4| |#5|)) (-15 -3436 ((-654 |#5|) |#4| |#5|)) (-15 -2601 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#5|))) -((-2849 (((-112) $ $) NIL)) (-2335 (((-1230) $) 13)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-4016 (((-1148) $) 10)) (-2943 (((-872) $) 20) (($ (-1195)) NIL) (((-1195) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1086) (-13 (-1096) (-10 -8 (-15 -4016 ((-1148) $)) (-15 -2335 ((-1230) $))))) (T -1086)) -((-4016 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1086)))) (-2335 (*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1086))))) -(-13 (-1096) (-10 -8 (-15 -4016 ((-1148) $)) (-15 -2335 ((-1230) $)))) +((-2364 (*1 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-23))))) +(-13 (-1056 |t#1|) (-10 -8 (-15 -2364 ($) -1705))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-622 (-871)) . T) ((-1056 |#1|) . T) ((-1112) . T)) +((-2848 (((-112) $ $) NIL)) (-2280 (((-653 (-2 (|:| -1380 $) (|:| -1674 (-653 (-789 |#1| (-873 |#2|)))))) (-653 (-789 |#1| (-873 |#2|)))) NIL)) (-3527 (((-653 $) (-653 (-789 |#1| (-873 |#2|)))) NIL) (((-653 $) (-653 (-789 |#1| (-873 |#2|))) (-112)) NIL) (((-653 $) (-653 (-789 |#1| (-873 |#2|))) (-112) (-112)) NIL)) (-4354 (((-653 (-873 |#2|)) $) NIL)) (-2577 (((-112) $) NIL)) (-2020 (((-112) $) NIL (|has| |#1| (-565)))) (-2261 (((-112) (-789 |#1| (-873 |#2|)) $) NIL) (((-112) $) NIL)) (-1554 (((-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)) $) NIL)) (-4285 (((-653 (-2 (|:| |val| (-789 |#1| (-873 |#2|))) (|:| -4090 $))) (-789 |#1| (-873 |#2|)) $) NIL)) (-2770 (((-2 (|:| |under| $) (|:| -3733 $) (|:| |upper| $)) $ (-873 |#2|)) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-2164 (($ (-1 (-112) (-789 |#1| (-873 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-3 (-789 |#1| (-873 |#2|)) "failed") $ (-873 |#2|)) NIL)) (-2579 (($) NIL T CONST)) (-2194 (((-112) $) NIL (|has| |#1| (-565)))) (-1849 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2838 (((-112) $ $) NIL (|has| |#1| (-565)))) (-3145 (((-112) $) NIL (|has| |#1| (-565)))) (-4304 (((-653 (-789 |#1| (-873 |#2|))) (-653 (-789 |#1| (-873 |#2|))) $ (-1 (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|))) (-1 (-112) (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)))) NIL)) (-2346 (((-653 (-789 |#1| (-873 |#2|))) (-653 (-789 |#1| (-873 |#2|))) $) NIL (|has| |#1| (-565)))) (-2475 (((-653 (-789 |#1| (-873 |#2|))) (-653 (-789 |#1| (-873 |#2|))) $) NIL (|has| |#1| (-565)))) (-1695 (((-3 $ "failed") (-653 (-789 |#1| (-873 |#2|)))) NIL)) (-2205 (($ (-653 (-789 |#1| (-873 |#2|)))) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-3760 (((-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)) $) NIL)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-789 |#1| (-873 |#2|)) (-1112))))) (-3334 (($ (-789 |#1| (-873 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-789 |#1| (-873 |#2|)) (-1112)))) (($ (-1 (-112) (-789 |#1| (-873 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-3132 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-789 |#1| (-873 |#2|))) (|:| |den| |#1|)) (-789 |#1| (-873 |#2|)) $) NIL (|has| |#1| (-565)))) (-4310 (((-112) (-789 |#1| (-873 |#2|)) $ (-1 (-112) (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)))) NIL)) (-3117 (((-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)) $) NIL)) (-2867 (((-789 |#1| (-873 |#2|)) (-1 (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|))) $ (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|))) NIL (-12 (|has| $ (-6 -4455)) (|has| (-789 |#1| (-873 |#2|)) (-1112)))) (((-789 |#1| (-873 |#2|)) (-1 (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|))) $ (-789 |#1| (-873 |#2|))) NIL (|has| $ (-6 -4455))) (((-789 |#1| (-873 |#2|)) (-1 (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)) $ (-1 (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|))) (-1 (-112) (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)))) NIL)) (-2660 (((-2 (|:| -1380 (-653 (-789 |#1| (-873 |#2|)))) (|:| -1674 (-653 (-789 |#1| (-873 |#2|))))) $) NIL)) (-3060 (((-112) (-789 |#1| (-873 |#2|)) $) NIL)) (-2714 (((-112) (-789 |#1| (-873 |#2|)) $) NIL)) (-3491 (((-112) (-789 |#1| (-873 |#2|)) $) NIL) (((-112) $) NIL)) (-1863 (((-653 (-789 |#1| (-873 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-4022 (((-112) (-789 |#1| (-873 |#2|)) $) NIL) (((-112) $) NIL)) (-3338 (((-873 |#2|) $) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 (-789 |#1| (-873 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-789 |#1| (-873 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-789 |#1| (-873 |#2|)) (-1112))))) (-2446 (($ (-1 (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|))) $) NIL)) (-1937 (((-653 (-873 |#2|)) $) NIL)) (-1689 (((-112) (-873 |#2|) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-4092 (((-3 (-789 |#1| (-873 |#2|)) (-653 $)) (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)) $) NIL)) (-2395 (((-653 (-2 (|:| |val| (-789 |#1| (-873 |#2|))) (|:| -4090 $))) (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)) $) NIL)) (-3359 (((-3 (-789 |#1| (-873 |#2|)) "failed") $) NIL)) (-1692 (((-653 $) (-789 |#1| (-873 |#2|)) $) NIL)) (-1675 (((-3 (-112) (-653 $)) (-789 |#1| (-873 |#2|)) $) NIL)) (-3190 (((-653 (-2 (|:| |val| (-112)) (|:| -4090 $))) (-789 |#1| (-873 |#2|)) $) NIL) (((-112) (-789 |#1| (-873 |#2|)) $) NIL)) (-3716 (((-653 $) (-789 |#1| (-873 |#2|)) $) NIL) (((-653 $) (-653 (-789 |#1| (-873 |#2|))) $) NIL) (((-653 $) (-653 (-789 |#1| (-873 |#2|))) (-653 $)) NIL) (((-653 $) (-789 |#1| (-873 |#2|)) (-653 $)) NIL)) (-1844 (($ (-789 |#1| (-873 |#2|)) $) NIL) (($ (-653 (-789 |#1| (-873 |#2|))) $) NIL)) (-2870 (((-653 (-789 |#1| (-873 |#2|))) $) NIL)) (-3161 (((-112) (-789 |#1| (-873 |#2|)) $) NIL) (((-112) $) NIL)) (-3430 (((-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)) $) NIL)) (-2614 (((-112) $ $) NIL)) (-3582 (((-2 (|:| |num| (-789 |#1| (-873 |#2|))) (|:| |den| |#1|)) (-789 |#1| (-873 |#2|)) $) NIL (|has| |#1| (-565)))) (-1973 (((-112) (-789 |#1| (-873 |#2|)) $) NIL) (((-112) $) NIL)) (-1448 (((-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)) $) NIL)) (-3965 (((-1132) $) NIL)) (-2914 (((-3 (-789 |#1| (-873 |#2|)) "failed") $) NIL)) (-2036 (((-3 (-789 |#1| (-873 |#2|)) "failed") (-1 (-112) (-789 |#1| (-873 |#2|))) $) NIL)) (-2865 (((-3 $ "failed") $ (-789 |#1| (-873 |#2|))) NIL)) (-2212 (($ $ (-789 |#1| (-873 |#2|))) NIL) (((-653 $) (-789 |#1| (-873 |#2|)) $) NIL) (((-653 $) (-789 |#1| (-873 |#2|)) (-653 $)) NIL) (((-653 $) (-653 (-789 |#1| (-873 |#2|))) $) NIL) (((-653 $) (-653 (-789 |#1| (-873 |#2|))) (-653 $)) NIL)) (-1575 (((-112) (-1 (-112) (-789 |#1| (-873 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-789 |#1| (-873 |#2|))) (-653 (-789 |#1| (-873 |#2|)))) NIL (-12 (|has| (-789 |#1| (-873 |#2|)) (-316 (-789 |#1| (-873 |#2|)))) (|has| (-789 |#1| (-873 |#2|)) (-1112)))) (($ $ (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|))) NIL (-12 (|has| (-789 |#1| (-873 |#2|)) (-316 (-789 |#1| (-873 |#2|)))) (|has| (-789 |#1| (-873 |#2|)) (-1112)))) (($ $ (-301 (-789 |#1| (-873 |#2|)))) NIL (-12 (|has| (-789 |#1| (-873 |#2|)) (-316 (-789 |#1| (-873 |#2|)))) (|has| (-789 |#1| (-873 |#2|)) (-1112)))) (($ $ (-653 (-301 (-789 |#1| (-873 |#2|))))) NIL (-12 (|has| (-789 |#1| (-873 |#2|)) (-316 (-789 |#1| (-873 |#2|)))) (|has| (-789 |#1| (-873 |#2|)) (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2565 (((-780) $) NIL)) (-3974 (((-780) (-789 |#1| (-873 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-789 |#1| (-873 |#2|)) (-1112)))) (((-780) (-1 (-112) (-789 |#1| (-873 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-789 |#1| (-873 |#2|)) (-623 (-545))))) (-2955 (($ (-653 (-789 |#1| (-873 |#2|)))) NIL)) (-4409 (($ $ (-873 |#2|)) NIL)) (-3496 (($ $ (-873 |#2|)) NIL)) (-1388 (($ $) NIL)) (-1456 (($ $ (-873 |#2|)) NIL)) (-2942 (((-871) $) NIL) (((-653 (-789 |#1| (-873 |#2|))) $) NIL)) (-3922 (((-780) $) NIL (|has| (-873 |#2|) (-376)))) (-3507 (((-112) $ $) NIL)) (-3955 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 (-789 |#1| (-873 |#2|))))) "failed") (-653 (-789 |#1| (-873 |#2|))) (-1 (-112) (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 (-789 |#1| (-873 |#2|))))) "failed") (-653 (-789 |#1| (-873 |#2|))) (-1 (-112) (-789 |#1| (-873 |#2|))) (-1 (-112) (-789 |#1| (-873 |#2|)) (-789 |#1| (-873 |#2|)))) NIL)) (-3039 (((-112) $ (-1 (-112) (-789 |#1| (-873 |#2|)) (-653 (-789 |#1| (-873 |#2|))))) NIL)) (-3402 (((-653 $) (-789 |#1| (-873 |#2|)) $) NIL) (((-653 $) (-789 |#1| (-873 |#2|)) (-653 $)) NIL) (((-653 $) (-653 (-789 |#1| (-873 |#2|))) $) NIL) (((-653 $) (-653 (-789 |#1| (-873 |#2|))) (-653 $)) NIL)) (-1646 (((-112) (-1 (-112) (-789 |#1| (-873 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-3734 (((-653 (-873 |#2|)) $) NIL)) (-3746 (((-112) (-789 |#1| (-873 |#2|)) $) NIL)) (-4333 (((-112) (-873 |#2|) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-1058 |#1| |#2|) (-13 (-1083 |#1| (-540 (-873 |#2|)) (-873 |#2|) (-789 |#1| (-873 |#2|))) (-10 -8 (-15 -3527 ((-653 $) (-653 (-789 |#1| (-873 |#2|))) (-112) (-112))))) (-461) (-653 (-1189))) (T -1058)) +((-3527 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-653 (-789 *5 (-873 *6)))) (-5 *4 (-112)) (-4 *5 (-461)) (-14 *6 (-653 (-1189))) (-5 *2 (-653 (-1058 *5 *6))) (-5 *1 (-1058 *5 *6))))) +(-13 (-1083 |#1| (-540 (-873 |#2|)) (-873 |#2|) (-789 |#1| (-873 |#2|))) (-10 -8 (-15 -3527 ((-653 $) (-653 (-789 |#1| (-873 |#2|))) (-112) (-112))))) +((-2863 (((-1 (-573)) (-1106 (-573))) 32)) (-3620 (((-573) (-573) (-573) (-573) (-573)) 29)) (-2686 (((-1 (-573)) |RationalNumber|) NIL)) (-4247 (((-1 (-573)) |RationalNumber|) NIL)) (-1677 (((-1 (-573)) (-573) |RationalNumber|) NIL))) +(((-1059) (-10 -7 (-15 -2863 ((-1 (-573)) (-1106 (-573)))) (-15 -1677 ((-1 (-573)) (-573) |RationalNumber|)) (-15 -2686 ((-1 (-573)) |RationalNumber|)) (-15 -4247 ((-1 (-573)) |RationalNumber|)) (-15 -3620 ((-573) (-573) (-573) (-573) (-573))))) (T -1059)) +((-3620 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-1059)))) (-4247 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-573))) (-5 *1 (-1059)))) (-2686 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-573))) (-5 *1 (-1059)))) (-1677 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-573))) (-5 *1 (-1059)) (-5 *3 (-573)))) (-2863 (*1 *2 *3) (-12 (-5 *3 (-1106 (-573))) (-5 *2 (-1 (-573))) (-5 *1 (-1059))))) +(-10 -7 (-15 -2863 ((-1 (-573)) (-1106 (-573)))) (-15 -1677 ((-1 (-573)) (-573) |RationalNumber|)) (-15 -2686 ((-1 (-573)) |RationalNumber|)) (-15 -4247 ((-1 (-573)) |RationalNumber|)) (-15 -3620 ((-573) (-573) (-573) (-573) (-573)))) +((-2942 (((-871) $) NIL) (($ (-573)) 10))) +(((-1060 |#1|) (-10 -8 (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) (-1061)) (T -1060)) +NIL +(-10 -8 (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12) (($ (-573)) 33)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) +(((-1061) (-141)) (T -1061)) +((-1545 (*1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-780))))) +(-13 (-1070) (-735) (-657 $) (-625 (-573)) (-10 -7 (-15 -1545 ((-780)) -1705) (-6 -4452))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-573)) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-735) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) +((-2844 (((-416 (-962 |#2|)) (-653 |#2|) (-653 |#2|) (-780) (-780)) 54))) +(((-1062 |#1| |#2|) (-10 -7 (-15 -2844 ((-416 (-962 |#2|)) (-653 |#2|) (-653 |#2|) (-780) (-780)))) (-1189) (-371)) (T -1062)) +((-2844 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-653 *6)) (-5 *4 (-780)) (-4 *6 (-371)) (-5 *2 (-416 (-962 *6))) (-5 *1 (-1062 *5 *6)) (-14 *5 (-1189))))) +(-10 -7 (-15 -2844 ((-416 (-962 |#2|)) (-653 |#2|) (-653 |#2|) (-780) (-780)))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 15)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 16 T CONST)) (-2981 (((-112) $ $) 6)) (* (($ $ |#1|) 14))) +(((-1063 |#1|) (-141) (-1070)) (T -1063)) +((-2132 (*1 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-1070)))) (-1748 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-1070)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-1070))))) +(-13 (-1112) (-10 -8 (-15 (-2132) ($) -1705) (-15 -1748 ((-112) $)) (-15 * ($ $ |t#1|)))) +(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) +((-2932 (((-112) $) 38)) (-1916 (((-112) $) 17)) (-2188 (((-780) $) 13)) (-2197 (((-780) $) 14)) (-2530 (((-112) $) 30)) (-1494 (((-112) $) 40))) +(((-1064 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2197 ((-780) |#1|)) (-15 -2188 ((-780) |#1|)) (-15 -1494 ((-112) |#1|)) (-15 -2932 ((-112) |#1|)) (-15 -2530 ((-112) |#1|)) (-15 -1916 ((-112) |#1|))) (-1065 |#2| |#3| |#4| |#5| |#6|) (-780) (-780) (-1061) (-243 |#3| |#4|) (-243 |#2| |#4|)) (T -1064)) +NIL +(-10 -8 (-15 -2197 ((-780) |#1|)) (-15 -2188 ((-780) |#1|)) (-15 -1494 ((-112) |#1|)) (-15 -2932 ((-112) |#1|)) (-15 -2530 ((-112) |#1|)) (-15 -1916 ((-112) |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2932 (((-112) $) 56)) (-2983 (((-3 $ "failed") $ $) 20)) (-1916 (((-112) $) 58)) (-3450 (((-112) $ (-780)) 66)) (-2579 (($) 18 T CONST)) (-2801 (($ $) 39 (|has| |#3| (-314)))) (-3229 ((|#4| $ (-573)) 44)) (-3583 (((-780) $) 38 (|has| |#3| (-565)))) (-2384 ((|#3| $ (-573) (-573)) 46)) (-1863 (((-653 |#3|) $) 73 (|has| $ (-6 -4455)))) (-2928 (((-780) $) 37 (|has| |#3| (-565)))) (-4209 (((-653 |#5|) $) 36 (|has| |#3| (-565)))) (-2188 (((-780) $) 50)) (-2197 (((-780) $) 49)) (-2078 (((-112) $ (-780)) 65)) (-1319 (((-573) $) 54)) (-4011 (((-573) $) 52)) (-3214 (((-653 |#3|) $) 74 (|has| $ (-6 -4455)))) (-1547 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1112)) (|has| $ (-6 -4455))))) (-3124 (((-573) $) 53)) (-2326 (((-573) $) 51)) (-2913 (($ (-653 (-653 |#3|))) 59)) (-2446 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-1612 (((-653 (-653 |#3|)) $) 48)) (-2673 (((-112) $ (-780)) 64)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2837 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-565)))) (-1575 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 |#3|) (-653 |#3|)) 80 (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) (($ $ (-301 |#3|)) 78 (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) (($ $ (-653 (-301 |#3|))) 77 (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112))))) (-1885 (((-112) $ $) 60)) (-3811 (((-112) $) 63)) (-3508 (($) 62)) (-2198 ((|#3| $ (-573) (-573)) 47) ((|#3| $ (-573) (-573) |#3|) 45)) (-2530 (((-112) $) 57)) (-3974 (((-780) |#3| $) 75 (-12 (|has| |#3| (-1112)) (|has| $ (-6 -4455)))) (((-780) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4455)))) (-3166 (($ $) 61)) (-1921 ((|#5| $ (-573)) 43)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-1646 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4455)))) (-1494 (((-112) $) 55)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#3|) 40 (|has| |#3| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-2862 (((-780) $) 67 (|has| $ (-6 -4455))))) +(((-1065 |#1| |#2| |#3| |#4| |#5|) (-141) (-780) (-780) (-1061) (-243 |t#2| |t#3|) (-243 |t#1| |t#3|)) (T -1065)) +((-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-2913 (*1 *1 *2) (-12 (-5 *2 (-653 (-653 *5))) (-4 *5 (-1061)) (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-1916 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-2530 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-2932 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-1494 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-1319 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-573)))) (-3124 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-573)))) (-4011 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-573)))) (-2326 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-573)))) (-2188 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-780)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-780)))) (-1612 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-653 (-653 *5))))) (-2198 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-573)) (-4 *1 (-1065 *4 *5 *2 *6 *7)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1061)))) (-2384 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-573)) (-4 *1 (-1065 *4 *5 *2 *6 *7)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1061)))) (-2198 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-573)) (-4 *1 (-1065 *4 *5 *2 *6 *7)) (-4 *2 (-1061)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)))) (-3229 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-4 *1 (-1065 *4 *5 *6 *2 *7)) (-4 *6 (-1061)) (-4 *7 (-243 *4 *6)) (-4 *2 (-243 *5 *6)))) (-1921 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-4 *1 (-1065 *4 *5 *6 *7 *2)) (-4 *6 (-1061)) (-4 *7 (-243 *5 *6)) (-4 *2 (-243 *4 *6)))) (-1776 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-2837 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1065 *3 *4 *2 *5 *6)) (-4 *2 (-1061)) (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-565)))) (-3103 (*1 *1 *1 *2) (-12 (-4 *1 (-1065 *3 *4 *2 *5 *6)) (-4 *2 (-1061)) (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-371)))) (-2801 (*1 *1 *1) (-12 (-4 *1 (-1065 *2 *3 *4 *5 *6)) (-4 *4 (-1061)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *2 *4)) (-4 *4 (-314)))) (-3583 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-565)) (-5 *2 (-780)))) (-2928 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-565)) (-5 *2 (-780)))) (-4209 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-565)) (-5 *2 (-653 *7))))) +(-13 (-111 |t#3| |t#3|) (-498 |t#3|) (-10 -8 (-6 -4455) (IF (|has| |t#3| (-174)) (-6 (-726 |t#3|)) |%noBranch|) (-15 -2913 ($ (-653 (-653 |t#3|)))) (-15 -1916 ((-112) $)) (-15 -2530 ((-112) $)) (-15 -2932 ((-112) $)) (-15 -1494 ((-112) $)) (-15 -1319 ((-573) $)) (-15 -3124 ((-573) $)) (-15 -4011 ((-573) $)) (-15 -2326 ((-573) $)) (-15 -2188 ((-780) $)) (-15 -2197 ((-780) $)) (-15 -1612 ((-653 (-653 |t#3|)) $)) (-15 -2198 (|t#3| $ (-573) (-573))) (-15 -2384 (|t#3| $ (-573) (-573))) (-15 -2198 (|t#3| $ (-573) (-573) |t#3|)) (-15 -3229 (|t#4| $ (-573))) (-15 -1921 (|t#5| $ (-573))) (-15 -1776 ($ (-1 |t#3| |t#3|) $)) (-15 -1776 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-565)) (-15 -2837 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-371)) (-15 -3103 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-314)) (-15 -2801 ($ $)) |%noBranch|) (IF (|has| |t#3| (-565)) (PROGN (-15 -3583 ((-780) $)) (-15 -2928 ((-780) $)) (-15 -4209 ((-653 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-132) . T) ((-622 (-871)) . T) ((-316 |#3|) -12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112))) ((-498 |#3|) . T) ((-523 |#3| |#3|) -12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112))) ((-655 (-573)) . T) ((-655 |#3|) . T) ((-657 |#3|) . T) ((-649 |#3|) |has| |#3| (-174)) ((-726 |#3|) |has| |#3| (-174)) ((-1063 |#3|) . T) ((-1068 |#3|) . T) ((-1112) . T) ((-1230) . T)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2932 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1916 (((-112) $) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-2579 (($) NIL T CONST)) (-2801 (($ $) 47 (|has| |#3| (-314)))) (-3229 (((-245 |#2| |#3|) $ (-573)) 36)) (-3758 (($ (-698 |#3|)) 45)) (-3583 (((-780) $) 49 (|has| |#3| (-565)))) (-2384 ((|#3| $ (-573) (-573)) NIL)) (-1863 (((-653 |#3|) $) NIL (|has| $ (-6 -4455)))) (-2928 (((-780) $) 51 (|has| |#3| (-565)))) (-4209 (((-653 (-245 |#1| |#3|)) $) 55 (|has| |#3| (-565)))) (-2188 (((-780) $) NIL)) (-2197 (((-780) $) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1319 (((-573) $) NIL)) (-4011 (((-573) $) NIL)) (-3214 (((-653 |#3|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#3| (-1112))))) (-3124 (((-573) $) NIL)) (-2326 (((-573) $) NIL)) (-2913 (($ (-653 (-653 |#3|))) 31)) (-2446 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-1612 (((-653 (-653 |#3|)) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2837 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-565)))) (-1575 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 |#3|) (-653 |#3|)) NIL (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) (($ $ (-301 |#3|)) NIL (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) (($ $ (-653 (-301 |#3|))) NIL (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#3| $ (-573) (-573)) NIL) ((|#3| $ (-573) (-573) |#3|) NIL)) (-2365 (((-135)) 59 (|has| |#3| (-371)))) (-2530 (((-112) $) NIL)) (-3974 (((-780) |#3| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#3| (-1112)))) (((-780) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) 65 (|has| |#3| (-623 (-545))))) (-1921 (((-245 |#1| |#3|) $ (-573)) 40)) (-2942 (((-871) $) 19) (((-698 |#3|) $) 42)) (-3507 (((-112) $ $) NIL)) (-1646 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4455)))) (-1494 (((-112) $) NIL)) (-2132 (($) 16 T CONST)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#3|) NIL (|has| |#3| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-1066 |#1| |#2| |#3|) (-13 (-1065 |#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) (-622 (-698 |#3|)) (-10 -8 (IF (|has| |#3| (-371)) (-6 (-1287 |#3|)) |%noBranch|) (IF (|has| |#3| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|) (-15 -3758 ($ (-698 |#3|))))) (-780) (-780) (-1061)) (T -1066)) +((-3758 (*1 *1 *2) (-12 (-5 *2 (-698 *5)) (-4 *5 (-1061)) (-5 *1 (-1066 *3 *4 *5)) (-14 *3 (-780)) (-14 *4 (-780))))) +(-13 (-1065 |#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) (-622 (-698 |#3|)) (-10 -8 (IF (|has| |#3| (-371)) (-6 (-1287 |#3|)) |%noBranch|) (IF (|has| |#3| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|) (-15 -3758 ($ (-698 |#3|))))) +((-2867 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-1776 ((|#10| (-1 |#7| |#3|) |#6|) 34))) +(((-1067 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1776 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2867 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-780) (-780) (-1061) (-243 |#2| |#3|) (-243 |#1| |#3|) (-1065 |#1| |#2| |#3| |#4| |#5|) (-1061) (-243 |#2| |#7|) (-243 |#1| |#7|) (-1065 |#1| |#2| |#7| |#8| |#9|)) (T -1067)) +((-2867 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1061)) (-4 *2 (-1061)) (-14 *5 (-780)) (-14 *6 (-780)) (-4 *8 (-243 *6 *7)) (-4 *9 (-243 *5 *7)) (-4 *10 (-243 *6 *2)) (-4 *11 (-243 *5 *2)) (-5 *1 (-1067 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1065 *5 *6 *7 *8 *9)) (-4 *12 (-1065 *5 *6 *2 *10 *11)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1061)) (-4 *10 (-1061)) (-14 *5 (-780)) (-14 *6 (-780)) (-4 *8 (-243 *6 *7)) (-4 *9 (-243 *5 *7)) (-4 *2 (-1065 *5 *6 *10 *11 *12)) (-5 *1 (-1067 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1065 *5 *6 *7 *8 *9)) (-4 *11 (-243 *6 *10)) (-4 *12 (-243 *5 *10))))) +(-10 -7 (-15 -1776 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2867 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ |#1|) 27))) +(((-1068 |#1|) (-141) (-1070)) (T -1068)) +NIL +(-13 (-21) (-1063 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-1063 |#1|) . T) ((-1112) . T)) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1487 (((-1189) $) 11)) (-3241 ((|#1| $) 12)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2691 (($ (-1189) |#1|) 10)) (-2942 (((-871) $) 22 (|has| |#1| (-1112)))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2981 (((-112) $ $) 17 (|has| |#1| (-1112))))) +(((-1069 |#1| |#2|) (-13 (-1230) (-10 -8 (-15 -2691 ($ (-1189) |#1|)) (-15 -1487 ((-1189) $)) (-15 -3241 (|#1| $)) (IF (|has| |#1| (-1112)) (-6 (-1112)) |%noBranch|))) (-1105 |#2|) (-1230)) (T -1069)) +((-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-4 *4 (-1230)) (-5 *1 (-1069 *3 *4)) (-4 *3 (-1105 *4)))) (-1487 (*1 *2 *1) (-12 (-4 *4 (-1230)) (-5 *2 (-1189)) (-5 *1 (-1069 *3 *4)) (-4 *3 (-1105 *4)))) (-3241 (*1 *2 *1) (-12 (-4 *2 (-1105 *3)) (-5 *1 (-1069 *2 *3)) (-4 *3 (-1230))))) +(-13 (-1230) (-10 -8 (-15 -2691 ($ (-1189) |#1|)) (-15 -1487 ((-1189) $)) (-15 -3241 (|#1| $)) (IF (|has| |#1| (-1112)) (-6 (-1112)) |%noBranch|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) +(((-1070) (-141)) (T -1070)) +NIL +(-13 (-21) (-1124)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-1124) . T) ((-1112) . T)) +((-1442 (($ $) 17)) (-2350 (($ $) 25)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 55)) (-3421 (($ $) 27)) (-2408 (($ $) 12)) (-3733 (($ $) 43)) (-1835 (((-387) $) NIL) (((-227) $) NIL) (((-902 (-387)) $) 36)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL) (($ (-416 (-573))) 31) (($ (-573)) NIL) (($ (-416 (-573))) 31)) (-1545 (((-780)) 9)) (-2437 (($ $) 45))) +(((-1071 |#1|) (-10 -8 (-15 -2350 (|#1| |#1|)) (-15 -1442 (|#1| |#1|)) (-15 -2408 (|#1| |#1|)) (-15 -3733 (|#1| |#1|)) (-15 -2437 (|#1| |#1|)) (-15 -3421 (|#1| |#1|)) (-15 -1352 ((-899 (-387) |#1|) |#1| (-902 (-387)) (-899 (-387) |#1|))) (-15 -1835 ((-902 (-387)) |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2942 (|#1| (-573))) (-15 -1835 ((-227) |#1|)) (-15 -1835 ((-387) |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2942 (|#1| |#1|)) (-15 -1545 ((-780))) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) (-1072)) (T -1071)) +((-1545 (*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-1071 *3)) (-4 *3 (-1072))))) +(-10 -8 (-15 -2350 (|#1| |#1|)) (-15 -1442 (|#1| |#1|)) (-15 -2408 (|#1| |#1|)) (-15 -3733 (|#1| |#1|)) (-15 -2437 (|#1| |#1|)) (-15 -3421 (|#1| |#1|)) (-15 -1352 ((-899 (-387) |#1|) |#1| (-902 (-387)) (-899 (-387) |#1|))) (-15 -1835 ((-902 (-387)) |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2942 (|#1| (-573))) (-15 -1835 ((-227) |#1|)) (-15 -1835 ((-387) |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2942 (|#1| |#1|)) (-15 -1545 ((-780))) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-3770 (((-573) $) 97)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-1442 (($ $) 95)) (-2983 (((-3 $ "failed") $ $) 20)) (-4285 (($ $) 81)) (-2427 (((-427 $) $) 80)) (-4228 (($ $) 105)) (-2800 (((-112) $ $) 65)) (-1983 (((-573) $) 122)) (-2579 (($) 18 T CONST)) (-2350 (($ $) 94)) (-1695 (((-3 (-573) "failed") $) 110) (((-3 (-416 (-573)) "failed") $) 107)) (-2205 (((-573) $) 111) (((-416 (-573)) $) 108)) (-2784 (($ $ $) 61)) (-2232 (((-3 $ "failed") $) 37)) (-2796 (($ $ $) 62)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 57)) (-2696 (((-112) $) 79)) (-4152 (((-112) $) 120)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 101)) (-1959 (((-112) $) 35)) (-4325 (($ $ (-573)) 104)) (-3421 (($ $) 100)) (-3339 (((-112) $) 121)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 58)) (-3659 (($ $ $) 119)) (-3751 (($ $ $) 118)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-1323 (($ $) 78)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-2408 (($ $) 96)) (-3733 (($ $) 98)) (-4218 (((-427 $) $) 82)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 56)) (-2163 (((-780) $) 64)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 63)) (-1835 (((-387) $) 113) (((-227) $) 112) (((-902 (-387)) $) 102)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49) (($ (-416 (-573))) 74) (($ (-573)) 109) (($ (-416 (-573))) 106)) (-1545 (((-780)) 32 T CONST)) (-2437 (($ $) 99)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-1660 (($ $) 123)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3040 (((-112) $ $) 116)) (-3015 (((-112) $ $) 115)) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 117)) (-3005 (((-112) $ $) 114)) (-3103 (($ $ $) 73)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 77) (($ $ (-416 (-573))) 103)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 (-573))) 76) (($ (-416 (-573)) $) 75))) +(((-1072) (-141)) (T -1072)) +((-1660 (*1 *1 *1) (-4 *1 (-1072))) (-3421 (*1 *1 *1) (-4 *1 (-1072))) (-2437 (*1 *1 *1) (-4 *1 (-1072))) (-3733 (*1 *1 *1) (-4 *1 (-1072))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-1072)) (-5 *2 (-573)))) (-2408 (*1 *1 *1) (-4 *1 (-1072))) (-1442 (*1 *1 *1) (-4 *1 (-1072))) (-2350 (*1 *1 *1) (-4 *1 (-1072)))) +(-13 (-371) (-857) (-1034) (-1050 (-573)) (-1050 (-416 (-573))) (-1014) (-623 (-902 (-387))) (-896 (-387)) (-148) (-10 -8 (-15 -3421 ($ $)) (-15 -2437 ($ $)) (-15 -3733 ($ $)) (-15 -3770 ((-573) $)) (-15 -2408 ($ $)) (-15 -1442 ($ $)) (-15 -2350 ($ $)) (-15 -1660 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-625 #0#) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-623 (-227)) . T) ((-623 (-387)) . T) ((-623 (-902 (-387))) . T) ((-248) . T) ((-297) . T) ((-314) . T) ((-371) . T) ((-461) . T) ((-565) . T) ((-655 #0#) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 #0#) . T) ((-657 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-726 #0#) . T) ((-726 $) . T) ((-735) . T) ((-800) . T) ((-801) . T) ((-803) . T) ((-804) . T) ((-857) . T) ((-859) . T) ((-896 (-387)) . T) ((-930) . T) ((-1014) . T) ((-1034) . T) ((-1050 (-416 (-573))) . T) ((-1050 (-573)) . T) ((-1063 #0#) . T) ((-1063 $) . T) ((-1068 #0#) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1234) . T)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) |#2| $) 26)) (-1486 ((|#1| $) 10)) (-1983 (((-573) |#2| $) 116)) (-1732 (((-3 $ "failed") |#2| (-931)) 75)) (-3903 ((|#1| $) 31)) (-4050 ((|#1| |#2| $ |#1|) 40)) (-4143 (($ $) 28)) (-2232 (((-3 |#2| "failed") |#2| $) 111)) (-4152 (((-112) |#2| $) NIL)) (-3339 (((-112) |#2| $) NIL)) (-3714 (((-112) |#2| $) 27)) (-1961 ((|#1| $) 117)) (-3890 ((|#1| $) 30)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2984 ((|#2| $) 102)) (-2942 (((-871) $) 92)) (-3507 (((-112) $ $) NIL)) (-3550 ((|#1| |#2| $ |#1|) 41)) (-1536 (((-653 $) |#2|) 77)) (-2981 (((-112) $ $) 97))) +(((-1073 |#1| |#2|) (-13 (-1080 |#1| |#2|) (-10 -8 (-15 -3890 (|#1| $)) (-15 -3903 (|#1| $)) (-15 -1486 (|#1| $)) (-15 -1961 (|#1| $)) (-15 -4143 ($ $)) (-15 -3714 ((-112) |#2| $)) (-15 -4050 (|#1| |#2| $ |#1|)))) (-13 (-857) (-371)) (-1256 |#1|)) (T -1073)) +((-4050 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-857) (-371))) (-5 *1 (-1073 *2 *3)) (-4 *3 (-1256 *2)))) (-3890 (*1 *2 *1) (-12 (-4 *2 (-13 (-857) (-371))) (-5 *1 (-1073 *2 *3)) (-4 *3 (-1256 *2)))) (-3903 (*1 *2 *1) (-12 (-4 *2 (-13 (-857) (-371))) (-5 *1 (-1073 *2 *3)) (-4 *3 (-1256 *2)))) (-1486 (*1 *2 *1) (-12 (-4 *2 (-13 (-857) (-371))) (-5 *1 (-1073 *2 *3)) (-4 *3 (-1256 *2)))) (-1961 (*1 *2 *1) (-12 (-4 *2 (-13 (-857) (-371))) (-5 *1 (-1073 *2 *3)) (-4 *3 (-1256 *2)))) (-4143 (*1 *1 *1) (-12 (-4 *2 (-13 (-857) (-371))) (-5 *1 (-1073 *2 *3)) (-4 *3 (-1256 *2)))) (-3714 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-857) (-371))) (-5 *2 (-112)) (-5 *1 (-1073 *4 *3)) (-4 *3 (-1256 *4))))) +(-13 (-1080 |#1| |#2|) (-10 -8 (-15 -3890 (|#1| $)) (-15 -3903 (|#1| $)) (-15 -1486 (|#1| $)) (-15 -1961 (|#1| $)) (-15 -4143 ($ $)) (-15 -3714 ((-112) |#2| $)) (-15 -4050 (|#1| |#2| $ |#1|)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-1783 (($ $ $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-3519 (($ $ $ $) NIL)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-1983 (((-573) $) NIL)) (-3958 (($ $ $) NIL)) (-2579 (($) NIL T CONST)) (-2387 (($ (-1189)) 10) (($ (-573)) 7)) (-1695 (((-3 (-573) "failed") $) NIL)) (-2205 (((-573) $) NIL)) (-2784 (($ $ $) NIL)) (-2759 (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL) (((-698 (-573)) (-698 $)) NIL) (((-698 (-573)) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3810 (((-3 (-416 (-573)) "failed") $) NIL)) (-2551 (((-112) $) NIL)) (-4434 (((-416 (-573)) $) NIL)) (-2819 (($) NIL) (($ $) NIL)) (-2796 (($ $ $) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-3643 (($ $ $ $) NIL)) (-1420 (($ $ $) NIL)) (-4152 (((-112) $) NIL)) (-2637 (($ $ $) NIL)) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL)) (-1959 (((-112) $) NIL)) (-2250 (((-112) $) NIL)) (-1470 (((-3 $ "failed") $) NIL)) (-3339 (((-112) $) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2460 (($ $ $ $) NIL)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-3808 (($ $) NIL)) (-4134 (($ $) NIL)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-2585 (($ $ $) NIL)) (-3816 (($) NIL T CONST)) (-1605 (($ $) NIL)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) NIL) (($ (-653 $)) NIL)) (-4264 (($ $) NIL)) (-4218 (((-427 $) $) NIL)) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2270 (((-112) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-3904 (($ $) NIL) (($ $ (-780)) NIL)) (-2294 (($ $) NIL)) (-3166 (($ $) NIL)) (-1835 (((-573) $) 16) (((-545) $) NIL) (((-902 (-573)) $) NIL) (((-387) $) NIL) (((-227) $) NIL) (($ (-1189)) 9)) (-2942 (((-871) $) 23) (($ (-573)) 6) (($ $) NIL) (($ (-573)) 6)) (-1545 (((-780)) NIL T CONST)) (-1373 (((-112) $ $) NIL)) (-1677 (($ $ $) NIL)) (-3507 (((-112) $ $) NIL)) (-2629 (($) NIL)) (-2516 (((-112) $ $) NIL)) (-3813 (($ $ $ $) NIL)) (-1660 (($ $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $) NIL) (($ $ (-780)) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL)) (-3093 (($ $) 22) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ (-573) $) NIL))) +(((-1074) (-13 (-554) (-627 (-1189)) (-10 -8 (-6 -4442) (-6 -4447) (-6 -4443) (-15 -2387 ($ (-1189))) (-15 -2387 ($ (-573)))))) (T -1074)) +((-2387 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1074)))) (-2387 (*1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-1074))))) +(-13 (-554) (-627 (-1189)) (-10 -8 (-6 -4442) (-6 -4447) (-6 -4443) (-15 -2387 ($ (-1189))) (-15 -2387 ($ (-573))))) +((-2848 (((-112) $ $) NIL (-2817 (|has| (-52) (-1112)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112))))) (-3777 (($) NIL) (($ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) NIL)) (-3791 (((-1285) $ (-1189) (-1189)) NIL (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) NIL)) (-1791 (($) 9)) (-3142 (((-52) $ (-1189) (-52)) NIL)) (-3830 (($ $) 32)) (-2035 (($ $) 30)) (-2879 (($ $) 29)) (-2278 (($ $) 31)) (-3774 (($ $) 35)) (-2062 (($ $) 36)) (-3345 (($ $) 28)) (-2140 (($ $) 33)) (-3557 (($ (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) 27 (|has| $ (-6 -4455)))) (-2161 (((-3 (-52) "failed") (-1189) $) 43)) (-2579 (($) NIL T CONST)) (-3045 (($) 7)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112))))) (-2596 (($ (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) $) 53 (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-3 (-52) "failed") (-1189) $) NIL)) (-3334 (($ (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (($ (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455)))) (-2867 (((-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $ (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (((-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $ (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455)))) (-3048 (((-3 (-1171) "failed") $ (-1171) (-573)) 72)) (-2457 (((-52) $ (-1189) (-52)) NIL (|has| $ (-6 -4456)))) (-2384 (((-52) $ (-1189)) NIL)) (-1863 (((-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-653 (-52)) $) NIL (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-1189) $) NIL (|has| (-1189) (-859)))) (-3214 (((-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) 38 (|has| $ (-6 -4455))) (((-653 (-52)) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-52) (-1112))))) (-3470 (((-1189) $) NIL (|has| (-1189) (-859)))) (-2446 (($ (-1 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (-2817 (|has| (-52) (-1112)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112))))) (-1762 (((-653 (-1189)) $) NIL)) (-4201 (((-112) (-1189) $) NIL)) (-2487 (((-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) $) NIL)) (-3181 (($ (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) $) 46)) (-1977 (((-653 (-1189)) $) NIL)) (-2560 (((-112) (-1189) $) NIL)) (-3965 (((-1132) $) NIL (-2817 (|has| (-52) (-1112)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112))))) (-1631 (((-387) $ (-1189)) 52)) (-4364 (((-653 (-1171)) $ (-1171)) 74)) (-2914 (((-52) $) NIL (|has| (-1189) (-859)))) (-2036 (((-3 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) "failed") (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL)) (-3112 (($ $ (-52)) NIL (|has| $ (-6 -4456)))) (-3815 (((-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) $) NIL)) (-1575 (((-112) (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))))) NIL (-12 (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (($ $ (-301 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) NIL (-12 (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (($ $ (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) NIL (-12 (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (($ $ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) NIL (-12 (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-316 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (($ $ (-653 (-52)) (-653 (-52))) NIL (-12 (|has| (-52) (-316 (-52))) (|has| (-52) (-1112)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-316 (-52))) (|has| (-52) (-1112)))) (($ $ (-301 (-52))) NIL (-12 (|has| (-52) (-316 (-52))) (|has| (-52) (-1112)))) (($ $ (-653 (-301 (-52)))) NIL (-12 (|has| (-52) (-316 (-52))) (|has| (-52) (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-52) (-1112))))) (-1535 (((-653 (-52)) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 (((-52) $ (-1189)) NIL) (((-52) $ (-1189) (-52)) NIL)) (-2428 (($) NIL) (($ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) NIL)) (-2757 (($ $ (-1189)) 54)) (-3974 (((-780) (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112)))) (((-780) (-52) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-52) (-1112)))) (((-780) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-623 (-545))))) (-2955 (($ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) 40)) (-4156 (($ $ $) 41)) (-2942 (((-871) $) NIL (-2817 (|has| (-52) (-622 (-871))) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-622 (-871)))))) (-1462 (($ $ (-1189) (-387)) 50)) (-2878 (($ $ (-1189) (-387)) 51)) (-3507 (((-112) $ $) NIL (-2817 (|has| (-52) (-1112)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112))))) (-2679 (($ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))))) NIL)) (-1646 (((-112) (-1 (-112) (-2 (|:| -3692 (-1189)) (|:| -1907 (-52)))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (-2817 (|has| (-52) (-1112)) (|has| (-2 (|:| -3692 (-1189)) (|:| -1907 (-52))) (-1112))))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-1075) (-13 (-1206 (-1189) (-52)) (-10 -8 (-15 -4156 ($ $ $)) (-15 -3045 ($)) (-15 -3345 ($ $)) (-15 -2879 ($ $)) (-15 -2035 ($ $)) (-15 -2278 ($ $)) (-15 -2140 ($ $)) (-15 -3830 ($ $)) (-15 -3774 ($ $)) (-15 -2062 ($ $)) (-15 -1462 ($ $ (-1189) (-387))) (-15 -2878 ($ $ (-1189) (-387))) (-15 -1631 ((-387) $ (-1189))) (-15 -4364 ((-653 (-1171)) $ (-1171))) (-15 -2757 ($ $ (-1189))) (-15 -1791 ($)) (-15 -3048 ((-3 (-1171) "failed") $ (-1171) (-573))) (-6 -4455)))) (T -1075)) +((-4156 (*1 *1 *1 *1) (-5 *1 (-1075))) (-3045 (*1 *1) (-5 *1 (-1075))) (-3345 (*1 *1 *1) (-5 *1 (-1075))) (-2879 (*1 *1 *1) (-5 *1 (-1075))) (-2035 (*1 *1 *1) (-5 *1 (-1075))) (-2278 (*1 *1 *1) (-5 *1 (-1075))) (-2140 (*1 *1 *1) (-5 *1 (-1075))) (-3830 (*1 *1 *1) (-5 *1 (-1075))) (-3774 (*1 *1 *1) (-5 *1 (-1075))) (-2062 (*1 *1 *1) (-5 *1 (-1075))) (-1462 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-387)) (-5 *1 (-1075)))) (-2878 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-387)) (-5 *1 (-1075)))) (-1631 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-387)) (-5 *1 (-1075)))) (-4364 (*1 *2 *1 *3) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1075)) (-5 *3 (-1171)))) (-2757 (*1 *1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1075)))) (-1791 (*1 *1) (-5 *1 (-1075))) (-3048 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1171)) (-5 *3 (-573)) (-5 *1 (-1075))))) +(-13 (-1206 (-1189) (-52)) (-10 -8 (-15 -4156 ($ $ $)) (-15 -3045 ($)) (-15 -3345 ($ $)) (-15 -2879 ($ $)) (-15 -2035 ($ $)) (-15 -2278 ($ $)) (-15 -2140 ($ $)) (-15 -3830 ($ $)) (-15 -3774 ($ $)) (-15 -2062 ($ $)) (-15 -1462 ($ $ (-1189) (-387))) (-15 -2878 ($ $ (-1189) (-387))) (-15 -1631 ((-387) $ (-1189))) (-15 -4364 ((-653 (-1171)) $ (-1171))) (-15 -2757 ($ $ (-1189))) (-15 -1791 ($)) (-15 -3048 ((-3 (-1171) "failed") $ (-1171) (-573))) (-6 -4455))) +((-1969 (($ $) 46)) (-2218 (((-112) $ $) 82)) (-1695 (((-3 |#2| "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL) (((-3 (-573) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-962 (-416 (-573)))) 251) (((-3 $ "failed") (-962 (-573))) 250) (((-3 $ "failed") (-962 |#2|)) 253)) (-2205 ((|#2| $) NIL) (((-416 (-573)) $) NIL) (((-573) $) NIL) ((|#4| $) NIL) (($ (-962 (-416 (-573)))) 239) (($ (-962 (-573))) 235) (($ (-962 |#2|)) 255)) (-1391 (($ $) NIL) (($ $ |#4|) 44)) (-4310 (((-112) $ $) 131) (((-112) $ (-653 $)) 135)) (-4421 (((-112) $) 60)) (-1368 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 125)) (-3128 (($ $) 160)) (-3342 (($ $) 156)) (-4235 (($ $) 155)) (-2450 (($ $ $) 87) (($ $ $ |#4|) 92)) (-4176 (($ $ $) 90) (($ $ $ |#4|) 94)) (-4022 (((-112) $ $) 143) (((-112) $ (-653 $)) 144)) (-3338 ((|#4| $) 32)) (-2018 (($ $ $) 128)) (-2093 (((-112) $) 59)) (-3726 (((-780) $) 35)) (-3232 (($ $) 174)) (-1972 (($ $) 171)) (-2933 (((-653 $) $) 72)) (-2311 (($ $) 62)) (-2116 (($ $) 167)) (-2118 (((-653 $) $) 69)) (-2923 (($ $) 64)) (-1369 ((|#2| $) NIL) (($ $ |#4|) 39)) (-3459 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2488 (-780))) $ $) 130)) (-1941 (((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3152 $) (|:| -3132 $)) $ $) 126) (((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3152 $) (|:| -3132 $)) $ $ |#4|) 127)) (-3882 (((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3132 $)) $ $) 121) (((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3132 $)) $ $ |#4|) 123)) (-4335 (($ $ $) 97) (($ $ $ |#4|) 106)) (-1841 (($ $ $) 98) (($ $ $ |#4|) 107)) (-3565 (((-653 $) $) 54)) (-3161 (((-112) $ $) 140) (((-112) $ (-653 $)) 141)) (-3430 (($ $ $) 116)) (-3816 (($ $) 37)) (-2614 (((-112) $ $) 80)) (-1973 (((-112) $ $) 136) (((-112) $ (-653 $)) 138)) (-1448 (($ $ $) 112)) (-2030 (($ $) 41)) (-2872 ((|#2| |#2| $) 164) (($ (-653 $)) NIL) (($ $ $) NIL)) (-3333 (($ $ |#2|) NIL) (($ $ $) 153)) (-1467 (($ $ |#2|) 148) (($ $ $) 151)) (-3671 (($ $) 49)) (-3346 (($ $) 55)) (-1835 (((-902 (-387)) $) NIL) (((-902 (-573)) $) NIL) (((-545) $) NIL) (($ (-962 (-416 (-573)))) 241) (($ (-962 (-573))) 237) (($ (-962 |#2|)) 252) (((-1171) $) 279) (((-962 |#2|) $) 184)) (-2942 (((-871) $) 29) (($ (-573)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-962 |#2|) $) 185) (($ (-416 (-573))) NIL) (($ $) NIL)) (-3251 (((-3 (-112) "failed") $ $) 79))) +(((-1076 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2942 (|#1| |#1|)) (-15 -2872 (|#1| |#1| |#1|)) (-15 -2872 (|#1| (-653 |#1|))) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2942 ((-962 |#2|) |#1|)) (-15 -1835 ((-962 |#2|) |#1|)) (-15 -1835 ((-1171) |#1|)) (-15 -3232 (|#1| |#1|)) (-15 -1972 (|#1| |#1|)) (-15 -2116 (|#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -2872 (|#2| |#2| |#1|)) (-15 -3333 (|#1| |#1| |#1|)) (-15 -1467 (|#1| |#1| |#1|)) (-15 -3333 (|#1| |#1| |#2|)) (-15 -1467 (|#1| |#1| |#2|)) (-15 -3342 (|#1| |#1|)) (-15 -4235 (|#1| |#1|)) (-15 -1835 (|#1| (-962 |#2|))) (-15 -2205 (|#1| (-962 |#2|))) (-15 -1695 ((-3 |#1| "failed") (-962 |#2|))) (-15 -1835 (|#1| (-962 (-573)))) (-15 -2205 (|#1| (-962 (-573)))) (-15 -1695 ((-3 |#1| "failed") (-962 (-573)))) (-15 -1835 (|#1| (-962 (-416 (-573))))) (-15 -2205 (|#1| (-962 (-416 (-573))))) (-15 -1695 ((-3 |#1| "failed") (-962 (-416 (-573))))) (-15 -3430 (|#1| |#1| |#1|)) (-15 -1448 (|#1| |#1| |#1|)) (-15 -3459 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2488 (-780))) |#1| |#1|)) (-15 -2018 (|#1| |#1| |#1|)) (-15 -1368 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -1941 ((-2 (|:| -1857 |#1|) (|:| |gap| (-780)) (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1| |#4|)) (-15 -1941 ((-2 (|:| -1857 |#1|) (|:| |gap| (-780)) (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -3882 ((-2 (|:| -1857 |#1|) (|:| |gap| (-780)) (|:| -3132 |#1|)) |#1| |#1| |#4|)) (-15 -3882 ((-2 (|:| -1857 |#1|) (|:| |gap| (-780)) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -1841 (|#1| |#1| |#1| |#4|)) (-15 -4335 (|#1| |#1| |#1| |#4|)) (-15 -1841 (|#1| |#1| |#1|)) (-15 -4335 (|#1| |#1| |#1|)) (-15 -4176 (|#1| |#1| |#1| |#4|)) (-15 -2450 (|#1| |#1| |#1| |#4|)) (-15 -4176 (|#1| |#1| |#1|)) (-15 -2450 (|#1| |#1| |#1|)) (-15 -4022 ((-112) |#1| (-653 |#1|))) (-15 -4022 ((-112) |#1| |#1|)) (-15 -3161 ((-112) |#1| (-653 |#1|))) (-15 -3161 ((-112) |#1| |#1|)) (-15 -1973 ((-112) |#1| (-653 |#1|))) (-15 -1973 ((-112) |#1| |#1|)) (-15 -4310 ((-112) |#1| (-653 |#1|))) (-15 -4310 ((-112) |#1| |#1|)) (-15 -2218 ((-112) |#1| |#1|)) (-15 -2614 ((-112) |#1| |#1|)) (-15 -3251 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2933 ((-653 |#1|) |#1|)) (-15 -2118 ((-653 |#1|) |#1|)) (-15 -2923 (|#1| |#1|)) (-15 -2311 (|#1| |#1|)) (-15 -4421 ((-112) |#1|)) (-15 -2093 ((-112) |#1|)) (-15 -1391 (|#1| |#1| |#4|)) (-15 -1369 (|#1| |#1| |#4|)) (-15 -3346 (|#1| |#1|)) (-15 -3565 ((-653 |#1|) |#1|)) (-15 -3671 (|#1| |#1|)) (-15 -1969 (|#1| |#1|)) (-15 -2030 (|#1| |#1|)) (-15 -3816 (|#1| |#1|)) (-15 -3726 ((-780) |#1|)) (-15 -3338 (|#4| |#1|)) (-15 -1835 ((-545) |#1|)) (-15 -1835 ((-902 (-573)) |#1|)) (-15 -1835 ((-902 (-387)) |#1|)) (-15 -2942 (|#1| |#4|)) (-15 -1695 ((-3 |#4| "failed") |#1|)) (-15 -2205 (|#4| |#1|)) (-15 -1369 (|#2| |#1|)) (-15 -1391 (|#1| |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2942 (|#1| |#2|)) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) (-1077 |#2| |#3| |#4|) (-1061) (-802) (-859)) (T -1076)) +NIL +(-10 -8 (-15 -2942 (|#1| |#1|)) (-15 -2872 (|#1| |#1| |#1|)) (-15 -2872 (|#1| (-653 |#1|))) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2942 ((-962 |#2|) |#1|)) (-15 -1835 ((-962 |#2|) |#1|)) (-15 -1835 ((-1171) |#1|)) (-15 -3232 (|#1| |#1|)) (-15 -1972 (|#1| |#1|)) (-15 -2116 (|#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -2872 (|#2| |#2| |#1|)) (-15 -3333 (|#1| |#1| |#1|)) (-15 -1467 (|#1| |#1| |#1|)) (-15 -3333 (|#1| |#1| |#2|)) (-15 -1467 (|#1| |#1| |#2|)) (-15 -3342 (|#1| |#1|)) (-15 -4235 (|#1| |#1|)) (-15 -1835 (|#1| (-962 |#2|))) (-15 -2205 (|#1| (-962 |#2|))) (-15 -1695 ((-3 |#1| "failed") (-962 |#2|))) (-15 -1835 (|#1| (-962 (-573)))) (-15 -2205 (|#1| (-962 (-573)))) (-15 -1695 ((-3 |#1| "failed") (-962 (-573)))) (-15 -1835 (|#1| (-962 (-416 (-573))))) (-15 -2205 (|#1| (-962 (-416 (-573))))) (-15 -1695 ((-3 |#1| "failed") (-962 (-416 (-573))))) (-15 -3430 (|#1| |#1| |#1|)) (-15 -1448 (|#1| |#1| |#1|)) (-15 -3459 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2488 (-780))) |#1| |#1|)) (-15 -2018 (|#1| |#1| |#1|)) (-15 -1368 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -1941 ((-2 (|:| -1857 |#1|) (|:| |gap| (-780)) (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1| |#4|)) (-15 -1941 ((-2 (|:| -1857 |#1|) (|:| |gap| (-780)) (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -3882 ((-2 (|:| -1857 |#1|) (|:| |gap| (-780)) (|:| -3132 |#1|)) |#1| |#1| |#4|)) (-15 -3882 ((-2 (|:| -1857 |#1|) (|:| |gap| (-780)) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -1841 (|#1| |#1| |#1| |#4|)) (-15 -4335 (|#1| |#1| |#1| |#4|)) (-15 -1841 (|#1| |#1| |#1|)) (-15 -4335 (|#1| |#1| |#1|)) (-15 -4176 (|#1| |#1| |#1| |#4|)) (-15 -2450 (|#1| |#1| |#1| |#4|)) (-15 -4176 (|#1| |#1| |#1|)) (-15 -2450 (|#1| |#1| |#1|)) (-15 -4022 ((-112) |#1| (-653 |#1|))) (-15 -4022 ((-112) |#1| |#1|)) (-15 -3161 ((-112) |#1| (-653 |#1|))) (-15 -3161 ((-112) |#1| |#1|)) (-15 -1973 ((-112) |#1| (-653 |#1|))) (-15 -1973 ((-112) |#1| |#1|)) (-15 -4310 ((-112) |#1| (-653 |#1|))) (-15 -4310 ((-112) |#1| |#1|)) (-15 -2218 ((-112) |#1| |#1|)) (-15 -2614 ((-112) |#1| |#1|)) (-15 -3251 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2933 ((-653 |#1|) |#1|)) (-15 -2118 ((-653 |#1|) |#1|)) (-15 -2923 (|#1| |#1|)) (-15 -2311 (|#1| |#1|)) (-15 -4421 ((-112) |#1|)) (-15 -2093 ((-112) |#1|)) (-15 -1391 (|#1| |#1| |#4|)) (-15 -1369 (|#1| |#1| |#4|)) (-15 -3346 (|#1| |#1|)) (-15 -3565 ((-653 |#1|) |#1|)) (-15 -3671 (|#1| |#1|)) (-15 -1969 (|#1| |#1|)) (-15 -2030 (|#1| |#1|)) (-15 -3816 (|#1| |#1|)) (-15 -3726 ((-780) |#1|)) (-15 -3338 (|#4| |#1|)) (-15 -1835 ((-545) |#1|)) (-15 -1835 ((-902 (-573)) |#1|)) (-15 -1835 ((-902 (-387)) |#1|)) (-15 -2942 (|#1| |#4|)) (-15 -1695 ((-3 |#4| "failed") |#1|)) (-15 -2205 (|#4| |#1|)) (-15 -1369 (|#2| |#1|)) (-15 -1391 (|#1| |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2942 (|#1| |#2|)) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4354 (((-653 |#3|) $) 112)) (-4193 (((-1185 $) $ |#3|) 127) (((-1185 |#1|) $) 126)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 89 (|has| |#1| (-565)))) (-2456 (($ $) 90 (|has| |#1| (-565)))) (-1345 (((-112) $) 92 (|has| |#1| (-565)))) (-2769 (((-780) $) 114) (((-780) $ (-653 |#3|)) 113)) (-1969 (($ $) 275)) (-2218 (((-112) $ $) 261)) (-2983 (((-3 $ "failed") $ $) 20)) (-4183 (($ $ $) 220 (|has| |#1| (-565)))) (-2698 (((-653 $) $ $) 215 (|has| |#1| (-565)))) (-1600 (((-427 (-1185 $)) (-1185 $)) 102 (|has| |#1| (-919)))) (-4285 (($ $) 100 (|has| |#1| (-461)))) (-2427 (((-427 $) $) 99 (|has| |#1| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) 105 (|has| |#1| (-919)))) (-2579 (($) 18 T CONST)) (-1695 (((-3 |#1| "failed") $) 168) (((-3 (-416 (-573)) "failed") $) 165 (|has| |#1| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) 163 (|has| |#1| (-1050 (-573)))) (((-3 |#3| "failed") $) 140) (((-3 $ "failed") (-962 (-416 (-573)))) 235 (-12 (|has| |#1| (-38 (-416 (-573)))) (|has| |#3| (-623 (-1189))))) (((-3 $ "failed") (-962 (-573))) 232 (-2817 (-12 (-2075 (|has| |#1| (-38 (-416 (-573))))) (|has| |#1| (-38 (-573))) (|has| |#3| (-623 (-1189)))) (-12 (|has| |#1| (-38 (-416 (-573)))) (|has| |#3| (-623 (-1189)))))) (((-3 $ "failed") (-962 |#1|)) 229 (-2817 (-12 (-2075 (|has| |#1| (-38 (-416 (-573))))) (-2075 (|has| |#1| (-38 (-573)))) (|has| |#3| (-623 (-1189)))) (-12 (-2075 (|has| |#1| (-554))) (-2075 (|has| |#1| (-38 (-416 (-573))))) (|has| |#1| (-38 (-573))) (|has| |#3| (-623 (-1189)))) (-12 (-2075 (|has| |#1| (-1004 (-573)))) (|has| |#1| (-38 (-416 (-573)))) (|has| |#3| (-623 (-1189))))))) (-2205 ((|#1| $) 167) (((-416 (-573)) $) 166 (|has| |#1| (-1050 (-416 (-573))))) (((-573) $) 164 (|has| |#1| (-1050 (-573)))) ((|#3| $) 141) (($ (-962 (-416 (-573)))) 234 (-12 (|has| |#1| (-38 (-416 (-573)))) (|has| |#3| (-623 (-1189))))) (($ (-962 (-573))) 231 (-2817 (-12 (-2075 (|has| |#1| (-38 (-416 (-573))))) (|has| |#1| (-38 (-573))) (|has| |#3| (-623 (-1189)))) (-12 (|has| |#1| (-38 (-416 (-573)))) (|has| |#3| (-623 (-1189)))))) (($ (-962 |#1|)) 228 (-2817 (-12 (-2075 (|has| |#1| (-38 (-416 (-573))))) (-2075 (|has| |#1| (-38 (-573)))) (|has| |#3| (-623 (-1189)))) (-12 (-2075 (|has| |#1| (-554))) (-2075 (|has| |#1| (-38 (-416 (-573))))) (|has| |#1| (-38 (-573))) (|has| |#3| (-623 (-1189)))) (-12 (-2075 (|has| |#1| (-1004 (-573)))) (|has| |#1| (-38 (-416 (-573)))) (|has| |#3| (-623 (-1189))))))) (-2277 (($ $ $ |#3|) 110 (|has| |#1| (-174))) (($ $ $) 216 (|has| |#1| (-565)))) (-1391 (($ $) 158) (($ $ |#3|) 270)) (-2759 (((-698 (-573)) (-1280 $)) 138 (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) 137 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 136 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) 135) (((-698 |#1|) (-698 $)) 134) (((-698 |#1|) (-1280 $)) 133)) (-4310 (((-112) $ $) 260) (((-112) $ (-653 $)) 259)) (-2232 (((-3 $ "failed") $) 37)) (-4421 (((-112) $) 268)) (-1368 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 240)) (-3128 (($ $) 209 (|has| |#1| (-461)))) (-3246 (($ $) 180 (|has| |#1| (-461))) (($ $ |#3|) 107 (|has| |#1| (-461)))) (-1379 (((-653 $) $) 111)) (-2696 (((-112) $) 98 (|has| |#1| (-919)))) (-3342 (($ $) 225 (|has| |#1| (-565)))) (-4235 (($ $) 226 (|has| |#1| (-565)))) (-2450 (($ $ $) 252) (($ $ $ |#3|) 250)) (-4176 (($ $ $) 251) (($ $ $ |#3|) 249)) (-2343 (($ $ |#1| |#2| $) 176)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 86 (-12 (|has| |#3| (-896 (-387))) (|has| |#1| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 85 (-12 (|has| |#3| (-896 (-573))) (|has| |#1| (-896 (-573)))))) (-1959 (((-112) $) 35)) (-3772 (((-780) $) 173)) (-4022 (((-112) $ $) 254) (((-112) $ (-653 $)) 253)) (-3558 (($ $ $ $ $) 211 (|has| |#1| (-565)))) (-3338 ((|#3| $) 279)) (-4344 (($ (-1185 |#1|) |#3|) 119) (($ (-1185 $) |#3|) 118)) (-2518 (((-653 $) $) 128)) (-3676 (((-112) $) 156)) (-4334 (($ |#1| |#2|) 157) (($ $ |#3| (-780)) 121) (($ $ (-653 |#3|) (-653 (-780))) 120)) (-2018 (($ $ $) 239)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ |#3|) 122)) (-2093 (((-112) $) 269)) (-4036 ((|#2| $) 174) (((-780) $ |#3|) 124) (((-653 (-780)) $ (-653 |#3|)) 123)) (-3726 (((-780) $) 278)) (-1382 (($ (-1 |#2| |#2|) $) 175)) (-1776 (($ (-1 |#1| |#1|) $) 155)) (-1453 (((-3 |#3| "failed") $) 125)) (-3232 (($ $) 206 (|has| |#1| (-461)))) (-1972 (($ $) 207 (|has| |#1| (-461)))) (-2933 (((-653 $) $) 264)) (-2311 (($ $) 267)) (-2116 (($ $) 208 (|has| |#1| (-461)))) (-2118 (((-653 $) $) 265)) (-2923 (($ $) 266)) (-1358 (($ $) 153)) (-1369 ((|#1| $) 152) (($ $ |#3|) 271)) (-2829 (($ (-653 $)) 96 (|has| |#1| (-461))) (($ $ $) 95 (|has| |#1| (-461)))) (-3459 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2488 (-780))) $ $) 238)) (-1941 (((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3152 $) (|:| -3132 $)) $ $) 242) (((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3152 $) (|:| -3132 $)) $ $ |#3|) 241)) (-3882 (((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3132 $)) $ $) 244) (((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3132 $)) $ $ |#3|) 243)) (-4335 (($ $ $) 248) (($ $ $ |#3|) 246)) (-1841 (($ $ $) 247) (($ $ $ |#3|) 245)) (-3180 (((-1171) $) 10)) (-2395 (($ $ $) 214 (|has| |#1| (-565)))) (-3565 (((-653 $) $) 273)) (-4082 (((-3 (-653 $) "failed") $) 116)) (-2586 (((-3 (-653 $) "failed") $) 117)) (-2573 (((-3 (-2 (|:| |var| |#3|) (|:| -3907 (-780))) "failed") $) 115)) (-3161 (((-112) $ $) 256) (((-112) $ (-653 $)) 255)) (-3430 (($ $ $) 236)) (-3816 (($ $) 277)) (-2614 (((-112) $ $) 262)) (-1973 (((-112) $ $) 258) (((-112) $ (-653 $)) 257)) (-1448 (($ $ $) 237)) (-2030 (($ $) 276)) (-3965 (((-1132) $) 11)) (-1873 (((-2 (|:| -2872 $) (|:| |coef2| $)) $ $) 217 (|has| |#1| (-565)))) (-4178 (((-2 (|:| -2872 $) (|:| |coef1| $)) $ $) 218 (|has| |#1| (-565)))) (-1337 (((-112) $) 170)) (-1348 ((|#1| $) 171)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 97 (|has| |#1| (-461)))) (-2872 ((|#1| |#1| $) 210 (|has| |#1| (-461))) (($ (-653 $)) 94 (|has| |#1| (-461))) (($ $ $) 93 (|has| |#1| (-461)))) (-2963 (((-427 (-1185 $)) (-1185 $)) 104 (|has| |#1| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) 103 (|has| |#1| (-919)))) (-4218 (((-427 $) $) 101 (|has| |#1| (-919)))) (-2694 (((-2 (|:| -2872 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 219 (|has| |#1| (-565)))) (-2837 (((-3 $ "failed") $ |#1|) 178 (|has| |#1| (-565))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-565)))) (-3333 (($ $ |#1|) 223 (|has| |#1| (-565))) (($ $ $) 221 (|has| |#1| (-565)))) (-1467 (($ $ |#1|) 224 (|has| |#1| (-565))) (($ $ $) 222 (|has| |#1| (-565)))) (-2645 (($ $ (-653 (-301 $))) 149) (($ $ (-301 $)) 148) (($ $ $ $) 147) (($ $ (-653 $) (-653 $)) 146) (($ $ |#3| |#1|) 145) (($ $ (-653 |#3|) (-653 |#1|)) 144) (($ $ |#3| $) 143) (($ $ (-653 |#3|) (-653 $)) 142)) (-3592 (($ $ |#3|) 109 (|has| |#1| (-174)))) (-3904 (($ $ |#3|) 46) (($ $ (-653 |#3|)) 45) (($ $ |#3| (-780)) 44) (($ $ (-653 |#3|) (-653 (-780))) 43)) (-2565 ((|#2| $) 154) (((-780) $ |#3|) 132) (((-653 (-780)) $ (-653 |#3|)) 131)) (-3671 (($ $) 274)) (-3346 (($ $) 272)) (-1835 (((-902 (-387)) $) 84 (-12 (|has| |#3| (-623 (-902 (-387)))) (|has| |#1| (-623 (-902 (-387)))))) (((-902 (-573)) $) 83 (-12 (|has| |#3| (-623 (-902 (-573)))) (|has| |#1| (-623 (-902 (-573)))))) (((-545) $) 82 (-12 (|has| |#3| (-623 (-545))) (|has| |#1| (-623 (-545))))) (($ (-962 (-416 (-573)))) 233 (-12 (|has| |#1| (-38 (-416 (-573)))) (|has| |#3| (-623 (-1189))))) (($ (-962 (-573))) 230 (-2817 (-12 (-2075 (|has| |#1| (-38 (-416 (-573))))) (|has| |#1| (-38 (-573))) (|has| |#3| (-623 (-1189)))) (-12 (|has| |#1| (-38 (-416 (-573)))) (|has| |#3| (-623 (-1189)))))) (($ (-962 |#1|)) 227 (|has| |#3| (-623 (-1189)))) (((-1171) $) 205 (-12 (|has| |#1| (-1050 (-573))) (|has| |#3| (-623 (-1189))))) (((-962 |#1|) $) 204 (|has| |#3| (-623 (-1189))))) (-3257 ((|#1| $) 179 (|has| |#1| (-461))) (($ $ |#3|) 108 (|has| |#1| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) 106 (-2086 (|has| $ (-146)) (|has| |#1| (-919))))) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 169) (($ |#3|) 139) (((-962 |#1|) $) 203 (|has| |#3| (-623 (-1189)))) (($ (-416 (-573))) 80 (-2817 (|has| |#1| (-1050 (-416 (-573)))) (|has| |#1| (-38 (-416 (-573)))))) (($ $) 87 (|has| |#1| (-565)))) (-1920 (((-653 |#1|) $) 172)) (-4317 ((|#1| $ |#2|) 159) (($ $ |#3| (-780)) 130) (($ $ (-653 |#3|) (-653 (-780))) 129)) (-4279 (((-3 $ "failed") $) 81 (-2817 (-2086 (|has| $ (-146)) (|has| |#1| (-919))) (|has| |#1| (-146))))) (-1545 (((-780)) 32 T CONST)) (-1538 (($ $ $ (-780)) 177 (|has| |#1| (-174)))) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 91 (|has| |#1| (-565)))) (-2132 (($) 19 T CONST)) (-3251 (((-3 (-112) "failed") $ $) 263)) (-2144 (($) 34 T CONST)) (-2389 (($ $ $ $ (-780)) 212 (|has| |#1| (-565)))) (-3306 (($ $ $ (-780)) 213 (|has| |#1| (-565)))) (-3609 (($ $ |#3|) 42) (($ $ (-653 |#3|)) 41) (($ $ |#3| (-780)) 40) (($ $ (-653 |#3|) (-653 (-780))) 39)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 160 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 (-573))) 162 (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) 161 (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) 151) (($ $ |#1|) 150))) +(((-1077 |#1| |#2| |#3|) (-141) (-1061) (-802) (-859)) (T -1077)) +((-3338 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *2 (-859)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-780)))) (-3816 (*1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)))) (-2030 (*1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)))) (-1969 (*1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)))) (-3671 (*1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)))) (-3565 (*1 *2 *1) (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *1)) (-4 *1 (-1077 *3 *4 *5)))) (-3346 (*1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)))) (-1369 (*1 *1 *1 *2) (-12 (-4 *1 (-1077 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *2 (-859)))) (-1391 (*1 *1 *1 *2) (-12 (-4 *1 (-1077 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *2 (-859)))) (-2093 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)))) (-4421 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)))) (-2311 (*1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)))) (-2923 (*1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)))) (-2118 (*1 *2 *1) (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *1)) (-4 *1 (-1077 *3 *4 *5)))) (-2933 (*1 *2 *1) (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *1)) (-4 *1 (-1077 *3 *4 *5)))) (-3251 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)))) (-2614 (*1 *2 *1 *1) (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)))) (-2218 (*1 *2 *1 *1) (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)))) (-4310 (*1 *2 *1 *1) (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)))) (-4310 (*1 *2 *1 *3) (-12 (-5 *3 (-653 *1)) (-4 *1 (-1077 *4 *5 *6)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)))) (-1973 (*1 *2 *1 *1) (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)))) (-1973 (*1 *2 *1 *3) (-12 (-5 *3 (-653 *1)) (-4 *1 (-1077 *4 *5 *6)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)))) (-3161 (*1 *2 *1 *1) (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)))) (-3161 (*1 *2 *1 *3) (-12 (-5 *3 (-653 *1)) (-4 *1 (-1077 *4 *5 *6)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)))) (-4022 (*1 *2 *1 *1) (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)))) (-4022 (*1 *2 *1 *3) (-12 (-5 *3 (-653 *1)) (-4 *1 (-1077 *4 *5 *6)) (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)))) (-2450 (*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)))) (-4176 (*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)))) (-2450 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1077 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *2 (-859)))) (-4176 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1077 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *2 (-859)))) (-4335 (*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)))) (-1841 (*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)))) (-4335 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1077 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *2 (-859)))) (-1841 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1077 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *2 (-859)))) (-3882 (*1 *2 *1 *1) (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-2 (|:| -1857 *1) (|:| |gap| (-780)) (|:| -3132 *1))) (-4 *1 (-1077 *3 *4 *5)))) (-3882 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-859)) (-5 *2 (-2 (|:| -1857 *1) (|:| |gap| (-780)) (|:| -3132 *1))) (-4 *1 (-1077 *4 *5 *3)))) (-1941 (*1 *2 *1 *1) (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-2 (|:| -1857 *1) (|:| |gap| (-780)) (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-1077 *3 *4 *5)))) (-1941 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-859)) (-5 *2 (-2 (|:| -1857 *1) (|:| |gap| (-780)) (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-1077 *4 *5 *3)))) (-1368 (*1 *2 *1 *1) (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-1077 *3 *4 *5)))) (-2018 (*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)))) (-3459 (*1 *2 *1 *1) (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2488 (-780)))) (-4 *1 (-1077 *3 *4 *5)))) (-1448 (*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)))) (-3430 (*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)))) (-1695 (*1 *1 *2) (|partial| -12 (-5 *2 (-962 (-416 (-573)))) (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-38 (-416 (-573)))) (-4 *5 (-623 (-1189))) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-962 (-416 (-573)))) (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-38 (-416 (-573)))) (-4 *5 (-623 (-1189))) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-962 (-416 (-573)))) (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-38 (-416 (-573)))) (-4 *5 (-623 (-1189))) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)))) (-1695 (*1 *1 *2) (|partial| -2817 (-12 (-5 *2 (-962 (-573))) (-4 *1 (-1077 *3 *4 *5)) (-12 (-2075 (-4 *3 (-38 (-416 (-573))))) (-4 *3 (-38 (-573))) (-4 *5 (-623 (-1189)))) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859))) (-12 (-5 *2 (-962 (-573))) (-4 *1 (-1077 *3 *4 *5)) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *5 (-623 (-1189)))) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859))))) (-2205 (*1 *1 *2) (-2817 (-12 (-5 *2 (-962 (-573))) (-4 *1 (-1077 *3 *4 *5)) (-12 (-2075 (-4 *3 (-38 (-416 (-573))))) (-4 *3 (-38 (-573))) (-4 *5 (-623 (-1189)))) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859))) (-12 (-5 *2 (-962 (-573))) (-4 *1 (-1077 *3 *4 *5)) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *5 (-623 (-1189)))) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859))))) (-1835 (*1 *1 *2) (-2817 (-12 (-5 *2 (-962 (-573))) (-4 *1 (-1077 *3 *4 *5)) (-12 (-2075 (-4 *3 (-38 (-416 (-573))))) (-4 *3 (-38 (-573))) (-4 *5 (-623 (-1189)))) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859))) (-12 (-5 *2 (-962 (-573))) (-4 *1 (-1077 *3 *4 *5)) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *5 (-623 (-1189)))) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859))))) (-1695 (*1 *1 *2) (|partial| -2817 (-12 (-5 *2 (-962 *3)) (-12 (-2075 (-4 *3 (-38 (-416 (-573))))) (-2075 (-4 *3 (-38 (-573)))) (-4 *5 (-623 (-1189)))) (-4 *3 (-1061)) (-4 *1 (-1077 *3 *4 *5)) (-4 *4 (-802)) (-4 *5 (-859))) (-12 (-5 *2 (-962 *3)) (-12 (-2075 (-4 *3 (-554))) (-2075 (-4 *3 (-38 (-416 (-573))))) (-4 *3 (-38 (-573))) (-4 *5 (-623 (-1189)))) (-4 *3 (-1061)) (-4 *1 (-1077 *3 *4 *5)) (-4 *4 (-802)) (-4 *5 (-859))) (-12 (-5 *2 (-962 *3)) (-12 (-2075 (-4 *3 (-1004 (-573)))) (-4 *3 (-38 (-416 (-573)))) (-4 *5 (-623 (-1189)))) (-4 *3 (-1061)) (-4 *1 (-1077 *3 *4 *5)) (-4 *4 (-802)) (-4 *5 (-859))))) (-2205 (*1 *1 *2) (-2817 (-12 (-5 *2 (-962 *3)) (-12 (-2075 (-4 *3 (-38 (-416 (-573))))) (-2075 (-4 *3 (-38 (-573)))) (-4 *5 (-623 (-1189)))) (-4 *3 (-1061)) (-4 *1 (-1077 *3 *4 *5)) (-4 *4 (-802)) (-4 *5 (-859))) (-12 (-5 *2 (-962 *3)) (-12 (-2075 (-4 *3 (-554))) (-2075 (-4 *3 (-38 (-416 (-573))))) (-4 *3 (-38 (-573))) (-4 *5 (-623 (-1189)))) (-4 *3 (-1061)) (-4 *1 (-1077 *3 *4 *5)) (-4 *4 (-802)) (-4 *5 (-859))) (-12 (-5 *2 (-962 *3)) (-12 (-2075 (-4 *3 (-1004 (-573)))) (-4 *3 (-38 (-416 (-573)))) (-4 *5 (-623 (-1189)))) (-4 *3 (-1061)) (-4 *1 (-1077 *3 *4 *5)) (-4 *4 (-802)) (-4 *5 (-859))))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-1061)) (-4 *1 (-1077 *3 *4 *5)) (-4 *5 (-623 (-1189))) (-4 *4 (-802)) (-4 *5 (-859)))) (-4235 (*1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-565)))) (-3342 (*1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-565)))) (-1467 (*1 *1 *1 *2) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-565)))) (-3333 (*1 *1 *1 *2) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-565)))) (-1467 (*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-565)))) (-3333 (*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-565)))) (-4183 (*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-565)))) (-2694 (*1 *2 *1 *1) (-12 (-4 *3 (-565)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-2 (|:| -2872 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1077 *3 *4 *5)))) (-4178 (*1 *2 *1 *1) (-12 (-4 *3 (-565)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-2 (|:| -2872 *1) (|:| |coef1| *1))) (-4 *1 (-1077 *3 *4 *5)))) (-1873 (*1 *2 *1 *1) (-12 (-4 *3 (-565)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-2 (|:| -2872 *1) (|:| |coef2| *1))) (-4 *1 (-1077 *3 *4 *5)))) (-2277 (*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-565)))) (-2698 (*1 *2 *1 *1) (-12 (-4 *3 (-565)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *1)) (-4 *1 (-1077 *3 *4 *5)))) (-2395 (*1 *1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-565)))) (-3306 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *3 (-565)))) (-2389 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *3 (-565)))) (-3558 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-565)))) (-2872 (*1 *2 *2 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-461)))) (-3128 (*1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-461)))) (-2116 (*1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-461)))) (-1972 (*1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-461)))) (-3232 (*1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-461))))) +(-13 (-959 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3338 (|t#3| $)) (-15 -3726 ((-780) $)) (-15 -3816 ($ $)) (-15 -2030 ($ $)) (-15 -1969 ($ $)) (-15 -3671 ($ $)) (-15 -3565 ((-653 $) $)) (-15 -3346 ($ $)) (-15 -1369 ($ $ |t#3|)) (-15 -1391 ($ $ |t#3|)) (-15 -2093 ((-112) $)) (-15 -4421 ((-112) $)) (-15 -2311 ($ $)) (-15 -2923 ($ $)) (-15 -2118 ((-653 $) $)) (-15 -2933 ((-653 $) $)) (-15 -3251 ((-3 (-112) "failed") $ $)) (-15 -2614 ((-112) $ $)) (-15 -2218 ((-112) $ $)) (-15 -4310 ((-112) $ $)) (-15 -4310 ((-112) $ (-653 $))) (-15 -1973 ((-112) $ $)) (-15 -1973 ((-112) $ (-653 $))) (-15 -3161 ((-112) $ $)) (-15 -3161 ((-112) $ (-653 $))) (-15 -4022 ((-112) $ $)) (-15 -4022 ((-112) $ (-653 $))) (-15 -2450 ($ $ $)) (-15 -4176 ($ $ $)) (-15 -2450 ($ $ $ |t#3|)) (-15 -4176 ($ $ $ |t#3|)) (-15 -4335 ($ $ $)) (-15 -1841 ($ $ $)) (-15 -4335 ($ $ $ |t#3|)) (-15 -1841 ($ $ $ |t#3|)) (-15 -3882 ((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3132 $)) $ $)) (-15 -3882 ((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3132 $)) $ $ |t#3|)) (-15 -1941 ((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3152 $) (|:| -3132 $)) $ $)) (-15 -1941 ((-2 (|:| -1857 $) (|:| |gap| (-780)) (|:| -3152 $) (|:| -3132 $)) $ $ |t#3|)) (-15 -1368 ((-2 (|:| -3152 $) (|:| -3132 $)) $ $)) (-15 -2018 ($ $ $)) (-15 -3459 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2488 (-780))) $ $)) (-15 -1448 ($ $ $)) (-15 -3430 ($ $ $)) (IF (|has| |t#3| (-623 (-1189))) (PROGN (-6 (-622 (-962 |t#1|))) (-6 (-623 (-962 |t#1|))) (IF (|has| |t#1| (-38 (-416 (-573)))) (PROGN (-15 -1695 ((-3 $ "failed") (-962 (-416 (-573))))) (-15 -2205 ($ (-962 (-416 (-573))))) (-15 -1835 ($ (-962 (-416 (-573))))) (-15 -1695 ((-3 $ "failed") (-962 (-573)))) (-15 -2205 ($ (-962 (-573)))) (-15 -1835 ($ (-962 (-573)))) (IF (|has| |t#1| (-1004 (-573))) |%noBranch| (PROGN (-15 -1695 ((-3 $ "failed") (-962 |t#1|))) (-15 -2205 ($ (-962 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-573))) (IF (|has| |t#1| (-38 (-416 (-573)))) |%noBranch| (PROGN (-15 -1695 ((-3 $ "failed") (-962 (-573)))) (-15 -2205 ($ (-962 (-573)))) (-15 -1835 ($ (-962 (-573)))) (IF (|has| |t#1| (-554)) |%noBranch| (PROGN (-15 -1695 ((-3 $ "failed") (-962 |t#1|))) (-15 -2205 ($ (-962 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-573))) |%noBranch| (IF (|has| |t#1| (-38 (-416 (-573)))) |%noBranch| (PROGN (-15 -1695 ((-3 $ "failed") (-962 |t#1|))) (-15 -2205 ($ (-962 |t#1|)))))) (-15 -1835 ($ (-962 |t#1|))) (IF (|has| |t#1| (-1050 (-573))) (-6 (-623 (-1171))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-565)) (PROGN (-15 -4235 ($ $)) (-15 -3342 ($ $)) (-15 -1467 ($ $ |t#1|)) (-15 -3333 ($ $ |t#1|)) (-15 -1467 ($ $ $)) (-15 -3333 ($ $ $)) (-15 -4183 ($ $ $)) (-15 -2694 ((-2 (|:| -2872 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4178 ((-2 (|:| -2872 $) (|:| |coef1| $)) $ $)) (-15 -1873 ((-2 (|:| -2872 $) (|:| |coef2| $)) $ $)) (-15 -2277 ($ $ $)) (-15 -2698 ((-653 $) $ $)) (-15 -2395 ($ $ $)) (-15 -3306 ($ $ $ (-780))) (-15 -2389 ($ $ $ $ (-780))) (-15 -3558 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-461)) (PROGN (-15 -2872 (|t#1| |t#1| $)) (-15 -3128 ($ $)) (-15 -2116 ($ $)) (-15 -1972 ($ $)) (-15 -3232 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-416 (-573)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #0#) -2817 (|has| |#1| (-1050 (-416 (-573)))) (|has| |#1| (-38 (-416 (-573))))) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-625 |#3|) . T) ((-625 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-622 (-871)) . T) ((-622 (-962 |#1|)) |has| |#3| (-623 (-1189))) ((-174) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-174))) ((-623 (-545)) -12 (|has| |#1| (-623 (-545))) (|has| |#3| (-623 (-545)))) ((-623 (-902 (-387))) -12 (|has| |#1| (-623 (-902 (-387)))) (|has| |#3| (-623 (-902 (-387))))) ((-623 (-902 (-573))) -12 (|has| |#1| (-623 (-902 (-573)))) (|has| |#3| (-623 (-902 (-573))))) ((-623 (-962 |#1|)) |has| |#3| (-623 (-1189))) ((-623 (-1171)) -12 (|has| |#1| (-1050 (-573))) (|has| |#3| (-623 (-1189)))) ((-297) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-316 $) . T) ((-333 |#1| |#2|) . T) ((-385 |#1|) . T) ((-420 |#1|) . T) ((-461) -2817 (|has| |#1| (-919)) (|has| |#1| (-461))) ((-523 |#3| |#1|) . T) ((-523 |#3| $) . T) ((-523 $ $) . T) ((-565) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-655 #0#) |has| |#1| (-38 (-416 (-573)))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #0#) |has| |#1| (-38 (-416 (-573)))) ((-657 #1=(-573)) |has| |#1| (-648 (-573))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #0#) |has| |#1| (-38 (-416 (-573)))) ((-649 |#1|) |has| |#1| (-174)) ((-649 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-648 #1#) |has| |#1| (-648 (-573))) ((-648 |#1|) . T) ((-726 #0#) |has| |#1| (-38 (-416 (-573)))) ((-726 |#1|) |has| |#1| (-174)) ((-726 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461))) ((-735) . T) ((-910 |#3|) . T) ((-896 (-387)) -12 (|has| |#1| (-896 (-387))) (|has| |#3| (-896 (-387)))) ((-896 (-573)) -12 (|has| |#1| (-896 (-573))) (|has| |#3| (-896 (-573)))) ((-959 |#1| |#2| |#3|) . T) ((-919) |has| |#1| (-919)) ((-1050 (-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((-1050 (-573)) |has| |#1| (-1050 (-573))) ((-1050 |#1|) . T) ((-1050 |#3|) . T) ((-1063 #0#) |has| |#1| (-38 (-416 (-573)))) ((-1063 |#1|) . T) ((-1063 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-174))) ((-1068 #0#) |has| |#1| (-38 (-416 (-573)))) ((-1068 |#1|) . T) ((-1068 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-174))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1234) |has| |#1| (-919))) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-1498 (((-653 (-1147)) $) 18)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 27) (($ (-1194)) NIL) (((-1194) $) NIL)) (-2043 (((-1147) $) 20)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-1078) (-13 (-1095) (-10 -8 (-15 -1498 ((-653 (-1147)) $)) (-15 -2043 ((-1147) $))))) (T -1078)) +((-1498 (*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-1078)))) (-2043 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1078))))) +(-13 (-1095) (-10 -8 (-15 -1498 ((-653 (-1147)) $)) (-15 -2043 ((-1147) $)))) +((-1748 (((-112) |#3| $) 15)) (-1732 (((-3 $ "failed") |#3| (-931)) 29)) (-2232 (((-3 |#3| "failed") |#3| $) 45)) (-4152 (((-112) |#3| $) 19)) (-3339 (((-112) |#3| $) 17))) +(((-1079 |#1| |#2| |#3|) (-10 -8 (-15 -1732 ((-3 |#1| "failed") |#3| (-931))) (-15 -2232 ((-3 |#3| "failed") |#3| |#1|)) (-15 -4152 ((-112) |#3| |#1|)) (-15 -3339 ((-112) |#3| |#1|)) (-15 -1748 ((-112) |#3| |#1|))) (-1080 |#2| |#3|) (-13 (-857) (-371)) (-1256 |#2|)) (T -1079)) +NIL +(-10 -8 (-15 -1732 ((-3 |#1| "failed") |#3| (-931))) (-15 -2232 ((-3 |#3| "failed") |#3| |#1|)) (-15 -4152 ((-112) |#3| |#1|)) (-15 -3339 ((-112) |#3| |#1|)) (-15 -1748 ((-112) |#3| |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) |#2| $) 22)) (-1983 (((-573) |#2| $) 23)) (-1732 (((-3 $ "failed") |#2| (-931)) 16)) (-4050 ((|#1| |#2| $ |#1|) 14)) (-2232 (((-3 |#2| "failed") |#2| $) 19)) (-4152 (((-112) |#2| $) 20)) (-3339 (((-112) |#2| $) 21)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2984 ((|#2| $) 18)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-3550 ((|#1| |#2| $ |#1|) 15)) (-1536 (((-653 $) |#2|) 17)) (-2981 (((-112) $ $) 6))) +(((-1080 |#1| |#2|) (-141) (-13 (-857) (-371)) (-1256 |t#1|)) (T -1080)) +((-1983 (*1 *2 *3 *1) (-12 (-4 *1 (-1080 *4 *3)) (-4 *4 (-13 (-857) (-371))) (-4 *3 (-1256 *4)) (-5 *2 (-573)))) (-1748 (*1 *2 *3 *1) (-12 (-4 *1 (-1080 *4 *3)) (-4 *4 (-13 (-857) (-371))) (-4 *3 (-1256 *4)) (-5 *2 (-112)))) (-3339 (*1 *2 *3 *1) (-12 (-4 *1 (-1080 *4 *3)) (-4 *4 (-13 (-857) (-371))) (-4 *3 (-1256 *4)) (-5 *2 (-112)))) (-4152 (*1 *2 *3 *1) (-12 (-4 *1 (-1080 *4 *3)) (-4 *4 (-13 (-857) (-371))) (-4 *3 (-1256 *4)) (-5 *2 (-112)))) (-2232 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1080 *3 *2)) (-4 *3 (-13 (-857) (-371))) (-4 *2 (-1256 *3)))) (-2984 (*1 *2 *1) (-12 (-4 *1 (-1080 *3 *2)) (-4 *3 (-13 (-857) (-371))) (-4 *2 (-1256 *3)))) (-1536 (*1 *2 *3) (-12 (-4 *4 (-13 (-857) (-371))) (-4 *3 (-1256 *4)) (-5 *2 (-653 *1)) (-4 *1 (-1080 *4 *3)))) (-1732 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-931)) (-4 *4 (-13 (-857) (-371))) (-4 *1 (-1080 *4 *2)) (-4 *2 (-1256 *4)))) (-3550 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1080 *2 *3)) (-4 *2 (-13 (-857) (-371))) (-4 *3 (-1256 *2)))) (-4050 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1080 *2 *3)) (-4 *2 (-13 (-857) (-371))) (-4 *3 (-1256 *2))))) +(-13 (-1112) (-10 -8 (-15 -1983 ((-573) |t#2| $)) (-15 -1748 ((-112) |t#2| $)) (-15 -3339 ((-112) |t#2| $)) (-15 -4152 ((-112) |t#2| $)) (-15 -2232 ((-3 |t#2| "failed") |t#2| $)) (-15 -2984 (|t#2| $)) (-15 -1536 ((-653 $) |t#2|)) (-15 -1732 ((-3 $ "failed") |t#2| (-931))) (-15 -3550 (|t#1| |t#2| $ |t#1|)) (-15 -4050 (|t#1| |t#2| $ |t#1|)))) +(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) +((-3987 (((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-653 |#4|) (-653 |#5|) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) (-780)) 114)) (-2594 (((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780)) 63)) (-3669 (((-1285) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-780)) 99)) (-2358 (((-780) (-653 |#4|) (-653 |#5|)) 30)) (-3384 (((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780)) 65) (((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780) (-112)) 67)) (-2478 (((-653 |#5|) (-653 |#4|) (-653 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-653 |#5|) (-653 |#4|) (-653 |#5|) (-112) (-112)) 87)) (-1835 (((-1171) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) 92)) (-3330 (((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-112)) 62)) (-1800 (((-780) (-653 |#4|) (-653 |#5|)) 21))) +(((-1081 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1800 ((-780) (-653 |#4|) (-653 |#5|))) (-15 -2358 ((-780) (-653 |#4|) (-653 |#5|))) (-15 -3330 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-112))) (-15 -2594 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780))) (-15 -2594 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|)) (-15 -3384 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780) (-112))) (-15 -3384 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780))) (-15 -3384 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|)) (-15 -2478 ((-653 |#5|) (-653 |#4|) (-653 |#5|) (-112) (-112))) (-15 -2478 ((-653 |#5|) (-653 |#4|) (-653 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3987 ((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-653 |#4|) (-653 |#5|) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) (-780))) (-15 -1835 ((-1171) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)))) (-15 -3669 ((-1285) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-780)))) (-461) (-802) (-859) (-1077 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3| |#4|)) (T -1081)) +((-3669 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-2 (|:| |val| (-653 *8)) (|:| -4090 *9)))) (-5 *4 (-780)) (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1083 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-1285)) (-5 *1 (-1081 *5 *6 *7 *8 *9)))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-653 *7)) (|:| -4090 *8))) (-4 *7 (-1077 *4 *5 *6)) (-4 *8 (-1083 *4 *5 *6 *7)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-1171)) (-5 *1 (-1081 *4 *5 *6 *7 *8)))) (-3987 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-653 *11)) (|:| |todo| (-653 (-2 (|:| |val| *3) (|:| -4090 *11)))))) (-5 *6 (-780)) (-5 *2 (-653 (-2 (|:| |val| (-653 *10)) (|:| -4090 *11)))) (-5 *3 (-653 *10)) (-5 *4 (-653 *11)) (-4 *10 (-1077 *7 *8 *9)) (-4 *11 (-1083 *7 *8 *9 *10)) (-4 *7 (-461)) (-4 *8 (-802)) (-4 *9 (-859)) (-5 *1 (-1081 *7 *8 *9 *10 *11)))) (-2478 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-653 *9)) (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1083 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *1 (-1081 *5 *6 *7 *8 *9)))) (-2478 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-653 *9)) (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1083 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *1 (-1081 *5 *6 *7 *8 *9)))) (-3384 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-653 *4)) (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-3384 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-780)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) (-4 *3 (-1077 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-653 *4)) (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) (-5 *1 (-1081 *6 *7 *8 *3 *4)) (-4 *4 (-1083 *6 *7 *8 *3)))) (-3384 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-780)) (-5 *6 (-112)) (-4 *7 (-461)) (-4 *8 (-802)) (-4 *9 (-859)) (-4 *3 (-1077 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-653 *4)) (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) (-5 *1 (-1081 *7 *8 *9 *3 *4)) (-4 *4 (-1083 *7 *8 *9 *3)))) (-2594 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-653 *4)) (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-2594 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-780)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) (-4 *3 (-1077 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-653 *4)) (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) (-5 *1 (-1081 *6 *7 *8 *3 *4)) (-4 *4 (-1083 *6 *7 *8 *3)))) (-3330 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) (-4 *3 (-1077 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-653 *4)) (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) (-5 *1 (-1081 *6 *7 *8 *3 *4)) (-4 *4 (-1083 *6 *7 *8 *3)))) (-2358 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-653 *9)) (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1083 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-780)) (-5 *1 (-1081 *5 *6 *7 *8 *9)))) (-1800 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-653 *9)) (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1083 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-780)) (-5 *1 (-1081 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -1800 ((-780) (-653 |#4|) (-653 |#5|))) (-15 -2358 ((-780) (-653 |#4|) (-653 |#5|))) (-15 -3330 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-112))) (-15 -2594 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780))) (-15 -2594 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|)) (-15 -3384 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780) (-112))) (-15 -3384 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780))) (-15 -3384 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|)) (-15 -2478 ((-653 |#5|) (-653 |#4|) (-653 |#5|) (-112) (-112))) (-15 -2478 ((-653 |#5|) (-653 |#4|) (-653 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3987 ((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-653 |#4|) (-653 |#5|) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) (-780))) (-15 -1835 ((-1171) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)))) (-15 -3669 ((-1285) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-780)))) +((-3060 (((-112) |#5| $) 26)) (-2714 (((-112) |#5| $) 29)) (-3491 (((-112) |#5| $) 18) (((-112) $) 52)) (-3716 (((-653 $) |#5| $) NIL) (((-653 $) (-653 |#5|) $) 94) (((-653 $) (-653 |#5|) (-653 $)) 92) (((-653 $) |#5| (-653 $)) 95)) (-2212 (($ $ |#5|) NIL) (((-653 $) |#5| $) NIL) (((-653 $) |#5| (-653 $)) 73) (((-653 $) (-653 |#5|) $) 75) (((-653 $) (-653 |#5|) (-653 $)) 77)) (-3402 (((-653 $) |#5| $) NIL) (((-653 $) |#5| (-653 $)) 64) (((-653 $) (-653 |#5|) $) 69) (((-653 $) (-653 |#5|) (-653 $)) 71)) (-3746 (((-112) |#5| $) 32))) +(((-1082 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2212 ((-653 |#1|) (-653 |#5|) (-653 |#1|))) (-15 -2212 ((-653 |#1|) (-653 |#5|) |#1|)) (-15 -2212 ((-653 |#1|) |#5| (-653 |#1|))) (-15 -2212 ((-653 |#1|) |#5| |#1|)) (-15 -3402 ((-653 |#1|) (-653 |#5|) (-653 |#1|))) (-15 -3402 ((-653 |#1|) (-653 |#5|) |#1|)) (-15 -3402 ((-653 |#1|) |#5| (-653 |#1|))) (-15 -3402 ((-653 |#1|) |#5| |#1|)) (-15 -3716 ((-653 |#1|) |#5| (-653 |#1|))) (-15 -3716 ((-653 |#1|) (-653 |#5|) (-653 |#1|))) (-15 -3716 ((-653 |#1|) (-653 |#5|) |#1|)) (-15 -3716 ((-653 |#1|) |#5| |#1|)) (-15 -2714 ((-112) |#5| |#1|)) (-15 -3491 ((-112) |#1|)) (-15 -3746 ((-112) |#5| |#1|)) (-15 -3060 ((-112) |#5| |#1|)) (-15 -3491 ((-112) |#5| |#1|)) (-15 -2212 (|#1| |#1| |#5|))) (-1083 |#2| |#3| |#4| |#5|) (-461) (-802) (-859) (-1077 |#2| |#3| |#4|)) (T -1082)) +NIL +(-10 -8 (-15 -2212 ((-653 |#1|) (-653 |#5|) (-653 |#1|))) (-15 -2212 ((-653 |#1|) (-653 |#5|) |#1|)) (-15 -2212 ((-653 |#1|) |#5| (-653 |#1|))) (-15 -2212 ((-653 |#1|) |#5| |#1|)) (-15 -3402 ((-653 |#1|) (-653 |#5|) (-653 |#1|))) (-15 -3402 ((-653 |#1|) (-653 |#5|) |#1|)) (-15 -3402 ((-653 |#1|) |#5| (-653 |#1|))) (-15 -3402 ((-653 |#1|) |#5| |#1|)) (-15 -3716 ((-653 |#1|) |#5| (-653 |#1|))) (-15 -3716 ((-653 |#1|) (-653 |#5|) (-653 |#1|))) (-15 -3716 ((-653 |#1|) (-653 |#5|) |#1|)) (-15 -3716 ((-653 |#1|) |#5| |#1|)) (-15 -2714 ((-112) |#5| |#1|)) (-15 -3491 ((-112) |#1|)) (-15 -3746 ((-112) |#5| |#1|)) (-15 -3060 ((-112) |#5| |#1|)) (-15 -3491 ((-112) |#5| |#1|)) (-15 -2212 (|#1| |#1| |#5|))) +((-2848 (((-112) $ $) 7)) (-2280 (((-653 (-2 (|:| -1380 $) (|:| -1674 (-653 |#4|)))) (-653 |#4|)) 86)) (-3527 (((-653 $) (-653 |#4|)) 87) (((-653 $) (-653 |#4|) (-112)) 112)) (-4354 (((-653 |#3|) $) 34)) (-2577 (((-112) $) 27)) (-2020 (((-112) $) 18 (|has| |#1| (-565)))) (-2261 (((-112) |#4| $) 102) (((-112) $) 98)) (-1554 ((|#4| |#4| $) 93)) (-4285 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| $) 127)) (-2770 (((-2 (|:| |under| $) (|:| -3733 $) (|:| |upper| $)) $ |#3|) 28)) (-3450 (((-112) $ (-780)) 45)) (-2164 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4455))) (((-3 |#4| "failed") $ |#3|) 80)) (-2579 (($) 46 T CONST)) (-2194 (((-112) $) 23 (|has| |#1| (-565)))) (-1849 (((-112) $ $) 25 (|has| |#1| (-565)))) (-2838 (((-112) $ $) 24 (|has| |#1| (-565)))) (-3145 (((-112) $) 26 (|has| |#1| (-565)))) (-4304 (((-653 |#4|) (-653 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2346 (((-653 |#4|) (-653 |#4|) $) 19 (|has| |#1| (-565)))) (-2475 (((-653 |#4|) (-653 |#4|) $) 20 (|has| |#1| (-565)))) (-1695 (((-3 $ "failed") (-653 |#4|)) 37)) (-2205 (($ (-653 |#4|)) 36)) (-2925 (((-3 $ "failed") $) 83)) (-3760 ((|#4| |#4| $) 90)) (-2685 (($ $) 69 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ |#4| $) 68 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4455)))) (-3132 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-565)))) (-4310 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3117 ((|#4| |#4| $) 88)) (-2867 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4455))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4455))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2660 (((-2 (|:| -1380 (-653 |#4|)) (|:| -1674 (-653 |#4|))) $) 106)) (-3060 (((-112) |#4| $) 137)) (-2714 (((-112) |#4| $) 134)) (-3491 (((-112) |#4| $) 138) (((-112) $) 135)) (-1863 (((-653 |#4|) $) 53 (|has| $ (-6 -4455)))) (-4022 (((-112) |#4| $) 105) (((-112) $) 104)) (-3338 ((|#3| $) 35)) (-2078 (((-112) $ (-780)) 44)) (-3214 (((-653 |#4|) $) 54 (|has| $ (-6 -4455)))) (-1547 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#4| |#4|) $) 48)) (-1937 (((-653 |#3|) $) 33)) (-1689 (((-112) |#3| $) 32)) (-2673 (((-112) $ (-780)) 43)) (-3180 (((-1171) $) 10)) (-4092 (((-3 |#4| (-653 $)) |#4| |#4| $) 129)) (-2395 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| |#4| $) 128)) (-3359 (((-3 |#4| "failed") $) 84)) (-1692 (((-653 $) |#4| $) 130)) (-1675 (((-3 (-112) (-653 $)) |#4| $) 133)) (-3190 (((-653 (-2 (|:| |val| (-112)) (|:| -4090 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3716 (((-653 $) |#4| $) 126) (((-653 $) (-653 |#4|) $) 125) (((-653 $) (-653 |#4|) (-653 $)) 124) (((-653 $) |#4| (-653 $)) 123)) (-1844 (($ |#4| $) 118) (($ (-653 |#4|) $) 117)) (-2870 (((-653 |#4|) $) 108)) (-3161 (((-112) |#4| $) 100) (((-112) $) 96)) (-3430 ((|#4| |#4| $) 91)) (-2614 (((-112) $ $) 111)) (-3582 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-565)))) (-1973 (((-112) |#4| $) 101) (((-112) $) 97)) (-1448 ((|#4| |#4| $) 92)) (-3965 (((-1132) $) 11)) (-2914 (((-3 |#4| "failed") $) 85)) (-2036 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2865 (((-3 $ "failed") $ |#4|) 79)) (-2212 (($ $ |#4|) 78) (((-653 $) |#4| $) 116) (((-653 $) |#4| (-653 $)) 115) (((-653 $) (-653 |#4|) $) 114) (((-653 $) (-653 |#4|) (-653 $)) 113)) (-1575 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 |#4|) (-653 |#4|)) 60 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-301 |#4|)) 58 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-653 (-301 |#4|))) 57 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))))) (-1885 (((-112) $ $) 39)) (-3811 (((-112) $) 42)) (-3508 (($) 41)) (-2565 (((-780) $) 107)) (-3974 (((-780) |#4| $) 55 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) (((-780) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4455)))) (-3166 (($ $) 40)) (-1835 (((-545) $) 70 (|has| |#4| (-623 (-545))))) (-2955 (($ (-653 |#4|)) 61)) (-4409 (($ $ |#3|) 29)) (-3496 (($ $ |#3|) 31)) (-1388 (($ $) 89)) (-1456 (($ $ |#3|) 30)) (-2942 (((-871) $) 12) (((-653 |#4|) $) 38)) (-3922 (((-780) $) 77 (|has| |#3| (-376)))) (-3507 (((-112) $ $) 9)) (-3955 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3039 (((-112) $ (-1 (-112) |#4| (-653 |#4|))) 99)) (-3402 (((-653 $) |#4| $) 122) (((-653 $) |#4| (-653 $)) 121) (((-653 $) (-653 |#4|) $) 120) (((-653 $) (-653 |#4|) (-653 $)) 119)) (-1646 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4455)))) (-3734 (((-653 |#3|) $) 82)) (-3746 (((-112) |#4| $) 136)) (-4333 (((-112) |#3| $) 81)) (-2981 (((-112) $ $) 6)) (-2862 (((-780) $) 47 (|has| $ (-6 -4455))))) +(((-1083 |#1| |#2| |#3| |#4|) (-141) (-461) (-802) (-859) (-1077 |t#1| |t#2| |t#3|)) (T -1083)) +((-3491 (*1 *2 *3 *1) (-12 (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112)))) (-3060 (*1 *2 *3 *1) (-12 (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112)))) (-3746 (*1 *2 *3 *1) (-12 (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112)))) (-3491 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-112)))) (-2714 (*1 *2 *3 *1) (-12 (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112)))) (-1675 (*1 *2 *3 *1) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-3 (-112) (-653 *1))) (-4 *1 (-1083 *4 *5 *6 *3)))) (-3190 (*1 *2 *3 *1) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-653 (-2 (|:| |val| (-112)) (|:| -4090 *1)))) (-4 *1 (-1083 *4 *5 *6 *3)))) (-3190 (*1 *2 *3 *1) (-12 (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112)))) (-1692 (*1 *2 *3 *1) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-653 *1)) (-4 *1 (-1083 *4 *5 *6 *3)))) (-4092 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-3 *3 (-653 *1))) (-4 *1 (-1083 *4 *5 *6 *3)))) (-2395 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *1)))) (-4 *1 (-1083 *4 *5 *6 *3)))) (-4285 (*1 *2 *3 *1) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *1)))) (-4 *1 (-1083 *4 *5 *6 *3)))) (-3716 (*1 *2 *3 *1) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-653 *1)) (-4 *1 (-1083 *4 *5 *6 *3)))) (-3716 (*1 *2 *3 *1) (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 *1)) (-4 *1 (-1083 *4 *5 *6 *7)))) (-3716 (*1 *2 *3 *2) (-12 (-5 *2 (-653 *1)) (-5 *3 (-653 *7)) (-4 *1 (-1083 *4 *5 *6 *7)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)))) (-3716 (*1 *2 *3 *2) (-12 (-5 *2 (-653 *1)) (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)))) (-3402 (*1 *2 *3 *1) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-653 *1)) (-4 *1 (-1083 *4 *5 *6 *3)))) (-3402 (*1 *2 *3 *2) (-12 (-5 *2 (-653 *1)) (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)))) (-3402 (*1 *2 *3 *1) (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 *1)) (-4 *1 (-1083 *4 *5 *6 *7)))) (-3402 (*1 *2 *3 *2) (-12 (-5 *2 (-653 *1)) (-5 *3 (-653 *7)) (-4 *1 (-1083 *4 *5 *6 *7)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)))) (-1844 (*1 *1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *2)) (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5)))) (-1844 (*1 *1 *2 *1) (-12 (-5 *2 (-653 *6)) (-4 *1 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)))) (-2212 (*1 *2 *3 *1) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-653 *1)) (-4 *1 (-1083 *4 *5 *6 *3)))) (-2212 (*1 *2 *3 *2) (-12 (-5 *2 (-653 *1)) (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)))) (-2212 (*1 *2 *3 *1) (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 *1)) (-4 *1 (-1083 *4 *5 *6 *7)))) (-2212 (*1 *2 *3 *2) (-12 (-5 *2 (-653 *1)) (-5 *3 (-653 *7)) (-4 *1 (-1083 *4 *5 *6 *7)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)))) (-3527 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-653 *1)) (-4 *1 (-1083 *5 *6 *7 *8))))) +(-13 (-1223 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3491 ((-112) |t#4| $)) (-15 -3060 ((-112) |t#4| $)) (-15 -3746 ((-112) |t#4| $)) (-15 -3491 ((-112) $)) (-15 -2714 ((-112) |t#4| $)) (-15 -1675 ((-3 (-112) (-653 $)) |t#4| $)) (-15 -3190 ((-653 (-2 (|:| |val| (-112)) (|:| -4090 $))) |t#4| $)) (-15 -3190 ((-112) |t#4| $)) (-15 -1692 ((-653 $) |t#4| $)) (-15 -4092 ((-3 |t#4| (-653 $)) |t#4| |t#4| $)) (-15 -2395 ((-653 (-2 (|:| |val| |t#4|) (|:| -4090 $))) |t#4| |t#4| $)) (-15 -4285 ((-653 (-2 (|:| |val| |t#4|) (|:| -4090 $))) |t#4| $)) (-15 -3716 ((-653 $) |t#4| $)) (-15 -3716 ((-653 $) (-653 |t#4|) $)) (-15 -3716 ((-653 $) (-653 |t#4|) (-653 $))) (-15 -3716 ((-653 $) |t#4| (-653 $))) (-15 -3402 ((-653 $) |t#4| $)) (-15 -3402 ((-653 $) |t#4| (-653 $))) (-15 -3402 ((-653 $) (-653 |t#4|) $)) (-15 -3402 ((-653 $) (-653 |t#4|) (-653 $))) (-15 -1844 ($ |t#4| $)) (-15 -1844 ($ (-653 |t#4|) $)) (-15 -2212 ((-653 $) |t#4| $)) (-15 -2212 ((-653 $) |t#4| (-653 $))) (-15 -2212 ((-653 $) (-653 |t#4|) $)) (-15 -2212 ((-653 $) (-653 |t#4|) (-653 $))) (-15 -3527 ((-653 $) (-653 |t#4|) (-112))))) +(((-34) . T) ((-102) . T) ((-622 (-653 |#4|)) . T) ((-622 (-871)) . T) ((-152 |#4|) . T) ((-623 (-545)) |has| |#4| (-623 (-545))) ((-316 |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))) ((-498 |#4|) . T) ((-523 |#4| |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))) ((-988 |#1| |#2| |#3| |#4|) . T) ((-1112) . T) ((-1223 |#1| |#2| |#3| |#4|) . T) ((-1230) . T)) +((-1524 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#5|) 86)) (-2922 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|) 127)) (-4373 (((-653 |#5|) |#4| |#5|) 74)) (-2463 (((-653 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-3273 (((-1285)) 36)) (-3790 (((-1285)) 25)) (-2528 (((-1285) (-1171) (-1171) (-1171)) 32)) (-3067 (((-1285) (-1171) (-1171) (-1171)) 21)) (-3153 (((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) |#4| |#4| |#5|) 107)) (-1372 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) |#3| (-112)) 118) (((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-2839 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|) 113))) +(((-1084 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3067 ((-1285) (-1171) (-1171) (-1171))) (-15 -3790 ((-1285))) (-15 -2528 ((-1285) (-1171) (-1171) (-1171))) (-15 -3273 ((-1285))) (-15 -3153 ((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -1372 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1372 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) |#3| (-112))) (-15 -2839 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -2922 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -2463 ((-112) |#4| |#5|)) (-15 -2463 ((-653 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|)) (-15 -4373 ((-653 |#5|) |#4| |#5|)) (-15 -1524 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#5|))) (-461) (-802) (-859) (-1077 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3| |#4|)) (T -1084)) +((-1524 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-4373 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 *4)) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-2463 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 (-2 (|:| |val| (-112)) (|:| -4090 *4)))) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-2463 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-2922 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-2839 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-1372 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 (-2 (|:| |val| (-653 *8)) (|:| -4090 *9)))) (-5 *5 (-112)) (-4 *8 (-1077 *6 *7 *4)) (-4 *9 (-1083 *6 *7 *4 *8)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *4 (-859)) (-5 *2 (-653 (-2 (|:| |val| *8) (|:| -4090 *9)))) (-5 *1 (-1084 *6 *7 *4 *8 *9)))) (-1372 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) (-4 *3 (-1077 *6 *7 *8)) (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) (-5 *1 (-1084 *6 *7 *8 *3 *4)) (-4 *4 (-1083 *6 *7 *8 *3)))) (-3153 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-3273 (*1 *2) (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-1285)) (-5 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *7 (-1083 *3 *4 *5 *6)))) (-2528 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1171)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-1285)) (-5 *1 (-1084 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) (-3790 (*1 *2) (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-1285)) (-5 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *7 (-1083 *3 *4 *5 *6)))) (-3067 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1171)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-1285)) (-5 *1 (-1084 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7))))) +(-10 -7 (-15 -3067 ((-1285) (-1171) (-1171) (-1171))) (-15 -3790 ((-1285))) (-15 -2528 ((-1285) (-1171) (-1171) (-1171))) (-15 -3273 ((-1285))) (-15 -3153 ((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -1372 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1372 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) |#3| (-112))) (-15 -2839 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -2922 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -2463 ((-112) |#4| |#5|)) (-15 -2463 ((-653 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|)) (-15 -4373 ((-653 |#5|) |#4| |#5|)) (-15 -1524 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#5|))) +((-2848 (((-112) $ $) NIL)) (-2334 (((-1229) $) 13)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-4015 (((-1147) $) 10)) (-2942 (((-871) $) 20) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-1085) (-13 (-1095) (-10 -8 (-15 -4015 ((-1147) $)) (-15 -2334 ((-1229) $))))) (T -1085)) +((-4015 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1085)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-1229)) (-5 *1 (-1085))))) +(-13 (-1095) (-10 -8 (-15 -4015 ((-1147) $)) (-15 -2334 ((-1229) $)))) ((-4122 (((-112) $ $) 7))) -(((-1087) (-13 (-1231) (-10 -8 (-15 -4122 ((-112) $ $))))) (T -1087)) -((-4122 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1087))))) -(-13 (-1231) (-10 -8 (-15 -4122 ((-112) $ $)))) -((-2849 (((-112) $ $) NIL)) (-2032 (((-1190) $) 8)) (-4136 (((-1172) $) 17)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 11)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 14))) -(((-1088 |#1|) (-13 (-1113) (-10 -8 (-15 -2032 ((-1190) $)))) (-1190)) (T -1088)) -((-2032 (*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-1088 *3)) (-14 *3 *2)))) -(-13 (-1113) (-10 -8 (-15 -2032 ((-1190) $)))) -((-2849 (((-112) $ $) NIL)) (-2571 (($ $ (-654 (-1190)) (-1 (-112) (-654 |#3|))) 34)) (-3842 (($ |#3| |#3|) 23) (($ |#3| |#3| (-654 (-1190))) 21)) (-1809 ((|#3| $) 13)) (-1696 (((-3 (-302 |#3|) "failed") $) 60)) (-2206 (((-302 |#3|) $) NIL)) (-3564 (((-654 (-1190)) $) 16)) (-2121 (((-903 |#1|) $) 11)) (-1796 ((|#3| $) 12)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2199 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-932)) 41)) (-2943 (((-872) $) 89) (($ (-302 |#3|)) 22)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 38))) -(((-1089 |#1| |#2| |#3|) (-13 (-1113) (-294 |#3| |#3|) (-1051 (-302 |#3|)) (-10 -8 (-15 -3842 ($ |#3| |#3|)) (-15 -3842 ($ |#3| |#3| (-654 (-1190)))) (-15 -2571 ($ $ (-654 (-1190)) (-1 (-112) (-654 |#3|)))) (-15 -2121 ((-903 |#1|) $)) (-15 -1796 (|#3| $)) (-15 -1809 (|#3| $)) (-15 -2199 (|#3| $ |#3| (-932))) (-15 -3564 ((-654 (-1190)) $)))) (-1113) (-13 (-1062) (-897 |#1|) (-624 (-903 |#1|))) (-13 (-440 |#2|) (-897 |#1|) (-624 (-903 |#1|)))) (T -1089)) -((-3842 (*1 *1 *2 *2) (-12 (-4 *3 (-1113)) (-4 *4 (-13 (-1062) (-897 *3) (-624 (-903 *3)))) (-5 *1 (-1089 *3 *4 *2)) (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))))) (-3842 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-654 (-1190))) (-4 *4 (-1113)) (-4 *5 (-13 (-1062) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-1089 *4 *5 *2)) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))))) (-2571 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1190))) (-5 *3 (-1 (-112) (-654 *6))) (-4 *6 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))) (-4 *4 (-1113)) (-4 *5 (-13 (-1062) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-1089 *4 *5 *6)))) (-2121 (*1 *2 *1) (-12 (-4 *3 (-1113)) (-4 *4 (-13 (-1062) (-897 *3) (-624 *2))) (-5 *2 (-903 *3)) (-5 *1 (-1089 *3 *4 *5)) (-4 *5 (-13 (-440 *4) (-897 *3) (-624 *2))))) (-1796 (*1 *2 *1) (-12 (-4 *3 (-1113)) (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))) (-5 *1 (-1089 *3 *4 *2)) (-4 *4 (-13 (-1062) (-897 *3) (-624 (-903 *3)))))) (-1809 (*1 *2 *1) (-12 (-4 *3 (-1113)) (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))) (-5 *1 (-1089 *3 *4 *2)) (-4 *4 (-13 (-1062) (-897 *3) (-624 (-903 *3)))))) (-2199 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-932)) (-4 *4 (-1113)) (-4 *5 (-13 (-1062) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-1089 *4 *5 *2)) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))))) (-3564 (*1 *2 *1) (-12 (-4 *3 (-1113)) (-4 *4 (-13 (-1062) (-897 *3) (-624 (-903 *3)))) (-5 *2 (-654 (-1190))) (-5 *1 (-1089 *3 *4 *5)) (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3))))))) -(-13 (-1113) (-294 |#3| |#3|) (-1051 (-302 |#3|)) (-10 -8 (-15 -3842 ($ |#3| |#3|)) (-15 -3842 ($ |#3| |#3| (-654 (-1190)))) (-15 -2571 ($ $ (-654 (-1190)) (-1 (-112) (-654 |#3|)))) (-15 -2121 ((-903 |#1|) $)) (-15 -1796 (|#3| $)) (-15 -1809 (|#3| $)) (-15 -2199 (|#3| $ |#3| (-932))) (-15 -3564 ((-654 (-1190)) $)))) -((-2849 (((-112) $ $) NIL)) (-2535 (($ (-654 (-1089 |#1| |#2| |#3|))) 14)) (-1996 (((-654 (-1089 |#1| |#2| |#3|)) $) 21)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2199 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-932)) 27)) (-2943 (((-872) $) 17)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 20))) -(((-1090 |#1| |#2| |#3|) (-13 (-1113) (-294 |#3| |#3|) (-10 -8 (-15 -2535 ($ (-654 (-1089 |#1| |#2| |#3|)))) (-15 -1996 ((-654 (-1089 |#1| |#2| |#3|)) $)) (-15 -2199 (|#3| $ |#3| (-932))))) (-1113) (-13 (-1062) (-897 |#1|) (-624 (-903 |#1|))) (-13 (-440 |#2|) (-897 |#1|) (-624 (-903 |#1|)))) (T -1090)) -((-2535 (*1 *1 *2) (-12 (-5 *2 (-654 (-1089 *3 *4 *5))) (-4 *3 (-1113)) (-4 *4 (-13 (-1062) (-897 *3) (-624 (-903 *3)))) (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))) (-5 *1 (-1090 *3 *4 *5)))) (-1996 (*1 *2 *1) (-12 (-4 *3 (-1113)) (-4 *4 (-13 (-1062) (-897 *3) (-624 (-903 *3)))) (-5 *2 (-654 (-1089 *3 *4 *5))) (-5 *1 (-1090 *3 *4 *5)) (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))))) (-2199 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-932)) (-4 *4 (-1113)) (-4 *5 (-13 (-1062) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-1090 *4 *5 *2)) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4))))))) -(-13 (-1113) (-294 |#3| |#3|) (-10 -8 (-15 -2535 ($ (-654 (-1089 |#1| |#2| |#3|)))) (-15 -1996 ((-654 (-1089 |#1| |#2| |#3|)) $)) (-15 -2199 (|#3| $ |#3| (-932))))) -((-4425 (((-654 (-2 (|:| -1625 (-1186 |#1|)) (|:| -3487 (-654 (-963 |#1|))))) (-654 (-963 |#1|)) (-112) (-112)) 88) (((-654 (-2 (|:| -1625 (-1186 |#1|)) (|:| -3487 (-654 (-963 |#1|))))) (-654 (-963 |#1|))) 92) (((-654 (-2 (|:| -1625 (-1186 |#1|)) (|:| -3487 (-654 (-963 |#1|))))) (-654 (-963 |#1|)) (-112)) 90))) -(((-1091 |#1| |#2|) (-10 -7 (-15 -4425 ((-654 (-2 (|:| -1625 (-1186 |#1|)) (|:| -3487 (-654 (-963 |#1|))))) (-654 (-963 |#1|)) (-112))) (-15 -4425 ((-654 (-2 (|:| -1625 (-1186 |#1|)) (|:| -3487 (-654 (-963 |#1|))))) (-654 (-963 |#1|)))) (-15 -4425 ((-654 (-2 (|:| -1625 (-1186 |#1|)) (|:| -3487 (-654 (-963 |#1|))))) (-654 (-963 |#1|)) (-112) (-112)))) (-13 (-315) (-148)) (-654 (-1190))) (T -1091)) -((-4425 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-2 (|:| -1625 (-1186 *5)) (|:| -3487 (-654 (-963 *5)))))) (-5 *1 (-1091 *5 *6)) (-5 *3 (-654 (-963 *5))) (-14 *6 (-654 (-1190))))) (-4425 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-2 (|:| -1625 (-1186 *4)) (|:| -3487 (-654 (-963 *4)))))) (-5 *1 (-1091 *4 *5)) (-5 *3 (-654 (-963 *4))) (-14 *5 (-654 (-1190))))) (-4425 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-2 (|:| -1625 (-1186 *5)) (|:| -3487 (-654 (-963 *5)))))) (-5 *1 (-1091 *5 *6)) (-5 *3 (-654 (-963 *5))) (-14 *6 (-654 (-1190)))))) -(-10 -7 (-15 -4425 ((-654 (-2 (|:| -1625 (-1186 |#1|)) (|:| -3487 (-654 (-963 |#1|))))) (-654 (-963 |#1|)) (-112))) (-15 -4425 ((-654 (-2 (|:| -1625 (-1186 |#1|)) (|:| -3487 (-654 (-963 |#1|))))) (-654 (-963 |#1|)))) (-15 -4425 ((-654 (-2 (|:| -1625 (-1186 |#1|)) (|:| -3487 (-654 (-963 |#1|))))) (-654 (-963 |#1|)) (-112) (-112)))) -((-4220 (((-428 |#3|) |#3|) 18))) -(((-1092 |#1| |#2| |#3|) (-10 -7 (-15 -4220 ((-428 |#3|) |#3|))) (-1257 (-417 (-574))) (-13 (-372) (-148) (-734 (-417 (-574)) |#1|)) (-1257 |#2|)) (T -1092)) -((-4220 (*1 *2 *3) (-12 (-4 *4 (-1257 (-417 (-574)))) (-4 *5 (-13 (-372) (-148) (-734 (-417 (-574)) *4))) (-5 *2 (-428 *3)) (-5 *1 (-1092 *4 *5 *3)) (-4 *3 (-1257 *5))))) -(-10 -7 (-15 -4220 ((-428 |#3|) |#3|))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 136)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-372)))) (-1575 (($ $) NIL (|has| |#1| (-372)))) (-2085 (((-112) $) NIL (|has| |#1| (-372)))) (-2294 (((-699 |#1|) (-1281 $)) NIL) (((-699 |#1|)) 121)) (-1636 ((|#1| $) 125)) (-1664 (((-1203 (-932) (-781)) (-574)) NIL (|has| |#1| (-358)))) (-3524 (((-3 $ "failed") $ $) NIL)) (-2568 (($ $) NIL (|has| |#1| (-372)))) (-2827 (((-428 $) $) NIL (|has| |#1| (-372)))) (-1600 (((-112) $ $) NIL (|has| |#1| (-372)))) (-1487 (((-781)) 43 (|has| |#1| (-377)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2206 (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) NIL)) (-2737 (($ (-1281 |#1|) (-1281 $)) NIL) (($ (-1281 |#1|)) 46)) (-1765 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-358)))) (-2786 (($ $ $) NIL (|has| |#1| (-372)))) (-2134 (((-699 |#1|) $ (-1281 $)) NIL) (((-699 |#1|) $) NIL)) (-2590 (((-699 (-574)) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) 113) (((-699 |#1|) (-699 $)) 108) (((-699 |#1|) (-1281 $)) NIL)) (-2868 (($ |#2|) 65) (((-3 $ "failed") (-417 |#2|)) NIL (|has| |#1| (-372)))) (-3434 (((-3 $ "failed") $) NIL)) (-3584 (((-932)) 84)) (-2820 (($) 47 (|has| |#1| (-377)))) (-2797 (($ $ $) NIL (|has| |#1| (-372)))) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-3812 (($) NIL (|has| |#1| (-358)))) (-4044 (((-112) $) NIL (|has| |#1| (-358)))) (-1647 (($ $ (-781)) NIL (|has| |#1| (-358))) (($ $) NIL (|has| |#1| (-358)))) (-2257 (((-112) $) NIL (|has| |#1| (-372)))) (-3884 (((-932) $) NIL (|has| |#1| (-358))) (((-843 (-932)) $) NIL (|has| |#1| (-358)))) (-3199 (((-112) $) NIL)) (-2236 ((|#1| $) NIL)) (-2748 (((-3 $ "failed") $) NIL (|has| |#1| (-358)))) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1972 ((|#2| $) 91 (|has| |#1| (-372)))) (-4115 (((-932) $) 145 (|has| |#1| (-377)))) (-2854 ((|#2| $) 62)) (-2832 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL (|has| |#1| (-372)))) (-3818 (($) NIL (|has| |#1| (-358)) CONST)) (-2576 (($ (-932)) 135 (|has| |#1| (-377)))) (-3966 (((-1133) $) NIL)) (-2970 (($) 127)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-372)))) (-2873 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-1417 (((-654 (-2 (|:| -4220 (-574)) (|:| -3715 (-574))))) NIL (|has| |#1| (-358)))) (-4220 (((-428 $) $) NIL (|has| |#1| (-372)))) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-2838 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1730 (((-781) $) NIL (|has| |#1| (-372)))) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#1| (-372)))) (-2872 ((|#1| (-1281 $)) NIL) ((|#1|) 117)) (-4342 (((-781) $) NIL (|has| |#1| (-358))) (((-3 (-781) "failed") $ $) NIL (|has| |#1| (-358)))) (-3905 (($ $) NIL (-2818 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-781)) NIL (-2818 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-1190)) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-911 (-1190))))) (($ $ (-1 |#1| |#1|) (-781)) NIL (|has| |#1| (-372))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-372)))) (-3146 (((-699 |#1|) (-1281 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-372)))) (-4185 ((|#2|) 81)) (-3074 (($) NIL (|has| |#1| (-358)))) (-3487 (((-1281 |#1|) $ (-1281 $)) 96) (((-699 |#1|) (-1281 $) (-1281 $)) NIL) (((-1281 |#1|) $) 75) (((-699 |#1|) (-1281 $)) 92)) (-1836 (((-1281 |#1|) $) NIL) (($ (-1281 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (|has| |#1| (-358)))) (-2943 (((-872) $) 61) (($ (-574)) 56) (($ |#1|) 58) (($ $) NIL (|has| |#1| (-372))) (($ (-417 (-574))) NIL (-2818 (|has| |#1| (-372)) (|has| |#1| (-1051 (-417 (-574))))))) (-3298 (($ $) NIL (|has| |#1| (-358))) (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1435 ((|#2| $) 89)) (-1364 (((-781)) 83 T CONST)) (-3284 (((-112) $ $) NIL)) (-1882 (((-1281 $)) 88)) (-2069 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2133 (($) 32 T CONST)) (-2145 (($) 19 T CONST)) (-3610 (($ $) NIL (-2818 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-781)) NIL (-2818 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-1190)) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-911 (-1190))))) (($ $ (-1 |#1| |#1|) (-781)) NIL (|has| |#1| (-372))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-372)))) (-2981 (((-112) $ $) 67)) (-3108 (($ $ $) NIL (|has| |#1| (-372)))) (-3094 (($ $) 71) (($ $ $) NIL)) (-3079 (($ $ $) 69)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372)))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 54) (($ $ $) 73) (($ $ |#1|) NIL) (($ |#1| $) 51) (($ (-417 (-574)) $) NIL (|has| |#1| (-372))) (($ $ (-417 (-574))) NIL (|has| |#1| (-372))))) -(((-1093 |#1| |#2| |#3|) (-734 |#1| |#2|) (-174) (-1257 |#1|) |#2|) (T -1093)) -NIL -(-734 |#1| |#2|) -((-4220 (((-428 |#3|) |#3|) 19))) -(((-1094 |#1| |#2| |#3|) (-10 -7 (-15 -4220 ((-428 |#3|) |#3|))) (-1257 (-417 (-963 (-574)))) (-13 (-372) (-148) (-734 (-417 (-963 (-574))) |#1|)) (-1257 |#2|)) (T -1094)) -((-4220 (*1 *2 *3) (-12 (-4 *4 (-1257 (-417 (-963 (-574))))) (-4 *5 (-13 (-372) (-148) (-734 (-417 (-963 (-574))) *4))) (-5 *2 (-428 *3)) (-5 *1 (-1094 *4 *5 *3)) (-4 *3 (-1257 *5))))) -(-10 -7 (-15 -4220 ((-428 |#3|) |#3|))) -((-2849 (((-112) $ $) NIL)) (-3659 (($ $ $) 16)) (-4257 (($ $ $) 17)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2504 (($) 6)) (-1836 (((-1190) $) 20)) (-2943 (((-872) $) 13)) (-3284 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 15)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) 9))) -(((-1095) (-13 (-860) (-624 (-1190)) (-10 -8 (-15 -2504 ($))))) (T -1095)) -((-2504 (*1 *1) (-5 *1 (-1095)))) -(-13 (-860) (-624 (-1190)) (-10 -8 (-15 -2504 ($)))) -((-2849 (((-112) $ $) 7)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12) (($ (-1195)) 17) (((-1195) $) 16)) (-3284 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) -(((-1096) (-141)) (T -1096)) +(((-1086) (-13 (-1230) (-10 -8 (-15 -4122 ((-112) $ $))))) (T -1086)) +((-4122 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1086))))) +(-13 (-1230) (-10 -8 (-15 -4122 ((-112) $ $)))) +((-2848 (((-112) $ $) NIL)) (-2031 (((-1189) $) 8)) (-3180 (((-1171) $) 17)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 11)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 14))) +(((-1087 |#1|) (-13 (-1112) (-10 -8 (-15 -2031 ((-1189) $)))) (-1189)) (T -1087)) +((-2031 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1087 *3)) (-14 *3 *2)))) +(-13 (-1112) (-10 -8 (-15 -2031 ((-1189) $)))) +((-2848 (((-112) $ $) NIL)) (-2570 (($ $ (-653 (-1189)) (-1 (-112) (-653 |#3|))) 34)) (-3841 (($ |#3| |#3|) 23) (($ |#3| |#3| (-653 (-1189))) 21)) (-1808 ((|#3| $) 13)) (-1695 (((-3 (-301 |#3|) "failed") $) 60)) (-2205 (((-301 |#3|) $) NIL)) (-3499 (((-653 (-1189)) $) 16)) (-2120 (((-902 |#1|) $) 11)) (-1795 ((|#3| $) 12)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2198 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-931)) 41)) (-2942 (((-871) $) 89) (($ (-301 |#3|)) 22)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 38))) +(((-1088 |#1| |#2| |#3|) (-13 (-1112) (-293 |#3| |#3|) (-1050 (-301 |#3|)) (-10 -8 (-15 -3841 ($ |#3| |#3|)) (-15 -3841 ($ |#3| |#3| (-653 (-1189)))) (-15 -2570 ($ $ (-653 (-1189)) (-1 (-112) (-653 |#3|)))) (-15 -2120 ((-902 |#1|) $)) (-15 -1795 (|#3| $)) (-15 -1808 (|#3| $)) (-15 -2198 (|#3| $ |#3| (-931))) (-15 -3499 ((-653 (-1189)) $)))) (-1112) (-13 (-1061) (-896 |#1|) (-623 (-902 |#1|))) (-13 (-439 |#2|) (-896 |#1|) (-623 (-902 |#1|)))) (T -1088)) +((-3841 (*1 *1 *2 *2) (-12 (-4 *3 (-1112)) (-4 *4 (-13 (-1061) (-896 *3) (-623 (-902 *3)))) (-5 *1 (-1088 *3 *4 *2)) (-4 *2 (-13 (-439 *4) (-896 *3) (-623 (-902 *3)))))) (-3841 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-653 (-1189))) (-4 *4 (-1112)) (-4 *5 (-13 (-1061) (-896 *4) (-623 (-902 *4)))) (-5 *1 (-1088 *4 *5 *2)) (-4 *2 (-13 (-439 *5) (-896 *4) (-623 (-902 *4)))))) (-2570 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 (-1189))) (-5 *3 (-1 (-112) (-653 *6))) (-4 *6 (-13 (-439 *5) (-896 *4) (-623 (-902 *4)))) (-4 *4 (-1112)) (-4 *5 (-13 (-1061) (-896 *4) (-623 (-902 *4)))) (-5 *1 (-1088 *4 *5 *6)))) (-2120 (*1 *2 *1) (-12 (-4 *3 (-1112)) (-4 *4 (-13 (-1061) (-896 *3) (-623 *2))) (-5 *2 (-902 *3)) (-5 *1 (-1088 *3 *4 *5)) (-4 *5 (-13 (-439 *4) (-896 *3) (-623 *2))))) (-1795 (*1 *2 *1) (-12 (-4 *3 (-1112)) (-4 *2 (-13 (-439 *4) (-896 *3) (-623 (-902 *3)))) (-5 *1 (-1088 *3 *4 *2)) (-4 *4 (-13 (-1061) (-896 *3) (-623 (-902 *3)))))) (-1808 (*1 *2 *1) (-12 (-4 *3 (-1112)) (-4 *2 (-13 (-439 *4) (-896 *3) (-623 (-902 *3)))) (-5 *1 (-1088 *3 *4 *2)) (-4 *4 (-13 (-1061) (-896 *3) (-623 (-902 *3)))))) (-2198 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-931)) (-4 *4 (-1112)) (-4 *5 (-13 (-1061) (-896 *4) (-623 (-902 *4)))) (-5 *1 (-1088 *4 *5 *2)) (-4 *2 (-13 (-439 *5) (-896 *4) (-623 (-902 *4)))))) (-3499 (*1 *2 *1) (-12 (-4 *3 (-1112)) (-4 *4 (-13 (-1061) (-896 *3) (-623 (-902 *3)))) (-5 *2 (-653 (-1189))) (-5 *1 (-1088 *3 *4 *5)) (-4 *5 (-13 (-439 *4) (-896 *3) (-623 (-902 *3))))))) +(-13 (-1112) (-293 |#3| |#3|) (-1050 (-301 |#3|)) (-10 -8 (-15 -3841 ($ |#3| |#3|)) (-15 -3841 ($ |#3| |#3| (-653 (-1189)))) (-15 -2570 ($ $ (-653 (-1189)) (-1 (-112) (-653 |#3|)))) (-15 -2120 ((-902 |#1|) $)) (-15 -1795 (|#3| $)) (-15 -1808 (|#3| $)) (-15 -2198 (|#3| $ |#3| (-931))) (-15 -3499 ((-653 (-1189)) $)))) +((-2848 (((-112) $ $) NIL)) (-2533 (($ (-653 (-1088 |#1| |#2| |#3|))) 14)) (-1995 (((-653 (-1088 |#1| |#2| |#3|)) $) 21)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2198 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-931)) 27)) (-2942 (((-871) $) 17)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 20))) +(((-1089 |#1| |#2| |#3|) (-13 (-1112) (-293 |#3| |#3|) (-10 -8 (-15 -2533 ($ (-653 (-1088 |#1| |#2| |#3|)))) (-15 -1995 ((-653 (-1088 |#1| |#2| |#3|)) $)) (-15 -2198 (|#3| $ |#3| (-931))))) (-1112) (-13 (-1061) (-896 |#1|) (-623 (-902 |#1|))) (-13 (-439 |#2|) (-896 |#1|) (-623 (-902 |#1|)))) (T -1089)) +((-2533 (*1 *1 *2) (-12 (-5 *2 (-653 (-1088 *3 *4 *5))) (-4 *3 (-1112)) (-4 *4 (-13 (-1061) (-896 *3) (-623 (-902 *3)))) (-4 *5 (-13 (-439 *4) (-896 *3) (-623 (-902 *3)))) (-5 *1 (-1089 *3 *4 *5)))) (-1995 (*1 *2 *1) (-12 (-4 *3 (-1112)) (-4 *4 (-13 (-1061) (-896 *3) (-623 (-902 *3)))) (-5 *2 (-653 (-1088 *3 *4 *5))) (-5 *1 (-1089 *3 *4 *5)) (-4 *5 (-13 (-439 *4) (-896 *3) (-623 (-902 *3)))))) (-2198 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-931)) (-4 *4 (-1112)) (-4 *5 (-13 (-1061) (-896 *4) (-623 (-902 *4)))) (-5 *1 (-1089 *4 *5 *2)) (-4 *2 (-13 (-439 *5) (-896 *4) (-623 (-902 *4))))))) +(-13 (-1112) (-293 |#3| |#3|) (-10 -8 (-15 -2533 ($ (-653 (-1088 |#1| |#2| |#3|)))) (-15 -1995 ((-653 (-1088 |#1| |#2| |#3|)) $)) (-15 -2198 (|#3| $ |#3| (-931))))) +((-2199 (((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)) (-112) (-112)) 88) (((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|))) 92) (((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)) (-112)) 90))) +(((-1090 |#1| |#2|) (-10 -7 (-15 -2199 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)) (-112))) (-15 -2199 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)))) (-15 -2199 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)) (-112) (-112)))) (-13 (-314) (-148)) (-653 (-1189))) (T -1090)) +((-2199 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-314) (-148))) (-5 *2 (-653 (-2 (|:| -1436 (-1185 *5)) (|:| -2123 (-653 (-962 *5)))))) (-5 *1 (-1090 *5 *6)) (-5 *3 (-653 (-962 *5))) (-14 *6 (-653 (-1189))))) (-2199 (*1 *2 *3) (-12 (-4 *4 (-13 (-314) (-148))) (-5 *2 (-653 (-2 (|:| -1436 (-1185 *4)) (|:| -2123 (-653 (-962 *4)))))) (-5 *1 (-1090 *4 *5)) (-5 *3 (-653 (-962 *4))) (-14 *5 (-653 (-1189))))) (-2199 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-314) (-148))) (-5 *2 (-653 (-2 (|:| -1436 (-1185 *5)) (|:| -2123 (-653 (-962 *5)))))) (-5 *1 (-1090 *5 *6)) (-5 *3 (-653 (-962 *5))) (-14 *6 (-653 (-1189)))))) +(-10 -7 (-15 -2199 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)) (-112))) (-15 -2199 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)))) (-15 -2199 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)) (-112) (-112)))) +((-4218 (((-427 |#3|) |#3|) 18))) +(((-1091 |#1| |#2| |#3|) (-10 -7 (-15 -4218 ((-427 |#3|) |#3|))) (-1256 (-416 (-573))) (-13 (-371) (-148) (-733 (-416 (-573)) |#1|)) (-1256 |#2|)) (T -1091)) +((-4218 (*1 *2 *3) (-12 (-4 *4 (-1256 (-416 (-573)))) (-4 *5 (-13 (-371) (-148) (-733 (-416 (-573)) *4))) (-5 *2 (-427 *3)) (-5 *1 (-1091 *4 *5 *3)) (-4 *3 (-1256 *5))))) +(-10 -7 (-15 -4218 ((-427 |#3|) |#3|))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 136)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-371)))) (-2456 (($ $) NIL (|has| |#1| (-371)))) (-1345 (((-112) $) NIL (|has| |#1| (-371)))) (-2114 (((-698 |#1|) (-1280 $)) NIL) (((-698 |#1|)) 121)) (-1635 ((|#1| $) 125)) (-2604 (((-1202 (-931) (-780)) (-573)) NIL (|has| |#1| (-357)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL (|has| |#1| (-371)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-371)))) (-2800 (((-112) $ $) NIL (|has| |#1| (-371)))) (-1486 (((-780)) 43 (|has| |#1| (-376)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) NIL)) (-2205 (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) NIL)) (-2854 (($ (-1280 |#1|) (-1280 $)) NIL) (($ (-1280 |#1|)) 46)) (-2209 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-357)))) (-2784 (($ $ $) NIL (|has| |#1| (-371)))) (-1720 (((-698 |#1|) $ (-1280 $)) NIL) (((-698 |#1|) $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) 113) (((-698 |#1|) (-698 $)) 108) (((-698 |#1|) (-1280 $)) NIL)) (-2867 (($ |#2|) 65) (((-3 $ "failed") (-416 |#2|)) NIL (|has| |#1| (-371)))) (-2232 (((-3 $ "failed") $) NIL)) (-3583 (((-931)) 84)) (-2819 (($) 47 (|has| |#1| (-376)))) (-2796 (($ $ $) NIL (|has| |#1| (-371)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#1| (-371)))) (-3731 (($) NIL (|has| |#1| (-357)))) (-1708 (((-112) $) NIL (|has| |#1| (-357)))) (-2104 (($ $ (-780)) NIL (|has| |#1| (-357))) (($ $) NIL (|has| |#1| (-357)))) (-2696 (((-112) $) NIL (|has| |#1| (-371)))) (-2534 (((-931) $) NIL (|has| |#1| (-357))) (((-842 (-931)) $) NIL (|has| |#1| (-357)))) (-1959 (((-112) $) NIL)) (-3421 ((|#1| $) NIL)) (-1470 (((-3 $ "failed") $) NIL (|has| |#1| (-357)))) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-2297 ((|#2| $) 91 (|has| |#1| (-371)))) (-3589 (((-931) $) 145 (|has| |#1| (-376)))) (-2853 ((|#2| $) 62)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL (|has| |#1| (-371)))) (-3816 (($) NIL (|has| |#1| (-357)) CONST)) (-2575 (($ (-931)) 135 (|has| |#1| (-376)))) (-3965 (((-1132) $) NIL)) (-2969 (($) 127)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-371)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-4199 (((-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573))))) NIL (|has| |#1| (-357)))) (-4218 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-371)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-2163 (((-780) $) NIL (|has| |#1| (-371)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-3592 ((|#1| (-1280 $)) NIL) ((|#1|) 117)) (-1637 (((-780) $) NIL (|has| |#1| (-357))) (((-3 (-780) "failed") $ $) NIL (|has| |#1| (-357)))) (-3904 (($ $ (-780)) NIL (-2817 (-12 (|has| |#1| (-238)) (|has| |#1| (-371))) (|has| |#1| (-357)))) (($ $) NIL (-2817 (-12 (|has| |#1| (-238)) (|has| |#1| (-371))) (|has| |#1| (-357)))) (($ $ (-1189)) NIL (-12 (|has| |#1| (-371)) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-371)) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-371)) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-371)) (|has| |#1| (-910 (-1189))))) (($ $ (-1 |#1| |#1|) (-780)) NIL (|has| |#1| (-371))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-371)))) (-4303 (((-698 |#1|) (-1280 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-371)))) (-2984 ((|#2|) 81)) (-2510 (($) NIL (|has| |#1| (-357)))) (-2123 (((-1280 |#1|) $ (-1280 $)) 96) (((-698 |#1|) (-1280 $) (-1280 $)) NIL) (((-1280 |#1|) $) 75) (((-698 |#1|) (-1280 $)) 92)) (-1835 (((-1280 |#1|) $) NIL) (($ (-1280 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (|has| |#1| (-357)))) (-2942 (((-871) $) 61) (($ (-573)) 56) (($ |#1|) 58) (($ $) NIL (|has| |#1| (-371))) (($ (-416 (-573))) NIL (-2817 (|has| |#1| (-371)) (|has| |#1| (-1050 (-416 (-573))))))) (-4279 (($ $) NIL (|has| |#1| (-357))) (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2517 ((|#2| $) 89)) (-1545 (((-780)) 83 T CONST)) (-3507 (((-112) $ $) NIL)) (-3914 (((-1280 $)) 88)) (-2516 (((-112) $ $) NIL (|has| |#1| (-371)))) (-2132 (($) 32 T CONST)) (-2144 (($) 19 T CONST)) (-3609 (($ $ (-780)) NIL (-2817 (-12 (|has| |#1| (-238)) (|has| |#1| (-371))) (|has| |#1| (-357)))) (($ $) NIL (-2817 (-12 (|has| |#1| (-238)) (|has| |#1| (-371))) (|has| |#1| (-357)))) (($ $ (-1189)) NIL (-12 (|has| |#1| (-371)) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-371)) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-371)) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-371)) (|has| |#1| (-910 (-1189))))) (($ $ (-1 |#1| |#1|) (-780)) NIL (|has| |#1| (-371))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-371)))) (-2981 (((-112) $ $) 67)) (-3103 (($ $ $) NIL (|has| |#1| (-371)))) (-3093 (($ $) 71) (($ $ $) NIL)) (-3077 (($ $ $) 69)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL (|has| |#1| (-371)))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 54) (($ $ $) 73) (($ $ |#1|) NIL) (($ |#1| $) 51) (($ (-416 (-573)) $) NIL (|has| |#1| (-371))) (($ $ (-416 (-573))) NIL (|has| |#1| (-371))))) +(((-1092 |#1| |#2| |#3|) (-733 |#1| |#2|) (-174) (-1256 |#1|) |#2|) (T -1092)) +NIL +(-733 |#1| |#2|) +((-4218 (((-427 |#3|) |#3|) 19))) +(((-1093 |#1| |#2| |#3|) (-10 -7 (-15 -4218 ((-427 |#3|) |#3|))) (-1256 (-416 (-962 (-573)))) (-13 (-371) (-148) (-733 (-416 (-962 (-573))) |#1|)) (-1256 |#2|)) (T -1093)) +((-4218 (*1 *2 *3) (-12 (-4 *4 (-1256 (-416 (-962 (-573))))) (-4 *5 (-13 (-371) (-148) (-733 (-416 (-962 (-573))) *4))) (-5 *2 (-427 *3)) (-5 *1 (-1093 *4 *5 *3)) (-4 *3 (-1256 *5))))) +(-10 -7 (-15 -4218 ((-427 |#3|) |#3|))) +((-2848 (((-112) $ $) NIL)) (-3659 (($ $ $) 16)) (-3751 (($ $ $) 17)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2971 (($) 6)) (-1835 (((-1189) $) 20)) (-2942 (((-871) $) 13)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 15)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 9))) +(((-1094) (-13 (-859) (-623 (-1189)) (-10 -8 (-15 -2971 ($))))) (T -1094)) +((-2971 (*1 *1) (-5 *1 (-1094)))) +(-13 (-859) (-623 (-1189)) (-10 -8 (-15 -2971 ($)))) +((-2848 (((-112) $ $) 7)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12) (($ (-1194)) 17) (((-1194) $) 16)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) +(((-1095) (-141)) (T -1095)) NIL (-13 (-93)) -(((-93) . T) ((-102) . T) ((-626 #0=(-1195)) . T) ((-623 (-872)) . T) ((-623 #0#) . T) ((-500 #0#) . T) ((-1113) . T)) -((-1893 ((|#1| |#1| (-1 (-574) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-3085 (((-1286)) 21)) (-1705 (((-654 |#1|)) 13))) -(((-1097 |#1|) (-10 -7 (-15 -3085 ((-1286))) (-15 -1705 ((-654 |#1|))) (-15 -1893 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1893 (|#1| |#1| (-1 (-574) |#1| |#1|)))) (-133)) (T -1097)) -((-1893 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-574) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1097 *2)))) (-1893 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1097 *2)))) (-1705 (*1 *2) (-12 (-5 *2 (-654 *3)) (-5 *1 (-1097 *3)) (-4 *3 (-133)))) (-3085 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-1097 *3)) (-4 *3 (-133))))) -(-10 -7 (-15 -3085 ((-1286))) (-15 -1705 ((-654 |#1|))) (-15 -1893 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1893 (|#1| |#1| (-1 (-574) |#1| |#1|)))) -((-4009 (($ (-109) $) 20)) (-3171 (((-701 (-109)) (-516) $) 19)) (-2672 (($) 7)) (-4378 (($) 21)) (-1502 (($) 22)) (-4114 (((-654 (-177)) $) 10)) (-2943 (((-872) $) 25))) -(((-1098) (-13 (-623 (-872)) (-10 -8 (-15 -2672 ($)) (-15 -4114 ((-654 (-177)) $)) (-15 -3171 ((-701 (-109)) (-516) $)) (-15 -4009 ($ (-109) $)) (-15 -4378 ($)) (-15 -1502 ($))))) (T -1098)) -((-2672 (*1 *1) (-5 *1 (-1098))) (-4114 (*1 *2 *1) (-12 (-5 *2 (-654 (-177))) (-5 *1 (-1098)))) (-3171 (*1 *2 *3 *1) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-109))) (-5 *1 (-1098)))) (-4009 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1098)))) (-4378 (*1 *1) (-5 *1 (-1098))) (-1502 (*1 *1) (-5 *1 (-1098)))) -(-13 (-623 (-872)) (-10 -8 (-15 -2672 ($)) (-15 -4114 ((-654 (-177)) $)) (-15 -3171 ((-701 (-109)) (-516) $)) (-15 -4009 ($ (-109) $)) (-15 -4378 ($)) (-15 -1502 ($)))) -((-2174 (((-1281 (-699 |#1|)) (-654 (-699 |#1|))) 45) (((-1281 (-699 (-963 |#1|))) (-654 (-1190)) (-699 (-963 |#1|))) 75) (((-1281 (-699 (-417 (-963 |#1|)))) (-654 (-1190)) (-699 (-417 (-963 |#1|)))) 92)) (-3487 (((-1281 |#1|) (-699 |#1|) (-654 (-699 |#1|))) 39))) -(((-1099 |#1|) (-10 -7 (-15 -2174 ((-1281 (-699 (-417 (-963 |#1|)))) (-654 (-1190)) (-699 (-417 (-963 |#1|))))) (-15 -2174 ((-1281 (-699 (-963 |#1|))) (-654 (-1190)) (-699 (-963 |#1|)))) (-15 -2174 ((-1281 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -3487 ((-1281 |#1|) (-699 |#1|) (-654 (-699 |#1|))))) (-372)) (T -1099)) -((-3487 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-699 *5))) (-5 *3 (-699 *5)) (-4 *5 (-372)) (-5 *2 (-1281 *5)) (-5 *1 (-1099 *5)))) (-2174 (*1 *2 *3) (-12 (-5 *3 (-654 (-699 *4))) (-4 *4 (-372)) (-5 *2 (-1281 (-699 *4))) (-5 *1 (-1099 *4)))) (-2174 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-1190))) (-4 *5 (-372)) (-5 *2 (-1281 (-699 (-963 *5)))) (-5 *1 (-1099 *5)) (-5 *4 (-699 (-963 *5))))) (-2174 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-1190))) (-4 *5 (-372)) (-5 *2 (-1281 (-699 (-417 (-963 *5))))) (-5 *1 (-1099 *5)) (-5 *4 (-699 (-417 (-963 *5))))))) -(-10 -7 (-15 -2174 ((-1281 (-699 (-417 (-963 |#1|)))) (-654 (-1190)) (-699 (-417 (-963 |#1|))))) (-15 -2174 ((-1281 (-699 (-963 |#1|))) (-654 (-1190)) (-699 (-963 |#1|)))) (-15 -2174 ((-1281 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -3487 ((-1281 |#1|) (-699 |#1|) (-654 (-699 |#1|))))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-4299 (((-654 (-781)) $) NIL) (((-654 (-781)) $ (-1190)) NIL)) (-1336 (((-781) $) NIL) (((-781) $ (-1190)) NIL)) (-4355 (((-654 (-1101 (-1190))) $) NIL)) (-4194 (((-1186 $) $ (-1101 (-1190))) NIL) (((-1186 |#1|) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-1575 (($ $) NIL (|has| |#1| (-566)))) (-2085 (((-112) $) NIL (|has| |#1| (-566)))) (-1757 (((-781) $) NIL) (((-781) $ (-654 (-1101 (-1190)))) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3972 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-2568 (($ $) NIL (|has| |#1| (-462)))) (-2827 (((-428 $) $) NIL (|has| |#1| (-462)))) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-2040 (($ $) NIL)) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-1101 (-1190)) "failed") $) NIL) (((-3 (-1190) "failed") $) NIL) (((-3 (-1138 |#1| (-1190)) "failed") $) NIL)) (-2206 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-1101 (-1190)) $) NIL) (((-1190) $) NIL) (((-1138 |#1| (-1190)) $) NIL)) (-1463 (($ $ $ (-1101 (-1190))) NIL (|has| |#1| (-174)))) (-1392 (($ $) NIL)) (-2590 (((-699 (-574)) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-1569 (($ $) NIL (|has| |#1| (-462))) (($ $ (-1101 (-1190))) NIL (|has| |#1| (-462)))) (-1380 (((-654 $) $) NIL)) (-2257 (((-112) $) NIL (|has| |#1| (-920)))) (-1661 (($ $ |#1| (-541 (-1101 (-1190))) $) NIL)) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1101 (-1190)) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1101 (-1190)) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3884 (((-781) $ (-1190)) NIL) (((-781) $) NIL)) (-3199 (((-112) $) NIL)) (-1322 (((-781) $) NIL)) (-4345 (($ (-1186 |#1|) (-1101 (-1190))) NIL) (($ (-1186 $) (-1101 (-1190))) NIL)) (-3727 (((-654 $) $) NIL)) (-3869 (((-112) $) NIL)) (-4335 (($ |#1| (-541 (-1101 (-1190)))) NIL) (($ $ (-1101 (-1190)) (-781)) NIL) (($ $ (-654 (-1101 (-1190))) (-654 (-781))) NIL)) (-2773 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $ (-1101 (-1190))) NIL)) (-1742 (((-541 (-1101 (-1190))) $) NIL) (((-781) $ (-1101 (-1190))) NIL) (((-654 (-781)) $ (-654 (-1101 (-1190)))) NIL)) (-3708 (($ (-1 (-541 (-1101 (-1190))) (-541 (-1101 (-1190)))) $) NIL)) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-2168 (((-1 $ (-781)) (-1190)) NIL) (((-1 $ (-781)) $) NIL (|has| |#1| (-239)))) (-2717 (((-3 (-1101 (-1190)) "failed") $) NIL)) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-3706 (((-1101 (-1190)) $) NIL)) (-2832 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-4136 (((-1172) $) NIL)) (-2782 (((-112) $) NIL)) (-2755 (((-3 (-654 $) "failed") $) NIL)) (-2415 (((-3 (-654 $) "failed") $) NIL)) (-2241 (((-3 (-2 (|:| |var| (-1101 (-1190))) (|:| -3715 (-781))) "failed") $) NIL)) (-2591 (($ $) NIL)) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) NIL)) (-1349 ((|#1| $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-462)))) (-2873 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2560 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-2039 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4220 (((-428 $) $) NIL (|has| |#1| (-920)))) (-2838 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2646 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1101 (-1190)) |#1|) NIL) (($ $ (-654 (-1101 (-1190))) (-654 |#1|)) NIL) (($ $ (-1101 (-1190)) $) NIL) (($ $ (-654 (-1101 (-1190))) (-654 $)) NIL) (($ $ (-1190) $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1190)) (-654 $)) NIL (|has| |#1| (-239))) (($ $ (-1190) |#1|) NIL (|has| |#1| (-239))) (($ $ (-654 (-1190)) (-654 |#1|)) NIL (|has| |#1| (-239)))) (-2872 (($ $ (-1101 (-1190))) NIL (|has| |#1| (-174)))) (-3905 (($ $ (-1101 (-1190))) NIL) (($ $ (-654 (-1101 (-1190)))) NIL) (($ $ (-1101 (-1190)) (-781)) NIL) (($ $ (-654 (-1101 (-1190))) (-654 (-781))) NIL) (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2243 (((-654 (-1190)) $) NIL)) (-4202 (((-541 (-1101 (-1190))) $) NIL) (((-781) $ (-1101 (-1190))) NIL) (((-654 (-781)) $ (-654 (-1101 (-1190)))) NIL) (((-781) $ (-1190)) NIL)) (-1836 (((-903 (-388)) $) NIL (-12 (|has| (-1101 (-1190)) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1101 (-1190)) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1101 (-1190)) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-3069 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ (-1101 (-1190))) NIL (|has| |#1| (-462)))) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-920))))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-1101 (-1190))) NIL) (($ (-1190)) NIL) (($ (-1138 |#1| (-1190))) NIL) (($ (-417 (-574))) NIL (-2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-2530 (((-654 |#1|) $) NIL)) (-3087 ((|#1| $ (-541 (-1101 (-1190)))) NIL) (($ $ (-1101 (-1190)) (-781)) NIL) (($ $ (-654 (-1101 (-1190))) (-654 (-781))) NIL)) (-3298 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#1| (-920))) (|has| |#1| (-146))))) (-1364 (((-781)) NIL T CONST)) (-3772 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-3610 (($ $ (-1101 (-1190))) NIL) (($ $ (-654 (-1101 (-1190)))) NIL) (($ $ (-1101 (-1190)) (-781)) NIL) (($ $ (-654 (-1101 (-1190))) (-654 (-781))) NIL) (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1100 |#1|) (-13 (-260 |#1| (-1190) (-1101 (-1190)) (-541 (-1101 (-1190)))) (-1051 (-1138 |#1| (-1190)))) (-1062)) (T -1100)) -NIL -(-13 (-260 |#1| (-1190) (-1101 (-1190)) (-541 (-1101 (-1190)))) (-1051 (-1138 |#1| (-1190)))) -((-2849 (((-112) $ $) NIL)) (-1336 (((-781) $) NIL)) (-1488 ((|#1| $) 10)) (-1696 (((-3 |#1| "failed") $) NIL)) (-2206 ((|#1| $) NIL)) (-3884 (((-781) $) 11)) (-3659 (($ $ $) NIL)) (-4257 (($ $ $) NIL)) (-2168 (($ |#1| (-781)) 9)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-3905 (($ $ (-781)) NIL) (($ $) NIL)) (-2943 (((-872) $) NIL) (($ |#1|) NIL)) (-3284 (((-112) $ $) NIL)) (-3610 (($ $ (-781)) NIL) (($ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) 16))) -(((-1101 |#1|) (-273 |#1|) (-860)) (T -1101)) -NIL -(-273 |#1|) -((-1777 (((-654 |#2|) (-1 |#2| |#1|) (-1107 |#1|)) 29 (|has| |#1| (-858))) (((-1107 |#2|) (-1 |#2| |#1|) (-1107 |#1|)) 14))) -(((-1102 |#1| |#2|) (-10 -7 (-15 -1777 ((-1107 |#2|) (-1 |#2| |#1|) (-1107 |#1|))) (IF (|has| |#1| (-858)) (-15 -1777 ((-654 |#2|) (-1 |#2| |#1|) (-1107 |#1|))) |%noBranch|)) (-1231) (-1231)) (T -1102)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1107 *5)) (-4 *5 (-858)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-654 *6)) (-5 *1 (-1102 *5 *6)))) (-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1107 *5)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-1107 *6)) (-5 *1 (-1102 *5 *6))))) -(-10 -7 (-15 -1777 ((-1107 |#2|) (-1 |#2| |#1|) (-1107 |#1|))) (IF (|has| |#1| (-858)) (-15 -1777 ((-654 |#2|) (-1 |#2| |#1|) (-1107 |#1|))) |%noBranch|)) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 16) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2200 (((-654 (-1148)) $) 10)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1103) (-13 (-1096) (-10 -8 (-15 -2200 ((-654 (-1148)) $))))) (T -1103)) -((-2200 (*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-1103))))) -(-13 (-1096) (-10 -8 (-15 -2200 ((-654 (-1148)) $)))) -((-1777 (((-1105 |#2|) (-1 |#2| |#1|) (-1105 |#1|)) 19))) -(((-1104 |#1| |#2|) (-10 -7 (-15 -1777 ((-1105 |#2|) (-1 |#2| |#1|) (-1105 |#1|)))) (-1231) (-1231)) (T -1104)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1105 *5)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-1105 *6)) (-5 *1 (-1104 *5 *6))))) -(-10 -7 (-15 -1777 ((-1105 |#2|) (-1 |#2| |#1|) (-1105 |#1|)))) -((-2849 (((-112) $ $) NIL (|has| (-1107 |#1|) (-1113)))) (-1488 (((-1190) $) NIL)) (-3242 (((-1107 |#1|) $) NIL)) (-4136 (((-1172) $) NIL (|has| (-1107 |#1|) (-1113)))) (-3966 (((-1133) $) NIL (|has| (-1107 |#1|) (-1113)))) (-2692 (($ (-1190) (-1107 |#1|)) NIL)) (-2943 (((-872) $) NIL (|has| (-1107 |#1|) (-1113)))) (-3284 (((-112) $ $) NIL (|has| (-1107 |#1|) (-1113)))) (-2981 (((-112) $ $) NIL (|has| (-1107 |#1|) (-1113))))) -(((-1105 |#1|) (-13 (-1231) (-10 -8 (-15 -2692 ($ (-1190) (-1107 |#1|))) (-15 -1488 ((-1190) $)) (-15 -3242 ((-1107 |#1|) $)) (IF (|has| (-1107 |#1|) (-1113)) (-6 (-1113)) |%noBranch|))) (-1231)) (T -1105)) -((-2692 (*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1107 *4)) (-4 *4 (-1231)) (-5 *1 (-1105 *4)))) (-1488 (*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-1105 *3)) (-4 *3 (-1231)))) (-3242 (*1 *2 *1) (-12 (-5 *2 (-1107 *3)) (-5 *1 (-1105 *3)) (-4 *3 (-1231))))) -(-13 (-1231) (-10 -8 (-15 -2692 ($ (-1190) (-1107 |#1|))) (-15 -1488 ((-1190) $)) (-15 -3242 ((-1107 |#1|) $)) (IF (|has| (-1107 |#1|) (-1113)) (-6 (-1113)) |%noBranch|))) -((-3242 (($ |#1| |#1|) 8)) (-2276 ((|#1| $) 11)) (-2816 ((|#1| $) 13)) (-1953 (((-574) $) 9)) (-2401 ((|#1| $) 10)) (-1965 ((|#1| $) 12)) (-1836 (($ |#1|) 6)) (-4277 (($ |#1| |#1|) 15)) (-2733 (($ $ (-574)) 14))) -(((-1106 |#1|) (-141) (-1231)) (T -1106)) -((-4277 (*1 *1 *2 *2) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1231)))) (-2733 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1106 *3)) (-4 *3 (-1231)))) (-2816 (*1 *2 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1231)))) (-1965 (*1 *2 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1231)))) (-2276 (*1 *2 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1231)))) (-2401 (*1 *2 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1231)))) (-1953 (*1 *2 *1) (-12 (-4 *1 (-1106 *3)) (-4 *3 (-1231)) (-5 *2 (-574)))) (-3242 (*1 *1 *2 *2) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1231))))) -(-13 (-628 |t#1|) (-10 -8 (-15 -4277 ($ |t#1| |t#1|)) (-15 -2733 ($ $ (-574))) (-15 -2816 (|t#1| $)) (-15 -1965 (|t#1| $)) (-15 -2276 (|t#1| $)) (-15 -2401 (|t#1| $)) (-15 -1953 ((-574) $)) (-15 -3242 ($ |t#1| |t#1|)))) -(((-628 |#1|) . T)) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3242 (($ |#1| |#1|) 16)) (-1777 (((-654 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-858)))) (-2276 ((|#1| $) 12)) (-2816 ((|#1| $) 11)) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-1953 (((-574) $) 15)) (-2401 ((|#1| $) 14)) (-1965 ((|#1| $) 13)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2128 (((-654 |#1|) $) 44 (|has| |#1| (-858))) (((-654 |#1|) (-654 $)) 43 (|has| |#1| (-858)))) (-1836 (($ |#1|) 29)) (-2943 (((-872) $) 28 (|has| |#1| (-1113)))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-4277 (($ |#1| |#1|) 10)) (-2733 (($ $ (-574)) 17)) (-2981 (((-112) $ $) 22 (|has| |#1| (-1113))))) -(((-1107 |#1|) (-13 (-1106 |#1|) (-10 -7 (IF (|has| |#1| (-1113)) (-6 (-1113)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-1108 |#1| (-654 |#1|))) |%noBranch|))) (-1231)) (T -1107)) -NIL -(-13 (-1106 |#1|) (-10 -7 (IF (|has| |#1| (-1113)) (-6 (-1113)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-1108 |#1| (-654 |#1|))) |%noBranch|))) -((-3242 (($ |#1| |#1|) 8)) (-1777 ((|#2| (-1 |#1| |#1|) $) 16)) (-2276 ((|#1| $) 11)) (-2816 ((|#1| $) 13)) (-1953 (((-574) $) 9)) (-2401 ((|#1| $) 10)) (-1965 ((|#1| $) 12)) (-2128 ((|#2| (-654 $)) 18) ((|#2| $) 17)) (-1836 (($ |#1|) 6)) (-4277 (($ |#1| |#1|) 15)) (-2733 (($ $ (-574)) 14))) -(((-1108 |#1| |#2|) (-141) (-858) (-1162 |t#1|)) (T -1108)) -((-2128 (*1 *2 *3) (-12 (-5 *3 (-654 *1)) (-4 *1 (-1108 *4 *2)) (-4 *4 (-858)) (-4 *2 (-1162 *4)))) (-2128 (*1 *2 *1) (-12 (-4 *1 (-1108 *3 *2)) (-4 *3 (-858)) (-4 *2 (-1162 *3)))) (-1777 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1108 *4 *2)) (-4 *4 (-858)) (-4 *2 (-1162 *4))))) -(-13 (-1106 |t#1|) (-10 -8 (-15 -2128 (|t#2| (-654 $))) (-15 -2128 (|t#2| $)) (-15 -1777 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-628 |#1|) . T) ((-1106 |#1|) . T)) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3360 (((-1148) $) 12)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 18) (($ (-1195)) NIL) (((-1195) $) NIL)) (-2044 (((-654 (-1148)) $) 10)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1109) (-13 (-1096) (-10 -8 (-15 -2044 ((-654 (-1148)) $)) (-15 -3360 ((-1148) $))))) (T -1109)) -((-2044 (*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-1109)))) (-3360 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1109))))) -(-13 (-1096) (-10 -8 (-15 -2044 ((-654 (-1148)) $)) (-15 -3360 ((-1148) $)))) -((-4359 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2743 (($ $ $) 10)) (-4285 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1110 |#1| |#2|) (-10 -8 (-15 -4359 (|#1| |#2| |#1|)) (-15 -4359 (|#1| |#1| |#2|)) (-15 -4359 (|#1| |#1| |#1|)) (-15 -2743 (|#1| |#1| |#1|)) (-15 -4285 (|#1| |#1| |#2|)) (-15 -4285 (|#1| |#1| |#1|))) (-1111 |#2|) (-1113)) (T -1110)) -NIL -(-10 -8 (-15 -4359 (|#1| |#2| |#1|)) (-15 -4359 (|#1| |#1| |#2|)) (-15 -4359 (|#1| |#1| |#1|)) (-15 -2743 (|#1| |#1| |#1|)) (-15 -4285 (|#1| |#1| |#2|)) (-15 -4285 (|#1| |#1| |#1|))) -((-2849 (((-112) $ $) 7)) (-4359 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-2743 (($ $ $) 21)) (-3605 (((-112) $ $) 20)) (-3034 (((-112) $ (-781)) 36)) (-1507 (($) 26) (($ (-654 |#1|)) 25)) (-2165 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4456)))) (-3426 (($) 37 T CONST)) (-1543 (($ $) 60 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ |#1| $) 59 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4456)))) (-1864 (((-654 |#1|) $) 44 (|has| $ (-6 -4456)))) (-3270 (((-112) $ $) 29)) (-2742 (((-112) $ (-781)) 35)) (-1606 (((-654 |#1|) $) 45 (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2449 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 39)) (-4203 (((-112) $ (-781)) 34)) (-4136 (((-1172) $) 10)) (-1784 (($ $ $) 24)) (-3966 (((-1133) $) 11)) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-2540 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 |#1|) (-654 |#1|)) 51 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 49 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 (-302 |#1|))) 48 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 30)) (-1584 (((-112) $) 33)) (-2672 (($) 32)) (-4285 (($ $ $) 23) (($ $ |#1|) 22)) (-3975 (((-781) |#1| $) 46 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) (((-781) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4456)))) (-3167 (($ $) 31)) (-1836 (((-546) $) 61 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 52)) (-2943 (((-872) $) 12)) (-4281 (($) 28) (($ (-654 |#1|)) 27)) (-3284 (((-112) $ $) 9)) (-3390 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 6)) (-2863 (((-781) $) 38 (|has| $ (-6 -4456))))) -(((-1111 |#1|) (-141) (-1113)) (T -1111)) -((-3270 (*1 *2 *1 *1) (-12 (-4 *1 (-1111 *3)) (-4 *3 (-1113)) (-5 *2 (-112)))) (-4281 (*1 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113)))) (-4281 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-4 *1 (-1111 *3)))) (-1507 (*1 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-4 *1 (-1111 *3)))) (-1784 (*1 *1 *1 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113)))) (-4285 (*1 *1 *1 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113)))) (-4285 (*1 *1 *1 *2) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113)))) (-2743 (*1 *1 *1 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113)))) (-3605 (*1 *2 *1 *1) (-12 (-4 *1 (-1111 *3)) (-4 *3 (-1113)) (-5 *2 (-112)))) (-4359 (*1 *1 *1 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113)))) (-4359 (*1 *1 *1 *2) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113)))) (-4359 (*1 *1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113))))) -(-13 (-1113) (-152 |t#1|) (-10 -8 (-6 -4446) (-15 -3270 ((-112) $ $)) (-15 -4281 ($)) (-15 -4281 ($ (-654 |t#1|))) (-15 -1507 ($)) (-15 -1507 ($ (-654 |t#1|))) (-15 -1784 ($ $ $)) (-15 -4285 ($ $ $)) (-15 -4285 ($ $ |t#1|)) (-15 -2743 ($ $ $)) (-15 -3605 ((-112) $ $)) (-15 -4359 ($ $ $)) (-15 -4359 ($ $ |t#1|)) (-15 -4359 ($ |t#1| $)))) -(((-34) . T) ((-102) . T) ((-623 (-872)) . T) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1113) . T) ((-1231) . T)) -((-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 8)) (-3284 (((-112) $ $) 12))) -(((-1112 |#1|) (-10 -8 (-15 -3284 ((-112) |#1| |#1|)) (-15 -4136 ((-1172) |#1|)) (-15 -3966 ((-1133) |#1|))) (-1113)) (T -1112)) -NIL -(-10 -8 (-15 -3284 ((-112) |#1| |#1|)) (-15 -4136 ((-1172) |#1|)) (-15 -3966 ((-1133) |#1|))) -((-2849 (((-112) $ $) 7)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) -(((-1113) (-141)) (T -1113)) -((-3966 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1133)))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1172)))) (-3284 (*1 *2 *1 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-112))))) -(-13 (-102) (-623 (-872)) (-10 -8 (-15 -3966 ((-1133) $)) (-15 -4136 ((-1172) $)) (-15 -3284 ((-112) $ $)))) -(((-102) . T) ((-623 (-872)) . T)) -((-2849 (((-112) $ $) NIL)) (-1487 (((-781)) 36)) (-1722 (($ (-654 (-932))) 70)) (-1725 (((-3 $ "failed") $ (-932) (-932)) 81)) (-2820 (($) 40)) (-1710 (((-112) (-932) $) 42)) (-4115 (((-932) $) 64)) (-4136 (((-1172) $) NIL)) (-2576 (($ (-932)) 39)) (-3767 (((-3 $ "failed") $ (-932)) 77)) (-3966 (((-1133) $) NIL)) (-3738 (((-1281 $)) 47)) (-4422 (((-654 (-932)) $) 27)) (-2075 (((-781) $ (-932) (-932)) 78)) (-2943 (((-872) $) 32)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 24))) -(((-1114 |#1| |#2|) (-13 (-377) (-10 -8 (-15 -3767 ((-3 $ "failed") $ (-932))) (-15 -1725 ((-3 $ "failed") $ (-932) (-932))) (-15 -4422 ((-654 (-932)) $)) (-15 -1722 ($ (-654 (-932)))) (-15 -3738 ((-1281 $))) (-15 -1710 ((-112) (-932) $)) (-15 -2075 ((-781) $ (-932) (-932))))) (-932) (-932)) (T -1114)) -((-3767 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-932)) (-5 *1 (-1114 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1725 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-932)) (-5 *1 (-1114 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-4422 (*1 *2 *1) (-12 (-5 *2 (-654 (-932))) (-5 *1 (-1114 *3 *4)) (-14 *3 (-932)) (-14 *4 (-932)))) (-1722 (*1 *1 *2) (-12 (-5 *2 (-654 (-932))) (-5 *1 (-1114 *3 *4)) (-14 *3 (-932)) (-14 *4 (-932)))) (-3738 (*1 *2) (-12 (-5 *2 (-1281 (-1114 *3 *4))) (-5 *1 (-1114 *3 *4)) (-14 *3 (-932)) (-14 *4 (-932)))) (-1710 (*1 *2 *3 *1) (-12 (-5 *3 (-932)) (-5 *2 (-112)) (-5 *1 (-1114 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2075 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-932)) (-5 *2 (-781)) (-5 *1 (-1114 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-377) (-10 -8 (-15 -3767 ((-3 $ "failed") $ (-932))) (-15 -1725 ((-3 $ "failed") $ (-932) (-932))) (-15 -4422 ((-654 (-932)) $)) (-15 -1722 ($ (-654 (-932)))) (-15 -3738 ((-1281 $))) (-15 -1710 ((-112) (-932) $)) (-15 -2075 ((-781) $ (-932) (-932))))) -((-2849 (((-112) $ $) NIL)) (-1988 (($) NIL (|has| |#1| (-377)))) (-4359 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-2743 (($ $ $) 81)) (-3605 (((-112) $ $) 82)) (-3034 (((-112) $ (-781)) NIL)) (-1487 (((-781)) NIL (|has| |#1| (-377)))) (-1507 (($ (-654 |#1|)) NIL) (($) 13)) (-3572 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2165 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3426 (($) NIL T CONST)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2876 (($ |#1| $) 74 (|has| $ (-6 -4456))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3335 (($ |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4456)))) (-2820 (($) NIL (|has| |#1| (-377)))) (-1864 (((-654 |#1|) $) 19 (|has| $ (-6 -4456)))) (-3270 (((-112) $ $) NIL)) (-2742 (((-112) $ (-781)) NIL)) (-3659 ((|#1| $) 55 (|has| |#1| (-860)))) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-4257 ((|#1| $) 53 (|has| |#1| (-860)))) (-2449 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 34)) (-4115 (((-932) $) NIL (|has| |#1| (-377)))) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL)) (-1784 (($ $ $) 79)) (-2937 ((|#1| $) 25)) (-2798 (($ |#1| $) 69)) (-2576 (($ (-932)) NIL (|has| |#1| (-377)))) (-3966 (((-1133) $) NIL)) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1785 ((|#1| $) 27)) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) NIL)) (-1584 (((-112) $) 21)) (-2672 (($) 11)) (-4285 (($ $ |#1|) NIL) (($ $ $) 80)) (-1662 (($) NIL) (($ (-654 |#1|)) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) 16)) (-1836 (((-546) $) 50 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 62)) (-1334 (($ $) NIL (|has| |#1| (-377)))) (-2943 (((-872) $) NIL)) (-4066 (((-781) $) NIL)) (-4281 (($ (-654 |#1|)) NIL) (($) 12)) (-3284 (((-112) $ $) NIL)) (-1599 (($ (-654 |#1|)) NIL)) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 52)) (-2863 (((-781) $) 10 (|has| $ (-6 -4456))))) -(((-1115 |#1|) (-435 |#1|) (-1113)) (T -1115)) -NIL -(-435 |#1|) -((-2849 (((-112) $ $) 7)) (-4108 (((-112) $) 33)) (-4005 ((|#2| $) 28)) (-1986 (((-112) $) 34)) (-3249 ((|#1| $) 29)) (-2460 (((-112) $) 36)) (-2731 (((-112) $) 38)) (-3881 (((-112) $) 35)) (-4136 (((-1172) $) 10)) (-2819 (((-112) $) 32)) (-4026 ((|#3| $) 27)) (-3966 (((-1133) $) 11)) (-2774 (((-112) $) 31)) (-2381 ((|#4| $) 26)) (-1444 ((|#5| $) 25)) (-4122 (((-112) $ $) 39)) (-2199 (($ $ (-574)) 41) (($ $ (-654 (-574))) 40)) (-4293 (((-654 $) $) 30)) (-1836 (($ |#1|) 47) (($ |#2|) 46) (($ |#3|) 45) (($ |#4|) 44) (($ |#5|) 43) (($ (-654 $)) 42)) (-2943 (((-872) $) 12)) (-4313 (($ $) 23)) (-2928 (($ $) 24)) (-3284 (((-112) $ $) 9)) (-4246 (((-112) $) 37)) (-2981 (((-112) $ $) 6)) (-2863 (((-574) $) 22))) -(((-1116 |#1| |#2| |#3| |#4| |#5|) (-141) (-1113) (-1113) (-1113) (-1113) (-1113)) (T -1116)) -((-4122 (*1 *2 *1 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112)))) (-2731 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112)))) (-4246 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112)))) (-2460 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112)))) (-3881 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112)))) (-1986 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112)))) (-4108 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112)))) (-2819 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112)))) (-2774 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112)))) (-4293 (*1 *2 *1) (-12 (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-654 *1)) (-4 *1 (-1116 *3 *4 *5 *6 *7)))) (-3249 (*1 *2 *1) (-12 (-4 *1 (-1116 *2 *3 *4 *5 *6)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *2 (-1113)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2 *4 *5 *6)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *2 (-1113)))) (-4026 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *2 *5 *6)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *2 (-1113)))) (-2381 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *2 *6)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *2 (-1113)))) (-1444 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6 *2)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *2 (-1113)))) (-2928 (*1 *1 *1) (-12 (-4 *1 (-1116 *2 *3 *4 *5 *6)) (-4 *2 (-1113)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)))) (-4313 (*1 *1 *1) (-12 (-4 *1 (-1116 *2 *3 *4 *5 *6)) (-4 *2 (-1113)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)))) (-2863 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-574))))) -(-13 (-1113) (-628 |t#1|) (-628 |t#2|) (-628 |t#3|) (-628 |t#4|) (-628 |t#4|) (-628 |t#5|) (-628 (-654 $)) (-294 (-574) $) (-294 (-654 (-574)) $) (-10 -8 (-15 -4122 ((-112) $ $)) (-15 -2731 ((-112) $)) (-15 -4246 ((-112) $)) (-15 -2460 ((-112) $)) (-15 -3881 ((-112) $)) (-15 -1986 ((-112) $)) (-15 -4108 ((-112) $)) (-15 -2819 ((-112) $)) (-15 -2774 ((-112) $)) (-15 -4293 ((-654 $) $)) (-15 -3249 (|t#1| $)) (-15 -4005 (|t#2| $)) (-15 -4026 (|t#3| $)) (-15 -2381 (|t#4| $)) (-15 -1444 (|t#5| $)) (-15 -2928 ($ $)) (-15 -4313 ($ $)) (-15 -2863 ((-574) $)))) -(((-102) . T) ((-623 (-872)) . T) ((-628 (-654 $)) . T) ((-628 |#1|) . T) ((-628 |#2|) . T) ((-628 |#3|) . T) ((-628 |#4|) . T) ((-628 |#5|) . T) ((-294 (-574) $) . T) ((-294 (-654 (-574)) $) . T) ((-1113) . T) ((-1231) . T)) -((-2849 (((-112) $ $) NIL)) (-4108 (((-112) $) NIL)) (-4005 (((-1190) $) NIL)) (-1986 (((-112) $) NIL)) (-3249 (((-1172) $) NIL)) (-2460 (((-112) $) NIL)) (-2731 (((-112) $) NIL)) (-3881 (((-112) $) NIL)) (-4136 (((-1172) $) NIL)) (-2819 (((-112) $) NIL)) (-4026 (((-574) $) NIL)) (-3966 (((-1133) $) NIL)) (-2774 (((-112) $) NIL)) (-2381 (((-227) $) NIL)) (-1444 (((-872) $) NIL)) (-4122 (((-112) $ $) NIL)) (-2199 (($ $ (-574)) NIL) (($ $ (-654 (-574))) NIL)) (-4293 (((-654 $) $) NIL)) (-1836 (($ (-1172)) NIL) (($ (-1190)) NIL) (($ (-574)) NIL) (($ (-227)) NIL) (($ (-872)) NIL) (($ (-654 $)) NIL)) (-2943 (((-872) $) NIL)) (-4313 (($ $) NIL)) (-2928 (($ $) NIL)) (-3284 (((-112) $ $) NIL)) (-4246 (((-112) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2863 (((-574) $) NIL))) -(((-1117) (-1116 (-1172) (-1190) (-574) (-227) (-872))) (T -1117)) -NIL -(-1116 (-1172) (-1190) (-574) (-227) (-872)) -((-2849 (((-112) $ $) NIL)) (-4108 (((-112) $) 45)) (-4005 ((|#2| $) 48)) (-1986 (((-112) $) 20)) (-3249 ((|#1| $) 21)) (-2460 (((-112) $) 42)) (-2731 (((-112) $) 14)) (-3881 (((-112) $) 44)) (-4136 (((-1172) $) NIL)) (-2819 (((-112) $) 46)) (-4026 ((|#3| $) 50)) (-3966 (((-1133) $) NIL)) (-2774 (((-112) $) 47)) (-2381 ((|#4| $) 49)) (-1444 ((|#5| $) 51)) (-4122 (((-112) $ $) 41)) (-2199 (($ $ (-574)) 62) (($ $ (-654 (-574))) 64)) (-4293 (((-654 $) $) 27)) (-1836 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-654 $)) 52)) (-2943 (((-872) $) 28)) (-4313 (($ $) 26)) (-2928 (($ $) 58)) (-3284 (((-112) $ $) NIL)) (-4246 (((-112) $) 23)) (-2981 (((-112) $ $) 40)) (-2863 (((-574) $) 60))) -(((-1118 |#1| |#2| |#3| |#4| |#5|) (-1116 |#1| |#2| |#3| |#4| |#5|) (-1113) (-1113) (-1113) (-1113) (-1113)) (T -1118)) -NIL -(-1116 |#1| |#2| |#3| |#4| |#5|) -((-3768 (((-1286) $) 22)) (-3741 (($ (-1190) (-444) |#2|) 11)) (-2943 (((-872) $) 16))) -(((-1119 |#1| |#2|) (-13 (-405) (-10 -8 (-15 -3741 ($ (-1190) (-444) |#2|)))) (-1113) (-440 |#1|)) (T -1119)) -((-3741 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1190)) (-5 *3 (-444)) (-4 *5 (-1113)) (-5 *1 (-1119 *5 *4)) (-4 *4 (-440 *5))))) -(-13 (-405) (-10 -8 (-15 -3741 ($ (-1190) (-444) |#2|)))) -((-1614 (((-112) |#5| |#5|) 44)) (-2357 (((-112) |#5| |#5|) 59)) (-3374 (((-112) |#5| (-654 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-3220 (((-112) (-654 |#4|) (-654 |#4|)) 65)) (-3012 (((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) 70)) (-3680 (((-1286)) 32)) (-2861 (((-1286) (-1172) (-1172) (-1172)) 28)) (-3959 (((-654 |#5|) (-654 |#5|)) 101)) (-1591 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)))) 93)) (-2021 (((-654 (-2 (|:| -4122 (-654 |#4|)) (|:| -4091 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112)) 123)) (-4109 (((-112) |#5| |#5|) 53)) (-3297 (((-3 (-112) "failed") |#5| |#5|) 78)) (-1957 (((-112) (-654 |#4|) (-654 |#4|)) 64)) (-2528 (((-112) (-654 |#4|) (-654 |#4|)) 66)) (-2119 (((-112) (-654 |#4|) (-654 |#4|)) 67)) (-2229 (((-3 (-2 (|:| -4122 (-654 |#4|)) (|:| -4091 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-3446 (((-654 |#5|) (-654 |#5|)) 49))) -(((-1120 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2861 ((-1286) (-1172) (-1172) (-1172))) (-15 -3680 ((-1286))) (-15 -1614 ((-112) |#5| |#5|)) (-15 -3446 ((-654 |#5|) (-654 |#5|))) (-15 -4109 ((-112) |#5| |#5|)) (-15 -2357 ((-112) |#5| |#5|)) (-15 -3220 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -1957 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -2528 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -2119 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3297 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3374 ((-112) |#5| |#5|)) (-15 -3374 ((-112) |#5| (-654 |#5|))) (-15 -3959 ((-654 |#5|) (-654 |#5|))) (-15 -3012 ((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)))) (-15 -1591 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) (-15 -2021 ((-654 (-2 (|:| -4122 (-654 |#4|)) (|:| -4091 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -2229 ((-3 (-2 (|:| -4122 (-654 |#4|)) (|:| -4091 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-462) (-803) (-860) (-1078 |#1| |#2| |#3|) (-1084 |#1| |#2| |#3| |#4|)) (T -1120)) -((-2229 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-1078 *6 *7 *8)) (-5 *2 (-2 (|:| -4122 (-654 *9)) (|:| -4091 *4) (|:| |ineq| (-654 *9)))) (-5 *1 (-1120 *6 *7 *8 *9 *4)) (-5 *3 (-654 *9)) (-4 *4 (-1084 *6 *7 *8 *9)))) (-2021 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-654 *10)) (-5 *5 (-112)) (-4 *10 (-1084 *6 *7 *8 *9)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-1078 *6 *7 *8)) (-5 *2 (-654 (-2 (|:| -4122 (-654 *9)) (|:| -4091 *10) (|:| |ineq| (-654 *9))))) (-5 *1 (-1120 *6 *7 *8 *9 *10)) (-5 *3 (-654 *9)))) (-1591 (*1 *2 *2) (-12 (-5 *2 (-654 (-2 (|:| |val| (-654 *6)) (|:| -4091 *7)))) (-4 *6 (-1078 *3 *4 *5)) (-4 *7 (-1084 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1120 *3 *4 *5 *6 *7)))) (-3012 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4091 *8))) (-4 *7 (-1078 *4 *5 *6)) (-4 *8 (-1084 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1120 *4 *5 *6 *7 *8)))) (-3959 (*1 *2 *2) (-12 (-5 *2 (-654 *7)) (-4 *7 (-1084 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *1 (-1120 *3 *4 *5 *6 *7)))) (-3374 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-1084 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1078 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1120 *5 *6 *7 *8 *3)))) (-3374 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1120 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7)))) (-3297 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1120 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7)))) (-2119 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1120 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))) (-2528 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1120 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))) (-1957 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1120 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))) (-3220 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1120 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))) (-2357 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1120 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7)))) (-4109 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1120 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7)))) (-3446 (*1 *2 *2) (-12 (-5 *2 (-654 *7)) (-4 *7 (-1084 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *1 (-1120 *3 *4 *5 *6 *7)))) (-1614 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1120 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7)))) (-3680 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-1286)) (-5 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *7 (-1084 *3 *4 *5 *6)))) (-2861 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1172)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-1286)) (-5 *1 (-1120 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7))))) -(-10 -7 (-15 -2861 ((-1286) (-1172) (-1172) (-1172))) (-15 -3680 ((-1286))) (-15 -1614 ((-112) |#5| |#5|)) (-15 -3446 ((-654 |#5|) (-654 |#5|))) (-15 -4109 ((-112) |#5| |#5|)) (-15 -2357 ((-112) |#5| |#5|)) (-15 -3220 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -1957 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -2528 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -2119 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3297 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3374 ((-112) |#5| |#5|)) (-15 -3374 ((-112) |#5| (-654 |#5|))) (-15 -3959 ((-654 |#5|) (-654 |#5|))) (-15 -3012 ((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)))) (-15 -1591 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) (-15 -2021 ((-654 (-2 (|:| -4122 (-654 |#4|)) (|:| -4091 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -2229 ((-3 (-2 (|:| -4122 (-654 |#4|)) (|:| -4091 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-3345 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#5|) 108)) (-1737 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) |#4| |#4| |#5|) 80)) (-3519 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5|) 102)) (-2019 (((-654 |#5|) |#4| |#5|) 124)) (-1770 (((-654 |#5|) |#4| |#5|) 131)) (-3182 (((-654 |#5|) |#4| |#5|) 132)) (-4427 (((-654 (-2 (|:| |val| (-112)) (|:| -4091 |#5|))) |#4| |#5|) 109)) (-3692 (((-654 (-2 (|:| |val| (-112)) (|:| -4091 |#5|))) |#4| |#5|) 130)) (-1794 (((-654 (-2 (|:| |val| (-112)) (|:| -4091 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-3377 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) |#3| (-112)) 92) (((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-4278 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5|) 87)) (-4094 (((-1286)) 36)) (-4085 (((-1286)) 25)) (-4269 (((-1286) (-1172) (-1172) (-1172)) 32)) (-2455 (((-1286) (-1172) (-1172) (-1172)) 21))) -(((-1121 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2455 ((-1286) (-1172) (-1172) (-1172))) (-15 -4085 ((-1286))) (-15 -4269 ((-1286) (-1172) (-1172) (-1172))) (-15 -4094 ((-1286))) (-15 -1737 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) |#4| |#4| |#5|)) (-15 -3377 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3377 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) |#3| (-112))) (-15 -4278 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5|)) (-15 -3519 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5|)) (-15 -1794 ((-112) |#4| |#5|)) (-15 -4427 ((-654 (-2 (|:| |val| (-112)) (|:| -4091 |#5|))) |#4| |#5|)) (-15 -2019 ((-654 |#5|) |#4| |#5|)) (-15 -3692 ((-654 (-2 (|:| |val| (-112)) (|:| -4091 |#5|))) |#4| |#5|)) (-15 -1770 ((-654 |#5|) |#4| |#5|)) (-15 -1794 ((-654 (-2 (|:| |val| (-112)) (|:| -4091 |#5|))) |#4| |#5|)) (-15 -3182 ((-654 |#5|) |#4| |#5|)) (-15 -3345 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#5|))) (-462) (-803) (-860) (-1078 |#1| |#2| |#3|) (-1084 |#1| |#2| |#3| |#4|)) (T -1121)) -((-3345 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4)))) (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-3182 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 *4)) (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-1794 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4091 *4)))) (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-1770 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 *4)) (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-3692 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4091 *4)))) (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-2019 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 *4)) (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-4427 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4091 *4)))) (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-1794 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-3519 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4)))) (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-4278 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4)))) (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-3377 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4091 *9)))) (-5 *5 (-112)) (-4 *8 (-1078 *6 *7 *4)) (-4 *9 (-1084 *6 *7 *4 *8)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *4 (-860)) (-5 *2 (-654 (-2 (|:| |val| *8) (|:| -4091 *9)))) (-5 *1 (-1121 *6 *7 *4 *8 *9)))) (-3377 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1078 *6 *7 *8)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4)))) (-5 *1 (-1121 *6 *7 *8 *3 *4)) (-4 *4 (-1084 *6 *7 *8 *3)))) (-1737 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))) (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) (-4094 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-1286)) (-5 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *7 (-1084 *3 *4 *5 *6)))) (-4269 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1172)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-1286)) (-5 *1 (-1121 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))) (-4085 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-1286)) (-5 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *7 (-1084 *3 *4 *5 *6)))) (-2455 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1172)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-1286)) (-5 *1 (-1121 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7))))) -(-10 -7 (-15 -2455 ((-1286) (-1172) (-1172) (-1172))) (-15 -4085 ((-1286))) (-15 -4269 ((-1286) (-1172) (-1172) (-1172))) (-15 -4094 ((-1286))) (-15 -1737 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) |#4| |#4| |#5|)) (-15 -3377 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3377 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) |#3| (-112))) (-15 -4278 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5|)) (-15 -3519 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#4| |#5|)) (-15 -1794 ((-112) |#4| |#5|)) (-15 -4427 ((-654 (-2 (|:| |val| (-112)) (|:| -4091 |#5|))) |#4| |#5|)) (-15 -2019 ((-654 |#5|) |#4| |#5|)) (-15 -3692 ((-654 (-2 (|:| |val| (-112)) (|:| -4091 |#5|))) |#4| |#5|)) (-15 -1770 ((-654 |#5|) |#4| |#5|)) (-15 -1794 ((-654 (-2 (|:| |val| (-112)) (|:| -4091 |#5|))) |#4| |#5|)) (-15 -3182 ((-654 |#5|) |#4| |#5|)) (-15 -3345 ((-654 (-2 (|:| |val| |#4|) (|:| -4091 |#5|))) |#4| |#5|))) -((-2849 (((-112) $ $) 7)) (-2410 (((-654 (-2 (|:| -1381 $) (|:| -1675 (-654 |#4|)))) (-654 |#4|)) 86)) (-3954 (((-654 $) (-654 |#4|)) 87) (((-654 $) (-654 |#4|) (-112)) 112)) (-4355 (((-654 |#3|) $) 34)) (-2907 (((-112) $) 27)) (-4018 (((-112) $) 18 (|has| |#1| (-566)))) (-1751 (((-112) |#4| $) 102) (((-112) $) 98)) (-3207 ((|#4| |#4| $) 93)) (-2568 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 $))) |#4| $) 127)) (-2771 (((-2 (|:| |under| $) (|:| -3595 $) (|:| |upper| $)) $ |#3|) 28)) (-3034 (((-112) $ (-781)) 45)) (-2165 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4456))) (((-3 |#4| "failed") $ |#3|) 80)) (-3426 (($) 46 T CONST)) (-4336 (((-112) $) 23 (|has| |#1| (-566)))) (-1547 (((-112) $ $) 25 (|has| |#1| (-566)))) (-2318 (((-112) $ $) 24 (|has| |#1| (-566)))) (-1792 (((-112) $) 26 (|has| |#1| (-566)))) (-3908 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3025 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-1974 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1696 (((-3 $ "failed") (-654 |#4|)) 37)) (-2206 (($ (-654 |#4|)) 36)) (-2926 (((-3 $ "failed") $) 83)) (-1402 ((|#4| |#4| $) 90)) (-1543 (($ $) 69 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ |#4| $) 68 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4456)))) (-2766 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-1315 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1747 ((|#4| |#4| $) 88)) (-2868 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4456))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4456))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4270 (((-2 (|:| -1381 (-654 |#4|)) (|:| -1675 (-654 |#4|))) $) 106)) (-4062 (((-112) |#4| $) 137)) (-2288 (((-112) |#4| $) 134)) (-1421 (((-112) |#4| $) 138) (((-112) $) 135)) (-1864 (((-654 |#4|) $) 53 (|has| $ (-6 -4456)))) (-4436 (((-112) |#4| $) 105) (((-112) $) 104)) (-3830 ((|#3| $) 35)) (-2742 (((-112) $ (-781)) 44)) (-1606 (((-654 |#4|) $) 54 (|has| $ (-6 -4456)))) (-1710 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456))))) (-2449 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#4| |#4|) $) 48)) (-3963 (((-654 |#3|) $) 33)) (-4158 (((-112) |#3| $) 32)) (-4203 (((-112) $ (-781)) 43)) (-4136 (((-1172) $) 10)) (-3660 (((-3 |#4| (-654 $)) |#4| |#4| $) 129)) (-4268 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 $))) |#4| |#4| $) 128)) (-3360 (((-3 |#4| "failed") $) 84)) (-2290 (((-654 $) |#4| $) 130)) (-3945 (((-3 (-112) (-654 $)) |#4| $) 133)) (-2514 (((-654 (-2 (|:| |val| (-112)) (|:| -4091 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1784 (((-654 $) |#4| $) 126) (((-654 $) (-654 |#4|) $) 125) (((-654 $) (-654 |#4|) (-654 $)) 124) (((-654 $) |#4| (-654 $)) 123)) (-1954 (($ |#4| $) 118) (($ (-654 |#4|) $) 117)) (-4417 (((-654 |#4|) $) 108)) (-4292 (((-112) |#4| $) 100) (((-112) $) 96)) (-3023 ((|#4| |#4| $) 91)) (-2119 (((-112) $ $) 111)) (-2396 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-2682 (((-112) |#4| $) 101) (((-112) $) 97)) (-3206 ((|#4| |#4| $) 92)) (-3966 (((-1133) $) 11)) (-2915 (((-3 |#4| "failed") $) 85)) (-1549 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3040 (((-3 $ "failed") $ |#4|) 79)) (-2533 (($ $ |#4|) 78) (((-654 $) |#4| $) 116) (((-654 $) |#4| (-654 $)) 115) (((-654 $) (-654 |#4|) $) 114) (((-654 $) (-654 |#4|) (-654 $)) 113)) (-2540 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))) (-4017 (((-112) $ $) 39)) (-1584 (((-112) $) 42)) (-2672 (($) 41)) (-4202 (((-781) $) 107)) (-3975 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4456)))) (-3167 (($ $) 40)) (-1836 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2956 (($ (-654 |#4|)) 61)) (-3650 (($ $ |#3|) 29)) (-3722 (($ $ |#3|) 31)) (-4429 (($ $) 89)) (-2096 (($ $ |#3|) 30)) (-2943 (((-872) $) 12) (((-654 |#4|) $) 38)) (-4435 (((-781) $) 77 (|has| |#3| (-377)))) (-3284 (((-112) $ $) 9)) (-3416 (((-3 (-2 (|:| |bas| $) (|:| -2002 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2002 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2582 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) 99)) (-1379 (((-654 $) |#4| $) 122) (((-654 $) |#4| (-654 $)) 121) (((-654 $) (-654 |#4|) $) 120) (((-654 $) (-654 |#4|) (-654 $)) 119)) (-3390 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4456)))) (-2720 (((-654 |#3|) $) 82)) (-4221 (((-112) |#4| $) 136)) (-3587 (((-112) |#3| $) 81)) (-2981 (((-112) $ $) 6)) (-2863 (((-781) $) 47 (|has| $ (-6 -4456))))) -(((-1122 |#1| |#2| |#3| |#4|) (-141) (-462) (-803) (-860) (-1078 |t#1| |t#2| |t#3|)) (T -1122)) -NIL -(-13 (-1084 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))) ((-989 |#1| |#2| |#3| |#4|) . T) ((-1084 |#1| |#2| |#3| |#4|) . T) ((-1113) . T) ((-1224 |#1| |#2| |#3| |#4|) . T) ((-1231) . T)) -((-2327 (((-654 (-574)) (-574) (-574) (-574)) 38)) (-3050 (((-654 (-574)) (-574) (-574) (-574)) 28)) (-3957 (((-654 (-574)) (-574) (-574) (-574)) 33)) (-3195 (((-574) (-574) (-574)) 21)) (-4244 (((-1281 (-574)) (-654 (-574)) (-1281 (-574)) (-574)) 76) (((-1281 (-574)) (-1281 (-574)) (-1281 (-574)) (-574)) 71)) (-3323 (((-654 (-574)) (-654 (-932)) (-654 (-574)) (-112)) 54)) (-3845 (((-699 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574))) 75)) (-2871 (((-699 (-574)) (-654 (-932)) (-654 (-574))) 59)) (-3224 (((-654 (-699 (-574))) (-654 (-932))) 64)) (-3554 (((-654 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574))) 79)) (-2405 (((-699 (-574)) (-654 (-574)) (-654 (-574)) (-654 (-574))) 89))) -(((-1123) (-10 -7 (-15 -2405 ((-699 (-574)) (-654 (-574)) (-654 (-574)) (-654 (-574)))) (-15 -3554 ((-654 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574)))) (-15 -3224 ((-654 (-699 (-574))) (-654 (-932)))) (-15 -2871 ((-699 (-574)) (-654 (-932)) (-654 (-574)))) (-15 -3845 ((-699 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574)))) (-15 -3323 ((-654 (-574)) (-654 (-932)) (-654 (-574)) (-112))) (-15 -4244 ((-1281 (-574)) (-1281 (-574)) (-1281 (-574)) (-574))) (-15 -4244 ((-1281 (-574)) (-654 (-574)) (-1281 (-574)) (-574))) (-15 -3195 ((-574) (-574) (-574))) (-15 -3957 ((-654 (-574)) (-574) (-574) (-574))) (-15 -3050 ((-654 (-574)) (-574) (-574) (-574))) (-15 -2327 ((-654 (-574)) (-574) (-574) (-574))))) (T -1123)) -((-2327 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1123)) (-5 *3 (-574)))) (-3050 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1123)) (-5 *3 (-574)))) (-3957 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1123)) (-5 *3 (-574)))) (-3195 (*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1123)))) (-4244 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1281 (-574))) (-5 *3 (-654 (-574))) (-5 *4 (-574)) (-5 *1 (-1123)))) (-4244 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1281 (-574))) (-5 *3 (-574)) (-5 *1 (-1123)))) (-3323 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-654 (-574))) (-5 *3 (-654 (-932))) (-5 *4 (-112)) (-5 *1 (-1123)))) (-3845 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-699 (-574))) (-5 *3 (-654 (-574))) (-5 *1 (-1123)))) (-2871 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-932))) (-5 *4 (-654 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-1123)))) (-3224 (*1 *2 *3) (-12 (-5 *3 (-654 (-932))) (-5 *2 (-654 (-699 (-574)))) (-5 *1 (-1123)))) (-3554 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-654 (-574))) (-5 *3 (-699 (-574))) (-5 *1 (-1123)))) (-2405 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-1123))))) -(-10 -7 (-15 -2405 ((-699 (-574)) (-654 (-574)) (-654 (-574)) (-654 (-574)))) (-15 -3554 ((-654 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574)))) (-15 -3224 ((-654 (-699 (-574))) (-654 (-932)))) (-15 -2871 ((-699 (-574)) (-654 (-932)) (-654 (-574)))) (-15 -3845 ((-699 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574)))) (-15 -3323 ((-654 (-574)) (-654 (-932)) (-654 (-574)) (-112))) (-15 -4244 ((-1281 (-574)) (-1281 (-574)) (-1281 (-574)) (-574))) (-15 -4244 ((-1281 (-574)) (-654 (-574)) (-1281 (-574)) (-574))) (-15 -3195 ((-574) (-574) (-574))) (-15 -3957 ((-654 (-574)) (-574) (-574) (-574))) (-15 -3050 ((-654 (-574)) (-574) (-574) (-574))) (-15 -2327 ((-654 (-574)) (-574) (-574) (-574)))) -((** (($ $ (-932)) 10))) -(((-1124 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-932)))) (-1125)) (T -1124)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-932)))) -((-2849 (((-112) $ $) 7)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6)) (** (($ $ (-932)) 14)) (* (($ $ $) 15))) -(((-1125) (-141)) (T -1125)) -((* (*1 *1 *1 *1) (-4 *1 (-1125))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1125)) (-5 *2 (-932))))) -(-13 (-1113) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-932))))) -(((-102) . T) ((-623 (-872)) . T) ((-1113) . T)) -((-2849 (((-112) $ $) NIL (|has| |#3| (-1113)))) (-3138 (((-112) $) NIL (|has| |#3| (-132)))) (-3745 (($ (-932)) NIL (|has| |#3| (-1062)))) (-3714 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-3663 (($ $ $) NIL (|has| |#3| (-803)))) (-3524 (((-3 $ "failed") $ $) NIL (|has| |#3| (-132)))) (-3034 (((-112) $ (-781)) NIL)) (-1487 (((-781)) NIL (|has| |#3| (-377)))) (-2846 (((-574) $) NIL (|has| |#3| (-858)))) (-3143 ((|#3| $ (-574) |#3|) NIL (|has| $ (-6 -4457)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-574) "failed") $) NIL (-12 (|has| |#3| (-1051 (-574))) (|has| |#3| (-1113)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#3| (-1051 (-417 (-574)))) (|has| |#3| (-1113)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1113)))) (-2206 (((-574) $) NIL (-12 (|has| |#3| (-1051 (-574))) (|has| |#3| (-1113)))) (((-417 (-574)) $) NIL (-12 (|has| |#3| (-1051 (-417 (-574)))) (|has| |#3| (-1113)))) ((|#3| $) NIL (|has| |#3| (-1113)))) (-2590 (((-699 (-574)) (-1281 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1062)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1062)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1062)))) (((-2 (|:| -4340 (-699 |#3|)) (|:| |vec| (-1281 |#3|))) (-699 $) (-1281 $)) NIL (|has| |#3| (-1062))) (((-699 |#3|) (-699 $)) NIL (|has| |#3| (-1062))) (((-699 |#3|) (-1281 $)) NIL (|has| |#3| (-1062)))) (-3434 (((-3 $ "failed") $) NIL (|has| |#3| (-736)))) (-2820 (($) NIL (|has| |#3| (-377)))) (-2458 ((|#3| $ (-574) |#3|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#3| $ (-574)) 12)) (-2756 (((-112) $) NIL (|has| |#3| (-858)))) (-1864 (((-654 |#3|) $) NIL (|has| $ (-6 -4456)))) (-3199 (((-112) $) NIL (|has| |#3| (-736)))) (-1335 (((-112) $) NIL (|has| |#3| (-858)))) (-2742 (((-112) $ (-781)) NIL)) (-3618 (((-574) $) NIL (|has| (-574) (-860)))) (-3659 (($ $ $) NIL (-2818 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-1606 (((-654 |#3|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#3| (-1113))))) (-2702 (((-574) $) NIL (|has| (-574) (-860)))) (-4257 (($ $ $) NIL (-2818 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-2449 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#3| |#3|) $) NIL)) (-4115 (((-932) $) NIL (|has| |#3| (-377)))) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL (|has| |#3| (-1113)))) (-4308 (((-654 (-574)) $) NIL)) (-3336 (((-112) (-574) $) NIL)) (-2576 (($ (-932)) NIL (|has| |#3| (-377)))) (-3966 (((-1133) $) NIL (|has| |#3| (-1113)))) (-2915 ((|#3| $) NIL (|has| (-574) (-860)))) (-1942 (($ $ |#3|) NIL (|has| $ (-6 -4457)))) (-2540 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#3|))) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113)))) (($ $ (-302 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113)))) (($ $ (-654 |#3|) (-654 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#3| (-1113))))) (-4371 (((-654 |#3|) $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 ((|#3| $ (-574) |#3|) NIL) ((|#3| $ (-574)) NIL)) (-4236 ((|#3| $ $) NIL (|has| |#3| (-1062)))) (-4261 (($ (-1281 |#3|)) NIL)) (-4133 (((-135)) NIL (|has| |#3| (-372)))) (-3905 (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1062)))) (($ $ (-781)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1062)))) (($ $ (-1190)) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-1 |#3| |#3|) (-781)) NIL (|has| |#3| (-1062))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1062)))) (-3975 (((-781) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4456))) (((-781) |#3| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#3| (-1113))))) (-3167 (($ $) NIL)) (-2943 (((-1281 |#3|) $) NIL) (($ (-574)) NIL (-2818 (-12 (|has| |#3| (-1051 (-574))) (|has| |#3| (-1113))) (|has| |#3| (-1062)))) (($ (-417 (-574))) NIL (-12 (|has| |#3| (-1051 (-417 (-574)))) (|has| |#3| (-1113)))) (($ |#3|) NIL (|has| |#3| (-1113))) (((-872) $) NIL (|has| |#3| (-623 (-872))))) (-1364 (((-781)) NIL (|has| |#3| (-1062)) CONST)) (-3284 (((-112) $ $) NIL (|has| |#3| (-1113)))) (-3390 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4456)))) (-3482 (($ $) NIL (|has| |#3| (-858)))) (-2133 (($) NIL (|has| |#3| (-132)) CONST)) (-2145 (($) NIL (|has| |#3| (-736)) CONST)) (-3610 (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1062)))) (($ $ (-781)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1062)))) (($ $ (-1190)) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#3| (-911 (-1190))) (|has| |#3| (-1062)))) (($ $ (-1 |#3| |#3|) (-781)) NIL (|has| |#3| (-1062))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1062)))) (-3042 (((-112) $ $) NIL (-2818 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-3018 (((-112) $ $) NIL (-2818 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-2981 (((-112) $ $) NIL (|has| |#3| (-1113)))) (-3030 (((-112) $ $) NIL (-2818 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-3007 (((-112) $ $) 24 (-2818 (|has| |#3| (-803)) (|has| |#3| (-858))))) (-3108 (($ $ |#3|) NIL (|has| |#3| (-372)))) (-3094 (($ $ $) NIL (|has| |#3| (-1062))) (($ $) NIL (|has| |#3| (-1062)))) (-3079 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-781)) NIL (|has| |#3| (-736))) (($ $ (-932)) NIL (|has| |#3| (-736)))) (* (($ (-574) $) NIL (|has| |#3| (-1062))) (($ $ $) NIL (|has| |#3| (-736))) (($ $ |#3|) NIL (|has| |#3| (-736))) (($ |#3| $) NIL (|has| |#3| (-736))) (($ (-781) $) NIL (|has| |#3| (-132))) (($ (-932) $) NIL (|has| |#3| (-25)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-1126 |#1| |#2| |#3|) (-244 |#1| |#3|) (-781) (-781) (-803)) (T -1126)) -NIL -(-244 |#1| |#3|) -((-3262 (((-654 (-1254 |#2| |#1|)) (-1254 |#2| |#1|) (-1254 |#2| |#1|)) 50)) (-1822 (((-574) (-1254 |#2| |#1|)) 94 (|has| |#1| (-462)))) (-3255 (((-574) (-1254 |#2| |#1|)) 76)) (-1552 (((-654 (-1254 |#2| |#1|)) (-1254 |#2| |#1|) (-1254 |#2| |#1|)) 58)) (-3271 (((-574) (-1254 |#2| |#1|) (-1254 |#2| |#1|)) 93 (|has| |#1| (-462)))) (-3176 (((-654 |#1|) (-1254 |#2| |#1|) (-1254 |#2| |#1|)) 61)) (-4196 (((-574) (-1254 |#2| |#1|) (-1254 |#2| |#1|)) 75))) -(((-1127 |#1| |#2|) (-10 -7 (-15 -3262 ((-654 (-1254 |#2| |#1|)) (-1254 |#2| |#1|) (-1254 |#2| |#1|))) (-15 -1552 ((-654 (-1254 |#2| |#1|)) (-1254 |#2| |#1|) (-1254 |#2| |#1|))) (-15 -3176 ((-654 |#1|) (-1254 |#2| |#1|) (-1254 |#2| |#1|))) (-15 -4196 ((-574) (-1254 |#2| |#1|) (-1254 |#2| |#1|))) (-15 -3255 ((-574) (-1254 |#2| |#1|))) (IF (|has| |#1| (-462)) (PROGN (-15 -3271 ((-574) (-1254 |#2| |#1|) (-1254 |#2| |#1|))) (-15 -1822 ((-574) (-1254 |#2| |#1|)))) |%noBranch|)) (-830) (-1190)) (T -1127)) -((-1822 (*1 *2 *3) (-12 (-5 *3 (-1254 *5 *4)) (-4 *4 (-462)) (-4 *4 (-830)) (-14 *5 (-1190)) (-5 *2 (-574)) (-5 *1 (-1127 *4 *5)))) (-3271 (*1 *2 *3 *3) (-12 (-5 *3 (-1254 *5 *4)) (-4 *4 (-462)) (-4 *4 (-830)) (-14 *5 (-1190)) (-5 *2 (-574)) (-5 *1 (-1127 *4 *5)))) (-3255 (*1 *2 *3) (-12 (-5 *3 (-1254 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1190)) (-5 *2 (-574)) (-5 *1 (-1127 *4 *5)))) (-4196 (*1 *2 *3 *3) (-12 (-5 *3 (-1254 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1190)) (-5 *2 (-574)) (-5 *1 (-1127 *4 *5)))) (-3176 (*1 *2 *3 *3) (-12 (-5 *3 (-1254 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1190)) (-5 *2 (-654 *4)) (-5 *1 (-1127 *4 *5)))) (-1552 (*1 *2 *3 *3) (-12 (-4 *4 (-830)) (-14 *5 (-1190)) (-5 *2 (-654 (-1254 *5 *4))) (-5 *1 (-1127 *4 *5)) (-5 *3 (-1254 *5 *4)))) (-3262 (*1 *2 *3 *3) (-12 (-4 *4 (-830)) (-14 *5 (-1190)) (-5 *2 (-654 (-1254 *5 *4))) (-5 *1 (-1127 *4 *5)) (-5 *3 (-1254 *5 *4))))) -(-10 -7 (-15 -3262 ((-654 (-1254 |#2| |#1|)) (-1254 |#2| |#1|) (-1254 |#2| |#1|))) (-15 -1552 ((-654 (-1254 |#2| |#1|)) (-1254 |#2| |#1|) (-1254 |#2| |#1|))) (-15 -3176 ((-654 |#1|) (-1254 |#2| |#1|) (-1254 |#2| |#1|))) (-15 -4196 ((-574) (-1254 |#2| |#1|) (-1254 |#2| |#1|))) (-15 -3255 ((-574) (-1254 |#2| |#1|))) (IF (|has| |#1| (-462)) (PROGN (-15 -3271 ((-574) (-1254 |#2| |#1|) (-1254 |#2| |#1|))) (-15 -1822 ((-574) (-1254 |#2| |#1|)))) |%noBranch|)) -((-2849 (((-112) $ $) NIL)) (-2822 (($ (-516) (-1131)) 13)) (-3140 (((-1131) $) 19)) (-2032 (((-516) $) 16)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 26) (($ (-1195)) NIL) (((-1195) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1128) (-13 (-1096) (-10 -8 (-15 -2822 ($ (-516) (-1131))) (-15 -2032 ((-516) $)) (-15 -3140 ((-1131) $))))) (T -1128)) -((-2822 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1131)) (-5 *1 (-1128)))) (-2032 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1128)))) (-3140 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1128))))) -(-13 (-1096) (-10 -8 (-15 -2822 ($ (-516) (-1131))) (-15 -2032 ((-516) $)) (-15 -3140 ((-1131) $)))) -((-2846 (((-3 (-574) "failed") |#2| (-1190) |#2| (-1172)) 19) (((-3 (-574) "failed") |#2| (-1190) (-853 |#2|)) 17) (((-3 (-574) "failed") |#2|) 60))) -(((-1129 |#1| |#2|) (-10 -7 (-15 -2846 ((-3 (-574) "failed") |#2|)) (-15 -2846 ((-3 (-574) "failed") |#2| (-1190) (-853 |#2|))) (-15 -2846 ((-3 (-574) "failed") |#2| (-1190) |#2| (-1172)))) (-13 (-566) (-1051 (-574)) (-649 (-574)) (-462)) (-13 (-27) (-1216) (-440 |#1|))) (T -1129)) -((-2846 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1190)) (-5 *5 (-1172)) (-4 *6 (-13 (-566) (-1051 *2) (-649 *2) (-462))) (-5 *2 (-574)) (-5 *1 (-1129 *6 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *6))))) (-2846 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1190)) (-5 *5 (-853 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *6))) (-4 *6 (-13 (-566) (-1051 *2) (-649 *2) (-462))) (-5 *2 (-574)) (-5 *1 (-1129 *6 *3)))) (-2846 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-566) (-1051 *2) (-649 *2) (-462))) (-5 *2 (-574)) (-5 *1 (-1129 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *4)))))) -(-10 -7 (-15 -2846 ((-3 (-574) "failed") |#2|)) (-15 -2846 ((-3 (-574) "failed") |#2| (-1190) (-853 |#2|))) (-15 -2846 ((-3 (-574) "failed") |#2| (-1190) |#2| (-1172)))) -((-2846 (((-3 (-574) "failed") (-417 (-963 |#1|)) (-1190) (-417 (-963 |#1|)) (-1172)) 38) (((-3 (-574) "failed") (-417 (-963 |#1|)) (-1190) (-853 (-417 (-963 |#1|)))) 33) (((-3 (-574) "failed") (-417 (-963 |#1|))) 14))) -(((-1130 |#1|) (-10 -7 (-15 -2846 ((-3 (-574) "failed") (-417 (-963 |#1|)))) (-15 -2846 ((-3 (-574) "failed") (-417 (-963 |#1|)) (-1190) (-853 (-417 (-963 |#1|))))) (-15 -2846 ((-3 (-574) "failed") (-417 (-963 |#1|)) (-1190) (-417 (-963 |#1|)) (-1172)))) (-462)) (T -1130)) -((-2846 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-417 (-963 *6))) (-5 *4 (-1190)) (-5 *5 (-1172)) (-4 *6 (-462)) (-5 *2 (-574)) (-5 *1 (-1130 *6)))) (-2846 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1190)) (-5 *5 (-853 (-417 (-963 *6)))) (-5 *3 (-417 (-963 *6))) (-4 *6 (-462)) (-5 *2 (-574)) (-5 *1 (-1130 *6)))) (-2846 (*1 *2 *3) (|partial| -12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-462)) (-5 *2 (-574)) (-5 *1 (-1130 *4))))) -(-10 -7 (-15 -2846 ((-3 (-574) "failed") (-417 (-963 |#1|)))) (-15 -2846 ((-3 (-574) "failed") (-417 (-963 |#1|)) (-1190) (-853 (-417 (-963 |#1|))))) (-15 -2846 ((-3 (-574) "failed") (-417 (-963 |#1|)) (-1190) (-417 (-963 |#1|)) (-1172)))) -((-2849 (((-112) $ $) NIL)) (-2335 (((-1195) $) 12)) (-2286 (((-654 (-1195)) $) 14)) (-3140 (($ (-654 (-1195)) (-1195)) 10)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 29)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 17))) -(((-1131) (-13 (-1113) (-10 -8 (-15 -3140 ($ (-654 (-1195)) (-1195))) (-15 -2335 ((-1195) $)) (-15 -2286 ((-654 (-1195)) $))))) (T -1131)) -((-3140 (*1 *1 *2 *3) (-12 (-5 *2 (-654 (-1195))) (-5 *3 (-1195)) (-5 *1 (-1131)))) (-2335 (*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-1131)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-654 (-1195))) (-5 *1 (-1131))))) -(-13 (-1113) (-10 -8 (-15 -3140 ($ (-654 (-1195)) (-1195))) (-15 -2335 ((-1195) $)) (-15 -2286 ((-654 (-1195)) $)))) -((-1350 (((-324 (-574)) (-48)) 12))) -(((-1132) (-10 -7 (-15 -1350 ((-324 (-574)) (-48))))) (T -1132)) -((-1350 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-324 (-574))) (-5 *1 (-1132))))) -(-10 -7 (-15 -1350 ((-324 (-574)) (-48)))) -((-2849 (((-112) $ $) NIL)) (-2877 (($ $) 44)) (-3138 (((-112) $) 70)) (-2109 (($ $ $) 53)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 98)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-1726 (($ $ $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-4178 (($ $ $ $) 81)) (-2568 (($ $) NIL)) (-2827 (((-428 $) $) NIL)) (-1600 (((-112) $ $) NIL)) (-1487 (((-781)) 83)) (-2846 (((-574) $) NIL)) (-3958 (($ $ $) 78)) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-574) "failed") $) NIL)) (-2206 (((-574) $) NIL)) (-2786 (($ $ $) 64)) (-2590 (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 92) (((-699 (-574)) (-699 $)) 32) (((-699 (-574)) (-1281 $)) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-1880 (((-3 (-417 (-574)) "failed") $) NIL)) (-4414 (((-112) $) NIL)) (-4339 (((-417 (-574)) $) NIL)) (-2820 (($) 95) (($ $) 96)) (-2797 (($ $ $) 63)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL)) (-2257 (((-112) $) NIL)) (-1361 (($ $ $ $) NIL)) (-3742 (($ $ $) 93)) (-2756 (((-112) $) NIL)) (-3792 (($ $ $) NIL)) (-3625 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL)) (-2098 (($ $ $) 52)) (-3199 (((-112) $) 72)) (-4410 (((-112) $) 69)) (-2076 (($ $) 45)) (-2748 (((-3 $ "failed") $) NIL)) (-1335 (((-112) $) 82)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4201 (($ $ $ $) 79)) (-3659 (($ $ $) 74) (($) 42 T CONST)) (-4257 (($ $ $) 73) (($) 41 T CONST)) (-3810 (($ $) NIL)) (-4115 (((-932) $) 88)) (-4135 (($ $) 77)) (-2832 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4136 (((-1172) $) NIL)) (-3318 (($ $ $) NIL)) (-3818 (($) NIL T CONST)) (-2576 (($ (-932)) 87)) (-1605 (($ $) 57)) (-3966 (((-1133) $) 76)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL)) (-2873 (($ $ $) 67) (($ (-654 $)) NIL)) (-2150 (($ $) NIL)) (-4220 (((-428 $) $) NIL)) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL)) (-2838 (((-3 $ "failed") $ $) NIL)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3476 (((-112) $) NIL)) (-1730 (((-781) $) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 66)) (-3905 (($ $ (-781)) NIL) (($ $) NIL)) (-2295 (($ $) 58)) (-3167 (($ $) NIL)) (-1836 (((-574) $) 17) (((-546) $) NIL) (((-903 (-574)) $) NIL) (((-388) $) NIL) (((-227) $) NIL)) (-2943 (((-872) $) 35) (($ (-574)) 94) (($ $) NIL) (($ (-574)) 94)) (-1364 (((-781)) NIL T CONST)) (-1467 (((-112) $ $) NIL)) (-1616 (($ $ $) NIL)) (-3284 (((-112) $ $) NIL)) (-2630 (($) 40)) (-2069 (((-112) $ $) NIL)) (-2087 (($ $ $) 50)) (-4344 (($ $ $ $) 80)) (-3482 (($ $) 68)) (-2925 (($ $ $) 47)) (-2133 (($) 7 T CONST)) (-2246 (($ $ $) 51)) (-2145 (($) 39 T CONST)) (-1544 (((-1172) $) 26) (((-1172) $ (-112)) 27) (((-1286) (-832) $) 28) (((-1286) (-832) $ (-112)) 29)) (-2255 (($ $) 48)) (-3610 (($ $ (-781)) NIL) (($ $) NIL)) (-2235 (($ $ $) 49)) (-3042 (((-112) $ $) 56)) (-3018 (((-112) $ $) 54)) (-2981 (((-112) $ $) 43)) (-3030 (((-112) $ $) 55)) (-3007 (((-112) $ $) 10)) (-2912 (($ $ $) 46)) (-3094 (($ $) 16) (($ $ $) 60)) (-3079 (($ $ $) 59)) (** (($ $ (-932)) NIL) (($ $ (-781)) 62)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 38) (($ $ $) 37) (($ (-574) $) 38))) -(((-1133) (-13 (-555) (-854) (-113) (-671) (-838) (-10 -8 (-6 -4443) (-6 -4448) (-6 -4444) (-15 -2109 ($ $ $)) (-15 -2255 ($ $)) (-15 -2235 ($ $ $)) (-15 -2246 ($ $ $))))) (T -1133)) -((-2109 (*1 *1 *1 *1) (-5 *1 (-1133))) (-2255 (*1 *1 *1) (-5 *1 (-1133))) (-2235 (*1 *1 *1 *1) (-5 *1 (-1133))) (-2246 (*1 *1 *1 *1) (-5 *1 (-1133)))) -(-13 (-555) (-854) (-113) (-671) (-838) (-10 -8 (-6 -4443) (-6 -4448) (-6 -4444) (-15 -2109 ($ $ $)) (-15 -2255 ($ $)) (-15 -2235 ($ $ $)) (-15 -2246 ($ $ $)))) +(((-93) . T) ((-102) . T) ((-625 #0=(-1194)) . T) ((-622 (-871)) . T) ((-622 #0#) . T) ((-499 #0#) . T) ((-1112) . T)) +((-2512 ((|#1| |#1| (-1 (-573) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-3084 (((-1285)) 21)) (-1704 (((-653 |#1|)) 13))) +(((-1096 |#1|) (-10 -7 (-15 -3084 ((-1285))) (-15 -1704 ((-653 |#1|))) (-15 -2512 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2512 (|#1| |#1| (-1 (-573) |#1| |#1|)))) (-133)) (T -1096)) +((-2512 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-573) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1096 *2)))) (-2512 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1096 *2)))) (-1704 (*1 *2) (-12 (-5 *2 (-653 *3)) (-5 *1 (-1096 *3)) (-4 *3 (-133)))) (-3084 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-1096 *3)) (-4 *3 (-133))))) +(-10 -7 (-15 -3084 ((-1285))) (-15 -1704 ((-653 |#1|))) (-15 -2512 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2512 (|#1| |#1| (-1 (-573) |#1| |#1|)))) +((-3042 (($ (-109) $) 20)) (-4155 (((-700 (-109)) (-515) $) 19)) (-3508 (($) 7)) (-4219 (($) 21)) (-2170 (($) 22)) (-1525 (((-653 (-177)) $) 10)) (-2942 (((-871) $) 25))) +(((-1097) (-13 (-622 (-871)) (-10 -8 (-15 -3508 ($)) (-15 -1525 ((-653 (-177)) $)) (-15 -4155 ((-700 (-109)) (-515) $)) (-15 -3042 ($ (-109) $)) (-15 -4219 ($)) (-15 -2170 ($))))) (T -1097)) +((-3508 (*1 *1) (-5 *1 (-1097))) (-1525 (*1 *2 *1) (-12 (-5 *2 (-653 (-177))) (-5 *1 (-1097)))) (-4155 (*1 *2 *3 *1) (-12 (-5 *3 (-515)) (-5 *2 (-700 (-109))) (-5 *1 (-1097)))) (-3042 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1097)))) (-4219 (*1 *1) (-5 *1 (-1097))) (-2170 (*1 *1) (-5 *1 (-1097)))) +(-13 (-622 (-871)) (-10 -8 (-15 -3508 ($)) (-15 -1525 ((-653 (-177)) $)) (-15 -4155 ((-700 (-109)) (-515) $)) (-15 -3042 ($ (-109) $)) (-15 -4219 ($)) (-15 -2170 ($)))) +((-3119 (((-1280 (-698 |#1|)) (-653 (-698 |#1|))) 45) (((-1280 (-698 (-962 |#1|))) (-653 (-1189)) (-698 (-962 |#1|))) 75) (((-1280 (-698 (-416 (-962 |#1|)))) (-653 (-1189)) (-698 (-416 (-962 |#1|)))) 92)) (-2123 (((-1280 |#1|) (-698 |#1|) (-653 (-698 |#1|))) 39))) +(((-1098 |#1|) (-10 -7 (-15 -3119 ((-1280 (-698 (-416 (-962 |#1|)))) (-653 (-1189)) (-698 (-416 (-962 |#1|))))) (-15 -3119 ((-1280 (-698 (-962 |#1|))) (-653 (-1189)) (-698 (-962 |#1|)))) (-15 -3119 ((-1280 (-698 |#1|)) (-653 (-698 |#1|)))) (-15 -2123 ((-1280 |#1|) (-698 |#1|) (-653 (-698 |#1|))))) (-371)) (T -1098)) +((-2123 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-698 *5))) (-5 *3 (-698 *5)) (-4 *5 (-371)) (-5 *2 (-1280 *5)) (-5 *1 (-1098 *5)))) (-3119 (*1 *2 *3) (-12 (-5 *3 (-653 (-698 *4))) (-4 *4 (-371)) (-5 *2 (-1280 (-698 *4))) (-5 *1 (-1098 *4)))) (-3119 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-1189))) (-4 *5 (-371)) (-5 *2 (-1280 (-698 (-962 *5)))) (-5 *1 (-1098 *5)) (-5 *4 (-698 (-962 *5))))) (-3119 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-1189))) (-4 *5 (-371)) (-5 *2 (-1280 (-698 (-416 (-962 *5))))) (-5 *1 (-1098 *5)) (-5 *4 (-698 (-416 (-962 *5))))))) +(-10 -7 (-15 -3119 ((-1280 (-698 (-416 (-962 |#1|)))) (-653 (-1189)) (-698 (-416 (-962 |#1|))))) (-15 -3119 ((-1280 (-698 (-962 |#1|))) (-653 (-1189)) (-698 (-962 |#1|)))) (-15 -3119 ((-1280 (-698 |#1|)) (-653 (-698 |#1|)))) (-15 -2123 ((-1280 |#1|) (-698 |#1|) (-653 (-698 |#1|))))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2438 (((-653 (-780)) $) NIL) (((-653 (-780)) $ (-1189)) NIL)) (-3447 (((-780) $) NIL) (((-780) $ (-1189)) NIL)) (-4354 (((-653 (-1100 (-1189))) $) NIL)) (-4193 (((-1185 $) $ (-1100 (-1189))) NIL) (((-1185 |#1|) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-2769 (((-780) $) NIL) (((-780) $ (-653 (-1100 (-1189)))) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4285 (($ $) NIL (|has| |#1| (-461)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-1730 (($ $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-1100 (-1189)) "failed") $) NIL) (((-3 (-1189) "failed") $) NIL) (((-3 (-1137 |#1| (-1189)) "failed") $) NIL)) (-2205 ((|#1| $) NIL) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-1100 (-1189)) $) NIL) (((-1189) $) NIL) (((-1137 |#1| (-1189)) $) NIL)) (-2277 (($ $ $ (-1100 (-1189))) NIL (|has| |#1| (-174)))) (-1391 (($ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) NIL) (((-698 |#1|) (-698 $)) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#1| (-461))) (($ $ (-1100 (-1189))) NIL (|has| |#1| (-461)))) (-1379 (((-653 $) $) NIL)) (-2696 (((-112) $) NIL (|has| |#1| (-919)))) (-2343 (($ $ |#1| (-540 (-1100 (-1189))) $) NIL)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| (-1100 (-1189)) (-896 (-387))) (|has| |#1| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| (-1100 (-1189)) (-896 (-573))) (|has| |#1| (-896 (-573)))))) (-2534 (((-780) $ (-1189)) NIL) (((-780) $) NIL)) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) NIL)) (-4344 (($ (-1185 |#1|) (-1100 (-1189))) NIL) (($ (-1185 $) (-1100 (-1189))) NIL)) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-540 (-1100 (-1189)))) NIL) (($ $ (-1100 (-1189)) (-780)) NIL) (($ $ (-653 (-1100 (-1189))) (-653 (-780))) NIL)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ (-1100 (-1189))) NIL)) (-4036 (((-540 (-1100 (-1189))) $) NIL) (((-780) $ (-1100 (-1189))) NIL) (((-653 (-780)) $ (-653 (-1100 (-1189)))) NIL)) (-1382 (($ (-1 (-540 (-1100 (-1189))) (-540 (-1100 (-1189)))) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3844 (((-1 $ (-780)) (-1189)) NIL) (((-1 $ (-780)) $) NIL (|has| |#1| (-238)))) (-1453 (((-3 (-1100 (-1189)) "failed") $) NIL)) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-3705 (((-1100 (-1189)) $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-3180 (((-1171) $) NIL)) (-2069 (((-112) $) NIL)) (-4082 (((-3 (-653 $) "failed") $) NIL)) (-2586 (((-3 (-653 $) "failed") $) NIL)) (-2573 (((-3 (-2 (|:| |var| (-1100 (-1189))) (|:| -3907 (-780))) "failed") $) NIL)) (-2590 (($ $) NIL)) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) NIL)) (-1348 ((|#1| $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-461)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4218 (((-427 $) $) NIL (|has| |#1| (-919)))) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-565)))) (-2645 (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-1100 (-1189)) |#1|) NIL) (($ $ (-653 (-1100 (-1189))) (-653 |#1|)) NIL) (($ $ (-1100 (-1189)) $) NIL) (($ $ (-653 (-1100 (-1189))) (-653 $)) NIL) (($ $ (-1189) $) NIL (|has| |#1| (-238))) (($ $ (-653 (-1189)) (-653 $)) NIL (|has| |#1| (-238))) (($ $ (-1189) |#1|) NIL (|has| |#1| (-238))) (($ $ (-653 (-1189)) (-653 |#1|)) NIL (|has| |#1| (-238)))) (-3592 (($ $ (-1100 (-1189))) NIL (|has| |#1| (-174)))) (-3904 (($ $ (-1100 (-1189))) NIL) (($ $ (-653 (-1100 (-1189)))) NIL) (($ $ (-1100 (-1189)) (-780)) NIL) (($ $ (-653 (-1100 (-1189))) (-653 (-780))) NIL) (($ $ (-780)) NIL (|has| |#1| (-238))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2813 (((-653 (-1189)) $) NIL)) (-2565 (((-540 (-1100 (-1189))) $) NIL) (((-780) $ (-1100 (-1189))) NIL) (((-653 (-780)) $ (-653 (-1100 (-1189)))) NIL) (((-780) $ (-1189)) NIL)) (-1835 (((-902 (-387)) $) NIL (-12 (|has| (-1100 (-1189)) (-623 (-902 (-387)))) (|has| |#1| (-623 (-902 (-387)))))) (((-902 (-573)) $) NIL (-12 (|has| (-1100 (-1189)) (-623 (-902 (-573)))) (|has| |#1| (-623 (-902 (-573)))))) (((-545) $) NIL (-12 (|has| (-1100 (-1189)) (-623 (-545))) (|has| |#1| (-623 (-545)))))) (-3257 ((|#1| $) NIL (|has| |#1| (-461))) (($ $ (-1100 (-1189))) NIL (|has| |#1| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-919))))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#1|) NIL) (($ (-1100 (-1189))) NIL) (($ (-1189)) NIL) (($ (-1137 |#1| (-1189))) NIL) (($ (-416 (-573))) NIL (-2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573)))))) (($ $) NIL (|has| |#1| (-565)))) (-1920 (((-653 |#1|) $) NIL)) (-4317 ((|#1| $ (-540 (-1100 (-1189)))) NIL) (($ $ (-1100 (-1189)) (-780)) NIL) (($ $ (-653 (-1100 (-1189))) (-653 (-780))) NIL)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#1| (-919))) (|has| |#1| (-146))))) (-1545 (((-780)) NIL T CONST)) (-1538 (($ $ $ (-780)) NIL (|has| |#1| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-1100 (-1189))) NIL) (($ $ (-653 (-1100 (-1189)))) NIL) (($ $ (-1100 (-1189)) (-780)) NIL) (($ $ (-653 (-1100 (-1189))) (-653 (-780))) NIL) (($ $ (-780)) NIL (|has| |#1| (-238))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1099 |#1|) (-13 (-259 |#1| (-1189) (-1100 (-1189)) (-540 (-1100 (-1189)))) (-1050 (-1137 |#1| (-1189)))) (-1061)) (T -1099)) +NIL +(-13 (-259 |#1| (-1189) (-1100 (-1189)) (-540 (-1100 (-1189)))) (-1050 (-1137 |#1| (-1189)))) +((-2848 (((-112) $ $) NIL)) (-3447 (((-780) $) NIL)) (-1487 ((|#1| $) 10)) (-1695 (((-3 |#1| "failed") $) NIL)) (-2205 ((|#1| $) NIL)) (-2534 (((-780) $) 11)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-3844 (($ |#1| (-780)) 9)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-3904 (($ $ (-780)) NIL) (($ $) NIL)) (-2942 (((-871) $) NIL) (($ |#1|) NIL)) (-3507 (((-112) $ $) NIL)) (-3609 (($ $ (-780)) NIL) (($ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 16))) +(((-1100 |#1|) (-272 |#1|) (-859)) (T -1100)) +NIL +(-272 |#1|) +((-1776 (((-653 |#2|) (-1 |#2| |#1|) (-1106 |#1|)) 29 (|has| |#1| (-857))) (((-1106 |#2|) (-1 |#2| |#1|) (-1106 |#1|)) 14))) +(((-1101 |#1| |#2|) (-10 -7 (-15 -1776 ((-1106 |#2|) (-1 |#2| |#1|) (-1106 |#1|))) (IF (|has| |#1| (-857)) (-15 -1776 ((-653 |#2|) (-1 |#2| |#1|) (-1106 |#1|))) |%noBranch|)) (-1230) (-1230)) (T -1101)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1106 *5)) (-4 *5 (-857)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-653 *6)) (-5 *1 (-1101 *5 *6)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1106 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-1106 *6)) (-5 *1 (-1101 *5 *6))))) +(-10 -7 (-15 -1776 ((-1106 |#2|) (-1 |#2| |#1|) (-1106 |#1|))) (IF (|has| |#1| (-857)) (-15 -1776 ((-653 |#2|) (-1 |#2| |#1|) (-1106 |#1|))) |%noBranch|)) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 16) (($ (-1194)) NIL) (((-1194) $) NIL)) (-1632 (((-653 (-1147)) $) 10)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-1102) (-13 (-1095) (-10 -8 (-15 -1632 ((-653 (-1147)) $))))) (T -1102)) +((-1632 (*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-1102))))) +(-13 (-1095) (-10 -8 (-15 -1632 ((-653 (-1147)) $)))) +((-1776 (((-1104 |#2|) (-1 |#2| |#1|) (-1104 |#1|)) 19))) +(((-1103 |#1| |#2|) (-10 -7 (-15 -1776 ((-1104 |#2|) (-1 |#2| |#1|) (-1104 |#1|)))) (-1230) (-1230)) (T -1103)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1104 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-1104 *6)) (-5 *1 (-1103 *5 *6))))) +(-10 -7 (-15 -1776 ((-1104 |#2|) (-1 |#2| |#1|) (-1104 |#1|)))) +((-2848 (((-112) $ $) NIL (|has| (-1106 |#1|) (-1112)))) (-1487 (((-1189) $) NIL)) (-3241 (((-1106 |#1|) $) NIL)) (-3180 (((-1171) $) NIL (|has| (-1106 |#1|) (-1112)))) (-3965 (((-1132) $) NIL (|has| (-1106 |#1|) (-1112)))) (-2691 (($ (-1189) (-1106 |#1|)) NIL)) (-2942 (((-871) $) NIL (|has| (-1106 |#1|) (-1112)))) (-3507 (((-112) $ $) NIL (|has| (-1106 |#1|) (-1112)))) (-2981 (((-112) $ $) NIL (|has| (-1106 |#1|) (-1112))))) +(((-1104 |#1|) (-13 (-1230) (-10 -8 (-15 -2691 ($ (-1189) (-1106 |#1|))) (-15 -1487 ((-1189) $)) (-15 -3241 ((-1106 |#1|) $)) (IF (|has| (-1106 |#1|) (-1112)) (-6 (-1112)) |%noBranch|))) (-1230)) (T -1104)) +((-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1106 *4)) (-4 *4 (-1230)) (-5 *1 (-1104 *4)))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1104 *3)) (-4 *3 (-1230)))) (-3241 (*1 *2 *1) (-12 (-5 *2 (-1106 *3)) (-5 *1 (-1104 *3)) (-4 *3 (-1230))))) +(-13 (-1230) (-10 -8 (-15 -2691 ($ (-1189) (-1106 |#1|))) (-15 -1487 ((-1189) $)) (-15 -3241 ((-1106 |#1|) $)) (IF (|has| (-1106 |#1|) (-1112)) (-6 (-1112)) |%noBranch|))) +((-3241 (($ |#1| |#1|) 8)) (-4141 ((|#1| $) 11)) (-2815 ((|#1| $) 13)) (-1952 (((-573) $) 9)) (-4055 ((|#1| $) 10)) (-1965 ((|#1| $) 12)) (-1835 (($ |#1|) 6)) (-4277 (($ |#1| |#1|) 15)) (-2732 (($ $ (-573)) 14))) +(((-1105 |#1|) (-141) (-1230)) (T -1105)) +((-4277 (*1 *1 *2 *2) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1230)))) (-2732 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-1105 *3)) (-4 *3 (-1230)))) (-2815 (*1 *2 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1230)))) (-1965 (*1 *2 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1230)))) (-4141 (*1 *2 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1230)))) (-4055 (*1 *2 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1230)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1230)) (-5 *2 (-573)))) (-3241 (*1 *1 *2 *2) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1230))))) +(-13 (-627 |t#1|) (-10 -8 (-15 -4277 ($ |t#1| |t#1|)) (-15 -2732 ($ $ (-573))) (-15 -2815 (|t#1| $)) (-15 -1965 (|t#1| $)) (-15 -4141 (|t#1| $)) (-15 -4055 (|t#1| $)) (-15 -1952 ((-573) $)) (-15 -3241 ($ |t#1| |t#1|)))) +(((-627 |#1|) . T)) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3241 (($ |#1| |#1|) 16)) (-1776 (((-653 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-857)))) (-4141 ((|#1| $) 12)) (-2815 ((|#1| $) 11)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-1952 (((-573) $) 15)) (-4055 ((|#1| $) 14)) (-1965 ((|#1| $) 13)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2127 (((-653 |#1|) $) 44 (|has| |#1| (-857))) (((-653 |#1|) (-653 $)) 43 (|has| |#1| (-857)))) (-1835 (($ |#1|) 29)) (-2942 (((-871) $) 28 (|has| |#1| (-1112)))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-4277 (($ |#1| |#1|) 10)) (-2732 (($ $ (-573)) 17)) (-2981 (((-112) $ $) 22 (|has| |#1| (-1112))))) +(((-1106 |#1|) (-13 (-1105 |#1|) (-10 -7 (IF (|has| |#1| (-1112)) (-6 (-1112)) |%noBranch|) (IF (|has| |#1| (-857)) (-6 (-1107 |#1| (-653 |#1|))) |%noBranch|))) (-1230)) (T -1106)) +NIL +(-13 (-1105 |#1|) (-10 -7 (IF (|has| |#1| (-1112)) (-6 (-1112)) |%noBranch|) (IF (|has| |#1| (-857)) (-6 (-1107 |#1| (-653 |#1|))) |%noBranch|))) +((-3241 (($ |#1| |#1|) 8)) (-1776 ((|#2| (-1 |#1| |#1|) $) 16)) (-4141 ((|#1| $) 11)) (-2815 ((|#1| $) 13)) (-1952 (((-573) $) 9)) (-4055 ((|#1| $) 10)) (-1965 ((|#1| $) 12)) (-2127 ((|#2| (-653 $)) 18) ((|#2| $) 17)) (-1835 (($ |#1|) 6)) (-4277 (($ |#1| |#1|) 15)) (-2732 (($ $ (-573)) 14))) +(((-1107 |#1| |#2|) (-141) (-857) (-1161 |t#1|)) (T -1107)) +((-2127 (*1 *2 *3) (-12 (-5 *3 (-653 *1)) (-4 *1 (-1107 *4 *2)) (-4 *4 (-857)) (-4 *2 (-1161 *4)))) (-2127 (*1 *2 *1) (-12 (-4 *1 (-1107 *3 *2)) (-4 *3 (-857)) (-4 *2 (-1161 *3)))) (-1776 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1107 *4 *2)) (-4 *4 (-857)) (-4 *2 (-1161 *4))))) +(-13 (-1105 |t#1|) (-10 -8 (-15 -2127 (|t#2| (-653 $))) (-15 -2127 (|t#2| $)) (-15 -1776 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-627 |#1|) . T) ((-1105 |#1|) . T)) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3359 (((-1147) $) 12)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 18) (($ (-1194)) NIL) (((-1194) $) NIL)) (-2043 (((-653 (-1147)) $) 10)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-1108) (-13 (-1095) (-10 -8 (-15 -2043 ((-653 (-1147)) $)) (-15 -3359 ((-1147) $))))) (T -1108)) +((-2043 (*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-1108)))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1108))))) +(-13 (-1095) (-10 -8 (-15 -2043 ((-653 (-1147)) $)) (-15 -3359 ((-1147) $)))) +((-4357 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2180 (($ $ $) 10)) (-3631 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1109 |#1| |#2|) (-10 -8 (-15 -4357 (|#1| |#2| |#1|)) (-15 -4357 (|#1| |#1| |#2|)) (-15 -4357 (|#1| |#1| |#1|)) (-15 -2180 (|#1| |#1| |#1|)) (-15 -3631 (|#1| |#1| |#2|)) (-15 -3631 (|#1| |#1| |#1|))) (-1110 |#2|) (-1112)) (T -1109)) +NIL +(-10 -8 (-15 -4357 (|#1| |#2| |#1|)) (-15 -4357 (|#1| |#1| |#2|)) (-15 -4357 (|#1| |#1| |#1|)) (-15 -2180 (|#1| |#1| |#1|)) (-15 -3631 (|#1| |#1| |#2|)) (-15 -3631 (|#1| |#1| |#1|))) +((-2848 (((-112) $ $) 7)) (-4357 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-2180 (($ $ $) 21)) (-3319 (((-112) $ $) 20)) (-3450 (((-112) $ (-780)) 36)) (-1506 (($) 26) (($ (-653 |#1|)) 25)) (-2164 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4455)))) (-2579 (($) 37 T CONST)) (-2685 (($ $) 60 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ |#1| $) 59 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4455)))) (-1863 (((-653 |#1|) $) 44 (|has| $ (-6 -4455)))) (-2897 (((-112) $ $) 29)) (-2078 (((-112) $ (-780)) 35)) (-3214 (((-653 |#1|) $) 45 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 39)) (-2673 (((-112) $ (-780)) 34)) (-3180 (((-1171) $) 10)) (-3716 (($ $ $) 24)) (-3965 (((-1132) $) 11)) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-1575 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 |#1|) (-653 |#1|)) 51 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 49 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 (-301 |#1|))) 48 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 30)) (-3811 (((-112) $) 33)) (-3508 (($) 32)) (-3631 (($ $ $) 23) (($ $ |#1|) 22)) (-3974 (((-780) |#1| $) 46 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) (((-780) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4455)))) (-3166 (($ $) 31)) (-1835 (((-545) $) 61 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 52)) (-2942 (((-871) $) 12)) (-4280 (($) 28) (($ (-653 |#1|)) 27)) (-3507 (((-112) $ $) 9)) (-1646 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 6)) (-2862 (((-780) $) 38 (|has| $ (-6 -4455))))) +(((-1110 |#1|) (-141) (-1112)) (T -1110)) +((-2897 (*1 *2 *1 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1112)) (-5 *2 (-112)))) (-4280 (*1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112)))) (-4280 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-4 *1 (-1110 *3)))) (-1506 (*1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-4 *1 (-1110 *3)))) (-3716 (*1 *1 *1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112)))) (-3631 (*1 *1 *1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112)))) (-3631 (*1 *1 *1 *2) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112)))) (-2180 (*1 *1 *1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112)))) (-3319 (*1 *2 *1 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1112)) (-5 *2 (-112)))) (-4357 (*1 *1 *1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112)))) (-4357 (*1 *1 *1 *2) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112)))) (-4357 (*1 *1 *2 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112))))) +(-13 (-1112) (-152 |t#1|) (-10 -8 (-6 -4445) (-15 -2897 ((-112) $ $)) (-15 -4280 ($)) (-15 -4280 ($ (-653 |t#1|))) (-15 -1506 ($)) (-15 -1506 ($ (-653 |t#1|))) (-15 -3716 ($ $ $)) (-15 -3631 ($ $ $)) (-15 -3631 ($ $ |t#1|)) (-15 -2180 ($ $ $)) (-15 -3319 ((-112) $ $)) (-15 -4357 ($ $ $)) (-15 -4357 ($ $ |t#1|)) (-15 -4357 ($ |t#1| $)))) +(((-34) . T) ((-102) . T) ((-622 (-871)) . T) ((-152 |#1|) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1112) . T) ((-1230) . T)) +((-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 8)) (-3507 (((-112) $ $) 12))) +(((-1111 |#1|) (-10 -8 (-15 -3507 ((-112) |#1| |#1|)) (-15 -3180 ((-1171) |#1|)) (-15 -3965 ((-1132) |#1|))) (-1112)) (T -1111)) +NIL +(-10 -8 (-15 -3507 ((-112) |#1| |#1|)) (-15 -3180 ((-1171) |#1|)) (-15 -3965 ((-1132) |#1|))) +((-2848 (((-112) $ $) 7)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) +(((-1112) (-141)) (T -1112)) +((-3965 (*1 *2 *1) (-12 (-4 *1 (-1112)) (-5 *2 (-1132)))) (-3180 (*1 *2 *1) (-12 (-4 *1 (-1112)) (-5 *2 (-1171)))) (-3507 (*1 *2 *1 *1) (-12 (-4 *1 (-1112)) (-5 *2 (-112))))) +(-13 (-102) (-622 (-871)) (-10 -8 (-15 -3965 ((-1132) $)) (-15 -3180 ((-1171) $)) (-15 -3507 ((-112) $ $)))) +(((-102) . T) ((-622 (-871)) . T)) +((-2848 (((-112) $ $) NIL)) (-1486 (((-780)) 36)) (-2654 (($ (-653 (-931))) 70)) (-1690 (((-3 $ "failed") $ (-931) (-931)) 81)) (-2819 (($) 40)) (-1547 (((-112) (-931) $) 42)) (-3589 (((-931) $) 64)) (-3180 (((-1171) $) NIL)) (-2575 (($ (-931)) 39)) (-4270 (((-3 $ "failed") $ (-931)) 77)) (-3965 (((-1132) $) NIL)) (-2293 (((-1280 $)) 47)) (-2099 (((-653 (-931)) $) 27)) (-2074 (((-780) $ (-931) (-931)) 78)) (-2942 (((-871) $) 32)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 24))) +(((-1113 |#1| |#2|) (-13 (-376) (-10 -8 (-15 -4270 ((-3 $ "failed") $ (-931))) (-15 -1690 ((-3 $ "failed") $ (-931) (-931))) (-15 -2099 ((-653 (-931)) $)) (-15 -2654 ($ (-653 (-931)))) (-15 -2293 ((-1280 $))) (-15 -1547 ((-112) (-931) $)) (-15 -2074 ((-780) $ (-931) (-931))))) (-931) (-931)) (T -1113)) +((-4270 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-931)) (-5 *1 (-1113 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1690 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-931)) (-5 *1 (-1113 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2099 (*1 *2 *1) (-12 (-5 *2 (-653 (-931))) (-5 *1 (-1113 *3 *4)) (-14 *3 (-931)) (-14 *4 (-931)))) (-2654 (*1 *1 *2) (-12 (-5 *2 (-653 (-931))) (-5 *1 (-1113 *3 *4)) (-14 *3 (-931)) (-14 *4 (-931)))) (-2293 (*1 *2) (-12 (-5 *2 (-1280 (-1113 *3 *4))) (-5 *1 (-1113 *3 *4)) (-14 *3 (-931)) (-14 *4 (-931)))) (-1547 (*1 *2 *3 *1) (-12 (-5 *3 (-931)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2074 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-931)) (-5 *2 (-780)) (-5 *1 (-1113 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-376) (-10 -8 (-15 -4270 ((-3 $ "failed") $ (-931))) (-15 -1690 ((-3 $ "failed") $ (-931) (-931))) (-15 -2099 ((-653 (-931)) $)) (-15 -2654 ($ (-653 (-931)))) (-15 -2293 ((-1280 $))) (-15 -1547 ((-112) (-931) $)) (-15 -2074 ((-780) $ (-931) (-931))))) +((-2848 (((-112) $ $) NIL)) (-4393 (($) NIL (|has| |#1| (-376)))) (-4357 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-2180 (($ $ $) 81)) (-3319 (((-112) $ $) 82)) (-3450 (((-112) $ (-780)) NIL)) (-1486 (((-780)) NIL (|has| |#1| (-376)))) (-1506 (($ (-653 |#1|)) NIL) (($) 13)) (-3557 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2596 (($ |#1| $) 74 (|has| $ (-6 -4455))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-3334 (($ |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4455)))) (-2819 (($) NIL (|has| |#1| (-376)))) (-1863 (((-653 |#1|) $) 19 (|has| $ (-6 -4455)))) (-2897 (((-112) $ $) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-3659 ((|#1| $) 55 (|has| |#1| (-859)))) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3751 ((|#1| $) 53 (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 34)) (-3589 (((-931) $) NIL (|has| |#1| (-376)))) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-3716 (($ $ $) 79)) (-2487 ((|#1| $) 25)) (-3181 (($ |#1| $) 69)) (-2575 (($ (-931)) NIL (|has| |#1| (-376)))) (-3965 (((-1132) $) NIL)) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-3815 ((|#1| $) 27)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) 21)) (-3508 (($) 11)) (-3631 (($ $ |#1|) NIL) (($ $ $) 80)) (-2428 (($) NIL) (($ (-653 |#1|)) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) 16)) (-1835 (((-545) $) 50 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 62)) (-3255 (($ $) NIL (|has| |#1| (-376)))) (-2942 (((-871) $) NIL)) (-3553 (((-780) $) NIL)) (-4280 (($ (-653 |#1|)) NIL) (($) 12)) (-3507 (((-112) $ $) NIL)) (-2679 (($ (-653 |#1|)) NIL)) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 52)) (-2862 (((-780) $) 10 (|has| $ (-6 -4455))))) +(((-1114 |#1|) (-434 |#1|) (-1112)) (T -1114)) +NIL +(-434 |#1|) +((-2848 (((-112) $ $) 7)) (-2146 (((-112) $) 33)) (-4004 ((|#2| $) 28)) (-4203 (((-112) $) 34)) (-3248 ((|#1| $) 29)) (-3476 (((-112) $) 36)) (-2328 (((-112) $) 38)) (-2245 (((-112) $) 35)) (-3180 (((-1171) $) 10)) (-3159 (((-112) $) 32)) (-4025 ((|#3| $) 27)) (-3965 (((-1132) $) 11)) (-2532 (((-112) $) 31)) (-2383 ((|#4| $) 26)) (-1444 ((|#5| $) 25)) (-4122 (((-112) $ $) 39)) (-2198 (($ $ (-573)) 41) (($ $ (-653 (-573))) 40)) (-4292 (((-653 $) $) 30)) (-1835 (($ |#1|) 47) (($ |#2|) 46) (($ |#3|) 45) (($ |#4|) 44) (($ |#5|) 43) (($ (-653 $)) 42)) (-2942 (((-871) $) 12)) (-4347 (($ $) 23)) (-4051 (($ $) 24)) (-3507 (((-112) $ $) 9)) (-2267 (((-112) $) 37)) (-2981 (((-112) $ $) 6)) (-2862 (((-573) $) 22))) +(((-1115 |#1| |#2| |#3| |#4| |#5|) (-141) (-1112) (-1112) (-1112) (-1112) (-1112)) (T -1115)) +((-4122 (*1 *2 *1 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112)))) (-2328 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112)))) (-2267 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112)))) (-3476 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112)))) (-2245 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112)))) (-4203 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112)))) (-2146 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112)))) (-3159 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112)))) (-2532 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112)))) (-4292 (*1 *2 *1) (-12 (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-653 *1)) (-4 *1 (-1115 *3 *4 *5 *6 *7)))) (-3248 (*1 *2 *1) (-12 (-4 *1 (-1115 *2 *3 *4 *5 *6)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *2 (-1112)))) (-4004 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *2 *4 *5 *6)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *2 (-1112)))) (-4025 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *2 *5 *6)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *2 (-1112)))) (-2383 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *2 *6)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *2 (-1112)))) (-1444 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6 *2)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *2 (-1112)))) (-4051 (*1 *1 *1) (-12 (-4 *1 (-1115 *2 *3 *4 *5 *6)) (-4 *2 (-1112)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)))) (-4347 (*1 *1 *1) (-12 (-4 *1 (-1115 *2 *3 *4 *5 *6)) (-4 *2 (-1112)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)))) (-2862 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-573))))) +(-13 (-1112) (-627 |t#1|) (-627 |t#2|) (-627 |t#3|) (-627 |t#4|) (-627 |t#4|) (-627 |t#5|) (-627 (-653 $)) (-293 (-573) $) (-293 (-653 (-573)) $) (-10 -8 (-15 -4122 ((-112) $ $)) (-15 -2328 ((-112) $)) (-15 -2267 ((-112) $)) (-15 -3476 ((-112) $)) (-15 -2245 ((-112) $)) (-15 -4203 ((-112) $)) (-15 -2146 ((-112) $)) (-15 -3159 ((-112) $)) (-15 -2532 ((-112) $)) (-15 -4292 ((-653 $) $)) (-15 -3248 (|t#1| $)) (-15 -4004 (|t#2| $)) (-15 -4025 (|t#3| $)) (-15 -2383 (|t#4| $)) (-15 -1444 (|t#5| $)) (-15 -4051 ($ $)) (-15 -4347 ($ $)) (-15 -2862 ((-573) $)))) +(((-102) . T) ((-622 (-871)) . T) ((-627 (-653 $)) . T) ((-627 |#1|) . T) ((-627 |#2|) . T) ((-627 |#3|) . T) ((-627 |#4|) . T) ((-627 |#5|) . T) ((-293 (-573) $) . T) ((-293 (-653 (-573)) $) . T) ((-1112) . T) ((-1230) . T)) +((-2848 (((-112) $ $) NIL)) (-2146 (((-112) $) NIL)) (-4004 (((-1189) $) NIL)) (-4203 (((-112) $) NIL)) (-3248 (((-1171) $) NIL)) (-3476 (((-112) $) NIL)) (-2328 (((-112) $) NIL)) (-2245 (((-112) $) NIL)) (-3180 (((-1171) $) NIL)) (-3159 (((-112) $) NIL)) (-4025 (((-573) $) NIL)) (-3965 (((-1132) $) NIL)) (-2532 (((-112) $) NIL)) (-2383 (((-227) $) NIL)) (-1444 (((-871) $) NIL)) (-4122 (((-112) $ $) NIL)) (-2198 (($ $ (-573)) NIL) (($ $ (-653 (-573))) NIL)) (-4292 (((-653 $) $) NIL)) (-1835 (($ (-1171)) NIL) (($ (-1189)) NIL) (($ (-573)) NIL) (($ (-227)) NIL) (($ (-871)) NIL) (($ (-653 $)) NIL)) (-2942 (((-871) $) NIL)) (-4347 (($ $) NIL)) (-4051 (($ $) NIL)) (-3507 (((-112) $ $) NIL)) (-2267 (((-112) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2862 (((-573) $) NIL))) +(((-1116) (-1115 (-1171) (-1189) (-573) (-227) (-871))) (T -1116)) +NIL +(-1115 (-1171) (-1189) (-573) (-227) (-871)) +((-2848 (((-112) $ $) NIL)) (-2146 (((-112) $) 45)) (-4004 ((|#2| $) 48)) (-4203 (((-112) $) 20)) (-3248 ((|#1| $) 21)) (-3476 (((-112) $) 42)) (-2328 (((-112) $) 14)) (-2245 (((-112) $) 44)) (-3180 (((-1171) $) NIL)) (-3159 (((-112) $) 46)) (-4025 ((|#3| $) 50)) (-3965 (((-1132) $) NIL)) (-2532 (((-112) $) 47)) (-2383 ((|#4| $) 49)) (-1444 ((|#5| $) 51)) (-4122 (((-112) $ $) 41)) (-2198 (($ $ (-573)) 62) (($ $ (-653 (-573))) 64)) (-4292 (((-653 $) $) 27)) (-1835 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-653 $)) 52)) (-2942 (((-871) $) 28)) (-4347 (($ $) 26)) (-4051 (($ $) 58)) (-3507 (((-112) $ $) NIL)) (-2267 (((-112) $) 23)) (-2981 (((-112) $ $) 40)) (-2862 (((-573) $) 60))) +(((-1117 |#1| |#2| |#3| |#4| |#5|) (-1115 |#1| |#2| |#3| |#4| |#5|) (-1112) (-1112) (-1112) (-1112) (-1112)) (T -1117)) +NIL +(-1115 |#1| |#2| |#3| |#4| |#5|) +((-3767 (((-1285) $) 22)) (-3740 (($ (-1189) (-443) |#2|) 11)) (-2942 (((-871) $) 16))) +(((-1118 |#1| |#2|) (-13 (-404) (-10 -8 (-15 -3740 ($ (-1189) (-443) |#2|)))) (-1112) (-439 |#1|)) (T -1118)) +((-3740 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1189)) (-5 *3 (-443)) (-4 *5 (-1112)) (-5 *1 (-1118 *5 *4)) (-4 *4 (-439 *5))))) +(-13 (-404) (-10 -8 (-15 -3740 ($ (-1189) (-443) |#2|)))) +((-2671 (((-112) |#5| |#5|) 44)) (-2223 (((-112) |#5| |#5|) 59)) (-2476 (((-112) |#5| (-653 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-3874 (((-112) (-653 |#4|) (-653 |#4|)) 65)) (-1688 (((-112) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) 70)) (-4435 (((-1285)) 32)) (-3902 (((-1285) (-1171) (-1171) (-1171)) 28)) (-2707 (((-653 |#5|) (-653 |#5|)) 101)) (-3295 (((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)))) 93)) (-1410 (((-653 (-2 (|:| -4122 (-653 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-653 |#4|)))) (-653 |#4|) (-653 |#5|) (-112) (-112)) 123)) (-4181 (((-112) |#5| |#5|) 53)) (-2243 (((-3 (-112) "failed") |#5| |#5|) 78)) (-2186 (((-112) (-653 |#4|) (-653 |#4|)) 64)) (-1728 (((-112) (-653 |#4|) (-653 |#4|)) 66)) (-2614 (((-112) (-653 |#4|) (-653 |#4|)) 67)) (-2119 (((-3 (-2 (|:| -4122 (-653 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-653 |#4|))) "failed") (-653 |#4|) |#5| (-653 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-3049 (((-653 |#5|) (-653 |#5|)) 49))) +(((-1119 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3902 ((-1285) (-1171) (-1171) (-1171))) (-15 -4435 ((-1285))) (-15 -2671 ((-112) |#5| |#5|)) (-15 -3049 ((-653 |#5|) (-653 |#5|))) (-15 -4181 ((-112) |#5| |#5|)) (-15 -2223 ((-112) |#5| |#5|)) (-15 -3874 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -2186 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -1728 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -2614 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -2243 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2476 ((-112) |#5| |#5|)) (-15 -2476 ((-112) |#5| (-653 |#5|))) (-15 -2707 ((-653 |#5|) (-653 |#5|))) (-15 -1688 ((-112) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)))) (-15 -3295 ((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) (-15 -1410 ((-653 (-2 (|:| -4122 (-653 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-653 |#4|)))) (-653 |#4|) (-653 |#5|) (-112) (-112))) (-15 -2119 ((-3 (-2 (|:| -4122 (-653 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-653 |#4|))) "failed") (-653 |#4|) |#5| (-653 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-461) (-802) (-859) (-1077 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3| |#4|)) (T -1119)) +((-2119 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) (-4 *9 (-1077 *6 *7 *8)) (-5 *2 (-2 (|:| -4122 (-653 *9)) (|:| -4090 *4) (|:| |ineq| (-653 *9)))) (-5 *1 (-1119 *6 *7 *8 *9 *4)) (-5 *3 (-653 *9)) (-4 *4 (-1083 *6 *7 *8 *9)))) (-1410 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-653 *10)) (-5 *5 (-112)) (-4 *10 (-1083 *6 *7 *8 *9)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) (-4 *9 (-1077 *6 *7 *8)) (-5 *2 (-653 (-2 (|:| -4122 (-653 *9)) (|:| -4090 *10) (|:| |ineq| (-653 *9))))) (-5 *1 (-1119 *6 *7 *8 *9 *10)) (-5 *3 (-653 *9)))) (-3295 (*1 *2 *2) (-12 (-5 *2 (-653 (-2 (|:| |val| (-653 *6)) (|:| -4090 *7)))) (-4 *6 (-1077 *3 *4 *5)) (-4 *7 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-1119 *3 *4 *5 *6 *7)))) (-1688 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-653 *7)) (|:| -4090 *8))) (-4 *7 (-1077 *4 *5 *6)) (-4 *8 (-1083 *4 *5 *6 *7)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-1119 *4 *5 *6 *7 *8)))) (-2707 (*1 *2 *2) (-12 (-5 *2 (-653 *7)) (-4 *7 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *1 (-1119 *3 *4 *5 *6 *7)))) (-2476 (*1 *2 *3 *4) (-12 (-5 *4 (-653 *3)) (-4 *3 (-1083 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-1077 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1119 *5 *6 *7 *8 *3)))) (-2476 (*1 *2 *3 *3) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1119 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) (-2243 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1119 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) (-2614 (*1 *2 *3 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-1119 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) (-1728 (*1 *2 *3 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-1119 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) (-2186 (*1 *2 *3 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-1119 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) (-3874 (*1 *2 *3 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) (-5 *1 (-1119 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) (-2223 (*1 *2 *3 *3) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1119 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) (-4181 (*1 *2 *3 *3) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1119 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) (-3049 (*1 *2 *2) (-12 (-5 *2 (-653 *7)) (-4 *7 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *1 (-1119 *3 *4 *5 *6 *7)))) (-2671 (*1 *2 *3 *3) (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1119 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) (-4435 (*1 *2) (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-1285)) (-5 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *7 (-1083 *3 *4 *5 *6)))) (-3902 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1171)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-1285)) (-5 *1 (-1119 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7))))) +(-10 -7 (-15 -3902 ((-1285) (-1171) (-1171) (-1171))) (-15 -4435 ((-1285))) (-15 -2671 ((-112) |#5| |#5|)) (-15 -3049 ((-653 |#5|) (-653 |#5|))) (-15 -4181 ((-112) |#5| |#5|)) (-15 -2223 ((-112) |#5| |#5|)) (-15 -3874 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -2186 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -1728 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -2614 ((-112) (-653 |#4|) (-653 |#4|))) (-15 -2243 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2476 ((-112) |#5| |#5|)) (-15 -2476 ((-112) |#5| (-653 |#5|))) (-15 -2707 ((-653 |#5|) (-653 |#5|))) (-15 -1688 ((-112) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)))) (-15 -3295 ((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) (-15 -1410 ((-653 (-2 (|:| -4122 (-653 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-653 |#4|)))) (-653 |#4|) (-653 |#5|) (-112) (-112))) (-15 -2119 ((-3 (-2 (|:| -4122 (-653 |#4|)) (|:| -4090 |#5|) (|:| |ineq| (-653 |#4|))) "failed") (-653 |#4|) |#5| (-653 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-2301 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#5|) 108)) (-3566 (((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) |#4| |#4| |#5|) 80)) (-2567 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|) 102)) (-4314 (((-653 |#5|) |#4| |#5|) 124)) (-1492 (((-653 |#5|) |#4| |#5|) 131)) (-4085 (((-653 |#5|) |#4| |#5|) 132)) (-4322 (((-653 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|) 109)) (-2415 (((-653 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|) 130)) (-3264 (((-653 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-2812 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) |#3| (-112)) 92) (((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-4197 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|) 87)) (-3273 (((-1285)) 36)) (-3790 (((-1285)) 25)) (-2528 (((-1285) (-1171) (-1171) (-1171)) 32)) (-3067 (((-1285) (-1171) (-1171) (-1171)) 21))) +(((-1120 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3067 ((-1285) (-1171) (-1171) (-1171))) (-15 -3790 ((-1285))) (-15 -2528 ((-1285) (-1171) (-1171) (-1171))) (-15 -3273 ((-1285))) (-15 -3566 ((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -2812 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2812 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) |#3| (-112))) (-15 -4197 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -2567 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -3264 ((-112) |#4| |#5|)) (-15 -4322 ((-653 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|)) (-15 -4314 ((-653 |#5|) |#4| |#5|)) (-15 -2415 ((-653 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|)) (-15 -1492 ((-653 |#5|) |#4| |#5|)) (-15 -3264 ((-653 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|)) (-15 -4085 ((-653 |#5|) |#4| |#5|)) (-15 -2301 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#5|))) (-461) (-802) (-859) (-1077 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3| |#4|)) (T -1120)) +((-2301 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-4085 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 *4)) (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-3264 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 (-2 (|:| |val| (-112)) (|:| -4090 *4)))) (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-1492 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 *4)) (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-2415 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 (-2 (|:| |val| (-112)) (|:| -4090 *4)))) (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-4314 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 *4)) (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-4322 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 (-2 (|:| |val| (-112)) (|:| -4090 *4)))) (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-3264 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-2567 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-4197 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-2812 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 (-2 (|:| |val| (-653 *8)) (|:| -4090 *9)))) (-5 *5 (-112)) (-4 *8 (-1077 *6 *7 *4)) (-4 *9 (-1083 *6 *7 *4 *8)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *4 (-859)) (-5 *2 (-653 (-2 (|:| |val| *8) (|:| -4090 *9)))) (-5 *1 (-1120 *6 *7 *4 *8 *9)))) (-2812 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) (-4 *3 (-1077 *6 *7 *8)) (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) (-5 *1 (-1120 *6 *7 *8 *3 *4)) (-4 *4 (-1083 *6 *7 *8 *3)))) (-3566 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))) (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) (-3273 (*1 *2) (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-1285)) (-5 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *7 (-1083 *3 *4 *5 *6)))) (-2528 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1171)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-1285)) (-5 *1 (-1120 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) (-3790 (*1 *2) (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-1285)) (-5 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *7 (-1083 *3 *4 *5 *6)))) (-3067 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1171)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-1285)) (-5 *1 (-1120 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7))))) +(-10 -7 (-15 -3067 ((-1285) (-1171) (-1171) (-1171))) (-15 -3790 ((-1285))) (-15 -2528 ((-1285) (-1171) (-1171) (-1171))) (-15 -3273 ((-1285))) (-15 -3566 ((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -2812 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2812 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) |#3| (-112))) (-15 -4197 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -2567 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#4| |#5|)) (-15 -3264 ((-112) |#4| |#5|)) (-15 -4322 ((-653 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|)) (-15 -4314 ((-653 |#5|) |#4| |#5|)) (-15 -2415 ((-653 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|)) (-15 -1492 ((-653 |#5|) |#4| |#5|)) (-15 -3264 ((-653 (-2 (|:| |val| (-112)) (|:| -4090 |#5|))) |#4| |#5|)) (-15 -4085 ((-653 |#5|) |#4| |#5|)) (-15 -2301 ((-653 (-2 (|:| |val| |#4|) (|:| -4090 |#5|))) |#4| |#5|))) +((-2848 (((-112) $ $) 7)) (-2280 (((-653 (-2 (|:| -1380 $) (|:| -1674 (-653 |#4|)))) (-653 |#4|)) 86)) (-3527 (((-653 $) (-653 |#4|)) 87) (((-653 $) (-653 |#4|) (-112)) 112)) (-4354 (((-653 |#3|) $) 34)) (-2577 (((-112) $) 27)) (-2020 (((-112) $) 18 (|has| |#1| (-565)))) (-2261 (((-112) |#4| $) 102) (((-112) $) 98)) (-1554 ((|#4| |#4| $) 93)) (-4285 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| $) 127)) (-2770 (((-2 (|:| |under| $) (|:| -3733 $) (|:| |upper| $)) $ |#3|) 28)) (-3450 (((-112) $ (-780)) 45)) (-2164 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4455))) (((-3 |#4| "failed") $ |#3|) 80)) (-2579 (($) 46 T CONST)) (-2194 (((-112) $) 23 (|has| |#1| (-565)))) (-1849 (((-112) $ $) 25 (|has| |#1| (-565)))) (-2838 (((-112) $ $) 24 (|has| |#1| (-565)))) (-3145 (((-112) $) 26 (|has| |#1| (-565)))) (-4304 (((-653 |#4|) (-653 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2346 (((-653 |#4|) (-653 |#4|) $) 19 (|has| |#1| (-565)))) (-2475 (((-653 |#4|) (-653 |#4|) $) 20 (|has| |#1| (-565)))) (-1695 (((-3 $ "failed") (-653 |#4|)) 37)) (-2205 (($ (-653 |#4|)) 36)) (-2925 (((-3 $ "failed") $) 83)) (-3760 ((|#4| |#4| $) 90)) (-2685 (($ $) 69 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ |#4| $) 68 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4455)))) (-3132 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-565)))) (-4310 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3117 ((|#4| |#4| $) 88)) (-2867 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4455))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4455))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2660 (((-2 (|:| -1380 (-653 |#4|)) (|:| -1674 (-653 |#4|))) $) 106)) (-3060 (((-112) |#4| $) 137)) (-2714 (((-112) |#4| $) 134)) (-3491 (((-112) |#4| $) 138) (((-112) $) 135)) (-1863 (((-653 |#4|) $) 53 (|has| $ (-6 -4455)))) (-4022 (((-112) |#4| $) 105) (((-112) $) 104)) (-3338 ((|#3| $) 35)) (-2078 (((-112) $ (-780)) 44)) (-3214 (((-653 |#4|) $) 54 (|has| $ (-6 -4455)))) (-1547 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#4| |#4|) $) 48)) (-1937 (((-653 |#3|) $) 33)) (-1689 (((-112) |#3| $) 32)) (-2673 (((-112) $ (-780)) 43)) (-3180 (((-1171) $) 10)) (-4092 (((-3 |#4| (-653 $)) |#4| |#4| $) 129)) (-2395 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| |#4| $) 128)) (-3359 (((-3 |#4| "failed") $) 84)) (-1692 (((-653 $) |#4| $) 130)) (-1675 (((-3 (-112) (-653 $)) |#4| $) 133)) (-3190 (((-653 (-2 (|:| |val| (-112)) (|:| -4090 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3716 (((-653 $) |#4| $) 126) (((-653 $) (-653 |#4|) $) 125) (((-653 $) (-653 |#4|) (-653 $)) 124) (((-653 $) |#4| (-653 $)) 123)) (-1844 (($ |#4| $) 118) (($ (-653 |#4|) $) 117)) (-2870 (((-653 |#4|) $) 108)) (-3161 (((-112) |#4| $) 100) (((-112) $) 96)) (-3430 ((|#4| |#4| $) 91)) (-2614 (((-112) $ $) 111)) (-3582 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-565)))) (-1973 (((-112) |#4| $) 101) (((-112) $) 97)) (-1448 ((|#4| |#4| $) 92)) (-3965 (((-1132) $) 11)) (-2914 (((-3 |#4| "failed") $) 85)) (-2036 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2865 (((-3 $ "failed") $ |#4|) 79)) (-2212 (($ $ |#4|) 78) (((-653 $) |#4| $) 116) (((-653 $) |#4| (-653 $)) 115) (((-653 $) (-653 |#4|) $) 114) (((-653 $) (-653 |#4|) (-653 $)) 113)) (-1575 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 |#4|) (-653 |#4|)) 60 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-301 |#4|)) 58 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-653 (-301 |#4|))) 57 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))))) (-1885 (((-112) $ $) 39)) (-3811 (((-112) $) 42)) (-3508 (($) 41)) (-2565 (((-780) $) 107)) (-3974 (((-780) |#4| $) 55 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) (((-780) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4455)))) (-3166 (($ $) 40)) (-1835 (((-545) $) 70 (|has| |#4| (-623 (-545))))) (-2955 (($ (-653 |#4|)) 61)) (-4409 (($ $ |#3|) 29)) (-3496 (($ $ |#3|) 31)) (-1388 (($ $) 89)) (-1456 (($ $ |#3|) 30)) (-2942 (((-871) $) 12) (((-653 |#4|) $) 38)) (-3922 (((-780) $) 77 (|has| |#3| (-376)))) (-3507 (((-112) $ $) 9)) (-3955 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3039 (((-112) $ (-1 (-112) |#4| (-653 |#4|))) 99)) (-3402 (((-653 $) |#4| $) 122) (((-653 $) |#4| (-653 $)) 121) (((-653 $) (-653 |#4|) $) 120) (((-653 $) (-653 |#4|) (-653 $)) 119)) (-1646 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4455)))) (-3734 (((-653 |#3|) $) 82)) (-3746 (((-112) |#4| $) 136)) (-4333 (((-112) |#3| $) 81)) (-2981 (((-112) $ $) 6)) (-2862 (((-780) $) 47 (|has| $ (-6 -4455))))) +(((-1121 |#1| |#2| |#3| |#4|) (-141) (-461) (-802) (-859) (-1077 |t#1| |t#2| |t#3|)) (T -1121)) +NIL +(-13 (-1083 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-622 (-653 |#4|)) . T) ((-622 (-871)) . T) ((-152 |#4|) . T) ((-623 (-545)) |has| |#4| (-623 (-545))) ((-316 |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))) ((-498 |#4|) . T) ((-523 |#4| |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))) ((-988 |#1| |#2| |#3| |#4|) . T) ((-1083 |#1| |#2| |#3| |#4|) . T) ((-1112) . T) ((-1223 |#1| |#2| |#3| |#4|) . T) ((-1230) . T)) +((-4252 (((-653 (-573)) (-573) (-573) (-573)) 38)) (-2610 (((-653 (-573)) (-573) (-573) (-573)) 28)) (-2587 (((-653 (-573)) (-573) (-573) (-573)) 33)) (-2832 (((-573) (-573) (-573)) 21)) (-2085 (((-1280 (-573)) (-653 (-573)) (-1280 (-573)) (-573)) 76) (((-1280 (-573)) (-1280 (-573)) (-1280 (-573)) (-573)) 71)) (-1846 (((-653 (-573)) (-653 (-931)) (-653 (-573)) (-112)) 54)) (-2081 (((-698 (-573)) (-653 (-573)) (-653 (-573)) (-698 (-573))) 75)) (-3492 (((-698 (-573)) (-653 (-931)) (-653 (-573))) 59)) (-4213 (((-653 (-698 (-573))) (-653 (-931))) 64)) (-3911 (((-653 (-573)) (-653 (-573)) (-653 (-573)) (-698 (-573))) 79)) (-3129 (((-698 (-573)) (-653 (-573)) (-653 (-573)) (-653 (-573))) 89))) +(((-1122) (-10 -7 (-15 -3129 ((-698 (-573)) (-653 (-573)) (-653 (-573)) (-653 (-573)))) (-15 -3911 ((-653 (-573)) (-653 (-573)) (-653 (-573)) (-698 (-573)))) (-15 -4213 ((-653 (-698 (-573))) (-653 (-931)))) (-15 -3492 ((-698 (-573)) (-653 (-931)) (-653 (-573)))) (-15 -2081 ((-698 (-573)) (-653 (-573)) (-653 (-573)) (-698 (-573)))) (-15 -1846 ((-653 (-573)) (-653 (-931)) (-653 (-573)) (-112))) (-15 -2085 ((-1280 (-573)) (-1280 (-573)) (-1280 (-573)) (-573))) (-15 -2085 ((-1280 (-573)) (-653 (-573)) (-1280 (-573)) (-573))) (-15 -2832 ((-573) (-573) (-573))) (-15 -2587 ((-653 (-573)) (-573) (-573) (-573))) (-15 -2610 ((-653 (-573)) (-573) (-573) (-573))) (-15 -4252 ((-653 (-573)) (-573) (-573) (-573))))) (T -1122)) +((-4252 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1122)) (-5 *3 (-573)))) (-2610 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1122)) (-5 *3 (-573)))) (-2587 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1122)) (-5 *3 (-573)))) (-2832 (*1 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-1122)))) (-2085 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1280 (-573))) (-5 *3 (-653 (-573))) (-5 *4 (-573)) (-5 *1 (-1122)))) (-2085 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1280 (-573))) (-5 *3 (-573)) (-5 *1 (-1122)))) (-1846 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-653 (-573))) (-5 *3 (-653 (-931))) (-5 *4 (-112)) (-5 *1 (-1122)))) (-2081 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-698 (-573))) (-5 *3 (-653 (-573))) (-5 *1 (-1122)))) (-3492 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-931))) (-5 *4 (-653 (-573))) (-5 *2 (-698 (-573))) (-5 *1 (-1122)))) (-4213 (*1 *2 *3) (-12 (-5 *3 (-653 (-931))) (-5 *2 (-653 (-698 (-573)))) (-5 *1 (-1122)))) (-3911 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-653 (-573))) (-5 *3 (-698 (-573))) (-5 *1 (-1122)))) (-3129 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-653 (-573))) (-5 *2 (-698 (-573))) (-5 *1 (-1122))))) +(-10 -7 (-15 -3129 ((-698 (-573)) (-653 (-573)) (-653 (-573)) (-653 (-573)))) (-15 -3911 ((-653 (-573)) (-653 (-573)) (-653 (-573)) (-698 (-573)))) (-15 -4213 ((-653 (-698 (-573))) (-653 (-931)))) (-15 -3492 ((-698 (-573)) (-653 (-931)) (-653 (-573)))) (-15 -2081 ((-698 (-573)) (-653 (-573)) (-653 (-573)) (-698 (-573)))) (-15 -1846 ((-653 (-573)) (-653 (-931)) (-653 (-573)) (-112))) (-15 -2085 ((-1280 (-573)) (-1280 (-573)) (-1280 (-573)) (-573))) (-15 -2085 ((-1280 (-573)) (-653 (-573)) (-1280 (-573)) (-573))) (-15 -2832 ((-573) (-573) (-573))) (-15 -2587 ((-653 (-573)) (-573) (-573) (-573))) (-15 -2610 ((-653 (-573)) (-573) (-573) (-573))) (-15 -4252 ((-653 (-573)) (-573) (-573) (-573)))) +((** (($ $ (-931)) 10))) +(((-1123 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-931)))) (-1124)) (T -1123)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-931)))) +((-2848 (((-112) $ $) 7)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6)) (** (($ $ (-931)) 14)) (* (($ $ $) 15))) +(((-1124) (-141)) (T -1124)) +((* (*1 *1 *1 *1) (-4 *1 (-1124))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1124)) (-5 *2 (-931))))) +(-13 (-1112) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-931))))) +(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) +((-2848 (((-112) $ $) NIL (|has| |#3| (-1112)))) (-1748 (((-112) $) NIL (|has| |#3| (-132)))) (-3690 (($ (-931)) NIL (|has| |#3| (-1061)))) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-3280 (($ $ $) NIL (|has| |#3| (-802)))) (-2983 (((-3 $ "failed") $ $) NIL (|has| |#3| (-132)))) (-3450 (((-112) $ (-780)) NIL)) (-1486 (((-780)) NIL (|has| |#3| (-376)))) (-1983 (((-573) $) NIL (|has| |#3| (-857)))) (-3142 ((|#3| $ (-573) |#3|) NIL (|has| $ (-6 -4456)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL (-12 (|has| |#3| (-1050 (-573))) (|has| |#3| (-1112)))) (((-3 (-416 (-573)) "failed") $) NIL (-12 (|has| |#3| (-1050 (-416 (-573)))) (|has| |#3| (-1112)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1112)))) (-2205 (((-573) $) NIL (-12 (|has| |#3| (-1050 (-573))) (|has| |#3| (-1112)))) (((-416 (-573)) $) NIL (-12 (|has| |#3| (-1050 (-416 (-573)))) (|has| |#3| (-1112)))) ((|#3| $) NIL (|has| |#3| (-1112)))) (-2759 (((-698 (-573)) (-1280 $)) NIL (-12 (|has| |#3| (-648 (-573))) (|has| |#3| (-1061)))) (((-698 (-573)) (-698 $)) NIL (-12 (|has| |#3| (-648 (-573))) (|has| |#3| (-1061)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (-12 (|has| |#3| (-648 (-573))) (|has| |#3| (-1061)))) (((-2 (|:| -1423 (-698 |#3|)) (|:| |vec| (-1280 |#3|))) (-698 $) (-1280 $)) NIL (|has| |#3| (-1061))) (((-698 |#3|) (-698 $)) NIL (|has| |#3| (-1061))) (((-698 |#3|) (-1280 $)) NIL (|has| |#3| (-1061)))) (-2232 (((-3 $ "failed") $) NIL (|has| |#3| (-735)))) (-2819 (($) NIL (|has| |#3| (-376)))) (-2457 ((|#3| $ (-573) |#3|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#3| $ (-573)) 12)) (-4152 (((-112) $) NIL (|has| |#3| (-857)))) (-1863 (((-653 |#3|) $) NIL (|has| $ (-6 -4455)))) (-1959 (((-112) $) NIL (|has| |#3| (-735)))) (-3339 (((-112) $) NIL (|has| |#3| (-857)))) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) NIL (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (-2817 (|has| |#3| (-802)) (|has| |#3| (-857))))) (-3214 (((-653 |#3|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#3| (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (-2817 (|has| |#3| (-802)) (|has| |#3| (-857))))) (-2446 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#3| |#3|) $) NIL)) (-3589 (((-931) $) NIL (|has| |#3| (-376)))) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#3| (-1112)))) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-2575 (($ (-931)) NIL (|has| |#3| (-376)))) (-3965 (((-1132) $) NIL (|has| |#3| (-1112)))) (-2914 ((|#3| $) NIL (|has| (-573) (-859)))) (-3112 (($ $ |#3|) NIL (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#3|))) NIL (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) (($ $ (-301 |#3|)) NIL (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112)))) (($ $ (-653 |#3|) (-653 |#3|)) NIL (-12 (|has| |#3| (-316 |#3|)) (|has| |#3| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#3| (-1112))))) (-1535 (((-653 |#3|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#3| $ (-573) |#3|) NIL) ((|#3| $ (-573)) NIL)) (-2658 ((|#3| $ $) NIL (|has| |#3| (-1061)))) (-4260 (($ (-1280 |#3|)) NIL)) (-2365 (((-135)) NIL (|has| |#3| (-371)))) (-3904 (($ $ (-780)) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1061)))) (($ $) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1061)))) (($ $ (-1189)) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $ (-1 |#3| |#3|) (-780)) NIL (|has| |#3| (-1061))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1061)))) (-3974 (((-780) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4455))) (((-780) |#3| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#3| (-1112))))) (-3166 (($ $) NIL)) (-2942 (((-1280 |#3|) $) NIL) (($ (-573)) NIL (-2817 (-12 (|has| |#3| (-1050 (-573))) (|has| |#3| (-1112))) (|has| |#3| (-1061)))) (($ (-416 (-573))) NIL (-12 (|has| |#3| (-1050 (-416 (-573)))) (|has| |#3| (-1112)))) (($ |#3|) NIL (|has| |#3| (-1112))) (((-871) $) NIL (|has| |#3| (-622 (-871))))) (-1545 (((-780)) NIL (|has| |#3| (-1061)) CONST)) (-3507 (((-112) $ $) NIL (|has| |#3| (-1112)))) (-1646 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4455)))) (-1660 (($ $) NIL (|has| |#3| (-857)))) (-2132 (($) NIL (|has| |#3| (-132)) CONST)) (-2144 (($) NIL (|has| |#3| (-735)) CONST)) (-3609 (($ $ (-780)) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1061)))) (($ $) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1061)))) (($ $ (-1189)) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#3| (-910 (-1189))) (|has| |#3| (-1061)))) (($ $ (-1 |#3| |#3|) (-780)) NIL (|has| |#3| (-1061))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1061)))) (-3040 (((-112) $ $) NIL (-2817 (|has| |#3| (-802)) (|has| |#3| (-857))))) (-3015 (((-112) $ $) NIL (-2817 (|has| |#3| (-802)) (|has| |#3| (-857))))) (-2981 (((-112) $ $) NIL (|has| |#3| (-1112)))) (-3027 (((-112) $ $) NIL (-2817 (|has| |#3| (-802)) (|has| |#3| (-857))))) (-3005 (((-112) $ $) 24 (-2817 (|has| |#3| (-802)) (|has| |#3| (-857))))) (-3103 (($ $ |#3|) NIL (|has| |#3| (-371)))) (-3093 (($ $ $) NIL (|has| |#3| (-1061))) (($ $) NIL (|has| |#3| (-1061)))) (-3077 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-780)) NIL (|has| |#3| (-735))) (($ $ (-931)) NIL (|has| |#3| (-735)))) (* (($ (-573) $) NIL (|has| |#3| (-1061))) (($ $ $) NIL (|has| |#3| (-735))) (($ $ |#3|) NIL (|has| |#3| (-735))) (($ |#3| $) NIL (|has| |#3| (-735))) (($ (-780) $) NIL (|has| |#3| (-132))) (($ (-931) $) NIL (|has| |#3| (-25)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-1125 |#1| |#2| |#3|) (-243 |#1| |#3|) (-780) (-780) (-802)) (T -1125)) +NIL +(-243 |#1| |#3|) +((-1386 (((-653 (-1253 |#2| |#1|)) (-1253 |#2| |#1|) (-1253 |#2| |#1|)) 50)) (-3076 (((-573) (-1253 |#2| |#1|)) 94 (|has| |#1| (-461)))) (-3043 (((-573) (-1253 |#2| |#1|)) 76)) (-4269 (((-653 (-1253 |#2| |#1|)) (-1253 |#2| |#1|) (-1253 |#2| |#1|)) 58)) (-3020 (((-573) (-1253 |#2| |#1|) (-1253 |#2| |#1|)) 93 (|has| |#1| (-461)))) (-1559 (((-653 |#1|) (-1253 |#2| |#1|) (-1253 |#2| |#1|)) 61)) (-2689 (((-573) (-1253 |#2| |#1|) (-1253 |#2| |#1|)) 75))) +(((-1126 |#1| |#2|) (-10 -7 (-15 -1386 ((-653 (-1253 |#2| |#1|)) (-1253 |#2| |#1|) (-1253 |#2| |#1|))) (-15 -4269 ((-653 (-1253 |#2| |#1|)) (-1253 |#2| |#1|) (-1253 |#2| |#1|))) (-15 -1559 ((-653 |#1|) (-1253 |#2| |#1|) (-1253 |#2| |#1|))) (-15 -2689 ((-573) (-1253 |#2| |#1|) (-1253 |#2| |#1|))) (-15 -3043 ((-573) (-1253 |#2| |#1|))) (IF (|has| |#1| (-461)) (PROGN (-15 -3020 ((-573) (-1253 |#2| |#1|) (-1253 |#2| |#1|))) (-15 -3076 ((-573) (-1253 |#2| |#1|)))) |%noBranch|)) (-829) (-1189)) (T -1126)) +((-3076 (*1 *2 *3) (-12 (-5 *3 (-1253 *5 *4)) (-4 *4 (-461)) (-4 *4 (-829)) (-14 *5 (-1189)) (-5 *2 (-573)) (-5 *1 (-1126 *4 *5)))) (-3020 (*1 *2 *3 *3) (-12 (-5 *3 (-1253 *5 *4)) (-4 *4 (-461)) (-4 *4 (-829)) (-14 *5 (-1189)) (-5 *2 (-573)) (-5 *1 (-1126 *4 *5)))) (-3043 (*1 *2 *3) (-12 (-5 *3 (-1253 *5 *4)) (-4 *4 (-829)) (-14 *5 (-1189)) (-5 *2 (-573)) (-5 *1 (-1126 *4 *5)))) (-2689 (*1 *2 *3 *3) (-12 (-5 *3 (-1253 *5 *4)) (-4 *4 (-829)) (-14 *5 (-1189)) (-5 *2 (-573)) (-5 *1 (-1126 *4 *5)))) (-1559 (*1 *2 *3 *3) (-12 (-5 *3 (-1253 *5 *4)) (-4 *4 (-829)) (-14 *5 (-1189)) (-5 *2 (-653 *4)) (-5 *1 (-1126 *4 *5)))) (-4269 (*1 *2 *3 *3) (-12 (-4 *4 (-829)) (-14 *5 (-1189)) (-5 *2 (-653 (-1253 *5 *4))) (-5 *1 (-1126 *4 *5)) (-5 *3 (-1253 *5 *4)))) (-1386 (*1 *2 *3 *3) (-12 (-4 *4 (-829)) (-14 *5 (-1189)) (-5 *2 (-653 (-1253 *5 *4))) (-5 *1 (-1126 *4 *5)) (-5 *3 (-1253 *5 *4))))) +(-10 -7 (-15 -1386 ((-653 (-1253 |#2| |#1|)) (-1253 |#2| |#1|) (-1253 |#2| |#1|))) (-15 -4269 ((-653 (-1253 |#2| |#1|)) (-1253 |#2| |#1|) (-1253 |#2| |#1|))) (-15 -1559 ((-653 |#1|) (-1253 |#2| |#1|) (-1253 |#2| |#1|))) (-15 -2689 ((-573) (-1253 |#2| |#1|) (-1253 |#2| |#1|))) (-15 -3043 ((-573) (-1253 |#2| |#1|))) (IF (|has| |#1| (-461)) (PROGN (-15 -3020 ((-573) (-1253 |#2| |#1|) (-1253 |#2| |#1|))) (-15 -3076 ((-573) (-1253 |#2| |#1|)))) |%noBranch|)) +((-2848 (((-112) $ $) NIL)) (-3363 (($ (-515) (-1130)) 13)) (-3139 (((-1130) $) 19)) (-2031 (((-515) $) 16)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 26) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-1127) (-13 (-1095) (-10 -8 (-15 -3363 ($ (-515) (-1130))) (-15 -2031 ((-515) $)) (-15 -3139 ((-1130) $))))) (T -1127)) +((-3363 (*1 *1 *2 *3) (-12 (-5 *2 (-515)) (-5 *3 (-1130)) (-5 *1 (-1127)))) (-2031 (*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-1127)))) (-3139 (*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-1127))))) +(-13 (-1095) (-10 -8 (-15 -3363 ($ (-515) (-1130))) (-15 -2031 ((-515) $)) (-15 -3139 ((-1130) $)))) +((-1983 (((-3 (-573) "failed") |#2| (-1189) |#2| (-1171)) 19) (((-3 (-573) "failed") |#2| (-1189) (-852 |#2|)) 17) (((-3 (-573) "failed") |#2|) 60))) +(((-1128 |#1| |#2|) (-10 -7 (-15 -1983 ((-3 (-573) "failed") |#2|)) (-15 -1983 ((-3 (-573) "failed") |#2| (-1189) (-852 |#2|))) (-15 -1983 ((-3 (-573) "failed") |#2| (-1189) |#2| (-1171)))) (-13 (-565) (-1050 (-573)) (-648 (-573)) (-461)) (-13 (-27) (-1215) (-439 |#1|))) (T -1128)) +((-1983 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1189)) (-5 *5 (-1171)) (-4 *6 (-13 (-565) (-1050 *2) (-648 *2) (-461))) (-5 *2 (-573)) (-5 *1 (-1128 *6 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *6))))) (-1983 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1189)) (-5 *5 (-852 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *6))) (-4 *6 (-13 (-565) (-1050 *2) (-648 *2) (-461))) (-5 *2 (-573)) (-5 *1 (-1128 *6 *3)))) (-1983 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-565) (-1050 *2) (-648 *2) (-461))) (-5 *2 (-573)) (-5 *1 (-1128 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *4)))))) +(-10 -7 (-15 -1983 ((-3 (-573) "failed") |#2|)) (-15 -1983 ((-3 (-573) "failed") |#2| (-1189) (-852 |#2|))) (-15 -1983 ((-3 (-573) "failed") |#2| (-1189) |#2| (-1171)))) +((-1983 (((-3 (-573) "failed") (-416 (-962 |#1|)) (-1189) (-416 (-962 |#1|)) (-1171)) 38) (((-3 (-573) "failed") (-416 (-962 |#1|)) (-1189) (-852 (-416 (-962 |#1|)))) 33) (((-3 (-573) "failed") (-416 (-962 |#1|))) 14))) +(((-1129 |#1|) (-10 -7 (-15 -1983 ((-3 (-573) "failed") (-416 (-962 |#1|)))) (-15 -1983 ((-3 (-573) "failed") (-416 (-962 |#1|)) (-1189) (-852 (-416 (-962 |#1|))))) (-15 -1983 ((-3 (-573) "failed") (-416 (-962 |#1|)) (-1189) (-416 (-962 |#1|)) (-1171)))) (-461)) (T -1129)) +((-1983 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-416 (-962 *6))) (-5 *4 (-1189)) (-5 *5 (-1171)) (-4 *6 (-461)) (-5 *2 (-573)) (-5 *1 (-1129 *6)))) (-1983 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1189)) (-5 *5 (-852 (-416 (-962 *6)))) (-5 *3 (-416 (-962 *6))) (-4 *6 (-461)) (-5 *2 (-573)) (-5 *1 (-1129 *6)))) (-1983 (*1 *2 *3) (|partial| -12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-461)) (-5 *2 (-573)) (-5 *1 (-1129 *4))))) +(-10 -7 (-15 -1983 ((-3 (-573) "failed") (-416 (-962 |#1|)))) (-15 -1983 ((-3 (-573) "failed") (-416 (-962 |#1|)) (-1189) (-852 (-416 (-962 |#1|))))) (-15 -1983 ((-3 (-573) "failed") (-416 (-962 |#1|)) (-1189) (-416 (-962 |#1|)) (-1171)))) +((-2848 (((-112) $ $) NIL)) (-2334 (((-1194) $) 12)) (-2285 (((-653 (-1194)) $) 14)) (-3139 (($ (-653 (-1194)) (-1194)) 10)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 29)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 17))) +(((-1130) (-13 (-1112) (-10 -8 (-15 -3139 ($ (-653 (-1194)) (-1194))) (-15 -2334 ((-1194) $)) (-15 -2285 ((-653 (-1194)) $))))) (T -1130)) +((-3139 (*1 *1 *2 *3) (-12 (-5 *2 (-653 (-1194))) (-5 *3 (-1194)) (-5 *1 (-1130)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-1130)))) (-2285 (*1 *2 *1) (-12 (-5 *2 (-653 (-1194))) (-5 *1 (-1130))))) +(-13 (-1112) (-10 -8 (-15 -3139 ($ (-653 (-1194)) (-1194))) (-15 -2334 ((-1194) $)) (-15 -2285 ((-653 (-1194)) $)))) +((-1953 (((-323 (-573)) (-48)) 12))) +(((-1131) (-10 -7 (-15 -1953 ((-323 (-573)) (-48))))) (T -1131)) +((-1953 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-323 (-573))) (-5 *1 (-1131))))) +(-10 -7 (-15 -1953 ((-323 (-573)) (-48)))) +((-2848 (((-112) $ $) NIL)) (-2876 (($ $) 44)) (-1748 (((-112) $) 70)) (-2108 (($ $ $) 53)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 98)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-1783 (($ $ $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-3519 (($ $ $ $) 81)) (-4285 (($ $) NIL)) (-2427 (((-427 $) $) NIL)) (-2800 (((-112) $ $) NIL)) (-1486 (((-780)) 83)) (-1983 (((-573) $) NIL)) (-3958 (($ $ $) 78)) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL)) (-2205 (((-573) $) NIL)) (-2784 (($ $ $) 64)) (-2759 (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 92) (((-698 (-573)) (-698 $)) 32) (((-698 (-573)) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3810 (((-3 (-416 (-573)) "failed") $) NIL)) (-2551 (((-112) $) NIL)) (-4434 (((-416 (-573)) $) NIL)) (-2819 (($) 95) (($ $) 96)) (-2796 (($ $ $) 63)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL)) (-2696 (((-112) $) NIL)) (-3643 (($ $ $ $) NIL)) (-1420 (($ $ $) 93)) (-4152 (((-112) $) NIL)) (-2637 (($ $ $) NIL)) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL)) (-2097 (($ $ $) 52)) (-1959 (((-112) $) 72)) (-2250 (((-112) $) 69)) (-2075 (($ $) 45)) (-1470 (((-3 $ "failed") $) NIL)) (-3339 (((-112) $) 82)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2460 (($ $ $ $) 79)) (-3659 (($ $ $) 74) (($) 42 T CONST)) (-3751 (($ $ $) 73) (($) 41 T CONST)) (-3808 (($ $) NIL)) (-3589 (((-931) $) 88)) (-4134 (($ $) 77)) (-2829 (($ $ $) NIL) (($ (-653 $)) NIL)) (-3180 (((-1171) $) NIL)) (-2585 (($ $ $) NIL)) (-3816 (($) NIL T CONST)) (-2575 (($ (-931)) 87)) (-1605 (($ $) 57)) (-3965 (((-1132) $) 76)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL)) (-2872 (($ $ $) 67) (($ (-653 $)) NIL)) (-4264 (($ $) NIL)) (-4218 (((-427 $) $) NIL)) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL)) (-2270 (((-112) $) NIL)) (-2163 (((-780) $) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 66)) (-3904 (($ $) NIL) (($ $ (-780)) NIL)) (-2294 (($ $) 58)) (-3166 (($ $) NIL)) (-1835 (((-573) $) 17) (((-545) $) NIL) (((-902 (-573)) $) NIL) (((-387) $) NIL) (((-227) $) NIL)) (-2942 (((-871) $) 35) (($ (-573)) 94) (($ $) NIL) (($ (-573)) 94)) (-1545 (((-780)) NIL T CONST)) (-1373 (((-112) $ $) NIL)) (-1677 (($ $ $) NIL)) (-3507 (((-112) $ $) NIL)) (-2629 (($) 40)) (-2516 (((-112) $ $) NIL)) (-2086 (($ $ $) 50)) (-3813 (($ $ $ $) 80)) (-1660 (($ $) 68)) (-2924 (($ $ $) 47)) (-2132 (($) 7 T CONST)) (-2244 (($ $ $) 51)) (-2144 (($) 39 T CONST)) (-2808 (((-1171) $) 26) (((-1171) $ (-112)) 27) (((-1285) (-831) $) 28) (((-1285) (-831) $ (-112)) 29)) (-2254 (($ $) 48)) (-3609 (($ $) NIL) (($ $ (-780)) NIL)) (-2235 (($ $ $) 49)) (-3040 (((-112) $ $) 56)) (-3015 (((-112) $ $) 54)) (-2981 (((-112) $ $) 43)) (-3027 (((-112) $ $) 55)) (-3005 (((-112) $ $) 10)) (-2909 (($ $ $) 46)) (-3093 (($ $) 16) (($ $ $) 60)) (-3077 (($ $ $) 59)) (** (($ $ (-931)) NIL) (($ $ (-780)) 62)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 38) (($ $ $) 37) (($ (-573) $) 38))) +(((-1132) (-13 (-554) (-853) (-113) (-670) (-837) (-10 -8 (-6 -4442) (-6 -4447) (-6 -4443) (-15 -2108 ($ $ $)) (-15 -2254 ($ $)) (-15 -2235 ($ $ $)) (-15 -2244 ($ $ $))))) (T -1132)) +((-2108 (*1 *1 *1 *1) (-5 *1 (-1132))) (-2254 (*1 *1 *1) (-5 *1 (-1132))) (-2235 (*1 *1 *1 *1) (-5 *1 (-1132))) (-2244 (*1 *1 *1 *1) (-5 *1 (-1132)))) +(-13 (-554) (-853) (-113) (-670) (-837) (-10 -8 (-6 -4442) (-6 -4447) (-6 -4443) (-15 -2108 ($ $ $)) (-15 -2254 ($ $)) (-15 -2235 ($ $ $)) (-15 -2244 ($ $ $)))) ((|Integer|) (SMINTP |#1|)) -((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-2002 ((|#1| $) 45)) (-3034 (((-112) $ (-781)) 8)) (-3426 (($) 7 T CONST)) (-3874 ((|#1| |#1| $) 47)) (-3020 ((|#1| $) 46)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-2742 (((-112) $ (-781)) 9)) (-1606 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2449 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 36)) (-4203 (((-112) $ (-781)) 10)) (-4136 (((-1172) $) 22 (|has| |#1| (-1113)))) (-2937 ((|#1| $) 40)) (-2798 (($ |#1| $) 41)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-1785 ((|#1| $) 42)) (-2540 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 14)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-4302 (((-781) $) 44)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-1599 (($ (-654 |#1|)) 43)) (-3390 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-1134 |#1|) (-141) (-1231)) (T -1134)) -((-3874 (*1 *2 *2 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-1231)))) (-3020 (*1 *2 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-1231)))) (-2002 (*1 *2 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-1231)))) (-4302 (*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1231)) (-5 *2 (-781))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4456) (-15 -3874 (|t#1| |t#1| $)) (-15 -3020 (|t#1| $)) (-15 -2002 (|t#1| $)) (-15 -4302 ((-781) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1113) |has| |#1| (-1113)) ((-1231) . T)) -((-1636 ((|#3| $) 87)) (-1696 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-2206 (((-574) $) NIL) (((-417 (-574)) $) NIL) ((|#3| $) 47)) (-2590 (((-699 (-574)) (-1281 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL) (((-2 (|:| -4340 (-699 |#3|)) (|:| |vec| (-1281 |#3|))) (-699 $) (-1281 $)) 84) (((-699 |#3|) (-699 $)) 76) (((-699 |#3|) (-1281 $)) NIL)) (-3905 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190)) NIL) (($ $ (-781)) NIL) (($ $) NIL)) (-2159 ((|#3| $) 89)) (-3130 ((|#4| $) 43)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL) (($ |#3|) 25)) (** (($ $ (-932)) NIL) (($ $ (-781)) 24) (($ $ (-574)) 95))) -(((-1135 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-574))) (-15 -2159 (|#3| |#1|)) (-15 -1636 (|#3| |#1|)) (-15 -3130 (|#4| |#1|)) (-15 -2590 ((-699 |#3|) (-1281 |#1|))) (-15 -2590 ((-699 |#3|) (-699 |#1|))) (-15 -2590 ((-2 (|:| -4340 (-699 |#3|)) (|:| |vec| (-1281 |#3|))) (-699 |#1|) (-1281 |#1|))) (-15 -2590 ((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 |#1|) (-1281 |#1|))) (-15 -2590 ((-699 (-574)) (-699 |#1|))) (-15 -2590 ((-699 (-574)) (-1281 |#1|))) (-15 -2943 (|#1| |#3|)) (-15 -1696 ((-3 |#3| "failed") |#1|)) (-15 -2206 (|#3| |#1|)) (-15 -2206 ((-417 (-574)) |#1|)) (-15 -1696 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2206 ((-574) |#1|)) (-15 -1696 ((-3 (-574) "failed") |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -3905 (|#1| |#1| (-1 |#3| |#3|) (-781))) (-15 -3905 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2943 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-932))) (-15 -2943 ((-872) |#1|))) (-1136 |#2| |#3| |#4| |#5|) (-781) (-1062) (-244 |#2| |#3|) (-244 |#2| |#3|)) (T -1135)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-574))) (-15 -2159 (|#3| |#1|)) (-15 -1636 (|#3| |#1|)) (-15 -3130 (|#4| |#1|)) (-15 -2590 ((-699 |#3|) (-1281 |#1|))) (-15 -2590 ((-699 |#3|) (-699 |#1|))) (-15 -2590 ((-2 (|:| -4340 (-699 |#3|)) (|:| |vec| (-1281 |#3|))) (-699 |#1|) (-1281 |#1|))) (-15 -2590 ((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 |#1|) (-1281 |#1|))) (-15 -2590 ((-699 (-574)) (-699 |#1|))) (-15 -2590 ((-699 (-574)) (-1281 |#1|))) (-15 -2943 (|#1| |#3|)) (-15 -1696 ((-3 |#3| "failed") |#1|)) (-15 -2206 (|#3| |#1|)) (-15 -2206 ((-417 (-574)) |#1|)) (-15 -1696 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2206 ((-574) |#1|)) (-15 -1696 ((-3 (-574) "failed") |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -3905 (|#1| |#1| (-1 |#3| |#3|) (-781))) (-15 -3905 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2943 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-932))) (-15 -2943 ((-872) |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-1636 ((|#2| $) 78)) (-3291 (((-112) $) 120)) (-3524 (((-3 $ "failed") $ $) 20)) (-2224 (((-112) $) 118)) (-3034 (((-112) $ (-781)) 110)) (-1346 (($ |#2|) 81)) (-3426 (($) 18 T CONST)) (-2879 (($ $) 137 (|has| |#2| (-315)))) (-4170 ((|#3| $ (-574)) 132)) (-1696 (((-3 (-574) "failed") $) 95 (|has| |#2| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) 92 (|has| |#2| (-1051 (-417 (-574))))) (((-3 |#2| "failed") $) 89)) (-2206 (((-574) $) 94 (|has| |#2| (-1051 (-574)))) (((-417 (-574)) $) 91 (|has| |#2| (-1051 (-417 (-574))))) ((|#2| $) 90)) (-2590 (((-699 (-574)) (-1281 $)) 87 (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) 86 (|has| |#2| (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 85 (|has| |#2| (-649 (-574)))) (((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) 84) (((-699 |#2|) (-699 $)) 83) (((-699 |#2|) (-1281 $)) 82)) (-3434 (((-3 $ "failed") $) 37)) (-3584 (((-781) $) 138 (|has| |#2| (-566)))) (-2385 ((|#2| $ (-574) (-574)) 130)) (-1864 (((-654 |#2|) $) 103 (|has| $ (-6 -4456)))) (-3199 (((-112) $) 35)) (-1602 (((-781) $) 139 (|has| |#2| (-566)))) (-2548 (((-654 |#4|) $) 140 (|has| |#2| (-566)))) (-2189 (((-781) $) 126)) (-2198 (((-781) $) 127)) (-2742 (((-112) $ (-781)) 111)) (-3609 ((|#2| $) 73 (|has| |#2| (-6 (-4458 "*"))))) (-3491 (((-574) $) 122)) (-1630 (((-574) $) 124)) (-1606 (((-654 |#2|) $) 102 (|has| $ (-6 -4456)))) (-1710 (((-112) |#2| $) 100 (-12 (|has| |#2| (-1113)) (|has| $ (-6 -4456))))) (-3068 (((-574) $) 123)) (-3691 (((-574) $) 125)) (-2914 (($ (-654 (-654 |#2|))) 117)) (-2449 (($ (-1 |#2| |#2|) $) 107 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#2| |#2| |#2|) $ $) 134) (($ (-1 |#2| |#2|) $) 108)) (-1394 (((-654 (-654 |#2|)) $) 128)) (-4203 (((-112) $ (-781)) 112)) (-4136 (((-1172) $) 10)) (-2063 (((-3 $ "failed") $) 72 (|has| |#2| (-372)))) (-3966 (((-1133) $) 11)) (-2838 (((-3 $ "failed") $ |#2|) 135 (|has| |#2| (-566)))) (-2540 (((-112) (-1 (-112) |#2|) $) 105 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#2|))) 99 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) 98 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) 97 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) 96 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))) (-4017 (((-112) $ $) 116)) (-1584 (((-112) $) 113)) (-2672 (($) 114)) (-2199 ((|#2| $ (-574) (-574) |#2|) 131) ((|#2| $ (-574) (-574)) 129)) (-3905 (($ $ (-1 |#2| |#2|)) 57) (($ $ (-1 |#2| |#2|) (-781)) 56) (($ $ (-654 (-1190)) (-654 (-781))) 49 (|has| |#2| (-911 (-1190)))) (($ $ (-1190) (-781)) 48 (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190))) 47 (|has| |#2| (-911 (-1190)))) (($ $ (-1190)) 46 (|has| |#2| (-911 (-1190)))) (($ $ (-781)) 44 (|has| |#2| (-239))) (($ $) 43 (|has| |#2| (-239)))) (-2159 ((|#2| $) 77)) (-2691 (($ (-654 |#2|)) 80)) (-2675 (((-112) $) 119)) (-3130 ((|#3| $) 79)) (-3192 ((|#2| $) 74 (|has| |#2| (-6 (-4458 "*"))))) (-3975 (((-781) (-1 (-112) |#2|) $) 104 (|has| $ (-6 -4456))) (((-781) |#2| $) 101 (-12 (|has| |#2| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 115)) (-2471 ((|#4| $ (-574)) 133)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 93 (|has| |#2| (-1051 (-417 (-574))))) (($ |#2|) 88)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-3390 (((-112) (-1 (-112) |#2|) $) 106 (|has| $ (-6 -4456)))) (-2539 (((-112) $) 121)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-3610 (($ $ (-1 |#2| |#2|)) 55) (($ $ (-1 |#2| |#2|) (-781)) 54) (($ $ (-654 (-1190)) (-654 (-781))) 53 (|has| |#2| (-911 (-1190)))) (($ $ (-1190) (-781)) 52 (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190))) 51 (|has| |#2| (-911 (-1190)))) (($ $ (-1190)) 50 (|has| |#2| (-911 (-1190)))) (($ $ (-781)) 45 (|has| |#2| (-239))) (($ $) 42 (|has| |#2| (-239)))) (-2981 (((-112) $ $) 6)) (-3108 (($ $ |#2|) 136 (|has| |#2| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 71 (|has| |#2| (-372)))) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#2|) 142) (($ |#2| $) 141) ((|#4| $ |#4|) 76) ((|#3| |#3| $) 75)) (-2863 (((-781) $) 109 (|has| $ (-6 -4456))))) -(((-1136 |#1| |#2| |#3| |#4|) (-141) (-781) (-1062) (-244 |t#1| |t#2|) (-244 |t#1| |t#2|)) (T -1136)) -((-1346 (*1 *1 *2) (-12 (-4 *2 (-1062)) (-4 *1 (-1136 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)))) (-2691 (*1 *1 *2) (-12 (-5 *2 (-654 *4)) (-4 *4 (-1062)) (-4 *1 (-1136 *3 *4 *5 *6)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)))) (-3130 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *4 *2 *5)) (-4 *4 (-1062)) (-4 *5 (-244 *3 *4)) (-4 *2 (-244 *3 *4)))) (-1636 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (-4 *2 (-1062)))) (-2159 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (-4 *2 (-1062)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1136 *3 *4 *5 *2)) (-4 *4 (-1062)) (-4 *5 (-244 *3 *4)) (-4 *2 (-244 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1136 *3 *4 *2 *5)) (-4 *4 (-1062)) (-4 *2 (-244 *3 *4)) (-4 *5 (-244 *3 *4)))) (-3192 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4458 "*"))) (-4 *2 (-1062)))) (-3609 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4458 "*"))) (-4 *2 (-1062)))) (-2063 (*1 *1 *1) (|partial| -12 (-4 *1 (-1136 *2 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-244 *2 *3)) (-4 *5 (-244 *2 *3)) (-4 *3 (-372)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1136 *3 *4 *5 *6)) (-4 *4 (-1062)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)) (-4 *4 (-372))))) -(-13 (-233 |t#2|) (-111 |t#2| |t#2|) (-1066 |t#1| |t#1| |t#2| |t#3| |t#4|) (-421 |t#2|) (-386 |t#2|) (-10 -8 (IF (|has| |t#2| (-174)) (-6 (-727 |t#2|)) |%noBranch|) (-15 -1346 ($ |t#2|)) (-15 -2691 ($ (-654 |t#2|))) (-15 -3130 (|t#3| $)) (-15 -1636 (|t#2| $)) (-15 -2159 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4458 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3192 (|t#2| $)) (-15 -3609 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-372)) (PROGN (-15 -2063 ((-3 $ "failed") $)) (-15 ** ($ $ (-574)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4458 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-626 #0=(-417 (-574))) |has| |#2| (-1051 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#2|) . T) ((-623 (-872)) . T) ((-235 $) |has| |#2| (-239)) ((-233 |#2|) . T) ((-239) |has| |#2| (-239)) ((-317 |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((-386 |#2|) . T) ((-421 |#2|) . T) ((-499 |#2|) . T) ((-524 |#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((-656 (-574)) . T) ((-656 |#2|) . T) ((-656 $) . T) ((-658 #1=(-574)) |has| |#2| (-649 (-574))) ((-658 |#2|) . T) ((-658 $) . T) ((-650 |#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-6 (-4458 "*")))) ((-649 #1#) |has| |#2| (-649 (-574))) ((-649 |#2|) . T) ((-727 |#2|) -2818 (|has| |#2| (-174)) (|has| |#2| (-6 (-4458 "*")))) ((-736) . T) ((-911 (-1190)) |has| |#2| (-911 (-1190))) ((-1066 |#1| |#1| |#2| |#3| |#4|) . T) ((-1051 #0#) |has| |#2| (-1051 (-417 (-574)))) ((-1051 (-574)) |has| |#2| (-1051 (-574))) ((-1051 |#2|) . T) ((-1064 |#2|) . T) ((-1069 |#2|) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1231) . T)) -((-1672 ((|#4| |#4|) 81)) (-2800 ((|#4| |#4|) 76)) (-3348 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1882 (-654 |#3|))) |#4| |#3|) 91)) (-1521 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-3843 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78))) -(((-1137 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2800 (|#4| |#4|)) (-15 -3843 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1672 (|#4| |#4|)) (-15 -1521 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3348 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1882 (-654 |#3|))) |#4| |#3|))) (-315) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|)) (T -1137)) -((-3348 (*1 *2 *3 *4) (-12 (-4 *5 (-315)) (-4 *6 (-382 *5)) (-4 *4 (-382 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1882 (-654 *4)))) (-5 *1 (-1137 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4)))) (-1521 (*1 *2 *3) (-12 (-4 *4 (-315)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1137 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-1672 (*1 *2 *2) (-12 (-4 *3 (-315)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-1137 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-3843 (*1 *2 *3) (-12 (-4 *4 (-315)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1137 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-2800 (*1 *2 *2) (-12 (-4 *3 (-315)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-1137 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) -(-10 -7 (-15 -2800 (|#4| |#4|)) (-15 -3843 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1672 (|#4| |#4|)) (-15 -1521 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3348 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1882 (-654 |#3|))) |#4| |#3|))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 18)) (-4355 (((-654 |#2|) $) 174)) (-4194 (((-1186 $) $ |#2|) 60) (((-1186 |#1|) $) 49)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 116 (|has| |#1| (-566)))) (-1575 (($ $) 118 (|has| |#1| (-566)))) (-2085 (((-112) $) 120 (|has| |#1| (-566)))) (-1757 (((-781) $) NIL) (((-781) $ (-654 |#2|)) 213)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3972 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-2568 (($ $) NIL (|has| |#1| (-462)))) (-2827 (((-428 $) $) NIL (|has| |#1| (-462)))) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#1| "failed") $) 167) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 |#2| "failed") $) NIL)) (-2206 ((|#1| $) 165) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1051 (-574)))) ((|#2| $) NIL)) (-1463 (($ $ $ |#2|) NIL (|has| |#1| (-174)))) (-1392 (($ $) 217)) (-2590 (((-699 (-574)) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-3434 (((-3 $ "failed") $) 90)) (-1569 (($ $) NIL (|has| |#1| (-462))) (($ $ |#2|) NIL (|has| |#1| (-462)))) (-1380 (((-654 $) $) NIL)) (-2257 (((-112) $) NIL (|has| |#1| (-920)))) (-1661 (($ $ |#1| (-541 |#2|) $) NIL)) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| |#1| (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| |#1| (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-3199 (((-112) $) 20)) (-1322 (((-781) $) 30)) (-4345 (($ (-1186 |#1|) |#2|) 54) (($ (-1186 $) |#2|) 71)) (-3727 (((-654 $) $) NIL)) (-3869 (((-112) $) 38)) (-4335 (($ |#1| (-541 |#2|)) 78) (($ $ |#2| (-781)) 58) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-2773 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $ |#2|) NIL)) (-1742 (((-541 |#2|) $) 205) (((-781) $ |#2|) 206) (((-654 (-781)) $ (-654 |#2|)) 207)) (-3708 (($ (-1 (-541 |#2|) (-541 |#2|)) $) NIL)) (-1777 (($ (-1 |#1| |#1|) $) 128)) (-2717 (((-3 |#2| "failed") $) 177)) (-1359 (($ $) 216)) (-1370 ((|#1| $) 43)) (-2832 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-4136 (((-1172) $) NIL)) (-2755 (((-3 (-654 $) "failed") $) NIL)) (-2415 (((-3 (-654 $) "failed") $) NIL)) (-2241 (((-3 (-2 (|:| |var| |#2|) (|:| -3715 (-781))) "failed") $) NIL)) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) 39)) (-1349 ((|#1| $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 148 (|has| |#1| (-462)))) (-2873 (($ (-654 $)) 153 (|has| |#1| (-462))) (($ $ $) 138 (|has| |#1| (-462)))) (-2560 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-2039 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#1| (-920)))) (-4220 (((-428 $) $) NIL (|has| |#1| (-920)))) (-2838 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-566)))) (-2646 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-654 |#2|) (-654 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-654 |#2|) (-654 $)) 194)) (-2872 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-3905 (($ $ |#2|) 215) (($ $ (-654 |#2|)) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-4202 (((-541 |#2|) $) 201) (((-781) $ |#2|) 196) (((-654 (-781)) $ (-654 |#2|)) 199)) (-1836 (((-903 (-388)) $) NIL (-12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| |#1| (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-3069 ((|#1| $) 134 (|has| |#1| (-462))) (($ $ |#2|) 137 (|has| |#1| (-462)))) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-920))))) (-2943 (((-872) $) 159) (($ (-574)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-566))) (($ (-417 (-574))) NIL (-2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))))) (-2530 (((-654 |#1|) $) 162)) (-3087 ((|#1| $ (-541 |#2|)) 80) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-3298 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#1| (-920))) (|has| |#1| (-146))))) (-1364 (((-781)) 87 T CONST)) (-3772 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) 123 (|has| |#1| (-566)))) (-2133 (($) 12 T CONST)) (-2145 (($) 14 T CONST)) (-3610 (($ $ |#2|) NIL) (($ $ (-654 |#2|)) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-2981 (((-112) $ $) 106)) (-3108 (($ $ |#1|) 132 (|has| |#1| (-372)))) (-3094 (($ $) 93) (($ $ $) 104)) (-3079 (($ $ $) 55)) (** (($ $ (-932)) 110) (($ $ (-781)) 109)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 96) (($ $ $) 72) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 99) (($ $ |#1|) NIL))) -(((-1138 |#1| |#2|) (-960 |#1| (-541 |#2|) |#2|) (-1062) (-860)) (T -1138)) -NIL -(-960 |#1| (-541 |#2|) |#2|) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-4355 (((-654 |#2|) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-1575 (($ $) NIL (|has| |#1| (-566)))) (-2085 (((-112) $) NIL (|has| |#1| (-566)))) (-2364 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 128 (|has| |#1| (-38 (-417 (-574)))))) (-3524 (((-3 $ "failed") $ $) NIL)) (-4229 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2343 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) 124 (|has| |#1| (-38 (-417 (-574)))))) (-2389 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-3426 (($) NIL T CONST)) (-1392 (($ $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-4053 (((-963 |#1|) $ (-781)) NIL) (((-963 |#1|) $ (-781) (-781)) NIL)) (-2892 (((-112) $) NIL)) (-3000 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3884 (((-781) $ |#2|) NIL) (((-781) $ |#2| (-781)) NIL)) (-3199 (((-112) $) NIL)) (-3460 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3869 (((-112) $) NIL)) (-4335 (($ $ (-654 |#2|) (-654 (-541 |#2|))) NIL) (($ $ |#2| (-541 |#2|)) NIL) (($ |#1| (-541 |#2|)) NIL) (($ $ |#2| (-781)) 63) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-3119 (($ $) 122 (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-4136 (((-1172) $) NIL)) (-2379 (($ $ |#2|) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-417 (-574)))))) (-3966 (((-1133) $) NIL)) (-3280 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-417 (-574)))))) (-2533 (($ $ (-781)) 16)) (-2838 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-1609 (($ $) 120 (|has| |#1| (-38 (-417 (-574)))))) (-2646 (($ $ |#2| $) 106) (($ $ (-654 |#2|) (-654 $)) 99) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL)) (-3905 (($ $ |#2|) 109) (($ $ (-654 |#2|)) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-4202 (((-541 |#2|) $) NIL)) (-3644 (((-1 (-1170 |#3|) |#3|) (-654 |#2|) (-654 (-1170 |#3|))) 87)) (-2402 (($ $) 158 (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2256 (($ $) 130 (|has| |#1| (-38 (-417 (-574)))))) (-2352 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 126 (|has| |#1| (-38 (-417 (-574)))))) (-1651 (($ $) 18)) (-2943 (((-872) $) 198) (($ (-574)) NIL) (($ |#1|) 45 (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-566))) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#2|) 70) (($ |#3|) 68)) (-3087 ((|#1| $ (-541 |#2|)) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL) ((|#3| $ (-781)) 43)) (-3298 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-2441 (($ $) 164 (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2069 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2414 (($ $) 160 (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) 168 (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-2521 (($ $) 170 (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2452 (($ $) 166 (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) 162 (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-2133 (($) 52 T CONST)) (-2145 (($) 62 T CONST)) (-3610 (($ $ |#2|) NIL) (($ $ (-654 |#2|)) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ |#1|) 200 (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) 66)) (** (($ $ (-932)) NIL) (($ $ (-781)) 77) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 112 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 65) (($ $ (-417 (-574))) 117 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 115 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) -(((-1139 |#1| |#2| |#3|) (-13 (-750 |#1| |#2|) (-10 -8 (-15 -3087 (|#3| $ (-781))) (-15 -2943 ($ |#2|)) (-15 -2943 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3644 ((-1 (-1170 |#3|) |#3|) (-654 |#2|) (-654 (-1170 |#3|)))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -2379 ($ $ |#2| |#1|)) (-15 -3280 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1062) (-860) (-960 |#1| (-541 |#2|) |#2|)) (T -1139)) -((-3087 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *2 (-960 *4 (-541 *5) *5)) (-5 *1 (-1139 *4 *5 *2)) (-4 *4 (-1062)) (-4 *5 (-860)))) (-2943 (*1 *1 *2) (-12 (-4 *3 (-1062)) (-4 *2 (-860)) (-5 *1 (-1139 *3 *2 *4)) (-4 *4 (-960 *3 (-541 *2) *2)))) (-2943 (*1 *1 *2) (-12 (-4 *3 (-1062)) (-4 *4 (-860)) (-5 *1 (-1139 *3 *4 *2)) (-4 *2 (-960 *3 (-541 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1062)) (-4 *4 (-860)) (-5 *1 (-1139 *3 *4 *2)) (-4 *2 (-960 *3 (-541 *4) *4)))) (-3644 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-1170 *7))) (-4 *6 (-860)) (-4 *7 (-960 *5 (-541 *6) *6)) (-4 *5 (-1062)) (-5 *2 (-1 (-1170 *7) *7)) (-5 *1 (-1139 *5 *6 *7)))) (-2379 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-4 *2 (-860)) (-5 *1 (-1139 *3 *2 *4)) (-4 *4 (-960 *3 (-541 *2) *2)))) (-3280 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1139 *4 *3 *5))) (-4 *4 (-38 (-417 (-574)))) (-4 *4 (-1062)) (-4 *3 (-860)) (-5 *1 (-1139 *4 *3 *5)) (-4 *5 (-960 *4 (-541 *3) *3))))) -(-13 (-750 |#1| |#2|) (-10 -8 (-15 -3087 (|#3| $ (-781))) (-15 -2943 ($ |#2|)) (-15 -2943 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3644 ((-1 (-1170 |#3|) |#3|) (-654 |#2|) (-654 (-1170 |#3|)))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -2379 ($ $ |#2| |#1|)) (-15 -3280 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-2849 (((-112) $ $) 7)) (-2410 (((-654 (-2 (|:| -1381 $) (|:| -1675 (-654 |#4|)))) (-654 |#4|)) 86)) (-3954 (((-654 $) (-654 |#4|)) 87) (((-654 $) (-654 |#4|) (-112)) 112)) (-4355 (((-654 |#3|) $) 34)) (-2907 (((-112) $) 27)) (-4018 (((-112) $) 18 (|has| |#1| (-566)))) (-1751 (((-112) |#4| $) 102) (((-112) $) 98)) (-3207 ((|#4| |#4| $) 93)) (-2568 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 $))) |#4| $) 127)) (-2771 (((-2 (|:| |under| $) (|:| -3595 $) (|:| |upper| $)) $ |#3|) 28)) (-3034 (((-112) $ (-781)) 45)) (-2165 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4456))) (((-3 |#4| "failed") $ |#3|) 80)) (-3426 (($) 46 T CONST)) (-4336 (((-112) $) 23 (|has| |#1| (-566)))) (-1547 (((-112) $ $) 25 (|has| |#1| (-566)))) (-2318 (((-112) $ $) 24 (|has| |#1| (-566)))) (-1792 (((-112) $) 26 (|has| |#1| (-566)))) (-3908 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3025 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-1974 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1696 (((-3 $ "failed") (-654 |#4|)) 37)) (-2206 (($ (-654 |#4|)) 36)) (-2926 (((-3 $ "failed") $) 83)) (-1402 ((|#4| |#4| $) 90)) (-1543 (($ $) 69 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ |#4| $) 68 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4456)))) (-2766 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-1315 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1747 ((|#4| |#4| $) 88)) (-2868 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4456))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4456))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4270 (((-2 (|:| -1381 (-654 |#4|)) (|:| -1675 (-654 |#4|))) $) 106)) (-4062 (((-112) |#4| $) 137)) (-2288 (((-112) |#4| $) 134)) (-1421 (((-112) |#4| $) 138) (((-112) $) 135)) (-1864 (((-654 |#4|) $) 53 (|has| $ (-6 -4456)))) (-4436 (((-112) |#4| $) 105) (((-112) $) 104)) (-3830 ((|#3| $) 35)) (-2742 (((-112) $ (-781)) 44)) (-1606 (((-654 |#4|) $) 54 (|has| $ (-6 -4456)))) (-1710 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456))))) (-2449 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#4| |#4|) $) 48)) (-3963 (((-654 |#3|) $) 33)) (-4158 (((-112) |#3| $) 32)) (-4203 (((-112) $ (-781)) 43)) (-4136 (((-1172) $) 10)) (-3660 (((-3 |#4| (-654 $)) |#4| |#4| $) 129)) (-4268 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 $))) |#4| |#4| $) 128)) (-3360 (((-3 |#4| "failed") $) 84)) (-2290 (((-654 $) |#4| $) 130)) (-3945 (((-3 (-112) (-654 $)) |#4| $) 133)) (-2514 (((-654 (-2 (|:| |val| (-112)) (|:| -4091 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1784 (((-654 $) |#4| $) 126) (((-654 $) (-654 |#4|) $) 125) (((-654 $) (-654 |#4|) (-654 $)) 124) (((-654 $) |#4| (-654 $)) 123)) (-1954 (($ |#4| $) 118) (($ (-654 |#4|) $) 117)) (-4417 (((-654 |#4|) $) 108)) (-4292 (((-112) |#4| $) 100) (((-112) $) 96)) (-3023 ((|#4| |#4| $) 91)) (-2119 (((-112) $ $) 111)) (-2396 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-2682 (((-112) |#4| $) 101) (((-112) $) 97)) (-3206 ((|#4| |#4| $) 92)) (-3966 (((-1133) $) 11)) (-2915 (((-3 |#4| "failed") $) 85)) (-1549 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3040 (((-3 $ "failed") $ |#4|) 79)) (-2533 (($ $ |#4|) 78) (((-654 $) |#4| $) 116) (((-654 $) |#4| (-654 $)) 115) (((-654 $) (-654 |#4|) $) 114) (((-654 $) (-654 |#4|) (-654 $)) 113)) (-2540 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))) (-4017 (((-112) $ $) 39)) (-1584 (((-112) $) 42)) (-2672 (($) 41)) (-4202 (((-781) $) 107)) (-3975 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4456)))) (-3167 (($ $) 40)) (-1836 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2956 (($ (-654 |#4|)) 61)) (-3650 (($ $ |#3|) 29)) (-3722 (($ $ |#3|) 31)) (-4429 (($ $) 89)) (-2096 (($ $ |#3|) 30)) (-2943 (((-872) $) 12) (((-654 |#4|) $) 38)) (-4435 (((-781) $) 77 (|has| |#3| (-377)))) (-3284 (((-112) $ $) 9)) (-3416 (((-3 (-2 (|:| |bas| $) (|:| -2002 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2002 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2582 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) 99)) (-1379 (((-654 $) |#4| $) 122) (((-654 $) |#4| (-654 $)) 121) (((-654 $) (-654 |#4|) $) 120) (((-654 $) (-654 |#4|) (-654 $)) 119)) (-3390 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4456)))) (-2720 (((-654 |#3|) $) 82)) (-4221 (((-112) |#4| $) 136)) (-3587 (((-112) |#3| $) 81)) (-2981 (((-112) $ $) 6)) (-2863 (((-781) $) 47 (|has| $ (-6 -4456))))) -(((-1140 |#1| |#2| |#3| |#4|) (-141) (-462) (-803) (-860) (-1078 |t#1| |t#2| |t#3|)) (T -1140)) -NIL -(-13 (-1122 |t#1| |t#2| |t#3| |t#4|) (-794 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))) ((-794 |#1| |#2| |#3| |#4|) . T) ((-989 |#1| |#2| |#3| |#4|) . T) ((-1084 |#1| |#2| |#3| |#4|) . T) ((-1113) . T) ((-1122 |#1| |#2| |#3| |#4|) . T) ((-1224 |#1| |#2| |#3| |#4|) . T) ((-1231) . T)) -((-1701 (((-654 |#2|) |#1|) 15)) (-2881 (((-654 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-654 |#2|) |#1|) 61)) (-4332 (((-654 |#2|) |#2| |#2| |#2|) 45) (((-654 |#2|) |#1|) 59)) (-3358 ((|#2| |#1|) 54)) (-2608 (((-2 (|:| |solns| (-654 |#2|)) (|:| |maps| (-654 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-4033 (((-654 |#2|) |#2| |#2|) 42) (((-654 |#2|) |#1|) 58)) (-3720 (((-654 |#2|) |#2| |#2| |#2| |#2|) 46) (((-654 |#2|) |#1|) 60)) (-1596 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53)) (-1396 ((|#2| |#2| |#2| |#2|) 51)) (-2416 ((|#2| |#2| |#2|) 50)) (-2427 ((|#2| |#2| |#2| |#2| |#2|) 52))) -(((-1141 |#1| |#2|) (-10 -7 (-15 -1701 ((-654 |#2|) |#1|)) (-15 -3358 (|#2| |#1|)) (-15 -2608 ((-2 (|:| |solns| (-654 |#2|)) (|:| |maps| (-654 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4033 ((-654 |#2|) |#1|)) (-15 -4332 ((-654 |#2|) |#1|)) (-15 -3720 ((-654 |#2|) |#1|)) (-15 -2881 ((-654 |#2|) |#1|)) (-15 -4033 ((-654 |#2|) |#2| |#2|)) (-15 -4332 ((-654 |#2|) |#2| |#2| |#2|)) (-15 -3720 ((-654 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2881 ((-654 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2416 (|#2| |#2| |#2|)) (-15 -1396 (|#2| |#2| |#2| |#2|)) (-15 -2427 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1596 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1257 |#2|) (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (T -1141)) -((-1596 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *1 (-1141 *3 *2)) (-4 *3 (-1257 *2)))) (-2427 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *1 (-1141 *3 *2)) (-4 *3 (-1257 *2)))) (-1396 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *1 (-1141 *3 *2)) (-4 *3 (-1257 *2)))) (-2416 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *1 (-1141 *3 *2)) (-4 *3 (-1257 *2)))) (-2881 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *3)) (-5 *1 (-1141 *4 *3)) (-4 *4 (-1257 *3)))) (-3720 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *3)) (-5 *1 (-1141 *4 *3)) (-4 *4 (-1257 *3)))) (-4332 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *3)) (-5 *1 (-1141 *4 *3)) (-4 *4 (-1257 *3)))) (-4033 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *3)) (-5 *1 (-1141 *4 *3)) (-4 *4 (-1257 *3)))) (-2881 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *4)) (-5 *1 (-1141 *3 *4)) (-4 *3 (-1257 *4)))) (-3720 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *4)) (-5 *1 (-1141 *3 *4)) (-4 *3 (-1257 *4)))) (-4332 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *4)) (-5 *1 (-1141 *3 *4)) (-4 *3 (-1257 *4)))) (-4033 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *4)) (-5 *1 (-1141 *3 *4)) (-4 *3 (-1257 *4)))) (-2608 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-2 (|:| |solns| (-654 *5)) (|:| |maps| (-654 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1141 *3 *5)) (-4 *3 (-1257 *5)))) (-3358 (*1 *2 *3) (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *1 (-1141 *3 *2)) (-4 *3 (-1257 *2)))) (-1701 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *4)) (-5 *1 (-1141 *3 *4)) (-4 *3 (-1257 *4))))) -(-10 -7 (-15 -1701 ((-654 |#2|) |#1|)) (-15 -3358 (|#2| |#1|)) (-15 -2608 ((-2 (|:| |solns| (-654 |#2|)) (|:| |maps| (-654 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4033 ((-654 |#2|) |#1|)) (-15 -4332 ((-654 |#2|) |#1|)) (-15 -3720 ((-654 |#2|) |#1|)) (-15 -2881 ((-654 |#2|) |#1|)) (-15 -4033 ((-654 |#2|) |#2| |#2|)) (-15 -4332 ((-654 |#2|) |#2| |#2| |#2|)) (-15 -3720 ((-654 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2881 ((-654 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2416 (|#2| |#2| |#2|)) (-15 -1396 (|#2| |#2| |#2| |#2|)) (-15 -2427 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1596 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-3137 (((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-963 |#1|))))) 118) (((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-963 |#1|)))) (-654 (-1190))) 117) (((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-963 |#1|)))) 115) (((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-963 |#1|))) (-654 (-1190))) 113) (((-654 (-302 (-324 |#1|))) (-302 (-417 (-963 |#1|)))) 97) (((-654 (-302 (-324 |#1|))) (-302 (-417 (-963 |#1|))) (-1190)) 98) (((-654 (-302 (-324 |#1|))) (-417 (-963 |#1|))) 92) (((-654 (-302 (-324 |#1|))) (-417 (-963 |#1|)) (-1190)) 82)) (-2192 (((-654 (-654 (-324 |#1|))) (-654 (-417 (-963 |#1|))) (-654 (-1190))) 111) (((-654 (-324 |#1|)) (-417 (-963 |#1|)) (-1190)) 54)) (-3998 (((-1179 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-417 (-963 |#1|)) (-1190)) 122) (((-1179 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-302 (-417 (-963 |#1|))) (-1190)) 121))) -(((-1142 |#1|) (-10 -7 (-15 -3137 ((-654 (-302 (-324 |#1|))) (-417 (-963 |#1|)) (-1190))) (-15 -3137 ((-654 (-302 (-324 |#1|))) (-417 (-963 |#1|)))) (-15 -3137 ((-654 (-302 (-324 |#1|))) (-302 (-417 (-963 |#1|))) (-1190))) (-15 -3137 ((-654 (-302 (-324 |#1|))) (-302 (-417 (-963 |#1|))))) (-15 -3137 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-963 |#1|))) (-654 (-1190)))) (-15 -3137 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-963 |#1|))))) (-15 -3137 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-963 |#1|)))) (-654 (-1190)))) (-15 -3137 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-963 |#1|)))))) (-15 -2192 ((-654 (-324 |#1|)) (-417 (-963 |#1|)) (-1190))) (-15 -2192 ((-654 (-654 (-324 |#1|))) (-654 (-417 (-963 |#1|))) (-654 (-1190)))) (-15 -3998 ((-1179 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-302 (-417 (-963 |#1|))) (-1190))) (-15 -3998 ((-1179 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-417 (-963 |#1|)) (-1190)))) (-13 (-315) (-148))) (T -1142)) -((-3998 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-1190)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-1179 (-654 (-324 *5)) (-654 (-302 (-324 *5))))) (-5 *1 (-1142 *5)))) (-3998 (*1 *2 *3 *4) (-12 (-5 *3 (-302 (-417 (-963 *5)))) (-5 *4 (-1190)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-1179 (-654 (-324 *5)) (-654 (-302 (-324 *5))))) (-5 *1 (-1142 *5)))) (-2192 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-963 *5)))) (-5 *4 (-654 (-1190))) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-324 *5)))) (-5 *1 (-1142 *5)))) (-2192 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-1190)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-324 *5))) (-5 *1 (-1142 *5)))) (-3137 (*1 *2 *3) (-12 (-5 *3 (-654 (-302 (-417 (-963 *4))))) (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *4))))) (-5 *1 (-1142 *4)))) (-3137 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-302 (-417 (-963 *5))))) (-5 *4 (-654 (-1190))) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *5))))) (-5 *1 (-1142 *5)))) (-3137 (*1 *2 *3) (-12 (-5 *3 (-654 (-417 (-963 *4)))) (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *4))))) (-5 *1 (-1142 *4)))) (-3137 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-963 *5)))) (-5 *4 (-654 (-1190))) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *5))))) (-5 *1 (-1142 *5)))) (-3137 (*1 *2 *3) (-12 (-5 *3 (-302 (-417 (-963 *4)))) (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1142 *4)))) (-3137 (*1 *2 *3 *4) (-12 (-5 *3 (-302 (-417 (-963 *5)))) (-5 *4 (-1190)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1142 *5)))) (-3137 (*1 *2 *3) (-12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1142 *4)))) (-3137 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-1190)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1142 *5))))) -(-10 -7 (-15 -3137 ((-654 (-302 (-324 |#1|))) (-417 (-963 |#1|)) (-1190))) (-15 -3137 ((-654 (-302 (-324 |#1|))) (-417 (-963 |#1|)))) (-15 -3137 ((-654 (-302 (-324 |#1|))) (-302 (-417 (-963 |#1|))) (-1190))) (-15 -3137 ((-654 (-302 (-324 |#1|))) (-302 (-417 (-963 |#1|))))) (-15 -3137 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-963 |#1|))) (-654 (-1190)))) (-15 -3137 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-963 |#1|))))) (-15 -3137 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-963 |#1|)))) (-654 (-1190)))) (-15 -3137 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-963 |#1|)))))) (-15 -2192 ((-654 (-324 |#1|)) (-417 (-963 |#1|)) (-1190))) (-15 -2192 ((-654 (-654 (-324 |#1|))) (-654 (-417 (-963 |#1|))) (-654 (-1190)))) (-15 -3998 ((-1179 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-302 (-417 (-963 |#1|))) (-1190))) (-15 -3998 ((-1179 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-417 (-963 |#1|)) (-1190)))) -((-4089 (((-417 (-1186 (-324 |#1|))) (-1281 (-324 |#1|)) (-417 (-1186 (-324 |#1|))) (-574)) 36)) (-2047 (((-417 (-1186 (-324 |#1|))) (-417 (-1186 (-324 |#1|))) (-417 (-1186 (-324 |#1|))) (-417 (-1186 (-324 |#1|)))) 48))) -(((-1143 |#1|) (-10 -7 (-15 -2047 ((-417 (-1186 (-324 |#1|))) (-417 (-1186 (-324 |#1|))) (-417 (-1186 (-324 |#1|))) (-417 (-1186 (-324 |#1|))))) (-15 -4089 ((-417 (-1186 (-324 |#1|))) (-1281 (-324 |#1|)) (-417 (-1186 (-324 |#1|))) (-574)))) (-566)) (T -1143)) -((-4089 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-417 (-1186 (-324 *5)))) (-5 *3 (-1281 (-324 *5))) (-5 *4 (-574)) (-4 *5 (-566)) (-5 *1 (-1143 *5)))) (-2047 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-417 (-1186 (-324 *3)))) (-4 *3 (-566)) (-5 *1 (-1143 *3))))) -(-10 -7 (-15 -2047 ((-417 (-1186 (-324 |#1|))) (-417 (-1186 (-324 |#1|))) (-417 (-1186 (-324 |#1|))) (-417 (-1186 (-324 |#1|))))) (-15 -4089 ((-417 (-1186 (-324 |#1|))) (-1281 (-324 |#1|)) (-417 (-1186 (-324 |#1|))) (-574)))) -((-1701 (((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-324 |#1|))) (-654 (-1190))) 244) (((-654 (-302 (-324 |#1|))) (-324 |#1|) (-1190)) 23) (((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|)) (-1190)) 29) (((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|))) 28) (((-654 (-302 (-324 |#1|))) (-324 |#1|)) 24))) -(((-1144 |#1|) (-10 -7 (-15 -1701 ((-654 (-302 (-324 |#1|))) (-324 |#1|))) (-15 -1701 ((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|)))) (-15 -1701 ((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|)) (-1190))) (-15 -1701 ((-654 (-302 (-324 |#1|))) (-324 |#1|) (-1190))) (-15 -1701 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-324 |#1|))) (-654 (-1190))))) (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (T -1144)) -((-1701 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-1190))) (-4 *5 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *5))))) (-5 *1 (-1144 *5)) (-5 *3 (-654 (-302 (-324 *5)))))) (-1701 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-4 *5 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1144 *5)) (-5 *3 (-324 *5)))) (-1701 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-4 *5 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1144 *5)) (-5 *3 (-302 (-324 *5))))) (-1701 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1144 *4)) (-5 *3 (-302 (-324 *4))))) (-1701 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1144 *4)) (-5 *3 (-324 *4))))) -(-10 -7 (-15 -1701 ((-654 (-302 (-324 |#1|))) (-324 |#1|))) (-15 -1701 ((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|)))) (-15 -1701 ((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|)) (-1190))) (-15 -1701 ((-654 (-302 (-324 |#1|))) (-324 |#1|) (-1190))) (-15 -1701 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-324 |#1|))) (-654 (-1190))))) -((-1424 ((|#2| |#2|) 28 (|has| |#1| (-860))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 25)) (-4197 ((|#2| |#2|) 27 (|has| |#1| (-860))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) -(((-1145 |#1| |#2|) (-10 -7 (-15 -4197 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -1424 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-860)) (PROGN (-15 -4197 (|#2| |#2|)) (-15 -1424 (|#2| |#2|))) |%noBranch|)) (-1231) (-13 (-614 (-574) |#1|) (-10 -7 (-6 -4456) (-6 -4457)))) (T -1145)) -((-1424 (*1 *2 *2) (-12 (-4 *3 (-860)) (-4 *3 (-1231)) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-614 (-574) *3) (-10 -7 (-6 -4456) (-6 -4457)))))) (-4197 (*1 *2 *2) (-12 (-4 *3 (-860)) (-4 *3 (-1231)) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-614 (-574) *3) (-10 -7 (-6 -4456) (-6 -4457)))))) (-1424 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1231)) (-5 *1 (-1145 *4 *2)) (-4 *2 (-13 (-614 (-574) *4) (-10 -7 (-6 -4456) (-6 -4457)))))) (-4197 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1231)) (-5 *1 (-1145 *4 *2)) (-4 *2 (-13 (-614 (-574) *4) (-10 -7 (-6 -4456) (-6 -4457))))))) -(-10 -7 (-15 -4197 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -1424 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-860)) (PROGN (-15 -4197 (|#2| |#2|)) (-15 -1424 (|#2| |#2|))) |%noBranch|)) -((-2849 (((-112) $ $) NIL)) (-1508 (((-1178 3 |#1|) $) 141)) (-2615 (((-112) $) 101)) (-2974 (($ $ (-654 (-954 |#1|))) 44) (($ $ (-654 (-654 |#1|))) 104) (($ (-654 (-954 |#1|))) 103) (((-654 (-954 |#1|)) $) 102)) (-4043 (((-112) $) 72)) (-3591 (($ $ (-954 |#1|)) 76) (($ $ (-654 |#1|)) 81) (($ $ (-781)) 83) (($ (-954 |#1|)) 77) (((-954 |#1|) $) 75)) (-2614 (((-2 (|:| -3555 (-781)) (|:| |curves| (-781)) (|:| |polygons| (-781)) (|:| |constructs| (-781))) $) 139)) (-2931 (((-781) $) 53)) (-3936 (((-781) $) 52)) (-4390 (($ $ (-781) (-954 |#1|)) 67)) (-4226 (((-112) $) 111)) (-1783 (($ $ (-654 (-654 (-954 |#1|))) (-654 (-173)) (-173)) 118) (($ $ (-654 (-654 (-654 |#1|))) (-654 (-173)) (-173)) 120) (($ $ (-654 (-654 (-954 |#1|))) (-112) (-112)) 115) (($ $ (-654 (-654 (-654 |#1|))) (-112) (-112)) 127) (($ (-654 (-654 (-954 |#1|)))) 116) (($ (-654 (-654 (-954 |#1|))) (-112) (-112)) 117) (((-654 (-654 (-954 |#1|))) $) 114)) (-4430 (($ (-654 $)) 56) (($ $ $) 57)) (-1926 (((-654 (-173)) $) 133)) (-2930 (((-654 (-954 |#1|)) $) 130)) (-3254 (((-654 (-654 (-173))) $) 132)) (-3825 (((-654 (-654 (-654 (-954 |#1|)))) $) NIL)) (-3895 (((-654 (-654 (-654 (-781)))) $) 131)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2594 (((-781) $ (-654 (-954 |#1|))) 65)) (-4055 (((-112) $) 84)) (-3677 (($ $ (-654 (-954 |#1|))) 86) (($ $ (-654 (-654 |#1|))) 92) (($ (-654 (-954 |#1|))) 87) (((-654 (-954 |#1|)) $) 85)) (-3071 (($) 48) (($ (-1178 3 |#1|)) 49)) (-3167 (($ $) 63)) (-3969 (((-654 $) $) 62)) (-2484 (($ (-654 $)) 59)) (-3621 (((-654 $) $) 61)) (-2943 (((-872) $) 146)) (-1557 (((-112) $) 94)) (-3477 (($ $ (-654 (-954 |#1|))) 96) (($ $ (-654 (-654 |#1|))) 99) (($ (-654 (-954 |#1|))) 97) (((-654 (-954 |#1|)) $) 95)) (-2809 (($ $) 140)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1146 |#1|) (-1147 |#1|) (-1062)) (T -1146)) -NIL -(-1147 |#1|) -((-2849 (((-112) $ $) 7)) (-1508 (((-1178 3 |#1|) $) 14)) (-2615 (((-112) $) 30)) (-2974 (($ $ (-654 (-954 |#1|))) 34) (($ $ (-654 (-654 |#1|))) 33) (($ (-654 (-954 |#1|))) 32) (((-654 (-954 |#1|)) $) 31)) (-4043 (((-112) $) 45)) (-3591 (($ $ (-954 |#1|)) 50) (($ $ (-654 |#1|)) 49) (($ $ (-781)) 48) (($ (-954 |#1|)) 47) (((-954 |#1|) $) 46)) (-2614 (((-2 (|:| -3555 (-781)) (|:| |curves| (-781)) (|:| |polygons| (-781)) (|:| |constructs| (-781))) $) 16)) (-2931 (((-781) $) 59)) (-3936 (((-781) $) 60)) (-4390 (($ $ (-781) (-954 |#1|)) 51)) (-4226 (((-112) $) 22)) (-1783 (($ $ (-654 (-654 (-954 |#1|))) (-654 (-173)) (-173)) 29) (($ $ (-654 (-654 (-654 |#1|))) (-654 (-173)) (-173)) 28) (($ $ (-654 (-654 (-954 |#1|))) (-112) (-112)) 27) (($ $ (-654 (-654 (-654 |#1|))) (-112) (-112)) 26) (($ (-654 (-654 (-954 |#1|)))) 25) (($ (-654 (-654 (-954 |#1|))) (-112) (-112)) 24) (((-654 (-654 (-954 |#1|))) $) 23)) (-4430 (($ (-654 $)) 58) (($ $ $) 57)) (-1926 (((-654 (-173)) $) 17)) (-2930 (((-654 (-954 |#1|)) $) 21)) (-3254 (((-654 (-654 (-173))) $) 18)) (-3825 (((-654 (-654 (-654 (-954 |#1|)))) $) 19)) (-3895 (((-654 (-654 (-654 (-781)))) $) 20)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2594 (((-781) $ (-654 (-954 |#1|))) 52)) (-4055 (((-112) $) 40)) (-3677 (($ $ (-654 (-954 |#1|))) 44) (($ $ (-654 (-654 |#1|))) 43) (($ (-654 (-954 |#1|))) 42) (((-654 (-954 |#1|)) $) 41)) (-3071 (($) 62) (($ (-1178 3 |#1|)) 61)) (-3167 (($ $) 53)) (-3969 (((-654 $) $) 54)) (-2484 (($ (-654 $)) 56)) (-3621 (((-654 $) $) 55)) (-2943 (((-872) $) 12)) (-1557 (((-112) $) 35)) (-3477 (($ $ (-654 (-954 |#1|))) 39) (($ $ (-654 (-654 |#1|))) 38) (($ (-654 (-954 |#1|))) 37) (((-654 (-954 |#1|)) $) 36)) (-2809 (($ $) 15)) (-3284 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) -(((-1147 |#1|) (-141) (-1062)) (T -1147)) -((-2943 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-872)))) (-3071 (*1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1062)))) (-3071 (*1 *1 *2) (-12 (-5 *2 (-1178 3 *3)) (-4 *3 (-1062)) (-4 *1 (-1147 *3)))) (-3936 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-781)))) (-2931 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-781)))) (-4430 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))) (-4430 (*1 *1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1062)))) (-2484 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))) (-3621 (*1 *2 *1) (-12 (-4 *3 (-1062)) (-5 *2 (-654 *1)) (-4 *1 (-1147 *3)))) (-3969 (*1 *2 *1) (-12 (-4 *3 (-1062)) (-5 *2 (-654 *1)) (-4 *1 (-1147 *3)))) (-3167 (*1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1062)))) (-2594 (*1 *2 *1 *3) (-12 (-5 *3 (-654 (-954 *4))) (-4 *1 (-1147 *4)) (-4 *4 (-1062)) (-5 *2 (-781)))) (-4390 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *3 (-954 *4)) (-4 *1 (-1147 *4)) (-4 *4 (-1062)))) (-3591 (*1 *1 *1 *2) (-12 (-5 *2 (-954 *3)) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))) (-3591 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))) (-3591 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))) (-3591 (*1 *1 *2) (-12 (-5 *2 (-954 *3)) (-4 *3 (-1062)) (-4 *1 (-1147 *3)))) (-3591 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-954 *3)))) (-4043 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-112)))) (-3677 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-954 *3))) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))) (-3677 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))) (-3677 (*1 *1 *2) (-12 (-5 *2 (-654 (-954 *3))) (-4 *3 (-1062)) (-4 *1 (-1147 *3)))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-654 (-954 *3))))) (-4055 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-112)))) (-3477 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-954 *3))) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))) (-3477 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))) (-3477 (*1 *1 *2) (-12 (-5 *2 (-654 (-954 *3))) (-4 *3 (-1062)) (-4 *1 (-1147 *3)))) (-3477 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-654 (-954 *3))))) (-1557 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-112)))) (-2974 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-954 *3))) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))) (-2974 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))) (-2974 (*1 *1 *2) (-12 (-5 *2 (-654 (-954 *3))) (-4 *3 (-1062)) (-4 *1 (-1147 *3)))) (-2974 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-654 (-954 *3))))) (-2615 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-112)))) (-1783 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-654 (-654 (-954 *5)))) (-5 *3 (-654 (-173))) (-5 *4 (-173)) (-4 *1 (-1147 *5)) (-4 *5 (-1062)))) (-1783 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-654 (-654 (-654 *5)))) (-5 *3 (-654 (-173))) (-5 *4 (-173)) (-4 *1 (-1147 *5)) (-4 *5 (-1062)))) (-1783 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-654 (-654 (-954 *4)))) (-5 *3 (-112)) (-4 *1 (-1147 *4)) (-4 *4 (-1062)))) (-1783 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-654 (-654 (-654 *4)))) (-5 *3 (-112)) (-4 *1 (-1147 *4)) (-4 *4 (-1062)))) (-1783 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-954 *3)))) (-4 *3 (-1062)) (-4 *1 (-1147 *3)))) (-1783 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-654 (-654 (-954 *4)))) (-5 *3 (-112)) (-4 *4 (-1062)) (-4 *1 (-1147 *4)))) (-1783 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-654 (-654 (-954 *3)))))) (-4226 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-112)))) (-2930 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-654 (-954 *3))))) (-3895 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-654 (-654 (-654 (-781))))))) (-3825 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-654 (-654 (-654 (-954 *3))))))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-654 (-654 (-173)))))) (-1926 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-654 (-173))))) (-2614 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-2 (|:| -3555 (-781)) (|:| |curves| (-781)) (|:| |polygons| (-781)) (|:| |constructs| (-781)))))) (-2809 (*1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1062)))) (-1508 (*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-1178 3 *3))))) -(-13 (-1113) (-10 -8 (-15 -3071 ($)) (-15 -3071 ($ (-1178 3 |t#1|))) (-15 -3936 ((-781) $)) (-15 -2931 ((-781) $)) (-15 -4430 ($ (-654 $))) (-15 -4430 ($ $ $)) (-15 -2484 ($ (-654 $))) (-15 -3621 ((-654 $) $)) (-15 -3969 ((-654 $) $)) (-15 -3167 ($ $)) (-15 -2594 ((-781) $ (-654 (-954 |t#1|)))) (-15 -4390 ($ $ (-781) (-954 |t#1|))) (-15 -3591 ($ $ (-954 |t#1|))) (-15 -3591 ($ $ (-654 |t#1|))) (-15 -3591 ($ $ (-781))) (-15 -3591 ($ (-954 |t#1|))) (-15 -3591 ((-954 |t#1|) $)) (-15 -4043 ((-112) $)) (-15 -3677 ($ $ (-654 (-954 |t#1|)))) (-15 -3677 ($ $ (-654 (-654 |t#1|)))) (-15 -3677 ($ (-654 (-954 |t#1|)))) (-15 -3677 ((-654 (-954 |t#1|)) $)) (-15 -4055 ((-112) $)) (-15 -3477 ($ $ (-654 (-954 |t#1|)))) (-15 -3477 ($ $ (-654 (-654 |t#1|)))) (-15 -3477 ($ (-654 (-954 |t#1|)))) (-15 -3477 ((-654 (-954 |t#1|)) $)) (-15 -1557 ((-112) $)) (-15 -2974 ($ $ (-654 (-954 |t#1|)))) (-15 -2974 ($ $ (-654 (-654 |t#1|)))) (-15 -2974 ($ (-654 (-954 |t#1|)))) (-15 -2974 ((-654 (-954 |t#1|)) $)) (-15 -2615 ((-112) $)) (-15 -1783 ($ $ (-654 (-654 (-954 |t#1|))) (-654 (-173)) (-173))) (-15 -1783 ($ $ (-654 (-654 (-654 |t#1|))) (-654 (-173)) (-173))) (-15 -1783 ($ $ (-654 (-654 (-954 |t#1|))) (-112) (-112))) (-15 -1783 ($ $ (-654 (-654 (-654 |t#1|))) (-112) (-112))) (-15 -1783 ($ (-654 (-654 (-954 |t#1|))))) (-15 -1783 ($ (-654 (-654 (-954 |t#1|))) (-112) (-112))) (-15 -1783 ((-654 (-654 (-954 |t#1|))) $)) (-15 -4226 ((-112) $)) (-15 -2930 ((-654 (-954 |t#1|)) $)) (-15 -3895 ((-654 (-654 (-654 (-781)))) $)) (-15 -3825 ((-654 (-654 (-654 (-954 |t#1|)))) $)) (-15 -3254 ((-654 (-654 (-173))) $)) (-15 -1926 ((-654 (-173)) $)) (-15 -2614 ((-2 (|:| -3555 (-781)) (|:| |curves| (-781)) (|:| |polygons| (-781)) (|:| |constructs| (-781))) $)) (-15 -2809 ($ $)) (-15 -1508 ((-1178 3 |t#1|) $)) (-15 -2943 ((-872) $)))) -(((-102) . T) ((-623 (-872)) . T) ((-1113) . T)) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 184) (($ (-1195)) NIL) (((-1195) $) 7)) (-2122 (((-112) $ (|[\|\|]| (-534))) 19) (((-112) $ (|[\|\|]| (-220))) 23) (((-112) $ (|[\|\|]| (-686))) 27) (((-112) $ (|[\|\|]| (-1291))) 31) (((-112) $ (|[\|\|]| (-139))) 35) (((-112) $ (|[\|\|]| (-616))) 39) (((-112) $ (|[\|\|]| (-134))) 43) (((-112) $ (|[\|\|]| (-1128))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-691))) 55) (((-112) $ (|[\|\|]| (-527))) 59) (((-112) $ (|[\|\|]| (-1079))) 63) (((-112) $ (|[\|\|]| (-1292))) 67) (((-112) $ (|[\|\|]| (-535))) 71) (((-112) $ (|[\|\|]| (-1164))) 75) (((-112) $ (|[\|\|]| (-155))) 79) (((-112) $ (|[\|\|]| (-681))) 83) (((-112) $ (|[\|\|]| (-319))) 87) (((-112) $ (|[\|\|]| (-1049))) 91) (((-112) $ (|[\|\|]| (-182))) 95) (((-112) $ (|[\|\|]| (-983))) 99) (((-112) $ (|[\|\|]| (-1086))) 103) (((-112) $ (|[\|\|]| (-1103))) 107) (((-112) $ (|[\|\|]| (-1109))) 111) (((-112) $ (|[\|\|]| (-636))) 115) (((-112) $ (|[\|\|]| (-1180))) 119) (((-112) $ (|[\|\|]| (-157))) 123) (((-112) $ (|[\|\|]| (-138))) 127) (((-112) $ (|[\|\|]| (-488))) 131) (((-112) $ (|[\|\|]| (-602))) 135) (((-112) $ (|[\|\|]| (-516))) 139) (((-112) $ (|[\|\|]| (-1172))) 143) (((-112) $ (|[\|\|]| (-574))) 147)) (-3284 (((-112) $ $) NIL)) (-1331 (((-534) $) 20) (((-220) $) 24) (((-686) $) 28) (((-1291) $) 32) (((-139) $) 36) (((-616) $) 40) (((-134) $) 44) (((-1128) $) 48) (((-96) $) 52) (((-691) $) 56) (((-527) $) 60) (((-1079) $) 64) (((-1292) $) 68) (((-535) $) 72) (((-1164) $) 76) (((-155) $) 80) (((-681) $) 84) (((-319) $) 88) (((-1049) $) 92) (((-182) $) 96) (((-983) $) 100) (((-1086) $) 104) (((-1103) $) 108) (((-1109) $) 112) (((-636) $) 116) (((-1180) $) 120) (((-157) $) 124) (((-138) $) 128) (((-488) $) 132) (((-602) $) 136) (((-516) $) 140) (((-1172) $) 144) (((-574) $) 148)) (-2981 (((-112) $ $) NIL))) -(((-1148) (-1150)) (T -1148)) -NIL -(-1150) -((-3736 (((-654 (-1195)) (-1172)) 9))) -(((-1149) (-10 -7 (-15 -3736 ((-654 (-1195)) (-1172))))) (T -1149)) -((-3736 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-654 (-1195))) (-5 *1 (-1149))))) -(-10 -7 (-15 -3736 ((-654 (-1195)) (-1172)))) -((-2849 (((-112) $ $) 7)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12) (($ (-1195)) 17) (((-1195) $) 16)) (-2122 (((-112) $ (|[\|\|]| (-534))) 85) (((-112) $ (|[\|\|]| (-220))) 83) (((-112) $ (|[\|\|]| (-686))) 81) (((-112) $ (|[\|\|]| (-1291))) 79) (((-112) $ (|[\|\|]| (-139))) 77) (((-112) $ (|[\|\|]| (-616))) 75) (((-112) $ (|[\|\|]| (-134))) 73) (((-112) $ (|[\|\|]| (-1128))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-691))) 67) (((-112) $ (|[\|\|]| (-527))) 65) (((-112) $ (|[\|\|]| (-1079))) 63) (((-112) $ (|[\|\|]| (-1292))) 61) (((-112) $ (|[\|\|]| (-535))) 59) (((-112) $ (|[\|\|]| (-1164))) 57) (((-112) $ (|[\|\|]| (-155))) 55) (((-112) $ (|[\|\|]| (-681))) 53) (((-112) $ (|[\|\|]| (-319))) 51) (((-112) $ (|[\|\|]| (-1049))) 49) (((-112) $ (|[\|\|]| (-182))) 47) (((-112) $ (|[\|\|]| (-983))) 45) (((-112) $ (|[\|\|]| (-1086))) 43) (((-112) $ (|[\|\|]| (-1103))) 41) (((-112) $ (|[\|\|]| (-1109))) 39) (((-112) $ (|[\|\|]| (-636))) 37) (((-112) $ (|[\|\|]| (-1180))) 35) (((-112) $ (|[\|\|]| (-157))) 33) (((-112) $ (|[\|\|]| (-138))) 31) (((-112) $ (|[\|\|]| (-488))) 29) (((-112) $ (|[\|\|]| (-602))) 27) (((-112) $ (|[\|\|]| (-516))) 25) (((-112) $ (|[\|\|]| (-1172))) 23) (((-112) $ (|[\|\|]| (-574))) 21)) (-3284 (((-112) $ $) 9)) (-1331 (((-534) $) 84) (((-220) $) 82) (((-686) $) 80) (((-1291) $) 78) (((-139) $) 76) (((-616) $) 74) (((-134) $) 72) (((-1128) $) 70) (((-96) $) 68) (((-691) $) 66) (((-527) $) 64) (((-1079) $) 62) (((-1292) $) 60) (((-535) $) 58) (((-1164) $) 56) (((-155) $) 54) (((-681) $) 52) (((-319) $) 50) (((-1049) $) 48) (((-182) $) 46) (((-983) $) 44) (((-1086) $) 42) (((-1103) $) 40) (((-1109) $) 38) (((-636) $) 36) (((-1180) $) 34) (((-157) $) 32) (((-138) $) 30) (((-488) $) 28) (((-602) $) 26) (((-516) $) 24) (((-1172) $) 22) (((-574) $) 20)) (-2981 (((-112) $ $) 6))) -(((-1150) (-141)) (T -1150)) -((-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-534))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-534)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-220)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-686))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-686)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1291))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1291)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-139)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-616))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-616)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-134)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1128))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1128)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-96)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-691))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-691)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-527)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1079))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1079)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1292))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1292)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-535))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-535)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1164))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1164)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-155)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-681))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-681)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-319))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-319)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1049))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1049)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-182)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-983))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-983)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1086))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1086)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1103))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1103)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1109))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1109)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-636))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-636)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1180))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1180)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-157)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-138)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-488))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-488)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-602))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-602)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-516)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1172))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1172)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-574))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-574))))) -(-13 (-1096) (-1276) (-10 -8 (-15 -2122 ((-112) $ (|[\|\|]| (-534)))) (-15 -1331 ((-534) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-220)))) (-15 -1331 ((-220) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-686)))) (-15 -1331 ((-686) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-1291)))) (-15 -1331 ((-1291) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-139)))) (-15 -1331 ((-139) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-616)))) (-15 -1331 ((-616) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-134)))) (-15 -1331 ((-134) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-1128)))) (-15 -1331 ((-1128) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-96)))) (-15 -1331 ((-96) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-691)))) (-15 -1331 ((-691) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-527)))) (-15 -1331 ((-527) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-1079)))) (-15 -1331 ((-1079) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-1292)))) (-15 -1331 ((-1292) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-535)))) (-15 -1331 ((-535) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-1164)))) (-15 -1331 ((-1164) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-155)))) (-15 -1331 ((-155) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-681)))) (-15 -1331 ((-681) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-319)))) (-15 -1331 ((-319) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-1049)))) (-15 -1331 ((-1049) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-182)))) (-15 -1331 ((-182) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-983)))) (-15 -1331 ((-983) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-1086)))) (-15 -1331 ((-1086) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-1103)))) (-15 -1331 ((-1103) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-1109)))) (-15 -1331 ((-1109) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-636)))) (-15 -1331 ((-636) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-1180)))) (-15 -1331 ((-1180) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-157)))) (-15 -1331 ((-157) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-138)))) (-15 -1331 ((-138) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-488)))) (-15 -1331 ((-488) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-602)))) (-15 -1331 ((-602) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-516)))) (-15 -1331 ((-516) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-1172)))) (-15 -1331 ((-1172) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-574)))) (-15 -1331 ((-574) $)))) -(((-93) . T) ((-102) . T) ((-626 #0=(-1195)) . T) ((-623 (-872)) . T) ((-623 #0#) . T) ((-500 #0#) . T) ((-1113) . T) ((-1096) . T) ((-1276) . T)) -((-3536 (((-1286) (-654 (-872))) 22) (((-1286) (-872)) 21)) (-3976 (((-1286) (-654 (-872))) 20) (((-1286) (-872)) 19)) (-3768 (((-1286) (-654 (-872))) 18) (((-1286) (-872)) 10) (((-1286) (-1172) (-872)) 16))) -(((-1151) (-10 -7 (-15 -3768 ((-1286) (-1172) (-872))) (-15 -3768 ((-1286) (-872))) (-15 -3976 ((-1286) (-872))) (-15 -3536 ((-1286) (-872))) (-15 -3768 ((-1286) (-654 (-872)))) (-15 -3976 ((-1286) (-654 (-872)))) (-15 -3536 ((-1286) (-654 (-872)))))) (T -1151)) -((-3536 (*1 *2 *3) (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1286)) (-5 *1 (-1151)))) (-3976 (*1 *2 *3) (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1286)) (-5 *1 (-1151)))) (-3768 (*1 *2 *3) (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1286)) (-5 *1 (-1151)))) (-3536 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1286)) (-5 *1 (-1151)))) (-3976 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1286)) (-5 *1 (-1151)))) (-3768 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1286)) (-5 *1 (-1151)))) (-3768 (*1 *2 *3 *4) (-12 (-5 *3 (-1172)) (-5 *4 (-872)) (-5 *2 (-1286)) (-5 *1 (-1151))))) -(-10 -7 (-15 -3768 ((-1286) (-1172) (-872))) (-15 -3768 ((-1286) (-872))) (-15 -3976 ((-1286) (-872))) (-15 -3536 ((-1286) (-872))) (-15 -3768 ((-1286) (-654 (-872)))) (-15 -3976 ((-1286) (-654 (-872)))) (-15 -3536 ((-1286) (-654 (-872))))) -((-2097 (($ $ $) 10)) (-2489 (($ $) 9)) (-3681 (($ $ $) 13)) (-3586 (($ $ $) 15)) (-2758 (($ $ $) 12)) (-2242 (($ $ $) 14)) (-1773 (($ $) 17)) (-2196 (($ $) 16)) (-3482 (($ $) 6)) (-2135 (($ $ $) 11) (($ $) 7)) (-3061 (($ $ $) 8))) -(((-1152) (-141)) (T -1152)) -((-1773 (*1 *1 *1) (-4 *1 (-1152))) (-2196 (*1 *1 *1) (-4 *1 (-1152))) (-3586 (*1 *1 *1 *1) (-4 *1 (-1152))) (-2242 (*1 *1 *1 *1) (-4 *1 (-1152))) (-3681 (*1 *1 *1 *1) (-4 *1 (-1152))) (-2758 (*1 *1 *1 *1) (-4 *1 (-1152))) (-2135 (*1 *1 *1 *1) (-4 *1 (-1152))) (-2097 (*1 *1 *1 *1) (-4 *1 (-1152))) (-2489 (*1 *1 *1) (-4 *1 (-1152))) (-3061 (*1 *1 *1 *1) (-4 *1 (-1152))) (-2135 (*1 *1 *1) (-4 *1 (-1152))) (-3482 (*1 *1 *1) (-4 *1 (-1152)))) -(-13 (-10 -8 (-15 -3482 ($ $)) (-15 -2135 ($ $)) (-15 -3061 ($ $ $)) (-15 -2489 ($ $)) (-15 -2097 ($ $ $)) (-15 -2135 ($ $ $)) (-15 -2758 ($ $ $)) (-15 -3681 ($ $ $)) (-15 -2242 ($ $ $)) (-15 -3586 ($ $ $)) (-15 -2196 ($ $)) (-15 -1773 ($ $)))) -((-2849 (((-112) $ $) 44)) (-3083 ((|#1| $) 17)) (-1670 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-1947 (((-112) $) 19)) (-3190 (($ $ |#1|) 30)) (-3300 (($ $ (-112)) 32)) (-3890 (($ $) 33)) (-1749 (($ $ |#2|) 31)) (-4136 (((-1172) $) NIL)) (-4273 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3966 (((-1133) $) NIL)) (-1584 (((-112) $) 16)) (-2672 (($) 13)) (-3167 (($ $) 29)) (-2956 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -4091 |#2|))) 23) (((-654 $) (-654 (-2 (|:| |val| |#1|) (|:| -4091 |#2|)))) 26) (((-654 $) |#1| (-654 |#2|)) 28)) (-2265 ((|#2| $) 18)) (-2943 (((-872) $) 53)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 42))) -(((-1153 |#1| |#2|) (-13 (-1113) (-10 -8 (-15 -2672 ($)) (-15 -1584 ((-112) $)) (-15 -3083 (|#1| $)) (-15 -2265 (|#2| $)) (-15 -1947 ((-112) $)) (-15 -2956 ($ |#1| |#2| (-112))) (-15 -2956 ($ |#1| |#2|)) (-15 -2956 ($ (-2 (|:| |val| |#1|) (|:| -4091 |#2|)))) (-15 -2956 ((-654 $) (-654 (-2 (|:| |val| |#1|) (|:| -4091 |#2|))))) (-15 -2956 ((-654 $) |#1| (-654 |#2|))) (-15 -3167 ($ $)) (-15 -3190 ($ $ |#1|)) (-15 -1749 ($ $ |#2|)) (-15 -3300 ($ $ (-112))) (-15 -3890 ($ $)) (-15 -4273 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1670 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1113) (-34)) (-13 (-1113) (-34))) (T -1153)) -((-2672 (*1 *1) (-12 (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1113) (-34))) (-4 *3 (-13 (-1113) (-34))))) (-1584 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-13 (-1113) (-34))) (-4 *4 (-13 (-1113) (-34))))) (-3083 (*1 *2 *1) (-12 (-4 *2 (-13 (-1113) (-34))) (-5 *1 (-1153 *2 *3)) (-4 *3 (-13 (-1113) (-34))))) (-2265 (*1 *2 *1) (-12 (-4 *2 (-13 (-1113) (-34))) (-5 *1 (-1153 *3 *2)) (-4 *3 (-13 (-1113) (-34))))) (-1947 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-13 (-1113) (-34))) (-4 *4 (-13 (-1113) (-34))))) (-2956 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1113) (-34))) (-4 *3 (-13 (-1113) (-34))))) (-2956 (*1 *1 *2 *3) (-12 (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1113) (-34))) (-4 *3 (-13 (-1113) (-34))))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4091 *4))) (-4 *3 (-13 (-1113) (-34))) (-4 *4 (-13 (-1113) (-34))) (-5 *1 (-1153 *3 *4)))) (-2956 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| |val| *4) (|:| -4091 *5)))) (-4 *4 (-13 (-1113) (-34))) (-4 *5 (-13 (-1113) (-34))) (-5 *2 (-654 (-1153 *4 *5))) (-5 *1 (-1153 *4 *5)))) (-2956 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *5)) (-4 *5 (-13 (-1113) (-34))) (-5 *2 (-654 (-1153 *3 *5))) (-5 *1 (-1153 *3 *5)) (-4 *3 (-13 (-1113) (-34))))) (-3167 (*1 *1 *1) (-12 (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1113) (-34))) (-4 *3 (-13 (-1113) (-34))))) (-3190 (*1 *1 *1 *2) (-12 (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1113) (-34))) (-4 *3 (-13 (-1113) (-34))))) (-1749 (*1 *1 *1 *2) (-12 (-5 *1 (-1153 *3 *2)) (-4 *3 (-13 (-1113) (-34))) (-4 *2 (-13 (-1113) (-34))))) (-3300 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-13 (-1113) (-34))) (-4 *4 (-13 (-1113) (-34))))) (-3890 (*1 *1 *1) (-12 (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1113) (-34))) (-4 *3 (-13 (-1113) (-34))))) (-4273 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1113) (-34))) (-4 *6 (-13 (-1113) (-34))) (-5 *2 (-112)) (-5 *1 (-1153 *5 *6)))) (-1670 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1113) (-34))) (-5 *2 (-112)) (-5 *1 (-1153 *4 *5)) (-4 *4 (-13 (-1113) (-34)))))) -(-13 (-1113) (-10 -8 (-15 -2672 ($)) (-15 -1584 ((-112) $)) (-15 -3083 (|#1| $)) (-15 -2265 (|#2| $)) (-15 -1947 ((-112) $)) (-15 -2956 ($ |#1| |#2| (-112))) (-15 -2956 ($ |#1| |#2|)) (-15 -2956 ($ (-2 (|:| |val| |#1|) (|:| -4091 |#2|)))) (-15 -2956 ((-654 $) (-654 (-2 (|:| |val| |#1|) (|:| -4091 |#2|))))) (-15 -2956 ((-654 $) |#1| (-654 |#2|))) (-15 -3167 ($ $)) (-15 -3190 ($ $ |#1|)) (-15 -1749 ($ $ |#2|)) (-15 -3300 ($ $ (-112))) (-15 -3890 ($ $)) (-15 -4273 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1670 ((-112) $ $ (-1 (-112) |#2| |#2|))))) -((-2849 (((-112) $ $) NIL (|has| (-1153 |#1| |#2|) (-1113)))) (-3083 (((-1153 |#1| |#2|) $) 27)) (-3046 (($ $) 91)) (-2958 (((-112) (-1153 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-3493 (($ $ $ (-654 (-1153 |#1| |#2|))) 108) (($ $ $ (-654 (-1153 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-3034 (((-112) $ (-781)) NIL)) (-3316 (((-1153 |#1| |#2|) $ (-1153 |#1| |#2|)) 46 (|has| $ (-6 -4457)))) (-3143 (((-1153 |#1| |#2|) $ "value" (-1153 |#1| |#2|)) NIL (|has| $ (-6 -4457)))) (-2183 (($ $ (-654 $)) 44 (|has| $ (-6 -4457)))) (-3426 (($) NIL T CONST)) (-4072 (((-654 (-2 (|:| |val| |#1|) (|:| -4091 |#2|))) $) 95)) (-2876 (($ (-1153 |#1| |#2|) $) 42)) (-3335 (($ (-1153 |#1| |#2|) $) 34)) (-1864 (((-654 (-1153 |#1| |#2|)) $) NIL (|has| $ (-6 -4456)))) (-3820 (((-654 $) $) 54)) (-2564 (((-112) (-1153 |#1| |#2|) $) 97)) (-2278 (((-112) $ $) NIL (|has| (-1153 |#1| |#2|) (-1113)))) (-2742 (((-112) $ (-781)) NIL)) (-1606 (((-654 (-1153 |#1| |#2|)) $) 58 (|has| $ (-6 -4456)))) (-1710 (((-112) (-1153 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-1153 |#1| |#2|) (-1113))))) (-2449 (($ (-1 (-1153 |#1| |#2|) (-1153 |#1| |#2|)) $) 50 (|has| $ (-6 -4457)))) (-1777 (($ (-1 (-1153 |#1| |#2|) (-1153 |#1| |#2|)) $) 49)) (-4203 (((-112) $ (-781)) NIL)) (-3507 (((-654 (-1153 |#1| |#2|)) $) 56)) (-3632 (((-112) $) 45)) (-4136 (((-1172) $) NIL (|has| (-1153 |#1| |#2|) (-1113)))) (-3966 (((-1133) $) NIL (|has| (-1153 |#1| |#2|) (-1113)))) (-4265 (((-3 $ "failed") $) 89)) (-2540 (((-112) (-1 (-112) (-1153 |#1| |#2|)) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-1153 |#1| |#2|)))) NIL (-12 (|has| (-1153 |#1| |#2|) (-317 (-1153 |#1| |#2|))) (|has| (-1153 |#1| |#2|) (-1113)))) (($ $ (-302 (-1153 |#1| |#2|))) NIL (-12 (|has| (-1153 |#1| |#2|) (-317 (-1153 |#1| |#2|))) (|has| (-1153 |#1| |#2|) (-1113)))) (($ $ (-1153 |#1| |#2|) (-1153 |#1| |#2|)) NIL (-12 (|has| (-1153 |#1| |#2|) (-317 (-1153 |#1| |#2|))) (|has| (-1153 |#1| |#2|) (-1113)))) (($ $ (-654 (-1153 |#1| |#2|)) (-654 (-1153 |#1| |#2|))) NIL (-12 (|has| (-1153 |#1| |#2|) (-317 (-1153 |#1| |#2|))) (|has| (-1153 |#1| |#2|) (-1113))))) (-4017 (((-112) $ $) 53)) (-1584 (((-112) $) 24)) (-2672 (($) 26)) (-2199 (((-1153 |#1| |#2|) $ "value") NIL)) (-3867 (((-574) $ $) NIL)) (-2479 (((-112) $) 47)) (-3975 (((-781) (-1 (-112) (-1153 |#1| |#2|)) $) NIL (|has| $ (-6 -4456))) (((-781) (-1153 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-1153 |#1| |#2|) (-1113))))) (-3167 (($ $) 52)) (-2956 (($ (-1153 |#1| |#2|)) 10) (($ |#1| |#2| (-654 $)) 13) (($ |#1| |#2| (-654 (-1153 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-654 |#2|)) 18)) (-2670 (((-654 |#2|) $) 96)) (-2943 (((-872) $) 87 (|has| (-1153 |#1| |#2|) (-623 (-872))))) (-2321 (((-654 $) $) 31)) (-4418 (((-112) $ $) NIL (|has| (-1153 |#1| |#2|) (-1113)))) (-3284 (((-112) $ $) NIL (|has| (-1153 |#1| |#2|) (-1113)))) (-3390 (((-112) (-1 (-112) (-1153 |#1| |#2|)) $) NIL (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 70 (|has| (-1153 |#1| |#2|) (-1113)))) (-2863 (((-781) $) 64 (|has| $ (-6 -4456))))) -(((-1154 |#1| |#2|) (-13 (-1023 (-1153 |#1| |#2|)) (-10 -8 (-6 -4457) (-6 -4456) (-15 -4265 ((-3 $ "failed") $)) (-15 -3046 ($ $)) (-15 -2956 ($ (-1153 |#1| |#2|))) (-15 -2956 ($ |#1| |#2| (-654 $))) (-15 -2956 ($ |#1| |#2| (-654 (-1153 |#1| |#2|)))) (-15 -2956 ($ |#1| |#2| |#1| (-654 |#2|))) (-15 -2670 ((-654 |#2|) $)) (-15 -4072 ((-654 (-2 (|:| |val| |#1|) (|:| -4091 |#2|))) $)) (-15 -2564 ((-112) (-1153 |#1| |#2|) $)) (-15 -2958 ((-112) (-1153 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3335 ($ (-1153 |#1| |#2|) $)) (-15 -2876 ($ (-1153 |#1| |#2|) $)) (-15 -3493 ($ $ $ (-654 (-1153 |#1| |#2|)))) (-15 -3493 ($ $ $ (-654 (-1153 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1113) (-34)) (-13 (-1113) (-34))) (T -1154)) -((-4265 (*1 *1 *1) (|partial| -12 (-5 *1 (-1154 *2 *3)) (-4 *2 (-13 (-1113) (-34))) (-4 *3 (-13 (-1113) (-34))))) (-3046 (*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-4 *2 (-13 (-1113) (-34))) (-4 *3 (-13 (-1113) (-34))))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-1153 *3 *4)) (-4 *3 (-13 (-1113) (-34))) (-4 *4 (-13 (-1113) (-34))) (-5 *1 (-1154 *3 *4)))) (-2956 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-654 (-1154 *2 *3))) (-5 *1 (-1154 *2 *3)) (-4 *2 (-13 (-1113) (-34))) (-4 *3 (-13 (-1113) (-34))))) (-2956 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-654 (-1153 *2 *3))) (-4 *2 (-13 (-1113) (-34))) (-4 *3 (-13 (-1113) (-34))) (-5 *1 (-1154 *2 *3)))) (-2956 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-13 (-1113) (-34))) (-5 *1 (-1154 *2 *3)) (-4 *2 (-13 (-1113) (-34))))) (-2670 (*1 *2 *1) (-12 (-5 *2 (-654 *4)) (-5 *1 (-1154 *3 *4)) (-4 *3 (-13 (-1113) (-34))) (-4 *4 (-13 (-1113) (-34))))) (-4072 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4)))) (-5 *1 (-1154 *3 *4)) (-4 *3 (-13 (-1113) (-34))) (-4 *4 (-13 (-1113) (-34))))) (-2564 (*1 *2 *3 *1) (-12 (-5 *3 (-1153 *4 *5)) (-4 *4 (-13 (-1113) (-34))) (-4 *5 (-13 (-1113) (-34))) (-5 *2 (-112)) (-5 *1 (-1154 *4 *5)))) (-2958 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1153 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1113) (-34))) (-4 *6 (-13 (-1113) (-34))) (-5 *2 (-112)) (-5 *1 (-1154 *5 *6)))) (-3335 (*1 *1 *2 *1) (-12 (-5 *2 (-1153 *3 *4)) (-4 *3 (-13 (-1113) (-34))) (-4 *4 (-13 (-1113) (-34))) (-5 *1 (-1154 *3 *4)))) (-2876 (*1 *1 *2 *1) (-12 (-5 *2 (-1153 *3 *4)) (-4 *3 (-13 (-1113) (-34))) (-4 *4 (-13 (-1113) (-34))) (-5 *1 (-1154 *3 *4)))) (-3493 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-654 (-1153 *3 *4))) (-4 *3 (-13 (-1113) (-34))) (-4 *4 (-13 (-1113) (-34))) (-5 *1 (-1154 *3 *4)))) (-3493 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1153 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1113) (-34))) (-4 *5 (-13 (-1113) (-34))) (-5 *1 (-1154 *4 *5))))) -(-13 (-1023 (-1153 |#1| |#2|)) (-10 -8 (-6 -4457) (-6 -4456) (-15 -4265 ((-3 $ "failed") $)) (-15 -3046 ($ $)) (-15 -2956 ($ (-1153 |#1| |#2|))) (-15 -2956 ($ |#1| |#2| (-654 $))) (-15 -2956 ($ |#1| |#2| (-654 (-1153 |#1| |#2|)))) (-15 -2956 ($ |#1| |#2| |#1| (-654 |#2|))) (-15 -2670 ((-654 |#2|) $)) (-15 -4072 ((-654 (-2 (|:| |val| |#1|) (|:| -4091 |#2|))) $)) (-15 -2564 ((-112) (-1153 |#1| |#2|) $)) (-15 -2958 ((-112) (-1153 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3335 ($ (-1153 |#1| |#2|) $)) (-15 -2876 ($ (-1153 |#1| |#2|) $)) (-15 -3493 ($ $ $ (-654 (-1153 |#1| |#2|)))) (-15 -3493 ($ $ $ (-654 (-1153 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-2100 (($ $) NIL)) (-1636 ((|#2| $) NIL)) (-3291 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3172 (($ (-699 |#2|)) 56)) (-2224 (((-112) $) NIL)) (-3034 (((-112) $ (-781)) NIL)) (-1346 (($ |#2|) 14)) (-3426 (($) NIL T CONST)) (-2879 (($ $) 69 (|has| |#2| (-315)))) (-4170 (((-246 |#1| |#2|) $ (-574)) 42)) (-1696 (((-3 (-574) "failed") $) NIL (|has| |#2| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1051 (-417 (-574))))) (((-3 |#2| "failed") $) NIL)) (-2206 (((-574) $) NIL (|has| |#2| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#2| (-1051 (-417 (-574))))) ((|#2| $) NIL)) (-2590 (((-699 (-574)) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1281 $)) NIL)) (-3434 (((-3 $ "failed") $) 83)) (-3584 (((-781) $) 71 (|has| |#2| (-566)))) (-2385 ((|#2| $ (-574) (-574)) NIL)) (-1864 (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-3199 (((-112) $) NIL)) (-1602 (((-781) $) 73 (|has| |#2| (-566)))) (-2548 (((-654 (-246 |#1| |#2|)) $) 77 (|has| |#2| (-566)))) (-2189 (((-781) $) NIL)) (-3790 (($ |#2|) 25)) (-2198 (((-781) $) NIL)) (-2742 (((-112) $ (-781)) NIL)) (-3609 ((|#2| $) 67 (|has| |#2| (-6 (-4458 "*"))))) (-3491 (((-574) $) NIL)) (-1630 (((-574) $) NIL)) (-1606 (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-3068 (((-574) $) NIL)) (-3691 (((-574) $) NIL)) (-2914 (($ (-654 (-654 |#2|))) 37)) (-2449 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1394 (((-654 (-654 |#2|)) $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL)) (-2063 (((-3 $ "failed") $) 80 (|has| |#2| (-372)))) (-3966 (((-1133) $) NIL)) (-2838 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566)))) (-2540 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))) (-4017 (((-112) $ $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 ((|#2| $ (-574) (-574) |#2|) NIL) ((|#2| $ (-574) (-574)) NIL)) (-3905 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-781)) NIL (|has| |#2| (-239))) (($ $) NIL (|has| |#2| (-239)))) (-2159 ((|#2| $) NIL)) (-2691 (($ (-654 |#2|)) 50)) (-2675 (((-112) $) NIL)) (-3130 (((-246 |#1| |#2|) $) NIL)) (-3192 ((|#2| $) 65 (|has| |#2| (-6 (-4458 "*"))))) (-3975 (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-3167 (($ $) NIL)) (-1836 (((-546) $) 89 (|has| |#2| (-624 (-546))))) (-2471 (((-246 |#1| |#2|) $ (-574)) 44)) (-2943 (((-872) $) 47) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#2| (-1051 (-417 (-574))))) (($ |#2|) NIL) (((-699 |#2|) $) 52)) (-1364 (((-781)) 23 T CONST)) (-3284 (((-112) $ $) NIL)) (-3390 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2539 (((-112) $) NIL)) (-2133 (($) 16 T CONST)) (-2145 (($) 21 T CONST)) (-3610 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-781)) NIL (|has| |#2| (-239))) (($ $) NIL (|has| |#2| (-239)))) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) 63) (($ $ (-574)) 82 (|has| |#2| (-372)))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) 59) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) 61)) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-1155 |#1| |#2|) (-13 (-1136 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-623 (-699 |#2|)) (-10 -8 (-15 -3790 ($ |#2|)) (-15 -2100 ($ $)) (-15 -3172 ($ (-699 |#2|))) (IF (|has| |#2| (-6 (-4458 "*"))) (-6 -4445) |%noBranch|) (IF (|has| |#2| (-6 (-4458 "*"))) (IF (|has| |#2| (-6 -4453)) (-6 -4453) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|))) (-781) (-1062)) (T -1155)) -((-3790 (*1 *1 *2) (-12 (-5 *1 (-1155 *3 *2)) (-14 *3 (-781)) (-4 *2 (-1062)))) (-2100 (*1 *1 *1) (-12 (-5 *1 (-1155 *2 *3)) (-14 *2 (-781)) (-4 *3 (-1062)))) (-3172 (*1 *1 *2) (-12 (-5 *2 (-699 *4)) (-4 *4 (-1062)) (-5 *1 (-1155 *3 *4)) (-14 *3 (-781))))) -(-13 (-1136 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-623 (-699 |#2|)) (-10 -8 (-15 -3790 ($ |#2|)) (-15 -2100 ($ $)) (-15 -3172 ($ (-699 |#2|))) (IF (|has| |#2| (-6 (-4458 "*"))) (-6 -4445) |%noBranch|) (IF (|has| |#2| (-6 (-4458 "*"))) (IF (|has| |#2| (-6 -4453)) (-6 -4453) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|))) -((-2874 (($ $) 19)) (-1563 (($ $ (-145)) 10) (($ $ (-142)) 14)) (-3733 (((-112) $ $) 24)) (-2092 (($ $) 17)) (-2199 (((-145) $ (-574) (-145)) NIL) (((-145) $ (-574)) NIL) (($ $ (-1248 (-574))) NIL) (($ $ $) 31)) (-2943 (($ (-145)) 29) (((-872) $) NIL))) -(((-1156 |#1|) (-10 -8 (-15 -2943 ((-872) |#1|)) (-15 -2199 (|#1| |#1| |#1|)) (-15 -1563 (|#1| |#1| (-142))) (-15 -1563 (|#1| |#1| (-145))) (-15 -2943 (|#1| (-145))) (-15 -3733 ((-112) |#1| |#1|)) (-15 -2874 (|#1| |#1|)) (-15 -2092 (|#1| |#1|)) (-15 -2199 (|#1| |#1| (-1248 (-574)))) (-15 -2199 ((-145) |#1| (-574))) (-15 -2199 ((-145) |#1| (-574) (-145)))) (-1157)) (T -1156)) -NIL -(-10 -8 (-15 -2943 ((-872) |#1|)) (-15 -2199 (|#1| |#1| |#1|)) (-15 -1563 (|#1| |#1| (-142))) (-15 -1563 (|#1| |#1| (-145))) (-15 -2943 (|#1| (-145))) (-15 -3733 ((-112) |#1| |#1|)) (-15 -2874 (|#1| |#1|)) (-15 -2092 (|#1| |#1|)) (-15 -2199 (|#1| |#1| (-1248 (-574)))) (-15 -2199 ((-145) |#1| (-574))) (-15 -2199 ((-145) |#1| (-574) (-145)))) -((-2849 (((-112) $ $) 19 (|has| (-145) (-1113)))) (-2507 (($ $) 123)) (-2874 (($ $) 124)) (-1563 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-3714 (((-1286) $ (-574) (-574)) 41 (|has| $ (-6 -4457)))) (-3711 (((-112) $ $) 121)) (-3686 (((-112) $ $ (-574)) 120)) (-4320 (((-654 $) $ (-145)) 113) (((-654 $) $ (-142)) 112)) (-1357 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-860)))) (-3642 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4457))) (($ $) 91 (-12 (|has| (-145) (-860)) (|has| $ (-6 -4457))))) (-2771 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-860)))) (-3034 (((-112) $ (-781)) 8)) (-3143 (((-145) $ (-574) (-145)) 53 (|has| $ (-6 -4457))) (((-145) $ (-1248 (-574)) (-145)) 60 (|has| $ (-6 -4457)))) (-2165 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4456)))) (-3426 (($) 7 T CONST)) (-2617 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-2627 (($ $) 93 (|has| $ (-6 -4457)))) (-4423 (($ $) 103)) (-2903 (($ $ (-1248 (-574)) $) 117)) (-1543 (($ $) 80 (-12 (|has| (-145) (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ (-145) $) 79 (-12 (|has| (-145) (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4456)))) (-2868 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1113)) (|has| $ (-6 -4456)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4456))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4456)))) (-2458 (((-145) $ (-574) (-145)) 54 (|has| $ (-6 -4457)))) (-2385 (((-145) $ (-574)) 52)) (-3733 (((-112) $ $) 122)) (-1441 (((-574) (-1 (-112) (-145)) $) 100) (((-574) (-145) $) 99 (|has| (-145) (-1113))) (((-574) (-145) $ (-574)) 98 (|has| (-145) (-1113))) (((-574) $ $ (-574)) 116) (((-574) (-142) $ (-574)) 115)) (-1864 (((-654 (-145)) $) 31 (|has| $ (-6 -4456)))) (-3790 (($ (-781) (-145)) 70)) (-2742 (((-112) $ (-781)) 9)) (-3618 (((-574) $) 44 (|has| (-574) (-860)))) (-3659 (($ $ $) 90 (|has| (-145) (-860)))) (-4430 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-860)))) (-1606 (((-654 (-145)) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1113)) (|has| $ (-6 -4456))))) (-2702 (((-574) $) 45 (|has| (-574) (-860)))) (-4257 (($ $ $) 89 (|has| (-145) (-860)))) (-1326 (((-112) $ $ (-145)) 118)) (-2683 (((-781) $ $ (-145)) 119)) (-2449 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-1859 (($ $) 125)) (-2092 (($ $) 126)) (-4203 (((-112) $ (-781)) 10)) (-2631 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-4136 (((-1172) $) 22 (|has| (-145) (-1113)))) (-1594 (($ (-145) $ (-574)) 62) (($ $ $ (-574)) 61)) (-4308 (((-654 (-574)) $) 47)) (-3336 (((-112) (-574) $) 48)) (-3966 (((-1133) $) 21 (|has| (-145) (-1113)))) (-2915 (((-145) $) 43 (|has| (-574) (-860)))) (-1549 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-1942 (($ $ (-145)) 42 (|has| $ (-6 -4457)))) (-2540 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-145)))) 27 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113)))) (($ $ (-302 (-145))) 26 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113)))) (($ $ (-654 (-145)) (-654 (-145))) 24 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113))))) (-4017 (((-112) $ $) 14)) (-3398 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113))))) (-4371 (((-654 (-145)) $) 49)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-2199 (((-145) $ (-574) (-145)) 51) (((-145) $ (-574)) 50) (($ $ (-1248 (-574))) 71) (($ $ $) 105)) (-2840 (($ $ (-574)) 64) (($ $ (-1248 (-574))) 63)) (-3975 (((-781) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4456))) (((-781) (-145) $) 29 (-12 (|has| (-145) (-1113)) (|has| $ (-6 -4456))))) (-3506 (($ $ $ (-574)) 94 (|has| $ (-6 -4457)))) (-3167 (($ $) 13)) (-1836 (((-546) $) 81 (|has| (-145) (-624 (-546))))) (-2956 (($ (-654 (-145))) 72)) (-4157 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2943 (($ (-145)) 114) (((-872) $) 18 (|has| (-145) (-623 (-872))))) (-3284 (((-112) $ $) 23 (|has| (-145) (-1113)))) (-3390 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4456)))) (-3042 (((-112) $ $) 87 (|has| (-145) (-860)))) (-3018 (((-112) $ $) 86 (|has| (-145) (-860)))) (-2981 (((-112) $ $) 20 (|has| (-145) (-1113)))) (-3030 (((-112) $ $) 88 (|has| (-145) (-860)))) (-3007 (((-112) $ $) 85 (|has| (-145) (-860)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-1157) (-141)) (T -1157)) -((-2092 (*1 *1 *1) (-4 *1 (-1157))) (-1859 (*1 *1 *1) (-4 *1 (-1157))) (-2874 (*1 *1 *1) (-4 *1 (-1157))) (-2507 (*1 *1 *1) (-4 *1 (-1157))) (-3733 (*1 *2 *1 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-112)))) (-3711 (*1 *2 *1 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-112)))) (-3686 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (-574)) (-5 *2 (-112)))) (-2683 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (-145)) (-5 *2 (-781)))) (-1326 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (-145)) (-5 *2 (-112)))) (-2903 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1248 (-574))))) (-1441 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-574)))) (-1441 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-574)) (-5 *3 (-142)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1157)))) (-4320 (*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-654 *1)) (-4 *1 (-1157)))) (-4320 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-654 *1)) (-4 *1 (-1157)))) (-1563 (*1 *1 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-145)))) (-1563 (*1 *1 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-142)))) (-2631 (*1 *1 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-145)))) (-2631 (*1 *1 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-142)))) (-2617 (*1 *1 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-145)))) (-2617 (*1 *1 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-142)))) (-2199 (*1 *1 *1 *1) (-4 *1 (-1157)))) -(-13 (-19 (-145)) (-10 -8 (-15 -2092 ($ $)) (-15 -1859 ($ $)) (-15 -2874 ($ $)) (-15 -2507 ($ $)) (-15 -3733 ((-112) $ $)) (-15 -3711 ((-112) $ $)) (-15 -3686 ((-112) $ $ (-574))) (-15 -2683 ((-781) $ $ (-145))) (-15 -1326 ((-112) $ $ (-145))) (-15 -2903 ($ $ (-1248 (-574)) $)) (-15 -1441 ((-574) $ $ (-574))) (-15 -1441 ((-574) (-142) $ (-574))) (-15 -2943 ($ (-145))) (-15 -4320 ((-654 $) $ (-145))) (-15 -4320 ((-654 $) $ (-142))) (-15 -1563 ($ $ (-145))) (-15 -1563 ($ $ (-142))) (-15 -2631 ($ $ (-145))) (-15 -2631 ($ $ (-142))) (-15 -2617 ($ $ (-145))) (-15 -2617 ($ $ (-142))) (-15 -2199 ($ $ $)))) -(((-34) . T) ((-102) -2818 (|has| (-145) (-1113)) (|has| (-145) (-860))) ((-623 (-872)) -2818 (|has| (-145) (-1113)) (|has| (-145) (-860)) (|has| (-145) (-623 (-872)))) ((-152 #0=(-145)) . T) ((-624 (-546)) |has| (-145) (-624 (-546))) ((-294 #1=(-574) #0#) . T) ((-294 (-1248 (-574)) $) . T) ((-296 #1# #0#) . T) ((-317 #0#) -12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113))) ((-382 #0#) . T) ((-499 #0#) . T) ((-614 #1# #0#) . T) ((-524 #0# #0#) -12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113))) ((-661 #0#) . T) ((-19 #0#) . T) ((-860) |has| (-145) (-860)) ((-1113) -2818 (|has| (-145) (-1113)) (|has| (-145) (-860))) ((-1231) . T)) -((-2959 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) (-781)) 112)) (-2645 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781)) 61)) (-3670 (((-1286) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-781)) 97)) (-1922 (((-781) (-654 |#4|) (-654 |#5|)) 30)) (-3514 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781)) 63) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781) (-112)) 65)) (-2217 (((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112)) 85)) (-1836 (((-1172) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) 90)) (-2551 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5|) 60)) (-3616 (((-781) (-654 |#4|) (-654 |#5|)) 21))) -(((-1158 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3616 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -1922 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -2551 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5|)) (-15 -2645 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781))) (-15 -2645 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5|)) (-15 -3514 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781) (-112))) (-15 -3514 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781))) (-15 -3514 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5|)) (-15 -2217 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -2217 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2959 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) (-781))) (-15 -1836 ((-1172) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)))) (-15 -3670 ((-1286) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-781)))) (-462) (-803) (-860) (-1078 |#1| |#2| |#3|) (-1122 |#1| |#2| |#3| |#4|)) (T -1158)) -((-3670 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4091 *9)))) (-5 *4 (-781)) (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1122 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-1286)) (-5 *1 (-1158 *5 *6 *7 *8 *9)))) (-1836 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4091 *8))) (-4 *7 (-1078 *4 *5 *6)) (-4 *8 (-1122 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1172)) (-5 *1 (-1158 *4 *5 *6 *7 *8)))) (-2959 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-654 *11)) (|:| |todo| (-654 (-2 (|:| |val| *3) (|:| -4091 *11)))))) (-5 *6 (-781)) (-5 *2 (-654 (-2 (|:| |val| (-654 *10)) (|:| -4091 *11)))) (-5 *3 (-654 *10)) (-5 *4 (-654 *11)) (-4 *10 (-1078 *7 *8 *9)) (-4 *11 (-1122 *7 *8 *9 *10)) (-4 *7 (-462)) (-4 *8 (-803)) (-4 *9 (-860)) (-5 *1 (-1158 *7 *8 *9 *10 *11)))) (-2217 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1122 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1158 *5 *6 *7 *8 *9)))) (-2217 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1122 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1158 *5 *6 *7 *8 *9)))) (-3514 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) (-5 *1 (-1158 *5 *6 *7 *3 *4)) (-4 *4 (-1122 *5 *6 *7 *3)))) (-3514 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1078 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) (-5 *1 (-1158 *6 *7 *8 *3 *4)) (-4 *4 (-1122 *6 *7 *8 *3)))) (-3514 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-781)) (-5 *6 (-112)) (-4 *7 (-462)) (-4 *8 (-803)) (-4 *9 (-860)) (-4 *3 (-1078 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) (-5 *1 (-1158 *7 *8 *9 *3 *4)) (-4 *4 (-1122 *7 *8 *9 *3)))) (-2645 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) (-5 *1 (-1158 *5 *6 *7 *3 *4)) (-4 *4 (-1122 *5 *6 *7 *3)))) (-2645 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1078 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) (-5 *1 (-1158 *6 *7 *8 *3 *4)) (-4 *4 (-1122 *6 *7 *8 *3)))) (-2551 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) (-5 *1 (-1158 *5 *6 *7 *3 *4)) (-4 *4 (-1122 *5 *6 *7 *3)))) (-1922 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1122 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1158 *5 *6 *7 *8 *9)))) (-3616 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1122 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1158 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3616 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -1922 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -2551 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5|)) (-15 -2645 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781))) (-15 -2645 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5|)) (-15 -3514 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781) (-112))) (-15 -3514 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5| (-781))) (-15 -3514 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) |#4| |#5|)) (-15 -2217 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -2217 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2959 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))))) (-781))) (-15 -1836 ((-1172) (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|)))) (-15 -3670 ((-1286) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4091 |#5|))) (-781)))) -((-2849 (((-112) $ $) NIL)) (-2410 (((-654 (-2 (|:| -1381 $) (|:| -1675 (-654 |#4|)))) (-654 |#4|)) NIL)) (-3954 (((-654 $) (-654 |#4|)) 124) (((-654 $) (-654 |#4|) (-112)) 125) (((-654 $) (-654 |#4|) (-112) (-112)) 123) (((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112)) 126)) (-4355 (((-654 |#3|) $) NIL)) (-2907 (((-112) $) NIL)) (-4018 (((-112) $) NIL (|has| |#1| (-566)))) (-1751 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3207 ((|#4| |#4| $) NIL)) (-2568 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 $))) |#4| $) 97)) (-2771 (((-2 (|:| |under| $) (|:| -3595 $) (|:| |upper| $)) $ |#3|) NIL)) (-3034 (((-112) $ (-781)) NIL)) (-2165 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456))) (((-3 |#4| "failed") $ |#3|) 75)) (-3426 (($) NIL T CONST)) (-4336 (((-112) $) 29 (|has| |#1| (-566)))) (-1547 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2318 (((-112) $ $) NIL (|has| |#1| (-566)))) (-1792 (((-112) $) NIL (|has| |#1| (-566)))) (-3908 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3025 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1974 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1696 (((-3 $ "failed") (-654 |#4|)) NIL)) (-2206 (($ (-654 |#4|)) NIL)) (-2926 (((-3 $ "failed") $) 45)) (-1402 ((|#4| |#4| $) 78)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113))))) (-3335 (($ |#4| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-2766 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-566)))) (-1315 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1747 ((|#4| |#4| $) NIL)) (-2868 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4456))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4456))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4270 (((-2 (|:| -1381 (-654 |#4|)) (|:| -1675 (-654 |#4|))) $) NIL)) (-4062 (((-112) |#4| $) NIL)) (-2288 (((-112) |#4| $) NIL)) (-1421 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2341 (((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112)) 139)) (-1864 (((-654 |#4|) $) 18 (|has| $ (-6 -4456)))) (-4436 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3830 ((|#3| $) 38)) (-2742 (((-112) $ (-781)) NIL)) (-1606 (((-654 |#4|) $) 19 (|has| $ (-6 -4456)))) (-1710 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113))))) (-2449 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#4| |#4|) $) 23)) (-3963 (((-654 |#3|) $) NIL)) (-4158 (((-112) |#3| $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL)) (-3660 (((-3 |#4| (-654 $)) |#4| |#4| $) NIL)) (-4268 (((-654 (-2 (|:| |val| |#4|) (|:| -4091 $))) |#4| |#4| $) 117)) (-3360 (((-3 |#4| "failed") $) 42)) (-2290 (((-654 $) |#4| $) 102)) (-3945 (((-3 (-112) (-654 $)) |#4| $) NIL)) (-2514 (((-654 (-2 (|:| |val| (-112)) (|:| -4091 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-1784 (((-654 $) |#4| $) 121) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) 122) (((-654 $) |#4| (-654 $)) NIL)) (-2031 (((-654 $) (-654 |#4|) (-112) (-112) (-112)) 134)) (-1954 (($ |#4| $) 88) (($ (-654 |#4|) $) 89) (((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-4417 (((-654 |#4|) $) NIL)) (-4292 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3023 ((|#4| |#4| $) NIL)) (-2119 (((-112) $ $) NIL)) (-2396 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-2682 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3206 ((|#4| |#4| $) NIL)) (-3966 (((-1133) $) NIL)) (-2915 (((-3 |#4| "failed") $) 40)) (-1549 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3040 (((-3 $ "failed") $ |#4|) 59)) (-2533 (($ $ |#4|) NIL) (((-654 $) |#4| $) 104) (((-654 $) |#4| (-654 $)) NIL) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) 99)) (-2540 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))) (-4017 (((-112) $ $) NIL)) (-1584 (((-112) $) 17)) (-2672 (($) 14)) (-4202 (((-781) $) NIL)) (-3975 (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113)))) (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) 13)) (-1836 (((-546) $) NIL (|has| |#4| (-624 (-546))))) (-2956 (($ (-654 |#4|)) 22)) (-3650 (($ $ |#3|) 52)) (-3722 (($ $ |#3|) 54)) (-4429 (($ $) NIL)) (-2096 (($ $ |#3|) NIL)) (-2943 (((-872) $) 35) (((-654 |#4|) $) 46)) (-4435 (((-781) $) NIL (|has| |#3| (-377)))) (-3284 (((-112) $ $) NIL)) (-3416 (((-3 (-2 (|:| |bas| $) (|:| -2002 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2002 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2582 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) NIL)) (-1379 (((-654 $) |#4| $) 66) (((-654 $) |#4| (-654 $)) NIL) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) NIL)) (-3390 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-2720 (((-654 |#3|) $) NIL)) (-4221 (((-112) |#4| $) NIL)) (-3587 (((-112) |#3| $) 74)) (-2981 (((-112) $ $) NIL)) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-1159 |#1| |#2| |#3| |#4|) (-13 (-1122 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1954 ((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3954 ((-654 $) (-654 |#4|) (-112) (-112))) (-15 -3954 ((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112))) (-15 -2031 ((-654 $) (-654 |#4|) (-112) (-112) (-112))) (-15 -2341 ((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112))))) (-462) (-803) (-860) (-1078 |#1| |#2| |#3|)) (T -1159)) -((-1954 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1159 *5 *6 *7 *3))) (-5 *1 (-1159 *5 *6 *7 *3)) (-4 *3 (-1078 *5 *6 *7)))) (-3954 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1159 *5 *6 *7 *8))) (-5 *1 (-1159 *5 *6 *7 *8)))) (-3954 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1159 *5 *6 *7 *8))) (-5 *1 (-1159 *5 *6 *7 *8)))) (-2031 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1159 *5 *6 *7 *8))) (-5 *1 (-1159 *5 *6 *7 *8)))) (-2341 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1078 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-654 *8)) (|:| |towers| (-654 (-1159 *5 *6 *7 *8))))) (-5 *1 (-1159 *5 *6 *7 *8)) (-5 *3 (-654 *8))))) -(-13 (-1122 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1954 ((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3954 ((-654 $) (-654 |#4|) (-112) (-112))) (-15 -3954 ((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112))) (-15 -2031 ((-654 $) (-654 |#4|) (-112) (-112) (-112))) (-15 -2341 ((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112))))) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2002 ((|#1| $) 37)) (-4090 (($ (-654 |#1|)) 45)) (-3034 (((-112) $ (-781)) NIL)) (-3426 (($) NIL T CONST)) (-3874 ((|#1| |#1| $) 40)) (-3020 ((|#1| $) 35)) (-1864 (((-654 |#1|) $) 18 (|has| $ (-6 -4456)))) (-2742 (((-112) $ (-781)) NIL)) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2449 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 22)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-2937 ((|#1| $) 38)) (-2798 (($ |#1| $) 41)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-1785 ((|#1| $) 36)) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) NIL)) (-1584 (((-112) $) 32)) (-2672 (($) 43)) (-4302 (((-781) $) 30)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) 27)) (-2943 (((-872) $) 14 (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-1599 (($ (-654 |#1|)) NIL)) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 17 (|has| |#1| (-1113)))) (-2863 (((-781) $) 31 (|has| $ (-6 -4456))))) -(((-1160 |#1|) (-13 (-1134 |#1|) (-10 -8 (-15 -4090 ($ (-654 |#1|))))) (-1231)) (T -1160)) -((-4090 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-5 *1 (-1160 *3))))) -(-13 (-1134 |#1|) (-10 -8 (-15 -4090 ($ (-654 |#1|))))) -((-3143 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1248 (-574)) |#2|) 53) ((|#2| $ (-574) |#2|) 50)) (-1688 (((-112) $) 12)) (-2449 (($ (-1 |#2| |#2|) $) 48)) (-2915 ((|#2| $) NIL) (($ $ (-781)) 17)) (-1942 (($ $ |#2|) 49)) (-4073 (((-112) $) 11)) (-2199 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1248 (-574))) 36) ((|#2| $ (-574)) 26) ((|#2| $ (-574) |#2|) NIL)) (-1995 (($ $ $) 56) (($ $ |#2|) NIL)) (-4157 (($ $ $) 38) (($ |#2| $) NIL) (($ (-654 $)) 45) (($ $ |#2|) NIL))) -(((-1161 |#1| |#2|) (-10 -8 (-15 -1688 ((-112) |#1|)) (-15 -4073 ((-112) |#1|)) (-15 -3143 (|#2| |#1| (-574) |#2|)) (-15 -2199 (|#2| |#1| (-574) |#2|)) (-15 -2199 (|#2| |#1| (-574))) (-15 -1942 (|#1| |#1| |#2|)) (-15 -2199 (|#1| |#1| (-1248 (-574)))) (-15 -4157 (|#1| |#1| |#2|)) (-15 -4157 (|#1| (-654 |#1|))) (-15 -3143 (|#2| |#1| (-1248 (-574)) |#2|)) (-15 -3143 (|#2| |#1| "last" |#2|)) (-15 -3143 (|#1| |#1| "rest" |#1|)) (-15 -3143 (|#2| |#1| "first" |#2|)) (-15 -1995 (|#1| |#1| |#2|)) (-15 -1995 (|#1| |#1| |#1|)) (-15 -2199 (|#2| |#1| "last")) (-15 -2199 (|#1| |#1| "rest")) (-15 -2915 (|#1| |#1| (-781))) (-15 -2199 (|#2| |#1| "first")) (-15 -2915 (|#2| |#1|)) (-15 -4157 (|#1| |#2| |#1|)) (-15 -4157 (|#1| |#1| |#1|)) (-15 -3143 (|#2| |#1| "value" |#2|)) (-15 -2199 (|#2| |#1| "value")) (-15 -2449 (|#1| (-1 |#2| |#2|) |#1|))) (-1162 |#2|) (-1231)) (T -1161)) -NIL -(-10 -8 (-15 -1688 ((-112) |#1|)) (-15 -4073 ((-112) |#1|)) (-15 -3143 (|#2| |#1| (-574) |#2|)) (-15 -2199 (|#2| |#1| (-574) |#2|)) (-15 -2199 (|#2| |#1| (-574))) (-15 -1942 (|#1| |#1| |#2|)) (-15 -2199 (|#1| |#1| (-1248 (-574)))) (-15 -4157 (|#1| |#1| |#2|)) (-15 -4157 (|#1| (-654 |#1|))) (-15 -3143 (|#2| |#1| (-1248 (-574)) |#2|)) (-15 -3143 (|#2| |#1| "last" |#2|)) (-15 -3143 (|#1| |#1| "rest" |#1|)) (-15 -3143 (|#2| |#1| "first" |#2|)) (-15 -1995 (|#1| |#1| |#2|)) (-15 -1995 (|#1| |#1| |#1|)) (-15 -2199 (|#2| |#1| "last")) (-15 -2199 (|#1| |#1| "rest")) (-15 -2915 (|#1| |#1| (-781))) (-15 -2199 (|#2| |#1| "first")) (-15 -2915 (|#2| |#1|)) (-15 -4157 (|#1| |#2| |#1|)) (-15 -4157 (|#1| |#1| |#1|)) (-15 -3143 (|#2| |#1| "value" |#2|)) (-15 -2199 (|#2| |#1| "value")) (-15 -2449 (|#1| (-1 |#2| |#2|) |#1|))) -((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3083 ((|#1| $) 49)) (-2406 ((|#1| $) 66)) (-1970 (($ $) 68)) (-3714 (((-1286) $ (-574) (-574)) 99 (|has| $ (-6 -4457)))) (-3617 (($ $ (-574)) 53 (|has| $ (-6 -4457)))) (-3034 (((-112) $ (-781)) 8)) (-3316 ((|#1| $ |#1|) 40 (|has| $ (-6 -4457)))) (-3575 (($ $ $) 57 (|has| $ (-6 -4457)))) (-3582 ((|#1| $ |#1|) 55 (|has| $ (-6 -4457)))) (-3630 ((|#1| $ |#1|) 59 (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4457))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4457))) (($ $ "rest" $) 56 (|has| $ (-6 -4457))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) 119 (|has| $ (-6 -4457))) ((|#1| $ (-574) |#1|) 88 (|has| $ (-6 -4457)))) (-2183 (($ $ (-654 $)) 42 (|has| $ (-6 -4457)))) (-2165 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4456)))) (-2393 ((|#1| $) 67)) (-3426 (($) 7 T CONST)) (-2926 (($ $) 74) (($ $ (-781)) 72)) (-1543 (($ $) 101 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4456))) (($ |#1| $) 102 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2458 ((|#1| $ (-574) |#1|) 87 (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) 89)) (-1688 (((-112) $) 85)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3820 (((-654 $) $) 51)) (-2278 (((-112) $ $) 43 (|has| |#1| (-1113)))) (-3790 (($ (-781) |#1|) 111)) (-2742 (((-112) $ (-781)) 9)) (-3618 (((-574) $) 97 (|has| (-574) (-860)))) (-1606 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2702 (((-574) $) 96 (|has| (-574) (-860)))) (-2449 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-4203 (((-112) $ (-781)) 10)) (-3507 (((-654 |#1|) $) 46)) (-3632 (((-112) $) 50)) (-4136 (((-1172) $) 22 (|has| |#1| (-1113)))) (-3360 ((|#1| $) 71) (($ $ (-781)) 69)) (-1594 (($ $ $ (-574)) 118) (($ |#1| $ (-574)) 117)) (-4308 (((-654 (-574)) $) 94)) (-3336 (((-112) (-574) $) 93)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-2915 ((|#1| $) 77) (($ $ (-781)) 75)) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-1942 (($ $ |#1|) 98 (|has| $ (-6 -4457)))) (-4073 (((-112) $) 86)) (-2540 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 14)) (-3398 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-4371 (((-654 |#1|) $) 92)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-2199 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1248 (-574))) 110) ((|#1| $ (-574)) 91) ((|#1| $ (-574) |#1|) 90)) (-3867 (((-574) $ $) 45)) (-2840 (($ $ (-1248 (-574))) 116) (($ $ (-574)) 115)) (-2479 (((-112) $) 47)) (-2595 (($ $) 63)) (-4434 (($ $) 60 (|has| $ (-6 -4457)))) (-3066 (((-781) $) 64)) (-2807 (($ $) 65)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-1836 (((-546) $) 100 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 109)) (-1995 (($ $ $) 62 (|has| $ (-6 -4457))) (($ $ |#1|) 61 (|has| $ (-6 -4457)))) (-4157 (($ $ $) 79) (($ |#1| $) 78) (($ (-654 $)) 113) (($ $ |#1|) 112)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2321 (((-654 $) $) 52)) (-4418 (((-112) $ $) 44 (|has| |#1| (-1113)))) (-3284 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-1162 |#1|) (-141) (-1231)) (T -1162)) -((-4073 (*1 *2 *1) (-12 (-4 *1 (-1162 *3)) (-4 *3 (-1231)) (-5 *2 (-112)))) (-1688 (*1 *2 *1) (-12 (-4 *1 (-1162 *3)) (-4 *3 (-1231)) (-5 *2 (-112))))) -(-13 (-1269 |t#1|) (-661 |t#1|) (-10 -8 (-15 -4073 ((-112) $)) (-15 -1688 ((-112) $)))) -(((-34) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1248 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-661 |#1|) . T) ((-1023 |#1|) . T) ((-1113) |has| |#1| (-1113)) ((-1231) . T) ((-1269 |#1|) . T)) -((-2849 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-3778 (($) NIL) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL)) (-3714 (((-1286) $ |#1| |#1|) NIL (|has| $ (-6 -4457)))) (-3034 (((-112) $ (-781)) NIL)) (-3143 ((|#2| $ |#1| |#2|) NIL)) (-3572 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2165 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2163 (((-3 |#2| "failed") |#1| $) NIL)) (-3426 (($) NIL T CONST)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))))) (-2876 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-3 |#2| "failed") |#1| $) NIL)) (-3335 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2868 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2458 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#2| $ |#1|) NIL)) (-1864 (((-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-2742 (((-112) $ (-781)) NIL)) (-3618 ((|#1| $) NIL (|has| |#1| (-860)))) (-1606 (((-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-2702 ((|#1| $) NIL (|has| |#1| (-860)))) (-2449 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4457))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-1763 (((-654 |#1|) $) NIL)) (-1732 (((-112) |#1| $) NIL)) (-2937 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL)) (-2798 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL)) (-4308 (((-654 |#1|) $) NIL)) (-3336 (((-112) |#1| $) NIL)) (-3966 (((-1133) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2915 ((|#2| $) NIL (|has| |#1| (-860)))) (-1549 (((-3 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) "failed") (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL)) (-1942 (($ $ |#2|) NIL (|has| $ (-6 -4457)))) (-1785 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL)) (-2540 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-302 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-4371 (((-654 |#2|) $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1662 (($) NIL) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL)) (-3975 (((-781) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) NIL)) (-1836 (((-546) $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-624 (-546))))) (-2956 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL)) (-2943 (((-872) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-3284 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-1599 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL)) (-3390 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-1163 |#1| |#2| |#3|) (-1207 |#1| |#2|) (-1113) (-1113) |#2|) (T -1163)) -NIL -(-1207 |#1| |#2|) -((-2849 (((-112) $ $) NIL)) (-3919 (((-701 (-1148)) $) 27)) (-4146 (((-1148) $) 15)) (-3655 (((-1148) $) 17)) (-4136 (((-1172) $) NIL)) (-1808 (((-516) $) 13)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 37) (($ (-1195)) NIL) (((-1195) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1164) (-13 (-1096) (-10 -8 (-15 -1808 ((-516) $)) (-15 -3655 ((-1148) $)) (-15 -3919 ((-701 (-1148)) $)) (-15 -4146 ((-1148) $))))) (T -1164)) -((-1808 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1164)))) (-3655 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1164)))) (-3919 (*1 *2 *1) (-12 (-5 *2 (-701 (-1148))) (-5 *1 (-1164)))) (-4146 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1164))))) -(-13 (-1096) (-10 -8 (-15 -1808 ((-516) $)) (-15 -3655 ((-1148) $)) (-15 -3919 ((-701 (-1148)) $)) (-15 -4146 ((-1148) $)))) -((-2849 (((-112) $ $) 7)) (-2748 (((-3 $ "failed") $) 14)) (-4136 (((-1172) $) 10)) (-3818 (($) 15 T CONST)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) -(((-1165) (-141)) (T -1165)) -((-3818 (*1 *1) (-4 *1 (-1165))) (-2748 (*1 *1 *1) (|partial| -4 *1 (-1165)))) -(-13 (-1113) (-10 -8 (-15 -3818 ($) -1706) (-15 -2748 ((-3 $ "failed") $)))) -(((-102) . T) ((-623 (-872)) . T) ((-1113) . T)) -((-4164 (((-1170 |#1|) (-1170 |#1|)) 17)) (-2998 (((-1170 |#1|) (-1170 |#1|)) 13)) (-1807 (((-1170 |#1|) (-1170 |#1|) (-574) (-574)) 20)) (-2597 (((-1170 |#1|) (-1170 |#1|)) 15))) -(((-1166 |#1|) (-10 -7 (-15 -2998 ((-1170 |#1|) (-1170 |#1|))) (-15 -2597 ((-1170 |#1|) (-1170 |#1|))) (-15 -4164 ((-1170 |#1|) (-1170 |#1|))) (-15 -1807 ((-1170 |#1|) (-1170 |#1|) (-574) (-574)))) (-13 (-566) (-148))) (T -1166)) -((-1807 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1170 *4)) (-5 *3 (-574)) (-4 *4 (-13 (-566) (-148))) (-5 *1 (-1166 *4)))) (-4164 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-13 (-566) (-148))) (-5 *1 (-1166 *3)))) (-2597 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-13 (-566) (-148))) (-5 *1 (-1166 *3)))) (-2998 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-13 (-566) (-148))) (-5 *1 (-1166 *3))))) -(-10 -7 (-15 -2998 ((-1170 |#1|) (-1170 |#1|))) (-15 -2597 ((-1170 |#1|) (-1170 |#1|))) (-15 -4164 ((-1170 |#1|) (-1170 |#1|))) (-15 -1807 ((-1170 |#1|) (-1170 |#1|) (-574) (-574)))) -((-4157 (((-1170 |#1|) (-1170 (-1170 |#1|))) 15))) -(((-1167 |#1|) (-10 -7 (-15 -4157 ((-1170 |#1|) (-1170 (-1170 |#1|))))) (-1231)) (T -1167)) -((-4157 (*1 *2 *3) (-12 (-5 *3 (-1170 (-1170 *4))) (-5 *2 (-1170 *4)) (-5 *1 (-1167 *4)) (-4 *4 (-1231))))) -(-10 -7 (-15 -4157 ((-1170 |#1|) (-1170 (-1170 |#1|))))) -((-4034 (((-1170 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1170 |#1|)) 25)) (-2868 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1170 |#1|)) 26)) (-1777 (((-1170 |#2|) (-1 |#2| |#1|) (-1170 |#1|)) 16))) -(((-1168 |#1| |#2|) (-10 -7 (-15 -1777 ((-1170 |#2|) (-1 |#2| |#1|) (-1170 |#1|))) (-15 -4034 ((-1170 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1170 |#1|))) (-15 -2868 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1170 |#1|)))) (-1231) (-1231)) (T -1168)) -((-2868 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1170 *5)) (-4 *5 (-1231)) (-4 *2 (-1231)) (-5 *1 (-1168 *5 *2)))) (-4034 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1170 *6)) (-4 *6 (-1231)) (-4 *3 (-1231)) (-5 *2 (-1170 *3)) (-5 *1 (-1168 *6 *3)))) (-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1170 *5)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-1170 *6)) (-5 *1 (-1168 *5 *6))))) -(-10 -7 (-15 -1777 ((-1170 |#2|) (-1 |#2| |#1|) (-1170 |#1|))) (-15 -4034 ((-1170 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1170 |#1|))) (-15 -2868 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1170 |#1|)))) -((-1777 (((-1170 |#3|) (-1 |#3| |#1| |#2|) (-1170 |#1|) (-1170 |#2|)) 21))) -(((-1169 |#1| |#2| |#3|) (-10 -7 (-15 -1777 ((-1170 |#3|) (-1 |#3| |#1| |#2|) (-1170 |#1|) (-1170 |#2|)))) (-1231) (-1231) (-1231)) (T -1169)) -((-1777 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1170 *6)) (-5 *5 (-1170 *7)) (-4 *6 (-1231)) (-4 *7 (-1231)) (-4 *8 (-1231)) (-5 *2 (-1170 *8)) (-5 *1 (-1169 *6 *7 *8))))) -(-10 -7 (-15 -1777 ((-1170 |#3|) (-1 |#3| |#1| |#2|) (-1170 |#1|) (-1170 |#2|)))) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3083 ((|#1| $) NIL)) (-2406 ((|#1| $) NIL)) (-1970 (($ $) 67)) (-3714 (((-1286) $ (-574) (-574)) 99 (|has| $ (-6 -4457)))) (-3617 (($ $ (-574)) 128 (|has| $ (-6 -4457)))) (-3034 (((-112) $ (-781)) NIL)) (-3516 (((-872) $) 56 (|has| |#1| (-1113)))) (-3309 (((-112)) 55 (|has| |#1| (-1113)))) (-3316 ((|#1| $ |#1|) NIL (|has| $ (-6 -4457)))) (-3575 (($ $ $) 115 (|has| $ (-6 -4457))) (($ $ (-574) $) 141)) (-3582 ((|#1| $ |#1|) 125 (|has| $ (-6 -4457)))) (-3630 ((|#1| $ |#1|) 120 (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4457))) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4457))) (($ $ "rest" $) 124 (|has| $ (-6 -4457))) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) 112 (|has| $ (-6 -4457))) ((|#1| $ (-574) |#1|) 77 (|has| $ (-6 -4457)))) (-2183 (($ $ (-654 $)) NIL (|has| $ (-6 -4457)))) (-2165 (($ (-1 (-112) |#1|) $) 80)) (-2393 ((|#1| $) NIL)) (-3426 (($) NIL T CONST)) (-2016 (($ $) 14)) (-2926 (($ $) 40) (($ $ (-781)) 111)) (-4165 (((-112) (-654 |#1|) $) 134 (|has| |#1| (-1113)))) (-2296 (($ (-654 |#1|)) 130)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3335 (($ |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) (($ (-1 (-112) |#1|) $) 79)) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2458 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) NIL)) (-1688 (((-112) $) NIL)) (-1864 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-3248 (((-1286) (-574) $) 140 (|has| |#1| (-1113)))) (-1491 (((-781) $) 137)) (-3820 (((-654 $) $) NIL)) (-2278 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3790 (($ (-781) |#1|) NIL)) (-2742 (((-112) $ (-781)) NIL)) (-3618 (((-574) $) NIL (|has| (-574) (-860)))) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2702 (((-574) $) NIL (|has| (-574) (-860)))) (-2449 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-4203 (((-112) $ (-781)) NIL)) (-3507 (((-654 |#1|) $) NIL)) (-3632 (((-112) $) NIL)) (-4223 (($ $) 113)) (-1952 (((-112) $) 13)) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-3360 ((|#1| $) NIL) (($ $ (-781)) NIL)) (-1594 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-4308 (((-654 (-574)) $) NIL)) (-3336 (((-112) (-574) $) 96)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2094 (($ (-1 |#1|)) 143) (($ (-1 |#1| |#1|) |#1|) 144)) (-3400 ((|#1| $) 10)) (-2915 ((|#1| $) 39) (($ $ (-781)) 65)) (-4231 (((-2 (|:| |cycle?| (-112)) (|:| -4215 (-781)) (|:| |period| (-781))) (-781) $) 34)) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2140 (($ (-1 (-112) |#1|) $) 145)) (-2151 (($ (-1 (-112) |#1|) $) 146)) (-1942 (($ $ |#1|) 90 (|has| $ (-6 -4457)))) (-2533 (($ $ (-574)) 45)) (-4073 (((-112) $) 94)) (-1542 (((-112) $) 12)) (-4145 (((-112) $) 136)) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 30)) (-3398 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-4371 (((-654 |#1|) $) NIL)) (-1584 (((-112) $) 20)) (-2672 (($) 60)) (-2199 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1248 (-574))) NIL) ((|#1| $ (-574)) 75) ((|#1| $ (-574) |#1|) NIL)) (-3867 (((-574) $ $) 64)) (-2840 (($ $ (-1248 (-574))) NIL) (($ $ (-574)) NIL)) (-3716 (($ (-1 $)) 63)) (-2479 (((-112) $) 91)) (-2595 (($ $) 92)) (-4434 (($ $) 116 (|has| $ (-6 -4457)))) (-3066 (((-781) $) NIL)) (-2807 (($ $) NIL)) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) 59)) (-1836 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 73)) (-2226 (($ |#1| $) 114)) (-1995 (($ $ $) 118 (|has| $ (-6 -4457))) (($ $ |#1|) 119 (|has| $ (-6 -4457)))) (-4157 (($ $ $) 101) (($ |#1| $) 61) (($ (-654 $)) 106) (($ $ |#1|) 100)) (-1651 (($ $) 66)) (-2943 (($ (-654 |#1|)) 129) (((-872) $) 57 (|has| |#1| (-623 (-872))))) (-2321 (((-654 $) $) NIL)) (-4418 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 132 (|has| |#1| (-1113)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-1170 |#1|) (-13 (-684 |#1|) (-626 (-654 |#1|)) (-10 -8 (-6 -4457) (-15 -2296 ($ (-654 |#1|))) (IF (|has| |#1| (-1113)) (-15 -4165 ((-112) (-654 |#1|) $)) |%noBranch|) (-15 -4231 ((-2 (|:| |cycle?| (-112)) (|:| -4215 (-781)) (|:| |period| (-781))) (-781) $)) (-15 -3716 ($ (-1 $))) (-15 -2226 ($ |#1| $)) (IF (|has| |#1| (-1113)) (PROGN (-15 -3248 ((-1286) (-574) $)) (-15 -3516 ((-872) $)) (-15 -3309 ((-112)))) |%noBranch|) (-15 -3575 ($ $ (-574) $)) (-15 -2094 ($ (-1 |#1|))) (-15 -2094 ($ (-1 |#1| |#1|) |#1|)) (-15 -2140 ($ (-1 (-112) |#1|) $)) (-15 -2151 ($ (-1 (-112) |#1|) $)))) (-1231)) (T -1170)) -((-2296 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-5 *1 (-1170 *3)))) (-4165 (*1 *2 *3 *1) (-12 (-5 *3 (-654 *4)) (-4 *4 (-1113)) (-4 *4 (-1231)) (-5 *2 (-112)) (-5 *1 (-1170 *4)))) (-4231 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -4215 (-781)) (|:| |period| (-781)))) (-5 *1 (-1170 *4)) (-4 *4 (-1231)) (-5 *3 (-781)))) (-3716 (*1 *1 *2) (-12 (-5 *2 (-1 (-1170 *3))) (-5 *1 (-1170 *3)) (-4 *3 (-1231)))) (-2226 (*1 *1 *2 *1) (-12 (-5 *1 (-1170 *2)) (-4 *2 (-1231)))) (-3248 (*1 *2 *3 *1) (-12 (-5 *3 (-574)) (-5 *2 (-1286)) (-5 *1 (-1170 *4)) (-4 *4 (-1113)) (-4 *4 (-1231)))) (-3516 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-1170 *3)) (-4 *3 (-1113)) (-4 *3 (-1231)))) (-3309 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1170 *3)) (-4 *3 (-1113)) (-4 *3 (-1231)))) (-3575 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1170 *3)) (-4 *3 (-1231)))) (-2094 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1231)) (-5 *1 (-1170 *3)))) (-2094 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1231)) (-5 *1 (-1170 *3)))) (-2140 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1231)) (-5 *1 (-1170 *3)))) (-2151 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1231)) (-5 *1 (-1170 *3))))) -(-13 (-684 |#1|) (-626 (-654 |#1|)) (-10 -8 (-6 -4457) (-15 -2296 ($ (-654 |#1|))) (IF (|has| |#1| (-1113)) (-15 -4165 ((-112) (-654 |#1|) $)) |%noBranch|) (-15 -4231 ((-2 (|:| |cycle?| (-112)) (|:| -4215 (-781)) (|:| |period| (-781))) (-781) $)) (-15 -3716 ($ (-1 $))) (-15 -2226 ($ |#1| $)) (IF (|has| |#1| (-1113)) (PROGN (-15 -3248 ((-1286) (-574) $)) (-15 -3516 ((-872) $)) (-15 -3309 ((-112)))) |%noBranch|) (-15 -3575 ($ $ (-574) $)) (-15 -2094 ($ (-1 |#1|))) (-15 -2094 ($ (-1 |#1| |#1|) |#1|)) (-15 -2140 ($ (-1 (-112) |#1|) $)) (-15 -2151 ($ (-1 (-112) |#1|) $)))) -((-2849 (((-112) $ $) 19)) (-2507 (($ $) 123)) (-2874 (($ $) 124)) (-1563 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-3714 (((-1286) $ (-574) (-574)) 41 (|has| $ (-6 -4457)))) (-3711 (((-112) $ $) 121)) (-3686 (((-112) $ $ (-574)) 120)) (-3249 (($ (-574)) 130)) (-4320 (((-654 $) $ (-145)) 113) (((-654 $) $ (-142)) 112)) (-1357 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-860)))) (-3642 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4457))) (($ $) 91 (-12 (|has| (-145) (-860)) (|has| $ (-6 -4457))))) (-2771 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-860)))) (-3034 (((-112) $ (-781)) 8)) (-3143 (((-145) $ (-574) (-145)) 53 (|has| $ (-6 -4457))) (((-145) $ (-1248 (-574)) (-145)) 60 (|has| $ (-6 -4457)))) (-2165 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4456)))) (-3426 (($) 7 T CONST)) (-2617 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-2627 (($ $) 93 (|has| $ (-6 -4457)))) (-4423 (($ $) 103)) (-2903 (($ $ (-1248 (-574)) $) 117)) (-1543 (($ $) 80 (-12 (|has| (-145) (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ (-145) $) 79 (-12 (|has| (-145) (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4456)))) (-2868 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1113)) (|has| $ (-6 -4456)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4456))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4456)))) (-2458 (((-145) $ (-574) (-145)) 54 (|has| $ (-6 -4457)))) (-2385 (((-145) $ (-574)) 52)) (-3733 (((-112) $ $) 122)) (-1441 (((-574) (-1 (-112) (-145)) $) 100) (((-574) (-145) $) 99 (|has| (-145) (-1113))) (((-574) (-145) $ (-574)) 98 (|has| (-145) (-1113))) (((-574) $ $ (-574)) 116) (((-574) (-142) $ (-574)) 115)) (-1864 (((-654 (-145)) $) 31 (|has| $ (-6 -4456)))) (-3790 (($ (-781) (-145)) 70)) (-2742 (((-112) $ (-781)) 9)) (-3618 (((-574) $) 44 (|has| (-574) (-860)))) (-3659 (($ $ $) 90 (|has| (-145) (-860)))) (-4430 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-860)))) (-1606 (((-654 (-145)) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1113)) (|has| $ (-6 -4456))))) (-2702 (((-574) $) 45 (|has| (-574) (-860)))) (-4257 (($ $ $) 89 (|has| (-145) (-860)))) (-1326 (((-112) $ $ (-145)) 118)) (-2683 (((-781) $ $ (-145)) 119)) (-2449 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-1859 (($ $) 125)) (-2092 (($ $) 126)) (-4203 (((-112) $ (-781)) 10)) (-2631 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-4136 (((-1172) $) 22)) (-1594 (($ (-145) $ (-574)) 62) (($ $ $ (-574)) 61)) (-4308 (((-654 (-574)) $) 47)) (-3336 (((-112) (-574) $) 48)) (-3966 (((-1133) $) 21)) (-2915 (((-145) $) 43 (|has| (-574) (-860)))) (-1549 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-1942 (($ $ (-145)) 42 (|has| $ (-6 -4457)))) (-2540 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-145)))) 27 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113)))) (($ $ (-302 (-145))) 26 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113)))) (($ $ (-654 (-145)) (-654 (-145))) 24 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113))))) (-4017 (((-112) $ $) 14)) (-3398 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113))))) (-4371 (((-654 (-145)) $) 49)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-2199 (((-145) $ (-574) (-145)) 51) (((-145) $ (-574)) 50) (($ $ (-1248 (-574))) 71) (($ $ $) 105)) (-2840 (($ $ (-574)) 64) (($ $ (-1248 (-574))) 63)) (-3975 (((-781) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4456))) (((-781) (-145) $) 29 (-12 (|has| (-145) (-1113)) (|has| $ (-6 -4456))))) (-3506 (($ $ $ (-574)) 94 (|has| $ (-6 -4457)))) (-3167 (($ $) 13)) (-1836 (((-546) $) 81 (|has| (-145) (-624 (-546))))) (-2956 (($ (-654 (-145))) 72)) (-4157 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2943 (($ (-145)) 114) (((-872) $) 18)) (-3284 (((-112) $ $) 23)) (-3390 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4456)))) (-1544 (((-1172) $) 134) (((-1172) $ (-112)) 133) (((-1286) (-832) $) 132) (((-1286) (-832) $ (-112)) 131)) (-3042 (((-112) $ $) 87 (|has| (-145) (-860)))) (-3018 (((-112) $ $) 86 (|has| (-145) (-860)))) (-2981 (((-112) $ $) 20)) (-3030 (((-112) $ $) 88 (|has| (-145) (-860)))) (-3007 (((-112) $ $) 85 (|has| (-145) (-860)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-1171) (-141)) (T -1171)) -((-3249 (*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1171))))) -(-13 (-1157) (-1113) (-838) (-10 -8 (-15 -3249 ($ (-574))))) -(((-34) . T) ((-102) . T) ((-623 (-872)) . T) ((-152 #0=(-145)) . T) ((-624 (-546)) |has| (-145) (-624 (-546))) ((-294 #1=(-574) #0#) . T) ((-294 (-1248 (-574)) $) . T) ((-296 #1# #0#) . T) ((-317 #0#) -12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113))) ((-382 #0#) . T) ((-499 #0#) . T) ((-614 #1# #0#) . T) ((-524 #0# #0#) -12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113))) ((-661 #0#) . T) ((-19 #0#) . T) ((-838) . T) ((-860) |has| (-145) (-860)) ((-1113) . T) ((-1157) . T) ((-1231) . T)) -((-2849 (((-112) $ $) NIL)) (-2507 (($ $) NIL)) (-2874 (($ $) NIL)) (-1563 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3714 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-3711 (((-112) $ $) NIL)) (-3686 (((-112) $ $ (-574)) NIL)) (-3249 (($ (-574)) 8)) (-4320 (((-654 $) $ (-145)) NIL) (((-654 $) $ (-142)) NIL)) (-1357 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-860)))) (-3642 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4457))) (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| (-145) (-860))))) (-2771 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-860)))) (-3034 (((-112) $ (-781)) NIL)) (-3143 (((-145) $ (-574) (-145)) NIL (|has| $ (-6 -4457))) (((-145) $ (-1248 (-574)) (-145)) NIL (|has| $ (-6 -4457)))) (-2165 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456)))) (-3426 (($) NIL T CONST)) (-2617 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2627 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-2903 (($ $ (-1248 (-574)) $) NIL)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113))))) (-3335 (($ (-145) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456)))) (-2868 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4456))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4456)))) (-2458 (((-145) $ (-574) (-145)) NIL (|has| $ (-6 -4457)))) (-2385 (((-145) $ (-574)) NIL)) (-3733 (((-112) $ $) NIL)) (-1441 (((-574) (-1 (-112) (-145)) $) NIL) (((-574) (-145) $) NIL (|has| (-145) (-1113))) (((-574) (-145) $ (-574)) NIL (|has| (-145) (-1113))) (((-574) $ $ (-574)) NIL) (((-574) (-142) $ (-574)) NIL)) (-1864 (((-654 (-145)) $) NIL (|has| $ (-6 -4456)))) (-3790 (($ (-781) (-145)) NIL)) (-2742 (((-112) $ (-781)) NIL)) (-3618 (((-574) $) NIL (|has| (-574) (-860)))) (-3659 (($ $ $) NIL (|has| (-145) (-860)))) (-4430 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-860)))) (-1606 (((-654 (-145)) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113))))) (-2702 (((-574) $) NIL (|has| (-574) (-860)))) (-4257 (($ $ $) NIL (|has| (-145) (-860)))) (-1326 (((-112) $ $ (-145)) NIL)) (-2683 (((-781) $ $ (-145)) NIL)) (-2449 (($ (-1 (-145) (-145)) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-1859 (($ $) NIL)) (-2092 (($ $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-2631 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-4136 (((-1172) $) NIL)) (-1594 (($ (-145) $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-4308 (((-654 (-574)) $) NIL)) (-3336 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL)) (-2915 (((-145) $) NIL (|has| (-574) (-860)))) (-1549 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-1942 (($ $ (-145)) NIL (|has| $ (-6 -4457)))) (-2540 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-145)))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113)))) (($ $ (-302 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113)))) (($ $ (-654 (-145)) (-654 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113))))) (-4371 (((-654 (-145)) $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 (((-145) $ (-574) (-145)) NIL) (((-145) $ (-574)) NIL) (($ $ (-1248 (-574))) NIL) (($ $ $) NIL)) (-2840 (($ $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-3975 (((-781) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456))) (((-781) (-145) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-1113))))) (-3506 (($ $ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3167 (($ $) NIL)) (-1836 (((-546) $) NIL (|has| (-145) (-624 (-546))))) (-2956 (($ (-654 (-145))) NIL)) (-4157 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2943 (($ (-145)) NIL) (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-3390 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4456)))) (-1544 (((-1172) $) 19) (((-1172) $ (-112)) 21) (((-1286) (-832) $) 22) (((-1286) (-832) $ (-112)) 23)) (-3042 (((-112) $ $) NIL (|has| (-145) (-860)))) (-3018 (((-112) $ $) NIL (|has| (-145) (-860)))) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (|has| (-145) (-860)))) (-3007 (((-112) $ $) NIL (|has| (-145) (-860)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-1172) (-1171)) (T -1172)) -NIL -(-1171) -((-2849 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-1113)) (|has| |#1| (-1113))))) (-3778 (($) NIL) (($ (-654 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)))) NIL)) (-3714 (((-1286) $ (-1172) (-1172)) NIL (|has| $ (-6 -4457)))) (-3034 (((-112) $ (-781)) NIL)) (-3143 ((|#1| $ (-1172) |#1|) NIL)) (-3572 (($ (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) $) NIL (|has| $ (-6 -4456)))) (-2165 (($ (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) $) NIL (|has| $ (-6 -4456)))) (-2163 (((-3 |#1| "failed") (-1172) $) NIL)) (-3426 (($) NIL T CONST)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-1113))))) (-2876 (($ (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) $) NIL (|has| $ (-6 -4456))) (((-3 |#1| "failed") (-1172) $) NIL)) (-3335 (($ (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-1113)))) (($ (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) $) NIL (|has| $ (-6 -4456)))) (-2868 (((-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-1 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) $ (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-1113)))) (((-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-1 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) $ (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-1 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) $) NIL (|has| $ (-6 -4456)))) (-2458 ((|#1| $ (-1172) |#1|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-1172)) NIL)) (-1864 (((-654 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) $) NIL (|has| $ (-6 -4456))) (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-2742 (((-112) $ (-781)) NIL)) (-3618 (((-1172) $) NIL (|has| (-1172) (-860)))) (-1606 (((-654 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) $) NIL (|has| $ (-6 -4456))) (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-1113)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2702 (((-1172) $) NIL (|has| (-1172) (-860)))) (-2449 (($ (-1 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) $) NIL (|has| $ (-6 -4457))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL (-2818 (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-1113)) (|has| |#1| (-1113))))) (-1763 (((-654 (-1172)) $) NIL)) (-1732 (((-112) (-1172) $) NIL)) (-2937 (((-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) $) NIL)) (-2798 (($ (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) $) NIL)) (-4308 (((-654 (-1172)) $) NIL)) (-3336 (((-112) (-1172) $) NIL)) (-3966 (((-1133) $) NIL (-2818 (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-1113)) (|has| |#1| (-1113))))) (-2915 ((|#1| $) NIL (|has| (-1172) (-860)))) (-1549 (((-3 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) "failed") (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) $) NIL)) (-1942 (($ $ |#1|) NIL (|has| $ (-6 -4457)))) (-1785 (((-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) $) NIL)) (-2540 (((-112) (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))))) NIL (-12 (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-317 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)))) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-1113)))) (($ $ (-302 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)))) NIL (-12 (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-317 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)))) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-1113)))) (($ $ (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) NIL (-12 (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-317 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)))) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-1113)))) (($ $ (-654 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) (-654 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)))) NIL (-12 (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-317 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)))) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-4371 (((-654 |#1|) $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 ((|#1| $ (-1172)) NIL) ((|#1| $ (-1172) |#1|) NIL)) (-1662 (($) NIL) (($ (-654 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)))) NIL)) (-3975 (((-781) (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) $) NIL (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-1113)))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) NIL)) (-1836 (((-546) $) NIL (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-624 (-546))))) (-2956 (($ (-654 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)))) NIL)) (-2943 (((-872) $) NIL (-2818 (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-623 (-872))) (|has| |#1| (-623 (-872)))))) (-3284 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-1113)) (|has| |#1| (-1113))))) (-1599 (($ (-654 (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)))) NIL)) (-3390 (((-112) (-1 (-112) (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 (-1172)) (|:| -1908 |#1|)) (-1113)) (|has| |#1| (-1113))))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-1173 |#1|) (-13 (-1207 (-1172) |#1|) (-10 -7 (-6 -4456))) (-1113)) (T -1173)) -NIL -(-13 (-1207 (-1172) |#1|) (-10 -7 (-6 -4456))) -((-3903 (((-1170 |#1|) (-1170 |#1|)) 83)) (-3434 (((-3 (-1170 |#1|) "failed") (-1170 |#1|)) 39)) (-2512 (((-1170 |#1|) (-417 (-574)) (-1170 |#1|)) 133 (|has| |#1| (-38 (-417 (-574)))))) (-3103 (((-1170 |#1|) |#1| (-1170 |#1|)) 139 (|has| |#1| (-372)))) (-1620 (((-1170 |#1|) (-1170 |#1|)) 97)) (-3802 (((-1170 (-574)) (-574)) 63)) (-3302 (((-1170 |#1|) (-1170 (-1170 |#1|))) 116 (|has| |#1| (-38 (-417 (-574)))))) (-3688 (((-1170 |#1|) (-574) (-574) (-1170 |#1|)) 102)) (-3832 (((-1170 |#1|) |#1| (-574)) 51)) (-1892 (((-1170 |#1|) (-1170 |#1|) (-1170 |#1|)) 66)) (-3127 (((-1170 |#1|) (-1170 |#1|) (-1170 |#1|)) 136 (|has| |#1| (-372)))) (-2383 (((-1170 |#1|) |#1| (-1 (-1170 |#1|))) 115 (|has| |#1| (-38 (-417 (-574)))))) (-2230 (((-1170 |#1|) (-1 |#1| (-574)) |#1| (-1 (-1170 |#1|))) 137 (|has| |#1| (-372)))) (-3110 (((-1170 |#1|) (-1170 |#1|)) 96)) (-1867 (((-1170 |#1|) (-1170 |#1|)) 82)) (-1764 (((-1170 |#1|) (-574) (-574) (-1170 |#1|)) 103)) (-2379 (((-1170 |#1|) |#1| (-1170 |#1|)) 112 (|has| |#1| (-38 (-417 (-574)))))) (-3256 (((-1170 (-574)) (-574)) 62)) (-3091 (((-1170 |#1|) |#1|) 65)) (-1759 (((-1170 |#1|) (-1170 |#1|) (-574) (-574)) 99)) (-3410 (((-1170 |#1|) (-1 |#1| (-574)) (-1170 |#1|)) 72)) (-2838 (((-3 (-1170 |#1|) "failed") (-1170 |#1|) (-1170 |#1|)) 37)) (-4383 (((-1170 |#1|) (-1170 |#1|)) 98)) (-2646 (((-1170 |#1|) (-1170 |#1|) |#1|) 77)) (-2917 (((-1170 |#1|) (-1170 |#1|)) 68)) (-3200 (((-1170 |#1|) (-1170 |#1|) (-1170 |#1|)) 78)) (-2943 (((-1170 |#1|) |#1|) 73)) (-4363 (((-1170 |#1|) (-1170 (-1170 |#1|))) 88)) (-3108 (((-1170 |#1|) (-1170 |#1|) (-1170 |#1|)) 38)) (-3094 (((-1170 |#1|) (-1170 |#1|)) 21) (((-1170 |#1|) (-1170 |#1|) (-1170 |#1|)) 23)) (-3079 (((-1170 |#1|) (-1170 |#1|) (-1170 |#1|)) 17)) (* (((-1170 |#1|) (-1170 |#1|) |#1|) 29) (((-1170 |#1|) |#1| (-1170 |#1|)) 26) (((-1170 |#1|) (-1170 |#1|) (-1170 |#1|)) 27))) -(((-1174 |#1|) (-10 -7 (-15 -3079 ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -3094 ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -3094 ((-1170 |#1|) (-1170 |#1|))) (-15 * ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 * ((-1170 |#1|) |#1| (-1170 |#1|))) (-15 * ((-1170 |#1|) (-1170 |#1|) |#1|)) (-15 -2838 ((-3 (-1170 |#1|) "failed") (-1170 |#1|) (-1170 |#1|))) (-15 -3108 ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -3434 ((-3 (-1170 |#1|) "failed") (-1170 |#1|))) (-15 -3832 ((-1170 |#1|) |#1| (-574))) (-15 -3256 ((-1170 (-574)) (-574))) (-15 -3802 ((-1170 (-574)) (-574))) (-15 -3091 ((-1170 |#1|) |#1|)) (-15 -1892 ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -2917 ((-1170 |#1|) (-1170 |#1|))) (-15 -3410 ((-1170 |#1|) (-1 |#1| (-574)) (-1170 |#1|))) (-15 -2943 ((-1170 |#1|) |#1|)) (-15 -2646 ((-1170 |#1|) (-1170 |#1|) |#1|)) (-15 -3200 ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -1867 ((-1170 |#1|) (-1170 |#1|))) (-15 -3903 ((-1170 |#1|) (-1170 |#1|))) (-15 -4363 ((-1170 |#1|) (-1170 (-1170 |#1|)))) (-15 -3110 ((-1170 |#1|) (-1170 |#1|))) (-15 -1620 ((-1170 |#1|) (-1170 |#1|))) (-15 -4383 ((-1170 |#1|) (-1170 |#1|))) (-15 -1759 ((-1170 |#1|) (-1170 |#1|) (-574) (-574))) (-15 -3688 ((-1170 |#1|) (-574) (-574) (-1170 |#1|))) (-15 -1764 ((-1170 |#1|) (-574) (-574) (-1170 |#1|))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -2379 ((-1170 |#1|) |#1| (-1170 |#1|))) (-15 -2383 ((-1170 |#1|) |#1| (-1 (-1170 |#1|)))) (-15 -3302 ((-1170 |#1|) (-1170 (-1170 |#1|)))) (-15 -2512 ((-1170 |#1|) (-417 (-574)) (-1170 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -3127 ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -2230 ((-1170 |#1|) (-1 |#1| (-574)) |#1| (-1 (-1170 |#1|)))) (-15 -3103 ((-1170 |#1|) |#1| (-1170 |#1|)))) |%noBranch|)) (-1062)) (T -1174)) -((-3103 (*1 *2 *3 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-372)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-2230 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-574))) (-5 *5 (-1 (-1170 *4))) (-4 *4 (-372)) (-4 *4 (-1062)) (-5 *2 (-1170 *4)) (-5 *1 (-1174 *4)))) (-3127 (*1 *2 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-372)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-2512 (*1 *2 *3 *2) (-12 (-5 *2 (-1170 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1062)) (-5 *3 (-417 (-574))) (-5 *1 (-1174 *4)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-1170 (-1170 *4))) (-5 *2 (-1170 *4)) (-5 *1 (-1174 *4)) (-4 *4 (-38 (-417 (-574)))) (-4 *4 (-1062)))) (-2383 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1170 *3))) (-5 *2 (-1170 *3)) (-5 *1 (-1174 *3)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)))) (-2379 (*1 *2 *3 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-1764 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1170 *4)) (-5 *3 (-574)) (-4 *4 (-1062)) (-5 *1 (-1174 *4)))) (-3688 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1170 *4)) (-5 *3 (-574)) (-4 *4 (-1062)) (-5 *1 (-1174 *4)))) (-1759 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1170 *4)) (-5 *3 (-574)) (-4 *4 (-1062)) (-5 *1 (-1174 *4)))) (-4383 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-1620 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-3110 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-4363 (*1 *2 *3) (-12 (-5 *3 (-1170 (-1170 *4))) (-5 *2 (-1170 *4)) (-5 *1 (-1174 *4)) (-4 *4 (-1062)))) (-3903 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-1867 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-3200 (*1 *2 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-2646 (*1 *2 *2 *3) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-2943 (*1 *2 *3) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-1174 *3)) (-4 *3 (-1062)))) (-3410 (*1 *2 *3 *2) (-12 (-5 *2 (-1170 *4)) (-5 *3 (-1 *4 (-574))) (-4 *4 (-1062)) (-5 *1 (-1174 *4)))) (-2917 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-1892 (*1 *2 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-3091 (*1 *2 *3) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-1174 *3)) (-4 *3 (-1062)))) (-3802 (*1 *2 *3) (-12 (-5 *2 (-1170 (-574))) (-5 *1 (-1174 *4)) (-4 *4 (-1062)) (-5 *3 (-574)))) (-3256 (*1 *2 *3) (-12 (-5 *2 (-1170 (-574))) (-5 *1 (-1174 *4)) (-4 *4 (-1062)) (-5 *3 (-574)))) (-3832 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-5 *2 (-1170 *3)) (-5 *1 (-1174 *3)) (-4 *3 (-1062)))) (-3434 (*1 *2 *2) (|partial| -12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-3108 (*1 *2 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-2838 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-3094 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-3094 (*1 *2 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) (-3079 (*1 *2 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3))))) -(-10 -7 (-15 -3079 ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -3094 ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -3094 ((-1170 |#1|) (-1170 |#1|))) (-15 * ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 * ((-1170 |#1|) |#1| (-1170 |#1|))) (-15 * ((-1170 |#1|) (-1170 |#1|) |#1|)) (-15 -2838 ((-3 (-1170 |#1|) "failed") (-1170 |#1|) (-1170 |#1|))) (-15 -3108 ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -3434 ((-3 (-1170 |#1|) "failed") (-1170 |#1|))) (-15 -3832 ((-1170 |#1|) |#1| (-574))) (-15 -3256 ((-1170 (-574)) (-574))) (-15 -3802 ((-1170 (-574)) (-574))) (-15 -3091 ((-1170 |#1|) |#1|)) (-15 -1892 ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -2917 ((-1170 |#1|) (-1170 |#1|))) (-15 -3410 ((-1170 |#1|) (-1 |#1| (-574)) (-1170 |#1|))) (-15 -2943 ((-1170 |#1|) |#1|)) (-15 -2646 ((-1170 |#1|) (-1170 |#1|) |#1|)) (-15 -3200 ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -1867 ((-1170 |#1|) (-1170 |#1|))) (-15 -3903 ((-1170 |#1|) (-1170 |#1|))) (-15 -4363 ((-1170 |#1|) (-1170 (-1170 |#1|)))) (-15 -3110 ((-1170 |#1|) (-1170 |#1|))) (-15 -1620 ((-1170 |#1|) (-1170 |#1|))) (-15 -4383 ((-1170 |#1|) (-1170 |#1|))) (-15 -1759 ((-1170 |#1|) (-1170 |#1|) (-574) (-574))) (-15 -3688 ((-1170 |#1|) (-574) (-574) (-1170 |#1|))) (-15 -1764 ((-1170 |#1|) (-574) (-574) (-1170 |#1|))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -2379 ((-1170 |#1|) |#1| (-1170 |#1|))) (-15 -2383 ((-1170 |#1|) |#1| (-1 (-1170 |#1|)))) (-15 -3302 ((-1170 |#1|) (-1170 (-1170 |#1|)))) (-15 -2512 ((-1170 |#1|) (-417 (-574)) (-1170 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -3127 ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -2230 ((-1170 |#1|) (-1 |#1| (-574)) |#1| (-1 (-1170 |#1|)))) (-15 -3103 ((-1170 |#1|) |#1| (-1170 |#1|)))) |%noBranch|)) -((-2364 (((-1170 |#1|) (-1170 |#1|)) 60)) (-2247 (((-1170 |#1|) (-1170 |#1|)) 42)) (-2343 (((-1170 |#1|) (-1170 |#1|)) 56)) (-2227 (((-1170 |#1|) (-1170 |#1|)) 38)) (-2389 (((-1170 |#1|) (-1170 |#1|)) 63)) (-2267 (((-1170 |#1|) (-1170 |#1|)) 45)) (-3119 (((-1170 |#1|) (-1170 |#1|)) 34)) (-1609 (((-1170 |#1|) (-1170 |#1|)) 29)) (-2402 (((-1170 |#1|) (-1170 |#1|)) 64)) (-2275 (((-1170 |#1|) (-1170 |#1|)) 46)) (-2375 (((-1170 |#1|) (-1170 |#1|)) 61)) (-2256 (((-1170 |#1|) (-1170 |#1|)) 43)) (-2352 (((-1170 |#1|) (-1170 |#1|)) 58)) (-2237 (((-1170 |#1|) (-1170 |#1|)) 40)) (-2441 (((-1170 |#1|) (-1170 |#1|)) 68)) (-2305 (((-1170 |#1|) (-1170 |#1|)) 50)) (-2414 (((-1170 |#1|) (-1170 |#1|)) 66)) (-2287 (((-1170 |#1|) (-1170 |#1|)) 48)) (-2465 (((-1170 |#1|) (-1170 |#1|)) 71)) (-2325 (((-1170 |#1|) (-1170 |#1|)) 53)) (-2521 (((-1170 |#1|) (-1170 |#1|)) 72)) (-2334 (((-1170 |#1|) (-1170 |#1|)) 54)) (-2452 (((-1170 |#1|) (-1170 |#1|)) 70)) (-2315 (((-1170 |#1|) (-1170 |#1|)) 52)) (-2428 (((-1170 |#1|) (-1170 |#1|)) 69)) (-2297 (((-1170 |#1|) (-1170 |#1|)) 51)) (** (((-1170 |#1|) (-1170 |#1|) (-1170 |#1|)) 36))) -(((-1175 |#1|) (-10 -7 (-15 -1609 ((-1170 |#1|) (-1170 |#1|))) (-15 -3119 ((-1170 |#1|) (-1170 |#1|))) (-15 ** ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -2227 ((-1170 |#1|) (-1170 |#1|))) (-15 -2237 ((-1170 |#1|) (-1170 |#1|))) (-15 -2247 ((-1170 |#1|) (-1170 |#1|))) (-15 -2256 ((-1170 |#1|) (-1170 |#1|))) (-15 -2267 ((-1170 |#1|) (-1170 |#1|))) (-15 -2275 ((-1170 |#1|) (-1170 |#1|))) (-15 -2287 ((-1170 |#1|) (-1170 |#1|))) (-15 -2297 ((-1170 |#1|) (-1170 |#1|))) (-15 -2305 ((-1170 |#1|) (-1170 |#1|))) (-15 -2315 ((-1170 |#1|) (-1170 |#1|))) (-15 -2325 ((-1170 |#1|) (-1170 |#1|))) (-15 -2334 ((-1170 |#1|) (-1170 |#1|))) (-15 -2343 ((-1170 |#1|) (-1170 |#1|))) (-15 -2352 ((-1170 |#1|) (-1170 |#1|))) (-15 -2364 ((-1170 |#1|) (-1170 |#1|))) (-15 -2375 ((-1170 |#1|) (-1170 |#1|))) (-15 -2389 ((-1170 |#1|) (-1170 |#1|))) (-15 -2402 ((-1170 |#1|) (-1170 |#1|))) (-15 -2414 ((-1170 |#1|) (-1170 |#1|))) (-15 -2428 ((-1170 |#1|) (-1170 |#1|))) (-15 -2441 ((-1170 |#1|) (-1170 |#1|))) (-15 -2452 ((-1170 |#1|) (-1170 |#1|))) (-15 -2465 ((-1170 |#1|) (-1170 |#1|))) (-15 -2521 ((-1170 |#1|) (-1170 |#1|)))) (-38 (-417 (-574)))) (T -1175)) -((-2521 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2465 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2452 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2441 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2428 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2414 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2402 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2389 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2375 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2364 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2352 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2343 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2334 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2325 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2315 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2305 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2297 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2287 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2275 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2267 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2256 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2247 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2237 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-2227 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-3119 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3)))) (-1609 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1175 *3))))) -(-10 -7 (-15 -1609 ((-1170 |#1|) (-1170 |#1|))) (-15 -3119 ((-1170 |#1|) (-1170 |#1|))) (-15 ** ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -2227 ((-1170 |#1|) (-1170 |#1|))) (-15 -2237 ((-1170 |#1|) (-1170 |#1|))) (-15 -2247 ((-1170 |#1|) (-1170 |#1|))) (-15 -2256 ((-1170 |#1|) (-1170 |#1|))) (-15 -2267 ((-1170 |#1|) (-1170 |#1|))) (-15 -2275 ((-1170 |#1|) (-1170 |#1|))) (-15 -2287 ((-1170 |#1|) (-1170 |#1|))) (-15 -2297 ((-1170 |#1|) (-1170 |#1|))) (-15 -2305 ((-1170 |#1|) (-1170 |#1|))) (-15 -2315 ((-1170 |#1|) (-1170 |#1|))) (-15 -2325 ((-1170 |#1|) (-1170 |#1|))) (-15 -2334 ((-1170 |#1|) (-1170 |#1|))) (-15 -2343 ((-1170 |#1|) (-1170 |#1|))) (-15 -2352 ((-1170 |#1|) (-1170 |#1|))) (-15 -2364 ((-1170 |#1|) (-1170 |#1|))) (-15 -2375 ((-1170 |#1|) (-1170 |#1|))) (-15 -2389 ((-1170 |#1|) (-1170 |#1|))) (-15 -2402 ((-1170 |#1|) (-1170 |#1|))) (-15 -2414 ((-1170 |#1|) (-1170 |#1|))) (-15 -2428 ((-1170 |#1|) (-1170 |#1|))) (-15 -2441 ((-1170 |#1|) (-1170 |#1|))) (-15 -2452 ((-1170 |#1|) (-1170 |#1|))) (-15 -2465 ((-1170 |#1|) (-1170 |#1|))) (-15 -2521 ((-1170 |#1|) (-1170 |#1|)))) -((-2364 (((-1170 |#1|) (-1170 |#1|)) 102)) (-2247 (((-1170 |#1|) (-1170 |#1|)) 61)) (-2938 (((-2 (|:| -2343 (-1170 |#1|)) (|:| -2352 (-1170 |#1|))) (-1170 |#1|)) 98)) (-2343 (((-1170 |#1|) (-1170 |#1|)) 99)) (-2700 (((-2 (|:| -2227 (-1170 |#1|)) (|:| -2237 (-1170 |#1|))) (-1170 |#1|)) 54)) (-2227 (((-1170 |#1|) (-1170 |#1|)) 55)) (-2389 (((-1170 |#1|) (-1170 |#1|)) 104)) (-2267 (((-1170 |#1|) (-1170 |#1|)) 68)) (-3119 (((-1170 |#1|) (-1170 |#1|)) 40)) (-1609 (((-1170 |#1|) (-1170 |#1|)) 37)) (-2402 (((-1170 |#1|) (-1170 |#1|)) 105)) (-2275 (((-1170 |#1|) (-1170 |#1|)) 69)) (-2375 (((-1170 |#1|) (-1170 |#1|)) 103)) (-2256 (((-1170 |#1|) (-1170 |#1|)) 64)) (-2352 (((-1170 |#1|) (-1170 |#1|)) 100)) (-2237 (((-1170 |#1|) (-1170 |#1|)) 56)) (-2441 (((-1170 |#1|) (-1170 |#1|)) 113)) (-2305 (((-1170 |#1|) (-1170 |#1|)) 88)) (-2414 (((-1170 |#1|) (-1170 |#1|)) 107)) (-2287 (((-1170 |#1|) (-1170 |#1|)) 84)) (-2465 (((-1170 |#1|) (-1170 |#1|)) 117)) (-2325 (((-1170 |#1|) (-1170 |#1|)) 92)) (-2521 (((-1170 |#1|) (-1170 |#1|)) 119)) (-2334 (((-1170 |#1|) (-1170 |#1|)) 94)) (-2452 (((-1170 |#1|) (-1170 |#1|)) 115)) (-2315 (((-1170 |#1|) (-1170 |#1|)) 90)) (-2428 (((-1170 |#1|) (-1170 |#1|)) 109)) (-2297 (((-1170 |#1|) (-1170 |#1|)) 86)) (** (((-1170 |#1|) (-1170 |#1|) (-1170 |#1|)) 41))) -(((-1176 |#1|) (-10 -7 (-15 -1609 ((-1170 |#1|) (-1170 |#1|))) (-15 -3119 ((-1170 |#1|) (-1170 |#1|))) (-15 ** ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -2700 ((-2 (|:| -2227 (-1170 |#1|)) (|:| -2237 (-1170 |#1|))) (-1170 |#1|))) (-15 -2227 ((-1170 |#1|) (-1170 |#1|))) (-15 -2237 ((-1170 |#1|) (-1170 |#1|))) (-15 -2247 ((-1170 |#1|) (-1170 |#1|))) (-15 -2256 ((-1170 |#1|) (-1170 |#1|))) (-15 -2267 ((-1170 |#1|) (-1170 |#1|))) (-15 -2275 ((-1170 |#1|) (-1170 |#1|))) (-15 -2287 ((-1170 |#1|) (-1170 |#1|))) (-15 -2297 ((-1170 |#1|) (-1170 |#1|))) (-15 -2305 ((-1170 |#1|) (-1170 |#1|))) (-15 -2315 ((-1170 |#1|) (-1170 |#1|))) (-15 -2325 ((-1170 |#1|) (-1170 |#1|))) (-15 -2334 ((-1170 |#1|) (-1170 |#1|))) (-15 -2938 ((-2 (|:| -2343 (-1170 |#1|)) (|:| -2352 (-1170 |#1|))) (-1170 |#1|))) (-15 -2343 ((-1170 |#1|) (-1170 |#1|))) (-15 -2352 ((-1170 |#1|) (-1170 |#1|))) (-15 -2364 ((-1170 |#1|) (-1170 |#1|))) (-15 -2375 ((-1170 |#1|) (-1170 |#1|))) (-15 -2389 ((-1170 |#1|) (-1170 |#1|))) (-15 -2402 ((-1170 |#1|) (-1170 |#1|))) (-15 -2414 ((-1170 |#1|) (-1170 |#1|))) (-15 -2428 ((-1170 |#1|) (-1170 |#1|))) (-15 -2441 ((-1170 |#1|) (-1170 |#1|))) (-15 -2452 ((-1170 |#1|) (-1170 |#1|))) (-15 -2465 ((-1170 |#1|) (-1170 |#1|))) (-15 -2521 ((-1170 |#1|) (-1170 |#1|)))) (-38 (-417 (-574)))) (T -1176)) -((-2521 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2465 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2452 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2441 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2428 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2414 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2402 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2389 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2375 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2364 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2352 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2343 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2938 (*1 *2 *3) (-12 (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-2 (|:| -2343 (-1170 *4)) (|:| -2352 (-1170 *4)))) (-5 *1 (-1176 *4)) (-5 *3 (-1170 *4)))) (-2334 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2325 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2315 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2305 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2297 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2287 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2275 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2267 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2256 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2247 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2237 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2227 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-2700 (*1 *2 *3) (-12 (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-2 (|:| -2227 (-1170 *4)) (|:| -2237 (-1170 *4)))) (-5 *1 (-1176 *4)) (-5 *3 (-1170 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-3119 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3)))) (-1609 (*1 *2 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1176 *3))))) -(-10 -7 (-15 -1609 ((-1170 |#1|) (-1170 |#1|))) (-15 -3119 ((-1170 |#1|) (-1170 |#1|))) (-15 ** ((-1170 |#1|) (-1170 |#1|) (-1170 |#1|))) (-15 -2700 ((-2 (|:| -2227 (-1170 |#1|)) (|:| -2237 (-1170 |#1|))) (-1170 |#1|))) (-15 -2227 ((-1170 |#1|) (-1170 |#1|))) (-15 -2237 ((-1170 |#1|) (-1170 |#1|))) (-15 -2247 ((-1170 |#1|) (-1170 |#1|))) (-15 -2256 ((-1170 |#1|) (-1170 |#1|))) (-15 -2267 ((-1170 |#1|) (-1170 |#1|))) (-15 -2275 ((-1170 |#1|) (-1170 |#1|))) (-15 -2287 ((-1170 |#1|) (-1170 |#1|))) (-15 -2297 ((-1170 |#1|) (-1170 |#1|))) (-15 -2305 ((-1170 |#1|) (-1170 |#1|))) (-15 -2315 ((-1170 |#1|) (-1170 |#1|))) (-15 -2325 ((-1170 |#1|) (-1170 |#1|))) (-15 -2334 ((-1170 |#1|) (-1170 |#1|))) (-15 -2938 ((-2 (|:| -2343 (-1170 |#1|)) (|:| -2352 (-1170 |#1|))) (-1170 |#1|))) (-15 -2343 ((-1170 |#1|) (-1170 |#1|))) (-15 -2352 ((-1170 |#1|) (-1170 |#1|))) (-15 -2364 ((-1170 |#1|) (-1170 |#1|))) (-15 -2375 ((-1170 |#1|) (-1170 |#1|))) (-15 -2389 ((-1170 |#1|) (-1170 |#1|))) (-15 -2402 ((-1170 |#1|) (-1170 |#1|))) (-15 -2414 ((-1170 |#1|) (-1170 |#1|))) (-15 -2428 ((-1170 |#1|) (-1170 |#1|))) (-15 -2441 ((-1170 |#1|) (-1170 |#1|))) (-15 -2452 ((-1170 |#1|) (-1170 |#1|))) (-15 -2465 ((-1170 |#1|) (-1170 |#1|))) (-15 -2521 ((-1170 |#1|) (-1170 |#1|)))) -((-2026 (((-969 |#2|) |#2| |#2|) 50)) (-1569 ((|#2| |#2| |#1|) 19 (|has| |#1| (-315))))) -(((-1177 |#1| |#2|) (-10 -7 (-15 -2026 ((-969 |#2|) |#2| |#2|)) (IF (|has| |#1| (-315)) (-15 -1569 (|#2| |#2| |#1|)) |%noBranch|)) (-566) (-1257 |#1|)) (T -1177)) -((-1569 (*1 *2 *2 *3) (-12 (-4 *3 (-315)) (-4 *3 (-566)) (-5 *1 (-1177 *3 *2)) (-4 *2 (-1257 *3)))) (-2026 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-969 *3)) (-5 *1 (-1177 *4 *3)) (-4 *3 (-1257 *4))))) -(-10 -7 (-15 -2026 ((-969 |#2|) |#2| |#2|)) (IF (|has| |#1| (-315)) (-15 -1569 (|#2| |#2| |#1|)) |%noBranch|)) -((-2849 (((-112) $ $) NIL)) (-4161 (($ $ (-654 (-781))) 79)) (-1508 (($) 33)) (-3276 (($ $) 51)) (-3777 (((-654 $) $) 60)) (-4334 (((-112) $) 19)) (-3209 (((-654 (-954 |#2|)) $) 86)) (-1608 (($ $) 80)) (-3274 (((-781) $) 47)) (-3790 (($) 32)) (-4137 (($ $ (-654 (-781)) (-954 |#2|)) 72) (($ $ (-654 (-781)) (-781)) 73) (($ $ (-781) (-954 |#2|)) 75)) (-4430 (($ $ $) 57) (($ (-654 $)) 59)) (-4321 (((-781) $) 87)) (-3632 (((-112) $) 15)) (-4136 (((-1172) $) NIL)) (-3247 (((-112) $) 22)) (-3966 (((-1133) $) NIL)) (-1519 (((-173) $) 85)) (-1583 (((-954 |#2|) $) 81)) (-4375 (((-781) $) 82)) (-3673 (((-112) $) 84)) (-2768 (($ $ (-654 (-781)) (-173)) 78)) (-4322 (($ $) 52)) (-2943 (((-872) $) 99)) (-1374 (($ $ (-654 (-781)) (-112)) 77)) (-2321 (((-654 $) $) 11)) (-4382 (($ $ (-781)) 46)) (-2038 (($ $) 43)) (-3284 (((-112) $ $) NIL)) (-2913 (($ $ $ (-954 |#2|) (-781)) 68)) (-2908 (($ $ (-954 |#2|)) 67)) (-4232 (($ $ (-654 (-781)) (-954 |#2|)) 66) (($ $ (-654 (-781)) (-781)) 70) (((-781) $ (-954 |#2|)) 71)) (-2981 (((-112) $ $) 92))) -(((-1178 |#1| |#2|) (-13 (-1113) (-10 -8 (-15 -3632 ((-112) $)) (-15 -4334 ((-112) $)) (-15 -3247 ((-112) $)) (-15 -3790 ($)) (-15 -1508 ($)) (-15 -2038 ($ $)) (-15 -4382 ($ $ (-781))) (-15 -2321 ((-654 $) $)) (-15 -3274 ((-781) $)) (-15 -3276 ($ $)) (-15 -4322 ($ $)) (-15 -4430 ($ $ $)) (-15 -4430 ($ (-654 $))) (-15 -3777 ((-654 $) $)) (-15 -4232 ($ $ (-654 (-781)) (-954 |#2|))) (-15 -2908 ($ $ (-954 |#2|))) (-15 -2913 ($ $ $ (-954 |#2|) (-781))) (-15 -4137 ($ $ (-654 (-781)) (-954 |#2|))) (-15 -4232 ($ $ (-654 (-781)) (-781))) (-15 -4137 ($ $ (-654 (-781)) (-781))) (-15 -4232 ((-781) $ (-954 |#2|))) (-15 -4137 ($ $ (-781) (-954 |#2|))) (-15 -1374 ($ $ (-654 (-781)) (-112))) (-15 -2768 ($ $ (-654 (-781)) (-173))) (-15 -4161 ($ $ (-654 (-781)))) (-15 -1583 ((-954 |#2|) $)) (-15 -4375 ((-781) $)) (-15 -3673 ((-112) $)) (-15 -1519 ((-173) $)) (-15 -4321 ((-781) $)) (-15 -1608 ($ $)) (-15 -3209 ((-654 (-954 |#2|)) $)))) (-932) (-1062)) (T -1178)) -((-3632 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) (-4 *4 (-1062)))) (-4334 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) (-4 *4 (-1062)))) (-3247 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) (-4 *4 (-1062)))) (-3790 (*1 *1) (-12 (-5 *1 (-1178 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1062)))) (-1508 (*1 *1) (-12 (-5 *1 (-1178 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1062)))) (-2038 (*1 *1 *1) (-12 (-5 *1 (-1178 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1062)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) (-4 *4 (-1062)))) (-2321 (*1 *2 *1) (-12 (-5 *2 (-654 (-1178 *3 *4))) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) (-4 *4 (-1062)))) (-3274 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) (-4 *4 (-1062)))) (-3276 (*1 *1 *1) (-12 (-5 *1 (-1178 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1062)))) (-4322 (*1 *1 *1) (-12 (-5 *1 (-1178 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1062)))) (-4430 (*1 *1 *1 *1) (-12 (-5 *1 (-1178 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1062)))) (-4430 (*1 *1 *2) (-12 (-5 *2 (-654 (-1178 *3 *4))) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) (-4 *4 (-1062)))) (-3777 (*1 *2 *1) (-12 (-5 *2 (-654 (-1178 *3 *4))) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) (-4 *4 (-1062)))) (-4232 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-954 *5)) (-4 *5 (-1062)) (-5 *1 (-1178 *4 *5)) (-14 *4 (-932)))) (-2908 (*1 *1 *1 *2) (-12 (-5 *2 (-954 *4)) (-4 *4 (-1062)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)))) (-2913 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-954 *5)) (-5 *3 (-781)) (-4 *5 (-1062)) (-5 *1 (-1178 *4 *5)) (-14 *4 (-932)))) (-4137 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-954 *5)) (-4 *5 (-1062)) (-5 *1 (-1178 *4 *5)) (-14 *4 (-932)))) (-4232 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-781)) (-5 *1 (-1178 *4 *5)) (-14 *4 (-932)) (-4 *5 (-1062)))) (-4137 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-781)) (-5 *1 (-1178 *4 *5)) (-14 *4 (-932)) (-4 *5 (-1062)))) (-4232 (*1 *2 *1 *3) (-12 (-5 *3 (-954 *5)) (-4 *5 (-1062)) (-5 *2 (-781)) (-5 *1 (-1178 *4 *5)) (-14 *4 (-932)))) (-4137 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *3 (-954 *5)) (-4 *5 (-1062)) (-5 *1 (-1178 *4 *5)) (-14 *4 (-932)))) (-1374 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-112)) (-5 *1 (-1178 *4 *5)) (-14 *4 (-932)) (-4 *5 (-1062)))) (-2768 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-173)) (-5 *1 (-1178 *4 *5)) (-14 *4 (-932)) (-4 *5 (-1062)))) (-4161 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) (-4 *4 (-1062)))) (-1583 (*1 *2 *1) (-12 (-5 *2 (-954 *4)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) (-4 *4 (-1062)))) (-4375 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) (-4 *4 (-1062)))) (-3673 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) (-4 *4 (-1062)))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) (-4 *4 (-1062)))) (-4321 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) (-4 *4 (-1062)))) (-1608 (*1 *1 *1) (-12 (-5 *1 (-1178 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1062)))) (-3209 (*1 *2 *1) (-12 (-5 *2 (-654 (-954 *4))) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) (-4 *4 (-1062))))) -(-13 (-1113) (-10 -8 (-15 -3632 ((-112) $)) (-15 -4334 ((-112) $)) (-15 -3247 ((-112) $)) (-15 -3790 ($)) (-15 -1508 ($)) (-15 -2038 ($ $)) (-15 -4382 ($ $ (-781))) (-15 -2321 ((-654 $) $)) (-15 -3274 ((-781) $)) (-15 -3276 ($ $)) (-15 -4322 ($ $)) (-15 -4430 ($ $ $)) (-15 -4430 ($ (-654 $))) (-15 -3777 ((-654 $) $)) (-15 -4232 ($ $ (-654 (-781)) (-954 |#2|))) (-15 -2908 ($ $ (-954 |#2|))) (-15 -2913 ($ $ $ (-954 |#2|) (-781))) (-15 -4137 ($ $ (-654 (-781)) (-954 |#2|))) (-15 -4232 ($ $ (-654 (-781)) (-781))) (-15 -4137 ($ $ (-654 (-781)) (-781))) (-15 -4232 ((-781) $ (-954 |#2|))) (-15 -4137 ($ $ (-781) (-954 |#2|))) (-15 -1374 ($ $ (-654 (-781)) (-112))) (-15 -2768 ($ $ (-654 (-781)) (-173))) (-15 -4161 ($ $ (-654 (-781)))) (-15 -1583 ((-954 |#2|) $)) (-15 -4375 ((-781) $)) (-15 -3673 ((-112) $)) (-15 -1519 ((-173) $)) (-15 -4321 ((-781) $)) (-15 -1608 ($ $)) (-15 -3209 ((-654 (-954 |#2|)) $)))) -((-2849 (((-112) $ $) NIL)) (-1809 ((|#2| $) 11)) (-1796 ((|#1| $) 10)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2956 (($ |#1| |#2|) 9)) (-2943 (((-872) $) 16)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1179 |#1| |#2|) (-13 (-1113) (-10 -8 (-15 -2956 ($ |#1| |#2|)) (-15 -1796 (|#1| $)) (-15 -1809 (|#2| $)))) (-1113) (-1113)) (T -1179)) -((-2956 (*1 *1 *2 *3) (-12 (-5 *1 (-1179 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113)))) (-1796 (*1 *2 *1) (-12 (-4 *2 (-1113)) (-5 *1 (-1179 *2 *3)) (-4 *3 (-1113)))) (-1809 (*1 *2 *1) (-12 (-4 *2 (-1113)) (-5 *1 (-1179 *3 *2)) (-4 *3 (-1113))))) -(-13 (-1113) (-10 -8 (-15 -2956 ($ |#1| |#2|)) (-15 -1796 (|#1| $)) (-15 -1809 (|#2| $)))) -((-2849 (((-112) $ $) NIL)) (-2515 (((-1148) $) 9)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 15) (($ (-1195)) NIL) (((-1195) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1180) (-13 (-1096) (-10 -8 (-15 -2515 ((-1148) $))))) (T -1180)) -((-2515 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1180))))) -(-13 (-1096) (-10 -8 (-15 -2515 ((-1148) $)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1528 (((-1188 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-315)) (|has| |#1| (-372))))) (-4355 (((-654 (-1095)) $) NIL)) (-1488 (((-1190) $) 11)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1188 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-1575 (($ $) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1188 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2085 (((-112) $) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1188 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2052 (($ $ (-574)) NIL) (($ $ (-574) (-574)) 75)) (-1878 (((-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) NIL)) (-2248 (((-1188 |#1| |#2| |#3|) $) 42)) (-1698 (((-3 (-1188 |#1| |#2| |#3|) "failed") $) 32)) (-4402 (((-1188 |#1| |#2| |#3|) $) 33)) (-2364 (($ $) 116 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 92 (|has| |#1| (-38 (-417 (-574)))))) (-3524 (((-3 $ "failed") $ $) NIL)) (-3972 (((-428 (-1186 $)) (-1186 $)) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))))) (-2568 (($ $) NIL (|has| |#1| (-372)))) (-2827 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4229 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))))) (-1600 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2343 (($ $) 112 (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) 88 (|has| |#1| (-38 (-417 (-574)))))) (-2846 (((-574) $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-3623 (($ (-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) NIL)) (-2389 (($ $) 120 (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) 96 (|has| |#1| (-38 (-417 (-574)))))) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-1188 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1190) "failed") $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-1051 (-1190))) (|has| |#1| (-372)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-1051 (-574))) (|has| |#1| (-372)))) (((-3 (-574) "failed") $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-1051 (-574))) (|has| |#1| (-372))))) (-2206 (((-1188 |#1| |#2| |#3|) $) 140) (((-1190) $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-1051 (-1190))) (|has| |#1| (-372)))) (((-417 (-574)) $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-1051 (-574))) (|has| |#1| (-372)))) (((-574) $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-1051 (-574))) (|has| |#1| (-372))))) (-3327 (($ $) 37) (($ (-574) $) 38)) (-2786 (($ $ $) NIL (|has| |#1| (-372)))) (-1392 (($ $) NIL)) (-2590 (((-699 (-1188 |#1| |#2| |#3|)) (-1281 $)) NIL (|has| |#1| (-372))) (((-699 (-1188 |#1| |#2| |#3|)) (-699 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -4340 (-699 (-1188 |#1| |#2| |#3|))) (|:| |vec| (-1281 (-1188 |#1| |#2| |#3|)))) (-699 $) (-1281 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-1281 $)) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372))))) (-3434 (((-3 $ "failed") $) 54)) (-3508 (((-417 (-963 |#1|)) $ (-574)) 74 (|has| |#1| (-566))) (((-417 (-963 |#1|)) $ (-574) (-574)) 76 (|has| |#1| (-566)))) (-2820 (($) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-2797 (($ $ $) NIL (|has| |#1| (-372)))) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-2257 (((-112) $) NIL (|has| |#1| (-372)))) (-2756 (((-112) $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-2892 (((-112) $) 28)) (-3000 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-897 (-388))) (|has| |#1| (-372)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-897 (-574))) (|has| |#1| (-372))))) (-3884 (((-574) $) NIL) (((-574) $ (-574)) 26)) (-3199 (((-112) $) NIL)) (-2141 (($ $) NIL (|has| |#1| (-372)))) (-2966 (((-1188 |#1| |#2| |#3|) $) 44 (|has| |#1| (-372)))) (-3460 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2748 (((-3 $ "failed") $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-1165)) (|has| |#1| (-372))))) (-1335 (((-112) $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-4240 (($ $ (-932)) NIL)) (-2503 (($ (-1 |#1| (-574)) $) NIL)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3869 (((-112) $) NIL)) (-4335 (($ |#1| (-574)) 19) (($ $ (-1095) (-574)) NIL) (($ $ (-654 (-1095)) (-654 (-574))) NIL)) (-3659 (($ $ $) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1188 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-4257 (($ $ $) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1188 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-1777 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1188 |#1| |#2| |#3|) (-1188 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-372)))) (-3119 (($ $) 81 (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-2832 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4413 (($ (-574) (-1188 |#1| |#2| |#3|)) 36)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL (|has| |#1| (-372)))) (-2379 (($ $) 79 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190)) NIL (-2818 (-12 (|has| |#1| (-15 -2379 (|#1| |#1| (-1190)))) (|has| |#1| (-15 -4355 ((-654 (-1190)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-970)) (|has| |#1| (-1216))))) (($ $ (-1277 |#2|)) 80 (|has| |#1| (-38 (-417 (-574)))))) (-3818 (($) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-1165)) (|has| |#1| (-372))) CONST)) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-372)))) (-2873 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3191 (($ $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-315)) (|has| |#1| (-372))))) (-3595 (((-1188 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-2560 (((-428 (-1186 $)) (-1186 $)) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))))) (-2039 (((-428 (-1186 $)) (-1186 $)) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))))) (-4220 (((-428 $) $) NIL (|has| |#1| (-372)))) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-2533 (($ $ (-574)) 158)) (-2838 (((-3 $ "failed") $ $) 55 (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1188 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1609 (($ $) 82 (|has| |#1| (-38 (-417 (-574)))))) (-2646 (((-1170 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-574))))) (($ $ (-1190) (-1188 |#1| |#2| |#3|)) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-524 (-1190) (-1188 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-1190)) (-654 (-1188 |#1| |#2| |#3|))) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-524 (-1190) (-1188 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-302 (-1188 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-317 (-1188 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-302 (-1188 |#1| |#2| |#3|))) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-317 (-1188 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-1188 |#1| |#2| |#3|) (-1188 |#1| |#2| |#3|)) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-317 (-1188 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-1188 |#1| |#2| |#3|)) (-654 (-1188 |#1| |#2| |#3|))) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-317 (-1188 |#1| |#2| |#3|))) (|has| |#1| (-372))))) (-1730 (((-781) $) NIL (|has| |#1| (-372)))) (-2199 ((|#1| $ (-574)) NIL) (($ $ $) 61 (|has| (-574) (-1125))) (($ $ (-1188 |#1| |#2| |#3|)) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-294 (-1188 |#1| |#2| |#3|) (-1188 |#1| |#2| |#3|))) (|has| |#1| (-372))))) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#1| (-372)))) (-3905 (($ $ (-1 (-1188 |#1| |#2| |#3|) (-1188 |#1| |#2| |#3|))) NIL (|has| |#1| (-372))) (($ $ (-1 (-1188 |#1| |#2| |#3|) (-1188 |#1| |#2| |#3|)) (-781)) NIL (|has| |#1| (-372))) (($ $ (-1277 |#2|)) 57) (($ $ (-781)) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $) 56 (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-1190) (-781)) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-654 (-1190))) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-1190)) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))))) (-4358 (($ $) NIL (|has| |#1| (-372)))) (-2977 (((-1188 |#1| |#2| |#3|) $) 46 (|has| |#1| (-372)))) (-4202 (((-574) $) 43)) (-2402 (($ $) 122 (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) 98 (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) 118 (|has| |#1| (-38 (-417 (-574)))))) (-2256 (($ $) 94 (|has| |#1| (-38 (-417 (-574)))))) (-2352 (($ $) 114 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 90 (|has| |#1| (-38 (-417 (-574)))))) (-1836 (((-546) $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-624 (-546))) (|has| |#1| (-372)))) (((-388) $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-1035)) (|has| |#1| (-372)))) (((-227) $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-1035)) (|has| |#1| (-372)))) (((-903 (-388)) $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-624 (-903 (-388)))) (|has| |#1| (-372)))) (((-903 (-574)) $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-624 (-903 (-574)))) (|has| |#1| (-372))))) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-1188 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))))) (-1651 (($ $) NIL)) (-2943 (((-872) $) 162) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1188 |#1| |#2| |#3|)) 30) (($ (-1277 |#2|)) 25) (($ (-1190)) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-1051 (-1190))) (|has| |#1| (-372)))) (($ $) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1188 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))) (|has| |#1| (-566)))) (($ (-417 (-574))) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-1051 (-574))) (|has| |#1| (-372))) (|has| |#1| (-38 (-417 (-574))))))) (-3087 ((|#1| $ (-574)) 77)) (-3298 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| (-1188 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))) (-12 (|has| (-1188 |#1| |#2| |#3|) (-146)) (|has| |#1| (-372))) (|has| |#1| (-146))))) (-1364 (((-781)) NIL T CONST)) (-3359 ((|#1| $) 12)) (-1801 (((-1188 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-3284 (((-112) $ $) NIL)) (-2441 (($ $) 128 (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) 104 (|has| |#1| (-38 (-417 (-574)))))) (-2069 (((-112) $ $) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1188 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2414 (($ $) 124 (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) 100 (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) 108 (|has| |#1| (-38 (-417 (-574)))))) (-3551 ((|#1| $ (-574)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2521 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) 110 (|has| |#1| (-38 (-417 (-574)))))) (-2452 (($ $) 130 (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) 106 (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) 126 (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) 102 (|has| |#1| (-38 (-417 (-574)))))) (-3482 (($ $) NIL (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-2133 (($) 21 T CONST)) (-2145 (($) 16 T CONST)) (-3610 (($ $ (-1 (-1188 |#1| |#2| |#3|) (-1188 |#1| |#2| |#3|))) NIL (|has| |#1| (-372))) (($ $ (-1 (-1188 |#1| |#2| |#3|) (-1188 |#1| |#2| |#3|)) (-781)) NIL (|has| |#1| (-372))) (($ $ (-781)) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-1190) (-781)) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-654 (-1190))) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-1190)) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))))) (-3042 (((-112) $ $) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1188 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3018 (((-112) $ $) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1188 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1188 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3007 (((-112) $ $) NIL (-2818 (-12 (|has| (-1188 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1188 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3108 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) 49 (|has| |#1| (-372))) (($ (-1188 |#1| |#2| |#3|) (-1188 |#1| |#2| |#3|)) 50 (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) 23)) (** (($ $ (-932)) NIL) (($ $ (-781)) 60) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) 83 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 137 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1188 |#1| |#2| |#3|)) 48 (|has| |#1| (-372))) (($ (-1188 |#1| |#2| |#3|) $) 47 (|has| |#1| (-372))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) -(((-1181 |#1| |#2| |#3|) (-13 (-1243 |#1| (-1188 |#1| |#2| |#3|)) (-10 -8 (-15 -2943 ($ (-1277 |#2|))) (-15 -3905 ($ $ (-1277 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2379 ($ $ (-1277 |#2|))) |%noBranch|))) (-1062) (-1190) |#1|) (T -1181)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1181 *3 *4 *5)) (-4 *3 (-1062)) (-14 *5 *3))) (-3905 (*1 *1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1181 *3 *4 *5)) (-4 *3 (-1062)) (-14 *5 *3))) (-2379 (*1 *1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1181 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-14 *5 *3)))) -(-13 (-1243 |#1| (-1188 |#1| |#2| |#3|)) (-10 -8 (-15 -2943 ($ (-1277 |#2|))) (-15 -3905 ($ $ (-1277 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2379 ($ $ (-1277 |#2|))) |%noBranch|))) -((-3561 ((|#2| |#2| (-1105 |#2|)) 26) ((|#2| |#2| (-1190)) 28))) -(((-1182 |#1| |#2|) (-10 -7 (-15 -3561 (|#2| |#2| (-1190))) (-15 -3561 (|#2| |#2| (-1105 |#2|)))) (-13 (-566) (-1051 (-574)) (-649 (-574))) (-13 (-440 |#1|) (-161) (-27) (-1216))) (T -1182)) -((-3561 (*1 *2 *2 *3) (-12 (-5 *3 (-1105 *2)) (-4 *2 (-13 (-440 *4) (-161) (-27) (-1216))) (-4 *4 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-1182 *4 *2)))) (-3561 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-1182 *4 *2)) (-4 *2 (-13 (-440 *4) (-161) (-27) (-1216)))))) -(-10 -7 (-15 -3561 (|#2| |#2| (-1190))) (-15 -3561 (|#2| |#2| (-1105 |#2|)))) -((-3561 (((-3 (-417 (-963 |#1|)) (-324 |#1|)) (-417 (-963 |#1|)) (-1105 (-417 (-963 |#1|)))) 31) (((-417 (-963 |#1|)) (-963 |#1|) (-1105 (-963 |#1|))) 44) (((-3 (-417 (-963 |#1|)) (-324 |#1|)) (-417 (-963 |#1|)) (-1190)) 33) (((-417 (-963 |#1|)) (-963 |#1|) (-1190)) 36))) -(((-1183 |#1|) (-10 -7 (-15 -3561 ((-417 (-963 |#1|)) (-963 |#1|) (-1190))) (-15 -3561 ((-3 (-417 (-963 |#1|)) (-324 |#1|)) (-417 (-963 |#1|)) (-1190))) (-15 -3561 ((-417 (-963 |#1|)) (-963 |#1|) (-1105 (-963 |#1|)))) (-15 -3561 ((-3 (-417 (-963 |#1|)) (-324 |#1|)) (-417 (-963 |#1|)) (-1105 (-417 (-963 |#1|)))))) (-13 (-566) (-1051 (-574)))) (T -1183)) -((-3561 (*1 *2 *3 *4) (-12 (-5 *4 (-1105 (-417 (-963 *5)))) (-5 *3 (-417 (-963 *5))) (-4 *5 (-13 (-566) (-1051 (-574)))) (-5 *2 (-3 *3 (-324 *5))) (-5 *1 (-1183 *5)))) (-3561 (*1 *2 *3 *4) (-12 (-5 *4 (-1105 (-963 *5))) (-5 *3 (-963 *5)) (-4 *5 (-13 (-566) (-1051 (-574)))) (-5 *2 (-417 *3)) (-5 *1 (-1183 *5)))) (-3561 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-4 *5 (-13 (-566) (-1051 (-574)))) (-5 *2 (-3 (-417 (-963 *5)) (-324 *5))) (-5 *1 (-1183 *5)) (-5 *3 (-417 (-963 *5))))) (-3561 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-4 *5 (-13 (-566) (-1051 (-574)))) (-5 *2 (-417 (-963 *5))) (-5 *1 (-1183 *5)) (-5 *3 (-963 *5))))) -(-10 -7 (-15 -3561 ((-417 (-963 |#1|)) (-963 |#1|) (-1190))) (-15 -3561 ((-3 (-417 (-963 |#1|)) (-324 |#1|)) (-417 (-963 |#1|)) (-1190))) (-15 -3561 ((-417 (-963 |#1|)) (-963 |#1|) (-1105 (-963 |#1|)))) (-15 -3561 ((-3 (-417 (-963 |#1|)) (-324 |#1|)) (-417 (-963 |#1|)) (-1105 (-417 (-963 |#1|)))))) -((-1777 (((-1186 |#2|) (-1 |#2| |#1|) (-1186 |#1|)) 13))) -(((-1184 |#1| |#2|) (-10 -7 (-15 -1777 ((-1186 |#2|) (-1 |#2| |#1|) (-1186 |#1|)))) (-1062) (-1062)) (T -1184)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1186 *5)) (-4 *5 (-1062)) (-4 *6 (-1062)) (-5 *2 (-1186 *6)) (-5 *1 (-1184 *5 *6))))) -(-10 -7 (-15 -1777 ((-1186 |#2|) (-1 |#2| |#1|) (-1186 |#1|)))) -((-2827 (((-428 (-1186 (-417 |#4|))) (-1186 (-417 |#4|))) 51)) (-4220 (((-428 (-1186 (-417 |#4|))) (-1186 (-417 |#4|))) 52))) -(((-1185 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4220 ((-428 (-1186 (-417 |#4|))) (-1186 (-417 |#4|)))) (-15 -2827 ((-428 (-1186 (-417 |#4|))) (-1186 (-417 |#4|))))) (-803) (-860) (-462) (-960 |#3| |#1| |#2|)) (T -1185)) -((-2827 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-462)) (-4 *7 (-960 *6 *4 *5)) (-5 *2 (-428 (-1186 (-417 *7)))) (-5 *1 (-1185 *4 *5 *6 *7)) (-5 *3 (-1186 (-417 *7))))) (-4220 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-462)) (-4 *7 (-960 *6 *4 *5)) (-5 *2 (-428 (-1186 (-417 *7)))) (-5 *1 (-1185 *4 *5 *6 *7)) (-5 *3 (-1186 (-417 *7)))))) -(-10 -7 (-15 -4220 ((-428 (-1186 (-417 |#4|))) (-1186 (-417 |#4|)))) (-15 -2827 ((-428 (-1186 (-417 |#4|))) (-1186 (-417 |#4|))))) -((-2849 (((-112) $ $) 171)) (-3138 (((-112) $) 43)) (-2882 (((-1281 |#1|) $ (-781)) NIL)) (-4355 (((-654 (-1095)) $) NIL)) (-4176 (($ (-1186 |#1|)) NIL)) (-4194 (((-1186 $) $ (-1095)) 82) (((-1186 |#1|) $) 71)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-1575 (($ $) 164 (|has| |#1| (-566)))) (-2085 (((-112) $) NIL (|has| |#1| (-566)))) (-1757 (((-781) $) NIL) (((-781) $ (-654 (-1095))) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-1904 (($ $ $) 158 (|has| |#1| (-566)))) (-3972 (((-428 (-1186 $)) (-1186 $)) 95 (|has| |#1| (-920)))) (-2568 (($ $) NIL (|has| |#1| (-462)))) (-2827 (((-428 $) $) NIL (|has| |#1| (-462)))) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) 115 (|has| |#1| (-920)))) (-1600 (((-112) $ $) NIL (|has| |#1| (-372)))) (-1852 (($ $ (-781)) 61)) (-1690 (($ $ (-781)) 63)) (-3777 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-462)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-1095) "failed") $) NIL)) (-2206 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-1095) $) NIL)) (-1463 (($ $ $ (-1095)) NIL (|has| |#1| (-174))) ((|#1| $ $) 160 (|has| |#1| (-174)))) (-2786 (($ $ $) NIL (|has| |#1| (-372)))) (-1392 (($ $) 80)) (-2590 (((-699 (-574)) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1281 $)) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2797 (($ $ $) NIL (|has| |#1| (-372)))) (-3385 (($ $ $) 131)) (-1903 (($ $ $) NIL (|has| |#1| (-566)))) (-2853 (((-2 (|:| -1858 |#1|) (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#1| (-566)))) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-1569 (($ $) 165 (|has| |#1| (-462))) (($ $ (-1095)) NIL (|has| |#1| (-462)))) (-1380 (((-654 $) $) NIL)) (-2257 (((-112) $) NIL (|has| |#1| (-920)))) (-1661 (($ $ |#1| (-781) $) 69)) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1095) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1095) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-2212 (((-872) $ (-872)) 148)) (-3884 (((-781) $ $) NIL (|has| |#1| (-566)))) (-3199 (((-112) $) 48)) (-1322 (((-781) $) NIL)) (-2748 (((-3 $ "failed") $) NIL (|has| |#1| (-1165)))) (-4345 (($ (-1186 |#1|) (-1095)) 73) (($ (-1186 $) (-1095)) 89)) (-4240 (($ $ (-781)) 51)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3727 (((-654 $) $) NIL)) (-3869 (((-112) $) NIL)) (-4335 (($ |#1| (-781)) 87) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL)) (-2773 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $ (-1095)) NIL) (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 153)) (-1742 (((-781) $) NIL) (((-781) $ (-1095)) NIL) (((-654 (-781)) $ (-654 (-1095))) NIL)) (-3708 (($ (-1 (-781) (-781)) $) NIL)) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-4377 (((-1186 |#1|) $) NIL)) (-2717 (((-3 (-1095) "failed") $) NIL)) (-1359 (($ $) NIL)) (-1370 ((|#1| $) 76)) (-2832 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-4136 (((-1172) $) NIL)) (-3408 (((-2 (|:| -1411 $) (|:| -2766 $)) $ (-781)) 60)) (-2755 (((-3 (-654 $) "failed") $) NIL)) (-2415 (((-3 (-654 $) "failed") $) NIL)) (-2241 (((-3 (-2 (|:| |var| (-1095)) (|:| -3715 (-781))) "failed") $) NIL)) (-2379 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3818 (($) NIL (|has| |#1| (-1165)) CONST)) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) 50)) (-1349 ((|#1| $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 103 (|has| |#1| (-462)))) (-2873 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) 167 (|has| |#1| (-462)))) (-2289 (($ $ (-781) |#1| $) 123)) (-2560 (((-428 (-1186 $)) (-1186 $)) 101 (|has| |#1| (-920)))) (-2039 (((-428 (-1186 $)) (-1186 $)) 100 (|has| |#1| (-920)))) (-4220 (((-428 $) $) 108 (|has| |#1| (-920)))) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-2838 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-566)))) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2646 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1095) |#1|) NIL) (($ $ (-654 (-1095)) (-654 |#1|)) NIL) (($ $ (-1095) $) NIL) (($ $ (-654 (-1095)) (-654 $)) NIL)) (-1730 (((-781) $) NIL (|has| |#1| (-372)))) (-2199 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-417 $) (-417 $) (-417 $)) NIL (|has| |#1| (-566))) ((|#1| (-417 $) |#1|) NIL (|has| |#1| (-372))) (((-417 $) $ (-417 $)) NIL (|has| |#1| (-566)))) (-3001 (((-3 $ "failed") $ (-781)) 54)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 172 (|has| |#1| (-372)))) (-2872 (($ $ (-1095)) NIL (|has| |#1| (-174))) ((|#1| $) 156 (|has| |#1| (-174)))) (-3905 (($ $ (-1095)) NIL) (($ $ (-654 (-1095))) NIL) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL) (($ $ (-781)) NIL) (($ $) NIL) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4202 (((-781) $) 78) (((-781) $ (-1095)) NIL) (((-654 (-781)) $ (-654 (-1095))) NIL)) (-1836 (((-903 (-388)) $) NIL (-12 (|has| (-1095) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1095) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1095) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-3069 ((|#1| $) 162 (|has| |#1| (-462))) (($ $ (-1095)) NIL (|has| |#1| (-462)))) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-920))))) (-2484 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566))) (((-3 (-417 $) "failed") (-417 $) $) NIL (|has| |#1| (-566)))) (-2943 (((-872) $) 149) (($ (-574)) NIL) (($ |#1|) 77) (($ (-1095)) NIL) (($ (-417 (-574))) NIL (-2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-2530 (((-654 |#1|) $) NIL)) (-3087 ((|#1| $ (-781)) NIL) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL)) (-3298 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#1| (-920))) (|has| |#1| (-146))))) (-1364 (((-781)) NIL T CONST)) (-3772 (($ $ $ (-781)) 41 (|has| |#1| (-174)))) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2133 (($) 17 T CONST)) (-2145 (($) 19 T CONST)) (-3610 (($ $ (-1095)) NIL) (($ $ (-654 (-1095))) NIL) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL) (($ $ (-781)) NIL) (($ $) NIL) (($ $ (-1190)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2981 (((-112) $ $) 120)) (-3108 (($ $ |#1|) 173 (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) 90)) (** (($ $ (-932)) 14) (($ $ (-781)) 12)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 39) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 129) (($ $ |#1|) NIL))) -(((-1186 |#1|) (-13 (-1257 |#1|) (-10 -8 (-15 -2212 ((-872) $ (-872))) (-15 -2289 ($ $ (-781) |#1| $)))) (-1062)) (T -1186)) -((-2212 (*1 *2 *1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1186 *3)) (-4 *3 (-1062)))) (-2289 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1186 *3)) (-4 *3 (-1062))))) -(-13 (-1257 |#1|) (-10 -8 (-15 -2212 ((-872) $ (-872))) (-15 -2289 ($ $ (-781) |#1| $)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-4355 (((-654 (-1095)) $) NIL)) (-1488 (((-1190) $) 11)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-1575 (($ $) NIL (|has| |#1| (-566)))) (-2085 (((-112) $) NIL (|has| |#1| (-566)))) (-2052 (($ $ (-417 (-574))) NIL) (($ $ (-417 (-574)) (-417 (-574))) NIL)) (-1878 (((-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) NIL)) (-2364 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3524 (((-3 $ "failed") $ $) NIL)) (-2568 (($ $) NIL (|has| |#1| (-372)))) (-2827 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4229 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1600 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2343 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3623 (($ (-781) (-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) NIL)) (-2389 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-1181 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1188 |#1| |#2| |#3|) "failed") $) 36)) (-2206 (((-1181 |#1| |#2| |#3|) $) NIL) (((-1188 |#1| |#2| |#3|) $) NIL)) (-2786 (($ $ $) NIL (|has| |#1| (-372)))) (-1392 (($ $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2740 (((-417 (-574)) $) 59)) (-2797 (($ $ $) NIL (|has| |#1| (-372)))) (-4424 (($ (-417 (-574)) (-1181 |#1| |#2| |#3|)) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-2257 (((-112) $) NIL (|has| |#1| (-372)))) (-2892 (((-112) $) NIL)) (-3000 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3884 (((-417 (-574)) $) NIL) (((-417 (-574)) $ (-417 (-574))) NIL)) (-3199 (((-112) $) NIL)) (-3460 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-4240 (($ $ (-932)) NIL) (($ $ (-417 (-574))) NIL)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3869 (((-112) $) NIL)) (-4335 (($ |#1| (-417 (-574))) 20) (($ $ (-1095) (-417 (-574))) NIL) (($ $ (-654 (-1095)) (-654 (-417 (-574)))) NIL)) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-3119 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-2832 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3128 (((-1181 |#1| |#2| |#3|) $) 41)) (-4088 (((-3 (-1181 |#1| |#2| |#3|) "failed") $) NIL)) (-4413 (((-1181 |#1| |#2| |#3|) $) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL (|has| |#1| (-372)))) (-2379 (($ $) 39 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190)) NIL (-2818 (-12 (|has| |#1| (-15 -2379 (|#1| |#1| (-1190)))) (|has| |#1| (-15 -4355 ((-654 (-1190)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-970)) (|has| |#1| (-1216))))) (($ $ (-1277 |#2|)) 40 (|has| |#1| (-38 (-417 (-574)))))) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-372)))) (-2873 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4220 (((-428 $) $) NIL (|has| |#1| (-372)))) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-2533 (($ $ (-417 (-574))) NIL)) (-2838 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1609 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2646 (((-1170 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-1730 (((-781) $) NIL (|has| |#1| (-372)))) (-2199 ((|#1| $ (-417 (-574))) NIL) (($ $ $) NIL (|has| (-417 (-574)) (-1125)))) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#1| (-372)))) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-1277 |#2|)) 38)) (-4202 (((-417 (-574)) $) NIL)) (-2402 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2256 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2352 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1651 (($ $) NIL)) (-2943 (((-872) $) 62) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1181 |#1| |#2| |#3|)) 30) (($ (-1188 |#1| |#2| |#3|)) 31) (($ (-1277 |#2|)) 26) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-3087 ((|#1| $ (-417 (-574))) NIL)) (-3298 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1364 (((-781)) NIL T CONST)) (-3359 ((|#1| $) 12)) (-3284 (((-112) $ $) NIL)) (-2441 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2069 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2414 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3551 ((|#1| $ (-417 (-574))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2521 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2452 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2133 (($) 22 T CONST)) (-2145 (($) 16 T CONST)) (-3610 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) 24)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) -(((-1187 |#1| |#2| |#3|) (-13 (-1264 |#1| (-1181 |#1| |#2| |#3|)) (-1051 (-1188 |#1| |#2| |#3|)) (-626 (-1277 |#2|)) (-10 -8 (-15 -3905 ($ $ (-1277 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2379 ($ $ (-1277 |#2|))) |%noBranch|))) (-1062) (-1190) |#1|) (T -1187)) -((-3905 (*1 *1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1187 *3 *4 *5)) (-4 *3 (-1062)) (-14 *5 *3))) (-2379 (*1 *1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1187 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-14 *5 *3)))) -(-13 (-1264 |#1| (-1181 |#1| |#2| |#3|)) (-1051 (-1188 |#1| |#2| |#3|)) (-626 (-1277 |#2|)) (-10 -8 (-15 -3905 ($ $ (-1277 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2379 ($ $ (-1277 |#2|))) |%noBranch|))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 129)) (-4355 (((-654 (-1095)) $) NIL)) (-1488 (((-1190) $) 119)) (-4238 (((-1254 |#2| |#1|) $ (-781)) 69)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-1575 (($ $) NIL (|has| |#1| (-566)))) (-2085 (((-112) $) NIL (|has| |#1| (-566)))) (-2052 (($ $ (-781)) 85) (($ $ (-781) (-781)) 82)) (-1878 (((-1170 (-2 (|:| |k| (-781)) (|:| |c| |#1|))) $) 105)) (-2364 (($ $) 173 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-3524 (((-3 $ "failed") $ $) NIL)) (-4229 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2343 (($ $) 169 (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-3623 (($ (-1170 (-2 (|:| |k| (-781)) (|:| |c| |#1|)))) 118) (($ (-1170 |#1|)) 113)) (-2389 (($ $) 177 (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-3426 (($) NIL T CONST)) (-1392 (($ $) NIL)) (-3434 (((-3 $ "failed") $) 25)) (-2353 (($ $) 28)) (-4053 (((-963 |#1|) $ (-781)) 81) (((-963 |#1|) $ (-781) (-781)) 83)) (-2892 (((-112) $) 124)) (-3000 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3884 (((-781) $) 126) (((-781) $ (-781)) 128)) (-3199 (((-112) $) NIL)) (-3460 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-4240 (($ $ (-932)) NIL)) (-2503 (($ (-1 |#1| (-574)) $) NIL)) (-3869 (((-112) $) NIL)) (-4335 (($ |#1| (-781)) 13) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL)) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-3119 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-4136 (((-1172) $) NIL)) (-2379 (($ $) 133 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190)) NIL (-2818 (-12 (|has| |#1| (-15 -2379 (|#1| |#1| (-1190)))) (|has| |#1| (-15 -4355 ((-654 (-1190)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-970)) (|has| |#1| (-1216))))) (($ $ (-1277 |#2|)) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3966 (((-1133) $) NIL)) (-2533 (($ $ (-781)) 15)) (-2838 (((-3 $ "failed") $ $) 26 (|has| |#1| (-566)))) (-1609 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-2646 (((-1170 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-781)))))) (-2199 ((|#1| $ (-781)) 122) (($ $ $) 132 (|has| (-781) (-1125)))) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-1277 |#2|)) 31)) (-4202 (((-781) $) NIL)) (-2402 (($ $) 179 (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) 175 (|has| |#1| (-38 (-417 (-574)))))) (-2256 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2352 (($ $) 171 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-1651 (($ $) NIL)) (-2943 (((-872) $) 206) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566))) (($ |#1|) 130 (|has| |#1| (-174))) (($ (-1254 |#2| |#1|)) 55) (($ (-1277 |#2|)) 36)) (-2530 (((-1170 |#1|) $) 101)) (-3087 ((|#1| $ (-781)) 121)) (-3298 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1364 (((-781)) NIL T CONST)) (-3359 ((|#1| $) 58)) (-3284 (((-112) $ $) NIL)) (-2441 (($ $) 185 (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) 161 (|has| |#1| (-38 (-417 (-574)))))) (-2069 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2414 (($ $) 181 (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) 189 (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) 165 (|has| |#1| (-38 (-417 (-574)))))) (-3551 ((|#1| $ (-781)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-781)))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2521 (($ $) 191 (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) 167 (|has| |#1| (-38 (-417 (-574)))))) (-2452 (($ $) 187 (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) 163 (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) 183 (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) 159 (|has| |#1| (-38 (-417 (-574)))))) (-2133 (($) 17 T CONST)) (-2145 (($) 20 T CONST)) (-3610 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) 198)) (-3079 (($ $ $) 35)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ |#1|) 203 (|has| |#1| (-372))) (($ $ $) 138 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 141 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) -(((-1188 |#1| |#2| |#3|) (-13 (-1272 |#1|) (-10 -8 (-15 -2943 ($ (-1254 |#2| |#1|))) (-15 -4238 ((-1254 |#2| |#1|) $ (-781))) (-15 -2943 ($ (-1277 |#2|))) (-15 -3905 ($ $ (-1277 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2379 ($ $ (-1277 |#2|))) |%noBranch|))) (-1062) (-1190) |#1|) (T -1188)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-1254 *4 *3)) (-4 *3 (-1062)) (-14 *4 (-1190)) (-14 *5 *3) (-5 *1 (-1188 *3 *4 *5)))) (-4238 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1254 *5 *4)) (-5 *1 (-1188 *4 *5 *6)) (-4 *4 (-1062)) (-14 *5 (-1190)) (-14 *6 *4))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1188 *3 *4 *5)) (-4 *3 (-1062)) (-14 *5 *3))) (-3905 (*1 *1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1188 *3 *4 *5)) (-4 *3 (-1062)) (-14 *5 *3))) (-2379 (*1 *1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1188 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-14 *5 *3)))) -(-13 (-1272 |#1|) (-10 -8 (-15 -2943 ($ (-1254 |#2| |#1|))) (-15 -4238 ((-1254 |#2| |#1|) $ (-781))) (-15 -2943 ($ (-1277 |#2|))) (-15 -3905 ($ $ (-1277 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2379 ($ $ (-1277 |#2|))) |%noBranch|))) -((-2943 (((-872) $) 33) (($ (-1190)) 35)) (-2818 (($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 46)) (-2805 (($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 39) (($ $) 40)) (-2520 (($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 41)) (-2508 (($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 43)) (-2496 (($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 42)) (-2483 (($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 44)) (-2077 (($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 45))) -(((-1189) (-13 (-623 (-872)) (-10 -8 (-15 -2943 ($ (-1190))) (-15 -2520 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2496 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2508 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2483 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2818 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2077 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2805 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2805 ($ $))))) (T -1189)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-1189)))) (-2520 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189)))) (-5 *1 (-1189)))) (-2496 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189)))) (-5 *1 (-1189)))) (-2508 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189)))) (-5 *1 (-1189)))) (-2483 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189)))) (-5 *1 (-1189)))) (-2818 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189)))) (-5 *1 (-1189)))) (-2077 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189)))) (-5 *1 (-1189)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189)))) (-5 *1 (-1189)))) (-2805 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189)))) (-5 *1 (-1189)))) (-2805 (*1 *1 *1) (-5 *1 (-1189)))) -(-13 (-623 (-872)) (-10 -8 (-15 -2943 ($ (-1190))) (-15 -2520 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2496 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2508 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2483 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2818 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2077 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2805 ($ (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2805 ($ $)))) -((-2849 (((-112) $ $) NIL)) (-4392 (($ $ (-654 (-872))) 62)) (-3923 (($ $ (-654 (-872))) 60)) (-3249 (((-1172) $) 101)) (-4147 (((-2 (|:| -3888 (-654 (-872))) (|:| -3663 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -4286 (-654 (-872))) (|:| |args| (-654 (-872)))) $) 108)) (-2487 (((-112) $) 23)) (-3866 (($ $ (-654 (-654 (-872)))) 59) (($ $ (-2 (|:| -3888 (-654 (-872))) (|:| -3663 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -4286 (-654 (-872))) (|:| |args| (-654 (-872))))) 99)) (-3426 (($) 163 T CONST)) (-2049 (((-1286)) 135)) (-3625 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 69) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 76)) (-3790 (($) 122) (($ $) 131)) (-2032 (($ $) 100)) (-3659 (($ $ $) NIL)) (-4257 (($ $ $) NIL)) (-1788 (((-654 $) $) 136)) (-4136 (((-1172) $) 114)) (-3966 (((-1133) $) NIL)) (-2199 (($ $ (-654 (-872))) 61)) (-1836 (((-546) $) 48) (((-1190) $) 49) (((-903 (-574)) $) 80) (((-903 (-388)) $) 78)) (-2943 (((-872) $) 55) (($ (-1172)) 50)) (-3284 (((-112) $ $) NIL)) (-4002 (($ $ (-654 (-872))) 63)) (-1544 (((-1172) $) 34) (((-1172) $ (-112)) 35) (((-1286) (-832) $) 36) (((-1286) (-832) $ (-112)) 37)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 51)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) 52))) -(((-1190) (-13 (-860) (-624 (-546)) (-838) (-624 (-1190)) (-626 (-1172)) (-624 (-903 (-574))) (-624 (-903 (-388))) (-897 (-574)) (-897 (-388)) (-10 -8 (-15 -3790 ($)) (-15 -3790 ($ $)) (-15 -2049 ((-1286))) (-15 -2032 ($ $)) (-15 -2487 ((-112) $)) (-15 -4147 ((-2 (|:| -3888 (-654 (-872))) (|:| -3663 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -4286 (-654 (-872))) (|:| |args| (-654 (-872)))) $)) (-15 -3866 ($ $ (-654 (-654 (-872))))) (-15 -3866 ($ $ (-2 (|:| -3888 (-654 (-872))) (|:| -3663 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -4286 (-654 (-872))) (|:| |args| (-654 (-872)))))) (-15 -3923 ($ $ (-654 (-872)))) (-15 -4392 ($ $ (-654 (-872)))) (-15 -4002 ($ $ (-654 (-872)))) (-15 -2199 ($ $ (-654 (-872)))) (-15 -3249 ((-1172) $)) (-15 -1788 ((-654 $) $)) (-15 -3426 ($) -1706)))) (T -1190)) -((-3790 (*1 *1) (-5 *1 (-1190))) (-3790 (*1 *1 *1) (-5 *1 (-1190))) (-2049 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-1190)))) (-2032 (*1 *1 *1) (-5 *1 (-1190))) (-2487 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190)))) (-4147 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3888 (-654 (-872))) (|:| -3663 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -4286 (-654 (-872))) (|:| |args| (-654 (-872))))) (-5 *1 (-1190)))) (-3866 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-654 (-872)))) (-5 *1 (-1190)))) (-3866 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3888 (-654 (-872))) (|:| -3663 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -4286 (-654 (-872))) (|:| |args| (-654 (-872))))) (-5 *1 (-1190)))) (-3923 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1190)))) (-4392 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1190)))) (-4002 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1190)))) (-2199 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1190)))) (-3249 (*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-1190)))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-1190)))) (-3426 (*1 *1) (-5 *1 (-1190)))) -(-13 (-860) (-624 (-546)) (-838) (-624 (-1190)) (-626 (-1172)) (-624 (-903 (-574))) (-624 (-903 (-388))) (-897 (-574)) (-897 (-388)) (-10 -8 (-15 -3790 ($)) (-15 -3790 ($ $)) (-15 -2049 ((-1286))) (-15 -2032 ($ $)) (-15 -2487 ((-112) $)) (-15 -4147 ((-2 (|:| -3888 (-654 (-872))) (|:| -3663 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -4286 (-654 (-872))) (|:| |args| (-654 (-872)))) $)) (-15 -3866 ($ $ (-654 (-654 (-872))))) (-15 -3866 ($ $ (-2 (|:| -3888 (-654 (-872))) (|:| -3663 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -4286 (-654 (-872))) (|:| |args| (-654 (-872)))))) (-15 -3923 ($ $ (-654 (-872)))) (-15 -4392 ($ $ (-654 (-872)))) (-15 -4002 ($ $ (-654 (-872)))) (-15 -2199 ($ $ (-654 (-872)))) (-15 -3249 ((-1172) $)) (-15 -1788 ((-654 $) $)) (-15 -3426 ($) -1706))) -((-3399 (((-1281 |#1|) |#1| (-932)) 18) (((-1281 |#1|) (-654 |#1|)) 25))) -(((-1191 |#1|) (-10 -7 (-15 -3399 ((-1281 |#1|) (-654 |#1|))) (-15 -3399 ((-1281 |#1|) |#1| (-932)))) (-1062)) (T -1191)) -((-3399 (*1 *2 *3 *4) (-12 (-5 *4 (-932)) (-5 *2 (-1281 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-1062)))) (-3399 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-1062)) (-5 *2 (-1281 *4)) (-5 *1 (-1191 *4))))) -(-10 -7 (-15 -3399 ((-1281 |#1|) (-654 |#1|))) (-15 -3399 ((-1281 |#1|) |#1| (-932)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-1575 (($ $) NIL (|has| |#1| (-566)))) (-2085 (((-112) $) NIL (|has| |#1| (-566)))) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1051 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2206 (((-574) $) NIL (|has| |#1| (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1051 (-417 (-574))))) ((|#1| $) NIL)) (-1392 (($ $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-1569 (($ $) NIL (|has| |#1| (-462)))) (-1661 (($ $ |#1| (-984) $) NIL)) (-3199 (((-112) $) 17)) (-1322 (((-781) $) NIL)) (-3869 (((-112) $) NIL)) (-4335 (($ |#1| (-984)) NIL)) (-1742 (((-984) $) NIL)) (-3708 (($ (-1 (-984) (-984)) $) NIL)) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) NIL)) (-1349 ((|#1| $) NIL)) (-2289 (($ $ (-984) |#1| $) NIL (-12 (|has| (-984) (-132)) (|has| |#1| (-566))))) (-2838 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-4202 (((-984) $) NIL)) (-3069 ((|#1| $) NIL (|has| |#1| (-462)))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL (|has| |#1| (-566))) (($ |#1|) NIL) (($ (-417 (-574))) NIL (-2818 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1051 (-417 (-574))))))) (-2530 (((-654 |#1|) $) NIL)) (-3087 ((|#1| $ (-984)) NIL)) (-3298 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1364 (((-781)) NIL T CONST)) (-3772 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2133 (($) 10 T CONST)) (-2145 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) 21)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) -(((-1192 |#1|) (-13 (-334 |#1| (-984)) (-10 -8 (IF (|has| |#1| (-566)) (IF (|has| (-984) (-132)) (-15 -2289 ($ $ (-984) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4454)) (-6 -4454) |%noBranch|))) (-1062)) (T -1192)) -((-2289 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-984)) (-4 *2 (-132)) (-5 *1 (-1192 *3)) (-4 *3 (-566)) (-4 *3 (-1062))))) -(-13 (-334 |#1| (-984)) (-10 -8 (IF (|has| |#1| (-566)) (IF (|has| (-984) (-132)) (-15 -2289 ($ $ (-984) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4454)) (-6 -4454) |%noBranch|))) -((-3909 (((-1194) (-1190) $) 25)) (-3213 (($) 29)) (-2722 (((-3 (|:| |fst| (-444)) (|:| -2426 "void")) (-1190) $) 22)) (-4303 (((-1286) (-1190) (-3 (|:| |fst| (-444)) (|:| -2426 "void")) $) 41) (((-1286) (-1190) (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) 42) (((-1286) (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) 43)) (-3371 (((-1286) (-1190)) 58)) (-2886 (((-1286) (-1190) $) 55) (((-1286) (-1190)) 56) (((-1286)) 57)) (-3956 (((-1286) (-1190)) 37)) (-4213 (((-1190)) 36)) (-2672 (($) 34)) (-3159 (((-447) (-1190) (-447) (-1190) $) 45) (((-447) (-654 (-1190)) (-447) (-1190) $) 49) (((-447) (-1190) (-447)) 46) (((-447) (-1190) (-447) (-1190)) 50)) (-1865 (((-1190)) 35)) (-2943 (((-872) $) 28)) (-4013 (((-1286)) 30) (((-1286) (-1190)) 33)) (-1963 (((-654 (-1190)) (-1190) $) 24)) (-4330 (((-1286) (-1190) (-654 (-1190)) $) 38) (((-1286) (-1190) (-654 (-1190))) 39) (((-1286) (-654 (-1190))) 40))) -(((-1193) (-13 (-623 (-872)) (-10 -8 (-15 -3213 ($)) (-15 -4013 ((-1286))) (-15 -4013 ((-1286) (-1190))) (-15 -3159 ((-447) (-1190) (-447) (-1190) $)) (-15 -3159 ((-447) (-654 (-1190)) (-447) (-1190) $)) (-15 -3159 ((-447) (-1190) (-447))) (-15 -3159 ((-447) (-1190) (-447) (-1190))) (-15 -3956 ((-1286) (-1190))) (-15 -1865 ((-1190))) (-15 -4213 ((-1190))) (-15 -4330 ((-1286) (-1190) (-654 (-1190)) $)) (-15 -4330 ((-1286) (-1190) (-654 (-1190)))) (-15 -4330 ((-1286) (-654 (-1190)))) (-15 -4303 ((-1286) (-1190) (-3 (|:| |fst| (-444)) (|:| -2426 "void")) $)) (-15 -4303 ((-1286) (-1190) (-3 (|:| |fst| (-444)) (|:| -2426 "void")))) (-15 -4303 ((-1286) (-3 (|:| |fst| (-444)) (|:| -2426 "void")))) (-15 -2886 ((-1286) (-1190) $)) (-15 -2886 ((-1286) (-1190))) (-15 -2886 ((-1286))) (-15 -3371 ((-1286) (-1190))) (-15 -2672 ($)) (-15 -2722 ((-3 (|:| |fst| (-444)) (|:| -2426 "void")) (-1190) $)) (-15 -1963 ((-654 (-1190)) (-1190) $)) (-15 -3909 ((-1194) (-1190) $))))) (T -1193)) -((-3213 (*1 *1) (-5 *1 (-1193))) (-4013 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-1193)))) (-4013 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-1286)) (-5 *1 (-1193)))) (-3159 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-447)) (-5 *3 (-1190)) (-5 *1 (-1193)))) (-3159 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-447)) (-5 *3 (-654 (-1190))) (-5 *4 (-1190)) (-5 *1 (-1193)))) (-3159 (*1 *2 *3 *2) (-12 (-5 *2 (-447)) (-5 *3 (-1190)) (-5 *1 (-1193)))) (-3159 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-1190)) (-5 *1 (-1193)))) (-3956 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-1286)) (-5 *1 (-1193)))) (-1865 (*1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-1193)))) (-4213 (*1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-1193)))) (-4330 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-654 (-1190))) (-5 *3 (-1190)) (-5 *2 (-1286)) (-5 *1 (-1193)))) (-4330 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-1190))) (-5 *3 (-1190)) (-5 *2 (-1286)) (-5 *1 (-1193)))) (-4330 (*1 *2 *3) (-12 (-5 *3 (-654 (-1190))) (-5 *2 (-1286)) (-5 *1 (-1193)))) (-4303 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1190)) (-5 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-5 *2 (-1286)) (-5 *1 (-1193)))) (-4303 (*1 *2 *3 *4) (-12 (-5 *3 (-1190)) (-5 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-5 *2 (-1286)) (-5 *1 (-1193)))) (-4303 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-5 *2 (-1286)) (-5 *1 (-1193)))) (-2886 (*1 *2 *3 *1) (-12 (-5 *3 (-1190)) (-5 *2 (-1286)) (-5 *1 (-1193)))) (-2886 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-1286)) (-5 *1 (-1193)))) (-2886 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-1193)))) (-3371 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-1286)) (-5 *1 (-1193)))) (-2672 (*1 *1) (-5 *1 (-1193))) (-2722 (*1 *2 *3 *1) (-12 (-5 *3 (-1190)) (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-5 *1 (-1193)))) (-1963 (*1 *2 *3 *1) (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-1193)) (-5 *3 (-1190)))) (-3909 (*1 *2 *3 *1) (-12 (-5 *3 (-1190)) (-5 *2 (-1194)) (-5 *1 (-1193))))) -(-13 (-623 (-872)) (-10 -8 (-15 -3213 ($)) (-15 -4013 ((-1286))) (-15 -4013 ((-1286) (-1190))) (-15 -3159 ((-447) (-1190) (-447) (-1190) $)) (-15 -3159 ((-447) (-654 (-1190)) (-447) (-1190) $)) (-15 -3159 ((-447) (-1190) (-447))) (-15 -3159 ((-447) (-1190) (-447) (-1190))) (-15 -3956 ((-1286) (-1190))) (-15 -1865 ((-1190))) (-15 -4213 ((-1190))) (-15 -4330 ((-1286) (-1190) (-654 (-1190)) $)) (-15 -4330 ((-1286) (-1190) (-654 (-1190)))) (-15 -4330 ((-1286) (-654 (-1190)))) (-15 -4303 ((-1286) (-1190) (-3 (|:| |fst| (-444)) (|:| -2426 "void")) $)) (-15 -4303 ((-1286) (-1190) (-3 (|:| |fst| (-444)) (|:| -2426 "void")))) (-15 -4303 ((-1286) (-3 (|:| |fst| (-444)) (|:| -2426 "void")))) (-15 -2886 ((-1286) (-1190) $)) (-15 -2886 ((-1286) (-1190))) (-15 -2886 ((-1286))) (-15 -3371 ((-1286) (-1190))) (-15 -2672 ($)) (-15 -2722 ((-3 (|:| |fst| (-444)) (|:| -2426 "void")) (-1190) $)) (-15 -1963 ((-654 (-1190)) (-1190) $)) (-15 -3909 ((-1194) (-1190) $)))) -((-2004 (((-654 (-654 (-3 (|:| -2032 (-1190)) (|:| -2200 (-654 (-3 (|:| S (-1190)) (|:| P (-963 (-574))))))))) $) 66)) (-1902 (((-654 (-3 (|:| -2032 (-1190)) (|:| -2200 (-654 (-3 (|:| S (-1190)) (|:| P (-963 (-574)))))))) (-444) $) 47)) (-3723 (($ (-654 (-2 (|:| -3693 (-1190)) (|:| -1908 (-447))))) 17)) (-3371 (((-1286) $) 73)) (-2193 (((-654 (-1190)) $) 22)) (-2368 (((-1117) $) 60)) (-3322 (((-447) (-1190) $) 27)) (-3675 (((-654 (-1190)) $) 30)) (-2672 (($) 19)) (-3159 (((-447) (-654 (-1190)) (-447) $) 25) (((-447) (-1190) (-447) $) 24)) (-2943 (((-872) $) 9) (((-1203 (-1190) (-447)) $) 13))) -(((-1194) (-13 (-623 (-872)) (-10 -8 (-15 -2943 ((-1203 (-1190) (-447)) $)) (-15 -2672 ($)) (-15 -3159 ((-447) (-654 (-1190)) (-447) $)) (-15 -3159 ((-447) (-1190) (-447) $)) (-15 -3322 ((-447) (-1190) $)) (-15 -2193 ((-654 (-1190)) $)) (-15 -1902 ((-654 (-3 (|:| -2032 (-1190)) (|:| -2200 (-654 (-3 (|:| S (-1190)) (|:| P (-963 (-574)))))))) (-444) $)) (-15 -3675 ((-654 (-1190)) $)) (-15 -2004 ((-654 (-654 (-3 (|:| -2032 (-1190)) (|:| -2200 (-654 (-3 (|:| S (-1190)) (|:| P (-963 (-574))))))))) $)) (-15 -2368 ((-1117) $)) (-15 -3371 ((-1286) $)) (-15 -3723 ($ (-654 (-2 (|:| -3693 (-1190)) (|:| -1908 (-447))))))))) (T -1194)) -((-2943 (*1 *2 *1) (-12 (-5 *2 (-1203 (-1190) (-447))) (-5 *1 (-1194)))) (-2672 (*1 *1) (-5 *1 (-1194))) (-3159 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-447)) (-5 *3 (-654 (-1190))) (-5 *1 (-1194)))) (-3159 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-447)) (-5 *3 (-1190)) (-5 *1 (-1194)))) (-3322 (*1 *2 *3 *1) (-12 (-5 *3 (-1190)) (-5 *2 (-447)) (-5 *1 (-1194)))) (-2193 (*1 *2 *1) (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-1194)))) (-1902 (*1 *2 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-654 (-3 (|:| -2032 (-1190)) (|:| -2200 (-654 (-3 (|:| S (-1190)) (|:| P (-963 (-574))))))))) (-5 *1 (-1194)))) (-3675 (*1 *2 *1) (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-1194)))) (-2004 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-3 (|:| -2032 (-1190)) (|:| -2200 (-654 (-3 (|:| S (-1190)) (|:| P (-963 (-574)))))))))) (-5 *1 (-1194)))) (-2368 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1194)))) (-3371 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-1194)))) (-3723 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3693 (-1190)) (|:| -1908 (-447))))) (-5 *1 (-1194))))) -(-13 (-623 (-872)) (-10 -8 (-15 -2943 ((-1203 (-1190) (-447)) $)) (-15 -2672 ($)) (-15 -3159 ((-447) (-654 (-1190)) (-447) $)) (-15 -3159 ((-447) (-1190) (-447) $)) (-15 -3322 ((-447) (-1190) $)) (-15 -2193 ((-654 (-1190)) $)) (-15 -1902 ((-654 (-3 (|:| -2032 (-1190)) (|:| -2200 (-654 (-3 (|:| S (-1190)) (|:| P (-963 (-574)))))))) (-444) $)) (-15 -3675 ((-654 (-1190)) $)) (-15 -2004 ((-654 (-654 (-3 (|:| -2032 (-1190)) (|:| -2200 (-654 (-3 (|:| S (-1190)) (|:| P (-963 (-574))))))))) $)) (-15 -2368 ((-1117) $)) (-15 -3371 ((-1286) $)) (-15 -3723 ($ (-654 (-2 (|:| -3693 (-1190)) (|:| -1908 (-447)))))))) -((-2849 (((-112) $ $) NIL)) (-1696 (((-3 (-574) "failed") $) 29) (((-3 (-227) "failed") $) 35) (((-3 (-516) "failed") $) 43) (((-3 (-1172) "failed") $) 47)) (-2206 (((-574) $) 30) (((-227) $) 36) (((-516) $) 40) (((-1172) $) 48)) (-2001 (((-112) $) 53)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2409 (((-3 (-574) (-227) (-516) (-1172) $) $) 55)) (-1768 (((-654 $) $) 57)) (-1836 (((-1117) $) 24) (($ (-1117)) 25)) (-4104 (((-112) $) 56)) (-2943 (((-872) $) 23) (($ (-574)) 26) (($ (-227)) 32) (($ (-516)) 38) (($ (-1172)) 44) (((-546) $) 59) (((-574) $) 31) (((-227) $) 37) (((-516) $) 41) (((-1172) $) 49)) (-2122 (((-112) $ (|[\|\|]| (-574))) 10) (((-112) $ (|[\|\|]| (-227))) 13) (((-112) $ (|[\|\|]| (-516))) 19) (((-112) $ (|[\|\|]| (-1172))) 16)) (-1786 (($ (-516) (-654 $)) 51) (($ $ (-654 $)) 52)) (-3284 (((-112) $ $) NIL)) (-1331 (((-574) $) 27) (((-227) $) 33) (((-516) $) 39) (((-1172) $) 45)) (-2981 (((-112) $ $) 7))) -(((-1195) (-13 (-1276) (-1113) (-1051 (-574)) (-1051 (-227)) (-1051 (-516)) (-1051 (-1172)) (-623 (-546)) (-10 -8 (-15 -1836 ((-1117) $)) (-15 -1836 ($ (-1117))) (-15 -2943 ((-574) $)) (-15 -1331 ((-574) $)) (-15 -2943 ((-227) $)) (-15 -1331 ((-227) $)) (-15 -2943 ((-516) $)) (-15 -1331 ((-516) $)) (-15 -2943 ((-1172) $)) (-15 -1331 ((-1172) $)) (-15 -1786 ($ (-516) (-654 $))) (-15 -1786 ($ $ (-654 $))) (-15 -2001 ((-112) $)) (-15 -2409 ((-3 (-574) (-227) (-516) (-1172) $) $)) (-15 -1768 ((-654 $) $)) (-15 -4104 ((-112) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-574)))) (-15 -2122 ((-112) $ (|[\|\|]| (-227)))) (-15 -2122 ((-112) $ (|[\|\|]| (-516)))) (-15 -2122 ((-112) $ (|[\|\|]| (-1172))))))) (T -1195)) -((-1836 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1195)))) (-1836 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1195)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1195)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1195)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1195)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1195)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1195)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1195)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-1195)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-1195)))) (-1786 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-654 (-1195))) (-5 *1 (-1195)))) (-1786 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-1195))) (-5 *1 (-1195)))) (-2001 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195)))) (-2409 (*1 *2 *1) (-12 (-5 *2 (-3 (-574) (-227) (-516) (-1172) (-1195))) (-5 *1 (-1195)))) (-1768 (*1 *2 *1) (-12 (-5 *2 (-654 (-1195))) (-5 *1 (-1195)))) (-4104 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195)))) (-2122 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-574))) (-5 *2 (-112)) (-5 *1 (-1195)))) (-2122 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1195)))) (-2122 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)) (-5 *1 (-1195)))) (-2122 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1172))) (-5 *2 (-112)) (-5 *1 (-1195))))) -(-13 (-1276) (-1113) (-1051 (-574)) (-1051 (-227)) (-1051 (-516)) (-1051 (-1172)) (-623 (-546)) (-10 -8 (-15 -1836 ((-1117) $)) (-15 -1836 ($ (-1117))) (-15 -2943 ((-574) $)) (-15 -1331 ((-574) $)) (-15 -2943 ((-227) $)) (-15 -1331 ((-227) $)) (-15 -2943 ((-516) $)) (-15 -1331 ((-516) $)) (-15 -2943 ((-1172) $)) (-15 -1331 ((-1172) $)) (-15 -1786 ($ (-516) (-654 $))) (-15 -1786 ($ $ (-654 $))) (-15 -2001 ((-112) $)) (-15 -2409 ((-3 (-574) (-227) (-516) (-1172) $) $)) (-15 -1768 ((-654 $) $)) (-15 -4104 ((-112) $)) (-15 -2122 ((-112) $ (|[\|\|]| (-574)))) (-15 -2122 ((-112) $ (|[\|\|]| (-227)))) (-15 -2122 ((-112) $ (|[\|\|]| (-516)))) (-15 -2122 ((-112) $ (|[\|\|]| (-1172)))))) -((-2849 (((-112) $ $) NIL)) (-1487 (((-781)) 22)) (-3426 (($) 12 T CONST)) (-2820 (($) 26)) (-3659 (($ $ $) NIL) (($) 19 T CONST)) (-4257 (($ $ $) NIL) (($) 20 T CONST)) (-4115 (((-932) $) 24)) (-4136 (((-1172) $) NIL)) (-2576 (($ (-932)) 23)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) NIL))) -(((-1196 |#1|) (-13 (-854) (-10 -8 (-15 -3426 ($) -1706))) (-932)) (T -1196)) -((-3426 (*1 *1) (-12 (-5 *1 (-1196 *2)) (-14 *2 (-932))))) -(-13 (-854) (-10 -8 (-15 -3426 ($) -1706))) +((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-2001 ((|#1| $) 45)) (-3450 (((-112) $ (-780)) 8)) (-2579 (($) 7 T CONST)) (-2948 ((|#1| |#1| $) 47)) (-3072 ((|#1| $) 46)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-2487 ((|#1| $) 40)) (-3181 (($ |#1| $) 41)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-3815 ((|#1| $) 42)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-4302 (((-780) $) 44)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-2679 (($ (-653 |#1|)) 43)) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-1133 |#1|) (-141) (-1230)) (T -1133)) +((-2948 (*1 *2 *2 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1230)))) (-3072 (*1 *2 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1230)))) (-2001 (*1 *2 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1230)))) (-4302 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1230)) (-5 *2 (-780))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4455) (-15 -2948 (|t#1| |t#1| $)) (-15 -3072 (|t#1| $)) (-15 -2001 (|t#1| $)) (-15 -4302 ((-780) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) +((-1635 ((|#3| $) 87)) (-1695 (((-3 (-573) "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-2205 (((-573) $) NIL) (((-416 (-573)) $) NIL) ((|#3| $) 47)) (-2759 (((-698 (-573)) (-1280 $)) NIL) (((-698 (-573)) (-698 $)) NIL) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL) (((-2 (|:| -1423 (-698 |#3|)) (|:| |vec| (-1280 |#3|))) (-698 $) (-1280 $)) 84) (((-698 |#3|) (-698 $)) 76) (((-698 |#3|) (-1280 $)) NIL)) (-3904 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189)) NIL) (($ $) NIL) (($ $ (-780)) NIL)) (-3856 ((|#3| $) 89)) (-3372 ((|#4| $) 43)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ (-416 (-573))) NIL) (($ |#3|) 25)) (** (($ $ (-931)) NIL) (($ $ (-780)) 24) (($ $ (-573)) 95))) +(((-1134 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-573))) (-15 -3856 (|#3| |#1|)) (-15 -1635 (|#3| |#1|)) (-15 -3372 (|#4| |#1|)) (-15 -2759 ((-698 |#3|) (-1280 |#1|))) (-15 -2759 ((-698 |#3|) (-698 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 |#3|)) (|:| |vec| (-1280 |#3|))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-698 (-573)) (-698 |#1|))) (-15 -2759 ((-698 (-573)) (-1280 |#1|))) (-15 -2942 (|#1| |#3|)) (-15 -1695 ((-3 |#3| "failed") |#1|)) (-15 -2205 (|#3| |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -3904 (|#1| |#1| (-1 |#3| |#3|) (-780))) (-15 -3904 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2942 (|#1| (-573))) (-15 ** (|#1| |#1| (-780))) (-15 ** (|#1| |#1| (-931))) (-15 -2942 ((-871) |#1|))) (-1135 |#2| |#3| |#4| |#5|) (-780) (-1061) (-243 |#2| |#3|) (-243 |#2| |#3|)) (T -1134)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-573))) (-15 -3856 (|#3| |#1|)) (-15 -1635 (|#3| |#1|)) (-15 -3372 (|#4| |#1|)) (-15 -2759 ((-698 |#3|) (-1280 |#1|))) (-15 -2759 ((-698 |#3|) (-698 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 |#3|)) (|:| |vec| (-1280 |#3|))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 |#1|) (-1280 |#1|))) (-15 -2759 ((-698 (-573)) (-698 |#1|))) (-15 -2759 ((-698 (-573)) (-1280 |#1|))) (-15 -2942 (|#1| |#3|)) (-15 -1695 ((-3 |#3| "failed") |#1|)) (-15 -2205 (|#3| |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -3904 (|#1| |#1| (-1 |#3| |#3|) (-780))) (-15 -3904 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2942 (|#1| (-573))) (-15 ** (|#1| |#1| (-780))) (-15 ** (|#1| |#1| (-931))) (-15 -2942 ((-871) |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-1635 ((|#2| $) 78)) (-2932 (((-112) $) 120)) (-2983 (((-3 $ "failed") $ $) 20)) (-1916 (((-112) $) 118)) (-3450 (((-112) $ (-780)) 110)) (-1681 (($ |#2|) 81)) (-2579 (($) 18 T CONST)) (-2801 (($ $) 137 (|has| |#2| (-314)))) (-3229 ((|#3| $ (-573)) 132)) (-1695 (((-3 (-573) "failed") $) 95 (|has| |#2| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) 92 (|has| |#2| (-1050 (-416 (-573))))) (((-3 |#2| "failed") $) 89)) (-2205 (((-573) $) 94 (|has| |#2| (-1050 (-573)))) (((-416 (-573)) $) 91 (|has| |#2| (-1050 (-416 (-573))))) ((|#2| $) 90)) (-2759 (((-698 (-573)) (-1280 $)) 87 (|has| |#2| (-648 (-573)))) (((-698 (-573)) (-698 $)) 86 (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 85 (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) 84) (((-698 |#2|) (-698 $)) 83) (((-698 |#2|) (-1280 $)) 82)) (-2232 (((-3 $ "failed") $) 37)) (-3583 (((-780) $) 138 (|has| |#2| (-565)))) (-2384 ((|#2| $ (-573) (-573)) 130)) (-1863 (((-653 |#2|) $) 103 (|has| $ (-6 -4455)))) (-1959 (((-112) $) 35)) (-2928 (((-780) $) 139 (|has| |#2| (-565)))) (-4209 (((-653 |#4|) $) 140 (|has| |#2| (-565)))) (-2188 (((-780) $) 126)) (-2197 (((-780) $) 127)) (-2078 (((-112) $ (-780)) 111)) (-2431 ((|#2| $) 73 (|has| |#2| (-6 (-4457 "*"))))) (-1319 (((-573) $) 122)) (-4011 (((-573) $) 124)) (-3214 (((-653 |#2|) $) 102 (|has| $ (-6 -4455)))) (-1547 (((-112) |#2| $) 100 (-12 (|has| |#2| (-1112)) (|has| $ (-6 -4455))))) (-3124 (((-573) $) 123)) (-2326 (((-573) $) 125)) (-2913 (($ (-653 (-653 |#2|))) 117)) (-2446 (($ (-1 |#2| |#2|) $) 107 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#2| |#2| |#2|) $ $) 134) (($ (-1 |#2| |#2|) $) 108)) (-1612 (((-653 (-653 |#2|)) $) 128)) (-2673 (((-112) $ (-780)) 112)) (-3180 (((-1171) $) 10)) (-3299 (((-3 $ "failed") $) 72 (|has| |#2| (-371)))) (-3965 (((-1132) $) 11)) (-2837 (((-3 $ "failed") $ |#2|) 135 (|has| |#2| (-565)))) (-1575 (((-112) (-1 (-112) |#2|) $) 105 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#2|))) 99 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) 98 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) 97 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) 96 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))))) (-1885 (((-112) $ $) 116)) (-3811 (((-112) $) 113)) (-3508 (($) 114)) (-2198 ((|#2| $ (-573) (-573) |#2|) 131) ((|#2| $ (-573) (-573)) 129)) (-3904 (($ $ (-1 |#2| |#2|)) 57) (($ $ (-1 |#2| |#2|) (-780)) 56) (($ $ (-653 (-1189)) (-653 (-780))) 49 (|has| |#2| (-910 (-1189)))) (($ $ (-1189) (-780)) 48 (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189))) 47 (|has| |#2| (-910 (-1189)))) (($ $ (-1189)) 46 (|has| |#2| (-910 (-1189)))) (($ $) 45 (|has| |#2| (-238))) (($ $ (-780)) 43 (|has| |#2| (-238)))) (-3856 ((|#2| $) 77)) (-1633 (($ (-653 |#2|)) 80)) (-2530 (((-112) $) 119)) (-3372 ((|#3| $) 79)) (-2529 ((|#2| $) 74 (|has| |#2| (-6 (-4457 "*"))))) (-3974 (((-780) (-1 (-112) |#2|) $) 104 (|has| $ (-6 -4455))) (((-780) |#2| $) 101 (-12 (|has| |#2| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 115)) (-1921 ((|#4| $ (-573)) 133)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ (-416 (-573))) 93 (|has| |#2| (-1050 (-416 (-573))))) (($ |#2|) 88)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-1646 (((-112) (-1 (-112) |#2|) $) 106 (|has| $ (-6 -4455)))) (-1494 (((-112) $) 121)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-1 |#2| |#2|)) 55) (($ $ (-1 |#2| |#2|) (-780)) 54) (($ $ (-653 (-1189)) (-653 (-780))) 53 (|has| |#2| (-910 (-1189)))) (($ $ (-1189) (-780)) 52 (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189))) 51 (|has| |#2| (-910 (-1189)))) (($ $ (-1189)) 50 (|has| |#2| (-910 (-1189)))) (($ $) 44 (|has| |#2| (-238))) (($ $ (-780)) 42 (|has| |#2| (-238)))) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#2|) 136 (|has| |#2| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 71 (|has| |#2| (-371)))) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#2|) 142) (($ |#2| $) 141) ((|#4| $ |#4|) 76) ((|#3| |#3| $) 75)) (-2862 (((-780) $) 109 (|has| $ (-6 -4455))))) +(((-1135 |#1| |#2| |#3| |#4|) (-141) (-780) (-1061) (-243 |t#1| |t#2|) (-243 |t#1| |t#2|)) (T -1135)) +((-1681 (*1 *1 *2) (-12 (-4 *2 (-1061)) (-4 *1 (-1135 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)))) (-1633 (*1 *1 *2) (-12 (-5 *2 (-653 *4)) (-4 *4 (-1061)) (-4 *1 (-1135 *3 *4 *5 *6)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)))) (-3372 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *4 *2 *5)) (-4 *4 (-1061)) (-4 *5 (-243 *3 *4)) (-4 *2 (-243 *3 *4)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (-4 *2 (-1061)))) (-3856 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (-4 *2 (-1061)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1135 *3 *4 *5 *2)) (-4 *4 (-1061)) (-4 *5 (-243 *3 *4)) (-4 *2 (-243 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1135 *3 *4 *2 *5)) (-4 *4 (-1061)) (-4 *2 (-243 *3 *4)) (-4 *5 (-243 *3 *4)))) (-2529 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4457 "*"))) (-4 *2 (-1061)))) (-2431 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4457 "*"))) (-4 *2 (-1061)))) (-3299 (*1 *1 *1) (|partial| -12 (-4 *1 (-1135 *2 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-243 *2 *3)) (-4 *5 (-243 *2 *3)) (-4 *3 (-371)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-1135 *3 *4 *5 *6)) (-4 *4 (-1061)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)) (-4 *4 (-371))))) +(-13 (-233 |t#2|) (-111 |t#2| |t#2|) (-1065 |t#1| |t#1| |t#2| |t#3| |t#4|) (-420 |t#2|) (-385 |t#2|) (-10 -8 (IF (|has| |t#2| (-174)) (-6 (-726 |t#2|)) |%noBranch|) (-15 -1681 ($ |t#2|)) (-15 -1633 ($ (-653 |t#2|))) (-15 -3372 (|t#3| $)) (-15 -1635 (|t#2| $)) (-15 -3856 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4457 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -2529 (|t#2| $)) (-15 -2431 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-371)) (PROGN (-15 -3299 ((-3 $ "failed") $)) (-15 ** ($ $ (-573)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4457 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-625 #0=(-416 (-573))) |has| |#2| (-1050 (-416 (-573)))) ((-625 (-573)) . T) ((-625 |#2|) . T) ((-622 (-871)) . T) ((-235 $) |has| |#2| (-238)) ((-233 |#2|) . T) ((-238) |has| |#2| (-238)) ((-237) |has| |#2| (-238)) ((-316 |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((-385 |#2|) . T) ((-420 |#2|) . T) ((-498 |#2|) . T) ((-523 |#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((-655 (-573)) . T) ((-655 |#2|) . T) ((-655 $) . T) ((-657 #1=(-573)) |has| |#2| (-648 (-573))) ((-657 |#2|) . T) ((-657 $) . T) ((-649 |#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-6 (-4457 "*")))) ((-648 #1#) |has| |#2| (-648 (-573))) ((-648 |#2|) . T) ((-726 |#2|) -2817 (|has| |#2| (-174)) (|has| |#2| (-6 (-4457 "*")))) ((-735) . T) ((-910 (-1189)) |has| |#2| (-910 (-1189))) ((-1065 |#1| |#1| |#2| |#3| |#4|) . T) ((-1050 #0#) |has| |#2| (-1050 (-416 (-573)))) ((-1050 (-573)) |has| |#2| (-1050 (-573))) ((-1050 |#2|) . T) ((-1063 |#2|) . T) ((-1068 |#2|) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1230) . T)) +((-2207 ((|#4| |#4|) 81)) (-4126 ((|#4| |#4|) 76)) (-2684 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3914 (-653 |#3|))) |#4| |#3|) 91)) (-4358 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-1892 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78))) +(((-1136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4126 (|#4| |#4|)) (-15 -1892 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2207 (|#4| |#4|)) (-15 -4358 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2684 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3914 (-653 |#3|))) |#4| |#3|))) (-314) (-381 |#1|) (-381 |#1|) (-696 |#1| |#2| |#3|)) (T -1136)) +((-2684 (*1 *2 *3 *4) (-12 (-4 *5 (-314)) (-4 *6 (-381 *5)) (-4 *4 (-381 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) (-5 *1 (-1136 *5 *6 *4 *3)) (-4 *3 (-696 *5 *6 *4)))) (-4358 (*1 *2 *3) (-12 (-4 *4 (-314)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1136 *4 *5 *6 *3)) (-4 *3 (-696 *4 *5 *6)))) (-2207 (*1 *2 *2) (-12 (-4 *3 (-314)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *1 (-1136 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5)))) (-1892 (*1 *2 *3) (-12 (-4 *4 (-314)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1136 *4 *5 *6 *3)) (-4 *3 (-696 *4 *5 *6)))) (-4126 (*1 *2 *2) (-12 (-4 *3 (-314)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *1 (-1136 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5))))) +(-10 -7 (-15 -4126 (|#4| |#4|)) (-15 -1892 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2207 (|#4| |#4|)) (-15 -4358 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2684 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3914 (-653 |#3|))) |#4| |#3|))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 18)) (-4354 (((-653 |#2|) $) 174)) (-4193 (((-1185 $) $ |#2|) 60) (((-1185 |#1|) $) 49)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 116 (|has| |#1| (-565)))) (-2456 (($ $) 118 (|has| |#1| (-565)))) (-1345 (((-112) $) 120 (|has| |#1| (-565)))) (-2769 (((-780) $) NIL) (((-780) $ (-653 |#2|)) 213)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4285 (($ $) NIL (|has| |#1| (-461)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) 167) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 |#2| "failed") $) NIL)) (-2205 ((|#1| $) 165) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-573) $) NIL (|has| |#1| (-1050 (-573)))) ((|#2| $) NIL)) (-2277 (($ $ $ |#2|) NIL (|has| |#1| (-174)))) (-1391 (($ $) 217)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) NIL) (((-698 |#1|) (-698 $)) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) 90)) (-3246 (($ $) NIL (|has| |#1| (-461))) (($ $ |#2|) NIL (|has| |#1| (-461)))) (-1379 (((-653 $) $) NIL)) (-2696 (((-112) $) NIL (|has| |#1| (-919)))) (-2343 (($ $ |#1| (-540 |#2|) $) NIL)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| |#1| (-896 (-387))) (|has| |#2| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| |#1| (-896 (-573))) (|has| |#2| (-896 (-573)))))) (-1959 (((-112) $) 20)) (-3772 (((-780) $) 30)) (-4344 (($ (-1185 |#1|) |#2|) 54) (($ (-1185 $) |#2|) 71)) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) 38)) (-4334 (($ |#1| (-540 |#2|)) 78) (($ $ |#2| (-780)) 58) (($ $ (-653 |#2|) (-653 (-780))) NIL)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ |#2|) NIL)) (-4036 (((-540 |#2|) $) 205) (((-780) $ |#2|) 206) (((-653 (-780)) $ (-653 |#2|)) 207)) (-1382 (($ (-1 (-540 |#2|) (-540 |#2|)) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) 128)) (-1453 (((-3 |#2| "failed") $) 177)) (-1358 (($ $) 216)) (-1369 ((|#1| $) 43)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-3180 (((-1171) $) NIL)) (-4082 (((-3 (-653 $) "failed") $) NIL)) (-2586 (((-3 (-653 $) "failed") $) NIL)) (-2573 (((-3 (-2 (|:| |var| |#2|) (|:| -3907 (-780))) "failed") $) NIL)) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) 39)) (-1348 ((|#1| $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 148 (|has| |#1| (-461)))) (-2872 (($ (-653 $)) 153 (|has| |#1| (-461))) (($ $ $) 138 (|has| |#1| (-461)))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#1| (-919)))) (-4218 (((-427 $) $) NIL (|has| |#1| (-919)))) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-565)))) (-2645 (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-653 |#2|) (-653 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-653 |#2|) (-653 $)) 194)) (-3592 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-3904 (($ $ |#2|) 215) (($ $ (-653 |#2|)) NIL) (($ $ |#2| (-780)) NIL) (($ $ (-653 |#2|) (-653 (-780))) NIL)) (-2565 (((-540 |#2|) $) 201) (((-780) $ |#2|) 196) (((-653 (-780)) $ (-653 |#2|)) 199)) (-1835 (((-902 (-387)) $) NIL (-12 (|has| |#1| (-623 (-902 (-387)))) (|has| |#2| (-623 (-902 (-387)))))) (((-902 (-573)) $) NIL (-12 (|has| |#1| (-623 (-902 (-573)))) (|has| |#2| (-623 (-902 (-573)))))) (((-545) $) NIL (-12 (|has| |#1| (-623 (-545))) (|has| |#2| (-623 (-545)))))) (-3257 ((|#1| $) 134 (|has| |#1| (-461))) (($ $ |#2|) 137 (|has| |#1| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-919))))) (-2942 (((-871) $) 159) (($ (-573)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-565))) (($ (-416 (-573))) NIL (-2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573))))))) (-1920 (((-653 |#1|) $) 162)) (-4317 ((|#1| $ (-540 |#2|)) 80) (($ $ |#2| (-780)) NIL) (($ $ (-653 |#2|) (-653 (-780))) NIL)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#1| (-919))) (|has| |#1| (-146))))) (-1545 (((-780)) 87 T CONST)) (-1538 (($ $ $ (-780)) NIL (|has| |#1| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) 123 (|has| |#1| (-565)))) (-2132 (($) 12 T CONST)) (-2144 (($) 14 T CONST)) (-3609 (($ $ |#2|) NIL) (($ $ (-653 |#2|)) NIL) (($ $ |#2| (-780)) NIL) (($ $ (-653 |#2|) (-653 (-780))) NIL)) (-2981 (((-112) $ $) 106)) (-3103 (($ $ |#1|) 132 (|has| |#1| (-371)))) (-3093 (($ $) 93) (($ $ $) 104)) (-3077 (($ $ $) 55)) (** (($ $ (-931)) 110) (($ $ (-780)) 109)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 96) (($ $ $) 72) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) 99) (($ $ |#1|) NIL))) +(((-1137 |#1| |#2|) (-959 |#1| (-540 |#2|) |#2|) (-1061) (-859)) (T -1137)) +NIL +(-959 |#1| (-540 |#2|) |#2|) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4354 (((-653 |#2|) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-2363 (($ $) 152 (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) 128 (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4228 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2342 (($ $) 148 (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) 124 (|has| |#1| (-38 (-416 (-573)))))) (-2388 (($ $) 156 (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) 132 (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) NIL T CONST)) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-4052 (((-962 |#1|) $ (-780)) NIL) (((-962 |#1|) $ (-780) (-780)) NIL)) (-1488 (((-112) $) NIL)) (-2999 (($) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2534 (((-780) $ |#2|) NIL) (((-780) $ |#2| (-780)) NIL)) (-1959 (((-112) $) NIL)) (-4325 (($ $ (-573)) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3676 (((-112) $) NIL)) (-4334 (($ $ (-653 |#2|) (-653 (-540 |#2|))) NIL) (($ $ |#2| (-540 |#2|)) NIL) (($ |#1| (-540 |#2|)) NIL) (($ $ |#2| (-780)) 63) (($ $ (-653 |#2|) (-653 (-780))) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3118 (($ $) 122 (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-1626 (($ $ |#2|) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-416 (-573)))))) (-3965 (((-1132) $) NIL)) (-3131 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-416 (-573)))))) (-2212 (($ $ (-780)) 16)) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-565)))) (-1608 (($ $) 120 (|has| |#1| (-38 (-416 (-573)))))) (-2645 (($ $ |#2| $) 106) (($ $ (-653 |#2|) (-653 $)) 99) (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL)) (-3904 (($ $ |#2|) 109) (($ $ (-653 |#2|)) NIL) (($ $ |#2| (-780)) NIL) (($ $ (-653 |#2|) (-653 (-780))) NIL)) (-2565 (((-540 |#2|) $) NIL)) (-1755 (((-1 (-1169 |#3|) |#3|) (-653 |#2|) (-653 (-1169 |#3|))) 87)) (-2401 (($ $) 158 (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) 134 (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) 154 (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) 130 (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) 150 (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) 126 (|has| |#1| (-38 (-416 (-573)))))) (-4101 (($ $) 18)) (-2942 (((-871) $) 198) (($ (-573)) NIL) (($ |#1|) 45 (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-565))) (($ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ |#2|) 70) (($ |#3|) 68)) (-4317 ((|#1| $ (-540 |#2|)) NIL) (($ $ |#2| (-780)) NIL) (($ $ (-653 |#2|) (-653 (-780))) NIL) ((|#3| $ (-780)) 43)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2439 (($ $) 164 (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) 140 (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2413 (($ $) 160 (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) 136 (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) 168 (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) 144 (|has| |#1| (-38 (-416 (-573)))))) (-2520 (($ $) 170 (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) 146 (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) 166 (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) 142 (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) 162 (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) 138 (|has| |#1| (-38 (-416 (-573)))))) (-2132 (($) 52 T CONST)) (-2144 (($) 62 T CONST)) (-3609 (($ $ |#2|) NIL) (($ $ (-653 |#2|)) NIL) (($ $ |#2| (-780)) NIL) (($ $ (-653 |#2|) (-653 (-780))) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) 200 (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) 66)) (** (($ $ (-931)) NIL) (($ $ (-780)) 77) (($ $ $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 112 (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 65) (($ $ (-416 (-573))) 117 (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) 115 (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) +(((-1138 |#1| |#2| |#3|) (-13 (-749 |#1| |#2|) (-10 -8 (-15 -4317 (|#3| $ (-780))) (-15 -2942 ($ |#2|)) (-15 -2942 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1755 ((-1 (-1169 |#3|) |#3|) (-653 |#2|) (-653 (-1169 |#3|)))) (IF (|has| |#1| (-38 (-416 (-573)))) (PROGN (-15 -1626 ($ $ |#2| |#1|)) (-15 -3131 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1061) (-859) (-959 |#1| (-540 |#2|) |#2|)) (T -1138)) +((-4317 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-4 *2 (-959 *4 (-540 *5) *5)) (-5 *1 (-1138 *4 *5 *2)) (-4 *4 (-1061)) (-4 *5 (-859)))) (-2942 (*1 *1 *2) (-12 (-4 *3 (-1061)) (-4 *2 (-859)) (-5 *1 (-1138 *3 *2 *4)) (-4 *4 (-959 *3 (-540 *2) *2)))) (-2942 (*1 *1 *2) (-12 (-4 *3 (-1061)) (-4 *4 (-859)) (-5 *1 (-1138 *3 *4 *2)) (-4 *2 (-959 *3 (-540 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1061)) (-4 *4 (-859)) (-5 *1 (-1138 *3 *4 *2)) (-4 *2 (-959 *3 (-540 *4) *4)))) (-1755 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *6)) (-5 *4 (-653 (-1169 *7))) (-4 *6 (-859)) (-4 *7 (-959 *5 (-540 *6) *6)) (-4 *5 (-1061)) (-5 *2 (-1 (-1169 *7) *7)) (-5 *1 (-1138 *5 *6 *7)))) (-1626 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-4 *2 (-859)) (-5 *1 (-1138 *3 *2 *4)) (-4 *4 (-959 *3 (-540 *2) *2)))) (-3131 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1138 *4 *3 *5))) (-4 *4 (-38 (-416 (-573)))) (-4 *4 (-1061)) (-4 *3 (-859)) (-5 *1 (-1138 *4 *3 *5)) (-4 *5 (-959 *4 (-540 *3) *3))))) +(-13 (-749 |#1| |#2|) (-10 -8 (-15 -4317 (|#3| $ (-780))) (-15 -2942 ($ |#2|)) (-15 -2942 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1755 ((-1 (-1169 |#3|) |#3|) (-653 |#2|) (-653 (-1169 |#3|)))) (IF (|has| |#1| (-38 (-416 (-573)))) (PROGN (-15 -1626 ($ $ |#2| |#1|)) (-15 -3131 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-2848 (((-112) $ $) 7)) (-2280 (((-653 (-2 (|:| -1380 $) (|:| -1674 (-653 |#4|)))) (-653 |#4|)) 86)) (-3527 (((-653 $) (-653 |#4|)) 87) (((-653 $) (-653 |#4|) (-112)) 112)) (-4354 (((-653 |#3|) $) 34)) (-2577 (((-112) $) 27)) (-2020 (((-112) $) 18 (|has| |#1| (-565)))) (-2261 (((-112) |#4| $) 102) (((-112) $) 98)) (-1554 ((|#4| |#4| $) 93)) (-4285 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| $) 127)) (-2770 (((-2 (|:| |under| $) (|:| -3733 $) (|:| |upper| $)) $ |#3|) 28)) (-3450 (((-112) $ (-780)) 45)) (-2164 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4455))) (((-3 |#4| "failed") $ |#3|) 80)) (-2579 (($) 46 T CONST)) (-2194 (((-112) $) 23 (|has| |#1| (-565)))) (-1849 (((-112) $ $) 25 (|has| |#1| (-565)))) (-2838 (((-112) $ $) 24 (|has| |#1| (-565)))) (-3145 (((-112) $) 26 (|has| |#1| (-565)))) (-4304 (((-653 |#4|) (-653 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2346 (((-653 |#4|) (-653 |#4|) $) 19 (|has| |#1| (-565)))) (-2475 (((-653 |#4|) (-653 |#4|) $) 20 (|has| |#1| (-565)))) (-1695 (((-3 $ "failed") (-653 |#4|)) 37)) (-2205 (($ (-653 |#4|)) 36)) (-2925 (((-3 $ "failed") $) 83)) (-3760 ((|#4| |#4| $) 90)) (-2685 (($ $) 69 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ |#4| $) 68 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4455)))) (-3132 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-565)))) (-4310 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3117 ((|#4| |#4| $) 88)) (-2867 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4455))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4455))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2660 (((-2 (|:| -1380 (-653 |#4|)) (|:| -1674 (-653 |#4|))) $) 106)) (-3060 (((-112) |#4| $) 137)) (-2714 (((-112) |#4| $) 134)) (-3491 (((-112) |#4| $) 138) (((-112) $) 135)) (-1863 (((-653 |#4|) $) 53 (|has| $ (-6 -4455)))) (-4022 (((-112) |#4| $) 105) (((-112) $) 104)) (-3338 ((|#3| $) 35)) (-2078 (((-112) $ (-780)) 44)) (-3214 (((-653 |#4|) $) 54 (|has| $ (-6 -4455)))) (-1547 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#4| |#4|) $) 48)) (-1937 (((-653 |#3|) $) 33)) (-1689 (((-112) |#3| $) 32)) (-2673 (((-112) $ (-780)) 43)) (-3180 (((-1171) $) 10)) (-4092 (((-3 |#4| (-653 $)) |#4| |#4| $) 129)) (-2395 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| |#4| $) 128)) (-3359 (((-3 |#4| "failed") $) 84)) (-1692 (((-653 $) |#4| $) 130)) (-1675 (((-3 (-112) (-653 $)) |#4| $) 133)) (-3190 (((-653 (-2 (|:| |val| (-112)) (|:| -4090 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3716 (((-653 $) |#4| $) 126) (((-653 $) (-653 |#4|) $) 125) (((-653 $) (-653 |#4|) (-653 $)) 124) (((-653 $) |#4| (-653 $)) 123)) (-1844 (($ |#4| $) 118) (($ (-653 |#4|) $) 117)) (-2870 (((-653 |#4|) $) 108)) (-3161 (((-112) |#4| $) 100) (((-112) $) 96)) (-3430 ((|#4| |#4| $) 91)) (-2614 (((-112) $ $) 111)) (-3582 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-565)))) (-1973 (((-112) |#4| $) 101) (((-112) $) 97)) (-1448 ((|#4| |#4| $) 92)) (-3965 (((-1132) $) 11)) (-2914 (((-3 |#4| "failed") $) 85)) (-2036 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2865 (((-3 $ "failed") $ |#4|) 79)) (-2212 (($ $ |#4|) 78) (((-653 $) |#4| $) 116) (((-653 $) |#4| (-653 $)) 115) (((-653 $) (-653 |#4|) $) 114) (((-653 $) (-653 |#4|) (-653 $)) 113)) (-1575 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 |#4|) (-653 |#4|)) 60 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-301 |#4|)) 58 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-653 (-301 |#4|))) 57 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))))) (-1885 (((-112) $ $) 39)) (-3811 (((-112) $) 42)) (-3508 (($) 41)) (-2565 (((-780) $) 107)) (-3974 (((-780) |#4| $) 55 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) (((-780) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4455)))) (-3166 (($ $) 40)) (-1835 (((-545) $) 70 (|has| |#4| (-623 (-545))))) (-2955 (($ (-653 |#4|)) 61)) (-4409 (($ $ |#3|) 29)) (-3496 (($ $ |#3|) 31)) (-1388 (($ $) 89)) (-1456 (($ $ |#3|) 30)) (-2942 (((-871) $) 12) (((-653 |#4|) $) 38)) (-3922 (((-780) $) 77 (|has| |#3| (-376)))) (-3507 (((-112) $ $) 9)) (-3955 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3039 (((-112) $ (-1 (-112) |#4| (-653 |#4|))) 99)) (-3402 (((-653 $) |#4| $) 122) (((-653 $) |#4| (-653 $)) 121) (((-653 $) (-653 |#4|) $) 120) (((-653 $) (-653 |#4|) (-653 $)) 119)) (-1646 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4455)))) (-3734 (((-653 |#3|) $) 82)) (-3746 (((-112) |#4| $) 136)) (-4333 (((-112) |#3| $) 81)) (-2981 (((-112) $ $) 6)) (-2862 (((-780) $) 47 (|has| $ (-6 -4455))))) +(((-1139 |#1| |#2| |#3| |#4|) (-141) (-461) (-802) (-859) (-1077 |t#1| |t#2| |t#3|)) (T -1139)) +NIL +(-13 (-1121 |t#1| |t#2| |t#3| |t#4|) (-793 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-622 (-653 |#4|)) . T) ((-622 (-871)) . T) ((-152 |#4|) . T) ((-623 (-545)) |has| |#4| (-623 (-545))) ((-316 |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))) ((-498 |#4|) . T) ((-523 |#4| |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))) ((-793 |#1| |#2| |#3| |#4|) . T) ((-988 |#1| |#2| |#3| |#4|) . T) ((-1083 |#1| |#2| |#3| |#4|) . T) ((-1112) . T) ((-1121 |#1| |#2| |#3| |#4|) . T) ((-1223 |#1| |#2| |#3| |#4|) . T) ((-1230) . T)) +((-1994 (((-653 |#2|) |#1|) 15)) (-1754 (((-653 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-653 |#2|) |#1|) 61)) (-1876 (((-653 |#2|) |#2| |#2| |#2|) 45) (((-653 |#2|) |#1|) 59)) (-1460 ((|#2| |#1|) 54)) (-3149 (((-2 (|:| |solns| (-653 |#2|)) (|:| |maps| (-653 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-4033 (((-653 |#2|) |#2| |#2|) 42) (((-653 |#2|) |#1|) 58)) (-3252 (((-653 |#2|) |#2| |#2| |#2| |#2|) 46) (((-653 |#2|) |#1|) 60)) (-2417 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53)) (-4069 ((|#2| |#2| |#2| |#2|) 51)) (-2695 ((|#2| |#2| |#2|) 50)) (-4171 ((|#2| |#2| |#2| |#2| |#2|) 52))) +(((-1140 |#1| |#2|) (-10 -7 (-15 -1994 ((-653 |#2|) |#1|)) (-15 -1460 (|#2| |#1|)) (-15 -3149 ((-2 (|:| |solns| (-653 |#2|)) (|:| |maps| (-653 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4033 ((-653 |#2|) |#1|)) (-15 -1876 ((-653 |#2|) |#1|)) (-15 -3252 ((-653 |#2|) |#1|)) (-15 -1754 ((-653 |#2|) |#1|)) (-15 -4033 ((-653 |#2|) |#2| |#2|)) (-15 -1876 ((-653 |#2|) |#2| |#2| |#2|)) (-15 -3252 ((-653 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1754 ((-653 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2695 (|#2| |#2| |#2|)) (-15 -4069 (|#2| |#2| |#2| |#2|)) (-15 -4171 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2417 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1256 |#2|) (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (T -1140)) +((-2417 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (-5 *1 (-1140 *3 *2)) (-4 *3 (-1256 *2)))) (-4171 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (-5 *1 (-1140 *3 *2)) (-4 *3 (-1256 *2)))) (-4069 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (-5 *1 (-1140 *3 *2)) (-4 *3 (-1256 *2)))) (-2695 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (-5 *1 (-1140 *3 *2)) (-4 *3 (-1256 *2)))) (-1754 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (-5 *2 (-653 *3)) (-5 *1 (-1140 *4 *3)) (-4 *4 (-1256 *3)))) (-3252 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (-5 *2 (-653 *3)) (-5 *1 (-1140 *4 *3)) (-4 *4 (-1256 *3)))) (-1876 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (-5 *2 (-653 *3)) (-5 *1 (-1140 *4 *3)) (-4 *4 (-1256 *3)))) (-4033 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (-5 *2 (-653 *3)) (-5 *1 (-1140 *4 *3)) (-4 *4 (-1256 *3)))) (-1754 (*1 *2 *3) (-12 (-4 *4 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (-5 *2 (-653 *4)) (-5 *1 (-1140 *3 *4)) (-4 *3 (-1256 *4)))) (-3252 (*1 *2 *3) (-12 (-4 *4 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (-5 *2 (-653 *4)) (-5 *1 (-1140 *3 *4)) (-4 *3 (-1256 *4)))) (-1876 (*1 *2 *3) (-12 (-4 *4 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (-5 *2 (-653 *4)) (-5 *1 (-1140 *3 *4)) (-4 *3 (-1256 *4)))) (-4033 (*1 *2 *3) (-12 (-4 *4 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (-5 *2 (-653 *4)) (-5 *1 (-1140 *3 *4)) (-4 *3 (-1256 *4)))) (-3149 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (-5 *2 (-2 (|:| |solns| (-653 *5)) (|:| |maps| (-653 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1140 *3 *5)) (-4 *3 (-1256 *5)))) (-1460 (*1 *2 *3) (-12 (-4 *2 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (-5 *1 (-1140 *3 *2)) (-4 *3 (-1256 *2)))) (-1994 (*1 *2 *3) (-12 (-4 *4 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) (-5 *2 (-653 *4)) (-5 *1 (-1140 *3 *4)) (-4 *3 (-1256 *4))))) +(-10 -7 (-15 -1994 ((-653 |#2|) |#1|)) (-15 -1460 (|#2| |#1|)) (-15 -3149 ((-2 (|:| |solns| (-653 |#2|)) (|:| |maps| (-653 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4033 ((-653 |#2|) |#1|)) (-15 -1876 ((-653 |#2|) |#1|)) (-15 -3252 ((-653 |#2|) |#1|)) (-15 -1754 ((-653 |#2|) |#1|)) (-15 -4033 ((-653 |#2|) |#2| |#2|)) (-15 -1876 ((-653 |#2|) |#2| |#2| |#2|)) (-15 -3252 ((-653 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1754 ((-653 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2695 (|#2| |#2| |#2|)) (-15 -4069 (|#2| |#2| |#2| |#2|)) (-15 -4171 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2417 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-2873 (((-653 (-653 (-301 (-323 |#1|)))) (-653 (-301 (-416 (-962 |#1|))))) 118) (((-653 (-653 (-301 (-323 |#1|)))) (-653 (-301 (-416 (-962 |#1|)))) (-653 (-1189))) 117) (((-653 (-653 (-301 (-323 |#1|)))) (-653 (-416 (-962 |#1|)))) 115) (((-653 (-653 (-301 (-323 |#1|)))) (-653 (-416 (-962 |#1|))) (-653 (-1189))) 113) (((-653 (-301 (-323 |#1|))) (-301 (-416 (-962 |#1|)))) 97) (((-653 (-301 (-323 |#1|))) (-301 (-416 (-962 |#1|))) (-1189)) 98) (((-653 (-301 (-323 |#1|))) (-416 (-962 |#1|))) 92) (((-653 (-301 (-323 |#1|))) (-416 (-962 |#1|)) (-1189)) 82)) (-2253 (((-653 (-653 (-323 |#1|))) (-653 (-416 (-962 |#1|))) (-653 (-1189))) 111) (((-653 (-323 |#1|)) (-416 (-962 |#1|)) (-1189)) 54)) (-1383 (((-1178 (-653 (-323 |#1|)) (-653 (-301 (-323 |#1|)))) (-416 (-962 |#1|)) (-1189)) 122) (((-1178 (-653 (-323 |#1|)) (-653 (-301 (-323 |#1|)))) (-301 (-416 (-962 |#1|))) (-1189)) 121))) +(((-1141 |#1|) (-10 -7 (-15 -2873 ((-653 (-301 (-323 |#1|))) (-416 (-962 |#1|)) (-1189))) (-15 -2873 ((-653 (-301 (-323 |#1|))) (-416 (-962 |#1|)))) (-15 -2873 ((-653 (-301 (-323 |#1|))) (-301 (-416 (-962 |#1|))) (-1189))) (-15 -2873 ((-653 (-301 (-323 |#1|))) (-301 (-416 (-962 |#1|))))) (-15 -2873 ((-653 (-653 (-301 (-323 |#1|)))) (-653 (-416 (-962 |#1|))) (-653 (-1189)))) (-15 -2873 ((-653 (-653 (-301 (-323 |#1|)))) (-653 (-416 (-962 |#1|))))) (-15 -2873 ((-653 (-653 (-301 (-323 |#1|)))) (-653 (-301 (-416 (-962 |#1|)))) (-653 (-1189)))) (-15 -2873 ((-653 (-653 (-301 (-323 |#1|)))) (-653 (-301 (-416 (-962 |#1|)))))) (-15 -2253 ((-653 (-323 |#1|)) (-416 (-962 |#1|)) (-1189))) (-15 -2253 ((-653 (-653 (-323 |#1|))) (-653 (-416 (-962 |#1|))) (-653 (-1189)))) (-15 -1383 ((-1178 (-653 (-323 |#1|)) (-653 (-301 (-323 |#1|)))) (-301 (-416 (-962 |#1|))) (-1189))) (-15 -1383 ((-1178 (-653 (-323 |#1|)) (-653 (-301 (-323 |#1|)))) (-416 (-962 |#1|)) (-1189)))) (-13 (-314) (-148))) (T -1141)) +((-1383 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-1189)) (-4 *5 (-13 (-314) (-148))) (-5 *2 (-1178 (-653 (-323 *5)) (-653 (-301 (-323 *5))))) (-5 *1 (-1141 *5)))) (-1383 (*1 *2 *3 *4) (-12 (-5 *3 (-301 (-416 (-962 *5)))) (-5 *4 (-1189)) (-4 *5 (-13 (-314) (-148))) (-5 *2 (-1178 (-653 (-323 *5)) (-653 (-301 (-323 *5))))) (-5 *1 (-1141 *5)))) (-2253 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-416 (-962 *5)))) (-5 *4 (-653 (-1189))) (-4 *5 (-13 (-314) (-148))) (-5 *2 (-653 (-653 (-323 *5)))) (-5 *1 (-1141 *5)))) (-2253 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-1189)) (-4 *5 (-13 (-314) (-148))) (-5 *2 (-653 (-323 *5))) (-5 *1 (-1141 *5)))) (-2873 (*1 *2 *3) (-12 (-5 *3 (-653 (-301 (-416 (-962 *4))))) (-4 *4 (-13 (-314) (-148))) (-5 *2 (-653 (-653 (-301 (-323 *4))))) (-5 *1 (-1141 *4)))) (-2873 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-301 (-416 (-962 *5))))) (-5 *4 (-653 (-1189))) (-4 *5 (-13 (-314) (-148))) (-5 *2 (-653 (-653 (-301 (-323 *5))))) (-5 *1 (-1141 *5)))) (-2873 (*1 *2 *3) (-12 (-5 *3 (-653 (-416 (-962 *4)))) (-4 *4 (-13 (-314) (-148))) (-5 *2 (-653 (-653 (-301 (-323 *4))))) (-5 *1 (-1141 *4)))) (-2873 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-416 (-962 *5)))) (-5 *4 (-653 (-1189))) (-4 *5 (-13 (-314) (-148))) (-5 *2 (-653 (-653 (-301 (-323 *5))))) (-5 *1 (-1141 *5)))) (-2873 (*1 *2 *3) (-12 (-5 *3 (-301 (-416 (-962 *4)))) (-4 *4 (-13 (-314) (-148))) (-5 *2 (-653 (-301 (-323 *4)))) (-5 *1 (-1141 *4)))) (-2873 (*1 *2 *3 *4) (-12 (-5 *3 (-301 (-416 (-962 *5)))) (-5 *4 (-1189)) (-4 *5 (-13 (-314) (-148))) (-5 *2 (-653 (-301 (-323 *5)))) (-5 *1 (-1141 *5)))) (-2873 (*1 *2 *3) (-12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-13 (-314) (-148))) (-5 *2 (-653 (-301 (-323 *4)))) (-5 *1 (-1141 *4)))) (-2873 (*1 *2 *3 *4) (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-1189)) (-4 *5 (-13 (-314) (-148))) (-5 *2 (-653 (-301 (-323 *5)))) (-5 *1 (-1141 *5))))) +(-10 -7 (-15 -2873 ((-653 (-301 (-323 |#1|))) (-416 (-962 |#1|)) (-1189))) (-15 -2873 ((-653 (-301 (-323 |#1|))) (-416 (-962 |#1|)))) (-15 -2873 ((-653 (-301 (-323 |#1|))) (-301 (-416 (-962 |#1|))) (-1189))) (-15 -2873 ((-653 (-301 (-323 |#1|))) (-301 (-416 (-962 |#1|))))) (-15 -2873 ((-653 (-653 (-301 (-323 |#1|)))) (-653 (-416 (-962 |#1|))) (-653 (-1189)))) (-15 -2873 ((-653 (-653 (-301 (-323 |#1|)))) (-653 (-416 (-962 |#1|))))) (-15 -2873 ((-653 (-653 (-301 (-323 |#1|)))) (-653 (-301 (-416 (-962 |#1|)))) (-653 (-1189)))) (-15 -2873 ((-653 (-653 (-301 (-323 |#1|)))) (-653 (-301 (-416 (-962 |#1|)))))) (-15 -2253 ((-653 (-323 |#1|)) (-416 (-962 |#1|)) (-1189))) (-15 -2253 ((-653 (-653 (-323 |#1|))) (-653 (-416 (-962 |#1|))) (-653 (-1189)))) (-15 -1383 ((-1178 (-653 (-323 |#1|)) (-653 (-301 (-323 |#1|)))) (-301 (-416 (-962 |#1|))) (-1189))) (-15 -1383 ((-1178 (-653 (-323 |#1|)) (-653 (-301 (-323 |#1|)))) (-416 (-962 |#1|)) (-1189)))) +((-2929 (((-416 (-1185 (-323 |#1|))) (-1280 (-323 |#1|)) (-416 (-1185 (-323 |#1|))) (-573)) 36)) (-4165 (((-416 (-1185 (-323 |#1|))) (-416 (-1185 (-323 |#1|))) (-416 (-1185 (-323 |#1|))) (-416 (-1185 (-323 |#1|)))) 48))) +(((-1142 |#1|) (-10 -7 (-15 -4165 ((-416 (-1185 (-323 |#1|))) (-416 (-1185 (-323 |#1|))) (-416 (-1185 (-323 |#1|))) (-416 (-1185 (-323 |#1|))))) (-15 -2929 ((-416 (-1185 (-323 |#1|))) (-1280 (-323 |#1|)) (-416 (-1185 (-323 |#1|))) (-573)))) (-565)) (T -1142)) +((-2929 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-416 (-1185 (-323 *5)))) (-5 *3 (-1280 (-323 *5))) (-5 *4 (-573)) (-4 *5 (-565)) (-5 *1 (-1142 *5)))) (-4165 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-416 (-1185 (-323 *3)))) (-4 *3 (-565)) (-5 *1 (-1142 *3))))) +(-10 -7 (-15 -4165 ((-416 (-1185 (-323 |#1|))) (-416 (-1185 (-323 |#1|))) (-416 (-1185 (-323 |#1|))) (-416 (-1185 (-323 |#1|))))) (-15 -2929 ((-416 (-1185 (-323 |#1|))) (-1280 (-323 |#1|)) (-416 (-1185 (-323 |#1|))) (-573)))) +((-1994 (((-653 (-653 (-301 (-323 |#1|)))) (-653 (-301 (-323 |#1|))) (-653 (-1189))) 244) (((-653 (-301 (-323 |#1|))) (-323 |#1|) (-1189)) 23) (((-653 (-301 (-323 |#1|))) (-301 (-323 |#1|)) (-1189)) 29) (((-653 (-301 (-323 |#1|))) (-301 (-323 |#1|))) 28) (((-653 (-301 (-323 |#1|))) (-323 |#1|)) 24))) +(((-1143 |#1|) (-10 -7 (-15 -1994 ((-653 (-301 (-323 |#1|))) (-323 |#1|))) (-15 -1994 ((-653 (-301 (-323 |#1|))) (-301 (-323 |#1|)))) (-15 -1994 ((-653 (-301 (-323 |#1|))) (-301 (-323 |#1|)) (-1189))) (-15 -1994 ((-653 (-301 (-323 |#1|))) (-323 |#1|) (-1189))) (-15 -1994 ((-653 (-653 (-301 (-323 |#1|)))) (-653 (-301 (-323 |#1|))) (-653 (-1189))))) (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (T -1143)) +((-1994 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-1189))) (-4 *5 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *2 (-653 (-653 (-301 (-323 *5))))) (-5 *1 (-1143 *5)) (-5 *3 (-653 (-301 (-323 *5)))))) (-1994 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-4 *5 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *2 (-653 (-301 (-323 *5)))) (-5 *1 (-1143 *5)) (-5 *3 (-323 *5)))) (-1994 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-4 *5 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *2 (-653 (-301 (-323 *5)))) (-5 *1 (-1143 *5)) (-5 *3 (-301 (-323 *5))))) (-1994 (*1 *2 *3) (-12 (-4 *4 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *2 (-653 (-301 (-323 *4)))) (-5 *1 (-1143 *4)) (-5 *3 (-301 (-323 *4))))) (-1994 (*1 *2 *3) (-12 (-4 *4 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) (-5 *2 (-653 (-301 (-323 *4)))) (-5 *1 (-1143 *4)) (-5 *3 (-323 *4))))) +(-10 -7 (-15 -1994 ((-653 (-301 (-323 |#1|))) (-323 |#1|))) (-15 -1994 ((-653 (-301 (-323 |#1|))) (-301 (-323 |#1|)))) (-15 -1994 ((-653 (-301 (-323 |#1|))) (-301 (-323 |#1|)) (-1189))) (-15 -1994 ((-653 (-301 (-323 |#1|))) (-323 |#1|) (-1189))) (-15 -1994 ((-653 (-653 (-301 (-323 |#1|)))) (-653 (-301 (-323 |#1|))) (-653 (-1189))))) +((-2526 ((|#2| |#2|) 28 (|has| |#1| (-859))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 25)) (-2763 ((|#2| |#2|) 27 (|has| |#1| (-859))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) +(((-1144 |#1| |#2|) (-10 -7 (-15 -2763 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2526 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-859)) (PROGN (-15 -2763 (|#2| |#2|)) (-15 -2526 (|#2| |#2|))) |%noBranch|)) (-1230) (-13 (-613 (-573) |#1|) (-10 -7 (-6 -4455) (-6 -4456)))) (T -1144)) +((-2526 (*1 *2 *2) (-12 (-4 *3 (-859)) (-4 *3 (-1230)) (-5 *1 (-1144 *3 *2)) (-4 *2 (-13 (-613 (-573) *3) (-10 -7 (-6 -4455) (-6 -4456)))))) (-2763 (*1 *2 *2) (-12 (-4 *3 (-859)) (-4 *3 (-1230)) (-5 *1 (-1144 *3 *2)) (-4 *2 (-13 (-613 (-573) *3) (-10 -7 (-6 -4455) (-6 -4456)))))) (-2526 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1230)) (-5 *1 (-1144 *4 *2)) (-4 *2 (-13 (-613 (-573) *4) (-10 -7 (-6 -4455) (-6 -4456)))))) (-2763 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1230)) (-5 *1 (-1144 *4 *2)) (-4 *2 (-13 (-613 (-573) *4) (-10 -7 (-6 -4455) (-6 -4456))))))) +(-10 -7 (-15 -2763 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2526 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-859)) (PROGN (-15 -2763 (|#2| |#2|)) (-15 -2526 (|#2| |#2|))) |%noBranch|)) +((-2848 (((-112) $ $) NIL)) (-2895 (((-1177 3 |#1|) $) 141)) (-2429 (((-112) $) 101)) (-2247 (($ $ (-653 (-953 |#1|))) 44) (($ $ (-653 (-653 |#1|))) 104) (($ (-653 (-953 |#1|))) 103) (((-653 (-953 |#1|)) $) 102)) (-2845 (((-112) $) 72)) (-3590 (($ $ (-953 |#1|)) 76) (($ $ (-653 |#1|)) 81) (($ $ (-780)) 83) (($ (-953 |#1|)) 77) (((-953 |#1|) $) 75)) (-2613 (((-2 (|:| -3999 (-780)) (|:| |curves| (-780)) (|:| |polygons| (-780)) (|:| |constructs| (-780))) $) 139)) (-3086 (((-780) $) 53)) (-2033 (((-780) $) 52)) (-3063 (($ $ (-780) (-953 |#1|)) 67)) (-4220 (((-112) $) 111)) (-1684 (($ $ (-653 (-653 (-953 |#1|))) (-653 (-173)) (-173)) 118) (($ $ (-653 (-653 (-653 |#1|))) (-653 (-173)) (-173)) 120) (($ $ (-653 (-653 (-953 |#1|))) (-112) (-112)) 115) (($ $ (-653 (-653 (-653 |#1|))) (-112) (-112)) 127) (($ (-653 (-653 (-953 |#1|)))) 116) (($ (-653 (-653 (-953 |#1|))) (-112) (-112)) 117) (((-653 (-653 (-953 |#1|))) $) 114)) (-1480 (($ (-653 $)) 56) (($ $ $) 57)) (-2869 (((-653 (-173)) $) 133)) (-2930 (((-653 (-953 |#1|)) $) 130)) (-2920 (((-653 (-653 (-173))) $) 132)) (-4058 (((-653 (-653 (-653 (-953 |#1|)))) $) NIL)) (-2729 (((-653 (-653 (-653 (-780)))) $) 131)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-1879 (((-780) $ (-653 (-953 |#1|))) 65)) (-1592 (((-112) $) 84)) (-2195 (($ $ (-653 (-953 |#1|))) 86) (($ $ (-653 (-653 |#1|))) 92) (($ (-653 (-953 |#1|))) 87) (((-653 (-953 |#1|)) $) 85)) (-3479 (($) 48) (($ (-1177 3 |#1|)) 49)) (-3166 (($ $) 63)) (-4362 (((-653 $) $) 62)) (-2871 (($ (-653 $)) 59)) (-2259 (((-653 $) $) 61)) (-2942 (((-871) $) 146)) (-1615 (((-112) $) 94)) (-2370 (($ $ (-653 (-953 |#1|))) 96) (($ $ (-653 (-653 |#1|))) 99) (($ (-653 (-953 |#1|))) 97) (((-653 (-953 |#1|)) $) 95)) (-3579 (($ $) 140)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-1145 |#1|) (-1146 |#1|) (-1061)) (T -1145)) +NIL +(-1146 |#1|) +((-2848 (((-112) $ $) 7)) (-2895 (((-1177 3 |#1|) $) 14)) (-2429 (((-112) $) 30)) (-2247 (($ $ (-653 (-953 |#1|))) 34) (($ $ (-653 (-653 |#1|))) 33) (($ (-653 (-953 |#1|))) 32) (((-653 (-953 |#1|)) $) 31)) (-2845 (((-112) $) 45)) (-3590 (($ $ (-953 |#1|)) 50) (($ $ (-653 |#1|)) 49) (($ $ (-780)) 48) (($ (-953 |#1|)) 47) (((-953 |#1|) $) 46)) (-2613 (((-2 (|:| -3999 (-780)) (|:| |curves| (-780)) (|:| |polygons| (-780)) (|:| |constructs| (-780))) $) 16)) (-3086 (((-780) $) 59)) (-2033 (((-780) $) 60)) (-3063 (($ $ (-780) (-953 |#1|)) 51)) (-4220 (((-112) $) 22)) (-1684 (($ $ (-653 (-653 (-953 |#1|))) (-653 (-173)) (-173)) 29) (($ $ (-653 (-653 (-653 |#1|))) (-653 (-173)) (-173)) 28) (($ $ (-653 (-653 (-953 |#1|))) (-112) (-112)) 27) (($ $ (-653 (-653 (-653 |#1|))) (-112) (-112)) 26) (($ (-653 (-653 (-953 |#1|)))) 25) (($ (-653 (-653 (-953 |#1|))) (-112) (-112)) 24) (((-653 (-653 (-953 |#1|))) $) 23)) (-1480 (($ (-653 $)) 58) (($ $ $) 57)) (-2869 (((-653 (-173)) $) 17)) (-2930 (((-653 (-953 |#1|)) $) 21)) (-2920 (((-653 (-653 (-173))) $) 18)) (-4058 (((-653 (-653 (-653 (-953 |#1|)))) $) 19)) (-2729 (((-653 (-653 (-653 (-780)))) $) 20)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-1879 (((-780) $ (-653 (-953 |#1|))) 52)) (-1592 (((-112) $) 40)) (-2195 (($ $ (-653 (-953 |#1|))) 44) (($ $ (-653 (-653 |#1|))) 43) (($ (-653 (-953 |#1|))) 42) (((-653 (-953 |#1|)) $) 41)) (-3479 (($) 62) (($ (-1177 3 |#1|)) 61)) (-3166 (($ $) 53)) (-4362 (((-653 $) $) 54)) (-2871 (($ (-653 $)) 56)) (-2259 (((-653 $) $) 55)) (-2942 (((-871) $) 12)) (-1615 (((-112) $) 35)) (-2370 (($ $ (-653 (-953 |#1|))) 39) (($ $ (-653 (-653 |#1|))) 38) (($ (-653 (-953 |#1|))) 37) (((-653 (-953 |#1|)) $) 36)) (-3579 (($ $) 15)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) +(((-1146 |#1|) (-141) (-1061)) (T -1146)) +((-2942 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-871)))) (-3479 (*1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1061)))) (-3479 (*1 *1 *2) (-12 (-5 *2 (-1177 3 *3)) (-4 *3 (-1061)) (-4 *1 (-1146 *3)))) (-2033 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-780)))) (-3086 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-780)))) (-1480 (*1 *1 *2) (-12 (-5 *2 (-653 *1)) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) (-1480 (*1 *1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1061)))) (-2871 (*1 *1 *2) (-12 (-5 *2 (-653 *1)) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) (-2259 (*1 *2 *1) (-12 (-4 *3 (-1061)) (-5 *2 (-653 *1)) (-4 *1 (-1146 *3)))) (-4362 (*1 *2 *1) (-12 (-4 *3 (-1061)) (-5 *2 (-653 *1)) (-4 *1 (-1146 *3)))) (-3166 (*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1061)))) (-1879 (*1 *2 *1 *3) (-12 (-5 *3 (-653 (-953 *4))) (-4 *1 (-1146 *4)) (-4 *4 (-1061)) (-5 *2 (-780)))) (-3063 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-780)) (-5 *3 (-953 *4)) (-4 *1 (-1146 *4)) (-4 *4 (-1061)))) (-3590 (*1 *1 *1 *2) (-12 (-5 *2 (-953 *3)) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) (-3590 (*1 *1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) (-3590 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) (-3590 (*1 *1 *2) (-12 (-5 *2 (-953 *3)) (-4 *3 (-1061)) (-4 *1 (-1146 *3)))) (-3590 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-953 *3)))) (-2845 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-112)))) (-2195 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-953 *3))) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) (-2195 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-653 *3))) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) (-2195 (*1 *1 *2) (-12 (-5 *2 (-653 (-953 *3))) (-4 *3 (-1061)) (-4 *1 (-1146 *3)))) (-2195 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-653 (-953 *3))))) (-1592 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-112)))) (-2370 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-953 *3))) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) (-2370 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-653 *3))) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) (-2370 (*1 *1 *2) (-12 (-5 *2 (-653 (-953 *3))) (-4 *3 (-1061)) (-4 *1 (-1146 *3)))) (-2370 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-653 (-953 *3))))) (-1615 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-112)))) (-2247 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-953 *3))) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) (-2247 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-653 *3))) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) (-2247 (*1 *1 *2) (-12 (-5 *2 (-653 (-953 *3))) (-4 *3 (-1061)) (-4 *1 (-1146 *3)))) (-2247 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-653 (-953 *3))))) (-2429 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-112)))) (-1684 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-653 (-653 (-953 *5)))) (-5 *3 (-653 (-173))) (-5 *4 (-173)) (-4 *1 (-1146 *5)) (-4 *5 (-1061)))) (-1684 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-653 (-653 (-653 *5)))) (-5 *3 (-653 (-173))) (-5 *4 (-173)) (-4 *1 (-1146 *5)) (-4 *5 (-1061)))) (-1684 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-653 (-653 (-953 *4)))) (-5 *3 (-112)) (-4 *1 (-1146 *4)) (-4 *4 (-1061)))) (-1684 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-653 (-653 (-653 *4)))) (-5 *3 (-112)) (-4 *1 (-1146 *4)) (-4 *4 (-1061)))) (-1684 (*1 *1 *2) (-12 (-5 *2 (-653 (-653 (-953 *3)))) (-4 *3 (-1061)) (-4 *1 (-1146 *3)))) (-1684 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-653 (-653 (-953 *4)))) (-5 *3 (-112)) (-4 *4 (-1061)) (-4 *1 (-1146 *4)))) (-1684 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-653 (-653 (-953 *3)))))) (-4220 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-112)))) (-2930 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-653 (-953 *3))))) (-2729 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-653 (-653 (-653 (-780))))))) (-4058 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-653 (-653 (-653 (-953 *3))))))) (-2920 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-653 (-653 (-173)))))) (-2869 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-653 (-173))))) (-2613 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-2 (|:| -3999 (-780)) (|:| |curves| (-780)) (|:| |polygons| (-780)) (|:| |constructs| (-780)))))) (-3579 (*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1061)))) (-2895 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-1177 3 *3))))) +(-13 (-1112) (-10 -8 (-15 -3479 ($)) (-15 -3479 ($ (-1177 3 |t#1|))) (-15 -2033 ((-780) $)) (-15 -3086 ((-780) $)) (-15 -1480 ($ (-653 $))) (-15 -1480 ($ $ $)) (-15 -2871 ($ (-653 $))) (-15 -2259 ((-653 $) $)) (-15 -4362 ((-653 $) $)) (-15 -3166 ($ $)) (-15 -1879 ((-780) $ (-653 (-953 |t#1|)))) (-15 -3063 ($ $ (-780) (-953 |t#1|))) (-15 -3590 ($ $ (-953 |t#1|))) (-15 -3590 ($ $ (-653 |t#1|))) (-15 -3590 ($ $ (-780))) (-15 -3590 ($ (-953 |t#1|))) (-15 -3590 ((-953 |t#1|) $)) (-15 -2845 ((-112) $)) (-15 -2195 ($ $ (-653 (-953 |t#1|)))) (-15 -2195 ($ $ (-653 (-653 |t#1|)))) (-15 -2195 ($ (-653 (-953 |t#1|)))) (-15 -2195 ((-653 (-953 |t#1|)) $)) (-15 -1592 ((-112) $)) (-15 -2370 ($ $ (-653 (-953 |t#1|)))) (-15 -2370 ($ $ (-653 (-653 |t#1|)))) (-15 -2370 ($ (-653 (-953 |t#1|)))) (-15 -2370 ((-653 (-953 |t#1|)) $)) (-15 -1615 ((-112) $)) (-15 -2247 ($ $ (-653 (-953 |t#1|)))) (-15 -2247 ($ $ (-653 (-653 |t#1|)))) (-15 -2247 ($ (-653 (-953 |t#1|)))) (-15 -2247 ((-653 (-953 |t#1|)) $)) (-15 -2429 ((-112) $)) (-15 -1684 ($ $ (-653 (-653 (-953 |t#1|))) (-653 (-173)) (-173))) (-15 -1684 ($ $ (-653 (-653 (-653 |t#1|))) (-653 (-173)) (-173))) (-15 -1684 ($ $ (-653 (-653 (-953 |t#1|))) (-112) (-112))) (-15 -1684 ($ $ (-653 (-653 (-653 |t#1|))) (-112) (-112))) (-15 -1684 ($ (-653 (-653 (-953 |t#1|))))) (-15 -1684 ($ (-653 (-653 (-953 |t#1|))) (-112) (-112))) (-15 -1684 ((-653 (-653 (-953 |t#1|))) $)) (-15 -4220 ((-112) $)) (-15 -2930 ((-653 (-953 |t#1|)) $)) (-15 -2729 ((-653 (-653 (-653 (-780)))) $)) (-15 -4058 ((-653 (-653 (-653 (-953 |t#1|)))) $)) (-15 -2920 ((-653 (-653 (-173))) $)) (-15 -2869 ((-653 (-173)) $)) (-15 -2613 ((-2 (|:| -3999 (-780)) (|:| |curves| (-780)) (|:| |polygons| (-780)) (|:| |constructs| (-780))) $)) (-15 -3579 ($ $)) (-15 -2895 ((-1177 3 |t#1|) $)) (-15 -2942 ((-871) $)))) +(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 184) (($ (-1194)) NIL) (((-1194) $) 7)) (-2121 (((-112) $ (|[\|\|]| (-533))) 19) (((-112) $ (|[\|\|]| (-220))) 23) (((-112) $ (|[\|\|]| (-685))) 27) (((-112) $ (|[\|\|]| (-1290))) 31) (((-112) $ (|[\|\|]| (-139))) 35) (((-112) $ (|[\|\|]| (-615))) 39) (((-112) $ (|[\|\|]| (-134))) 43) (((-112) $ (|[\|\|]| (-1127))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-690))) 55) (((-112) $ (|[\|\|]| (-526))) 59) (((-112) $ (|[\|\|]| (-1078))) 63) (((-112) $ (|[\|\|]| (-1291))) 67) (((-112) $ (|[\|\|]| (-534))) 71) (((-112) $ (|[\|\|]| (-1163))) 75) (((-112) $ (|[\|\|]| (-155))) 79) (((-112) $ (|[\|\|]| (-680))) 83) (((-112) $ (|[\|\|]| (-318))) 87) (((-112) $ (|[\|\|]| (-1048))) 91) (((-112) $ (|[\|\|]| (-182))) 95) (((-112) $ (|[\|\|]| (-982))) 99) (((-112) $ (|[\|\|]| (-1085))) 103) (((-112) $ (|[\|\|]| (-1102))) 107) (((-112) $ (|[\|\|]| (-1108))) 111) (((-112) $ (|[\|\|]| (-635))) 115) (((-112) $ (|[\|\|]| (-1179))) 119) (((-112) $ (|[\|\|]| (-157))) 123) (((-112) $ (|[\|\|]| (-138))) 127) (((-112) $ (|[\|\|]| (-487))) 131) (((-112) $ (|[\|\|]| (-601))) 135) (((-112) $ (|[\|\|]| (-515))) 139) (((-112) $ (|[\|\|]| (-1171))) 143) (((-112) $ (|[\|\|]| (-573))) 147)) (-3507 (((-112) $ $) NIL)) (-1331 (((-533) $) 20) (((-220) $) 24) (((-685) $) 28) (((-1290) $) 32) (((-139) $) 36) (((-615) $) 40) (((-134) $) 44) (((-1127) $) 48) (((-96) $) 52) (((-690) $) 56) (((-526) $) 60) (((-1078) $) 64) (((-1291) $) 68) (((-534) $) 72) (((-1163) $) 76) (((-155) $) 80) (((-680) $) 84) (((-318) $) 88) (((-1048) $) 92) (((-182) $) 96) (((-982) $) 100) (((-1085) $) 104) (((-1102) $) 108) (((-1108) $) 112) (((-635) $) 116) (((-1179) $) 120) (((-157) $) 124) (((-138) $) 128) (((-487) $) 132) (((-601) $) 136) (((-515) $) 140) (((-1171) $) 144) (((-573) $) 148)) (-2981 (((-112) $ $) NIL))) +(((-1147) (-1149)) (T -1147)) +NIL +(-1149) +((-3735 (((-653 (-1194)) (-1171)) 9))) +(((-1148) (-10 -7 (-15 -3735 ((-653 (-1194)) (-1171))))) (T -1148)) +((-3735 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-653 (-1194))) (-5 *1 (-1148))))) +(-10 -7 (-15 -3735 ((-653 (-1194)) (-1171)))) +((-2848 (((-112) $ $) 7)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12) (($ (-1194)) 17) (((-1194) $) 16)) (-2121 (((-112) $ (|[\|\|]| (-533))) 85) (((-112) $ (|[\|\|]| (-220))) 83) (((-112) $ (|[\|\|]| (-685))) 81) (((-112) $ (|[\|\|]| (-1290))) 79) (((-112) $ (|[\|\|]| (-139))) 77) (((-112) $ (|[\|\|]| (-615))) 75) (((-112) $ (|[\|\|]| (-134))) 73) (((-112) $ (|[\|\|]| (-1127))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-690))) 67) (((-112) $ (|[\|\|]| (-526))) 65) (((-112) $ (|[\|\|]| (-1078))) 63) (((-112) $ (|[\|\|]| (-1291))) 61) (((-112) $ (|[\|\|]| (-534))) 59) (((-112) $ (|[\|\|]| (-1163))) 57) (((-112) $ (|[\|\|]| (-155))) 55) (((-112) $ (|[\|\|]| (-680))) 53) (((-112) $ (|[\|\|]| (-318))) 51) (((-112) $ (|[\|\|]| (-1048))) 49) (((-112) $ (|[\|\|]| (-182))) 47) (((-112) $ (|[\|\|]| (-982))) 45) (((-112) $ (|[\|\|]| (-1085))) 43) (((-112) $ (|[\|\|]| (-1102))) 41) (((-112) $ (|[\|\|]| (-1108))) 39) (((-112) $ (|[\|\|]| (-635))) 37) (((-112) $ (|[\|\|]| (-1179))) 35) (((-112) $ (|[\|\|]| (-157))) 33) (((-112) $ (|[\|\|]| (-138))) 31) (((-112) $ (|[\|\|]| (-487))) 29) (((-112) $ (|[\|\|]| (-601))) 27) (((-112) $ (|[\|\|]| (-515))) 25) (((-112) $ (|[\|\|]| (-1171))) 23) (((-112) $ (|[\|\|]| (-573))) 21)) (-3507 (((-112) $ $) 9)) (-1331 (((-533) $) 84) (((-220) $) 82) (((-685) $) 80) (((-1290) $) 78) (((-139) $) 76) (((-615) $) 74) (((-134) $) 72) (((-1127) $) 70) (((-96) $) 68) (((-690) $) 66) (((-526) $) 64) (((-1078) $) 62) (((-1291) $) 60) (((-534) $) 58) (((-1163) $) 56) (((-155) $) 54) (((-680) $) 52) (((-318) $) 50) (((-1048) $) 48) (((-182) $) 46) (((-982) $) 44) (((-1085) $) 42) (((-1102) $) 40) (((-1108) $) 38) (((-635) $) 36) (((-1179) $) 34) (((-157) $) 32) (((-138) $) 30) (((-487) $) 28) (((-601) $) 26) (((-515) $) 24) (((-1171) $) 22) (((-573) $) 20)) (-2981 (((-112) $ $) 6))) +(((-1149) (-141)) (T -1149)) +((-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-533))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-533)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-220)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-685))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-685)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1290))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1290)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-139)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-615))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-615)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-134)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1127))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1127)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-96)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-690))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-690)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-526))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-526)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1078))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1078)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1291))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1291)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-534))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-534)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1163))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1163)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-155)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-680))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-680)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-318))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-318)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1048))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1048)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-182)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-982))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-982)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1085))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1085)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1102))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1102)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1108))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1108)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-635))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-635)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1179))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1179)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-157)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-138)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-487))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-487)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-601))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-601)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-515)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1171))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1171)))) (-2121 (*1 *2 *1 *3) (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-573))) (-5 *2 (-112)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-573))))) +(-13 (-1095) (-1275) (-10 -8 (-15 -2121 ((-112) $ (|[\|\|]| (-533)))) (-15 -1331 ((-533) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-220)))) (-15 -1331 ((-220) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-685)))) (-15 -1331 ((-685) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-1290)))) (-15 -1331 ((-1290) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-139)))) (-15 -1331 ((-139) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-615)))) (-15 -1331 ((-615) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-134)))) (-15 -1331 ((-134) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-1127)))) (-15 -1331 ((-1127) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-96)))) (-15 -1331 ((-96) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-690)))) (-15 -1331 ((-690) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-526)))) (-15 -1331 ((-526) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-1078)))) (-15 -1331 ((-1078) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-1291)))) (-15 -1331 ((-1291) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-534)))) (-15 -1331 ((-534) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-1163)))) (-15 -1331 ((-1163) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-155)))) (-15 -1331 ((-155) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-680)))) (-15 -1331 ((-680) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-318)))) (-15 -1331 ((-318) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-1048)))) (-15 -1331 ((-1048) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-182)))) (-15 -1331 ((-182) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-982)))) (-15 -1331 ((-982) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-1085)))) (-15 -1331 ((-1085) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-1102)))) (-15 -1331 ((-1102) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-1108)))) (-15 -1331 ((-1108) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-635)))) (-15 -1331 ((-635) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-1179)))) (-15 -1331 ((-1179) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-157)))) (-15 -1331 ((-157) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-138)))) (-15 -1331 ((-138) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-487)))) (-15 -1331 ((-487) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-601)))) (-15 -1331 ((-601) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-515)))) (-15 -1331 ((-515) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-1171)))) (-15 -1331 ((-1171) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-573)))) (-15 -1331 ((-573) $)))) +(((-93) . T) ((-102) . T) ((-625 #0=(-1194)) . T) ((-622 (-871)) . T) ((-622 #0#) . T) ((-499 #0#) . T) ((-1112) . T) ((-1095) . T) ((-1275) . T)) +((-3615 (((-1285) (-653 (-871))) 22) (((-1285) (-871)) 21)) (-3941 (((-1285) (-653 (-871))) 20) (((-1285) (-871)) 19)) (-3767 (((-1285) (-653 (-871))) 18) (((-1285) (-871)) 10) (((-1285) (-1171) (-871)) 16))) +(((-1150) (-10 -7 (-15 -3767 ((-1285) (-1171) (-871))) (-15 -3767 ((-1285) (-871))) (-15 -3941 ((-1285) (-871))) (-15 -3615 ((-1285) (-871))) (-15 -3767 ((-1285) (-653 (-871)))) (-15 -3941 ((-1285) (-653 (-871)))) (-15 -3615 ((-1285) (-653 (-871)))))) (T -1150)) +((-3615 (*1 *2 *3) (-12 (-5 *3 (-653 (-871))) (-5 *2 (-1285)) (-5 *1 (-1150)))) (-3941 (*1 *2 *3) (-12 (-5 *3 (-653 (-871))) (-5 *2 (-1285)) (-5 *1 (-1150)))) (-3767 (*1 *2 *3) (-12 (-5 *3 (-653 (-871))) (-5 *2 (-1285)) (-5 *1 (-1150)))) (-3615 (*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1285)) (-5 *1 (-1150)))) (-3941 (*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1285)) (-5 *1 (-1150)))) (-3767 (*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1285)) (-5 *1 (-1150)))) (-3767 (*1 *2 *3 *4) (-12 (-5 *3 (-1171)) (-5 *4 (-871)) (-5 *2 (-1285)) (-5 *1 (-1150))))) +(-10 -7 (-15 -3767 ((-1285) (-1171) (-871))) (-15 -3767 ((-1285) (-871))) (-15 -3941 ((-1285) (-871))) (-15 -3615 ((-1285) (-871))) (-15 -3767 ((-1285) (-653 (-871)))) (-15 -3941 ((-1285) (-653 (-871)))) (-15 -3615 ((-1285) (-653 (-871))))) +((-1562 (($ $ $) 10)) (-3325 (($ $) 9)) (-1424 (($ $ $) 13)) (-4237 (($ $ $) 15)) (-3125 (($ $ $) 12)) (-2704 (($ $ $) 14)) (-3754 (($ $) 17)) (-1450 (($ $) 16)) (-1660 (($ $) 6)) (-1818 (($ $ $) 11) (($ $) 7)) (-1503 (($ $ $) 8))) +(((-1151) (-141)) (T -1151)) +((-3754 (*1 *1 *1) (-4 *1 (-1151))) (-1450 (*1 *1 *1) (-4 *1 (-1151))) (-4237 (*1 *1 *1 *1) (-4 *1 (-1151))) (-2704 (*1 *1 *1 *1) (-4 *1 (-1151))) (-1424 (*1 *1 *1 *1) (-4 *1 (-1151))) (-3125 (*1 *1 *1 *1) (-4 *1 (-1151))) (-1818 (*1 *1 *1 *1) (-4 *1 (-1151))) (-1562 (*1 *1 *1 *1) (-4 *1 (-1151))) (-3325 (*1 *1 *1) (-4 *1 (-1151))) (-1503 (*1 *1 *1 *1) (-4 *1 (-1151))) (-1818 (*1 *1 *1) (-4 *1 (-1151))) (-1660 (*1 *1 *1) (-4 *1 (-1151)))) +(-13 (-10 -8 (-15 -1660 ($ $)) (-15 -1818 ($ $)) (-15 -1503 ($ $ $)) (-15 -3325 ($ $)) (-15 -1562 ($ $ $)) (-15 -1818 ($ $ $)) (-15 -3125 ($ $ $)) (-15 -1424 ($ $ $)) (-15 -2704 ($ $ $)) (-15 -4237 ($ $ $)) (-15 -1450 ($ $)) (-15 -3754 ($ $)))) +((-2848 (((-112) $ $) 44)) (-3082 ((|#1| $) 17)) (-1988 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-2390 (((-112) $) 19)) (-2308 (($ $ |#1|) 30)) (-1347 (($ $ (-112)) 32)) (-2409 (($ $) 33)) (-3357 (($ $ |#2|) 31)) (-3180 (((-1171) $) NIL)) (-1778 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3965 (((-1132) $) NIL)) (-3811 (((-112) $) 16)) (-3508 (($) 13)) (-3166 (($ $) 29)) (-2955 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -4090 |#2|))) 23) (((-653 $) (-653 (-2 (|:| |val| |#1|) (|:| -4090 |#2|)))) 26) (((-653 $) |#1| (-653 |#2|)) 28)) (-2264 ((|#2| $) 18)) (-2942 (((-871) $) 53)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 42))) +(((-1152 |#1| |#2|) (-13 (-1112) (-10 -8 (-15 -3508 ($)) (-15 -3811 ((-112) $)) (-15 -3082 (|#1| $)) (-15 -2264 (|#2| $)) (-15 -2390 ((-112) $)) (-15 -2955 ($ |#1| |#2| (-112))) (-15 -2955 ($ |#1| |#2|)) (-15 -2955 ($ (-2 (|:| |val| |#1|) (|:| -4090 |#2|)))) (-15 -2955 ((-653 $) (-653 (-2 (|:| |val| |#1|) (|:| -4090 |#2|))))) (-15 -2955 ((-653 $) |#1| (-653 |#2|))) (-15 -3166 ($ $)) (-15 -2308 ($ $ |#1|)) (-15 -3357 ($ $ |#2|)) (-15 -1347 ($ $ (-112))) (-15 -2409 ($ $)) (-15 -1778 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1988 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1112) (-34)) (-13 (-1112) (-34))) (T -1152)) +((-3508 (*1 *1) (-12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1112) (-34))) (-4 *3 (-13 (-1112) (-34))))) (-3811 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1152 *3 *4)) (-4 *3 (-13 (-1112) (-34))) (-4 *4 (-13 (-1112) (-34))))) (-3082 (*1 *2 *1) (-12 (-4 *2 (-13 (-1112) (-34))) (-5 *1 (-1152 *2 *3)) (-4 *3 (-13 (-1112) (-34))))) (-2264 (*1 *2 *1) (-12 (-4 *2 (-13 (-1112) (-34))) (-5 *1 (-1152 *3 *2)) (-4 *3 (-13 (-1112) (-34))))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1152 *3 *4)) (-4 *3 (-13 (-1112) (-34))) (-4 *4 (-13 (-1112) (-34))))) (-2955 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1112) (-34))) (-4 *3 (-13 (-1112) (-34))))) (-2955 (*1 *1 *2 *3) (-12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1112) (-34))) (-4 *3 (-13 (-1112) (-34))))) (-2955 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4090 *4))) (-4 *3 (-13 (-1112) (-34))) (-4 *4 (-13 (-1112) (-34))) (-5 *1 (-1152 *3 *4)))) (-2955 (*1 *2 *3) (-12 (-5 *3 (-653 (-2 (|:| |val| *4) (|:| -4090 *5)))) (-4 *4 (-13 (-1112) (-34))) (-4 *5 (-13 (-1112) (-34))) (-5 *2 (-653 (-1152 *4 *5))) (-5 *1 (-1152 *4 *5)))) (-2955 (*1 *2 *3 *4) (-12 (-5 *4 (-653 *5)) (-4 *5 (-13 (-1112) (-34))) (-5 *2 (-653 (-1152 *3 *5))) (-5 *1 (-1152 *3 *5)) (-4 *3 (-13 (-1112) (-34))))) (-3166 (*1 *1 *1) (-12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1112) (-34))) (-4 *3 (-13 (-1112) (-34))))) (-2308 (*1 *1 *1 *2) (-12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1112) (-34))) (-4 *3 (-13 (-1112) (-34))))) (-3357 (*1 *1 *1 *2) (-12 (-5 *1 (-1152 *3 *2)) (-4 *3 (-13 (-1112) (-34))) (-4 *2 (-13 (-1112) (-34))))) (-1347 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1152 *3 *4)) (-4 *3 (-13 (-1112) (-34))) (-4 *4 (-13 (-1112) (-34))))) (-2409 (*1 *1 *1) (-12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1112) (-34))) (-4 *3 (-13 (-1112) (-34))))) (-1778 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1112) (-34))) (-4 *6 (-13 (-1112) (-34))) (-5 *2 (-112)) (-5 *1 (-1152 *5 *6)))) (-1988 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1112) (-34))) (-5 *2 (-112)) (-5 *1 (-1152 *4 *5)) (-4 *4 (-13 (-1112) (-34)))))) +(-13 (-1112) (-10 -8 (-15 -3508 ($)) (-15 -3811 ((-112) $)) (-15 -3082 (|#1| $)) (-15 -2264 (|#2| $)) (-15 -2390 ((-112) $)) (-15 -2955 ($ |#1| |#2| (-112))) (-15 -2955 ($ |#1| |#2|)) (-15 -2955 ($ (-2 (|:| |val| |#1|) (|:| -4090 |#2|)))) (-15 -2955 ((-653 $) (-653 (-2 (|:| |val| |#1|) (|:| -4090 |#2|))))) (-15 -2955 ((-653 $) |#1| (-653 |#2|))) (-15 -3166 ($ $)) (-15 -2308 ($ $ |#1|)) (-15 -3357 ($ $ |#2|)) (-15 -1347 ($ $ (-112))) (-15 -2409 ($ $)) (-15 -1778 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1988 ((-112) $ $ (-1 (-112) |#2| |#2|))))) +((-2848 (((-112) $ $) NIL (|has| (-1152 |#1| |#2|) (-1112)))) (-3082 (((-1152 |#1| |#2|) $) 27)) (-3443 (($ $) 91)) (-3883 (((-112) (-1152 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-1514 (($ $ $ (-653 (-1152 |#1| |#2|))) 108) (($ $ $ (-653 (-1152 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-3450 (((-112) $ (-780)) NIL)) (-2367 (((-1152 |#1| |#2|) $ (-1152 |#1| |#2|)) 46 (|has| $ (-6 -4456)))) (-3142 (((-1152 |#1| |#2|) $ "value" (-1152 |#1| |#2|)) NIL (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) 44 (|has| $ (-6 -4456)))) (-2579 (($) NIL T CONST)) (-4070 (((-653 (-2 (|:| |val| |#1|) (|:| -4090 |#2|))) $) 95)) (-2596 (($ (-1152 |#1| |#2|) $) 42)) (-3334 (($ (-1152 |#1| |#2|) $) 34)) (-1863 (((-653 (-1152 |#1| |#2|)) $) NIL (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) 54)) (-2073 (((-112) (-1152 |#1| |#2|) $) 97)) (-3208 (((-112) $ $) NIL (|has| (-1152 |#1| |#2|) (-1112)))) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 (-1152 |#1| |#2|)) $) 58 (|has| $ (-6 -4455)))) (-1547 (((-112) (-1152 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-1152 |#1| |#2|) (-1112))))) (-2446 (($ (-1 (-1152 |#1| |#2|) (-1152 |#1| |#2|)) $) 50 (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-1152 |#1| |#2|) (-1152 |#1| |#2|)) $) 49)) (-2673 (((-112) $ (-780)) NIL)) (-3505 (((-653 (-1152 |#1| |#2|)) $) 56)) (-2880 (((-112) $) 45)) (-3180 (((-1171) $) NIL (|has| (-1152 |#1| |#2|) (-1112)))) (-3965 (((-1132) $) NIL (|has| (-1152 |#1| |#2|) (-1112)))) (-3473 (((-3 $ "failed") $) 89)) (-1575 (((-112) (-1 (-112) (-1152 |#1| |#2|)) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-1152 |#1| |#2|)))) NIL (-12 (|has| (-1152 |#1| |#2|) (-316 (-1152 |#1| |#2|))) (|has| (-1152 |#1| |#2|) (-1112)))) (($ $ (-301 (-1152 |#1| |#2|))) NIL (-12 (|has| (-1152 |#1| |#2|) (-316 (-1152 |#1| |#2|))) (|has| (-1152 |#1| |#2|) (-1112)))) (($ $ (-1152 |#1| |#2|) (-1152 |#1| |#2|)) NIL (-12 (|has| (-1152 |#1| |#2|) (-316 (-1152 |#1| |#2|))) (|has| (-1152 |#1| |#2|) (-1112)))) (($ $ (-653 (-1152 |#1| |#2|)) (-653 (-1152 |#1| |#2|))) NIL (-12 (|has| (-1152 |#1| |#2|) (-316 (-1152 |#1| |#2|))) (|has| (-1152 |#1| |#2|) (-1112))))) (-1885 (((-112) $ $) 53)) (-3811 (((-112) $) 24)) (-3508 (($) 26)) (-2198 (((-1152 |#1| |#2|) $ "value") NIL)) (-1501 (((-573) $ $) NIL)) (-1628 (((-112) $) 47)) (-3974 (((-780) (-1 (-112) (-1152 |#1| |#2|)) $) NIL (|has| $ (-6 -4455))) (((-780) (-1152 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-1152 |#1| |#2|) (-1112))))) (-3166 (($ $) 52)) (-2955 (($ (-1152 |#1| |#2|)) 10) (($ |#1| |#2| (-653 $)) 13) (($ |#1| |#2| (-653 (-1152 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-653 |#2|)) 18)) (-2669 (((-653 |#2|) $) 96)) (-2942 (((-871) $) 87 (|has| (-1152 |#1| |#2|) (-622 (-871))))) (-1811 (((-653 $) $) 31)) (-1716 (((-112) $ $) NIL (|has| (-1152 |#1| |#2|) (-1112)))) (-3507 (((-112) $ $) NIL (|has| (-1152 |#1| |#2|) (-1112)))) (-1646 (((-112) (-1 (-112) (-1152 |#1| |#2|)) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 70 (|has| (-1152 |#1| |#2|) (-1112)))) (-2862 (((-780) $) 64 (|has| $ (-6 -4455))))) +(((-1153 |#1| |#2|) (-13 (-1022 (-1152 |#1| |#2|)) (-10 -8 (-6 -4456) (-6 -4455) (-15 -3473 ((-3 $ "failed") $)) (-15 -3443 ($ $)) (-15 -2955 ($ (-1152 |#1| |#2|))) (-15 -2955 ($ |#1| |#2| (-653 $))) (-15 -2955 ($ |#1| |#2| (-653 (-1152 |#1| |#2|)))) (-15 -2955 ($ |#1| |#2| |#1| (-653 |#2|))) (-15 -2669 ((-653 |#2|) $)) (-15 -4070 ((-653 (-2 (|:| |val| |#1|) (|:| -4090 |#2|))) $)) (-15 -2073 ((-112) (-1152 |#1| |#2|) $)) (-15 -3883 ((-112) (-1152 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3334 ($ (-1152 |#1| |#2|) $)) (-15 -2596 ($ (-1152 |#1| |#2|) $)) (-15 -1514 ($ $ $ (-653 (-1152 |#1| |#2|)))) (-15 -1514 ($ $ $ (-653 (-1152 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1112) (-34)) (-13 (-1112) (-34))) (T -1153)) +((-3473 (*1 *1 *1) (|partial| -12 (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1112) (-34))) (-4 *3 (-13 (-1112) (-34))))) (-3443 (*1 *1 *1) (-12 (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1112) (-34))) (-4 *3 (-13 (-1112) (-34))))) (-2955 (*1 *1 *2) (-12 (-5 *2 (-1152 *3 *4)) (-4 *3 (-13 (-1112) (-34))) (-4 *4 (-13 (-1112) (-34))) (-5 *1 (-1153 *3 *4)))) (-2955 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-653 (-1153 *2 *3))) (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1112) (-34))) (-4 *3 (-13 (-1112) (-34))))) (-2955 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-653 (-1152 *2 *3))) (-4 *2 (-13 (-1112) (-34))) (-4 *3 (-13 (-1112) (-34))) (-5 *1 (-1153 *2 *3)))) (-2955 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-653 *3)) (-4 *3 (-13 (-1112) (-34))) (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1112) (-34))))) (-2669 (*1 *2 *1) (-12 (-5 *2 (-653 *4)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-13 (-1112) (-34))) (-4 *4 (-13 (-1112) (-34))))) (-4070 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) (-5 *1 (-1153 *3 *4)) (-4 *3 (-13 (-1112) (-34))) (-4 *4 (-13 (-1112) (-34))))) (-2073 (*1 *2 *3 *1) (-12 (-5 *3 (-1152 *4 *5)) (-4 *4 (-13 (-1112) (-34))) (-4 *5 (-13 (-1112) (-34))) (-5 *2 (-112)) (-5 *1 (-1153 *4 *5)))) (-3883 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1152 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1112) (-34))) (-4 *6 (-13 (-1112) (-34))) (-5 *2 (-112)) (-5 *1 (-1153 *5 *6)))) (-3334 (*1 *1 *2 *1) (-12 (-5 *2 (-1152 *3 *4)) (-4 *3 (-13 (-1112) (-34))) (-4 *4 (-13 (-1112) (-34))) (-5 *1 (-1153 *3 *4)))) (-2596 (*1 *1 *2 *1) (-12 (-5 *2 (-1152 *3 *4)) (-4 *3 (-13 (-1112) (-34))) (-4 *4 (-13 (-1112) (-34))) (-5 *1 (-1153 *3 *4)))) (-1514 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-653 (-1152 *3 *4))) (-4 *3 (-13 (-1112) (-34))) (-4 *4 (-13 (-1112) (-34))) (-5 *1 (-1153 *3 *4)))) (-1514 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-653 (-1152 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1112) (-34))) (-4 *5 (-13 (-1112) (-34))) (-5 *1 (-1153 *4 *5))))) +(-13 (-1022 (-1152 |#1| |#2|)) (-10 -8 (-6 -4456) (-6 -4455) (-15 -3473 ((-3 $ "failed") $)) (-15 -3443 ($ $)) (-15 -2955 ($ (-1152 |#1| |#2|))) (-15 -2955 ($ |#1| |#2| (-653 $))) (-15 -2955 ($ |#1| |#2| (-653 (-1152 |#1| |#2|)))) (-15 -2955 ($ |#1| |#2| |#1| (-653 |#2|))) (-15 -2669 ((-653 |#2|) $)) (-15 -4070 ((-653 (-2 (|:| |val| |#1|) (|:| -4090 |#2|))) $)) (-15 -2073 ((-112) (-1152 |#1| |#2|) $)) (-15 -3883 ((-112) (-1152 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3334 ($ (-1152 |#1| |#2|) $)) (-15 -2596 ($ (-1152 |#1| |#2|) $)) (-15 -1514 ($ $ $ (-653 (-1152 |#1| |#2|)))) (-15 -1514 ($ $ $ (-653 (-1152 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-1724 (($ $) NIL)) (-1635 ((|#2| $) NIL)) (-2932 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4261 (($ (-698 |#2|)) 56)) (-1916 (((-112) $) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-1681 (($ |#2|) 14)) (-2579 (($) NIL T CONST)) (-2801 (($ $) 69 (|has| |#2| (-314)))) (-3229 (((-245 |#1| |#2|) $ (-573)) 42)) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#2| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#2| (-1050 (-416 (-573))))) (((-3 |#2| "failed") $) NIL)) (-2205 (((-573) $) NIL (|has| |#2| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#2| (-1050 (-416 (-573))))) ((|#2| $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) NIL) (((-698 |#2|) (-698 $)) NIL) (((-698 |#2|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) 83)) (-3583 (((-780) $) 71 (|has| |#2| (-565)))) (-2384 ((|#2| $ (-573) (-573)) NIL)) (-1863 (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-1959 (((-112) $) NIL)) (-2928 (((-780) $) 73 (|has| |#2| (-565)))) (-4209 (((-653 (-245 |#1| |#2|)) $) 77 (|has| |#2| (-565)))) (-2188 (((-780) $) NIL)) (-3789 (($ |#2|) 25)) (-2197 (((-780) $) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-2431 ((|#2| $) 67 (|has| |#2| (-6 (-4457 "*"))))) (-1319 (((-573) $) NIL)) (-4011 (((-573) $) NIL)) (-3214 (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3124 (((-573) $) NIL)) (-2326 (((-573) $) NIL)) (-2913 (($ (-653 (-653 |#2|))) 37)) (-2446 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1612 (((-653 (-653 |#2|)) $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-3299 (((-3 $ "failed") $) 80 (|has| |#2| (-371)))) (-3965 (((-1132) $) NIL)) (-2837 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-565)))) (-1575 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#2|))) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#2| $ (-573) (-573) |#2|) NIL) ((|#2| $ (-573) (-573)) NIL)) (-3904 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189)) NIL (|has| |#2| (-910 (-1189)))) (($ $) NIL (|has| |#2| (-238))) (($ $ (-780)) NIL (|has| |#2| (-238)))) (-3856 ((|#2| $) NIL)) (-1633 (($ (-653 |#2|)) 50)) (-2530 (((-112) $) NIL)) (-3372 (((-245 |#1| |#2|) $) NIL)) (-2529 ((|#2| $) 65 (|has| |#2| (-6 (-4457 "*"))))) (-3974 (((-780) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455))) (((-780) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3166 (($ $) NIL)) (-1835 (((-545) $) 89 (|has| |#2| (-623 (-545))))) (-1921 (((-245 |#1| |#2|) $ (-573)) 44)) (-2942 (((-871) $) 47) (($ (-573)) NIL) (($ (-416 (-573))) NIL (|has| |#2| (-1050 (-416 (-573))))) (($ |#2|) NIL) (((-698 |#2|) $) 52)) (-1545 (((-780)) 23 T CONST)) (-3507 (((-112) $ $) NIL)) (-1646 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-1494 (((-112) $) NIL)) (-2132 (($) 16 T CONST)) (-2144 (($) 21 T CONST)) (-3609 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189)) NIL (|has| |#2| (-910 (-1189)))) (($ $) NIL (|has| |#2| (-238))) (($ $ (-780)) NIL (|has| |#2| (-238)))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#2|) NIL (|has| |#2| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) 63) (($ $ (-573)) 82 (|has| |#2| (-371)))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-245 |#1| |#2|) $ (-245 |#1| |#2|)) 59) (((-245 |#1| |#2|) (-245 |#1| |#2|) $) 61)) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-1154 |#1| |#2|) (-13 (-1135 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-622 (-698 |#2|)) (-10 -8 (-15 -3789 ($ |#2|)) (-15 -1724 ($ $)) (-15 -4261 ($ (-698 |#2|))) (IF (|has| |#2| (-6 (-4457 "*"))) (-6 -4444) |%noBranch|) (IF (|has| |#2| (-6 (-4457 "*"))) (IF (|has| |#2| (-6 -4452)) (-6 -4452) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|))) (-780) (-1061)) (T -1154)) +((-3789 (*1 *1 *2) (-12 (-5 *1 (-1154 *3 *2)) (-14 *3 (-780)) (-4 *2 (-1061)))) (-1724 (*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-780)) (-4 *3 (-1061)))) (-4261 (*1 *1 *2) (-12 (-5 *2 (-698 *4)) (-4 *4 (-1061)) (-5 *1 (-1154 *3 *4)) (-14 *3 (-780))))) +(-13 (-1135 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-622 (-698 |#2|)) (-10 -8 (-15 -3789 ($ |#2|)) (-15 -1724 ($ $)) (-15 -4261 ($ (-698 |#2|))) (IF (|has| |#2| (-6 (-4457 "*"))) (-6 -4444) |%noBranch|) (IF (|has| |#2| (-6 (-4457 "*"))) (IF (|has| |#2| (-6 -4452)) (-6 -4452) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-623 (-545))) (-6 (-623 (-545))) |%noBranch|))) +((-2391 (($ $) 19)) (-3952 (($ $ (-145)) 10) (($ $ (-142)) 14)) (-3732 (((-112) $ $) 24)) (-3878 (($ $) 17)) (-2198 (((-145) $ (-573) (-145)) NIL) (((-145) $ (-573)) NIL) (($ $ (-1247 (-573))) NIL) (($ $ $) 31)) (-2942 (($ (-145)) 29) (((-871) $) NIL))) +(((-1155 |#1|) (-10 -8 (-15 -2942 ((-871) |#1|)) (-15 -2198 (|#1| |#1| |#1|)) (-15 -3952 (|#1| |#1| (-142))) (-15 -3952 (|#1| |#1| (-145))) (-15 -2942 (|#1| (-145))) (-15 -3732 ((-112) |#1| |#1|)) (-15 -2391 (|#1| |#1|)) (-15 -3878 (|#1| |#1|)) (-15 -2198 (|#1| |#1| (-1247 (-573)))) (-15 -2198 ((-145) |#1| (-573))) (-15 -2198 ((-145) |#1| (-573) (-145)))) (-1156)) (T -1155)) +NIL +(-10 -8 (-15 -2942 ((-871) |#1|)) (-15 -2198 (|#1| |#1| |#1|)) (-15 -3952 (|#1| |#1| (-142))) (-15 -3952 (|#1| |#1| (-145))) (-15 -2942 (|#1| (-145))) (-15 -3732 ((-112) |#1| |#1|)) (-15 -2391 (|#1| |#1|)) (-15 -3878 (|#1| |#1|)) (-15 -2198 (|#1| |#1| (-1247 (-573)))) (-15 -2198 ((-145) |#1| (-573))) (-15 -2198 ((-145) |#1| (-573) (-145)))) +((-2848 (((-112) $ $) 19 (|has| (-145) (-1112)))) (-3315 (($ $) 123)) (-2391 (($ $) 124)) (-3952 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-3791 (((-1285) $ (-573) (-573)) 41 (|has| $ (-6 -4456)))) (-3710 (((-112) $ $) 121)) (-3689 (((-112) $ $ (-573)) 120)) (-3834 (((-653 $) $ (-145)) 113) (((-653 $) $ (-142)) 112)) (-1473 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-859)))) (-2748 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4456))) (($ $) 91 (-12 (|has| (-145) (-859)) (|has| $ (-6 -4456))))) (-2770 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-859)))) (-3450 (((-112) $ (-780)) 8)) (-3142 (((-145) $ (-573) (-145)) 53 (|has| $ (-6 -4456))) (((-145) $ (-1247 (-573)) (-145)) 60 (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4455)))) (-2579 (($) 7 T CONST)) (-2616 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-2176 (($ $) 93 (|has| $ (-6 -4456)))) (-4422 (($ $) 103)) (-3403 (($ $ (-1247 (-573)) $) 117)) (-2685 (($ $) 80 (-12 (|has| (-145) (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ (-145) $) 79 (-12 (|has| (-145) (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4455)))) (-2867 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1112)) (|has| $ (-6 -4455)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4455))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4455)))) (-2457 (((-145) $ (-573) (-145)) 54 (|has| $ (-6 -4456)))) (-2384 (((-145) $ (-573)) 52)) (-3732 (((-112) $ $) 122)) (-1440 (((-573) (-1 (-112) (-145)) $) 100) (((-573) (-145) $) 99 (|has| (-145) (-1112))) (((-573) (-145) $ (-573)) 98 (|has| (-145) (-1112))) (((-573) $ $ (-573)) 116) (((-573) (-142) $ (-573)) 115)) (-1863 (((-653 (-145)) $) 31 (|has| $ (-6 -4455)))) (-3789 (($ (-780) (-145)) 70)) (-2078 (((-112) $ (-780)) 9)) (-1968 (((-573) $) 44 (|has| (-573) (-859)))) (-3659 (($ $ $) 90 (|has| (-145) (-859)))) (-1480 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-859)))) (-3214 (((-653 (-145)) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1112)) (|has| $ (-6 -4455))))) (-3470 (((-573) $) 45 (|has| (-573) (-859)))) (-3751 (($ $ $) 89 (|has| (-145) (-859)))) (-1325 (((-112) $ $ (-145)) 118)) (-2682 (((-780) $ $ (-145)) 119)) (-2446 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-2422 (($ $) 125)) (-3878 (($ $) 126)) (-2673 (((-112) $ (-780)) 10)) (-2630 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-3180 (((-1171) $) 22 (|has| (-145) (-1112)))) (-1593 (($ (-145) $ (-573)) 62) (($ $ $ (-573)) 61)) (-1977 (((-653 (-573)) $) 47)) (-2560 (((-112) (-573) $) 48)) (-3965 (((-1132) $) 21 (|has| (-145) (-1112)))) (-2914 (((-145) $) 43 (|has| (-573) (-859)))) (-2036 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-3112 (($ $ (-145)) 42 (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-145)))) 27 (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112)))) (($ $ (-301 (-145))) 26 (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112)))) (($ $ (-653 (-145)) (-653 (-145))) 24 (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112))))) (-1885 (((-112) $ $) 14)) (-2547 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112))))) (-1535 (((-653 (-145)) $) 49)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 (((-145) $ (-573) (-145)) 51) (((-145) $ (-573)) 50) (($ $ (-1247 (-573))) 71) (($ $ $) 105)) (-2836 (($ $ (-573)) 64) (($ $ (-1247 (-573))) 63)) (-3974 (((-780) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4455))) (((-780) (-145) $) 29 (-12 (|has| (-145) (-1112)) (|has| $ (-6 -4455))))) (-3919 (($ $ $ (-573)) 94 (|has| $ (-6 -4456)))) (-3166 (($ $) 13)) (-1835 (((-545) $) 81 (|has| (-145) (-623 (-545))))) (-2955 (($ (-653 (-145))) 72)) (-4156 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-653 $)) 66)) (-2942 (($ (-145)) 114) (((-871) $) 18 (|has| (-145) (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| (-145) (-1112)))) (-1646 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) 87 (|has| (-145) (-859)))) (-3015 (((-112) $ $) 86 (|has| (-145) (-859)))) (-2981 (((-112) $ $) 20 (|has| (-145) (-1112)))) (-3027 (((-112) $ $) 88 (|has| (-145) (-859)))) (-3005 (((-112) $ $) 85 (|has| (-145) (-859)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-1156) (-141)) (T -1156)) +((-3878 (*1 *1 *1) (-4 *1 (-1156))) (-2422 (*1 *1 *1) (-4 *1 (-1156))) (-2391 (*1 *1 *1) (-4 *1 (-1156))) (-3315 (*1 *1 *1) (-4 *1 (-1156))) (-3732 (*1 *2 *1 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-112)))) (-3710 (*1 *2 *1 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-112)))) (-3689 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (-573)) (-5 *2 (-112)))) (-2682 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (-145)) (-5 *2 (-780)))) (-1325 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (-145)) (-5 *2 (-112)))) (-3403 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1247 (-573))))) (-1440 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-573)))) (-1440 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-573)) (-5 *3 (-142)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1156)))) (-3834 (*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-653 *1)) (-4 *1 (-1156)))) (-3834 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-653 *1)) (-4 *1 (-1156)))) (-3952 (*1 *1 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-145)))) (-3952 (*1 *1 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-142)))) (-2630 (*1 *1 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-145)))) (-2630 (*1 *1 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-142)))) (-2616 (*1 *1 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-145)))) (-2616 (*1 *1 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-142)))) (-2198 (*1 *1 *1 *1) (-4 *1 (-1156)))) +(-13 (-19 (-145)) (-10 -8 (-15 -3878 ($ $)) (-15 -2422 ($ $)) (-15 -2391 ($ $)) (-15 -3315 ($ $)) (-15 -3732 ((-112) $ $)) (-15 -3710 ((-112) $ $)) (-15 -3689 ((-112) $ $ (-573))) (-15 -2682 ((-780) $ $ (-145))) (-15 -1325 ((-112) $ $ (-145))) (-15 -3403 ($ $ (-1247 (-573)) $)) (-15 -1440 ((-573) $ $ (-573))) (-15 -1440 ((-573) (-142) $ (-573))) (-15 -2942 ($ (-145))) (-15 -3834 ((-653 $) $ (-145))) (-15 -3834 ((-653 $) $ (-142))) (-15 -3952 ($ $ (-145))) (-15 -3952 ($ $ (-142))) (-15 -2630 ($ $ (-145))) (-15 -2630 ($ $ (-142))) (-15 -2616 ($ $ (-145))) (-15 -2616 ($ $ (-142))) (-15 -2198 ($ $ $)))) +(((-34) . T) ((-102) -2817 (|has| (-145) (-1112)) (|has| (-145) (-859))) ((-622 (-871)) -2817 (|has| (-145) (-1112)) (|has| (-145) (-859)) (|has| (-145) (-622 (-871)))) ((-152 #0=(-145)) . T) ((-623 (-545)) |has| (-145) (-623 (-545))) ((-293 #1=(-573) #0#) . T) ((-293 (-1247 (-573)) $) . T) ((-295 #1# #0#) . T) ((-316 #0#) -12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112))) ((-381 #0#) . T) ((-498 #0#) . T) ((-613 #1# #0#) . T) ((-523 #0# #0#) -12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112))) ((-660 #0#) . T) ((-19 #0#) . T) ((-859) |has| (-145) (-859)) ((-1112) -2817 (|has| (-145) (-1112)) (|has| (-145) (-859))) ((-1230) . T)) +((-3987 (((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-653 |#4|) (-653 |#5|) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) (-780)) 112)) (-2594 (((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780)) 61)) (-3669 (((-1285) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-780)) 97)) (-2358 (((-780) (-653 |#4|) (-653 |#5|)) 30)) (-3384 (((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780)) 63) (((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780) (-112)) 65)) (-2478 (((-653 |#5|) (-653 |#4|) (-653 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-653 |#5|) (-653 |#4|) (-653 |#5|) (-112) (-112)) 85)) (-1835 (((-1171) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) 90)) (-3330 (((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|) 60)) (-1800 (((-780) (-653 |#4|) (-653 |#5|)) 21))) +(((-1157 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1800 ((-780) (-653 |#4|) (-653 |#5|))) (-15 -2358 ((-780) (-653 |#4|) (-653 |#5|))) (-15 -3330 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|)) (-15 -2594 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780))) (-15 -2594 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|)) (-15 -3384 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780) (-112))) (-15 -3384 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780))) (-15 -3384 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|)) (-15 -2478 ((-653 |#5|) (-653 |#4|) (-653 |#5|) (-112) (-112))) (-15 -2478 ((-653 |#5|) (-653 |#4|) (-653 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3987 ((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-653 |#4|) (-653 |#5|) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) (-780))) (-15 -1835 ((-1171) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)))) (-15 -3669 ((-1285) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-780)))) (-461) (-802) (-859) (-1077 |#1| |#2| |#3|) (-1121 |#1| |#2| |#3| |#4|)) (T -1157)) +((-3669 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-2 (|:| |val| (-653 *8)) (|:| -4090 *9)))) (-5 *4 (-780)) (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1121 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-1285)) (-5 *1 (-1157 *5 *6 *7 *8 *9)))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-653 *7)) (|:| -4090 *8))) (-4 *7 (-1077 *4 *5 *6)) (-4 *8 (-1121 *4 *5 *6 *7)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-1171)) (-5 *1 (-1157 *4 *5 *6 *7 *8)))) (-3987 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-653 *11)) (|:| |todo| (-653 (-2 (|:| |val| *3) (|:| -4090 *11)))))) (-5 *6 (-780)) (-5 *2 (-653 (-2 (|:| |val| (-653 *10)) (|:| -4090 *11)))) (-5 *3 (-653 *10)) (-5 *4 (-653 *11)) (-4 *10 (-1077 *7 *8 *9)) (-4 *11 (-1121 *7 *8 *9 *10)) (-4 *7 (-461)) (-4 *8 (-802)) (-4 *9 (-859)) (-5 *1 (-1157 *7 *8 *9 *10 *11)))) (-2478 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-653 *9)) (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1121 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *1 (-1157 *5 *6 *7 *8 *9)))) (-2478 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-653 *9)) (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1121 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *1 (-1157 *5 *6 *7 *8 *9)))) (-3384 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-653 *4)) (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) (-5 *1 (-1157 *5 *6 *7 *3 *4)) (-4 *4 (-1121 *5 *6 *7 *3)))) (-3384 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-780)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) (-4 *3 (-1077 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-653 *4)) (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) (-5 *1 (-1157 *6 *7 *8 *3 *4)) (-4 *4 (-1121 *6 *7 *8 *3)))) (-3384 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-780)) (-5 *6 (-112)) (-4 *7 (-461)) (-4 *8 (-802)) (-4 *9 (-859)) (-4 *3 (-1077 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-653 *4)) (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) (-5 *1 (-1157 *7 *8 *9 *3 *4)) (-4 *4 (-1121 *7 *8 *9 *3)))) (-2594 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-653 *4)) (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) (-5 *1 (-1157 *5 *6 *7 *3 *4)) (-4 *4 (-1121 *5 *6 *7 *3)))) (-2594 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-780)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) (-4 *3 (-1077 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-653 *4)) (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) (-5 *1 (-1157 *6 *7 *8 *3 *4)) (-4 *4 (-1121 *6 *7 *8 *3)))) (-3330 (*1 *2 *3 *4) (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-653 *4)) (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) (-5 *1 (-1157 *5 *6 *7 *3 *4)) (-4 *4 (-1121 *5 *6 *7 *3)))) (-2358 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-653 *9)) (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1121 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-780)) (-5 *1 (-1157 *5 *6 *7 *8 *9)))) (-1800 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-653 *9)) (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1121 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-780)) (-5 *1 (-1157 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -1800 ((-780) (-653 |#4|) (-653 |#5|))) (-15 -2358 ((-780) (-653 |#4|) (-653 |#5|))) (-15 -3330 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|)) (-15 -2594 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780))) (-15 -2594 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|)) (-15 -3384 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780) (-112))) (-15 -3384 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5| (-780))) (-15 -3384 ((-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) |#4| |#5|)) (-15 -2478 ((-653 |#5|) (-653 |#4|) (-653 |#5|) (-112) (-112))) (-15 -2478 ((-653 |#5|) (-653 |#4|) (-653 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3987 ((-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-653 |#4|) (-653 |#5|) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-2 (|:| |done| (-653 |#5|)) (|:| |todo| (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))))) (-780))) (-15 -1835 ((-1171) (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|)))) (-15 -3669 ((-1285) (-653 (-2 (|:| |val| (-653 |#4|)) (|:| -4090 |#5|))) (-780)))) +((-2848 (((-112) $ $) NIL)) (-2280 (((-653 (-2 (|:| -1380 $) (|:| -1674 (-653 |#4|)))) (-653 |#4|)) NIL)) (-3527 (((-653 $) (-653 |#4|)) 124) (((-653 $) (-653 |#4|) (-112)) 125) (((-653 $) (-653 |#4|) (-112) (-112)) 123) (((-653 $) (-653 |#4|) (-112) (-112) (-112) (-112)) 126)) (-4354 (((-653 |#3|) $) NIL)) (-2577 (((-112) $) NIL)) (-2020 (((-112) $) NIL (|has| |#1| (-565)))) (-2261 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1554 ((|#4| |#4| $) NIL)) (-4285 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| $) 97)) (-2770 (((-2 (|:| |under| $) (|:| -3733 $) (|:| |upper| $)) $ |#3|) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-2164 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455))) (((-3 |#4| "failed") $ |#3|) 75)) (-2579 (($) NIL T CONST)) (-2194 (((-112) $) 29 (|has| |#1| (-565)))) (-1849 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2838 (((-112) $ $) NIL (|has| |#1| (-565)))) (-3145 (((-112) $) NIL (|has| |#1| (-565)))) (-4304 (((-653 |#4|) (-653 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2346 (((-653 |#4|) (-653 |#4|) $) NIL (|has| |#1| (-565)))) (-2475 (((-653 |#4|) (-653 |#4|) $) NIL (|has| |#1| (-565)))) (-1695 (((-3 $ "failed") (-653 |#4|)) NIL)) (-2205 (($ (-653 |#4|)) NIL)) (-2925 (((-3 $ "failed") $) 45)) (-3760 ((|#4| |#4| $) 78)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112))))) (-3334 (($ |#4| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-3132 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-565)))) (-4310 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3117 ((|#4| |#4| $) NIL)) (-2867 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4455))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4455))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2660 (((-2 (|:| -1380 (-653 |#4|)) (|:| -1674 (-653 |#4|))) $) NIL)) (-3060 (((-112) |#4| $) NIL)) (-2714 (((-112) |#4| $) NIL)) (-3491 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3191 (((-2 (|:| |val| (-653 |#4|)) (|:| |towers| (-653 $))) (-653 |#4|) (-112) (-112)) 139)) (-1863 (((-653 |#4|) $) 18 (|has| $ (-6 -4455)))) (-4022 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3338 ((|#3| $) 38)) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#4|) $) 19 (|has| $ (-6 -4455)))) (-1547 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112))))) (-2446 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#4| |#4|) $) 23)) (-1937 (((-653 |#3|) $) NIL)) (-1689 (((-112) |#3| $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-4092 (((-3 |#4| (-653 $)) |#4| |#4| $) NIL)) (-2395 (((-653 (-2 (|:| |val| |#4|) (|:| -4090 $))) |#4| |#4| $) 117)) (-3359 (((-3 |#4| "failed") $) 42)) (-1692 (((-653 $) |#4| $) 102)) (-1675 (((-3 (-112) (-653 $)) |#4| $) NIL)) (-3190 (((-653 (-2 (|:| |val| (-112)) (|:| -4090 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-3716 (((-653 $) |#4| $) 121) (((-653 $) (-653 |#4|) $) NIL) (((-653 $) (-653 |#4|) (-653 $)) 122) (((-653 $) |#4| (-653 $)) NIL)) (-2313 (((-653 $) (-653 |#4|) (-112) (-112) (-112)) 134)) (-1844 (($ |#4| $) 88) (($ (-653 |#4|) $) 89) (((-653 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-2870 (((-653 |#4|) $) NIL)) (-3161 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3430 ((|#4| |#4| $) NIL)) (-2614 (((-112) $ $) NIL)) (-3582 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-565)))) (-1973 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1448 ((|#4| |#4| $) NIL)) (-3965 (((-1132) $) NIL)) (-2914 (((-3 |#4| "failed") $) 40)) (-2036 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2865 (((-3 $ "failed") $ |#4|) 59)) (-2212 (($ $ |#4|) NIL) (((-653 $) |#4| $) 104) (((-653 $) |#4| (-653 $)) NIL) (((-653 $) (-653 |#4|) $) NIL) (((-653 $) (-653 |#4|) (-653 $)) 99)) (-1575 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 |#4|) (-653 |#4|)) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-301 |#4|)) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-653 (-301 |#4|))) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) 17)) (-3508 (($) 14)) (-2565 (((-780) $) NIL)) (-3974 (((-780) |#4| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112)))) (((-780) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) 13)) (-1835 (((-545) $) NIL (|has| |#4| (-623 (-545))))) (-2955 (($ (-653 |#4|)) 22)) (-4409 (($ $ |#3|) 52)) (-3496 (($ $ |#3|) 54)) (-1388 (($ $) NIL)) (-1456 (($ $ |#3|) NIL)) (-2942 (((-871) $) 35) (((-653 |#4|) $) 46)) (-3922 (((-780) $) NIL (|has| |#3| (-376)))) (-3507 (((-112) $ $) NIL)) (-3955 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3039 (((-112) $ (-1 (-112) |#4| (-653 |#4|))) NIL)) (-3402 (((-653 $) |#4| $) 66) (((-653 $) |#4| (-653 $)) NIL) (((-653 $) (-653 |#4|) $) NIL) (((-653 $) (-653 |#4|) (-653 $)) NIL)) (-1646 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-3734 (((-653 |#3|) $) NIL)) (-3746 (((-112) |#4| $) NIL)) (-4333 (((-112) |#3| $) 74)) (-2981 (((-112) $ $) NIL)) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-1158 |#1| |#2| |#3| |#4|) (-13 (-1121 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1844 ((-653 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3527 ((-653 $) (-653 |#4|) (-112) (-112))) (-15 -3527 ((-653 $) (-653 |#4|) (-112) (-112) (-112) (-112))) (-15 -2313 ((-653 $) (-653 |#4|) (-112) (-112) (-112))) (-15 -3191 ((-2 (|:| |val| (-653 |#4|)) (|:| |towers| (-653 $))) (-653 |#4|) (-112) (-112))))) (-461) (-802) (-859) (-1077 |#1| |#2| |#3|)) (T -1158)) +((-1844 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-653 (-1158 *5 *6 *7 *3))) (-5 *1 (-1158 *5 *6 *7 *3)) (-4 *3 (-1077 *5 *6 *7)))) (-3527 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-653 (-1158 *5 *6 *7 *8))) (-5 *1 (-1158 *5 *6 *7 *8)))) (-3527 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-653 (-1158 *5 *6 *7 *8))) (-5 *1 (-1158 *5 *6 *7 *8)))) (-2313 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-653 (-1158 *5 *6 *7 *8))) (-5 *1 (-1158 *5 *6 *7 *8)))) (-3191 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-1077 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-653 *8)) (|:| |towers| (-653 (-1158 *5 *6 *7 *8))))) (-5 *1 (-1158 *5 *6 *7 *8)) (-5 *3 (-653 *8))))) +(-13 (-1121 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1844 ((-653 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3527 ((-653 $) (-653 |#4|) (-112) (-112))) (-15 -3527 ((-653 $) (-653 |#4|) (-112) (-112) (-112) (-112))) (-15 -2313 ((-653 $) (-653 |#4|) (-112) (-112) (-112))) (-15 -3191 ((-2 (|:| |val| (-653 |#4|)) (|:| |towers| (-653 $))) (-653 |#4|) (-112) (-112))))) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2001 ((|#1| $) 37)) (-4088 (($ (-653 |#1|)) 45)) (-3450 (((-112) $ (-780)) NIL)) (-2579 (($) NIL T CONST)) (-2948 ((|#1| |#1| $) 40)) (-3072 ((|#1| $) 35)) (-1863 (((-653 |#1|) $) 18 (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2446 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 22)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-2487 ((|#1| $) 38)) (-3181 (($ |#1| $) 41)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-3815 ((|#1| $) 36)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) 32)) (-3508 (($) 43)) (-4302 (((-780) $) 30)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) 27)) (-2942 (((-871) $) 14 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2679 (($ (-653 |#1|)) NIL)) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 17 (|has| |#1| (-1112)))) (-2862 (((-780) $) 31 (|has| $ (-6 -4455))))) +(((-1159 |#1|) (-13 (-1133 |#1|) (-10 -8 (-15 -4088 ($ (-653 |#1|))))) (-1230)) (T -1159)) +((-4088 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-5 *1 (-1159 *3))))) +(-13 (-1133 |#1|) (-10 -8 (-15 -4088 ($ (-653 |#1|))))) +((-3142 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1247 (-573)) |#2|) 53) ((|#2| $ (-573) |#2|) 50)) (-3435 (((-112) $) 12)) (-2446 (($ (-1 |#2| |#2|) $) 48)) (-2914 ((|#2| $) NIL) (($ $ (-780)) 17)) (-3112 (($ $ |#2|) 49)) (-1903 (((-112) $) 11)) (-2198 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1247 (-573))) 36) ((|#2| $ (-573)) 26) ((|#2| $ (-573) |#2|) NIL)) (-3996 (($ $ $) 56) (($ $ |#2|) NIL)) (-4156 (($ $ $) 38) (($ |#2| $) NIL) (($ (-653 $)) 45) (($ $ |#2|) NIL))) +(((-1160 |#1| |#2|) (-10 -8 (-15 -3435 ((-112) |#1|)) (-15 -1903 ((-112) |#1|)) (-15 -3142 (|#2| |#1| (-573) |#2|)) (-15 -2198 (|#2| |#1| (-573) |#2|)) (-15 -2198 (|#2| |#1| (-573))) (-15 -3112 (|#1| |#1| |#2|)) (-15 -2198 (|#1| |#1| (-1247 (-573)))) (-15 -4156 (|#1| |#1| |#2|)) (-15 -4156 (|#1| (-653 |#1|))) (-15 -3142 (|#2| |#1| (-1247 (-573)) |#2|)) (-15 -3142 (|#2| |#1| "last" |#2|)) (-15 -3142 (|#1| |#1| "rest" |#1|)) (-15 -3142 (|#2| |#1| "first" |#2|)) (-15 -3996 (|#1| |#1| |#2|)) (-15 -3996 (|#1| |#1| |#1|)) (-15 -2198 (|#2| |#1| "last")) (-15 -2198 (|#1| |#1| "rest")) (-15 -2914 (|#1| |#1| (-780))) (-15 -2198 (|#2| |#1| "first")) (-15 -2914 (|#2| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -3142 (|#2| |#1| "value" |#2|)) (-15 -2198 (|#2| |#1| "value")) (-15 -2446 (|#1| (-1 |#2| |#2|) |#1|))) (-1161 |#2|) (-1230)) (T -1160)) +NIL +(-10 -8 (-15 -3435 ((-112) |#1|)) (-15 -1903 ((-112) |#1|)) (-15 -3142 (|#2| |#1| (-573) |#2|)) (-15 -2198 (|#2| |#1| (-573) |#2|)) (-15 -2198 (|#2| |#1| (-573))) (-15 -3112 (|#1| |#1| |#2|)) (-15 -2198 (|#1| |#1| (-1247 (-573)))) (-15 -4156 (|#1| |#1| |#2|)) (-15 -4156 (|#1| (-653 |#1|))) (-15 -3142 (|#2| |#1| (-1247 (-573)) |#2|)) (-15 -3142 (|#2| |#1| "last" |#2|)) (-15 -3142 (|#1| |#1| "rest" |#1|)) (-15 -3142 (|#2| |#1| "first" |#2|)) (-15 -3996 (|#1| |#1| |#2|)) (-15 -3996 (|#1| |#1| |#1|)) (-15 -2198 (|#2| |#1| "last")) (-15 -2198 (|#1| |#1| "rest")) (-15 -2914 (|#1| |#1| (-780))) (-15 -2198 (|#2| |#1| "first")) (-15 -2914 (|#2| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -3142 (|#2| |#1| "value" |#2|)) (-15 -2198 (|#2| |#1| "value")) (-15 -2446 (|#1| (-1 |#2| |#2|) |#1|))) +((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3082 ((|#1| $) 49)) (-2404 ((|#1| $) 66)) (-1969 (($ $) 68)) (-3791 (((-1285) $ (-573) (-573)) 99 (|has| $ (-6 -4456)))) (-1896 (($ $ (-573)) 53 (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) 8)) (-2367 ((|#1| $ |#1|) 40 (|has| $ (-6 -4456)))) (-2554 (($ $ $) 57 (|has| $ (-6 -4456)))) (-2016 ((|#1| $ |#1|) 55 (|has| $ (-6 -4456)))) (-2647 ((|#1| $ |#1|) 59 (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4456))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4456))) (($ $ "rest" $) 56 (|has| $ (-6 -4456))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) 119 (|has| $ (-6 -4456))) ((|#1| $ (-573) |#1|) 88 (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) 42 (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4455)))) (-2392 ((|#1| $) 67)) (-2579 (($) 7 T CONST)) (-2925 (($ $) 74) (($ $ (-780)) 72)) (-2685 (($ $) 101 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4455))) (($ |#1| $) 102 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2457 ((|#1| $ (-573) |#1|) 87 (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) 89)) (-3435 (((-112) $) 85)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) 51)) (-3208 (((-112) $ $) 43 (|has| |#1| (-1112)))) (-3789 (($ (-780) |#1|) 111)) (-2078 (((-112) $ (-780)) 9)) (-1968 (((-573) $) 97 (|has| (-573) (-859)))) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3470 (((-573) $) 96 (|has| (-573) (-859)))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-2673 (((-112) $ (-780)) 10)) (-3505 (((-653 |#1|) $) 46)) (-2880 (((-112) $) 50)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-3359 ((|#1| $) 71) (($ $ (-780)) 69)) (-1593 (($ $ $ (-573)) 118) (($ |#1| $ (-573)) 117)) (-1977 (((-653 (-573)) $) 94)) (-2560 (((-112) (-573) $) 93)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-2914 ((|#1| $) 77) (($ $ (-780)) 75)) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-3112 (($ $ |#1|) 98 (|has| $ (-6 -4456)))) (-1903 (((-112) $) 86)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-2547 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) 92)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1247 (-573))) 110) ((|#1| $ (-573)) 91) ((|#1| $ (-573) |#1|) 90)) (-1501 (((-573) $ $) 45)) (-2836 (($ $ (-1247 (-573))) 116) (($ $ (-573)) 115)) (-1628 (((-112) $) 47)) (-1992 (($ $) 63)) (-3839 (($ $) 60 (|has| $ (-6 -4456)))) (-4072 (((-780) $) 64)) (-1512 (($ $) 65)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-1835 (((-545) $) 100 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 109)) (-3996 (($ $ $) 62 (|has| $ (-6 -4456))) (($ $ |#1|) 61 (|has| $ (-6 -4456)))) (-4156 (($ $ $) 79) (($ |#1| $) 78) (($ (-653 $)) 113) (($ $ |#1|) 112)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) 52)) (-1716 (((-112) $ $) 44 (|has| |#1| (-1112)))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-1161 |#1|) (-141) (-1230)) (T -1161)) +((-1903 (*1 *2 *1) (-12 (-4 *1 (-1161 *3)) (-4 *3 (-1230)) (-5 *2 (-112)))) (-3435 (*1 *2 *1) (-12 (-4 *1 (-1161 *3)) (-4 *3 (-1230)) (-5 *2 (-112))))) +(-13 (-1268 |t#1|) (-660 |t#1|) (-10 -8 (-15 -1903 ((-112) $)) (-15 -3435 ((-112) $)))) +(((-34) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-152 |#1|) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-293 #0=(-573) |#1|) . T) ((-293 (-1247 (-573)) $) . T) ((-295 #0# |#1|) . T) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-613 #0# |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-660 |#1|) . T) ((-1022 |#1|) . T) ((-1112) |has| |#1| (-1112)) ((-1230) . T) ((-1268 |#1|) . T)) +((-2848 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-3777 (($) NIL) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3791 (((-1285) $ |#1| |#1|) NIL (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#2| $ |#1| |#2|) NIL)) (-3557 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2161 (((-3 |#2| "failed") |#1| $) NIL)) (-2579 (($) NIL T CONST)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-2596 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-3 |#2| "failed") |#1| $) NIL)) (-3334 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2867 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#2| $ |#1|) NIL)) (-1863 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-1968 ((|#1| $) NIL (|has| |#1| (-859)))) (-3214 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3470 ((|#1| $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4456))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-1762 (((-653 |#1|) $) NIL)) (-4201 (((-112) |#1| $) NIL)) (-2487 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-3181 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1977 (((-653 |#1|) $) NIL)) (-2560 (((-112) |#1| $) NIL)) (-3965 (((-1132) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2914 ((|#2| $) NIL (|has| |#1| (-859)))) (-2036 (((-3 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL)) (-3112 (($ $ |#2|) NIL (|has| $ (-6 -4456)))) (-3815 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1575 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 (-301 |#2|))) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-1535 (((-653 |#2|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2428 (($) NIL) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3974 (((-780) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-780) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112)))) (((-780) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-623 (-545))))) (-2955 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-2942 (((-871) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-622 (-871))) (|has| |#2| (-622 (-871)))))) (-3507 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2679 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-1646 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-1162 |#1| |#2| |#3|) (-1206 |#1| |#2|) (-1112) (-1112) |#2|) (T -1162)) +NIL +(-1206 |#1| |#2|) +((-2848 (((-112) $ $) NIL)) (-4094 (((-700 (-1147)) $) 27)) (-4145 (((-1147) $) 15)) (-3613 (((-1147) $) 17)) (-3180 (((-1171) $) NIL)) (-1807 (((-515) $) 13)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 37) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-1163) (-13 (-1095) (-10 -8 (-15 -1807 ((-515) $)) (-15 -3613 ((-1147) $)) (-15 -4094 ((-700 (-1147)) $)) (-15 -4145 ((-1147) $))))) (T -1163)) +((-1807 (*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-1163)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1163)))) (-4094 (*1 *2 *1) (-12 (-5 *2 (-700 (-1147))) (-5 *1 (-1163)))) (-4145 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1163))))) +(-13 (-1095) (-10 -8 (-15 -1807 ((-515) $)) (-15 -3613 ((-1147) $)) (-15 -4094 ((-700 (-1147)) $)) (-15 -4145 ((-1147) $)))) +((-2848 (((-112) $ $) 7)) (-1470 (((-3 $ "failed") $) 14)) (-3180 (((-1171) $) 10)) (-3816 (($) 15 T CONST)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2981 (((-112) $ $) 6))) +(((-1164) (-141)) (T -1164)) +((-3816 (*1 *1) (-4 *1 (-1164))) (-1470 (*1 *1 *1) (|partial| -4 *1 (-1164)))) +(-13 (-1112) (-10 -8 (-15 -3816 ($) -1705) (-15 -1470 ((-3 $ "failed") $)))) +(((-102) . T) ((-622 (-871)) . T) ((-1112) . T)) +((-4001 (((-1169 |#1|) (-1169 |#1|)) 17)) (-1719 (((-1169 |#1|) (-1169 |#1|)) 13)) (-2970 (((-1169 |#1|) (-1169 |#1|) (-573) (-573)) 20)) (-4190 (((-1169 |#1|) (-1169 |#1|)) 15))) +(((-1165 |#1|) (-10 -7 (-15 -1719 ((-1169 |#1|) (-1169 |#1|))) (-15 -4190 ((-1169 |#1|) (-1169 |#1|))) (-15 -4001 ((-1169 |#1|) (-1169 |#1|))) (-15 -2970 ((-1169 |#1|) (-1169 |#1|) (-573) (-573)))) (-13 (-565) (-148))) (T -1165)) +((-2970 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1169 *4)) (-5 *3 (-573)) (-4 *4 (-13 (-565) (-148))) (-5 *1 (-1165 *4)))) (-4001 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-13 (-565) (-148))) (-5 *1 (-1165 *3)))) (-4190 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-13 (-565) (-148))) (-5 *1 (-1165 *3)))) (-1719 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-13 (-565) (-148))) (-5 *1 (-1165 *3))))) +(-10 -7 (-15 -1719 ((-1169 |#1|) (-1169 |#1|))) (-15 -4190 ((-1169 |#1|) (-1169 |#1|))) (-15 -4001 ((-1169 |#1|) (-1169 |#1|))) (-15 -2970 ((-1169 |#1|) (-1169 |#1|) (-573) (-573)))) +((-4156 (((-1169 |#1|) (-1169 (-1169 |#1|))) 15))) +(((-1166 |#1|) (-10 -7 (-15 -4156 ((-1169 |#1|) (-1169 (-1169 |#1|))))) (-1230)) (T -1166)) +((-4156 (*1 *2 *3) (-12 (-5 *3 (-1169 (-1169 *4))) (-5 *2 (-1169 *4)) (-5 *1 (-1166 *4)) (-4 *4 (-1230))))) +(-10 -7 (-15 -4156 ((-1169 |#1|) (-1169 (-1169 |#1|))))) +((-3094 (((-1169 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1169 |#1|)) 25)) (-2867 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1169 |#1|)) 26)) (-1776 (((-1169 |#2|) (-1 |#2| |#1|) (-1169 |#1|)) 16))) +(((-1167 |#1| |#2|) (-10 -7 (-15 -1776 ((-1169 |#2|) (-1 |#2| |#1|) (-1169 |#1|))) (-15 -3094 ((-1169 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1169 |#1|))) (-15 -2867 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1169 |#1|)))) (-1230) (-1230)) (T -1167)) +((-2867 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1169 *5)) (-4 *5 (-1230)) (-4 *2 (-1230)) (-5 *1 (-1167 *5 *2)))) (-3094 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1169 *6)) (-4 *6 (-1230)) (-4 *3 (-1230)) (-5 *2 (-1169 *3)) (-5 *1 (-1167 *6 *3)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1169 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-1169 *6)) (-5 *1 (-1167 *5 *6))))) +(-10 -7 (-15 -1776 ((-1169 |#2|) (-1 |#2| |#1|) (-1169 |#1|))) (-15 -3094 ((-1169 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1169 |#1|))) (-15 -2867 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1169 |#1|)))) +((-1776 (((-1169 |#3|) (-1 |#3| |#1| |#2|) (-1169 |#1|) (-1169 |#2|)) 21))) +(((-1168 |#1| |#2| |#3|) (-10 -7 (-15 -1776 ((-1169 |#3|) (-1 |#3| |#1| |#2|) (-1169 |#1|) (-1169 |#2|)))) (-1230) (-1230) (-1230)) (T -1168)) +((-1776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1169 *6)) (-5 *5 (-1169 *7)) (-4 *6 (-1230)) (-4 *7 (-1230)) (-4 *8 (-1230)) (-5 *2 (-1169 *8)) (-5 *1 (-1168 *6 *7 *8))))) +(-10 -7 (-15 -1776 ((-1169 |#3|) (-1 |#3| |#1| |#2|) (-1169 |#1|) (-1169 |#2|)))) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3082 ((|#1| $) NIL)) (-2404 ((|#1| $) NIL)) (-1969 (($ $) 67)) (-3791 (((-1285) $ (-573) (-573)) 99 (|has| $ (-6 -4456)))) (-1896 (($ $ (-573)) 128 (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) NIL)) (-3569 (((-871) $) 56 (|has| |#1| (-1112)))) (-4164 (((-112)) 55 (|has| |#1| (-1112)))) (-2367 ((|#1| $ |#1|) NIL (|has| $ (-6 -4456)))) (-2554 (($ $ $) 115 (|has| $ (-6 -4456))) (($ $ (-573) $) 141)) (-2016 ((|#1| $ |#1|) 125 (|has| $ (-6 -4456)))) (-2647 ((|#1| $ |#1|) 120 (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4456))) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4456))) (($ $ "rest" $) 124 (|has| $ (-6 -4456))) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) 112 (|has| $ (-6 -4456))) ((|#1| $ (-573) |#1|) 77 (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) NIL (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) |#1|) $) 80)) (-2392 ((|#1| $) NIL)) (-2579 (($) NIL T CONST)) (-2048 (($ $) 14)) (-2925 (($ $) 40) (($ $ (-780)) 111)) (-1591 (((-112) (-653 |#1|) $) 134 (|has| |#1| (-1112)))) (-2248 (($ (-653 |#1|)) 130)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3334 (($ |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) (($ (-1 (-112) |#1|) $) 79)) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2457 ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) NIL)) (-3435 (((-112) $) NIL)) (-1863 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-3247 (((-1285) (-573) $) 140 (|has| |#1| (-1112)))) (-2908 (((-780) $) 137)) (-3113 (((-653 $) $) NIL)) (-3208 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3789 (($ (-780) |#1|) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) NIL (|has| (-573) (-859)))) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-2446 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-2673 (((-112) $ (-780)) NIL)) (-3505 (((-653 |#1|) $) NIL)) (-2880 (((-112) $) NIL)) (-3942 (($ $) 113)) (-1722 (((-112) $) 13)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3359 ((|#1| $) NIL) (($ $ (-780)) NIL)) (-1593 (($ $ $ (-573)) NIL) (($ |#1| $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) 96)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2092 (($ (-1 |#1|)) 143) (($ (-1 |#1| |#1|) |#1|) 144)) (-2723 ((|#1| $) 10)) (-2914 ((|#1| $) 39) (($ $ (-780)) 65)) (-3440 (((-2 (|:| |cycle?| (-112)) (|:| -4214 (-780)) (|:| |period| (-780))) (-780) $) 34)) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2139 (($ (-1 (-112) |#1|) $) 145)) (-2151 (($ (-1 (-112) |#1|) $) 146)) (-3112 (($ $ |#1|) 90 (|has| $ (-6 -4456)))) (-2212 (($ $ (-573)) 45)) (-1903 (((-112) $) 94)) (-2578 (((-112) $) 12)) (-2687 (((-112) $) 136)) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 30)) (-2547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) NIL)) (-3811 (((-112) $) 20)) (-3508 (($) 60)) (-2198 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1247 (-573))) NIL) ((|#1| $ (-573)) 75) ((|#1| $ (-573) |#1|) NIL)) (-1501 (((-573) $ $) 64)) (-2836 (($ $ (-1247 (-573))) NIL) (($ $ (-573)) NIL)) (-4007 (($ (-1 $)) 63)) (-1628 (((-112) $) 91)) (-1992 (($ $) 92)) (-3839 (($ $) 116 (|has| $ (-6 -4456)))) (-4072 (((-780) $) NIL)) (-1512 (($ $) NIL)) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) 59)) (-1835 (((-545) $) NIL (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 73)) (-2224 (($ |#1| $) 114)) (-3996 (($ $ $) 118 (|has| $ (-6 -4456))) (($ $ |#1|) 119 (|has| $ (-6 -4456)))) (-4156 (($ $ $) 101) (($ |#1| $) 61) (($ (-653 $)) 106) (($ $ |#1|) 100)) (-4101 (($ $) 66)) (-2942 (($ (-653 |#1|)) 129) (((-871) $) 57 (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) NIL)) (-1716 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 132 (|has| |#1| (-1112)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-1169 |#1|) (-13 (-683 |#1|) (-625 (-653 |#1|)) (-10 -8 (-6 -4456) (-15 -2248 ($ (-653 |#1|))) (IF (|has| |#1| (-1112)) (-15 -1591 ((-112) (-653 |#1|) $)) |%noBranch|) (-15 -3440 ((-2 (|:| |cycle?| (-112)) (|:| -4214 (-780)) (|:| |period| (-780))) (-780) $)) (-15 -4007 ($ (-1 $))) (-15 -2224 ($ |#1| $)) (IF (|has| |#1| (-1112)) (PROGN (-15 -3247 ((-1285) (-573) $)) (-15 -3569 ((-871) $)) (-15 -4164 ((-112)))) |%noBranch|) (-15 -2554 ($ $ (-573) $)) (-15 -2092 ($ (-1 |#1|))) (-15 -2092 ($ (-1 |#1| |#1|) |#1|)) (-15 -2139 ($ (-1 (-112) |#1|) $)) (-15 -2151 ($ (-1 (-112) |#1|) $)))) (-1230)) (T -1169)) +((-2248 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-5 *1 (-1169 *3)))) (-1591 (*1 *2 *3 *1) (-12 (-5 *3 (-653 *4)) (-4 *4 (-1112)) (-4 *4 (-1230)) (-5 *2 (-112)) (-5 *1 (-1169 *4)))) (-3440 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -4214 (-780)) (|:| |period| (-780)))) (-5 *1 (-1169 *4)) (-4 *4 (-1230)) (-5 *3 (-780)))) (-4007 (*1 *1 *2) (-12 (-5 *2 (-1 (-1169 *3))) (-5 *1 (-1169 *3)) (-4 *3 (-1230)))) (-2224 (*1 *1 *2 *1) (-12 (-5 *1 (-1169 *2)) (-4 *2 (-1230)))) (-3247 (*1 *2 *3 *1) (-12 (-5 *3 (-573)) (-5 *2 (-1285)) (-5 *1 (-1169 *4)) (-4 *4 (-1112)) (-4 *4 (-1230)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-871)) (-5 *1 (-1169 *3)) (-4 *3 (-1112)) (-4 *3 (-1230)))) (-4164 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1169 *3)) (-4 *3 (-1112)) (-4 *3 (-1230)))) (-2554 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-1169 *3)) (-4 *3 (-1230)))) (-2092 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1230)) (-5 *1 (-1169 *3)))) (-2092 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1230)) (-5 *1 (-1169 *3)))) (-2139 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1230)) (-5 *1 (-1169 *3)))) (-2151 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1230)) (-5 *1 (-1169 *3))))) +(-13 (-683 |#1|) (-625 (-653 |#1|)) (-10 -8 (-6 -4456) (-15 -2248 ($ (-653 |#1|))) (IF (|has| |#1| (-1112)) (-15 -1591 ((-112) (-653 |#1|) $)) |%noBranch|) (-15 -3440 ((-2 (|:| |cycle?| (-112)) (|:| -4214 (-780)) (|:| |period| (-780))) (-780) $)) (-15 -4007 ($ (-1 $))) (-15 -2224 ($ |#1| $)) (IF (|has| |#1| (-1112)) (PROGN (-15 -3247 ((-1285) (-573) $)) (-15 -3569 ((-871) $)) (-15 -4164 ((-112)))) |%noBranch|) (-15 -2554 ($ $ (-573) $)) (-15 -2092 ($ (-1 |#1|))) (-15 -2092 ($ (-1 |#1| |#1|) |#1|)) (-15 -2139 ($ (-1 (-112) |#1|) $)) (-15 -2151 ($ (-1 (-112) |#1|) $)))) +((-2848 (((-112) $ $) 19)) (-3315 (($ $) 123)) (-2391 (($ $) 124)) (-3952 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-3791 (((-1285) $ (-573) (-573)) 41 (|has| $ (-6 -4456)))) (-3710 (((-112) $ $) 121)) (-3689 (((-112) $ $ (-573)) 120)) (-3248 (($ (-573)) 130)) (-3834 (((-653 $) $ (-145)) 113) (((-653 $) $ (-142)) 112)) (-1473 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-859)))) (-2748 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4456))) (($ $) 91 (-12 (|has| (-145) (-859)) (|has| $ (-6 -4456))))) (-2770 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-859)))) (-3450 (((-112) $ (-780)) 8)) (-3142 (((-145) $ (-573) (-145)) 53 (|has| $ (-6 -4456))) (((-145) $ (-1247 (-573)) (-145)) 60 (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4455)))) (-2579 (($) 7 T CONST)) (-2616 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-2176 (($ $) 93 (|has| $ (-6 -4456)))) (-4422 (($ $) 103)) (-3403 (($ $ (-1247 (-573)) $) 117)) (-2685 (($ $) 80 (-12 (|has| (-145) (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ (-145) $) 79 (-12 (|has| (-145) (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4455)))) (-2867 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1112)) (|has| $ (-6 -4455)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4455))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4455)))) (-2457 (((-145) $ (-573) (-145)) 54 (|has| $ (-6 -4456)))) (-2384 (((-145) $ (-573)) 52)) (-3732 (((-112) $ $) 122)) (-1440 (((-573) (-1 (-112) (-145)) $) 100) (((-573) (-145) $) 99 (|has| (-145) (-1112))) (((-573) (-145) $ (-573)) 98 (|has| (-145) (-1112))) (((-573) $ $ (-573)) 116) (((-573) (-142) $ (-573)) 115)) (-1863 (((-653 (-145)) $) 31 (|has| $ (-6 -4455)))) (-3789 (($ (-780) (-145)) 70)) (-2078 (((-112) $ (-780)) 9)) (-1968 (((-573) $) 44 (|has| (-573) (-859)))) (-3659 (($ $ $) 90 (|has| (-145) (-859)))) (-1480 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-859)))) (-3214 (((-653 (-145)) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1112)) (|has| $ (-6 -4455))))) (-3470 (((-573) $) 45 (|has| (-573) (-859)))) (-3751 (($ $ $) 89 (|has| (-145) (-859)))) (-1325 (((-112) $ $ (-145)) 118)) (-2682 (((-780) $ $ (-145)) 119)) (-2446 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-2422 (($ $) 125)) (-3878 (($ $) 126)) (-2673 (((-112) $ (-780)) 10)) (-2630 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-3180 (((-1171) $) 22)) (-1593 (($ (-145) $ (-573)) 62) (($ $ $ (-573)) 61)) (-1977 (((-653 (-573)) $) 47)) (-2560 (((-112) (-573) $) 48)) (-3965 (((-1132) $) 21)) (-2914 (((-145) $) 43 (|has| (-573) (-859)))) (-2036 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-3112 (($ $ (-145)) 42 (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-145)))) 27 (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112)))) (($ $ (-301 (-145))) 26 (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112)))) (($ $ (-653 (-145)) (-653 (-145))) 24 (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112))))) (-1885 (((-112) $ $) 14)) (-2547 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112))))) (-1535 (((-653 (-145)) $) 49)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 (((-145) $ (-573) (-145)) 51) (((-145) $ (-573)) 50) (($ $ (-1247 (-573))) 71) (($ $ $) 105)) (-2836 (($ $ (-573)) 64) (($ $ (-1247 (-573))) 63)) (-3974 (((-780) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4455))) (((-780) (-145) $) 29 (-12 (|has| (-145) (-1112)) (|has| $ (-6 -4455))))) (-3919 (($ $ $ (-573)) 94 (|has| $ (-6 -4456)))) (-3166 (($ $) 13)) (-1835 (((-545) $) 81 (|has| (-145) (-623 (-545))))) (-2955 (($ (-653 (-145))) 72)) (-4156 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-653 $)) 66)) (-2942 (($ (-145)) 114) (((-871) $) 18)) (-3507 (((-112) $ $) 23)) (-1646 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4455)))) (-2808 (((-1171) $) 134) (((-1171) $ (-112)) 133) (((-1285) (-831) $) 132) (((-1285) (-831) $ (-112)) 131)) (-3040 (((-112) $ $) 87 (|has| (-145) (-859)))) (-3015 (((-112) $ $) 86 (|has| (-145) (-859)))) (-2981 (((-112) $ $) 20)) (-3027 (((-112) $ $) 88 (|has| (-145) (-859)))) (-3005 (((-112) $ $) 85 (|has| (-145) (-859)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-1170) (-141)) (T -1170)) +((-3248 (*1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-1170))))) +(-13 (-1156) (-1112) (-837) (-10 -8 (-15 -3248 ($ (-573))))) +(((-34) . T) ((-102) . T) ((-622 (-871)) . T) ((-152 #0=(-145)) . T) ((-623 (-545)) |has| (-145) (-623 (-545))) ((-293 #1=(-573) #0#) . T) ((-293 (-1247 (-573)) $) . T) ((-295 #1# #0#) . T) ((-316 #0#) -12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112))) ((-381 #0#) . T) ((-498 #0#) . T) ((-613 #1# #0#) . T) ((-523 #0# #0#) -12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112))) ((-660 #0#) . T) ((-19 #0#) . T) ((-837) . T) ((-859) |has| (-145) (-859)) ((-1112) . T) ((-1156) . T) ((-1230) . T)) +((-2848 (((-112) $ $) NIL)) (-3315 (($ $) NIL)) (-2391 (($ $) NIL)) (-3952 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-3710 (((-112) $ $) NIL)) (-3689 (((-112) $ $ (-573)) NIL)) (-3248 (($ (-573)) 8)) (-3834 (((-653 $) $ (-145)) NIL) (((-653 $) $ (-142)) NIL)) (-1473 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-859)))) (-2748 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4456))) (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-145) (-859))))) (-2770 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-859)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 (((-145) $ (-573) (-145)) NIL (|has| $ (-6 -4456))) (((-145) $ (-1247 (-573)) (-145)) NIL (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2616 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-3403 (($ $ (-1247 (-573)) $) NIL)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112))))) (-3334 (($ (-145) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455)))) (-2867 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4455))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4455)))) (-2457 (((-145) $ (-573) (-145)) NIL (|has| $ (-6 -4456)))) (-2384 (((-145) $ (-573)) NIL)) (-3732 (((-112) $ $) NIL)) (-1440 (((-573) (-1 (-112) (-145)) $) NIL) (((-573) (-145) $) NIL (|has| (-145) (-1112))) (((-573) (-145) $ (-573)) NIL (|has| (-145) (-1112))) (((-573) $ $ (-573)) NIL) (((-573) (-142) $ (-573)) NIL)) (-1863 (((-653 (-145)) $) NIL (|has| $ (-6 -4455)))) (-3789 (($ (-780) (-145)) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) NIL (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (|has| (-145) (-859)))) (-1480 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-859)))) (-3214 (((-653 (-145)) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112))))) (-3470 (((-573) $) NIL (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| (-145) (-859)))) (-1325 (((-112) $ $ (-145)) NIL)) (-2682 (((-780) $ $ (-145)) NIL)) (-2446 (($ (-1 (-145) (-145)) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-2422 (($ $) NIL)) (-3878 (($ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-2630 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3180 (((-1171) $) NIL)) (-1593 (($ (-145) $ (-573)) NIL) (($ $ $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL)) (-2914 (((-145) $) NIL (|has| (-573) (-859)))) (-2036 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-3112 (($ $ (-145)) NIL (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-145)))) NIL (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112)))) (($ $ (-301 (-145))) NIL (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112)))) (($ $ (-653 (-145)) (-653 (-145))) NIL (-12 (|has| (-145) (-316 (-145))) (|has| (-145) (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112))))) (-1535 (((-653 (-145)) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 (((-145) $ (-573) (-145)) NIL) (((-145) $ (-573)) NIL) (($ $ (-1247 (-573))) NIL) (($ $ $) NIL)) (-2836 (($ $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-3974 (((-780) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455))) (((-780) (-145) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-1112))))) (-3919 (($ $ $ (-573)) NIL (|has| $ (-6 -4456)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-145) (-623 (-545))))) (-2955 (($ (-653 (-145))) NIL)) (-4156 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) NIL) (($ (-653 $)) NIL)) (-2942 (($ (-145)) NIL) (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-1646 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4455)))) (-2808 (((-1171) $) 19) (((-1171) $ (-112)) 21) (((-1285) (-831) $) 22) (((-1285) (-831) $ (-112)) 23)) (-3040 (((-112) $ $) NIL (|has| (-145) (-859)))) (-3015 (((-112) $ $) NIL (|has| (-145) (-859)))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (|has| (-145) (-859)))) (-3005 (((-112) $ $) NIL (|has| (-145) (-859)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-1171) (-1170)) (T -1171)) +NIL +(-1170) +((-2848 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)) (|has| |#1| (-1112))))) (-3777 (($) NIL) (($ (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) NIL)) (-3791 (((-1285) $ (-1171) (-1171)) NIL (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#1| $ (-1171) |#1|) NIL)) (-3557 (($ (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455)))) (-2161 (((-3 |#1| "failed") (-1171) $) NIL)) (-2579 (($) NIL T CONST)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112))))) (-2596 (($ (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455))) (((-3 |#1| "failed") (-1171) $) NIL)) (-3334 (($ (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)))) (($ (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455)))) (-2867 (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $ (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)))) (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $ (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#1| $ (-1171) |#1|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-1171)) NIL)) (-1863 (((-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455))) (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-1171) $) NIL (|has| (-1171) (-859)))) (-3214 (((-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455))) (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3470 (((-1171) $) NIL (|has| (-1171) (-859)))) (-2446 (($ (-1 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4456))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (-2817 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)) (|has| |#1| (-1112))))) (-1762 (((-653 (-1171)) $) NIL)) (-4201 (((-112) (-1171) $) NIL)) (-2487 (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $) NIL)) (-3181 (($ (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $) NIL)) (-1977 (((-653 (-1171)) $) NIL)) (-2560 (((-112) (-1171) $) NIL)) (-3965 (((-1132) $) NIL (-2817 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)) (|has| |#1| (-1112))))) (-2914 ((|#1| $) NIL (|has| (-1171) (-859)))) (-2036 (((-3 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) "failed") (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL)) (-3112 (($ $ |#1|) NIL (|has| $ (-6 -4456)))) (-3815 (((-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $) NIL)) (-1575 (((-112) (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))))) NIL (-12 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)))) (($ $ (-301 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) NIL (-12 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)))) (($ $ (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) NIL (-12 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)))) (($ $ (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) NIL (-12 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-316 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#1| $ (-1171)) NIL) ((|#1| $ (-1171) |#1|) NIL)) (-2428 (($) NIL) (($ (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) NIL)) (-3974 (((-780) (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-623 (-545))))) (-2955 (($ (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) NIL)) (-2942 (((-871) $) NIL (-2817 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-622 (-871))) (|has| |#1| (-622 (-871)))))) (-3507 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)) (|has| |#1| (-1112))))) (-2679 (($ (-653 (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)))) NIL)) (-1646 (((-112) (-1 (-112) (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 (-1171)) (|:| -1907 |#1|)) (-1112)) (|has| |#1| (-1112))))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-1172 |#1|) (-13 (-1206 (-1171) |#1|) (-10 -7 (-6 -4455))) (-1112)) (T -1172)) +NIL +(-13 (-1206 (-1171) |#1|) (-10 -7 (-6 -4455))) +((-2080 (((-1169 |#1|) (-1169 |#1|)) 83)) (-2232 (((-3 (-1169 |#1|) "failed") (-1169 |#1|)) 39)) (-4186 (((-1169 |#1|) (-416 (-573)) (-1169 |#1|)) 133 (|has| |#1| (-38 (-416 (-573)))))) (-2488 (((-1169 |#1|) |#1| (-1169 |#1|)) 139 (|has| |#1| (-371)))) (-2023 (((-1169 |#1|) (-1169 |#1|)) 97)) (-2190 (((-1169 (-573)) (-573)) 63)) (-1527 (((-1169 |#1|) (-1169 (-1169 |#1|))) 116 (|has| |#1| (-38 (-416 (-573)))))) (-3823 (((-1169 |#1|) (-573) (-573) (-1169 |#1|)) 102)) (-3831 (((-1169 |#1|) |#1| (-573)) 51)) (-2402 (((-1169 |#1|) (-1169 |#1|) (-1169 |#1|)) 66)) (-2992 (((-1169 |#1|) (-1169 |#1|) (-1169 |#1|)) 136 (|has| |#1| (-371)))) (-1893 (((-1169 |#1|) |#1| (-1 (-1169 |#1|))) 115 (|has| |#1| (-38 (-416 (-573)))))) (-2219 (((-1169 |#1|) (-1 |#1| (-573)) |#1| (-1 (-1169 |#1|))) 137 (|has| |#1| (-371)))) (-1742 (((-1169 |#1|) (-1169 |#1|)) 96)) (-1901 (((-1169 |#1|) (-1169 |#1|)) 82)) (-2110 (((-1169 |#1|) (-573) (-573) (-1169 |#1|)) 103)) (-1626 (((-1169 |#1|) |#1| (-1169 |#1|)) 112 (|has| |#1| (-38 (-416 (-573)))))) (-3157 (((-1169 (-573)) (-573)) 62)) (-3090 (((-1169 |#1|) |#1|) 65)) (-1735 (((-1169 |#1|) (-1169 |#1|) (-573) (-573)) 99)) (-1351 (((-1169 |#1|) (-1 |#1| (-573)) (-1169 |#1|)) 72)) (-2837 (((-3 (-1169 |#1|) "failed") (-1169 |#1|) (-1169 |#1|)) 37)) (-3616 (((-1169 |#1|) (-1169 |#1|)) 98)) (-2645 (((-1169 |#1|) (-1169 |#1|) |#1|) 77)) (-2200 (((-1169 |#1|) (-1169 |#1|)) 68)) (-2066 (((-1169 |#1|) (-1169 |#1|) (-1169 |#1|)) 78)) (-2942 (((-1169 |#1|) |#1|) 73)) (-1882 (((-1169 |#1|) (-1169 (-1169 |#1|))) 88)) (-3103 (((-1169 |#1|) (-1169 |#1|) (-1169 |#1|)) 38)) (-3093 (((-1169 |#1|) (-1169 |#1|)) 21) (((-1169 |#1|) (-1169 |#1|) (-1169 |#1|)) 23)) (-3077 (((-1169 |#1|) (-1169 |#1|) (-1169 |#1|)) 17)) (* (((-1169 |#1|) (-1169 |#1|) |#1|) 29) (((-1169 |#1|) |#1| (-1169 |#1|)) 26) (((-1169 |#1|) (-1169 |#1|) (-1169 |#1|)) 27))) +(((-1173 |#1|) (-10 -7 (-15 -3077 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -3093 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -3093 ((-1169 |#1|) (-1169 |#1|))) (-15 * ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 * ((-1169 |#1|) |#1| (-1169 |#1|))) (-15 * ((-1169 |#1|) (-1169 |#1|) |#1|)) (-15 -2837 ((-3 (-1169 |#1|) "failed") (-1169 |#1|) (-1169 |#1|))) (-15 -3103 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -2232 ((-3 (-1169 |#1|) "failed") (-1169 |#1|))) (-15 -3831 ((-1169 |#1|) |#1| (-573))) (-15 -3157 ((-1169 (-573)) (-573))) (-15 -2190 ((-1169 (-573)) (-573))) (-15 -3090 ((-1169 |#1|) |#1|)) (-15 -2402 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -2200 ((-1169 |#1|) (-1169 |#1|))) (-15 -1351 ((-1169 |#1|) (-1 |#1| (-573)) (-1169 |#1|))) (-15 -2942 ((-1169 |#1|) |#1|)) (-15 -2645 ((-1169 |#1|) (-1169 |#1|) |#1|)) (-15 -2066 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -1901 ((-1169 |#1|) (-1169 |#1|))) (-15 -2080 ((-1169 |#1|) (-1169 |#1|))) (-15 -1882 ((-1169 |#1|) (-1169 (-1169 |#1|)))) (-15 -1742 ((-1169 |#1|) (-1169 |#1|))) (-15 -2023 ((-1169 |#1|) (-1169 |#1|))) (-15 -3616 ((-1169 |#1|) (-1169 |#1|))) (-15 -1735 ((-1169 |#1|) (-1169 |#1|) (-573) (-573))) (-15 -3823 ((-1169 |#1|) (-573) (-573) (-1169 |#1|))) (-15 -2110 ((-1169 |#1|) (-573) (-573) (-1169 |#1|))) (IF (|has| |#1| (-38 (-416 (-573)))) (PROGN (-15 -1626 ((-1169 |#1|) |#1| (-1169 |#1|))) (-15 -1893 ((-1169 |#1|) |#1| (-1 (-1169 |#1|)))) (-15 -1527 ((-1169 |#1|) (-1169 (-1169 |#1|)))) (-15 -4186 ((-1169 |#1|) (-416 (-573)) (-1169 |#1|)))) |%noBranch|) (IF (|has| |#1| (-371)) (PROGN (-15 -2992 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -2219 ((-1169 |#1|) (-1 |#1| (-573)) |#1| (-1 (-1169 |#1|)))) (-15 -2488 ((-1169 |#1|) |#1| (-1169 |#1|)))) |%noBranch|)) (-1061)) (T -1173)) +((-2488 (*1 *2 *3 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-371)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-2219 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-573))) (-5 *5 (-1 (-1169 *4))) (-4 *4 (-371)) (-4 *4 (-1061)) (-5 *2 (-1169 *4)) (-5 *1 (-1173 *4)))) (-2992 (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-371)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-4186 (*1 *2 *3 *2) (-12 (-5 *2 (-1169 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1061)) (-5 *3 (-416 (-573))) (-5 *1 (-1173 *4)))) (-1527 (*1 *2 *3) (-12 (-5 *3 (-1169 (-1169 *4))) (-5 *2 (-1169 *4)) (-5 *1 (-1173 *4)) (-4 *4 (-38 (-416 (-573)))) (-4 *4 (-1061)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1169 *3))) (-5 *2 (-1169 *3)) (-5 *1 (-1173 *3)) (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)))) (-1626 (*1 *2 *3 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-2110 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1169 *4)) (-5 *3 (-573)) (-4 *4 (-1061)) (-5 *1 (-1173 *4)))) (-3823 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1169 *4)) (-5 *3 (-573)) (-4 *4 (-1061)) (-5 *1 (-1173 *4)))) (-1735 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1169 *4)) (-5 *3 (-573)) (-4 *4 (-1061)) (-5 *1 (-1173 *4)))) (-3616 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-2023 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-1742 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-1882 (*1 *2 *3) (-12 (-5 *3 (-1169 (-1169 *4))) (-5 *2 (-1169 *4)) (-5 *1 (-1173 *4)) (-4 *4 (-1061)))) (-2080 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-1901 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-2066 (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-2645 (*1 *2 *2 *3) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-2942 (*1 *2 *3) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-1173 *3)) (-4 *3 (-1061)))) (-1351 (*1 *2 *3 *2) (-12 (-5 *2 (-1169 *4)) (-5 *3 (-1 *4 (-573))) (-4 *4 (-1061)) (-5 *1 (-1173 *4)))) (-2200 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-2402 (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-3090 (*1 *2 *3) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-1173 *3)) (-4 *3 (-1061)))) (-2190 (*1 *2 *3) (-12 (-5 *2 (-1169 (-573))) (-5 *1 (-1173 *4)) (-4 *4 (-1061)) (-5 *3 (-573)))) (-3157 (*1 *2 *3) (-12 (-5 *2 (-1169 (-573))) (-5 *1 (-1173 *4)) (-4 *4 (-1061)) (-5 *3 (-573)))) (-3831 (*1 *2 *3 *4) (-12 (-5 *4 (-573)) (-5 *2 (-1169 *3)) (-5 *1 (-1173 *3)) (-4 *3 (-1061)))) (-2232 (*1 *2 *2) (|partial| -12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-3103 (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-2837 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-3093 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-3093 (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) (-3077 (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3))))) +(-10 -7 (-15 -3077 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -3093 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -3093 ((-1169 |#1|) (-1169 |#1|))) (-15 * ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 * ((-1169 |#1|) |#1| (-1169 |#1|))) (-15 * ((-1169 |#1|) (-1169 |#1|) |#1|)) (-15 -2837 ((-3 (-1169 |#1|) "failed") (-1169 |#1|) (-1169 |#1|))) (-15 -3103 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -2232 ((-3 (-1169 |#1|) "failed") (-1169 |#1|))) (-15 -3831 ((-1169 |#1|) |#1| (-573))) (-15 -3157 ((-1169 (-573)) (-573))) (-15 -2190 ((-1169 (-573)) (-573))) (-15 -3090 ((-1169 |#1|) |#1|)) (-15 -2402 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -2200 ((-1169 |#1|) (-1169 |#1|))) (-15 -1351 ((-1169 |#1|) (-1 |#1| (-573)) (-1169 |#1|))) (-15 -2942 ((-1169 |#1|) |#1|)) (-15 -2645 ((-1169 |#1|) (-1169 |#1|) |#1|)) (-15 -2066 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -1901 ((-1169 |#1|) (-1169 |#1|))) (-15 -2080 ((-1169 |#1|) (-1169 |#1|))) (-15 -1882 ((-1169 |#1|) (-1169 (-1169 |#1|)))) (-15 -1742 ((-1169 |#1|) (-1169 |#1|))) (-15 -2023 ((-1169 |#1|) (-1169 |#1|))) (-15 -3616 ((-1169 |#1|) (-1169 |#1|))) (-15 -1735 ((-1169 |#1|) (-1169 |#1|) (-573) (-573))) (-15 -3823 ((-1169 |#1|) (-573) (-573) (-1169 |#1|))) (-15 -2110 ((-1169 |#1|) (-573) (-573) (-1169 |#1|))) (IF (|has| |#1| (-38 (-416 (-573)))) (PROGN (-15 -1626 ((-1169 |#1|) |#1| (-1169 |#1|))) (-15 -1893 ((-1169 |#1|) |#1| (-1 (-1169 |#1|)))) (-15 -1527 ((-1169 |#1|) (-1169 (-1169 |#1|)))) (-15 -4186 ((-1169 |#1|) (-416 (-573)) (-1169 |#1|)))) |%noBranch|) (IF (|has| |#1| (-371)) (PROGN (-15 -2992 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -2219 ((-1169 |#1|) (-1 |#1| (-573)) |#1| (-1 (-1169 |#1|)))) (-15 -2488 ((-1169 |#1|) |#1| (-1169 |#1|)))) |%noBranch|)) +((-2363 (((-1169 |#1|) (-1169 |#1|)) 60)) (-2246 (((-1169 |#1|) (-1169 |#1|)) 42)) (-2342 (((-1169 |#1|) (-1169 |#1|)) 56)) (-2225 (((-1169 |#1|) (-1169 |#1|)) 38)) (-2388 (((-1169 |#1|) (-1169 |#1|)) 63)) (-2266 (((-1169 |#1|) (-1169 |#1|)) 45)) (-3118 (((-1169 |#1|) (-1169 |#1|)) 34)) (-1608 (((-1169 |#1|) (-1169 |#1|)) 29)) (-2401 (((-1169 |#1|) (-1169 |#1|)) 64)) (-2274 (((-1169 |#1|) (-1169 |#1|)) 46)) (-2374 (((-1169 |#1|) (-1169 |#1|)) 61)) (-2255 (((-1169 |#1|) (-1169 |#1|)) 43)) (-2352 (((-1169 |#1|) (-1169 |#1|)) 58)) (-2236 (((-1169 |#1|) (-1169 |#1|)) 40)) (-2439 (((-1169 |#1|) (-1169 |#1|)) 68)) (-2304 (((-1169 |#1|) (-1169 |#1|)) 50)) (-2413 (((-1169 |#1|) (-1169 |#1|)) 66)) (-2286 (((-1169 |#1|) (-1169 |#1|)) 48)) (-2464 (((-1169 |#1|) (-1169 |#1|)) 71)) (-2324 (((-1169 |#1|) (-1169 |#1|)) 53)) (-2520 (((-1169 |#1|) (-1169 |#1|)) 72)) (-2333 (((-1169 |#1|) (-1169 |#1|)) 54)) (-2452 (((-1169 |#1|) (-1169 |#1|)) 70)) (-2314 (((-1169 |#1|) (-1169 |#1|)) 52)) (-2426 (((-1169 |#1|) (-1169 |#1|)) 69)) (-2296 (((-1169 |#1|) (-1169 |#1|)) 51)) (** (((-1169 |#1|) (-1169 |#1|) (-1169 |#1|)) 36))) +(((-1174 |#1|) (-10 -7 (-15 -1608 ((-1169 |#1|) (-1169 |#1|))) (-15 -3118 ((-1169 |#1|) (-1169 |#1|))) (-15 ** ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -2225 ((-1169 |#1|) (-1169 |#1|))) (-15 -2236 ((-1169 |#1|) (-1169 |#1|))) (-15 -2246 ((-1169 |#1|) (-1169 |#1|))) (-15 -2255 ((-1169 |#1|) (-1169 |#1|))) (-15 -2266 ((-1169 |#1|) (-1169 |#1|))) (-15 -2274 ((-1169 |#1|) (-1169 |#1|))) (-15 -2286 ((-1169 |#1|) (-1169 |#1|))) (-15 -2296 ((-1169 |#1|) (-1169 |#1|))) (-15 -2304 ((-1169 |#1|) (-1169 |#1|))) (-15 -2314 ((-1169 |#1|) (-1169 |#1|))) (-15 -2324 ((-1169 |#1|) (-1169 |#1|))) (-15 -2333 ((-1169 |#1|) (-1169 |#1|))) (-15 -2342 ((-1169 |#1|) (-1169 |#1|))) (-15 -2352 ((-1169 |#1|) (-1169 |#1|))) (-15 -2363 ((-1169 |#1|) (-1169 |#1|))) (-15 -2374 ((-1169 |#1|) (-1169 |#1|))) (-15 -2388 ((-1169 |#1|) (-1169 |#1|))) (-15 -2401 ((-1169 |#1|) (-1169 |#1|))) (-15 -2413 ((-1169 |#1|) (-1169 |#1|))) (-15 -2426 ((-1169 |#1|) (-1169 |#1|))) (-15 -2439 ((-1169 |#1|) (-1169 |#1|))) (-15 -2452 ((-1169 |#1|) (-1169 |#1|))) (-15 -2464 ((-1169 |#1|) (-1169 |#1|))) (-15 -2520 ((-1169 |#1|) (-1169 |#1|)))) (-38 (-416 (-573)))) (T -1174)) +((-2520 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2464 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2452 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2439 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2426 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2413 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2401 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2388 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2374 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2363 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2352 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2342 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2333 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2324 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2314 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2304 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2296 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2286 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2274 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2266 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2255 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2246 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2236 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-2225 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-3118 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3)))) (-1608 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1174 *3))))) +(-10 -7 (-15 -1608 ((-1169 |#1|) (-1169 |#1|))) (-15 -3118 ((-1169 |#1|) (-1169 |#1|))) (-15 ** ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -2225 ((-1169 |#1|) (-1169 |#1|))) (-15 -2236 ((-1169 |#1|) (-1169 |#1|))) (-15 -2246 ((-1169 |#1|) (-1169 |#1|))) (-15 -2255 ((-1169 |#1|) (-1169 |#1|))) (-15 -2266 ((-1169 |#1|) (-1169 |#1|))) (-15 -2274 ((-1169 |#1|) (-1169 |#1|))) (-15 -2286 ((-1169 |#1|) (-1169 |#1|))) (-15 -2296 ((-1169 |#1|) (-1169 |#1|))) (-15 -2304 ((-1169 |#1|) (-1169 |#1|))) (-15 -2314 ((-1169 |#1|) (-1169 |#1|))) (-15 -2324 ((-1169 |#1|) (-1169 |#1|))) (-15 -2333 ((-1169 |#1|) (-1169 |#1|))) (-15 -2342 ((-1169 |#1|) (-1169 |#1|))) (-15 -2352 ((-1169 |#1|) (-1169 |#1|))) (-15 -2363 ((-1169 |#1|) (-1169 |#1|))) (-15 -2374 ((-1169 |#1|) (-1169 |#1|))) (-15 -2388 ((-1169 |#1|) (-1169 |#1|))) (-15 -2401 ((-1169 |#1|) (-1169 |#1|))) (-15 -2413 ((-1169 |#1|) (-1169 |#1|))) (-15 -2426 ((-1169 |#1|) (-1169 |#1|))) (-15 -2439 ((-1169 |#1|) (-1169 |#1|))) (-15 -2452 ((-1169 |#1|) (-1169 |#1|))) (-15 -2464 ((-1169 |#1|) (-1169 |#1|))) (-15 -2520 ((-1169 |#1|) (-1169 |#1|)))) +((-2363 (((-1169 |#1|) (-1169 |#1|)) 102)) (-2246 (((-1169 |#1|) (-1169 |#1|)) 61)) (-2620 (((-2 (|:| -2342 (-1169 |#1|)) (|:| -2352 (-1169 |#1|))) (-1169 |#1|)) 98)) (-2342 (((-1169 |#1|) (-1169 |#1|)) 99)) (-3270 (((-2 (|:| -2225 (-1169 |#1|)) (|:| -2236 (-1169 |#1|))) (-1169 |#1|)) 54)) (-2225 (((-1169 |#1|) (-1169 |#1|)) 55)) (-2388 (((-1169 |#1|) (-1169 |#1|)) 104)) (-2266 (((-1169 |#1|) (-1169 |#1|)) 68)) (-3118 (((-1169 |#1|) (-1169 |#1|)) 40)) (-1608 (((-1169 |#1|) (-1169 |#1|)) 37)) (-2401 (((-1169 |#1|) (-1169 |#1|)) 105)) (-2274 (((-1169 |#1|) (-1169 |#1|)) 69)) (-2374 (((-1169 |#1|) (-1169 |#1|)) 103)) (-2255 (((-1169 |#1|) (-1169 |#1|)) 64)) (-2352 (((-1169 |#1|) (-1169 |#1|)) 100)) (-2236 (((-1169 |#1|) (-1169 |#1|)) 56)) (-2439 (((-1169 |#1|) (-1169 |#1|)) 113)) (-2304 (((-1169 |#1|) (-1169 |#1|)) 88)) (-2413 (((-1169 |#1|) (-1169 |#1|)) 107)) (-2286 (((-1169 |#1|) (-1169 |#1|)) 84)) (-2464 (((-1169 |#1|) (-1169 |#1|)) 117)) (-2324 (((-1169 |#1|) (-1169 |#1|)) 92)) (-2520 (((-1169 |#1|) (-1169 |#1|)) 119)) (-2333 (((-1169 |#1|) (-1169 |#1|)) 94)) (-2452 (((-1169 |#1|) (-1169 |#1|)) 115)) (-2314 (((-1169 |#1|) (-1169 |#1|)) 90)) (-2426 (((-1169 |#1|) (-1169 |#1|)) 109)) (-2296 (((-1169 |#1|) (-1169 |#1|)) 86)) (** (((-1169 |#1|) (-1169 |#1|) (-1169 |#1|)) 41))) +(((-1175 |#1|) (-10 -7 (-15 -1608 ((-1169 |#1|) (-1169 |#1|))) (-15 -3118 ((-1169 |#1|) (-1169 |#1|))) (-15 ** ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -3270 ((-2 (|:| -2225 (-1169 |#1|)) (|:| -2236 (-1169 |#1|))) (-1169 |#1|))) (-15 -2225 ((-1169 |#1|) (-1169 |#1|))) (-15 -2236 ((-1169 |#1|) (-1169 |#1|))) (-15 -2246 ((-1169 |#1|) (-1169 |#1|))) (-15 -2255 ((-1169 |#1|) (-1169 |#1|))) (-15 -2266 ((-1169 |#1|) (-1169 |#1|))) (-15 -2274 ((-1169 |#1|) (-1169 |#1|))) (-15 -2286 ((-1169 |#1|) (-1169 |#1|))) (-15 -2296 ((-1169 |#1|) (-1169 |#1|))) (-15 -2304 ((-1169 |#1|) (-1169 |#1|))) (-15 -2314 ((-1169 |#1|) (-1169 |#1|))) (-15 -2324 ((-1169 |#1|) (-1169 |#1|))) (-15 -2333 ((-1169 |#1|) (-1169 |#1|))) (-15 -2620 ((-2 (|:| -2342 (-1169 |#1|)) (|:| -2352 (-1169 |#1|))) (-1169 |#1|))) (-15 -2342 ((-1169 |#1|) (-1169 |#1|))) (-15 -2352 ((-1169 |#1|) (-1169 |#1|))) (-15 -2363 ((-1169 |#1|) (-1169 |#1|))) (-15 -2374 ((-1169 |#1|) (-1169 |#1|))) (-15 -2388 ((-1169 |#1|) (-1169 |#1|))) (-15 -2401 ((-1169 |#1|) (-1169 |#1|))) (-15 -2413 ((-1169 |#1|) (-1169 |#1|))) (-15 -2426 ((-1169 |#1|) (-1169 |#1|))) (-15 -2439 ((-1169 |#1|) (-1169 |#1|))) (-15 -2452 ((-1169 |#1|) (-1169 |#1|))) (-15 -2464 ((-1169 |#1|) (-1169 |#1|))) (-15 -2520 ((-1169 |#1|) (-1169 |#1|)))) (-38 (-416 (-573)))) (T -1175)) +((-2520 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2464 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2452 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2439 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2426 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2413 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2401 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2388 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2374 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2363 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2352 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2342 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2620 (*1 *2 *3) (-12 (-4 *4 (-38 (-416 (-573)))) (-5 *2 (-2 (|:| -2342 (-1169 *4)) (|:| -2352 (-1169 *4)))) (-5 *1 (-1175 *4)) (-5 *3 (-1169 *4)))) (-2333 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2324 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2314 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2304 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2296 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2286 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2274 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2266 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2255 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2246 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2236 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-2225 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-3270 (*1 *2 *3) (-12 (-4 *4 (-38 (-416 (-573)))) (-5 *2 (-2 (|:| -2225 (-1169 *4)) (|:| -2236 (-1169 *4)))) (-5 *1 (-1175 *4)) (-5 *3 (-1169 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-3118 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3)))) (-1608 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1175 *3))))) +(-10 -7 (-15 -1608 ((-1169 |#1|) (-1169 |#1|))) (-15 -3118 ((-1169 |#1|) (-1169 |#1|))) (-15 ** ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -3270 ((-2 (|:| -2225 (-1169 |#1|)) (|:| -2236 (-1169 |#1|))) (-1169 |#1|))) (-15 -2225 ((-1169 |#1|) (-1169 |#1|))) (-15 -2236 ((-1169 |#1|) (-1169 |#1|))) (-15 -2246 ((-1169 |#1|) (-1169 |#1|))) (-15 -2255 ((-1169 |#1|) (-1169 |#1|))) (-15 -2266 ((-1169 |#1|) (-1169 |#1|))) (-15 -2274 ((-1169 |#1|) (-1169 |#1|))) (-15 -2286 ((-1169 |#1|) (-1169 |#1|))) (-15 -2296 ((-1169 |#1|) (-1169 |#1|))) (-15 -2304 ((-1169 |#1|) (-1169 |#1|))) (-15 -2314 ((-1169 |#1|) (-1169 |#1|))) (-15 -2324 ((-1169 |#1|) (-1169 |#1|))) (-15 -2333 ((-1169 |#1|) (-1169 |#1|))) (-15 -2620 ((-2 (|:| -2342 (-1169 |#1|)) (|:| -2352 (-1169 |#1|))) (-1169 |#1|))) (-15 -2342 ((-1169 |#1|) (-1169 |#1|))) (-15 -2352 ((-1169 |#1|) (-1169 |#1|))) (-15 -2363 ((-1169 |#1|) (-1169 |#1|))) (-15 -2374 ((-1169 |#1|) (-1169 |#1|))) (-15 -2388 ((-1169 |#1|) (-1169 |#1|))) (-15 -2401 ((-1169 |#1|) (-1169 |#1|))) (-15 -2413 ((-1169 |#1|) (-1169 |#1|))) (-15 -2426 ((-1169 |#1|) (-1169 |#1|))) (-15 -2439 ((-1169 |#1|) (-1169 |#1|))) (-15 -2452 ((-1169 |#1|) (-1169 |#1|))) (-15 -2464 ((-1169 |#1|) (-1169 |#1|))) (-15 -2520 ((-1169 |#1|) (-1169 |#1|)))) +((-3889 (((-968 |#2|) |#2| |#2|) 50)) (-3246 ((|#2| |#2| |#1|) 19 (|has| |#1| (-314))))) +(((-1176 |#1| |#2|) (-10 -7 (-15 -3889 ((-968 |#2|) |#2| |#2|)) (IF (|has| |#1| (-314)) (-15 -3246 (|#2| |#2| |#1|)) |%noBranch|)) (-565) (-1256 |#1|)) (T -1176)) +((-3246 (*1 *2 *2 *3) (-12 (-4 *3 (-314)) (-4 *3 (-565)) (-5 *1 (-1176 *3 *2)) (-4 *2 (-1256 *3)))) (-3889 (*1 *2 *3 *3) (-12 (-4 *4 (-565)) (-5 *2 (-968 *3)) (-5 *1 (-1176 *4 *3)) (-4 *3 (-1256 *4))))) +(-10 -7 (-15 -3889 ((-968 |#2|) |#2| |#2|)) (IF (|has| |#1| (-314)) (-15 -3246 (|#2| |#2| |#1|)) |%noBranch|)) +((-2848 (((-112) $ $) NIL)) (-1638 (($ $ (-653 (-780))) 79)) (-2895 (($) 33)) (-4057 (($ $) 51)) (-4016 (((-653 $) $) 60)) (-2084 (((-112) $) 19)) (-3709 (((-653 (-953 |#2|)) $) 86)) (-3495 (($ $) 80)) (-3863 (((-780) $) 47)) (-3789 (($) 32)) (-3290 (($ $ (-653 (-780)) (-953 |#2|)) 72) (($ $ (-653 (-780)) (-780)) 73) (($ $ (-780) (-953 |#2|)) 75)) (-1480 (($ $ $) 57) (($ (-653 $)) 59)) (-4320 (((-780) $) 87)) (-2880 (((-112) $) 15)) (-3180 (((-1171) $) NIL)) (-3921 (((-112) $) 22)) (-3965 (((-1132) $) NIL)) (-3638 (((-173) $) 85)) (-1822 (((-953 |#2|) $) 81)) (-3915 (((-780) $) 82)) (-1751 (((-112) $) 84)) (-3350 (($ $ (-653 (-780)) (-173)) 78)) (-3928 (($ $) 52)) (-2942 (((-871) $) 99)) (-3396 (($ $ (-653 (-780)) (-112)) 77)) (-1811 (((-653 $) $) 11)) (-3503 (($ $ (-780)) 46)) (-2785 (($ $) 43)) (-3507 (((-112) $ $) NIL)) (-1948 (($ $ $ (-953 |#2|) (-780)) 68)) (-2718 (($ $ (-953 |#2|)) 67)) (-3535 (($ $ (-653 (-780)) (-953 |#2|)) 66) (($ $ (-653 (-780)) (-780)) 70) (((-780) $ (-953 |#2|)) 71)) (-2981 (((-112) $ $) 92))) +(((-1177 |#1| |#2|) (-13 (-1112) (-10 -8 (-15 -2880 ((-112) $)) (-15 -2084 ((-112) $)) (-15 -3921 ((-112) $)) (-15 -3789 ($)) (-15 -2895 ($)) (-15 -2785 ($ $)) (-15 -3503 ($ $ (-780))) (-15 -1811 ((-653 $) $)) (-15 -3863 ((-780) $)) (-15 -4057 ($ $)) (-15 -3928 ($ $)) (-15 -1480 ($ $ $)) (-15 -1480 ($ (-653 $))) (-15 -4016 ((-653 $) $)) (-15 -3535 ($ $ (-653 (-780)) (-953 |#2|))) (-15 -2718 ($ $ (-953 |#2|))) (-15 -1948 ($ $ $ (-953 |#2|) (-780))) (-15 -3290 ($ $ (-653 (-780)) (-953 |#2|))) (-15 -3535 ($ $ (-653 (-780)) (-780))) (-15 -3290 ($ $ (-653 (-780)) (-780))) (-15 -3535 ((-780) $ (-953 |#2|))) (-15 -3290 ($ $ (-780) (-953 |#2|))) (-15 -3396 ($ $ (-653 (-780)) (-112))) (-15 -3350 ($ $ (-653 (-780)) (-173))) (-15 -1638 ($ $ (-653 (-780)))) (-15 -1822 ((-953 |#2|) $)) (-15 -3915 ((-780) $)) (-15 -1751 ((-112) $)) (-15 -3638 ((-173) $)) (-15 -4320 ((-780) $)) (-15 -3495 ($ $)) (-15 -3709 ((-653 (-953 |#2|)) $)))) (-931) (-1061)) (T -1177)) +((-2880 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) (-4 *4 (-1061)))) (-2084 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) (-4 *4 (-1061)))) (-3921 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) (-4 *4 (-1061)))) (-3789 (*1 *1) (-12 (-5 *1 (-1177 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1061)))) (-2895 (*1 *1) (-12 (-5 *1 (-1177 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1061)))) (-2785 (*1 *1 *1) (-12 (-5 *1 (-1177 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1061)))) (-3503 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) (-4 *4 (-1061)))) (-1811 (*1 *2 *1) (-12 (-5 *2 (-653 (-1177 *3 *4))) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) (-4 *4 (-1061)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) (-4 *4 (-1061)))) (-4057 (*1 *1 *1) (-12 (-5 *1 (-1177 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1061)))) (-3928 (*1 *1 *1) (-12 (-5 *1 (-1177 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1061)))) (-1480 (*1 *1 *1 *1) (-12 (-5 *1 (-1177 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1061)))) (-1480 (*1 *1 *2) (-12 (-5 *2 (-653 (-1177 *3 *4))) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) (-4 *4 (-1061)))) (-4016 (*1 *2 *1) (-12 (-5 *2 (-653 (-1177 *3 *4))) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) (-4 *4 (-1061)))) (-3535 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 (-780))) (-5 *3 (-953 *5)) (-4 *5 (-1061)) (-5 *1 (-1177 *4 *5)) (-14 *4 (-931)))) (-2718 (*1 *1 *1 *2) (-12 (-5 *2 (-953 *4)) (-4 *4 (-1061)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)))) (-1948 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-953 *5)) (-5 *3 (-780)) (-4 *5 (-1061)) (-5 *1 (-1177 *4 *5)) (-14 *4 (-931)))) (-3290 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 (-780))) (-5 *3 (-953 *5)) (-4 *5 (-1061)) (-5 *1 (-1177 *4 *5)) (-14 *4 (-931)))) (-3535 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 (-780))) (-5 *3 (-780)) (-5 *1 (-1177 *4 *5)) (-14 *4 (-931)) (-4 *5 (-1061)))) (-3290 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 (-780))) (-5 *3 (-780)) (-5 *1 (-1177 *4 *5)) (-14 *4 (-931)) (-4 *5 (-1061)))) (-3535 (*1 *2 *1 *3) (-12 (-5 *3 (-953 *5)) (-4 *5 (-1061)) (-5 *2 (-780)) (-5 *1 (-1177 *4 *5)) (-14 *4 (-931)))) (-3290 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-780)) (-5 *3 (-953 *5)) (-4 *5 (-1061)) (-5 *1 (-1177 *4 *5)) (-14 *4 (-931)))) (-3396 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 (-780))) (-5 *3 (-112)) (-5 *1 (-1177 *4 *5)) (-14 *4 (-931)) (-4 *5 (-1061)))) (-3350 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-653 (-780))) (-5 *3 (-173)) (-5 *1 (-1177 *4 *5)) (-14 *4 (-931)) (-4 *5 (-1061)))) (-1638 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-780))) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) (-4 *4 (-1061)))) (-1822 (*1 *2 *1) (-12 (-5 *2 (-953 *4)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) (-4 *4 (-1061)))) (-3915 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) (-4 *4 (-1061)))) (-1751 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) (-4 *4 (-1061)))) (-3638 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) (-4 *4 (-1061)))) (-4320 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) (-4 *4 (-1061)))) (-3495 (*1 *1 *1) (-12 (-5 *1 (-1177 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1061)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-653 (-953 *4))) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) (-4 *4 (-1061))))) +(-13 (-1112) (-10 -8 (-15 -2880 ((-112) $)) (-15 -2084 ((-112) $)) (-15 -3921 ((-112) $)) (-15 -3789 ($)) (-15 -2895 ($)) (-15 -2785 ($ $)) (-15 -3503 ($ $ (-780))) (-15 -1811 ((-653 $) $)) (-15 -3863 ((-780) $)) (-15 -4057 ($ $)) (-15 -3928 ($ $)) (-15 -1480 ($ $ $)) (-15 -1480 ($ (-653 $))) (-15 -4016 ((-653 $) $)) (-15 -3535 ($ $ (-653 (-780)) (-953 |#2|))) (-15 -2718 ($ $ (-953 |#2|))) (-15 -1948 ($ $ $ (-953 |#2|) (-780))) (-15 -3290 ($ $ (-653 (-780)) (-953 |#2|))) (-15 -3535 ($ $ (-653 (-780)) (-780))) (-15 -3290 ($ $ (-653 (-780)) (-780))) (-15 -3535 ((-780) $ (-953 |#2|))) (-15 -3290 ($ $ (-780) (-953 |#2|))) (-15 -3396 ($ $ (-653 (-780)) (-112))) (-15 -3350 ($ $ (-653 (-780)) (-173))) (-15 -1638 ($ $ (-653 (-780)))) (-15 -1822 ((-953 |#2|) $)) (-15 -3915 ((-780) $)) (-15 -1751 ((-112) $)) (-15 -3638 ((-173) $)) (-15 -4320 ((-780) $)) (-15 -3495 ($ $)) (-15 -3709 ((-653 (-953 |#2|)) $)))) +((-2848 (((-112) $ $) NIL)) (-1808 ((|#2| $) 11)) (-1795 ((|#1| $) 10)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2955 (($ |#1| |#2|) 9)) (-2942 (((-871) $) 16)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-1178 |#1| |#2|) (-13 (-1112) (-10 -8 (-15 -2955 ($ |#1| |#2|)) (-15 -1795 (|#1| $)) (-15 -1808 (|#2| $)))) (-1112) (-1112)) (T -1178)) +((-2955 (*1 *1 *2 *3) (-12 (-5 *1 (-1178 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112)))) (-1795 (*1 *2 *1) (-12 (-4 *2 (-1112)) (-5 *1 (-1178 *2 *3)) (-4 *3 (-1112)))) (-1808 (*1 *2 *1) (-12 (-4 *2 (-1112)) (-5 *1 (-1178 *3 *2)) (-4 *3 (-1112))))) +(-13 (-1112) (-10 -8 (-15 -2955 ($ |#1| |#2|)) (-15 -1795 (|#1| $)) (-15 -1808 (|#2| $)))) +((-2848 (((-112) $ $) NIL)) (-2514 (((-1147) $) 9)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 15) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-1179) (-13 (-1095) (-10 -8 (-15 -2514 ((-1147) $))))) (T -1179)) +((-2514 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1179))))) +(-13 (-1095) (-10 -8 (-15 -2514 ((-1147) $)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3770 (((-1187 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-314)) (|has| |#1| (-371))))) (-4354 (((-653 (-1094)) $) NIL)) (-1487 (((-1189) $) 11)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1187 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))) (|has| |#1| (-565))))) (-2456 (($ $) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1187 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))) (|has| |#1| (-565))))) (-1345 (((-112) $) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1187 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))) (|has| |#1| (-565))))) (-1442 (($ $ (-573)) NIL) (($ $ (-573) (-573)) 75)) (-1662 (((-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))) $) NIL)) (-3106 (((-1187 |#1| |#2| |#3|) $) 42)) (-1780 (((-3 (-1187 |#1| |#2| |#3|) "failed") $) 32)) (-4401 (((-1187 |#1| |#2| |#3|) $) 33)) (-2363 (($ $) 116 (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) 92 (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))))) (-4285 (($ $) NIL (|has| |#1| (-371)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4228 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))))) (-2800 (((-112) $ $) NIL (|has| |#1| (-371)))) (-2342 (($ $) 112 (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) 88 (|has| |#1| (-38 (-416 (-573)))))) (-1983 (((-573) $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))))) (-3622 (($ (-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|)))) NIL)) (-2388 (($ $) 120 (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) 96 (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-1187 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1189) "failed") $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-1050 (-1189))) (|has| |#1| (-371)))) (((-3 (-416 (-573)) "failed") $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-1050 (-573))) (|has| |#1| (-371)))) (((-3 (-573) "failed") $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-1050 (-573))) (|has| |#1| (-371))))) (-2205 (((-1187 |#1| |#2| |#3|) $) 140) (((-1189) $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-1050 (-1189))) (|has| |#1| (-371)))) (((-416 (-573)) $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-1050 (-573))) (|has| |#1| (-371)))) (((-573) $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-1050 (-573))) (|has| |#1| (-371))))) (-2230 (($ $) 37) (($ (-573) $) 38)) (-2784 (($ $ $) NIL (|has| |#1| (-371)))) (-1391 (($ $) NIL)) (-2759 (((-698 (-1187 |#1| |#2| |#3|)) (-1280 $)) NIL (|has| |#1| (-371))) (((-698 (-1187 |#1| |#2| |#3|)) (-698 $)) NIL (|has| |#1| (-371))) (((-2 (|:| -1423 (-698 (-1187 |#1| |#2| |#3|))) (|:| |vec| (-1280 (-1187 |#1| |#2| |#3|)))) (-698 $) (-1280 $)) NIL (|has| |#1| (-371))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-648 (-573))) (|has| |#1| (-371)))) (((-698 (-573)) (-698 $)) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-648 (-573))) (|has| |#1| (-371)))) (((-698 (-573)) (-1280 $)) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-648 (-573))) (|has| |#1| (-371))))) (-2232 (((-3 $ "failed") $) 54)) (-3997 (((-416 (-962 |#1|)) $ (-573)) 74 (|has| |#1| (-565))) (((-416 (-962 |#1|)) $ (-573) (-573)) 76 (|has| |#1| (-565)))) (-2819 (($) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-554)) (|has| |#1| (-371))))) (-2796 (($ $ $) NIL (|has| |#1| (-371)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#1| (-371)))) (-2696 (((-112) $) NIL (|has| |#1| (-371)))) (-4152 (((-112) $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))))) (-1488 (((-112) $) 28)) (-2999 (($) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-896 (-387))) (|has| |#1| (-371)))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-896 (-573))) (|has| |#1| (-371))))) (-2534 (((-573) $) NIL) (((-573) $ (-573)) 26)) (-1959 (((-112) $) NIL)) (-3041 (($ $) NIL (|has| |#1| (-371)))) (-2965 (((-1187 |#1| |#2| |#3|) $) 44 (|has| |#1| (-371)))) (-4325 (($ $ (-573)) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1470 (((-3 $ "failed") $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-1164)) (|has| |#1| (-371))))) (-3339 (((-112) $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))))) (-2976 (($ $ (-931)) NIL)) (-2861 (($ (-1 |#1| (-573)) $) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-573)) 19) (($ $ (-1094) (-573)) NIL) (($ $ (-653 (-1094)) (-653 (-573))) NIL)) (-3659 (($ $ $) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1187 |#1| |#2| |#3|) (-859)) (|has| |#1| (-371)))))) (-3751 (($ $ $) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1187 |#1| |#2| |#3|) (-859)) (|has| |#1| (-371)))))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1187 |#1| |#2| |#3|) (-1187 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-371)))) (-3118 (($ $) 81 (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-4412 (($ (-573) (-1187 |#1| |#2| |#3|)) 36)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL (|has| |#1| (-371)))) (-1626 (($ $) 79 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189)) NIL (-2817 (-12 (|has| |#1| (-15 -1626 (|#1| |#1| (-1189)))) (|has| |#1| (-15 -4354 ((-653 (-1189)) |#1|))) (|has| |#1| (-38 (-416 (-573))))) (-12 (|has| |#1| (-29 (-573))) (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-969)) (|has| |#1| (-1215))))) (($ $ (-1276 |#2|)) 80 (|has| |#1| (-38 (-416 (-573)))))) (-3816 (($) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-1164)) (|has| |#1| (-371))) CONST)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-371)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-2408 (($ $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-314)) (|has| |#1| (-371))))) (-3733 (((-1187 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-554)) (|has| |#1| (-371))))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))))) (-4218 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2212 (($ $ (-573)) 158)) (-2837 (((-3 $ "failed") $ $) 55 (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1187 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))) (|has| |#1| (-565))))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-1608 (($ $) 82 (|has| |#1| (-38 (-416 (-573)))))) (-2645 (((-1169 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-573))))) (($ $ (-1189) (-1187 |#1| |#2| |#3|)) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-523 (-1189) (-1187 |#1| |#2| |#3|))) (|has| |#1| (-371)))) (($ $ (-653 (-1189)) (-653 (-1187 |#1| |#2| |#3|))) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-523 (-1189) (-1187 |#1| |#2| |#3|))) (|has| |#1| (-371)))) (($ $ (-653 (-301 (-1187 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-316 (-1187 |#1| |#2| |#3|))) (|has| |#1| (-371)))) (($ $ (-301 (-1187 |#1| |#2| |#3|))) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-316 (-1187 |#1| |#2| |#3|))) (|has| |#1| (-371)))) (($ $ (-1187 |#1| |#2| |#3|) (-1187 |#1| |#2| |#3|)) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-316 (-1187 |#1| |#2| |#3|))) (|has| |#1| (-371)))) (($ $ (-653 (-1187 |#1| |#2| |#3|)) (-653 (-1187 |#1| |#2| |#3|))) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-316 (-1187 |#1| |#2| |#3|))) (|has| |#1| (-371))))) (-2163 (((-780) $) NIL (|has| |#1| (-371)))) (-2198 ((|#1| $ (-573)) NIL) (($ $ $) 61 (|has| (-573) (-1124))) (($ $ (-1187 |#1| |#2| |#3|)) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-293 (-1187 |#1| |#2| |#3|) (-1187 |#1| |#2| |#3|))) (|has| |#1| (-371))))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-3904 (($ $ (-1 (-1187 |#1| |#2| |#3|) (-1187 |#1| |#2| |#3|))) NIL (|has| |#1| (-371))) (($ $ (-1 (-1187 |#1| |#2| |#3|) (-1187 |#1| |#2| |#3|)) (-780)) NIL (|has| |#1| (-371))) (($ $ (-1276 |#2|)) 57) (($ $) 56 (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-780)) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-1189) (-780)) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-653 (-1189))) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-1189)) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))))) (-2662 (($ $) NIL (|has| |#1| (-371)))) (-2975 (((-1187 |#1| |#2| |#3|) $) 46 (|has| |#1| (-371)))) (-2565 (((-573) $) 43)) (-2401 (($ $) 122 (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) 98 (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) 118 (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) 94 (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) 114 (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) 90 (|has| |#1| (-38 (-416 (-573)))))) (-1835 (((-545) $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-623 (-545))) (|has| |#1| (-371)))) (((-387) $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-1034)) (|has| |#1| (-371)))) (((-227) $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-1034)) (|has| |#1| (-371)))) (((-902 (-387)) $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-623 (-902 (-387)))) (|has| |#1| (-371)))) (((-902 (-573)) $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-623 (-902 (-573)))) (|has| |#1| (-371))))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| (-1187 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))))) (-4101 (($ $) NIL)) (-2942 (((-871) $) 162) (($ (-573)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1187 |#1| |#2| |#3|)) 30) (($ (-1276 |#2|)) 25) (($ (-1189)) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-1050 (-1189))) (|has| |#1| (-371)))) (($ $) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1187 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))) (|has| |#1| (-565)))) (($ (-416 (-573))) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-1050 (-573))) (|has| |#1| (-371))) (|has| |#1| (-38 (-416 (-573))))))) (-4317 ((|#1| $ (-573)) 77)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| (-1187 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))) (-12 (|has| (-1187 |#1| |#2| |#3|) (-146)) (|has| |#1| (-371))) (|has| |#1| (-146))))) (-1545 (((-780)) NIL T CONST)) (-3358 ((|#1| $) 12)) (-2437 (((-1187 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-554)) (|has| |#1| (-371))))) (-3507 (((-112) $ $) NIL)) (-2439 (($ $) 128 (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) 104 (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1187 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))) (|has| |#1| (-565))))) (-2413 (($ $) 124 (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) 100 (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) 132 (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) 108 (|has| |#1| (-38 (-416 (-573)))))) (-3550 ((|#1| $ (-573)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-573)))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2520 (($ $) 134 (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) 110 (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) 130 (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) 106 (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) 126 (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) 102 (|has| |#1| (-38 (-416 (-573)))))) (-1660 (($ $) NIL (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))))) (-2132 (($) 21 T CONST)) (-2144 (($) 16 T CONST)) (-3609 (($ $ (-1 (-1187 |#1| |#2| |#3|) (-1187 |#1| |#2| |#3|))) NIL (|has| |#1| (-371))) (($ $ (-1 (-1187 |#1| |#2| |#3|) (-1187 |#1| |#2| |#3|)) (-780)) NIL (|has| |#1| (-371))) (($ $) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-780)) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-1189) (-780)) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-653 (-1189))) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-1189)) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))))) (-3040 (((-112) $ $) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1187 |#1| |#2| |#3|) (-859)) (|has| |#1| (-371)))))) (-3015 (((-112) $ $) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1187 |#1| |#2| |#3|) (-859)) (|has| |#1| (-371)))))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1187 |#1| |#2| |#3|) (-859)) (|has| |#1| (-371)))))) (-3005 (((-112) $ $) NIL (-2817 (-12 (|has| (-1187 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1187 |#1| |#2| |#3|) (-859)) (|has| |#1| (-371)))))) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371))) (($ $ $) 49 (|has| |#1| (-371))) (($ (-1187 |#1| |#2| |#3|) (-1187 |#1| |#2| |#3|)) 50 (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) 23)) (** (($ $ (-931)) NIL) (($ $ (-780)) 60) (($ $ (-573)) NIL (|has| |#1| (-371))) (($ $ $) 83 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 137 (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1187 |#1| |#2| |#3|)) 48 (|has| |#1| (-371))) (($ (-1187 |#1| |#2| |#3|) $) 47 (|has| |#1| (-371))) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))))) +(((-1180 |#1| |#2| |#3|) (-13 (-1242 |#1| (-1187 |#1| |#2| |#3|)) (-10 -8 (-15 -2942 ($ (-1276 |#2|))) (-15 -3904 ($ $ (-1276 |#2|))) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1276 |#2|))) |%noBranch|))) (-1061) (-1189) |#1|) (T -1180)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1180 *3 *4 *5)) (-4 *3 (-1061)) (-14 *5 *3))) (-3904 (*1 *1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1180 *3 *4 *5)) (-4 *3 (-1061)) (-14 *5 *3))) (-1626 (*1 *1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1180 *3 *4 *5)) (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-14 *5 *3)))) +(-13 (-1242 |#1| (-1187 |#1| |#2| |#3|)) (-10 -8 (-15 -2942 ($ (-1276 |#2|))) (-15 -3904 ($ $ (-1276 |#2|))) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1276 |#2|))) |%noBranch|))) +((-3559 ((|#2| |#2| (-1104 |#2|)) 26) ((|#2| |#2| (-1189)) 28))) +(((-1181 |#1| |#2|) (-10 -7 (-15 -3559 (|#2| |#2| (-1189))) (-15 -3559 (|#2| |#2| (-1104 |#2|)))) (-13 (-565) (-1050 (-573)) (-648 (-573))) (-13 (-439 |#1|) (-161) (-27) (-1215))) (T -1181)) +((-3559 (*1 *2 *2 *3) (-12 (-5 *3 (-1104 *2)) (-4 *2 (-13 (-439 *4) (-161) (-27) (-1215))) (-4 *4 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-1181 *4 *2)))) (-3559 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-1181 *4 *2)) (-4 *2 (-13 (-439 *4) (-161) (-27) (-1215)))))) +(-10 -7 (-15 -3559 (|#2| |#2| (-1189))) (-15 -3559 (|#2| |#2| (-1104 |#2|)))) +((-3559 (((-3 (-416 (-962 |#1|)) (-323 |#1|)) (-416 (-962 |#1|)) (-1104 (-416 (-962 |#1|)))) 31) (((-416 (-962 |#1|)) (-962 |#1|) (-1104 (-962 |#1|))) 44) (((-3 (-416 (-962 |#1|)) (-323 |#1|)) (-416 (-962 |#1|)) (-1189)) 33) (((-416 (-962 |#1|)) (-962 |#1|) (-1189)) 36))) +(((-1182 |#1|) (-10 -7 (-15 -3559 ((-416 (-962 |#1|)) (-962 |#1|) (-1189))) (-15 -3559 ((-3 (-416 (-962 |#1|)) (-323 |#1|)) (-416 (-962 |#1|)) (-1189))) (-15 -3559 ((-416 (-962 |#1|)) (-962 |#1|) (-1104 (-962 |#1|)))) (-15 -3559 ((-3 (-416 (-962 |#1|)) (-323 |#1|)) (-416 (-962 |#1|)) (-1104 (-416 (-962 |#1|)))))) (-13 (-565) (-1050 (-573)))) (T -1182)) +((-3559 (*1 *2 *3 *4) (-12 (-5 *4 (-1104 (-416 (-962 *5)))) (-5 *3 (-416 (-962 *5))) (-4 *5 (-13 (-565) (-1050 (-573)))) (-5 *2 (-3 *3 (-323 *5))) (-5 *1 (-1182 *5)))) (-3559 (*1 *2 *3 *4) (-12 (-5 *4 (-1104 (-962 *5))) (-5 *3 (-962 *5)) (-4 *5 (-13 (-565) (-1050 (-573)))) (-5 *2 (-416 *3)) (-5 *1 (-1182 *5)))) (-3559 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-4 *5 (-13 (-565) (-1050 (-573)))) (-5 *2 (-3 (-416 (-962 *5)) (-323 *5))) (-5 *1 (-1182 *5)) (-5 *3 (-416 (-962 *5))))) (-3559 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-4 *5 (-13 (-565) (-1050 (-573)))) (-5 *2 (-416 (-962 *5))) (-5 *1 (-1182 *5)) (-5 *3 (-962 *5))))) +(-10 -7 (-15 -3559 ((-416 (-962 |#1|)) (-962 |#1|) (-1189))) (-15 -3559 ((-3 (-416 (-962 |#1|)) (-323 |#1|)) (-416 (-962 |#1|)) (-1189))) (-15 -3559 ((-416 (-962 |#1|)) (-962 |#1|) (-1104 (-962 |#1|)))) (-15 -3559 ((-3 (-416 (-962 |#1|)) (-323 |#1|)) (-416 (-962 |#1|)) (-1104 (-416 (-962 |#1|)))))) +((-1776 (((-1185 |#2|) (-1 |#2| |#1|) (-1185 |#1|)) 13))) +(((-1183 |#1| |#2|) (-10 -7 (-15 -1776 ((-1185 |#2|) (-1 |#2| |#1|) (-1185 |#1|)))) (-1061) (-1061)) (T -1183)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1185 *5)) (-4 *5 (-1061)) (-4 *6 (-1061)) (-5 *2 (-1185 *6)) (-5 *1 (-1183 *5 *6))))) +(-10 -7 (-15 -1776 ((-1185 |#2|) (-1 |#2| |#1|) (-1185 |#1|)))) +((-2427 (((-427 (-1185 (-416 |#4|))) (-1185 (-416 |#4|))) 51)) (-4218 (((-427 (-1185 (-416 |#4|))) (-1185 (-416 |#4|))) 52))) +(((-1184 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4218 ((-427 (-1185 (-416 |#4|))) (-1185 (-416 |#4|)))) (-15 -2427 ((-427 (-1185 (-416 |#4|))) (-1185 (-416 |#4|))))) (-802) (-859) (-461) (-959 |#3| |#1| |#2|)) (T -1184)) +((-2427 (*1 *2 *3) (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-461)) (-4 *7 (-959 *6 *4 *5)) (-5 *2 (-427 (-1185 (-416 *7)))) (-5 *1 (-1184 *4 *5 *6 *7)) (-5 *3 (-1185 (-416 *7))))) (-4218 (*1 *2 *3) (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-461)) (-4 *7 (-959 *6 *4 *5)) (-5 *2 (-427 (-1185 (-416 *7)))) (-5 *1 (-1184 *4 *5 *6 *7)) (-5 *3 (-1185 (-416 *7)))))) +(-10 -7 (-15 -4218 ((-427 (-1185 (-416 |#4|))) (-1185 (-416 |#4|)))) (-15 -2427 ((-427 (-1185 (-416 |#4|))) (-1185 (-416 |#4|))))) +((-2848 (((-112) $ $) 171)) (-1748 (((-112) $) 43)) (-1867 (((-1280 |#1|) $ (-780)) NIL)) (-4354 (((-653 (-1094)) $) NIL)) (-1343 (($ (-1185 |#1|)) NIL)) (-4193 (((-1185 $) $ (-1094)) 82) (((-1185 |#1|) $) 71)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) 164 (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-2769 (((-780) $) NIL) (((-780) $ (-653 (-1094))) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4183 (($ $ $) 158 (|has| |#1| (-565)))) (-1600 (((-427 (-1185 $)) (-1185 $)) 95 (|has| |#1| (-919)))) (-4285 (($ $) NIL (|has| |#1| (-461)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) 115 (|has| |#1| (-919)))) (-2800 (((-112) $ $) NIL (|has| |#1| (-371)))) (-3168 (($ $ (-780)) 61)) (-2331 (($ $ (-780)) 63)) (-4016 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-461)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#1| "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-1094) "failed") $) NIL)) (-2205 ((|#1| $) NIL) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-1094) $) NIL)) (-2277 (($ $ $ (-1094)) NIL (|has| |#1| (-174))) ((|#1| $ $) 160 (|has| |#1| (-174)))) (-2784 (($ $ $) NIL (|has| |#1| (-371)))) (-1391 (($ $) 80)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) NIL) (((-698 |#1|) (-698 $)) NIL) (((-698 |#1|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2796 (($ $ $) NIL (|has| |#1| (-371)))) (-4272 (($ $ $) 131)) (-2154 (($ $ $) NIL (|has| |#1| (-565)))) (-1368 (((-2 (|:| -1857 |#1|) (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-565)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#1| (-371)))) (-3246 (($ $) 165 (|has| |#1| (-461))) (($ $ (-1094)) NIL (|has| |#1| (-461)))) (-1379 (((-653 $) $) NIL)) (-2696 (((-112) $) NIL (|has| |#1| (-919)))) (-2343 (($ $ |#1| (-780) $) 69)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| (-1094) (-896 (-387))) (|has| |#1| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| (-1094) (-896 (-573))) (|has| |#1| (-896 (-573)))))) (-3471 (((-871) $ (-871)) 148)) (-2534 (((-780) $ $) NIL (|has| |#1| (-565)))) (-1959 (((-112) $) 48)) (-3772 (((-780) $) NIL)) (-1470 (((-3 $ "failed") $) NIL (|has| |#1| (-1164)))) (-4344 (($ (-1185 |#1|) (-1094)) 73) (($ (-1185 $) (-1094)) 89)) (-2976 (($ $ (-780)) 51)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-780)) 87) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ (-1094)) NIL) (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 153)) (-4036 (((-780) $) NIL) (((-780) $ (-1094)) NIL) (((-653 (-780)) $ (-653 (-1094))) NIL)) (-1382 (($ (-1 (-780) (-780)) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-4112 (((-1185 |#1|) $) NIL)) (-1453 (((-3 (-1094) "failed") $) NIL)) (-1358 (($ $) NIL)) (-1369 ((|#1| $) 76)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) NIL (|has| |#1| (-461)))) (-3180 (((-1171) $) NIL)) (-4263 (((-2 (|:| -3152 $) (|:| -3132 $)) $ (-780)) 60)) (-4082 (((-3 (-653 $) "failed") $) NIL)) (-2586 (((-3 (-653 $) "failed") $) NIL)) (-2573 (((-3 (-2 (|:| |var| (-1094)) (|:| -3907 (-780))) "failed") $) NIL)) (-1626 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3816 (($) NIL (|has| |#1| (-1164)) CONST)) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) 50)) (-1348 ((|#1| $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 103 (|has| |#1| (-461)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-461))) (($ $ $) 167 (|has| |#1| (-461)))) (-2826 (($ $ (-780) |#1| $) 123)) (-2963 (((-427 (-1185 $)) (-1185 $)) 101 (|has| |#1| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) 100 (|has| |#1| (-919)))) (-4218 (((-427 $) $) 108 (|has| |#1| (-919)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2837 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-565))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-2645 (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-1094) |#1|) NIL) (($ $ (-653 (-1094)) (-653 |#1|)) NIL) (($ $ (-1094) $) NIL) (($ $ (-653 (-1094)) (-653 $)) NIL)) (-2163 (((-780) $) NIL (|has| |#1| (-371)))) (-2198 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-416 $) (-416 $) (-416 $)) NIL (|has| |#1| (-565))) ((|#1| (-416 $) |#1|) NIL (|has| |#1| (-371))) (((-416 $) $ (-416 $)) NIL (|has| |#1| (-565)))) (-1929 (((-3 $ "failed") $ (-780)) 54)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 172 (|has| |#1| (-371)))) (-3592 (($ $ (-1094)) NIL (|has| |#1| (-174))) ((|#1| $) 156 (|has| |#1| (-174)))) (-3904 (($ $ (-1094)) NIL) (($ $ (-653 (-1094))) NIL) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL) (($ $) NIL) (($ $ (-780)) NIL) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2565 (((-780) $) 78) (((-780) $ (-1094)) NIL) (((-653 (-780)) $ (-653 (-1094))) NIL)) (-1835 (((-902 (-387)) $) NIL (-12 (|has| (-1094) (-623 (-902 (-387)))) (|has| |#1| (-623 (-902 (-387)))))) (((-902 (-573)) $) NIL (-12 (|has| (-1094) (-623 (-902 (-573)))) (|has| |#1| (-623 (-902 (-573)))))) (((-545) $) NIL (-12 (|has| (-1094) (-623 (-545))) (|has| |#1| (-623 (-545)))))) (-3257 ((|#1| $) 162 (|has| |#1| (-461))) (($ $ (-1094)) NIL (|has| |#1| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-919))))) (-2871 (((-3 $ "failed") $ $) NIL (|has| |#1| (-565))) (((-3 (-416 $) "failed") (-416 $) $) NIL (|has| |#1| (-565)))) (-2942 (((-871) $) 149) (($ (-573)) NIL) (($ |#1|) 77) (($ (-1094)) NIL) (($ (-416 (-573))) NIL (-2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573)))))) (($ $) NIL (|has| |#1| (-565)))) (-1920 (((-653 |#1|) $) NIL)) (-4317 ((|#1| $ (-780)) NIL) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#1| (-919))) (|has| |#1| (-146))))) (-1545 (((-780)) NIL T CONST)) (-1538 (($ $ $ (-780)) 41 (|has| |#1| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2132 (($) 17 T CONST)) (-2144 (($) 19 T CONST)) (-3609 (($ $ (-1094)) NIL) (($ $ (-653 (-1094))) NIL) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL) (($ $) NIL) (($ $ (-780)) NIL) (($ $ (-1189)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2981 (((-112) $ $) 120)) (-3103 (($ $ |#1|) 173 (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) 90)) (** (($ $ (-931)) 14) (($ $ (-780)) 12)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 39) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) 129) (($ $ |#1|) NIL))) +(((-1185 |#1|) (-13 (-1256 |#1|) (-10 -8 (-15 -3471 ((-871) $ (-871))) (-15 -2826 ($ $ (-780) |#1| $)))) (-1061)) (T -1185)) +((-3471 (*1 *2 *1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1185 *3)) (-4 *3 (-1061)))) (-2826 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-780)) (-5 *1 (-1185 *3)) (-4 *3 (-1061))))) +(-13 (-1256 |#1|) (-10 -8 (-15 -3471 ((-871) $ (-871))) (-15 -2826 ($ $ (-780) |#1| $)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4354 (((-653 (-1094)) $) NIL)) (-1487 (((-1189) $) 11)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-1442 (($ $ (-416 (-573))) NIL) (($ $ (-416 (-573)) (-416 (-573))) NIL)) (-1662 (((-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#1|))) $) NIL)) (-2363 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL (|has| |#1| (-371)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4228 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2800 (((-112) $ $) NIL (|has| |#1| (-371)))) (-2342 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3622 (($ (-780) (-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#1|)))) NIL)) (-2388 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-1180 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1187 |#1| |#2| |#3|) "failed") $) 36)) (-2205 (((-1180 |#1| |#2| |#3|) $) NIL) (((-1187 |#1| |#2| |#3|) $) NIL)) (-2784 (($ $ $) NIL (|has| |#1| (-371)))) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-1899 (((-416 (-573)) $) 59)) (-2796 (($ $ $) NIL (|has| |#1| (-371)))) (-4423 (($ (-416 (-573)) (-1180 |#1| |#2| |#3|)) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#1| (-371)))) (-2696 (((-112) $) NIL (|has| |#1| (-371)))) (-1488 (((-112) $) NIL)) (-2999 (($) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2534 (((-416 (-573)) $) NIL) (((-416 (-573)) $ (-416 (-573))) NIL)) (-1959 (((-112) $) NIL)) (-4325 (($ $ (-573)) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2976 (($ $ (-931)) NIL) (($ $ (-416 (-573))) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-416 (-573))) 20) (($ $ (-1094) (-416 (-573))) NIL) (($ $ (-653 (-1094)) (-653 (-416 (-573)))) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3118 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-3120 (((-1180 |#1| |#2| |#3|) $) 41)) (-4064 (((-3 (-1180 |#1| |#2| |#3|) "failed") $) NIL)) (-4412 (((-1180 |#1| |#2| |#3|) $) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL (|has| |#1| (-371)))) (-1626 (($ $) 39 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189)) NIL (-2817 (-12 (|has| |#1| (-15 -1626 (|#1| |#1| (-1189)))) (|has| |#1| (-15 -4354 ((-653 (-1189)) |#1|))) (|has| |#1| (-38 (-416 (-573))))) (-12 (|has| |#1| (-29 (-573))) (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-969)) (|has| |#1| (-1215))))) (($ $ (-1276 |#2|)) 40 (|has| |#1| (-38 (-416 (-573)))))) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-371)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-4218 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2212 (($ $ (-416 (-573))) NIL)) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-1608 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2645 (((-1169 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-416 (-573))))))) (-2163 (((-780) $) NIL (|has| |#1| (-371)))) (-2198 ((|#1| $ (-416 (-573))) NIL) (($ $ $) NIL (|has| (-416 (-573)) (-1124)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-1276 |#2|)) 38)) (-2565 (((-416 (-573)) $) NIL)) (-2401 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-4101 (($ $) NIL)) (-2942 (((-871) $) 62) (($ (-573)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1180 |#1| |#2| |#3|)) 30) (($ (-1187 |#1| |#2| |#3|)) 31) (($ (-1276 |#2|)) 26) (($ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $) NIL (|has| |#1| (-565)))) (-4317 ((|#1| $ (-416 (-573))) NIL)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) NIL T CONST)) (-3358 ((|#1| $) 12)) (-3507 (((-112) $ $) NIL)) (-2439 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2413 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3550 ((|#1| $ (-416 (-573))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-416 (-573))))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2520 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2132 (($) 22 T CONST)) (-2144 (($) 16 T CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) 24)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))))) +(((-1186 |#1| |#2| |#3|) (-13 (-1263 |#1| (-1180 |#1| |#2| |#3|)) (-1050 (-1187 |#1| |#2| |#3|)) (-625 (-1276 |#2|)) (-10 -8 (-15 -3904 ($ $ (-1276 |#2|))) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1276 |#2|))) |%noBranch|))) (-1061) (-1189) |#1|) (T -1186)) +((-3904 (*1 *1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1186 *3 *4 *5)) (-4 *3 (-1061)) (-14 *5 *3))) (-1626 (*1 *1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1186 *3 *4 *5)) (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-14 *5 *3)))) +(-13 (-1263 |#1| (-1180 |#1| |#2| |#3|)) (-1050 (-1187 |#1| |#2| |#3|)) (-625 (-1276 |#2|)) (-10 -8 (-15 -3904 ($ $ (-1276 |#2|))) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1276 |#2|))) |%noBranch|))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 129)) (-4354 (((-653 (-1094)) $) NIL)) (-1487 (((-1189) $) 119)) (-2866 (((-1253 |#2| |#1|) $ (-780)) 69)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-1442 (($ $ (-780)) 85) (($ $ (-780) (-780)) 82)) (-1662 (((-1169 (-2 (|:| |k| (-780)) (|:| |c| |#1|))) $) 105)) (-2363 (($ $) 173 (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) 149 (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4228 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2342 (($ $) 169 (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) 145 (|has| |#1| (-38 (-416 (-573)))))) (-3622 (($ (-1169 (-2 (|:| |k| (-780)) (|:| |c| |#1|)))) 118) (($ (-1169 |#1|)) 113)) (-2388 (($ $) 177 (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) 153 (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) NIL T CONST)) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) 25)) (-1806 (($ $) 28)) (-4052 (((-962 |#1|) $ (-780)) 81) (((-962 |#1|) $ (-780) (-780)) 83)) (-1488 (((-112) $) 124)) (-2999 (($) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2534 (((-780) $) 126) (((-780) $ (-780)) 128)) (-1959 (((-112) $) NIL)) (-4325 (($ $ (-573)) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2976 (($ $ (-931)) NIL)) (-2861 (($ (-1 |#1| (-573)) $) NIL)) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-780)) 13) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3118 (($ $) 135 (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-1626 (($ $) 133 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189)) NIL (-2817 (-12 (|has| |#1| (-15 -1626 (|#1| |#1| (-1189)))) (|has| |#1| (-15 -4354 ((-653 (-1189)) |#1|))) (|has| |#1| (-38 (-416 (-573))))) (-12 (|has| |#1| (-29 (-573))) (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-969)) (|has| |#1| (-1215))))) (($ $ (-1276 |#2|)) 134 (|has| |#1| (-38 (-416 (-573)))))) (-3965 (((-1132) $) NIL)) (-2212 (($ $ (-780)) 15)) (-2837 (((-3 $ "failed") $ $) 26 (|has| |#1| (-565)))) (-1608 (($ $) 137 (|has| |#1| (-38 (-416 (-573)))))) (-2645 (((-1169 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-780)))))) (-2198 ((|#1| $ (-780)) 122) (($ $ $) 132 (|has| (-780) (-1124)))) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-780) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-780) |#1|)))) (($ $ (-1276 |#2|)) 31)) (-2565 (((-780) $) NIL)) (-2401 (($ $) 179 (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) 155 (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) 175 (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) 151 (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) 171 (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) 147 (|has| |#1| (-38 (-416 (-573)))))) (-4101 (($ $) NIL)) (-2942 (((-871) $) 206) (($ (-573)) NIL) (($ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $) NIL (|has| |#1| (-565))) (($ |#1|) 130 (|has| |#1| (-174))) (($ (-1253 |#2| |#1|)) 55) (($ (-1276 |#2|)) 36)) (-1920 (((-1169 |#1|) $) 101)) (-4317 ((|#1| $ (-780)) 121)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) NIL T CONST)) (-3358 ((|#1| $) 58)) (-3507 (((-112) $ $) NIL)) (-2439 (($ $) 185 (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) 161 (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2413 (($ $) 181 (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) 157 (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) 189 (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) 165 (|has| |#1| (-38 (-416 (-573)))))) (-3550 ((|#1| $ (-780)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-780)))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2520 (($ $) 191 (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) 167 (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) 187 (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) 163 (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) 183 (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) 159 (|has| |#1| (-38 (-416 (-573)))))) (-2132 (($) 17 T CONST)) (-2144 (($) 20 T CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-780) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-780) |#1|))))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) 198)) (-3077 (($ $ $) 35)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ |#1|) 203 (|has| |#1| (-371))) (($ $ $) 138 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 141 (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))))) +(((-1187 |#1| |#2| |#3|) (-13 (-1271 |#1|) (-10 -8 (-15 -2942 ($ (-1253 |#2| |#1|))) (-15 -2866 ((-1253 |#2| |#1|) $ (-780))) (-15 -2942 ($ (-1276 |#2|))) (-15 -3904 ($ $ (-1276 |#2|))) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1276 |#2|))) |%noBranch|))) (-1061) (-1189) |#1|) (T -1187)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-1253 *4 *3)) (-4 *3 (-1061)) (-14 *4 (-1189)) (-14 *5 *3) (-5 *1 (-1187 *3 *4 *5)))) (-2866 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1253 *5 *4)) (-5 *1 (-1187 *4 *5 *6)) (-4 *4 (-1061)) (-14 *5 (-1189)) (-14 *6 *4))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1187 *3 *4 *5)) (-4 *3 (-1061)) (-14 *5 *3))) (-3904 (*1 *1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1187 *3 *4 *5)) (-4 *3 (-1061)) (-14 *5 *3))) (-1626 (*1 *1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1187 *3 *4 *5)) (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-14 *5 *3)))) +(-13 (-1271 |#1|) (-10 -8 (-15 -2942 ($ (-1253 |#2| |#1|))) (-15 -2866 ((-1253 |#2| |#1|) $ (-780))) (-15 -2942 ($ (-1276 |#2|))) (-15 -3904 ($ $ (-1276 |#2|))) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1276 |#2|))) |%noBranch|))) +((-2942 (((-871) $) 33) (($ (-1189)) 35)) (-2817 (($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $))) 46)) (-2804 (($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $))) 39) (($ $) 40)) (-2519 (($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $))) 41)) (-2506 (($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $))) 43)) (-2495 (($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $))) 42)) (-2482 (($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $))) 44)) (-2076 (($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $))) 45))) +(((-1188) (-13 (-622 (-871)) (-10 -8 (-15 -2942 ($ (-1189))) (-15 -2519 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -2495 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -2506 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -2482 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -2817 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -2076 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -2804 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -2804 ($ $))))) (T -1188)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1188)))) (-2519 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) (-5 *1 (-1188)))) (-2495 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) (-5 *1 (-1188)))) (-2506 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) (-5 *1 (-1188)))) (-2482 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) (-5 *1 (-1188)))) (-2817 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) (-5 *1 (-1188)))) (-2076 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) (-5 *1 (-1188)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) (-5 *1 (-1188)))) (-2804 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) (-5 *1 (-1188)))) (-2804 (*1 *1 *1) (-5 *1 (-1188)))) +(-13 (-622 (-871)) (-10 -8 (-15 -2942 ($ (-1189))) (-15 -2519 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -2495 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -2506 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -2482 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -2817 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -2076 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)) (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -2804 ($ (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) (|:| CF (-323 (-171 (-387)))) (|:| |switch| $)))) (-15 -2804 ($ $)))) +((-2848 (((-112) $ $) NIL)) (-4282 (($ $ (-653 (-871))) 62)) (-3296 (($ $ (-653 (-871))) 60)) (-3248 (((-1171) $) 101)) (-4146 (((-2 (|:| -3539 (-653 (-871))) (|:| -3280 (-653 (-871))) (|:| |presup| (-653 (-871))) (|:| -3763 (-653 (-871))) (|:| |args| (-653 (-871)))) $) 108)) (-3110 (((-112) $) 23)) (-3865 (($ $ (-653 (-653 (-871)))) 59) (($ $ (-2 (|:| -3539 (-653 (-871))) (|:| -3280 (-653 (-871))) (|:| |presup| (-653 (-871))) (|:| -3763 (-653 (-871))) (|:| |args| (-653 (-871))))) 99)) (-2579 (($) 163 T CONST)) (-4374 (((-1285)) 135)) (-1352 (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 69) (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 76)) (-3789 (($) 122) (($ $) 131)) (-2031 (($ $) 100)) (-3659 (($ $ $) NIL)) (-3751 (($ $ $) NIL)) (-1787 (((-653 $) $) 136)) (-3180 (((-1171) $) 114)) (-3965 (((-1132) $) NIL)) (-2198 (($ $ (-653 (-871))) 61)) (-1835 (((-545) $) 48) (((-1189) $) 49) (((-902 (-573)) $) 80) (((-902 (-387)) $) 78)) (-2942 (((-871) $) 55) (($ (-1171)) 50)) (-3507 (((-112) $ $) NIL)) (-3715 (($ $ (-653 (-871))) 63)) (-2808 (((-1171) $) 34) (((-1171) $ (-112)) 35) (((-1285) (-831) $) 36) (((-1285) (-831) $ (-112)) 37)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 51)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) 52))) +(((-1189) (-13 (-859) (-623 (-545)) (-837) (-623 (-1189)) (-625 (-1171)) (-623 (-902 (-573))) (-623 (-902 (-387))) (-896 (-573)) (-896 (-387)) (-10 -8 (-15 -3789 ($)) (-15 -3789 ($ $)) (-15 -4374 ((-1285))) (-15 -2031 ($ $)) (-15 -3110 ((-112) $)) (-15 -4146 ((-2 (|:| -3539 (-653 (-871))) (|:| -3280 (-653 (-871))) (|:| |presup| (-653 (-871))) (|:| -3763 (-653 (-871))) (|:| |args| (-653 (-871)))) $)) (-15 -3865 ($ $ (-653 (-653 (-871))))) (-15 -3865 ($ $ (-2 (|:| -3539 (-653 (-871))) (|:| -3280 (-653 (-871))) (|:| |presup| (-653 (-871))) (|:| -3763 (-653 (-871))) (|:| |args| (-653 (-871)))))) (-15 -3296 ($ $ (-653 (-871)))) (-15 -4282 ($ $ (-653 (-871)))) (-15 -3715 ($ $ (-653 (-871)))) (-15 -2198 ($ $ (-653 (-871)))) (-15 -3248 ((-1171) $)) (-15 -1787 ((-653 $) $)) (-15 -2579 ($) -1705)))) (T -1189)) +((-3789 (*1 *1) (-5 *1 (-1189))) (-3789 (*1 *1 *1) (-5 *1 (-1189))) (-4374 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-1189)))) (-2031 (*1 *1 *1) (-5 *1 (-1189))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1189)))) (-4146 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3539 (-653 (-871))) (|:| -3280 (-653 (-871))) (|:| |presup| (-653 (-871))) (|:| -3763 (-653 (-871))) (|:| |args| (-653 (-871))))) (-5 *1 (-1189)))) (-3865 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-653 (-871)))) (-5 *1 (-1189)))) (-3865 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3539 (-653 (-871))) (|:| -3280 (-653 (-871))) (|:| |presup| (-653 (-871))) (|:| -3763 (-653 (-871))) (|:| |args| (-653 (-871))))) (-5 *1 (-1189)))) (-3296 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-1189)))) (-4282 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-1189)))) (-3715 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-1189)))) (-2198 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-1189)))) (-3248 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1189)))) (-1787 (*1 *2 *1) (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-1189)))) (-2579 (*1 *1) (-5 *1 (-1189)))) +(-13 (-859) (-623 (-545)) (-837) (-623 (-1189)) (-625 (-1171)) (-623 (-902 (-573))) (-623 (-902 (-387))) (-896 (-573)) (-896 (-387)) (-10 -8 (-15 -3789 ($)) (-15 -3789 ($ $)) (-15 -4374 ((-1285))) (-15 -2031 ($ $)) (-15 -3110 ((-112) $)) (-15 -4146 ((-2 (|:| -3539 (-653 (-871))) (|:| -3280 (-653 (-871))) (|:| |presup| (-653 (-871))) (|:| -3763 (-653 (-871))) (|:| |args| (-653 (-871)))) $)) (-15 -3865 ($ $ (-653 (-653 (-871))))) (-15 -3865 ($ $ (-2 (|:| -3539 (-653 (-871))) (|:| -3280 (-653 (-871))) (|:| |presup| (-653 (-871))) (|:| -3763 (-653 (-871))) (|:| |args| (-653 (-871)))))) (-15 -3296 ($ $ (-653 (-871)))) (-15 -4282 ($ $ (-653 (-871)))) (-15 -3715 ($ $ (-653 (-871)))) (-15 -2198 ($ $ (-653 (-871)))) (-15 -3248 ((-1171) $)) (-15 -1787 ((-653 $) $)) (-15 -2579 ($) -1705))) +((-2633 (((-1280 |#1|) |#1| (-931)) 18) (((-1280 |#1|) (-653 |#1|)) 25))) +(((-1190 |#1|) (-10 -7 (-15 -2633 ((-1280 |#1|) (-653 |#1|))) (-15 -2633 ((-1280 |#1|) |#1| (-931)))) (-1061)) (T -1190)) +((-2633 (*1 *2 *3 *4) (-12 (-5 *4 (-931)) (-5 *2 (-1280 *3)) (-5 *1 (-1190 *3)) (-4 *3 (-1061)))) (-2633 (*1 *2 *3) (-12 (-5 *3 (-653 *4)) (-4 *4 (-1061)) (-5 *2 (-1280 *4)) (-5 *1 (-1190 *4))))) +(-10 -7 (-15 -2633 ((-1280 |#1|) (-653 |#1|))) (-15 -2633 ((-1280 |#1|) |#1| (-931)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL (|has| |#1| (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#1| (-1050 (-416 (-573))))) (((-3 |#1| "failed") $) NIL)) (-2205 (((-573) $) NIL (|has| |#1| (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| |#1| (-1050 (-416 (-573))))) ((|#1| $) NIL)) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-3246 (($ $) NIL (|has| |#1| (-461)))) (-2343 (($ $ |#1| (-983) $) NIL)) (-1959 (((-112) $) 17)) (-3772 (((-780) $) NIL)) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-983)) NIL)) (-4036 (((-983) $) NIL)) (-1382 (($ (-1 (-983) (-983)) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) NIL)) (-1348 ((|#1| $) NIL)) (-2826 (($ $ (-983) |#1| $) NIL (-12 (|has| (-983) (-132)) (|has| |#1| (-565))))) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-565))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-565)))) (-2565 (((-983) $) NIL)) (-3257 ((|#1| $) NIL (|has| |#1| (-461)))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ $) NIL (|has| |#1| (-565))) (($ |#1|) NIL) (($ (-416 (-573))) NIL (-2817 (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-1050 (-416 (-573))))))) (-1920 (((-653 |#1|) $) NIL)) (-4317 ((|#1| $ (-983)) NIL)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) NIL T CONST)) (-1538 (($ $ $ (-780)) NIL (|has| |#1| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2132 (($) 10 T CONST)) (-2144 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) 21)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))))) +(((-1191 |#1|) (-13 (-333 |#1| (-983)) (-10 -8 (IF (|has| |#1| (-565)) (IF (|has| (-983) (-132)) (-15 -2826 ($ $ (-983) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4453)) (-6 -4453) |%noBranch|))) (-1061)) (T -1191)) +((-2826 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-983)) (-4 *2 (-132)) (-5 *1 (-1191 *3)) (-4 *3 (-565)) (-4 *3 (-1061))))) +(-13 (-333 |#1| (-983)) (-10 -8 (IF (|has| |#1| (-565)) (IF (|has| (-983) (-132)) (-15 -2826 ($ $ (-983) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4453)) (-6 -4453) |%noBranch|))) +((-4390 (((-1193) (-1189) $) 25)) (-3982 (($) 29)) (-3926 (((-3 (|:| |fst| (-443)) (|:| -2425 "void")) (-1189) $) 22)) (-2678 (((-1285) (-1189) (-3 (|:| |fst| (-443)) (|:| -2425 "void")) $) 41) (((-1285) (-1189) (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) 42) (((-1285) (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) 43)) (-3439 (((-1285) (-1189)) 58)) (-2143 (((-1285) (-1189) $) 55) (((-1285) (-1189)) 56) (((-1285)) 57)) (-2458 (((-1285) (-1189)) 37)) (-4343 (((-1189)) 36)) (-3508 (($) 34)) (-3158 (((-446) (-1189) (-446) (-1189) $) 45) (((-446) (-653 (-1189)) (-446) (-1189) $) 49) (((-446) (-1189) (-446)) 46) (((-446) (-1189) (-446) (-1189)) 50)) (-1709 (((-1189)) 35)) (-2942 (((-871) $) 28)) (-2864 (((-1285)) 30) (((-1285) (-1189)) 33)) (-3100 (((-653 (-1189)) (-1189) $) 24)) (-3485 (((-1285) (-1189) (-653 (-1189)) $) 38) (((-1285) (-1189) (-653 (-1189))) 39) (((-1285) (-653 (-1189))) 40))) +(((-1192) (-13 (-622 (-871)) (-10 -8 (-15 -3982 ($)) (-15 -2864 ((-1285))) (-15 -2864 ((-1285) (-1189))) (-15 -3158 ((-446) (-1189) (-446) (-1189) $)) (-15 -3158 ((-446) (-653 (-1189)) (-446) (-1189) $)) (-15 -3158 ((-446) (-1189) (-446))) (-15 -3158 ((-446) (-1189) (-446) (-1189))) (-15 -2458 ((-1285) (-1189))) (-15 -1709 ((-1189))) (-15 -4343 ((-1189))) (-15 -3485 ((-1285) (-1189) (-653 (-1189)) $)) (-15 -3485 ((-1285) (-1189) (-653 (-1189)))) (-15 -3485 ((-1285) (-653 (-1189)))) (-15 -2678 ((-1285) (-1189) (-3 (|:| |fst| (-443)) (|:| -2425 "void")) $)) (-15 -2678 ((-1285) (-1189) (-3 (|:| |fst| (-443)) (|:| -2425 "void")))) (-15 -2678 ((-1285) (-3 (|:| |fst| (-443)) (|:| -2425 "void")))) (-15 -2143 ((-1285) (-1189) $)) (-15 -2143 ((-1285) (-1189))) (-15 -2143 ((-1285))) (-15 -3439 ((-1285) (-1189))) (-15 -3508 ($)) (-15 -3926 ((-3 (|:| |fst| (-443)) (|:| -2425 "void")) (-1189) $)) (-15 -3100 ((-653 (-1189)) (-1189) $)) (-15 -4390 ((-1193) (-1189) $))))) (T -1192)) +((-3982 (*1 *1) (-5 *1 (-1192))) (-2864 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-1192)))) (-2864 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1285)) (-5 *1 (-1192)))) (-3158 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-446)) (-5 *3 (-1189)) (-5 *1 (-1192)))) (-3158 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-446)) (-5 *3 (-653 (-1189))) (-5 *4 (-1189)) (-5 *1 (-1192)))) (-3158 (*1 *2 *3 *2) (-12 (-5 *2 (-446)) (-5 *3 (-1189)) (-5 *1 (-1192)))) (-3158 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-1189)) (-5 *1 (-1192)))) (-2458 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1285)) (-5 *1 (-1192)))) (-1709 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1192)))) (-4343 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1192)))) (-3485 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-653 (-1189))) (-5 *3 (-1189)) (-5 *2 (-1285)) (-5 *1 (-1192)))) (-3485 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-1189))) (-5 *3 (-1189)) (-5 *2 (-1285)) (-5 *1 (-1192)))) (-3485 (*1 *2 *3) (-12 (-5 *3 (-653 (-1189))) (-5 *2 (-1285)) (-5 *1 (-1192)))) (-2678 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1189)) (-5 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-5 *2 (-1285)) (-5 *1 (-1192)))) (-2678 (*1 *2 *3 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-5 *2 (-1285)) (-5 *1 (-1192)))) (-2678 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-5 *2 (-1285)) (-5 *1 (-1192)))) (-2143 (*1 *2 *3 *1) (-12 (-5 *3 (-1189)) (-5 *2 (-1285)) (-5 *1 (-1192)))) (-2143 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1285)) (-5 *1 (-1192)))) (-2143 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-1192)))) (-3439 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1285)) (-5 *1 (-1192)))) (-3508 (*1 *1) (-5 *1 (-1192))) (-3926 (*1 *2 *3 *1) (-12 (-5 *3 (-1189)) (-5 *2 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-5 *1 (-1192)))) (-3100 (*1 *2 *3 *1) (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-1192)) (-5 *3 (-1189)))) (-4390 (*1 *2 *3 *1) (-12 (-5 *3 (-1189)) (-5 *2 (-1193)) (-5 *1 (-1192))))) +(-13 (-622 (-871)) (-10 -8 (-15 -3982 ($)) (-15 -2864 ((-1285))) (-15 -2864 ((-1285) (-1189))) (-15 -3158 ((-446) (-1189) (-446) (-1189) $)) (-15 -3158 ((-446) (-653 (-1189)) (-446) (-1189) $)) (-15 -3158 ((-446) (-1189) (-446))) (-15 -3158 ((-446) (-1189) (-446) (-1189))) (-15 -2458 ((-1285) (-1189))) (-15 -1709 ((-1189))) (-15 -4343 ((-1189))) (-15 -3485 ((-1285) (-1189) (-653 (-1189)) $)) (-15 -3485 ((-1285) (-1189) (-653 (-1189)))) (-15 -3485 ((-1285) (-653 (-1189)))) (-15 -2678 ((-1285) (-1189) (-3 (|:| |fst| (-443)) (|:| -2425 "void")) $)) (-15 -2678 ((-1285) (-1189) (-3 (|:| |fst| (-443)) (|:| -2425 "void")))) (-15 -2678 ((-1285) (-3 (|:| |fst| (-443)) (|:| -2425 "void")))) (-15 -2143 ((-1285) (-1189) $)) (-15 -2143 ((-1285) (-1189))) (-15 -2143 ((-1285))) (-15 -3439 ((-1285) (-1189))) (-15 -3508 ($)) (-15 -3926 ((-3 (|:| |fst| (-443)) (|:| -2425 "void")) (-1189) $)) (-15 -3100 ((-653 (-1189)) (-1189) $)) (-15 -4390 ((-1193) (-1189) $)))) +((-3486 (((-653 (-653 (-3 (|:| -2031 (-1189)) (|:| -1632 (-653 (-3 (|:| S (-1189)) (|:| P (-962 (-573))))))))) $) 66)) (-2054 (((-653 (-3 (|:| -2031 (-1189)) (|:| -1632 (-653 (-3 (|:| S (-1189)) (|:| P (-962 (-573)))))))) (-443) $) 47)) (-3722 (($ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-446))))) 17)) (-3439 (((-1285) $) 73)) (-4290 (((-653 (-1189)) $) 22)) (-3943 (((-1116) $) 60)) (-1744 (((-446) (-1189) $) 27)) (-1966 (((-653 (-1189)) $) 30)) (-3508 (($) 19)) (-3158 (((-446) (-653 (-1189)) (-446) $) 25) (((-446) (-1189) (-446) $) 24)) (-2942 (((-871) $) 9) (((-1202 (-1189) (-446)) $) 13))) +(((-1193) (-13 (-622 (-871)) (-10 -8 (-15 -2942 ((-1202 (-1189) (-446)) $)) (-15 -3508 ($)) (-15 -3158 ((-446) (-653 (-1189)) (-446) $)) (-15 -3158 ((-446) (-1189) (-446) $)) (-15 -1744 ((-446) (-1189) $)) (-15 -4290 ((-653 (-1189)) $)) (-15 -2054 ((-653 (-3 (|:| -2031 (-1189)) (|:| -1632 (-653 (-3 (|:| S (-1189)) (|:| P (-962 (-573)))))))) (-443) $)) (-15 -1966 ((-653 (-1189)) $)) (-15 -3486 ((-653 (-653 (-3 (|:| -2031 (-1189)) (|:| -1632 (-653 (-3 (|:| S (-1189)) (|:| P (-962 (-573))))))))) $)) (-15 -3943 ((-1116) $)) (-15 -3439 ((-1285) $)) (-15 -3722 ($ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-446))))))))) (T -1193)) +((-2942 (*1 *2 *1) (-12 (-5 *2 (-1202 (-1189) (-446))) (-5 *1 (-1193)))) (-3508 (*1 *1) (-5 *1 (-1193))) (-3158 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-446)) (-5 *3 (-653 (-1189))) (-5 *1 (-1193)))) (-3158 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-446)) (-5 *3 (-1189)) (-5 *1 (-1193)))) (-1744 (*1 *2 *3 *1) (-12 (-5 *3 (-1189)) (-5 *2 (-446)) (-5 *1 (-1193)))) (-4290 (*1 *2 *1) (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-1193)))) (-2054 (*1 *2 *3 *1) (-12 (-5 *3 (-443)) (-5 *2 (-653 (-3 (|:| -2031 (-1189)) (|:| -1632 (-653 (-3 (|:| S (-1189)) (|:| P (-962 (-573))))))))) (-5 *1 (-1193)))) (-1966 (*1 *2 *1) (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-1193)))) (-3486 (*1 *2 *1) (-12 (-5 *2 (-653 (-653 (-3 (|:| -2031 (-1189)) (|:| -1632 (-653 (-3 (|:| S (-1189)) (|:| P (-962 (-573)))))))))) (-5 *1 (-1193)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-1193)))) (-3439 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-1193)))) (-3722 (*1 *1 *2) (-12 (-5 *2 (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-446))))) (-5 *1 (-1193))))) +(-13 (-622 (-871)) (-10 -8 (-15 -2942 ((-1202 (-1189) (-446)) $)) (-15 -3508 ($)) (-15 -3158 ((-446) (-653 (-1189)) (-446) $)) (-15 -3158 ((-446) (-1189) (-446) $)) (-15 -1744 ((-446) (-1189) $)) (-15 -4290 ((-653 (-1189)) $)) (-15 -2054 ((-653 (-3 (|:| -2031 (-1189)) (|:| -1632 (-653 (-3 (|:| S (-1189)) (|:| P (-962 (-573)))))))) (-443) $)) (-15 -1966 ((-653 (-1189)) $)) (-15 -3486 ((-653 (-653 (-3 (|:| -2031 (-1189)) (|:| -1632 (-653 (-3 (|:| S (-1189)) (|:| P (-962 (-573))))))))) $)) (-15 -3943 ((-1116) $)) (-15 -3439 ((-1285) $)) (-15 -3722 ($ (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-446)))))))) +((-2848 (((-112) $ $) NIL)) (-1695 (((-3 (-573) "failed") $) 29) (((-3 (-227) "failed") $) 35) (((-3 (-515) "failed") $) 43) (((-3 (-1171) "failed") $) 47)) (-2205 (((-573) $) 30) (((-227) $) 36) (((-515) $) 40) (((-1171) $) 48)) (-3238 (((-112) $) 53)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-3484 (((-3 (-573) (-227) (-515) (-1171) $) $) 55)) (-4419 (((-653 $) $) 57)) (-1835 (((-1116) $) 24) (($ (-1116)) 25)) (-1756 (((-112) $) 56)) (-2942 (((-871) $) 23) (($ (-573)) 26) (($ (-227)) 32) (($ (-515)) 38) (($ (-1171)) 44) (((-545) $) 59) (((-573) $) 31) (((-227) $) 37) (((-515) $) 41) (((-1171) $) 49)) (-2121 (((-112) $ (|[\|\|]| (-573))) 10) (((-112) $ (|[\|\|]| (-227))) 13) (((-112) $ (|[\|\|]| (-515))) 19) (((-112) $ (|[\|\|]| (-1171))) 16)) (-3908 (($ (-515) (-653 $)) 51) (($ $ (-653 $)) 52)) (-3507 (((-112) $ $) NIL)) (-1331 (((-573) $) 27) (((-227) $) 33) (((-515) $) 39) (((-1171) $) 45)) (-2981 (((-112) $ $) 7))) +(((-1194) (-13 (-1275) (-1112) (-1050 (-573)) (-1050 (-227)) (-1050 (-515)) (-1050 (-1171)) (-622 (-545)) (-10 -8 (-15 -1835 ((-1116) $)) (-15 -1835 ($ (-1116))) (-15 -2942 ((-573) $)) (-15 -1331 ((-573) $)) (-15 -2942 ((-227) $)) (-15 -1331 ((-227) $)) (-15 -2942 ((-515) $)) (-15 -1331 ((-515) $)) (-15 -2942 ((-1171) $)) (-15 -1331 ((-1171) $)) (-15 -3908 ($ (-515) (-653 $))) (-15 -3908 ($ $ (-653 $))) (-15 -3238 ((-112) $)) (-15 -3484 ((-3 (-573) (-227) (-515) (-1171) $) $)) (-15 -4419 ((-653 $) $)) (-15 -1756 ((-112) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-573)))) (-15 -2121 ((-112) $ (|[\|\|]| (-227)))) (-15 -2121 ((-112) $ (|[\|\|]| (-515)))) (-15 -2121 ((-112) $ (|[\|\|]| (-1171))))))) (T -1194)) +((-1835 (*1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-1194)))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-1116)) (-5 *1 (-1194)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-1194)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-1194)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1194)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1194)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-1194)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-1194)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1194)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1194)))) (-3908 (*1 *1 *2 *3) (-12 (-5 *2 (-515)) (-5 *3 (-653 (-1194))) (-5 *1 (-1194)))) (-3908 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-1194))) (-5 *1 (-1194)))) (-3238 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194)))) (-3484 (*1 *2 *1) (-12 (-5 *2 (-3 (-573) (-227) (-515) (-1171) (-1194))) (-5 *1 (-1194)))) (-4419 (*1 *2 *1) (-12 (-5 *2 (-653 (-1194))) (-5 *1 (-1194)))) (-1756 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194)))) (-2121 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-573))) (-5 *2 (-112)) (-5 *1 (-1194)))) (-2121 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1194)))) (-2121 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)) (-5 *1 (-1194)))) (-2121 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1171))) (-5 *2 (-112)) (-5 *1 (-1194))))) +(-13 (-1275) (-1112) (-1050 (-573)) (-1050 (-227)) (-1050 (-515)) (-1050 (-1171)) (-622 (-545)) (-10 -8 (-15 -1835 ((-1116) $)) (-15 -1835 ($ (-1116))) (-15 -2942 ((-573) $)) (-15 -1331 ((-573) $)) (-15 -2942 ((-227) $)) (-15 -1331 ((-227) $)) (-15 -2942 ((-515) $)) (-15 -1331 ((-515) $)) (-15 -2942 ((-1171) $)) (-15 -1331 ((-1171) $)) (-15 -3908 ($ (-515) (-653 $))) (-15 -3908 ($ $ (-653 $))) (-15 -3238 ((-112) $)) (-15 -3484 ((-3 (-573) (-227) (-515) (-1171) $) $)) (-15 -4419 ((-653 $) $)) (-15 -1756 ((-112) $)) (-15 -2121 ((-112) $ (|[\|\|]| (-573)))) (-15 -2121 ((-112) $ (|[\|\|]| (-227)))) (-15 -2121 ((-112) $ (|[\|\|]| (-515)))) (-15 -2121 ((-112) $ (|[\|\|]| (-1171)))))) +((-2848 (((-112) $ $) NIL)) (-1486 (((-780)) 22)) (-2579 (($) 12 T CONST)) (-2819 (($) 26)) (-3659 (($ $ $) NIL) (($) 19 T CONST)) (-3751 (($ $ $) NIL) (($) 20 T CONST)) (-3589 (((-931) $) 24)) (-3180 (((-1171) $) NIL)) (-2575 (($ (-931)) 23)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL))) +(((-1195 |#1|) (-13 (-853) (-10 -8 (-15 -2579 ($) -1705))) (-931)) (T -1195)) +((-2579 (*1 *1) (-12 (-5 *1 (-1195 *2)) (-14 *2 (-931))))) +(-13 (-853) (-10 -8 (-15 -2579 ($) -1705))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) @1))) -((-2849 (((-112) $ $) NIL)) (-1487 (((-781)) NIL)) (-3426 (($) 19 T CONST)) (-2820 (($) NIL)) (-3659 (($ $ $) NIL) (($) 12 T CONST)) (-4257 (($ $ $) NIL) (($) 18 T CONST)) (-4115 (((-932) $) NIL)) (-4136 (((-1172) $) NIL)) (-2576 (($ (-932)) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-1753 (($ $ $) 21)) (-1743 (($ $ $) 20)) (-3284 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) NIL))) -(((-1197 |#1|) (-13 (-854) (-10 -8 (-15 -1743 ($ $ $)) (-15 -1753 ($ $ $)) (-15 -3426 ($) -1706))) (-932)) (T -1197)) -((-1743 (*1 *1 *1 *1) (-12 (-5 *1 (-1197 *2)) (-14 *2 (-932)))) (-1753 (*1 *1 *1 *1) (-12 (-5 *1 (-1197 *2)) (-14 *2 (-932)))) (-3426 (*1 *1) (-12 (-5 *1 (-1197 *2)) (-14 *2 (-932))))) -(-13 (-854) (-10 -8 (-15 -1743 ($ $ $)) (-15 -1753 ($ $ $)) (-15 -3426 ($) -1706))) +((-2848 (((-112) $ $) NIL)) (-1486 (((-780)) NIL)) (-2579 (($) 19 T CONST)) (-2819 (($) NIL)) (-3659 (($ $ $) NIL) (($) 12 T CONST)) (-3751 (($ $ $) NIL) (($) 18 T CONST)) (-3589 (((-931) $) NIL)) (-3180 (((-1171) $) NIL)) (-2575 (($ (-931)) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-1752 (($ $ $) 21)) (-1741 (($ $ $) 20)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL))) +(((-1196 |#1|) (-13 (-853) (-10 -8 (-15 -1741 ($ $ $)) (-15 -1752 ($ $ $)) (-15 -2579 ($) -1705))) (-931)) (T -1196)) +((-1741 (*1 *1 *1 *1) (-12 (-5 *1 (-1196 *2)) (-14 *2 (-931)))) (-1752 (*1 *1 *1 *1) (-12 (-5 *1 (-1196 *2)) (-14 *2 (-931)))) (-2579 (*1 *1) (-12 (-5 *1 (-1196 *2)) (-14 *2 (-931))))) +(-13 (-853) (-10 -8 (-15 -1741 ($ $ $)) (-15 -1752 ($ $ $)) (-15 -2579 ($) -1705))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) @1))) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 9)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 7))) -(((-1198) (-1113)) (T -1198)) -NIL -(-1113) -((-3382 (((-654 (-654 (-963 |#1|))) (-654 (-417 (-963 |#1|))) (-654 (-1190))) 69)) (-1701 (((-654 (-302 (-417 (-963 |#1|)))) (-302 (-417 (-963 |#1|)))) 80) (((-654 (-302 (-417 (-963 |#1|)))) (-417 (-963 |#1|))) 76) (((-654 (-302 (-417 (-963 |#1|)))) (-302 (-417 (-963 |#1|))) (-1190)) 81) (((-654 (-302 (-417 (-963 |#1|)))) (-417 (-963 |#1|)) (-1190)) 75) (((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-302 (-417 (-963 |#1|))))) 106) (((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-417 (-963 |#1|)))) 105) (((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-302 (-417 (-963 |#1|)))) (-654 (-1190))) 107) (((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-417 (-963 |#1|))) (-654 (-1190))) 104))) -(((-1199 |#1|) (-10 -7 (-15 -1701 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-417 (-963 |#1|))) (-654 (-1190)))) (-15 -1701 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-302 (-417 (-963 |#1|)))) (-654 (-1190)))) (-15 -1701 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-417 (-963 |#1|))))) (-15 -1701 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-302 (-417 (-963 |#1|)))))) (-15 -1701 ((-654 (-302 (-417 (-963 |#1|)))) (-417 (-963 |#1|)) (-1190))) (-15 -1701 ((-654 (-302 (-417 (-963 |#1|)))) (-302 (-417 (-963 |#1|))) (-1190))) (-15 -1701 ((-654 (-302 (-417 (-963 |#1|)))) (-417 (-963 |#1|)))) (-15 -1701 ((-654 (-302 (-417 (-963 |#1|)))) (-302 (-417 (-963 |#1|))))) (-15 -3382 ((-654 (-654 (-963 |#1|))) (-654 (-417 (-963 |#1|))) (-654 (-1190))))) (-566)) (T -1199)) -((-3382 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-963 *5)))) (-5 *4 (-654 (-1190))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-963 *5)))) (-5 *1 (-1199 *5)))) (-1701 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 (-302 (-417 (-963 *4))))) (-5 *1 (-1199 *4)) (-5 *3 (-302 (-417 (-963 *4)))))) (-1701 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 (-302 (-417 (-963 *4))))) (-5 *1 (-1199 *4)) (-5 *3 (-417 (-963 *4))))) (-1701 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-4 *5 (-566)) (-5 *2 (-654 (-302 (-417 (-963 *5))))) (-5 *1 (-1199 *5)) (-5 *3 (-302 (-417 (-963 *5)))))) (-1701 (*1 *2 *3 *4) (-12 (-5 *4 (-1190)) (-4 *5 (-566)) (-5 *2 (-654 (-302 (-417 (-963 *5))))) (-5 *1 (-1199 *5)) (-5 *3 (-417 (-963 *5))))) (-1701 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-963 *4)))))) (-5 *1 (-1199 *4)) (-5 *3 (-654 (-302 (-417 (-963 *4))))))) (-1701 (*1 *2 *3) (-12 (-5 *3 (-654 (-417 (-963 *4)))) (-4 *4 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-963 *4)))))) (-5 *1 (-1199 *4)))) (-1701 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-1190))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-963 *5)))))) (-5 *1 (-1199 *5)) (-5 *3 (-654 (-302 (-417 (-963 *5))))))) (-1701 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-963 *5)))) (-5 *4 (-654 (-1190))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-963 *5)))))) (-5 *1 (-1199 *5))))) -(-10 -7 (-15 -1701 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-417 (-963 |#1|))) (-654 (-1190)))) (-15 -1701 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-302 (-417 (-963 |#1|)))) (-654 (-1190)))) (-15 -1701 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-417 (-963 |#1|))))) (-15 -1701 ((-654 (-654 (-302 (-417 (-963 |#1|))))) (-654 (-302 (-417 (-963 |#1|)))))) (-15 -1701 ((-654 (-302 (-417 (-963 |#1|)))) (-417 (-963 |#1|)) (-1190))) (-15 -1701 ((-654 (-302 (-417 (-963 |#1|)))) (-302 (-417 (-963 |#1|))) (-1190))) (-15 -1701 ((-654 (-302 (-417 (-963 |#1|)))) (-417 (-963 |#1|)))) (-15 -1701 ((-654 (-302 (-417 (-963 |#1|)))) (-302 (-417 (-963 |#1|))))) (-15 -3382 ((-654 (-654 (-963 |#1|))) (-654 (-417 (-963 |#1|))) (-654 (-1190))))) -((-2828 (((-1172)) 7)) (-2307 (((-1172)) 11 T CONST)) (-3724 (((-1286) (-1172)) 13)) (-4295 (((-1172)) 8 T CONST)) (-3747 (((-131)) 10 T CONST))) -(((-1200) (-13 (-1231) (-10 -7 (-15 -2828 ((-1172))) (-15 -4295 ((-1172)) -1706) (-15 -3747 ((-131)) -1706) (-15 -2307 ((-1172)) -1706) (-15 -3724 ((-1286) (-1172)))))) (T -1200)) -((-2828 (*1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1200)))) (-4295 (*1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1200)))) (-3747 (*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1200)))) (-2307 (*1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1200)))) (-3724 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1200))))) -(-13 (-1231) (-10 -7 (-15 -2828 ((-1172))) (-15 -4295 ((-1172)) -1706) (-15 -3747 ((-131)) -1706) (-15 -2307 ((-1172)) -1706) (-15 -3724 ((-1286) (-1172))))) -((-2011 (((-654 (-654 |#1|)) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|)))) 56)) (-3771 (((-654 (-654 (-654 |#1|))) (-654 (-654 |#1|))) 38)) (-2994 (((-1202 (-654 |#1|)) (-654 |#1|)) 49)) (-1682 (((-654 (-654 |#1|)) (-654 |#1|)) 45)) (-4266 (((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 (-654 (-654 |#1|)))) 53)) (-1769 (((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 |#1|) (-654 (-654 (-654 |#1|))) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|)))) 52)) (-1982 (((-654 (-654 |#1|)) (-654 (-654 |#1|))) 43)) (-2063 (((-654 |#1|) (-654 |#1|)) 46)) (-3793 (((-654 (-654 (-654 |#1|))) (-654 |#1|) (-654 (-654 (-654 |#1|)))) 32)) (-2123 (((-654 (-654 (-654 |#1|))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 (-654 |#1|)))) 29)) (-1911 (((-2 (|:| |fs| (-112)) (|:| |sd| (-654 |#1|)) (|:| |td| (-654 (-654 |#1|)))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 |#1|))) 24)) (-2971 (((-654 (-654 |#1|)) (-654 (-654 (-654 |#1|)))) 58)) (-1714 (((-654 (-654 |#1|)) (-1202 (-654 |#1|))) 60))) -(((-1201 |#1|) (-10 -7 (-15 -1911 ((-2 (|:| |fs| (-112)) (|:| |sd| (-654 |#1|)) (|:| |td| (-654 (-654 |#1|)))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 |#1|)))) (-15 -2123 ((-654 (-654 (-654 |#1|))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 (-654 |#1|))))) (-15 -3793 ((-654 (-654 (-654 |#1|))) (-654 |#1|) (-654 (-654 (-654 |#1|))))) (-15 -2011 ((-654 (-654 |#1|)) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))))) (-15 -2971 ((-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))))) (-15 -1714 ((-654 (-654 |#1|)) (-1202 (-654 |#1|)))) (-15 -3771 ((-654 (-654 (-654 |#1|))) (-654 (-654 |#1|)))) (-15 -2994 ((-1202 (-654 |#1|)) (-654 |#1|))) (-15 -1982 ((-654 (-654 |#1|)) (-654 (-654 |#1|)))) (-15 -1682 ((-654 (-654 |#1|)) (-654 |#1|))) (-15 -2063 ((-654 |#1|) (-654 |#1|))) (-15 -1769 ((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 |#1|) (-654 (-654 (-654 |#1|))) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|))))) (-15 -4266 ((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 (-654 (-654 |#1|)))))) (-860)) (T -1201)) -((-4266 (*1 *2 *3) (-12 (-4 *4 (-860)) (-5 *2 (-2 (|:| |f1| (-654 *4)) (|:| |f2| (-654 (-654 (-654 *4)))) (|:| |f3| (-654 (-654 *4))) (|:| |f4| (-654 (-654 (-654 *4)))))) (-5 *1 (-1201 *4)) (-5 *3 (-654 (-654 (-654 *4)))))) (-1769 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-860)) (-5 *3 (-654 *6)) (-5 *5 (-654 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-654 *5)) (|:| |f3| *5) (|:| |f4| (-654 *5)))) (-5 *1 (-1201 *6)) (-5 *4 (-654 *5)))) (-2063 (*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-1201 *3)))) (-1682 (*1 *2 *3) (-12 (-4 *4 (-860)) (-5 *2 (-654 (-654 *4))) (-5 *1 (-1201 *4)) (-5 *3 (-654 *4)))) (-1982 (*1 *2 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-860)) (-5 *1 (-1201 *3)))) (-2994 (*1 *2 *3) (-12 (-4 *4 (-860)) (-5 *2 (-1202 (-654 *4))) (-5 *1 (-1201 *4)) (-5 *3 (-654 *4)))) (-3771 (*1 *2 *3) (-12 (-4 *4 (-860)) (-5 *2 (-654 (-654 (-654 *4)))) (-5 *1 (-1201 *4)) (-5 *3 (-654 (-654 *4))))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-1202 (-654 *4))) (-4 *4 (-860)) (-5 *2 (-654 (-654 *4))) (-5 *1 (-1201 *4)))) (-2971 (*1 *2 *3) (-12 (-5 *3 (-654 (-654 (-654 *4)))) (-5 *2 (-654 (-654 *4))) (-5 *1 (-1201 *4)) (-4 *4 (-860)))) (-2011 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-654 (-654 *4)))) (-5 *2 (-654 (-654 *4))) (-4 *4 (-860)) (-5 *1 (-1201 *4)))) (-3793 (*1 *2 *3 *2) (-12 (-5 *2 (-654 (-654 (-654 *4)))) (-5 *3 (-654 *4)) (-4 *4 (-860)) (-5 *1 (-1201 *4)))) (-2123 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-654 (-654 (-654 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-654 *5)) (-4 *5 (-860)) (-5 *1 (-1201 *5)))) (-1911 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-860)) (-5 *4 (-654 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-654 *4)))) (-5 *1 (-1201 *6)) (-5 *5 (-654 *4))))) -(-10 -7 (-15 -1911 ((-2 (|:| |fs| (-112)) (|:| |sd| (-654 |#1|)) (|:| |td| (-654 (-654 |#1|)))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 |#1|)))) (-15 -2123 ((-654 (-654 (-654 |#1|))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 (-654 |#1|))))) (-15 -3793 ((-654 (-654 (-654 |#1|))) (-654 |#1|) (-654 (-654 (-654 |#1|))))) (-15 -2011 ((-654 (-654 |#1|)) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))))) (-15 -2971 ((-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))))) (-15 -1714 ((-654 (-654 |#1|)) (-1202 (-654 |#1|)))) (-15 -3771 ((-654 (-654 (-654 |#1|))) (-654 (-654 |#1|)))) (-15 -2994 ((-1202 (-654 |#1|)) (-654 |#1|))) (-15 -1982 ((-654 (-654 |#1|)) (-654 (-654 |#1|)))) (-15 -1682 ((-654 (-654 |#1|)) (-654 |#1|))) (-15 -2063 ((-654 |#1|) (-654 |#1|))) (-15 -1769 ((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 |#1|) (-654 (-654 (-654 |#1|))) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|))))) (-15 -4266 ((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 (-654 (-654 |#1|)))))) -((-3504 (($ (-654 (-654 |#1|))) 10)) (-1394 (((-654 (-654 |#1|)) $) 11)) (-2943 (((-872) $) 33))) -(((-1202 |#1|) (-10 -8 (-15 -3504 ($ (-654 (-654 |#1|)))) (-15 -1394 ((-654 (-654 |#1|)) $)) (-15 -2943 ((-872) $))) (-1113)) (T -1202)) -((-2943 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-1202 *3)) (-4 *3 (-1113)))) (-1394 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 *3))) (-5 *1 (-1202 *3)) (-4 *3 (-1113)))) (-3504 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1113)) (-5 *1 (-1202 *3))))) -(-10 -8 (-15 -3504 ($ (-654 (-654 |#1|)))) (-15 -1394 ((-654 (-654 |#1|)) $)) (-15 -2943 ((-872) $))) -((-2849 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-3778 (($) NIL) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL)) (-3714 (((-1286) $ |#1| |#1|) NIL (|has| $ (-6 -4457)))) (-3034 (((-112) $ (-781)) NIL)) (-3143 ((|#2| $ |#1| |#2|) NIL)) (-3572 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2165 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2163 (((-3 |#2| "failed") |#1| $) NIL)) (-3426 (($) NIL T CONST)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))))) (-2876 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-3 |#2| "failed") |#1| $) NIL)) (-3335 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2868 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (|has| $ (-6 -4456))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456)))) (-2458 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#2| $ |#1|) NIL)) (-1864 (((-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-2742 (((-112) $ (-781)) NIL)) (-3618 ((|#1| $) NIL (|has| |#1| (-860)))) (-1606 (((-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-654 |#2|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-2702 ((|#1| $) NIL (|has| |#1| (-860)))) (-2449 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4457))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-1763 (((-654 |#1|) $) NIL)) (-1732 (((-112) |#1| $) NIL)) (-2937 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL)) (-2798 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL)) (-4308 (((-654 |#1|) $) NIL)) (-3336 (((-112) |#1| $) NIL)) (-3966 (((-1133) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2915 ((|#2| $) NIL (|has| |#1| (-860)))) (-1549 (((-3 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) "failed") (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL)) (-1942 (($ $ |#2|) NIL (|has| $ (-6 -4457)))) (-1785 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL)) (-2540 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-302 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-4371 (((-654 |#2|) $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1662 (($) NIL) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL)) (-3975 (((-781) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) NIL (-12 (|has| $ (-6 -4456)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) NIL)) (-1836 (((-546) $) NIL (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-624 (-546))))) (-2956 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL)) (-2943 (((-872) $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-3284 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-1599 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) NIL)) (-3390 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) NIL (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) NIL (-2818 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| |#2| (-1113))))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-1203 |#1| |#2|) (-13 (-1207 |#1| |#2|) (-10 -7 (-6 -4456))) (-1113) (-1113)) (T -1203)) -NIL -(-13 (-1207 |#1| |#2|) (-10 -7 (-6 -4456))) -((-2849 (((-112) $ $) NIL)) (-4175 (($ |#1| (-55)) 10)) (-2032 ((|#1| $) 12)) (-4136 (((-1172) $) NIL)) (-4103 (((-112) $ |#1|) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-3284 (((-112) $ $) NIL)) (-4183 (((-55) $) 14)) (-2981 (((-112) $ $) NIL))) -(((-1204 |#1|) (-13 (-845 |#1|) (-10 -8 (-15 -4175 ($ |#1| (-55))))) (-1113)) (T -1204)) -((-4175 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1204 *2)) (-4 *2 (-1113))))) -(-13 (-845 |#1|) (-10 -8 (-15 -4175 ($ |#1| (-55))))) -((-4350 ((|#1| (-654 |#1|)) 46)) (-2082 ((|#1| |#1| (-574)) 24)) (-3292 (((-1186 |#1|) |#1| (-932)) 20))) -(((-1205 |#1|) (-10 -7 (-15 -4350 (|#1| (-654 |#1|))) (-15 -3292 ((-1186 |#1|) |#1| (-932))) (-15 -2082 (|#1| |#1| (-574)))) (-372)) (T -1205)) -((-2082 (*1 *2 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-1205 *2)) (-4 *2 (-372)))) (-3292 (*1 *2 *3 *4) (-12 (-5 *4 (-932)) (-5 *2 (-1186 *3)) (-5 *1 (-1205 *3)) (-4 *3 (-372)))) (-4350 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-5 *1 (-1205 *2)) (-4 *2 (-372))))) -(-10 -7 (-15 -4350 (|#1| (-654 |#1|))) (-15 -3292 ((-1186 |#1|) |#1| (-932))) (-15 -2082 (|#1| |#1| (-574)))) -((-3778 (($) 10) (($ (-654 (-2 (|:| -3693 |#2|) (|:| -1908 |#3|)))) 14)) (-2876 (($ (-2 (|:| -3693 |#2|) (|:| -1908 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -3693 |#2|) (|:| -1908 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1864 (((-654 (-2 (|:| -3693 |#2|) (|:| -1908 |#3|))) $) 39) (((-654 |#3|) $) 41)) (-2449 (($ (-1 (-2 (|:| -3693 |#2|) (|:| -1908 |#3|)) (-2 (|:| -3693 |#2|) (|:| -1908 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-1777 (($ (-1 (-2 (|:| -3693 |#2|) (|:| -1908 |#3|)) (-2 (|:| -3693 |#2|) (|:| -1908 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2937 (((-2 (|:| -3693 |#2|) (|:| -1908 |#3|)) $) 60)) (-2798 (($ (-2 (|:| -3693 |#2|) (|:| -1908 |#3|)) $) 16)) (-4308 (((-654 |#2|) $) 19)) (-3336 (((-112) |#2| $) 65)) (-1549 (((-3 (-2 (|:| -3693 |#2|) (|:| -1908 |#3|)) "failed") (-1 (-112) (-2 (|:| -3693 |#2|) (|:| -1908 |#3|))) $) 64)) (-1785 (((-2 (|:| -3693 |#2|) (|:| -1908 |#3|)) $) 69)) (-2540 (((-112) (-1 (-112) (-2 (|:| -3693 |#2|) (|:| -1908 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-4371 (((-654 |#3|) $) 43)) (-2199 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3975 (((-781) (-1 (-112) (-2 (|:| -3693 |#2|) (|:| -1908 |#3|))) $) NIL) (((-781) (-2 (|:| -3693 |#2|) (|:| -1908 |#3|)) $) NIL) (((-781) |#3| $) NIL) (((-781) (-1 (-112) |#3|) $) 79)) (-2943 (((-872) $) 27)) (-3390 (((-112) (-1 (-112) (-2 (|:| -3693 |#2|) (|:| -1908 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2981 (((-112) $ $) 51))) -(((-1206 |#1| |#2| |#3|) (-10 -8 (-15 -2981 ((-112) |#1| |#1|)) (-15 -2943 ((-872) |#1|)) (-15 -1777 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3778 (|#1| (-654 (-2 (|:| -3693 |#2|) (|:| -1908 |#3|))))) (-15 -3778 (|#1|)) (-15 -1777 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2449 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3390 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2540 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3975 ((-781) (-1 (-112) |#3|) |#1|)) (-15 -1864 ((-654 |#3|) |#1|)) (-15 -3975 ((-781) |#3| |#1|)) (-15 -2199 (|#3| |#1| |#2| |#3|)) (-15 -2199 (|#3| |#1| |#2|)) (-15 -4371 ((-654 |#3|) |#1|)) (-15 -3336 ((-112) |#2| |#1|)) (-15 -4308 ((-654 |#2|) |#1|)) (-15 -2876 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2876 (|#1| (-1 (-112) (-2 (|:| -3693 |#2|) (|:| -1908 |#3|))) |#1|)) (-15 -2876 (|#1| (-2 (|:| -3693 |#2|) (|:| -1908 |#3|)) |#1|)) (-15 -1549 ((-3 (-2 (|:| -3693 |#2|) (|:| -1908 |#3|)) "failed") (-1 (-112) (-2 (|:| -3693 |#2|) (|:| -1908 |#3|))) |#1|)) (-15 -2937 ((-2 (|:| -3693 |#2|) (|:| -1908 |#3|)) |#1|)) (-15 -2798 (|#1| (-2 (|:| -3693 |#2|) (|:| -1908 |#3|)) |#1|)) (-15 -1785 ((-2 (|:| -3693 |#2|) (|:| -1908 |#3|)) |#1|)) (-15 -3975 ((-781) (-2 (|:| -3693 |#2|) (|:| -1908 |#3|)) |#1|)) (-15 -1864 ((-654 (-2 (|:| -3693 |#2|) (|:| -1908 |#3|))) |#1|)) (-15 -3975 ((-781) (-1 (-112) (-2 (|:| -3693 |#2|) (|:| -1908 |#3|))) |#1|)) (-15 -2540 ((-112) (-1 (-112) (-2 (|:| -3693 |#2|) (|:| -1908 |#3|))) |#1|)) (-15 -3390 ((-112) (-1 (-112) (-2 (|:| -3693 |#2|) (|:| -1908 |#3|))) |#1|)) (-15 -2449 (|#1| (-1 (-2 (|:| -3693 |#2|) (|:| -1908 |#3|)) (-2 (|:| -3693 |#2|) (|:| -1908 |#3|))) |#1|)) (-15 -1777 (|#1| (-1 (-2 (|:| -3693 |#2|) (|:| -1908 |#3|)) (-2 (|:| -3693 |#2|) (|:| -1908 |#3|))) |#1|))) (-1207 |#2| |#3|) (-1113) (-1113)) (T -1206)) -NIL -(-10 -8 (-15 -2981 ((-112) |#1| |#1|)) (-15 -2943 ((-872) |#1|)) (-15 -1777 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3778 (|#1| (-654 (-2 (|:| -3693 |#2|) (|:| -1908 |#3|))))) (-15 -3778 (|#1|)) (-15 -1777 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2449 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3390 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2540 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3975 ((-781) (-1 (-112) |#3|) |#1|)) (-15 -1864 ((-654 |#3|) |#1|)) (-15 -3975 ((-781) |#3| |#1|)) (-15 -2199 (|#3| |#1| |#2| |#3|)) (-15 -2199 (|#3| |#1| |#2|)) (-15 -4371 ((-654 |#3|) |#1|)) (-15 -3336 ((-112) |#2| |#1|)) (-15 -4308 ((-654 |#2|) |#1|)) (-15 -2876 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2876 (|#1| (-1 (-112) (-2 (|:| -3693 |#2|) (|:| -1908 |#3|))) |#1|)) (-15 -2876 (|#1| (-2 (|:| -3693 |#2|) (|:| -1908 |#3|)) |#1|)) (-15 -1549 ((-3 (-2 (|:| -3693 |#2|) (|:| -1908 |#3|)) "failed") (-1 (-112) (-2 (|:| -3693 |#2|) (|:| -1908 |#3|))) |#1|)) (-15 -2937 ((-2 (|:| -3693 |#2|) (|:| -1908 |#3|)) |#1|)) (-15 -2798 (|#1| (-2 (|:| -3693 |#2|) (|:| -1908 |#3|)) |#1|)) (-15 -1785 ((-2 (|:| -3693 |#2|) (|:| -1908 |#3|)) |#1|)) (-15 -3975 ((-781) (-2 (|:| -3693 |#2|) (|:| -1908 |#3|)) |#1|)) (-15 -1864 ((-654 (-2 (|:| -3693 |#2|) (|:| -1908 |#3|))) |#1|)) (-15 -3975 ((-781) (-1 (-112) (-2 (|:| -3693 |#2|) (|:| -1908 |#3|))) |#1|)) (-15 -2540 ((-112) (-1 (-112) (-2 (|:| -3693 |#2|) (|:| -1908 |#3|))) |#1|)) (-15 -3390 ((-112) (-1 (-112) (-2 (|:| -3693 |#2|) (|:| -1908 |#3|))) |#1|)) (-15 -2449 (|#1| (-1 (-2 (|:| -3693 |#2|) (|:| -1908 |#3|)) (-2 (|:| -3693 |#2|) (|:| -1908 |#3|))) |#1|)) (-15 -1777 (|#1| (-1 (-2 (|:| -3693 |#2|) (|:| -1908 |#3|)) (-2 (|:| -3693 |#2|) (|:| -1908 |#3|))) |#1|))) -((-2849 (((-112) $ $) 19 (-2818 (|has| |#2| (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))))) (-3778 (($) 73) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) 72)) (-3714 (((-1286) $ |#1| |#1|) 100 (|has| $ (-6 -4457)))) (-3034 (((-112) $ (-781)) 8)) (-3143 ((|#2| $ |#1| |#2|) 74)) (-3572 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 46 (|has| $ (-6 -4456)))) (-2165 (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 56 (|has| $ (-6 -4456)))) (-2163 (((-3 |#2| "failed") |#1| $) 62)) (-3426 (($) 7 T CONST)) (-1543 (($ $) 59 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| $ (-6 -4456))))) (-2876 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 48 (|has| $ (-6 -4456))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 47 (|has| $ (-6 -4456))) (((-3 |#2| "failed") |#1| $) 63)) (-3335 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 55 (|has| $ (-6 -4456)))) (-2868 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) 57 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| $ (-6 -4456)))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) 54 (|has| $ (-6 -4456))) (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 53 (|has| $ (-6 -4456)))) (-2458 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4457)))) (-2385 ((|#2| $ |#1|) 89)) (-1864 (((-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 31 (|has| $ (-6 -4456))) (((-654 |#2|) $) 80 (|has| $ (-6 -4456)))) (-2742 (((-112) $ (-781)) 9)) (-3618 ((|#1| $) 97 (|has| |#1| (-860)))) (-1606 (((-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 30 (|has| $ (-6 -4456))) (((-654 |#2|) $) 81 (|has| $ (-6 -4456)))) (-1710 (((-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| $ (-6 -4456)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1113)) (|has| $ (-6 -4456))))) (-2702 ((|#1| $) 96 (|has| |#1| (-860)))) (-2449 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 35 (|has| $ (-6 -4457))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4457)))) (-1777 (($ (-1 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-4203 (((-112) $ (-781)) 10)) (-4136 (((-1172) $) 22 (-2818 (|has| |#2| (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))))) (-1763 (((-654 |#1|) $) 64)) (-1732 (((-112) |#1| $) 65)) (-2937 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 40)) (-2798 (($ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 41)) (-4308 (((-654 |#1|) $) 94)) (-3336 (((-112) |#1| $) 93)) (-3966 (((-1133) $) 21 (-2818 (|has| |#2| (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))))) (-2915 ((|#2| $) 98 (|has| |#1| (-860)))) (-1549 (((-3 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) "failed") (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 52)) (-1942 (($ $ |#2|) 99 (|has| $ (-6 -4457)))) (-1785 (((-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 42)) (-2540 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 33 (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))))) 27 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-302 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) 26 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) 25 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) 24 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)))) (($ $ (-654 |#2|) (-654 |#2|)) 87 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-302 |#2|)) 85 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113)))) (($ $ (-654 (-302 |#2|))) 84 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))))) (-4017 (((-112) $ $) 14)) (-3398 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4456)) (|has| |#2| (-1113))))) (-4371 (((-654 |#2|) $) 92)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-2199 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-1662 (($) 50) (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) 49)) (-3975 (((-781) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 32 (|has| $ (-6 -4456))) (((-781) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| $ (-6 -4456)))) (((-781) |#2| $) 82 (-12 (|has| |#2| (-1113)) (|has| $ (-6 -4456)))) (((-781) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4456)))) (-3167 (($ $) 13)) (-1836 (((-546) $) 60 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-624 (-546))))) (-2956 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) 51)) (-2943 (((-872) $) 18 (-2818 (|has| |#2| (-623 (-872))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-623 (-872)))))) (-3284 (((-112) $ $) 23 (-2818 (|has| |#2| (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))))) (-1599 (($ (-654 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) 43)) (-3390 (((-112) (-1 (-112) (-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) $) 34 (|has| $ (-6 -4456))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 20 (-2818 (|has| |#2| (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-1207 |#1| |#2|) (-141) (-1113) (-1113)) (T -1207)) -((-3143 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1207 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1113)))) (-3778 (*1 *1) (-12 (-4 *1 (-1207 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113)))) (-3778 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3693 *3) (|:| -1908 *4)))) (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *1 (-1207 *3 *4)))) (-1777 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1207 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113))))) -(-13 (-620 |t#1| |t#2|) (-614 |t#1| |t#2|) (-10 -8 (-15 -3143 (|t#2| $ |t#1| |t#2|)) (-15 -3778 ($)) (-15 -3778 ($ (-654 (-2 (|:| -3693 |t#1|) (|:| -1908 |t#2|))))) (-15 -1777 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -3693 |#1|) (|:| -1908 |#2|))) . T) ((-102) -2818 (|has| |#2| (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))) ((-623 (-872)) -2818 (|has| |#2| (-1113)) (|has| |#2| (-623 (-872))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-623 (-872)))) ((-152 #0#) . T) ((-624 (-546)) |has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-624 (-546))) ((-231 #0#) . T) ((-241 #0#) . T) ((-294 |#1| |#2|) . T) ((-296 |#1| |#2|) . T) ((-317 #0#) -12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))) ((-317 |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((-499 #0#) . T) ((-499 |#2|) . T) ((-614 |#1| |#2|) . T) ((-524 #0# #0#) -12 (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-317 (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)))) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))) ((-524 |#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1113))) ((-620 |#1| |#2|) . T) ((-1113) -2818 (|has| |#2| (-1113)) (|has| (-2 (|:| -3693 |#1|) (|:| -1908 |#2|)) (-1113))) ((-1231) . T)) -((-4361 (((-112)) 29)) (-4060 (((-1286) (-1172)) 31)) (-2968 (((-112)) 41)) (-2845 (((-1286)) 39)) (-1845 (((-1286) (-1172) (-1172)) 30)) (-2453 (((-112)) 42)) (-2798 (((-1286) |#1| |#2|) 53)) (-3059 (((-1286)) 26)) (-3166 (((-3 |#2| "failed") |#1|) 51)) (-3437 (((-1286)) 40))) -(((-1208 |#1| |#2|) (-10 -7 (-15 -3059 ((-1286))) (-15 -1845 ((-1286) (-1172) (-1172))) (-15 -4060 ((-1286) (-1172))) (-15 -2845 ((-1286))) (-15 -3437 ((-1286))) (-15 -4361 ((-112))) (-15 -2968 ((-112))) (-15 -2453 ((-112))) (-15 -3166 ((-3 |#2| "failed") |#1|)) (-15 -2798 ((-1286) |#1| |#2|))) (-1113) (-1113)) (T -1208)) -((-2798 (*1 *2 *3 *4) (-12 (-5 *2 (-1286)) (-5 *1 (-1208 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)))) (-3166 (*1 *2 *3) (|partial| -12 (-4 *2 (-1113)) (-5 *1 (-1208 *3 *2)) (-4 *3 (-1113)))) (-2453 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1208 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)))) (-2968 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1208 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)))) (-4361 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1208 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)))) (-3437 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-1208 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)))) (-2845 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-1208 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)))) (-4060 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1208 *4 *5)) (-4 *4 (-1113)) (-4 *5 (-1113)))) (-1845 (*1 *2 *3 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1208 *4 *5)) (-4 *4 (-1113)) (-4 *5 (-1113)))) (-3059 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-1208 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113))))) -(-10 -7 (-15 -3059 ((-1286))) (-15 -1845 ((-1286) (-1172) (-1172))) (-15 -4060 ((-1286) (-1172))) (-15 -2845 ((-1286))) (-15 -3437 ((-1286))) (-15 -4361 ((-112))) (-15 -2968 ((-112))) (-15 -2453 ((-112))) (-15 -3166 ((-3 |#2| "failed") |#1|)) (-15 -2798 ((-1286) |#1| |#2|))) -((-2252 (((-1172) (-1172)) 22)) (-4134 (((-52) (-1172)) 25))) -(((-1209) (-10 -7 (-15 -4134 ((-52) (-1172))) (-15 -2252 ((-1172) (-1172))))) (T -1209)) -((-2252 (*1 *2 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1209)))) (-4134 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-52)) (-5 *1 (-1209))))) -(-10 -7 (-15 -4134 ((-52) (-1172))) (-15 -2252 ((-1172) (-1172)))) -((-2943 (((-1211) |#1|) 11))) -(((-1210 |#1|) (-10 -7 (-15 -2943 ((-1211) |#1|))) (-1113)) (T -1210)) -((-2943 (*1 *2 *3) (-12 (-5 *2 (-1211)) (-5 *1 (-1210 *3)) (-4 *3 (-1113))))) -(-10 -7 (-15 -2943 ((-1211) |#1|))) -((-2849 (((-112) $ $) NIL)) (-3897 (((-654 (-1172)) $) 39)) (-1499 (((-654 (-1172)) $ (-654 (-1172))) 42)) (-4258 (((-654 (-1172)) $ (-654 (-1172))) 41)) (-2203 (((-654 (-1172)) $ (-654 (-1172))) 43)) (-3211 (((-654 (-1172)) $) 38)) (-3790 (($) 28)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2679 (((-654 (-1172)) $) 40)) (-1403 (((-1286) $ (-574)) 35) (((-1286) $) 36)) (-1836 (($ (-872) (-574)) 33) (($ (-872) (-574) (-872)) NIL)) (-2943 (((-872) $) 49) (($ (-872)) 32)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1211) (-13 (-1113) (-626 (-872)) (-10 -8 (-15 -1836 ($ (-872) (-574))) (-15 -1836 ($ (-872) (-574) (-872))) (-15 -1403 ((-1286) $ (-574))) (-15 -1403 ((-1286) $)) (-15 -2679 ((-654 (-1172)) $)) (-15 -3897 ((-654 (-1172)) $)) (-15 -3790 ($)) (-15 -3211 ((-654 (-1172)) $)) (-15 -2203 ((-654 (-1172)) $ (-654 (-1172)))) (-15 -1499 ((-654 (-1172)) $ (-654 (-1172)))) (-15 -4258 ((-654 (-1172)) $ (-654 (-1172))))))) (T -1211)) -((-1836 (*1 *1 *2 *3) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-1211)))) (-1836 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-1211)))) (-1403 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1286)) (-5 *1 (-1211)))) (-1403 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-1211)))) (-2679 (*1 *2 *1) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1211)))) (-3897 (*1 *2 *1) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1211)))) (-3790 (*1 *1) (-5 *1 (-1211))) (-3211 (*1 *2 *1) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1211)))) (-2203 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1211)))) (-1499 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1211)))) (-4258 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1211))))) -(-13 (-1113) (-626 (-872)) (-10 -8 (-15 -1836 ($ (-872) (-574))) (-15 -1836 ($ (-872) (-574) (-872))) (-15 -1403 ((-1286) $ (-574))) (-15 -1403 ((-1286) $)) (-15 -2679 ((-654 (-1172)) $)) (-15 -3897 ((-654 (-1172)) $)) (-15 -3790 ($)) (-15 -3211 ((-654 (-1172)) $)) (-15 -2203 ((-654 (-1172)) $ (-654 (-1172)))) (-15 -1499 ((-654 (-1172)) $ (-654 (-1172)))) (-15 -4258 ((-654 (-1172)) $ (-654 (-1172)))))) -((-2849 (((-112) $ $) NIL)) (-1471 (((-1172) $ (-1172)) 17) (((-1172) $) 16)) (-3203 (((-1172) $ (-1172)) 15)) (-2263 (($ $ (-1172)) NIL)) (-1592 (((-3 (-1172) "failed") $) 11)) (-3687 (((-1172) $) 8)) (-4206 (((-3 (-1172) "failed") $) 12)) (-3259 (((-1172) $) 9)) (-1675 (($ (-398)) NIL) (($ (-398) (-1172)) NIL)) (-2032 (((-398) $) NIL)) (-4136 (((-1172) $) NIL)) (-3766 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2181 (((-112) $) 21)) (-2943 (((-872) $) NIL)) (-3646 (($ $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1212) (-13 (-373 (-398) (-1172)) (-10 -8 (-15 -1471 ((-1172) $ (-1172))) (-15 -1471 ((-1172) $)) (-15 -3687 ((-1172) $)) (-15 -1592 ((-3 (-1172) "failed") $)) (-15 -4206 ((-3 (-1172) "failed") $)) (-15 -2181 ((-112) $))))) (T -1212)) -((-1471 (*1 *2 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1212)))) (-1471 (*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-1212)))) (-3687 (*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-1212)))) (-1592 (*1 *2 *1) (|partial| -12 (-5 *2 (-1172)) (-5 *1 (-1212)))) (-4206 (*1 *2 *1) (|partial| -12 (-5 *2 (-1172)) (-5 *1 (-1212)))) (-2181 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1212))))) -(-13 (-373 (-398) (-1172)) (-10 -8 (-15 -1471 ((-1172) $ (-1172))) (-15 -1471 ((-1172) $)) (-15 -3687 ((-1172) $)) (-15 -1592 ((-3 (-1172) "failed") $)) (-15 -4206 ((-3 (-1172) "failed") $)) (-15 -2181 ((-112) $)))) -((-2846 (((-3 (-574) "failed") |#1|) 19)) (-1678 (((-3 (-574) "failed") |#1|) 14)) (-4216 (((-574) (-1172)) 33))) -(((-1213 |#1|) (-10 -7 (-15 -2846 ((-3 (-574) "failed") |#1|)) (-15 -1678 ((-3 (-574) "failed") |#1|)) (-15 -4216 ((-574) (-1172)))) (-1062)) (T -1213)) -((-4216 (*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-574)) (-5 *1 (-1213 *4)) (-4 *4 (-1062)))) (-1678 (*1 *2 *3) (|partial| -12 (-5 *2 (-574)) (-5 *1 (-1213 *3)) (-4 *3 (-1062)))) (-2846 (*1 *2 *3) (|partial| -12 (-5 *2 (-574)) (-5 *1 (-1213 *3)) (-4 *3 (-1062))))) -(-10 -7 (-15 -2846 ((-3 (-574) "failed") |#1|)) (-15 -1678 ((-3 (-574) "failed") |#1|)) (-15 -4216 ((-574) (-1172)))) -((-1555 (((-1146 (-227))) 9))) -(((-1214) (-10 -7 (-15 -1555 ((-1146 (-227)))))) (T -1214)) -((-1555 (*1 *2) (-12 (-5 *2 (-1146 (-227))) (-5 *1 (-1214))))) -(-10 -7 (-15 -1555 ((-1146 (-227))))) -((-3000 (($) 12)) (-2441 (($ $) 36)) (-2414 (($ $) 34)) (-2287 (($ $) 26)) (-2465 (($ $) 18)) (-2521 (($ $) 16)) (-2452 (($ $) 20)) (-2315 (($ $) 31)) (-2428 (($ $) 35)) (-2297 (($ $) 30))) -(((-1215 |#1|) (-10 -8 (-15 -3000 (|#1|)) (-15 -2441 (|#1| |#1|)) (-15 -2414 (|#1| |#1|)) (-15 -2465 (|#1| |#1|)) (-15 -2521 (|#1| |#1|)) (-15 -2452 (|#1| |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -2287 (|#1| |#1|)) (-15 -2315 (|#1| |#1|)) (-15 -2297 (|#1| |#1|))) (-1216)) (T -1215)) -NIL -(-10 -8 (-15 -3000 (|#1|)) (-15 -2441 (|#1| |#1|)) (-15 -2414 (|#1| |#1|)) (-15 -2465 (|#1| |#1|)) (-15 -2521 (|#1| |#1|)) (-15 -2452 (|#1| |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -2287 (|#1| |#1|)) (-15 -2315 (|#1| |#1|)) (-15 -2297 (|#1| |#1|))) -((-2364 (($ $) 26)) (-2247 (($ $) 11)) (-2343 (($ $) 27)) (-2227 (($ $) 10)) (-2389 (($ $) 28)) (-2267 (($ $) 9)) (-3000 (($) 16)) (-3119 (($ $) 19)) (-1609 (($ $) 18)) (-2402 (($ $) 29)) (-2275 (($ $) 8)) (-2375 (($ $) 30)) (-2256 (($ $) 7)) (-2352 (($ $) 31)) (-2237 (($ $) 6)) (-2441 (($ $) 20)) (-2305 (($ $) 32)) (-2414 (($ $) 21)) (-2287 (($ $) 33)) (-2465 (($ $) 22)) (-2325 (($ $) 34)) (-2521 (($ $) 23)) (-2334 (($ $) 35)) (-2452 (($ $) 24)) (-2315 (($ $) 36)) (-2428 (($ $) 25)) (-2297 (($ $) 37)) (** (($ $ $) 17))) -(((-1216) (-141)) (T -1216)) -((-3000 (*1 *1) (-4 *1 (-1216)))) -(-13 (-1219) (-95) (-503) (-35) (-292) (-10 -8 (-15 -3000 ($)))) -(((-35) . T) ((-95) . T) ((-292) . T) ((-503) . T) ((-1219) . T)) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3083 ((|#1| $) 19)) (-2575 (($ |#1| (-654 $)) 28) (($ (-654 |#1|)) 35) (($ |#1|) 30)) (-3034 (((-112) $ (-781)) 72)) (-3316 ((|#1| $ |#1|) 14 (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4457)))) (-2183 (($ $ (-654 $)) 13 (|has| $ (-6 -4457)))) (-3426 (($) NIL T CONST)) (-1864 (((-654 |#1|) $) 77 (|has| $ (-6 -4456)))) (-3820 (((-654 $) $) 64)) (-2278 (((-112) $ $) 50 (|has| |#1| (-1113)))) (-2742 (((-112) $ (-781)) 62)) (-1606 (((-654 |#1|) $) 78 (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 76 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2449 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 27)) (-4203 (((-112) $ (-781)) 60)) (-3507 (((-654 |#1|) $) 55)) (-3632 (((-112) $) 53)) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2540 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 107)) (-1584 (((-112) $) 9)) (-2672 (($) 10)) (-2199 ((|#1| $ "value") NIL)) (-3867 (((-574) $ $) 48)) (-2993 (((-654 $) $) 89)) (-1993 (((-112) $ $) 110)) (-3311 (((-654 $) $) 105)) (-1837 (($ $) 106)) (-2479 (((-112) $) 84)) (-3975 (((-781) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4456))) (((-781) |#1| $) 17 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3167 (($ $) 88)) (-2943 (((-872) $) 91 (|has| |#1| (-623 (-872))))) (-2321 (((-654 $) $) 12)) (-4418 (((-112) $ $) 39 (|has| |#1| (-1113)))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 37 (|has| |#1| (-1113)))) (-2863 (((-781) $) 58 (|has| $ (-6 -4456))))) -(((-1217 |#1|) (-13 (-1023 |#1|) (-10 -8 (-6 -4456) (-6 -4457) (-15 -2575 ($ |#1| (-654 $))) (-15 -2575 ($ (-654 |#1|))) (-15 -2575 ($ |#1|)) (-15 -2479 ((-112) $)) (-15 -1837 ($ $)) (-15 -3311 ((-654 $) $)) (-15 -1993 ((-112) $ $)) (-15 -2993 ((-654 $) $)))) (-1113)) (T -1217)) -((-2479 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1217 *3)) (-4 *3 (-1113)))) (-2575 (*1 *1 *2 *3) (-12 (-5 *3 (-654 (-1217 *2))) (-5 *1 (-1217 *2)) (-4 *2 (-1113)))) (-2575 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-1217 *3)))) (-2575 (*1 *1 *2) (-12 (-5 *1 (-1217 *2)) (-4 *2 (-1113)))) (-1837 (*1 *1 *1) (-12 (-5 *1 (-1217 *2)) (-4 *2 (-1113)))) (-3311 (*1 *2 *1) (-12 (-5 *2 (-654 (-1217 *3))) (-5 *1 (-1217 *3)) (-4 *3 (-1113)))) (-1993 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1217 *3)) (-4 *3 (-1113)))) (-2993 (*1 *2 *1) (-12 (-5 *2 (-654 (-1217 *3))) (-5 *1 (-1217 *3)) (-4 *3 (-1113))))) -(-13 (-1023 |#1|) (-10 -8 (-6 -4456) (-6 -4457) (-15 -2575 ($ |#1| (-654 $))) (-15 -2575 ($ (-654 |#1|))) (-15 -2575 ($ |#1|)) (-15 -2479 ((-112) $)) (-15 -1837 ($ $)) (-15 -3311 ((-654 $) $)) (-15 -1993 ((-112) $ $)) (-15 -2993 ((-654 $) $)))) -((-2247 (($ $) 15)) (-2267 (($ $) 12)) (-2275 (($ $) 10)) (-2256 (($ $) 17))) -(((-1218 |#1|) (-10 -8 (-15 -2256 (|#1| |#1|)) (-15 -2275 (|#1| |#1|)) (-15 -2267 (|#1| |#1|)) (-15 -2247 (|#1| |#1|))) (-1219)) (T -1218)) -NIL -(-10 -8 (-15 -2256 (|#1| |#1|)) (-15 -2275 (|#1| |#1|)) (-15 -2267 (|#1| |#1|)) (-15 -2247 (|#1| |#1|))) -((-2247 (($ $) 11)) (-2227 (($ $) 10)) (-2267 (($ $) 9)) (-2275 (($ $) 8)) (-2256 (($ $) 7)) (-2237 (($ $) 6))) -(((-1219) (-141)) (T -1219)) -((-2247 (*1 *1 *1) (-4 *1 (-1219))) (-2227 (*1 *1 *1) (-4 *1 (-1219))) (-2267 (*1 *1 *1) (-4 *1 (-1219))) (-2275 (*1 *1 *1) (-4 *1 (-1219))) (-2256 (*1 *1 *1) (-4 *1 (-1219))) (-2237 (*1 *1 *1) (-4 *1 (-1219)))) -(-13 (-10 -8 (-15 -2237 ($ $)) (-15 -2256 ($ $)) (-15 -2275 ($ $)) (-15 -2267 ($ $)) (-15 -2227 ($ $)) (-15 -2247 ($ $)))) -((-4210 ((|#2| |#2|) 98)) (-3931 (((-112) |#2|) 29)) (-4239 ((|#2| |#2|) 33)) (-4249 ((|#2| |#2|) 35)) (-4125 ((|#2| |#2| (-1190)) 92) ((|#2| |#2|) 93)) (-1593 (((-171 |#2|) |#2|) 31)) (-1979 ((|#2| |#2| (-1190)) 94) ((|#2| |#2|) 95))) -(((-1220 |#1| |#2|) (-10 -7 (-15 -4125 (|#2| |#2|)) (-15 -4125 (|#2| |#2| (-1190))) (-15 -1979 (|#2| |#2|)) (-15 -1979 (|#2| |#2| (-1190))) (-15 -4210 (|#2| |#2|)) (-15 -4239 (|#2| |#2|)) (-15 -4249 (|#2| |#2|)) (-15 -3931 ((-112) |#2|)) (-15 -1593 ((-171 |#2|) |#2|))) (-13 (-462) (-1051 (-574)) (-649 (-574))) (-13 (-27) (-1216) (-440 |#1|))) (T -1220)) -((-1593 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-171 *3)) (-5 *1 (-1220 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *4))))) (-3931 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-112)) (-5 *1 (-1220 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *4))))) (-4249 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *3))))) (-4239 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *3))))) (-4210 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *3))))) (-1979 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-1220 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *4))))) (-1979 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *3))))) (-4125 (*1 *2 *2 *3) (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-1220 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *4))))) (-4125 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *3)))))) -(-10 -7 (-15 -4125 (|#2| |#2|)) (-15 -4125 (|#2| |#2| (-1190))) (-15 -1979 (|#2| |#2|)) (-15 -1979 (|#2| |#2| (-1190))) (-15 -4210 (|#2| |#2|)) (-15 -4239 (|#2| |#2|)) (-15 -4249 (|#2| |#2|)) (-15 -3931 ((-112) |#2|)) (-15 -1593 ((-171 |#2|) |#2|))) -((-1642 ((|#4| |#4| |#1|) 31)) (-2450 ((|#4| |#4| |#1|) 32))) -(((-1221 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1642 (|#4| |#4| |#1|)) (-15 -2450 (|#4| |#4| |#1|))) (-566) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|)) (T -1221)) -((-2450 (*1 *2 *2 *3) (-12 (-4 *3 (-566)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-1221 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-1642 (*1 *2 *2 *3) (-12 (-4 *3 (-566)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-1221 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) -(-10 -7 (-15 -1642 (|#4| |#4| |#1|)) (-15 -2450 (|#4| |#4| |#1|))) -((-4386 ((|#2| |#2|) 148)) (-4126 ((|#2| |#2|) 145)) (-2669 ((|#2| |#2|) 136)) (-2665 ((|#2| |#2|) 133)) (-2124 ((|#2| |#2|) 141)) (-3156 ((|#2| |#2|) 129)) (-2919 ((|#2| |#2|) 44)) (-3994 ((|#2| |#2|) 105)) (-1350 ((|#2| |#2|) 88)) (-1425 ((|#2| |#2|) 143)) (-1654 ((|#2| |#2|) 131)) (-4291 ((|#2| |#2|) 153)) (-1510 ((|#2| |#2|) 151)) (-3759 ((|#2| |#2|) 152)) (-3804 ((|#2| |#2|) 150)) (-2060 ((|#2| |#2|) 163)) (-3333 ((|#2| |#2|) 30 (-12 (|has| |#2| (-624 (-903 |#1|))) (|has| |#2| (-897 |#1|)) (|has| |#1| (-624 (-903 |#1|))) (|has| |#1| (-897 |#1|))))) (-3324 ((|#2| |#2|) 89)) (-3008 ((|#2| |#2|) 154)) (-2128 ((|#2| |#2|) 155)) (-2300 ((|#2| |#2|) 142)) (-3447 ((|#2| |#2|) 130)) (-1738 ((|#2| |#2|) 149)) (-2462 ((|#2| |#2|) 147)) (-2178 ((|#2| |#2|) 137)) (-3929 ((|#2| |#2|) 135)) (-3320 ((|#2| |#2|) 139)) (-3803 ((|#2| |#2|) 127))) -(((-1222 |#1| |#2|) (-10 -7 (-15 -2128 (|#2| |#2|)) (-15 -1350 (|#2| |#2|)) (-15 -2060 (|#2| |#2|)) (-15 -3994 (|#2| |#2|)) (-15 -2919 (|#2| |#2|)) (-15 -3324 (|#2| |#2|)) (-15 -3008 (|#2| |#2|)) (-15 -3803 (|#2| |#2|)) (-15 -3320 (|#2| |#2|)) (-15 -2178 (|#2| |#2|)) (-15 -1738 (|#2| |#2|)) (-15 -3447 (|#2| |#2|)) (-15 -2300 (|#2| |#2|)) (-15 -1654 (|#2| |#2|)) (-15 -1425 (|#2| |#2|)) (-15 -3156 (|#2| |#2|)) (-15 -2124 (|#2| |#2|)) (-15 -2669 (|#2| |#2|)) (-15 -4386 (|#2| |#2|)) (-15 -2665 (|#2| |#2|)) (-15 -4126 (|#2| |#2|)) (-15 -3929 (|#2| |#2|)) (-15 -2462 (|#2| |#2|)) (-15 -3804 (|#2| |#2|)) (-15 -1510 (|#2| |#2|)) (-15 -3759 (|#2| |#2|)) (-15 -4291 (|#2| |#2|)) (IF (|has| |#1| (-897 |#1|)) (IF (|has| |#1| (-624 (-903 |#1|))) (IF (|has| |#2| (-624 (-903 |#1|))) (IF (|has| |#2| (-897 |#1|)) (-15 -3333 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-462) (-13 (-440 |#1|) (-1216))) (T -1222)) -((-3333 (*1 *2 *2) (-12 (-4 *3 (-624 (-903 *3))) (-4 *3 (-897 *3)) (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-624 (-903 *3))) (-4 *2 (-897 *3)) (-4 *2 (-13 (-440 *3) (-1216))))) (-4291 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-3759 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-1510 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-3804 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-2462 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-3929 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-4126 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-2665 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-4386 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-2669 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-2124 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-3156 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-1425 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-1654 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-2300 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-3447 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-1738 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-2178 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-3320 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-3803 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-3008 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-3324 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-2919 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-3994 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-2060 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-1350 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216))))) (-2128 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-440 *3) (-1216)))))) -(-10 -7 (-15 -2128 (|#2| |#2|)) (-15 -1350 (|#2| |#2|)) (-15 -2060 (|#2| |#2|)) (-15 -3994 (|#2| |#2|)) (-15 -2919 (|#2| |#2|)) (-15 -3324 (|#2| |#2|)) (-15 -3008 (|#2| |#2|)) (-15 -3803 (|#2| |#2|)) (-15 -3320 (|#2| |#2|)) (-15 -2178 (|#2| |#2|)) (-15 -1738 (|#2| |#2|)) (-15 -3447 (|#2| |#2|)) (-15 -2300 (|#2| |#2|)) (-15 -1654 (|#2| |#2|)) (-15 -1425 (|#2| |#2|)) (-15 -3156 (|#2| |#2|)) (-15 -2124 (|#2| |#2|)) (-15 -2669 (|#2| |#2|)) (-15 -4386 (|#2| |#2|)) (-15 -2665 (|#2| |#2|)) (-15 -4126 (|#2| |#2|)) (-15 -3929 (|#2| |#2|)) (-15 -2462 (|#2| |#2|)) (-15 -3804 (|#2| |#2|)) (-15 -1510 (|#2| |#2|)) (-15 -3759 (|#2| |#2|)) (-15 -4291 (|#2| |#2|)) (IF (|has| |#1| (-897 |#1|)) (IF (|has| |#1| (-624 (-903 |#1|))) (IF (|has| |#2| (-624 (-903 |#1|))) (IF (|has| |#2| (-897 |#1|)) (-15 -3333 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-1751 (((-112) |#5| $) 68) (((-112) $) 110)) (-3207 ((|#5| |#5| $) 83)) (-2165 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-3908 (((-654 |#5|) (-654 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-1696 (((-3 $ "failed") (-654 |#5|)) 135)) (-2926 (((-3 $ "failed") $) 120)) (-1402 ((|#5| |#5| $) 102)) (-1315 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-1747 ((|#5| |#5| $) 106)) (-2868 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-4270 (((-2 (|:| -1381 (-654 |#5|)) (|:| -1675 (-654 |#5|))) $) 63)) (-4436 (((-112) |#5| $) 66) (((-112) $) 111)) (-3830 ((|#4| $) 116)) (-3360 (((-3 |#5| "failed") $) 118)) (-4417 (((-654 |#5|) $) 55)) (-4292 (((-112) |#5| $) 75) (((-112) $) 115)) (-3023 ((|#5| |#5| $) 89)) (-2119 (((-112) $ $) 29)) (-2682 (((-112) |#5| $) 71) (((-112) $) 113)) (-3206 ((|#5| |#5| $) 86)) (-2915 (((-3 |#5| "failed") $) 117)) (-2533 (($ $ |#5|) 136)) (-4202 (((-781) $) 60)) (-2956 (($ (-654 |#5|)) 133)) (-3650 (($ $ |#4|) 131)) (-3722 (($ $ |#4|) 129)) (-4429 (($ $) 128)) (-2943 (((-872) $) NIL) (((-654 |#5|) $) 121)) (-4435 (((-781) $) 140)) (-3416 (((-3 (-2 (|:| |bas| $) (|:| -2002 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -2002 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-2582 (((-112) $ (-1 (-112) |#5| (-654 |#5|))) 108)) (-2720 (((-654 |#4|) $) 123)) (-3587 (((-112) |#4| $) 126)) (-2981 (((-112) $ $) 20))) -(((-1223 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4435 ((-781) |#1|)) (-15 -2533 (|#1| |#1| |#5|)) (-15 -2165 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3587 ((-112) |#4| |#1|)) (-15 -2720 ((-654 |#4|) |#1|)) (-15 -2926 ((-3 |#1| "failed") |#1|)) (-15 -3360 ((-3 |#5| "failed") |#1|)) (-15 -2915 ((-3 |#5| "failed") |#1|)) (-15 -1747 (|#5| |#5| |#1|)) (-15 -4429 (|#1| |#1|)) (-15 -1402 (|#5| |#5| |#1|)) (-15 -3023 (|#5| |#5| |#1|)) (-15 -3206 (|#5| |#5| |#1|)) (-15 -3207 (|#5| |#5| |#1|)) (-15 -3908 ((-654 |#5|) (-654 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2868 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4292 ((-112) |#1|)) (-15 -2682 ((-112) |#1|)) (-15 -1751 ((-112) |#1|)) (-15 -2582 ((-112) |#1| (-1 (-112) |#5| (-654 |#5|)))) (-15 -4292 ((-112) |#5| |#1|)) (-15 -2682 ((-112) |#5| |#1|)) (-15 -1751 ((-112) |#5| |#1|)) (-15 -1315 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4436 ((-112) |#1|)) (-15 -4436 ((-112) |#5| |#1|)) (-15 -4270 ((-2 (|:| -1381 (-654 |#5|)) (|:| -1675 (-654 |#5|))) |#1|)) (-15 -4202 ((-781) |#1|)) (-15 -4417 ((-654 |#5|) |#1|)) (-15 -3416 ((-3 (-2 (|:| |bas| |#1|) (|:| -2002 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3416 ((-3 (-2 (|:| |bas| |#1|) (|:| -2002 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2119 ((-112) |#1| |#1|)) (-15 -3650 (|#1| |#1| |#4|)) (-15 -3722 (|#1| |#1| |#4|)) (-15 -3830 (|#4| |#1|)) (-15 -1696 ((-3 |#1| "failed") (-654 |#5|))) (-15 -2943 ((-654 |#5|) |#1|)) (-15 -2956 (|#1| (-654 |#5|))) (-15 -2868 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2868 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2165 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2868 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2943 ((-872) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) (-1224 |#2| |#3| |#4| |#5|) (-566) (-803) (-860) (-1078 |#2| |#3| |#4|)) (T -1223)) -NIL -(-10 -8 (-15 -4435 ((-781) |#1|)) (-15 -2533 (|#1| |#1| |#5|)) (-15 -2165 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3587 ((-112) |#4| |#1|)) (-15 -2720 ((-654 |#4|) |#1|)) (-15 -2926 ((-3 |#1| "failed") |#1|)) (-15 -3360 ((-3 |#5| "failed") |#1|)) (-15 -2915 ((-3 |#5| "failed") |#1|)) (-15 -1747 (|#5| |#5| |#1|)) (-15 -4429 (|#1| |#1|)) (-15 -1402 (|#5| |#5| |#1|)) (-15 -3023 (|#5| |#5| |#1|)) (-15 -3206 (|#5| |#5| |#1|)) (-15 -3207 (|#5| |#5| |#1|)) (-15 -3908 ((-654 |#5|) (-654 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2868 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4292 ((-112) |#1|)) (-15 -2682 ((-112) |#1|)) (-15 -1751 ((-112) |#1|)) (-15 -2582 ((-112) |#1| (-1 (-112) |#5| (-654 |#5|)))) (-15 -4292 ((-112) |#5| |#1|)) (-15 -2682 ((-112) |#5| |#1|)) (-15 -1751 ((-112) |#5| |#1|)) (-15 -1315 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4436 ((-112) |#1|)) (-15 -4436 ((-112) |#5| |#1|)) (-15 -4270 ((-2 (|:| -1381 (-654 |#5|)) (|:| -1675 (-654 |#5|))) |#1|)) (-15 -4202 ((-781) |#1|)) (-15 -4417 ((-654 |#5|) |#1|)) (-15 -3416 ((-3 (-2 (|:| |bas| |#1|) (|:| -2002 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3416 ((-3 (-2 (|:| |bas| |#1|) (|:| -2002 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2119 ((-112) |#1| |#1|)) (-15 -3650 (|#1| |#1| |#4|)) (-15 -3722 (|#1| |#1| |#4|)) (-15 -3830 (|#4| |#1|)) (-15 -1696 ((-3 |#1| "failed") (-654 |#5|))) (-15 -2943 ((-654 |#5|) |#1|)) (-15 -2956 (|#1| (-654 |#5|))) (-15 -2868 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2868 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2165 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2868 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2943 ((-872) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) -((-2849 (((-112) $ $) 7)) (-2410 (((-654 (-2 (|:| -1381 $) (|:| -1675 (-654 |#4|)))) (-654 |#4|)) 86)) (-3954 (((-654 $) (-654 |#4|)) 87)) (-4355 (((-654 |#3|) $) 34)) (-2907 (((-112) $) 27)) (-4018 (((-112) $) 18 (|has| |#1| (-566)))) (-1751 (((-112) |#4| $) 102) (((-112) $) 98)) (-3207 ((|#4| |#4| $) 93)) (-2771 (((-2 (|:| |under| $) (|:| -3595 $) (|:| |upper| $)) $ |#3|) 28)) (-3034 (((-112) $ (-781)) 45)) (-2165 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4456))) (((-3 |#4| "failed") $ |#3|) 80)) (-3426 (($) 46 T CONST)) (-4336 (((-112) $) 23 (|has| |#1| (-566)))) (-1547 (((-112) $ $) 25 (|has| |#1| (-566)))) (-2318 (((-112) $ $) 24 (|has| |#1| (-566)))) (-1792 (((-112) $) 26 (|has| |#1| (-566)))) (-3908 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3025 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-1974 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1696 (((-3 $ "failed") (-654 |#4|)) 37)) (-2206 (($ (-654 |#4|)) 36)) (-2926 (((-3 $ "failed") $) 83)) (-1402 ((|#4| |#4| $) 90)) (-1543 (($ $) 69 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ |#4| $) 68 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4456)))) (-2766 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-1315 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1747 ((|#4| |#4| $) 88)) (-2868 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4456))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4456))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4270 (((-2 (|:| -1381 (-654 |#4|)) (|:| -1675 (-654 |#4|))) $) 106)) (-1864 (((-654 |#4|) $) 53 (|has| $ (-6 -4456)))) (-4436 (((-112) |#4| $) 105) (((-112) $) 104)) (-3830 ((|#3| $) 35)) (-2742 (((-112) $ (-781)) 44)) (-1606 (((-654 |#4|) $) 54 (|has| $ (-6 -4456)))) (-1710 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456))))) (-2449 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#4| |#4|) $) 48)) (-3963 (((-654 |#3|) $) 33)) (-4158 (((-112) |#3| $) 32)) (-4203 (((-112) $ (-781)) 43)) (-4136 (((-1172) $) 10)) (-3360 (((-3 |#4| "failed") $) 84)) (-4417 (((-654 |#4|) $) 108)) (-4292 (((-112) |#4| $) 100) (((-112) $) 96)) (-3023 ((|#4| |#4| $) 91)) (-2119 (((-112) $ $) 111)) (-2396 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-2682 (((-112) |#4| $) 101) (((-112) $) 97)) (-3206 ((|#4| |#4| $) 92)) (-3966 (((-1133) $) 11)) (-2915 (((-3 |#4| "failed") $) 85)) (-1549 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3040 (((-3 $ "failed") $ |#4|) 79)) (-2533 (($ $ |#4|) 78)) (-2540 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))) (-4017 (((-112) $ $) 39)) (-1584 (((-112) $) 42)) (-2672 (($) 41)) (-4202 (((-781) $) 107)) (-3975 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1113)) (|has| $ (-6 -4456)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4456)))) (-3167 (($ $) 40)) (-1836 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2956 (($ (-654 |#4|)) 61)) (-3650 (($ $ |#3|) 29)) (-3722 (($ $ |#3|) 31)) (-4429 (($ $) 89)) (-2096 (($ $ |#3|) 30)) (-2943 (((-872) $) 12) (((-654 |#4|) $) 38)) (-4435 (((-781) $) 77 (|has| |#3| (-377)))) (-3284 (((-112) $ $) 9)) (-3416 (((-3 (-2 (|:| |bas| $) (|:| -2002 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2002 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2582 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) 99)) (-3390 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4456)))) (-2720 (((-654 |#3|) $) 82)) (-3587 (((-112) |#3| $) 81)) (-2981 (((-112) $ $) 6)) (-2863 (((-781) $) 47 (|has| $ (-6 -4456))))) -(((-1224 |#1| |#2| |#3| |#4|) (-141) (-566) (-803) (-860) (-1078 |t#1| |t#2| |t#3|)) (T -1224)) -((-2119 (*1 *2 *1 *1) (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-112)))) (-3416 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2002 (-654 *8)))) (-5 *3 (-654 *8)) (-4 *1 (-1224 *5 *6 *7 *8)))) (-3416 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1078 *6 *7 *8)) (-4 *6 (-566)) (-4 *7 (-803)) (-4 *8 (-860)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2002 (-654 *9)))) (-5 *3 (-654 *9)) (-4 *1 (-1224 *6 *7 *8 *9)))) (-4417 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-654 *6)))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-781)))) (-4270 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-2 (|:| -1381 (-654 *6)) (|:| -1675 (-654 *6)))))) (-4436 (*1 *2 *3 *1) (-12 (-4 *1 (-1224 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112)))) (-4436 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-112)))) (-1315 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1224 *5 *6 *7 *3)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-112)))) (-1751 (*1 *2 *3 *1) (-12 (-4 *1 (-1224 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112)))) (-2682 (*1 *2 *3 *1) (-12 (-4 *1 (-1224 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112)))) (-4292 (*1 *2 *3 *1) (-12 (-4 *1 (-1224 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112)))) (-2582 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-654 *7))) (-4 *1 (-1224 *4 *5 *6 *7)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)))) (-1751 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-112)))) (-2682 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-112)))) (-4292 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-112)))) (-2868 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1224 *5 *6 *7 *2)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *2 (-1078 *5 *6 *7)))) (-3908 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-654 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1224 *5 *6 *7 *8)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1078 *5 *6 *7)))) (-3207 (*1 *2 *2 *1) (-12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5)))) (-3206 (*1 *2 *2 *1) (-12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5)))) (-3023 (*1 *2 *2 *1) (-12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5)))) (-1402 (*1 *2 *2 *1) (-12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5)))) (-4429 (*1 *1 *1) (-12 (-4 *1 (-1224 *2 *3 *4 *5)) (-4 *2 (-566)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-1078 *2 *3 *4)))) (-1747 (*1 *2 *2 *1) (-12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5)))) (-3954 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1224 *4 *5 *6 *7)))) (-2410 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-654 (-2 (|:| -1381 *1) (|:| -1675 (-654 *7))))) (-5 *3 (-654 *7)) (-4 *1 (-1224 *4 *5 *6 *7)))) (-2915 (*1 *2 *1) (|partial| -12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5)))) (-3360 (*1 *2 *1) (|partial| -12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5)))) (-2926 (*1 *1 *1) (|partial| -12 (-4 *1 (-1224 *2 *3 *4 *5)) (-4 *2 (-566)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-1078 *2 *3 *4)))) (-2720 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-654 *5)))) (-3587 (*1 *2 *3 *1) (-12 (-4 *1 (-1224 *4 *5 *3 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *3 (-860)) (-4 *6 (-1078 *4 *5 *3)) (-5 *2 (-112)))) (-2165 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1224 *4 *5 *3 *2)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *3 (-860)) (-4 *2 (-1078 *4 *5 *3)))) (-3040 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5)))) (-2533 (*1 *1 *1 *2) (-12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5)))) (-4435 (*1 *2 *1) (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-4 *5 (-377)) (-5 *2 (-781))))) -(-13 (-989 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4456) (-6 -4457) (-15 -2119 ((-112) $ $)) (-15 -3416 ((-3 (-2 (|:| |bas| $) (|:| -2002 (-654 |t#4|))) "failed") (-654 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3416 ((-3 (-2 (|:| |bas| $) (|:| -2002 (-654 |t#4|))) "failed") (-654 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4417 ((-654 |t#4|) $)) (-15 -4202 ((-781) $)) (-15 -4270 ((-2 (|:| -1381 (-654 |t#4|)) (|:| -1675 (-654 |t#4|))) $)) (-15 -4436 ((-112) |t#4| $)) (-15 -4436 ((-112) $)) (-15 -1315 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -1751 ((-112) |t#4| $)) (-15 -2682 ((-112) |t#4| $)) (-15 -4292 ((-112) |t#4| $)) (-15 -2582 ((-112) $ (-1 (-112) |t#4| (-654 |t#4|)))) (-15 -1751 ((-112) $)) (-15 -2682 ((-112) $)) (-15 -4292 ((-112) $)) (-15 -2868 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3908 ((-654 |t#4|) (-654 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3207 (|t#4| |t#4| $)) (-15 -3206 (|t#4| |t#4| $)) (-15 -3023 (|t#4| |t#4| $)) (-15 -1402 (|t#4| |t#4| $)) (-15 -4429 ($ $)) (-15 -1747 (|t#4| |t#4| $)) (-15 -3954 ((-654 $) (-654 |t#4|))) (-15 -2410 ((-654 (-2 (|:| -1381 $) (|:| -1675 (-654 |t#4|)))) (-654 |t#4|))) (-15 -2915 ((-3 |t#4| "failed") $)) (-15 -3360 ((-3 |t#4| "failed") $)) (-15 -2926 ((-3 $ "failed") $)) (-15 -2720 ((-654 |t#3|) $)) (-15 -3587 ((-112) |t#3| $)) (-15 -2165 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3040 ((-3 $ "failed") $ |t#4|)) (-15 -2533 ($ $ |t#4|)) (IF (|has| |t#3| (-377)) (-15 -4435 ((-781) $)) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))) ((-989 |#1| |#2| |#3| |#4|) . T) ((-1113) . T) ((-1231) . T)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-4355 (((-654 (-1190)) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-1575 (($ $) NIL (|has| |#1| (-566)))) (-2085 (((-112) $) NIL (|has| |#1| (-566)))) (-2364 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3524 (((-3 $ "failed") $ $) NIL)) (-4229 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2343 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2389 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3426 (($) NIL T CONST)) (-1392 (($ $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-4053 (((-963 |#1|) $ (-781)) 17) (((-963 |#1|) $ (-781) (-781)) NIL)) (-2892 (((-112) $) NIL)) (-3000 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3884 (((-781) $ (-1190)) NIL) (((-781) $ (-1190) (-781)) NIL)) (-3199 (((-112) $) NIL)) (-3460 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3869 (((-112) $) NIL)) (-4335 (($ $ (-654 (-1190)) (-654 (-541 (-1190)))) NIL) (($ $ (-1190) (-541 (-1190))) NIL) (($ |#1| (-541 (-1190))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL)) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-3119 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-4136 (((-1172) $) NIL)) (-2379 (($ $ (-1190)) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190) |#1|) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3966 (((-1133) $) NIL)) (-3280 (($ (-1 $) (-1190) |#1|) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2533 (($ $ (-781)) NIL)) (-2838 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-1609 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2646 (($ $ (-1190) $) NIL) (($ $ (-654 (-1190)) (-654 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL)) (-3905 (($ $ (-1190)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL)) (-4202 (((-541 (-1190)) $) NIL)) (-2402 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2256 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2352 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1651 (($ $) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-566))) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-1190)) NIL) (($ (-963 |#1|)) NIL)) (-3087 ((|#1| $ (-541 (-1190))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL) (((-963 |#1|) $ (-781)) NIL)) (-3298 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-2441 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2069 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2414 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2521 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2452 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-3610 (($ $ (-1190)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL)) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1225 |#1|) (-13 (-750 |#1| (-1190)) (-10 -8 (-15 -3087 ((-963 |#1|) $ (-781))) (-15 -2943 ($ (-1190))) (-15 -2943 ($ (-963 |#1|))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -2379 ($ $ (-1190) |#1|)) (-15 -3280 ($ (-1 $) (-1190) |#1|))) |%noBranch|))) (-1062)) (T -1225)) -((-3087 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-963 *4)) (-5 *1 (-1225 *4)) (-4 *4 (-1062)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-1225 *3)) (-4 *3 (-1062)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-963 *3)) (-4 *3 (-1062)) (-5 *1 (-1225 *3)))) (-2379 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *1 (-1225 *3)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)))) (-3280 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1225 *4))) (-5 *3 (-1190)) (-5 *1 (-1225 *4)) (-4 *4 (-38 (-417 (-574)))) (-4 *4 (-1062))))) -(-13 (-750 |#1| (-1190)) (-10 -8 (-15 -3087 ((-963 |#1|) $ (-781))) (-15 -2943 ($ (-1190))) (-15 -2943 ($ (-963 |#1|))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -2379 ($ $ (-1190) |#1|)) (-15 -3280 ($ (-1 $) (-1190) |#1|))) |%noBranch|))) -((-4420 (($ |#1| (-654 (-654 (-954 (-227)))) (-112)) 19)) (-2651 (((-112) $ (-112)) 18)) (-3637 (((-112) $) 17)) (-1481 (((-654 (-654 (-954 (-227)))) $) 13)) (-4228 ((|#1| $) 8)) (-3205 (((-112) $) 15))) -(((-1226 |#1|) (-10 -8 (-15 -4228 (|#1| $)) (-15 -1481 ((-654 (-654 (-954 (-227)))) $)) (-15 -3205 ((-112) $)) (-15 -3637 ((-112) $)) (-15 -2651 ((-112) $ (-112))) (-15 -4420 ($ |#1| (-654 (-654 (-954 (-227)))) (-112)))) (-987)) (T -1226)) -((-4420 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-654 (-654 (-954 (-227))))) (-5 *4 (-112)) (-5 *1 (-1226 *2)) (-4 *2 (-987)))) (-2651 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-987)))) (-3637 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-987)))) (-3205 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-987)))) (-1481 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-954 (-227))))) (-5 *1 (-1226 *3)) (-4 *3 (-987)))) (-4228 (*1 *2 *1) (-12 (-5 *1 (-1226 *2)) (-4 *2 (-987))))) -(-10 -8 (-15 -4228 (|#1| $)) (-15 -1481 ((-654 (-654 (-954 (-227)))) $)) (-15 -3205 ((-112) $)) (-15 -3637 ((-112) $)) (-15 -2651 ((-112) $ (-112))) (-15 -4420 ($ |#1| (-654 (-654 (-954 (-227)))) (-112)))) -((-3745 (((-954 (-227)) (-954 (-227))) 31)) (-3591 (((-954 (-227)) (-227) (-227) (-227) (-227)) 10)) (-4036 (((-654 (-954 (-227))) (-954 (-227)) (-954 (-227)) (-954 (-227)) (-227) (-654 (-654 (-227)))) 56)) (-4236 (((-227) (-954 (-227)) (-954 (-227))) 27)) (-1585 (((-954 (-227)) (-954 (-227)) (-954 (-227))) 28)) (-3235 (((-654 (-654 (-227))) (-574)) 44)) (-3094 (((-954 (-227)) (-954 (-227)) (-954 (-227))) 26)) (-3079 (((-954 (-227)) (-954 (-227)) (-954 (-227))) 24)) (* (((-954 (-227)) (-227) (-954 (-227))) 22))) -(((-1227) (-10 -7 (-15 -3591 ((-954 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-954 (-227)) (-227) (-954 (-227)))) (-15 -3079 ((-954 (-227)) (-954 (-227)) (-954 (-227)))) (-15 -3094 ((-954 (-227)) (-954 (-227)) (-954 (-227)))) (-15 -4236 ((-227) (-954 (-227)) (-954 (-227)))) (-15 -1585 ((-954 (-227)) (-954 (-227)) (-954 (-227)))) (-15 -3745 ((-954 (-227)) (-954 (-227)))) (-15 -3235 ((-654 (-654 (-227))) (-574))) (-15 -4036 ((-654 (-954 (-227))) (-954 (-227)) (-954 (-227)) (-954 (-227)) (-227) (-654 (-654 (-227))))))) (T -1227)) -((-4036 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-654 (-654 (-227)))) (-5 *4 (-227)) (-5 *2 (-654 (-954 *4))) (-5 *1 (-1227)) (-5 *3 (-954 *4)))) (-3235 (*1 *2 *3) (-12 (-5 *3 (-574)) (-5 *2 (-654 (-654 (-227)))) (-5 *1 (-1227)))) (-3745 (*1 *2 *2) (-12 (-5 *2 (-954 (-227))) (-5 *1 (-1227)))) (-1585 (*1 *2 *2 *2) (-12 (-5 *2 (-954 (-227))) (-5 *1 (-1227)))) (-4236 (*1 *2 *3 *3) (-12 (-5 *3 (-954 (-227))) (-5 *2 (-227)) (-5 *1 (-1227)))) (-3094 (*1 *2 *2 *2) (-12 (-5 *2 (-954 (-227))) (-5 *1 (-1227)))) (-3079 (*1 *2 *2 *2) (-12 (-5 *2 (-954 (-227))) (-5 *1 (-1227)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-954 (-227))) (-5 *3 (-227)) (-5 *1 (-1227)))) (-3591 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-954 (-227))) (-5 *1 (-1227)) (-5 *3 (-227))))) -(-10 -7 (-15 -3591 ((-954 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-954 (-227)) (-227) (-954 (-227)))) (-15 -3079 ((-954 (-227)) (-954 (-227)) (-954 (-227)))) (-15 -3094 ((-954 (-227)) (-954 (-227)) (-954 (-227)))) (-15 -4236 ((-227) (-954 (-227)) (-954 (-227)))) (-15 -1585 ((-954 (-227)) (-954 (-227)) (-954 (-227)))) (-15 -3745 ((-954 (-227)) (-954 (-227)))) (-15 -3235 ((-654 (-654 (-227))) (-574))) (-15 -4036 ((-654 (-954 (-227))) (-954 (-227)) (-954 (-227)) (-954 (-227)) (-227) (-654 (-654 (-227)))))) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2165 ((|#1| $ (-781)) 18)) (-4135 (((-781) $) 13)) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2943 (((-969 |#1|) $) 12) (($ (-969 |#1|)) 11) (((-872) $) 29 (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2981 (((-112) $ $) 22 (|has| |#1| (-1113))))) -(((-1228 |#1|) (-13 (-500 (-969 |#1|)) (-10 -8 (-15 -2165 (|#1| $ (-781))) (-15 -4135 ((-781) $)) (IF (|has| |#1| (-623 (-872))) (-6 (-623 (-872))) |%noBranch|) (IF (|has| |#1| (-1113)) (-6 (-1113)) |%noBranch|))) (-1231)) (T -1228)) -((-2165 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-1228 *2)) (-4 *2 (-1231)))) (-4135 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1228 *3)) (-4 *3 (-1231))))) -(-13 (-500 (-969 |#1|)) (-10 -8 (-15 -2165 (|#1| $ (-781))) (-15 -4135 ((-781) $)) (IF (|has| |#1| (-623 (-872))) (-6 (-623 (-872))) |%noBranch|) (IF (|has| |#1| (-1113)) (-6 (-1113)) |%noBranch|))) -((-3187 (((-428 (-1186 (-1186 |#1|))) (-1186 (-1186 |#1|)) (-574)) 94)) (-2884 (((-428 (-1186 (-1186 |#1|))) (-1186 (-1186 |#1|))) 86)) (-4065 (((-428 (-1186 (-1186 |#1|))) (-1186 (-1186 |#1|))) 70))) -(((-1229 |#1|) (-10 -7 (-15 -2884 ((-428 (-1186 (-1186 |#1|))) (-1186 (-1186 |#1|)))) (-15 -4065 ((-428 (-1186 (-1186 |#1|))) (-1186 (-1186 |#1|)))) (-15 -3187 ((-428 (-1186 (-1186 |#1|))) (-1186 (-1186 |#1|)) (-574)))) (-358)) (T -1229)) -((-3187 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-4 *5 (-358)) (-5 *2 (-428 (-1186 (-1186 *5)))) (-5 *1 (-1229 *5)) (-5 *3 (-1186 (-1186 *5))))) (-4065 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-428 (-1186 (-1186 *4)))) (-5 *1 (-1229 *4)) (-5 *3 (-1186 (-1186 *4))))) (-2884 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-428 (-1186 (-1186 *4)))) (-5 *1 (-1229 *4)) (-5 *3 (-1186 (-1186 *4)))))) -(-10 -7 (-15 -2884 ((-428 (-1186 (-1186 |#1|))) (-1186 (-1186 |#1|)))) (-15 -4065 ((-428 (-1186 (-1186 |#1|))) (-1186 (-1186 |#1|)))) (-15 -3187 ((-428 (-1186 (-1186 |#1|))) (-1186 (-1186 |#1|)) (-574)))) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 9) (($ (-1195)) NIL) (((-1195) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1230) (-1096)) (T -1230)) -NIL -(-1096) -NIL -(((-1231) (-141)) (T -1231)) -NIL -(-13 (-10 -7 (-6 -3521))) -((-2081 (((-112)) 18)) (-1921 (((-1286) (-654 |#1|) (-654 |#1|)) 22) (((-1286) (-654 |#1|)) 23)) (-2742 (((-112) |#1| |#1|) 37 (|has| |#1| (-860)))) (-4203 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-2030 ((|#1| (-654 |#1|)) 38 (|has| |#1| (-860))) ((|#1| (-654 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-1572 (((-2 (|:| -2276 (-654 |#1|)) (|:| -2401 (-654 |#1|)))) 20))) -(((-1232 |#1|) (-10 -7 (-15 -1921 ((-1286) (-654 |#1|))) (-15 -1921 ((-1286) (-654 |#1|) (-654 |#1|))) (-15 -1572 ((-2 (|:| -2276 (-654 |#1|)) (|:| -2401 (-654 |#1|))))) (-15 -4203 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4203 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2030 (|#1| (-654 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2081 ((-112))) (IF (|has| |#1| (-860)) (PROGN (-15 -2030 (|#1| (-654 |#1|))) (-15 -2742 ((-112) |#1| |#1|))) |%noBranch|)) (-1113)) (T -1232)) -((-2742 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-860)) (-4 *3 (-1113)))) (-2030 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-1113)) (-4 *2 (-860)) (-5 *1 (-1232 *2)))) (-2081 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-1113)))) (-2030 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1232 *2)) (-4 *2 (-1113)))) (-4203 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1113)) (-5 *2 (-112)) (-5 *1 (-1232 *3)))) (-4203 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-1113)))) (-1572 (*1 *2) (-12 (-5 *2 (-2 (|:| -2276 (-654 *3)) (|:| -2401 (-654 *3)))) (-5 *1 (-1232 *3)) (-4 *3 (-1113)))) (-1921 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-1113)) (-5 *2 (-1286)) (-5 *1 (-1232 *4)))) (-1921 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-1113)) (-5 *2 (-1286)) (-5 *1 (-1232 *4))))) -(-10 -7 (-15 -1921 ((-1286) (-654 |#1|))) (-15 -1921 ((-1286) (-654 |#1|) (-654 |#1|))) (-15 -1572 ((-2 (|:| -2276 (-654 |#1|)) (|:| -2401 (-654 |#1|))))) (-15 -4203 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4203 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2030 (|#1| (-654 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2081 ((-112))) (IF (|has| |#1| (-860)) (PROGN (-15 -2030 (|#1| (-654 |#1|))) (-15 -2742 ((-112) |#1| |#1|))) |%noBranch|)) -((-3606 (((-1286) (-654 (-1190)) (-654 (-1190))) 14) (((-1286) (-654 (-1190))) 12)) (-2762 (((-1286)) 16)) (-2885 (((-2 (|:| -2401 (-654 (-1190))) (|:| -2276 (-654 (-1190))))) 20))) -(((-1233) (-10 -7 (-15 -3606 ((-1286) (-654 (-1190)))) (-15 -3606 ((-1286) (-654 (-1190)) (-654 (-1190)))) (-15 -2885 ((-2 (|:| -2401 (-654 (-1190))) (|:| -2276 (-654 (-1190)))))) (-15 -2762 ((-1286))))) (T -1233)) -((-2762 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-1233)))) (-2885 (*1 *2) (-12 (-5 *2 (-2 (|:| -2401 (-654 (-1190))) (|:| -2276 (-654 (-1190))))) (-5 *1 (-1233)))) (-3606 (*1 *2 *3 *3) (-12 (-5 *3 (-654 (-1190))) (-5 *2 (-1286)) (-5 *1 (-1233)))) (-3606 (*1 *2 *3) (-12 (-5 *3 (-654 (-1190))) (-5 *2 (-1286)) (-5 *1 (-1233))))) -(-10 -7 (-15 -3606 ((-1286) (-654 (-1190)))) (-15 -3606 ((-1286) (-654 (-1190)) (-654 (-1190)))) (-15 -2885 ((-2 (|:| -2401 (-654 (-1190))) (|:| -2276 (-654 (-1190)))))) (-15 -2762 ((-1286)))) -((-2568 (($ $) 17)) (-2257 (((-112) $) 28))) -(((-1234 |#1|) (-10 -8 (-15 -2568 (|#1| |#1|)) (-15 -2257 ((-112) |#1|))) (-1235)) (T -1234)) -NIL -(-10 -8 (-15 -2568 (|#1| |#1|)) (-15 -2257 ((-112) |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-1575 (($ $) 46)) (-2085 (((-112) $) 44)) (-3524 (((-3 $ "failed") $ $) 20)) (-2568 (($ $) 57)) (-2827 (((-428 $) $) 58)) (-3426 (($) 18 T CONST)) (-3434 (((-3 $ "failed") $) 37)) (-2257 (((-112) $) 59)) (-3199 (((-112) $) 35)) (-2832 (($ $ $) 52) (($ (-654 $)) 51)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2873 (($ $ $) 54) (($ (-654 $)) 53)) (-4220 (((-428 $) $) 56)) (-2838 (((-3 $ "failed") $ $) 48)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2069 (((-112) $ $) 45)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27))) -(((-1235) (-141)) (T -1235)) -((-2257 (*1 *2 *1) (-12 (-4 *1 (-1235)) (-5 *2 (-112)))) (-2827 (*1 *2 *1) (-12 (-5 *2 (-428 *1)) (-4 *1 (-1235)))) (-2568 (*1 *1 *1) (-4 *1 (-1235))) (-4220 (*1 *2 *1) (-12 (-5 *2 (-428 *1)) (-4 *1 (-1235))))) -(-13 (-462) (-10 -8 (-15 -2257 ((-112) $)) (-15 -2827 ((-428 $) $)) (-15 -2568 ($ $)) (-15 -4220 ((-428 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-1064 $) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T)) -((-2849 (((-112) $ $) NIL)) (-1487 (((-781)) NIL)) (-3426 (($) NIL T CONST)) (-2820 (($) NIL)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-4257 (($ $ $) NIL) (($) NIL T CONST)) (-4115 (((-932) $) NIL)) (-4136 (((-1172) $) NIL)) (-2576 (($ (-932)) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-1753 (($ $ $) NIL)) (-1743 (($ $ $) NIL)) (-3284 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) NIL))) -(((-1236) (-13 (-854) (-10 -8 (-15 -1743 ($ $ $)) (-15 -1753 ($ $ $)) (-15 -3426 ($) -1706)))) (T -1236)) -((-1743 (*1 *1 *1 *1) (-5 *1 (-1236))) (-1753 (*1 *1 *1 *1) (-5 *1 (-1236))) (-3426 (*1 *1) (-5 *1 (-1236)))) -(-13 (-854) (-10 -8 (-15 -1743 ($ $ $)) (-15 -1753 ($ $ $)) (-15 -3426 ($) -1706))) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 9)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 7))) +(((-1197) (-1112)) (T -1197)) +NIL +(-1112) +((-2010 (((-653 (-653 (-962 |#1|))) (-653 (-416 (-962 |#1|))) (-653 (-1189))) 69)) (-1994 (((-653 (-301 (-416 (-962 |#1|)))) (-301 (-416 (-962 |#1|)))) 80) (((-653 (-301 (-416 (-962 |#1|)))) (-416 (-962 |#1|))) 76) (((-653 (-301 (-416 (-962 |#1|)))) (-301 (-416 (-962 |#1|))) (-1189)) 81) (((-653 (-301 (-416 (-962 |#1|)))) (-416 (-962 |#1|)) (-1189)) 75) (((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-301 (-416 (-962 |#1|))))) 106) (((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-416 (-962 |#1|)))) 105) (((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-301 (-416 (-962 |#1|)))) (-653 (-1189))) 107) (((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-416 (-962 |#1|))) (-653 (-1189))) 104))) +(((-1198 |#1|) (-10 -7 (-15 -1994 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-416 (-962 |#1|))) (-653 (-1189)))) (-15 -1994 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-301 (-416 (-962 |#1|)))) (-653 (-1189)))) (-15 -1994 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-416 (-962 |#1|))))) (-15 -1994 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-301 (-416 (-962 |#1|)))))) (-15 -1994 ((-653 (-301 (-416 (-962 |#1|)))) (-416 (-962 |#1|)) (-1189))) (-15 -1994 ((-653 (-301 (-416 (-962 |#1|)))) (-301 (-416 (-962 |#1|))) (-1189))) (-15 -1994 ((-653 (-301 (-416 (-962 |#1|)))) (-416 (-962 |#1|)))) (-15 -1994 ((-653 (-301 (-416 (-962 |#1|)))) (-301 (-416 (-962 |#1|))))) (-15 -2010 ((-653 (-653 (-962 |#1|))) (-653 (-416 (-962 |#1|))) (-653 (-1189))))) (-565)) (T -1198)) +((-2010 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-416 (-962 *5)))) (-5 *4 (-653 (-1189))) (-4 *5 (-565)) (-5 *2 (-653 (-653 (-962 *5)))) (-5 *1 (-1198 *5)))) (-1994 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-653 (-301 (-416 (-962 *4))))) (-5 *1 (-1198 *4)) (-5 *3 (-301 (-416 (-962 *4)))))) (-1994 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-653 (-301 (-416 (-962 *4))))) (-5 *1 (-1198 *4)) (-5 *3 (-416 (-962 *4))))) (-1994 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-4 *5 (-565)) (-5 *2 (-653 (-301 (-416 (-962 *5))))) (-5 *1 (-1198 *5)) (-5 *3 (-301 (-416 (-962 *5)))))) (-1994 (*1 *2 *3 *4) (-12 (-5 *4 (-1189)) (-4 *5 (-565)) (-5 *2 (-653 (-301 (-416 (-962 *5))))) (-5 *1 (-1198 *5)) (-5 *3 (-416 (-962 *5))))) (-1994 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-653 (-653 (-301 (-416 (-962 *4)))))) (-5 *1 (-1198 *4)) (-5 *3 (-653 (-301 (-416 (-962 *4))))))) (-1994 (*1 *2 *3) (-12 (-5 *3 (-653 (-416 (-962 *4)))) (-4 *4 (-565)) (-5 *2 (-653 (-653 (-301 (-416 (-962 *4)))))) (-5 *1 (-1198 *4)))) (-1994 (*1 *2 *3 *4) (-12 (-5 *4 (-653 (-1189))) (-4 *5 (-565)) (-5 *2 (-653 (-653 (-301 (-416 (-962 *5)))))) (-5 *1 (-1198 *5)) (-5 *3 (-653 (-301 (-416 (-962 *5))))))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-416 (-962 *5)))) (-5 *4 (-653 (-1189))) (-4 *5 (-565)) (-5 *2 (-653 (-653 (-301 (-416 (-962 *5)))))) (-5 *1 (-1198 *5))))) +(-10 -7 (-15 -1994 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-416 (-962 |#1|))) (-653 (-1189)))) (-15 -1994 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-301 (-416 (-962 |#1|)))) (-653 (-1189)))) (-15 -1994 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-416 (-962 |#1|))))) (-15 -1994 ((-653 (-653 (-301 (-416 (-962 |#1|))))) (-653 (-301 (-416 (-962 |#1|)))))) (-15 -1994 ((-653 (-301 (-416 (-962 |#1|)))) (-416 (-962 |#1|)) (-1189))) (-15 -1994 ((-653 (-301 (-416 (-962 |#1|)))) (-301 (-416 (-962 |#1|))) (-1189))) (-15 -1994 ((-653 (-301 (-416 (-962 |#1|)))) (-416 (-962 |#1|)))) (-15 -1994 ((-653 (-301 (-416 (-962 |#1|)))) (-301 (-416 (-962 |#1|))))) (-15 -2010 ((-653 (-653 (-962 |#1|))) (-653 (-416 (-962 |#1|))) (-653 (-1189))))) +((-2523 (((-1171)) 7)) (-3341 (((-1171)) 11 T CONST)) (-3723 (((-1285) (-1171)) 13)) (-3408 (((-1171)) 8 T CONST)) (-3788 (((-131)) 10 T CONST))) +(((-1199) (-13 (-1230) (-10 -7 (-15 -2523 ((-1171))) (-15 -3408 ((-1171)) -1705) (-15 -3788 ((-131)) -1705) (-15 -3341 ((-1171)) -1705) (-15 -3723 ((-1285) (-1171)))))) (T -1199)) +((-2523 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1199)))) (-3408 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1199)))) (-3788 (*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1199)))) (-3341 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1199)))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1199))))) +(-13 (-1230) (-10 -7 (-15 -2523 ((-1171))) (-15 -3408 ((-1171)) -1705) (-15 -3788 ((-131)) -1705) (-15 -3341 ((-1171)) -1705) (-15 -3723 ((-1285) (-1171))))) +((-2884 (((-653 (-653 |#1|)) (-653 (-653 |#1|)) (-653 (-653 (-653 |#1|)))) 56)) (-1464 (((-653 (-653 (-653 |#1|))) (-653 (-653 |#1|))) 38)) (-2483 (((-1201 (-653 |#1|)) (-653 |#1|)) 49)) (-3937 (((-653 (-653 |#1|)) (-653 |#1|)) 45)) (-4265 (((-2 (|:| |f1| (-653 |#1|)) (|:| |f2| (-653 (-653 (-653 |#1|)))) (|:| |f3| (-653 (-653 |#1|))) (|:| |f4| (-653 (-653 (-653 |#1|))))) (-653 (-653 (-653 |#1|)))) 53)) (-1409 (((-2 (|:| |f1| (-653 |#1|)) (|:| |f2| (-653 (-653 (-653 |#1|)))) (|:| |f3| (-653 (-653 |#1|))) (|:| |f4| (-653 (-653 (-653 |#1|))))) (-653 |#1|) (-653 (-653 (-653 |#1|))) (-653 (-653 |#1|)) (-653 (-653 (-653 |#1|))) (-653 (-653 (-653 |#1|))) (-653 (-653 (-653 |#1|)))) 52)) (-1955 (((-653 (-653 |#1|)) (-653 (-653 |#1|))) 43)) (-3299 (((-653 |#1|) (-653 |#1|)) 46)) (-2749 (((-653 (-653 (-653 |#1|))) (-653 |#1|) (-653 (-653 (-653 |#1|)))) 32)) (-2809 (((-653 (-653 (-653 |#1|))) (-1 (-112) |#1| |#1|) (-653 |#1|) (-653 (-653 (-653 |#1|)))) 29)) (-2378 (((-2 (|:| |fs| (-112)) (|:| |sd| (-653 |#1|)) (|:| |td| (-653 (-653 |#1|)))) (-1 (-112) |#1| |#1|) (-653 |#1|) (-653 (-653 |#1|))) 24)) (-1924 (((-653 (-653 |#1|)) (-653 (-653 (-653 |#1|)))) 58)) (-3279 (((-653 (-653 |#1|)) (-1201 (-653 |#1|))) 60))) +(((-1200 |#1|) (-10 -7 (-15 -2378 ((-2 (|:| |fs| (-112)) (|:| |sd| (-653 |#1|)) (|:| |td| (-653 (-653 |#1|)))) (-1 (-112) |#1| |#1|) (-653 |#1|) (-653 (-653 |#1|)))) (-15 -2809 ((-653 (-653 (-653 |#1|))) (-1 (-112) |#1| |#1|) (-653 |#1|) (-653 (-653 (-653 |#1|))))) (-15 -2749 ((-653 (-653 (-653 |#1|))) (-653 |#1|) (-653 (-653 (-653 |#1|))))) (-15 -2884 ((-653 (-653 |#1|)) (-653 (-653 |#1|)) (-653 (-653 (-653 |#1|))))) (-15 -1924 ((-653 (-653 |#1|)) (-653 (-653 (-653 |#1|))))) (-15 -3279 ((-653 (-653 |#1|)) (-1201 (-653 |#1|)))) (-15 -1464 ((-653 (-653 (-653 |#1|))) (-653 (-653 |#1|)))) (-15 -2483 ((-1201 (-653 |#1|)) (-653 |#1|))) (-15 -1955 ((-653 (-653 |#1|)) (-653 (-653 |#1|)))) (-15 -3937 ((-653 (-653 |#1|)) (-653 |#1|))) (-15 -3299 ((-653 |#1|) (-653 |#1|))) (-15 -1409 ((-2 (|:| |f1| (-653 |#1|)) (|:| |f2| (-653 (-653 (-653 |#1|)))) (|:| |f3| (-653 (-653 |#1|))) (|:| |f4| (-653 (-653 (-653 |#1|))))) (-653 |#1|) (-653 (-653 (-653 |#1|))) (-653 (-653 |#1|)) (-653 (-653 (-653 |#1|))) (-653 (-653 (-653 |#1|))) (-653 (-653 (-653 |#1|))))) (-15 -4265 ((-2 (|:| |f1| (-653 |#1|)) (|:| |f2| (-653 (-653 (-653 |#1|)))) (|:| |f3| (-653 (-653 |#1|))) (|:| |f4| (-653 (-653 (-653 |#1|))))) (-653 (-653 (-653 |#1|)))))) (-859)) (T -1200)) +((-4265 (*1 *2 *3) (-12 (-4 *4 (-859)) (-5 *2 (-2 (|:| |f1| (-653 *4)) (|:| |f2| (-653 (-653 (-653 *4)))) (|:| |f3| (-653 (-653 *4))) (|:| |f4| (-653 (-653 (-653 *4)))))) (-5 *1 (-1200 *4)) (-5 *3 (-653 (-653 (-653 *4)))))) (-1409 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-859)) (-5 *3 (-653 *6)) (-5 *5 (-653 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-653 *5)) (|:| |f3| *5) (|:| |f4| (-653 *5)))) (-5 *1 (-1200 *6)) (-5 *4 (-653 *5)))) (-3299 (*1 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-859)) (-5 *1 (-1200 *3)))) (-3937 (*1 *2 *3) (-12 (-4 *4 (-859)) (-5 *2 (-653 (-653 *4))) (-5 *1 (-1200 *4)) (-5 *3 (-653 *4)))) (-1955 (*1 *2 *2) (-12 (-5 *2 (-653 (-653 *3))) (-4 *3 (-859)) (-5 *1 (-1200 *3)))) (-2483 (*1 *2 *3) (-12 (-4 *4 (-859)) (-5 *2 (-1201 (-653 *4))) (-5 *1 (-1200 *4)) (-5 *3 (-653 *4)))) (-1464 (*1 *2 *3) (-12 (-4 *4 (-859)) (-5 *2 (-653 (-653 (-653 *4)))) (-5 *1 (-1200 *4)) (-5 *3 (-653 (-653 *4))))) (-3279 (*1 *2 *3) (-12 (-5 *3 (-1201 (-653 *4))) (-4 *4 (-859)) (-5 *2 (-653 (-653 *4))) (-5 *1 (-1200 *4)))) (-1924 (*1 *2 *3) (-12 (-5 *3 (-653 (-653 (-653 *4)))) (-5 *2 (-653 (-653 *4))) (-5 *1 (-1200 *4)) (-4 *4 (-859)))) (-2884 (*1 *2 *2 *3) (-12 (-5 *3 (-653 (-653 (-653 *4)))) (-5 *2 (-653 (-653 *4))) (-4 *4 (-859)) (-5 *1 (-1200 *4)))) (-2749 (*1 *2 *3 *2) (-12 (-5 *2 (-653 (-653 (-653 *4)))) (-5 *3 (-653 *4)) (-4 *4 (-859)) (-5 *1 (-1200 *4)))) (-2809 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-653 (-653 (-653 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-653 *5)) (-4 *5 (-859)) (-5 *1 (-1200 *5)))) (-2378 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-859)) (-5 *4 (-653 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-653 *4)))) (-5 *1 (-1200 *6)) (-5 *5 (-653 *4))))) +(-10 -7 (-15 -2378 ((-2 (|:| |fs| (-112)) (|:| |sd| (-653 |#1|)) (|:| |td| (-653 (-653 |#1|)))) (-1 (-112) |#1| |#1|) (-653 |#1|) (-653 (-653 |#1|)))) (-15 -2809 ((-653 (-653 (-653 |#1|))) (-1 (-112) |#1| |#1|) (-653 |#1|) (-653 (-653 (-653 |#1|))))) (-15 -2749 ((-653 (-653 (-653 |#1|))) (-653 |#1|) (-653 (-653 (-653 |#1|))))) (-15 -2884 ((-653 (-653 |#1|)) (-653 (-653 |#1|)) (-653 (-653 (-653 |#1|))))) (-15 -1924 ((-653 (-653 |#1|)) (-653 (-653 (-653 |#1|))))) (-15 -3279 ((-653 (-653 |#1|)) (-1201 (-653 |#1|)))) (-15 -1464 ((-653 (-653 (-653 |#1|))) (-653 (-653 |#1|)))) (-15 -2483 ((-1201 (-653 |#1|)) (-653 |#1|))) (-15 -1955 ((-653 (-653 |#1|)) (-653 (-653 |#1|)))) (-15 -3937 ((-653 (-653 |#1|)) (-653 |#1|))) (-15 -3299 ((-653 |#1|) (-653 |#1|))) (-15 -1409 ((-2 (|:| |f1| (-653 |#1|)) (|:| |f2| (-653 (-653 (-653 |#1|)))) (|:| |f3| (-653 (-653 |#1|))) (|:| |f4| (-653 (-653 (-653 |#1|))))) (-653 |#1|) (-653 (-653 (-653 |#1|))) (-653 (-653 |#1|)) (-653 (-653 (-653 |#1|))) (-653 (-653 (-653 |#1|))) (-653 (-653 (-653 |#1|))))) (-15 -4265 ((-2 (|:| |f1| (-653 |#1|)) (|:| |f2| (-653 (-653 (-653 |#1|)))) (|:| |f3| (-653 (-653 |#1|))) (|:| |f4| (-653 (-653 (-653 |#1|))))) (-653 (-653 (-653 |#1|)))))) +((-3738 (($ (-653 (-653 |#1|))) 10)) (-1612 (((-653 (-653 |#1|)) $) 11)) (-2942 (((-871) $) 33))) +(((-1201 |#1|) (-10 -8 (-15 -3738 ($ (-653 (-653 |#1|)))) (-15 -1612 ((-653 (-653 |#1|)) $)) (-15 -2942 ((-871) $))) (-1112)) (T -1201)) +((-2942 (*1 *2 *1) (-12 (-5 *2 (-871)) (-5 *1 (-1201 *3)) (-4 *3 (-1112)))) (-1612 (*1 *2 *1) (-12 (-5 *2 (-653 (-653 *3))) (-5 *1 (-1201 *3)) (-4 *3 (-1112)))) (-3738 (*1 *1 *2) (-12 (-5 *2 (-653 (-653 *3))) (-4 *3 (-1112)) (-5 *1 (-1201 *3))))) +(-10 -8 (-15 -3738 ($ (-653 (-653 |#1|)))) (-15 -1612 ((-653 (-653 |#1|)) $)) (-15 -2942 ((-871) $))) +((-2848 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-3777 (($) NIL) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3791 (((-1285) $ |#1| |#1|) NIL (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#2| $ |#1| |#2|) NIL)) (-3557 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2161 (((-3 |#2| "failed") |#1| $) NIL)) (-2579 (($) NIL T CONST)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-2596 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-3 |#2| "failed") |#1| $) NIL)) (-3334 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2867 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#2| $ |#1|) NIL)) (-1863 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) NIL)) (-1968 ((|#1| $) NIL (|has| |#1| (-859)))) (-3214 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-653 |#2|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-3470 ((|#1| $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4456))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-1762 (((-653 |#1|) $) NIL)) (-4201 (((-112) |#1| $) NIL)) (-2487 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-3181 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1977 (((-653 |#1|) $) NIL)) (-2560 (((-112) |#1| $) NIL)) (-3965 (((-1132) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2914 ((|#2| $) NIL (|has| |#1| (-859)))) (-2036 (((-3 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL)) (-3112 (($ $ |#2|) NIL (|has| $ (-6 -4456)))) (-3815 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL)) (-1575 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 (-301 |#2|))) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-1535 (((-653 |#2|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2428 (($) NIL) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-3974 (((-780) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (((-780) |#2| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112)))) (((-780) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-623 (-545))))) (-2955 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-2942 (((-871) $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-622 (-871))) (|has| |#2| (-622 (-871)))))) (-3507 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2679 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) NIL)) (-1646 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) NIL (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) NIL (-2817 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| |#2| (-1112))))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-1202 |#1| |#2|) (-13 (-1206 |#1| |#2|) (-10 -7 (-6 -4455))) (-1112) (-1112)) (T -1202)) +NIL +(-13 (-1206 |#1| |#2|) (-10 -7 (-6 -4455))) +((-2848 (((-112) $ $) NIL)) (-4173 (($ |#1| (-55)) 10)) (-2031 ((|#1| $) 12)) (-3180 (((-1171) $) NIL)) (-1667 (((-112) $ |#1|) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-3507 (((-112) $ $) NIL)) (-4010 (((-55) $) 14)) (-2981 (((-112) $ $) NIL))) +(((-1203 |#1|) (-13 (-844 |#1|) (-10 -8 (-15 -4173 ($ |#1| (-55))))) (-1112)) (T -1203)) +((-4173 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1203 *2)) (-4 *2 (-1112))))) +(-13 (-844 |#1|) (-10 -8 (-15 -4173 ($ |#1| (-55))))) +((-3154 ((|#1| (-653 |#1|)) 46)) (-4198 ((|#1| |#1| (-573)) 24)) (-1768 (((-1185 |#1|) |#1| (-931)) 20))) +(((-1204 |#1|) (-10 -7 (-15 -3154 (|#1| (-653 |#1|))) (-15 -1768 ((-1185 |#1|) |#1| (-931))) (-15 -4198 (|#1| |#1| (-573)))) (-371)) (T -1204)) +((-4198 (*1 *2 *2 *3) (-12 (-5 *3 (-573)) (-5 *1 (-1204 *2)) (-4 *2 (-371)))) (-1768 (*1 *2 *3 *4) (-12 (-5 *4 (-931)) (-5 *2 (-1185 *3)) (-5 *1 (-1204 *3)) (-4 *3 (-371)))) (-3154 (*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-5 *1 (-1204 *2)) (-4 *2 (-371))))) +(-10 -7 (-15 -3154 (|#1| (-653 |#1|))) (-15 -1768 ((-1185 |#1|) |#1| (-931))) (-15 -4198 (|#1| |#1| (-573)))) +((-3777 (($) 10) (($ (-653 (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)))) 14)) (-2596 (($ (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1863 (((-653 (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) $) 39) (((-653 |#3|) $) 41)) (-2446 (($ (-1 (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-1776 (($ (-1 (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2487 (((-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) $) 60)) (-3181 (($ (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) $) 16)) (-1977 (((-653 |#2|) $) 19)) (-2560 (((-112) |#2| $) 65)) (-2036 (((-3 (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) "failed") (-1 (-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) $) 64)) (-3815 (((-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) $) 69)) (-1575 (((-112) (-1 (-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-1535 (((-653 |#3|) $) 43)) (-2198 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3974 (((-780) (-1 (-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) $) NIL) (((-780) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) $) NIL) (((-780) |#3| $) NIL) (((-780) (-1 (-112) |#3|) $) 79)) (-2942 (((-871) $) 27)) (-1646 (((-112) (-1 (-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2981 (((-112) $ $) 51))) +(((-1205 |#1| |#2| |#3|) (-10 -8 (-15 -2981 ((-112) |#1| |#1|)) (-15 -2942 ((-871) |#1|)) (-15 -1776 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3777 (|#1| (-653 (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))))) (-15 -3777 (|#1|)) (-15 -1776 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2446 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1646 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1575 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3974 ((-780) (-1 (-112) |#3|) |#1|)) (-15 -1863 ((-653 |#3|) |#1|)) (-15 -3974 ((-780) |#3| |#1|)) (-15 -2198 (|#3| |#1| |#2| |#3|)) (-15 -2198 (|#3| |#1| |#2|)) (-15 -1535 ((-653 |#3|) |#1|)) (-15 -2560 ((-112) |#2| |#1|)) (-15 -1977 ((-653 |#2|) |#1|)) (-15 -2596 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2596 (|#1| (-1 (-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -2596 (|#1| (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) |#1|)) (-15 -2036 ((-3 (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) "failed") (-1 (-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -2487 ((-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) |#1|)) (-15 -3181 (|#1| (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) |#1|)) (-15 -3815 ((-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) |#1|)) (-15 -3974 ((-780) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) |#1|)) (-15 -1863 ((-653 (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -3974 ((-780) (-1 (-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -1575 ((-112) (-1 (-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -1646 ((-112) (-1 (-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -2446 (|#1| (-1 (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -1776 (|#1| (-1 (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|))) (-1206 |#2| |#3|) (-1112) (-1112)) (T -1205)) +NIL +(-10 -8 (-15 -2981 ((-112) |#1| |#1|)) (-15 -2942 ((-871) |#1|)) (-15 -1776 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3777 (|#1| (-653 (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))))) (-15 -3777 (|#1|)) (-15 -1776 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2446 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1646 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1575 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3974 ((-780) (-1 (-112) |#3|) |#1|)) (-15 -1863 ((-653 |#3|) |#1|)) (-15 -3974 ((-780) |#3| |#1|)) (-15 -2198 (|#3| |#1| |#2| |#3|)) (-15 -2198 (|#3| |#1| |#2|)) (-15 -1535 ((-653 |#3|) |#1|)) (-15 -2560 ((-112) |#2| |#1|)) (-15 -1977 ((-653 |#2|) |#1|)) (-15 -2596 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2596 (|#1| (-1 (-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -2596 (|#1| (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) |#1|)) (-15 -2036 ((-3 (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) "failed") (-1 (-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -2487 ((-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) |#1|)) (-15 -3181 (|#1| (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) |#1|)) (-15 -3815 ((-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) |#1|)) (-15 -3974 ((-780) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) |#1|)) (-15 -1863 ((-653 (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -3974 ((-780) (-1 (-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -1575 ((-112) (-1 (-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -1646 ((-112) (-1 (-112) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -2446 (|#1| (-1 (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|)) (-15 -1776 (|#1| (-1 (-2 (|:| -3692 |#2|) (|:| -1907 |#3|)) (-2 (|:| -3692 |#2|) (|:| -1907 |#3|))) |#1|))) +((-2848 (((-112) $ $) 19 (-2817 (|has| |#2| (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-3777 (($) 73) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 72)) (-3791 (((-1285) $ |#1| |#1|) 100 (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) 8)) (-3142 ((|#2| $ |#1| |#2|) 74)) (-3557 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 46 (|has| $ (-6 -4455)))) (-2164 (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 56 (|has| $ (-6 -4455)))) (-2161 (((-3 |#2| "failed") |#1| $) 62)) (-2579 (($) 7 T CONST)) (-2685 (($ $) 59 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455))))) (-2596 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 48 (|has| $ (-6 -4455))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 47 (|has| $ (-6 -4455))) (((-3 |#2| "failed") |#1| $) 63)) (-3334 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 55 (|has| $ (-6 -4455)))) (-2867 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 57 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455)))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 54 (|has| $ (-6 -4455))) (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 53 (|has| $ (-6 -4455)))) (-2457 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4456)))) (-2384 ((|#2| $ |#1|) 89)) (-1863 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 31 (|has| $ (-6 -4455))) (((-653 |#2|) $) 80 (|has| $ (-6 -4455)))) (-2078 (((-112) $ (-780)) 9)) (-1968 ((|#1| $) 97 (|has| |#1| (-859)))) (-3214 (((-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 30 (|has| $ (-6 -4455))) (((-653 |#2|) $) 81 (|has| $ (-6 -4455)))) (-1547 (((-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1112)) (|has| $ (-6 -4455))))) (-3470 ((|#1| $) 96 (|has| |#1| (-859)))) (-2446 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 35 (|has| $ (-6 -4456))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4456)))) (-1776 (($ (-1 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-2673 (((-112) $ (-780)) 10)) (-3180 (((-1171) $) 22 (-2817 (|has| |#2| (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-1762 (((-653 |#1|) $) 64)) (-4201 (((-112) |#1| $) 65)) (-2487 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 40)) (-3181 (($ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 41)) (-1977 (((-653 |#1|) $) 94)) (-2560 (((-112) |#1| $) 93)) (-3965 (((-1132) $) 21 (-2817 (|has| |#2| (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-2914 ((|#2| $) 98 (|has| |#1| (-859)))) (-2036 (((-3 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) "failed") (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 52)) (-3112 (($ $ |#2|) 99 (|has| $ (-6 -4456)))) (-3815 (((-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 42)) (-1575 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 33 (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))))) 27 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-301 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 26 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) 25 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 24 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)))) (($ $ (-653 |#2|) (-653 |#2|)) 87 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-301 |#2|)) 85 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112)))) (($ $ (-653 (-301 |#2|))) 84 (-12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))))) (-1885 (((-112) $ $) 14)) (-2547 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4455)) (|has| |#2| (-1112))))) (-1535 (((-653 |#2|) $) 92)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-2428 (($) 50) (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 49)) (-3974 (((-780) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 32 (|has| $ (-6 -4455))) (((-780) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| $ (-6 -4455)))) (((-780) |#2| $) 82 (-12 (|has| |#2| (-1112)) (|has| $ (-6 -4455)))) (((-780) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4455)))) (-3166 (($ $) 13)) (-1835 (((-545) $) 60 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-623 (-545))))) (-2955 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 51)) (-2942 (((-871) $) 18 (-2817 (|has| |#2| (-622 (-871))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-622 (-871)))))) (-3507 (((-112) $ $) 23 (-2817 (|has| |#2| (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-2679 (($ (-653 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) 43)) (-1646 (((-112) (-1 (-112) (-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) $) 34 (|has| $ (-6 -4455))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (-2817 (|has| |#2| (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-1206 |#1| |#2|) (-141) (-1112) (-1112)) (T -1206)) +((-3142 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1206 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1112)))) (-3777 (*1 *1) (-12 (-4 *1 (-1206 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112)))) (-3777 (*1 *1 *2) (-12 (-5 *2 (-653 (-2 (|:| -3692 *3) (|:| -1907 *4)))) (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *1 (-1206 *3 *4)))) (-1776 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1206 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112))))) +(-13 (-619 |t#1| |t#2|) (-613 |t#1| |t#2|) (-10 -8 (-15 -3142 (|t#2| $ |t#1| |t#2|)) (-15 -3777 ($)) (-15 -3777 ($ (-653 (-2 (|:| -3692 |t#1|) (|:| -1907 |t#2|))))) (-15 -1776 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -3692 |#1|) (|:| -1907 |#2|))) . T) ((-102) -2817 (|has| |#2| (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))) ((-622 (-871)) -2817 (|has| |#2| (-1112)) (|has| |#2| (-622 (-871))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-622 (-871)))) ((-152 #0#) . T) ((-623 (-545)) |has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-623 (-545))) ((-231 #0#) . T) ((-240 #0#) . T) ((-293 |#1| |#2|) . T) ((-295 |#1| |#2|) . T) ((-316 #0#) -12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))) ((-316 |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((-498 #0#) . T) ((-498 |#2|) . T) ((-613 |#1| |#2|) . T) ((-523 #0# #0#) -12 (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-316 (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)))) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))) ((-523 |#2| |#2|) -12 (|has| |#2| (-316 |#2|)) (|has| |#2| (-1112))) ((-619 |#1| |#2|) . T) ((-1112) -2817 (|has| |#2| (-1112)) (|has| (-2 (|:| -3692 |#1|) (|:| -1907 |#2|)) (-1112))) ((-1230) . T)) +((-2921 (((-112)) 29)) (-4074 (((-1285) (-1171)) 31)) (-1713 (((-112)) 41)) (-1891 (((-1285)) 39)) (-3803 (((-1285) (-1171) (-1171)) 30)) (-4079 (((-112)) 42)) (-3181 (((-1285) |#1| |#2|) 53)) (-4389 (((-1285)) 26)) (-1830 (((-3 |#2| "failed") |#1|) 51)) (-1357 (((-1285)) 40))) +(((-1207 |#1| |#2|) (-10 -7 (-15 -4389 ((-1285))) (-15 -3803 ((-1285) (-1171) (-1171))) (-15 -4074 ((-1285) (-1171))) (-15 -1891 ((-1285))) (-15 -1357 ((-1285))) (-15 -2921 ((-112))) (-15 -1713 ((-112))) (-15 -4079 ((-112))) (-15 -1830 ((-3 |#2| "failed") |#1|)) (-15 -3181 ((-1285) |#1| |#2|))) (-1112) (-1112)) (T -1207)) +((-3181 (*1 *2 *3 *4) (-12 (-5 *2 (-1285)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)))) (-1830 (*1 *2 *3) (|partial| -12 (-4 *2 (-1112)) (-5 *1 (-1207 *3 *2)) (-4 *3 (-1112)))) (-4079 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)))) (-1713 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)))) (-2921 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)))) (-1357 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)))) (-1891 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1207 *4 *5)) (-4 *4 (-1112)) (-4 *5 (-1112)))) (-3803 (*1 *2 *3 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1207 *4 *5)) (-4 *4 (-1112)) (-4 *5 (-1112)))) (-4389 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112))))) +(-10 -7 (-15 -4389 ((-1285))) (-15 -3803 ((-1285) (-1171) (-1171))) (-15 -4074 ((-1285) (-1171))) (-15 -1891 ((-1285))) (-15 -1357 ((-1285))) (-15 -2921 ((-112))) (-15 -1713 ((-112))) (-15 -4079 ((-112))) (-15 -1830 ((-3 |#2| "failed") |#1|)) (-15 -3181 ((-1285) |#1| |#2|))) +((-2309 (((-1171) (-1171)) 22)) (-2466 (((-52) (-1171)) 25))) +(((-1208) (-10 -7 (-15 -2466 ((-52) (-1171))) (-15 -2309 ((-1171) (-1171))))) (T -1208)) +((-2309 (*1 *2 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1208)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-52)) (-5 *1 (-1208))))) +(-10 -7 (-15 -2466 ((-52) (-1171))) (-15 -2309 ((-1171) (-1171)))) +((-2942 (((-1210) |#1|) 11))) +(((-1209 |#1|) (-10 -7 (-15 -2942 ((-1210) |#1|))) (-1112)) (T -1209)) +((-2942 (*1 *2 *3) (-12 (-5 *2 (-1210)) (-5 *1 (-1209 *3)) (-4 *3 (-1112))))) +(-10 -7 (-15 -2942 ((-1210) |#1|))) +((-2848 (((-112) $ $) NIL)) (-3896 (((-653 (-1171)) $) 39)) (-1613 (((-653 (-1171)) $ (-653 (-1171))) 42)) (-3845 (((-653 (-1171)) $ (-653 (-1171))) 41)) (-3880 (((-653 (-1171)) $ (-653 (-1171))) 43)) (-3887 (((-653 (-1171)) $) 38)) (-3789 (($) 28)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2907 (((-653 (-1171)) $) 40)) (-1402 (((-1285) $ (-573)) 35) (((-1285) $) 36)) (-1835 (($ (-871) (-573)) 33) (($ (-871) (-573) (-871)) NIL)) (-2942 (((-871) $) 49) (($ (-871)) 32)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-1210) (-13 (-1112) (-625 (-871)) (-10 -8 (-15 -1835 ($ (-871) (-573))) (-15 -1835 ($ (-871) (-573) (-871))) (-15 -1402 ((-1285) $ (-573))) (-15 -1402 ((-1285) $)) (-15 -2907 ((-653 (-1171)) $)) (-15 -3896 ((-653 (-1171)) $)) (-15 -3789 ($)) (-15 -3887 ((-653 (-1171)) $)) (-15 -3880 ((-653 (-1171)) $ (-653 (-1171)))) (-15 -1613 ((-653 (-1171)) $ (-653 (-1171)))) (-15 -3845 ((-653 (-1171)) $ (-653 (-1171))))))) (T -1210)) +((-1835 (*1 *1 *2 *3) (-12 (-5 *2 (-871)) (-5 *3 (-573)) (-5 *1 (-1210)))) (-1835 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-871)) (-5 *3 (-573)) (-5 *1 (-1210)))) (-1402 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-5 *2 (-1285)) (-5 *1 (-1210)))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-1210)))) (-2907 (*1 *2 *1) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1210)))) (-3896 (*1 *2 *1) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1210)))) (-3789 (*1 *1) (-5 *1 (-1210))) (-3887 (*1 *2 *1) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1210)))) (-3880 (*1 *2 *1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1210)))) (-1613 (*1 *2 *1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1210)))) (-3845 (*1 *2 *1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1210))))) +(-13 (-1112) (-625 (-871)) (-10 -8 (-15 -1835 ($ (-871) (-573))) (-15 -1835 ($ (-871) (-573) (-871))) (-15 -1402 ((-1285) $ (-573))) (-15 -1402 ((-1285) $)) (-15 -2907 ((-653 (-1171)) $)) (-15 -3896 ((-653 (-1171)) $)) (-15 -3789 ($)) (-15 -3887 ((-653 (-1171)) $)) (-15 -3880 ((-653 (-1171)) $ (-653 (-1171)))) (-15 -1613 ((-653 (-1171)) $ (-653 (-1171)))) (-15 -3845 ((-653 (-1171)) $ (-653 (-1171)))))) +((-2848 (((-112) $ $) NIL)) (-1703 (((-1171) $ (-1171)) 17) (((-1171) $) 16)) (-4288 (((-1171) $ (-1171)) 15)) (-2169 (($ $ (-1171)) NIL)) (-3399 (((-3 (-1171) "failed") $) 11)) (-3750 (((-1171) $) 8)) (-1737 (((-3 (-1171) "failed") $) 12)) (-4188 (((-1171) $) 9)) (-1674 (($ (-397)) NIL) (($ (-397) (-1171)) NIL)) (-2031 (((-397) $) NIL)) (-3180 (((-1171) $) NIL)) (-4175 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2507 (((-112) $) 21)) (-2942 (((-871) $) NIL)) (-1981 (($ $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-1211) (-13 (-372 (-397) (-1171)) (-10 -8 (-15 -1703 ((-1171) $ (-1171))) (-15 -1703 ((-1171) $)) (-15 -3750 ((-1171) $)) (-15 -3399 ((-3 (-1171) "failed") $)) (-15 -1737 ((-3 (-1171) "failed") $)) (-15 -2507 ((-112) $))))) (T -1211)) +((-1703 (*1 *2 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1211)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1211)))) (-3750 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1211)))) (-3399 (*1 *2 *1) (|partial| -12 (-5 *2 (-1171)) (-5 *1 (-1211)))) (-1737 (*1 *2 *1) (|partial| -12 (-5 *2 (-1171)) (-5 *1 (-1211)))) (-2507 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1211))))) +(-13 (-372 (-397) (-1171)) (-10 -8 (-15 -1703 ((-1171) $ (-1171))) (-15 -1703 ((-1171) $)) (-15 -3750 ((-1171) $)) (-15 -3399 ((-3 (-1171) "failed") $)) (-15 -1737 ((-3 (-1171) "failed") $)) (-15 -2507 ((-112) $)))) +((-1983 (((-3 (-573) "failed") |#1|) 19)) (-1540 (((-3 (-573) "failed") |#1|) 14)) (-1411 (((-573) (-1171)) 33))) +(((-1212 |#1|) (-10 -7 (-15 -1983 ((-3 (-573) "failed") |#1|)) (-15 -1540 ((-3 (-573) "failed") |#1|)) (-15 -1411 ((-573) (-1171)))) (-1061)) (T -1212)) +((-1411 (*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-573)) (-5 *1 (-1212 *4)) (-4 *4 (-1061)))) (-1540 (*1 *2 *3) (|partial| -12 (-5 *2 (-573)) (-5 *1 (-1212 *3)) (-4 *3 (-1061)))) (-1983 (*1 *2 *3) (|partial| -12 (-5 *2 (-573)) (-5 *1 (-1212 *3)) (-4 *3 (-1061))))) +(-10 -7 (-15 -1983 ((-3 (-573) "failed") |#1|)) (-15 -1540 ((-3 (-573) "failed") |#1|)) (-15 -1411 ((-573) (-1171)))) +((-1430 (((-1145 (-227))) 9))) +(((-1213) (-10 -7 (-15 -1430 ((-1145 (-227)))))) (T -1213)) +((-1430 (*1 *2) (-12 (-5 *2 (-1145 (-227))) (-5 *1 (-1213))))) +(-10 -7 (-15 -1430 ((-1145 (-227))))) +((-2999 (($) 12)) (-2439 (($ $) 36)) (-2413 (($ $) 34)) (-2286 (($ $) 26)) (-2464 (($ $) 18)) (-2520 (($ $) 16)) (-2452 (($ $) 20)) (-2314 (($ $) 31)) (-2426 (($ $) 35)) (-2296 (($ $) 30))) +(((-1214 |#1|) (-10 -8 (-15 -2999 (|#1|)) (-15 -2439 (|#1| |#1|)) (-15 -2413 (|#1| |#1|)) (-15 -2464 (|#1| |#1|)) (-15 -2520 (|#1| |#1|)) (-15 -2452 (|#1| |#1|)) (-15 -2426 (|#1| |#1|)) (-15 -2286 (|#1| |#1|)) (-15 -2314 (|#1| |#1|)) (-15 -2296 (|#1| |#1|))) (-1215)) (T -1214)) +NIL +(-10 -8 (-15 -2999 (|#1|)) (-15 -2439 (|#1| |#1|)) (-15 -2413 (|#1| |#1|)) (-15 -2464 (|#1| |#1|)) (-15 -2520 (|#1| |#1|)) (-15 -2452 (|#1| |#1|)) (-15 -2426 (|#1| |#1|)) (-15 -2286 (|#1| |#1|)) (-15 -2314 (|#1| |#1|)) (-15 -2296 (|#1| |#1|))) +((-2363 (($ $) 26)) (-2246 (($ $) 11)) (-2342 (($ $) 27)) (-2225 (($ $) 10)) (-2388 (($ $) 28)) (-2266 (($ $) 9)) (-2999 (($) 16)) (-3118 (($ $) 19)) (-1608 (($ $) 18)) (-2401 (($ $) 29)) (-2274 (($ $) 8)) (-2374 (($ $) 30)) (-2255 (($ $) 7)) (-2352 (($ $) 31)) (-2236 (($ $) 6)) (-2439 (($ $) 20)) (-2304 (($ $) 32)) (-2413 (($ $) 21)) (-2286 (($ $) 33)) (-2464 (($ $) 22)) (-2324 (($ $) 34)) (-2520 (($ $) 23)) (-2333 (($ $) 35)) (-2452 (($ $) 24)) (-2314 (($ $) 36)) (-2426 (($ $) 25)) (-2296 (($ $) 37)) (** (($ $ $) 17))) +(((-1215) (-141)) (T -1215)) +((-2999 (*1 *1) (-4 *1 (-1215)))) +(-13 (-1218) (-95) (-502) (-35) (-291) (-10 -8 (-15 -2999 ($)))) +(((-35) . T) ((-95) . T) ((-291) . T) ((-502) . T) ((-1218) . T)) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3082 ((|#1| $) 19)) (-2574 (($ |#1| (-653 $)) 28) (($ (-653 |#1|)) 35) (($ |#1|) 30)) (-3450 (((-112) $ (-780)) 72)) (-2367 ((|#1| $ |#1|) 14 (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) 13 (|has| $ (-6 -4456)))) (-2579 (($) NIL T CONST)) (-1863 (((-653 |#1|) $) 77 (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) 64)) (-3208 (((-112) $ $) 50 (|has| |#1| (-1112)))) (-2078 (((-112) $ (-780)) 62)) (-3214 (((-653 |#1|) $) 78 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 76 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-2446 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 27)) (-2673 (((-112) $ (-780)) 60)) (-3505 (((-653 |#1|) $) 55)) (-2880 (((-112) $) 53)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-1575 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 107)) (-3811 (((-112) $) 9)) (-3508 (($) 10)) (-2198 ((|#1| $ "value") NIL)) (-1501 (((-573) $ $) 48)) (-2360 (((-653 $) $) 89)) (-3780 (((-112) $ $) 110)) (-3163 (((-653 $) $) 105)) (-3795 (($ $) 106)) (-1628 (((-112) $) 84)) (-3974 (((-780) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4455))) (((-780) |#1| $) 17 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3166 (($ $) 88)) (-2942 (((-871) $) 91 (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) 12)) (-1716 (((-112) $ $) 39 (|has| |#1| (-1112)))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 37 (|has| |#1| (-1112)))) (-2862 (((-780) $) 58 (|has| $ (-6 -4455))))) +(((-1216 |#1|) (-13 (-1022 |#1|) (-10 -8 (-6 -4455) (-6 -4456) (-15 -2574 ($ |#1| (-653 $))) (-15 -2574 ($ (-653 |#1|))) (-15 -2574 ($ |#1|)) (-15 -1628 ((-112) $)) (-15 -3795 ($ $)) (-15 -3163 ((-653 $) $)) (-15 -3780 ((-112) $ $)) (-15 -2360 ((-653 $) $)))) (-1112)) (T -1216)) +((-1628 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1216 *3)) (-4 *3 (-1112)))) (-2574 (*1 *1 *2 *3) (-12 (-5 *3 (-653 (-1216 *2))) (-5 *1 (-1216 *2)) (-4 *2 (-1112)))) (-2574 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-1216 *3)))) (-2574 (*1 *1 *2) (-12 (-5 *1 (-1216 *2)) (-4 *2 (-1112)))) (-3795 (*1 *1 *1) (-12 (-5 *1 (-1216 *2)) (-4 *2 (-1112)))) (-3163 (*1 *2 *1) (-12 (-5 *2 (-653 (-1216 *3))) (-5 *1 (-1216 *3)) (-4 *3 (-1112)))) (-3780 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1216 *3)) (-4 *3 (-1112)))) (-2360 (*1 *2 *1) (-12 (-5 *2 (-653 (-1216 *3))) (-5 *1 (-1216 *3)) (-4 *3 (-1112))))) +(-13 (-1022 |#1|) (-10 -8 (-6 -4455) (-6 -4456) (-15 -2574 ($ |#1| (-653 $))) (-15 -2574 ($ (-653 |#1|))) (-15 -2574 ($ |#1|)) (-15 -1628 ((-112) $)) (-15 -3795 ($ $)) (-15 -3163 ((-653 $) $)) (-15 -3780 ((-112) $ $)) (-15 -2360 ((-653 $) $)))) +((-2246 (($ $) 15)) (-2266 (($ $) 12)) (-2274 (($ $) 10)) (-2255 (($ $) 17))) +(((-1217 |#1|) (-10 -8 (-15 -2255 (|#1| |#1|)) (-15 -2274 (|#1| |#1|)) (-15 -2266 (|#1| |#1|)) (-15 -2246 (|#1| |#1|))) (-1218)) (T -1217)) +NIL +(-10 -8 (-15 -2255 (|#1| |#1|)) (-15 -2274 (|#1| |#1|)) (-15 -2266 (|#1| |#1|)) (-15 -2246 (|#1| |#1|))) +((-2246 (($ $) 11)) (-2225 (($ $) 10)) (-2266 (($ $) 9)) (-2274 (($ $) 8)) (-2255 (($ $) 7)) (-2236 (($ $) 6))) +(((-1218) (-141)) (T -1218)) +((-2246 (*1 *1 *1) (-4 *1 (-1218))) (-2225 (*1 *1 *1) (-4 *1 (-1218))) (-2266 (*1 *1 *1) (-4 *1 (-1218))) (-2274 (*1 *1 *1) (-4 *1 (-1218))) (-2255 (*1 *1 *1) (-4 *1 (-1218))) (-2236 (*1 *1 *1) (-4 *1 (-1218)))) +(-13 (-10 -8 (-15 -2236 ($ $)) (-15 -2255 ($ $)) (-15 -2274 ($ $)) (-15 -2266 ($ $)) (-15 -2225 ($ $)) (-15 -2246 ($ $)))) +((-2125 ((|#2| |#2|) 98)) (-2814 (((-112) |#2|) 29)) (-4238 ((|#2| |#2|) 33)) (-4248 ((|#2| |#2|) 35)) (-3173 ((|#2| |#2| (-1189)) 92) ((|#2| |#2|) 93)) (-3513 (((-171 |#2|) |#2|) 31)) (-1733 ((|#2| |#2| (-1189)) 94) ((|#2| |#2|) 95))) +(((-1219 |#1| |#2|) (-10 -7 (-15 -3173 (|#2| |#2|)) (-15 -3173 (|#2| |#2| (-1189))) (-15 -1733 (|#2| |#2|)) (-15 -1733 (|#2| |#2| (-1189))) (-15 -2125 (|#2| |#2|)) (-15 -4238 (|#2| |#2|)) (-15 -4248 (|#2| |#2|)) (-15 -2814 ((-112) |#2|)) (-15 -3513 ((-171 |#2|) |#2|))) (-13 (-461) (-1050 (-573)) (-648 (-573))) (-13 (-27) (-1215) (-439 |#1|))) (T -1219)) +((-3513 (*1 *2 *3) (-12 (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-171 *3)) (-5 *1 (-1219 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *4))))) (-2814 (*1 *2 *3) (-12 (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-112)) (-5 *1 (-1219 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *4))))) (-4248 (*1 *2 *2) (-12 (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-1219 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *3))))) (-4238 (*1 *2 *2) (-12 (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-1219 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *3))))) (-2125 (*1 *2 *2) (-12 (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-1219 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *3))))) (-1733 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-1219 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *4))))) (-1733 (*1 *2 *2) (-12 (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-1219 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *3))))) (-3173 (*1 *2 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-1219 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *4))))) (-3173 (*1 *2 *2) (-12 (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-1219 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *3)))))) +(-10 -7 (-15 -3173 (|#2| |#2|)) (-15 -3173 (|#2| |#2| (-1189))) (-15 -1733 (|#2| |#2|)) (-15 -1733 (|#2| |#2| (-1189))) (-15 -2125 (|#2| |#2|)) (-15 -4238 (|#2| |#2|)) (-15 -4248 (|#2| |#2|)) (-15 -2814 ((-112) |#2|)) (-15 -3513 ((-171 |#2|) |#2|))) +((-2798 ((|#4| |#4| |#1|) 31)) (-3929 ((|#4| |#4| |#1|) 32))) +(((-1220 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2798 (|#4| |#4| |#1|)) (-15 -3929 (|#4| |#4| |#1|))) (-565) (-381 |#1|) (-381 |#1|) (-696 |#1| |#2| |#3|)) (T -1220)) +((-3929 (*1 *2 *2 *3) (-12 (-4 *3 (-565)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *1 (-1220 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5)))) (-2798 (*1 *2 *2 *3) (-12 (-4 *3 (-565)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-5 *1 (-1220 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5))))) +(-10 -7 (-15 -2798 (|#4| |#4| |#1|)) (-15 -3929 (|#4| |#4| |#1|))) +((-2668 ((|#2| |#2|) 148)) (-3245 ((|#2| |#2|) 145)) (-3263 ((|#2| |#2|) 136)) (-4018 ((|#2| |#2|) 133)) (-2934 ((|#2| |#2|) 141)) (-2216 ((|#2| |#2|) 129)) (-4371 ((|#2| |#2|) 44)) (-2153 ((|#2| |#2|) 105)) (-1953 ((|#2| |#2|) 88)) (-2657 ((|#2| |#2|) 143)) (-3136 ((|#2| |#2|) 131)) (-3022 ((|#2| |#2|) 153)) (-3133 ((|#2| |#2|) 151)) (-2810 ((|#2| |#2|) 152)) (-4312 ((|#2| |#2|) 150)) (-2954 ((|#2| |#2|) 163)) (-3642 ((|#2| |#2|) 30 (-12 (|has| |#2| (-623 (-902 |#1|))) (|has| |#2| (-896 |#1|)) (|has| |#1| (-623 (-902 |#1|))) (|has| |#1| (-896 |#1|))))) (-1925 ((|#2| |#2|) 89)) (-4391 ((|#2| |#2|) 154)) (-2127 ((|#2| |#2|) 155)) (-1362 ((|#2| |#2|) 142)) (-3186 ((|#2| |#2|) 130)) (-3662 ((|#2| |#2|) 149)) (-3655 ((|#2| |#2|) 147)) (-3517 ((|#2| |#2|) 137)) (-2607 ((|#2| |#2|) 135)) (-2789 ((|#2| |#2|) 139)) (-4217 ((|#2| |#2|) 127))) +(((-1221 |#1| |#2|) (-10 -7 (-15 -2127 (|#2| |#2|)) (-15 -1953 (|#2| |#2|)) (-15 -2954 (|#2| |#2|)) (-15 -2153 (|#2| |#2|)) (-15 -4371 (|#2| |#2|)) (-15 -1925 (|#2| |#2|)) (-15 -4391 (|#2| |#2|)) (-15 -4217 (|#2| |#2|)) (-15 -2789 (|#2| |#2|)) (-15 -3517 (|#2| |#2|)) (-15 -3662 (|#2| |#2|)) (-15 -3186 (|#2| |#2|)) (-15 -1362 (|#2| |#2|)) (-15 -3136 (|#2| |#2|)) (-15 -2657 (|#2| |#2|)) (-15 -2216 (|#2| |#2|)) (-15 -2934 (|#2| |#2|)) (-15 -3263 (|#2| |#2|)) (-15 -2668 (|#2| |#2|)) (-15 -4018 (|#2| |#2|)) (-15 -3245 (|#2| |#2|)) (-15 -2607 (|#2| |#2|)) (-15 -3655 (|#2| |#2|)) (-15 -4312 (|#2| |#2|)) (-15 -3133 (|#2| |#2|)) (-15 -2810 (|#2| |#2|)) (-15 -3022 (|#2| |#2|)) (IF (|has| |#1| (-896 |#1|)) (IF (|has| |#1| (-623 (-902 |#1|))) (IF (|has| |#2| (-623 (-902 |#1|))) (IF (|has| |#2| (-896 |#1|)) (-15 -3642 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-461) (-13 (-439 |#1|) (-1215))) (T -1221)) +((-3642 (*1 *2 *2) (-12 (-4 *3 (-623 (-902 *3))) (-4 *3 (-896 *3)) (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-623 (-902 *3))) (-4 *2 (-896 *3)) (-4 *2 (-13 (-439 *3) (-1215))))) (-3022 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-2810 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-3133 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-4312 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-3655 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-2607 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-3245 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-4018 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-2668 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-3263 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-2934 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-2216 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-2657 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-3136 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-1362 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-3186 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-3662 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-3517 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-2789 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-4217 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-4391 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-1925 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-4371 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-2153 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-2954 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-1953 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215))))) (-2127 (*1 *2 *2) (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) (-4 *2 (-13 (-439 *3) (-1215)))))) +(-10 -7 (-15 -2127 (|#2| |#2|)) (-15 -1953 (|#2| |#2|)) (-15 -2954 (|#2| |#2|)) (-15 -2153 (|#2| |#2|)) (-15 -4371 (|#2| |#2|)) (-15 -1925 (|#2| |#2|)) (-15 -4391 (|#2| |#2|)) (-15 -4217 (|#2| |#2|)) (-15 -2789 (|#2| |#2|)) (-15 -3517 (|#2| |#2|)) (-15 -3662 (|#2| |#2|)) (-15 -3186 (|#2| |#2|)) (-15 -1362 (|#2| |#2|)) (-15 -3136 (|#2| |#2|)) (-15 -2657 (|#2| |#2|)) (-15 -2216 (|#2| |#2|)) (-15 -2934 (|#2| |#2|)) (-15 -3263 (|#2| |#2|)) (-15 -2668 (|#2| |#2|)) (-15 -4018 (|#2| |#2|)) (-15 -3245 (|#2| |#2|)) (-15 -2607 (|#2| |#2|)) (-15 -3655 (|#2| |#2|)) (-15 -4312 (|#2| |#2|)) (-15 -3133 (|#2| |#2|)) (-15 -2810 (|#2| |#2|)) (-15 -3022 (|#2| |#2|)) (IF (|has| |#1| (-896 |#1|)) (IF (|has| |#1| (-623 (-902 |#1|))) (IF (|has| |#2| (-623 (-902 |#1|))) (IF (|has| |#2| (-896 |#1|)) (-15 -3642 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-2261 (((-112) |#5| $) 68) (((-112) $) 110)) (-1554 ((|#5| |#5| $) 83)) (-2164 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-4304 (((-653 |#5|) (-653 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-1695 (((-3 $ "failed") (-653 |#5|)) 135)) (-2925 (((-3 $ "failed") $) 120)) (-3760 ((|#5| |#5| $) 102)) (-4310 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-3117 ((|#5| |#5| $) 106)) (-2867 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-2660 (((-2 (|:| -1380 (-653 |#5|)) (|:| -1674 (-653 |#5|))) $) 63)) (-4022 (((-112) |#5| $) 66) (((-112) $) 111)) (-3338 ((|#4| $) 116)) (-3359 (((-3 |#5| "failed") $) 118)) (-2870 (((-653 |#5|) $) 55)) (-3161 (((-112) |#5| $) 75) (((-112) $) 115)) (-3430 ((|#5| |#5| $) 89)) (-2614 (((-112) $ $) 29)) (-1973 (((-112) |#5| $) 71) (((-112) $) 113)) (-1448 ((|#5| |#5| $) 86)) (-2914 (((-3 |#5| "failed") $) 117)) (-2212 (($ $ |#5|) 136)) (-2565 (((-780) $) 60)) (-2955 (($ (-653 |#5|)) 133)) (-4409 (($ $ |#4|) 131)) (-3496 (($ $ |#4|) 129)) (-1388 (($ $) 128)) (-2942 (((-871) $) NIL) (((-653 |#5|) $) 121)) (-3922 (((-780) $) 140)) (-3955 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#5|))) "failed") (-653 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#5|))) "failed") (-653 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-3039 (((-112) $ (-1 (-112) |#5| (-653 |#5|))) 108)) (-3734 (((-653 |#4|) $) 123)) (-4333 (((-112) |#4| $) 126)) (-2981 (((-112) $ $) 20))) +(((-1222 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3922 ((-780) |#1|)) (-15 -2212 (|#1| |#1| |#5|)) (-15 -2164 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4333 ((-112) |#4| |#1|)) (-15 -3734 ((-653 |#4|) |#1|)) (-15 -2925 ((-3 |#1| "failed") |#1|)) (-15 -3359 ((-3 |#5| "failed") |#1|)) (-15 -2914 ((-3 |#5| "failed") |#1|)) (-15 -3117 (|#5| |#5| |#1|)) (-15 -1388 (|#1| |#1|)) (-15 -3760 (|#5| |#5| |#1|)) (-15 -3430 (|#5| |#5| |#1|)) (-15 -1448 (|#5| |#5| |#1|)) (-15 -1554 (|#5| |#5| |#1|)) (-15 -4304 ((-653 |#5|) (-653 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2867 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3161 ((-112) |#1|)) (-15 -1973 ((-112) |#1|)) (-15 -2261 ((-112) |#1|)) (-15 -3039 ((-112) |#1| (-1 (-112) |#5| (-653 |#5|)))) (-15 -3161 ((-112) |#5| |#1|)) (-15 -1973 ((-112) |#5| |#1|)) (-15 -2261 ((-112) |#5| |#1|)) (-15 -4310 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4022 ((-112) |#1|)) (-15 -4022 ((-112) |#5| |#1|)) (-15 -2660 ((-2 (|:| -1380 (-653 |#5|)) (|:| -1674 (-653 |#5|))) |#1|)) (-15 -2565 ((-780) |#1|)) (-15 -2870 ((-653 |#5|) |#1|)) (-15 -3955 ((-3 (-2 (|:| |bas| |#1|) (|:| -2001 (-653 |#5|))) "failed") (-653 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3955 ((-3 (-2 (|:| |bas| |#1|) (|:| -2001 (-653 |#5|))) "failed") (-653 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2614 ((-112) |#1| |#1|)) (-15 -4409 (|#1| |#1| |#4|)) (-15 -3496 (|#1| |#1| |#4|)) (-15 -3338 (|#4| |#1|)) (-15 -1695 ((-3 |#1| "failed") (-653 |#5|))) (-15 -2942 ((-653 |#5|) |#1|)) (-15 -2955 (|#1| (-653 |#5|))) (-15 -2867 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2867 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2164 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2867 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2942 ((-871) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) (-1223 |#2| |#3| |#4| |#5|) (-565) (-802) (-859) (-1077 |#2| |#3| |#4|)) (T -1222)) +NIL +(-10 -8 (-15 -3922 ((-780) |#1|)) (-15 -2212 (|#1| |#1| |#5|)) (-15 -2164 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4333 ((-112) |#4| |#1|)) (-15 -3734 ((-653 |#4|) |#1|)) (-15 -2925 ((-3 |#1| "failed") |#1|)) (-15 -3359 ((-3 |#5| "failed") |#1|)) (-15 -2914 ((-3 |#5| "failed") |#1|)) (-15 -3117 (|#5| |#5| |#1|)) (-15 -1388 (|#1| |#1|)) (-15 -3760 (|#5| |#5| |#1|)) (-15 -3430 (|#5| |#5| |#1|)) (-15 -1448 (|#5| |#5| |#1|)) (-15 -1554 (|#5| |#5| |#1|)) (-15 -4304 ((-653 |#5|) (-653 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2867 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3161 ((-112) |#1|)) (-15 -1973 ((-112) |#1|)) (-15 -2261 ((-112) |#1|)) (-15 -3039 ((-112) |#1| (-1 (-112) |#5| (-653 |#5|)))) (-15 -3161 ((-112) |#5| |#1|)) (-15 -1973 ((-112) |#5| |#1|)) (-15 -2261 ((-112) |#5| |#1|)) (-15 -4310 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4022 ((-112) |#1|)) (-15 -4022 ((-112) |#5| |#1|)) (-15 -2660 ((-2 (|:| -1380 (-653 |#5|)) (|:| -1674 (-653 |#5|))) |#1|)) (-15 -2565 ((-780) |#1|)) (-15 -2870 ((-653 |#5|) |#1|)) (-15 -3955 ((-3 (-2 (|:| |bas| |#1|) (|:| -2001 (-653 |#5|))) "failed") (-653 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3955 ((-3 (-2 (|:| |bas| |#1|) (|:| -2001 (-653 |#5|))) "failed") (-653 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2614 ((-112) |#1| |#1|)) (-15 -4409 (|#1| |#1| |#4|)) (-15 -3496 (|#1| |#1| |#4|)) (-15 -3338 (|#4| |#1|)) (-15 -1695 ((-3 |#1| "failed") (-653 |#5|))) (-15 -2942 ((-653 |#5|) |#1|)) (-15 -2955 (|#1| (-653 |#5|))) (-15 -2867 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2867 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2164 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2867 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2942 ((-871) |#1|)) (-15 -2981 ((-112) |#1| |#1|))) +((-2848 (((-112) $ $) 7)) (-2280 (((-653 (-2 (|:| -1380 $) (|:| -1674 (-653 |#4|)))) (-653 |#4|)) 86)) (-3527 (((-653 $) (-653 |#4|)) 87)) (-4354 (((-653 |#3|) $) 34)) (-2577 (((-112) $) 27)) (-2020 (((-112) $) 18 (|has| |#1| (-565)))) (-2261 (((-112) |#4| $) 102) (((-112) $) 98)) (-1554 ((|#4| |#4| $) 93)) (-2770 (((-2 (|:| |under| $) (|:| -3733 $) (|:| |upper| $)) $ |#3|) 28)) (-3450 (((-112) $ (-780)) 45)) (-2164 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4455))) (((-3 |#4| "failed") $ |#3|) 80)) (-2579 (($) 46 T CONST)) (-2194 (((-112) $) 23 (|has| |#1| (-565)))) (-1849 (((-112) $ $) 25 (|has| |#1| (-565)))) (-2838 (((-112) $ $) 24 (|has| |#1| (-565)))) (-3145 (((-112) $) 26 (|has| |#1| (-565)))) (-4304 (((-653 |#4|) (-653 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2346 (((-653 |#4|) (-653 |#4|) $) 19 (|has| |#1| (-565)))) (-2475 (((-653 |#4|) (-653 |#4|) $) 20 (|has| |#1| (-565)))) (-1695 (((-3 $ "failed") (-653 |#4|)) 37)) (-2205 (($ (-653 |#4|)) 36)) (-2925 (((-3 $ "failed") $) 83)) (-3760 ((|#4| |#4| $) 90)) (-2685 (($ $) 69 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ |#4| $) 68 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4455)))) (-3132 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-565)))) (-4310 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3117 ((|#4| |#4| $) 88)) (-2867 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4455))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4455))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2660 (((-2 (|:| -1380 (-653 |#4|)) (|:| -1674 (-653 |#4|))) $) 106)) (-1863 (((-653 |#4|) $) 53 (|has| $ (-6 -4455)))) (-4022 (((-112) |#4| $) 105) (((-112) $) 104)) (-3338 ((|#3| $) 35)) (-2078 (((-112) $ (-780)) 44)) (-3214 (((-653 |#4|) $) 54 (|has| $ (-6 -4455)))) (-1547 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#4| |#4|) $) 48)) (-1937 (((-653 |#3|) $) 33)) (-1689 (((-112) |#3| $) 32)) (-2673 (((-112) $ (-780)) 43)) (-3180 (((-1171) $) 10)) (-3359 (((-3 |#4| "failed") $) 84)) (-2870 (((-653 |#4|) $) 108)) (-3161 (((-112) |#4| $) 100) (((-112) $) 96)) (-3430 ((|#4| |#4| $) 91)) (-2614 (((-112) $ $) 111)) (-3582 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-565)))) (-1973 (((-112) |#4| $) 101) (((-112) $) 97)) (-1448 ((|#4| |#4| $) 92)) (-3965 (((-1132) $) 11)) (-2914 (((-3 |#4| "failed") $) 85)) (-2036 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2865 (((-3 $ "failed") $ |#4|) 79)) (-2212 (($ $ |#4|) 78)) (-1575 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 |#4|) (-653 |#4|)) 60 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-301 |#4|)) 58 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-653 (-301 |#4|))) 57 (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))))) (-1885 (((-112) $ $) 39)) (-3811 (((-112) $) 42)) (-3508 (($) 41)) (-2565 (((-780) $) 107)) (-3974 (((-780) |#4| $) 55 (-12 (|has| |#4| (-1112)) (|has| $ (-6 -4455)))) (((-780) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4455)))) (-3166 (($ $) 40)) (-1835 (((-545) $) 70 (|has| |#4| (-623 (-545))))) (-2955 (($ (-653 |#4|)) 61)) (-4409 (($ $ |#3|) 29)) (-3496 (($ $ |#3|) 31)) (-1388 (($ $) 89)) (-1456 (($ $ |#3|) 30)) (-2942 (((-871) $) 12) (((-653 |#4|) $) 38)) (-3922 (((-780) $) 77 (|has| |#3| (-376)))) (-3507 (((-112) $ $) 9)) (-3955 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3039 (((-112) $ (-1 (-112) |#4| (-653 |#4|))) 99)) (-1646 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4455)))) (-3734 (((-653 |#3|) $) 82)) (-4333 (((-112) |#3| $) 81)) (-2981 (((-112) $ $) 6)) (-2862 (((-780) $) 47 (|has| $ (-6 -4455))))) +(((-1223 |#1| |#2| |#3| |#4|) (-141) (-565) (-802) (-859) (-1077 |t#1| |t#2| |t#3|)) (T -1223)) +((-2614 (*1 *2 *1 *1) (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-112)))) (-3955 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-565)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2001 (-653 *8)))) (-5 *3 (-653 *8)) (-4 *1 (-1223 *5 *6 *7 *8)))) (-3955 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1077 *6 *7 *8)) (-4 *6 (-565)) (-4 *7 (-802)) (-4 *8 (-859)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2001 (-653 *9)))) (-5 *3 (-653 *9)) (-4 *1 (-1223 *6 *7 *8 *9)))) (-2870 (*1 *2 *1) (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-653 *6)))) (-2565 (*1 *2 *1) (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-780)))) (-2660 (*1 *2 *1) (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-2 (|:| -1380 (-653 *6)) (|:| -1674 (-653 *6)))))) (-4022 (*1 *2 *3 *1) (-12 (-4 *1 (-1223 *4 *5 *6 *3)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112)))) (-4022 (*1 *2 *1) (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-112)))) (-4310 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1223 *5 *6 *7 *3)) (-4 *5 (-565)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-112)))) (-2261 (*1 *2 *3 *1) (-12 (-4 *1 (-1223 *4 *5 *6 *3)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112)))) (-1973 (*1 *2 *3 *1) (-12 (-4 *1 (-1223 *4 *5 *6 *3)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112)))) (-3161 (*1 *2 *3 *1) (-12 (-4 *1 (-1223 *4 *5 *6 *3)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112)))) (-3039 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-653 *7))) (-4 *1 (-1223 *4 *5 *6 *7)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)))) (-2261 (*1 *2 *1) (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-112)))) (-1973 (*1 *2 *1) (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-112)))) (-3161 (*1 *2 *1) (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-112)))) (-2867 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1223 *5 *6 *7 *2)) (-4 *5 (-565)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *2 (-1077 *5 *6 *7)))) (-4304 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-653 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1223 *5 *6 *7 *8)) (-4 *5 (-565)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-1077 *5 *6 *7)))) (-1554 (*1 *2 *2 *1) (-12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5)))) (-1448 (*1 *2 *2 *1) (-12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5)))) (-3430 (*1 *2 *2 *1) (-12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5)))) (-3760 (*1 *2 *2 *1) (-12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5)))) (-1388 (*1 *1 *1) (-12 (-4 *1 (-1223 *2 *3 *4 *5)) (-4 *2 (-565)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *5 (-1077 *2 *3 *4)))) (-3117 (*1 *2 *2 *1) (-12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5)))) (-3527 (*1 *2 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 *1)) (-4 *1 (-1223 *4 *5 *6 *7)))) (-2280 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-653 (-2 (|:| -1380 *1) (|:| -1674 (-653 *7))))) (-5 *3 (-653 *7)) (-4 *1 (-1223 *4 *5 *6 *7)))) (-2914 (*1 *2 *1) (|partial| -12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5)))) (-3359 (*1 *2 *1) (|partial| -12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5)))) (-2925 (*1 *1 *1) (|partial| -12 (-4 *1 (-1223 *2 *3 *4 *5)) (-4 *2 (-565)) (-4 *3 (-802)) (-4 *4 (-859)) (-4 *5 (-1077 *2 *3 *4)))) (-3734 (*1 *2 *1) (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-653 *5)))) (-4333 (*1 *2 *3 *1) (-12 (-4 *1 (-1223 *4 *5 *3 *6)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *3 (-859)) (-4 *6 (-1077 *4 *5 *3)) (-5 *2 (-112)))) (-2164 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1223 *4 *5 *3 *2)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *3 (-859)) (-4 *2 (-1077 *4 *5 *3)))) (-2865 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5)))) (-2212 (*1 *1 *1 *2) (-12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-4 *5 (-376)) (-5 *2 (-780))))) +(-13 (-988 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4455) (-6 -4456) (-15 -2614 ((-112) $ $)) (-15 -3955 ((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |t#4|))) "failed") (-653 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3955 ((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |t#4|))) "failed") (-653 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2870 ((-653 |t#4|) $)) (-15 -2565 ((-780) $)) (-15 -2660 ((-2 (|:| -1380 (-653 |t#4|)) (|:| -1674 (-653 |t#4|))) $)) (-15 -4022 ((-112) |t#4| $)) (-15 -4022 ((-112) $)) (-15 -4310 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2261 ((-112) |t#4| $)) (-15 -1973 ((-112) |t#4| $)) (-15 -3161 ((-112) |t#4| $)) (-15 -3039 ((-112) $ (-1 (-112) |t#4| (-653 |t#4|)))) (-15 -2261 ((-112) $)) (-15 -1973 ((-112) $)) (-15 -3161 ((-112) $)) (-15 -2867 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4304 ((-653 |t#4|) (-653 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1554 (|t#4| |t#4| $)) (-15 -1448 (|t#4| |t#4| $)) (-15 -3430 (|t#4| |t#4| $)) (-15 -3760 (|t#4| |t#4| $)) (-15 -1388 ($ $)) (-15 -3117 (|t#4| |t#4| $)) (-15 -3527 ((-653 $) (-653 |t#4|))) (-15 -2280 ((-653 (-2 (|:| -1380 $) (|:| -1674 (-653 |t#4|)))) (-653 |t#4|))) (-15 -2914 ((-3 |t#4| "failed") $)) (-15 -3359 ((-3 |t#4| "failed") $)) (-15 -2925 ((-3 $ "failed") $)) (-15 -3734 ((-653 |t#3|) $)) (-15 -4333 ((-112) |t#3| $)) (-15 -2164 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2865 ((-3 $ "failed") $ |t#4|)) (-15 -2212 ($ $ |t#4|)) (IF (|has| |t#3| (-376)) (-15 -3922 ((-780) $)) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-622 (-653 |#4|)) . T) ((-622 (-871)) . T) ((-152 |#4|) . T) ((-623 (-545)) |has| |#4| (-623 (-545))) ((-316 |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))) ((-498 |#4|) . T) ((-523 |#4| |#4|) -12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))) ((-988 |#1| |#2| |#3| |#4|) . T) ((-1112) . T) ((-1230) . T)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4354 (((-653 (-1189)) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-2363 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4228 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2342 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2388 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) NIL T CONST)) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-4052 (((-962 |#1|) $ (-780)) 17) (((-962 |#1|) $ (-780) (-780)) NIL)) (-1488 (((-112) $) NIL)) (-2999 (($) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2534 (((-780) $ (-1189)) NIL) (((-780) $ (-1189) (-780)) NIL)) (-1959 (((-112) $) NIL)) (-4325 (($ $ (-573)) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3676 (((-112) $) NIL)) (-4334 (($ $ (-653 (-1189)) (-653 (-540 (-1189)))) NIL) (($ $ (-1189) (-540 (-1189))) NIL) (($ |#1| (-540 (-1189))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3118 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-1626 (($ $ (-1189)) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189) |#1|) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3965 (((-1132) $) NIL)) (-3131 (($ (-1 $) (-1189) |#1|) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2212 (($ $ (-780)) NIL)) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-565)))) (-1608 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2645 (($ $ (-1189) $) NIL) (($ $ (-653 (-1189)) (-653 $)) NIL) (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL)) (-3904 (($ $ (-1189)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL)) (-2565 (((-540 (-1189)) $) NIL)) (-2401 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-4101 (($ $) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-565))) (($ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ (-1189)) NIL) (($ (-962 |#1|)) NIL)) (-4317 ((|#1| $ (-540 (-1189))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL) (((-962 |#1|) $ (-780)) NIL)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2439 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2413 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2520 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-3609 (($ $ (-1189)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1224 |#1|) (-13 (-749 |#1| (-1189)) (-10 -8 (-15 -4317 ((-962 |#1|) $ (-780))) (-15 -2942 ($ (-1189))) (-15 -2942 ($ (-962 |#1|))) (IF (|has| |#1| (-38 (-416 (-573)))) (PROGN (-15 -1626 ($ $ (-1189) |#1|)) (-15 -3131 ($ (-1 $) (-1189) |#1|))) |%noBranch|))) (-1061)) (T -1224)) +((-4317 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-5 *2 (-962 *4)) (-5 *1 (-1224 *4)) (-4 *4 (-1061)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1224 *3)) (-4 *3 (-1061)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-1061)) (-5 *1 (-1224 *3)))) (-1626 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *1 (-1224 *3)) (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)))) (-3131 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1224 *4))) (-5 *3 (-1189)) (-5 *1 (-1224 *4)) (-4 *4 (-38 (-416 (-573)))) (-4 *4 (-1061))))) +(-13 (-749 |#1| (-1189)) (-10 -8 (-15 -4317 ((-962 |#1|) $ (-780))) (-15 -2942 ($ (-1189))) (-15 -2942 ($ (-962 |#1|))) (IF (|has| |#1| (-38 (-416 (-573)))) (PROGN (-15 -1626 ($ $ (-1189) |#1|)) (-15 -3131 ($ (-1 $) (-1189) |#1|))) |%noBranch|))) +((-1909 (($ |#1| (-653 (-653 (-953 (-227)))) (-112)) 19)) (-1723 (((-112) $ (-112)) 18)) (-3453 (((-112) $) 17)) (-3416 (((-653 (-653 (-953 (-227)))) $) 13)) (-3234 ((|#1| $) 8)) (-1355 (((-112) $) 15))) +(((-1225 |#1|) (-10 -8 (-15 -3234 (|#1| $)) (-15 -3416 ((-653 (-653 (-953 (-227)))) $)) (-15 -1355 ((-112) $)) (-15 -3453 ((-112) $)) (-15 -1723 ((-112) $ (-112))) (-15 -1909 ($ |#1| (-653 (-653 (-953 (-227)))) (-112)))) (-986)) (T -1225)) +((-1909 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-653 (-653 (-953 (-227))))) (-5 *4 (-112)) (-5 *1 (-1225 *2)) (-4 *2 (-986)))) (-1723 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1225 *3)) (-4 *3 (-986)))) (-3453 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1225 *3)) (-4 *3 (-986)))) (-1355 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1225 *3)) (-4 *3 (-986)))) (-3416 (*1 *2 *1) (-12 (-5 *2 (-653 (-653 (-953 (-227))))) (-5 *1 (-1225 *3)) (-4 *3 (-986)))) (-3234 (*1 *2 *1) (-12 (-5 *1 (-1225 *2)) (-4 *2 (-986))))) +(-10 -8 (-15 -3234 (|#1| $)) (-15 -3416 ((-653 (-653 (-953 (-227)))) $)) (-15 -1355 ((-112) $)) (-15 -3453 ((-112) $)) (-15 -1723 ((-112) $ (-112))) (-15 -1909 ($ |#1| (-653 (-653 (-953 (-227)))) (-112)))) +((-3690 (((-953 (-227)) (-953 (-227))) 31)) (-3590 (((-953 (-227)) (-227) (-227) (-227) (-227)) 10)) (-3347 (((-653 (-953 (-227))) (-953 (-227)) (-953 (-227)) (-953 (-227)) (-227) (-653 (-653 (-227)))) 56)) (-2658 (((-227) (-953 (-227)) (-953 (-227))) 27)) (-3925 (((-953 (-227)) (-953 (-227)) (-953 (-227))) 28)) (-2822 (((-653 (-653 (-227))) (-573)) 44)) (-3093 (((-953 (-227)) (-953 (-227)) (-953 (-227))) 26)) (-3077 (((-953 (-227)) (-953 (-227)) (-953 (-227))) 24)) (* (((-953 (-227)) (-227) (-953 (-227))) 22))) +(((-1226) (-10 -7 (-15 -3590 ((-953 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-953 (-227)) (-227) (-953 (-227)))) (-15 -3077 ((-953 (-227)) (-953 (-227)) (-953 (-227)))) (-15 -3093 ((-953 (-227)) (-953 (-227)) (-953 (-227)))) (-15 -2658 ((-227) (-953 (-227)) (-953 (-227)))) (-15 -3925 ((-953 (-227)) (-953 (-227)) (-953 (-227)))) (-15 -3690 ((-953 (-227)) (-953 (-227)))) (-15 -2822 ((-653 (-653 (-227))) (-573))) (-15 -3347 ((-653 (-953 (-227))) (-953 (-227)) (-953 (-227)) (-953 (-227)) (-227) (-653 (-653 (-227))))))) (T -1226)) +((-3347 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-653 (-653 (-227)))) (-5 *4 (-227)) (-5 *2 (-653 (-953 *4))) (-5 *1 (-1226)) (-5 *3 (-953 *4)))) (-2822 (*1 *2 *3) (-12 (-5 *3 (-573)) (-5 *2 (-653 (-653 (-227)))) (-5 *1 (-1226)))) (-3690 (*1 *2 *2) (-12 (-5 *2 (-953 (-227))) (-5 *1 (-1226)))) (-3925 (*1 *2 *2 *2) (-12 (-5 *2 (-953 (-227))) (-5 *1 (-1226)))) (-2658 (*1 *2 *3 *3) (-12 (-5 *3 (-953 (-227))) (-5 *2 (-227)) (-5 *1 (-1226)))) (-3093 (*1 *2 *2 *2) (-12 (-5 *2 (-953 (-227))) (-5 *1 (-1226)))) (-3077 (*1 *2 *2 *2) (-12 (-5 *2 (-953 (-227))) (-5 *1 (-1226)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-953 (-227))) (-5 *3 (-227)) (-5 *1 (-1226)))) (-3590 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-953 (-227))) (-5 *1 (-1226)) (-5 *3 (-227))))) +(-10 -7 (-15 -3590 ((-953 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-953 (-227)) (-227) (-953 (-227)))) (-15 -3077 ((-953 (-227)) (-953 (-227)) (-953 (-227)))) (-15 -3093 ((-953 (-227)) (-953 (-227)) (-953 (-227)))) (-15 -2658 ((-227) (-953 (-227)) (-953 (-227)))) (-15 -3925 ((-953 (-227)) (-953 (-227)) (-953 (-227)))) (-15 -3690 ((-953 (-227)) (-953 (-227)))) (-15 -2822 ((-653 (-653 (-227))) (-573))) (-15 -3347 ((-653 (-953 (-227))) (-953 (-227)) (-953 (-227)) (-953 (-227)) (-227) (-653 (-653 (-227)))))) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2164 ((|#1| $ (-780)) 18)) (-4134 (((-780) $) 13)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2942 (((-968 |#1|) $) 12) (($ (-968 |#1|)) 11) (((-871) $) 29 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2981 (((-112) $ $) 22 (|has| |#1| (-1112))))) +(((-1227 |#1|) (-13 (-499 (-968 |#1|)) (-10 -8 (-15 -2164 (|#1| $ (-780))) (-15 -4134 ((-780) $)) (IF (|has| |#1| (-622 (-871))) (-6 (-622 (-871))) |%noBranch|) (IF (|has| |#1| (-1112)) (-6 (-1112)) |%noBranch|))) (-1230)) (T -1227)) +((-2164 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-5 *1 (-1227 *2)) (-4 *2 (-1230)))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-1227 *3)) (-4 *3 (-1230))))) +(-13 (-499 (-968 |#1|)) (-10 -8 (-15 -2164 (|#1| $ (-780))) (-15 -4134 ((-780) $)) (IF (|has| |#1| (-622 (-871))) (-6 (-622 (-871))) |%noBranch|) (IF (|has| |#1| (-1112)) (-6 (-1112)) |%noBranch|))) +((-3423 (((-427 (-1185 (-1185 |#1|))) (-1185 (-1185 |#1|)) (-573)) 94)) (-1945 (((-427 (-1185 (-1185 |#1|))) (-1185 (-1185 |#1|))) 86)) (-3441 (((-427 (-1185 (-1185 |#1|))) (-1185 (-1185 |#1|))) 70))) +(((-1228 |#1|) (-10 -7 (-15 -1945 ((-427 (-1185 (-1185 |#1|))) (-1185 (-1185 |#1|)))) (-15 -3441 ((-427 (-1185 (-1185 |#1|))) (-1185 (-1185 |#1|)))) (-15 -3423 ((-427 (-1185 (-1185 |#1|))) (-1185 (-1185 |#1|)) (-573)))) (-357)) (T -1228)) +((-3423 (*1 *2 *3 *4) (-12 (-5 *4 (-573)) (-4 *5 (-357)) (-5 *2 (-427 (-1185 (-1185 *5)))) (-5 *1 (-1228 *5)) (-5 *3 (-1185 (-1185 *5))))) (-3441 (*1 *2 *3) (-12 (-4 *4 (-357)) (-5 *2 (-427 (-1185 (-1185 *4)))) (-5 *1 (-1228 *4)) (-5 *3 (-1185 (-1185 *4))))) (-1945 (*1 *2 *3) (-12 (-4 *4 (-357)) (-5 *2 (-427 (-1185 (-1185 *4)))) (-5 *1 (-1228 *4)) (-5 *3 (-1185 (-1185 *4)))))) +(-10 -7 (-15 -1945 ((-427 (-1185 (-1185 |#1|))) (-1185 (-1185 |#1|)))) (-15 -3441 ((-427 (-1185 (-1185 |#1|))) (-1185 (-1185 |#1|)))) (-15 -3423 ((-427 (-1185 (-1185 |#1|))) (-1185 (-1185 |#1|)) (-573)))) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 9) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-1229) (-1095)) (T -1229)) +NIL +(-1095) +NIL +(((-1230) (-141)) (T -1230)) +NIL +(-13 (-10 -7 (-6 -3520))) +((-2171 (((-112)) 18)) (-2251 (((-1285) (-653 |#1|) (-653 |#1|)) 22) (((-1285) (-653 |#1|)) 23)) (-2078 (((-112) |#1| |#1|) 37 (|has| |#1| (-859)))) (-2673 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-2226 ((|#1| (-653 |#1|)) 38 (|has| |#1| (-859))) ((|#1| (-653 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-3554 (((-2 (|:| -4141 (-653 |#1|)) (|:| -4055 (-653 |#1|)))) 20))) +(((-1231 |#1|) (-10 -7 (-15 -2251 ((-1285) (-653 |#1|))) (-15 -2251 ((-1285) (-653 |#1|) (-653 |#1|))) (-15 -3554 ((-2 (|:| -4141 (-653 |#1|)) (|:| -4055 (-653 |#1|))))) (-15 -2673 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2673 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2226 (|#1| (-653 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2171 ((-112))) (IF (|has| |#1| (-859)) (PROGN (-15 -2226 (|#1| (-653 |#1|))) (-15 -2078 ((-112) |#1| |#1|))) |%noBranch|)) (-1112)) (T -1231)) +((-2078 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-859)) (-4 *3 (-1112)))) (-2226 (*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-4 *2 (-1112)) (-4 *2 (-859)) (-5 *1 (-1231 *2)))) (-2171 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-1112)))) (-2226 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1231 *2)) (-4 *2 (-1112)))) (-2673 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1112)) (-5 *2 (-112)) (-5 *1 (-1231 *3)))) (-2673 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-1112)))) (-3554 (*1 *2) (-12 (-5 *2 (-2 (|:| -4141 (-653 *3)) (|:| -4055 (-653 *3)))) (-5 *1 (-1231 *3)) (-4 *3 (-1112)))) (-2251 (*1 *2 *3 *3) (-12 (-5 *3 (-653 *4)) (-4 *4 (-1112)) (-5 *2 (-1285)) (-5 *1 (-1231 *4)))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-653 *4)) (-4 *4 (-1112)) (-5 *2 (-1285)) (-5 *1 (-1231 *4))))) +(-10 -7 (-15 -2251 ((-1285) (-653 |#1|))) (-15 -2251 ((-1285) (-653 |#1|) (-653 |#1|))) (-15 -3554 ((-2 (|:| -4141 (-653 |#1|)) (|:| -4055 (-653 |#1|))))) (-15 -2673 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2673 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2226 (|#1| (-653 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2171 ((-112))) (IF (|has| |#1| (-859)) (PROGN (-15 -2226 (|#1| (-653 |#1|))) (-15 -2078 ((-112) |#1| |#1|))) |%noBranch|)) +((-3431 (((-1285) (-653 (-1189)) (-653 (-1189))) 14) (((-1285) (-653 (-1189))) 12)) (-3490 (((-1285)) 16)) (-2044 (((-2 (|:| -4055 (-653 (-1189))) (|:| -4141 (-653 (-1189))))) 20))) +(((-1232) (-10 -7 (-15 -3431 ((-1285) (-653 (-1189)))) (-15 -3431 ((-1285) (-653 (-1189)) (-653 (-1189)))) (-15 -2044 ((-2 (|:| -4055 (-653 (-1189))) (|:| -4141 (-653 (-1189)))))) (-15 -3490 ((-1285))))) (T -1232)) +((-3490 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-1232)))) (-2044 (*1 *2) (-12 (-5 *2 (-2 (|:| -4055 (-653 (-1189))) (|:| -4141 (-653 (-1189))))) (-5 *1 (-1232)))) (-3431 (*1 *2 *3 *3) (-12 (-5 *3 (-653 (-1189))) (-5 *2 (-1285)) (-5 *1 (-1232)))) (-3431 (*1 *2 *3) (-12 (-5 *3 (-653 (-1189))) (-5 *2 (-1285)) (-5 *1 (-1232))))) +(-10 -7 (-15 -3431 ((-1285) (-653 (-1189)))) (-15 -3431 ((-1285) (-653 (-1189)) (-653 (-1189)))) (-15 -2044 ((-2 (|:| -4055 (-653 (-1189))) (|:| -4141 (-653 (-1189)))))) (-15 -3490 ((-1285)))) +((-4285 (($ $) 17)) (-2696 (((-112) $) 28))) +(((-1233 |#1|) (-10 -8 (-15 -4285 (|#1| |#1|)) (-15 -2696 ((-112) |#1|))) (-1234)) (T -1233)) +NIL +(-10 -8 (-15 -4285 (|#1| |#1|)) (-15 -2696 ((-112) |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-2983 (((-3 $ "failed") $ $) 20)) (-4285 (($ $) 57)) (-2427 (((-427 $) $) 58)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-2696 (((-112) $) 59)) (-1959 (((-112) $) 35)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-4218 (((-427 $) $) 56)) (-2837 (((-3 $ "failed") $ $) 48)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27))) +(((-1234) (-141)) (T -1234)) +((-2696 (*1 *2 *1) (-12 (-4 *1 (-1234)) (-5 *2 (-112)))) (-2427 (*1 *2 *1) (-12 (-5 *2 (-427 *1)) (-4 *1 (-1234)))) (-4285 (*1 *1 *1) (-4 *1 (-1234))) (-4218 (*1 *2 *1) (-12 (-5 *2 (-427 *1)) (-4 *1 (-1234))))) +(-13 (-461) (-10 -8 (-15 -2696 ((-112) $)) (-15 -2427 ((-427 $) $)) (-15 -4285 ($ $)) (-15 -4218 ((-427 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-625 (-573)) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-297) . T) ((-461) . T) ((-565) . T) ((-655 (-573)) . T) ((-655 $) . T) ((-657 $) . T) ((-649 $) . T) ((-726 $) . T) ((-735) . T) ((-1063 $) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) +((-2848 (((-112) $ $) NIL)) (-1486 (((-780)) NIL)) (-2579 (($) NIL T CONST)) (-2819 (($) NIL)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-3751 (($ $ $) NIL) (($) NIL T CONST)) (-3589 (((-931) $) NIL)) (-3180 (((-1171) $) NIL)) (-2575 (($ (-931)) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-1752 (($ $ $) NIL)) (-1741 (($ $ $) NIL)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL))) +(((-1235) (-13 (-853) (-10 -8 (-15 -1741 ($ $ $)) (-15 -1752 ($ $ $)) (-15 -2579 ($) -1705)))) (T -1235)) +((-1741 (*1 *1 *1 *1) (-5 *1 (-1235))) (-1752 (*1 *1 *1 *1) (-5 *1 (-1235))) (-2579 (*1 *1) (-5 *1 (-1235)))) +(-13 (-853) (-10 -8 (-15 -1741 ($ $ $)) (-15 -1752 ($ $ $)) (-15 -2579 ($) -1705))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 16))) -((-2849 (((-112) $ $) NIL)) (-1487 (((-781)) NIL)) (-3426 (($) NIL T CONST)) (-2820 (($) NIL)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-4257 (($ $ $) NIL) (($) NIL T CONST)) (-4115 (((-932) $) NIL)) (-4136 (((-1172) $) NIL)) (-2576 (($ (-932)) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-1753 (($ $ $) NIL)) (-1743 (($ $ $) NIL)) (-3284 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) NIL))) -(((-1237) (-13 (-854) (-10 -8 (-15 -1743 ($ $ $)) (-15 -1753 ($ $ $)) (-15 -3426 ($) -1706)))) (T -1237)) -((-1743 (*1 *1 *1 *1) (-5 *1 (-1237))) (-1753 (*1 *1 *1 *1) (-5 *1 (-1237))) (-3426 (*1 *1) (-5 *1 (-1237)))) -(-13 (-854) (-10 -8 (-15 -1743 ($ $ $)) (-15 -1753 ($ $ $)) (-15 -3426 ($) -1706))) +((-2848 (((-112) $ $) NIL)) (-1486 (((-780)) NIL)) (-2579 (($) NIL T CONST)) (-2819 (($) NIL)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-3751 (($ $ $) NIL) (($) NIL T CONST)) (-3589 (((-931) $) NIL)) (-3180 (((-1171) $) NIL)) (-2575 (($ (-931)) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-1752 (($ $ $) NIL)) (-1741 (($ $ $) NIL)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL))) +(((-1236) (-13 (-853) (-10 -8 (-15 -1741 ($ $ $)) (-15 -1752 ($ $ $)) (-15 -2579 ($) -1705)))) (T -1236)) +((-1741 (*1 *1 *1 *1) (-5 *1 (-1236))) (-1752 (*1 *1 *1 *1) (-5 *1 (-1236))) (-2579 (*1 *1) (-5 *1 (-1236)))) +(-13 (-853) (-10 -8 (-15 -1741 ($ $ $)) (-15 -1752 ($ $ $)) (-15 -2579 ($) -1705))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 32))) -((-2849 (((-112) $ $) NIL)) (-1487 (((-781)) NIL)) (-3426 (($) NIL T CONST)) (-2820 (($) NIL)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-4257 (($ $ $) NIL) (($) NIL T CONST)) (-4115 (((-932) $) NIL)) (-4136 (((-1172) $) NIL)) (-2576 (($ (-932)) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-1753 (($ $ $) NIL)) (-1743 (($ $ $) NIL)) (-3284 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) NIL))) -(((-1238) (-13 (-854) (-10 -8 (-15 -1743 ($ $ $)) (-15 -1753 ($ $ $)) (-15 -3426 ($) -1706)))) (T -1238)) -((-1743 (*1 *1 *1 *1) (-5 *1 (-1238))) (-1753 (*1 *1 *1 *1) (-5 *1 (-1238))) (-3426 (*1 *1) (-5 *1 (-1238)))) -(-13 (-854) (-10 -8 (-15 -1743 ($ $ $)) (-15 -1753 ($ $ $)) (-15 -3426 ($) -1706))) +((-2848 (((-112) $ $) NIL)) (-1486 (((-780)) NIL)) (-2579 (($) NIL T CONST)) (-2819 (($) NIL)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-3751 (($ $ $) NIL) (($) NIL T CONST)) (-3589 (((-931) $) NIL)) (-3180 (((-1171) $) NIL)) (-2575 (($ (-931)) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-1752 (($ $ $) NIL)) (-1741 (($ $ $) NIL)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL))) +(((-1237) (-13 (-853) (-10 -8 (-15 -1741 ($ $ $)) (-15 -1752 ($ $ $)) (-15 -2579 ($) -1705)))) (T -1237)) +((-1741 (*1 *1 *1 *1) (-5 *1 (-1237))) (-1752 (*1 *1 *1 *1) (-5 *1 (-1237))) (-2579 (*1 *1) (-5 *1 (-1237)))) +(-13 (-853) (-10 -8 (-15 -1741 ($ $ $)) (-15 -1752 ($ $ $)) (-15 -2579 ($) -1705))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 64))) -((-2849 (((-112) $ $) NIL)) (-1487 (((-781)) NIL)) (-3426 (($) NIL T CONST)) (-2820 (($) NIL)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-4257 (($ $ $) NIL) (($) NIL T CONST)) (-4115 (((-932) $) NIL)) (-4136 (((-1172) $) NIL)) (-2576 (($ (-932)) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) NIL)) (-1753 (($ $ $) NIL)) (-1743 (($ $ $) NIL)) (-3284 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL)) (-3007 (((-112) $ $) NIL))) -(((-1239) (-13 (-854) (-10 -8 (-15 -1743 ($ $ $)) (-15 -1753 ($ $ $)) (-15 -3426 ($) -1706)))) (T -1239)) -((-1743 (*1 *1 *1 *1) (-5 *1 (-1239))) (-1753 (*1 *1 *1 *1) (-5 *1 (-1239))) (-3426 (*1 *1) (-5 *1 (-1239)))) -(-13 (-854) (-10 -8 (-15 -1743 ($ $ $)) (-15 -1753 ($ $ $)) (-15 -3426 ($) -1706))) +((-2848 (((-112) $ $) NIL)) (-1486 (((-780)) NIL)) (-2579 (($) NIL T CONST)) (-2819 (($) NIL)) (-3659 (($ $ $) NIL) (($) NIL T CONST)) (-3751 (($ $ $) NIL) (($) NIL T CONST)) (-3589 (((-931) $) NIL)) (-3180 (((-1171) $) NIL)) (-2575 (($ (-931)) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) NIL)) (-1752 (($ $ $) NIL)) (-1741 (($ $ $) NIL)) (-3507 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3015 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL)) (-3005 (((-112) $ $) NIL))) +(((-1238) (-13 (-853) (-10 -8 (-15 -1741 ($ $ $)) (-15 -1752 ($ $ $)) (-15 -2579 ($) -1705)))) (T -1238)) +((-1741 (*1 *1 *1 *1) (-5 *1 (-1238))) (-1752 (*1 *1 *1 *1) (-5 *1 (-1238))) (-2579 (*1 *1) (-5 *1 (-1238)))) +(-13 (-853) (-10 -8 (-15 -1741 ($ $ $)) (-15 -1752 ($ $ $)) (-15 -2579 ($) -1705))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 8))) -((-1777 (((-1245 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1245 |#1| |#3| |#5|)) 23))) -(((-1240 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1777 ((-1245 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1245 |#1| |#3| |#5|)))) (-1062) (-1062) (-1190) (-1190) |#1| |#2|) (T -1240)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1245 *5 *7 *9)) (-4 *5 (-1062)) (-4 *6 (-1062)) (-14 *7 (-1190)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1245 *6 *8 *10)) (-5 *1 (-1240 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1190))))) -(-10 -7 (-15 -1777 ((-1245 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1245 |#1| |#3| |#5|)))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-4355 (((-654 (-1095)) $) 86)) (-1488 (((-1190) $) 117)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-1575 (($ $) 64 (|has| |#1| (-566)))) (-2085 (((-112) $) 66 (|has| |#1| (-566)))) (-2052 (($ $ (-574)) 112) (($ $ (-574) (-574)) 111)) (-1878 (((-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) 118)) (-2364 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-3524 (((-3 $ "failed") $ $) 20)) (-2568 (($ $) 176 (|has| |#1| (-372)))) (-2827 (((-428 $) $) 177 (|has| |#1| (-372)))) (-4229 (($ $) 131 (|has| |#1| (-38 (-417 (-574)))))) (-1600 (((-112) $ $) 167 (|has| |#1| (-372)))) (-2343 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) 133 (|has| |#1| (-38 (-417 (-574)))))) (-3623 (($ (-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) 187)) (-2389 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3426 (($) 18 T CONST)) (-2786 (($ $ $) 171 (|has| |#1| (-372)))) (-1392 (($ $) 72)) (-3434 (((-3 $ "failed") $) 37)) (-3508 (((-417 (-963 |#1|)) $ (-574)) 185 (|has| |#1| (-566))) (((-417 (-963 |#1|)) $ (-574) (-574)) 184 (|has| |#1| (-566)))) (-2797 (($ $ $) 170 (|has| |#1| (-372)))) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) 165 (|has| |#1| (-372)))) (-2257 (((-112) $) 178 (|has| |#1| (-372)))) (-2892 (((-112) $) 85)) (-3000 (($) 159 (|has| |#1| (-38 (-417 (-574)))))) (-3884 (((-574) $) 114) (((-574) $ (-574)) 113)) (-3199 (((-112) $) 35)) (-3460 (($ $ (-574)) 130 (|has| |#1| (-38 (-417 (-574)))))) (-4240 (($ $ (-932)) 115)) (-2503 (($ (-1 |#1| (-574)) $) 186)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) 174 (|has| |#1| (-372)))) (-3869 (((-112) $) 74)) (-4335 (($ |#1| (-574)) 73) (($ $ (-1095) (-574)) 88) (($ $ (-654 (-1095)) (-654 (-574))) 87)) (-1777 (($ (-1 |#1| |#1|) $) 75)) (-3119 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) 77)) (-1370 ((|#1| $) 78)) (-2832 (($ (-654 $)) 163 (|has| |#1| (-372))) (($ $ $) 162 (|has| |#1| (-372)))) (-4136 (((-1172) $) 10)) (-1324 (($ $) 179 (|has| |#1| (-372)))) (-2379 (($ $) 183 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190)) 182 (-2818 (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-970)) (|has| |#1| (-1216)) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-15 -4355 ((-654 (-1190)) |#1|))) (|has| |#1| (-15 -2379 (|#1| |#1| (-1190)))) (|has| |#1| (-38 (-417 (-574)))))))) (-3966 (((-1133) $) 11)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 164 (|has| |#1| (-372)))) (-2873 (($ (-654 $)) 161 (|has| |#1| (-372))) (($ $ $) 160 (|has| |#1| (-372)))) (-4220 (((-428 $) $) 175 (|has| |#1| (-372)))) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 173 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 172 (|has| |#1| (-372)))) (-2533 (($ $ (-574)) 109)) (-2838 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-3471 (((-3 (-654 $) "failed") (-654 $) $) 166 (|has| |#1| (-372)))) (-1609 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-2646 (((-1170 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-574)))))) (-1730 (((-781) $) 168 (|has| |#1| (-372)))) (-2199 ((|#1| $ (-574)) 119) (($ $ $) 95 (|has| (-574) (-1125)))) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 169 (|has| |#1| (-372)))) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) 103 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1190) (-781)) 102 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1190))) 101 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1190)) 100 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) 98 (|has| |#1| (-15 * (|#1| (-574) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (-4202 (((-574) $) 76)) (-2402 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-2256 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2352 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-1651 (($ $) 84)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566)))) (-3087 ((|#1| $ (-574)) 71)) (-3298 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1364 (((-781)) 32 T CONST)) (-3359 ((|#1| $) 116)) (-3284 (((-112) $ $) 9)) (-2441 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) 143 (|has| |#1| (-38 (-417 (-574)))))) (-2069 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2414 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) 141 (|has| |#1| (-38 (-417 (-574)))))) (-3551 ((|#1| $ (-574)) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2521 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2452 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) 139 (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-3610 (($ $ (-654 (-1190)) (-654 (-781))) 107 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1190) (-781)) 106 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1190))) 105 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1190)) 104 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) 99 (|has| |#1| (-15 * (|#1| (-574) |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (-2981 (((-112) $ $) 6)) (-3108 (($ $ |#1|) 70 (|has| |#1| (-372))) (($ $ $) 181 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 180 (|has| |#1| (-372))) (($ $ $) 158 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 129 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) -(((-1241 |#1|) (-141) (-1062)) (T -1241)) -((-3623 (*1 *1 *2) (-12 (-5 *2 (-1170 (-2 (|:| |k| (-574)) (|:| |c| *3)))) (-4 *3 (-1062)) (-4 *1 (-1241 *3)))) (-2503 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-574))) (-4 *1 (-1241 *3)) (-4 *3 (-1062)))) (-3508 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1241 *4)) (-4 *4 (-1062)) (-4 *4 (-566)) (-5 *2 (-417 (-963 *4))))) (-3508 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1241 *4)) (-4 *4 (-1062)) (-4 *4 (-566)) (-5 *2 (-417 (-963 *4))))) (-2379 (*1 *1 *1) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1062)) (-4 *2 (-38 (-417 (-574)))))) (-2379 (*1 *1 *1 *2) (-2818 (-12 (-5 *2 (-1190)) (-4 *1 (-1241 *3)) (-4 *3 (-1062)) (-12 (-4 *3 (-29 (-574))) (-4 *3 (-970)) (-4 *3 (-1216)) (-4 *3 (-38 (-417 (-574)))))) (-12 (-5 *2 (-1190)) (-4 *1 (-1241 *3)) (-4 *3 (-1062)) (-12 (|has| *3 (-15 -4355 ((-654 *2) *3))) (|has| *3 (-15 -2379 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574))))))))) -(-13 (-1259 |t#1| (-574)) (-10 -8 (-15 -3623 ($ (-1170 (-2 (|:| |k| (-574)) (|:| |c| |t#1|))))) (-15 -2503 ($ (-1 |t#1| (-574)) $)) (IF (|has| |t#1| (-566)) (PROGN (-15 -3508 ((-417 (-963 |t#1|)) $ (-574))) (-15 -3508 ((-417 (-963 |t#1|)) $ (-574) (-574)))) |%noBranch|) (IF (|has| |t#1| (-38 (-417 (-574)))) (PROGN (-15 -2379 ($ $)) (IF (|has| |t#1| (-15 -2379 (|t#1| |t#1| (-1190)))) (IF (|has| |t#1| (-15 -4355 ((-654 (-1190)) |t#1|))) (-15 -2379 ($ $ (-1190))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1216)) (IF (|has| |t#1| (-970)) (IF (|has| |t#1| (-29 (-574))) (-15 -2379 ($ $ (-1190))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1015)) (-6 (-1216))) |%noBranch|) (IF (|has| |t#1| (-372)) (-6 (-372)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-574)) . T) ((-25) . T) ((-38 #1=(-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-574) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-574) |#1|))) ((-249) |has| |#1| (-372)) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-294 #0# |#1|) . T) ((-294 $ $) |has| (-574) (-1125)) ((-298) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-315) |has| |#1| (-372)) ((-372) |has| |#1| (-372)) ((-462) |has| |#1| (-372)) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-566) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-656 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-727 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-736) . T) ((-911 (-1190)) -12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))) ((-986 |#1| #0# (-1095)) . T) ((-931) |has| |#1| (-372)) ((-1015) |has| |#1| (-38 (-417 (-574)))) ((-1064 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1064 |#1|) . T) ((-1064 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1069 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1069 |#1|) . T) ((-1069 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1216) |has| |#1| (-38 (-417 (-574)))) ((-1219) |has| |#1| (-38 (-417 (-574)))) ((-1231) . T) ((-1235) |has| |#1| (-372)) ((-1259 |#1| #0#) . T)) -((-3138 (((-112) $) 12)) (-1696 (((-3 |#3| "failed") $) 17) (((-3 (-1190) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) NIL)) (-2206 ((|#3| $) 14) (((-1190) $) NIL) (((-417 (-574)) $) NIL) (((-574) $) NIL))) -(((-1242 |#1| |#2| |#3|) (-10 -8 (-15 -1696 ((-3 (-574) "failed") |#1|)) (-15 -2206 ((-574) |#1|)) (-15 -1696 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2206 ((-417 (-574)) |#1|)) (-15 -1696 ((-3 (-1190) "failed") |#1|)) (-15 -2206 ((-1190) |#1|)) (-15 -1696 ((-3 |#3| "failed") |#1|)) (-15 -2206 (|#3| |#1|)) (-15 -3138 ((-112) |#1|))) (-1243 |#2| |#3|) (-1062) (-1272 |#2|)) (T -1242)) -NIL -(-10 -8 (-15 -1696 ((-3 (-574) "failed") |#1|)) (-15 -2206 ((-574) |#1|)) (-15 -1696 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2206 ((-417 (-574)) |#1|)) (-15 -1696 ((-3 (-1190) "failed") |#1|)) (-15 -2206 ((-1190) |#1|)) (-15 -1696 ((-3 |#3| "failed") |#1|)) (-15 -2206 (|#3| |#1|)) (-15 -3138 ((-112) |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-1528 ((|#2| $) 246 (-2087 (|has| |#2| (-315)) (|has| |#1| (-372))))) (-4355 (((-654 (-1095)) $) 86)) (-1488 (((-1190) $) 117)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-1575 (($ $) 64 (|has| |#1| (-566)))) (-2085 (((-112) $) 66 (|has| |#1| (-566)))) (-2052 (($ $ (-574)) 112) (($ $ (-574) (-574)) 111)) (-1878 (((-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) 118)) (-2248 ((|#2| $) 282)) (-1698 (((-3 |#2| "failed") $) 278)) (-4402 ((|#2| $) 279)) (-2364 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-3524 (((-3 $ "failed") $ $) 20)) (-3972 (((-428 (-1186 $)) (-1186 $)) 255 (-2087 (|has| |#2| (-920)) (|has| |#1| (-372))))) (-2568 (($ $) 176 (|has| |#1| (-372)))) (-2827 (((-428 $) $) 177 (|has| |#1| (-372)))) (-4229 (($ $) 131 (|has| |#1| (-38 (-417 (-574)))))) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) 252 (-2087 (|has| |#2| (-920)) (|has| |#1| (-372))))) (-1600 (((-112) $ $) 167 (|has| |#1| (-372)))) (-2343 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) 133 (|has| |#1| (-38 (-417 (-574)))))) (-2846 (((-574) $) 264 (-2087 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-3623 (($ (-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) 187)) (-2389 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3426 (($) 18 T CONST)) (-1696 (((-3 |#2| "failed") $) 285) (((-3 (-574) "failed") $) 275 (-2087 (|has| |#2| (-1051 (-574))) (|has| |#1| (-372)))) (((-3 (-417 (-574)) "failed") $) 273 (-2087 (|has| |#2| (-1051 (-574))) (|has| |#1| (-372)))) (((-3 (-1190) "failed") $) 257 (-2087 (|has| |#2| (-1051 (-1190))) (|has| |#1| (-372))))) (-2206 ((|#2| $) 286) (((-574) $) 274 (-2087 (|has| |#2| (-1051 (-574))) (|has| |#1| (-372)))) (((-417 (-574)) $) 272 (-2087 (|has| |#2| (-1051 (-574))) (|has| |#1| (-372)))) (((-1190) $) 256 (-2087 (|has| |#2| (-1051 (-1190))) (|has| |#1| (-372))))) (-3327 (($ $) 281) (($ (-574) $) 280)) (-2786 (($ $ $) 171 (|has| |#1| (-372)))) (-1392 (($ $) 72)) (-2590 (((-699 |#2|) (-1281 $)) 236 (|has| |#1| (-372))) (((-699 |#2|) (-699 $)) 235 (|has| |#1| (-372))) (((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) 234 (|has| |#1| (-372))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 233 (-2087 (|has| |#2| (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-699 $)) 232 (-2087 (|has| |#2| (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-1281 $)) 231 (-2087 (|has| |#2| (-649 (-574))) (|has| |#1| (-372))))) (-3434 (((-3 $ "failed") $) 37)) (-3508 (((-417 (-963 |#1|)) $ (-574)) 185 (|has| |#1| (-566))) (((-417 (-963 |#1|)) $ (-574) (-574)) 184 (|has| |#1| (-566)))) (-2820 (($) 248 (-2087 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-2797 (($ $ $) 170 (|has| |#1| (-372)))) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) 165 (|has| |#1| (-372)))) (-2257 (((-112) $) 178 (|has| |#1| (-372)))) (-2756 (((-112) $) 262 (-2087 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-2892 (((-112) $) 85)) (-3000 (($) 159 (|has| |#1| (-38 (-417 (-574)))))) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 240 (-2087 (|has| |#2| (-897 (-388))) (|has| |#1| (-372)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 239 (-2087 (|has| |#2| (-897 (-574))) (|has| |#1| (-372))))) (-3884 (((-574) $) 114) (((-574) $ (-574)) 113)) (-3199 (((-112) $) 35)) (-2141 (($ $) 244 (|has| |#1| (-372)))) (-2966 ((|#2| $) 242 (|has| |#1| (-372)))) (-3460 (($ $ (-574)) 130 (|has| |#1| (-38 (-417 (-574)))))) (-2748 (((-3 $ "failed") $) 276 (-2087 (|has| |#2| (-1165)) (|has| |#1| (-372))))) (-1335 (((-112) $) 263 (-2087 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-4240 (($ $ (-932)) 115)) (-2503 (($ (-1 |#1| (-574)) $) 186)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) 174 (|has| |#1| (-372)))) (-3869 (((-112) $) 74)) (-4335 (($ |#1| (-574)) 73) (($ $ (-1095) (-574)) 88) (($ $ (-654 (-1095)) (-654 (-574))) 87)) (-3659 (($ $ $) 266 (-2087 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-4257 (($ $ $) 267 (-2087 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-1777 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 226 (|has| |#1| (-372)))) (-3119 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) 77)) (-1370 ((|#1| $) 78)) (-2832 (($ (-654 $)) 163 (|has| |#1| (-372))) (($ $ $) 162 (|has| |#1| (-372)))) (-4413 (($ (-574) |#2|) 283)) (-4136 (((-1172) $) 10)) (-1324 (($ $) 179 (|has| |#1| (-372)))) (-2379 (($ $) 183 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190)) 182 (-2818 (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-970)) (|has| |#1| (-1216)) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-15 -4355 ((-654 (-1190)) |#1|))) (|has| |#1| (-15 -2379 (|#1| |#1| (-1190)))) (|has| |#1| (-38 (-417 (-574)))))))) (-3818 (($) 277 (-2087 (|has| |#2| (-1165)) (|has| |#1| (-372))) CONST)) (-3966 (((-1133) $) 11)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 164 (|has| |#1| (-372)))) (-2873 (($ (-654 $)) 161 (|has| |#1| (-372))) (($ $ $) 160 (|has| |#1| (-372)))) (-3191 (($ $) 247 (-2087 (|has| |#2| (-315)) (|has| |#1| (-372))))) (-3595 ((|#2| $) 250 (-2087 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-2560 (((-428 (-1186 $)) (-1186 $)) 253 (-2087 (|has| |#2| (-920)) (|has| |#1| (-372))))) (-2039 (((-428 (-1186 $)) (-1186 $)) 254 (-2087 (|has| |#2| (-920)) (|has| |#1| (-372))))) (-4220 (((-428 $) $) 175 (|has| |#1| (-372)))) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 173 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 172 (|has| |#1| (-372)))) (-2533 (($ $ (-574)) 109)) (-2838 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-3471 (((-3 (-654 $) "failed") (-654 $) $) 166 (|has| |#1| (-372)))) (-1609 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-2646 (((-1170 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-574))))) (($ $ (-1190) |#2|) 225 (-2087 (|has| |#2| (-524 (-1190) |#2|)) (|has| |#1| (-372)))) (($ $ (-654 (-1190)) (-654 |#2|)) 224 (-2087 (|has| |#2| (-524 (-1190) |#2|)) (|has| |#1| (-372)))) (($ $ (-654 (-302 |#2|))) 223 (-2087 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ (-302 |#2|)) 222 (-2087 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ |#2| |#2|) 221 (-2087 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ (-654 |#2|) (-654 |#2|)) 220 (-2087 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372))))) (-1730 (((-781) $) 168 (|has| |#1| (-372)))) (-2199 ((|#1| $ (-574)) 119) (($ $ $) 95 (|has| (-574) (-1125))) (($ $ |#2|) 219 (-2087 (|has| |#2| (-294 |#2| |#2|)) (|has| |#1| (-372))))) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 169 (|has| |#1| (-372)))) (-3905 (($ $ (-1 |#2| |#2|)) 230 (|has| |#1| (-372))) (($ $ (-1 |#2| |#2|) (-781)) 229 (|has| |#1| (-372))) (($ $ (-781)) 98 (-2818 (-2087 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $) 97 (-2818 (-2087 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1190)) (-654 (-781))) 103 (-2818 (-2087 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-1190) (-781)) 102 (-2818 (-2087 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-654 (-1190))) 101 (-2818 (-2087 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-1190)) 100 (-2818 (-2087 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))))) (-4358 (($ $) 245 (|has| |#1| (-372)))) (-2977 ((|#2| $) 243 (|has| |#1| (-372)))) (-4202 (((-574) $) 76)) (-2402 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-2256 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2352 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-1836 (((-227) $) 261 (-2087 (|has| |#2| (-1035)) (|has| |#1| (-372)))) (((-388) $) 260 (-2087 (|has| |#2| (-1035)) (|has| |#1| (-372)))) (((-546) $) 259 (-2087 (|has| |#2| (-624 (-546))) (|has| |#1| (-372)))) (((-903 (-388)) $) 238 (-2087 (|has| |#2| (-624 (-903 (-388)))) (|has| |#1| (-372)))) (((-903 (-574)) $) 237 (-2087 (|has| |#2| (-624 (-903 (-574)))) (|has| |#1| (-372))))) (-1524 (((-3 (-1281 $) "failed") (-699 $)) 251 (-2087 (-2087 (|has| $ (-146)) (|has| |#2| (-920))) (|has| |#1| (-372))))) (-1651 (($ $) 84)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 284) (($ (-1190)) 258 (-2087 (|has| |#2| (-1051 (-1190))) (|has| |#1| (-372)))) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566)))) (-3087 ((|#1| $ (-574)) 71)) (-3298 (((-3 $ "failed") $) 60 (-2818 (-2087 (-2818 (|has| |#2| (-146)) (-2087 (|has| $ (-146)) (|has| |#2| (-920)))) (|has| |#1| (-372))) (|has| |#1| (-146))))) (-1364 (((-781)) 32 T CONST)) (-3359 ((|#1| $) 116)) (-1801 ((|#2| $) 249 (-2087 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-3284 (((-112) $ $) 9)) (-2441 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) 143 (|has| |#1| (-38 (-417 (-574)))))) (-2069 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2414 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) 141 (|has| |#1| (-38 (-417 (-574)))))) (-3551 ((|#1| $ (-574)) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2521 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2452 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) 139 (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-3482 (($ $) 265 (-2087 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-3610 (($ $ (-1 |#2| |#2|)) 228 (|has| |#1| (-372))) (($ $ (-1 |#2| |#2|) (-781)) 227 (|has| |#1| (-372))) (($ $ (-781)) 99 (-2818 (-2087 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $) 96 (-2818 (-2087 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1190)) (-654 (-781))) 107 (-2818 (-2087 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-1190) (-781)) 106 (-2818 (-2087 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-654 (-1190))) 105 (-2818 (-2087 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-1190)) 104 (-2818 (-2087 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))))) (-3042 (((-112) $ $) 269 (-2087 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3018 (((-112) $ $) 270 (-2087 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-2981 (((-112) $ $) 6)) (-3030 (((-112) $ $) 268 (-2087 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3007 (((-112) $ $) 271 (-2087 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3108 (($ $ |#1|) 70 (|has| |#1| (-372))) (($ $ $) 181 (|has| |#1| (-372))) (($ |#2| |#2|) 241 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 180 (|has| |#1| (-372))) (($ $ $) 158 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 129 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 218 (|has| |#1| (-372))) (($ |#2| $) 217 (|has| |#1| (-372))) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) -(((-1243 |#1| |#2|) (-141) (-1062) (-1272 |t#1|)) (T -1243)) -((-4202 (*1 *2 *1) (-12 (-4 *1 (-1243 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1272 *3)) (-5 *2 (-574)))) (-4413 (*1 *1 *2 *3) (-12 (-5 *2 (-574)) (-4 *4 (-1062)) (-4 *1 (-1243 *4 *3)) (-4 *3 (-1272 *4)))) (-2248 (*1 *2 *1) (-12 (-4 *1 (-1243 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-1272 *3)))) (-3327 (*1 *1 *1) (-12 (-4 *1 (-1243 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-1272 *2)))) (-3327 (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-4 *1 (-1243 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1272 *3)))) (-4402 (*1 *2 *1) (-12 (-4 *1 (-1243 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-1272 *3)))) (-1698 (*1 *2 *1) (|partial| -12 (-4 *1 (-1243 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-1272 *3))))) -(-13 (-1241 |t#1|) (-1051 |t#2|) (-626 |t#2|) (-10 -8 (-15 -4413 ($ (-574) |t#2|)) (-15 -4202 ((-574) $)) (-15 -2248 (|t#2| $)) (-15 -3327 ($ $)) (-15 -3327 ($ (-574) $)) (-15 -4402 (|t#2| $)) (-15 -1698 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-372)) (-6 (-1005 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-574)) . T) ((-25) . T) ((-38 #1=(-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 |#2|) |has| |#1| (-372)) ((-38 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-372)) ((-111 $ $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-132) . T) ((-146) -2818 (-12 (|has| |#1| (-372)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-148) -2818 (-12 (|has| |#1| (-372)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-626 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 #2=(-1190)) -12 (|has| |#1| (-372)) (|has| |#2| (-1051 (-1190)))) ((-626 |#1|) |has| |#1| (-174)) ((-626 |#2|) . T) ((-626 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-624 (-227)) -12 (|has| |#1| (-372)) (|has| |#2| (-1035))) ((-624 (-388)) -12 (|has| |#1| (-372)) (|has| |#2| (-1035))) ((-624 (-546)) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-546)))) ((-624 (-903 (-388))) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-903 (-388))))) ((-624 (-903 (-574))) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-903 (-574))))) ((-235 $) -2818 (-12 (|has| |#1| (-372)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))) ((-233 |#2|) |has| |#1| (-372)) ((-239) -2818 (-12 (|has| |#1| (-372)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))) ((-249) |has| |#1| (-372)) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-294 #0# |#1|) . T) ((-294 |#2| $) -12 (|has| |#1| (-372)) (|has| |#2| (-294 |#2| |#2|))) ((-294 $ $) |has| (-574) (-1125)) ((-298) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-315) |has| |#1| (-372)) ((-317 |#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-317 |#2|))) ((-372) |has| |#1| (-372)) ((-347 |#2|) |has| |#1| (-372)) ((-386 |#2|) |has| |#1| (-372)) ((-410 |#2|) |has| |#1| (-372)) ((-462) |has| |#1| (-372)) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-524 (-1190) |#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-524 (-1190) |#2|))) ((-524 |#2| |#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-317 |#2|))) ((-566) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-656 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 |#2|) |has| |#1| (-372)) ((-656 $) . T) ((-658 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-658 #3=(-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-649 (-574)))) ((-658 |#1|) . T) ((-658 |#2|) |has| |#1| (-372)) ((-658 $) . T) ((-650 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-650 |#1|) |has| |#1| (-174)) ((-650 |#2|) |has| |#1| (-372)) ((-650 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-649 #3#) -12 (|has| |#1| (-372)) (|has| |#2| (-649 (-574)))) ((-649 |#2|) |has| |#1| (-372)) ((-727 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-727 |#1|) |has| |#1| (-174)) ((-727 |#2|) |has| |#1| (-372)) ((-727 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-736) . T) ((-801) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-802) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-804) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-805) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-830) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-858) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-860) -2818 (-12 (|has| |#1| (-372)) (|has| |#2| (-860))) (-12 (|has| |#1| (-372)) (|has| |#2| (-830)))) ((-911 (-1190)) -2818 (-12 (|has| |#1| (-372)) (|has| |#2| (-911 (-1190)))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))) ((-897 (-388)) -12 (|has| |#1| (-372)) (|has| |#2| (-897 (-388)))) ((-897 (-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-897 (-574)))) ((-895 |#2|) |has| |#1| (-372)) ((-920) -12 (|has| |#1| (-372)) (|has| |#2| (-920))) ((-986 |#1| #0# (-1095)) . T) ((-931) |has| |#1| (-372)) ((-1005 |#2|) |has| |#1| (-372)) ((-1015) |has| |#1| (-38 (-417 (-574)))) ((-1035) -12 (|has| |#1| (-372)) (|has| |#2| (-1035))) ((-1051 (-417 (-574))) -12 (|has| |#1| (-372)) (|has| |#2| (-1051 (-574)))) ((-1051 (-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-1051 (-574)))) ((-1051 #2#) -12 (|has| |#1| (-372)) (|has| |#2| (-1051 (-1190)))) ((-1051 |#2|) . T) ((-1064 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1064 |#1|) . T) ((-1064 |#2|) |has| |#1| (-372)) ((-1064 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1069 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1069 |#1|) . T) ((-1069 |#2|) |has| |#1| (-372)) ((-1069 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1165) -12 (|has| |#1| (-372)) (|has| |#2| (-1165))) ((-1216) |has| |#1| (-38 (-417 (-574)))) ((-1219) |has| |#1| (-38 (-417 (-574)))) ((-1231) . T) ((-1235) |has| |#1| (-372)) ((-1241 |#1|) . T) ((-1259 |#1| #0#) . T)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 81)) (-1528 ((|#2| $) NIL (-12 (|has| |#2| (-315)) (|has| |#1| (-372))))) (-4355 (((-654 (-1095)) $) NIL)) (-1488 (((-1190) $) 100)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-1575 (($ $) NIL (|has| |#1| (-566)))) (-2085 (((-112) $) NIL (|has| |#1| (-566)))) (-2052 (($ $ (-574)) 109) (($ $ (-574) (-574)) 111)) (-1878 (((-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) 51)) (-2248 ((|#2| $) 11)) (-1698 (((-3 |#2| "failed") $) 35)) (-4402 ((|#2| $) 36)) (-2364 (($ $) 206 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 182 (|has| |#1| (-38 (-417 (-574)))))) (-3524 (((-3 $ "failed") $ $) NIL)) (-3972 (((-428 (-1186 $)) (-1186 $)) NIL (-12 (|has| |#2| (-920)) (|has| |#1| (-372))))) (-2568 (($ $) NIL (|has| |#1| (-372)))) (-2827 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4229 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (-12 (|has| |#2| (-920)) (|has| |#1| (-372))))) (-1600 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2343 (($ $) 202 (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) 178 (|has| |#1| (-38 (-417 (-574)))))) (-2846 (((-574) $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-3623 (($ (-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) 59)) (-2389 (($ $) 210 (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) 186 (|has| |#1| (-38 (-417 (-574)))))) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#2| "failed") $) 157) (((-3 (-574) "failed") $) NIL (-12 (|has| |#2| (-1051 (-574))) (|has| |#1| (-372)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#2| (-1051 (-574))) (|has| |#1| (-372)))) (((-3 (-1190) "failed") $) NIL (-12 (|has| |#2| (-1051 (-1190))) (|has| |#1| (-372))))) (-2206 ((|#2| $) 156) (((-574) $) NIL (-12 (|has| |#2| (-1051 (-574))) (|has| |#1| (-372)))) (((-417 (-574)) $) NIL (-12 (|has| |#2| (-1051 (-574))) (|has| |#1| (-372)))) (((-1190) $) NIL (-12 (|has| |#2| (-1051 (-1190))) (|has| |#1| (-372))))) (-3327 (($ $) 65) (($ (-574) $) 28)) (-2786 (($ $ $) NIL (|has| |#1| (-372)))) (-1392 (($ $) NIL)) (-2590 (((-699 |#2|) (-1281 $)) NIL (|has| |#1| (-372))) (((-699 |#2|) (-699 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-1281 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#1| (-372))))) (-3434 (((-3 $ "failed") $) 88)) (-3508 (((-417 (-963 |#1|)) $ (-574)) 124 (|has| |#1| (-566))) (((-417 (-963 |#1|)) $ (-574) (-574)) 126 (|has| |#1| (-566)))) (-2820 (($) NIL (-12 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-2797 (($ $ $) NIL (|has| |#1| (-372)))) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-2257 (((-112) $) NIL (|has| |#1| (-372)))) (-2756 (((-112) $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-2892 (((-112) $) 74)) (-3000 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| |#2| (-897 (-388))) (|has| |#1| (-372)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| |#2| (-897 (-574))) (|has| |#1| (-372))))) (-3884 (((-574) $) 105) (((-574) $ (-574)) 107)) (-3199 (((-112) $) NIL)) (-2141 (($ $) NIL (|has| |#1| (-372)))) (-2966 ((|#2| $) 165 (|has| |#1| (-372)))) (-3460 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2748 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1165)) (|has| |#1| (-372))))) (-1335 (((-112) $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-4240 (($ $ (-932)) 148)) (-2503 (($ (-1 |#1| (-574)) $) 144)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3869 (((-112) $) NIL)) (-4335 (($ |#1| (-574)) 20) (($ $ (-1095) (-574)) NIL) (($ $ (-654 (-1095)) (-654 (-574))) NIL)) (-3659 (($ $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-4257 (($ $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-1777 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-372)))) (-3119 (($ $) 176 (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-2832 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4413 (($ (-574) |#2|) 10)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) 159 (|has| |#1| (-372)))) (-2379 (($ $) 228 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190)) 233 (-2818 (-12 (|has| |#1| (-15 -2379 (|#1| |#1| (-1190)))) (|has| |#1| (-15 -4355 ((-654 (-1190)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-970)) (|has| |#1| (-1216)))))) (-3818 (($) NIL (-12 (|has| |#2| (-1165)) (|has| |#1| (-372))) CONST)) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-372)))) (-2873 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3191 (($ $) NIL (-12 (|has| |#2| (-315)) (|has| |#1| (-372))))) (-3595 ((|#2| $) NIL (-12 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-2560 (((-428 (-1186 $)) (-1186 $)) NIL (-12 (|has| |#2| (-920)) (|has| |#1| (-372))))) (-2039 (((-428 (-1186 $)) (-1186 $)) NIL (-12 (|has| |#2| (-920)) (|has| |#1| (-372))))) (-4220 (((-428 $) $) NIL (|has| |#1| (-372)))) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-2533 (($ $ (-574)) 138)) (-2838 (((-3 $ "failed") $ $) 128 (|has| |#1| (-566)))) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1609 (($ $) 174 (|has| |#1| (-38 (-417 (-574)))))) (-2646 (((-1170 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-574))))) (($ $ (-1190) |#2|) NIL (-12 (|has| |#2| (-524 (-1190) |#2|)) (|has| |#1| (-372)))) (($ $ (-654 (-1190)) (-654 |#2|)) NIL (-12 (|has| |#2| (-524 (-1190) |#2|)) (|has| |#1| (-372)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372))))) (-1730 (((-781) $) NIL (|has| |#1| (-372)))) (-2199 ((|#1| $ (-574)) 103) (($ $ $) 90 (|has| (-574) (-1125))) (($ $ |#2|) NIL (-12 (|has| |#2| (-294 |#2| |#2|)) (|has| |#1| (-372))))) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#1| (-372)))) (-3905 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-372))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#1| (-372))) (($ $ (-781)) NIL (-2818 (-12 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $) 149 (-2818 (-12 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-2818 (-12 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-1190) (-781)) NIL (-2818 (-12 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-654 (-1190))) NIL (-2818 (-12 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-1190)) 153 (-2818 (-12 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))))) (-4358 (($ $) NIL (|has| |#1| (-372)))) (-2977 ((|#2| $) 166 (|has| |#1| (-372)))) (-4202 (((-574) $) 12)) (-2402 (($ $) 212 (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) 188 (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) 208 (|has| |#1| (-38 (-417 (-574)))))) (-2256 (($ $) 184 (|has| |#1| (-38 (-417 (-574)))))) (-2352 (($ $) 204 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 180 (|has| |#1| (-38 (-417 (-574)))))) (-1836 (((-227) $) NIL (-12 (|has| |#2| (-1035)) (|has| |#1| (-372)))) (((-388) $) NIL (-12 (|has| |#2| (-1035)) (|has| |#1| (-372)))) (((-546) $) NIL (-12 (|has| |#2| (-624 (-546))) (|has| |#1| (-372)))) (((-903 (-388)) $) NIL (-12 (|has| |#2| (-624 (-903 (-388)))) (|has| |#1| (-372)))) (((-903 (-574)) $) NIL (-12 (|has| |#2| (-624 (-903 (-574)))) (|has| |#1| (-372))))) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-920)) (|has| |#1| (-372))))) (-1651 (($ $) 136)) (-2943 (((-872) $) 266) (($ (-574)) 24) (($ |#1|) 22 (|has| |#1| (-174))) (($ |#2|) 21) (($ (-1190)) NIL (-12 (|has| |#2| (-1051 (-1190))) (|has| |#1| (-372)))) (($ (-417 (-574))) 169 (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-3087 ((|#1| $ (-574)) 85)) (-3298 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#2| (-920)) (|has| |#1| (-372))) (-12 (|has| |#2| (-146)) (|has| |#1| (-372))) (|has| |#1| (-146))))) (-1364 (((-781)) 155 T CONST)) (-3359 ((|#1| $) 102)) (-1801 ((|#2| $) NIL (-12 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-3284 (((-112) $ $) NIL)) (-2441 (($ $) 218 (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) 194 (|has| |#1| (-38 (-417 (-574)))))) (-2069 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2414 (($ $) 214 (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) 190 (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) 222 (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) 198 (|has| |#1| (-38 (-417 (-574)))))) (-3551 ((|#1| $ (-574)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2521 (($ $) 224 (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) 200 (|has| |#1| (-38 (-417 (-574)))))) (-2452 (($ $) 220 (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) 196 (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) 216 (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) 192 (|has| |#1| (-38 (-417 (-574)))))) (-3482 (($ $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-2133 (($) 13 T CONST)) (-2145 (($) 18 T CONST)) (-3610 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-372))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#1| (-372))) (($ $ (-781)) NIL (-2818 (-12 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $) NIL (-2818 (-12 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-2818 (-12 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-1190) (-781)) NIL (-2818 (-12 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-654 (-1190))) NIL (-2818 (-12 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-1190)) NIL (-2818 (-12 (|has| |#2| (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))))) (-3042 (((-112) $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3018 (((-112) $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-2981 (((-112) $ $) 72)) (-3030 (((-112) $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3007 (((-112) $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3108 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) 163 (|has| |#1| (-372))) (($ |#2| |#2|) 164 (|has| |#1| (-372)))) (-3094 (($ $) 227) (($ $ $) 78)) (-3079 (($ $ $) 76)) (** (($ $ (-932)) NIL) (($ $ (-781)) 84) (($ $ (-574)) 160 (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 172 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-372))) (($ |#2| $) 161 (|has| |#1| (-372))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) -(((-1244 |#1| |#2|) (-1243 |#1| |#2|) (-1062) (-1272 |#1|)) (T -1244)) -NIL -(-1243 |#1| |#2|) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1528 (((-1273 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-315)) (|has| |#1| (-372))))) (-4355 (((-654 (-1095)) $) NIL)) (-1488 (((-1190) $) 10)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1273 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-1575 (($ $) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1273 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2085 (((-112) $) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1273 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2052 (($ $ (-574)) NIL) (($ $ (-574) (-574)) NIL)) (-1878 (((-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) NIL)) (-2248 (((-1273 |#1| |#2| |#3|) $) NIL)) (-1698 (((-3 (-1273 |#1| |#2| |#3|) "failed") $) NIL)) (-4402 (((-1273 |#1| |#2| |#3|) $) NIL)) (-2364 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3524 (((-3 $ "failed") $ $) NIL)) (-3972 (((-428 (-1186 $)) (-1186 $)) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))))) (-2568 (($ $) NIL (|has| |#1| (-372)))) (-2827 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4229 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))))) (-1600 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2343 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2846 (((-574) $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-3623 (($ (-1170 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) NIL)) (-2389 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-1273 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1190) "failed") $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-1051 (-1190))) (|has| |#1| (-372)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-1051 (-574))) (|has| |#1| (-372)))) (((-3 (-574) "failed") $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-1051 (-574))) (|has| |#1| (-372))))) (-2206 (((-1273 |#1| |#2| |#3|) $) NIL) (((-1190) $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-1051 (-1190))) (|has| |#1| (-372)))) (((-417 (-574)) $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-1051 (-574))) (|has| |#1| (-372)))) (((-574) $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-1051 (-574))) (|has| |#1| (-372))))) (-3327 (($ $) NIL) (($ (-574) $) NIL)) (-2786 (($ $ $) NIL (|has| |#1| (-372)))) (-1392 (($ $) NIL)) (-2590 (((-699 (-1273 |#1| |#2| |#3|)) (-1281 $)) NIL (|has| |#1| (-372))) (((-699 (-1273 |#1| |#2| |#3|)) (-699 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -4340 (-699 (-1273 |#1| |#2| |#3|))) (|:| |vec| (-1281 (-1273 |#1| |#2| |#3|)))) (-699 $) (-1281 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-1281 $)) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372))))) (-3434 (((-3 $ "failed") $) NIL)) (-3508 (((-417 (-963 |#1|)) $ (-574)) NIL (|has| |#1| (-566))) (((-417 (-963 |#1|)) $ (-574) (-574)) NIL (|has| |#1| (-566)))) (-2820 (($) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-2797 (($ $ $) NIL (|has| |#1| (-372)))) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-2257 (((-112) $) NIL (|has| |#1| (-372)))) (-2756 (((-112) $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-2892 (((-112) $) NIL)) (-3000 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-897 (-388))) (|has| |#1| (-372)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-897 (-574))) (|has| |#1| (-372))))) (-3884 (((-574) $) NIL) (((-574) $ (-574)) NIL)) (-3199 (((-112) $) NIL)) (-2141 (($ $) NIL (|has| |#1| (-372)))) (-2966 (((-1273 |#1| |#2| |#3|) $) NIL (|has| |#1| (-372)))) (-3460 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2748 (((-3 $ "failed") $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-1165)) (|has| |#1| (-372))))) (-1335 (((-112) $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-4240 (($ $ (-932)) NIL)) (-2503 (($ (-1 |#1| (-574)) $) NIL)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3869 (((-112) $) NIL)) (-4335 (($ |#1| (-574)) 18) (($ $ (-1095) (-574)) NIL) (($ $ (-654 (-1095)) (-654 (-574))) NIL)) (-3659 (($ $ $) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1273 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-4257 (($ $ $) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1273 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-1777 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1273 |#1| |#2| |#3|) (-1273 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-372)))) (-3119 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-2832 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4413 (($ (-574) (-1273 |#1| |#2| |#3|)) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL (|has| |#1| (-372)))) (-2379 (($ $) 27 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190)) NIL (-2818 (-12 (|has| |#1| (-15 -2379 (|#1| |#1| (-1190)))) (|has| |#1| (-15 -4355 ((-654 (-1190)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-970)) (|has| |#1| (-1216))))) (($ $ (-1277 |#2|)) 28 (|has| |#1| (-38 (-417 (-574)))))) (-3818 (($) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-1165)) (|has| |#1| (-372))) CONST)) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-372)))) (-2873 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3191 (($ $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-315)) (|has| |#1| (-372))))) (-3595 (((-1273 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-2560 (((-428 (-1186 $)) (-1186 $)) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))))) (-2039 (((-428 (-1186 $)) (-1186 $)) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))))) (-4220 (((-428 $) $) NIL (|has| |#1| (-372)))) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-2533 (($ $ (-574)) NIL)) (-2838 (((-3 $ "failed") $ $) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1273 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1609 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2646 (((-1170 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-574))))) (($ $ (-1190) (-1273 |#1| |#2| |#3|)) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-524 (-1190) (-1273 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-1190)) (-654 (-1273 |#1| |#2| |#3|))) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-524 (-1190) (-1273 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-302 (-1273 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-317 (-1273 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-302 (-1273 |#1| |#2| |#3|))) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-317 (-1273 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-1273 |#1| |#2| |#3|) (-1273 |#1| |#2| |#3|)) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-317 (-1273 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-1273 |#1| |#2| |#3|)) (-654 (-1273 |#1| |#2| |#3|))) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-317 (-1273 |#1| |#2| |#3|))) (|has| |#1| (-372))))) (-1730 (((-781) $) NIL (|has| |#1| (-372)))) (-2199 ((|#1| $ (-574)) NIL) (($ $ $) NIL (|has| (-574) (-1125))) (($ $ (-1273 |#1| |#2| |#3|)) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-294 (-1273 |#1| |#2| |#3|) (-1273 |#1| |#2| |#3|))) (|has| |#1| (-372))))) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#1| (-372)))) (-3905 (($ $ (-1 (-1273 |#1| |#2| |#3|) (-1273 |#1| |#2| |#3|))) NIL (|has| |#1| (-372))) (($ $ (-1 (-1273 |#1| |#2| |#3|) (-1273 |#1| |#2| |#3|)) (-781)) NIL (|has| |#1| (-372))) (($ $ (-1277 |#2|)) 26) (($ $ (-781)) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $) 25 (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-1190) (-781)) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-654 (-1190))) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-1190)) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))))) (-4358 (($ $) NIL (|has| |#1| (-372)))) (-2977 (((-1273 |#1| |#2| |#3|) $) NIL (|has| |#1| (-372)))) (-4202 (((-574) $) NIL)) (-2402 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2256 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2352 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1836 (((-546) $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-624 (-546))) (|has| |#1| (-372)))) (((-388) $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-1035)) (|has| |#1| (-372)))) (((-227) $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-1035)) (|has| |#1| (-372)))) (((-903 (-388)) $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-624 (-903 (-388)))) (|has| |#1| (-372)))) (((-903 (-574)) $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-624 (-903 (-574)))) (|has| |#1| (-372))))) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-1273 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))))) (-1651 (($ $) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1273 |#1| |#2| |#3|)) NIL) (($ (-1277 |#2|)) 24) (($ (-1190)) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-1051 (-1190))) (|has| |#1| (-372)))) (($ $) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1273 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))) (|has| |#1| (-566)))) (($ (-417 (-574))) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-1051 (-574))) (|has| |#1| (-372))) (|has| |#1| (-38 (-417 (-574))))))) (-3087 ((|#1| $ (-574)) NIL)) (-3298 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| (-1273 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))) (-12 (|has| (-1273 |#1| |#2| |#3|) (-146)) (|has| |#1| (-372))) (|has| |#1| (-146))))) (-1364 (((-781)) NIL T CONST)) (-3359 ((|#1| $) 11)) (-1801 (((-1273 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-3284 (((-112) $ $) NIL)) (-2441 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2069 (((-112) $ $) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1273 |#1| |#2| |#3|) (-920)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2414 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3551 ((|#1| $ (-574)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2521 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2452 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3482 (($ $) NIL (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-2133 (($) 20 T CONST)) (-2145 (($) 15 T CONST)) (-3610 (($ $ (-1 (-1273 |#1| |#2| |#3|) (-1273 |#1| |#2| |#3|))) NIL (|has| |#1| (-372))) (($ $ (-1 (-1273 |#1| |#2| |#3|) (-1273 |#1| |#2| |#3|)) (-781)) NIL (|has| |#1| (-372))) (($ $ (-781)) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-1190) (-781)) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-654 (-1190))) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190)))))) (($ $ (-1190)) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-911 (-1190))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-911 (-1190))))))) (-3042 (((-112) $ $) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1273 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3018 (((-112) $ $) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1273 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-2981 (((-112) $ $) NIL)) (-3030 (((-112) $ $) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1273 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3007 (((-112) $ $) NIL (-2818 (-12 (|has| (-1273 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1273 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3108 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372))) (($ (-1273 |#1| |#2| |#3|) (-1273 |#1| |#2| |#3|)) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) 22)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1273 |#1| |#2| |#3|)) NIL (|has| |#1| (-372))) (($ (-1273 |#1| |#2| |#3|) $) NIL (|has| |#1| (-372))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) -(((-1245 |#1| |#2| |#3|) (-13 (-1243 |#1| (-1273 |#1| |#2| |#3|)) (-10 -8 (-15 -2943 ($ (-1277 |#2|))) (-15 -3905 ($ $ (-1277 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2379 ($ $ (-1277 |#2|))) |%noBranch|))) (-1062) (-1190) |#1|) (T -1245)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1245 *3 *4 *5)) (-4 *3 (-1062)) (-14 *5 *3))) (-3905 (*1 *1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1245 *3 *4 *5)) (-4 *3 (-1062)) (-14 *5 *3))) (-2379 (*1 *1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1245 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-14 *5 *3)))) -(-13 (-1243 |#1| (-1273 |#1| |#2| |#3|)) (-10 -8 (-15 -2943 ($ (-1277 |#2|))) (-15 -3905 ($ $ (-1277 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2379 ($ $ (-1277 |#2|))) |%noBranch|))) -((-1461 (((-2 (|:| |contp| (-574)) (|:| -4219 (-654 (-2 (|:| |irr| |#1|) (|:| -3186 (-574)))))) |#1| (-112)) 13)) (-3629 (((-428 |#1|) |#1|) 26)) (-4220 (((-428 |#1|) |#1|) 24))) -(((-1246 |#1|) (-10 -7 (-15 -4220 ((-428 |#1|) |#1|)) (-15 -3629 ((-428 |#1|) |#1|)) (-15 -1461 ((-2 (|:| |contp| (-574)) (|:| -4219 (-654 (-2 (|:| |irr| |#1|) (|:| -3186 (-574)))))) |#1| (-112)))) (-1257 (-574))) (T -1246)) -((-1461 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-574)) (|:| -4219 (-654 (-2 (|:| |irr| *3) (|:| -3186 (-574))))))) (-5 *1 (-1246 *3)) (-4 *3 (-1257 (-574))))) (-3629 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-1246 *3)) (-4 *3 (-1257 (-574))))) (-4220 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-1246 *3)) (-4 *3 (-1257 (-574)))))) -(-10 -7 (-15 -4220 ((-428 |#1|) |#1|)) (-15 -3629 ((-428 |#1|) |#1|)) (-15 -1461 ((-2 (|:| |contp| (-574)) (|:| -4219 (-654 (-2 (|:| |irr| |#1|) (|:| -3186 (-574)))))) |#1| (-112)))) -((-1777 (((-1170 |#2|) (-1 |#2| |#1|) (-1248 |#1|)) 23 (|has| |#1| (-858))) (((-1248 |#2|) (-1 |#2| |#1|) (-1248 |#1|)) 17))) -(((-1247 |#1| |#2|) (-10 -7 (-15 -1777 ((-1248 |#2|) (-1 |#2| |#1|) (-1248 |#1|))) (IF (|has| |#1| (-858)) (-15 -1777 ((-1170 |#2|) (-1 |#2| |#1|) (-1248 |#1|))) |%noBranch|)) (-1231) (-1231)) (T -1247)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1248 *5)) (-4 *5 (-858)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-1170 *6)) (-5 *1 (-1247 *5 *6)))) (-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1248 *5)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-1248 *6)) (-5 *1 (-1247 *5 *6))))) -(-10 -7 (-15 -1777 ((-1248 |#2|) (-1 |#2| |#1|) (-1248 |#1|))) (IF (|has| |#1| (-858)) (-15 -1777 ((-1170 |#2|) (-1 |#2| |#1|) (-1248 |#1|))) |%noBranch|)) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3242 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-1777 (((-1170 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-858)))) (-2276 ((|#1| $) 15)) (-2816 ((|#1| $) 12)) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-1953 (((-574) $) 19)) (-2401 ((|#1| $) 18)) (-1965 ((|#1| $) 13)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-4067 (((-112) $) 17)) (-2128 (((-1170 |#1|) $) 41 (|has| |#1| (-858))) (((-1170 |#1|) (-654 $)) 40 (|has| |#1| (-858)))) (-1836 (($ |#1|) 26)) (-2943 (($ (-1107 |#1|)) 25) (((-872) $) 37 (|has| |#1| (-1113)))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-4277 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2733 (($ $ (-574)) 14)) (-2981 (((-112) $ $) 30 (|has| |#1| (-1113))))) -(((-1248 |#1|) (-13 (-1106 |#1|) (-10 -8 (-15 -4277 ($ |#1|)) (-15 -3242 ($ |#1|)) (-15 -2943 ($ (-1107 |#1|))) (-15 -4067 ((-112) $)) (IF (|has| |#1| (-1113)) (-6 (-1113)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-1108 |#1| (-1170 |#1|))) |%noBranch|))) (-1231)) (T -1248)) -((-4277 (*1 *1 *2) (-12 (-5 *1 (-1248 *2)) (-4 *2 (-1231)))) (-3242 (*1 *1 *2) (-12 (-5 *1 (-1248 *2)) (-4 *2 (-1231)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-1107 *3)) (-4 *3 (-1231)) (-5 *1 (-1248 *3)))) (-4067 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1248 *3)) (-4 *3 (-1231))))) -(-13 (-1106 |#1|) (-10 -8 (-15 -4277 ($ |#1|)) (-15 -3242 ($ |#1|)) (-15 -2943 ($ (-1107 |#1|))) (-15 -4067 ((-112) $)) (IF (|has| |#1| (-1113)) (-6 (-1113)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-1108 |#1| (-1170 |#1|))) |%noBranch|))) -((-1777 (((-1254 |#3| |#4|) (-1 |#4| |#2|) (-1254 |#1| |#2|)) 15))) -(((-1249 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1777 ((-1254 |#3| |#4|) (-1 |#4| |#2|) (-1254 |#1| |#2|)))) (-1190) (-1062) (-1190) (-1062)) (T -1249)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1254 *5 *6)) (-14 *5 (-1190)) (-4 *6 (-1062)) (-4 *8 (-1062)) (-5 *2 (-1254 *7 *8)) (-5 *1 (-1249 *5 *6 *7 *8)) (-14 *7 (-1190))))) -(-10 -7 (-15 -1777 ((-1254 |#3| |#4|) (-1 |#4| |#2|) (-1254 |#1| |#2|)))) -((-4098 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-1907 ((|#1| |#3|) 13)) (-2790 ((|#3| |#3|) 19))) -(((-1250 |#1| |#2| |#3|) (-10 -7 (-15 -1907 (|#1| |#3|)) (-15 -2790 (|#3| |#3|)) (-15 -4098 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-566) (-1005 |#1|) (-1257 |#2|)) (T -1250)) -((-4098 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-1005 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1250 *4 *5 *3)) (-4 *3 (-1257 *5)))) (-2790 (*1 *2 *2) (-12 (-4 *3 (-566)) (-4 *4 (-1005 *3)) (-5 *1 (-1250 *3 *4 *2)) (-4 *2 (-1257 *4)))) (-1907 (*1 *2 *3) (-12 (-4 *4 (-1005 *2)) (-4 *2 (-566)) (-5 *1 (-1250 *2 *4 *3)) (-4 *3 (-1257 *4))))) -(-10 -7 (-15 -1907 (|#1| |#3|)) (-15 -2790 (|#3| |#3|)) (-15 -4098 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-2509 (((-3 |#2| "failed") |#2| (-781) |#1|) 35)) (-3073 (((-3 |#2| "failed") |#2| (-781)) 36)) (-2430 (((-3 (-2 (|:| -3891 |#2|) (|:| -3904 |#2|)) "failed") |#2|) 50)) (-2201 (((-654 |#2|) |#2|) 52)) (-1754 (((-3 |#2| "failed") |#2| |#2|) 46))) -(((-1251 |#1| |#2|) (-10 -7 (-15 -3073 ((-3 |#2| "failed") |#2| (-781))) (-15 -2509 ((-3 |#2| "failed") |#2| (-781) |#1|)) (-15 -1754 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2430 ((-3 (-2 (|:| -3891 |#2|) (|:| -3904 |#2|)) "failed") |#2|)) (-15 -2201 ((-654 |#2|) |#2|))) (-13 (-566) (-148)) (-1257 |#1|)) (T -1251)) -((-2201 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-148))) (-5 *2 (-654 *3)) (-5 *1 (-1251 *4 *3)) (-4 *3 (-1257 *4)))) (-2430 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-566) (-148))) (-5 *2 (-2 (|:| -3891 *3) (|:| -3904 *3))) (-5 *1 (-1251 *4 *3)) (-4 *3 (-1257 *4)))) (-1754 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-1251 *3 *2)) (-4 *2 (-1257 *3)))) (-2509 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-781)) (-4 *4 (-13 (-566) (-148))) (-5 *1 (-1251 *4 *2)) (-4 *2 (-1257 *4)))) (-3073 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-781)) (-4 *4 (-13 (-566) (-148))) (-5 *1 (-1251 *4 *2)) (-4 *2 (-1257 *4))))) -(-10 -7 (-15 -3073 ((-3 |#2| "failed") |#2| (-781))) (-15 -2509 ((-3 |#2| "failed") |#2| (-781) |#1|)) (-15 -1754 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2430 ((-3 (-2 (|:| -3891 |#2|) (|:| -3904 |#2|)) "failed") |#2|)) (-15 -2201 ((-654 |#2|) |#2|))) -((-3823 (((-3 (-2 (|:| -1411 |#2|) (|:| -2766 |#2|)) "failed") |#2| |#2|) 30))) -(((-1252 |#1| |#2|) (-10 -7 (-15 -3823 ((-3 (-2 (|:| -1411 |#2|) (|:| -2766 |#2|)) "failed") |#2| |#2|))) (-566) (-1257 |#1|)) (T -1252)) -((-3823 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-566)) (-5 *2 (-2 (|:| -1411 *3) (|:| -2766 *3))) (-5 *1 (-1252 *4 *3)) (-4 *3 (-1257 *4))))) -(-10 -7 (-15 -3823 ((-3 (-2 (|:| -1411 |#2|) (|:| -2766 |#2|)) "failed") |#2| |#2|))) -((-3472 ((|#2| |#2| |#2|) 22)) (-1520 ((|#2| |#2| |#2|) 36)) (-2249 ((|#2| |#2| |#2| (-781) (-781)) 44))) -(((-1253 |#1| |#2|) (-10 -7 (-15 -3472 (|#2| |#2| |#2|)) (-15 -1520 (|#2| |#2| |#2|)) (-15 -2249 (|#2| |#2| |#2| (-781) (-781)))) (-1062) (-1257 |#1|)) (T -1253)) -((-2249 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-781)) (-4 *4 (-1062)) (-5 *1 (-1253 *4 *2)) (-4 *2 (-1257 *4)))) (-1520 (*1 *2 *2 *2) (-12 (-4 *3 (-1062)) (-5 *1 (-1253 *3 *2)) (-4 *2 (-1257 *3)))) (-3472 (*1 *2 *2 *2) (-12 (-4 *3 (-1062)) (-5 *1 (-1253 *3 *2)) (-4 *2 (-1257 *3))))) -(-10 -7 (-15 -3472 (|#2| |#2| |#2|)) (-15 -1520 (|#2| |#2| |#2|)) (-15 -2249 (|#2| |#2| |#2| (-781) (-781)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-2882 (((-1281 |#2|) $ (-781)) NIL)) (-4355 (((-654 (-1095)) $) NIL)) (-4176 (($ (-1186 |#2|)) NIL)) (-4194 (((-1186 $) $ (-1095)) NIL) (((-1186 |#2|) $) NIL)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#2| (-566)))) (-1575 (($ $) NIL (|has| |#2| (-566)))) (-2085 (((-112) $) NIL (|has| |#2| (-566)))) (-1757 (((-781) $) NIL) (((-781) $ (-654 (-1095))) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-1904 (($ $ $) NIL (|has| |#2| (-566)))) (-3972 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-2568 (($ $) NIL (|has| |#2| (-462)))) (-2827 (((-428 $) $) NIL (|has| |#2| (-462)))) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-1600 (((-112) $ $) NIL (|has| |#2| (-372)))) (-1852 (($ $ (-781)) NIL)) (-1690 (($ $ (-781)) NIL)) (-3777 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-462)))) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1051 (-574)))) (((-3 (-1095) "failed") $) NIL)) (-2206 ((|#2| $) NIL) (((-417 (-574)) $) NIL (|has| |#2| (-1051 (-417 (-574))))) (((-574) $) NIL (|has| |#2| (-1051 (-574)))) (((-1095) $) NIL)) (-1463 (($ $ $ (-1095)) NIL (|has| |#2| (-174))) ((|#2| $ $) NIL (|has| |#2| (-174)))) (-2786 (($ $ $) NIL (|has| |#2| (-372)))) (-1392 (($ $) NIL)) (-2590 (((-699 (-574)) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -4340 (-699 |#2|)) (|:| |vec| (-1281 |#2|))) (-699 $) (-1281 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1281 $)) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2797 (($ $ $) NIL (|has| |#2| (-372)))) (-3385 (($ $ $) NIL)) (-1903 (($ $ $) NIL (|has| |#2| (-566)))) (-2853 (((-2 (|:| -1858 |#2|) (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#2| (-566)))) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#2| (-372)))) (-1569 (($ $) NIL (|has| |#2| (-462))) (($ $ (-1095)) NIL (|has| |#2| (-462)))) (-1380 (((-654 $) $) NIL)) (-2257 (((-112) $) NIL (|has| |#2| (-920)))) (-1661 (($ $ |#2| (-781) $) NIL)) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1095) (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1095) (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-3884 (((-781) $ $) NIL (|has| |#2| (-566)))) (-3199 (((-112) $) NIL)) (-1322 (((-781) $) NIL)) (-2748 (((-3 $ "failed") $) NIL (|has| |#2| (-1165)))) (-4345 (($ (-1186 |#2|) (-1095)) NIL) (($ (-1186 $) (-1095)) NIL)) (-4240 (($ $ (-781)) NIL)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#2| (-372)))) (-3727 (((-654 $) $) NIL)) (-3869 (((-112) $) NIL)) (-4335 (($ |#2| (-781)) 18) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL)) (-2773 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $ (-1095)) NIL) (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL)) (-1742 (((-781) $) NIL) (((-781) $ (-1095)) NIL) (((-654 (-781)) $ (-654 (-1095))) NIL)) (-3708 (($ (-1 (-781) (-781)) $) NIL)) (-1777 (($ (-1 |#2| |#2|) $) NIL)) (-4377 (((-1186 |#2|) $) NIL)) (-2717 (((-3 (-1095) "failed") $) NIL)) (-1359 (($ $) NIL)) (-1370 ((|#2| $) NIL)) (-2832 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-4136 (((-1172) $) NIL)) (-3408 (((-2 (|:| -1411 $) (|:| -2766 $)) $ (-781)) NIL)) (-2755 (((-3 (-654 $) "failed") $) NIL)) (-2415 (((-3 (-654 $) "failed") $) NIL)) (-2241 (((-3 (-2 (|:| |var| (-1095)) (|:| -3715 (-781))) "failed") $) NIL)) (-2379 (($ $) NIL (|has| |#2| (-38 (-417 (-574)))))) (-3818 (($) NIL (|has| |#2| (-1165)) CONST)) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) NIL)) (-1349 ((|#2| $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#2| (-462)))) (-2873 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-2289 (($ $ (-781) |#2| $) NIL)) (-2560 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-2039 (((-428 (-1186 $)) (-1186 $)) NIL (|has| |#2| (-920)))) (-4220 (((-428 $) $) NIL (|has| |#2| (-920)))) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#2| (-372)))) (-2838 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-566)))) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#2| (-372)))) (-2646 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1095) |#2|) NIL) (($ $ (-654 (-1095)) (-654 |#2|)) NIL) (($ $ (-1095) $) NIL) (($ $ (-654 (-1095)) (-654 $)) NIL)) (-1730 (((-781) $) NIL (|has| |#2| (-372)))) (-2199 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-417 $) (-417 $) (-417 $)) NIL (|has| |#2| (-566))) ((|#2| (-417 $) |#2|) NIL (|has| |#2| (-372))) (((-417 $) $ (-417 $)) NIL (|has| |#2| (-566)))) (-3001 (((-3 $ "failed") $ (-781)) NIL)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#2| (-372)))) (-2872 (($ $ (-1095)) NIL (|has| |#2| (-174))) ((|#2| $) NIL (|has| |#2| (-174)))) (-3905 (($ $ (-1095)) NIL) (($ $ (-654 (-1095))) NIL) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL) (($ $ (-781)) NIL) (($ $) NIL) (($ $ (-1190)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-4202 (((-781) $) NIL) (((-781) $ (-1095)) NIL) (((-654 (-781)) $ (-654 (-1095))) NIL)) (-1836 (((-903 (-388)) $) NIL (-12 (|has| (-1095) (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1095) (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1095) (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-3069 ((|#2| $) NIL (|has| |#2| (-462))) (($ $ (-1095)) NIL (|has| |#2| (-462)))) (-1524 (((-3 (-1281 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-920))))) (-2484 (((-3 $ "failed") $ $) NIL (|has| |#2| (-566))) (((-3 (-417 $) "failed") (-417 $) $) NIL (|has| |#2| (-566)))) (-2943 (((-872) $) 13) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-1095)) NIL) (($ (-1277 |#1|)) 20) (($ (-417 (-574))) NIL (-2818 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1051 (-417 (-574)))))) (($ $) NIL (|has| |#2| (-566)))) (-2530 (((-654 |#2|) $) NIL)) (-3087 ((|#2| $ (-781)) NIL) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL)) (-3298 (((-3 $ "failed") $) NIL (-2818 (-12 (|has| $ (-146)) (|has| |#2| (-920))) (|has| |#2| (-146))))) (-1364 (((-781)) NIL T CONST)) (-3772 (($ $ $ (-781)) NIL (|has| |#2| (-174)))) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL (|has| |#2| (-566)))) (-2133 (($) NIL T CONST)) (-2145 (($) 14 T CONST)) (-3610 (($ $ (-1095)) NIL) (($ $ (-654 (-1095))) NIL) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL) (($ $ (-781)) NIL) (($ $) NIL) (($ $ (-1190)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1190) (-781)) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) NIL (|has| |#2| (-911 (-1190)))) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#2| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#2| (-38 (-417 (-574))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1254 |#1| |#2|) (-13 (-1257 |#2|) (-626 (-1277 |#1|)) (-10 -8 (-15 -2289 ($ $ (-781) |#2| $)))) (-1190) (-1062)) (T -1254)) -((-2289 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1254 *4 *3)) (-14 *4 (-1190)) (-4 *3 (-1062))))) -(-13 (-1257 |#2|) (-626 (-1277 |#1|)) (-10 -8 (-15 -2289 ($ $ (-781) |#2| $)))) -((-1777 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1255 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1777 (|#4| (-1 |#3| |#1|) |#2|))) (-1062) (-1257 |#1|) (-1062) (-1257 |#3|)) (T -1255)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1062)) (-4 *6 (-1062)) (-4 *2 (-1257 *6)) (-5 *1 (-1255 *5 *4 *6 *2)) (-4 *4 (-1257 *5))))) -(-10 -7 (-15 -1777 (|#4| (-1 |#3| |#1|) |#2|))) -((-2882 (((-1281 |#2|) $ (-781)) 129)) (-4355 (((-654 (-1095)) $) 16)) (-4176 (($ (-1186 |#2|)) 80)) (-1757 (((-781) $) NIL) (((-781) $ (-654 (-1095))) 21)) (-3972 (((-428 (-1186 $)) (-1186 $)) 204)) (-2568 (($ $) 194)) (-2827 (((-428 $) $) 192)) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) 95)) (-1852 (($ $ (-781)) 84)) (-1690 (($ $ (-781)) 86)) (-3777 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-1696 (((-3 |#2| "failed") $) 132) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 (-1095) "failed") $) NIL)) (-2206 ((|#2| $) 130) (((-417 (-574)) $) NIL) (((-574) $) NIL) (((-1095) $) NIL)) (-1903 (($ $ $) 170)) (-2853 (((-2 (|:| -1858 |#2|) (|:| -1411 $) (|:| -2766 $)) $ $) 172)) (-3884 (((-781) $ $) 189)) (-2748 (((-3 $ "failed") $) 138)) (-4335 (($ |#2| (-781)) NIL) (($ $ (-1095) (-781)) 59) (($ $ (-654 (-1095)) (-654 (-781))) NIL)) (-1742 (((-781) $) NIL) (((-781) $ (-1095)) 54) (((-654 (-781)) $ (-654 (-1095))) 55)) (-4377 (((-1186 |#2|) $) 72)) (-2717 (((-3 (-1095) "failed") $) 52)) (-3408 (((-2 (|:| -1411 $) (|:| -2766 $)) $ (-781)) 83)) (-2379 (($ $) 219)) (-3818 (($) 134)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 201)) (-2560 (((-428 (-1186 $)) (-1186 $)) 101)) (-2039 (((-428 (-1186 $)) (-1186 $)) 99)) (-4220 (((-428 $) $) 120)) (-2646 (($ $ (-654 (-302 $))) 51) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1095) |#2|) 39) (($ $ (-654 (-1095)) (-654 |#2|)) 36) (($ $ (-1095) $) 32) (($ $ (-654 (-1095)) (-654 $)) 30)) (-1730 (((-781) $) 207)) (-2199 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-417 $) (-417 $) (-417 $)) 164) ((|#2| (-417 $) |#2|) 206) (((-417 $) $ (-417 $)) 188)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 212)) (-3905 (($ $ (-1095)) 157) (($ $ (-654 (-1095))) NIL) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL) (($ $ (-781)) NIL) (($ $) 155) (($ $ (-1190)) NIL) (($ $ (-654 (-1190))) NIL) (($ $ (-1190) (-781)) NIL) (($ $ (-654 (-1190)) (-654 (-781))) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-4202 (((-781) $) NIL) (((-781) $ (-1095)) 17) (((-654 (-781)) $ (-654 (-1095))) 23)) (-3069 ((|#2| $) NIL) (($ $ (-1095)) 140)) (-2484 (((-3 $ "failed") $ $) 180) (((-3 (-417 $) "failed") (-417 $) $) 176)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-1095)) 64) (($ (-417 (-574))) NIL) (($ $) NIL))) -(((-1256 |#1| |#2|) (-10 -8 (-15 -2943 (|#1| |#1|)) (-15 -3109 ((-1186 |#1|) (-1186 |#1|) (-1186 |#1|))) (-15 -2827 ((-428 |#1|) |#1|)) (-15 -2568 (|#1| |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -3818 (|#1|)) (-15 -2748 ((-3 |#1| "failed") |#1|)) (-15 -2199 ((-417 |#1|) |#1| (-417 |#1|))) (-15 -1730 ((-781) |#1|)) (-15 -1989 ((-2 (|:| -1411 |#1|) (|:| -2766 |#1|)) |#1| |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -2199 (|#2| (-417 |#1|) |#2|)) (-15 -3777 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2853 ((-2 (|:| -1858 |#2|) (|:| -1411 |#1|) (|:| -2766 |#1|)) |#1| |#1|)) (-15 -1903 (|#1| |#1| |#1|)) (-15 -2484 ((-3 (-417 |#1|) "failed") (-417 |#1|) |#1|)) (-15 -2484 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3884 ((-781) |#1| |#1|)) (-15 -2199 ((-417 |#1|) (-417 |#1|) (-417 |#1|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1690 (|#1| |#1| (-781))) (-15 -1852 (|#1| |#1| (-781))) (-15 -3408 ((-2 (|:| -1411 |#1|) (|:| -2766 |#1|)) |#1| (-781))) (-15 -4176 (|#1| (-1186 |#2|))) (-15 -4377 ((-1186 |#2|) |#1|)) (-15 -2882 ((-1281 |#2|) |#1| (-781))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -2199 (|#1| |#1| |#1|)) (-15 -2199 (|#2| |#1| |#2|)) (-15 -4220 ((-428 |#1|) |#1|)) (-15 -3972 ((-428 (-1186 |#1|)) (-1186 |#1|))) (-15 -2039 ((-428 (-1186 |#1|)) (-1186 |#1|))) (-15 -2560 ((-428 (-1186 |#1|)) (-1186 |#1|))) (-15 -1879 ((-3 (-654 (-1186 |#1|)) "failed") (-654 (-1186 |#1|)) (-1186 |#1|))) (-15 -3069 (|#1| |#1| (-1095))) (-15 -4355 ((-654 (-1095)) |#1|)) (-15 -1757 ((-781) |#1| (-654 (-1095)))) (-15 -1757 ((-781) |#1|)) (-15 -4335 (|#1| |#1| (-654 (-1095)) (-654 (-781)))) (-15 -4335 (|#1| |#1| (-1095) (-781))) (-15 -1742 ((-654 (-781)) |#1| (-654 (-1095)))) (-15 -1742 ((-781) |#1| (-1095))) (-15 -2717 ((-3 (-1095) "failed") |#1|)) (-15 -4202 ((-654 (-781)) |#1| (-654 (-1095)))) (-15 -4202 ((-781) |#1| (-1095))) (-15 -2943 (|#1| (-1095))) (-15 -1696 ((-3 (-1095) "failed") |#1|)) (-15 -2206 ((-1095) |#1|)) (-15 -2646 (|#1| |#1| (-654 (-1095)) (-654 |#1|))) (-15 -2646 (|#1| |#1| (-1095) |#1|)) (-15 -2646 (|#1| |#1| (-654 (-1095)) (-654 |#2|))) (-15 -2646 (|#1| |#1| (-1095) |#2|)) (-15 -2646 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#1| |#1|)) (-15 -2646 (|#1| |#1| (-302 |#1|))) (-15 -2646 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -4202 ((-781) |#1|)) (-15 -4335 (|#1| |#2| (-781))) (-15 -1696 ((-3 (-574) "failed") |#1|)) (-15 -2206 ((-574) |#1|)) (-15 -1696 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2206 ((-417 (-574)) |#1|)) (-15 -2206 (|#2| |#1|)) (-15 -1696 ((-3 |#2| "failed") |#1|)) (-15 -2943 (|#1| |#2|)) (-15 -1742 ((-781) |#1|)) (-15 -3069 (|#2| |#1|)) (-15 -3905 (|#1| |#1| (-654 (-1095)) (-654 (-781)))) (-15 -3905 (|#1| |#1| (-1095) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1095)))) (-15 -3905 (|#1| |#1| (-1095))) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|))) (-1257 |#2|) (-1062)) (T -1256)) -NIL -(-10 -8 (-15 -2943 (|#1| |#1|)) (-15 -3109 ((-1186 |#1|) (-1186 |#1|) (-1186 |#1|))) (-15 -2827 ((-428 |#1|) |#1|)) (-15 -2568 (|#1| |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -3818 (|#1|)) (-15 -2748 ((-3 |#1| "failed") |#1|)) (-15 -2199 ((-417 |#1|) |#1| (-417 |#1|))) (-15 -1730 ((-781) |#1|)) (-15 -1989 ((-2 (|:| -1411 |#1|) (|:| -2766 |#1|)) |#1| |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -2199 (|#2| (-417 |#1|) |#2|)) (-15 -3777 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2853 ((-2 (|:| -1858 |#2|) (|:| -1411 |#1|) (|:| -2766 |#1|)) |#1| |#1|)) (-15 -1903 (|#1| |#1| |#1|)) (-15 -2484 ((-3 (-417 |#1|) "failed") (-417 |#1|) |#1|)) (-15 -2484 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3884 ((-781) |#1| |#1|)) (-15 -2199 ((-417 |#1|) (-417 |#1|) (-417 |#1|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1690 (|#1| |#1| (-781))) (-15 -1852 (|#1| |#1| (-781))) (-15 -3408 ((-2 (|:| -1411 |#1|) (|:| -2766 |#1|)) |#1| (-781))) (-15 -4176 (|#1| (-1186 |#2|))) (-15 -4377 ((-1186 |#2|) |#1|)) (-15 -2882 ((-1281 |#2|) |#1| (-781))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3905 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)) (-654 (-781)))) (-15 -3905 (|#1| |#1| (-1190) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1190)))) (-15 -3905 (|#1| |#1| (-1190))) (-15 -3905 (|#1| |#1|)) (-15 -3905 (|#1| |#1| (-781))) (-15 -2199 (|#1| |#1| |#1|)) (-15 -2199 (|#2| |#1| |#2|)) (-15 -4220 ((-428 |#1|) |#1|)) (-15 -3972 ((-428 (-1186 |#1|)) (-1186 |#1|))) (-15 -2039 ((-428 (-1186 |#1|)) (-1186 |#1|))) (-15 -2560 ((-428 (-1186 |#1|)) (-1186 |#1|))) (-15 -1879 ((-3 (-654 (-1186 |#1|)) "failed") (-654 (-1186 |#1|)) (-1186 |#1|))) (-15 -3069 (|#1| |#1| (-1095))) (-15 -4355 ((-654 (-1095)) |#1|)) (-15 -1757 ((-781) |#1| (-654 (-1095)))) (-15 -1757 ((-781) |#1|)) (-15 -4335 (|#1| |#1| (-654 (-1095)) (-654 (-781)))) (-15 -4335 (|#1| |#1| (-1095) (-781))) (-15 -1742 ((-654 (-781)) |#1| (-654 (-1095)))) (-15 -1742 ((-781) |#1| (-1095))) (-15 -2717 ((-3 (-1095) "failed") |#1|)) (-15 -4202 ((-654 (-781)) |#1| (-654 (-1095)))) (-15 -4202 ((-781) |#1| (-1095))) (-15 -2943 (|#1| (-1095))) (-15 -1696 ((-3 (-1095) "failed") |#1|)) (-15 -2206 ((-1095) |#1|)) (-15 -2646 (|#1| |#1| (-654 (-1095)) (-654 |#1|))) (-15 -2646 (|#1| |#1| (-1095) |#1|)) (-15 -2646 (|#1| |#1| (-654 (-1095)) (-654 |#2|))) (-15 -2646 (|#1| |#1| (-1095) |#2|)) (-15 -2646 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2646 (|#1| |#1| |#1| |#1|)) (-15 -2646 (|#1| |#1| (-302 |#1|))) (-15 -2646 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -4202 ((-781) |#1|)) (-15 -4335 (|#1| |#2| (-781))) (-15 -1696 ((-3 (-574) "failed") |#1|)) (-15 -2206 ((-574) |#1|)) (-15 -1696 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2206 ((-417 (-574)) |#1|)) (-15 -2206 (|#2| |#1|)) (-15 -1696 ((-3 |#2| "failed") |#1|)) (-15 -2943 (|#1| |#2|)) (-15 -1742 ((-781) |#1|)) (-15 -3069 (|#2| |#1|)) (-15 -3905 (|#1| |#1| (-654 (-1095)) (-654 (-781)))) (-15 -3905 (|#1| |#1| (-1095) (-781))) (-15 -3905 (|#1| |#1| (-654 (-1095)))) (-15 -3905 (|#1| |#1| (-1095))) (-15 -2943 (|#1| (-574))) (-15 -2943 ((-872) |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-2882 (((-1281 |#1|) $ (-781)) 243)) (-4355 (((-654 (-1095)) $) 112)) (-4176 (($ (-1186 |#1|)) 241)) (-4194 (((-1186 $) $ (-1095)) 127) (((-1186 |#1|) $) 126)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 89 (|has| |#1| (-566)))) (-1575 (($ $) 90 (|has| |#1| (-566)))) (-2085 (((-112) $) 92 (|has| |#1| (-566)))) (-1757 (((-781) $) 114) (((-781) $ (-654 (-1095))) 113)) (-3524 (((-3 $ "failed") $ $) 20)) (-1904 (($ $ $) 228 (|has| |#1| (-566)))) (-3972 (((-428 (-1186 $)) (-1186 $)) 102 (|has| |#1| (-920)))) (-2568 (($ $) 100 (|has| |#1| (-462)))) (-2827 (((-428 $) $) 99 (|has| |#1| (-462)))) (-1879 (((-3 (-654 (-1186 $)) "failed") (-654 (-1186 $)) (-1186 $)) 105 (|has| |#1| (-920)))) (-1600 (((-112) $ $) 213 (|has| |#1| (-372)))) (-1852 (($ $ (-781)) 236)) (-1690 (($ $ (-781)) 235)) (-3777 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 223 (|has| |#1| (-462)))) (-3426 (($) 18 T CONST)) (-1696 (((-3 |#1| "failed") $) 168) (((-3 (-417 (-574)) "failed") $) 165 (|has| |#1| (-1051 (-417 (-574))))) (((-3 (-574) "failed") $) 163 (|has| |#1| (-1051 (-574)))) (((-3 (-1095) "failed") $) 140)) (-2206 ((|#1| $) 167) (((-417 (-574)) $) 166 (|has| |#1| (-1051 (-417 (-574))))) (((-574) $) 164 (|has| |#1| (-1051 (-574)))) (((-1095) $) 141)) (-1463 (($ $ $ (-1095)) 110 (|has| |#1| (-174))) ((|#1| $ $) 231 (|has| |#1| (-174)))) (-2786 (($ $ $) 217 (|has| |#1| (-372)))) (-1392 (($ $) 158)) (-2590 (((-699 (-574)) (-1281 $)) 138 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 137 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 (-574))) (|:| |vec| (-1281 (-574)))) (-699 $) (-1281 $)) 136 (|has| |#1| (-649 (-574)))) (((-2 (|:| -4340 (-699 |#1|)) (|:| |vec| (-1281 |#1|))) (-699 $) (-1281 $)) 135) (((-699 |#1|) (-699 $)) 134) (((-699 |#1|) (-1281 $)) 133)) (-3434 (((-3 $ "failed") $) 37)) (-2797 (($ $ $) 216 (|has| |#1| (-372)))) (-3385 (($ $ $) 234)) (-1903 (($ $ $) 225 (|has| |#1| (-566)))) (-2853 (((-2 (|:| -1858 |#1|) (|:| -1411 $) (|:| -2766 $)) $ $) 224 (|has| |#1| (-566)))) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) 211 (|has| |#1| (-372)))) (-1569 (($ $) 180 (|has| |#1| (-462))) (($ $ (-1095)) 107 (|has| |#1| (-462)))) (-1380 (((-654 $) $) 111)) (-2257 (((-112) $) 98 (|has| |#1| (-920)))) (-1661 (($ $ |#1| (-781) $) 176)) (-3625 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 86 (-12 (|has| (-1095) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 85 (-12 (|has| (-1095) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3884 (((-781) $ $) 229 (|has| |#1| (-566)))) (-3199 (((-112) $) 35)) (-1322 (((-781) $) 173)) (-2748 (((-3 $ "failed") $) 209 (|has| |#1| (-1165)))) (-4345 (($ (-1186 |#1|) (-1095)) 119) (($ (-1186 $) (-1095)) 118)) (-4240 (($ $ (-781)) 240)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) 220 (|has| |#1| (-372)))) (-3727 (((-654 $) $) 128)) (-3869 (((-112) $) 156)) (-4335 (($ |#1| (-781)) 157) (($ $ (-1095) (-781)) 121) (($ $ (-654 (-1095)) (-654 (-781))) 120)) (-2773 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $ (-1095)) 122) (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 238)) (-1742 (((-781) $) 174) (((-781) $ (-1095)) 124) (((-654 (-781)) $ (-654 (-1095))) 123)) (-3708 (($ (-1 (-781) (-781)) $) 175)) (-1777 (($ (-1 |#1| |#1|) $) 155)) (-4377 (((-1186 |#1|) $) 242)) (-2717 (((-3 (-1095) "failed") $) 125)) (-1359 (($ $) 153)) (-1370 ((|#1| $) 152)) (-2832 (($ (-654 $)) 96 (|has| |#1| (-462))) (($ $ $) 95 (|has| |#1| (-462)))) (-4136 (((-1172) $) 10)) (-3408 (((-2 (|:| -1411 $) (|:| -2766 $)) $ (-781)) 237)) (-2755 (((-3 (-654 $) "failed") $) 116)) (-2415 (((-3 (-654 $) "failed") $) 117)) (-2241 (((-3 (-2 (|:| |var| (-1095)) (|:| -3715 (-781))) "failed") $) 115)) (-2379 (($ $) 221 (|has| |#1| (-38 (-417 (-574)))))) (-3818 (($) 208 (|has| |#1| (-1165)) CONST)) (-3966 (((-1133) $) 11)) (-1338 (((-112) $) 170)) (-1349 ((|#1| $) 171)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 97 (|has| |#1| (-462)))) (-2873 (($ (-654 $)) 94 (|has| |#1| (-462))) (($ $ $) 93 (|has| |#1| (-462)))) (-2560 (((-428 (-1186 $)) (-1186 $)) 104 (|has| |#1| (-920)))) (-2039 (((-428 (-1186 $)) (-1186 $)) 103 (|has| |#1| (-920)))) (-4220 (((-428 $) $) 101 (|has| |#1| (-920)))) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 219 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 218 (|has| |#1| (-372)))) (-2838 (((-3 $ "failed") $ |#1|) 178 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-566)))) (-3471 (((-3 (-654 $) "failed") (-654 $) $) 212 (|has| |#1| (-372)))) (-2646 (($ $ (-654 (-302 $))) 149) (($ $ (-302 $)) 148) (($ $ $ $) 147) (($ $ (-654 $) (-654 $)) 146) (($ $ (-1095) |#1|) 145) (($ $ (-654 (-1095)) (-654 |#1|)) 144) (($ $ (-1095) $) 143) (($ $ (-654 (-1095)) (-654 $)) 142)) (-1730 (((-781) $) 214 (|has| |#1| (-372)))) (-2199 ((|#1| $ |#1|) 261) (($ $ $) 260) (((-417 $) (-417 $) (-417 $)) 230 (|has| |#1| (-566))) ((|#1| (-417 $) |#1|) 222 (|has| |#1| (-372))) (((-417 $) $ (-417 $)) 210 (|has| |#1| (-566)))) (-3001 (((-3 $ "failed") $ (-781)) 239)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 215 (|has| |#1| (-372)))) (-2872 (($ $ (-1095)) 109 (|has| |#1| (-174))) ((|#1| $) 232 (|has| |#1| (-174)))) (-3905 (($ $ (-1095)) 46) (($ $ (-654 (-1095))) 45) (($ $ (-1095) (-781)) 44) (($ $ (-654 (-1095)) (-654 (-781))) 43) (($ $ (-781)) 258) (($ $) 257) (($ $ (-1190)) 255 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) 254 (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) 253 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) 252 (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) 245) (($ $ (-1 |#1| |#1|)) 244) (($ $ (-1 |#1| |#1|) $) 233)) (-4202 (((-781) $) 154) (((-781) $ (-1095)) 132) (((-654 (-781)) $ (-654 (-1095))) 131)) (-1836 (((-903 (-388)) $) 84 (-12 (|has| (-1095) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) 83 (-12 (|has| (-1095) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) 82 (-12 (|has| (-1095) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-3069 ((|#1| $) 179 (|has| |#1| (-462))) (($ $ (-1095)) 108 (|has| |#1| (-462)))) (-1524 (((-3 (-1281 $) "failed") (-699 $)) 106 (-2087 (|has| $ (-146)) (|has| |#1| (-920))))) (-2484 (((-3 $ "failed") $ $) 227 (|has| |#1| (-566))) (((-3 (-417 $) "failed") (-417 $) $) 226 (|has| |#1| (-566)))) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 169) (($ (-1095)) 139) (($ (-417 (-574))) 80 (-2818 (|has| |#1| (-1051 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))))) (($ $) 87 (|has| |#1| (-566)))) (-2530 (((-654 |#1|) $) 172)) (-3087 ((|#1| $ (-781)) 159) (($ $ (-1095) (-781)) 130) (($ $ (-654 (-1095)) (-654 (-781))) 129)) (-3298 (((-3 $ "failed") $) 81 (-2818 (-2087 (|has| $ (-146)) (|has| |#1| (-920))) (|has| |#1| (-146))))) (-1364 (((-781)) 32 T CONST)) (-3772 (($ $ $ (-781)) 177 (|has| |#1| (-174)))) (-3284 (((-112) $ $) 9)) (-2069 (((-112) $ $) 91 (|has| |#1| (-566)))) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-3610 (($ $ (-1095)) 42) (($ $ (-654 (-1095))) 41) (($ $ (-1095) (-781)) 40) (($ $ (-654 (-1095)) (-654 (-781))) 39) (($ $ (-781)) 259) (($ $) 256) (($ $ (-1190)) 251 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190))) 250 (|has| |#1| (-911 (-1190)))) (($ $ (-1190) (-781)) 249 (|has| |#1| (-911 (-1190)))) (($ $ (-654 (-1190)) (-654 (-781))) 248 (|has| |#1| (-911 (-1190)))) (($ $ (-1 |#1| |#1|) (-781)) 247) (($ $ (-1 |#1| |#1|)) 246)) (-2981 (((-112) $ $) 6)) (-3108 (($ $ |#1|) 160 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 162 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 161 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 151) (($ $ |#1|) 150))) -(((-1257 |#1|) (-141) (-1062)) (T -1257)) -((-2882 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-1257 *4)) (-4 *4 (-1062)) (-5 *2 (-1281 *4)))) (-4377 (*1 *2 *1) (-12 (-4 *1 (-1257 *3)) (-4 *3 (-1062)) (-5 *2 (-1186 *3)))) (-4176 (*1 *1 *2) (-12 (-5 *2 (-1186 *3)) (-4 *3 (-1062)) (-4 *1 (-1257 *3)))) (-4240 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1257 *3)) (-4 *3 (-1062)))) (-3001 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-781)) (-4 *1 (-1257 *3)) (-4 *3 (-1062)))) (-2773 (*1 *2 *1 *1) (-12 (-4 *3 (-1062)) (-5 *2 (-2 (|:| -1411 *1) (|:| -2766 *1))) (-4 *1 (-1257 *3)))) (-3408 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *4 (-1062)) (-5 *2 (-2 (|:| -1411 *1) (|:| -2766 *1))) (-4 *1 (-1257 *4)))) (-1852 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1257 *3)) (-4 *3 (-1062)))) (-1690 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1257 *3)) (-4 *3 (-1062)))) (-3385 (*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1062)))) (-3905 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1257 *3)) (-4 *3 (-1062)))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1062)) (-4 *2 (-174)))) (-1463 (*1 *2 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1062)) (-4 *2 (-174)))) (-2199 (*1 *2 *2 *2) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1257 *3)) (-4 *3 (-1062)) (-4 *3 (-566)))) (-3884 (*1 *2 *1 *1) (-12 (-4 *1 (-1257 *3)) (-4 *3 (-1062)) (-4 *3 (-566)) (-5 *2 (-781)))) (-1904 (*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1062)) (-4 *2 (-566)))) (-2484 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1257 *2)) (-4 *2 (-1062)) (-4 *2 (-566)))) (-2484 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-417 *1)) (-4 *1 (-1257 *3)) (-4 *3 (-1062)) (-4 *3 (-566)))) (-1903 (*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1062)) (-4 *2 (-566)))) (-2853 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1062)) (-5 *2 (-2 (|:| -1858 *3) (|:| -1411 *1) (|:| -2766 *1))) (-4 *1 (-1257 *3)))) (-3777 (*1 *2 *1 *1) (-12 (-4 *3 (-462)) (-4 *3 (-1062)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1257 *3)))) (-2199 (*1 *2 *3 *2) (-12 (-5 *3 (-417 *1)) (-4 *1 (-1257 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))) (-2379 (*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1062)) (-4 *2 (-38 (-417 (-574))))))) -(-13 (-960 |t#1| (-781) (-1095)) (-294 |t#1| |t#1|) (-294 $ $) (-239) (-233 |t#1|) (-10 -8 (-15 -2882 ((-1281 |t#1|) $ (-781))) (-15 -4377 ((-1186 |t#1|) $)) (-15 -4176 ($ (-1186 |t#1|))) (-15 -4240 ($ $ (-781))) (-15 -3001 ((-3 $ "failed") $ (-781))) (-15 -2773 ((-2 (|:| -1411 $) (|:| -2766 $)) $ $)) (-15 -3408 ((-2 (|:| -1411 $) (|:| -2766 $)) $ (-781))) (-15 -1852 ($ $ (-781))) (-15 -1690 ($ $ (-781))) (-15 -3385 ($ $ $)) (-15 -3905 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1165)) (-6 (-1165)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -2872 (|t#1| $)) (-15 -1463 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-566)) (PROGN (-6 (-294 (-417 $) (-417 $))) (-15 -2199 ((-417 $) (-417 $) (-417 $))) (-15 -3884 ((-781) $ $)) (-15 -1904 ($ $ $)) (-15 -2484 ((-3 $ "failed") $ $)) (-15 -2484 ((-3 (-417 $) "failed") (-417 $) $)) (-15 -1903 ($ $ $)) (-15 -2853 ((-2 (|:| -1858 |t#1|) (|:| -1411 $) (|:| -2766 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-462)) (-15 -3777 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-372)) (PROGN (-6 (-315)) (-6 -4452) (-15 -2199 (|t#1| (-417 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-417 (-574)))) (-15 -2379 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-781)) . T) ((-25) . T) ((-38 #1=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) -2818 (|has| |#1| (-1051 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 #2=(-1095)) . T) ((-626 |#1|) . T) ((-626 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-624 (-546)) -12 (|has| (-1095) (-624 (-546))) (|has| |#1| (-624 (-546)))) ((-624 (-903 (-388))) -12 (|has| (-1095) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388))))) ((-624 (-903 (-574))) -12 (|has| (-1095) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574))))) ((-235 $) . T) ((-233 |#1|) . T) ((-239) . T) ((-294 (-417 $) (-417 $)) |has| |#1| (-566)) ((-294 |#1| |#1|) . T) ((-294 $ $) . T) ((-298) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-315) |has| |#1| (-372)) ((-317 $) . T) ((-334 |#1| #0#) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-462) -2818 (|has| |#1| (-920)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-524 #2# |#1|) . T) ((-524 #2# $) . T) ((-524 $ $) . T) ((-566) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-656 #1#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) |has| |#1| (-38 (-417 (-574)))) ((-658 #3=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-649 #3#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #1#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-736) . T) ((-911 #2#) . T) ((-911 (-1190)) |has| |#1| (-911 (-1190))) ((-897 (-388)) -12 (|has| (-1095) (-897 (-388))) (|has| |#1| (-897 (-388)))) ((-897 (-574)) -12 (|has| (-1095) (-897 (-574))) (|has| |#1| (-897 (-574)))) ((-960 |#1| #0# #2#) . T) ((-920) |has| |#1| (-920)) ((-931) |has| |#1| (-372)) ((-1051 (-417 (-574))) |has| |#1| (-1051 (-417 (-574)))) ((-1051 (-574)) |has| |#1| (-1051 (-574))) ((-1051 #2#) . T) ((-1051 |#1|) . T) ((-1064 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1064 |#1|) . T) ((-1064 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1069 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1069 |#1|) . T) ((-1069 $) -2818 (|has| |#1| (-920)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1165) |has| |#1| (-1165)) ((-1231) . T) ((-1235) |has| |#1| (-920))) -((-4355 (((-654 (-1095)) $) 34)) (-1392 (($ $) 31)) (-4335 (($ |#2| |#3|) NIL) (($ $ (-1095) |#3|) 28) (($ $ (-654 (-1095)) (-654 |#3|)) 27)) (-1359 (($ $) 14)) (-1370 ((|#2| $) 12)) (-4202 ((|#3| $) 10))) -(((-1258 |#1| |#2| |#3|) (-10 -8 (-15 -4355 ((-654 (-1095)) |#1|)) (-15 -4335 (|#1| |#1| (-654 (-1095)) (-654 |#3|))) (-15 -4335 (|#1| |#1| (-1095) |#3|)) (-15 -1392 (|#1| |#1|)) (-15 -4335 (|#1| |#2| |#3|)) (-15 -4202 (|#3| |#1|)) (-15 -1359 (|#1| |#1|)) (-15 -1370 (|#2| |#1|))) (-1259 |#2| |#3|) (-1062) (-802)) (T -1258)) -NIL -(-10 -8 (-15 -4355 ((-654 (-1095)) |#1|)) (-15 -4335 (|#1| |#1| (-654 (-1095)) (-654 |#3|))) (-15 -4335 (|#1| |#1| (-1095) |#3|)) (-15 -1392 (|#1| |#1|)) (-15 -4335 (|#1| |#2| |#3|)) (-15 -4202 (|#3| |#1|)) (-15 -1359 (|#1| |#1|)) (-15 -1370 (|#2| |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-4355 (((-654 (-1095)) $) 86)) (-1488 (((-1190) $) 117)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-1575 (($ $) 64 (|has| |#1| (-566)))) (-2085 (((-112) $) 66 (|has| |#1| (-566)))) (-2052 (($ $ |#2|) 112) (($ $ |#2| |#2|) 111)) (-1878 (((-1170 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 118)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-1392 (($ $) 72)) (-3434 (((-3 $ "failed") $) 37)) (-2892 (((-112) $) 85)) (-3884 ((|#2| $) 114) ((|#2| $ |#2|) 113)) (-3199 (((-112) $) 35)) (-4240 (($ $ (-932)) 115)) (-3869 (((-112) $) 74)) (-4335 (($ |#1| |#2|) 73) (($ $ (-1095) |#2|) 88) (($ $ (-654 (-1095)) (-654 |#2|)) 87)) (-1777 (($ (-1 |#1| |#1|) $) 75)) (-1359 (($ $) 77)) (-1370 ((|#1| $) 78)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2533 (($ $ |#2|) 109)) (-2838 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-2646 (((-1170 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2199 ((|#1| $ |#2|) 119) (($ $ $) 95 (|has| |#2| (-1125)))) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) 103 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1190) (-781)) 102 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-654 (-1190))) 101 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1190)) 100 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-781)) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-4202 ((|#2| $) 76)) (-1651 (($ $) 84)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3087 ((|#1| $ |#2|) 71)) (-3298 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1364 (((-781)) 32 T CONST)) (-3359 ((|#1| $) 116)) (-3284 (((-112) $ $) 9)) (-2069 (((-112) $ $) 65 (|has| |#1| (-566)))) (-3551 ((|#1| $ |#2|) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-3610 (($ $ (-654 (-1190)) (-654 (-781))) 107 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1190) (-781)) 106 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-654 (-1190))) 105 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1190)) 104 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-781)) 99 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2981 (((-112) $ $) 6)) (-3108 (($ $ |#1|) 70 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) -(((-1259 |#1| |#2|) (-141) (-1062) (-802)) (T -1259)) -((-1878 (*1 *2 *1) (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802)) (-5 *2 (-1170 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802)) (-5 *2 (-1190)))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-1259 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1062)))) (-4240 (*1 *1 *1 *2) (-12 (-5 *2 (-932)) (-4 *1 (-1259 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802)))) (-3884 (*1 *2 *1) (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-802)))) (-3884 (*1 *2 *1 *2) (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-802)))) (-2052 (*1 *1 *1 *2) (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-802)))) (-2052 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-802)))) (-3551 (*1 *2 *1 *3) (-12 (-4 *1 (-1259 *2 *3)) (-4 *3 (-802)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2943 (*2 (-1190)))) (-4 *2 (-1062)))) (-2533 (*1 *1 *1 *2) (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-802)))) (-2646 (*1 *2 *1 *3) (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1170 *3))))) -(-13 (-986 |t#1| |t#2| (-1095)) (-294 |t#2| |t#1|) (-10 -8 (-15 -1878 ((-1170 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1488 ((-1190) $)) (-15 -3359 (|t#1| $)) (-15 -4240 ($ $ (-932))) (-15 -3884 (|t#2| $)) (-15 -3884 (|t#2| $ |t#2|)) (-15 -2052 ($ $ |t#2|)) (-15 -2052 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2943 (|t#1| (-1190)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3551 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2533 ($ $ |t#2|)) (IF (|has| |t#2| (-1125)) (-6 (-294 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-239)) (IF (|has| |t#1| (-911 (-1190))) (-6 (-911 (-1190))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2646 ((-1170 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) |has| |#1| (-38 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-239) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-294 |#2| |#1|) . T) ((-294 $ $) |has| |#2| (-1125)) ((-298) |has| |#1| (-566)) ((-566) |has| |#1| (-566)) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-911 (-1190)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-911 (-1190)))) ((-986 |#1| |#2| (-1095)) . T) ((-1064 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1064 |#1|) . T) ((-1064 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1069 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1069 |#1|) . T) ((-1069 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1231) . T)) -((-2568 ((|#2| |#2|) 12)) (-2827 (((-428 |#2|) |#2|) 14)) (-2648 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574)))) 30))) -(((-1260 |#1| |#2|) (-10 -7 (-15 -2827 ((-428 |#2|) |#2|)) (-15 -2568 (|#2| |#2|)) (-15 -2648 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574)))))) (-566) (-13 (-1257 |#1|) (-566) (-10 -8 (-15 -2873 ($ $ $))))) (T -1260)) -((-2648 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-574)))) (-4 *4 (-13 (-1257 *3) (-566) (-10 -8 (-15 -2873 ($ $ $))))) (-4 *3 (-566)) (-5 *1 (-1260 *3 *4)))) (-2568 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-1260 *3 *2)) (-4 *2 (-13 (-1257 *3) (-566) (-10 -8 (-15 -2873 ($ $ $))))))) (-2827 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-428 *3)) (-5 *1 (-1260 *4 *3)) (-4 *3 (-13 (-1257 *4) (-566) (-10 -8 (-15 -2873 ($ $ $)))))))) -(-10 -7 (-15 -2827 ((-428 |#2|) |#2|)) (-15 -2568 (|#2| |#2|)) (-15 -2648 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574)))))) -((-1777 (((-1266 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1266 |#1| |#3| |#5|)) 24))) -(((-1261 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1777 ((-1266 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1266 |#1| |#3| |#5|)))) (-1062) (-1062) (-1190) (-1190) |#1| |#2|) (T -1261)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1266 *5 *7 *9)) (-4 *5 (-1062)) (-4 *6 (-1062)) (-14 *7 (-1190)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1266 *6 *8 *10)) (-5 *1 (-1261 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1190))))) -(-10 -7 (-15 -1777 ((-1266 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1266 |#1| |#3| |#5|)))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-4355 (((-654 (-1095)) $) 86)) (-1488 (((-1190) $) 117)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-1575 (($ $) 64 (|has| |#1| (-566)))) (-2085 (((-112) $) 66 (|has| |#1| (-566)))) (-2052 (($ $ (-417 (-574))) 112) (($ $ (-417 (-574)) (-417 (-574))) 111)) (-1878 (((-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) 118)) (-2364 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-3524 (((-3 $ "failed") $ $) 20)) (-2568 (($ $) 176 (|has| |#1| (-372)))) (-2827 (((-428 $) $) 177 (|has| |#1| (-372)))) (-4229 (($ $) 131 (|has| |#1| (-38 (-417 (-574)))))) (-1600 (((-112) $ $) 167 (|has| |#1| (-372)))) (-2343 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) 133 (|has| |#1| (-38 (-417 (-574)))))) (-3623 (($ (-781) (-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) 185)) (-2389 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3426 (($) 18 T CONST)) (-2786 (($ $ $) 171 (|has| |#1| (-372)))) (-1392 (($ $) 72)) (-3434 (((-3 $ "failed") $) 37)) (-2797 (($ $ $) 170 (|has| |#1| (-372)))) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) 165 (|has| |#1| (-372)))) (-2257 (((-112) $) 178 (|has| |#1| (-372)))) (-2892 (((-112) $) 85)) (-3000 (($) 159 (|has| |#1| (-38 (-417 (-574)))))) (-3884 (((-417 (-574)) $) 114) (((-417 (-574)) $ (-417 (-574))) 113)) (-3199 (((-112) $) 35)) (-3460 (($ $ (-574)) 130 (|has| |#1| (-38 (-417 (-574)))))) (-4240 (($ $ (-932)) 115) (($ $ (-417 (-574))) 184)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) 174 (|has| |#1| (-372)))) (-3869 (((-112) $) 74)) (-4335 (($ |#1| (-417 (-574))) 73) (($ $ (-1095) (-417 (-574))) 88) (($ $ (-654 (-1095)) (-654 (-417 (-574)))) 87)) (-1777 (($ (-1 |#1| |#1|) $) 75)) (-3119 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) 77)) (-1370 ((|#1| $) 78)) (-2832 (($ (-654 $)) 163 (|has| |#1| (-372))) (($ $ $) 162 (|has| |#1| (-372)))) (-4136 (((-1172) $) 10)) (-1324 (($ $) 179 (|has| |#1| (-372)))) (-2379 (($ $) 183 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190)) 182 (-2818 (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-970)) (|has| |#1| (-1216)) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-15 -4355 ((-654 (-1190)) |#1|))) (|has| |#1| (-15 -2379 (|#1| |#1| (-1190)))) (|has| |#1| (-38 (-417 (-574)))))))) (-3966 (((-1133) $) 11)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 164 (|has| |#1| (-372)))) (-2873 (($ (-654 $)) 161 (|has| |#1| (-372))) (($ $ $) 160 (|has| |#1| (-372)))) (-4220 (((-428 $) $) 175 (|has| |#1| (-372)))) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 173 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 172 (|has| |#1| (-372)))) (-2533 (($ $ (-417 (-574))) 109)) (-2838 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-3471 (((-3 (-654 $) "failed") (-654 $) $) 166 (|has| |#1| (-372)))) (-1609 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-2646 (((-1170 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-1730 (((-781) $) 168 (|has| |#1| (-372)))) (-2199 ((|#1| $ (-417 (-574))) 119) (($ $ $) 95 (|has| (-417 (-574)) (-1125)))) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 169 (|has| |#1| (-372)))) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) 103 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1190) (-781)) 102 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1190))) 101 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1190)) 100 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-781)) 98 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-4202 (((-417 (-574)) $) 76)) (-2402 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-2256 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2352 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-1651 (($ $) 84)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566)))) (-3087 ((|#1| $ (-417 (-574))) 71)) (-3298 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1364 (((-781)) 32 T CONST)) (-3359 ((|#1| $) 116)) (-3284 (((-112) $ $) 9)) (-2441 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) 143 (|has| |#1| (-38 (-417 (-574)))))) (-2069 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2414 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) 141 (|has| |#1| (-38 (-417 (-574)))))) (-3551 ((|#1| $ (-417 (-574))) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2521 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2452 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) 139 (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-3610 (($ $ (-654 (-1190)) (-654 (-781))) 107 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1190) (-781)) 106 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1190))) 105 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1190)) 104 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-781)) 99 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2981 (((-112) $ $) 6)) (-3108 (($ $ |#1|) 70 (|has| |#1| (-372))) (($ $ $) 181 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 180 (|has| |#1| (-372))) (($ $ $) 158 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 129 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) -(((-1262 |#1|) (-141) (-1062)) (T -1262)) -((-3623 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *3 (-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| *4)))) (-4 *4 (-1062)) (-4 *1 (-1262 *4)))) (-4240 (*1 *1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-4 *1 (-1262 *3)) (-4 *3 (-1062)))) (-2379 (*1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1062)) (-4 *2 (-38 (-417 (-574)))))) (-2379 (*1 *1 *1 *2) (-2818 (-12 (-5 *2 (-1190)) (-4 *1 (-1262 *3)) (-4 *3 (-1062)) (-12 (-4 *3 (-29 (-574))) (-4 *3 (-970)) (-4 *3 (-1216)) (-4 *3 (-38 (-417 (-574)))))) (-12 (-5 *2 (-1190)) (-4 *1 (-1262 *3)) (-4 *3 (-1062)) (-12 (|has| *3 (-15 -4355 ((-654 *2) *3))) (|has| *3 (-15 -2379 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574))))))))) -(-13 (-1259 |t#1| (-417 (-574))) (-10 -8 (-15 -3623 ($ (-781) (-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| |t#1|))))) (-15 -4240 ($ $ (-417 (-574)))) (IF (|has| |t#1| (-38 (-417 (-574)))) (PROGN (-15 -2379 ($ $)) (IF (|has| |t#1| (-15 -2379 (|t#1| |t#1| (-1190)))) (IF (|has| |t#1| (-15 -4355 ((-654 (-1190)) |t#1|))) (-15 -2379 ($ $ (-1190))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1216)) (IF (|has| |t#1| (-970)) (IF (|has| |t#1| (-29 (-574))) (-15 -2379 ($ $ (-1190))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1015)) (-6 (-1216))) |%noBranch|) (IF (|has| |t#1| (-372)) (-6 (-372)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-417 (-574))) . T) ((-25) . T) ((-38 #1=(-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-249) |has| |#1| (-372)) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-294 #0# |#1|) . T) ((-294 $ $) |has| (-417 (-574)) (-1125)) ((-298) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-315) |has| |#1| (-372)) ((-372) |has| |#1| (-372)) ((-462) |has| |#1| (-372)) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-566) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-656 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-727 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-736) . T) ((-911 (-1190)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190)))) ((-986 |#1| #0# (-1095)) . T) ((-931) |has| |#1| (-372)) ((-1015) |has| |#1| (-38 (-417 (-574)))) ((-1064 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1064 |#1|) . T) ((-1064 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1069 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1069 |#1|) . T) ((-1069 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1216) |has| |#1| (-38 (-417 (-574)))) ((-1219) |has| |#1| (-38 (-417 (-574)))) ((-1231) . T) ((-1235) |has| |#1| (-372)) ((-1259 |#1| #0#) . T)) -((-3138 (((-112) $) 12)) (-1696 (((-3 |#3| "failed") $) 17)) (-2206 ((|#3| $) 14))) -(((-1263 |#1| |#2| |#3|) (-10 -8 (-15 -1696 ((-3 |#3| "failed") |#1|)) (-15 -2206 (|#3| |#1|)) (-15 -3138 ((-112) |#1|))) (-1264 |#2| |#3|) (-1062) (-1241 |#2|)) (T -1263)) -NIL -(-10 -8 (-15 -1696 ((-3 |#3| "failed") |#1|)) (-15 -2206 (|#3| |#1|)) (-15 -3138 ((-112) |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-4355 (((-654 (-1095)) $) 86)) (-1488 (((-1190) $) 117)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-1575 (($ $) 64 (|has| |#1| (-566)))) (-2085 (((-112) $) 66 (|has| |#1| (-566)))) (-2052 (($ $ (-417 (-574))) 112) (($ $ (-417 (-574)) (-417 (-574))) 111)) (-1878 (((-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) 118)) (-2364 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-3524 (((-3 $ "failed") $ $) 20)) (-2568 (($ $) 176 (|has| |#1| (-372)))) (-2827 (((-428 $) $) 177 (|has| |#1| (-372)))) (-4229 (($ $) 131 (|has| |#1| (-38 (-417 (-574)))))) (-1600 (((-112) $ $) 167 (|has| |#1| (-372)))) (-2343 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) 133 (|has| |#1| (-38 (-417 (-574)))))) (-3623 (($ (-781) (-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) 185)) (-2389 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3426 (($) 18 T CONST)) (-1696 (((-3 |#2| "failed") $) 196)) (-2206 ((|#2| $) 197)) (-2786 (($ $ $) 171 (|has| |#1| (-372)))) (-1392 (($ $) 72)) (-3434 (((-3 $ "failed") $) 37)) (-2740 (((-417 (-574)) $) 193)) (-2797 (($ $ $) 170 (|has| |#1| (-372)))) (-4424 (($ (-417 (-574)) |#2|) 194)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) 165 (|has| |#1| (-372)))) (-2257 (((-112) $) 178 (|has| |#1| (-372)))) (-2892 (((-112) $) 85)) (-3000 (($) 159 (|has| |#1| (-38 (-417 (-574)))))) (-3884 (((-417 (-574)) $) 114) (((-417 (-574)) $ (-417 (-574))) 113)) (-3199 (((-112) $) 35)) (-3460 (($ $ (-574)) 130 (|has| |#1| (-38 (-417 (-574)))))) (-4240 (($ $ (-932)) 115) (($ $ (-417 (-574))) 184)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) 174 (|has| |#1| (-372)))) (-3869 (((-112) $) 74)) (-4335 (($ |#1| (-417 (-574))) 73) (($ $ (-1095) (-417 (-574))) 88) (($ $ (-654 (-1095)) (-654 (-417 (-574)))) 87)) (-1777 (($ (-1 |#1| |#1|) $) 75)) (-3119 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) 77)) (-1370 ((|#1| $) 78)) (-2832 (($ (-654 $)) 163 (|has| |#1| (-372))) (($ $ $) 162 (|has| |#1| (-372)))) (-3128 ((|#2| $) 192)) (-4088 (((-3 |#2| "failed") $) 190)) (-4413 ((|#2| $) 191)) (-4136 (((-1172) $) 10)) (-1324 (($ $) 179 (|has| |#1| (-372)))) (-2379 (($ $) 183 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190)) 182 (-2818 (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-970)) (|has| |#1| (-1216)) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-15 -4355 ((-654 (-1190)) |#1|))) (|has| |#1| (-15 -2379 (|#1| |#1| (-1190)))) (|has| |#1| (-38 (-417 (-574)))))))) (-3966 (((-1133) $) 11)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 164 (|has| |#1| (-372)))) (-2873 (($ (-654 $)) 161 (|has| |#1| (-372))) (($ $ $) 160 (|has| |#1| (-372)))) (-4220 (((-428 $) $) 175 (|has| |#1| (-372)))) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 173 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 172 (|has| |#1| (-372)))) (-2533 (($ $ (-417 (-574))) 109)) (-2838 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-3471 (((-3 (-654 $) "failed") (-654 $) $) 166 (|has| |#1| (-372)))) (-1609 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-2646 (((-1170 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-1730 (((-781) $) 168 (|has| |#1| (-372)))) (-2199 ((|#1| $ (-417 (-574))) 119) (($ $ $) 95 (|has| (-417 (-574)) (-1125)))) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 169 (|has| |#1| (-372)))) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) 103 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1190) (-781)) 102 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1190))) 101 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1190)) 100 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-781)) 98 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-4202 (((-417 (-574)) $) 76)) (-2402 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-2256 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2352 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-1651 (($ $) 84)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 195) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566)))) (-3087 ((|#1| $ (-417 (-574))) 71)) (-3298 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1364 (((-781)) 32 T CONST)) (-3359 ((|#1| $) 116)) (-3284 (((-112) $ $) 9)) (-2441 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) 143 (|has| |#1| (-38 (-417 (-574)))))) (-2069 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2414 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) 141 (|has| |#1| (-38 (-417 (-574)))))) (-3551 ((|#1| $ (-417 (-574))) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2521 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2452 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) 139 (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-3610 (($ $ (-654 (-1190)) (-654 (-781))) 107 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1190) (-781)) 106 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1190))) 105 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1190)) 104 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-781)) 99 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2981 (((-112) $ $) 6)) (-3108 (($ $ |#1|) 70 (|has| |#1| (-372))) (($ $ $) 181 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 180 (|has| |#1| (-372))) (($ $ $) 158 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 129 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) -(((-1264 |#1| |#2|) (-141) (-1062) (-1241 |t#1|)) (T -1264)) -((-4202 (*1 *2 *1) (-12 (-4 *1 (-1264 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1241 *3)) (-5 *2 (-417 (-574))))) (-4424 (*1 *1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-4 *4 (-1062)) (-4 *1 (-1264 *4 *3)) (-4 *3 (-1241 *4)))) (-2740 (*1 *2 *1) (-12 (-4 *1 (-1264 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1241 *3)) (-5 *2 (-417 (-574))))) (-3128 (*1 *2 *1) (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-1241 *3)))) (-4413 (*1 *2 *1) (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-1241 *3)))) (-4088 (*1 *2 *1) (|partial| -12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-1241 *3))))) -(-13 (-1262 |t#1|) (-1051 |t#2|) (-626 |t#2|) (-10 -8 (-15 -4424 ($ (-417 (-574)) |t#2|)) (-15 -2740 ((-417 (-574)) $)) (-15 -3128 (|t#2| $)) (-15 -4202 ((-417 (-574)) $)) (-15 -4413 (|t#2| $)) (-15 -4088 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-417 (-574))) . T) ((-25) . T) ((-38 #1=(-417 (-574))) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 |#2|) . T) ((-626 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-249) |has| |#1| (-372)) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-294 #0# |#1|) . T) ((-294 $ $) |has| (-417 (-574)) (-1125)) ((-298) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-315) |has| |#1| (-372)) ((-372) |has| |#1| (-372)) ((-462) |has| |#1| (-372)) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-566) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-656 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-727 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-736) . T) ((-911 (-1190)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190)))) ((-986 |#1| #0# (-1095)) . T) ((-931) |has| |#1| (-372)) ((-1015) |has| |#1| (-38 (-417 (-574)))) ((-1051 |#2|) . T) ((-1064 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1064 |#1|) . T) ((-1064 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1069 #1#) -2818 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1069 |#1|) . T) ((-1069 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1216) |has| |#1| (-38 (-417 (-574)))) ((-1219) |has| |#1| (-38 (-417 (-574)))) ((-1231) . T) ((-1235) |has| |#1| (-372)) ((-1259 |#1| #0#) . T) ((-1262 |#1|) . T)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-4355 (((-654 (-1095)) $) NIL)) (-1488 (((-1190) $) 104)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-1575 (($ $) NIL (|has| |#1| (-566)))) (-2085 (((-112) $) NIL (|has| |#1| (-566)))) (-2052 (($ $ (-417 (-574))) 116) (($ $ (-417 (-574)) (-417 (-574))) 118)) (-1878 (((-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) 54)) (-2364 (($ $) 192 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 168 (|has| |#1| (-38 (-417 (-574)))))) (-3524 (((-3 $ "failed") $ $) NIL)) (-2568 (($ $) NIL (|has| |#1| (-372)))) (-2827 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4229 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1600 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2343 (($ $) 188 (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) 164 (|has| |#1| (-38 (-417 (-574)))))) (-3623 (($ (-781) (-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) 65)) (-2389 (($ $) 196 (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) 172 (|has| |#1| (-38 (-417 (-574)))))) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#2| "failed") $) NIL)) (-2206 ((|#2| $) NIL)) (-2786 (($ $ $) NIL (|has| |#1| (-372)))) (-1392 (($ $) NIL)) (-3434 (((-3 $ "failed") $) 85)) (-2740 (((-417 (-574)) $) 13)) (-2797 (($ $ $) NIL (|has| |#1| (-372)))) (-4424 (($ (-417 (-574)) |#2|) 11)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-2257 (((-112) $) NIL (|has| |#1| (-372)))) (-2892 (((-112) $) 74)) (-3000 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3884 (((-417 (-574)) $) 113) (((-417 (-574)) $ (-417 (-574))) 114)) (-3199 (((-112) $) NIL)) (-3460 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-4240 (($ $ (-932)) 130) (($ $ (-417 (-574))) 128)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3869 (((-112) $) NIL)) (-4335 (($ |#1| (-417 (-574))) 33) (($ $ (-1095) (-417 (-574))) NIL) (($ $ (-654 (-1095)) (-654 (-417 (-574)))) NIL)) (-1777 (($ (-1 |#1| |#1|) $) 125)) (-3119 (($ $) 162 (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-2832 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3128 ((|#2| $) 12)) (-4088 (((-3 |#2| "failed") $) 44)) (-4413 ((|#2| $) 45)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) 101 (|has| |#1| (-372)))) (-2379 (($ $) 146 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190)) 151 (-2818 (-12 (|has| |#1| (-15 -2379 (|#1| |#1| (-1190)))) (|has| |#1| (-15 -4355 ((-654 (-1190)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-970)) (|has| |#1| (-1216)))))) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-372)))) (-2873 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4220 (((-428 $) $) NIL (|has| |#1| (-372)))) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-2533 (($ $ (-417 (-574))) 122)) (-2838 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1609 (($ $) 160 (|has| |#1| (-38 (-417 (-574)))))) (-2646 (((-1170 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-1730 (((-781) $) NIL (|has| |#1| (-372)))) (-2199 ((|#1| $ (-417 (-574))) 108) (($ $ $) 94 (|has| (-417 (-574)) (-1125)))) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#1| (-372)))) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) 138 (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-4202 (((-417 (-574)) $) 16)) (-2402 (($ $) 198 (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) 174 (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) 194 (|has| |#1| (-38 (-417 (-574)))))) (-2256 (($ $) 170 (|has| |#1| (-38 (-417 (-574)))))) (-2352 (($ $) 190 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 166 (|has| |#1| (-38 (-417 (-574)))))) (-1651 (($ $) 120)) (-2943 (((-872) $) NIL) (($ (-574)) 37) (($ |#1|) 27 (|has| |#1| (-174))) (($ |#2|) 34) (($ (-417 (-574))) 139 (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-3087 ((|#1| $ (-417 (-574))) 107)) (-3298 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1364 (((-781)) 127 T CONST)) (-3359 ((|#1| $) 106)) (-3284 (((-112) $ $) NIL)) (-2441 (($ $) 204 (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) 180 (|has| |#1| (-38 (-417 (-574)))))) (-2069 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2414 (($ $) 200 (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) 176 (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) 208 (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) 184 (|has| |#1| (-38 (-417 (-574)))))) (-3551 ((|#1| $ (-417 (-574))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2521 (($ $) 210 (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) 186 (|has| |#1| (-38 (-417 (-574)))))) (-2452 (($ $) 206 (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) 182 (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) 202 (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) 178 (|has| |#1| (-38 (-417 (-574)))))) (-2133 (($) 21 T CONST)) (-2145 (($) 17 T CONST)) (-3610 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2981 (((-112) $ $) 72)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) 100 (|has| |#1| (-372)))) (-3094 (($ $) 142) (($ $ $) 78)) (-3079 (($ $ $) 76)) (** (($ $ (-932)) NIL) (($ $ (-781)) 82) (($ $ (-574)) 157 (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 158 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) -(((-1265 |#1| |#2|) (-1264 |#1| |#2|) (-1062) (-1241 |#1|)) (T -1265)) -NIL -(-1264 |#1| |#2|) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-4355 (((-654 (-1095)) $) NIL)) (-1488 (((-1190) $) 11)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-1575 (($ $) NIL (|has| |#1| (-566)))) (-2085 (((-112) $) NIL (|has| |#1| (-566)))) (-2052 (($ $ (-417 (-574))) NIL) (($ $ (-417 (-574)) (-417 (-574))) NIL)) (-1878 (((-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) NIL)) (-2364 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3524 (((-3 $ "failed") $ $) NIL)) (-2568 (($ $) NIL (|has| |#1| (-372)))) (-2827 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4229 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1600 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2343 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3623 (($ (-781) (-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) NIL)) (-2389 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-1245 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1273 |#1| |#2| |#3|) "failed") $) 22)) (-2206 (((-1245 |#1| |#2| |#3|) $) NIL) (((-1273 |#1| |#2| |#3|) $) NIL)) (-2786 (($ $ $) NIL (|has| |#1| (-372)))) (-1392 (($ $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2740 (((-417 (-574)) $) 69)) (-2797 (($ $ $) NIL (|has| |#1| (-372)))) (-4424 (($ (-417 (-574)) (-1245 |#1| |#2| |#3|)) NIL)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-2257 (((-112) $) NIL (|has| |#1| (-372)))) (-2892 (((-112) $) NIL)) (-3000 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3884 (((-417 (-574)) $) NIL) (((-417 (-574)) $ (-417 (-574))) NIL)) (-3199 (((-112) $) NIL)) (-3460 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-4240 (($ $ (-932)) NIL) (($ $ (-417 (-574))) NIL)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3869 (((-112) $) NIL)) (-4335 (($ |#1| (-417 (-574))) 30) (($ $ (-1095) (-417 (-574))) NIL) (($ $ (-654 (-1095)) (-654 (-417 (-574)))) NIL)) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-3119 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-2832 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3128 (((-1245 |#1| |#2| |#3|) $) 72)) (-4088 (((-3 (-1245 |#1| |#2| |#3|) "failed") $) NIL)) (-4413 (((-1245 |#1| |#2| |#3|) $) NIL)) (-4136 (((-1172) $) NIL)) (-1324 (($ $) NIL (|has| |#1| (-372)))) (-2379 (($ $) 39 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190)) NIL (-2818 (-12 (|has| |#1| (-15 -2379 (|#1| |#1| (-1190)))) (|has| |#1| (-15 -4355 ((-654 (-1190)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-970)) (|has| |#1| (-1216))))) (($ $ (-1277 |#2|)) 40 (|has| |#1| (-38 (-417 (-574)))))) (-3966 (((-1133) $) NIL)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) NIL (|has| |#1| (-372)))) (-2873 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4220 (((-428 $) $) NIL (|has| |#1| (-372)))) (-1475 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) NIL (|has| |#1| (-372)))) (-2533 (($ $ (-417 (-574))) NIL)) (-2838 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-3471 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1609 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2646 (((-1170 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-1730 (((-781) $) NIL (|has| |#1| (-372)))) (-2199 ((|#1| $ (-417 (-574))) NIL) (($ $ $) NIL (|has| (-417 (-574)) (-1125)))) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) NIL (|has| |#1| (-372)))) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-1277 |#2|)) 38)) (-4202 (((-417 (-574)) $) NIL)) (-2402 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2256 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2352 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1651 (($ $) NIL)) (-2943 (((-872) $) 107) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1245 |#1| |#2| |#3|)) 16) (($ (-1273 |#1| |#2| |#3|)) 17) (($ (-1277 |#2|)) 36) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-3087 ((|#1| $ (-417 (-574))) NIL)) (-3298 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1364 (((-781)) NIL T CONST)) (-3359 ((|#1| $) 12)) (-3284 (((-112) $ $) NIL)) (-2441 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2069 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2414 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3551 ((|#1| $ (-417 (-574))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2521 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2452 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2133 (($) 32 T CONST)) (-2145 (($) 26 T CONST)) (-3610 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) 34)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) -(((-1266 |#1| |#2| |#3|) (-13 (-1264 |#1| (-1245 |#1| |#2| |#3|)) (-1051 (-1273 |#1| |#2| |#3|)) (-626 (-1277 |#2|)) (-10 -8 (-15 -3905 ($ $ (-1277 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2379 ($ $ (-1277 |#2|))) |%noBranch|))) (-1062) (-1190) |#1|) (T -1266)) -((-3905 (*1 *1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1266 *3 *4 *5)) (-4 *3 (-1062)) (-14 *5 *3))) (-2379 (*1 *1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1266 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-14 *5 *3)))) -(-13 (-1264 |#1| (-1245 |#1| |#2| |#3|)) (-1051 (-1273 |#1| |#2| |#3|)) (-626 (-1277 |#2|)) (-10 -8 (-15 -3905 ($ $ (-1277 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2379 ($ $ (-1277 |#2|))) |%noBranch|))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 37)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL)) (-1575 (($ $) NIL)) (-2085 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-1696 (((-3 (-574) "failed") $) NIL (|has| (-1266 |#2| |#3| |#4|) (-1051 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-1266 |#2| |#3| |#4|) (-1051 (-417 (-574))))) (((-3 (-1266 |#2| |#3| |#4|) "failed") $) 22)) (-2206 (((-574) $) NIL (|has| (-1266 |#2| |#3| |#4|) (-1051 (-574)))) (((-417 (-574)) $) NIL (|has| (-1266 |#2| |#3| |#4|) (-1051 (-417 (-574))))) (((-1266 |#2| |#3| |#4|) $) NIL)) (-1392 (($ $) 41)) (-3434 (((-3 $ "failed") $) 27)) (-1569 (($ $) NIL (|has| (-1266 |#2| |#3| |#4|) (-462)))) (-1661 (($ $ (-1266 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|) $) NIL)) (-3199 (((-112) $) NIL)) (-1322 (((-781) $) 11)) (-3869 (((-112) $) NIL)) (-4335 (($ (-1266 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) 25)) (-1742 (((-327 |#2| |#3| |#4|) $) NIL)) (-3708 (($ (-1 (-327 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) $) NIL)) (-1777 (($ (-1 (-1266 |#2| |#3| |#4|) (-1266 |#2| |#3| |#4|)) $) NIL)) (-1720 (((-3 (-853 |#2|) "failed") $) 90)) (-1359 (($ $) NIL)) (-1370 (((-1266 |#2| |#3| |#4|) $) 20)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-1338 (((-112) $) NIL)) (-1349 (((-1266 |#2| |#3| |#4|) $) NIL)) (-2838 (((-3 $ "failed") $ (-1266 |#2| |#3| |#4|)) NIL (|has| (-1266 |#2| |#3| |#4|) (-566))) (((-3 $ "failed") $ $) NIL)) (-2155 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1266 |#2| |#3| |#4|)) (|:| |%expon| (-327 |#2| |#3| |#4|)) (|:| |%expTerms| (-654 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#2|)))))) (|:| |%type| (-1172))) "failed") $) 74)) (-4202 (((-327 |#2| |#3| |#4|) $) 17)) (-3069 (((-1266 |#2| |#3| |#4|) $) NIL (|has| (-1266 |#2| |#3| |#4|) (-462)))) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ (-1266 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL (-2818 (|has| (-1266 |#2| |#3| |#4|) (-38 (-417 (-574)))) (|has| (-1266 |#2| |#3| |#4|) (-1051 (-417 (-574))))))) (-2530 (((-654 (-1266 |#2| |#3| |#4|)) $) NIL)) (-3087 (((-1266 |#2| |#3| |#4|) $ (-327 |#2| |#3| |#4|)) NIL)) (-3298 (((-3 $ "failed") $) NIL (|has| (-1266 |#2| |#3| |#4|) (-146)))) (-1364 (((-781)) NIL T CONST)) (-3772 (($ $ $ (-781)) NIL (|has| (-1266 |#2| |#3| |#4|) (-174)))) (-3284 (((-112) $ $) NIL)) (-2069 (((-112) $ $) NIL)) (-2133 (($) NIL T CONST)) (-2145 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ (-1266 |#2| |#3| |#4|)) NIL (|has| (-1266 |#2| |#3| |#4|) (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-1266 |#2| |#3| |#4|)) NIL) (($ (-1266 |#2| |#3| |#4|) $) NIL) (($ (-417 (-574)) $) NIL (|has| (-1266 |#2| |#3| |#4|) (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| (-1266 |#2| |#3| |#4|) (-38 (-417 (-574))))))) -(((-1267 |#1| |#2| |#3| |#4|) (-13 (-334 (-1266 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) (-566) (-10 -8 (-15 -1720 ((-3 (-853 |#2|) "failed") $)) (-15 -2155 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1266 |#2| |#3| |#4|)) (|:| |%expon| (-327 |#2| |#3| |#4|)) (|:| |%expTerms| (-654 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#2|)))))) (|:| |%type| (-1172))) "failed") $)))) (-13 (-1051 (-574)) (-649 (-574)) (-462)) (-13 (-27) (-1216) (-440 |#1|)) (-1190) |#2|) (T -1267)) -((-1720 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1051 (-574)) (-649 (-574)) (-462))) (-5 *2 (-853 *4)) (-5 *1 (-1267 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1216) (-440 *3))) (-14 *5 (-1190)) (-14 *6 *4))) (-2155 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1051 (-574)) (-649 (-574)) (-462))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1266 *4 *5 *6)) (|:| |%expon| (-327 *4 *5 *6)) (|:| |%expTerms| (-654 (-2 (|:| |k| (-417 (-574))) (|:| |c| *4)))))) (|:| |%type| (-1172)))) (-5 *1 (-1267 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1216) (-440 *3))) (-14 *5 (-1190)) (-14 *6 *4)))) -(-13 (-334 (-1266 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) (-566) (-10 -8 (-15 -1720 ((-3 (-853 |#2|) "failed") $)) (-15 -2155 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1266 |#2| |#3| |#4|)) (|:| |%expon| (-327 |#2| |#3| |#4|)) (|:| |%expTerms| (-654 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#2|)))))) (|:| |%type| (-1172))) "failed") $)))) -((-3083 ((|#2| $) 34)) (-2406 ((|#2| $) 18)) (-1970 (($ $) 53)) (-3617 (($ $ (-574)) 85)) (-3034 (((-112) $ (-781)) 46)) (-3316 ((|#2| $ |#2|) 82)) (-3582 ((|#2| $ |#2|) 78)) (-3143 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-2183 (($ $ (-654 $)) 81)) (-2393 ((|#2| $) 17)) (-2926 (($ $) NIL) (($ $ (-781)) 59)) (-3820 (((-654 $) $) 31)) (-2278 (((-112) $ $) 69)) (-2742 (((-112) $ (-781)) 45)) (-4203 (((-112) $ (-781)) 43)) (-3632 (((-112) $) 33)) (-3360 ((|#2| $) 25) (($ $ (-781)) 64)) (-2199 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2479 (((-112) $) 23)) (-2595 (($ $) 56)) (-4434 (($ $) 86)) (-3066 (((-781) $) 58)) (-2807 (($ $) 57)) (-4157 (($ $ $) 77) (($ |#2| $) NIL)) (-2321 (((-654 $) $) 32)) (-2981 (((-112) $ $) 67)) (-2863 (((-781) $) 52))) -(((-1268 |#1| |#2|) (-10 -8 (-15 -3617 (|#1| |#1| (-574))) (-15 -3143 (|#2| |#1| "last" |#2|)) (-15 -3582 (|#2| |#1| |#2|)) (-15 -3143 (|#1| |#1| "rest" |#1|)) (-15 -3143 (|#2| |#1| "first" |#2|)) (-15 -4434 (|#1| |#1|)) (-15 -2595 (|#1| |#1|)) (-15 -3066 ((-781) |#1|)) (-15 -2807 (|#1| |#1|)) (-15 -2406 (|#2| |#1|)) (-15 -2393 (|#2| |#1|)) (-15 -1970 (|#1| |#1|)) (-15 -3360 (|#1| |#1| (-781))) (-15 -2199 (|#2| |#1| "last")) (-15 -3360 (|#2| |#1|)) (-15 -2926 (|#1| |#1| (-781))) (-15 -2199 (|#1| |#1| "rest")) (-15 -2926 (|#1| |#1|)) (-15 -2199 (|#2| |#1| "first")) (-15 -4157 (|#1| |#2| |#1|)) (-15 -4157 (|#1| |#1| |#1|)) (-15 -3316 (|#2| |#1| |#2|)) (-15 -3143 (|#2| |#1| "value" |#2|)) (-15 -2183 (|#1| |#1| (-654 |#1|))) (-15 -2278 ((-112) |#1| |#1|)) (-15 -2479 ((-112) |#1|)) (-15 -2199 (|#2| |#1| "value")) (-15 -3083 (|#2| |#1|)) (-15 -3632 ((-112) |#1|)) (-15 -3820 ((-654 |#1|) |#1|)) (-15 -2321 ((-654 |#1|) |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -2863 ((-781) |#1|)) (-15 -3034 ((-112) |#1| (-781))) (-15 -2742 ((-112) |#1| (-781))) (-15 -4203 ((-112) |#1| (-781)))) (-1269 |#2|) (-1231)) (T -1268)) -NIL -(-10 -8 (-15 -3617 (|#1| |#1| (-574))) (-15 -3143 (|#2| |#1| "last" |#2|)) (-15 -3582 (|#2| |#1| |#2|)) (-15 -3143 (|#1| |#1| "rest" |#1|)) (-15 -3143 (|#2| |#1| "first" |#2|)) (-15 -4434 (|#1| |#1|)) (-15 -2595 (|#1| |#1|)) (-15 -3066 ((-781) |#1|)) (-15 -2807 (|#1| |#1|)) (-15 -2406 (|#2| |#1|)) (-15 -2393 (|#2| |#1|)) (-15 -1970 (|#1| |#1|)) (-15 -3360 (|#1| |#1| (-781))) (-15 -2199 (|#2| |#1| "last")) (-15 -3360 (|#2| |#1|)) (-15 -2926 (|#1| |#1| (-781))) (-15 -2199 (|#1| |#1| "rest")) (-15 -2926 (|#1| |#1|)) (-15 -2199 (|#2| |#1| "first")) (-15 -4157 (|#1| |#2| |#1|)) (-15 -4157 (|#1| |#1| |#1|)) (-15 -3316 (|#2| |#1| |#2|)) (-15 -3143 (|#2| |#1| "value" |#2|)) (-15 -2183 (|#1| |#1| (-654 |#1|))) (-15 -2278 ((-112) |#1| |#1|)) (-15 -2479 ((-112) |#1|)) (-15 -2199 (|#2| |#1| "value")) (-15 -3083 (|#2| |#1|)) (-15 -3632 ((-112) |#1|)) (-15 -3820 ((-654 |#1|) |#1|)) (-15 -2321 ((-654 |#1|) |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -2863 ((-781) |#1|)) (-15 -3034 ((-112) |#1| (-781))) (-15 -2742 ((-112) |#1| (-781))) (-15 -4203 ((-112) |#1| (-781)))) -((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-3083 ((|#1| $) 49)) (-2406 ((|#1| $) 66)) (-1970 (($ $) 68)) (-3617 (($ $ (-574)) 53 (|has| $ (-6 -4457)))) (-3034 (((-112) $ (-781)) 8)) (-3316 ((|#1| $ |#1|) 40 (|has| $ (-6 -4457)))) (-3575 (($ $ $) 57 (|has| $ (-6 -4457)))) (-3582 ((|#1| $ |#1|) 55 (|has| $ (-6 -4457)))) (-3630 ((|#1| $ |#1|) 59 (|has| $ (-6 -4457)))) (-3143 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4457))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4457))) (($ $ "rest" $) 56 (|has| $ (-6 -4457))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4457)))) (-2183 (($ $ (-654 $)) 42 (|has| $ (-6 -4457)))) (-2393 ((|#1| $) 67)) (-3426 (($) 7 T CONST)) (-2926 (($ $) 74) (($ $ (-781)) 72)) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3820 (((-654 $) $) 51)) (-2278 (((-112) $ $) 43 (|has| |#1| (-1113)))) (-2742 (((-112) $ (-781)) 9)) (-1606 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2449 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 36)) (-4203 (((-112) $ (-781)) 10)) (-3507 (((-654 |#1|) $) 46)) (-3632 (((-112) $) 50)) (-4136 (((-1172) $) 22 (|has| |#1| (-1113)))) (-3360 ((|#1| $) 71) (($ $ (-781)) 69)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-2915 ((|#1| $) 77) (($ $ (-781)) 75)) (-2540 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 14)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-2199 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-3867 (((-574) $ $) 45)) (-2479 (((-112) $) 47)) (-2595 (($ $) 63)) (-4434 (($ $) 60 (|has| $ (-6 -4457)))) (-3066 (((-781) $) 64)) (-2807 (($ $) 65)) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3167 (($ $) 13)) (-1995 (($ $ $) 62 (|has| $ (-6 -4457))) (($ $ |#1|) 61 (|has| $ (-6 -4457)))) (-4157 (($ $ $) 79) (($ |#1| $) 78)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2321 (((-654 $) $) 52)) (-4418 (((-112) $ $) 44 (|has| |#1| (-1113)))) (-3284 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-1269 |#1|) (-141) (-1231)) (T -1269)) -((-4157 (*1 *1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-4157 (*1 *1 *2 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-2915 (*1 *2 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-2199 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-2915 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1269 *3)) (-4 *3 (-1231)))) (-2926 (*1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-2199 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1269 *3)) (-4 *3 (-1231)))) (-2926 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1269 *3)) (-4 *3 (-1231)))) (-3360 (*1 *2 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-2199 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-3360 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1269 *3)) (-4 *3 (-1231)))) (-1970 (*1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-2393 (*1 *2 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-2406 (*1 *2 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-2807 (*1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-3066 (*1 *2 *1) (-12 (-4 *1 (-1269 *3)) (-4 *3 (-1231)) (-5 *2 (-781)))) (-2595 (*1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-1995 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-1995 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-4434 (*1 *1 *1) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-3630 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-3143 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-3575 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-3143 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4457)) (-4 *1 (-1269 *3)) (-4 *3 (-1231)))) (-3582 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-3143 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) (-3617 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (|has| *1 (-6 -4457)) (-4 *1 (-1269 *3)) (-4 *3 (-1231))))) -(-13 (-1023 |t#1|) (-10 -8 (-15 -4157 ($ $ $)) (-15 -4157 ($ |t#1| $)) (-15 -2915 (|t#1| $)) (-15 -2199 (|t#1| $ "first")) (-15 -2915 ($ $ (-781))) (-15 -2926 ($ $)) (-15 -2199 ($ $ "rest")) (-15 -2926 ($ $ (-781))) (-15 -3360 (|t#1| $)) (-15 -2199 (|t#1| $ "last")) (-15 -3360 ($ $ (-781))) (-15 -1970 ($ $)) (-15 -2393 (|t#1| $)) (-15 -2406 (|t#1| $)) (-15 -2807 ($ $)) (-15 -3066 ((-781) $)) (-15 -2595 ($ $)) (IF (|has| $ (-6 -4457)) (PROGN (-15 -1995 ($ $ $)) (-15 -1995 ($ $ |t#1|)) (-15 -4434 ($ $)) (-15 -3630 (|t#1| $ |t#1|)) (-15 -3143 (|t#1| $ "first" |t#1|)) (-15 -3575 ($ $ $)) (-15 -3143 ($ $ "rest" $)) (-15 -3582 (|t#1| $ |t#1|)) (-15 -3143 (|t#1| $ "last" |t#1|)) (-15 -3617 ($ $ (-574)))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1113)) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-1023 |#1|) . T) ((-1113) |has| |#1| (-1113)) ((-1231) . T)) -((-1777 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1270 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1777 (|#4| (-1 |#2| |#1|) |#3|))) (-1062) (-1062) (-1272 |#1|) (-1272 |#2|)) (T -1270)) -((-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1062)) (-4 *6 (-1062)) (-4 *2 (-1272 *6)) (-5 *1 (-1270 *5 *6 *4 *2)) (-4 *4 (-1272 *5))))) -(-10 -7 (-15 -1777 (|#4| (-1 |#2| |#1|) |#3|))) -((-3138 (((-112) $) 17)) (-2364 (($ $) 105)) (-2247 (($ $) 81)) (-2343 (($ $) 101)) (-2227 (($ $) 77)) (-2389 (($ $) 109)) (-2267 (($ $) 85)) (-3119 (($ $) 75)) (-1609 (($ $) 73)) (-2402 (($ $) 111)) (-2275 (($ $) 87)) (-2375 (($ $) 107)) (-2256 (($ $) 83)) (-2352 (($ $) 103)) (-2237 (($ $) 79)) (-2943 (((-872) $) 61) (($ (-574)) NIL) (($ (-417 (-574))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2441 (($ $) 117)) (-2305 (($ $) 93)) (-2414 (($ $) 113)) (-2287 (($ $) 89)) (-2465 (($ $) 121)) (-2325 (($ $) 97)) (-2521 (($ $) 123)) (-2334 (($ $) 99)) (-2452 (($ $) 119)) (-2315 (($ $) 95)) (-2428 (($ $) 115)) (-2297 (($ $) 91)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-417 (-574))) 71))) -(((-1271 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -2247 (|#1| |#1|)) (-15 -2227 (|#1| |#1|)) (-15 -2267 (|#1| |#1|)) (-15 -2275 (|#1| |#1|)) (-15 -2256 (|#1| |#1|)) (-15 -2237 (|#1| |#1|)) (-15 -2297 (|#1| |#1|)) (-15 -2315 (|#1| |#1|)) (-15 -2334 (|#1| |#1|)) (-15 -2325 (|#1| |#1|)) (-15 -2287 (|#1| |#1|)) (-15 -2305 (|#1| |#1|)) (-15 -2352 (|#1| |#1|)) (-15 -2375 (|#1| |#1|)) (-15 -2402 (|#1| |#1|)) (-15 -2389 (|#1| |#1|)) (-15 -2343 (|#1| |#1|)) (-15 -2364 (|#1| |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -2452 (|#1| |#1|)) (-15 -2521 (|#1| |#1|)) (-15 -2465 (|#1| |#1|)) (-15 -2414 (|#1| |#1|)) (-15 -2441 (|#1| |#1|)) (-15 -3119 (|#1| |#1|)) (-15 -1609 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2943 (|#1| |#2|)) (-15 -2943 (|#1| |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2943 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-932))) (-15 -3138 ((-112) |#1|)) (-15 -2943 ((-872) |#1|))) (-1272 |#2|) (-1062)) (T -1271)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -2247 (|#1| |#1|)) (-15 -2227 (|#1| |#1|)) (-15 -2267 (|#1| |#1|)) (-15 -2275 (|#1| |#1|)) (-15 -2256 (|#1| |#1|)) (-15 -2237 (|#1| |#1|)) (-15 -2297 (|#1| |#1|)) (-15 -2315 (|#1| |#1|)) (-15 -2334 (|#1| |#1|)) (-15 -2325 (|#1| |#1|)) (-15 -2287 (|#1| |#1|)) (-15 -2305 (|#1| |#1|)) (-15 -2352 (|#1| |#1|)) (-15 -2375 (|#1| |#1|)) (-15 -2402 (|#1| |#1|)) (-15 -2389 (|#1| |#1|)) (-15 -2343 (|#1| |#1|)) (-15 -2364 (|#1| |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -2452 (|#1| |#1|)) (-15 -2521 (|#1| |#1|)) (-15 -2465 (|#1| |#1|)) (-15 -2414 (|#1| |#1|)) (-15 -2441 (|#1| |#1|)) (-15 -3119 (|#1| |#1|)) (-15 -1609 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2943 (|#1| |#2|)) (-15 -2943 (|#1| |#1|)) (-15 -2943 (|#1| (-417 (-574)))) (-15 -2943 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-932))) (-15 -3138 ((-112) |#1|)) (-15 -2943 ((-872) |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-4355 (((-654 (-1095)) $) 86)) (-1488 (((-1190) $) 117)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-1575 (($ $) 64 (|has| |#1| (-566)))) (-2085 (((-112) $) 66 (|has| |#1| (-566)))) (-2052 (($ $ (-781)) 112) (($ $ (-781) (-781)) 111)) (-1878 (((-1170 (-2 (|:| |k| (-781)) (|:| |c| |#1|))) $) 118)) (-2364 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-3524 (((-3 $ "failed") $ $) 20)) (-4229 (($ $) 131 (|has| |#1| (-38 (-417 (-574)))))) (-2343 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) 133 (|has| |#1| (-38 (-417 (-574)))))) (-3623 (($ (-1170 (-2 (|:| |k| (-781)) (|:| |c| |#1|)))) 169) (($ (-1170 |#1|)) 167)) (-2389 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3426 (($) 18 T CONST)) (-1392 (($ $) 72)) (-3434 (((-3 $ "failed") $) 37)) (-2353 (($ $) 166)) (-4053 (((-963 |#1|) $ (-781)) 164) (((-963 |#1|) $ (-781) (-781)) 163)) (-2892 (((-112) $) 85)) (-3000 (($) 159 (|has| |#1| (-38 (-417 (-574)))))) (-3884 (((-781) $) 114) (((-781) $ (-781)) 113)) (-3199 (((-112) $) 35)) (-3460 (($ $ (-574)) 130 (|has| |#1| (-38 (-417 (-574)))))) (-4240 (($ $ (-932)) 115)) (-2503 (($ (-1 |#1| (-574)) $) 165)) (-3869 (((-112) $) 74)) (-4335 (($ |#1| (-781)) 73) (($ $ (-1095) (-781)) 88) (($ $ (-654 (-1095)) (-654 (-781))) 87)) (-1777 (($ (-1 |#1| |#1|) $) 75)) (-3119 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) 77)) (-1370 ((|#1| $) 78)) (-4136 (((-1172) $) 10)) (-2379 (($ $) 161 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190)) 160 (-2818 (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-970)) (|has| |#1| (-1216)) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-15 -4355 ((-654 (-1190)) |#1|))) (|has| |#1| (-15 -2379 (|#1| |#1| (-1190)))) (|has| |#1| (-38 (-417 (-574)))))))) (-3966 (((-1133) $) 11)) (-2533 (($ $ (-781)) 109)) (-2838 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-1609 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-2646 (((-1170 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-781)))))) (-2199 ((|#1| $ (-781)) 119) (($ $ $) 95 (|has| (-781) (-1125)))) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) 103 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-1190) (-781)) 102 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-654 (-1190))) 101 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-1190)) 100 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-781)) 98 (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (-4202 (((-781) $) 76)) (-2402 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-2256 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2352 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-1651 (($ $) 84)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2530 (((-1170 |#1|) $) 168)) (-3087 ((|#1| $ (-781)) 71)) (-3298 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1364 (((-781)) 32 T CONST)) (-3359 ((|#1| $) 116)) (-3284 (((-112) $ $) 9)) (-2441 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) 143 (|has| |#1| (-38 (-417 (-574)))))) (-2069 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2414 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) 141 (|has| |#1| (-38 (-417 (-574)))))) (-3551 ((|#1| $ (-781)) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-781)))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2521 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2452 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) 139 (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-3610 (($ $ (-654 (-1190)) (-654 (-781))) 107 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-1190) (-781)) 106 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-654 (-1190))) 105 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-1190)) 104 (-12 (|has| |#1| (-911 (-1190))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-781)) 99 (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (-2981 (((-112) $ $) 6)) (-3108 (($ $ |#1|) 70 (|has| |#1| (-372)))) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ |#1|) 162 (|has| |#1| (-372))) (($ $ $) 158 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 129 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574))))))) -(((-1272 |#1|) (-141) (-1062)) (T -1272)) -((-3623 (*1 *1 *2) (-12 (-5 *2 (-1170 (-2 (|:| |k| (-781)) (|:| |c| *3)))) (-4 *3 (-1062)) (-4 *1 (-1272 *3)))) (-2530 (*1 *2 *1) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-1062)) (-5 *2 (-1170 *3)))) (-3623 (*1 *1 *2) (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-4 *1 (-1272 *3)))) (-2353 (*1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1062)))) (-2503 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-574))) (-4 *1 (-1272 *3)) (-4 *3 (-1062)))) (-4053 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-1272 *4)) (-4 *4 (-1062)) (-5 *2 (-963 *4)))) (-4053 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-4 *1 (-1272 *4)) (-4 *4 (-1062)) (-5 *2 (-963 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))) (-2379 (*1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1062)) (-4 *2 (-38 (-417 (-574)))))) (-2379 (*1 *1 *1 *2) (-2818 (-12 (-5 *2 (-1190)) (-4 *1 (-1272 *3)) (-4 *3 (-1062)) (-12 (-4 *3 (-29 (-574))) (-4 *3 (-970)) (-4 *3 (-1216)) (-4 *3 (-38 (-417 (-574)))))) (-12 (-5 *2 (-1190)) (-4 *1 (-1272 *3)) (-4 *3 (-1062)) (-12 (|has| *3 (-15 -4355 ((-654 *2) *3))) (|has| *3 (-15 -2379 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574))))))))) -(-13 (-1259 |t#1| (-781)) (-10 -8 (-15 -3623 ($ (-1170 (-2 (|:| |k| (-781)) (|:| |c| |t#1|))))) (-15 -2530 ((-1170 |t#1|) $)) (-15 -3623 ($ (-1170 |t#1|))) (-15 -2353 ($ $)) (-15 -2503 ($ (-1 |t#1| (-574)) $)) (-15 -4053 ((-963 |t#1|) $ (-781))) (-15 -4053 ((-963 |t#1|) $ (-781) (-781))) (IF (|has| |t#1| (-372)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-417 (-574)))) (PROGN (-15 -2379 ($ $)) (IF (|has| |t#1| (-15 -2379 (|t#1| |t#1| (-1190)))) (IF (|has| |t#1| (-15 -4355 ((-654 (-1190)) |t#1|))) (-15 -2379 ($ $ (-1190))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1216)) (IF (|has| |t#1| (-970)) (IF (|has| |t#1| (-29 (-574))) (-15 -2379 ($ $ (-1190))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1015)) (-6 (-1216))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-781)) . T) ((-25) . T) ((-38 #1=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) |has| |#1| (-38 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-781) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-781) |#1|))) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-294 #0# |#1|) . T) ((-294 $ $) |has| (-781) (-1125)) ((-298) |has| |#1| (-566)) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-566) |has| |#1| (-566)) ((-656 #1#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #1#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-911 (-1190)) -12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190)))) ((-986 |#1| #0# (-1095)) . T) ((-1015) |has| |#1| (-38 (-417 (-574)))) ((-1064 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1064 |#1|) . T) ((-1064 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1069 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1069 |#1|) . T) ((-1069 $) -2818 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1216) |has| |#1| (-38 (-417 (-574)))) ((-1219) |has| |#1| (-38 (-417 (-574)))) ((-1231) . T) ((-1259 |#1| #0#) . T)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-4355 (((-654 (-1095)) $) NIL)) (-1488 (((-1190) $) 90)) (-4238 (((-1254 |#2| |#1|) $ (-781)) 73)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-1575 (($ $) NIL (|has| |#1| (-566)))) (-2085 (((-112) $) 142 (|has| |#1| (-566)))) (-2052 (($ $ (-781)) 127) (($ $ (-781) (-781)) 130)) (-1878 (((-1170 (-2 (|:| |k| (-781)) (|:| |c| |#1|))) $) 43)) (-2364 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3524 (((-3 $ "failed") $ $) NIL)) (-4229 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2343 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2227 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3623 (($ (-1170 (-2 (|:| |k| (-781)) (|:| |c| |#1|)))) 52) (($ (-1170 |#1|)) NIL)) (-2389 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2267 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3426 (($) NIL T CONST)) (-3903 (($ $) 134)) (-1392 (($ $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-2353 (($ $) 140)) (-4053 (((-963 |#1|) $ (-781)) 63) (((-963 |#1|) $ (-781) (-781)) 65)) (-2892 (((-112) $) NIL)) (-3000 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3884 (((-781) $) NIL) (((-781) $ (-781)) NIL)) (-3199 (((-112) $) NIL)) (-1620 (($ $) 117)) (-3460 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3688 (($ (-574) (-574) $) 136)) (-4240 (($ $ (-932)) 139)) (-2503 (($ (-1 |#1| (-574)) $) 111)) (-3869 (((-112) $) NIL)) (-4335 (($ |#1| (-781)) 16) (($ $ (-1095) (-781)) NIL) (($ $ (-654 (-1095)) (-654 (-781))) NIL)) (-1777 (($ (-1 |#1| |#1|) $) 98)) (-3119 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1359 (($ $) NIL)) (-1370 ((|#1| $) NIL)) (-4136 (((-1172) $) NIL)) (-3110 (($ $) 115)) (-1867 (($ $) 113)) (-1764 (($ (-574) (-574) $) 138)) (-2379 (($ $) 150 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1190)) 156 (-2818 (-12 (|has| |#1| (-15 -2379 (|#1| |#1| (-1190)))) (|has| |#1| (-15 -4355 ((-654 (-1190)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-970)) (|has| |#1| (-1216))))) (($ $ (-1277 |#2|)) 151 (|has| |#1| (-38 (-417 (-574)))))) (-3966 (((-1133) $) NIL)) (-1759 (($ $ (-574) (-574)) 121)) (-2533 (($ $ (-781)) 123)) (-2838 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-1609 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-4383 (($ $) 119)) (-2646 (((-1170 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-781)))))) (-2199 ((|#1| $ (-781)) 95) (($ $ $) 132 (|has| (-781) (-1125)))) (-3905 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) 108 (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $) 102 (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-1277 |#2|)) 103)) (-4202 (((-781) $) NIL)) (-2402 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2275 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2375 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2256 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2352 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2237 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1651 (($ $) 125)) (-2943 (((-872) $) NIL) (($ (-574)) 26) (($ (-417 (-574))) 148 (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566))) (($ |#1|) 25 (|has| |#1| (-174))) (($ (-1254 |#2| |#1|)) 81) (($ (-1277 |#2|)) 22)) (-2530 (((-1170 |#1|) $) NIL)) (-3087 ((|#1| $ (-781)) 94)) (-3298 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1364 (((-781)) NIL T CONST)) (-3359 ((|#1| $) 91)) (-3284 (((-112) $ $) NIL)) (-2441 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2305 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2069 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2414 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2287 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2465 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2325 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3551 ((|#1| $ (-781)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-781)))) (|has| |#1| (-15 -2943 (|#1| (-1190))))))) (-2521 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2334 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2452 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2315 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2428 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2297 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2133 (($) 18 T CONST)) (-2145 (($) 13 T CONST)) (-3610 (($ $ (-654 (-1190)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-654 (-1190))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-1190)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-911 (-1190))))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (-2981 (((-112) $ $) NIL)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) 107)) (-3079 (($ $ $) 20)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL) (($ $ |#1|) 145 (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 106) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))))) -(((-1273 |#1| |#2| |#3|) (-13 (-1272 |#1|) (-10 -8 (-15 -2943 ($ (-1254 |#2| |#1|))) (-15 -4238 ((-1254 |#2| |#1|) $ (-781))) (-15 -2943 ($ (-1277 |#2|))) (-15 -3905 ($ $ (-1277 |#2|))) (-15 -1867 ($ $)) (-15 -3110 ($ $)) (-15 -1620 ($ $)) (-15 -4383 ($ $)) (-15 -1759 ($ $ (-574) (-574))) (-15 -3903 ($ $)) (-15 -3688 ($ (-574) (-574) $)) (-15 -1764 ($ (-574) (-574) $)) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2379 ($ $ (-1277 |#2|))) |%noBranch|))) (-1062) (-1190) |#1|) (T -1273)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-1254 *4 *3)) (-4 *3 (-1062)) (-14 *4 (-1190)) (-14 *5 *3) (-5 *1 (-1273 *3 *4 *5)))) (-4238 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1254 *5 *4)) (-5 *1 (-1273 *4 *5 *6)) (-4 *4 (-1062)) (-14 *5 (-1190)) (-14 *6 *4))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1273 *3 *4 *5)) (-4 *3 (-1062)) (-14 *5 *3))) (-3905 (*1 *1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1273 *3 *4 *5)) (-4 *3 (-1062)) (-14 *5 *3))) (-1867 (*1 *1 *1) (-12 (-5 *1 (-1273 *2 *3 *4)) (-4 *2 (-1062)) (-14 *3 (-1190)) (-14 *4 *2))) (-3110 (*1 *1 *1) (-12 (-5 *1 (-1273 *2 *3 *4)) (-4 *2 (-1062)) (-14 *3 (-1190)) (-14 *4 *2))) (-1620 (*1 *1 *1) (-12 (-5 *1 (-1273 *2 *3 *4)) (-4 *2 (-1062)) (-14 *3 (-1190)) (-14 *4 *2))) (-4383 (*1 *1 *1) (-12 (-5 *1 (-1273 *2 *3 *4)) (-4 *2 (-1062)) (-14 *3 (-1190)) (-14 *4 *2))) (-1759 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1273 *3 *4 *5)) (-4 *3 (-1062)) (-14 *4 (-1190)) (-14 *5 *3))) (-3903 (*1 *1 *1) (-12 (-5 *1 (-1273 *2 *3 *4)) (-4 *2 (-1062)) (-14 *3 (-1190)) (-14 *4 *2))) (-3688 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1273 *3 *4 *5)) (-4 *3 (-1062)) (-14 *4 (-1190)) (-14 *5 *3))) (-1764 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1273 *3 *4 *5)) (-4 *3 (-1062)) (-14 *4 (-1190)) (-14 *5 *3))) (-2379 (*1 *1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1273 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-14 *5 *3)))) -(-13 (-1272 |#1|) (-10 -8 (-15 -2943 ($ (-1254 |#2| |#1|))) (-15 -4238 ((-1254 |#2| |#1|) $ (-781))) (-15 -2943 ($ (-1277 |#2|))) (-15 -3905 ($ $ (-1277 |#2|))) (-15 -1867 ($ $)) (-15 -3110 ($ $)) (-15 -1620 ($ $)) (-15 -4383 ($ $)) (-15 -1759 ($ $ (-574) (-574))) (-15 -3903 ($ $)) (-15 -3688 ($ (-574) (-574) $)) (-15 -1764 ($ (-574) (-574) $)) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2379 ($ $ (-1277 |#2|))) |%noBranch|))) -((-2721 (((-1 (-1170 |#1|) (-654 (-1170 |#1|))) (-1 |#2| (-654 |#2|))) 24)) (-4025 (((-1 (-1170 |#1|) (-1170 |#1|) (-1170 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3930 (((-1 (-1170 |#1|) (-1170 |#1|)) (-1 |#2| |#2|)) 13)) (-3145 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3751 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-1337 ((|#2| (-1 |#2| (-654 |#2|)) (-654 |#1|)) 60)) (-3290 (((-654 |#2|) (-654 |#1|) (-654 (-1 |#2| (-654 |#2|)))) 66)) (-3684 ((|#2| |#2| |#2|) 43))) -(((-1274 |#1| |#2|) (-10 -7 (-15 -3930 ((-1 (-1170 |#1|) (-1170 |#1|)) (-1 |#2| |#2|))) (-15 -4025 ((-1 (-1170 |#1|) (-1170 |#1|) (-1170 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2721 ((-1 (-1170 |#1|) (-654 (-1170 |#1|))) (-1 |#2| (-654 |#2|)))) (-15 -3684 (|#2| |#2| |#2|)) (-15 -3751 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3145 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1337 (|#2| (-1 |#2| (-654 |#2|)) (-654 |#1|))) (-15 -3290 ((-654 |#2|) (-654 |#1|) (-654 (-1 |#2| (-654 |#2|)))))) (-38 (-417 (-574))) (-1272 |#1|)) (T -1274)) -((-3290 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 (-1 *6 (-654 *6)))) (-4 *5 (-38 (-417 (-574)))) (-4 *6 (-1272 *5)) (-5 *2 (-654 *6)) (-5 *1 (-1274 *5 *6)))) (-1337 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-654 *2))) (-5 *4 (-654 *5)) (-4 *5 (-38 (-417 (-574)))) (-4 *2 (-1272 *5)) (-5 *1 (-1274 *5 *2)))) (-3145 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1272 *4)) (-5 *1 (-1274 *4 *2)) (-4 *4 (-38 (-417 (-574)))))) (-3751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1272 *4)) (-5 *1 (-1274 *4 *2)) (-4 *4 (-38 (-417 (-574)))))) (-3684 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1274 *3 *2)) (-4 *2 (-1272 *3)))) (-2721 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-654 *5))) (-4 *5 (-1272 *4)) (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-1 (-1170 *4) (-654 (-1170 *4)))) (-5 *1 (-1274 *4 *5)))) (-4025 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1272 *4)) (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-1 (-1170 *4) (-1170 *4) (-1170 *4))) (-5 *1 (-1274 *4 *5)))) (-3930 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1272 *4)) (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-1 (-1170 *4) (-1170 *4))) (-5 *1 (-1274 *4 *5))))) -(-10 -7 (-15 -3930 ((-1 (-1170 |#1|) (-1170 |#1|)) (-1 |#2| |#2|))) (-15 -4025 ((-1 (-1170 |#1|) (-1170 |#1|) (-1170 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2721 ((-1 (-1170 |#1|) (-654 (-1170 |#1|))) (-1 |#2| (-654 |#2|)))) (-15 -3684 (|#2| |#2| |#2|)) (-15 -3751 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3145 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1337 (|#2| (-1 |#2| (-654 |#2|)) (-654 |#1|))) (-15 -3290 ((-654 |#2|) (-654 |#1|) (-654 (-1 |#2| (-654 |#2|)))))) -((-1419 ((|#2| |#4| (-781)) 31)) (-2541 ((|#4| |#2|) 26)) (-1504 ((|#4| (-417 |#2|)) 49 (|has| |#1| (-566)))) (-1840 (((-1 |#4| (-654 |#4|)) |#3|) 43))) -(((-1275 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2541 (|#4| |#2|)) (-15 -1419 (|#2| |#4| (-781))) (-15 -1840 ((-1 |#4| (-654 |#4|)) |#3|)) (IF (|has| |#1| (-566)) (-15 -1504 (|#4| (-417 |#2|))) |%noBranch|)) (-1062) (-1257 |#1|) (-666 |#2|) (-1272 |#1|)) (T -1275)) -((-1504 (*1 *2 *3) (-12 (-5 *3 (-417 *5)) (-4 *5 (-1257 *4)) (-4 *4 (-566)) (-4 *4 (-1062)) (-4 *2 (-1272 *4)) (-5 *1 (-1275 *4 *5 *6 *2)) (-4 *6 (-666 *5)))) (-1840 (*1 *2 *3) (-12 (-4 *4 (-1062)) (-4 *5 (-1257 *4)) (-5 *2 (-1 *6 (-654 *6))) (-5 *1 (-1275 *4 *5 *3 *6)) (-4 *3 (-666 *5)) (-4 *6 (-1272 *4)))) (-1419 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-1062)) (-4 *2 (-1257 *5)) (-5 *1 (-1275 *5 *2 *6 *3)) (-4 *6 (-666 *2)) (-4 *3 (-1272 *5)))) (-2541 (*1 *2 *3) (-12 (-4 *4 (-1062)) (-4 *3 (-1257 *4)) (-4 *2 (-1272 *4)) (-5 *1 (-1275 *4 *3 *5 *2)) (-4 *5 (-666 *3))))) -(-10 -7 (-15 -2541 (|#4| |#2|)) (-15 -1419 (|#2| |#4| (-781))) (-15 -1840 ((-1 |#4| (-654 |#4|)) |#3|)) (IF (|has| |#1| (-566)) (-15 -1504 (|#4| (-417 |#2|))) |%noBranch|)) -NIL -(((-1276) (-141)) (T -1276)) -NIL -(-13 (-10 -7 (-6 -3521))) -((-2849 (((-112) $ $) NIL)) (-1488 (((-1190)) 12)) (-4136 (((-1172) $) 18)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 11) (((-1190) $) 8)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 15))) -(((-1277 |#1|) (-13 (-1113) (-623 (-1190)) (-10 -8 (-15 -2943 ((-1190) $)) (-15 -1488 ((-1190))))) (-1190)) (T -1277)) -((-2943 (*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-1277 *3)) (-14 *3 *2))) (-1488 (*1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-1277 *3)) (-14 *3 *2)))) -(-13 (-1113) (-623 (-1190)) (-10 -8 (-15 -2943 ((-1190) $)) (-15 -1488 ((-1190))))) -((-2216 (($ (-781)) 19)) (-3899 (((-699 |#2|) $ $) 41)) (-2963 ((|#2| $) 51)) (-4135 ((|#2| $) 50)) (-4236 ((|#2| $ $) 36)) (-1585 (($ $ $) 47)) (-3094 (($ $) 23) (($ $ $) 29)) (-3079 (($ $ $) 15)) (* (($ (-574) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) -(((-1278 |#1| |#2|) (-10 -8 (-15 -2963 (|#2| |#1|)) (-15 -4135 (|#2| |#1|)) (-15 -1585 (|#1| |#1| |#1|)) (-15 -3899 ((-699 |#2|) |#1| |#1|)) (-15 -4236 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -3094 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 -2216 (|#1| (-781))) (-15 -3079 (|#1| |#1| |#1|))) (-1279 |#2|) (-1231)) (T -1278)) -NIL -(-10 -8 (-15 -2963 (|#2| |#1|)) (-15 -4135 (|#2| |#1|)) (-15 -1585 (|#1| |#1| |#1|)) (-15 -3899 ((-699 |#2|) |#1| |#1|)) (-15 -4236 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -3094 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1|)) (-15 -2216 (|#1| (-781))) (-15 -3079 (|#1| |#1| |#1|))) -((-2849 (((-112) $ $) 19 (|has| |#1| (-1113)))) (-2216 (($ (-781)) 115 (|has| |#1| (-23)))) (-3714 (((-1286) $ (-574) (-574)) 41 (|has| $ (-6 -4457)))) (-1357 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-860)))) (-3642 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4457))) (($ $) 91 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4457))))) (-2771 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-860)))) (-3034 (((-112) $ (-781)) 8)) (-3143 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) 60 (|has| $ (-6 -4457)))) (-2165 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4456)))) (-3426 (($) 7 T CONST)) (-2627 (($ $) 93 (|has| $ (-6 -4457)))) (-4423 (($ $) 103)) (-1543 (($ $) 80 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3335 (($ |#1| $) 79 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4456)))) (-2458 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) 52)) (-1441 (((-574) (-1 (-112) |#1|) $) 100) (((-574) |#1| $) 99 (|has| |#1| (-1113))) (((-574) |#1| $ (-574)) 98 (|has| |#1| (-1113)))) (-1864 (((-654 |#1|) $) 31 (|has| $ (-6 -4456)))) (-3899 (((-699 |#1|) $ $) 108 (|has| |#1| (-1062)))) (-3790 (($ (-781) |#1|) 70)) (-2742 (((-112) $ (-781)) 9)) (-3618 (((-574) $) 44 (|has| (-574) (-860)))) (-3659 (($ $ $) 90 (|has| |#1| (-860)))) (-4430 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-860)))) (-1606 (((-654 |#1|) $) 30 (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-2702 (((-574) $) 45 (|has| (-574) (-860)))) (-4257 (($ $ $) 89 (|has| |#1| (-860)))) (-2449 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2963 ((|#1| $) 105 (-12 (|has| |#1| (-1062)) (|has| |#1| (-1015))))) (-4203 (((-112) $ (-781)) 10)) (-4135 ((|#1| $) 106 (-12 (|has| |#1| (-1062)) (|has| |#1| (-1015))))) (-4136 (((-1172) $) 22 (|has| |#1| (-1113)))) (-1594 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-4308 (((-654 (-574)) $) 47)) (-3336 (((-112) (-574) $) 48)) (-3966 (((-1133) $) 21 (|has| |#1| (-1113)))) (-2915 ((|#1| $) 43 (|has| (-574) (-860)))) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1942 (($ $ |#1|) 42 (|has| $ (-6 -4457)))) (-2540 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) 14)) (-3398 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-4371 (((-654 |#1|) $) 49)) (-1584 (((-112) $) 11)) (-2672 (($) 12)) (-2199 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1248 (-574))) 71)) (-4236 ((|#1| $ $) 109 (|has| |#1| (-1062)))) (-2840 (($ $ (-574)) 64) (($ $ (-1248 (-574))) 63)) (-1585 (($ $ $) 107 (|has| |#1| (-1062)))) (-3975 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4456))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1113)) (|has| $ (-6 -4456))))) (-3506 (($ $ $ (-574)) 94 (|has| $ (-6 -4457)))) (-3167 (($ $) 13)) (-1836 (((-546) $) 81 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 72)) (-4157 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2943 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) 23 (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4456)))) (-3042 (((-112) $ $) 87 (|has| |#1| (-860)))) (-3018 (((-112) $ $) 86 (|has| |#1| (-860)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1113)))) (-3030 (((-112) $ $) 88 (|has| |#1| (-860)))) (-3007 (((-112) $ $) 85 (|has| |#1| (-860)))) (-3094 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3079 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-574) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-736))) (($ $ |#1|) 110 (|has| |#1| (-736)))) (-2863 (((-781) $) 6 (|has| $ (-6 -4456))))) -(((-1279 |#1|) (-141) (-1231)) (T -1279)) -((-3079 (*1 *1 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-25)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1279 *3)) (-4 *3 (-23)) (-4 *3 (-1231)))) (-3094 (*1 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-21)))) (-3094 (*1 *1 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-4 *1 (-1279 *3)) (-4 *3 (-1231)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-736)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-736)))) (-4236 (*1 *2 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-1062)))) (-3899 (*1 *2 *1 *1) (-12 (-4 *1 (-1279 *3)) (-4 *3 (-1231)) (-4 *3 (-1062)) (-5 *2 (-699 *3)))) (-1585 (*1 *1 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-1062)))) (-4135 (*1 *2 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-1015)) (-4 *2 (-1062)))) (-2963 (*1 *2 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-1015)) (-4 *2 (-1062))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3079 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2216 ($ (-781))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3094 ($ $)) (-15 -3094 ($ $ $)) (-15 * ($ (-574) $))) |%noBranch|) (IF (|has| |t#1| (-736)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1062)) (PROGN (-15 -4236 (|t#1| $ $)) (-15 -3899 ((-699 |t#1|) $ $)) (-15 -1585 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1015)) (IF (|has| |t#1| (-1062)) (PROGN (-15 -4135 (|t#1| $)) (-15 -2963 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-102) -2818 (|has| |#1| (-1113)) (|has| |#1| (-860))) ((-623 (-872)) -2818 (|has| |#1| (-1113)) (|has| |#1| (-860)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1248 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-382 |#1|) . T) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))) ((-661 |#1|) . T) ((-19 |#1|) . T) ((-860) |has| |#1| (-860)) ((-1113) -2818 (|has| |#1| (-1113)) (|has| |#1| (-860))) ((-1231) . T)) -((-4034 (((-1281 |#2|) (-1 |#2| |#1| |#2|) (-1281 |#1|) |#2|) 13)) (-2868 ((|#2| (-1 |#2| |#1| |#2|) (-1281 |#1|) |#2|) 15)) (-1777 (((-3 (-1281 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1281 |#1|)) 30) (((-1281 |#2|) (-1 |#2| |#1|) (-1281 |#1|)) 18))) -(((-1280 |#1| |#2|) (-10 -7 (-15 -4034 ((-1281 |#2|) (-1 |#2| |#1| |#2|) (-1281 |#1|) |#2|)) (-15 -2868 (|#2| (-1 |#2| |#1| |#2|) (-1281 |#1|) |#2|)) (-15 -1777 ((-1281 |#2|) (-1 |#2| |#1|) (-1281 |#1|))) (-15 -1777 ((-3 (-1281 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1281 |#1|)))) (-1231) (-1231)) (T -1280)) -((-1777 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1281 *5)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-1281 *6)) (-5 *1 (-1280 *5 *6)))) (-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1281 *5)) (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-1281 *6)) (-5 *1 (-1280 *5 *6)))) (-2868 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1281 *5)) (-4 *5 (-1231)) (-4 *2 (-1231)) (-5 *1 (-1280 *5 *2)))) (-4034 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1281 *6)) (-4 *6 (-1231)) (-4 *5 (-1231)) (-5 *2 (-1281 *5)) (-5 *1 (-1280 *6 *5))))) -(-10 -7 (-15 -4034 ((-1281 |#2|) (-1 |#2| |#1| |#2|) (-1281 |#1|) |#2|)) (-15 -2868 (|#2| (-1 |#2| |#1| |#2|) (-1281 |#1|) |#2|)) (-15 -1777 ((-1281 |#2|) (-1 |#2| |#1|) (-1281 |#1|))) (-15 -1777 ((-3 (-1281 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1281 |#1|)))) -((-2849 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-2216 (($ (-781)) NIL (|has| |#1| (-23)))) (-3892 (($ (-654 |#1|)) 11)) (-3714 (((-1286) $ (-574) (-574)) NIL (|has| $ (-6 -4457)))) (-1357 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-3642 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4457))) (($ $) NIL (-12 (|has| $ (-6 -4457)) (|has| |#1| (-860))))) (-2771 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-3034 (((-112) $ (-781)) NIL)) (-3143 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457))) ((|#1| $ (-1248 (-574)) |#1|) NIL (|has| $ (-6 -4457)))) (-2165 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3426 (($) NIL T CONST)) (-2627 (($ $) NIL (|has| $ (-6 -4457)))) (-4423 (($ $) NIL)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3335 (($ |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2868 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4456))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-2458 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4457)))) (-2385 ((|#1| $ (-574)) NIL)) (-1441 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1113))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1113)))) (-1864 (((-654 |#1|) $) 16 (|has| $ (-6 -4456)))) (-3899 (((-699 |#1|) $ $) NIL (|has| |#1| (-1062)))) (-3790 (($ (-781) |#1|) NIL)) (-2742 (((-112) $ (-781)) NIL)) (-3618 (((-574) $) NIL (|has| (-574) (-860)))) (-3659 (($ $ $) NIL (|has| |#1| (-860)))) (-4430 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-1606 (((-654 |#1|) $) NIL (|has| $ (-6 -4456)))) (-1710 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-2702 (((-574) $) 12 (|has| (-574) (-860)))) (-4257 (($ $ $) NIL (|has| |#1| (-860)))) (-2449 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2963 ((|#1| $) NIL (-12 (|has| |#1| (-1015)) (|has| |#1| (-1062))))) (-4203 (((-112) $ (-781)) NIL)) (-4135 ((|#1| $) NIL (-12 (|has| |#1| (-1015)) (|has| |#1| (-1062))))) (-4136 (((-1172) $) NIL (|has| |#1| (-1113)))) (-1594 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-4308 (((-654 (-574)) $) NIL)) (-3336 (((-112) (-574) $) NIL)) (-3966 (((-1133) $) NIL (|has| |#1| (-1113)))) (-2915 ((|#1| $) NIL (|has| (-574) (-860)))) (-1549 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1942 (($ $ |#1|) NIL (|has| $ (-6 -4457)))) (-2540 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1113))))) (-4017 (((-112) $ $) NIL)) (-3398 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-4371 (((-654 |#1|) $) NIL)) (-1584 (((-112) $) NIL)) (-2672 (($) NIL)) (-2199 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-4236 ((|#1| $ $) NIL (|has| |#1| (-1062)))) (-2840 (($ $ (-574)) NIL) (($ $ (-1248 (-574))) NIL)) (-1585 (($ $ $) NIL (|has| |#1| (-1062)))) (-3975 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-1113))))) (-3506 (($ $ $ (-574)) NIL (|has| $ (-6 -4457)))) (-3167 (($ $) NIL)) (-1836 (((-546) $) 20 (|has| |#1| (-624 (-546))))) (-2956 (($ (-654 |#1|)) 10)) (-4157 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2943 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-3284 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3390 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4456)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1113)))) (-3030 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3007 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3094 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3079 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-574) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-736))) (($ $ |#1|) NIL (|has| |#1| (-736)))) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-1281 |#1|) (-13 (-1279 |#1|) (-10 -8 (-15 -3892 ($ (-654 |#1|))))) (-1231)) (T -1281)) -((-3892 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-5 *1 (-1281 *3))))) -(-13 (-1279 |#1|) (-10 -8 (-15 -3892 ($ (-654 |#1|))))) -((-2849 (((-112) $ $) NIL)) (-1604 (((-1172) $ (-1172)) 107) (((-1172) $ (-1172) (-1172)) 105) (((-1172) $ (-1172) (-654 (-1172))) 104)) (-3041 (($) 69)) (-1393 (((-1286) $ (-478) (-932)) 54)) (-1997 (((-1286) $ (-932) (-1172)) 89) (((-1286) $ (-932) (-884)) 90)) (-2808 (((-1286) $ (-932) (-388) (-388)) 57)) (-3877 (((-1286) $ (-1172)) 84)) (-1618 (((-1286) $ (-932) (-1172)) 94)) (-2991 (((-1286) $ (-932) (-388) (-388)) 58)) (-3699 (((-1286) $ (-932) (-932)) 55)) (-1580 (((-1286) $) 85)) (-1668 (((-1286) $ (-932) (-1172)) 93)) (-2506 (((-1286) $ (-478) (-932)) 41)) (-3555 (((-1286) $ (-932) (-1172)) 92)) (-3212 (((-654 (-270)) $) 29) (($ $ (-654 (-270))) 30)) (-1389 (((-1286) $ (-781) (-781)) 52)) (-2147 (($ $) 70) (($ (-478) (-654 (-270))) 71)) (-4136 (((-1172) $) NIL)) (-3693 (((-574) $) 48)) (-3966 (((-1133) $) NIL)) (-4431 (((-1281 (-3 (-478) "undefined")) $) 47)) (-2187 (((-1281 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3555 (-574)) (|:| -3239 (-574)) (|:| |spline| (-574)) (|:| -2985 (-574)) (|:| |axesColor| (-884)) (|:| -1997 (-574)) (|:| |unitsColor| (-884)) (|:| |showing| (-574)))) $) 46)) (-3266 (((-1286) $ (-932) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-884) (-574) (-884) (-574)) 83)) (-3553 (((-654 (-954 (-227))) $) NIL)) (-1968 (((-478) $ (-932)) 43)) (-3509 (((-1286) $ (-781) (-781) (-932) (-932)) 50)) (-3611 (((-1286) $ (-1172)) 95)) (-3239 (((-1286) $ (-932) (-1172)) 91)) (-2943 (((-872) $) 102)) (-1381 (((-1286) $) 96)) (-3284 (((-112) $ $) NIL)) (-2985 (((-1286) $ (-932) (-1172)) 87) (((-1286) $ (-932) (-884)) 88)) (-2981 (((-112) $ $) NIL))) -(((-1282) (-13 (-1113) (-10 -8 (-15 -3553 ((-654 (-954 (-227))) $)) (-15 -3041 ($)) (-15 -2147 ($ $)) (-15 -3212 ((-654 (-270)) $)) (-15 -3212 ($ $ (-654 (-270)))) (-15 -2147 ($ (-478) (-654 (-270)))) (-15 -3266 ((-1286) $ (-932) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-884) (-574) (-884) (-574))) (-15 -2187 ((-1281 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3555 (-574)) (|:| -3239 (-574)) (|:| |spline| (-574)) (|:| -2985 (-574)) (|:| |axesColor| (-884)) (|:| -1997 (-574)) (|:| |unitsColor| (-884)) (|:| |showing| (-574)))) $)) (-15 -4431 ((-1281 (-3 (-478) "undefined")) $)) (-15 -3877 ((-1286) $ (-1172))) (-15 -2506 ((-1286) $ (-478) (-932))) (-15 -1968 ((-478) $ (-932))) (-15 -2985 ((-1286) $ (-932) (-1172))) (-15 -2985 ((-1286) $ (-932) (-884))) (-15 -1997 ((-1286) $ (-932) (-1172))) (-15 -1997 ((-1286) $ (-932) (-884))) (-15 -3555 ((-1286) $ (-932) (-1172))) (-15 -1668 ((-1286) $ (-932) (-1172))) (-15 -3239 ((-1286) $ (-932) (-1172))) (-15 -3611 ((-1286) $ (-1172))) (-15 -1381 ((-1286) $)) (-15 -3509 ((-1286) $ (-781) (-781) (-932) (-932))) (-15 -2991 ((-1286) $ (-932) (-388) (-388))) (-15 -2808 ((-1286) $ (-932) (-388) (-388))) (-15 -1618 ((-1286) $ (-932) (-1172))) (-15 -1389 ((-1286) $ (-781) (-781))) (-15 -1393 ((-1286) $ (-478) (-932))) (-15 -3699 ((-1286) $ (-932) (-932))) (-15 -1604 ((-1172) $ (-1172))) (-15 -1604 ((-1172) $ (-1172) (-1172))) (-15 -1604 ((-1172) $ (-1172) (-654 (-1172)))) (-15 -1580 ((-1286) $)) (-15 -3693 ((-574) $)) (-15 -2943 ((-872) $))))) (T -1282)) -((-2943 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-1282)))) (-3553 (*1 *2 *1) (-12 (-5 *2 (-654 (-954 (-227)))) (-5 *1 (-1282)))) (-3041 (*1 *1) (-5 *1 (-1282))) (-2147 (*1 *1 *1) (-5 *1 (-1282))) (-3212 (*1 *2 *1) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1282)))) (-3212 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1282)))) (-2147 (*1 *1 *2 *3) (-12 (-5 *2 (-478)) (-5 *3 (-654 (-270))) (-5 *1 (-1282)))) (-3266 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-932)) (-5 *4 (-227)) (-5 *5 (-574)) (-5 *6 (-884)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-2187 (*1 *2 *1) (-12 (-5 *2 (-1281 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3555 (-574)) (|:| -3239 (-574)) (|:| |spline| (-574)) (|:| -2985 (-574)) (|:| |axesColor| (-884)) (|:| -1997 (-574)) (|:| |unitsColor| (-884)) (|:| |showing| (-574))))) (-5 *1 (-1282)))) (-4431 (*1 *2 *1) (-12 (-5 *2 (-1281 (-3 (-478) "undefined"))) (-5 *1 (-1282)))) (-3877 (*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-2506 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-478)) (-5 *4 (-932)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-1968 (*1 *2 *1 *3) (-12 (-5 *3 (-932)) (-5 *2 (-478)) (-5 *1 (-1282)))) (-2985 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-932)) (-5 *4 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-2985 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-932)) (-5 *4 (-884)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-1997 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-932)) (-5 *4 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-1997 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-932)) (-5 *4 (-884)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-3555 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-932)) (-5 *4 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-1668 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-932)) (-5 *4 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-3239 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-932)) (-5 *4 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-3611 (*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-1282)))) (-3509 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-781)) (-5 *4 (-932)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-2991 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-932)) (-5 *4 (-388)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-2808 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-932)) (-5 *4 (-388)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-1618 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-932)) (-5 *4 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-1389 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-1393 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-478)) (-5 *4 (-932)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-3699 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1286)) (-5 *1 (-1282)))) (-1604 (*1 *2 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1282)))) (-1604 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1282)))) (-1604 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-654 (-1172))) (-5 *2 (-1172)) (-5 *1 (-1282)))) (-1580 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-1282)))) (-3693 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1282))))) -(-13 (-1113) (-10 -8 (-15 -3553 ((-654 (-954 (-227))) $)) (-15 -3041 ($)) (-15 -2147 ($ $)) (-15 -3212 ((-654 (-270)) $)) (-15 -3212 ($ $ (-654 (-270)))) (-15 -2147 ($ (-478) (-654 (-270)))) (-15 -3266 ((-1286) $ (-932) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-884) (-574) (-884) (-574))) (-15 -2187 ((-1281 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3555 (-574)) (|:| -3239 (-574)) (|:| |spline| (-574)) (|:| -2985 (-574)) (|:| |axesColor| (-884)) (|:| -1997 (-574)) (|:| |unitsColor| (-884)) (|:| |showing| (-574)))) $)) (-15 -4431 ((-1281 (-3 (-478) "undefined")) $)) (-15 -3877 ((-1286) $ (-1172))) (-15 -2506 ((-1286) $ (-478) (-932))) (-15 -1968 ((-478) $ (-932))) (-15 -2985 ((-1286) $ (-932) (-1172))) (-15 -2985 ((-1286) $ (-932) (-884))) (-15 -1997 ((-1286) $ (-932) (-1172))) (-15 -1997 ((-1286) $ (-932) (-884))) (-15 -3555 ((-1286) $ (-932) (-1172))) (-15 -1668 ((-1286) $ (-932) (-1172))) (-15 -3239 ((-1286) $ (-932) (-1172))) (-15 -3611 ((-1286) $ (-1172))) (-15 -1381 ((-1286) $)) (-15 -3509 ((-1286) $ (-781) (-781) (-932) (-932))) (-15 -2991 ((-1286) $ (-932) (-388) (-388))) (-15 -2808 ((-1286) $ (-932) (-388) (-388))) (-15 -1618 ((-1286) $ (-932) (-1172))) (-15 -1389 ((-1286) $ (-781) (-781))) (-15 -1393 ((-1286) $ (-478) (-932))) (-15 -3699 ((-1286) $ (-932) (-932))) (-15 -1604 ((-1172) $ (-1172))) (-15 -1604 ((-1172) $ (-1172) (-1172))) (-15 -1604 ((-1172) $ (-1172) (-654 (-1172)))) (-15 -1580 ((-1286) $)) (-15 -3693 ((-574) $)) (-15 -2943 ((-872) $)))) -((-2849 (((-112) $ $) NIL)) (-2277 (((-1286) $ (-388)) 169) (((-1286) $ (-388) (-388) (-388)) 170)) (-1604 (((-1172) $ (-1172)) 179) (((-1172) $ (-1172) (-1172)) 177) (((-1172) $ (-1172) (-654 (-1172))) 176)) (-1681 (($) 67)) (-4374 (((-1286) $ (-388) (-388) (-388) (-388) (-388)) 141) (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2991 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $) 139) (((-1286) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2991 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 140) (((-1286) $ (-574) (-574) (-388) (-388) (-388)) 144) (((-1286) $ (-388) (-388)) 145) (((-1286) $ (-388) (-388) (-388)) 152)) (-1406 (((-388)) 122) (((-388) (-388)) 123)) (-1429 (((-388)) 117) (((-388) (-388)) 119)) (-3831 (((-388)) 120) (((-388) (-388)) 121)) (-1826 (((-388)) 126) (((-388) (-388)) 127)) (-1531 (((-388)) 124) (((-388) (-388)) 125)) (-2808 (((-1286) $ (-388) (-388)) 171)) (-3877 (((-1286) $ (-1172)) 153)) (-1508 (((-1146 (-227)) $) 68) (($ $ (-1146 (-227))) 69)) (-4184 (((-1286) $ (-1172)) 187)) (-2022 (((-1286) $ (-1172)) 188)) (-2423 (((-1286) $ (-388) (-388)) 151) (((-1286) $ (-574) (-574)) 168)) (-3699 (((-1286) $ (-932) (-932)) 160)) (-1580 (((-1286) $) 137)) (-1962 (((-1286) $ (-1172)) 186)) (-1407 (((-1286) $ (-1172)) 134)) (-3212 (((-654 (-270)) $) 70) (($ $ (-654 (-270))) 71)) (-1389 (((-1286) $ (-781) (-781)) 159)) (-4390 (((-1286) $ (-781) (-954 (-227))) 193)) (-2753 (($ $) 73) (($ (-1146 (-227)) (-1172)) 74) (($ (-1146 (-227)) (-654 (-270))) 75)) (-2262 (((-1286) $ (-388) (-388) (-388)) 131)) (-4136 (((-1172) $) NIL)) (-3693 (((-574) $) 128)) (-4071 (((-1286) $ (-388)) 174)) (-2273 (((-1286) $ (-388)) 191)) (-3966 (((-1133) $) NIL)) (-3347 (((-1286) $ (-388)) 190)) (-3418 (((-1286) $ (-1172)) 136)) (-3509 (((-1286) $ (-781) (-781) (-932) (-932)) 158)) (-3855 (((-1286) $ (-1172)) 133)) (-3611 (((-1286) $ (-1172)) 135)) (-3466 (((-1286) $ (-158) (-158)) 157)) (-2943 (((-872) $) 166)) (-1381 (((-1286) $) 138)) (-3689 (((-1286) $ (-1172)) 189)) (-3284 (((-112) $ $) NIL)) (-2985 (((-1286) $ (-1172)) 132)) (-2981 (((-112) $ $) NIL))) -(((-1283) (-13 (-1113) (-10 -8 (-15 -1429 ((-388))) (-15 -1429 ((-388) (-388))) (-15 -3831 ((-388))) (-15 -3831 ((-388) (-388))) (-15 -1406 ((-388))) (-15 -1406 ((-388) (-388))) (-15 -1531 ((-388))) (-15 -1531 ((-388) (-388))) (-15 -1826 ((-388))) (-15 -1826 ((-388) (-388))) (-15 -1681 ($)) (-15 -2753 ($ $)) (-15 -2753 ($ (-1146 (-227)) (-1172))) (-15 -2753 ($ (-1146 (-227)) (-654 (-270)))) (-15 -1508 ((-1146 (-227)) $)) (-15 -1508 ($ $ (-1146 (-227)))) (-15 -4390 ((-1286) $ (-781) (-954 (-227)))) (-15 -3212 ((-654 (-270)) $)) (-15 -3212 ($ $ (-654 (-270)))) (-15 -1389 ((-1286) $ (-781) (-781))) (-15 -3699 ((-1286) $ (-932) (-932))) (-15 -3877 ((-1286) $ (-1172))) (-15 -3509 ((-1286) $ (-781) (-781) (-932) (-932))) (-15 -4374 ((-1286) $ (-388) (-388) (-388) (-388) (-388))) (-15 -4374 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2991 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -4374 ((-1286) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2991 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -4374 ((-1286) $ (-574) (-574) (-388) (-388) (-388))) (-15 -4374 ((-1286) $ (-388) (-388))) (-15 -4374 ((-1286) $ (-388) (-388) (-388))) (-15 -3611 ((-1286) $ (-1172))) (-15 -2985 ((-1286) $ (-1172))) (-15 -3855 ((-1286) $ (-1172))) (-15 -1407 ((-1286) $ (-1172))) (-15 -3418 ((-1286) $ (-1172))) (-15 -2423 ((-1286) $ (-388) (-388))) (-15 -2423 ((-1286) $ (-574) (-574))) (-15 -2277 ((-1286) $ (-388))) (-15 -2277 ((-1286) $ (-388) (-388) (-388))) (-15 -2808 ((-1286) $ (-388) (-388))) (-15 -1962 ((-1286) $ (-1172))) (-15 -3347 ((-1286) $ (-388))) (-15 -2273 ((-1286) $ (-388))) (-15 -4184 ((-1286) $ (-1172))) (-15 -2022 ((-1286) $ (-1172))) (-15 -3689 ((-1286) $ (-1172))) (-15 -2262 ((-1286) $ (-388) (-388) (-388))) (-15 -4071 ((-1286) $ (-388))) (-15 -1580 ((-1286) $)) (-15 -3466 ((-1286) $ (-158) (-158))) (-15 -1604 ((-1172) $ (-1172))) (-15 -1604 ((-1172) $ (-1172) (-1172))) (-15 -1604 ((-1172) $ (-1172) (-654 (-1172)))) (-15 -1381 ((-1286) $)) (-15 -3693 ((-574) $))))) (T -1283)) -((-1429 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283)))) (-1429 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283)))) (-3831 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283)))) (-3831 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283)))) (-1406 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283)))) (-1406 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283)))) (-1531 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283)))) (-1531 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283)))) (-1826 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283)))) (-1826 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283)))) (-1681 (*1 *1) (-5 *1 (-1283))) (-2753 (*1 *1 *1) (-5 *1 (-1283))) (-2753 (*1 *1 *2 *3) (-12 (-5 *2 (-1146 (-227))) (-5 *3 (-1172)) (-5 *1 (-1283)))) (-2753 (*1 *1 *2 *3) (-12 (-5 *2 (-1146 (-227))) (-5 *3 (-654 (-270))) (-5 *1 (-1283)))) (-1508 (*1 *2 *1) (-12 (-5 *2 (-1146 (-227))) (-5 *1 (-1283)))) (-1508 (*1 *1 *1 *2) (-12 (-5 *2 (-1146 (-227))) (-5 *1 (-1283)))) (-4390 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-954 (-227))) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-3212 (*1 *2 *1) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1283)))) (-3212 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1283)))) (-1389 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-3699 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-3877 (*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-3509 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-781)) (-5 *4 (-932)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-4374 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2991 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-1283)))) (-4374 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2991 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-4374 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-574)) (-5 *4 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-4374 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-4374 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-3611 (*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-2985 (*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-3855 (*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-1407 (*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-3418 (*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-2423 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-2423 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-2277 (*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-2277 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-2808 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-1962 (*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-3347 (*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-2273 (*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-4184 (*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-2022 (*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-3689 (*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-2262 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-4071 (*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-1580 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-1283)))) (-3466 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1286)) (-5 *1 (-1283)))) (-1604 (*1 *2 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1283)))) (-1604 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1283)))) (-1604 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-654 (-1172))) (-5 *2 (-1172)) (-5 *1 (-1283)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-1283)))) (-3693 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1283))))) -(-13 (-1113) (-10 -8 (-15 -1429 ((-388))) (-15 -1429 ((-388) (-388))) (-15 -3831 ((-388))) (-15 -3831 ((-388) (-388))) (-15 -1406 ((-388))) (-15 -1406 ((-388) (-388))) (-15 -1531 ((-388))) (-15 -1531 ((-388) (-388))) (-15 -1826 ((-388))) (-15 -1826 ((-388) (-388))) (-15 -1681 ($)) (-15 -2753 ($ $)) (-15 -2753 ($ (-1146 (-227)) (-1172))) (-15 -2753 ($ (-1146 (-227)) (-654 (-270)))) (-15 -1508 ((-1146 (-227)) $)) (-15 -1508 ($ $ (-1146 (-227)))) (-15 -4390 ((-1286) $ (-781) (-954 (-227)))) (-15 -3212 ((-654 (-270)) $)) (-15 -3212 ($ $ (-654 (-270)))) (-15 -1389 ((-1286) $ (-781) (-781))) (-15 -3699 ((-1286) $ (-932) (-932))) (-15 -3877 ((-1286) $ (-1172))) (-15 -3509 ((-1286) $ (-781) (-781) (-932) (-932))) (-15 -4374 ((-1286) $ (-388) (-388) (-388) (-388) (-388))) (-15 -4374 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2991 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -4374 ((-1286) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2991 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -4374 ((-1286) $ (-574) (-574) (-388) (-388) (-388))) (-15 -4374 ((-1286) $ (-388) (-388))) (-15 -4374 ((-1286) $ (-388) (-388) (-388))) (-15 -3611 ((-1286) $ (-1172))) (-15 -2985 ((-1286) $ (-1172))) (-15 -3855 ((-1286) $ (-1172))) (-15 -1407 ((-1286) $ (-1172))) (-15 -3418 ((-1286) $ (-1172))) (-15 -2423 ((-1286) $ (-388) (-388))) (-15 -2423 ((-1286) $ (-574) (-574))) (-15 -2277 ((-1286) $ (-388))) (-15 -2277 ((-1286) $ (-388) (-388) (-388))) (-15 -2808 ((-1286) $ (-388) (-388))) (-15 -1962 ((-1286) $ (-1172))) (-15 -3347 ((-1286) $ (-388))) (-15 -2273 ((-1286) $ (-388))) (-15 -4184 ((-1286) $ (-1172))) (-15 -2022 ((-1286) $ (-1172))) (-15 -3689 ((-1286) $ (-1172))) (-15 -2262 ((-1286) $ (-388) (-388) (-388))) (-15 -4071 ((-1286) $ (-388))) (-15 -1580 ((-1286) $)) (-15 -3466 ((-1286) $ (-158) (-158))) (-15 -1604 ((-1172) $ (-1172))) (-15 -1604 ((-1172) $ (-1172) (-1172))) (-15 -1604 ((-1172) $ (-1172) (-654 (-1172)))) (-15 -1381 ((-1286) $)) (-15 -3693 ((-574) $)))) -((-1912 (((-654 (-1172)) (-654 (-1172))) 104) (((-654 (-1172))) 96)) (-4306 (((-654 (-1172))) 94)) (-3035 (((-654 (-932)) (-654 (-932))) 69) (((-654 (-932))) 64)) (-4323 (((-654 (-781)) (-654 (-781))) 61) (((-654 (-781))) 55)) (-3154 (((-1286)) 71)) (-3701 (((-932) (-932)) 87) (((-932)) 86)) (-1838 (((-932) (-932)) 85) (((-932)) 84)) (-2980 (((-884) (-884)) 81) (((-884)) 80)) (-3628 (((-227)) 91) (((-227) (-388)) 93)) (-1445 (((-932)) 88) (((-932) (-932)) 89)) (-3518 (((-932) (-932)) 83) (((-932)) 82)) (-2253 (((-884) (-884)) 75) (((-884)) 73)) (-3241 (((-884) (-884)) 77) (((-884)) 76)) (-1621 (((-884) (-884)) 79) (((-884)) 78))) -(((-1284) (-10 -7 (-15 -2253 ((-884))) (-15 -2253 ((-884) (-884))) (-15 -3241 ((-884))) (-15 -3241 ((-884) (-884))) (-15 -1621 ((-884))) (-15 -1621 ((-884) (-884))) (-15 -2980 ((-884))) (-15 -2980 ((-884) (-884))) (-15 -3518 ((-932))) (-15 -3518 ((-932) (-932))) (-15 -4323 ((-654 (-781)))) (-15 -4323 ((-654 (-781)) (-654 (-781)))) (-15 -3035 ((-654 (-932)))) (-15 -3035 ((-654 (-932)) (-654 (-932)))) (-15 -3154 ((-1286))) (-15 -1912 ((-654 (-1172)))) (-15 -1912 ((-654 (-1172)) (-654 (-1172)))) (-15 -4306 ((-654 (-1172)))) (-15 -1838 ((-932))) (-15 -3701 ((-932))) (-15 -1838 ((-932) (-932))) (-15 -3701 ((-932) (-932))) (-15 -1445 ((-932) (-932))) (-15 -1445 ((-932))) (-15 -3628 ((-227) (-388))) (-15 -3628 ((-227))))) (T -1284)) -((-3628 (*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1284)))) (-3628 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-227)) (-5 *1 (-1284)))) (-1445 (*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284)))) (-1445 (*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284)))) (-3701 (*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284)))) (-1838 (*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284)))) (-3701 (*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284)))) (-1838 (*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284)))) (-4306 (*1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1284)))) (-1912 (*1 *2 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1284)))) (-1912 (*1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1284)))) (-3154 (*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-1284)))) (-3035 (*1 *2 *2) (-12 (-5 *2 (-654 (-932))) (-5 *1 (-1284)))) (-3035 (*1 *2) (-12 (-5 *2 (-654 (-932))) (-5 *1 (-1284)))) (-4323 (*1 *2 *2) (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1284)))) (-4323 (*1 *2) (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1284)))) (-3518 (*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284)))) (-3518 (*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284)))) (-2980 (*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284)))) (-2980 (*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284)))) (-1621 (*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284)))) (-1621 (*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284)))) (-3241 (*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284)))) (-3241 (*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284)))) (-2253 (*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284)))) (-2253 (*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284))))) -(-10 -7 (-15 -2253 ((-884))) (-15 -2253 ((-884) (-884))) (-15 -3241 ((-884))) (-15 -3241 ((-884) (-884))) (-15 -1621 ((-884))) (-15 -1621 ((-884) (-884))) (-15 -2980 ((-884))) (-15 -2980 ((-884) (-884))) (-15 -3518 ((-932))) (-15 -3518 ((-932) (-932))) (-15 -4323 ((-654 (-781)))) (-15 -4323 ((-654 (-781)) (-654 (-781)))) (-15 -3035 ((-654 (-932)))) (-15 -3035 ((-654 (-932)) (-654 (-932)))) (-15 -3154 ((-1286))) (-15 -1912 ((-654 (-1172)))) (-15 -1912 ((-654 (-1172)) (-654 (-1172)))) (-15 -4306 ((-654 (-1172)))) (-15 -1838 ((-932))) (-15 -3701 ((-932))) (-15 -1838 ((-932) (-932))) (-15 -3701 ((-932) (-932))) (-15 -1445 ((-932) (-932))) (-15 -1445 ((-932))) (-15 -3628 ((-227) (-388))) (-15 -3628 ((-227)))) -((-2055 (((-478) (-654 (-654 (-954 (-227)))) (-654 (-270))) 22) (((-478) (-654 (-654 (-954 (-227))))) 21) (((-478) (-654 (-654 (-954 (-227)))) (-884) (-884) (-932) (-654 (-270))) 20)) (-2254 (((-1282) (-654 (-654 (-954 (-227)))) (-654 (-270))) 30) (((-1282) (-654 (-654 (-954 (-227)))) (-884) (-884) (-932) (-654 (-270))) 29)) (-2943 (((-1282) (-478)) 46))) -(((-1285) (-10 -7 (-15 -2055 ((-478) (-654 (-654 (-954 (-227)))) (-884) (-884) (-932) (-654 (-270)))) (-15 -2055 ((-478) (-654 (-654 (-954 (-227)))))) (-15 -2055 ((-478) (-654 (-654 (-954 (-227)))) (-654 (-270)))) (-15 -2254 ((-1282) (-654 (-654 (-954 (-227)))) (-884) (-884) (-932) (-654 (-270)))) (-15 -2254 ((-1282) (-654 (-654 (-954 (-227)))) (-654 (-270)))) (-15 -2943 ((-1282) (-478))))) (T -1285)) -((-2943 (*1 *2 *3) (-12 (-5 *3 (-478)) (-5 *2 (-1282)) (-5 *1 (-1285)))) (-2254 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-654 (-954 (-227))))) (-5 *4 (-654 (-270))) (-5 *2 (-1282)) (-5 *1 (-1285)))) (-2254 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-654 (-654 (-954 (-227))))) (-5 *4 (-884)) (-5 *5 (-932)) (-5 *6 (-654 (-270))) (-5 *2 (-1282)) (-5 *1 (-1285)))) (-2055 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-654 (-954 (-227))))) (-5 *4 (-654 (-270))) (-5 *2 (-478)) (-5 *1 (-1285)))) (-2055 (*1 *2 *3) (-12 (-5 *3 (-654 (-654 (-954 (-227))))) (-5 *2 (-478)) (-5 *1 (-1285)))) (-2055 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-654 (-654 (-954 (-227))))) (-5 *4 (-884)) (-5 *5 (-932)) (-5 *6 (-654 (-270))) (-5 *2 (-478)) (-5 *1 (-1285))))) -(-10 -7 (-15 -2055 ((-478) (-654 (-654 (-954 (-227)))) (-884) (-884) (-932) (-654 (-270)))) (-15 -2055 ((-478) (-654 (-654 (-954 (-227)))))) (-15 -2055 ((-478) (-654 (-654 (-954 (-227)))) (-654 (-270)))) (-15 -2254 ((-1282) (-654 (-654 (-954 (-227)))) (-884) (-884) (-932) (-654 (-270)))) (-15 -2254 ((-1282) (-654 (-654 (-954 (-227)))) (-654 (-270)))) (-15 -2943 ((-1282) (-478)))) -((-2426 (($) 6)) (-2943 (((-872) $) 9))) -(((-1286) (-13 (-623 (-872)) (-10 -8 (-15 -2426 ($))))) (T -1286)) -((-2426 (*1 *1) (-5 *1 (-1286)))) -(-13 (-623 (-872)) (-10 -8 (-15 -2426 ($)))) -((-3108 (($ $ |#2|) 10))) -(((-1287 |#1| |#2|) (-10 -8 (-15 -3108 (|#1| |#1| |#2|))) (-1288 |#2|) (-372)) (T -1287)) -NIL -(-10 -8 (-15 -3108 (|#1| |#1| |#2|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-4133 (((-135)) 33)) (-2943 (((-872) $) 12)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3108 (($ $ |#1|) 34)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-1288 |#1|) (-141) (-372)) (T -1288)) -((-3108 (*1 *1 *1 *2) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-372)))) (-4133 (*1 *2) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-372)) (-5 *2 (-135))))) -(-13 (-727 |t#1|) (-10 -8 (-15 -3108 ($ $ |t#1|)) (-15 -4133 ((-135))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-1064 |#1|) . T) ((-1069 |#1|) . T) ((-1113) . T)) -((-2197 (((-654 (-1225 |#1|)) (-1190) (-1225 |#1|)) 83)) (-3139 (((-1170 (-1170 (-963 |#1|))) (-1190) (-1170 (-963 |#1|))) 63)) (-4384 (((-1 (-1170 (-1225 |#1|)) (-1170 (-1225 |#1|))) (-781) (-1225 |#1|) (-1170 (-1225 |#1|))) 74)) (-2829 (((-1 (-1170 (-963 |#1|)) (-1170 (-963 |#1|))) (-781)) 65)) (-3961 (((-1 (-1186 (-963 |#1|)) (-963 |#1|)) (-1190)) 32)) (-1489 (((-1 (-1170 (-963 |#1|)) (-1170 (-963 |#1|))) (-781)) 64))) -(((-1289 |#1|) (-10 -7 (-15 -2829 ((-1 (-1170 (-963 |#1|)) (-1170 (-963 |#1|))) (-781))) (-15 -1489 ((-1 (-1170 (-963 |#1|)) (-1170 (-963 |#1|))) (-781))) (-15 -3139 ((-1170 (-1170 (-963 |#1|))) (-1190) (-1170 (-963 |#1|)))) (-15 -3961 ((-1 (-1186 (-963 |#1|)) (-963 |#1|)) (-1190))) (-15 -2197 ((-654 (-1225 |#1|)) (-1190) (-1225 |#1|))) (-15 -4384 ((-1 (-1170 (-1225 |#1|)) (-1170 (-1225 |#1|))) (-781) (-1225 |#1|) (-1170 (-1225 |#1|))))) (-372)) (T -1289)) -((-4384 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-781)) (-4 *6 (-372)) (-5 *4 (-1225 *6)) (-5 *2 (-1 (-1170 *4) (-1170 *4))) (-5 *1 (-1289 *6)) (-5 *5 (-1170 *4)))) (-2197 (*1 *2 *3 *4) (-12 (-5 *3 (-1190)) (-4 *5 (-372)) (-5 *2 (-654 (-1225 *5))) (-5 *1 (-1289 *5)) (-5 *4 (-1225 *5)))) (-3961 (*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-1 (-1186 (-963 *4)) (-963 *4))) (-5 *1 (-1289 *4)) (-4 *4 (-372)))) (-3139 (*1 *2 *3 *4) (-12 (-5 *3 (-1190)) (-4 *5 (-372)) (-5 *2 (-1170 (-1170 (-963 *5)))) (-5 *1 (-1289 *5)) (-5 *4 (-1170 (-963 *5))))) (-1489 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-1170 (-963 *4)) (-1170 (-963 *4)))) (-5 *1 (-1289 *4)) (-4 *4 (-372)))) (-2829 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-1170 (-963 *4)) (-1170 (-963 *4)))) (-5 *1 (-1289 *4)) (-4 *4 (-372))))) -(-10 -7 (-15 -2829 ((-1 (-1170 (-963 |#1|)) (-1170 (-963 |#1|))) (-781))) (-15 -1489 ((-1 (-1170 (-963 |#1|)) (-1170 (-963 |#1|))) (-781))) (-15 -3139 ((-1170 (-1170 (-963 |#1|))) (-1190) (-1170 (-963 |#1|)))) (-15 -3961 ((-1 (-1186 (-963 |#1|)) (-963 |#1|)) (-1190))) (-15 -2197 ((-654 (-1225 |#1|)) (-1190) (-1225 |#1|))) (-15 -4384 ((-1 (-1170 (-1225 |#1|)) (-1170 (-1225 |#1|))) (-781) (-1225 |#1|) (-1170 (-1225 |#1|))))) -((-2213 (((-2 (|:| -1882 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|) 80)) (-1689 (((-2 (|:| -1882 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) 79))) -(((-1290 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1689 ((-2 (|:| -1882 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))))) (-15 -2213 ((-2 (|:| -1882 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|))) (-358) (-1257 |#1|) (-1257 |#2|) (-419 |#2| |#3|)) (T -1290)) -((-2213 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *3 (-1257 *4)) (-4 *5 (-1257 *3)) (-5 *2 (-2 (|:| -1882 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-5 *1 (-1290 *4 *3 *5 *6)) (-4 *6 (-419 *3 *5)))) (-1689 (*1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 *4)) (-5 *2 (-2 (|:| -1882 (-699 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-699 *4)))) (-5 *1 (-1290 *3 *4 *5 *6)) (-4 *6 (-419 *4 *5))))) -(-10 -7 (-15 -1689 ((-2 (|:| -1882 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))))) (-15 -2213 ((-2 (|:| -1882 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|))) -((-2849 (((-112) $ $) NIL)) (-3349 (((-1148) $) 11)) (-4256 (((-1148) $) 9)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 17) (($ (-1195)) NIL) (((-1195) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1291) (-13 (-1096) (-10 -8 (-15 -4256 ((-1148) $)) (-15 -3349 ((-1148) $))))) (T -1291)) -((-4256 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1291)))) (-3349 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1291))))) -(-13 (-1096) (-10 -8 (-15 -4256 ((-1148) $)) (-15 -3349 ((-1148) $)))) -((-2849 (((-112) $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2265 (((-1148) $) 9)) (-2943 (((-872) $) 15) (($ (-1195)) NIL) (((-1195) $) NIL)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) -(((-1292) (-13 (-1096) (-10 -8 (-15 -2265 ((-1148) $))))) (T -1292)) -((-2265 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1292))))) -(-13 (-1096) (-10 -8 (-15 -2265 ((-1148) $)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 58)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-3434 (((-3 $ "failed") $) NIL)) (-3199 (((-112) $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 81) (($ (-574)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-174)))) (-1364 (((-781)) NIL T CONST)) (-4050 (((-1286) (-781)) 16)) (-3284 (((-112) $ $) NIL)) (-2133 (($) 37 T CONST)) (-2145 (($) 84 T CONST)) (-2981 (((-112) $ $) 87)) (-3108 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-3094 (($ $) 89) (($ $ $) NIL)) (-3079 (($ $ $) 63)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-1293 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1062) (-500 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3108 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4050 ((-1286) (-781))))) (-1062) (-860) (-803) (-960 |#1| |#3| |#2|) (-654 |#2|) (-654 (-781)) (-781)) (T -1293)) -((-3108 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-372)) (-4 *2 (-1062)) (-4 *3 (-860)) (-4 *4 (-803)) (-14 *6 (-654 *3)) (-5 *1 (-1293 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-960 *2 *4 *3)) (-14 *7 (-654 (-781))) (-14 *8 (-781)))) (-4050 (*1 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-1062)) (-4 *5 (-860)) (-4 *6 (-803)) (-14 *8 (-654 *5)) (-5 *2 (-1286)) (-5 *1 (-1293 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-960 *4 *6 *5)) (-14 *9 (-654 *3)) (-14 *10 *3)))) -(-13 (-1062) (-500 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3108 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4050 ((-1286) (-781))))) -((-2849 (((-112) $ $) NIL)) (-2410 (((-654 (-2 (|:| -1381 $) (|:| -1675 (-654 |#4|)))) (-654 |#4|)) NIL)) (-3954 (((-654 $) (-654 |#4|)) 96)) (-4355 (((-654 |#3|) $) NIL)) (-2907 (((-112) $) NIL)) (-4018 (((-112) $) NIL (|has| |#1| (-566)))) (-1751 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3207 ((|#4| |#4| $) NIL)) (-2771 (((-2 (|:| |under| $) (|:| -3595 $) (|:| |upper| $)) $ |#3|) NIL)) (-3034 (((-112) $ (-781)) NIL)) (-2165 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3426 (($) NIL T CONST)) (-4336 (((-112) $) NIL (|has| |#1| (-566)))) (-1547 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2318 (((-112) $ $) NIL (|has| |#1| (-566)))) (-1792 (((-112) $) NIL (|has| |#1| (-566)))) (-3908 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-3025 (((-654 |#4|) (-654 |#4|) $) 28 (|has| |#1| (-566)))) (-1974 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1696 (((-3 $ "failed") (-654 |#4|)) NIL)) (-2206 (($ (-654 |#4|)) NIL)) (-2926 (((-3 $ "failed") $) 78)) (-1402 ((|#4| |#4| $) 83)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113))))) (-3335 (($ |#4| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-2766 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-1315 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1747 ((|#4| |#4| $) NIL)) (-2868 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4456))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4456))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4270 (((-2 (|:| -1381 (-654 |#4|)) (|:| -1675 (-654 |#4|))) $) NIL)) (-1864 (((-654 |#4|) $) NIL (|has| $ (-6 -4456)))) (-4436 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3830 ((|#3| $) 84)) (-2742 (((-112) $ (-781)) NIL)) (-1606 (((-654 |#4|) $) 32 (|has| $ (-6 -4456)))) (-1710 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113))))) (-3307 (((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-654 |#4|)) 38)) (-2449 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4457)))) (-1777 (($ (-1 |#4| |#4|) $) NIL)) (-3963 (((-654 |#3|) $) NIL)) (-4158 (((-112) |#3| $) NIL)) (-4203 (((-112) $ (-781)) NIL)) (-4136 (((-1172) $) NIL)) (-3360 (((-3 |#4| "failed") $) NIL)) (-4417 (((-654 |#4|) $) 54)) (-4292 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3023 ((|#4| |#4| $) 82)) (-2119 (((-112) $ $) 93)) (-2396 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-2682 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3206 ((|#4| |#4| $) NIL)) (-3966 (((-1133) $) NIL)) (-2915 (((-3 |#4| "failed") $) 77)) (-1549 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3040 (((-3 $ "failed") $ |#4|) NIL)) (-2533 (($ $ |#4|) NIL)) (-2540 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-2646 (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113)))) (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1113))))) (-4017 (((-112) $ $) NIL)) (-1584 (((-112) $) 75)) (-2672 (($) 46)) (-4202 (((-781) $) NIL)) (-3975 (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#4| (-1113)))) (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-3167 (($ $) NIL)) (-1836 (((-546) $) NIL (|has| |#4| (-624 (-546))))) (-2956 (($ (-654 |#4|)) NIL)) (-3650 (($ $ |#3|) NIL)) (-3722 (($ $ |#3|) NIL)) (-4429 (($ $) NIL)) (-2096 (($ $ |#3|) NIL)) (-2943 (((-872) $) NIL) (((-654 |#4|) $) 63)) (-4435 (((-781) $) NIL (|has| |#3| (-377)))) (-2770 (((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-654 |#4|)) 45)) (-2897 (((-654 $) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-654 $) (-654 |#4|)) 74)) (-3284 (((-112) $ $) NIL)) (-3416 (((-3 (-2 (|:| |bas| $) (|:| -2002 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -2002 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2582 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) NIL)) (-3390 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4456)))) (-2720 (((-654 |#3|) $) NIL)) (-3587 (((-112) |#3| $) NIL)) (-2981 (((-112) $ $) NIL)) (-2863 (((-781) $) NIL (|has| $ (-6 -4456))))) -(((-1294 |#1| |#2| |#3| |#4|) (-13 (-1224 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3307 ((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3307 ((-3 $ "failed") (-654 |#4|))) (-15 -2770 ((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2770 ((-3 $ "failed") (-654 |#4|))) (-15 -2897 ((-654 $) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2897 ((-654 $) (-654 |#4|))))) (-566) (-803) (-860) (-1078 |#1| |#2| |#3|)) (T -1294)) -((-3307 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1294 *5 *6 *7 *8)))) (-3307 (*1 *1 *2) (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1294 *3 *4 *5 *6)))) (-2770 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1294 *5 *6 *7 *8)))) (-2770 (*1 *1 *2) (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1294 *3 *4 *5 *6)))) (-2897 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1078 *6 *7 *8)) (-4 *6 (-566)) (-4 *7 (-803)) (-4 *8 (-860)) (-5 *2 (-654 (-1294 *6 *7 *8 *9))) (-5 *1 (-1294 *6 *7 *8 *9)))) (-2897 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-1294 *4 *5 *6 *7))) (-5 *1 (-1294 *4 *5 *6 *7))))) -(-13 (-1224 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3307 ((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3307 ((-3 $ "failed") (-654 |#4|))) (-15 -2770 ((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2770 ((-3 $ "failed") (-654 |#4|))) (-15 -2897 ((-654 $) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2897 ((-654 $) (-654 |#4|))))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-3524 (((-3 $ "failed") $ $) 20)) (-3426 (($) 18 T CONST)) (-3434 (((-3 $ "failed") $) 37)) (-3199 (((-112) $) 35)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 45)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46))) -(((-1295 |#1|) (-141) (-1062)) (T -1295)) -NIL -(-13 (-1062) (-111 |t#1| |t#1|) (-626 |t#1|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) |has| |#1| (-174)) ((-727 |#1|) |has| |#1| (-174)) ((-736) . T) ((-1064 |#1|) . T) ((-1069 |#1|) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T)) -((-2849 (((-112) $ $) 67)) (-3138 (((-112) $) NIL)) (-1655 (((-654 |#1|) $) 52)) (-3805 (($ $ (-781)) 46)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3886 (($ $ (-781)) 24 (|has| |#2| (-174))) (($ $ $) 25 (|has| |#2| (-174)))) (-3426 (($) NIL T CONST)) (-3593 (($ $ $) 70) (($ $ (-829 |#1|)) 56) (($ $ |#1|) 60)) (-1696 (((-3 (-829 |#1|) "failed") $) NIL)) (-2206 (((-829 |#1|) $) NIL)) (-1392 (($ $) 39)) (-3434 (((-3 $ "failed") $) NIL)) (-3799 (((-112) $) NIL)) (-2905 (($ $) NIL)) (-3199 (((-112) $) NIL)) (-1322 (((-781) $) NIL)) (-3727 (((-654 $) $) NIL)) (-3869 (((-112) $) NIL)) (-3832 (($ (-829 |#1|) |#2|) 38)) (-4248 (($ $) 40)) (-3219 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) 12)) (-2893 (((-829 |#1|) $) NIL)) (-3924 (((-829 |#1|) $) 41)) (-1777 (($ (-1 |#2| |#2|) $) NIL)) (-3548 (($ $ $) 69) (($ $ (-829 |#1|)) 58) (($ $ |#1|) 62)) (-2767 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1359 (((-829 |#1|) $) 35)) (-1370 ((|#2| $) 37)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-4202 (((-781) $) 43)) (-4224 (((-112) $) 47)) (-1706 ((|#2| $) NIL)) (-2943 (((-872) $) NIL) (($ (-829 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-574)) NIL)) (-2530 (((-654 |#2|) $) NIL)) (-3087 ((|#2| $ (-829 |#1|)) NIL)) (-1858 ((|#2| $ $) 76) ((|#2| $ (-829 |#1|)) NIL)) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-2133 (($) 13 T CONST)) (-2145 (($) 19 T CONST)) (-1388 (((-654 (-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2981 (((-112) $ $) 44)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) 28)) (** (($ $ (-781)) NIL) (($ $ (-932)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-829 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) -(((-1296 |#1| |#2|) (-13 (-391 |#2| (-829 |#1|)) (-1302 |#1| |#2|)) (-860) (-1062)) (T -1296)) -NIL -(-13 (-391 |#2| (-829 |#1|)) (-1302 |#1| |#2|)) -((-3119 ((|#3| |#3| (-781)) 28)) (-1609 ((|#3| |#3| (-781)) 34)) (-2940 ((|#3| |#3| |#3| (-781)) 35))) -(((-1297 |#1| |#2| |#3|) (-10 -7 (-15 -1609 (|#3| |#3| (-781))) (-15 -3119 (|#3| |#3| (-781))) (-15 -2940 (|#3| |#3| |#3| (-781)))) (-13 (-1062) (-727 (-417 (-574)))) (-860) (-1302 |#2| |#1|)) (T -1297)) -((-2940 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1062) (-727 (-417 (-574))))) (-4 *5 (-860)) (-5 *1 (-1297 *4 *5 *2)) (-4 *2 (-1302 *5 *4)))) (-3119 (*1 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1062) (-727 (-417 (-574))))) (-4 *5 (-860)) (-5 *1 (-1297 *4 *5 *2)) (-4 *2 (-1302 *5 *4)))) (-1609 (*1 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1062) (-727 (-417 (-574))))) (-4 *5 (-860)) (-5 *1 (-1297 *4 *5 *2)) (-4 *2 (-1302 *5 *4))))) -(-10 -7 (-15 -1609 (|#3| |#3| (-781))) (-15 -3119 (|#3| |#3| (-781))) (-15 -2940 (|#3| |#3| |#3| (-781)))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-1655 (((-654 |#1|) $) 47)) (-3524 (((-3 $ "failed") $ $) 20)) (-3886 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-781)) 49 (|has| |#2| (-174)))) (-3426 (($) 18 T CONST)) (-3593 (($ $ |#1|) 61) (($ $ (-829 |#1|)) 60) (($ $ $) 59)) (-1696 (((-3 (-829 |#1|) "failed") $) 71)) (-2206 (((-829 |#1|) $) 72)) (-3434 (((-3 $ "failed") $) 37)) (-3799 (((-112) $) 52)) (-2905 (($ $) 51)) (-3199 (((-112) $) 35)) (-3869 (((-112) $) 57)) (-3832 (($ (-829 |#1|) |#2|) 58)) (-4248 (($ $) 56)) (-3219 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) 67)) (-2893 (((-829 |#1|) $) 68)) (-1777 (($ (-1 |#2| |#2|) $) 48)) (-3548 (($ $ |#1|) 64) (($ $ (-829 |#1|)) 63) (($ $ $) 62)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-4224 (((-112) $) 54)) (-1706 ((|#2| $) 53)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#2|) 75) (($ (-829 |#1|)) 70) (($ |#1|) 55)) (-1858 ((|#2| $ (-829 |#1|)) 66) ((|#2| $ $) 65)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) -(((-1298 |#1| |#2|) (-141) (-860) (-1062)) (T -1298)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1298 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1062)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062)))) (-2893 (*1 *2 *1) (-12 (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)) (-5 *2 (-829 *3)))) (-3219 (*1 *2 *1) (-12 (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)) (-5 *2 (-2 (|:| |k| (-829 *3)) (|:| |c| *4))))) (-1858 (*1 *2 *1 *3) (-12 (-5 *3 (-829 *4)) (-4 *1 (-1298 *4 *2)) (-4 *4 (-860)) (-4 *2 (-1062)))) (-1858 (*1 *2 *1 *1) (-12 (-4 *1 (-1298 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1062)))) (-3548 (*1 *1 *1 *2) (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062)))) (-3548 (*1 *1 *1 *2) (-12 (-5 *2 (-829 *3)) (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)))) (-3548 (*1 *1 *1 *1) (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062)))) (-3593 (*1 *1 *1 *2) (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062)))) (-3593 (*1 *1 *1 *2) (-12 (-5 *2 (-829 *3)) (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)))) (-3593 (*1 *1 *1 *1) (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062)))) (-3832 (*1 *1 *2 *3) (-12 (-5 *2 (-829 *4)) (-4 *4 (-860)) (-4 *1 (-1298 *4 *3)) (-4 *3 (-1062)))) (-3869 (*1 *2 *1) (-12 (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)) (-5 *2 (-112)))) (-4248 (*1 *1 *1) (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062)))) (-2943 (*1 *1 *2) (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062)))) (-4224 (*1 *2 *1) (-12 (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)) (-5 *2 (-112)))) (-1706 (*1 *2 *1) (-12 (-4 *1 (-1298 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1062)))) (-3799 (*1 *2 *1) (-12 (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)) (-5 *2 (-112)))) (-2905 (*1 *1 *1) (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062)))) (-3886 (*1 *1 *1 *1) (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062)) (-4 *3 (-174)))) (-3886 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)) (-4 *4 (-174)))) (-1777 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)))) (-1655 (*1 *2 *1) (-12 (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)) (-5 *2 (-654 *3))))) -(-13 (-1062) (-1295 |t#2|) (-1051 (-829 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2893 ((-829 |t#1|) $)) (-15 -3219 ((-2 (|:| |k| (-829 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1858 (|t#2| $ (-829 |t#1|))) (-15 -1858 (|t#2| $ $)) (-15 -3548 ($ $ |t#1|)) (-15 -3548 ($ $ (-829 |t#1|))) (-15 -3548 ($ $ $)) (-15 -3593 ($ $ |t#1|)) (-15 -3593 ($ $ (-829 |t#1|))) (-15 -3593 ($ $ $)) (-15 -3832 ($ (-829 |t#1|) |t#2|)) (-15 -3869 ((-112) $)) (-15 -4248 ($ $)) (-15 -2943 ($ |t#1|)) (-15 -4224 ((-112) $)) (-15 -1706 (|t#2| $)) (-15 -3799 ((-112) $)) (-15 -2905 ($ $)) (IF (|has| |t#2| (-174)) (PROGN (-15 -3886 ($ $ $)) (-15 -3886 ($ $ (-781)))) |%noBranch|) (-15 -1777 ($ (-1 |t#2| |t#2|) $)) (-15 -1655 ((-654 |t#1|) $)) (IF (|has| |t#2| (-6 -4449)) (-6 -4449) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 #0=(-829 |#1|)) . T) ((-626 |#2|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#2|) . T) ((-656 $) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-650 |#2|) |has| |#2| (-174)) ((-727 |#2|) |has| |#2| (-174)) ((-736) . T) ((-1051 #0#) . T) ((-1064 |#2|) . T) ((-1069 |#2|) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1295 |#2|) . T)) -((-4297 (((-112) $) 15)) (-3587 (((-112) $) 14)) (-2661 (($ $) 19) (($ $ (-781)) 21))) -(((-1299 |#1| |#2|) (-10 -8 (-15 -2661 (|#1| |#1| (-781))) (-15 -2661 (|#1| |#1|)) (-15 -4297 ((-112) |#1|)) (-15 -3587 ((-112) |#1|))) (-1300 |#2|) (-372)) (T -1299)) -NIL -(-10 -8 (-15 -2661 (|#1| |#1| (-781))) (-15 -2661 (|#1| |#1|)) (-15 -4297 ((-112) |#1|)) (-15 -3587 ((-112) |#1|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-1776 (((-2 (|:| -2785 $) (|:| -4443 $) (|:| |associate| $)) $) 47)) (-1575 (($ $) 46)) (-2085 (((-112) $) 44)) (-4297 (((-112) $) 104)) (-2549 (((-781)) 100)) (-3524 (((-3 $ "failed") $ $) 20)) (-2568 (($ $) 81)) (-2827 (((-428 $) $) 80)) (-1600 (((-112) $ $) 65)) (-3426 (($) 18 T CONST)) (-1696 (((-3 |#1| "failed") $) 111)) (-2206 ((|#1| $) 112)) (-2786 (($ $ $) 61)) (-3434 (((-3 $ "failed") $) 37)) (-2797 (($ $ $) 62)) (-1665 (((-2 (|:| -1858 (-654 $)) (|:| -2970 $)) (-654 $)) 57)) (-1647 (($ $ (-781)) 97 (-2818 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) 96 (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2257 (((-112) $) 79)) (-3884 (((-843 (-932)) $) 94 (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3199 (((-112) $) 35)) (-4403 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2832 (($ $ $) 52) (($ (-654 $)) 51)) (-4136 (((-1172) $) 10)) (-1324 (($ $) 78)) (-4204 (((-112) $) 103)) (-3966 (((-1133) $) 11)) (-3109 (((-1186 $) (-1186 $) (-1186 $)) 50)) (-2873 (($ $ $) 54) (($ (-654 $)) 53)) (-4220 (((-428 $) $) 82)) (-2989 (((-843 (-932))) 101)) (-1475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2970 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2838 (((-3 $ "failed") $ $) 48)) (-3471 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-1730 (((-781) $) 64)) (-1989 (((-2 (|:| -1411 $) (|:| -2766 $)) $ $) 63)) (-4342 (((-3 (-781) "failed") $ $) 95 (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-4133 (((-135)) 109)) (-4202 (((-843 (-932)) $) 102)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ |#1|) 110)) (-3298 (((-3 $ "failed") $) 93 (-2818 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2069 (((-112) $ $) 45)) (-3587 (((-112) $) 105)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-2661 (($ $) 99 (|has| |#1| (-377))) (($ $ (-781)) 98 (|has| |#1| (-377)))) (-2981 (((-112) $ $) 6)) (-3108 (($ $ $) 73) (($ $ |#1|) 108)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) -(((-1300 |#1|) (-141) (-372)) (T -1300)) -((-3587 (*1 *2 *1) (-12 (-4 *1 (-1300 *3)) (-4 *3 (-372)) (-5 *2 (-112)))) (-4297 (*1 *2 *1) (-12 (-4 *1 (-1300 *3)) (-4 *3 (-372)) (-5 *2 (-112)))) (-4204 (*1 *2 *1) (-12 (-4 *1 (-1300 *3)) (-4 *3 (-372)) (-5 *2 (-112)))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-1300 *3)) (-4 *3 (-372)) (-5 *2 (-843 (-932))))) (-2989 (*1 *2) (-12 (-4 *1 (-1300 *3)) (-4 *3 (-372)) (-5 *2 (-843 (-932))))) (-2549 (*1 *2) (-12 (-4 *1 (-1300 *3)) (-4 *3 (-372)) (-5 *2 (-781)))) (-2661 (*1 *1 *1) (-12 (-4 *1 (-1300 *2)) (-4 *2 (-372)) (-4 *2 (-377)))) (-2661 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1300 *3)) (-4 *3 (-372)) (-4 *3 (-377))))) -(-13 (-372) (-1051 |t#1|) (-1288 |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-412)) |%noBranch|) (-15 -3587 ((-112) $)) (-15 -4297 ((-112) $)) (-15 -4204 ((-112) $)) (-15 -4202 ((-843 (-932)) $)) (-15 -2989 ((-843 (-932)))) (-15 -2549 ((-781))) (IF (|has| |t#1| (-377)) (PROGN (-6 (-412)) (-15 -2661 ($ $)) (-15 -2661 ($ $ (-781)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2818 (|has| |#1| (-377)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-412) -2818 (|has| |#1| (-377)) (|has| |#1| (-146))) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 |#1|) . T) ((-727 $) . T) ((-736) . T) ((-931) . T) ((-1051 |#1|) . T) ((-1064 #0#) . T) ((-1064 |#1|) . T) ((-1064 $) . T) ((-1069 #0#) . T) ((-1069 |#1|) . T) ((-1069 $) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1235) . T) ((-1288 |#1|) . T)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1655 (((-654 |#1|) $) 98)) (-3805 (($ $ (-781)) 102)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3886 (($ $ $) NIL (|has| |#2| (-174))) (($ $ (-781)) NIL (|has| |#2| (-174)))) (-3426 (($) NIL T CONST)) (-3593 (($ $ |#1|) NIL) (($ $ (-829 |#1|)) NIL) (($ $ $) NIL)) (-1696 (((-3 (-829 |#1|) "failed") $) NIL) (((-3 (-904 |#1|) "failed") $) NIL)) (-2206 (((-829 |#1|) $) NIL) (((-904 |#1|) $) NIL)) (-1392 (($ $) 101)) (-3434 (((-3 $ "failed") $) NIL)) (-3799 (((-112) $) 90)) (-2905 (($ $) 93)) (-3237 (($ $ $ (-781)) 103)) (-3199 (((-112) $) NIL)) (-1322 (((-781) $) NIL)) (-3727 (((-654 $) $) NIL)) (-3869 (((-112) $) NIL)) (-3832 (($ (-829 |#1|) |#2|) NIL) (($ (-904 |#1|) |#2|) 29)) (-4248 (($ $) 119)) (-3219 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2893 (((-829 |#1|) $) NIL)) (-3924 (((-829 |#1|) $) NIL)) (-1777 (($ (-1 |#2| |#2|) $) NIL)) (-3548 (($ $ |#1|) NIL) (($ $ (-829 |#1|)) NIL) (($ $ $) NIL)) (-3119 (($ $ (-781)) 112 (|has| |#2| (-727 (-417 (-574)))))) (-2767 (((-2 (|:| |k| (-904 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1359 (((-904 |#1|) $) 83)) (-1370 ((|#2| $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-1609 (($ $ (-781)) 109 (|has| |#2| (-727 (-417 (-574)))))) (-4202 (((-781) $) 99)) (-4224 (((-112) $) 84)) (-1706 ((|#2| $) 88)) (-2943 (((-872) $) 69) (($ (-574)) NIL) (($ |#2|) 60) (($ (-829 |#1|)) NIL) (($ |#1|) 71) (($ (-904 |#1|)) NIL) (($ (-674 |#1| |#2|)) 48) (((-1296 |#1| |#2|) $) 76) (((-1305 |#1| |#2|) $) 81)) (-2530 (((-654 |#2|) $) NIL)) (-3087 ((|#2| $ (-904 |#1|)) NIL)) (-1858 ((|#2| $ (-829 |#1|)) NIL) ((|#2| $ $) NIL)) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-2133 (($) 21 T CONST)) (-2145 (($) 28 T CONST)) (-1388 (((-654 (-2 (|:| |k| (-904 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4021 (((-3 (-674 |#1| |#2|) "failed") $) 118)) (-2981 (((-112) $ $) 77)) (-3094 (($ $) 111) (($ $ $) 110)) (-3079 (($ $ $) 20)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-904 |#1|)) NIL))) -(((-1301 |#1| |#2|) (-13 (-1302 |#1| |#2|) (-391 |#2| (-904 |#1|)) (-10 -8 (-15 -2943 ($ (-674 |#1| |#2|))) (-15 -2943 ((-1296 |#1| |#2|) $)) (-15 -2943 ((-1305 |#1| |#2|) $)) (-15 -4021 ((-3 (-674 |#1| |#2|) "failed") $)) (-15 -3237 ($ $ $ (-781))) (IF (|has| |#2| (-727 (-417 (-574)))) (PROGN (-15 -1609 ($ $ (-781))) (-15 -3119 ($ $ (-781)))) |%noBranch|))) (-860) (-174)) (T -1301)) -((-2943 (*1 *1 *2) (-12 (-5 *2 (-674 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *1 (-1301 *3 *4)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-1296 *3 *4)) (-5 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-1305 *3 *4)) (-5 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-4021 (*1 *2 *1) (|partial| -12 (-5 *2 (-674 *3 *4)) (-5 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-3237 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-1609 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1301 *3 *4)) (-4 *4 (-727 (-417 (-574)))) (-4 *3 (-860)) (-4 *4 (-174)))) (-3119 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1301 *3 *4)) (-4 *4 (-727 (-417 (-574)))) (-4 *3 (-860)) (-4 *4 (-174))))) -(-13 (-1302 |#1| |#2|) (-391 |#2| (-904 |#1|)) (-10 -8 (-15 -2943 ($ (-674 |#1| |#2|))) (-15 -2943 ((-1296 |#1| |#2|) $)) (-15 -2943 ((-1305 |#1| |#2|) $)) (-15 -4021 ((-3 (-674 |#1| |#2|) "failed") $)) (-15 -3237 ($ $ $ (-781))) (IF (|has| |#2| (-727 (-417 (-574)))) (PROGN (-15 -1609 ($ $ (-781))) (-15 -3119 ($ $ (-781)))) |%noBranch|))) -((-2849 (((-112) $ $) 7)) (-3138 (((-112) $) 17)) (-1655 (((-654 |#1|) $) 47)) (-3805 (($ $ (-781)) 80)) (-3524 (((-3 $ "failed") $ $) 20)) (-3886 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-781)) 49 (|has| |#2| (-174)))) (-3426 (($) 18 T CONST)) (-3593 (($ $ |#1|) 61) (($ $ (-829 |#1|)) 60) (($ $ $) 59)) (-1696 (((-3 (-829 |#1|) "failed") $) 71)) (-2206 (((-829 |#1|) $) 72)) (-3434 (((-3 $ "failed") $) 37)) (-3799 (((-112) $) 52)) (-2905 (($ $) 51)) (-3199 (((-112) $) 35)) (-3869 (((-112) $) 57)) (-3832 (($ (-829 |#1|) |#2|) 58)) (-4248 (($ $) 56)) (-3219 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) 67)) (-2893 (((-829 |#1|) $) 68)) (-3924 (((-829 |#1|) $) 82)) (-1777 (($ (-1 |#2| |#2|) $) 48)) (-3548 (($ $ |#1|) 64) (($ $ (-829 |#1|)) 63) (($ $ $) 62)) (-4136 (((-1172) $) 10)) (-3966 (((-1133) $) 11)) (-4202 (((-781) $) 81)) (-4224 (((-112) $) 54)) (-1706 ((|#2| $) 53)) (-2943 (((-872) $) 12) (($ (-574)) 33) (($ |#2|) 75) (($ (-829 |#1|)) 70) (($ |#1|) 55)) (-1858 ((|#2| $ (-829 |#1|)) 66) ((|#2| $ $) 65)) (-1364 (((-781)) 32 T CONST)) (-3284 (((-112) $ $) 9)) (-2133 (($) 19 T CONST)) (-2145 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3094 (($ $) 23) (($ $ $) 22)) (-3079 (($ $ $) 15)) (** (($ $ (-932)) 28) (($ $ (-781)) 36)) (* (($ (-932) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) -(((-1302 |#1| |#2|) (-141) (-860) (-1062)) (T -1302)) -((-3924 (*1 *2 *1) (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)) (-5 *2 (-829 *3)))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)) (-5 *2 (-781)))) (-3805 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1302 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062))))) -(-13 (-1298 |t#1| |t#2|) (-10 -8 (-15 -3924 ((-829 |t#1|) $)) (-15 -4202 ((-781) $)) (-15 -3805 ($ $ (-781))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 #0=(-829 |#1|)) . T) ((-626 |#2|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#2|) . T) ((-656 $) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-650 |#2|) |has| |#2| (-174)) ((-727 |#2|) |has| |#2| (-174)) ((-736) . T) ((-1051 #0#) . T) ((-1064 |#2|) . T) ((-1069 |#2|) . T) ((-1062) . T) ((-1071) . T) ((-1125) . T) ((-1113) . T) ((-1295 |#2|) . T) ((-1298 |#1| |#2|) . T)) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-1655 (((-654 (-1190)) $) NIL)) (-3933 (($ (-1296 (-1190) |#1|)) NIL)) (-3805 (($ $ (-781)) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3886 (($ $ $) NIL (|has| |#1| (-174))) (($ $ (-781)) NIL (|has| |#1| (-174)))) (-3426 (($) NIL T CONST)) (-3593 (($ $ (-1190)) NIL) (($ $ (-829 (-1190))) NIL) (($ $ $) NIL)) (-1696 (((-3 (-829 (-1190)) "failed") $) NIL)) (-2206 (((-829 (-1190)) $) NIL)) (-3434 (((-3 $ "failed") $) NIL)) (-3799 (((-112) $) NIL)) (-2905 (($ $) NIL)) (-3199 (((-112) $) NIL)) (-3869 (((-112) $) NIL)) (-3832 (($ (-829 (-1190)) |#1|) NIL)) (-4248 (($ $) NIL)) (-3219 (((-2 (|:| |k| (-829 (-1190))) (|:| |c| |#1|)) $) NIL)) (-2893 (((-829 (-1190)) $) NIL)) (-3924 (((-829 (-1190)) $) NIL)) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-3548 (($ $ (-1190)) NIL) (($ $ (-829 (-1190))) NIL) (($ $ $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2128 (((-1296 (-1190) |#1|) $) NIL)) (-4202 (((-781) $) NIL)) (-4224 (((-112) $) NIL)) (-1706 ((|#1| $) NIL)) (-2943 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-829 (-1190))) NIL) (($ (-1190)) NIL)) (-1858 ((|#1| $ (-829 (-1190))) NIL) ((|#1| $ $) NIL)) (-1364 (((-781)) NIL T CONST)) (-3284 (((-112) $ $) NIL)) (-2133 (($) NIL T CONST)) (-2619 (((-654 (-2 (|:| |k| (-1190)) (|:| |c| $))) $) NIL)) (-2145 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) NIL)) (** (($ $ (-932)) NIL) (($ $ (-781)) NIL)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1190) $) NIL))) -(((-1303 |#1|) (-13 (-1302 (-1190) |#1|) (-10 -8 (-15 -2128 ((-1296 (-1190) |#1|) $)) (-15 -3933 ($ (-1296 (-1190) |#1|))) (-15 -2619 ((-654 (-2 (|:| |k| (-1190)) (|:| |c| $))) $)))) (-1062)) (T -1303)) -((-2128 (*1 *2 *1) (-12 (-5 *2 (-1296 (-1190) *3)) (-5 *1 (-1303 *3)) (-4 *3 (-1062)))) (-3933 (*1 *1 *2) (-12 (-5 *2 (-1296 (-1190) *3)) (-4 *3 (-1062)) (-5 *1 (-1303 *3)))) (-2619 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |k| (-1190)) (|:| |c| (-1303 *3))))) (-5 *1 (-1303 *3)) (-4 *3 (-1062))))) -(-13 (-1302 (-1190) |#1|) (-10 -8 (-15 -2128 ((-1296 (-1190) |#1|) $)) (-15 -3933 ($ (-1296 (-1190) |#1|))) (-15 -2619 ((-654 (-2 (|:| |k| (-1190)) (|:| |c| $))) $)))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) NIL)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3426 (($) NIL T CONST)) (-1696 (((-3 |#2| "failed") $) NIL)) (-2206 ((|#2| $) NIL)) (-1392 (($ $) NIL)) (-3434 (((-3 $ "failed") $) 42)) (-3799 (((-112) $) 35)) (-2905 (($ $) 37)) (-3199 (((-112) $) NIL)) (-1322 (((-781) $) NIL)) (-3727 (((-654 $) $) NIL)) (-3869 (((-112) $) NIL)) (-3832 (($ |#2| |#1|) NIL)) (-2893 ((|#2| $) 24)) (-3924 ((|#2| $) 22)) (-1777 (($ (-1 |#1| |#1|) $) NIL)) (-2767 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1359 ((|#2| $) NIL)) (-1370 ((|#1| $) NIL)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-4224 (((-112) $) 32)) (-1706 ((|#1| $) 33)) (-2943 (((-872) $) 65) (($ (-574)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-2530 (((-654 |#1|) $) NIL)) (-3087 ((|#1| $ |#2|) NIL)) (-1858 ((|#1| $ |#2|) 28)) (-1364 (((-781)) 14 T CONST)) (-3284 (((-112) $ $) NIL)) (-2133 (($) 29 T CONST)) (-2145 (($) 11 T CONST)) (-1388 (((-654 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2981 (((-112) $ $) 30)) (-3108 (($ $ |#1|) 67 (|has| |#1| (-372)))) (-3094 (($ $) NIL) (($ $ $) NIL)) (-3079 (($ $ $) 50)) (** (($ $ (-932)) NIL) (($ $ (-781)) 52)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2863 (((-781) $) 16))) -(((-1304 |#1| |#2|) (-13 (-1062) (-1295 |#1|) (-391 |#1| |#2|) (-626 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2863 ((-781) $)) (-15 -3924 (|#2| $)) (-15 -2893 (|#2| $)) (-15 -1392 ($ $)) (-15 -1858 (|#1| $ |#2|)) (-15 -4224 ((-112) $)) (-15 -1706 (|#1| $)) (-15 -3799 ((-112) $)) (-15 -2905 ($ $)) (-15 -1777 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-372)) (-15 -3108 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4449)) (-6 -4449) |%noBranch|) (IF (|has| |#1| (-6 -4453)) (-6 -4453) |%noBranch|) (IF (|has| |#1| (-6 -4454)) (-6 -4454) |%noBranch|))) (-1062) (-856)) (T -1304)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1304 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-856)))) (-1392 (*1 *1 *1) (-12 (-5 *1 (-1304 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-856)))) (-1777 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1062)) (-5 *1 (-1304 *3 *4)) (-4 *4 (-856)))) (-2863 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1304 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-856)))) (-3924 (*1 *2 *1) (-12 (-4 *2 (-856)) (-5 *1 (-1304 *3 *2)) (-4 *3 (-1062)))) (-2893 (*1 *2 *1) (-12 (-4 *2 (-856)) (-5 *1 (-1304 *3 *2)) (-4 *3 (-1062)))) (-1858 (*1 *2 *1 *3) (-12 (-4 *2 (-1062)) (-5 *1 (-1304 *2 *3)) (-4 *3 (-856)))) (-4224 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1304 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-856)))) (-1706 (*1 *2 *1) (-12 (-4 *2 (-1062)) (-5 *1 (-1304 *2 *3)) (-4 *3 (-856)))) (-3799 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1304 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-856)))) (-2905 (*1 *1 *1) (-12 (-5 *1 (-1304 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-856)))) (-3108 (*1 *1 *1 *2) (-12 (-5 *1 (-1304 *2 *3)) (-4 *2 (-372)) (-4 *2 (-1062)) (-4 *3 (-856))))) -(-13 (-1062) (-1295 |#1|) (-391 |#1| |#2|) (-626 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2863 ((-781) $)) (-15 -3924 (|#2| $)) (-15 -2893 (|#2| $)) (-15 -1392 ($ $)) (-15 -1858 (|#1| $ |#2|)) (-15 -4224 ((-112) $)) (-15 -1706 (|#1| $)) (-15 -3799 ((-112) $)) (-15 -2905 ($ $)) (-15 -1777 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-372)) (-15 -3108 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4449)) (-6 -4449) |%noBranch|) (IF (|has| |#1| (-6 -4453)) (-6 -4453) |%noBranch|) (IF (|has| |#1| (-6 -4454)) (-6 -4454) |%noBranch|))) -((-2849 (((-112) $ $) 27)) (-3138 (((-112) $) NIL)) (-1655 (((-654 |#1|) $) 132)) (-3933 (($ (-1296 |#1| |#2|)) 50)) (-3805 (($ $ (-781)) 38)) (-3524 (((-3 $ "failed") $ $) NIL)) (-3886 (($ $ $) 54 (|has| |#2| (-174))) (($ $ (-781)) 52 (|has| |#2| (-174)))) (-3426 (($) NIL T CONST)) (-3593 (($ $ |#1|) 114) (($ $ (-829 |#1|)) 115) (($ $ $) 26)) (-1696 (((-3 (-829 |#1|) "failed") $) NIL)) (-2206 (((-829 |#1|) $) NIL)) (-3434 (((-3 $ "failed") $) 122)) (-3799 (((-112) $) 117)) (-2905 (($ $) 118)) (-3199 (((-112) $) NIL)) (-3869 (((-112) $) NIL)) (-3832 (($ (-829 |#1|) |#2|) 20)) (-4248 (($ $) NIL)) (-3219 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2893 (((-829 |#1|) $) 123)) (-3924 (((-829 |#1|) $) 126)) (-1777 (($ (-1 |#2| |#2|) $) 131)) (-3548 (($ $ |#1|) 112) (($ $ (-829 |#1|)) 113) (($ $ $) 62)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2128 (((-1296 |#1| |#2|) $) 94)) (-4202 (((-781) $) 129)) (-4224 (((-112) $) 81)) (-1706 ((|#2| $) 32)) (-2943 (((-872) $) 73) (($ (-574)) 87) (($ |#2|) 85) (($ (-829 |#1|)) 18) (($ |#1|) 84)) (-1858 ((|#2| $ (-829 |#1|)) 116) ((|#2| $ $) 28)) (-1364 (((-781)) 120 T CONST)) (-3284 (((-112) $ $) NIL)) (-2133 (($) 15 T CONST)) (-2619 (((-654 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-2145 (($) 33 T CONST)) (-2981 (((-112) $ $) 14)) (-3094 (($ $) 98) (($ $ $) 101)) (-3079 (($ $ $) 61)) (** (($ $ (-932)) NIL) (($ $ (-781)) 55)) (* (($ (-932) $) NIL) (($ (-781) $) 53) (($ (-574) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92))) -(((-1305 |#1| |#2|) (-13 (-1302 |#1| |#2|) (-10 -8 (-15 -2128 ((-1296 |#1| |#2|) $)) (-15 -3933 ($ (-1296 |#1| |#2|))) (-15 -2619 ((-654 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-860) (-1062)) (T -1305)) -((-2128 (*1 *2 *1) (-12 (-5 *2 (-1296 *3 *4)) (-5 *1 (-1305 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)))) (-3933 (*1 *1 *2) (-12 (-5 *2 (-1296 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)) (-5 *1 (-1305 *3 *4)))) (-2619 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |k| *3) (|:| |c| (-1305 *3 *4))))) (-5 *1 (-1305 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062))))) -(-13 (-1302 |#1| |#2|) (-10 -8 (-15 -2128 ((-1296 |#1| |#2|) $)) (-15 -3933 ($ (-1296 |#1| |#2|))) (-15 -2619 ((-654 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-2849 (((-112) $ $) NIL)) (-2384 (($ (-654 (-932))) 10)) (-1367 (((-984) $) 12)) (-4136 (((-1172) $) NIL)) (-3966 (((-1133) $) NIL)) (-2943 (((-872) $) 25) (($ (-984)) 14) (((-984) $) 13)) (-3284 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 17))) -(((-1306) (-13 (-1113) (-500 (-984)) (-10 -8 (-15 -2384 ($ (-654 (-932)))) (-15 -1367 ((-984) $))))) (T -1306)) -((-2384 (*1 *1 *2) (-12 (-5 *2 (-654 (-932))) (-5 *1 (-1306)))) (-1367 (*1 *2 *1) (-12 (-5 *2 (-984)) (-5 *1 (-1306))))) -(-13 (-1113) (-500 (-984)) (-10 -8 (-15 -2384 ($ (-654 (-932)))) (-15 -1367 ((-984) $)))) -((-1881 (((-654 (-1170 |#1|)) (-1 (-654 (-1170 |#1|)) (-654 (-1170 |#1|))) (-574)) 16) (((-1170 |#1|) (-1 (-1170 |#1|) (-1170 |#1|))) 13))) -(((-1307 |#1|) (-10 -7 (-15 -1881 ((-1170 |#1|) (-1 (-1170 |#1|) (-1170 |#1|)))) (-15 -1881 ((-654 (-1170 |#1|)) (-1 (-654 (-1170 |#1|)) (-654 (-1170 |#1|))) (-574)))) (-1231)) (T -1307)) -((-1881 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-654 (-1170 *5)) (-654 (-1170 *5)))) (-5 *4 (-574)) (-5 *2 (-654 (-1170 *5))) (-5 *1 (-1307 *5)) (-4 *5 (-1231)))) (-1881 (*1 *2 *3) (-12 (-5 *3 (-1 (-1170 *4) (-1170 *4))) (-5 *2 (-1170 *4)) (-5 *1 (-1307 *4)) (-4 *4 (-1231))))) -(-10 -7 (-15 -1881 ((-1170 |#1|) (-1 (-1170 |#1|) (-1170 |#1|)))) (-15 -1881 ((-654 (-1170 |#1|)) (-1 (-654 (-1170 |#1|)) (-654 (-1170 |#1|))) (-574)))) -((-3162 (((-654 (-2 (|:| -1625 (-1186 |#1|)) (|:| -3487 (-654 (-963 |#1|))))) (-654 (-963 |#1|))) 174) (((-654 (-2 (|:| -1625 (-1186 |#1|)) (|:| -3487 (-654 (-963 |#1|))))) (-654 (-963 |#1|)) (-112)) 173) (((-654 (-2 (|:| -1625 (-1186 |#1|)) (|:| -3487 (-654 (-963 |#1|))))) (-654 (-963 |#1|)) (-112) (-112)) 172) (((-654 (-2 (|:| -1625 (-1186 |#1|)) (|:| -3487 (-654 (-963 |#1|))))) (-654 (-963 |#1|)) (-112) (-112) (-112)) 171) (((-654 (-2 (|:| -1625 (-1186 |#1|)) (|:| -3487 (-654 (-963 |#1|))))) (-1059 |#1| |#2|)) 156)) (-1828 (((-654 (-1059 |#1| |#2|)) (-654 (-963 |#1|))) 85) (((-654 (-1059 |#1| |#2|)) (-654 (-963 |#1|)) (-112)) 84) (((-654 (-1059 |#1| |#2|)) (-654 (-963 |#1|)) (-112) (-112)) 83)) (-2827 (((-654 (-1159 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))) (-1059 |#1| |#2|)) 73)) (-3450 (((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|))) 140) (((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)) (-112)) 139) (((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)) (-112) (-112)) 138) (((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)) (-112) (-112) (-112)) 137) (((-654 (-654 (-1037 (-417 |#1|)))) (-1059 |#1| |#2|)) 132)) (-1860 (((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|))) 145) (((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)) (-112)) 144) (((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)) (-112) (-112)) 143) (((-654 (-654 (-1037 (-417 |#1|)))) (-1059 |#1| |#2|)) 142)) (-1836 (((-654 (-790 |#1| (-874 |#3|))) (-1159 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))) 111) (((-1186 (-1037 (-417 |#1|))) (-1186 |#1|)) 102) (((-963 (-1037 (-417 |#1|))) (-790 |#1| (-874 |#3|))) 109) (((-963 (-1037 (-417 |#1|))) (-963 |#1|)) 107) (((-790 |#1| (-874 |#3|)) (-790 |#1| (-874 |#2|))) 33))) -(((-1308 |#1| |#2| |#3|) (-10 -7 (-15 -1828 ((-654 (-1059 |#1| |#2|)) (-654 (-963 |#1|)) (-112) (-112))) (-15 -1828 ((-654 (-1059 |#1| |#2|)) (-654 (-963 |#1|)) (-112))) (-15 -1828 ((-654 (-1059 |#1| |#2|)) (-654 (-963 |#1|)))) (-15 -3162 ((-654 (-2 (|:| -1625 (-1186 |#1|)) (|:| -3487 (-654 (-963 |#1|))))) (-1059 |#1| |#2|))) (-15 -3162 ((-654 (-2 (|:| -1625 (-1186 |#1|)) (|:| -3487 (-654 (-963 |#1|))))) (-654 (-963 |#1|)) (-112) (-112) (-112))) (-15 -3162 ((-654 (-2 (|:| -1625 (-1186 |#1|)) (|:| -3487 (-654 (-963 |#1|))))) (-654 (-963 |#1|)) (-112) (-112))) (-15 -3162 ((-654 (-2 (|:| -1625 (-1186 |#1|)) (|:| -3487 (-654 (-963 |#1|))))) (-654 (-963 |#1|)) (-112))) (-15 -3162 ((-654 (-2 (|:| -1625 (-1186 |#1|)) (|:| -3487 (-654 (-963 |#1|))))) (-654 (-963 |#1|)))) (-15 -3450 ((-654 (-654 (-1037 (-417 |#1|)))) (-1059 |#1| |#2|))) (-15 -3450 ((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)) (-112) (-112) (-112))) (-15 -3450 ((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)) (-112) (-112))) (-15 -3450 ((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)) (-112))) (-15 -3450 ((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)))) (-15 -1860 ((-654 (-654 (-1037 (-417 |#1|)))) (-1059 |#1| |#2|))) (-15 -1860 ((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)) (-112) (-112))) (-15 -1860 ((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)) (-112))) (-15 -1860 ((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)))) (-15 -2827 ((-654 (-1159 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))) (-1059 |#1| |#2|))) (-15 -1836 ((-790 |#1| (-874 |#3|)) (-790 |#1| (-874 |#2|)))) (-15 -1836 ((-963 (-1037 (-417 |#1|))) (-963 |#1|))) (-15 -1836 ((-963 (-1037 (-417 |#1|))) (-790 |#1| (-874 |#3|)))) (-15 -1836 ((-1186 (-1037 (-417 |#1|))) (-1186 |#1|))) (-15 -1836 ((-654 (-790 |#1| (-874 |#3|))) (-1159 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))))) (-13 (-858) (-315) (-148) (-1035)) (-654 (-1190)) (-654 (-1190))) (T -1308)) -((-1836 (*1 *2 *3) (-12 (-5 *3 (-1159 *4 (-541 (-874 *6)) (-874 *6) (-790 *4 (-874 *6)))) (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-14 *6 (-654 (-1190))) (-5 *2 (-654 (-790 *4 (-874 *6)))) (-5 *1 (-1308 *4 *5 *6)) (-14 *5 (-654 (-1190))))) (-1836 (*1 *2 *3) (-12 (-5 *3 (-1186 *4)) (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-1186 (-1037 (-417 *4)))) (-5 *1 (-1308 *4 *5 *6)) (-14 *5 (-654 (-1190))) (-14 *6 (-654 (-1190))))) (-1836 (*1 *2 *3) (-12 (-5 *3 (-790 *4 (-874 *6))) (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-14 *6 (-654 (-1190))) (-5 *2 (-963 (-1037 (-417 *4)))) (-5 *1 (-1308 *4 *5 *6)) (-14 *5 (-654 (-1190))))) (-1836 (*1 *2 *3) (-12 (-5 *3 (-963 *4)) (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-963 (-1037 (-417 *4)))) (-5 *1 (-1308 *4 *5 *6)) (-14 *5 (-654 (-1190))) (-14 *6 (-654 (-1190))))) (-1836 (*1 *2 *3) (-12 (-5 *3 (-790 *4 (-874 *5))) (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-14 *5 (-654 (-1190))) (-5 *2 (-790 *4 (-874 *6))) (-5 *1 (-1308 *4 *5 *6)) (-14 *6 (-654 (-1190))))) (-2827 (*1 *2 *3) (-12 (-5 *3 (-1059 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-14 *5 (-654 (-1190))) (-5 *2 (-654 (-1159 *4 (-541 (-874 *6)) (-874 *6) (-790 *4 (-874 *6))))) (-5 *1 (-1308 *4 *5 *6)) (-14 *6 (-654 (-1190))))) (-1860 (*1 *2 *3) (-12 (-5 *3 (-654 (-963 *4))) (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-654 (-654 (-1037 (-417 *4))))) (-5 *1 (-1308 *4 *5 *6)) (-14 *5 (-654 (-1190))) (-14 *6 (-654 (-1190))))) (-1860 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-654 (-654 (-1037 (-417 *5))))) (-5 *1 (-1308 *5 *6 *7)) (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190))))) (-1860 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-654 (-654 (-1037 (-417 *5))))) (-5 *1 (-1308 *5 *6 *7)) (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190))))) (-1860 (*1 *2 *3) (-12 (-5 *3 (-1059 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-14 *5 (-654 (-1190))) (-5 *2 (-654 (-654 (-1037 (-417 *4))))) (-5 *1 (-1308 *4 *5 *6)) (-14 *6 (-654 (-1190))))) (-3450 (*1 *2 *3) (-12 (-5 *3 (-654 (-963 *4))) (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-654 (-654 (-1037 (-417 *4))))) (-5 *1 (-1308 *4 *5 *6)) (-14 *5 (-654 (-1190))) (-14 *6 (-654 (-1190))))) (-3450 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-654 (-654 (-1037 (-417 *5))))) (-5 *1 (-1308 *5 *6 *7)) (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190))))) (-3450 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-654 (-654 (-1037 (-417 *5))))) (-5 *1 (-1308 *5 *6 *7)) (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190))))) (-3450 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-654 (-654 (-1037 (-417 *5))))) (-5 *1 (-1308 *5 *6 *7)) (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190))))) (-3450 (*1 *2 *3) (-12 (-5 *3 (-1059 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-14 *5 (-654 (-1190))) (-5 *2 (-654 (-654 (-1037 (-417 *4))))) (-5 *1 (-1308 *4 *5 *6)) (-14 *6 (-654 (-1190))))) (-3162 (*1 *2 *3) (-12 (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-654 (-2 (|:| -1625 (-1186 *4)) (|:| -3487 (-654 (-963 *4)))))) (-5 *1 (-1308 *4 *5 *6)) (-5 *3 (-654 (-963 *4))) (-14 *5 (-654 (-1190))) (-14 *6 (-654 (-1190))))) (-3162 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-654 (-2 (|:| -1625 (-1186 *5)) (|:| -3487 (-654 (-963 *5)))))) (-5 *1 (-1308 *5 *6 *7)) (-5 *3 (-654 (-963 *5))) (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190))))) (-3162 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-654 (-2 (|:| -1625 (-1186 *5)) (|:| -3487 (-654 (-963 *5)))))) (-5 *1 (-1308 *5 *6 *7)) (-5 *3 (-654 (-963 *5))) (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190))))) (-3162 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-654 (-2 (|:| -1625 (-1186 *5)) (|:| -3487 (-654 (-963 *5)))))) (-5 *1 (-1308 *5 *6 *7)) (-5 *3 (-654 (-963 *5))) (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190))))) (-3162 (*1 *2 *3) (-12 (-5 *3 (-1059 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-14 *5 (-654 (-1190))) (-5 *2 (-654 (-2 (|:| -1625 (-1186 *4)) (|:| -3487 (-654 (-963 *4)))))) (-5 *1 (-1308 *4 *5 *6)) (-14 *6 (-654 (-1190))))) (-1828 (*1 *2 *3) (-12 (-5 *3 (-654 (-963 *4))) (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-654 (-1059 *4 *5))) (-5 *1 (-1308 *4 *5 *6)) (-14 *5 (-654 (-1190))) (-14 *6 (-654 (-1190))))) (-1828 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-654 (-1059 *5 *6))) (-5 *1 (-1308 *5 *6 *7)) (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190))))) (-1828 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1035))) (-5 *2 (-654 (-1059 *5 *6))) (-5 *1 (-1308 *5 *6 *7)) (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190)))))) -(-10 -7 (-15 -1828 ((-654 (-1059 |#1| |#2|)) (-654 (-963 |#1|)) (-112) (-112))) (-15 -1828 ((-654 (-1059 |#1| |#2|)) (-654 (-963 |#1|)) (-112))) (-15 -1828 ((-654 (-1059 |#1| |#2|)) (-654 (-963 |#1|)))) (-15 -3162 ((-654 (-2 (|:| -1625 (-1186 |#1|)) (|:| -3487 (-654 (-963 |#1|))))) (-1059 |#1| |#2|))) (-15 -3162 ((-654 (-2 (|:| -1625 (-1186 |#1|)) (|:| -3487 (-654 (-963 |#1|))))) (-654 (-963 |#1|)) (-112) (-112) (-112))) (-15 -3162 ((-654 (-2 (|:| -1625 (-1186 |#1|)) (|:| -3487 (-654 (-963 |#1|))))) (-654 (-963 |#1|)) (-112) (-112))) (-15 -3162 ((-654 (-2 (|:| -1625 (-1186 |#1|)) (|:| -3487 (-654 (-963 |#1|))))) (-654 (-963 |#1|)) (-112))) (-15 -3162 ((-654 (-2 (|:| -1625 (-1186 |#1|)) (|:| -3487 (-654 (-963 |#1|))))) (-654 (-963 |#1|)))) (-15 -3450 ((-654 (-654 (-1037 (-417 |#1|)))) (-1059 |#1| |#2|))) (-15 -3450 ((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)) (-112) (-112) (-112))) (-15 -3450 ((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)) (-112) (-112))) (-15 -3450 ((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)) (-112))) (-15 -3450 ((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)))) (-15 -1860 ((-654 (-654 (-1037 (-417 |#1|)))) (-1059 |#1| |#2|))) (-15 -1860 ((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)) (-112) (-112))) (-15 -1860 ((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)) (-112))) (-15 -1860 ((-654 (-654 (-1037 (-417 |#1|)))) (-654 (-963 |#1|)))) (-15 -2827 ((-654 (-1159 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))) (-1059 |#1| |#2|))) (-15 -1836 ((-790 |#1| (-874 |#3|)) (-790 |#1| (-874 |#2|)))) (-15 -1836 ((-963 (-1037 (-417 |#1|))) (-963 |#1|))) (-15 -1836 ((-963 (-1037 (-417 |#1|))) (-790 |#1| (-874 |#3|)))) (-15 -1836 ((-1186 (-1037 (-417 |#1|))) (-1186 |#1|))) (-15 -1836 ((-654 (-790 |#1| (-874 |#3|))) (-1159 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))))) -((-1830 (((-3 (-1281 (-417 (-574))) "failed") (-1281 |#1|) |#1|) 21)) (-4095 (((-112) (-1281 |#1|)) 12)) (-1537 (((-3 (-1281 (-574)) "failed") (-1281 |#1|)) 16))) -(((-1309 |#1|) (-10 -7 (-15 -4095 ((-112) (-1281 |#1|))) (-15 -1537 ((-3 (-1281 (-574)) "failed") (-1281 |#1|))) (-15 -1830 ((-3 (-1281 (-417 (-574))) "failed") (-1281 |#1|) |#1|))) (-13 (-1062) (-649 (-574)))) (T -1309)) -((-1830 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1281 *4)) (-4 *4 (-13 (-1062) (-649 (-574)))) (-5 *2 (-1281 (-417 (-574)))) (-5 *1 (-1309 *4)))) (-1537 (*1 *2 *3) (|partial| -12 (-5 *3 (-1281 *4)) (-4 *4 (-13 (-1062) (-649 (-574)))) (-5 *2 (-1281 (-574))) (-5 *1 (-1309 *4)))) (-4095 (*1 *2 *3) (-12 (-5 *3 (-1281 *4)) (-4 *4 (-13 (-1062) (-649 (-574)))) (-5 *2 (-112)) (-5 *1 (-1309 *4))))) -(-10 -7 (-15 -4095 ((-112) (-1281 |#1|))) (-15 -1537 ((-3 (-1281 (-574)) "failed") (-1281 |#1|))) (-15 -1830 ((-3 (-1281 (-417 (-574))) "failed") (-1281 |#1|) |#1|))) -((-2849 (((-112) $ $) NIL)) (-3138 (((-112) $) 11)) (-3524 (((-3 $ "failed") $ $) NIL)) (-1487 (((-781)) 8)) (-3426 (($) NIL T CONST)) (-3434 (((-3 $ "failed") $) 58)) (-2820 (($) 49)) (-3199 (((-112) $) 57)) (-2748 (((-3 $ "failed") $) 40)) (-4115 (((-932) $) 15)) (-4136 (((-1172) $) NIL)) (-3818 (($) 32 T CONST)) (-2576 (($ (-932)) 50)) (-3966 (((-1133) $) NIL)) (-1836 (((-574) $) 13)) (-2943 (((-872) $) 27) (($ (-574)) 24)) (-1364 (((-781)) 9 T CONST)) (-3284 (((-112) $ $) 60)) (-2133 (($) 29 T CONST)) (-2145 (($) 31 T CONST)) (-2981 (((-112) $ $) 38)) (-3094 (($ $) 52) (($ $ $) 47)) (-3079 (($ $ $) 35)) (** (($ $ (-932)) NIL) (($ $ (-781)) 54)) (* (($ (-932) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 44) (($ $ $) 43))) -(((-1310 |#1|) (-13 (-174) (-377) (-624 (-574)) (-1165)) (-932)) (T -1310)) -NIL -(-13 (-174) (-377) (-624 (-574)) (-1165)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 3238037 3238042 3238047 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3238022 3238027 3238032 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3238007 3238012 3238017 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3237992 3237997 3238002 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1310 3237135 3237867 3237944 "ZMOD" 3237949 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1309 3236189 3236353 3236576 "ZLINDEP" 3236967 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1308 3225489 3227257 3229229 "ZDSOLVE" 3234319 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1307 3224735 3224876 3225065 "YSTREAM" 3225335 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1306 3224163 3224409 3224522 "YDIAGRAM" 3224644 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1305 3221937 3223464 3223668 "XRPOLY" 3224006 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1304 3218490 3219808 3220383 "XPR" 3221409 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1303 3216211 3217821 3218025 "XPOLY" 3218321 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1302 3213864 3215232 3215287 "XPOLYC" 3215575 NIL XPOLYC (NIL T T) -9 NIL 3215688 NIL) (-1301 3210240 3212381 3212769 "XPBWPOLY" 3213522 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1300 3205935 3208230 3208272 "XF" 3208893 NIL XF (NIL T) -9 NIL 3209293 NIL) (-1299 3205556 3205644 3205813 "XF-" 3205818 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1298 3200752 3202041 3202096 "XFALG" 3204268 NIL XFALG (NIL T T) -9 NIL 3205057 NIL) (-1297 3199885 3199989 3200194 "XEXPPKG" 3200644 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1296 3197994 3199735 3199831 "XDPOLY" 3199836 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1295 3196801 3197401 3197444 "XALG" 3197449 NIL XALG (NIL T) -9 NIL 3197560 NIL) (-1294 3190243 3194778 3195272 "WUTSET" 3196393 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1293 3188499 3189295 3189618 "WP" 3190054 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1292 3188101 3188321 3188391 "WHILEAST" 3188451 T WHILEAST (NIL) -8 NIL NIL NIL) (-1291 3187573 3187818 3187912 "WHEREAST" 3188029 T WHEREAST (NIL) -8 NIL NIL NIL) (-1290 3186459 3186657 3186952 "WFFINTBS" 3187370 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1289 3184363 3184790 3185252 "WEIER" 3186031 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1288 3183409 3183859 3183901 "VSPACE" 3184037 NIL VSPACE (NIL T) -9 NIL 3184111 NIL) (-1287 3183247 3183274 3183365 "VSPACE-" 3183370 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1286 3183056 3183098 3183166 "VOID" 3183201 T VOID (NIL) -8 NIL NIL NIL) (-1285 3181192 3181551 3181957 "VIEW" 3182672 T VIEW (NIL) -7 NIL NIL NIL) (-1284 3177616 3178255 3178992 "VIEWDEF" 3180477 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1283 3166920 3169164 3171337 "VIEW3D" 3175465 T VIEW3D (NIL) -8 NIL NIL NIL) (-1282 3159171 3160831 3162410 "VIEW2D" 3165363 T VIEW2D (NIL) -8 NIL NIL NIL) (-1281 3154524 3158941 3159033 "VECTOR" 3159114 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1280 3153101 3153360 3153678 "VECTOR2" 3154254 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1279 3146543 3150852 3150895 "VECTCAT" 3151890 NIL VECTCAT (NIL T) -9 NIL 3152477 NIL) (-1278 3145557 3145811 3146201 "VECTCAT-" 3146206 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1277 3145011 3145208 3145328 "VARIABLE" 3145472 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1276 3144944 3144949 3144979 "UTYPE" 3144984 T UTYPE (NIL) -9 NIL NIL NIL) (-1275 3143774 3143928 3144190 "UTSODETL" 3144770 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1274 3141214 3141674 3142198 "UTSODE" 3143315 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1273 3133052 3138840 3139329 "UTS" 3140783 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1272 3123839 3129208 3129251 "UTSCAT" 3130363 NIL UTSCAT (NIL T) -9 NIL 3131121 NIL) (-1271 3121187 3121909 3122898 "UTSCAT-" 3122903 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1270 3120814 3120857 3120990 "UTS2" 3121138 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1269 3115040 3117652 3117695 "URAGG" 3119765 NIL URAGG (NIL T) -9 NIL 3120488 NIL) (-1268 3111979 3112842 3113965 "URAGG-" 3113970 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1267 3107688 3110614 3111079 "UPXSSING" 3111643 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1266 3099754 3106935 3107208 "UPXS" 3107473 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1265 3092827 3099658 3099730 "UPXSCONS" 3099735 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1264 3082478 3089273 3089335 "UPXSCCA" 3089909 NIL UPXSCCA (NIL T T) -9 NIL 3090142 NIL) (-1263 3082116 3082201 3082375 "UPXSCCA-" 3082380 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1262 3071619 3078187 3078230 "UPXSCAT" 3078878 NIL UPXSCAT (NIL T) -9 NIL 3079487 NIL) (-1261 3071049 3071128 3071307 "UPXS2" 3071534 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1260 3069703 3069956 3070307 "UPSQFREE" 3070792 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1259 3063128 3066187 3066242 "UPSCAT" 3067322 NIL UPSCAT (NIL T T) -9 NIL 3068087 NIL) (-1258 3062332 3062539 3062866 "UPSCAT-" 3062871 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1257 3047828 3055685 3055728 "UPOLYC" 3057829 NIL UPOLYC (NIL T) -9 NIL 3059050 NIL) (-1256 3039156 3041582 3044729 "UPOLYC-" 3044734 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1255 3038783 3038826 3038959 "UPOLYC2" 3039107 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1254 3030505 3038466 3038595 "UP" 3038702 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1253 3029844 3029951 3030115 "UPMP" 3030394 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1252 3029397 3029478 3029617 "UPDIVP" 3029757 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1251 3027965 3028214 3028530 "UPDECOMP" 3029146 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1250 3027196 3027308 3027494 "UPCDEN" 3027849 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1249 3026715 3026784 3026933 "UP2" 3027121 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1248 3025182 3025919 3026196 "UNISEG" 3026473 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1247 3024397 3024524 3024729 "UNISEG2" 3025025 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1246 3023457 3023637 3023863 "UNIFACT" 3024213 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1245 3007218 3022634 3022885 "ULS" 3023264 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1244 2995081 3007122 3007194 "ULSCONS" 3007199 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1243 2976781 2988905 2988967 "ULSCCAT" 2989605 NIL ULSCCAT (NIL T T) -9 NIL 2989894 NIL) (-1242 2975831 2976076 2976464 "ULSCCAT-" 2976469 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1241 2965118 2971600 2971643 "ULSCAT" 2972506 NIL ULSCAT (NIL T) -9 NIL 2973237 NIL) (-1240 2964548 2964627 2964806 "ULS2" 2965033 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1239 2963667 2964177 2964284 "UINT8" 2964395 T UINT8 (NIL) -8 NIL NIL 2964480) (-1238 2962785 2963295 2963402 "UINT64" 2963513 T UINT64 (NIL) -8 NIL NIL 2963598) (-1237 2961903 2962413 2962520 "UINT32" 2962631 T UINT32 (NIL) -8 NIL NIL 2962716) (-1236 2961021 2961531 2961638 "UINT16" 2961749 T UINT16 (NIL) -8 NIL NIL 2961834) (-1235 2959324 2960281 2960311 "UFD" 2960523 T UFD (NIL) -9 NIL 2960637 NIL) (-1234 2959118 2959164 2959259 "UFD-" 2959264 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1233 2958200 2958383 2958599 "UDVO" 2958924 T UDVO (NIL) -7 NIL NIL NIL) (-1232 2956016 2956425 2956896 "UDPO" 2957764 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1231 2955949 2955954 2955984 "TYPE" 2955989 T TYPE (NIL) -9 NIL NIL NIL) (-1230 2955709 2955904 2955935 "TYPEAST" 2955940 T TYPEAST (NIL) -8 NIL NIL NIL) (-1229 2954680 2954882 2955122 "TWOFACT" 2955503 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1228 2953703 2954089 2954324 "TUPLE" 2954480 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1227 2951394 2951913 2952452 "TUBETOOL" 2953186 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1226 2950243 2950448 2950689 "TUBE" 2951187 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1225 2944972 2949215 2949498 "TS" 2949995 NIL TS (NIL T) -8 NIL NIL NIL) (-1224 2933612 2937731 2937828 "TSETCAT" 2943097 NIL TSETCAT (NIL T T T T) -9 NIL 2944628 NIL) (-1223 2928344 2929944 2931835 "TSETCAT-" 2931840 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1222 2922983 2923830 2924759 "TRMANIP" 2927480 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1221 2922424 2922487 2922650 "TRIMAT" 2922915 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1220 2920290 2920527 2920884 "TRIGMNIP" 2922173 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1219 2919810 2919923 2919953 "TRIGCAT" 2920166 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1218 2919479 2919558 2919699 "TRIGCAT-" 2919704 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1217 2916324 2918337 2918618 "TREE" 2919233 NIL TREE (NIL T) -8 NIL NIL NIL) (-1216 2915598 2916126 2916156 "TRANFUN" 2916191 T TRANFUN (NIL) -9 NIL 2916257 NIL) (-1215 2914877 2915068 2915348 "TRANFUN-" 2915353 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1214 2914681 2914713 2914774 "TOPSP" 2914838 T TOPSP (NIL) -7 NIL NIL NIL) (-1213 2914029 2914144 2914298 "TOOLSIGN" 2914562 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1212 2912663 2913206 2913445 "TEXTFILE" 2913812 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1211 2910575 2911116 2911545 "TEX" 2912256 T TEX (NIL) -8 NIL NIL NIL) (-1210 2910356 2910387 2910459 "TEX1" 2910538 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1209 2910004 2910067 2910157 "TEMUTL" 2910288 T TEMUTL (NIL) -7 NIL NIL NIL) (-1208 2908158 2908438 2908763 "TBCMPPK" 2909727 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1207 2899935 2906318 2906374 "TBAGG" 2906774 NIL TBAGG (NIL T T) -9 NIL 2906985 NIL) (-1206 2895005 2896493 2898247 "TBAGG-" 2898252 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1205 2894389 2894496 2894641 "TANEXP" 2894894 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1204 2893900 2894164 2894254 "TALGOP" 2894334 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1203 2887290 2893757 2893850 "TABLE" 2893855 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1202 2886702 2886801 2886939 "TABLEAU" 2887187 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1201 2881310 2882530 2883778 "TABLBUMP" 2885488 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1200 2880532 2880679 2880860 "SYSTEM" 2881151 T SYSTEM (NIL) -8 NIL NIL NIL) (-1199 2876991 2877690 2878473 "SYSSOLP" 2879783 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1198 2876789 2876946 2876977 "SYSPTR" 2876982 T SYSPTR (NIL) -8 NIL NIL NIL) (-1197 2875825 2876330 2876449 "SYSNNI" 2876635 NIL SYSNNI (NIL NIL) -8 NIL NIL 2876720) (-1196 2875124 2875583 2875662 "SYSINT" 2875722 NIL SYSINT (NIL NIL) -8 NIL NIL 2875767) (-1195 2871456 2872402 2873112 "SYNTAX" 2874436 T SYNTAX (NIL) -8 NIL NIL NIL) (-1194 2868614 2869216 2869848 "SYMTAB" 2870846 T SYMTAB (NIL) -8 NIL NIL NIL) (-1193 2863863 2864765 2865748 "SYMS" 2867653 T SYMS (NIL) -8 NIL NIL NIL) (-1192 2861098 2863321 2863551 "SYMPOLY" 2863668 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1191 2860615 2860690 2860813 "SYMFUNC" 2861010 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1190 2856635 2857927 2858740 "SYMBOL" 2859824 T SYMBOL (NIL) -8 NIL NIL NIL) (-1189 2850174 2851863 2853583 "SWITCH" 2854937 T SWITCH (NIL) -8 NIL NIL NIL) (-1188 2843408 2848995 2849298 "SUTS" 2849929 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1187 2835474 2842655 2842928 "SUPXS" 2843193 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1186 2827144 2835092 2835218 "SUP" 2835383 NIL SUP (NIL T) -8 NIL NIL NIL) (-1185 2826303 2826430 2826647 "SUPFRACF" 2827012 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1184 2825924 2825983 2826096 "SUP2" 2826238 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1183 2824372 2824646 2825002 "SUMRF" 2825623 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1182 2823707 2823773 2823965 "SUMFS" 2824293 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1181 2807503 2822884 2823135 "SULS" 2823514 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1180 2807105 2807325 2807395 "SUCHTAST" 2807455 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1179 2806400 2806630 2806770 "SUCH" 2807013 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1178 2800267 2801306 2802265 "SUBSPACE" 2805488 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1177 2799697 2799787 2799951 "SUBRESP" 2800155 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1176 2793065 2794362 2795673 "STTF" 2798433 NIL STTF (NIL T) -7 NIL NIL NIL) (-1175 2787238 2788358 2789505 "STTFNC" 2791965 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1174 2778551 2780420 2782214 "STTAYLOR" 2785479 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1173 2771681 2778415 2778498 "STRTBL" 2778503 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1172 2767045 2771636 2771667 "STRING" 2771672 T STRING (NIL) -8 NIL NIL NIL) (-1171 2761874 2766388 2766418 "STRICAT" 2766477 T STRICAT (NIL) -9 NIL 2766539 NIL) (-1170 2754627 2759493 2760104 "STREAM" 2761298 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1169 2754137 2754214 2754358 "STREAM3" 2754544 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1168 2753119 2753302 2753537 "STREAM2" 2753950 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1167 2752807 2752859 2752952 "STREAM1" 2753061 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1166 2751823 2752004 2752235 "STINPROD" 2752623 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1165 2751375 2751585 2751615 "STEP" 2751695 T STEP (NIL) -9 NIL 2751773 NIL) (-1164 2750562 2750864 2751012 "STEPAST" 2751249 T STEPAST (NIL) -8 NIL NIL NIL) (-1163 2743994 2750461 2750538 "STBL" 2750543 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1162 2739089 2743185 2743228 "STAGG" 2743381 NIL STAGG (NIL T) -9 NIL 2743470 NIL) (-1161 2736791 2737393 2738265 "STAGG-" 2738270 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1160 2734938 2736561 2736653 "STACK" 2736734 NIL STACK (NIL T) -8 NIL NIL NIL) (-1159 2727633 2733079 2733535 "SREGSET" 2734568 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1158 2720058 2721427 2722940 "SRDCMPK" 2726239 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1157 2712943 2717468 2717498 "SRAGG" 2718801 T SRAGG (NIL) -9 NIL 2719409 NIL) (-1156 2711960 2712215 2712594 "SRAGG-" 2712599 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1155 2706331 2710907 2711328 "SQMATRIX" 2711586 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1154 2700016 2703049 2703776 "SPLTREE" 2705676 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1153 2695979 2696672 2697318 "SPLNODE" 2699442 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1152 2695026 2695259 2695289 "SPFCAT" 2695733 T SPFCAT (NIL) -9 NIL NIL NIL) (-1151 2693763 2693973 2694237 "SPECOUT" 2694784 T SPECOUT (NIL) -7 NIL NIL NIL) (-1150 2684873 2686745 2686775 "SPADXPT" 2691451 T SPADXPT (NIL) -9 NIL 2693615 NIL) (-1149 2684634 2684674 2684743 "SPADPRSR" 2684826 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1148 2682683 2684589 2684620 "SPADAST" 2684625 T SPADAST (NIL) -8 NIL NIL NIL) (-1147 2674628 2676401 2676444 "SPACEC" 2680817 NIL SPACEC (NIL T) -9 NIL 2682633 NIL) (-1146 2672758 2674560 2674609 "SPACE3" 2674614 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1145 2671510 2671681 2671972 "SORTPAK" 2672563 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1144 2669602 2669905 2670317 "SOLVETRA" 2671174 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1143 2668652 2668874 2669135 "SOLVESER" 2669375 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1142 2663956 2664844 2665839 "SOLVERAD" 2667704 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1141 2659771 2660380 2661109 "SOLVEFOR" 2663323 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1140 2654041 2659120 2659217 "SNTSCAT" 2659222 NIL SNTSCAT (NIL T T T T) -9 NIL 2659292 NIL) (-1139 2648147 2652364 2652755 "SMTS" 2653731 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1138 2642743 2648035 2648112 "SMP" 2648117 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1137 2640902 2641203 2641601 "SMITH" 2642440 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1136 2633455 2637741 2637844 "SMATCAT" 2639195 NIL SMATCAT (NIL NIL T T T) -9 NIL 2639745 NIL) (-1135 2630173 2631058 2632316 "SMATCAT-" 2632321 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1134 2627839 2629409 2629452 "SKAGG" 2629713 NIL SKAGG (NIL T) -9 NIL 2629848 NIL) (-1133 2624115 2627312 2627496 "SINT" 2627648 T SINT (NIL) -8 NIL NIL 2627810) (-1132 2623887 2623925 2623991 "SIMPAN" 2624071 T SIMPAN (NIL) -7 NIL NIL NIL) (-1131 2623166 2623422 2623562 "SIG" 2623769 T SIG (NIL) -8 NIL NIL NIL) (-1130 2622004 2622225 2622500 "SIGNRF" 2622925 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1129 2620837 2620988 2621272 "SIGNEF" 2621833 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1128 2620143 2620420 2620544 "SIGAST" 2620735 T SIGAST (NIL) -8 NIL NIL NIL) (-1127 2617833 2618287 2618793 "SHP" 2619684 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1126 2611548 2617734 2617810 "SHDP" 2617815 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1125 2611121 2611313 2611343 "SGROUP" 2611436 T SGROUP (NIL) -9 NIL 2611498 NIL) (-1124 2610979 2611005 2611078 "SGROUP-" 2611083 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1123 2607770 2608468 2609191 "SGCF" 2610278 T SGCF (NIL) -7 NIL NIL NIL) (-1122 2602138 2607217 2607314 "SFRTCAT" 2607319 NIL SFRTCAT (NIL T T T T) -9 NIL 2607358 NIL) (-1121 2595559 2596577 2597713 "SFRGCD" 2601121 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1120 2588685 2589758 2590944 "SFQCMPK" 2594492 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1119 2588305 2588394 2588505 "SFORT" 2588626 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1118 2587423 2588145 2588266 "SEXOF" 2588271 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1117 2586530 2587304 2587372 "SEX" 2587377 T SEX (NIL) -8 NIL NIL NIL) (-1116 2582311 2583026 2583121 "SEXCAT" 2585743 NIL SEXCAT (NIL T T T T T) -9 NIL 2586303 NIL) (-1115 2579464 2582245 2582293 "SET" 2582298 NIL SET (NIL T) -8 NIL NIL NIL) (-1114 2577688 2578177 2578482 "SETMN" 2579205 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1113 2577184 2577336 2577366 "SETCAT" 2577542 T SETCAT (NIL) -9 NIL 2577652 NIL) (-1112 2576876 2576954 2577084 "SETCAT-" 2577089 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1111 2573237 2575337 2575380 "SETAGG" 2576250 NIL SETAGG (NIL T) -9 NIL 2576590 NIL) (-1110 2572695 2572811 2573048 "SETAGG-" 2573053 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1109 2572138 2572391 2572492 "SEQAST" 2572616 T SEQAST (NIL) -8 NIL NIL NIL) (-1108 2571337 2571631 2571692 "SEGXCAT" 2571978 NIL SEGXCAT (NIL T T) -9 NIL 2572098 NIL) (-1107 2570343 2571003 2571185 "SEG" 2571190 NIL SEG (NIL T) -8 NIL NIL NIL) (-1106 2569322 2569536 2569579 "SEGCAT" 2570101 NIL SEGCAT (NIL T) -9 NIL 2570322 NIL) (-1105 2568254 2568685 2568893 "SEGBIND" 2569149 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1104 2567875 2567934 2568047 "SEGBIND2" 2568189 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1103 2567448 2567676 2567753 "SEGAST" 2567820 T SEGAST (NIL) -8 NIL NIL NIL) (-1102 2566667 2566793 2566997 "SEG2" 2567292 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1101 2566038 2566602 2566649 "SDVAR" 2566654 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1100 2558476 2565808 2565938 "SDPOL" 2565943 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1099 2557069 2557335 2557654 "SCPKG" 2558191 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1098 2556233 2556405 2556597 "SCOPE" 2556899 T SCOPE (NIL) -8 NIL NIL NIL) (-1097 2555453 2555587 2555766 "SCACHE" 2556088 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1096 2555099 2555285 2555315 "SASTCAT" 2555320 T SASTCAT (NIL) -9 NIL 2555333 NIL) (-1095 2554586 2554934 2555010 "SAOS" 2555045 T SAOS (NIL) -8 NIL NIL NIL) (-1094 2554151 2554186 2554359 "SAERFFC" 2554545 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1093 2548001 2554048 2554128 "SAE" 2554133 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1092 2547594 2547629 2547788 "SAEFACT" 2547960 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1091 2545915 2546229 2546630 "RURPK" 2547260 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1090 2544552 2544858 2545163 "RULESET" 2545749 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1089 2541775 2542305 2542763 "RULE" 2544233 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1088 2541387 2541569 2541652 "RULECOLD" 2541727 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1087 2541177 2541205 2541276 "RTVALUE" 2541338 T RTVALUE (NIL) -8 NIL NIL NIL) (-1086 2540648 2540894 2540988 "RSTRCAST" 2541105 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1085 2535496 2536291 2537211 "RSETGCD" 2539847 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1084 2524726 2529805 2529902 "RSETCAT" 2534021 NIL RSETCAT (NIL T T T T) -9 NIL 2535118 NIL) (-1083 2522653 2523192 2524016 "RSETCAT-" 2524021 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1082 2515039 2516415 2517935 "RSDCMPK" 2521252 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1081 2513018 2513485 2513559 "RRCC" 2514645 NIL RRCC (NIL T T) -9 NIL 2514989 NIL) (-1080 2512369 2512543 2512822 "RRCC-" 2512827 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1079 2511812 2512065 2512166 "RPTAST" 2512290 T RPTAST (NIL) -8 NIL NIL NIL) (-1078 2485528 2494976 2495043 "RPOLCAT" 2505709 NIL RPOLCAT (NIL T T T) -9 NIL 2508869 NIL) (-1077 2477026 2479366 2482488 "RPOLCAT-" 2482493 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1076 2467957 2475237 2475719 "ROUTINE" 2476566 T ROUTINE (NIL) -8 NIL NIL NIL) (-1075 2464704 2467583 2467723 "ROMAN" 2467839 T ROMAN (NIL) -8 NIL NIL NIL) (-1074 2462948 2463564 2463824 "ROIRC" 2464509 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1073 2459180 2461464 2461494 "RNS" 2461798 T RNS (NIL) -9 NIL 2462072 NIL) (-1072 2457689 2458072 2458606 "RNS-" 2458681 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1071 2457092 2457500 2457530 "RNG" 2457535 T RNG (NIL) -9 NIL 2457556 NIL) (-1070 2456095 2456457 2456659 "RNGBIND" 2456943 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1069 2455494 2455882 2455925 "RMODULE" 2455930 NIL RMODULE (NIL T) -9 NIL 2455957 NIL) (-1068 2454330 2454424 2454760 "RMCAT2" 2455395 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1067 2451180 2453676 2453973 "RMATRIX" 2454092 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1066 2444007 2446267 2446382 "RMATCAT" 2449741 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2450723 NIL) (-1065 2443382 2443529 2443836 "RMATCAT-" 2443841 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1064 2442783 2443004 2443047 "RLINSET" 2443241 NIL RLINSET (NIL T) -9 NIL 2443332 NIL) (-1063 2442350 2442425 2442553 "RINTERP" 2442702 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1062 2441408 2441962 2441992 "RING" 2442048 T RING (NIL) -9 NIL 2442140 NIL) (-1061 2441200 2441244 2441341 "RING-" 2441346 NIL RING- (NIL T) -8 NIL NIL NIL) (-1060 2440041 2440278 2440536 "RIDIST" 2440964 T RIDIST (NIL) -7 NIL NIL NIL) (-1059 2431330 2439509 2439715 "RGCHAIN" 2439889 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1058 2430680 2431086 2431127 "RGBCSPC" 2431185 NIL RGBCSPC (NIL T) -9 NIL 2431237 NIL) (-1057 2429838 2430219 2430260 "RGBCMDL" 2430492 NIL RGBCMDL (NIL T) -9 NIL 2430606 NIL) (-1056 2426832 2427446 2428116 "RF" 2429202 NIL RF (NIL T) -7 NIL NIL NIL) (-1055 2426478 2426541 2426644 "RFFACTOR" 2426763 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1054 2426203 2426238 2426335 "RFFACT" 2426437 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1053 2424320 2424684 2425066 "RFDIST" 2425843 T RFDIST (NIL) -7 NIL NIL NIL) (-1052 2423773 2423865 2424028 "RETSOL" 2424222 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1051 2423409 2423489 2423532 "RETRACT" 2423665 NIL RETRACT (NIL T) -9 NIL 2423752 NIL) (-1050 2423258 2423283 2423370 "RETRACT-" 2423375 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1049 2422860 2423080 2423150 "RETAST" 2423210 T RETAST (NIL) -8 NIL NIL NIL) (-1048 2415598 2422513 2422640 "RESULT" 2422755 T RESULT (NIL) -8 NIL NIL NIL) (-1047 2414189 2414867 2415066 "RESRING" 2415501 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1046 2413825 2413874 2413972 "RESLATC" 2414126 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1045 2413530 2413565 2413672 "REPSQ" 2413784 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1044 2410952 2411532 2412134 "REP" 2412950 T REP (NIL) -7 NIL NIL NIL) (-1043 2410649 2410684 2410795 "REPDB" 2410911 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1042 2404549 2405938 2407161 "REP2" 2409461 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1041 2400926 2401607 2402415 "REP1" 2403776 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1040 2393622 2399067 2399523 "REGSET" 2400556 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1039 2392387 2392770 2393020 "REF" 2393407 NIL REF (NIL T) -8 NIL NIL NIL) (-1038 2391764 2391867 2392034 "REDORDER" 2392271 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1037 2387732 2390977 2391204 "RECLOS" 2391592 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1036 2386784 2386965 2387180 "REALSOLV" 2387539 T REALSOLV (NIL) -7 NIL NIL NIL) (-1035 2386630 2386671 2386701 "REAL" 2386706 T REAL (NIL) -9 NIL 2386741 NIL) (-1034 2383113 2383915 2384799 "REAL0Q" 2385795 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1033 2378714 2379702 2380763 "REAL0" 2382094 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1032 2378185 2378431 2378525 "RDUCEAST" 2378642 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1031 2377590 2377662 2377869 "RDIV" 2378107 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1030 2376658 2376832 2377045 "RDIST" 2377412 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1029 2375255 2375542 2375914 "RDETRS" 2376366 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1028 2373067 2373521 2374059 "RDETR" 2374797 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1027 2371692 2371970 2372367 "RDEEFS" 2372783 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1026 2370201 2370507 2370932 "RDEEF" 2371380 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1025 2364262 2367182 2367212 "RCFIELD" 2368507 T RCFIELD (NIL) -9 NIL 2369238 NIL) (-1024 2362326 2362830 2363526 "RCFIELD-" 2363601 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1023 2358595 2360427 2360470 "RCAGG" 2361554 NIL RCAGG (NIL T) -9 NIL 2362019 NIL) (-1022 2358223 2358317 2358480 "RCAGG-" 2358485 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1021 2357558 2357670 2357835 "RATRET" 2358107 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1020 2357111 2357178 2357299 "RATFACT" 2357486 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1019 2356419 2356539 2356691 "RANDSRC" 2356981 T RANDSRC (NIL) -7 NIL NIL NIL) (-1018 2356153 2356197 2356270 "RADUTIL" 2356368 T RADUTIL (NIL) -7 NIL NIL NIL) (-1017 2349174 2354984 2355295 "RADIX" 2355876 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1016 2340690 2349016 2349146 "RADFF" 2349151 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1015 2340337 2340412 2340442 "RADCAT" 2340602 T RADCAT (NIL) -9 NIL NIL NIL) (-1014 2340119 2340167 2340267 "RADCAT-" 2340272 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1013 2338217 2339889 2339981 "QUEUE" 2340062 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1012 2334665 2338150 2338198 "QUAT" 2338203 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1011 2334296 2334339 2334470 "QUATCT2" 2334616 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1010 2327519 2330954 2330996 "QUATCAT" 2331787 NIL QUATCAT (NIL T) -9 NIL 2332553 NIL) (-1009 2323658 2324695 2326085 "QUATCAT-" 2326181 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1008 2321123 2322734 2322777 "QUAGG" 2323158 NIL QUAGG (NIL T) -9 NIL 2323333 NIL) (-1007 2320725 2320945 2321015 "QQUTAST" 2321075 T QQUTAST (NIL) -8 NIL NIL NIL) (-1006 2319738 2320238 2320403 "QFORM" 2320606 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1005 2310572 2315900 2315942 "QFCAT" 2316610 NIL QFCAT (NIL T) -9 NIL 2317611 NIL) (-1004 2305917 2307180 2308854 "QFCAT-" 2308950 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1003 2305548 2305591 2305722 "QFCAT2" 2305868 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1002 2305003 2305113 2305245 "QEQUAT" 2305438 T QEQUAT (NIL) -8 NIL NIL NIL) (-1001 2298129 2299202 2300388 "QCMPACK" 2303936 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1000 2295667 2296115 2296545 "QALGSET" 2297784 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-999 2294905 2295081 2295315 "QALGSET2" 2295485 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-998 2293595 2293819 2294136 "PWFFINTB" 2294678 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-997 2291777 2291945 2292299 "PUSHVAR" 2293409 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-996 2287695 2288749 2288790 "PTRANFN" 2290674 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-995 2286097 2286388 2286710 "PTPACK" 2287406 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-994 2285729 2285786 2285895 "PTFUNC2" 2286034 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-993 2280174 2284571 2284612 "PTCAT" 2284908 NIL PTCAT (NIL T) -9 NIL 2285061 NIL) (-992 2279832 2279867 2279991 "PSQFR" 2280133 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-991 2278427 2278725 2279059 "PSEUDLIN" 2279530 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-990 2265190 2267561 2269885 "PSETPK" 2276187 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-989 2258208 2260948 2261044 "PSETCAT" 2264065 NIL PSETCAT (NIL T T T T) -9 NIL 2264879 NIL) (-988 2256044 2256678 2257499 "PSETCAT-" 2257504 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-987 2255393 2255558 2255586 "PSCURVE" 2255854 T PSCURVE (NIL) -9 NIL 2256021 NIL) (-986 2251391 2252907 2252972 "PSCAT" 2253816 NIL PSCAT (NIL T T T) -9 NIL 2254056 NIL) (-985 2250454 2250670 2251070 "PSCAT-" 2251075 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-984 2248813 2249523 2249786 "PRTITION" 2250211 T PRTITION (NIL) -8 NIL NIL NIL) (-983 2248288 2248534 2248626 "PRTDAST" 2248741 T PRTDAST (NIL) -8 NIL NIL NIL) (-982 2237378 2239592 2241780 "PRS" 2246150 NIL PRS (NIL T T) -7 NIL NIL NIL) (-981 2235189 2236728 2236768 "PRQAGG" 2236951 NIL PRQAGG (NIL T) -9 NIL 2237053 NIL) (-980 2234525 2234830 2234858 "PROPLOG" 2234997 T PROPLOG (NIL) -9 NIL 2235112 NIL) (-979 2234129 2234186 2234309 "PROPFUN2" 2234448 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-978 2233444 2233565 2233737 "PROPFUN1" 2233990 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-977 2231625 2232191 2232488 "PROPFRML" 2233180 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-976 2231094 2231201 2231329 "PROPERTY" 2231517 T PROPERTY (NIL) -8 NIL NIL NIL) (-975 2225152 2229260 2230080 "PRODUCT" 2230320 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-974 2222430 2224610 2224844 "PR" 2224963 NIL PR (NIL T T) -8 NIL NIL NIL) (-973 2222226 2222258 2222317 "PRINT" 2222391 T PRINT (NIL) -7 NIL NIL NIL) (-972 2221566 2221683 2221835 "PRIMES" 2222106 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-971 2219631 2220032 2220498 "PRIMELT" 2221145 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-970 2219360 2219409 2219437 "PRIMCAT" 2219561 T PRIMCAT (NIL) -9 NIL NIL NIL) (-969 2215475 2219298 2219343 "PRIMARR" 2219348 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-968 2214482 2214660 2214888 "PRIMARR2" 2215293 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-967 2214125 2214181 2214292 "PREASSOC" 2214420 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-966 2213600 2213733 2213761 "PPCURVE" 2213966 T PPCURVE (NIL) -9 NIL 2214102 NIL) (-965 2213195 2213395 2213478 "PORTNUM" 2213537 T PORTNUM (NIL) -8 NIL NIL NIL) (-964 2210554 2210953 2211545 "POLYROOT" 2212776 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-963 2204647 2210158 2210318 "POLY" 2210427 NIL POLY (NIL T) -8 NIL NIL NIL) (-962 2204030 2204088 2204322 "POLYLIFT" 2204583 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-961 2200305 2200754 2201383 "POLYCATQ" 2203575 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-960 2186887 2192104 2192169 "POLYCAT" 2195683 NIL POLYCAT (NIL T T T) -9 NIL 2197561 NIL) (-959 2180114 2182038 2184502 "POLYCAT-" 2184507 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-958 2179701 2179769 2179889 "POLY2UP" 2180040 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-957 2179333 2179390 2179499 "POLY2" 2179638 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-956 2178018 2178257 2178533 "POLUTIL" 2179107 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-955 2176373 2176650 2176981 "POLTOPOL" 2177740 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-954 2171838 2176309 2176355 "POINT" 2176360 NIL POINT (NIL T) -8 NIL NIL NIL) (-953 2170025 2170382 2170757 "PNTHEORY" 2171483 T PNTHEORY (NIL) -7 NIL NIL NIL) (-952 2168483 2168780 2169179 "PMTOOLS" 2169723 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-951 2168076 2168154 2168271 "PMSYM" 2168399 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-950 2167584 2167653 2167828 "PMQFCAT" 2168001 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-949 2166939 2167049 2167205 "PMPRED" 2167461 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-948 2166332 2166418 2166580 "PMPREDFS" 2166840 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-947 2164996 2165204 2165582 "PMPLCAT" 2166094 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-946 2164528 2164607 2164759 "PMLSAGG" 2164911 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-945 2164001 2164077 2164259 "PMKERNEL" 2164446 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-944 2163618 2163693 2163806 "PMINS" 2163920 NIL PMINS (NIL T) -7 NIL NIL NIL) (-943 2163060 2163129 2163338 "PMFS" 2163543 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-942 2162288 2162406 2162611 "PMDOWN" 2162937 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-941 2161455 2161613 2161794 "PMASS" 2162127 T PMASS (NIL) -7 NIL NIL NIL) (-940 2160728 2160838 2161001 "PMASSFS" 2161342 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-939 2160383 2160451 2160545 "PLOTTOOL" 2160654 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-938 2154990 2156194 2157342 "PLOT" 2159255 T PLOT (NIL) -8 NIL NIL NIL) (-937 2150794 2151838 2152759 "PLOT3D" 2154089 T PLOT3D (NIL) -8 NIL NIL NIL) (-936 2149706 2149883 2150118 "PLOT1" 2150598 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-935 2125097 2129772 2134623 "PLEQN" 2144972 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-934 2124415 2124537 2124717 "PINTERP" 2124962 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-933 2124108 2124155 2124258 "PINTERPA" 2124362 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-932 2123324 2123872 2123959 "PI" 2123999 T PI (NIL) -8 NIL NIL 2124066) (-931 2121621 2122596 2122624 "PID" 2122806 T PID (NIL) -9 NIL 2122940 NIL) (-930 2121372 2121409 2121484 "PICOERCE" 2121578 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-929 2120692 2120831 2121007 "PGROEB" 2121228 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-928 2116279 2117093 2117998 "PGE" 2119807 T PGE (NIL) -7 NIL NIL NIL) (-927 2114402 2114649 2115015 "PGCD" 2115996 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-926 2113740 2113843 2114004 "PFRPAC" 2114286 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-925 2110380 2112288 2112641 "PFR" 2113419 NIL PFR (NIL T) -8 NIL NIL NIL) (-924 2108769 2109013 2109338 "PFOTOOLS" 2110127 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-923 2107302 2107541 2107892 "PFOQ" 2108526 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-922 2105803 2106015 2106371 "PFO" 2107086 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-921 2102356 2105692 2105761 "PF" 2105766 NIL PF (NIL NIL) -8 NIL NIL NIL) (-920 2099690 2100961 2100989 "PFECAT" 2101574 T PFECAT (NIL) -9 NIL 2101958 NIL) (-919 2099135 2099289 2099503 "PFECAT-" 2099508 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-918 2097738 2097990 2098291 "PFBRU" 2098884 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-917 2095604 2095956 2096388 "PFBR" 2097389 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-916 2091650 2093116 2093763 "PERM" 2094990 NIL PERM (NIL T) -8 NIL NIL NIL) (-915 2086884 2087857 2088727 "PERMGRP" 2090813 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-914 2085003 2085963 2086004 "PERMCAT" 2086404 NIL PERMCAT (NIL T) -9 NIL 2086702 NIL) (-913 2084656 2084697 2084821 "PERMAN" 2084956 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-912 2082144 2084321 2084443 "PENDTREE" 2084567 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-911 2080168 2080936 2080977 "PDRING" 2081634 NIL PDRING (NIL T) -9 NIL 2081920 NIL) (-910 2079271 2079489 2079851 "PDRING-" 2079856 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-909 2076486 2077264 2077932 "PDEPROB" 2078623 T PDEPROB (NIL) -8 NIL NIL NIL) (-908 2074031 2074535 2075090 "PDEPACK" 2075951 T PDEPACK (NIL) -7 NIL NIL NIL) (-907 2072943 2073133 2073384 "PDECOMP" 2073830 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-906 2070522 2071365 2071393 "PDECAT" 2072180 T PDECAT (NIL) -9 NIL 2072893 NIL) (-905 2070273 2070306 2070396 "PCOMP" 2070483 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-904 2068451 2069074 2069371 "PBWLB" 2070002 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-903 2060924 2062524 2063862 "PATTERN" 2067134 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-902 2060556 2060613 2060722 "PATTERN2" 2060861 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-901 2058313 2058701 2059158 "PATTERN1" 2060145 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-900 2055681 2056262 2056743 "PATRES" 2057878 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-899 2055245 2055312 2055444 "PATRES2" 2055608 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-898 2053128 2053533 2053940 "PATMATCH" 2054912 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-897 2052638 2052847 2052888 "PATMAB" 2052995 NIL PATMAB (NIL T) -9 NIL 2053078 NIL) (-896 2051156 2051492 2051750 "PATLRES" 2052443 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-895 2050702 2050825 2050866 "PATAB" 2050871 NIL PATAB (NIL T) -9 NIL 2051043 NIL) (-894 2048884 2049279 2049702 "PARTPERM" 2050299 T PARTPERM (NIL) -7 NIL NIL NIL) (-893 2048505 2048568 2048670 "PARSURF" 2048815 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-892 2048137 2048194 2048303 "PARSU2" 2048442 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-891 2047901 2047941 2048008 "PARSER" 2048090 T PARSER (NIL) -7 NIL NIL NIL) (-890 2047522 2047585 2047687 "PARSCURV" 2047832 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-889 2047154 2047211 2047320 "PARSC2" 2047459 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-888 2046793 2046851 2046948 "PARPCURV" 2047090 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-887 2046425 2046482 2046591 "PARPC2" 2046730 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-886 2045486 2045798 2045980 "PARAMAST" 2046263 T PARAMAST (NIL) -8 NIL NIL NIL) (-885 2045006 2045092 2045211 "PAN2EXPR" 2045387 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-884 2043783 2044127 2044355 "PALETTE" 2044798 T PALETTE (NIL) -8 NIL NIL NIL) (-883 2042176 2042788 2043148 "PAIR" 2043469 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-882 2035955 2041433 2041628 "PADICRC" 2042030 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-881 2029079 2035299 2035484 "PADICRAT" 2035802 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-880 2027394 2029016 2029061 "PADIC" 2029066 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-879 2024504 2026068 2026108 "PADICCT" 2026689 NIL PADICCT (NIL NIL) -9 NIL 2026971 NIL) (-878 2023461 2023661 2023929 "PADEPAC" 2024291 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-877 2022673 2022806 2023012 "PADE" 2023323 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-876 2021060 2021881 2022161 "OWP" 2022477 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-875 2020553 2020766 2020863 "OVERSET" 2020983 T OVERSET (NIL) -8 NIL NIL NIL) (-874 2019599 2020158 2020330 "OVAR" 2020421 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-873 2018863 2018984 2019145 "OUT" 2019458 T OUT (NIL) -7 NIL NIL NIL) (-872 2007735 2009972 2012172 "OUTFORM" 2016683 T OUTFORM (NIL) -8 NIL NIL NIL) (-871 2007071 2007332 2007459 "OUTBFILE" 2007628 T OUTBFILE (NIL) -8 NIL NIL NIL) (-870 2006378 2006543 2006571 "OUTBCON" 2006889 T OUTBCON (NIL) -9 NIL 2007055 NIL) (-869 2005979 2006091 2006248 "OUTBCON-" 2006253 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-868 2005359 2005708 2005797 "OSI" 2005910 T OSI (NIL) -8 NIL NIL NIL) (-867 2004889 2005227 2005255 "OSGROUP" 2005260 T OSGROUP (NIL) -9 NIL 2005282 NIL) (-866 2003634 2003861 2004146 "ORTHPOL" 2004636 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-865 2001185 2003469 2003590 "OREUP" 2003595 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-864 1998588 2000876 2001003 "ORESUP" 2001127 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-863 1996116 1996616 1997177 "OREPCTO" 1998077 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-862 1989802 1992003 1992044 "OREPCAT" 1994392 NIL OREPCAT (NIL T) -9 NIL 1995496 NIL) (-861 1986949 1987731 1988789 "OREPCAT-" 1988794 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-860 1986100 1986398 1986426 "ORDSET" 1986735 T ORDSET (NIL) -9 NIL 1986899 NIL) (-859 1985531 1985679 1985903 "ORDSET-" 1985908 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-858 1984096 1984887 1984915 "ORDRING" 1985117 T ORDRING (NIL) -9 NIL 1985242 NIL) (-857 1983741 1983835 1983979 "ORDRING-" 1983984 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-856 1983121 1983584 1983612 "ORDMON" 1983617 T ORDMON (NIL) -9 NIL 1983638 NIL) (-855 1982283 1982430 1982625 "ORDFUNS" 1982970 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-854 1981621 1982040 1982068 "ORDFIN" 1982133 T ORDFIN (NIL) -9 NIL 1982207 NIL) (-853 1978180 1980207 1980616 "ORDCOMP" 1981245 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-852 1977446 1977573 1977759 "ORDCOMP2" 1978040 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-851 1974027 1974937 1975751 "OPTPROB" 1976652 T OPTPROB (NIL) -8 NIL NIL NIL) (-850 1970829 1971468 1972172 "OPTPACK" 1973343 T OPTPACK (NIL) -7 NIL NIL NIL) (-849 1968516 1969282 1969310 "OPTCAT" 1970129 T OPTCAT (NIL) -9 NIL 1970779 NIL) (-848 1967900 1968193 1968298 "OPSIG" 1968431 T OPSIG (NIL) -8 NIL NIL NIL) (-847 1967668 1967707 1967773 "OPQUERY" 1967854 T OPQUERY (NIL) -7 NIL NIL NIL) (-846 1964799 1965979 1966483 "OP" 1967197 NIL OP (NIL T) -8 NIL NIL NIL) (-845 1964173 1964399 1964440 "OPERCAT" 1964652 NIL OPERCAT (NIL T) -9 NIL 1964749 NIL) (-844 1963928 1963984 1964101 "OPERCAT-" 1964106 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-843 1960741 1962725 1963094 "ONECOMP" 1963592 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-842 1960046 1960161 1960335 "ONECOMP2" 1960613 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-841 1959465 1959571 1959701 "OMSERVER" 1959936 T OMSERVER (NIL) -7 NIL NIL NIL) (-840 1956327 1958905 1958945 "OMSAGG" 1959006 NIL OMSAGG (NIL T) -9 NIL 1959070 NIL) (-839 1954950 1955213 1955495 "OMPKG" 1956065 T OMPKG (NIL) -7 NIL NIL NIL) (-838 1954380 1954483 1954511 "OM" 1954810 T OM (NIL) -9 NIL NIL NIL) (-837 1952927 1953929 1954098 "OMLO" 1954261 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-836 1951887 1952034 1952254 "OMEXPR" 1952753 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-835 1951178 1951433 1951569 "OMERR" 1951771 T OMERR (NIL) -8 NIL NIL NIL) (-834 1950329 1950599 1950759 "OMERRK" 1951038 T OMERRK (NIL) -8 NIL NIL NIL) (-833 1949780 1950006 1950114 "OMENC" 1950241 T OMENC (NIL) -8 NIL NIL NIL) (-832 1943675 1944860 1946031 "OMDEV" 1948629 T OMDEV (NIL) -8 NIL NIL NIL) (-831 1942744 1942915 1943109 "OMCONN" 1943501 T OMCONN (NIL) -8 NIL NIL NIL) (-830 1941265 1942241 1942269 "OINTDOM" 1942274 T OINTDOM (NIL) -9 NIL 1942295 NIL) (-829 1938603 1939953 1940290 "OFMONOID" 1940960 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-828 1937975 1938540 1938585 "ODVAR" 1938590 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-827 1935398 1937720 1937875 "ODR" 1937880 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-826 1927890 1935174 1935300 "ODPOL" 1935305 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-825 1921575 1927762 1927867 "ODP" 1927872 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-824 1920341 1920556 1920831 "ODETOOLS" 1921349 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-823 1917308 1917966 1918682 "ODESYS" 1919674 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-822 1912190 1913098 1914123 "ODERTRIC" 1916383 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-821 1911616 1911698 1911892 "ODERED" 1912102 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-820 1908504 1909052 1909729 "ODERAT" 1911039 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-819 1905463 1905928 1906525 "ODEPRRIC" 1908033 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-818 1903406 1904002 1904488 "ODEPROB" 1904997 T ODEPROB (NIL) -8 NIL NIL NIL) (-817 1899926 1900411 1901058 "ODEPRIM" 1902885 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-816 1899175 1899277 1899537 "ODEPAL" 1899818 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-815 1895337 1896128 1896992 "ODEPACK" 1898331 T ODEPACK (NIL) -7 NIL NIL NIL) (-814 1894398 1894505 1894727 "ODEINT" 1895226 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-813 1888499 1889924 1891371 "ODEIFTBL" 1892971 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-812 1883897 1884683 1885635 "ODEEF" 1887658 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-811 1883246 1883335 1883558 "ODECONST" 1883802 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-810 1881371 1882032 1882060 "ODECAT" 1882665 T ODECAT (NIL) -9 NIL 1883196 NIL) (-809 1878226 1881076 1881198 "OCT" 1881281 NIL OCT (NIL T) -8 NIL NIL NIL) (-808 1877864 1877907 1878034 "OCTCT2" 1878177 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-807 1872475 1874910 1874950 "OC" 1876047 NIL OC (NIL T) -9 NIL 1876905 NIL) (-806 1869702 1870450 1871440 "OC-" 1871534 NIL OC- (NIL T T) -8 NIL NIL NIL) (-805 1869054 1869522 1869550 "OCAMON" 1869555 T OCAMON (NIL) -9 NIL 1869576 NIL) (-804 1868585 1868926 1868954 "OASGP" 1868959 T OASGP (NIL) -9 NIL 1868979 NIL) (-803 1867846 1868335 1868363 "OAMONS" 1868403 T OAMONS (NIL) -9 NIL 1868446 NIL) (-802 1867260 1867693 1867721 "OAMON" 1867726 T OAMON (NIL) -9 NIL 1867746 NIL) (-801 1866518 1867036 1867064 "OAGROUP" 1867069 T OAGROUP (NIL) -9 NIL 1867089 NIL) (-800 1866208 1866258 1866346 "NUMTUBE" 1866462 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-799 1859781 1861299 1862835 "NUMQUAD" 1864692 T NUMQUAD (NIL) -7 NIL NIL NIL) (-798 1855537 1856525 1857550 "NUMODE" 1858776 T NUMODE (NIL) -7 NIL NIL NIL) (-797 1852892 1853772 1853800 "NUMINT" 1854723 T NUMINT (NIL) -9 NIL 1855487 NIL) (-796 1851840 1852037 1852255 "NUMFMT" 1852694 T NUMFMT (NIL) -7 NIL NIL NIL) (-795 1838199 1841144 1843676 "NUMERIC" 1849347 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-794 1832569 1837648 1837743 "NTSCAT" 1837748 NIL NTSCAT (NIL T T T T) -9 NIL 1837787 NIL) (-793 1831763 1831928 1832121 "NTPOLFN" 1832408 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-792 1819751 1828588 1829400 "NSUP" 1830984 NIL NSUP (NIL T) -8 NIL NIL NIL) (-791 1819383 1819440 1819549 "NSUP2" 1819688 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-790 1809520 1819157 1819290 "NSMP" 1819295 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-789 1807952 1808253 1808610 "NREP" 1809208 NIL NREP (NIL T) -7 NIL NIL NIL) (-788 1806543 1806795 1807153 "NPCOEF" 1807695 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-787 1805609 1805724 1805940 "NORMRETR" 1806424 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-786 1803650 1803940 1804349 "NORMPK" 1805317 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-785 1803335 1803363 1803487 "NORMMA" 1803616 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-784 1803135 1803292 1803321 "NONE" 1803326 T NONE (NIL) -8 NIL NIL NIL) (-783 1802924 1802953 1803022 "NONE1" 1803099 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-782 1802421 1802483 1802662 "NODE1" 1802856 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-781 1800702 1801553 1801808 "NNI" 1802155 T NNI (NIL) -8 NIL NIL 1802390) (-780 1799122 1799435 1799799 "NLINSOL" 1800370 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-779 1795363 1796358 1797257 "NIPROB" 1798243 T NIPROB (NIL) -8 NIL NIL NIL) (-778 1794120 1794354 1794656 "NFINTBAS" 1795125 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-777 1793294 1793770 1793811 "NETCLT" 1793983 NIL NETCLT (NIL T) -9 NIL 1794065 NIL) (-776 1792002 1792233 1792514 "NCODIV" 1793062 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-775 1791764 1791801 1791876 "NCNTFRAC" 1791959 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-774 1789944 1790308 1790728 "NCEP" 1791389 NIL NCEP (NIL T) -7 NIL NIL NIL) (-773 1788795 1789568 1789596 "NASRING" 1789706 T NASRING (NIL) -9 NIL 1789786 NIL) (-772 1788590 1788634 1788728 "NASRING-" 1788733 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-771 1787697 1788222 1788250 "NARNG" 1788367 T NARNG (NIL) -9 NIL 1788458 NIL) (-770 1787389 1787456 1787590 "NARNG-" 1787595 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-769 1786268 1786475 1786710 "NAGSP" 1787174 T NAGSP (NIL) -7 NIL NIL NIL) (-768 1777540 1779224 1780897 "NAGS" 1784615 T NAGS (NIL) -7 NIL NIL NIL) (-767 1776088 1776396 1776727 "NAGF07" 1777229 T NAGF07 (NIL) -7 NIL NIL NIL) (-766 1770626 1771917 1773224 "NAGF04" 1774801 T NAGF04 (NIL) -7 NIL NIL NIL) (-765 1763594 1765208 1766841 "NAGF02" 1769013 T NAGF02 (NIL) -7 NIL NIL NIL) (-764 1758818 1759918 1761035 "NAGF01" 1762497 T NAGF01 (NIL) -7 NIL NIL NIL) (-763 1752446 1754012 1755597 "NAGE04" 1757253 T NAGE04 (NIL) -7 NIL NIL NIL) (-762 1743615 1745736 1747866 "NAGE02" 1750336 T NAGE02 (NIL) -7 NIL NIL NIL) (-761 1739568 1740515 1741479 "NAGE01" 1742671 T NAGE01 (NIL) -7 NIL NIL NIL) (-760 1737363 1737897 1738455 "NAGD03" 1739030 T NAGD03 (NIL) -7 NIL NIL NIL) (-759 1729113 1731041 1732995 "NAGD02" 1735429 T NAGD02 (NIL) -7 NIL NIL NIL) (-758 1722924 1724349 1725789 "NAGD01" 1727693 T NAGD01 (NIL) -7 NIL NIL NIL) (-757 1719133 1719955 1720792 "NAGC06" 1722107 T NAGC06 (NIL) -7 NIL NIL NIL) (-756 1717598 1717930 1718286 "NAGC05" 1718797 T NAGC05 (NIL) -7 NIL NIL NIL) (-755 1716974 1717093 1717237 "NAGC02" 1717474 T NAGC02 (NIL) -7 NIL NIL NIL) (-754 1715933 1716516 1716556 "NAALG" 1716635 NIL NAALG (NIL T) -9 NIL 1716696 NIL) (-753 1715768 1715797 1715887 "NAALG-" 1715892 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-752 1709718 1710826 1712013 "MULTSQFR" 1714664 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-751 1709037 1709112 1709296 "MULTFACT" 1709630 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-750 1701761 1705674 1705727 "MTSCAT" 1706797 NIL MTSCAT (NIL T T) -9 NIL 1707312 NIL) (-749 1701473 1701527 1701619 "MTHING" 1701701 NIL MTHING (NIL T) -7 NIL NIL NIL) (-748 1701265 1701298 1701358 "MSYSCMD" 1701433 T MSYSCMD (NIL) -7 NIL NIL NIL) (-747 1697347 1700020 1700340 "MSET" 1700978 NIL MSET (NIL T) -8 NIL NIL NIL) (-746 1694416 1696908 1696949 "MSETAGG" 1696954 NIL MSETAGG (NIL T) -9 NIL 1696988 NIL) (-745 1690258 1691795 1692540 "MRING" 1693716 NIL MRING (NIL T T) -8 NIL NIL NIL) (-744 1689824 1689891 1690022 "MRF2" 1690185 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-743 1689442 1689477 1689621 "MRATFAC" 1689783 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-742 1687054 1687349 1687780 "MPRFF" 1689147 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-741 1681262 1686908 1687005 "MPOLY" 1687010 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-740 1680752 1680787 1680995 "MPCPF" 1681221 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-739 1680266 1680309 1680493 "MPC3" 1680703 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-738 1679461 1679542 1679763 "MPC2" 1680181 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-737 1677762 1678099 1678489 "MONOTOOL" 1679121 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-736 1676987 1677304 1677332 "MONOID" 1677551 T MONOID (NIL) -9 NIL 1677698 NIL) (-735 1676533 1676652 1676833 "MONOID-" 1676838 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-734 1666712 1672753 1672812 "MONOGEN" 1673486 NIL MONOGEN (NIL T T) -9 NIL 1673942 NIL) (-733 1663930 1664665 1665665 "MONOGEN-" 1665784 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-732 1662763 1663209 1663237 "MONADWU" 1663629 T MONADWU (NIL) -9 NIL 1663867 NIL) (-731 1662135 1662294 1662542 "MONADWU-" 1662547 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-730 1661494 1661738 1661766 "MONAD" 1661973 T MONAD (NIL) -9 NIL 1662085 NIL) (-729 1661179 1661257 1661389 "MONAD-" 1661394 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-728 1659468 1660092 1660371 "MOEBIUS" 1660932 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-727 1658746 1659150 1659190 "MODULE" 1659195 NIL MODULE (NIL T) -9 NIL 1659234 NIL) (-726 1658314 1658410 1658600 "MODULE-" 1658605 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-725 1655994 1656678 1657005 "MODRING" 1658138 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-724 1652938 1654099 1654620 "MODOP" 1655523 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-723 1651526 1652005 1652282 "MODMONOM" 1652801 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-722 1641481 1649817 1650231 "MODMON" 1651163 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-721 1638637 1640325 1640601 "MODFIELD" 1641356 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-720 1637614 1637918 1638108 "MMLFORM" 1638467 T MMLFORM (NIL) -8 NIL NIL NIL) (-719 1637140 1637183 1637362 "MMAP" 1637565 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-718 1635219 1635986 1636027 "MLO" 1636450 NIL MLO (NIL T) -9 NIL 1636692 NIL) (-717 1632585 1633101 1633703 "MLIFT" 1634700 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-716 1631976 1632060 1632214 "MKUCFUNC" 1632496 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-715 1631575 1631645 1631768 "MKRECORD" 1631899 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-714 1630622 1630784 1631012 "MKFUNC" 1631386 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-713 1630010 1630114 1630270 "MKFLCFN" 1630505 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-712 1629287 1629389 1629574 "MKBCFUNC" 1629903 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-711 1625962 1628841 1628977 "MINT" 1629171 T MINT (NIL) -8 NIL NIL NIL) (-710 1624774 1625017 1625294 "MHROWRED" 1625717 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-709 1620154 1623309 1623714 "MFLOAT" 1624389 T MFLOAT (NIL) -8 NIL NIL NIL) (-708 1619511 1619587 1619758 "MFINFACT" 1620066 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-707 1615826 1616674 1617558 "MESH" 1618647 T MESH (NIL) -7 NIL NIL NIL) (-706 1614216 1614528 1614881 "MDDFACT" 1615513 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-705 1611011 1613375 1613416 "MDAGG" 1613671 NIL MDAGG (NIL T) -9 NIL 1613814 NIL) (-704 1600658 1610304 1610511 "MCMPLX" 1610824 T MCMPLX (NIL) -8 NIL NIL NIL) (-703 1599795 1599941 1600142 "MCDEN" 1600507 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-702 1597685 1597955 1598335 "MCALCFN" 1599525 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-701 1596610 1596850 1597083 "MAYBE" 1597491 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-700 1594222 1594745 1595307 "MATSTOR" 1596081 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-699 1590179 1593594 1593842 "MATRIX" 1594007 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-698 1585945 1586652 1587388 "MATLIN" 1589536 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-697 1576051 1579237 1579314 "MATCAT" 1584194 NIL MATCAT (NIL T T T) -9 NIL 1585611 NIL) (-696 1572407 1573428 1574784 "MATCAT-" 1574789 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-695 1571001 1571154 1571487 "MATCAT2" 1572242 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-694 1569113 1569437 1569821 "MAPPKG3" 1570676 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-693 1568094 1568267 1568489 "MAPPKG2" 1568937 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-692 1566593 1566877 1567204 "MAPPKG1" 1567800 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-691 1565672 1565999 1566176 "MAPPAST" 1566436 T MAPPAST (NIL) -8 NIL NIL NIL) (-690 1565283 1565341 1565464 "MAPHACK3" 1565608 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-689 1564875 1564936 1565050 "MAPHACK2" 1565215 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-688 1564313 1564416 1564558 "MAPHACK1" 1564766 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-687 1562392 1563013 1563317 "MAGMA" 1564041 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-686 1561871 1562116 1562207 "MACROAST" 1562321 T MACROAST (NIL) -8 NIL NIL NIL) (-685 1558289 1560110 1560571 "M3D" 1561443 NIL M3D (NIL T) -8 NIL NIL NIL) (-684 1552364 1556628 1556669 "LZSTAGG" 1557451 NIL LZSTAGG (NIL T) -9 NIL 1557746 NIL) (-683 1548322 1549495 1550952 "LZSTAGG-" 1550957 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-682 1545409 1546213 1546700 "LWORD" 1547867 NIL LWORD (NIL T) -8 NIL NIL NIL) (-681 1544985 1545213 1545288 "LSTAST" 1545354 T LSTAST (NIL) -8 NIL NIL NIL) (-680 1538062 1544756 1544890 "LSQM" 1544895 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-679 1537286 1537425 1537653 "LSPP" 1537917 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-678 1535098 1535399 1535855 "LSMP" 1536975 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-677 1531877 1532551 1533281 "LSMP1" 1534400 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-676 1525723 1531014 1531055 "LSAGG" 1531117 NIL LSAGG (NIL T) -9 NIL 1531195 NIL) (-675 1522418 1523342 1524555 "LSAGG-" 1524560 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-674 1520017 1521562 1521811 "LPOLY" 1522213 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-673 1519599 1519684 1519807 "LPEFRAC" 1519926 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-672 1517920 1518693 1518946 "LO" 1519431 NIL LO (NIL T T T) -8 NIL NIL NIL) (-671 1517572 1517684 1517712 "LOGIC" 1517823 T LOGIC (NIL) -9 NIL 1517904 NIL) (-670 1517434 1517457 1517528 "LOGIC-" 1517533 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-669 1516627 1516767 1516960 "LODOOPS" 1517290 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-668 1514050 1516543 1516609 "LODO" 1516614 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-667 1512588 1512823 1513176 "LODOF" 1513797 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-666 1508792 1511223 1511264 "LODOCAT" 1511702 NIL LODOCAT (NIL T) -9 NIL 1511913 NIL) (-665 1508525 1508583 1508710 "LODOCAT-" 1508715 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-664 1505845 1508366 1508484 "LODO2" 1508489 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-663 1503280 1505782 1505827 "LODO1" 1505832 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-662 1502161 1502326 1502631 "LODEEF" 1503103 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-661 1497464 1500355 1500396 "LNAGG" 1501258 NIL LNAGG (NIL T) -9 NIL 1501693 NIL) (-660 1496611 1496825 1497167 "LNAGG-" 1497172 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-659 1492747 1493536 1494175 "LMOPS" 1496026 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-658 1492150 1492538 1492579 "LMODULE" 1492584 NIL LMODULE (NIL T) -9 NIL 1492610 NIL) (-657 1489348 1491795 1491918 "LMDICT" 1492060 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-656 1488754 1488975 1489016 "LLINSET" 1489207 NIL LLINSET (NIL T) -9 NIL 1489298 NIL) (-655 1488453 1488662 1488722 "LITERAL" 1488727 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-654 1481616 1487387 1487691 "LIST" 1488182 NIL LIST (NIL T) -8 NIL NIL NIL) (-653 1481141 1481215 1481354 "LIST3" 1481536 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-652 1480148 1480326 1480554 "LIST2" 1480959 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-651 1478282 1478594 1478993 "LIST2MAP" 1479795 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-650 1477878 1478115 1478156 "LINSET" 1478161 NIL LINSET (NIL T) -9 NIL 1478195 NIL) (-649 1476607 1477140 1477181 "LINEXP" 1477532 NIL LINEXP (NIL T) -9 NIL 1477723 NIL) (-648 1475184 1475444 1475755 "LINDEP" 1476359 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-647 1471951 1472670 1473447 "LIMITRF" 1474439 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-646 1470254 1470550 1470959 "LIMITPS" 1471646 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-645 1464682 1469765 1469993 "LIE" 1470075 NIL LIE (NIL T T) -8 NIL NIL NIL) (-644 1463630 1464099 1464139 "LIECAT" 1464279 NIL LIECAT (NIL T) -9 NIL 1464430 NIL) (-643 1463471 1463498 1463586 "LIECAT-" 1463591 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-642 1456058 1463011 1463167 "LIB" 1463335 T LIB (NIL) -8 NIL NIL NIL) (-641 1451693 1452576 1453511 "LGROBP" 1455175 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-640 1449691 1449965 1450315 "LF" 1451414 NIL LF (NIL T T) -7 NIL NIL NIL) (-639 1448531 1449223 1449251 "LFCAT" 1449458 T LFCAT (NIL) -9 NIL 1449597 NIL) (-638 1445433 1446063 1446751 "LEXTRIPK" 1447895 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-637 1442177 1443003 1443506 "LEXP" 1445013 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-636 1441653 1441898 1441990 "LETAST" 1442105 T LETAST (NIL) -8 NIL NIL NIL) (-635 1440051 1440364 1440765 "LEADCDET" 1441335 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-634 1439241 1439315 1439544 "LAZM3PK" 1439972 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-633 1434158 1437318 1437856 "LAUPOL" 1438753 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-632 1433737 1433781 1433942 "LAPLACE" 1434108 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-631 1431676 1432838 1433089 "LA" 1433570 NIL LA (NIL T T T) -8 NIL NIL NIL) (-630 1430670 1431254 1431295 "LALG" 1431357 NIL LALG (NIL T) -9 NIL 1431416 NIL) (-629 1430384 1430443 1430579 "LALG-" 1430584 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-628 1430219 1430243 1430284 "KVTFROM" 1430346 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-627 1429142 1429586 1429771 "KTVLOGIC" 1430054 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-626 1428977 1429001 1429042 "KRCFROM" 1429104 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-625 1427881 1428068 1428367 "KOVACIC" 1428777 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-624 1427716 1427740 1427781 "KONVERT" 1427843 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-623 1427551 1427575 1427616 "KOERCE" 1427678 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-622 1425382 1426144 1426521 "KERNEL" 1427207 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-621 1424878 1424959 1425091 "KERNEL2" 1425296 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-620 1418648 1423417 1423471 "KDAGG" 1423848 NIL KDAGG (NIL T T) -9 NIL 1424054 NIL) (-619 1418177 1418301 1418506 "KDAGG-" 1418511 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-618 1411325 1417838 1417993 "KAFILE" 1418055 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-617 1405753 1410836 1411064 "JORDAN" 1411146 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-616 1405132 1405402 1405523 "JOINAST" 1405652 T JOINAST (NIL) -8 NIL NIL NIL) (-615 1404978 1405037 1405092 "JAVACODE" 1405097 T JAVACODE (NIL) -8 NIL NIL NIL) (-614 1401230 1403183 1403237 "IXAGG" 1404166 NIL IXAGG (NIL T T) -9 NIL 1404625 NIL) (-613 1400149 1400455 1400874 "IXAGG-" 1400879 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-612 1395679 1400071 1400130 "IVECTOR" 1400135 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-611 1394445 1394682 1394948 "ITUPLE" 1395446 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-610 1392947 1393124 1393419 "ITRIGMNP" 1394267 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-609 1391692 1391896 1392179 "ITFUN3" 1392723 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-608 1391324 1391381 1391490 "ITFUN2" 1391629 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-607 1390483 1390804 1390978 "ITFORM" 1391170 T ITFORM (NIL) -8 NIL NIL NIL) (-606 1388444 1389503 1389781 "ITAYLOR" 1390238 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-605 1377389 1382581 1383744 "ISUPS" 1387314 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-604 1376493 1376633 1376869 "ISUMP" 1377236 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-603 1371868 1376438 1376479 "ISTRING" 1376484 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-602 1371344 1371589 1371681 "ISAST" 1371796 T ISAST (NIL) -8 NIL NIL NIL) (-601 1370553 1370635 1370851 "IRURPK" 1371258 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-600 1369489 1369690 1369930 "IRSN" 1370333 T IRSN (NIL) -7 NIL NIL NIL) (-599 1367560 1367915 1368344 "IRRF2F" 1369127 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-598 1367307 1367345 1367421 "IRREDFFX" 1367516 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-597 1365922 1366181 1366480 "IROOT" 1367040 NIL IROOT (NIL T) -7 NIL NIL NIL) (-596 1362526 1363606 1364298 "IR" 1365262 NIL IR (NIL T) -8 NIL NIL NIL) (-595 1361731 1362019 1362170 "IRFORM" 1362395 T IRFORM (NIL) -8 NIL NIL NIL) (-594 1359344 1359839 1360405 "IR2" 1361209 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-593 1358444 1358557 1358771 "IR2F" 1359227 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-592 1358235 1358269 1358329 "IPRNTPK" 1358404 T IPRNTPK (NIL) -7 NIL NIL NIL) (-591 1354816 1358124 1358193 "IPF" 1358198 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-590 1353143 1354741 1354798 "IPADIC" 1354803 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-589 1352455 1352703 1352833 "IP4ADDR" 1353033 T IP4ADDR (NIL) -8 NIL NIL NIL) (-588 1351829 1352084 1352216 "IOMODE" 1352343 T IOMODE (NIL) -8 NIL NIL NIL) (-587 1350902 1351426 1351553 "IOBFILE" 1351722 T IOBFILE (NIL) -8 NIL NIL NIL) (-586 1350390 1350806 1350834 "IOBCON" 1350839 T IOBCON (NIL) -9 NIL 1350860 NIL) (-585 1349901 1349959 1350142 "INVLAPLA" 1350326 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-584 1339549 1341903 1344289 "INTTR" 1347565 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-583 1335884 1336626 1337491 "INTTOOLS" 1338734 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-582 1335470 1335561 1335678 "INTSLPE" 1335787 T INTSLPE (NIL) -7 NIL NIL NIL) (-581 1333423 1335393 1335452 "INTRVL" 1335457 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-580 1331025 1331537 1332112 "INTRF" 1332908 NIL INTRF (NIL T) -7 NIL NIL NIL) (-579 1330436 1330533 1330675 "INTRET" 1330923 NIL INTRET (NIL T) -7 NIL NIL NIL) (-578 1328433 1328822 1329292 "INTRAT" 1330044 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-577 1325696 1326279 1326898 "INTPM" 1327918 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-576 1322441 1323040 1323778 "INTPAF" 1325082 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-575 1317620 1318582 1319633 "INTPACK" 1321410 T INTPACK (NIL) -7 NIL NIL NIL) (-574 1314518 1317417 1317526 "INT" 1317531 T INT (NIL) -8 NIL NIL NIL) (-573 1313770 1313922 1314130 "INTHERTR" 1314360 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-572 1313209 1313289 1313477 "INTHERAL" 1313684 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-571 1311055 1311498 1311955 "INTHEORY" 1312772 T INTHEORY (NIL) -7 NIL NIL NIL) (-570 1302461 1304082 1305854 "INTG0" 1309407 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-569 1283034 1287824 1292634 "INTFTBL" 1297671 T INTFTBL (NIL) -8 NIL NIL NIL) (-568 1282283 1282421 1282594 "INTFACT" 1282893 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-567 1279710 1280156 1280713 "INTEF" 1281837 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-566 1278077 1278816 1278844 "INTDOM" 1279145 T INTDOM (NIL) -9 NIL 1279352 NIL) (-565 1277446 1277620 1277862 "INTDOM-" 1277867 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-564 1273834 1275762 1275816 "INTCAT" 1276615 NIL INTCAT (NIL T) -9 NIL 1276936 NIL) (-563 1273306 1273409 1273537 "INTBIT" 1273726 T INTBIT (NIL) -7 NIL NIL NIL) (-562 1272005 1272159 1272466 "INTALG" 1273151 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-561 1271488 1271578 1271735 "INTAF" 1271909 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-560 1264831 1271298 1271438 "INTABL" 1271443 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-559 1264164 1264630 1264695 "INT8" 1264729 T INT8 (NIL) -8 NIL NIL 1264774) (-558 1263496 1263962 1264027 "INT64" 1264061 T INT64 (NIL) -8 NIL NIL 1264106) (-557 1262828 1263294 1263359 "INT32" 1263393 T INT32 (NIL) -8 NIL NIL 1263438) (-556 1262160 1262626 1262691 "INT16" 1262725 T INT16 (NIL) -8 NIL NIL 1262770) (-555 1256968 1259734 1259762 "INS" 1260696 T INS (NIL) -9 NIL 1261361 NIL) (-554 1254208 1254979 1255953 "INS-" 1256026 NIL INS- (NIL T) -8 NIL NIL NIL) (-553 1252983 1253210 1253508 "INPSIGN" 1253961 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-552 1252101 1252218 1252415 "INPRODPF" 1252863 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-551 1250995 1251112 1251349 "INPRODFF" 1251981 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-550 1249995 1250147 1250407 "INNMFACT" 1250831 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-549 1249192 1249289 1249477 "INMODGCD" 1249894 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-548 1247700 1247945 1248269 "INFSP" 1248937 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-547 1246884 1247001 1247184 "INFPROD0" 1247580 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-546 1243739 1244949 1245464 "INFORM" 1246377 T INFORM (NIL) -8 NIL NIL NIL) (-545 1243349 1243409 1243507 "INFORM1" 1243674 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-544 1242872 1242961 1243075 "INFINITY" 1243255 T INFINITY (NIL) -7 NIL NIL NIL) (-543 1242048 1242592 1242693 "INETCLTS" 1242791 T INETCLTS (NIL) -8 NIL NIL NIL) (-542 1240664 1240914 1241235 "INEP" 1241796 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-541 1239913 1240561 1240626 "INDE" 1240631 NIL INDE (NIL T) -8 NIL NIL NIL) (-540 1239477 1239545 1239662 "INCRMAPS" 1239840 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-539 1238295 1238746 1238952 "INBFILE" 1239291 T INBFILE (NIL) -8 NIL NIL NIL) (-538 1233594 1234531 1235475 "INBFF" 1237383 NIL INBFF (NIL T) -7 NIL NIL NIL) (-537 1232502 1232771 1232799 "INBCON" 1233312 T INBCON (NIL) -9 NIL 1233578 NIL) (-536 1231754 1231977 1232253 "INBCON-" 1232258 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-535 1231233 1231478 1231569 "INAST" 1231683 T INAST (NIL) -8 NIL NIL NIL) (-534 1230660 1230912 1231018 "IMPTAST" 1231147 T IMPTAST (NIL) -8 NIL NIL NIL) (-533 1227106 1230504 1230608 "IMATRIX" 1230613 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-532 1225814 1225937 1226253 "IMATQF" 1226962 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-531 1224034 1224261 1224598 "IMATLIN" 1225570 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-530 1218612 1223958 1224016 "ILIST" 1224021 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-529 1216517 1218472 1218585 "IIARRAY2" 1218590 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-528 1211915 1216428 1216492 "IFF" 1216497 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-527 1211262 1211532 1211648 "IFAST" 1211819 T IFAST (NIL) -8 NIL NIL NIL) (-526 1206257 1210554 1210742 "IFARRAY" 1211119 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-525 1205437 1206161 1206234 "IFAMON" 1206239 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-524 1205021 1205086 1205140 "IEVALAB" 1205347 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-523 1204696 1204764 1204924 "IEVALAB-" 1204929 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-522 1204327 1204610 1204673 "IDPO" 1204678 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-521 1203577 1204216 1204291 "IDPOAMS" 1204296 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-520 1202884 1203466 1203541 "IDPOAM" 1203546 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-519 1201943 1202219 1202272 "IDPC" 1202685 NIL IDPC (NIL T T) -9 NIL 1202834 NIL) (-518 1201412 1201835 1201908 "IDPAM" 1201913 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-517 1200788 1201304 1201377 "IDPAG" 1201382 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-516 1200433 1200624 1200699 "IDENT" 1200733 T IDENT (NIL) -8 NIL NIL NIL) (-515 1196688 1197536 1198431 "IDECOMP" 1199590 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-514 1189525 1190611 1191658 "IDEAL" 1195724 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-513 1188685 1188797 1188997 "ICDEN" 1189409 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-512 1187756 1188165 1188312 "ICARD" 1188558 T ICARD (NIL) -8 NIL NIL NIL) (-511 1185816 1186129 1186534 "IBPTOOLS" 1187433 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-510 1181423 1185436 1185549 "IBITS" 1185735 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-509 1178146 1178722 1179417 "IBATOOL" 1180840 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-508 1175925 1176387 1176920 "IBACHIN" 1177681 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-507 1173754 1175771 1175874 "IARRAY2" 1175879 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-506 1169860 1173680 1173737 "IARRAY1" 1173742 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-505 1163898 1168272 1168753 "IAN" 1169399 T IAN (NIL) -8 NIL NIL NIL) (-504 1163409 1163466 1163639 "IALGFACT" 1163835 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-503 1162937 1163050 1163078 "HYPCAT" 1163285 T HYPCAT (NIL) -9 NIL NIL NIL) (-502 1162475 1162592 1162778 "HYPCAT-" 1162783 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-501 1162070 1162270 1162353 "HOSTNAME" 1162412 T HOSTNAME (NIL) -8 NIL NIL NIL) (-500 1161915 1161952 1161993 "HOMOTOP" 1161998 NIL HOMOTOP (NIL T) -9 NIL 1162031 NIL) (-499 1158547 1159925 1159966 "HOAGG" 1160947 NIL HOAGG (NIL T) -9 NIL 1161626 NIL) (-498 1157141 1157540 1158066 "HOAGG-" 1158071 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-497 1151050 1156734 1156884 "HEXADEC" 1157011 T HEXADEC (NIL) -8 NIL NIL NIL) (-496 1149798 1150020 1150283 "HEUGCD" 1150827 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-495 1148874 1149635 1149765 "HELLFDIV" 1149770 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-494 1147053 1148651 1148739 "HEAP" 1148818 NIL HEAP (NIL T) -8 NIL NIL NIL) (-493 1146316 1146605 1146739 "HEADAST" 1146939 T HEADAST (NIL) -8 NIL NIL NIL) (-492 1140045 1146231 1146293 "HDP" 1146298 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-491 1133944 1139680 1139832 "HDMP" 1139946 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-490 1133268 1133408 1133572 "HB" 1133800 T HB (NIL) -7 NIL NIL NIL) (-489 1126654 1133114 1133218 "HASHTBL" 1133223 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-488 1126130 1126375 1126467 "HASAST" 1126582 T HASAST (NIL) -8 NIL NIL NIL) (-487 1123908 1125752 1125934 "HACKPI" 1125968 T HACKPI (NIL) -8 NIL NIL NIL) (-486 1119576 1123761 1123874 "GTSET" 1123879 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-485 1112991 1119454 1119552 "GSTBL" 1119557 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-484 1105269 1112022 1112287 "GSERIES" 1112782 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-483 1104410 1104827 1104855 "GROUP" 1105058 T GROUP (NIL) -9 NIL 1105192 NIL) (-482 1103776 1103935 1104186 "GROUP-" 1104191 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-481 1102143 1102464 1102851 "GROEBSOL" 1103453 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-480 1101057 1101345 1101396 "GRMOD" 1101925 NIL GRMOD (NIL T T) -9 NIL 1102093 NIL) (-479 1100825 1100861 1100989 "GRMOD-" 1100994 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-478 1096115 1097179 1098179 "GRIMAGE" 1099845 T GRIMAGE (NIL) -8 NIL NIL NIL) (-477 1094581 1094842 1095166 "GRDEF" 1095811 T GRDEF (NIL) -7 NIL NIL NIL) (-476 1094025 1094141 1094282 "GRAY" 1094460 T GRAY (NIL) -7 NIL NIL NIL) (-475 1093212 1093618 1093669 "GRALG" 1093822 NIL GRALG (NIL T T) -9 NIL 1093915 NIL) (-474 1092873 1092946 1093109 "GRALG-" 1093114 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-473 1089650 1092458 1092636 "GPOLSET" 1092780 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-472 1089004 1089061 1089319 "GOSPER" 1089587 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-471 1084736 1085442 1085968 "GMODPOL" 1088703 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-470 1083741 1083925 1084163 "GHENSEL" 1084548 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-469 1077897 1078740 1079760 "GENUPS" 1082825 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-468 1077594 1077645 1077734 "GENUFACT" 1077840 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-467 1077006 1077083 1077248 "GENPGCD" 1077512 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-466 1076480 1076515 1076728 "GENMFACT" 1076965 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-465 1075046 1075303 1075610 "GENEEZ" 1076223 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-464 1069105 1074657 1074819 "GDMP" 1074969 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-463 1058448 1062876 1063982 "GCNAALG" 1068088 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-462 1056775 1057637 1057665 "GCDDOM" 1057920 T GCDDOM (NIL) -9 NIL 1058077 NIL) (-461 1056245 1056372 1056587 "GCDDOM-" 1056592 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-460 1054917 1055102 1055406 "GB" 1056024 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-459 1043533 1045863 1048255 "GBINTERN" 1052608 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-458 1041370 1041662 1042083 "GBF" 1043208 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-457 1040151 1040316 1040583 "GBEUCLID" 1041186 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-456 1039500 1039625 1039774 "GAUSSFAC" 1040022 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-455 1037867 1038169 1038483 "GALUTIL" 1039219 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-454 1036175 1036449 1036773 "GALPOLYU" 1037594 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-453 1033540 1033830 1034237 "GALFACTU" 1035872 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-452 1025346 1026845 1028453 "GALFACT" 1031972 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-451 1022734 1023392 1023420 "FVFUN" 1024576 T FVFUN (NIL) -9 NIL 1025296 NIL) (-450 1022000 1022182 1022210 "FVC" 1022501 T FVC (NIL) -9 NIL 1022684 NIL) (-449 1021643 1021825 1021893 "FUNDESC" 1021952 T FUNDESC (NIL) -8 NIL NIL NIL) (-448 1021258 1021440 1021521 "FUNCTION" 1021595 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-447 1019002 1019580 1020046 "FT" 1020812 T FT (NIL) -8 NIL NIL NIL) (-446 1017793 1018303 1018506 "FTEM" 1018819 T FTEM (NIL) -8 NIL NIL NIL) (-445 1016084 1016373 1016770 "FSUPFACT" 1017484 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-444 1014481 1014770 1015102 "FST" 1015772 T FST (NIL) -8 NIL NIL NIL) (-443 1013680 1013786 1013974 "FSRED" 1014363 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-442 1012379 1012635 1012982 "FSPRMELT" 1013395 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-441 1009685 1010123 1010609 "FSPECF" 1011942 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-440 991057 999528 999569 "FS" 1003453 NIL FS (NIL T) -9 NIL 1005742 NIL) (-439 979700 982693 986750 "FS-" 987050 NIL FS- (NIL T T) -8 NIL NIL NIL) (-438 979228 979282 979452 "FSINT" 979641 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-437 977520 978221 978524 "FSERIES" 979007 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-436 976562 976678 976902 "FSCINT" 977400 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-435 972770 975506 975547 "FSAGG" 975917 NIL FSAGG (NIL T) -9 NIL 976176 NIL) (-434 970532 971133 971929 "FSAGG-" 972024 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-433 969574 969717 969944 "FSAGG2" 970385 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-432 967256 967536 968083 "FS2UPS" 969292 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-431 966890 966933 967062 "FS2" 967207 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-430 965768 965939 966241 "FS2EXPXP" 966715 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-429 965194 965309 965461 "FRUTIL" 965648 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-428 956607 960689 962047 "FR" 963868 NIL FR (NIL T) -8 NIL NIL NIL) (-427 951621 954296 954336 "FRNAALG" 955656 NIL FRNAALG (NIL T) -9 NIL 956254 NIL) (-426 947294 948370 949645 "FRNAALG-" 950395 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-425 946932 946975 947102 "FRNAAF2" 947245 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-424 945307 945781 946077 "FRMOD" 946744 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-423 943050 943682 944000 "FRIDEAL" 945098 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-422 942241 942328 942619 "FRIDEAL2" 942957 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-421 941374 941788 941829 "FRETRCT" 941834 NIL FRETRCT (NIL T) -9 NIL 942010 NIL) (-420 940486 940717 941068 "FRETRCT-" 941073 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-419 937574 938784 938843 "FRAMALG" 939725 NIL FRAMALG (NIL T T) -9 NIL 940017 NIL) (-418 935708 936163 936793 "FRAMALG-" 937016 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-417 929538 935181 935458 "FRAC" 935463 NIL FRAC (NIL T) -8 NIL NIL NIL) (-416 929174 929231 929338 "FRAC2" 929475 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-415 928810 928867 928974 "FR2" 929111 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-414 923323 926216 926244 "FPS" 927363 T FPS (NIL) -9 NIL 927920 NIL) (-413 922772 922881 923045 "FPS-" 923191 NIL FPS- (NIL T) -8 NIL NIL NIL) (-412 920074 921743 921771 "FPC" 921996 T FPC (NIL) -9 NIL 922138 NIL) (-411 919867 919907 920004 "FPC-" 920009 NIL FPC- (NIL T) -8 NIL NIL NIL) (-410 918657 919355 919396 "FPATMAB" 919401 NIL FPATMAB (NIL T) -9 NIL 919553 NIL) (-409 916330 916833 917259 "FPARFRAC" 918294 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-408 911724 912222 912904 "FORTRAN" 915762 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-407 909440 909940 910479 "FORT" 911205 T FORT (NIL) -7 NIL NIL NIL) (-406 907116 907678 907706 "FORTFN" 908766 T FORTFN (NIL) -9 NIL 909390 NIL) (-405 906880 906930 906958 "FORTCAT" 907017 T FORTCAT (NIL) -9 NIL 907079 NIL) (-404 904986 905496 905886 "FORMULA" 906510 T FORMULA (NIL) -8 NIL NIL NIL) (-403 904774 904804 904873 "FORMULA1" 904950 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-402 904297 904349 904522 "FORDER" 904716 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-401 903393 903557 903750 "FOP" 904124 T FOP (NIL) -7 NIL NIL NIL) (-400 901974 902673 902847 "FNLA" 903275 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-399 900703 901118 901146 "FNCAT" 901606 T FNCAT (NIL) -9 NIL 901866 NIL) (-398 900242 900662 900690 "FNAME" 900695 T FNAME (NIL) -8 NIL NIL NIL) (-397 898805 899768 899796 "FMTC" 899801 T FMTC (NIL) -9 NIL 899837 NIL) (-396 897551 898741 898787 "FMONOID" 898792 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-395 894379 895547 895588 "FMONCAT" 896805 NIL FMONCAT (NIL T) -9 NIL 897410 NIL) (-394 893571 894121 894270 "FM" 894275 NIL FM (NIL T T) -8 NIL NIL NIL) (-393 890995 891641 891669 "FMFUN" 892813 T FMFUN (NIL) -9 NIL 893521 NIL) (-392 890264 890445 890473 "FMC" 890763 T FMC (NIL) -9 NIL 890945 NIL) (-391 887343 888203 888257 "FMCAT" 889452 NIL FMCAT (NIL T T) -9 NIL 889947 NIL) (-390 886209 887109 887209 "FM1" 887288 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-389 883983 884399 884893 "FLOATRP" 885760 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-388 877561 881712 882333 "FLOAT" 883382 T FLOAT (NIL) -8 NIL NIL NIL) (-387 874999 875499 876077 "FLOATCP" 877028 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-386 873846 874605 874646 "FLINEXP" 874651 NIL FLINEXP (NIL T) -9 NIL 874744 NIL) (-385 872778 873075 873483 "FLINEXP-" 873488 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-384 871854 871998 872222 "FLASORT" 872630 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-383 868970 869838 869890 "FLALG" 871117 NIL FLALG (NIL T T) -9 NIL 871584 NIL) (-382 862674 866426 866467 "FLAGG" 867729 NIL FLAGG (NIL T) -9 NIL 868381 NIL) (-381 861400 861739 862229 "FLAGG-" 862234 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-380 860442 860585 860812 "FLAGG2" 861253 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-379 857293 858301 858360 "FINRALG" 859488 NIL FINRALG (NIL T T) -9 NIL 859996 NIL) (-378 856453 856682 857021 "FINRALG-" 857026 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-377 855833 856072 856100 "FINITE" 856296 T FINITE (NIL) -9 NIL 856403 NIL) (-376 848190 850377 850417 "FINAALG" 854084 NIL FINAALG (NIL T) -9 NIL 855537 NIL) (-375 843522 844572 845716 "FINAALG-" 847095 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-374 842890 843277 843380 "FILE" 843452 NIL FILE (NIL T) -8 NIL NIL NIL) (-373 841548 841886 841940 "FILECAT" 842624 NIL FILECAT (NIL T T) -9 NIL 842840 NIL) (-372 839264 840792 840820 "FIELD" 840860 T FIELD (NIL) -9 NIL 840940 NIL) (-371 837884 838269 838780 "FIELD-" 838785 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-370 835734 836519 836866 "FGROUP" 837570 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-369 834824 834988 835208 "FGLMICPK" 835566 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-368 830656 834749 834806 "FFX" 834811 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-367 830257 830318 830453 "FFSLPE" 830589 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-366 826247 827029 827825 "FFPOLY" 829493 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-365 825751 825787 825996 "FFPOLY2" 826205 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-364 821597 825670 825733 "FFP" 825738 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-363 816995 821508 821572 "FF" 821577 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-362 812121 816338 816528 "FFNBX" 816849 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-361 807049 811256 811514 "FFNBP" 811975 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-360 801682 806333 806544 "FFNB" 806882 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-359 800514 800712 801027 "FFINTBAS" 801479 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-358 796553 798774 798802 "FFIELDC" 799422 T FFIELDC (NIL) -9 NIL 799798 NIL) (-357 795215 795586 796083 "FFIELDC-" 796088 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-356 794784 794830 794954 "FFHOM" 795157 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-355 792479 792966 793483 "FFF" 794299 NIL FFF (NIL T) -7 NIL NIL NIL) (-354 788097 792221 792322 "FFCGX" 792422 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-353 783719 787829 787936 "FFCGP" 788040 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-352 778902 783446 783554 "FFCG" 783655 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-351 759939 769124 769210 "FFCAT" 774375 NIL FFCAT (NIL T T T) -9 NIL 775826 NIL) (-350 755136 756184 757498 "FFCAT-" 758728 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-349 754547 754590 754825 "FFCAT2" 755087 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-348 743870 747519 748739 "FEXPR" 753399 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-347 742832 743267 743308 "FEVALAB" 743392 NIL FEVALAB (NIL T) -9 NIL 743653 NIL) (-346 741991 742201 742539 "FEVALAB-" 742544 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-345 740557 741374 741577 "FDIV" 741890 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-344 737577 738318 738433 "FDIVCAT" 740001 NIL FDIVCAT (NIL T T T T) -9 NIL 740438 NIL) (-343 737339 737366 737536 "FDIVCAT-" 737541 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-342 736559 736646 736923 "FDIV2" 737246 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-341 735533 735854 736056 "FCTRDATA" 736377 T FCTRDATA (NIL) -8 NIL NIL NIL) (-340 734219 734478 734767 "FCPAK1" 735264 T FCPAK1 (NIL) -7 NIL NIL NIL) (-339 733318 733719 733860 "FCOMP" 734110 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-338 717023 720468 724006 "FC" 729800 T FC (NIL) -8 NIL NIL NIL) (-337 709329 713357 713397 "FAXF" 715199 NIL FAXF (NIL T) -9 NIL 715891 NIL) (-336 706606 707263 708088 "FAXF-" 708553 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-335 701658 705982 706158 "FARRAY" 706463 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-334 696552 698619 698672 "FAMR" 699695 NIL FAMR (NIL T T) -9 NIL 700155 NIL) (-333 695442 695744 696179 "FAMR-" 696184 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-332 694611 695364 695417 "FAMONOID" 695422 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-331 692397 693107 693160 "FAMONC" 694101 NIL FAMONC (NIL T T) -9 NIL 694487 NIL) (-330 691061 692151 692288 "FAGROUP" 692293 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-329 688856 689175 689578 "FACUTIL" 690742 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-328 687955 688140 688362 "FACTFUNC" 688666 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-327 680377 687258 687457 "EXPUPXS" 687811 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-326 677860 678400 678986 "EXPRTUBE" 679811 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-325 674131 674723 675453 "EXPRODE" 677199 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-324 659850 672780 673209 "EXPR" 673735 NIL EXPR (NIL T) -8 NIL NIL NIL) (-323 654404 654991 655797 "EXPR2UPS" 659148 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-322 654036 654093 654202 "EXPR2" 654341 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-321 645289 653187 653478 "EXPEXPAN" 653872 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-320 645089 645246 645275 "EXIT" 645280 T EXIT (NIL) -8 NIL NIL NIL) (-319 644569 644813 644904 "EXITAST" 645018 T EXITAST (NIL) -8 NIL NIL NIL) (-318 644196 644258 644371 "EVALCYC" 644501 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-317 643737 643855 643896 "EVALAB" 644066 NIL EVALAB (NIL T) -9 NIL 644170 NIL) (-316 643218 643340 643561 "EVALAB-" 643566 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-315 640586 641888 641916 "EUCDOM" 642471 T EUCDOM (NIL) -9 NIL 642821 NIL) (-314 638991 639433 640023 "EUCDOM-" 640028 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-313 626530 629289 632039 "ESTOOLS" 636261 T ESTOOLS (NIL) -7 NIL NIL NIL) (-312 626162 626219 626328 "ESTOOLS2" 626467 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-311 625913 625955 626035 "ESTOOLS1" 626114 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-310 619950 621558 621586 "ES" 624354 T ES (NIL) -9 NIL 625764 NIL) (-309 614897 616184 618001 "ES-" 618165 NIL ES- (NIL T) -8 NIL NIL NIL) (-308 611271 612032 612812 "ESCONT" 614137 T ESCONT (NIL) -7 NIL NIL NIL) (-307 611016 611048 611130 "ESCONT1" 611233 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-306 610691 610741 610841 "ES2" 610960 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-305 610321 610379 610488 "ES1" 610627 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-304 609537 609666 609842 "ERROR" 610165 T ERROR (NIL) -7 NIL NIL NIL) (-303 602929 609396 609487 "EQTBL" 609492 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-302 595432 598243 599692 "EQ" 601513 NIL -2077 (NIL T) -8 NIL NIL NIL) (-301 595064 595121 595230 "EQ2" 595369 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-300 590355 591402 592495 "EP" 594003 NIL EP (NIL T) -7 NIL NIL NIL) (-299 588955 589246 589552 "ENV" 590069 T ENV (NIL) -8 NIL NIL NIL) (-298 588049 588603 588631 "ENTIRER" 588636 T ENTIRER (NIL) -9 NIL 588682 NIL) (-297 584743 586231 586592 "EMR" 587857 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-296 583873 584058 584112 "ELTAGG" 584492 NIL ELTAGG (NIL T T) -9 NIL 584703 NIL) (-295 583592 583654 583795 "ELTAGG-" 583800 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-294 583356 583385 583439 "ELTAB" 583523 NIL ELTAB (NIL T T) -9 NIL 583575 NIL) (-293 582482 582628 582827 "ELFUTS" 583207 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-292 582224 582280 582308 "ELEMFUN" 582413 T ELEMFUN (NIL) -9 NIL NIL NIL) (-291 582094 582115 582183 "ELEMFUN-" 582188 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-290 576908 580164 580205 "ELAGG" 581145 NIL ELAGG (NIL T) -9 NIL 581608 NIL) (-289 575193 575627 576290 "ELAGG-" 576295 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-288 574505 574642 574798 "ELABOR" 575057 T ELABOR (NIL) -8 NIL NIL NIL) (-287 573166 573445 573739 "ELABEXPR" 574231 T ELABEXPR (NIL) -8 NIL NIL NIL) (-286 566030 567833 568660 "EFUPXS" 572442 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-285 559480 561281 562091 "EFULS" 565306 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-284 556965 557323 557795 "EFSTRUC" 559112 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-283 546756 548322 549870 "EF" 555480 NIL EF (NIL T T) -7 NIL NIL NIL) (-282 545830 546241 546390 "EAB" 546627 T EAB (NIL) -8 NIL NIL NIL) (-281 545012 545789 545817 "E04UCFA" 545822 T E04UCFA (NIL) -8 NIL NIL NIL) (-280 544194 544971 544999 "E04NAFA" 545004 T E04NAFA (NIL) -8 NIL NIL NIL) (-279 543376 544153 544181 "E04MBFA" 544186 T E04MBFA (NIL) -8 NIL NIL NIL) (-278 542558 543335 543363 "E04JAFA" 543368 T E04JAFA (NIL) -8 NIL NIL NIL) (-277 541742 542517 542545 "E04GCFA" 542550 T E04GCFA (NIL) -8 NIL NIL NIL) (-276 540926 541701 541729 "E04FDFA" 541734 T E04FDFA (NIL) -8 NIL NIL NIL) (-275 540108 540885 540913 "E04DGFA" 540918 T E04DGFA (NIL) -8 NIL NIL NIL) (-274 534281 535633 536997 "E04AGNT" 538764 T E04AGNT (NIL) -7 NIL NIL NIL) (-273 533052 533595 533635 "DVARCAT" 533976 NIL DVARCAT (NIL T) -9 NIL 534139 NIL) (-272 532256 532468 532782 "DVARCAT-" 532787 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-271 525304 532055 532184 "DSMP" 532189 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-270 520085 521249 522317 "DROPT" 524256 T DROPT (NIL) -8 NIL NIL NIL) (-269 519750 519809 519907 "DROPT1" 520020 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-268 514865 515991 517128 "DROPT0" 518633 T DROPT0 (NIL) -7 NIL NIL NIL) (-267 513210 513535 513921 "DRAWPT" 514499 T DRAWPT (NIL) -7 NIL NIL NIL) (-266 507797 508720 509799 "DRAW" 512184 NIL DRAW (NIL T) -7 NIL NIL NIL) (-265 507430 507483 507601 "DRAWHACK" 507738 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-264 506161 506430 506721 "DRAWCX" 507159 T DRAWCX (NIL) -7 NIL NIL NIL) (-263 505676 505745 505896 "DRAWCURV" 506087 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-262 496144 498106 500221 "DRAWCFUN" 503581 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-261 492908 494837 494878 "DQAGG" 495507 NIL DQAGG (NIL T) -9 NIL 495781 NIL) (-260 480845 487403 487486 "DPOLCAT" 489338 NIL DPOLCAT (NIL T T T T) -9 NIL 489883 NIL) (-259 475682 477030 478988 "DPOLCAT-" 478993 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-258 468991 475543 475641 "DPMO" 475646 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-257 462203 468771 468938 "DPMM" 468943 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-256 461773 461987 462076 "DOMTMPLT" 462134 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-255 461206 461575 461655 "DOMCTOR" 461713 T DOMCTOR (NIL) -8 NIL NIL NIL) (-254 460418 460686 460837 "DOMAIN" 461075 T DOMAIN (NIL) -8 NIL NIL NIL) (-253 454317 460053 460205 "DMP" 460319 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-252 453917 453973 454117 "DLP" 454255 NIL DLP (NIL T) -7 NIL NIL NIL) (-251 447739 453244 453434 "DLIST" 453759 NIL DLIST (NIL T) -8 NIL NIL NIL) (-250 444536 446592 446633 "DLAGG" 447183 NIL DLAGG (NIL T) -9 NIL 447413 NIL) (-249 443212 443876 443904 "DIVRING" 443996 T DIVRING (NIL) -9 NIL 444079 NIL) (-248 442449 442639 442939 "DIVRING-" 442944 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-247 440551 440908 441314 "DISPLAY" 442063 T DISPLAY (NIL) -7 NIL NIL NIL) (-246 434300 440465 440528 "DIRPROD" 440533 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-245 433148 433351 433616 "DIRPROD2" 434093 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-244 421659 427805 427858 "DIRPCAT" 428268 NIL DIRPCAT (NIL NIL T) -9 NIL 429108 NIL) (-243 418763 419467 420428 "DIRPCAT-" 420765 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-242 418050 418210 418396 "DIOSP" 418597 T DIOSP (NIL) -7 NIL NIL NIL) (-241 414705 416962 417003 "DIOPS" 417437 NIL DIOPS (NIL T) -9 NIL 417666 NIL) (-240 414254 414368 414559 "DIOPS-" 414564 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-239 413143 413771 413799 "DIFRING" 413918 T DIFRING (NIL) -9 NIL 414001 NIL) (-238 412788 412866 413018 "DIFRING-" 413023 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-237 412460 412534 412562 "DIFFSPC" 412681 T DIFFSPC (NIL) -9 NIL 412756 NIL) (-236 412105 412183 412335 "DIFFSPC-" 412340 NIL DIFFSPC- (NIL T) -8 NIL NIL NIL) (-235 411813 411858 411899 "DIFFDOM" 412020 NIL DIFFDOM (NIL T) -9 NIL 412088 NIL) (-234 411666 411690 411774 "DIFFDOM-" 411779 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-233 409345 410617 410658 "DIFEXT" 411021 NIL DIFEXT (NIL T) -9 NIL 411315 NIL) (-232 407630 408058 408724 "DIFEXT-" 408729 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-231 404905 407162 407203 "DIAGG" 407208 NIL DIAGG (NIL T) -9 NIL 407228 NIL) (-230 404289 404446 404698 "DIAGG-" 404703 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-229 399706 403248 403525 "DHMATRIX" 404058 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-228 395318 396227 397237 "DFSFUN" 398716 T DFSFUN (NIL) -7 NIL NIL NIL) (-227 390398 394249 394561 "DFLOAT" 395026 T DFLOAT (NIL) -8 NIL NIL NIL) (-226 388661 388942 389331 "DFINTTLS" 390106 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-225 385690 386682 387082 "DERHAM" 388327 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-224 383491 385465 385554 "DEQUEUE" 385634 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-223 382745 382878 383061 "DEGRED" 383353 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-222 379175 379920 380766 "DEFINTRF" 381973 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-221 376730 377199 377791 "DEFINTEF" 378694 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-220 376080 376350 376465 "DEFAST" 376635 T DEFAST (NIL) -8 NIL NIL NIL) (-219 369989 375673 375823 "DECIMAL" 375950 T DECIMAL (NIL) -8 NIL NIL NIL) (-218 367501 367959 368465 "DDFACT" 369533 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-217 367097 367140 367291 "DBLRESP" 367452 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-216 364965 365327 365688 "DBASE" 366863 NIL DBASE (NIL T) -8 NIL NIL NIL) (-215 364207 364445 364591 "DATAARY" 364864 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-214 363313 364166 364194 "D03FAFA" 364199 T D03FAFA (NIL) -8 NIL NIL NIL) (-213 362420 363272 363300 "D03EEFA" 363305 T D03EEFA (NIL) -8 NIL NIL NIL) (-212 360370 360836 361325 "D03AGNT" 361951 T D03AGNT (NIL) -7 NIL NIL NIL) (-211 359659 360329 360357 "D02EJFA" 360362 T D02EJFA (NIL) -8 NIL NIL NIL) (-210 358948 359618 359646 "D02CJFA" 359651 T D02CJFA (NIL) -8 NIL NIL NIL) (-209 358237 358907 358935 "D02BHFA" 358940 T D02BHFA (NIL) -8 NIL NIL NIL) (-208 357526 358196 358224 "D02BBFA" 358229 T D02BBFA (NIL) -8 NIL NIL NIL) (-207 350723 352312 353918 "D02AGNT" 355940 T D02AGNT (NIL) -7 NIL NIL NIL) (-206 348491 349014 349560 "D01WGTS" 350197 T D01WGTS (NIL) -7 NIL NIL NIL) (-205 347558 348450 348478 "D01TRNS" 348483 T D01TRNS (NIL) -8 NIL NIL NIL) (-204 346626 347517 347545 "D01GBFA" 347550 T D01GBFA (NIL) -8 NIL NIL NIL) (-203 345694 346585 346613 "D01FCFA" 346618 T D01FCFA (NIL) -8 NIL NIL NIL) (-202 344762 345653 345681 "D01ASFA" 345686 T D01ASFA (NIL) -8 NIL NIL NIL) (-201 343830 344721 344749 "D01AQFA" 344754 T D01AQFA (NIL) -8 NIL NIL NIL) (-200 342898 343789 343817 "D01APFA" 343822 T D01APFA (NIL) -8 NIL NIL NIL) (-199 341966 342857 342885 "D01ANFA" 342890 T D01ANFA (NIL) -8 NIL NIL NIL) (-198 341034 341925 341953 "D01AMFA" 341958 T D01AMFA (NIL) -8 NIL NIL NIL) (-197 340102 340993 341021 "D01ALFA" 341026 T D01ALFA (NIL) -8 NIL NIL NIL) (-196 339170 340061 340089 "D01AKFA" 340094 T D01AKFA (NIL) -8 NIL NIL NIL) (-195 338238 339129 339157 "D01AJFA" 339162 T D01AJFA (NIL) -8 NIL NIL NIL) (-194 331533 333086 334647 "D01AGNT" 336697 T D01AGNT (NIL) -7 NIL NIL NIL) (-193 330870 330998 331150 "CYCLOTOM" 331401 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-192 327603 328318 329045 "CYCLES" 330163 T CYCLES (NIL) -7 NIL NIL NIL) (-191 326915 327049 327220 "CVMP" 327464 NIL CVMP (NIL T) -7 NIL NIL NIL) (-190 324756 325014 325383 "CTRIGMNP" 326643 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-189 324192 324550 324623 "CTOR" 324703 T CTOR (NIL) -8 NIL NIL NIL) (-188 323701 323923 324024 "CTORKIND" 324111 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 322992 323308 323336 "CTORCAT" 323518 T CTORCAT (NIL) -9 NIL 323631 NIL) (-186 322590 322701 322860 "CTORCAT-" 322865 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 322052 322264 322372 "CTORCALL" 322514 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 321426 321525 321678 "CSTTOOLS" 321949 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-183 317225 317882 318640 "CRFP" 320738 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-182 316700 316946 317038 "CRCEAST" 317153 T CRCEAST (NIL) -8 NIL NIL NIL) (-181 315747 315932 316160 "CRAPACK" 316504 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-180 315131 315232 315436 "CPMATCH" 315623 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-179 314856 314884 314990 "CPIMA" 315097 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-178 311204 311876 312595 "COORDSYS" 314191 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-177 310616 310737 310879 "CONTOUR" 311082 T CONTOUR (NIL) -8 NIL NIL NIL) (-176 306507 308619 309111 "CONTFRAC" 310156 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-175 306387 306408 306436 "CONDUIT" 306473 T CONDUIT (NIL) -9 NIL NIL NIL) (-174 305475 306029 306057 "COMRING" 306062 T COMRING (NIL) -9 NIL 306114 NIL) (-173 304529 304833 305017 "COMPPROP" 305311 T COMPPROP (NIL) -8 NIL NIL NIL) (-172 304190 304225 304353 "COMPLPAT" 304488 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-171 294392 303999 304108 "COMPLEX" 304113 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 294028 294085 294192 "COMPLEX2" 294329 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 293367 293488 293648 "COMPILER" 293888 T COMPILER (NIL) -8 NIL NIL NIL) (-168 293085 293120 293218 "COMPFACT" 293326 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-167 276977 287061 287101 "COMPCAT" 288105 NIL COMPCAT (NIL T) -9 NIL 289453 NIL) (-166 266267 269256 272963 "COMPCAT-" 273319 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-165 265996 266024 266127 "COMMUPC" 266233 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-164 265790 265824 265883 "COMMONOP" 265957 T COMMONOP (NIL) -7 NIL NIL NIL) (-163 265346 265541 265628 "COMM" 265723 T COMM (NIL) -8 NIL NIL NIL) (-162 264922 265150 265225 "COMMAAST" 265291 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 264171 264365 264393 "COMBOPC" 264731 T COMBOPC (NIL) -9 NIL 264906 NIL) (-160 263067 263277 263519 "COMBINAT" 263961 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-159 259524 260098 260725 "COMBF" 262489 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-158 258282 258640 258875 "COLOR" 259309 T COLOR (NIL) -8 NIL NIL NIL) (-157 257758 258003 258095 "COLONAST" 258210 T COLONAST (NIL) -8 NIL NIL NIL) (-156 257398 257445 257570 "CMPLXRT" 257705 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-155 256846 257098 257197 "CLLCTAST" 257319 T CLLCTAST (NIL) -8 NIL NIL NIL) (-154 252348 253376 254456 "CLIP" 255786 T CLIP (NIL) -7 NIL NIL NIL) (-153 250689 251449 251689 "CLIF" 252175 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-152 246864 248835 248876 "CLAGG" 249805 NIL CLAGG (NIL T) -9 NIL 250341 NIL) (-151 245286 245743 246326 "CLAGG-" 246331 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-150 244830 244915 245055 "CINTSLPE" 245195 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-149 242331 242802 243350 "CHVAR" 244358 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-148 241505 242059 242087 "CHARZ" 242092 T CHARZ (NIL) -9 NIL 242107 NIL) (-147 241259 241299 241377 "CHARPOL" 241459 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-146 240317 240904 240932 "CHARNZ" 240979 T CHARNZ (NIL) -9 NIL 241035 NIL) (-145 238223 238971 239324 "CHAR" 239984 T CHAR (NIL) -8 NIL NIL NIL) (-144 237949 238010 238038 "CFCAT" 238149 T CFCAT (NIL) -9 NIL NIL NIL) (-143 237190 237301 237484 "CDEN" 237833 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-142 233155 236343 236623 "CCLASS" 236930 T CCLASS (NIL) -8 NIL NIL NIL) (-141 232406 232563 232740 "CATEGORY" 232998 T -10 (NIL) -8 NIL NIL NIL) (-140 231979 232325 232373 "CATCTOR" 232378 T CATCTOR (NIL) -8 NIL NIL NIL) (-139 231430 231682 231780 "CATAST" 231901 T CATAST (NIL) -8 NIL NIL NIL) (-138 230906 231151 231243 "CASEAST" 231358 T CASEAST (NIL) -8 NIL NIL NIL) (-137 226044 227063 227807 "CARTEN" 230218 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 225152 225300 225521 "CARTEN2" 225891 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 223468 224302 224559 "CARD" 224915 T CARD (NIL) -8 NIL NIL NIL) (-134 223044 223272 223347 "CAPSLAST" 223413 T CAPSLAST (NIL) -8 NIL NIL NIL) (-133 222548 222756 222784 "CACHSET" 222916 T CACHSET (NIL) -9 NIL 222994 NIL) (-132 222018 222340 222368 "CABMON" 222418 T CABMON (NIL) -9 NIL 222474 NIL) (-131 221491 221722 221832 "BYTEORD" 221928 T BYTEORD (NIL) -8 NIL NIL NIL) (-130 220468 221020 221162 "BYTE" 221325 T BYTE (NIL) -8 NIL NIL 221447) (-129 215818 219973 220145 "BYTEBUF" 220316 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 213327 215510 215617 "BTREE" 215744 NIL BTREE (NIL T) -8 NIL NIL NIL) (-127 210776 212975 213097 "BTOURN" 213237 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-126 208146 210246 210287 "BTCAT" 210355 NIL BTCAT (NIL T) -9 NIL 210432 NIL) (-125 207813 207893 208042 "BTCAT-" 208047 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-124 203192 207072 207100 "BTAGG" 207214 T BTAGG (NIL) -9 NIL 207324 NIL) (-123 202682 202807 203013 "BTAGG-" 203018 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-122 199677 201960 202175 "BSTREE" 202499 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-121 198815 198941 199125 "BRILL" 199533 NIL BRILL (NIL T) -7 NIL NIL NIL) (-120 195467 197541 197582 "BRAGG" 198231 NIL BRAGG (NIL T) -9 NIL 198489 NIL) (-119 193996 194402 194957 "BRAGG-" 194962 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-118 187120 193340 193525 "BPADICRT" 193843 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-117 185435 187057 187102 "BPADIC" 187107 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-116 185133 185163 185277 "BOUNDZRO" 185399 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-115 180361 181559 182471 "BOP" 184241 T BOP (NIL) -8 NIL NIL NIL) (-114 178142 178546 179021 "BOP1" 179919 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 177843 177904 177932 "BOOLE" 178043 T BOOLE (NIL) -9 NIL 178125 NIL) (-112 176668 177417 177566 "BOOLEAN" 177714 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 175947 176351 176405 "BMODULE" 176410 NIL BMODULE (NIL T T) -9 NIL 176475 NIL) (-110 171748 175745 175818 "BITS" 175894 T BITS (NIL) -8 NIL NIL NIL) (-109 171169 171288 171428 "BINDING" 171628 T BINDING (NIL) -8 NIL NIL NIL) (-108 165081 170764 170913 "BINARY" 171040 T BINARY (NIL) -8 NIL NIL NIL) (-107 162861 164336 164377 "BGAGG" 164637 NIL BGAGG (NIL T) -9 NIL 164774 NIL) (-106 162692 162724 162815 "BGAGG-" 162820 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 161763 162076 162281 "BFUNCT" 162507 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 160453 160631 160919 "BEZOUT" 161587 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 156922 159305 159635 "BBTREE" 160156 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 156656 156709 156737 "BASTYPE" 156856 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 156508 156537 156610 "BASTYPE-" 156615 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 155942 156018 156170 "BALFACT" 156419 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 154798 155357 155543 "AUTOMOR" 155787 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 154524 154529 154555 "ATTREG" 154560 T ATTREG (NIL) -9 NIL NIL NIL) (-97 152776 153221 153573 "ATTRBUT" 154190 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 152384 152604 152670 "ATTRAST" 152728 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151920 152033 152059 "ATRIG" 152260 T ATRIG (NIL) -9 NIL NIL NIL) (-94 151729 151770 151857 "ATRIG-" 151862 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 151374 151560 151586 "ASTCAT" 151591 T ASTCAT (NIL) -9 NIL 151621 NIL) (-92 151101 151160 151279 "ASTCAT-" 151284 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 149250 150877 150965 "ASTACK" 151044 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 147755 148052 148417 "ASSOCEQ" 148932 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 146787 147414 147538 "ASP9" 147662 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 146550 146735 146774 "ASP8" 146779 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 145418 146155 146297 "ASP80" 146439 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 144316 145053 145185 "ASP7" 145317 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 143270 143993 144111 "ASP78" 144229 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 142239 142950 143067 "ASP77" 143184 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 141151 141877 142008 "ASP74" 142139 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 140051 140786 140918 "ASP73" 141050 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 139155 139877 139977 "ASP6" 139982 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 138102 138832 138950 "ASP55" 139068 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 137051 137776 137895 "ASP50" 138014 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 136139 136752 136862 "ASP4" 136972 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 135227 135840 135950 "ASP49" 136060 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 134011 134766 134934 "ASP42" 135116 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 132788 133544 133714 "ASP41" 133898 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 131738 132465 132583 "ASP35" 132701 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 131503 131686 131725 "ASP34" 131730 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 131240 131307 131383 "ASP33" 131458 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 130134 130875 131007 "ASP31" 131139 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129899 130082 130121 "ASP30" 130126 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 129634 129703 129779 "ASP29" 129854 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 129399 129582 129621 "ASP28" 129626 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 129164 129347 129386 "ASP27" 129391 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 128248 128862 128973 "ASP24" 129084 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 127325 128050 128162 "ASP20" 128167 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 126413 127026 127136 "ASP1" 127246 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 125356 126087 126206 "ASP19" 126325 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 125093 125160 125236 "ASP12" 125311 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 123945 124692 124836 "ASP10" 124980 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121796 123789 123880 "ARRAY2" 123885 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 117561 121444 121558 "ARRAY1" 121713 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 116593 116766 116987 "ARRAY12" 117384 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110905 112823 112898 "ARR2CAT" 115528 NIL ARR2CAT (NIL T T T) -9 NIL 116286 NIL) (-56 108339 109083 110037 "ARR2CAT-" 110042 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107656 107966 108091 "ARITY" 108232 T ARITY (NIL) -8 NIL NIL NIL) (-54 106432 106584 106883 "APPRULE" 107492 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 106083 106131 106250 "APPLYORE" 106378 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 105437 105676 105796 "ANY" 105981 T ANY (NIL) -8 NIL NIL NIL) (-51 104715 104838 104995 "ANY1" 105311 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 102245 103152 103479 "ANTISYM" 104439 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101737 101952 102048 "ANON" 102167 T ANON (NIL) -8 NIL NIL NIL) (-48 95915 100276 100730 "AN" 101301 T AN (NIL) -8 NIL NIL NIL) (-47 91813 93201 93252 "AMR" 94000 NIL AMR (NIL T T) -9 NIL 94600 NIL) (-46 90925 91146 91509 "AMR-" 91514 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 75364 90842 90903 "ALIST" 90908 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 72169 74958 75127 "ALGSC" 75282 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68725 69279 69886 "ALGPKG" 71609 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 68002 68103 68287 "ALGMFACT" 68611 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 64037 64616 65210 "ALGMANIP" 67586 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 55304 63663 63813 "ALGFF" 63970 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54500 54631 54810 "ALGFACT" 55162 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53441 54041 54079 "ALGEBRA" 54084 NIL ALGEBRA (NIL T) -9 NIL 54125 NIL) (-37 53159 53218 53350 "ALGEBRA-" 53355 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 35222 51131 51183 "ALAGG" 51319 NIL ALAGG (NIL T T) -9 NIL 51480 NIL) (-35 34758 34871 34897 "AHYP" 35098 T AHYP (NIL) -9 NIL NIL NIL) (-34 33689 33937 33963 "AGG" 34462 T AGG (NIL) -9 NIL 34741 NIL) (-33 33123 33285 33499 "AGG-" 33504 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30929 31352 31757 "AF" 32765 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30409 30654 30744 "ADDAST" 30857 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29677 29936 30092 "ACPLOT" 30271 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18670 26678 26716 "ACFS" 27323 NIL ACFS (NIL T) -9 NIL 27562 NIL) (-28 16697 17187 17949 "ACFS-" 17954 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12815 14744 14770 "ACF" 15649 T ACF (NIL) -9 NIL 16062 NIL) (-26 11519 11853 12346 "ACF-" 12351 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11091 11286 11312 "ABELSG" 11404 T ABELSG (NIL) -9 NIL 11469 NIL) (-24 10958 10983 11049 "ABELSG-" 11054 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10301 10588 10614 "ABELMON" 10784 T ABELMON (NIL) -9 NIL 10896 NIL) (-22 9965 10049 10187 "ABELMON-" 10192 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9313 9685 9711 "ABELGRP" 9783 T ABELGRP (NIL) -9 NIL 9858 NIL) (-20 8776 8905 9121 "ABELGRP-" 9126 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8085 8124 "A1AGG" 8129 NIL A1AGG (NIL T) -9 NIL 8169 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file +((-1776 (((-1244 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1244 |#1| |#3| |#5|)) 23))) +(((-1239 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1776 ((-1244 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1244 |#1| |#3| |#5|)))) (-1061) (-1061) (-1189) (-1189) |#1| |#2|) (T -1239)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1244 *5 *7 *9)) (-4 *5 (-1061)) (-4 *6 (-1061)) (-14 *7 (-1189)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1244 *6 *8 *10)) (-5 *1 (-1239 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1189))))) +(-10 -7 (-15 -1776 ((-1244 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1244 |#1| |#3| |#5|)))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4354 (((-653 (-1094)) $) 86)) (-1487 (((-1189) $) 117)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 63 (|has| |#1| (-565)))) (-2456 (($ $) 64 (|has| |#1| (-565)))) (-1345 (((-112) $) 66 (|has| |#1| (-565)))) (-1442 (($ $ (-573)) 112) (($ $ (-573) (-573)) 111)) (-1662 (((-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))) $) 118)) (-2363 (($ $) 149 (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) 132 (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) 20)) (-4285 (($ $) 176 (|has| |#1| (-371)))) (-2427 (((-427 $) $) 177 (|has| |#1| (-371)))) (-4228 (($ $) 131 (|has| |#1| (-38 (-416 (-573)))))) (-2800 (((-112) $ $) 167 (|has| |#1| (-371)))) (-2342 (($ $) 148 (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) 133 (|has| |#1| (-38 (-416 (-573)))))) (-3622 (($ (-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|)))) 187)) (-2388 (($ $) 147 (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) 134 (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) 18 T CONST)) (-2784 (($ $ $) 171 (|has| |#1| (-371)))) (-1391 (($ $) 72)) (-2232 (((-3 $ "failed") $) 37)) (-3997 (((-416 (-962 |#1|)) $ (-573)) 185 (|has| |#1| (-565))) (((-416 (-962 |#1|)) $ (-573) (-573)) 184 (|has| |#1| (-565)))) (-2796 (($ $ $) 170 (|has| |#1| (-371)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 165 (|has| |#1| (-371)))) (-2696 (((-112) $) 178 (|has| |#1| (-371)))) (-1488 (((-112) $) 85)) (-2999 (($) 159 (|has| |#1| (-38 (-416 (-573)))))) (-2534 (((-573) $) 114) (((-573) $ (-573)) 113)) (-1959 (((-112) $) 35)) (-4325 (($ $ (-573)) 130 (|has| |#1| (-38 (-416 (-573)))))) (-2976 (($ $ (-931)) 115)) (-2861 (($ (-1 |#1| (-573)) $) 186)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 174 (|has| |#1| (-371)))) (-3676 (((-112) $) 74)) (-4334 (($ |#1| (-573)) 73) (($ $ (-1094) (-573)) 88) (($ $ (-653 (-1094)) (-653 (-573))) 87)) (-1776 (($ (-1 |#1| |#1|) $) 75)) (-3118 (($ $) 156 (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) 77)) (-1369 ((|#1| $) 78)) (-2829 (($ (-653 $)) 163 (|has| |#1| (-371))) (($ $ $) 162 (|has| |#1| (-371)))) (-3180 (((-1171) $) 10)) (-1323 (($ $) 179 (|has| |#1| (-371)))) (-1626 (($ $) 183 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189)) 182 (-2817 (-12 (|has| |#1| (-29 (-573))) (|has| |#1| (-969)) (|has| |#1| (-1215)) (|has| |#1| (-38 (-416 (-573))))) (-12 (|has| |#1| (-15 -4354 ((-653 (-1189)) |#1|))) (|has| |#1| (-15 -1626 (|#1| |#1| (-1189)))) (|has| |#1| (-38 (-416 (-573)))))))) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 164 (|has| |#1| (-371)))) (-2872 (($ (-653 $)) 161 (|has| |#1| (-371))) (($ $ $) 160 (|has| |#1| (-371)))) (-4218 (((-427 $) $) 175 (|has| |#1| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 173 (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 172 (|has| |#1| (-371)))) (-2212 (($ $ (-573)) 109)) (-2837 (((-3 $ "failed") $ $) 62 (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 166 (|has| |#1| (-371)))) (-1608 (($ $) 157 (|has| |#1| (-38 (-416 (-573)))))) (-2645 (((-1169 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-573)))))) (-2163 (((-780) $) 168 (|has| |#1| (-371)))) (-2198 ((|#1| $ (-573)) 119) (($ $ $) 95 (|has| (-573) (-1124)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 169 (|has| |#1| (-371)))) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) 103 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-1189) (-780)) 102 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-653 (-1189))) 101 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-1189)) 100 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-573) |#1|)))) (($ $ (-780)) 97 (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (-2565 (((-573) $) 76)) (-2401 (($ $) 146 (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) 135 (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) 145 (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) 136 (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) 144 (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) 137 (|has| |#1| (-38 (-416 (-573)))))) (-4101 (($ $) 84)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-416 (-573))) 69 (|has| |#1| (-38 (-416 (-573))))) (($ $) 61 (|has| |#1| (-565)))) (-4317 ((|#1| $ (-573)) 71)) (-4279 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1545 (((-780)) 32 T CONST)) (-3358 ((|#1| $) 116)) (-3507 (((-112) $ $) 9)) (-2439 (($ $) 155 (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) 143 (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) 65 (|has| |#1| (-565)))) (-2413 (($ $) 154 (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) 142 (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) 153 (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) 141 (|has| |#1| (-38 (-416 (-573)))))) (-3550 ((|#1| $ (-573)) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-573)))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2520 (($ $) 152 (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) 140 (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) 151 (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) 139 (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) 150 (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) 138 (|has| |#1| (-38 (-416 (-573)))))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) 107 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-1189) (-780)) 106 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-653 (-1189))) 105 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-1189)) 104 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-573) |#1|)))) (($ $ (-780)) 96 (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 70 (|has| |#1| (-371))) (($ $ $) 181 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 180 (|has| |#1| (-371))) (($ $ $) 158 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 129 (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-416 (-573)) $) 68 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 67 (|has| |#1| (-38 (-416 (-573))))))) +(((-1240 |#1|) (-141) (-1061)) (T -1240)) +((-3622 (*1 *1 *2) (-12 (-5 *2 (-1169 (-2 (|:| |k| (-573)) (|:| |c| *3)))) (-4 *3 (-1061)) (-4 *1 (-1240 *3)))) (-2861 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-573))) (-4 *1 (-1240 *3)) (-4 *3 (-1061)))) (-3997 (*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-4 *1 (-1240 *4)) (-4 *4 (-1061)) (-4 *4 (-565)) (-5 *2 (-416 (-962 *4))))) (-3997 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-573)) (-4 *1 (-1240 *4)) (-4 *4 (-1061)) (-4 *4 (-565)) (-5 *2 (-416 (-962 *4))))) (-1626 (*1 *1 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1061)) (-4 *2 (-38 (-416 (-573)))))) (-1626 (*1 *1 *1 *2) (-2817 (-12 (-5 *2 (-1189)) (-4 *1 (-1240 *3)) (-4 *3 (-1061)) (-12 (-4 *3 (-29 (-573))) (-4 *3 (-969)) (-4 *3 (-1215)) (-4 *3 (-38 (-416 (-573)))))) (-12 (-5 *2 (-1189)) (-4 *1 (-1240 *3)) (-4 *3 (-1061)) (-12 (|has| *3 (-15 -4354 ((-653 *2) *3))) (|has| *3 (-15 -1626 (*3 *3 *2))) (-4 *3 (-38 (-416 (-573))))))))) +(-13 (-1258 |t#1| (-573)) (-10 -8 (-15 -3622 ($ (-1169 (-2 (|:| |k| (-573)) (|:| |c| |t#1|))))) (-15 -2861 ($ (-1 |t#1| (-573)) $)) (IF (|has| |t#1| (-565)) (PROGN (-15 -3997 ((-416 (-962 |t#1|)) $ (-573))) (-15 -3997 ((-416 (-962 |t#1|)) $ (-573) (-573)))) |%noBranch|) (IF (|has| |t#1| (-38 (-416 (-573)))) (PROGN (-15 -1626 ($ $)) (IF (|has| |t#1| (-15 -1626 (|t#1| |t#1| (-1189)))) (IF (|has| |t#1| (-15 -4354 ((-653 (-1189)) |t#1|))) (-15 -1626 ($ $ (-1189))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1215)) (IF (|has| |t#1| (-969)) (IF (|has| |t#1| (-29 (-573))) (-15 -1626 ($ $ (-1189))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1014)) (-6 (-1215))) |%noBranch|) (IF (|has| |t#1| (-371)) (-6 (-371)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-573)) . T) ((-25) . T) ((-38 #1=(-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-35) |has| |#1| (-38 (-416 (-573)))) ((-95) |has| |#1| (-38 (-416 (-573)))) ((-102) . T) ((-111 #1# #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-625 (-573)) . T) ((-625 |#1|) |has| |#1| (-174)) ((-625 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-622 (-871)) . T) ((-174) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-573) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-573) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-573) |#1|))) ((-248) |has| |#1| (-371)) ((-291) |has| |#1| (-38 (-416 (-573)))) ((-293 #0# |#1|) . T) ((-293 $ $) |has| (-573) (-1124)) ((-297) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-314) |has| |#1| (-371)) ((-371) |has| |#1| (-371)) ((-461) |has| |#1| (-371)) ((-502) |has| |#1| (-38 (-416 (-573)))) ((-565) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-655 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-649 |#1|) |has| |#1| (-174)) ((-649 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-726 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-726 |#1|) |has| |#1| (-174)) ((-726 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-735) . T) ((-910 (-1189)) -12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))) ((-985 |#1| #0# (-1094)) . T) ((-930) |has| |#1| (-371)) ((-1014) |has| |#1| (-38 (-416 (-573)))) ((-1063 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-1063 |#1|) . T) ((-1063 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-1068 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-1068 |#1|) . T) ((-1068 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1215) |has| |#1| (-38 (-416 (-573)))) ((-1218) |has| |#1| (-38 (-416 (-573)))) ((-1230) . T) ((-1234) |has| |#1| (-371)) ((-1258 |#1| #0#) . T)) +((-1748 (((-112) $) 12)) (-1695 (((-3 |#3| "failed") $) 17) (((-3 (-1189) "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL) (((-3 (-573) "failed") $) NIL)) (-2205 ((|#3| $) 14) (((-1189) $) NIL) (((-416 (-573)) $) NIL) (((-573) $) NIL))) +(((-1241 |#1| |#2| |#3|) (-10 -8 (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -1695 ((-3 (-1189) "failed") |#1|)) (-15 -2205 ((-1189) |#1|)) (-15 -1695 ((-3 |#3| "failed") |#1|)) (-15 -2205 (|#3| |#1|)) (-15 -1748 ((-112) |#1|))) (-1242 |#2| |#3|) (-1061) (-1271 |#2|)) (T -1241)) +NIL +(-10 -8 (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -1695 ((-3 (-1189) "failed") |#1|)) (-15 -2205 ((-1189) |#1|)) (-15 -1695 ((-3 |#3| "failed") |#1|)) (-15 -2205 (|#3| |#1|)) (-15 -1748 ((-112) |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-3770 ((|#2| $) 246 (-2086 (|has| |#2| (-314)) (|has| |#1| (-371))))) (-4354 (((-653 (-1094)) $) 86)) (-1487 (((-1189) $) 117)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 63 (|has| |#1| (-565)))) (-2456 (($ $) 64 (|has| |#1| (-565)))) (-1345 (((-112) $) 66 (|has| |#1| (-565)))) (-1442 (($ $ (-573)) 112) (($ $ (-573) (-573)) 111)) (-1662 (((-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))) $) 118)) (-3106 ((|#2| $) 282)) (-1780 (((-3 |#2| "failed") $) 278)) (-4401 ((|#2| $) 279)) (-2363 (($ $) 149 (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) 132 (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) 20)) (-1600 (((-427 (-1185 $)) (-1185 $)) 255 (-2086 (|has| |#2| (-919)) (|has| |#1| (-371))))) (-4285 (($ $) 176 (|has| |#1| (-371)))) (-2427 (((-427 $) $) 177 (|has| |#1| (-371)))) (-4228 (($ $) 131 (|has| |#1| (-38 (-416 (-573)))))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) 252 (-2086 (|has| |#2| (-919)) (|has| |#1| (-371))))) (-2800 (((-112) $ $) 167 (|has| |#1| (-371)))) (-2342 (($ $) 148 (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) 133 (|has| |#1| (-38 (-416 (-573)))))) (-1983 (((-573) $) 264 (-2086 (|has| |#2| (-829)) (|has| |#1| (-371))))) (-3622 (($ (-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|)))) 187)) (-2388 (($ $) 147 (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) 134 (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) 18 T CONST)) (-1695 (((-3 |#2| "failed") $) 285) (((-3 (-573) "failed") $) 275 (-2086 (|has| |#2| (-1050 (-573))) (|has| |#1| (-371)))) (((-3 (-416 (-573)) "failed") $) 273 (-2086 (|has| |#2| (-1050 (-573))) (|has| |#1| (-371)))) (((-3 (-1189) "failed") $) 257 (-2086 (|has| |#2| (-1050 (-1189))) (|has| |#1| (-371))))) (-2205 ((|#2| $) 286) (((-573) $) 274 (-2086 (|has| |#2| (-1050 (-573))) (|has| |#1| (-371)))) (((-416 (-573)) $) 272 (-2086 (|has| |#2| (-1050 (-573))) (|has| |#1| (-371)))) (((-1189) $) 256 (-2086 (|has| |#2| (-1050 (-1189))) (|has| |#1| (-371))))) (-2230 (($ $) 281) (($ (-573) $) 280)) (-2784 (($ $ $) 171 (|has| |#1| (-371)))) (-1391 (($ $) 72)) (-2759 (((-698 |#2|) (-1280 $)) 236 (|has| |#1| (-371))) (((-698 |#2|) (-698 $)) 235 (|has| |#1| (-371))) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) 234 (|has| |#1| (-371))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 233 (-2086 (|has| |#2| (-648 (-573))) (|has| |#1| (-371)))) (((-698 (-573)) (-698 $)) 232 (-2086 (|has| |#2| (-648 (-573))) (|has| |#1| (-371)))) (((-698 (-573)) (-1280 $)) 231 (-2086 (|has| |#2| (-648 (-573))) (|has| |#1| (-371))))) (-2232 (((-3 $ "failed") $) 37)) (-3997 (((-416 (-962 |#1|)) $ (-573)) 185 (|has| |#1| (-565))) (((-416 (-962 |#1|)) $ (-573) (-573)) 184 (|has| |#1| (-565)))) (-2819 (($) 248 (-2086 (|has| |#2| (-554)) (|has| |#1| (-371))))) (-2796 (($ $ $) 170 (|has| |#1| (-371)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 165 (|has| |#1| (-371)))) (-2696 (((-112) $) 178 (|has| |#1| (-371)))) (-4152 (((-112) $) 262 (-2086 (|has| |#2| (-829)) (|has| |#1| (-371))))) (-1488 (((-112) $) 85)) (-2999 (($) 159 (|has| |#1| (-38 (-416 (-573)))))) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 240 (-2086 (|has| |#2| (-896 (-387))) (|has| |#1| (-371)))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 239 (-2086 (|has| |#2| (-896 (-573))) (|has| |#1| (-371))))) (-2534 (((-573) $) 114) (((-573) $ (-573)) 113)) (-1959 (((-112) $) 35)) (-3041 (($ $) 244 (|has| |#1| (-371)))) (-2965 ((|#2| $) 242 (|has| |#1| (-371)))) (-4325 (($ $ (-573)) 130 (|has| |#1| (-38 (-416 (-573)))))) (-1470 (((-3 $ "failed") $) 276 (-2086 (|has| |#2| (-1164)) (|has| |#1| (-371))))) (-3339 (((-112) $) 263 (-2086 (|has| |#2| (-829)) (|has| |#1| (-371))))) (-2976 (($ $ (-931)) 115)) (-2861 (($ (-1 |#1| (-573)) $) 186)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 174 (|has| |#1| (-371)))) (-3676 (((-112) $) 74)) (-4334 (($ |#1| (-573)) 73) (($ $ (-1094) (-573)) 88) (($ $ (-653 (-1094)) (-653 (-573))) 87)) (-3659 (($ $ $) 266 (-2086 (|has| |#2| (-859)) (|has| |#1| (-371))))) (-3751 (($ $ $) 267 (-2086 (|has| |#2| (-859)) (|has| |#1| (-371))))) (-1776 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 226 (|has| |#1| (-371)))) (-3118 (($ $) 156 (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) 77)) (-1369 ((|#1| $) 78)) (-2829 (($ (-653 $)) 163 (|has| |#1| (-371))) (($ $ $) 162 (|has| |#1| (-371)))) (-4412 (($ (-573) |#2|) 283)) (-3180 (((-1171) $) 10)) (-1323 (($ $) 179 (|has| |#1| (-371)))) (-1626 (($ $) 183 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189)) 182 (-2817 (-12 (|has| |#1| (-29 (-573))) (|has| |#1| (-969)) (|has| |#1| (-1215)) (|has| |#1| (-38 (-416 (-573))))) (-12 (|has| |#1| (-15 -4354 ((-653 (-1189)) |#1|))) (|has| |#1| (-15 -1626 (|#1| |#1| (-1189)))) (|has| |#1| (-38 (-416 (-573)))))))) (-3816 (($) 277 (-2086 (|has| |#2| (-1164)) (|has| |#1| (-371))) CONST)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 164 (|has| |#1| (-371)))) (-2872 (($ (-653 $)) 161 (|has| |#1| (-371))) (($ $ $) 160 (|has| |#1| (-371)))) (-2408 (($ $) 247 (-2086 (|has| |#2| (-314)) (|has| |#1| (-371))))) (-3733 ((|#2| $) 250 (-2086 (|has| |#2| (-554)) (|has| |#1| (-371))))) (-2963 (((-427 (-1185 $)) (-1185 $)) 253 (-2086 (|has| |#2| (-919)) (|has| |#1| (-371))))) (-1655 (((-427 (-1185 $)) (-1185 $)) 254 (-2086 (|has| |#2| (-919)) (|has| |#1| (-371))))) (-4218 (((-427 $) $) 175 (|has| |#1| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 173 (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 172 (|has| |#1| (-371)))) (-2212 (($ $ (-573)) 109)) (-2837 (((-3 $ "failed") $ $) 62 (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 166 (|has| |#1| (-371)))) (-1608 (($ $) 157 (|has| |#1| (-38 (-416 (-573)))))) (-2645 (((-1169 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-573))))) (($ $ (-1189) |#2|) 225 (-2086 (|has| |#2| (-523 (-1189) |#2|)) (|has| |#1| (-371)))) (($ $ (-653 (-1189)) (-653 |#2|)) 224 (-2086 (|has| |#2| (-523 (-1189) |#2|)) (|has| |#1| (-371)))) (($ $ (-653 (-301 |#2|))) 223 (-2086 (|has| |#2| (-316 |#2|)) (|has| |#1| (-371)))) (($ $ (-301 |#2|)) 222 (-2086 (|has| |#2| (-316 |#2|)) (|has| |#1| (-371)))) (($ $ |#2| |#2|) 221 (-2086 (|has| |#2| (-316 |#2|)) (|has| |#1| (-371)))) (($ $ (-653 |#2|) (-653 |#2|)) 220 (-2086 (|has| |#2| (-316 |#2|)) (|has| |#1| (-371))))) (-2163 (((-780) $) 168 (|has| |#1| (-371)))) (-2198 ((|#1| $ (-573)) 119) (($ $ $) 95 (|has| (-573) (-1124))) (($ $ |#2|) 219 (-2086 (|has| |#2| (-293 |#2| |#2|)) (|has| |#1| (-371))))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 169 (|has| |#1| (-371)))) (-3904 (($ $ (-1 |#2| |#2|)) 230 (|has| |#1| (-371))) (($ $ (-1 |#2| |#2|) (-780)) 229 (|has| |#1| (-371))) (($ $) 99 (-2817 (-2086 (|has| |#2| (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-780)) 97 (-2817 (-2086 (|has| |#2| (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-653 (-1189)) (-653 (-780))) 103 (-2817 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|)))))) (($ $ (-1189) (-780)) 102 (-2817 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|)))))) (($ $ (-653 (-1189))) 101 (-2817 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|)))))) (($ $ (-1189)) 100 (-2817 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))))) (-2662 (($ $) 245 (|has| |#1| (-371)))) (-2975 ((|#2| $) 243 (|has| |#1| (-371)))) (-2565 (((-573) $) 76)) (-2401 (($ $) 146 (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) 135 (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) 145 (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) 136 (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) 144 (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) 137 (|has| |#1| (-38 (-416 (-573)))))) (-1835 (((-227) $) 261 (-2086 (|has| |#2| (-1034)) (|has| |#1| (-371)))) (((-387) $) 260 (-2086 (|has| |#2| (-1034)) (|has| |#1| (-371)))) (((-545) $) 259 (-2086 (|has| |#2| (-623 (-545))) (|has| |#1| (-371)))) (((-902 (-387)) $) 238 (-2086 (|has| |#2| (-623 (-902 (-387)))) (|has| |#1| (-371)))) (((-902 (-573)) $) 237 (-2086 (|has| |#2| (-623 (-902 (-573)))) (|has| |#1| (-371))))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) 251 (-2086 (-2086 (|has| $ (-146)) (|has| |#2| (-919))) (|has| |#1| (-371))))) (-4101 (($ $) 84)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 284) (($ (-1189)) 258 (-2086 (|has| |#2| (-1050 (-1189))) (|has| |#1| (-371)))) (($ (-416 (-573))) 69 (|has| |#1| (-38 (-416 (-573))))) (($ $) 61 (|has| |#1| (-565)))) (-4317 ((|#1| $ (-573)) 71)) (-4279 (((-3 $ "failed") $) 60 (-2817 (-2086 (-2817 (|has| |#2| (-146)) (-2086 (|has| $ (-146)) (|has| |#2| (-919)))) (|has| |#1| (-371))) (|has| |#1| (-146))))) (-1545 (((-780)) 32 T CONST)) (-3358 ((|#1| $) 116)) (-2437 ((|#2| $) 249 (-2086 (|has| |#2| (-554)) (|has| |#1| (-371))))) (-3507 (((-112) $ $) 9)) (-2439 (($ $) 155 (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) 143 (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) 65 (|has| |#1| (-565)))) (-2413 (($ $) 154 (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) 142 (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) 153 (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) 141 (|has| |#1| (-38 (-416 (-573)))))) (-3550 ((|#1| $ (-573)) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-573)))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2520 (($ $) 152 (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) 140 (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) 151 (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) 139 (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) 150 (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) 138 (|has| |#1| (-38 (-416 (-573)))))) (-1660 (($ $) 265 (-2086 (|has| |#2| (-829)) (|has| |#1| (-371))))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-1 |#2| |#2|)) 228 (|has| |#1| (-371))) (($ $ (-1 |#2| |#2|) (-780)) 227 (|has| |#1| (-371))) (($ $) 98 (-2817 (-2086 (|has| |#2| (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-780)) 96 (-2817 (-2086 (|has| |#2| (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-653 (-1189)) (-653 (-780))) 107 (-2817 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|)))))) (($ $ (-1189) (-780)) 106 (-2817 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|)))))) (($ $ (-653 (-1189))) 105 (-2817 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|)))))) (($ $ (-1189)) 104 (-2817 (-2086 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))))) (-3040 (((-112) $ $) 269 (-2086 (|has| |#2| (-859)) (|has| |#1| (-371))))) (-3015 (((-112) $ $) 270 (-2086 (|has| |#2| (-859)) (|has| |#1| (-371))))) (-2981 (((-112) $ $) 6)) (-3027 (((-112) $ $) 268 (-2086 (|has| |#2| (-859)) (|has| |#1| (-371))))) (-3005 (((-112) $ $) 271 (-2086 (|has| |#2| (-859)) (|has| |#1| (-371))))) (-3103 (($ $ |#1|) 70 (|has| |#1| (-371))) (($ $ $) 181 (|has| |#1| (-371))) (($ |#2| |#2|) 241 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 180 (|has| |#1| (-371))) (($ $ $) 158 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 129 (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 218 (|has| |#1| (-371))) (($ |#2| $) 217 (|has| |#1| (-371))) (($ (-416 (-573)) $) 68 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 67 (|has| |#1| (-38 (-416 (-573))))))) +(((-1242 |#1| |#2|) (-141) (-1061) (-1271 |t#1|)) (T -1242)) +((-2565 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1271 *3)) (-5 *2 (-573)))) (-4412 (*1 *1 *2 *3) (-12 (-5 *2 (-573)) (-4 *4 (-1061)) (-4 *1 (-1242 *4 *3)) (-4 *3 (-1271 *4)))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-1271 *3)))) (-2230 (*1 *1 *1) (-12 (-4 *1 (-1242 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-1271 *2)))) (-2230 (*1 *1 *2 *1) (-12 (-5 *2 (-573)) (-4 *1 (-1242 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1271 *3)))) (-4401 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-1271 *3)))) (-1780 (*1 *2 *1) (|partial| -12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-1271 *3))))) +(-13 (-1240 |t#1|) (-1050 |t#2|) (-625 |t#2|) (-10 -8 (-15 -4412 ($ (-573) |t#2|)) (-15 -2565 ((-573) $)) (-15 -3106 (|t#2| $)) (-15 -2230 ($ $)) (-15 -2230 ($ (-573) $)) (-15 -4401 (|t#2| $)) (-15 -1780 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-371)) (-6 (-1004 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-573)) . T) ((-25) . T) ((-38 #1=(-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 |#2|) |has| |#1| (-371)) ((-38 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-35) |has| |#1| (-38 (-416 (-573)))) ((-95) |has| |#1| (-38 (-416 (-573)))) ((-102) . T) ((-111 #1# #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-371)) ((-111 $ $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-132) . T) ((-146) -2817 (-12 (|has| |#1| (-371)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-148) -2817 (-12 (|has| |#1| (-371)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-625 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-625 (-573)) . T) ((-625 #2=(-1189)) -12 (|has| |#1| (-371)) (|has| |#2| (-1050 (-1189)))) ((-625 |#1|) |has| |#1| (-174)) ((-625 |#2|) . T) ((-625 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-622 (-871)) . T) ((-174) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-623 (-227)) -12 (|has| |#1| (-371)) (|has| |#2| (-1034))) ((-623 (-387)) -12 (|has| |#1| (-371)) (|has| |#2| (-1034))) ((-623 (-545)) -12 (|has| |#1| (-371)) (|has| |#2| (-623 (-545)))) ((-623 (-902 (-387))) -12 (|has| |#1| (-371)) (|has| |#2| (-623 (-902 (-387))))) ((-623 (-902 (-573))) -12 (|has| |#1| (-371)) (|has| |#2| (-623 (-902 (-573))))) ((-235 $) -2817 (-12 (|has| |#1| (-371)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-573) |#1|)))) ((-233 |#2|) |has| |#1| (-371)) ((-238) -2817 (-12 (|has| |#1| (-371)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-573) |#1|)))) ((-237) -2817 (-12 (|has| |#1| (-371)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-573) |#1|)))) ((-248) |has| |#1| (-371)) ((-291) |has| |#1| (-38 (-416 (-573)))) ((-293 #0# |#1|) . T) ((-293 |#2| $) -12 (|has| |#1| (-371)) (|has| |#2| (-293 |#2| |#2|))) ((-293 $ $) |has| (-573) (-1124)) ((-297) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-314) |has| |#1| (-371)) ((-316 |#2|) -12 (|has| |#1| (-371)) (|has| |#2| (-316 |#2|))) ((-371) |has| |#1| (-371)) ((-346 |#2|) |has| |#1| (-371)) ((-385 |#2|) |has| |#1| (-371)) ((-409 |#2|) |has| |#1| (-371)) ((-461) |has| |#1| (-371)) ((-502) |has| |#1| (-38 (-416 (-573)))) ((-523 (-1189) |#2|) -12 (|has| |#1| (-371)) (|has| |#2| (-523 (-1189) |#2|))) ((-523 |#2| |#2|) -12 (|has| |#1| (-371)) (|has| |#2| (-316 |#2|))) ((-565) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-655 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 |#2|) |has| |#1| (-371)) ((-655 $) . T) ((-657 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-657 #3=(-573)) -12 (|has| |#1| (-371)) (|has| |#2| (-648 (-573)))) ((-657 |#1|) . T) ((-657 |#2|) |has| |#1| (-371)) ((-657 $) . T) ((-649 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-649 |#1|) |has| |#1| (-174)) ((-649 |#2|) |has| |#1| (-371)) ((-649 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-648 #3#) -12 (|has| |#1| (-371)) (|has| |#2| (-648 (-573)))) ((-648 |#2|) |has| |#1| (-371)) ((-726 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-726 |#1|) |has| |#1| (-174)) ((-726 |#2|) |has| |#1| (-371)) ((-726 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-735) . T) ((-800) -12 (|has| |#1| (-371)) (|has| |#2| (-829))) ((-801) -12 (|has| |#1| (-371)) (|has| |#2| (-829))) ((-803) -12 (|has| |#1| (-371)) (|has| |#2| (-829))) ((-804) -12 (|has| |#1| (-371)) (|has| |#2| (-829))) ((-829) -12 (|has| |#1| (-371)) (|has| |#2| (-829))) ((-857) -12 (|has| |#1| (-371)) (|has| |#2| (-829))) ((-859) -2817 (-12 (|has| |#1| (-371)) (|has| |#2| (-859))) (-12 (|has| |#1| (-371)) (|has| |#2| (-829)))) ((-910 (-1189)) -2817 (-12 (|has| |#1| (-371)) (|has| |#2| (-910 (-1189)))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))) ((-896 (-387)) -12 (|has| |#1| (-371)) (|has| |#2| (-896 (-387)))) ((-896 (-573)) -12 (|has| |#1| (-371)) (|has| |#2| (-896 (-573)))) ((-894 |#2|) |has| |#1| (-371)) ((-919) -12 (|has| |#1| (-371)) (|has| |#2| (-919))) ((-985 |#1| #0# (-1094)) . T) ((-930) |has| |#1| (-371)) ((-1004 |#2|) |has| |#1| (-371)) ((-1014) |has| |#1| (-38 (-416 (-573)))) ((-1034) -12 (|has| |#1| (-371)) (|has| |#2| (-1034))) ((-1050 (-416 (-573))) -12 (|has| |#1| (-371)) (|has| |#2| (-1050 (-573)))) ((-1050 (-573)) -12 (|has| |#1| (-371)) (|has| |#2| (-1050 (-573)))) ((-1050 #2#) -12 (|has| |#1| (-371)) (|has| |#2| (-1050 (-1189)))) ((-1050 |#2|) . T) ((-1063 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-1063 |#1|) . T) ((-1063 |#2|) |has| |#1| (-371)) ((-1063 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-1068 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-1068 |#1|) . T) ((-1068 |#2|) |has| |#1| (-371)) ((-1068 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1164) -12 (|has| |#1| (-371)) (|has| |#2| (-1164))) ((-1215) |has| |#1| (-38 (-416 (-573)))) ((-1218) |has| |#1| (-38 (-416 (-573)))) ((-1230) . T) ((-1234) |has| |#1| (-371)) ((-1240 |#1|) . T) ((-1258 |#1| #0#) . T)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 81)) (-3770 ((|#2| $) NIL (-12 (|has| |#2| (-314)) (|has| |#1| (-371))))) (-4354 (((-653 (-1094)) $) NIL)) (-1487 (((-1189) $) 100)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-1442 (($ $ (-573)) 109) (($ $ (-573) (-573)) 111)) (-1662 (((-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))) $) 51)) (-3106 ((|#2| $) 11)) (-1780 (((-3 |#2| "failed") $) 35)) (-4401 ((|#2| $) 36)) (-2363 (($ $) 206 (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) 182 (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (-12 (|has| |#2| (-919)) (|has| |#1| (-371))))) (-4285 (($ $) NIL (|has| |#1| (-371)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4228 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (-12 (|has| |#2| (-919)) (|has| |#1| (-371))))) (-2800 (((-112) $ $) NIL (|has| |#1| (-371)))) (-2342 (($ $) 202 (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) 178 (|has| |#1| (-38 (-416 (-573)))))) (-1983 (((-573) $) NIL (-12 (|has| |#2| (-829)) (|has| |#1| (-371))))) (-3622 (($ (-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|)))) 59)) (-2388 (($ $) 210 (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) 186 (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) 157) (((-3 (-573) "failed") $) NIL (-12 (|has| |#2| (-1050 (-573))) (|has| |#1| (-371)))) (((-3 (-416 (-573)) "failed") $) NIL (-12 (|has| |#2| (-1050 (-573))) (|has| |#1| (-371)))) (((-3 (-1189) "failed") $) NIL (-12 (|has| |#2| (-1050 (-1189))) (|has| |#1| (-371))))) (-2205 ((|#2| $) 156) (((-573) $) NIL (-12 (|has| |#2| (-1050 (-573))) (|has| |#1| (-371)))) (((-416 (-573)) $) NIL (-12 (|has| |#2| (-1050 (-573))) (|has| |#1| (-371)))) (((-1189) $) NIL (-12 (|has| |#2| (-1050 (-1189))) (|has| |#1| (-371))))) (-2230 (($ $) 65) (($ (-573) $) 28)) (-2784 (($ $ $) NIL (|has| |#1| (-371)))) (-1391 (($ $) NIL)) (-2759 (((-698 |#2|) (-1280 $)) NIL (|has| |#1| (-371))) (((-698 |#2|) (-698 $)) NIL (|has| |#1| (-371))) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) NIL (|has| |#1| (-371))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (-12 (|has| |#2| (-648 (-573))) (|has| |#1| (-371)))) (((-698 (-573)) (-698 $)) NIL (-12 (|has| |#2| (-648 (-573))) (|has| |#1| (-371)))) (((-698 (-573)) (-1280 $)) NIL (-12 (|has| |#2| (-648 (-573))) (|has| |#1| (-371))))) (-2232 (((-3 $ "failed") $) 88)) (-3997 (((-416 (-962 |#1|)) $ (-573)) 124 (|has| |#1| (-565))) (((-416 (-962 |#1|)) $ (-573) (-573)) 126 (|has| |#1| (-565)))) (-2819 (($) NIL (-12 (|has| |#2| (-554)) (|has| |#1| (-371))))) (-2796 (($ $ $) NIL (|has| |#1| (-371)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#1| (-371)))) (-2696 (((-112) $) NIL (|has| |#1| (-371)))) (-4152 (((-112) $) NIL (-12 (|has| |#2| (-829)) (|has| |#1| (-371))))) (-1488 (((-112) $) 74)) (-2999 (($) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| |#2| (-896 (-387))) (|has| |#1| (-371)))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| |#2| (-896 (-573))) (|has| |#1| (-371))))) (-2534 (((-573) $) 105) (((-573) $ (-573)) 107)) (-1959 (((-112) $) NIL)) (-3041 (($ $) NIL (|has| |#1| (-371)))) (-2965 ((|#2| $) 165 (|has| |#1| (-371)))) (-4325 (($ $ (-573)) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1470 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1164)) (|has| |#1| (-371))))) (-3339 (((-112) $) NIL (-12 (|has| |#2| (-829)) (|has| |#1| (-371))))) (-2976 (($ $ (-931)) 148)) (-2861 (($ (-1 |#1| (-573)) $) 144)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-573)) 20) (($ $ (-1094) (-573)) NIL) (($ $ (-653 (-1094)) (-653 (-573))) NIL)) (-3659 (($ $ $) NIL (-12 (|has| |#2| (-859)) (|has| |#1| (-371))))) (-3751 (($ $ $) NIL (-12 (|has| |#2| (-859)) (|has| |#1| (-371))))) (-1776 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-371)))) (-3118 (($ $) 176 (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-4412 (($ (-573) |#2|) 10)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 159 (|has| |#1| (-371)))) (-1626 (($ $) 228 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189)) 233 (-2817 (-12 (|has| |#1| (-15 -1626 (|#1| |#1| (-1189)))) (|has| |#1| (-15 -4354 ((-653 (-1189)) |#1|))) (|has| |#1| (-38 (-416 (-573))))) (-12 (|has| |#1| (-29 (-573))) (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-969)) (|has| |#1| (-1215)))))) (-3816 (($) NIL (-12 (|has| |#2| (-1164)) (|has| |#1| (-371))) CONST)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-371)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-2408 (($ $) NIL (-12 (|has| |#2| (-314)) (|has| |#1| (-371))))) (-3733 ((|#2| $) NIL (-12 (|has| |#2| (-554)) (|has| |#1| (-371))))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (-12 (|has| |#2| (-919)) (|has| |#1| (-371))))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (-12 (|has| |#2| (-919)) (|has| |#1| (-371))))) (-4218 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2212 (($ $ (-573)) 138)) (-2837 (((-3 $ "failed") $ $) 128 (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-1608 (($ $) 174 (|has| |#1| (-38 (-416 (-573)))))) (-2645 (((-1169 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-573))))) (($ $ (-1189) |#2|) NIL (-12 (|has| |#2| (-523 (-1189) |#2|)) (|has| |#1| (-371)))) (($ $ (-653 (-1189)) (-653 |#2|)) NIL (-12 (|has| |#2| (-523 (-1189) |#2|)) (|has| |#1| (-371)))) (($ $ (-653 (-301 |#2|))) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#1| (-371)))) (($ $ (-301 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#1| (-371)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#1| (-371)))) (($ $ (-653 |#2|) (-653 |#2|)) NIL (-12 (|has| |#2| (-316 |#2|)) (|has| |#1| (-371))))) (-2163 (((-780) $) NIL (|has| |#1| (-371)))) (-2198 ((|#1| $ (-573)) 103) (($ $ $) 90 (|has| (-573) (-1124))) (($ $ |#2|) NIL (-12 (|has| |#2| (-293 |#2| |#2|)) (|has| |#1| (-371))))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-3904 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-371))) (($ $ (-1 |#2| |#2|) (-780)) NIL (|has| |#1| (-371))) (($ $) 149 (-2817 (-12 (|has| |#2| (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-780)) NIL (-2817 (-12 (|has| |#2| (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-2817 (-12 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-1189) (-780)) NIL (-2817 (-12 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-653 (-1189))) NIL (-2817 (-12 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-1189)) 153 (-2817 (-12 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))))) (-2662 (($ $) NIL (|has| |#1| (-371)))) (-2975 ((|#2| $) 166 (|has| |#1| (-371)))) (-2565 (((-573) $) 12)) (-2401 (($ $) 212 (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) 188 (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) 208 (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) 184 (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) 204 (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) 180 (|has| |#1| (-38 (-416 (-573)))))) (-1835 (((-227) $) NIL (-12 (|has| |#2| (-1034)) (|has| |#1| (-371)))) (((-387) $) NIL (-12 (|has| |#2| (-1034)) (|has| |#1| (-371)))) (((-545) $) NIL (-12 (|has| |#2| (-623 (-545))) (|has| |#1| (-371)))) (((-902 (-387)) $) NIL (-12 (|has| |#2| (-623 (-902 (-387)))) (|has| |#1| (-371)))) (((-902 (-573)) $) NIL (-12 (|has| |#2| (-623 (-902 (-573)))) (|has| |#1| (-371))))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-919)) (|has| |#1| (-371))))) (-4101 (($ $) 136)) (-2942 (((-871) $) 266) (($ (-573)) 24) (($ |#1|) 22 (|has| |#1| (-174))) (($ |#2|) 21) (($ (-1189)) NIL (-12 (|has| |#2| (-1050 (-1189))) (|has| |#1| (-371)))) (($ (-416 (-573))) 169 (|has| |#1| (-38 (-416 (-573))))) (($ $) NIL (|has| |#1| (-565)))) (-4317 ((|#1| $ (-573)) 85)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#2| (-919)) (|has| |#1| (-371))) (-12 (|has| |#2| (-146)) (|has| |#1| (-371))) (|has| |#1| (-146))))) (-1545 (((-780)) 155 T CONST)) (-3358 ((|#1| $) 102)) (-2437 ((|#2| $) NIL (-12 (|has| |#2| (-554)) (|has| |#1| (-371))))) (-3507 (((-112) $ $) NIL)) (-2439 (($ $) 218 (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) 194 (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2413 (($ $) 214 (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) 190 (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) 222 (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) 198 (|has| |#1| (-38 (-416 (-573)))))) (-3550 ((|#1| $ (-573)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-573)))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2520 (($ $) 224 (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) 200 (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) 220 (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) 196 (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) 216 (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) 192 (|has| |#1| (-38 (-416 (-573)))))) (-1660 (($ $) NIL (-12 (|has| |#2| (-829)) (|has| |#1| (-371))))) (-2132 (($) 13 T CONST)) (-2144 (($) 18 T CONST)) (-3609 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-371))) (($ $ (-1 |#2| |#2|) (-780)) NIL (|has| |#1| (-371))) (($ $) NIL (-2817 (-12 (|has| |#2| (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-780)) NIL (-2817 (-12 (|has| |#2| (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-2817 (-12 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-1189) (-780)) NIL (-2817 (-12 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-653 (-1189))) NIL (-2817 (-12 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-1189)) NIL (-2817 (-12 (|has| |#2| (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))))) (-3040 (((-112) $ $) NIL (-12 (|has| |#2| (-859)) (|has| |#1| (-371))))) (-3015 (((-112) $ $) NIL (-12 (|has| |#2| (-859)) (|has| |#1| (-371))))) (-2981 (((-112) $ $) 72)) (-3027 (((-112) $ $) NIL (-12 (|has| |#2| (-859)) (|has| |#1| (-371))))) (-3005 (((-112) $ $) NIL (-12 (|has| |#2| (-859)) (|has| |#1| (-371))))) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371))) (($ $ $) 163 (|has| |#1| (-371))) (($ |#2| |#2|) 164 (|has| |#1| (-371)))) (-3093 (($ $) 227) (($ $ $) 78)) (-3077 (($ $ $) 76)) (** (($ $ (-931)) NIL) (($ $ (-780)) 84) (($ $ (-573)) 160 (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 172 (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-371))) (($ |#2| $) 161 (|has| |#1| (-371))) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))))) +(((-1243 |#1| |#2|) (-1242 |#1| |#2|) (-1061) (-1271 |#1|)) (T -1243)) +NIL +(-1242 |#1| |#2|) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-3770 (((-1272 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-314)) (|has| |#1| (-371))))) (-4354 (((-653 (-1094)) $) NIL)) (-1487 (((-1189) $) 10)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1272 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))) (|has| |#1| (-565))))) (-2456 (($ $) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1272 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))) (|has| |#1| (-565))))) (-1345 (((-112) $) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1272 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))) (|has| |#1| (-565))))) (-1442 (($ $ (-573)) NIL) (($ $ (-573) (-573)) NIL)) (-1662 (((-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|))) $) NIL)) (-3106 (((-1272 |#1| |#2| |#3|) $) NIL)) (-1780 (((-3 (-1272 |#1| |#2| |#3|) "failed") $) NIL)) (-4401 (((-1272 |#1| |#2| |#3|) $) NIL)) (-2363 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) NIL)) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))))) (-4285 (($ $) NIL (|has| |#1| (-371)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4228 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))))) (-2800 (((-112) $ $) NIL (|has| |#1| (-371)))) (-2342 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1983 (((-573) $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))))) (-3622 (($ (-1169 (-2 (|:| |k| (-573)) (|:| |c| |#1|)))) NIL)) (-2388 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-1272 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1189) "failed") $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-1050 (-1189))) (|has| |#1| (-371)))) (((-3 (-416 (-573)) "failed") $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-1050 (-573))) (|has| |#1| (-371)))) (((-3 (-573) "failed") $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-1050 (-573))) (|has| |#1| (-371))))) (-2205 (((-1272 |#1| |#2| |#3|) $) NIL) (((-1189) $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-1050 (-1189))) (|has| |#1| (-371)))) (((-416 (-573)) $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-1050 (-573))) (|has| |#1| (-371)))) (((-573) $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-1050 (-573))) (|has| |#1| (-371))))) (-2230 (($ $) NIL) (($ (-573) $) NIL)) (-2784 (($ $ $) NIL (|has| |#1| (-371)))) (-1391 (($ $) NIL)) (-2759 (((-698 (-1272 |#1| |#2| |#3|)) (-1280 $)) NIL (|has| |#1| (-371))) (((-698 (-1272 |#1| |#2| |#3|)) (-698 $)) NIL (|has| |#1| (-371))) (((-2 (|:| -1423 (-698 (-1272 |#1| |#2| |#3|))) (|:| |vec| (-1280 (-1272 |#1| |#2| |#3|)))) (-698 $) (-1280 $)) NIL (|has| |#1| (-371))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-648 (-573))) (|has| |#1| (-371)))) (((-698 (-573)) (-698 $)) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-648 (-573))) (|has| |#1| (-371)))) (((-698 (-573)) (-1280 $)) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-648 (-573))) (|has| |#1| (-371))))) (-2232 (((-3 $ "failed") $) NIL)) (-3997 (((-416 (-962 |#1|)) $ (-573)) NIL (|has| |#1| (-565))) (((-416 (-962 |#1|)) $ (-573) (-573)) NIL (|has| |#1| (-565)))) (-2819 (($) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-554)) (|has| |#1| (-371))))) (-2796 (($ $ $) NIL (|has| |#1| (-371)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#1| (-371)))) (-2696 (((-112) $) NIL (|has| |#1| (-371)))) (-4152 (((-112) $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))))) (-1488 (((-112) $) NIL)) (-2999 (($) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-896 (-387))) (|has| |#1| (-371)))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-896 (-573))) (|has| |#1| (-371))))) (-2534 (((-573) $) NIL) (((-573) $ (-573)) NIL)) (-1959 (((-112) $) NIL)) (-3041 (($ $) NIL (|has| |#1| (-371)))) (-2965 (((-1272 |#1| |#2| |#3|) $) NIL (|has| |#1| (-371)))) (-4325 (($ $ (-573)) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1470 (((-3 $ "failed") $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-1164)) (|has| |#1| (-371))))) (-3339 (((-112) $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))))) (-2976 (($ $ (-931)) NIL)) (-2861 (($ (-1 |#1| (-573)) $) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-573)) 18) (($ $ (-1094) (-573)) NIL) (($ $ (-653 (-1094)) (-653 (-573))) NIL)) (-3659 (($ $ $) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1272 |#1| |#2| |#3|) (-859)) (|has| |#1| (-371)))))) (-3751 (($ $ $) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1272 |#1| |#2| |#3|) (-859)) (|has| |#1| (-371)))))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1272 |#1| |#2| |#3|) (-1272 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-371)))) (-3118 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-4412 (($ (-573) (-1272 |#1| |#2| |#3|)) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL (|has| |#1| (-371)))) (-1626 (($ $) 27 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189)) NIL (-2817 (-12 (|has| |#1| (-15 -1626 (|#1| |#1| (-1189)))) (|has| |#1| (-15 -4354 ((-653 (-1189)) |#1|))) (|has| |#1| (-38 (-416 (-573))))) (-12 (|has| |#1| (-29 (-573))) (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-969)) (|has| |#1| (-1215))))) (($ $ (-1276 |#2|)) 28 (|has| |#1| (-38 (-416 (-573)))))) (-3816 (($) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-1164)) (|has| |#1| (-371))) CONST)) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-371)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-2408 (($ $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-314)) (|has| |#1| (-371))))) (-3733 (((-1272 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-554)) (|has| |#1| (-371))))) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))))) (-4218 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2212 (($ $ (-573)) NIL)) (-2837 (((-3 $ "failed") $ $) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1272 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))) (|has| |#1| (-565))))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-1608 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2645 (((-1169 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-573))))) (($ $ (-1189) (-1272 |#1| |#2| |#3|)) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-523 (-1189) (-1272 |#1| |#2| |#3|))) (|has| |#1| (-371)))) (($ $ (-653 (-1189)) (-653 (-1272 |#1| |#2| |#3|))) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-523 (-1189) (-1272 |#1| |#2| |#3|))) (|has| |#1| (-371)))) (($ $ (-653 (-301 (-1272 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-316 (-1272 |#1| |#2| |#3|))) (|has| |#1| (-371)))) (($ $ (-301 (-1272 |#1| |#2| |#3|))) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-316 (-1272 |#1| |#2| |#3|))) (|has| |#1| (-371)))) (($ $ (-1272 |#1| |#2| |#3|) (-1272 |#1| |#2| |#3|)) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-316 (-1272 |#1| |#2| |#3|))) (|has| |#1| (-371)))) (($ $ (-653 (-1272 |#1| |#2| |#3|)) (-653 (-1272 |#1| |#2| |#3|))) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-316 (-1272 |#1| |#2| |#3|))) (|has| |#1| (-371))))) (-2163 (((-780) $) NIL (|has| |#1| (-371)))) (-2198 ((|#1| $ (-573)) NIL) (($ $ $) NIL (|has| (-573) (-1124))) (($ $ (-1272 |#1| |#2| |#3|)) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-293 (-1272 |#1| |#2| |#3|) (-1272 |#1| |#2| |#3|))) (|has| |#1| (-371))))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-3904 (($ $ (-1 (-1272 |#1| |#2| |#3|) (-1272 |#1| |#2| |#3|))) NIL (|has| |#1| (-371))) (($ $ (-1 (-1272 |#1| |#2| |#3|) (-1272 |#1| |#2| |#3|)) (-780)) NIL (|has| |#1| (-371))) (($ $ (-1276 |#2|)) 26) (($ $) 25 (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-780)) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-1189) (-780)) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-653 (-1189))) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-1189)) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))))) (-2662 (($ $) NIL (|has| |#1| (-371)))) (-2975 (((-1272 |#1| |#2| |#3|) $) NIL (|has| |#1| (-371)))) (-2565 (((-573) $) NIL)) (-2401 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1835 (((-545) $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-623 (-545))) (|has| |#1| (-371)))) (((-387) $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-1034)) (|has| |#1| (-371)))) (((-227) $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-1034)) (|has| |#1| (-371)))) (((-902 (-387)) $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-623 (-902 (-387)))) (|has| |#1| (-371)))) (((-902 (-573)) $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-623 (-902 (-573)))) (|has| |#1| (-371))))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| (-1272 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))))) (-4101 (($ $) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1272 |#1| |#2| |#3|)) NIL) (($ (-1276 |#2|)) 24) (($ (-1189)) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-1050 (-1189))) (|has| |#1| (-371)))) (($ $) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1272 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))) (|has| |#1| (-565)))) (($ (-416 (-573))) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-1050 (-573))) (|has| |#1| (-371))) (|has| |#1| (-38 (-416 (-573))))))) (-4317 ((|#1| $ (-573)) NIL)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| (-1272 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))) (-12 (|has| (-1272 |#1| |#2| |#3|) (-146)) (|has| |#1| (-371))) (|has| |#1| (-146))))) (-1545 (((-780)) NIL T CONST)) (-3358 ((|#1| $) 11)) (-2437 (((-1272 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-554)) (|has| |#1| (-371))))) (-3507 (((-112) $ $) NIL)) (-2439 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1272 |#1| |#2| |#3|) (-919)) (|has| |#1| (-371))) (|has| |#1| (-565))))) (-2413 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3550 ((|#1| $ (-573)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-573)))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2520 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1660 (($ $) NIL (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))))) (-2132 (($) 20 T CONST)) (-2144 (($) 15 T CONST)) (-3609 (($ $ (-1 (-1272 |#1| |#2| |#3|) (-1272 |#1| |#2| |#3|))) NIL (|has| |#1| (-371))) (($ $ (-1 (-1272 |#1| |#2| |#3|) (-1272 |#1| |#2| |#3|)) (-780)) NIL (|has| |#1| (-371))) (($ $) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-780)) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-238)) (|has| |#1| (-371))) (|has| |#1| (-15 * (|#1| (-573) |#1|))))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-1189) (-780)) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-653 (-1189))) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189)))))) (($ $ (-1189)) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-910 (-1189))) (|has| |#1| (-371))) (-12 (|has| |#1| (-15 * (|#1| (-573) |#1|))) (|has| |#1| (-910 (-1189))))))) (-3040 (((-112) $ $) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1272 |#1| |#2| |#3|) (-859)) (|has| |#1| (-371)))))) (-3015 (((-112) $ $) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1272 |#1| |#2| |#3|) (-859)) (|has| |#1| (-371)))))) (-2981 (((-112) $ $) NIL)) (-3027 (((-112) $ $) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1272 |#1| |#2| |#3|) (-859)) (|has| |#1| (-371)))))) (-3005 (((-112) $ $) NIL (-2817 (-12 (|has| (-1272 |#1| |#2| |#3|) (-829)) (|has| |#1| (-371))) (-12 (|has| (-1272 |#1| |#2| |#3|) (-859)) (|has| |#1| (-371)))))) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371))) (($ (-1272 |#1| |#2| |#3|) (-1272 |#1| |#2| |#3|)) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) 22)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1272 |#1| |#2| |#3|)) NIL (|has| |#1| (-371))) (($ (-1272 |#1| |#2| |#3|) $) NIL (|has| |#1| (-371))) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))))) +(((-1244 |#1| |#2| |#3|) (-13 (-1242 |#1| (-1272 |#1| |#2| |#3|)) (-10 -8 (-15 -2942 ($ (-1276 |#2|))) (-15 -3904 ($ $ (-1276 |#2|))) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1276 |#2|))) |%noBranch|))) (-1061) (-1189) |#1|) (T -1244)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1244 *3 *4 *5)) (-4 *3 (-1061)) (-14 *5 *3))) (-3904 (*1 *1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1244 *3 *4 *5)) (-4 *3 (-1061)) (-14 *5 *3))) (-1626 (*1 *1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1244 *3 *4 *5)) (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-14 *5 *3)))) +(-13 (-1242 |#1| (-1272 |#1| |#2| |#3|)) (-10 -8 (-15 -2942 ($ (-1276 |#2|))) (-15 -3904 ($ $ (-1276 |#2|))) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1276 |#2|))) |%noBranch|))) +((-2096 (((-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| |#1|) (|:| -3287 (-573)))))) |#1| (-112)) 13)) (-2513 (((-427 |#1|) |#1|) 26)) (-4218 (((-427 |#1|) |#1|) 24))) +(((-1245 |#1|) (-10 -7 (-15 -4218 ((-427 |#1|) |#1|)) (-15 -2513 ((-427 |#1|) |#1|)) (-15 -2096 ((-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| |#1|) (|:| -3287 (-573)))))) |#1| (-112)))) (-1256 (-573))) (T -1245)) +((-2096 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| *3) (|:| -3287 (-573))))))) (-5 *1 (-1245 *3)) (-4 *3 (-1256 (-573))))) (-2513 (*1 *2 *3) (-12 (-5 *2 (-427 *3)) (-5 *1 (-1245 *3)) (-4 *3 (-1256 (-573))))) (-4218 (*1 *2 *3) (-12 (-5 *2 (-427 *3)) (-5 *1 (-1245 *3)) (-4 *3 (-1256 (-573)))))) +(-10 -7 (-15 -4218 ((-427 |#1|) |#1|)) (-15 -2513 ((-427 |#1|) |#1|)) (-15 -2096 ((-2 (|:| |contp| (-573)) (|:| -1687 (-653 (-2 (|:| |irr| |#1|) (|:| -3287 (-573)))))) |#1| (-112)))) +((-1776 (((-1169 |#2|) (-1 |#2| |#1|) (-1247 |#1|)) 23 (|has| |#1| (-857))) (((-1247 |#2|) (-1 |#2| |#1|) (-1247 |#1|)) 17))) +(((-1246 |#1| |#2|) (-10 -7 (-15 -1776 ((-1247 |#2|) (-1 |#2| |#1|) (-1247 |#1|))) (IF (|has| |#1| (-857)) (-15 -1776 ((-1169 |#2|) (-1 |#2| |#1|) (-1247 |#1|))) |%noBranch|)) (-1230) (-1230)) (T -1246)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1247 *5)) (-4 *5 (-857)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-1169 *6)) (-5 *1 (-1246 *5 *6)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1247 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-1247 *6)) (-5 *1 (-1246 *5 *6))))) +(-10 -7 (-15 -1776 ((-1247 |#2|) (-1 |#2| |#1|) (-1247 |#1|))) (IF (|has| |#1| (-857)) (-15 -1776 ((-1169 |#2|) (-1 |#2| |#1|) (-1247 |#1|))) |%noBranch|)) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3241 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-1776 (((-1169 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-857)))) (-4141 ((|#1| $) 15)) (-2815 ((|#1| $) 12)) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-1952 (((-573) $) 19)) (-4055 ((|#1| $) 18)) (-1965 ((|#1| $) 13)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2356 (((-112) $) 17)) (-2127 (((-1169 |#1|) $) 41 (|has| |#1| (-857))) (((-1169 |#1|) (-653 $)) 40 (|has| |#1| (-857)))) (-1835 (($ |#1|) 26)) (-2942 (($ (-1106 |#1|)) 25) (((-871) $) 37 (|has| |#1| (-1112)))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-4277 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2732 (($ $ (-573)) 14)) (-2981 (((-112) $ $) 30 (|has| |#1| (-1112))))) +(((-1247 |#1|) (-13 (-1105 |#1|) (-10 -8 (-15 -4277 ($ |#1|)) (-15 -3241 ($ |#1|)) (-15 -2942 ($ (-1106 |#1|))) (-15 -2356 ((-112) $)) (IF (|has| |#1| (-1112)) (-6 (-1112)) |%noBranch|) (IF (|has| |#1| (-857)) (-6 (-1107 |#1| (-1169 |#1|))) |%noBranch|))) (-1230)) (T -1247)) +((-4277 (*1 *1 *2) (-12 (-5 *1 (-1247 *2)) (-4 *2 (-1230)))) (-3241 (*1 *1 *2) (-12 (-5 *1 (-1247 *2)) (-4 *2 (-1230)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-1106 *3)) (-4 *3 (-1230)) (-5 *1 (-1247 *3)))) (-2356 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1247 *3)) (-4 *3 (-1230))))) +(-13 (-1105 |#1|) (-10 -8 (-15 -4277 ($ |#1|)) (-15 -3241 ($ |#1|)) (-15 -2942 ($ (-1106 |#1|))) (-15 -2356 ((-112) $)) (IF (|has| |#1| (-1112)) (-6 (-1112)) |%noBranch|) (IF (|has| |#1| (-857)) (-6 (-1107 |#1| (-1169 |#1|))) |%noBranch|))) +((-1776 (((-1253 |#3| |#4|) (-1 |#4| |#2|) (-1253 |#1| |#2|)) 15))) +(((-1248 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1776 ((-1253 |#3| |#4|) (-1 |#4| |#2|) (-1253 |#1| |#2|)))) (-1189) (-1061) (-1189) (-1061)) (T -1248)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1253 *5 *6)) (-14 *5 (-1189)) (-4 *6 (-1061)) (-4 *8 (-1061)) (-5 *2 (-1253 *7 *8)) (-5 *1 (-1248 *5 *6 *7 *8)) (-14 *7 (-1189))))) +(-10 -7 (-15 -1776 ((-1253 |#3| |#4|) (-1 |#4| |#2|) (-1253 |#1| |#2|)))) +((-2382 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3343 ((|#1| |#3|) 13)) (-1946 ((|#3| |#3|) 19))) +(((-1249 |#1| |#2| |#3|) (-10 -7 (-15 -3343 (|#1| |#3|)) (-15 -1946 (|#3| |#3|)) (-15 -2382 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-565) (-1004 |#1|) (-1256 |#2|)) (T -1249)) +((-2382 (*1 *2 *3) (-12 (-4 *4 (-565)) (-4 *5 (-1004 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1249 *4 *5 *3)) (-4 *3 (-1256 *5)))) (-1946 (*1 *2 *2) (-12 (-4 *3 (-565)) (-4 *4 (-1004 *3)) (-5 *1 (-1249 *3 *4 *2)) (-4 *2 (-1256 *4)))) (-3343 (*1 *2 *3) (-12 (-4 *4 (-1004 *2)) (-4 *2 (-565)) (-5 *1 (-1249 *2 *4 *3)) (-4 *3 (-1256 *4))))) +(-10 -7 (-15 -3343 (|#1| |#3|)) (-15 -1946 (|#3| |#3|)) (-15 -2382 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-3407 (((-3 |#2| "failed") |#2| (-780) |#1|) 35)) (-2403 (((-3 |#2| "failed") |#2| (-780)) 36)) (-4351 (((-3 (-2 (|:| -3890 |#2|) (|:| -3903 |#2|)) "failed") |#2|) 50)) (-3680 (((-653 |#2|) |#2|) 52)) (-2459 (((-3 |#2| "failed") |#2| |#2|) 46))) +(((-1250 |#1| |#2|) (-10 -7 (-15 -2403 ((-3 |#2| "failed") |#2| (-780))) (-15 -3407 ((-3 |#2| "failed") |#2| (-780) |#1|)) (-15 -2459 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4351 ((-3 (-2 (|:| -3890 |#2|) (|:| -3903 |#2|)) "failed") |#2|)) (-15 -3680 ((-653 |#2|) |#2|))) (-13 (-565) (-148)) (-1256 |#1|)) (T -1250)) +((-3680 (*1 *2 *3) (-12 (-4 *4 (-13 (-565) (-148))) (-5 *2 (-653 *3)) (-5 *1 (-1250 *4 *3)) (-4 *3 (-1256 *4)))) (-4351 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-565) (-148))) (-5 *2 (-2 (|:| -3890 *3) (|:| -3903 *3))) (-5 *1 (-1250 *4 *3)) (-4 *3 (-1256 *4)))) (-2459 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-565) (-148))) (-5 *1 (-1250 *3 *2)) (-4 *2 (-1256 *3)))) (-3407 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-780)) (-4 *4 (-13 (-565) (-148))) (-5 *1 (-1250 *4 *2)) (-4 *2 (-1256 *4)))) (-2403 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-780)) (-4 *4 (-13 (-565) (-148))) (-5 *1 (-1250 *4 *2)) (-4 *2 (-1256 *4))))) +(-10 -7 (-15 -2403 ((-3 |#2| "failed") |#2| (-780))) (-15 -3407 ((-3 |#2| "failed") |#2| (-780) |#1|)) (-15 -2459 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4351 ((-3 (-2 (|:| -3890 |#2|) (|:| -3903 |#2|)) "failed") |#2|)) (-15 -3680 ((-653 |#2|) |#2|))) +((-3409 (((-3 (-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) "failed") |#2| |#2|) 30))) +(((-1251 |#1| |#2|) (-10 -7 (-15 -3409 ((-3 (-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) "failed") |#2| |#2|))) (-565) (-1256 |#1|)) (T -1251)) +((-3409 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-565)) (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-1251 *4 *3)) (-4 *3 (-1256 *4))))) +(-10 -7 (-15 -3409 ((-3 (-2 (|:| -3152 |#2|) (|:| -3132 |#2|)) "failed") |#2| |#2|))) +((-3141 ((|#2| |#2| |#2|) 22)) (-3742 ((|#2| |#2| |#2|) 36)) (-3236 ((|#2| |#2| |#2| (-780) (-780)) 44))) +(((-1252 |#1| |#2|) (-10 -7 (-15 -3141 (|#2| |#2| |#2|)) (-15 -3742 (|#2| |#2| |#2|)) (-15 -3236 (|#2| |#2| |#2| (-780) (-780)))) (-1061) (-1256 |#1|)) (T -1252)) +((-3236 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-780)) (-4 *4 (-1061)) (-5 *1 (-1252 *4 *2)) (-4 *2 (-1256 *4)))) (-3742 (*1 *2 *2 *2) (-12 (-4 *3 (-1061)) (-5 *1 (-1252 *3 *2)) (-4 *2 (-1256 *3)))) (-3141 (*1 *2 *2 *2) (-12 (-4 *3 (-1061)) (-5 *1 (-1252 *3 *2)) (-4 *2 (-1256 *3))))) +(-10 -7 (-15 -3141 (|#2| |#2| |#2|)) (-15 -3742 (|#2| |#2| |#2|)) (-15 -3236 (|#2| |#2| |#2| (-780) (-780)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-1867 (((-1280 |#2|) $ (-780)) NIL)) (-4354 (((-653 (-1094)) $) NIL)) (-1343 (($ (-1185 |#2|)) NIL)) (-4193 (((-1185 $) $ (-1094)) NIL) (((-1185 |#2|) $) NIL)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#2| (-565)))) (-2456 (($ $) NIL (|has| |#2| (-565)))) (-1345 (((-112) $) NIL (|has| |#2| (-565)))) (-2769 (((-780) $) NIL) (((-780) $ (-653 (-1094))) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-4183 (($ $ $) NIL (|has| |#2| (-565)))) (-1600 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-4285 (($ $) NIL (|has| |#2| (-461)))) (-2427 (((-427 $) $) NIL (|has| |#2| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-2800 (((-112) $ $) NIL (|has| |#2| (-371)))) (-3168 (($ $ (-780)) NIL)) (-2331 (($ $ (-780)) NIL)) (-4016 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-461)))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) NIL) (((-3 (-416 (-573)) "failed") $) NIL (|has| |#2| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) NIL (|has| |#2| (-1050 (-573)))) (((-3 (-1094) "failed") $) NIL)) (-2205 ((|#2| $) NIL) (((-416 (-573)) $) NIL (|has| |#2| (-1050 (-416 (-573))))) (((-573) $) NIL (|has| |#2| (-1050 (-573)))) (((-1094) $) NIL)) (-2277 (($ $ $ (-1094)) NIL (|has| |#2| (-174))) ((|#2| $ $) NIL (|has| |#2| (-174)))) (-2784 (($ $ $) NIL (|has| |#2| (-371)))) (-1391 (($ $) NIL)) (-2759 (((-698 (-573)) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-698 (-573)) (-698 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) NIL (|has| |#2| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#2|)) (|:| |vec| (-1280 |#2|))) (-698 $) (-1280 $)) NIL) (((-698 |#2|) (-698 $)) NIL) (((-698 |#2|) (-1280 $)) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2796 (($ $ $) NIL (|has| |#2| (-371)))) (-4272 (($ $ $) NIL)) (-2154 (($ $ $) NIL (|has| |#2| (-565)))) (-1368 (((-2 (|:| -1857 |#2|) (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#2| (-565)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#2| (-371)))) (-3246 (($ $) NIL (|has| |#2| (-461))) (($ $ (-1094)) NIL (|has| |#2| (-461)))) (-1379 (((-653 $) $) NIL)) (-2696 (((-112) $) NIL (|has| |#2| (-919)))) (-2343 (($ $ |#2| (-780) $) NIL)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) NIL (-12 (|has| (-1094) (-896 (-387))) (|has| |#2| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) NIL (-12 (|has| (-1094) (-896 (-573))) (|has| |#2| (-896 (-573)))))) (-2534 (((-780) $ $) NIL (|has| |#2| (-565)))) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) NIL)) (-1470 (((-3 $ "failed") $) NIL (|has| |#2| (-1164)))) (-4344 (($ (-1185 |#2|) (-1094)) NIL) (($ (-1185 $) (-1094)) NIL)) (-2976 (($ $ (-780)) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#2| (-371)))) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-4334 (($ |#2| (-780)) 18) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ (-1094)) NIL) (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL)) (-4036 (((-780) $) NIL) (((-780) $ (-1094)) NIL) (((-653 (-780)) $ (-653 (-1094))) NIL)) (-1382 (($ (-1 (-780) (-780)) $) NIL)) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-4112 (((-1185 |#2|) $) NIL)) (-1453 (((-3 (-1094) "failed") $) NIL)) (-1358 (($ $) NIL)) (-1369 ((|#2| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#2| (-461))) (($ $ $) NIL (|has| |#2| (-461)))) (-3180 (((-1171) $) NIL)) (-4263 (((-2 (|:| -3152 $) (|:| -3132 $)) $ (-780)) NIL)) (-4082 (((-3 (-653 $) "failed") $) NIL)) (-2586 (((-3 (-653 $) "failed") $) NIL)) (-2573 (((-3 (-2 (|:| |var| (-1094)) (|:| -3907 (-780))) "failed") $) NIL)) (-1626 (($ $) NIL (|has| |#2| (-38 (-416 (-573)))))) (-3816 (($) NIL (|has| |#2| (-1164)) CONST)) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) NIL)) (-1348 ((|#2| $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#2| (-461)))) (-2872 (($ (-653 $)) NIL (|has| |#2| (-461))) (($ $ $) NIL (|has| |#2| (-461)))) (-2826 (($ $ (-780) |#2| $) NIL)) (-2963 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) NIL (|has| |#2| (-919)))) (-4218 (((-427 $) $) NIL (|has| |#2| (-919)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#2| (-371)))) (-2837 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-565))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#2| (-371)))) (-2645 (($ $ (-653 (-301 $))) NIL) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-1094) |#2|) NIL) (($ $ (-653 (-1094)) (-653 |#2|)) NIL) (($ $ (-1094) $) NIL) (($ $ (-653 (-1094)) (-653 $)) NIL)) (-2163 (((-780) $) NIL (|has| |#2| (-371)))) (-2198 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-416 $) (-416 $) (-416 $)) NIL (|has| |#2| (-565))) ((|#2| (-416 $) |#2|) NIL (|has| |#2| (-371))) (((-416 $) $ (-416 $)) NIL (|has| |#2| (-565)))) (-1929 (((-3 $ "failed") $ (-780)) NIL)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#2| (-371)))) (-3592 (($ $ (-1094)) NIL (|has| |#2| (-174))) ((|#2| $) NIL (|has| |#2| (-174)))) (-3904 (($ $ (-1094)) NIL) (($ $ (-653 (-1094))) NIL) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL) (($ $) NIL) (($ $ (-780)) NIL) (($ $ (-1189)) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-2565 (((-780) $) NIL) (((-780) $ (-1094)) NIL) (((-653 (-780)) $ (-653 (-1094))) NIL)) (-1835 (((-902 (-387)) $) NIL (-12 (|has| (-1094) (-623 (-902 (-387)))) (|has| |#2| (-623 (-902 (-387)))))) (((-902 (-573)) $) NIL (-12 (|has| (-1094) (-623 (-902 (-573)))) (|has| |#2| (-623 (-902 (-573)))))) (((-545) $) NIL (-12 (|has| (-1094) (-623 (-545))) (|has| |#2| (-623 (-545)))))) (-3257 ((|#2| $) NIL (|has| |#2| (-461))) (($ $ (-1094)) NIL (|has| |#2| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-919))))) (-2871 (((-3 $ "failed") $ $) NIL (|has| |#2| (-565))) (((-3 (-416 $) "failed") (-416 $) $) NIL (|has| |#2| (-565)))) (-2942 (((-871) $) 13) (($ (-573)) NIL) (($ |#2|) NIL) (($ (-1094)) NIL) (($ (-1276 |#1|)) 20) (($ (-416 (-573))) NIL (-2817 (|has| |#2| (-38 (-416 (-573)))) (|has| |#2| (-1050 (-416 (-573)))))) (($ $) NIL (|has| |#2| (-565)))) (-1920 (((-653 |#2|) $) NIL)) (-4317 ((|#2| $ (-780)) NIL) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL)) (-4279 (((-3 $ "failed") $) NIL (-2817 (-12 (|has| $ (-146)) (|has| |#2| (-919))) (|has| |#2| (-146))))) (-1545 (((-780)) NIL T CONST)) (-1538 (($ $ $ (-780)) NIL (|has| |#2| (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL (|has| |#2| (-565)))) (-2132 (($) NIL T CONST)) (-2144 (($) 14 T CONST)) (-3609 (($ $ (-1094)) NIL) (($ $ (-653 (-1094))) NIL) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL) (($ $) NIL) (($ $ (-780)) NIL) (($ $ (-1189)) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1189) (-780)) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) NIL (|has| |#2| (-910 (-1189)))) (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#2|) NIL (|has| |#2| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-416 (-573))) NIL (|has| |#2| (-38 (-416 (-573))))) (($ (-416 (-573)) $) NIL (|has| |#2| (-38 (-416 (-573))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1253 |#1| |#2|) (-13 (-1256 |#2|) (-625 (-1276 |#1|)) (-10 -8 (-15 -2826 ($ $ (-780) |#2| $)))) (-1189) (-1061)) (T -1253)) +((-2826 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-780)) (-5 *1 (-1253 *4 *3)) (-14 *4 (-1189)) (-4 *3 (-1061))))) +(-13 (-1256 |#2|) (-625 (-1276 |#1|)) (-10 -8 (-15 -2826 ($ $ (-780) |#2| $)))) +((-1776 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1254 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1776 (|#4| (-1 |#3| |#1|) |#2|))) (-1061) (-1256 |#1|) (-1061) (-1256 |#3|)) (T -1254)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1061)) (-4 *6 (-1061)) (-4 *2 (-1256 *6)) (-5 *1 (-1254 *5 *4 *6 *2)) (-4 *4 (-1256 *5))))) +(-10 -7 (-15 -1776 (|#4| (-1 |#3| |#1|) |#2|))) +((-1867 (((-1280 |#2|) $ (-780)) 129)) (-4354 (((-653 (-1094)) $) 16)) (-1343 (($ (-1185 |#2|)) 80)) (-2769 (((-780) $) NIL) (((-780) $ (-653 (-1094))) 21)) (-1600 (((-427 (-1185 $)) (-1185 $)) 204)) (-4285 (($ $) 194)) (-2427 (((-427 $) $) 192)) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) 95)) (-3168 (($ $ (-780)) 84)) (-2331 (($ $ (-780)) 86)) (-4016 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-1695 (((-3 |#2| "failed") $) 132) (((-3 (-416 (-573)) "failed") $) NIL) (((-3 (-573) "failed") $) NIL) (((-3 (-1094) "failed") $) NIL)) (-2205 ((|#2| $) 130) (((-416 (-573)) $) NIL) (((-573) $) NIL) (((-1094) $) NIL)) (-2154 (($ $ $) 170)) (-1368 (((-2 (|:| -1857 |#2|) (|:| -3152 $) (|:| -3132 $)) $ $) 172)) (-2534 (((-780) $ $) 189)) (-1470 (((-3 $ "failed") $) 138)) (-4334 (($ |#2| (-780)) NIL) (($ $ (-1094) (-780)) 59) (($ $ (-653 (-1094)) (-653 (-780))) NIL)) (-4036 (((-780) $) NIL) (((-780) $ (-1094)) 54) (((-653 (-780)) $ (-653 (-1094))) 55)) (-4112 (((-1185 |#2|) $) 72)) (-1453 (((-3 (-1094) "failed") $) 52)) (-4263 (((-2 (|:| -3152 $) (|:| -3132 $)) $ (-780)) 83)) (-1626 (($ $) 219)) (-3816 (($) 134)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 201)) (-2963 (((-427 (-1185 $)) (-1185 $)) 101)) (-1655 (((-427 (-1185 $)) (-1185 $)) 99)) (-4218 (((-427 $) $) 120)) (-2645 (($ $ (-653 (-301 $))) 51) (($ $ (-301 $)) NIL) (($ $ $ $) NIL) (($ $ (-653 $) (-653 $)) NIL) (($ $ (-1094) |#2|) 39) (($ $ (-653 (-1094)) (-653 |#2|)) 36) (($ $ (-1094) $) 32) (($ $ (-653 (-1094)) (-653 $)) 30)) (-2163 (((-780) $) 207)) (-2198 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-416 $) (-416 $) (-416 $)) 164) ((|#2| (-416 $) |#2|) 206) (((-416 $) $ (-416 $)) 188)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 212)) (-3904 (($ $ (-1094)) 157) (($ $ (-653 (-1094))) NIL) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL) (($ $) 155) (($ $ (-780)) NIL) (($ $ (-1189)) NIL) (($ $ (-653 (-1189))) NIL) (($ $ (-1189) (-780)) NIL) (($ $ (-653 (-1189)) (-653 (-780))) NIL) (($ $ (-1 |#2| |#2|) (-780)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-2565 (((-780) $) NIL) (((-780) $ (-1094)) 17) (((-653 (-780)) $ (-653 (-1094))) 23)) (-3257 ((|#2| $) NIL) (($ $ (-1094)) 140)) (-2871 (((-3 $ "failed") $ $) 180) (((-3 (-416 $) "failed") (-416 $) $) 176)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#2|) NIL) (($ (-1094)) 64) (($ (-416 (-573))) NIL) (($ $) NIL))) +(((-1255 |#1| |#2|) (-10 -8 (-15 -2942 (|#1| |#1|)) (-15 -2888 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2427 ((-427 |#1|) |#1|)) (-15 -4285 (|#1| |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -3816 (|#1|)) (-15 -1470 ((-3 |#1| "failed") |#1|)) (-15 -2198 ((-416 |#1|) |#1| (-416 |#1|))) (-15 -2163 ((-780) |#1|)) (-15 -1405 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -1626 (|#1| |#1|)) (-15 -2198 (|#2| (-416 |#1|) |#2|)) (-15 -4016 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1368 ((-2 (|:| -1857 |#2|) (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -2154 (|#1| |#1| |#1|)) (-15 -2871 ((-3 (-416 |#1|) "failed") (-416 |#1|) |#1|)) (-15 -2871 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2534 ((-780) |#1| |#1|)) (-15 -2198 ((-416 |#1|) (-416 |#1|) (-416 |#1|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2331 (|#1| |#1| (-780))) (-15 -3168 (|#1| |#1| (-780))) (-15 -4263 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| (-780))) (-15 -1343 (|#1| (-1185 |#2|))) (-15 -4112 ((-1185 |#2|) |#1|)) (-15 -1867 ((-1280 |#2|) |#1| (-780))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -2198 (|#1| |#1| |#1|)) (-15 -2198 (|#2| |#1| |#2|)) (-15 -4218 ((-427 |#1|) |#1|)) (-15 -1600 ((-427 (-1185 |#1|)) (-1185 |#1|))) (-15 -1655 ((-427 (-1185 |#1|)) (-1185 |#1|))) (-15 -2963 ((-427 (-1185 |#1|)) (-1185 |#1|))) (-15 -3711 ((-3 (-653 (-1185 |#1|)) "failed") (-653 (-1185 |#1|)) (-1185 |#1|))) (-15 -3257 (|#1| |#1| (-1094))) (-15 -4354 ((-653 (-1094)) |#1|)) (-15 -2769 ((-780) |#1| (-653 (-1094)))) (-15 -2769 ((-780) |#1|)) (-15 -4334 (|#1| |#1| (-653 (-1094)) (-653 (-780)))) (-15 -4334 (|#1| |#1| (-1094) (-780))) (-15 -4036 ((-653 (-780)) |#1| (-653 (-1094)))) (-15 -4036 ((-780) |#1| (-1094))) (-15 -1453 ((-3 (-1094) "failed") |#1|)) (-15 -2565 ((-653 (-780)) |#1| (-653 (-1094)))) (-15 -2565 ((-780) |#1| (-1094))) (-15 -2942 (|#1| (-1094))) (-15 -1695 ((-3 (-1094) "failed") |#1|)) (-15 -2205 ((-1094) |#1|)) (-15 -2645 (|#1| |#1| (-653 (-1094)) (-653 |#1|))) (-15 -2645 (|#1| |#1| (-1094) |#1|)) (-15 -2645 (|#1| |#1| (-653 (-1094)) (-653 |#2|))) (-15 -2645 (|#1| |#1| (-1094) |#2|)) (-15 -2645 (|#1| |#1| (-653 |#1|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#1| |#1|)) (-15 -2645 (|#1| |#1| (-301 |#1|))) (-15 -2645 (|#1| |#1| (-653 (-301 |#1|)))) (-15 -2565 ((-780) |#1|)) (-15 -4334 (|#1| |#2| (-780))) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2942 (|#1| |#2|)) (-15 -4036 ((-780) |#1|)) (-15 -3257 (|#2| |#1|)) (-15 -3904 (|#1| |#1| (-653 (-1094)) (-653 (-780)))) (-15 -3904 (|#1| |#1| (-1094) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1094)))) (-15 -3904 (|#1| |#1| (-1094))) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) (-1256 |#2|) (-1061)) (T -1255)) +NIL +(-10 -8 (-15 -2942 (|#1| |#1|)) (-15 -2888 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2427 ((-427 |#1|) |#1|)) (-15 -4285 (|#1| |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -3816 (|#1|)) (-15 -1470 ((-3 |#1| "failed") |#1|)) (-15 -2198 ((-416 |#1|) |#1| (-416 |#1|))) (-15 -2163 ((-780) |#1|)) (-15 -1405 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -1626 (|#1| |#1|)) (-15 -2198 (|#2| (-416 |#1|) |#2|)) (-15 -4016 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1368 ((-2 (|:| -1857 |#2|) (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| |#1|)) (-15 -2154 (|#1| |#1| |#1|)) (-15 -2871 ((-3 (-416 |#1|) "failed") (-416 |#1|) |#1|)) (-15 -2871 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2534 ((-780) |#1| |#1|)) (-15 -2198 ((-416 |#1|) (-416 |#1|) (-416 |#1|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2331 (|#1| |#1| (-780))) (-15 -3168 (|#1| |#1| (-780))) (-15 -4263 ((-2 (|:| -3152 |#1|) (|:| -3132 |#1|)) |#1| (-780))) (-15 -1343 (|#1| (-1185 |#2|))) (-15 -4112 ((-1185 |#2|) |#1|)) (-15 -1867 ((-1280 |#2|) |#1| (-780))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3904 (|#1| |#1| (-1 |#2| |#2|) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)) (-653 (-780)))) (-15 -3904 (|#1| |#1| (-1189) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1189)))) (-15 -3904 (|#1| |#1| (-1189))) (-15 -3904 (|#1| |#1| (-780))) (-15 -3904 (|#1| |#1|)) (-15 -2198 (|#1| |#1| |#1|)) (-15 -2198 (|#2| |#1| |#2|)) (-15 -4218 ((-427 |#1|) |#1|)) (-15 -1600 ((-427 (-1185 |#1|)) (-1185 |#1|))) (-15 -1655 ((-427 (-1185 |#1|)) (-1185 |#1|))) (-15 -2963 ((-427 (-1185 |#1|)) (-1185 |#1|))) (-15 -3711 ((-3 (-653 (-1185 |#1|)) "failed") (-653 (-1185 |#1|)) (-1185 |#1|))) (-15 -3257 (|#1| |#1| (-1094))) (-15 -4354 ((-653 (-1094)) |#1|)) (-15 -2769 ((-780) |#1| (-653 (-1094)))) (-15 -2769 ((-780) |#1|)) (-15 -4334 (|#1| |#1| (-653 (-1094)) (-653 (-780)))) (-15 -4334 (|#1| |#1| (-1094) (-780))) (-15 -4036 ((-653 (-780)) |#1| (-653 (-1094)))) (-15 -4036 ((-780) |#1| (-1094))) (-15 -1453 ((-3 (-1094) "failed") |#1|)) (-15 -2565 ((-653 (-780)) |#1| (-653 (-1094)))) (-15 -2565 ((-780) |#1| (-1094))) (-15 -2942 (|#1| (-1094))) (-15 -1695 ((-3 (-1094) "failed") |#1|)) (-15 -2205 ((-1094) |#1|)) (-15 -2645 (|#1| |#1| (-653 (-1094)) (-653 |#1|))) (-15 -2645 (|#1| |#1| (-1094) |#1|)) (-15 -2645 (|#1| |#1| (-653 (-1094)) (-653 |#2|))) (-15 -2645 (|#1| |#1| (-1094) |#2|)) (-15 -2645 (|#1| |#1| (-653 |#1|) (-653 |#1|))) (-15 -2645 (|#1| |#1| |#1| |#1|)) (-15 -2645 (|#1| |#1| (-301 |#1|))) (-15 -2645 (|#1| |#1| (-653 (-301 |#1|)))) (-15 -2565 ((-780) |#1|)) (-15 -4334 (|#1| |#2| (-780))) (-15 -1695 ((-3 (-573) "failed") |#1|)) (-15 -2205 ((-573) |#1|)) (-15 -1695 ((-3 (-416 (-573)) "failed") |#1|)) (-15 -2205 ((-416 (-573)) |#1|)) (-15 -2205 (|#2| |#1|)) (-15 -1695 ((-3 |#2| "failed") |#1|)) (-15 -2942 (|#1| |#2|)) (-15 -4036 ((-780) |#1|)) (-15 -3257 (|#2| |#1|)) (-15 -3904 (|#1| |#1| (-653 (-1094)) (-653 (-780)))) (-15 -3904 (|#1| |#1| (-1094) (-780))) (-15 -3904 (|#1| |#1| (-653 (-1094)))) (-15 -3904 (|#1| |#1| (-1094))) (-15 -2942 (|#1| (-573))) (-15 -2942 ((-871) |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-1867 (((-1280 |#1|) $ (-780)) 243)) (-4354 (((-653 (-1094)) $) 112)) (-1343 (($ (-1185 |#1|)) 241)) (-4193 (((-1185 $) $ (-1094)) 127) (((-1185 |#1|) $) 126)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 89 (|has| |#1| (-565)))) (-2456 (($ $) 90 (|has| |#1| (-565)))) (-1345 (((-112) $) 92 (|has| |#1| (-565)))) (-2769 (((-780) $) 114) (((-780) $ (-653 (-1094))) 113)) (-2983 (((-3 $ "failed") $ $) 20)) (-4183 (($ $ $) 228 (|has| |#1| (-565)))) (-1600 (((-427 (-1185 $)) (-1185 $)) 102 (|has| |#1| (-919)))) (-4285 (($ $) 100 (|has| |#1| (-461)))) (-2427 (((-427 $) $) 99 (|has| |#1| (-461)))) (-3711 (((-3 (-653 (-1185 $)) "failed") (-653 (-1185 $)) (-1185 $)) 105 (|has| |#1| (-919)))) (-2800 (((-112) $ $) 213 (|has| |#1| (-371)))) (-3168 (($ $ (-780)) 236)) (-2331 (($ $ (-780)) 235)) (-4016 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 223 (|has| |#1| (-461)))) (-2579 (($) 18 T CONST)) (-1695 (((-3 |#1| "failed") $) 168) (((-3 (-416 (-573)) "failed") $) 165 (|has| |#1| (-1050 (-416 (-573))))) (((-3 (-573) "failed") $) 163 (|has| |#1| (-1050 (-573)))) (((-3 (-1094) "failed") $) 140)) (-2205 ((|#1| $) 167) (((-416 (-573)) $) 166 (|has| |#1| (-1050 (-416 (-573))))) (((-573) $) 164 (|has| |#1| (-1050 (-573)))) (((-1094) $) 141)) (-2277 (($ $ $ (-1094)) 110 (|has| |#1| (-174))) ((|#1| $ $) 231 (|has| |#1| (-174)))) (-2784 (($ $ $) 217 (|has| |#1| (-371)))) (-1391 (($ $) 158)) (-2759 (((-698 (-573)) (-1280 $)) 138 (|has| |#1| (-648 (-573)))) (((-698 (-573)) (-698 $)) 137 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 (-573))) (|:| |vec| (-1280 (-573)))) (-698 $) (-1280 $)) 136 (|has| |#1| (-648 (-573)))) (((-2 (|:| -1423 (-698 |#1|)) (|:| |vec| (-1280 |#1|))) (-698 $) (-1280 $)) 135) (((-698 |#1|) (-698 $)) 134) (((-698 |#1|) (-1280 $)) 133)) (-2232 (((-3 $ "failed") $) 37)) (-2796 (($ $ $) 216 (|has| |#1| (-371)))) (-4272 (($ $ $) 234)) (-2154 (($ $ $) 225 (|has| |#1| (-565)))) (-1368 (((-2 (|:| -1857 |#1|) (|:| -3152 $) (|:| -3132 $)) $ $) 224 (|has| |#1| (-565)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 211 (|has| |#1| (-371)))) (-3246 (($ $) 180 (|has| |#1| (-461))) (($ $ (-1094)) 107 (|has| |#1| (-461)))) (-1379 (((-653 $) $) 111)) (-2696 (((-112) $) 98 (|has| |#1| (-919)))) (-2343 (($ $ |#1| (-780) $) 176)) (-1352 (((-899 (-387) $) $ (-902 (-387)) (-899 (-387) $)) 86 (-12 (|has| (-1094) (-896 (-387))) (|has| |#1| (-896 (-387))))) (((-899 (-573) $) $ (-902 (-573)) (-899 (-573) $)) 85 (-12 (|has| (-1094) (-896 (-573))) (|has| |#1| (-896 (-573)))))) (-2534 (((-780) $ $) 229 (|has| |#1| (-565)))) (-1959 (((-112) $) 35)) (-3772 (((-780) $) 173)) (-1470 (((-3 $ "failed") $) 209 (|has| |#1| (-1164)))) (-4344 (($ (-1185 |#1|) (-1094)) 119) (($ (-1185 $) (-1094)) 118)) (-2976 (($ $ (-780)) 240)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 220 (|has| |#1| (-371)))) (-2518 (((-653 $) $) 128)) (-3676 (((-112) $) 156)) (-4334 (($ |#1| (-780)) 157) (($ $ (-1094) (-780)) 121) (($ $ (-653 (-1094)) (-653 (-780))) 120)) (-2424 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $ (-1094)) 122) (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 238)) (-4036 (((-780) $) 174) (((-780) $ (-1094)) 124) (((-653 (-780)) $ (-653 (-1094))) 123)) (-1382 (($ (-1 (-780) (-780)) $) 175)) (-1776 (($ (-1 |#1| |#1|) $) 155)) (-4112 (((-1185 |#1|) $) 242)) (-1453 (((-3 (-1094) "failed") $) 125)) (-1358 (($ $) 153)) (-1369 ((|#1| $) 152)) (-2829 (($ (-653 $)) 96 (|has| |#1| (-461))) (($ $ $) 95 (|has| |#1| (-461)))) (-3180 (((-1171) $) 10)) (-4263 (((-2 (|:| -3152 $) (|:| -3132 $)) $ (-780)) 237)) (-4082 (((-3 (-653 $) "failed") $) 116)) (-2586 (((-3 (-653 $) "failed") $) 117)) (-2573 (((-3 (-2 (|:| |var| (-1094)) (|:| -3907 (-780))) "failed") $) 115)) (-1626 (($ $) 221 (|has| |#1| (-38 (-416 (-573)))))) (-3816 (($) 208 (|has| |#1| (-1164)) CONST)) (-3965 (((-1132) $) 11)) (-1337 (((-112) $) 170)) (-1348 ((|#1| $) 171)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 97 (|has| |#1| (-461)))) (-2872 (($ (-653 $)) 94 (|has| |#1| (-461))) (($ $ $) 93 (|has| |#1| (-461)))) (-2963 (((-427 (-1185 $)) (-1185 $)) 104 (|has| |#1| (-919)))) (-1655 (((-427 (-1185 $)) (-1185 $)) 103 (|has| |#1| (-919)))) (-4218 (((-427 $) $) 101 (|has| |#1| (-919)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 219 (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 218 (|has| |#1| (-371)))) (-2837 (((-3 $ "failed") $ |#1|) 178 (|has| |#1| (-565))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 212 (|has| |#1| (-371)))) (-2645 (($ $ (-653 (-301 $))) 149) (($ $ (-301 $)) 148) (($ $ $ $) 147) (($ $ (-653 $) (-653 $)) 146) (($ $ (-1094) |#1|) 145) (($ $ (-653 (-1094)) (-653 |#1|)) 144) (($ $ (-1094) $) 143) (($ $ (-653 (-1094)) (-653 $)) 142)) (-2163 (((-780) $) 214 (|has| |#1| (-371)))) (-2198 ((|#1| $ |#1|) 261) (($ $ $) 260) (((-416 $) (-416 $) (-416 $)) 230 (|has| |#1| (-565))) ((|#1| (-416 $) |#1|) 222 (|has| |#1| (-371))) (((-416 $) $ (-416 $)) 210 (|has| |#1| (-565)))) (-1929 (((-3 $ "failed") $ (-780)) 239)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 215 (|has| |#1| (-371)))) (-3592 (($ $ (-1094)) 109 (|has| |#1| (-174))) ((|#1| $) 232 (|has| |#1| (-174)))) (-3904 (($ $ (-1094)) 46) (($ $ (-653 (-1094))) 45) (($ $ (-1094) (-780)) 44) (($ $ (-653 (-1094)) (-653 (-780))) 43) (($ $) 259) (($ $ (-780)) 257) (($ $ (-1189)) 255 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) 254 (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) 253 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) 252 (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) 245) (($ $ (-1 |#1| |#1|)) 244) (($ $ (-1 |#1| |#1|) $) 233)) (-2565 (((-780) $) 154) (((-780) $ (-1094)) 132) (((-653 (-780)) $ (-653 (-1094))) 131)) (-1835 (((-902 (-387)) $) 84 (-12 (|has| (-1094) (-623 (-902 (-387)))) (|has| |#1| (-623 (-902 (-387)))))) (((-902 (-573)) $) 83 (-12 (|has| (-1094) (-623 (-902 (-573)))) (|has| |#1| (-623 (-902 (-573)))))) (((-545) $) 82 (-12 (|has| (-1094) (-623 (-545))) (|has| |#1| (-623 (-545)))))) (-3257 ((|#1| $) 179 (|has| |#1| (-461))) (($ $ (-1094)) 108 (|has| |#1| (-461)))) (-1443 (((-3 (-1280 $) "failed") (-698 $)) 106 (-2086 (|has| $ (-146)) (|has| |#1| (-919))))) (-2871 (((-3 $ "failed") $ $) 227 (|has| |#1| (-565))) (((-3 (-416 $) "failed") (-416 $) $) 226 (|has| |#1| (-565)))) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 169) (($ (-1094)) 139) (($ (-416 (-573))) 80 (-2817 (|has| |#1| (-1050 (-416 (-573)))) (|has| |#1| (-38 (-416 (-573)))))) (($ $) 87 (|has| |#1| (-565)))) (-1920 (((-653 |#1|) $) 172)) (-4317 ((|#1| $ (-780)) 159) (($ $ (-1094) (-780)) 130) (($ $ (-653 (-1094)) (-653 (-780))) 129)) (-4279 (((-3 $ "failed") $) 81 (-2817 (-2086 (|has| $ (-146)) (|has| |#1| (-919))) (|has| |#1| (-146))))) (-1545 (((-780)) 32 T CONST)) (-1538 (($ $ $ (-780)) 177 (|has| |#1| (-174)))) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 91 (|has| |#1| (-565)))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-1094)) 42) (($ $ (-653 (-1094))) 41) (($ $ (-1094) (-780)) 40) (($ $ (-653 (-1094)) (-653 (-780))) 39) (($ $) 258) (($ $ (-780)) 256) (($ $ (-1189)) 251 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189))) 250 (|has| |#1| (-910 (-1189)))) (($ $ (-1189) (-780)) 249 (|has| |#1| (-910 (-1189)))) (($ $ (-653 (-1189)) (-653 (-780))) 248 (|has| |#1| (-910 (-1189)))) (($ $ (-1 |#1| |#1|) (-780)) 247) (($ $ (-1 |#1| |#1|)) 246)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 160 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 (-573))) 162 (|has| |#1| (-38 (-416 (-573))))) (($ (-416 (-573)) $) 161 (|has| |#1| (-38 (-416 (-573))))) (($ |#1| $) 151) (($ $ |#1|) 150))) +(((-1256 |#1|) (-141) (-1061)) (T -1256)) +((-1867 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-4 *1 (-1256 *4)) (-4 *4 (-1061)) (-5 *2 (-1280 *4)))) (-4112 (*1 *2 *1) (-12 (-4 *1 (-1256 *3)) (-4 *3 (-1061)) (-5 *2 (-1185 *3)))) (-1343 (*1 *1 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1061)) (-4 *1 (-1256 *3)))) (-2976 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-1256 *3)) (-4 *3 (-1061)))) (-1929 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-780)) (-4 *1 (-1256 *3)) (-4 *3 (-1061)))) (-2424 (*1 *2 *1 *1) (-12 (-4 *3 (-1061)) (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-1256 *3)))) (-4263 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-4 *4 (-1061)) (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-1256 *4)))) (-3168 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-1256 *3)) (-4 *3 (-1061)))) (-2331 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-1256 *3)) (-4 *3 (-1061)))) (-4272 (*1 *1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1061)))) (-3904 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1256 *3)) (-4 *3 (-1061)))) (-3592 (*1 *2 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1061)) (-4 *2 (-174)))) (-2277 (*1 *2 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1061)) (-4 *2 (-174)))) (-2198 (*1 *2 *2 *2) (-12 (-5 *2 (-416 *1)) (-4 *1 (-1256 *3)) (-4 *3 (-1061)) (-4 *3 (-565)))) (-2534 (*1 *2 *1 *1) (-12 (-4 *1 (-1256 *3)) (-4 *3 (-1061)) (-4 *3 (-565)) (-5 *2 (-780)))) (-4183 (*1 *1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1061)) (-4 *2 (-565)))) (-2871 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1256 *2)) (-4 *2 (-1061)) (-4 *2 (-565)))) (-2871 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-416 *1)) (-4 *1 (-1256 *3)) (-4 *3 (-1061)) (-4 *3 (-565)))) (-2154 (*1 *1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1061)) (-4 *2 (-565)))) (-1368 (*1 *2 *1 *1) (-12 (-4 *3 (-565)) (-4 *3 (-1061)) (-5 *2 (-2 (|:| -1857 *3) (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-1256 *3)))) (-4016 (*1 *2 *1 *1) (-12 (-4 *3 (-461)) (-4 *3 (-1061)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1256 *3)))) (-2198 (*1 *2 *3 *2) (-12 (-5 *3 (-416 *1)) (-4 *1 (-1256 *2)) (-4 *2 (-1061)) (-4 *2 (-371)))) (-1626 (*1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1061)) (-4 *2 (-38 (-416 (-573))))))) +(-13 (-959 |t#1| (-780) (-1094)) (-293 |t#1| |t#1|) (-293 $ $) (-238) (-233 |t#1|) (-10 -8 (-15 -1867 ((-1280 |t#1|) $ (-780))) (-15 -4112 ((-1185 |t#1|) $)) (-15 -1343 ($ (-1185 |t#1|))) (-15 -2976 ($ $ (-780))) (-15 -1929 ((-3 $ "failed") $ (-780))) (-15 -2424 ((-2 (|:| -3152 $) (|:| -3132 $)) $ $)) (-15 -4263 ((-2 (|:| -3152 $) (|:| -3132 $)) $ (-780))) (-15 -3168 ($ $ (-780))) (-15 -2331 ($ $ (-780))) (-15 -4272 ($ $ $)) (-15 -3904 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1164)) (-6 (-1164)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -3592 (|t#1| $)) (-15 -2277 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-565)) (PROGN (-6 (-293 (-416 $) (-416 $))) (-15 -2198 ((-416 $) (-416 $) (-416 $))) (-15 -2534 ((-780) $ $)) (-15 -4183 ($ $ $)) (-15 -2871 ((-3 $ "failed") $ $)) (-15 -2871 ((-3 (-416 $) "failed") (-416 $) $)) (-15 -2154 ($ $ $)) (-15 -1368 ((-2 (|:| -1857 |t#1|) (|:| -3152 $) (|:| -3132 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-461)) (-15 -4016 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-371)) (PROGN (-6 (-314)) (-6 -4451) (-15 -2198 (|t#1| (-416 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-416 (-573)))) (-15 -1626 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-780)) . T) ((-25) . T) ((-38 #1=(-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-371))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-416 (-573)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #1#) -2817 (|has| |#1| (-1050 (-416 (-573)))) (|has| |#1| (-38 (-416 (-573))))) ((-625 (-573)) . T) ((-625 #2=(-1094)) . T) ((-625 |#1|) . T) ((-625 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-371))) ((-622 (-871)) . T) ((-174) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-623 (-545)) -12 (|has| (-1094) (-623 (-545))) (|has| |#1| (-623 (-545)))) ((-623 (-902 (-387))) -12 (|has| (-1094) (-623 (-902 (-387)))) (|has| |#1| (-623 (-902 (-387))))) ((-623 (-902 (-573))) -12 (|has| (-1094) (-623 (-902 (-573)))) (|has| |#1| (-623 (-902 (-573))))) ((-235 $) . T) ((-233 |#1|) . T) ((-238) . T) ((-237) . T) ((-293 (-416 $) (-416 $)) |has| |#1| (-565)) ((-293 |#1| |#1|) . T) ((-293 $ $) . T) ((-297) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-371))) ((-314) |has| |#1| (-371)) ((-316 $) . T) ((-333 |#1| #0#) . T) ((-385 |#1|) . T) ((-420 |#1|) . T) ((-461) -2817 (|has| |#1| (-919)) (|has| |#1| (-461)) (|has| |#1| (-371))) ((-523 #2# |#1|) . T) ((-523 #2# $) . T) ((-523 $ $) . T) ((-565) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-371))) ((-655 #1#) |has| |#1| (-38 (-416 (-573)))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #1#) |has| |#1| (-38 (-416 (-573)))) ((-657 #3=(-573)) |has| |#1| (-648 (-573))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #1#) |has| |#1| (-38 (-416 (-573)))) ((-649 |#1|) |has| |#1| (-174)) ((-649 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-371))) ((-648 #3#) |has| |#1| (-648 (-573))) ((-648 |#1|) . T) ((-726 #1#) |has| |#1| (-38 (-416 (-573)))) ((-726 |#1|) |has| |#1| (-174)) ((-726 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-371))) ((-735) . T) ((-910 #2#) . T) ((-910 (-1189)) |has| |#1| (-910 (-1189))) ((-896 (-387)) -12 (|has| (-1094) (-896 (-387))) (|has| |#1| (-896 (-387)))) ((-896 (-573)) -12 (|has| (-1094) (-896 (-573))) (|has| |#1| (-896 (-573)))) ((-959 |#1| #0# #2#) . T) ((-919) |has| |#1| (-919)) ((-930) |has| |#1| (-371)) ((-1050 (-416 (-573))) |has| |#1| (-1050 (-416 (-573)))) ((-1050 (-573)) |has| |#1| (-1050 (-573))) ((-1050 #2#) . T) ((-1050 |#1|) . T) ((-1063 #1#) |has| |#1| (-38 (-416 (-573)))) ((-1063 |#1|) . T) ((-1063 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-1068 #1#) |has| |#1| (-38 (-416 (-573)))) ((-1068 |#1|) . T) ((-1068 $) -2817 (|has| |#1| (-919)) (|has| |#1| (-565)) (|has| |#1| (-461)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1164) |has| |#1| (-1164)) ((-1230) . T) ((-1234) |has| |#1| (-919))) +((-4354 (((-653 (-1094)) $) 34)) (-1391 (($ $) 31)) (-4334 (($ |#2| |#3|) NIL) (($ $ (-1094) |#3|) 28) (($ $ (-653 (-1094)) (-653 |#3|)) 27)) (-1358 (($ $) 14)) (-1369 ((|#2| $) 12)) (-2565 ((|#3| $) 10))) +(((-1257 |#1| |#2| |#3|) (-10 -8 (-15 -4354 ((-653 (-1094)) |#1|)) (-15 -4334 (|#1| |#1| (-653 (-1094)) (-653 |#3|))) (-15 -4334 (|#1| |#1| (-1094) |#3|)) (-15 -1391 (|#1| |#1|)) (-15 -4334 (|#1| |#2| |#3|)) (-15 -2565 (|#3| |#1|)) (-15 -1358 (|#1| |#1|)) (-15 -1369 (|#2| |#1|))) (-1258 |#2| |#3|) (-1061) (-801)) (T -1257)) +NIL +(-10 -8 (-15 -4354 ((-653 (-1094)) |#1|)) (-15 -4334 (|#1| |#1| (-653 (-1094)) (-653 |#3|))) (-15 -4334 (|#1| |#1| (-1094) |#3|)) (-15 -1391 (|#1| |#1|)) (-15 -4334 (|#1| |#2| |#3|)) (-15 -2565 (|#3| |#1|)) (-15 -1358 (|#1| |#1|)) (-15 -1369 (|#2| |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4354 (((-653 (-1094)) $) 86)) (-1487 (((-1189) $) 117)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 63 (|has| |#1| (-565)))) (-2456 (($ $) 64 (|has| |#1| (-565)))) (-1345 (((-112) $) 66 (|has| |#1| (-565)))) (-1442 (($ $ |#2|) 112) (($ $ |#2| |#2|) 111)) (-1662 (((-1169 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 118)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-1391 (($ $) 72)) (-2232 (((-3 $ "failed") $) 37)) (-1488 (((-112) $) 85)) (-2534 ((|#2| $) 114) ((|#2| $ |#2|) 113)) (-1959 (((-112) $) 35)) (-2976 (($ $ (-931)) 115)) (-3676 (((-112) $) 74)) (-4334 (($ |#1| |#2|) 73) (($ $ (-1094) |#2|) 88) (($ $ (-653 (-1094)) (-653 |#2|)) 87)) (-1776 (($ (-1 |#1| |#1|) $) 75)) (-1358 (($ $) 77)) (-1369 ((|#1| $) 78)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2212 (($ $ |#2|) 109)) (-2837 (((-3 $ "failed") $ $) 62 (|has| |#1| (-565)))) (-2645 (((-1169 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2198 ((|#1| $ |#2|) 119) (($ $ $) 95 (|has| |#2| (-1124)))) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) 103 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1189) (-780)) 102 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-653 (-1189))) 101 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1189)) 100 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-780)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2565 ((|#2| $) 76)) (-4101 (($ $) 84)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ (-416 (-573))) 69 (|has| |#1| (-38 (-416 (-573))))) (($ $) 61 (|has| |#1| (-565))) (($ |#1|) 59 (|has| |#1| (-174)))) (-4317 ((|#1| $ |#2|) 71)) (-4279 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1545 (((-780)) 32 T CONST)) (-3358 ((|#1| $) 116)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 65 (|has| |#1| (-565)))) (-3550 ((|#1| $ |#2|) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) 107 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1189) (-780)) 106 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-653 (-1189))) 105 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1189)) 104 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-780)) 96 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 70 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-416 (-573)) $) 68 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 67 (|has| |#1| (-38 (-416 (-573))))))) +(((-1258 |#1| |#2|) (-141) (-1061) (-801)) (T -1258)) +((-1662 (*1 *2 *1) (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)) (-5 *2 (-1169 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)) (-5 *2 (-1189)))) (-3358 (*1 *2 *1) (-12 (-4 *1 (-1258 *2 *3)) (-4 *3 (-801)) (-4 *2 (-1061)))) (-2976 (*1 *1 *1 *2) (-12 (-5 *2 (-931)) (-4 *1 (-1258 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)))) (-2534 (*1 *2 *1) (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-801)))) (-2534 (*1 *2 *1 *2) (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-801)))) (-1442 (*1 *1 *1 *2) (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-801)))) (-1442 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-801)))) (-3550 (*1 *2 *1 *3) (-12 (-4 *1 (-1258 *2 *3)) (-4 *3 (-801)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2942 (*2 (-1189)))) (-4 *2 (-1061)))) (-2212 (*1 *1 *1 *2) (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-801)))) (-2645 (*1 *2 *1 *3) (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1169 *3))))) +(-13 (-985 |t#1| |t#2| (-1094)) (-293 |t#2| |t#1|) (-10 -8 (-15 -1662 ((-1169 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1487 ((-1189) $)) (-15 -3358 (|t#1| $)) (-15 -2976 ($ $ (-931))) (-15 -2534 (|t#2| $)) (-15 -2534 (|t#2| $ |t#2|)) (-15 -1442 ($ $ |t#2|)) (-15 -1442 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2942 (|t#1| (-1189)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3550 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2212 ($ $ |t#2|)) (IF (|has| |t#2| (-1124)) (-6 (-293 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-238)) (IF (|has| |t#1| (-910 (-1189))) (-6 (-910 (-1189))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2645 ((-1169 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-565)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-416 (-573)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #0#) |has| |#1| (-38 (-416 (-573)))) ((-625 (-573)) . T) ((-625 |#1|) |has| |#1| (-174)) ((-625 $) |has| |#1| (-565)) ((-622 (-871)) . T) ((-174) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-238) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-237) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-293 |#2| |#1|) . T) ((-293 $ $) |has| |#2| (-1124)) ((-297) |has| |#1| (-565)) ((-565) |has| |#1| (-565)) ((-655 #0#) |has| |#1| (-38 (-416 (-573)))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #0#) |has| |#1| (-38 (-416 (-573)))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #0#) |has| |#1| (-38 (-416 (-573)))) ((-649 |#1|) |has| |#1| (-174)) ((-649 $) |has| |#1| (-565)) ((-726 #0#) |has| |#1| (-38 (-416 (-573)))) ((-726 |#1|) |has| |#1| (-174)) ((-726 $) |has| |#1| (-565)) ((-735) . T) ((-910 (-1189)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-910 (-1189)))) ((-985 |#1| |#2| (-1094)) . T) ((-1063 #0#) |has| |#1| (-38 (-416 (-573)))) ((-1063 |#1|) . T) ((-1063 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-1068 #0#) |has| |#1| (-38 (-416 (-573)))) ((-1068 |#1|) . T) ((-1068 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1230) . T)) +((-4285 ((|#2| |#2|) 12)) (-2427 (((-427 |#2|) |#2|) 14)) (-2799 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-573))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-573)))) 30))) +(((-1259 |#1| |#2|) (-10 -7 (-15 -2427 ((-427 |#2|) |#2|)) (-15 -4285 (|#2| |#2|)) (-15 -2799 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-573))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-573)))))) (-565) (-13 (-1256 |#1|) (-565) (-10 -8 (-15 -2872 ($ $ $))))) (T -1259)) +((-2799 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-573)))) (-4 *4 (-13 (-1256 *3) (-565) (-10 -8 (-15 -2872 ($ $ $))))) (-4 *3 (-565)) (-5 *1 (-1259 *3 *4)))) (-4285 (*1 *2 *2) (-12 (-4 *3 (-565)) (-5 *1 (-1259 *3 *2)) (-4 *2 (-13 (-1256 *3) (-565) (-10 -8 (-15 -2872 ($ $ $))))))) (-2427 (*1 *2 *3) (-12 (-4 *4 (-565)) (-5 *2 (-427 *3)) (-5 *1 (-1259 *4 *3)) (-4 *3 (-13 (-1256 *4) (-565) (-10 -8 (-15 -2872 ($ $ $)))))))) +(-10 -7 (-15 -2427 ((-427 |#2|) |#2|)) (-15 -4285 (|#2| |#2|)) (-15 -2799 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-573))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-573)))))) +((-1776 (((-1265 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1265 |#1| |#3| |#5|)) 24))) +(((-1260 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1776 ((-1265 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1265 |#1| |#3| |#5|)))) (-1061) (-1061) (-1189) (-1189) |#1| |#2|) (T -1260)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1265 *5 *7 *9)) (-4 *5 (-1061)) (-4 *6 (-1061)) (-14 *7 (-1189)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1265 *6 *8 *10)) (-5 *1 (-1260 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1189))))) +(-10 -7 (-15 -1776 ((-1265 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1265 |#1| |#3| |#5|)))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4354 (((-653 (-1094)) $) 86)) (-1487 (((-1189) $) 117)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 63 (|has| |#1| (-565)))) (-2456 (($ $) 64 (|has| |#1| (-565)))) (-1345 (((-112) $) 66 (|has| |#1| (-565)))) (-1442 (($ $ (-416 (-573))) 112) (($ $ (-416 (-573)) (-416 (-573))) 111)) (-1662 (((-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#1|))) $) 118)) (-2363 (($ $) 149 (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) 132 (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) 20)) (-4285 (($ $) 176 (|has| |#1| (-371)))) (-2427 (((-427 $) $) 177 (|has| |#1| (-371)))) (-4228 (($ $) 131 (|has| |#1| (-38 (-416 (-573)))))) (-2800 (((-112) $ $) 167 (|has| |#1| (-371)))) (-2342 (($ $) 148 (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) 133 (|has| |#1| (-38 (-416 (-573)))))) (-3622 (($ (-780) (-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#1|)))) 185)) (-2388 (($ $) 147 (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) 134 (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) 18 T CONST)) (-2784 (($ $ $) 171 (|has| |#1| (-371)))) (-1391 (($ $) 72)) (-2232 (((-3 $ "failed") $) 37)) (-2796 (($ $ $) 170 (|has| |#1| (-371)))) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 165 (|has| |#1| (-371)))) (-2696 (((-112) $) 178 (|has| |#1| (-371)))) (-1488 (((-112) $) 85)) (-2999 (($) 159 (|has| |#1| (-38 (-416 (-573)))))) (-2534 (((-416 (-573)) $) 114) (((-416 (-573)) $ (-416 (-573))) 113)) (-1959 (((-112) $) 35)) (-4325 (($ $ (-573)) 130 (|has| |#1| (-38 (-416 (-573)))))) (-2976 (($ $ (-931)) 115) (($ $ (-416 (-573))) 184)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 174 (|has| |#1| (-371)))) (-3676 (((-112) $) 74)) (-4334 (($ |#1| (-416 (-573))) 73) (($ $ (-1094) (-416 (-573))) 88) (($ $ (-653 (-1094)) (-653 (-416 (-573)))) 87)) (-1776 (($ (-1 |#1| |#1|) $) 75)) (-3118 (($ $) 156 (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) 77)) (-1369 ((|#1| $) 78)) (-2829 (($ (-653 $)) 163 (|has| |#1| (-371))) (($ $ $) 162 (|has| |#1| (-371)))) (-3180 (((-1171) $) 10)) (-1323 (($ $) 179 (|has| |#1| (-371)))) (-1626 (($ $) 183 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189)) 182 (-2817 (-12 (|has| |#1| (-29 (-573))) (|has| |#1| (-969)) (|has| |#1| (-1215)) (|has| |#1| (-38 (-416 (-573))))) (-12 (|has| |#1| (-15 -4354 ((-653 (-1189)) |#1|))) (|has| |#1| (-15 -1626 (|#1| |#1| (-1189)))) (|has| |#1| (-38 (-416 (-573)))))))) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 164 (|has| |#1| (-371)))) (-2872 (($ (-653 $)) 161 (|has| |#1| (-371))) (($ $ $) 160 (|has| |#1| (-371)))) (-4218 (((-427 $) $) 175 (|has| |#1| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 173 (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 172 (|has| |#1| (-371)))) (-2212 (($ $ (-416 (-573))) 109)) (-2837 (((-3 $ "failed") $ $) 62 (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 166 (|has| |#1| (-371)))) (-1608 (($ $) 157 (|has| |#1| (-38 (-416 (-573)))))) (-2645 (((-1169 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-416 (-573))))))) (-2163 (((-780) $) 168 (|has| |#1| (-371)))) (-2198 ((|#1| $ (-416 (-573))) 119) (($ $ $) 95 (|has| (-416 (-573)) (-1124)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 169 (|has| |#1| (-371)))) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) 103 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $ (-1189) (-780)) 102 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $ (-653 (-1189))) 101 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $ (-1189)) 100 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-780)) 97 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (-2565 (((-416 (-573)) $) 76)) (-2401 (($ $) 146 (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) 135 (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) 145 (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) 136 (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) 144 (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) 137 (|has| |#1| (-38 (-416 (-573)))))) (-4101 (($ $) 84)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-416 (-573))) 69 (|has| |#1| (-38 (-416 (-573))))) (($ $) 61 (|has| |#1| (-565)))) (-4317 ((|#1| $ (-416 (-573))) 71)) (-4279 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1545 (((-780)) 32 T CONST)) (-3358 ((|#1| $) 116)) (-3507 (((-112) $ $) 9)) (-2439 (($ $) 155 (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) 143 (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) 65 (|has| |#1| (-565)))) (-2413 (($ $) 154 (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) 142 (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) 153 (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) 141 (|has| |#1| (-38 (-416 (-573)))))) (-3550 ((|#1| $ (-416 (-573))) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-416 (-573))))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2520 (($ $) 152 (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) 140 (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) 151 (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) 139 (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) 150 (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) 138 (|has| |#1| (-38 (-416 (-573)))))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) 107 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $ (-1189) (-780)) 106 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $ (-653 (-1189))) 105 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $ (-1189)) 104 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-780)) 96 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 70 (|has| |#1| (-371))) (($ $ $) 181 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 180 (|has| |#1| (-371))) (($ $ $) 158 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 129 (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-416 (-573)) $) 68 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 67 (|has| |#1| (-38 (-416 (-573))))))) +(((-1261 |#1|) (-141) (-1061)) (T -1261)) +((-3622 (*1 *1 *2 *3) (-12 (-5 *2 (-780)) (-5 *3 (-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| *4)))) (-4 *4 (-1061)) (-4 *1 (-1261 *4)))) (-2976 (*1 *1 *1 *2) (-12 (-5 *2 (-416 (-573))) (-4 *1 (-1261 *3)) (-4 *3 (-1061)))) (-1626 (*1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1061)) (-4 *2 (-38 (-416 (-573)))))) (-1626 (*1 *1 *1 *2) (-2817 (-12 (-5 *2 (-1189)) (-4 *1 (-1261 *3)) (-4 *3 (-1061)) (-12 (-4 *3 (-29 (-573))) (-4 *3 (-969)) (-4 *3 (-1215)) (-4 *3 (-38 (-416 (-573)))))) (-12 (-5 *2 (-1189)) (-4 *1 (-1261 *3)) (-4 *3 (-1061)) (-12 (|has| *3 (-15 -4354 ((-653 *2) *3))) (|has| *3 (-15 -1626 (*3 *3 *2))) (-4 *3 (-38 (-416 (-573))))))))) +(-13 (-1258 |t#1| (-416 (-573))) (-10 -8 (-15 -3622 ($ (-780) (-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| |t#1|))))) (-15 -2976 ($ $ (-416 (-573)))) (IF (|has| |t#1| (-38 (-416 (-573)))) (PROGN (-15 -1626 ($ $)) (IF (|has| |t#1| (-15 -1626 (|t#1| |t#1| (-1189)))) (IF (|has| |t#1| (-15 -4354 ((-653 (-1189)) |t#1|))) (-15 -1626 ($ $ (-1189))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1215)) (IF (|has| |t#1| (-969)) (IF (|has| |t#1| (-29 (-573))) (-15 -1626 ($ $ (-1189))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1014)) (-6 (-1215))) |%noBranch|) (IF (|has| |t#1| (-371)) (-6 (-371)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-416 (-573))) . T) ((-25) . T) ((-38 #1=(-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-35) |has| |#1| (-38 (-416 (-573)))) ((-95) |has| |#1| (-38 (-416 (-573)))) ((-102) . T) ((-111 #1# #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-625 (-573)) . T) ((-625 |#1|) |has| |#1| (-174)) ((-625 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-622 (-871)) . T) ((-174) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) ((-248) |has| |#1| (-371)) ((-291) |has| |#1| (-38 (-416 (-573)))) ((-293 #0# |#1|) . T) ((-293 $ $) |has| (-416 (-573)) (-1124)) ((-297) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-314) |has| |#1| (-371)) ((-371) |has| |#1| (-371)) ((-461) |has| |#1| (-371)) ((-502) |has| |#1| (-38 (-416 (-573)))) ((-565) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-655 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-649 |#1|) |has| |#1| (-174)) ((-649 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-726 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-726 |#1|) |has| |#1| (-174)) ((-726 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-735) . T) ((-910 (-1189)) -12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189)))) ((-985 |#1| #0# (-1094)) . T) ((-930) |has| |#1| (-371)) ((-1014) |has| |#1| (-38 (-416 (-573)))) ((-1063 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-1063 |#1|) . T) ((-1063 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-1068 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-1068 |#1|) . T) ((-1068 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1215) |has| |#1| (-38 (-416 (-573)))) ((-1218) |has| |#1| (-38 (-416 (-573)))) ((-1230) . T) ((-1234) |has| |#1| (-371)) ((-1258 |#1| #0#) . T)) +((-1748 (((-112) $) 12)) (-1695 (((-3 |#3| "failed") $) 17)) (-2205 ((|#3| $) 14))) +(((-1262 |#1| |#2| |#3|) (-10 -8 (-15 -1695 ((-3 |#3| "failed") |#1|)) (-15 -2205 (|#3| |#1|)) (-15 -1748 ((-112) |#1|))) (-1263 |#2| |#3|) (-1061) (-1240 |#2|)) (T -1262)) +NIL +(-10 -8 (-15 -1695 ((-3 |#3| "failed") |#1|)) (-15 -2205 (|#3| |#1|)) (-15 -1748 ((-112) |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4354 (((-653 (-1094)) $) 86)) (-1487 (((-1189) $) 117)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 63 (|has| |#1| (-565)))) (-2456 (($ $) 64 (|has| |#1| (-565)))) (-1345 (((-112) $) 66 (|has| |#1| (-565)))) (-1442 (($ $ (-416 (-573))) 112) (($ $ (-416 (-573)) (-416 (-573))) 111)) (-1662 (((-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#1|))) $) 118)) (-2363 (($ $) 149 (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) 132 (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) 20)) (-4285 (($ $) 176 (|has| |#1| (-371)))) (-2427 (((-427 $) $) 177 (|has| |#1| (-371)))) (-4228 (($ $) 131 (|has| |#1| (-38 (-416 (-573)))))) (-2800 (((-112) $ $) 167 (|has| |#1| (-371)))) (-2342 (($ $) 148 (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) 133 (|has| |#1| (-38 (-416 (-573)))))) (-3622 (($ (-780) (-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#1|)))) 185)) (-2388 (($ $) 147 (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) 134 (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) 18 T CONST)) (-1695 (((-3 |#2| "failed") $) 196)) (-2205 ((|#2| $) 197)) (-2784 (($ $ $) 171 (|has| |#1| (-371)))) (-1391 (($ $) 72)) (-2232 (((-3 $ "failed") $) 37)) (-1899 (((-416 (-573)) $) 193)) (-2796 (($ $ $) 170 (|has| |#1| (-371)))) (-4423 (($ (-416 (-573)) |#2|) 194)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 165 (|has| |#1| (-371)))) (-2696 (((-112) $) 178 (|has| |#1| (-371)))) (-1488 (((-112) $) 85)) (-2999 (($) 159 (|has| |#1| (-38 (-416 (-573)))))) (-2534 (((-416 (-573)) $) 114) (((-416 (-573)) $ (-416 (-573))) 113)) (-1959 (((-112) $) 35)) (-4325 (($ $ (-573)) 130 (|has| |#1| (-38 (-416 (-573)))))) (-2976 (($ $ (-931)) 115) (($ $ (-416 (-573))) 184)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 174 (|has| |#1| (-371)))) (-3676 (((-112) $) 74)) (-4334 (($ |#1| (-416 (-573))) 73) (($ $ (-1094) (-416 (-573))) 88) (($ $ (-653 (-1094)) (-653 (-416 (-573)))) 87)) (-1776 (($ (-1 |#1| |#1|) $) 75)) (-3118 (($ $) 156 (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) 77)) (-1369 ((|#1| $) 78)) (-2829 (($ (-653 $)) 163 (|has| |#1| (-371))) (($ $ $) 162 (|has| |#1| (-371)))) (-3120 ((|#2| $) 192)) (-4064 (((-3 |#2| "failed") $) 190)) (-4412 ((|#2| $) 191)) (-3180 (((-1171) $) 10)) (-1323 (($ $) 179 (|has| |#1| (-371)))) (-1626 (($ $) 183 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189)) 182 (-2817 (-12 (|has| |#1| (-29 (-573))) (|has| |#1| (-969)) (|has| |#1| (-1215)) (|has| |#1| (-38 (-416 (-573))))) (-12 (|has| |#1| (-15 -4354 ((-653 (-1189)) |#1|))) (|has| |#1| (-15 -1626 (|#1| |#1| (-1189)))) (|has| |#1| (-38 (-416 (-573)))))))) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 164 (|has| |#1| (-371)))) (-2872 (($ (-653 $)) 161 (|has| |#1| (-371))) (($ $ $) 160 (|has| |#1| (-371)))) (-4218 (((-427 $) $) 175 (|has| |#1| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 173 (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 172 (|has| |#1| (-371)))) (-2212 (($ $ (-416 (-573))) 109)) (-2837 (((-3 $ "failed") $ $) 62 (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 166 (|has| |#1| (-371)))) (-1608 (($ $) 157 (|has| |#1| (-38 (-416 (-573)))))) (-2645 (((-1169 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-416 (-573))))))) (-2163 (((-780) $) 168 (|has| |#1| (-371)))) (-2198 ((|#1| $ (-416 (-573))) 119) (($ $ $) 95 (|has| (-416 (-573)) (-1124)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 169 (|has| |#1| (-371)))) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) 103 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $ (-1189) (-780)) 102 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $ (-653 (-1189))) 101 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $ (-1189)) 100 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-780)) 97 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (-2565 (((-416 (-573)) $) 76)) (-2401 (($ $) 146 (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) 135 (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) 145 (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) 136 (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) 144 (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) 137 (|has| |#1| (-38 (-416 (-573)))))) (-4101 (($ $) 84)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 195) (($ (-416 (-573))) 69 (|has| |#1| (-38 (-416 (-573))))) (($ $) 61 (|has| |#1| (-565)))) (-4317 ((|#1| $ (-416 (-573))) 71)) (-4279 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1545 (((-780)) 32 T CONST)) (-3358 ((|#1| $) 116)) (-3507 (((-112) $ $) 9)) (-2439 (($ $) 155 (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) 143 (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) 65 (|has| |#1| (-565)))) (-2413 (($ $) 154 (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) 142 (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) 153 (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) 141 (|has| |#1| (-38 (-416 (-573)))))) (-3550 ((|#1| $ (-416 (-573))) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-416 (-573))))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2520 (($ $) 152 (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) 140 (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) 151 (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) 139 (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) 150 (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) 138 (|has| |#1| (-38 (-416 (-573)))))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) 107 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $ (-1189) (-780)) 106 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $ (-653 (-1189))) 105 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $ (-1189)) 104 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-780)) 96 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 70 (|has| |#1| (-371))) (($ $ $) 181 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 180 (|has| |#1| (-371))) (($ $ $) 158 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 129 (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-416 (-573)) $) 68 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 67 (|has| |#1| (-38 (-416 (-573))))))) +(((-1263 |#1| |#2|) (-141) (-1061) (-1240 |t#1|)) (T -1263)) +((-2565 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1240 *3)) (-5 *2 (-416 (-573))))) (-4423 (*1 *1 *2 *3) (-12 (-5 *2 (-416 (-573))) (-4 *4 (-1061)) (-4 *1 (-1263 *4 *3)) (-4 *3 (-1240 *4)))) (-1899 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1240 *3)) (-5 *2 (-416 (-573))))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-1240 *3)))) (-4412 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-1240 *3)))) (-4064 (*1 *2 *1) (|partial| -12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-1240 *3))))) +(-13 (-1261 |t#1|) (-1050 |t#2|) (-625 |t#2|) (-10 -8 (-15 -4423 ($ (-416 (-573)) |t#2|)) (-15 -1899 ((-416 (-573)) $)) (-15 -3120 (|t#2| $)) (-15 -2565 ((-416 (-573)) $)) (-15 -4412 (|t#2| $)) (-15 -4064 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-416 (-573))) . T) ((-25) . T) ((-38 #1=(-416 (-573))) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-35) |has| |#1| (-38 (-416 (-573)))) ((-95) |has| |#1| (-38 (-416 (-573)))) ((-102) . T) ((-111 #1# #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-625 (-573)) . T) ((-625 |#1|) |has| |#1| (-174)) ((-625 |#2|) . T) ((-625 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-622 (-871)) . T) ((-174) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) ((-248) |has| |#1| (-371)) ((-291) |has| |#1| (-38 (-416 (-573)))) ((-293 #0# |#1|) . T) ((-293 $ $) |has| (-416 (-573)) (-1124)) ((-297) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-314) |has| |#1| (-371)) ((-371) |has| |#1| (-371)) ((-461) |has| |#1| (-371)) ((-502) |has| |#1| (-38 (-416 (-573)))) ((-565) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-655 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-649 |#1|) |has| |#1| (-174)) ((-649 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-726 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-726 |#1|) |has| |#1| (-174)) ((-726 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371))) ((-735) . T) ((-910 (-1189)) -12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189)))) ((-985 |#1| #0# (-1094)) . T) ((-930) |has| |#1| (-371)) ((-1014) |has| |#1| (-38 (-416 (-573)))) ((-1050 |#2|) . T) ((-1063 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-1063 |#1|) . T) ((-1063 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-1068 #1#) -2817 (|has| |#1| (-371)) (|has| |#1| (-38 (-416 (-573))))) ((-1068 |#1|) . T) ((-1068 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-371)) (|has| |#1| (-174))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1215) |has| |#1| (-38 (-416 (-573)))) ((-1218) |has| |#1| (-38 (-416 (-573)))) ((-1230) . T) ((-1234) |has| |#1| (-371)) ((-1258 |#1| #0#) . T) ((-1261 |#1|) . T)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4354 (((-653 (-1094)) $) NIL)) (-1487 (((-1189) $) 104)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-1442 (($ $ (-416 (-573))) 116) (($ $ (-416 (-573)) (-416 (-573))) 118)) (-1662 (((-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#1|))) $) 54)) (-2363 (($ $) 192 (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) 168 (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL (|has| |#1| (-371)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4228 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2800 (((-112) $ $) NIL (|has| |#1| (-371)))) (-2342 (($ $) 188 (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) 164 (|has| |#1| (-38 (-416 (-573)))))) (-3622 (($ (-780) (-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#1|)))) 65)) (-2388 (($ $) 196 (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) 172 (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) NIL)) (-2205 ((|#2| $) NIL)) (-2784 (($ $ $) NIL (|has| |#1| (-371)))) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) 85)) (-1899 (((-416 (-573)) $) 13)) (-2796 (($ $ $) NIL (|has| |#1| (-371)))) (-4423 (($ (-416 (-573)) |#2|) 11)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#1| (-371)))) (-2696 (((-112) $) NIL (|has| |#1| (-371)))) (-1488 (((-112) $) 74)) (-2999 (($) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2534 (((-416 (-573)) $) 113) (((-416 (-573)) $ (-416 (-573))) 114)) (-1959 (((-112) $) NIL)) (-4325 (($ $ (-573)) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2976 (($ $ (-931)) 130) (($ $ (-416 (-573))) 128)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-416 (-573))) 33) (($ $ (-1094) (-416 (-573))) NIL) (($ $ (-653 (-1094)) (-653 (-416 (-573)))) NIL)) (-1776 (($ (-1 |#1| |#1|) $) 125)) (-3118 (($ $) 162 (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-3120 ((|#2| $) 12)) (-4064 (((-3 |#2| "failed") $) 44)) (-4412 ((|#2| $) 45)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) 101 (|has| |#1| (-371)))) (-1626 (($ $) 146 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189)) 151 (-2817 (-12 (|has| |#1| (-15 -1626 (|#1| |#1| (-1189)))) (|has| |#1| (-15 -4354 ((-653 (-1189)) |#1|))) (|has| |#1| (-38 (-416 (-573))))) (-12 (|has| |#1| (-29 (-573))) (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-969)) (|has| |#1| (-1215)))))) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-371)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-4218 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2212 (($ $ (-416 (-573))) 122)) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-1608 (($ $) 160 (|has| |#1| (-38 (-416 (-573)))))) (-2645 (((-1169 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-416 (-573))))))) (-2163 (((-780) $) NIL (|has| |#1| (-371)))) (-2198 ((|#1| $ (-416 (-573))) 108) (($ $ $) 94 (|has| (-416 (-573)) (-1124)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) 138 (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (-2565 (((-416 (-573)) $) 16)) (-2401 (($ $) 198 (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) 174 (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) 194 (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) 170 (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) 190 (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) 166 (|has| |#1| (-38 (-416 (-573)))))) (-4101 (($ $) 120)) (-2942 (((-871) $) NIL) (($ (-573)) 37) (($ |#1|) 27 (|has| |#1| (-174))) (($ |#2|) 34) (($ (-416 (-573))) 139 (|has| |#1| (-38 (-416 (-573))))) (($ $) NIL (|has| |#1| (-565)))) (-4317 ((|#1| $ (-416 (-573))) 107)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) 127 T CONST)) (-3358 ((|#1| $) 106)) (-3507 (((-112) $ $) NIL)) (-2439 (($ $) 204 (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) 180 (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2413 (($ $) 200 (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) 176 (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) 208 (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) 184 (|has| |#1| (-38 (-416 (-573)))))) (-3550 ((|#1| $ (-416 (-573))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-416 (-573))))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2520 (($ $) 210 (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) 186 (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) 206 (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) 182 (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) 202 (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) 178 (|has| |#1| (-38 (-416 (-573)))))) (-2132 (($) 21 T CONST)) (-2144 (($) 17 T CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (-2981 (((-112) $ $) 72)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371))) (($ $ $) 100 (|has| |#1| (-371)))) (-3093 (($ $) 142) (($ $ $) 78)) (-3077 (($ $ $) 76)) (** (($ $ (-931)) NIL) (($ $ (-780)) 82) (($ $ (-573)) 157 (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 158 (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))))) +(((-1264 |#1| |#2|) (-1263 |#1| |#2|) (-1061) (-1240 |#1|)) (T -1264)) +NIL +(-1263 |#1| |#2|) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4354 (((-653 (-1094)) $) NIL)) (-1487 (((-1189) $) 11)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) NIL (|has| |#1| (-565)))) (-1442 (($ $ (-416 (-573))) NIL) (($ $ (-416 (-573)) (-416 (-573))) NIL)) (-1662 (((-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#1|))) $) NIL)) (-2363 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4285 (($ $) NIL (|has| |#1| (-371)))) (-2427 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4228 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2800 (((-112) $ $) NIL (|has| |#1| (-371)))) (-2342 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3622 (($ (-780) (-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#1|)))) NIL)) (-2388 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-1244 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1272 |#1| |#2| |#3|) "failed") $) 22)) (-2205 (((-1244 |#1| |#2| |#3|) $) NIL) (((-1272 |#1| |#2| |#3|) $) NIL)) (-2784 (($ $ $) NIL (|has| |#1| (-371)))) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-1899 (((-416 (-573)) $) 69)) (-2796 (($ $ $) NIL (|has| |#1| (-371)))) (-4423 (($ (-416 (-573)) (-1244 |#1| |#2| |#3|)) NIL)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) NIL (|has| |#1| (-371)))) (-2696 (((-112) $) NIL (|has| |#1| (-371)))) (-1488 (((-112) $) NIL)) (-2999 (($) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2534 (((-416 (-573)) $) NIL) (((-416 (-573)) $ (-416 (-573))) NIL)) (-1959 (((-112) $) NIL)) (-4325 (($ $ (-573)) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2976 (($ $ (-931)) NIL) (($ $ (-416 (-573))) NIL)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-416 (-573))) 30) (($ $ (-1094) (-416 (-573))) NIL) (($ $ (-653 (-1094)) (-653 (-416 (-573)))) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3118 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-2829 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-3120 (((-1244 |#1| |#2| |#3|) $) 72)) (-4064 (((-3 (-1244 |#1| |#2| |#3|) "failed") $) NIL)) (-4412 (((-1244 |#1| |#2| |#3|) $) NIL)) (-3180 (((-1171) $) NIL)) (-1323 (($ $) NIL (|has| |#1| (-371)))) (-1626 (($ $) 39 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189)) NIL (-2817 (-12 (|has| |#1| (-15 -1626 (|#1| |#1| (-1189)))) (|has| |#1| (-15 -4354 ((-653 (-1189)) |#1|))) (|has| |#1| (-38 (-416 (-573))))) (-12 (|has| |#1| (-29 (-573))) (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-969)) (|has| |#1| (-1215))))) (($ $ (-1276 |#2|)) 40 (|has| |#1| (-38 (-416 (-573)))))) (-3965 (((-1132) $) NIL)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) NIL (|has| |#1| (-371)))) (-2872 (($ (-653 $)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-4218 (((-427 $) $) NIL (|has| |#1| (-371)))) (-4019 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-371))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) NIL (|has| |#1| (-371)))) (-2212 (($ $ (-416 (-573))) NIL)) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-565)))) (-3014 (((-3 (-653 $) "failed") (-653 $) $) NIL (|has| |#1| (-371)))) (-1608 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2645 (((-1169 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-416 (-573))))))) (-2163 (((-780) $) NIL (|has| |#1| (-371)))) (-2198 ((|#1| $ (-416 (-573))) NIL) (($ $ $) NIL (|has| (-416 (-573)) (-1124)))) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) NIL (|has| |#1| (-371)))) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-1276 |#2|)) 38)) (-2565 (((-416 (-573)) $) NIL)) (-2401 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-4101 (($ $) NIL)) (-2942 (((-871) $) 107) (($ (-573)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1244 |#1| |#2| |#3|)) 16) (($ (-1272 |#1| |#2| |#3|)) 17) (($ (-1276 |#2|)) 36) (($ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $) NIL (|has| |#1| (-565)))) (-4317 ((|#1| $ (-416 (-573))) NIL)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) NIL T CONST)) (-3358 ((|#1| $) 12)) (-3507 (((-112) $ $) NIL)) (-2439 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2413 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3550 ((|#1| $ (-416 (-573))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-416 (-573))))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2520 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2132 (($) 32 T CONST)) (-2144 (($) 26 T CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-416 (-573)) |#1|))))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) 34)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ (-573)) NIL (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))))) +(((-1265 |#1| |#2| |#3|) (-13 (-1263 |#1| (-1244 |#1| |#2| |#3|)) (-1050 (-1272 |#1| |#2| |#3|)) (-625 (-1276 |#2|)) (-10 -8 (-15 -3904 ($ $ (-1276 |#2|))) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1276 |#2|))) |%noBranch|))) (-1061) (-1189) |#1|) (T -1265)) +((-3904 (*1 *1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1265 *3 *4 *5)) (-4 *3 (-1061)) (-14 *5 *3))) (-1626 (*1 *1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1265 *3 *4 *5)) (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-14 *5 *3)))) +(-13 (-1263 |#1| (-1244 |#1| |#2| |#3|)) (-1050 (-1272 |#1| |#2| |#3|)) (-625 (-1276 |#2|)) (-10 -8 (-15 -3904 ($ $ (-1276 |#2|))) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1276 |#2|))) |%noBranch|))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 37)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-1345 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 (-573) "failed") $) NIL (|has| (-1265 |#2| |#3| |#4|) (-1050 (-573)))) (((-3 (-416 (-573)) "failed") $) NIL (|has| (-1265 |#2| |#3| |#4|) (-1050 (-416 (-573))))) (((-3 (-1265 |#2| |#3| |#4|) "failed") $) 22)) (-2205 (((-573) $) NIL (|has| (-1265 |#2| |#3| |#4|) (-1050 (-573)))) (((-416 (-573)) $) NIL (|has| (-1265 |#2| |#3| |#4|) (-1050 (-416 (-573))))) (((-1265 |#2| |#3| |#4|) $) NIL)) (-1391 (($ $) 41)) (-2232 (((-3 $ "failed") $) 27)) (-3246 (($ $) NIL (|has| (-1265 |#2| |#3| |#4|) (-461)))) (-2343 (($ $ (-1265 |#2| |#3| |#4|) (-326 |#2| |#3| |#4|) $) NIL)) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) 11)) (-3676 (((-112) $) NIL)) (-4334 (($ (-1265 |#2| |#3| |#4|) (-326 |#2| |#3| |#4|)) 25)) (-4036 (((-326 |#2| |#3| |#4|) $) NIL)) (-1382 (($ (-1 (-326 |#2| |#3| |#4|) (-326 |#2| |#3| |#4|)) $) NIL)) (-1776 (($ (-1 (-1265 |#2| |#3| |#4|) (-1265 |#2| |#3| |#4|)) $) NIL)) (-2440 (((-3 (-852 |#2|) "failed") $) 90)) (-1358 (($ $) NIL)) (-1369 (((-1265 |#2| |#3| |#4|) $) 20)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-1337 (((-112) $) NIL)) (-1348 (((-1265 |#2| |#3| |#4|) $) NIL)) (-2837 (((-3 $ "failed") $ (-1265 |#2| |#3| |#4|)) NIL (|has| (-1265 |#2| |#3| |#4|) (-565))) (((-3 $ "failed") $ $) NIL)) (-3560 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1265 |#2| |#3| |#4|)) (|:| |%expon| (-326 |#2| |#3| |#4|)) (|:| |%expTerms| (-653 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#2|)))))) (|:| |%type| (-1171))) "failed") $) 74)) (-2565 (((-326 |#2| |#3| |#4|) $) 17)) (-3257 (((-1265 |#2| |#3| |#4|) $) NIL (|has| (-1265 |#2| |#3| |#4|) (-461)))) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ (-1265 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-416 (-573))) NIL (-2817 (|has| (-1265 |#2| |#3| |#4|) (-38 (-416 (-573)))) (|has| (-1265 |#2| |#3| |#4|) (-1050 (-416 (-573))))))) (-1920 (((-653 (-1265 |#2| |#3| |#4|)) $) NIL)) (-4317 (((-1265 |#2| |#3| |#4|) $ (-326 |#2| |#3| |#4|)) NIL)) (-4279 (((-3 $ "failed") $) NIL (|has| (-1265 |#2| |#3| |#4|) (-146)))) (-1545 (((-780)) NIL T CONST)) (-1538 (($ $ $ (-780)) NIL (|has| (-1265 |#2| |#3| |#4|) (-174)))) (-3507 (((-112) $ $) NIL)) (-2516 (((-112) $ $) NIL)) (-2132 (($) NIL T CONST)) (-2144 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ (-1265 |#2| |#3| |#4|)) NIL (|has| (-1265 |#2| |#3| |#4|) (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ (-1265 |#2| |#3| |#4|)) NIL) (($ (-1265 |#2| |#3| |#4|) $) NIL) (($ (-416 (-573)) $) NIL (|has| (-1265 |#2| |#3| |#4|) (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| (-1265 |#2| |#3| |#4|) (-38 (-416 (-573))))))) +(((-1266 |#1| |#2| |#3| |#4|) (-13 (-333 (-1265 |#2| |#3| |#4|) (-326 |#2| |#3| |#4|)) (-565) (-10 -8 (-15 -2440 ((-3 (-852 |#2|) "failed") $)) (-15 -3560 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1265 |#2| |#3| |#4|)) (|:| |%expon| (-326 |#2| |#3| |#4|)) (|:| |%expTerms| (-653 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#2|)))))) (|:| |%type| (-1171))) "failed") $)))) (-13 (-1050 (-573)) (-648 (-573)) (-461)) (-13 (-27) (-1215) (-439 |#1|)) (-1189) |#2|) (T -1266)) +((-2440 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1050 (-573)) (-648 (-573)) (-461))) (-5 *2 (-852 *4)) (-5 *1 (-1266 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1215) (-439 *3))) (-14 *5 (-1189)) (-14 *6 *4))) (-3560 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1050 (-573)) (-648 (-573)) (-461))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1265 *4 *5 *6)) (|:| |%expon| (-326 *4 *5 *6)) (|:| |%expTerms| (-653 (-2 (|:| |k| (-416 (-573))) (|:| |c| *4)))))) (|:| |%type| (-1171)))) (-5 *1 (-1266 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1215) (-439 *3))) (-14 *5 (-1189)) (-14 *6 *4)))) +(-13 (-333 (-1265 |#2| |#3| |#4|) (-326 |#2| |#3| |#4|)) (-565) (-10 -8 (-15 -2440 ((-3 (-852 |#2|) "failed") $)) (-15 -3560 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1265 |#2| |#3| |#4|)) (|:| |%expon| (-326 |#2| |#3| |#4|)) (|:| |%expTerms| (-653 (-2 (|:| |k| (-416 (-573))) (|:| |c| |#2|)))))) (|:| |%type| (-1171))) "failed") $)))) +((-3082 ((|#2| $) 34)) (-2404 ((|#2| $) 18)) (-1969 (($ $) 53)) (-1896 (($ $ (-573)) 85)) (-3450 (((-112) $ (-780)) 46)) (-2367 ((|#2| $ |#2|) 82)) (-2016 ((|#2| $ |#2|) 78)) (-3142 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-2720 (($ $ (-653 $)) 81)) (-2392 ((|#2| $) 17)) (-2925 (($ $) NIL) (($ $ (-780)) 59)) (-3113 (((-653 $) $) 31)) (-3208 (((-112) $ $) 69)) (-2078 (((-112) $ (-780)) 45)) (-2673 (((-112) $ (-780)) 43)) (-2880 (((-112) $) 33)) (-3359 ((|#2| $) 25) (($ $ (-780)) 64)) (-2198 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-1628 (((-112) $) 23)) (-1992 (($ $) 56)) (-3839 (($ $) 86)) (-4072 (((-780) $) 58)) (-1512 (($ $) 57)) (-4156 (($ $ $) 77) (($ |#2| $) NIL)) (-1811 (((-653 $) $) 32)) (-2981 (((-112) $ $) 67)) (-2862 (((-780) $) 52))) +(((-1267 |#1| |#2|) (-10 -8 (-15 -1896 (|#1| |#1| (-573))) (-15 -3142 (|#2| |#1| "last" |#2|)) (-15 -2016 (|#2| |#1| |#2|)) (-15 -3142 (|#1| |#1| "rest" |#1|)) (-15 -3142 (|#2| |#1| "first" |#2|)) (-15 -3839 (|#1| |#1|)) (-15 -1992 (|#1| |#1|)) (-15 -4072 ((-780) |#1|)) (-15 -1512 (|#1| |#1|)) (-15 -2404 (|#2| |#1|)) (-15 -2392 (|#2| |#1|)) (-15 -1969 (|#1| |#1|)) (-15 -3359 (|#1| |#1| (-780))) (-15 -2198 (|#2| |#1| "last")) (-15 -3359 (|#2| |#1|)) (-15 -2925 (|#1| |#1| (-780))) (-15 -2198 (|#1| |#1| "rest")) (-15 -2925 (|#1| |#1|)) (-15 -2198 (|#2| |#1| "first")) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -2367 (|#2| |#1| |#2|)) (-15 -3142 (|#2| |#1| "value" |#2|)) (-15 -2720 (|#1| |#1| (-653 |#1|))) (-15 -3208 ((-112) |#1| |#1|)) (-15 -1628 ((-112) |#1|)) (-15 -2198 (|#2| |#1| "value")) (-15 -3082 (|#2| |#1|)) (-15 -2880 ((-112) |#1|)) (-15 -3113 ((-653 |#1|) |#1|)) (-15 -1811 ((-653 |#1|) |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -2862 ((-780) |#1|)) (-15 -3450 ((-112) |#1| (-780))) (-15 -2078 ((-112) |#1| (-780))) (-15 -2673 ((-112) |#1| (-780)))) (-1268 |#2|) (-1230)) (T -1267)) +NIL +(-10 -8 (-15 -1896 (|#1| |#1| (-573))) (-15 -3142 (|#2| |#1| "last" |#2|)) (-15 -2016 (|#2| |#1| |#2|)) (-15 -3142 (|#1| |#1| "rest" |#1|)) (-15 -3142 (|#2| |#1| "first" |#2|)) (-15 -3839 (|#1| |#1|)) (-15 -1992 (|#1| |#1|)) (-15 -4072 ((-780) |#1|)) (-15 -1512 (|#1| |#1|)) (-15 -2404 (|#2| |#1|)) (-15 -2392 (|#2| |#1|)) (-15 -1969 (|#1| |#1|)) (-15 -3359 (|#1| |#1| (-780))) (-15 -2198 (|#2| |#1| "last")) (-15 -3359 (|#2| |#1|)) (-15 -2925 (|#1| |#1| (-780))) (-15 -2198 (|#1| |#1| "rest")) (-15 -2925 (|#1| |#1|)) (-15 -2198 (|#2| |#1| "first")) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -2367 (|#2| |#1| |#2|)) (-15 -3142 (|#2| |#1| "value" |#2|)) (-15 -2720 (|#1| |#1| (-653 |#1|))) (-15 -3208 ((-112) |#1| |#1|)) (-15 -1628 ((-112) |#1|)) (-15 -2198 (|#2| |#1| "value")) (-15 -3082 (|#2| |#1|)) (-15 -2880 ((-112) |#1|)) (-15 -3113 ((-653 |#1|) |#1|)) (-15 -1811 ((-653 |#1|) |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -2862 ((-780) |#1|)) (-15 -3450 ((-112) |#1| (-780))) (-15 -2078 ((-112) |#1| (-780))) (-15 -2673 ((-112) |#1| (-780)))) +((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-3082 ((|#1| $) 49)) (-2404 ((|#1| $) 66)) (-1969 (($ $) 68)) (-1896 (($ $ (-573)) 53 (|has| $ (-6 -4456)))) (-3450 (((-112) $ (-780)) 8)) (-2367 ((|#1| $ |#1|) 40 (|has| $ (-6 -4456)))) (-2554 (($ $ $) 57 (|has| $ (-6 -4456)))) (-2016 ((|#1| $ |#1|) 55 (|has| $ (-6 -4456)))) (-2647 ((|#1| $ |#1|) 59 (|has| $ (-6 -4456)))) (-3142 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4456))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4456))) (($ $ "rest" $) 56 (|has| $ (-6 -4456))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4456)))) (-2720 (($ $ (-653 $)) 42 (|has| $ (-6 -4456)))) (-2392 ((|#1| $) 67)) (-2579 (($) 7 T CONST)) (-2925 (($ $) 74) (($ $ (-780)) 72)) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-3113 (((-653 $) $) 51)) (-3208 (((-112) $ $) 43 (|has| |#1| (-1112)))) (-2078 (((-112) $ (-780)) 9)) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36)) (-2673 (((-112) $ (-780)) 10)) (-3505 (((-653 |#1|) $) 46)) (-2880 (((-112) $) 50)) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-3359 ((|#1| $) 71) (($ $ (-780)) 69)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-2914 ((|#1| $) 77) (($ $ (-780)) 75)) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-1501 (((-573) $ $) 45)) (-1628 (((-112) $) 47)) (-1992 (($ $) 63)) (-3839 (($ $) 60 (|has| $ (-6 -4456)))) (-4072 (((-780) $) 64)) (-1512 (($ $) 65)) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3166 (($ $) 13)) (-3996 (($ $ $) 62 (|has| $ (-6 -4456))) (($ $ |#1|) 61 (|has| $ (-6 -4456)))) (-4156 (($ $ $) 79) (($ |#1| $) 78)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-1811 (((-653 $) $) 52)) (-1716 (((-112) $ $) 44 (|has| |#1| (-1112)))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-1268 |#1|) (-141) (-1230)) (T -1268)) +((-4156 (*1 *1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-4156 (*1 *1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-2914 (*1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-2198 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-2914 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-1268 *3)) (-4 *3 (-1230)))) (-2925 (*1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-2198 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1268 *3)) (-4 *3 (-1230)))) (-2925 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-1268 *3)) (-4 *3 (-1230)))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-2198 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-3359 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-1268 *3)) (-4 *3 (-1230)))) (-1969 (*1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-2392 (*1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-2404 (*1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-1512 (*1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-4072 (*1 *2 *1) (-12 (-4 *1 (-1268 *3)) (-4 *3 (-1230)) (-5 *2 (-780)))) (-1992 (*1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-3996 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-3996 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-3839 (*1 *1 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-2647 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-3142 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-2554 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-3142 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4456)) (-4 *1 (-1268 *3)) (-4 *3 (-1230)))) (-2016 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-3142 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) (-1896 (*1 *1 *1 *2) (-12 (-5 *2 (-573)) (|has| *1 (-6 -4456)) (-4 *1 (-1268 *3)) (-4 *3 (-1230))))) +(-13 (-1022 |t#1|) (-10 -8 (-15 -4156 ($ $ $)) (-15 -4156 ($ |t#1| $)) (-15 -2914 (|t#1| $)) (-15 -2198 (|t#1| $ "first")) (-15 -2914 ($ $ (-780))) (-15 -2925 ($ $)) (-15 -2198 ($ $ "rest")) (-15 -2925 ($ $ (-780))) (-15 -3359 (|t#1| $)) (-15 -2198 (|t#1| $ "last")) (-15 -3359 ($ $ (-780))) (-15 -1969 ($ $)) (-15 -2392 (|t#1| $)) (-15 -2404 (|t#1| $)) (-15 -1512 ($ $)) (-15 -4072 ((-780) $)) (-15 -1992 ($ $)) (IF (|has| $ (-6 -4456)) (PROGN (-15 -3996 ($ $ $)) (-15 -3996 ($ $ |t#1|)) (-15 -3839 ($ $)) (-15 -2647 (|t#1| $ |t#1|)) (-15 -3142 (|t#1| $ "first" |t#1|)) (-15 -2554 ($ $ $)) (-15 -3142 ($ $ "rest" $)) (-15 -2016 (|t#1| $ |t#1|)) (-15 -3142 (|t#1| $ "last" |t#1|)) (-15 -1896 ($ $ (-573)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1112)) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-622 (-871)))) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-498 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-1022 |#1|) . T) ((-1112) |has| |#1| (-1112)) ((-1230) . T)) +((-1776 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1269 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1776 (|#4| (-1 |#2| |#1|) |#3|))) (-1061) (-1061) (-1271 |#1|) (-1271 |#2|)) (T -1269)) +((-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1061)) (-4 *6 (-1061)) (-4 *2 (-1271 *6)) (-5 *1 (-1269 *5 *6 *4 *2)) (-4 *4 (-1271 *5))))) +(-10 -7 (-15 -1776 (|#4| (-1 |#2| |#1|) |#3|))) +((-1748 (((-112) $) 17)) (-2363 (($ $) 105)) (-2246 (($ $) 81)) (-2342 (($ $) 101)) (-2225 (($ $) 77)) (-2388 (($ $) 109)) (-2266 (($ $) 85)) (-3118 (($ $) 75)) (-1608 (($ $) 73)) (-2401 (($ $) 111)) (-2274 (($ $) 87)) (-2374 (($ $) 107)) (-2255 (($ $) 83)) (-2352 (($ $) 103)) (-2236 (($ $) 79)) (-2942 (((-871) $) 61) (($ (-573)) NIL) (($ (-416 (-573))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2439 (($ $) 117)) (-2304 (($ $) 93)) (-2413 (($ $) 113)) (-2286 (($ $) 89)) (-2464 (($ $) 121)) (-2324 (($ $) 97)) (-2520 (($ $) 123)) (-2333 (($ $) 99)) (-2452 (($ $) 119)) (-2314 (($ $) 95)) (-2426 (($ $) 115)) (-2296 (($ $) 91)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-416 (-573))) 71))) +(((-1270 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-416 (-573)))) (-15 -2246 (|#1| |#1|)) (-15 -2225 (|#1| |#1|)) (-15 -2266 (|#1| |#1|)) (-15 -2274 (|#1| |#1|)) (-15 -2255 (|#1| |#1|)) (-15 -2236 (|#1| |#1|)) (-15 -2296 (|#1| |#1|)) (-15 -2314 (|#1| |#1|)) (-15 -2333 (|#1| |#1|)) (-15 -2324 (|#1| |#1|)) (-15 -2286 (|#1| |#1|)) (-15 -2304 (|#1| |#1|)) (-15 -2352 (|#1| |#1|)) (-15 -2374 (|#1| |#1|)) (-15 -2401 (|#1| |#1|)) (-15 -2388 (|#1| |#1|)) (-15 -2342 (|#1| |#1|)) (-15 -2363 (|#1| |#1|)) (-15 -2426 (|#1| |#1|)) (-15 -2452 (|#1| |#1|)) (-15 -2520 (|#1| |#1|)) (-15 -2464 (|#1| |#1|)) (-15 -2413 (|#1| |#1|)) (-15 -2439 (|#1| |#1|)) (-15 -3118 (|#1| |#1|)) (-15 -1608 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2942 (|#1| |#2|)) (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2942 (|#1| (-573))) (-15 ** (|#1| |#1| (-780))) (-15 ** (|#1| |#1| (-931))) (-15 -1748 ((-112) |#1|)) (-15 -2942 ((-871) |#1|))) (-1271 |#2|) (-1061)) (T -1270)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-416 (-573)))) (-15 -2246 (|#1| |#1|)) (-15 -2225 (|#1| |#1|)) (-15 -2266 (|#1| |#1|)) (-15 -2274 (|#1| |#1|)) (-15 -2255 (|#1| |#1|)) (-15 -2236 (|#1| |#1|)) (-15 -2296 (|#1| |#1|)) (-15 -2314 (|#1| |#1|)) (-15 -2333 (|#1| |#1|)) (-15 -2324 (|#1| |#1|)) (-15 -2286 (|#1| |#1|)) (-15 -2304 (|#1| |#1|)) (-15 -2352 (|#1| |#1|)) (-15 -2374 (|#1| |#1|)) (-15 -2401 (|#1| |#1|)) (-15 -2388 (|#1| |#1|)) (-15 -2342 (|#1| |#1|)) (-15 -2363 (|#1| |#1|)) (-15 -2426 (|#1| |#1|)) (-15 -2452 (|#1| |#1|)) (-15 -2520 (|#1| |#1|)) (-15 -2464 (|#1| |#1|)) (-15 -2413 (|#1| |#1|)) (-15 -2439 (|#1| |#1|)) (-15 -3118 (|#1| |#1|)) (-15 -1608 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2942 (|#1| |#2|)) (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| (-416 (-573)))) (-15 -2942 (|#1| (-573))) (-15 ** (|#1| |#1| (-780))) (-15 ** (|#1| |#1| (-931))) (-15 -1748 ((-112) |#1|)) (-15 -2942 ((-871) |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4354 (((-653 (-1094)) $) 86)) (-1487 (((-1189) $) 117)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 63 (|has| |#1| (-565)))) (-2456 (($ $) 64 (|has| |#1| (-565)))) (-1345 (((-112) $) 66 (|has| |#1| (-565)))) (-1442 (($ $ (-780)) 112) (($ $ (-780) (-780)) 111)) (-1662 (((-1169 (-2 (|:| |k| (-780)) (|:| |c| |#1|))) $) 118)) (-2363 (($ $) 149 (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) 132 (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) 20)) (-4228 (($ $) 131 (|has| |#1| (-38 (-416 (-573)))))) (-2342 (($ $) 148 (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) 133 (|has| |#1| (-38 (-416 (-573)))))) (-3622 (($ (-1169 (-2 (|:| |k| (-780)) (|:| |c| |#1|)))) 169) (($ (-1169 |#1|)) 167)) (-2388 (($ $) 147 (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) 134 (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) 18 T CONST)) (-1391 (($ $) 72)) (-2232 (((-3 $ "failed") $) 37)) (-1806 (($ $) 166)) (-4052 (((-962 |#1|) $ (-780)) 164) (((-962 |#1|) $ (-780) (-780)) 163)) (-1488 (((-112) $) 85)) (-2999 (($) 159 (|has| |#1| (-38 (-416 (-573)))))) (-2534 (((-780) $) 114) (((-780) $ (-780)) 113)) (-1959 (((-112) $) 35)) (-4325 (($ $ (-573)) 130 (|has| |#1| (-38 (-416 (-573)))))) (-2976 (($ $ (-931)) 115)) (-2861 (($ (-1 |#1| (-573)) $) 165)) (-3676 (((-112) $) 74)) (-4334 (($ |#1| (-780)) 73) (($ $ (-1094) (-780)) 88) (($ $ (-653 (-1094)) (-653 (-780))) 87)) (-1776 (($ (-1 |#1| |#1|) $) 75)) (-3118 (($ $) 156 (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) 77)) (-1369 ((|#1| $) 78)) (-3180 (((-1171) $) 10)) (-1626 (($ $) 161 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189)) 160 (-2817 (-12 (|has| |#1| (-29 (-573))) (|has| |#1| (-969)) (|has| |#1| (-1215)) (|has| |#1| (-38 (-416 (-573))))) (-12 (|has| |#1| (-15 -4354 ((-653 (-1189)) |#1|))) (|has| |#1| (-15 -1626 (|#1| |#1| (-1189)))) (|has| |#1| (-38 (-416 (-573)))))))) (-3965 (((-1132) $) 11)) (-2212 (($ $ (-780)) 109)) (-2837 (((-3 $ "failed") $ $) 62 (|has| |#1| (-565)))) (-1608 (($ $) 157 (|has| |#1| (-38 (-416 (-573)))))) (-2645 (((-1169 |#1|) $ |#1|) 108 (|has| |#1| (-15 ** (|#1| |#1| (-780)))))) (-2198 ((|#1| $ (-780)) 119) (($ $ $) 95 (|has| (-780) (-1124)))) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) 103 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-780) |#1|))))) (($ $ (-1189) (-780)) 102 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-780) |#1|))))) (($ $ (-653 (-1189))) 101 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-780) |#1|))))) (($ $ (-1189)) 100 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-780) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-780) |#1|)))) (($ $ (-780)) 97 (|has| |#1| (-15 * (|#1| (-780) |#1|))))) (-2565 (((-780) $) 76)) (-2401 (($ $) 146 (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) 135 (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) 145 (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) 136 (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) 144 (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) 137 (|has| |#1| (-38 (-416 (-573)))))) (-4101 (($ $) 84)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ (-416 (-573))) 69 (|has| |#1| (-38 (-416 (-573))))) (($ $) 61 (|has| |#1| (-565))) (($ |#1|) 59 (|has| |#1| (-174)))) (-1920 (((-1169 |#1|) $) 168)) (-4317 ((|#1| $ (-780)) 71)) (-4279 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1545 (((-780)) 32 T CONST)) (-3358 ((|#1| $) 116)) (-3507 (((-112) $ $) 9)) (-2439 (($ $) 155 (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) 143 (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) 65 (|has| |#1| (-565)))) (-2413 (($ $) 154 (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) 142 (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) 153 (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) 141 (|has| |#1| (-38 (-416 (-573)))))) (-3550 ((|#1| $ (-780)) 110 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-780)))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2520 (($ $) 152 (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) 140 (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) 151 (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) 139 (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) 150 (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) 138 (|has| |#1| (-38 (-416 (-573)))))) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) 107 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-780) |#1|))))) (($ $ (-1189) (-780)) 106 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-780) |#1|))))) (($ $ (-653 (-1189))) 105 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-780) |#1|))))) (($ $ (-1189)) 104 (-12 (|has| |#1| (-910 (-1189))) (|has| |#1| (-15 * (|#1| (-780) |#1|))))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-780) |#1|)))) (($ $ (-780)) 96 (|has| |#1| (-15 * (|#1| (-780) |#1|))))) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 70 (|has| |#1| (-371)))) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ |#1|) 162 (|has| |#1| (-371))) (($ $ $) 158 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 129 (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-416 (-573)) $) 68 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) 67 (|has| |#1| (-38 (-416 (-573))))))) +(((-1271 |#1|) (-141) (-1061)) (T -1271)) +((-3622 (*1 *1 *2) (-12 (-5 *2 (-1169 (-2 (|:| |k| (-780)) (|:| |c| *3)))) (-4 *3 (-1061)) (-4 *1 (-1271 *3)))) (-1920 (*1 *2 *1) (-12 (-4 *1 (-1271 *3)) (-4 *3 (-1061)) (-5 *2 (-1169 *3)))) (-3622 (*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-4 *1 (-1271 *3)))) (-1806 (*1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1061)))) (-2861 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-573))) (-4 *1 (-1271 *3)) (-4 *3 (-1061)))) (-4052 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-4 *1 (-1271 *4)) (-4 *4 (-1061)) (-5 *2 (-962 *4)))) (-4052 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-780)) (-4 *1 (-1271 *4)) (-4 *4 (-1061)) (-5 *2 (-962 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1061)) (-4 *2 (-371)))) (-1626 (*1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1061)) (-4 *2 (-38 (-416 (-573)))))) (-1626 (*1 *1 *1 *2) (-2817 (-12 (-5 *2 (-1189)) (-4 *1 (-1271 *3)) (-4 *3 (-1061)) (-12 (-4 *3 (-29 (-573))) (-4 *3 (-969)) (-4 *3 (-1215)) (-4 *3 (-38 (-416 (-573)))))) (-12 (-5 *2 (-1189)) (-4 *1 (-1271 *3)) (-4 *3 (-1061)) (-12 (|has| *3 (-15 -4354 ((-653 *2) *3))) (|has| *3 (-15 -1626 (*3 *3 *2))) (-4 *3 (-38 (-416 (-573))))))))) +(-13 (-1258 |t#1| (-780)) (-10 -8 (-15 -3622 ($ (-1169 (-2 (|:| |k| (-780)) (|:| |c| |t#1|))))) (-15 -1920 ((-1169 |t#1|) $)) (-15 -3622 ($ (-1169 |t#1|))) (-15 -1806 ($ $)) (-15 -2861 ($ (-1 |t#1| (-573)) $)) (-15 -4052 ((-962 |t#1|) $ (-780))) (-15 -4052 ((-962 |t#1|) $ (-780) (-780))) (IF (|has| |t#1| (-371)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-416 (-573)))) (PROGN (-15 -1626 ($ $)) (IF (|has| |t#1| (-15 -1626 (|t#1| |t#1| (-1189)))) (IF (|has| |t#1| (-15 -4354 ((-653 (-1189)) |t#1|))) (-15 -1626 ($ $ (-1189))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1215)) (IF (|has| |t#1| (-969)) (IF (|has| |t#1| (-29 (-573))) (-15 -1626 ($ $ (-1189))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1014)) (-6 (-1215))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-780)) . T) ((-25) . T) ((-38 #1=(-416 (-573))) |has| |#1| (-38 (-416 (-573)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-565)) ((-35) |has| |#1| (-38 (-416 (-573)))) ((-95) |has| |#1| (-38 (-416 (-573)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-416 (-573)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-625 #1#) |has| |#1| (-38 (-416 (-573)))) ((-625 (-573)) . T) ((-625 |#1|) |has| |#1| (-174)) ((-625 $) |has| |#1| (-565)) ((-622 (-871)) . T) ((-174) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-780) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-780) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-780) |#1|))) ((-291) |has| |#1| (-38 (-416 (-573)))) ((-293 #0# |#1|) . T) ((-293 $ $) |has| (-780) (-1124)) ((-297) |has| |#1| (-565)) ((-502) |has| |#1| (-38 (-416 (-573)))) ((-565) |has| |#1| (-565)) ((-655 #1#) |has| |#1| (-38 (-416 (-573)))) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #1#) |has| |#1| (-38 (-416 (-573)))) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #1#) |has| |#1| (-38 (-416 (-573)))) ((-649 |#1|) |has| |#1| (-174)) ((-649 $) |has| |#1| (-565)) ((-726 #1#) |has| |#1| (-38 (-416 (-573)))) ((-726 |#1|) |has| |#1| (-174)) ((-726 $) |has| |#1| (-565)) ((-735) . T) ((-910 (-1189)) -12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189)))) ((-985 |#1| #0# (-1094)) . T) ((-1014) |has| |#1| (-38 (-416 (-573)))) ((-1063 #1#) |has| |#1| (-38 (-416 (-573)))) ((-1063 |#1|) . T) ((-1063 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-1068 #1#) |has| |#1| (-38 (-416 (-573)))) ((-1068 |#1|) . T) ((-1068 $) -2817 (|has| |#1| (-565)) (|has| |#1| (-174))) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1215) |has| |#1| (-38 (-416 (-573)))) ((-1218) |has| |#1| (-38 (-416 (-573)))) ((-1230) . T) ((-1258 |#1| #0#) . T)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-4354 (((-653 (-1094)) $) NIL)) (-1487 (((-1189) $) 90)) (-2866 (((-1253 |#2| |#1|) $ (-780)) 73)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) NIL (|has| |#1| (-565)))) (-2456 (($ $) NIL (|has| |#1| (-565)))) (-1345 (((-112) $) 142 (|has| |#1| (-565)))) (-1442 (($ $ (-780)) 127) (($ $ (-780) (-780)) 130)) (-1662 (((-1169 (-2 (|:| |k| (-780)) (|:| |c| |#1|))) $) 43)) (-2363 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2246 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2983 (((-3 $ "failed") $ $) NIL)) (-4228 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2342 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2225 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3622 (($ (-1169 (-2 (|:| |k| (-780)) (|:| |c| |#1|)))) 52) (($ (-1169 |#1|)) NIL)) (-2388 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2266 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2579 (($) NIL T CONST)) (-2080 (($ $) 134)) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-1806 (($ $) 140)) (-4052 (((-962 |#1|) $ (-780)) 63) (((-962 |#1|) $ (-780) (-780)) 65)) (-1488 (((-112) $) NIL)) (-2999 (($) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2534 (((-780) $) NIL) (((-780) $ (-780)) NIL)) (-1959 (((-112) $) NIL)) (-2023 (($ $) 117)) (-4325 (($ $ (-573)) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3823 (($ (-573) (-573) $) 136)) (-2976 (($ $ (-931)) 139)) (-2861 (($ (-1 |#1| (-573)) $) 111)) (-3676 (((-112) $) NIL)) (-4334 (($ |#1| (-780)) 16) (($ $ (-1094) (-780)) NIL) (($ $ (-653 (-1094)) (-653 (-780))) NIL)) (-1776 (($ (-1 |#1| |#1|) $) 98)) (-3118 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-1358 (($ $) NIL)) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-1742 (($ $) 115)) (-1901 (($ $) 113)) (-2110 (($ (-573) (-573) $) 138)) (-1626 (($ $) 150 (|has| |#1| (-38 (-416 (-573))))) (($ $ (-1189)) 156 (-2817 (-12 (|has| |#1| (-15 -1626 (|#1| |#1| (-1189)))) (|has| |#1| (-15 -4354 ((-653 (-1189)) |#1|))) (|has| |#1| (-38 (-416 (-573))))) (-12 (|has| |#1| (-29 (-573))) (|has| |#1| (-38 (-416 (-573)))) (|has| |#1| (-969)) (|has| |#1| (-1215))))) (($ $ (-1276 |#2|)) 151 (|has| |#1| (-38 (-416 (-573)))))) (-3965 (((-1132) $) NIL)) (-1735 (($ $ (-573) (-573)) 121)) (-2212 (($ $ (-780)) 123)) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-565)))) (-1608 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3616 (($ $) 119)) (-2645 (((-1169 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-780)))))) (-2198 ((|#1| $ (-780)) 95) (($ $ $) 132 (|has| (-780) (-1124)))) (-3904 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) 108 (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) 102 (|has| |#1| (-15 * (|#1| (-780) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-780) |#1|)))) (($ $ (-1276 |#2|)) 103)) (-2565 (((-780) $) NIL)) (-2401 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2274 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2374 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2255 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2352 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2236 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-4101 (($ $) 125)) (-2942 (((-871) $) NIL) (($ (-573)) 26) (($ (-416 (-573))) 148 (|has| |#1| (-38 (-416 (-573))))) (($ $) NIL (|has| |#1| (-565))) (($ |#1|) 25 (|has| |#1| (-174))) (($ (-1253 |#2| |#1|)) 81) (($ (-1276 |#2|)) 22)) (-1920 (((-1169 |#1|) $) NIL)) (-4317 ((|#1| $ (-780)) 94)) (-4279 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1545 (((-780)) NIL T CONST)) (-3358 ((|#1| $) 91)) (-3507 (((-112) $ $) NIL)) (-2439 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2304 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2516 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2413 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2286 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2464 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2324 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-3550 ((|#1| $ (-780)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-780)))) (|has| |#1| (-15 -2942 (|#1| (-1189))))))) (-2520 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2333 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2452 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2314 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2426 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2296 (($ $) NIL (|has| |#1| (-38 (-416 (-573)))))) (-2132 (($) 18 T CONST)) (-2144 (($) 13 T CONST)) (-3609 (($ $ (-653 (-1189)) (-653 (-780))) NIL (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189) (-780)) NIL (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-653 (-1189))) NIL (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $ (-1189)) NIL (-12 (|has| |#1| (-15 * (|#1| (-780) |#1|))) (|has| |#1| (-910 (-1189))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-780) |#1|)))) (($ $ (-780)) NIL (|has| |#1| (-15 * (|#1| (-780) |#1|))))) (-2981 (((-112) $ $) NIL)) (-3103 (($ $ |#1|) NIL (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) 107)) (-3077 (($ $ $) 20)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL) (($ $ |#1|) 145 (|has| |#1| (-371))) (($ $ $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573)))))) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 106) (($ (-416 (-573)) $) NIL (|has| |#1| (-38 (-416 (-573))))) (($ $ (-416 (-573))) NIL (|has| |#1| (-38 (-416 (-573))))))) +(((-1272 |#1| |#2| |#3|) (-13 (-1271 |#1|) (-10 -8 (-15 -2942 ($ (-1253 |#2| |#1|))) (-15 -2866 ((-1253 |#2| |#1|) $ (-780))) (-15 -2942 ($ (-1276 |#2|))) (-15 -3904 ($ $ (-1276 |#2|))) (-15 -1901 ($ $)) (-15 -1742 ($ $)) (-15 -2023 ($ $)) (-15 -3616 ($ $)) (-15 -1735 ($ $ (-573) (-573))) (-15 -2080 ($ $)) (-15 -3823 ($ (-573) (-573) $)) (-15 -2110 ($ (-573) (-573) $)) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1276 |#2|))) |%noBranch|))) (-1061) (-1189) |#1|) (T -1272)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-1253 *4 *3)) (-4 *3 (-1061)) (-14 *4 (-1189)) (-14 *5 *3) (-5 *1 (-1272 *3 *4 *5)))) (-2866 (*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1253 *5 *4)) (-5 *1 (-1272 *4 *5 *6)) (-4 *4 (-1061)) (-14 *5 (-1189)) (-14 *6 *4))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1272 *3 *4 *5)) (-4 *3 (-1061)) (-14 *5 *3))) (-3904 (*1 *1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1272 *3 *4 *5)) (-4 *3 (-1061)) (-14 *5 *3))) (-1901 (*1 *1 *1) (-12 (-5 *1 (-1272 *2 *3 *4)) (-4 *2 (-1061)) (-14 *3 (-1189)) (-14 *4 *2))) (-1742 (*1 *1 *1) (-12 (-5 *1 (-1272 *2 *3 *4)) (-4 *2 (-1061)) (-14 *3 (-1189)) (-14 *4 *2))) (-2023 (*1 *1 *1) (-12 (-5 *1 (-1272 *2 *3 *4)) (-4 *2 (-1061)) (-14 *3 (-1189)) (-14 *4 *2))) (-3616 (*1 *1 *1) (-12 (-5 *1 (-1272 *2 *3 *4)) (-4 *2 (-1061)) (-14 *3 (-1189)) (-14 *4 *2))) (-1735 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-1272 *3 *4 *5)) (-4 *3 (-1061)) (-14 *4 (-1189)) (-14 *5 *3))) (-2080 (*1 *1 *1) (-12 (-5 *1 (-1272 *2 *3 *4)) (-4 *2 (-1061)) (-14 *3 (-1189)) (-14 *4 *2))) (-3823 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-1272 *3 *4 *5)) (-4 *3 (-1061)) (-14 *4 (-1189)) (-14 *5 *3))) (-2110 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-1272 *3 *4 *5)) (-4 *3 (-1061)) (-14 *4 (-1189)) (-14 *5 *3))) (-1626 (*1 *1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1272 *3 *4 *5)) (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-14 *5 *3)))) +(-13 (-1271 |#1|) (-10 -8 (-15 -2942 ($ (-1253 |#2| |#1|))) (-15 -2866 ((-1253 |#2| |#1|) $ (-780))) (-15 -2942 ($ (-1276 |#2|))) (-15 -3904 ($ $ (-1276 |#2|))) (-15 -1901 ($ $)) (-15 -1742 ($ $)) (-15 -2023 ($ $)) (-15 -3616 ($ $)) (-15 -1735 ($ $ (-573) (-573))) (-15 -2080 ($ $)) (-15 -3823 ($ (-573) (-573) $)) (-15 -2110 ($ (-573) (-573) $)) (IF (|has| |#1| (-38 (-416 (-573)))) (-15 -1626 ($ $ (-1276 |#2|))) |%noBranch|))) +((-3832 (((-1 (-1169 |#1|) (-653 (-1169 |#1|))) (-1 |#2| (-653 |#2|))) 24)) (-1571 (((-1 (-1169 |#1|) (-1169 |#1|) (-1169 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2716 (((-1 (-1169 |#1|) (-1169 |#1|)) (-1 |#2| |#2|)) 13)) (-2272 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-4103 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-2256 ((|#2| (-1 |#2| (-653 |#2|)) (-653 |#1|)) 60)) (-2834 (((-653 |#2|) (-653 |#1|) (-653 (-1 |#2| (-653 |#2|)))) 66)) (-3654 ((|#2| |#2| |#2|) 43))) +(((-1273 |#1| |#2|) (-10 -7 (-15 -2716 ((-1 (-1169 |#1|) (-1169 |#1|)) (-1 |#2| |#2|))) (-15 -1571 ((-1 (-1169 |#1|) (-1169 |#1|) (-1169 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3832 ((-1 (-1169 |#1|) (-653 (-1169 |#1|))) (-1 |#2| (-653 |#2|)))) (-15 -3654 (|#2| |#2| |#2|)) (-15 -4103 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2272 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2256 (|#2| (-1 |#2| (-653 |#2|)) (-653 |#1|))) (-15 -2834 ((-653 |#2|) (-653 |#1|) (-653 (-1 |#2| (-653 |#2|)))))) (-38 (-416 (-573))) (-1271 |#1|)) (T -1273)) +((-2834 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *5)) (-5 *4 (-653 (-1 *6 (-653 *6)))) (-4 *5 (-38 (-416 (-573)))) (-4 *6 (-1271 *5)) (-5 *2 (-653 *6)) (-5 *1 (-1273 *5 *6)))) (-2256 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-653 *2))) (-5 *4 (-653 *5)) (-4 *5 (-38 (-416 (-573)))) (-4 *2 (-1271 *5)) (-5 *1 (-1273 *5 *2)))) (-2272 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1271 *4)) (-5 *1 (-1273 *4 *2)) (-4 *4 (-38 (-416 (-573)))))) (-4103 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1271 *4)) (-5 *1 (-1273 *4 *2)) (-4 *4 (-38 (-416 (-573)))))) (-3654 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1273 *3 *2)) (-4 *2 (-1271 *3)))) (-3832 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-653 *5))) (-4 *5 (-1271 *4)) (-4 *4 (-38 (-416 (-573)))) (-5 *2 (-1 (-1169 *4) (-653 (-1169 *4)))) (-5 *1 (-1273 *4 *5)))) (-1571 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1271 *4)) (-4 *4 (-38 (-416 (-573)))) (-5 *2 (-1 (-1169 *4) (-1169 *4) (-1169 *4))) (-5 *1 (-1273 *4 *5)))) (-2716 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1271 *4)) (-4 *4 (-38 (-416 (-573)))) (-5 *2 (-1 (-1169 *4) (-1169 *4))) (-5 *1 (-1273 *4 *5))))) +(-10 -7 (-15 -2716 ((-1 (-1169 |#1|) (-1169 |#1|)) (-1 |#2| |#2|))) (-15 -1571 ((-1 (-1169 |#1|) (-1169 |#1|) (-1169 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3832 ((-1 (-1169 |#1|) (-653 (-1169 |#1|))) (-1 |#2| (-653 |#2|)))) (-15 -3654 (|#2| |#2| |#2|)) (-15 -4103 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2272 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2256 (|#2| (-1 |#2| (-653 |#2|)) (-653 |#1|))) (-15 -2834 ((-653 |#2|) (-653 |#1|) (-653 (-1 |#2| (-653 |#2|)))))) +((-3259 ((|#2| |#4| (-780)) 31)) (-1670 ((|#4| |#2|) 26)) (-4012 ((|#4| (-416 |#2|)) 49 (|has| |#1| (-565)))) (-3980 (((-1 |#4| (-653 |#4|)) |#3|) 43))) +(((-1274 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1670 (|#4| |#2|)) (-15 -3259 (|#2| |#4| (-780))) (-15 -3980 ((-1 |#4| (-653 |#4|)) |#3|)) (IF (|has| |#1| (-565)) (-15 -4012 (|#4| (-416 |#2|))) |%noBranch|)) (-1061) (-1256 |#1|) (-665 |#2|) (-1271 |#1|)) (T -1274)) +((-4012 (*1 *2 *3) (-12 (-5 *3 (-416 *5)) (-4 *5 (-1256 *4)) (-4 *4 (-565)) (-4 *4 (-1061)) (-4 *2 (-1271 *4)) (-5 *1 (-1274 *4 *5 *6 *2)) (-4 *6 (-665 *5)))) (-3980 (*1 *2 *3) (-12 (-4 *4 (-1061)) (-4 *5 (-1256 *4)) (-5 *2 (-1 *6 (-653 *6))) (-5 *1 (-1274 *4 *5 *3 *6)) (-4 *3 (-665 *5)) (-4 *6 (-1271 *4)))) (-3259 (*1 *2 *3 *4) (-12 (-5 *4 (-780)) (-4 *5 (-1061)) (-4 *2 (-1256 *5)) (-5 *1 (-1274 *5 *2 *6 *3)) (-4 *6 (-665 *2)) (-4 *3 (-1271 *5)))) (-1670 (*1 *2 *3) (-12 (-4 *4 (-1061)) (-4 *3 (-1256 *4)) (-4 *2 (-1271 *4)) (-5 *1 (-1274 *4 *3 *5 *2)) (-4 *5 (-665 *3))))) +(-10 -7 (-15 -1670 (|#4| |#2|)) (-15 -3259 (|#2| |#4| (-780))) (-15 -3980 ((-1 |#4| (-653 |#4|)) |#3|)) (IF (|has| |#1| (-565)) (-15 -4012 (|#4| (-416 |#2|))) |%noBranch|)) +NIL +(((-1275) (-141)) (T -1275)) +NIL +(-13 (-10 -7 (-6 -3520))) +((-2848 (((-112) $ $) NIL)) (-1487 (((-1189)) 12)) (-3180 (((-1171) $) 18)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 11) (((-1189) $) 8)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 15))) +(((-1276 |#1|) (-13 (-1112) (-622 (-1189)) (-10 -8 (-15 -2942 ((-1189) $)) (-15 -1487 ((-1189))))) (-1189)) (T -1276)) +((-2942 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1276 *3)) (-14 *3 *2))) (-1487 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1276 *3)) (-14 *3 *2)))) +(-13 (-1112) (-622 (-1189)) (-10 -8 (-15 -2942 ((-1189) $)) (-15 -1487 ((-1189))))) +((-2215 (($ (-780)) 19)) (-3898 (((-698 |#2|) $ $) 41)) (-3155 ((|#2| $) 51)) (-4134 ((|#2| $) 50)) (-2658 ((|#2| $ $) 36)) (-3925 (($ $ $) 47)) (-3093 (($ $) 23) (($ $ $) 29)) (-3077 (($ $ $) 15)) (* (($ (-573) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) +(((-1277 |#1| |#2|) (-10 -8 (-15 -3155 (|#2| |#1|)) (-15 -4134 (|#2| |#1|)) (-15 -3925 (|#1| |#1| |#1|)) (-15 -3898 ((-698 |#2|) |#1| |#1|)) (-15 -2658 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 -3093 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 -2215 (|#1| (-780))) (-15 -3077 (|#1| |#1| |#1|))) (-1278 |#2|) (-1230)) (T -1277)) +NIL +(-10 -8 (-15 -3155 (|#2| |#1|)) (-15 -4134 (|#2| |#1|)) (-15 -3925 (|#1| |#1| |#1|)) (-15 -3898 ((-698 |#2|) |#1| |#1|)) (-15 -2658 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-573) |#1|)) (-15 -3093 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 -2215 (|#1| (-780))) (-15 -3077 (|#1| |#1| |#1|))) +((-2848 (((-112) $ $) 19 (|has| |#1| (-1112)))) (-2215 (($ (-780)) 115 (|has| |#1| (-23)))) (-3791 (((-1285) $ (-573) (-573)) 41 (|has| $ (-6 -4456)))) (-1473 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-859)))) (-2748 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4456))) (($ $) 91 (-12 (|has| |#1| (-859)) (|has| $ (-6 -4456))))) (-2770 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-859)))) (-3450 (((-112) $ (-780)) 8)) (-3142 ((|#1| $ (-573) |#1|) 53 (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) 60 (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4455)))) (-2579 (($) 7 T CONST)) (-2176 (($ $) 93 (|has| $ (-6 -4456)))) (-4422 (($ $) 103)) (-2685 (($ $) 80 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3334 (($ |#1| $) 79 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4455)))) (-2457 ((|#1| $ (-573) |#1|) 54 (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) 52)) (-1440 (((-573) (-1 (-112) |#1|) $) 100) (((-573) |#1| $) 99 (|has| |#1| (-1112))) (((-573) |#1| $ (-573)) 98 (|has| |#1| (-1112)))) (-1863 (((-653 |#1|) $) 31 (|has| $ (-6 -4455)))) (-3898 (((-698 |#1|) $ $) 108 (|has| |#1| (-1061)))) (-3789 (($ (-780) |#1|) 70)) (-2078 (((-112) $ (-780)) 9)) (-1968 (((-573) $) 44 (|has| (-573) (-859)))) (-3659 (($ $ $) 90 (|has| |#1| (-859)))) (-1480 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-859)))) (-3214 (((-653 |#1|) $) 30 (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3470 (((-573) $) 45 (|has| (-573) (-859)))) (-3751 (($ $ $) 89 (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3155 ((|#1| $) 105 (-12 (|has| |#1| (-1061)) (|has| |#1| (-1014))))) (-2673 (((-112) $ (-780)) 10)) (-4134 ((|#1| $) 106 (-12 (|has| |#1| (-1061)) (|has| |#1| (-1014))))) (-3180 (((-1171) $) 22 (|has| |#1| (-1112)))) (-1593 (($ |#1| $ (-573)) 62) (($ $ $ (-573)) 61)) (-1977 (((-653 (-573)) $) 47)) (-2560 (((-112) (-573) $) 48)) (-3965 (((-1132) $) 21 (|has| |#1| (-1112)))) (-2914 ((|#1| $) 43 (|has| (-573) (-859)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-3112 (($ $ |#1|) 42 (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) 27 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) 26 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) 24 (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) 14)) (-2547 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) 49)) (-3811 (((-112) $) 11)) (-3508 (($) 12)) (-2198 ((|#1| $ (-573) |#1|) 51) ((|#1| $ (-573)) 50) (($ $ (-1247 (-573))) 71)) (-2658 ((|#1| $ $) 109 (|has| |#1| (-1061)))) (-2836 (($ $ (-573)) 64) (($ $ (-1247 (-573))) 63)) (-3925 (($ $ $) 107 (|has| |#1| (-1061)))) (-3974 (((-780) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4455))) (((-780) |#1| $) 29 (-12 (|has| |#1| (-1112)) (|has| $ (-6 -4455))))) (-3919 (($ $ $ (-573)) 94 (|has| $ (-6 -4456)))) (-3166 (($ $) 13)) (-1835 (((-545) $) 81 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 72)) (-4156 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-653 $)) 66)) (-2942 (((-871) $) 18 (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) 23 (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) 87 (|has| |#1| (-859)))) (-3015 (((-112) $ $) 86 (|has| |#1| (-859)))) (-2981 (((-112) $ $) 20 (|has| |#1| (-1112)))) (-3027 (((-112) $ $) 88 (|has| |#1| (-859)))) (-3005 (((-112) $ $) 85 (|has| |#1| (-859)))) (-3093 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3077 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-573) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-735))) (($ $ |#1|) 110 (|has| |#1| (-735)))) (-2862 (((-780) $) 6 (|has| $ (-6 -4455))))) +(((-1278 |#1|) (-141) (-1230)) (T -1278)) +((-3077 (*1 *1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-25)))) (-2215 (*1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-1278 *3)) (-4 *3 (-23)) (-4 *3 (-1230)))) (-3093 (*1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-21)))) (-3093 (*1 *1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-573)) (-4 *1 (-1278 *3)) (-4 *3 (-1230)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-735)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-735)))) (-2658 (*1 *2 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-1061)))) (-3898 (*1 *2 *1 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-1230)) (-4 *3 (-1061)) (-5 *2 (-698 *3)))) (-3925 (*1 *1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-1061)))) (-4134 (*1 *2 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-1014)) (-4 *2 (-1061)))) (-3155 (*1 *2 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-1014)) (-4 *2 (-1061))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3077 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2215 ($ (-780))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3093 ($ $)) (-15 -3093 ($ $ $)) (-15 * ($ (-573) $))) |%noBranch|) (IF (|has| |t#1| (-735)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1061)) (PROGN (-15 -2658 (|t#1| $ $)) (-15 -3898 ((-698 |t#1|) $ $)) (-15 -3925 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1014)) (IF (|has| |t#1| (-1061)) (PROGN (-15 -4134 (|t#1| $)) (-15 -3155 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-102) -2817 (|has| |#1| (-1112)) (|has| |#1| (-859))) ((-622 (-871)) -2817 (|has| |#1| (-1112)) (|has| |#1| (-859)) (|has| |#1| (-622 (-871)))) ((-152 |#1|) . T) ((-623 (-545)) |has| |#1| (-623 (-545))) ((-293 #0=(-573) |#1|) . T) ((-293 (-1247 (-573)) $) . T) ((-295 #0# |#1|) . T) ((-316 |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-381 |#1|) . T) ((-498 |#1|) . T) ((-613 #0# |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))) ((-660 |#1|) . T) ((-19 |#1|) . T) ((-859) |has| |#1| (-859)) ((-1112) -2817 (|has| |#1| (-1112)) (|has| |#1| (-859))) ((-1230) . T)) +((-3094 (((-1280 |#2|) (-1 |#2| |#1| |#2|) (-1280 |#1|) |#2|) 13)) (-2867 ((|#2| (-1 |#2| |#1| |#2|) (-1280 |#1|) |#2|) 15)) (-1776 (((-3 (-1280 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1280 |#1|)) 30) (((-1280 |#2|) (-1 |#2| |#1|) (-1280 |#1|)) 18))) +(((-1279 |#1| |#2|) (-10 -7 (-15 -3094 ((-1280 |#2|) (-1 |#2| |#1| |#2|) (-1280 |#1|) |#2|)) (-15 -2867 (|#2| (-1 |#2| |#1| |#2|) (-1280 |#1|) |#2|)) (-15 -1776 ((-1280 |#2|) (-1 |#2| |#1|) (-1280 |#1|))) (-15 -1776 ((-3 (-1280 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1280 |#1|)))) (-1230) (-1230)) (T -1279)) +((-1776 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1280 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-1280 *6)) (-5 *1 (-1279 *5 *6)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1280 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-1280 *6)) (-5 *1 (-1279 *5 *6)))) (-2867 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1280 *5)) (-4 *5 (-1230)) (-4 *2 (-1230)) (-5 *1 (-1279 *5 *2)))) (-3094 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1280 *6)) (-4 *6 (-1230)) (-4 *5 (-1230)) (-5 *2 (-1280 *5)) (-5 *1 (-1279 *6 *5))))) +(-10 -7 (-15 -3094 ((-1280 |#2|) (-1 |#2| |#1| |#2|) (-1280 |#1|) |#2|)) (-15 -2867 (|#2| (-1 |#2| |#1| |#2|) (-1280 |#1|) |#2|)) (-15 -1776 ((-1280 |#2|) (-1 |#2| |#1|) (-1280 |#1|))) (-15 -1776 ((-3 (-1280 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1280 |#1|)))) +((-2848 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-2215 (($ (-780)) NIL (|has| |#1| (-23)))) (-3891 (($ (-653 |#1|)) 11)) (-3791 (((-1285) $ (-573) (-573)) NIL (|has| $ (-6 -4456)))) (-1473 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-859)))) (-2748 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4456))) (($ $) NIL (-12 (|has| $ (-6 -4456)) (|has| |#1| (-859))))) (-2770 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-859)))) (-3450 (((-112) $ (-780)) NIL)) (-3142 ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456))) ((|#1| $ (-1247 (-573)) |#1|) NIL (|has| $ (-6 -4456)))) (-2164 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2579 (($) NIL T CONST)) (-2176 (($ $) NIL (|has| $ (-6 -4456)))) (-4422 (($ $) NIL)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3334 (($ |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2867 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4455))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-2457 ((|#1| $ (-573) |#1|) NIL (|has| $ (-6 -4456)))) (-2384 ((|#1| $ (-573)) NIL)) (-1440 (((-573) (-1 (-112) |#1|) $) NIL) (((-573) |#1| $) NIL (|has| |#1| (-1112))) (((-573) |#1| $ (-573)) NIL (|has| |#1| (-1112)))) (-1863 (((-653 |#1|) $) 16 (|has| $ (-6 -4455)))) (-3898 (((-698 |#1|) $ $) NIL (|has| |#1| (-1061)))) (-3789 (($ (-780) |#1|) NIL)) (-2078 (((-112) $ (-780)) NIL)) (-1968 (((-573) $) NIL (|has| (-573) (-859)))) (-3659 (($ $ $) NIL (|has| |#1| (-859)))) (-1480 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-859)))) (-3214 (((-653 |#1|) $) NIL (|has| $ (-6 -4455)))) (-1547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3470 (((-573) $) 12 (|has| (-573) (-859)))) (-3751 (($ $ $) NIL (|has| |#1| (-859)))) (-2446 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3155 ((|#1| $) NIL (-12 (|has| |#1| (-1014)) (|has| |#1| (-1061))))) (-2673 (((-112) $ (-780)) NIL)) (-4134 ((|#1| $) NIL (-12 (|has| |#1| (-1014)) (|has| |#1| (-1061))))) (-3180 (((-1171) $) NIL (|has| |#1| (-1112)))) (-1593 (($ |#1| $ (-573)) NIL) (($ $ $ (-573)) NIL)) (-1977 (((-653 (-573)) $) NIL)) (-2560 (((-112) (-573) $) NIL)) (-3965 (((-1132) $) NIL (|has| |#1| (-1112)))) (-2914 ((|#1| $) NIL (|has| (-573) (-859)))) (-2036 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3112 (($ $ |#1|) NIL (|has| $ (-6 -4456)))) (-1575 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 (-301 |#1|))) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-301 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112)))) (($ $ (-653 |#1|) (-653 |#1|)) NIL (-12 (|has| |#1| (-316 |#1|)) (|has| |#1| (-1112))))) (-1885 (((-112) $ $) NIL)) (-2547 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-1535 (((-653 |#1|) $) NIL)) (-3811 (((-112) $) NIL)) (-3508 (($) NIL)) (-2198 ((|#1| $ (-573) |#1|) NIL) ((|#1| $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-2658 ((|#1| $ $) NIL (|has| |#1| (-1061)))) (-2836 (($ $ (-573)) NIL) (($ $ (-1247 (-573))) NIL)) (-3925 (($ $ $) NIL (|has| |#1| (-1061)))) (-3974 (((-780) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455))) (((-780) |#1| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-1112))))) (-3919 (($ $ $ (-573)) NIL (|has| $ (-6 -4456)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) 20 (|has| |#1| (-623 (-545))))) (-2955 (($ (-653 |#1|)) 10)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-653 $)) NIL)) (-2942 (((-871) $) NIL (|has| |#1| (-622 (-871))))) (-3507 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-1646 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4455)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3015 (((-112) $ $) NIL (|has| |#1| (-859)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1112)))) (-3027 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3005 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3093 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3077 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-573) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-735))) (($ $ |#1|) NIL (|has| |#1| (-735)))) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-1280 |#1|) (-13 (-1278 |#1|) (-10 -8 (-15 -3891 ($ (-653 |#1|))))) (-1230)) (T -1280)) +((-3891 (*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-5 *1 (-1280 *3))))) +(-13 (-1278 |#1|) (-10 -8 (-15 -3891 ($ (-653 |#1|))))) +((-2848 (((-112) $ $) NIL)) (-1602 (((-1171) $ (-1171)) 107) (((-1171) $ (-1171) (-1171)) 105) (((-1171) $ (-1171) (-653 (-1171))) 104)) (-3000 (($) 69)) (-1392 (((-1285) $ (-477) (-931)) 54)) (-1996 (((-1285) $ (-931) (-1171)) 89) (((-1285) $ (-931) (-883)) 90)) (-2807 (((-1285) $ (-931) (-387) (-387)) 57)) (-3876 (((-1285) $ (-1171)) 84)) (-1617 (((-1285) $ (-931) (-1171)) 94)) (-3465 (((-1285) $ (-931) (-387) (-387)) 58)) (-1753 (((-1285) $ (-931) (-931)) 55)) (-1580 (((-1285) $) 85)) (-1785 (((-1285) $ (-931) (-1171)) 93)) (-3194 (((-1285) $ (-477) (-931)) 41)) (-3999 (((-1285) $ (-931) (-1171)) 92)) (-3212 (((-653 (-269)) $) 29) (($ $ (-653 (-269))) 30)) (-3365 (((-1285) $ (-780) (-780)) 52)) (-3265 (($ $) 70) (($ (-477) (-653 (-269))) 71)) (-3180 (((-1171) $) NIL)) (-3692 (((-573) $) 48)) (-3965 (((-1132) $) NIL)) (-1590 (((-1280 (-3 (-477) "undefined")) $) 47)) (-1872 (((-1280 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3999 (-573)) (|:| -1962 (-573)) (|:| |spline| (-573)) (|:| -3967 (-573)) (|:| |axesColor| (-883)) (|:| -1996 (-573)) (|:| |unitsColor| (-883)) (|:| |showing| (-573)))) $) 46)) (-3762 (((-1285) $ (-931) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-573) (-883) (-573) (-883) (-573)) 83)) (-3817 (((-653 (-953 (-227))) $) NIL)) (-3387 (((-477) $ (-931)) 43)) (-4089 (((-1285) $ (-780) (-780) (-931) (-931)) 50)) (-2538 (((-1285) $ (-1171)) 95)) (-1962 (((-1285) $ (-931) (-1171)) 91)) (-2942 (((-871) $) 102)) (-1380 (((-1285) $) 96)) (-3507 (((-112) $ $) NIL)) (-3967 (((-1285) $ (-931) (-1171)) 87) (((-1285) $ (-931) (-883)) 88)) (-2981 (((-112) $ $) NIL))) +(((-1281) (-13 (-1112) (-10 -8 (-15 -3817 ((-653 (-953 (-227))) $)) (-15 -3000 ($)) (-15 -3265 ($ $)) (-15 -3212 ((-653 (-269)) $)) (-15 -3212 ($ $ (-653 (-269)))) (-15 -3265 ($ (-477) (-653 (-269)))) (-15 -3762 ((-1285) $ (-931) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-573) (-883) (-573) (-883) (-573))) (-15 -1872 ((-1280 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3999 (-573)) (|:| -1962 (-573)) (|:| |spline| (-573)) (|:| -3967 (-573)) (|:| |axesColor| (-883)) (|:| -1996 (-573)) (|:| |unitsColor| (-883)) (|:| |showing| (-573)))) $)) (-15 -1590 ((-1280 (-3 (-477) "undefined")) $)) (-15 -3876 ((-1285) $ (-1171))) (-15 -3194 ((-1285) $ (-477) (-931))) (-15 -3387 ((-477) $ (-931))) (-15 -3967 ((-1285) $ (-931) (-1171))) (-15 -3967 ((-1285) $ (-931) (-883))) (-15 -1996 ((-1285) $ (-931) (-1171))) (-15 -1996 ((-1285) $ (-931) (-883))) (-15 -3999 ((-1285) $ (-931) (-1171))) (-15 -1785 ((-1285) $ (-931) (-1171))) (-15 -1962 ((-1285) $ (-931) (-1171))) (-15 -2538 ((-1285) $ (-1171))) (-15 -1380 ((-1285) $)) (-15 -4089 ((-1285) $ (-780) (-780) (-931) (-931))) (-15 -3465 ((-1285) $ (-931) (-387) (-387))) (-15 -2807 ((-1285) $ (-931) (-387) (-387))) (-15 -1617 ((-1285) $ (-931) (-1171))) (-15 -3365 ((-1285) $ (-780) (-780))) (-15 -1392 ((-1285) $ (-477) (-931))) (-15 -1753 ((-1285) $ (-931) (-931))) (-15 -1602 ((-1171) $ (-1171))) (-15 -1602 ((-1171) $ (-1171) (-1171))) (-15 -1602 ((-1171) $ (-1171) (-653 (-1171)))) (-15 -1580 ((-1285) $)) (-15 -3692 ((-573) $)) (-15 -2942 ((-871) $))))) (T -1281)) +((-2942 (*1 *2 *1) (-12 (-5 *2 (-871)) (-5 *1 (-1281)))) (-3817 (*1 *2 *1) (-12 (-5 *2 (-653 (-953 (-227)))) (-5 *1 (-1281)))) (-3000 (*1 *1) (-5 *1 (-1281))) (-3265 (*1 *1 *1) (-5 *1 (-1281))) (-3212 (*1 *2 *1) (-12 (-5 *2 (-653 (-269))) (-5 *1 (-1281)))) (-3212 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-269))) (-5 *1 (-1281)))) (-3265 (*1 *1 *2 *3) (-12 (-5 *2 (-477)) (-5 *3 (-653 (-269))) (-5 *1 (-1281)))) (-3762 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-931)) (-5 *4 (-227)) (-5 *5 (-573)) (-5 *6 (-883)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-1872 (*1 *2 *1) (-12 (-5 *2 (-1280 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3999 (-573)) (|:| -1962 (-573)) (|:| |spline| (-573)) (|:| -3967 (-573)) (|:| |axesColor| (-883)) (|:| -1996 (-573)) (|:| |unitsColor| (-883)) (|:| |showing| (-573))))) (-5 *1 (-1281)))) (-1590 (*1 *2 *1) (-12 (-5 *2 (-1280 (-3 (-477) "undefined"))) (-5 *1 (-1281)))) (-3876 (*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-3194 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-477)) (-5 *4 (-931)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-3387 (*1 *2 *1 *3) (-12 (-5 *3 (-931)) (-5 *2 (-477)) (-5 *1 (-1281)))) (-3967 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-931)) (-5 *4 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-3967 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-931)) (-5 *4 (-883)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-1996 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-931)) (-5 *4 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-1996 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-931)) (-5 *4 (-883)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-3999 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-931)) (-5 *4 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-1785 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-931)) (-5 *4 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-1962 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-931)) (-5 *4 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-2538 (*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-1380 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-1281)))) (-4089 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-780)) (-5 *4 (-931)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-3465 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-931)) (-5 *4 (-387)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-2807 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-931)) (-5 *4 (-387)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-1617 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-931)) (-5 *4 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-3365 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-1392 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-477)) (-5 *4 (-931)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-1753 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1285)) (-5 *1 (-1281)))) (-1602 (*1 *2 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1281)))) (-1602 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1281)))) (-1602 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-653 (-1171))) (-5 *2 (-1171)) (-5 *1 (-1281)))) (-1580 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-1281)))) (-3692 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-1281))))) +(-13 (-1112) (-10 -8 (-15 -3817 ((-653 (-953 (-227))) $)) (-15 -3000 ($)) (-15 -3265 ($ $)) (-15 -3212 ((-653 (-269)) $)) (-15 -3212 ($ $ (-653 (-269)))) (-15 -3265 ($ (-477) (-653 (-269)))) (-15 -3762 ((-1285) $ (-931) (-227) (-227) (-227) (-227) (-573) (-573) (-573) (-573) (-883) (-573) (-883) (-573))) (-15 -1872 ((-1280 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3999 (-573)) (|:| -1962 (-573)) (|:| |spline| (-573)) (|:| -3967 (-573)) (|:| |axesColor| (-883)) (|:| -1996 (-573)) (|:| |unitsColor| (-883)) (|:| |showing| (-573)))) $)) (-15 -1590 ((-1280 (-3 (-477) "undefined")) $)) (-15 -3876 ((-1285) $ (-1171))) (-15 -3194 ((-1285) $ (-477) (-931))) (-15 -3387 ((-477) $ (-931))) (-15 -3967 ((-1285) $ (-931) (-1171))) (-15 -3967 ((-1285) $ (-931) (-883))) (-15 -1996 ((-1285) $ (-931) (-1171))) (-15 -1996 ((-1285) $ (-931) (-883))) (-15 -3999 ((-1285) $ (-931) (-1171))) (-15 -1785 ((-1285) $ (-931) (-1171))) (-15 -1962 ((-1285) $ (-931) (-1171))) (-15 -2538 ((-1285) $ (-1171))) (-15 -1380 ((-1285) $)) (-15 -4089 ((-1285) $ (-780) (-780) (-931) (-931))) (-15 -3465 ((-1285) $ (-931) (-387) (-387))) (-15 -2807 ((-1285) $ (-931) (-387) (-387))) (-15 -1617 ((-1285) $ (-931) (-1171))) (-15 -3365 ((-1285) $ (-780) (-780))) (-15 -1392 ((-1285) $ (-477) (-931))) (-15 -1753 ((-1285) $ (-931) (-931))) (-15 -1602 ((-1171) $ (-1171))) (-15 -1602 ((-1171) $ (-1171) (-1171))) (-15 -1602 ((-1171) $ (-1171) (-653 (-1171)))) (-15 -1580 ((-1285) $)) (-15 -3692 ((-573) $)) (-15 -2942 ((-871) $)))) +((-2848 (((-112) $ $) NIL)) (-3058 (((-1285) $ (-387)) 169) (((-1285) $ (-387) (-387) (-387)) 170)) (-1602 (((-1171) $ (-1171)) 179) (((-1171) $ (-1171) (-1171)) 177) (((-1171) $ (-1171) (-653 (-1171))) 176)) (-3824 (($) 67)) (-3798 (((-1285) $ (-387) (-387) (-387) (-387) (-387)) 141) (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $) 139) (((-1285) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 140) (((-1285) $ (-573) (-573) (-387) (-387) (-387)) 144) (((-1285) $ (-387) (-387)) 145) (((-1285) $ (-387) (-387) (-387)) 152)) (-2730 (((-387)) 122) (((-387) (-387)) 123)) (-3052 (((-387)) 117) (((-387) (-387)) 119)) (-3446 (((-387)) 120) (((-387) (-387)) 121)) (-3205 (((-387)) 126) (((-387) (-387)) 127)) (-4038 (((-387)) 124) (((-387) (-387)) 125)) (-2807 (((-1285) $ (-387) (-387)) 171)) (-3876 (((-1285) $ (-1171)) 153)) (-2895 (((-1145 (-227)) $) 68) (($ $ (-1145 (-227))) 69)) (-2875 (((-1285) $ (-1171)) 187)) (-1516 (((-1285) $ (-1171)) 188)) (-2134 (((-1285) $ (-387) (-387)) 151) (((-1285) $ (-573) (-573)) 168)) (-1753 (((-1285) $ (-931) (-931)) 160)) (-1580 (((-1285) $) 137)) (-2997 (((-1285) $ (-1171)) 186)) (-2859 (((-1285) $ (-1171)) 134)) (-3212 (((-653 (-269)) $) 70) (($ $ (-653 (-269))) 71)) (-3365 (((-1285) $ (-780) (-780)) 159)) (-3063 (((-1285) $ (-780) (-953 (-227))) 193)) (-3913 (($ $) 73) (($ (-1145 (-227)) (-1171)) 74) (($ (-1145 (-227)) (-653 (-269))) 75)) (-2046 (((-1285) $ (-387) (-387) (-387)) 131)) (-3180 (((-1171) $) NIL)) (-3692 (((-573) $) 128)) (-2726 (((-1285) $ (-387)) 174)) (-3923 (((-1285) $ (-387)) 191)) (-3965 (((-1132) $) NIL)) (-2552 (((-1285) $ (-387)) 190)) (-4177 (((-1285) $ (-1171)) 136)) (-4089 (((-1285) $ (-780) (-780) (-931) (-931)) 158)) (-3065 (((-1285) $ (-1171)) 133)) (-2538 (((-1285) $ (-1171)) 135)) (-3778 (((-1285) $ (-158) (-158)) 157)) (-2942 (((-871) $) 166)) (-1380 (((-1285) $) 138)) (-3918 (((-1285) $ (-1171)) 189)) (-3507 (((-112) $ $) NIL)) (-3967 (((-1285) $ (-1171)) 132)) (-2981 (((-112) $ $) NIL))) +(((-1282) (-13 (-1112) (-10 -8 (-15 -3052 ((-387))) (-15 -3052 ((-387) (-387))) (-15 -3446 ((-387))) (-15 -3446 ((-387) (-387))) (-15 -2730 ((-387))) (-15 -2730 ((-387) (-387))) (-15 -4038 ((-387))) (-15 -4038 ((-387) (-387))) (-15 -3205 ((-387))) (-15 -3205 ((-387) (-387))) (-15 -3824 ($)) (-15 -3913 ($ $)) (-15 -3913 ($ (-1145 (-227)) (-1171))) (-15 -3913 ($ (-1145 (-227)) (-653 (-269)))) (-15 -2895 ((-1145 (-227)) $)) (-15 -2895 ($ $ (-1145 (-227)))) (-15 -3063 ((-1285) $ (-780) (-953 (-227)))) (-15 -3212 ((-653 (-269)) $)) (-15 -3212 ($ $ (-653 (-269)))) (-15 -3365 ((-1285) $ (-780) (-780))) (-15 -1753 ((-1285) $ (-931) (-931))) (-15 -3876 ((-1285) $ (-1171))) (-15 -4089 ((-1285) $ (-780) (-780) (-931) (-931))) (-15 -3798 ((-1285) $ (-387) (-387) (-387) (-387) (-387))) (-15 -3798 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -3798 ((-1285) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3798 ((-1285) $ (-573) (-573) (-387) (-387) (-387))) (-15 -3798 ((-1285) $ (-387) (-387))) (-15 -3798 ((-1285) $ (-387) (-387) (-387))) (-15 -2538 ((-1285) $ (-1171))) (-15 -3967 ((-1285) $ (-1171))) (-15 -3065 ((-1285) $ (-1171))) (-15 -2859 ((-1285) $ (-1171))) (-15 -4177 ((-1285) $ (-1171))) (-15 -2134 ((-1285) $ (-387) (-387))) (-15 -2134 ((-1285) $ (-573) (-573))) (-15 -3058 ((-1285) $ (-387))) (-15 -3058 ((-1285) $ (-387) (-387) (-387))) (-15 -2807 ((-1285) $ (-387) (-387))) (-15 -2997 ((-1285) $ (-1171))) (-15 -2552 ((-1285) $ (-387))) (-15 -3923 ((-1285) $ (-387))) (-15 -2875 ((-1285) $ (-1171))) (-15 -1516 ((-1285) $ (-1171))) (-15 -3918 ((-1285) $ (-1171))) (-15 -2046 ((-1285) $ (-387) (-387) (-387))) (-15 -2726 ((-1285) $ (-387))) (-15 -1580 ((-1285) $)) (-15 -3778 ((-1285) $ (-158) (-158))) (-15 -1602 ((-1171) $ (-1171))) (-15 -1602 ((-1171) $ (-1171) (-1171))) (-15 -1602 ((-1171) $ (-1171) (-653 (-1171)))) (-15 -1380 ((-1285) $)) (-15 -3692 ((-573) $))))) (T -1282)) +((-3052 (*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282)))) (-3052 (*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282)))) (-3446 (*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282)))) (-3446 (*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282)))) (-2730 (*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282)))) (-2730 (*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282)))) (-4038 (*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282)))) (-4038 (*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282)))) (-3205 (*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282)))) (-3205 (*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282)))) (-3824 (*1 *1) (-5 *1 (-1282))) (-3913 (*1 *1 *1) (-5 *1 (-1282))) (-3913 (*1 *1 *2 *3) (-12 (-5 *2 (-1145 (-227))) (-5 *3 (-1171)) (-5 *1 (-1282)))) (-3913 (*1 *1 *2 *3) (-12 (-5 *2 (-1145 (-227))) (-5 *3 (-653 (-269))) (-5 *1 (-1282)))) (-2895 (*1 *2 *1) (-12 (-5 *2 (-1145 (-227))) (-5 *1 (-1282)))) (-2895 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 (-227))) (-5 *1 (-1282)))) (-3063 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-780)) (-5 *4 (-953 (-227))) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-3212 (*1 *2 *1) (-12 (-5 *2 (-653 (-269))) (-5 *1 (-1282)))) (-3212 (*1 *1 *1 *2) (-12 (-5 *2 (-653 (-269))) (-5 *1 (-1282)))) (-3365 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-1753 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-3876 (*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-4089 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-780)) (-5 *4 (-931)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-3798 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-1282)))) (-3798 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-3798 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-573)) (-5 *4 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-3798 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-3798 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-2538 (*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-3967 (*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-3065 (*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-2859 (*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-4177 (*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-2134 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-2134 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-573)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-3058 (*1 *2 *1 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-3058 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-2807 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-2997 (*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-2552 (*1 *2 *1 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-3923 (*1 *2 *1 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-2875 (*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-1516 (*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-3918 (*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-2046 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-2726 (*1 *2 *1 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-1580 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-1282)))) (-3778 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1285)) (-5 *1 (-1282)))) (-1602 (*1 *2 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1282)))) (-1602 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1282)))) (-1602 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-653 (-1171))) (-5 *2 (-1171)) (-5 *1 (-1282)))) (-1380 (*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-1282)))) (-3692 (*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-1282))))) +(-13 (-1112) (-10 -8 (-15 -3052 ((-387))) (-15 -3052 ((-387) (-387))) (-15 -3446 ((-387))) (-15 -3446 ((-387) (-387))) (-15 -2730 ((-387))) (-15 -2730 ((-387) (-387))) (-15 -4038 ((-387))) (-15 -4038 ((-387) (-387))) (-15 -3205 ((-387))) (-15 -3205 ((-387) (-387))) (-15 -3824 ($)) (-15 -3913 ($ $)) (-15 -3913 ($ (-1145 (-227)) (-1171))) (-15 -3913 ($ (-1145 (-227)) (-653 (-269)))) (-15 -2895 ((-1145 (-227)) $)) (-15 -2895 ($ $ (-1145 (-227)))) (-15 -3063 ((-1285) $ (-780) (-953 (-227)))) (-15 -3212 ((-653 (-269)) $)) (-15 -3212 ($ $ (-653 (-269)))) (-15 -3365 ((-1285) $ (-780) (-780))) (-15 -1753 ((-1285) $ (-931) (-931))) (-15 -3876 ((-1285) $ (-1171))) (-15 -4089 ((-1285) $ (-780) (-780) (-931) (-931))) (-15 -3798 ((-1285) $ (-387) (-387) (-387) (-387) (-387))) (-15 -3798 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -3798 ((-1285) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3798 ((-1285) $ (-573) (-573) (-387) (-387) (-387))) (-15 -3798 ((-1285) $ (-387) (-387))) (-15 -3798 ((-1285) $ (-387) (-387) (-387))) (-15 -2538 ((-1285) $ (-1171))) (-15 -3967 ((-1285) $ (-1171))) (-15 -3065 ((-1285) $ (-1171))) (-15 -2859 ((-1285) $ (-1171))) (-15 -4177 ((-1285) $ (-1171))) (-15 -2134 ((-1285) $ (-387) (-387))) (-15 -2134 ((-1285) $ (-573) (-573))) (-15 -3058 ((-1285) $ (-387))) (-15 -3058 ((-1285) $ (-387) (-387) (-387))) (-15 -2807 ((-1285) $ (-387) (-387))) (-15 -2997 ((-1285) $ (-1171))) (-15 -2552 ((-1285) $ (-387))) (-15 -3923 ((-1285) $ (-387))) (-15 -2875 ((-1285) $ (-1171))) (-15 -1516 ((-1285) $ (-1171))) (-15 -3918 ((-1285) $ (-1171))) (-15 -2046 ((-1285) $ (-387) (-387) (-387))) (-15 -2726 ((-1285) $ (-387))) (-15 -1580 ((-1285) $)) (-15 -3778 ((-1285) $ (-158) (-158))) (-15 -1602 ((-1171) $ (-1171))) (-15 -1602 ((-1171) $ (-1171) (-1171))) (-15 -1602 ((-1171) $ (-1171) (-653 (-1171)))) (-15 -1380 ((-1285) $)) (-15 -3692 ((-573) $)))) +((-2502 (((-653 (-1171)) (-653 (-1171))) 104) (((-653 (-1171))) 96)) (-1763 (((-653 (-1171))) 94)) (-3573 (((-653 (-931)) (-653 (-931))) 69) (((-653 (-931))) 64)) (-4028 (((-653 (-780)) (-653 (-780))) 61) (((-653 (-780))) 55)) (-4003 (((-1285)) 71)) (-1967 (((-931) (-931)) 87) (((-931)) 86)) (-3885 (((-931) (-931)) 85) (((-931)) 84)) (-1584 (((-883) (-883)) 81) (((-883)) 80)) (-1620 (((-227)) 91) (((-227) (-387)) 93)) (-4207 (((-931)) 88) (((-931) (-931)) 89)) (-2462 (((-931) (-931)) 83) (((-931)) 82)) (-2434 (((-883) (-883)) 75) (((-883)) 73)) (-2162 (((-883) (-883)) 77) (((-883)) 76)) (-2158 (((-883) (-883)) 79) (((-883)) 78))) +(((-1283) (-10 -7 (-15 -2434 ((-883))) (-15 -2434 ((-883) (-883))) (-15 -2162 ((-883))) (-15 -2162 ((-883) (-883))) (-15 -2158 ((-883))) (-15 -2158 ((-883) (-883))) (-15 -1584 ((-883))) (-15 -1584 ((-883) (-883))) (-15 -2462 ((-931))) (-15 -2462 ((-931) (-931))) (-15 -4028 ((-653 (-780)))) (-15 -4028 ((-653 (-780)) (-653 (-780)))) (-15 -3573 ((-653 (-931)))) (-15 -3573 ((-653 (-931)) (-653 (-931)))) (-15 -4003 ((-1285))) (-15 -2502 ((-653 (-1171)))) (-15 -2502 ((-653 (-1171)) (-653 (-1171)))) (-15 -1763 ((-653 (-1171)))) (-15 -3885 ((-931))) (-15 -1967 ((-931))) (-15 -3885 ((-931) (-931))) (-15 -1967 ((-931) (-931))) (-15 -4207 ((-931) (-931))) (-15 -4207 ((-931))) (-15 -1620 ((-227) (-387))) (-15 -1620 ((-227))))) (T -1283)) +((-1620 (*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1283)))) (-1620 (*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-227)) (-5 *1 (-1283)))) (-4207 (*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283)))) (-4207 (*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283)))) (-1967 (*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283)))) (-3885 (*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283)))) (-1967 (*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283)))) (-3885 (*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283)))) (-1763 (*1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1283)))) (-2502 (*1 *2 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1283)))) (-2502 (*1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1283)))) (-4003 (*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-1283)))) (-3573 (*1 *2 *2) (-12 (-5 *2 (-653 (-931))) (-5 *1 (-1283)))) (-3573 (*1 *2) (-12 (-5 *2 (-653 (-931))) (-5 *1 (-1283)))) (-4028 (*1 *2 *2) (-12 (-5 *2 (-653 (-780))) (-5 *1 (-1283)))) (-4028 (*1 *2) (-12 (-5 *2 (-653 (-780))) (-5 *1 (-1283)))) (-2462 (*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283)))) (-2462 (*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283)))) (-1584 (*1 *2 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283)))) (-1584 (*1 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283)))) (-2158 (*1 *2 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283)))) (-2158 (*1 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283)))) (-2162 (*1 *2 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283)))) (-2162 (*1 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283)))) (-2434 (*1 *2 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283)))) (-2434 (*1 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283))))) +(-10 -7 (-15 -2434 ((-883))) (-15 -2434 ((-883) (-883))) (-15 -2162 ((-883))) (-15 -2162 ((-883) (-883))) (-15 -2158 ((-883))) (-15 -2158 ((-883) (-883))) (-15 -1584 ((-883))) (-15 -1584 ((-883) (-883))) (-15 -2462 ((-931))) (-15 -2462 ((-931) (-931))) (-15 -4028 ((-653 (-780)))) (-15 -4028 ((-653 (-780)) (-653 (-780)))) (-15 -3573 ((-653 (-931)))) (-15 -3573 ((-653 (-931)) (-653 (-931)))) (-15 -4003 ((-1285))) (-15 -2502 ((-653 (-1171)))) (-15 -2502 ((-653 (-1171)) (-653 (-1171)))) (-15 -1763 ((-653 (-1171)))) (-15 -3885 ((-931))) (-15 -1967 ((-931))) (-15 -3885 ((-931) (-931))) (-15 -1967 ((-931) (-931))) (-15 -4207 ((-931) (-931))) (-15 -4207 ((-931))) (-15 -1620 ((-227) (-387))) (-15 -1620 ((-227)))) +((-3713 (((-477) (-653 (-653 (-953 (-227)))) (-653 (-269))) 22) (((-477) (-653 (-653 (-953 (-227))))) 21) (((-477) (-653 (-653 (-953 (-227)))) (-883) (-883) (-931) (-653 (-269))) 20)) (-2563 (((-1281) (-653 (-653 (-953 (-227)))) (-653 (-269))) 30) (((-1281) (-653 (-653 (-953 (-227)))) (-883) (-883) (-931) (-653 (-269))) 29)) (-2942 (((-1281) (-477)) 46))) +(((-1284) (-10 -7 (-15 -3713 ((-477) (-653 (-653 (-953 (-227)))) (-883) (-883) (-931) (-653 (-269)))) (-15 -3713 ((-477) (-653 (-653 (-953 (-227)))))) (-15 -3713 ((-477) (-653 (-653 (-953 (-227)))) (-653 (-269)))) (-15 -2563 ((-1281) (-653 (-653 (-953 (-227)))) (-883) (-883) (-931) (-653 (-269)))) (-15 -2563 ((-1281) (-653 (-653 (-953 (-227)))) (-653 (-269)))) (-15 -2942 ((-1281) (-477))))) (T -1284)) +((-2942 (*1 *2 *3) (-12 (-5 *3 (-477)) (-5 *2 (-1281)) (-5 *1 (-1284)))) (-2563 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-653 (-953 (-227))))) (-5 *4 (-653 (-269))) (-5 *2 (-1281)) (-5 *1 (-1284)))) (-2563 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-653 (-653 (-953 (-227))))) (-5 *4 (-883)) (-5 *5 (-931)) (-5 *6 (-653 (-269))) (-5 *2 (-1281)) (-5 *1 (-1284)))) (-3713 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-653 (-953 (-227))))) (-5 *4 (-653 (-269))) (-5 *2 (-477)) (-5 *1 (-1284)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-653 (-653 (-953 (-227))))) (-5 *2 (-477)) (-5 *1 (-1284)))) (-3713 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-653 (-653 (-953 (-227))))) (-5 *4 (-883)) (-5 *5 (-931)) (-5 *6 (-653 (-269))) (-5 *2 (-477)) (-5 *1 (-1284))))) +(-10 -7 (-15 -3713 ((-477) (-653 (-653 (-953 (-227)))) (-883) (-883) (-931) (-653 (-269)))) (-15 -3713 ((-477) (-653 (-653 (-953 (-227)))))) (-15 -3713 ((-477) (-653 (-653 (-953 (-227)))) (-653 (-269)))) (-15 -2563 ((-1281) (-653 (-653 (-953 (-227)))) (-883) (-883) (-931) (-653 (-269)))) (-15 -2563 ((-1281) (-653 (-653 (-953 (-227)))) (-653 (-269)))) (-15 -2942 ((-1281) (-477)))) +((-2425 (($) 6)) (-2942 (((-871) $) 9))) +(((-1285) (-13 (-622 (-871)) (-10 -8 (-15 -2425 ($))))) (T -1285)) +((-2425 (*1 *1) (-5 *1 (-1285)))) +(-13 (-622 (-871)) (-10 -8 (-15 -2425 ($)))) +((-3103 (($ $ |#2|) 10))) +(((-1286 |#1| |#2|) (-10 -8 (-15 -3103 (|#1| |#1| |#2|))) (-1287 |#2|) (-371)) (T -1286)) +NIL +(-10 -8 (-15 -3103 (|#1| |#1| |#2|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2365 (((-135)) 33)) (-2942 (((-871) $) 12)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2981 (((-112) $ $) 6)) (-3103 (($ $ |#1|) 34)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-1287 |#1|) (-141) (-371)) (T -1287)) +((-3103 (*1 *1 *1 *2) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-371)))) (-2365 (*1 *2) (-12 (-4 *1 (-1287 *3)) (-4 *3 (-371)) (-5 *2 (-135))))) +(-13 (-726 |t#1|) (-10 -8 (-15 -3103 ($ $ |t#1|)) (-15 -2365 ((-135))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-657 |#1|) . T) ((-649 |#1|) . T) ((-726 |#1|) . T) ((-1063 |#1|) . T) ((-1068 |#1|) . T) ((-1112) . T)) +((-1537 (((-653 (-1224 |#1|)) (-1189) (-1224 |#1|)) 83)) (-1850 (((-1169 (-1169 (-962 |#1|))) (-1189) (-1169 (-962 |#1|))) 63)) (-2405 (((-1 (-1169 (-1224 |#1|)) (-1169 (-1224 |#1|))) (-780) (-1224 |#1|) (-1169 (-1224 |#1|))) 74)) (-2643 (((-1 (-1169 (-962 |#1|)) (-1169 (-962 |#1|))) (-780)) 65)) (-1717 (((-1 (-1185 (-962 |#1|)) (-962 |#1|)) (-1189)) 32)) (-2699 (((-1 (-1169 (-962 |#1|)) (-1169 (-962 |#1|))) (-780)) 64))) +(((-1288 |#1|) (-10 -7 (-15 -2643 ((-1 (-1169 (-962 |#1|)) (-1169 (-962 |#1|))) (-780))) (-15 -2699 ((-1 (-1169 (-962 |#1|)) (-1169 (-962 |#1|))) (-780))) (-15 -1850 ((-1169 (-1169 (-962 |#1|))) (-1189) (-1169 (-962 |#1|)))) (-15 -1717 ((-1 (-1185 (-962 |#1|)) (-962 |#1|)) (-1189))) (-15 -1537 ((-653 (-1224 |#1|)) (-1189) (-1224 |#1|))) (-15 -2405 ((-1 (-1169 (-1224 |#1|)) (-1169 (-1224 |#1|))) (-780) (-1224 |#1|) (-1169 (-1224 |#1|))))) (-371)) (T -1288)) +((-2405 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-780)) (-4 *6 (-371)) (-5 *4 (-1224 *6)) (-5 *2 (-1 (-1169 *4) (-1169 *4))) (-5 *1 (-1288 *6)) (-5 *5 (-1169 *4)))) (-1537 (*1 *2 *3 *4) (-12 (-5 *3 (-1189)) (-4 *5 (-371)) (-5 *2 (-653 (-1224 *5))) (-5 *1 (-1288 *5)) (-5 *4 (-1224 *5)))) (-1717 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1 (-1185 (-962 *4)) (-962 *4))) (-5 *1 (-1288 *4)) (-4 *4 (-371)))) (-1850 (*1 *2 *3 *4) (-12 (-5 *3 (-1189)) (-4 *5 (-371)) (-5 *2 (-1169 (-1169 (-962 *5)))) (-5 *1 (-1288 *5)) (-5 *4 (-1169 (-962 *5))))) (-2699 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1 (-1169 (-962 *4)) (-1169 (-962 *4)))) (-5 *1 (-1288 *4)) (-4 *4 (-371)))) (-2643 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1 (-1169 (-962 *4)) (-1169 (-962 *4)))) (-5 *1 (-1288 *4)) (-4 *4 (-371))))) +(-10 -7 (-15 -2643 ((-1 (-1169 (-962 |#1|)) (-1169 (-962 |#1|))) (-780))) (-15 -2699 ((-1 (-1169 (-962 |#1|)) (-1169 (-962 |#1|))) (-780))) (-15 -1850 ((-1169 (-1169 (-962 |#1|))) (-1189) (-1169 (-962 |#1|)))) (-15 -1717 ((-1 (-1185 (-962 |#1|)) (-962 |#1|)) (-1189))) (-15 -1537 ((-653 (-1224 |#1|)) (-1189) (-1224 |#1|))) (-15 -2405 ((-1 (-1169 (-1224 |#1|)) (-1169 (-1224 |#1|))) (-780) (-1224 |#1|) (-1169 (-1224 |#1|))))) +((-3574 (((-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))) |#2|) 80)) (-3529 (((-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|)))) 79))) +(((-1289 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3529 ((-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))))) (-15 -3574 ((-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))) |#2|))) (-357) (-1256 |#1|) (-1256 |#2|) (-418 |#2| |#3|)) (T -1289)) +((-3574 (*1 *2 *3) (-12 (-4 *4 (-357)) (-4 *3 (-1256 *4)) (-4 *5 (-1256 *3)) (-5 *2 (-2 (|:| -3914 (-698 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-698 *3)))) (-5 *1 (-1289 *4 *3 *5 *6)) (-4 *6 (-418 *3 *5)))) (-3529 (*1 *2) (-12 (-4 *3 (-357)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 *4)) (-5 *2 (-2 (|:| -3914 (-698 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-698 *4)))) (-5 *1 (-1289 *3 *4 *5 *6)) (-4 *6 (-418 *4 *5))))) +(-10 -7 (-15 -3529 ((-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))))) (-15 -3574 ((-2 (|:| -3914 (-698 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-698 |#2|))) |#2|))) +((-2848 (((-112) $ $) NIL)) (-2818 (((-1147) $) 11)) (-1693 (((-1147) $) 9)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 17) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-1290) (-13 (-1095) (-10 -8 (-15 -1693 ((-1147) $)) (-15 -2818 ((-1147) $))))) (T -1290)) +((-1693 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1290)))) (-2818 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1290))))) +(-13 (-1095) (-10 -8 (-15 -1693 ((-1147) $)) (-15 -2818 ((-1147) $)))) +((-2848 (((-112) $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2264 (((-1147) $) 9)) (-2942 (((-871) $) 15) (($ (-1194)) NIL) (((-1194) $) NIL)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL))) +(((-1291) (-13 (-1095) (-10 -8 (-15 -2264 ((-1147) $))))) (T -1291)) +((-2264 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1291))))) +(-13 (-1095) (-10 -8 (-15 -2264 ((-1147) $)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 58)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-2232 (((-3 $ "failed") $) NIL)) (-1959 (((-112) $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 81) (($ (-573)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-174)))) (-1545 (((-780)) NIL T CONST)) (-4291 (((-1285) (-780)) 16)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 37 T CONST)) (-2144 (($) 84 T CONST)) (-2981 (((-112) $ $) 87)) (-3103 (((-3 $ "failed") $ $) NIL (|has| |#1| (-371)))) (-3093 (($ $) 89) (($ $ $) NIL)) (-3077 (($ $ $) 63)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-1292 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1061) (-499 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-371)) (-15 -3103 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4291 ((-1285) (-780))))) (-1061) (-859) (-802) (-959 |#1| |#3| |#2|) (-653 |#2|) (-653 (-780)) (-780)) (T -1292)) +((-3103 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-371)) (-4 *2 (-1061)) (-4 *3 (-859)) (-4 *4 (-802)) (-14 *6 (-653 *3)) (-5 *1 (-1292 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-959 *2 *4 *3)) (-14 *7 (-653 (-780))) (-14 *8 (-780)))) (-4291 (*1 *2 *3) (-12 (-5 *3 (-780)) (-4 *4 (-1061)) (-4 *5 (-859)) (-4 *6 (-802)) (-14 *8 (-653 *5)) (-5 *2 (-1285)) (-5 *1 (-1292 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-959 *4 *6 *5)) (-14 *9 (-653 *3)) (-14 *10 *3)))) +(-13 (-1061) (-499 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-371)) (-15 -3103 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4291 ((-1285) (-780))))) +((-2848 (((-112) $ $) NIL)) (-2280 (((-653 (-2 (|:| -1380 $) (|:| -1674 (-653 |#4|)))) (-653 |#4|)) NIL)) (-3527 (((-653 $) (-653 |#4|)) 96)) (-4354 (((-653 |#3|) $) NIL)) (-2577 (((-112) $) NIL)) (-2020 (((-112) $) NIL (|has| |#1| (-565)))) (-2261 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1554 ((|#4| |#4| $) NIL)) (-2770 (((-2 (|:| |under| $) (|:| -3733 $) (|:| |upper| $)) $ |#3|) NIL)) (-3450 (((-112) $ (-780)) NIL)) (-2164 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2579 (($) NIL T CONST)) (-2194 (((-112) $) NIL (|has| |#1| (-565)))) (-1849 (((-112) $ $) NIL (|has| |#1| (-565)))) (-2838 (((-112) $ $) NIL (|has| |#1| (-565)))) (-3145 (((-112) $) NIL (|has| |#1| (-565)))) (-4304 (((-653 |#4|) (-653 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-2346 (((-653 |#4|) (-653 |#4|) $) 28 (|has| |#1| (-565)))) (-2475 (((-653 |#4|) (-653 |#4|) $) NIL (|has| |#1| (-565)))) (-1695 (((-3 $ "failed") (-653 |#4|)) NIL)) (-2205 (($ (-653 |#4|)) NIL)) (-2925 (((-3 $ "failed") $) 78)) (-3760 ((|#4| |#4| $) 83)) (-2685 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112))))) (-3334 (($ |#4| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-3132 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-565)))) (-4310 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3117 ((|#4| |#4| $) NIL)) (-2867 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4455))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4455))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2660 (((-2 (|:| -1380 (-653 |#4|)) (|:| -1674 (-653 |#4|))) $) NIL)) (-1863 (((-653 |#4|) $) NIL (|has| $ (-6 -4455)))) (-4022 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3338 ((|#3| $) 84)) (-2078 (((-112) $ (-780)) NIL)) (-3214 (((-653 |#4|) $) 32 (|has| $ (-6 -4455)))) (-1547 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112))))) (-3984 (((-3 $ "failed") (-653 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-653 |#4|)) 38)) (-2446 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4456)))) (-1776 (($ (-1 |#4| |#4|) $) NIL)) (-1937 (((-653 |#3|) $) NIL)) (-1689 (((-112) |#3| $) NIL)) (-2673 (((-112) $ (-780)) NIL)) (-3180 (((-1171) $) NIL)) (-3359 (((-3 |#4| "failed") $) NIL)) (-2870 (((-653 |#4|) $) 54)) (-3161 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3430 ((|#4| |#4| $) 82)) (-2614 (((-112) $ $) 93)) (-3582 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-565)))) (-1973 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1448 ((|#4| |#4| $) NIL)) (-3965 (((-1132) $) NIL)) (-2914 (((-3 |#4| "failed") $) 77)) (-2036 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2865 (((-3 $ "failed") $ |#4|) NIL)) (-2212 (($ $ |#4|) NIL)) (-1575 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-2645 (($ $ (-653 |#4|) (-653 |#4|)) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-301 |#4|)) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112)))) (($ $ (-653 (-301 |#4|))) NIL (-12 (|has| |#4| (-316 |#4|)) (|has| |#4| (-1112))))) (-1885 (((-112) $ $) NIL)) (-3811 (((-112) $) 75)) (-3508 (($) 46)) (-2565 (((-780) $) NIL)) (-3974 (((-780) |#4| $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#4| (-1112)))) (((-780) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-3166 (($ $) NIL)) (-1835 (((-545) $) NIL (|has| |#4| (-623 (-545))))) (-2955 (($ (-653 |#4|)) NIL)) (-4409 (($ $ |#3|) NIL)) (-3496 (($ $ |#3|) NIL)) (-1388 (($ $) NIL)) (-1456 (($ $ |#3|) NIL)) (-2942 (((-871) $) NIL) (((-653 |#4|) $) 63)) (-3922 (((-780) $) NIL (|has| |#3| (-376)))) (-3540 (((-3 $ "failed") (-653 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-653 |#4|)) 45)) (-3895 (((-653 $) (-653 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-653 $) (-653 |#4|)) 74)) (-3507 (((-112) $ $) NIL)) (-3955 (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -2001 (-653 |#4|))) "failed") (-653 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3039 (((-112) $ (-1 (-112) |#4| (-653 |#4|))) NIL)) (-1646 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4455)))) (-3734 (((-653 |#3|) $) NIL)) (-4333 (((-112) |#3| $) NIL)) (-2981 (((-112) $ $) NIL)) (-2862 (((-780) $) NIL (|has| $ (-6 -4455))))) +(((-1293 |#1| |#2| |#3| |#4|) (-13 (-1223 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3984 ((-3 $ "failed") (-653 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3984 ((-3 $ "failed") (-653 |#4|))) (-15 -3540 ((-3 $ "failed") (-653 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3540 ((-3 $ "failed") (-653 |#4|))) (-15 -3895 ((-653 $) (-653 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3895 ((-653 $) (-653 |#4|))))) (-565) (-802) (-859) (-1077 |#1| |#2| |#3|)) (T -1293)) +((-3984 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-653 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-565)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *1 (-1293 *5 *6 *7 *8)))) (-3984 (*1 *1 *2) (|partial| -12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-1293 *3 *4 *5 *6)))) (-3540 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-653 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-565)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *1 (-1293 *5 *6 *7 *8)))) (-3540 (*1 *1 *2) (|partial| -12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-1293 *3 *4 *5 *6)))) (-3895 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1077 *6 *7 *8)) (-4 *6 (-565)) (-4 *7 (-802)) (-4 *8 (-859)) (-5 *2 (-653 (-1293 *6 *7 *8 *9))) (-5 *1 (-1293 *6 *7 *8 *9)))) (-3895 (*1 *2 *3) (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 (-1293 *4 *5 *6 *7))) (-5 *1 (-1293 *4 *5 *6 *7))))) +(-13 (-1223 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3984 ((-3 $ "failed") (-653 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3984 ((-3 $ "failed") (-653 |#4|))) (-15 -3540 ((-3 $ "failed") (-653 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3540 ((-3 $ "failed") (-653 |#4|))) (-15 -3895 ((-653 $) (-653 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3895 ((-653 $) (-653 |#4|))))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-2983 (((-3 $ "failed") $ $) 20)) (-2579 (($) 18 T CONST)) (-2232 (((-3 $ "failed") $) 37)) (-1959 (((-112) $) 35)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#1|) 45)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46))) +(((-1294 |#1|) (-141) (-1061)) (T -1294)) +NIL +(-13 (-1061) (-111 |t#1| |t#1|) (-625 |t#1|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-649 |#1|) |has| |#1| (-174)) ((-726 |#1|) |has| |#1| (-174)) ((-735) . T) ((-1063 |#1|) . T) ((-1068 |#1|) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T)) +((-2848 (((-112) $ $) 67)) (-1748 (((-112) $) NIL)) (-1653 (((-653 |#1|) $) 52)) (-4398 (($ $ (-780)) 46)) (-2983 (((-3 $ "failed") $ $) NIL)) (-3348 (($ $ (-780)) 24 (|has| |#2| (-174))) (($ $ $) 25 (|has| |#2| (-174)))) (-2579 (($) NIL T CONST)) (-1680 (($ $ $) 70) (($ $ (-828 |#1|)) 56) (($ $ |#1|) 60)) (-1695 (((-3 (-828 |#1|) "failed") $) NIL)) (-2205 (((-828 |#1|) $) NIL)) (-1391 (($ $) 39)) (-2232 (((-3 $ "failed") $) NIL)) (-2088 (((-112) $) NIL)) (-2329 (($ $) NIL)) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) NIL)) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-3831 (($ (-828 |#1|) |#2|) 38)) (-4386 (($ $) 40)) (-3781 (((-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|)) $) 12)) (-1585 (((-828 |#1|) $) NIL)) (-3400 (((-828 |#1|) $) 41)) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-1435 (($ $ $) 69) (($ $ (-828 |#1|)) 58) (($ $ |#1|) 62)) (-3228 (((-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1358 (((-828 |#1|) $) 35)) (-1369 ((|#2| $) 37)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2565 (((-780) $) 43)) (-4044 (((-112) $) 47)) (-1705 ((|#2| $) NIL)) (-2942 (((-871) $) NIL) (($ (-828 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-573)) NIL)) (-1920 (((-653 |#2|) $) NIL)) (-4317 ((|#2| $ (-828 |#1|)) NIL)) (-1857 ((|#2| $ $) 76) ((|#2| $ (-828 |#1|)) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 13 T CONST)) (-2144 (($) 19 T CONST)) (-3256 (((-653 (-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2981 (((-112) $ $) 44)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) 28)) (** (($ $ (-780)) NIL) (($ $ (-931)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-828 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) +(((-1295 |#1| |#2|) (-13 (-390 |#2| (-828 |#1|)) (-1301 |#1| |#2|)) (-859) (-1061)) (T -1295)) +NIL +(-13 (-390 |#2| (-828 |#1|)) (-1301 |#1| |#2|)) +((-3118 ((|#3| |#3| (-780)) 28)) (-1608 ((|#3| |#3| (-780)) 34)) (-2850 ((|#3| |#3| |#3| (-780)) 35))) +(((-1296 |#1| |#2| |#3|) (-10 -7 (-15 -1608 (|#3| |#3| (-780))) (-15 -3118 (|#3| |#3| (-780))) (-15 -2850 (|#3| |#3| |#3| (-780)))) (-13 (-1061) (-726 (-416 (-573)))) (-859) (-1301 |#2| |#1|)) (T -1296)) +((-2850 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-780)) (-4 *4 (-13 (-1061) (-726 (-416 (-573))))) (-4 *5 (-859)) (-5 *1 (-1296 *4 *5 *2)) (-4 *2 (-1301 *5 *4)))) (-3118 (*1 *2 *2 *3) (-12 (-5 *3 (-780)) (-4 *4 (-13 (-1061) (-726 (-416 (-573))))) (-4 *5 (-859)) (-5 *1 (-1296 *4 *5 *2)) (-4 *2 (-1301 *5 *4)))) (-1608 (*1 *2 *2 *3) (-12 (-5 *3 (-780)) (-4 *4 (-13 (-1061) (-726 (-416 (-573))))) (-4 *5 (-859)) (-5 *1 (-1296 *4 *5 *2)) (-4 *2 (-1301 *5 *4))))) +(-10 -7 (-15 -1608 (|#3| |#3| (-780))) (-15 -3118 (|#3| |#3| (-780))) (-15 -2850 (|#3| |#3| |#3| (-780)))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-1653 (((-653 |#1|) $) 47)) (-2983 (((-3 $ "failed") $ $) 20)) (-3348 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-780)) 49 (|has| |#2| (-174)))) (-2579 (($) 18 T CONST)) (-1680 (($ $ |#1|) 61) (($ $ (-828 |#1|)) 60) (($ $ $) 59)) (-1695 (((-3 (-828 |#1|) "failed") $) 71)) (-2205 (((-828 |#1|) $) 72)) (-2232 (((-3 $ "failed") $) 37)) (-2088 (((-112) $) 52)) (-2329 (($ $) 51)) (-1959 (((-112) $) 35)) (-3676 (((-112) $) 57)) (-3831 (($ (-828 |#1|) |#2|) 58)) (-4386 (($ $) 56)) (-3781 (((-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|)) $) 67)) (-1585 (((-828 |#1|) $) 68)) (-1776 (($ (-1 |#2| |#2|) $) 48)) (-1435 (($ $ |#1|) 64) (($ $ (-828 |#1|)) 63) (($ $ $) 62)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-4044 (((-112) $) 54)) (-1705 ((|#2| $) 53)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#2|) 75) (($ (-828 |#1|)) 70) (($ |#1|) 55)) (-1857 ((|#2| $ (-828 |#1|)) 66) ((|#2| $ $) 65)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) +(((-1297 |#1| |#2|) (-141) (-859) (-1061)) (T -1297)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1297 *3 *2)) (-4 *3 (-859)) (-4 *2 (-1061)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061)))) (-1585 (*1 *2 *1) (-12 (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) (-5 *2 (-828 *3)))) (-3781 (*1 *2 *1) (-12 (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) (-5 *2 (-2 (|:| |k| (-828 *3)) (|:| |c| *4))))) (-1857 (*1 *2 *1 *3) (-12 (-5 *3 (-828 *4)) (-4 *1 (-1297 *4 *2)) (-4 *4 (-859)) (-4 *2 (-1061)))) (-1857 (*1 *2 *1 *1) (-12 (-4 *1 (-1297 *3 *2)) (-4 *3 (-859)) (-4 *2 (-1061)))) (-1435 (*1 *1 *1 *2) (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061)))) (-1435 (*1 *1 *1 *2) (-12 (-5 *2 (-828 *3)) (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)))) (-1435 (*1 *1 *1 *1) (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061)))) (-1680 (*1 *1 *1 *2) (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061)))) (-1680 (*1 *1 *1 *2) (-12 (-5 *2 (-828 *3)) (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)))) (-1680 (*1 *1 *1 *1) (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061)))) (-3831 (*1 *1 *2 *3) (-12 (-5 *2 (-828 *4)) (-4 *4 (-859)) (-4 *1 (-1297 *4 *3)) (-4 *3 (-1061)))) (-3676 (*1 *2 *1) (-12 (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) (-5 *2 (-112)))) (-4386 (*1 *1 *1) (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061)))) (-2942 (*1 *1 *2) (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061)))) (-4044 (*1 *2 *1) (-12 (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) (-5 *2 (-112)))) (-1705 (*1 *2 *1) (-12 (-4 *1 (-1297 *3 *2)) (-4 *3 (-859)) (-4 *2 (-1061)))) (-2088 (*1 *2 *1) (-12 (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) (-5 *2 (-112)))) (-2329 (*1 *1 *1) (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061)))) (-3348 (*1 *1 *1 *1) (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061)) (-4 *3 (-174)))) (-3348 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) (-4 *4 (-174)))) (-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)))) (-1653 (*1 *2 *1) (-12 (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) (-5 *2 (-653 *3))))) +(-13 (-1061) (-1294 |t#2|) (-1050 (-828 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -1585 ((-828 |t#1|) $)) (-15 -3781 ((-2 (|:| |k| (-828 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1857 (|t#2| $ (-828 |t#1|))) (-15 -1857 (|t#2| $ $)) (-15 -1435 ($ $ |t#1|)) (-15 -1435 ($ $ (-828 |t#1|))) (-15 -1435 ($ $ $)) (-15 -1680 ($ $ |t#1|)) (-15 -1680 ($ $ (-828 |t#1|))) (-15 -1680 ($ $ $)) (-15 -3831 ($ (-828 |t#1|) |t#2|)) (-15 -3676 ((-112) $)) (-15 -4386 ($ $)) (-15 -2942 ($ |t#1|)) (-15 -4044 ((-112) $)) (-15 -1705 (|t#2| $)) (-15 -2088 ((-112) $)) (-15 -2329 ($ $)) (IF (|has| |t#2| (-174)) (PROGN (-15 -3348 ($ $ $)) (-15 -3348 ($ $ (-780)))) |%noBranch|) (-15 -1776 ($ (-1 |t#2| |t#2|) $)) (-15 -1653 ((-653 |t#1|) $)) (IF (|has| |t#2| (-6 -4448)) (-6 -4448) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-625 (-573)) . T) ((-625 #0=(-828 |#1|)) . T) ((-625 |#2|) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#2|) . T) ((-655 $) . T) ((-657 |#2|) . T) ((-657 $) . T) ((-649 |#2|) |has| |#2| (-174)) ((-726 |#2|) |has| |#2| (-174)) ((-735) . T) ((-1050 #0#) . T) ((-1063 |#2|) . T) ((-1068 |#2|) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1294 |#2|) . T)) +((-3511 (((-112) $) 15)) (-4333 (((-112) $) 14)) (-1629 (($ $) 19) (($ $ (-780)) 21))) +(((-1298 |#1| |#2|) (-10 -8 (-15 -1629 (|#1| |#1| (-780))) (-15 -1629 (|#1| |#1|)) (-15 -3511 ((-112) |#1|)) (-15 -4333 ((-112) |#1|))) (-1299 |#2|) (-371)) (T -1298)) +NIL +(-10 -8 (-15 -1629 (|#1| |#1| (-780))) (-15 -1629 (|#1| |#1|)) (-15 -3511 ((-112) |#1|)) (-15 -4333 ((-112) |#1|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-4359 (((-2 (|:| -1642 $) (|:| -4442 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-1345 (((-112) $) 44)) (-3511 (((-112) $) 104)) (-3115 (((-780)) 100)) (-2983 (((-3 $ "failed") $ $) 20)) (-4285 (($ $) 81)) (-2427 (((-427 $) $) 80)) (-2800 (((-112) $ $) 65)) (-2579 (($) 18 T CONST)) (-1695 (((-3 |#1| "failed") $) 111)) (-2205 ((|#1| $) 112)) (-2784 (($ $ $) 61)) (-2232 (((-3 $ "failed") $) 37)) (-2796 (($ $ $) 62)) (-2713 (((-2 (|:| -1857 (-653 $)) (|:| -2969 $)) (-653 $)) 57)) (-2104 (($ $ (-780)) 97 (-2817 (|has| |#1| (-146)) (|has| |#1| (-376)))) (($ $) 96 (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2696 (((-112) $) 79)) (-2534 (((-842 (-931)) $) 94 (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1959 (((-112) $) 35)) (-4113 (((-3 (-653 $) "failed") (-653 $) $) 58)) (-2829 (($ $ $) 52) (($ (-653 $)) 51)) (-3180 (((-1171) $) 10)) (-1323 (($ $) 78)) (-2772 (((-112) $) 103)) (-3965 (((-1132) $) 11)) (-2888 (((-1185 $) (-1185 $) (-1185 $)) 50)) (-2872 (($ $ $) 54) (($ (-653 $)) 53)) (-4218 (((-427 $) $) 82)) (-3216 (((-842 (-931))) 101)) (-4019 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2969 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-3014 (((-3 (-653 $) "failed") (-653 $) $) 56)) (-2163 (((-780) $) 64)) (-1405 (((-2 (|:| -3152 $) (|:| -3132 $)) $ $) 63)) (-1637 (((-3 (-780) "failed") $ $) 95 (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-2365 (((-135)) 109)) (-2565 (((-842 (-931)) $) 102)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ $) 49) (($ (-416 (-573))) 74) (($ |#1|) 110)) (-4279 (((-3 $ "failed") $) 93 (-2817 (|has| |#1| (-146)) (|has| |#1| (-376))))) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2516 (((-112) $ $) 45)) (-4333 (((-112) $) 105)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-1629 (($ $) 99 (|has| |#1| (-376))) (($ $ (-780)) 98 (|has| |#1| (-376)))) (-2981 (((-112) $ $) 6)) (-3103 (($ $ $) 73) (($ $ |#1|) 108)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36) (($ $ (-573)) 77)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ $ (-416 (-573))) 76) (($ (-416 (-573)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) +(((-1299 |#1|) (-141) (-371)) (T -1299)) +((-4333 (*1 *2 *1) (-12 (-4 *1 (-1299 *3)) (-4 *3 (-371)) (-5 *2 (-112)))) (-3511 (*1 *2 *1) (-12 (-4 *1 (-1299 *3)) (-4 *3 (-371)) (-5 *2 (-112)))) (-2772 (*1 *2 *1) (-12 (-4 *1 (-1299 *3)) (-4 *3 (-371)) (-5 *2 (-112)))) (-2565 (*1 *2 *1) (-12 (-4 *1 (-1299 *3)) (-4 *3 (-371)) (-5 *2 (-842 (-931))))) (-3216 (*1 *2) (-12 (-4 *1 (-1299 *3)) (-4 *3 (-371)) (-5 *2 (-842 (-931))))) (-3115 (*1 *2) (-12 (-4 *1 (-1299 *3)) (-4 *3 (-371)) (-5 *2 (-780)))) (-1629 (*1 *1 *1) (-12 (-4 *1 (-1299 *2)) (-4 *2 (-371)) (-4 *2 (-376)))) (-1629 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-1299 *3)) (-4 *3 (-371)) (-4 *3 (-376))))) +(-13 (-371) (-1050 |t#1|) (-1287 |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-411)) |%noBranch|) (-15 -4333 ((-112) $)) (-15 -3511 ((-112) $)) (-15 -2772 ((-112) $)) (-15 -2565 ((-842 (-931)) $)) (-15 -3216 ((-842 (-931)))) (-15 -3115 ((-780))) (IF (|has| |t#1| (-376)) (PROGN (-6 (-411)) (-15 -1629 ($ $)) (-15 -1629 ($ $ (-780)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-416 (-573))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2817 (|has| |#1| (-376)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-625 #0#) . T) ((-625 (-573)) . T) ((-625 |#1|) . T) ((-625 $) . T) ((-622 (-871)) . T) ((-174) . T) ((-248) . T) ((-297) . T) ((-314) . T) ((-371) . T) ((-411) -2817 (|has| |#1| (-376)) (|has| |#1| (-146))) ((-461) . T) ((-565) . T) ((-655 #0#) . T) ((-655 (-573)) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-657 #0#) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-649 #0#) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-726 #0#) . T) ((-726 |#1|) . T) ((-726 $) . T) ((-735) . T) ((-930) . T) ((-1050 |#1|) . T) ((-1063 #0#) . T) ((-1063 |#1|) . T) ((-1063 $) . T) ((-1068 #0#) . T) ((-1068 |#1|) . T) ((-1068 $) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1234) . T) ((-1287 |#1|) . T)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-1653 (((-653 |#1|) $) 98)) (-4398 (($ $ (-780)) 102)) (-2983 (((-3 $ "failed") $ $) NIL)) (-3348 (($ $ $) NIL (|has| |#2| (-174))) (($ $ (-780)) NIL (|has| |#2| (-174)))) (-2579 (($) NIL T CONST)) (-1680 (($ $ |#1|) NIL) (($ $ (-828 |#1|)) NIL) (($ $ $) NIL)) (-1695 (((-3 (-828 |#1|) "failed") $) NIL) (((-3 (-903 |#1|) "failed") $) NIL)) (-2205 (((-828 |#1|) $) NIL) (((-903 |#1|) $) NIL)) (-1391 (($ $) 101)) (-2232 (((-3 $ "failed") $) NIL)) (-2088 (((-112) $) 90)) (-2329 (($ $) 93)) (-3044 (($ $ $ (-780)) 103)) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) NIL)) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-3831 (($ (-828 |#1|) |#2|) NIL) (($ (-903 |#1|) |#2|) 29)) (-4386 (($ $) 119)) (-3781 (((-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1585 (((-828 |#1|) $) NIL)) (-3400 (((-828 |#1|) $) NIL)) (-1776 (($ (-1 |#2| |#2|) $) NIL)) (-1435 (($ $ |#1|) NIL) (($ $ (-828 |#1|)) NIL) (($ $ $) NIL)) (-3118 (($ $ (-780)) 112 (|has| |#2| (-726 (-416 (-573)))))) (-3228 (((-2 (|:| |k| (-903 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1358 (((-903 |#1|) $) 83)) (-1369 ((|#2| $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-1608 (($ $ (-780)) 109 (|has| |#2| (-726 (-416 (-573)))))) (-2565 (((-780) $) 99)) (-4044 (((-112) $) 84)) (-1705 ((|#2| $) 88)) (-2942 (((-871) $) 69) (($ (-573)) NIL) (($ |#2|) 60) (($ (-828 |#1|)) NIL) (($ |#1|) 71) (($ (-903 |#1|)) NIL) (($ (-673 |#1| |#2|)) 48) (((-1295 |#1| |#2|) $) 76) (((-1304 |#1| |#2|) $) 81)) (-1920 (((-653 |#2|) $) NIL)) (-4317 ((|#2| $ (-903 |#1|)) NIL)) (-1857 ((|#2| $ (-828 |#1|)) NIL) ((|#2| $ $) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 21 T CONST)) (-2144 (($) 28 T CONST)) (-3256 (((-653 (-2 (|:| |k| (-903 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4284 (((-3 (-673 |#1| |#2|) "failed") $) 118)) (-2981 (((-112) $ $) 77)) (-3093 (($ $) 111) (($ $ $) 110)) (-3077 (($ $ $) 20)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-903 |#1|)) NIL))) +(((-1300 |#1| |#2|) (-13 (-1301 |#1| |#2|) (-390 |#2| (-903 |#1|)) (-10 -8 (-15 -2942 ($ (-673 |#1| |#2|))) (-15 -2942 ((-1295 |#1| |#2|) $)) (-15 -2942 ((-1304 |#1| |#2|) $)) (-15 -4284 ((-3 (-673 |#1| |#2|) "failed") $)) (-15 -3044 ($ $ $ (-780))) (IF (|has| |#2| (-726 (-416 (-573)))) (PROGN (-15 -1608 ($ $ (-780))) (-15 -3118 ($ $ (-780)))) |%noBranch|))) (-859) (-174)) (T -1300)) +((-2942 (*1 *1 *2) (-12 (-5 *2 (-673 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)) (-5 *1 (-1300 *3 *4)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-1295 *3 *4)) (-5 *1 (-1300 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-1304 *3 *4)) (-5 *1 (-1300 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)))) (-4284 (*1 *2 *1) (|partial| -12 (-5 *2 (-673 *3 *4)) (-5 *1 (-1300 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)))) (-3044 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-1300 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)))) (-1608 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-1300 *3 *4)) (-4 *4 (-726 (-416 (-573)))) (-4 *3 (-859)) (-4 *4 (-174)))) (-3118 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-1300 *3 *4)) (-4 *4 (-726 (-416 (-573)))) (-4 *3 (-859)) (-4 *4 (-174))))) +(-13 (-1301 |#1| |#2|) (-390 |#2| (-903 |#1|)) (-10 -8 (-15 -2942 ($ (-673 |#1| |#2|))) (-15 -2942 ((-1295 |#1| |#2|) $)) (-15 -2942 ((-1304 |#1| |#2|) $)) (-15 -4284 ((-3 (-673 |#1| |#2|) "failed") $)) (-15 -3044 ($ $ $ (-780))) (IF (|has| |#2| (-726 (-416 (-573)))) (PROGN (-15 -1608 ($ $ (-780))) (-15 -3118 ($ $ (-780)))) |%noBranch|))) +((-2848 (((-112) $ $) 7)) (-1748 (((-112) $) 17)) (-1653 (((-653 |#1|) $) 47)) (-4398 (($ $ (-780)) 80)) (-2983 (((-3 $ "failed") $ $) 20)) (-3348 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-780)) 49 (|has| |#2| (-174)))) (-2579 (($) 18 T CONST)) (-1680 (($ $ |#1|) 61) (($ $ (-828 |#1|)) 60) (($ $ $) 59)) (-1695 (((-3 (-828 |#1|) "failed") $) 71)) (-2205 (((-828 |#1|) $) 72)) (-2232 (((-3 $ "failed") $) 37)) (-2088 (((-112) $) 52)) (-2329 (($ $) 51)) (-1959 (((-112) $) 35)) (-3676 (((-112) $) 57)) (-3831 (($ (-828 |#1|) |#2|) 58)) (-4386 (($ $) 56)) (-3781 (((-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|)) $) 67)) (-1585 (((-828 |#1|) $) 68)) (-3400 (((-828 |#1|) $) 82)) (-1776 (($ (-1 |#2| |#2|) $) 48)) (-1435 (($ $ |#1|) 64) (($ $ (-828 |#1|)) 63) (($ $ $) 62)) (-3180 (((-1171) $) 10)) (-3965 (((-1132) $) 11)) (-2565 (((-780) $) 81)) (-4044 (((-112) $) 54)) (-1705 ((|#2| $) 53)) (-2942 (((-871) $) 12) (($ (-573)) 33) (($ |#2|) 75) (($ (-828 |#1|)) 70) (($ |#1|) 55)) (-1857 ((|#2| $ (-828 |#1|)) 66) ((|#2| $ $) 65)) (-1545 (((-780)) 32 T CONST)) (-3507 (((-112) $ $) 9)) (-2132 (($) 19 T CONST)) (-2144 (($) 34 T CONST)) (-2981 (((-112) $ $) 6)) (-3093 (($ $) 23) (($ $ $) 22)) (-3077 (($ $ $) 15)) (** (($ $ (-931)) 28) (($ $ (-780)) 36)) (* (($ (-931) $) 14) (($ (-780) $) 16) (($ (-573) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) +(((-1301 |#1| |#2|) (-141) (-859) (-1061)) (T -1301)) +((-3400 (*1 *2 *1) (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) (-5 *2 (-828 *3)))) (-2565 (*1 *2 *1) (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) (-5 *2 (-780)))) (-4398 (*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-4 *1 (-1301 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061))))) +(-13 (-1297 |t#1| |t#2|) (-10 -8 (-15 -3400 ((-828 |t#1|) $)) (-15 -2565 ((-780) $)) (-15 -4398 ($ $ (-780))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-625 (-573)) . T) ((-625 #0=(-828 |#1|)) . T) ((-625 |#2|) . T) ((-622 (-871)) . T) ((-655 (-573)) . T) ((-655 |#2|) . T) ((-655 $) . T) ((-657 |#2|) . T) ((-657 $) . T) ((-649 |#2|) |has| |#2| (-174)) ((-726 |#2|) |has| |#2| (-174)) ((-735) . T) ((-1050 #0#) . T) ((-1063 |#2|) . T) ((-1068 |#2|) . T) ((-1061) . T) ((-1070) . T) ((-1124) . T) ((-1112) . T) ((-1294 |#2|) . T) ((-1297 |#1| |#2|) . T)) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-1653 (((-653 (-1189)) $) NIL)) (-1764 (($ (-1295 (-1189) |#1|)) NIL)) (-4398 (($ $ (-780)) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-3348 (($ $ $) NIL (|has| |#1| (-174))) (($ $ (-780)) NIL (|has| |#1| (-174)))) (-2579 (($) NIL T CONST)) (-1680 (($ $ (-1189)) NIL) (($ $ (-828 (-1189))) NIL) (($ $ $) NIL)) (-1695 (((-3 (-828 (-1189)) "failed") $) NIL)) (-2205 (((-828 (-1189)) $) NIL)) (-2232 (((-3 $ "failed") $) NIL)) (-2088 (((-112) $) NIL)) (-2329 (($ $) NIL)) (-1959 (((-112) $) NIL)) (-3676 (((-112) $) NIL)) (-3831 (($ (-828 (-1189)) |#1|) NIL)) (-4386 (($ $) NIL)) (-3781 (((-2 (|:| |k| (-828 (-1189))) (|:| |c| |#1|)) $) NIL)) (-1585 (((-828 (-1189)) $) NIL)) (-3400 (((-828 (-1189)) $) NIL)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-1435 (($ $ (-1189)) NIL) (($ $ (-828 (-1189))) NIL) (($ $ $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2127 (((-1295 (-1189) |#1|) $) NIL)) (-2565 (((-780) $) NIL)) (-4044 (((-112) $) NIL)) (-1705 ((|#1| $) NIL)) (-2942 (((-871) $) NIL) (($ (-573)) NIL) (($ |#1|) NIL) (($ (-828 (-1189))) NIL) (($ (-1189)) NIL)) (-1857 ((|#1| $ (-828 (-1189))) NIL) ((|#1| $ $) NIL)) (-1545 (((-780)) NIL T CONST)) (-3507 (((-112) $ $) NIL)) (-2132 (($) NIL T CONST)) (-2776 (((-653 (-2 (|:| |k| (-1189)) (|:| |c| $))) $) NIL)) (-2144 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-931)) NIL) (($ $ (-780)) NIL)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1189) $) NIL))) +(((-1302 |#1|) (-13 (-1301 (-1189) |#1|) (-10 -8 (-15 -2127 ((-1295 (-1189) |#1|) $)) (-15 -1764 ($ (-1295 (-1189) |#1|))) (-15 -2776 ((-653 (-2 (|:| |k| (-1189)) (|:| |c| $))) $)))) (-1061)) (T -1302)) +((-2127 (*1 *2 *1) (-12 (-5 *2 (-1295 (-1189) *3)) (-5 *1 (-1302 *3)) (-4 *3 (-1061)))) (-1764 (*1 *1 *2) (-12 (-5 *2 (-1295 (-1189) *3)) (-4 *3 (-1061)) (-5 *1 (-1302 *3)))) (-2776 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| |k| (-1189)) (|:| |c| (-1302 *3))))) (-5 *1 (-1302 *3)) (-4 *3 (-1061))))) +(-13 (-1301 (-1189) |#1|) (-10 -8 (-15 -2127 ((-1295 (-1189) |#1|) $)) (-15 -1764 ($ (-1295 (-1189) |#1|))) (-15 -2776 ((-653 (-2 (|:| |k| (-1189)) (|:| |c| $))) $)))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) NIL)) (-2983 (((-3 $ "failed") $ $) NIL)) (-2579 (($) NIL T CONST)) (-1695 (((-3 |#2| "failed") $) NIL)) (-2205 ((|#2| $) NIL)) (-1391 (($ $) NIL)) (-2232 (((-3 $ "failed") $) 42)) (-2088 (((-112) $) 35)) (-2329 (($ $) 37)) (-1959 (((-112) $) NIL)) (-3772 (((-780) $) NIL)) (-2518 (((-653 $) $) NIL)) (-3676 (((-112) $) NIL)) (-3831 (($ |#2| |#1|) NIL)) (-1585 ((|#2| $) 24)) (-3400 ((|#2| $) 22)) (-1776 (($ (-1 |#1| |#1|) $) NIL)) (-3228 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1358 ((|#2| $) NIL)) (-1369 ((|#1| $) NIL)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-4044 (((-112) $) 32)) (-1705 ((|#1| $) 33)) (-2942 (((-871) $) 65) (($ (-573)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-1920 (((-653 |#1|) $) NIL)) (-4317 ((|#1| $ |#2|) NIL)) (-1857 ((|#1| $ |#2|) 28)) (-1545 (((-780)) 14 T CONST)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 29 T CONST)) (-2144 (($) 11 T CONST)) (-3256 (((-653 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2981 (((-112) $ $) 30)) (-3103 (($ $ |#1|) 67 (|has| |#1| (-371)))) (-3093 (($ $) NIL) (($ $ $) NIL)) (-3077 (($ $ $) 50)) (** (($ $ (-931)) NIL) (($ $ (-780)) 52)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2862 (((-780) $) 16))) +(((-1303 |#1| |#2|) (-13 (-1061) (-1294 |#1|) (-390 |#1| |#2|) (-625 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2862 ((-780) $)) (-15 -3400 (|#2| $)) (-15 -1585 (|#2| $)) (-15 -1391 ($ $)) (-15 -1857 (|#1| $ |#2|)) (-15 -4044 ((-112) $)) (-15 -1705 (|#1| $)) (-15 -2088 ((-112) $)) (-15 -2329 ($ $)) (-15 -1776 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-371)) (-15 -3103 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4448)) (-6 -4448) |%noBranch|) (IF (|has| |#1| (-6 -4452)) (-6 -4452) |%noBranch|) (IF (|has| |#1| (-6 -4453)) (-6 -4453) |%noBranch|))) (-1061) (-855)) (T -1303)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1303 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-855)))) (-1391 (*1 *1 *1) (-12 (-5 *1 (-1303 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-855)))) (-1776 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1061)) (-5 *1 (-1303 *3 *4)) (-4 *4 (-855)))) (-2862 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-1303 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-855)))) (-3400 (*1 *2 *1) (-12 (-4 *2 (-855)) (-5 *1 (-1303 *3 *2)) (-4 *3 (-1061)))) (-1585 (*1 *2 *1) (-12 (-4 *2 (-855)) (-5 *1 (-1303 *3 *2)) (-4 *3 (-1061)))) (-1857 (*1 *2 *1 *3) (-12 (-4 *2 (-1061)) (-5 *1 (-1303 *2 *3)) (-4 *3 (-855)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1303 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-855)))) (-1705 (*1 *2 *1) (-12 (-4 *2 (-1061)) (-5 *1 (-1303 *2 *3)) (-4 *3 (-855)))) (-2088 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1303 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-855)))) (-2329 (*1 *1 *1) (-12 (-5 *1 (-1303 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-855)))) (-3103 (*1 *1 *1 *2) (-12 (-5 *1 (-1303 *2 *3)) (-4 *2 (-371)) (-4 *2 (-1061)) (-4 *3 (-855))))) +(-13 (-1061) (-1294 |#1|) (-390 |#1| |#2|) (-625 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2862 ((-780) $)) (-15 -3400 (|#2| $)) (-15 -1585 (|#2| $)) (-15 -1391 ($ $)) (-15 -1857 (|#1| $ |#2|)) (-15 -4044 ((-112) $)) (-15 -1705 (|#1| $)) (-15 -2088 ((-112) $)) (-15 -2329 ($ $)) (-15 -1776 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-371)) (-15 -3103 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4448)) (-6 -4448) |%noBranch|) (IF (|has| |#1| (-6 -4452)) (-6 -4452) |%noBranch|) (IF (|has| |#1| (-6 -4453)) (-6 -4453) |%noBranch|))) +((-2848 (((-112) $ $) 27)) (-1748 (((-112) $) NIL)) (-1653 (((-653 |#1|) $) 132)) (-1764 (($ (-1295 |#1| |#2|)) 50)) (-4398 (($ $ (-780)) 38)) (-2983 (((-3 $ "failed") $ $) NIL)) (-3348 (($ $ $) 54 (|has| |#2| (-174))) (($ $ (-780)) 52 (|has| |#2| (-174)))) (-2579 (($) NIL T CONST)) (-1680 (($ $ |#1|) 114) (($ $ (-828 |#1|)) 115) (($ $ $) 26)) (-1695 (((-3 (-828 |#1|) "failed") $) NIL)) (-2205 (((-828 |#1|) $) NIL)) (-2232 (((-3 $ "failed") $) 122)) (-2088 (((-112) $) 117)) (-2329 (($ $) 118)) (-1959 (((-112) $) NIL)) (-3676 (((-112) $) NIL)) (-3831 (($ (-828 |#1|) |#2|) 20)) (-4386 (($ $) NIL)) (-3781 (((-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1585 (((-828 |#1|) $) 123)) (-3400 (((-828 |#1|) $) 126)) (-1776 (($ (-1 |#2| |#2|) $) 131)) (-1435 (($ $ |#1|) 112) (($ $ (-828 |#1|)) 113) (($ $ $) 62)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2127 (((-1295 |#1| |#2|) $) 94)) (-2565 (((-780) $) 129)) (-4044 (((-112) $) 81)) (-1705 ((|#2| $) 32)) (-2942 (((-871) $) 73) (($ (-573)) 87) (($ |#2|) 85) (($ (-828 |#1|)) 18) (($ |#1|) 84)) (-1857 ((|#2| $ (-828 |#1|)) 116) ((|#2| $ $) 28)) (-1545 (((-780)) 120 T CONST)) (-3507 (((-112) $ $) NIL)) (-2132 (($) 15 T CONST)) (-2776 (((-653 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-2144 (($) 33 T CONST)) (-2981 (((-112) $ $) 14)) (-3093 (($ $) 98) (($ $ $) 101)) (-3077 (($ $ $) 61)) (** (($ $ (-931)) NIL) (($ $ (-780)) 55)) (* (($ (-931) $) NIL) (($ (-780) $) 53) (($ (-573) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92))) +(((-1304 |#1| |#2|) (-13 (-1301 |#1| |#2|) (-10 -8 (-15 -2127 ((-1295 |#1| |#2|) $)) (-15 -1764 ($ (-1295 |#1| |#2|))) (-15 -2776 ((-653 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-859) (-1061)) (T -1304)) +((-2127 (*1 *2 *1) (-12 (-5 *2 (-1295 *3 *4)) (-5 *1 (-1304 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)))) (-1764 (*1 *1 *2) (-12 (-5 *2 (-1295 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) (-5 *1 (-1304 *3 *4)))) (-2776 (*1 *2 *1) (-12 (-5 *2 (-653 (-2 (|:| |k| *3) (|:| |c| (-1304 *3 *4))))) (-5 *1 (-1304 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061))))) +(-13 (-1301 |#1| |#2|) (-10 -8 (-15 -2127 ((-1295 |#1| |#2|) $)) (-15 -1764 ($ (-1295 |#1| |#2|))) (-15 -2776 ((-653 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-2848 (((-112) $ $) NIL)) (-1986 (($ (-653 (-931))) 10)) (-3962 (((-983) $) 12)) (-3180 (((-1171) $) NIL)) (-3965 (((-1132) $) NIL)) (-2942 (((-871) $) 25) (($ (-983)) 14) (((-983) $) 13)) (-3507 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 17))) +(((-1305) (-13 (-1112) (-499 (-983)) (-10 -8 (-15 -1986 ($ (-653 (-931)))) (-15 -3962 ((-983) $))))) (T -1305)) +((-1986 (*1 *1 *2) (-12 (-5 *2 (-653 (-931))) (-5 *1 (-1305)))) (-3962 (*1 *2 *1) (-12 (-5 *2 (-983)) (-5 *1 (-1305))))) +(-13 (-1112) (-499 (-983)) (-10 -8 (-15 -1986 ($ (-653 (-931)))) (-15 -3962 ((-983) $)))) +((-1880 (((-653 (-1169 |#1|)) (-1 (-653 (-1169 |#1|)) (-653 (-1169 |#1|))) (-573)) 16) (((-1169 |#1|) (-1 (-1169 |#1|) (-1169 |#1|))) 13))) +(((-1306 |#1|) (-10 -7 (-15 -1880 ((-1169 |#1|) (-1 (-1169 |#1|) (-1169 |#1|)))) (-15 -1880 ((-653 (-1169 |#1|)) (-1 (-653 (-1169 |#1|)) (-653 (-1169 |#1|))) (-573)))) (-1230)) (T -1306)) +((-1880 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-653 (-1169 *5)) (-653 (-1169 *5)))) (-5 *4 (-573)) (-5 *2 (-653 (-1169 *5))) (-5 *1 (-1306 *5)) (-4 *5 (-1230)))) (-1880 (*1 *2 *3) (-12 (-5 *3 (-1 (-1169 *4) (-1169 *4))) (-5 *2 (-1169 *4)) (-5 *1 (-1306 *4)) (-4 *4 (-1230))))) +(-10 -7 (-15 -1880 ((-1169 |#1|) (-1 (-1169 |#1|) (-1169 |#1|)))) (-15 -1880 ((-653 (-1169 |#1|)) (-1 (-653 (-1169 |#1|)) (-653 (-1169 |#1|))) (-573)))) +((-2712 (((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|))) 174) (((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)) (-112)) 173) (((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)) (-112) (-112)) 172) (((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)) (-112) (-112) (-112)) 171) (((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-1058 |#1| |#2|)) 156)) (-4138 (((-653 (-1058 |#1| |#2|)) (-653 (-962 |#1|))) 85) (((-653 (-1058 |#1| |#2|)) (-653 (-962 |#1|)) (-112)) 84) (((-653 (-1058 |#1| |#2|)) (-653 (-962 |#1|)) (-112) (-112)) 83)) (-2427 (((-653 (-1158 |#1| (-540 (-873 |#3|)) (-873 |#3|) (-789 |#1| (-873 |#3|)))) (-1058 |#1| |#2|)) 73)) (-2676 (((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|))) 140) (((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)) (-112)) 139) (((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)) (-112) (-112)) 138) (((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)) (-112) (-112) (-112)) 137) (((-653 (-653 (-1036 (-416 |#1|)))) (-1058 |#1| |#2|)) 132)) (-2531 (((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|))) 145) (((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)) (-112)) 144) (((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)) (-112) (-112)) 143) (((-653 (-653 (-1036 (-416 |#1|)))) (-1058 |#1| |#2|)) 142)) (-1835 (((-653 (-789 |#1| (-873 |#3|))) (-1158 |#1| (-540 (-873 |#3|)) (-873 |#3|) (-789 |#1| (-873 |#3|)))) 111) (((-1185 (-1036 (-416 |#1|))) (-1185 |#1|)) 102) (((-962 (-1036 (-416 |#1|))) (-789 |#1| (-873 |#3|))) 109) (((-962 (-1036 (-416 |#1|))) (-962 |#1|)) 107) (((-789 |#1| (-873 |#3|)) (-789 |#1| (-873 |#2|))) 33))) +(((-1307 |#1| |#2| |#3|) (-10 -7 (-15 -4138 ((-653 (-1058 |#1| |#2|)) (-653 (-962 |#1|)) (-112) (-112))) (-15 -4138 ((-653 (-1058 |#1| |#2|)) (-653 (-962 |#1|)) (-112))) (-15 -4138 ((-653 (-1058 |#1| |#2|)) (-653 (-962 |#1|)))) (-15 -2712 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-1058 |#1| |#2|))) (-15 -2712 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)) (-112) (-112) (-112))) (-15 -2712 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)) (-112) (-112))) (-15 -2712 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)) (-112))) (-15 -2712 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)))) (-15 -2676 ((-653 (-653 (-1036 (-416 |#1|)))) (-1058 |#1| |#2|))) (-15 -2676 ((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)) (-112) (-112) (-112))) (-15 -2676 ((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)) (-112) (-112))) (-15 -2676 ((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)) (-112))) (-15 -2676 ((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)))) (-15 -2531 ((-653 (-653 (-1036 (-416 |#1|)))) (-1058 |#1| |#2|))) (-15 -2531 ((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)) (-112) (-112))) (-15 -2531 ((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)) (-112))) (-15 -2531 ((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)))) (-15 -2427 ((-653 (-1158 |#1| (-540 (-873 |#3|)) (-873 |#3|) (-789 |#1| (-873 |#3|)))) (-1058 |#1| |#2|))) (-15 -1835 ((-789 |#1| (-873 |#3|)) (-789 |#1| (-873 |#2|)))) (-15 -1835 ((-962 (-1036 (-416 |#1|))) (-962 |#1|))) (-15 -1835 ((-962 (-1036 (-416 |#1|))) (-789 |#1| (-873 |#3|)))) (-15 -1835 ((-1185 (-1036 (-416 |#1|))) (-1185 |#1|))) (-15 -1835 ((-653 (-789 |#1| (-873 |#3|))) (-1158 |#1| (-540 (-873 |#3|)) (-873 |#3|) (-789 |#1| (-873 |#3|)))))) (-13 (-857) (-314) (-148) (-1034)) (-653 (-1189)) (-653 (-1189))) (T -1307)) +((-1835 (*1 *2 *3) (-12 (-5 *3 (-1158 *4 (-540 (-873 *6)) (-873 *6) (-789 *4 (-873 *6)))) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-14 *6 (-653 (-1189))) (-5 *2 (-653 (-789 *4 (-873 *6)))) (-5 *1 (-1307 *4 *5 *6)) (-14 *5 (-653 (-1189))))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-1185 *4)) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-1185 (-1036 (-416 *4)))) (-5 *1 (-1307 *4 *5 *6)) (-14 *5 (-653 (-1189))) (-14 *6 (-653 (-1189))))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-789 *4 (-873 *6))) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-14 *6 (-653 (-1189))) (-5 *2 (-962 (-1036 (-416 *4)))) (-5 *1 (-1307 *4 *5 *6)) (-14 *5 (-653 (-1189))))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-962 *4)) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-962 (-1036 (-416 *4)))) (-5 *1 (-1307 *4 *5 *6)) (-14 *5 (-653 (-1189))) (-14 *6 (-653 (-1189))))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-789 *4 (-873 *5))) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-14 *5 (-653 (-1189))) (-5 *2 (-789 *4 (-873 *6))) (-5 *1 (-1307 *4 *5 *6)) (-14 *6 (-653 (-1189))))) (-2427 (*1 *2 *3) (-12 (-5 *3 (-1058 *4 *5)) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-14 *5 (-653 (-1189))) (-5 *2 (-653 (-1158 *4 (-540 (-873 *6)) (-873 *6) (-789 *4 (-873 *6))))) (-5 *1 (-1307 *4 *5 *6)) (-14 *6 (-653 (-1189))))) (-2531 (*1 *2 *3) (-12 (-5 *3 (-653 (-962 *4))) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-653 (-653 (-1036 (-416 *4))))) (-5 *1 (-1307 *4 *5 *6)) (-14 *5 (-653 (-1189))) (-14 *6 (-653 (-1189))))) (-2531 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-653 (-653 (-1036 (-416 *5))))) (-5 *1 (-1307 *5 *6 *7)) (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) (-2531 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-653 (-653 (-1036 (-416 *5))))) (-5 *1 (-1307 *5 *6 *7)) (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) (-2531 (*1 *2 *3) (-12 (-5 *3 (-1058 *4 *5)) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-14 *5 (-653 (-1189))) (-5 *2 (-653 (-653 (-1036 (-416 *4))))) (-5 *1 (-1307 *4 *5 *6)) (-14 *6 (-653 (-1189))))) (-2676 (*1 *2 *3) (-12 (-5 *3 (-653 (-962 *4))) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-653 (-653 (-1036 (-416 *4))))) (-5 *1 (-1307 *4 *5 *6)) (-14 *5 (-653 (-1189))) (-14 *6 (-653 (-1189))))) (-2676 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-653 (-653 (-1036 (-416 *5))))) (-5 *1 (-1307 *5 *6 *7)) (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) (-2676 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-653 (-653 (-1036 (-416 *5))))) (-5 *1 (-1307 *5 *6 *7)) (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) (-2676 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-653 (-653 (-1036 (-416 *5))))) (-5 *1 (-1307 *5 *6 *7)) (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) (-2676 (*1 *2 *3) (-12 (-5 *3 (-1058 *4 *5)) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-14 *5 (-653 (-1189))) (-5 *2 (-653 (-653 (-1036 (-416 *4))))) (-5 *1 (-1307 *4 *5 *6)) (-14 *6 (-653 (-1189))))) (-2712 (*1 *2 *3) (-12 (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-653 (-2 (|:| -1436 (-1185 *4)) (|:| -2123 (-653 (-962 *4)))))) (-5 *1 (-1307 *4 *5 *6)) (-5 *3 (-653 (-962 *4))) (-14 *5 (-653 (-1189))) (-14 *6 (-653 (-1189))))) (-2712 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-653 (-2 (|:| -1436 (-1185 *5)) (|:| -2123 (-653 (-962 *5)))))) (-5 *1 (-1307 *5 *6 *7)) (-5 *3 (-653 (-962 *5))) (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) (-2712 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-653 (-2 (|:| -1436 (-1185 *5)) (|:| -2123 (-653 (-962 *5)))))) (-5 *1 (-1307 *5 *6 *7)) (-5 *3 (-653 (-962 *5))) (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) (-2712 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-653 (-2 (|:| -1436 (-1185 *5)) (|:| -2123 (-653 (-962 *5)))))) (-5 *1 (-1307 *5 *6 *7)) (-5 *3 (-653 (-962 *5))) (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) (-2712 (*1 *2 *3) (-12 (-5 *3 (-1058 *4 *5)) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-14 *5 (-653 (-1189))) (-5 *2 (-653 (-2 (|:| -1436 (-1185 *4)) (|:| -2123 (-653 (-962 *4)))))) (-5 *1 (-1307 *4 *5 *6)) (-14 *6 (-653 (-1189))))) (-4138 (*1 *2 *3) (-12 (-5 *3 (-653 (-962 *4))) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-653 (-1058 *4 *5))) (-5 *1 (-1307 *4 *5 *6)) (-14 *5 (-653 (-1189))) (-14 *6 (-653 (-1189))))) (-4138 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-653 (-1058 *5 *6))) (-5 *1 (-1307 *5 *6 *7)) (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) (-4138 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 (-653 (-1058 *5 *6))) (-5 *1 (-1307 *5 *6 *7)) (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189)))))) +(-10 -7 (-15 -4138 ((-653 (-1058 |#1| |#2|)) (-653 (-962 |#1|)) (-112) (-112))) (-15 -4138 ((-653 (-1058 |#1| |#2|)) (-653 (-962 |#1|)) (-112))) (-15 -4138 ((-653 (-1058 |#1| |#2|)) (-653 (-962 |#1|)))) (-15 -2712 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-1058 |#1| |#2|))) (-15 -2712 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)) (-112) (-112) (-112))) (-15 -2712 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)) (-112) (-112))) (-15 -2712 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)) (-112))) (-15 -2712 ((-653 (-2 (|:| -1436 (-1185 |#1|)) (|:| -2123 (-653 (-962 |#1|))))) (-653 (-962 |#1|)))) (-15 -2676 ((-653 (-653 (-1036 (-416 |#1|)))) (-1058 |#1| |#2|))) (-15 -2676 ((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)) (-112) (-112) (-112))) (-15 -2676 ((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)) (-112) (-112))) (-15 -2676 ((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)) (-112))) (-15 -2676 ((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)))) (-15 -2531 ((-653 (-653 (-1036 (-416 |#1|)))) (-1058 |#1| |#2|))) (-15 -2531 ((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)) (-112) (-112))) (-15 -2531 ((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)) (-112))) (-15 -2531 ((-653 (-653 (-1036 (-416 |#1|)))) (-653 (-962 |#1|)))) (-15 -2427 ((-653 (-1158 |#1| (-540 (-873 |#3|)) (-873 |#3|) (-789 |#1| (-873 |#3|)))) (-1058 |#1| |#2|))) (-15 -1835 ((-789 |#1| (-873 |#3|)) (-789 |#1| (-873 |#2|)))) (-15 -1835 ((-962 (-1036 (-416 |#1|))) (-962 |#1|))) (-15 -1835 ((-962 (-1036 (-416 |#1|))) (-789 |#1| (-873 |#3|)))) (-15 -1835 ((-1185 (-1036 (-416 |#1|))) (-1185 |#1|))) (-15 -1835 ((-653 (-789 |#1| (-873 |#3|))) (-1158 |#1| (-540 (-873 |#3|)) (-873 |#3|) (-789 |#1| (-873 |#3|)))))) +((-4349 (((-3 (-1280 (-416 (-573))) "failed") (-1280 |#1|) |#1|) 21)) (-3392 (((-112) (-1280 |#1|)) 12)) (-3415 (((-3 (-1280 (-573)) "failed") (-1280 |#1|)) 16))) +(((-1308 |#1|) (-10 -7 (-15 -3392 ((-112) (-1280 |#1|))) (-15 -3415 ((-3 (-1280 (-573)) "failed") (-1280 |#1|))) (-15 -4349 ((-3 (-1280 (-416 (-573))) "failed") (-1280 |#1|) |#1|))) (-13 (-1061) (-648 (-573)))) (T -1308)) +((-4349 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1280 *4)) (-4 *4 (-13 (-1061) (-648 (-573)))) (-5 *2 (-1280 (-416 (-573)))) (-5 *1 (-1308 *4)))) (-3415 (*1 *2 *3) (|partial| -12 (-5 *3 (-1280 *4)) (-4 *4 (-13 (-1061) (-648 (-573)))) (-5 *2 (-1280 (-573))) (-5 *1 (-1308 *4)))) (-3392 (*1 *2 *3) (-12 (-5 *3 (-1280 *4)) (-4 *4 (-13 (-1061) (-648 (-573)))) (-5 *2 (-112)) (-5 *1 (-1308 *4))))) +(-10 -7 (-15 -3392 ((-112) (-1280 |#1|))) (-15 -3415 ((-3 (-1280 (-573)) "failed") (-1280 |#1|))) (-15 -4349 ((-3 (-1280 (-416 (-573))) "failed") (-1280 |#1|) |#1|))) +((-2848 (((-112) $ $) NIL)) (-1748 (((-112) $) 11)) (-2983 (((-3 $ "failed") $ $) NIL)) (-1486 (((-780)) 8)) (-2579 (($) NIL T CONST)) (-2232 (((-3 $ "failed") $) 58)) (-2819 (($) 49)) (-1959 (((-112) $) 57)) (-1470 (((-3 $ "failed") $) 40)) (-3589 (((-931) $) 15)) (-3180 (((-1171) $) NIL)) (-3816 (($) 32 T CONST)) (-2575 (($ (-931)) 50)) (-3965 (((-1132) $) NIL)) (-1835 (((-573) $) 13)) (-2942 (((-871) $) 27) (($ (-573)) 24)) (-1545 (((-780)) 9 T CONST)) (-3507 (((-112) $ $) 60)) (-2132 (($) 29 T CONST)) (-2144 (($) 31 T CONST)) (-2981 (((-112) $ $) 38)) (-3093 (($ $) 52) (($ $ $) 47)) (-3077 (($ $ $) 35)) (** (($ $ (-931)) NIL) (($ $ (-780)) 54)) (* (($ (-931) $) NIL) (($ (-780) $) NIL) (($ (-573) $) 44) (($ $ $) 43))) +(((-1309 |#1|) (-13 (-174) (-376) (-623 (-573)) (-1164)) (-931)) (T -1309)) +NIL +(-13 (-174) (-376) (-623 (-573)) (-1164)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 3238343 3238348 3238353 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3238328 3238333 3238338 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3238313 3238318 3238323 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3238298 3238303 3238308 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1309 3237441 3238173 3238250 "ZMOD" 3238255 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1308 3236495 3236659 3236882 "ZLINDEP" 3237273 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1307 3225795 3227563 3229535 "ZDSOLVE" 3234625 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1306 3225041 3225182 3225371 "YSTREAM" 3225641 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1305 3224469 3224715 3224828 "YDIAGRAM" 3224950 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1304 3222243 3223770 3223974 "XRPOLY" 3224312 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1303 3218796 3220114 3220689 "XPR" 3221715 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1302 3216517 3218127 3218331 "XPOLY" 3218627 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1301 3214170 3215538 3215593 "XPOLYC" 3215881 NIL XPOLYC (NIL T T) -9 NIL 3215994 NIL) (-1300 3210546 3212687 3213075 "XPBWPOLY" 3213828 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1299 3206241 3208536 3208578 "XF" 3209199 NIL XF (NIL T) -9 NIL 3209599 NIL) (-1298 3205862 3205950 3206119 "XF-" 3206124 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1297 3201058 3202347 3202402 "XFALG" 3204574 NIL XFALG (NIL T T) -9 NIL 3205363 NIL) (-1296 3200191 3200295 3200500 "XEXPPKG" 3200950 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1295 3198300 3200041 3200137 "XDPOLY" 3200142 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1294 3197107 3197707 3197750 "XALG" 3197755 NIL XALG (NIL T) -9 NIL 3197866 NIL) (-1293 3190549 3195084 3195578 "WUTSET" 3196699 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1292 3188805 3189601 3189924 "WP" 3190360 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1291 3188407 3188627 3188697 "WHILEAST" 3188757 T WHILEAST (NIL) -8 NIL NIL NIL) (-1290 3187879 3188124 3188218 "WHEREAST" 3188335 T WHEREAST (NIL) -8 NIL NIL NIL) (-1289 3186765 3186963 3187258 "WFFINTBS" 3187676 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1288 3184669 3185096 3185558 "WEIER" 3186337 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1287 3183715 3184165 3184207 "VSPACE" 3184343 NIL VSPACE (NIL T) -9 NIL 3184417 NIL) (-1286 3183553 3183580 3183671 "VSPACE-" 3183676 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1285 3183362 3183404 3183472 "VOID" 3183507 T VOID (NIL) -8 NIL NIL NIL) (-1284 3181498 3181857 3182263 "VIEW" 3182978 T VIEW (NIL) -7 NIL NIL NIL) (-1283 3177922 3178561 3179298 "VIEWDEF" 3180783 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1282 3167226 3169470 3171643 "VIEW3D" 3175771 T VIEW3D (NIL) -8 NIL NIL NIL) (-1281 3159477 3161137 3162716 "VIEW2D" 3165669 T VIEW2D (NIL) -8 NIL NIL NIL) (-1280 3154830 3159247 3159339 "VECTOR" 3159420 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1279 3153407 3153666 3153984 "VECTOR2" 3154560 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1278 3146849 3151158 3151201 "VECTCAT" 3152196 NIL VECTCAT (NIL T) -9 NIL 3152783 NIL) (-1277 3145863 3146117 3146507 "VECTCAT-" 3146512 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1276 3145317 3145514 3145634 "VARIABLE" 3145778 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1275 3145250 3145255 3145285 "UTYPE" 3145290 T UTYPE (NIL) -9 NIL NIL NIL) (-1274 3144080 3144234 3144496 "UTSODETL" 3145076 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1273 3141520 3141980 3142504 "UTSODE" 3143621 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1272 3133358 3139146 3139635 "UTS" 3141089 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1271 3124098 3129467 3129510 "UTSCAT" 3130622 NIL UTSCAT (NIL T) -9 NIL 3131380 NIL) (-1270 3121446 3122168 3123157 "UTSCAT-" 3123162 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1269 3121073 3121116 3121249 "UTS2" 3121397 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1268 3115299 3117911 3117954 "URAGG" 3120024 NIL URAGG (NIL T) -9 NIL 3120747 NIL) (-1267 3112238 3113101 3114224 "URAGG-" 3114229 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1266 3107947 3110873 3111338 "UPXSSING" 3111902 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1265 3100013 3107194 3107467 "UPXS" 3107732 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1264 3093086 3099917 3099989 "UPXSCONS" 3099994 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1263 3082683 3089478 3089540 "UPXSCCA" 3090114 NIL UPXSCCA (NIL T T) -9 NIL 3090347 NIL) (-1262 3082321 3082406 3082580 "UPXSCCA-" 3082585 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1261 3071770 3078338 3078381 "UPXSCAT" 3079029 NIL UPXSCAT (NIL T) -9 NIL 3079638 NIL) (-1260 3071200 3071279 3071458 "UPXS2" 3071685 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1259 3069854 3070107 3070458 "UPSQFREE" 3070943 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1258 3063234 3066293 3066348 "UPSCAT" 3067428 NIL UPSCAT (NIL T T) -9 NIL 3068193 NIL) (-1257 3062438 3062645 3062972 "UPSCAT-" 3062977 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1256 3047921 3055778 3055821 "UPOLYC" 3057922 NIL UPOLYC (NIL T) -9 NIL 3059143 NIL) (-1255 3039249 3041675 3044822 "UPOLYC-" 3044827 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1254 3038876 3038919 3039052 "UPOLYC2" 3039200 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1253 3030598 3038559 3038688 "UP" 3038795 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1252 3029937 3030044 3030208 "UPMP" 3030487 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1251 3029490 3029571 3029710 "UPDIVP" 3029850 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1250 3028058 3028307 3028623 "UPDECOMP" 3029239 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1249 3027289 3027401 3027587 "UPCDEN" 3027942 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1248 3026808 3026877 3027026 "UP2" 3027214 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1247 3025275 3026012 3026289 "UNISEG" 3026566 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1246 3024490 3024617 3024822 "UNISEG2" 3025118 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1245 3023550 3023730 3023956 "UNIFACT" 3024306 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1244 3007311 3022727 3022978 "ULS" 3023357 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1243 2995174 3007215 3007287 "ULSCONS" 3007292 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1242 2976773 2988897 2988959 "ULSCCAT" 2989597 NIL ULSCCAT (NIL T T) -9 NIL 2989886 NIL) (-1241 2975823 2976068 2976456 "ULSCCAT-" 2976461 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1240 2965063 2971545 2971588 "ULSCAT" 2972451 NIL ULSCAT (NIL T) -9 NIL 2973182 NIL) (-1239 2964493 2964572 2964751 "ULS2" 2964978 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1238 2963612 2964122 2964229 "UINT8" 2964340 T UINT8 (NIL) -8 NIL NIL 2964425) (-1237 2962730 2963240 2963347 "UINT64" 2963458 T UINT64 (NIL) -8 NIL NIL 2963543) (-1236 2961848 2962358 2962465 "UINT32" 2962576 T UINT32 (NIL) -8 NIL NIL 2962661) (-1235 2960966 2961476 2961583 "UINT16" 2961694 T UINT16 (NIL) -8 NIL NIL 2961779) (-1234 2959269 2960226 2960256 "UFD" 2960468 T UFD (NIL) -9 NIL 2960582 NIL) (-1233 2959063 2959109 2959204 "UFD-" 2959209 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1232 2958145 2958328 2958544 "UDVO" 2958869 T UDVO (NIL) -7 NIL NIL NIL) (-1231 2955961 2956370 2956841 "UDPO" 2957709 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1230 2955894 2955899 2955929 "TYPE" 2955934 T TYPE (NIL) -9 NIL NIL NIL) (-1229 2955654 2955849 2955880 "TYPEAST" 2955885 T TYPEAST (NIL) -8 NIL NIL NIL) (-1228 2954625 2954827 2955067 "TWOFACT" 2955448 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1227 2953648 2954034 2954269 "TUPLE" 2954425 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1226 2951339 2951858 2952397 "TUBETOOL" 2953131 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1225 2950188 2950393 2950634 "TUBE" 2951132 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1224 2944917 2949160 2949443 "TS" 2949940 NIL TS (NIL T) -8 NIL NIL NIL) (-1223 2933557 2937676 2937773 "TSETCAT" 2943042 NIL TSETCAT (NIL T T T T) -9 NIL 2944573 NIL) (-1222 2928289 2929889 2931780 "TSETCAT-" 2931785 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1221 2922928 2923775 2924704 "TRMANIP" 2927425 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1220 2922369 2922432 2922595 "TRIMAT" 2922860 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1219 2920235 2920472 2920829 "TRIGMNIP" 2922118 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1218 2919755 2919868 2919898 "TRIGCAT" 2920111 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1217 2919424 2919503 2919644 "TRIGCAT-" 2919649 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1216 2916269 2918282 2918563 "TREE" 2919178 NIL TREE (NIL T) -8 NIL NIL NIL) (-1215 2915543 2916071 2916101 "TRANFUN" 2916136 T TRANFUN (NIL) -9 NIL 2916202 NIL) (-1214 2914822 2915013 2915293 "TRANFUN-" 2915298 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1213 2914626 2914658 2914719 "TOPSP" 2914783 T TOPSP (NIL) -7 NIL NIL NIL) (-1212 2913974 2914089 2914243 "TOOLSIGN" 2914507 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1211 2912608 2913151 2913390 "TEXTFILE" 2913757 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1210 2910520 2911061 2911490 "TEX" 2912201 T TEX (NIL) -8 NIL NIL NIL) (-1209 2910301 2910332 2910404 "TEX1" 2910483 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1208 2909949 2910012 2910102 "TEMUTL" 2910233 T TEMUTL (NIL) -7 NIL NIL NIL) (-1207 2908103 2908383 2908708 "TBCMPPK" 2909672 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1206 2899880 2906263 2906319 "TBAGG" 2906719 NIL TBAGG (NIL T T) -9 NIL 2906930 NIL) (-1205 2894950 2896438 2898192 "TBAGG-" 2898197 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1204 2894334 2894441 2894586 "TANEXP" 2894839 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1203 2893845 2894109 2894199 "TALGOP" 2894279 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1202 2887235 2893702 2893795 "TABLE" 2893800 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1201 2886647 2886746 2886884 "TABLEAU" 2887132 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1200 2881255 2882475 2883723 "TABLBUMP" 2885433 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1199 2880477 2880624 2880805 "SYSTEM" 2881096 T SYSTEM (NIL) -8 NIL NIL NIL) (-1198 2876936 2877635 2878418 "SYSSOLP" 2879728 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1197 2876734 2876891 2876922 "SYSPTR" 2876927 T SYSPTR (NIL) -8 NIL NIL NIL) (-1196 2875770 2876275 2876394 "SYSNNI" 2876580 NIL SYSNNI (NIL NIL) -8 NIL NIL 2876665) (-1195 2875069 2875528 2875607 "SYSINT" 2875667 NIL SYSINT (NIL NIL) -8 NIL NIL 2875712) (-1194 2871401 2872347 2873057 "SYNTAX" 2874381 T SYNTAX (NIL) -8 NIL NIL NIL) (-1193 2868559 2869161 2869793 "SYMTAB" 2870791 T SYMTAB (NIL) -8 NIL NIL NIL) (-1192 2863808 2864710 2865693 "SYMS" 2867598 T SYMS (NIL) -8 NIL NIL NIL) (-1191 2861043 2863266 2863496 "SYMPOLY" 2863613 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1190 2860560 2860635 2860758 "SYMFUNC" 2860955 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1189 2856580 2857872 2858685 "SYMBOL" 2859769 T SYMBOL (NIL) -8 NIL NIL NIL) (-1188 2850119 2851808 2853528 "SWITCH" 2854882 T SWITCH (NIL) -8 NIL NIL NIL) (-1187 2843353 2848940 2849243 "SUTS" 2849874 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1186 2835419 2842600 2842873 "SUPXS" 2843138 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1185 2827089 2835037 2835163 "SUP" 2835328 NIL SUP (NIL T) -8 NIL NIL NIL) (-1184 2826248 2826375 2826592 "SUPFRACF" 2826957 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1183 2825869 2825928 2826041 "SUP2" 2826183 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1182 2824317 2824591 2824947 "SUMRF" 2825568 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1181 2823652 2823718 2823910 "SUMFS" 2824238 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1180 2807448 2822829 2823080 "SULS" 2823459 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1179 2807050 2807270 2807340 "SUCHTAST" 2807400 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1178 2806345 2806575 2806715 "SUCH" 2806958 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1177 2800212 2801251 2802210 "SUBSPACE" 2805433 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1176 2799642 2799732 2799896 "SUBRESP" 2800100 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1175 2793010 2794307 2795618 "STTF" 2798378 NIL STTF (NIL T) -7 NIL NIL NIL) (-1174 2787183 2788303 2789450 "STTFNC" 2791910 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1173 2778496 2780365 2782159 "STTAYLOR" 2785424 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1172 2771626 2778360 2778443 "STRTBL" 2778448 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1171 2766990 2771581 2771612 "STRING" 2771617 T STRING (NIL) -8 NIL NIL NIL) (-1170 2761819 2766333 2766363 "STRICAT" 2766422 T STRICAT (NIL) -9 NIL 2766484 NIL) (-1169 2754572 2759438 2760049 "STREAM" 2761243 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1168 2754082 2754159 2754303 "STREAM3" 2754489 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1167 2753064 2753247 2753482 "STREAM2" 2753895 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1166 2752752 2752804 2752897 "STREAM1" 2753006 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1165 2751768 2751949 2752180 "STINPROD" 2752568 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1164 2751320 2751530 2751560 "STEP" 2751640 T STEP (NIL) -9 NIL 2751718 NIL) (-1163 2750507 2750809 2750957 "STEPAST" 2751194 T STEPAST (NIL) -8 NIL NIL NIL) (-1162 2743939 2750406 2750483 "STBL" 2750488 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1161 2739034 2743130 2743173 "STAGG" 2743326 NIL STAGG (NIL T) -9 NIL 2743415 NIL) (-1160 2736736 2737338 2738210 "STAGG-" 2738215 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1159 2734883 2736506 2736598 "STACK" 2736679 NIL STACK (NIL T) -8 NIL NIL NIL) (-1158 2727578 2733024 2733480 "SREGSET" 2734513 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1157 2720003 2721372 2722885 "SRDCMPK" 2726184 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1156 2712888 2717413 2717443 "SRAGG" 2718746 T SRAGG (NIL) -9 NIL 2719354 NIL) (-1155 2711905 2712160 2712539 "SRAGG-" 2712544 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1154 2706276 2710852 2711273 "SQMATRIX" 2711531 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1153 2699961 2702994 2703721 "SPLTREE" 2705621 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1152 2695924 2696617 2697263 "SPLNODE" 2699387 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1151 2694971 2695204 2695234 "SPFCAT" 2695678 T SPFCAT (NIL) -9 NIL NIL NIL) (-1150 2693708 2693918 2694182 "SPECOUT" 2694729 T SPECOUT (NIL) -7 NIL NIL NIL) (-1149 2684818 2686690 2686720 "SPADXPT" 2691396 T SPADXPT (NIL) -9 NIL 2693560 NIL) (-1148 2684579 2684619 2684688 "SPADPRSR" 2684771 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1147 2682628 2684534 2684565 "SPADAST" 2684570 T SPADAST (NIL) -8 NIL NIL NIL) (-1146 2674573 2676346 2676389 "SPACEC" 2680762 NIL SPACEC (NIL T) -9 NIL 2682578 NIL) (-1145 2672703 2674505 2674554 "SPACE3" 2674559 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1144 2671455 2671626 2671917 "SORTPAK" 2672508 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1143 2669547 2669850 2670262 "SOLVETRA" 2671119 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1142 2668597 2668819 2669080 "SOLVESER" 2669320 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1141 2663901 2664789 2665784 "SOLVERAD" 2667649 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1140 2659716 2660325 2661054 "SOLVEFOR" 2663268 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1139 2653986 2659065 2659162 "SNTSCAT" 2659167 NIL SNTSCAT (NIL T T T T) -9 NIL 2659237 NIL) (-1138 2648092 2652309 2652700 "SMTS" 2653676 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1137 2642688 2647980 2648057 "SMP" 2648062 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1136 2640847 2641148 2641546 "SMITH" 2642385 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1135 2633373 2637659 2637762 "SMATCAT" 2639113 NIL SMATCAT (NIL NIL T T T) -9 NIL 2639663 NIL) (-1134 2630091 2630976 2632234 "SMATCAT-" 2632239 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1133 2627757 2629327 2629370 "SKAGG" 2629631 NIL SKAGG (NIL T) -9 NIL 2629766 NIL) (-1132 2624033 2627230 2627414 "SINT" 2627566 T SINT (NIL) -8 NIL NIL 2627728) (-1131 2623805 2623843 2623909 "SIMPAN" 2623989 T SIMPAN (NIL) -7 NIL NIL NIL) (-1130 2623084 2623340 2623480 "SIG" 2623687 T SIG (NIL) -8 NIL NIL NIL) (-1129 2621922 2622143 2622418 "SIGNRF" 2622843 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1128 2620755 2620906 2621190 "SIGNEF" 2621751 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1127 2620061 2620338 2620462 "SIGAST" 2620653 T SIGAST (NIL) -8 NIL NIL NIL) (-1126 2617751 2618205 2618711 "SHP" 2619602 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1125 2611466 2617652 2617728 "SHDP" 2617733 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1124 2611039 2611231 2611261 "SGROUP" 2611354 T SGROUP (NIL) -9 NIL 2611416 NIL) (-1123 2610897 2610923 2610996 "SGROUP-" 2611001 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1122 2607688 2608386 2609109 "SGCF" 2610196 T SGCF (NIL) -7 NIL NIL NIL) (-1121 2602056 2607135 2607232 "SFRTCAT" 2607237 NIL SFRTCAT (NIL T T T T) -9 NIL 2607276 NIL) (-1120 2595477 2596495 2597631 "SFRGCD" 2601039 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1119 2588603 2589676 2590862 "SFQCMPK" 2594410 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1118 2588223 2588312 2588423 "SFORT" 2588544 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1117 2587341 2588063 2588184 "SEXOF" 2588189 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1116 2586448 2587222 2587290 "SEX" 2587295 T SEX (NIL) -8 NIL NIL NIL) (-1115 2582229 2582944 2583039 "SEXCAT" 2585661 NIL SEXCAT (NIL T T T T T) -9 NIL 2586221 NIL) (-1114 2579382 2582163 2582211 "SET" 2582216 NIL SET (NIL T) -8 NIL NIL NIL) (-1113 2577606 2578095 2578400 "SETMN" 2579123 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1112 2577102 2577254 2577284 "SETCAT" 2577460 T SETCAT (NIL) -9 NIL 2577570 NIL) (-1111 2576794 2576872 2577002 "SETCAT-" 2577007 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1110 2573155 2575255 2575298 "SETAGG" 2576168 NIL SETAGG (NIL T) -9 NIL 2576508 NIL) (-1109 2572613 2572729 2572966 "SETAGG-" 2572971 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1108 2572056 2572309 2572410 "SEQAST" 2572534 T SEQAST (NIL) -8 NIL NIL NIL) (-1107 2571255 2571549 2571610 "SEGXCAT" 2571896 NIL SEGXCAT (NIL T T) -9 NIL 2572016 NIL) (-1106 2570261 2570921 2571103 "SEG" 2571108 NIL SEG (NIL T) -8 NIL NIL NIL) (-1105 2569240 2569454 2569497 "SEGCAT" 2570019 NIL SEGCAT (NIL T) -9 NIL 2570240 NIL) (-1104 2568172 2568603 2568811 "SEGBIND" 2569067 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1103 2567793 2567852 2567965 "SEGBIND2" 2568107 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1102 2567366 2567594 2567671 "SEGAST" 2567738 T SEGAST (NIL) -8 NIL NIL NIL) (-1101 2566585 2566711 2566915 "SEG2" 2567210 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1100 2565956 2566520 2566567 "SDVAR" 2566572 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1099 2558394 2565726 2565856 "SDPOL" 2565861 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1098 2556987 2557253 2557572 "SCPKG" 2558109 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1097 2556151 2556323 2556515 "SCOPE" 2556817 T SCOPE (NIL) -8 NIL NIL NIL) (-1096 2555371 2555505 2555684 "SCACHE" 2556006 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1095 2555017 2555203 2555233 "SASTCAT" 2555238 T SASTCAT (NIL) -9 NIL 2555251 NIL) (-1094 2554504 2554852 2554928 "SAOS" 2554963 T SAOS (NIL) -8 NIL NIL NIL) (-1093 2554069 2554104 2554277 "SAERFFC" 2554463 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1092 2547919 2553966 2554046 "SAE" 2554051 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1091 2547512 2547547 2547706 "SAEFACT" 2547878 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1090 2545833 2546147 2546548 "RURPK" 2547178 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1089 2544470 2544776 2545081 "RULESET" 2545667 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1088 2541693 2542223 2542681 "RULE" 2544151 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1087 2541305 2541487 2541570 "RULECOLD" 2541645 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1086 2541095 2541123 2541194 "RTVALUE" 2541256 T RTVALUE (NIL) -8 NIL NIL NIL) (-1085 2540566 2540812 2540906 "RSTRCAST" 2541023 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1084 2535414 2536209 2537129 "RSETGCD" 2539765 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1083 2524644 2529723 2529820 "RSETCAT" 2533939 NIL RSETCAT (NIL T T T T) -9 NIL 2535036 NIL) (-1082 2522571 2523110 2523934 "RSETCAT-" 2523939 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1081 2514957 2516333 2517853 "RSDCMPK" 2521170 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1080 2512936 2513403 2513477 "RRCC" 2514563 NIL RRCC (NIL T T) -9 NIL 2514907 NIL) (-1079 2512287 2512461 2512740 "RRCC-" 2512745 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1078 2511730 2511983 2512084 "RPTAST" 2512208 T RPTAST (NIL) -8 NIL NIL NIL) (-1077 2485446 2494894 2494961 "RPOLCAT" 2505627 NIL RPOLCAT (NIL T T T) -9 NIL 2508787 NIL) (-1076 2476944 2479284 2482406 "RPOLCAT-" 2482411 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1075 2467875 2475155 2475637 "ROUTINE" 2476484 T ROUTINE (NIL) -8 NIL NIL NIL) (-1074 2464622 2467501 2467641 "ROMAN" 2467757 T ROMAN (NIL) -8 NIL NIL NIL) (-1073 2462866 2463482 2463742 "ROIRC" 2464427 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1072 2459098 2461382 2461412 "RNS" 2461716 T RNS (NIL) -9 NIL 2461990 NIL) (-1071 2457607 2457990 2458524 "RNS-" 2458599 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1070 2457010 2457418 2457448 "RNG" 2457453 T RNG (NIL) -9 NIL 2457474 NIL) (-1069 2456013 2456375 2456577 "RNGBIND" 2456861 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1068 2455412 2455800 2455843 "RMODULE" 2455848 NIL RMODULE (NIL T) -9 NIL 2455875 NIL) (-1067 2454248 2454342 2454678 "RMCAT2" 2455313 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1066 2451098 2453594 2453891 "RMATRIX" 2454010 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1065 2443925 2446185 2446300 "RMATCAT" 2449659 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2450641 NIL) (-1064 2443300 2443447 2443754 "RMATCAT-" 2443759 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1063 2442701 2442922 2442965 "RLINSET" 2443159 NIL RLINSET (NIL T) -9 NIL 2443250 NIL) (-1062 2442268 2442343 2442471 "RINTERP" 2442620 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1061 2441326 2441880 2441910 "RING" 2441966 T RING (NIL) -9 NIL 2442058 NIL) (-1060 2441118 2441162 2441259 "RING-" 2441264 NIL RING- (NIL T) -8 NIL NIL NIL) (-1059 2439959 2440196 2440454 "RIDIST" 2440882 T RIDIST (NIL) -7 NIL NIL NIL) (-1058 2431248 2439427 2439633 "RGCHAIN" 2439807 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1057 2430598 2431004 2431045 "RGBCSPC" 2431103 NIL RGBCSPC (NIL T) -9 NIL 2431155 NIL) (-1056 2429756 2430137 2430178 "RGBCMDL" 2430410 NIL RGBCMDL (NIL T) -9 NIL 2430524 NIL) (-1055 2426750 2427364 2428034 "RF" 2429120 NIL RF (NIL T) -7 NIL NIL NIL) (-1054 2426396 2426459 2426562 "RFFACTOR" 2426681 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1053 2426121 2426156 2426253 "RFFACT" 2426355 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1052 2424238 2424602 2424984 "RFDIST" 2425761 T RFDIST (NIL) -7 NIL NIL NIL) (-1051 2423691 2423783 2423946 "RETSOL" 2424140 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1050 2423327 2423407 2423450 "RETRACT" 2423583 NIL RETRACT (NIL T) -9 NIL 2423670 NIL) (-1049 2423176 2423201 2423288 "RETRACT-" 2423293 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1048 2422778 2422998 2423068 "RETAST" 2423128 T RETAST (NIL) -8 NIL NIL NIL) (-1047 2415516 2422431 2422558 "RESULT" 2422673 T RESULT (NIL) -8 NIL NIL NIL) (-1046 2414107 2414785 2414984 "RESRING" 2415419 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1045 2413743 2413792 2413890 "RESLATC" 2414044 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1044 2413448 2413483 2413590 "REPSQ" 2413702 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1043 2410870 2411450 2412052 "REP" 2412868 T REP (NIL) -7 NIL NIL NIL) (-1042 2410567 2410602 2410713 "REPDB" 2410829 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1041 2404467 2405856 2407079 "REP2" 2409379 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1040 2400844 2401525 2402333 "REP1" 2403694 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1039 2393540 2398985 2399441 "REGSET" 2400474 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1038 2392305 2392688 2392938 "REF" 2393325 NIL REF (NIL T) -8 NIL NIL NIL) (-1037 2391682 2391785 2391952 "REDORDER" 2392189 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1036 2387650 2390895 2391122 "RECLOS" 2391510 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1035 2386702 2386883 2387098 "REALSOLV" 2387457 T REALSOLV (NIL) -7 NIL NIL NIL) (-1034 2386548 2386589 2386619 "REAL" 2386624 T REAL (NIL) -9 NIL 2386659 NIL) (-1033 2383031 2383833 2384717 "REAL0Q" 2385713 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1032 2378632 2379620 2380681 "REAL0" 2382012 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1031 2378103 2378349 2378443 "RDUCEAST" 2378560 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1030 2377508 2377580 2377787 "RDIV" 2378025 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1029 2376576 2376750 2376963 "RDIST" 2377330 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1028 2375173 2375460 2375832 "RDETRS" 2376284 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1027 2372985 2373439 2373977 "RDETR" 2374715 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1026 2371610 2371888 2372285 "RDEEFS" 2372701 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1025 2370119 2370425 2370850 "RDEEF" 2371298 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1024 2364180 2367100 2367130 "RCFIELD" 2368425 T RCFIELD (NIL) -9 NIL 2369156 NIL) (-1023 2362244 2362748 2363444 "RCFIELD-" 2363519 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1022 2358513 2360345 2360388 "RCAGG" 2361472 NIL RCAGG (NIL T) -9 NIL 2361937 NIL) (-1021 2358141 2358235 2358398 "RCAGG-" 2358403 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1020 2357476 2357588 2357753 "RATRET" 2358025 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1019 2357029 2357096 2357217 "RATFACT" 2357404 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1018 2356337 2356457 2356609 "RANDSRC" 2356899 T RANDSRC (NIL) -7 NIL NIL NIL) (-1017 2356071 2356115 2356188 "RADUTIL" 2356286 T RADUTIL (NIL) -7 NIL NIL NIL) (-1016 2349092 2354902 2355213 "RADIX" 2355794 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1015 2340608 2348934 2349064 "RADFF" 2349069 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1014 2340255 2340330 2340360 "RADCAT" 2340520 T RADCAT (NIL) -9 NIL NIL NIL) (-1013 2340037 2340085 2340185 "RADCAT-" 2340190 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1012 2338135 2339807 2339899 "QUEUE" 2339980 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1011 2334583 2338068 2338116 "QUAT" 2338121 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1010 2334214 2334257 2334388 "QUATCT2" 2334534 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1009 2327410 2330845 2330887 "QUATCAT" 2331678 NIL QUATCAT (NIL T) -9 NIL 2332444 NIL) (-1008 2323549 2324586 2325976 "QUATCAT-" 2326072 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1007 2321014 2322625 2322668 "QUAGG" 2323049 NIL QUAGG (NIL T) -9 NIL 2323224 NIL) (-1006 2320616 2320836 2320906 "QQUTAST" 2320966 T QQUTAST (NIL) -8 NIL NIL NIL) (-1005 2319629 2320129 2320294 "QFORM" 2320497 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1004 2310436 2315764 2315806 "QFCAT" 2316474 NIL QFCAT (NIL T) -9 NIL 2317475 NIL) (-1003 2305781 2307044 2308718 "QFCAT-" 2308814 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1002 2305412 2305455 2305586 "QFCAT2" 2305732 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1001 2304867 2304977 2305109 "QEQUAT" 2305302 T QEQUAT (NIL) -8 NIL NIL NIL) (-1000 2297993 2299066 2300252 "QCMPACK" 2303800 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-999 2295542 2295990 2296418 "QALGSET" 2297648 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-998 2294787 2294961 2295193 "QALGSET2" 2295362 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-997 2293477 2293701 2294018 "PWFFINTB" 2294560 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-996 2291659 2291827 2292181 "PUSHVAR" 2293291 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-995 2287577 2288631 2288672 "PTRANFN" 2290556 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-994 2285979 2286270 2286592 "PTPACK" 2287288 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-993 2285611 2285668 2285777 "PTFUNC2" 2285916 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-992 2280056 2284453 2284494 "PTCAT" 2284790 NIL PTCAT (NIL T) -9 NIL 2284943 NIL) (-991 2279714 2279749 2279873 "PSQFR" 2280015 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-990 2278309 2278607 2278941 "PSEUDLIN" 2279412 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-989 2265072 2267443 2269767 "PSETPK" 2276069 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-988 2258090 2260830 2260926 "PSETCAT" 2263947 NIL PSETCAT (NIL T T T T) -9 NIL 2264761 NIL) (-987 2255926 2256560 2257381 "PSETCAT-" 2257386 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-986 2255275 2255440 2255468 "PSCURVE" 2255736 T PSCURVE (NIL) -9 NIL 2255903 NIL) (-985 2251273 2252789 2252854 "PSCAT" 2253698 NIL PSCAT (NIL T T T) -9 NIL 2253938 NIL) (-984 2250336 2250552 2250952 "PSCAT-" 2250957 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-983 2248695 2249405 2249668 "PRTITION" 2250093 T PRTITION (NIL) -8 NIL NIL NIL) (-982 2248170 2248416 2248508 "PRTDAST" 2248623 T PRTDAST (NIL) -8 NIL NIL NIL) (-981 2237260 2239474 2241662 "PRS" 2246032 NIL PRS (NIL T T) -7 NIL NIL NIL) (-980 2235071 2236610 2236650 "PRQAGG" 2236833 NIL PRQAGG (NIL T) -9 NIL 2236935 NIL) (-979 2234407 2234712 2234740 "PROPLOG" 2234879 T PROPLOG (NIL) -9 NIL 2234994 NIL) (-978 2234011 2234068 2234191 "PROPFUN2" 2234330 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-977 2233326 2233447 2233619 "PROPFUN1" 2233872 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-976 2231507 2232073 2232370 "PROPFRML" 2233062 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-975 2230976 2231083 2231211 "PROPERTY" 2231399 T PROPERTY (NIL) -8 NIL NIL NIL) (-974 2225034 2229142 2229962 "PRODUCT" 2230202 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-973 2222312 2224492 2224726 "PR" 2224845 NIL PR (NIL T T) -8 NIL NIL NIL) (-972 2222108 2222140 2222199 "PRINT" 2222273 T PRINT (NIL) -7 NIL NIL NIL) (-971 2221448 2221565 2221717 "PRIMES" 2221988 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-970 2219513 2219914 2220380 "PRIMELT" 2221027 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-969 2219242 2219291 2219319 "PRIMCAT" 2219443 T PRIMCAT (NIL) -9 NIL NIL NIL) (-968 2215357 2219180 2219225 "PRIMARR" 2219230 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-967 2214364 2214542 2214770 "PRIMARR2" 2215175 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-966 2214007 2214063 2214174 "PREASSOC" 2214302 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-965 2213482 2213615 2213643 "PPCURVE" 2213848 T PPCURVE (NIL) -9 NIL 2213984 NIL) (-964 2213077 2213277 2213360 "PORTNUM" 2213419 T PORTNUM (NIL) -8 NIL NIL NIL) (-963 2210436 2210835 2211427 "POLYROOT" 2212658 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-962 2204529 2210040 2210200 "POLY" 2210309 NIL POLY (NIL T) -8 NIL NIL NIL) (-961 2203912 2203970 2204204 "POLYLIFT" 2204465 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-960 2200187 2200636 2201265 "POLYCATQ" 2203457 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-959 2186769 2191986 2192051 "POLYCAT" 2195565 NIL POLYCAT (NIL T T T) -9 NIL 2197443 NIL) (-958 2179996 2181920 2184384 "POLYCAT-" 2184389 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-957 2179583 2179651 2179771 "POLY2UP" 2179922 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-956 2179215 2179272 2179381 "POLY2" 2179520 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-955 2177900 2178139 2178415 "POLUTIL" 2178989 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-954 2176255 2176532 2176863 "POLTOPOL" 2177622 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-953 2171720 2176191 2176237 "POINT" 2176242 NIL POINT (NIL T) -8 NIL NIL NIL) (-952 2169907 2170264 2170639 "PNTHEORY" 2171365 T PNTHEORY (NIL) -7 NIL NIL NIL) (-951 2168365 2168662 2169061 "PMTOOLS" 2169605 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-950 2167958 2168036 2168153 "PMSYM" 2168281 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-949 2167466 2167535 2167710 "PMQFCAT" 2167883 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-948 2166821 2166931 2167087 "PMPRED" 2167343 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-947 2166214 2166300 2166462 "PMPREDFS" 2166722 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-946 2164878 2165086 2165464 "PMPLCAT" 2165976 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-945 2164410 2164489 2164641 "PMLSAGG" 2164793 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-944 2163883 2163959 2164141 "PMKERNEL" 2164328 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-943 2163500 2163575 2163688 "PMINS" 2163802 NIL PMINS (NIL T) -7 NIL NIL NIL) (-942 2162942 2163011 2163220 "PMFS" 2163425 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-941 2162170 2162288 2162493 "PMDOWN" 2162819 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-940 2161337 2161495 2161676 "PMASS" 2162009 T PMASS (NIL) -7 NIL NIL NIL) (-939 2160610 2160720 2160883 "PMASSFS" 2161224 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-938 2160265 2160333 2160427 "PLOTTOOL" 2160536 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-937 2154872 2156076 2157224 "PLOT" 2159137 T PLOT (NIL) -8 NIL NIL NIL) (-936 2150676 2151720 2152641 "PLOT3D" 2153971 T PLOT3D (NIL) -8 NIL NIL NIL) (-935 2149588 2149765 2150000 "PLOT1" 2150480 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-934 2124979 2129654 2134505 "PLEQN" 2144854 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-933 2124297 2124419 2124599 "PINTERP" 2124844 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-932 2123990 2124037 2124140 "PINTERPA" 2124244 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-931 2123206 2123754 2123841 "PI" 2123881 T PI (NIL) -8 NIL NIL 2123948) (-930 2121503 2122478 2122506 "PID" 2122688 T PID (NIL) -9 NIL 2122822 NIL) (-929 2121254 2121291 2121366 "PICOERCE" 2121460 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-928 2120574 2120713 2120889 "PGROEB" 2121110 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-927 2116161 2116975 2117880 "PGE" 2119689 T PGE (NIL) -7 NIL NIL NIL) (-926 2114284 2114531 2114897 "PGCD" 2115878 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-925 2113622 2113725 2113886 "PFRPAC" 2114168 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-924 2110262 2112170 2112523 "PFR" 2113301 NIL PFR (NIL T) -8 NIL NIL NIL) (-923 2108651 2108895 2109220 "PFOTOOLS" 2110009 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-922 2107184 2107423 2107774 "PFOQ" 2108408 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-921 2105685 2105897 2106253 "PFO" 2106968 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-920 2102238 2105574 2105643 "PF" 2105648 NIL PF (NIL NIL) -8 NIL NIL NIL) (-919 2099572 2100843 2100871 "PFECAT" 2101456 T PFECAT (NIL) -9 NIL 2101840 NIL) (-918 2099017 2099171 2099385 "PFECAT-" 2099390 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-917 2097620 2097872 2098173 "PFBRU" 2098766 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-916 2095486 2095838 2096270 "PFBR" 2097271 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-915 2091532 2092998 2093645 "PERM" 2094872 NIL PERM (NIL T) -8 NIL NIL NIL) (-914 2086766 2087739 2088609 "PERMGRP" 2090695 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-913 2084885 2085845 2085886 "PERMCAT" 2086286 NIL PERMCAT (NIL T) -9 NIL 2086584 NIL) (-912 2084538 2084579 2084703 "PERMAN" 2084838 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-911 2082026 2084203 2084325 "PENDTREE" 2084449 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-910 2080050 2080818 2080859 "PDRING" 2081516 NIL PDRING (NIL T) -9 NIL 2081802 NIL) (-909 2079153 2079371 2079733 "PDRING-" 2079738 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-908 2076368 2077146 2077814 "PDEPROB" 2078505 T PDEPROB (NIL) -8 NIL NIL NIL) (-907 2073913 2074417 2074972 "PDEPACK" 2075833 T PDEPACK (NIL) -7 NIL NIL NIL) (-906 2072825 2073015 2073266 "PDECOMP" 2073712 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-905 2070404 2071247 2071275 "PDECAT" 2072062 T PDECAT (NIL) -9 NIL 2072775 NIL) (-904 2070155 2070188 2070278 "PCOMP" 2070365 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-903 2068333 2068956 2069253 "PBWLB" 2069884 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-902 2060806 2062406 2063744 "PATTERN" 2067016 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-901 2060438 2060495 2060604 "PATTERN2" 2060743 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-900 2058195 2058583 2059040 "PATTERN1" 2060027 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-899 2055563 2056144 2056625 "PATRES" 2057760 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-898 2055127 2055194 2055326 "PATRES2" 2055490 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-897 2053010 2053415 2053822 "PATMATCH" 2054794 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-896 2052520 2052729 2052770 "PATMAB" 2052877 NIL PATMAB (NIL T) -9 NIL 2052960 NIL) (-895 2051038 2051374 2051632 "PATLRES" 2052325 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-894 2050584 2050707 2050748 "PATAB" 2050753 NIL PATAB (NIL T) -9 NIL 2050925 NIL) (-893 2048766 2049161 2049584 "PARTPERM" 2050181 T PARTPERM (NIL) -7 NIL NIL NIL) (-892 2048387 2048450 2048552 "PARSURF" 2048697 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-891 2048019 2048076 2048185 "PARSU2" 2048324 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-890 2047783 2047823 2047890 "PARSER" 2047972 T PARSER (NIL) -7 NIL NIL NIL) (-889 2047404 2047467 2047569 "PARSCURV" 2047714 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-888 2047036 2047093 2047202 "PARSC2" 2047341 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-887 2046675 2046733 2046830 "PARPCURV" 2046972 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-886 2046307 2046364 2046473 "PARPC2" 2046612 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-885 2045368 2045680 2045862 "PARAMAST" 2046145 T PARAMAST (NIL) -8 NIL NIL NIL) (-884 2044888 2044974 2045093 "PAN2EXPR" 2045269 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-883 2043665 2044009 2044237 "PALETTE" 2044680 T PALETTE (NIL) -8 NIL NIL NIL) (-882 2042058 2042670 2043030 "PAIR" 2043351 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-881 2035837 2041315 2041510 "PADICRC" 2041912 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-880 2028961 2035181 2035366 "PADICRAT" 2035684 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-879 2027276 2028898 2028943 "PADIC" 2028948 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-878 2024386 2025950 2025990 "PADICCT" 2026571 NIL PADICCT (NIL NIL) -9 NIL 2026853 NIL) (-877 2023343 2023543 2023811 "PADEPAC" 2024173 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-876 2022555 2022688 2022894 "PADE" 2023205 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-875 2020942 2021763 2022043 "OWP" 2022359 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-874 2020435 2020648 2020745 "OVERSET" 2020865 T OVERSET (NIL) -8 NIL NIL NIL) (-873 2019481 2020040 2020212 "OVAR" 2020303 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-872 2018745 2018866 2019027 "OUT" 2019340 T OUT (NIL) -7 NIL NIL NIL) (-871 2007617 2009854 2012054 "OUTFORM" 2016565 T OUTFORM (NIL) -8 NIL NIL NIL) (-870 2006953 2007214 2007341 "OUTBFILE" 2007510 T OUTBFILE (NIL) -8 NIL NIL NIL) (-869 2006260 2006425 2006453 "OUTBCON" 2006771 T OUTBCON (NIL) -9 NIL 2006937 NIL) (-868 2005861 2005973 2006130 "OUTBCON-" 2006135 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-867 2005241 2005590 2005679 "OSI" 2005792 T OSI (NIL) -8 NIL NIL NIL) (-866 2004771 2005109 2005137 "OSGROUP" 2005142 T OSGROUP (NIL) -9 NIL 2005164 NIL) (-865 2003516 2003743 2004028 "ORTHPOL" 2004518 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-864 2001067 2003351 2003472 "OREUP" 2003477 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-863 1998470 2000758 2000885 "ORESUP" 2001009 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-862 1995998 1996498 1997059 "OREPCTO" 1997959 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-861 1989684 1991885 1991926 "OREPCAT" 1994274 NIL OREPCAT (NIL T) -9 NIL 1995378 NIL) (-860 1986831 1987613 1988671 "OREPCAT-" 1988676 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-859 1985982 1986280 1986308 "ORDSET" 1986617 T ORDSET (NIL) -9 NIL 1986781 NIL) (-858 1985413 1985561 1985785 "ORDSET-" 1985790 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-857 1983978 1984769 1984797 "ORDRING" 1984999 T ORDRING (NIL) -9 NIL 1985124 NIL) (-856 1983623 1983717 1983861 "ORDRING-" 1983866 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-855 1983003 1983466 1983494 "ORDMON" 1983499 T ORDMON (NIL) -9 NIL 1983520 NIL) (-854 1982165 1982312 1982507 "ORDFUNS" 1982852 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-853 1981503 1981922 1981950 "ORDFIN" 1982015 T ORDFIN (NIL) -9 NIL 1982089 NIL) (-852 1978062 1980089 1980498 "ORDCOMP" 1981127 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-851 1977328 1977455 1977641 "ORDCOMP2" 1977922 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-850 1973909 1974819 1975633 "OPTPROB" 1976534 T OPTPROB (NIL) -8 NIL NIL NIL) (-849 1970711 1971350 1972054 "OPTPACK" 1973225 T OPTPACK (NIL) -7 NIL NIL NIL) (-848 1968398 1969164 1969192 "OPTCAT" 1970011 T OPTCAT (NIL) -9 NIL 1970661 NIL) (-847 1967782 1968075 1968180 "OPSIG" 1968313 T OPSIG (NIL) -8 NIL NIL NIL) (-846 1967550 1967589 1967655 "OPQUERY" 1967736 T OPQUERY (NIL) -7 NIL NIL NIL) (-845 1964681 1965861 1966365 "OP" 1967079 NIL OP (NIL T) -8 NIL NIL NIL) (-844 1964055 1964281 1964322 "OPERCAT" 1964534 NIL OPERCAT (NIL T) -9 NIL 1964631 NIL) (-843 1963810 1963866 1963983 "OPERCAT-" 1963988 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-842 1960623 1962607 1962976 "ONECOMP" 1963474 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-841 1959928 1960043 1960217 "ONECOMP2" 1960495 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-840 1959347 1959453 1959583 "OMSERVER" 1959818 T OMSERVER (NIL) -7 NIL NIL NIL) (-839 1956209 1958787 1958827 "OMSAGG" 1958888 NIL OMSAGG (NIL T) -9 NIL 1958952 NIL) (-838 1954832 1955095 1955377 "OMPKG" 1955947 T OMPKG (NIL) -7 NIL NIL NIL) (-837 1954262 1954365 1954393 "OM" 1954692 T OM (NIL) -9 NIL NIL NIL) (-836 1952809 1953811 1953980 "OMLO" 1954143 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-835 1951769 1951916 1952136 "OMEXPR" 1952635 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-834 1951060 1951315 1951451 "OMERR" 1951653 T OMERR (NIL) -8 NIL NIL NIL) (-833 1950211 1950481 1950641 "OMERRK" 1950920 T OMERRK (NIL) -8 NIL NIL NIL) (-832 1949662 1949888 1949996 "OMENC" 1950123 T OMENC (NIL) -8 NIL NIL NIL) (-831 1943557 1944742 1945913 "OMDEV" 1948511 T OMDEV (NIL) -8 NIL NIL NIL) (-830 1942626 1942797 1942991 "OMCONN" 1943383 T OMCONN (NIL) -8 NIL NIL NIL) (-829 1941147 1942123 1942151 "OINTDOM" 1942156 T OINTDOM (NIL) -9 NIL 1942177 NIL) (-828 1938485 1939835 1940172 "OFMONOID" 1940842 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-827 1937857 1938422 1938467 "ODVAR" 1938472 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-826 1935280 1937602 1937757 "ODR" 1937762 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-825 1927772 1935056 1935182 "ODPOL" 1935187 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-824 1921457 1927644 1927749 "ODP" 1927754 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-823 1920223 1920438 1920713 "ODETOOLS" 1921231 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-822 1917190 1917848 1918564 "ODESYS" 1919556 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-821 1912072 1912980 1914005 "ODERTRIC" 1916265 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-820 1911498 1911580 1911774 "ODERED" 1911984 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-819 1908386 1908934 1909611 "ODERAT" 1910921 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-818 1905345 1905810 1906407 "ODEPRRIC" 1907915 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-817 1903288 1903884 1904370 "ODEPROB" 1904879 T ODEPROB (NIL) -8 NIL NIL NIL) (-816 1899808 1900293 1900940 "ODEPRIM" 1902767 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-815 1899057 1899159 1899419 "ODEPAL" 1899700 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-814 1895219 1896010 1896874 "ODEPACK" 1898213 T ODEPACK (NIL) -7 NIL NIL NIL) (-813 1894280 1894387 1894609 "ODEINT" 1895108 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-812 1888381 1889806 1891253 "ODEIFTBL" 1892853 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-811 1883779 1884565 1885517 "ODEEF" 1887540 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-810 1883128 1883217 1883440 "ODECONST" 1883684 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-809 1881253 1881914 1881942 "ODECAT" 1882547 T ODECAT (NIL) -9 NIL 1883078 NIL) (-808 1878108 1880958 1881080 "OCT" 1881163 NIL OCT (NIL T) -8 NIL NIL NIL) (-807 1877746 1877789 1877916 "OCTCT2" 1878059 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-806 1872357 1874792 1874832 "OC" 1875929 NIL OC (NIL T) -9 NIL 1876787 NIL) (-805 1869584 1870332 1871322 "OC-" 1871416 NIL OC- (NIL T T) -8 NIL NIL NIL) (-804 1868936 1869404 1869432 "OCAMON" 1869437 T OCAMON (NIL) -9 NIL 1869458 NIL) (-803 1868467 1868808 1868836 "OASGP" 1868841 T OASGP (NIL) -9 NIL 1868861 NIL) (-802 1867728 1868217 1868245 "OAMONS" 1868285 T OAMONS (NIL) -9 NIL 1868328 NIL) (-801 1867142 1867575 1867603 "OAMON" 1867608 T OAMON (NIL) -9 NIL 1867628 NIL) (-800 1866400 1866918 1866946 "OAGROUP" 1866951 T OAGROUP (NIL) -9 NIL 1866971 NIL) (-799 1866090 1866140 1866228 "NUMTUBE" 1866344 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-798 1859663 1861181 1862717 "NUMQUAD" 1864574 T NUMQUAD (NIL) -7 NIL NIL NIL) (-797 1855419 1856407 1857432 "NUMODE" 1858658 T NUMODE (NIL) -7 NIL NIL NIL) (-796 1852774 1853654 1853682 "NUMINT" 1854605 T NUMINT (NIL) -9 NIL 1855369 NIL) (-795 1851722 1851919 1852137 "NUMFMT" 1852576 T NUMFMT (NIL) -7 NIL NIL NIL) (-794 1838081 1841026 1843558 "NUMERIC" 1849229 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-793 1832451 1837530 1837625 "NTSCAT" 1837630 NIL NTSCAT (NIL T T T T) -9 NIL 1837669 NIL) (-792 1831645 1831810 1832003 "NTPOLFN" 1832290 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-791 1819633 1828470 1829282 "NSUP" 1830866 NIL NSUP (NIL T) -8 NIL NIL NIL) (-790 1819265 1819322 1819431 "NSUP2" 1819570 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-789 1809402 1819039 1819172 "NSMP" 1819177 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-788 1807834 1808135 1808492 "NREP" 1809090 NIL NREP (NIL T) -7 NIL NIL NIL) (-787 1806425 1806677 1807035 "NPCOEF" 1807577 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-786 1805491 1805606 1805822 "NORMRETR" 1806306 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-785 1803532 1803822 1804231 "NORMPK" 1805199 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-784 1803217 1803245 1803369 "NORMMA" 1803498 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-783 1803017 1803174 1803203 "NONE" 1803208 T NONE (NIL) -8 NIL NIL NIL) (-782 1802806 1802835 1802904 "NONE1" 1802981 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-781 1802303 1802365 1802544 "NODE1" 1802738 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-780 1800584 1801435 1801690 "NNI" 1802037 T NNI (NIL) -8 NIL NIL 1802272) (-779 1799004 1799317 1799681 "NLINSOL" 1800252 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-778 1795245 1796240 1797139 "NIPROB" 1798125 T NIPROB (NIL) -8 NIL NIL NIL) (-777 1794002 1794236 1794538 "NFINTBAS" 1795007 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-776 1793176 1793652 1793693 "NETCLT" 1793865 NIL NETCLT (NIL T) -9 NIL 1793947 NIL) (-775 1791884 1792115 1792396 "NCODIV" 1792944 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-774 1791646 1791683 1791758 "NCNTFRAC" 1791841 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-773 1789826 1790190 1790610 "NCEP" 1791271 NIL NCEP (NIL T) -7 NIL NIL NIL) (-772 1788677 1789450 1789478 "NASRING" 1789588 T NASRING (NIL) -9 NIL 1789668 NIL) (-771 1788472 1788516 1788610 "NASRING-" 1788615 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-770 1787579 1788104 1788132 "NARNG" 1788249 T NARNG (NIL) -9 NIL 1788340 NIL) (-769 1787271 1787338 1787472 "NARNG-" 1787477 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-768 1786150 1786357 1786592 "NAGSP" 1787056 T NAGSP (NIL) -7 NIL NIL NIL) (-767 1777422 1779106 1780779 "NAGS" 1784497 T NAGS (NIL) -7 NIL NIL NIL) (-766 1775970 1776278 1776609 "NAGF07" 1777111 T NAGF07 (NIL) -7 NIL NIL NIL) (-765 1770508 1771799 1773106 "NAGF04" 1774683 T NAGF04 (NIL) -7 NIL NIL NIL) (-764 1763476 1765090 1766723 "NAGF02" 1768895 T NAGF02 (NIL) -7 NIL NIL NIL) (-763 1758700 1759800 1760917 "NAGF01" 1762379 T NAGF01 (NIL) -7 NIL NIL NIL) (-762 1752328 1753894 1755479 "NAGE04" 1757135 T NAGE04 (NIL) -7 NIL NIL NIL) (-761 1743497 1745618 1747748 "NAGE02" 1750218 T NAGE02 (NIL) -7 NIL NIL NIL) (-760 1739450 1740397 1741361 "NAGE01" 1742553 T NAGE01 (NIL) -7 NIL NIL NIL) (-759 1737245 1737779 1738337 "NAGD03" 1738912 T NAGD03 (NIL) -7 NIL NIL NIL) (-758 1728995 1730923 1732877 "NAGD02" 1735311 T NAGD02 (NIL) -7 NIL NIL NIL) (-757 1722806 1724231 1725671 "NAGD01" 1727575 T NAGD01 (NIL) -7 NIL NIL NIL) (-756 1719015 1719837 1720674 "NAGC06" 1721989 T NAGC06 (NIL) -7 NIL NIL NIL) (-755 1717480 1717812 1718168 "NAGC05" 1718679 T NAGC05 (NIL) -7 NIL NIL NIL) (-754 1716856 1716975 1717119 "NAGC02" 1717356 T NAGC02 (NIL) -7 NIL NIL NIL) (-753 1715815 1716398 1716438 "NAALG" 1716517 NIL NAALG (NIL T) -9 NIL 1716578 NIL) (-752 1715650 1715679 1715769 "NAALG-" 1715774 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-751 1709600 1710708 1711895 "MULTSQFR" 1714546 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-750 1708919 1708994 1709178 "MULTFACT" 1709512 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-749 1701643 1705556 1705609 "MTSCAT" 1706679 NIL MTSCAT (NIL T T) -9 NIL 1707194 NIL) (-748 1701355 1701409 1701501 "MTHING" 1701583 NIL MTHING (NIL T) -7 NIL NIL NIL) (-747 1701147 1701180 1701240 "MSYSCMD" 1701315 T MSYSCMD (NIL) -7 NIL NIL NIL) (-746 1697229 1699902 1700222 "MSET" 1700860 NIL MSET (NIL T) -8 NIL NIL NIL) (-745 1694298 1696790 1696831 "MSETAGG" 1696836 NIL MSETAGG (NIL T) -9 NIL 1696870 NIL) (-744 1690140 1691677 1692422 "MRING" 1693598 NIL MRING (NIL T T) -8 NIL NIL NIL) (-743 1689706 1689773 1689904 "MRF2" 1690067 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-742 1689324 1689359 1689503 "MRATFAC" 1689665 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-741 1686936 1687231 1687662 "MPRFF" 1689029 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-740 1681144 1686790 1686887 "MPOLY" 1686892 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-739 1680634 1680669 1680877 "MPCPF" 1681103 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-738 1680148 1680191 1680375 "MPC3" 1680585 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-737 1679343 1679424 1679645 "MPC2" 1680063 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-736 1677644 1677981 1678371 "MONOTOOL" 1679003 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-735 1676869 1677186 1677214 "MONOID" 1677433 T MONOID (NIL) -9 NIL 1677580 NIL) (-734 1676415 1676534 1676715 "MONOID-" 1676720 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-733 1666513 1672554 1672613 "MONOGEN" 1673287 NIL MONOGEN (NIL T T) -9 NIL 1673743 NIL) (-732 1663731 1664466 1665466 "MONOGEN-" 1665585 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-731 1662564 1663010 1663038 "MONADWU" 1663430 T MONADWU (NIL) -9 NIL 1663668 NIL) (-730 1661936 1662095 1662343 "MONADWU-" 1662348 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-729 1661295 1661539 1661567 "MONAD" 1661774 T MONAD (NIL) -9 NIL 1661886 NIL) (-728 1660980 1661058 1661190 "MONAD-" 1661195 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-727 1659269 1659893 1660172 "MOEBIUS" 1660733 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-726 1658547 1658951 1658991 "MODULE" 1658996 NIL MODULE (NIL T) -9 NIL 1659035 NIL) (-725 1658115 1658211 1658401 "MODULE-" 1658406 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-724 1655795 1656479 1656806 "MODRING" 1657939 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-723 1652739 1653900 1654421 "MODOP" 1655324 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-722 1651327 1651806 1652083 "MODMONOM" 1652602 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-721 1641282 1649618 1650032 "MODMON" 1650964 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-720 1638438 1640126 1640402 "MODFIELD" 1641157 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-719 1637415 1637719 1637909 "MMLFORM" 1638268 T MMLFORM (NIL) -8 NIL NIL NIL) (-718 1636941 1636984 1637163 "MMAP" 1637366 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-717 1635020 1635787 1635828 "MLO" 1636251 NIL MLO (NIL T) -9 NIL 1636493 NIL) (-716 1632386 1632902 1633504 "MLIFT" 1634501 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-715 1631777 1631861 1632015 "MKUCFUNC" 1632297 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-714 1631376 1631446 1631569 "MKRECORD" 1631700 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-713 1630423 1630585 1630813 "MKFUNC" 1631187 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-712 1629811 1629915 1630071 "MKFLCFN" 1630306 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-711 1629088 1629190 1629375 "MKBCFUNC" 1629704 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-710 1625763 1628642 1628778 "MINT" 1628972 T MINT (NIL) -8 NIL NIL NIL) (-709 1624575 1624818 1625095 "MHROWRED" 1625518 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-708 1619955 1623110 1623515 "MFLOAT" 1624190 T MFLOAT (NIL) -8 NIL NIL NIL) (-707 1619312 1619388 1619559 "MFINFACT" 1619867 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-706 1615627 1616475 1617359 "MESH" 1618448 T MESH (NIL) -7 NIL NIL NIL) (-705 1614017 1614329 1614682 "MDDFACT" 1615314 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-704 1610812 1613176 1613217 "MDAGG" 1613472 NIL MDAGG (NIL T) -9 NIL 1613615 NIL) (-703 1600459 1610105 1610312 "MCMPLX" 1610625 T MCMPLX (NIL) -8 NIL NIL NIL) (-702 1599596 1599742 1599943 "MCDEN" 1600308 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-701 1597486 1597756 1598136 "MCALCFN" 1599326 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-700 1596411 1596651 1596884 "MAYBE" 1597292 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-699 1594023 1594546 1595108 "MATSTOR" 1595882 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-698 1589980 1593395 1593643 "MATRIX" 1593808 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-697 1585746 1586453 1587189 "MATLIN" 1589337 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-696 1575852 1579038 1579115 "MATCAT" 1583995 NIL MATCAT (NIL T T T) -9 NIL 1585412 NIL) (-695 1572208 1573229 1574585 "MATCAT-" 1574590 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-694 1570802 1570955 1571288 "MATCAT2" 1572043 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-693 1568914 1569238 1569622 "MAPPKG3" 1570477 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-692 1567895 1568068 1568290 "MAPPKG2" 1568738 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-691 1566394 1566678 1567005 "MAPPKG1" 1567601 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-690 1565473 1565800 1565977 "MAPPAST" 1566237 T MAPPAST (NIL) -8 NIL NIL NIL) (-689 1565084 1565142 1565265 "MAPHACK3" 1565409 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-688 1564676 1564737 1564851 "MAPHACK2" 1565016 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-687 1564114 1564217 1564359 "MAPHACK1" 1564567 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-686 1562193 1562814 1563118 "MAGMA" 1563842 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-685 1561672 1561917 1562008 "MACROAST" 1562122 T MACROAST (NIL) -8 NIL NIL NIL) (-684 1558090 1559911 1560372 "M3D" 1561244 NIL M3D (NIL T) -8 NIL NIL NIL) (-683 1552165 1556429 1556470 "LZSTAGG" 1557252 NIL LZSTAGG (NIL T) -9 NIL 1557547 NIL) (-682 1548123 1549296 1550753 "LZSTAGG-" 1550758 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-681 1545210 1546014 1546501 "LWORD" 1547668 NIL LWORD (NIL T) -8 NIL NIL NIL) (-680 1544786 1545014 1545089 "LSTAST" 1545155 T LSTAST (NIL) -8 NIL NIL NIL) (-679 1537863 1544557 1544691 "LSQM" 1544696 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-678 1537087 1537226 1537454 "LSPP" 1537718 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-677 1534899 1535200 1535656 "LSMP" 1536776 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-676 1531678 1532352 1533082 "LSMP1" 1534201 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-675 1525524 1530815 1530856 "LSAGG" 1530918 NIL LSAGG (NIL T) -9 NIL 1530996 NIL) (-674 1522219 1523143 1524356 "LSAGG-" 1524361 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-673 1519818 1521363 1521612 "LPOLY" 1522014 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-672 1519400 1519485 1519608 "LPEFRAC" 1519727 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-671 1517721 1518494 1518747 "LO" 1519232 NIL LO (NIL T T T) -8 NIL NIL NIL) (-670 1517373 1517485 1517513 "LOGIC" 1517624 T LOGIC (NIL) -9 NIL 1517705 NIL) (-669 1517235 1517258 1517329 "LOGIC-" 1517334 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-668 1516428 1516568 1516761 "LODOOPS" 1517091 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-667 1513851 1516344 1516410 "LODO" 1516415 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-666 1512389 1512624 1512977 "LODOF" 1513598 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-665 1508593 1511024 1511065 "LODOCAT" 1511503 NIL LODOCAT (NIL T) -9 NIL 1511714 NIL) (-664 1508326 1508384 1508511 "LODOCAT-" 1508516 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-663 1505646 1508167 1508285 "LODO2" 1508290 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-662 1503081 1505583 1505628 "LODO1" 1505633 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-661 1501962 1502127 1502432 "LODEEF" 1502904 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-660 1497265 1500156 1500197 "LNAGG" 1501059 NIL LNAGG (NIL T) -9 NIL 1501494 NIL) (-659 1496412 1496626 1496968 "LNAGG-" 1496973 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-658 1492548 1493337 1493976 "LMOPS" 1495827 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-657 1491951 1492339 1492380 "LMODULE" 1492385 NIL LMODULE (NIL T) -9 NIL 1492411 NIL) (-656 1489149 1491596 1491719 "LMDICT" 1491861 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-655 1488555 1488776 1488817 "LLINSET" 1489008 NIL LLINSET (NIL T) -9 NIL 1489099 NIL) (-654 1488254 1488463 1488523 "LITERAL" 1488528 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-653 1481417 1487188 1487492 "LIST" 1487983 NIL LIST (NIL T) -8 NIL NIL NIL) (-652 1480942 1481016 1481155 "LIST3" 1481337 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-651 1479949 1480127 1480355 "LIST2" 1480760 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-650 1478083 1478395 1478794 "LIST2MAP" 1479596 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-649 1477679 1477916 1477957 "LINSET" 1477962 NIL LINSET (NIL T) -9 NIL 1477996 NIL) (-648 1476408 1476941 1476982 "LINEXP" 1477333 NIL LINEXP (NIL T) -9 NIL 1477524 NIL) (-647 1474985 1475245 1475556 "LINDEP" 1476160 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-646 1471752 1472471 1473248 "LIMITRF" 1474240 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-645 1470055 1470351 1470760 "LIMITPS" 1471447 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-644 1464483 1469566 1469794 "LIE" 1469876 NIL LIE (NIL T T) -8 NIL NIL NIL) (-643 1463431 1463900 1463940 "LIECAT" 1464080 NIL LIECAT (NIL T) -9 NIL 1464231 NIL) (-642 1463272 1463299 1463387 "LIECAT-" 1463392 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-641 1455859 1462812 1462968 "LIB" 1463136 T LIB (NIL) -8 NIL NIL NIL) (-640 1451494 1452377 1453312 "LGROBP" 1454976 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-639 1449492 1449766 1450116 "LF" 1451215 NIL LF (NIL T T) -7 NIL NIL NIL) (-638 1448332 1449024 1449052 "LFCAT" 1449259 T LFCAT (NIL) -9 NIL 1449398 NIL) (-637 1445234 1445864 1446552 "LEXTRIPK" 1447696 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-636 1441978 1442804 1443307 "LEXP" 1444814 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-635 1441454 1441699 1441791 "LETAST" 1441906 T LETAST (NIL) -8 NIL NIL NIL) (-634 1439852 1440165 1440566 "LEADCDET" 1441136 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-633 1439042 1439116 1439345 "LAZM3PK" 1439773 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-632 1433959 1437119 1437657 "LAUPOL" 1438554 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-631 1433538 1433582 1433743 "LAPLACE" 1433909 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-630 1431477 1432639 1432890 "LA" 1433371 NIL LA (NIL T T T) -8 NIL NIL NIL) (-629 1430471 1431055 1431096 "LALG" 1431158 NIL LALG (NIL T) -9 NIL 1431217 NIL) (-628 1430185 1430244 1430380 "LALG-" 1430385 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-627 1430020 1430044 1430085 "KVTFROM" 1430147 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-626 1428943 1429387 1429572 "KTVLOGIC" 1429855 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-625 1428778 1428802 1428843 "KRCFROM" 1428905 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-624 1427682 1427869 1428168 "KOVACIC" 1428578 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-623 1427517 1427541 1427582 "KONVERT" 1427644 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-622 1427352 1427376 1427417 "KOERCE" 1427479 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-621 1425183 1425945 1426322 "KERNEL" 1427008 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-620 1424679 1424760 1424892 "KERNEL2" 1425097 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-619 1418449 1423218 1423272 "KDAGG" 1423649 NIL KDAGG (NIL T T) -9 NIL 1423855 NIL) (-618 1417978 1418102 1418307 "KDAGG-" 1418312 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-617 1411126 1417639 1417794 "KAFILE" 1417856 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-616 1405554 1410637 1410865 "JORDAN" 1410947 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-615 1404933 1405203 1405324 "JOINAST" 1405453 T JOINAST (NIL) -8 NIL NIL NIL) (-614 1404779 1404838 1404893 "JAVACODE" 1404898 T JAVACODE (NIL) -8 NIL NIL NIL) (-613 1401031 1402984 1403038 "IXAGG" 1403967 NIL IXAGG (NIL T T) -9 NIL 1404426 NIL) (-612 1399950 1400256 1400675 "IXAGG-" 1400680 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-611 1395480 1399872 1399931 "IVECTOR" 1399936 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-610 1394246 1394483 1394749 "ITUPLE" 1395247 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-609 1392748 1392925 1393220 "ITRIGMNP" 1394068 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-608 1391493 1391697 1391980 "ITFUN3" 1392524 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-607 1391125 1391182 1391291 "ITFUN2" 1391430 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-606 1390284 1390605 1390779 "ITFORM" 1390971 T ITFORM (NIL) -8 NIL NIL NIL) (-605 1388245 1389304 1389582 "ITAYLOR" 1390039 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-604 1377190 1382382 1383545 "ISUPS" 1387115 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-603 1376294 1376434 1376670 "ISUMP" 1377037 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-602 1371669 1376239 1376280 "ISTRING" 1376285 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-601 1371145 1371390 1371482 "ISAST" 1371597 T ISAST (NIL) -8 NIL NIL NIL) (-600 1370354 1370436 1370652 "IRURPK" 1371059 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-599 1369290 1369491 1369731 "IRSN" 1370134 T IRSN (NIL) -7 NIL NIL NIL) (-598 1367361 1367716 1368145 "IRRF2F" 1368928 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-597 1367108 1367146 1367222 "IRREDFFX" 1367317 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-596 1365723 1365982 1366281 "IROOT" 1366841 NIL IROOT (NIL T) -7 NIL NIL NIL) (-595 1362327 1363407 1364099 "IR" 1365063 NIL IR (NIL T) -8 NIL NIL NIL) (-594 1361532 1361820 1361971 "IRFORM" 1362196 T IRFORM (NIL) -8 NIL NIL NIL) (-593 1359145 1359640 1360206 "IR2" 1361010 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-592 1358245 1358358 1358572 "IR2F" 1359028 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-591 1358036 1358070 1358130 "IPRNTPK" 1358205 T IPRNTPK (NIL) -7 NIL NIL NIL) (-590 1354617 1357925 1357994 "IPF" 1357999 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-589 1352944 1354542 1354599 "IPADIC" 1354604 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-588 1352256 1352504 1352634 "IP4ADDR" 1352834 T IP4ADDR (NIL) -8 NIL NIL NIL) (-587 1351630 1351885 1352017 "IOMODE" 1352144 T IOMODE (NIL) -8 NIL NIL NIL) (-586 1350703 1351227 1351354 "IOBFILE" 1351523 T IOBFILE (NIL) -8 NIL NIL NIL) (-585 1350191 1350607 1350635 "IOBCON" 1350640 T IOBCON (NIL) -9 NIL 1350661 NIL) (-584 1349702 1349760 1349943 "INVLAPLA" 1350127 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-583 1339350 1341704 1344090 "INTTR" 1347366 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-582 1335685 1336427 1337292 "INTTOOLS" 1338535 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-581 1335271 1335362 1335479 "INTSLPE" 1335588 T INTSLPE (NIL) -7 NIL NIL NIL) (-580 1333224 1335194 1335253 "INTRVL" 1335258 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-579 1330826 1331338 1331913 "INTRF" 1332709 NIL INTRF (NIL T) -7 NIL NIL NIL) (-578 1330237 1330334 1330476 "INTRET" 1330724 NIL INTRET (NIL T) -7 NIL NIL NIL) (-577 1328234 1328623 1329093 "INTRAT" 1329845 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-576 1325497 1326080 1326699 "INTPM" 1327719 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-575 1322242 1322841 1323579 "INTPAF" 1324883 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-574 1317421 1318383 1319434 "INTPACK" 1321211 T INTPACK (NIL) -7 NIL NIL NIL) (-573 1314319 1317218 1317327 "INT" 1317332 T INT (NIL) -8 NIL NIL NIL) (-572 1313571 1313723 1313931 "INTHERTR" 1314161 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-571 1313010 1313090 1313278 "INTHERAL" 1313485 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-570 1310856 1311299 1311756 "INTHEORY" 1312573 T INTHEORY (NIL) -7 NIL NIL NIL) (-569 1302262 1303883 1305655 "INTG0" 1309208 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-568 1282835 1287625 1292435 "INTFTBL" 1297472 T INTFTBL (NIL) -8 NIL NIL NIL) (-567 1282084 1282222 1282395 "INTFACT" 1282694 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-566 1279511 1279957 1280514 "INTEF" 1281638 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-565 1277878 1278617 1278645 "INTDOM" 1278946 T INTDOM (NIL) -9 NIL 1279153 NIL) (-564 1277247 1277421 1277663 "INTDOM-" 1277668 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-563 1273635 1275563 1275617 "INTCAT" 1276416 NIL INTCAT (NIL T) -9 NIL 1276737 NIL) (-562 1273107 1273210 1273338 "INTBIT" 1273527 T INTBIT (NIL) -7 NIL NIL NIL) (-561 1271806 1271960 1272267 "INTALG" 1272952 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-560 1271289 1271379 1271536 "INTAF" 1271710 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-559 1264632 1271099 1271239 "INTABL" 1271244 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-558 1263965 1264431 1264496 "INT8" 1264530 T INT8 (NIL) -8 NIL NIL 1264575) (-557 1263297 1263763 1263828 "INT64" 1263862 T INT64 (NIL) -8 NIL NIL 1263907) (-556 1262629 1263095 1263160 "INT32" 1263194 T INT32 (NIL) -8 NIL NIL 1263239) (-555 1261961 1262427 1262492 "INT16" 1262526 T INT16 (NIL) -8 NIL NIL 1262571) (-554 1256756 1259522 1259550 "INS" 1260484 T INS (NIL) -9 NIL 1261149 NIL) (-553 1253996 1254767 1255741 "INS-" 1255814 NIL INS- (NIL T) -8 NIL NIL NIL) (-552 1252771 1252998 1253296 "INPSIGN" 1253749 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-551 1251889 1252006 1252203 "INPRODPF" 1252651 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-550 1250783 1250900 1251137 "INPRODFF" 1251769 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-549 1249783 1249935 1250195 "INNMFACT" 1250619 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-548 1248980 1249077 1249265 "INMODGCD" 1249682 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-547 1247488 1247733 1248057 "INFSP" 1248725 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-546 1246672 1246789 1246972 "INFPROD0" 1247368 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-545 1243527 1244737 1245252 "INFORM" 1246165 T INFORM (NIL) -8 NIL NIL NIL) (-544 1243137 1243197 1243295 "INFORM1" 1243462 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-543 1242660 1242749 1242863 "INFINITY" 1243043 T INFINITY (NIL) -7 NIL NIL NIL) (-542 1241836 1242380 1242481 "INETCLTS" 1242579 T INETCLTS (NIL) -8 NIL NIL NIL) (-541 1240452 1240702 1241023 "INEP" 1241584 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-540 1239701 1240349 1240414 "INDE" 1240419 NIL INDE (NIL T) -8 NIL NIL NIL) (-539 1239265 1239333 1239450 "INCRMAPS" 1239628 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-538 1238083 1238534 1238740 "INBFILE" 1239079 T INBFILE (NIL) -8 NIL NIL NIL) (-537 1233382 1234319 1235263 "INBFF" 1237171 NIL INBFF (NIL T) -7 NIL NIL NIL) (-536 1232290 1232559 1232587 "INBCON" 1233100 T INBCON (NIL) -9 NIL 1233366 NIL) (-535 1231542 1231765 1232041 "INBCON-" 1232046 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-534 1231021 1231266 1231357 "INAST" 1231471 T INAST (NIL) -8 NIL NIL NIL) (-533 1230448 1230700 1230806 "IMPTAST" 1230935 T IMPTAST (NIL) -8 NIL NIL NIL) (-532 1226894 1230292 1230396 "IMATRIX" 1230401 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-531 1225602 1225725 1226041 "IMATQF" 1226750 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-530 1223822 1224049 1224386 "IMATLIN" 1225358 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-529 1218400 1223746 1223804 "ILIST" 1223809 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-528 1216305 1218260 1218373 "IIARRAY2" 1218378 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-527 1211703 1216216 1216280 "IFF" 1216285 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-526 1211050 1211320 1211436 "IFAST" 1211607 T IFAST (NIL) -8 NIL NIL NIL) (-525 1206045 1210342 1210530 "IFARRAY" 1210907 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-524 1205225 1205949 1206022 "IFAMON" 1206027 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-523 1204809 1204874 1204928 "IEVALAB" 1205135 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-522 1204484 1204552 1204712 "IEVALAB-" 1204717 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-521 1204115 1204398 1204461 "IDPO" 1204466 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-520 1203365 1204004 1204079 "IDPOAMS" 1204084 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-519 1202672 1203254 1203329 "IDPOAM" 1203334 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-518 1201731 1202007 1202060 "IDPC" 1202473 NIL IDPC (NIL T T) -9 NIL 1202622 NIL) (-517 1201200 1201623 1201696 "IDPAM" 1201701 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-516 1200576 1201092 1201165 "IDPAG" 1201170 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-515 1200221 1200412 1200487 "IDENT" 1200521 T IDENT (NIL) -8 NIL NIL NIL) (-514 1196476 1197324 1198219 "IDECOMP" 1199378 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-513 1189313 1190399 1191446 "IDEAL" 1195512 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-512 1188473 1188585 1188785 "ICDEN" 1189197 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-511 1187544 1187953 1188100 "ICARD" 1188346 T ICARD (NIL) -8 NIL NIL NIL) (-510 1185604 1185917 1186322 "IBPTOOLS" 1187221 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-509 1181211 1185224 1185337 "IBITS" 1185523 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-508 1177934 1178510 1179205 "IBATOOL" 1180628 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-507 1175713 1176175 1176708 "IBACHIN" 1177469 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-506 1173542 1175559 1175662 "IARRAY2" 1175667 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-505 1169648 1173468 1173525 "IARRAY1" 1173530 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-504 1163686 1168060 1168541 "IAN" 1169187 T IAN (NIL) -8 NIL NIL NIL) (-503 1163197 1163254 1163427 "IALGFACT" 1163623 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-502 1162725 1162838 1162866 "HYPCAT" 1163073 T HYPCAT (NIL) -9 NIL NIL NIL) (-501 1162263 1162380 1162566 "HYPCAT-" 1162571 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-500 1161858 1162058 1162141 "HOSTNAME" 1162200 T HOSTNAME (NIL) -8 NIL NIL NIL) (-499 1161703 1161740 1161781 "HOMOTOP" 1161786 NIL HOMOTOP (NIL T) -9 NIL 1161819 NIL) (-498 1158335 1159713 1159754 "HOAGG" 1160735 NIL HOAGG (NIL T) -9 NIL 1161414 NIL) (-497 1156929 1157328 1157854 "HOAGG-" 1157859 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-496 1150838 1156522 1156672 "HEXADEC" 1156799 T HEXADEC (NIL) -8 NIL NIL NIL) (-495 1149586 1149808 1150071 "HEUGCD" 1150615 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-494 1148662 1149423 1149553 "HELLFDIV" 1149558 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-493 1146841 1148439 1148527 "HEAP" 1148606 NIL HEAP (NIL T) -8 NIL NIL NIL) (-492 1146104 1146393 1146527 "HEADAST" 1146727 T HEADAST (NIL) -8 NIL NIL NIL) (-491 1139833 1146019 1146081 "HDP" 1146086 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-490 1133732 1139468 1139620 "HDMP" 1139734 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-489 1133056 1133196 1133360 "HB" 1133588 T HB (NIL) -7 NIL NIL NIL) (-488 1126442 1132902 1133006 "HASHTBL" 1133011 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-487 1125918 1126163 1126255 "HASAST" 1126370 T HASAST (NIL) -8 NIL NIL NIL) (-486 1123696 1125540 1125722 "HACKPI" 1125756 T HACKPI (NIL) -8 NIL NIL NIL) (-485 1119364 1123549 1123662 "GTSET" 1123667 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-484 1112779 1119242 1119340 "GSTBL" 1119345 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-483 1105057 1111810 1112075 "GSERIES" 1112570 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-482 1104198 1104615 1104643 "GROUP" 1104846 T GROUP (NIL) -9 NIL 1104980 NIL) (-481 1103564 1103723 1103974 "GROUP-" 1103979 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-480 1101931 1102252 1102639 "GROEBSOL" 1103241 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-479 1100845 1101133 1101184 "GRMOD" 1101713 NIL GRMOD (NIL T T) -9 NIL 1101881 NIL) (-478 1100613 1100649 1100777 "GRMOD-" 1100782 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-477 1095903 1096967 1097967 "GRIMAGE" 1099633 T GRIMAGE (NIL) -8 NIL NIL NIL) (-476 1094369 1094630 1094954 "GRDEF" 1095599 T GRDEF (NIL) -7 NIL NIL NIL) (-475 1093813 1093929 1094070 "GRAY" 1094248 T GRAY (NIL) -7 NIL NIL NIL) (-474 1093000 1093406 1093457 "GRALG" 1093610 NIL GRALG (NIL T T) -9 NIL 1093703 NIL) (-473 1092661 1092734 1092897 "GRALG-" 1092902 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-472 1089438 1092246 1092424 "GPOLSET" 1092568 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-471 1088792 1088849 1089107 "GOSPER" 1089375 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-470 1084524 1085230 1085756 "GMODPOL" 1088491 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-469 1083529 1083713 1083951 "GHENSEL" 1084336 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-468 1077685 1078528 1079548 "GENUPS" 1082613 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-467 1077382 1077433 1077522 "GENUFACT" 1077628 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-466 1076794 1076871 1077036 "GENPGCD" 1077300 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-465 1076268 1076303 1076516 "GENMFACT" 1076753 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-464 1074834 1075091 1075398 "GENEEZ" 1076011 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-463 1068893 1074445 1074607 "GDMP" 1074757 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-462 1058236 1062664 1063770 "GCNAALG" 1067876 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-461 1056563 1057425 1057453 "GCDDOM" 1057708 T GCDDOM (NIL) -9 NIL 1057865 NIL) (-460 1056033 1056160 1056375 "GCDDOM-" 1056380 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-459 1054705 1054890 1055194 "GB" 1055812 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-458 1043321 1045651 1048043 "GBINTERN" 1052396 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-457 1041158 1041450 1041871 "GBF" 1042996 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-456 1039939 1040104 1040371 "GBEUCLID" 1040974 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-455 1039288 1039413 1039562 "GAUSSFAC" 1039810 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-454 1037655 1037957 1038271 "GALUTIL" 1039007 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-453 1035963 1036237 1036561 "GALPOLYU" 1037382 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-452 1033328 1033618 1034025 "GALFACTU" 1035660 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-451 1025134 1026633 1028241 "GALFACT" 1031760 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-450 1022522 1023180 1023208 "FVFUN" 1024364 T FVFUN (NIL) -9 NIL 1025084 NIL) (-449 1021788 1021970 1021998 "FVC" 1022289 T FVC (NIL) -9 NIL 1022472 NIL) (-448 1021431 1021613 1021681 "FUNDESC" 1021740 T FUNDESC (NIL) -8 NIL NIL NIL) (-447 1021046 1021228 1021309 "FUNCTION" 1021383 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-446 1018790 1019368 1019834 "FT" 1020600 T FT (NIL) -8 NIL NIL NIL) (-445 1017581 1018091 1018294 "FTEM" 1018607 T FTEM (NIL) -8 NIL NIL NIL) (-444 1015872 1016161 1016558 "FSUPFACT" 1017272 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-443 1014269 1014558 1014890 "FST" 1015560 T FST (NIL) -8 NIL NIL NIL) (-442 1013468 1013574 1013762 "FSRED" 1014151 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-441 1012167 1012423 1012770 "FSPRMELT" 1013183 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-440 1009473 1009911 1010397 "FSPECF" 1011730 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-439 990845 999316 999357 "FS" 1003241 NIL FS (NIL T) -9 NIL 1005530 NIL) (-438 979488 982481 986538 "FS-" 986838 NIL FS- (NIL T T) -8 NIL NIL NIL) (-437 979016 979070 979240 "FSINT" 979429 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-436 977308 978009 978312 "FSERIES" 978795 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-435 976350 976466 976690 "FSCINT" 977188 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-434 972558 975294 975335 "FSAGG" 975705 NIL FSAGG (NIL T) -9 NIL 975964 NIL) (-433 970320 970921 971717 "FSAGG-" 971812 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-432 969362 969505 969732 "FSAGG2" 970173 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-431 967044 967324 967871 "FS2UPS" 969080 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-430 966678 966721 966850 "FS2" 966995 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-429 965556 965727 966029 "FS2EXPXP" 966503 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-428 964982 965097 965249 "FRUTIL" 965436 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-427 956395 960477 961835 "FR" 963656 NIL FR (NIL T) -8 NIL NIL NIL) (-426 951409 954084 954124 "FRNAALG" 955444 NIL FRNAALG (NIL T) -9 NIL 956042 NIL) (-425 947082 948158 949433 "FRNAALG-" 950183 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-424 946720 946763 946890 "FRNAAF2" 947033 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-423 945095 945569 945865 "FRMOD" 946532 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-422 942838 943470 943788 "FRIDEAL" 944886 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-421 942029 942116 942407 "FRIDEAL2" 942745 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-420 941162 941576 941617 "FRETRCT" 941622 NIL FRETRCT (NIL T) -9 NIL 941798 NIL) (-419 940274 940505 940856 "FRETRCT-" 940861 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-418 937362 938572 938631 "FRAMALG" 939513 NIL FRAMALG (NIL T T) -9 NIL 939805 NIL) (-417 935496 935951 936581 "FRAMALG-" 936804 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-416 929326 934969 935246 "FRAC" 935251 NIL FRAC (NIL T) -8 NIL NIL NIL) (-415 928962 929019 929126 "FRAC2" 929263 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-414 928598 928655 928762 "FR2" 928899 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-413 923111 926004 926032 "FPS" 927151 T FPS (NIL) -9 NIL 927708 NIL) (-412 922560 922669 922833 "FPS-" 922979 NIL FPS- (NIL T) -8 NIL NIL NIL) (-411 919862 921531 921559 "FPC" 921784 T FPC (NIL) -9 NIL 921926 NIL) (-410 919655 919695 919792 "FPC-" 919797 NIL FPC- (NIL T) -8 NIL NIL NIL) (-409 918445 919143 919184 "FPATMAB" 919189 NIL FPATMAB (NIL T) -9 NIL 919341 NIL) (-408 916118 916621 917047 "FPARFRAC" 918082 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-407 911512 912010 912692 "FORTRAN" 915550 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-406 909228 909728 910267 "FORT" 910993 T FORT (NIL) -7 NIL NIL NIL) (-405 906904 907466 907494 "FORTFN" 908554 T FORTFN (NIL) -9 NIL 909178 NIL) (-404 906668 906718 906746 "FORTCAT" 906805 T FORTCAT (NIL) -9 NIL 906867 NIL) (-403 904774 905284 905674 "FORMULA" 906298 T FORMULA (NIL) -8 NIL NIL NIL) (-402 904562 904592 904661 "FORMULA1" 904738 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-401 904085 904137 904310 "FORDER" 904504 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-400 903181 903345 903538 "FOP" 903912 T FOP (NIL) -7 NIL NIL NIL) (-399 901762 902461 902635 "FNLA" 903063 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-398 900491 900906 900934 "FNCAT" 901394 T FNCAT (NIL) -9 NIL 901654 NIL) (-397 900030 900450 900478 "FNAME" 900483 T FNAME (NIL) -8 NIL NIL NIL) (-396 898593 899556 899584 "FMTC" 899589 T FMTC (NIL) -9 NIL 899625 NIL) (-395 897339 898529 898575 "FMONOID" 898580 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-394 894167 895335 895376 "FMONCAT" 896593 NIL FMONCAT (NIL T) -9 NIL 897198 NIL) (-393 893359 893909 894058 "FM" 894063 NIL FM (NIL T T) -8 NIL NIL NIL) (-392 890783 891429 891457 "FMFUN" 892601 T FMFUN (NIL) -9 NIL 893309 NIL) (-391 890052 890233 890261 "FMC" 890551 T FMC (NIL) -9 NIL 890733 NIL) (-390 887131 887991 888045 "FMCAT" 889240 NIL FMCAT (NIL T T) -9 NIL 889735 NIL) (-389 885997 886897 886997 "FM1" 887076 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-388 883771 884187 884681 "FLOATRP" 885548 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-387 877349 881500 882121 "FLOAT" 883170 T FLOAT (NIL) -8 NIL NIL NIL) (-386 874787 875287 875865 "FLOATCP" 876816 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-385 873634 874393 874434 "FLINEXP" 874439 NIL FLINEXP (NIL T) -9 NIL 874532 NIL) (-384 872566 872863 873271 "FLINEXP-" 873276 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-383 871642 871786 872010 "FLASORT" 872418 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-382 868758 869626 869678 "FLALG" 870905 NIL FLALG (NIL T T) -9 NIL 871372 NIL) (-381 862462 866214 866255 "FLAGG" 867517 NIL FLAGG (NIL T) -9 NIL 868169 NIL) (-380 861188 861527 862017 "FLAGG-" 862022 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-379 860230 860373 860600 "FLAGG2" 861041 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-378 857081 858089 858148 "FINRALG" 859276 NIL FINRALG (NIL T T) -9 NIL 859784 NIL) (-377 856241 856470 856809 "FINRALG-" 856814 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-376 855621 855860 855888 "FINITE" 856084 T FINITE (NIL) -9 NIL 856191 NIL) (-375 847978 850165 850205 "FINAALG" 853872 NIL FINAALG (NIL T) -9 NIL 855325 NIL) (-374 843310 844360 845504 "FINAALG-" 846883 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-373 842678 843065 843168 "FILE" 843240 NIL FILE (NIL T) -8 NIL NIL NIL) (-372 841336 841674 841728 "FILECAT" 842412 NIL FILECAT (NIL T T) -9 NIL 842628 NIL) (-371 839052 840580 840608 "FIELD" 840648 T FIELD (NIL) -9 NIL 840728 NIL) (-370 837672 838057 838568 "FIELD-" 838573 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-369 835522 836307 836654 "FGROUP" 837358 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-368 834612 834776 834996 "FGLMICPK" 835354 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-367 830444 834537 834594 "FFX" 834599 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-366 830045 830106 830241 "FFSLPE" 830377 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-365 826035 826817 827613 "FFPOLY" 829281 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-364 825539 825575 825784 "FFPOLY2" 825993 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-363 821385 825458 825521 "FFP" 825526 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-362 816783 821296 821360 "FF" 821365 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-361 811909 816126 816316 "FFNBX" 816637 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-360 806837 811044 811302 "FFNBP" 811763 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-359 801470 806121 806332 "FFNB" 806670 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-358 800302 800500 800815 "FFINTBAS" 801267 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-357 796328 798549 798577 "FFIELDC" 799197 T FFIELDC (NIL) -9 NIL 799573 NIL) (-356 794990 795361 795858 "FFIELDC-" 795863 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-355 794559 794605 794729 "FFHOM" 794932 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-354 792254 792741 793258 "FFF" 794074 NIL FFF (NIL T) -7 NIL NIL NIL) (-353 787872 791996 792097 "FFCGX" 792197 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-352 783494 787604 787711 "FFCGP" 787815 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-351 778677 783221 783329 "FFCG" 783430 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-350 759612 768797 768883 "FFCAT" 774048 NIL FFCAT (NIL T T T) -9 NIL 775499 NIL) (-349 754809 755857 757171 "FFCAT-" 758401 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-348 754220 754263 754498 "FFCAT2" 754760 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-347 743543 747192 748412 "FEXPR" 753072 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-346 742505 742940 742981 "FEVALAB" 743065 NIL FEVALAB (NIL T) -9 NIL 743326 NIL) (-345 741664 741874 742212 "FEVALAB-" 742217 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-344 740230 741047 741250 "FDIV" 741563 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-343 737250 737991 738106 "FDIVCAT" 739674 NIL FDIVCAT (NIL T T T T) -9 NIL 740111 NIL) (-342 737012 737039 737209 "FDIVCAT-" 737214 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-341 736232 736319 736596 "FDIV2" 736919 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-340 735206 735527 735729 "FCTRDATA" 736050 T FCTRDATA (NIL) -8 NIL NIL NIL) (-339 733892 734151 734440 "FCPAK1" 734937 T FCPAK1 (NIL) -7 NIL NIL NIL) (-338 732991 733392 733533 "FCOMP" 733783 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-337 716696 720141 723679 "FC" 729473 T FC (NIL) -8 NIL NIL NIL) (-336 708975 713003 713043 "FAXF" 714845 NIL FAXF (NIL T) -9 NIL 715537 NIL) (-335 706252 706909 707734 "FAXF-" 708199 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-334 701304 705628 705804 "FARRAY" 706109 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-333 696198 698265 698318 "FAMR" 699341 NIL FAMR (NIL T T) -9 NIL 699801 NIL) (-332 695088 695390 695825 "FAMR-" 695830 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-331 694257 695010 695063 "FAMONOID" 695068 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-330 692043 692753 692806 "FAMONC" 693747 NIL FAMONC (NIL T T) -9 NIL 694133 NIL) (-329 690707 691797 691934 "FAGROUP" 691939 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-328 688502 688821 689224 "FACUTIL" 690388 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-327 687601 687786 688008 "FACTFUNC" 688312 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-326 680023 686904 687103 "EXPUPXS" 687457 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-325 677506 678046 678632 "EXPRTUBE" 679457 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-324 673777 674369 675099 "EXPRODE" 676845 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-323 659496 672426 672855 "EXPR" 673381 NIL EXPR (NIL T) -8 NIL NIL NIL) (-322 654050 654637 655443 "EXPR2UPS" 658794 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-321 653682 653739 653848 "EXPR2" 653987 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-320 644935 652833 653124 "EXPEXPAN" 653518 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-319 644735 644892 644921 "EXIT" 644926 T EXIT (NIL) -8 NIL NIL NIL) (-318 644215 644459 644550 "EXITAST" 644664 T EXITAST (NIL) -8 NIL NIL NIL) (-317 643842 643904 644017 "EVALCYC" 644147 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-316 643383 643501 643542 "EVALAB" 643712 NIL EVALAB (NIL T) -9 NIL 643816 NIL) (-315 642864 642986 643207 "EVALAB-" 643212 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-314 640232 641534 641562 "EUCDOM" 642117 T EUCDOM (NIL) -9 NIL 642467 NIL) (-313 638637 639079 639669 "EUCDOM-" 639674 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-312 626176 628935 631685 "ESTOOLS" 635907 T ESTOOLS (NIL) -7 NIL NIL NIL) (-311 625808 625865 625974 "ESTOOLS2" 626113 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-310 625559 625601 625681 "ESTOOLS1" 625760 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-309 619596 621204 621232 "ES" 624000 T ES (NIL) -9 NIL 625410 NIL) (-308 614543 615830 617647 "ES-" 617811 NIL ES- (NIL T) -8 NIL NIL NIL) (-307 610917 611678 612458 "ESCONT" 613783 T ESCONT (NIL) -7 NIL NIL NIL) (-306 610662 610694 610776 "ESCONT1" 610879 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-305 610337 610387 610487 "ES2" 610606 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-304 609967 610025 610134 "ES1" 610273 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-303 609183 609312 609488 "ERROR" 609811 T ERROR (NIL) -7 NIL NIL NIL) (-302 602575 609042 609133 "EQTBL" 609138 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-301 595078 597889 599338 "EQ" 601159 NIL -2076 (NIL T) -8 NIL NIL NIL) (-300 594710 594767 594876 "EQ2" 595015 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-299 590001 591048 592141 "EP" 593649 NIL EP (NIL T) -7 NIL NIL NIL) (-298 588601 588892 589198 "ENV" 589715 T ENV (NIL) -8 NIL NIL NIL) (-297 587695 588249 588277 "ENTIRER" 588282 T ENTIRER (NIL) -9 NIL 588328 NIL) (-296 584389 585877 586238 "EMR" 587503 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-295 583519 583704 583758 "ELTAGG" 584138 NIL ELTAGG (NIL T T) -9 NIL 584349 NIL) (-294 583238 583300 583441 "ELTAGG-" 583446 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-293 583002 583031 583085 "ELTAB" 583169 NIL ELTAB (NIL T T) -9 NIL 583221 NIL) (-292 582128 582274 582473 "ELFUTS" 582853 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-291 581870 581926 581954 "ELEMFUN" 582059 T ELEMFUN (NIL) -9 NIL NIL NIL) (-290 581740 581761 581829 "ELEMFUN-" 581834 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-289 576554 579810 579851 "ELAGG" 580791 NIL ELAGG (NIL T) -9 NIL 581254 NIL) (-288 574839 575273 575936 "ELAGG-" 575941 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-287 574151 574288 574444 "ELABOR" 574703 T ELABOR (NIL) -8 NIL NIL NIL) (-286 572812 573091 573385 "ELABEXPR" 573877 T ELABEXPR (NIL) -8 NIL NIL NIL) (-285 565676 567479 568306 "EFUPXS" 572088 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-284 559126 560927 561737 "EFULS" 564952 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-283 556611 556969 557441 "EFSTRUC" 558758 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-282 546402 547968 549516 "EF" 555126 NIL EF (NIL T T) -7 NIL NIL NIL) (-281 545476 545887 546036 "EAB" 546273 T EAB (NIL) -8 NIL NIL NIL) (-280 544658 545435 545463 "E04UCFA" 545468 T E04UCFA (NIL) -8 NIL NIL NIL) (-279 543840 544617 544645 "E04NAFA" 544650 T E04NAFA (NIL) -8 NIL NIL NIL) (-278 543022 543799 543827 "E04MBFA" 543832 T E04MBFA (NIL) -8 NIL NIL NIL) (-277 542204 542981 543009 "E04JAFA" 543014 T E04JAFA (NIL) -8 NIL NIL NIL) (-276 541388 542163 542191 "E04GCFA" 542196 T E04GCFA (NIL) -8 NIL NIL NIL) (-275 540572 541347 541375 "E04FDFA" 541380 T E04FDFA (NIL) -8 NIL NIL NIL) (-274 539754 540531 540559 "E04DGFA" 540564 T E04DGFA (NIL) -8 NIL NIL NIL) (-273 533927 535279 536643 "E04AGNT" 538410 T E04AGNT (NIL) -7 NIL NIL NIL) (-272 532698 533241 533281 "DVARCAT" 533622 NIL DVARCAT (NIL T) -9 NIL 533785 NIL) (-271 531902 532114 532428 "DVARCAT-" 532433 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-270 524950 531701 531830 "DSMP" 531835 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-269 519731 520895 521963 "DROPT" 523902 T DROPT (NIL) -8 NIL NIL NIL) (-268 519396 519455 519553 "DROPT1" 519666 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-267 514511 515637 516774 "DROPT0" 518279 T DROPT0 (NIL) -7 NIL NIL NIL) (-266 512856 513181 513567 "DRAWPT" 514145 T DRAWPT (NIL) -7 NIL NIL NIL) (-265 507443 508366 509445 "DRAW" 511830 NIL DRAW (NIL T) -7 NIL NIL NIL) (-264 507076 507129 507247 "DRAWHACK" 507384 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-263 505807 506076 506367 "DRAWCX" 506805 T DRAWCX (NIL) -7 NIL NIL NIL) (-262 505322 505391 505542 "DRAWCURV" 505733 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-261 495790 497752 499867 "DRAWCFUN" 503227 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-260 492554 494483 494524 "DQAGG" 495153 NIL DQAGG (NIL T) -9 NIL 495427 NIL) (-259 480464 487022 487105 "DPOLCAT" 488957 NIL DPOLCAT (NIL T T T T) -9 NIL 489502 NIL) (-258 475301 476649 478607 "DPOLCAT-" 478612 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-257 468610 475162 475260 "DPMO" 475265 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-256 461822 468390 468557 "DPMM" 468562 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-255 461392 461606 461695 "DOMTMPLT" 461753 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-254 460825 461194 461274 "DOMCTOR" 461332 T DOMCTOR (NIL) -8 NIL NIL NIL) (-253 460037 460305 460456 "DOMAIN" 460694 T DOMAIN (NIL) -8 NIL NIL NIL) (-252 453936 459672 459824 "DMP" 459938 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-251 453536 453592 453736 "DLP" 453874 NIL DLP (NIL T) -7 NIL NIL NIL) (-250 447358 452863 453053 "DLIST" 453378 NIL DLIST (NIL T) -8 NIL NIL NIL) (-249 444155 446211 446252 "DLAGG" 446802 NIL DLAGG (NIL T) -9 NIL 447032 NIL) (-248 442831 443495 443523 "DIVRING" 443615 T DIVRING (NIL) -9 NIL 443698 NIL) (-247 442068 442258 442558 "DIVRING-" 442563 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-246 440170 440527 440933 "DISPLAY" 441682 T DISPLAY (NIL) -7 NIL NIL NIL) (-245 433919 440084 440147 "DIRPROD" 440152 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-244 432767 432970 433235 "DIRPROD2" 433712 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-243 421224 427370 427423 "DIRPCAT" 427833 NIL DIRPCAT (NIL NIL T) -9 NIL 428673 NIL) (-242 418328 419032 419993 "DIRPCAT-" 420330 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-241 417615 417775 417961 "DIOSP" 418162 T DIOSP (NIL) -7 NIL NIL NIL) (-240 414270 416527 416568 "DIOPS" 417002 NIL DIOPS (NIL T) -9 NIL 417231 NIL) (-239 413819 413933 414124 "DIOPS-" 414129 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-238 412870 413498 413526 "DIFRING" 413531 T DIFRING (NIL) -9 NIL 413553 NIL) (-237 412542 412616 412644 "DIFFSPC" 412763 T DIFFSPC (NIL) -9 NIL 412838 NIL) (-236 412187 412265 412417 "DIFFSPC-" 412422 NIL DIFFSPC- (NIL T) -8 NIL NIL NIL) (-235 411895 411940 411981 "DIFFDOM" 412102 NIL DIFFDOM (NIL T) -9 NIL 412170 NIL) (-234 411748 411772 411856 "DIFFDOM-" 411861 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-233 409400 410672 410713 "DIFEXT" 411076 NIL DIFEXT (NIL T) -9 NIL 411370 NIL) (-232 407685 408113 408779 "DIFEXT-" 408784 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-231 404960 407217 407258 "DIAGG" 407263 NIL DIAGG (NIL T) -9 NIL 407283 NIL) (-230 404344 404501 404753 "DIAGG-" 404758 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-229 399761 403303 403580 "DHMATRIX" 404113 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-228 395373 396282 397292 "DFSFUN" 398771 T DFSFUN (NIL) -7 NIL NIL NIL) (-227 390453 394304 394616 "DFLOAT" 395081 T DFLOAT (NIL) -8 NIL NIL NIL) (-226 388716 388997 389386 "DFINTTLS" 390161 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-225 385745 386737 387137 "DERHAM" 388382 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-224 383546 385520 385609 "DEQUEUE" 385689 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-223 382800 382933 383116 "DEGRED" 383408 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-222 379230 379975 380821 "DEFINTRF" 382028 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-221 376785 377254 377846 "DEFINTEF" 378749 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-220 376135 376405 376520 "DEFAST" 376690 T DEFAST (NIL) -8 NIL NIL NIL) (-219 370044 375728 375878 "DECIMAL" 376005 T DECIMAL (NIL) -8 NIL NIL NIL) (-218 367556 368014 368520 "DDFACT" 369588 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-217 367152 367195 367346 "DBLRESP" 367507 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-216 365020 365382 365743 "DBASE" 366918 NIL DBASE (NIL T) -8 NIL NIL NIL) (-215 364262 364500 364646 "DATAARY" 364919 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-214 363368 364221 364249 "D03FAFA" 364254 T D03FAFA (NIL) -8 NIL NIL NIL) (-213 362475 363327 363355 "D03EEFA" 363360 T D03EEFA (NIL) -8 NIL NIL NIL) (-212 360425 360891 361380 "D03AGNT" 362006 T D03AGNT (NIL) -7 NIL NIL NIL) (-211 359714 360384 360412 "D02EJFA" 360417 T D02EJFA (NIL) -8 NIL NIL NIL) (-210 359003 359673 359701 "D02CJFA" 359706 T D02CJFA (NIL) -8 NIL NIL NIL) (-209 358292 358962 358990 "D02BHFA" 358995 T D02BHFA (NIL) -8 NIL NIL NIL) (-208 357581 358251 358279 "D02BBFA" 358284 T D02BBFA (NIL) -8 NIL NIL NIL) (-207 350778 352367 353973 "D02AGNT" 355995 T D02AGNT (NIL) -7 NIL NIL NIL) (-206 348546 349069 349615 "D01WGTS" 350252 T D01WGTS (NIL) -7 NIL NIL NIL) (-205 347613 348505 348533 "D01TRNS" 348538 T D01TRNS (NIL) -8 NIL NIL NIL) (-204 346681 347572 347600 "D01GBFA" 347605 T D01GBFA (NIL) -8 NIL NIL NIL) (-203 345749 346640 346668 "D01FCFA" 346673 T D01FCFA (NIL) -8 NIL NIL NIL) (-202 344817 345708 345736 "D01ASFA" 345741 T D01ASFA (NIL) -8 NIL NIL NIL) (-201 343885 344776 344804 "D01AQFA" 344809 T D01AQFA (NIL) -8 NIL NIL NIL) (-200 342953 343844 343872 "D01APFA" 343877 T D01APFA (NIL) -8 NIL NIL NIL) (-199 342021 342912 342940 "D01ANFA" 342945 T D01ANFA (NIL) -8 NIL NIL NIL) (-198 341089 341980 342008 "D01AMFA" 342013 T D01AMFA (NIL) -8 NIL NIL NIL) (-197 340157 341048 341076 "D01ALFA" 341081 T D01ALFA (NIL) -8 NIL NIL NIL) (-196 339225 340116 340144 "D01AKFA" 340149 T D01AKFA (NIL) -8 NIL NIL NIL) (-195 338293 339184 339212 "D01AJFA" 339217 T D01AJFA (NIL) -8 NIL NIL NIL) (-194 331588 333141 334702 "D01AGNT" 336752 T D01AGNT (NIL) -7 NIL NIL NIL) (-193 330925 331053 331205 "CYCLOTOM" 331456 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-192 327658 328373 329100 "CYCLES" 330218 T CYCLES (NIL) -7 NIL NIL NIL) (-191 326970 327104 327275 "CVMP" 327519 NIL CVMP (NIL T) -7 NIL NIL NIL) (-190 324811 325069 325438 "CTRIGMNP" 326698 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-189 324247 324605 324678 "CTOR" 324758 T CTOR (NIL) -8 NIL NIL NIL) (-188 323756 323978 324079 "CTORKIND" 324166 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 323047 323363 323391 "CTORCAT" 323573 T CTORCAT (NIL) -9 NIL 323686 NIL) (-186 322645 322756 322915 "CTORCAT-" 322920 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 322107 322319 322427 "CTORCALL" 322569 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 321481 321580 321733 "CSTTOOLS" 322004 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-183 317280 317937 318695 "CRFP" 320793 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-182 316755 317001 317093 "CRCEAST" 317208 T CRCEAST (NIL) -8 NIL NIL NIL) (-181 315802 315987 316215 "CRAPACK" 316559 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-180 315186 315287 315491 "CPMATCH" 315678 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-179 314911 314939 315045 "CPIMA" 315152 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-178 311259 311931 312650 "COORDSYS" 314246 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-177 310671 310792 310934 "CONTOUR" 311137 T CONTOUR (NIL) -8 NIL NIL NIL) (-176 306562 308674 309166 "CONTFRAC" 310211 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-175 306442 306463 306491 "CONDUIT" 306528 T CONDUIT (NIL) -9 NIL NIL NIL) (-174 305530 306084 306112 "COMRING" 306117 T COMRING (NIL) -9 NIL 306169 NIL) (-173 304584 304888 305072 "COMPPROP" 305366 T COMPPROP (NIL) -8 NIL NIL NIL) (-172 304245 304280 304408 "COMPLPAT" 304543 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-171 294447 304054 304163 "COMPLEX" 304168 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 294083 294140 294247 "COMPLEX2" 294384 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 293422 293543 293703 "COMPILER" 293943 T COMPILER (NIL) -8 NIL NIL NIL) (-168 293140 293175 293273 "COMPFACT" 293381 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-167 276977 287061 287101 "COMPCAT" 288105 NIL COMPCAT (NIL T) -9 NIL 289453 NIL) (-166 266267 269256 272963 "COMPCAT-" 273319 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-165 265996 266024 266127 "COMMUPC" 266233 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-164 265790 265824 265883 "COMMONOP" 265957 T COMMONOP (NIL) -7 NIL NIL NIL) (-163 265346 265541 265628 "COMM" 265723 T COMM (NIL) -8 NIL NIL NIL) (-162 264922 265150 265225 "COMMAAST" 265291 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 264171 264365 264393 "COMBOPC" 264731 T COMBOPC (NIL) -9 NIL 264906 NIL) (-160 263067 263277 263519 "COMBINAT" 263961 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-159 259524 260098 260725 "COMBF" 262489 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-158 258282 258640 258875 "COLOR" 259309 T COLOR (NIL) -8 NIL NIL NIL) (-157 257758 258003 258095 "COLONAST" 258210 T COLONAST (NIL) -8 NIL NIL NIL) (-156 257398 257445 257570 "CMPLXRT" 257705 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-155 256846 257098 257197 "CLLCTAST" 257319 T CLLCTAST (NIL) -8 NIL NIL NIL) (-154 252348 253376 254456 "CLIP" 255786 T CLIP (NIL) -7 NIL NIL NIL) (-153 250689 251449 251689 "CLIF" 252175 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-152 246864 248835 248876 "CLAGG" 249805 NIL CLAGG (NIL T) -9 NIL 250341 NIL) (-151 245286 245743 246326 "CLAGG-" 246331 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-150 244830 244915 245055 "CINTSLPE" 245195 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-149 242331 242802 243350 "CHVAR" 244358 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-148 241505 242059 242087 "CHARZ" 242092 T CHARZ (NIL) -9 NIL 242107 NIL) (-147 241259 241299 241377 "CHARPOL" 241459 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-146 240317 240904 240932 "CHARNZ" 240979 T CHARNZ (NIL) -9 NIL 241035 NIL) (-145 238223 238971 239324 "CHAR" 239984 T CHAR (NIL) -8 NIL NIL NIL) (-144 237949 238010 238038 "CFCAT" 238149 T CFCAT (NIL) -9 NIL NIL NIL) (-143 237190 237301 237484 "CDEN" 237833 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-142 233155 236343 236623 "CCLASS" 236930 T CCLASS (NIL) -8 NIL NIL NIL) (-141 232406 232563 232740 "CATEGORY" 232998 T -10 (NIL) -8 NIL NIL NIL) (-140 231979 232325 232373 "CATCTOR" 232378 T CATCTOR (NIL) -8 NIL NIL NIL) (-139 231430 231682 231780 "CATAST" 231901 T CATAST (NIL) -8 NIL NIL NIL) (-138 230906 231151 231243 "CASEAST" 231358 T CASEAST (NIL) -8 NIL NIL NIL) (-137 226044 227063 227807 "CARTEN" 230218 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 225152 225300 225521 "CARTEN2" 225891 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 223468 224302 224559 "CARD" 224915 T CARD (NIL) -8 NIL NIL NIL) (-134 223044 223272 223347 "CAPSLAST" 223413 T CAPSLAST (NIL) -8 NIL NIL NIL) (-133 222548 222756 222784 "CACHSET" 222916 T CACHSET (NIL) -9 NIL 222994 NIL) (-132 222018 222340 222368 "CABMON" 222418 T CABMON (NIL) -9 NIL 222474 NIL) (-131 221491 221722 221832 "BYTEORD" 221928 T BYTEORD (NIL) -8 NIL NIL NIL) (-130 220468 221020 221162 "BYTE" 221325 T BYTE (NIL) -8 NIL NIL 221447) (-129 215818 219973 220145 "BYTEBUF" 220316 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 213327 215510 215617 "BTREE" 215744 NIL BTREE (NIL T) -8 NIL NIL NIL) (-127 210776 212975 213097 "BTOURN" 213237 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-126 208146 210246 210287 "BTCAT" 210355 NIL BTCAT (NIL T) -9 NIL 210432 NIL) (-125 207813 207893 208042 "BTCAT-" 208047 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-124 203192 207072 207100 "BTAGG" 207214 T BTAGG (NIL) -9 NIL 207324 NIL) (-123 202682 202807 203013 "BTAGG-" 203018 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-122 199677 201960 202175 "BSTREE" 202499 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-121 198815 198941 199125 "BRILL" 199533 NIL BRILL (NIL T) -7 NIL NIL NIL) (-120 195467 197541 197582 "BRAGG" 198231 NIL BRAGG (NIL T) -9 NIL 198489 NIL) (-119 193996 194402 194957 "BRAGG-" 194962 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-118 187120 193340 193525 "BPADICRT" 193843 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-117 185435 187057 187102 "BPADIC" 187107 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-116 185133 185163 185277 "BOUNDZRO" 185399 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-115 180361 181559 182471 "BOP" 184241 T BOP (NIL) -8 NIL NIL NIL) (-114 178142 178546 179021 "BOP1" 179919 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 177843 177904 177932 "BOOLE" 178043 T BOOLE (NIL) -9 NIL 178125 NIL) (-112 176668 177417 177566 "BOOLEAN" 177714 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 175947 176351 176405 "BMODULE" 176410 NIL BMODULE (NIL T T) -9 NIL 176475 NIL) (-110 171748 175745 175818 "BITS" 175894 T BITS (NIL) -8 NIL NIL NIL) (-109 171169 171288 171428 "BINDING" 171628 T BINDING (NIL) -8 NIL NIL NIL) (-108 165081 170764 170913 "BINARY" 171040 T BINARY (NIL) -8 NIL NIL NIL) (-107 162861 164336 164377 "BGAGG" 164637 NIL BGAGG (NIL T) -9 NIL 164774 NIL) (-106 162692 162724 162815 "BGAGG-" 162820 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 161763 162076 162281 "BFUNCT" 162507 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 160453 160631 160919 "BEZOUT" 161587 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 156922 159305 159635 "BBTREE" 160156 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 156656 156709 156737 "BASTYPE" 156856 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 156508 156537 156610 "BASTYPE-" 156615 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 155942 156018 156170 "BALFACT" 156419 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 154798 155357 155543 "AUTOMOR" 155787 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 154524 154529 154555 "ATTREG" 154560 T ATTREG (NIL) -9 NIL NIL NIL) (-97 152776 153221 153573 "ATTRBUT" 154190 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 152384 152604 152670 "ATTRAST" 152728 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151920 152033 152059 "ATRIG" 152260 T ATRIG (NIL) -9 NIL NIL NIL) (-94 151729 151770 151857 "ATRIG-" 151862 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 151374 151560 151586 "ASTCAT" 151591 T ASTCAT (NIL) -9 NIL 151621 NIL) (-92 151101 151160 151279 "ASTCAT-" 151284 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 149250 150877 150965 "ASTACK" 151044 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 147755 148052 148417 "ASSOCEQ" 148932 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 146787 147414 147538 "ASP9" 147662 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 146550 146735 146774 "ASP8" 146779 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 145418 146155 146297 "ASP80" 146439 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 144316 145053 145185 "ASP7" 145317 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 143270 143993 144111 "ASP78" 144229 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 142239 142950 143067 "ASP77" 143184 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 141151 141877 142008 "ASP74" 142139 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 140051 140786 140918 "ASP73" 141050 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 139155 139877 139977 "ASP6" 139982 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 138102 138832 138950 "ASP55" 139068 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 137051 137776 137895 "ASP50" 138014 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 136139 136752 136862 "ASP4" 136972 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 135227 135840 135950 "ASP49" 136060 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 134011 134766 134934 "ASP42" 135116 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 132788 133544 133714 "ASP41" 133898 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 131738 132465 132583 "ASP35" 132701 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 131503 131686 131725 "ASP34" 131730 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 131240 131307 131383 "ASP33" 131458 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 130134 130875 131007 "ASP31" 131139 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129899 130082 130121 "ASP30" 130126 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 129634 129703 129779 "ASP29" 129854 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 129399 129582 129621 "ASP28" 129626 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 129164 129347 129386 "ASP27" 129391 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 128248 128862 128973 "ASP24" 129084 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 127325 128050 128162 "ASP20" 128167 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 126413 127026 127136 "ASP1" 127246 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 125356 126087 126206 "ASP19" 126325 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 125093 125160 125236 "ASP12" 125311 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 123945 124692 124836 "ASP10" 124980 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121796 123789 123880 "ARRAY2" 123885 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 117561 121444 121558 "ARRAY1" 121713 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 116593 116766 116987 "ARRAY12" 117384 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110905 112823 112898 "ARR2CAT" 115528 NIL ARR2CAT (NIL T T T) -9 NIL 116286 NIL) (-56 108339 109083 110037 "ARR2CAT-" 110042 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107656 107966 108091 "ARITY" 108232 T ARITY (NIL) -8 NIL NIL NIL) (-54 106432 106584 106883 "APPRULE" 107492 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 106083 106131 106250 "APPLYORE" 106378 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 105437 105676 105796 "ANY" 105981 T ANY (NIL) -8 NIL NIL NIL) (-51 104715 104838 104995 "ANY1" 105311 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 102245 103152 103479 "ANTISYM" 104439 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101737 101952 102048 "ANON" 102167 T ANON (NIL) -8 NIL NIL NIL) (-48 95915 100276 100730 "AN" 101301 T AN (NIL) -8 NIL NIL NIL) (-47 91813 93201 93252 "AMR" 94000 NIL AMR (NIL T T) -9 NIL 94600 NIL) (-46 90925 91146 91509 "AMR-" 91514 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 75364 90842 90903 "ALIST" 90908 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 72169 74958 75127 "ALGSC" 75282 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68725 69279 69886 "ALGPKG" 71609 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 68002 68103 68287 "ALGMFACT" 68611 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 64037 64616 65210 "ALGMANIP" 67586 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 55304 63663 63813 "ALGFF" 63970 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54500 54631 54810 "ALGFACT" 55162 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53441 54041 54079 "ALGEBRA" 54084 NIL ALGEBRA (NIL T) -9 NIL 54125 NIL) (-37 53159 53218 53350 "ALGEBRA-" 53355 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 35222 51131 51183 "ALAGG" 51319 NIL ALAGG (NIL T T) -9 NIL 51480 NIL) (-35 34758 34871 34897 "AHYP" 35098 T AHYP (NIL) -9 NIL NIL NIL) (-34 33689 33937 33963 "AGG" 34462 T AGG (NIL) -9 NIL 34741 NIL) (-33 33123 33285 33499 "AGG-" 33504 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30929 31352 31757 "AF" 32765 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30409 30654 30744 "ADDAST" 30857 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29677 29936 30092 "ACPLOT" 30271 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18670 26678 26716 "ACFS" 27323 NIL ACFS (NIL T) -9 NIL 27562 NIL) (-28 16697 17187 17949 "ACFS-" 17954 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12815 14744 14770 "ACF" 15649 T ACF (NIL) -9 NIL 16062 NIL) (-26 11519 11853 12346 "ACF-" 12351 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11091 11286 11312 "ABELSG" 11404 T ABELSG (NIL) -9 NIL 11469 NIL) (-24 10958 10983 11049 "ABELSG-" 11054 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10301 10588 10614 "ABELMON" 10784 T ABELMON (NIL) -9 NIL 10896 NIL) (-22 9965 10049 10187 "ABELMON-" 10192 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9313 9685 9711 "ABELGRP" 9783 T ABELGRP (NIL) -9 NIL 9858 NIL) (-20 8776 8905 9121 "ABELGRP-" 9126 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8085 8124 "A1AGG" 8129 NIL A1AGG (NIL T) -9 NIL 8169 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index 016831e4..bc56a4fa 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,10025 +1,9644 @@ -(732675 . 3485644667) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-654 *1)) (-4 *1 (-1078 *4 *5 *6)) (-4 *4 (-1062)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *5 (-860)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1224 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) - (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-4 *5 (-377)) - (-5 *2 (-781))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2)) (-4 *2 (-1231))))) -(((*1 *1) (-5 *1 (-833)))) +(732559 . 3485684128) (((*1 *2) - (-12 (-4 *2 (-13 (-440 *3) (-1015))) (-5 *1 (-283 *3 *2)) - (-4 *3 (-566))))) -(((*1 *2 *3) - (-12 (-5 *3 (-932)) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192)))) + (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) + (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-1285)) + (-5 *1 (-1000 *3 *4 *5 *6 *7)) (-4 *7 (-1083 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) + (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-1285)) + (-5 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *7 (-1083 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-554)) + (-5 *2 (-416 (-573))))) ((*1 *2 *1) - (-12 (-5 *2 (-1281 (-3 (-478) "undefined"))) (-5 *1 (-1282))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1231)) (-4 *2 (-860)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-382 *3)) (-4 *3 (-1231)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-981 *2)) (-4 *2 (-860)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1062)))) - ((*1 *1 *2) - (-12 (-5 *2 (-654 *1)) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))) - ((*1 *1 *2) - (-12 (-5 *2 (-654 (-1178 *3 *4))) (-5 *1 (-1178 *3 *4)) - (-14 *3 (-932)) (-4 *4 (-1062)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-1178 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1062))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1224 *2 *3 *4 *5)) (-4 *2 (-566)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *5 (-1078 *2 *3 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1078 *5 *6 *7)) - (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4091 *4)))) - (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3))))) + (-12 (-5 *2 (-416 (-573))) (-5 *1 (-427 *3)) (-4 *3 (-554)) + (-4 *3 (-565)))) + ((*1 *2 *1) (-12 (-4 *1 (-554)) (-5 *2 (-416 (-573))))) + ((*1 *2 *1) + (-12 (-4 *1 (-806 *3)) (-4 *3 (-174)) (-4 *3 (-554)) + (-5 *2 (-416 (-573))))) + ((*1 *2 *1) + (-12 (-5 *2 (-416 (-573))) (-5 *1 (-842 *3)) (-4 *3 (-554)) + (-4 *3 (-1112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-416 (-573))) (-5 *1 (-852 *3)) (-4 *3 (-554)) + (-4 *3 (-1112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1009 *3)) (-4 *3 (-174)) (-4 *3 (-554)) + (-5 *2 (-416 (-573))))) + ((*1 *2 *3) + (-12 (-5 *2 (-416 (-573))) (-5 *1 (-1020 *3)) (-4 *3 (-1050 *2))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1171)) (-5 *4 (-573)) (-5 *5 (-698 (-227))) + (-5 *6 (-227)) (-5 *2 (-1047)) (-5 *1 (-761))))) +(((*1 *1 *2) + (-12 (-5 *2 (-653 *6)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-371)) + (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-513 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-653 (-653 (-953 (-227))))) (-5 *1 (-477))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1061)) (-5 *2 (-573)) (-5 *1 (-452 *4 *3 *5)) + (-4 *3 (-1256 *4)) + (-4 *5 (-13 (-413) (-1050 *4) (-371) (-1215) (-291)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-323 (-227))) (-5 *2 (-323 (-416 (-573)))) + (-5 *1 (-312))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-654 (-963 *6))) (-5 *4 (-654 (-1190))) (-4 *6 (-462)) - (-5 *2 (-654 (-654 *7))) (-5 *1 (-548 *6 *7 *5)) (-4 *7 (-372)) - (-4 *5 (-13 (-372) (-858)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) - (-4 *7 (-860)) (-4 *8 (-1078 *5 *6 *7)) (-5 *2 (-654 *3)) - (-5 *1 (-601 *5 *6 *7 *8 *3)) (-4 *3 (-1122 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) - (-5 *2 - (-654 (-2 (|:| -1625 (-1186 *5)) (|:| -3487 (-654 (-963 *5)))))) - (-5 *1 (-1091 *5 *6)) (-5 *3 (-654 (-963 *5))) - (-14 *6 (-654 (-1190))))) + (-12 (-5 *3 (-1171)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) + (-4 *4 (-1077 *6 *7 *8)) (-5 *2 (-1285)) + (-5 *1 (-785 *6 *7 *8 *4 *5)) (-4 *5 (-1083 *6 *7 *8 *4))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-1061)) (-4 *2 (-371)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-371)) (-5 *1 (-668 *4 *2)) + (-4 *2 (-665 *4))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1112)) + (-5 *2 (-2 (|:| -1857 (-573)) (|:| |var| (-621 *1)))) + (-4 *1 (-439 *3))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-112)) (-5 *5 (-573)) (-4 *6 (-371)) (-4 *6 (-376)) + (-4 *6 (-1061)) (-5 *2 (-653 (-653 (-698 *6)))) (-5 *1 (-1041 *6)) + (-5 *3 (-653 (-698 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-315) (-148))) - (-5 *2 - (-654 (-2 (|:| -1625 (-1186 *4)) (|:| -3487 (-654 (-963 *4)))))) - (-5 *1 (-1091 *4 *5)) (-5 *3 (-654 (-963 *4))) - (-14 *5 (-654 (-1190))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) - (-5 *2 - (-654 (-2 (|:| -1625 (-1186 *5)) (|:| -3487 (-654 (-963 *5)))))) - (-5 *1 (-1091 *5 *6)) (-5 *3 (-654 (-963 *5))) - (-14 *6 (-654 (-1190)))))) + (-12 (-4 *4 (-371)) (-4 *4 (-376)) (-4 *4 (-1061)) + (-5 *2 (-653 (-653 (-698 *4)))) (-5 *1 (-1041 *4)) + (-5 *3 (-653 (-698 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-371)) (-4 *5 (-376)) (-4 *5 (-1061)) + (-5 *2 (-653 (-653 (-698 *5)))) (-5 *1 (-1041 *5)) + (-5 *3 (-653 (-698 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-931)) (-4 *5 (-371)) (-4 *5 (-376)) (-4 *5 (-1061)) + (-5 *2 (-653 (-653 (-698 *5)))) (-5 *1 (-1041 *5)) + (-5 *3 (-653 (-698 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1190)) - (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1216) (-440 *4))))) + (-12 (-5 *3 (-1189)) + (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) + (-5 *1 (-322 *4 *5)) (-4 *5 (-13 (-27) (-1215) (-439 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *4))))) + (-12 (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) + (-5 *1 (-322 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-417 (-574))) - (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5))))) + (-12 (-5 *4 (-416 (-573))) + (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) + (-5 *1 (-322 *5 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5))) - (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-323 *5 *3)))) + (-12 (-5 *4 (-301 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))) + (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) + (-5 *1 (-322 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-302 *3)) (-5 *5 (-417 (-574))) - (-4 *3 (-13 (-27) (-1216) (-440 *6))) - (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-323 *6 *3)))) + (-12 (-5 *4 (-301 *3)) (-5 *5 (-416 (-573))) + (-4 *3 (-13 (-27) (-1215) (-439 *6))) + (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) + (-5 *1 (-322 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-417 (-574)))) (-5 *4 (-302 *8)) - (-5 *5 (-1248 (-417 (-574)))) (-5 *6 (-417 (-574))) - (-4 *8 (-13 (-27) (-1216) (-440 *7))) - (-4 *7 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-469 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-416 (-573)))) (-5 *4 (-301 *8)) + (-5 *5 (-1247 (-416 (-573)))) (-5 *6 (-416 (-573))) + (-4 *8 (-13 (-27) (-1215) (-439 *7))) + (-4 *7 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) + (-5 *1 (-468 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1190)) (-5 *5 (-302 *3)) (-5 *6 (-1248 (-417 (-574)))) - (-5 *7 (-417 (-574))) (-4 *3 (-13 (-27) (-1216) (-440 *8))) - (-4 *8 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-469 *8 *3)))) + (-12 (-5 *4 (-1189)) (-5 *5 (-301 *3)) (-5 *6 (-1247 (-416 (-573)))) + (-5 *7 (-416 (-573))) (-4 *3 (-13 (-27) (-1215) (-439 *8))) + (-4 *8 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) + (-5 *1 (-468 *8 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-417 (-574))) (-4 *4 (-1062)) (-4 *1 (-1264 *4 *3)) - (-4 *3 (-1241 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1231)))) + (-12 (-5 *2 (-416 (-573))) (-4 *4 (-1061)) (-4 *1 (-1263 *4 *3)) + (-4 *3 (-1240 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-381 *2)) (-4 *2 (-1230)))) ((*1 *2 *2) - (-12 (-4 *3 (-1062)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1257 *3)))) + (-12 (-4 *3 (-1061)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1256 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23)) + (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-681)))) - ((*1 *2 *1) - (-12 (-5 *2 (-654 (-932))) (-5 *1 (-1114 *3 *4)) (-14 *3 (-932)) - (-14 *4 (-932))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1192 (-417 (-574)))) (-5 *2 (-417 (-574))) - (-5 *1 (-192))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-227)) (-5 *5 (-574)) (-5 *2 (-1226 *3)) - (-5 *1 (-800 *3)) (-4 *3 (-987)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-654 (-654 (-954 (-227))))) (-5 *4 (-112)) - (-5 *1 (-1226 *2)) (-4 *2 (-987))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) - (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386)))) - (-5 *2 (-1048)) (-5 *1 (-758))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1023 *3)) (-4 *3 (-1231)) (-4 *3 (-1113)) - (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-654 *6))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -3904 *7) (|:| |sol?| (-112))) - (-574) *7)) - (-5 *6 (-654 (-417 *8))) (-4 *7 (-372)) (-4 *8 (-1257 *7)) - (-5 *3 (-417 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-584 *7 *8))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) - (-14 *3 (-574)) (-14 *4 (-781))))) + (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *5 (-859)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-176 *3)) (-4 *3 (-314))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-653 (-286))) (-5 *1 (-286)))) + ((*1 *2 *1) (-12 (-5 *2 (-653 (-1194))) (-5 *1 (-1194))))) (((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-428 *3)) (-4 *3 (-555)) (-4 *3 (-566)))) - ((*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-555)) (-4 *3 (-1113)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-555)) (-4 *3 (-1113)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1010 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1021 *3)) (-4 *3 (-1051 (-417 (-574))))))) + (-12 (-5 *2 (-653 (-2 (|:| |gen| *3) (|:| -1608 *4)))) + (-5 *1 (-658 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1112)) (-4 *6 (-896 *5)) (-5 *2 (-895 *5 *6 (-653 *6))) + (-5 *1 (-897 *5 *6 *4)) (-5 *3 (-653 *6)) (-4 *4 (-623 (-902 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1112)) (-5 *2 (-653 (-301 *3))) (-5 *1 (-897 *5 *3 *4)) + (-4 *3 (-1050 (-1189))) (-4 *3 (-896 *5)) (-4 *4 (-623 (-902 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1112)) (-5 *2 (-653 (-301 (-962 *3)))) + (-5 *1 (-897 *5 *3 *4)) (-4 *3 (-1061)) + (-2075 (-4 *3 (-1050 (-1189)))) (-4 *3 (-896 *5)) + (-4 *4 (-623 (-902 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1112)) (-5 *2 (-899 *5 *3)) (-5 *1 (-897 *5 *3 *4)) + (-2075 (-4 *3 (-1050 (-1189)))) (-2075 (-4 *3 (-1061))) + (-4 *3 (-896 *5)) (-4 *4 (-623 (-902 *5)))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-791 *2)) (-4 *2 (-1061))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1112)) (-4 *2 (-910 *5)) (-5 *1 (-701 *5 *2 *3 *4)) + (-4 *3 (-381 *2)) (-4 *4 (-13 (-381 *5) (-10 -7 (-6 -4455))))))) +(((*1 *1 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-21)) (-4 *2 (-1230))))) +(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-246))))) (((*1 *2 *3) - (-12 (-5 *3 (-1190)) - (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1216) (-440 *4))))) + (-12 (-5 *3 (-1189)) + (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) + (-5 *1 (-322 *4 *5)) (-4 *5 (-13 (-27) (-1215) (-439 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *4))))) + (-12 (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) + (-5 *1 (-322 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-574)) (-4 *5 (-13 (-462) (-1051 *4) (-649 *4))) - (-5 *2 (-52)) (-5 *1 (-323 *5 *3)) - (-4 *3 (-13 (-27) (-1216) (-440 *5))))) + (-12 (-5 *4 (-573)) (-4 *5 (-13 (-461) (-1050 *4) (-648 *4))) + (-5 *2 (-52)) (-5 *1 (-322 *5 *3)) + (-4 *3 (-13 (-27) (-1215) (-439 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5))) - (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-323 *5 *3)))) + (-12 (-5 *4 (-301 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))) + (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) + (-5 *1 (-322 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *6))) - (-4 *6 (-13 (-462) (-1051 *5) (-649 *5))) (-5 *5 (-574)) - (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) + (-12 (-5 *4 (-301 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *6))) + (-4 *6 (-13 (-461) (-1050 *5) (-648 *5))) (-5 *5 (-573)) + (-5 *2 (-52)) (-5 *1 (-322 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1248 (-574))) - (-4 *7 (-13 (-27) (-1216) (-440 *6))) - (-4 *6 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-469 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-573))) (-5 *4 (-301 *7)) (-5 *5 (-1247 (-573))) + (-4 *7 (-13 (-27) (-1215) (-439 *6))) + (-4 *6 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) + (-5 *1 (-468 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1190)) (-5 *5 (-302 *3)) (-5 *6 (-1248 (-574))) - (-4 *3 (-13 (-27) (-1216) (-440 *7))) - (-4 *7 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-469 *7 *3)))) + (-12 (-5 *4 (-1189)) (-5 *5 (-301 *3)) (-5 *6 (-1247 (-573))) + (-4 *3 (-13 (-27) (-1215) (-439 *7))) + (-4 *7 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) + (-5 *1 (-468 *7 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-574)) (-4 *4 (-1062)) (-4 *1 (-1243 *4 *3)) - (-4 *3 (-1272 *4)))) + (-12 (-5 *2 (-573)) (-4 *4 (-1061)) (-4 *1 (-1242 *4 *3)) + (-4 *3 (-1271 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-1241 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-1 (-112) *8))) (-4 *8 (-1078 *5 *6 *7)) - (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) - (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8)))) - (-5 *1 (-990 *5 *6 *7 *8)) (-5 *4 (-654 *8))))) -(((*1 *2) - (|partial| -12 (-4 *4 (-1235)) (-4 *5 (-1257 (-417 *2))) - (-4 *2 (-1257 *4)) (-5 *1 (-350 *3 *4 *2 *5)) - (-4 *3 (-351 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-351 *3 *2 *4)) (-4 *3 (-1235)) - (-4 *4 (-1257 (-417 *2))) (-4 *2 (-1257 *3))))) + (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-1240 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112))))) (((*1 *2 *1) - (-12 (-4 *1 (-1051 (-574))) (-4 *1 (-310)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1113))))) -(((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-832))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-566)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-566))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768))))) -(((*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928))))) + (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) + (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-988 *3 *4 *2 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *2 (-859)) (-4 *5 (-1077 *3 *4 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871))))) +(((*1 *2 *3) + (-12 (-4 *4 (-565)) (-5 *2 (-171 *5)) (-5 *1 (-609 *4 *5 *3)) + (-4 *5 (-13 (-439 *4) (-1014) (-1215))) + (-4 *3 (-13 (-439 (-171 *4)) (-1014) (-1215)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) + (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) + (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1113)) - (-4 *6 (-1113)) (-4 *2 (-1113)) (-5 *1 (-690 *5 *6 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1048))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-654 *1)) (-4 *1 (-315))))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1112)) + (-4 *6 (-1112)) (-4 *2 (-1112)) (-5 *1 (-689 *5 *6 *2))))) +(((*1 *1) (-5 *1 (-587)))) +(((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-936))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1190)) - (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1216) (-440 *4))))) + (-12 (-5 *3 (-1189)) + (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) + (-5 *1 (-322 *4 *5)) (-4 *5 (-13 (-27) (-1215) (-439 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *4))))) + (-12 (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) + (-5 *1 (-322 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-781)) (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) - (-5 *2 (-52)) (-5 *1 (-323 *5 *3)) - (-4 *3 (-13 (-27) (-1216) (-440 *5))))) + (-12 (-5 *4 (-780)) (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) + (-5 *2 (-52)) (-5 *1 (-322 *5 *3)) + (-4 *3 (-13 (-27) (-1215) (-439 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5))) - (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-323 *5 *3)))) + (-12 (-5 *4 (-301 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))) + (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) + (-5 *1 (-322 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-302 *3)) (-5 *5 (-781)) - (-4 *3 (-13 (-27) (-1216) (-440 *6))) - (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-323 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-574))) (-5 *4 (-302 *6)) - (-4 *6 (-13 (-27) (-1216) (-440 *5))) - (-4 *5 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-469 *5 *6)))) + (-12 (-5 *4 (-301 *3)) (-5 *5 (-780)) + (-4 *3 (-13 (-27) (-1215) (-439 *6))) + (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) + (-5 *1 (-322 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-573))) (-5 *4 (-301 *6)) + (-4 *6 (-13 (-27) (-1215) (-439 *5))) + (-4 *5 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) + (-5 *1 (-468 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1190)) (-5 *5 (-302 *3)) - (-4 *3 (-13 (-27) (-1216) (-440 *6))) - (-4 *6 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-469 *6 *3)))) + (-12 (-5 *4 (-1189)) (-5 *5 (-301 *3)) + (-4 *3 (-13 (-27) (-1215) (-439 *6))) + (-4 *6 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) + (-5 *1 (-468 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1248 (-781))) - (-4 *7 (-13 (-27) (-1216) (-440 *6))) - (-4 *6 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-469 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-573))) (-5 *4 (-301 *7)) (-5 *5 (-1247 (-780))) + (-4 *7 (-13 (-27) (-1215) (-439 *6))) + (-4 *6 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) + (-5 *1 (-468 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1190)) (-5 *5 (-302 *3)) (-5 *6 (-1248 (-781))) - (-4 *3 (-13 (-27) (-1216) (-440 *7))) - (-4 *7 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-469 *7 *3)))) + (-12 (-5 *4 (-1189)) (-5 *5 (-301 *3)) (-5 *6 (-1247 (-780))) + (-4 *3 (-13 (-27) (-1215) (-439 *7))) + (-4 *7 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) + (-5 *1 (-468 *7 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1243 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-1272 *3))))) -(((*1 *2) - (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6)) - (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) - (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1190)) (-4 *4 (-566)) (-4 *4 (-1113)) - (-5 *1 (-583 *4 *2)) (-4 *2 (-440 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-341))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-781)) (-5 *1 (-597 *2)) (-4 *2 (-555)))) - ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2630 *3) (|:| -3715 (-781)))) (-5 *1 (-597 *3)) - (-4 *3 (-555))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1074 (-1037 *4) (-1186 (-1037 *4)))) (-5 *3 (-872)) - (-5 *1 (-1037 *4)) (-4 *4 (-13 (-858) (-372) (-1035)))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1048)) (-5 *1 (-758))))) + (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-1271 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-871)))) (((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-1186 *3)) (-5 *1 (-41 *4 *3)) - (-4 *3 - (-13 (-372) (-310) - (-10 -8 (-15 -2966 ((-1138 *4 (-622 $)) $)) - (-15 -2977 ((-1138 *4 (-622 $)) $)) - (-15 -2943 ($ (-1138 *4 (-622 $)))))))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6)) - (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) - (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1190))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-622 *4)) (-5 *6 (-1190)) - (-4 *4 (-13 (-440 *7) (-27) (-1216))) - (-4 *7 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1882 (-654 *4)))) - (-5 *1 (-576 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1113))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-781)) (-5 *3 (-954 *4)) (-4 *1 (-1147 *4)) - (-4 *4 (-1062)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-781)) (-5 *4 (-954 (-227))) (-5 *2 (-1286)) - (-5 *1 (-1283))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) - ((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-762))))) -(((*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-129))))) + (-12 (|has| *2 (-6 (-4457 "*"))) (-4 *5 (-381 *2)) (-4 *6 (-381 *2)) + (-4 *2 (-1061)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1256 *2)) + (-4 *4 (-696 *2 *5 *6))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-780)) (-4 *1 (-382 *3 *4)) (-4 *3 (-859)) + (-4 *4 (-174)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-780)) (-4 *1 (-1301 *3 *4)) (-4 *3 (-859)) + (-4 *4 (-1061))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-865 *2)) (-4 *2 (-174))))) +(((*1 *2 *3) + (-12 (-5 *3 (-780)) (-5 *2 (-698 (-962 *4))) (-5 *1 (-1040 *4)) + (-4 *4 (-1061))))) +(((*1 *2 *1) (-12 (-4 *1 (-536)) (-5 *2 (-700 (-556)))))) +(((*1 *1) (-5 *1 (-832)))) +(((*1 *1) (-12 (-4 *1 (-434 *2)) (-4 *2 (-376)) (-4 *2 (-1112))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1256 *4)) (-5 *1 (-818 *4 *2 *3 *5)) + (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *3 (-665 *2)) + (-4 *5 (-665 (-416 *2)))))) (((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1216)))))) + (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1215)))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1189)) (-5 *2 (-1193)) (-5 *1 (-1192))))) +(((*1 *2) + (-12 (-5 *2 (-1285)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-1112)) + (-4 *4 (-1112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443))))) +(((*1 *2 *1) + (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *6)) + (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-653 (-915 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1112))))) +(((*1 *1 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-859)) (-4 *3 (-174)))) + ((*1 *1 *1) + (-12 (-5 *1 (-636 *2 *3 *4)) (-4 *2 (-859)) + (-4 *3 (-13 (-174) (-726 (-416 (-573))))) (-14 *4 (-931)))) + ((*1 *1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-859)))) + ((*1 *1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-859)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061))))) +(((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-936))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015)))))) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-871)))) + ((*1 *1 *1) (-5 *1 (-871)))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-883))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) + (-4 *5 (-1256 *4)) (-5 *2 (-653 (-2 (|:| -3358 *5) (|:| -2691 *5)))) + (-5 *1 (-816 *4 *5 *3 *6)) (-4 *3 (-665 *5)) + (-4 *6 (-665 (-416 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-371) (-148) (-1050 (-416 (-573))))) + (-4 *4 (-1256 *5)) (-5 *2 (-653 (-2 (|:| -3358 *4) (|:| -2691 *4)))) + (-5 *1 (-816 *5 *4 *3 *6)) (-4 *3 (-665 *4)) + (-4 *6 (-665 (-416 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) + (-4 *5 (-1256 *4)) (-5 *2 (-653 (-2 (|:| -3358 *5) (|:| -2691 *5)))) + (-5 *1 (-816 *4 *5 *6 *3)) (-4 *6 (-665 *5)) + (-4 *3 (-665 (-416 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-371) (-148) (-1050 (-416 (-573))))) + (-4 *4 (-1256 *5)) (-5 *2 (-653 (-2 (|:| -3358 *4) (|:| -2691 *4)))) + (-5 *1 (-816 *5 *4 *6 *3)) (-4 *6 (-665 *4)) + (-4 *3 (-665 (-416 *4)))))) +(((*1 *1 *1 *1) (-4 *1 (-482))) ((*1 *1 *1 *1) (-4 *1 (-770)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-653 *3)) (-4 *3 (-859)) (-5 *1 (-748 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-781)) (-4 *6 (-372)) (-5 *4 (-1225 *6)) - (-5 *2 (-1 (-1170 *4) (-1170 *4))) (-5 *1 (-1289 *6)) - (-5 *5 (-1170 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1273 *2 *3 *4)) (-4 *2 (-1062)) (-14 *3 (-1190)) - (-14 *4 *2)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) - (-4 *4 (-1062))))) -(((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) (-5 *1 (-388))) - ((*1 *1) (-5 *1 (-388)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *1 *2) - (-12 (-5 *2 (-417 (-574))) (-4 *1 (-564 *3)) - (-4 *3 (-13 (-414) (-1216))))) - ((*1 *1 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1216))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1216)))))) -(((*1 *1) (-5 *1 (-1098)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1257 *3)) (-4 *3 (-1062)) (-5 *2 (-1186 *3))))) -(((*1 *2 *3 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-803)) (-4 *7 (-960 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860)) - (-5 *2 (-112)) (-5 *1 (-459 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-5 *2 (-781)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) - (-4 *4 (-1062))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2991 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *3 (-654 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) - (-12 + (-12 (-4 *6 (-1256 *9)) (-4 *7 (-802)) (-4 *8 (-859)) (-4 *9 (-314)) + (-4 *10 (-959 *9 *7 *8)) (-5 *2 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2991 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *1 (-270)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))) - ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-574)) (-5 *4 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))) - ((*1 *2 *1 *3) - (-12 + (-2 (|:| |deter| (-653 (-1185 *10))) + (|:| |dterm| + (-653 (-653 (-2 (|:| -2444 (-780)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-653 *6)) (|:| |nlead| (-653 *10)))) + (-5 *1 (-787 *6 *7 *8 *9 *10)) (-5 *3 (-1185 *10)) (-5 *4 (-653 *6)) + (-5 *5 (-653 *10))))) +(((*1 *2 *3 *2) + (-12 (-4 *1 (-796)) (-5 *2 (-1047)) (-5 *3 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2991 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *2 (-1286)) (-5 *1 (-1283)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2991 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *1 (-1283)))) - ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283))))) + (-2 (|:| |fn| (-323 (-227))) + (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-796)) (-5 *2 (-1047)) + (-5 *3 + (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) + (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227))))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1185 *5)) (-4 *5 (-461)) (-5 *2 (-653 *6)) + (-5 *1 (-547 *5 *6 *4)) (-4 *6 (-371)) (-4 *4 (-13 (-371) (-857))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-962 *5)) (-4 *5 (-461)) (-5 *2 (-653 *6)) + (-5 *1 (-547 *5 *6 *4)) (-4 *6 (-371)) (-4 *4 (-13 (-371) (-857)))))) +(((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-1189))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 *4)) + (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-1061)))) + ((*1 *2 *3) + (-12 (-4 *4 (-565)) (-4 *4 (-174)) (-4 *5 (-381 *4)) + (-4 *6 (-381 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) + (-5 *1 (-697 *4 *5 *6 *3)) (-4 *3 (-696 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-174)) (-4 *2 (-1061)) (-5 *1 (-723 *2 *3)) + (-4 *3 (-657 *2)))) + ((*1 *1 *1) + (-12 (-4 *2 (-174)) (-4 *2 (-1061)) (-5 *1 (-723 *2 *3)) + (-4 *3 (-657 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-174)) (-4 *2 (-1061)))) + ((*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-174)) (-4 *2 (-1061))))) +(((*1 *2 *2) + (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1215)))))) +(((*1 *2 *1) (-12 (-4 *1 (-536)) (-5 *2 (-700 (-1236)))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-573)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-780)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-802)) (-4 *4 (-959 *5 *6 *7)) (-4 *5 (-461)) (-4 *7 (-859)) + (-5 *1 (-458 *5 *6 *7 *4))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-653 *6)) (-4 *6 (-859)) (-4 *4 (-371)) (-4 *5 (-802)) + (-5 *1 (-513 *4 *5 *6 *2)) (-4 *2 (-959 *4 *5 *6)))) + ((*1 *1 *1 *2) + (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) + (-5 *1 (-513 *3 *4 *5 *2)) (-4 *2 (-959 *3 *4 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) +(((*1 *1 *1 *1) (-4 *1 (-770)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) + (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) + (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3)))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1075)) (-5 *3 (-1171))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1281 (-709))) (-5 *1 (-313))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) + (-12 (-5 *3 (-1171)) (-4 *4 (-13 (-314) (-148))) + (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 - (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574)) - (|:| |success| (-112)))) - (-5 *1 (-799)) (-5 *5 (-574))))) + (-653 + (-2 (|:| |eqzro| (-653 *7)) (|:| |neqzro| (-653 *7)) + (|:| |wcond| (-653 (-962 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1280 (-416 (-962 *4)))) + (|:| -3914 (-653 (-1280 (-416 (-962 *4)))))))))) + (-5 *1 (-934 *4 *5 *6 *7)) (-4 *7 (-959 *4 *6 *5))))) (((*1 *2 *1) - (-12 + (-12 (-4 *3 (-1061)) (-5 *2 (-653 *1)) (-4 *1 (-1146 *3))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-653 *11)) (-5 *5 (-653 (-1185 *9))) + (-5 *6 (-653 *9)) (-5 *7 (-653 *12)) (-5 *8 (-653 (-780))) + (-4 *11 (-859)) (-4 *9 (-314)) (-4 *12 (-959 *9 *10 *11)) + (-4 *10 (-802)) (-5 *2 (-653 (-1185 *12))) + (-5 *1 (-716 *10 *11 *9 *12)) (-5 *3 (-1185 *12))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-698 (-416 (-573)))) (-5 *2 - (-654 - (-2 - (|:| -3693 - (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) - (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| -1908 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1170 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2367 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-569)))) - ((*1 *2 *1) - (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1231)) - (-5 *2 (-654 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-388)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-388)) (-5 *1 (-97))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1170 (-654 (-574)))) (-5 *1 (-894)) (-5 *3 (-574))))) -(((*1 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) - (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *3)) - (-5 *1 (-990 *4 *5 *6 *3)) (-4 *3 (-1078 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-1078 *4 *5 *6)) (-4 *4 (-566)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-990 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) - (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-654 *7) (-654 *7))) (-5 *2 (-654 *7)) - (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) - (-4 *6 (-860)) (-5 *1 (-990 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-839)) (-5 *3 (-1172))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1190)) (-4 *5 (-1235)) (-4 *6 (-1257 *5)) - (-4 *7 (-1257 (-417 *6))) (-5 *2 (-654 (-963 *5))) - (-5 *1 (-350 *4 *5 *6 *7)) (-4 *4 (-351 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1190)) (-4 *1 (-351 *4 *5 *6)) (-4 *4 (-1235)) - (-4 *5 (-1257 *4)) (-4 *6 (-1257 (-417 *5))) (-4 *4 (-372)) - (-5 *2 (-654 (-963 *4)))))) -(((*1 *2 *2) (-12 (-5 *2 (-324 (-227))) (-5 *1 (-274))))) -(((*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-135))))) + (-653 + (-2 (|:| |outval| *4) (|:| |outmult| (-573)) + (|:| |outvect| (-653 (-698 *4)))))) + (-5 *1 (-788 *4)) (-4 *4 (-13 (-371) (-857)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -1642 *1) (|:| -4442 *1) (|:| |associate| *1))) + (-4 *1 (-565))))) (((*1 *2 *3) - (-12 (-5 *3 (-1170 (-1170 *4))) (-5 *2 (-1170 *4)) (-5 *1 (-1174 *4)) - (-4 *4 (-1062))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574)))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1208 *3 *4)) (-4 *3 (-1113)) - (-4 *4 (-1113))))) -(((*1 *1 *2 *3 *4) - (-12 - (-5 *3 - (-654 - (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1186 *2)) - (|:| |logand| (-1186 *2))))) - (-5 *4 (-654 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) - (-4 *2 (-372)) (-5 *1 (-596 *2))))) + (-12 (-4 *4 (-314)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) + (-5 *2 + (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1136 *4 *5 *6 *3)) (-4 *3 (-696 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-654 (-622 *4))) (-4 *4 (-440 *3)) (-4 *3 (-1113)) - (-5 *1 (-583 *3 *4)))) + (-12 (-5 *2 (-653 (-621 *4))) (-4 *4 (-439 *3)) (-4 *3 (-1112)) + (-5 *1 (-582 *3 *4)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113))))) -(((*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1113)) (-4 *2 (-566)))) - ((*1 *1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566))))) + (-12 (-5 *1 (-899 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112))))) (((*1 *2 *3) + (-12 (-5 *3 (-653 (-621 *5))) (-4 *4 (-1112)) (-5 *2 (-621 *5)) + (-5 *1 (-582 *4 *5)) (-4 *5 (-439 *4))))) +(((*1 *2 *2) (-12 - (-5 *3 - (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) - (-253 *4 (-417 (-574))))) - (-14 *4 (-654 (-1190))) (-14 *5 (-781)) (-5 *2 (-112)) - (-5 *1 (-515 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-372) (-1216) (-1015)))))) + (-5 *2 + (-653 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-780)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-802)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-461)) (-4 *5 (-859)) + (-5 *1 (-458 *3 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) - (-5 *2 (-654 (-1190))) (-5 *1 (-274)))) + (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) + (-5 *2 (-653 (-1189))) (-5 *1 (-273)))) ((*1 *2 *3) - (-12 (-5 *3 (-1186 *7)) (-4 *7 (-960 *6 *4 *5)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1062)) (-5 *2 (-654 *5)) - (-5 *1 (-329 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1185 *7)) (-4 *7 (-959 *6 *4 *5)) (-4 *4 (-802)) + (-4 *5 (-859)) (-4 *6 (-1061)) (-5 *2 (-653 *5)) + (-5 *1 (-328 *4 *5 *6 *7)))) ((*1 *2 *1) - (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-348 *3 *4 *5)) (-14 *3 *2) - (-14 *4 *2) (-4 *5 (-397)))) + (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-347 *3 *4 *5)) (-14 *3 *2) + (-14 *4 *2) (-4 *5 (-396)))) ((*1 *2 *1) - (-12 (-4 *1 (-440 *3)) (-4 *3 (-1113)) (-5 *2 (-654 (-1190))))) + (-12 (-4 *1 (-439 *3)) (-4 *3 (-1112)) (-5 *2 (-653 (-1189))))) ((*1 *2 *1) - (-12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) + (-12 (-5 *2 (-653 (-902 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) ((*1 *2 *1) - (-12 (-4 *1 (-960 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *5 (-860)) (-5 *2 (-654 *5)))) + (-12 (-4 *1 (-959 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *5 (-859)) (-5 *2 (-653 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1062)) - (-4 *7 (-960 *6 *4 *5)) (-5 *2 (-654 *5)) - (-5 *1 (-961 *4 *5 *6 *7 *3)) + (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1061)) + (-4 *7 (-959 *6 *4 *5)) (-5 *2 (-653 *5)) + (-5 *1 (-960 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-372) - (-10 -8 (-15 -2943 ($ *7)) (-15 -2966 (*7 $)) (-15 -2977 (*7 $))))))) + (-13 (-371) + (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) (-15 -2975 (*7 $))))))) ((*1 *2 *1) - (-12 (-4 *1 (-986 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-802)) - (-4 *5 (-860)) (-5 *2 (-654 *5)))) + (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-801)) + (-4 *5 (-859)) (-5 *2 (-653 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-654 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-566)) (-5 *2 (-654 (-1190))) - (-5 *1 (-1056 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-224 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-4 *1 (-261 *3)))) - ((*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231))))) + (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-653 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-565)) (-5 *2 (-653 (-1189))) + (-5 *1 (-1055 *4))))) (((*1 *2 *2) - (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1257 (-171 *2)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1463 *4))) - (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) - (-5 *2 (-1048)) (-5 *1 (-762))))) -(((*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-5 *1 (-1205 *2)) (-4 *2 (-372))))) -(((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) - (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386)))) - (-5 *2 (-1048)) (-5 *1 (-756))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-372) (-1216) (-1015))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1235)) (-4 *5 (-1257 (-417 *2))) - (-4 *2 (-1257 *4)) (-5 *1 (-350 *3 *4 *2 *5)) - (-4 *3 (-351 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-351 *3 *2 *4)) (-4 *3 (-1235)) - (-4 *4 (-1257 (-417 *2))) (-4 *2 (-1257 *3))))) + (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))) + (-5 *1 (-178 *3))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) (((*1 *2 *3) - (-12 (-5 *3 (-932)) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192))))) + (|partial| -12 (-4 *4 (-13 (-565) (-148))) + (-5 *2 (-2 (|:| -3890 *3) (|:| -3903 *3))) (-5 *1 (-1250 *4 *3)) + (-4 *3 (-1256 *4))))) +(((*1 *2 *1) + (-12 (-4 *3 (-461)) (-4 *4 (-859)) (-4 *5 (-802)) (-5 *2 (-653 *6)) + (-5 *1 (-999 *3 *4 *5 *6)) (-4 *6 (-959 *3 *5 *4))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1280 *4)) (-4 *4 (-13 (-1061) (-648 (-573)))) + (-5 *2 (-1280 (-416 (-573)))) (-5 *1 (-1308 *4))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-112)) (-5 *5 (-698 (-227))) + (-5 *2 (-1047)) (-5 *1 (-764))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1115 *2 *3 *4 *5 *6)) (-4 *2 (-1112)) (-4 *3 (-1112)) + (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-653 (-112))) (-5 *7 (-698 (-227))) + (-5 *8 (-698 (-573))) (-5 *3 (-573)) (-5 *4 (-227)) (-5 *5 (-112)) + (-5 *2 (-1047)) (-5 *1 (-763))))) +(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-400))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1186 (-417 (-1186 *2)))) (-5 *4 (-622 *2)) - (-4 *2 (-13 (-440 *5) (-27) (-1216))) - (-4 *5 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) - (-5 *1 (-570 *5 *2 *6)) (-4 *6 (-1113)))) + (-12 (-5 *3 (-1185 (-416 (-1185 *2)))) (-5 *4 (-621 *2)) + (-4 *2 (-13 (-439 *5) (-27) (-1215))) + (-4 *5 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) + (-5 *1 (-569 *5 *2 *6)) (-4 *6 (-1112)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1186 *1)) (-4 *1 (-960 *4 *5 *3)) (-4 *4 (-1062)) - (-4 *5 (-803)) (-4 *3 (-860)))) + (-12 (-5 *2 (-1185 *1)) (-4 *1 (-959 *4 *5 *3)) (-4 *4 (-1061)) + (-4 *5 (-802)) (-4 *3 (-859)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1186 *4)) (-4 *4 (-1062)) (-4 *1 (-960 *4 *5 *3)) - (-4 *5 (-803)) (-4 *3 (-860)))) + (-12 (-5 *2 (-1185 *4)) (-4 *4 (-1061)) (-4 *1 (-959 *4 *5 *3)) + (-4 *5 (-802)) (-4 *3 (-859)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-1186 *2))) (-4 *5 (-803)) (-4 *4 (-860)) - (-4 *6 (-1062)) + (-12 (-5 *3 (-416 (-1185 *2))) (-4 *5 (-802)) (-4 *4 (-859)) + (-4 *6 (-1061)) (-4 *2 - (-13 (-372) - (-10 -8 (-15 -2943 ($ *7)) (-15 -2966 (*7 $)) (-15 -2977 (*7 $))))) - (-5 *1 (-961 *5 *4 *6 *7 *2)) (-4 *7 (-960 *6 *5 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-1186 (-417 (-963 *5))))) (-5 *4 (-1190)) - (-5 *2 (-417 (-963 *5))) (-5 *1 (-1056 *5)) (-4 *5 (-566))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-555)))) -(((*1 *2) (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-105))))) -(((*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-781)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-412)) (-5 *2 (-781))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *4 (-781)) - (-5 *2 (-699 (-227))) (-5 *1 (-274))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-227))) (-5 *4 (-781)) (-5 *2 (-699 (-227))) - (-5 *1 (-313))))) -(((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) - (-5 *2 (-417 (-574))))) - ((*1 *2 *1) - (-12 (-5 *2 (-417 (-574))) (-5 *1 (-428 *3)) (-4 *3 (-555)) - (-4 *3 (-566)))) - ((*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-417 (-574))))) - ((*1 *2 *1) - (-12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) - (-5 *2 (-417 (-574))))) - ((*1 *2 *1) - (-12 (-5 *2 (-417 (-574))) (-5 *1 (-843 *3)) (-4 *3 (-555)) - (-4 *3 (-1113)))) - ((*1 *2 *1) - (-12 (-5 *2 (-417 (-574))) (-5 *1 (-853 *3)) (-4 *3 (-555)) - (-4 *3 (-1113)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1010 *3)) (-4 *3 (-174)) (-4 *3 (-555)) - (-5 *2 (-417 (-574))))) - ((*1 *2 *3) - (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1021 *3)) (-4 *3 (-1051 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-977 *3)) (-4 *3 (-1113)) (-5 *1 (-978 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768))))) -(((*1 *2 *1) - (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) - (-5 *2 (-112))))) + (-13 (-371) + (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) (-15 -2975 (*7 $))))) + (-5 *1 (-960 *5 *4 *6 *7 *2)) (-4 *7 (-959 *6 *5 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-416 (-1185 (-416 (-962 *5))))) (-5 *4 (-1189)) + (-5 *2 (-416 (-962 *5))) (-5 *1 (-1055 *5)) (-4 *5 (-565))))) +(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1192))))) +(((*1 *2 *2) + (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) + (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 *3)) + (-5 *1 (-989 *4 *5 *6 *3)) (-4 *3 (-1077 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-653 *3)) (-4 *3 (-1077 *4 *5 *6)) (-4 *4 (-565)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-989 *4 *5 *6 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) + (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-653 *7) (-653 *7))) (-5 *2 (-653 *7)) + (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-565)) (-4 *5 (-802)) + (-4 *6 (-859)) (-5 *1 (-989 *4 *5 *6 *7))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-780)) (-4 *1 (-995 *2)) (-4 *2 (-1215))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-869)) (-5 *2 (-700 (-558))) (-5 *3 (-558))))) +(((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-573)) (-5 *6 (-1 (-1285) (-1280 *5) (-1280 *5) (-387))) + (-5 *3 (-1280 (-387))) (-5 *5 (-387)) (-5 *2 (-1285)) + (-5 *1 (-797)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-573)) (-5 *6 (-1 (-1285) (-1280 *5) (-1280 *5) (-387))) + (-5 *3 (-1280 (-387))) (-5 *5 (-387)) (-5 *2 (-1285)) + (-5 *1 (-797))))) +(((*1 *2 *2) (-12 (-5 *2 (-976 *3)) (-4 *3 (-1112)) (-5 *1 (-977 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-976 *2)) (-4 *2 (-1112))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1077 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *2 (-859)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) + (-4 *4 (-859))))) (((*1 *1 *2 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-802)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-801)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-654 (-932))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-932)) - (-4 *2 (-372)) (-14 *5 (-1006 *4 *2)))) + (-12 (-5 *3 (-653 (-931))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-931)) + (-4 *2 (-371)) (-14 *5 (-1005 *4 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-723 *5 *6 *7)) (-4 *5 (-860)) - (-4 *6 (-244 (-2863 *4) (-781))) + (-12 (-5 *3 (-722 *5 *6 *7)) (-4 *5 (-859)) + (-4 *6 (-243 (-2862 *4) (-780))) (-14 *7 - (-1 (-112) (-2 (|:| -2576 *5) (|:| -3715 *6)) - (-2 (|:| -2576 *5) (|:| -3715 *6)))) - (-14 *4 (-654 (-1190))) (-4 *2 (-174)) - (-5 *1 (-471 *4 *2 *5 *6 *7 *8)) (-4 *8 (-960 *2 *6 (-874 *4))))) + (-1 (-112) (-2 (|:| -2575 *5) (|:| -3907 *6)) + (-2 (|:| -2575 *5) (|:| -3907 *6)))) + (-14 *4 (-653 (-1189))) (-4 *2 (-174)) + (-5 *1 (-470 *4 *2 *5 *6 *7 *8)) (-4 *8 (-959 *2 *6 (-873 *4))))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-860)))) + (-12 (-4 *1 (-518 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-859)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-574)) (-4 *2 (-566)) (-5 *1 (-633 *2 *4)) - (-4 *4 (-1257 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-718 *2)) (-4 *2 (-1062)))) + (-12 (-5 *3 (-573)) (-4 *2 (-565)) (-5 *1 (-632 *2 *4)) + (-4 *4 (-1256 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-780)) (-4 *1 (-717 *2)) (-4 *2 (-1061)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-745 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-736)))) + (-12 (-5 *1 (-744 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-735)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 *5)) (-5 *3 (-654 (-781))) (-4 *1 (-750 *4 *5)) - (-4 *4 (-1062)) (-4 *5 (-860)))) + (-12 (-5 *2 (-653 *5)) (-5 *3 (-653 (-780))) (-4 *1 (-749 *4 *5)) + (-4 *4 (-1061)) (-4 *5 (-859)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *2)) (-4 *4 (-1062)) - (-4 *2 (-860)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-862 *2)) (-4 *2 (-1062)))) + (-12 (-5 *3 (-780)) (-4 *1 (-749 *4 *2)) (-4 *4 (-1061)) + (-4 *2 (-859)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-780)) (-4 *1 (-861 *2)) (-4 *2 (-1061)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 (-781))) (-4 *1 (-960 *4 *5 *6)) - (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *6 (-860)))) + (-12 (-5 *2 (-653 *6)) (-5 *3 (-653 (-780))) (-4 *1 (-959 *4 *5 *6)) + (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *6 (-859)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-781)) (-4 *1 (-960 *4 *5 *2)) (-4 *4 (-1062)) - (-4 *5 (-803)) (-4 *2 (-860)))) + (-12 (-5 *3 (-780)) (-4 *1 (-959 *4 *5 *2)) (-4 *4 (-1061)) + (-4 *5 (-802)) (-4 *2 (-859)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 *5)) (-4 *1 (-986 *4 *5 *6)) - (-4 *4 (-1062)) (-4 *5 (-802)) (-4 *6 (-860)))) + (-12 (-5 *2 (-653 *6)) (-5 *3 (-653 *5)) (-4 *1 (-985 *4 *5 *6)) + (-4 *4 (-1061)) (-4 *5 (-801)) (-4 *6 (-859)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-986 *4 *3 *2)) (-4 *4 (-1062)) (-4 *3 (-802)) - (-4 *2 (-860))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) - (-4 *4 (-1062))))) -(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) - (-5 *2 (-654 *4)) (-5 *1 (-1141 *3 *4)) (-4 *3 (-1257 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) - (-5 *2 (-654 *3)) (-5 *1 (-1141 *4 *3)) (-4 *4 (-1257 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-1190))) (-5 *2 (-1286)) (-5 *1 (-1193)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-654 (-1190))) (-5 *3 (-1190)) (-5 *2 (-1286)) - (-5 *1 (-1193)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-654 (-1190))) (-5 *3 (-1190)) (-5 *2 (-1286)) - (-5 *1 (-1193))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-654 (-1186 *13))) (-5 *3 (-1186 *13)) - (-5 *4 (-654 *12)) (-5 *5 (-654 *10)) (-5 *6 (-654 *13)) - (-5 *7 (-654 (-654 (-2 (|:| -3334 (-781)) (|:| |pcoef| *13))))) - (-5 *8 (-654 (-781))) (-5 *9 (-1281 (-654 (-1186 *10)))) - (-4 *12 (-860)) (-4 *10 (-315)) (-4 *13 (-960 *10 *11 *12)) - (-4 *11 (-803)) (-5 *1 (-717 *11 *12 *10 *13))))) + (-12 (-4 *1 (-985 *4 *3 *2)) (-4 *4 (-1061)) (-4 *3 (-801)) + (-4 *2 (-859))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1223 *4 *5 *3 *6)) (-4 *4 (-565)) (-4 *5 (-802)) + (-4 *3 (-859)) (-4 *6 (-1077 *4 *5 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1299 *3)) (-4 *3 (-371)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1235)) (-4 *3 (-1257 *4)) - (-4 *5 (-1257 (-417 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) - (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112))))) + (-12 (-5 *3 (-653 (-1189))) (-4 *4 (-13 (-314) (-148))) + (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) + (-5 *2 (-653 (-416 (-962 *4)))) (-5 *1 (-934 *4 *5 *6 *7)) + (-4 *7 (-959 *4 *6 *5))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) - (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-194))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1113)) (-4 *5 (-1113)) - (-4 *6 (-1113)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-694 *4 *5 *6))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) + (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-2 (|:| -4296 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) (((*1 *2 *3) - (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1190))) (-4 *5 (-462)) - (-5 *2 (-491 *4 *5)) (-5 *1 (-641 *4 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4)))))) -(((*1 *2) (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1284)))) - ((*1 *2 *2) (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1284))))) + (-12 (-4 *4 (-565)) (-5 *2 (-780)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-426 *4))))) +(((*1 *1) (-5 *1 (-446)))) (((*1 *1 *1) - (-12 (-5 *1 (-1178 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1062))))) -(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-319)))) - ((*1 *2 *1) - (-12 (-5 *2 (-781)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) - (-4 *4 (-1062))))) + (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) (((*1 *2 *3) - (-12 (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1257 (-48))))) - ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) - (-5 *1 (-122 *3)) (-4 *3 (-860)))) - ((*1 *2 *2) - (-12 (-5 *2 (-596 *4)) (-4 *4 (-13 (-29 *3) (-1216))) - (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574)))) - (-5 *1 (-593 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-596 (-417 (-963 *3)))) - (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *1 (-599 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1257 *5)) (-4 *5 (-372)) - (-5 *2 (-2 (|:| -1360 *3) (|:| |special| *3))) (-5 *1 (-737 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1281 *5)) (-4 *5 (-372)) (-4 *5 (-1062)) - (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1042 *5)) - (-5 *3 (-654 (-699 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1281 (-1281 *5))) (-4 *5 (-372)) (-4 *5 (-1062)) - (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1042 *5)) - (-5 *3 (-654 (-699 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-654 *1)) (-4 *1 (-1157)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-654 *1)) (-4 *1 (-1157))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768))))) + (-12 (-5 *3 (-1154 *4 *2)) (-14 *4 (-931)) + (-4 *2 (-13 (-1061) (-10 -7 (-6 (-4457 "*"))))) + (-5 *1 (-912 *4 *2))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-699 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-781)) (-4 *5 (-1062)) (-5 *2 (-574)) - (-5 *1 (-453 *5 *3 *6)) (-4 *3 (-1257 *5)) - (-4 *6 (-13 (-414) (-1051 *5) (-372) (-1216) (-292))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1062)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5)) - (-4 *3 (-1257 *4)) - (-4 *5 (-13 (-414) (-1051 *4) (-372) (-1216) (-292)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-574)) - (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-960 *4 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-654 *4)) (-4 *4 (-372)) (-4 *2 (-1257 *4)) - (-5 *1 (-933 *4 *2))))) + (-12 (-5 *3 (-427 *5)) (-4 *5 (-565)) + (-5 *2 + (-2 (|:| -3907 (-780)) (|:| -1857 *5) (|:| |radicand| (-653 *5)))) + (-5 *1 (-327 *5)) (-5 *4 (-780)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1014)) (-5 *2 (-573))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-780)) (-4 *5 (-371)) (-5 *2 (-416 *6)) + (-5 *1 (-876 *5 *4 *6)) (-4 *4 (-1271 *5)) (-4 *6 (-1256 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-780)) (-5 *4 (-1272 *5 *6 *7)) (-4 *5 (-371)) + (-14 *6 (-1189)) (-14 *7 *5) (-5 *2 (-416 (-1253 *6 *5))) + (-5 *1 (-877 *5 *6 *7)))) + ((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-780)) (-5 *4 (-1272 *5 *6 *7)) (-4 *5 (-371)) + (-14 *6 (-1189)) (-14 *7 *5) (-5 *2 (-416 (-1253 *6 *5))) + (-5 *1 (-877 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-931)) (-5 *1 (-795))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1186 *7)) (-4 *5 (-1062)) - (-4 *7 (-1062)) (-4 *2 (-1257 *5)) (-5 *1 (-511 *5 *2 *6 *7)) - (-4 *6 (-1257 *2)))) + (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-4 *3 (-1077 *5 *6 *7)) + (-5 *2 (-653 (-2 (|:| |val| (-112)) (|:| -4090 *4)))) + (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-653 (-962 (-573)))) (-5 *1 (-446)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1062)) (-4 *7 (-1062)) - (-4 *4 (-1257 *5)) (-5 *2 (-1186 *7)) (-5 *1 (-511 *5 *4 *6 *7)) - (-4 *6 (-1257 *4))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1116 *2 *3 *4 *5 *6)) (-4 *2 (-1113)) (-4 *3 (-1113)) - (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *5 (-860)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-607)) (-5 *1 (-288))))) -(((*1 *2 *1) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315))))) -(((*1 *2 *1) - (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1231)) - (-5 *2 (-654 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) -(((*1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1284))))) + (-12 (-5 *3 (-1189)) (-5 *4 (-698 (-227))) (-5 *2 (-1116)) + (-5 *1 (-768)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1189)) (-5 *4 (-698 (-573))) (-5 *2 (-1116)) + (-5 *1 (-768))))) +(((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-318)))) + ((*1 *2 *1) + (-12 (-5 *2 (-780)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) + (-4 *4 (-1061))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-371)) (-5 *1 (-775 *2 *3)) (-4 *2 (-717 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-653 (-621 *2))) (-5 *4 (-1189)) + (-4 *2 (-13 (-27) (-1215) (-439 *5))) + (-4 *5 (-13 (-565) (-1050 (-573)) (-648 (-573)))) + (-5 *1 (-283 *5 *2))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-914 *3)) (-4 *3 (-1113)) (-5 *2 (-1115 *3)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-801)) (-4 *2 (-1061)))) + ((*1 *2 *1 *1) + (-12 (-4 *2 (-1061)) (-5 *1 (-50 *2 *3)) (-14 *3 (-653 (-1189))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-653 (-931))) (-4 *2 (-371)) (-5 *1 (-153 *4 *2 *5)) + (-14 *4 (-931)) (-14 *5 (-1005 *4 *2)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-323 *3)) (-5 *1 (-225 *3 *4)) + (-4 *3 (-13 (-1061) (-859))) (-14 *4 (-653 (-1189))))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-330 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-132)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1113)) (-5 *2 (-1115 (-654 *4))) (-5 *1 (-915 *4)) - (-5 *3 (-654 *4)))) + (-12 (-4 *1 (-390 *2 *3)) (-4 *3 (-1112)) (-4 *2 (-1061)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-573)) (-4 *2 (-565)) (-5 *1 (-632 *2 *4)) + (-4 *4 (-1256 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-4 *1 (-717 *2)) (-4 *2 (-1061)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1061)) (-5 *1 (-744 *2 *3)) (-4 *3 (-735)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-653 *5)) (-5 *3 (-653 (-780))) (-4 *1 (-749 *4 *5)) + (-4 *4 (-1061)) (-4 *5 (-859)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-780)) (-4 *1 (-749 *4 *2)) (-4 *4 (-1061)) + (-4 *2 (-859)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-4 *1 (-861 *2)) (-4 *2 (-1061)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-653 *6)) (-5 *3 (-653 (-780))) (-4 *1 (-959 *4 *5 *6)) + (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *6 (-859)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-780)) (-4 *1 (-959 *4 *5 *2)) (-4 *4 (-1061)) + (-4 *5 (-802)) (-4 *2 (-859)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1113)) (-5 *2 (-1115 (-1115 *4))) (-5 *1 (-915 *4)) - (-5 *3 (-1115 *4)))) + (-12 (-5 *3 (-780)) (-4 *2 (-959 *4 (-540 *5) *5)) + (-5 *1 (-1138 *4 *5 *2)) (-4 *4 (-1061)) (-4 *5 (-859)))) ((*1 *2 *1 *3) - (-12 (-5 *2 (-1115 *3)) (-5 *1 (-915 *3)) (-4 *3 (-1113))))) + (-12 (-5 *3 (-780)) (-5 *2 (-962 *4)) (-5 *1 (-1224 *4)) + (-4 *4 (-1061))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-115)) (-4 *4 (-1061)) (-5 *1 (-723 *4 *2)) + (-4 *2 (-657 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-845 *2)) (-4 *2 (-1061))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1189)) + (-4 *5 (-13 (-461) (-148) (-1050 (-573)) (-648 (-573)))) + (-5 *2 (-2 (|:| -3861 *3) (|:| |coeff| *3))) (-5 *1 (-566 *5 *3)) + (-4 *3 (-13 (-27) (-1215) (-439 *5)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 *4)) + (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-574)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-315)) - (-4 *9 (-960 *8 *6 *7)) - (-5 *2 (-2 (|:| -4086 (-1186 *9)) (|:| |polval| (-1186 *8)))) - (-5 *1 (-752 *6 *7 *8 *9)) (-5 *3 (-1186 *9)) (-5 *4 (-1186 *8))))) + (-12 (-5 *4 (-1189)) (-5 *5 (-1106 (-227))) (-5 *2 (-937)) + (-5 *1 (-935 *3)) (-4 *3 (-623 (-545))))) + ((*1 *2 *3 *3 *4 *5) + (-12 (-5 *4 (-1189)) (-5 *5 (-1106 (-227))) (-5 *2 (-937)) + (-5 *1 (-935 *3)) (-4 *3 (-623 (-545))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-936)))) + ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1106 (-227))) + (-5 *1 (-936)))) + ((*1 *1 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1106 (-227))) + (-5 *1 (-936)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-937)))) + ((*1 *1 *2 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1106 (-227))) + (-5 *1 (-937)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1106 (-227))) + (-5 *1 (-937)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-653 (-1 (-227) (-227)))) (-5 *3 (-1106 (-227))) + (-5 *1 (-937)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-653 (-1 (-227) (-227)))) (-5 *3 (-1106 (-227))) + (-5 *1 (-937)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1106 (-227))) + (-5 *1 (-937)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1106 (-227))) + (-5 *1 (-937))))) +(((*1 *2 *2) + (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1215)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) + (-5 *1 (-458 *3 *4 *5 *2)) (-4 *2 (-959 *3 *4 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-653 *1)) (-4 *1 (-1077 *4 *5 *6)) (-4 *4 (-1061)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *5 (-859)) (-5 *2 (-112)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1223 *5 *6 *7 *3)) + (-4 *5 (-565)) (-4 *6 (-802)) (-4 *7 (-859)) + (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-606)) (-5 *1 (-287))))) (((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) - (-5 *2 (-1286)) (-5 *1 (-1193)))) + (-12 (-4 *1 (-905)) + (-5 *3 + (-2 (|:| |pde| (-653 (-323 (-227)))) + (|:| |constraints| + (-653 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-780)) (|:| |boundaryType| (-573)) + (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) + (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) + (|:| |tol| (-227)))) + (-5 *2 (-1047))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-756))))) +(((*1 *2 *2) (-12 (-5 *2 (-323 (-227))) (-5 *1 (-212))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 + *4 *6 *4) + (-12 (-5 *4 (-573)) (-5 *5 (-698 (-227))) (-5 *6 (-684 (-227))) + (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-759))))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-653 *8)) (-5 *3 (-1 *8 *8 *8)) + (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1223 *5 *6 *7 *8)) (-4 *5 (-565)) + (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-1077 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1280 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-371)) + (-4 *1 (-733 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1256 *5)) + (-5 *2 (-698 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1230)) (-5 *2 (-780))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) + (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G)))) (-5 *2 (-1047)) + (-5 *1 (-757))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-573)) (-5 *3 (-931)) (-5 *1 (-708)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-698 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) + (-4 *5 (-371)) (-5 *1 (-990 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-413)) (-5 *2 (-573)))) + ((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-708))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-698 *5)) (-5 *4 (-1280 *5)) (-4 *5 (-371)) + (-5 *2 (-112)) (-5 *1 (-676 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1190)) - (-5 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-5 *2 (-1286)) - (-5 *1 (-1193)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1190)) - (-5 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-5 *2 (-1286)) - (-5 *1 (-1193))))) -(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1231)) (-5 *2 (-781))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-1172)) (-5 *5 (-699 (-227))) - (-5 *2 (-1048)) (-5 *1 (-757))))) -(((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574)))) - ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-709))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1062)) (-4 *3 (-860)) - (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-654 (-781))))) - ((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-860)) - (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-654 (-781)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-446))))) -(((*1 *2 *1) (-12 (-4 *1 (-1300 *3)) (-4 *3 (-372)) (-5 *2 (-112))))) + (-12 (-4 *5 (-371)) (-4 *6 (-13 (-381 *5) (-10 -7 (-6 -4456)))) + (-4 *4 (-13 (-381 *5) (-10 -7 (-6 -4456)))) (-5 *2 (-112)) + (-5 *1 (-677 *5 *6 *4 *3)) (-4 *3 (-696 *5 *6 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))) + (-5 *1 (-178 *3))))) (((*1 *1 *2) - (-12 (-4 *3 (-1062)) (-5 *1 (-837 *2 *3)) (-4 *2 (-718 *3))))) -(((*1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1200))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-129))))) + (-12 (-4 *3 (-1061)) (-5 *1 (-836 *2 *3)) (-4 *2 (-717 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) +(((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-870)))) + ((*1 *1 *2) (-12 (-5 *2 (-397)) (-5 *1 (-870))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) + (-4 *3 (-375 *4)))) + ((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-5 *2 (-654 (-2 (|:| -3693 (-1190)) (|:| -1908 *4)))) - (-5 *1 (-900 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113)) - (-4 *7 (-1113)) (-5 *2 (-654 *1)) (-4 *1 (-1116 *3 *4 *5 *6 *7))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-654 *1)) (-4 *1 (-1078 *4 *5 *6)) (-4 *4 (-1062)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *5 (-860)) (-5 *2 (-112)))) + (-12 (-5 *2 (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 *4)))) + (-5 *1 (-899 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1224 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) - (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112)) + (-4 *7 (-1112)) (-5 *2 (-653 *1)) (-4 *1 (-1115 *3 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-780)) (-5 *2 (-1285)) (-5 *1 (-875 *4 *5 *6 *7)) + (-4 *4 (-1061)) (-14 *5 (-653 (-1189))) (-14 *6 (-653 *3)) + (-14 *7 *3))) + ((*1 *2 *3) + (-12 (-5 *3 (-780)) (-4 *4 (-1061)) (-4 *5 (-859)) (-4 *6 (-802)) + (-14 *8 (-653 *5)) (-5 *2 (-1285)) + (-5 *1 (-1292 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-959 *4 *6 *5)) + (-14 *9 (-653 *3)) (-14 *10 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-1193))))) +(((*1 *2 *1) (-12 (-5 *2 (-968 (-185 (-140)))) (-5 *1 (-340)))) + ((*1 *2 *1) (-12 (-5 *2 (-653 (-1229))) (-5 *1 (-615))))) +(((*1 *2 *1 *2) + (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1112))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1280 *5)) (-4 *5 (-13 (-1061) (-648 *4))) + (-4 *4 (-565)) (-5 *2 (-1280 *4)) (-5 *1 (-647 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1216)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1113))))) -(((*1 *2 *1) (-12 (-5 *2 (-969 (-185 (-140)))) (-5 *1 (-341)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-1230))) (-5 *1 (-616))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-84 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) - (-5 *2 (-1048)) (-5 *1 (-759))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) -(((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) - (-5 *2 - (-2 (|:| |mval| (-699 *4)) (|:| |invmval| (-699 *4)) - (|:| |genIdeal| (-514 *4 *5 *6 *7)))) - (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-960 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-853 *3)) (-4 *3 (-1113))))) + (-12 (-4 *3 (-13 (-461) (-1050 (-573)))) (-4 *3 (-565)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-439 *3)) + (-4 *2 + (-13 (-371) (-309) + (-10 -8 (-15 -2965 ((-1137 *3 (-621 $)) $)) + (-15 -2975 ((-1137 *3 (-621 $)) $)) + (-15 -2942 ($ (-1137 *3 (-621 $)))))))))) +(((*1 *1 *1) + (-12 (-4 *1 (-959 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) + (-4 *4 (-859)) (-4 *2 (-461)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *3 (-1077 *4 *5 *6)) + (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *1)))) + (-4 *1 (-1083 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1234))) + ((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-1259 *3 *2)) + (-4 *2 (-13 (-1256 *3) (-565) (-10 -8 (-15 -2872 ($ $ $)))))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-1295 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)) + (-5 *1 (-673 *3 *4)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-673 *3 *4)) (-5 *1 (-1300 *3 *4)) + (-4 *3 (-859)) (-4 *4 (-174))))) +(((*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-365 *3)) (-4 *3 (-357))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-1189))))) (((*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) ((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) - ((*1 *1 *1) (-5 *1 (-872))) +(((*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) + ((*1 *1 *1) (-5 *1 (-871))) ((*1 *1 *2) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-4 *1 (-1111 *3)))) - ((*1 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-963 (-574)))) (-5 *1 (-447)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1190)) (-5 *4 (-699 (-227))) (-5 *2 (-1117)) - (-5 *1 (-769)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1190)) (-5 *4 (-699 (-574))) (-5 *2 (-1117)) - (-5 *1 (-769))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1078 *5 *6 *7)) - (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4)))) - (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3))))) -(((*1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1 *1) (-5 *1 (-872))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1231)))) - ((*1 *1 *2) (-12 (-5 *1 (-1248 *2)) (-4 *2 (-1231))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1172)) (-5 *4 (-171 (-227))) (-5 *5 (-574)) - (-5 *2 (-1048)) (-5 *1 (-768))))) -(((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-97))))) -(((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1281 *1)) (-4 *1 (-376 *3))))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1113) (-34))) (-4 *6 (-13 (-1113) (-34))) - (-5 *2 (-112)) (-5 *1 (-1153 *5 *6))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-916 *4)) (-4 *4 (-1113)) (-5 *2 (-654 (-781))) - (-5 *1 (-915 *4))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) - ((*1 *1 *1) (|partial| -4 *1 (-732)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) - (-5 *2 (-2 (|:| -1381 (-654 *6)) (|:| -1675 (-654 *6))))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1172)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-1286)) - (-5 *1 (-1085 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1172)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-1286)) - (-5 *1 (-1121 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-566)) (-4 *2 (-1062)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-982 *3 *2)) (-4 *2 (-1257 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-566)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *3 (-1078 *4 *5 *6)) - (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *1)))) - (-4 *1 (-1084 *4 *5 *6 *3))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-574)) (-5 *5 (-1172)) (-5 *6 (-699 (-227))) - (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-71 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-759))))) -(((*1 *2 *3) - (-12 (-4 *4 (-860)) - (-5 *2 - (-2 (|:| |f1| (-654 *4)) (|:| |f2| (-654 (-654 (-654 *4)))) - (|:| |f3| (-654 (-654 *4))) (|:| |f4| (-654 (-654 (-654 *4)))))) - (-5 *1 (-1201 *4)) (-5 *3 (-654 (-654 (-654 *4))))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-1154 *2 *3)) (-4 *2 (-13 (-1113) (-34))) - (-4 *3 (-13 (-1113) (-34)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) - (-4 *4 (-860))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1190)) (-5 *5 (-654 (-417 (-963 *6)))) - (-5 *3 (-417 (-963 *6))) - (-4 *6 (-13 (-566) (-1051 (-574)) (-148))) + (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-4 *1 (-1110 *3)))) + ((*1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112))))) +(((*1 *1 *1) (|partial| -4 *1 (-146))) ((*1 *1 *1) (-4 *1 (-357))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-919))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-653 (-301 *4))) (-5 *1 (-636 *3 *4 *5)) (-4 *3 (-859)) + (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-14 *5 (-931))))) +(((*1 *1 *1) (-5 *1 (-871))) ((*1 *1 *1 *1) (-5 *1 (-871))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1230)))) + ((*1 *1 *2) (-12 (-5 *1 (-1247 *2)) (-4 *2 (-1230))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1280 *4)) (-5 *3 (-1132)) (-4 *4 (-357)) + (-5 *1 (-537 *4))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) + (-4 *3 (-375 *4)))) + ((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-621 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *4))) + (-4 *4 (-13 (-565) (-1050 (-573)) (-648 (-573)))) + (-5 *1 (-283 *4 *2))))) +(((*1 *1 *2) + (-12 (-5 *2 (-653 (-915 *3))) (-4 *3 (-1112)) (-5 *1 (-914 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1061))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1189)) + (-4 *5 (-13 (-565) (-1050 (-573)) (-148))) (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-580 *6))))) + (-2 (|:| -3861 (-416 (-962 *5))) (|:| |coeff| (-416 (-962 *5))))) + (-5 *1 (-579 *5)) (-5 *3 (-416 (-962 *5)))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-931)) (-5 *1 (-1113 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-829)) (-14 *5 (-1189)) (-5 *2 (-653 (-1253 *5 *4))) + (-5 *1 (-1126 *4 *5)) (-5 *3 (-1253 *5 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *7)) (-4 *7 (-860)) - (-4 *8 (-960 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) + (-12 (-5 *3 (-653 (-698 *5))) (-5 *4 (-1280 *5)) (-4 *5 (-314)) + (-4 *5 (-1061)) (-5 *2 (-698 *5)) (-5 *1 (-1041 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1185 *4)) (-4 *4 (-357)) + (-4 *2 + (-13 (-411) + (-10 -7 (-15 -2942 (*2 *4)) (-15 -3589 ((-931) *2)) + (-15 -3914 ((-1280 *2) (-931))) (-15 -1629 (*2 *2))))) + (-5 *1 (-364 *2 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-371)) (-5 *2 (-653 (-1169 *4))) (-5 *1 (-292 *4 *5)) + (-5 *3 (-1169 *4)) (-4 *5 (-1271 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-859)) (-5 *2 - (-2 (|:| |particular| (-3 (-1281 (-417 *8)) "failed")) - (|:| -1882 (-654 (-1281 (-417 *8)))))) - (-5 *1 (-679 *5 *6 *7 *8))))) + (-2 (|:| |f1| (-653 *4)) (|:| |f2| (-653 (-653 (-653 *4)))) + (|:| |f3| (-653 (-653 *4))) (|:| |f4| (-653 (-653 (-653 *4)))))) + (-5 *1 (-1200 *4)) (-5 *3 (-653 (-653 (-653 *4))))))) +(((*1 *1 *1) (-4 *1 (-144))) + ((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-159 *3 *2)) (-4 *2 (-439 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-554))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-780)) (-4 *4 (-1061)) + (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-1256 *4))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-756))))) (((*1 *1 *2) - (-12 (-5 *2 (-1281 *4)) (-4 *4 (-1231)) (-4 *1 (-244 *3 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1257 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-924 *4 *3)) - (-4 *3 (-1257 (-417 *4)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-932)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-270))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-404)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1211))))) -(((*1 *1) - (-12 (-4 *1 (-414)) (-2076 (|has| *1 (-6 -4447))) - (-2076 (|has| *1 (-6 -4439))))) - ((*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1113)) (-4 *2 (-860)))) - ((*1 *1) (-4 *1 (-854))) ((*1 *1 *1 *1) (-4 *1 (-860))) - ((*1 *2 *1) (-12 (-4 *1 (-981 *2)) (-4 *2 (-860))))) -(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1291))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1257 *5)) - (-4 *5 (-13 (-27) (-440 *4))) (-4 *4 (-13 (-566) (-1051 (-574)))) - (-4 *7 (-1257 (-417 *6))) (-5 *1 (-562 *4 *5 *6 *7 *2)) - (-4 *2 (-351 *5 *6 *7))))) -(((*1 *1) (-5 *1 (-338)))) + (-12 (-5 *2 (-698 *4)) (-4 *4 (-1061)) (-5 *1 (-1154 *3 *4)) + (-14 *3 (-780))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1280 *4)) (-4 *4 (-1230)) (-4 *1 (-243 *3 *4))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1171)) (-5 *3 (-832)) (-5 *1 (-831))))) +(((*1 *2) + (-12 (-5 *2 (-931)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) + ((*1 *2 *2) + (-12 (-5 *2 (-931)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573)))))) (((*1 *2 *3) - (-12 (-5 *3 (-574)) (-4 *4 (-1257 (-417 *3))) (-5 *2 (-932)) - (-5 *1 (-924 *4 *5)) (-4 *5 (-1257 (-417 *4)))))) + (-12 (-5 *3 (-653 *2)) (-4 *2 (-1256 *4)) (-5 *1 (-548 *4 *2 *5 *6)) + (-4 *4 (-314)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-780)))))) (((*1 *2 *3) - (-12 (-4 *4 (-920)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-960 *4 *5 *6)) (-5 *2 (-428 (-1186 *7))) - (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-1186 *7)))) + (-12 (-5 *3 (-1106 (-852 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) ((*1 *2 *3) - (-12 (-4 *4 (-920)) (-4 *5 (-1257 *4)) (-5 *2 (-428 (-1186 *5))) - (-5 *1 (-918 *4 *5)) (-5 *3 (-1186 *5))))) + (-12 (-5 *3 (-1106 (-852 (-227)))) (-5 *2 (-227)) (-5 *1 (-307)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1106 (-852 (-227)))) (-5 *2 (-227)) (-5 *1 (-312))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-573)) (-5 *5 (-112)) (-5 *6 (-698 (-227))) + (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-764))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-371)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) + (-5 *1 (-513 *4 *5 *6 *3)) (-4 *3 (-959 *4 *5 *6))))) +(((*1 *1) (-5 *1 (-337)))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1122)) (-5 *3 (-573))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 (-546))) (-5 *2 (-1190)) (-5 *1 (-546))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015)))))) + (-12 (-5 *3 (-653 (-545))) (-5 *2 (-1189)) (-5 *1 (-545))))) +(((*1 *2 *3) + (-12 (-5 *3 (-937)) + (-5 *2 + (-2 (|:| |brans| (-653 (-653 (-953 (-227))))) + (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227))))) + (-5 *1 (-154)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-937)) (-5 *4 (-416 (-573))) + (-5 *2 + (-2 (|:| |brans| (-653 (-653 (-953 (-227))))) + (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227))))) + (-5 *1 (-154))))) (((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *2 (-324 *4)) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 (-171 *4)))))) + (-12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *2 (-323 *4)) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 (-171 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574)))) - (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *3)))))) -(((*1 *1 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174)))) - ((*1 *1 *1) - (-12 (-5 *1 (-637 *2 *3 *4)) (-4 *2 (-860)) - (-4 *3 (-13 (-174) (-727 (-417 (-574))))) (-14 *4 (-932)))) - ((*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) - ((*1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062))))) -(((*1 *2 *2) - (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))) - (-5 *1 (-178 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113)) - (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1172)) (-5 *1 (-720))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-1281 (-574))) (-5 *3 (-574)) (-5 *1 (-1123)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1281 (-574))) (-5 *3 (-654 (-574))) (-5 *4 (-574)) - (-5 *1 (-1123))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1463 *3) (|:| |coef1| (-792 *3)))) - (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1062))))) + (-12 (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) + (-5 *1 (-1219 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) (-4 *6 (-1257 *5)) - (-4 *7 (-1257 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) - (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *2 (-112)) - (-5 *1 (-922 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6)) - (-4 *4 (-1257 (-417 (-574)))) (-4 *5 (-1257 (-417 *4))) - (-4 *6 (-351 (-417 (-574)) *4 *5)) (-5 *2 (-112)) - (-5 *1 (-923 *4 *5 *6))))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-573))) (-5 *1 (-1059))))) +(((*1 *2 *3) (-12 (-5 *3 (-962 (-227))) (-5 *2 (-227)) (-5 *1 (-312))))) (((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-427 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-1257 *3)) (-4 *3 (-1062)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-932)) (-4 *1 (-1259 *3 *4)) (-4 *3 (-1062)) - (-4 *4 (-802)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-417 (-574))) (-4 *1 (-1262 *3)) (-4 *3 (-1062))))) + (-12 (-5 *3 (-653 (-227))) (-5 *2 (-653 (-1171))) (-5 *1 (-194)))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 (-227))) (-5 *2 (-653 (-1171))) (-5 *1 (-307)))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 (-227))) (-5 *2 (-653 (-1171))) (-5 *1 (-312))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-371) (-857))) (-5 *1 (-183 *3 *2)) + (-4 *2 (-1256 (-171 *3)))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) + (-4 *3 (-375 *4)))) + ((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-596 *2)) (-4 *2 (-554))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-289 *2)) (-4 *2 (-1230)) (-4 *2 (-859)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-289 *3)) (-4 *3 (-1230)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-859))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-780)) (-4 *4 (-357)) (-5 *1 (-218 *4 *2)) + (-4 *2 (-1256 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-573)) (-5 *1 (-705 *2)) (-4 *2 (-1256 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-780)) (-5 *2 (-1285))))) (((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *2 (-324 *4)) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 (-171 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174)))) + (-12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *2 (-323 *4)) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 (-171 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574)))) - (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *3)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-1254 *5 *4)) (-5 *1 (-1188 *4 *5 *6)) - (-4 *4 (-1062)) (-14 *5 (-1190)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-1254 *5 *4)) (-5 *1 (-1273 *4 *5 *6)) - (-4 *4 (-1062)) (-14 *5 (-1190)) (-14 *6 *4)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-1076))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1231)) (-4 *2 (-1062)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872)))) - ((*1 *1 *1) (-5 *1 (-872))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-954 (-227))) (-5 *2 (-227)) (-5 *1 (-1227)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-1062))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-954 *5)) (-4 *5 (-1062)) (-5 *2 (-781)) - (-5 *1 (-1178 *4 *5)) (-14 *4 (-932)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 (-781))) (-5 *3 (-781)) (-5 *1 (-1178 *4 *5)) - (-14 *4 (-932)) (-4 *5 (-1062)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 (-781))) (-5 *3 (-954 *5)) (-4 *5 (-1062)) - (-5 *1 (-1178 *4 *5)) (-14 *4 (-932))))) -(((*1 *2 *3 *1) - (-12 - (-5 *2 - (-2 (|:| |cycle?| (-112)) (|:| -4215 (-781)) (|:| |period| (-781)))) - (-5 *1 (-1170 *4)) (-4 *4 (-1231)) (-5 *3 (-781))))) + (-12 (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) + (-5 *1 (-1219 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *3)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1151)))) +(((*1 *2 *3) + (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-838)) (-5 *3 (-1171))))) (((*1 *1 *1) - (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-566))))) + (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) + (-4 *4 (-859)) (-4 *2 (-565))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) + (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-1169 (-227))) (-5 *1 (-194)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-323 (-227))) (-5 *4 (-653 (-1189))) + (-5 *5 (-1106 (-852 (-227)))) (-5 *2 (-1169 (-227))) (-5 *1 (-307)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1280 (-323 (-227)))) (-5 *4 (-653 (-1189))) + (-5 *5 (-1106 (-852 (-227)))) (-5 *2 (-1169 (-227))) (-5 *1 (-307))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1106 (-852 (-387)))) (-5 *2 (-1106 (-852 (-227)))) + (-5 *1 (-312))))) +(((*1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-376)) (-4 *2 (-371))))) +(((*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-436 *3 *2)) (-4 *3 (-13 (-174) (-38 (-416 (-573))))) + (-4 *2 (-13 (-859) (-21)))))) (((*1 *1 *1) - (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) - (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) - ((*1 *1 *1) (-4 *1 (-1015))) - ((*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1025)))) - ((*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-4 *1 (-1025)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-932)))) - ((*1 *1 *1) (-4 *1 (-1025)))) -(((*1 *2 *1) (-12 (-5 *1 (-1226 *2)) (-4 *2 (-987))))) + (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) + (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-878 *3)) (-5 *2 (-573)))) + ((*1 *1 *1) (-4 *1 (-1014))) + ((*1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-1024)))) + ((*1 *1 *2) (-12 (-5 *2 (-416 (-573))) (-4 *1 (-1024)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1024)) (-5 *2 (-931)))) + ((*1 *1 *1) (-4 *1 (-1024)))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-653 (-962 *6))) (-5 *4 (-653 (-1189))) (-4 *6 (-461)) + (-5 *2 (-653 (-653 *7))) (-5 *1 (-547 *6 *7 *5)) (-4 *7 (-371)) + (-4 *5 (-13 (-371) (-857)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) + (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-387)) (-5 *1 (-207))))) +(((*1 *1 *2) (-12 (-5 *2 (-1132)) (-5 *1 (-337))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1186 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1304 *3 *4)) (-4 *3 (-1062)) - (-4 *4 (-856))))) -(((*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1231))))) + (-12 + (-5 *2 + (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) + (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) + (|:| |ub| (-653 (-852 (-227)))))) + (-5 *1 (-273))))) (((*1 *2 *3) - (-12 (-5 *3 (-699 *4)) (-4 *4 (-372)) (-5 *2 (-1186 *4)) - (-5 *1 (-542 *4 *5 *6)) (-4 *5 (-372)) (-4 *6 (-13 (-372) (-858)))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) - (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-5 *3 (-778)) + (-5 *2 + (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) + (|:| |explanations| (-653 (-1171))) (|:| |extra| (-1047)))) + (-5 *1 (-574)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-778)) (-5 *4 (-1075)) + (-5 *2 + (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) + (|:| |explanations| (-653 (-1171))) (|:| |extra| (-1047)))) + (-5 *1 (-574)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-796)) (-5 *3 (-1075)) + (-5 *4 + (-2 (|:| |fn| (-323 (-227))) + (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 + (-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) + (|:| |extra| (-1047)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-796)) (-5 *3 (-1075)) + (-5 *4 + (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) + (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 + (-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)) + (|:| |extra| (-1047)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-809)) (-5 *3 (-1075)) + (-5 *4 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) + (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-817)) + (-5 *2 + (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) + (|:| |explanations| (-653 (-1171))))) + (-5 *1 (-814)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-817)) (-5 *4 (-1075)) + (-5 *2 + (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) + (|:| |explanations| (-653 (-1171))))) + (-5 *1 (-814)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-848)) (-5 *3 (-1075)) + (-5 *4 + (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) + (-5 *2 (-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-848)) (-5 *3 (-1075)) + (-5 *4 + (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) + (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) + (|:| |ub| (-653 (-852 (-227)))))) + (-5 *2 (-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-850)) + (-5 *2 + (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) + (|:| |explanations| (-653 (-1171))))) + (-5 *1 (-849)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-850)) (-5 *4 (-1075)) + (-5 *2 + (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) + (|:| |explanations| (-653 (-1171))))) + (-5 *1 (-849)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-905)) (-5 *3 (-1075)) + (-5 *4 + (-2 (|:| |pde| (-653 (-323 (-227)))) + (|:| |constraints| + (-653 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-780)) (|:| |boundaryType| (-573)) + (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) + (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) + (|:| |tol| (-227)))) + (-5 *2 (-2 (|:| -4223 (-387)) (|:| |explanations| (-1171)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-908)) + (-5 *2 + (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) + (|:| |explanations| (-653 (-1171))))) + (-5 *1 (-907)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-908)) (-5 *4 (-1075)) + (-5 *2 + (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) + (|:| |explanations| (-653 (-1171))))) + (-5 *1 (-907))))) +(((*1 *1 *1 *1) (-5 *1 (-871)))) +(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-871))))) +(((*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-1097)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-654 (-48))) (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1257 (-48))))) + (-12 (-5 *4 (-653 (-48))) (-5 *2 (-427 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1256 (-48))))) ((*1 *2 *3) - (-12 (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1257 (-48))))) + (-12 (-5 *2 (-427 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1256 (-48))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-654 (-48))) (-4 *5 (-860)) (-4 *6 (-803)) - (-5 *2 (-428 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-960 (-48) *6 *5)))) + (-12 (-5 *4 (-653 (-48))) (-4 *5 (-859)) (-4 *6 (-802)) + (-5 *2 (-427 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-959 (-48) *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-654 (-48))) (-4 *5 (-860)) (-4 *6 (-803)) - (-4 *7 (-960 (-48) *6 *5)) (-5 *2 (-428 (-1186 *7))) - (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1186 *7)))) + (-12 (-5 *4 (-653 (-48))) (-4 *5 (-859)) (-4 *6 (-802)) + (-4 *7 (-959 (-48) *6 *5)) (-5 *2 (-427 (-1185 *7))) + (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1185 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-168 *4 *3)) - (-4 *3 (-1257 (-171 *4))))) + (-12 (-4 *4 (-314)) (-5 *2 (-427 *3)) (-5 *1 (-168 *4 *3)) + (-4 *3 (-1256 (-171 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4))))) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-371) (-857))) (-5 *2 (-427 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4))))) + (-12 (-4 *4 (-13 (-371) (-857))) (-5 *2 (-427 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4))))) + (-12 (-4 *4 (-13 (-371) (-857))) (-5 *2 (-427 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-358)) (-5 *2 (-428 *3)) (-5 *1 (-218 *4 *3)) - (-4 *3 (-1257 *4)))) + (-12 (-4 *4 (-357)) (-5 *2 (-427 *3)) (-5 *1 (-218 *4 *3)) + (-4 *3 (-1256 *4)))) ((*1 *2 *3) - (-12 (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) + (-12 (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) - (-4 *3 (-1257 (-574))))) + (-12 (-5 *4 (-780)) (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) + (-4 *3 (-1256 (-573))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-654 (-781))) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) - (-4 *3 (-1257 (-574))))) + (-12 (-5 *4 (-653 (-780))) (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) + (-4 *3 (-1256 (-573))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *2 (-428 *3)) - (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) + (-12 (-5 *4 (-653 (-780))) (-5 *5 (-780)) (-5 *2 (-427 *3)) + (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) - (-4 *3 (-1257 (-574))))) + (-12 (-5 *4 (-780)) (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) + (-4 *3 (-1256 (-573))))) ((*1 *2 *3) - (-12 (-5 *2 (-428 (-171 (-574)))) (-5 *1 (-456)) - (-5 *3 (-171 (-574))))) + (-12 (-5 *2 (-427 (-171 (-573)))) (-5 *1 (-455)) + (-5 *3 (-171 (-573))))) ((*1 *2 *3) (-12 (-4 *4 - (-13 (-860) - (-10 -8 (-15 -1836 ((-1190) $)) - (-15 -1488 ((-3 $ "failed") (-1190)))))) - (-4 *5 (-803)) (-4 *7 (-566)) (-5 *2 (-428 *3)) - (-5 *1 (-466 *4 *5 *6 *7 *3)) (-4 *6 (-566)) - (-4 *3 (-960 *7 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-315)) (-5 *2 (-428 (-1186 *4))) (-5 *1 (-468 *4)) - (-5 *3 (-1186 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1257 *5)) (-4 *5 (-372)) - (-4 *7 (-13 (-372) (-148) (-734 *5 *6))) (-5 *2 (-428 *3)) - (-5 *1 (-504 *5 *6 *7 *3)) (-4 *3 (-1257 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-428 (-1186 *7)) (-1186 *7))) - (-4 *7 (-13 (-315) (-148))) (-4 *5 (-860)) (-4 *6 (-803)) - (-5 *2 (-428 *3)) (-5 *1 (-550 *5 *6 *7 *3)) - (-4 *3 (-960 *7 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-428 (-1186 *7)) (-1186 *7))) - (-4 *7 (-13 (-315) (-148))) (-4 *5 (-860)) (-4 *6 (-803)) - (-4 *8 (-960 *7 *6 *5)) (-5 *2 (-428 (-1186 *8))) - (-5 *1 (-550 *5 *6 *7 *8)) (-5 *3 (-1186 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-654 *5) *6)) - (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) - (-4 *6 (-1257 *5)) (-5 *2 (-654 (-663 (-417 *6)))) - (-5 *1 (-667 *5 *6)) (-5 *3 (-663 (-417 *6))))) + (-13 (-859) + (-10 -8 (-15 -1835 ((-1189) $)) + (-15 -1487 ((-3 $ "failed") (-1189)))))) + (-4 *5 (-802)) (-4 *7 (-565)) (-5 *2 (-427 *3)) + (-5 *1 (-465 *4 *5 *6 *7 *3)) (-4 *6 (-565)) + (-4 *3 (-959 *7 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-314)) (-5 *2 (-427 (-1185 *4))) (-5 *1 (-467 *4)) + (-5 *3 (-1185 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-427 *6) *6)) (-4 *6 (-1256 *5)) (-4 *5 (-371)) + (-4 *7 (-13 (-371) (-148) (-733 *5 *6))) (-5 *2 (-427 *3)) + (-5 *1 (-503 *5 *6 *7 *3)) (-4 *3 (-1256 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-427 (-1185 *7)) (-1185 *7))) + (-4 *7 (-13 (-314) (-148))) (-4 *5 (-859)) (-4 *6 (-802)) + (-5 *2 (-427 *3)) (-5 *1 (-549 *5 *6 *7 *3)) + (-4 *3 (-959 *7 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-427 (-1185 *7)) (-1185 *7))) + (-4 *7 (-13 (-314) (-148))) (-4 *5 (-859)) (-4 *6 (-802)) + (-4 *8 (-959 *7 *6 *5)) (-5 *2 (-427 (-1185 *8))) + (-5 *1 (-549 *5 *6 *7 *8)) (-5 *3 (-1185 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-427 *3)) (-5 *1 (-567 *3)) (-4 *3 (-554)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-653 *5) *6)) + (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) + (-4 *6 (-1256 *5)) (-5 *2 (-653 (-662 (-416 *6)))) + (-5 *1 (-666 *5 *6)) (-5 *3 (-662 (-416 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) - (-4 *5 (-1257 *4)) (-5 *2 (-654 (-663 (-417 *5)))) - (-5 *1 (-667 *4 *5)) (-5 *3 (-663 (-417 *5))))) + (-4 *4 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) + (-4 *5 (-1256 *4)) (-5 *2 (-653 (-662 (-416 *5)))) + (-5 *1 (-666 *4 *5)) (-5 *3 (-662 (-416 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-829 *4)) (-4 *4 (-860)) (-5 *2 (-654 (-682 *4))) - (-5 *1 (-682 *4)))) + (-12 (-5 *3 (-828 *4)) (-4 *4 (-859)) (-5 *2 (-653 (-681 *4))) + (-5 *1 (-681 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-574)) (-5 *2 (-654 *3)) (-5 *1 (-706 *3)) - (-4 *3 (-1257 *4)))) + (-12 (-5 *4 (-573)) (-5 *2 (-653 *3)) (-5 *1 (-705 *3)) + (-4 *3 (-1256 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-358)) (-5 *2 (-428 *3)) - (-5 *1 (-708 *4 *5 *6 *3)) (-4 *3 (-960 *6 *5 *4)))) + (-12 (-4 *4 (-859)) (-4 *5 (-802)) (-4 *6 (-357)) (-5 *2 (-427 *3)) + (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-959 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-358)) - (-4 *7 (-960 *6 *5 *4)) (-5 *2 (-428 (-1186 *7))) - (-5 *1 (-708 *4 *5 *6 *7)) (-5 *3 (-1186 *7)))) + (-12 (-4 *4 (-859)) (-4 *5 (-802)) (-4 *6 (-357)) + (-4 *7 (-959 *6 *5 *4)) (-5 *2 (-427 (-1185 *7))) + (-5 *1 (-707 *4 *5 *6 *7)) (-5 *3 (-1185 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-803)) + (-12 (-4 *4 (-802)) (-4 *5 - (-13 (-860) - (-10 -8 (-15 -1836 ((-1190) $)) - (-15 -1488 ((-3 $ "failed") (-1190)))))) - (-4 *6 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-740 *4 *5 *6 *3)) - (-4 *3 (-960 (-963 *6) *4 *5)))) + (-13 (-859) + (-10 -8 (-15 -1835 ((-1189) $)) + (-15 -1487 ((-3 $ "failed") (-1189)))))) + (-4 *6 (-314)) (-5 *2 (-427 *3)) (-5 *1 (-739 *4 *5 *6 *3)) + (-4 *3 (-959 (-962 *6) *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-803)) - (-4 *5 (-13 (-860) (-10 -8 (-15 -1836 ((-1190) $))))) (-4 *6 (-566)) - (-5 *2 (-428 *3)) (-5 *1 (-742 *4 *5 *6 *3)) - (-4 *3 (-960 (-417 (-963 *6)) *4 *5)))) + (-12 (-4 *4 (-802)) + (-4 *5 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $))))) (-4 *6 (-565)) + (-5 *2 (-427 *3)) (-5 *1 (-741 *4 *5 *6 *3)) + (-4 *3 (-959 (-416 (-962 *6)) *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-13 (-315) (-148))) - (-5 *2 (-428 *3)) (-5 *1 (-743 *4 *5 *6 *3)) - (-4 *3 (-960 (-417 *6) *4 *5)))) + (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-13 (-314) (-148))) + (-5 *2 (-427 *3)) (-5 *1 (-742 *4 *5 *6 *3)) + (-4 *3 (-959 (-416 *6) *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-13 (-315) (-148))) - (-5 *2 (-428 *3)) (-5 *1 (-751 *4 *5 *6 *3)) - (-4 *3 (-960 *6 *5 *4)))) + (-12 (-4 *4 (-859)) (-4 *5 (-802)) (-4 *6 (-13 (-314) (-148))) + (-5 *2 (-427 *3)) (-5 *1 (-750 *4 *5 *6 *3)) + (-4 *3 (-959 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-13 (-315) (-148))) - (-4 *7 (-960 *6 *5 *4)) (-5 *2 (-428 (-1186 *7))) - (-5 *1 (-751 *4 *5 *6 *7)) (-5 *3 (-1186 *7)))) + (-12 (-4 *4 (-859)) (-4 *5 (-802)) (-4 *6 (-13 (-314) (-148))) + (-4 *7 (-959 *6 *5 *4)) (-5 *2 (-427 (-1185 *7))) + (-5 *1 (-750 *4 *5 *6 *7)) (-5 *3 (-1185 *7)))) ((*1 *2 *3) - (-12 (-5 *2 (-428 *3)) (-5 *1 (-1020 *3)) - (-4 *3 (-1257 (-417 (-574)))))) + (-12 (-5 *2 (-427 *3)) (-5 *1 (-1019 *3)) + (-4 *3 (-1256 (-416 (-573)))))) ((*1 *2 *3) - (-12 (-5 *2 (-428 *3)) (-5 *1 (-1054 *3)) - (-4 *3 (-1257 (-417 (-963 (-574))))))) + (-12 (-5 *2 (-427 *3)) (-5 *1 (-1053 *3)) + (-4 *3 (-1256 (-416 (-962 (-573))))))) ((*1 *2 *3) - (-12 (-4 *4 (-1257 (-417 (-574)))) - (-4 *5 (-13 (-372) (-148) (-734 (-417 (-574)) *4))) - (-5 *2 (-428 *3)) (-5 *1 (-1092 *4 *5 *3)) (-4 *3 (-1257 *5)))) + (-12 (-4 *4 (-1256 (-416 (-573)))) + (-4 *5 (-13 (-371) (-148) (-733 (-416 (-573)) *4))) + (-5 *2 (-427 *3)) (-5 *1 (-1091 *4 *5 *3)) (-4 *3 (-1256 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-1257 (-417 (-963 (-574))))) - (-4 *5 (-13 (-372) (-148) (-734 (-417 (-963 (-574))) *4))) - (-5 *2 (-428 *3)) (-5 *1 (-1094 *4 *5 *3)) (-4 *3 (-1257 *5)))) + (-12 (-4 *4 (-1256 (-416 (-962 (-573))))) + (-4 *5 (-13 (-371) (-148) (-733 (-416 (-962 (-573))) *4))) + (-5 *2 (-427 *3)) (-5 *1 (-1093 *4 *5 *3)) (-4 *3 (-1256 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-462)) - (-4 *7 (-960 *6 *4 *5)) (-5 *2 (-428 (-1186 (-417 *7)))) - (-5 *1 (-1185 *4 *5 *6 *7)) (-5 *3 (-1186 (-417 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-428 *1)) (-4 *1 (-1235)))) + (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-461)) + (-4 *7 (-959 *6 *4 *5)) (-5 *2 (-427 (-1185 (-416 *7)))) + (-5 *1 (-1184 *4 *5 *6 *7)) (-5 *3 (-1185 (-416 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-427 *1)) (-4 *1 (-1234)))) ((*1 *2 *3) - (-12 (-5 *2 (-428 *3)) (-5 *1 (-1246 *3)) (-4 *3 (-1257 (-574)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1609 (-574))))) - (-5 *1 (-370 *3)) (-4 *3 (-1113)))) + (-12 (-5 *2 (-427 *3)) (-5 *1 (-1245 *3)) (-4 *3 (-1256 (-573)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1215)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-103 *3))))) +(((*1 *1) (-5 *1 (-446)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 (-931))) (-5 *2 (-653 (-698 (-573)))) + (-5 *1 (-1122))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-760))))) +(((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-371) (-1215) (-1014)))))) +(((*1 *2 *3) + (-12 (|has| *6 (-6 -4456)) (-4 *4 (-371)) (-4 *5 (-381 *4)) + (-4 *6 (-381 *4)) (-5 *2 (-653 *6)) (-5 *1 (-530 *4 *5 *6 *3)) + (-4 *3 (-696 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (|has| *9 (-6 -4456)) (-4 *4 (-565)) (-4 *5 (-381 *4)) + (-4 *6 (-381 *4)) (-4 *7 (-1004 *4)) (-4 *8 (-381 *7)) + (-4 *9 (-381 *7)) (-5 *2 (-653 *6)) + (-5 *1 (-531 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-696 *4 *5 *6)) + (-4 *10 (-696 *7 *8 *9)))) ((*1 *2 *1) - (-12 (-4 *1 (-395 *3)) (-4 *3 (-1113)) - (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1609 (-781))))))) + (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) + (-4 *5 (-381 *3)) (-4 *3 (-565)) (-5 *2 (-653 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-565)) (-4 *4 (-174)) (-4 *5 (-381 *4)) + (-4 *6 (-381 *4)) (-5 *2 (-653 *6)) (-5 *1 (-697 *4 *5 *6 *3)) + (-4 *3 (-696 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-5 *2 (-654 (-2 (|:| -4220 *3) (|:| -3715 (-574))))) - (-5 *1 (-428 *3)) (-4 *3 (-566))))) -(((*1 *2 *1) - (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1257 *3)) - (-4 *5 (-1257 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-565)) + (-5 *2 (-653 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-574)) (-4 *2 (-440 *3)) (-5 *1 (-32 *3 *2)) - (-4 *3 (-1051 *4)) (-4 *3 (-566))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1172)) (-5 *2 (-574)) (-5 *1 (-1213 *4)) - (-4 *4 (-1062))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-954 (-227))))) (-5 *1 (-478))))) -(((*1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-1193))))) -(((*1 *2 *3) (-12 (-5 *3 (-963 (-227))) (-5 *2 (-227)) (-5 *1 (-313))))) -(((*1 *2) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) - (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112))))) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) +(((*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283)))) + ((*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283))))) +(((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-562))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-566) (-1051 (-574)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1216) (-440 (-171 *3)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574)))) - (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *3)))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-574)) (-4 *3 (-174)) (-4 *5 (-382 *3)) - (-4 *6 (-382 *3)) (-5 *1 (-698 *3 *5 *6 *2)) - (-4 *2 (-697 *3 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832))))) -(((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-283 *4 *3)) - (-4 *3 (-13 (-440 *4) (-1015)))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-374 *2)) (-4 *2 (-1113)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1172)) (-5 *1 (-1212))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-127 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1300 *3)) (-4 *3 (-372)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-1113)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1113)) (-5 *2 (-112)) - (-5 *1 (-1232 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-802)))) - ((*1 *2 *1) - (-12 (-5 *2 (-781)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1062)) - (-14 *4 (-654 (-1190))))) - ((*1 *2 *1) - (-12 (-5 *2 (-574)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1062) (-860))) - (-14 *4 (-654 (-1190))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1062)) (-4 *3 (-860)) - (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781)))) - ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-282)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1186 *8)) (-5 *4 (-654 *6)) (-4 *6 (-860)) - (-4 *8 (-960 *7 *5 *6)) (-4 *5 (-803)) (-4 *7 (-1062)) - (-5 *2 (-654 (-781))) (-5 *1 (-329 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-932)))) - ((*1 *2 *1) - (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) - (-5 *2 (-781)))) - ((*1 *2 *1) (-12 (-4 *1 (-480 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) - ((*1 *2 *1) - (-12 (-4 *3 (-566)) (-5 *2 (-574)) (-5 *1 (-633 *3 *4)) - (-4 *4 (-1257 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-718 *3)) (-4 *3 (-1062)) (-5 *2 (-781)))) - ((*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1062)) (-5 *2 (-781)))) - ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) - ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-916 *3)) (-4 *3 (-1113)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-654 *6)) (-4 *1 (-960 *4 *5 *6)) (-4 *4 (-1062)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-781))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-960 *4 *5 *3)) (-4 *4 (-1062)) (-4 *5 (-803)) - (-4 *3 (-860)) (-5 *2 (-781)))) - ((*1 *2 *1) - (-12 (-4 *1 (-986 *3 *2 *4)) (-4 *3 (-1062)) (-4 *4 (-860)) - (-4 *2 (-802)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-781)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1243 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1272 *3)) - (-5 *2 (-574)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1264 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1241 *3)) - (-5 *2 (-417 (-574))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1300 *3)) (-4 *3 (-372)) (-5 *2 (-843 (-932))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)) - (-5 *2 (-781))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-555)))) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014)))))) +(((*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174))))) (((*1 *2 *1) - (-12 (-14 *3 (-654 (-1190))) (-4 *4 (-174)) - (-14 *6 - (-1 (-112) (-2 (|:| -2576 *5) (|:| -3715 *2)) - (-2 (|:| -2576 *5) (|:| -3715 *2)))) - (-4 *2 (-244 (-2863 *3) (-781))) (-5 *1 (-471 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-860)) (-4 *7 (-960 *4 *2 (-874 *3)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1190)) - (-4 *5 (-13 (-566) (-1051 (-574)) (-649 (-574)))) - (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-654 (-622 *3))) - (|:| |vals| (-654 *3)))) - (-5 *1 (-284 *5 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-324 *3)) (-4 *3 (-13 (-1062) (-860))) - (-5 *1 (-225 *3 *4)) (-14 *4 (-654 (-1190)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1231)) (-5 *1 (-1145 *4 *2)) - (-4 *2 (-13 (-614 (-574) *4) (-10 -7 (-6 -4456) (-6 -4457)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-860)) (-4 *3 (-1231)) (-5 *1 (-1145 *3 *2)) - (-4 *2 (-13 (-614 (-574) *3) (-10 -7 (-6 -4456) (-6 -4457))))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1254 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1190)) - (-5 *2 (-574)) (-5 *1 (-1127 *4 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1257 *4)) (-4 *4 (-1235)) - (-4 *6 (-1257 (-417 *5))) - (-5 *2 - (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) - (|:| |gd| *5))) - (-4 *1 (-351 *4 *5 *6))))) + (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) + (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-597 *4)) + (-4 *4 (-357))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-619 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)) + (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) + (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G)))) (-5 *2 (-1047)) + (-5 *1 (-757))))) +(((*1 *2) + (-12 (-4 *1 (-357)) + (-5 *2 (-653 (-2 (|:| -4218 (-573)) (|:| -3907 (-573)))))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-573)) (-5 *1 (-1204 *2)) (-4 *2 (-371))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-4 *3 (-1077 *5 *6 *7)) + (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) + (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-653 (-1189))) (-5 *3 (-52)) (-5 *1 (-902 *4)) + (-4 *4 (-1112))))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1256 *5)) + (-4 *5 (-13 (-371) (-148) (-1050 (-573)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-416 *6)) (|:| |h| *6) + (|:| |c1| (-416 *6)) (|:| |c2| (-416 *6)) (|:| -2142 *6))) + (-5 *1 (-1028 *5 *6)) (-5 *3 (-416 *6))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-622 *1)) (-4 *1 (-440 *4)) (-4 *4 (-1113)) - (-4 *4 (-566)) (-5 *2 (-417 (-1186 *1))))) + (-12 (-5 *3 (-621 *1)) (-4 *1 (-439 *4)) (-4 *4 (-1112)) + (-4 *4 (-565)) (-5 *2 (-416 (-1185 *1))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-440 *6) (-27) (-1216))) - (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) - (-5 *2 (-1186 (-417 (-1186 *3)))) (-5 *1 (-570 *6 *3 *7)) - (-5 *5 (-1186 *3)) (-4 *7 (-1113)))) + (-12 (-5 *4 (-621 *3)) (-4 *3 (-13 (-439 *6) (-27) (-1215))) + (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) + (-5 *2 (-1185 (-416 (-1185 *3)))) (-5 *1 (-569 *6 *3 *7)) + (-5 *5 (-1185 *3)) (-4 *7 (-1112)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1277 *5)) (-14 *5 (-1190)) (-4 *6 (-1062)) - (-5 *2 (-1254 *5 (-963 *6))) (-5 *1 (-958 *5 *6)) (-5 *3 (-963 *6)))) + (-12 (-5 *4 (-1276 *5)) (-14 *5 (-1189)) (-4 *6 (-1061)) + (-5 *2 (-1253 *5 (-962 *6))) (-5 *1 (-957 *5 *6)) (-5 *3 (-962 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-960 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *5 (-860)) (-5 *2 (-1186 *3)))) + (-12 (-4 *1 (-959 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *5 (-859)) (-5 *2 (-1185 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-1186 *1)) - (-4 *1 (-960 *4 *5 *3)))) + (-12 (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-859)) (-5 *2 (-1185 *1)) + (-4 *1 (-959 *4 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-1062)) - (-4 *7 (-960 *6 *5 *4)) (-5 *2 (-417 (-1186 *3))) - (-5 *1 (-961 *5 *4 *6 *7 *3)) + (-12 (-4 *5 (-802)) (-4 *4 (-859)) (-4 *6 (-1061)) + (-4 *7 (-959 *6 *5 *4)) (-5 *2 (-416 (-1185 *3))) + (-5 *1 (-960 *5 *4 *6 *7 *3)) (-4 *3 - (-13 (-372) - (-10 -8 (-15 -2943 ($ *7)) (-15 -2966 (*7 $)) (-15 -2977 (*7 $))))))) + (-13 (-371) + (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) (-15 -2975 (*7 $))))))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1186 *3)) + (-12 (-5 *2 (-1185 *3)) (-4 *3 - (-13 (-372) - (-10 -8 (-15 -2943 ($ *7)) (-15 -2966 (*7 $)) (-15 -2977 (*7 $))))) - (-4 *7 (-960 *6 *5 *4)) (-4 *5 (-803)) (-4 *4 (-860)) - (-4 *6 (-1062)) (-5 *1 (-961 *5 *4 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1190)) (-4 *5 (-566)) - (-5 *2 (-417 (-1186 (-417 (-963 *5))))) (-5 *1 (-1056 *5)) - (-5 *3 (-417 (-963 *5)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-932)) - (-5 *2 - (-3 (-1186 *4) - (-1281 (-654 (-2 (|:| -3083 *4) (|:| -2576 (-1133))))))) - (-5 *1 (-355 *4)) (-4 *4 (-358))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1281 (-324 (-227)))) - (-5 *2 - (-2 (|:| |additions| (-574)) (|:| |multiplications| (-574)) - (|:| |exponentiations| (-574)) (|:| |functionCalls| (-574)))) - (-5 *1 (-313))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-4 *1 (-914 *3))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-766))))) -(((*1 *1) (-5 *1 (-607)))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1172)) (-5 *3 (-833)) (-5 *1 (-832))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1051 (-574))) (-4 *3 (-566)) (-5 *1 (-32 *3 *2)) - (-4 *2 (-440 *3)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1186 *4)) (-5 *1 (-166 *3 *4)) - (-4 *3 (-167 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1062)) (-4 *1 (-310)))) - ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1186 *3)))) - ((*1 *2) (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1257 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1081 *3 *2)) (-4 *3 (-13 (-858) (-372))) - (-4 *2 (-1257 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283))))) -(((*1 *2 *1) (-12 (-4 *1 (-845 *3)) (-4 *3 (-1113)) (-5 *2 (-55))))) -(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-925 *3)) (-4 *3 (-315))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) - (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-388)) (-5 *1 (-194))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-566))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1060))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-555)))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1257 (-574)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1186 *3)) (-4 *3 (-1062)) (-4 *1 (-1257 *3))))) + (-13 (-371) + (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) (-15 -2975 (*7 $))))) + (-4 *7 (-959 *6 *5 *4)) (-4 *5 (-802)) (-4 *4 (-859)) + (-4 *6 (-1061)) (-5 *1 (-960 *5 *4 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1189)) (-4 *5 (-565)) + (-5 *2 (-416 (-1185 (-416 (-962 *5))))) (-5 *1 (-1055 *5)) + (-5 *3 (-416 (-962 *5)))))) +(((*1 *2) + (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) + (-4 *5 (-1256 (-416 *4))) (-5 *2 (-698 (-416 *4)))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-554))))) (((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-32 *3 *4)) - (-4 *4 (-440 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-55)) (-5 *1 (-115)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-781)) (-5 *1 (-115)))) - ((*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-115)))) - ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-159 *3 *4)) - (-4 *4 (-440 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-115)) (-5 *1 (-164)))) + (-12 (-4 *3 (-13 (-565) (-148))) (-5 *1 (-546 *3 *2)) + (-4 *2 (-1271 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-283 *3 *4)) - (-4 *4 (-13 (-440 *3) (-1015))))) - ((*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-309 *3)) (-4 *3 (-310)))) - ((*1 *2 *2) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) + (-12 (-4 *3 (-13 (-371) (-376) (-623 (-573)))) (-4 *4 (-1256 *3)) + (-4 *5 (-733 *3 *4)) (-5 *1 (-550 *3 *4 *5 *2)) (-4 *2 (-1271 *5)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *4 (-1113)) (-5 *1 (-439 *3 *4)) - (-4 *3 (-440 *4)))) + (-12 (-4 *3 (-13 (-371) (-376) (-623 (-573)))) (-5 *1 (-551 *3 *2)) + (-4 *2 (-1271 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-441 *3 *4)) - (-4 *4 (-440 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-622 *3)) (-4 *3 (-1113)))) - ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-640 *3 *4)) - (-4 *4 (-13 (-440 *3) (-1015) (-1216))))) - ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1032)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1204 *2)) (-4 *2 (-1113))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-699 (-417 (-574)))) - (-5 *2 - (-654 - (-2 (|:| |outval| *4) (|:| |outmult| (-574)) - (|:| |outvect| (-654 (-699 *4)))))) - (-5 *1 (-789 *4)) (-4 *4 (-13 (-372) (-858)))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-574)) (-5 *5 (-112)) (-5 *6 (-699 (-227))) - (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-765))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) - (-5 *2 (-1048)) (-5 *1 (-764))))) -(((*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-711)))) - ((*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-711))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1231)) - (-4 *5 (-382 *4)) (-4 *2 (-382 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-4 *1 (-1066 *4 *5 *6 *2 *7)) (-4 *6 (-1062)) - (-4 *7 (-244 *4 *6)) (-4 *2 (-244 *5 *6))))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-13 (-565) (-148))) + (-5 *1 (-1165 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) (((*1 *2 *1) - (-12 (-5 *2 (-1039 (-853 (-574)))) (-5 *1 (-605 *3)) (-4 *3 (-1062))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-566)) (-4 *3 (-1062)) - (-5 *2 (-2 (|:| -1411 *1) (|:| -2766 *1))) (-4 *1 (-862 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-566)) (-4 *5 (-1062)) - (-5 *2 (-2 (|:| -1411 *3) (|:| -2766 *3))) (-5 *1 (-863 *5 *3)) - (-4 *3 (-862 *5))))) -(((*1 *1 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566))))) -(((*1 *2 *1 *1) - (-12 + (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1112))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1189)) (-5 *5 (-653 (-416 (-962 *6)))) + (-5 *3 (-416 (-962 *6))) + (-4 *6 (-13 (-565) (-1050 (-573)) (-148))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-579 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1169 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1061)) + (-5 *3 (-416 (-573))) (-5 *1 (-1173 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-653 (-698 (-323 (-573))))) (-5 *1 (-1043))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-621 *4)) (-5 *6 (-1189)) + (-4 *4 (-13 (-439 *7) (-27) (-1215))) + (-4 *7 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *2 - (-2 (|:| -2873 (-792 *3)) (|:| |coef1| (-792 *3)) - (|:| |coef2| (-792 *3)))) - (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1062)))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) + (-5 *1 (-575 *7 *4 *3)) (-4 *3 (-665 *4)) (-4 *3 (-1112))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-981 *3 *2)) (-4 *2 (-1256 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) + (-4 *4 (-859)) (-4 *2 (-565)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1061)) (-4 *2 (-565))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1000 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1119 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1 (-953 (-227)) (-227) (-227))) + (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-261))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2872 (-791 *3)) (|:| |coef1| (-791 *3)))) + (-5 *1 (-791 *3)) (-4 *3 (-565)) (-4 *3 (-1061)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-566)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *2 (-2 (|:| -2873 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1078 *3 *4 *5))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-654 *4)) (-4 *4 (-1113)) (-4 *4 (-1231)) (-5 *2 (-112)) - (-5 *1 (-1170 *4))))) + (-12 (-4 *3 (-565)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) + (-5 *2 (-2 (|:| -2872 *1) (|:| |coef1| *1))) + (-4 *1 (-1077 *3 *4 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1077 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *2 (-859)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) + (-4 *4 (-859))))) +(((*1 *2 *1) + (-12 (-4 *1 (-372 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)) + (-5 *2 (-1171))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-831))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2)) - (-4 *2 (-1272 *3)))) + (-12 (-5 *2 (-115)) (-4 *3 (-565)) (-5 *1 (-32 *3 *4)) + (-4 *4 (-439 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-55)) (-5 *1 (-115)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-780)) (-5 *1 (-115)))) + ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-115)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1257 *3)) - (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1272 *5)))) + (-12 (-5 *2 (-115)) (-4 *3 (-565)) (-5 *1 (-159 *3 *4)) + (-4 *4 (-439 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-115)) (-5 *1 (-164)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2)) - (-4 *2 (-1272 *3)))) + (-12 (-5 *2 (-115)) (-4 *3 (-565)) (-5 *1 (-282 *3 *4)) + (-4 *4 (-13 (-439 *3) (-1014))))) + ((*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-308 *3)) (-4 *3 (-309)))) + ((*1 *2 *2) (-12 (-4 *1 (-309)) (-5 *2 (-115)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-13 (-566) (-148))) - (-5 *1 (-1166 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-622 *1))) (-4 *1 (-310))))) + (-12 (-5 *2 (-115)) (-4 *4 (-1112)) (-5 *1 (-438 *3 *4)) + (-4 *3 (-439 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-115)) (-4 *3 (-565)) (-5 *1 (-440 *3 *4)) + (-4 *4 (-439 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-621 *3)) (-4 *3 (-1112)))) + ((*1 *2 *2) + (-12 (-5 *2 (-115)) (-4 *3 (-565)) (-5 *1 (-639 *3 *4)) + (-4 *4 (-13 (-439 *3) (-1014) (-1215))))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1031)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1203 *2)) (-4 *2 (-1112))))) +(((*1 *2 *3) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-570)) (-5 *3 (-573))))) +(((*1 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) + (-5 *1 (-1140 *3 *2)) (-4 *3 (-1256 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1171)) (-5 *2 (-216 (-511))) (-5 *1 (-846))))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-698 (-227))) (-5 *5 (-698 (-573))) (-5 *3 (-573)) + (-5 *2 (-1047)) (-5 *1 (-763))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *2 (-1077 *4 *5 *6)) (-5 *1 (-785 *4 *5 *6 *2 *3)) + (-4 *3 (-1083 *4 *5 *6 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) + (-5 *2 (-416 (-573))) (-5 *1 (-1032 *4)) (-4 *4 (-1256 (-573)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014)))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-416 (-1185 (-323 *3)))) (-4 *3 (-565)) + (-5 *1 (-1142 *3))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1169 *3)) (-4 *3 (-1112)) + (-4 *3 (-1230))))) +(((*1 *2 *1) (-12 (-5 *2 (-653 (-621 *1))) (-4 *1 (-309))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1230)) (-5 *1 (-184 *3 *2)) (-4 *2 (-683 *3))))) (((*1 *1 *1) (-5 *1 (-112)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) - (-4 *4 (-1062))))) -(((*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-282))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-989 *4 *5 *3 *6)) (-4 *4 (-1062)) (-4 *5 (-803)) - (-4 *3 (-860)) (-4 *6 (-1078 *4 *5 *3)) (-5 *2 (-112))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1048)) (-5 *1 (-313)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-1048))) (-5 *2 (-1048)) (-5 *1 (-313)))) - ((*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-661 *3)) (-4 *3 (-1231)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1231)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1231)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1231)))) - ((*1 *1 *1 *1) (-5 *1 (-1076))) - ((*1 *2 *3) - (-12 (-5 *3 (-1170 (-1170 *4))) (-5 *2 (-1170 *4)) (-5 *1 (-1167 *4)) - (-4 *4 (-1231)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) - (-5 *2 (-1048)) (-5 *1 (-761))))) -(((*1 *2 *1) (-12 (-4 *1 (-519 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-860))))) -(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-145))))) -(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) - ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) - ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-938))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1048)) - (-5 *1 (-756))))) -(((*1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 (-2 (|:| -4218 (-1185 *6)) (|:| -3907 (-573))))) + (-4 *6 (-314)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-573)) + (-5 *1 (-751 *4 *5 *6 *7)) (-4 *7 (-959 *6 *4 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) - (-5 *2 (-654 (-227))) (-5 *1 (-313))))) + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) + (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-387)) (-5 *1 (-207))))) (((*1 *2 *2) - (-12 (-5 *2 (-654 (-491 *3 *4))) (-14 *3 (-654 (-1190))) - (-4 *4 (-462)) (-5 *1 (-641 *3 *4))))) -(((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) - (-4 *4 (-174))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) + (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-314)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) + (-5 *1 (-989 *3 *4 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-565)) (-5 *2 (-653 (-780))) (-5 *1 (-981 *4 *3)) + (-4 *3 (-1256 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1047)) (-5 *1 (-312)))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 (-1047))) (-5 *2 (-1047)) (-5 *1 (-312)))) + ((*1 *1 *2) (-12 (-5 *2 (-653 *1)) (-4 *1 (-660 *3)) (-4 *3 (-1230)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1230)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1230)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1230)))) + ((*1 *1 *1 *1) (-5 *1 (-1075))) + ((*1 *2 *3) + (-12 (-5 *3 (-1169 (-1169 *4))) (-5 *2 (-1169 *4)) (-5 *1 (-1166 *4)) + (-4 *4 (-1230)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-515)) (-5 *2 (-700 (-109))) (-5 *1 (-177)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-515)) (-5 *2 (-700 (-109))) (-5 *1 (-1097))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-842 *3)) (-4 *3 (-1112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-852 *3)) (-4 *3 (-1112))))) +(((*1 *2) + (-12 (-4 *3 (-565)) (-5 *2 (-653 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-426 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-563 *3)) (-4 *3 (-13 (-413) (-1215))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-857)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1080 *4 *3)) (-4 *4 (-13 (-857) (-371))) + (-4 *3 (-1256 *4)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-269))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-780)) (-4 *4 (-314)) (-4 *6 (-1256 *4)) + (-5 *2 (-1280 (-653 *6))) (-5 *1 (-464 *4 *6)) (-5 *5 (-653 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) +(((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-427 *3)) (-4 *3 (-565)))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 (-2 (|:| -4218 *4) (|:| -2565 (-573))))) + (-4 *4 (-1256 (-573))) (-5 *2 (-780)) (-5 *1 (-451 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| -3888 (-654 (-872))) (|:| -3663 (-654 (-872))) - (|:| |presup| (-654 (-872))) (|:| -4286 (-654 (-872))) - (|:| |args| (-654 (-872))))) - (-5 *1 (-1190))))) -(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1164))))) -(((*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1231)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-860))))) -(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-574)) - (-5 *6 - (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3979 (-388)))) - (-5 *7 (-1 (-1286) (-1281 *5) (-1281 *5) (-388))) - (-5 *3 (-1281 (-388))) (-5 *5 (-388)) (-5 *2 (-1286)) - (-5 *1 (-798)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-574)) - (-5 *6 - (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3979 (-388)))) - (-5 *7 (-1 (-1286) (-1281 *5) (-1281 *5) (-388))) - (-5 *3 (-1281 (-388))) (-5 *5 (-388)) (-5 *2 (-1286)) - (-5 *1 (-798))))) + (-2 (|:| -3539 (-653 (-871))) (|:| -3280 (-653 (-871))) + (|:| |presup| (-653 (-871))) (|:| -3763 (-653 (-871))) + (|:| |args| (-653 (-871))))) + (-5 *1 (-1189))))) +(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1163))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1169 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3821 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *2 (-1047)) (-5 *1 (-312))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-427 *4) *4)) (-4 *4 (-565)) (-5 *2 (-427 *4)) + (-5 *1 (-428 *4)))) + ((*1 *1 *1) (-5 *1 (-936))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-936)))) + ((*1 *1 *1) (-5 *1 (-937))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-937)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) + (-5 *4 (-416 (-573))) (-5 *1 (-1032 *3)) (-4 *3 (-1256 (-573))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) + (-5 *1 (-1032 *3)) (-4 *3 (-1256 (-573))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) + (-5 *4 (-416 (-573))) (-5 *1 (-1033 *3)) (-4 *3 (-1256 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))) + (-5 *1 (-1033 *3)) (-4 *3 (-1256 (-416 (-573)))))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-857) (-371))) (-5 *1 (-1073 *2 *3)) + (-4 *3 (-1256 *2))))) (((*1 *2 *3) - (-12 (-5 *2 (-171 (-388))) (-5 *1 (-795 *3)) (-4 *3 (-624 (-388))))) + (-12 (-5 *2 (-171 (-387))) (-5 *1 (-794 *3)) (-4 *3 (-623 (-387))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-932)) (-5 *2 (-171 (-388))) (-5 *1 (-795 *3)) - (-4 *3 (-624 (-388))))) + (-12 (-5 *4 (-931)) (-5 *2 (-171 (-387))) (-5 *1 (-794 *3)) + (-4 *3 (-623 (-387))))) ((*1 *2 *3) - (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-624 (-388))) - (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) + (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-623 (-387))) + (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-171 *5)) (-5 *4 (-932)) (-4 *5 (-174)) - (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) + (-12 (-5 *3 (-171 *5)) (-5 *4 (-931)) (-4 *5 (-174)) + (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-963 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-624 (-388))) - (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) + (-12 (-5 *3 (-962 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-623 (-387))) + (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-963 (-171 *5))) (-5 *4 (-932)) (-4 *5 (-174)) - (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) + (-12 (-5 *3 (-962 (-171 *5))) (-5 *4 (-931)) (-4 *5 (-174)) + (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-963 *4)) (-4 *4 (-1062)) (-4 *4 (-624 (-388))) - (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) + (-12 (-5 *3 (-962 *4)) (-4 *4 (-1061)) (-4 *4 (-623 (-387))) + (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-963 *5)) (-5 *4 (-932)) (-4 *5 (-1062)) - (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) + (-12 (-5 *3 (-962 *5)) (-5 *4 (-931)) (-4 *5 (-1061)) + (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-566)) (-4 *4 (-624 (-388))) - (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) + (-12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-565)) (-4 *4 (-623 (-387))) + (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-932)) (-4 *5 (-566)) - (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) + (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-931)) (-4 *5 (-565)) + (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-417 (-963 (-171 *4)))) (-4 *4 (-566)) - (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) + (-12 (-5 *3 (-416 (-962 (-171 *4)))) (-4 *4 (-565)) + (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-963 (-171 *5)))) (-5 *4 (-932)) (-4 *5 (-566)) - (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) + (-12 (-5 *3 (-416 (-962 (-171 *5)))) (-5 *4 (-931)) (-4 *5 (-565)) + (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) - (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) + (-12 (-5 *3 (-323 *4)) (-4 *4 (-565)) (-4 *4 (-859)) + (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-324 *5)) (-5 *4 (-932)) (-4 *5 (-566)) (-4 *5 (-860)) - (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) + (-12 (-5 *3 (-323 *5)) (-5 *4 (-931)) (-4 *5 (-565)) (-4 *5 (-859)) + (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-324 (-171 *4))) (-4 *4 (-566)) (-4 *4 (-860)) - (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) + (-12 (-5 *3 (-323 (-171 *4))) (-4 *4 (-565)) (-4 *4 (-859)) + (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-324 (-171 *5))) (-5 *4 (-932)) (-4 *5 (-566)) - (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) - (-5 *1 (-795 *5))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1190)) (-5 *6 (-654 (-622 *3))) - (-5 *5 (-622 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *7))) - (-4 *7 (-13 (-462) (-148) (-1051 (-574)) (-649 (-574)))) - (-5 *2 (-2 (|:| -2399 *3) (|:| |coeff| *3))) - (-5 *1 (-567 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-781)) (-5 *3 (-954 *5)) (-4 *5 (-1062)) - (-5 *1 (-1178 *4 *5)) (-14 *4 (-932)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 (-781))) (-5 *3 (-781)) (-5 *1 (-1178 *4 *5)) - (-14 *4 (-932)) (-4 *5 (-1062)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 (-781))) (-5 *3 (-954 *5)) (-4 *5 (-1062)) - (-5 *1 (-1178 *4 *5)) (-14 *4 (-932))))) -(((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1172))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1062)) - (-4 *2 (-13 (-414) (-1051 *4) (-372) (-1216) (-292))) - (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1257 *4)))) - ((*1 *1 *1) (-4 *1 (-555))) - ((*1 *2 *1) (-12 (-5 *2 (-932)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) - ((*1 *2 *1) (-12 (-5 *2 (-932)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) - ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-829 *3)) (-4 *3 (-860)))) - ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) - ((*1 *2 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1231)) (-5 *2 (-781)))) - ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1228 *3)) (-4 *3 (-1231)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-1015)) - (-4 *2 (-1062))))) -(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-52)) (-5 *1 (-1209))))) -(((*1 *2) - (-12 (-14 *4 (-781)) (-4 *5 (-1231)) (-5 *2 (-135)) - (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-372)) (-5 *2 (-135)) (-5 *1 (-336 *3 *4)) - (-4 *3 (-337 *4)))) - ((*1 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-174)))) - ((*1 *2 *1) - (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-574)) - (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) - (-5 *2 (-574)) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-960 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-993 *3)) (-4 *3 (-1062)) (-5 *2 (-932)))) - ((*1 *2) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-372)) (-5 *2 (-135))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-781)) (-4 *2 (-1113)) - (-5 *1 (-688 *2))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1186 *7)) - (-4 *5 (-1062)) (-4 *7 (-1062)) (-4 *2 (-1257 *5)) - (-5 *1 (-511 *5 *2 *6 *7)) (-4 *6 (-1257 *2))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3)) (-4 *3 (-860))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-607))) (-5 *1 (-607))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1216)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-566) (-1051 (-574)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1216) (-440 (-171 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-566) (-1051 (-574)))) - (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 (-171 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574)))) - (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1190)) - (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) - (-5 *1 (-1220 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062))))) + (-12 (-5 *3 (-323 (-171 *5))) (-5 *4 (-931)) (-4 *5 (-565)) + (-4 *5 (-859)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) + (-5 *1 (-794 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1230))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1171)) (-5 *4 (-573)) (-5 *5 (-698 (-171 (-227)))) + (-5 *2 (-1047)) (-5 *1 (-763))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-573)) (-5 *1 (-427 *2)) (-4 *2 (-565))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-857) (-314) (-148) (-1034))) + (-5 *2 (-653 (-1058 *5 *6))) (-5 *1 (-1307 *5 *6 *7)) + (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-857) (-314) (-148) (-1034))) + (-5 *2 (-653 (-1058 *5 *6))) (-5 *1 (-1307 *5 *6 *7)) + (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 (-962 *4))) + (-4 *4 (-13 (-857) (-314) (-148) (-1034))) + (-5 *2 (-653 (-1058 *4 *5))) (-5 *1 (-1307 *4 *5 *6)) + (-14 *5 (-653 (-1189))) (-14 *6 (-653 (-1189)))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) - (-4 *3 (-1113))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1087)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113)) - (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112))))) + (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-653 + (-2 (|:| -3583 (-780)) + (|:| |eqns| + (-653 + (-2 (|:| |det| *7) (|:| |rows| (-653 (-573))) + (|:| |cols| (-653 (-573)))))) + (|:| |fgb| (-653 *7))))) + (-4 *7 (-959 *4 *6 *5)) (-4 *4 (-13 (-314) (-148))) + (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-780)) + (-5 *1 (-934 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) + (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385)))) + (-5 *2 (-1047)) (-5 *1 (-755))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1061)) + (-4 *2 (-13 (-413) (-1050 *4) (-371) (-1215) (-291))) + (-5 *1 (-452 *4 *3 *2)) (-4 *3 (-1256 *4)))) + ((*1 *1 *1) (-4 *1 (-554))) + ((*1 *2 *1) (-12 (-5 *2 (-931)) (-5 *1 (-681 *3)) (-4 *3 (-859)))) + ((*1 *2 *1) (-12 (-5 *2 (-931)) (-5 *1 (-686 *3)) (-4 *3 (-859)))) + ((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-828 *3)) (-4 *3 (-859)))) + ((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-903 *3)) (-4 *3 (-859)))) + ((*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1230)) (-5 *2 (-780)))) + ((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-1227 *3)) (-4 *3 (-1230)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-1014)) + (-4 *2 (-1061))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) + (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G)))) (-5 *2 (-1047)) + (-5 *1 (-757))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-883))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-699 *8)) (-4 *8 (-960 *5 *7 *6)) - (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1190)))) - (-4 *7 (-803)) + (-12 (-5 *3 (-698 *8)) (-4 *8 (-959 *5 *7 *6)) + (-4 *5 (-13 (-314) (-148))) (-4 *6 (-13 (-859) (-623 (-1189)))) + (-4 *7 (-802)) (-5 *2 - (-654 - (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) - (|:| |wcond| (-654 (-963 *5))) + (-653 + (-2 (|:| |eqzro| (-653 *8)) (|:| |neqzro| (-653 *8)) + (|:| |wcond| (-653 (-962 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1281 (-417 (-963 *5)))) - (|:| -1882 (-654 (-1281 (-417 (-963 *5)))))))))) - (-5 *1 (-935 *5 *6 *7 *8)) (-5 *4 (-654 *8)))) + (-2 (|:| |partsol| (-1280 (-416 (-962 *5)))) + (|:| -3914 (-653 (-1280 (-416 (-962 *5)))))))))) + (-5 *1 (-934 *5 *6 *7 *8)) (-5 *4 (-653 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-699 *8)) (-5 *4 (-654 (-1190))) (-4 *8 (-960 *5 *7 *6)) - (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1190)))) - (-4 *7 (-803)) + (-12 (-5 *3 (-698 *8)) (-5 *4 (-653 (-1189))) (-4 *8 (-959 *5 *7 *6)) + (-4 *5 (-13 (-314) (-148))) (-4 *6 (-13 (-859) (-623 (-1189)))) + (-4 *7 (-802)) (-5 *2 - (-654 - (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) - (|:| |wcond| (-654 (-963 *5))) + (-653 + (-2 (|:| |eqzro| (-653 *8)) (|:| |neqzro| (-653 *8)) + (|:| |wcond| (-653 (-962 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1281 (-417 (-963 *5)))) - (|:| -1882 (-654 (-1281 (-417 (-963 *5)))))))))) - (-5 *1 (-935 *5 *6 *7 *8)))) + (-2 (|:| |partsol| (-1280 (-416 (-962 *5)))) + (|:| -3914 (-653 (-1280 (-416 (-962 *5)))))))))) + (-5 *1 (-934 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-699 *7)) (-4 *7 (-960 *4 *6 *5)) - (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) - (-4 *6 (-803)) + (-12 (-5 *3 (-698 *7)) (-4 *7 (-959 *4 *6 *5)) + (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) + (-4 *6 (-802)) (-5 *2 - (-654 - (-2 (|:| |eqzro| (-654 *7)) (|:| |neqzro| (-654 *7)) - (|:| |wcond| (-654 (-963 *4))) + (-653 + (-2 (|:| |eqzro| (-653 *7)) (|:| |neqzro| (-653 *7)) + (|:| |wcond| (-653 (-962 *4))) (|:| |bsoln| - (-2 (|:| |partsol| (-1281 (-417 (-963 *4)))) - (|:| -1882 (-654 (-1281 (-417 (-963 *4)))))))))) - (-5 *1 (-935 *4 *5 *6 *7)))) + (-2 (|:| |partsol| (-1280 (-416 (-962 *4)))) + (|:| -3914 (-653 (-1280 (-416 (-962 *4)))))))))) + (-5 *1 (-934 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-699 *9)) (-5 *5 (-932)) (-4 *9 (-960 *6 *8 *7)) - (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1190)))) - (-4 *8 (-803)) + (-12 (-5 *3 (-698 *9)) (-5 *5 (-931)) (-4 *9 (-959 *6 *8 *7)) + (-4 *6 (-13 (-314) (-148))) (-4 *7 (-13 (-859) (-623 (-1189)))) + (-4 *8 (-802)) (-5 *2 - (-654 - (-2 (|:| |eqzro| (-654 *9)) (|:| |neqzro| (-654 *9)) - (|:| |wcond| (-654 (-963 *6))) + (-653 + (-2 (|:| |eqzro| (-653 *9)) (|:| |neqzro| (-653 *9)) + (|:| |wcond| (-653 (-962 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1281 (-417 (-963 *6)))) - (|:| -1882 (-654 (-1281 (-417 (-963 *6)))))))))) - (-5 *1 (-935 *6 *7 *8 *9)) (-5 *4 (-654 *9)))) + (-2 (|:| |partsol| (-1280 (-416 (-962 *6)))) + (|:| -3914 (-653 (-1280 (-416 (-962 *6)))))))))) + (-5 *1 (-934 *6 *7 *8 *9)) (-5 *4 (-653 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 (-1190))) (-5 *5 (-932)) - (-4 *9 (-960 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) - (-4 *7 (-13 (-860) (-624 (-1190)))) (-4 *8 (-803)) + (-12 (-5 *3 (-698 *9)) (-5 *4 (-653 (-1189))) (-5 *5 (-931)) + (-4 *9 (-959 *6 *8 *7)) (-4 *6 (-13 (-314) (-148))) + (-4 *7 (-13 (-859) (-623 (-1189)))) (-4 *8 (-802)) (-5 *2 - (-654 - (-2 (|:| |eqzro| (-654 *9)) (|:| |neqzro| (-654 *9)) - (|:| |wcond| (-654 (-963 *6))) + (-653 + (-2 (|:| |eqzro| (-653 *9)) (|:| |neqzro| (-653 *9)) + (|:| |wcond| (-653 (-962 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1281 (-417 (-963 *6)))) - (|:| -1882 (-654 (-1281 (-417 (-963 *6)))))))))) - (-5 *1 (-935 *6 *7 *8 *9)))) + (-2 (|:| |partsol| (-1280 (-416 (-962 *6)))) + (|:| -3914 (-653 (-1280 (-416 (-962 *6)))))))))) + (-5 *1 (-934 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-699 *8)) (-5 *4 (-932)) (-4 *8 (-960 *5 *7 *6)) - (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1190)))) - (-4 *7 (-803)) + (-12 (-5 *3 (-698 *8)) (-5 *4 (-931)) (-4 *8 (-959 *5 *7 *6)) + (-4 *5 (-13 (-314) (-148))) (-4 *6 (-13 (-859) (-623 (-1189)))) + (-4 *7 (-802)) (-5 *2 - (-654 - (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) - (|:| |wcond| (-654 (-963 *5))) + (-653 + (-2 (|:| |eqzro| (-653 *8)) (|:| |neqzro| (-653 *8)) + (|:| |wcond| (-653 (-962 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1281 (-417 (-963 *5)))) - (|:| -1882 (-654 (-1281 (-417 (-963 *5)))))))))) - (-5 *1 (-935 *5 *6 *7 *8)))) + (-2 (|:| |partsol| (-1280 (-416 (-962 *5)))) + (|:| -3914 (-653 (-1280 (-416 (-962 *5)))))))))) + (-5 *1 (-934 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 *9)) (-5 *5 (-1172)) - (-4 *9 (-960 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) - (-4 *7 (-13 (-860) (-624 (-1190)))) (-4 *8 (-803)) (-5 *2 (-574)) - (-5 *1 (-935 *6 *7 *8 *9)))) + (-12 (-5 *3 (-698 *9)) (-5 *4 (-653 *9)) (-5 *5 (-1171)) + (-4 *9 (-959 *6 *8 *7)) (-4 *6 (-13 (-314) (-148))) + (-4 *7 (-13 (-859) (-623 (-1189)))) (-4 *8 (-802)) (-5 *2 (-573)) + (-5 *1 (-934 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 (-1190))) (-5 *5 (-1172)) - (-4 *9 (-960 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) - (-4 *7 (-13 (-860) (-624 (-1190)))) (-4 *8 (-803)) (-5 *2 (-574)) - (-5 *1 (-935 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-699 *8)) (-5 *4 (-1172)) (-4 *8 (-960 *5 *7 *6)) - (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1190)))) - (-4 *7 (-803)) (-5 *2 (-574)) (-5 *1 (-935 *5 *6 *7 *8)))) + (-12 (-5 *3 (-698 *9)) (-5 *4 (-653 (-1189))) (-5 *5 (-1171)) + (-4 *9 (-959 *6 *8 *7)) (-4 *6 (-13 (-314) (-148))) + (-4 *7 (-13 (-859) (-623 (-1189)))) (-4 *8 (-802)) (-5 *2 (-573)) + (-5 *1 (-934 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-698 *8)) (-5 *4 (-1171)) (-4 *8 (-959 *5 *7 *6)) + (-4 *5 (-13 (-314) (-148))) (-4 *6 (-13 (-859) (-623 (-1189)))) + (-4 *7 (-802)) (-5 *2 (-573)) (-5 *1 (-934 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-699 *10)) (-5 *4 (-654 *10)) (-5 *5 (-932)) - (-5 *6 (-1172)) (-4 *10 (-960 *7 *9 *8)) (-4 *7 (-13 (-315) (-148))) - (-4 *8 (-13 (-860) (-624 (-1190)))) (-4 *9 (-803)) (-5 *2 (-574)) - (-5 *1 (-935 *7 *8 *9 *10)))) + (-12 (-5 *3 (-698 *10)) (-5 *4 (-653 *10)) (-5 *5 (-931)) + (-5 *6 (-1171)) (-4 *10 (-959 *7 *9 *8)) (-4 *7 (-13 (-314) (-148))) + (-4 *8 (-13 (-859) (-623 (-1189)))) (-4 *9 (-802)) (-5 *2 (-573)) + (-5 *1 (-934 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-699 *10)) (-5 *4 (-654 (-1190))) (-5 *5 (-932)) - (-5 *6 (-1172)) (-4 *10 (-960 *7 *9 *8)) (-4 *7 (-13 (-315) (-148))) - (-4 *8 (-13 (-860) (-624 (-1190)))) (-4 *9 (-803)) (-5 *2 (-574)) - (-5 *1 (-935 *7 *8 *9 *10)))) + (-12 (-5 *3 (-698 *10)) (-5 *4 (-653 (-1189))) (-5 *5 (-931)) + (-5 *6 (-1171)) (-4 *10 (-959 *7 *9 *8)) (-4 *7 (-13 (-314) (-148))) + (-4 *8 (-13 (-859) (-623 (-1189)))) (-4 *9 (-802)) (-5 *2 (-573)) + (-5 *1 (-934 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-699 *9)) (-5 *4 (-932)) (-5 *5 (-1172)) - (-4 *9 (-960 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) - (-4 *7 (-13 (-860) (-624 (-1190)))) (-4 *8 (-803)) (-5 *2 (-574)) - (-5 *1 (-935 *6 *7 *8 *9))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1078 *5 *6 *7)) - (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4091 *4)))) - (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *2 *3) - (-12 (-5 *3 (-699 (-417 (-963 *4)))) (-4 *4 (-462)) - (-5 *2 (-654 (-3 (-417 (-963 *4)) (-1179 (-1190) (-963 *4))))) - (-5 *1 (-300 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-932)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-270))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-315) (-148))) (-4 *4 (-13 (-860) (-624 (-1190)))) - (-4 *5 (-803)) (-5 *1 (-935 *3 *4 *5 *2)) (-4 *2 (-960 *3 *5 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-377)) (-5 *2 (-932)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1281 *4)) (-4 *4 (-358)) (-5 *2 (-932)) - (-5 *1 (-538 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-177))) (-5 *1 (-1098))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-494 *3))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-654 *11)) (-5 *5 (-654 (-1186 *9))) - (-5 *6 (-654 *9)) (-5 *7 (-654 *12)) (-5 *8 (-654 (-781))) - (-4 *11 (-860)) (-4 *9 (-315)) (-4 *12 (-960 *9 *10 *11)) - (-4 *10 (-803)) (-5 *2 (-654 (-1186 *12))) - (-5 *1 (-717 *10 *11 *9 *12)) (-5 *3 (-1186 *12))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-372)) (-5 *2 (-654 (-1170 *4))) (-5 *1 (-293 *4 *5)) - (-5 *3 (-1170 *4)) (-4 *5 (-1272 *4))))) + (-12 (-5 *3 (-698 *9)) (-5 *4 (-931)) (-5 *5 (-1171)) + (-4 *9 (-959 *6 *8 *7)) (-4 *6 (-13 (-314) (-148))) + (-4 *7 (-13 (-859) (-623 (-1189)))) (-4 *8 (-802)) (-5 *2 (-573)) + (-5 *1 (-934 *6 *7 *8 *9))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-780)) (-4 *2 (-1112)) + (-5 *1 (-687 *2))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1001 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1120 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113)) - (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-758))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1190)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1190)) (-5 *2 (-112)) (-5 *1 (-622 *4)) - (-4 *4 (-1113)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-622 *4)) (-4 *4 (-1113)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-845 *3)) (-4 *3 (-1113)) (-5 *2 (-112)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1113)) (-5 *2 (-112)) (-5 *1 (-898 *5 *3 *4)) - (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *6)) (-4 *6 (-897 *5)) (-4 *5 (-1113)) - (-5 *2 (-112)) (-5 *1 (-898 *5 *6 *4)) (-4 *4 (-624 (-903 *5)))))) + (-12 (-4 *4 (-1234)) (-4 *5 (-1256 *4)) + (-5 *2 + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-416 *5)) + (|:| |c2| (-416 *5)) (|:| |deg| (-780)))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1256 (-416 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) - ((*1 *2) (-12 (-5 *2 (-915 (-574))) (-5 *1 (-928))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270))))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) - (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))) + (-12 (-5 *2 (-1185 (-573))) (-5 *1 (-952)) (-5 *3 (-573)))) + ((*1 *2 *2) + (-12 (-4 *3 (-314)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) + (-5 *1 (-1136 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-902 *4)) (-4 *4 (-1112)) (-4 *2 (-1112)) + (-5 *1 (-899 *4 *2))))) +(((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-1018))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1086)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) + (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) + (-5 *2 + (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) + (|:| |success| (-112)))) + (-5 *1 (-798)) (-5 *5 (-573))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-802)) + (-4 *3 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $))))) (-4 *5 (-565)) + (-5 *1 (-741 *4 *3 *5 *2)) (-4 *2 (-959 (-416 (-962 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1061)) (-4 *5 (-802)) + (-4 *3 + (-13 (-859) + (-10 -8 (-15 -1835 ((-1189) $)) + (-15 -1487 ((-3 $ "failed") (-1189)))))) + (-5 *1 (-996 *4 *5 *3 *2)) (-4 *2 (-959 (-962 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-653 *6)) + (-4 *6 + (-13 (-859) + (-10 -8 (-15 -1835 ((-1189) $)) + (-15 -1487 ((-3 $ "failed") (-1189)))))) + (-4 *4 (-1061)) (-4 *5 (-802)) (-5 *1 (-996 *4 *5 *6 *2)) + (-4 *2 (-959 (-962 *4) *5 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-653 (-1106 (-387)))) (-5 *3 (-653 (-269))) + (-5 *1 (-267)))) + ((*1 *1 *2) (-12 (-5 *2 (-653 (-1106 (-387)))) (-5 *1 (-269)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-653 (-1106 (-387)))) (-5 *1 (-477)))) + ((*1 *2 *1) (-12 (-5 *2 (-653 (-1106 (-387)))) (-5 *1 (-477))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1185 *1)) (-5 *3 (-1189)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1185 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-962 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1189)) (-4 *1 (-29 *3)) (-4 *3 (-565)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-565))))) +(((*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061))))) +(((*1 *2 *3) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-570)) (-5 *3 (-573))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-314)) (-5 *1 (-464 *3 *2)) (-4 *2 (-1256 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-314)) (-5 *1 (-469 *3 *2)) (-4 *2 (-1256 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-314)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-780))) + (-5 *1 (-548 *3 *2 *4 *5)) (-4 *2 (-1256 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-653 *1)) (-4 *1 (-314))))) (((*1 *2 *1) - (-12 (-4 *1 (-705 *3)) (-4 *3 (-1113)) - (-5 *2 (-654 (-2 (|:| -1908 *3) (|:| -3975 (-781)))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *5 (-1005 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) - (-4 *3 (-382 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *5 (-1005 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) - (-5 *1 (-513 *4 *5 *6 *3)) (-4 *6 (-382 *4)) (-4 *3 (-382 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-699 *5)) (-4 *5 (-1005 *4)) (-4 *4 (-566)) - (-5 *2 (-2 (|:| |num| (-699 *4)) (|:| |den| *4))) - (-5 *1 (-703 *4 *5)))) + (-12 (-4 *1 (-1256 *3)) (-4 *3 (-1061)) (-5 *2 (-1185 *3))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-653 (-621 *2))) (-5 *4 (-653 (-1189))) + (-4 *2 (-13 (-439 (-171 *5)) (-1014) (-1215))) (-4 *5 (-565)) + (-5 *1 (-609 *5 *6 *2)) (-4 *6 (-13 (-439 *5) (-1014) (-1215)))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-653 (-902 *3))) (-5 *1 (-902 *3)) + (-4 *3 (-1112))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1280 *1)) (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) + (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4)))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-171 (-227)))) (-5 *2 (-1047)) + (-5 *1 (-763))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-573)) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) + (-4 *4 (-381 *3)) (-4 *5 (-381 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1 (-387))) (-5 *1 (-1052))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-371) (-857))) (-5 *2 (-427 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-372) (-148) (-1051 (-417 (-574))))) - (-4 *6 (-1257 *5)) - (-5 *2 (-2 (|:| -4122 *7) (|:| |rh| (-654 (-417 *6))))) - (-5 *1 (-817 *5 *6 *7 *3)) (-5 *4 (-654 (-417 *6))) - (-4 *7 (-666 *6)) (-4 *3 (-666 (-417 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *5 (-1005 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1250 *4 *5 *3)) - (-4 *3 (-1257 *5))))) + (-12 (-4 *4 (-13 (-371) (-857))) (-5 *2 (-427 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-372) (-148) (-1051 (-574)))) - (-4 *5 (-1257 *4)) (-5 *2 (-654 (-417 *5))) (-5 *1 (-1029 *4 *5)) - (-5 *3 (-417 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1281 *4)) (-4 *4 (-13 (-1062) (-649 (-574)))) - (-5 *2 (-112)) (-5 *1 (-1309 *4))))) -(((*1 *2) - (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) - (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-1286)) - (-5 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *7 (-1084 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) - (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-1286)) - (-5 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *7 (-1084 *3 *4 *5 *6))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1078 *5 *6 *7)) - (-5 *2 (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))) - (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3))))) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) - (-5 *4 (-699 (-1186 *8))) (-4 *5 (-1062)) (-4 *8 (-1062)) - (-4 *6 (-1257 *5)) (-5 *2 (-699 *6)) (-5 *1 (-511 *5 *6 *7 *8)) - (-4 *7 (-1257 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-622 *1))) (-4 *1 (-310))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-5 *1 (-1160 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1281 *4)) (-4 *4 (-1062)) (-4 *2 (-1257 *4)) - (-5 *1 (-454 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-417 (-1186 (-324 *5)))) (-5 *3 (-1281 (-324 *5))) - (-5 *4 (-574)) (-4 *5 (-566)) (-5 *1 (-1143 *5))))) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1271 *4)) (-5 *1 (-1273 *4 *2)) + (-4 *4 (-38 (-416 (-573))))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112))))) +(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-314)))) + ((*1 *2 *3) + (-12 (-5 *3 (-931)) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192)))) + ((*1 *1 *1) (-12 (-4 *1 (-683 *2)) (-4 *2 (-1230)))) + ((*1 *1 *1) (-4 *1 (-878 *2))) + ((*1 *1 *1) + (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-801)) + (-4 *4 (-859))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1062)) - (-4 *2 (-1241 *3))))) -(((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) - (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))) + (-12 (-5 *2 (-653 (-52))) (-5 *1 (-902 *3)) (-4 *3 (-1112))))) +(((*1 *2 *2) + (-12 (-5 *2 (-653 *6)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-314)) + (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-456 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-653 *7)) (-5 *3 (-1171)) (-4 *7 (-959 *4 *5 *6)) + (-4 *4 (-314)) (-4 *5 (-802)) (-4 *6 (-859)) + (-5 *1 (-456 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-653 *7)) (-5 *3 (-1171)) (-4 *7 (-959 *4 *5 *6)) + (-4 *4 (-314)) (-4 *5 (-802)) (-4 *6 (-859)) + (-5 *1 (-456 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 *8)) (-5 *4 (-653 *7)) (-4 *7 (-859)) + (-4 *8 (-959 *5 *6 *7)) (-4 *5 (-565)) (-4 *6 (-802)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1280 (-416 *8)) "failed")) + (|:| -3914 (-653 (-1280 (-416 *8)))))) + (-5 *1 (-678 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) + (-4 *3 (-1256 *4)) (-5 *1 (-818 *4 *3 *2 *5)) (-4 *2 (-665 *3)) + (-4 *5 (-665 (-416 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-416 *5)) + (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *5 (-1256 *4)) + (-5 *1 (-818 *4 *5 *2 *6)) (-4 *2 (-665 *5)) (-4 *6 (-665 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1281 *4)) (-4 *4 (-358)) (-5 *2 (-1186 *4)) - (-5 *1 (-538 *4))))) -(((*1 *2) - (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) - (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-1286)) - (-5 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *7 (-1084 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) - (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-1286)) - (-5 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *7 (-1084 *3 *4 *5 *6))))) + (-12 (-5 *3 (-653 (-323 (-227)))) (-5 *2 (-112)) (-5 *1 (-273))))) +(((*1 *2 *1) (-12 (-5 *2 (-700 (-1147))) (-5 *1 (-1163))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-3 *3 (-653 *1))) + (-4 *1 (-1083 *4 *5 *6 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-1281 (-781))) (-5 *1 (-685 *3)) (-4 *3 (-1113))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-699 *2)) (-5 *4 (-574)) - (-4 *2 (-13 (-315) (-10 -8 (-15 -2827 ((-428 $) $))))) - (-4 *5 (-1257 *2)) (-5 *1 (-509 *2 *5 *6)) (-4 *6 (-419 *2 *5))))) -(((*1 *2) - (-12 (-4 *3 (-13 (-566) (-1051 (-574)))) (-5 *2 (-1286)) - (-5 *1 (-443 *3 *4)) (-4 *4 (-440 *3))))) + (-12 (-5 *2 (-700 (-976 *3))) (-5 *1 (-976 *3)) (-4 *3 (-1112))))) +(((*1 *2 *1) (-12 (-5 *2 (-653 (-621 *1))) (-4 *1 (-309))))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-780)) (-5 *4 (-931)) (-5 *2 (-1285)) (-5 *1 (-1281)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-780)) (-5 *4 (-931)) (-5 *2 (-1285)) (-5 *1 (-1282))))) +(((*1 *1 *2) + (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-5 *1 (-1159 *3))))) +(((*1 *2 *1) (-12 (-5 *1 (-1038 *2)) (-4 *2 (-1230))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-902 *4)) (-4 *4 (-1112)) (-5 *1 (-899 *4 *3)) + (-4 *3 (-1112))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-932)) (-4 *5 (-566)) (-5 *2 (-699 *5)) - (-5 *1 (-967 *5 *3)) (-4 *3 (-666 *5))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1172)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) - (-5 *6 (-227)) (-5 *2 (-1048)) (-5 *1 (-762))))) -(((*1 *1 *1) (-4 *1 (-639))) - ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015) (-1216)))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1078 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *2 (-860)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) - (-4 *4 (-860))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-437 *3 *2)) (-4 *3 (-13 (-174) (-38 (-417 (-574))))) - (-4 *2 (-13 (-860) (-21)))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) - (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1048)) - (-5 *1 (-758))))) + (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 *4)) + (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-1171)) (-5 *5 (-698 (-227))) + (-5 *2 (-1047)) (-5 *1 (-756))))) (((*1 *2 *3) - (-12 (-4 *4 (-1062)) (-5 *2 (-112)) (-5 *1 (-454 *4 *3)) - (-4 *3 (-1257 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *5 (-860)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *6 (-227)) - (-5 *3 (-574)) (-5 *2 (-1048)) (-5 *1 (-762))))) -(((*1 *2 *1) (-12 (-4 *1 (-1162 *3)) (-4 *3 (-1231)) (-5 *2 (-112))))) + (-12 (-4 *4 (-1230)) (-5 *2 (-780)) (-5 *1 (-184 *4 *3)) + (-4 *3 (-683 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4)))) - (-5 *1 (-1154 *3 *4)) (-4 *3 (-13 (-1113) (-34))) - (-4 *4 (-13 (-1113) (-34)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283))))) -(((*1 *1 *1) (-4 *1 (-639))) + (|partial| -12 (-4 *3 (-1124)) (-4 *3 (-1112)) (-5 *2 (-653 *1)) + (-4 *1 (-439 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-653 (-902 *3))) (-5 *1 (-902 *3)) + (-4 *3 (-1112)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) + (-5 *2 (-653 *1)) (-4 *1 (-959 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1061)) + (-4 *7 (-959 *6 *4 *5)) (-5 *2 (-653 *3)) + (-5 *1 (-960 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-371) + (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) + (-15 -2975 (*7 $)))))))) +(((*1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-376)) (-4 *2 (-371)))) + ((*1 *2 *3) + (-12 (-5 *3 (-931)) (-5 *2 (-1280 *4)) (-5 *1 (-537 *4)) + (-4 *4 (-357))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1189)) (-4 *4 (-565)) (-5 *1 (-159 *4 *2)) + (-4 *2 (-439 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1104 *2)) (-4 *2 (-439 *4)) (-4 *4 (-565)) + (-5 *1 (-159 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1104 *1)) (-4 *1 (-161)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1189))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-1112)) + (-4 *4 (-1112))))) +(((*1 *1 *1) (-4 *1 (-638))) ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015) (-1216)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1248 *3)) (-4 *3 (-1231))))) -(((*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1113)) (-5 *2 (-781))))) + (-12 (-4 *3 (-565)) (-5 *1 (-639 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014) (-1215)))))) +(((*1 *2 *3 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) +(((*1 *1 *1) (-4 *1 (-638))) + ((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-639 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014) (-1215)))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-621 *3)) (-5 *5 (-1 (-1185 *3) (-1185 *3))) + (-4 *3 (-13 (-27) (-439 *6))) (-4 *6 (-565)) (-5 *2 (-595 *3)) + (-5 *1 (-560 *6 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-358)) (-5 *2 (-428 (-1186 (-1186 *4)))) - (-5 *1 (-1229 *4)) (-5 *3 (-1186 (-1186 *4)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-853 *4)) (-5 *3 (-622 *4)) (-5 *5 (-112)) - (-4 *4 (-13 (-1216) (-29 *6))) - (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574)))) - (-5 *1 (-226 *6 *4))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) - (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1231)) (-5 *1 (-184 *3 *2)) (-4 *2 (-684 *3))))) + (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1207 *4 *5)) + (-4 *4 (-1112)) (-4 *5 (-1112))))) (((*1 *2 *3) - (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1208 *4 *5)) - (-4 *4 (-1113)) (-4 *5 (-1113))))) + (-12 + (-5 *3 + (-653 + (-2 (|:| -3583 (-780)) + (|:| |eqns| + (-653 + (-2 (|:| |det| *7) (|:| |rows| (-653 (-573))) + (|:| |cols| (-653 (-573)))))) + (|:| |fgb| (-653 *7))))) + (-4 *7 (-959 *4 *6 *5)) (-4 *4 (-13 (-314) (-148))) + (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-780)) + (-5 *1 (-934 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-1268 *3)) (-4 *3 (-1230)) (-5 *2 (-780))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-416 *2)) (-4 *2 (-1256 *5)) + (-5 *1 (-816 *5 *2 *3 *6)) + (-4 *5 (-13 (-371) (-148) (-1050 (-416 (-573))))) + (-4 *3 (-665 *2)) (-4 *6 (-665 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-653 (-416 *2))) (-4 *2 (-1256 *5)) + (-5 *1 (-816 *5 *2 *3 *6)) + (-4 *5 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *3 (-665 *2)) + (-4 *6 (-665 (-416 *2)))))) (((*1 *2 *1) - (-12 (-4 *2 (-1113)) (-5 *1 (-975 *2 *3)) (-4 *3 (-1113))))) + (-12 (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) + (-5 *1 (-1153 *3 *4)) (-4 *3 (-13 (-1112) (-34))) + (-4 *4 (-13 (-1112) (-34)))))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) + (-5 *1 (-1140 *3 *2)) (-4 *3 (-1256 *2))))) +(((*1 *1 *1) (-4 *1 (-638))) + ((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-639 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014) (-1215)))))) +(((*1 *2) + (-12 (-4 *3 (-565)) (-5 *2 (-653 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-426 *3))))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1189)) + (-4 *4 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) + (-5 *1 (-584 *4 *2)) + (-4 *2 (-13 (-1215) (-969) (-1151) (-29 *4)))))) +(((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1061)) + (-4 *2 (-1240 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) - (-4 *6 (-803)) (-5 *2 (-417 (-963 *4))) (-5 *1 (-935 *4 *5 *6 *3)) - (-4 *3 (-960 *4 *6 *5)))) + (-12 (-5 *3 (-1280 *5)) (-4 *5 (-13 (-1061) (-648 *4))) + (-4 *4 (-565)) (-5 *2 (-112)) (-5 *1 (-647 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-301 (-852 *3))) (-4 *3 (-13 (-27) (-1215) (-439 *5))) + (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) + (-5 *2 + (-3 (-852 *3) + (-2 (|:| |leftHandLimit| (-3 (-852 *3) "failed")) + (|:| |rightHandLimit| (-3 (-852 *3) "failed"))) + "failed")) + (-5 *1 (-645 *5 *3)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-301 *3)) (-5 *5 (-1171)) + (-4 *3 (-13 (-27) (-1215) (-439 *6))) + (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) + (-5 *2 (-852 *3)) (-5 *1 (-645 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-301 (-852 (-962 *5)))) (-4 *5 (-461)) + (-5 *2 + (-3 (-852 (-416 (-962 *5))) + (-2 (|:| |leftHandLimit| (-3 (-852 (-416 (-962 *5))) "failed")) + (|:| |rightHandLimit| (-3 (-852 (-416 (-962 *5))) "failed"))) + "failed")) + (-5 *1 (-646 *5)) (-5 *3 (-416 (-962 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-301 (-416 (-962 *5)))) (-5 *3 (-416 (-962 *5))) + (-4 *5 (-461)) + (-5 *2 + (-3 (-852 *3) + (-2 (|:| |leftHandLimit| (-3 (-852 *3) "failed")) + (|:| |rightHandLimit| (-3 (-852 *3) "failed"))) + "failed")) + (-5 *1 (-646 *5)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-301 (-416 (-962 *6)))) (-5 *5 (-1171)) + (-5 *3 (-416 (-962 *6))) (-4 *6 (-461)) (-5 *2 (-852 *3)) + (-5 *1 (-646 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-915 (-573))) (-5 *4 (-573)) (-5 *2 (-698 *4)) + (-5 *1 (-1040 *5)) (-4 *5 (-1061)))) ((*1 *2 *3) - (-12 (-5 *3 (-699 *7)) (-4 *7 (-960 *4 *6 *5)) - (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) - (-4 *6 (-803)) (-5 *2 (-699 (-417 (-963 *4)))) - (-5 *1 (-935 *4 *5 *6 *7)))) + (-12 (-5 *3 (-653 (-573))) (-5 *2 (-698 (-573))) (-5 *1 (-1040 *4)) + (-4 *4 (-1061)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-915 (-573)))) (-5 *4 (-573)) + (-5 *2 (-653 (-698 *4))) (-5 *1 (-1040 *5)) (-4 *5 (-1061)))) ((*1 *2 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-960 *4 *6 *5)) - (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) - (-4 *6 (-803)) (-5 *2 (-654 (-417 (-963 *4)))) - (-5 *1 (-935 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-372)) (-4 *7 (-1257 *5)) (-4 *4 (-734 *5 *7)) - (-5 *2 (-2 (|:| -4340 (-699 *6)) (|:| |vec| (-1281 *5)))) - (-5 *1 (-821 *5 *6 *7 *4 *3)) (-4 *6 (-666 *5)) (-4 *3 (-666 *4))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-1172)) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-82 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1048)) - (-5 *1 (-760))))) -(((*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-112))))) + (-12 (-5 *3 (-653 (-653 (-573)))) (-5 *2 (-653 (-698 (-573)))) + (-5 *1 (-1040 *4)) (-4 *4 (-1061))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) + (-5 *2 (-653 (-653 (-653 (-953 *3)))))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1177 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1061))))) (((*1 *2 *3) - (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-366 *4)) - (-4 *4 (-358))))) + (-12 (-4 *4 (-461)) + (-5 *2 + (-653 + (-2 (|:| |eigval| (-3 (-416 (-962 *4)) (-1178 (-1189) (-962 *4)))) + (|:| |geneigvec| (-653 (-698 (-416 (-962 *4)))))))) + (-5 *1 (-299 *4)) (-5 *3 (-698 (-416 (-962 *4))))))) +(((*1 *2 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1230))))) +(((*1 *2 *1) (-12 (-4 *1 (-878 *3)) (-5 *2 (-573))))) +(((*1 *2 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *2)) (-4 *2 (-174)))) + ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-425 *3 *2)) (-4 *3 (-426 *2)))) + ((*1 *2) (-12 (-4 *1 (-426 *2)) (-4 *2 (-174))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *5)) (-4 *4 (-1062)) - (-4 *5 (-860)) (-5 *2 (-963 *4)))) + (-12 (-5 *3 (-780)) (-4 *1 (-749 *4 *5)) (-4 *4 (-1061)) + (-4 *5 (-859)) (-5 *2 (-962 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *5)) (-4 *4 (-1062)) - (-4 *5 (-860)) (-5 *2 (-963 *4)))) + (-12 (-5 *3 (-780)) (-4 *1 (-749 *4 *5)) (-4 *4 (-1061)) + (-4 *5 (-859)) (-5 *2 (-962 *4)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-781)) (-4 *1 (-1272 *4)) (-4 *4 (-1062)) - (-5 *2 (-963 *4)))) + (-12 (-5 *3 (-780)) (-4 *1 (-1271 *4)) (-4 *4 (-1061)) + (-5 *2 (-962 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-781)) (-4 *1 (-1272 *4)) (-4 *4 (-1062)) - (-5 *2 (-963 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-937))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574))))) - (-4 *5 (-1257 *4)) (-5 *2 (-654 (-2 (|:| -3359 *5) (|:| -2692 *5)))) - (-5 *1 (-817 *4 *5 *3 *6)) (-4 *3 (-666 *5)) - (-4 *6 (-666 (-417 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-372) (-148) (-1051 (-417 (-574))))) - (-4 *4 (-1257 *5)) (-5 *2 (-654 (-2 (|:| -3359 *4) (|:| -2692 *4)))) - (-5 *1 (-817 *5 *4 *3 *6)) (-4 *3 (-666 *4)) - (-4 *6 (-666 (-417 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574))))) - (-4 *5 (-1257 *4)) (-5 *2 (-654 (-2 (|:| -3359 *5) (|:| -2692 *5)))) - (-5 *1 (-817 *4 *5 *6 *3)) (-4 *6 (-666 *5)) - (-4 *3 (-666 (-417 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-372) (-148) (-1051 (-417 (-574))))) - (-4 *4 (-1257 *5)) (-5 *2 (-654 (-2 (|:| -3359 *4) (|:| -2692 *4)))) - (-5 *1 (-817 *5 *4 *6 *3)) (-4 *6 (-666 *4)) - (-4 *3 (-666 (-417 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-1286)) (-5 *1 (-876 *4 *5 *6 *7)) - (-4 *4 (-1062)) (-14 *5 (-654 (-1190))) (-14 *6 (-654 *3)) - (-14 *7 *3))) - ((*1 *2 *3) - (-12 (-5 *3 (-781)) (-4 *4 (-1062)) (-4 *5 (-860)) (-4 *6 (-803)) - (-14 *8 (-654 *5)) (-5 *2 (-1286)) - (-5 *1 (-1293 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-960 *4 *6 *5)) - (-14 *9 (-654 *3)) (-14 *10 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-1098))) (-5 *1 (-299))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) - (-5 *2 (-1048)) (-5 *1 (-766))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-654 *6) "failed") (-574) *6 *6)) (-4 *6 (-372)) - (-4 *7 (-1257 *6)) - (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6))) - (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7))))) + (-12 (-5 *3 (-780)) (-4 *1 (-1271 *4)) (-4 *4 (-1061)) + (-5 *2 (-962 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1115 *2 *3 *4 *5 *6)) (-4 *2 (-1112)) (-4 *3 (-1112)) + (-4 *4 (-1112)) (-4 *5 (-1112)) (-4 *6 (-1112))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-416 (-573))) (-5 *1 (-1036 *3)) + (-4 *3 (-13 (-857) (-371) (-1034))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-857) (-371))) (-5 *1 (-1073 *2 *3)) + (-4 *3 (-1256 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1080 *2 *3)) (-4 *2 (-13 (-857) (-371))) + (-4 *3 (-1256 *2))))) (((*1 *2 *3 *4) - (-12 (-4 *2 (-1257 *4)) (-5 *1 (-817 *4 *2 *3 *5)) - (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *3 (-666 *2)) - (-4 *5 (-666 (-417 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1257 *4)) (-5 *1 (-817 *4 *2 *5 *3)) - (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *5 (-666 *2)) - (-4 *3 (-666 (-417 *2)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-833)) (-5 *2 (-1286)) (-5 *1 (-832))))) -(((*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1186 *4)) (-4 *4 (-358)) (-5 *2 (-112)) - (-5 *1 (-366 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1235)) (-4 *3 (-1257 *4)) - (-4 *5 (-1257 (-417 *3))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) - (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) - (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *3)) - (-5 *1 (-990 *4 *5 *6 *3)) (-4 *3 (-1078 *4 *5 *6))))) -(((*1 *1 *1) (-4 *1 (-1073)))) -(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315))))) + (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-4 *3 (-1077 *5 *6 *7)) + (-5 *2 (-653 (-2 (|:| |val| (-112)) (|:| -4090 *4)))) + (-5 *1 (-785 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-700 (-882 (-976 *3) (-976 *3)))) (-5 *1 (-976 *3)) + (-4 *3 (-1112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-595 *3)) (-4 *3 (-371))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) - (-4 *3 (-376 *4)))) - ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-654 (-654 (-227)))) (-5 *4 (-227)) - (-5 *2 (-654 (-954 *4))) (-5 *1 (-1227)) (-5 *3 (-954 *4))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1231))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1231)) - (-4 *5 (-1231)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-781)) - (-4 *7 (-1231)) (-4 *5 (-1231)) (-5 *2 (-246 *6 *5)) - (-5 *1 (-245 *6 *7 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1231)) (-4 *5 (-1231)) - (-4 *2 (-382 *5)) (-5 *1 (-380 *6 *4 *5 *2)) (-4 *4 (-382 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1113)) (-4 *5 (-1113)) - (-4 *2 (-435 *5)) (-5 *1 (-433 *6 *4 *5 *2)) (-4 *4 (-435 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-654 *6)) (-4 *6 (-1231)) - (-4 *5 (-1231)) (-5 *2 (-654 *5)) (-5 *1 (-652 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-969 *6)) (-4 *6 (-1231)) - (-4 *5 (-1231)) (-5 *2 (-969 *5)) (-5 *1 (-968 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1170 *6)) (-4 *6 (-1231)) - (-4 *3 (-1231)) (-5 *2 (-1170 *3)) (-5 *1 (-1168 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1281 *6)) (-4 *6 (-1231)) - (-4 *5 (-1231)) (-5 *2 (-1281 *5)) (-5 *1 (-1280 *6 *5))))) + (-12 (-5 *2 (-698 (-920 *3))) (-5 *1 (-359 *3 *4)) (-14 *3 (-931)) + (-14 *4 (-931)))) + ((*1 *2) + (-12 (-5 *2 (-698 *3)) (-5 *1 (-360 *3 *4)) (-4 *3 (-357)) + (-14 *4 + (-3 (-1185 *3) + (-1280 (-653 (-2 (|:| -3082 *3) (|:| -2575 (-1132))))))))) + ((*1 *2) + (-12 (-5 *2 (-698 *3)) (-5 *1 (-361 *3 *4)) (-4 *3 (-357)) + (-14 *4 (-931))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-416 (-962 *6)) (-1178 (-1189) (-962 *6)))) + (-5 *5 (-780)) (-4 *6 (-461)) (-5 *2 (-653 (-698 (-416 (-962 *6))))) + (-5 *1 (-299 *6)) (-5 *4 (-698 (-416 (-962 *6)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *3 + (-2 (|:| |eigval| (-3 (-416 (-962 *5)) (-1178 (-1189) (-962 *5)))) + (|:| |eigmult| (-780)) (|:| |eigvec| (-653 *4)))) + (-4 *5 (-461)) (-5 *2 (-653 (-698 (-416 (-962 *5))))) + (-5 *1 (-299 *5)) (-5 *4 (-698 (-416 (-962 *5))))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-286)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1303 *3 *4)) (-4 *3 (-1061)) + (-4 *4 (-855))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-1171)) (-5 *5 (-698 (-227))) + (-5 *2 (-1047)) (-5 *1 (-756))))) +(((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-936))))) +(((*1 *1 *1) + (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) +(((*1 *2 *1) (-12 (-4 *1 (-563 *2)) (-4 *2 (-13 (-413) (-1215)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) + (-5 *2 + (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) + (|:| |success| (-112)))) + (-5 *1 (-798)) (-5 *5 (-573))))) +(((*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282)))) + ((*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-323 (-227))) (-5 *1 (-273))))) +(((*1 *2 *1) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-801)))) + ((*1 *2 *1) (-12 (-4 *1 (-717 *3)) (-4 *3 (-1061)) (-5 *2 (-780)))) + ((*1 *2 *1) (-12 (-4 *1 (-861 *3)) (-4 *3 (-1061)) (-5 *2 (-780)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-653 *6)) (-4 *1 (-959 *4 *5 *6)) (-4 *4 (-1061)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 (-780))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-959 *4 *5 *3)) (-4 *4 (-1061)) (-4 *5 (-802)) + (-4 *3 (-859)) (-5 *2 (-780))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-902 *4)) (-4 *4 (-1112)) (-5 *1 (-900 *4 *3)) + (-4 *3 (-1230)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-902 *3)) (-4 *3 (-1112))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-765))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) - (-5 *2 (-654 *4)) (-5 *1 (-1141 *3 *4)) (-4 *3 (-1257 *4)))) + (-12 (-4 *4 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) + (-5 *2 (-653 *4)) (-5 *1 (-1140 *3 *4)) (-4 *3 (-1256 *4)))) ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) - (-5 *2 (-654 *3)) (-5 *1 (-1141 *4 *3)) (-4 *4 (-1257 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-990 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-462)) - (-5 *2 - (-654 - (-2 (|:| |eigval| (-3 (-417 (-963 *4)) (-1179 (-1190) (-963 *4)))) - (|:| |geneigvec| (-654 (-699 (-417 (-963 *4)))))))) - (-5 *1 (-300 *4)) (-5 *3 (-699 (-417 (-963 *4))))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1186 (-574))) (-5 *1 (-953)) (-5 *3 (-574))))) + (-12 (-4 *3 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) + (-5 *2 (-653 *3)) (-5 *1 (-1140 *4 *3)) (-4 *4 (-1256 *3))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-5 *3 (-573)) (-5 *2 (-112)) (-5 *1 (-489))))) +(((*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-227)) (-5 *1 (-312))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-1078 *4 *5 *6)) (-4 *4 (-566)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-990 *4 *5 *6 *2))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-338))))) -(((*1 *2 *1) - (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6)) - (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) - (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3)))))) -(((*1 *2 *3) (-12 (-5 *2 (-574)) (-5 *1 (-579 *3)) (-4 *3 (-1051 *2)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1116 *3 *4 *2 *5 *6)) (-4 *3 (-1113)) (-4 *4 (-1113)) - (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *2 (-1113))))) + (-12 (-5 *3 (-653 (-1189))) (-4 *4 (-1112)) + (-4 *5 (-13 (-1061) (-896 *4) (-623 (-902 *4)))) + (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-439 *5) (-896 *4) (-623 (-902 *4))))))) +(((*1 *1 *1) + (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) +(((*1 *2) (-12 (-5 *2 (-653 (-780))) (-5 *1 (-1283)))) + ((*1 *2 *2) (-12 (-5 *2 (-653 (-780))) (-5 *1 (-1283))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1272 *4)) - (-4 *4 (-38 (-417 (-574)))) - (-5 *2 (-1 (-1170 *4) (-1170 *4) (-1170 *4))) (-5 *1 (-1274 *4 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1281 *3)) (-4 *3 (-1257 *4)) (-4 *4 (-1235)) - (-4 *1 (-351 *4 *3 *5)) (-4 *5 (-1257 (-417 *3)))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1190)) (-5 *1 (-622 *3)) (-4 *3 (-1113))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1186 *5)) (-4 *5 (-462)) (-5 *2 (-654 *6)) - (-5 *1 (-548 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-963 *5)) (-4 *5 (-462)) (-5 *2 (-654 *6)) - (-5 *1 (-548 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858)))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-1296 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) - (-5 *1 (-674 *3 *4)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-674 *3 *4)) (-5 *1 (-1301 *3 *4)) - (-4 *3 (-860)) (-4 *4 (-174))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-654 *5)) (-4 *5 (-1257 *3)) (-4 *3 (-315)) - (-5 *2 (-112)) (-5 *1 (-465 *3 *5))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-462)) - (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-990 *3 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) - (-5 *2 (-112))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-182)))) - ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-319)))) - ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-983)))) - ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1007)))) - ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1049)))) - ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1086))))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-23))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216))))) -(((*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-1286)) (-5 *1 (-1193)))) - ((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-1193))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-831))))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-605 *3)) (-4 *3 (-1062))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-112)) (-5 *5 (-1115 (-781))) (-5 *6 (-781)) - (-5 *2 - (-2 (|:| |contp| (-574)) - (|:| -4219 (-654 (-2 (|:| |irr| *3) (|:| -3186 (-574))))))) - (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574)))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1098))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-654 (-781))) (-5 *1 (-982 *4 *3)) - (-4 *3 (-1257 *4))))) -(((*1 *1 *1) (-4 *1 (-639))) - ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015) (-1216)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1116 *3 *2 *4 *5 *6)) (-4 *3 (-1113)) (-4 *4 (-1113)) - (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *2 (-1113))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-372)) - (-5 *2 (-654 (-2 (|:| C (-699 *5)) (|:| |g| (-1281 *5))))) - (-5 *1 (-991 *5)) (-5 *3 (-699 *5)) (-5 *4 (-1281 *5))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-781)) (-4 *5 (-566)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-982 *5 *3)) (-4 *3 (-1257 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1190))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-762))))) -(((*1 *1) (-5 *1 (-569)))) -(((*1 *2) - (-12 (-5 *2 (-932)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) - ((*1 *2 *2) - (-12 (-5 *2 (-932)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-302 (-417 (-963 *5)))) (-5 *4 (-1190)) - (-4 *5 (-13 (-315) (-148))) - (-5 *2 (-1179 (-654 (-324 *5)) (-654 (-302 (-324 *5))))) - (-5 *1 (-1142 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-1190)) - (-4 *5 (-13 (-315) (-148))) - (-5 *2 (-1179 (-654 (-324 *5)) (-654 (-302 (-324 *5))))) - (-5 *1 (-1142 *5))))) -(((*1 *1) (-5 *1 (-833)))) -(((*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-366 *3)) (-4 *3 (-358))))) -(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1172)) (-5 *1 (-313))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1216)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1062)) (-5 *1 (-722 *3 *2)) (-4 *2 (-1257 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) - (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6))))) + (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-371) (-1215) (-1014))))) + ((*1 *2) + (|partial| -12 (-4 *4 (-1234)) (-4 *5 (-1256 (-416 *2))) + (-4 *2 (-1256 *4)) (-5 *1 (-349 *3 *4 *2 *5)) + (-4 *3 (-350 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-350 *3 *2 *4)) (-4 *3 (-1234)) + (-4 *4 (-1256 (-416 *2))) (-4 *2 (-1256 *3))))) (((*1 *2) - (-12 (-4 *2 (-13 (-440 *3) (-1015))) (-5 *1 (-283 *3 *2)) - (-4 *3 (-566))))) -(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-52)) (-5 *1 (-841))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1078 *5 *6 *7)) - (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4)))) - (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) - (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-781)) (-5 *1 (-571))))) + (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) + (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) + (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3)))))) +(((*1 *2 *3) (-12 (-5 *2 (-573)) (-5 *1 (-578 *3)) (-4 *3 (-1050 *2)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1115 *3 *4 *2 *5 *6)) (-4 *3 (-1112)) (-4 *4 (-1112)) + (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *2 (-1112))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-372) (-148) (-1051 (-574)))) - (-4 *5 (-1257 *4)) - (-5 *2 (-2 (|:| -2399 (-417 *5)) (|:| |coeff| (-417 *5)))) - (-5 *1 (-578 *4 *5)) (-5 *3 (-417 *5))))) -(((*1 *1) (-12 (-4 *1 (-1058 *2)) (-4 *2 (-23))))) -(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1172))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1186 (-574))) (-5 *1 (-953)) (-5 *3 (-574))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-884)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-462))))) -(((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-831))))) -(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1231))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062))))) -(((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1286)) (-5 *1 (-1151)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1286)) (-5 *1 (-1151))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4456)) (-4 *1 (-499 *3)) (-4 *3 (-1231)) - (-4 *3 (-1113)) (-5 *2 (-781)))) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-780)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-802)) (-4 *7 (-959 *4 *5 *6)) (-4 *4 (-461)) (-4 *6 (-859)) + (-5 *2 (-112)) (-5 *1 (-458 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-416 (-573))) (-5 *1 (-312))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-653 *1)) (-4 *1 (-1077 *4 *5 *6)) (-4 *4 (-1061)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *5 (-859)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) + (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4456)) (-4 *1 (-499 *4)) - (-4 *4 (-1231)) (-5 *2 (-781))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1190)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (|partial| -12 - (-5 *3 (-654 (-2 (|:| |func| *2) (|:| |pole| (-112))))) - (-4 *2 (-13 (-440 *4) (-1015))) (-4 *4 (-566)) - (-5 *1 (-283 *4 *2))))) -(((*1 *2 *3) - (-12 (-5 *2 (-428 (-1186 *1))) (-5 *1 (-324 *4)) (-5 *3 (-1186 *1)) - (-4 *4 (-462)) (-4 *4 (-566)) (-4 *4 (-1113)))) - ((*1 *2 *3) - (-12 (-4 *1 (-920)) (-5 *2 (-428 (-1186 *1))) (-5 *3 (-1186 *1))))) + (-12 (-4 *1 (-1223 *4 *5 *6 *3)) (-4 *4 (-565)) (-4 *5 (-802)) + (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) - (-4 *3 (-376 *4)))) - ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1190)) (-4 *4 (-462)) (-4 *4 (-1113)) - (-5 *1 (-583 *4 *2)) (-4 *2 (-292)) (-4 *2 (-440 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1062)) (-5 *2 (-654 *1)) (-4 *1 (-1147 *3))))) + (-12 (-4 *3 (-565)) (-5 *2 (-653 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-426 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230))))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-314)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2969 *1))) + (-4 *1 (-314))))) +(((*1 *2 *2) + (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1215)))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-1257 *4)) (-5 *1 (-549 *4 *2 *5 *6)) - (-4 *4 (-315)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-781)))))) + (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-565)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) + (-5 *1 (-989 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-932)) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192))))) -(((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1133))))) -(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-158)))) - ((*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) - ((*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-784)) (-5 *1 (-52))))) + (-12 (-4 *4 (-371)) (-4 *4 (-565)) (-4 *5 (-1256 *4)) + (-5 *2 (-2 (|:| -2868 (-632 *4 *5)) (|:| -3954 (-416 *5)))) + (-5 *1 (-632 *4 *5)) (-5 *3 (-416 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-653 (-1177 *3 *4))) (-5 *1 (-1177 *3 *4)) + (-14 *3 (-931)) (-4 *4 (-1061)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-461)) (-4 *3 (-1061)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) + (-4 *1 (-1256 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-182)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-318)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-982)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1006)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1048)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1085))))) +(((*1 *2 *3) + (-12 (-4 *4 (-371)) (-5 *2 (-653 *3)) (-5 *1 (-955 *4 *3)) + (-4 *3 (-1256 *4))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-416 *5)) (-4 *5 (-1256 *4)) (-4 *4 (-565)) + (-4 *4 (-1061)) (-4 *2 (-1271 *4)) (-5 *1 (-1274 *4 *5 *6 *2)) + (-4 *6 (-665 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-654 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832))))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) + (-4 *5 (-381 *3)) (-5 *2 (-573)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-573))))) +(((*1 *2 *1) (-12 (-4 *1 (-844 *3)) (-4 *3 (-1112)) (-5 *2 (-55))))) +(((*1 *2 *3) + (-12 (-5 *3 (-931)) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192))))) (((*1 *2 *3) - (-12 (-5 *3 (-1190)) (-5 *2 (-1 (-1186 (-963 *4)) (-963 *4))) - (-5 *1 (-1289 *4)) (-4 *4 (-372))))) + (-12 (-4 *4 (-1256 (-416 *2))) (-5 *2 (-573)) (-5 *1 (-923 *4 *3)) + (-4 *3 (-1256 (-416 *4)))))) (((*1 *1 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-685 *3)) (-4 *3 (-1062)) - (-4 *3 (-1113))))) -(((*1 *2 *2) - (-12 (-5 *2 (-654 *7)) (-4 *7 (-1084 *3 *4 *5 *6)) (-4 *3 (-462)) - (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) - (-5 *1 (-1001 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-654 *7)) (-4 *7 (-1084 *3 *4 *5 *6)) (-4 *3 (-462)) - (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) - (-5 *1 (-1120 *3 *4 *5 *6 *7))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-388)))) - ((*1 *1 *1 *1) (-4 *1 (-555))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) - ((*1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-781))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1123)) (-5 *3 (-574))))) -(((*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-1286)) (-5 *1 (-1193))))) + (-12 (-5 *2 (-1 (-1169 *3))) (-5 *1 (-1169 *3)) (-4 *3 (-1230))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1113))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) - (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 *10)) - (-5 *1 (-634 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1084 *5 *6 *7 *8)) - (-4 *10 (-1122 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) - (-14 *6 (-654 (-1190))) (-5 *2 (-654 (-1059 *5 *6))) - (-5 *1 (-638 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) - (-14 *6 (-654 (-1190))) - (-5 *2 - (-654 (-1159 *5 (-541 (-874 *6)) (-874 *6) (-790 *5 (-874 *6))))) - (-5 *1 (-638 *5 *6)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) - (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-5 *2 (-654 (-1040 *5 *6 *7 *8))) (-5 *1 (-1040 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) - (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-5 *2 (-654 (-1040 *5 *6 *7 *8))) (-5 *1 (-1040 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) - (-14 *6 (-654 (-1190))) (-5 *2 (-654 (-1059 *5 *6))) - (-5 *1 (-1059 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) - (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 *1)) - (-4 *1 (-1084 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) - (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-5 *2 (-654 (-1159 *5 *6 *7 *8))) (-5 *1 (-1159 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) - (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-5 *2 (-654 (-1159 *5 *6 *7 *8))) (-5 *1 (-1159 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-566)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) - (-4 *1 (-1224 *4 *5 *6 *7))))) -(((*1 *1 *1 *1) (-4 *1 (-980)))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-566))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-654 *2)) (-4 *2 (-1113)) (-4 *2 (-1231))))) -(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-654 (-112)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-699 *7)) (-5 *3 (-654 *7)) (-4 *7 (-960 *4 *6 *5)) - (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) - (-4 *6 (-803)) (-5 *1 (-935 *4 *5 *6 *7))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-370 *3)) (-4 *3 (-1113)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-4 *1 (-395 *4)) (-4 *4 (-1113)) (-5 *2 (-781)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-4 *2 (-23)) (-5 *1 (-659 *4 *2 *5)) - (-4 *4 (-1113)) (-14 *5 *2)))) -(((*1 *2 *3) - (-12 (-4 *4 (-1235)) (-4 *5 (-1257 *4)) - (-5 *2 (-2 (|:| -1858 (-417 *5)) (|:| |poly| *3))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1257 (-417 *5)))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-3 (-112) (-654 *1))) - (-4 *1 (-1084 *4 *5 *6 *3))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1172)) - (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-768))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-654 *3)) (-4 *3 (-960 *5 *6 *7)) (-4 *5 (-462)) - (-4 *6 (-803)) (-4 *7 (-860)) - (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-459 *5 *6 *7 *3))))) + (-12 (-5 *2 (-653 (-52))) (-5 *1 (-902 *3)) (-4 *3 (-1112))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-565)) (-4 *3 (-1061)) + (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-861 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-565)) (-4 *5 (-1061)) + (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-862 *5 *3)) + (-4 *3 (-861 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-654 (-916 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1113))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1172)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) - (-4 *4 (-1078 *6 *7 *8)) (-5 *2 (-1286)) - (-5 *1 (-786 *6 *7 *8 *4 *5)) (-4 *5 (-1084 *6 *7 *8 *4))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-654 (-622 *2))) (-5 *4 (-1190)) - (-4 *2 (-13 (-27) (-1216) (-440 *5))) - (-4 *5 (-13 (-566) (-1051 (-574)) (-649 (-574)))) - (-5 *1 (-284 *5 *2))))) + (-12 (-4 *1 (-1115 *3 *2 *4 *5 *6)) (-4 *3 (-1112)) (-4 *4 (-1112)) + (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *2 (-1112))))) +(((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-1283))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-417 *6)) (-4 *6 (-1257 *5)) - (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1882 (-654 *4)))) - (-5 *1 (-820 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-417 *6))) (-4 *6 (-1257 *5)) - (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) - (-5 *2 (-2 (|:| -1882 (-654 (-417 *6))) (|:| -4340 (-699 *5)))) - (-5 *1 (-820 *5 *6)) (-5 *4 (-654 (-417 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-417 *6)) (-4 *6 (-1257 *5)) - (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1882 (-654 *4)))) - (-5 *1 (-820 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-664 *6 (-417 *6))) (-4 *6 (-1257 *5)) - (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) - (-5 *2 (-2 (|:| -1882 (-654 (-417 *6))) (|:| -4340 (-699 *5)))) - (-5 *1 (-820 *5 *6)) (-5 *4 (-654 (-417 *6)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-574)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1062)) - (-5 *1 (-329 *4 *5 *2 *6)) (-4 *6 (-960 *2 *4 *5))))) -(((*1 *2) - (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-427 *3))))) -(((*1 *2) - (-12 (-4 *4 (-1235)) (-4 *5 (-1257 *4)) (-4 *6 (-1257 (-417 *5))) - (-5 *2 (-781)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) - (-4 *5 (-1257 (-417 *4))) (-5 *2 (-781)))) - ((*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-781))))) -(((*1 *1) (-5 *1 (-813)))) + (-12 (-5 *3 (-416 (-573))) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-565)) (-4 *8 (-959 *7 *5 *6)) + (-5 *2 (-2 (|:| -3907 (-780)) (|:| -1857 *9) (|:| |radicand| *9))) + (-5 *1 (-963 *5 *6 *7 *8 *9)) (-5 *4 (-780)) + (-4 *9 + (-13 (-371) + (-10 -8 (-15 -2942 ($ *8)) (-15 -2965 (*8 $)) (-15 -2975 (*8 $)))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-565) (-148))) (-5 *1 (-546 *3 *2)) + (-4 *2 (-1271 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-371) (-376) (-623 (-573)))) (-4 *4 (-1256 *3)) + (-4 *5 (-733 *3 *4)) (-5 *1 (-550 *3 *4 *5 *2)) (-4 *2 (-1271 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-371) (-376) (-623 (-573)))) (-5 *1 (-551 *3 *2)) + (-4 *2 (-1271 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-13 (-565) (-148))) + (-5 *1 (-1165 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-931)) (-5 *4 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-573)) (-5 *5 (-698 (-227))) + (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-84 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) + (-5 *2 (-1047)) (-5 *1 (-758))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-573)) (-4 *1 (-1240 *4)) (-4 *4 (-1061)) (-4 *4 (-565)) + (-5 *2 (-416 (-962 *4))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-573)) (-4 *1 (-1240 *4)) (-4 *4 (-1061)) (-4 *4 (-565)) + (-5 *2 (-416 (-962 *4)))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4456)) (-4 *1 (-249 *2)) (-4 *2 (-1230)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-289 *2)) (-4 *2 (-1230)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-289 *2)) (-4 *2 (-1230)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) (-4 *2 (-1230))))) +(((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-812))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768))))) + (-12 (-5 *3 (-653 *6)) (-5 *4 (-653 (-1189))) (-4 *6 (-371)) + (-5 *2 (-653 (-301 (-962 *6)))) (-5 *1 (-547 *5 *6 *7)) + (-4 *5 (-461)) (-4 *7 (-13 (-371) (-857)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-515)) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-115))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-286))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1280 (-1280 (-573)))) (-5 *3 (-931)) (-5 *1 (-475))))) +(((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-653 *11)) + (|:| |todo| (-653 (-2 (|:| |val| *3) (|:| -4090 *11)))))) + (-5 *6 (-780)) + (-5 *2 (-653 (-2 (|:| |val| (-653 *10)) (|:| -4090 *11)))) + (-5 *3 (-653 *10)) (-5 *4 (-653 *11)) (-4 *10 (-1077 *7 *8 *9)) + (-4 *11 (-1083 *7 *8 *9 *10)) (-4 *7 (-461)) (-4 *8 (-802)) + (-4 *9 (-859)) (-5 *1 (-1081 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-653 *11)) + (|:| |todo| (-653 (-2 (|:| |val| *3) (|:| -4090 *11)))))) + (-5 *6 (-780)) + (-5 *2 (-653 (-2 (|:| |val| (-653 *10)) (|:| -4090 *11)))) + (-5 *3 (-653 *10)) (-5 *4 (-653 *11)) (-4 *10 (-1077 *7 *8 *9)) + (-4 *11 (-1121 *7 *8 *9 *10)) (-4 *7 (-461)) (-4 *8 (-802)) + (-4 *9 (-859)) (-5 *1 (-1157 *7 *8 *9 *10 *11))))) +(((*1 *2 *3) (-12 (-5 *3 (-416 (-573))) (-5 *2 (-227)) (-5 *1 (-312))))) (((*1 *1 *2) - (-12 (-5 *2 (-1296 (-1190) *3)) (-4 *3 (-1062)) (-5 *1 (-1303 *3)))) + (-12 (-5 *2 (-422 *3 *4 *5 *6)) (-4 *6 (-1050 *4)) (-4 *3 (-314)) + (-4 *4 (-1004 *3)) (-4 *5 (-1256 *4)) (-4 *6 (-418 *4 *5)) + (-14 *7 (-1280 *6)) (-5 *1 (-423 *3 *4 *5 *6 *7)))) ((*1 *1 *2) - (-12 (-5 *2 (-1296 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)) - (-5 *1 (-1305 *3 *4))))) -(((*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1231))))) + (-12 (-5 *2 (-1280 *6)) (-4 *6 (-418 *4 *5)) (-4 *4 (-1004 *3)) + (-4 *5 (-1256 *4)) (-4 *3 (-314)) (-5 *1 (-423 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) + (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) + (-5 *1 (-1293 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-653 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-565)) + (-4 *6 (-802)) (-4 *7 (-859)) (-5 *1 (-1293 *5 *6 *7 *8))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-536)) (-5 *3 (-129)) (-5 *2 (-780))))) +(((*1 *1) (-5 *1 (-1192)))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-698 (-227))) (-5 *5 (-698 (-573))) (-5 *3 (-573)) + (-5 *2 (-1047)) (-5 *1 (-765))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *2 (-112)) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 (-171 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-112)) - (-5 *1 (-1220 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *4)))))) + (-12 (-4 *4 (-1061)) (-4 *5 (-1256 *4)) (-5 *2 (-1 *6 (-653 *6))) + (-5 *1 (-1274 *4 *5 *3 *6)) (-4 *3 (-665 *5)) (-4 *6 (-1271 *4))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1171)) (-5 *4 (-171 (-227))) (-5 *5 (-573)) + (-5 *2 (-1047)) (-5 *1 (-767))))) +(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1230))))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-653 *8)) (-5 *4 (-653 (-902 *6))) + (-5 *5 (-1 (-899 *6 *8) *8 (-902 *6) (-899 *6 *8))) (-4 *6 (-1112)) + (-4 *8 (-13 (-1061) (-623 (-902 *6)) (-1050 *7))) + (-5 *2 (-899 *6 *8)) (-4 *7 (-1061)) (-5 *1 (-951 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-573)) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) + (-4 *4 (-381 *3)) (-4 *5 (-381 *3))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4455)) (-4 *1 (-498 *3)) (-4 *3 (-1230)) + (-4 *3 (-1112)) (-5 *2 (-780)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4455)) (-4 *1 (-498 *4)) + (-4 *4 (-1230)) (-5 *2 (-780))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1272 *4)) - (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-1 (-1170 *4) (-1170 *4))) - (-5 *1 (-1274 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1216)))))) -(((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) - (-4 *4 (-174))))) + (-12 (-5 *3 (-1189)) (-5 *2 (-545)) (-5 *1 (-544 *4)) + (-4 *4 (-1230))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-2 (|:| |totdeg| (-780)) (|:| -3881 *4))) (-5 *5 (-780)) + (-4 *4 (-959 *6 *7 *8)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) + (-5 *2 + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) + (|:| |polj| *4))) + (-5 *1 (-458 *6 *7 *8 *4))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-653 (-416 *7))) + (-4 *7 (-1256 *6)) (-5 *3 (-416 *7)) (-4 *6 (-371)) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-583 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-323 (-227))) (-5 *2 (-227)) (-5 *1 (-312))))) +(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-534))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-436 *3 *2)) (-4 *3 (-13 (-174) (-38 (-416 (-573))))) + (-4 *2 (-13 (-859) (-21)))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-931)) (-5 *4 (-883)) (-5 *2 (-1285)) (-5 *1 (-1281)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-931)) (-5 *4 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 *2)) (-4 *2 (-439 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-565))))) +(((*1 *2 *1) (-12 (-4 *1 (-1112)) (-5 *2 (-1132))))) (((*1 *2 *1) - (-12 (-4 *2 (-960 *3 *5 *4)) (-5 *1 (-1000 *3 *4 *5 *2)) - (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-331 *3 *4)) (-4 *3 (-1113)) - (-4 *4 (-132))))) + (-12 (-4 *2 (-717 *3)) (-5 *1 (-836 *2 *3)) (-4 *3 (-1061))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1116)) (-5 *3 (-783)) (-5 *1 (-52))))) +(((*1 *2 *1) (-12 (-5 *2 (-983)) (-5 *1 (-1305))))) (((*1 *2 *1) - (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)) - (-5 *2 (-829 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-856)) (-5 *1 (-1304 *3 *2)) (-4 *3 (-1062))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1190))))) + (-12 (-4 *2 (-1112)) (-5 *1 (-974 *2 *3)) (-4 *3 (-1112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-1281 *5))) (-5 *4 (-574)) (-5 *2 (-1281 *5)) - (-5 *1 (-1042 *5)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1062))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-654 *2)) (-4 *2 (-1113)) (-4 *2 (-1231))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-832))))) -(((*1 *2 *1) (-12 (-5 *2 (-701 (-1148))) (-5 *1 (-1164))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-115))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1170 (-654 (-574)))) (-5 *1 (-894)) - (-5 *3 (-654 (-574))))) + (-12 (-5 *3 (-662 (-416 *6))) (-5 *4 (-1 (-653 *5) *6)) + (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) + (-4 *6 (-1256 *5)) (-5 *2 (-653 (-416 *6))) (-5 *1 (-821 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-662 (-416 *7))) (-5 *4 (-1 (-653 *6) *7)) + (-5 *5 (-1 (-427 *7) *7)) + (-4 *6 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) + (-4 *7 (-1256 *6)) (-5 *2 (-653 (-416 *7))) (-5 *1 (-821 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-663 *6 (-416 *6))) (-5 *4 (-1 (-653 *5) *6)) + (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) + (-4 *6 (-1256 *5)) (-5 *2 (-653 (-416 *6))) (-5 *1 (-821 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-663 *7 (-416 *7))) (-5 *4 (-1 (-653 *6) *7)) + (-5 *5 (-1 (-427 *7) *7)) + (-4 *6 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) + (-4 *7 (-1256 *6)) (-5 *2 (-653 (-416 *7))) (-5 *1 (-821 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-662 (-416 *5))) (-4 *5 (-1256 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) + (-5 *2 (-653 (-416 *5))) (-5 *1 (-821 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-662 (-416 *6))) (-5 *4 (-1 (-427 *6) *6)) + (-4 *6 (-1256 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) + (-5 *2 (-653 (-416 *6))) (-5 *1 (-821 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-663 *5 (-416 *5))) (-4 *5 (-1256 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) + (-5 *2 (-653 (-416 *5))) (-5 *1 (-821 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-663 *6 (-416 *6))) (-5 *4 (-1 (-427 *6) *6)) + (-4 *6 (-1256 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) + (-5 *2 (-653 (-416 *6))) (-5 *1 (-821 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-387)))) + ((*1 *1 *1 *1) (-4 *1 (-554))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371)))) + ((*1 *1 *2) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-780))))) +(((*1 *1 *1) + (-12 (-4 *2 (-371)) (-4 *3 (-802)) (-4 *4 (-859)) + (-5 *1 (-513 *2 *3 *4 *5)) (-4 *5 (-959 *2 *3 *4))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-337))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) + (-4 *9 (-1077 *6 *7 *8)) (-4 *6 (-565)) (-4 *7 (-802)) + (-4 *8 (-859)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2001 (-653 *9)))) + (-5 *3 (-653 *9)) (-4 *1 (-1223 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1077 *5 *6 *7)) + (-4 *5 (-565)) (-4 *6 (-802)) (-4 *7 (-859)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -2001 (-653 *8)))) + (-5 *3 (-653 *8)) (-4 *1 (-1223 *5 *6 *7 *8))))) +(((*1 *2 *1) + (-12 (-4 *3 (-13 (-371) (-148))) + (-5 *2 (-653 (-2 (|:| -3907 (-780)) (|:| -3358 *4) (|:| |num| *4)))) + (-5 *1 (-408 *3 *4)) (-4 *4 (-1256 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-573)) (-5 *1 (-705 *2)) (-4 *2 (-1256 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-142)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-145))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) + (-5 *2 (-1047)) (-5 *1 (-760))))) +(((*1 *1 *2) + (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-1012 *3))))) +(((*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-371) (-1215)))))) +(((*1 *2 *1) (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-834))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1185 *9)) (-5 *4 (-653 *7)) (-5 *5 (-653 *8)) + (-4 *7 (-859)) (-4 *8 (-1061)) (-4 *9 (-959 *8 *6 *7)) + (-4 *6 (-802)) (-5 *2 (-1185 *8)) (-5 *1 (-328 *6 *7 *8 *9))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-865 *2)) (-4 *2 (-174)))) ((*1 *2 *3) - (-12 (-5 *2 (-1170 (-654 (-574)))) (-5 *1 (-894)) - (-5 *3 (-654 (-574)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-462)) - (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-990 *3 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *2 (-654 (-171 *4))) - (-5 *1 (-774 *4)) (-4 *4 (-13 (-372) (-858)))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1172)) - (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-768))))) + (-12 (-5 *2 (-1185 (-573))) (-5 *1 (-952)) (-5 *3 (-573))))) +(((*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-594)) (-5 *3 (-606)) (-5 *4 (-298)) (-5 *1 (-287))))) +(((*1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-1193))))) +(((*1 *1 *1) (-12 (-4 *1 (-683 *2)) (-4 *2 (-1230))))) +(((*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1285)) (-5 *1 (-1150)))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 (-871))) (-5 *2 (-1285)) (-5 *1 (-1150))))) (((*1 *2 *3) + (-12 (-4 *4 (-565)) (-5 *2 (-780)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-426 *4))))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-1050 (-48))) + (-4 *4 (-13 (-565) (-1050 (-573)))) (-4 *5 (-439 *4)) + (-5 *2 (-427 (-1185 (-48)))) (-5 *1 (-444 *4 *5 *3)) + (-4 *3 (-1256 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-931)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) + ((*1 *1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-269))))) +(((*1 *2 *3) + (-12 (-4 *4 (-859)) (-5 *2 (-653 (-653 *4))) (-5 *1 (-1200 *4)) + (-5 *3 (-653 *4))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-653 (-2 (|:| |totdeg| (-780)) (|:| -3881 *3)))) + (-5 *4 (-780)) (-4 *3 (-959 *5 *6 *7)) (-4 *5 (-461)) (-4 *6 (-802)) + (-4 *7 (-859)) (-5 *1 (-458 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-286))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-780)) (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-554))))) +(((*1 *1 *2 *3) (-12 (-5 *3 - (-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) - (|:| |explanations| (-654 (-1172))))) - (-5 *2 (-1048)) (-5 *1 (-313)))) + (-653 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-573))))) + (-4 *2 (-565)) (-5 *1 (-427 *2)))) ((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) - (|:| |explanations| (-654 (-1172))) (|:| |extra| (-1048)))) - (-5 *2 (-1048)) (-5 *1 (-313))))) + (-2 (|:| |contp| (-573)) + (|:| -1687 (-653 (-2 (|:| |irr| *4) (|:| -3287 (-573))))))) + (-4 *4 (-1256 (-573))) (-5 *2 (-427 *4)) (-5 *1 (-451 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) + (-4 *6 (-802)) (-5 *2 (-653 (-653 (-573)))) + (-5 *1 (-934 *4 *5 *6 *7)) (-5 *3 (-573)) (-4 *7 (-959 *4 *6 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-416 (-962 (-171 (-573)))))) + (-5 *2 (-653 (-653 (-301 (-962 (-171 *4)))))) (-5 *1 (-386 *4)) + (-4 *4 (-13 (-371) (-857))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-301 (-416 (-962 (-171 (-573))))))) + (-5 *2 (-653 (-653 (-301 (-962 (-171 *4)))))) (-5 *1 (-386 *4)) + (-4 *4 (-13 (-371) (-857))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-416 (-962 (-171 (-573))))) + (-5 *2 (-653 (-301 (-962 (-171 *4))))) (-5 *1 (-386 *4)) + (-4 *4 (-13 (-371) (-857))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-301 (-416 (-962 (-171 (-573)))))) + (-5 *2 (-653 (-301 (-962 (-171 *4))))) (-5 *1 (-386 *4)) + (-4 *4 (-13 (-371) (-857)))))) +(((*1 *1) (-5 *1 (-145)))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-654 (-963 *4))) (-5 *3 (-654 (-1190))) (-4 *4 (-462)) - (-5 *1 (-929 *4))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3904 *6) (|:| |sol?| (-112))) (-574) - *6)) - (-4 *6 (-372)) (-4 *7 (-1257 *6)) + (-12 (-4 *3 (-565)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) + (-5 *1 (-1220 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1177 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1061))))) +(((*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1189)) + (-5 *2 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-5 *1 (-1192))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1061)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-953 (-227))) (-5 *1 (-1226)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-1061))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1189)) (-5 *6 (-112)) + (-4 *7 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) + (-4 *3 (-13 (-1215) (-969) (-29 *7))) (-5 *2 - (-3 (-2 (|:| |answer| (-417 *7)) (|:| |a0| *6)) - (-2 (|:| -2399 (-417 *7)) (|:| |coeff| (-417 *7))) "failed")) - (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7))))) + (-3 (|:| |f1| (-852 *3)) (|:| |f2| (-653 (-852 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-221 *7 *3)) (-5 *5 (-852 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) + (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-4 *5 (-376)) + (-5 *2 (-780))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) + (-4 *4 (-1061))))) +(((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-924 *3)) (-4 *3 (-314))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-573)) (|has| *1 (-6 -4456)) (-4 *1 (-381 *3)) + (-4 *3 (-1230))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282))))) +(((*1 *2 *3) + (-12 (-5 *3 (-931)) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192))))) +(((*1 *2 *1) (-12 (-5 *2 (-653 (-109))) (-5 *1 (-177))))) +(((*1 *2 *1) + (-12 (-5 *2 (-780)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) + (-4 *4 (-1061))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1280 *4)) (-4 *4 (-426 *3)) (-4 *3 (-314)) + (-4 *3 (-565)) (-5 *1 (-43 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-931)) (-4 *4 (-371)) (-5 *2 (-1280 *1)) + (-4 *1 (-336 *4)))) + ((*1 *2) (-12 (-4 *3 (-371)) (-5 *2 (-1280 *1)) (-4 *1 (-336 *3)))) + ((*1 *2) + (-12 (-4 *3 (-174)) (-4 *4 (-1256 *3)) (-5 *2 (-1280 *1)) + (-4 *1 (-418 *3 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-314)) (-4 *4 (-1004 *3)) (-4 *5 (-1256 *4)) + (-5 *2 (-1280 *6)) (-5 *1 (-422 *3 *4 *5 *6)) + (-4 *6 (-13 (-418 *4 *5) (-1050 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-314)) (-4 *4 (-1004 *3)) (-4 *5 (-1256 *4)) + (-5 *2 (-1280 *6)) (-5 *1 (-423 *3 *4 *5 *6 *7)) + (-4 *6 (-418 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1280 *1)) (-4 *1 (-426 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-931)) (-5 *2 (-1280 (-1280 *4))) (-5 *1 (-537 *4)) + (-4 *4 (-357))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1145 (-227))) (-5 *3 (-653 (-269))) (-5 *1 (-1282)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1145 (-227))) (-5 *3 (-1171)) (-5 *1 (-1282)))) + ((*1 *1 *1) (-5 *1 (-1282)))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) + (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 G)))) (-5 *2 (-1047)) + (-5 *1 (-757))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-653 (-573))) (-5 *3 (-698 (-573))) (-5 *1 (-1122))))) (((*1 *1 *2) - (-12 (-5 *2 (-932)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) - (-4 *4 (-372)) (-14 *5 (-1006 *3 *4))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1190)) (-5 *2 (-1194)) (-5 *1 (-1193))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-654 *8)) (-5 *3 (-1 *8 *8 *8)) - (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1224 *5 *6 *7 *8)) (-4 *5 (-566)) - (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1078 *5 *6 *7))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-428 *3)) (-4 *3 (-566)) (-5 *1 (-429 *3))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-574)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-781)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-803)) (-4 *4 (-960 *5 *6 *7)) (-4 *5 (-462)) (-4 *7 (-860)) - (-5 *1 (-459 *5 *6 *7 *4))))) + (-12 (-5 *2 (-931)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) + (-4 *4 (-371)) (-14 *5 (-1005 *3 *4))))) +(((*1 *2) + (-12 (-4 *3 (-565)) (-5 *2 (-653 (-698 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-426 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-1194))) (-5 *1 (-1194)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-515)) (-5 *3 (-653 (-1194))) (-5 *1 (-1194))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1265 *3 *4 *5)) (-5 *1 (-326 *3 *4 *5)) (-4 *3 (-371)) + (-14 *4 (-1189)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-413)) (-5 *2 (-573)))) + ((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-427 *3)) (-4 *3 (-565)))) + ((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-708)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1112)) (-5 *1 (-722 *3 *2 *4)) (-4 *3 (-859)) + (-14 *4 + (-1 (-112) (-2 (|:| -2575 *3) (|:| -3907 *2)) + (-2 (|:| -2575 *3) (|:| -3907 *2))))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1171) (-783))) (-5 *1 (-115))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1189)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-653 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-653 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -3861 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1215) (-27) (-439 *8))) + (-4 *8 (-13 (-461) (-148) (-1050 *3) (-648 *3))) (-5 *3 (-573)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -3903 *4) (|:| |sol?| (-112)))) + (-5 *1 (-1025 *8 *4))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *1 (-233 *4)) - (-4 *4 (-1062)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-780)) (-4 *1 (-233 *4)) + (-4 *4 (-1061)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1062)))) - ((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1231)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-781)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-781)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1061)))) + ((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1230)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-780)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) - (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) + (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)) - (-4 *4 (-1257 *3)))) + (-12 (-5 *2 (-780)) (-4 *3 (-13 (-371) (-148))) (-5 *1 (-408 *3 *4)) + (-4 *4 (-1256 *3)))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-372) (-148))) (-5 *1 (-409 *2 *3)) - (-4 *3 (-1257 *2)))) + (-12 (-4 *2 (-13 (-371) (-148))) (-5 *1 (-408 *2 *3)) + (-4 *3 (-1256 *2)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-484 *3 *4 *5)) - (-4 *3 (-1062)) (-14 *5 *3))) + (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-483 *3 *4 *5)) + (-4 *3 (-1061)) (-14 *5 *3))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-372)) (-4 *2 (-911 *3)) (-5 *1 (-596 *2)) - (-5 *3 (-1190)))) + (-12 (-4 *2 (-371)) (-4 *2 (-910 *3)) (-5 *1 (-595 *2)) + (-5 *3 (-1189)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-596 *2)) (-4 *2 (-372)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872)))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-595 *2)) (-4 *2 (-371)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-871)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 (-781))) (-4 *1 (-911 *4)) - (-4 *4 (-1113)))) + (-12 (-5 *2 (-653 *4)) (-5 *3 (-653 (-780))) (-4 *1 (-910 *4)) + (-4 *4 (-1112)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-781)) (-4 *1 (-911 *2)) (-4 *2 (-1113)))) + (-12 (-5 *3 (-780)) (-4 *1 (-910 *2)) (-4 *2 (-1112)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-654 *3)) (-4 *1 (-911 *3)) (-4 *3 (-1113)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1113)))) + (-12 (-5 *2 (-653 *3)) (-4 *1 (-910 *3)) (-4 *3 (-1112)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1112)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1181 *3 *4 *5)) - (-4 *3 (-1062)) (-14 *5 *3))) + (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1180 *3 *4 *5)) + (-4 *3 (-1061)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1187 *3 *4 *5)) - (-4 *3 (-1062)) (-14 *5 *3))) + (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1186 *3 *4 *5)) + (-4 *3 (-1061)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1188 *3 *4 *5)) - (-4 *3 (-1062)) (-14 *5 *3))) + (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1187 *3 *4 *5)) + (-4 *3 (-1061)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1245 *3 *4 *5)) - (-4 *3 (-1062)) (-14 *5 *3))) + (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1244 *3 *4 *5)) + (-4 *3 (-1061)) (-14 *5 *3))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1257 *3)) (-4 *3 (-1062)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1256 *3)) (-4 *3 (-1061)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1266 *3 *4 *5)) - (-4 *3 (-1062)) (-14 *5 *3))) + (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1265 *3 *4 *5)) + (-4 *3 (-1061)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1273 *3 *4 *5)) - (-4 *3 (-1062)) (-14 *5 *3)))) -(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1231)))) - ((*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-860)))) - ((*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) - ((*1 *1 *1) (-5 *1 (-872))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) + (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1272 *3 *4 *5)) + (-4 *3 (-1061)) (-14 *5 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1230)))) + ((*1 *1 *1) (-12 (-5 *1 (-681 *2)) (-4 *2 (-859)))) + ((*1 *1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-859)))) + ((*1 *1 *1) (-5 *1 (-871))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1074 *2 *3)) - (-4 *3 (-1257 *2))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1273 *2 *3 *4)) (-4 *2 (-1062)) (-14 *3 (-1190)) - (-14 *4 *2)))) -(((*1 *1) (-5 *1 (-478)))) -(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112))))) + (-12 (-4 *2 (-13 (-857) (-371))) (-5 *1 (-1073 *2 *3)) + (-4 *3 (-1256 *2))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1171)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-1285)) + (-5 *1 (-1000 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1171)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-1285)) + (-5 *1 (-1119 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-976 *2)) (-4 *2 (-1112))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1047)) + (-5 *1 (-758))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1279 *3)) (-4 *3 (-1231)) (-4 *3 (-1062)) - (-5 *2 (-699 *3))))) -(((*1 *1) (-5 *1 (-227))) ((*1 *1) (-5 *1 (-388)))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1211))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1254 *4 *5)) (-5 *3 (-654 *5)) (-14 *4 (-1190)) - (-4 *5 (-372)) (-5 *1 (-934 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-654 *5)) (-4 *5 (-372)) (-5 *2 (-1186 *5)) - (-5 *1 (-934 *4 *5)) (-14 *4 (-1190)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-654 *6)) (-5 *4 (-781)) (-4 *6 (-372)) - (-5 *2 (-417 (-963 *6))) (-5 *1 (-1063 *5 *6)) (-14 *5 (-1190))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) - (-5 *2 (-654 (-654 (-654 (-781)))))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-654 (-622 *5))) (-5 *3 (-1190)) (-4 *5 (-440 *4)) - (-4 *4 (-1113)) (-5 *1 (-583 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-654 (-115)))))) + (-12 (-4 *1 (-1278 *3)) (-4 *3 (-1230)) (-4 *3 (-1061)) + (-5 *2 (-698 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1230))))) +(((*1 *2 *1) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1210))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-565)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 (-1293 *4 *5 *6 *7))) + (-5 *1 (-1293 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-653 *9)) (-5 *4 (-1 (-112) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1077 *6 *7 *8)) (-4 *6 (-565)) + (-4 *7 (-802)) (-4 *8 (-859)) (-5 *2 (-653 (-1293 *6 *7 *8 *9))) + (-5 *1 (-1293 *6 *7 *8 *9))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *2 (-1047)) + (-5 *1 (-765))))) +(((*1 *1 *1) + (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-573)) (-4 *1 (-330 *4 *2)) (-4 *4 (-1112)) + (-4 *2 (-132))))) (((*1 *1 *2) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-5 *1 (-1281 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1231)))) - ((*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-860)))) - ((*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) - ((*1 *1 *1) (-5 *1 (-872))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) + (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-5 *1 (-1280 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1230)))) + ((*1 *1 *1) (-12 (-5 *1 (-681 *2)) (-4 *2 (-859)))) + ((*1 *1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-859)))) + ((*1 *1 *1) (-5 *1 (-871))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1074 *2 *3)) - (-4 *3 (-1257 *2))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1113) (-34))) - (-4 *3 (-13 (-1113) (-34)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-372) (-1216) (-1015)))))) -(((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) - (-4 *4 (-1062)) (-4 *4 (-174)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062)) - (-4 *3 (-174))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062))))) -(((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-860)) - (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-781)))) + (-12 (-4 *2 (-13 (-857) (-371))) (-5 *1 (-1073 *2 *3)) + (-4 *3 (-1256 *2))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-565)) (-5 *2 (-968 *3)) (-5 *1 (-1176 *4 *3)) + (-4 *3 (-1256 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1169 (-653 (-573)))) (-5 *1 (-893)) + (-5 *3 (-653 (-573))))) + ((*1 *2 *3) + (-12 (-5 *2 (-1169 (-653 (-573)))) (-5 *1 (-893)) + (-5 *3 (-653 (-573)))))) +(((*1 *2 *1) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-403)))) + ((*1 *2 *1) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1210))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) + (-5 *2 (-1047)) (-5 *1 (-761))))) +(((*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283)))) + ((*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-369 *3)) (-4 *3 (-1112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1062)) (-4 *3 (-860)) - (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781)))) - ((*1 *2 *1) (-12 (-4 *1 (-273 *3)) (-4 *3 (-860)) (-5 *2 (-781)))) - ((*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-932)))) - ((*1 *2 *3) - (-12 (-5 *3 (-345 *4 *5 *6 *7)) (-4 *4 (-13 (-377) (-372))) - (-4 *5 (-1257 *4)) (-4 *6 (-1257 (-417 *5))) (-4 *7 (-351 *4 *5 *6)) - (-5 *2 (-781)) (-5 *1 (-402 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-412)) (-5 *2 (-843 (-932))))) - ((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-606 *3)) (-4 *3 (-1062)))) - ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-606 *3)) (-4 *3 (-1062)))) - ((*1 *2 *1) - (-12 (-4 *3 (-566)) (-5 *2 (-574)) (-5 *1 (-633 *3 *4)) - (-4 *4 (-1257 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-750 *4 *3)) (-4 *4 (-1062)) - (-4 *3 (-860)))) + (-12 (-5 *3 (-573)) (-4 *1 (-394 *4)) (-4 *4 (-1112)) (-5 *2 (-780)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-750 *4 *3)) (-4 *4 (-1062)) (-4 *3 (-860)) - (-5 *2 (-781)))) - ((*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-781)))) - ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) - ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-916 *3)) (-4 *3 (-1113)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) - (-4 *6 (-1257 *5)) (-4 *7 (-1257 (-417 *6))) - (-4 *8 (-351 *5 *6 *7)) (-4 *4 (-13 (-566) (-1051 (-574)))) - (-5 *2 (-781)) (-5 *1 (-922 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6)) - (-4 *4 (-1257 (-417 (-574)))) (-4 *5 (-1257 (-417 *4))) - (-4 *6 (-351 (-417 (-574)) *4 *5)) (-5 *2 (-781)) - (-5 *1 (-923 *4 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-345 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-372)) - (-4 *7 (-1257 *6)) (-4 *4 (-1257 (-417 *7))) (-4 *8 (-351 *6 *7 *4)) - (-4 *9 (-13 (-377) (-372))) (-5 *2 (-781)) - (-5 *1 (-1031 *6 *7 *4 *8 *9)))) + (-12 (-5 *3 (-573)) (-4 *2 (-23)) (-5 *1 (-658 *4 *2 *5)) + (-4 *4 (-1112)) (-14 *5 *2)))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1152 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1112) (-34))) (-4 *6 (-13 (-1112) (-34))) + (-5 *2 (-112)) (-5 *1 (-1153 *5 *6))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-859)) + (-5 *2 (-2 (|:| -1857 *1) (|:| |gap| (-780)) (|:| -3132 *1))) + (-4 *1 (-1077 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1257 *3)) (-4 *3 (-1062)) (-4 *3 (-566)) - (-5 *2 (-781)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-802)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-802))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-372)) (-5 *1 (-907 *2 *3)) - (-4 *2 (-1257 *3))))) -(((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-954 (-227)) (-227))) (-5 *3 (-1107 (-227))) - (-5 *1 (-937)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-954 (-227)) (-227))) (-5 *3 (-1107 (-227))) - (-5 *1 (-937)))) - ((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-954 (-227)) (-227))) (-5 *3 (-1107 (-227))) - (-5 *1 (-938)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-954 (-227)) (-227))) (-5 *3 (-1107 (-227))) - (-5 *1 (-938))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113)) - (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-916 *4)) (-4 *4 (-1113)) (-5 *2 (-654 (-781))) - (-5 *1 (-915 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928))))) -(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-264))))) + (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) + (-5 *2 (-2 (|:| -1857 *1) (|:| |gap| (-780)) (|:| -3132 *1))) + (-4 *1 (-1077 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1280 *4)) (-4 *4 (-357)) (-5 *2 (-1185 *4)) + (-5 *1 (-537 *4))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-403)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1210))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) +(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) + ((*1 *1 *1) (-4 *1 (-1156)))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1172)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-270)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283))))) -(((*1 *1 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1231))))) -(((*1 *1) (-5 *1 (-1076)))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-1231))))) -(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-227)) (-5 *1 (-313))))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-1051 (-48))) - (-4 *4 (-13 (-566) (-1051 (-574)))) (-4 *5 (-440 *4)) - (-5 *2 (-428 (-1186 (-48)))) (-5 *1 (-445 *4 *5 *3)) - (-4 *3 (-1257 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1113)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-605 *3)) (-4 *3 (-1062)))) - ((*1 *2 *1) - (-12 (-4 *3 (-566)) (-5 *2 (-112)) (-5 *1 (-633 *3 *4)) - (-4 *4 (-1257 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1062)) - (-4 *4 (-736)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)) - (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-781)) (-4 *5 (-372)) (-5 *2 (-176 *6)) - (-5 *1 (-877 *5 *4 *6)) (-4 *4 (-1272 *5)) (-4 *6 (-1257 *5))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1023 *3)) (-4 *3 (-1231)) (-5 *2 (-574))))) + (-12 (-5 *2 (-1171)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) + ((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-269)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282))))) +(((*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) + (-5 *1 (-1000 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) + (-5 *1 (-1119 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-371)) + (-5 *2 (-653 (-2 (|:| C (-698 *5)) (|:| |g| (-1280 *5))))) + (-5 *1 (-990 *5)) (-5 *3 (-698 *5)) (-5 *4 (-1280 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-207)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-653 (-387))) (-5 *2 (-387)) (-5 *1 (-207))))) +(((*1 *2 *3) + (-12 (-4 *1 (-809)) + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) + (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-1047))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-698 *11)) (-5 *4 (-653 (-416 (-962 *8)))) + (-5 *5 (-780)) (-5 *6 (-1171)) (-4 *8 (-13 (-314) (-148))) + (-4 *11 (-959 *8 *10 *9)) (-4 *9 (-13 (-859) (-623 (-1189)))) + (-4 *10 (-802)) + (-5 *2 + (-2 + (|:| |rgl| + (-653 + (-2 (|:| |eqzro| (-653 *11)) (|:| |neqzro| (-653 *11)) + (|:| |wcond| (-653 (-962 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1280 (-416 (-962 *8)))) + (|:| -3914 (-653 (-1280 (-416 (-962 *8)))))))))) + (|:| |rgsz| (-573)))) + (-5 *1 (-934 *8 *9 *10 *11)) (-5 *7 (-573))))) +(((*1 *2 *3) + (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-439 *4) (-1014) (-1215))) + (-4 *4 (-565)) (-4 *2 (-13 (-439 (-171 *4)) (-1014) (-1215))) + (-5 *1 (-609 *4 *5 *2))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) +(((*1 *2 *3) + (-12 (-5 *3 (-698 (-416 (-962 *4)))) (-4 *4 (-461)) + (-5 *2 (-653 (-3 (-416 (-962 *4)) (-1178 (-1189) (-962 *4))))) + (-5 *1 (-299 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-871))))) (((*1 *1 *1 *2) (-12 (-5 *2 - (-2 (|:| -3888 (-654 (-872))) (|:| -3663 (-654 (-872))) - (|:| |presup| (-654 (-872))) (|:| -4286 (-654 (-872))) - (|:| |args| (-654 (-872))))) - (-5 *1 (-1190)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-654 (-872)))) (-5 *1 (-1190))))) + (-2 (|:| -3539 (-653 (-871))) (|:| -3280 (-653 (-871))) + (|:| |presup| (-653 (-871))) (|:| -3763 (-653 (-871))) + (|:| |args| (-653 (-871))))) + (-5 *1 (-1189)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-653 (-871)))) (-5 *1 (-1189))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1062)) - (-14 *4 (-654 (-1190))))) - ((*1 *2 *3) - (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1231)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1062) (-860))) - (-14 *4 (-654 (-1190))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-860))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1113)) (-4 *6 (-897 *5)) (-5 *2 (-896 *5 *6 (-654 *6))) - (-5 *1 (-898 *5 *6 *4)) (-5 *3 (-654 *6)) (-4 *4 (-624 (-903 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1113)) (-5 *2 (-654 (-302 *3))) (-5 *1 (-898 *5 *3 *4)) - (-4 *3 (-1051 (-1190))) (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1113)) (-5 *2 (-654 (-302 (-963 *3)))) - (-5 *1 (-898 *5 *3 *4)) (-4 *3 (-1062)) - (-2076 (-4 *3 (-1051 (-1190)))) (-4 *3 (-897 *5)) - (-4 *4 (-624 (-903 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1113)) (-5 *2 (-900 *5 *3)) (-5 *1 (-898 *5 *3 *4)) - (-2076 (-4 *3 (-1051 (-1190)))) (-2076 (-4 *3 (-1062))) - (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015)))))) -(((*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062))))) + (-12 (-5 *2 (-653 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-595 *3)) (-4 *3 (-371))))) +(((*1 *2 *1) + (-12 (-5 *2 (-780)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) + (-4 *4 (-1061))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-653 *2)) (-4 *2 (-1077 *4 *5 *6)) (-4 *4 (-565)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-989 *4 *5 *6 *2))))) +(((*1 *2 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-371))))) +(((*1 *1 *2) + (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1016 *3)) (-14 *3 (-573))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-654 (-1190))) (-5 *2 (-1190)) (-5 *1 (-338))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) - (-5 *2 - (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574)) - (|:| |success| (-112)))) - (-5 *1 (-799)) (-5 *5 (-574))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 - *7 *3 *8) - (-12 (-5 *5 (-699 (-227))) (-5 *6 (-112)) (-5 *7 (-699 (-574))) - (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-65 QPHESS)))) - (-5 *3 (-574)) (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-763))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-654 *4)) (-4 *4 (-372)) (-5 *2 (-1281 *4)) - (-5 *1 (-824 *4 *3)) (-4 *3 (-666 *4))))) + (-12 (-5 *3 (-653 (-1189))) (-5 *2 (-1189)) (-5 *1 (-337))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1190)) (-5 *4 (-963 (-574))) (-5 *2 (-338)) - (-5 *1 (-340))))) + (-12 (-4 *5 (-1112)) (-4 *3 (-910 *5)) (-5 *2 (-698 *3)) + (-5 *1 (-701 *5 *3 *6 *4)) (-4 *6 (-381 *3)) + (-4 *4 (-13 (-381 *5) (-10 -7 (-6 -4455))))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1190)) - (-4 *5 (-13 (-462) (-148) (-1051 (-574)) (-649 (-574)))) - (-5 *2 (-596 *3)) (-5 *1 (-567 *5 *3)) - (-4 *3 (-13 (-27) (-1216) (-440 *5)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315)) - (-5 *1 (-927 *3 *4 *5 *2)) (-4 *2 (-960 *5 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1186 *6)) (-4 *6 (-960 *5 *3 *4)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-927 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-960 *6 *4 *5)) - (-5 *1 (-927 *4 *5 *6 *2)) (-4 *4 (-803)) (-4 *5 (-860)) - (-4 *6 (-315))))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-654 *9)) (-5 *3 (-1 (-112) *9)) - (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1078 *6 *7 *8)) (-4 *6 (-566)) (-4 *7 (-803)) - (-4 *8 (-860)) (-5 *1 (-990 *6 *7 *8 *9))))) -(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-938))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-860))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-781)) (-5 *1 (-685 *2)) (-4 *2 (-1113))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-699 (-574))) (-5 *3 (-654 (-574))) (-5 *1 (-1123))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-932)) (-5 *2 (-1286)) (-5 *1 (-216 *4)) - (-4 *4 - (-13 (-860) - (-10 -8 (-15 -2199 ((-1172) $ (-1190))) (-15 -1403 (*2 $)) - (-15 -3844 (*2 $))))))) + (-12 (-5 *4 (-653 (-873 *5))) (-14 *5 (-653 (-1189))) (-4 *6 (-461)) + (-5 *2 (-653 (-653 (-252 *5 *6)))) (-5 *1 (-480 *5 *6 *7)) + (-5 *3 (-653 (-252 *5 *6))) (-4 *7 (-461))))) +(((*1 *2 *3) + (-12 (-5 *3 (-698 *2)) (-4 *4 (-1256 *2)) + (-4 *2 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) + (-5 *1 (-508 *2 *4 *5)) (-4 *5 (-418 *2 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-1286)) (-5 *1 (-216 *3)) - (-4 *3 - (-13 (-860) - (-10 -8 (-15 -2199 ((-1172) $ (-1190))) (-15 -1403 (*2 $)) - (-15 -3844 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-512))))) + (-12 (-4 *1 (-1135 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) + (-4 *5 (-243 *3 *2)) (-4 *2 (-1061))))) (((*1 *2 *3) - (-12 (-4 *4 (-315)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) - (-5 *1 (-1137 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) + (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-112)) (-5 *1 (-307))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-842 *3)) (-4 *3 (-1112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-852 *3)) (-4 *3 (-1112))))) +(((*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-5 *2 (-1285)) (-5 *1 (-831))))) +(((*1 *2 *3) + (-12 (-4 *4 (-565)) (-5 *2 (-780)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-426 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) + (-4 *6 (-802)) (-5 *2 (-416 (-962 *4))) (-5 *1 (-934 *4 *5 *6 *3)) + (-4 *3 (-959 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-698 *7)) (-4 *7 (-959 *4 *6 *5)) + (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) + (-4 *6 (-802)) (-5 *2 (-698 (-416 (-962 *4)))) + (-5 *1 (-934 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 *7)) (-4 *7 (-959 *4 *6 *5)) + (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) + (-4 *6 (-802)) (-5 *2 (-653 (-416 (-962 *4)))) + (-5 *1 (-934 *4 *5 *6 *7))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-865 *2)) (-4 *2 (-174)))) + ((*1 *2 *3 *3 *2) + (-12 (-5 *3 (-780)) (-5 *1 (-865 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 *5)) (-5 *4 (-931)) (-4 *5 (-859)) + (-5 *2 (-653 (-681 *5))) (-5 *1 (-681 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-653 *2)) (-4 *2 (-959 *4 *5 *6)) (-4 *4 (-314)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-456 *4 *5 *6 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1185 (-416 (-962 *3)))) (-5 *1 (-462 *3 *4 *5 *6)) + (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) + (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3)))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-403)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1210))))) +(((*1 *2 *1) + (-12 (-4 *3 (-238)) (-4 *3 (-1061)) (-4 *4 (-859)) (-4 *5 (-272 *4)) + (-4 *6 (-802)) (-5 *2 (-1 *1 (-780))) (-4 *1 (-259 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1061)) (-4 *3 (-859)) (-4 *5 (-272 *3)) (-4 *6 (-802)) + (-5 *2 (-1 *1 (-780))) (-4 *1 (-259 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-780)) (-4 *1 (-272 *2)) (-4 *2 (-859))))) +(((*1 *2 *3) (-12 (-5 *3 (-515)) (-5 *2 (-700 (-189))) (-5 *1 (-189))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1189)) (-4 *4 (-565)) (-4 *4 (-1112)) + (-5 *1 (-582 *4 *2)) (-4 *2 (-439 *4))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-654 (-1190))) (-4 *4 (-1113)) - (-4 *5 (-13 (-1062) (-897 *4) (-624 (-903 *4)))) - (-5 *1 (-1089 *4 *5 *2)) - (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))))) + (-12 (-5 *3 (-653 (-1189))) (-4 *4 (-1112)) + (-4 *5 (-13 (-1061) (-896 *4) (-623 (-902 *4)))) + (-5 *1 (-1088 *4 *5 *2)) + (-4 *2 (-13 (-439 *5) (-896 *4) (-623 (-902 *4)))))) ((*1 *1 *2 *2) - (-12 (-4 *3 (-1113)) (-4 *4 (-13 (-1062) (-897 *3) (-624 (-903 *3)))) - (-5 *1 (-1089 *3 *4 *2)) - (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3))))))) -(((*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1172)) (-5 *1 (-796))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834))))) + (-12 (-4 *3 (-1112)) (-4 *4 (-13 (-1061) (-896 *3) (-623 (-902 *3)))) + (-5 *1 (-1088 *3 *4 *2)) + (-4 *2 (-13 (-439 *4) (-896 *3) (-623 (-902 *3))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-698 *4)) (-4 *4 (-371)) (-5 *2 (-1185 *4)) + (-5 *1 (-541 *4 *5 *6)) (-4 *5 (-371)) (-4 *6 (-13 (-371) (-857)))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-372)) (-4 *3 (-1062)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2970 *1))) - (-4 *1 (-862 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *3 (-112)) (-5 *1 (-110)))) - ((*1 *2 *2) (-12 (-5 *2 (-932)) (|has| *1 (-6 -4447)) (-4 *1 (-414)))) - ((*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-932))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-765))))) -(((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1231))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) - (-5 *2 - (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574)) - (|:| |success| (-112)))) - (-5 *1 (-799)) (-5 *5 (-574))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1172)) - (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-768))))) + (-12 (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) (-4 *2 (-1230))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-461)) (-4 *3 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) + (-5 *1 (-458 *4 *3 *5 *6)) (-4 *6 (-959 *4 *3 *5))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4456)) (-4 *1 (-120 *2)) (-4 *2 (-1230))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-461) (-1050 (-573)))) (-4 *3 (-565)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-439 *3)) + (-4 *2 + (-13 (-371) (-309) + (-10 -8 (-15 -2965 ((-1137 *3 (-621 $)) $)) + (-15 -2975 ((-1137 *3 (-621 $)) $)) + (-15 -2942 ($ (-1137 *3 (-621 $)))))))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) +(((*1 *2 *3) + (-12 (-5 *2 (-427 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1256 (-48))))) + ((*1 *2 *3 *1) + (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) + (-5 *1 (-122 *3)) (-4 *3 (-859)))) + ((*1 *2 *2) + (-12 (-5 *2 (-595 *4)) (-4 *4 (-13 (-29 *3) (-1215))) + (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) + (-5 *1 (-592 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-595 (-416 (-962 *3)))) + (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *1 (-598 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1256 *5)) (-4 *5 (-371)) + (-5 *2 (-2 (|:| -1359 *3) (|:| |special| *3))) (-5 *1 (-736 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1280 *5)) (-4 *5 (-371)) (-4 *5 (-1061)) + (-5 *2 (-653 (-653 (-698 *5)))) (-5 *1 (-1041 *5)) + (-5 *3 (-653 (-698 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1280 (-1280 *5))) (-4 *5 (-371)) (-4 *5 (-1061)) + (-5 *2 (-653 (-653 (-698 *5)))) (-5 *1 (-1041 *5)) + (-5 *3 (-653 (-698 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-653 *1)) (-4 *1 (-1156)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-653 *1)) (-4 *1 (-1156))))) +(((*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-158))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 (-653 *5))) (-4 *5 (-1271 *4)) + (-4 *4 (-38 (-416 (-573)))) + (-5 *2 (-1 (-1169 *4) (-653 (-1169 *4)))) (-5 *1 (-1273 *4 *5))))) (((*1 *1 *2 *3) - (-12 (-4 *1 (-391 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-1113)))) + (-12 (-4 *1 (-390 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-1112)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-574)) (-5 *2 (-1170 *3)) (-5 *1 (-1174 *3)) - (-4 *3 (-1062)))) + (-12 (-5 *4 (-573)) (-5 *2 (-1169 *3)) (-5 *1 (-1173 *3)) + (-4 *3 (-1061)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-829 *4)) (-4 *4 (-860)) (-4 *1 (-1298 *4 *3)) - (-4 *3 (-1062))))) -(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283)))) - ((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283))))) -(((*1 *2 *1) - (-12 (-4 *1 (-989 *3 *4 *2 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *5 (-1078 *3 *4 *2)) (-4 *2 (-860)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1078 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *2 (-860))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062))))) + (-12 (-5 *2 (-828 *4)) (-4 *4 (-859)) (-4 *1 (-1297 *4 *3)) + (-4 *3 (-1061))))) +(((*1 *1 *1) (-5 *1 (-1075)))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-653 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-565)) + (-4 *6 (-802)) (-4 *7 (-859)) (-5 *1 (-989 *5 *6 *7 *8))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-319)) (-5 *1 (-838))))) +(((*1 *1) + (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) + (-14 *4 *3)))) (((*1 *2 *3) - (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) - (-5 *2 (-654 (-781))) (-5 *1 (-788 *3 *4 *5 *6 *7)) - (-4 *3 (-1257 *6)) (-4 *7 (-960 *6 *4 *5))))) -(((*1 *2 *2) (-12 - (-5 *2 - (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) - (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) - (|:| |ub| (-654 (-853 (-227)))))) - (-5 *1 (-274))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))) + (-5 *3 + (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) + (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-387)) (-5 *1 (-194))))) (((*1 *2 *1) - (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) - (-5 *2 (-654 (-654 (-654 (-954 *3)))))))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-566)) (-5 *1 (-982 *3 *2)) (-4 *2 (-1257 *3))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-566)) - (-5 *2 (-2 (|:| -1411 *3) (|:| -2766 *3))) (-5 *1 (-1252 *4 *3)) - (-4 *3 (-1257 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-654 (-654 *8))) (-5 *3 (-654 *8)) - (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) - (-4 *7 (-860)) (-5 *2 (-112)) (-5 *1 (-990 *5 *6 *7 *8))))) -(((*1 *2 *2) - (-12 (-5 *2 (-654 (-963 *3))) (-4 *3 (-462)) (-5 *1 (-369 *3 *4)) - (-14 *4 (-654 (-1190))))) - ((*1 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-462)) - (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-460 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-654 *7)) (-5 *3 (-1172)) (-4 *7 (-960 *4 *5 *6)) - (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-5 *1 (-460 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-654 *7)) (-5 *3 (-1172)) (-4 *7 (-960 *4 *5 *6)) - (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-5 *1 (-460 *4 *5 *6 *7)))) - ((*1 *1 *1) - (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) - (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-960 *2 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-654 (-790 *3 (-874 *4)))) (-4 *3 (-462)) - (-14 *4 (-654 (-1190))) (-5 *1 (-638 *3 *4))))) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1061)) + (-14 *4 (-653 (-1189))))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1061) (-859))) + (-14 *4 (-653 (-1189)))))) +(((*1 *1) (-5 *1 (-1282)))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1169 *4)) (-5 *3 (-573)) (-4 *4 (-1061)) + (-5 *1 (-1173 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-573)) (-5 *1 (-1272 *3 *4 *5)) (-4 *3 (-1061)) + (-14 *4 (-1189)) (-14 *5 *3)))) (((*1 *2 *1) - (-12 (-4 *3 (-1231)) (-5 *2 (-654 *1)) (-4 *1 (-1023 *3))))) + (-12 (-14 *3 (-653 (-1189))) (-4 *4 (-174)) + (-4 *5 (-243 (-2862 *3) (-780))) + (-14 *6 + (-1 (-112) (-2 (|:| -2575 *2) (|:| -3907 *5)) + (-2 (|:| -2575 *2) (|:| -3907 *5)))) + (-4 *2 (-859)) (-5 *1 (-470 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-959 *4 *5 (-873 *3)))))) +(((*1 *1 *2) (-12 (-5 *2 (-653 (-1106 (-416 (-573))))) (-5 *1 (-269)))) + ((*1 *1 *2) (-12 (-5 *2 (-653 (-1106 (-387)))) (-5 *1 (-269))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-387)) (-5 *3 (-1171)) (-5 *1 (-97)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-387)) (-5 *3 (-1171)) (-5 *1 (-97))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-566)) - (-4 *3 (-960 *7 *5 *6)) - (-5 *2 - (-2 (|:| -3715 (-781)) (|:| -1858 *3) (|:| |radicand| (-654 *3)))) - (-5 *1 (-964 *5 *6 *7 *3 *8)) (-5 *4 (-781)) - (-4 *8 - (-13 (-372) - (-10 -8 (-15 -2943 ($ *3)) (-15 -2966 (*3 $)) (-15 -2977 (*3 $)))))))) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) (((*1 *1 *1) - (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) - (-4 *4 (-860)))) - ((*1 *1) (-4 *1 (-1165)))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566))))) -(((*1 *2 *1) - (-12 (-5 *2 (-701 (-977 *3))) (-5 *1 (-977 *3)) (-4 *3 (-1113))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1048)) - (-5 *1 (-759))))) + (-12 (-4 *2 (-357)) (-4 *2 (-1061)) (-5 *1 (-721 *2 *3)) + (-4 *3 (-1256 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-653 (-953 (-227)))) (-5 *1 (-1281))))) (((*1 *1 *1) - (-12 (-4 *2 (-358)) (-4 *2 (-1062)) (-5 *1 (-722 *2 *3)) - (-4 *3 (-1257 *2))))) -(((*1 *1) (-4 *1 (-358))) + (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) + (-4 *4 (-859)))) + ((*1 *1) (-4 *1 (-1164)))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1230))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1154 *3 *4)) (-14 *3 (-931)) (-4 *4 (-371)) + (-5 *1 (-1005 *3 *4))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-554)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-565)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2872 *3))) + (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *3 (-461)) (-4 *4 (-859)) (-4 *5 (-802)) (-5 *2 (-112)) + (-5 *1 (-999 *3 *4 *5 *6)) (-4 *6 (-959 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1152 *3 *4)) (-4 *3 (-13 (-1112) (-34))) + (-4 *4 (-13 (-1112) (-34)))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-554)) + (-5 *2 (-416 (-573))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-416 (-573))) (-5 *1 (-427 *3)) (-4 *3 (-554)) + (-4 *3 (-565)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-554)) (-5 *2 (-416 (-573))))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-806 *3)) (-4 *3 (-174)) (-4 *3 (-554)) + (-5 *2 (-416 (-573))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-416 (-573))) (-5 *1 (-842 *3)) (-4 *3 (-554)) + (-4 *3 (-1112)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-416 (-573))) (-5 *1 (-852 *3)) (-4 *3 (-554)) + (-4 *3 (-1112)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1009 *3)) (-4 *3 (-174)) (-4 *3 (-554)) + (-5 *2 (-416 (-573))))) ((*1 *2 *3) - (-12 (-5 *3 (-654 *5)) (-4 *5 (-440 *4)) (-4 *4 (-13 (-566) (-148))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-654 (-1186 *5))) - (|:| |prim| (-1186 *5)))) - (-5 *1 (-442 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-566) (-148))) - (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1186 *3)) - (|:| |pol2| (-1186 *3)) (|:| |prim| (-1186 *3)))) - (-5 *1 (-442 *4 *3)) (-4 *3 (-27)) (-4 *3 (-440 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-963 *5)) (-5 *4 (-1190)) (-4 *5 (-13 (-372) (-148))) - (-5 *2 - (-2 (|:| |coef1| (-574)) (|:| |coef2| (-574)) - (|:| |prim| (-1186 *5)))) - (-5 *1 (-971 *5)))) + (|partial| -12 (-5 *2 (-416 (-573))) (-5 *1 (-1020 *3)) + (-4 *3 (-1050 *2))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 + *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 + *9) + (-12 (-5 *4 (-698 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) + (-5 *7 (-698 (-573))) + (-5 *8 (-3 (|:| |fn| (-397)) (|:| |fp| (-80 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-397)) (|:| |fp| (-77 OBJFUN)))) + (-5 *3 (-573)) (-5 *2 (-1047)) (-5 *1 (-762))))) +(((*1 *1 *1) (-4 *1 (-554)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1189)) (-5 *5 (-1106 (-227))) (-5 *2 (-937)) + (-5 *1 (-935 *3)) (-4 *3 (-623 (-545))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-654 (-1190))) - (-4 *5 (-13 (-372) (-148))) - (-5 *2 - (-2 (|:| -1858 (-654 (-574))) (|:| |poly| (-654 (-1186 *5))) - (|:| |prim| (-1186 *5)))) - (-5 *1 (-971 *5)))) + (-12 (-5 *4 (-1189)) (-5 *2 (-937)) (-5 *1 (-935 *3)) + (-4 *3 (-623 (-545))))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-937)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1106 (-227))) + (-5 *1 (-937))))) +(((*1 *1 *1) (-5 *1 (-545)))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-309)) (-5 *3 (-1189)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-309)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-924 *3)) (-4 *3 (-314))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1207 *4 *5)) + (-4 *4 (-1112)) (-4 *5 (-1112))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-427 *2)) (-4 *2 (-314)) (-5 *1 (-924 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-1189)) + (-4 *5 (-13 (-314) (-148))) (-5 *2 (-52)) (-5 *1 (-925 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-654 (-963 *6))) (-5 *4 (-654 (-1190))) (-5 *5 (-1190)) - (-4 *6 (-13 (-372) (-148))) + (-12 (-5 *4 (-427 (-962 *6))) (-5 *5 (-1189)) (-5 *3 (-962 *6)) + (-4 *6 (-13 (-314) (-148))) (-5 *2 (-52)) (-5 *1 (-925 *6))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-780)) (-5 *1 (-59 *3)) (-4 *3 (-1230)))) + ((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-5 *1 (-59 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1112)))) + ((*1 *1 *2) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-871))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 - (-2 (|:| -1858 (-654 (-574))) (|:| |poly| (-654 (-1186 *6))) - (|:| |prim| (-1186 *6)))) - (-5 *1 (-971 *6))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-654 *2)) (-5 *1 (-114 *2)) - (-4 *2 (-1113)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-654 *4))) (-4 *4 (-1113)) - (-5 *1 (-114 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1113)) - (-5 *1 (-114 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-654 *4))) - (-5 *1 (-114 *4)) (-4 *4 (-1113)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-658 *3)) (-4 *3 (-1062)) - (-5 *1 (-724 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1062)) (-5 *1 (-846 *3))))) -(((*1 *1 *1) (-4 *1 (-555)))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))) -(((*1 *1 *1) (-5 *1 (-546)))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-654 *7)) (-5 *3 (-574)) (-4 *7 (-960 *4 *5 *6)) - (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-5 *1 (-459 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *3 (-372)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) - (-5 *2 (-1281 *6)) (-5 *1 (-345 *3 *4 *5 *6)) - (-4 *6 (-351 *3 *4 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) - (-4 *4 (-174)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-1302 *3 *4)) (-4 *3 (-860)) - (-4 *4 (-1062))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1216)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1216)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1170 (-574))) (-5 *1 (-1174 *4)) (-4 *4 (-1062)) - (-5 *3 (-574))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-912 *2)) (-4 *2 (-1113)))) - ((*1 *1 *2) (-12 (-5 *1 (-912 *2)) (-4 *2 (-1113))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-872))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)) - (-5 *2 (-112)))) + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *3 (-653 (-269))) (-5 *1 (-267)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *1 (-269)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) + ((*1 *2 *1 *3 *3 *4 *4 *4) + (-12 (-5 *3 (-573)) (-5 *4 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) + ((*1 *2 *1 *3) + (-12 + (-5 *3 + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *2 (-1285)) (-5 *1 (-1282)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1304 *3 *4)) (-4 *3 (-1062)) - (-4 *4 (-856))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-372)) (-5 *1 (-1038 *3 *2)) (-4 *2 (-666 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-372)) (-5 *2 (-2 (|:| -4122 *3) (|:| -4296 (-654 *5)))) - (-5 *1 (-1038 *5 *3)) (-5 *4 (-654 *5)) (-4 *3 (-666 *5))))) -(((*1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-699 (-574))) (-5 *5 (-112)) (-5 *7 (-699 (-227))) - (-5 *3 (-574)) (-5 *6 (-227)) (-5 *2 (-1048)) (-5 *1 (-764))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-781)) (-5 *1 (-597 *2)) (-4 *2 (-555))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-372) (-1216) (-1015)))))) + (-12 + (-5 *2 + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3465 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *1 (-1282)))) + ((*1 *2 *1 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-461)) + (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) + (-5 *1 (-989 *3 *4 *5 *6))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-654 (-654 (-654 *4)))) (-5 *3 (-654 *4)) (-4 *4 (-860)) - (-5 *1 (-1201 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555))))) -(((*1 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-23))))) + (-12 (-5 *3 (-780)) (-5 *1 (-792 *2)) (-4 *2 (-38 (-416 (-573)))) + (-4 *2 (-174))))) +(((*1 *1 *1) (-12 (-5 *1 (-1216 *2)) (-4 *2 (-1112))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-953 (-227))) (-5 *2 (-1285)) (-5 *1 (-477))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1234)) (-4 *5 (-1256 *4)) + (-5 *2 (-2 (|:| -1857 (-416 *5)) (|:| |poly| *3))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1256 (-416 *5)))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-780)) (-4 *5 (-565)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-981 *5 *3)) (-4 *3 (-1256 *5))))) +(((*1 *2 *1 *3 *3) + (-12 (|has| *1 (-6 -4456)) (-4 *1 (-613 *3 *4)) (-4 *3 (-1112)) + (-4 *4 (-1230)) (-5 *2 (-1285))))) +(((*1 *2) + (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) + (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-1285)) + (-5 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *7 (-1083 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) + (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-1285)) + (-5 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *7 (-1083 *3 *4 *5 *6))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-781)) (-4 *3 (-1231)) (-4 *1 (-57 *3 *4 *5)) - (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) + (-12 (-5 *2 (-780)) (-4 *3 (-1230)) (-4 *1 (-57 *3 *4 *5)) + (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) ((*1 *1) (-5 *1 (-173))) - ((*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1113)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1172)) (-4 *1 (-399)))) - ((*1 *1) (-5 *1 (-404))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-4 *1 (-661 *3)) (-4 *3 (-1231)))) + ((*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1112)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1171)) (-4 *1 (-398)))) + ((*1 *1) (-5 *1 (-403))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-780)) (-4 *1 (-660 *3)) (-4 *3 (-1230)))) ((*1 *1) - (-12 (-4 *3 (-1113)) (-5 *1 (-896 *2 *3 *4)) (-4 *2 (-1113)) - (-4 *4 (-676 *3)))) - ((*1 *1) (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113)))) + (-12 (-4 *3 (-1112)) (-5 *1 (-895 *2 *3 *4)) (-4 *2 (-1112)) + (-4 *4 (-675 *3)))) + ((*1 *1) (-12 (-5 *1 (-899 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112)))) ((*1 *1 *2) - (-12 (-5 *1 (-1155 *3 *2)) (-14 *3 (-781)) (-4 *2 (-1062)))) - ((*1 *1) (-12 (-5 *1 (-1178 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1062)))) - ((*1 *1 *1) (-5 *1 (-1190))) ((*1 *1) (-5 *1 (-1190))) - ((*1 *1) (-5 *1 (-1211)))) -(((*1 *2 *1) (-12 (-5 *2 (-984)) (-5 *1 (-916 *3)) (-4 *3 (-1113))))) + (-12 (-5 *1 (-1154 *3 *2)) (-14 *3 (-780)) (-4 *2 (-1061)))) + ((*1 *1) (-12 (-5 *1 (-1177 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1061)))) + ((*1 *1 *1) (-5 *1 (-1189))) ((*1 *1) (-5 *1 (-1189))) + ((*1 *1) (-5 *1 (-1210)))) +(((*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1199))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 *7)) (-4 *7 (-959 *4 *6 *5)) + (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) + (-4 *6 (-802)) (-5 *2 (-112)) (-5 *1 (-934 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 (-962 *4))) (-4 *4 (-13 (-314) (-148))) + (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802)) (-5 *2 (-112)) + (-5 *1 (-934 *4 *5 *6 *7)) (-4 *7 (-959 *4 *6 *5))))) (((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1062)) - (-5 *1 (-863 *5 *2)) (-4 *2 (-862 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1048)) - (-5 *1 (-765))))) -(((*1 *2 *2) (-12 (-5 *2 (-932)) (|has| *1 (-6 -4447)) (-4 *1 (-414)))) - ((*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-932)))) - ((*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-709)))) - ((*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-709))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1170 (-2 (|:| |k| (-574)) (|:| |c| *6)))) - (-5 *4 (-1039 (-853 (-574)))) (-5 *5 (-1190)) (-5 *7 (-417 (-574))) - (-4 *6 (-1062)) (-5 *2 (-872)) (-5 *1 (-605 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-372)) - (-5 *2 - (-2 (|:| |ir| (-596 (-417 *6))) (|:| |specpart| (-417 *6)) - (|:| |polypart| *6))) - (-5 *1 (-584 *5 *6)) (-5 *3 (-417 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-883 (-932) (-932)))) (-5 *1 (-984))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1048))))) -(((*1 *1 *1 *1) (-5 *1 (-872)))) + (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1061)) + (-5 *1 (-862 *5 *2)) (-4 *2 (-861 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-931)) (|has| *1 (-6 -4446)) (-4 *1 (-413)))) + ((*1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-931)))) + ((*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-708)))) + ((*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-708))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) + (-5 *2 (-1047)) (-5 *1 (-761))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 (-2 (|:| -3693 *3) (|:| -1908 *4)))) - (-4 *3 (-1113)) (-4 *4 (-1113)) (-4 *1 (-1207 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1207 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113))))) -(((*1 *2 *3) - (-12 (-4 *4 (-372)) (-4 *4 (-566)) (-4 *5 (-1257 *4)) - (-5 *2 (-2 (|:| -3578 (-633 *4 *5)) (|:| -3275 (-417 *5)))) - (-5 *1 (-633 *4 *5)) (-5 *3 (-417 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-654 (-1178 *3 *4))) (-5 *1 (-1178 *3 *4)) - (-14 *3 (-932)) (-4 *4 (-1062)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-462)) (-4 *3 (-1062)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) - (-4 *1 (-1257 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-109))) (-5 *1 (-177))))) + (-12 (-5 *3 (-653 (-789 *5 (-873 *6)))) (-5 *4 (-112)) (-4 *5 (-461)) + (-14 *6 (-653 (-1189))) (-5 *2 (-653 (-1058 *5 *6))) + (-5 *1 (-637 *5 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-931)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) + ((*1 *1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-269))))) (((*1 *2 *1) - (-12 (-14 *3 (-654 (-1190))) (-4 *4 (-174)) - (-4 *5 (-244 (-2863 *3) (-781))) - (-14 *6 - (-1 (-112) (-2 (|:| -2576 *2) (|:| -3715 *5)) - (-2 (|:| -2576 *2) (|:| -3715 *5)))) - (-4 *2 (-860)) (-5 *1 (-471 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-960 *4 *5 (-874 *3)))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1107 (-227))) - (-5 *5 (-112)) (-5 *2 (-1283)) (-5 *1 (-264))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1190)) (-5 *5 (-654 *3)) - (-4 *3 (-13 (-27) (-1216) (-440 *6))) - (-4 *6 (-13 (-462) (-148) (-1051 (-574)) (-649 (-574)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-567 *6 *3))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1062)) - (-4 *4 (-802)) (-4 *3 (-174))))) -(((*1 *2 *3) - (-12 (-4 *4 (-860)) (-5 *2 (-654 (-654 (-654 *4)))) - (-5 *1 (-1201 *4)) (-5 *3 (-654 (-654 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-324 (-227))) (-5 *2 (-417 (-574))) (-5 *1 (-313))))) -(((*1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-401))))) -(((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-62 *3)) (-14 *3 (-1190)))) - ((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-69 *3)) (-14 *3 (-1190)))) - ((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-72 *3)) (-14 *3 (-1190)))) - ((*1 *2 *1) (-12 (-4 *1 (-405)) (-5 *2 (-1286)))) - ((*1 *2 *3) (-12 (-5 *3 (-398)) (-5 *2 (-1286)) (-5 *1 (-407)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1172)) (-5 *4 (-872)) (-5 *2 (-1286)) (-5 *1 (-1151)))) - ((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1286)) (-5 *1 (-1151)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1286)) (-5 *1 (-1151))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-932)) (-5 *1 (-1114 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) + (-12 (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) + (-5 *2 (-2 (|:| |k| (-828 *3)) (|:| |c| *4)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1216 *3)) (-4 *3 (-1112))))) +(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-52)) (-5 *1 (-838))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-158)) (-5 *2 (-1285)) (-5 *1 (-1282))))) +(((*1 *1 *2) + (-12 (-5 *2 (-653 (-2 (|:| -3692 *3) (|:| -1907 *4)))) + (-4 *3 (-1112)) (-4 *4 (-1112)) (-4 *1 (-1206 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1206 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-698 (-227))) (-5 *5 (-698 (-573))) (-5 *3 (-573)) + (-5 *2 (-1047)) (-5 *1 (-765))))) +(((*1 *1 *1) (-5 *1 (-1075)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-573)) (-5 *2 (-653 (-2 (|:| -4218 *3) (|:| -2565 *4)))) + (-5 *1 (-705 *3)) (-4 *3 (-1256 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)) - (-5 *2 (-1172))))) -(((*1 *1 *1) (-5 *1 (-1076)))) -(((*1 *2 *3) - (-12 (-4 *4 (-566)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2872 *4))) - (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4))))) + (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)) + (-5 *2 (-780)))) + ((*1 *2 *1) + (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1112)) + (-5 *2 (-780)))) + ((*1 *2 *1) + (-12 (-5 *2 (-780)) (-5 *1 (-744 *3 *4)) (-4 *3 (-1061)) + (-4 *4 (-735))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1230)) (-5 *1 (-383 *4 *2)) + (-4 *2 (-13 (-381 *4) (-10 -7 (-6 -4456))))))) +(((*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-314)))) + ((*1 *2 *1) (-12 (-5 *1 (-924 *2)) (-4 *2 (-314)))) + ((*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565)) (-4 *2 (-314)))) + ((*1 *2 *1) (-12 (-4 *1 (-1072)) (-5 *2 (-573))))) +(((*1 *2 *1) (-12 (-4 *1 (-536)) (-5 *2 (-700 (-1238)))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *5 (-112)) + (-5 *2 (-1047)) (-5 *1 (-754))))) +(((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-62 *3)) (-14 *3 (-1189)))) + ((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-69 *3)) (-14 *3 (-1189)))) + ((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-72 *3)) (-14 *3 (-1189)))) + ((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-1285)))) + ((*1 *2 *3) (-12 (-5 *3 (-397)) (-5 *2 (-1285)) (-5 *1 (-406)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1171)) (-5 *4 (-871)) (-5 *2 (-1285)) (-5 *1 (-1150)))) + ((*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1285)) (-5 *1 (-1150)))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 (-871))) (-5 *2 (-1285)) (-5 *1 (-1150))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) + (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1011 *3)) (-4 *3 (-174)) (-5 *1 (-808 *3))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-699 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *2 (-417 (-574))) - (-5 *1 (-443 *4 *3)) (-4 *3 (-440 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-622 *3)) (-4 *3 (-440 *5)) - (-4 *5 (-13 (-566) (-1051 (-574)))) (-5 *2 (-1186 (-417 (-574)))) - (-5 *1 (-443 *5 *3))))) -(((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1053))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1113)) (-4 *4 (-1113)) - (-4 *6 (-1113)) (-5 *2 (-1 *6 *5)) (-5 *1 (-694 *5 *4 *6))))) + (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1112) (-1050 *5))) + (-4 *5 (-896 *4)) (-4 *4 (-1112)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-941 *4 *5 *6))))) +(((*1 *1 *1 *1) (-5 *1 (-871)))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-931)) (-5 *4 (-227)) (-5 *5 (-573)) (-5 *6 (-883)) + (-5 *2 (-1285)) (-5 *1 (-1281))))) (((*1 *2 *3) - (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) - (-5 *2 (-654 (-963 *4))))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-654 (-963 *4))) (-5 *1 (-426 *3 *4)) - (-4 *3 (-427 *4)))) + (-12 (-4 *4 (-565)) (-5 *2 (-780)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-426 *4))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) (-4 *4 (-802)) + (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-698 *5)) (-4 *5 (-1061)) (-5 *1 (-1066 *3 *4 *5)) + (-14 *3 (-780)) (-14 *4 (-780))))) +(((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-400))))) +(((*1 *1 *1) + (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-780)) + (-4 *3 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) + (-4 *4 (-1256 *3)) (-5 *1 (-508 *3 *4 *5)) (-4 *5 (-418 *3 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) + ((*1 *1 *1) (-4 *1 (-1151)))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1185 (-962 *4))) (-5 *1 (-425 *3 *4)) + (-4 *3 (-426 *4)))) ((*1 *2) - (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-654 (-963 *3))))) + (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-4 *3 (-371)) + (-5 *2 (-1185 (-962 *3))))) ((*1 *2) - (-12 (-5 *2 (-654 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6)) - (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) - (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1281 (-463 *4 *5 *6 *7))) (-5 *2 (-654 (-963 *4))) - (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-566)) (-4 *4 (-174)) - (-14 *5 (-932)) (-14 *6 (-654 (-1190))) (-14 *7 (-1281 (-699 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1216)))))) -(((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-401))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1286) (-1281 *5) (-1281 *5) (-388))) - (-5 *3 (-1281 (-388))) (-5 *5 (-388)) (-5 *2 (-1286)) - (-5 *1 (-798))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-654 (-112))) (-5 *5 (-699 (-227))) - (-5 *6 (-699 (-574))) (-5 *7 (-227)) (-5 *3 (-574)) (-5 *2 (-1048)) - (-5 *1 (-764))))) -(((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-831))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-302 (-843 *3))) - (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) - (-5 *2 (-843 *3)) (-5 *1 (-646 *5 *3)) - (-4 *3 (-13 (-27) (-1216) (-440 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-302 (-843 (-963 *5)))) (-4 *5 (-462)) - (-5 *2 (-843 (-417 (-963 *5)))) (-5 *1 (-647 *5)) - (-5 *3 (-417 (-963 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-302 (-417 (-963 *5)))) (-5 *3 (-417 (-963 *5))) - (-4 *5 (-462)) (-5 *2 (-843 *3)) (-5 *1 (-647 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) + (-12 (-5 *2 (-1185 (-416 (-962 *3)))) (-5 *1 (-462 *3 *4 *5 *6)) + (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) + (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3)))))) +(((*1 *2 *3) + (-12 (-4 *1 (-848)) + (-5 *3 + (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) + (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) + (|:| |ub| (-653 (-852 (-227)))))) + (-5 *2 (-1047)))) ((*1 *2 *3) - (-12 (-5 *2 (-1186 (-417 (-574)))) (-5 *1 (-953)) (-5 *3 (-574))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555))))) + (-12 (-4 *1 (-848)) + (-5 *3 + (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) + (-5 *2 (-1047))))) +(((*1 *1) + (-12 (-4 *1 (-413)) (-2075 (|has| *1 (-6 -4446))) + (-2075 (|has| *1 (-6 -4438))))) + ((*1 *2 *1) (-12 (-4 *1 (-434 *2)) (-4 *2 (-1112)) (-4 *2 (-859)))) + ((*1 *1) (-4 *1 (-853))) ((*1 *1 *1 *1) (-4 *1 (-859))) + ((*1 *2 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-859))))) +(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1211))))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-23))))) +(((*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-340))))) +(((*1 *2 *3) (-12 (-5 *3 (-397)) (-5 *2 (-1285)) (-5 *1 (-400)))) + ((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-400))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) (-4 *5 (-802)) + (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1272 *4)) (-5 *1 (-1274 *4 *2)) - (-4 *4 (-38 (-417 (-574))))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-781)) (|:| -4086 *4))) (-5 *5 (-781)) - (-4 *4 (-960 *6 *7 *8)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) - (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) - (|:| |polj| *4))) - (-5 *1 (-459 *6 *7 *8 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928))))) -(((*1 *2 *3) (-12 (-5 *3 (-398)) (-5 *2 (-1286)) (-5 *1 (-401)))) - ((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-401))))) -(((*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1200))))) + (-12 (-4 *5 (-371)) (-4 *7 (-1256 *5)) (-4 *4 (-733 *5 *7)) + (-5 *2 (-2 (|:| -1423 (-698 *6)) (|:| |vec| (-1280 *5)))) + (-5 *1 (-820 *5 *6 *7 *4 *3)) (-4 *6 (-665 *5)) (-4 *3 (-665 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-931)) (-5 *1 (-983))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1169 (-653 (-573)))) (-5 *3 (-653 (-573))) + (-5 *1 (-893))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1061)) (-5 *1 (-1252 *3 *2)) (-4 *2 (-1256 *3))))) +(((*1 *1) (-5 *1 (-832)))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1189)) (-5 *3 (-443)) (-4 *5 (-1112)) + (-5 *1 (-1118 *5 *4)) (-4 *4 (-439 *5))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23)) + (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23)) + (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-685 *2)) (-4 *2 (-1062)) (-4 *2 (-1113))))) + (-12 (-5 *1 (-684 *2)) (-4 *2 (-1061)) (-4 *2 (-1112))))) (((*1 *1 *2) - (-12 (-5 *2 (-932)) (-4 *1 (-244 *3 *4)) (-4 *4 (-1062)) - (-4 *4 (-1231)))) - ((*1 *1 *2) - (-12 (-14 *3 (-654 (-1190))) (-4 *4 (-174)) - (-4 *5 (-244 (-2863 *3) (-781))) - (-14 *6 - (-1 (-112) (-2 (|:| -2576 *2) (|:| -3715 *5)) - (-2 (|:| -2576 *2) (|:| -3715 *5)))) - (-5 *1 (-471 *3 *4 *2 *5 *6 *7)) (-4 *2 (-860)) - (-4 *7 (-960 *4 *5 (-874 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-954 (-227))) (-5 *1 (-1227))))) -(((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1053))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1113)) (-4 *6 (-1113)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-694 *4 *5 *6)) (-4 *5 (-1113))))) -(((*1 *1 *1 *1) (-4 *1 (-555)))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1190)) (-5 *3 (-444)) (-4 *5 (-1113)) - (-5 *1 (-1119 *5 *4)) (-4 *4 (-440 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-781)) (-4 *5 (-372)) (-5 *2 (-417 *6)) - (-5 *1 (-877 *5 *4 *6)) (-4 *4 (-1272 *5)) (-4 *6 (-1257 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-781)) (-5 *4 (-1273 *5 *6 *7)) (-4 *5 (-372)) - (-14 *6 (-1190)) (-14 *7 *5) (-5 *2 (-417 (-1254 *6 *5))) - (-5 *1 (-878 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-781)) (-5 *4 (-1273 *5 *6 *7)) (-4 *5 (-372)) - (-14 *6 (-1190)) (-14 *7 *5) (-5 *2 (-417 (-1254 *6 *5))) - (-5 *1 (-878 *5 *6 *7))))) -(((*1 *2) - (-12 (-5 *2 (-1281 (-1114 *3 *4))) (-5 *1 (-1114 *3 *4)) - (-14 *3 (-932)) (-14 *4 (-932))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-112)) - (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 APROD)))) - (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-73 MSOLVE)))) - (-5 *2 (-1048)) (-5 *1 (-766))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1172)) (-5 *2 (-654 (-1195))) (-5 *1 (-1149))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-761))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-870)) (-5 *3 (-129)) (-5 *2 (-781))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-765))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) + (-12 (-5 *2 (-653 (-653 *3))) (-4 *3 (-1112)) (-5 *1 (-1201 *3))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) (-5 *1 (-761))))) -(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) - ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1190)) (-5 *4 (-963 (-574))) (-5 *2 (-338)) - (-5 *1 (-340))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1062)) (-4 *4 (-1113)) (-5 *2 (-654 *1)) - (-4 *1 (-391 *3 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-654 (-745 *3 *4))) (-5 *1 (-745 *3 *4)) (-4 *3 (-1062)) - (-4 *4 (-736)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) - (-4 *1 (-960 *3 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1062)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1257 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1216)))) - ((*1 *2 *1) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-622 *3)) (-4 *3 (-1113))))) -(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1200))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 (-2 (|:| -3693 (-1190)) (|:| -1908 (-447))))) - (-5 *1 (-1194))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-989 *3 *4 *2 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *2 (-860)) (-4 *5 (-1078 *3 *4 *2))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-566)) - (-5 *2 (-2 (|:| -4340 (-699 *5)) (|:| |vec| (-1281 (-654 (-932)))))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-932)) (-4 *3 (-666 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) - (-5 *2 (-654 *4)) (-5 *1 (-1141 *3 *4)) (-4 *3 (-1257 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) - (-5 *2 (-654 *3)) (-5 *1 (-1141 *4 *3)) (-4 *4 (-1257 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) - ((*1 *2) (-12 (-5 *2 (-915 (-574))) (-5 *1 (-928))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1061)) (-4 *7 (-1061)) + (-4 *6 (-1256 *5)) (-5 *2 (-1185 (-1185 *7))) + (-5 *1 (-510 *5 *6 *4 *7)) (-4 *4 (-1256 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *2 (-13 (-440 *4) (-1015) (-1216))) - (-5 *1 (-610 *4 *2 *3)) - (-4 *3 (-13 (-440 (-171 *4)) (-1015) (-1216)))))) -(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1019))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-1170 *3))) (-5 *1 (-1170 *3)) (-4 *3 (-1231))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1266 *3 *4 *5)) (-5 *1 (-327 *3 *4 *5)) (-4 *3 (-372)) - (-14 *4 (-1190)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574)))) - ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-428 *3)) (-4 *3 (-566)))) - ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1113)) (-5 *1 (-723 *3 *2 *4)) (-4 *3 (-860)) - (-14 *4 - (-1 (-112) (-2 (|:| -2576 *3) (|:| -3715 *2)) - (-2 (|:| -2576 *3) (|:| -3715 *2))))))) -(((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4457)) (-4 *1 (-614 *3 *4)) (-4 *3 (-1113)) - (-4 *4 (-1231)) (-5 *2 (-1286))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1172)) (-4 *1 (-399))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-699 *3)) - (-4 *3 (-13 (-315) (-10 -8 (-15 -2827 ((-428 $) $))))) - (-4 *4 (-1257 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1062)) - (-4 *4 (-802))))) -(((*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1231))))) + (-12 (-5 *3 (-1171)) (-5 *2 (-653 (-1194))) (-5 *1 (-1148))))) (((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1062)) (-4 *4 (-860)) - (-4 *5 (-803)) (-4 *2 (-273 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-115)) (-4 *4 (-1062)) (-5 *1 (-724 *4 *2)) - (-4 *2 (-658 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-846 *2)) (-4 *2 (-1062))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-761))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-227)) + (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) + (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-653 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565)) (-4 *2 (-554)))) + ((*1 *1 *1) (-4 *1 (-1072)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-112))))) +(((*1 *1) (-4 *1 (-357))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 *5)) (-4 *5 (-439 *4)) (-4 *4 (-13 (-565) (-148))) (-5 *2 - (-2 (|:| |brans| (-654 (-654 (-954 *4)))) - (|:| |xValues| (-1107 *4)) (|:| |yValues| (-1107 *4)))) - (-5 *1 (-154)) (-5 *3 (-654 (-654 (-954 *4))))))) -(((*1 *1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270))))) -(((*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284)))) - ((*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284))))) -(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1186 (-417 (-574)))) (-5 *1 (-953)) (-5 *3 (-574))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-932)) (-5 *2 (-1286)) (-5 *1 (-1282)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-932)) (-5 *2 (-1286)) (-5 *1 (-1283))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1281 *4)) (-4 *4 (-13 (-1062) (-649 *5))) - (-4 *5 (-372)) (-4 *5 (-566)) (-5 *2 (-1281 *5)) - (-5 *1 (-648 *5 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1281 *4)) (-4 *4 (-13 (-1062) (-649 *5))) - (-2076 (-4 *5 (-372))) (-4 *5 (-566)) (-5 *2 (-1281 (-417 *5))) - (-5 *1 (-648 *5 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-654 (-1 *4 (-654 *4)))) (-4 *4 (-1113)) - (-5 *1 (-114 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1113)) - (-5 *1 (-114 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-654 (-1 *4 (-654 *4)))) - (-5 *1 (-114 *4)) (-4 *4 (-1113))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-767))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-937))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1281 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) - (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-478)))) - ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1282)))) - ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1283))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1078 *5 *6 *7)) - (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4091 *4)))) - (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *2 (-574)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-566)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-990 *4 *5 *6 *7))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1170 *4)) (-5 *3 (-574)) (-4 *4 (-1062)) - (-5 *1 (-1174 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-574)) (-5 *1 (-1273 *3 *4 *5)) (-4 *3 (-1062)) - (-14 *4 (-1190)) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-1212))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (-574)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-769))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1274 *3 *2)) - (-4 *2 (-1272 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1048)) (-5 *3 (-1190)) (-5 *1 (-274))))) -(((*1 *2 *1) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1152)))) -(((*1 *2) - (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) - (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-1286)) - (-5 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *7 (-1084 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) - (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-1286)) - (-5 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *7 (-1084 *3 *4 *5 *6))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-977 *2)) (-4 *2 (-1113))))) -(((*1 *2 *3) - (-12 (-5 *3 (-779)) - (-5 *2 - (-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) - (|:| |explanations| (-654 (-1172))) (|:| |extra| (-1048)))) - (-5 *1 (-575)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-779)) (-5 *4 (-1076)) - (-5 *2 - (-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) - (|:| |explanations| (-654 (-1172))) (|:| |extra| (-1048)))) - (-5 *1 (-575)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-797)) (-5 *3 (-1076)) - (-5 *4 - (-2 (|:| |fn| (-324 (-227))) - (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)) - (|:| |extra| (-1048)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-797)) (-5 *3 (-1076)) - (-5 *4 - (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) - (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) + (-2 (|:| |primelt| *5) (|:| |poly| (-653 (-1185 *5))) + (|:| |prim| (-1185 *5)))) + (-5 *1 (-441 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-565) (-148))) (-5 *2 - (-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)) - (|:| |extra| (-1048)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-810)) (-5 *3 (-1076)) - (-5 *4 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) - (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-818)) + (-2 (|:| |primelt| *3) (|:| |pol1| (-1185 *3)) + (|:| |pol2| (-1185 *3)) (|:| |prim| (-1185 *3)))) + (-5 *1 (-441 *4 *3)) (-4 *3 (-27)) (-4 *3 (-439 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-962 *5)) (-5 *4 (-1189)) (-4 *5 (-13 (-371) (-148))) (-5 *2 - (-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) - (|:| |explanations| (-654 (-1172))))) - (-5 *1 (-815)))) + (-2 (|:| |coef1| (-573)) (|:| |coef2| (-573)) + (|:| |prim| (-1185 *5)))) + (-5 *1 (-970 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-818)) (-5 *4 (-1076)) + (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-653 (-1189))) + (-4 *5 (-13 (-371) (-148))) (-5 *2 - (-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) - (|:| |explanations| (-654 (-1172))))) - (-5 *1 (-815)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-849)) (-5 *3 (-1076)) - (-5 *4 - (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) - (-5 *2 (-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-849)) (-5 *3 (-1076)) - (-5 *4 - (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) - (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) - (|:| |ub| (-654 (-853 (-227)))))) - (-5 *2 (-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-851)) + (-2 (|:| -1857 (-653 (-573))) (|:| |poly| (-653 (-1185 *5))) + (|:| |prim| (-1185 *5)))) + (-5 *1 (-970 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-653 (-962 *6))) (-5 *4 (-653 (-1189))) (-5 *5 (-1189)) + (-4 *6 (-13 (-371) (-148))) (-5 *2 - (-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) - (|:| |explanations| (-654 (-1172))))) - (-5 *1 (-850)))) + (-2 (|:| -1857 (-653 (-573))) (|:| |poly| (-653 (-1185 *6))) + (|:| |prim| (-1185 *6)))) + (-5 *1 (-970 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1171)) (-5 *1 (-194)))) + ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1171)) (-5 *1 (-307)))) + ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1171)) (-5 *1 (-312))))) +(((*1 *2 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-174))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230))))) +(((*1 *1 *1 *1) (-4 *1 (-309))) ((*1 *1 *1) (-4 *1 (-309)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *5 (-859)) (-5 *2 (-780))))) +(((*1 *2 *1) + (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) + (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-653 *6)) (-4 *6 (-859)) (-4 *4 (-371)) (-4 *5 (-802)) + (-5 *2 (-112)) (-5 *1 (-513 *4 *5 *6 *7)) (-4 *7 (-959 *4 *5 *6))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1106 (-227))) + (-5 *5 (-112)) (-5 *2 (-1282)) (-5 *1 (-263))))) +(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1199))))) +(((*1 *1 *2) + (-12 (-5 *2 (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 (-446))))) + (-5 *1 (-1193))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-899 *4 *5)) (-5 *3 (-899 *4 *6)) (-4 *4 (-1112)) + (-4 *5 (-1112)) (-4 *6 (-675 *5)) (-5 *1 (-895 *4 *5 *6))))) +(((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-653 (-490 *5 *6))) (-5 *4 (-873 *5)) + (-14 *5 (-653 (-1189))) (-5 *2 (-490 *5 *6)) (-5 *1 (-640 *5 *6)) + (-4 *6 (-461)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-851)) (-5 *4 (-1076)) + (-12 (-5 *3 (-653 (-490 *5 *6))) (-5 *4 (-873 *5)) + (-14 *5 (-653 (-1189))) (-5 *2 (-490 *5 *6)) (-5 *1 (-640 *5 *6)) + (-4 *6 (-461))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-653 (-873 *5))) (-14 *5 (-653 (-1189))) (-4 *6 (-461)) (-5 *2 - (-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) - (|:| |explanations| (-654 (-1172))))) - (-5 *1 (-850)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-906)) (-5 *3 (-1076)) - (-5 *4 - (-2 (|:| |pde| (-654 (-324 (-227)))) - (|:| |constraints| - (-654 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-781)) (|:| |boundaryType| (-574)) - (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) - (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) - (|:| |tol| (-227)))) - (-5 *2 (-2 (|:| -3678 (-388)) (|:| |explanations| (-1172)))))) + (-2 (|:| |dpolys| (-653 (-252 *5 *6))) + (|:| |coords| (-653 (-573))))) + (-5 *1 (-480 *5 *6 *7)) (-5 *3 (-653 (-252 *5 *6))) (-4 *7 (-461))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 *2)) (-4 *2 (-439 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-565))))) +(((*1 *1 *2) + (-12 (-5 *2 (-653 (-513 *3 *4 *5 *6))) (-4 *3 (-371)) (-4 *4 (-802)) + (-4 *5 (-859)) (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-371)) (-4 *3 (-802)) (-4 *4 (-859)) + (-5 *1 (-513 *2 *3 *4 *5)) (-4 *5 (-959 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-653 *1)) (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) + (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-653 *1)) (-5 *3 (-653 *7)) (-4 *1 (-1083 *4 *5 *6 *7)) + (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-1077 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 *1)) + (-4 *1 (-1083 *4 *5 *6 *7)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-653 *1)) + (-4 *1 (-1083 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-1189))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-13 (-857) (-371))) (-5 *2 (-112)) (-5 *1 (-1073 *4 *3)) + (-4 *3 (-1256 *4))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-653 (-653 (-953 (-227))))) (-5 *4 (-883)) + (-5 *5 (-931)) (-5 *6 (-653 (-269))) (-5 *2 (-477)) (-5 *1 (-1284)))) ((*1 *2 *3) - (-12 (-5 *3 (-909)) - (-5 *2 - (-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) - (|:| |explanations| (-654 (-1172))))) - (-5 *1 (-908)))) + (-12 (-5 *3 (-653 (-653 (-953 (-227))))) (-5 *2 (-477)) + (-5 *1 (-1284)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-909)) (-5 *4 (-1076)) - (-5 *2 - (-2 (|:| -3678 (-388)) (|:| -2032 (-1172)) - (|:| |explanations| (-654 (-1172))))) - (-5 *1 (-908))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1231)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1231)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-654 (-954 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-654 (-954 *3))) (-4 *3 (-1062)) (-4 *1 (-1147 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-654 (-954 *3))) (-4 *1 (-1147 *3)) (-4 *3 (-1062))))) + (-12 (-5 *3 (-653 (-653 (-953 (-227))))) (-5 *4 (-653 (-269))) + (-5 *2 (-477)) (-5 *1 (-1284))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1171)) (-4 *1 (-398))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-653 (-1185 *5))) (-5 *3 (-1185 *5)) + (-4 *5 (-167 *4)) (-4 *4 (-554)) (-5 *1 (-150 *4 *5)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-653 *3)) (-4 *3 (-1256 *5)) + (-4 *5 (-1256 *4)) (-4 *4 (-357)) (-5 *1 (-366 *4 *5 *3)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-653 (-1185 (-573)))) (-5 *3 (-1185 (-573))) + (-5 *1 (-581)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-653 (-1185 *1))) (-5 *3 (-1185 *1)) + (-4 *1 (-919))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-653 (-953 *4))) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) + (-4 *4 (-1061))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-1112)) + (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) + (-4 *1 (-394 *3))))) +(((*1 *2) + (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) + (-4 *5 (-1256 (-416 *4))) (-5 *2 (-698 (-416 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *2 *1) + (-12 (-4 *1 (-259 *3 *4 *2 *5)) (-4 *3 (-1061)) (-4 *4 (-859)) + (-4 *5 (-802)) (-4 *2 (-272 *4))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-632 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -3903 *4) (|:| |sol?| (-112))) + (-573) *4)) + (-4 *4 (-371)) (-4 *5 (-1256 *4)) (-5 *1 (-583 *4 *5))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-1040 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-653 (-698 *3))) (-4 *3 (-1061)) (-5 *1 (-1040 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-1040 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-653 (-698 *3))) (-4 *3 (-1061)) (-5 *1 (-1040 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-337))))) +(((*1 *2 *3 *4) + (-12 (-4 *7 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-565)) + (-4 *8 (-959 *7 *5 *6)) + (-5 *2 (-2 (|:| -3907 (-780)) (|:| -1857 *3) (|:| |radicand| *3))) + (-5 *1 (-963 *5 *6 *7 *8 *3)) (-5 *4 (-780)) + (-4 *3 + (-13 (-371) + (-10 -8 (-15 -2942 ($ *8)) (-15 -2965 (*8 $)) (-15 -2975 (*8 $)))))))) +(((*1 *2 *1) + (-12 (-5 *2 (-653 (-52))) (-5 *1 (-902 *3)) (-4 *3 (-1112))))) (((*1 *2 *3) - (-12 (-5 *3 (-1172)) - (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-112)) - (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1216) (-29 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-1194))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-654 (-622 *6))) (-5 *4 (-1190)) (-5 *2 (-622 *6)) - (-4 *6 (-440 *5)) (-4 *5 (-1113)) (-5 *1 (-583 *5 *6))))) + (-12 (-5 *3 (-653 (-227))) (-5 *2 (-1280 (-708))) (-5 *1 (-312))))) +(((*1 *2 *2) (-12 (-5 *2 (-1169 (-653 (-931)))) (-5 *1 (-893))))) +(((*1 *1) (-5 *1 (-446)))) +(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-371) (-1215)))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-902 *4)) (-4 *4 (-1112)) (-5 *2 (-112)) + (-5 *1 (-899 *4 *5)) (-4 *5 (-1112)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-902 *5)) (-4 *5 (-1112)) (-5 *2 (-112)) + (-5 *1 (-900 *5 *3)) (-4 *3 (-1230)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 *6)) (-5 *4 (-902 *5)) (-4 *5 (-1112)) + (-4 *6 (-1230)) (-5 *2 (-112)) (-5 *1 (-900 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-105))))) +(((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-477)))) + ((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-1281)))) + ((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-1282))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) - (-4 *4 (-1062))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-766))))) -(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1216)))))) + (-12 (-5 *2 (-1280 (-780))) (-5 *1 (-684 *3)) (-4 *3 (-1112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-931)) (-4 *1 (-243 *3 *4)) (-4 *4 (-1061)) + (-4 *4 (-1230)))) + ((*1 *1 *2) + (-12 (-14 *3 (-653 (-1189))) (-4 *4 (-174)) + (-4 *5 (-243 (-2862 *3) (-780))) + (-14 *6 + (-1 (-112) (-2 (|:| -2575 *2) (|:| -3907 *5)) + (-2 (|:| -2575 *2) (|:| -3907 *5)))) + (-5 *1 (-470 *3 *4 *2 *5 *6 *7)) (-4 *2 (-859)) + (-4 *7 (-959 *4 *5 (-873 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-953 (-227))) (-5 *1 (-1226))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (-573)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-314) (-148))) (-4 *4 (-13 (-859) (-623 (-1189)))) + (-4 *5 (-802)) (-5 *1 (-934 *3 *4 *5 *2)) (-4 *2 (-959 *3 *5 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4091 *9)))) - (-5 *4 (-781)) (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1084 *5 *6 *7 *8)) - (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-1286)) - (-5 *1 (-1082 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4091 *9)))) - (-5 *4 (-781)) (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1122 *5 *6 *7 *8)) - (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-1286)) - (-5 *1 (-1158 *5 *6 *7 *8 *9))))) + (-12 (-5 *3 (-698 (-171 (-416 (-573))))) (-5 *2 (-653 (-171 *4))) + (-5 *1 (-773 *4)) (-4 *4 (-13 (-371) (-857)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-768))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-781)) (-5 *4 (-1281 *2)) (-4 *5 (-315)) - (-4 *6 (-1005 *5)) (-4 *2 (-13 (-419 *6 *7) (-1051 *6))) - (-5 *1 (-423 *5 *6 *7 *2)) (-4 *7 (-1257 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1231))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2)) - (-4 *2 (-1257 *4))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1256 *5)) (-4 *5 (-371)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) + (-5 *1 (-583 *5 *3))))) +(((*1 *2) + (-12 + (-5 *2 + (-1280 (-653 (-2 (|:| -3082 (-920 *3)) (|:| -2575 (-1132)))))) + (-5 *1 (-359 *3 *4)) (-14 *3 (-931)) (-14 *4 (-931)))) + ((*1 *2) + (-12 (-5 *2 (-1280 (-653 (-2 (|:| -3082 *3) (|:| -2575 (-1132)))))) + (-5 *1 (-360 *3 *4)) (-4 *3 (-357)) (-14 *4 (-3 (-1185 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1280 (-653 (-2 (|:| -3082 *3) (|:| -2575 (-1132)))))) + (-5 *1 (-361 *3 *4)) (-4 *3 (-357)) (-14 *4 (-931))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-654 (-1190))) (-4 *5 (-566)) - (-5 *2 (-654 (-654 (-302 (-417 (-963 *5)))))) (-5 *1 (-780 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-963 *4))) (-4 *4 (-566)) - (-5 *2 (-654 (-654 (-302 (-417 (-963 *4)))))) (-5 *1 (-780 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-699 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1882 (-654 *6))) - *7 *6)) - (-4 *6 (-372)) (-4 *7 (-666 *6)) + (-12 (-5 *3 (-1185 *1)) (-5 *4 (-1189)) (-4 *1 (-27)) + (-5 *2 (-653 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1185 *1)) (-4 *1 (-27)) (-5 *2 (-653 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-962 *1)) (-4 *1 (-27)) (-5 *2 (-653 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1189)) (-4 *4 (-565)) (-5 *2 (-653 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-565)) (-5 *2 (-653 *1)) (-4 *1 (-29 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-729)) (-5 *2 (-931)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-780))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-565) (-148))) (-5 *2 (-653 *3)) + (-5 *1 (-1250 *4 *3)) (-4 *3 (-1256 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1189)) + (-4 *5 (-13 (-1050 (-573)) (-461) (-648 (-573)))) + (-5 *2 (-2 (|:| -1317 *3) (|:| |nconst| *3))) (-5 *1 (-576 *5 *3)) + (-4 *3 (-13 (-27) (-1215) (-439 *5)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-698 *8)) (-4 *8 (-959 *5 *7 *6)) + (-4 *5 (-13 (-314) (-148))) (-4 *6 (-13 (-859) (-623 (-1189)))) + (-4 *7 (-802)) (-5 *2 - (-2 (|:| |particular| (-3 (-1281 *6) "failed")) - (|:| -1882 (-654 (-1281 *6))))) - (-5 *1 (-823 *6 *7)) (-5 *4 (-1281 *6))))) + (-653 + (-2 (|:| -3583 (-780)) + (|:| |eqns| + (-653 + (-2 (|:| |det| *8) (|:| |rows| (-653 (-573))) + (|:| |cols| (-653 (-573)))))) + (|:| |fgb| (-653 *8))))) + (-5 *1 (-934 *5 *6 *7 *8)) (-5 *4 (-780))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1257 *6)) - (-4 *6 (-13 (-27) (-440 *5))) (-4 *5 (-13 (-566) (-1051 (-574)))) - (-4 *8 (-1257 (-417 *7))) (-5 *2 (-596 *3)) - (-5 *1 (-562 *5 *6 *7 *8 *3)) (-4 *3 (-351 *6 *7 *8))))) + (-12 (-5 *3 (-1185 *2)) (-4 *2 (-959 (-416 (-962 *6)) *5 *4)) + (-5 *1 (-741 *5 *4 *6 *2)) (-4 *5 (-802)) + (-4 *4 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $))))) + (-4 *6 (-565))))) (((*1 *2 *1) - (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566)) - (-5 *2 (-1186 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1216))))) - ((*1 *1 *1 *1) (-4 *1 (-803)))) -(((*1 *1 *2 *1) - (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3) - (-12 (-5 *3 (-574)) (|has| *1 (-6 -4447)) (-4 *1 (-414)) - (-5 *2 (-932))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-3 *3 (-654 *1))) - (-4 *1 (-1084 *4 *5 *6 *3))))) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1112)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-604 *3)) (-4 *3 (-1061)))) + ((*1 *2 *1) + (-12 (-4 *3 (-565)) (-5 *2 (-112)) (-5 *1 (-632 *3 *4)) + (-4 *4 (-1256 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-744 *3 *4)) (-4 *3 (-1061)) + (-4 *4 (-735)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) + (-5 *2 (-112))))) (((*1 *1) - (-12 (-4 *1 (-414)) (-2076 (|has| *1 (-6 -4447))) - (-2076 (|has| *1 (-6 -4439))))) - ((*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1113)) (-4 *2 (-860)))) - ((*1 *2 *1) (-12 (-4 *1 (-840 *2)) (-4 *2 (-860)))) - ((*1 *1) (-4 *1 (-854))) ((*1 *1 *1 *1) (-4 *1 (-860)))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) - (-5 *2 (-1048)) (-5 *1 (-766))))) + (|partial| -12 (-4 *1 (-375 *2)) (-4 *2 (-565)) (-4 *2 (-174))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-654 (-874 *5))) (-14 *5 (-654 (-1190))) (-4 *6 (-462)) - (-5 *2 (-654 (-654 (-253 *5 *6)))) (-5 *1 (-481 *5 *6 *7)) - (-5 *3 (-654 (-253 *5 *6))) (-4 *7 (-462))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1170 (-654 (-574)))) (-5 *3 (-654 (-574))) - (-5 *1 (-894))))) -(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1164))))) + (-12 (-5 *4 (-653 *3)) (-4 *3 (-1121 *5 *6 *7 *8)) + (-4 *5 (-13 (-314) (-148))) (-4 *6 (-802)) (-4 *7 (-859)) + (-4 *8 (-1077 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-600 *5 *6 *7 *8 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-653 (-931))) (-5 *2 (-780)) (-5 *1 (-599))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1113))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1113)) (-5 *2 (-900 *3 *5)) (-5 *1 (-896 *3 *4 *5)) - (-4 *3 (-1113)) (-4 *5 (-676 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832))))) -(((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-989 *3 *4 *2 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *2 (-860)) (-4 *5 (-1078 *3 *4 *2))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) - (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1048)) - (-5 *1 (-758))))) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) + (-5 *2 (-387)) (-5 *1 (-273)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1280 (-323 (-227)))) (-5 *2 (-387)) (-5 *1 (-312))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) + (-4 *4 (-859))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1190)) - (-4 *4 (-13 (-462) (-148) (-1051 (-574)) (-649 (-574)))) - (-5 *1 (-567 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *4)))))) -(((*1 *1 *1) (-4 *1 (-175))) - ((*1 *1 *1) - (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1281 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) - (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4)))))) + (-12 (-5 *3 (-3 (-416 (-962 *5)) (-1178 (-1189) (-962 *5)))) + (-4 *5 (-461)) (-5 *2 (-653 (-698 (-416 (-962 *5))))) + (-5 *1 (-299 *5)) (-5 *4 (-698 (-416 (-962 *5))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-1170 *7))) (-4 *6 (-860)) - (-4 *7 (-960 *5 (-541 *6) *6)) (-4 *5 (-1062)) - (-5 *2 (-1 (-1170 *7) *7)) (-5 *1 (-1139 *5 *6 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-497))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4457)) (-4 *1 (-382 *2)) (-4 *2 (-1231)) - (-4 *2 (-860)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4457)) - (-4 *1 (-382 *3)) (-4 *3 (-1231))))) + (-12 (-5 *3 (-653 (-2 (|:| |val| (-653 *8)) (|:| -4090 *9)))) + (-5 *4 (-780)) (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1083 *5 *6 *7 *8)) + (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-1285)) + (-5 *1 (-1081 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-2 (|:| |val| (-653 *8)) (|:| -4090 *9)))) + (-5 *4 (-780)) (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1121 *5 *6 *7 *8)) + (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-1285)) + (-5 *1 (-1157 *5 *6 *7 *8 *9))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |preimage| (-653 *3)) (|:| |image| (-653 *3)))) + (-5 *1 (-915 *3)) (-4 *3 (-1112))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1 (-953 (-227)) (-953 (-227)))) (-5 *3 (-653 (-269))) + (-5 *1 (-267)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1 (-953 (-227)) (-953 (-227)))) (-5 *1 (-269)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-653 (-490 *5 *6))) (-5 *3 (-490 *5 *6)) + (-14 *5 (-653 (-1189))) (-4 *6 (-461)) (-5 *2 (-1280 *6)) + (-5 *1 (-640 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-545))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-573)) + (-5 *6 + (-2 (|:| |try| (-387)) (|:| |did| (-387)) (|:| -3978 (-387)))) + (-5 *7 (-1 (-1285) (-1280 *5) (-1280 *5) (-387))) + (-5 *3 (-1280 (-387))) (-5 *5 (-387)) (-5 *2 (-1285)) + (-5 *1 (-797)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-573)) + (-5 *6 + (-2 (|:| |try| (-387)) (|:| |did| (-387)) (|:| -3978 (-387)))) + (-5 *7 (-1 (-1285) (-1280 *5) (-1280 *5) (-387))) + (-5 *3 (-1280 (-387))) (-5 *5 (-387)) (-5 *2 (-1285)) + (-5 *1 (-797))))) (((*1 *2 *3 *4) - (-12 (-4 *6 (-566)) (-4 *2 (-960 *3 *5 *4)) - (-5 *1 (-742 *5 *4 *6 *2)) (-5 *3 (-417 (-963 *6))) (-4 *5 (-803)) - (-4 *4 (-13 (-860) (-10 -8 (-15 -1836 ((-1190) $)))))))) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) - (|:| |expense| (-388)) (|:| |accuracy| (-388)) - (|:| |intermediateResults| (-388)))) - (-5 *2 (-1048)) (-5 *1 (-313))))) -(((*1 *2) (-12 (-5 *2 (-1160 (-1172))) (-5 *1 (-401))))) + (-12 (-5 *3 (-573)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-5 *2 (-1285)) (-5 *1 (-458 *4 *5 *6 *7)) (-4 *7 (-959 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1215)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-573)) (-5 *1 (-246)))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 (-1171))) (-5 *2 (-573)) (-5 *1 (-246))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1061)) (-4 *2 (-696 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1256 *4)) (-4 *5 (-381 *4)) + (-4 *6 (-381 *4))))) +(((*1 *1) + (-12 (-4 *1 (-413)) (-2075 (|has| *1 (-6 -4446))) + (-2075 (|has| *1 (-6 -4438))))) + ((*1 *2 *1) (-12 (-4 *1 (-434 *2)) (-4 *2 (-1112)) (-4 *2 (-859)))) + ((*1 *2 *1) (-12 (-4 *1 (-839 *2)) (-4 *2 (-859)))) + ((*1 *1) (-4 *1 (-853))) ((*1 *1 *1 *1) (-4 *1 (-859)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-781)) (-5 *4 (-574)) (-5 *1 (-455 *2)) (-4 *2 (-1062))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-987))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 (-574))) (-4 *3 (-1062)) (-5 *1 (-99 *3)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1062)) (-5 *1 (-99 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1062)) (-5 *1 (-99 *3))))) -(((*1 *1) (-5 *1 (-588)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-960 *4 *5 *6)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *2))))) + (-12 (-5 *3 (-1185 *5)) (-4 *5 (-371)) (-5 *2 (-653 *6)) + (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-371)) (-4 *4 (-13 (-371) (-857)))))) +(((*1 *1) (-5 *1 (-446)))) +(((*1 *2 *3) + (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-365 *4)) + (-4 *4 (-357))))) +(((*1 *2 *2) + (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1215)))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-38 (-416 (-573)))) (-5 *1 (-1273 *3 *2)) + (-4 *2 (-1271 *3))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |pde| (-654 (-324 (-227)))) - (|:| |constraints| - (-654 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-781)) (|:| |boundaryType| (-574)) - (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) - (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) - (|:| |tol| (-227)))) - (-5 *2 (-112)) (-5 *1 (-212))))) -(((*1 *2 *1) (-12 (-4 *1 (-1023 *3)) (-4 *3 (-1231)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) - (-4 *4 (-1062))))) + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) + (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-387)) (-5 *1 (-207))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1112)) (-5 *2 (-899 *3 *5)) (-5 *1 (-895 *3 *4 *5)) + (-4 *3 (-1112)) (-4 *5 (-675 *4))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-654 (-1186 *7))) (-5 *3 (-1186 *7)) - (-4 *7 (-960 *4 *5 *6)) (-4 *4 (-920)) (-4 *5 (-803)) - (-4 *6 (-860)) (-5 *1 (-917 *4 *5 *6 *7)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-654 (-1186 *5))) (-5 *3 (-1186 *5)) - (-4 *5 (-1257 *4)) (-4 *4 (-920)) (-5 *1 (-918 *4 *5))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2)) (-4 *2 (-1231))))) -(((*1 *2 *3) - (-12 (-4 *4 (-358)) (-5 *2 (-428 *3)) (-5 *1 (-218 *4 *3)) - (-4 *3 (-1257 *4)))) + (|partial| -12 (-5 *3 (-780)) (-5 *1 (-596 *2)) (-4 *2 (-554)))) ((*1 *2 *3) - (-12 (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) - (-4 *3 (-1257 (-574))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-654 (-781))) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) - (-4 *3 (-1257 (-574))))) + (-12 (-5 *2 (-2 (|:| -2629 *3) (|:| -3907 (-780)))) (-5 *1 (-596 *3)) + (-4 *3 (-554))))) +(((*1 *1 *1 *1) (-5 *1 (-871)))) +(((*1 *2 *2 *3) + (|partial| -12 + (-5 *3 (-653 (-2 (|:| |func| *2) (|:| |pole| (-112))))) + (-4 *2 (-13 (-439 *4) (-1014))) (-4 *4 (-565)) + (-5 *1 (-282 *4 *2))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-439 *3) (-1014))) (-5 *1 (-282 *3 *2)) + (-4 *3 (-565))))) +(((*1 *2 *1) (-12 (-5 *2 (-185 (-254))) (-5 *1 (-253))))) +(((*1 *2 *3) + (-12 (-4 *2 (-371)) (-4 *2 (-857)) (-5 *1 (-955 *2 *3)) + (-4 *3 (-1256 *2))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-565)) (-5 *1 (-981 *2 *3)) (-4 *3 (-1256 *2))))) +(((*1 *2) + (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) + (-4 *5 (-1256 (-416 *4))) (-5 *2 (-698 (-416 *4)))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-554)))) +(((*1 *2 *2) + (-12 (-4 *3 (-623 (-902 *3))) (-4 *3 (-896 *3)) (-4 *3 (-461)) + (-5 *1 (-1221 *3 *2)) (-4 *2 (-623 (-902 *3))) (-4 *2 (-896 *3)) + (-4 *2 (-13 (-439 *3) (-1215)))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1169 *2)) (-4 *2 (-314)) (-5 *1 (-176 *2))))) +(((*1 *1 *2) + (-12 (-5 *2 (-653 (-653 *3))) (-4 *3 (-1112)) (-4 *1 (-913 *3))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-653 *2) *2 *2 *2)) (-4 *2 (-1112)) + (-5 *1 (-103 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1112)) (-5 *1 (-103 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-173)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) + (-4 *4 (-1061))))) +(((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-586)))) + ((*1 *1 *2) (-12 (-5 *2 (-397)) (-5 *1 (-586))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-653 *2)) (-4 *2 (-959 *4 *5 *6)) (-4 *4 (-371)) + (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-5 *1 (-459 *4 *5 *6 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *2 (-428 *3)) - (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) - (-4 *3 (-1257 (-574))))) - ((*1 *2 *3) - (-12 (-5 *2 (-428 *3)) (-5 *1 (-1020 *3)) - (-4 *3 (-1257 (-417 (-574)))))) + (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-371)) + (-5 *2 + (-2 (|:| R (-698 *6)) (|:| A (-698 *6)) (|:| |Ainv| (-698 *6)))) + (-5 *1 (-990 *6)) (-5 *3 (-698 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) + (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) + (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3)))))) +(((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-937))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-461)) (-4 *4 (-565)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -1543 *4))) (-5 *1 (-981 *4 *3)) + (-4 *3 (-1256 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-653 *2)) (-5 *1 (-114 *2)) + (-4 *2 (-1112)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-653 *4))) (-4 *4 (-1112)) + (-5 *1 (-114 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1112)) + (-5 *1 (-114 *4)))) ((*1 *2 *3) - (-12 (-5 *2 (-428 *3)) (-5 *1 (-1246 *3)) (-4 *3 (-1257 (-574)))))) -(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-227)) (-5 *1 (-1284)))) - ((*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1284))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) - (-5 *4 (-1 (-227) (-227) (-227) (-227))) - (-5 *2 (-1 (-954 (-227)) (-227) (-227))) (-5 *1 (-707))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-900 *5 *3)) (-5 *4 (-903 *5)) (-4 *5 (-1113)) - (-4 *3 (-167 *6)) (-4 (-963 *6) (-897 *5)) - (-4 *6 (-13 (-897 *5) (-174))) (-5 *1 (-180 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-900 *4 *1)) (-5 *3 (-903 *4)) (-4 *1 (-897 *4)) - (-4 *4 (-1113)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-900 *5 *6)) (-5 *4 (-903 *5)) (-4 *5 (-1113)) - (-4 *6 (-13 (-1113) (-1051 *3))) (-4 *3 (-897 *5)) - (-5 *1 (-942 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1113)) - (-4 *3 (-13 (-440 *6) (-624 *4) (-897 *5) (-1051 (-622 $)))) - (-5 *4 (-903 *5)) (-4 *6 (-13 (-566) (-897 *5))) - (-5 *1 (-943 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-900 (-574) *3)) (-5 *4 (-903 (-574))) (-4 *3 (-555)) - (-5 *1 (-944 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-900 *5 *6)) (-5 *3 (-622 *6)) (-4 *5 (-1113)) - (-4 *6 (-13 (-1113) (-1051 (-622 $)) (-624 *4) (-897 *5))) - (-5 *4 (-903 *5)) (-5 *1 (-945 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-896 *5 *6 *3)) (-5 *4 (-903 *5)) (-4 *5 (-1113)) - (-4 *6 (-897 *5)) (-4 *3 (-676 *6)) (-5 *1 (-946 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-900 *6 *3) *8 (-903 *6) (-900 *6 *3))) - (-4 *8 (-860)) (-5 *2 (-900 *6 *3)) (-5 *4 (-903 *6)) - (-4 *6 (-1113)) (-4 *3 (-13 (-960 *9 *7 *8) (-624 *4))) - (-4 *7 (-803)) (-4 *9 (-13 (-1062) (-897 *6))) - (-5 *1 (-947 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1113)) - (-4 *3 (-13 (-960 *8 *6 *7) (-624 *4))) (-5 *4 (-903 *5)) - (-4 *7 (-897 *5)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *8 (-13 (-1062) (-897 *5))) (-5 *1 (-947 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1113)) (-4 *3 (-1005 *6)) - (-4 *6 (-13 (-566) (-897 *5) (-624 *4))) (-5 *4 (-903 *5)) - (-5 *1 (-950 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-900 *5 (-1190))) (-5 *3 (-1190)) (-5 *4 (-903 *5)) - (-4 *5 (-1113)) (-5 *1 (-951 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-654 (-903 *7))) (-5 *5 (-1 *9 (-654 *9))) - (-5 *6 (-1 (-900 *7 *9) *9 (-903 *7) (-900 *7 *9))) (-4 *7 (-1113)) - (-4 *9 (-13 (-1062) (-624 (-903 *7)) (-1051 *8))) - (-5 *2 (-900 *7 *9)) (-5 *3 (-654 *9)) (-4 *8 (-1062)) - (-5 *1 (-952 *7 *8 *9))))) -(((*1 *2 *3 *2) - (-12 (-4 *1 (-797)) (-5 *2 (-1048)) - (-5 *3 - (-2 (|:| |fn| (-324 (-227))) - (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-797)) (-5 *2 (-1048)) - (-5 *3 - (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) - (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227))))))) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-653 *4))) + (-5 *1 (-114 *4)) (-4 *4 (-1112)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-657 *3)) (-4 *3 (-1061)) + (-5 *1 (-723 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1061)) (-5 *1 (-845 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1190)) - (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1216) (-440 *4))))) + (-12 (-4 *4 (-565)) (-5 *2 (-1280 (-698 *4))) (-5 *1 (-90 *4 *5)) + (-5 *3 (-698 *4)) (-4 *5 (-665 *4))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) + (-5 *2 + (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) + (|:| |success| (-112)))) + (-5 *1 (-798)) (-5 *5 (-573))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-657 *3)) (-4 *3 (-1061)) + (-5 *1 (-723 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1061)) (-5 *1 (-845 *3))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-761))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1189)) (-5 *5 (-653 *3)) + (-4 *3 (-13 (-27) (-1215) (-439 *6))) + (-4 *6 (-13 (-461) (-148) (-1050 (-573)) (-648 (-573)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-566 *6 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-461)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) + (-5 *2 (-653 *3)) (-5 *1 (-989 *4 *5 *6 *3)) + (-4 *3 (-1077 *4 *5 *6))))) +(((*1 *2) + (-12 (-4 *3 (-565)) (-5 *2 (-653 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-426 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1189)) + (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) + (-5 *1 (-322 *4 *5)) (-4 *5 (-13 (-27) (-1215) (-439 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *4))))) + (-12 (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) + (-5 *1 (-322 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-417 (-574))) - (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5))))) + (-12 (-5 *4 (-416 (-573))) + (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) + (-5 *1 (-322 *5 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *5))) - (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-323 *5 *3)))) + (-12 (-5 *4 (-301 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5))) + (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) + (-5 *1 (-322 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-302 *3)) (-5 *5 (-417 (-574))) - (-4 *3 (-13 (-27) (-1216) (-440 *6))) - (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-323 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-574))) (-5 *4 (-302 *6)) - (-4 *6 (-13 (-27) (-1216) (-440 *5))) - (-4 *5 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-469 *5 *6)))) + (-12 (-5 *4 (-301 *3)) (-5 *5 (-416 (-573))) + (-4 *3 (-13 (-27) (-1215) (-439 *6))) + (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) + (-5 *1 (-322 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-573))) (-5 *4 (-301 *6)) + (-4 *6 (-13 (-27) (-1215) (-439 *5))) + (-4 *5 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) + (-5 *1 (-468 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1190)) (-5 *5 (-302 *3)) - (-4 *3 (-13 (-27) (-1216) (-440 *6))) - (-4 *6 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-469 *6 *3)))) + (-12 (-5 *4 (-1189)) (-5 *5 (-301 *3)) + (-4 *3 (-13 (-27) (-1215) (-439 *6))) + (-4 *6 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) + (-5 *1 (-468 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1248 (-574))) - (-4 *7 (-13 (-27) (-1216) (-440 *6))) - (-4 *6 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-469 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-573))) (-5 *4 (-301 *7)) (-5 *5 (-1247 (-573))) + (-4 *7 (-13 (-27) (-1215) (-439 *6))) + (-4 *6 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) + (-5 *1 (-468 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1190)) (-5 *5 (-302 *3)) (-5 *6 (-1248 (-574))) - (-4 *3 (-13 (-27) (-1216) (-440 *7))) - (-4 *7 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-469 *7 *3)))) + (-12 (-5 *4 (-1189)) (-5 *5 (-301 *3)) (-5 *6 (-1247 (-573))) + (-4 *3 (-13 (-27) (-1215) (-439 *7))) + (-4 *7 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) + (-5 *1 (-468 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-417 (-574)))) (-5 *4 (-302 *8)) - (-5 *5 (-1248 (-417 (-574)))) (-5 *6 (-417 (-574))) - (-4 *8 (-13 (-27) (-1216) (-440 *7))) - (-4 *7 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-469 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-416 (-573)))) (-5 *4 (-301 *8)) + (-5 *5 (-1247 (-416 (-573)))) (-5 *6 (-416 (-573))) + (-4 *8 (-13 (-27) (-1215) (-439 *7))) + (-4 *7 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) + (-5 *1 (-468 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1190)) (-5 *5 (-302 *3)) (-5 *6 (-1248 (-417 (-574)))) - (-5 *7 (-417 (-574))) (-4 *3 (-13 (-27) (-1216) (-440 *8))) - (-4 *8 (-13 (-566) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-52)) - (-5 *1 (-469 *8 *3)))) + (-12 (-5 *4 (-1189)) (-5 *5 (-301 *3)) (-5 *6 (-1247 (-416 (-573)))) + (-5 *7 (-416 (-573))) (-4 *3 (-13 (-27) (-1215) (-439 *8))) + (-4 *8 (-13 (-565) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-52)) + (-5 *1 (-468 *8 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1170 (-2 (|:| |k| (-574)) (|:| |c| *3)))) - (-4 *3 (-1062)) (-5 *1 (-605 *3)))) + (-12 (-5 *2 (-1169 (-2 (|:| |k| (-573)) (|:| |c| *3)))) + (-4 *3 (-1061)) (-5 *1 (-604 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-606 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-605 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1170 (-2 (|:| |k| (-574)) (|:| |c| *3)))) - (-4 *3 (-1062)) (-4 *1 (-1241 *3)))) + (-12 (-5 *2 (-1169 (-2 (|:| |k| (-573)) (|:| |c| *3)))) + (-4 *3 (-1061)) (-4 *1 (-1240 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-781)) - (-5 *3 (-1170 (-2 (|:| |k| (-417 (-574))) (|:| |c| *4)))) - (-4 *4 (-1062)) (-4 *1 (-1262 *4)))) + (-12 (-5 *2 (-780)) + (-5 *3 (-1169 (-2 (|:| |k| (-416 (-573))) (|:| |c| *4)))) + (-4 *4 (-1061)) (-4 *1 (-1261 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-4 *1 (-1272 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-4 *1 (-1271 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1170 (-2 (|:| |k| (-781)) (|:| |c| *3)))) - (-4 *3 (-1062)) (-4 *1 (-1272 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 (-916 *3))) (-4 *3 (-1113)) (-5 *1 (-915 *3))))) + (-12 (-5 *2 (-1169 (-2 (|:| |k| (-780)) (|:| |c| *3)))) + (-4 *3 (-1061)) (-4 *1 (-1271 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-1062)) (-5 *2 (-654 *1)) (-4 *1 (-1147 *3))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1107 (-227))) - (-5 *2 (-1283)) (-5 *1 (-264))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595))))) -(((*1 *2 *1) - (-12 (-4 *1 (-614 *2 *3)) (-4 *3 (-1231)) (-4 *2 (-1113)) - (-4 *2 (-860))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-574)) (|has| *1 (-6 -4457)) (-4 *1 (-1269 *3)) - (-4 *3 (-1231))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1078 *5 *6 *7)) - (-4 *9 (-1084 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) - (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1082 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1078 *5 *6 *7)) - (-4 *9 (-1122 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) - (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1158 *5 *6 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1281 (-699 *4))) (-4 *4 (-174)) - (-5 *2 (-1281 (-699 (-963 *4)))) (-5 *1 (-191 *4))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-765))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1190)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-712 *3 *5 *6 *7)) - (-4 *3 (-624 (-546))) (-4 *5 (-1231)) (-4 *6 (-1231)) - (-4 *7 (-1231)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1190)) (-5 *2 (-1 *6 *5)) (-5 *1 (-716 *3 *5 *6)) - (-4 *3 (-624 (-546))) (-4 *5 (-1231)) (-4 *6 (-1231))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-781)) (-4 *5 (-358)) (-4 *6 (-1257 *5)) - (-5 *2 - (-654 - (-2 (|:| -1882 (-699 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-699 *6))))) - (-5 *1 (-508 *5 *6 *7)) - (-5 *3 - (-2 (|:| -1882 (-699 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-699 *6)))) - (-4 *7 (-1257 *6))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283))))) + (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-296 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1256 *3)) (-14 *5 (-1 *4 *4 *2)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2)) + (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-720 *3 *2 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) + (-12 (-4 *2 (-1256 *3)) (-5 *1 (-721 *3 *2)) (-4 *3 (-1061)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-724 *3 *2 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *1 (-878 *3)) (-5 *2 (-573))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-1059))))) +(((*1 *2 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-87 BDYVAL)))) + (-5 *2 (-1047)) (-5 *1 (-758)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-87 BDYVAL)))) + (-5 *8 (-397)) (-5 *2 (-1047)) (-5 *1 (-758))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-780)) (-5 *1 (-792 *2)) (-4 *2 (-38 (-416 (-573)))) + (-4 *2 (-174))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1272 *2 *3 *4)) (-4 *2 (-1061)) (-14 *3 (-1189)) + (-14 *4 *2)))) +(((*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1285)) (-5 *1 (-1150)))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 (-871))) (-5 *2 (-1285)) (-5 *1 (-1150))))) +(((*1 *1) (-5 *1 (-145))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-267)))) + ((*1 *1 *2) (-12 (-5 *2 (-1145 (-227))) (-5 *1 (-269))))) +(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1163))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) + (-5 *2 (-698 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-698 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-591))))) +(((*1 *1 *2) + (-12 (-5 *2 (-653 (-653 *3))) (-4 *3 (-1112)) (-5 *1 (-915 *3))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *1 (-233 *4)) - (-4 *4 (-1062)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-780)) (-4 *1 (-233 *4)) + (-4 *4 (-1061)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1062)))) - ((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1231)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-781)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-781)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1061)))) + ((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1230)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-780)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)) - (-4 *4 (-1257 *3)))) + (-12 (-5 *2 (-780)) (-4 *3 (-13 (-371) (-148))) (-5 *1 (-408 *3 *4)) + (-4 *4 (-1256 *3)))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-372) (-148))) (-5 *1 (-409 *2 *3)) - (-4 *3 (-1257 *2)))) - ((*1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1062)))) + (-12 (-4 *2 (-13 (-371) (-148))) (-5 *1 (-408 *2 *3)) + (-4 *3 (-1256 *2)))) + ((*1 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-1061)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 (-781))) (-4 *1 (-911 *4)) - (-4 *4 (-1113)))) + (-12 (-5 *2 (-653 *4)) (-5 *3 (-653 (-780))) (-4 *1 (-910 *4)) + (-4 *4 (-1112)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-781)) (-4 *1 (-911 *2)) (-4 *2 (-1113)))) + (-12 (-5 *3 (-780)) (-4 *1 (-910 *2)) (-4 *2 (-1112)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-654 *3)) (-4 *1 (-911 *3)) (-4 *3 (-1113)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1113))))) + (-12 (-5 *2 (-653 *3)) (-4 *1 (-910 *3)) (-4 *3 (-1112)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1112))))) (((*1 *2 *1) - (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) - (|has| *2 (-6 (-4458 "*"))) (-4 *2 (-1062)))) - ((*1 *2 *3) - (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-174)) - (-5 *1 (-698 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1136 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) - (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4458 "*"))) (-4 *2 (-1062))))) -(((*1 *2 *3) - (-12 (-4 *4 (-462)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) - (-5 *2 (-654 *3)) (-5 *1 (-990 *4 *5 *6 *3)) - (-4 *3 (-1078 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-417 *6)) (-4 *5 (-1235)) (-4 *6 (-1257 *5)) - (-5 *2 (-2 (|:| -3715 (-781)) (|:| -1858 *3) (|:| |radicand| *6))) - (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-781)) (-4 *7 (-1257 *3))))) + (-12 (-4 *3 (-1061)) (-5 *2 (-1280 *3)) (-5 *1 (-721 *3 *4)) + (-4 *4 (-1256 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1215)))) + ((*1 *2 *1) (-12 (-5 *1 (-338 *2)) (-4 *2 (-859)))) + ((*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-621 *3)) (-4 *3 (-1112))))) +(((*1 *1 *1) + (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) +(((*1 *2 *1) + (-12 (-5 *2 (-700 (-882 (-976 *3) (-976 *3)))) (-5 *1 (-976 *3)) + (-4 *3 (-1112))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 (-1190))) (-5 *2 (-1286)) (-5 *1 (-1233)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-654 (-1190))) (-5 *2 (-1286)) (-5 *1 (-1233))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1111 *3)) (-4 *3 (-1113)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) - (-4 *3 (-376 *4)))) - ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) - (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-759))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) - (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1048)) - (-5 *1 (-758))))) + (|partial| -12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-4 *5 (-439 *4)) + (-5 *2 (-427 (-1185 (-416 (-573))))) (-5 *1 (-444 *4 *5 *3)) + (-4 *3 (-1256 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-573)) (-5 *1 (-427 *2)) (-4 *2 (-565))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-780)) (-4 *5 (-565)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-981 *5 *3)) (-4 *3 (-1256 *5))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-573)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1230)) + (-4 *3 (-381 *4)) (-4 *5 (-381 *4))))) (((*1 *1) - (-12 (-4 *3 (-1113)) (-5 *1 (-896 *2 *3 *4)) (-4 *2 (-1113)) - (-4 *4 (-676 *3)))) - ((*1 *1) (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-654 (-622 *2))) (-5 *4 (-654 (-1190))) - (-4 *2 (-13 (-440 (-171 *5)) (-1015) (-1216))) (-4 *5 (-566)) - (-5 *1 (-610 *5 *6 *2)) (-4 *6 (-13 (-440 *5) (-1015) (-1216)))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-938))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-766))))) -(((*1 *1 *2 *3) - (-12 - (-5 *3 - (-654 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-574))))) - (-4 *2 (-566)) (-5 *1 (-428 *2)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |contp| (-574)) - (|:| -4219 (-654 (-2 (|:| |irr| *4) (|:| -3186 (-574))))))) - (-4 *4 (-1257 (-574))) (-5 *2 (-428 *4)) (-5 *1 (-452 *4))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-388)) (-5 *3 (-1172)) (-5 *1 (-97)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-388)) (-5 *3 (-1172)) (-5 *1 (-97))))) -(((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566)) (-4 *2 (-555)))) - ((*1 *1 *1) (-4 *1 (-1073)))) + (-12 (-4 *3 (-1112)) (-5 *1 (-895 *2 *3 *4)) (-4 *2 (-1112)) + (-4 *4 (-675 *3)))) + ((*1 *1) (-12 (-5 *1 (-899 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112))))) +(((*1 *1) (-5 *1 (-446)))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-937))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) + (-4 *4 (-381 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-698 *2)) (-5 *4 (-573)) + (-4 *2 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) + (-4 *5 (-1256 *2)) (-5 *1 (-508 *2 *5 *6)) (-4 *6 (-418 *2 *5))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1272 *3))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1305 *3 *4)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) - (-4 *4 (-174)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-395 *2)) (-4 *2 (-1113)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-829 *3)) (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) - (-4 *4 (-1062)))) + (-12 (-4 *3 (-371)) (-5 *1 (-292 *3 *2)) (-4 *2 (-1271 *3))))) +(((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1280 *1)) (-4 *1 (-378 *2 *4)) (-4 *4 (-1256 *2)) + (-4 *2 (-174)))) + ((*1 *2) + (-12 (-4 *4 (-1256 *2)) (-4 *2 (-174)) (-5 *1 (-417 *3 *2 *4)) + (-4 *3 (-418 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-418 *2 *3)) (-4 *3 (-1256 *2)) (-4 *2 (-174)))) + ((*1 *2) + (-12 (-4 *3 (-1256 *2)) (-5 *2 (-573)) (-5 *1 (-777 *3 *4)) + (-4 *4 (-418 *2 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768))))) + (-12 (-4 *1 (-959 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *2 (-859)) (-4 *3 (-174)))) + ((*1 *2 *3) + (-12 (-4 *2 (-565)) (-5 *1 (-981 *2 *3)) (-4 *3 (-1256 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1061)) (-4 *2 (-174))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-573)) (-5 *6 (-1 (-1285) (-1280 *5) (-1280 *5) (-387))) + (-5 *3 (-1280 (-387))) (-5 *5 (-387)) (-5 *2 (-1285)) + (-5 *1 (-797))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-954 (-227))) (-5 *4 (-884)) (-5 *2 (-1286)) - (-5 *1 (-478)))) - ((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1062)) (-4 *1 (-993 *3)))) + (-12 (-5 *3 (-953 (-227))) (-5 *4 (-883)) (-5 *2 (-1285)) + (-5 *1 (-477)))) + ((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1061)) (-4 *1 (-992 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-954 *3)))) + (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-953 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-954 *3)) (-4 *3 (-1062)) (-4 *1 (-1147 *3)))) + (-12 (-5 *2 (-953 *3)) (-4 *3 (-1061)) (-4 *1 (-1146 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))) + (-12 (-5 *2 (-780)) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-654 *3)) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))) + (-12 (-5 *2 (-653 *3)) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-954 *3)) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))) + (-12 (-5 *2 (-953 *3)) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-954 (-227))) (-5 *1 (-1227)) (-5 *3 (-227))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-654 (-954 (-227))))) - (-5 *2 (-654 (-1107 (-227)))) (-5 *1 (-939))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1281 *5)) (-4 *5 (-802)) (-5 *2 (-112)) - (-5 *1 (-855 *4 *5)) (-14 *4 (-781))))) -(((*1 *2 *1) - (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) - (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1224 *4 *5 *3 *6)) (-4 *4 (-566)) (-4 *5 (-803)) - (-4 *3 (-860)) (-4 *6 (-1078 *4 *5 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1300 *3)) (-4 *3 (-372)) (-5 *2 (-112))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1152)))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-462)) (-4 *3 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) - (-5 *1 (-459 *4 *3 *5 *6)) (-4 *6 (-960 *4 *3 *5))))) + (-12 (-5 *2 (-953 (-227))) (-5 *1 (-1226)) (-5 *3 (-227))))) +(((*1 *2 *1) (-12 (-4 *1 (-376)) (-5 *2 (-931)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1280 *4)) (-4 *4 (-357)) (-5 *2 (-931)) + (-5 *1 (-537 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-5 *1 (-334 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-5 *1 (-525 *3 *4)) + (-14 *4 (-573))))) +(((*1 *1 *2) (-12 (-5 *2 (-323 (-171 (-387)))) (-5 *1 (-337)))) + ((*1 *1 *2) (-12 (-5 *2 (-323 (-573))) (-5 *1 (-337)))) + ((*1 *1 *2) (-12 (-5 *2 (-323 (-387))) (-5 *1 (-337)))) + ((*1 *1 *2) (-12 (-5 *2 (-323 (-703))) (-5 *1 (-337)))) + ((*1 *1 *2) (-12 (-5 *2 (-323 (-710))) (-5 *1 (-337)))) + ((*1 *1 *2) (-12 (-5 *2 (-323 (-708))) (-5 *1 (-337)))) + ((*1 *1) (-5 *1 (-337)))) +(((*1 *2 *3) + (-12 (-5 *3 (-252 *4 *5)) (-14 *4 (-653 (-1189))) (-4 *5 (-1061)) + (-5 *2 (-490 *4 *5)) (-5 *1 (-954 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 *4)) (-4 *4 (-371)) (-5 *2 (-698 *4)) + (-5 *1 (-823 *4 *5)) (-4 *5 (-665 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 *5)) (-5 *4 (-780)) (-4 *5 (-371)) + (-5 *2 (-698 *5)) (-5 *1 (-823 *5 *6)) (-4 *6 (-665 *5))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-573) (-573))) (-5 *1 (-369 *3)) (-4 *3 (-1112)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-780) (-780))) (-4 *1 (-394 *3)) (-4 *3 (-1112)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) + (-5 *1 (-658 *3 *4 *5)) (-4 *3 (-1112))))) (((*1 *2 *1) - (-12 (-5 *2 (-781)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) + (-12 (-5 *2 (-780)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-573)) (-14 *4 *2) (-4 *5 (-174)))) ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-932)) (-5 *1 (-166 *3 *4)) + (-12 (-4 *4 (-174)) (-5 *2 (-931)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) - ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-932)))) + ((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-931)))) ((*1 *2) - (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1257 *3)) - (-5 *2 (-932)))) + (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1256 *3)) + (-5 *2 (-931)))) ((*1 *2 *3) - (-12 (-4 *4 (-372)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) - (-5 *2 (-781)) (-5 *1 (-531 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) + (-12 (-4 *4 (-371)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) + (-5 *2 (-780)) (-5 *1 (-530 *4 *5 *6 *3)) (-4 *3 (-696 *4 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-699 *5)) (-5 *4 (-1281 *5)) (-4 *5 (-372)) - (-5 *2 (-781)) (-5 *1 (-677 *5)))) + (-12 (-5 *3 (-698 *5)) (-5 *4 (-1280 *5)) (-4 *5 (-371)) + (-5 *2 (-780)) (-5 *1 (-676 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4457)))) - (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4457)))) (-5 *2 (-781)) - (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4)))) + (-12 (-4 *5 (-371)) (-4 *6 (-13 (-381 *5) (-10 -7 (-6 -4456)))) + (-4 *4 (-13 (-381 *5) (-10 -7 (-6 -4456)))) (-5 *2 (-780)) + (-5 *1 (-677 *5 *6 *4 *3)) (-4 *3 (-696 *5 *6 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-781)))) + (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) + (-4 *5 (-381 *3)) (-4 *3 (-565)) (-5 *2 (-780)))) ((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) - (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-698 *4 *5 *6 *3)) - (-4 *3 (-697 *4 *5 *6)))) + (-12 (-4 *4 (-565)) (-4 *4 (-174)) (-4 *5 (-381 *4)) + (-4 *6 (-381 *4)) (-5 *2 (-780)) (-5 *1 (-697 *4 *5 *6 *3)) + (-4 *3 (-696 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566)) - (-5 *2 (-781))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-884)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2)) (-4 *2 (-1231))))) + (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-565)) + (-5 *2 (-780))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-988 *4 *5 *6 *3)) (-4 *4 (-1061)) (-4 *5 (-802)) + (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-4 *4 (-565)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-573)) (-5 *2 (-112)) (-5 *1 (-562))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-653 (-2 (|:| -4218 (-1185 *6)) (|:| -3907 (-573))))) + (-4 *6 (-314)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) + (-5 *1 (-751 *4 *5 *6 *7)) (-4 *7 (-959 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1061))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1189)) (-5 *6 (-653 (-621 *3))) + (-5 *5 (-621 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *7))) + (-4 *7 (-13 (-461) (-148) (-1050 (-573)) (-648 (-573)))) + (-5 *2 (-2 (|:| -3861 *3) (|:| |coeff| *3))) + (-5 *1 (-566 *7 *3))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-515)) (-5 *1 (-286))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-371) (-1215) (-1014)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1281 (-654 (-2 (|:| -3083 *4) (|:| -2576 (-1133)))))) - (-4 *4 (-358)) (-5 *2 (-699 *4)) (-5 *1 (-355 *4))))) -(((*1 *2 *2 *2) - (-12 + (-12 (-4 *3 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) + (-4 *4 (-1256 *3)) (-5 *2 - (-654 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-781)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-803)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-462)) (-4 *5 (-860)) - (-5 *1 (-459 *3 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-112)) (-5 *1 (-274))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1257 *3)) (-5 *1 (-409 *3 *2)) - (-4 *3 (-13 (-372) (-148)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-372)) (-4 *5 (-566)) + (-2 (|:| -3914 (-698 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-698 *3)))) + (-5 *1 (-358 *3 *4 *5)) (-4 *5 (-418 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-573)) (-4 *4 (-1256 *3)) (-5 *2 - (-2 (|:| |minor| (-654 (-932))) (|:| -4122 *3) - (|:| |minors| (-654 (-654 (-932)))) (|:| |ops| (-654 *3)))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-932)) (-4 *3 (-666 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1186 *7)) (-4 *7 (-960 *6 *4 *5)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1062)) (-5 *2 (-1186 *6)) - (-5 *1 (-329 *4 *5 *6 *7))))) -(((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-574)) (-5 *1 (-1170 *3)) (-4 *3 (-1231)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2)) (-4 *2 (-1231))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-310)))) - ((*1 *1 *1) (-4 *1 (-310))) - ((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) - ((*1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-932))) (-5 *4 (-916 (-574))) - (-5 *2 (-699 (-574))) (-5 *1 (-600)))) + (-2 (|:| -3914 (-698 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-698 *3)))) + (-5 *1 (-777 *4 *5)) (-4 *5 (-418 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-654 (-932))) (-5 *2 (-654 (-699 (-574)))) - (-5 *1 (-600)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-932))) (-5 *4 (-654 (-916 (-574)))) - (-5 *2 (-654 (-699 (-574)))) (-5 *1 (-600))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4456)) (-4 *1 (-241 *3)) - (-4 *3 (-1113)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-290 *3)) (-4 *3 (-1231))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-654 (-654 *8))) (-5 *3 (-654 *8)) - (-4 *8 (-960 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) - (-4 *6 (-13 (-860) (-624 (-1190)))) (-4 *7 (-803)) (-5 *2 (-112)) - (-5 *1 (-935 *5 *6 *7 *8))))) -(((*1 *2 *3) - (-12 (-5 *2 (-574)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1062))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-112)) (-5 *1 (-839))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-654 *5) *6)) - (-4 *5 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *6 (-1257 *5)) - (-5 *2 (-654 (-2 (|:| |poly| *6) (|:| -4122 *3)))) - (-5 *1 (-819 *5 *6 *3 *7)) (-4 *3 (-666 *6)) - (-4 *7 (-666 (-417 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-654 *5) *6)) - (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) - (-4 *6 (-1257 *5)) - (-5 *2 (-654 (-2 (|:| |poly| *6) (|:| -4122 (-664 *6 (-417 *6)))))) - (-5 *1 (-822 *5 *6)) (-5 *3 (-664 *6 (-417 *6)))))) -(((*1 *2 *2) - (-12 (-4 *2 (-174)) (-4 *2 (-1062)) (-5 *1 (-724 *2 *3)) - (-4 *3 (-658 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1062))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1078 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *2 (-860)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) - (-4 *4 (-860))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) - (-5 *2 (-1048)) (-5 *1 (-762))))) + (-12 (-4 *4 (-357)) (-4 *3 (-1256 *4)) (-4 *5 (-1256 *3)) + (-5 *2 + (-2 (|:| -3914 (-698 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-698 *3)))) + (-5 *1 (-997 *4 *3 *5 *6)) (-4 *6 (-733 *3 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-357)) (-4 *3 (-1256 *4)) (-4 *5 (-1256 *3)) + (-5 *2 + (-2 (|:| -3914 (-698 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-698 *3)))) + (-5 *1 (-1289 *4 *3 *5 *6)) (-4 *6 (-418 *3 *5))))) +(((*1 *2) (-12 (-5 *2 (-653 (-931))) (-5 *1 (-1283)))) + ((*1 *2 *2) (-12 (-5 *2 (-653 (-931))) (-5 *1 (-1283))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-653 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-573))))) + (-5 *1 (-427 *3)) (-4 *3 (-565)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-780)) (-4 *3 (-357)) (-4 *5 (-1256 *3)) + (-5 *2 (-653 (-1185 *3))) (-5 *1 (-507 *3 *5 *6)) + (-4 *6 (-1256 *5))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-476)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-476))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-780)) (-4 *5 (-371)) (-5 *2 (-176 *6)) + (-5 *1 (-876 *5 *4 *6)) (-4 *4 (-1271 *5)) (-4 *6 (-1256 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-871)) (-5 *1 (-1169 *3)) (-4 *3 (-1112)) + (-4 *3 (-1230))))) +(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-768))))) +(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-314))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-4 *3 (-1077 *5 *6 *7)) + (-5 *2 (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))) + (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-1113)) (-4 *4 (-13 (-1062) (-897 *3) (-624 (-903 *3)))) - (-5 *2 (-654 (-1190))) (-5 *1 (-1089 *3 *4 *5)) - (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3))))))) + (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *1)) + (-4 *1 (-1077 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-653 (-1229))) (-5 *1 (-533))))) (((*1 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-462)) - (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *6))))) + (-12 (-5 *2 (-653 (-653 *6))) (-4 *6 (-959 *3 *5 *4)) + (-4 *3 (-13 (-314) (-148))) (-4 *4 (-13 (-859) (-623 (-1189)))) + (-4 *5 (-802)) (-5 *1 (-934 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-323 (-227))) (-5 *2 (-323 (-387))) (-5 *1 (-312))))) (((*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-1050 (-573)) (-648 (-573)) (-461))) + (-5 *2 + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1265 *4 *5 *6)) + (|:| |%expon| (-326 *4 *5 *6)) + (|:| |%expTerms| + (-653 (-2 (|:| |k| (-416 (-573))) (|:| |c| *4)))))) + (|:| |%type| (-1171)))) + (-5 *1 (-1266 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1215) (-439 *3))) + (-14 *5 (-1189)) (-14 *6 *4)))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1107 *3)) (-4 *3 (-960 *7 *6 *4)) (-4 *6 (-803)) - (-4 *4 (-860)) (-4 *7 (-566)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-574)))) - (-5 *1 (-604 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-566)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-574)))) - (-5 *1 (-604 *5 *4 *6 *3)) (-4 *3 (-960 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1 *1) (-5 *1 (-872))) - ((*1 *1 *1) (-5 *1 (-872))) + (-12 (-5 *5 (-1106 *3)) (-4 *3 (-959 *7 *6 *4)) (-4 *6 (-802)) + (-4 *4 (-859)) (-4 *7 (-565)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-573)))) + (-5 *1 (-603 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-802)) (-4 *4 (-859)) (-4 *6 (-565)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-573)))) + (-5 *1 (-603 *5 *4 *6 *3)) (-4 *3 (-959 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-871))) ((*1 *1 *1 *1) (-5 *1 (-871))) + ((*1 *1 *1) (-5 *1 (-871))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1190)) - (-4 *4 (-13 (-566) (-1051 (-574)) (-649 (-574)))) - (-5 *1 (-1182 *4 *2)) (-4 *2 (-13 (-440 *4) (-161) (-27) (-1216))))) + (-12 (-5 *3 (-1189)) + (-4 *4 (-13 (-565) (-1050 (-573)) (-648 (-573)))) + (-5 *1 (-1181 *4 *2)) (-4 *2 (-13 (-439 *4) (-161) (-27) (-1215))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1105 *2)) (-4 *2 (-13 (-440 *4) (-161) (-27) (-1216))) - (-4 *4 (-13 (-566) (-1051 (-574)) (-649 (-574)))) - (-5 *1 (-1182 *4 *2)))) + (-12 (-5 *3 (-1104 *2)) (-4 *2 (-13 (-439 *4) (-161) (-27) (-1215))) + (-4 *4 (-13 (-565) (-1050 (-573)) (-648 (-573)))) + (-5 *1 (-1181 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1190)) (-4 *5 (-13 (-566) (-1051 (-574)))) - (-5 *2 (-417 (-963 *5))) (-5 *1 (-1183 *5)) (-5 *3 (-963 *5)))) + (-12 (-5 *4 (-1189)) (-4 *5 (-13 (-565) (-1050 (-573)))) + (-5 *2 (-416 (-962 *5))) (-5 *1 (-1182 *5)) (-5 *3 (-962 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1190)) (-4 *5 (-13 (-566) (-1051 (-574)))) - (-5 *2 (-3 (-417 (-963 *5)) (-324 *5))) (-5 *1 (-1183 *5)) - (-5 *3 (-417 (-963 *5))))) + (-12 (-5 *4 (-1189)) (-4 *5 (-13 (-565) (-1050 (-573)))) + (-5 *2 (-3 (-416 (-962 *5)) (-323 *5))) (-5 *1 (-1182 *5)) + (-5 *3 (-416 (-962 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1105 (-963 *5))) (-5 *3 (-963 *5)) - (-4 *5 (-13 (-566) (-1051 (-574)))) (-5 *2 (-417 *3)) - (-5 *1 (-1183 *5)))) + (-12 (-5 *4 (-1104 (-962 *5))) (-5 *3 (-962 *5)) + (-4 *5 (-13 (-565) (-1050 (-573)))) (-5 *2 (-416 *3)) + (-5 *1 (-1182 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1105 (-417 (-963 *5)))) (-5 *3 (-417 (-963 *5))) - (-4 *5 (-13 (-566) (-1051 (-574)))) (-5 *2 (-3 *3 (-324 *5))) - (-5 *1 (-1183 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-834)) (-5 *3 (-654 (-1190))) (-5 *1 (-835))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-462) (-1051 (-574)))) (-4 *3 (-566)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3)) - (-4 *2 - (-13 (-372) (-310) - (-10 -8 (-15 -2966 ((-1138 *3 (-622 $)) $)) - (-15 -2977 ((-1138 *3 (-622 $)) $)) - (-15 -2943 ($ (-1138 *3 (-622 $)))))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1190)) - (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) - (-4 *4 (-13 (-29 *6) (-1216) (-970))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -1882 (-654 *4)))) - (-5 *1 (-811 *6 *4 *3)) (-4 *3 (-666 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-932)) (-5 *4 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-654 (-574))) (-5 *3 (-699 (-574))) (-5 *1 (-1123))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-954 (-227)))) (-5 *1 (-1282))))) -(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1216)))))) + (-12 (-5 *4 (-1104 (-416 (-962 *5)))) (-5 *3 (-416 (-962 *5))) + (-4 *5 (-13 (-565) (-1050 (-573)))) (-5 *2 (-3 *3 (-323 *5))) + (-5 *1 (-1182 *5))))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) + (-4 *4 (-859)) (-4 *2 (-565))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4455)) (-4 *1 (-240 *3)) + (-4 *3 (-1112)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-289 *3)) (-4 *3 (-1230))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) +(((*1 *2) + (-12 (-5 *2 (-2 (|:| -4141 (-653 *3)) (|:| -4055 (-653 *3)))) + (-5 *1 (-1231 *3)) (-4 *3 (-1112))))) +(((*1 *2 *1) (-12 (-4 *1 (-434 *3)) (-4 *3 (-1112)) (-5 *2 (-780))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1169 (-573))) (-5 *1 (-1016 *3)) (-14 *3 (-573))))) +(((*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-1171))))) (((*1 *2 *1 *3) - (-12 (-5 *2 (-417 (-574))) (-5 *1 (-118 *4)) (-14 *4 *3) - (-5 *3 (-574)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) + (-12 (-5 *2 (-416 (-573))) (-5 *1 (-118 *4)) (-14 *4 *3) + (-5 *3 (-573)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-878 *3)) (-5 *2 (-573)))) ((*1 *2 *1 *3) - (-12 (-5 *2 (-417 (-574))) (-5 *1 (-881 *4)) (-14 *4 *3) - (-5 *3 (-574)))) + (-12 (-5 *2 (-416 (-573))) (-5 *1 (-880 *4)) (-14 *4 *3) + (-5 *3 (-573)))) ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-417 (-574))) (-5 *1 (-882 *4 *5)) - (-5 *3 (-574)) (-4 *5 (-879 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1025)) (-5 *2 (-417 (-574))))) + (-12 (-14 *4 *3) (-5 *2 (-416 (-573))) (-5 *1 (-881 *4 *5)) + (-5 *3 (-573)) (-4 *5 (-878 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1024)) (-5 *2 (-416 (-573))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1081 *2 *3)) (-4 *2 (-13 (-858) (-372))) - (-4 *3 (-1257 *2)))) + (-12 (-4 *1 (-1080 *2 *3)) (-4 *2 (-13 (-857) (-371))) + (-4 *3 (-1256 *2)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1259 *2 *3)) (-4 *3 (-802)) - (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2943 (*2 (-1190)))) - (-4 *2 (-1062))))) -(((*1 *1) (-5 *1 (-447)))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015)))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1305 *3 *4)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) - (-4 *4 (-174)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-395 *2)) (-4 *2 (-1113)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) + (-12 (-4 *1 (-1258 *2 *3)) (-4 *3 (-801)) + (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2942 (*2 (-1189)))) + (-4 *2 (-1061))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-538)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-586)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-870))))) +(((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-445))))) +(((*1 *2 *3) + (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-1077 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-653 *7)) (|:| |badPols| (-653 *7)))) + (-5 *1 (-989 *4 *5 *6 *7)) (-5 *3 (-653 *7))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-698 (-227))) (-5 *6 (-698 (-573))) (-5 *3 (-573)) + (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-761))))) +(((*1 *1 *1 *1) (-5 *1 (-163))) + ((*1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-163))))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-962 (-573))) (-5 *3 (-1189)) + (-5 *4 (-1106 (-416 (-573)))) (-5 *1 (-30))))) +(((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-915 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1285)) (-5 *1 (-387)))) + ((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-387))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-371)) (-5 *1 (-775 *2 *3)) (-4 *2 (-717 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-829 *3)) (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) - (-4 *4 (-1062)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574))))) - (-4 *5 (-1257 *4)) - (-5 *2 (-654 (-2 (|:| |deg| (-781)) (|:| -4122 *5)))) - (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-666 *5)) - (-4 *6 (-666 (-417 *5)))))) -(((*1 *1) (-5 *1 (-447)))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) - (-4 *3 (-376 *4)))) - ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-2 (|:| -4220 (-1186 *6)) (|:| -3715 (-574))))) - (-4 *6 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-574)) - (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-960 *6 *4 *5))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1281 *5)) (-5 *3 (-781)) (-5 *4 (-1133)) (-4 *5 (-358)) - (-5 *1 (-538 *5))))) -(((*1 *1) (-5 *1 (-55)))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-781) *2)) (-5 *4 (-781)) (-4 *2 (-1113)) - (-5 *1 (-688 *2)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1 *3 (-781) *3)) (-4 *3 (-1113)) (-5 *1 (-692 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1113)) (-4 *5 (-1113)) - (-5 *2 (-1 *5 *4)) (-5 *1 (-693 *4 *5))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-3 (-2 (|:| -2399 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-654 (-417 *8))) (-4 *7 (-372)) (-4 *8 (-1257 *7)) - (-5 *3 (-417 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-584 *7 *8))))) + (|partial| -12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) + (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) + (-5 *1 (-1293 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-653 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-565)) + (-4 *6 (-802)) (-4 *7 (-859)) (-5 *1 (-1293 *5 *6 *7 *8))))) +(((*1 *1 *1 *1) (-5 *1 (-871)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1185 *4)) (-4 *4 (-357)) + (-5 *2 (-1280 (-653 (-2 (|:| -3082 *4) (|:| -2575 (-1132)))))) + (-5 *1 (-354 *4))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *2 (-1047)) + (-5 *1 (-764))))) (((*1 *2 *3) - (-12 (-5 *3 (-903 *4)) (-4 *4 (-1113)) (-5 *2 (-654 *5)) - (-5 *1 (-901 *4 *5)) (-4 *5 (-1231))))) -(((*1 *2 *1) (-12 (-4 *1 (-777 *3)) (-4 *3 (-1113)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1286)) (-5 *1 (-1151)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1286)) (-5 *1 (-1151))))) -(((*1 *1) (-5 *1 (-447)))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -1858 *3) (|:| |gap| (-781)) (|:| -1411 (-792 *3)) - (|:| -2766 (-792 *3)))) - (-5 *1 (-792 *3)) (-4 *3 (-1062)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-860)) - (-5 *2 - (-2 (|:| -1858 *1) (|:| |gap| (-781)) (|:| -1411 *1) - (|:| -2766 *1))) - (-4 *1 (-1078 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *2 - (-2 (|:| -1858 *1) (|:| |gap| (-781)) (|:| -1411 *1) - (|:| -2766 *1))) - (-4 *1 (-1078 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6)) - (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) - (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015)))))) + (-12 (-5 *3 (-780)) (-4 *4 (-371)) (-4 *5 (-1256 *4)) (-5 *2 (-1285)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1256 (-416 *5))) (-14 *7 *6)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-953 *5)) (-4 *5 (-1061)) (-5 *2 (-780)) + (-5 *1 (-1177 *4 *5)) (-14 *4 (-931)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-653 (-780))) (-5 *3 (-780)) (-5 *1 (-1177 *4 *5)) + (-14 *4 (-931)) (-4 *5 (-1061)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-653 (-780))) (-5 *3 (-953 *5)) (-4 *5 (-1061)) + (-5 *1 (-1177 *4 *5)) (-14 *4 (-931))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-869)) (-5 *2 (-700 (-1238))) (-5 *3 (-1238))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) - (-4 *3 (-376 *4)))) - ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-762))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1148)) (-5 *3 (-299)) (-5 *1 (-169))))) -(((*1 *2 *3) - (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1190))) (-4 *5 (-1062)) - (-5 *2 (-963 *5)) (-5 *1 (-955 *4 *5))))) + (-12 (-5 *2 (-112)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573)))))) (((*1 *2 *2) - (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) - (-4 *6 (-1078 *3 *4 *5)) (-5 *1 (-634 *3 *4 *5 *6 *7 *2)) - (-4 *7 (-1084 *3 *4 *5 *6)) (-4 *2 (-1122 *3 *4 *5 *6))))) + (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-357)) (-5 *1 (-365 *3))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-770)))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-573)) (-5 *6 (-1171)) + (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-767))))) (((*1 *2) - (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-427 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-324 *3)) (-4 *3 (-566)) (-4 *3 (-1113))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-132)))) -(((*1 *2 *1) - (-12 (-4 *4 (-1113)) (-5 *2 (-900 *3 *4)) (-5 *1 (-896 *3 *4 *5)) - (-4 *3 (-1113)) (-4 *5 (-676 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-977 *4)) (-4 *4 (-1113)) (-5 *2 (-1115 *4)) - (-5 *1 (-978 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-324 (-388))) (-5 *2 (-324 (-227))) (-5 *1 (-313))))) -(((*1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1231))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1078 *5 *6 *7)) - (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4)))) - (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3))))) -(((*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284)))) - ((*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284))))) -(((*1 *2 *3) - (-12 (-4 *2 (-372)) (-4 *2 (-858)) (-5 *1 (-956 *2 *3)) - (-4 *3 (-1257 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-872)) (-5 *1 (-1170 *3)) (-4 *3 (-1113)) - (-4 *3 (-1231))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 - (-5 *3 - (-1 (-3 (-2 (|:| -2399 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-372)) (-5 *1 (-584 *4 *2)) (-4 *2 (-1257 *4))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-781)) (-5 *6 (-112)) (-4 *7 (-462)) (-4 *8 (-803)) - (-4 *9 (-860)) (-4 *3 (-1078 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-654 *4)) - (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) - (-5 *1 (-1082 *7 *8 *9 *3 *4)) (-4 *4 (-1084 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) - (-4 *3 (-1078 *6 *7 *8)) + (-12 (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) + (-5 *2 (-1280 *1)) (-4 *1 (-350 *3 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) + (-4 *4 (-1256 *3)) (-5 *2 - (-2 (|:| |done| (-654 *4)) - (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) - (-5 *1 (-1082 *6 *7 *8 *3 *4)) (-4 *4 (-1084 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1078 *5 *6 *7)) + (-2 (|:| -3914 (-698 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-698 *3)))) + (-5 *1 (-358 *3 *4 *5)) (-4 *5 (-418 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-1256 (-573))) (-5 *2 - (-2 (|:| |done| (-654 *4)) - (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) - (-5 *1 (-1082 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-781)) (-5 *6 (-112)) (-4 *7 (-462)) (-4 *8 (-803)) - (-4 *9 (-860)) (-4 *3 (-1078 *7 *8 *9)) + (-2 (|:| -3914 (-698 (-573))) (|:| |basisDen| (-573)) + (|:| |basisInv| (-698 (-573))))) + (-5 *1 (-777 *3 *4)) (-4 *4 (-418 (-573) *3)))) + ((*1 *2) + (-12 (-4 *3 (-357)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 *4)) (-5 *2 - (-2 (|:| |done| (-654 *4)) - (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) - (-5 *1 (-1158 *7 *8 *9 *3 *4)) (-4 *4 (-1122 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) - (-4 *3 (-1078 *6 *7 *8)) + (-2 (|:| -3914 (-698 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-698 *4)))) + (-5 *1 (-997 *3 *4 *5 *6)) (-4 *6 (-733 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-357)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 *4)) (-5 *2 - (-2 (|:| |done| (-654 *4)) - (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) - (-5 *1 (-1158 *6 *7 *8 *3 *4)) (-4 *4 (-1122 *6 *7 *8 *3)))) + (-2 (|:| -3914 (-698 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-698 *4)))) + (-5 *1 (-1289 *3 *4 *5 *6)) (-4 *6 (-418 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) + (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-653 *10)) + (-5 *1 (-633 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1083 *5 *6 *7 *8)) + (-4 *10 (-1121 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-789 *5 (-873 *6)))) (-5 *4 (-112)) (-4 *5 (-461)) + (-14 *6 (-653 (-1189))) (-5 *2 (-653 (-1058 *5 *6))) + (-5 *1 (-637 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1078 *5 *6 *7)) + (-12 (-5 *3 (-653 (-789 *5 (-873 *6)))) (-5 *4 (-112)) (-4 *5 (-461)) + (-14 *6 (-653 (-1189))) (-5 *2 - (-2 (|:| |done| (-654 *4)) - (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) - (-5 *1 (-1158 *5 *6 *7 *3 *4)) (-4 *4 (-1122 *5 *6 *7 *3))))) -(((*1 *2) - (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-427 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-888 *2)) (-4 *2 (-1231)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-890 *2)) (-4 *2 (-1231)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-893 *2)) (-4 *2 (-1231))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-960 *4 *5 *6))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *2 (-1078 *4 *5 *6)) (-5 *1 (-786 *4 *5 *6 *2 *3)) - (-4 *3 (-1084 *4 *5 *6 *2))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-781)) (-5 *4 (-932)) (-5 *2 (-1286)) (-5 *1 (-1282)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-781)) (-5 *4 (-932)) (-5 *2 (-1286)) (-5 *1 (-1283))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-574)) (-4 *1 (-1241 *4)) (-4 *4 (-1062)) (-4 *4 (-566)) - (-5 *2 (-417 (-963 *4))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-4 *1 (-1241 *4)) (-4 *4 (-1062)) (-4 *4 (-566)) - (-5 *2 (-417 (-963 *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1023 *3)) (-4 *3 (-1231)) (-5 *2 (-654 *3))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-574)) (|has| *1 (-6 -4457)) (-4 *1 (-382 *3)) - (-4 *3 (-1231))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1062)) - (-14 *4 (-654 (-1190))))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1062) (-860))) - (-14 *4 (-654 (-1190)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1113)) (-5 *1 (-1202 *3))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-781)) (-4 *4 (-566)) (-5 *1 (-982 *4 *2)) - (-4 *2 (-1257 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-462)) (-4 *4 (-860)) - (-4 *5 (-803)) (-5 *1 (-1000 *3 *4 *5 *6)) (-4 *6 (-960 *3 *5 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-1048)) (-5 *1 (-850)))) + (-653 (-1158 *5 (-540 (-873 *6)) (-873 *6) (-789 *5 (-873 *6))))) + (-5 *1 (-637 *5 *6)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) + (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-5 *2 (-653 (-1039 *5 *6 *7 *8))) (-5 *1 (-1039 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) + (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-5 *2 (-653 (-1039 *5 *6 *7 *8))) (-5 *1 (-1039 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-653 (-789 *5 (-873 *6)))) (-5 *4 (-112)) (-4 *5 (-461)) + (-14 *6 (-653 (-1189))) (-5 *2 (-653 (-1058 *5 *6))) + (-5 *1 (-1058 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-324 (-388)))) (-5 *4 (-654 (-388))) - (-5 *2 (-1048)) (-5 *1 (-850))))) + (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) + (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) (-5 *2 (-653 *1)) + (-4 *1 (-1083 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) + (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-5 *2 (-653 (-1158 *5 *6 *7 *8))) (-5 *1 (-1158 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) + (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-5 *2 (-653 (-1158 *5 *6 *7 *8))) (-5 *1 (-1158 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-565)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 *1)) + (-4 *1 (-1223 *4 *5 *6 *7))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-298)) (-5 *1 (-169))))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) + (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385)))) + (-5 *2 (-1047)) (-5 *1 (-757))))) +(((*1 *1 *1) + (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) + (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) + (-5 *5 (-1106 (-227))) (-5 *6 (-653 (-269))) (-5 *2 (-1145 (-227))) + (-5 *1 (-706))))) +(((*1 *1) (-5 *1 (-158)))) +(((*1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1230))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-554)))) (((*1 *2 *2) - (-12 (-5 *2 (-1281 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) - (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-654 (-1190))) (-4 *4 (-1113)) - (-4 *5 (-13 (-1062) (-897 *4) (-624 (-903 *4)))) - (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4))))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-1013 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1113)) (-4 *3 (-911 *5)) (-5 *2 (-699 *3)) - (-5 *1 (-702 *5 *3 *6 *4)) (-4 *6 (-382 *3)) - (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4456))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1113) (-1051 *5))) - (-4 *5 (-897 *4)) (-4 *4 (-1113)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-942 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-699 *8)) (-4 *8 (-960 *5 *7 *6)) - (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1190)))) - (-4 *7 (-803)) - (-5 *2 - (-654 - (-2 (|:| -3584 (-781)) - (|:| |eqns| - (-654 - (-2 (|:| |det| *8) (|:| |rows| (-654 (-574))) - (|:| |cols| (-654 (-574)))))) - (|:| |fgb| (-654 *8))))) - (-5 *1 (-935 *5 *6 *7 *8)) (-5 *4 (-781))))) -(((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1073)) (-4 *3 (-1216)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 (-1153 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) - (-4 *4 (-13 (-1113) (-34))) (-4 *5 (-13 (-1113) (-34))) - (-5 *1 (-1154 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-654 (-1153 *3 *4))) (-4 *3 (-13 (-1113) (-34))) - (-4 *4 (-13 (-1113) (-34))) (-5 *1 (-1154 *3 *4))))) + (-12 (-4 *3 (-1256 (-416 (-573)))) (-5 *1 (-923 *3 *2)) + (-4 *2 (-1256 (-416 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1215)))))) +(((*1 *2 *2) + (-12 (-4 *2 (-13 (-371) (-857))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1256 (-171 *2)))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) - (-5 *2 (-654 (-417 (-574)))) (-5 *1 (-1033 *4)) - (-4 *4 (-1257 (-574)))))) + (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-1077 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-653 *7)) (|:| |badPols| (-653 *7)))) + (-5 *1 (-989 *4 *5 *6 *7)) (-5 *3 (-653 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *2 (-574)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574))))) -(((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-427 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1107 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) + (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-4 *3 (-376)) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-1107 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-308)))) + (-12 (-5 *3 (-1185 *4)) (-4 *4 (-357)) (-5 *2 (-112)) + (-5 *1 (-365 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1107 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-313))))) + (-12 (-5 *3 (-1280 *4)) (-4 *4 (-357)) (-5 *2 (-112)) + (-5 *1 (-537 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-302 (-963 (-574)))) - (-5 *2 - (-2 (|:| |varOrder| (-654 (-1190))) - (|:| |inhom| (-3 (-654 (-1281 (-781))) "failed")) - (|:| |hom| (-654 (-1281 (-781)))))) - (-5 *1 (-242))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-954 (-227)) (-954 (-227)))) (-5 *1 (-270)))) + (-12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *2 (-171 (-323 *4))) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 (-171 *4)))))) ((*1 *2 *3) - (-12 (-5 *3 (-1281 *1)) (-4 *1 (-337 *4)) (-4 *4 (-372)) - (-5 *2 (-699 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1281 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) - (-5 *2 (-699 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) - (-5 *2 (-1281 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1281 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1257 *4)) (-5 *2 (-699 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1281 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1257 *4)) (-5 *2 (-1281 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1281 *1)) (-4 *1 (-419 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1257 *4)) (-5 *2 (-699 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1257 *3)) - (-5 *2 (-1281 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1281 *1)) (-4 *1 (-427 *4)) (-4 *4 (-174)) - (-5 *2 (-699 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1281 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-654 (-699 *5))) (-5 *3 (-699 *5)) (-4 *5 (-372)) - (-5 *2 (-1281 *5)) (-5 *1 (-1099 *5))))) -(((*1 *1 *1) (-5 *1 (-1076)))) + (-12 (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) + (-5 *2 (-171 *3)) (-5 *1 (-1219 *4 *3)) + (-4 *3 (-13 (-27) (-1215) (-439 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-699 *8)) (-5 *4 (-781)) (-4 *8 (-960 *5 *7 *6)) - (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1190)))) - (-4 *7 (-803)) - (-5 *2 - (-654 - (-2 (|:| |det| *8) (|:| |rows| (-654 (-574))) - (|:| |cols| (-654 (-574)))))) - (-5 *1 (-935 *5 *6 *7 *8))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1257 (-48)))))) -(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1073)))) - ((*1 *1 *1) - (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) - (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) - ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)) (-4 *2 (-1073)))) - ((*1 *1 *1) (-4 *1 (-858))) - ((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174)) (-4 *2 (-1073)))) - ((*1 *1 *1) (-4 *1 (-1073))) ((*1 *1 *1) (-4 *1 (-1152)))) + (-12 (-5 *3 (-416 *6)) (-4 *5 (-1234)) (-4 *6 (-1256 *5)) + (-5 *2 (-2 (|:| -3907 (-780)) (|:| -1857 *3) (|:| |radicand| *6))) + (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-780)) (-4 *7 (-1256 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1299 *3)) (-4 *3 (-371)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-159 *3 *2)) (-4 *2 (-439 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-298))) + ((*1 *1) (-5 *1 (-871))) + ((*1 *1) + (-12 (-4 *2 (-461)) (-4 *3 (-859)) (-4 *4 (-802)) + (-5 *1 (-999 *2 *3 *4 *5)) (-4 *5 (-959 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1097))) + ((*1 *1) + (-12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1112) (-34))) + (-4 *3 (-13 (-1112) (-34))))) + ((*1 *1) (-5 *1 (-1192))) ((*1 *1) (-5 *1 (-1193)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1112)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-936))))) (((*1 *2 *1) - (-12 (-5 *2 (-1186 (-417 (-963 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) - (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) - (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3)))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372))))) + (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1230)) (-5 *2 (-653 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 *2)) (-5 *1 (-496 *2)) (-4 *2 (-1257 (-574)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216))))) + (-12 (-5 *2 (-653 (-1185 (-573)))) (-5 *1 (-193)) (-5 *3 (-573))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-780)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) + (-4 *4 (-1061))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1265 *3 *4 *5)) (-4 *3 (-371)) (-14 *4 (-1189)) + (-14 *5 *3) (-5 *1 (-326 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-387))) (-5 *1 (-1052)) (-5 *3 (-387))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1256 *6)) + (-4 *6 (-13 (-27) (-439 *5))) (-4 *5 (-13 (-565) (-1050 (-573)))) + (-4 *8 (-1256 (-416 *7))) (-5 *2 (-595 *3)) + (-5 *1 (-561 *5 *6 *7 *8 *3)) (-4 *3 (-350 *6 *7 *8))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-859)) (-4 *5 (-802)) + (-4 *6 (-565)) (-4 *7 (-959 *6 *5 *3)) + (-5 *1 (-471 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-1050 (-416 (-573))) (-371) + (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) + (-15 -2975 (*7 $)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-654 (-954 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-654 (-954 *3))) (-4 *3 (-1062)) (-4 *1 (-1147 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-654 (-954 *3))) (-4 *1 (-1147 *3)) (-4 *3 (-1062))))) + (-12 (-4 *3 (-1112)) (-4 *4 (-13 (-1061) (-896 *3) (-623 (-902 *3)))) + (-5 *2 (-653 (-1189))) (-5 *1 (-1088 *3 *4 *5)) + (-4 *5 (-13 (-439 *4) (-896 *3) (-623 (-902 *3))))))) +(((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-568))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-653 *4)) (-4 *4 (-371)) (-5 *2 (-1280 *4)) + (-5 *1 (-823 *4 *3)) (-4 *3 (-665 *4))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-988 *3 *4 *2 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *2 (-859)) (-4 *5 (-1077 *3 *4 *2))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1177 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1061))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-371) (-148) (-1050 (-573)))) + (-4 *5 (-1256 *4)) (-5 *2 (-653 (-416 *5))) (-5 *1 (-1028 *4 *5)) + (-5 *3 (-416 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-883))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-931))) (-5 *4 (-653 (-573))) + (-5 *2 (-698 (-573))) (-5 *1 (-1122))))) (((*1 *2 *1) - (-12 (-4 *1 (-1051 (-574))) (-4 *1 (-310)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1113))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-700 *3)))) - ((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-700 *3))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386)))) (-5 *3 (-227)) - (-5 *2 (-1048)) (-5 *1 (-758))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-2 (|:| -4220 *4) (|:| -4202 (-574))))) - (-4 *4 (-1257 (-574))) (-5 *2 (-747 (-781))) (-5 *1 (-452 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-428 *5)) (-4 *5 (-1257 *4)) (-4 *4 (-1062)) - (-5 *2 (-747 (-781))) (-5 *1 (-454 *4 *5))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1062)) (-5 *1 (-1253 *3 *2)) (-4 *2 (-1257 *3))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-654 *1)) (-4 *1 (-931))))) + (-12 (-4 *1 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) (-4 *4 (-802)) + (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) (-4 *5 (-802)) + (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-1232))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-931)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) + ((*1 *1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-269))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-658 *3 *4 *5)) (-4 *3 (-1112)) + (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-1 (-112) *8))) (-4 *8 (-1078 *5 *6 *7)) - (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) - (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8)))) - (-5 *1 (-990 *5 *6 *7 *8)) (-5 *4 (-654 *8))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-417 (-963 *6)) (-1179 (-1190) (-963 *6)))) - (-5 *5 (-781)) (-4 *6 (-462)) (-5 *2 (-654 (-699 (-417 (-963 *6))))) - (-5 *1 (-300 *6)) (-5 *4 (-699 (-417 (-963 *6)))))) - ((*1 *2 *3 *4) - (-12 - (-5 *3 - (-2 (|:| |eigval| (-3 (-417 (-963 *5)) (-1179 (-1190) (-963 *5)))) - (|:| |eigmult| (-781)) (|:| |eigvec| (-654 *4)))) - (-4 *5 (-462)) (-5 *2 (-654 (-699 (-417 (-963 *5))))) - (-5 *1 (-300 *5)) (-5 *4 (-699 (-417 (-963 *5))))))) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) (((*1 *2 *1) - (-12 (-4 *2 (-718 *3)) (-5 *1 (-837 *2 *3)) (-4 *3 (-1062))))) -(((*1 *2 *3) - (-12 (-4 *1 (-810)) - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) - (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-1048))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-158)) (-5 *2 (-1286)) (-5 *1 (-1283))))) -(((*1 *2 *3) (-12 - (-5 *3 - (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) - (-5 *2 (-388)) (-5 *1 (-274)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1281 (-324 (-227)))) (-5 *2 (-388)) (-5 *1 (-313))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015)))))) -(((*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-975 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113))))) -(((*1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-247))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-428 *5)) (-4 *5 (-566)) (-5 *2 - (-2 (|:| -3715 (-781)) (|:| -1858 *5) (|:| |radicand| (-654 *5)))) - (-5 *1 (-328 *5)) (-5 *4 (-781)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-574))))) -(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-872))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-663 *4)) (-4 *4 (-351 *5 *6 *7)) - (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) - (-4 *6 (-1257 *5)) (-4 *7 (-1257 (-417 *6))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1882 (-654 *4)))) - (-5 *1 (-816 *5 *6 *7 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-654 *3)) (-4 *3 (-1257 *5)) (-4 *5 (-315)) - (-5 *2 (-781)) (-5 *1 (-465 *5 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-108)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-546))) (-5 *1 (-546))))) -(((*1 *2 *2) (-12 (-5 *1 (-972 *2)) (-4 *2 (-555))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-761))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1281 (-324 (-227)))) (-5 *4 (-654 (-1190))) - (-5 *2 (-699 (-324 (-227)))) (-5 *1 (-207)))) + (-653 + (-653 + (-3 (|:| -2031 (-1189)) + (|:| -1632 (-653 (-3 (|:| S (-1189)) (|:| P (-962 (-573)))))))))) + (-5 *1 (-1193))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 (-1189))) (-5 *2 (-1285)) (-5 *1 (-1192)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1113)) (-4 *6 (-911 *5)) (-5 *2 (-699 *6)) - (-5 *1 (-702 *5 *6 *3 *4)) (-4 *3 (-382 *6)) - (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4456))))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-654 (-963 (-574)))) (-5 *4 (-654 (-1190))) - (-5 *2 (-654 (-654 (-388)))) (-5 *1 (-1036)) (-5 *5 (-388)))) + (-12 (-5 *4 (-653 (-1189))) (-5 *3 (-1189)) (-5 *2 (-1285)) + (-5 *1 (-1192)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-653 (-1189))) (-5 *3 (-1189)) (-5 *2 (-1285)) + (-5 *1 (-1192))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-515)) (-5 *1 (-286)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-573) (-227) (-515) (-1171) (-1194))) + (-5 *1 (-1194))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 (-962 *4))) (-4 *4 (-461)) (-5 *2 (-112)) + (-5 *1 (-368 *4 *5)) (-14 *5 (-653 (-1189))))) ((*1 *2 *3) - (-12 (-5 *3 (-1059 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1035))) - (-14 *5 (-654 (-1190))) (-5 *2 (-654 (-654 (-1037 (-417 *4))))) - (-5 *1 (-1308 *4 *5 *6)) (-14 *6 (-654 (-1190))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-858) (-315) (-148) (-1035))) - (-5 *2 (-654 (-654 (-1037 (-417 *5))))) (-5 *1 (-1308 *5 *6 *7)) - (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-858) (-315) (-148) (-1035))) - (-5 *2 (-654 (-654 (-1037 (-417 *5))))) (-5 *1 (-1308 *5 *6 *7)) - (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-858) (-315) (-148) (-1035))) - (-5 *2 (-654 (-654 (-1037 (-417 *5))))) (-5 *1 (-1308 *5 *6 *7)) - (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190))))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-963 *4))) - (-4 *4 (-13 (-858) (-315) (-148) (-1035))) - (-5 *2 (-654 (-654 (-1037 (-417 *4))))) (-5 *1 (-1308 *4 *5 *6)) - (-14 *5 (-654 (-1190))) (-14 *6 (-654 (-1190)))))) + (-12 (-5 *3 (-653 (-789 *4 (-873 *5)))) (-4 *4 (-461)) + (-14 *5 (-653 (-1189))) (-5 *2 (-112)) (-5 *1 (-637 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-538))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-653 (-112))) (-5 *5 (-698 (-227))) + (-5 *6 (-698 (-573))) (-5 *7 (-227)) (-5 *3 (-573)) (-5 *2 (-1047)) + (-5 *1 (-763))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-330 *3 *4)) (-4 *3 (-1112)) + (-4 *4 (-132))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1177 3 *3)) (-4 *3 (-1061)) (-4 *1 (-1146 *3)))) + ((*1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1061))))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-565)) (-5 *1 (-981 *3 *2)) (-4 *2 (-1256 *3))))) (((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1257 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1078 *5 *6 *7)) - (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4091 *4)))) - (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1216)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-654 *7)) (-4 *7 (-1084 *3 *4 *5 *6)) (-4 *3 (-462)) - (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) - (-5 *1 (-1001 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-654 *7)) (-4 *7 (-1084 *3 *4 *5 *6)) (-4 *3 (-462)) - (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) - (-5 *1 (-1120 *3 *4 *5 *6 *7))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-428 *4) *4)) (-4 *4 (-566)) (-5 *2 (-428 *4)) - (-5 *1 (-429 *4)))) - ((*1 *1 *1) (-5 *1 (-937))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-937)))) - ((*1 *1 *1) (-5 *1 (-938))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-938)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) - (-5 *4 (-417 (-574))) (-5 *1 (-1033 *3)) (-4 *3 (-1257 (-574))))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) - (-5 *1 (-1033 *3)) (-4 *3 (-1257 (-574))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) - (-5 *4 (-417 (-574))) (-5 *1 (-1034 *3)) (-4 *3 (-1257 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) - (-5 *1 (-1034 *3)) (-4 *3 (-1257 (-417 (-574)))))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1074 *2 *3)) - (-4 *3 (-1257 *2))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-1172)) (-5 *5 (-699 (-227))) - (-5 *2 (-1048)) (-5 *1 (-757))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-781)) (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-555))))) -(((*1 *1 *1) (-5 *1 (-1076)))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-1113)) - (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) - (-4 *1 (-395 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-571)) (-5 *3 (-574)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1186 (-417 (-574)))) (-5 *1 (-953)) (-5 *3 (-574))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1281 *4)) (-5 *3 (-574)) (-4 *4 (-358)) - (-5 *1 (-538 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-937))))) -(((*1 *2) - (-12 (-5 *2 (-1286)) (-5 *1 (-1208 *3 *4)) (-4 *3 (-1113)) - (-4 *4 (-1113))))) + (-12 (-4 *1 (-330 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-132)) + (-4 *3 (-801))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) + (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 *4)) - (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3))))) + (-12 (-5 *4 (-653 (-653 *8))) (-5 *3 (-653 *8)) + (-4 *8 (-959 *5 *7 *6)) (-4 *5 (-13 (-314) (-148))) + (-4 *6 (-13 (-859) (-623 (-1189)))) (-4 *7 (-802)) (-5 *2 (-112)) + (-5 *1 (-934 *5 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-1281 *5)) (-4 *5 (-315)) - (-4 *5 (-1062)) (-5 *2 (-699 *5)) (-5 *1 (-1042 *5))))) + (-12 (-5 *3 (-653 (-789 *5 (-873 *6)))) (-5 *4 (-112)) (-4 *5 (-461)) + (-14 *6 (-653 (-1189))) + (-5 *2 + (-653 (-1158 *5 (-540 (-873 *6)) (-873 *6) (-789 *5 (-873 *6))))) + (-5 *1 (-637 *5 *6))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-932)) (-4 *3 (-372)) - (-14 *4 (-1006 *2 *3)))) - ((*1 *1 *1) - (|partial| -12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1257 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) - ((*1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) - ((*1 *1 *1) (|partial| -4 *1 (-732))) - ((*1 *1 *1) (|partial| -4 *1 (-736))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) - (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1081 *3 *2)) (-4 *3 (-13 (-858) (-372))) - (-4 *2 (-1257 *3)))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3))))) + (|partial| -12 (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1112) (-34))) + (-4 *3 (-13 (-1112) (-34)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-699 *3)))) + ((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-699 *3))))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-871) (-871) (-871))) (-5 *4 (-573)) (-5 *2 (-871)) + (-5 *1 (-658 *5 *6 *7)) (-4 *5 (-1112)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-871)) (-5 *1 (-863 *3 *4 *5)) (-4 *3 (-1061)) + (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-871)))) + ((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-871)))) + ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-871)))) + ((*1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-871)) (-5 *1 (-1185 *3)) (-4 *3 (-1061))))) +(((*1 *2 *1) + (-12 (-4 *1 (-613 *2 *3)) (-4 *3 (-1230)) (-4 *2 (-1112)) + (-4 *2 (-859))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-653 (-1229))) (-5 *3 (-1229)) (-5 *1 (-690))))) +(((*1 *1 *1) + (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-915 *4)) (-4 *4 (-1112)) (-5 *2 (-653 (-780))) + (-5 *1 (-914 *4))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 + (-1 (-3 (-2 (|:| -3861 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-371)) (-5 *1 (-583 *4 *2)) (-4 *2 (-1256 *4))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-371) (-1215))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371)))) + ((*1 *1 *2) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-931)) (-5 *4 (-387)) (-5 *2 (-1285)) (-5 *1 (-1281))))) +(((*1 *2 *1) (-12 (-4 *1 (-536)) (-5 *2 (-700 (-1235)))))) +(((*1 *1 *2) (-12 (-5 *1 (-1038 *2)) (-4 *2 (-1230))))) +(((*1 *2 *3) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-455)) (-5 *3 (-573))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) - (-5 *2 - (-3 (|:| |%expansion| (-321 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1172)) (|:| |prob| (-1172)))))) - (-5 *1 (-430 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1216) (-440 *5))) - (-14 *6 (-1190)) (-14 *7 *3)))) -(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1216)))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-388)) (-5 *1 (-97))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) - ((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-622 *1)) (-4 *1 (-310))))) -(((*1 *1) (-5 *1 (-131)))) + (-12 (-5 *3 (-416 (-573))) (-5 *4 (-573)) (-5 *2 (-52)) + (-5 *1 (-1017))))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-323 (-573))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1106 (-227))) (-5 *6 (-573)) (-5 *2 (-1225 (-936))) + (-5 *1 (-325)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-323 (-573))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1106 (-227))) (-5 *6 (-573)) (-5 *7 (-1171)) + (-5 *2 (-1225 (-936))) (-5 *1 (-325)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-323 (-573))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1106 (-227))) (-5 *6 (-227)) (-5 *7 (-573)) + (-5 *2 (-1225 (-936))) (-5 *1 (-325)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-323 (-573))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1106 (-227))) (-5 *6 (-227)) (-5 *7 (-573)) (-5 *8 (-1171)) + (-5 *2 (-1225 (-936))) (-5 *1 (-325))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-566)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *2 (-654 *1)) (-4 *1 (-1078 *3 *4 *5))))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) - ((*1 *1) (-5 *1 (-130))) - ((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) - (-4 *4 (-174)))) - ((*1 *1) (-5 *1 (-556))) ((*1 *1) (-5 *1 (-557))) - ((*1 *1) (-5 *1 (-558))) ((*1 *1) (-5 *1 (-559))) - ((*1 *1) (-4 *1 (-736))) ((*1 *1) (-5 *1 (-1190))) - ((*1 *1) (-12 (-5 *1 (-1196 *2)) (-14 *2 (-932)))) - ((*1 *1) (-12 (-5 *1 (-1197 *2)) (-14 *2 (-932)))) - ((*1 *1) (-5 *1 (-1236))) ((*1 *1) (-5 *1 (-1237))) - ((*1 *1) (-5 *1 (-1238))) ((*1 *1) (-5 *1 (-1239)))) + (-12 + (-5 *2 + (-2 (|:| |polnum| (-791 *3)) (|:| |polden| *3) (|:| -2488 (-780)))) + (-5 *1 (-791 *3)) (-4 *3 (-1061)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2488 (-780)))) + (-4 *1 (-1077 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1281 (-654 (-2 (|:| -3083 *4) (|:| -2576 (-1133)))))) - (-4 *4 (-358)) (-5 *2 (-1286)) (-5 *1 (-538 *4))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1186 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3))))) + (-12 (-4 *5 (-1112)) (-4 *3 (-910 *5)) (-5 *2 (-1280 *3)) + (-5 *1 (-701 *5 *3 *6 *4)) (-4 *6 (-381 *3)) + (-4 *4 (-13 (-381 *5) (-10 -7 (-6 -4455))))))) +(((*1 *2) + (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) + (-4 *5 (-1256 (-416 *4))) (-5 *2 (-698 (-416 *4)))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) + (-4 *3 (-375 *4)))) + ((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-1186 *4)) (-4 *4 (-358)) - (-5 *2 (-1281 (-654 (-2 (|:| -3083 *4) (|:| -2576 (-1133)))))) - (-5 *1 (-355 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-315)) (-5 *1 (-181 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))) - (-5 *1 (-178 *3))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) + (-12 (-4 *1 (-350 *4 *3 *5)) (-4 *4 (-1234)) (-4 *3 (-1256 *4)) + (-4 *5 (-1256 (-416 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) + (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1225 *3)) (-4 *3 (-986))))) +(((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-831))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) (-5 *2 - (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574)) + (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) (|:| |success| (-112)))) - (-5 *1 (-799)) (-5 *5 (-574))))) + (-5 *1 (-798)) (-5 *5 (-573))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-780)) (-5 *2 (-112))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-865 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1185 (-573))) (-5 *1 (-952)) (-5 *3 (-573))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-338 *3)) (-4 *3 (-859))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-115)))) + ((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-115)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1061)) (-4 *3 (-859)) + (-4 *5 (-272 *3)) (-4 *6 (-802)) (-5 *2 (-780)))) + ((*1 *2 *1) + (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-859)) + (-4 *5 (-272 *4)) (-4 *6 (-802)) (-5 *2 (-780)))) + ((*1 *2 *1) (-12 (-4 *1 (-272 *3)) (-4 *3 (-859)) (-5 *2 (-780))))) +(((*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282)))) + ((*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-653 (-791 *3))) (-5 *1 (-791 *3)) (-4 *3 (-565)) + (-4 *3 (-1061))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-417 *4)) (-4 *4 (-1257 *3)) - (-4 *3 (-13 (-372) (-148) (-1051 (-574)))) (-5 *1 (-578 *3 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283))))) -(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) - (-4 *9 (-1078 *6 *7 *8)) (-4 *6 (-566)) (-4 *7 (-803)) - (-4 *8 (-860)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2002 (-654 *9)))) - (-5 *3 (-654 *9)) (-4 *1 (-1224 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1078 *5 *6 *7)) - (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -2002 (-654 *8)))) - (-5 *3 (-654 *8)) (-4 *1 (-1224 *5 *6 *7 *8))))) -(((*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-158))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-762))))) + (-12 (-4 *3 (-1061)) (-4 *4 (-1256 *3)) (-5 *1 (-165 *3 *4 *2)) + (-4 *2 (-1256 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-1230))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1112) (-34))) + (-4 *3 (-13 (-1112) (-34)))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1169 (-2 (|:| |k| (-573)) (|:| |c| *6)))) + (-5 *4 (-1038 (-852 (-573)))) (-5 *5 (-1189)) (-5 *7 (-416 (-573))) + (-4 *6 (-1061)) (-5 *2 (-871)) (-5 *1 (-604 *6))))) (((*1 *2 *3) + (-12 (-4 *4 (-357)) (-5 *2 (-427 (-1185 (-1185 *4)))) + (-5 *1 (-1228 *4)) (-5 *3 (-1185 (-1185 *4)))))) +(((*1 *2 *3 *1) (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) - (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 - (-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388)))) - (-5 *1 (-207))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192))))) -(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-97))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1170 *4)) (-5 *3 (-1 *4 (-574))) (-4 *4 (-1062)) - (-5 *1 (-1174 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-781)) (-4 *4 (-1062)) - (-5 *2 (-2 (|:| -1411 *1) (|:| -2766 *1))) (-4 *1 (-1257 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-417 (-574))) (-5 *1 (-605 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-1062))))) -(((*1 *2 *1) (-12 (-5 *2 (-595)) (-5 *1 (-288))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-1186 *3)) - (-4 *3 (-13 (-440 *6) (-27) (-1216))) - (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) - (-5 *2 (-2 (|:| -2399 *3) (|:| |coeff| *3))) - (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1113)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-417 (-1186 *3))) - (-4 *3 (-13 (-440 *6) (-27) (-1216))) - (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) - (-5 *2 (-2 (|:| -2399 *3) (|:| |coeff| *3))) - (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1113))))) + (-2 (|:| |cycle?| (-112)) (|:| -4214 (-780)) (|:| |period| (-780)))) + (-5 *1 (-1169 *4)) (-4 *4 (-1230)) (-5 *3 (-780))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1285)) (-5 *1 (-1192)))) + ((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-1193))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-780)) (-4 *2 (-565)) (-5 *1 (-981 *2 *4)) + (-4 *4 (-1256 *2))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1047)) (-5 *1 (-757))))) +(((*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-454 *3)) (-4 *3 (-1061))))) +(((*1 *2 *1) (-12 (-4 *1 (-1161 *3)) (-4 *3 (-1230)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) +(((*1 *2 *3) + (-12 (-4 *4 (-357)) (-5 *2 (-968 (-1185 *4))) (-5 *1 (-365 *4)) + (-5 *3 (-1185 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) + (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 (-1189))) (-5 *2 (-1285)) (-5 *1 (-1232)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-653 (-1189))) (-5 *2 (-1285)) (-5 *1 (-1232))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) + (-4 *4 (-859)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) (-4 *4 (-802)) + (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-515)) (-5 *3 (-653 (-975))) (-5 *1 (-298))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1104 (-962 (-573)))) (-5 *3 (-962 (-573))) + (-5 *1 (-337)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1104 (-962 (-573)))) (-5 *1 (-337))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1189)) (-5 *3 (-112)) (-5 *1 (-902 *4)) + (-4 *4 (-1112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |cd| (-1171)) (|:| -2031 (-1171)))) + (-5 *1 (-831))))) (((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-932)) (-5 *1 (-452 *2)) - (-4 *2 (-1257 (-574))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-932)) (-5 *4 (-781)) (-5 *1 (-452 *2)) - (-4 *2 (-1257 (-574))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-932)) (-5 *4 (-654 (-781))) (-5 *1 (-452 *2)) - (-4 *2 (-1257 (-574))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-932)) (-5 *4 (-654 (-781))) (-5 *5 (-781)) - (-5 *1 (-452 *2)) (-4 *2 (-1257 (-574))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-932)) (-5 *4 (-654 (-781))) (-5 *5 (-781)) - (-5 *6 (-112)) (-5 *1 (-452 *2)) (-4 *2 (-1257 (-574))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-932)) (-5 *4 (-428 *2)) (-4 *2 (-1257 *5)) - (-5 *1 (-454 *5 *2)) (-4 *5 (-1062))))) + (-12 (-5 *2 (-653 *3)) (-4 *3 (-314)) (-5 *1 (-181 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-654 (-171 *4))) (-5 *1 (-156 *3 *4)) - (-4 *3 (-1257 (-171 (-574)))) (-4 *4 (-13 (-372) (-858))))) + (-12 (-5 *4 (-573)) (-4 *5 (-357)) (-5 *2 (-427 (-1185 (-1185 *5)))) + (-5 *1 (-1228 *5)) (-5 *3 (-1185 (-1185 *5)))))) +(((*1 *2 *3 *3 *1) + (-12 (-5 *3 (-515)) (-5 *2 (-700 (-1116))) (-5 *1 (-298))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-621 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-48))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1185 (-48))) (-5 *3 (-653 (-621 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1185 (-48))) (-5 *3 (-621 (-48))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-654 (-171 *4))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-654 (-171 *4))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4)))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-38 (-417 (-574)))) - (-4 *2 (-174))))) -(((*1 *2 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1231))))) + (-12 (-4 *2 (-13 (-371) (-857))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1256 (-171 *2))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-931)) (-4 *1 (-336 *3)) (-4 *3 (-371)) (-4 *3 (-376)))) + ((*1 *2 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-371)))) + ((*1 *2 *1) + (-12 (-4 *1 (-378 *2 *3)) (-4 *3 (-1256 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) + (-12 (-4 *4 (-1256 *2)) (-4 *2 (-1004 *3)) (-5 *1 (-422 *3 *2 *4 *5)) + (-4 *3 (-314)) (-4 *5 (-13 (-418 *2 *4) (-1050 *2))))) + ((*1 *2 *1) + (-12 (-4 *4 (-1256 *2)) (-4 *2 (-1004 *3)) + (-5 *1 (-423 *3 *2 *4 *5 *6)) (-4 *3 (-314)) (-4 *5 (-418 *2 *4)) + (-14 *6 (-1280 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-931)) (-4 *5 (-1061)) + (-4 *2 (-13 (-413) (-1050 *5) (-371) (-1215) (-291))) + (-5 *1 (-452 *5 *3 *2)) (-4 *3 (-1256 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-621 (-504)))) (-5 *1 (-504)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-621 (-504))) (-5 *1 (-504)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1185 (-504))) (-5 *3 (-653 (-621 (-504)))) + (-5 *1 (-504)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1185 (-504))) (-5 *3 (-621 (-504))) (-5 *1 (-504)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1280 *4)) (-5 *3 (-931)) (-4 *4 (-357)) + (-5 *1 (-537 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-461)) (-4 *5 (-733 *4 *2)) (-4 *2 (-1256 *4)) + (-5 *1 (-784 *4 *2 *5 *3)) (-4 *3 (-1256 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174)))) + ((*1 *1 *1) (-4 *1 (-1072)))) +(((*1 *2 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-174))))) +(((*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061))))) +(((*1 *2) + (-12 (-4 *3 (-1061)) (-5 *2 (-968 (-721 *3 *4))) (-5 *1 (-721 *3 *4)) + (-4 *4 (-1256 *3))))) +(((*1 *1) (-5 *1 (-606)))) +(((*1 *2 *1) + (-12 (-5 *2 (-653 (-653 (-953 (-227))))) (-5 *1 (-1225 *3)) + (-4 *3 (-986))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 *4)) (-4 *4 (-1062)) (-5 *2 (-1281 *4)) - (-5 *1 (-1191 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-932)) (-5 *2 (-1281 *3)) (-5 *1 (-1191 *3)) - (-4 *3 (-1062))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4456)) (-4 *1 (-614 *4 *3)) (-4 *4 (-1113)) - (-4 *3 (-1231)) (-4 *3 (-1113)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832))))) + (|partial| -12 (-5 *3 (-1280 *4)) (-4 *4 (-13 (-1061) (-648 (-573)))) + (-5 *2 (-1280 (-573))) (-5 *1 (-1308 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1256 (-573))))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1256 (-573)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014)))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4456)) (-4 *1 (-249 *2)) (-4 *2 (-1230))))) +(((*1 *2 *3) + (-12 (-5 *2 (-621 *4)) (-5 *1 (-620 *3 *4)) (-4 *3 (-1112)) + (-4 *4 (-1112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-365 *4)) + (-4 *4 (-357))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1281 *5)) (-4 *5 (-802)) (-5 *2 (-112)) - (-5 *1 (-855 *4 *5)) (-14 *4 (-781))))) + (|partial| -12 (-4 *4 (-565)) + (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-1251 *4 *3)) + (-4 *3 (-1256 *4))))) +(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1199))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-780)) (-4 *4 (-13 (-565) (-148))) + (-5 *1 (-1250 *4 *2)) (-4 *2 (-1256 *4))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-653 (-490 *4 *5))) (-5 *3 (-653 (-873 *4))) + (-14 *4 (-653 (-1189))) (-4 *5 (-461)) (-5 *1 (-480 *4 *5 *6)) + (-4 *6 (-461))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2277 *4))) + (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-406))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1247 (-573)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-653 *1)) (-5 *3 (-653 *7)) (-4 *1 (-1083 *4 *5 *6 *7)) + (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-1077 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 *1)) + (-4 *1 (-1083 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-653 *1)) (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) + (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-653 *1)) + (-4 *1 (-1083 *4 *5 *6 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1017 *3)) (-14 *3 (-574))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) - (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) - (-5 *5 (-1107 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1146 (-227))) - (-5 *1 (-707))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-654 (-574))) (-5 *1 (-253 *3 *4)) - (-14 *3 (-654 (-1190))) (-4 *4 (-1062)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-654 (-574))) (-14 *3 (-654 (-1190))) - (-5 *1 (-464 *3 *4 *5)) (-4 *4 (-1062)) - (-4 *5 (-244 (-2863 *3) (-781))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-654 (-574))) (-5 *1 (-491 *3 *4)) - (-14 *3 (-654 (-1190))) (-4 *4 (-1062))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1186 *1)) (-5 *4 (-1190)) (-4 *1 (-27)) - (-5 *2 (-654 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1186 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-963 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1190)) (-4 *4 (-566)) (-5 *2 (-654 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *3))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4456)) (-4 *1 (-499 *4)) - (-4 *4 (-1231)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-341)) (-5 *1 (-255))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1048)) - (-5 *1 (-756))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1281 (-324 (-227)))) (-5 *2 (-1281 (-324 (-388)))) - (-5 *1 (-313))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1062))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1286)) (-5 *1 (-832))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-666 *3)) (-4 *3 (-1062)) (-4 *3 (-372)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-781)) (-5 *4 (-1 *5 *5)) (-4 *5 (-372)) - (-5 *1 (-669 *5 *2)) (-4 *2 (-666 *5))))) + (-12 (-5 *2 (-871)) (-5 *1 (-399 *3 *4 *5)) (-14 *3 (-780)) + (-14 *4 (-780)) (-4 *5 (-174))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) + (-5 *2 (-828 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-855)) (-5 *1 (-1303 *3 *2)) (-4 *3 (-1061))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1171)) (-5 *1 (-1211))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-828 *3)) (-4 *3 (-859)) (-5 *1 (-681 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-4 *3 (-565)) + (-5 *2 (-1185 *3))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-653 (-780))) (-5 *3 (-112)) (-5 *1 (-1177 *4 *5)) + (-14 *4 (-931)) (-4 *5 (-1061))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1185 *6)) (-5 *3 (-573)) (-4 *6 (-314)) (-4 *4 (-802)) + (-4 *5 (-859)) (-5 *1 (-751 *4 *5 *6 *7)) (-4 *7 (-959 *6 *4 *5))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-653 (-1185 *13))) (-5 *3 (-1185 *13)) + (-5 *4 (-653 *12)) (-5 *5 (-653 *10)) (-5 *6 (-653 *13)) + (-5 *7 (-653 (-653 (-2 (|:| -2444 (-780)) (|:| |pcoef| *13))))) + (-5 *8 (-653 (-780))) (-5 *9 (-1280 (-653 (-1185 *10)))) + (-4 *12 (-859)) (-4 *10 (-314)) (-4 *13 (-959 *10 *11 *12)) + (-4 *11 (-802)) (-5 *1 (-716 *11 *12 *10 *13))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1280 *4)) (-4 *4 (-13 (-1061) (-648 (-573)))) + (-5 *2 (-112)) (-5 *1 (-1308 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-979)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-417 (-963 *5)))) (-5 *4 (-654 (-1190))) - (-4 *5 (-566)) (-5 *2 (-654 (-654 (-963 *5)))) (-5 *1 (-1199 *5))))) + (-12 (-5 *4 (-1189)) + (-4 *5 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) + (-5 *2 (-595 *3)) (-5 *1 (-435 *5 *3)) + (-4 *3 (-13 (-1215) (-29 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1189)) (-4 *5 (-13 (-565) (-1050 (-573)) (-148))) + (-5 *2 (-595 (-416 (-962 *5)))) (-5 *1 (-579 *5)) + (-5 *3 (-416 (-962 *5)))))) +(((*1 *2 *2) (-12 (-5 *1 (-971 *2)) (-4 *2 (-554))))) +(((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) (-5 *1 (-387))) + ((*1 *1) (-5 *1 (-387)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-931)) (-5 *2 (-477)) (-5 *1 (-1281))))) +(((*1 *2 *3) + (-12 (-4 *4 (-461)) + (-5 *2 + (-653 + (-2 (|:| |eigval| (-3 (-416 (-962 *4)) (-1178 (-1189) (-962 *4)))) + (|:| |eigmult| (-780)) + (|:| |eigvec| (-653 (-698 (-416 (-962 *4)))))))) + (-5 *1 (-299 *4)) (-5 *3 (-698 (-416 (-962 *4))))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015)))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-404))))) -(((*1 *2 *1) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-937)))) - ((*1 *2 *1) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-938))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-112)) - (-5 *2 (-1048)) (-5 *1 (-763))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) - (-4 *3 (-1078 *6 *7 *8)) - (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4)))) - (-5 *1 (-1121 *6 *7 *8 *3 *4)) (-4 *4 (-1084 *6 *7 *8 *3)))) + (-12 (-5 *2 (-653 *6)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-461)) + (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-458 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-780)) (-5 *6 (-112)) (-4 *7 (-461)) (-4 *8 (-802)) + (-4 *9 (-859)) (-4 *3 (-1077 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-653 *4)) + (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) + (-5 *1 (-1081 *7 *8 *9 *3 *4)) (-4 *4 (-1083 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4091 *9)))) - (-5 *5 (-112)) (-4 *8 (-1078 *6 *7 *4)) (-4 *9 (-1084 *6 *7 *4 *8)) - (-4 *6 (-462)) (-4 *7 (-803)) (-4 *4 (-860)) - (-5 *2 (-654 (-2 (|:| |val| *8) (|:| -4091 *9)))) - (-5 *1 (-1121 *6 *7 *4 *8 *9))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015)))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1172)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) - (-5 *2 (-1048)) (-5 *1 (-764))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1001 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7)))) + (-12 (-5 *5 (-780)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) + (-4 *3 (-1077 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-653 *4)) + (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) + (-5 *1 (-1081 *6 *7 *8 *3 *4)) (-4 *4 (-1083 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-654 *3)) (-4 *3 (-1084 *5 *6 *7 *8)) (-4 *5 (-462)) - (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1078 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1001 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1120 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7)))) + (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-4 *3 (-1077 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-653 *4)) + (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) + (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-780)) (-5 *6 (-112)) (-4 *7 (-461)) (-4 *8 (-802)) + (-4 *9 (-859)) (-4 *3 (-1077 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-653 *4)) + (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) + (-5 *1 (-1157 *7 *8 *9 *3 *4)) (-4 *4 (-1121 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-780)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) + (-4 *3 (-1077 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-653 *4)) + (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) + (-5 *1 (-1157 *6 *7 *8 *3 *4)) (-4 *4 (-1121 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-654 *3)) (-4 *3 (-1084 *5 *6 *7 *8)) (-4 *5 (-462)) - (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1078 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1120 *5 *6 *7 *8 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-462)) (-4 *4 (-566)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2495 *4))) - (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1186 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-1286)) (-5 *1 (-1193)))) - ((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-1194))))) -(((*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1062))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)) - (-5 *2 (-2 (|:| -3693 *3) (|:| -1908 *4)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-654 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) - (-14 *4 (-654 (-1190))) (-4 *5 (-462)) (-5 *1 (-641 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1235)) (-4 *5 (-1257 *4)) + (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-4 *3 (-1077 *5 *6 *7)) (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-417 *5)) - (|:| |c2| (-417 *5)) (|:| |deg| (-781)))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1257 (-417 *5)))))) -(((*1 *2) - (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-427 *3))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) - (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1048)) - (-5 *1 (-758))))) + (-2 (|:| |done| (-653 *4)) + (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) + (-5 *1 (-1157 *5 *6 *7 *3 *4)) (-4 *4 (-1121 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-314) (-148))) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-959 *4 *5 *6)) (-5 *2 (-653 (-653 *7))) + (-5 *1 (-457 *4 *5 *6 *7)) (-5 *3 (-653 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-802)) + (-4 *7 (-859)) (-4 *8 (-959 *5 *6 *7)) (-5 *2 (-653 (-653 *8))) + (-5 *1 (-457 *5 *6 *7 *8)) (-5 *3 (-653 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) - (-14 *6 (-654 (-1190))) (-5 *2 (-654 (-1059 *5 *6))) - (-5 *1 (-638 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-546))))) -(((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-781)) - (-4 *3 (-13 (-736) (-377) (-10 -7 (-15 ** (*3 *3 (-574)))))) - (-5 *1 (-252 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1231)))) - ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1109)))) + (-12 (-4 *5 (-565)) + (-5 *2 (-2 (|:| -1423 (-698 *5)) (|:| |vec| (-1280 (-653 (-931)))))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-931)) (-4 *3 (-665 *5))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-573)) (-5 *5 (-698 (-227))) + (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385)))) (-5 *3 (-227)) + (-5 *2 (-1047)) (-5 *1 (-757))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-802)) (-4 *4 (-859)) (-4 *6 (-314)) (-5 *2 (-427 *3)) + (-5 *1 (-751 *5 *4 *6 *3)) (-4 *3 (-959 *6 *5 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-403))))) +(((*1 *2 *1) + (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1016 *3)) (-14 *3 (-573))))) +(((*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-830))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1189)) (-5 *1 (-595 *2)) (-4 *2 (-1050 *3)) + (-4 *2 (-371)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-595 *2)) (-4 *2 (-371)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1189)) (-4 *4 (-565)) (-5 *1 (-639 *4 *2)) + (-4 *2 (-13 (-439 *4) (-1014) (-1215))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1104 *2)) (-4 *2 (-13 (-439 *4) (-1014) (-1215))) + (-4 *4 (-565)) (-5 *1 (-639 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-969)) (-5 *2 (-1189)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1104 *1)) (-4 *1 (-969))))) +(((*1 *2 *3) + (-12 (-4 *4 (-357)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) + (-4 *3 (-1256 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1171)) (-5 *1 (-795))))) +(((*1 *1 *1) + (-12 (-4 *2 (-461)) (-4 *3 (-859)) (-4 *4 (-802)) + (-5 *1 (-999 *2 *3 *4 *5)) (-4 *5 (-959 *2 *4 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1135 *3 *4 *2 *5)) (-4 *4 (-1061)) (-4 *5 (-243 *3 *4)) + (-4 *2 (-243 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-573)) (-5 *1 (-454 *3)) (-4 *3 (-413)) (-4 *3 (-1061))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-653 (-1185 *4))) (-5 *3 (-1185 *4)) + (-4 *4 (-919)) (-5 *1 (-672 *4))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-301 *2)) (-4 *2 (-735)) (-4 *2 (-1230))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)) + (-5 *2 (-2 (|:| -3692 *3) (|:| -1907 *4)))))) +(((*1 *1 *1) (-12 (-5 *1 (-924 *2)) (-4 *2 (-314))))) +(((*1 *2 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-768))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-780)) (-5 *2 (-1285)) (-5 *1 (-1281)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-780)) (-5 *2 (-1285)) (-5 *1 (-1282))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-515)) (-5 *3 (-1130)) (-5 *1 (-1127))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-699 *3))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-699 *3))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-375 *2)) (-4 *2 (-565)) (-4 *2 (-174))))) +(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1230)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1108)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) - (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) + (-4 *4 (-802)) (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-1269 *3)) (-4 *3 (-1231)))) - ((*1 *2 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1172)) (-5 *3 (-574)) (-5 *1 (-247)))) + (-12 (-5 *2 (-780)) (-4 *1 (-1268 *3)) (-4 *3 (-1230)))) + ((*1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1171)) (-5 *3 (-573)) (-5 *1 (-246)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-654 (-1172))) (-5 *3 (-574)) (-5 *4 (-1172)) - (-5 *1 (-247)))) - ((*1 *1 *1) (-5 *1 (-872))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) + (-12 (-5 *2 (-653 (-1171))) (-5 *3 (-573)) (-5 *4 (-1171)) + (-5 *1 (-246)))) + ((*1 *1 *1) (-5 *1 (-871))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) ((*1 *2 *1) - (-12 (-4 *1 (-1259 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1062))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1281 *4)) (-5 *3 (-699 *4)) (-4 *4 (-372)) - (-5 *1 (-677 *4)))) - ((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-372)) - (-4 *5 (-13 (-382 *4) (-10 -7 (-6 -4457)))) - (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4457)))) - (-5 *1 (-678 *4 *5 *2 *3)) (-4 *3 (-697 *4 *5 *2)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-654 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-372)) - (-5 *1 (-824 *2 *3)) (-4 *3 (-666 *2)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) - (-5 *1 (-1141 *3 *2)) (-4 *3 (-1257 *2))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-654 *7) *7 (-1186 *7))) (-5 *5 (-1 (-428 *7) *7)) - (-4 *7 (-1257 *6)) (-4 *6 (-13 (-372) (-148) (-1051 (-417 (-574))))) - (-5 *2 (-654 (-2 (|:| |frac| (-417 *7)) (|:| -4122 *3)))) - (-5 *1 (-819 *6 *7 *3 *8)) (-4 *3 (-666 *7)) - (-4 *8 (-666 (-417 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1257 *5)) - (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) - (-5 *2 - (-654 (-2 (|:| |frac| (-417 *6)) (|:| -4122 (-664 *6 (-417 *6)))))) - (-5 *1 (-822 *5 *6)) (-5 *3 (-664 *6 (-417 *6)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *2 (-654 *6)) - (-5 *1 (-1000 *3 *4 *5 *6)) (-4 *6 (-960 *3 *5 *4))))) + (-12 (-4 *1 (-1258 *2 *3)) (-4 *3 (-801)) (-4 *2 (-1061))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1152 *3 *2)) (-4 *3 (-13 (-1112) (-34))) + (-4 *2 (-13 (-1112) (-34)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-365 *4)) + (-4 *4 (-357))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-653 (-416 *6))) (-5 *3 (-416 *6)) + (-4 *6 (-1256 *5)) (-4 *5 (-13 (-371) (-148) (-1050 (-573)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-577 *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-562))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-606))) (-5 *1 (-606))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) - (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-388)) (-5 *1 (-207))))) -(((*1 *2 *3) - (-12 (-5 *3 (-963 *5)) (-4 *5 (-1062)) (-5 *2 (-253 *4 *5)) - (-5 *1 (-955 *4 *5)) (-14 *4 (-654 (-1190)))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-870)) (-5 *2 (-701 (-130))) (-5 *3 (-130))))) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-780)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-802)) (-4 *7 (-959 *4 *5 *6)) (-4 *4 (-461)) (-4 *6 (-859)) + (-5 *2 (-112)) (-5 *1 (-458 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-653 (-780))) (-5 *3 (-173)) (-5 *1 (-1177 *4 *5)) + (-14 *4 (-931)) (-4 *5 (-1061))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-962 *6)) (-5 *4 (-1189)) + (-5 *5 (-852 *7)) + (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) + (-4 *7 (-13 (-1215) (-29 *6))) (-5 *1 (-226 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1185 *6)) (-5 *4 (-852 *6)) + (-4 *6 (-13 (-1215) (-29 *5))) + (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) + (-5 *1 (-226 *5 *6))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-780)) (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) + (-4 *4 (-1061)) (-4 *4 (-174)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061)) + (-4 *3 (-174))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-653 (-653 (-227)))) (-5 *4 (-227)) + (-5 *2 (-653 (-953 *4))) (-5 *1 (-1226)) (-5 *3 (-953 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) + (-4 *4 (-859))))) +(((*1 *1 *1) (-5 *1 (-1075)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-417 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1257 *5)) - (-5 *1 (-737 *5 *2)) (-4 *5 (-372))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3))))) + (-12 (-5 *4 (-1189)) + (-4 *5 (-13 (-461) (-148) (-1050 (-573)) (-648 (-573)))) + (-5 *2 (-595 *3)) (-5 *1 (-566 *5 *3)) + (-4 *3 (-13 (-27) (-1215) (-439 *5)))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) - (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-654 (-227))) (-5 *1 (-206))))) -(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1291))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-315)) (-4 *6 (-382 *5)) (-4 *4 (-382 *5)) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1882 (-654 *4)))) - (-5 *1 (-1137 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-122 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1078 *5 *6 *7)) - (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4)))) - (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-937))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-654 (-1186 *4))) (-5 *3 (-1186 *4)) - (-4 *4 (-920)) (-5 *1 (-673 *4))))) -(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-938))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-76 G JACOBG JACGEP)))) - (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-759))))) -(((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-501))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1231))))) -(((*1 *2 *3) - (-12 (-5 *3 (-574)) (|has| *1 (-6 -4447)) (-4 *1 (-414)) - (-5 *2 (-932))))) + (-12 (-4 *4 (-1004 *2)) (-4 *2 (-565)) (-5 *1 (-143 *2 *4 *3)) + (-4 *3 (-381 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1004 *2)) (-4 *2 (-565)) (-5 *1 (-512 *2 *4 *5 *3)) + (-4 *5 (-381 *2)) (-4 *3 (-381 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-698 *4)) (-4 *4 (-1004 *2)) (-4 *2 (-565)) + (-5 *1 (-702 *2 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1004 *2)) (-4 *2 (-565)) (-5 *1 (-1249 *2 *4 *3)) + (-4 *3 (-1256 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) + (-4 *4 (-859)) (-4 *2 (-565))))) +(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1199))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-883)) (-5 *3 (-653 (-269))) (-5 *1 (-267))))) (((*1 *2 *1) - (-12 (-5 *2 (-701 (-883 (-977 *3) (-977 *3)))) (-5 *1 (-977 *3)) - (-4 *3 (-1113))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1231)) - (-5 *2 (-112))))) + (-12 (-4 *1 (-563 *3)) (-4 *3 (-13 (-413) (-1215))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-857)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1080 *4 *3)) (-4 *4 (-13 (-857) (-371))) + (-4 *3 (-1256 *4)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-988 *3 *4 *2 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *5 (-1077 *3 *4 *2)) (-4 *2 (-859)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1077 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *2 (-859))))) +(((*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-710)))) + ((*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-710))))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-698 *4)) (-5 *3 (-780)) (-4 *4 (-1061)) + (-5 *1 (-699 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-937)) + (-5 *2 + (-2 (|:| |brans| (-653 (-653 (-953 (-227))))) + (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227))))) + (-5 *1 (-154)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-937)) (-5 *4 (-416 (-573))) + (-5 *2 + (-2 (|:| |brans| (-653 (-653 (-953 (-227))))) + (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227))))) + (-5 *1 (-154)))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |brans| (-653 (-653 (-953 (-227))))) + (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227))))) + (-5 *1 (-154)) (-5 *3 (-653 (-953 (-227)))))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |brans| (-653 (-653 (-953 (-227))))) + (|:| |xValues| (-1106 (-227))) (|:| |yValues| (-1106 (-227))))) + (-5 *1 (-154)) (-5 *3 (-653 (-653 (-953 (-227))))))) + ((*1 *1 *2) (-12 (-5 *2 (-653 (-1106 (-387)))) (-5 *1 (-269)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-269))))) (((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4456)) (-4 *1 (-152 *2)) (-4 *2 (-1231)) - (-4 *2 (-1113)))) + (-12 (|has| *1 (-6 -4455)) (-4 *1 (-152 *2)) (-4 *2 (-1230)) + (-4 *2 (-1112)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4456)) (-4 *1 (-152 *3)) - (-4 *3 (-1231)))) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4455)) (-4 *1 (-152 *3)) + (-4 *3 (-1230)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-684 *3)) (-4 *3 (-1231)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-683 *3)) (-4 *3 (-1230)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-574)) (-4 *4 (-1113)) - (-5 *1 (-747 *4)))) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-573)) (-4 *4 (-1112)) + (-5 *1 (-746 *4)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-5 *1 (-747 *2)) (-4 *2 (-1113)))) + (-12 (-5 *3 (-573)) (-5 *1 (-746 *2)) (-4 *2 (-1112)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1153 *3 *4)) (-4 *3 (-13 (-1113) (-34))) - (-4 *4 (-13 (-1113) (-34))) (-5 *1 (-1154 *3 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-932)) (-5 *1 (-1045 *2)) - (-4 *2 (-13 (-1113) (-10 -8 (-15 * ($ $ $)))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-624 (-903 *3))) (-4 *3 (-897 *3)) (-4 *3 (-462)) - (-5 *1 (-1222 *3 *2)) (-4 *2 (-624 (-903 *3))) (-4 *2 (-897 *3)) - (-4 *2 (-13 (-440 *3) (-1216)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062))))) -(((*1 *2 *3) - (-12 (-5 *2 (-622 *4)) (-5 *1 (-621 *3 *4)) (-4 *3 (-1113)) - (-4 *4 (-1113))))) -(((*1 *2 *1) - (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6)) - (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) - (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3)))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1286) (-1281 *5) (-1281 *5) (-388))) - (-5 *3 (-1281 (-388))) (-5 *5 (-388)) (-5 *2 (-1286)) - (-5 *1 (-798)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1286) (-1281 *5) (-1281 *5) (-388))) - (-5 *3 (-1281 (-388))) (-5 *5 (-388)) (-5 *2 (-1286)) - (-5 *1 (-798))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-372)) - (-4 *7 (-1257 (-417 *6))) - (-5 *2 (-2 (|:| |answer| *3) (|:| -2153 *3))) - (-5 *1 (-572 *5 *6 *7 *3)) (-4 *3 (-351 *5 *6 *7)))) + (-12 (-5 *2 (-1152 *3 *4)) (-4 *3 (-13 (-1112) (-34))) + (-4 *4 (-13 (-1112) (-34))) (-5 *1 (-1153 *3 *4))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) + (-4 *4 (-859)) (-4 *2 (-565)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) + (-4 *4 (-859)) (-4 *2 (-565))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-764))))) +(((*1 *2) + (-12 (-4 *4 (-1234)) (-4 *5 (-1256 *4)) (-4 *6 (-1256 (-416 *5))) + (-5 *2 (-112)) (-5 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-350 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) + (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) + (-4 *3 (-1077 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-653 *4)) + (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) + (-5 *1 (-1081 *6 *7 *8 *3 *4)) (-4 *4 (-1083 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-372)) + (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-4 *3 (-1077 *5 *6 *7)) (-5 *2 - (-2 (|:| |answer| (-417 *6)) (|:| -2153 (-417 *6)) - (|:| |specpart| (-417 *6)) (|:| |polypart| *6))) - (-5 *1 (-573 *5 *6)) (-5 *3 (-417 *6))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-118 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-574)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-881 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-881 *2)) (-14 *2 (-574)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-574)) (-14 *3 *2) (-5 *1 (-882 *3 *4)) - (-4 *4 (-879 *3)))) - ((*1 *1 *1) - (-12 (-14 *2 (-574)) (-5 *1 (-882 *2 *3)) (-4 *3 (-879 *2)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-574)) (-4 *1 (-1243 *3 *4)) (-4 *3 (-1062)) - (-4 *4 (-1272 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1243 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-1272 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-829 *3)) (-4 *3 (-860)) (-5 *1 (-682 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-960 *4 *5 *6)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1216)))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-654 (-574))) (-5 *3 (-654 (-932))) (-5 *4 (-112)) - (-5 *1 (-1123))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1190)) (-5 *2 (-447)) (-5 *1 (-1194))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-253 *5 *6))) (-4 *6 (-462)) - (-5 *2 (-253 *5 *6)) (-14 *5 (-654 (-1190))) (-5 *1 (-641 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1216)))))) -(((*1 *1) (-5 *1 (-131)))) -(((*1 *1 *1 *1) (-4 *1 (-555)))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) - (|:| |lb| (-654 (-853 (-227)))) - (|:| |cf| (-654 (-324 (-227)))) - (|:| |ub| (-654 (-853 (-227)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-654 (-324 (-227)))) - (|:| -3818 (-654 (-227))))))) - (-5 *2 (-654 (-1172))) (-5 *1 (-274))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4457)) (-4 *1 (-1023 *2)) (-4 *2 (-1231))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-1230))) (-5 *1 (-534))))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1107 (-227))) (-5 *6 (-574)) (-5 *2 (-1226 (-937))) - (-5 *1 (-326)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1107 (-227))) (-5 *6 (-574)) (-5 *7 (-1172)) - (-5 *2 (-1226 (-937))) (-5 *1 (-326)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1107 (-227))) (-5 *6 (-227)) (-5 *7 (-574)) - (-5 *2 (-1226 (-937))) (-5 *1 (-326)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1107 (-227))) (-5 *6 (-227)) (-5 *7 (-574)) (-5 *8 (-1172)) - (-5 *2 (-1226 (-937))) (-5 *1 (-326))))) + (-2 (|:| |done| (-653 *4)) + (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) + (-5 *1 (-1157 *5 *6 *7 *3 *4)) (-4 *4 (-1121 *5 *6 *7 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-371)) (-5 *2 (-653 *3)) (-5 *1 (-955 *4 *3)) + (-4 *3 (-1256 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1017 *3)) (-14 *3 (-574))))) + (-12 (-5 *2 (-653 (-2 (|:| |k| (-681 *3)) (|:| |c| *4)))) + (-5 *1 (-636 *3 *4 *5)) (-4 *3 (-859)) + (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-14 *5 (-931))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-653 (-573))) (-5 *1 (-252 *3 *4)) + (-14 *3 (-653 (-1189))) (-4 *4 (-1061)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-653 (-573))) (-14 *3 (-653 (-1189))) + (-5 *1 (-463 *3 *4 *5)) (-4 *4 (-1061)) + (-4 *5 (-243 (-2862 *3) (-780))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-653 (-573))) (-5 *1 (-490 *3 *4)) + (-14 *3 (-653 (-1189))) (-4 *4 (-1061))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-462)) - (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-990 *3 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-654 (-1217 *3))) (-5 *1 (-1217 *3)) (-4 *3 (-1113))))) -(((*1 *2 *3) - (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-307 *4 *5)) (-14 *4 *3) - (-14 *5 *3))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1107 (-853 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) - (-5 *1 (-313)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) - (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1170 *3)) (-4 *3 (-1113)) - (-4 *3 (-1231))))) + (-12 (-4 *3 (-371)) (-5 *1 (-775 *2 *3)) (-4 *2 (-717 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) + ((*1 *1 *1) (-4 *1 (-1151)))) (((*1 *2 *3) (-12 (-5 *3 - (-654 - (-2 (|:| -3584 (-781)) - (|:| |eqns| - (-654 - (-2 (|:| |det| *7) (|:| |rows| (-654 (-574))) - (|:| |cols| (-654 (-574)))))) - (|:| |fgb| (-654 *7))))) - (-4 *7 (-960 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) - (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-781)) - (-5 *1 (-935 *4 *5 *6 *7))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) - (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-1294 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-566)) - (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1294 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-699 *11)) (-5 *4 (-654 (-417 (-963 *8)))) - (-5 *5 (-781)) (-5 *6 (-1172)) (-4 *8 (-13 (-315) (-148))) - (-4 *11 (-960 *8 *10 *9)) (-4 *9 (-13 (-860) (-624 (-1190)))) - (-4 *10 (-803)) - (-5 *2 - (-2 - (|:| |rgl| - (-654 - (-2 (|:| |eqzro| (-654 *11)) (|:| |neqzro| (-654 *11)) - (|:| |wcond| (-654 (-963 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1281 (-417 (-963 *8)))) - (|:| -1882 (-654 (-1281 (-417 (-963 *8)))))))))) - (|:| |rgsz| (-574)))) - (-5 *1 (-935 *8 *9 *10 *11)) (-5 *7 (-574))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-417 (-963 *5)) (-1179 (-1190) (-963 *5)))) - (-4 *5 (-462)) (-5 *2 (-654 (-699 (-417 (-963 *5))))) - (-5 *1 (-300 *5)) (-5 *4 (-699 (-417 (-963 *5))))))) -(((*1 *2 *1) (-12 (-5 *2 (-299)) (-5 *1 (-288))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1170 (-1170 *4))) (-5 *2 (-1170 *4)) (-5 *1 (-1174 *4)) - (-4 *4 (-38 (-417 (-574)))) (-4 *4 (-1062))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-764))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-13 (-1113) (-34))) - (-4 *4 (-13 (-1113) (-34)))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884))))) -(((*1 *1 *1) (|partial| -4 *1 (-146))) ((*1 *1 *1) (-4 *1 (-358))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-920))))) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-780)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-802)) (-4 *2 (-959 *4 *5 *6)) (-5 *1 (-458 *4 *5 *6 *2)) + (-4 *4 (-461)) (-4 *6 (-859))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1001 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1120 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7))))) + (-12 (-4 *4 (-565)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-52)) (-5 *1 (-838))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062))))) -(((*1 *2) - (-12 (-5 *2 (-969 (-1133))) (-5 *1 (-352 *3 *4)) (-14 *3 (-932)) - (-14 *4 (-932)))) - ((*1 *2) - (-12 (-5 *2 (-969 (-1133))) (-5 *1 (-353 *3 *4)) (-4 *3 (-358)) - (-14 *4 (-1186 *3)))) - ((*1 *2) - (-12 (-5 *2 (-969 (-1133))) (-5 *1 (-354 *3 *4)) (-4 *3 (-358)) - (-14 *4 (-932))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2)) - (-4 *2 (-1257 *4))))) -(((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| -4296 (-115)) (|:| |arg| (-654 (-903 *3))))) - (-5 *1 (-903 *3)) (-4 *3 (-1113)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-654 (-903 *4))) - (-5 *1 (-903 *4)) (-4 *4 (-1113))))) + (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) + (-4 *4 (-381 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-932)) (-5 *2 (-1186 *3)) (-5 *1 (-1205 *3)) - (-4 *3 (-372))))) -(((*1 *2 *1) - (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 (-1 *6 (-654 *6)))) - (-4 *5 (-38 (-417 (-574)))) (-4 *6 (-1272 *5)) (-5 *2 (-654 *6)) - (-5 *1 (-1274 *5 *6))))) -(((*1 *1) (-5 *1 (-607)))) -(((*1 *2 *3) - (-12 (-5 *3 (-699 (-417 (-963 (-574))))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-371)) (-5 *2 - (-654 - (-2 (|:| |radval| (-324 (-574))) (|:| |radmult| (-574)) - (|:| |radvect| (-654 (-699 (-324 (-574)))))))) - (-5 *1 (-1044))))) + (-2 (|:| |ir| (-595 (-416 *6))) (|:| |specpart| (-416 *6)) + (|:| |polypart| *6))) + (-5 *1 (-583 *5 *6)) (-5 *3 (-416 *6))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1112)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-573)) (-5 *5 (-171 (-227))) (-5 *6 (-1171)) + (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-767))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-565)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) + (-5 *1 (-989 *4 *5 *6 *7))))) +(((*1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-1061))))) +(((*1 *1 *1) (-4 *1 (-1156)))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1280 *5)) (-5 *3 (-780)) (-5 *4 (-1132)) (-4 *5 (-357)) + (-5 *1 (-537 *5))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) - (-4 *3 (-376 *4)))) - ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-574)) (-5 *5 (-1172)) (-5 *6 (-699 (-227))) - (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-759))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) - (-4 *4 (-382 *2))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1172)) (|:| -2032 (-1172)))) - (-5 *1 (-832))))) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) + (-4 *3 (-375 *4)))) + ((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1172)) (-5 *4 (-1133)) (-5 *2 (-112)) (-5 *1 (-831))))) + (-12 (-5 *3 (-1171)) (-5 *4 (-1132)) (-5 *2 (-112)) (-5 *1 (-830))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-565)) (-4 *3 (-174)) (-4 *4 (-381 *3)) + (-4 *5 (-381 *3)) (-5 *1 (-697 *3 *4 *5 *2)) + (-4 *2 (-696 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-536)) (-5 *2 (-700 (-558)))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 (-491 *4 *5))) (-14 *4 (-654 (-1190))) - (-4 *5 (-462)) - (-5 *2 - (-2 (|:| |gblist| (-654 (-253 *4 *5))) - (|:| |gvlist| (-654 (-574))))) - (-5 *1 (-641 *4 *5))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1139 *4 *3 *5))) (-4 *4 (-38 (-417 (-574)))) - (-4 *4 (-1062)) (-4 *3 (-860)) (-5 *1 (-1139 *4 *3 *5)) - (-4 *5 (-960 *4 (-541 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1225 *4))) (-5 *3 (-1190)) (-5 *1 (-1225 *4)) - (-4 *4 (-38 (-417 (-574)))) (-4 *4 (-1062))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-338)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-338))))) -(((*1 *1 *1) (-12 (-5 *1 (-925 *2)) (-4 *2 (-315))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23)) - (-14 *4 *3)))) + (-12 (-5 *3 (-653 (-931))) (-5 *2 (-1191 (-416 (-573)))) + (-5 *1 (-192))))) (((*1 *1 *1) - (-12 (-5 *1 (-1178 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1062))))) -(((*1 *2 *1) - (-12 (-4 *3 (-13 (-372) (-148))) - (-5 *2 (-654 (-2 (|:| -3715 (-781)) (|:| -3359 *4) (|:| |num| *4)))) - (-5 *1 (-409 *3 *4)) (-4 *4 (-1257 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-781)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) - (-4 *4 (-1062))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-372) (-1216) (-1015)))))) -(((*1 *2 *1) - (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1257 *2))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1254 *5 *4)) (-4 *4 (-462)) (-4 *4 (-830)) - (-14 *5 (-1190)) (-5 *2 (-574)) (-5 *1 (-1127 *4 *5))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1111 *3)) (-4 *3 (-1113)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1216)))))) -(((*1 *1) (-5 *1 (-145)))) -(((*1 *2 *1) - (-12 (-5 *2 (-1186 (-417 (-963 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) - (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) - (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3)))))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-932)) (-5 *4 (-227)) (-5 *5 (-574)) (-5 *6 (-884)) - (-5 *2 (-1286)) (-5 *1 (-1282))))) -(((*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-539)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-587)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-871))))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-954 (-227))) (-5 *4 (-884)) (-5 *5 (-932)) - (-5 *2 (-1286)) (-5 *1 (-478)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-954 (-227))) (-5 *2 (-1286)) (-5 *1 (-478)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-654 (-954 (-227)))) (-5 *4 (-884)) (-5 *5 (-932)) - (-5 *2 (-1286)) (-5 *1 (-478))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-830)) (-14 *5 (-1190)) (-5 *2 (-654 (-1254 *5 *4))) - (-5 *1 (-1127 *4 *5)) (-5 *3 (-1254 *5 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *6)) - (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-654 (-916 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1113))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-932)) (-5 *1 (-709)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-699 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) - (-4 *5 (-372)) (-5 *1 (-991 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1113))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-171 (-227)))) (-5 *2 (-1048)) - (-5 *1 (-764))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1113))))) + (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-357)) (-5 *1 (-365 *3))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-780)) (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) + (-4 *4 (-802)) (-4 *5 (-859)) (-4 *3 (-565))))) (((*1 *2 *3) - (-12 (-5 *2 (-1170 (-574))) (-5 *1 (-1174 *4)) (-4 *4 (-1062)) - (-5 *3 (-574))))) + (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-1077 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-653 *7)) (|:| |badPols| (-653 *7)))) + (-5 *1 (-989 *4 *5 *6 *7)) (-5 *3 (-653 *7))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-833)) (-5 *3 (-653 (-1189))) (-5 *1 (-834))))) (((*1 *2 *3) - (-12 (-5 *3 (-1254 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1190)) - (-5 *2 (-574)) (-5 *1 (-1127 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-654 (-654 (-173))))))) + (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) + ((*1 *2) (-12 (-5 *2 (-914 (-573))) (-5 *1 (-927))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-1234)) (-4 *5 (-1256 *3)) (-4 *6 (-1256 (-416 *5))) + (-5 *2 (-112)) (-5 *1 (-349 *4 *3 *5 *6)) (-4 *4 (-350 *3 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) + (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-698 *4)) (-5 *3 (-931)) (-4 *4 (-1061)) + (-5 *1 (-1040 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-653 (-698 *4))) (-5 *3 (-931)) (-4 *4 (-1061)) + (-5 *1 (-1040 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-515)) (-5 *3 (-606)) (-5 *1 (-594))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574)))) - (-5 *1 (-430 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1216) (-440 *3))) - (-14 *4 (-1190)) (-14 *5 *2))) + (|partial| -12 (-4 *3 (-371)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) + (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-565)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) + (-4 *7 (-1004 *4)) (-4 *2 (-696 *7 *8 *9)) + (-5 *1 (-531 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-696 *4 *5 *6)) + (-4 *8 (-381 *7)) (-4 *9 (-381 *7)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) + (-4 *3 (-381 *2)) (-4 *4 (-381 *2)) (-4 *2 (-371)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574)))) - (-4 *2 (-13 (-27) (-1216) (-440 *3) (-10 -8 (-15 -2943 ($ *4))))) - (-4 *4 (-858)) - (-4 *5 - (-13 (-1259 *2 *4) (-372) (-1216) - (-10 -8 (-15 -3905 ($ $)) (-15 -2379 ($ $))))) - (-5 *1 (-432 *3 *2 *4 *5 *6 *7)) (-4 *6 (-996 *5)) (-14 *7 (-1190))))) -(((*1 *2 *1) - (-12 (-5 *2 (-872)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 (-781)) - (-14 *4 (-781)) (-4 *5 (-174))))) -(((*1 *1 *1) (-5 *1 (-1076)))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-654 (-654 (-954 (-227))))) (-5 *3 (-654 (-884))) - (-5 *1 (-478))))) -(((*1 *1 *1) (-5 *1 (-872))) - ((*1 *2 *1) - (-12 (-4 *1 (-1116 *2 *3 *4 *5 *6)) (-4 *3 (-1113)) (-4 *4 (-1113)) - (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *2 (-1113)))) - ((*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1171)))) - ((*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-1190))))) -(((*1 *1) (-5 *1 (-588))) - ((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-873)))) - ((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1286)) (-5 *1 (-873)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1172)) (-5 *4 (-872)) (-5 *2 (-1286)) (-5 *1 (-873)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-574)) (-5 *2 (-1286)) (-5 *1 (-1170 *4)) - (-4 *4 (-1113)) (-4 *4 (-1231))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) - (-4 *4 (-1062))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062))))) -(((*1 *2) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) - (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-388)) (-5 *1 (-1076))))) + (|partial| -12 (-4 *3 (-371)) (-4 *3 (-174)) (-4 *4 (-381 *3)) + (-4 *5 (-381 *3)) (-5 *1 (-697 *3 *4 *5 *2)) + (-4 *2 (-696 *3 *4 *5)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-698 *2)) (-4 *2 (-371)) (-4 *2 (-1061)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1135 *2 *3 *4 *5)) (-4 *3 (-1061)) + (-4 *4 (-243 *2 *3)) (-4 *5 (-243 *2 *3)) (-4 *3 (-371)))) + ((*1 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-859)) (-5 *1 (-1200 *3))))) +(((*1 *1) (-5 *1 (-515)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-1189))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015)))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1106 *3)) (-5 *1 (-1070 *2 *3)) (-4 *3 (-1231)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1107 *3)) (-5 *1 (-1105 *3)) (-4 *3 (-1231)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1231)))) - ((*1 *1 *2) (-12 (-5 *1 (-1248 *2)) (-4 *2 (-1231))))) -(((*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284)))) - ((*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284))))) -(((*1 *1 *1) (-4 *1 (-639))) + (-12 (-5 *2 (-653 (-2 (|:| |val| (-653 *6)) (|:| -4090 *7)))) + (-4 *6 (-1077 *3 *4 *5)) (-4 *7 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) + (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-1000 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015) (-1216)))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-932)) (-5 *4 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-622 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1190))) - (-4 *2 (-13 (-440 *5) (-27) (-1216))) - (-4 *5 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) - (-5 *1 (-576 *5 *2 *6)) (-4 *6 (-1113))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) - (-4 *4 (-174)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1190)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)) - (-4 *2 (-440 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1105 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566)) - (-5 *1 (-159 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1105 *1)) (-4 *1 (-161)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1190)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-1301 *3 *4)) (-4 *3 (-860)) - (-4 *4 (-174))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1078 *5 *6 *7)) - (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4)))) - (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-574)) (-5 *2 (-654 (-654 (-227)))) (-5 *1 (-1227))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-982 *4 *3)) - (-4 *3 (-1257 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-654 *3)) (-5 *1 (-972 *3)) (-4 *3 (-555))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-963 (-417 (-574)))) (-5 *4 (-1190)) - (-5 *5 (-1107 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-308))))) + (-12 (-5 *2 (-653 (-2 (|:| |val| (-653 *6)) (|:| -4090 *7)))) + (-4 *6 (-1077 *3 *4 *5)) (-4 *7 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) + (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-1119 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768))))) + (-12 (-5 *4 (-653 (-653 *8))) (-5 *3 (-653 *8)) + (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-565)) (-4 *6 (-802)) + (-4 *7 (-859)) (-5 *2 (-112)) (-5 *1 (-989 *5 *6 *7 *8))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-129))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1169 (-2 (|:| |k| (-573)) (|:| |c| *3)))) + (-5 *1 (-604 *3)) (-4 *3 (-1061))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) + (-5 *2 + (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) + (|:| |success| (-112)))) + (-5 *1 (-798)) (-5 *5 (-573))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-780)) (-5 *3 (-953 *5)) (-4 *5 (-1061)) + (-5 *1 (-1177 *4 *5)) (-14 *4 (-931)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-653 (-780))) (-5 *3 (-780)) (-5 *1 (-1177 *4 *5)) + (-14 *4 (-931)) (-4 *5 (-1061)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-653 (-780))) (-5 *3 (-953 *5)) (-4 *5 (-1061)) + (-5 *1 (-1177 *4 *5)) (-14 *4 (-931))))) +(((*1 *2 *3) + (-12 (-4 *1 (-350 *4 *3 *5)) (-4 *4 (-1234)) (-4 *3 (-1256 *4)) + (-4 *5 (-1256 (-416 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) + (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))) + (-5 *1 (-178 *3))))) +(((*1 *2) + (-12 (-4 *3 (-1061)) (-5 *2 (-968 (-721 *3 *4))) (-5 *1 (-721 *3 *4)) + (-4 *4 (-1256 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-112)) (-5 *1 (-838))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 *2)) (-4 *2 (-1256 *4)) (-5 *1 (-548 *4 *2 *5 *6)) + (-4 *4 (-314)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-780)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1061)) + (-4 *2 (-13 (-413) (-1050 *4) (-371) (-1215) (-291))) + (-5 *1 (-452 *4 *3 *2)) (-4 *3 (-1256 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-931)) (-4 *5 (-1061)) + (-4 *2 (-13 (-413) (-1050 *5) (-371) (-1215) (-291))) + (-5 *1 (-452 *5 *3 *2)) (-4 *3 (-1256 *5))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-337)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-337))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-1077 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-485 *4 *5 *6 *7)) (|:| -2001 (-653 *7)))) + (-5 *1 (-989 *4 *5 *6 *7)) (-5 *3 (-653 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-563 *2)) (-4 *2 (-13 (-413) (-1215))))) + ((*1 *1 *1 *1) (-4 *1 (-802)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1201 (-653 *4))) (-4 *4 (-859)) + (-5 *2 (-653 (-653 *4))) (-5 *1 (-1200 *4))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-654 (-491 *4 *5))) (-5 *3 (-654 (-874 *4))) - (-14 *4 (-654 (-1190))) (-4 *5 (-462)) (-5 *1 (-481 *4 *5 *6)) - (-4 *6 (-462))))) +(((*1 *1 *1) + (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-653 *2)) (-5 *1 (-181 *2)) (-4 *2 (-314)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-653 (-653 *4))) (-5 *2 (-653 *4)) (-4 *4 (-314)) + (-5 *1 (-181 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-653 *8)) + (-5 *4 + (-653 + (-2 (|:| -3914 (-698 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-698 *7))))) + (-5 *5 (-780)) (-4 *8 (-1256 *7)) (-4 *7 (-1256 *6)) (-4 *6 (-357)) + (-5 *2 + (-2 (|:| -3914 (-698 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-698 *7)))) + (-5 *1 (-507 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-112)) (-5 *1 (-838))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) + (-5 *2 (-1047)) (-5 *1 (-761))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) - (-4 *3 (-376 *4)))) - ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-315)) - (-5 *2 (-417 (-428 (-963 *4)))) (-5 *1 (-1055 *4))))) + (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) + (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-1285)) + (-5 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *7 (-1083 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) + (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-1285)) + (-5 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *7 (-1083 *3 *4 *5 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 (-573))) (-4 *3 (-1061)) (-5 *1 (-99 *3)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1061)) (-5 *1 (-99 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1061)) (-5 *1 (-99 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) - (-4 *5 (-440 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) - (-5 *1 (-159 *4 *5)) (-4 *5 (-440 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) - (-5 *1 (-283 *4 *5)) (-4 *5 (-13 (-440 *4) (-1015))))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-309 *4)) (-4 *4 (-310)))) - ((*1 *2 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *5 (-1113)) (-5 *2 (-112)) - (-5 *1 (-439 *4 *5)) (-4 *4 (-440 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) - (-5 *1 (-441 *4 *5)) (-4 *5 (-440 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) - (-5 *1 (-640 *4 *5)) (-4 *5 (-13 (-440 *4) (-1015) (-1216)))))) + (-12 (-5 *3 (-653 *4)) (-4 *4 (-859)) (-5 *2 (-653 (-673 *4 *5))) + (-5 *1 (-636 *4 *5 *6)) (-4 *5 (-13 (-174) (-726 (-416 (-573))))) + (-14 *6 (-931))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 (-932))) (-5 *2 (-654 (-699 (-574)))) - (-5 *1 (-1123))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-903 *4)) (-4 *4 (-1113)) (-4 *2 (-1113)) - (-5 *1 (-900 *4 *2))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062))))) + (-12 (-4 *4 (-38 (-416 (-573)))) + (-5 *2 (-2 (|:| -2225 (-1169 *4)) (|:| -2236 (-1169 *4)))) + (-5 *1 (-1175 *4)) (-5 *3 (-1169 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-461)) + (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) + (-5 *1 (-989 *3 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1116)) (-5 *1 (-286))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-437 *3 *2)) (-4 *3 (-13 (-174) (-38 (-417 (-574))))) - (-4 *2 (-13 (-860) (-21)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-1001 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-1120 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)) - (-5 *2 (-2 (|:| |k| (-829 *3)) (|:| |c| *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1286)) (-5 *1 (-388))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-372) (-858))) - (-5 *2 (-654 (-2 (|:| -4219 (-654 *3)) (|:| -2678 *5)))) - (-5 *1 (-183 *5 *3)) (-4 *3 (-1257 (-171 *5))))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-372) (-858))) - (-5 *2 (-654 (-2 (|:| -4219 (-654 *3)) (|:| -2678 *4)))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4)))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-566)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-566))))) + (-12 (-5 *2 (-477)) (-5 *3 (-653 (-269))) (-5 *1 (-1281)))) + ((*1 *1 *1) (-5 *1 (-1281)))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-417 *2)) (-4 *2 (-1257 *5)) - (-5 *1 (-817 *5 *2 *3 *6)) - (-4 *5 (-13 (-372) (-148) (-1051 (-417 (-574))))) - (-4 *3 (-666 *2)) (-4 *6 (-666 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-654 (-417 *2))) (-4 *2 (-1257 *5)) - (-5 *1 (-817 *5 *2 *3 *6)) - (-4 *5 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *3 (-666 *2)) - (-4 *6 (-666 (-417 *2)))))) -(((*1 *1) (-5 *1 (-1193)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1282)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1282)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1283)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1283))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-404)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1211))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-954 (-227))) (-5 *2 (-1286)) (-5 *1 (-478))))) -(((*1 *2 *1) - (-12 (-5 *2 (-654 (-954 *4))) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) - (-4 *4 (-1062))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) - (-5 *2 (-699 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) - (-4 *4 (-860)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-987))))) -(((*1 *1 *1 *1) (-4 *1 (-483))) ((*1 *1 *1 *1) (-4 *1 (-771)))) -(((*1 *2 *1 *2) - (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1113))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216))))) -(((*1 *2 *1) - (-12 (-5 *2 (-417 (-574))) (-5 *1 (-327 *3 *4 *5)) (-4 *3 (-372)) - (-14 *4 (-1190)) (-14 *5 *3)))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1062)) (-5 *1 (-905 *2 *3)) (-4 *2 (-1257 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) - ((*1 *2 *1) - (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) - (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-732)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-736)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-130)))))) + (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-4 *3 (-1077 *5 *6 *7)) + (-5 *2 (-653 (-2 (|:| |val| (-112)) (|:| -4090 *4)))) + (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1215)))))) (((*1 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-462)) - (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-990 *3 *4 *5 *6)))) + (-12 (-4 *3 (-565)) (-5 *1 (-159 *3 *2)) (-4 *2 (-439 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-654 *7)) (-5 *3 (-112)) (-4 *7 (-1078 *4 *5 *6)) - (-4 *4 (-462)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) - (-5 *1 (-990 *4 *5 *6 *7))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1190)) - (-4 *4 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) - (-5 *1 (-632 *4 *2)) (-4 *2 (-13 (-1216) (-970) (-29 *4)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1123))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1281 (-1190))) (-5 *3 (-1281 (-463 *4 *5 *6 *7))) - (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-932)) - (-14 *6 (-654 (-1190))) (-14 *7 (-1281 (-699 *4))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-463 *4 *5 *6 *7))) - (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-932)) - (-14 *6 (-654 *2)) (-14 *7 (-1281 (-699 *4))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1281 (-463 *3 *4 *5 *6))) (-5 *1 (-463 *3 *4 *5 *6)) - (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) - (-14 *6 (-1281 (-699 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1281 (-1190))) (-5 *1 (-463 *3 *4 *5 *6)) - (-4 *3 (-174)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))) - (-14 *6 (-1281 (-699 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1190)) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-932)) (-14 *5 (-654 *2)) (-14 *6 (-1281 (-699 *3))))) - ((*1 *1) - (-12 (-5 *1 (-463 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-932)) - (-14 *4 (-654 (-1190))) (-14 *5 (-1281 (-699 *2)))))) -(((*1 *2) - (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-427 *3))))) + (-12 (-5 *3 (-1189)) (-4 *4 (-565)) (-5 *1 (-159 *4 *2)) + (-4 *2 (-439 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1189)))) + ((*1 *1 *1) (-4 *1 (-161)))) (((*1 *2 *3) - (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-372)) - (-5 *1 (-531 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) - (|has| *2 (-6 (-4458 "*"))) (-4 *2 (-1062)))) + (-12 (-5 *3 (-653 (-2 (|:| -4218 *4) (|:| -2565 (-573))))) + (-4 *4 (-1256 (-573))) (-5 *2 (-746 (-780))) (-5 *1 (-451 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-174)) - (-5 *1 (-698 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5)))) + (-12 (-5 *3 (-427 *5)) (-4 *5 (-1256 *4)) (-4 *4 (-1061)) + (-5 *2 (-746 (-780))) (-5 *1 (-453 *4 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1061) (-859))) + (-14 *3 (-653 (-1189)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-780)) (-4 *5 (-1061)) (-4 *2 (-1256 *5)) + (-5 *1 (-1274 *5 *2 *6 *3)) (-4 *6 (-665 *2)) (-4 *3 (-1271 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) +(((*1 *2 *1) + (-12 (-4 *1 (-333 *2 *3)) (-4 *3 (-801)) (-4 *2 (-1061)) + (-4 *2 (-461)))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 *4)) (-4 *4 (-1256 (-573))) (-5 *2 (-653 (-573))) + (-5 *1 (-495 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-461)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-959 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *2 (-859)) (-4 *3 (-461))))) +(((*1 *2 *1) + (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1112)) + (-5 *2 (-653 (-2 (|:| |k| *4) (|:| |c| *3)))))) ((*1 *2 *1) - (-12 (-4 *1 (-1136 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) - (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4458 "*"))) (-4 *2 (-1062))))) -(((*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-219)))) - ((*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-497)))) - ((*1 *1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566)) (-4 *2 (-315)))) + (-12 (-5 *2 (-653 (-2 (|:| |k| (-903 *3)) (|:| |c| *4)))) + (-5 *1 (-636 *3 *4 *5)) (-4 *3 (-859)) + (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-14 *5 (-931)))) ((*1 *2 *1) - (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1017 *3)) (-14 *3 (-574)))) - ((*1 *1 *1) (-4 *1 (-1073)))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1113) (-34))) - (-4 *3 (-13 (-1113) (-34)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-251 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-574)) (-4 *5 (-358)) (-5 *2 (-428 (-1186 (-1186 *5)))) - (-5 *1 (-1229 *5)) (-5 *3 (-1186 (-1186 *5)))))) + (-12 (-5 *2 (-653 (-681 *3))) (-5 *1 (-903 *3)) (-4 *3 (-859))))) +(((*1 *1 *1) (-12 (-4 *1 (-434 *2)) (-4 *2 (-1112)) (-4 *2 (-376))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-394 *2)) (-4 *2 (-1112))))) (((*1 *2) - (-12 (-4 *3 (-1062)) (-5 *2 (-969 (-722 *3 *4))) (-5 *1 (-722 *3 *4)) - (-4 *4 (-1257 *3))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) - (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386)))) - (-5 *2 (-1048)) (-5 *1 (-758))))) + (-12 (-4 *3 (-565)) (-5 *2 (-653 (-698 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-426 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) + (-5 *2 (-653 *4)) (-5 *1 (-1140 *3 *4)) (-4 *3 (-1256 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) + (-5 *2 (-653 *3)) (-5 *1 (-1140 *4 *3)) (-4 *4 (-1256 *3))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) + (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-301 *2)) (-4 *2 (-735)) (-4 *2 (-1230))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 *2)) (-4 *2 (-439 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-565))))) +(((*1 *1 *1) (-5 *1 (-871))) + ((*1 *2 *1) + (-12 (-4 *1 (-1115 *2 *3 *4 *5 *6)) (-4 *3 (-1112)) (-4 *4 (-1112)) + (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *2 (-1112)))) + ((*1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-1170)))) + ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1189))))) +(((*1 *1) (-5 *1 (-587))) + ((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-872)))) + ((*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1285)) (-5 *1 (-872)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1171)) (-5 *4 (-871)) (-5 *2 (-1285)) (-5 *1 (-872)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-573)) (-5 *2 (-1285)) (-5 *1 (-1169 *4)) + (-4 *4 (-1112)) (-4 *4 (-1230))))) +(((*1 *1 *1) + (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-801)) + (-4 *2 (-461)))) + ((*1 *1 *1) + (-12 (-4 *1 (-350 *2 *3 *4)) (-4 *2 (-1234)) (-4 *3 (-1256 *2)) + (-4 *4 (-1256 (-416 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-461)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-959 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *2 (-859)) (-4 *3 (-461)))) + ((*1 *1 *1) + (-12 (-4 *1 (-959 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) + (-4 *4 (-859)) (-4 *2 (-461)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-314)) (-4 *3 (-565)) (-5 *1 (-1176 *3 *2)) + (-4 *2 (-1256 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015)))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) - (-5 *2 (-1048)) (-5 *1 (-762))))) + (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1215)))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 *4)) - (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216))))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1190)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-654 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-654 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -2399 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1216) (-27) (-440 *8))) - (-4 *8 (-13 (-462) (-148) (-1051 *3) (-649 *3))) (-5 *3 (-574)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -3904 *4) (|:| |sol?| (-112)))) - (-5 *1 (-1026 *8 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2873 *3))) - (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4))))) -(((*1 *2 *3 *4) - (-12 (-4 *7 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-566)) - (-4 *8 (-960 *7 *5 *6)) - (-5 *2 (-2 (|:| -3715 (-781)) (|:| -1858 *3) (|:| |radicand| *3))) - (-5 *1 (-964 *5 *6 *7 *8 *3)) (-5 *4 (-781)) - (-4 *3 - (-13 (-372) - (-10 -8 (-15 -2943 ($ *8)) (-15 -2966 (*8 $)) (-15 -2977 (*8 $)))))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-38 (-417 (-574)))) - (-4 *2 (-174))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1254 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1190)) - (-5 *2 (-654 *4)) (-5 *1 (-1127 *4 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062))))) + (|partial| -12 (-5 *4 (-301 (-842 *3))) + (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) + (-5 *2 (-842 *3)) (-5 *1 (-645 *5 *3)) + (-4 *3 (-13 (-27) (-1215) (-439 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-301 (-842 (-962 *5)))) (-4 *5 (-461)) + (-5 *2 (-842 (-416 (-962 *5)))) (-5 *1 (-646 *5)) + (-5 *3 (-416 (-962 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-301 (-416 (-962 *5)))) (-5 *3 (-416 (-962 *5))) + (-4 *5 (-461)) (-5 *2 (-842 *3)) (-5 *1 (-646 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) + (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-1185 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1257 *3)) - (-4 *5 (-1257 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) - (-5 *2 (-423 *4 (-417 *4) *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1281 *6)) (-4 *6 (-13 (-419 *4 *5) (-1051 *4))) - (-4 *4 (-1005 *3)) (-4 *5 (-1257 *4)) (-4 *3 (-315)) - (-5 *1 (-423 *3 *4 *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-372)) - (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6))))) + (-12 (-4 *2 (-1105 *3)) (-5 *1 (-1069 *2 *3)) (-4 *3 (-1230)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1106 *3)) (-5 *1 (-1104 *3)) (-4 *3 (-1230)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1230)))) + ((*1 *1 *2) (-12 (-5 *1 (-1247 *2)) (-4 *2 (-1230))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) + (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-653 *7)) (-5 *3 (-112)) (-4 *7 (-1077 *4 *5 *6)) + (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) + (-5 *1 (-989 *4 *5 *6 *7))))) +(((*1 *1 *1) + (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194))))) +(((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-746 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-746 *2)) (-4 *2 (-1112)))) + ((*1 *1) (-12 (-5 *1 (-746 *2)) (-4 *2 (-1112))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-780)) (-4 *4 (-1061)) (-5 *1 (-1252 *4 *2)) + (-4 *2 (-1256 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1185 (-573))) (-5 *1 (-952)) (-5 *3 (-573))))) +(((*1 *2 *1) (-12 (-5 *1 (-1225 *2)) (-4 *2 (-986))))) +(((*1 *2 *1) (-12 (-5 *2 (-700 *3)) (-5 *1 (-976 *3)) (-4 *3 (-1112))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) + (-4 *4 (-859)) (-4 *2 (-461))))) (((*1 *2 *2) - (-12 + (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))) + (-5 *1 (-178 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-263))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-573)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1230)) + (-4 *5 (-381 *4)) (-4 *2 (-381 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-573)) (-4 *1 (-1065 *4 *5 *6 *2 *7)) (-4 *6 (-1061)) + (-4 *7 (-243 *4 *6)) (-4 *2 (-243 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1112)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 (-490 *4 *5))) (-14 *4 (-653 (-1189))) + (-4 *5 (-461)) (-5 *2 - (-654 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-781)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-803)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-462)) (-4 *5 (-860)) - (-5 *1 (-459 *3 *4 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-699 *4)) (-4 *4 (-1062)) (-5 *1 (-1155 *3 *4)) - (-14 *3 (-781))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-516)) (-5 *2 (-701 (-109))) (-5 *1 (-177)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-516)) (-5 *2 (-701 (-109))) (-5 *1 (-1098))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-1172)) (-5 *5 (-699 (-227))) - (-5 *2 (-1048)) (-5 *1 (-757))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1062)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) - (-4 *4 (-860))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) - (-4 *3 (-376 *4)))) - ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-115))) - ((*1 *1 *1) (-5 *1 (-173))) ((*1 *1 *1) (-4 *1 (-555))) - ((*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113)))) - ((*1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1062)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1113) (-34))) - (-4 *3 (-13 (-1113) (-34)))))) + (-2 (|:| |gblist| (-653 (-252 *4 *5))) + (|:| |gvlist| (-653 (-573))))) + (-5 *1 (-640 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-937))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) +(((*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061))))) +(((*1 *2 *1) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-281))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-565)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2277 *4))) + (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1247 (-573))) (-4 *1 (-289 *3)) (-4 *3 (-1230)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-289 *3)) (-4 *3 (-1230))))) (((*1 *2 *3) - (|partial| -12 (-4 *2 (-1113)) (-5 *1 (-1208 *3 *2)) (-4 *3 (-1113))))) + (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-371) (-1215) (-1014)))))) (((*1 *2 *3) - (-12 (-4 *4 (-358)) (-4 *5 (-337 *4)) (-4 *6 (-1257 *5)) - (-5 *2 (-654 *3)) (-5 *1 (-787 *4 *5 *6 *3 *7)) (-4 *3 (-1257 *6)) - (-14 *7 (-932))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-757))))) + (-12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-314)) + (-5 *2 (-416 (-427 (-962 *4)))) (-5 *1 (-1054 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-371) (-857))) (-5 *1 (-183 *3 *2)) + (-4 *2 (-1256 (-171 *3)))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) - (-4 *3 (-376 *4)))) - ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) + (-12 (-4 *4 (-371)) (-5 *2 (-931)) (-5 *1 (-335 *3 *4)) + (-4 *3 (-336 *4)))) + ((*1 *2) + (-12 (-4 *4 (-371)) (-5 *2 (-842 (-931))) (-5 *1 (-335 *3 *4)) + (-4 *3 (-336 *4)))) + ((*1 *2) (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-5 *2 (-931)))) + ((*1 *2) + (-12 (-4 *1 (-1299 *3)) (-4 *3 (-371)) (-5 *2 (-842 (-931)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1059 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1035))) - (-14 *5 (-654 (-1190))) + (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-365 *4)) + (-4 *4 (-357))))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -4455)) (-4 *1 (-498 *3)) (-4 *3 (-1230)) + (-5 *2 (-653 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-746 *3)) (-4 *3 (-1112)))) + ((*1 *2 *1) (-12 (-5 *2 (-653 (-448))) (-5 *1 (-874))))) +(((*1 *1 *1) + (-12 (-4 *2 (-314)) (-4 *3 (-1004 *2)) (-4 *4 (-1256 *3)) + (-5 *1 (-422 *2 *3 *4 *5)) (-4 *5 (-13 (-418 *3 *4) (-1050 *3)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-269))) (-5 *1 (-1281)))) + ((*1 *2 *1) (-12 (-5 *2 (-653 (-269))) (-5 *1 (-1281)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-269))) (-5 *1 (-1282)))) + ((*1 *2 *1) (-12 (-5 *2 (-653 (-269))) (-5 *1 (-1282))))) +(((*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1171)) (-5 *1 (-719))))) +(((*1 *2) + (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) + (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) + (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3)))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) + (-4 *3 (-375 *4)))) + ((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1230)) (-4 *3 (-1112)) + (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-5 *2 (-653 (-962 *3))) (-4 *3 (-461)) (-5 *1 (-368 *3 *4)) + (-14 *4 (-653 (-1189))))) + ((*1 *2 *2) + (-12 (-5 *2 (-653 *6)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-461)) + (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-459 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-653 *7)) (-5 *3 (-1171)) (-4 *7 (-959 *4 *5 *6)) + (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-5 *1 (-459 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-653 *7)) (-5 *3 (-1171)) (-4 *7 (-959 *4 *5 *6)) + (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-5 *1 (-459 *4 *5 *6 *7)))) + ((*1 *1 *1) + (-12 (-4 *2 (-371)) (-4 *3 (-802)) (-4 *4 (-859)) + (-5 *1 (-513 *2 *3 *4 *5)) (-4 *5 (-959 *2 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-653 (-789 *3 (-873 *4)))) (-4 *3 (-461)) + (-14 *4 (-653 (-1189))) (-5 *1 (-637 *3 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) +(((*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282)))) + ((*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282))))) +(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) + ((*1 *1 *1 *1) (-4 *1 (-482))) + ((*1 *1 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) + ((*1 *2 *2) (-12 (-5 *2 (-653 (-931))) (-5 *1 (-893)))) + ((*1 *1 *1) (-5 *1 (-983))) + ((*1 *1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1230))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) + (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) (-5 *2 - (-654 (-2 (|:| -1625 (-1186 *4)) (|:| -3487 (-654 (-963 *4)))))) - (-5 *1 (-1308 *4 *5 *6)) (-14 *6 (-654 (-1190))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1035))) + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-194))))) +(((*1 *2 *1) (-12 (-5 *2 (-653 (-882 (-931) (-931)))) (-5 *1 (-983))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1171)) (-5 *3 (-573)) (-5 *1 (-246))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1189)) (-5 *4 (-962 (-573))) (-5 *2 (-337)) + (-5 *1 (-339))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1256 (-416 (-573)))) + (-5 *2 (-2 (|:| |den| (-573)) (|:| |gcdnum| (-573)))) + (-5 *1 (-923 *3 *4)) (-4 *4 (-1256 (-416 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1256 (-416 *2))) (-5 *2 (-573)) (-5 *1 (-923 *4 *3)) + (-4 *3 (-1256 (-416 *4)))))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-852 *4)) (-5 *3 (-621 *4)) (-5 *5 (-112)) + (-4 *4 (-13 (-1215) (-29 *6))) + (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) + (-5 *1 (-226 *6 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-653 (-252 *4 *5))) (-5 *2 (-252 *4 *5)) + (-14 *4 (-653 (-1189))) (-4 *5 (-461)) (-5 *1 (-640 *4 *5))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-477)) (-5 *4 (-931)) (-5 *2 (-1285)) (-5 *1 (-1281))))) +(((*1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-337))))) +(((*1 *1) (-5 *1 (-55)))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-4 *8 (-1077 *5 *6 *7)) (-5 *2 - (-654 (-2 (|:| -1625 (-1186 *5)) (|:| -3487 (-654 (-963 *5)))))) - (-5 *1 (-1308 *5 *6 *7)) (-5 *3 (-654 (-963 *5))) - (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190))))) + (-2 (|:| |val| (-653 *8)) + (|:| |towers| (-653 (-1039 *5 *6 *7 *8))))) + (-5 *1 (-1039 *5 *6 *7 *8)) (-5 *3 (-653 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1035))) + (-12 (-5 *4 (-112)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-4 *8 (-1077 *5 *6 *7)) (-5 *2 - (-654 (-2 (|:| -1625 (-1186 *5)) (|:| -3487 (-654 (-963 *5)))))) - (-5 *1 (-1308 *5 *6 *7)) (-5 *3 (-654 (-963 *5))) - (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1035))) - (-5 *2 - (-654 (-2 (|:| -1625 (-1186 *5)) (|:| -3487 (-654 (-963 *5)))))) - (-5 *1 (-1308 *5 *6 *7)) (-5 *3 (-654 (-963 *5))) - (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190))))) + (-2 (|:| |val| (-653 *8)) + (|:| |towers| (-653 (-1158 *5 *6 *7 *8))))) + (-5 *1 (-1158 *5 *6 *7 *8)) (-5 *3 (-653 *8))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) (-4 *5 (-802)) + (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *3 (-1077 *4 *5 *6)) + (-5 *2 (-653 (-2 (|:| |val| (-112)) (|:| -4090 *1)))) + (-4 *1 (-1083 *4 *5 *6 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1189)) + (-4 *4 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-813 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1215) (-969)))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-604 *2)) (-4 *2 (-1061))))) +(((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-859)) (-5 *1 (-250 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1215)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-1280 *5))) (-5 *4 (-573)) (-5 *2 (-1280 *5)) + (-5 *1 (-1041 *5)) (-4 *5 (-371)) (-4 *5 (-376)) (-4 *5 (-1061))))) +(((*1 *2 *3) + (-12 (-5 *3 (-662 (-416 *2))) (-4 *2 (-1256 *4)) (-5 *1 (-819 *4 *2)) + (-4 *4 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-858) (-315) (-148) (-1035))) + (-12 (-5 *3 (-663 *2 (-416 *2))) (-4 *2 (-1256 *4)) + (-5 *1 (-819 *4 *2)) + (-4 *4 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573)))))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *5 (-112)) + (-5 *2 (-1047)) (-5 *1 (-754))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-461) (-1050 (-573)))) (-4 *3 (-565)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-439 *3)) + (-4 *2 + (-13 (-371) (-309) + (-10 -8 (-15 -2965 ((-1137 *3 (-621 $)) $)) + (-15 -2975 ((-1137 *3 (-621 $)) $)) + (-15 -2942 ($ (-1137 *3 (-621 $)))))))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1230)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-859)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-859)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-573)) (-4 *1 (-289 *3)) (-4 *3 (-1230)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-573)) (-4 *1 (-289 *2)) (-4 *2 (-1230)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 + (|:| -3692 + (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) + (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| -1907 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1169 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3821 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))))) + (-5 *1 (-568)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-780)) (-4 *1 (-704 *2)) (-4 *2 (-1112)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 + (|:| -3692 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) + (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (|:| -1907 + (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) + (|:| |expense| (-387)) (|:| |accuracy| (-387)) + (|:| |intermediateResults| (-387)))))) + (-5 *1 (-812)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1285)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-1112)) + (-4 *4 (-1112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1112)) (-5 *2 (-1171))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-653 *5) *6)) + (-4 *5 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *6 (-1256 *5)) + (-5 *2 (-653 (-2 (|:| |poly| *6) (|:| -4122 *3)))) + (-5 *1 (-818 *5 *6 *3 *7)) (-4 *3 (-665 *6)) + (-4 *7 (-665 (-416 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-653 *5) *6)) + (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) + (-4 *6 (-1256 *5)) + (-5 *2 (-653 (-2 (|:| |poly| *6) (|:| -4122 (-663 *6 (-416 *6)))))) + (-5 *1 (-821 *5 *6)) (-5 *3 (-663 *6 (-416 *6)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) (-5 *2 - (-654 (-2 (|:| -1625 (-1186 *4)) (|:| -3487 (-654 (-963 *4)))))) - (-5 *1 (-1308 *4 *5 *6)) (-5 *3 (-654 (-963 *4))) - (-14 *5 (-654 (-1190))) (-14 *6 (-654 (-1190)))))) + (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) + (|:| |success| (-112)))) + (-5 *1 (-798)) (-5 *5 (-573))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-565)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2277 *4))) + (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4))))) +(((*1 *1) (-5 *1 (-587)))) +(((*1 *2 *3) + (-12 (-5 *3 (-962 *5)) (-4 *5 (-1061)) (-5 *2 (-490 *4 *5)) + (-5 *1 (-954 *4 *5)) (-14 *4 (-653 (-1189)))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-871))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-566) (-1051 (-574)) (-649 (-574)))) - (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *3))))) + (-12 (-4 *3 (-13 (-565) (-1050 (-573)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1215) (-439 (-171 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1190)) - (-4 *4 (-13 (-566) (-1051 (-574)) (-649 (-574)))) - (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *2 (-112)) (-5 *1 (-274)))) - ((*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-112)) (-5 *1 (-274)))) + (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-565) (-1050 (-573)))) + (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 (-171 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) + (-5 *1 (-1219 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1189)) + (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) + (-5 *1 (-1219 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *4)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1185 (-573))) (-5 *1 (-193)) (-5 *3 (-573)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-780)) (-5 *1 (-792 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1185 (-573))) (-5 *1 (-952)) (-5 *3 (-573))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-5 *1 (-887 *2)) (-4 *2 (-1230)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-5 *1 (-889 *2)) (-4 *2 (-1230)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-780)) (-5 *1 (-892 *2)) (-4 *2 (-1230))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 + *7 *3 *8) + (-12 (-5 *5 (-698 (-227))) (-5 *6 (-112)) (-5 *7 (-698 (-573))) + (-5 *8 (-3 (|:| |fn| (-397)) (|:| |fp| (-65 QPHESS)))) + (-5 *3 (-573)) (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-762))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-780)) (-4 *1 (-1256 *3)) (-4 *3 (-1061))))) +(((*1 *1) (-5 *1 (-832)))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-115))) + ((*1 *1 *1) (-5 *1 (-173))) ((*1 *1 *1) (-4 *1 (-554))) + ((*1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112)))) + ((*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1061)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1112) (-34))) + (-4 *3 (-13 (-1112) (-34)))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) + (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385)))) + (-5 *2 (-1047)) (-5 *1 (-757))))) +(((*1 *1 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-1061)) (-4 *2 (-371))))) +(((*1 *2 *1) + (-12 (-5 *2 (-653 (-1216 *3))) (-5 *1 (-1216 *3)) (-4 *3 (-1112))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-653 *1)) (-4 *1 (-1077 *4 *5 *6)) (-4 *4 (-1061)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *5 (-859)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) + (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1223 *4 *5 *6 *3)) (-4 *4 (-565)) (-4 *5 (-802)) + (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-780)) (-4 *4 (-565)) (-5 *1 (-981 *4 *2)) + (-4 *2 (-1256 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443)))) ((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-990 *4 *5 *6 *3)) (-4 *3 (-1078 *4 *5 *6))))) + (-12 (-5 *2 (-112)) (-5 *1 (-578 *3)) (-4 *3 (-1050 (-573))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) + (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112))))) (((*1 *2 *3 *2 *3) - (-12 (-5 *2 (-447)) (-5 *3 (-1190)) (-5 *1 (-1193)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-447)) (-5 *3 (-1190)) (-5 *1 (-1193)))) + (-12 (-5 *2 (-446)) (-5 *3 (-1189)) (-5 *1 (-1192)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-446)) (-5 *3 (-1189)) (-5 *1 (-1192)))) ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-447)) (-5 *3 (-654 (-1190))) (-5 *4 (-1190)) - (-5 *1 (-1193)))) + (-12 (-5 *2 (-446)) (-5 *3 (-653 (-1189))) (-5 *4 (-1189)) + (-5 *1 (-1192)))) ((*1 *2 *3 *2 *3 *1) - (-12 (-5 *2 (-447)) (-5 *3 (-1190)) (-5 *1 (-1193)))) + (-12 (-5 *2 (-446)) (-5 *3 (-1189)) (-5 *1 (-1192)))) ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-447)) (-5 *3 (-1190)) (-5 *1 (-1194)))) + (-12 (-5 *2 (-446)) (-5 *3 (-1189)) (-5 *1 (-1193)))) ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-447)) (-5 *3 (-654 (-1190))) (-5 *1 (-1194))))) -(((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1075)))) - ((*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-1075))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1216)))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1105 (-963 (-574)))) (-5 *3 (-963 (-574))) - (-5 *1 (-338)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1105 (-963 (-574)))) (-5 *1 (-338))))) -(((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-1284))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062))))) -(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-574)) (-5 *1 (-247)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-1172))) (-5 *2 (-574)) (-5 *1 (-247))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-1039 *2)) (-4 *2 (-1231))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) - ((*1 *1 *1) (-5 *1 (-872)))) + (-12 (-5 *2 (-446)) (-5 *3 (-653 (-1189))) (-5 *1 (-1193))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1169 (-573))) (-5 *1 (-1173 *4)) (-4 *4 (-1061)) + (-5 *3 (-573))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-1014)) + (-4 *2 (-1061))))) +(((*1 *2 *3) (-12 (-5 *3 (-653 *2)) (-5 *1 (-1204 *2)) (-4 *2 (-371))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-4 *3 (-1077 *5 *6 *7)) + (-5 *2 (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))) + (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) +(((*1 *1 *1 *2) + (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) + (-5 *1 (-513 *3 *4 *5 *2)) (-4 *2 (-959 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-371)) (-4 *3 (-802)) (-4 *4 (-859)) + (-5 *1 (-513 *2 *3 *4 *5)) (-4 *5 (-959 *2 *3 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-416 (-573))) (-4 *1 (-563 *3)) + (-4 *3 (-13 (-413) (-1215))))) + ((*1 *1 *2) (-12 (-4 *1 (-563 *2)) (-4 *2 (-13 (-413) (-1215))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-563 *2)) (-4 *2 (-13 (-413) (-1215)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) + (-4 *5 (-1256 (-416 *4))) + (-5 *2 (-2 (|:| |num| (-1280 *4)) (|:| |den| *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *2 (-654 *4)) (-5 *1 (-789 *4)) - (-4 *4 (-13 (-372) (-858)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113))))) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) + (-5 *2 + (-2 (|:| |solns| (-653 *5)) + (|:| |maps| (-653 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1140 *3 *5)) (-4 *3 (-1256 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1281 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-372)) - (-4 *1 (-734 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1257 *5)) - (-5 *2 (-699 *5))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1272 *4)) (-5 *1 (-1274 *4 *2)) - (-4 *4 (-38 (-417 (-574))))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) - (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-66 FUNCT1)))) - (-5 *2 (-1048)) (-5 *1 (-763))))) + (-12 (-5 *3 (-1185 *1)) (-5 *4 (-1189)) (-4 *1 (-27)) + (-5 *2 (-653 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1185 *1)) (-4 *1 (-27)) (-5 *2 (-653 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-962 *1)) (-4 *1 (-27)) (-5 *2 (-653 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1189)) (-4 *4 (-565)) (-5 *2 (-653 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-565)) (-5 *2 (-653 *1)) (-4 *1 (-29 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-323 (-227))) (-5 *4 (-653 (-1189))) + (-5 *5 (-1106 (-852 (-227)))) (-5 *2 (-1169 (-227))) (-5 *1 (-307))))) +(((*1 *1 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1230))))) +(((*1 *1 *2) (-12 (-5 *2 (-1132)) (-5 *1 (-830))))) +(((*1 *2 *1) + (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) + (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) + ((*1 *2) (-12 (-5 *2 (-914 (-573))) (-5 *1 (-927))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-112)) (-5 *5 (-1114 (-780))) (-5 *6 (-780)) + (-5 *2 + (-2 (|:| |contp| (-573)) + (|:| -1687 (-653 (-2 (|:| |irr| *3) (|:| -3287 (-573))))))) + (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573)))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1231)) - (-4 *4 (-382 *2)) (-4 *5 (-382 *2)))) + (-12 (-5 *3 (-573)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1230)) + (-4 *4 (-381 *2)) (-4 *5 (-381 *2)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4457)) (-4 *1 (-120 *3)) - (-4 *3 (-1231)))) + (-12 (-5 *2 "right") (|has| *1 (-6 -4456)) (-4 *1 (-120 *3)) + (-4 *3 (-1230)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4457)) (-4 *1 (-120 *3)) - (-4 *3 (-1231)))) + (-12 (-5 *2 "left") (|has| *1 (-6 -4456)) (-4 *1 (-120 *3)) + (-4 *3 (-1230)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4457)) (-4 *1 (-296 *3 *2)) (-4 *3 (-1113)) - (-4 *2 (-1231)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1190)) (-5 *1 (-642)))) + (-12 (|has| *1 (-6 -4456)) (-4 *1 (-295 *3 *2)) (-4 *3 (-1112)) + (-4 *2 (-1230)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1189)) (-5 *1 (-641)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1248 (-574))) (|has| *1 (-6 -4457)) (-4 *1 (-661 *2)) - (-4 *2 (-1231)))) + (-12 (-5 *3 (-1247 (-573))) (|has| *1 (-6 -4456)) (-4 *1 (-660 *2)) + (-4 *2 (-1230)))) ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-654 (-574))) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) - (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) + (-12 (-5 *2 (-653 (-573))) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) + (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4457)) (-4 *1 (-1023 *2)) - (-4 *2 (-1231)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-1039 *2)) (-4 *2 (-1231)))) + (-12 (-5 *3 "value") (|has| *1 (-6 -4456)) (-4 *1 (-1022 *2)) + (-4 *2 (-1230)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-1038 *2)) (-4 *2 (-1230)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1207 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1113)))) + (-12 (-4 *1 (-1206 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1112)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2)) - (-4 *2 (-1231)))) + (-12 (-5 *3 "last") (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) + (-4 *2 (-1230)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4457)) (-4 *1 (-1269 *3)) - (-4 *3 (-1231)))) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4456)) (-4 *1 (-1268 *3)) + (-4 *3 (-1230)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2)) - (-4 *2 (-1231))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-372)) - (-5 *2 - (-2 (|:| A (-699 *5)) - (|:| |eqs| - (-654 - (-2 (|:| C (-699 *5)) (|:| |g| (-1281 *5)) (|:| -4122 *6) - (|:| |rh| *5)))))) - (-5 *1 (-823 *5 *6)) (-5 *3 (-699 *5)) (-5 *4 (-1281 *5)) - (-4 *6 (-666 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-372)) (-4 *6 (-666 *5)) - (-5 *2 (-2 (|:| -4340 (-699 *6)) (|:| |vec| (-1281 *5)))) - (-5 *1 (-823 *5 *6)) (-5 *3 (-699 *6)) (-5 *4 (-1281 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-446))))) -(((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-220)))) - ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-449)))) - ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-848)))) - ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1128)))) + (-12 (-5 *3 "first") (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) + (-4 *2 (-1230))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1061)) (-5 *1 (-1252 *3 *2)) (-4 *2 (-1256 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1171)) (-5 *2 (-653 (-700 (-287)))) (-5 *1 (-169))))) +(((*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-220)))) + ((*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-448)))) + ((*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-847)))) + ((*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-1127)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-654 (-1195))) (-5 *3 (-1195)) (-5 *1 (-1131))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1190)) (-4 *5 (-372)) (-5 *2 (-1170 (-1170 (-963 *5)))) - (-5 *1 (-1289 *5)) (-5 *4 (-1170 (-963 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) - ((*1 *2 *1) - (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) - (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-656 *3)) (-4 *3 (-1071)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1064 *3)) (-4 *3 (-1071)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1081 *4 *3)) (-4 *4 (-13 (-858) (-372))) - (-4 *3 (-1257 *4)) (-5 *2 (-112))))) + (-12 (-5 *2 (-653 (-1194))) (-5 *3 (-1194)) (-5 *1 (-1130))))) +(((*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1052))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-1190)) - (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) - (-5 *1 (-1142 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-13 (-315) (-148))) - (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1142 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-302 (-417 (-963 *5)))) (-5 *4 (-1190)) - (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) - (-5 *1 (-1142 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-302 (-417 (-963 *4)))) (-4 *4 (-13 (-315) (-148))) - (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1142 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-417 (-963 *5)))) (-5 *4 (-654 (-1190))) - (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *5))))) - (-5 *1 (-1142 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-417 (-963 *4)))) (-4 *4 (-13 (-315) (-148))) - (-5 *2 (-654 (-654 (-302 (-324 *4))))) (-5 *1 (-1142 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-302 (-417 (-963 *5))))) (-5 *4 (-654 (-1190))) - (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *5))))) - (-5 *1 (-1142 *5)))) + (-12 (-5 *4 (-1 (-653 *5) *6)) + (-4 *5 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *6 (-1256 *5)) + (-5 *2 (-653 (-2 (|:| -1705 *5) (|:| -4122 *3)))) + (-5 *1 (-818 *5 *6 *3 *7)) (-4 *3 (-665 *6)) + (-4 *7 (-665 (-416 *6)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1215)))))) +(((*1 *1 *2 *1) + (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) +(((*1 *2 *2) + (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1215)))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-988 *4 *5 *6 *3)) (-4 *4 (-1061)) (-4 *5 (-802)) + (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-4 *4 (-565)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1138 *4 *3 *5))) (-4 *4 (-38 (-416 (-573)))) + (-4 *4 (-1061)) (-4 *3 (-859)) (-5 *1 (-1138 *4 *3 *5)) + (-4 *5 (-959 *4 (-540 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1224 *4))) (-5 *3 (-1189)) (-5 *1 (-1224 *4)) + (-4 *4 (-38 (-416 (-573)))) (-4 *4 (-1061))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1189)) + (-4 *4 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) + (-5 *1 (-813 *4 *2)) (-4 *2 (-13 (-29 *4) (-1215) (-969)))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-653 (-573))) (-5 *2 (-698 (-573))) (-5 *1 (-1122))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) + (-4 *4 (-859)) (-4 *2 (-461))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570)))) ((*1 *2 *3) - (-12 (-5 *3 (-654 (-302 (-417 (-963 *4))))) - (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *4))))) - (-5 *1 (-1142 *4))))) -(((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4458 "*"))) (-4 *5 (-382 *2)) (-4 *6 (-382 *2)) - (-4 *2 (-1062)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1257 *2)) - (-4 *4 (-697 *2 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-335 *3)) (-4 *3 (-1231)))) + (-12 (-5 *2 (-1185 (-416 (-573)))) (-5 *1 (-952)) (-5 *3 (-573))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-357)) (-5 *1 (-365 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1151)))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) + (-4 *5 (-381 *3)) (-5 *2 (-573)))) ((*1 *2 *1) - (-12 (-5 *2 (-781)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1231)) - (-14 *4 (-574))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1257 *6)) - (-4 *6 (-13 (-27) (-440 *5))) (-4 *5 (-13 (-566) (-1051 (-574)))) - (-4 *8 (-1257 (-417 *7))) (-5 *2 (-596 *3)) - (-5 *1 (-562 *5 *6 *7 *8 *3)) (-4 *3 (-351 *6 *7 *8))))) + (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-573))))) (((*1 *2 *1) - (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6)) - (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) - (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3)))))) + (-12 (-4 *2 (-565)) (-5 *1 (-632 *2 *3)) (-4 *3 (-1256 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 *4)) (-4 *4 (-372)) (-5 *2 (-699 *4)) - (-5 *1 (-824 *4 *5)) (-4 *5 (-666 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *5)) (-5 *4 (-781)) (-4 *5 (-372)) - (-5 *2 (-699 *5)) (-5 *1 (-824 *5 *6)) (-4 *6 (-666 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) - (-14 *6 (-654 (-1190))) - (-5 *2 - (-654 (-1159 *5 (-541 (-874 *6)) (-874 *6) (-790 *5 (-874 *6))))) - (-5 *1 (-638 *5 *6))))) + (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-314)) + (-5 *2 (-653 (-780))) (-5 *1 (-787 *3 *4 *5 *6 *7)) + (-4 *3 (-1256 *6)) (-4 *7 (-959 *6 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1136 *3 *4 *2 *5)) (-4 *4 (-1062)) (-4 *5 (-244 *3 *4)) - (-4 *2 (-244 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174))))) + (-12 (-5 *2 (-1038 (-852 (-573)))) (-5 *1 (-604 *3)) (-4 *3 (-1061))))) (((*1 *2 *1) - (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-1241 *3))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-372)) (-4 *3 (-1062)) - (-5 *1 (-1174 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1053))))) -(((*1 *2 *3) (-12 (-5 *3 (-417 (-574))) (-5 *2 (-227)) (-5 *1 (-313))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-207)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-654 (-388))) (-5 *2 (-388)) (-5 *1 (-207))))) -(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1239)))))) + (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-1240 *3))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) - (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-388)) (-5 *1 (-207))))) -(((*1 *2 *3) - (-12 (-5 *3 (-699 (-417 (-963 (-574))))) (-5 *2 (-654 (-324 (-574)))) - (-5 *1 (-1044))))) -(((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1113)))) - ((*1 *1 *1) (-5 *1 (-642)))) + (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) + (-5 *2 (-1280 (-698 *4))))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1280 (-698 *4))) (-5 *1 (-425 *3 *4)) + (-4 *3 (-426 *4)))) + ((*1 *2) + (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-1280 (-698 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-1189))) (-4 *5 (-371)) + (-5 *2 (-1280 (-698 (-416 (-962 *5))))) (-5 *1 (-1098 *5)) + (-5 *4 (-698 (-416 (-962 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-1189))) (-4 *5 (-371)) + (-5 *2 (-1280 (-698 (-962 *5)))) (-5 *1 (-1098 *5)) + (-5 *4 (-698 (-962 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 (-698 *4))) (-4 *4 (-371)) + (-5 *2 (-1280 (-698 *4))) (-5 *1 (-1098 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015))))) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) + (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) - ((*1 *1 *1) (-4 *1 (-292))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) + (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) + ((*1 *1 *1) (-4 *1 (-291))) ((*1 *2 *3) - (-12 (-5 *3 (-428 *4)) (-4 *4 (-566)) - (-5 *2 (-654 (-2 (|:| -1858 (-781)) (|:| |logand| *4)))) - (-5 *1 (-328 *4)))) + (-12 (-5 *3 (-427 *4)) (-4 *4 (-565)) + (-5 *2 (-653 (-2 (|:| -1857 (-780)) (|:| |logand| *4)))) + (-5 *1 (-327 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) - (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) + (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) + (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) ((*1 *2 *1) - (-12 (-5 *2 (-674 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) - (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-932)))) + (-12 (-5 *2 (-673 *3 *4)) (-5 *1 (-636 *3 *4 *5)) (-4 *3 (-859)) + (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-14 *5 (-931)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1175 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1174 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1176 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1175 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1062) (-727 (-417 (-574))))) - (-4 *5 (-860)) (-5 *1 (-1297 *4 *5 *2)) (-4 *2 (-1302 *5 *4)))) + (-12 (-5 *3 (-780)) (-4 *4 (-13 (-1061) (-726 (-416 (-573))))) + (-4 *5 (-859)) (-5 *1 (-1296 *4 *5 *2)) (-4 *2 (-1301 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-1301 *3 *4)) - (-4 *4 (-727 (-417 (-574)))) (-4 *3 (-860)) (-4 *4 (-174))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-516)) (-5 *2 (-701 (-784))) (-5 *1 (-115)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1172)) (-5 *2 (-784)) (-5 *1 (-115)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1117)) (-5 *1 (-976))))) + (-12 (-5 *2 (-780)) (-5 *1 (-1300 *3 *4)) + (-4 *4 (-726 (-416 (-573)))) (-4 *3 (-859)) (-4 *4 (-174))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) (-4 *4 (-802)) + (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-653 *2)) (-4 *2 (-1112)) (-4 *2 (-1230))))) (((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574)))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-757))))) + (-12 (-4 *4 (-371)) (-5 *2 (-780)) (-5 *1 (-335 *3 *4)) + (-4 *3 (-336 *4)))) + ((*1 *2) (-12 (-4 *1 (-1299 *3)) (-4 *3 (-371)) (-5 *2 (-780))))) +(((*1 *2 *3) + (-12 (-5 *3 (-698 (-323 (-227)))) (-5 *2 (-387)) (-5 *1 (-207))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1230)) (-5 *2 (-653 *1)) (-4 *1 (-1022 *3))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1230)) (-4 *3 (-381 *2)) + (-4 *4 (-381 *2)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4456)) (-4 *1 (-613 *3 *2)) (-4 *3 (-1112)) + (-4 *2 (-1230))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 (-574))) (-5 *2 (-574)) (-5 *1 (-496 *4)) - (-4 *4 (-1257 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-835))))) + (-12 (-5 *3 (-931)) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1189))))) (((*1 *2 *3) - (-12 (-4 *4 (-358)) - (-5 *2 (-654 (-2 (|:| |deg| (-781)) (|:| -1644 *3)))) - (-5 *1 (-218 *4 *3)) (-4 *3 (-1257 *4))))) -(((*1 *2 *1) (-12 (-5 *1 (-925 *2)) (-4 *2 (-315))))) -(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-916 *3)) (-4 *3 (-1113))))) + (-12 (-5 *3 (-115)) (-4 *4 (-565)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) + (-4 *5 (-439 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-565)) (-5 *2 (-112)) + (-5 *1 (-159 *4 *5)) (-4 *5 (-439 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-565)) (-5 *2 (-112)) + (-5 *1 (-282 *4 *5)) (-4 *5 (-13 (-439 *4) (-1014))))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-308 *4)) (-4 *4 (-309)))) + ((*1 *2 *3) (-12 (-4 *1 (-309)) (-5 *3 (-115)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *5 (-1112)) (-5 *2 (-112)) + (-5 *1 (-438 *4 *5)) (-4 *4 (-439 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-565)) (-5 *2 (-112)) + (-5 *1 (-440 *4 *5)) (-4 *5 (-439 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-565)) (-5 *2 (-112)) + (-5 *1 (-639 *4 *5)) (-4 *5 (-13 (-439 *4) (-1014) (-1215)))))) +(((*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 (-1171))) (-5 *2 (-1171)) (-5 *1 (-194)))) + ((*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-1271 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927))))) (((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1273 *2 *3 *4)) (-4 *2 (-1062)) (-14 *3 (-1190)) - (-14 *4 *2)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1186 *1)) (-4 *1 (-462)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1186 *6)) (-4 *6 (-960 *5 *3 *4)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *5 (-920)) (-5 *1 (-467 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1186 *1)) (-4 *1 (-920))))) + (-12 (-4 *3 (-1112)) (-5 *1 (-939 *3 *2)) (-4 *2 (-439 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1189)) (-5 *2 (-323 (-573))) (-5 *1 (-940))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-802)) - (-4 *2 (-372)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-227)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-801)) + (-4 *2 (-371)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-227)))) ((*1 *1 *1 *1) - (-2818 (-12 (-5 *1 (-302 *2)) (-4 *2 (-372)) (-4 *2 (-1231))) - (-12 (-5 *1 (-302 *2)) (-4 *2 (-483)) (-4 *2 (-1231))))) - ((*1 *1 *1 *1) (-4 *1 (-372))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-388)))) + (-2817 (-12 (-5 *1 (-301 *2)) (-4 *2 (-371)) (-4 *2 (-1230))) + (-12 (-5 *1 (-301 *2)) (-4 *2 (-482)) (-4 *2 (-1230))))) + ((*1 *1 *1 *1) (-4 *1 (-371))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-387)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-1138 *3 (-622 *1))) (-4 *3 (-566)) (-4 *3 (-1113)) - (-4 *1 (-440 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-483))) + (-12 (-5 *2 (-1137 *3 (-621 *1))) (-4 *3 (-565)) (-4 *3 (-1112)) + (-4 *1 (-439 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-482))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1281 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-546))) + (-12 (-5 *2 (-1280 *3)) (-4 *3 (-357)) (-5 *1 (-537 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-545))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-174)) (-5 *1 (-631 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-736) *4)))) + (-12 (-4 *4 (-174)) (-5 *1 (-630 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-735) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-174)) (-5 *1 (-631 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-736) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-644 *2)) (-4 *2 (-174)) (-4 *2 (-372)))) + (-12 (-4 *4 (-174)) (-5 *1 (-630 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-735) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-643 *2)) (-4 *2 (-174)) (-4 *2 (-371)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-174)) (-5 *1 (-672 *2 *4 *3)) (-4 *2 (-727 *4)) - (-4 *3 (|SubsetCategory| (-736) *4)))) + (-12 (-4 *4 (-174)) (-5 *1 (-671 *2 *4 *3)) (-4 *2 (-726 *4)) + (-4 *3 (|SubsetCategory| (-735) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-174)) (-5 *1 (-672 *3 *4 *2)) (-4 *3 (-727 *4)) - (-4 *2 (|SubsetCategory| (-736) *4)))) + (-12 (-4 *4 (-174)) (-5 *1 (-671 *3 *4 *2)) (-4 *3 (-726 *4)) + (-4 *2 (|SubsetCategory| (-735) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) - (-4 *4 (-382 *2)) (-4 *2 (-372)))) - ((*1 *1 *1 *1) (-5 *1 (-872))) + (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) + (-4 *4 (-381 *2)) (-4 *2 (-371)))) + ((*1 *1 *1 *1) (-5 *1 (-871))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-876 *2 *3 *4 *5)) (-4 *2 (-372)) - (-4 *2 (-1062)) (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-781))) - (-14 *5 (-781)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566)))) + (|partial| -12 (-5 *1 (-875 *2 *3 *4 *5)) (-4 *2 (-371)) + (-4 *2 (-1061)) (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-780))) + (-14 *5 (-780)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1066 *3 *4 *2 *5 *6)) (-4 *2 (-1062)) - (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-372)))) + (-12 (-4 *1 (-1065 *3 *4 *2 *5 *6)) (-4 *2 (-1061)) + (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-371)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-372)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-371)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-372)) (-4 *2 (-1062)) (-4 *3 (-860)) - (-4 *4 (-803)) (-14 *6 (-654 *3)) - (-5 *1 (-1293 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-960 *2 *4 *3)) - (-14 *7 (-654 (-781))) (-14 *8 (-781)))) + (|partial| -12 (-4 *2 (-371)) (-4 *2 (-1061)) (-4 *3 (-859)) + (-4 *4 (-802)) (-14 *6 (-653 *3)) + (-5 *1 (-1292 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-959 *2 *4 *3)) + (-14 *7 (-653 (-780))) (-14 *8 (-780)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1304 *2 *3)) (-4 *2 (-372)) (-4 *2 (-1062)) - (-4 *3 (-856))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1186 *3)) (-5 *1 (-925 *3)) (-4 *3 (-315))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1113)) (-5 *1 (-940 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1190)) (-5 *2 (-324 (-574))) (-5 *1 (-941))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-654 (-954 (-227))))) (-5 *2 (-654 (-227))) - (-5 *1 (-478))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-372)) (-4 *3 (-1062)) - (-5 *1 (-1174 *3))))) + (-12 (-5 *1 (-1303 *2 *3)) (-4 *2 (-371)) (-4 *2 (-1061)) + (-4 *3 (-855))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-573)) (-5 *5 (-698 (-227))) + (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN)))) + (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-758))))) (((*1 *2 *2) (-12 (-5 *2 - (-514 (-417 (-574)) (-246 *4 (-781)) (-874 *3) - (-253 *3 (-417 (-574))))) - (-14 *3 (-654 (-1190))) (-14 *4 (-781)) (-5 *1 (-515 *3 *4))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) - (-4 *4 (-803)) (-4 *5 (-860)) (-4 *3 (-566))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-654 (-963 *4))) (-5 *3 (-654 (-1190))) (-4 *4 (-462)) - (-5 *1 (-929 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1170 (-574))) (-5 *1 (-1017 *3)) (-14 *3 (-574))))) -(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1190)) (-5 *1 (-596 *2)) (-4 *2 (-1051 *3)) - (-4 *2 (-372)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-596 *2)) (-4 *2 (-372)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1190)) (-4 *4 (-566)) (-5 *1 (-640 *4 *2)) - (-4 *2 (-13 (-440 *4) (-1015) (-1216))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1105 *2)) (-4 *2 (-13 (-440 *4) (-1015) (-1216))) - (-4 *4 (-566)) (-5 *1 (-640 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-970)) (-5 *2 (-1190)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1105 *1)) (-4 *1 (-970))))) -(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216))))) + (-513 (-416 (-573)) (-245 *4 (-780)) (-873 *3) + (-252 *3 (-416 (-573))))) + (-14 *3 (-653 (-1189))) (-14 *4 (-780)) (-5 *1 (-514 *3 *4))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-1192)) (-5 *3 (-1189))))) +(((*1 *2 *3) + (-12 (-4 *4 (-919)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-959 *4 *5 *6)) (-5 *2 (-427 (-1185 *7))) + (-5 *1 (-916 *4 *5 *6 *7)) (-5 *3 (-1185 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-919)) (-4 *5 (-1256 *4)) (-5 *2 (-427 (-1185 *5))) + (-5 *1 (-917 *4 *5)) (-5 *3 (-1185 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1171)) (-5 *3 (-832)) (-5 *1 (-831))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1061)) + (-4 *2 (-13 (-413) (-1050 *4) (-371) (-1215) (-291))) + (-5 *1 (-452 *4 *3 *2)) (-4 *3 (-1256 *4))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 (-780) *2)) (-5 *4 (-780)) (-4 *2 (-1112)) + (-5 *1 (-687 *2)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1 *3 (-780) *3)) (-4 *3 (-1112)) (-5 *1 (-691 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-653 (-337))) (-5 *1 (-337))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1230)) + (-4 *5 (-1230)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-245 *6 *7)) (-14 *6 (-780)) + (-4 *7 (-1230)) (-4 *5 (-1230)) (-5 *2 (-245 *6 *5)) + (-5 *1 (-244 *6 *7 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1230)) (-4 *5 (-1230)) + (-4 *2 (-381 *5)) (-5 *1 (-379 *6 *4 *5 *2)) (-4 *4 (-381 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1112)) (-4 *5 (-1112)) + (-4 *2 (-434 *5)) (-5 *1 (-432 *6 *4 *5 *2)) (-4 *4 (-434 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-653 *6)) (-4 *6 (-1230)) + (-4 *5 (-1230)) (-5 *2 (-653 *5)) (-5 *1 (-651 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-968 *6)) (-4 *6 (-1230)) + (-4 *5 (-1230)) (-5 *2 (-968 *5)) (-5 *1 (-967 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1169 *6)) (-4 *6 (-1230)) + (-4 *3 (-1230)) (-5 *2 (-1169 *3)) (-5 *1 (-1167 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1280 *6)) (-4 *6 (-1230)) + (-4 *5 (-1230)) (-5 *2 (-1280 *5)) (-5 *1 (-1279 *6 *5))))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-135))) ((*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 - (-13 (-860) - (-10 -8 (-15 -2199 ((-1172) $ (-1190))) (-15 -1403 ((-1286) $)) - (-15 -3844 ((-1286) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1231)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1231)))) + (-13 (-859) + (-10 -8 (-15 -2198 ((-1171) $ (-1189))) (-15 -1402 ((-1285) $)) + (-15 -1974 ((-1285) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-21)) (-4 *2 (-1230)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-21)) (-4 *2 (-1230)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) - (-4 *4 (-382 *2)))) + (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) + (-4 *4 (-381 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) - (-4 *4 (-382 *2)))) - ((*1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1 *1) (-5 *1 (-872))) + (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) + (-4 *4 (-381 *2)))) + ((*1 *1 *1) (-5 *1 (-871))) ((*1 *1 *1 *1) (-5 *1 (-871))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-954 (-227))) (-5 *1 (-1227)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-21))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1172)) (-5 *5 (-699 (-227))) (-5 *6 (-227)) - (-5 *7 (-699 (-574))) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-762))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1107 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1146 (-227))) - (-5 *1 (-707))))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-953 (-227))) (-5 *1 (-1226)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-21))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1047))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) + (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-76 G JACOBG JACGEP)))) + (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-758))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1190)) - (-4 *4 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) - (-5 *1 (-814 *4 *2)) (-4 *2 (-13 (-29 *4) (-1216) (-970))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1 *1) (-5 *1 (-872))) - ((*1 *1 *1) (-5 *1 (-872))) + (-12 (-5 *3 (-1189)) + (-4 *4 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) + (-5 *1 (-813 *4 *2)) (-4 *2 (-13 (-29 *4) (-1215) (-969))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-871))) ((*1 *1 *1 *1) (-5 *1 (-871))) + ((*1 *1 *1) (-5 *1 (-871))) ((*1 *2 *3) - (-12 (-5 *2 (-1170 *3)) (-5 *1 (-1174 *3)) (-4 *3 (-1062))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-932)) (-5 *4 (-428 *6)) (-4 *6 (-1257 *5)) - (-4 *5 (-1062)) (-5 *2 (-654 *6)) (-5 *1 (-454 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-388)) (-5 *1 (-795 *3)) (-4 *3 (-624 *2)))) + (-12 (-5 *2 (-1169 *3)) (-5 *1 (-1173 *3)) (-4 *3 (-1061))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1112)) (-4 *5 (-1112)) + (-4 *6 (-1112)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-693 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-387)) (-5 *1 (-794 *3)) (-4 *3 (-623 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-932)) (-5 *2 (-388)) (-5 *1 (-795 *3)) - (-4 *3 (-624 *2)))) + (-12 (-5 *4 (-931)) (-5 *2 (-387)) (-5 *1 (-794 *3)) + (-4 *3 (-623 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-963 *4)) (-4 *4 (-1062)) (-4 *4 (-624 *2)) - (-5 *2 (-388)) (-5 *1 (-795 *4)))) + (-12 (-5 *3 (-962 *4)) (-4 *4 (-1061)) (-4 *4 (-623 *2)) + (-5 *2 (-387)) (-5 *1 (-794 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-963 *5)) (-5 *4 (-932)) (-4 *5 (-1062)) - (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) + (-12 (-5 *3 (-962 *5)) (-5 *4 (-931)) (-4 *5 (-1061)) + (-4 *5 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-566)) (-4 *4 (-624 *2)) - (-5 *2 (-388)) (-5 *1 (-795 *4)))) + (-12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-565)) (-4 *4 (-623 *2)) + (-5 *2 (-387)) (-5 *1 (-794 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-932)) (-4 *5 (-566)) - (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) + (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-931)) (-4 *5 (-565)) + (-4 *5 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) - (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) + (-12 (-5 *3 (-323 *4)) (-4 *4 (-565)) (-4 *4 (-859)) + (-4 *4 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-324 *5)) (-5 *4 (-932)) (-4 *5 (-566)) (-4 *5 (-860)) - (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5))))) -(((*1 *1) (-5 *1 (-588)))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1062)))) - ((*1 *2 *1 *1) - (-12 (-4 *2 (-1062)) (-5 *1 (-50 *2 *3)) (-14 *3 (-654 (-1190))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-654 (-932))) (-4 *2 (-372)) (-5 *1 (-153 *4 *2 *5)) - (-14 *4 (-932)) (-14 *5 (-1006 *4 *2)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-324 *3)) (-5 *1 (-225 *3 *4)) - (-4 *3 (-13 (-1062) (-860))) (-14 *4 (-654 (-1190))))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-331 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-132)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-391 *2 *3)) (-4 *3 (-1113)) (-4 *2 (-1062)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-4 *2 (-566)) (-5 *1 (-633 *2 *4)) - (-4 *4 (-1257 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-718 *2)) (-4 *2 (-1062)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-1062)) (-5 *1 (-745 *2 *3)) (-4 *3 (-736)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 *5)) (-5 *3 (-654 (-781))) (-4 *1 (-750 *4 *5)) - (-4 *4 (-1062)) (-4 *5 (-860)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *2)) (-4 *4 (-1062)) - (-4 *2 (-860)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-862 *2)) (-4 *2 (-1062)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 (-781))) (-4 *1 (-960 *4 *5 *6)) - (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *6 (-860)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-781)) (-4 *1 (-960 *4 *5 *2)) (-4 *4 (-1062)) - (-4 *5 (-803)) (-4 *2 (-860)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-781)) (-4 *2 (-960 *4 (-541 *5) *5)) - (-5 *1 (-1139 *4 *5 *2)) (-4 *4 (-1062)) (-4 *5 (-860)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-963 *4)) (-5 *1 (-1225 *4)) - (-4 *4 (-1062))))) -(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571))))) -(((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-1097 *3)) (-4 *3 (-133))))) -(((*1 *2 *1) - (-12 (-5 *2 (-872)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 (-781)) - (-14 *4 (-781)) (-4 *5 (-174))))) -(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-868)))) - ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-976)))) - ((*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-1002)))) - ((*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-1231)))) + (-12 (-5 *3 (-323 *5)) (-5 *4 (-931)) (-4 *5 (-565)) (-4 *5 (-859)) + (-4 *5 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-337))))) +(((*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-780))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1171)) (-5 *5 (-698 (-227))) (-5 *6 (-227)) + (-5 *7 (-698 (-573))) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-761))))) +(((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-1096 *3)) (-4 *3 (-133))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1169 (-653 (-573)))) (-5 *1 (-893)) + (-5 *3 (-653 (-573)))))) +(((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-867)))) + ((*1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-975)))) + ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1001)))) + ((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1230)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1113) (-34))) (-5 *1 (-1153 *2 *3)) - (-4 *3 (-13 (-1113) (-34)))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *1) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) - (-4 *5 (-1257 (-417 *4))) - (-5 *2 (-2 (|:| |num| (-1281 *4)) (|:| |den| *4)))))) + (-12 (-4 *2 (-13 (-1112) (-34))) (-5 *1 (-1152 *2 *3)) + (-4 *3 (-13 (-1112) (-34)))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-372) (-310) - (-10 -8 (-15 -2966 ((-1138 *3 (-622 $)) $)) - (-15 -2977 ((-1138 *3 (-622 $)) $)) - (-15 -2943 ($ (-1138 *3 (-622 $)))))))))) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-780)) (-4 *4 (-371)) (-5 *1 (-906 *2 *4)) + (-4 *2 (-1256 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-340))))) +(((*1 *2 *2) + (-12 (-4 *2 (-174)) (-4 *2 (-1061)) (-5 *1 (-723 *2 *3)) + (-4 *3 (-657 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-845 *2)) (-4 *2 (-174)) (-4 *2 (-1061))))) (((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-158))) ((*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 - (-13 (-860) - (-10 -8 (-15 -2199 ((-1172) $ (-1190))) (-15 -1403 ((-1286) $)) - (-15 -3844 ((-1286) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-25)) (-4 *2 (-1231)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-25)) (-4 *2 (-1231)))) + (-13 (-859) + (-10 -8 (-15 -2198 ((-1171) $ (-1189))) (-15 -1402 ((-1285) $)) + (-15 -1974 ((-1285) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-25)) (-4 *2 (-1230)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-25)) (-4 *2 (-1230)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-331 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-132)))) + (-12 (-4 *1 (-330 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-132)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *2)) - (-4 *2 (-1257 *3)))) + (-12 (-4 *3 (-13 (-371) (-148))) (-5 *1 (-408 *3 *2)) + (-4 *2 (-1256 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) - (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-960 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-546))) + (-12 (-4 *2 (-371)) (-4 *3 (-802)) (-4 *4 (-859)) + (-5 *1 (-513 *2 *3 *4 *5)) (-4 *5 (-959 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-545))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) - (-4 *4 (-382 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-872))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113)))) + (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) + (-4 *4 (-381 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-871))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-954 (-227))) (-5 *1 (-1227)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-25))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1186 *1)) (-5 *3 (-1190)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1186 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-963 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1190)) (-4 *1 (-29 *3)) (-4 *3 (-566)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-566)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1186 *2)) (-5 *4 (-1190)) (-4 *2 (-440 *5)) - (-5 *1 (-32 *5 *2)) (-4 *5 (-566)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1186 *1)) (-5 *3 (-932)) (-4 *1 (-1025)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1186 *1)) (-5 *3 (-932)) (-5 *4 (-872)) - (-4 *1 (-1025)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-932)) (-4 *4 (-13 (-858) (-372))) - (-4 *1 (-1081 *4 *2)) (-4 *2 (-1257 *4))))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-953 (-227))) (-5 *1 (-1226)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-25))))) (((*1 *2 *3) - (-12 (-5 *3 (-1115 *4)) (-4 *4 (-1113)) (-5 *2 (-1 *4)) - (-5 *1 (-1030 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1053)) (-5 *3 (-388)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1107 (-574))) (-5 *2 (-1 (-574))) (-5 *1 (-1060))))) -(((*1 *2 *1) - (-12 (-4 *1 (-914 *3)) (-4 *3 (-1113)) (-5 *2 (-1115 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1115 *3)) (-5 *1 (-915 *3)) (-4 *3 (-1113))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-574)) (-4 *3 (-174)) (-4 *5 (-382 *3)) - (-4 *6 (-382 *3)) (-5 *1 (-698 *3 *5 *6 *2)) - (-4 *2 (-697 *3 *5 *6))))) -(((*1 *1) (-4 *1 (-358)))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-781)) (-4 *4 (-13 (-566) (-148))) - (-5 *1 (-1251 *4 *2)) (-4 *2 (-1257 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1178 3 *3)) (-4 *3 (-1062)) (-4 *1 (-1147 *3)))) - ((*1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1062))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(((*1 *2 *1) - (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1062)) - (-4 *2 (-462)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 *4)) (-4 *4 (-1257 (-574))) (-5 *2 (-654 (-574))) - (-5 *1 (-496 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-462)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-960 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *2 (-860)) (-4 *3 (-462))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *2 (-574)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574))))) + (-12 (-5 *3 (-1253 *5 *4)) (-4 *4 (-461)) (-4 *4 (-829)) + (-14 *5 (-1189)) (-5 *2 (-573)) (-5 *1 (-1126 *4 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-871)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2277 *3) (|:| |coef2| (-791 *3)))) + (-5 *1 (-791 *3)) (-4 *3 (-565)) (-4 *3 (-1061))))) +(((*1 *2) (-12 (-5 *2 (-1159 (-1171))) (-5 *1 (-400))))) +(((*1 *2 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1230))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) +(((*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061))))) +(((*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-830))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1171)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-1285)) + (-5 *1 (-1084 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1171)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-1285)) + (-5 *1 (-1120 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-791 *2)) (-4 *2 (-1061))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-780)) (-5 *3 (-953 *4)) (-4 *1 (-1146 *4)) + (-4 *4 (-1061)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-780)) (-5 *4 (-953 (-227))) (-5 *2 (-1285)) + (-5 *1 (-1282))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2872 *3))) + (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 *4)) (-4 *4 (-858)) (-4 *4 (-372)) (-5 *2 (-781)) - (-5 *1 (-956 *4 *5)) (-4 *5 (-1257 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1269 *3)) (-4 *3 (-1231)) (-5 *2 (-781))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-1 (-654 *5) *6)) - (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) - (-4 *6 (-1257 *5)) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-663 (-417 *7))) (-5 *4 (-1 (-654 *6) *7)) - (-5 *5 (-1 (-428 *7) *7)) - (-4 *6 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) - (-4 *7 (-1257 *6)) (-5 *2 (-654 (-417 *7))) (-5 *1 (-822 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-1 (-654 *5) *6)) - (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) - (-4 *6 (-1257 *5)) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-664 *7 (-417 *7))) (-5 *4 (-1 (-654 *6) *7)) - (-5 *5 (-1 (-428 *7) *7)) - (-4 *6 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) - (-4 *7 (-1257 *6)) (-5 *2 (-654 (-417 *7))) (-5 *1 (-822 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-663 (-417 *5))) (-4 *5 (-1257 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) - (-5 *2 (-654 (-417 *5))) (-5 *1 (-822 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-1 (-428 *6) *6)) - (-4 *6 (-1257 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) - (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-664 *5 (-417 *5))) (-4 *5 (-1257 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) - (-5 *2 (-654 (-417 *5))) (-5 *1 (-822 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-1 (-428 *6) *6)) - (-4 *6 (-1257 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) - (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *5)) (-5 *4 (-932)) (-4 *5 (-860)) - (-5 *2 (-654 (-682 *5))) (-5 *1 (-682 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-654 (-874 *5))) (-14 *5 (-654 (-1190))) (-4 *6 (-462)) - (-5 *2 - (-2 (|:| |dpolys| (-654 (-253 *5 *6))) - (|:| |coords| (-654 (-574))))) - (-5 *1 (-481 *5 *6 *7)) (-5 *3 (-654 (-253 *5 *6))) (-4 *7 (-462))))) + (-12 (-5 *3 (-931)) (-5 *2 (-1280 (-1280 (-573)))) (-5 *1 (-475))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) (-4 *5 (-802)) + (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-653 *2)) (-4 *2 (-1112)) (-4 *2 (-1230))))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-936)))) + ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-937)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-937)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-461)) (-4 *4 (-859)) + (-4 *5 (-802)) (-5 *1 (-999 *3 *4 *5 *6)) (-4 *6 (-959 *3 *5 *4))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) + (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-63 LSFUN2)))) + (-5 *2 (-1047)) (-5 *1 (-762))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1186 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-227))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + (-12 (-4 *3 (-565)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-371) (-309) + (-10 -8 (-15 -2965 ((-1137 *3 (-621 $)) $)) + (-15 -2975 ((-1137 *3 (-621 $)) $)) + (-15 -2942 ($ (-1137 *3 (-621 $))))))))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1053)))) - ((*1 *1 *1 *1) (-4 *1 (-1152)))) + (-12 (-4 *3 (-565)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-371) (-309) + (-10 -8 (-15 -2965 ((-1137 *3 (-621 $)) $)) + (-15 -2975 ((-1137 *3 (-621 $)) $)) + (-15 -2942 ($ (-1137 *3 (-621 $))))))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-653 *2)) + (-4 *2 + (-13 (-371) (-309) + (-10 -8 (-15 -2965 ((-1137 *4 (-621 $)) $)) + (-15 -2975 ((-1137 *4 (-621 $)) $)) + (-15 -2942 ($ (-1137 *4 (-621 $))))))) + (-4 *4 (-565)) (-5 *1 (-41 *4 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-653 (-621 *2))) + (-4 *2 + (-13 (-371) (-309) + (-10 -8 (-15 -2965 ((-1137 *4 (-621 $)) $)) + (-15 -2975 ((-1137 *4 (-621 $)) $)) + (-15 -2942 ($ (-1137 *4 (-621 $))))))) + (-4 *4 (-565)) (-5 *1 (-41 *4 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-965)) (-5 *2 (-653 (-653 (-953 (-227))))))) + ((*1 *2 *1) (-12 (-4 *1 (-986)) (-5 *2 (-653 (-653 (-953 (-227)))))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-416 *4)) (-4 *4 (-1256 *3)) + (-4 *3 (-13 (-371) (-148) (-1050 (-573)))) (-5 *1 (-577 *3 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282)))) + ((*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282))))) +(((*1 *2) + (-12 (-4 *3 (-1234)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) + (-5 *2 (-1280 *1)) (-4 *1 (-350 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-653 *7)) (-4 *7 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) + (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) + (-5 *1 (-1000 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-653 *7)) (-4 *7 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) + (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) + (-5 *1 (-1119 *3 *4 *5 *6 *7))))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1171)) (-5 *3 (-573)) (-5 *1 (-1075))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) + (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) + (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014)))))) +(((*1 *1) (-5 *1 (-1075)))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-573)) (-14 *3 (-780)) + (-4 *4 (-174)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1189)) (-4 *4 (-565)) (-5 *1 (-159 *4 *2)) + (-4 *2 (-439 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1104 *2)) (-4 *2 (-439 *4)) (-4 *4 (-565)) + (-5 *1 (-159 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1104 *1)) (-4 *1 (-161)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1189)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-474 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-780)) (-5 *1 (-1300 *3 *4)) (-4 *3 (-859)) + (-4 *4 (-174))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-692 *2)) (-4 *2 (-1113)))) + (-12 (-5 *3 (-1253 *5 *4)) (-4 *4 (-829)) (-14 *5 (-1189)) + (-5 *2 (-573)) (-5 *1 (-1126 *4 *5))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1097))))) +(((*1 *1 *1) (-12 (-4 *1 (-439 *2)) (-4 *2 (-1112)) (-4 *2 (-1061)))) + ((*1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-859)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-871)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 (-112) *7 (-653 *7))) (-4 *1 (-1223 *4 *5 *6 *7)) + (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) + (-5 *4 (-698 (-1185 *8))) (-4 *5 (-1061)) (-4 *8 (-1061)) + (-4 *6 (-1256 *5)) (-5 *2 (-698 *6)) (-5 *1 (-510 *5 *6 *7 *8)) + (-4 *7 (-1256 *6))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-573)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-427 *4)) (-4 *4 (-565))))) +(((*1 *2 *3) + (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-306 *4 *5)) (-14 *4 *3) + (-14 *5 *3))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-654 *5) (-654 *5))) (-5 *4 (-574)) - (-5 *2 (-654 *5)) (-5 *1 (-692 *5)) (-4 *5 (-1113))))) -(((*1 *2) - (-12 (-5 *2 (-1286)) (-5 *1 (-1208 *3 *4)) (-4 *3 (-1113)) - (-4 *4 (-1113))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1281 *4)) (-5 *3 (-1133)) (-4 *4 (-358)) - (-5 *1 (-538 *4))))) + (-12 (-5 *4 (-1106 (-852 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) + (-5 *1 (-312)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) + (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1172)) (-5 *2 (-216 (-512))) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113))))) -(((*1 *1 *1) (-4 *1 (-879 *2)))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-654 *2)) (-4 *2 (-1113)) (-4 *2 (-1231))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) - (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-539))))) -(((*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-219))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1123)) (-5 *3 (-574))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4))))) -(((*1 *1) (-5 *1 (-142)))) + (-12 (-4 *4 (-1061)) (-5 *2 (-573)) (-5 *1 (-452 *4 *3 *5)) + (-4 *3 (-1256 *4)) + (-4 *5 (-13 (-413) (-1050 *4) (-371) (-1215) (-291)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-780)) (-4 *6 (-1112)) (-4 *3 (-910 *6)) + (-5 *2 (-698 *3)) (-5 *1 (-701 *6 *3 *7 *4)) (-4 *7 (-381 *3)) + (-4 *4 (-13 (-381 *6) (-10 -7 (-6 -4455))))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1189)) (-4 *5 (-623 (-902 (-573)))) + (-4 *5 (-896 (-573))) + (-4 *5 (-13 (-1050 (-573)) (-461) (-648 (-573)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-576 *5 *3)) (-4 *3 (-638)) + (-4 *3 (-13 (-27) (-1215) (-439 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-781)) (-4 *4 (-372)) (-4 *5 (-1257 *4)) (-5 *2 (-1286)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1257 (-417 *5))) (-14 *7 *6)))) + (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) + (-5 *1 (-989 *4 *5 *6 *3)) (-4 *3 (-1077 *4 *5 *6))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-621 *3)) (-5 *5 (-1185 *3)) + (-4 *3 (-13 (-439 *6) (-27) (-1215))) + (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) + (-5 *2 (-595 *3)) (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1112)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-621 *3)) (-5 *5 (-416 (-1185 *3))) + (-4 *3 (-13 (-439 *6) (-27) (-1215))) + (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) + (-5 *2 (-595 *3)) (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1112))))) (((*1 *1 *1) - (-12 (-5 *1 (-1154 *2 *3)) (-4 *2 (-13 (-1113) (-34))) - (-4 *3 (-13 (-1113) (-34)))))) -(((*1 *1) (-5 *1 (-516)))) -(((*1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1062)) (-4 *2 (-372))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *1) (-5 *1 (-1282)))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) - (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) - (-5 *2 (-1048)) (-5 *1 (-761))))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-709)) (-5 *1 (-313))))) -(((*1 *2 *3) - (-12 (-5 *2 (-428 (-1186 (-574)))) (-5 *1 (-193)) (-5 *3 (-574))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1113)))) - ((*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1113))))) -(((*1 *2) (-12 (-5 *2 (-654 (-932))) (-5 *1 (-1284)))) - ((*1 *2 *2) (-12 (-5 *2 (-654 (-932))) (-5 *1 (-1284))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112))))) + (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) +(((*1 *1 *1 *1) (-5 *1 (-871)))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-956 *4 *3)) - (-4 *3 (-1257 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-282))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1062)) - (-4 *2 (-13 (-414) (-1051 *4) (-372) (-1216) (-292))) - (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1257 *4))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-872))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-915 *3)) (-4 *3 (-1113))))) -(((*1 *2 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-571)) (-5 *3 (-574))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-938))))) -(((*1 *1) (-5 *1 (-299)))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-654 *6)) (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) - (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) - (-4 *3 (-566))))) -(((*1 *1 *1 *1) (-5 *1 (-163))) - ((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-163))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) - (-4 *4 (-860)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5))))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-574)) (-5 *5 (-171 (-227))) (-5 *6 (-1172)) - (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-768))))) -(((*1 *2) - (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6)) - (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) - (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-1231))))) -(((*1 *2) - (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-427 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1281 *5)) (-4 *5 (-13 (-1062) (-649 *4))) - (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-648 *4 *5))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) - (-5 *2 (-1048)) (-5 *1 (-761))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-462)) (-4 *3 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) - (-5 *1 (-459 *4 *3 *5 *6)) (-4 *6 (-960 *4 *3 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1216))))) - ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) - ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872))))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1172)) (-5 *1 (-194)))) - ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1172)) (-5 *1 (-308)))) - ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1172)) (-5 *1 (-313))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4091 *8))) - (-4 *7 (-1078 *4 *5 *6)) (-4 *8 (-1084 *4 *5 *6 *7)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-1001 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4091 *8))) - (-4 *7 (-1078 *4 *5 *6)) (-4 *8 (-1084 *4 *5 *6 *7)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-1120 *4 *5 *6 *7 *8))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-372)) (-5 *1 (-669 *4 *2)) - (-4 *2 (-666 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-969 (-781))) (-5 *1 (-341))))) + (-12 (-4 *4 (-371)) (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) + (-5 *1 (-775 *3 *4)) (-4 *3 (-717 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-371)) (-4 *3 (-1061)) + (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-861 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-371)) (-4 *5 (-1061)) + (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-862 *5 *3)) + (-4 *3 (-861 *5))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-859)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-871))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-914 *3)) (-4 *3 (-1112))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) +(((*1 *2 *3) + (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-1077 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-653 *7)) (|:| |badPols| (-653 *7)))) + (-5 *1 (-989 *4 *5 *6 *7)) (-5 *3 (-653 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-358)) - (-5 *2 - (-2 (|:| |cont| *5) - (|:| -4219 (-654 (-2 (|:| |irr| *3) (|:| -3186 (-574))))))) - (-5 *1 (-218 *5 *3)) (-4 *3 (-1257 *5))))) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) +(((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-454 *3)) (-4 *3 (-1061))))) (((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1216)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-872))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-914 *3)) (-4 *3 (-1113)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-915 *3)) (-4 *3 (-1113))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-654 (-302 *4))) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) - (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-932))))) + (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1215)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-574)) (-5 *4 (-428 *2)) (-4 *2 (-960 *7 *5 *6)) - (-5 *1 (-752 *5 *6 *7 *2)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-315))))) -(((*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-546))))) -(((*1 *2 *2) - (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))) - (-5 *1 (-178 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-130))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-781)) (-4 *1 (-1257 *3)) (-4 *3 (-1062))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-440 *3) (-1015))) (-5 *1 (-283 *3 *2)) - (-4 *3 (-566)))) - ((*1 *1) - (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) - (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) - ((*1 *1) (-5 *1 (-487))) ((*1 *1) (-4 *1 (-1216)))) -(((*1 *2 *1) - (-12 (-4 *4 (-1113)) (-5 *2 (-112)) (-5 *1 (-896 *3 *4 *5)) - (-4 *3 (-1113)) (-4 *5 (-676 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-900 *3 *4)) (-4 *3 (-1113)) - (-4 *4 (-1113))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2)) - (-4 *2 (-1272 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1257 *3)) - (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1272 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2)) - (-4 *2 (-1272 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-13 (-566) (-148))) - (-5 *1 (-1166 *3))))) + (-12 (-4 *5 (-802)) (-4 *6 (-859)) (-4 *7 (-565)) + (-4 *3 (-959 *7 *5 *6)) + (-5 *2 + (-2 (|:| -3907 (-780)) (|:| -1857 *3) (|:| |radicand| (-653 *3)))) + (-5 *1 (-963 *5 *6 *7 *3 *8)) (-5 *4 (-780)) + (-4 *8 + (-13 (-371) + (-10 -8 (-15 -2942 ($ *3)) (-15 -2965 (*3 $)) (-15 -2975 (*3 $)))))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1253 *5 *4)) (-4 *4 (-461)) (-4 *4 (-829)) + (-14 *5 (-1189)) (-5 *2 (-573)) (-5 *1 (-1126 *4 *5))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-416 (-962 *4))) (-5 *3 (-1189)) + (-4 *4 (-13 (-565) (-1050 (-573)) (-148))) (-5 *1 (-579 *4))))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-23))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-501)) (-5 *4 (-965)) (-5 *2 (-701 (-543))) - (-5 *1 (-543)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-965)) (-4 *3 (-1113)) (-5 *2 (-701 *1)) - (-4 *1 (-777 *3))))) -(((*1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216))))) + (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1077 *5 *6 *7)) (-4 *5 (-565)) + (-4 *6 (-802)) (-4 *7 (-859)) + (-5 *2 (-2 (|:| |goodPols| (-653 *8)) (|:| |badPols| (-653 *8)))) + (-5 *1 (-989 *5 *6 *7 *8)) (-5 *4 (-653 *8))))) +(((*1 *1 *1) (-12 (-5 *1 (-924 *2)) (-4 *2 (-314))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-859)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-871)))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-653 *1)) (-4 *1 (-930))))) +(((*1 *2 *1) (-12 (-4 *1 (-563 *2)) (-4 *2 (-13 (-413) (-1215))))) + ((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) + ((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-871))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-698 *3)) (-4 *3 (-1061)) (-5 *1 (-699 *3))))) +(((*1 *2) (-12 (-5 *2 (-914 (-573))) (-5 *1 (-927))))) (((*1 *2 *3) - (-12 (-4 *4 (-860)) (-5 *2 (-1202 (-654 *4))) (-5 *1 (-1201 *4)) - (-5 *3 (-654 *4))))) + (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) + (-4 *4 (-13 (-371) (-857))) (-4 *3 (-1256 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-931)) (-4 *1 (-753 *3)) (-4 *3 (-174))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) + (-5 *2 (-653 (-227))) (-5 *1 (-312))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-565)) (-4 *3 (-1061)) + (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-861 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-565)) (-4 *5 (-1061)) + (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-862 *5 *3)) + (-4 *3 (-861 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-412 *3)) (-4 *3 (-413)))) + ((*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-412 *3)) (-4 *3 (-413)))) + ((*1 *2 *2) (-12 (-5 *2 (-931)) (|has| *1 (-6 -4446)) (-4 *1 (-413)))) + ((*1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-931)))) + ((*1 *2 *1) (-12 (-4 *1 (-878 *3)) (-5 *2 (-1169 (-573)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-859)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-871))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-1112)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-914 *3)) (-4 *3 (-1112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-565)) (-4 *2 (-13 (-439 *4) (-1014) (-1215))) + (-5 *1 (-609 *4 *2 *3)) + (-4 *3 (-13 (-439 (-171 *4)) (-1014) (-1215)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-653 *2)) (-4 *2 (-959 *4 *5 *6)) (-4 *4 (-461)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-458 *4 *5 *6 *2))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1185 *7)) (-5 *3 (-573)) (-4 *7 (-959 *6 *4 *5)) + (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1061)) + (-5 *1 (-328 *4 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-130))))) +(((*1 *1) (-5 *1 (-1281)))) +(((*1 *2) + (-12 (-4 *2 (-13 (-439 *3) (-1014))) (-5 *1 (-282 *3 *2)) + (-4 *3 (-565)))) + ((*1 *1) + (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) + (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) + ((*1 *1) (-5 *1 (-486))) ((*1 *1) (-4 *1 (-1215)))) +(((*1 *2 *1) (-12 (-5 *2 (-653 (-653 (-227)))) (-5 *1 (-936))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-780)) (-5 *5 (-653 *3)) (-4 *3 (-314)) (-4 *6 (-859)) + (-4 *7 (-802)) (-5 *2 (-112)) (-5 *1 (-634 *6 *7 *3 *8)) + (-4 *8 (-959 *3 *7 *6))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-515)) (-5 *3 (-783)) (-5 *1 (-115)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1171)) (-5 *3 (-783)) (-5 *1 (-115))))) +(((*1 *2 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |partsol| (-1280 (-416 (-962 *4)))) + (|:| -3914 (-653 (-1280 (-416 (-962 *4))))))) + (-5 *3 (-653 *7)) (-4 *4 (-13 (-314) (-148))) + (-4 *7 (-959 *4 *6 *5)) (-4 *5 (-13 (-859) (-623 (-1189)))) + (-4 *6 (-802)) (-5 *1 (-934 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1112)) (-4 *5 (-1112)) + (-5 *2 (-1 *5 *4)) (-5 *1 (-692 *4 *5))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-371)) (-4 *3 (-1061)) + (-5 *1 (-1173 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-654 (-1217 *3))) (-5 *1 (-1217 *3)) (-4 *3 (-1113))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1216))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) - ((*1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-932)) (-5 *4 (-388)) (-5 *2 (-1286)) (-5 *1 (-1282))))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-699 *4)) (-5 *3 (-781)) (-4 *4 (-1062)) - (-5 *1 (-700 *4))))) + (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-4 *3 (-376)) + (-5 *2 (-1185 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1047))))) (((*1 *2) - (-12 (-4 *4 (-372)) (-5 *2 (-932)) (-5 *1 (-336 *3 *4)) - (-4 *3 (-337 *4)))) + (-12 (-4 *4 (-1234)) (-4 *5 (-1256 *4)) (-4 *6 (-1256 (-416 *5))) + (-5 *2 (-653 (-653 *4))) (-5 *1 (-349 *3 *4 *5 *6)) + (-4 *3 (-350 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *4 (-372)) (-5 *2 (-843 (-932))) (-5 *1 (-336 *3 *4)) - (-4 *3 (-337 *4)))) - ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-932)))) + (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) + (-4 *5 (-1256 (-416 *4))) (-4 *3 (-376)) (-5 *2 (-653 (-653 *3)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) +(((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-588))))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-323 (-573))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1106 (-227))) (-5 *6 (-653 (-269))) (-5 *2 (-1145 (-227))) + (-5 *1 (-706))))) +(((*1 *2 *3) + (-12 (-5 *3 (-573)) (|has| *1 (-6 -4446)) (-4 *1 (-413)) + (-5 *2 (-931))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1050 (-573))) (-4 *3 (-565)) (-5 *1 (-32 *3 *2)) + (-4 *2 (-439 *3)))) ((*1 *2) - (-12 (-4 *1 (-1300 *3)) (-4 *3 (-372)) (-5 *2 (-843 (-932)))))) -(((*1 *2) (-12 (-5 *2 (-1160 (-1172))) (-5 *1 (-401))))) -(((*1 *2 *2) (-12 (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1044))))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-932)) (-5 *4 (-884)) (-5 *2 (-1286)) (-5 *1 (-1282)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-932)) (-5 *4 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1286)) (-5 *1 (-832))))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-23))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-566)) (-5 *1 (-982 *2 *3)) (-4 *3 (-1257 *2))))) + (-12 (-4 *4 (-174)) (-5 *2 (-1185 *4)) (-5 *1 (-166 *3 *4)) + (-4 *3 (-167 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-1061)) (-4 *1 (-309)))) + ((*1 *2) (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-5 *2 (-1185 *3)))) + ((*1 *2) (-12 (-4 *1 (-733 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1256 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1080 *3 *2)) (-4 *3 (-13 (-857) (-371))) + (-4 *2 (-1256 *3))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-132)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-323 (-227))) (-5 *4 (-1189)) + (-5 *5 (-1106 (-852 (-227)))) (-5 *2 (-653 (-227))) (-5 *1 (-194)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-323 (-227))) (-5 *4 (-1189)) + (-5 *5 (-1106 (-852 (-227)))) (-5 *2 (-653 (-227))) (-5 *1 (-307))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1231)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) - ((*1 *1 *1 *1) (-5 *1 (-872))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-1230)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443)))) + ((*1 *1 *1 *1) (-5 *1 (-871))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1039 *3)) (-4 *3 (-1231))))) -(((*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284)))) - ((*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1038 *3)) (-4 *3 (-1230))))) +(((*1 *2 *3) + (-12 (-5 *3 (-252 *4 *5)) (-14 *4 (-653 (-1189))) (-4 *5 (-461)) + (-5 *2 (-490 *4 *5)) (-5 *1 (-640 *4 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-871)))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-567 *2)) (-4 *2 (-554))))) +(((*1 *2 *3) + (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-780)) + (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-959 *4 *5 *6))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062))))) -(((*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-366 *3)) (-4 *3 (-358))))) -(((*1 *2 *1) (-12 (-5 *2 (-1138 (-574) (-622 (-48)))) (-5 *1 (-48)))) + (-12 (-5 *2 (-780)) (-4 *1 (-1256 *3)) (-4 *3 (-1061)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-931)) (-4 *1 (-1258 *3 *4)) (-4 *3 (-1061)) + (-4 *4 (-801)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-416 (-573))) (-4 *1 (-1261 *3)) (-4 *3 (-1061))))) +(((*1 *2 *1) (-12 (-5 *2 (-1137 (-573) (-621 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-1005 *2)) (-4 *4 (-1257 *3)) (-4 *2 (-315)) - (-5 *1 (-423 *2 *3 *4 *5)) (-4 *5 (-13 (-419 *3 *4) (-1051 *3))))) + (-12 (-4 *3 (-1004 *2)) (-4 *4 (-1256 *3)) (-4 *2 (-314)) + (-5 *1 (-422 *2 *3 *4 *5)) (-4 *5 (-13 (-418 *3 *4) (-1050 *3))))) ((*1 *2 *1) - (-12 (-4 *3 (-566)) (-4 *3 (-1113)) (-5 *2 (-1138 *3 (-622 *1))) - (-4 *1 (-440 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1138 (-574) (-622 (-505)))) (-5 *1 (-505)))) + (-12 (-4 *3 (-565)) (-4 *3 (-1112)) (-5 *2 (-1137 *3 (-621 *1))) + (-4 *1 (-439 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1137 (-573) (-621 (-504)))) (-5 *1 (-504)))) ((*1 *2 *1) - (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-736) *4)) - (-5 *1 (-631 *3 *4 *2)) (-4 *3 (-38 *4)))) + (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-735) *4)) + (-5 *1 (-630 *3 *4 *2)) (-4 *3 (-38 *4)))) ((*1 *2 *1) - (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-736) *4)) - (-5 *1 (-672 *3 *4 *2)) (-4 *3 (-727 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566))))) -(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-937))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1190)) - (-4 *5 (-13 (-566) (-1051 (-574)) (-148))) - (-5 *2 - (-2 (|:| -2399 (-417 (-963 *5))) (|:| |coeff| (-417 (-963 *5))))) - (-5 *1 (-580 *5)) (-5 *3 (-417 (-963 *5)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-654 (-954 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-654 (-954 *3))) (-4 *3 (-1062)) (-4 *1 (-1147 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-654 (-954 *3))) (-4 *1 (-1147 *3)) (-4 *3 (-1062))))) -(((*1 *2 *3) - (-12 (-5 *3 (-596 *2)) (-4 *2 (-13 (-29 *4) (-1216))) - (-5 *1 (-593 *4 *2)) - (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-596 (-417 (-963 *4)))) - (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-324 *4)) - (-5 *1 (-599 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-493)) (-5 *1 (-220)))) - ((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1231)))) - ((*1 *2 *1) (-12 (-5 *2 (-493)) (-5 *1 (-686)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) - (-4 *4 (-860))))) + (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-735) *4)) + (-5 *1 (-671 *3 *4 *2)) (-4 *3 (-726 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |pde| (-653 (-323 (-227)))) + (|:| |constraints| + (-653 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-780)) (|:| |boundaryType| (-573)) + (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) + (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) + (|:| |tol| (-227)))) + (-5 *2 (-112)) (-5 *1 (-212))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 (-654 (-654 *4)))) (-5 *2 (-654 (-654 *4))) - (-5 *1 (-1201 *4)) (-4 *4 (-860))))) + (-12 (-5 *3 (-653 *4)) (-4 *4 (-857)) (-4 *4 (-371)) (-5 *2 (-780)) + (-5 *1 (-955 *4 *5)) (-4 *5 (-1256 *4))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-653 (-902 *3))) (-5 *1 (-902 *3)) + (-4 *3 (-1112))))) +(((*1 *1) (-5 *1 (-1094)))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-573)) (-4 *4 (-13 (-565) (-148))) (-5 *1 (-546 *4 *2)) + (-4 *2 (-1271 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-573)) (-4 *4 (-13 (-371) (-376) (-623 *3))) + (-4 *5 (-1256 *4)) (-4 *6 (-733 *4 *5)) (-5 *1 (-550 *4 *5 *6 *2)) + (-4 *2 (-1271 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-573)) (-4 *4 (-13 (-371) (-376) (-623 *3))) + (-5 *1 (-551 *4 *2)) (-4 *2 (-1271 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1169 *4)) (-5 *3 (-573)) (-4 *4 (-13 (-565) (-148))) + (-5 *1 (-1165 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1062)) - (-14 *4 (-654 (-1190))))) + (-12 (-5 *2 (-780)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1061)) + (-14 *4 (-653 (-1189))))) ((*1 *1 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1062) (-860))) - (-14 *4 (-654 (-1190))))) - ((*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372)))) + (-12 (-5 *2 (-780)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1061) (-859))) + (-14 *4 (-653 (-1189))))) + ((*1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-376)) (-4 *2 (-371)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-344 *3 *4 *5 *2)) (-4 *3 (-372)) - (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) - (-4 *2 (-351 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-343 *3 *4 *5 *2)) (-4 *3 (-371)) + (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) + (-4 *2 (-350 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-12 (-5 *2 (-780)) (-5 *1 (-399 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) - ((*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-734 *2 *3)) (-4 *3 (-1257 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015)))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1208 *3 *4)) (-4 *3 (-1113)) - (-4 *4 (-1113))))) + ((*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-733 *2 *3)) (-4 *3 (-1256 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1189)) + (-5 *2 + (-2 (|:| |zeros| (-1169 (-227))) (|:| |ones| (-1169 (-227))) + (|:| |singularities| (-1169 (-227))))) + (-5 *1 (-105))))) (((*1 *2 *3) - (-12 (-5 *3 (-1190)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-712 *4 *5 *6 *7)) - (-4 *4 (-624 (-546))) (-4 *5 (-1231)) (-4 *6 (-1231)) - (-4 *7 (-1231))))) -(((*1 *2 *1) (-12 (-5 *2 (-1138 (-574) (-622 (-48)))) (-5 *1 (-48)))) + (-12 (-5 *3 (-653 *7)) (-4 *7 (-959 *4 *5 *6)) (-4 *6 (-623 (-1189))) + (-4 *4 (-371)) (-4 *5 (-802)) (-4 *6 (-859)) + (-5 *2 (-1178 (-653 (-962 *4)) (-653 (-301 (-962 *4))))) + (-5 *1 (-513 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-653 (-112)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1137 (-573) (-621 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-315)) (-4 *4 (-1005 *3)) (-4 *5 (-1257 *4)) - (-5 *2 (-1281 *6)) (-5 *1 (-423 *3 *4 *5 *6)) - (-4 *6 (-13 (-419 *4 *5) (-1051 *4))))) + (-12 (-4 *3 (-314)) (-4 *4 (-1004 *3)) (-4 *5 (-1256 *4)) + (-5 *2 (-1280 *6)) (-5 *1 (-422 *3 *4 *5 *6)) + (-4 *6 (-13 (-418 *4 *5) (-1050 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-1062)) (-4 *3 (-1113)) (-5 *2 (-1138 *3 (-622 *1))) - (-4 *1 (-440 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1138 (-574) (-622 (-505)))) (-5 *1 (-505)))) + (-12 (-4 *3 (-1061)) (-4 *3 (-1112)) (-5 *2 (-1137 *3 (-621 *1))) + (-4 *1 (-439 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1137 (-573) (-621 (-504)))) (-5 *1 (-504)))) ((*1 *2 *1) - (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-631 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-736) *3)))) + (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-630 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-735) *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-174)) (-4 *2 (-727 *3)) (-5 *1 (-672 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-736) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372))))) + (-12 (-4 *3 (-174)) (-4 *2 (-726 *3)) (-5 *1 (-671 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-735) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-698 *7)) (-5 *3 (-653 *7)) (-4 *7 (-959 *4 *6 *5)) + (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) + (-4 *6 (-802)) (-5 *1 (-934 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-4 *5 (-440 *4)) - (-5 *2 (-428 *3)) (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1257 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-1015)) - (-4 *2 (-1062))))) + (-12 (-4 *1 (-919)) (-5 *2 (-427 (-1185 *1))) (-5 *3 (-1185 *1))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-372)) (-5 *2 (-2 (|:| -1411 *3) (|:| -2766 *3))) - (-5 *1 (-776 *3 *4)) (-4 *3 (-718 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-372)) (-4 *3 (-1062)) - (-5 *2 (-2 (|:| -1411 *1) (|:| -2766 *1))) (-4 *1 (-862 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-372)) (-4 *5 (-1062)) - (-5 *2 (-2 (|:| -1411 *3) (|:| -2766 *3))) (-5 *1 (-863 *5 *3)) - (-4 *3 (-862 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768))))) -(((*1 *2 *1) (-12 (-5 *1 (-1039 *2)) (-4 *2 (-1231))))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-654 *11)) - (|:| |todo| (-654 (-2 (|:| |val| *3) (|:| -4091 *11)))))) - (-5 *6 (-781)) - (-5 *2 (-654 (-2 (|:| |val| (-654 *10)) (|:| -4091 *11)))) - (-5 *3 (-654 *10)) (-5 *4 (-654 *11)) (-4 *10 (-1078 *7 *8 *9)) - (-4 *11 (-1084 *7 *8 *9 *10)) (-4 *7 (-462)) (-4 *8 (-803)) - (-4 *9 (-860)) (-5 *1 (-1082 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-654 *11)) - (|:| |todo| (-654 (-2 (|:| |val| *3) (|:| -4091 *11)))))) - (-5 *6 (-781)) - (-5 *2 (-654 (-2 (|:| |val| (-654 *10)) (|:| -4091 *11)))) - (-5 *3 (-654 *10)) (-5 *4 (-654 *11)) (-4 *10 (-1078 *7 *8 *9)) - (-4 *11 (-1122 *7 *8 *9 *10)) (-4 *7 (-462)) (-4 *8 (-803)) - (-4 *9 (-860)) (-5 *1 (-1158 *7 *8 *9 *10 *11))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1153 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1113) (-34))) (-4 *6 (-13 (-1113) (-34))) - (-5 *2 (-112)) (-5 *1 (-1154 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-52)) (-5 *1 (-839))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-4 *1 (-152 *3)))) + (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2277 *4))) + (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1047)) (-5 *1 (-849)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-323 (-387)))) (-5 *4 (-653 (-387))) + (-5 *2 (-1047)) (-5 *1 (-849))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1189)) + (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) + (-4 *4 (-13 (-29 *6) (-1215) (-969))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -3914 (-653 *4)))) + (-5 *1 (-810 *6 *4 *3)) (-4 *3 (-665 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1171)) (-5 *2 (-653 (-1194))) (-5 *1 (-890))))) +(((*1 *1) (-5 *1 (-606)))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-371)) + (-5 *2 (-2 (|:| -3861 (-416 *6)) (|:| |coeff| (-416 *6)))) + (-5 *1 (-583 *5 *6)) (-5 *3 (-416 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-4 *1 (-152 *3)))) ((*1 *1 *2) (-12 - (-5 *2 (-654 (-2 (|:| -3715 (-781)) (|:| -3359 *4) (|:| |num| *4)))) - (-4 *4 (-1257 *3)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)))) + (-5 *2 (-653 (-2 (|:| -3907 (-780)) (|:| -3358 *4) (|:| |num| *4)))) + (-4 *4 (-1256 *3)) (-4 *3 (-13 (-371) (-148))) (-5 *1 (-408 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) - (-5 *3 (-654 (-963 (-574)))) (-5 *4 (-112)) (-5 *1 (-447)))) + (-12 (-5 *2 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) + (-5 *3 (-653 (-962 (-573)))) (-5 *4 (-112)) (-5 *1 (-446)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) - (-5 *3 (-654 (-1190))) (-5 *4 (-112)) (-5 *1 (-447)))) + (-12 (-5 *2 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) + (-5 *3 (-653 (-1189))) (-5 *4 (-112)) (-5 *1 (-446)))) ((*1 *2 *1) - (-12 (-5 *2 (-1170 *3)) (-5 *1 (-611 *3)) (-4 *3 (-1231)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-174)))) + (-12 (-5 *2 (-1169 *3)) (-5 *1 (-610 *3)) (-4 *3 (-1230)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-643 *2)) (-4 *2 (-174)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4)) + (-12 (-5 *2 (-681 *3)) (-4 *3 (-859)) (-5 *1 (-673 *3 *4)) (-4 *4 (-174)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4)) + (-12 (-5 *2 (-681 *3)) (-4 *3 (-859)) (-5 *1 (-673 *3 *4)) (-4 *4 (-174)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4)) + (-12 (-5 *2 (-681 *3)) (-4 *3 (-859)) (-5 *1 (-673 *3 *4)) (-4 *4 (-174)))) ((*1 *1 *2) - (-12 (-5 *2 (-654 (-654 (-654 *3)))) (-4 *3 (-1113)) - (-5 *1 (-685 *3)))) + (-12 (-5 *2 (-653 (-653 (-653 *3)))) (-4 *3 (-1112)) + (-5 *1 (-684 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-723 *2 *3 *4)) (-4 *2 (-860)) (-4 *3 (-1113)) + (-12 (-5 *1 (-722 *2 *3 *4)) (-4 *2 (-859)) (-4 *3 (-1112)) (-14 *4 - (-1 (-112) (-2 (|:| -2576 *2) (|:| -3715 *3)) - (-2 (|:| -2576 *2) (|:| -3715 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1131)) (-5 *1 (-848)))) + (-1 (-112) (-2 (|:| -2575 *2) (|:| -3907 *3)) + (-2 (|:| -2575 *2) (|:| -3907 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-515)) (-5 *3 (-1130)) (-5 *1 (-847)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-883 *2 *3)) (-4 *2 (-1231)) (-4 *3 (-1231)))) + (-12 (-5 *1 (-882 *2 *3)) (-4 *2 (-1230)) (-4 *3 (-1230)))) ((*1 *1 *2) - (-12 (-5 *2 (-654 (-2 (|:| -3693 (-1190)) (|:| -1908 *4)))) - (-4 *4 (-1113)) (-5 *1 (-900 *3 *4)) (-4 *3 (-1113)))) + (-12 (-5 *2 (-653 (-2 (|:| -3692 (-1189)) (|:| -1907 *4)))) + (-4 *4 (-1112)) (-5 *1 (-899 *3 *4)) (-4 *3 (-1112)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-654 *5)) (-4 *5 (-13 (-1113) (-34))) - (-5 *2 (-654 (-1153 *3 *5))) (-5 *1 (-1153 *3 *5)) - (-4 *3 (-13 (-1113) (-34))))) + (-12 (-5 *4 (-653 *5)) (-4 *5 (-13 (-1112) (-34))) + (-5 *2 (-653 (-1152 *3 *5))) (-5 *1 (-1152 *3 *5)) + (-4 *3 (-13 (-1112) (-34))))) ((*1 *2 *3) - (-12 (-5 *3 (-654 (-2 (|:| |val| *4) (|:| -4091 *5)))) - (-4 *4 (-13 (-1113) (-34))) (-4 *5 (-13 (-1113) (-34))) - (-5 *2 (-654 (-1153 *4 *5))) (-5 *1 (-1153 *4 *5)))) + (-12 (-5 *3 (-653 (-2 (|:| |val| *4) (|:| -4090 *5)))) + (-4 *4 (-13 (-1112) (-34))) (-4 *5 (-13 (-1112) (-34))) + (-5 *2 (-653 (-1152 *4 *5))) (-5 *1 (-1152 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4091 *4))) - (-4 *3 (-13 (-1113) (-34))) (-4 *4 (-13 (-1113) (-34))) - (-5 *1 (-1153 *3 *4)))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4090 *4))) + (-4 *3 (-13 (-1112) (-34))) (-4 *4 (-13 (-1112) (-34))) + (-5 *1 (-1152 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1113) (-34))) - (-4 *3 (-13 (-1113) (-34))))) + (-12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1112) (-34))) + (-4 *3 (-13 (-1112) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1113) (-34))) - (-4 *3 (-13 (-1113) (-34))))) + (-12 (-5 *4 (-112)) (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1112) (-34))) + (-4 *3 (-13 (-1112) (-34))))) ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-654 *3)) (-4 *3 (-13 (-1113) (-34))) - (-5 *1 (-1154 *2 *3)) (-4 *2 (-13 (-1113) (-34))))) + (-12 (-5 *4 (-653 *3)) (-4 *3 (-13 (-1112) (-34))) + (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1112) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-654 (-1153 *2 *3))) (-4 *2 (-13 (-1113) (-34))) - (-4 *3 (-13 (-1113) (-34))) (-5 *1 (-1154 *2 *3)))) + (-12 (-5 *4 (-653 (-1152 *2 *3))) (-4 *2 (-13 (-1112) (-34))) + (-4 *3 (-13 (-1112) (-34))) (-5 *1 (-1153 *2 *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-654 (-1154 *2 *3))) (-5 *1 (-1154 *2 *3)) - (-4 *2 (-13 (-1113) (-34))) (-4 *3 (-13 (-1113) (-34))))) + (-12 (-5 *4 (-653 (-1153 *2 *3))) (-5 *1 (-1153 *2 *3)) + (-4 *2 (-13 (-1112) (-34))) (-4 *3 (-13 (-1112) (-34))))) ((*1 *1 *2) - (-12 (-5 *2 (-1153 *3 *4)) (-4 *3 (-13 (-1113) (-34))) - (-4 *4 (-13 (-1113) (-34))) (-5 *1 (-1154 *3 *4)))) + (-12 (-5 *2 (-1152 *3 *4)) (-4 *3 (-13 (-1112) (-34))) + (-4 *4 (-13 (-1112) (-34))) (-5 *1 (-1153 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1179 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-1041 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-654 (-699 *3))) (-4 *3 (-1062)) (-5 *1 (-1041 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-1041 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-654 (-699 *3))) (-4 *3 (-1062)) (-5 *1 (-1041 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-338))))) -(((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-539)))) - ((*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-539))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) - (-4 *3 (-1078 *6 *7 *8)) - (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4)))) - (-5 *1 (-1085 *6 *7 *8 *3 *4)) (-4 *4 (-1084 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4091 *9)))) - (-5 *5 (-112)) (-4 *8 (-1078 *6 *7 *4)) (-4 *9 (-1084 *6 *7 *4 *8)) - (-4 *6 (-462)) (-4 *7 (-803)) (-4 *4 (-860)) - (-5 *2 (-654 (-2 (|:| |val| *8) (|:| -4091 *9)))) - (-5 *1 (-1085 *6 *7 *4 *8 *9))))) + (-12 (-5 *1 (-1178 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015)))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) - (-4 *3 (-376 *4)))) - ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-598 *4)) - (-4 *4 (-358))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) - (-4 *6 (-803)) (-4 *7 (-960 *4 *6 *5)) - (-5 *2 - (-2 (|:| |sysok| (-112)) (|:| |z0| (-654 *7)) (|:| |n0| (-654 *7)))) - (-5 *1 (-935 *4 *5 *6 *7)) (-5 *3 (-654 *7))))) + (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1215)))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-621 *3)) + (-4 *3 (-13 (-439 *5) (-27) (-1215))) + (-4 *5 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) + (-5 *2 (-2 (|:| -3861 *3) (|:| |coeff| *3))) + (-5 *1 (-575 *5 *3 *6)) (-4 *6 (-1112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1280 (-698 *4))) (-4 *4 (-174)) + (-5 *2 (-1280 (-698 (-962 *4)))) (-5 *1 (-191 *4))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1112)) (-5 *1 (-103 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1112))))) +(((*1 *2 *2) + (-12 (-5 *2 (-653 *3)) (-4 *3 (-1256 (-573))) (-5 *1 (-495 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-112))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1230))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1189)) (-4 *5 (-623 (-902 (-573)))) + (-4 *5 (-896 (-573))) + (-4 *5 (-13 (-1050 (-573)) (-461) (-648 (-573)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-576 *5 *3)) (-4 *3 (-638)) + (-4 *3 (-13 (-27) (-1215) (-439 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1189)) (-5 *4 (-852 *2)) (-4 *2 (-1151)) + (-4 *2 (-13 (-27) (-1215) (-439 *5))) + (-4 *5 (-623 (-902 (-573)))) (-4 *5 (-896 (-573))) + (-4 *5 (-13 (-1050 (-573)) (-461) (-648 (-573)))) + (-5 *1 (-576 *5 *2))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2399 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-372)) (-4 *7 (-1257 *6)) - (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6))) - (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1216))) (-5 *2 (-112))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-781)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-932)))) + (-12 (-5 *3 (-653 (-416 (-962 (-573))))) (-5 *4 (-653 (-1189))) + (-5 *2 (-653 (-653 *5))) (-5 *1 (-388 *5)) + (-4 *5 (-13 (-857) (-371))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-416 (-962 (-573)))) (-5 *2 (-653 *4)) (-5 *1 (-388 *4)) + (-4 *4 (-13 (-857) (-371)))))) +(((*1 *1) (-5 *1 (-227))) ((*1 *1) (-5 *1 (-387)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-621 *1)) (-4 *1 (-309))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-780)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-931)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-573)) (-14 *3 (-780)) (-4 *4 (-174)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-932)) (-5 *1 (-158)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-931)) (-5 *1 (-158)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216))) + (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215))) (-5 *1 (-229 *3)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1231)) (-4 *2 (-736)))) + (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1230)) (-4 *2 (-735)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1231)) (-4 *2 (-736)))) + (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1230)) (-4 *2 (-735)))) ((*1 *1 *2 *1) - (-12 (-5 *1 (-302 *2)) (-4 *2 (-1125)) (-4 *2 (-1231)))) + (-12 (-5 *1 (-301 *2)) (-4 *2 (-1124)) (-4 *2 (-1230)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-302 *2)) (-4 *2 (-1125)) (-4 *2 (-1231)))) + (-12 (-5 *1 (-301 *2)) (-4 *2 (-1124)) (-4 *2 (-1230)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-331 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-132)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1113)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1113)))) + (-12 (-4 *1 (-330 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-132)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-369 *2)) (-4 *2 (-1112)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-369 *2)) (-4 *2 (-1112)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-390 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-860)))) + (-12 (-5 *1 (-389 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-859)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-391 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-1113)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1113)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1113)))) + (-12 (-4 *1 (-390 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-1112)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-394 *2)) (-4 *2 (-1112)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-394 *2)) (-4 *2 (-1112)))) ((*1 *1 *2 *1) - (-12 (-14 *3 (-654 (-1190))) (-4 *4 (-174)) - (-4 *6 (-244 (-2863 *3) (-781))) + (-12 (-14 *3 (-653 (-1189))) (-4 *4 (-174)) + (-4 *6 (-243 (-2862 *3) (-780))) (-14 *7 - (-1 (-112) (-2 (|:| -2576 *5) (|:| -3715 *6)) - (-2 (|:| -2576 *5) (|:| -3715 *6)))) - (-5 *1 (-471 *3 *4 *5 *6 *7 *2)) (-4 *5 (-860)) - (-4 *2 (-960 *4 *6 (-874 *3))))) + (-1 (-112) (-2 (|:| -2575 *5) (|:| -3907 *6)) + (-2 (|:| -2575 *5) (|:| -3907 *6)))) + (-5 *1 (-470 *3 *4 *5 *6 *7 *2)) (-4 *5 (-859)) + (-4 *2 (-959 *4 *6 (-873 *3))))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) - (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-960 *2 *3 *4)))) + (-12 (-4 *2 (-371)) (-4 *3 (-802)) (-4 *4 (-859)) + (-5 *1 (-513 *2 *3 *4 *5)) (-4 *5 (-959 *2 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1281 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-546))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-606 *3)) (-4 *3 (-1062)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1071)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1113)) - (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-1 *7 *5)) - (-5 *1 (-694 *5 *6 *7)))) + (-12 (-5 *2 (-1280 *3)) (-4 *3 (-357)) (-5 *1 (-537 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-545))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-605 *3)) (-4 *3 (-1061)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-655 *2)) (-4 *2 (-1070)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-859)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1112)) + (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-1 *7 *5)) + (-5 *1 (-693 *5 *6 *7)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-697 *3 *2 *4)) (-4 *3 (-1062)) (-4 *2 (-382 *3)) - (-4 *4 (-382 *3)))) + (-12 (-4 *1 (-696 *3 *2 *4)) (-4 *3 (-1061)) (-4 *2 (-381 *3)) + (-4 *4 (-381 *3)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-697 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) - (-4 *2 (-382 *3)))) + (-12 (-4 *1 (-696 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) + (-4 *2 (-381 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) - (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) + (-12 (-5 *2 (-573)) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) + (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) - (-4 *4 (-382 *2)))) + (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) + (-4 *4 (-381 *2)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) - (-4 *4 (-382 *2)))) + (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) + (-4 *4 (-381 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) - (-4 *4 (-382 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-730))) ((*1 *1 *1 *1) (-5 *1 (-872))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113)))) + (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) + (-4 *4 (-381 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-729))) ((*1 *1 *1 *1) (-5 *1 (-871))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1281 *4)) (-4 *4 (-1257 *3)) (-4 *3 (-566)) - (-5 *1 (-982 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-1071)))) - ((*1 *1 *1 *1) (-4 *1 (-1125))) + (-12 (-5 *2 (-1280 *4)) (-4 *4 (-1256 *3)) (-4 *3 (-565)) + (-5 *1 (-981 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-1070)))) + ((*1 *1 *1 *1) (-4 *1 (-1124))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1136 *3 *4 *2 *5)) (-4 *4 (-1062)) (-4 *2 (-244 *3 *4)) - (-4 *5 (-244 *3 *4)))) + (-12 (-4 *1 (-1135 *3 *4 *2 *5)) (-4 *4 (-1061)) (-4 *2 (-243 *3 *4)) + (-4 *5 (-243 *3 *4)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1136 *3 *4 *5 *2)) (-4 *4 (-1062)) (-4 *5 (-244 *3 *4)) - (-4 *2 (-244 *3 *4)))) + (-12 (-4 *1 (-1135 *3 *4 *5 *2)) (-4 *4 (-1061)) (-4 *5 (-243 *3 *4)) + (-4 *2 (-243 *3 *4)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-1062)) (-4 *4 (-860)) (-5 *1 (-1139 *3 *4 *2)) - (-4 *2 (-960 *3 (-541 *4) *4)))) + (-12 (-4 *3 (-1061)) (-4 *4 (-859)) (-5 *1 (-1138 *3 *4 *2)) + (-4 *2 (-959 *3 (-540 *4) *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-954 (-227))) (-5 *3 (-227)) (-5 *1 (-1227)))) + (-12 (-5 *2 (-953 (-227))) (-5 *3 (-227)) (-5 *1 (-1226)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-736)))) + (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-735)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-736)))) + (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-735)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-574)) (-4 *1 (-1279 *3)) (-4 *3 (-1231)) (-4 *3 (-21)))) + (-12 (-5 *2 (-573)) (-4 *1 (-1278 *3)) (-4 *3 (-1230)) (-4 *3 (-21)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062)))) + (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1298 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1062)))) + (-12 (-4 *1 (-1297 *3 *2)) (-4 *3 (-859)) (-4 *2 (-1061)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1304 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-856))))) + (-12 (-5 *1 (-1303 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-855))))) (((*1 *1 *2) - (-12 (-5 *2 (-1281 *3)) (-4 *3 (-372)) (-14 *6 (-1281 (-699 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-932)) (-14 *5 (-654 (-1190))))) - ((*1 *1 *2) (-12 (-5 *2 (-1138 (-574) (-622 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1231)))) + (-12 (-5 *2 (-1280 *3)) (-4 *3 (-371)) (-14 *6 (-1280 (-698 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))))) + ((*1 *1 *2) (-12 (-5 *2 (-1137 (-573) (-621 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1230)))) ((*1 *1 *2) - (-12 (-5 *2 (-1281 (-348 (-2956 'JINT 'X 'ELAM) (-2956) (-709)))) - (-5 *1 (-61 *3)) (-14 *3 (-1190)))) + (-12 (-5 *2 (-1280 (-347 (-2955 'JINT 'X 'ELAM) (-2955) (-708)))) + (-5 *1 (-61 *3)) (-14 *3 (-1189)))) ((*1 *1 *2) - (-12 (-5 *2 (-1281 (-348 (-2956) (-2956 'XC) (-709)))) - (-5 *1 (-63 *3)) (-14 *3 (-1190)))) + (-12 (-5 *2 (-1280 (-347 (-2955) (-2955 'XC) (-708)))) + (-5 *1 (-63 *3)) (-14 *3 (-1189)))) ((*1 *1 *2) - (-12 (-5 *2 (-348 (-2956 'X) (-2956) (-709))) (-5 *1 (-64 *3)) - (-14 *3 (-1190)))) + (-12 (-5 *2 (-347 (-2955 'X) (-2955) (-708))) (-5 *1 (-64 *3)) + (-14 *3 (-1189)))) ((*1 *1 *2) - (-12 (-5 *2 (-348 (-2956) (-2956 'XC) (-709))) (-5 *1 (-66 *3)) - (-14 *3 (-1190)))) + (-12 (-5 *2 (-347 (-2955) (-2955 'XC) (-708))) (-5 *1 (-66 *3)) + (-14 *3 (-1189)))) ((*1 *1 *2) - (-12 (-5 *2 (-1281 (-348 (-2956 'X) (-2956 '-1881) (-709)))) - (-5 *1 (-71 *3)) (-14 *3 (-1190)))) + (-12 (-5 *2 (-1280 (-347 (-2955 'X) (-2955 '-1880) (-708)))) + (-5 *1 (-71 *3)) (-14 *3 (-1189)))) ((*1 *1 *2) - (-12 (-5 *2 (-1281 (-348 (-2956) (-2956 'X) (-709)))) - (-5 *1 (-74 *3)) (-14 *3 (-1190)))) + (-12 (-5 *2 (-1280 (-347 (-2955) (-2955 'X) (-708)))) + (-5 *1 (-74 *3)) (-14 *3 (-1189)))) ((*1 *1 *2) - (-12 (-5 *2 (-1281 (-348 (-2956 'X 'EPS) (-2956 '-1881) (-709)))) - (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1190)) (-14 *4 (-1190)) - (-14 *5 (-1190)))) + (-12 (-5 *2 (-1280 (-347 (-2955 'X 'EPS) (-2955 '-1880) (-708)))) + (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1189)) (-14 *4 (-1189)) + (-14 *5 (-1189)))) ((*1 *1 *2) - (-12 (-5 *2 (-1281 (-348 (-2956 'EPS) (-2956 'YA 'YB) (-709)))) - (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1190)) (-14 *4 (-1190)) - (-14 *5 (-1190)))) + (-12 (-5 *2 (-1280 (-347 (-2955 'EPS) (-2955 'YA 'YB) (-708)))) + (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1189)) (-14 *4 (-1189)) + (-14 *5 (-1189)))) ((*1 *1 *2) - (-12 (-5 *2 (-348 (-2956) (-2956 'X) (-709))) (-5 *1 (-77 *3)) - (-14 *3 (-1190)))) + (-12 (-5 *2 (-347 (-2955) (-2955 'X) (-708))) (-5 *1 (-77 *3)) + (-14 *3 (-1189)))) ((*1 *1 *2) - (-12 (-5 *2 (-348 (-2956) (-2956 'X) (-709))) (-5 *1 (-78 *3)) - (-14 *3 (-1190)))) + (-12 (-5 *2 (-347 (-2955) (-2955 'X) (-708))) (-5 *1 (-78 *3)) + (-14 *3 (-1189)))) ((*1 *1 *2) - (-12 (-5 *2 (-1281 (-348 (-2956) (-2956 'XC) (-709)))) - (-5 *1 (-79 *3)) (-14 *3 (-1190)))) + (-12 (-5 *2 (-1280 (-347 (-2955) (-2955 'XC) (-708)))) + (-5 *1 (-79 *3)) (-14 *3 (-1189)))) ((*1 *1 *2) - (-12 (-5 *2 (-1281 (-348 (-2956) (-2956 'X) (-709)))) - (-5 *1 (-80 *3)) (-14 *3 (-1190)))) + (-12 (-5 *2 (-1280 (-347 (-2955) (-2955 'X) (-708)))) + (-5 *1 (-80 *3)) (-14 *3 (-1189)))) ((*1 *1 *2) - (-12 (-5 *2 (-1281 (-348 (-2956 'X '-1881) (-2956) (-709)))) - (-5 *1 (-82 *3)) (-14 *3 (-1190)))) + (-12 (-5 *2 (-1280 (-347 (-2955 'X '-1880) (-2955) (-708)))) + (-5 *1 (-82 *3)) (-14 *3 (-1189)))) ((*1 *1 *2) - (-12 (-5 *2 (-699 (-348 (-2956 'X '-1881) (-2956) (-709)))) - (-5 *1 (-83 *3)) (-14 *3 (-1190)))) + (-12 (-5 *2 (-698 (-347 (-2955 'X '-1880) (-2955) (-708)))) + (-5 *1 (-83 *3)) (-14 *3 (-1189)))) ((*1 *1 *2) - (-12 (-5 *2 (-699 (-348 (-2956 'X) (-2956) (-709)))) (-5 *1 (-84 *3)) - (-14 *3 (-1190)))) + (-12 (-5 *2 (-698 (-347 (-2955 'X) (-2955) (-708)))) (-5 *1 (-84 *3)) + (-14 *3 (-1189)))) ((*1 *1 *2) - (-12 (-5 *2 (-1281 (-348 (-2956 'X) (-2956) (-709)))) - (-5 *1 (-85 *3)) (-14 *3 (-1190)))) + (-12 (-5 *2 (-1280 (-347 (-2955 'X) (-2955) (-708)))) + (-5 *1 (-85 *3)) (-14 *3 (-1189)))) ((*1 *1 *2) - (-12 (-5 *2 (-1281 (-348 (-2956 'X) (-2956 '-1881) (-709)))) - (-5 *1 (-86 *3)) (-14 *3 (-1190)))) + (-12 (-5 *2 (-1280 (-347 (-2955 'X) (-2955 '-1880) (-708)))) + (-5 *1 (-86 *3)) (-14 *3 (-1189)))) ((*1 *1 *2) - (-12 (-5 *2 (-699 (-348 (-2956 'XL 'XR 'ELAM) (-2956) (-709)))) - (-5 *1 (-87 *3)) (-14 *3 (-1190)))) + (-12 (-5 *2 (-698 (-347 (-2955 'XL 'XR 'ELAM) (-2955) (-708)))) + (-5 *1 (-87 *3)) (-14 *3 (-1189)))) ((*1 *1 *2) - (-12 (-5 *2 (-348 (-2956 'X) (-2956 '-1881) (-709))) (-5 *1 (-89 *3)) - (-14 *3 (-1190)))) + (-12 (-5 *2 (-347 (-2955 'X) (-2955 '-1880) (-708))) (-5 *1 (-89 *3)) + (-14 *3 (-1189)))) ((*1 *1 *2) - (-12 (-5 *2 (-654 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) - (-14 *3 (-574)) (-14 *4 (-781)) (-4 *5 (-174)))) + (-12 (-5 *2 (-653 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) + (-14 *3 (-573)) (-14 *4 (-780)) (-4 *5 (-174)))) ((*1 *1 *2) - (-12 (-5 *2 (-654 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) - (-14 *3 (-574)) (-14 *4 (-781)))) + (-12 (-5 *2 (-653 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) + (-14 *3 (-573)) (-14 *4 (-780)))) ((*1 *1 *2) - (-12 (-5 *2 (-1155 *4 *5)) (-14 *4 (-781)) (-4 *5 (-174)) - (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)))) + (-12 (-5 *2 (-1154 *4 *5)) (-14 *4 (-780)) (-4 *5 (-174)) + (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-573)))) ((*1 *1 *2) - (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-781)) (-4 *5 (-174)) - (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)))) + (-12 (-5 *2 (-245 *4 *5)) (-14 *4 (-780)) (-4 *5 (-174)) + (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-573)))) ((*1 *2 *3) - (-12 (-5 *3 (-1281 (-699 *4))) (-4 *4 (-174)) - (-5 *2 (-1281 (-699 (-417 (-963 *4))))) (-5 *1 (-191 *4)))) + (-12 (-5 *3 (-1280 (-698 *4))) (-4 *4 (-174)) + (-5 *2 (-1280 (-698 (-416 (-962 *4))))) (-5 *1 (-191 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1105 (-324 *4))) - (-4 *4 (-13 (-860) (-566) (-624 (-388)))) (-5 *2 (-1105 (-388))) - (-5 *1 (-265 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-273 *2)) (-4 *2 (-860)))) - ((*1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-282)))) + (-12 (-5 *3 (-1104 (-323 *4))) + (-4 *4 (-13 (-859) (-565) (-623 (-387)))) (-5 *2 (-1104 (-387))) + (-5 *1 (-264 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-272 *2)) (-4 *2 (-859)))) + ((*1 *1 *2) (-12 (-5 *2 (-653 (-573))) (-5 *1 (-281)))) ((*1 *2 *1) - (-12 (-4 *2 (-1257 *3)) (-5 *1 (-297 *3 *2 *4 *5 *6 *7)) + (-12 (-4 *2 (-1256 *3)) (-5 *1 (-296 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1266 *4 *5 *6)) (-4 *4 (-13 (-27) (-1216) (-440 *3))) - (-14 *5 (-1190)) (-14 *6 *4) - (-4 *3 (-13 (-1051 (-574)) (-649 (-574)) (-462))) - (-5 *1 (-321 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1265 *4 *5 *6)) (-4 *4 (-13 (-27) (-1215) (-439 *3))) + (-14 *5 (-1189)) (-14 *6 *4) + (-4 *3 (-13 (-1050 (-573)) (-648 (-573)) (-461))) + (-5 *1 (-320 *3 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-5 *2 (-324 *5)) (-5 *1 (-348 *3 *4 *5)) - (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) + (-12 (-5 *2 (-323 *5)) (-5 *1 (-347 *3 *4 *5)) + (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) ((*1 *2 *3) - (-12 (-4 *4 (-358)) (-4 *2 (-337 *4)) (-5 *1 (-356 *3 *4 *2)) - (-4 *3 (-337 *4)))) + (-12 (-4 *4 (-357)) (-4 *2 (-336 *4)) (-5 *1 (-355 *3 *4 *2)) + (-4 *3 (-336 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-358)) (-4 *2 (-337 *4)) (-5 *1 (-356 *2 *4 *3)) - (-4 *3 (-337 *4)))) + (-12 (-4 *4 (-357)) (-4 *2 (-336 *4)) (-5 *1 (-355 *2 *4 *3)) + (-4 *3 (-336 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) - (-5 *2 (-1305 *3 *4)))) + (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)) + (-5 *2 (-1304 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) - (-5 *2 (-1296 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174)))) + (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)) + (-5 *2 (-1295 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-859)) (-4 *3 (-174)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) - (-4 *1 (-392)))) - ((*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-392)))) - ((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-392)))) - ((*1 *1 *2) (-12 (-5 *2 (-699 (-709))) (-4 *1 (-392)))) + (-5 *2 (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) + (-4 *1 (-391)))) + ((*1 *1 *2) (-12 (-5 *2 (-337)) (-4 *1 (-391)))) + ((*1 *1 *2) (-12 (-5 *2 (-653 (-337))) (-4 *1 (-391)))) + ((*1 *1 *2) (-12 (-5 *2 (-698 (-708))) (-4 *1 (-391)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) - (-4 *1 (-393)))) - ((*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-393)))) - ((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-393)))) - ((*1 *2 *3) (-12 (-5 *2 (-404)) (-5 *1 (-403 *3)) (-4 *3 (-1113)))) + (-5 *2 (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) + (-4 *1 (-392)))) + ((*1 *1 *2) (-12 (-5 *2 (-337)) (-4 *1 (-392)))) + ((*1 *1 *2) (-12 (-5 *2 (-653 (-337))) (-4 *1 (-392)))) + ((*1 *2 *3) (-12 (-5 *2 (-403)) (-5 *1 (-402 *3)) (-4 *3 (-1112)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) - (-4 *1 (-406)))) - ((*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-406)))) - ((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-406)))) + (-5 *2 (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) + (-4 *1 (-405)))) + ((*1 *1 *2) (-12 (-5 *2 (-337)) (-4 *1 (-405)))) + ((*1 *1 *2) (-12 (-5 *2 (-653 (-337))) (-4 *1 (-405)))) ((*1 *1 *2) - (-12 (-5 *2 (-302 (-324 (-171 (-388))))) (-5 *1 (-408 *3 *4 *5 *6)) - (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) - (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) + (-12 (-5 *2 (-301 (-323 (-171 (-387))))) (-5 *1 (-407 *3 *4 *5 *6)) + (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) + (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-302 (-324 (-388)))) (-5 *1 (-408 *3 *4 *5 *6)) - (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) - (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) + (-12 (-5 *2 (-301 (-323 (-387)))) (-5 *1 (-407 *3 *4 *5 *6)) + (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) + (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-302 (-324 (-574)))) (-5 *1 (-408 *3 *4 *5 *6)) - (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) - (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) + (-12 (-5 *2 (-301 (-323 (-573)))) (-5 *1 (-407 *3 *4 *5 *6)) + (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) + (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-324 (-171 (-388)))) (-5 *1 (-408 *3 *4 *5 *6)) - (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) - (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) + (-12 (-5 *2 (-323 (-171 (-387)))) (-5 *1 (-407 *3 *4 *5 *6)) + (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) + (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-324 (-388))) (-5 *1 (-408 *3 *4 *5 *6)) - (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) - (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) + (-12 (-5 *2 (-323 (-387))) (-5 *1 (-407 *3 *4 *5 *6)) + (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) + (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-324 (-574))) (-5 *1 (-408 *3 *4 *5 *6)) - (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) - (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) + (-12 (-5 *2 (-323 (-573))) (-5 *1 (-407 *3 *4 *5 *6)) + (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) + (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-302 (-324 (-704)))) (-5 *1 (-408 *3 *4 *5 *6)) - (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) - (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) + (-12 (-5 *2 (-301 (-323 (-703)))) (-5 *1 (-407 *3 *4 *5 *6)) + (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) + (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-302 (-324 (-709)))) (-5 *1 (-408 *3 *4 *5 *6)) - (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) - (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) + (-12 (-5 *2 (-301 (-323 (-708)))) (-5 *1 (-407 *3 *4 *5 *6)) + (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) + (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-302 (-324 (-711)))) (-5 *1 (-408 *3 *4 *5 *6)) - (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) - (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) + (-12 (-5 *2 (-301 (-323 (-710)))) (-5 *1 (-407 *3 *4 *5 *6)) + (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) + (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-324 (-704))) (-5 *1 (-408 *3 *4 *5 *6)) - (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) - (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) + (-12 (-5 *2 (-323 (-703))) (-5 *1 (-407 *3 *4 *5 *6)) + (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) + (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-324 (-709))) (-5 *1 (-408 *3 *4 *5 *6)) - (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) - (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) + (-12 (-5 *2 (-323 (-708))) (-5 *1 (-407 *3 *4 *5 *6)) + (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) + (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-324 (-711))) (-5 *1 (-408 *3 *4 *5 *6)) - (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) - (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) + (-12 (-5 *2 (-323 (-710))) (-5 *1 (-407 *3 *4 *5 *6)) + (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) + (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) - (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) - (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) - (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) + (-5 *2 (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) + (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) + (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) + (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-654 (-338))) (-5 *1 (-408 *3 *4 *5 *6)) - (-14 *3 (-1190)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) - (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) + (-12 (-5 *2 (-653 (-337))) (-5 *1 (-407 *3 *4 *5 *6)) + (-14 *3 (-1189)) (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) + (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-338)) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1190)) - (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) - (-14 *5 (-654 (-1190))) (-14 *6 (-1194)))) + (-12 (-5 *2 (-337)) (-5 *1 (-407 *3 *4 *5 *6)) (-14 *3 (-1189)) + (-14 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) + (-14 *5 (-653 (-1189))) (-14 *6 (-1193)))) ((*1 *1 *2) - (-12 (-5 *2 (-339 *4)) (-4 *4 (-13 (-860) (-21))) - (-5 *1 (-437 *3 *4)) (-4 *3 (-13 (-174) (-38 (-417 (-574))))))) + (-12 (-5 *2 (-338 *4)) (-4 *4 (-13 (-859) (-21))) + (-5 *1 (-436 *3 *4)) (-4 *3 (-13 (-174) (-38 (-416 (-573))))))) ((*1 *1 *2) - (-12 (-5 *1 (-437 *2 *3)) (-4 *2 (-13 (-174) (-38 (-417 (-574))))) - (-4 *3 (-13 (-860) (-21))))) + (-12 (-5 *1 (-436 *2 *3)) (-4 *2 (-13 (-174) (-38 (-416 (-573))))) + (-4 *3 (-13 (-859) (-21))))) ((*1 *1 *2) - (-12 (-5 *2 (-417 (-963 (-417 *3)))) (-4 *3 (-566)) (-4 *3 (-1113)) - (-4 *1 (-440 *3)))) + (-12 (-5 *2 (-416 (-962 (-416 *3)))) (-4 *3 (-565)) (-4 *3 (-1112)) + (-4 *1 (-439 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-963 (-417 *3))) (-4 *3 (-566)) (-4 *3 (-1113)) - (-4 *1 (-440 *3)))) + (-12 (-5 *2 (-962 (-416 *3))) (-4 *3 (-565)) (-4 *3 (-1112)) + (-4 *1 (-439 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-417 *3)) (-4 *3 (-566)) (-4 *3 (-1113)) - (-4 *1 (-440 *3)))) + (-12 (-5 *2 (-416 *3)) (-4 *3 (-565)) (-4 *3 (-1112)) + (-4 *1 (-439 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1138 *3 (-622 *1))) (-4 *3 (-1062)) (-4 *3 (-1113)) - (-4 *1 (-440 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-444)))) - ((*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-444)))) - ((*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-444)))) - ((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-444)))) - ((*1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-447)))) + (-12 (-5 *2 (-1137 *3 (-621 *1))) (-4 *3 (-1061)) (-4 *3 (-1112)) + (-4 *1 (-439 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-443)))) + ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-443)))) + ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-443)))) + ((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-443)))) + ((*1 *1 *2) (-12 (-5 *2 (-443)) (-5 *1 (-446)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) - (-4 *1 (-450)))) - ((*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-450)))) - ((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-450)))) - ((*1 *1 *2) (-12 (-5 *2 (-1281 (-709))) (-4 *1 (-450)))) + (-5 *2 (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) + (-4 *1 (-449)))) + ((*1 *1 *2) (-12 (-5 *2 (-337)) (-4 *1 (-449)))) + ((*1 *1 *2) (-12 (-5 *2 (-653 (-337))) (-4 *1 (-449)))) + ((*1 *1 *2) (-12 (-5 *2 (-1280 (-708))) (-4 *1 (-449)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1194)) (|:| -2050 (-654 (-338))))) - (-4 *1 (-451)))) - ((*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-451)))) - ((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-451)))) + (-5 *2 (-2 (|:| |localSymbols| (-1193)) (|:| -2049 (-653 (-337))))) + (-4 *1 (-450)))) + ((*1 *1 *2) (-12 (-5 *2 (-337)) (-4 *1 (-450)))) + ((*1 *1 *2) (-12 (-5 *2 (-653 (-337))) (-4 *1 (-450)))) ((*1 *1 *2) - (-12 (-5 *2 (-1281 (-417 (-963 *3)))) (-4 *3 (-174)) - (-14 *6 (-1281 (-699 *3))) (-5 *1 (-463 *3 *4 *5 *6)) - (-14 *4 (-932)) (-14 *5 (-654 (-1190))))) - ((*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-954 (-227))))) (-5 *1 (-478)))) - ((*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-478)))) + (-12 (-5 *2 (-1280 (-416 (-962 *3)))) (-4 *3 (-174)) + (-14 *6 (-1280 (-698 *3))) (-5 *1 (-462 *3 *4 *5 *6)) + (-14 *4 (-931)) (-14 *5 (-653 (-1189))))) + ((*1 *1 *2) (-12 (-5 *2 (-653 (-653 (-953 (-227))))) (-5 *1 (-477)))) + ((*1 *2 *1) (-12 (-5 *2 (-871)) (-5 *1 (-477)))) ((*1 *1 *2) - (-12 (-5 *2 (-1266 *3 *4 *5)) (-4 *3 (-1062)) (-14 *4 (-1190)) - (-14 *5 *3) (-5 *1 (-484 *3 *4 *5)))) + (-12 (-5 *2 (-1265 *3 *4 *5)) (-4 *3 (-1061)) (-14 *4 (-1189)) + (-14 *5 *3) (-5 *1 (-483 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-484 *3 *4 *5)) - (-4 *3 (-1062)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-1138 (-574) (-622 (-505)))) (-5 *1 (-505)))) - ((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-512)))) + (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-483 *3 *4 *5)) + (-4 *3 (-1061)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-1137 (-573) (-621 (-504)))) (-5 *1 (-504)))) + ((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-511)))) ((*1 *1 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-372)) - (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-654 (-1230))) (-5 *1 (-534)))) - ((*1 *1 *2) (-12 (-5 *2 (-654 (-1230))) (-5 *1 (-616)))) + (-12 (-5 *2 (-653 *6)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-371)) + (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-513 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-653 (-1229))) (-5 *1 (-533)))) + ((*1 *1 *2) (-12 (-5 *2 (-653 (-1229))) (-5 *1 (-615)))) ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-5 *1 (-617 *3 *2)) (-4 *2 (-754 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1231)))) - ((*1 *1 *2) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1231)))) - ((*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1062)))) + (-12 (-4 *3 (-174)) (-5 *1 (-616 *3 *2)) (-4 *2 (-753 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-622 *2)) (-4 *2 (-1230)))) + ((*1 *1 *2) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1230)))) + ((*1 *1 *2) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1061)))) ((*1 *2 *1) - (-12 (-5 *2 (-1301 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) - (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-932)))) + (-12 (-5 *2 (-1300 *3 *4)) (-5 *1 (-636 *3 *4 *5)) (-4 *3 (-859)) + (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-14 *5 (-931)))) ((*1 *2 *1) - (-12 (-5 *2 (-1296 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) - (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-932)))) + (-12 (-5 *2 (-1295 *3 *4)) (-5 *1 (-636 *3 *4 *5)) (-4 *3 (-859)) + (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-14 *5 (-931)))) ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-5 *1 (-645 *3 *2)) (-4 *2 (-754 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-687 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) - ((*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) + (-12 (-4 *3 (-174)) (-5 *1 (-644 *3 *2)) (-4 *2 (-753 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-686 *3)) (-5 *1 (-681 *3)) (-4 *3 (-859)))) + ((*1 *2 *1) (-12 (-5 *2 (-828 *3)) (-5 *1 (-681 *3)) (-4 *3 (-859)))) ((*1 *2 *1) - (-12 (-5 *2 (-969 (-969 (-969 *3)))) (-5 *1 (-685 *3)) - (-4 *3 (-1113)))) + (-12 (-5 *2 (-968 (-968 (-968 *3)))) (-5 *1 (-684 *3)) + (-4 *3 (-1112)))) ((*1 *1 *2) - (-12 (-5 *2 (-969 (-969 (-969 *3)))) (-4 *3 (-1113)) - (-5 *1 (-685 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) - ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-691)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-692 *3)) (-4 *3 (-1113)))) + (-12 (-5 *2 (-968 (-968 (-968 *3)))) (-4 *3 (-1112)) + (-5 *1 (-684 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-828 *3)) (-5 *1 (-686 *3)) (-4 *3 (-859)))) + ((*1 *1 *2) (-12 (-5 *2 (-1130)) (-5 *1 (-690)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-691 *3)) (-4 *3 (-1112)))) ((*1 *1 *2) - (-12 (-4 *3 (-1062)) (-4 *1 (-697 *3 *4 *2)) (-4 *4 (-382 *3)) - (-4 *2 (-382 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-171 (-388))) (-5 *1 (-704)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-711))) (-5 *1 (-704)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-709))) (-5 *1 (-704)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-574))) (-5 *1 (-704)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-388))) (-5 *1 (-704)))) - ((*1 *1 *2) (-12 (-5 *2 (-711)) (-5 *1 (-709)))) - ((*1 *2 *1) (-12 (-5 *2 (-388)) (-5 *1 (-709)))) - ((*1 *2 *3) - (-12 (-5 *3 (-324 (-574))) (-5 *2 (-324 (-711))) (-5 *1 (-711)))) - ((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1172)) (-5 *1 (-720)))) + (-12 (-4 *3 (-1061)) (-4 *1 (-696 *3 *4 *2)) (-4 *4 (-381 *3)) + (-4 *2 (-381 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-171 (-387))) (-5 *1 (-703)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-710))) (-5 *1 (-703)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-708))) (-5 *1 (-703)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-573))) (-5 *1 (-703)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-387))) (-5 *1 (-703)))) + ((*1 *1 *2) (-12 (-5 *2 (-710)) (-5 *1 (-708)))) + ((*1 *2 *1) (-12 (-5 *2 (-387)) (-5 *1 (-708)))) + ((*1 *2 *3) + (-12 (-5 *3 (-323 (-573))) (-5 *2 (-323 (-710))) (-5 *1 (-710)))) + ((*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1171)) (-5 *1 (-719)))) ((*1 *2 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-174)) (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-174)) (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-654 (-2 (|:| -1858 *3) (|:| -3832 *4)))) - (-4 *3 (-1062)) (-4 *4 (-736)) (-5 *1 (-745 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-773)))) + (-12 (-5 *2 (-653 (-2 (|:| -1857 *3) (|:| -3831 *4)))) + (-4 *3 (-1061)) (-4 *4 (-735)) (-5 *1 (-744 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-772)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) - (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) + (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) + (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| - (-2 (|:| |fn| (-324 (-227))) - (|:| -2367 (-654 (-1107 (-853 (-227))))) + (-2 (|:| |fn| (-323 (-227))) + (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) - (-5 *1 (-779)))) + (-5 *1 (-778)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-324 (-227))) - (|:| -2367 (-654 (-1107 (-853 (-227))))) (|:| |abserr| (-227)) + (-2 (|:| |fn| (-323 (-227))) + (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *1 (-779)))) + (-5 *1 (-778)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) - (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) + (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) + (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *1 (-779)))) - ((*1 *2 *3) (-12 (-5 *2 (-784)) (-5 *1 (-783 *3)) (-4 *3 (-1231)))) + (-5 *1 (-778)))) + ((*1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-782 *3)) (-4 *3 (-1230)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) - (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) + (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) + (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *1 (-818)))) - ((*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-834)))) + (-5 *1 (-817)))) + ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-833)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) - (|:| |lb| (-654 (-853 (-227)))) - (|:| |cf| (-654 (-324 (-227)))) - (|:| |ub| (-654 (-853 (-227)))))) + (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) + (|:| |lb| (-653 (-852 (-227)))) + (|:| |cf| (-653 (-323 (-227)))) + (|:| |ub| (-653 (-852 (-227)))))) (|:| |lsa| - (-2 (|:| |lfn| (-654 (-324 (-227)))) - (|:| -3818 (-654 (-227))))))) - (-5 *1 (-851)))) + (-2 (|:| |lfn| (-653 (-323 (-227)))) + (|:| -3816 (-653 (-227))))))) + (-5 *1 (-850)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) - (-5 *1 (-851)))) + (-2 (|:| |lfn| (-653 (-323 (-227)))) (|:| -3816 (-653 (-227))))) + (-5 *1 (-850)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) - (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) - (|:| |ub| (-654 (-853 (-227)))))) - (-5 *1 (-851)))) - ((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-868)))) - ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) - ((*1 *2 *3) - (-12 (-5 *3 (-963 (-48))) (-5 *2 (-324 (-574))) (-5 *1 (-885)))) - ((*1 *2 *3) - (-12 (-5 *3 (-417 (-963 (-48)))) (-5 *2 (-324 (-574))) - (-5 *1 (-885)))) - ((*1 *1 *2) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860)))) - ((*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) + (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) + (|:| |lb| (-653 (-852 (-227)))) (|:| |cf| (-653 (-323 (-227)))) + (|:| |ub| (-653 (-852 (-227)))))) + (-5 *1 (-850)))) + ((*1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-867)))) + ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-883)))) + ((*1 *2 *3) + (-12 (-5 *3 (-962 (-48))) (-5 *2 (-323 (-573))) (-5 *1 (-884)))) + ((*1 *2 *3) + (-12 (-5 *3 (-416 (-962 (-48)))) (-5 *2 (-323 (-573))) + (-5 *1 (-884)))) + ((*1 *1 *2) (-12 (-5 *1 (-903 *2)) (-4 *2 (-859)))) + ((*1 *2 *1) (-12 (-5 *2 (-828 *3)) (-5 *1 (-903 *3)) (-4 *3 (-859)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |pde| (-654 (-324 (-227)))) + (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| - (-654 + (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-781)) (|:| |boundaryType| (-574)) - (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) - (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) + (|:| |grid| (-780)) (|:| |boundaryType| (-573)) + (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) + (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227)))) - (-5 *1 (-909)))) + (-5 *1 (-908)))) ((*1 *1 *2) - (-12 (-5 *2 (-654 (-916 *3))) (-4 *3 (-1113)) (-5 *1 (-915 *3)))) + (-12 (-5 *2 (-653 (-915 *3))) (-4 *3 (-1112)) (-5 *1 (-914 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-654 (-916 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) - ((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-916 *3)))) + (-12 (-5 *2 (-653 (-915 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) + ((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-915 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1113)) (-5 *1 (-916 *3)))) + (-12 (-5 *2 (-653 (-653 *3))) (-4 *3 (-1112)) (-5 *1 (-915 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-417 (-428 *3))) (-4 *3 (-315)) (-5 *1 (-925 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-925 *3)) (-4 *3 (-315)))) + (-12 (-5 *2 (-416 (-427 *3))) (-4 *3 (-314)) (-5 *1 (-924 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-416 *3)) (-5 *1 (-924 *3)) (-4 *3 (-314)))) ((*1 *2 *3) - (-12 (-5 *3 (-487)) (-5 *2 (-324 *4)) (-5 *1 (-930 *4)) - (-4 *4 (-566)))) - ((*1 *2 *3) (-12 (-5 *2 (-1286)) (-5 *1 (-1046 *3)) (-4 *3 (-1231)))) - ((*1 *2 *3) (-12 (-5 *3 (-320)) (-5 *1 (-1046 *2)) (-4 *2 (-1231)))) + (-12 (-5 *3 (-486)) (-5 *2 (-323 *4)) (-5 *1 (-929 *4)) + (-4 *4 (-565)))) + ((*1 *2 *3) (-12 (-5 *2 (-1285)) (-5 *1 (-1045 *3)) (-4 *3 (-1230)))) + ((*1 *2 *3) (-12 (-5 *3 (-319)) (-5 *1 (-1045 *2)) (-4 *2 (-1230)))) ((*1 *1 *2) - (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-1047 *3 *4 *5 *2 *6)) (-4 *2 (-960 *3 *4 *5)) - (-14 *6 (-654 *2)))) + (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) + (-5 *1 (-1046 *3 *4 *5 *2 *6)) (-4 *2 (-959 *3 *4 *5)) + (-14 *6 (-653 *2)))) ((*1 *2 *3) - (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-1056 *3)) (-4 *3 (-566)))) + (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-1055 *3)) (-4 *3 (-565)))) ((*1 *1 *2) - (-12 (-4 *3 (-1062)) (-4 *4 (-860)) (-5 *1 (-1139 *3 *4 *2)) - (-4 *2 (-960 *3 (-541 *4) *4)))) + (-12 (-4 *3 (-1061)) (-4 *4 (-859)) (-5 *1 (-1138 *3 *4 *2)) + (-4 *2 (-959 *3 (-540 *4) *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-1062)) (-4 *2 (-860)) (-5 *1 (-1139 *3 *2 *4)) - (-4 *4 (-960 *3 (-541 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-872)))) - ((*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1157)))) + (-12 (-4 *3 (-1061)) (-4 *2 (-859)) (-5 *1 (-1138 *3 *2 *4)) + (-4 *4 (-959 *3 (-540 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-871)))) + ((*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1156)))) ((*1 *2 *3) - (-12 (-5 *2 (-1170 *3)) (-5 *1 (-1174 *3)) (-4 *3 (-1062)))) + (-12 (-5 *2 (-1169 *3)) (-5 *1 (-1173 *3)) (-4 *3 (-1061)))) ((*1 *1 *2) - (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1181 *3 *4 *5)) - (-4 *3 (-1062)) (-14 *5 *3))) + (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1180 *3 *4 *5)) + (-4 *3 (-1061)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1188 *3 *4 *5)) - (-4 *3 (-1062)) (-14 *5 *3))) + (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1187 *3 *4 *5)) + (-4 *3 (-1061)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1254 *4 *3)) (-4 *3 (-1062)) (-14 *4 (-1190)) - (-14 *5 *3) (-5 *1 (-1188 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-1189)))) - ((*1 *2 *1) (-12 (-5 *2 (-1203 (-1190) (-447))) (-5 *1 (-1194)))) - ((*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-1195)))) - ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1195)))) - ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1195)))) - ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1195)))) - ((*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-1202 *3)) (-4 *3 (-1113)))) - ((*1 *2 *3) (-12 (-5 *2 (-1211)) (-5 *1 (-1210 *3)) (-4 *3 (-1113)))) + (-12 (-5 *2 (-1253 *4 *3)) (-4 *3 (-1061)) (-14 *4 (-1189)) + (-14 *5 *3) (-5 *1 (-1187 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1188)))) + ((*1 *2 *1) (-12 (-5 *2 (-1202 (-1189) (-446))) (-5 *1 (-1193)))) + ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1194)))) + ((*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-1194)))) + ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1194)))) + ((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-1194)))) + ((*1 *2 *1) (-12 (-5 *2 (-871)) (-5 *1 (-1201 *3)) (-4 *3 (-1112)))) + ((*1 *2 *3) (-12 (-5 *2 (-1210)) (-5 *1 (-1209 *3)) (-4 *3 (-1112)))) ((*1 *1 *2) - (-12 (-5 *2 (-963 *3)) (-4 *3 (-1062)) (-5 *1 (-1225 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-1225 *3)) (-4 *3 (-1062)))) + (-12 (-5 *2 (-962 *3)) (-4 *3 (-1061)) (-5 *1 (-1224 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1224 *3)) (-4 *3 (-1061)))) ((*1 *1 *2) - (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1245 *3 *4 *5)) - (-4 *3 (-1062)) (-14 *5 *3))) + (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1244 *3 *4 *5)) + (-4 *3 (-1061)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1107 *3)) (-4 *3 (-1231)) (-5 *1 (-1248 *3)))) + (-12 (-5 *2 (-1106 *3)) (-4 *3 (-1230)) (-5 *1 (-1247 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1273 *3 *4 *5)) - (-4 *3 (-1062)) (-14 *5 *3))) + (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1272 *3 *4 *5)) + (-4 *3 (-1061)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1254 *4 *3)) (-4 *3 (-1062)) (-14 *4 (-1190)) - (-14 *5 *3) (-5 *1 (-1273 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-1277 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-1282)))) - ((*1 *2 *3) (-12 (-5 *3 (-478)) (-5 *2 (-1282)) (-5 *1 (-1285)))) + (-12 (-5 *2 (-1253 *4 *3)) (-4 *3 (-1061)) (-14 *4 (-1189)) + (-14 *5 *3) (-5 *1 (-1272 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1276 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-871)) (-5 *1 (-1281)))) + ((*1 *2 *3) (-12 (-5 *3 (-477)) (-5 *2 (-1281)) (-5 *1 (-1284)))) ((*1 *1 *2) - (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062)))) + (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061)))) ((*1 *2 *1) - (-12 (-5 *2 (-1305 *3 *4)) (-5 *1 (-1301 *3 *4)) (-4 *3 (-860)) + (-12 (-5 *2 (-1304 *3 *4)) (-5 *1 (-1300 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)))) ((*1 *2 *1) - (-12 (-5 *2 (-1296 *3 *4)) (-5 *1 (-1301 *3 *4)) (-4 *3 (-860)) + (-12 (-5 *2 (-1295 *3 *4)) (-5 *1 (-1300 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)))) ((*1 *1 *2) - (-12 (-5 *2 (-674 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) - (-5 *1 (-1301 *3 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-654 (-574))) (-5 *2 (-1192 (-417 (-574)))) - (-5 *1 (-192))))) -(((*1 *2 *1) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1062) (-727 (-417 (-574))))) - (-4 *5 (-860)) (-5 *1 (-1297 *4 *5 *2)) (-4 *2 (-1302 *5 *4))))) + (-12 (-5 *2 (-673 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)) + (-5 *1 (-1300 *3 *4))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) + (-5 *2 (-1047)) (-5 *1 (-761))))) +(((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-500))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-963 *6))) (-5 *4 (-654 (-1190))) - (-4 *6 (-13 (-566) (-1051 *5))) (-4 *5 (-566)) - (-5 *2 (-654 (-654 (-302 (-417 (-963 *6)))))) (-5 *1 (-1052 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-38 (-417 (-574)))) - (-5 *2 (-2 (|:| -2343 (-1170 *4)) (|:| -2352 (-1170 *4)))) - (-5 *1 (-1176 *4)) (-5 *3 (-1170 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1231))))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1190)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-654 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-654 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -2399 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1216) (-27) (-440 *8))) - (-4 *8 (-13 (-462) (-148) (-1051 *3) (-649 *3))) (-5 *3 (-574)) - (-5 *2 (-654 *4)) (-5 *1 (-1027 *8 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-654 (-654 *6))) (-4 *6 (-960 *3 *5 *4)) - (-4 *3 (-13 (-315) (-148))) (-4 *4 (-13 (-860) (-624 (-1190)))) - (-4 *5 (-803)) (-5 *1 (-935 *3 *4 *5 *6))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |polnum| (-792 *3)) (|:| |polden| *3) (|:| -3103 (-781)))) - (-5 *1 (-792 *3)) (-4 *3 (-1062)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3103 (-781)))) - (-4 *1 (-1078 *3 *4 *5))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-803)) (-4 *7 (-960 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860)) - (-5 *2 (-112)) (-5 *1 (-459 *4 *5 *6 *7))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1248 (-574))) (-4 *1 (-290 *3)) (-4 *3 (-1231)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-290 *3)) (-4 *3 (-1231))))) -(((*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-781))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-654 (-954 *3)))))) + (-12 (-5 *3 (-653 (-698 *5))) (-5 *4 (-573)) (-4 *5 (-371)) + (-4 *5 (-1061)) (-5 *2 (-112)) (-5 *1 (-1041 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 (-698 *4))) (-4 *4 (-371)) (-4 *4 (-1061)) + (-5 *2 (-112)) (-5 *1 (-1041 *4))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) (((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-654 (-574))) - (|:| |cols| (-654 (-574))))) - (-5 *4 (-699 *12)) (-5 *5 (-654 (-417 (-963 *9)))) - (-5 *6 (-654 (-654 *12))) (-5 *7 (-781)) (-5 *8 (-574)) - (-4 *9 (-13 (-315) (-148))) (-4 *12 (-960 *9 *11 *10)) - (-4 *10 (-13 (-860) (-624 (-1190)))) (-4 *11 (-803)) + (-2 (|:| |det| *12) (|:| |rows| (-653 (-573))) + (|:| |cols| (-653 (-573))))) + (-5 *4 (-698 *12)) (-5 *5 (-653 (-416 (-962 *9)))) + (-5 *6 (-653 (-653 *12))) (-5 *7 (-780)) (-5 *8 (-573)) + (-4 *9 (-13 (-314) (-148))) (-4 *12 (-959 *9 *11 *10)) + (-4 *10 (-13 (-859) (-623 (-1189)))) (-4 *11 (-802)) (-5 *2 - (-2 (|:| |eqzro| (-654 *12)) (|:| |neqzro| (-654 *12)) - (|:| |wcond| (-654 (-963 *9))) + (-2 (|:| |eqzro| (-653 *12)) (|:| |neqzro| (-653 *12)) + (|:| |wcond| (-653 (-962 *9))) (|:| |bsoln| - (-2 (|:| |partsol| (-1281 (-417 (-963 *9)))) - (|:| -1882 (-654 (-1281 (-417 (-963 *9))))))))) - (-5 *1 (-935 *9 *10 *11 *12))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1116 *2 *3 *4 *5 *6)) (-4 *2 (-1113)) (-4 *3 (-1113)) - (-4 *4 (-1113)) (-4 *5 (-1113)) (-4 *6 (-1113))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) - (-4 *6 (-803)) (-5 *2 (-654 (-654 (-574)))) - (-5 *1 (-935 *4 *5 *6 *7)) (-5 *3 (-574)) (-4 *7 (-960 *4 *6 *5))))) -(((*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) - ((*1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) - ((*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860)))) + (-2 (|:| |partsol| (-1280 (-416 (-962 *9)))) + (|:| -3914 (-653 (-1280 (-416 (-962 *9))))))))) + (-5 *1 (-934 *9 *10 *11 *12))))) +(((*1 *2 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-857)) (-5 *1 (-310 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1215)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *1)) + (-4 *1 (-1077 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) + (-4 *5 (-381 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-653 (-953 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1280 *4)) (-4 *4 (-1061)) (-4 *2 (-1256 *4)) + (-5 *1 (-453 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-416 (-1185 (-323 *5)))) (-5 *3 (-1280 (-323 *5))) + (-5 *4 (-573)) (-4 *5 (-565)) (-5 *1 (-1142 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-371)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) + (-5 *2 (-780)) (-5 *1 (-530 *4 *5 *6 *3)) (-4 *3 (-696 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) + (-4 *5 (-381 *3)) (-4 *3 (-565)) (-5 *2 (-780)))) + ((*1 *2 *3) + (-12 (-4 *4 (-565)) (-4 *4 (-174)) (-4 *5 (-381 *4)) + (-4 *6 (-381 *4)) (-5 *2 (-780)) (-5 *1 (-697 *4 *5 *6 *3)) + (-4 *3 (-696 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-565)) + (-5 *2 (-780))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1230))))) +(((*1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871))))) +(((*1 *1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-859)))) + ((*1 *1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-859)))) + ((*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-859)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1224 *2 *3 *4 *5)) (-4 *2 (-566)) - (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-1078 *2 *3 *4)))) + (|partial| -12 (-4 *1 (-1223 *2 *3 *4 *5)) (-4 *2 (-565)) + (-4 *3 (-802)) (-4 *4 (-859)) (-4 *5 (-1077 *2 *3 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-1269 *3)) (-4 *3 (-1231)))) - ((*1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231))))) -(((*1 *1 *1 *1) (-4 *1 (-671)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768))))) + (-12 (-5 *2 (-780)) (-4 *1 (-1268 *3)) (-4 *3 (-1230)))) + ((*1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230))))) +(((*1 *1 *1 *1) (-4 *1 (-670)))) +(((*1 *1 *1) + (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) + (-4 *4 (-859))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-4 *3 (-1077 *5 *6 *7)) + (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) + (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-1112)) + (-4 *4 (-1112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-653 (-653 (-173))))))) +(((*1 *2) + (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) + (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1186 *2)) (-4 *2 (-960 (-417 (-963 *6)) *5 *4)) - (-5 *1 (-742 *5 *4 *6 *2)) (-4 *5 (-803)) - (-4 *4 (-13 (-860) (-10 -8 (-15 -1836 ((-1190) $))))) - (-4 *6 (-566))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-574)) (-5 *5 (-112)) (-5 *6 (-699 (-227))) - (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) - (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-763))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-622 *4)) (-5 *6 (-1186 *4)) - (-4 *4 (-13 (-440 *7) (-27) (-1216))) - (-4 *7 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1882 (-654 *4)))) - (-5 *1 (-570 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1113)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-622 *4)) (-5 *6 (-417 (-1186 *4))) - (-4 *4 (-13 (-440 *7) (-27) (-1216))) - (-4 *7 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1882 (-654 *4)))) - (-5 *1 (-570 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1113))))) -(((*1 *1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1216)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-372) (-858))) (-5 *1 (-183 *3 *2)) - (-4 *2 (-1257 (-171 *3)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834))))) + (-12 (-5 *3 (-653 (-1 (-112) *8))) (-4 *8 (-1077 *5 *6 *7)) + (-4 *5 (-565)) (-4 *6 (-802)) (-4 *7 (-859)) + (-5 *2 (-2 (|:| |goodPols| (-653 *8)) (|:| |badPols| (-653 *8)))) + (-5 *1 (-989 *5 *6 *7 *8)) (-5 *4 (-653 *8))))) +(((*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) + ((*1 *1 *1 *1) (-5 *1 (-871)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1185 *1)) (-4 *1 (-1024))))) +(((*1 *1 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-21)) (-4 *2 (-1230))))) (((*1 *2 *1) - (-12 (-4 *1 (-614 *3 *2)) (-4 *3 (-1113)) (-4 *3 (-860)) - (-4 *2 (-1231)))) - ((*1 *2 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) - ((*1 *2 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) + (-12 (-4 *1 (-613 *3 *2)) (-4 *3 (-1112)) (-4 *3 (-859)) + (-4 *2 (-1230)))) + ((*1 *2 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-859)))) + ((*1 *2 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-859)))) ((*1 *2 *1) - (-12 (-4 *2 (-1231)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1231)))) - ((*1 *2 *1) (-12 (-5 *2 (-682 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) + (-12 (-4 *2 (-1230)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1230)))) + ((*1 *2 *1) (-12 (-5 *2 (-681 *3)) (-5 *1 (-903 *3)) (-4 *3 (-859)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) - (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) + (-4 *4 (-802)) (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-1269 *3)) (-4 *3 (-1231)))) - ((*1 *2 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231))))) + (-12 (-5 *2 (-780)) (-4 *1 (-1268 *3)) (-4 *3 (-1230)))) + ((*1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230))))) (((*1 *1 *2) - (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1062)) (-4 *1 (-697 *3 *4 *5)) - (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-872)))) (-5 *1 (-872)))) + (-12 (-5 *2 (-653 (-653 *3))) (-4 *3 (-1061)) (-4 *1 (-696 *3 *4 *5)) + (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-653 (-653 (-871)))) (-5 *1 (-871)))) ((*1 *2 *1) - (-12 (-5 *2 (-1155 *3 *4)) (-5 *1 (-1006 *3 *4)) (-14 *3 (-932)) - (-4 *4 (-372)))) + (-12 (-5 *2 (-1154 *3 *4)) (-5 *1 (-1005 *3 *4)) (-14 *3 (-931)) + (-4 *4 (-371)))) ((*1 *1 *2) - (-12 (-5 *2 (-654 (-654 *5))) (-4 *5 (-1062)) - (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *6 (-244 *4 *5)) - (-4 *7 (-244 *3 *5))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-954 *5)) (-5 *3 (-781)) (-4 *5 (-1062)) - (-5 *1 (-1178 *4 *5)) (-14 *4 (-932))))) -(((*1 *1 *1 *1) (-4 *1 (-671)))) -(((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) - (-4 *3 (-13 (-440 *6) (-27) (-1216))) - (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-576 *6 *3 *7)) (-4 *7 (-1113))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-372) (-858))) - (-5 *2 (-2 (|:| |start| *3) (|:| -4219 (-428 *3)))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1257 (-171 *4)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-954 *4)) (-4 *4 (-1062)) (-5 *1 (-1178 *3 *4)) - (-14 *3 (-932))))) + (-12 (-5 *2 (-653 (-653 *5))) (-4 *5 (-1061)) + (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *6 (-243 *4 *5)) + (-4 *7 (-243 *3 *5))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-913 *3)) (-4 *3 (-1112)) (-5 *2 (-1114 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1112)) (-5 *2 (-1114 (-653 *4))) (-5 *1 (-914 *4)) + (-5 *3 (-653 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1112)) (-5 *2 (-1114 (-1114 *4))) (-5 *1 (-914 *4)) + (-5 *3 (-1114 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-1114 *3)) (-5 *1 (-914 *3)) (-4 *3 (-1112))))) (((*1 *2 *1) - (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1298 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1062)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1304 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-856))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-963 *4))) (-4 *4 (-462)) (-5 *2 (-112)) - (-5 *1 (-369 *4 *5)) (-14 *5 (-654 (-1190))))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-790 *4 (-874 *5)))) (-4 *4 (-462)) - (-14 *5 (-654 (-1190))) (-5 *2 (-112)) (-5 *1 (-638 *4 *5))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1248 (-574)))))) + (-12 (-5 *2 (-2 (|:| |var| (-653 (-1189))) (|:| |pred| (-52)))) + (-5 *1 (-902 *3)) (-4 *3 (-1112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) +(((*1 *1 *1 *1) (-4 *1 (-670)))) +(((*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1230)) (-5 *2 (-780))))) +(((*1 *2 *1) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-403)))) + ((*1 *2 *1) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1210))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-761))))) (((*1 *1 *1) - (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1062) (-860))) - (-14 *3 (-654 (-1190)))))) + (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-112)) (-5 *5 (-698 (-171 (-227)))) + (-5 *2 (-1047)) (-5 *1 (-764))))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-760))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-761))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-653 *6)) (-5 *4 (-653 (-252 *5 *6))) (-4 *6 (-461)) + (-5 *2 (-252 *5 *6)) (-14 *5 (-653 (-1189))) (-5 *1 (-640 *5 *6))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-658 *5)) (-4 *5 (-1062)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-862 *5)))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-657 *5)) (-4 *5 (-1061)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-861 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-699 *3)) (-4 *1 (-427 *3)) (-4 *3 (-174)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)))) + (-12 (-5 *2 (-698 *3)) (-4 *1 (-426 *3)) (-4 *3 (-174)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)))) ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1062)) - (-5 *1 (-863 *2 *3)) (-4 *3 (-862 *2))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-462))))) -(((*1 *2 *3) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-781)) - (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-960 *4 *5 *6))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1113)) (-5 *1 (-103 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1113))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-566)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-1294 *4 *5 *6 *7))) - (-5 *1 (-1294 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-654 *9)) (-5 *4 (-1 (-112) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1078 *6 *7 *8)) (-4 *6 (-566)) - (-4 *7 (-803)) (-4 *8 (-860)) (-5 *2 (-654 (-1294 *6 *7 *8 *9))) - (-5 *1 (-1294 *6 *7 *8 *9))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-925 *3)) (-4 *3 (-315))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-633 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -3904 *4) (|:| |sol?| (-112))) - (-574) *4)) - (-4 *4 (-372)) (-4 *5 (-1257 *4)) (-5 *1 (-584 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1107 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1107 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-308)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1107 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-313))))) + (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1061)) + (-5 *1 (-862 *2 *3)) (-4 *3 (-861 *2))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-765))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1280 *4)) (-4 *4 (-13 (-1061) (-648 *5))) + (-4 *5 (-371)) (-4 *5 (-565)) (-5 *2 (-1280 *5)) + (-5 *1 (-647 *5 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1280 *4)) (-4 *4 (-13 (-1061) (-648 *5))) + (-2075 (-4 *5 (-371))) (-4 *5 (-565)) (-5 *2 (-1280 (-416 *5))) + (-5 *1 (-647 *5 *4))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1112)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-5 *2 (-653 (-490 *3 *4))) (-14 *3 (-653 (-1189))) + (-4 *4 (-461)) (-5 *1 (-640 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)) - (-5 *2 (-829 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-856)) (-5 *1 (-1304 *3 *2)) (-4 *3 (-1062))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-606 *3)) (-4 *3 (-1062)))) - ((*1 *2 *1) - (-12 (-4 *1 (-986 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-802)) - (-4 *5 (-860)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-1177 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1177 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1061)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1145 (-227))) (-5 *1 (-1282)))) + ((*1 *2 *1) (-12 (-5 *2 (-1145 (-227))) (-5 *1 (-1282))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-760))))) +(((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-859)) (-5 *1 (-127 *3))))) +(((*1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-838))))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) + (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) + (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) + (-5 *2 (-1047)) (-5 *1 (-764)))) + ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) + (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) + (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-397)) + (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-764))))) +(((*1 *1 *2 *3 *1) + (-12 (-14 *4 (-653 (-1189))) (-4 *2 (-174)) + (-4 *3 (-243 (-2862 *4) (-780))) + (-14 *6 + (-1 (-112) (-2 (|:| -2575 *5) (|:| -3907 *3)) + (-2 (|:| -2575 *5) (|:| -3907 *3)))) + (-5 *1 (-470 *4 *2 *5 *3 *6 *7)) (-4 *5 (-859)) + (-4 *7 (-959 *2 *3 (-873 *4)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-515)) (-5 *3 (-653 (-975))) (-5 *1 (-109))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1185 *1)) (-4 *1 (-461)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1185 *6)) (-4 *6 (-959 *5 *3 *4)) (-4 *3 (-802)) + (-4 *4 (-859)) (-4 *5 (-919)) (-5 *1 (-466 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1185 *1)) (-4 *1 (-919))))) (((*1 *2 *2) - (-12 - (-5 *2 - (-1000 (-417 (-574)) (-874 *3) (-246 *4 (-781)) - (-253 *3 (-417 (-574))))) - (-14 *3 (-654 (-1190))) (-14 *4 (-781)) (-5 *1 (-999 *3 *4))))) + (-12 (-4 *3 (-565)) (-4 *3 (-174)) (-4 *4 (-381 *3)) + (-4 *5 (-381 *3)) (-5 *1 (-697 *3 *4 *5 *2)) + (-4 *2 (-696 *3 *4 *5))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-573)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-427 *2)) (-4 *2 (-565))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1112)) (-5 *2 (-899 *3 *4)) (-5 *1 (-895 *3 *4 *5)) + (-4 *3 (-1112)) (-4 *5 (-675 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-976 *4)) (-4 *4 (-1112)) (-5 *2 (-1114 *4)) + (-5 *1 (-977 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-653 (-653 (-653 *4)))) (-5 *2 (-653 (-653 *4))) + (-4 *4 (-859)) (-5 *1 (-1200 *4))))) +(((*1 *1) (-4 *1 (-979)))) (((*1 *2 *3 *4) - (-12 - (-5 *3 - (-654 - (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) - (|:| |wcond| (-654 (-963 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1281 (-417 (-963 *5)))) - (|:| -1882 (-654 (-1281 (-417 (-963 *5)))))))))) - (-5 *4 (-1172)) (-4 *5 (-13 (-315) (-148))) (-4 *8 (-960 *5 *7 *6)) - (-4 *6 (-13 (-860) (-624 (-1190)))) (-4 *7 (-803)) (-5 *2 (-574)) - (-5 *1 (-935 *5 *6 *7 *8))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-112)) (-5 *5 (-699 (-227))) - (-5 *2 (-1048)) (-5 *1 (-765))))) -(((*1 *2 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1062)))) - ((*1 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1062))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1281 *6)) (-5 *4 (-1281 (-574))) (-5 *5 (-574)) - (-4 *6 (-1113)) (-5 *2 (-1 *6)) (-5 *1 (-1030 *6))))) -(((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-1193)))) - ((*1 *2 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-1286)) (-5 *1 (-1193)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1190)) (-5 *2 (-1286)) (-5 *1 (-1193))))) -(((*1 *2) - (-12 - (-5 *2 (-2 (|:| -2401 (-654 (-1190))) (|:| -2276 (-654 (-1190))))) - (-5 *1 (-1233))))) + (-12 (-5 *3 (-830)) (-5 *4 (-52)) (-5 *2 (-1285)) (-5 *1 (-840))))) +(((*1 *1 *1) (-12 (-5 *1 (-427 *2)) (-4 *2 (-565))))) +(((*1 *2 *1) (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1230)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) + (-4 *4 (-1061))))) +(((*1 *1 *1) (-5 *1 (-1075)))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1189)) (-5 *3 (-387)) (-5 *1 (-1075))))) (((*1 *2 *3) - (-12 (-4 *4 (-358)) (-5 *2 (-428 (-1186 (-1186 *4)))) - (-5 *1 (-1229 *4)) (-5 *3 (-1186 (-1186 *4)))))) -(((*1 *1) (-4 *1 (-980)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-781)) (-4 *1 (-1257 *4)) (-4 *4 (-1062)) - (-5 *2 (-1281 *4))))) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) + (-4 *5 (-1256 *4)) (-5 *2 (-653 (-662 (-416 *5)))) + (-5 *1 (-666 *4 *5)) (-5 *3 (-662 (-416 *5)))))) +(((*1 *1 *1) (-4 *1 (-670)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) - (-5 *2 (-654 *4)) (-5 *1 (-1141 *3 *4)) (-4 *3 (-1257 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) - (-5 *2 (-654 *3)) (-5 *1 (-1141 *4 *3)) (-4 *4 (-1257 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872))))) -(((*1 *2 *2) - (-12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) - (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) + (|partial| -12 (-5 *2 (-573)) (-5 *1 (-578 *3)) (-4 *3 (-1050 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-1189)) + (-4 *5 (-13 (-314) (-148))) (-5 *2 (-653 (-301 (-323 *5)))) + (-5 *1 (-1141 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) - (-4 *7 (-1005 *4)) (-4 *2 (-697 *7 *8 *9)) - (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-697 *4 *5 *6)) - (-4 *8 (-382 *7)) (-4 *9 (-382 *7)))) - ((*1 *1 *1) - (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) - (-4 *4 (-382 *2)) (-4 *2 (-315)))) - ((*1 *2 *2) - (-12 (-4 *3 (-315)) (-4 *3 (-174)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) - (-4 *2 (-697 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1066 *2 *3 *4 *5 *6)) (-4 *4 (-1062)) - (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *2 *4)) (-4 *4 (-315))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-574)) (-5 *1 (-324 *3)) (-4 *3 (-566)) (-4 *3 (-1113))))) -(((*1 *1 *1) (-4 *1 (-671)))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4456)) (-4 *1 (-241 *3)) - (-4 *3 (-1113)))) - ((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4456)) (-4 *1 (-241 *2)) (-4 *2 (-1113)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-290 *2)) (-4 *2 (-1231)) (-4 *2 (-1113)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-290 *3)) (-4 *3 (-1231)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-620 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1113)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-574)) (-4 *4 (-1113)) - (-5 *1 (-747 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-5 *1 (-747 *2)) (-4 *2 (-1113)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1153 *3 *4)) (-4 *3 (-13 (-1113) (-34))) - (-4 *4 (-13 (-1113) (-34))) (-5 *1 (-1154 *3 *4))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-757))))) -(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) - ((*1 *1 *1) (-4 *1 (-1157)))) -(((*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-462)))) - ((*1 *1 *1 *1) (-4 *1 (-462))) + (-12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-13 (-314) (-148))) + (-5 *2 (-653 (-301 (-323 *4)))) (-5 *1 (-1141 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-301 (-416 (-962 *5)))) (-5 *4 (-1189)) + (-4 *5 (-13 (-314) (-148))) (-5 *2 (-653 (-301 (-323 *5)))) + (-5 *1 (-1141 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-301 (-416 (-962 *4)))) (-4 *4 (-13 (-314) (-148))) + (-5 *2 (-653 (-301 (-323 *4)))) (-5 *1 (-1141 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-416 (-962 *5)))) (-5 *4 (-653 (-1189))) + (-4 *5 (-13 (-314) (-148))) (-5 *2 (-653 (-653 (-301 (-323 *5))))) + (-5 *1 (-1141 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-654 *2)) (-5 *1 (-496 *2)) (-4 *2 (-1257 (-574))))) + (-12 (-5 *3 (-653 (-416 (-962 *4)))) (-4 *4 (-13 (-314) (-148))) + (-5 *2 (-653 (-653 (-301 (-323 *4))))) (-5 *1 (-1141 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-301 (-416 (-962 *5))))) (-5 *4 (-653 (-1189))) + (-4 *5 (-13 (-314) (-148))) (-5 *2 (-653 (-653 (-301 (-323 *5))))) + (-5 *1 (-1141 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 (-301 (-416 (-962 *4))))) + (-4 *4 (-13 (-314) (-148))) (-5 *2 (-653 (-653 (-301 (-323 *4))))) + (-5 *1 (-1141 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-653 *1)) (-4 *1 (-461)))) + ((*1 *1 *1 *1) (-4 *1 (-461))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 *2)) (-5 *1 (-495 *2)) (-4 *2 (-1256 (-573))))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1257 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-781))) + (-12 (-5 *3 (-573)) (-5 *1 (-705 *2)) (-4 *2 (-1256 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-780))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315)) - (-5 *1 (-927 *3 *4 *5 *2)) (-4 *2 (-960 *5 *3 *4)))) + (-12 (-4 *3 (-802)) (-4 *4 (-859)) (-4 *5 (-314)) + (-5 *1 (-926 *3 *4 *5 *2)) (-4 *2 (-959 *5 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-960 *6 *4 *5)) - (-5 *1 (-927 *4 *5 *6 *2)) (-4 *4 (-803)) (-4 *5 (-860)) - (-4 *6 (-315)))) + (-12 (-5 *3 (-653 *2)) (-4 *2 (-959 *6 *4 *5)) + (-5 *1 (-926 *4 *5 *6 *2)) (-4 *4 (-802)) (-4 *5 (-859)) + (-4 *6 (-314)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1186 *6)) (-4 *6 (-960 *5 *3 *4)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-927 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1185 *6)) (-4 *6 (-959 *5 *3 *4)) (-4 *3 (-802)) + (-4 *4 (-859)) (-4 *5 (-314)) (-5 *1 (-926 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-654 (-1186 *7))) (-4 *4 (-803)) (-4 *5 (-860)) - (-4 *6 (-315)) (-5 *2 (-1186 *7)) (-5 *1 (-927 *4 *5 *6 *7)) - (-4 *7 (-960 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-932))) + (-12 (-5 *3 (-653 (-1185 *7))) (-4 *4 (-802)) (-4 *5 (-859)) + (-4 *6 (-314)) (-5 *2 (-1185 *7)) (-5 *1 (-926 *4 *5 *6 *7)) + (-4 *7 (-959 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-931))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-462)) (-4 *3 (-566)) (-5 *1 (-982 *3 *2)) - (-4 *2 (-1257 *3)))) + (-12 (-4 *3 (-461)) (-4 *3 (-565)) (-5 *1 (-981 *3 *2)) + (-4 *2 (-1256 *3)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-462))))) -(((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1281 *1)) (-4 *1 (-379 *2 *4)) (-4 *4 (-1257 *2)) - (-4 *2 (-174)))) - ((*1 *2) - (-12 (-4 *4 (-1257 *2)) (-4 *2 (-174)) (-5 *1 (-418 *3 *2 *4)) - (-4 *3 (-419 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-419 *2 *3)) (-4 *3 (-1257 *2)) (-4 *2 (-174)))) - ((*1 *2) - (-12 (-4 *3 (-1257 *2)) (-5 *2 (-574)) (-5 *1 (-778 *3 *4)) - (-4 *4 (-419 *2 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-960 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *2 (-860)) (-4 *3 (-174)))) - ((*1 *2 *3) - (-12 (-4 *2 (-566)) (-5 *1 (-982 *2 *3)) (-4 *3 (-1257 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1062)) (-4 *2 (-174))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-932))) (-5 *4 (-654 (-574))) - (-5 *2 (-699 (-574))) (-5 *1 (-1123))))) -(((*1 *2 *2) (-12 (-5 *1 (-972 *2)) (-4 *2 (-555))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1062)) - (-4 *2 (-13 (-414) (-1051 *4) (-372) (-1216) (-292))) - (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1257 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-932)) (-4 *5 (-1062)) - (-4 *2 (-13 (-414) (-1051 *5) (-372) (-1216) (-292))) - (-5 *1 (-453 *5 *3 *2)) (-4 *3 (-1257 *5))))) + (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) + (-4 *4 (-859)) (-4 *2 (-461))))) +(((*1 *1 *2) + (-12 (-5 *2 (-653 *1)) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-416 *1)) (-4 *1 (-1256 *3)) (-4 *3 (-1061)) + (-4 *3 (-565)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-1256 *2)) (-4 *2 (-1061)) (-4 *2 (-565))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) + (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-653 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-653 (-173)))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1256 *3)) (-5 *1 (-408 *3 *2)) + (-4 *3 (-13 (-371) (-148)))))) (((*1 *1 *1) (-5 *1 (-48))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1231)) - (-4 *2 (-1231)) (-5 *1 (-58 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1230)) + (-4 *2 (-1230)) (-5 *1 (-58 *5 *2)))) ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1113)) (|has| *1 (-6 -4456)) - (-4 *1 (-152 *2)) (-4 *2 (-1231)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1112)) (|has| *1 (-6 -4455)) + (-4 *1 (-152 *2)) (-4 *2 (-1230)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4456)) (-4 *1 (-152 *2)) - (-4 *2 (-1231)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4455)) (-4 *1 (-152 *2)) + (-4 *2 (-1230)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4456)) (-4 *1 (-152 *2)) - (-4 *2 (-1231)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4455)) (-4 *1 (-152 *2)) + (-4 *2 (-1230)))) ((*1 *2 *3) - (-12 (-4 *4 (-1062)) - (-5 *2 (-2 (|:| -4086 (-1186 *4)) (|:| |deg| (-932)))) - (-5 *1 (-223 *4 *5)) (-5 *3 (-1186 *4)) (-4 *5 (-566)))) + (-12 (-4 *4 (-1061)) + (-5 *2 (-2 (|:| -3881 (-1185 *4)) (|:| |deg| (-931)))) + (-5 *1 (-223 *4 *5)) (-5 *3 (-1185 *4)) (-4 *5 (-565)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-781)) - (-4 *6 (-1231)) (-4 *2 (-1231)) (-5 *1 (-245 *5 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-245 *5 *6)) (-14 *5 (-780)) + (-4 *6 (-1230)) (-4 *2 (-1230)) (-5 *1 (-244 *5 *6 *2)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-174)) (-5 *1 (-297 *4 *2 *3 *5 *6 *7)) - (-4 *2 (-1257 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) + (-12 (-4 *4 (-174)) (-5 *1 (-296 *4 *2 *3 *5 *6 *7)) + (-4 *2 (-1256 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-324 *2)) (-4 *2 (-566)) (-4 *2 (-1113)))) + ((*1 *1 *1) (-12 (-5 *1 (-323 *2)) (-4 *2 (-565)) (-4 *2 (-1112)))) ((*1 *1 *1) - (-12 (-4 *1 (-344 *2 *3 *4 *5)) (-4 *2 (-372)) (-4 *3 (-1257 *2)) - (-4 *4 (-1257 (-417 *3))) (-4 *5 (-351 *2 *3 *4)))) + (-12 (-4 *1 (-343 *2 *3 *4 *5)) (-4 *2 (-371)) (-4 *3 (-1256 *2)) + (-4 *4 (-1256 (-416 *3))) (-4 *5 (-350 *2 *3 *4)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1231)) (-4 *2 (-1231)) - (-5 *1 (-380 *5 *4 *2 *6)) (-4 *4 (-382 *5)) (-4 *6 (-382 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1230)) (-4 *2 (-1230)) + (-5 *1 (-379 *5 *4 *2 *6)) (-4 *4 (-381 *5)) (-4 *6 (-381 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1113)) (-4 *2 (-1113)) - (-5 *1 (-433 *5 *4 *2 *6)) (-4 *4 (-435 *5)) (-4 *6 (-435 *2)))) - ((*1 *1 *1) (-5 *1 (-505))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1112)) (-4 *2 (-1112)) + (-5 *1 (-432 *5 *4 *2 *6)) (-4 *4 (-434 *5)) (-4 *6 (-434 *2)))) + ((*1 *1 *1) (-5 *1 (-504))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-654 *5)) (-4 *5 (-1231)) - (-4 *2 (-1231)) (-5 *1 (-652 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-653 *5)) (-4 *5 (-1230)) + (-4 *2 (-1230)) (-5 *1 (-651 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1062)) (-4 *2 (-1062)) - (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) (-4 *8 (-382 *2)) - (-4 *9 (-382 *2)) (-5 *1 (-695 *5 *6 *7 *4 *2 *8 *9 *10)) - (-4 *4 (-697 *5 *6 *7)) (-4 *10 (-697 *2 *8 *9)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1061)) (-4 *2 (-1061)) + (-4 *6 (-381 *5)) (-4 *7 (-381 *5)) (-4 *8 (-381 *2)) + (-4 *9 (-381 *2)) (-5 *1 (-694 *5 *6 *7 *4 *2 *8 *9 *10)) + (-4 *4 (-696 *5 *6 *7)) (-4 *10 (-696 *2 *8 *9)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) + (-12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-4 *3 (-1062)) (-5 *1 (-722 *3 *2)) (-4 *2 (-1257 *3)))) + (-12 (-4 *3 (-1061)) (-5 *1 (-721 *3 *2)) (-4 *2 (-1256 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) + (-12 (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-417 *4)) (-4 *4 (-1257 *3)) (-4 *3 (-372)) - (-4 *3 (-174)) (-4 *1 (-734 *3 *4)))) + (|partial| -12 (-5 *2 (-416 *4)) (-4 *4 (-1256 *3)) (-4 *3 (-371)) + (-4 *3 (-174)) (-4 *1 (-733 *3 *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-4 *1 (-734 *3 *2)) (-4 *2 (-1257 *3)))) + (-12 (-4 *3 (-174)) (-4 *1 (-733 *3 *2)) (-4 *2 (-1256 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-969 *5)) (-4 *5 (-1231)) - (-4 *2 (-1231)) (-5 *1 (-968 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-968 *5)) (-4 *5 (-1230)) + (-4 *2 (-1230)) (-5 *1 (-967 *5 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-1047 *3 *4 *5 *2 *6)) (-4 *2 (-960 *3 *4 *5)) - (-14 *6 (-654 *2)))) + (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) + (-5 *1 (-1046 *3 *4 *5 *2 *6)) (-4 *2 (-959 *3 *4 *5)) + (-14 *6 (-653 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1062)) (-4 *2 (-1062)) - (-14 *5 (-781)) (-14 *6 (-781)) (-4 *8 (-244 *6 *7)) - (-4 *9 (-244 *5 *7)) (-4 *10 (-244 *6 *2)) (-4 *11 (-244 *5 *2)) - (-5 *1 (-1068 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1066 *5 *6 *7 *8 *9)) (-4 *12 (-1066 *5 *6 *2 *10 *11)))) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1061)) (-4 *2 (-1061)) + (-14 *5 (-780)) (-14 *6 (-780)) (-4 *8 (-243 *6 *7)) + (-4 *9 (-243 *5 *7)) (-4 *10 (-243 *6 *2)) (-4 *11 (-243 *5 *2)) + (-5 *1 (-1067 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1065 *5 *6 *7 *8 *9)) (-4 *12 (-1065 *5 *6 *2 *10 *11)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1170 *5)) (-4 *5 (-1231)) - (-4 *2 (-1231)) (-5 *1 (-1168 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1169 *5)) (-4 *5 (-1230)) + (-4 *2 (-1230)) (-5 *1 (-1167 *5 *2)))) ((*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) - (-4 *1 (-1224 *5 *6 *7 *2)) (-4 *5 (-566)) (-4 *6 (-803)) - (-4 *7 (-860)) (-4 *2 (-1078 *5 *6 *7)))) + (-4 *1 (-1223 *5 *6 *7 *2)) (-4 *5 (-565)) (-4 *6 (-802)) + (-4 *7 (-859)) (-4 *2 (-1077 *5 *6 *7)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1281 *5)) (-4 *5 (-1231)) - (-4 *2 (-1231)) (-5 *1 (-1280 *5 *2))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-872))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-1172)) (-5 *5 (-699 (-227))) - (-5 *2 (-1048)) (-5 *1 (-757))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4456)) (-4 *1 (-34)) (-5 *2 (-781)))) - ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-256)))) - ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-984)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113)) - (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-574)))) - ((*1 *2 *1) - (-12 (-5 *2 (-781)) (-5 *1 (-1304 *3 *4)) (-4 *3 (-1062)) - (-4 *4 (-856))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-574))) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-566)) (-4 *8 (-960 *7 *5 *6)) - (-5 *2 (-2 (|:| -3715 (-781)) (|:| -1858 *9) (|:| |radicand| *9))) - (-5 *1 (-964 *5 *6 *7 *8 *9)) (-5 *4 (-781)) - (-4 *9 - (-13 (-372) - (-10 -8 (-15 -2943 ($ *8)) (-15 -2966 (*8 $)) (-15 -2977 (*8 $)))))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1172)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-1286)) - (-5 *1 (-1001 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1172)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-1286)) - (-5 *1 (-1120 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1280 *5)) (-4 *5 (-1230)) + (-4 *2 (-1230)) (-5 *1 (-1279 *5 *2))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-780)) (-5 *2 (-1253 *5 *4)) (-5 *1 (-1187 *4 *5 *6)) + (-4 *4 (-1061)) (-14 *5 (-1189)) (-14 *6 *4))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-780)) (-5 *2 (-1253 *5 *4)) (-5 *1 (-1272 *4 *5 *6)) + (-4 *4 (-1061)) (-14 *5 (-1189)) (-14 *6 *4)))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) + (-4 *4 (-802)) (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1285)) (-5 *1 (-1192)))) + ((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-1192))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-960 *4 *6 *5)) - (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) - (-4 *6 (-803)) (-5 *2 (-112)) (-5 *1 (-935 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1114 *4)) (-4 *4 (-1112)) (-5 *2 (-1 *4)) + (-5 *1 (-1029 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-387))) (-5 *1 (-1052)) (-5 *3 (-387)))) ((*1 *2 *3) - (-12 (-5 *3 (-654 (-963 *4))) (-4 *4 (-13 (-315) (-148))) - (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-112)) - (-5 *1 (-935 *4 *5 *6 *7)) (-4 *7 (-960 *4 *6 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1113))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) - (-5 *2 (-1048)) (-5 *1 (-766))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1231))))) -(((*1 *2 *2) - (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))) - (-5 *1 (-178 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) + (-12 (-5 *3 (-1106 (-573))) (-5 *2 (-1 (-573))) (-5 *1 (-1059))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-34)) (-5 *2 (-780)))) + ((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-255)))) + ((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-983)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) + (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-573)))) + ((*1 *2 *1) + (-12 (-5 *2 (-780)) (-5 *1 (-1303 *3 *4)) (-4 *3 (-1061)) + (-4 *4 (-855))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-573))) (-4 *3 (-1061)) (-5 *1 (-604 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-573))) (-4 *1 (-1240 *3)) (-4 *3 (-1061)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-573))) (-4 *1 (-1271 *3)) (-4 *3 (-1061))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-371)) (-4 *3 (-1061)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2969 *1))) + (-4 *1 (-861 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1230))))) +(((*1 *2 *2) (-12 (-5 *1 (-596 *2)) (-4 *2 (-554))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-3 (-2 (|:| -3861 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-653 (-416 *8))) (-4 *7 (-371)) (-4 *8 (-1256 *7)) + (-5 *3 (-416 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-583 *7 *8))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1132)) (-5 *1 (-538))))) +(((*1 *1 *2) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-371)) (-4 *1 (-336 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1280 *3)) (-4 *3 (-1256 *4)) (-4 *4 (-1234)) + (-4 *1 (-350 *4 *3 *5)) (-4 *5 (-1256 (-416 *3))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1280 *4)) (-5 *3 (-1280 *1)) (-4 *4 (-174)) + (-4 *1 (-375 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1280 *4)) (-5 *3 (-1280 *1)) (-4 *4 (-174)) + (-4 *1 (-378 *4 *5)) (-4 *5 (-1256 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1280 *3)) (-4 *3 (-174)) (-4 *1 (-418 *3 *4)) + (-4 *4 (-1256 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-174)) (-4 *1 (-426 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-622 *6)) (-4 *6 (-13 (-440 *5) (-27) (-1216))) - (-4 *5 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) - (-5 *2 (-1186 (-417 (-1186 *6)))) (-5 *1 (-570 *5 *6 *7)) - (-5 *3 (-1186 *6)) (-4 *7 (-1113)))) + (-12 (-5 *4 (-621 *6)) (-4 *6 (-13 (-439 *5) (-27) (-1215))) + (-4 *5 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) + (-5 *2 (-1185 (-416 (-1185 *6)))) (-5 *1 (-569 *5 *6 *7)) + (-5 *3 (-1185 *6)) (-4 *7 (-1112)))) ((*1 *2 *1) - (-12 (-4 *2 (-1257 *3)) (-5 *1 (-722 *3 *2)) (-4 *3 (-1062)))) + (-12 (-4 *2 (-1256 *3)) (-5 *1 (-721 *3 *2)) (-4 *3 (-1061)))) ((*1 *2 *1) - (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1257 *3)))) + (-12 (-4 *1 (-733 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1256 *3)))) ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1186 *11)) (-5 *6 (-654 *10)) - (-5 *7 (-654 (-781))) (-5 *8 (-654 *11)) (-4 *10 (-860)) - (-4 *11 (-315)) (-4 *9 (-803)) (-4 *5 (-960 *11 *9 *10)) - (-5 *2 (-654 (-1186 *5))) (-5 *1 (-752 *9 *10 *11 *5)) - (-5 *3 (-1186 *5)))) + (|partial| -12 (-5 *4 (-1185 *11)) (-5 *6 (-653 *10)) + (-5 *7 (-653 (-780))) (-5 *8 (-653 *11)) (-4 *10 (-859)) + (-4 *11 (-314)) (-4 *9 (-802)) (-4 *5 (-959 *11 *9 *10)) + (-5 *2 (-653 (-1185 *5))) (-5 *1 (-751 *9 *10 *11 *5)) + (-5 *3 (-1185 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-960 *3 *4 *5)) (-5 *1 (-1047 *3 *4 *5 *2 *6)) - (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-14 *6 (-654 *2))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) - (-5 *2 (-2 (|:| -1858 *4) (|:| -1411 *3) (|:| -2766 *3))) - (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *2 (-2 (|:| -1411 *1) (|:| -2766 *1))) (-4 *1 (-1078 *3 *4 *5)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-566)) (-4 *3 (-1062)) - (-5 *2 (-2 (|:| -1858 *3) (|:| -1411 *1) (|:| -2766 *1))) - (-4 *1 (-1257 *3))))) + (-12 (-4 *2 (-959 *3 *4 *5)) (-5 *1 (-1046 *3 *4 *5 *2 *6)) + (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-14 *6 (-653 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-565) (-1050 (-573)) (-648 (-573)))) + (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1189)) + (-4 *4 (-13 (-565) (-1050 (-573)) (-648 (-573)))) + (-5 *1 (-283 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *4))))) + ((*1 *1 *1) (-5 *1 (-387))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-4 *3 (-1077 *5 *6 *7)) + (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) + (-5 *1 (-785 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-764))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-780)) (-4 *4 (-13 (-1061) (-726 (-416 (-573))))) + (-4 *5 (-859)) (-5 *1 (-1296 *4 *5 *2)) (-4 *2 (-1301 *5 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1172)) (-4 *4 (-13 (-315) (-148))) - (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) - (-5 *2 - (-654 - (-2 (|:| |eqzro| (-654 *7)) (|:| |neqzro| (-654 *7)) - (|:| |wcond| (-654 (-963 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1281 (-417 (-963 *4)))) - (|:| -1882 (-654 (-1281 (-417 (-963 *4)))))))))) - (-5 *1 (-935 *4 *5 *6 *7)) (-4 *7 (-960 *4 *6 *5))))) -(((*1 *2) - (-12 (-5 *2 (-932)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) - ((*1 *2 *2) - (-12 (-5 *2 (-932)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574)))))) -(((*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-366 *3)) (-4 *3 (-358))))) + (-12 (-5 *3 (-1189)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-711 *4 *5 *6 *7)) + (-4 *4 (-623 (-545))) (-4 *5 (-1230)) (-4 *6 (-1230)) + (-4 *7 (-1230))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-765))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-1286)) (-5 *1 (-832))))) -(((*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-574)))) - ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-916 *3)) (-4 *3 (-1113)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1081 *4 *3)) (-4 *4 (-13 (-858) (-372))) - (-4 *3 (-1257 *4)) (-5 *2 (-574)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-566) (-1051 *2) (-649 *2) (-462))) - (-5 *2 (-574)) (-5 *1 (-1129 *4 *3)) - (-4 *3 (-13 (-27) (-1216) (-440 *4))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1190)) (-5 *5 (-853 *3)) - (-4 *3 (-13 (-27) (-1216) (-440 *6))) - (-4 *6 (-13 (-566) (-1051 *2) (-649 *2) (-462))) (-5 *2 (-574)) - (-5 *1 (-1129 *6 *3)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1190)) (-5 *5 (-1172)) - (-4 *6 (-13 (-566) (-1051 *2) (-649 *2) (-462))) (-5 *2 (-574)) - (-5 *1 (-1129 *6 *3)) (-4 *3 (-13 (-27) (-1216) (-440 *6))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-462)) (-5 *2 (-574)) - (-5 *1 (-1130 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1190)) (-5 *5 (-853 (-417 (-963 *6)))) - (-5 *3 (-417 (-963 *6))) (-4 *6 (-462)) (-5 *2 (-574)) - (-5 *1 (-1130 *6)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-417 (-963 *6))) (-5 *4 (-1190)) - (-5 *5 (-1172)) (-4 *6 (-462)) (-5 *2 (-574)) (-5 *1 (-1130 *6)))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-574)) (-5 *1 (-1213 *3)) (-4 *3 (-1062))))) -(((*1 *2) - (-12 (-5 *2 (-1286)) (-5 *1 (-1208 *3 *4)) (-4 *3 (-1113)) - (-4 *4 (-1113))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) - (-5 *2 - (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574)) - (|:| |success| (-112)))) - (-5 *1 (-799)) (-5 *5 (-574))))) -(((*1 *1) (-5 *1 (-607)))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-596 *3) *3 (-1190))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 - (-1190))) - (-4 *3 (-292)) (-4 *3 (-639)) (-4 *3 (-1051 *4)) (-4 *3 (-440 *7)) - (-5 *4 (-1190)) (-4 *7 (-624 (-903 (-574)))) (-4 *7 (-462)) - (-4 *7 (-897 (-574))) (-4 *7 (-1113)) (-5 *2 (-596 *3)) - (-5 *1 (-583 *7 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) - (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1248 (-574))) (-4 *1 (-661 *3)) (-4 *3 (-1231)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-661 *3)) (-4 *3 (-1231))))) + ((*1 *1 *1 *1) (-5 *1 (-871)))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) +(((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1256 *5)) + (-4 *5 (-13 (-371) (-148) (-1050 (-573)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-416 *6)) (|:| |c| (-416 *6)) + (|:| -2142 *6))) + (-5 *1 (-1027 *5 *6)) (-5 *3 (-416 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-112))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1253 *4 *5)) (-5 *3 (-653 *5)) (-14 *4 (-1189)) + (-4 *5 (-371)) (-5 *1 (-933 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-653 *5)) (-4 *5 (-371)) (-5 *2 (-1185 *5)) + (-5 *1 (-933 *4 *5)) (-14 *4 (-1189)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-653 *6)) (-5 *4 (-780)) (-4 *6 (-371)) + (-5 *2 (-416 (-962 *6))) (-5 *1 (-1062 *5 *6)) (-14 *5 (-1189))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371))))) (((*1 *2 *3) - (-12 (-5 *3 (-1186 *6)) (-4 *6 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *2 (-1186 *7)) (-5 *1 (-329 *4 *5 *6 *7)) - (-4 *7 (-960 *6 *4 *5))))) + (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-371) (-1215) (-1014)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-573)) (-4 *1 (-330 *2 *4)) (-4 *4 (-132)) + (-4 *2 (-1112)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-5 *1 (-369 *2)) (-4 *2 (-1112)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-4 *1 (-394 *2)) (-4 *2 (-1112)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-5 *1 (-427 *2)) (-4 *2 (-565)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-573)) (-4 *2 (-1112)) (-5 *1 (-658 *2 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-376)) (-4 *1 (-336 *3)) + (-4 *3 (-371))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-4 *3 (-1077 *5 *6 *7)) + (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) + (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) + (-5 *2 (-112))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-565)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-802)) - (-4 *2 (-566)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-566))) + (|partial| -12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-801)) + (-4 *2 (-565)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-565))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) - (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-566)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-781))) + (|partial| -12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) + (-4 *3 (-381 *2)) (-4 *4 (-381 *2)) (-4 *2 (-565)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-780))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-566)))) - ((*1 *1 *1 *1) (-5 *1 (-872))) + (|partial| -12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-565)))) + ((*1 *1 *1 *1) (-5 *1 (-871))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1281 *4)) (-4 *4 (-1257 *3)) (-4 *3 (-566)) - (-5 *1 (-982 *3 *4)))) + (-12 (-5 *2 (-1280 *4)) (-4 *4 (-1256 *3)) (-4 *3 (-565)) + (-5 *1 (-981 *3 *4)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1066 *3 *4 *2 *5 *6)) (-4 *2 (-1062)) - (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-566)))) + (|partial| -12 (-4 *1 (-1065 *3 *4 *2 *5 *6)) (-4 *2 (-1061)) + (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-565)))) ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231))))) -(((*1 *1) (-5 *1 (-299)))) + (|partial| -12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1247 (-573))) (-4 *1 (-660 *3)) (-4 *3 (-1230)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-660 *3)) (-4 *3 (-1230))))) (((*1 *1 *1) - (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) - (-4 *4 (-860))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-654 (-792 *3))) (-5 *1 (-792 *3)) (-4 *3 (-566)) - (-4 *3 (-1062))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-462)))) - ((*1 *1 *1 *1) (-4 *1 (-462)))) + (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 *5)) (-5 *4 (-653 (-1 *6 (-653 *6)))) + (-4 *5 (-38 (-416 (-573)))) (-4 *6 (-1271 *5)) (-5 *2 (-653 *6)) + (-5 *1 (-1273 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-500)) (-5 *4 (-964)) (-5 *2 (-700 (-542))) + (-5 *1 (-542)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-964)) (-4 *3 (-1112)) (-5 *2 (-700 *1)) + (-4 *1 (-776 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-1122))))) +(((*1 *1 *2) + (-12 (-5 *2 (-780)) (-5 *1 (-684 *3)) (-4 *3 (-1061)) + (-4 *3 (-1112))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) - (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189)))) - (-5 *1 (-1189))))) + (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) + (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) + (-5 *1 (-1188))))) +(((*1 *1 *2) (-12 (-5 *2 (-653 *1)) (-4 *1 (-461)))) + ((*1 *1 *1 *1) (-4 *1 (-461)))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1171)) (-5 *4 (-573)) (-5 *5 (-698 (-227))) + (-5 *2 (-1047)) (-5 *1 (-766))))) (((*1 *2 *3) - (-12 (-5 *3 (-938)) - (-5 *2 - (-2 (|:| |brans| (-654 (-654 (-954 (-227))))) - (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227))))) - (-5 *1 (-154)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-938)) (-5 *4 (-417 (-574))) - (-5 *2 - (-2 (|:| |brans| (-654 (-654 (-954 (-227))))) - (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227))))) - (-5 *1 (-154)))) - ((*1 *2 *3) - (-12 + (-12 (-5 *3 (-573)) (|has| *1 (-6 -4446)) (-4 *1 (-413)) + (-5 *2 (-931))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-780)) (-5 *1 (-791 *3)) (-4 *3 (-1061)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-973 *3 *2)) (-4 *2 (-132)) (-4 *3 (-565)) + (-4 *3 (-1061)) (-4 *2 (-801)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-780)) (-5 *1 (-1185 *3)) (-4 *3 (-1061)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-983)) (-4 *2 (-132)) (-5 *1 (-1191 *3)) (-4 *3 (-565)) + (-4 *3 (-1061)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-780)) (-5 *1 (-1253 *4 *3)) (-14 *4 (-1189)) + (-4 *3 (-1061))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-780)) (-5 *1 (-865 *2)) (-4 *2 (-38 (-416 (-573)))) + (-4 *2 (-174))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-780)) (-4 *5 (-565)) (-5 *2 - (-2 (|:| |brans| (-654 (-654 (-954 (-227))))) - (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227))))) - (-5 *1 (-154)) (-5 *3 (-654 (-954 (-227)))))) - ((*1 *2 *3) + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-981 *5 *3)) (-4 *3 (-1256 *5))))) +(((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-828 *3)) (|:| |rm| (-828 *3)))) + (-5 *1 (-828 *3)) (-4 *3 (-859)))) + ((*1 *1 *1 *1) (-5 *1 (-871)))) +(((*1 *2 *3) + (-12 (-5 *3 (-573)) (-5 *2 (-653 (-653 (-227)))) (-5 *1 (-1226))))) +(((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| |brans| (-654 (-654 (-954 (-227))))) - (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227))))) - (-5 *1 (-154)) (-5 *3 (-654 (-654 (-954 (-227))))))) - ((*1 *1 *2) (-12 (-5 *2 (-654 (-1107 (-388)))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))) -(((*1 *2 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-1 (-1170 (-963 *4)) (-1170 (-963 *4)))) - (-5 *1 (-1289 *4)) (-4 *4 (-372))))) -(((*1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1200))))) -(((*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555)))) - ((*1 *2 *3) - (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3)) - (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-960 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) - (-4 *7 (-960 *6 *4 *5)) (-5 *2 (-428 (-1186 *7))) - (-5 *1 (-752 *4 *5 *6 *7)) (-5 *3 (-1186 *7)))) - ((*1 *2 *1) - (-12 (-4 *3 (-462)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *2 (-428 *1)) (-4 *1 (-960 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-462)) (-5 *2 (-428 *3)) - (-5 *1 (-992 *4 *5 *6 *3)) (-4 *3 (-960 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-462)) - (-4 *7 (-960 *6 *4 *5)) (-5 *2 (-428 (-1186 (-417 *7)))) - (-5 *1 (-1185 *4 *5 *6 *7)) (-5 *3 (-1186 (-417 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-428 *1)) (-4 *1 (-1235)))) - ((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-428 *3)) (-5 *1 (-1260 *4 *3)) - (-4 *3 (-13 (-1257 *4) (-566) (-10 -8 (-15 -2873 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1059 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1035))) - (-14 *5 (-654 (-1190))) - (-5 *2 - (-654 (-1159 *4 (-541 (-874 *6)) (-874 *6) (-790 *4 (-874 *6))))) - (-5 *1 (-1308 *4 *5 *6)) (-14 *6 (-654 (-1190)))))) + (-2 (|:| -2277 *3) (|:| |coef1| (-791 *3)) (|:| |coef2| (-791 *3)))) + (-5 *1 (-791 *3)) (-4 *3 (-565)) (-4 *3 (-1061))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1230)) (-5 *1 (-383 *4 *2)) + (-4 *2 (-13 (-381 *4) (-10 -7 (-6 -4456))))))) (((*1 *2 *3) - (-12 (-5 *3 (-932)) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192))))) -(((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-829 *3)) (|:| |rm| (-829 *3)))) - (-5 *1 (-829 *3)) (-4 *3 (-860)))) - ((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1172)) (-5 *4 (-574)) (-5 *5 (-699 (-171 (-227)))) - (-5 *2 (-1048)) (-5 *1 (-764))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1113)) (-4 *3 (-911 *5)) (-5 *2 (-1281 *3)) - (-5 *1 (-702 *5 *3 *6 *4)) (-4 *6 (-382 *3)) - (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4456))))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1131)) (-5 *1 (-1128))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216))))) -(((*1 *2 *3) - (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-366 *4)) - (-4 *4 (-358)))) + (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-365 *4)) + (-4 *4 (-357)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-366 *4)) - (-4 *4 (-358)))) - ((*1 *1) (-4 *1 (-377))) - ((*1 *2 *3) - (-12 (-5 *3 (-932)) (-5 *2 (-1281 *4)) (-5 *1 (-538 *4)) - (-4 *4 (-358)))) - ((*1 *1 *1) (-4 *1 (-555))) ((*1 *1) (-4 *1 (-555))) - ((*1 *1 *1) (-5 *1 (-781))) - ((*1 *2 *1) (-12 (-5 *2 (-916 *3)) (-5 *1 (-915 *3)) (-4 *3 (-1113)))) + (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-365 *4)) + (-4 *4 (-357)))) + ((*1 *1) (-4 *1 (-376))) + ((*1 *2 *3) + (-12 (-5 *3 (-931)) (-5 *2 (-1280 *4)) (-5 *1 (-537 *4)) + (-4 *4 (-357)))) + ((*1 *1 *1) (-4 *1 (-554))) ((*1 *1) (-4 *1 (-554))) + ((*1 *1 *1) (-5 *1 (-780))) + ((*1 *2 *1) (-12 (-5 *2 (-915 *3)) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-5 *2 (-916 *4)) (-5 *1 (-915 *4)) - (-4 *4 (-1113)))) - ((*1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-555)) (-4 *2 (-566))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-579 *3)) (-4 *3 (-1051 (-574))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113)) - (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112))))) + (-12 (-5 *3 (-573)) (-5 *2 (-915 *4)) (-5 *1 (-914 *4)) + (-4 *4 (-1112)))) + ((*1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-554)) (-4 *2 (-565))))) +(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1290))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) - (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189)))) - (-5 *1 (-1189))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-932)) (-4 *1 (-754 *3)) (-4 *3 (-174))))) -(((*1 *2 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1231))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231))))) -(((*1 *1 *1) - (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) - (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-960 *2 *3 *4))))) + (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) + (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) + (-5 *1 (-1188))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1280 (-653 (-2 (|:| -3082 *4) (|:| -2575 (-1132)))))) + (-4 *4 (-357)) (-5 *2 (-780)) (-5 *1 (-354 *4)))) + ((*1 *2) + (-12 (-5 *2 (-780)) (-5 *1 (-359 *3 *4)) (-14 *3 (-931)) + (-14 *4 (-931)))) + ((*1 *2) + (-12 (-5 *2 (-780)) (-5 *1 (-360 *3 *4)) (-4 *3 (-357)) + (-14 *4 + (-3 (-1185 *3) + (-1280 (-653 (-2 (|:| -3082 *3) (|:| -2575 (-1132))))))))) + ((*1 *2) + (-12 (-5 *2 (-780)) (-5 *1 (-361 *3 *4)) (-4 *3 (-357)) + (-14 *4 (-931))))) +(((*1 *2 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1230))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *2 (-112)) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 (-171 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-112)) + (-5 *1 (-1219 *4 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *4)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-859)) + (-4 *5 (-272 *4)) (-4 *6 (-802)) (-5 *2 (-653 *4))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) + (-4 *3 (-1077 *6 *7 *8)) + (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) + (-5 *1 (-1120 *6 *7 *8 *3 *4)) (-4 *4 (-1083 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-653 (-2 (|:| |val| (-653 *8)) (|:| -4090 *9)))) + (-5 *5 (-112)) (-4 *8 (-1077 *6 *7 *4)) (-4 *9 (-1083 *6 *7 *4 *8)) + (-4 *6 (-461)) (-4 *7 (-802)) (-4 *4 (-859)) + (-5 *2 (-653 (-2 (|:| |val| *8) (|:| -4090 *9)))) + (-5 *1 (-1120 *6 *7 *4 *8 *9))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-565)) (-4 *3 (-174)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -3914 (-653 *1)))) + (-4 *1 (-375 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-462 *3 *4 *5 *6)) + (|:| -3914 (-653 (-462 *3 *4 *5 *6))))) + (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-931)) + (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-462) (-1051 (-574)))) (-4 *3 (-566)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3)) - (-4 *2 - (-13 (-372) (-310) - (-10 -8 (-15 -2966 ((-1138 *3 (-622 $)) $)) - (-15 -2977 ((-1138 *3 (-622 $)) $)) - (-15 -2943 ($ (-1138 *3 (-622 $)))))))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) - (-5 *2 (-1048)) (-5 *1 (-762))))) + (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1215)))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-653 (-653 (-653 *5)))) (-5 *3 (-1 (-112) *5 *5)) + (-5 *4 (-653 *5)) (-4 *5 (-859)) (-5 *1 (-1200 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-1281 (-699 *4))) (-5 *1 (-90 *4 *5)) - (-5 *3 (-699 *4)) (-4 *5 (-666 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-654 (-2 (|:| -4220 (-1186 *6)) (|:| -3715 (-574))))) - (-4 *6 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) - (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-960 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1062))))) + (-12 (-5 *3 (-323 *4)) (-4 *4 (-13 (-837) (-1061))) (-5 *2 (-1171)) + (-5 *1 (-835 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-323 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-837) (-1061))) + (-5 *2 (-1171)) (-5 *1 (-835 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-831)) (-5 *4 (-323 *5)) (-4 *5 (-13 (-837) (-1061))) + (-5 *2 (-1285)) (-5 *1 (-835 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-831)) (-5 *4 (-323 *6)) (-5 *5 (-112)) + (-4 *6 (-13 (-837) (-1061))) (-5 *2 (-1285)) (-5 *1 (-835 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-837)) (-5 *2 (-1171)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-837)) (-5 *3 (-112)) (-5 *2 (-1171)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-837)) (-5 *3 (-831)) (-5 *2 (-1285)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-837)) (-5 *3 (-831)) (-5 *4 (-112)) (-5 *2 (-1285))))) (((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1216))))) + (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-371) (-1215))))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-932)) (-5 *4 (-388)) (-5 *2 (-1286)) (-5 *1 (-1282)))) + (-12 (-5 *3 (-931)) (-5 *4 (-387)) (-5 *2 (-1285)) (-5 *1 (-1281)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283))))) -(((*1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-832))))) -(((*1 *1 *1) (-5 *1 (-1189))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) - (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189)))) - (-5 *1 (-1189))))) -(((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-171 *5)) (-5 *1 (-610 *4 *5 *3)) - (-4 *5 (-13 (-440 *4) (-1015) (-1216))) - (-4 *3 (-13 (-440 (-171 *4)) (-1015) (-1216)))))) -(((*1 *2 *2) (-12 (-5 *1 (-692 *2)) (-4 *2 (-1113))))) + (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1281 *5)) (-4 *5 (-13 (-1062) (-649 *4))) - (-4 *4 (-566)) (-5 *2 (-1281 *4)) (-5 *1 (-648 *4 *5))))) -(((*1 *1) (-5 *1 (-447)))) -(((*1 *2 *3) - (-12 (-5 *2 (-1186 (-574))) (-5 *1 (-953)) (-5 *3 (-574)))) - ((*1 *2 *2) - (-12 (-4 *3 (-315)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) - (-5 *1 (-1137 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-654 *2)) (-5 *1 (-181 *2)) (-4 *2 (-315)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-654 (-654 *4))) (-5 *2 (-654 *4)) (-4 *4 (-315)) - (-5 *1 (-181 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-654 *8)) - (-5 *4 - (-654 - (-2 (|:| -1882 (-699 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-699 *7))))) - (-5 *5 (-781)) (-4 *8 (-1257 *7)) (-4 *7 (-1257 *6)) (-4 *6 (-358)) - (-5 *2 - (-2 (|:| -1882 (-699 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-699 *7)))) - (-5 *1 (-508 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1231)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-860)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-860)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-574)) (-4 *1 (-290 *3)) (-4 *3 (-1231)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-4 *1 (-290 *2)) (-4 *2 (-1231)))) + (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) + ((*1 *2) (-12 (-5 *2 (-914 (-573))) (-5 *1 (-927))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-573)) (-5 *6 (-1 (-1285) (-1280 *5) (-1280 *5) (-387))) + (-5 *3 (-1280 (-387))) (-5 *5 (-387)) (-5 *2 (-1285)) + (-5 *1 (-797))))) +(((*1 *1 *1) (-5 *1 (-1188))) ((*1 *1 *2) (-12 (-5 *2 - (-2 - (|:| -3693 - (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) - (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| -1908 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1170 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2367 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-569)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-781)) (-4 *1 (-705 *2)) (-4 *2 (-1113)))) - ((*1 *1 *2) + (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) + (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) + (-5 *1 (-1188))))) +(((*1 *1) (-5 *1 (-131)))) +(((*1 *2 *2) (-12 (-5 *1 (-691 *2)) (-4 *2 (-1112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-371)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) + (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-565)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) + (-4 *7 (-1004 *4)) (-4 *2 (-696 *7 *8 *9)) + (-5 *1 (-531 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-696 *4 *5 *6)) + (-4 *8 (-381 *7)) (-4 *9 (-381 *7)))) + ((*1 *1 *1) + (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) + (-4 *4 (-381 *2)) (-4 *2 (-314)))) + ((*1 *2 *2) + (-12 (-4 *3 (-314)) (-4 *3 (-174)) (-4 *4 (-381 *3)) + (-4 *5 (-381 *3)) (-5 *1 (-697 *3 *4 *5 *2)) + (-4 *2 (-696 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-698 *3)) (-4 *3 (-314)) (-5 *1 (-709 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1065 *2 *3 *4 *5 *6)) (-4 *4 (-1061)) + (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *2 *4)) (-4 *4 (-314))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-314)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 - (-2 - (|:| -3693 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) - (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (|:| -1908 - (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) - (|:| |expense| (-388)) (|:| |accuracy| (-388)) - (|:| |intermediateResults| (-388)))))) - (-5 *1 (-813)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1286)) (-5 *1 (-1208 *3 *4)) (-4 *3 (-1113)) - (-4 *4 (-1113))))) -(((*1 *1 *1 *1) (-4 *1 (-315))) ((*1 *1 *1 *1) (-5 *1 (-781))) - ((*1 *1 *1 *1) (-5 *1 (-872)))) + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-573)))) + (-4 *4 (-13 (-1256 *3) (-565) (-10 -8 (-15 -2872 ($ $ $))))) + (-4 *3 (-565)) (-5 *1 (-1259 *3 *4))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-565)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) + (-5 *1 (-1220 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1114 *3)) (-5 *1 (-915 *3)) (-4 *3 (-376)) + (-4 *3 (-1112))))) +(((*1 *1 *1 *1) (-4 *1 (-314))) ((*1 *1 *1 *1) (-5 *1 (-780))) + ((*1 *1 *1 *1) (-5 *1 (-871)))) +(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-387)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-387)) (-5 *1 (-97))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-595 *3) *3 (-1189))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 + (-1189))) + (-4 *3 (-291)) (-4 *3 (-638)) (-4 *3 (-1050 *4)) (-4 *3 (-439 *7)) + (-5 *4 (-1189)) (-4 *7 (-623 (-902 (-573)))) (-4 *7 (-461)) + (-4 *7 (-896 (-573))) (-4 *7 (-1112)) (-5 *2 (-595 *3)) + (-5 *1 (-582 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-653 (-975))) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1171) (-783))) (-5 *1 (-115))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-371)) (-4 *3 (-1061)) + (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-861 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-371)) (-4 *5 (-1061)) + (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-862 *5 *3)) + (-4 *3 (-861 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1185 (-416 (-962 *3)))) (-5 *1 (-462 *3 *4 *5 *6)) + (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) + (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-573)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1230)) + (-4 *5 (-381 *4)) (-4 *3 (-381 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-372) (-310) - (-10 -8 (-15 -2966 ((-1138 *3 (-622 $)) $)) - (-15 -2977 ((-1138 *3 (-622 $)) $)) - (-15 -2943 ($ (-1138 *3 (-622 $))))))))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-372) (-310) - (-10 -8 (-15 -2966 ((-1138 *3 (-622 $)) $)) - (-15 -2977 ((-1138 *3 (-622 $)) $)) - (-15 -2943 ($ (-1138 *3 (-622 $))))))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-654 *2)) - (-4 *2 - (-13 (-372) (-310) - (-10 -8 (-15 -2966 ((-1138 *4 (-622 $)) $)) - (-15 -2977 ((-1138 *4 (-622 $)) $)) - (-15 -2943 ($ (-1138 *4 (-622 $))))))) - (-4 *4 (-566)) (-5 *1 (-41 *4 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-654 (-622 *2))) - (-4 *2 - (-13 (-372) (-310) - (-10 -8 (-15 -2966 ((-1138 *4 (-622 $)) $)) - (-15 -2977 ((-1138 *4 (-622 $)) $)) - (-15 -2943 ($ (-1138 *4 (-622 $))))))) - (-4 *4 (-566)) (-5 *1 (-41 *4 *2))))) + (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1215)))))) +(((*1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-129))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-654 (-417 (-963 (-574))))) (-5 *4 (-654 (-1190))) - (-5 *2 (-654 (-654 *5))) (-5 *1 (-389 *5)) - (-4 *5 (-13 (-858) (-372))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-963 (-574)))) (-5 *2 (-654 *4)) (-5 *1 (-389 *4)) - (-4 *4 (-13 (-858) (-372)))))) -(((*1 *2) - (-12 (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) - (-5 *2 (-1281 *1)) (-4 *1 (-351 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-699 (-417 (-963 (-574))))) - (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1044)) - (-5 *3 (-324 (-574)))))) -(((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1172)) (-5 *1 (-720))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-976))) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1172) (-784))) (-5 *1 (-115))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-4 *4 (-1005 *3)) (-5 *1 (-143 *3 *4 *2)) - (-4 *2 (-382 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *5 (-1005 *4)) (-4 *2 (-382 *4)) - (-5 *1 (-513 *4 *5 *2 *3)) (-4 *3 (-382 *5)))) + (-12 (-5 *5 (-573)) (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-314)) + (-4 *9 (-959 *8 *6 *7)) + (-5 *2 (-2 (|:| -3881 (-1185 *9)) (|:| |polval| (-1185 *8)))) + (-5 *1 (-751 *6 *7 *8 *9)) (-5 *3 (-1185 *9)) (-5 *4 (-1185 *8))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-653 (-1 *4 (-653 *4)))) (-4 *4 (-1112)) + (-5 *1 (-114 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1112)) + (-5 *1 (-114 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-699 *5)) (-4 *5 (-1005 *4)) (-4 *4 (-566)) - (-5 *2 (-699 *4)) (-5 *1 (-703 *4 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-4 *4 (-1005 *3)) (-5 *1 (-1250 *3 *4 *2)) - (-4 *2 (-1257 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-112)) (-5 *1 (-839))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1078 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *2 (-860)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) - (-4 *4 (-860))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) - (-5 *2 (-699 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-315))) ((*1 *1 *1 *1) (-5 *1 (-781))) - ((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *1 *2) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-270)))) - ((*1 *1) - (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566))))) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-653 (-1 *4 (-653 *4)))) + (-5 *1 (-114 *4)) (-4 *4 (-1112))))) (((*1 *1 *1) - (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) - ((*1 *1 *1) (|partial| -4 *1 (-732)))) + (-12 (-5 *1 (-1177 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1061))))) +(((*1 *1 *1 *1) (-4 *1 (-314))) ((*1 *1 *1 *1) (-5 *1 (-780))) + ((*1 *1 *1 *1) (-5 *1 (-871)))) +(((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-573)) (-14 *3 (-780)) + (-4 *4 (-174))))) +(((*1 *1 *2 *3 *4) + (-12 + (-5 *3 + (-653 + (-2 (|:| |scalar| (-416 (-573))) (|:| |coeff| (-1185 *2)) + (|:| |logand| (-1185 *2))))) + (-5 *4 (-653 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) + (-4 *2 (-371)) (-5 *1 (-595 *2))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-416 (-573))) + (-4 *4 (-13 (-565) (-1050 (-573)) (-648 (-573)))) + (-5 *1 (-283 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *4)))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062))))) -(((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-860)) - (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-699 (-417 (-963 (-574))))) - (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1044))))) + (|partial| -12 (-4 *1 (-375 *2)) (-4 *2 (-174)) (-4 *2 (-565)))) + ((*1 *1 *1) (|partial| -4 *1 (-731)))) (((*1 *2 *3) - (-12 (-5 *3 (-654 (-2 (|:| -3083 *4) (|:| -1336 (-574))))) - (-4 *4 (-1113)) (-5 *2 (-1 *4)) (-5 *1 (-1030 *4))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-654 (-1186 *7))) (-5 *3 (-1186 *7)) - (-4 *7 (-960 *5 *6 *4)) (-4 *5 (-920)) (-4 *6 (-803)) - (-4 *4 (-860)) (-5 *1 (-917 *5 *6 *4 *7))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1190)) (-4 *5 (-624 (-903 (-574)))) - (-4 *5 (-897 (-574))) - (-4 *5 (-13 (-1051 (-574)) (-462) (-649 (-574)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-577 *5 *3)) (-4 *3 (-639)) - (-4 *3 (-13 (-27) (-1216) (-440 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1190)) (-5 *4 (-853 *2)) (-4 *2 (-1152)) - (-4 *2 (-13 (-27) (-1216) (-440 *5))) - (-4 *5 (-624 (-903 (-574)))) (-4 *5 (-897 (-574))) - (-4 *5 (-13 (-1051 (-574)) (-462) (-649 (-574)))) - (-5 *1 (-577 *5 *2))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1257 *5)) - (-4 *5 (-13 (-372) (-148) (-1051 (-574)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-417 *6)) (|:| |c| (-417 *6)) - (|:| -2143 *6))) - (-5 *1 (-1028 *5 *6)) (-5 *3 (-417 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-556)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1257 *5)) (-4 *5 (-372)) - (-5 *2 (-2 (|:| -1360 (-428 *3)) (|:| |special| (-428 *3)))) - (-5 *1 (-737 *5 *3))))) + (|partial| -12 (-4 *4 (-1234)) (-4 *5 (-1256 *4)) + (-5 *2 (-2 (|:| |radicand| (-416 *5)) (|:| |deg| (-780)))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1256 (-416 *5)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113)) - (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-860)) - (-5 *2 (-2 (|:| -1411 *1) (|:| -2766 *1))) (-4 *1 (-960 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1062)) (-5 *2 (-2 (|:| -1411 *1) (|:| -2766 *1))) - (-4 *1 (-1257 *3))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL)))) - (-5 *2 (-1048)) (-5 *1 (-759)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL)))) - (-5 *8 (-398)) (-5 *2 (-1048)) (-5 *1 (-759))))) -(((*1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1231)) (-4 *2 (-860)))) + (-12 (-5 *2 (-1114 (-1114 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1112))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-698 (-227))) (-5 *5 (-698 (-573))) (-5 *6 (-227)) + (-5 *3 (-573)) (-5 *2 (-1047)) (-5 *1 (-760))))) +(((*1 *2 *1) + (-12 (-5 *2 (-653 (-2 (|:| |k| (-1189)) (|:| |c| (-1302 *3))))) + (-5 *1 (-1302 *3)) (-4 *3 (-1061)))) + ((*1 *2 *1) + (-12 (-5 *2 (-653 (-2 (|:| |k| *3) (|:| |c| (-1304 *3 *4))))) + (-5 *1 (-1304 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) + (-4 *3 (-375 *4)))) + ((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) +(((*1 *2 *1) (-12 (-4 *1 (-1299 *3)) (-4 *3 (-371)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-708)))) + ((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-708))))) +(((*1 *1 *1) (-12 (-4 *1 (-381 *2)) (-4 *2 (-1230)) (-4 *2 (-859)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-382 *3)) (-4 *3 (-1231)))) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-381 *3)) (-4 *3 (-1230)))) ((*1 *2 *2) - (-12 (-5 *2 (-654 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1113)))) + (-12 (-5 *2 (-653 (-915 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1112)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-860)) - (-4 *6 (-1078 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -3595 *1) (|:| |upper| *1))) - (-4 *1 (-989 *4 *5 *3 *6))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) - (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-1294 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-566)) - (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1294 *5 *6 *7 *8))))) -(((*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1062))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 (-781))) (-5 *3 (-173)) (-5 *1 (-1178 *4 *5)) - (-14 *4 (-932)) (-4 *5 (-1062))))) -(((*1 *2 *1) - (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1113)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-1062)) (-4 *5 (-803)) - (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-4 *4 (-566)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-781)) (-4 *4 (-315)) (-4 *6 (-1257 *4)) - (-5 *2 (-1281 (-654 *6))) (-5 *1 (-465 *4 *6)) (-5 *5 (-654 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-701 (-883 (-977 *3) (-977 *3)))) (-5 *1 (-977 *3)) - (-4 *3 (-1113))))) -(((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-1233))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-829 *3)) (-4 *3 (-860)) (-5 *1 (-682 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1078 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) - (-5 *1 (-990 *4 *5 *6 *7)) (-5 *3 (-654 *7))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1463 *4))) - (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1152)))) -(((*1 *2) (-12 (-5 *2 (-915 (-574))) (-5 *1 (-928))))) -(((*1 *2 *1) - (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1216))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1081 *4 *3)) (-4 *4 (-13 (-858) (-372))) - (-4 *3 (-1257 *4)) (-5 *2 (-112))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1125)) (-4 *3 (-1113)) (-5 *2 (-654 *1)) - (-4 *1 (-440 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) - (-4 *3 (-1113)))) + (-12 (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-859)) + (-4 *6 (-1077 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -3733 *1) (|:| |upper| *1))) + (-4 *1 (-988 *4 *5 *3 *6))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-653 *6)) (-4 *1 (-959 *4 *5 *6)) (-4 *4 (-1061)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-780)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *2 (-654 *1)) (-4 *1 (-960 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1062)) - (-4 *7 (-960 *6 *4 *5)) (-5 *2 (-654 *3)) - (-5 *1 (-961 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-372) - (-10 -8 (-15 -2943 ($ *7)) (-15 -2966 (*7 $)) - (-15 -2977 (*7 $)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1146 (-227))) (-5 *3 (-654 (-270))) (-5 *1 (-1283)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1146 (-227))) (-5 *3 (-1172)) (-5 *1 (-1283)))) - ((*1 *1 *1) (-5 *1 (-1283)))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-566)) - (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-990 *5 *6 *7 *8))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-654 (-491 *5 *6))) (-5 *4 (-874 *5)) - (-14 *5 (-654 (-1190))) (-5 *2 (-491 *5 *6)) (-5 *1 (-641 *5 *6)) - (-4 *6 (-462)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-491 *5 *6))) (-5 *4 (-874 *5)) - (-14 *5 (-654 (-1190))) (-5 *2 (-491 *5 *6)) (-5 *1 (-641 *5 *6)) - (-4 *6 (-462))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1113)) (-4 *1 (-914 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-872))))) -(((*1 *1 *1) (|partial| -4 *1 (-1165)))) + (-12 (-4 *1 (-959 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *5 (-859)) (-5 *2 (-780))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573)))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-653 (-1185 *7))) (-5 *3 (-1185 *7)) + (-4 *7 (-959 *4 *5 *6)) (-4 *4 (-919)) (-4 *5 (-802)) + (-4 *6 (-859)) (-5 *1 (-916 *4 *5 *6 *7)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-653 (-1185 *5))) (-5 *3 (-1185 *5)) + (-4 *5 (-1256 *4)) (-4 *4 (-919)) (-5 *1 (-917 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-768))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-656 *3)) (-4 *3 (-1112))))) +(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-371) (-1215)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1230)) (-5 *1 (-1144 *4 *2)) + (-4 *2 (-13 (-613 (-573) *4) (-10 -7 (-6 -4455) (-6 -4456)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-859)) (-4 *3 (-1230)) (-5 *1 (-1144 *3 *2)) + (-4 *2 (-13 (-613 (-573) *3) (-10 -7 (-6 -4455) (-6 -4456))))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-963 *4)) (-4 *4 (-1062)) (-4 *4 (-624 *2)) - (-5 *2 (-388)) (-5 *1 (-795 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-963 *5)) (-5 *4 (-932)) (-4 *5 (-1062)) - (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) + (-12 (-5 *3 (-323 (-387))) (-5 *2 (-323 (-227))) (-5 *1 (-312))))) +(((*1 *2 *3) + (-12 (-5 *3 (-828 *4)) (-4 *4 (-859)) (-5 *2 (-112)) + (-5 *1 (-681 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-653 *3)) (-4 *3 (-314)) (-5 *1 (-181 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-698 *1)) (-5 *4 (-1280 *1)) (-4 *1 (-648 *5)) + (-4 *5 (-1061)) + (-5 *2 (-2 (|:| -1423 (-698 *5)) (|:| |vec| (-1280 *5)))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-566)) - (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-932)) (-4 *5 (-566)) - (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) + (-12 (-5 *3 (-698 *1)) (-4 *1 (-648 *4)) (-4 *4 (-1061)) + (-5 *2 (-698 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) - (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) + (-12 (-5 *3 (-1280 *1)) (-4 *1 (-648 *4)) (-4 *4 (-1061)) + (-5 *2 (-698 *4))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-2 (|:| |ans| *7) (|:| -3903 *7) (|:| |sol?| (-112))) + (-573) *7)) + (-5 *6 (-653 (-416 *8))) (-4 *7 (-371)) (-4 *8 (-1256 *7)) + (-5 *3 (-416 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-583 *7 *8))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1075))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) + (-5 *2 (-1047)) (-5 *1 (-760))))) +(((*1 *2 *1) + (-12 (-4 *1 (-913 *3)) (-4 *3 (-1112)) (-5 *2 (-1114 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1114 *3)) (-5 *1 (-914 *3)) (-4 *3 (-1112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-830))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1280 (-323 (-227)))) (-5 *4 (-653 (-1189))) + (-5 *2 (-698 (-323 (-227)))) (-5 *1 (-207)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-324 *5)) (-5 *4 (-932)) (-4 *5 (-566)) - (-4 *5 (-860)) (-4 *5 (-624 *2)) (-5 *2 (-388)) - (-5 *1 (-795 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-622 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *4))) - (-4 *4 (-13 (-566) (-1051 (-574)) (-649 (-574)))) - (-5 *1 (-284 *4 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-563))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-860)) - (-4 *3 (-1113))))) + (-12 (-4 *5 (-1112)) (-4 *6 (-910 *5)) (-5 *2 (-698 *6)) + (-5 *1 (-701 *5 *6 *3 *4)) (-4 *3 (-381 *6)) + (-4 *4 (-13 (-381 *5) (-10 -7 (-6 -4455))))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-621 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1189))) (-5 *5 (-1185 *2)) + (-4 *2 (-13 (-439 *6) (-27) (-1215))) + (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) + (-5 *1 (-569 *6 *2 *7)) (-4 *7 (-1112)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-621 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1189))) + (-5 *5 (-416 (-1185 *2))) (-4 *2 (-13 (-439 *6) (-27) (-1215))) + (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) + (-5 *1 (-569 *6 *2 *7)) (-4 *7 (-1112))))) +(((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-1018)))) + ((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-1018))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-371)) (-4 *5 (-565)) + (-5 *2 + (-2 (|:| |minor| (-653 (-931))) (|:| -4122 *3) + (|:| |minors| (-653 (-653 (-931)))) (|:| |ops| (-653 *3)))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-931)) (-4 *3 (-665 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1186 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566)) - (-5 *1 (-32 *4 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1264 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1241 *3)) - (-5 *2 (-417 (-574)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2715 (-574)) (|:| -4219 (-654 *3)))) - (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574)))))) + (-12 (-5 *2 (-653 (-653 (-653 *4)))) (-5 *3 (-653 *4)) (-4 *4 (-859)) + (-5 *1 (-1200 *4))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062))))) -(((*1 *1 *2) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-372)) (-4 *1 (-337 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1281 *3)) (-4 *3 (-1257 *4)) (-4 *4 (-1235)) - (-4 *1 (-351 *4 *3 *5)) (-4 *5 (-1257 (-417 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1281 *4)) (-5 *3 (-1281 *1)) (-4 *4 (-174)) - (-4 *1 (-376 *4)))) + (-12 (|has| *1 (-6 -4456)) (-4 *1 (-381 *2)) (-4 *2 (-1230)) + (-4 *2 (-859)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4456)) + (-4 *1 (-381 *3)) (-4 *3 (-1230))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1189)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-711 *3 *5 *6 *7)) + (-4 *3 (-623 (-545))) (-4 *5 (-1230)) (-4 *6 (-1230)) + (-4 *7 (-1230)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1189)) (-5 *2 (-1 *6 *5)) (-5 *1 (-715 *3 *5 *6)) + (-4 *3 (-623 (-545))) (-4 *5 (-1230)) (-4 *6 (-1230))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-427 *3)) (-4 *3 (-565))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) + (-4 *3 (-375 *4)))) + ((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1185 (-962 *4))) (-5 *1 (-425 *3 *4)) + (-4 *3 (-426 *4)))) + ((*1 *2) + (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-4 *3 (-371)) + (-5 *2 (-1185 (-962 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1185 (-416 (-962 *3)))) (-5 *1 (-462 *3 *4 *5 *6)) + (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) + (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3)))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-371)) (-4 *3 (-1061)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2969 *1))) + (-4 *1 (-861 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-937))))) +(((*1 *2 *3 *3) + (-12 (|has| *2 (-6 (-4457 "*"))) (-4 *5 (-381 *2)) (-4 *6 (-381 *2)) + (-4 *2 (-1061)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1256 *2)) + (-4 *4 (-696 *2 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1185 (-962 *6))) (-4 *6 (-565)) + (-4 *2 (-959 (-416 (-962 *6)) *5 *4)) (-5 *1 (-741 *5 *4 *6 *2)) + (-4 *5 (-802)) + (-4 *4 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $)))))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-504))))) +(((*1 *2 *1) + (-12 (-5 *2 (-653 (-301 *3))) (-5 *1 (-301 *3)) (-4 *3 (-565)) + (-4 *3 (-1230))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-962 *6))) (-5 *4 (-653 (-1189))) + (-4 *6 (-13 (-565) (-1050 *5))) (-4 *5 (-565)) + (-5 *2 (-653 (-653 (-301 (-416 (-962 *6)))))) (-5 *1 (-1051 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-371)) (-4 *6 (-1256 (-416 *2))) + (-4 *2 (-1256 *5)) (-5 *1 (-217 *5 *2 *6 *3)) + (-4 *3 (-350 *5 *2 *6))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-573)) (-4 *1 (-1105 *3)) (-4 *3 (-1230))))) +(((*1 *2 *1) (-12 (-4 *1 (-536)) (-5 *2 (-700 (-555)))))) +(((*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282)))) + ((*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1282))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) + (-5 *2 (-653 (-653 (-653 (-780)))))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1280 (-1189))) (-5 *3 (-1280 (-462 *4 *5 *6 *7))) + (-5 *1 (-462 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-931)) + (-14 *6 (-653 (-1189))) (-14 *7 (-1280 (-698 *4))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1281 *4)) (-5 *3 (-1281 *1)) (-4 *4 (-174)) - (-4 *1 (-379 *4 *5)) (-4 *5 (-1257 *4)))) + (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-462 *4 *5 *6 *7))) + (-5 *1 (-462 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-931)) + (-14 *6 (-653 *2)) (-14 *7 (-1280 (-698 *4))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1280 (-462 *3 *4 *5 *6))) (-5 *1 (-462 *3 *4 *5 *6)) + (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) + (-14 *6 (-1280 (-698 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1280 (-1189))) (-5 *1 (-462 *3 *4 *5 *6)) + (-4 *3 (-174)) (-14 *4 (-931)) (-14 *5 (-653 (-1189))) + (-14 *6 (-1280 (-698 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-1281 *3)) (-4 *3 (-174)) (-4 *1 (-419 *3 *4)) - (-4 *4 (-1257 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-174)) (-4 *1 (-427 *3))))) + (-12 (-5 *2 (-1189)) (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-931)) (-14 *5 (-653 *2)) (-14 *6 (-1280 (-698 *3))))) + ((*1 *1) + (-12 (-5 *1 (-462 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-931)) + (-14 *4 (-653 (-1189))) (-14 *5 (-1280 (-698 *2)))))) +(((*1 *1 *2) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-219))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282))))) +(((*1 *2 *2) (-12 (-5 *2 (-1106 (-852 (-227)))) (-5 *1 (-312))))) +(((*1 *2 *2) + (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) + (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-683 *2)) (-4 *2 (-1230))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1186 (-963 *6))) (-4 *6 (-566)) - (-4 *2 (-960 (-417 (-963 *6)) *5 *4)) (-5 *1 (-742 *5 *4 *6 *2)) - (-4 *5 (-803)) - (-4 *4 (-13 (-860) (-10 -8 (-15 -1836 ((-1190) $)))))))) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-653 *1)) (|has| *1 (-6 -4456)) (-4 *1 (-1022 *3)) + (-4 *3 (-1230))))) +(((*1 *1 *1 *1) (-5 *1 (-871)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-953 *4)) (-4 *4 (-1061)) (-5 *1 (-1177 *3 *4)) + (-14 *3 (-931))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-654 (-1281 *4))) (-5 *1 (-375 *3 *4)) - (-4 *3 (-376 *4)))) + (-12 (-4 *4 (-1234)) (-4 *5 (-1256 *4)) (-4 *6 (-1256 (-416 *5))) + (-5 *2 (-780)) (-5 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-350 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566)) - (-5 *2 (-654 (-1281 *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-4 *5 (-440 *4)) - (-5 *2 - (-3 (|:| |overq| (-1186 (-417 (-574)))) - (|:| |overan| (-1186 (-48))) (|:| -3601 (-112)))) - (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1257 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-574)) (-4 *1 (-1106 *3)) (-4 *3 (-1231))))) -(((*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-589))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113)) - (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))) -(((*1 *2 *1) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) - (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-932))) (-5 *2 (-1192 (-417 (-574)))) - (-5 *1 (-192))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1190)) - (-4 *4 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-814 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1216) (-970)))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1463 *3) (|:| |coef2| (-792 *3)))) - (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1062))))) + (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) + (-4 *5 (-1256 (-416 *4))) (-5 *2 (-780))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-960 *4 *5 *6)) (-4 *6 (-624 (-1190))) - (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) - (-5 *2 (-1179 (-654 (-963 *4)) (-654 (-302 (-963 *4))))) - (-5 *1 (-514 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *2 (-112)) (-5 *1 (-274))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-566)) (-4 *3 (-1062)) - (-5 *2 (-2 (|:| -1411 *1) (|:| -2766 *1))) (-4 *1 (-862 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-566)) (-4 *5 (-1062)) - (-5 *2 (-2 (|:| -1411 *3) (|:| -2766 *3))) (-5 *1 (-863 *5 *3)) - (-4 *3 (-862 *5))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1271 *4)) + (-4 *4 (-38 (-416 (-573)))) (-5 *2 (-1 (-1169 *4) (-1169 *4))) + (-5 *1 (-1273 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-937))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1190)) - (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) (-5 *1 (-1193))))) + (-12 (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) (-4 *5 (-802)) + (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-654 *5))) (-4 *5 (-1272 *4)) - (-4 *4 (-38 (-417 (-574)))) - (-5 *2 (-1 (-1170 *4) (-654 (-1170 *4)))) (-5 *1 (-1274 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-654 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-938))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-932)) (-4 *5 (-315)) (-4 *3 (-1257 *5)) - (-5 *2 (-2 (|:| |plist| (-654 *3)) (|:| |modulo| *5))) - (-5 *1 (-470 *5 *3)) (-5 *4 (-654 *3))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-960 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *2 (-860)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-803)) (-4 *5 (-1062)) (-4 *6 (-960 *5 *4 *2)) - (-4 *2 (-860)) (-5 *1 (-961 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-372) - (-10 -8 (-15 -2943 ($ *6)) (-15 -2966 (*6 $)) - (-15 -2977 (*6 $))))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-566)) - (-5 *2 (-1190)) (-5 *1 (-1056 *4))))) + (-12 (-4 *1 (-930)) (-5 *2 (-2 (|:| -1857 (-653 *1)) (|:| -2969 *1))) + (-5 *3 (-653 *1))))) (((*1 *2 *3) - (-12 (-14 *4 (-654 (-1190))) (-14 *5 (-781)) + (-12 (-5 *3 (-1058 *4 *5)) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) + (-14 *5 (-653 (-1189))) (-5 *2 - (-654 - (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) - (-253 *4 (-417 (-574)))))) - (-5 *1 (-515 *4 *5)) - (-5 *3 - (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) - (-253 *4 (-417 (-574)))))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872)))) - ((*1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *3) - (-12 (-5 *3 (-938)) + (-653 (-2 (|:| -1436 (-1185 *4)) (|:| -2123 (-653 (-962 *4)))))) + (-5 *1 (-1307 *4 *5 *6)) (-14 *6 (-653 (-1189))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 - (-2 (|:| |brans| (-654 (-654 (-954 (-227))))) - (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227))))) - (-5 *1 (-154)))) + (-653 (-2 (|:| -1436 (-1185 *5)) (|:| -2123 (-653 (-962 *5)))))) + (-5 *1 (-1307 *5 *6 *7)) (-5 *3 (-653 (-962 *5))) + (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-938)) (-5 *4 (-417 (-574))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-857) (-314) (-148) (-1034))) (-5 *2 - (-2 (|:| |brans| (-654 (-654 (-954 (-227))))) - (|:| |xValues| (-1107 (-227))) (|:| |yValues| (-1107 (-227))))) - (-5 *1 (-154))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1170 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2367 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-1048)) (-5 *1 (-313))))) + (-653 (-2 (|:| -1436 (-1185 *5)) (|:| -2123 (-653 (-962 *5)))))) + (-5 *1 (-1307 *5 *6 *7)) (-5 *3 (-653 (-962 *5))) + (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-857) (-314) (-148) (-1034))) + (-5 *2 + (-653 (-2 (|:| -1436 (-1185 *5)) (|:| -2123 (-653 (-962 *5)))))) + (-5 *1 (-1307 *5 *6 *7)) (-5 *3 (-653 (-962 *5))) + (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-857) (-314) (-148) (-1034))) + (-5 *2 + (-653 (-2 (|:| -1436 (-1185 *4)) (|:| -2123 (-653 (-962 *4)))))) + (-5 *1 (-1307 *4 *5 *6)) (-5 *3 (-653 (-962 *4))) + (-14 *5 (-653 (-1189))) (-14 *6 (-653 (-1189)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-851)) (-5 *4 (-1076)) (-5 *2 (-1048)) (-5 *1 (-850)))) - ((*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-1048)) (-5 *1 (-850)))) + (-12 (-5 *3 (-850)) (-5 *4 (-1075)) (-5 *2 (-1047)) (-5 *1 (-849)))) + ((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1047)) (-5 *1 (-849)))) ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-654 (-388))) (-5 *5 (-654 (-853 (-388)))) - (-5 *6 (-654 (-324 (-388)))) (-5 *3 (-324 (-388))) (-5 *2 (-1048)) - (-5 *1 (-850)))) + (-12 (-5 *4 (-653 (-387))) (-5 *5 (-653 (-852 (-387)))) + (-5 *6 (-653 (-323 (-387)))) (-5 *3 (-323 (-387))) (-5 *2 (-1047)) + (-5 *1 (-849)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-388))) - (-5 *5 (-654 (-853 (-388)))) (-5 *2 (-1048)) (-5 *1 (-850)))) + (-12 (-5 *3 (-323 (-387))) (-5 *4 (-653 (-387))) + (-5 *5 (-653 (-852 (-387)))) (-5 *2 (-1047)) (-5 *1 (-849)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-388))) (-5 *2 (-1048)) - (-5 *1 (-850)))) + (-12 (-5 *3 (-323 (-387))) (-5 *4 (-653 (-387))) (-5 *2 (-1047)) + (-5 *1 (-849)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-324 (-388)))) (-5 *4 (-654 (-388))) - (-5 *2 (-1048)) (-5 *1 (-850))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1172)) - (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-768))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1186 *9)) (-5 *4 (-654 *7)) (-5 *5 (-654 (-654 *8))) - (-4 *7 (-860)) (-4 *8 (-315)) (-4 *9 (-960 *8 *6 *7)) (-4 *6 (-803)) - (-5 *2 - (-2 (|:| |upol| (-1186 *8)) (|:| |Lval| (-654 *8)) - (|:| |Lfact| - (-654 (-2 (|:| -4220 (-1186 *8)) (|:| -3715 (-574))))) - (|:| |ctpol| *8))) - (-5 *1 (-752 *6 *7 *8 *9))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-171 (-227))) (-5 *4 (-574)) (-5 *2 (-1048)) - (-5 *1 (-768))))) + (-12 (-5 *3 (-653 (-323 (-387)))) (-5 *4 (-653 (-387))) + (-5 *2 (-1047)) (-5 *1 (-849))))) +(((*1 *1 *1) + (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) +(((*1 *1 *1) (-5 *1 (-871)))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 (-1190))) (-5 *3 (-1190)) (-5 *1 (-546)))) + (-12 (-5 *2 (-653 (-1189))) (-5 *3 (-1189)) (-5 *1 (-545)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1190)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))) + (-12 (-5 *2 (-1189)) (-5 *1 (-713 *3)) (-4 *3 (-623 (-545))))) ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1190)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))) + (-12 (-5 *2 (-1189)) (-5 *1 (-713 *3)) (-4 *3 (-623 (-545))))) ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1190)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))) + (-12 (-5 *2 (-1189)) (-5 *1 (-713 *3)) (-4 *3 (-623 (-545))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-654 (-1190))) (-5 *2 (-1190)) (-5 *1 (-714 *3)) - (-4 *3 (-624 (-546)))))) + (-12 (-5 *4 (-653 (-1189))) (-5 *2 (-1189)) (-5 *1 (-713 *3)) + (-4 *3 (-623 (-545)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-653 *7)) (-4 *7 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) + (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) + (-5 *1 (-1000 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-653 *7)) (-4 *7 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) + (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) + (-5 *1 (-1119 *3 *4 *5 *6 *7))))) +(((*1 *1) (-5 *1 (-606)))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-269)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-269)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-269))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1151)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-573)) (-5 *1 (-323 *3)) (-4 *3 (-565)) (-4 *3 (-1112))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-766))))) +(((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014)))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-4 *3 (-376)) + (-5 *2 (-1185 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-4 *3 (-376)) + (-5 *2 (-1185 *3))))) (((*1 *2 *3) + (-12 (-5 *3 (-780)) (-5 *2 (-1 (-1169 (-962 *4)) (-1169 (-962 *4)))) + (-5 *1 (-1288 *4)) (-4 *4 (-371))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-565)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) + (-5 *2 (-653 *1)) (-4 *1 (-1077 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-371)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) + (-5 *1 (-530 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-171 (-573))) (-5 *2 (-112)) (-5 *1 (-455)))) + ((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) - (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-574)) (-5 *1 (-206))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-781)) (-4 *4 (-566)) (-5 *1 (-982 *4 *2)) - (-4 *2 (-1257 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1115 *3)) (-5 *1 (-916 *3)) (-4 *3 (-377)) - (-4 *3 (-1113))))) -(((*1 *2 *1) - (-12 (-5 *2 (-701 (-883 (-977 *3) (-977 *3)))) (-5 *1 (-977 *3)) - (-4 *3 (-1113))))) + (-513 (-416 (-573)) (-245 *5 (-780)) (-873 *4) + (-252 *4 (-416 (-573))))) + (-14 *4 (-653 (-1189))) (-14 *5 (-780)) (-5 *2 (-112)) + (-5 *1 (-514 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-971 *3)) (-4 *3 (-554)))) + ((*1 *2 *1) (-12 (-4 *1 (-1234)) (-5 *2 (-112))))) +(((*1 *2 *2 *2) + (-12 (-4 *2 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) + (-5 *1 (-1140 *3 *2)) (-4 *3 (-1256 *2))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -2872 (-791 *3)) (|:| |coef1| (-791 *3)) + (|:| |coef2| (-791 *3)))) + (-5 *1 (-791 *3)) (-4 *3 (-565)) (-4 *3 (-1061)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-565)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) + (-5 *2 (-2 (|:| -2872 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1077 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-614 *2 *3)) (-4 *3 (-1231)) (-4 *2 (-1113)) - (-4 *2 (-860))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-563))))) -(((*1 *2 *3) - (-12 (-4 *4 (-38 (-417 (-574)))) - (-5 *2 (-2 (|:| -2227 (-1170 *4)) (|:| -2237 (-1170 *4)))) - (-5 *1 (-1176 *4)) (-5 *3 (-1170 *4))))) -(((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1053))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-1190))) (-4 *6 (-372)) - (-5 *2 (-654 (-302 (-963 *6)))) (-5 *1 (-548 *5 *6 *7)) - (-4 *5 (-462)) (-4 *7 (-13 (-372) (-858)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-440 *4) (-1015) (-1216))) - (-4 *4 (-566)) (-4 *2 (-13 (-440 (-171 *4)) (-1015) (-1216))) - (-5 *1 (-610 *4 *5 *2))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) - (-5 *2 (-1048)) (-5 *1 (-766))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1190)) - (-4 *5 (-13 (-1051 (-574)) (-462) (-649 (-574)))) - (-5 *2 (-2 (|:| -2493 *3) (|:| |nconst| *3))) (-5 *1 (-577 *5 *3)) - (-4 *3 (-13 (-27) (-1216) (-440 *5)))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1231)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1172)) (-5 *1 (-1002)))) + (-12 (-5 *2 (-700 (-882 (-976 *3) (-976 *3)))) (-5 *1 (-976 *3)) + (-4 *3 (-1112))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) + (-5 *2 (-1047)) (-5 *1 (-762))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-1230)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1171)) (-5 *1 (-1001)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-4 *4 (-1231)) (-5 *1 (-1070 *3 *4)) - (-4 *3 (-1106 *4)))) + (-12 (-5 *2 (-1189)) (-4 *4 (-1230)) (-5 *1 (-1069 *3 *4)) + (-4 *3 (-1105 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-1107 *4)) (-4 *4 (-1231)) - (-5 *1 (-1105 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 *1)) (-4 *3 (-1062)) (-4 *1 (-697 *3 *4 *5)) - (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-1062)) (-4 *1 (-697 *3 *4 *5)) - (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1281 *3)) (-4 *3 (-1062)) (-5 *1 (-699 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-654 *4)) (-4 *4 (-1062)) (-4 *1 (-1136 *3 *4 *5 *6)) - (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4))))) + (-12 (-5 *2 (-1189)) (-5 *3 (-1106 *4)) (-4 *4 (-1230)) + (-5 *1 (-1104 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 *5)) (-4 *5 (-440 *4)) (-4 *4 (-566)) - (-5 *2 (-872)) (-5 *1 (-32 *4 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-372)) - (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-1190))) (-4 *4 (-13 (-315) (-148))) - (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) - (-5 *2 (-654 (-417 (-963 *4)))) (-5 *1 (-935 *4 *5 *6 *7)) - (-4 *7 (-960 *4 *6 *5))))) + (-12 (-5 *2 (-653 *3)) (-4 *3 (-1256 (-573))) (-5 *1 (-495 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1253 *5 *4)) (-4 *4 (-829)) (-14 *5 (-1189)) + (-5 *2 (-573)) (-5 *1 (-1126 *4 *5))))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-653 *3)) (-5 *5 (-931)) (-4 *3 (-1256 *4)) + (-4 *4 (-314)) (-5 *1 (-469 *4 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1230)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-699 (-324 (-227)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388)))) - (-5 *1 (-207))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-757))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-654 *7)) (-5 *5 (-654 (-654 *8))) (-4 *7 (-860)) - (-4 *8 (-315)) (-4 *6 (-803)) (-4 *9 (-960 *8 *6 *7)) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-573))) (-5 *1 (-1059))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4455)) (-4 *1 (-152 *2)) (-4 *2 (-1230)) + (-4 *2 (-1112))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-314)) (-4 *6 (-381 *5)) (-4 *4 (-381 *5)) (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| - (-654 (-2 (|:| -4220 (-1186 *9)) (|:| -3715 (-574))))))) - (-5 *1 (-752 *6 *7 *8 *9)) (-5 *3 (-1186 *9))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) + (-5 *1 (-1136 *5 *6 *4 *3)) (-4 *3 (-696 *5 *6 *4))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *6)) (-4 *5 (-1113)) - (-4 *6 (-1231)) (-5 *2 (-1 *6 *5)) (-5 *1 (-651 *5 *6)))) + (-12 (-5 *3 (-653 *5)) (-5 *4 (-653 *6)) (-4 *5 (-1112)) + (-4 *6 (-1230)) (-5 *2 (-1 *6 *5)) (-5 *1 (-650 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-4 *5 (-1113)) - (-4 *2 (-1231)) (-5 *1 (-651 *5 *2)))) + (-12 (-5 *3 (-653 *5)) (-5 *4 (-653 *2)) (-4 *5 (-1112)) + (-4 *2 (-1230)) (-5 *1 (-650 *5 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 *5)) (-4 *6 (-1113)) - (-4 *5 (-1231)) (-5 *2 (-1 *5 *6)) (-5 *1 (-651 *6 *5)))) + (-12 (-5 *3 (-653 *6)) (-5 *4 (-653 *5)) (-4 *6 (-1112)) + (-4 *5 (-1230)) (-5 *2 (-1 *5 *6)) (-5 *1 (-650 *6 *5)))) ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-4 *5 (-1113)) - (-4 *2 (-1231)) (-5 *1 (-651 *5 *2)))) + (-12 (-5 *3 (-653 *5)) (-5 *4 (-653 *2)) (-4 *5 (-1112)) + (-4 *2 (-1230)) (-5 *1 (-650 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-654 *5)) (-5 *4 (-654 *6)) - (-4 *5 (-1113)) (-4 *6 (-1231)) (-5 *1 (-651 *5 *6)))) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-653 *5)) (-5 *4 (-653 *6)) + (-4 *5 (-1112)) (-4 *6 (-1230)) (-5 *1 (-650 *5 *6)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-5 *6 (-1 *2 *5)) - (-4 *5 (-1113)) (-4 *2 (-1231)) (-5 *1 (-651 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (-145)) (-5 *2 (-781))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-654 *1)) (-4 *1 (-1078 *4 *5 *6)) (-4 *4 (-1062)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *5 (-860)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1224 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) - (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-574) "failed") *5)) (-4 *5 (-1062)) - (-5 *2 (-574)) (-5 *1 (-553 *5 *3)) (-4 *3 (-1257 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-574) "failed") *4)) (-4 *4 (-1062)) - (-5 *2 (-574)) (-5 *1 (-553 *4 *3)) (-4 *3 (-1257 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-574) "failed") *4)) (-4 *4 (-1062)) - (-5 *2 (-574)) (-5 *1 (-553 *4 *3)) (-4 *3 (-1257 *4))))) + (-12 (-5 *3 (-653 *5)) (-5 *4 (-653 *2)) (-5 *6 (-1 *2 *5)) + (-4 *5 (-1112)) (-4 *2 (-1230)) (-5 *1 (-650 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (-145)) (-5 *2 (-780))))) (((*1 *2 *3) - (-12 (-5 *3 (-853 (-388))) (-5 *2 (-853 (-227))) (-5 *1 (-313))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-404)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1211))))) -(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-320)) (-5 *1 (-304)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-1172))) (-5 *2 (-320)) (-5 *1 (-304)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-320)) (-5 *1 (-304)))) + (-12 (-5 *3 (-902 *4)) (-4 *4 (-1112)) (-5 *2 (-653 *5)) + (-5 *1 (-900 *4 *5)) (-4 *5 (-1230))))) +(((*1 *1) (-5 *1 (-131)))) +(((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-4 *1 (-107 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) + (-5 *2 (-1285)) (-5 *1 (-1192)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-654 (-1172))) (-5 *3 (-1172)) (-5 *2 (-320)) - (-5 *1 (-304))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-315)) (-5 *1 (-181 *3))))) + (-12 (-5 *3 (-1189)) + (-5 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-5 *2 (-1285)) + (-5 *1 (-1192)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *3 (-1189)) + (-5 *4 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) (-5 *2 (-1285)) + (-5 *1 (-1192))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1185 *3)) (-5 *1 (-924 *3)) (-4 *3 (-314))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-653 (-962 (-573)))) (-5 *4 (-653 (-1189))) + (-5 *2 (-653 (-653 (-387)))) (-5 *1 (-1035)) (-5 *5 (-387)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1058 *4 *5)) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) + (-14 *5 (-653 (-1189))) (-5 *2 (-653 (-653 (-1036 (-416 *4))))) + (-5 *1 (-1307 *4 *5 *6)) (-14 *6 (-653 (-1189))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-857) (-314) (-148) (-1034))) + (-5 *2 (-653 (-653 (-1036 (-416 *5))))) (-5 *1 (-1307 *5 *6 *7)) + (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-857) (-314) (-148) (-1034))) + (-5 *2 (-653 (-653 (-1036 (-416 *5))))) (-5 *1 (-1307 *5 *6 *7)) + (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-857) (-314) (-148) (-1034))) + (-5 *2 (-653 (-653 (-1036 (-416 *5))))) (-5 *1 (-1307 *5 *6 *7)) + (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 (-962 *4))) + (-4 *4 (-13 (-857) (-314) (-148) (-1034))) + (-5 *2 (-653 (-653 (-1036 (-416 *4))))) (-5 *1 (-1307 *4 *5 *6)) + (-14 *5 (-653 (-1189))) (-14 *6 (-653 (-1189)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-319)) (-5 *1 (-303)))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 (-1171))) (-5 *2 (-319)) (-5 *1 (-303)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-319)) (-5 *1 (-303)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-653 (-1171))) (-5 *3 (-1171)) (-5 *2 (-319)) + (-5 *1 (-303))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-780)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-1112)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1112)) (-5 *2 (-112)) + (-5 *1 (-1231 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-566))))) + (|partial| -12 (-5 *3 (-621 *4)) (-4 *4 (-1112)) (-4 *2 (-1112)) + (-5 *1 (-620 *2 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1000 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1119 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7))))) +(((*1 *1 *2) + (-12 (-5 *2 (-681 *3)) (-4 *3 (-859)) (-4 *1 (-382 *3 *4)) + (-4 *4 (-174))))) (((*1 *2 *1) - (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-299))) - ((*1 *1) (-5 *1 (-872))) - ((*1 *1) - (-12 (-4 *2 (-462)) (-4 *3 (-860)) (-4 *4 (-803)) - (-5 *1 (-1000 *2 *3 *4 *5)) (-4 *5 (-960 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1098))) - ((*1 *1) - (-12 (-5 *1 (-1153 *2 *3)) (-4 *2 (-13 (-1113) (-34))) - (-4 *3 (-13 (-1113) (-34))))) - ((*1 *1) (-5 *1 (-1193))) ((*1 *1) (-5 *1 (-1194)))) + (-12 (-5 *2 (-653 *4)) (-5 *1 (-1153 *3 *4)) + (-4 *3 (-13 (-1112) (-34))) (-4 *4 (-13 (-1112) (-34)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1215)))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1024)) (-5 *2 (-871))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-2 (|:| -3914 (-698 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-698 *3)))) + (-4 *3 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) + (-4 *4 (-1256 *3)) (-5 *1 (-508 *3 *4 *5)) (-4 *5 (-418 *3 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1190)) - (-4 *5 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) - (-5 *2 (-596 *3)) (-5 *1 (-436 *5 *3)) - (-4 *3 (-13 (-1216) (-29 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1190)) (-4 *5 (-13 (-566) (-1051 (-574)) (-148))) - (-5 *2 (-596 (-417 (-963 *5)))) (-5 *1 (-580 *5)) - (-5 *3 (-417 (-963 *5)))))) + (-12 (-5 *3 (-780)) (-5 *4 (-1280 *2)) (-4 *5 (-314)) + (-4 *6 (-1004 *5)) (-4 *2 (-13 (-418 *6 *7) (-1050 *6))) + (-5 *1 (-422 *5 *6 *7 *2)) (-4 *7 (-1256 *6))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-780)) (-4 *5 (-565)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-981 *5 *3)) (-4 *3 (-1256 *5))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -3861 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-371)) (-4 *7 (-1256 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-416 *7)) (|:| |a0| *6)) + (-2 (|:| -3861 (-416 *7)) (|:| |coeff| (-416 *7))) "failed")) + (-5 *1 (-583 *6 *7)) (-5 *3 (-416 *7))))) +(((*1 *1 *1) (-12 (-4 *1 (-439 *2)) (-4 *2 (-1112)) (-4 *2 (-565)))) + ((*1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) + (-4 *3 (-375 *4)))) + ((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-5 *2 (-654 *4)) (-5 *1 (-1154 *3 *4)) - (-4 *3 (-13 (-1113) (-34))) (-4 *4 (-13 (-1113) (-34)))))) + (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) + (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) + (-5 *2 (-2 (|:| -1380 (-653 *6)) (|:| -1674 (-653 *6))))))) +(((*1 *1 *2) + (-12 (-5 *2 (-653 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) + (-14 *3 (-573)) (-14 *4 (-780))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1230)) (-4 *2 (-1061)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-871)))) + ((*1 *1 *1) (-5 *1 (-871))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-953 (-227))) (-5 *2 (-227)) (-5 *1 (-1226)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1230)) (-4 *2 (-1061))))) (((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1216)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1190)) - (-4 *4 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) - (-5 *1 (-814 *4 *2)) (-4 *2 (-13 (-29 *4) (-1216) (-970)))))) + (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1215)))))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-604 *3)) (-4 *3 (-1061))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-573)) (-5 *1 (-387))))) +(((*1 *1 *2) + (-12 (-5 *2 (-653 (-931))) (-5 *1 (-1113 *3 *4)) (-14 *3 (-931)) + (-14 *4 (-931))))) +(((*1 *1 *2) (-12 (-5 *2 (-653 (-145))) (-5 *1 (-142)))) + ((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-142))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1078 *5 *6 *7)) (-4 *5 (-566)) - (-4 *6 (-803)) (-4 *7 (-860)) - (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8)))) - (-5 *1 (-990 *5 *6 *7 *8)) (-5 *4 (-654 *8))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-315)) (-5 *1 (-465 *3 *2)) (-4 *2 (-1257 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-315)) (-5 *1 (-470 *3 *2)) (-4 *2 (-1257 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-315)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-781))) - (-5 *1 (-549 *3 *2 *4 *5)) (-4 *2 (-1257 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1216)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-428 *2)) (-4 *2 (-315)) (-5 *1 (-925 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-1190)) - (-4 *5 (-13 (-315) (-148))) (-5 *2 (-52)) (-5 *1 (-926 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-428 (-963 *6))) (-5 *5 (-1190)) (-5 *3 (-963 *6)) - (-4 *6 (-13 (-315) (-148))) (-5 *2 (-52)) (-5 *1 (-926 *6))))) + (-12 (-5 *3 (-1189)) (-5 *4 (-962 (-573))) (-5 *2 (-337)) + (-5 *1 (-339))))) (((*1 *2 *3) - (-12 (-5 *3 (-574)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-5 *2 (-1286)) (-5 *1 (-459 *4 *5 *6 *7)) (-4 *7 (-960 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-358)) (-4 *4 (-337 *3)) (-4 *5 (-1257 *4)) - (-5 *1 (-787 *3 *4 *5 *2 *6)) (-4 *2 (-1257 *5)) (-14 *6 (-932)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-1300 *3)) (-4 *3 (-372)) (-4 *3 (-377)))) - ((*1 *1 *1) (-12 (-4 *1 (-1300 *2)) (-4 *2 (-372)) (-4 *2 (-377))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-803)) - (-4 *3 (-13 (-860) (-10 -8 (-15 -1836 ((-1190) $))))) (-4 *5 (-566)) - (-5 *1 (-742 *4 *3 *5 *2)) (-4 *2 (-960 (-417 (-963 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1062)) (-4 *5 (-803)) - (-4 *3 - (-13 (-860) - (-10 -8 (-15 -1836 ((-1190) $)) - (-15 -1488 ((-3 $ "failed") (-1190)))))) - (-5 *1 (-997 *4 *5 *3 *2)) (-4 *2 (-960 (-963 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-654 *6)) - (-4 *6 - (-13 (-860) - (-10 -8 (-15 -1836 ((-1190) $)) - (-15 -1488 ((-3 $ "failed") (-1190)))))) - (-4 *4 (-1062)) (-4 *5 (-803)) (-5 *1 (-997 *4 *5 *6 *2)) - (-4 *2 (-960 (-963 *4) *5 *6))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) (-5 *6 (-1186 *3)) - (-4 *3 (-13 (-440 *7) (-27) (-1216))) - (-4 *7 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-570 *7 *3 *8)) (-4 *8 (-1113)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) - (-5 *6 (-417 (-1186 *3))) (-4 *3 (-13 (-440 *7) (-27) (-1216))) - (-4 *7 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-570 *7 *3 *8)) (-4 *8 (-1113))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1113)) - (-5 *2 (-2 (|:| -1858 (-574)) (|:| |var| (-622 *1)))) - (-4 *1 (-440 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1155 *4 *2)) (-14 *4 (-932)) - (-4 *2 (-13 (-1062) (-10 -7 (-6 (-4458 "*"))))) - (-5 *1 (-913 *4 *2))))) -(((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-52)) (-5 *1 (-839))))) -(((*1 *2 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-338))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-654 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-781)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-803)) (-4 *6 (-960 *4 *3 *5)) (-4 *4 (-462)) (-4 *5 (-860)) - (-5 *1 (-459 *4 *3 *5 *6))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-388)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-987))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-654 (-1190))) (|:| |pred| (-52)))) - (-5 *1 (-903 *3)) (-4 *3 (-1113))))) + (-12 (-5 *3 (-1185 *7)) (-4 *7 (-959 *6 *4 *5)) (-4 *4 (-802)) + (-4 *5 (-859)) (-4 *6 (-1061)) (-5 *2 (-1185 *6)) + (-5 *1 (-328 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-1185 *3))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-653 (-1280 *4))) (-5 *1 (-374 *3 *4)) + (-4 *3 (-375 *4)))) + ((*1 *2) + (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-4 *3 (-565)) + (-5 *2 (-653 (-1280 *3)))))) (((*1 *2 *3 *2) - (-12 (-5 *1 (-689 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1113))))) -(((*1 *2 *2) - (-12 + (-12 (-5 *1 (-688 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1112))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) (-4 *2 (-1230))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-780)) (-4 *5 (-357)) (-4 *6 (-1256 *5)) (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-574)))) - (-4 *4 (-13 (-1257 *3) (-566) (-10 -8 (-15 -2873 ($ $ $))))) - (-4 *3 (-566)) (-5 *1 (-1260 *3 *4))))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-654 *3)) (-5 *5 (-932)) (-4 *3 (-1257 *4)) - (-4 *4 (-315)) (-5 *1 (-470 *4 *3))))) + (-653 + (-2 (|:| -3914 (-698 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-698 *6))))) + (-5 *1 (-507 *5 *6 *7)) + (-5 *3 + (-2 (|:| -3914 (-698 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-698 *6)))) + (-4 *7 (-1256 *6))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-417 *5)) (-4 *4 (-1235)) (-4 *5 (-1257 *4)) - (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1257 *3)))) + (-12 (-5 *3 (-416 *5)) (-4 *4 (-1234)) (-4 *5 (-1256 *4)) + (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1256 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1192 (-417 (-574)))) (-5 *2 (-417 (-574))) + (-12 (-5 *3 (-1191 (-416 (-573)))) (-5 *2 (-416 (-573))) (-5 *1 (-192)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-699 (-324 (-227)))) (-5 *3 (-654 (-1190))) - (-5 *4 (-1281 (-324 (-227)))) (-5 *1 (-207)))) + (-12 (-5 *2 (-698 (-323 (-227)))) (-5 *3 (-653 (-1189))) + (-5 *4 (-1280 (-323 (-227)))) (-5 *1 (-207)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-654 (-302 *3))) (-4 *3 (-317 *3)) (-4 *3 (-1113)) - (-4 *3 (-1231)) (-5 *1 (-302 *3)))) + (-12 (-5 *2 (-653 (-301 *3))) (-4 *3 (-316 *3)) (-4 *3 (-1112)) + (-4 *3 (-1230)) (-5 *1 (-301 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-317 *2)) (-4 *2 (-1113)) (-4 *2 (-1231)) - (-5 *1 (-302 *2)))) + (-12 (-4 *2 (-316 *2)) (-4 *2 (-1112)) (-4 *2 (-1230)) + (-5 *1 (-301 *2)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-309)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-654 *1))) (-4 *1 (-310)))) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-653 *1))) (-4 *1 (-309)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 (-1 *1 (-654 *1)))) - (-4 *1 (-310)))) + (-12 (-5 *2 (-653 (-115))) (-5 *3 (-653 (-1 *1 (-653 *1)))) + (-4 *1 (-309)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 (-1 *1 *1))) (-4 *1 (-310)))) + (-12 (-5 *2 (-653 (-115))) (-5 *3 (-653 (-1 *1 *1))) (-4 *1 (-309)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) + (-12 (-5 *2 (-1189)) (-5 *3 (-1 *1 *1)) (-4 *1 (-309)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-1 *1 (-654 *1))) (-4 *1 (-310)))) + (-12 (-5 *2 (-1189)) (-5 *3 (-1 *1 (-653 *1))) (-4 *1 (-309)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 (-1190))) (-5 *3 (-654 (-1 *1 (-654 *1)))) - (-4 *1 (-310)))) + (-12 (-5 *2 (-653 (-1189))) (-5 *3 (-653 (-1 *1 (-653 *1)))) + (-4 *1 (-309)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 (-1190))) (-5 *3 (-654 (-1 *1 *1))) (-4 *1 (-310)))) + (-12 (-5 *2 (-653 (-1189))) (-5 *3 (-653 (-1 *1 *1))) (-4 *1 (-309)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-654 (-302 *3))) (-4 *1 (-317 *3)) (-4 *3 (-1113)))) + (-12 (-5 *2 (-653 (-301 *3))) (-4 *1 (-316 *3)) (-4 *3 (-1112)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-302 *3)) (-4 *1 (-317 *3)) (-4 *3 (-1113)))) + (-12 (-5 *2 (-301 *3)) (-4 *1 (-316 *3)) (-4 *3 (-1112)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-574))) (-5 *4 (-1192 (-417 (-574)))) - (-5 *1 (-318 *2)) (-4 *2 (-38 (-417 (-574)))))) + (-12 (-5 *3 (-1 *2 (-573))) (-5 *4 (-1191 (-416 (-573)))) + (-5 *1 (-317 *2)) (-4 *2 (-38 (-416 (-573)))))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 *1)) (-4 *1 (-383 *4 *5)) - (-4 *4 (-860)) (-4 *5 (-174)))) + (-12 (-5 *2 (-653 *4)) (-5 *3 (-653 *1)) (-4 *1 (-382 *4 *5)) + (-4 *4 (-859)) (-4 *5 (-174)))) ((*1 *1 *1 *2 *1) - (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174)))) + (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-859)) (-4 *3 (-174)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1190)) (-5 *3 (-781)) (-5 *4 (-1 *1 *1)) - (-4 *1 (-440 *5)) (-4 *5 (-1113)) (-4 *5 (-1062)))) + (-12 (-5 *2 (-1189)) (-5 *3 (-780)) (-5 *4 (-1 *1 *1)) + (-4 *1 (-439 *5)) (-4 *5 (-1112)) (-4 *5 (-1061)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1190)) (-5 *3 (-781)) (-5 *4 (-1 *1 (-654 *1))) - (-4 *1 (-440 *5)) (-4 *5 (-1113)) (-4 *5 (-1062)))) + (-12 (-5 *2 (-1189)) (-5 *3 (-780)) (-5 *4 (-1 *1 (-653 *1))) + (-4 *1 (-439 *5)) (-4 *5 (-1112)) (-4 *5 (-1061)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-654 (-1190))) (-5 *3 (-654 (-781))) - (-5 *4 (-654 (-1 *1 (-654 *1)))) (-4 *1 (-440 *5)) (-4 *5 (-1113)) - (-4 *5 (-1062)))) + (-12 (-5 *2 (-653 (-1189))) (-5 *3 (-653 (-780))) + (-5 *4 (-653 (-1 *1 (-653 *1)))) (-4 *1 (-439 *5)) (-4 *5 (-1112)) + (-4 *5 (-1061)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-654 (-1190))) (-5 *3 (-654 (-781))) - (-5 *4 (-654 (-1 *1 *1))) (-4 *1 (-440 *5)) (-4 *5 (-1113)) - (-4 *5 (-1062)))) + (-12 (-5 *2 (-653 (-1189))) (-5 *3 (-653 (-780))) + (-5 *4 (-653 (-1 *1 *1))) (-4 *1 (-439 *5)) (-4 *5 (-1112)) + (-4 *5 (-1061)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 *1)) (-5 *4 (-1190)) - (-4 *1 (-440 *5)) (-4 *5 (-1113)) (-4 *5 (-624 (-546))))) + (-12 (-5 *2 (-653 (-115))) (-5 *3 (-653 *1)) (-5 *4 (-1189)) + (-4 *1 (-439 *5)) (-4 *5 (-1112)) (-4 *5 (-623 (-545))))) ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1190)) (-4 *1 (-440 *4)) (-4 *4 (-1113)) - (-4 *4 (-624 (-546))))) + (-12 (-5 *2 (-115)) (-5 *3 (-1189)) (-4 *1 (-439 *4)) (-4 *4 (-1112)) + (-4 *4 (-623 (-545))))) ((*1 *1 *1) - (-12 (-4 *1 (-440 *2)) (-4 *2 (-1113)) (-4 *2 (-624 (-546))))) + (-12 (-4 *1 (-439 *2)) (-4 *2 (-1112)) (-4 *2 (-623 (-545))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-654 (-1190))) (-4 *1 (-440 *3)) (-4 *3 (-1113)) - (-4 *3 (-624 (-546))))) + (-12 (-5 *2 (-653 (-1189))) (-4 *1 (-439 *3)) (-4 *3 (-1112)) + (-4 *3 (-623 (-545))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1190)) (-4 *1 (-440 *3)) (-4 *3 (-1113)) - (-4 *3 (-624 (-546))))) + (-12 (-5 *2 (-1189)) (-4 *1 (-439 *3)) (-4 *3 (-1112)) + (-4 *3 (-623 (-545))))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-524 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1231)))) + (-12 (-4 *1 (-523 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1230)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 *5)) (-4 *1 (-524 *4 *5)) - (-4 *4 (-1113)) (-4 *5 (-1231)))) + (-12 (-5 *2 (-653 *4)) (-5 *3 (-653 *5)) (-4 *1 (-523 *4 *5)) + (-4 *4 (-1112)) (-4 *5 (-1230)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-843 *3)) (-4 *3 (-372)) (-5 *1 (-728 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) + (-12 (-5 *2 (-842 *3)) (-4 *3 (-371)) (-5 *1 (-727 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371)))) ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-417 (-963 *4))) (-5 *3 (-1190)) (-4 *4 (-566)) - (-5 *1 (-1056 *4)))) + (-12 (-5 *2 (-416 (-962 *4))) (-5 *3 (-1189)) (-4 *4 (-565)) + (-5 *1 (-1055 *4)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-654 (-1190))) (-5 *4 (-654 (-417 (-963 *5)))) - (-5 *2 (-417 (-963 *5))) (-4 *5 (-566)) (-5 *1 (-1056 *5)))) + (-12 (-5 *3 (-653 (-1189))) (-5 *4 (-653 (-416 (-962 *5)))) + (-5 *2 (-416 (-962 *5))) (-4 *5 (-565)) (-5 *1 (-1055 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-302 (-417 (-963 *4)))) (-5 *2 (-417 (-963 *4))) - (-4 *4 (-566)) (-5 *1 (-1056 *4)))) + (-12 (-5 *3 (-301 (-416 (-962 *4)))) (-5 *2 (-416 (-962 *4))) + (-4 *4 (-565)) (-5 *1 (-1055 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-654 (-302 (-417 (-963 *4))))) (-5 *2 (-417 (-963 *4))) - (-4 *4 (-566)) (-5 *1 (-1056 *4)))) + (-12 (-5 *3 (-653 (-301 (-416 (-962 *4))))) (-5 *2 (-416 (-962 *4))) + (-4 *4 (-565)) (-5 *1 (-1055 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1170 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) - (-4 *3 (-1078 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-654 *4)) - (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) - (-5 *1 (-1082 *6 *7 *8 *3 *4)) (-4 *4 (-1084 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1078 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-654 *4)) - (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) - (-5 *1 (-1082 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) - (-4 *3 (-1078 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-654 *4)) - (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) - (-5 *1 (-1158 *6 *7 *8 *3 *4)) (-4 *4 (-1122 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1078 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-654 *4)) - (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) - (-5 *1 (-1158 *5 *6 *7 *3 *4)) (-4 *4 (-1122 *5 *6 *7 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1113))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1172) (-784))) (-5 *1 (-115))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1155 *3 *4)) (-14 *3 (-932)) (-4 *4 (-372)) - (-5 *1 (-1006 *3 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1062)) (-4 *7 (-1062)) - (-4 *6 (-1257 *5)) (-5 *2 (-1186 (-1186 *7))) - (-5 *1 (-511 *5 *6 *4 *7)) (-4 *4 (-1257 *6))))) -(((*1 *2 *2 *3) - (-12 (-5 *1 (-689 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113))))) -(((*1 *2) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) - (-4 *5 (-1257 (-417 *4))) (-5 *2 (-699 (-417 *4)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))) - (-5 *1 (-178 *3))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-574)) (-4 *4 (-174)) (-4 *5 (-382 *4)) - (-4 *6 (-382 *4)) (-5 *1 (-698 *4 *5 *6 *2)) - (-4 *2 (-697 *4 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1062)))) - ((*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1062))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1062)) (-4 *2 (-372)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-372)) (-5 *1 (-669 *4 *2)) - (-4 *2 (-666 *4))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-142)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-145))))) -(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-932)))) ((*1 *1) (-4 *1 (-555))) - ((*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-709)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-915 *3)) (-4 *3 (-1113))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-700 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1231)) (-4 *2 (-860)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-290 *3)) (-4 *3 (-1231)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-981 *2)) (-4 *2 (-860))))) -(((*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231)))) - ((*1 *1 *1) - (-12 (|has| *1 (-6 -4457)) (-4 *1 (-382 *2)) (-4 *2 (-1231)))) - ((*1 *1 *1) - (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-540 *3)) (-4 *3 (-13 (-736) (-25)))))) -(((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-654 (-654 (-954 (-227))))) (-5 *3 (-654 (-884))) - (-5 *4 (-654 (-932))) (-5 *5 (-654 (-270))) (-5 *1 (-478)))) - ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-654 (-654 (-954 (-227))))) (-5 *3 (-654 (-884))) - (-5 *4 (-654 (-932))) (-5 *1 (-478)))) - ((*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-954 (-227))))) (-5 *1 (-478)))) - ((*1 *1 *1) (-5 *1 (-478)))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-516))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-886))) (-5 *1 (-493))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-860)) (-4 *5 (-920)) (-4 *6 (-803)) - (-4 *8 (-960 *5 *6 *7)) (-5 *2 (-428 (-1186 *8))) - (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-1186 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-920)) (-4 *5 (-1257 *4)) (-5 *2 (-428 (-1186 *5))) - (-5 *1 (-918 *4 *5)) (-5 *3 (-1186 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-338))))) + (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1169 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) (((*1 *2 *3) - (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-247)) (-5 *3 (-1172)))) - ((*1 *2 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-247)))) - ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-4 *3 (-174)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) - (-4 *2 (-697 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-654 (-2 (|:| |k| (-1190)) (|:| |c| (-1303 *3))))) - (-5 *1 (-1303 *3)) (-4 *3 (-1062)))) - ((*1 *2 *1) - (-12 (-5 *2 (-654 (-2 (|:| |k| *3) (|:| |c| (-1305 *3 *4))))) - (-5 *1 (-1305 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-574)) (-5 *1 (-388))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-142)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-145))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-566))))) -(((*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) - (-5 *2 - (-2 (|:| -3555 (-781)) (|:| |curves| (-781)) - (|:| |polygons| (-781)) (|:| |constructs| (-781))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-832))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-932)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-270))))) + (-12 (-5 *3 (-780)) (-5 *2 (-1 (-1169 (-962 *4)) (-1169 (-962 *4)))) + (-5 *1 (-1288 *4)) (-4 *4 (-371))))) (((*1 *2 *3) - (-12 (-4 *4 (-462)) - (-5 *2 - (-654 - (-2 (|:| |eigval| (-3 (-417 (-963 *4)) (-1179 (-1190) (-963 *4)))) - (|:| |eigmult| (-781)) - (|:| |eigvec| (-654 (-699 (-417 (-963 *4)))))))) - (-5 *1 (-300 *4)) (-5 *3 (-699 (-417 (-963 *4))))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-287))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-883 *2 *3)) (-4 *2 (-1231)) (-4 *3 (-1231))))) + (-12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-4 *5 (-439 *4)) + (-5 *2 (-427 *3)) (-5 *1 (-444 *4 *5 *3)) (-4 *3 (-1256 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) - (-5 *2 - (-2 (|:| |solns| (-654 *5)) - (|:| |maps| (-654 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1141 *3 *5)) (-4 *3 (-1257 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-781)) (-5 *5 (-654 *3)) (-4 *3 (-315)) (-4 *6 (-860)) - (-4 *7 (-803)) (-5 *2 (-112)) (-5 *1 (-635 *6 *7 *3 *8)) - (-4 *8 (-960 *3 *7 *6))))) -(((*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372)))) - ((*1 *2 *3) - (-12 (-5 *3 (-932)) (-5 *2 (-1281 *4)) (-5 *1 (-538 *4)) - (-4 *4 (-358))))) -(((*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-227)) (-5 *1 (-313))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-781)) (-4 *5 (-566)) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1256 *5)) (-4 *5 (-371)) + (-5 *2 (-2 (|:| -1359 (-427 *3)) (|:| |special| (-427 *3)))) + (-5 *1 (-736 *5 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-982 *5 *3)) (-4 *3 (-1257 *5))))) + (-2 (|:| |mval| (-698 *3)) (|:| |invmval| (-698 *3)) + (|:| |genIdeal| (-513 *3 *4 *5 *6)))) + (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) + (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 *2)) (-4 *2 (-439 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-565))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1078 *5 *6 *7)) - (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4)))) - (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) - (-5 *2 (-1048)) (-5 *1 (-762))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-462) (-1051 (-574)))) (-4 *3 (-566)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3)) - (-4 *2 - (-13 (-372) (-310) - (-10 -8 (-15 -2966 ((-1138 *3 (-622 $)) $)) - (-15 -2977 ((-1138 *3 (-622 $)) $)) - (-15 -2943 ($ (-1138 *3 (-622 $)))))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2)) - (-4 *2 (-1272 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1257 *3)) - (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1272 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2)) - (-4 *2 (-1272 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-13 (-566) (-148))) - (-5 *1 (-1166 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-654 (-324 (-227)))) (-5 *1 (-274))))) -(((*1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-654 (-954 *4))) (-4 *1 (-1147 *4)) (-4 *4 (-1062)) - (-5 *2 (-781))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-654 (-324 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) - (-5 *1 (-212))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2873 *3))) - (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4))))) + (-12 (-4 *6 (-565)) (-4 *2 (-959 *3 *5 *4)) + (-5 *1 (-741 *5 *4 *6 *2)) (-5 *3 (-416 (-962 *6))) (-4 *5 (-802)) + (-4 *4 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $)))))))) +(((*1 *1 *1 *1) (-4 *1 (-144))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-159 *3 *2)) (-4 *2 (-439 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-554))))) +(((*1 *2 *2 *3) + (-12 (-5 *1 (-688 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-513 (-416 (-573)) (-245 *5 (-780)) (-873 *4) + (-252 *4 (-416 (-573))))) + (-14 *4 (-653 (-1189))) (-14 *5 (-780)) (-5 *2 (-112)) + (-5 *1 (-514 *4 *5))))) +(((*1 *1) (-5 *1 (-131)))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 *4)) (-4 *4 (-1061)) (-5 *2 (-1280 *4)) + (-5 *1 (-1190 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-931)) (-5 *2 (-1280 *3)) (-5 *1 (-1190 *3)) + (-4 *3 (-1061))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-573)) (-4 *3 (-174)) (-4 *5 (-381 *3)) + (-4 *6 (-381 *3)) (-5 *1 (-697 *3 *5 *6 *2)) + (-4 *2 (-696 *3 *5 *6))))) (((*1 *1 *1) - (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1062)) (-4 *3 (-860)) - (-4 *4 (-273 *3)) (-4 *5 (-803))))) + (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-142)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-145))))) +(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-931)))) ((*1 *1) (-4 *1 (-554))) + ((*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-708)))) + ((*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-914 *3)) (-4 *3 (-1112))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-780)) (-5 *3 (-112)) (-5 *1 (-110)))) + ((*1 *2 *2) (-12 (-5 *2 (-931)) (|has| *1 (-6 -4446)) (-4 *1 (-413)))) + ((*1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-931))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-699 *1)) (-5 *4 (-1281 *1)) (-4 *1 (-649 *5)) - (-4 *5 (-1062)) - (-5 *2 (-2 (|:| -4340 (-699 *5)) (|:| |vec| (-1281 *5)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-699 *1)) (-4 *1 (-649 *4)) (-4 *4 (-1062)) - (-5 *2 (-699 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1281 *1)) (-4 *1 (-649 *4)) (-4 *4 (-1062)) - (-5 *2 (-699 *4))))) + (-12 (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-565)) + (-4 *7 (-959 *3 *5 *6)) + (-5 *2 (-2 (|:| -3907 (-780)) (|:| -1857 *8) (|:| |radicand| *8))) + (-5 *1 (-963 *5 *6 *3 *7 *8)) (-5 *4 (-780)) + (-4 *8 + (-13 (-371) + (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) (-15 -2975 (*7 $)))))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-653 (-621 *5))) (-5 *3 (-1189)) (-4 *5 (-439 *4)) + (-4 *4 (-1112)) (-5 *1 (-582 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174))))) (((*1 *1 *2) (-12 (-5 *2 - (-654 + (-653 (-2 - (|:| -3693 - (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) - (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) + (|:| -3692 + (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) + (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (|:| -1908 + (|:| -1907 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -10032,10 +9651,10 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1170 (-227))) + (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -2367 + (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") @@ -10043,3392 +9662,3546 @@ (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-569))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-757))))) + (-5 *1 (-568))))) +(((*1 *2 *1) (-12 (-5 *2 (-653 (-515))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-653 (-885))) (-5 *1 (-492))))) (((*1 *2 *3) - (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3)) - (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-960 *6 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-654 (-324 (-227)))) (-5 *1 (-274))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4457)) (-4 *1 (-250 *2)) (-4 *2 (-1231))))) -(((*1 *1 *1) - (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) - (-4 *4 (-382 *2))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1062))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-112) *7 (-654 *7))) (-4 *1 (-1224 *4 *5 *6 *7)) - (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) - (-5 *2 (-1048)) (-5 *1 (-765)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-398)) - (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-765))))) + (-12 (-5 *3 (-490 *4 *5)) (-14 *4 (-653 (-1189))) (-4 *5 (-1061)) + (-5 *2 (-252 *4 *5)) (-5 *1 (-954 *4 *5))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-764))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-416 (-573)))) + (-5 *2 (-2 (|:| -2342 (-1169 *4)) (|:| -2352 (-1169 *4)))) + (-5 *1 (-1175 *4)) (-5 *3 (-1169 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-246)) (-5 *3 (-1171)))) + ((*1 *2 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-246)))) + ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-883))))) +(((*1 *2 *3) + (-12 (-5 *2 (-573)) (-5 *1 (-454 *3)) (-4 *3 (-413)) (-4 *3 (-1061))))) +(((*1 *1) (-5 *1 (-446)))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-142)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-145))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) + (-5 *1 (-1000 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *5 (-859)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) + (-5 *1 (-1119 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) + (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) + (-5 *2 + (-2 (|:| -3999 (-780)) (|:| |curves| (-780)) + (|:| |polygons| (-780)) (|:| |constructs| (-780))))))) +(((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-334 *3)) (-4 *3 (-1230)))) + ((*1 *2 *1) + (-12 (-5 *2 (-780)) (-5 *1 (-525 *3 *4)) (-4 *3 (-1230)) + (-14 *4 (-573))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1185 *6)) (-4 *6 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) + (-5 *2 (-1185 *7)) (-5 *1 (-328 *4 *5 *6 *7)) + (-4 *7 (-959 *6 *4 *5))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1122)) (-5 *3 (-573))))) +(((*1 *2) + (-12 (-4 *3 (-565)) (-5 *2 (-653 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-426 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-882 *2 *3)) (-4 *2 (-1230)) (-4 *3 (-1230))))) +(((*1 *2 *2) + (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1215)))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-371)) (-5 *1 (-775 *2 *3)) (-4 *2 (-717 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-573)) (-5 *3 (-780)) (-5 *1 (-570))))) +(((*1 *2 *3) + (-12 (-4 *1 (-357)) (-5 *3 (-573)) (-5 *2 (-1202 (-931) (-780)))))) +(((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-554)))) + ((*1 *1 *2) (-12 (-5 *2 (-653 (-931))) (-5 *1 (-983))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-708)) (-5 *1 (-312))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-565)) (-5 *2 (-653 *3)) (-5 *1 (-981 *4 *3)) + (-4 *3 (-1256 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-698 (-416 (-962 (-573))))) + (-5 *2 + (-653 + (-2 (|:| |radval| (-323 (-573))) (|:| |radmult| (-573)) + (|:| |radvect| (-653 (-698 (-323 (-573)))))))) + (-5 *1 (-1043))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-573)) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) + (-4 *4 (-381 *3)) (-4 *5 (-381 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-621 *5)) (-4 *5 (-439 *4)) (-4 *4 (-1050 (-573))) + (-4 *4 (-565)) (-5 *2 (-1185 *5)) (-5 *1 (-32 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-621 *1)) (-4 *1 (-1061)) (-4 *1 (-309)) + (-5 *2 (-1185 *1))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4455)) (-4 *1 (-240 *3)) + (-4 *3 (-1112)))) + ((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4455)) (-4 *1 (-240 *2)) (-4 *2 (-1112)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-289 *2)) (-4 *2 (-1230)) (-4 *2 (-1112)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-289 *3)) (-4 *3 (-1230)))) + ((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-619 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1112)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-573)) (-4 *4 (-1112)) + (-5 *1 (-746 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-573)) (-5 *1 (-746 *2)) (-4 *2 (-1112)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1152 *3 *4)) (-4 *3 (-13 (-1112) (-34))) + (-4 *4 (-13 (-1112) (-34))) (-5 *1 (-1153 *3 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-780)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) + (-4 *3 (-1077 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-653 *4)) + (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) + (-5 *1 (-1081 *6 *7 *8 *3 *4)) (-4 *4 (-1083 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-4 *3 (-1077 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-653 *4)) + (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) + (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-780)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) + (-4 *3 (-1077 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-653 *4)) + (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) + (-5 *1 (-1157 *6 *7 *8 *3 *4)) (-4 *4 (-1121 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-4 *3 (-1077 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-653 *4)) + (|:| |todo| (-653 (-2 (|:| |val| (-653 *3)) (|:| -4090 *4)))))) + (-5 *1 (-1157 *5 *6 *7 *3 *4)) (-4 *4 (-1121 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1171)) (-5 *4 (-573)) (-5 *5 (-698 (-227))) + (-5 *2 (-1047)) (-5 *1 (-763))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-566) (-1051 (-574)) (-649 (-574)))) - (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *3))))) + (-12 (-4 *3 (-13 (-565) (-1050 (-573)) (-648 (-573)))) + (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1190)) - (-4 *4 (-13 (-566) (-1051 (-574)) (-649 (-574)))) - (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *4))))) - ((*1 *1 *1) (-5 *1 (-388))) + (-12 (-5 *3 (-1189)) + (-4 *4 (-13 (-565) (-1050 (-573)) (-648 (-573)))) + (-5 *1 (-283 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *4)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) + (-5 *2 + (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) + (|:| |success| (-112)))) + (-5 *1 (-798)) (-5 *5 (-573))))) +(((*1 *1 *1) + (-12 (-4 *1 (-259 *2 *3 *4 *5)) (-4 *2 (-1061)) (-4 *3 (-859)) + (-4 *4 (-272 *3)) (-4 *5 (-802))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-962 (-171 *4))) (-4 *4 (-174)) + (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-962 (-171 *5))) (-5 *4 (-931)) (-4 *5 (-174)) + (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-962 *4)) (-4 *4 (-1061)) + (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1078 *5 *6 *7)) - (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *4)))) - (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-428 *3)) (-4 *3 (-566))))) + (|partial| -12 (-5 *3 (-962 *5)) (-5 *4 (-931)) (-4 *5 (-1061)) + (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-565)) + (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-931)) (-4 *5 (-565)) + (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-416 (-962 (-171 *4)))) (-4 *4 (-565)) + (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-416 (-962 (-171 *5)))) (-5 *4 (-931)) + (-4 *5 (-565)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) + (-5 *1 (-794 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-323 *4)) (-4 *4 (-565)) (-4 *4 (-859)) + (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-323 *5)) (-5 *4 (-931)) (-4 *5 (-565)) + (-4 *5 (-859)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) + (-5 *1 (-794 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-323 (-171 *4))) (-4 *4 (-565)) (-4 *4 (-859)) + (-4 *4 (-623 (-387))) (-5 *2 (-171 (-387))) (-5 *1 (-794 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-323 (-171 *5))) (-5 *4 (-931)) (-4 *5 (-565)) + (-4 *5 (-859)) (-4 *5 (-623 (-387))) (-5 *2 (-171 (-387))) + (-5 *1 (-794 *5))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-350 *4 *3 *5)) (-4 *4 (-1234)) (-4 *3 (-1256 *4)) + (-4 *5 (-1256 (-416 *3))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) + (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) + (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1122)) (-5 *3 (-573))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1112)) (-5 *2 (-653 *1)) + (-4 *1 (-439 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-653 (-902 *3))) (-5 *1 (-902 *3)) + (-4 *3 (-1112)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) + (-5 *2 (-653 *1)) (-4 *1 (-959 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1061)) + (-4 *7 (-959 *6 *4 *5)) (-5 *2 (-653 *3)) + (-5 *1 (-960 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-371) + (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) + (-15 -2975 (*7 $)))))))) +(((*1 *1 *1 *1) (-4 *1 (-554)))) +(((*1 *1) (-5 *1 (-298)))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-936))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) + (-5 *2 (-698 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-698 *4)) (-5 *1 (-425 *3 *4)) + (-4 *3 (-426 *4)))) + ((*1 *2) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-698 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1256 *4)) (-4 *4 (-1234)) + (-4 *6 (-1256 (-416 *5))) + (-5 *2 + (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) + (|:| |gd| *5))) + (-4 *1 (-350 *4 *5 *6))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-681 *3)) (-4 *3 (-859)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-686 *3)) (-4 *3 (-859)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828 *3)) (-4 *3 (-859))))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) + ((*1 *1) (-5 *1 (-130))) + ((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-573)) (-14 *3 (-780)) + (-4 *4 (-174)))) + ((*1 *1) (-5 *1 (-555))) ((*1 *1) (-5 *1 (-556))) + ((*1 *1) (-5 *1 (-557))) ((*1 *1) (-5 *1 (-558))) + ((*1 *1) (-4 *1 (-735))) ((*1 *1) (-5 *1 (-1189))) + ((*1 *1) (-12 (-5 *1 (-1195 *2)) (-14 *2 (-931)))) + ((*1 *1) (-12 (-5 *1 (-1196 *2)) (-14 *2 (-931)))) + ((*1 *1) (-5 *1 (-1235))) ((*1 *1) (-5 *1 (-1236))) + ((*1 *1) (-5 *1 (-1237))) ((*1 *1) (-5 *1 (-1238)))) +(((*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1230)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) - (-253 *4 (-417 (-574))))) - (-14 *4 (-654 (-1190))) (-14 *5 (-781)) (-5 *2 (-112)) - (-5 *1 (-515 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-427 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-932)) (-4 *1 (-377)))) + (-12 (-5 *3 (-653 *2)) (-5 *1 (-495 *2)) (-4 *2 (-1256 (-573)))))) +(((*1 *1 *2) (-12 (-5 *2 (-931)) (-4 *1 (-376)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-932)) (-5 *2 (-1281 *4)) (-5 *1 (-538 *4)) - (-4 *4 (-358)))) + (-12 (-5 *3 (-931)) (-5 *2 (-1280 *4)) (-5 *1 (-537 *4)) + (-4 *4 (-357)))) ((*1 *2 *1) - (-12 (-4 *2 (-860)) (-5 *1 (-723 *2 *3 *4)) (-4 *3 (-1113)) + (-12 (-4 *2 (-859)) (-5 *1 (-722 *2 *3 *4)) (-4 *3 (-1112)) (-14 *4 - (-1 (-112) (-2 (|:| -2576 *2) (|:| -3715 *3)) - (-2 (|:| -2576 *2) (|:| -3715 *3))))))) -(((*1 *1 *2) (-12 (-5 *1 (-1217 *2)) (-4 *2 (-1113)))) + (-1 (-112) (-2 (|:| -2575 *2) (|:| -3907 *3)) + (-2 (|:| -2575 *2) (|:| -3907 *3))))))) +(((*1 *1 *2) (-12 (-5 *1 (-1216 *2)) (-4 *2 (-1112)))) ((*1 *1 *2) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-1217 *3)))) + (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-1216 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-654 (-1217 *2))) (-5 *1 (-1217 *2)) (-4 *2 (-1113))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1017 *3)) (-14 *3 (-574))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-781)) (-4 *6 (-1113)) (-4 *7 (-911 *6)) - (-5 *2 (-699 *7)) (-5 *1 (-702 *6 *7 *3 *4)) (-4 *3 (-382 *7)) - (-4 *4 (-13 (-382 *6) (-10 -7 (-6 -4456))))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-440 *5) (-27) (-1216))) - (-4 *5 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) - (-5 *2 (-596 *3)) (-5 *1 (-576 *5 *3 *6)) (-4 *6 (-1113))))) + (-12 (-5 *3 (-653 (-1216 *2))) (-5 *1 (-1216 *2)) (-4 *2 (-1112))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1189)) (-4 *4 (-1061)) (-4 *4 (-1112)) + (-5 *2 (-2 (|:| |var| (-621 *1)) (|:| -3907 (-573)))) + (-4 *1 (-439 *4)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1061)) (-4 *4 (-1112)) + (-5 *2 (-2 (|:| |var| (-621 *1)) (|:| -3907 (-573)))) + (-4 *1 (-439 *4)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1124)) (-4 *3 (-1112)) + (-5 *2 (-2 (|:| |var| (-621 *1)) (|:| -3907 (-573)))) + (-4 *1 (-439 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-902 *3)) (|:| -3907 (-780)))) + (-5 *1 (-902 *3)) (-4 *3 (-1112)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-959 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *5 (-859)) (-5 *2 (-2 (|:| |var| *5) (|:| -3907 (-780)))))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1061)) + (-4 *7 (-959 *6 *4 *5)) + (-5 *2 (-2 (|:| |var| *5) (|:| -3907 (-573)))) + (-5 *1 (-960 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-371) + (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) + (-15 -2975 (*7 $)))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) + ((*1 *2) (-12 (-5 *2 (-914 (-573))) (-5 *1 (-927))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 *5)) (-5 *4 (-931)) (-4 *5 (-859)) + (-5 *2 (-59 (-653 (-681 *5)))) (-5 *1 (-681 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-903 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1113)) - (-4 *5 (-1231)) (-5 *1 (-901 *4 *5)))) + (-12 (-5 *2 (-902 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1112)) + (-4 *5 (-1230)) (-5 *1 (-900 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-903 *4)) (-5 *3 (-654 (-1 (-112) *5))) (-4 *4 (-1113)) - (-4 *5 (-1231)) (-5 *1 (-901 *4 *5)))) + (-12 (-5 *2 (-902 *4)) (-5 *3 (-653 (-1 (-112) *5))) (-4 *4 (-1112)) + (-4 *5 (-1230)) (-5 *1 (-900 *4 *5)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-903 *5)) (-5 *3 (-654 (-1190))) - (-5 *4 (-1 (-112) (-654 *6))) (-4 *5 (-1113)) (-4 *6 (-1231)) - (-5 *1 (-901 *5 *6)))) + (-12 (-5 *2 (-902 *5)) (-5 *3 (-653 (-1189))) + (-5 *4 (-1 (-112) (-653 *6))) (-4 *5 (-1112)) (-4 *6 (-1230)) + (-5 *1 (-900 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1231)) (-4 *4 (-1113)) - (-5 *1 (-948 *4 *2 *5)) (-4 *2 (-440 *4)))) + (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1230)) (-4 *4 (-1112)) + (-5 *1 (-947 *4 *2 *5)) (-4 *2 (-439 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-654 (-1 (-112) *5))) (-4 *5 (-1231)) (-4 *4 (-1113)) - (-5 *1 (-948 *4 *2 *5)) (-4 *2 (-440 *4)))) + (-12 (-5 *3 (-653 (-1 (-112) *5))) (-4 *5 (-1230)) (-4 *4 (-1112)) + (-5 *1 (-947 *4 *2 *5)) (-4 *2 (-439 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1190)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1231)) - (-5 *2 (-324 (-574))) (-5 *1 (-949 *5)))) + (-12 (-5 *3 (-1189)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1230)) + (-5 *2 (-323 (-573))) (-5 *1 (-948 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1190)) (-5 *4 (-654 (-1 (-112) *5))) (-4 *5 (-1231)) - (-5 *2 (-324 (-574))) (-5 *1 (-949 *5)))) + (-12 (-5 *3 (-1189)) (-5 *4 (-653 (-1 (-112) *5))) (-4 *5 (-1230)) + (-5 *2 (-323 (-573))) (-5 *1 (-948 *5)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 (-1190))) (-5 *3 (-1 (-112) (-654 *6))) - (-4 *6 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))) (-4 *4 (-1113)) - (-4 *5 (-13 (-1062) (-897 *4) (-624 (-903 *4)))) - (-5 *1 (-1089 *4 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1609 *4)))) - (-4 *3 (-1113)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-659 *3 *4 *5))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) - (-5 *1 (-514 *4 *5 *6 *2)) (-4 *2 (-960 *4 *5 *6)))) - ((*1 *1 *1 *2) - (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-960 *3 *4 *5))))) -(((*1 *1 *1) - (-12 (-4 *1 (-960 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-462)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *3 (-1078 *4 *5 *6)) - (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4091 *1)))) - (-4 *1 (-1084 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1235))) - ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-1260 *3 *2)) - (-4 *2 (-13 (-1257 *3) (-566) (-10 -8 (-15 -2873 ($ $ $)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1172))))) -(((*1 *1) (-5 *1 (-833)))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-765))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1153 *4 *5)) (-4 *4 (-13 (-1113) (-34))) - (-4 *5 (-13 (-1113) (-34))) (-5 *2 (-112)) (-5 *1 (-1154 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1463 *4))) - (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-932))) (-5 *2 (-915 (-574))) (-5 *1 (-928))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1190)) (-5 *4 (-963 (-574))) (-5 *2 (-338)) - (-5 *1 (-340))))) -(((*1 *2 *3) - (-12 (-4 *1 (-920)) (-5 *2 (-428 (-1186 *1))) (-5 *3 (-1186 *1))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1186 *3)) (-4 *3 (-377)) (-4 *1 (-337 *3)) - (-4 *3 (-372))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-505))))) -(((*1 *1) (-5 *1 (-131)))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) - (-5 *2 (-1048)) (-5 *1 (-766))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216))))) -(((*1 *1) (-5 *1 (-145))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-1146 (-227))) (-5 *1 (-270))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) - (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1386)))) - (-5 *2 (-1048)) (-5 *1 (-758))))) -(((*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) - (-4 *3 (-1078 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-654 *4)) - (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) - (-5 *1 (-1082 *6 *7 *8 *3 *4)) (-4 *4 (-1084 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1078 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-654 *4)) - (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))))) - (-5 *1 (-1158 *5 *6 *7 *3 *4)) (-4 *4 (-1122 *5 *6 *7 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062))))) -(((*1 *2) - (-12 (-4 *4 (-372)) (-5 *2 (-781)) (-5 *1 (-336 *3 *4)) - (-4 *3 (-337 *4)))) - ((*1 *2) (-12 (-4 *1 (-1300 *3)) (-4 *3 (-372)) (-5 *2 (-781))))) -(((*1 *2 *3) - (-12 (|has| *6 (-6 -4457)) (-4 *4 (-372)) (-4 *5 (-382 *4)) - (-4 *6 (-382 *4)) (-5 *2 (-654 *6)) (-5 *1 (-531 *4 *5 *6 *3)) - (-4 *3 (-697 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (|has| *9 (-6 -4457)) (-4 *4 (-566)) (-4 *5 (-382 *4)) - (-4 *6 (-382 *4)) (-4 *7 (-1005 *4)) (-4 *8 (-382 *7)) - (-4 *9 (-382 *7)) (-5 *2 (-654 *6)) - (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-697 *4 *5 *6)) - (-4 *10 (-697 *7 *8 *9)))) + (-12 (-5 *2 (-653 (-1189))) (-5 *3 (-1 (-112) (-653 *6))) + (-4 *6 (-13 (-439 *5) (-896 *4) (-623 (-902 *4)))) (-4 *4 (-1112)) + (-4 *5 (-13 (-1061) (-896 *4) (-623 (-902 *4)))) + (-5 *1 (-1088 *4 *5 *6))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-174)) (-5 *1 (-296 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1256 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(((*1 *1) (-5 *1 (-606)))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-4 *3 (-1077 *5 *6 *7)) + (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) + (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-1171))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-801)))) ((*1 *2 *1) - (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-654 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) - (-4 *6 (-382 *4)) (-5 *2 (-654 *6)) (-5 *1 (-698 *4 *5 *6 *3)) - (-4 *3 (-697 *4 *5 *6)))) + (-12 (-5 *2 (-780)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1061)) + (-14 *4 (-653 (-1189))))) ((*1 *2 *1) - (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566)) - (-5 *2 (-654 *7))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) - (-5 *2 - (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574)) - (|:| |success| (-112)))) - (-5 *1 (-799)) (-5 *5 (-574))))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-417 (-574))) (-5 *1 (-313))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-310)) (-4 *2 (-1231)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 (-622 *1))) (-5 *3 (-654 *1)) (-4 *1 (-310)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-302 *1))) (-4 *1 (-310)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-302 *1)) (-4 *1 (-310))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1190)) (-5 *6 (-112)) - (-4 *7 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) - (-4 *3 (-13 (-1216) (-970) (-29 *7))) - (-5 *2 - (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-221 *7 *3)) (-5 *5 (-853 *3))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-320)) (-5 *1 (-839))))) -(((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1062)) (-4 *3 (-1257 *4)) (-4 *2 (-1272 *4)) - (-5 *1 (-1275 *4 *3 *5 *2)) (-4 *5 (-666 *3))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4456)) (-4 *1 (-499 *4)) - (-4 *4 (-1231)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *2 (-112)))) + (-12 (-5 *2 (-573)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1061) (-859))) + (-14 *4 (-653 (-1189))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1061)) (-4 *3 (-859)) + (-4 *5 (-272 *3)) (-4 *6 (-802)) (-5 *2 (-780)))) + ((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-281)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1185 *8)) (-5 *4 (-653 *6)) (-4 *6 (-859)) + (-4 *8 (-959 *7 *5 *6)) (-4 *5 (-802)) (-4 *7 (-1061)) + (-5 *2 (-653 (-780))) (-5 *1 (-328 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-5 *2 (-931)))) ((*1 *2 *1) - (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *5 (-860)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-932)) (-5 *1 (-796))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 (-1089 *3 *4 *5))) (-4 *3 (-1113)) - (-4 *4 (-13 (-1062) (-897 *3) (-624 (-903 *3)))) - (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))) - (-5 *1 (-1090 *3 *4 *5))))) + (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)) + (-5 *2 (-780)))) + ((*1 *2 *1) (-12 (-4 *1 (-479 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) + ((*1 *2 *1) + (-12 (-4 *3 (-565)) (-5 *2 (-573)) (-5 *1 (-632 *3 *4)) + (-4 *4 (-1256 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-717 *3)) (-4 *3 (-1061)) (-5 *2 (-780)))) + ((*1 *2 *1) (-12 (-4 *1 (-861 *3)) (-4 *3 (-1061)) (-5 *2 (-780)))) + ((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) + ((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-915 *3)) (-4 *3 (-1112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-653 *6)) (-4 *1 (-959 *4 *5 *6)) (-4 *4 (-1061)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 (-780))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-959 *4 *5 *3)) (-4 *4 (-1061)) (-4 *5 (-802)) + (-4 *3 (-859)) (-5 *2 (-780)))) + ((*1 *2 *1) + (-12 (-4 *1 (-985 *3 *2 *4)) (-4 *3 (-1061)) (-4 *4 (-859)) + (-4 *2 (-801)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) + (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-780)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1271 *3)) + (-5 *2 (-573)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1240 *3)) + (-5 *2 (-416 (-573))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1299 *3)) (-4 *3 (-371)) (-5 *2 (-842 (-931))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) + (-5 *2 (-780))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-403))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-653 (-653 (-953 (-227))))) (-5 *4 (-883)) + (-5 *5 (-931)) (-5 *6 (-653 (-269))) (-5 *2 (-1281)) + (-5 *1 (-1284)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-653 (-953 (-227))))) (-5 *4 (-653 (-269))) + (-5 *2 (-1281)) (-5 *1 (-1284))))) +(((*1 *2 *3 *4 *3 *3) + (-12 (-5 *3 (-301 *6)) (-5 *4 (-115)) (-4 *6 (-439 *5)) + (-4 *5 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) + (-5 *1 (-324 *5 *6)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-301 *7)) (-5 *4 (-115)) (-5 *5 (-653 *7)) + (-4 *7 (-439 *6)) (-4 *6 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) + (-5 *1 (-324 *6 *7)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-653 (-301 *7))) (-5 *4 (-653 (-115))) (-5 *5 (-301 *7)) + (-4 *7 (-439 *6)) (-4 *6 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) + (-5 *1 (-324 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-653 (-301 *8))) (-5 *4 (-653 (-115))) (-5 *5 (-301 *8)) + (-5 *6 (-653 *8)) (-4 *8 (-439 *7)) + (-4 *7 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) + (-5 *1 (-324 *7 *8)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-653 *7)) (-5 *4 (-653 (-115))) (-5 *5 (-301 *7)) + (-4 *7 (-439 *6)) (-4 *6 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) + (-5 *1 (-324 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-653 *8)) (-5 *4 (-653 (-115))) (-5 *6 (-653 (-301 *8))) + (-4 *8 (-439 *7)) (-5 *5 (-301 *8)) + (-4 *7 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) + (-5 *1 (-324 *7 *8)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-301 *5)) (-5 *4 (-115)) (-4 *5 (-439 *6)) + (-4 *6 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) + (-5 *1 (-324 *6 *5)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-115)) (-5 *5 (-301 *3)) (-4 *3 (-439 *6)) + (-4 *6 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) + (-5 *1 (-324 *6 *3)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-115)) (-5 *5 (-301 *3)) (-4 *3 (-439 *6)) + (-4 *6 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) + (-5 *1 (-324 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-115)) (-5 *5 (-301 *3)) (-5 *6 (-653 *3)) + (-4 *3 (-439 *7)) (-4 *7 (-13 (-565) (-623 (-545)))) (-5 *2 (-52)) + (-5 *1 (-324 *7 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-613 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1230)) + (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-1171)) (-5 *5 (-698 (-227))) + (-5 *2 (-1047)) (-5 *1 (-756))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1186 *9)) (-5 *4 (-654 *7)) (-4 *7 (-860)) - (-4 *9 (-960 *8 *6 *7)) (-4 *6 (-803)) (-4 *8 (-315)) - (-5 *2 (-654 (-781))) (-5 *1 (-752 *6 *7 *8 *9)) (-5 *5 (-781))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-684 *3)) (-4 *3 (-1231)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-750 *3 *4)) (-4 *3 (-1062)) - (-4 *4 (-860)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-654 *3)) (-4 *1 (-993 *3)) (-4 *3 (-1062)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1084 *4 *5 *6 *7)) - (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1078 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) - (-4 *1 (-1084 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-654 *1)) (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-654 *1)) - (-4 *1 (-1084 *4 *5 *6 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-802))))) + (-12 (-5 *3 (-698 *6)) (-5 *5 (-1 (-427 (-1185 *6)) (-1185 *6))) + (-4 *6 (-371)) + (-5 *2 + (-653 + (-2 (|:| |outval| *7) (|:| |outmult| (-573)) + (|:| |outvect| (-653 (-698 *7)))))) + (-5 *1 (-541 *6 *7 *4)) (-4 *7 (-371)) (-4 *4 (-13 (-371) (-857)))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-698 *2)) (-5 *4 (-780)) + (-4 *2 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) + (-4 *5 (-1256 *2)) (-5 *1 (-508 *2 *5 *6)) (-4 *6 (-418 *2 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-963 *4)) (-4 *4 (-13 (-315) (-148))) - (-4 *2 (-960 *4 *6 *5)) (-5 *1 (-935 *4 *5 *6 *2)) - (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G)))) - (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) - (-5 *2 (-1048)) (-5 *1 (-759))))) + (-12 (-5 *3 (-653 (-653 (-953 (-227))))) (-5 *2 (-653 (-227))) + (-5 *1 (-477))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-269))) (-5 *4 (-1189)) (-5 *2 (-112)) + (-5 *1 (-269))))) +(((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-573)) (-5 *1 (-1169 *3)) (-4 *3 (-1230)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) (-4 *2 (-1230))))) +(((*1 *2 *3) + (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-1285)) + (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-959 *4 *5 *6))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282))))) (((*1 *2 *1) - (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802)) - (-5 *2 (-654 *3)))) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-554)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1113)) - (-5 *2 (-654 *3)))) + (-12 (-5 *2 (-112)) (-5 *1 (-427 *3)) (-4 *3 (-554)) (-4 *3 (-565)))) + ((*1 *2 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-1170 *3)) (-5 *1 (-606 *3)) (-4 *3 (-1062)))) + (-12 (-4 *1 (-806 *3)) (-4 *3 (-174)) (-4 *3 (-554)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-654 *3)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1062)) - (-4 *4 (-736)))) - ((*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1062)) (-5 *2 (-654 *3)))) + (-12 (-5 *2 (-112)) (-5 *1 (-842 *3)) (-4 *3 (-554)) (-4 *3 (-1112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1272 *3)) (-4 *3 (-1062)) (-5 *2 (-1170 *3))))) + (-12 (-5 *2 (-112)) (-5 *1 (-852 *3)) (-4 *3 (-554)) (-4 *3 (-1112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1009 *3)) (-4 *3 (-174)) (-4 *3 (-554)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1020 *3)) (-4 *3 (-1050 (-416 (-573))))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-937))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1230))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4455)) (-4 *1 (-613 *4 *3)) (-4 *4 (-1112)) + (-4 *3 (-1230)) (-4 *3 (-1112)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-4 *1 (-979)))) +(((*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-357)) (-5 *1 (-365 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-309)) (-4 *2 (-1230)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-653 (-621 *1))) (-5 *3 (-653 *1)) (-4 *1 (-309)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-301 *1))) (-4 *1 (-309)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-301 *1)) (-4 *1 (-309))))) +(((*1 *2) + (-12 (-4 *3 (-565)) (-5 *2 (-653 (-698 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-426 *3))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| -4340 (-699 (-417 (-963 *4)))) - (|:| |vec| (-654 (-417 (-963 *4)))) (|:| -3584 (-781)) - (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) - (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) - (-4 *6 (-803)) - (-5 *2 - (-2 (|:| |partsol| (-1281 (-417 (-963 *4)))) - (|:| -1882 (-654 (-1281 (-417 (-963 *4))))))) - (-5 *1 (-935 *4 *5 *6 *7)) (-4 *7 (-960 *4 *6 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-1001 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-1120 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-831)) (-5 *4 (-52)) (-5 *2 (-1286)) (-5 *1 (-841))))) -(((*1 *2 *3) - (-12 (-5 *3 (-829 *4)) (-4 *4 (-860)) (-5 *2 (-112)) - (-5 *1 (-682 *4))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) - (-4 *3 (-376 *4)))) - ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) + (-513 (-416 (-573)) (-245 *5 (-780)) (-873 *4) + (-252 *4 (-416 (-573))))) + (-14 *4 (-653 (-1189))) (-14 *5 (-780)) (-5 *2 (-112)) + (-5 *1 (-514 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574)))) - (-4 *3 (-13 (-27) (-1216) (-440 *6) (-10 -8 (-15 -2943 ($ *7))))) - (-4 *7 (-858)) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) + (-4 *3 (-13 (-27) (-1215) (-439 *6) (-10 -8 (-15 -2942 ($ *7))))) + (-4 *7 (-857)) (-4 *8 - (-13 (-1259 *3 *7) (-372) (-1216) - (-10 -8 (-15 -3905 ($ $)) (-15 -2379 ($ $))))) + (-13 (-1258 *3 *7) (-371) (-1215) + (-10 -8 (-15 -3904 ($ $)) (-15 -1626 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1172)) (|:| |prob| (-1172)))))) - (-5 *1 (-432 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1172)) (-4 *9 (-996 *8)) - (-14 *10 (-1190))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-462) (-148))) (-5 *2 (-428 *3)) - (-5 *1 (-100 *4 *3)) (-4 *3 (-1257 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-654 *3)) (-4 *3 (-1257 *5)) (-4 *5 (-13 (-462) (-148))) - (-5 *2 (-428 *3)) (-5 *1 (-100 *5 *3))))) + (|:| |%problem| (-2 (|:| |func| (-1171)) (|:| |prob| (-1171)))))) + (-5 *1 (-431 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1171)) (-4 *9 (-995 *8)) + (-14 *10 (-1189))))) +(((*1 *2) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-23))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-443)) (|:| -2425 "void"))) + (-5 *1 (-446))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015)))))) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 *2)) (-4 *2 (-439 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-565))))) +(((*1 *2 *1) + (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-859)) + (-4 *5 (-272 *4)) (-4 *6 (-802)) (-5 *2 (-780)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1061)) (-4 *3 (-859)) + (-4 *5 (-272 *3)) (-4 *6 (-802)) (-5 *2 (-780)))) + ((*1 *2 *1) (-12 (-4 *1 (-272 *3)) (-4 *3 (-859)) (-5 *2 (-780)))) + ((*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-931)))) + ((*1 *2 *3) + (-12 (-5 *3 (-344 *4 *5 *6 *7)) (-4 *4 (-13 (-376) (-371))) + (-4 *5 (-1256 *4)) (-4 *6 (-1256 (-416 *5))) (-4 *7 (-350 *4 *5 *6)) + (-5 *2 (-780)) (-5 *1 (-401 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-411)) (-5 *2 (-842 (-931))))) + ((*1 *2 *1) (-12 (-4 *1 (-413)) (-5 *2 (-573)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-605 *3)) (-4 *3 (-1061)))) + ((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-605 *3)) (-4 *3 (-1061)))) + ((*1 *2 *1) + (-12 (-4 *3 (-565)) (-5 *2 (-573)) (-5 *1 (-632 *3 *4)) + (-4 *4 (-1256 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-780)) (-4 *1 (-749 *4 *3)) (-4 *4 (-1061)) + (-4 *3 (-859)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-749 *4 *3)) (-4 *4 (-1061)) (-4 *3 (-859)) + (-5 *2 (-780)))) + ((*1 *2 *1) (-12 (-4 *1 (-878 *3)) (-5 *2 (-780)))) + ((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-914 *3)) (-4 *3 (-1112)))) + ((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-915 *3)) (-4 *3 (-1112)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-344 *5 *6 *7 *8)) (-4 *5 (-439 *4)) + (-4 *6 (-1256 *5)) (-4 *7 (-1256 (-416 *6))) + (-4 *8 (-350 *5 *6 *7)) (-4 *4 (-13 (-565) (-1050 (-573)))) + (-5 *2 (-780)) (-5 *1 (-921 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-344 (-416 (-573)) *4 *5 *6)) + (-4 *4 (-1256 (-416 (-573)))) (-4 *5 (-1256 (-416 *4))) + (-4 *6 (-350 (-416 (-573)) *4 *5)) (-5 *2 (-780)) + (-5 *1 (-922 *4 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-344 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-371)) + (-4 *7 (-1256 *6)) (-4 *4 (-1256 (-416 *7))) (-4 *8 (-350 *6 *7 *4)) + (-4 *9 (-13 (-376) (-371))) (-5 *2 (-780)) + (-5 *1 (-1030 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1256 *3)) (-4 *3 (-1061)) (-4 *3 (-565)) + (-5 *2 (-780)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-801)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-801))))) +(((*1 *1 *2) + (-12 (-5 *2 (-653 (-1088 *3 *4 *5))) (-4 *3 (-1112)) + (-4 *4 (-13 (-1061) (-896 *3) (-623 (-902 *3)))) + (-4 *5 (-13 (-439 *4) (-896 *3) (-623 (-902 *3)))) + (-5 *1 (-1089 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) + (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1058 *4 *5)) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) + (-14 *5 (-653 (-1189))) (-5 *2 (-653 (-653 (-1036 (-416 *4))))) + (-5 *1 (-1307 *4 *5 *6)) (-14 *6 (-653 (-1189))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-857) (-314) (-148) (-1034))) + (-5 *2 (-653 (-653 (-1036 (-416 *5))))) (-5 *1 (-1307 *5 *6 *7)) + (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-857) (-314) (-148) (-1034))) + (-5 *2 (-653 (-653 (-1036 (-416 *5))))) (-5 *1 (-1307 *5 *6 *7)) + (-14 *6 (-653 (-1189))) (-14 *7 (-653 (-1189))))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 (-962 *4))) + (-4 *4 (-13 (-857) (-314) (-148) (-1034))) + (-5 *2 (-653 (-653 (-1036 (-416 *4))))) (-5 *1 (-1307 *4 *5 *6)) + (-14 *5 (-653 (-1189))) (-14 *6 (-653 (-1189)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) + (-4 *5 (-381 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-381 *2)) (-4 *5 (-381 *2)) (-4 *2 (-371)) + (-5 *1 (-530 *2 *4 *5 *3)) (-4 *3 (-696 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)) + (|has| *2 (-6 (-4457 "*"))) (-4 *2 (-1061)))) + ((*1 *2 *3) + (-12 (-4 *4 (-381 *2)) (-4 *5 (-381 *2)) (-4 *2 (-174)) + (-5 *1 (-697 *2 *4 *5 *3)) (-4 *3 (-696 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1135 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) + (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4457 "*"))) (-4 *2 (-1061))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1171)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-1285)) + (-5 *1 (-1084 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1171)) (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-1285)) + (-5 *1 (-1120 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-698 (-416 (-962 (-573))))) + (-5 *2 (-653 (-698 (-323 (-573))))) (-5 *1 (-1043)) + (-5 *3 (-323 (-573)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1230)) (-5 *1 (-1144 *4 *2)) + (-4 *2 (-13 (-613 (-573) *4) (-10 -7 (-6 -4455) (-6 -4456)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-859)) (-4 *3 (-1230)) (-5 *1 (-1144 *3 *2)) + (-4 *2 (-13 (-613 (-573) *3) (-10 -7 (-6 -4455) (-6 -4456))))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) + (-5 *2 (-1047)) (-5 *1 (-765))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 + (-4 *4 (-13 (-148) (-27) (-1050 (-573)) (-1050 (-416 (-573))))) + (-4 *5 (-1256 *4)) (-5 *2 (-1185 (-416 *5))) (-5 *1 (-624 *4 *5)) + (-5 *3 (-416 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-427 *6) *6)) (-4 *6 (-1256 *5)) + (-4 *5 (-13 (-148) (-27) (-1050 (-573)) (-1050 (-416 (-573))))) + (-5 *2 (-1185 (-416 *6))) (-5 *1 (-624 *5 *6)) (-5 *3 (-416 *6))))) +(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1199))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-350 *4 *5 *6)) (-4 *4 (-1234)) + (-4 *5 (-1256 *4)) (-4 *6 (-1256 (-416 *5))) + (-5 *2 (-2 (|:| |num| (-698 *5)) (|:| |den| *5)))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-764))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015))))) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) + (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) + (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1175 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1174 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1176 *3))))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1175 *3))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) - (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189)))) - (-5 *1 (-1189))))) -(((*1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-769))))) -(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1236)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-960 *4 *5 *6)) (-5 *2 (-654 (-654 *7))) - (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) + (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) + (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) + (-5 *1 (-1188))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1061)) (-4 *4 (-1112)) (-5 *2 (-653 *1)) + (-4 *1 (-390 *3 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-653 (-744 *3 *4))) (-5 *1 (-744 *3 *4)) (-4 *3 (-1061)) + (-4 *4 (-735)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *1)) + (-4 *1 (-959 *3 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-698 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2)))) + ((*1 *2 *3) + (-12 (-4 *4 (-174)) (-4 *2 (-1256 *4)) (-5 *1 (-179 *4 *2 *3)) + (-4 *3 (-733 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) - (-4 *7 (-860)) (-4 *8 (-960 *5 *6 *7)) (-5 *2 (-654 (-654 *8))) - (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1190)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)) - (-4 *2 (-440 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1190)))) - ((*1 *1 *1) (-4 *1 (-161)))) + (-12 (-5 *3 (-698 (-416 (-962 *5)))) (-5 *4 (-1189)) + (-5 *2 (-962 *5)) (-5 *1 (-299 *5)) (-4 *5 (-461)))) + ((*1 *2 *3) + (-12 (-5 *3 (-698 (-416 (-962 *4)))) (-5 *2 (-962 *4)) + (-5 *1 (-299 *4)) (-4 *4 (-461)))) + ((*1 *2 *1) + (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1256 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-698 (-171 (-416 (-573))))) + (-5 *2 (-962 (-171 (-416 (-573))))) (-5 *1 (-773 *4)) + (-4 *4 (-13 (-371) (-857))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-698 (-171 (-416 (-573))))) (-5 *4 (-1189)) + (-5 *2 (-962 (-171 (-416 (-573))))) (-5 *1 (-773 *5)) + (-4 *5 (-13 (-371) (-857))))) + ((*1 *2 *3) + (-12 (-5 *3 (-698 (-416 (-573)))) (-5 *2 (-962 (-416 (-573)))) + (-5 *1 (-788 *4)) (-4 *4 (-13 (-371) (-857))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-698 (-416 (-573)))) (-5 *4 (-1189)) + (-5 *2 (-962 (-416 (-573)))) (-5 *1 (-788 *5)) + (-4 *5 (-13 (-371) (-857)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-565)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-309)) (-5 *2 (-653 (-115)))))) (((*1 *2 *3) - (-12 (-5 *3 (-903 *4)) (-4 *4 (-1113)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-901 *4 *5)) (-4 *5 (-1231)))) - ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1180))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) - (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *3 (-1078 *4 *5 *6)) - (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4091 *1)))) - (-4 *1 (-1084 *4 *5 *6 *3))))) + (-12 (-5 *3 (-902 *4)) (-4 *4 (-1112)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-900 *4 *5)) (-4 *5 (-1230)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1179))))) (((*1 *2 *3) - (-12 (-5 *3 (-932)) (-5 *2 (-1281 (-1281 (-574)))) (-5 *1 (-476))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1170 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1062)) - (-5 *3 (-417 (-574))) (-5 *1 (-1174 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1113))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1113)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-781)) (-4 *4 (-13 (-566) (-148))) - (-5 *1 (-1251 *4 *2)) (-4 *2 (-1257 *4))))) + (-12 (-4 *4 (-357)) (-5 *2 (-427 *3)) (-5 *1 (-218 *4 *3)) + (-4 *3 (-1256 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-780)) (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) + (-4 *3 (-1256 (-573))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-653 (-780))) (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) + (-4 *3 (-1256 (-573))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-653 (-780))) (-5 *5 (-780)) (-5 *2 (-427 *3)) + (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-780)) (-5 *2 (-427 *3)) (-5 *1 (-451 *3)) + (-4 *3 (-1256 (-573))))) + ((*1 *2 *3) + (-12 (-5 *2 (-427 *3)) (-5 *1 (-1019 *3)) + (-4 *3 (-1256 (-416 (-573)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-427 *3)) (-5 *1 (-1245 *3)) (-4 *3 (-1256 (-573)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1096 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-573) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1096 *2))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) +(((*1 *1) (-4 *1 (-357)))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) + (-4 *3 (-375 *4)))) + ((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-653 *3)) (-5 *1 (-971 *3)) (-4 *3 (-554))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1211))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) - (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189)))) - (-5 *1 (-1189))))) -(((*1 *1 *1) (-4 *1 (-1157)))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-478)) (-5 *4 (-932)) (-5 *2 (-1286)) (-5 *1 (-1282))))) + (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) + (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) + (-5 *1 (-1188))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1171)) (-5 *4 (-573)) (-5 *5 (-698 (-227))) + (-5 *2 (-1047)) (-5 *1 (-766))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-756))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-4 *5 (-439 *4)) + (-5 *2 + (-3 (|:| |overq| (-1185 (-416 (-573)))) + (|:| |overan| (-1185 (-48))) (|:| -3600 (-112)))) + (-5 *1 (-444 *4 *5 *3)) (-4 *3 (-1256 *5))))) +(((*1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1283)))) + ((*1 *2 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1283))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-756))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1170 (-654 (-574)))) (-5 *1 (-894)) - (-5 *3 (-654 (-574)))))) -(((*1 *1) (-5 *1 (-1095)))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-574))) (-4 *3 (-1062)) (-5 *1 (-605 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-574))) (-4 *1 (-1241 *3)) (-4 *3 (-1062)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-574))) (-4 *1 (-1272 *3)) (-4 *3 (-1062))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832))))) -(((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1231))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1190)) (-5 *5 (-1107 (-227))) (-5 *2 (-938)) - (-5 *1 (-936 *3)) (-4 *3 (-624 (-546))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1190)) (-5 *2 (-938)) (-5 *1 (-936 *3)) - (-4 *3 (-624 (-546))))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-938)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1107 (-227))) - (-5 *1 (-938))))) + (|partial| -12 (-4 *4 (-13 (-371) (-148) (-1050 (-573)))) + (-4 *5 (-1256 *4)) + (-5 *2 (-2 (|:| -3861 (-416 *5)) (|:| |coeff| (-416 *5)))) + (-5 *1 (-577 *4 *5)) (-5 *3 (-416 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1280 *1)) (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) + (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 (-323 (-227)))) (-5 *2 (-112)) (-5 *1 (-273)))) + ((*1 *2 *3) (-12 (-5 *3 (-323 (-227))) (-5 *2 (-112)) (-5 *1 (-273)))) + ((*1 *2 *3) + (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) + (-5 *1 (-989 *4 *5 *6 *3)) (-4 *3 (-1077 *4 *5 *6))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-654 *1)) (-4 *1 (-440 *4)) - (-4 *4 (-1113)))) + (-12 (-5 *2 (-1189)) (-5 *3 (-653 *1)) (-4 *1 (-439 *4)) + (-4 *4 (-1112)))) ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1190)) (-4 *1 (-440 *3)) (-4 *3 (-1113)))) + (-12 (-5 *2 (-1189)) (-4 *1 (-439 *3)) (-4 *3 (-1112)))) ((*1 *1 *2 *1 *1 *1) - (-12 (-5 *2 (-1190)) (-4 *1 (-440 *3)) (-4 *3 (-1113)))) + (-12 (-5 *2 (-1189)) (-4 *1 (-439 *3)) (-4 *3 (-1112)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1190)) (-4 *1 (-440 *3)) (-4 *3 (-1113)))) + (-12 (-5 *2 (-1189)) (-4 *1 (-439 *3)) (-4 *3 (-1112)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1190)) (-4 *1 (-440 *3)) (-4 *3 (-1113))))) -(((*1 *2) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) - (-4 *5 (-1257 (-417 *4))) (-5 *2 (-699 (-417 *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-592))))) + (-12 (-5 *2 (-1189)) (-4 *1 (-439 *3)) (-4 *3 (-1112))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) + (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) + (-5 *5 (-1106 (-227))) (-5 *6 (-653 (-269))) (-5 *2 (-1145 (-227))) + (-5 *1 (-706)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-953 (-227)) (-227) (-227))) (-5 *4 (-1106 (-227))) + (-5 *5 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-706)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1145 (-227))) (-5 *3 (-1 (-953 (-227)) (-227) (-227))) + (-5 *4 (-1106 (-227))) (-5 *5 (-653 (-269))) (-5 *1 (-706))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) - (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189)))) - (-5 *1 (-1189))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-566)) (-4 *2 (-462)) (-5 *1 (-982 *2 *3)) - (-4 *3 (-1257 *2))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) - (-5 *2 (-1048)) (-5 *1 (-762))))) + (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) + (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) + (-5 *1 (-1188))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1256 *6)) + (-4 *6 (-13 (-27) (-439 *5))) (-4 *5 (-13 (-565) (-1050 (-573)))) + (-4 *8 (-1256 (-416 *7))) (-5 *2 (-595 *3)) + (-5 *1 (-561 *5 *6 *7 *8 *3)) (-4 *3 (-350 *6 *7 *8))))) +(((*1 *2 *1) + (-12 (-4 *1 (-704 *3)) (-4 *3 (-1112)) + (-5 *2 (-653 (-2 (|:| -1907 *3) (|:| -3974 (-780)))))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) + (-4 *3 (-375 *4)))) + ((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-693 *4 *3)) (-4 *4 (-1113)) - (-4 *3 (-1113))))) -(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571))))) + (-12 + (-5 *3 + (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) + (|:| |expense| (-387)) (|:| |accuracy| (-387)) + (|:| |intermediateResults| (-387)))) + (-5 *2 (-1047)) (-5 *1 (-312))))) (((*1 *2 *3) - (-12 (-5 *3 (-1107 (-853 (-388)))) (-5 *2 (-1107 (-853 (-227)))) - (-5 *1 (-313))))) + (-12 (-5 *2 (-427 (-1185 (-573)))) (-5 *1 (-193)) (-5 *3 (-573))))) +(((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-573)) (-14 *3 (-780)) + (-4 *4 (-174))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *1 *1) (-4 *1 (-1152)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-372) (-858))) (-5 *1 (-183 *3 *2)) - (-4 *2 (-1257 (-171 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190))))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-371)) (-4 *3 (-1061)) + (-5 *1 (-1173 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1230))))) (((*1 *2 *2) - (-12 (-4 *3 (-1113)) (-5 *1 (-940 *3 *2)) (-4 *2 (-440 *3)))) + (-12 (-4 *3 (-1112)) (-5 *1 (-939 *3 *2)) (-4 *2 (-439 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1190)) (-5 *2 (-324 (-574))) (-5 *1 (-941))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-324 (-227))) (-5 *4 (-1190)) - (-5 *5 (-1107 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-194)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-324 (-227))) (-5 *4 (-1190)) - (-5 *5 (-1107 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-308))))) + (-12 (-5 *3 (-1189)) (-5 *2 (-323 (-573))) (-5 *1 (-940))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) + (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-387)) (-5 *1 (-207))))) (((*1 *1 *2) - (-12 (-5 *2 (-654 *1)) (-4 *1 (-1147 *3)) (-4 *3 (-1062)))) - ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-417 *1)) (-4 *1 (-1257 *3)) (-4 *3 (-1062)) - (-4 *3 (-566)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1257 *2)) (-4 *2 (-1062)) (-4 *2 (-566))))) + (-12 (-5 *2 (-1280 *3)) (-4 *3 (-1061)) (-5 *1 (-721 *3 *4)) + (-4 *4 (-1256 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-859)) (-5 *2 (-1201 (-653 *4))) (-5 *1 (-1200 *4)) + (-5 *3 (-653 *4))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) - (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189)))) - (-5 *1 (-1189))))) -(((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-1257 *4)) (-5 *1 (-549 *4 *2 *5 *6)) - (-4 *4 (-315)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-781)))))) + (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) + (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) + (-5 *1 (-1188))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-565)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4))))) +(((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-936))))) +(((*1 *2 *1) + (-12 (-4 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-371)) (-4 *4 (-1256 *3)) + (-4 *5 (-1256 (-416 *4))) (-4 *6 (-350 *3 *4 *5)) + (-5 *2 + (-2 (|:| -2802 (-422 *4 (-416 *4) *5 *6)) (|:| |principalPart| *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-371)) + (-5 *2 + (-2 (|:| |poly| *6) (|:| -1359 (-416 *6)) + (|:| |special| (-416 *6)))) + (-5 *1 (-736 *5 *6)) (-5 *3 (-416 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-371)) (-5 *2 (-653 *3)) (-5 *1 (-906 *3 *4)) + (-4 *3 (-1256 *4)))) + ((*1 *2 *3 *4 *4) + (|partial| -12 (-5 *4 (-780)) (-4 *5 (-371)) + (-5 *2 (-2 (|:| -3890 *3) (|:| -3903 *3))) (-5 *1 (-906 *3 *5)) + (-4 *3 (-1256 *5)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-653 *9)) (-5 *3 (-653 *8)) (-5 *4 (-112)) + (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1083 *5 *6 *7 *8)) (-4 *5 (-461)) + (-4 *6 (-802)) (-4 *7 (-859)) (-5 *1 (-1081 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-653 *9)) (-5 *3 (-653 *8)) (-5 *4 (-112)) + (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1083 *5 *6 *7 *8)) (-4 *5 (-461)) + (-4 *6 (-802)) (-4 *7 (-859)) (-5 *1 (-1081 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-653 *9)) (-5 *3 (-653 *8)) (-5 *4 (-112)) + (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1121 *5 *6 *7 *8)) (-4 *5 (-461)) + (-4 *6 (-802)) (-4 *7 (-859)) (-5 *1 (-1157 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-653 *9)) (-5 *3 (-653 *8)) (-5 *4 (-112)) + (-4 *8 (-1077 *5 *6 *7)) (-4 *9 (-1121 *5 *6 *7 *8)) (-4 *5 (-461)) + (-4 *6 (-802)) (-4 *7 (-859)) (-5 *1 (-1157 *5 *6 *7 *8 *9))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-4 *5 (-440 *4)) - (-5 *2 (-428 (-1186 (-417 (-574))))) (-5 *1 (-445 *4 *5 *3)) - (-4 *3 (-1257 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1023 *3)) (-4 *3 (-1231)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1217 *3)) (-4 *3 (-1113))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-370 (-115))) (-4 *2 (-1062)) (-5 *1 (-724 *2 *4)) - (-4 *4 (-658 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-370 (-115))) (-5 *1 (-846 *2)) (-4 *2 (-1062))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-654 (-1089 *4 *5 *2))) (-4 *4 (-1113)) - (-4 *5 (-13 (-1062) (-897 *4) (-624 (-903 *4)))) - (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))) - (-5 *1 (-54 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-654 (-1089 *5 *6 *2))) (-5 *4 (-932)) (-4 *5 (-1113)) - (-4 *6 (-13 (-1062) (-897 *5) (-624 (-903 *5)))) - (-4 *2 (-13 (-440 *6) (-897 *5) (-624 (-903 *5)))) - (-5 *1 (-54 *5 *6 *2))))) + (-12 (-4 *4 (-565)) (-5 *2 (-780)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-426 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1000 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-653 *3)) (-4 *3 (-1083 *5 *6 *7 *8)) (-4 *5 (-461)) + (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-1077 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1000 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1119 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-653 *3)) (-4 *3 (-1083 *5 *6 *7 *8)) (-4 *5 (-461)) + (-4 *6 (-802)) (-4 *7 (-859)) (-4 *8 (-1077 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1119 *5 *6 *7 *8 *3))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-653 *6)) (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) + (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) + (-4 *3 (-565))))) (((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-990 *4 *5 *6 *3)) (-4 *3 (-1078 *4 *5 *6))))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-372)) (-4 *3 (-1257 *4)) (-4 *5 (-1257 (-417 *3))) - (-4 *1 (-344 *4 *3 *5 *2)) (-4 *2 (-351 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-574)) (-4 *2 (-372)) (-4 *4 (-1257 *2)) - (-4 *5 (-1257 (-417 *4))) (-4 *1 (-344 *2 *4 *5 *6)) - (-4 *6 (-351 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-372)) (-4 *3 (-1257 *2)) (-4 *4 (-1257 (-417 *3))) - (-4 *1 (-344 *2 *3 *4 *5)) (-4 *5 (-351 *2 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-372)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) - (-4 *1 (-344 *3 *4 *5 *2)) (-4 *2 (-351 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-423 *4 (-417 *4) *5 *6)) (-4 *4 (-1257 *3)) - (-4 *5 (-1257 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-4 *3 (-372)) - (-4 *1 (-344 *3 *4 *5 *6))))) + (-12 (-5 *3 (-931)) + (-5 *2 + (-3 (-1185 *4) + (-1280 (-653 (-2 (|:| -3082 *4) (|:| -2575 (-1132))))))) + (-5 *1 (-354 *4)) (-4 *4 (-357))))) +(((*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 *3)) + (-5 *1 (-989 *4 *5 *6 *3)) (-4 *3 (-1077 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230))))) +(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-387)) (-5 *1 (-795))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1169 (-416 *3))) (-5 *1 (-176 *3)) (-4 *3 (-314))))) +(((*1 *1 *1) + (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) - (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 - (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) - (|:| |expense| (-388)) (|:| |accuracy| (-388)) - (|:| |intermediateResults| (-388)))) - (-5 *1 (-813))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1231)) - (-4 *5 (-382 *4)) (-4 *2 (-382 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-4 *1 (-1066 *4 *5 *6 *7 *2)) (-4 *6 (-1062)) - (-4 *7 (-244 *5 *6)) (-4 *2 (-244 *4 *6))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-171 (-227)))) (-5 *2 (-1048)) - (-5 *1 (-766))))) -(((*1 *2 *2 *3) (-12 - (-5 *2 - (-2 (|:| |partsol| (-1281 (-417 (-963 *4)))) - (|:| -1882 (-654 (-1281 (-417 (-963 *4))))))) - (-5 *3 (-654 *7)) (-4 *4 (-13 (-315) (-148))) - (-4 *7 (-960 *4 *6 *5)) (-4 *5 (-13 (-860) (-624 (-1190)))) - (-4 *6 (-803)) (-5 *1 (-935 *4 *5 *6 *7))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-574)) (-5 *1 (-579 *3)) (-4 *3 (-1051 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2399 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-372)) (-4 *7 (-1257 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-417 *7)) (|:| |a0| *6)) - (-2 (|:| -2399 (-417 *7)) (|:| |coeff| (-417 *7))) "failed")) - (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7))))) + (-5 *3 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) + (|:| |lb| (-653 (-852 (-227)))) + (|:| |cf| (-653 (-323 (-227)))) + (|:| |ub| (-653 (-852 (-227)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-653 (-323 (-227)))) + (|:| -3816 (-653 (-227))))))) + (-5 *2 (-653 (-1171))) (-5 *1 (-273))))) +(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-52)) (-5 *1 (-1208))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 *2)) (-4 *2 (-439 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-565))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015))))) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) + (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) + (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1175 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1174 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1176 *3))))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1175 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-270))) (-5 *4 (-1190)) (-5 *2 (-112)) - (-5 *1 (-270))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1078 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *2 (-860)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) - (-4 *4 (-860))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1216)))))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-566))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113)) - (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112))))) + (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-4 *3 (-1077 *5 *6 *7)) + (-5 *2 (-653 (-2 (|:| |val| (-112)) (|:| -4090 *4)))) + (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) +(((*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283)))) + ((*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283))))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) + (-5 *2 (-1047)) (-5 *1 (-764))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-554)))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-700 *3))))) + (|partial| -12 (-4 *3 (-13 (-565) (-148))) (-5 *1 (-1250 *3 *2)) + (-4 *2 (-1256 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1285)) (-5 *1 (-1192))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1231)) - (-4 *4 (-382 *2)) (-4 *5 (-382 *2)))) + (-12 (-5 *3 (-573)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1230)) + (-4 *4 (-381 *2)) (-4 *5 (-381 *2)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4457)) (-4 *1 (-296 *3 *2)) (-4 *3 (-1113)) - (-4 *2 (-1231))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1172)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-1286)) - (-5 *1 (-1085 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1172)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-1286)) - (-5 *1 (-1121 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2873 (-792 *3)) (|:| |coef1| (-792 *3)))) - (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1062)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-566)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *2 (-2 (|:| -2873 *1) (|:| |coef1| *1))) - (-4 *1 (-1078 *3 *4 *5))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1208 *3 *4)) (-4 *3 (-1113)) - (-4 *4 (-1113))))) + (-12 (|has| *1 (-6 -4456)) (-4 *1 (-295 *3 *2)) (-4 *3 (-1112)) + (-4 *2 (-1230))))) +(((*1 *1 *1) (-4 *1 (-565)))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-554))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015))))) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) + (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) + (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1175 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1174 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1176 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1281 (-1281 (-574)))) (-5 *3 (-932)) (-5 *1 (-476))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-566)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) - (-5 *1 (-1221 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1175 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-883)))) + ((*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1077 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *2 (-859)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) + (-4 *4 (-859))))) +(((*1 *1 *2) (-12 (-5 *2 (-653 *1)) (-4 *1 (-309)))) + ((*1 *1 *1) (-4 *1 (-309))) + ((*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) + ((*1 *1 *1) (-5 *1 (-871)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1280 (-653 (-2 (|:| -3082 *4) (|:| -2575 (-1132)))))) + (-4 *4 (-357)) (-5 *2 (-1285)) (-5 *1 (-537 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-1 (-112) *8))) (-4 *8 (-1077 *5 *6 *7)) + (-4 *5 (-565)) (-4 *6 (-802)) (-4 *7 (-859)) + (-5 *2 (-2 (|:| |goodPols| (-653 *8)) (|:| |badPols| (-653 *8)))) + (-5 *1 (-989 *5 *6 *7 *8)) (-5 *4 (-653 *8))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) - (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) + (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4457)) (-4 *1 (-499 *3)) - (-4 *3 (-1231))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216))))) -(((*1 *1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1) (-4 *1 (-310)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1186 *1)) (-5 *4 (-1190)) (-4 *1 (-27)) - (-5 *2 (-654 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1186 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-963 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1190)) (-4 *4 (-566)) (-5 *2 (-654 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-324 (-227))) (-5 *4 (-654 (-1190))) - (-5 *5 (-1107 (-853 (-227)))) (-5 *2 (-1170 (-227))) (-5 *1 (-308))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-417 (-963 *3))) (-5 *1 (-463 *3 *4 *5 *6)) - (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) - (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112))))) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4456)) (-4 *1 (-498 *3)) + (-4 *3 (-1230))))) +(((*1 *1 *2) (-12 (-5 *2 (-185 (-254))) (-5 *1 (-253))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-803)) - (-4 *3 (-13 (-860) (-10 -8 (-15 -1836 ((-1190) $))))) (-4 *5 (-566)) - (-5 *1 (-742 *4 *3 *5 *2)) (-4 *2 (-960 (-417 (-963 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1062)) (-4 *5 (-803)) - (-4 *3 - (-13 (-860) - (-10 -8 (-15 -1836 ((-1190) $)) - (-15 -1488 ((-3 $ "failed") (-1190)))))) - (-5 *1 (-997 *4 *5 *3 *2)) (-4 *2 (-960 (-963 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-654 *6)) - (-4 *6 - (-13 (-860) - (-10 -8 (-15 -1836 ((-1190) $)) - (-15 -1488 ((-3 $ "failed") (-1190)))))) - (-4 *4 (-1062)) (-4 *5 (-803)) (-5 *1 (-997 *4 *5 *6 *2)) - (-4 *2 (-960 (-963 *4) *5 *6))))) + (-12 (-5 *3 (-931)) (-5 *1 (-1044 *2)) + (-4 *2 (-13 (-1112) (-10 -8 (-15 * ($ $ $)))))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-764))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1272 *3))))) + (-12 (-4 *3 (-371)) (-5 *1 (-292 *3 *2)) (-4 *2 (-1271 *3))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-1050 (-573)) (-648 (-573)) (-461))) + (-5 *2 (-852 *4)) (-5 *1 (-320 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1215) (-439 *3))) (-14 *5 (-1189)) + (-14 *6 *4))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-1050 (-573)) (-648 (-573)) (-461))) + (-5 *2 (-852 *4)) (-5 *1 (-1266 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1215) (-439 *3))) (-14 *5 (-1189)) + (-14 *6 *4)))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015))))) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) + (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) + (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1175 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1174 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1176 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-937))))) -(((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-427 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-960 *4 *5 *6)) (-4 *4 (-315)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-457 *4 *5 *6 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-987)) (-5 *2 (-1107 (-227)))))) -(((*1 *1 *1) (-5 *1 (-1076)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1175 *3))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1061)) (-4 *3 (-859)) + (-4 *5 (-272 *3)) (-4 *6 (-802)) (-5 *2 (-653 (-780))))) + ((*1 *2 *1) + (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-859)) + (-4 *5 (-272 *4)) (-4 *6 (-802)) (-5 *2 (-653 (-780)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565)) (-4 *2 (-554)))) + ((*1 *1 *1) (-4 *1 (-1072)))) +(((*1 *2 *1) (-12 (-4 *1 (-986)) (-5 *2 (-1106 (-227)))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1189)) (-5 *3 (-653 (-962 (-573)))) + (-5 *4 (-323 (-171 (-387)))) (-5 *1 (-337)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1189)) (-5 *3 (-653 (-962 (-573)))) + (-5 *4 (-323 (-387))) (-5 *1 (-337)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1189)) (-5 *3 (-653 (-962 (-573)))) + (-5 *4 (-323 (-573))) (-5 *1 (-337)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-323 (-171 (-387))))) + (-5 *1 (-337)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-323 (-387)))) (-5 *1 (-337)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-323 (-573)))) (-5 *1 (-337)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-323 (-171 (-387))))) + (-5 *1 (-337)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-323 (-387)))) (-5 *1 (-337)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-323 (-573)))) (-5 *1 (-337)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1189)) (-5 *3 (-323 (-171 (-387)))) (-5 *1 (-337)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1189)) (-5 *3 (-323 (-387))) (-5 *1 (-337)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1189)) (-5 *3 (-323 (-573))) (-5 *1 (-337)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1189)) (-5 *3 (-653 (-962 (-573)))) + (-5 *4 (-323 (-703))) (-5 *1 (-337)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1189)) (-5 *3 (-653 (-962 (-573)))) + (-5 *4 (-323 (-708))) (-5 *1 (-337)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1189)) (-5 *3 (-653 (-962 (-573)))) + (-5 *4 (-323 (-710))) (-5 *1 (-337)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-323 (-703)))) (-5 *1 (-337)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-323 (-708)))) (-5 *1 (-337)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-323 (-710)))) (-5 *1 (-337)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-323 (-703)))) (-5 *1 (-337)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-323 (-708)))) (-5 *1 (-337)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-323 (-710)))) (-5 *1 (-337)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-703))) (-5 *1 (-337)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-708))) (-5 *1 (-337)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1189)) (-5 *3 (-1280 (-710))) (-5 *1 (-337)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-703))) (-5 *1 (-337)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-708))) (-5 *1 (-337)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1189)) (-5 *3 (-698 (-710))) (-5 *1 (-337)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1189)) (-5 *3 (-323 (-703))) (-5 *1 (-337)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1189)) (-5 *3 (-323 (-708))) (-5 *1 (-337)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1189)) (-5 *3 (-323 (-710))) (-5 *1 (-337)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-1171)) (-5 *1 (-337)))) + ((*1 *1 *1 *1) (-5 *1 (-871)))) +(((*1 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283)))) + ((*1 *2 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283))))) +(((*1 *2 *1) (-12 (-5 *2 (-983)) (-5 *1 (-915 *3)) (-4 *3 (-1112))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-461) (-148))) (-5 *2 (-427 *3)) + (-5 *1 (-100 *4 *3)) (-4 *3 (-1256 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-653 *3)) (-4 *3 (-1256 *5)) (-4 *5 (-13 (-461) (-148))) + (-5 *2 (-427 *3)) (-5 *1 (-100 *5 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-654 *3)) (|:| |image| (-654 *3)))) - (-5 *1 (-916 *3)) (-4 *3 (-1113))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) - ((*1 *2) (-12 (-5 *2 (-915 (-574))) (-5 *1 (-928))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-960 *4 *5 *6)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1286)) - (-5 *1 (-459 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1062)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5)) - (-4 *3 (-1257 *4)) - (-4 *5 (-13 (-414) (-1051 *4) (-372) (-1216) (-292)))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-566) (-148))) - (-5 *2 (-2 (|:| -3891 *3) (|:| -3904 *3))) (-5 *1 (-1251 *4 *3)) - (-4 *3 (-1257 *4))))) + (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *3 (-381 *2)) (-4 *4 (-381 *2)) + (|has| *2 (-6 (-4457 "*"))) (-4 *2 (-1061)))) + ((*1 *2 *3) + (-12 (-4 *4 (-381 *2)) (-4 *5 (-381 *2)) (-4 *2 (-174)) + (-5 *1 (-697 *2 *4 *5 *3)) (-4 *3 (-696 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1135 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) + (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4457 "*"))) (-4 *2 (-1061))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1172))) (-5 *1 (-194)))) + (-12 (-5 *3 (-1280 (-1280 *4))) (-4 *4 (-1061)) (-5 *2 (-698 *4)) + (-5 *1 (-1041 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-4 *1 (-240 *3)))) + ((*1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1112))))) +(((*1 *2 *3) (-12 (-5 *2 (-427 *3)) (-5 *1 (-567 *3)) (-4 *3 (-554)))) + ((*1 *2 *3) + (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-314)) (-5 *2 (-427 *3)) + (-5 *1 (-751 *4 *5 *6 *3)) (-4 *3 (-959 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-314)) + (-4 *7 (-959 *6 *4 *5)) (-5 *2 (-427 (-1185 *7))) + (-5 *1 (-751 *4 *5 *6 *7)) (-5 *3 (-1185 *7)))) + ((*1 *2 *1) + (-12 (-4 *3 (-461)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) + (-5 *2 (-427 *1)) (-4 *1 (-959 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1172))) (-5 *1 (-308)))) + (-12 (-4 *4 (-859)) (-4 *5 (-802)) (-4 *6 (-461)) (-5 *2 (-427 *3)) + (-5 *1 (-991 *4 *5 *6 *3)) (-4 *3 (-959 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1172))) (-5 *1 (-313))))) + (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-461)) + (-4 *7 (-959 *6 *4 *5)) (-5 *2 (-427 (-1185 (-416 *7)))) + (-5 *1 (-1184 *4 *5 *6 *7)) (-5 *3 (-1185 (-416 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-427 *1)) (-4 *1 (-1234)))) + ((*1 *2 *3) + (-12 (-4 *4 (-565)) (-5 *2 (-427 *3)) (-5 *1 (-1259 *4 *3)) + (-4 *3 (-13 (-1256 *4) (-565) (-10 -8 (-15 -2872 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1058 *4 *5)) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) + (-14 *5 (-653 (-1189))) + (-5 *2 + (-653 (-1158 *4 (-540 (-873 *6)) (-873 *6) (-789 *4 (-873 *6))))) + (-5 *1 (-1307 *4 *5 *6)) (-14 *6 (-653 (-1189)))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015))))) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) + (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) + (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1175 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1174 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1176 *3))))) -(((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) - (-5 *1 (-1141 *3 *2)) (-4 *3 (-1257 *2))))) -(((*1 *1) (-5 *1 (-1286)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1175 *3))))) +(((*1 *1) (-5 *1 (-1285)))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-859)) + (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-959 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1061)) (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) + (-4 *1 (-1256 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-965)) (-5 *2 (-1106 (-227))))) + ((*1 *2 *1) (-12 (-4 *1 (-986)) (-5 *2 (-1106 (-227)))))) +(((*1 *1 *1) (-4 *1 (-1156)))) +(((*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-588))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-654 (-546))) (-5 *1 (-546))))) -(((*1 *2 *1) (-12 (-4 *1 (-966)) (-5 *2 (-1107 (-227))))) - ((*1 *2 *1) (-12 (-4 *1 (-987)) (-5 *2 (-1107 (-227)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-574)) (-5 *2 (-1286)) (-5 *1 (-1283)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-932)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-490))))) -(((*1 *2 *1) - (-12 (-4 *3 (-372)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) - (-5 *2 (-1281 *6)) (-5 *1 (-345 *3 *4 *5 *6)) - (-4 *6 (-351 *3 *4 *5))))) -(((*1 *1 *2 *2 *3 *1) - (-12 (-5 *2 (-516)) (-5 *3 (-1117)) (-5 *1 (-299))))) -(((*1 *2 *3) - (-12 (-5 *3 (-491 *4 *5)) (-14 *4 (-654 (-1190))) (-4 *5 (-1062)) - (-5 *2 (-963 *5)) (-5 *1 (-955 *4 *5))))) + (-12 (-5 *2 (-1189)) (-5 *3 (-653 (-545))) (-5 *1 (-545))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-1235)) (-4 *5 (-1257 *4)) - (-5 *2 (-2 (|:| |radicand| (-417 *5)) (|:| |deg| (-781)))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1257 (-417 *5)))))) -(((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) - (-5 *1 (-1141 *3 *2)) (-4 *3 (-1257 *2))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1113)) (-5 *2 (-654 *1)) - (-4 *1 (-440 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) - (-4 *3 (-1113)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *2 (-654 *1)) (-4 *1 (-960 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1062)) - (-4 *7 (-960 *6 *4 *5)) (-5 *2 (-654 *3)) - (-5 *1 (-961 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-372) - (-10 -8 (-15 -2943 ($ *7)) (-15 -2966 (*7 $)) - (-15 -2977 (*7 $)))))))) + (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-371) (-1215) (-1014)))))) +(((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-859)) (-5 *1 (-122 *3))))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) + (-5 *1 (-1140 *3 *2)) (-4 *3 (-1256 *2))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-4 *3 (-1077 *5 *6 *7)) + (-5 *2 (-653 (-2 (|:| |val| (-112)) (|:| -4090 *4)))) + (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-780)) (-4 *4 (-357)) (-5 *1 (-218 *4 *2)) + (-4 *2 (-1256 *4))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015))))) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) + (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) + (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1175 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1174 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1176 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-388)) (-5 *1 (-796))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4457)) (-4 *1 (-120 *2)) (-4 *2 (-1231))))) -(((*1 *2 *1) (-12 (-4 *1 (-966)) (-5 *2 (-1107 (-227))))) - ((*1 *2 *1) (-12 (-4 *1 (-987)) (-5 *2 (-1107 (-227)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1078 *4 *5 *6)) - (-5 *2 (-654 (-2 (|:| -1381 *1) (|:| -1675 (-654 *7))))) - (-5 *3 (-654 *7)) (-4 *1 (-1224 *4 *5 *6 *7))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-516)) (-5 *1 (-287)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-574) (-227) (-516) (-1172) (-1195))) - (-5 *1 (-1195))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-302 *2)) (-4 *2 (-736)) (-4 *2 (-1231))))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1175 *3))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-371)) (-5 *1 (-906 *2 *3)) + (-4 *2 (-1256 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1230))))) +(((*1 *2 *1) (-12 (-4 *1 (-965)) (-5 *2 (-1106 (-227))))) + ((*1 *2 *1) (-12 (-4 *1 (-986)) (-5 *2 (-1106 (-227)))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-302 *2)) (-4 *2 (-736)) (-4 *2 (-1231))))) -(((*1 *2 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-654 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-1123))))) -(((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1078 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) - (-5 *1 (-990 *4 *5 *6 *7)) (-5 *3 (-654 *7))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-761))))) + (-12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1112) (-34))) + (-4 *3 (-13 (-1112) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-219)))) + ((*1 *2 *1) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-496)))) + ((*1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-565)) (-4 *2 (-314)))) + ((*1 *2 *1) + (-12 (-5 *2 (-416 (-573))) (-5 *1 (-1016 *3)) (-14 *3 (-573)))) + ((*1 *1 *1) (-4 *1 (-1072)))) +(((*1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-780)) (-4 *6 (-371)) (-5 *4 (-1224 *6)) + (-5 *2 (-1 (-1169 *4) (-1169 *4))) (-5 *1 (-1288 *6)) + (-5 *5 (-1169 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-780)) (-4 *4 (-13 (-565) (-148))) + (-5 *1 (-1250 *4 *2)) (-4 *2 (-1256 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015))))) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) + (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) - ((*1 *1 *1) (-4 *1 (-503))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) + (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) + ((*1 *1 *1) (-4 *1 (-502))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1175 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1174 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1176 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1231))))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1175 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1257 *3))))) -(((*1 *2 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-372))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-112)) - (-5 *2 (-1048)) (-5 *1 (-755))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-932)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-1062)) (-4 *5 (-803)) - (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-4 *4 (-566)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-832))))) + (-12 (-5 *2 (-698 *3)) (-4 *3 (-314)) (-5 *1 (-709 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-176 *3)) (-4 *3 (-314))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1189)) + (-4 *5 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) + (-5 *2 (-595 *3)) (-5 *1 (-435 *5 *3)) + (-4 *3 (-13 (-1215) (-29 *5)))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1061)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1256 *3))))) +(((*1 *1) (-5 *1 (-298)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-791 *2)) (-4 *2 (-565)) (-4 *2 (-1061)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-981 *3 *2)) (-4 *2 (-1256 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) + (-4 *4 (-859)) (-4 *2 (-565)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *3 (-1077 *4 *5 *6)) + (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *1)))) + (-4 *1 (-1083 *4 *5 *6 *3))))) (((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-781)) (-5 *1 (-215 *4 *2)) (-14 *4 (-932)) - (-4 *2 (-1113))))) + (-12 (-5 *3 (-780)) (-5 *1 (-215 *4 *2)) (-14 *4 (-931)) + (-4 *2 (-1112))))) +(((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-129))))) (((*1 *2 *1) - (-12 (-4 *2 (-1231)) (-5 *1 (-883 *3 *2)) (-4 *3 (-1231)))) - ((*1 *2 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231))))) -(((*1 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-990 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-112)) (-5 *5 (-574)) (-4 *6 (-372)) (-4 *6 (-377)) - (-4 *6 (-1062)) (-5 *2 (-654 (-654 (-699 *6)))) (-5 *1 (-1042 *6)) - (-5 *3 (-654 (-699 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-372)) (-4 *4 (-377)) (-4 *4 (-1062)) - (-5 *2 (-654 (-654 (-699 *4)))) (-5 *1 (-1042 *4)) - (-5 *3 (-654 (-699 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1062)) - (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1042 *5)) - (-5 *3 (-654 (-699 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-932)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1062)) - (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1042 *5)) - (-5 *3 (-654 (-699 *5)))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1190)) - (-4 *5 (-13 (-462) (-148) (-1051 (-574)) (-649 (-574)))) - (-5 *2 (-2 (|:| -2399 *3) (|:| |coeff| *3))) (-5 *1 (-567 *5 *3)) - (-4 *3 (-13 (-27) (-1216) (-440 *5)))))) + (-12 (-4 *2 (-1230)) (-5 *1 (-882 *3 *2)) (-4 *3 (-1230)))) + ((*1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230))))) +(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) + ((*1 *1 *1) (-4 *1 (-1156)))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-461)) (-4 *4 (-859)) (-4 *5 (-802)) + (-5 *2 (-112)) (-5 *1 (-999 *3 *4 *5 *6)) + (-4 *6 (-959 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1152 *3 *4)) (-4 *3 (-13 (-1112) (-34))) + (-4 *4 (-13 (-1112) (-34)))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-780)) (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) + (-4 *4 (-802)) (-4 *5 (-859)) (-4 *3 (-565))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015))))) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) + (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) - ((*1 *1 *1) (-4 *1 (-503))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) + (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) + ((*1 *1 *1) (-4 *1 (-502))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1175 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1174 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1176 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-372) (-1216) (-1015)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-654 (-574))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) - (-14 *4 (-781)) (-4 *5 (-174))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1170 (-417 *3))) (-5 *1 (-176 *3)) (-4 *3 (-315))))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1175 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-1074)))) + ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1074))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-962 (-416 (-573)))) (-5 *4 (-1189)) + (-5 *5 (-1106 (-852 (-227)))) (-5 *2 (-653 (-227))) (-5 *1 (-307))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-382 *2)) - (-4 *5 (-382 *2)) (-4 *2 (-1231)))) + (-12 (-5 *3 (-573)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-381 *2)) + (-4 *5 (-381 *2)) (-4 *2 (-1230)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-781)) (-4 *2 (-1113)) (-5 *1 (-215 *4 *2)) - (-14 *4 (-932)))) + (-12 (-5 *3 (-780)) (-4 *2 (-1112)) (-5 *1 (-215 *4 *2)) + (-14 *4 (-931)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1231)))) + (-12 (-4 *1 (-295 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1230)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-574)) (-4 *1 (-1066 *4 *5 *2 *6 *7)) - (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1062))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 (-932))) (-5 *1 (-1306))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1170 *3))) (-5 *2 (-1170 *3)) (-5 *1 (-1174 *3)) - (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) - ((*1 *2) (-12 (-5 *2 (-915 (-574))) (-5 *1 (-928))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-932)) (-4 *1 (-414)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-574)) (-4 *1 (-414)))) + (-12 (-5 *3 (-573)) (-4 *1 (-1065 *4 *5 *2 *6 *7)) + (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1061))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-573)) (-5 *3 (-931)) (-4 *1 (-413)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-573)) (-4 *1 (-413)))) ((*1 *2 *1) - (-12 (-4 *1 (-1116 *3 *4 *5 *2 *6)) (-4 *3 (-1113)) (-4 *4 (-1113)) - (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *2 (-1113))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-699 *4)) (-5 *3 (-932)) (|has| *4 (-6 (-4458 "*"))) - (-4 *4 (-1062)) (-5 *1 (-1041 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-654 (-699 *4))) (-5 *3 (-932)) - (|has| *4 (-6 (-4458 "*"))) (-4 *4 (-1062)) (-5 *1 (-1041 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1105 (-853 *3))) (-4 *3 (-13 (-1216) (-970) (-29 *5))) - (-4 *5 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) - (-5 *2 - (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-221 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1105 (-853 *3))) (-5 *5 (-1172)) - (-4 *3 (-13 (-1216) (-970) (-29 *6))) - (-4 *6 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) - (-5 *2 - (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-221 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-1105 (-853 (-324 *5)))) - (-4 *5 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) - (-5 *2 - (-3 (|:| |f1| (-853 (-324 *5))) (|:| |f2| (-654 (-853 (-324 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-417 (-963 *6))) (-5 *4 (-1105 (-853 (-324 *6)))) - (-5 *5 (-1172)) - (-4 *6 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) - (-5 *2 - (-3 (|:| |f1| (-853 (-324 *6))) (|:| |f2| (-654 (-853 (-324 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1105 (-853 (-417 (-963 *5))))) (-5 *3 (-417 (-963 *5))) - (-4 *5 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) - (-5 *2 - (-3 (|:| |f1| (-853 (-324 *5))) (|:| |f2| (-654 (-853 (-324 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1105 (-853 (-417 (-963 *6))))) (-5 *5 (-1172)) - (-5 *3 (-417 (-963 *6))) - (-4 *6 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) - (-5 *2 - (-3 (|:| |f1| (-853 (-324 *6))) (|:| |f2| (-654 (-853 (-324 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1190)) - (-4 *5 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) - (-5 *2 (-3 *3 (-654 *3))) (-5 *1 (-438 *5 *3)) - (-4 *3 (-13 (-1216) (-970) (-29 *5))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-484 *3 *4 *5)) - (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-14 *5 *3))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1107 (-853 (-388)))) - (-5 *5 (-388)) (-5 *6 (-1076)) (-5 *2 (-1048)) (-5 *1 (-575)))) - ((*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1048)) (-5 *1 (-575)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1107 (-853 (-388)))) - (-5 *5 (-388)) (-5 *2 (-1048)) (-5 *1 (-575)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1107 (-853 (-388)))) - (-5 *5 (-388)) (-5 *2 (-1048)) (-5 *1 (-575)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1107 (-853 (-388)))) - (-5 *2 (-1048)) (-5 *1 (-575)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1107 (-853 (-388))))) - (-5 *2 (-1048)) (-5 *1 (-575)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1107 (-853 (-388))))) - (-5 *5 (-388)) (-5 *2 (-1048)) (-5 *1 (-575)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1107 (-853 (-388))))) - (-5 *5 (-388)) (-5 *2 (-1048)) (-5 *1 (-575)))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1107 (-853 (-388))))) - (-5 *5 (-388)) (-5 *6 (-1076)) (-5 *2 (-1048)) (-5 *1 (-575)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-324 (-388))) (-5 *4 (-1105 (-853 (-388)))) - (-5 *5 (-1172)) (-5 *2 (-1048)) (-5 *1 (-575)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-324 (-388))) (-5 *4 (-1105 (-853 (-388)))) - (-5 *5 (-1190)) (-5 *2 (-1048)) (-5 *1 (-575)))) + (-12 (-4 *1 (-1115 *3 *4 *5 *2 *6)) (-4 *3 (-1112)) (-4 *4 (-1112)) + (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *2 (-1112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-565)) (-4 *5 (-1004 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) + (-4 *3 (-381 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-372) (-148) (-1051 (-574)))) (-4 *5 (-1257 *4)) - (-5 *2 (-596 (-417 *5))) (-5 *1 (-578 *4 *5)) (-5 *3 (-417 *5)))) + (-12 (-4 *4 (-565)) (-4 *5 (-1004 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) + (-5 *1 (-512 *4 *5 *6 *3)) (-4 *6 (-381 *4)) (-4 *3 (-381 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-698 *5)) (-4 *5 (-1004 *4)) (-4 *4 (-565)) + (-5 *2 (-2 (|:| |num| (-698 *4)) (|:| |den| *4))) + (-5 *1 (-702 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-1190)) (-4 *5 (-148)) - (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) - (-5 *2 (-3 (-324 *5) (-654 (-324 *5)))) (-5 *1 (-599 *5)))) - ((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-750 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-860)) - (-4 *3 (-38 (-417 (-574)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1190)) (-5 *1 (-963 *3)) (-4 *3 (-38 (-417 (-574)))) - (-4 *3 (-1062)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-4 *2 (-860)) - (-5 *1 (-1139 *3 *2 *4)) (-4 *4 (-960 *3 (-541 *2) *2)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) - (-5 *1 (-1174 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1181 *3 *4 *5)) - (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1187 *3 *4 *5)) - (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1188 *3 *4 *5)) - (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-14 *5 *3))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *1 (-1225 *3)) (-4 *3 (-38 (-417 (-574)))) - (-4 *3 (-1062)))) - ((*1 *1 *1 *2) - (-2818 - (-12 (-5 *2 (-1190)) (-4 *1 (-1241 *3)) (-4 *3 (-1062)) - (-12 (-4 *3 (-29 (-574))) (-4 *3 (-970)) (-4 *3 (-1216)) - (-4 *3 (-38 (-417 (-574)))))) - (-12 (-5 *2 (-1190)) (-4 *1 (-1241 *3)) (-4 *3 (-1062)) - (-12 (|has| *3 (-15 -4355 ((-654 *2) *3))) - (|has| *3 (-15 -2379 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1062)) (-4 *2 (-38 (-417 (-574)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1245 *3 *4 *5)) - (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-14 *5 *3))) - ((*1 *1 *1) - (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1062)) (-4 *2 (-38 (-417 (-574)))))) - ((*1 *1 *1 *2) - (-2818 - (-12 (-5 *2 (-1190)) (-4 *1 (-1262 *3)) (-4 *3 (-1062)) - (-12 (-4 *3 (-29 (-574))) (-4 *3 (-970)) (-4 *3 (-1216)) - (-4 *3 (-38 (-417 (-574)))))) - (-12 (-5 *2 (-1190)) (-4 *1 (-1262 *3)) (-4 *3 (-1062)) - (-12 (|has| *3 (-15 -4355 ((-654 *2) *3))) - (|has| *3 (-15 -2379 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1062)) (-4 *2 (-38 (-417 (-574)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1266 *3 *4 *5)) - (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-2818 - (-12 (-5 *2 (-1190)) (-4 *1 (-1272 *3)) (-4 *3 (-1062)) - (-12 (-4 *3 (-29 (-574))) (-4 *3 (-970)) (-4 *3 (-1216)) - (-4 *3 (-38 (-417 (-574)))))) - (-12 (-5 *2 (-1190)) (-4 *1 (-1272 *3)) (-4 *3 (-1062)) - (-12 (|has| *3 (-15 -4355 ((-654 *2) *3))) - (|has| *3 (-15 -2379 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1062)) (-4 *2 (-38 (-417 (-574)))))) + (-12 (-4 *5 (-13 (-371) (-148) (-1050 (-416 (-573))))) + (-4 *6 (-1256 *5)) + (-5 *2 (-2 (|:| -4122 *7) (|:| |rh| (-653 (-416 *6))))) + (-5 *1 (-816 *5 *6 *7 *3)) (-5 *4 (-653 (-416 *6))) + (-4 *7 (-665 *6)) (-4 *3 (-665 (-416 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-565)) (-4 *5 (-1004 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1249 *4 *5 *3)) + (-4 *3 (-1256 *5))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-573)) (-5 *5 (-1171)) (-5 *6 (-698 (-227))) + (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-397)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-758))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-334 *3)) (-4 *3 (-1230)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1277 *4)) (-14 *4 (-1190)) (-5 *1 (-1273 *3 *4 *5)) - (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1062)) (-14 *5 *3)))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1186 (-963 *4))) (-5 *1 (-426 *3 *4)) - (-4 *3 (-427 *4)))) - ((*1 *2) - (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-4 *3 (-372)) - (-5 *2 (-1186 (-963 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1186 (-417 (-963 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) - (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) - (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-781)) (-4 *5 (-566)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-982 *5 *3)) (-4 *3 (-1257 *5))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-699 *2)) (-5 *4 (-781)) - (-4 *2 (-13 (-315) (-10 -8 (-15 -2827 ((-428 $) $))))) - (-4 *5 (-1257 *2)) (-5 *1 (-509 *2 *5 *6)) (-4 *6 (-419 *2 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) - ((*1 *1 *1) (-4 *1 (-503))) - ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1175 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1176 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-884)))) - ((*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062))))) -(((*1 *2 *3) - (-12 (-5 *3 (-963 *5)) (-4 *5 (-1062)) (-5 *2 (-491 *4 *5)) - (-5 *1 (-955 *4 *5)) (-14 *4 (-654 (-1190)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1062)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5)) - (-4 *3 (-1257 *4)) - (-4 *5 (-13 (-414) (-1051 *4) (-372) (-1216) (-292)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216))))) -(((*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574))))) -(((*1 *2 *3) (-12 (-5 *3 (-654 (-52))) (-5 *2 (-1286)) (-5 *1 (-873))))) -(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1194))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 (-1107 (-417 (-574))))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-654 (-1107 (-388)))) (-5 *1 (-270))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-900 *4 *5)) (-5 *3 (-900 *4 *6)) (-4 *4 (-1113)) - (-4 *5 (-1113)) (-4 *6 (-676 *5)) (-5 *1 (-896 *4 *5 *6))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1172)) (-5 *5 (-699 (-227))) (-5 *6 (-227)) - (-5 *7 (-699 (-574))) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-762))))) + (-12 (-5 *2 (-573)) (-5 *1 (-525 *3 *4)) (-4 *3 (-1230)) (-14 *4 *2)))) +(((*1 *2 *1) + (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) + (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) + (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-859)) (-5 *4 (-653 *6)) + (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-653 *4)))) + (-5 *1 (-1200 *6)) (-5 *5 (-653 *4))))) +(((*1 *2 *1) + (-12 (-4 *2 (-959 *3 *5 *4)) (-5 *1 (-999 *3 *4 *5 *2)) + (-4 *3 (-461)) (-4 *4 (-859)) (-4 *5 (-802))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-371)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) + (-5 *1 (-513 *4 *5 *6 *3)) (-4 *3 (-959 *4 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-371) (-1215) (-1014)))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015))))) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) + (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) - (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) - ((*1 *1 *1) (-4 *1 (-503))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) + (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) + ((*1 *1 *1) (-4 *1 (-502))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1175 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1174 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1176 *3))))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1175 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1190)) - (-4 *4 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) - (-5 *1 (-436 *4 *2)) (-4 *2 (-13 (-1216) (-29 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-1190)) (-4 *5 (-148)) - (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-324 *5)) - (-5 *1 (-599 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-287))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-388)) (-5 *1 (-1076))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-372) (-1216) (-1015)))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1076)) (-5 *3 (-1172))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1172)) (-5 *3 (-833)) (-5 *1 (-832))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1001 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1120 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) - (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-79 LSFUN1)))) - (-5 *2 (-1048)) (-5 *1 (-763))))) + (-12 (-5 *3 (-653 *2)) (-4 *2 (-554)) (-5 *1 (-160 *2))))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-756))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-653 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-780)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-802)) (-4 *3 (-959 *4 *5 *6)) (-4 *4 (-461)) (-4 *6 (-859)) + (-5 *1 (-458 *4 *5 *6 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-653 (-953 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-653 (-953 *3))) (-4 *3 (-1061)) (-4 *1 (-1146 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-653 (-653 *3))) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-653 (-953 *3))) (-4 *1 (-1146 *3)) (-4 *3 (-1061))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1113)) (-4 *6 (-1113)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-694 *4 *5 *6)) (-4 *4 (-1113))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-331 *3 *4)) (-4 *3 (-1113)) - (-4 *4 (-132)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1113)) (-5 *1 (-370 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-395 *3)) (-4 *3 (-1113)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1113)) (-5 *1 (-659 *3 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1062))))) + (-12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-314)) (-5 *2 (-427 *3)) + (-5 *1 (-751 *4 *5 *6 *3)) (-4 *3 (-959 *6 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-653 (-52))) (-5 *2 (-1285)) (-5 *1 (-872))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4456)) (-4 *1 (-1022 *2)) (-4 *2 (-1230))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1112)))) + ((*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1112))))) +(((*1 *2) + (-12 (-14 *4 (-780)) (-4 *5 (-1230)) (-5 *2 (-135)) + (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-371)) (-5 *2 (-135)) (-5 *1 (-335 *3 *4)) + (-4 *3 (-336 *4)))) + ((*1 *2) + (-12 (-5 *2 (-780)) (-5 *1 (-399 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-174)))) + ((*1 *2 *1) + (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-573)) + (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-653 *6)) (-4 *6 (-859)) (-4 *4 (-371)) (-4 *5 (-802)) + (-5 *2 (-573)) (-5 *1 (-513 *4 *5 *6 *7)) (-4 *7 (-959 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-992 *3)) (-4 *3 (-1061)) (-5 *2 (-931)))) + ((*1 *2) (-12 (-4 *1 (-1287 *3)) (-4 *3 (-371)) (-5 *2 (-135))))) +(((*1 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-23))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015))))) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) + (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) + (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) - (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) - ((*1 *1 *1) (-4 *1 (-503))) + (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) + (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) + ((*1 *1 *1) (-4 *1 (-502))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1175 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1174 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1176 *3))))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1175 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1172)) (-5 *2 (-654 (-1195))) (-5 *1 (-891))))) + (-12 (-5 *3 (-1280 (-323 (-227)))) + (-5 *2 + (-2 (|:| |additions| (-573)) (|:| |multiplications| (-573)) + (|:| |exponentiations| (-573)) (|:| |functionCalls| (-573)))) + (-5 *1 (-312))))) +(((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-286))))) +(((*1 *2 *1) + (-12 (-5 *2 (-653 (-1216 *3))) (-5 *1 (-1216 *3)) (-4 *3 (-1112))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1231)) (-5 *1 (-384 *4 *2)) - (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4457))))))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1060))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-404))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) - (-5 *2 (-1048)) (-5 *1 (-765))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1190)) (-5 *2 (-1 *6 *5)) (-5 *1 (-716 *4 *5 *6)) - (-4 *4 (-624 (-546))) (-4 *5 (-1231)) (-4 *6 (-1231))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-699 (-227))) (-5 *6 (-699 (-574))) (-5 *3 (-574)) - (-5 *4 (-227)) (-5 *2 (-1048)) (-5 *1 (-762))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1062)) (-4 *4 (-1257 *3)) (-5 *1 (-165 *3 *4 *2)) - (-4 *2 (-1257 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1231))))) + (-12 (-5 *2 (-112)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-269)))) + ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-476)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-476))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 *8)) (-5 *4 (-653 *9)) (-4 *8 (-1077 *5 *6 *7)) + (-4 *9 (-1083 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) + (-4 *7 (-859)) (-5 *2 (-780)) (-5 *1 (-1081 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 *8)) (-5 *4 (-653 *9)) (-4 *8 (-1077 *5 *6 *7)) + (-4 *9 (-1121 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) + (-4 *7 (-859)) (-5 *2 (-780)) (-5 *1 (-1157 *5 *6 *7 *8 *9))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4456)) (-4 *1 (-120 *2)) (-4 *2 (-1230))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1247 *3)) (-4 *3 (-1230))))) +(((*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1189)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-653 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-653 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -3861 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1215) (-27) (-439 *8))) + (-4 *8 (-13 (-461) (-148) (-1050 *3) (-648 *3))) (-5 *3 (-573)) + (-5 *2 (-653 *4)) (-5 *1 (-1026 *8 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1280 *5)) (-4 *5 (-801)) (-5 *2 (-112)) + (-5 *1 (-854 *4 *5)) (-14 *4 (-780))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015))))) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) + (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) + (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) - (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) - ((*1 *1 *1) (-4 *1 (-503))) + (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) + (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) + ((*1 *1 *1) (-4 *1 (-502))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1175 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1174 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1176 *3))))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1175 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-515)) (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *1 *1) (-4 *1 (-1072)))) +(((*1 *2 *1) + (-12 (-14 *3 (-653 (-1189))) (-4 *4 (-174)) + (-14 *6 + (-1 (-112) (-2 (|:| -2575 *5) (|:| -3907 *2)) + (-2 (|:| -2575 *5) (|:| -3907 *2)))) + (-4 *2 (-243 (-2862 *3) (-780))) (-5 *1 (-470 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-859)) (-4 *7 (-959 *4 *2 (-873 *3)))))) +(((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-937))))) +(((*1 *2) (-12 (-5 *2 (-1159 (-1171))) (-5 *1 (-400))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-653 *6)) (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) + (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) + (-4 *3 (-565))))) +(((*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1171)) (-5 *1 (-312))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *8 (-1078 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-654 *8)) - (|:| |towers| (-654 (-1040 *5 *6 *7 *8))))) - (-5 *1 (-1040 *5 *6 *7 *8)) (-5 *3 (-654 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *8 (-1078 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-654 *8)) - (|:| |towers| (-654 (-1159 *5 *6 *7 *8))))) - (-5 *1 (-1159 *5 *6 *7 *8)) (-5 *3 (-654 *8))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1062))))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))) - (-5 *2 (-417 (-574))) (-5 *1 (-1033 *4)) (-4 *4 (-1257 (-574)))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-324 (-227))) (-5 *1 (-274))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231))))) -(((*1 *2 *3) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-189))) (-5 *1 (-189))))) -(((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-182)))) - ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-691)))) - ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-983)))) - ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-1086)))) - ((*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-1131))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015))))) + (-12 (-4 *4 (-461)) (-4 *4 (-565)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1543 *4))) + (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-801))))) +(((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) + (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) + (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) + (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) + ((*1 *1 *1) (-4 *1 (-502))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1175 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1174 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1176 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) - (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) - (-5 *2 (-112)) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-960 *4 *5 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-658 *3)) (-4 *3 (-1062)) - (-5 *1 (-724 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1062)) (-5 *1 (-846 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-960 *4 *5 *6)) (-5 *2 (-654 (-654 *7))) - (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) - (-4 *7 (-860)) (-4 *8 (-960 *5 *6 *7)) (-5 *2 (-654 (-654 *8))) - (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1175 *3))))) +(((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-953 (-227)) (-227))) (-5 *3 (-1106 (-227))) + (-5 *1 (-936)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-953 (-227)) (-227))) (-5 *3 (-1106 (-227))) + (-5 *1 (-936)))) + ((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-953 (-227)) (-227))) (-5 *3 (-1106 (-227))) + (-5 *1 (-937)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-953 (-227)) (-227))) (-5 *3 (-1106 (-227))) + (-5 *1 (-937))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1189)) (-5 *2 (-1 *6 *5)) (-5 *1 (-715 *4 *5 *6)) + (-4 *4 (-623 (-545))) (-4 *5 (-1230)) (-4 *6 (-1230))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-931))) (-5 *4 (-915 (-573))) + (-5 *2 (-698 (-573))) (-5 *1 (-599)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-960 *4 *5 *6)) (-5 *2 (-654 (-654 *7))) - (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) + (-12 (-5 *3 (-653 (-931))) (-5 *2 (-653 (-698 (-573)))) + (-5 *1 (-599)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) - (-4 *7 (-860)) (-4 *8 (-960 *5 *6 *7)) (-5 *2 (-654 (-654 *8))) - (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-757))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-91 *3))))) + (-12 (-5 *3 (-653 (-931))) (-5 *4 (-653 (-915 (-573)))) + (-5 *2 (-653 (-698 (-573)))) (-5 *1 (-599))))) +(((*1 *2) + (|partial| -12 (-4 *4 (-1234)) (-4 *5 (-1256 (-416 *2))) + (-4 *2 (-1256 *4)) (-5 *1 (-349 *3 *4 *2 *5)) + (-4 *3 (-350 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-350 *3 *2 *4)) (-4 *3 (-1234)) + (-4 *4 (-1256 (-416 *2))) (-4 *2 (-1256 *3))))) +(((*1 *1) (-5 *1 (-142)))) (((*1 *2 *3) - (-12 (-5 *3 (-654 (-622 *5))) (-4 *4 (-1113)) (-5 *2 (-622 *5)) - (-5 *1 (-583 *4 *5)) (-4 *5 (-440 *4))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1123)) (-5 *3 (-574))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-654 (-491 *4 *5))) (-5 *3 (-874 *4)) - (-14 *4 (-654 (-1190))) (-4 *5 (-462)) (-5 *1 (-641 *4 *5))))) + (-12 (-4 *4 (-13 (-371) (-1050 (-416 *2)))) (-5 *2 (-573)) + (-5 *1 (-116 *4 *3)) (-4 *3 (-1256 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *2 *1) (-12 (-5 *2 (-1229)) (-5 *1 (-182)))) + ((*1 *2 *1) (-12 (-5 *2 (-1229)) (-5 *1 (-690)))) + ((*1 *2 *1) (-12 (-5 *2 (-1229)) (-5 *1 (-982)))) + ((*1 *2 *1) (-12 (-5 *2 (-1229)) (-5 *1 (-1085)))) + ((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-1130))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015))))) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) + (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) + (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1175 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1174 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1176 *3))))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1175 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 (-2 (|:| |deg| (-780)) (|:| -1772 *5)))) + (-4 *5 (-1256 *4)) (-4 *4 (-357)) (-5 *2 (-653 *5)) + (-5 *1 (-218 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-2 (|:| -4218 *5) (|:| -2565 (-573))))) + (-5 *4 (-573)) (-4 *5 (-1256 *4)) (-5 *2 (-653 *5)) + (-5 *1 (-705 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-780)) (-4 *1 (-1256 *3)) (-4 *3 (-1061))))) +(((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1303 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-855))))) (((*1 *2 *1) - (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) - (-4 *1 (-1078 *3 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-699 (-324 (-574)))) (-5 *1 (-1044))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1048)) (-5 *3 (-1190)) (-5 *1 (-194))))) + (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) + (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1038 (-852 (-573)))) + (-5 *3 (-1169 (-2 (|:| |k| (-573)) (|:| |c| *4)))) (-4 *4 (-1061)) + (-5 *1 (-604 *4))))) (((*1 *2 *1) - (-12 (-4 *3 (-1231)) (-5 *2 (-654 *1)) (-4 *1 (-1023 *3)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) + (-4 *5 (-381 *3)) (-5 *2 (-573)))) ((*1 *2 *1) - (-12 (-5 *2 (-654 (-1178 *3 *4))) (-5 *1 (-1178 *3 *4)) - (-14 *3 (-932)) (-4 *4 (-1062))))) -(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-527))))) -(((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-145)))) - ((*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-145))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) - (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-853 (-574))) (-5 *1 (-544)))) - ((*1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1113))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768))))) + (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-573))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1230)) (-5 *1 (-383 *4 *2)) + (-4 *2 (-13 (-381 *4) (-10 -7 (-6 -4456))))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015))))) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) + (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) + (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1175 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1174 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1176 *3))))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1175 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-574)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1062))))) + (-12 (-5 *3 (-931)) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1280 (-653 *3))) (-4 *4 (-314)) + (-5 *2 (-653 *3)) (-5 *1 (-464 *4 *3)) (-4 *3 (-1256 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015)))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-765))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-372) (-1051 (-417 *2)))) (-5 *2 (-574)) - (-5 *1 (-116 *4 *3)) (-4 *3 (-1257 *4))))) -(((*1 *2 *1) - (-12 + (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-357)) (-5 *1 (-365 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-653 (-52))) (-5 *1 (-902 *3)) (-4 *3 (-1112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) +(((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-145)))) + ((*1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-145))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-662 (-416 *6))) (-5 *4 (-416 *6)) (-4 *6 (-1256 *5)) + (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) (-5 *2 - (-654 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-574))))) - (-5 *1 (-428 *3)) (-4 *3 (-566)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-781)) (-4 *3 (-358)) (-4 *5 (-1257 *3)) - (-5 *2 (-654 (-1186 *3))) (-5 *1 (-508 *3 *5 *6)) - (-4 *6 (-1257 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-781)) (-4 *2 (-566)) (-5 *1 (-982 *2 *4)) - (-4 *4 (-1257 *2))))) -(((*1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1200))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-903 *4)) (-4 *4 (-1113)) (-5 *2 (-112)) - (-5 *1 (-900 *4 *5)) (-4 *5 (-1113)))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) + (-5 *1 (-819 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-903 *5)) (-4 *5 (-1113)) (-5 *2 (-112)) - (-5 *1 (-901 *5 *3)) (-4 *3 (-1231)))) + (-12 (-5 *3 (-662 (-416 *6))) (-4 *6 (-1256 *5)) + (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) + (-5 *2 (-2 (|:| -3914 (-653 (-416 *6))) (|:| -1423 (-698 *5)))) + (-5 *1 (-819 *5 *6)) (-5 *4 (-653 (-416 *6))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *6)) (-5 *4 (-903 *5)) (-4 *5 (-1113)) - (-4 *6 (-1231)) (-5 *2 (-112)) (-5 *1 (-901 *5 *6))))) + (-12 (-5 *3 (-663 *6 (-416 *6))) (-5 *4 (-416 *6)) (-4 *6 (-1256 *5)) + (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) + (-5 *1 (-819 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-663 *6 (-416 *6))) (-4 *6 (-1256 *5)) + (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) + (-5 *2 (-2 (|:| -3914 (-653 (-416 *6))) (|:| -1423 (-698 *5)))) + (-5 *1 (-819 *5 *6)) (-5 *4 (-653 (-416 *6)))))) +(((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-871))))) +(((*1 *2) (-12 (-5 *2 (-852 (-573))) (-5 *1 (-543)))) + ((*1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-1112))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) + (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) + (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1174 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1175 *3))))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) + (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-5 *2 (-653 (-1039 *5 *6 *7 *8))) (-5 *1 (-1039 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-653 *8)) (-5 *4 (-112)) (-4 *8 (-1077 *5 *6 *7)) + (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-5 *2 (-653 (-1158 *5 *6 *7 *8))) (-5 *1 (-1158 *5 *6 *7 *8))))) +(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-445))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) + (-4 *4 (-859))))) +(((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-224 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-4 *1 (-260 *3)))) + ((*1 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230))))) +(((*1 *2 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1208))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1112) (-34))) + (-4 *3 (-13 (-1112) (-34)))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1112)) (-5 *1 (-974 *3 *2)) (-4 *3 (-1112))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-653 (-962 *4))) (-5 *3 (-653 (-1189))) (-4 *4 (-461)) + (-5 *1 (-928 *4))))) +(((*1 *2) (-12 (-5 *2 (-852 (-573))) (-5 *1 (-543)))) + ((*1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-1112))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-227))) ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015))))) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) + (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) + (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) - (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) - ((*1 *1 *1 *1) (-5 *1 (-388))) + (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) + (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) + ((*1 *1 *1 *1) (-5 *1 (-387))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1175 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1174 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1176 *3))))) -(((*1 *2) (-12 (-5 *2 (-853 (-574))) (-5 *1 (-544)))) - ((*1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1113))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1186 *4)) (-4 *4 (-358)) (-5 *2 (-969 (-1133))) - (-5 *1 (-355 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-832))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) - (-5 *2 (-699 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-699 *4)) (-5 *1 (-426 *3 *4)) - (-4 *3 (-427 *4)))) - ((*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1216)))))) -(((*1 *1 *1 *1) (-4 *1 (-771)))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-757))))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1175 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-831))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-4 *3 (-1077 *5 *6 *7)) + (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) + (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-371)) + (-4 *7 (-1256 (-416 *6))) + (-5 *2 (-2 (|:| |answer| *3) (|:| -1353 *3))) + (-5 *1 (-571 *5 *6 *7 *3)) (-4 *3 (-350 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1256 *5)) (-4 *5 (-371)) + (-5 *2 + (-2 (|:| |answer| (-416 *6)) (|:| -1353 (-416 *6)) + (|:| |specpart| (-416 *6)) (|:| |polypart| *6))) + (-5 *1 (-572 *5 *6)) (-5 *3 (-416 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-653 (-1189))) (-4 *5 (-565)) + (-5 *2 (-653 (-653 (-301 (-416 (-962 *5)))))) (-5 *1 (-779 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 (-962 *4))) (-4 *4 (-565)) + (-5 *2 (-653 (-653 (-301 (-416 (-962 *4)))))) (-5 *1 (-779 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-698 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3914 (-653 *6))) + *7 *6)) + (-4 *6 (-371)) (-4 *7 (-665 *6)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1280 *6) "failed")) + (|:| -3914 (-653 (-1280 *6))))) + (-5 *1 (-822 *6 *7)) (-5 *4 (-1280 *6))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-931)) (-4 *4 (-376)) (-4 *4 (-371)) (-5 *2 (-1185 *1)) + (-4 *1 (-336 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-5 *2 (-1185 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-174)) (-4 *3 (-371)) + (-4 *2 (-1256 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1280 *4)) (-4 *4 (-357)) (-5 *2 (-1185 *4)) + (-5 *1 (-537 *4))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015))))) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) + (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) + (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) - (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) + (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) + (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1175 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1174 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1176 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-5 *1 (-1170 *3))))) -(((*1 *1 *1) (-4 *1 (-555)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1281 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1257 *4)) (-5 *2 (-699 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-4 *5 (-1257 *4)) (-5 *2 (-699 *4)) - (-5 *1 (-418 *3 *4 *5)) (-4 *3 (-419 *4 *5)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1175 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-4 *1 (-913 *3))))) +(((*1 *1 *1) (-4 *1 (-554)))) +(((*1 *2) + (-12 (-5 *2 (-1280 (-1113 *3 *4))) (-5 *1 (-1113 *3 *4)) + (-14 *3 (-931)) (-14 *4 (-931))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1185 *9)) (-5 *4 (-653 *7)) (-4 *7 (-859)) + (-4 *9 (-959 *8 *6 *7)) (-4 *6 (-802)) (-4 *8 (-314)) + (-5 *2 (-653 (-780))) (-5 *1 (-751 *6 *7 *8 *9)) (-5 *5 (-780))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) +(((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-780)) (-5 *1 (-454 *3)) (-4 *3 (-413)) (-4 *3 (-1061)))) ((*1 *2) - (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1257 *3)) - (-5 *2 (-699 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-491 *4 *5))) (-14 *4 (-654 (-1190))) - (-4 *5 (-462)) (-5 *2 (-654 (-253 *4 *5))) (-5 *1 (-641 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-654 *1)) - (-4 *1 (-1084 *4 *5 *6 *3))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-781)) (-5 *1 (-792 *3)) (-4 *3 (-1062)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-974 *3 *2)) (-4 *2 (-132)) (-4 *3 (-566)) - (-4 *3 (-1062)) (-4 *2 (-802)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-781)) (-5 *1 (-1186 *3)) (-4 *3 (-1062)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-984)) (-4 *2 (-132)) (-5 *1 (-1192 *3)) (-4 *3 (-566)) - (-4 *3 (-1062)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-781)) (-5 *1 (-1254 *4 *3)) (-14 *4 (-1190)) - (-4 *3 (-1062))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) - (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-5 *2 (-780)) (-5 *1 (-454 *3)) (-4 *3 (-413)) (-4 *3 (-1061))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-653 *3)) (-4 *3 (-959 *4 *6 *5)) (-4 *4 (-461)) + (-4 *5 (-859)) (-4 *6 (-802)) (-5 *1 (-999 *4 *5 *6 *3))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1185 *7)) + (-4 *5 (-1061)) (-4 *7 (-1061)) (-4 *2 (-1256 *5)) + (-5 *1 (-510 *5 *2 *6 *7)) (-4 *6 (-1256 *2))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015))))) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) + (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) + (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) - (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) + (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) + (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1175 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1174 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1176 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-1230))) (-5 *1 (-691)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-1195))) (-5 *1 (-1131))))) -(((*1 *2 *3) (-12 (-5 *3 (-546)) (-5 *1 (-545 *2)) (-4 *2 (-1231)))) - ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-546))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) - (-5 *2 (-699 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-699 *4)) (-5 *1 (-426 *3 *4)) - (-4 *3 (-427 *4)))) - ((*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3))))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1175 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-653 (-1229))) (-5 *1 (-690)))) + ((*1 *2 *1) (-12 (-5 *2 (-653 (-1194))) (-5 *1 (-1130))))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) + (-5 *2 (-1047)) (-5 *1 (-761))))) +(((*1 *2 *3) (-12 (-5 *3 (-545)) (-5 *1 (-544 *2)) (-4 *2 (-1230)))) + ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-545))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1171)) (-5 *5 (-698 (-227))) (-5 *6 (-698 (-573))) + (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-766))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-566))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-916 *3))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-516)) (-5 *3 (-654 (-976))) (-5 *1 (-299))))) + (-12 (-5 *3 (-698 (-323 (-227)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-387)) (|:| |stabilityFactor| (-387)))) + (-5 *1 (-207))))) +(((*1 *2 *3) + (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-1077 *4 *5 *6)) + (-5 *2 (-653 (-2 (|:| -1380 *1) (|:| -1674 (-653 *7))))) + (-5 *3 (-653 *7)) (-4 *1 (-1223 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-573)) (-5 *5 (-1171)) (-5 *6 (-698 (-227))) + (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-397)) (|:| |fp| (-71 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-397)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-758))))) +(((*1 *1 *1) (-5 *1 (-1075)))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-959 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *2 (-859)) (-4 *3 (-174)))) + ((*1 *2 *3 *3) + (-12 (-4 *2 (-565)) (-5 *1 (-981 *2 *3)) (-4 *3 (-1256 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) + (-4 *4 (-859)) (-4 *2 (-565)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1061)) (-4 *2 (-174))))) (((*1 *2 *1) - (-12 (-5 *2 (-654 (-2 (|:| |k| (-682 *3)) (|:| |c| *4)))) - (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) - (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-932))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1023 *3)) (-4 *3 (-1231)) (-4 *3 (-1113)) - (-5 *2 (-112))))) -(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-937)))) - ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-938)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-938)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283))))) -(((*1 *2 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1231))))) + (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1016 *3)) (-14 *3 (-573))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015))))) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) + (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) + (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1175 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1174 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1176 *3)))) - ((*1 *1 *1) (-4 *1 (-1219)))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-5 *3 (-574)) (-5 *2 (-112)) (-5 *1 (-490))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283))))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1175 *3)))) + ((*1 *1 *1) (-4 *1 (-1218)))) +(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1112))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1271 *4)) (-5 *1 (-1273 *4 *2)) + (-4 *4 (-38 (-416 (-573))))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-427 *3)) (-4 *3 (-565)) (-5 *1 (-428 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1050 (-573))) (-4 *1 (-309)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-915 *3)) (-4 *3 (-1112))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-38 (-417 (-574)))) - (-4 *2 (-174))))) -(((*1 *1) (-5 *1 (-447)))) -(((*1 *1) (-5 *1 (-447)))) -(((*1 *2) - (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -1882 (-654 *1)))) - (-4 *1 (-376 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-463 *3 *4 *5 *6)) - (|:| -1882 (-654 (-463 *3 *4 *5 *6))))) - (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-932)) - (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3)))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-1231)) (-5 *1 (-184 *3 *2)) - (-4 *2 (-684 *3))))) + (-12 (-5 *2 (-112)) (-5 *3 (-653 (-269))) (-5 *1 (-267))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-780)) (-5 *1 (-103 *3)) (-4 *3 (-1112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) + (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015))))) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) + (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) + (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1175 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1174 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1176 *3)))) - ((*1 *1 *1) (-4 *1 (-1219)))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-781)) (-4 *1 (-996 *2)) (-4 *2 (-1216))))) -(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-527)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1175 *3)))) + ((*1 *1 *1) (-4 *1 (-1218)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1280 *5)) (-4 *5 (-801)) (-5 *2 (-112)) + (-5 *1 (-854 *4 *5)) (-14 *4 (-780))))) +(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-526)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1113) (-34))) (-5 *1 (-1153 *3 *2)) - (-4 *3 (-13 (-1113) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1292))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-566))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1172)) (-4 *1 (-373 *3 *4)) (-4 *3 (-1113)) - (-4 *4 (-1113))))) -(((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-388)) (-5 *2 (-1286)) (-5 *1 (-1283))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1190)) (-5 *4 (-963 (-574))) (-5 *2 (-338)) - (-5 *1 (-340)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1190)) (-5 *4 (-1105 (-963 (-574)))) (-5 *2 (-338)) - (-5 *1 (-340)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-685 *3)) (-4 *3 (-1062)) - (-4 *3 (-1113))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1257 *6)) - (-4 *6 (-13 (-372) (-148) (-1051 *4))) (-5 *4 (-574)) - (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) - (|:| -4122 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-1028 *6 *3))))) + (-12 (-4 *2 (-13 (-1112) (-34))) (-5 *1 (-1152 *3 *2)) + (-4 *3 (-13 (-1112) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1291))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-653 (-698 *4))) (-5 *2 (-698 *4)) (-4 *4 (-1061)) + (-5 *1 (-1041 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-365 *3)) (-4 *3 (-357))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) + (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1223 *4 *5 *6 *3)) (-4 *4 (-565)) (-4 *5 (-802)) + (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-780)) (-5 *4 (-573)) (-5 *1 (-454 *2)) (-4 *2 (-1061))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1061)) (-5 *2 (-653 *1)) (-4 *1 (-1146 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1186 (-574))) (-5 *2 (-574)) (-5 *1 (-953))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1286) (-1281 *5) (-1281 *5) (-388))) - (-5 *3 (-1281 (-388))) (-5 *5 (-388)) (-5 *2 (-1286)) - (-5 *1 (-798))))) -(((*1 *2 *3) (-12 (-5 *3 (-171 (-574))) (-5 *2 (-112)) (-5 *1 (-456)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) - (-253 *4 (-417 (-574))))) - (-14 *4 (-654 (-1190))) (-14 *5 (-781)) (-5 *2 (-112)) - (-5 *1 (-515 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-972 *3)) (-4 *3 (-555)))) - ((*1 *2 *1) (-12 (-4 *1 (-1235)) (-5 *2 (-112))))) + (-12 (-5 *3 (-653 (-573))) (-5 *2 (-573)) (-5 *1 (-495 *4)) + (-4 *4 (-1256 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-1171)) (-5 *1 (-312))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 (-653 *2))) (-5 *4 (-653 *5)) + (-4 *5 (-38 (-416 (-573)))) (-4 *2 (-1271 *5)) + (-5 *1 (-1273 *5 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015))))) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) + (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) + (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1175 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1174 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1176 *3)))) - ((*1 *1 *1) (-4 *1 (-1219)))) -(((*1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574)))) - ((*1 *1 *1) (-5 *1 (-1133)))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-654 (-654 (-954 (-227))))) (-5 *4 (-884)) - (-5 *5 (-932)) (-5 *6 (-654 (-270))) (-5 *2 (-1282)) - (-5 *1 (-1285)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-654 (-954 (-227))))) (-5 *4 (-654 (-270))) - (-5 *2 (-1282)) (-5 *1 (-1285))))) -(((*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284)))) - ((*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284))))) -(((*1 *2 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1209))))) -(((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1078 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) - (-5 *1 (-990 *4 *5 *6 *7)) (-5 *3 (-654 *7))))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1175 *3)))) + ((*1 *1 *1) (-4 *1 (-1218)))) +(((*1 *1 *1) (-12 (-5 *1 (-509 *2)) (-14 *2 (-573)))) + ((*1 *1 *1) (-5 *1 (-1132)))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3)) - (-5 *1 (-752 *5 *4 *6 *3)) (-4 *3 (-960 *6 *5 *4))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-781)) (-4 *4 (-1062)) (-5 *1 (-1253 *4 *2)) - (-4 *2 (-1257 *4))))) + (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-1189)) + (-4 *5 (-13 (-314) (-148))) (-5 *2 (-653 (-323 *5))) + (-5 *1 (-1141 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-416 (-962 *5)))) (-5 *4 (-653 (-1189))) + (-4 *5 (-13 (-314) (-148))) (-5 *2 (-653 (-653 (-323 *5)))) + (-5 *1 (-1141 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-573)) (-5 *4 (-427 *2)) (-4 *2 (-959 *7 *5 *6)) + (-5 *1 (-751 *5 *6 *7 *2)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-314))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 *4)) (-4 *4 (-1112)) (-5 *2 (-1285)) + (-5 *1 (-1231 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-653 *4)) (-4 *4 (-1112)) (-5 *2 (-1285)) + (-5 *1 (-1231 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1050 (-573))) (-4 *1 (-309)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-915 *3)) (-4 *3 (-1112))))) +(((*1 *1) (-5 *1 (-832)))) +(((*1 *1 *2) + (-12 (-5 *2 (-653 *3)) (-4 *3 (-1230)) (-5 *1 (-1169 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1243 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-1272 *3))))) + (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-653 (-953 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-653 (-953 *3))) (-4 *3 (-1061)) (-4 *1 (-1146 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-653 (-653 *3))) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-653 (-953 *3))) (-4 *1 (-1146 *3)) (-4 *3 (-1061))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015))))) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) + (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) + (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) - (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) + (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) + (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1175 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1174 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1176 *3)))) - ((*1 *1 *1) (-4 *1 (-1219)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574)))) - ((*1 *1 *1 *1) (-5 *1 (-1133)))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-622 *3)) - (-4 *3 (-13 (-440 *5) (-27) (-1216))) - (-4 *5 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) - (-5 *2 (-2 (|:| -2399 *3) (|:| |coeff| *3))) - (-5 *1 (-576 *5 *3 *6)) (-4 *6 (-1113))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-574)) (-4 *5 (-372)) - (-4 *5 (-1062)) (-5 *2 (-112)) (-5 *1 (-1042 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-699 *4))) (-4 *4 (-372)) (-4 *4 (-1062)) - (-5 *2 (-112)) (-5 *1 (-1042 *4))))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1175 *3)))) + ((*1 *1 *1) (-4 *1 (-1218)))) (((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-860)) - (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-654 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1152)))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1190)) (-4 *4 (-1062)) (-4 *4 (-1113)) - (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -3715 (-574)))) - (-4 *1 (-440 *4)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1062)) (-4 *4 (-1113)) - (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -3715 (-574)))) - (-4 *1 (-440 *4)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1125)) (-4 *3 (-1113)) - (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -3715 (-574)))) - (-4 *1 (-440 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-903 *3)) (|:| -3715 (-781)))) - (-5 *1 (-903 *3)) (-4 *3 (-1113)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-960 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *5 (-860)) (-5 *2 (-2 (|:| |var| *5) (|:| -3715 (-781)))))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1062)) - (-4 *7 (-960 *6 *4 *5)) - (-5 *2 (-2 (|:| |var| *5) (|:| -3715 (-574)))) - (-5 *1 (-961 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-372) - (-10 -8 (-15 -2943 ($ *7)) (-15 -2966 (*7 $)) - (-15 -2977 (*7 $)))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1281 (-1281 *4))) (-4 *4 (-1062)) (-5 *2 (-699 *4)) - (-5 *1 (-1042 *4))))) + (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) + (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-509 *2)) (-14 *2 (-573)))) + ((*1 *1 *1 *1) (-5 *1 (-1132)))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-462)) (-4 *4 (-566)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -2495 *4))) (-5 *1 (-982 *4 *3)) - (-4 *3 (-1257 *4))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-870)) (-5 *2 (-701 (-1239))) (-5 *3 (-1239))))) + (|partial| -12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1000 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1119 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-653 (-1097))) (-5 *1 (-298))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871))))) +(((*1 *2 *2) (-12 (-5 *2 (-653 (-323 (-227)))) (-5 *1 (-273))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1280 *6)) (-5 *4 (-1280 (-573))) (-5 *5 (-573)) + (-4 *6 (-1112)) (-5 *2 (-1 *6)) (-5 *1 (-1029 *6))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1285)) (-5 *1 (-831))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-653 *5)) (-4 *5 (-1256 *3)) (-4 *3 (-314)) + (-5 *2 (-112)) (-5 *1 (-464 *3 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015))))) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) + (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) + (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-338 *2)) (-4 *2 (-859)))) ((*1 *1 *1) - (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) - (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) + (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) + (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1175 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1174 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1176 *3)))) - ((*1 *1 *1) (-4 *1 (-1219)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-622 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-48))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1186 (-48))) (-5 *3 (-654 (-622 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1186 (-48))) (-5 *3 (-622 (-48))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1257 (-171 *2))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-932)) (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)))) - ((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-372)))) - ((*1 *2 *1) - (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1257 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) - (-12 (-4 *4 (-1257 *2)) (-4 *2 (-1005 *3)) (-5 *1 (-423 *3 *2 *4 *5)) - (-4 *3 (-315)) (-4 *5 (-13 (-419 *2 *4) (-1051 *2))))) - ((*1 *2 *1) - (-12 (-4 *4 (-1257 *2)) (-4 *2 (-1005 *3)) - (-5 *1 (-424 *3 *2 *4 *5 *6)) (-4 *3 (-315)) (-4 *5 (-419 *2 *4)) - (-14 *6 (-1281 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-932)) (-4 *5 (-1062)) - (-4 *2 (-13 (-414) (-1051 *5) (-372) (-1216) (-292))) - (-5 *1 (-453 *5 *3 *2)) (-4 *3 (-1257 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-622 (-505)))) (-5 *1 (-505)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-505))) (-5 *1 (-505)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1186 (-505))) (-5 *3 (-654 (-622 (-505)))) - (-5 *1 (-505)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1186 (-505))) (-5 *3 (-622 (-505))) (-5 *1 (-505)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1281 *4)) (-5 *3 (-932)) (-4 *4 (-358)) - (-5 *1 (-538 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-462)) (-4 *5 (-734 *4 *2)) (-4 *2 (-1257 *4)) - (-5 *1 (-785 *4 *2 *5 *3)) (-4 *3 (-1257 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174)))) - ((*1 *1 *1) (-4 *1 (-1073)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574)))) - ((*1 *1 *1 *1) (-5 *1 (-1133)))) -(((*1 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1062))))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1175 *3)))) + ((*1 *1 *1) (-4 *1 (-1218)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-509 *2)) (-14 *2 (-573)))) + ((*1 *1 *1 *1) (-5 *1 (-1132)))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1171)) (-5 *4 (-573)) (-5 *5 (-698 (-171 (-227)))) + (-5 *2 (-1047)) (-5 *1 (-763))))) +(((*1 *1) (-12 (-5 *1 (-700 *2)) (-4 *2 (-622 (-871)))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1113)) (-5 *1 (-975 *3 *2)) (-4 *3 (-1113))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-574))) (-5 *5 (-1 (-1170 *4))) (-4 *4 (-372)) - (-4 *4 (-1062)) (-5 *2 (-1170 *4)) (-5 *1 (-1174 *4))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) - (-4 *8 (-860)) (-4 *9 (-1078 *6 *7 *8)) - (-5 *2 - (-2 (|:| -4122 (-654 *9)) (|:| -4091 *4) (|:| |ineq| (-654 *9)))) - (-5 *1 (-1001 *6 *7 *8 *9 *4)) (-5 *3 (-654 *9)) - (-4 *4 (-1084 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) - (-4 *8 (-860)) (-4 *9 (-1078 *6 *7 *8)) - (-5 *2 - (-2 (|:| -4122 (-654 *9)) (|:| -4091 *4) (|:| |ineq| (-654 *9)))) - (-5 *1 (-1120 *6 *7 *8 *9 *4)) (-5 *3 (-654 *9)) - (-4 *4 (-1084 *6 *7 *8 *9))))) + (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-931)) (-4 *3 (-371)) + (-14 *4 (-1005 *2 *3)))) + ((*1 *1 *1) + (|partial| -12 (-4 *2 (-174)) (-5 *1 (-296 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1256 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-375 *2)) (-4 *2 (-174)) (-4 *2 (-565)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371)))) + ((*1 *1) (-12 (-5 *1 (-727 *2)) (-4 *2 (-371)))) + ((*1 *1 *1) (|partial| -4 *1 (-731))) + ((*1 *1 *1) (|partial| -4 *1 (-735))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) + (-5 *1 (-785 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-1080 *3 *2)) (-4 *3 (-13 (-857) (-371))) + (-4 *2 (-1256 *3)))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-573)) (-5 *2 (-1285)) (-5 *1 (-1018))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-118 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-573)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-880 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-880 *2)) (-14 *2 (-573)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-573)) (-14 *3 *2) (-5 *1 (-881 *3 *4)) + (-4 *4 (-878 *3)))) + ((*1 *1 *1) + (-12 (-14 *2 (-573)) (-5 *1 (-881 *2 *3)) (-4 *3 (-878 *2)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-573)) (-4 *1 (-1242 *3 *4)) (-4 *3 (-1061)) + (-4 *4 (-1271 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1242 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-1271 *2))))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-653 (-490 *4 *5))) (-5 *3 (-873 *4)) + (-14 *4 (-653 (-1189))) (-4 *5 (-461)) (-5 *1 (-640 *4 *5))))) +(((*1 *1 *1) (-4 *1 (-638))) + ((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-639 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014) (-1215)))))) (((*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) - (-5 *1 (-715 *3 *4)) (-4 *3 (-1231)) (-4 *4 (-1231))))) + (-5 *1 (-714 *3 *4)) (-4 *3 (-1230)) (-4 *4 (-1230))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1231 *2)) + (-4 *2 (-1112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 *2)) (-4 *2 (-1112)) (-4 *2 (-859)) + (-5 *1 (-1231 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015))))) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) + (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) + (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-338 *2)) (-4 *2 (-859)))) ((*1 *1 *1) - (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) - (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) + (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) + (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1175 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1174 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1176 *3)))) - ((*1 *1 *1) (-4 *1 (-1219)))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1231)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1170 *2)) (-4 *2 (-1231))))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1175 *3)))) + ((*1 *1 *1) (-4 *1 (-1218)))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1230)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1169 *2)) (-4 *2 (-1230))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1000 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-1077 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1119 *4 *5 *6 *7 *3)) (-4 *3 (-1083 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-121 *3)) (-4 *3 (-1257 (-574))))) - ((*1 *2 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-121 *3)) (-4 *3 (-1257 (-574)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1062)) (-14 *3 (-654 (-1190))))) - ((*1 *1 *1) - (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1062) (-860))) - (-14 *3 (-654 (-1190)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-589))))) -(((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-654 (-1190))) (-4 *2 (-174)) - (-4 *3 (-244 (-2863 *4) (-781))) - (-14 *6 - (-1 (-112) (-2 (|:| -2576 *5) (|:| -3715 *3)) - (-2 (|:| -2576 *5) (|:| -3715 *3)))) - (-5 *1 (-471 *4 *2 *5 *3 *6 *7)) (-4 *5 (-860)) - (-4 *7 (-960 *2 *3 (-874 *4)))))) -(((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-769))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) - (-5 *2 (-1048)) (-5 *1 (-763))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-699 *6)) (-5 *5 (-1 (-428 (-1186 *6)) (-1186 *6))) - (-4 *6 (-372)) - (-5 *2 - (-654 - (-2 (|:| |outval| *7) (|:| |outmult| (-574)) - (|:| |outvect| (-654 (-699 *7)))))) - (-5 *1 (-542 *6 *7 *4)) (-4 *7 (-372)) (-4 *4 (-13 (-372) (-858)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1257 *3)) - (-4 *5 (-1257 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) - (-5 *2 - (-2 (|:| -2803 (-423 *4 (-417 *4) *5 *6)) (|:| |principalPart| *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-372)) + (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) + (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-325)) (-5 *3 (-227))))) +(((*1 *2 *3) + (-12 (-5 *3 (-301 (-962 (-573)))) (-5 *2 - (-2 (|:| |poly| *6) (|:| -1360 (-417 *6)) - (|:| |special| (-417 *6)))) - (-5 *1 (-737 *5 *6)) (-5 *3 (-417 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-907 *3 *4)) - (-4 *3 (-1257 *4)))) - ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-781)) (-4 *5 (-372)) - (-5 *2 (-2 (|:| -3891 *3) (|:| -3904 *3))) (-5 *1 (-907 *3 *5)) - (-4 *3 (-1257 *5)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) - (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1084 *5 *6 *7 *8)) (-4 *5 (-462)) - (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1082 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) - (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1084 *5 *6 *7 *8)) (-4 *5 (-462)) - (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1082 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) - (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1122 *5 *6 *7 *8)) (-4 *5 (-462)) - (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1158 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) - (-4 *8 (-1078 *5 *6 *7)) (-4 *9 (-1122 *5 *6 *7 *8)) (-4 *5 (-462)) - (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1158 *5 *6 *7 *8 *9))))) + (-2 (|:| |varOrder| (-653 (-1189))) + (|:| |inhom| (-3 (-653 (-1280 (-780))) "failed")) + (|:| |hom| (-653 (-1280 (-780)))))) + (-5 *1 (-241))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *4 (-573))) (-5 *5 (-1 (-1169 *4))) (-4 *4 (-371)) + (-4 *4 (-1061)) (-5 *2 (-1169 *4)) (-5 *1 (-1173 *4))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *5 (-859)) (-5 *2 (-112))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-573)) (-5 *1 (-427 *2)) (-4 *2 (-565))))) +(((*1 *2 *2) + (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1215)))))) (((*1 *1 *2 *2) - (-12 (-5 *2 (-781)) (-4 *3 (-1062)) (-4 *1 (-697 *3 *4 *5)) - (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) + (-12 (-5 *2 (-780)) (-4 *3 (-1061)) (-4 *1 (-696 *3 *4 *5)) + (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-1279 *3)) (-4 *3 (-23)) (-4 *3 (-1231))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))) -(((*1 *1 *1) (-4 *1 (-639))) + (-12 (-5 *2 (-780)) (-4 *1 (-1278 *3)) (-4 *3 (-23)) (-4 *3 (-1230))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-761))))) +(((*1 *1 *1) (-4 *1 (-638))) ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015) (-1216)))))) + (-12 (-4 *3 (-565)) (-5 *1 (-639 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014) (-1215)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-176 *3)) (-4 *3 (-314)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-4 *1 (-683 *3)) (-4 *3 (-1230)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-780)) (-4 *1 (-749 *3 *4)) (-4 *3 (-1061)) + (-4 *4 (-859)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-878 *3)) (-5 *2 (-573)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-653 *3)) (-4 *1 (-992 *3)) (-4 *3 (-1061)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-653 *1)) (-5 *3 (-653 *7)) (-4 *1 (-1083 *4 *5 *6 *7)) + (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-1077 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-653 *1)) + (-4 *1 (-1083 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-653 *1)) (-4 *1 (-1083 *4 *5 *6 *3)) (-4 *4 (-461)) + (-4 *5 (-802)) (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-653 *1)) + (-4 *1 (-1083 *4 *5 *6 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) (-4 *4 (-802)) + (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-801))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *2 (-1047)) + (-5 *1 (-764))))) +(((*1 *2) + (-12 (-4 *1 (-357)) + (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) (((*1 *2 *3) - (-12 (-4 *3 (-13 (-315) (-10 -8 (-15 -2827 ((-428 $) $))))) - (-4 *4 (-1257 *3)) - (-5 *2 - (-2 (|:| -1882 (-699 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-699 *3)))) - (-5 *1 (-359 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-574)) (-4 *4 (-1257 *3)) - (-5 *2 - (-2 (|:| -1882 (-699 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-699 *3)))) - (-5 *1 (-778 *4 *5)) (-4 *5 (-419 *3 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-358)) (-4 *3 (-1257 *4)) (-4 *5 (-1257 *3)) - (-5 *2 - (-2 (|:| -1882 (-699 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-699 *3)))) - (-5 *1 (-998 *4 *3 *5 *6)) (-4 *6 (-734 *3 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-358)) (-4 *3 (-1257 *4)) (-4 *5 (-1257 *3)) - (-5 *2 - (-2 (|:| -1882 (-699 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-699 *3)))) - (-5 *1 (-1290 *4 *3 *5 *6)) (-4 *6 (-419 *3 *5))))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-872) (-872) (-872))) (-5 *4 (-574)) (-5 *2 (-872)) - (-5 *1 (-659 *5 *6 *7)) (-4 *5 (-1113)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-872)) (-5 *1 (-864 *3 *4 *5)) (-4 *3 (-1062)) - (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-872)))) - ((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-872)))) - ((*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-872)))) - ((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-872)) (-5 *1 (-1186 *3)) (-4 *3 (-1062))))) -(((*1 *1 *1) (-12 (-5 *1 (-925 *2)) (-4 *2 (-315))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062))))) -(((*1 *2 *1) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) - (-4 *5 (-1257 (-417 *4))) - (-5 *2 (-2 (|:| |num| (-1281 *4)) (|:| |den| *4)))))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1172)) (-5 *3 (-574)) (-5 *1 (-1076))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1113)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-1113))))) -(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1231)))) + (-12 (-5 *3 (-573)) (-4 *4 (-802)) (-4 *5 (-859)) (-4 *2 (-1061)) + (-5 *1 (-328 *4 *5 *2 *6)) (-4 *6 (-959 *2 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-314)) (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) + (-5 *1 (-1136 *3 *4 *5 *2)) (-4 *2 (-696 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-698 *5))) (-4 *5 (-314)) (-4 *5 (-1061)) + (-5 *2 (-1280 (-1280 *5))) (-5 *1 (-1041 *5)) (-5 *4 (-1280 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1230)))) ((*1 *1 *2) - (-12 (-5 *2 (-963 (-388))) (-5 *1 (-348 *3 *4 *5)) - (-4 *5 (-1051 (-388))) (-14 *3 (-654 (-1190))) - (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) + (-12 (-5 *2 (-962 (-387))) (-5 *1 (-347 *3 *4 *5)) + (-4 *5 (-1050 (-387))) (-14 *3 (-653 (-1189))) + (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) ((*1 *1 *2) - (-12 (-5 *2 (-417 (-963 (-388)))) (-5 *1 (-348 *3 *4 *5)) - (-4 *5 (-1051 (-388))) (-14 *3 (-654 (-1190))) - (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) + (-12 (-5 *2 (-416 (-962 (-387)))) (-5 *1 (-347 *3 *4 *5)) + (-4 *5 (-1050 (-387))) (-14 *3 (-653 (-1189))) + (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) ((*1 *1 *2) - (-12 (-5 *2 (-324 (-388))) (-5 *1 (-348 *3 *4 *5)) - (-4 *5 (-1051 (-388))) (-14 *3 (-654 (-1190))) - (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) + (-12 (-5 *2 (-323 (-387))) (-5 *1 (-347 *3 *4 *5)) + (-4 *5 (-1050 (-387))) (-14 *3 (-653 (-1189))) + (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) ((*1 *1 *2) - (-12 (-5 *2 (-963 (-574))) (-5 *1 (-348 *3 *4 *5)) - (-4 *5 (-1051 (-574))) (-14 *3 (-654 (-1190))) - (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) + (-12 (-5 *2 (-962 (-573))) (-5 *1 (-347 *3 *4 *5)) + (-4 *5 (-1050 (-573))) (-14 *3 (-653 (-1189))) + (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) ((*1 *1 *2) - (-12 (-5 *2 (-417 (-963 (-574)))) (-5 *1 (-348 *3 *4 *5)) - (-4 *5 (-1051 (-574))) (-14 *3 (-654 (-1190))) - (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) + (-12 (-5 *2 (-416 (-962 (-573)))) (-5 *1 (-347 *3 *4 *5)) + (-4 *5 (-1050 (-573))) (-14 *3 (-653 (-1189))) + (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) ((*1 *1 *2) - (-12 (-5 *2 (-324 (-574))) (-5 *1 (-348 *3 *4 *5)) - (-4 *5 (-1051 (-574))) (-14 *3 (-654 (-1190))) - (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) + (-12 (-5 *2 (-323 (-573))) (-5 *1 (-347 *3 *4 *5)) + (-4 *5 (-1050 (-573))) (-14 *3 (-653 (-1189))) + (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) ((*1 *1 *2) - (-12 (-5 *2 (-1190)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 *2)) - (-14 *4 (-654 *2)) (-4 *5 (-397)))) + (-12 (-5 *2 (-1189)) (-5 *1 (-347 *3 *4 *5)) (-14 *3 (-653 *2)) + (-14 *4 (-653 *2)) (-4 *5 (-396)))) ((*1 *1 *2) - (-12 (-5 *2 (-324 *5)) (-4 *5 (-397)) (-5 *1 (-348 *3 *4 *5)) - (-14 *3 (-654 (-1190))) (-14 *4 (-654 (-1190))))) - ((*1 *1 *2) (-12 (-5 *2 (-699 (-417 (-963 (-574))))) (-4 *1 (-393)))) - ((*1 *1 *2) (-12 (-5 *2 (-699 (-417 (-963 (-388))))) (-4 *1 (-393)))) - ((*1 *1 *2) (-12 (-5 *2 (-699 (-963 (-574)))) (-4 *1 (-393)))) - ((*1 *1 *2) (-12 (-5 *2 (-699 (-963 (-388)))) (-4 *1 (-393)))) - ((*1 *1 *2) (-12 (-5 *2 (-699 (-324 (-574)))) (-4 *1 (-393)))) - ((*1 *1 *2) (-12 (-5 *2 (-699 (-324 (-388)))) (-4 *1 (-393)))) - ((*1 *1 *2) (-12 (-5 *2 (-417 (-963 (-574)))) (-4 *1 (-406)))) - ((*1 *1 *2) (-12 (-5 *2 (-417 (-963 (-388)))) (-4 *1 (-406)))) - ((*1 *1 *2) (-12 (-5 *2 (-963 (-574))) (-4 *1 (-406)))) - ((*1 *1 *2) (-12 (-5 *2 (-963 (-388))) (-4 *1 (-406)))) - ((*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-4 *1 (-406)))) - ((*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-4 *1 (-406)))) - ((*1 *1 *2) (-12 (-5 *2 (-1281 (-417 (-963 (-574))))) (-4 *1 (-451)))) - ((*1 *1 *2) (-12 (-5 *2 (-1281 (-417 (-963 (-388))))) (-4 *1 (-451)))) - ((*1 *1 *2) (-12 (-5 *2 (-1281 (-963 (-574)))) (-4 *1 (-451)))) - ((*1 *1 *2) (-12 (-5 *2 (-1281 (-963 (-388)))) (-4 *1 (-451)))) - ((*1 *1 *2) (-12 (-5 *2 (-1281 (-324 (-574)))) (-4 *1 (-451)))) - ((*1 *1 *2) (-12 (-5 *2 (-1281 (-324 (-388)))) (-4 *1 (-451)))) + (-12 (-5 *2 (-323 *5)) (-4 *5 (-396)) (-5 *1 (-347 *3 *4 *5)) + (-14 *3 (-653 (-1189))) (-14 *4 (-653 (-1189))))) + ((*1 *1 *2) (-12 (-5 *2 (-698 (-416 (-962 (-573))))) (-4 *1 (-392)))) + ((*1 *1 *2) (-12 (-5 *2 (-698 (-416 (-962 (-387))))) (-4 *1 (-392)))) + ((*1 *1 *2) (-12 (-5 *2 (-698 (-962 (-573)))) (-4 *1 (-392)))) + ((*1 *1 *2) (-12 (-5 *2 (-698 (-962 (-387)))) (-4 *1 (-392)))) + ((*1 *1 *2) (-12 (-5 *2 (-698 (-323 (-573)))) (-4 *1 (-392)))) + ((*1 *1 *2) (-12 (-5 *2 (-698 (-323 (-387)))) (-4 *1 (-392)))) + ((*1 *1 *2) (-12 (-5 *2 (-416 (-962 (-573)))) (-4 *1 (-405)))) + ((*1 *1 *2) (-12 (-5 *2 (-416 (-962 (-387)))) (-4 *1 (-405)))) + ((*1 *1 *2) (-12 (-5 *2 (-962 (-573))) (-4 *1 (-405)))) + ((*1 *1 *2) (-12 (-5 *2 (-962 (-387))) (-4 *1 (-405)))) + ((*1 *1 *2) (-12 (-5 *2 (-323 (-573))) (-4 *1 (-405)))) + ((*1 *1 *2) (-12 (-5 *2 (-323 (-387))) (-4 *1 (-405)))) + ((*1 *1 *2) (-12 (-5 *2 (-1280 (-416 (-962 (-573))))) (-4 *1 (-450)))) + ((*1 *1 *2) (-12 (-5 *2 (-1280 (-416 (-962 (-387))))) (-4 *1 (-450)))) + ((*1 *1 *2) (-12 (-5 *2 (-1280 (-962 (-573)))) (-4 *1 (-450)))) + ((*1 *1 *2) (-12 (-5 *2 (-1280 (-962 (-387)))) (-4 *1 (-450)))) + ((*1 *1 *2) (-12 (-5 *2 (-1280 (-323 (-573)))) (-4 *1 (-450)))) + ((*1 *1 *2) (-12 (-5 *2 (-1280 (-323 (-387)))) (-4 *1 (-450)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) - (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) + (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) + (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| - (-2 (|:| |fn| (-324 (-227))) - (|:| -2367 (-654 (-1107 (-853 (-227))))) + (-2 (|:| |fn| (-323 (-227))) + (|:| -3821 (-653 (-1106 (-852 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) - (-5 *1 (-779)))) + (-5 *1 (-778)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) - (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) + (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) + (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *1 (-818)))) + (-5 *1 (-817)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) - (|:| |lb| (-654 (-853 (-227)))) - (|:| |cf| (-654 (-324 (-227)))) - (|:| |ub| (-654 (-853 (-227)))))) + (-2 (|:| |fn| (-323 (-227))) (|:| -3816 (-653 (-227))) + (|:| |lb| (-653 (-852 (-227)))) + (|:| |cf| (-653 (-323 (-227)))) + (|:| |ub| (-653 (-852 (-227)))))) (|:| |lsa| - (-2 (|:| |lfn| (-654 (-324 (-227)))) - (|:| -3818 (-654 (-227))))))) - (-5 *1 (-851)))) + (-2 (|:| |lfn| (-653 (-323 (-227)))) + (|:| -3816 (-653 (-227))))))) + (-5 *1 (-850)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |pde| (-654 (-324 (-227)))) + (-2 (|:| |pde| (-653 (-323 (-227)))) (|:| |constraints| - (-654 + (-653 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-781)) (|:| |boundaryType| (-574)) - (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) - (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) + (|:| |grid| (-780)) (|:| |boundaryType| (-573)) + (|:| |dStart| (-698 (-227))) (|:| |dFinish| (-698 (-227)))))) + (|:| |f| (-653 (-653 (-323 (-227))))) (|:| |st| (-1171)) (|:| |tol| (-227)))) - (-5 *1 (-909)))) + (-5 *1 (-908)))) ((*1 *1 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-1062)) - (-4 *4 (-803)) (-4 *5 (-860)) (-4 *1 (-989 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-1231)))) + (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-1061)) + (-4 *4 (-802)) (-4 *5 (-859)) (-4 *1 (-988 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1230)))) ((*1 *1 *2) - (-2818 - (-12 (-5 *2 (-963 *3)) - (-12 (-2076 (-4 *3 (-38 (-417 (-574))))) - (-2076 (-4 *3 (-38 (-574)))) (-4 *5 (-624 (-1190)))) - (-4 *3 (-1062)) (-4 *1 (-1078 *3 *4 *5)) (-4 *4 (-803)) - (-4 *5 (-860))) - (-12 (-5 *2 (-963 *3)) - (-12 (-2076 (-4 *3 (-555))) (-2076 (-4 *3 (-38 (-417 (-574))))) - (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1190)))) - (-4 *3 (-1062)) (-4 *1 (-1078 *3 *4 *5)) (-4 *4 (-803)) - (-4 *5 (-860))) - (-12 (-5 *2 (-963 *3)) - (-12 (-2076 (-4 *3 (-1005 (-574)))) (-4 *3 (-38 (-417 (-574)))) - (-4 *5 (-624 (-1190)))) - (-4 *3 (-1062)) (-4 *1 (-1078 *3 *4 *5)) (-4 *4 (-803)) - (-4 *5 (-860))))) + (-2817 + (-12 (-5 *2 (-962 *3)) + (-12 (-2075 (-4 *3 (-38 (-416 (-573))))) + (-2075 (-4 *3 (-38 (-573)))) (-4 *5 (-623 (-1189)))) + (-4 *3 (-1061)) (-4 *1 (-1077 *3 *4 *5)) (-4 *4 (-802)) + (-4 *5 (-859))) + (-12 (-5 *2 (-962 *3)) + (-12 (-2075 (-4 *3 (-554))) (-2075 (-4 *3 (-38 (-416 (-573))))) + (-4 *3 (-38 (-573))) (-4 *5 (-623 (-1189)))) + (-4 *3 (-1061)) (-4 *1 (-1077 *3 *4 *5)) (-4 *4 (-802)) + (-4 *5 (-859))) + (-12 (-5 *2 (-962 *3)) + (-12 (-2075 (-4 *3 (-1004 (-573)))) (-4 *3 (-38 (-416 (-573)))) + (-4 *5 (-623 (-1189)))) + (-4 *3 (-1061)) (-4 *1 (-1077 *3 *4 *5)) (-4 *4 (-802)) + (-4 *5 (-859))))) ((*1 *1 *2) - (-2818 - (-12 (-5 *2 (-963 (-574))) (-4 *1 (-1078 *3 *4 *5)) - (-12 (-2076 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) - (-4 *5 (-624 (-1190)))) - (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))) - (-12 (-5 *2 (-963 (-574))) (-4 *1 (-1078 *3 *4 *5)) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1190)))) - (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))))) + (-2817 + (-12 (-5 *2 (-962 (-573))) (-4 *1 (-1077 *3 *4 *5)) + (-12 (-2075 (-4 *3 (-38 (-416 (-573))))) (-4 *3 (-38 (-573))) + (-4 *5 (-623 (-1189)))) + (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859))) + (-12 (-5 *2 (-962 (-573))) (-4 *1 (-1077 *3 *4 *5)) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *5 (-623 (-1189)))) + (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859))))) ((*1 *1 *2) - (-12 (-5 *2 (-963 (-417 (-574)))) (-4 *1 (-1078 *3 *4 *5)) - (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1190))) (-4 *3 (-1062)) - (-4 *4 (-803)) (-4 *5 (-860))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1190)) (-5 *2 (-546)) (-5 *1 (-545 *4)) - (-4 *4 (-1231))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-404)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1211))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-700 *3))))) + (-12 (-5 *2 (-962 (-416 (-573)))) (-4 *1 (-1077 *3 *4 *5)) + (-4 *3 (-38 (-416 (-573)))) (-4 *5 (-623 (-1189))) (-4 *3 (-1061)) + (-4 *4 (-802)) (-4 *5 (-859))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-765))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-371)) (-4 *3 (-1256 *4)) (-4 *5 (-1256 (-416 *3))) + (-4 *1 (-343 *4 *3 *5 *2)) (-4 *2 (-350 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-573)) (-4 *2 (-371)) (-4 *4 (-1256 *2)) + (-4 *5 (-1256 (-416 *4))) (-4 *1 (-343 *2 *4 *5 *6)) + (-4 *6 (-350 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-371)) (-4 *3 (-1256 *2)) (-4 *4 (-1256 (-416 *3))) + (-4 *1 (-343 *2 *3 *4 *5)) (-4 *5 (-350 *2 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-371)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) + (-4 *1 (-343 *3 *4 *5 *2)) (-4 *2 (-350 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-422 *4 (-416 *4) *5 *6)) (-4 *4 (-1256 *3)) + (-4 *5 (-1256 (-416 *4))) (-4 *6 (-350 *3 *4 *5)) (-4 *3 (-371)) + (-4 *1 (-343 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-461)) (-4 *3 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) + (-5 *1 (-458 *4 *3 *5 *6)) (-4 *6 (-959 *4 *3 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-566) (-148))) (-5 *2 (-654 *3)) - (-5 *1 (-1251 *4 *3)) (-4 *3 (-1257 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-1103))))) + (-12 (-5 *3 (-1189)) (-4 *5 (-1234)) (-4 *6 (-1256 *5)) + (-4 *7 (-1256 (-416 *6))) (-5 *2 (-653 (-962 *5))) + (-5 *1 (-349 *4 *5 *6 *7)) (-4 *4 (-350 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1189)) (-4 *1 (-350 *4 *5 *6)) (-4 *4 (-1234)) + (-4 *5 (-1256 *4)) (-4 *6 (-1256 (-416 *5))) (-4 *4 (-371)) + (-5 *2 (-653 (-962 *4)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-802)) + (-4 *7 (-859)) (-4 *8 (-1077 *5 *6 *7)) (-5 *2 (-653 *3)) + (-5 *1 (-600 *5 *6 *7 *8 *3)) (-4 *3 (-1121 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-314) (-148))) + (-5 *2 + (-653 (-2 (|:| -1436 (-1185 *5)) (|:| -2123 (-653 (-962 *5)))))) + (-5 *1 (-1090 *5 *6)) (-5 *3 (-653 (-962 *5))) + (-14 *6 (-653 (-1189))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-314) (-148))) + (-5 *2 + (-653 (-2 (|:| -1436 (-1185 *4)) (|:| -2123 (-653 (-962 *4)))))) + (-5 *1 (-1090 *4 *5)) (-5 *3 (-653 (-962 *4))) + (-14 *5 (-653 (-1189))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-314) (-148))) + (-5 *2 + (-653 (-2 (|:| -1436 (-1185 *5)) (|:| -2123 (-653 (-962 *5)))))) + (-5 *1 (-1090 *5 *6)) (-5 *3 (-653 (-962 *5))) + (-14 *6 (-653 (-1189)))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1231)) - (-4 *4 (-382 *2)) (-4 *5 (-382 *2)))) + (-12 (-5 *3 (-573)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1230)) + (-4 *4 (-381 *2)) (-4 *5 (-381 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-382 *2)) - (-4 *5 (-382 *2)) (-4 *2 (-1231)))) + (-12 (-5 *3 (-573)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-381 *2)) + (-4 *5 (-381 *2)) (-4 *2 (-1230)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1231)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1231)))) + (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1230)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1230)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-654 (-574))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 (-574)) (-14 *5 (-781)))) + (-12 (-5 *3 (-653 (-573))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 (-573)) (-14 *5 (-780)))) ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-574)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-781)))) + (-12 (-5 *3 (-573)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-780)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-574)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-781)))) + (-12 (-5 *3 (-573)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-780)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-574)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-781)))) + (-12 (-5 *3 (-573)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-780)))) ((*1 *2 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-574)) - (-14 *4 (-781)))) + (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-573)) + (-14 *4 (-780)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1190)) (-5 *2 (-251 (-1172))) (-5 *1 (-216 *4)) + (-12 (-5 *3 (-1189)) (-5 *2 (-250 (-1171))) (-5 *1 (-216 *4)) (-4 *4 - (-13 (-860) - (-10 -8 (-15 -2199 ((-1172) $ *3)) (-15 -1403 ((-1286) $)) - (-15 -3844 ((-1286) $))))))) + (-13 (-859) + (-10 -8 (-15 -2198 ((-1171) $ *3)) (-15 -1402 ((-1285) $)) + (-15 -1974 ((-1285) $))))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1002)) (-5 *1 (-216 *3)) + (-12 (-5 *2 (-1001)) (-5 *1 (-216 *3)) (-4 *3 - (-13 (-860) - (-10 -8 (-15 -2199 ((-1172) $ (-1190))) (-15 -1403 ((-1286) $)) - (-15 -3844 ((-1286) $))))))) + (-13 (-859) + (-10 -8 (-15 -2198 ((-1171) $ (-1189))) (-15 -1402 ((-1285) $)) + (-15 -1974 ((-1285) $))))))) ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-781)) (-5 *1 (-251 *4)) (-4 *4 (-860)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-251 *3)) (-4 *3 (-860)))) + (-12 (-5 *3 "count") (-5 *2 (-780)) (-5 *1 (-250 *4)) (-4 *4 (-859)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-250 *3)) (-4 *3 (-859)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "unique") (-5 *1 (-251 *3)) (-4 *3 (-860)))) + (-12 (-5 *2 "unique") (-5 *1 (-250 *3)) (-4 *3 (-859)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-294 *3 *2)) (-4 *3 (-1231)) (-4 *2 (-1231)))) + (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1230)) (-4 *2 (-1230)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1231)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 *1)) (-4 *1 (-310)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) + (-12 (-4 *1 (-295 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1230)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-653 *1)) (-4 *1 (-309)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-309)) (-5 *2 (-115)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-309)) (-5 *2 (-115)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-309)) (-5 *2 (-115)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-309)) (-5 *2 (-115)))) ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-351 *2 *3 *4)) (-4 *2 (-1235)) (-4 *3 (-1257 *2)) - (-4 *4 (-1257 (-417 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1190)) (-5 *2 (-1172)) (-5 *1 (-512)))) + (-12 (-4 *1 (-350 *2 *3 *4)) (-4 *2 (-1234)) (-4 *3 (-1256 *2)) + (-4 *4 (-1256 (-416 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1171)) (-5 *1 (-511)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-781)) (-5 *1 (-685 *2)) (-4 *2 (-1113)))) + (-12 (-5 *3 (-780)) (-5 *1 (-684 *2)) (-4 *2 (-1112)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-654 (-574))) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) - (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) + (-12 (-5 *2 (-653 (-573))) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) + (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-654 (-903 *4))) (-5 *1 (-903 *4)) - (-4 *4 (-1113)))) + (-12 (-5 *2 (-115)) (-5 *3 (-653 (-902 *4))) (-5 *1 (-902 *4)) + (-4 *4 (-1112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-916 *4)) (-5 *1 (-915 *4)) - (-4 *4 (-1113)))) + (-12 (-5 *3 (-780)) (-5 *2 (-915 *4)) (-5 *1 (-914 *4)) + (-4 *4 (-1112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "value") (-4 *1 (-1023 *2)) (-4 *2 (-1231)))) - ((*1 *2 *1) (-12 (-5 *1 (-1039 *2)) (-4 *2 (-1231)))) + (-12 (-5 *3 "value") (-4 *1 (-1022 *2)) (-4 *2 (-1230)))) + ((*1 *2 *1) (-12 (-5 *1 (-1038 *2)) (-4 *2 (-1230)))) ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-574)) (-4 *1 (-1066 *4 *5 *2 *6 *7)) (-4 *2 (-1062)) - (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)))) + (-12 (-5 *3 (-573)) (-4 *1 (-1065 *4 *5 *2 *6 *7)) (-4 *2 (-1061)) + (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-574)) (-4 *1 (-1066 *4 *5 *2 *6 *7)) - (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1062)))) + (-12 (-5 *3 (-573)) (-4 *1 (-1065 *4 *5 *2 *6 *7)) + (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1061)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-932)) (-4 *4 (-1113)) - (-4 *5 (-13 (-1062) (-897 *4) (-624 (-903 *4)))) - (-5 *1 (-1089 *4 *5 *2)) - (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))))) + (-12 (-5 *3 (-931)) (-4 *4 (-1112)) + (-4 *5 (-13 (-1061) (-896 *4) (-623 (-902 *4)))) + (-5 *1 (-1088 *4 *5 *2)) + (-4 *2 (-13 (-439 *5) (-896 *4) (-623 (-902 *4)))))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-932)) (-4 *4 (-1113)) - (-4 *5 (-13 (-1062) (-897 *4) (-624 (-903 *4)))) - (-5 *1 (-1090 *4 *5 *2)) - (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))))) - ((*1 *1 *1 *1) (-4 *1 (-1157))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1190)))) + (-12 (-5 *3 (-931)) (-4 *4 (-1112)) + (-4 *5 (-13 (-1061) (-896 *4) (-623 (-902 *4)))) + (-5 *1 (-1089 *4 *5 *2)) + (-4 *2 (-13 (-439 *5) (-896 *4) (-623 (-902 *4)))))) + ((*1 *1 *1 *1) (-4 *1 (-1156))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-1189)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-417 *1)) (-4 *1 (-1257 *2)) (-4 *2 (-1062)) - (-4 *2 (-372)))) + (-12 (-5 *3 (-416 *1)) (-4 *1 (-1256 *2)) (-4 *2 (-1061)) + (-4 *2 (-371)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-417 *1)) (-4 *1 (-1257 *3)) (-4 *3 (-1062)) - (-4 *3 (-566)))) + (-12 (-5 *2 (-416 *1)) (-4 *1 (-1256 *3)) (-4 *3 (-1061)) + (-4 *3 (-565)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "last") (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) + (-12 (-5 *3 "last") (-4 *1 (-1268 *2)) (-4 *2 (-1230)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "rest") (-4 *1 (-1269 *3)) (-4 *3 (-1231)))) + (-12 (-5 *2 "rest") (-4 *1 (-1268 *3)) (-4 *3 (-1230)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "first") (-4 *1 (-1269 *2)) (-4 *2 (-1231))))) + (-12 (-5 *3 "first") (-4 *1 (-1268 *2)) (-4 *2 (-1230))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *2 (-781)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) + (-4 *5 (-381 *3)) (-5 *2 (-780)))) ((*1 *2 *1) - (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-781))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1190)) (-4 *5 (-372)) (-5 *2 (-654 (-1225 *5))) - (-5 *1 (-1289 *5)) (-5 *4 (-1225 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *1 *1) (-4 *1 (-1152)))) -(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1286)) (-5 *1 (-388)))) - ((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-388))))) -(((*1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1062)))) - ((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) - (-4 *6 (-382 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) - (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-174)) (-4 *2 (-1062)) (-5 *1 (-724 *2 *3)) - (-4 *3 (-658 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-174)) (-4 *2 (-1062)) (-5 *1 (-724 *2 *3)) - (-4 *3 (-658 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1062)))) - ((*1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1062))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-1194))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-1190)) - (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-324 *5))) - (-5 *1 (-1142 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-417 (-963 *5)))) (-5 *4 (-654 (-1190))) - (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-324 *5)))) - (-5 *1 (-1142 *5))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) - (-5 *2 (-1048)) (-5 *1 (-760))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *2 (-781)))) + (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-780))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-691 *3)) (-4 *3 (-1112))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1230)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1230)))) ((*1 *2 *1) - (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-781))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-462))))) + (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-653 (-953 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-653 (-953 *3))) (-4 *3 (-1061)) (-4 *1 (-1146 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-653 (-653 *3))) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-653 (-953 *3))) (-4 *1 (-1146 *3)) (-4 *3 (-1061))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-1281 - (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3555 (-574)) - (|:| -3239 (-574)) (|:| |spline| (-574)) (|:| -2985 (-574)) - (|:| |axesColor| (-884)) (|:| -1997 (-574)) - (|:| |unitsColor| (-884)) (|:| |showing| (-574))))) - (-5 *1 (-1282))))) + (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) + (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1171)) (-5 *4 (-573)) (-5 *5 (-698 (-227))) + (-5 *2 (-1047)) (-5 *1 (-763))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-112)) + (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-68 APROD)))) + (-5 *8 (-3 (|:| |fn| (-397)) (|:| |fp| (-73 MSOLVE)))) + (-5 *2 (-1047)) (-5 *1 (-765))))) +(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-526))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1172)) (-5 *2 (-388)) (-5 *1 (-796))))) -(((*1 *2) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) - (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -1463 *3) (|:| |coef1| (-792 *3)) (|:| |coef2| (-792 *3)))) - (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1062))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-654 *1)) (|has| *1 (-6 -4457)) (-4 *1 (-1023 *3)) - (-4 *3 (-1231))))) + (-12 (-5 *2 (-1169 (-573))) (-5 *1 (-1173 *4)) (-4 *4 (-1061)) + (-5 *3 (-573))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-963 (-171 *4))) (-4 *4 (-174)) - (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-963 (-171 *5))) (-5 *4 (-932)) (-4 *5 (-174)) - (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-963 *4)) (-4 *4 (-1062)) - (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-963 *5)) (-5 *4 (-932)) (-4 *5 (-1062)) - (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-417 (-963 *4))) (-4 *4 (-566)) - (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-417 (-963 *5))) (-5 *4 (-932)) (-4 *5 (-566)) - (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-417 (-963 (-171 *4)))) (-4 *4 (-566)) - (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-417 (-963 (-171 *5)))) (-5 *4 (-932)) - (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) - (-5 *1 (-795 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) - (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-324 *5)) (-5 *4 (-932)) (-4 *5 (-566)) - (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) - (-5 *1 (-795 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-324 (-171 *4))) (-4 *4 (-566)) (-4 *4 (-860)) - (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-324 (-171 *5))) (-5 *4 (-932)) (-4 *5 (-566)) - (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) - (-5 *1 (-795 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1212))))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-757))))) + (-12 (-5 *3 (-931)) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192))))) (((*1 *2 *1) - (-12 (-4 *3 (-1062)) (-5 *2 (-1281 *3)) (-5 *1 (-722 *3 *4)) - (-4 *4 (-1257 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1216)))))) -(((*1 *2 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-407))))) -(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-52)) (-5 *1 (-839))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-747 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-747 *2)) (-4 *2 (-1113)))) - ((*1 *1) (-12 (-5 *1 (-747 *2)) (-4 *2 (-1113))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) - (-5 *2 (-1281 (-699 *4))))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1281 (-699 *4))) (-5 *1 (-426 *3 *4)) - (-4 *3 (-427 *4)))) - ((*1 *2) - (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1281 (-699 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-1190))) (-4 *5 (-372)) - (-5 *2 (-1281 (-699 (-417 (-963 *5))))) (-5 *1 (-1099 *5)) - (-5 *4 (-699 (-417 (-963 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-1190))) (-4 *5 (-372)) - (-5 *2 (-1281 (-699 (-963 *5)))) (-5 *1 (-1099 *5)) - (-5 *4 (-699 (-963 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-699 *4))) (-4 *4 (-372)) - (-5 *2 (-1281 (-699 *4))) (-5 *1 (-1099 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-413 *3)) (-4 *3 (-414)))) - ((*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-413 *3)) (-4 *3 (-414)))) - ((*1 *2 *2) (-12 (-5 *2 (-932)) (|has| *1 (-6 -4447)) (-4 *1 (-414)))) - ((*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-932)))) - ((*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-1170 (-574)))))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) + (-4 *5 (-381 *3)) (-5 *2 (-780)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-780))))) +(((*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1171)) (-5 *1 (-719))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) + (-5 *1 (-1000 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) + (-5 *1 (-1119 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-52)) (-5 *1 (-838))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-662 *4)) (-4 *4 (-350 *5 *6 *7)) + (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) + (-4 *6 (-1256 *5)) (-4 *7 (-1256 (-416 *6))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) + (-5 *1 (-815 *5 *6 *7 *4))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-780)) (-5 *1 (-684 *2)) (-4 *2 (-1112))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-764))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-756))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-654 - (-2 (|:| -3584 (-781)) - (|:| |eqns| - (-654 - (-2 (|:| |det| *7) (|:| |rows| (-654 (-574))) - (|:| |cols| (-654 (-574)))))) - (|:| |fgb| (-654 *7))))) - (-4 *7 (-960 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) - (-4 *5 (-13 (-860) (-624 (-1190)))) (-4 *6 (-803)) (-5 *2 (-781)) - (-5 *1 (-935 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-372))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1231))))) -(((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-872))))) + (-12 (-5 *3 (-962 *5)) (-4 *5 (-1061)) (-5 *2 (-252 *4 *5)) + (-5 *1 (-954 *4 *5)) (-14 *4 (-653 (-1189)))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-764))))) (((*1 *2 *1) - (-12 (-4 *3 (-239)) (-4 *3 (-1062)) (-4 *4 (-860)) (-4 *5 (-273 *4)) - (-4 *6 (-803)) (-5 *2 (-1 *1 (-781))) (-4 *1 (-260 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1062)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) - (-5 *2 (-1 *1 (-781))) (-4 *1 (-260 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-273 *2)) (-4 *2 (-860))))) -(((*1 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) - (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-932)) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192))))) + (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1016 *3)) (-14 *3 (-573))))) +(((*1 *1 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230)))) + ((*1 *1 *1) + (-12 (|has| *1 (-6 -4456)) (-4 *1 (-381 *2)) (-4 *2 (-1230)))) + ((*1 *1 *1) + (-12 (-5 *1 (-658 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-653 (-573))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-573)) + (-14 *4 (-780)) (-4 *5 (-174))))) +(((*1 *1 *1) + (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) + (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-66 FUNCT1)))) + (-5 *2 (-1047)) (-5 *1 (-762))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) + (-5 *2 (-1047)) (-5 *1 (-759))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-1112))))) +(((*1 *1) (-5 *1 (-1097)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1171)) (-4 *1 (-372 *3 *4)) (-4 *3 (-1112)) + (-4 *4 (-1112))))) +(((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-871))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1106 (-227))) + (-5 *2 (-1282)) (-5 *1 (-263))))) +(((*1 *2 *1) (-12 (-5 *2 (-833)) (-5 *1 (-834))))) +(((*1 *2 *1) + (-12 (-5 *2 (-871)) (-5 *1 (-399 *3 *4 *5)) (-14 *3 (-780)) + (-14 *4 (-780)) (-4 *5 (-174))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4456)) (-4 *1 (-152 *3)) - (-4 *3 (-1231)))) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4455)) (-4 *1 (-152 *3)) + (-4 *3 (-1230)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1231)) (-5 *1 (-611 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1230)) (-5 *1 (-610 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-684 *3)) (-4 *3 (-1231)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-683 *3)) (-4 *3 (-1230)))) ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1224 *4 *5 *3 *2)) (-4 *4 (-566)) - (-4 *5 (-803)) (-4 *3 (-860)) (-4 *2 (-1078 *4 *5 *3)))) + (|partial| -12 (-4 *1 (-1223 *4 *5 *3 *2)) (-4 *4 (-565)) + (-4 *5 (-802)) (-4 *3 (-859)) (-4 *2 (-1077 *4 *5 *3)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-781)) (-5 *1 (-1228 *2)) (-4 *2 (-1231))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-784)) (-5 *1 (-115)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1172)) (-5 *3 (-784)) (-5 *1 (-115))))) + (-12 (-5 *3 (-780)) (-5 *1 (-1227 *2)) (-4 *2 (-1230))))) +(((*1 *2 *1) (-12 (-4 *1 (-314)) (-5 *2 (-780))))) +(((*1 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283)))) + ((*1 *2 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-620 *3 *2)) (-4 *3 (-1113)) (-4 *2 (-1113))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-574)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-428 *2)) (-4 *2 (-566))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1037 *3)) - (-4 *3 (-13 (-858) (-372) (-1035))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1074 *2 *3)) - (-4 *3 (-1257 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1081 *2 *3)) (-4 *2 (-13 (-858) (-372))) - (-4 *3 (-1257 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-835))))) -(((*1 *2 *3) - (-12 (-5 *3 (-699 *2)) (-4 *4 (-1257 *2)) - (-4 *2 (-13 (-315) (-10 -8 (-15 -2827 ((-428 $) $))))) - (-5 *1 (-509 *2 *4 *5)) (-4 *5 (-419 *2 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1136 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) - (-4 *5 (-244 *3 *2)) (-4 *2 (-1062))))) -(((*1 *2 *3) - (-12 (-4 *1 (-849)) - (-5 *3 - (-2 (|:| |fn| (-324 (-227))) (|:| -3818 (-654 (-227))) - (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) - (|:| |ub| (-654 (-853 (-227)))))) - (-5 *2 (-1048)))) - ((*1 *2 *3) - (-12 (-4 *1 (-849)) - (-5 *3 - (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3818 (-654 (-227))))) - (-5 *2 (-1048))))) -(((*1 *2 *3) - (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-366 *4)) - (-4 *4 (-358))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-546))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1051 (-574)) (-649 (-574)) (-462))) - (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1266 *4 *5 *6)) - (|:| |%expon| (-327 *4 *5 *6)) - (|:| |%expTerms| - (-654 (-2 (|:| |k| (-417 (-574))) (|:| |c| *4)))))) - (|:| |%type| (-1172)))) - (-5 *1 (-1267 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1216) (-440 *3))) - (-14 *5 (-1190)) (-14 *6 *4)))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1133)) (-5 *2 (-1286)) (-5 *1 (-841))))) + (|partial| -12 (-4 *1 (-619 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-1112))))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-653 (-1185 *11))) (-5 *3 (-1185 *11)) + (-5 *4 (-653 *10)) (-5 *5 (-653 *8)) (-5 *6 (-653 (-780))) + (-5 *7 (-1280 (-653 (-1185 *8)))) (-4 *10 (-859)) + (-4 *8 (-314)) (-4 *11 (-959 *8 *9 *10)) (-4 *9 (-802)) + (-5 *1 (-716 *9 *10 *8 *11))))) +(((*1 *1 *1) + (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) +(((*1 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283)))) + ((*1 *2 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283))))) (((*1 *2 *1) - (-12 + (-12 (-5 *2 (-416 (-573))) (-5 *1 (-326 *3 *4 *5)) (-4 *3 (-371)) + (-14 *4 (-1189)) (-14 *5 *3)))) +(((*1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-281))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-545))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1061)) (-4 *2 (-565))))) +(((*1 *2 *2) + (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1215)))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-227)) (-5 *2 - (-654 - (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1186 *3)) - (|:| |logand| (-1186 *3))))) - (-5 *1 (-596 *3)) (-4 *3 (-372))))) -(((*1 *2 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-699 (-963 *4))) (-5 *1 (-1041 *4)) - (-4 *4 (-1062))))) + (-2 (|:| |brans| (-653 (-653 (-953 *4)))) + (|:| |xValues| (-1106 *4)) (|:| |yValues| (-1106 *4)))) + (-5 *1 (-154)) (-5 *3 (-653 (-653 (-953 *4))))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1231)) (-5 *1 (-611 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1230)) (-5 *1 (-610 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1231)) (-5 *1 (-1170 *3))))) -(((*1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216))))) -(((*1 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-960 *3 *4 *5)) (-4 *3 (-315)) - (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-457 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-654 *7)) (-5 *3 (-1172)) (-4 *7 (-960 *4 *5 *6)) - (-4 *4 (-315)) (-4 *5 (-803)) (-4 *6 (-860)) - (-5 *1 (-457 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-654 *7)) (-5 *3 (-1172)) (-4 *7 (-960 *4 *5 *6)) - (-4 *4 (-315)) (-4 *5 (-803)) (-4 *6 (-860)) - (-5 *1 (-457 *4 *5 *6 *7))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-478)) (-5 *3 (-654 (-270))) (-5 *1 (-1282)))) - ((*1 *1 *1) (-5 *1 (-1282)))) -(((*1 *1 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-831))))) -(((*1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-546))) ((*1 *1) (-4 *1 (-732))) - ((*1 *1) (-4 *1 (-736))) - ((*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113)))) - ((*1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062))))) -(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1053))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-762))))) -(((*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1113)) (-4 *2 (-1062)))) - ((*1 *1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566))))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1230)) (-5 *1 (-1169 *3))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) + (-4 *4 (-381 *2))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-653 (-1189))) (-4 *2 (-174)) + (-4 *4 (-243 (-2862 *5) (-780))) + (-14 *6 + (-1 (-112) (-2 (|:| -2575 *3) (|:| -3907 *4)) + (-2 (|:| -2575 *3) (|:| -3907 *4)))) + (-5 *1 (-470 *5 *2 *3 *4 *6 *7)) (-4 *3 (-859)) + (-4 *7 (-959 *2 *4 (-873 *5)))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) + (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) + (-5 *2 (-1047)) (-5 *1 (-765))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-573)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-780)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-802)) (-4 *4 (-959 *5 *6 *7)) (-4 *5 (-461)) (-4 *7 (-859)) + (-5 *1 (-458 *5 *6 *7 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *3 (-1112)) (-4 *4 (-1112)) + (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) +(((*1 *1) (-12 (-4 *1 (-474 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-545))) ((*1 *1) (-4 *1 (-731))) + ((*1 *1) (-4 *1 (-735))) + ((*1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112)))) + ((*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-859))))) +(((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-1192)))) + ((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1285)) (-5 *1 (-1192)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1189)) (-5 *2 (-1285)) (-5 *1 (-1192))))) +(((*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1 (-387))) (-5 *1 (-1052))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-461)) + (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) + (-5 *1 (-989 *3 *4 *5 *6))))) +(((*1 *1 *1) (-5 *1 (-1075)))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1231)) (-5 *1 (-611 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1230)) (-5 *1 (-610 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1231)) (-5 *1 (-1170 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-539))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *1 (-103 *3)) (-4 *3 (-1113))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-765))))) -(((*1 *2) - (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-427 *3))))) -(((*1 *1 *1) (-5 *1 (-227))) - ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *1 *1) (-4 *1 (-1152))) ((*1 *1 *1 *1) (-4 *1 (-1152)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1281 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1257 *4)) (-5 *2 (-699 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1257 *3)) - (-5 *2 (-699 *3))))) -(((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-546))) - ((*1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1071)))) - ((*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113)))) - ((*1 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-1071))))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1230)) (-5 *1 (-1169 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) + (-4 *6 (-802)) (-4 *7 (-959 *4 *6 *5)) + (-5 *2 + (-2 (|:| |sysok| (-112)) (|:| |z0| (-653 *7)) (|:| |n0| (-653 *7)))) + (-5 *1 (-934 *4 *5 *6 *7)) (-5 *3 (-653 *7))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-515)) (-5 *2 (-653 (-975))) (-5 *1 (-298))))) +(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-545))))) +(((*1 *1) (-5 *1 (-142)))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-227)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-227)))) + (-12 (-5 *3 (-573)) (-5 *2 (-1285)) (-5 *1 (-1282)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-388)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-388))))) + (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1171)) (-5 *4 (-171 (-227))) (-5 *5 (-573)) + (-5 *2 (-1047)) (-5 *1 (-767))))) +(((*1 *1) (-4 *1 (-23))) + ((*1 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-545))) + ((*1 *1) (-12 (-4 *1 (-655 *2)) (-4 *2 (-1070)))) + ((*1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112)))) + ((*1 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-1070))))) +(((*1 *2) + (-12 (-4 *3 (-565)) (-5 *2 (-653 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-426 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-780)) (-4 *1 (-665 *3)) (-4 *3 (-1061)) (-4 *3 (-371)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-780)) (-5 *4 (-1 *5 *5)) (-4 *5 (-371)) + (-5 *1 (-668 *5 *2)) (-4 *2 (-665 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-963 (-574))) (-5 *2 (-654 *1)) (-4 *1 (-1025)))) - ((*1 *2 *3) - (-12 (-5 *3 (-963 (-417 (-574)))) (-5 *2 (-654 *1)) (-4 *1 (-1025)))) - ((*1 *2 *3) (-12 (-5 *3 (-963 *1)) (-4 *1 (-1025)) (-5 *2 (-654 *1)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1186 (-574))) (-5 *2 (-654 *1)) (-4 *1 (-1025)))) + (-12 (-5 *3 (-595 *2)) (-4 *2 (-13 (-29 *4) (-1215))) + (-5 *1 (-592 *4 *2)) + (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))))) ((*1 *2 *3) - (-12 (-5 *3 (-1186 (-417 (-574)))) (-5 *2 (-654 *1)) (-4 *1 (-1025)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1186 *1)) (-4 *1 (-1025)) (-5 *2 (-654 *1)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1257 *4)) (-5 *2 (-654 *1)) - (-4 *1 (-1081 *4 *3))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-654 (-1190))) (-4 *2 (-174)) - (-4 *4 (-244 (-2863 *5) (-781))) - (-14 *6 - (-1 (-112) (-2 (|:| -2576 *3) (|:| -3715 *4)) - (-2 (|:| -2576 *3) (|:| -3715 *4)))) - (-5 *1 (-471 *5 *2 *3 *4 *6 *7)) (-4 *3 (-860)) - (-4 *7 (-960 *2 *4 (-874 *5)))))) -(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-937))))) + (-12 (-5 *3 (-595 (-416 (-962 *4)))) + (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-323 *4)) + (-5 *1 (-598 *4))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-371)) (-5 *1 (-775 *2 *3)) (-4 *2 (-717 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)) (-4 *2 (-371))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-932)) (-4 *6 (-566)) (-5 *2 (-654 (-324 *6))) - (-5 *1 (-223 *5 *6)) (-5 *3 (-324 *6)) (-4 *5 (-1062)))) - ((*1 *2 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566)))) + (-12 (-5 *4 (-931)) (-4 *6 (-565)) (-5 *2 (-653 (-323 *6))) + (-5 *1 (-223 *5 *6)) (-5 *3 (-323 *6)) (-4 *5 (-1061)))) + ((*1 *2 *1) (-12 (-5 *1 (-427 *2)) (-4 *2 (-565)))) ((*1 *2 *3) - (-12 (-5 *3 (-596 *5)) (-4 *5 (-13 (-29 *4) (-1216))) - (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) (-5 *2 (-654 *5)) - (-5 *1 (-593 *4 *5)))) + (-12 (-5 *3 (-595 *5)) (-4 *5 (-13 (-29 *4) (-1215))) + (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-653 *5)) + (-5 *1 (-592 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-596 (-417 (-963 *4)))) - (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) - (-5 *2 (-654 (-324 *4))) (-5 *1 (-599 *4)))) + (-12 (-5 *3 (-595 (-416 (-962 *4)))) + (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) + (-5 *2 (-653 (-323 *4))) (-5 *1 (-598 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1108 *3 *2)) (-4 *3 (-858)) (-4 *2 (-1162 *3)))) + (-12 (-4 *1 (-1107 *3 *2)) (-4 *3 (-857)) (-4 *2 (-1161 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-654 *1)) (-4 *1 (-1108 *4 *2)) (-4 *4 (-858)) - (-4 *2 (-1162 *4)))) + (-12 (-5 *3 (-653 *1)) (-4 *1 (-1107 *4 *2)) (-4 *4 (-857)) + (-4 *2 (-1161 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1216))))) + (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1215))))) ((*1 *2 *1) - (-12 (-5 *2 (-1296 (-1190) *3)) (-5 *1 (-1303 *3)) (-4 *3 (-1062)))) + (-12 (-5 *2 (-1295 (-1189) *3)) (-5 *1 (-1302 *3)) (-4 *3 (-1061)))) ((*1 *2 *1) - (-12 (-5 *2 (-1296 *3 *4)) (-5 *1 (-1305 *3 *4)) (-4 *3 (-860)) - (-4 *4 (-1062))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1062)) (-4 *3 (-1113)) - (-5 *2 (-2 (|:| |val| *1) (|:| -3715 (-574)))) (-4 *1 (-440 *3)))) + (-12 (-5 *2 (-1295 *3 *4)) (-5 *1 (-1304 *3 *4)) (-4 *3 (-859)) + (-4 *4 (-1061))))) +(((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-145))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-565) (-1050 (-573)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1215) (-439 (-171 *3)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) + (-5 *1 (-1219 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *3)))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) + (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-79 LSFUN1)))) + (-5 *2 (-1047)) (-5 *1 (-762))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-953 (-227)) (-953 (-227)))) (-5 *1 (-269)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1280 *1)) (-4 *1 (-336 *4)) (-4 *4 (-371)) + (-5 *2 (-698 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-371)) (-5 *2 (-1280 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) + (-5 *2 (-698 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) + (-5 *2 (-1280 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1280 *1)) (-4 *1 (-378 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1256 *4)) (-5 *2 (-698 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1280 *1)) (-4 *1 (-378 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1256 *4)) (-5 *2 (-1280 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1280 *1)) (-4 *1 (-418 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1256 *4)) (-5 *2 (-698 *4)))) ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |val| (-903 *3)) (|:| -3715 (-903 *3)))) - (-5 *1 (-903 *3)) (-4 *3 (-1113)))) + (-12 (-4 *1 (-418 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1256 *3)) + (-5 *2 (-1280 *3)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1062)) - (-4 *7 (-960 *6 *4 *5)) - (-5 *2 (-2 (|:| |val| *3) (|:| -3715 (-574)))) - (-5 *1 (-961 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-372) - (-10 -8 (-15 -2943 ($ *7)) (-15 -2966 (*7 $)) - (-15 -2977 (*7 $)))))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2873 (-792 *3)) (|:| |coef2| (-792 *3)))) - (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1062)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-566)) (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *2 (-2 (|:| -2873 *1) (|:| |coef2| *1))) - (-4 *1 (-1078 *3 *4 *5))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-622 *3)) (-5 *5 (-1186 *3)) - (-4 *3 (-13 (-440 *6) (-27) (-1216))) - (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) - (-5 *2 (-596 *3)) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1113)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-622 *3)) (-5 *5 (-417 (-1186 *3))) - (-4 *3 (-13 (-440 *6) (-27) (-1216))) - (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) - (-5 *2 (-596 *3)) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1113))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1216)))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-654 (-654 (-654 *5)))) (-5 *3 (-1 (-112) *5 *5)) - (-5 *4 (-654 *5)) (-4 *5 (-860)) (-5 *1 (-1201 *5))))) + (-12 (-5 *3 (-1280 *1)) (-4 *1 (-426 *4)) (-4 *4 (-174)) + (-5 *2 (-698 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-1280 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-653 (-698 *5))) (-5 *3 (-698 *5)) (-4 *5 (-371)) + (-5 *2 (-1280 *5)) (-5 *1 (-1098 *5))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1189)) + (-4 *4 (-13 (-461) (-148) (-1050 (-573)) (-648 (-573)))) + (-5 *1 (-566 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *4)))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -1562)) (-5 *2 (-112)) (-5 *1 (-627)))) + (-12 (-5 *3 (|[\|\|]| -1561)) (-5 *2 (-112)) (-5 *1 (-626)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2034)) (-5 *2 (-112)) (-5 *1 (-627)))) + (-12 (-5 *3 (|[\|\|]| -2032)) (-5 *2 (-112)) (-5 *1 (-626)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2883)) (-5 *2 (-112)) (-5 *1 (-627)))) + (-12 (-5 *3 (|[\|\|]| -2883)) (-5 *2 (-112)) (-5 *1 (-626)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2234)) (-5 *2 (-112)) (-5 *1 (-701 *4)) - (-4 *4 (-623 (-872))))) + (-12 (-5 *3 (|[\|\|]| -2233)) (-5 *2 (-112)) (-5 *1 (-700 *4)) + (-4 *4 (-622 (-871))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-623 (-872))) (-5 *2 (-112)) - (-5 *1 (-701 *4)))) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-622 (-871))) (-5 *2 (-112)) + (-5 *1 (-700 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1172))) (-5 *2 (-112)) (-5 *1 (-886)))) + (-12 (-5 *3 (|[\|\|]| (-1171))) (-5 *2 (-112)) (-5 *1 (-885)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)) (-5 *1 (-886)))) + (-12 (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)) (-5 *1 (-885)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-574))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-573))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1172))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1171))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-602))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-601))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-488))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-487))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1180))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1179))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-636))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-635))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1109))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1108))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1103))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1102))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1086))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1085))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-983))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-982))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1049))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1048))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-319))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-318))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-681))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-680))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1164))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1163))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-535))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-534))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1292))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1291))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1079))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1078))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-526))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-691))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-690))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1128))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1127))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-616))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-615))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-1291))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-1290))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-686))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-685))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1150)) (-5 *3 (|[\|\|]| (-534))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1149)) (-5 *3 (|[\|\|]| (-533))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1172))) (-5 *2 (-112)) (-5 *1 (-1195)))) + (-12 (-5 *3 (|[\|\|]| (-1171))) (-5 *2 (-112)) (-5 *1 (-1194)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)) (-5 *1 (-1195)))) + (-12 (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)) (-5 *1 (-1194)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1195)))) + (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1194)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-574))) (-5 *2 (-112)) (-5 *1 (-1195))))) + (-12 (-5 *3 (|[\|\|]| (-573))) (-5 *2 (-112)) (-5 *1 (-1194))))) (((*1 *2 *1) - (-12 (-4 *3 (-1113)) (-4 *4 (-13 (-1062) (-897 *3) (-624 *2))) - (-5 *2 (-903 *3)) (-5 *1 (-1089 *3 *4 *5)) - (-4 *5 (-13 (-440 *4) (-897 *3) (-624 *2)))))) + (-12 (-4 *3 (-1112)) (-4 *4 (-13 (-1061) (-896 *3) (-623 *2))) + (-5 *2 (-902 *3)) (-5 *1 (-1088 *3 *4 *5)) + (-4 *5 (-13 (-439 *4) (-896 *3) (-623 *2)))))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-461)) (-4 *7 (-802)) + (-4 *8 (-859)) (-4 *9 (-1077 *6 *7 *8)) + (-5 *2 + (-2 (|:| -4122 (-653 *9)) (|:| -4090 *4) (|:| |ineq| (-653 *9)))) + (-5 *1 (-1000 *6 *7 *8 *9 *4)) (-5 *3 (-653 *9)) + (-4 *4 (-1083 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-461)) (-4 *7 (-802)) + (-4 *8 (-859)) (-4 *9 (-1077 *6 *7 *8)) + (-5 *2 + (-2 (|:| -4122 (-653 *9)) (|:| -4090 *4) (|:| |ineq| (-653 *9)))) + (-5 *1 (-1119 *6 *7 *8 *9 *4)) (-5 *3 (-653 *9)) + (-4 *4 (-1083 *6 *7 *8 *9))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *1)) + (-4 *1 (-1077 *3 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1132)) (-5 *1 (-964))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-1001 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *5 (-860)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-1120 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-965))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) - (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) - (-5 *5 (-1107 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1146 (-227))) - (-5 *1 (-707)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-954 (-227)) (-227) (-227))) (-5 *4 (-1107 (-227))) - (-5 *5 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-707)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1146 (-227))) (-5 *3 (-1 (-954 (-227)) (-227) (-227))) - (-5 *4 (-1107 (-227))) (-5 *5 (-654 (-270))) (-5 *1 (-707))))) + (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) + (-4 *4 (-859)) (-4 *2 (-461))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-540 *3)) (-4 *3 (-13 (-736) (-25)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1190)) - (-4 *5 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) - (-5 *2 (-596 *3)) (-5 *1 (-436 *5 *3)) - (-4 *3 (-13 (-1216) (-29 *5)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1113)) (-5 *1 (-916 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-115)))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-539 *3)) (-4 *3 (-13 (-735) (-25)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1280 *1)) (-4 *1 (-378 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1256 *4)) (-5 *2 (-698 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-4 *5 (-1256 *4)) (-5 *2 (-698 *4)) + (-5 *1 (-417 *3 *4 *5)) (-4 *3 (-418 *4 *5)))) + ((*1 *2) + (-12 (-4 *1 (-418 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1256 *3)) + (-5 *2 (-698 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-252 *4 *5)) (-14 *4 (-653 (-1189))) (-4 *5 (-1061)) + (-5 *2 (-962 *5)) (-5 *1 (-954 *4 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-515)) (-5 *1 (-115)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-516)) (-4 *4 (-1113)) (-5 *1 (-940 *4 *2)) - (-4 *2 (-440 *4)))) + (-12 (-5 *3 (-515)) (-4 *4 (-1112)) (-5 *1 (-939 *4 *2)) + (-4 *2 (-439 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1190)) (-5 *4 (-516)) (-5 *2 (-324 (-574))) - (-5 *1 (-941))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1257 (-417 (-574)))) (-5 *1 (-924 *3 *2)) - (-4 *2 (-1257 (-417 *3)))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-112)) (-5 *1 (-903 *4)) - (-4 *4 (-1113))))) + (-12 (-5 *3 (-1189)) (-5 *4 (-515)) (-5 *2 (-323 (-573))) + (-5 *1 (-940))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-803)) (-4 *2 (-960 *4 *5 *6)) (-5 *1 (-459 *4 *5 *6 *2)) - (-4 *4 (-462)) (-4 *6 (-860))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))) - ((*1 *1 *1 *1) (-5 *1 (-1133)))) -(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-338))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-5 *1 (-338))))) -(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174))))) -(((*1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-571)) (-5 *3 (-574))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) + (-12 (-5 *3 (-962 *4)) (-4 *4 (-13 (-314) (-148))) + (-4 *2 (-959 *4 *6 *5)) (-5 *1 (-934 *4 *5 *6 *2)) + (-4 *5 (-13 (-859) (-623 (-1189)))) (-4 *6 (-802))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1169 *4)) (-5 *3 (-573)) (-4 *4 (-1061)) + (-5 *1 (-1173 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-573)) (-5 *1 (-1272 *3 *4 *5)) (-4 *3 (-1061)) + (-14 *4 (-1189)) (-14 *5 *3)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 - (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574)) - (|:| |success| (-112)))) - (-5 *1 (-799)) (-5 *5 (-574))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-338))))) -(((*1 *2 *1) - (-12 (-5 *2 (-654 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-596 *3)) (-4 *3 (-372))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1231)) (-5 *1 (-384 *4 *2)) - (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4457))))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-781)) (-4 *5 (-174)))) - ((*1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) - (-4 *4 (-174)))) - ((*1 *1 *1) - (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) - (-4 *4 (-382 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1062)) (-4 *1 (-697 *3 *2 *4)) (-4 *2 (-382 *3)) - (-4 *4 (-382 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1155 *2 *3)) (-14 *2 (-781)) (-4 *3 (-1062))))) -(((*1 *2 *3) - (-12 (-4 *4 (-803)) - (-4 *5 (-13 (-860) (-10 -8 (-15 -1836 ((-1190) $))))) (-4 *6 (-566)) - (-5 *2 (-2 (|:| -3663 (-963 *6)) (|:| -3269 (-963 *6)))) - (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-960 (-417 (-963 *6)) *4 *5))))) -(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-781)) (-5 *1 (-228)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-171 (-227))) (-5 *3 (-781)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1152)))) + (-3 (|:| |%expansion| (-320 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1171)) (|:| |prob| (-1171)))))) + (-5 *1 (-429 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1215) (-439 *5))) + (-14 *6 (-1189)) (-14 *7 *3)))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))) + ((*1 *1 *1 *1) (-5 *1 (-1132)))) +(((*1 *2 *2) (-12 (-5 *2 (-653 (-323 (-227)))) (-5 *1 (-273))))) +(((*1 *1 *2) (-12 (-5 *2 (-828 *3)) (-4 *3 (-859)) (-5 *1 (-681 *3))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-989 *3 *4 *2 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *2 (-860)) (-4 *5 (-1078 *3 *4 *2))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192))))) + (-12 (-5 *2 (-416 (-573))) (-5 *1 (-604 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-1061))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-411)) (-5 *2 (-780)))) + ((*1 *1 *1) (-4 *1 (-411)))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-1171)) (-5 *5 (-698 (-227))) + (-5 *2 (-1047)) (-5 *1 (-756))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) + (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 + (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) + (|:| |expense| (-387)) (|:| |accuracy| (-387)) + (|:| |intermediateResults| (-387)))) + (-5 *1 (-812))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-761))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-883)) (-5 *3 (-653 (-269))) (-5 *1 (-267))))) +(((*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-680)))) + ((*1 *2 *1) + (-12 (-5 *2 (-653 (-931))) (-5 *1 (-1113 *3 *4)) (-14 *3 (-931)) + (-14 *4 (-931))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112))))) +(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-871)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-573)) + (|:| -1687 (-653 (-2 (|:| |irr| *3) (|:| -3287 (-573))))))) + (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-573)) + (|:| -1687 (-653 (-2 (|:| |irr| *3) (|:| -3287 (-573))))))) + (-5 *1 (-1245 *3)) (-4 *3 (-1256 (-573)))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-653 *5)) (-5 *4 (-573)) (-4 *5 (-857)) (-4 *5 (-371)) + (-5 *2 (-780)) (-5 *1 (-955 *5 *6)) (-4 *6 (-1256 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-176 *3)) (-4 *3 (-314))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1061)) (-5 *2 (-112)) (-5 *1 (-453 *4 *3)) + (-4 *3 (-1256 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *5 (-859)) (-5 *2 (-112))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-1281 (-654 (-574)))) (-5 *1 (-490)))) + (-12 (-5 *3 (-780)) (-5 *2 (-1280 (-653 (-573)))) (-5 *1 (-489)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1231)) (-5 *1 (-611 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1230)) (-5 *1 (-610 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1231)) (-5 *1 (-1170 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1231)) (-5 *1 (-1170 *3))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-654 (-417 *7))) - (-4 *7 (-1257 *6)) (-5 *3 (-417 *7)) (-4 *6 (-372)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-584 *6 *7))))) -(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) - ((*1 *1 *1) (-4 *1 (-1157)))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 - *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 - *9) - (-12 (-5 *4 (-699 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) - (-5 *7 (-699 (-574))) - (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-80 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) - (-5 *3 (-574)) (-5 *2 (-1048)) (-5 *1 (-763))))) -(((*1 *1) (-5 *1 (-447)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1230)) (-5 *1 (-1169 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1230)) (-5 *1 (-1169 *3))))) +(((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1189)) (-5 *1 (-684 *3)) (-4 *3 (-1112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-416 *4)) (-4 *4 (-1256 *3)) (-4 *3 (-13 (-371) (-148))) + (-5 *1 (-408 *3 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-323 (-227))) (-5 *1 (-273))))) (((*1 *2 *1) - (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-297 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1257 *3)) (-14 *5 (-1 *4 *4 *2)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2)) - (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-721 *3 *2 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) - (-12 (-4 *2 (-1257 *3)) (-5 *1 (-722 *3 *2)) (-4 *3 (-1062)))) + (-12 (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) + (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-725 *3 *2 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-335 *3)) (-4 *3 (-1231)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1231)) - (-14 *4 (-574))))) -(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1172)) (-5 *1 (-720))))) -(((*1 *2 *1) (-12 (-4 *1 (-566)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1237)))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1303 *3 *4)) (-4 *3 (-1061)) + (-4 *4 (-855))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-699 *5)) (-5 *4 (-1281 *5)) (-4 *5 (-372)) - (-5 *2 (-112)) (-5 *1 (-677 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4457)))) - (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4457)))) (-5 *2 (-112)) - (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-1205 *2)) (-4 *2 (-372))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-1113))))) -(((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2872 *4))) - (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-654 (-699 *6))) (-5 *4 (-112)) (-5 *5 (-574)) - (-5 *2 (-699 *6)) (-5 *1 (-1042 *6)) (-4 *6 (-372)) (-4 *6 (-1062)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-654 (-699 *4))) (-5 *2 (-699 *4)) (-5 *1 (-1042 *4)) - (-4 *4 (-372)) (-4 *4 (-1062)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-574)) (-5 *2 (-699 *5)) - (-5 *1 (-1042 *5)) (-4 *5 (-372)) (-4 *5 (-1062))))) + (-12 (-5 *3 (-698 (-171 (-416 (-573))))) + (-5 *2 + (-653 + (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-573)) + (|:| |outvect| (-653 (-698 (-171 *4))))))) + (-5 *1 (-773 *4)) (-4 *4 (-13 (-371) (-857)))))) +(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-871)))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-1280 (-573))) (-5 *3 (-573)) (-5 *1 (-1122)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1280 (-573))) (-5 *3 (-653 (-573))) (-5 *4 (-573)) + (-5 *1 (-1122))))) (((*1 *2 *1) - (-12 (-4 *3 (-1062)) (-5 *2 (-1281 *3)) (-5 *1 (-722 *3 *4)) - (-4 *4 (-1257 *3))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) + (-4 *4 (-1061))))) +(((*1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-539 *3)) (-4 *3 (-13 (-735) (-25)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-653 *3)) (-4 *3 (-1256 *5)) (-4 *5 (-314)) + (-5 *2 (-780)) (-5 *1 (-464 *5 *3))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-698 (-573))) (-5 *3 (-653 (-573))) (-5 *1 (-1122))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1272 *2 *3 *4)) (-4 *2 (-1061)) (-14 *3 (-1189)) + (-14 *4 *2)))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-760))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-780)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-859)) + (-4 *3 (-1112))))) +(((*1 *2 *1) (-12 (-5 *2 (-653 (-882 (-1194) (-780)))) (-5 *1 (-340))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-324 (-574))) (|:| -1386 (-324 (-388))) - (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1189)))) - (-5 *1 (-1189))))) -(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-872)))) + (-3 (|:| I (-323 (-573))) (|:| -1385 (-323 (-387))) + (|:| CF (-323 (-171 (-387)))) (|:| |switch| (-1188)))) + (-5 *1 (-1188))))) +(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-871)))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-932)) (-5 *2 (-781)) (-5 *1 (-1114 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-931)) (-5 *2 (-780)) (-5 *1 (-1113 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1152 *4 *5)) (-4 *4 (-13 (-1112) (-34))) + (-4 *5 (-13 (-1112) (-34))) (-5 *2 (-112)) (-5 *1 (-1153 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-427 *3)) (-5 *1 (-567 *3)) (-4 *3 (-554))))) +(((*1 *2 *3) + (-12 (-5 *3 (-962 (-227))) (-5 *2 (-323 (-387))) (-5 *1 (-312))))) +(((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-476)))) + ((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-476)))) + ((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-937))))) +(((*1 *2 *1) + (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-859)) + (-4 *5 (-272 *4)) (-4 *6 (-802)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1285)) (-5 *1 (-831))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-653 *7)) (-5 *5 (-653 (-653 *8))) (-4 *7 (-859)) + (-4 *8 (-314)) (-4 *6 (-802)) (-4 *9 (-959 *8 *6 *7)) + (-5 *2 + (-2 (|:| |unitPart| *9) + (|:| |suPart| + (-653 (-2 (|:| -4218 (-1185 *9)) (|:| -3907 (-573))))))) + (-5 *1 (-751 *6 *7 *8 *9)) (-5 *3 (-1185 *9))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-699 *3)) - (-4 *3 (-13 (-315) (-10 -8 (-15 -2827 ((-428 $) $))))) - (-4 *4 (-1257 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-699 *3)) - (-4 *3 (-13 (-315) (-10 -8 (-15 -2827 ((-428 $) $))))) - (-4 *4 (-1257 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1113)) (-5 *1 (-916 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1281 (-654 (-2 (|:| -3083 *4) (|:| -2576 (-1133)))))) - (-4 *4 (-358)) (-5 *2 (-781)) (-5 *1 (-355 *4)))) - ((*1 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-360 *3 *4)) (-14 *3 (-932)) - (-14 *4 (-932)))) - ((*1 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) - (-14 *4 - (-3 (-1186 *3) - (-1281 (-654 (-2 (|:| -3083 *3) (|:| -2576 (-1133))))))))) - ((*1 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) - (-14 *4 (-932))))) -(((*1 *2) - (-12 (-4 *4 (-1235)) (-4 *5 (-1257 *4)) (-4 *6 (-1257 (-417 *5))) - (-5 *2 (-781)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) - (-4 *5 (-1257 (-417 *4))) (-5 *2 (-781))))) -(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-566)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-129))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832))))) + (-12 (-4 *3 (-1061)) (-5 *1 (-904 *2 *3)) (-4 *2 (-1256 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-158)))) + ((*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-883)))) + ((*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-653 *3)) (-4 *3 (-1230))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-515)) (-5 *3 (-606)) (-5 *1 (-594))))) +(((*1 *1 *1) (-5 *1 (-1075)))) +(((*1 *2 *2) (-12 (-5 *2 (-1132)) (-5 *1 (-337))))) (((*1 *2 *1) - (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1186 *4)) (-4 *4 (-358)) (-5 *2 (-112)) - (-5 *1 (-366 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1281 *4)) (-4 *4 (-358)) (-5 *2 (-112)) - (-5 *1 (-538 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-654 *3)) (-4 *3 (-1231))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015)))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) - (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-566)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) - (-4 *7 (-1005 *4)) (-4 *2 (-697 *7 *8 *9)) - (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-697 *4 *5 *6)) - (-4 *8 (-382 *7)) (-4 *9 (-382 *7)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) - (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-372)))) - ((*1 *2 *2) - (|partial| -12 (-4 *3 (-372)) (-4 *3 (-174)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) - (-4 *2 (-697 *3 *4 *5)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-699 *2)) (-4 *2 (-372)) (-4 *2 (-1062)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1136 *2 *3 *4 *5)) (-4 *3 (-1062)) - (-4 *4 (-244 *2 *3)) (-4 *5 (-244 *2 *3)) (-4 *3 (-372)))) - ((*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-1201 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1463 *4))) - (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2873 *3))) - (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1216)))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-622 *3)) (-5 *5 (-1 (-1186 *3) (-1186 *3))) - (-4 *3 (-13 (-27) (-440 *6))) (-4 *6 (-566)) (-5 *2 (-596 *3)) - (-5 *1 (-561 *6 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-423 *3 *4 *5 *6)) (-4 *6 (-1051 *4)) (-4 *3 (-315)) - (-4 *4 (-1005 *3)) (-4 *5 (-1257 *4)) (-4 *6 (-419 *4 *5)) - (-14 *7 (-1281 *6)) (-5 *1 (-424 *3 *4 *5 *6 *7)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1281 *6)) (-4 *6 (-419 *4 *5)) (-4 *4 (-1005 *3)) - (-4 *5 (-1257 *4)) (-4 *3 (-315)) (-5 *1 (-424 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-4 *1 (-331 *4 *2)) (-4 *4 (-1113)) - (-4 *2 (-132))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *1 (-59 *3)) (-4 *3 (-1231)))) - ((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-5 *1 (-59 *3))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-654 (-654 (-954 (-227))))) (-5 *4 (-884)) - (-5 *5 (-932)) (-5 *6 (-654 (-270))) (-5 *2 (-478)) (-5 *1 (-1285)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-654 (-954 (-227))))) (-5 *2 (-478)) - (-5 *1 (-1285)))) + (-12 (-5 *2 (-1169 (-416 *3))) (-5 *1 (-176 *3)) (-4 *3 (-314))))) +(((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-936))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-371)) + (-5 *2 + (-2 (|:| A (-698 *5)) + (|:| |eqs| + (-653 + (-2 (|:| C (-698 *5)) (|:| |g| (-1280 *5)) (|:| -4122 *6) + (|:| |rh| *5)))))) + (-5 *1 (-822 *5 *6)) (-5 *3 (-698 *5)) (-5 *4 (-1280 *5)) + (-4 *6 (-665 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-654 (-954 (-227))))) (-5 *4 (-654 (-270))) - (-5 *2 (-478)) (-5 *1 (-1285))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447))))) -(((*1 *1 *1) (-4 *1 (-1073))) - ((*1 *1 *1 *2 *2) - (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-802)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-802))))) + (-12 (-4 *5 (-371)) (-4 *6 (-665 *5)) + (-5 *2 (-2 (|:| -1423 (-698 *6)) (|:| |vec| (-1280 *5)))) + (-5 *1 (-822 *5 *6)) (-5 *3 (-698 *6)) (-5 *4 (-1280 *5))))) +(((*1 *2) + (-12 (-5 *2 (-968 (-1132))) (-5 *1 (-351 *3 *4)) (-14 *3 (-931)) + (-14 *4 (-931)))) + ((*1 *2) + (-12 (-5 *2 (-968 (-1132))) (-5 *1 (-352 *3 *4)) (-4 *3 (-357)) + (-14 *4 (-1185 *3)))) + ((*1 *2) + (-12 (-5 *2 (-968 (-1132))) (-5 *1 (-353 *3 *4)) (-4 *3 (-357)) + (-14 *4 (-931))))) +(((*1 *2 *3) + (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3592 *4))) + (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-443)) + (-5 *2 + (-653 + (-3 (|:| -2031 (-1189)) + (|:| -1632 (-653 (-3 (|:| S (-1189)) (|:| P (-962 (-573))))))))) + (-5 *1 (-1193))))) +(((*1 *1 *2) (-12 (-5 *2 (-883)) (-5 *1 (-269)))) + ((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-269))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1171)) + (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-112)) + (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1215) (-29 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1062)) - (-4 *2 (-13 (-414) (-1051 *4) (-372) (-1216) (-292))) - (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1257 *4))))) + (|partial| -12 (-5 *3 (-931)) + (-5 *2 (-1280 (-653 (-2 (|:| -3082 *4) (|:| -2575 (-1132)))))) + (-5 *1 (-354 *4)) (-4 *4 (-357))))) +(((*1 *1 *1) (-4 *1 (-638))) + ((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-639 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014) (-1215)))))) (((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| - (-2 (|:| |var| (-1190)) - (|:| |arrayIndex| (-654 (-963 (-574)))) + (-2 (|:| |var| (-1189)) + (|:| |arrayIndex| (-653 (-962 (-573)))) (|:| |rand| - (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-872)))))) + (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-871)))))) (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1190)) (|:| |rand| (-872)) + (-2 (|:| |var| (-1189)) (|:| |rand| (-871)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| - (-2 (|:| |switch| (-1189)) (|:| |thenClause| (-338)) - (|:| |elseClause| (-338)))) + (-2 (|:| |switch| (-1188)) (|:| |thenClause| (-337)) + (|:| |elseClause| (-337)))) (|:| |returnBranch| - (-2 (|:| -1584 (-112)) - (|:| -3083 - (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-872)))))) - (|:| |blockBranch| (-654 (-338))) - (|:| |commentBranch| (-654 (-1172))) (|:| |callBranch| (-1172)) + (-2 (|:| -3811 (-112)) + (|:| -3082 + (-2 (|:| |ints2Floats?| (-112)) (|:| -1444 (-871)))))) + (|:| |blockBranch| (-653 (-337))) + (|:| |commentBranch| (-653 (-1171))) (|:| |callBranch| (-1171)) (|:| |forBranch| - (-2 (|:| -2367 (-1105 (-963 (-574)))) - (|:| |span| (-963 (-574))) (|:| -2044 (-338)))) - (|:| |labelBranch| (-1133)) - (|:| |loopBranch| (-2 (|:| |switch| (-1189)) (|:| -2044 (-338)))) + (-2 (|:| -3821 (-1104 (-962 (-573)))) + (|:| |span| (-962 (-573))) (|:| -2043 (-337)))) + (|:| |labelBranch| (-1132)) + (|:| |loopBranch| (-2 (|:| |switch| (-1188)) (|:| -2043 (-337)))) (|:| |commonBranch| - (-2 (|:| -2032 (-1190)) (|:| |contents| (-654 (-1190))))) - (|:| |printBranch| (-654 (-872))))) - (-5 *1 (-338))))) -(((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-1190))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-781)) (-5 *2 (-1286))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-417 (-1186 (-324 *3)))) (-4 *3 (-566)) - (-5 *1 (-1143 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-462))))) -(((*1 *2 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-1170 (-984))) (-5 *1 (-984))))) -(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-134)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-139)))) - ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-155)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-162)))) - ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-220)))) - ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-686)))) - ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1032)))) - ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1079)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-1109))))) + (-2 (|:| -2031 (-1189)) (|:| |contents| (-653 (-1189))))) + (|:| |printBranch| (-653 (-871))))) + (-5 *1 (-337))))) +(((*1 *1 *1) (-12 (-4 *1 (-683 *2)) (-4 *2 (-1230))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015)))))) -(((*1 *2 *3) - (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1235)) (-4 *3 (-1257 *4)) - (-4 *5 (-1257 (-417 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) - (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-338)))) - ((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-338))))) -(((*1 *1 *1) - (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1062)) (-4 *3 (-860)) - (-4 *4 (-273 *3)) (-4 *5 (-803))))) -(((*1 *2 *3) - (-12 (-5 *2 (-428 (-1186 *1))) (-5 *1 (-324 *4)) (-5 *3 (-1186 *1)) - (-4 *4 (-462)) (-4 *4 (-566)) (-4 *4 (-1113)))) - ((*1 *2 *3) - (-12 (-4 *1 (-920)) (-5 *2 (-428 (-1186 *1))) (-5 *3 (-1186 *1))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1178 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1062))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) - (-5 *2 (-1186 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) - (-5 *2 (-1186 *3))))) -(((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) - ((*1 *1 *2) (-12 (-5 *2 (-654 (-932))) (-5 *1 (-984))))) -(((*1 *2 *3) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014)))))) +(((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-387)) (-5 *2 (-1285)) (-5 *1 (-1282))))) +(((*1 *1 *1 *1) (-5 *1 (-871)))) +(((*1 *2) (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) - (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-388)) (-5 *1 (-207))))) -(((*1 *1) (-5 *1 (-627)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-555)) (-5 *1 (-160 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-96)))) - ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-109)))) + (-5 *2 (-2 (|:| -4055 (-653 (-1189))) (|:| -4141 (-653 (-1189))))) + (-5 *1 (-1232))))) +(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-134)))) + ((*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-139)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-155)))) + ((*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-162)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-220)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-685)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1031)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1078)))) + ((*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-1108))))) +(((*1 *2 *3) + (-12 (-4 *4 (-357)) + (-5 *2 (-653 (-2 (|:| |deg| (-780)) (|:| -1772 *3)))) + (-5 *1 (-218 *4 *3)) (-4 *3 (-1256 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-565)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3592 *4))) + (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-337)))) + ((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-337))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -1687 (-653 (-2 (|:| |irr| *10) (|:| -3287 (-573))))))) + (-5 *6 (-653 *3)) (-5 *7 (-653 *8)) (-4 *8 (-859)) (-4 *3 (-314)) + (-4 *10 (-959 *3 *9 *8)) (-4 *9 (-802)) + (-5 *2 + (-2 (|:| |polfac| (-653 *10)) (|:| |correct| *3) + (|:| |corrfact| (-653 (-1185 *3))))) + (-5 *1 (-634 *8 *9 *3 *10)) (-5 *4 (-653 (-1185 *3)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-653 *6) "failed") (-573) *6 *6)) (-4 *6 (-371)) + (-4 *7 (-1256 *6)) + (-5 *2 (-2 (|:| |answer| (-595 (-416 *7))) (|:| |a0| *6))) + (-5 *1 (-583 *6 *7)) (-5 *3 (-416 *7))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) + (-4 *2 (-1230))))) +(((*1 *1 *1) (-5 *1 (-1075)))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-869)) (-5 *2 (-700 (-130))) (-5 *3 (-130))))) +(((*1 *2) + (-12 (-4 *4 (-1234)) (-4 *5 (-1256 *4)) (-4 *6 (-1256 (-416 *5))) + (-5 *2 (-780)) (-5 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-350 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) + (-4 *5 (-1256 (-416 *4))) (-5 *2 (-780)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-780))))) +(((*1 *1) (-5 *1 (-626)))) +(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-96)))) + ((*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-109)))) ((*1 *2 *1) - (-12 (-4 *1 (-373 *2 *3)) (-4 *3 (-1113)) (-4 *2 (-1113)))) - ((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1172)))) - ((*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-448 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-493)))) - ((*1 *2 *1) (-12 (-4 *1 (-845 *2)) (-4 *2 (-1113)))) - ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-875)))) - ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-976)))) - ((*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-1088 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1128)))) - ((*1 *1 *1) (-5 *1 (-1190)))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) - (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-5 *2 (-654 (-1040 *5 *6 *7 *8))) (-5 *1 (-1040 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1078 *5 *6 *7)) - (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-5 *2 (-654 (-1159 *5 *6 *7 *8))) (-5 *1 (-1159 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1232 *2)) - (-4 *2 (-1113)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-1113)) (-4 *2 (-860)) - (-5 *1 (-1232 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-310)))) - ((*1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1048)) (-5 *1 (-758))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-537)) (-5 *3 (-129)) (-5 *2 (-781))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-969 *3)) (-5 *1 (-1177 *4 *3)) - (-4 *3 (-1257 *4))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) - (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1012 *3)) (-4 *3 (-174)) (-5 *1 (-809 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) - (-4 *4 (-860))))) + (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1112)) (-4 *2 (-1112)))) + ((*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-1171)))) + ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-447 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-492)))) + ((*1 *2 *1) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1112)))) + ((*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-874)))) + ((*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-975)))) + ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1087 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-1127)))) + ((*1 *1 *1) (-5 *1 (-1189)))) +(((*1 *2 *1) (-12 (-5 *2 (-492)) (-5 *1 (-220)))) + ((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1230)))) + ((*1 *2 *1) (-12 (-5 *2 (-492)) (-5 *1 (-685)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) + (-4 *4 (-859))))) +(((*1 *1 *2) (-12 (-5 *2 (-653 *1)) (-4 *1 (-309)))) + ((*1 *1 *1) (-4 *1 (-309))) ((*1 *1 *1) (-5 *1 (-871)))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-573)) (-5 *6 (-1171)) + (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-767))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1061)) (-5 *1 (-721 *3 *2)) (-4 *2 (-1256 *3))))) +(((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-476)))) + ((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-476)))) + ((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-937))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-573)) (-4 *3 (-174)) (-4 *5 (-381 *3)) + (-4 *6 (-381 *3)) (-5 *1 (-697 *3 *5 *6 *2)) + (-4 *2 (-696 *3 *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))) + (-5 *1 (-178 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1272 *2 *3 *4)) (-4 *2 (-1061)) (-14 *3 (-1189)) + (-14 *4 *2)))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-729)) (-5 *2 (-931)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-780))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-653 *2)) (-4 *2 (-959 *4 *5 *6)) (-4 *4 (-461)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *1 (-458 *4 *5 *6 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) + (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -3861 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-371)) (-4 *7 (-1256 *6)) + (-5 *2 (-2 (|:| |answer| (-595 (-416 *7))) (|:| |a0| *6))) + (-5 *1 (-583 *6 *7)) (-5 *3 (-416 *7))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-791 *2)) (-4 *2 (-1061)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) + (-4 *4 (-859))))) +(((*1 *2 *2) + (-12 (-4 *3 (-461)) (-4 *4 (-802)) (-4 *5 (-859)) + (-4 *6 (-1077 *3 *4 *5)) (-5 *1 (-633 *3 *4 *5 *6 *7 *2)) + (-4 *7 (-1083 *3 *4 *5 *6)) (-4 *2 (-1121 *3 *4 *5 *6))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4456)) (-4 *1 (-1268 *2)) (-4 *2 (-1230))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))))) - (-4 *4 (-1257 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-924 *4 *5)) - (-4 *5 (-1257 (-417 *4)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-654 *10)) (-5 *5 (-112)) (-4 *10 (-1084 *6 *7 *8 *9)) - (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) - (-4 *9 (-1078 *6 *7 *8)) - (-5 *2 - (-654 - (-2 (|:| -4122 (-654 *9)) (|:| -4091 *10) (|:| |ineq| (-654 *9))))) - (-5 *1 (-1001 *6 *7 *8 *9 *10)) (-5 *3 (-654 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-654 *10)) (-5 *5 (-112)) (-4 *10 (-1084 *6 *7 *8 *9)) - (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) - (-4 *9 (-1078 *6 *7 *8)) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-693 *4 *5 *6)) (-4 *4 (-1112))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-461) (-1050 (-573)) (-648 (-573)))) + (-4 *3 (-13 (-27) (-1215) (-439 *6) (-10 -8 (-15 -2942 ($ *7))))) + (-4 *7 (-857)) + (-4 *8 + (-13 (-1258 *3 *7) (-371) (-1215) + (-10 -8 (-15 -3904 ($ $)) (-15 -1626 ($ $))))) (-5 *2 - (-654 - (-2 (|:| -4122 (-654 *9)) (|:| -4091 *10) (|:| |ineq| (-654 *9))))) - (-5 *1 (-1120 *6 *7 *8 *9 *10)) (-5 *3 (-654 *9))))) -(((*1 *2 *3) - (-12 (|has| *2 (-6 (-4458 "*"))) (-4 *5 (-382 *2)) (-4 *6 (-382 *2)) - (-4 *2 (-1062)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1257 *2)) - (-4 *4 (-697 *2 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 *4)) - (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3))))) + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1171)) (|:| |prob| (-1171)))))) + (-5 *1 (-431 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1171)) (-4 *9 (-995 *8)) + (-14 *10 (-1189))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-654 (-699 *4))) (-5 *2 (-699 *4)) (-4 *4 (-1062)) - (-5 *1 (-1042 *4))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-654 (-1186 *11))) (-5 *3 (-1186 *11)) - (-5 *4 (-654 *10)) (-5 *5 (-654 *8)) (-5 *6 (-654 (-781))) - (-5 *7 (-1281 (-654 (-1186 *8)))) (-4 *10 (-860)) - (-4 *8 (-315)) (-4 *11 (-960 *8 *9 *10)) (-4 *9 (-803)) - (-5 *1 (-717 *9 *10 *8 *11))))) -(((*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1231))))) -(((*1 *2 *1) - (-12 (-5 *2 (-654 (-654 (-781)))) (-5 *1 (-915 *3)) (-4 *3 (-1113))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834))))) -(((*1 *1 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-338))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1257 *2)) (-4 *2 (-1257 *4)) (-5 *1 (-998 *4 *2 *3 *5)) - (-4 *4 (-358)) (-4 *5 (-734 *2 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-654 (-654 (-654 *4)))) (-5 *2 (-654 (-654 *4))) - (-4 *4 (-860)) (-5 *1 (-1201 *4))))) -(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1019)))) - ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1019))))) + (-12 (-5 *2 (-1171)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) + ((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-269))))) +(((*1 *1 *2) (-12 (-5 *2 (-1132)) (-5 *1 (-337))))) +(((*1 *2) + (-12 (-5 *2 (-780)) (-5 *1 (-121 *3)) (-4 *3 (-1256 (-573))))) + ((*1 *2 *2) + (-12 (-5 *2 (-780)) (-5 *1 (-121 *3)) (-4 *3 (-1256 (-573)))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-566)) - (-4 *7 (-960 *3 *5 *6)) - (-5 *2 (-2 (|:| -3715 (-781)) (|:| -1858 *8) (|:| |radicand| *8))) - (-5 *1 (-964 *5 *6 *3 *7 *8)) (-5 *4 (-781)) - (-4 *8 - (-13 (-372) - (-10 -8 (-15 -2943 ($ *7)) (-15 -2966 (*7 $)) (-15 -2977 (*7 $)))))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1172)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) - (-5 *2 (-1048)) (-5 *1 (-767))))) + (-12 (-5 *3 (-653 (-416 (-962 *5)))) (-5 *4 (-653 (-1189))) + (-4 *5 (-565)) (-5 *2 (-653 (-653 (-962 *5)))) (-5 *1 (-1198 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-698 (-323 (-573)))) (-5 *1 (-1043))))) +(((*1 *2 *3) + (-12 (-5 *3 (-780)) (-5 *2 (-1169 (-983))) (-5 *1 (-983))))) (((*1 *2 *3) (|partial| -12 (-5 *3 - (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) - (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) + (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) + (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 @@ -13443,424 +13216,692 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1170 (-227))) + (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -2367 + (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-569))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-654 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-803)) (-4 *3 (-960 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860)) - (-5 *1 (-459 *4 *5 *6 *3))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-516)) (-5 *1 (-287))))) + (-5 *1 (-568))))) +(((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014)))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-573)) (-5 *5 (-698 (-227))) + (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-89 G)))) + (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) + (-5 *2 (-1047)) (-5 *1 (-758))))) +(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-371) (-1215)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1191 (-416 (-573)))) (-5 *2 (-416 (-573))) + (-5 *1 (-192))))) +(((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-97))))) +(((*1 *2 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1230))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-654 - (-654 - (-3 (|:| -2032 (-1190)) - (|:| -2200 (-654 (-3 (|:| S (-1190)) (|:| P (-963 (-574)))))))))) - (-5 *1 (-1194))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-700 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-1231))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195))))) -(((*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-568 *2)) (-4 *2 (-555))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574))))) - (-4 *3 (-1257 *4)) (-5 *1 (-819 *4 *3 *2 *5)) (-4 *2 (-666 *3)) - (-4 *5 (-666 (-417 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-417 *5)) - (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *5 (-1257 *4)) - (-5 *1 (-819 *4 *5 *2 *6)) (-4 *2 (-666 *5)) (-4 *6 (-666 *3))))) + (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-4 *3 (-565)) + (-5 *2 (-1185 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-594)) (-5 *1 (-287))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-698 (-227))) (-5 *5 (-698 (-573))) (-5 *6 (-227)) + (-5 *3 (-573)) (-5 *2 (-1047)) (-5 *1 (-761))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-654 (-388))) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-478)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-478)))) + (-12 (-5 *2 (-653 (-387))) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-653 (-387))) (-5 *1 (-477)))) + ((*1 *2 *1) (-12 (-5 *2 (-653 (-387))) (-5 *1 (-477)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-932)) (-5 *4 (-884)) (-5 *2 (-1286)) (-5 *1 (-1282)))) + (-12 (-5 *3 (-931)) (-5 *4 (-883)) (-5 *2 (-1285)) (-5 *1 (-1281)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-932)) (-5 *4 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1113)) (-4 *4 (-13 (-1062) (-897 *3) (-624 (-903 *3)))) - (-5 *2 (-654 (-1089 *3 *4 *5))) (-5 *1 (-1090 *3 *4 *5)) - (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3))))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4457)) (-4 *1 (-250 *2)) (-4 *2 (-1231)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1231)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1231)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2)) (-4 *2 (-1231)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4457)) (-4 *1 (-1269 *2)) (-4 *2 (-1231))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1062)) (-4 *5 (-803)) (-4 *3 (-860)) - (-5 *2 (-2 (|:| -1858 *1) (|:| |gap| (-781)) (|:| -2766 *1))) - (-4 *1 (-1078 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *2 (-2 (|:| -1858 *1) (|:| |gap| (-781)) (|:| -2766 *1))) - (-4 *1 (-1078 *3 *4 *5))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1217 *3)) (-4 *3 (-1113))))) -(((*1 *2 *3) (-12 (-5 *3 (-654 (-932))) (-5 *2 (-781)) (-5 *1 (-600))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3904 *6) (|:| |sol?| (-112))) (-574) - *6)) - (-4 *6 (-372)) (-4 *7 (-1257 *6)) - (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6))) - (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1257 *2)) (-4 *2 (-1235)) (-5 *1 (-149 *2 *4 *3)) - (-4 *3 (-1257 (-417 *4)))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1411 *1) (|:| -2766 *1))) (-4 *1 (-315)))) - ((*1 *2 *1 *1) - (|partial| -12 (-4 *3 (-1113)) - (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-395 *3)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1411 (-781)) (|:| -2766 (-781)))) - (-5 *1 (-781)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| -1411 *3) (|:| -2766 *3))) - (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4))))) -(((*1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-377)) (-4 *2 (-1113))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *3 (-1113)) (-4 *4 (-1113)) - (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-254))))) + (-12 (-5 *3 (-931)) (-5 *4 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281))))) (((*1 *2 *1) - (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1017 *3)) (-14 *3 (-574))))) -(((*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555))))) -(((*1 *2 *2) - (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-860)) (-5 *1 (-1201 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113))))) + (-12 (-4 *3 (-1112)) (-4 *4 (-13 (-1061) (-896 *3) (-623 (-902 *3)))) + (-5 *2 (-653 (-1088 *3 *4 *5))) (-5 *1 (-1089 *3 *4 *5)) + (-4 *5 (-13 (-439 *4) (-896 *3) (-623 (-902 *3))))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-654 (-270))) (-5 *4 (-1190)) - (-5 *1 (-269 *2)) (-4 *2 (-1231)))) + (-12 (-5 *3 (-653 (-416 (-962 (-573))))) + (-5 *2 (-653 (-653 (-301 (-962 *4))))) (-5 *1 (-388 *4)) + (-4 *4 (-13 (-857) (-371))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-654 (-270))) (-5 *4 (-1190)) (-5 *2 (-52)) - (-5 *1 (-270))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-566) (-1051 (-574)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1216) (-440 (-171 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1190)) (-4 *4 (-13 (-566) (-1051 (-574)))) - (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 (-171 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-462) (-1051 (-574)) (-649 (-574)))) - (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1190)) - (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) - (-5 *1 (-1220 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *4)))))) + (-12 (-5 *3 (-653 (-301 (-416 (-962 (-573)))))) + (-5 *2 (-653 (-653 (-301 (-962 *4))))) (-5 *1 (-388 *4)) + (-4 *4 (-13 (-857) (-371))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-416 (-962 (-573)))) (-5 *2 (-653 (-301 (-962 *4)))) + (-5 *1 (-388 *4)) (-4 *4 (-13 (-857) (-371))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-301 (-416 (-962 (-573))))) + (-5 *2 (-653 (-301 (-962 *4)))) (-5 *1 (-388 *4)) + (-4 *4 (-13 (-857) (-371))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1189)) + (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) + (-4 *4 (-13 (-29 *6) (-1215) (-969))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -3914 (-653 *4)))) + (-5 *1 (-661 *6 *4 *3)) (-4 *3 (-665 *4)))) + ((*1 *2 *3 *2 *4 *2 *5) + (|partial| -12 (-5 *4 (-1189)) (-5 *5 (-653 *2)) + (-4 *2 (-13 (-29 *6) (-1215) (-969))) + (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) + (-5 *1 (-661 *6 *2 *3)) (-4 *3 (-665 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-698 *5)) (-4 *5 (-371)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1280 *5) "failed")) + (|:| -3914 (-653 (-1280 *5))))) + (-5 *1 (-676 *5)) (-5 *4 (-1280 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-653 *5))) (-4 *5 (-371)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1280 *5) "failed")) + (|:| -3914 (-653 (-1280 *5))))) + (-5 *1 (-676 *5)) (-5 *4 (-1280 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-698 *5)) (-4 *5 (-371)) + (-5 *2 + (-653 + (-2 (|:| |particular| (-3 (-1280 *5) "failed")) + (|:| -3914 (-653 (-1280 *5)))))) + (-5 *1 (-676 *5)) (-5 *4 (-653 (-1280 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-653 *5))) (-4 *5 (-371)) + (-5 *2 + (-653 + (-2 (|:| |particular| (-3 (-1280 *5) "failed")) + (|:| -3914 (-653 (-1280 *5)))))) + (-5 *1 (-676 *5)) (-5 *4 (-653 (-1280 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-371)) (-4 *6 (-13 (-381 *5) (-10 -7 (-6 -4456)))) + (-4 *4 (-13 (-381 *5) (-10 -7 (-6 -4456)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) + (-5 *1 (-677 *5 *6 *4 *3)) (-4 *3 (-696 *5 *6 *4)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-371)) (-4 *6 (-13 (-381 *5) (-10 -7 (-6 -4456)))) + (-4 *7 (-13 (-381 *5) (-10 -7 (-6 -4456)))) + (-5 *2 + (-653 + (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3914 (-653 *7))))) + (-5 *1 (-677 *5 *6 *7 *3)) (-5 *4 (-653 *7)) + (-4 *3 (-696 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-962 *5))) (-5 *4 (-653 (-1189))) (-4 *5 (-565)) + (-5 *2 (-653 (-653 (-301 (-416 (-962 *5)))))) (-5 *1 (-779 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 (-962 *4))) (-4 *4 (-565)) + (-5 *2 (-653 (-653 (-301 (-416 (-962 *4)))))) (-5 *1 (-779 *4)))) + ((*1 *2 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1189)) + (-4 *5 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) + (-5 *1 (-781 *5 *2)) (-4 *2 (-13 (-29 *5) (-1215) (-969))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-698 *7)) (-5 *5 (-1189)) + (-4 *7 (-13 (-29 *6) (-1215) (-969))) + (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) + (-5 *2 + (-2 (|:| |particular| (-1280 *7)) (|:| -3914 (-653 (-1280 *7))))) + (-5 *1 (-811 *6 *7)) (-5 *4 (-1280 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-698 *6)) (-5 *4 (-1189)) + (-4 *6 (-13 (-29 *5) (-1215) (-969))) + (-4 *5 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) + (-5 *2 (-653 (-1280 *6))) (-5 *1 (-811 *5 *6)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-653 (-301 *7))) (-5 *4 (-653 (-115))) + (-5 *5 (-1189)) (-4 *7 (-13 (-29 *6) (-1215) (-969))) + (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) + (-5 *2 + (-2 (|:| |particular| (-1280 *7)) (|:| -3914 (-653 (-1280 *7))))) + (-5 *1 (-811 *6 *7)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-653 *7)) (-5 *4 (-653 (-115))) + (-5 *5 (-1189)) (-4 *7 (-13 (-29 *6) (-1215) (-969))) + (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) + (-5 *2 + (-2 (|:| |particular| (-1280 *7)) (|:| -3914 (-653 (-1280 *7))))) + (-5 *1 (-811 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-301 *7)) (-5 *4 (-115)) (-5 *5 (-1189)) + (-4 *7 (-13 (-29 *6) (-1215) (-969))) + (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) + (-5 *2 + (-3 (-2 (|:| |particular| *7) (|:| -3914 (-653 *7))) *7 "failed")) + (-5 *1 (-811 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-115)) (-5 *5 (-1189)) + (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) + (-5 *2 + (-3 (-2 (|:| |particular| *3) (|:| -3914 (-653 *3))) *3 "failed")) + (-5 *1 (-811 *6 *3)) (-4 *3 (-13 (-29 *6) (-1215) (-969))))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-301 *2)) (-5 *4 (-115)) (-5 *5 (-653 *2)) + (-4 *2 (-13 (-29 *6) (-1215) (-969))) (-5 *1 (-811 *6 *2)) + (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))))) + ((*1 *2 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-301 *2)) (-5 *5 (-653 *2)) + (-4 *2 (-13 (-29 *6) (-1215) (-969))) + (-4 *6 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) + (-5 *1 (-811 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-817)) (-5 *2 (-1047)) (-5 *1 (-814)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-817)) (-5 *4 (-1075)) (-5 *2 (-1047)) (-5 *1 (-814)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1280 (-323 (-387)))) (-5 *4 (-387)) (-5 *5 (-653 *4)) + (-5 *2 (-1047)) (-5 *1 (-814)))) + ((*1 *2 *3 *4 *4 *5 *4) + (-12 (-5 *3 (-1280 (-323 (-387)))) (-5 *4 (-387)) (-5 *5 (-653 *4)) + (-5 *2 (-1047)) (-5 *1 (-814)))) + ((*1 *2 *3 *4 *4 *5 *6 *4) + (-12 (-5 *3 (-1280 (-323 *4))) (-5 *5 (-653 (-387))) + (-5 *6 (-323 (-387))) (-5 *4 (-387)) (-5 *2 (-1047)) (-5 *1 (-814)))) + ((*1 *2 *3 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1280 (-323 (-387)))) (-5 *4 (-387)) (-5 *5 (-653 *4)) + (-5 *2 (-1047)) (-5 *1 (-814)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4) + (-12 (-5 *3 (-1280 (-323 *4))) (-5 *5 (-653 (-387))) + (-5 *6 (-323 (-387))) (-5 *4 (-387)) (-5 *2 (-1047)) (-5 *1 (-814)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) + (-12 (-5 *3 (-1280 (-323 *4))) (-5 *5 (-653 (-387))) + (-5 *6 (-323 (-387))) (-5 *4 (-387)) (-5 *2 (-1047)) (-5 *1 (-814)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 + (-5 *5 + (-1 + (-3 (-2 (|:| |particular| *6) (|:| -3914 (-653 *6))) "failed") + *7 *6)) + (-4 *6 (-371)) (-4 *7 (-665 *6)) + (-5 *2 (-2 (|:| |particular| (-1280 *6)) (|:| -3914 (-698 *6)))) + (-5 *1 (-822 *6 *7)) (-5 *3 (-698 *6)) (-5 *4 (-1280 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-908)) (-5 *2 (-1047)) (-5 *1 (-907)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-908)) (-5 *4 (-1075)) (-5 *2 (-1047)) (-5 *1 (-907)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) + (-12 (-5 *4 (-780)) (-5 *6 (-653 (-653 (-323 *3)))) (-5 *7 (-1171)) + (-5 *8 (-227)) (-5 *5 (-653 (-323 (-387)))) (-5 *3 (-387)) + (-5 *2 (-1047)) (-5 *1 (-907)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) + (-12 (-5 *4 (-780)) (-5 *6 (-653 (-653 (-323 *3)))) (-5 *7 (-1171)) + (-5 *5 (-653 (-323 (-387)))) (-5 *3 (-387)) (-5 *2 (-1047)) + (-5 *1 (-907)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-962 (-416 (-573)))) (-5 *2 (-653 (-387))) + (-5 *1 (-1035)) (-5 *4 (-387)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-962 (-573))) (-5 *2 (-653 (-387))) (-5 *1 (-1035)) + (-5 *4 (-387)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) + (-5 *2 (-653 *4)) (-5 *1 (-1140 *3 *4)) (-4 *3 (-1256 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) + (-5 *2 (-653 (-301 (-323 *4)))) (-5 *1 (-1143 *4)) + (-5 *3 (-323 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) + (-5 *2 (-653 (-301 (-323 *4)))) (-5 *1 (-1143 *4)) + (-5 *3 (-301 (-323 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1189)) + (-4 *5 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) + (-5 *2 (-653 (-301 (-323 *5)))) (-5 *1 (-1143 *5)) + (-5 *3 (-301 (-323 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1189)) + (-4 *5 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) + (-5 *2 (-653 (-301 (-323 *5)))) (-5 *1 (-1143 *5)) + (-5 *3 (-323 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-653 (-1189))) + (-4 *5 (-13 (-314) (-1050 (-573)) (-648 (-573)) (-148))) + (-5 *2 (-653 (-653 (-301 (-323 *5))))) (-5 *1 (-1143 *5)) + (-5 *3 (-653 (-301 (-323 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-416 (-962 *5)))) (-5 *4 (-653 (-1189))) + (-4 *5 (-565)) (-5 *2 (-653 (-653 (-301 (-416 (-962 *5)))))) + (-5 *1 (-1198 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-653 (-1189))) (-4 *5 (-565)) + (-5 *2 (-653 (-653 (-301 (-416 (-962 *5)))))) (-5 *1 (-1198 *5)) + (-5 *3 (-653 (-301 (-416 (-962 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 (-416 (-962 *4)))) (-4 *4 (-565)) + (-5 *2 (-653 (-653 (-301 (-416 (-962 *4)))))) (-5 *1 (-1198 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-565)) (-5 *2 (-653 (-653 (-301 (-416 (-962 *4)))))) + (-5 *1 (-1198 *4)) (-5 *3 (-653 (-301 (-416 (-962 *4))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1189)) (-4 *5 (-565)) + (-5 *2 (-653 (-301 (-416 (-962 *5))))) (-5 *1 (-1198 *5)) + (-5 *3 (-416 (-962 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1189)) (-4 *5 (-565)) + (-5 *2 (-653 (-301 (-416 (-962 *5))))) (-5 *1 (-1198 *5)) + (-5 *3 (-301 (-416 (-962 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-565)) (-5 *2 (-653 (-301 (-416 (-962 *4))))) + (-5 *1 (-1198 *4)) (-5 *3 (-416 (-962 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-565)) (-5 *2 (-653 (-301 (-416 (-962 *4))))) + (-5 *1 (-1198 *4)) (-5 *3 (-301 (-416 (-962 *4))))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1189)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-712 *3)) + (-4 *3 (-623 (-545))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1189)) (-5 *2 (-1 (-227) (-227) (-227))) + (-5 *1 (-712 *3)) (-4 *3 (-623 (-545)))))) +(((*1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-371)) (-5 *1 (-1037 *3 *2)) (-4 *2 (-665 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-371)) (-5 *2 (-2 (|:| -4122 *3) (|:| -4296 (-653 *5)))) + (-5 *1 (-1037 *5 *3)) (-5 *4 (-653 *5)) (-4 *3 (-665 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))) - (-4 *5 (-1257 *4)) (-5 *2 (-654 (-663 (-417 *5)))) - (-5 *1 (-667 *4 *5)) (-5 *3 (-663 (-417 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-1113))))) -(((*1 *2 *2 *2) (-12 + (-5 *3 + (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) + (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) (-5 *2 - (-2 (|:| -1882 (-699 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-699 *3)))) - (-4 *3 (-13 (-315) (-10 -8 (-15 -2827 ((-428 $) $))))) - (-4 *4 (-1257 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4))))) -(((*1 *1) (-5 *1 (-607)))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-654 *6)) (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) - (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) - (-4 *3 (-566))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-960 *4 *5 *6))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-932)) (-4 *4 (-377)) (-4 *4 (-372)) (-5 *2 (-1186 *1)) - (-4 *1 (-337 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1186 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-174)) (-4 *3 (-372)) - (-4 *2 (-1257 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1281 *4)) (-4 *4 (-358)) (-5 *2 (-1186 *4)) - (-5 *1 (-538 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1286)) (-5 *1 (-388)))) - ((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-388))))) -(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1231)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) - (-4 *4 (-860)))) - ((*1 *1 *1) (-12 (-4 *1 (-1269 *2)) (-4 *2 (-1231))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-654 (-1230))) (-5 *3 (-1230)) (-5 *1 (-691))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-932)) (-5 *2 (-478)) (-5 *1 (-1282))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1078 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-486 *4 *5 *6 *7)) (|:| -2002 (-654 *7)))) - (-5 *1 (-990 *4 *5 *6 *7)) (-5 *3 (-654 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-663 (-417 *2))) (-4 *2 (-1257 *4)) (-5 *1 (-820 *4 *2)) - (-4 *4 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574))))))) + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-194))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2277 *3) (|:| |coef1| (-791 *3)))) + (-5 *1 (-791 *3)) (-4 *3 (-565)) (-4 *3 (-1061))))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1112) (-34))) + (-5 *2 (-112)) (-5 *1 (-1152 *4 *5)) (-4 *4 (-13 (-1112) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-427 *3)) (-5 *1 (-924 *3)) (-4 *3 (-314))))) +(((*1 *1 *2) (-12 (-5 *2 (-653 (-931))) (-5 *1 (-1305))))) +(((*1 *2 *3) + (-12 (-5 *3 (-698 (-416 (-962 (-573))))) + (-5 *2 (-653 (-698 (-323 (-573))))) (-5 *1 (-1043))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-253))))) +(((*1 *2 *1) (-12 (-4 *1 (-857)) (-5 *2 (-573)))) + ((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-915 *3)) (-4 *3 (-1112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1080 *4 *3)) (-4 *4 (-13 (-857) (-371))) + (-4 *3 (-1256 *4)) (-5 *2 (-573)))) ((*1 *2 *3) - (-12 (-5 *3 (-664 *2 (-417 *2))) (-4 *2 (-1257 *4)) - (-5 *1 (-820 *4 *2)) - (-4 *4 (-13 (-372) (-148) (-1051 (-574)) (-1051 (-417 (-574)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1231))))) -(((*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) - ((*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) - ((*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254))))) -(((*1 *2 *3 *1) - (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-1193)) (-5 *3 (-1190))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264))))) + (|partial| -12 (-4 *4 (-13 (-565) (-1050 *2) (-648 *2) (-461))) + (-5 *2 (-573)) (-5 *1 (-1128 *4 *3)) + (-4 *3 (-13 (-27) (-1215) (-439 *4))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1189)) (-5 *5 (-852 *3)) + (-4 *3 (-13 (-27) (-1215) (-439 *6))) + (-4 *6 (-13 (-565) (-1050 *2) (-648 *2) (-461))) (-5 *2 (-573)) + (-5 *1 (-1128 *6 *3)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-1189)) (-5 *5 (-1171)) + (-4 *6 (-13 (-565) (-1050 *2) (-648 *2) (-461))) (-5 *2 (-573)) + (-5 *1 (-1128 *6 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *6))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-461)) (-5 *2 (-573)) + (-5 *1 (-1129 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1189)) (-5 *5 (-852 (-416 (-962 *6)))) + (-5 *3 (-416 (-962 *6))) (-4 *6 (-461)) (-5 *2 (-573)) + (-5 *1 (-1129 *6)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-416 (-962 *6))) (-5 *4 (-1189)) + (-5 *5 (-1171)) (-4 *6 (-461)) (-5 *2 (-573)) (-5 *1 (-1129 *6)))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-573)) (-5 *1 (-1212 *3)) (-4 *3 (-1061))))) +(((*1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-135))))) +(((*1 *1 *1) (-4 *1 (-175))) + ((*1 *1 *1) + (-12 (-4 *1 (-372 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1185 *2)) (-4 *2 (-439 *4)) (-4 *4 (-565)) + (-5 *1 (-32 *4 *2))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1113)) (-4 *2 (-911 *5)) (-5 *1 (-702 *5 *2 *3 *4)) - (-4 *3 (-382 *2)) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4456))))))) -(((*1 *2 *2) (-12 (-5 *2 (-324 (-227))) (-5 *1 (-212))))) -(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174))))) + (|partial| -12 (-5 *3 (-653 (-269))) (-5 *4 (-1189)) + (-5 *1 (-268 *2)) (-4 *2 (-1230)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-653 (-269))) (-5 *4 (-1189)) (-5 *2 (-52)) + (-5 *1 (-269))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-1001 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-1120 *4 *5 *6 *7 *8)) (-4 *8 (-1084 *4 *5 *6 *7))))) -(((*1 *1 *1) (-5 *1 (-1076)))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-115)) (-5 *4 (-781)) - (-4 *5 (-13 (-462) (-1051 (-574)))) (-4 *5 (-566)) - (-5 *1 (-41 *5 *2)) (-4 *2 (-440 *5)) - (-4 *2 - (-13 (-372) (-310) - (-10 -8 (-15 -2966 ((-1138 *5 (-622 $)) $)) - (-15 -2977 ((-1138 *5 (-622 $)) $)) - (-15 -2943 ($ (-1138 *5 (-622 $)))))))))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-5 *2 (-654 (-1040 *5 *6 *7 *3))) (-5 *1 (-1040 *5 *6 *7 *3)) - (-4 *3 (-1078 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-654 *6)) (-4 *1 (-1084 *3 *4 *5 *6)) (-4 *3 (-462)) - (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1084 *3 *4 *5 *2)) (-4 *3 (-462)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-5 *2 (-654 (-1159 *5 *6 *7 *3))) (-5 *1 (-1159 *5 *6 *7 *3)) - (-4 *3 (-1078 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-1106 *3)) (-4 *3 (-1231)) (-5 *2 (-574))))) -(((*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1231)) (-5 *2 (-112))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-388)) (-5 *1 (-1076))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) - (-4 *3 (-376 *4)))) - ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-148) (-27) (-1051 (-574)) (-1051 (-417 (-574))))) - (-4 *5 (-1257 *4)) (-5 *2 (-1186 (-417 *5))) (-5 *1 (-625 *4 *5)) - (-5 *3 (-417 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1257 *5)) - (-4 *5 (-13 (-148) (-27) (-1051 (-574)) (-1051 (-417 (-574))))) - (-5 *2 (-1186 (-417 *6))) (-5 *1 (-625 *5 *6)) (-5 *3 (-417 *6))))) + (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2277 *4))) + (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) - (-5 *2 (-112)) (-5 *1 (-1000 *3 *4 *5 *6)) - (-4 *6 (-960 *3 *5 *4)))) + (-12 (-4 *1 (-613 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1230)) + (-5 *2 (-653 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570))))) +(((*1 *2 *2) (-12 (-5 *2 (-698 *3)) (-4 *3 (-314)) (-5 *1 (-709 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-931)) (-5 *2 (-1285)) (-5 *1 (-216 *4)) + (-4 *4 + (-13 (-859) + (-10 -8 (-15 -2198 ((-1171) $ (-1189))) (-15 -1402 (*2 $)) + (-15 -1974 (*2 $))))))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-13 (-1113) (-34))) - (-4 *4 (-13 (-1113) (-34)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-960 *4 *6 *5)) (-4 *4 (-462)) - (-4 *5 (-860)) (-4 *6 (-803)) (-5 *1 (-1000 *4 *5 *6 *3))))) + (-12 (-5 *2 (-1285)) (-5 *1 (-216 *3)) + (-4 *3 + (-13 (-859) + (-10 -8 (-15 -2198 ((-1171) $ (-1189))) (-15 -1402 (*2 $)) + (-15 -1974 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-511))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-653 *1)) (-4 *1 (-1077 *4 *5 *6)) (-4 *4 (-1061)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1077 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *5 (-859)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1223 *3 *4 *5 *6)) (-4 *3 (-565)) (-4 *4 (-802)) + (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1223 *4 *5 *6 *3)) (-4 *4 (-565)) (-4 *5 (-802)) + (-4 *6 (-859)) (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062))))) -(((*1 *2 *3) - (-12 (-4 *4 (-358)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) - (-4 *3 (-1257 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-1186 *3))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1231)) (-4 *3 (-382 *2)) - (-4 *4 (-382 *2)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4457)) (-4 *1 (-614 *3 *2)) (-4 *3 (-1113)) - (-4 *2 (-1231))))) -(((*1 *2 *2) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-1257 (-574))) (-5 *1 (-496 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-302 (-853 *3))) (-4 *3 (-13 (-27) (-1216) (-440 *5))) - (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) - (-5 *2 - (-3 (-853 *3) - (-2 (|:| |leftHandLimit| (-3 (-853 *3) "failed")) - (|:| |rightHandLimit| (-3 (-853 *3) "failed"))) - "failed")) - (-5 *1 (-646 *5 *3)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-302 *3)) (-5 *5 (-1172)) - (-4 *3 (-13 (-27) (-1216) (-440 *6))) - (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574)))) - (-5 *2 (-853 *3)) (-5 *1 (-646 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-302 (-853 (-963 *5)))) (-4 *5 (-462)) - (-5 *2 - (-3 (-853 (-417 (-963 *5))) - (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-963 *5))) "failed")) - (|:| |rightHandLimit| (-3 (-853 (-417 (-963 *5))) "failed"))) - "failed")) - (-5 *1 (-647 *5)) (-5 *3 (-417 (-963 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-302 (-417 (-963 *5)))) (-5 *3 (-417 (-963 *5))) - (-4 *5 (-462)) - (-5 *2 - (-3 (-853 *3) - (-2 (|:| |leftHandLimit| (-3 (-853 *3) "failed")) - (|:| |rightHandLimit| (-3 (-853 *3) "failed"))) - "failed")) - (-5 *1 (-647 *5)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-302 (-417 (-963 *6)))) (-5 *5 (-1172)) - (-5 *3 (-417 (-963 *6))) (-4 *6 (-462)) (-5 *2 (-853 *3)) - (-5 *1 (-647 *6))))) -(((*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1216)))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4457)) (-4 *1 (-120 *2)) (-4 *2 (-1231))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-5 *1 (-335 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-5 *1 (-526 *3 *4)) - (-14 *4 (-574))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-185 (-140)))) (-5 *1 (-141))))) -(((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-427 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-749 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1186 *4)) (-4 *4 (-358)) - (-4 *2 - (-13 (-412) - (-10 -7 (-15 -2943 (*2 *4)) (-15 -4115 ((-932) *2)) - (-15 -1882 ((-1281 *2) (-932))) (-15 -2661 (*2 *2))))) - (-5 *1 (-365 *2 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-326)) (-5 *3 (-227))))) + (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) + (-4 *4 (-859)) (-4 *2 (-461))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-653 (-698 *6))) (-5 *4 (-112)) (-5 *5 (-573)) + (-5 *2 (-698 *6)) (-5 *1 (-1041 *6)) (-4 *6 (-371)) (-4 *6 (-1061)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-653 (-698 *4))) (-5 *2 (-698 *4)) (-5 *1 (-1041 *4)) + (-4 *4 (-371)) (-4 *4 (-1061)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-653 (-698 *5))) (-5 *4 (-573)) (-5 *2 (-698 *5)) + (-5 *1 (-1041 *5)) (-4 *5 (-371)) (-4 *5 (-1061))))) +(((*1 *1 *1) (-4 *1 (-878 *2)))) +(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1230)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) + (-4 *4 (-859)))) + ((*1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230))))) +(((*1 *2 *1) + (-12 (-4 *1 (-613 *2 *3)) (-4 *3 (-1230)) (-4 *2 (-1112)) + (-4 *2 (-859))))) +(((*1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283)))) + ((*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-1283))))) +(((*1 *2 *1) (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-1193))))) +(((*1 *2 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1230))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-699 (-171 (-417 (-574))))) - (-5 *2 - (-654 - (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-574)) - (|:| |outvect| (-654 (-699 (-171 *4))))))) - (-5 *1 (-774 *4)) (-4 *4 (-13 (-372) (-858)))))) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1112)) (-4 *5 (-1112)) + (-5 *2 (-1 *5)) (-5 *1 (-692 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) + ((*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) + ((*1 *2 *1) (-12 (-5 *2 (-254)) (-5 *1 (-253))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-931)) (-5 *4 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281))))) +(((*1 *2 *1) + (-12 (-4 *2 (-13 (-857) (-371))) (-5 *1 (-1073 *2 *3)) + (-4 *3 (-1256 *2))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-869)) (-5 *3 (-129)) (-5 *2 (-780))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + ((*1 *2 *1) + (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) + (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-731)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-735)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-1170 (-227))) (-5 *2 (-654 (-1172))) (-5 *1 (-194)))) + (-12 (-5 *3 (-1169 (-227))) (-5 *2 (-653 (-1171))) (-5 *1 (-194)))) ((*1 *2 *3) - (-12 (-5 *3 (-1170 (-227))) (-5 *2 (-654 (-1172))) (-5 *1 (-308)))) + (-12 (-5 *3 (-1169 (-227))) (-5 *2 (-653 (-1171))) (-5 *1 (-307)))) ((*1 *2 *3) - (-12 (-5 *3 (-1170 (-227))) (-5 *2 (-654 (-1172))) (-5 *1 (-313))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1186 *1)) (-4 *1 (-1025))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-516)) (-5 *3 (-654 (-886))) (-5 *1 (-493))))) + (-12 (-5 *3 (-1169 (-227))) (-5 *2 (-653 (-1171))) (-5 *1 (-312))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) +(((*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-387)) (-5 *1 (-1052))))) +(((*1 *2 *2) + (-12 (-5 *2 (-653 (-653 *3))) (-4 *3 (-859)) (-5 *1 (-1200 *3))))) +(((*1 *1 *2 *3 *3 *4 *5) + (-12 (-5 *2 (-653 (-653 (-953 (-227))))) (-5 *3 (-653 (-883))) + (-5 *4 (-653 (-931))) (-5 *5 (-653 (-269))) (-5 *1 (-477)))) + ((*1 *1 *2 *3 *3 *4) + (-12 (-5 *2 (-653 (-653 (-953 (-227))))) (-5 *3 (-653 (-883))) + (-5 *4 (-653 (-931))) (-5 *1 (-477)))) + ((*1 *1 *2) (-12 (-5 *2 (-653 (-653 (-953 (-227))))) (-5 *1 (-477)))) + ((*1 *1 *1) (-5 *1 (-477)))) +(((*1 *2 *2) (-12 (-5 *2 (-976 *3)) (-4 *3 (-1112)) (-5 *1 (-977 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-148)) (-4 *2 (-314)) (-4 *2 (-461)) (-4 *3 (-859)) + (-4 *4 (-802)) (-5 *1 (-999 *2 *3 *4 *5)) (-4 *5 (-959 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-323 (-573))) (-5 *1 (-1131)))) + ((*1 *2 *2) + (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1215)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1230)) (-5 *2 (-573))))) (((*1 *2 *1) - (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-654 (-173)))))) -(((*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) + (|partial| -12 (-4 *3 (-1061)) (-4 *3 (-1112)) + (-5 *2 (-2 (|:| |val| *1) (|:| -3907 (-573)))) (-4 *1 (-439 *3)))) + ((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| |val| (-902 *3)) (|:| -3907 (-902 *3)))) + (-5 *1 (-902 *3)) (-4 *3 (-1112)))) ((*1 *2 *3) - (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928))))) -(((*1 *2 *3) - (-12 (-5 *3 (-622 *5)) (-4 *5 (-440 *4)) (-4 *4 (-1051 (-574))) - (-4 *4 (-566)) (-5 *2 (-1186 *5)) (-5 *1 (-32 *4 *5)))) + (|partial| -12 (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1061)) + (-4 *7 (-959 *6 *4 *5)) + (-5 *2 (-2 (|:| |val| *3) (|:| -3907 (-573)))) + (-5 *1 (-960 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-371) + (-10 -8 (-15 -2942 ($ *7)) (-15 -2965 (*7 $)) + (-15 -2975 (*7 $)))))))) +(((*1 *2 *1) + (-12 (-5 *2 (-653 (-653 (-780)))) (-5 *1 (-914 *3)) (-4 *3 (-1112))))) +(((*1 *1) (-5 *1 (-477)))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-953 *5)) (-5 *3 (-780)) (-4 *5 (-1061)) + (-5 *1 (-1177 *4 *5)) (-14 *4 (-931))))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-757))))) +(((*1 *2 *2) + (-12 (-4 *3 (-565)) (-4 *4 (-1004 *3)) (-5 *1 (-143 *3 *4 *2)) + (-4 *2 (-381 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-565)) (-4 *5 (-1004 *4)) (-4 *2 (-381 *4)) + (-5 *1 (-512 *4 *5 *2 *3)) (-4 *3 (-381 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-622 *1)) (-4 *1 (-1062)) (-4 *1 (-310)) - (-5 *2 (-1186 *1))))) + (-12 (-5 *3 (-698 *5)) (-4 *5 (-1004 *4)) (-4 *4 (-565)) + (-5 *2 (-698 *4)) (-5 *1 (-702 *4 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-565)) (-4 *4 (-1004 *3)) (-5 *1 (-1249 *3 *4 *2)) + (-4 *2 (-1256 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-357)) (-5 *2 (-427 (-1185 (-1185 *4)))) + (-5 *1 (-1228 *4)) (-5 *3 (-1185 (-1185 *4)))))) +(((*1 *2 *1) (-12 (-5 *1 (-924 *2)) (-4 *2 (-314))))) (((*1 *2 *1) - (-12 (-5 *2 (-1170 (-417 *3))) (-5 *1 (-176 *3)) (-4 *3 (-315))))) + (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) + (-4 *5 (-1256 (-416 *4))) + (-5 *2 (-2 (|:| |num| (-1280 *4)) (|:| |den| *4)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1185 *9)) (-5 *4 (-653 *7)) (-5 *5 (-653 (-653 *8))) + (-4 *7 (-859)) (-4 *8 (-314)) (-4 *9 (-959 *8 *6 *7)) (-4 *6 (-802)) + (-5 *2 + (-2 (|:| |upol| (-1185 *8)) (|:| |Lval| (-653 *8)) + (|:| |Lfact| + (-653 (-2 (|:| -4218 (-1185 *8)) (|:| -3907 (-573))))) + (|:| |ctpol| *8))) + (-5 *1 (-751 *6 *7 *8 *9))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -1857 *3) (|:| |gap| (-780)) (|:| -3152 (-791 *3)) + (|:| -3132 (-791 *3)))) + (-5 *1 (-791 *3)) (-4 *3 (-1061)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1061)) (-4 *5 (-802)) (-4 *3 (-859)) + (-5 *2 + (-2 (|:| -1857 *1) (|:| |gap| (-780)) (|:| -3152 *1) + (|:| -3132 *1))) + (-4 *1 (-1077 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) + (-5 *2 + (-2 (|:| -1857 *1) (|:| |gap| (-780)) (|:| -3152 *1) + (|:| -3132 *1))) + (-4 *1 (-1077 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1078 *5 *6 *7)) - (-4 *9 (-1084 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) - (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1082 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1078 *5 *6 *7)) - (-4 *9 (-1122 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) - (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1158 *5 *6 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 *4)) (-4 *4 (-1113)) (-5 *2 (-1286)) - (-5 *1 (-1232 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-654 *4)) (-4 *4 (-1113)) (-5 *2 (-1286)) - (-5 *1 (-1232 *4))))) + (-12 (-5 *3 (-653 *6)) (-5 *4 (-1189)) (-4 *6 (-439 *5)) + (-4 *5 (-1112)) (-5 *2 (-653 (-621 *6))) (-5 *1 (-582 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-445))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-780)) (-4 *4 (-357)) (-5 *1 (-218 *4 *2)) + (-4 *2 (-1256 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-5 *2 (-653 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-698 *8)) (-5 *4 (-780)) (-4 *8 (-959 *5 *7 *6)) + (-4 *5 (-13 (-314) (-148))) (-4 *6 (-13 (-859) (-623 (-1189)))) + (-4 *7 (-802)) + (-5 *2 + (-653 + (-2 (|:| |det| *8) (|:| |rows| (-653 (-573))) + (|:| |cols| (-653 (-573)))))) + (-5 *1 (-934 *5 *6 *7 *8))))) +(((*1 *1) (-5 *1 (-812)))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-653 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-780)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-802)) (-4 *6 (-959 *4 *3 *5)) (-4 *4 (-461)) (-4 *5 (-859)) + (-5 *1 (-458 *4 *3 *5 *6))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-115)) (-5 *4 (-780)) + (-4 *5 (-13 (-461) (-1050 (-573)))) (-4 *5 (-565)) + (-5 *1 (-41 *5 *2)) (-4 *2 (-439 *5)) + (-4 *2 + (-13 (-371) (-309) + (-10 -8 (-15 -2965 ((-1137 *5 (-621 $)) $)) + (-15 -2975 ((-1137 *5 (-621 $)) $)) + (-15 -2942 ($ (-1137 *5 (-621 $)))))))))) (((*1 *2 *3) - (-12 (-4 *4 (-358)) (-5 *2 (-969 (-1186 *4))) (-5 *1 (-366 *4)) - (-5 *3 (-1186 *4))))) + (-12 (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *2 (-416 (-573))) + (-5 *1 (-442 *4 *3)) (-4 *3 (-439 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-621 *3)) (-4 *3 (-439 *5)) + (-4 *5 (-13 (-565) (-1050 (-573)))) (-5 *2 (-1185 (-416 (-573)))) + (-5 *1 (-442 *5 *3))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1047)) + (-5 *1 (-755))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-780)) (-4 *1 (-1256 *3)) (-4 *3 (-1061))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-416 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1256 *5)) + (-5 *1 (-736 *5 *2)) (-4 *5 (-371))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-489))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015)))))) + (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1215)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1172)) (-5 *2 (-654 (-701 (-288)))) (-5 *1 (-169))))) + (-12 (-5 *3 (-653 (-653 (-653 *4)))) (-5 *2 (-653 (-653 *4))) + (-5 *1 (-1200 *4)) (-4 *4 (-859))))) +(((*1 *2 *2) + (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) + (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-989 *3 *4 *5 *6))))) (((*1 *2) - (-12 (-4 *4 (-1235)) (-4 *5 (-1257 *4)) (-4 *6 (-1257 (-417 *5))) - (-5 *2 (-654 (-654 *4))) (-5 *1 (-350 *3 *4 *5 *6)) - (-4 *3 (-351 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) - (-4 *5 (-1257 (-417 *4))) (-4 *3 (-377)) (-5 *2 (-654 (-654 *3)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768))))) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) + (-4 *3 (-375 *4)))) + ((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-4 *1 (-331 *2 *4)) (-4 *4 (-132)) - (-4 *2 (-1113)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-370 *2)) (-4 *2 (-1113)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-395 *2)) (-4 *2 (-1113)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) + (-12 (-5 *3 (-573)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1230)) + (-4 *5 (-381 *4)) (-4 *2 (-381 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-4 *2 (-1113)) (-5 *1 (-659 *2 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) + (-12 (-5 *3 (-573)) (-4 *1 (-1065 *4 *5 *6 *7 *2)) (-4 *6 (-1061)) + (-4 *7 (-243 *5 *6)) (-4 *2 (-243 *4 *6))))) (((*1 *2 *1) - (-12 (-5 *2 (-654 (-302 *3))) (-5 *1 (-302 *3)) (-4 *3 (-566)) - (-4 *3 (-1231))))) + (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)) + (-5 *2 (-653 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1112)) + (-5 *2 (-653 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1169 *3)) (-5 *1 (-605 *3)) (-4 *3 (-1061)))) + ((*1 *2 *1) + (-12 (-5 *2 (-653 *3)) (-5 *1 (-744 *3 *4)) (-4 *3 (-1061)) + (-4 *4 (-735)))) + ((*1 *2 *1) (-12 (-4 *1 (-861 *3)) (-4 *3 (-1061)) (-5 *2 (-653 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1271 *3)) (-4 *3 (-1061)) (-5 *2 (-1169 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1256 *4)) (-5 *1 (-816 *4 *2 *3 *5)) + (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *3 (-665 *2)) + (-4 *5 (-665 (-416 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1256 *4)) (-5 *1 (-816 *4 *2 *5 *3)) + (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) (-4 *5 (-665 *2)) + (-4 *3 (-665 (-416 *2)))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1189)) (-5 *4 (-962 (-573))) (-5 *2 (-337)) + (-5 *1 (-339)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1189)) (-5 *4 (-1104 (-962 (-573)))) (-5 *2 (-337)) + (-5 *1 (-339)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-780)) (-5 *1 (-684 *3)) (-4 *3 (-1061)) + (-4 *3 (-1112))))) (((*1 *2 *3) - (-12 (-5 *3 (-491 *4 *5)) (-14 *4 (-654 (-1190))) (-4 *5 (-1062)) - (-5 *2 (-253 *4 *5)) (-5 *1 (-955 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1284)))) - ((*1 *2 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1284))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-860)) (-5 *4 (-654 *6)) - (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-654 *4)))) - (-5 *1 (-1201 *6)) (-5 *5 (-654 *4))))) + (-12 (-5 *3 (-1147)) (-5 *2 (-700 (-287))) (-5 *1 (-169))))) (((*1 *2 *1) - (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) - (-4 *1 (-1078 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-574))) (-5 *4 (-574)) (-5 *2 (-52)) - (-5 *1 (-1018))))) + (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) + (-4 *5 (-381 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-621 *3)) (-5 *5 (-1185 *3)) + (-4 *3 (-13 (-439 *6) (-27) (-1215))) + (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) + (-5 *2 (-2 (|:| -3861 *3) (|:| |coeff| *3))) + (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1112)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-621 *3)) (-5 *5 (-416 (-1185 *3))) + (-4 *3 (-13 (-439 *6) (-27) (-1215))) + (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) + (-5 *2 (-2 (|:| -3861 *3) (|:| |coeff| *3))) + (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1112))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-563 *3)) (-4 *3 (-13 (-413) (-1215))) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *2)) (-4 *2 (-174)))) + ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-425 *3 *2)) (-4 *3 (-426 *2)))) + ((*1 *2) (-12 (-4 *1 (-426 *2)) (-4 *2 (-174))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-330 *3 *4)) (-4 *3 (-1112)) + (-4 *4 (-132)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1112)) (-5 *1 (-369 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-394 *3)) (-4 *3 (-1112)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1112)) (-5 *1 (-658 *3 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1280 (-653 (-2 (|:| -3082 *4) (|:| -2575 (-1132)))))) + (-4 *4 (-357)) (-5 *2 (-698 *4)) (-5 *1 (-354 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-227)) (-5 *5 (-573)) (-5 *2 (-1225 *3)) + (-5 *1 (-799 *3)) (-4 *3 (-986)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-653 (-653 (-953 (-227))))) (-5 *4 (-112)) + (-5 *1 (-1225 *2)) (-4 *2 (-986))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-573)) (-5 *2 (-1285)) (-5 *1 (-914 *4)) + (-4 *4 (-1112)))) + ((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-914 *3)) (-4 *3 (-1112))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) - (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) + (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) + (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 @@ -13875,2916 +13916,2737 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1170 (-227))) + (-3 (|:| |str| (-1169 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -2367 + (|:| -3821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-569))))) + (-5 *1 (-568))))) (((*1 *2 *3) - (-12 (-4 *4 (-1005 *2)) (-4 *2 (-566)) (-5 *1 (-143 *2 *4 *3)) - (-4 *3 (-382 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1005 *2)) (-4 *2 (-566)) (-5 *1 (-513 *2 *4 *5 *3)) - (-4 *5 (-382 *2)) (-4 *3 (-382 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-699 *4)) (-4 *4 (-1005 *2)) (-4 *2 (-566)) - (-5 *1 (-703 *2 *4)))) + (-12 (-5 *3 (-344 *5 *6 *7 *8)) (-4 *5 (-439 *4)) (-4 *6 (-1256 *5)) + (-4 *7 (-1256 (-416 *6))) (-4 *8 (-350 *5 *6 *7)) + (-4 *4 (-13 (-565) (-1050 (-573)))) (-5 *2 (-112)) + (-5 *1 (-921 *4 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-1005 *2)) (-4 *2 (-566)) (-5 *1 (-1250 *2 *4 *3)) - (-4 *3 (-1257 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-701 *3)) (-5 *1 (-977 *3)) (-4 *3 (-1113))))) -(((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-338))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-982 *3 *2)) (-4 *2 (-1257 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-566)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1062)) (-4 *2 (-566))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1062)) (-4 *2 (-566))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-444)) - (-5 *2 - (-654 - (-3 (|:| -2032 (-1190)) - (|:| -2200 (-654 (-3 (|:| S (-1190)) (|:| P (-963 (-574))))))))) - (-5 *1 (-1194))))) -(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-388)) (-5 *1 (-1053))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-872))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1062)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1257 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1172)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) - (-5 *2 (-1048)) (-5 *1 (-767))))) -(((*1 *2 *2) (-12 (-5 *2 (-1107 (-853 (-227)))) (-5 *1 (-313))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-765))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1097 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-574) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1097 *2))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1266 *3 *4 *5)) (-4 *3 (-372)) (-14 *4 (-1190)) - (-14 *5 *3) (-5 *1 (-327 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1053)) (-5 *3 (-388))))) + (-12 (-5 *3 (-344 (-416 (-573)) *4 *5 *6)) + (-4 *4 (-1256 (-416 (-573)))) (-4 *5 (-1256 (-416 *4))) + (-4 *6 (-350 (-416 (-573)) *4 *5)) (-5 *2 (-112)) + (-5 *1 (-922 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-366 *4)) - (-4 *4 (-358))))) + (-12 (-5 *3 (-653 (-490 *4 *5))) (-14 *4 (-653 (-1189))) + (-4 *5 (-461)) (-5 *2 (-653 (-252 *4 *5))) (-5 *1 (-640 *4 *5))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1047)) (-5 *3 (-1189)) (-5 *1 (-194))))) +(((*1 *2 *1) (-12 (-4 *1 (-1161 *3)) (-4 *3 (-1230)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *3 (-565)) (-5 *2 (-653 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-426 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1186 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1257 (-417 (-574)))) - (-5 *2 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574)))) - (-5 *1 (-924 *3 *4)) (-4 *4 (-1257 (-417 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1257 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-924 *4 *3)) - (-4 *3 (-1257 (-417 *4)))))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1272 *2 *3 *4)) (-4 *2 (-1061)) (-14 *3 (-1189)) + (-14 *4 *2)))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-387)) (-5 *1 (-97))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-1240 *3)) + (-5 *2 (-416 (-573)))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-554))))) +(((*1 *1 *1 *1) (-5 *1 (-871)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-573)) (|has| *1 (-6 -4456)) (-4 *1 (-1268 *3)) + (-4 *3 (-1230))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) (((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015)))))) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-1169 *3))) (-5 *2 (-1169 *3)) (-5 *1 (-1173 *3)) + (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061))))) +(((*1 *2 *3) + (-12 (-4 *4 (-314)) (-4 *5 (-381 *4)) (-4 *6 (-381 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) + (-5 *1 (-1136 *4 *5 *6 *3)) (-4 *3 (-696 *4 *5 *6))))) (((*1 *2) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) - (-4 *5 (-1257 (-417 *4))) (-5 *2 (-699 (-417 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1113))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1113))))) + (-12 (-5 *2 (-1285)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-1112)) + (-4 *4 (-1112))))) (((*1 *2 *2) - (-12 (-5 *2 (-1281 *4)) (-4 *4 (-427 *3)) (-4 *3 (-315)) - (-4 *3 (-566)) (-5 *1 (-43 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-932)) (-4 *4 (-372)) (-5 *2 (-1281 *1)) - (-4 *1 (-337 *4)))) - ((*1 *2) (-12 (-4 *3 (-372)) (-5 *2 (-1281 *1)) (-4 *1 (-337 *3)))) - ((*1 *2) - (-12 (-4 *3 (-174)) (-4 *4 (-1257 *3)) (-5 *2 (-1281 *1)) - (-4 *1 (-419 *3 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-315)) (-4 *4 (-1005 *3)) (-4 *5 (-1257 *4)) - (-5 *2 (-1281 *6)) (-5 *1 (-423 *3 *4 *5 *6)) - (-4 *6 (-13 (-419 *4 *5) (-1051 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-315)) (-4 *4 (-1005 *3)) (-4 *5 (-1257 *4)) - (-5 *2 (-1281 *6)) (-5 *1 (-424 *3 *4 *5 *6 *7)) - (-4 *6 (-419 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1281 *1)) (-4 *1 (-427 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-932)) (-5 *2 (-1281 (-1281 *4))) (-5 *1 (-538 *4)) - (-4 *4 (-358))))) + (|partial| -12 (-5 *2 (-653 (-962 *3))) (-4 *3 (-461)) + (-5 *1 (-368 *3 *4)) (-14 *4 (-653 (-1189))))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-653 (-789 *3 (-873 *4)))) (-4 *3 (-461)) + (-14 *4 (-653 (-1189))) (-5 *1 (-637 *3 *4))))) +(((*1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-5 *1 (-871)))) +(((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1280 *1)) (-4 *1 (-375 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 (-931))) (-5 *2 (-914 (-573))) (-5 *1 (-927))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-902 *4)) (-4 *4 (-1112)) (-5 *1 (-899 *4 *3)) + (-4 *3 (-1112))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-1170 *4) (-1170 *4))) (-5 *2 (-1170 *4)) - (-5 *1 (-1307 *4)) (-4 *4 (-1231)))) + (|partial| -12 (-5 *3 (-698 (-416 (-962 (-573))))) + (-5 *2 (-698 (-323 (-573)))) (-5 *1 (-1043))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 (-2 (|:| -3082 *4) (|:| -3447 (-573))))) + (-4 *4 (-1112)) (-5 *2 (-1 *4)) (-5 *1 (-1029 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1169 (-1169 *4))) (-5 *2 (-1169 *4)) (-5 *1 (-1173 *4)) + (-4 *4 (-1061))))) +(((*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-1169 *4) (-1169 *4))) (-5 *2 (-1169 *4)) + (-5 *1 (-1306 *4)) (-4 *4 (-1230)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-654 (-1170 *5)) (-654 (-1170 *5)))) (-5 *4 (-574)) - (-5 *2 (-654 (-1170 *5))) (-5 *1 (-1307 *5)) (-4 *5 (-1231))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) - (-5 *2 (-417 (-574))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-428 *3)) (-4 *3 (-555)) - (-4 *3 (-566)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-555)) (-5 *2 (-417 (-574))))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) - (-5 *2 (-417 (-574))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-843 *3)) (-4 *3 (-555)) - (-4 *3 (-1113)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-853 *3)) (-4 *3 (-555)) - (-4 *3 (-1113)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1010 *3)) (-4 *3 (-174)) (-4 *3 (-555)) - (-5 *2 (-417 (-574))))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-1021 *3)) - (-4 *3 (-1051 *2))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-654 (-1186 *5))) (-5 *3 (-1186 *5)) - (-4 *5 (-167 *4)) (-4 *4 (-555)) (-5 *1 (-150 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-654 *3)) (-4 *3 (-1257 *5)) - (-4 *5 (-1257 *4)) (-4 *4 (-358)) (-5 *1 (-367 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-654 (-1186 (-574)))) (-5 *3 (-1186 (-574))) - (-5 *1 (-582)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-654 (-1186 *1))) (-5 *3 (-1186 *1)) - (-4 *1 (-920))))) + (-12 (-5 *3 (-1 (-653 (-1169 *5)) (-653 (-1169 *5)))) (-5 *4 (-573)) + (-5 *2 (-653 (-1169 *5))) (-5 *1 (-1306 *5)) (-4 *5 (-1230))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-653 (-953 *4))) (-4 *1 (-1146 *4)) (-4 *4 (-1061)) + (-5 *2 (-780))))) (((*1 *2 *1) - (-12 (-4 *1 (-331 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-132)) - (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1609 *4)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-654 (-2 (|:| -1858 *3) (|:| -3832 *4)))) - (-5 *1 (-745 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-736)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802)) - (-5 *2 (-1170 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-372) (-148) (-1051 (-574)))) (-4 *5 (-1257 *4)) - (-5 *2 (-2 (|:| |ans| (-417 *5)) (|:| |nosol| (-112)))) - (-5 *1 (-1028 *4 *5)) (-5 *3 (-417 *5))))) + (-12 (-4 *3 (-1061)) (-5 *2 (-1280 *3)) (-5 *1 (-721 *3 *4)) + (-4 *4 (-1256 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1024)) (-5 *2 (-871))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574)))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1048)) - (-5 *1 (-758))))) -(((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1190)) (-5 *5 (-1107 (-227))) (-5 *2 (-938)) - (-5 *1 (-936 *3)) (-4 *3 (-624 (-546))))) - ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1190)) (-5 *5 (-1107 (-227))) (-5 *2 (-938)) - (-5 *1 (-936 *3)) (-4 *3 (-624 (-546))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-937)))) - ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1107 (-227))) - (-5 *1 (-937)))) - ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1107 (-227))) - (-5 *1 (-937)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1107 (-227))) (-5 *1 (-938)))) - ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1107 (-227))) - (-5 *1 (-938)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1107 (-227))) - (-5 *1 (-938)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-654 (-1 (-227) (-227)))) (-5 *3 (-1107 (-227))) - (-5 *1 (-938)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-654 (-1 (-227) (-227)))) (-5 *3 (-1107 (-227))) - (-5 *1 (-938)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1107 (-227))) - (-5 *1 (-938)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1107 (-227))) - (-5 *1 (-938))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1172)) (-5 *5 (-699 (-227))) (-5 *6 (-699 (-574))) - (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-767))))) -(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-527))))) -(((*1 *1 *2) - (-12 (-5 *2 (-417 *4)) (-4 *4 (-1257 *3)) (-4 *3 (-13 (-372) (-148))) - (-5 *1 (-409 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-52))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1190)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-713 *3)) - (-4 *3 (-624 (-546))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1190)) (-5 *2 (-1 (-227) (-227) (-227))) - (-5 *1 (-713 *3)) (-4 *3 (-624 (-546)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1273 *2 *3 *4)) (-4 *2 (-1062)) (-14 *3 (-1190)) - (-14 *4 *2)))) -(((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-158)))) - ((*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062))))) -(((*1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-1193))))) + (-12 (-4 *4 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) + (-5 *2 (-653 *4)) (-5 *1 (-1140 *3 *4)) (-4 *3 (-1256 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) + (-5 *2 (-653 *3)) (-5 *1 (-1140 *4 *3)) (-4 *4 (-1256 *3))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) +(((*1 *1 *2) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-108)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-653 (-545))) (-5 *1 (-545))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2872 (-791 *3)) (|:| |coef2| (-791 *3)))) + (-5 *1 (-791 *3)) (-4 *3 (-565)) (-4 *3 (-1061)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-565)) (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) + (-5 *2 (-2 (|:| -2872 *1) (|:| |coef2| *1))) + (-4 *1 (-1077 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *2 (-654 *3)))) - ((*1 *2 *1) - (-12 (|has| *1 (-6 -4456)) (-4 *1 (-499 *3)) (-4 *3 (-1231)) - (-5 *2 (-654 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-932))) (-5 *1 (-984))))) -(((*1 *2 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-555))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-938))))) -(((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |mval| (-699 *3)) (|:| |invmval| (-699 *3)) - (|:| |genIdeal| (-514 *3 *4 *5 *6)))) - (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1059 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1035))) - (-14 *5 (-654 (-1190))) (-5 *2 (-654 (-654 (-1037 (-417 *4))))) - (-5 *1 (-1308 *4 *5 *6)) (-14 *6 (-654 (-1190))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-858) (-315) (-148) (-1035))) - (-5 *2 (-654 (-654 (-1037 (-417 *5))))) (-5 *1 (-1308 *5 *6 *7)) - (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-858) (-315) (-148) (-1035))) - (-5 *2 (-654 (-654 (-1037 (-417 *5))))) (-5 *1 (-1308 *5 *6 *7)) - (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190))))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-963 *4))) - (-4 *4 (-13 (-858) (-315) (-148) (-1035))) - (-5 *2 (-654 (-654 (-1037 (-417 *4))))) (-5 *1 (-1308 *4 *5 *6)) - (-14 *5 (-654 (-1190))) (-14 *6 (-654 (-1190)))))) -(((*1 *1 *1) (-4 *1 (-1157)))) + (-1280 + (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3999 (-573)) + (|:| -1962 (-573)) (|:| |spline| (-573)) (|:| -3967 (-573)) + (|:| |axesColor| (-883)) (|:| -1996 (-573)) + (|:| |unitsColor| (-883)) (|:| |showing| (-573))))) + (-5 *1 (-1281))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) +(((*1 *2 *1) (-12 (-4 *1 (-536)) (-5 *2 (-700 (-130)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1280 *1)) (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) + (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-52))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-780)) (-4 *1 (-1256 *4)) (-4 *4 (-1061)) + (-5 *2 (-1280 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-570)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1185 (-416 (-573)))) (-5 *1 (-952)) (-5 *3 (-573))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 *7)) (-4 *7 (-859)) (-4 *5 (-919)) (-4 *6 (-802)) + (-4 *8 (-959 *5 *6 *7)) (-5 *2 (-427 (-1185 *8))) + (-5 *1 (-916 *5 *6 *7 *8)) (-5 *4 (-1185 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-919)) (-4 *5 (-1256 *4)) (-5 *2 (-427 (-1185 *5))) + (-5 *1 (-917 *4 *5)) (-5 *3 (-1185 *5))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-314)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) + (-5 *1 (-989 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) + (-4 *5 (-381 *3)) (-5 *2 (-653 *3)))) + ((*1 *2 *1) + (-12 (|has| *1 (-6 -4455)) (-4 *1 (-498 *3)) (-4 *3 (-1230)) + (-5 *2 (-653 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-653 (-931))) (-5 *1 (-983))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-621 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1189))) + (-4 *2 (-13 (-439 *5) (-27) (-1215))) + (-4 *5 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) + (-5 *1 (-575 *5 *2 *6)) (-4 *6 (-1112))))) +(((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| -4296 (-115)) (|:| |arg| (-653 (-902 *3))))) + (-5 *1 (-902 *3)) (-4 *3 (-1112)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-653 (-902 *4))) + (-5 *1 (-902 *4)) (-4 *4 (-1112))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-573) "failed") *5)) (-4 *5 (-1061)) + (-5 *2 (-573)) (-5 *1 (-552 *5 *3)) (-4 *3 (-1256 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-573) "failed") *4)) (-4 *4 (-1061)) + (-5 *2 (-573)) (-5 *1 (-552 *4 *3)) (-4 *3 (-1256 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-573) "failed") *4)) (-4 *4 (-1061)) + (-5 *2 (-573)) (-5 *1 (-552 *4 *3)) (-4 *3 (-1256 *4))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1185 *1)) (-4 *1 (-1024))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-883))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1305 *4 *2)) (-4 *1 (-383 *4 *2)) (-4 *4 (-860)) + (-12 (-5 *3 (-1304 *4 *2)) (-4 *1 (-382 *4 *2)) (-4 *4 (-859)) (-4 *2 (-174)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1298 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1062)))) + (-12 (-4 *1 (-1297 *3 *2)) (-4 *3 (-859)) (-4 *2 (-1061)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-829 *4)) (-4 *1 (-1298 *4 *2)) (-4 *4 (-860)) - (-4 *2 (-1062)))) + (-12 (-5 *3 (-828 *4)) (-4 *1 (-1297 *4 *2)) (-4 *4 (-859)) + (-4 *2 (-1061)))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-1062)) (-5 *1 (-1304 *2 *3)) (-4 *3 (-856))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1281 (-654 *3))) (-4 *4 (-315)) - (-5 *2 (-654 *3)) (-5 *1 (-465 *4 *3)) (-4 *3 (-1257 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1078 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) - (-5 *1 (-990 *4 *5 *6 *7)) (-5 *3 (-654 *7))))) -(((*1 *2 *3) - (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1235)) (-4 *3 (-1257 *4)) - (-4 *5 (-1257 (-417 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) - (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174))))) + (-12 (-4 *2 (-1061)) (-5 *1 (-1303 *2 *3)) (-4 *3 (-855))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-653 (-621 *6))) (-5 *4 (-1189)) (-5 *2 (-621 *6)) + (-4 *6 (-439 *5)) (-4 *5 (-1112)) (-5 *1 (-582 *5 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-387)) (-5 *3 (-653 (-269))) (-5 *1 (-267)))) + ((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-269))))) +(((*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1052))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) +(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-768))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1189)) (-4 *5 (-371)) (-5 *2 (-1169 (-1169 (-962 *5)))) + (-5 *1 (-1288 *5)) (-5 *4 (-1169 (-962 *5)))))) (((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) - (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-1257 *3)) (-4 *3 (-1062))))) -(((*1 *2 *1) (-12 (-4 *1 (-966)) (-5 *2 (-654 (-654 (-954 (-227))))))) - ((*1 *2 *1) (-12 (-4 *1 (-987)) (-5 *2 (-654 (-654 (-954 (-227)))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832))))) -(((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-813))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1048)) - (-5 *1 (-766))))) + (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-565)) + (-5 *2 (-112))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-653 *2)) (-4 *2 (-1112)) (-4 *2 (-1230))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-515)) (-5 *3 (-606)) (-5 *1 (-594))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-653 (-573))) (-5 *3 (-653 (-931))) (-5 *4 (-112)) + (-5 *1 (-1122))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1107 (-388))) - (-5 *5 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-889 (-1 (-227) (-227)))) (-5 *4 (-1106 (-387))) + (-5 *5 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1107 (-388))) - (-5 *2 (-1146 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-889 (-1 (-227) (-227)))) (-5 *4 (-1106 (-387))) + (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-954 (-227)) (-227))) (-5 *4 (-1107 (-388))) - (-5 *5 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-953 (-227)) (-227))) (-5 *4 (-1106 (-387))) + (-5 *5 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-954 (-227)) (-227))) (-5 *4 (-1107 (-388))) - (-5 *2 (-1146 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-953 (-227)) (-227))) (-5 *4 (-1106 (-387))) + (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1107 (-388))) - (-5 *5 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1106 (-387))) + (-5 *5 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1107 (-388))) - (-5 *2 (-1146 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1106 (-387))) + (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-954 (-227)) (-227) (-227))) (-5 *4 (-1107 (-388))) - (-5 *5 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-953 (-227)) (-227) (-227))) (-5 *4 (-1106 (-387))) + (-5 *5 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-954 (-227)) (-227) (-227))) (-5 *4 (-1107 (-388))) - (-5 *2 (-1146 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-953 (-227)) (-227) (-227))) (-5 *4 (-1106 (-387))) + (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1107 (-388))) - (-5 *5 (-654 (-270))) (-5 *2 (-1146 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-892 (-1 (-227) (-227) (-227)))) (-5 *4 (-1106 (-387))) + (-5 *5 (-653 (-269))) (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1107 (-388))) - (-5 *2 (-1146 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-892 (-1 (-227) (-227) (-227)))) (-5 *4 (-1106 (-387))) + (-5 *2 (-1145 (-227))) (-5 *1 (-261)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-890 *6)) (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270))) - (-4 *6 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1146 (-227))) - (-5 *1 (-266 *6)))) + (-12 (-5 *3 (-889 *6)) (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) + (-4 *6 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1145 (-227))) + (-5 *1 (-265 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-890 *5)) (-5 *4 (-1105 (-388))) - (-4 *5 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1146 (-227))) - (-5 *1 (-266 *5)))) + (-12 (-5 *3 (-889 *5)) (-5 *4 (-1104 (-387))) + (-4 *5 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1145 (-227))) + (-5 *1 (-265 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270))) - (-5 *2 (-1146 (-227))) (-5 *1 (-266 *3)) - (-4 *3 (-13 (-624 (-546)) (-1113))))) + (-12 (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) + (-5 *2 (-1145 (-227))) (-5 *1 (-265 *3)) + (-4 *3 (-13 (-623 (-545)) (-1112))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1105 (-388))) (-5 *2 (-1146 (-227))) (-5 *1 (-266 *3)) - (-4 *3 (-13 (-624 (-546)) (-1113))))) + (-12 (-5 *4 (-1104 (-387))) (-5 *2 (-1145 (-227))) (-5 *1 (-265 *3)) + (-4 *3 (-13 (-623 (-545)) (-1112))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-893 *6)) (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270))) - (-4 *6 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1146 (-227))) - (-5 *1 (-266 *6)))) + (-12 (-5 *3 (-892 *6)) (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) + (-4 *6 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1145 (-227))) + (-5 *1 (-265 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-893 *5)) (-5 *4 (-1105 (-388))) - (-4 *5 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1146 (-227))) - (-5 *1 (-266 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1208 *4 *5)) - (-4 *4 (-1113)) (-4 *5 (-1113))))) + (-12 (-5 *3 (-892 *5)) (-5 *4 (-1104 (-387))) + (-4 *5 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1145 (-227))) + (-5 *1 (-265 *5))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-5 *2 (-653 (-1039 *5 *6 *7 *3))) (-5 *1 (-1039 *5 *6 *7 *3)) + (-4 *3 (-1077 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-653 *6)) (-4 *1 (-1083 *3 *4 *5 *6)) (-4 *3 (-461)) + (-4 *4 (-802)) (-4 *5 (-859)) (-4 *6 (-1077 *3 *4 *5)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1083 *3 *4 *5 *2)) (-4 *3 (-461)) (-4 *4 (-802)) + (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-5 *2 (-653 (-1158 *5 *6 *7 *3))) (-5 *1 (-1158 *5 *6 *7 *3)) + (-4 *3 (-1077 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-915 *3)) (-4 *3 (-1112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-171 (-227))) (-5 *4 (-573)) (-5 *2 (-1047)) + (-5 *1 (-767))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1077 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *2 (-859)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) + (-4 *4 (-859))))) +(((*1 *1 *2) (-12 (-5 *1 (-700 *2)) (-4 *2 (-622 (-871)))))) +(((*1 *2 *1) (-12 (-4 *1 (-260 *3)) (-4 *3 (-1230)) (-5 *2 (-780)))) + ((*1 *2 *1) (-12 (-4 *1 (-309)) (-5 *2 (-780)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1061)) + (-4 *2 (-13 (-413) (-1050 *4) (-371) (-1215) (-291))) + (-5 *1 (-452 *4 *3 *2)) (-4 *3 (-1256 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-621 *3)) (-4 *3 (-1112)))) + ((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-871)))) + ((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-871))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) (((*1 *2 *1) - (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *5 (-860)) (-5 *2 (-781))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-960 *4 *5 *6)) (-4 *4 (-372)) - (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-5 *1 (-460 *4 *5 *6 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-372)) - (-5 *2 - (-2 (|:| R (-699 *6)) (|:| A (-699 *6)) (|:| |Ainv| (-699 *6)))) - (-5 *1 (-991 *6)) (-5 *3 (-699 *6))))) + (-12 (-4 *3 (-371)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) + (-5 *2 (-1280 *6)) (-5 *1 (-344 *3 *4 *5 *6)) + (-4 *6 (-350 *3 *4 *5))))) (((*1 *2 *3) - (-12 - (-5 *2 - (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) - (-5 *1 (-1033 *3)) (-4 *3 (-1257 (-574))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) - (-5 *1 (-1033 *3)) (-4 *3 (-1257 (-574))) - (-5 *4 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) - (-5 *1 (-1033 *3)) (-4 *3 (-1257 (-574))) (-5 *4 (-417 (-574))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-417 (-574))) - (-5 *2 (-654 (-2 (|:| -3891 *5) (|:| -3904 *5)))) (-5 *1 (-1033 *3)) - (-4 *3 (-1257 (-574))) (-5 *4 (-2 (|:| -3891 *5) (|:| -3904 *5))))) + (-12 (-4 *5 (-13 (-623 *2) (-174))) (-5 *2 (-902 *4)) + (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1112)) (-4 *3 (-167 *5)))) ((*1 *2 *3) - (-12 - (-5 *2 - (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) - (-5 *1 (-1034 *3)) (-4 *3 (-1257 (-417 (-574)))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-654 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574)))))) - (-5 *1 (-1034 *3)) (-4 *3 (-1257 (-417 (-574)))) - (-5 *4 (-2 (|:| -3891 (-417 (-574))) (|:| -3904 (-417 (-574))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-417 (-574))) - (-5 *2 (-654 (-2 (|:| -3891 *4) (|:| -3904 *4)))) (-5 *1 (-1034 *3)) - (-4 *3 (-1257 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-417 (-574))) - (-5 *2 (-654 (-2 (|:| -3891 *5) (|:| -3904 *5)))) (-5 *1 (-1034 *3)) - (-4 *3 (-1257 *5)) (-5 *4 (-2 (|:| -3891 *5) (|:| -3904 *5)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1190)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)) - (-4 *2 (-440 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1105 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566)) - (-5 *1 (-159 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1105 *1)) (-4 *1 (-161)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1190))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1062)) (-4 *5 (-1257 *4)) (-5 *2 (-1 *6 (-654 *6))) - (-5 *1 (-1275 *4 *5 *3 *6)) (-4 *3 (-666 *5)) (-4 *6 (-1272 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1231)) (-5 *2 (-781)))) - ((*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-781)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1062)) - (-4 *2 (-13 (-414) (-1051 *4) (-372) (-1216) (-292))) - (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1257 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-622 *3)) (-4 *3 (-1113)))) - ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) - ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872))))) -(((*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284)))) - ((*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284))))) -(((*1 *1 *1) (-12 (-5 *1 (-1217 *2)) (-4 *2 (-1113))))) -(((*1 *2 *3) - (-12 (-4 *5 (-13 (-624 *2) (-174))) (-5 *2 (-903 *4)) - (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1113)) (-4 *3 (-167 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-1107 (-853 (-388))))) - (-5 *2 (-654 (-1107 (-853 (-227))))) (-5 *1 (-313)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-404)))) + (-12 (-5 *3 (-653 (-1106 (-852 (-387))))) + (-5 *2 (-653 (-1106 (-852 (-227))))) (-5 *1 (-312)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-871)) (-5 *3 (-573)) (-5 *1 (-403)))) ((*1 *1 *2) - (-12 (-5 *2 (-1281 *3)) (-4 *3 (-174)) (-4 *1 (-419 *3 *4)) - (-4 *4 (-1257 *3)))) + (-12 (-5 *2 (-1280 *3)) (-4 *3 (-174)) (-4 *1 (-418 *3 *4)) + (-4 *4 (-1256 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1257 *3)) - (-5 *2 (-1281 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-174)) (-4 *1 (-427 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1281 *3)))) + (-12 (-4 *1 (-418 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1256 *3)) + (-5 *2 (-1280 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-174)) (-4 *1 (-426 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-1280 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-428 *1)) (-4 *1 (-440 *3)) (-4 *3 (-566)) - (-4 *3 (-1113)))) + (-12 (-5 *2 (-427 *1)) (-4 *1 (-439 *3)) (-4 *3 (-565)) + (-4 *3 (-1112)))) ((*1 *1 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-1062)) - (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-473 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-546)))) - ((*1 *2 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1231)))) - ((*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1231)))) + (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-1061)) + (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-472 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1116)) (-5 *1 (-545)))) + ((*1 *2 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1230)))) + ((*1 *1 *2) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1230)))) ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-4 *1 (-734 *3 *2)) (-4 *2 (-1257 *3)))) + (-12 (-4 *3 (-174)) (-4 *1 (-733 *3 *2)) (-4 *2 (-1256 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) + (-12 (-5 *2 (-653 (-902 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) ((*1 *1 *2) - (-12 (-5 *2 (-963 *3)) (-4 *3 (-1062)) (-4 *1 (-1078 *3 *4 *5)) - (-4 *5 (-624 (-1190))) (-4 *4 (-803)) (-4 *5 (-860)))) + (-12 (-5 *2 (-962 *3)) (-4 *3 (-1061)) (-4 *1 (-1077 *3 *4 *5)) + (-4 *5 (-623 (-1189))) (-4 *4 (-802)) (-4 *5 (-859)))) ((*1 *1 *2) - (-2818 - (-12 (-5 *2 (-963 (-574))) (-4 *1 (-1078 *3 *4 *5)) - (-12 (-2076 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) - (-4 *5 (-624 (-1190)))) - (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))) - (-12 (-5 *2 (-963 (-574))) (-4 *1 (-1078 *3 *4 *5)) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1190)))) - (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))))) + (-2817 + (-12 (-5 *2 (-962 (-573))) (-4 *1 (-1077 *3 *4 *5)) + (-12 (-2075 (-4 *3 (-38 (-416 (-573))))) (-4 *3 (-38 (-573))) + (-4 *5 (-623 (-1189)))) + (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859))) + (-12 (-5 *2 (-962 (-573))) (-4 *1 (-1077 *3 *4 *5)) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *5 (-623 (-1189)))) + (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859))))) ((*1 *1 *2) - (-12 (-5 *2 (-963 (-417 (-574)))) (-4 *1 (-1078 *3 *4 *5)) - (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1190))) (-4 *3 (-1062)) - (-4 *4 (-803)) (-4 *5 (-860)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4091 *8))) - (-4 *7 (-1078 *4 *5 *6)) (-4 *8 (-1084 *4 *5 *6 *7)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1172)) - (-5 *1 (-1082 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4091 *8))) - (-4 *7 (-1078 *4 *5 *6)) (-4 *8 (-1122 *4 *5 *6 *7)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1172)) - (-5 *1 (-1158 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1195)))) - ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1195)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-1211)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-1211)))) - ((*1 *2 *3) - (-12 (-5 *3 (-790 *4 (-874 *5))) - (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-14 *5 (-654 (-1190))) - (-5 *2 (-790 *4 (-874 *6))) (-5 *1 (-1308 *4 *5 *6)) - (-14 *6 (-654 (-1190))))) - ((*1 *2 *3) - (-12 (-5 *3 (-963 *4)) (-4 *4 (-13 (-858) (-315) (-148) (-1035))) - (-5 *2 (-963 (-1037 (-417 *4)))) (-5 *1 (-1308 *4 *5 *6)) - (-14 *5 (-654 (-1190))) (-14 *6 (-654 (-1190))))) - ((*1 *2 *3) - (-12 (-5 *3 (-790 *4 (-874 *6))) - (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-14 *6 (-654 (-1190))) - (-5 *2 (-963 (-1037 (-417 *4)))) (-5 *1 (-1308 *4 *5 *6)) - (-14 *5 (-654 (-1190))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1186 *4)) (-4 *4 (-13 (-858) (-315) (-148) (-1035))) - (-5 *2 (-1186 (-1037 (-417 *4)))) (-5 *1 (-1308 *4 *5 *6)) - (-14 *5 (-654 (-1190))) (-14 *6 (-654 (-1190))))) + (-12 (-5 *2 (-962 (-416 (-573)))) (-4 *1 (-1077 *3 *4 *5)) + (-4 *3 (-38 (-416 (-573)))) (-4 *5 (-623 (-1189))) (-4 *3 (-1061)) + (-4 *4 (-802)) (-4 *5 (-859)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-653 *7)) (|:| -4090 *8))) + (-4 *7 (-1077 *4 *5 *6)) (-4 *8 (-1083 *4 *5 *6 *7)) (-4 *4 (-461)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-1171)) + (-5 *1 (-1081 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-653 *7)) (|:| -4090 *8))) + (-4 *7 (-1077 *4 *5 *6)) (-4 *8 (-1121 *4 *5 *6 *7)) (-4 *4 (-461)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-1171)) + (-5 *1 (-1157 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1116)) (-5 *1 (-1194)))) + ((*1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-1194)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-871)) (-5 *3 (-573)) (-5 *1 (-1210)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-871)) (-5 *3 (-573)) (-5 *1 (-1210)))) + ((*1 *2 *3) + (-12 (-5 *3 (-789 *4 (-873 *5))) + (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-14 *5 (-653 (-1189))) + (-5 *2 (-789 *4 (-873 *6))) (-5 *1 (-1307 *4 *5 *6)) + (-14 *6 (-653 (-1189))))) + ((*1 *2 *3) + (-12 (-5 *3 (-962 *4)) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) + (-5 *2 (-962 (-1036 (-416 *4)))) (-5 *1 (-1307 *4 *5 *6)) + (-14 *5 (-653 (-1189))) (-14 *6 (-653 (-1189))))) + ((*1 *2 *3) + (-12 (-5 *3 (-789 *4 (-873 *6))) + (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-14 *6 (-653 (-1189))) + (-5 *2 (-962 (-1036 (-416 *4)))) (-5 *1 (-1307 *4 *5 *6)) + (-14 *5 (-653 (-1189))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1185 *4)) (-4 *4 (-13 (-857) (-314) (-148) (-1034))) + (-5 *2 (-1185 (-1036 (-416 *4)))) (-5 *1 (-1307 *4 *5 *6)) + (-14 *5 (-653 (-1189))) (-14 *6 (-653 (-1189))))) ((*1 *2 *3) (-12 - (-5 *3 (-1159 *4 (-541 (-874 *6)) (-874 *6) (-790 *4 (-874 *6)))) - (-4 *4 (-13 (-858) (-315) (-148) (-1035))) (-14 *6 (-654 (-1190))) - (-5 *2 (-654 (-790 *4 (-874 *6)))) (-5 *1 (-1308 *4 *5 *6)) - (-14 *5 (-654 (-1190)))))) -(((*1 *2) - (-12 - (-5 *2 - (-1281 (-654 (-2 (|:| -3083 (-921 *3)) (|:| -2576 (-1133)))))) - (-5 *1 (-360 *3 *4)) (-14 *3 (-932)) (-14 *4 (-932)))) - ((*1 *2) - (-12 (-5 *2 (-1281 (-654 (-2 (|:| -3083 *3) (|:| -2576 (-1133)))))) - (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) (-14 *4 (-3 (-1186 *3) *2)))) - ((*1 *2) - (-12 (-5 *2 (-1281 (-654 (-2 (|:| -3083 *3) (|:| -2576 (-1133)))))) - (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) (-14 *4 (-932))))) -(((*1 *1 *2) (-12 (-5 *2 (-324 (-171 (-388)))) (-5 *1 (-338)))) - ((*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-5 *1 (-338)))) - ((*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-5 *1 (-338)))) - ((*1 *1 *2) (-12 (-5 *2 (-324 (-704))) (-5 *1 (-338)))) - ((*1 *1 *2) (-12 (-5 *2 (-324 (-711))) (-5 *1 (-338)))) - ((*1 *1 *2) (-12 (-5 *2 (-324 (-709))) (-5 *1 (-338)))) - ((*1 *1) (-5 *1 (-338)))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) - ((*1 *2 *3) (-12 (-5 *3 (-984)) (-5 *2 (-915 (-574))) (-5 *1 (-928))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1281 *4)) (-5 *3 (-781)) (-4 *4 (-358)) - (-5 *1 (-538 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-324 (-227))) (-5 *2 (-324 (-417 (-574)))) - (-5 *1 (-313))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1281 *4)) (-4 *4 (-13 (-1062) (-649 (-574)))) - (-5 *2 (-1281 (-417 (-574)))) (-5 *1 (-1309 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-1133)) (-5 *1 (-338))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-858) (-315) (-148) (-1035))) - (-5 *2 (-654 (-1059 *5 *6))) (-5 *1 (-1308 *5 *6 *7)) - (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-858) (-315) (-148) (-1035))) - (-5 *2 (-654 (-1059 *5 *6))) (-5 *1 (-1308 *5 *6 *7)) - (-14 *6 (-654 (-1190))) (-14 *7 (-654 (-1190))))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-963 *4))) - (-4 *4 (-13 (-858) (-315) (-148) (-1035))) - (-5 *2 (-654 (-1059 *4 *5))) (-5 *1 (-1308 *4 *5 *6)) - (-14 *5 (-654 (-1190))) (-14 *6 (-654 (-1190)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) - ((*1 *2) (-12 (-5 *2 (-915 (-574))) (-5 *1 (-928))))) -(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283)))) - ((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-781)) (-4 *4 (-372)) (-5 *1 (-907 *2 *4)) - (-4 *2 (-1257 *4))))) -(((*1 *1) (-5 *1 (-299)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1190)) - (-5 *2 - (-2 (|:| |zeros| (-1170 (-227))) (|:| |ones| (-1170 (-227))) - (|:| |singularities| (-1170 (-227))))) - (-5 *1 (-105))))) + (-5 *3 (-1158 *4 (-540 (-873 *6)) (-873 *6) (-789 *4 (-873 *6)))) + (-4 *4 (-13 (-857) (-314) (-148) (-1034))) (-14 *6 (-653 (-1189))) + (-5 *2 (-653 (-789 *4 (-873 *6)))) (-5 *1 (-1307 *4 *5 *6)) + (-14 *5 (-653 (-1189)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1254 *5 *4)) (-4 *4 (-462)) (-4 *4 (-830)) - (-14 *5 (-1190)) (-5 *2 (-574)) (-5 *1 (-1127 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-938))))) + (-12 (-4 *4 (-565)) (-5 *2 (-112)) (-5 *1 (-282 *4 *3)) + (-4 *3 (-13 (-439 *4) (-1014)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1061)) (-14 *3 (-653 (-1189))))) + ((*1 *1 *1) + (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1061) (-859))) + (-14 *3 (-653 (-1189)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-371) (-309) + (-10 -8 (-15 -2965 ((-1137 *3 (-621 $)) $)) + (-15 -2975 ((-1137 *3 (-621 $)) $)) + (-15 -2942 ($ (-1137 *3 (-621 $)))))))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 *4)) (-4 *4 (-860)) (-5 *2 (-654 (-674 *4 *5))) - (-5 *1 (-637 *4 *5 *6)) (-4 *5 (-13 (-174) (-727 (-417 (-574))))) - (-14 *6 (-932))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832))))) + (|partial| -12 (-4 *2 (-1112)) (-5 *1 (-1207 *3 *2)) (-4 *3 (-1112))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372))))) -(((*1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-769))))) -(((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1257 (-171 *2))))) + (-12 (-4 *3 (-802)) (-4 *4 (-859)) (-4 *5 (-314)) + (-5 *1 (-926 *3 *4 *5 *2)) (-4 *2 (-959 *5 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1185 *6)) (-4 *6 (-959 *5 *3 *4)) (-4 *3 (-802)) + (-4 *4 (-859)) (-4 *5 (-314)) (-5 *1 (-926 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1257 (-171 *2)))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-1025)) (-5 *2 (-872))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1133)) (-5 *2 (-112)) (-5 *1 (-831))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1172)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) - (-5 *2 (-1048)) (-5 *1 (-764))))) -(((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1190)) (-5 *1 (-685 *3)) (-4 *3 (-1113))))) + (-12 (-5 *3 (-653 *2)) (-4 *2 (-959 *6 *4 *5)) + (-5 *1 (-926 *4 *5 *6 *2)) (-4 *4 (-802)) (-4 *5 (-859)) + (-4 *6 (-314))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-171 (-227)))) (-5 *2 (-1047)) + (-5 *1 (-765))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) - (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) + (-2 (|:| -1423 (-698 (-416 (-962 *4)))) + (|:| |vec| (-653 (-416 (-962 *4)))) (|:| -3583 (-780)) + (|:| |rows| (-653 (-573))) (|:| |cols| (-653 (-573))))) + (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) + (-4 *6 (-802)) (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-194))))) -(((*1 *2 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *2)) (-4 *2 (-174)))) - ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-426 *3 *2)) (-4 *3 (-427 *2)))) - ((*1 *2) (-12 (-4 *1 (-427 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-5 *2 (-1230)) (-5 *1 (-157)))) - ((*1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1231)))) - ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-488)))) - ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-602)))) - ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-636)))) + (-2 (|:| |partsol| (-1280 (-416 (-962 *4)))) + (|:| -3914 (-653 (-1280 (-416 (-962 *4))))))) + (-5 *1 (-934 *4 *5 *6 *7)) (-4 *7 (-959 *4 *6 *5))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1112)) (-5 *2 (-112)) (-5 *1 (-895 *3 *4 *5)) + (-4 *3 (-1112)) (-4 *5 (-675 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-899 *3 *4)) (-4 *3 (-1112)) + (-4 *4 (-1112))))) +(((*1 *2 *3 *4 *4 *5) + (|partial| -12 (-5 *4 (-621 *3)) (-5 *5 (-653 *3)) + (-4 *3 (-13 (-439 *6) (-27) (-1215))) + (-4 *6 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-575 *6 *3 *7)) (-4 *7 (-1112))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-563 *2)) (-4 *2 (-13 (-413) (-1215)))))) +(((*1 *1) (-5 *1 (-298)))) +(((*1 *2 *1) + (-12 (-5 *2 (-953 *4)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) + (-4 *4 (-1061))))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-23))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-439 *3) (-1014))) (-5 *1 (-282 *3 *2)) + (-4 *3 (-565))))) +(((*1 *2 *3) + (-12 (-4 *1 (-350 *4 *3 *5)) (-4 *4 (-1234)) (-4 *3 (-1256 *4)) + (-4 *5 (-1256 (-416 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) + (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112))))) +(((*1 *1 *1) (-5 *1 (-227))) + ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) + ((*1 *1 *1) (-4 *1 (-1151))) ((*1 *1 *1 *1) (-4 *1 (-1151)))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-323 *3)) (-4 *3 (-565)) (-4 *3 (-1112))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-832)) (-5 *2 (-1285)) (-5 *1 (-831))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-653 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-780)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-802)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-461)) (-4 *5 (-859)) + (-5 *1 (-458 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1256 *6)) + (-4 *6 (-13 (-371) (-148) (-1050 *4))) (-5 *4 (-573)) + (-5 *2 + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) + (|:| -4122 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-1027 *6 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) + (-5 *5 (-3 (|:| |fn| (-397)) (|:| |fp| (-64 -1385)))) + (-5 *2 (-1047)) (-5 *1 (-757))))) +(((*1 *2 *3) + (-12 (-4 *4 (-565)) (-5 *2 (-653 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-426 *4))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1230)) (-5 *2 (-653 *1)) (-4 *1 (-1022 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-653 (-1177 *3 *4))) (-5 *1 (-1177 *3 *4)) + (-14 *3 (-931)) (-4 *4 (-1061))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-653 (-573))) (-5 *2 (-1191 (-416 (-573)))) + (-5 *1 (-192))))) +(((*1 *2 *2) (-12 (-5 *1 (-971 *2)) (-4 *2 (-554))))) +(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-5 *2 (-1229)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-1230)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-487)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-601)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-635)))) ((*1 *2 *1) - (-12 (-4 *3 (-1113)) - (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))) - (-5 *1 (-1089 *3 *4 *2)) - (-4 *4 (-13 (-1062) (-897 *3) (-624 (-903 *3)))))) + (-12 (-4 *3 (-1112)) + (-4 *2 (-13 (-439 *4) (-896 *3) (-623 (-902 *3)))) + (-5 *1 (-1088 *3 *4 *2)) + (-4 *4 (-13 (-1061) (-896 *3) (-623 (-902 *3)))))) ((*1 *2 *1) - (-12 (-4 *2 (-1113)) (-5 *1 (-1179 *3 *2)) (-4 *3 (-1113))))) -(((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-535)))) - ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1164))))) + (-12 (-4 *2 (-1112)) (-5 *1 (-1178 *3 *2)) (-4 *3 (-1112))))) +(((*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-534)))) + ((*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-1163))))) +(((*1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1061))))) +(((*1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-158)))) + ((*1 *2 *3) (-12 (-5 *3 (-953 *2)) (-5 *1 (-994 *2)) (-4 *2 (-1061))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-698 (-573))) (-5 *5 (-112)) (-5 *7 (-698 (-227))) + (-5 *3 (-573)) (-5 *6 (-227)) (-5 *2 (-1047)) (-5 *1 (-763))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-574)) (-4 *4 (-13 (-566) (-148))) (-5 *1 (-547 *4 *2)) - (-4 *2 (-1272 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-574)) (-4 *4 (-13 (-372) (-377) (-624 *3))) - (-4 *5 (-1257 *4)) (-4 *6 (-734 *4 *5)) (-5 *1 (-551 *4 *5 *6 *2)) - (-4 *2 (-1272 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-574)) (-4 *4 (-13 (-372) (-377) (-624 *3))) - (-5 *1 (-552 *4 *2)) (-4 *2 (-1272 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1170 *4)) (-5 *3 (-574)) (-4 *4 (-13 (-566) (-148))) - (-5 *1 (-1166 *4))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-372)) (-4 *3 (-1062)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2970 *1))) - (-4 *1 (-862 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-501)) (-5 *2 (-701 (-589))) (-5 *1 (-589))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-622 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1190))) (-5 *5 (-1186 *2)) - (-4 *2 (-13 (-440 *6) (-27) (-1216))) - (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) - (-5 *1 (-570 *6 *2 *7)) (-4 *7 (-1113)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-622 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1190))) - (-5 *5 (-417 (-1186 *2))) (-4 *2 (-13 (-440 *6) (-27) (-1216))) - (-4 *6 (-13 (-462) (-1051 (-574)) (-148) (-649 (-574)))) - (-5 *1 (-570 *6 *2 *7)) (-4 *7 (-1113))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 (-145))) (-5 *1 (-142)))) - ((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-142))))) -(((*1 *2) - (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-427 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566)) (-4 *2 (-555)))) - ((*1 *1 *1) (-4 *1 (-1073)))) + (-12 (-5 *2 (-698 *3)) (-4 *3 (-314)) (-5 *1 (-709 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) +(((*1 *2 *3) (-12 (-5 *3 (-500)) (-5 *2 (-700 (-588))) (-5 *1 (-588))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 *8)) (-5 *4 (-653 *9)) (-4 *8 (-1077 *5 *6 *7)) + (-4 *9 (-1083 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) + (-4 *7 (-859)) (-5 *2 (-780)) (-5 *1 (-1081 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 *8)) (-5 *4 (-653 *9)) (-4 *8 (-1077 *5 *6 *7)) + (-4 *9 (-1121 *5 *6 *7 *8)) (-4 *5 (-461)) (-4 *6 (-802)) + (-4 *7 (-859)) (-5 *2 (-780)) (-5 *1 (-1157 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1107 (-388))) - (-5 *5 (-654 (-270))) (-5 *2 (-1282)) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1106 (-387))) + (-5 *5 (-653 (-269))) (-5 *2 (-1281)) (-5 *1 (-261)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1107 (-388))) - (-5 *2 (-1282)) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1106 (-387))) + (-5 *2 (-1281)) (-5 *1 (-261)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1107 (-388))) - (-5 *5 (-654 (-270))) (-5 *2 (-1282)) (-5 *1 (-262)))) + (-12 (-5 *3 (-887 (-1 (-227) (-227)))) (-5 *4 (-1106 (-387))) + (-5 *5 (-653 (-269))) (-5 *2 (-1281)) (-5 *1 (-261)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1107 (-388))) - (-5 *2 (-1282)) (-5 *1 (-262)))) + (-12 (-5 *3 (-887 (-1 (-227) (-227)))) (-5 *4 (-1106 (-387))) + (-5 *2 (-1281)) (-5 *1 (-261)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1107 (-388))) - (-5 *5 (-654 (-270))) (-5 *2 (-1283)) (-5 *1 (-262)))) + (-12 (-5 *3 (-889 (-1 (-227) (-227)))) (-5 *4 (-1106 (-387))) + (-5 *5 (-653 (-269))) (-5 *2 (-1282)) (-5 *1 (-261)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1107 (-388))) - (-5 *2 (-1283)) (-5 *1 (-262)))) + (-12 (-5 *3 (-889 (-1 (-227) (-227)))) (-5 *4 (-1106 (-387))) + (-5 *2 (-1282)) (-5 *1 (-261)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-954 (-227)) (-227))) (-5 *4 (-1107 (-388))) - (-5 *5 (-654 (-270))) (-5 *2 (-1283)) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-953 (-227)) (-227))) (-5 *4 (-1106 (-387))) + (-5 *5 (-653 (-269))) (-5 *2 (-1282)) (-5 *1 (-261)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-954 (-227)) (-227))) (-5 *4 (-1107 (-388))) - (-5 *2 (-1283)) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-953 (-227)) (-227))) (-5 *4 (-1106 (-387))) + (-5 *2 (-1282)) (-5 *1 (-261)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1107 (-388))) - (-5 *5 (-654 (-270))) (-5 *2 (-1283)) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1106 (-387))) + (-5 *5 (-653 (-269))) (-5 *2 (-1282)) (-5 *1 (-261)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1107 (-388))) - (-5 *2 (-1283)) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1106 (-387))) + (-5 *2 (-1282)) (-5 *1 (-261)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-954 (-227)) (-227) (-227))) (-5 *4 (-1107 (-388))) - (-5 *5 (-654 (-270))) (-5 *2 (-1283)) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-953 (-227)) (-227) (-227))) (-5 *4 (-1106 (-387))) + (-5 *5 (-653 (-269))) (-5 *2 (-1282)) (-5 *1 (-261)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-954 (-227)) (-227) (-227))) (-5 *4 (-1107 (-388))) - (-5 *2 (-1283)) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-953 (-227)) (-227) (-227))) (-5 *4 (-1106 (-387))) + (-5 *2 (-1282)) (-5 *1 (-261)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1107 (-388))) - (-5 *5 (-654 (-270))) (-5 *2 (-1283)) (-5 *1 (-262)))) + (-12 (-5 *3 (-892 (-1 (-227) (-227) (-227)))) (-5 *4 (-1106 (-387))) + (-5 *5 (-653 (-269))) (-5 *2 (-1282)) (-5 *1 (-261)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1107 (-388))) - (-5 *2 (-1283)) (-5 *1 (-262)))) + (-12 (-5 *3 (-892 (-1 (-227) (-227) (-227)))) (-5 *4 (-1106 (-387))) + (-5 *2 (-1282)) (-5 *1 (-261)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-302 *7)) (-5 *4 (-1190)) (-5 *5 (-654 (-270))) - (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-860) (-1051 (-574)))) - (-5 *2 (-1282)) (-5 *1 (-263 *6 *7)))) + (-12 (-5 *3 (-301 *7)) (-5 *4 (-1189)) (-5 *5 (-653 (-269))) + (-4 *7 (-439 *6)) (-4 *6 (-13 (-565) (-859) (-1050 (-573)))) + (-5 *2 (-1281)) (-5 *1 (-262 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1282)) - (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1113))))) + (-12 (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1281)) + (-5 *1 (-265 *3)) (-4 *3 (-13 (-623 (-545)) (-1112))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1105 (-388))) (-5 *2 (-1282)) (-5 *1 (-266 *3)) - (-4 *3 (-13 (-624 (-546)) (-1113))))) + (-12 (-5 *4 (-1104 (-387))) (-5 *2 (-1281)) (-5 *1 (-265 *3)) + (-4 *3 (-13 (-623 (-545)) (-1112))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-888 *6)) (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270))) - (-4 *6 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1282)) - (-5 *1 (-266 *6)))) + (-12 (-5 *3 (-887 *6)) (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) + (-4 *6 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1281)) + (-5 *1 (-265 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-888 *5)) (-5 *4 (-1105 (-388))) - (-4 *5 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1282)) - (-5 *1 (-266 *5)))) + (-12 (-5 *3 (-887 *5)) (-5 *4 (-1104 (-387))) + (-4 *5 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1281)) + (-5 *1 (-265 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-890 *6)) (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270))) - (-4 *6 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1283)) - (-5 *1 (-266 *6)))) + (-12 (-5 *3 (-889 *6)) (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) + (-4 *6 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1282)) + (-5 *1 (-265 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-890 *5)) (-5 *4 (-1105 (-388))) - (-4 *5 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1283)) - (-5 *1 (-266 *5)))) + (-12 (-5 *3 (-889 *5)) (-5 *4 (-1104 (-387))) + (-4 *5 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1282)) + (-5 *1 (-265 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1283)) - (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1113))))) + (-12 (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) (-5 *2 (-1282)) + (-5 *1 (-265 *3)) (-4 *3 (-13 (-623 (-545)) (-1112))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1105 (-388))) (-5 *2 (-1283)) (-5 *1 (-266 *3)) - (-4 *3 (-13 (-624 (-546)) (-1113))))) + (-12 (-5 *4 (-1104 (-387))) (-5 *2 (-1282)) (-5 *1 (-265 *3)) + (-4 *3 (-13 (-623 (-545)) (-1112))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-893 *6)) (-5 *4 (-1105 (-388))) (-5 *5 (-654 (-270))) - (-4 *6 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1283)) - (-5 *1 (-266 *6)))) + (-12 (-5 *3 (-892 *6)) (-5 *4 (-1104 (-387))) (-5 *5 (-653 (-269))) + (-4 *6 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1282)) + (-5 *1 (-265 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-893 *5)) (-5 *4 (-1105 (-388))) - (-4 *5 (-13 (-624 (-546)) (-1113))) (-5 *2 (-1283)) - (-5 *1 (-266 *5)))) + (-12 (-5 *3 (-892 *5)) (-5 *4 (-1104 (-387))) + (-4 *5 (-13 (-623 (-545)) (-1112))) (-5 *2 (-1282)) + (-5 *1 (-265 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1282)) (-5 *1 (-267)))) + (-12 (-5 *3 (-653 (-227))) (-5 *2 (-1281)) (-5 *1 (-266)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-654 (-227))) (-5 *4 (-654 (-270))) (-5 *2 (-1282)) - (-5 *1 (-267)))) + (-12 (-5 *3 (-653 (-227))) (-5 *4 (-653 (-269))) (-5 *2 (-1281)) + (-5 *1 (-266)))) ((*1 *2 *3) - (-12 (-5 *3 (-654 (-954 (-227)))) (-5 *2 (-1282)) (-5 *1 (-267)))) + (-12 (-5 *3 (-653 (-953 (-227)))) (-5 *2 (-1281)) (-5 *1 (-266)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-954 (-227)))) (-5 *4 (-654 (-270))) - (-5 *2 (-1282)) (-5 *1 (-267)))) + (-12 (-5 *3 (-653 (-953 (-227)))) (-5 *4 (-653 (-269))) + (-5 *2 (-1281)) (-5 *1 (-266)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1283)) (-5 *1 (-267)))) + (-12 (-5 *3 (-653 (-227))) (-5 *2 (-1282)) (-5 *1 (-266)))) ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-654 (-227))) (-5 *4 (-654 (-270))) (-5 *2 (-1283)) - (-5 *1 (-267))))) -(((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-587)))) - ((*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-587))))) -(((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-446))))) -(((*1 *2) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) - (-4 *5 (-1257 (-417 *4))) (-5 *2 (-699 (-417 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-157)))) - ((*1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1231)))) - ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-488)))) - ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-602)))) - ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-636)))) + (-12 (-5 *3 (-653 (-227))) (-5 *4 (-653 (-269))) (-5 *2 (-1282)) + (-5 *1 (-266))))) +(((*1 *2 *1) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-936)))) + ((*1 *2 *1) (-12 (-5 *2 (-1106 (-227))) (-5 *1 (-937))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-931)) (-5 *1 (-451 *2)) + (-4 *2 (-1256 (-573))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-931)) (-5 *4 (-780)) (-5 *1 (-451 *2)) + (-4 *2 (-1256 (-573))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-931)) (-5 *4 (-653 (-780))) (-5 *1 (-451 *2)) + (-4 *2 (-1256 (-573))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-931)) (-5 *4 (-653 (-780))) (-5 *5 (-780)) + (-5 *1 (-451 *2)) (-4 *2 (-1256 (-573))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-931)) (-5 *4 (-653 (-780))) (-5 *5 (-780)) + (-5 *6 (-112)) (-5 *1 (-451 *2)) (-4 *2 (-1256 (-573))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-931)) (-5 *4 (-427 *2)) (-4 *2 (-1256 *5)) + (-5 *1 (-453 *5 *2)) (-4 *5 (-1061))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) + ((*1 *2) (-12 (-5 *2 (-914 (-573))) (-5 *1 (-927))))) +(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-1230)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-487)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-601)))) + ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-635)))) ((*1 *2 *1) - (-12 (-4 *3 (-1113)) - (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))) - (-5 *1 (-1089 *3 *4 *2)) - (-4 *4 (-13 (-1062) (-897 *3) (-624 (-903 *3)))))) + (-12 (-4 *3 (-1112)) + (-4 *2 (-13 (-439 *4) (-896 *3) (-623 (-902 *3)))) + (-5 *1 (-1088 *3 *4 *2)) + (-4 *4 (-13 (-1061) (-896 *3) (-623 (-902 *3)))))) ((*1 *2 *1) - (-12 (-4 *2 (-1113)) (-5 *1 (-1179 *2 *3)) (-4 *3 (-1113))))) -(((*1 *1 *1) - (-12 (-4 *2 (-462)) (-4 *3 (-860)) (-4 *4 (-803)) - (-5 *1 (-1000 *2 *3 *4 *5)) (-4 *5 (-960 *2 *4 *3))))) + (-12 (-4 *2 (-1112)) (-5 *1 (-1178 *2 *3)) (-4 *3 (-1112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-871)))) + ((*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1285)) (-5 *1 (-972))))) +(((*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) + ((*1 *1 *1 *1) (-5 *1 (-871)))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) + (-5 *2 + (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) + (|:| |success| (-112)))) + (-5 *1 (-798)) (-5 *5 (-573))))) +(((*1 *1) (-5 *1 (-1075)))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-653 (-1185 *7))) (-5 *3 (-1185 *7)) + (-4 *7 (-959 *5 *6 *4)) (-4 *5 (-919)) (-4 *6 (-802)) + (-4 *4 (-859)) (-5 *1 (-916 *5 *6 *4 *7))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -4383 (-573)) (|:| -1687 (-653 *3)))) + (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573)))))) +(((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-263))))) +(((*1 *1 *2) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1230)))) + ((*1 *2 *1) (-12 (-5 *2 (-653 (-1189))) (-5 *1 (-1189))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1078 *5 *6 *7)) - (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4091 *4)))) - (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-872)))) - ((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1286)) (-5 *1 (-973))))) -(((*1 *2 *1) - (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) - (-5 *2 (-112))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-597 *2)) (-4 *2 (-555))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) - (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-388)) (-5 *1 (-207))))) -(((*1 *2) - (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-427 *3))))) -(((*1 *1 *2) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1231)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-1190))) (-5 *1 (-1190))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1172)) (-5 *4 (-171 (-227))) (-5 *5 (-574)) - (-5 *2 (-1048)) (-5 *1 (-768))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-1195))) (-5 *1 (-1195)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-516)) (-5 *3 (-654 (-1195))) (-5 *1 (-1195))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1231))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 (-514 *3 *4 *5 *6))) (-4 *3 (-372)) (-4 *4 (-803)) - (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) - (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-960 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-654 *1)) (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1084 *4 *5 *6 *7)) - (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1078 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) - (-4 *1 (-1084 *4 *5 *6 *7)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-654 *1)) - (-4 *1 (-1084 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) - (-5 *2 (-654 (-654 (-954 *3)))))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-654 (-654 (-954 *4)))) (-5 *3 (-112)) (-4 *4 (-1062)) - (-4 *1 (-1147 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-654 (-654 (-954 *3)))) (-4 *3 (-1062)) - (-4 *1 (-1147 *3)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-654 (-654 (-654 *4)))) (-5 *3 (-112)) - (-4 *1 (-1147 *4)) (-4 *4 (-1062)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-654 (-654 (-954 *4)))) (-5 *3 (-112)) - (-4 *1 (-1147 *4)) (-4 *4 (-1062)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-654 (-654 (-654 *5)))) (-5 *3 (-654 (-173))) - (-5 *4 (-173)) (-4 *1 (-1147 *5)) (-4 *5 (-1062)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-654 (-654 (-954 *5)))) (-5 *3 (-654 (-173))) - (-5 *4 (-173)) (-4 *1 (-1147 *5)) (-4 *5 (-1062))))) -(((*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-832))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1074 (-1037 *3) (-1186 (-1037 *3)))) - (-5 *1 (-1037 *3)) (-4 *3 (-13 (-858) (-372) (-1035)))))) + (-12 (-5 *3 (-1189)) (-5 *4 (-962 (-573))) (-5 *2 (-337)) + (-5 *1 (-339))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-931)) (-5 *4 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *1 *1 *1) (-4 *1 (-554)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) +(((*1 *2 *3) (-12 (-5 *3 (-931)) (-5 *2 (-1171)) (-5 *1 (-795))))) (((*1 *2 *1) - (-12 (-5 *2 (-701 (-883 (-977 *3) (-977 *3)))) (-5 *1 (-977 *3)) - (-4 *3 (-1113))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-324 (-227))) (-5 *1 (-313)))) + (|partial| -12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1061)) + (-4 *2 (-1271 *3))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-323 (-227))) (-5 *1 (-312)))) ((*1 *2 *1) (|partial| -12 - (-5 *2 (-2 (|:| |num| (-903 *3)) (|:| |den| (-903 *3)))) - (-5 *1 (-903 *3)) (-4 *3 (-1113))))) -(((*1 *2 *3) - (-12 (-14 *4 (-654 (-1190))) (-4 *5 (-462)) - (-5 *2 - (-2 (|:| |glbase| (-654 (-253 *4 *5))) (|:| |glval| (-654 (-574))))) - (-5 *1 (-641 *4 *5)) (-5 *3 (-654 (-253 *4 *5)))))) + (-5 *2 (-2 (|:| |num| (-902 *3)) (|:| |den| (-902 *3)))) + (-5 *1 (-902 *3)) (-4 *3 (-1112))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1112) (-34))) (-4 *6 (-13 (-1112) (-34))) + (-5 *2 (-112)) (-5 *1 (-1152 *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-461)) + (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) + (-5 *1 (-989 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-653 *7)) (-5 *3 (-112)) (-4 *7 (-1077 *4 *5 *6)) + (-4 *4 (-461)) (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) + (-5 *1 (-989 *4 *5 *6 *7))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1062)) - (-4 *4 (-802)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1061)) + (-4 *4 (-801)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1062)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-654 (-1190))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1061)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-653 (-1189))))) ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) - (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) + (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) - (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) + (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) - (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) + (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1231)) - (-4 *6 (-1231)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1230)) + (-4 *6 (-1230)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-574)) - (-14 *6 (-781)) (-4 *7 (-174)) (-4 *8 (-174)) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-573)) + (-14 *6 (-780)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-324 *3) (-324 *3))) (-4 *3 (-13 (-1062) (-860))) - (-5 *1 (-225 *3 *4)) (-14 *4 (-654 (-1190))))) + (-12 (-5 *2 (-1 (-323 *3) (-323 *3))) (-4 *3 (-13 (-1061) (-859))) + (-5 *1 (-225 *3 *4)) (-14 *4 (-653 (-1189))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-781)) - (-4 *6 (-1231)) (-4 *7 (-1231)) (-5 *2 (-246 *5 *7)) - (-5 *1 (-245 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-245 *5 *6)) (-14 *5 (-780)) + (-4 *6 (-1230)) (-4 *7 (-1230)) (-5 *2 (-245 *5 *7)) + (-5 *1 (-244 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-302 *5)) (-4 *5 (-1231)) - (-4 *6 (-1231)) (-5 *2 (-302 *6)) (-5 *1 (-301 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-301 *5)) (-4 *5 (-1230)) + (-4 *6 (-1230)) (-5 *2 (-301 *6)) (-5 *1 (-300 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1231)) (-5 *1 (-302 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1230)) (-5 *1 (-301 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1172)) (-5 *5 (-622 *6)) - (-4 *6 (-310)) (-4 *2 (-1231)) (-5 *1 (-305 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1171)) (-5 *5 (-621 *6)) + (-4 *6 (-309)) (-4 *2 (-1230)) (-5 *1 (-304 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-622 *5)) (-4 *5 (-310)) - (-4 *2 (-310)) (-5 *1 (-306 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-621 *5)) (-4 *5 (-309)) + (-4 *2 (-309)) (-5 *1 (-305 *5 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-622 *1)) (-4 *1 (-310)))) + (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-621 *1)) (-4 *1 (-309)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-699 *5)) (-4 *5 (-1062)) - (-4 *6 (-1062)) (-5 *2 (-699 *6)) (-5 *1 (-312 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-698 *5)) (-4 *5 (-1061)) + (-4 *6 (-1061)) (-5 *2 (-698 *6)) (-5 *1 (-311 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-324 *5)) (-4 *5 (-1113)) - (-4 *6 (-1113)) (-5 *2 (-324 *6)) (-5 *1 (-322 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-323 *5)) (-4 *5 (-1112)) + (-4 *6 (-1112)) (-5 *2 (-323 *6)) (-5 *1 (-321 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-345 *5 *6 *7 *8)) (-4 *5 (-372)) - (-4 *6 (-1257 *5)) (-4 *7 (-1257 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) - (-4 *9 (-372)) (-4 *10 (-1257 *9)) (-4 *11 (-1257 (-417 *10))) - (-5 *2 (-345 *9 *10 *11 *12)) - (-5 *1 (-342 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-351 *9 *10 *11)))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-344 *5 *6 *7 *8)) (-4 *5 (-371)) + (-4 *6 (-1256 *5)) (-4 *7 (-1256 (-416 *6))) (-4 *8 (-350 *5 *6 *7)) + (-4 *9 (-371)) (-4 *10 (-1256 *9)) (-4 *11 (-1256 (-416 *10))) + (-5 *2 (-344 *9 *10 *11 *12)) + (-5 *1 (-341 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-350 *9 *10 *11)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-347 *3)) (-4 *3 (-1113)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-346 *3)) (-4 *3 (-1112)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1235)) (-4 *8 (-1235)) - (-4 *6 (-1257 *5)) (-4 *7 (-1257 (-417 *6))) (-4 *9 (-1257 *8)) - (-4 *2 (-351 *8 *9 *10)) (-5 *1 (-349 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-351 *5 *6 *7)) (-4 *10 (-1257 (-417 *9))))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1234)) (-4 *8 (-1234)) + (-4 *6 (-1256 *5)) (-4 *7 (-1256 (-416 *6))) (-4 *9 (-1256 *8)) + (-4 *2 (-350 *8 *9 *10)) (-5 *1 (-348 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-350 *5 *6 *7)) (-4 *10 (-1256 (-416 *9))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1231)) (-4 *6 (-1231)) - (-4 *2 (-382 *6)) (-5 *1 (-380 *5 *4 *6 *2)) (-4 *4 (-382 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1230)) (-4 *6 (-1230)) + (-4 *2 (-381 *6)) (-5 *1 (-379 *5 *4 *6 *2)) (-4 *4 (-381 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-391 *3 *4)) (-4 *3 (-1062)) - (-4 *4 (-1113)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-390 *3 *4)) (-4 *3 (-1061)) + (-4 *4 (-1112)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-428 *5)) (-4 *5 (-566)) - (-4 *6 (-566)) (-5 *2 (-428 *6)) (-5 *1 (-415 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-427 *5)) (-4 *5 (-565)) + (-4 *6 (-565)) (-5 *2 (-427 *6)) (-5 *1 (-414 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-417 *5)) (-4 *5 (-566)) - (-4 *6 (-566)) (-5 *2 (-417 *6)) (-5 *1 (-416 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-416 *5)) (-4 *5 (-565)) + (-4 *6 (-565)) (-5 *2 (-416 *6)) (-5 *1 (-415 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-423 *5 *6 *7 *8)) (-4 *5 (-315)) - (-4 *6 (-1005 *5)) (-4 *7 (-1257 *6)) - (-4 *8 (-13 (-419 *6 *7) (-1051 *6))) (-4 *9 (-315)) - (-4 *10 (-1005 *9)) (-4 *11 (-1257 *10)) - (-5 *2 (-423 *9 *10 *11 *12)) - (-5 *1 (-422 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-419 *10 *11) (-1051 *10))))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-422 *5 *6 *7 *8)) (-4 *5 (-314)) + (-4 *6 (-1004 *5)) (-4 *7 (-1256 *6)) + (-4 *8 (-13 (-418 *6 *7) (-1050 *6))) (-4 *9 (-314)) + (-4 *10 (-1004 *9)) (-4 *11 (-1256 *10)) + (-5 *2 (-422 *9 *10 *11 *12)) + (-5 *1 (-421 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-418 *10 *11) (-1050 *10))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) - (-4 *2 (-427 *6)) (-5 *1 (-425 *4 *5 *2 *6)) (-4 *4 (-427 *5)))) + (-4 *2 (-426 *6)) (-5 *1 (-424 *4 *5 *2 *6)) (-4 *4 (-426 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-566)) (-5 *1 (-428 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-565)) (-5 *1 (-427 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1062)) (-4 *6 (-1062)) - (-4 *2 (-440 *6)) (-5 *1 (-431 *5 *4 *6 *2)) (-4 *4 (-440 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1061)) (-4 *6 (-1061)) + (-4 *2 (-439 *6)) (-5 *1 (-430 *5 *4 *6 *2)) (-4 *4 (-439 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1113)) (-4 *6 (-1113)) - (-4 *2 (-435 *6)) (-5 *1 (-433 *5 *4 *6 *2)) (-4 *4 (-435 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) + (-4 *2 (-434 *6)) (-5 *1 (-432 *5 *4 *6 *2)) (-4 *4 (-434 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-499 *3)) (-4 *3 (-1231)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-498 *3)) (-4 *3 (-1230)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-519 *3 *4)) (-4 *3 (-1113)) - (-4 *4 (-860)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-518 *3 *4)) (-4 *3 (-1112)) + (-4 *4 (-859)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-596 *5)) (-4 *5 (-372)) - (-4 *6 (-372)) (-5 *2 (-596 *6)) (-5 *1 (-594 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-595 *5)) (-4 *5 (-371)) + (-4 *6 (-371)) (-5 *2 (-595 *6)) (-5 *1 (-593 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -2399 *5) (|:| |coeff| *5)) "failed")) - (-4 *5 (-372)) (-4 *6 (-372)) - (-5 *2 (-2 (|:| -2399 *6) (|:| |coeff| *6))) - (-5 *1 (-594 *5 *6)))) + (-5 *4 (-3 (-2 (|:| -3861 *5) (|:| |coeff| *5)) "failed")) + (-4 *5 (-371)) (-4 *6 (-371)) + (-5 *2 (-2 (|:| -3861 *6) (|:| |coeff| *6))) + (-5 *1 (-593 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) - (-4 *5 (-372)) (-4 *2 (-372)) (-5 *1 (-594 *5 *2)))) + (-4 *5 (-371)) (-4 *2 (-371)) (-5 *1 (-593 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| - (-654 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + (-653 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) - (-4 *5 (-372)) (-4 *6 (-372)) + (-4 *5 (-371)) (-4 *6 (-371)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| - (-654 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-594 *5 *6)))) + (-653 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-593 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-611 *5)) (-4 *5 (-1231)) - (-4 *6 (-1231)) (-5 *2 (-611 *6)) (-5 *1 (-608 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-610 *5)) (-4 *5 (-1230)) + (-4 *6 (-1230)) (-5 *2 (-610 *6)) (-5 *1 (-607 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-611 *6)) (-5 *5 (-611 *7)) - (-4 *6 (-1231)) (-4 *7 (-1231)) (-4 *8 (-1231)) (-5 *2 (-611 *8)) - (-5 *1 (-609 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-610 *6)) (-5 *5 (-610 *7)) + (-4 *6 (-1230)) (-4 *7 (-1230)) (-4 *8 (-1230)) (-5 *2 (-610 *8)) + (-5 *1 (-608 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1170 *6)) (-5 *5 (-611 *7)) - (-4 *6 (-1231)) (-4 *7 (-1231)) (-4 *8 (-1231)) (-5 *2 (-1170 *8)) - (-5 *1 (-609 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1169 *6)) (-5 *5 (-610 *7)) + (-4 *6 (-1230)) (-4 *7 (-1230)) (-4 *8 (-1230)) (-5 *2 (-1169 *8)) + (-5 *1 (-608 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-611 *6)) (-5 *5 (-1170 *7)) - (-4 *6 (-1231)) (-4 *7 (-1231)) (-4 *8 (-1231)) (-5 *2 (-1170 *8)) - (-5 *1 (-609 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-610 *6)) (-5 *5 (-1169 *7)) + (-4 *6 (-1230)) (-4 *7 (-1230)) (-4 *8 (-1230)) (-5 *2 (-1169 *8)) + (-5 *1 (-608 *6 *7 *8)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1231)) (-5 *1 (-611 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1230)) (-5 *1 (-610 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-654 *5)) (-4 *5 (-1231)) - (-4 *6 (-1231)) (-5 *2 (-654 *6)) (-5 *1 (-652 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-653 *5)) (-4 *5 (-1230)) + (-4 *6 (-1230)) (-5 *2 (-653 *6)) (-5 *1 (-651 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-654 *6)) (-5 *5 (-654 *7)) - (-4 *6 (-1231)) (-4 *7 (-1231)) (-4 *8 (-1231)) (-5 *2 (-654 *8)) - (-5 *1 (-653 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-653 *6)) (-5 *5 (-653 *7)) + (-4 *6 (-1230)) (-4 *7 (-1230)) (-4 *8 (-1230)) (-5 *2 (-653 *8)) + (-5 *1 (-652 *6 *7 *8)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-661 *3)) (-4 *3 (-1231)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1062)) (-4 *8 (-1062)) - (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) (-4 *2 (-697 *8 *9 *10)) - (-5 *1 (-695 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-697 *5 *6 *7)) - (-4 *9 (-382 *8)) (-4 *10 (-382 *8)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1062)) - (-4 *8 (-1062)) (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) - (-4 *2 (-697 *8 *9 *10)) (-5 *1 (-695 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-697 *5 *6 *7)) (-4 *9 (-382 *8)) (-4 *10 (-382 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-566)) (-4 *7 (-566)) - (-4 *6 (-1257 *5)) (-4 *2 (-1257 (-417 *8))) - (-5 *1 (-719 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1257 (-417 *6))) - (-4 *8 (-1257 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1062)) (-4 *9 (-1062)) - (-4 *5 (-860)) (-4 *6 (-803)) (-4 *2 (-960 *9 *7 *5)) - (-5 *1 (-738 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-803)) - (-4 *4 (-960 *8 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-860)) (-4 *6 (-860)) (-4 *7 (-803)) - (-4 *9 (-1062)) (-4 *2 (-960 *9 *8 *6)) - (-5 *1 (-739 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-803)) - (-4 *4 (-960 *9 *7 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5 *7)) (-4 *5 (-1062)) - (-4 *6 (-1062)) (-4 *7 (-736)) (-5 *2 (-745 *6 *7)) - (-5 *1 (-744 *5 *6 *7)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-660 *3)) (-4 *3 (-1230)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1061)) (-4 *8 (-1061)) + (-4 *6 (-381 *5)) (-4 *7 (-381 *5)) (-4 *2 (-696 *8 *9 *10)) + (-5 *1 (-694 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-696 *5 *6 *7)) + (-4 *9 (-381 *8)) (-4 *10 (-381 *8)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1061)) + (-4 *8 (-1061)) (-4 *6 (-381 *5)) (-4 *7 (-381 *5)) + (-4 *2 (-696 *8 *9 *10)) (-5 *1 (-694 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-696 *5 *6 *7)) (-4 *9 (-381 *8)) (-4 *10 (-381 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-565)) (-4 *7 (-565)) + (-4 *6 (-1256 *5)) (-4 *2 (-1256 (-416 *8))) + (-5 *1 (-718 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1256 (-416 *6))) + (-4 *8 (-1256 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1061)) (-4 *9 (-1061)) + (-4 *5 (-859)) (-4 *6 (-802)) (-4 *2 (-959 *9 *7 *5)) + (-5 *1 (-737 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-802)) + (-4 *4 (-959 *8 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-859)) (-4 *6 (-859)) (-4 *7 (-802)) + (-4 *9 (-1061)) (-4 *2 (-959 *9 *8 *6)) + (-5 *1 (-738 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-802)) + (-4 *4 (-959 *9 *7 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5 *7)) (-4 *5 (-1061)) + (-4 *6 (-1061)) (-4 *7 (-735)) (-5 *2 (-744 *6 *7)) + (-5 *1 (-743 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1062)) (-5 *1 (-745 *3 *4)) - (-4 *4 (-736)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1061)) (-5 *1 (-744 *3 *4)) + (-4 *4 (-735)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-792 *5)) (-4 *5 (-1062)) - (-4 *6 (-1062)) (-5 *2 (-792 *6)) (-5 *1 (-791 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-791 *5)) (-4 *5 (-1061)) + (-4 *6 (-1061)) (-5 *2 (-791 *6)) (-5 *1 (-790 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) - (-4 *2 (-807 *6)) (-5 *1 (-808 *4 *5 *2 *6)) (-4 *4 (-807 *5)))) + (-4 *2 (-806 *6)) (-5 *1 (-807 *4 *5 *2 *6)) (-4 *4 (-806 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1113)) - (-4 *6 (-1113)) (-5 *2 (-843 *6)) (-5 *1 (-842 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-842 *5)) (-4 *5 (-1112)) + (-4 *6 (-1112)) (-5 *2 (-842 *6)) (-5 *1 (-841 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-843 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) - (-4 *5 (-1113)) (-4 *6 (-1113)) (-5 *1 (-842 *5 *6)))) + (-12 (-5 *2 (-842 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-842 *5)) + (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *1 (-841 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1113)) - (-4 *6 (-1113)) (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-852 *5)) (-4 *5 (-1112)) + (-4 *6 (-1112)) (-5 *2 (-852 *6)) (-5 *1 (-851 *5 *6)))) ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-853 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) - (-4 *5 (-1113)) (-4 *6 (-1113)) (-5 *1 (-852 *5 *6)))) + (-12 (-5 *2 (-852 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-852 *5)) + (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *1 (-851 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1231)) - (-4 *6 (-1231)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-887 *5)) (-4 *5 (-1230)) + (-4 *6 (-1230)) (-5 *2 (-887 *6)) (-5 *1 (-886 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-890 *5)) (-4 *5 (-1231)) - (-4 *6 (-1231)) (-5 *2 (-890 *6)) (-5 *1 (-889 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-889 *5)) (-4 *5 (-1230)) + (-4 *6 (-1230)) (-5 *2 (-889 *6)) (-5 *1 (-888 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-1231)) - (-4 *6 (-1231)) (-5 *2 (-893 *6)) (-5 *1 (-892 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1230)) + (-4 *6 (-1230)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-900 *5 *6)) (-4 *5 (-1113)) - (-4 *6 (-1113)) (-4 *7 (-1113)) (-5 *2 (-900 *5 *7)) - (-5 *1 (-899 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-899 *5 *6)) (-4 *5 (-1112)) + (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-899 *5 *7)) + (-5 *1 (-898 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-903 *5)) (-4 *5 (-1113)) - (-4 *6 (-1113)) (-5 *2 (-903 *6)) (-5 *1 (-902 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-902 *5)) (-4 *5 (-1112)) + (-4 *6 (-1112)) (-5 *2 (-902 *6)) (-5 *1 (-901 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-963 *5)) (-4 *5 (-1062)) - (-4 *6 (-1062)) (-5 *2 (-963 *6)) (-5 *1 (-957 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-962 *5)) (-4 *5 (-1061)) + (-4 *6 (-1061)) (-5 *2 (-962 *6)) (-5 *1 (-956 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-860)) - (-4 *8 (-1062)) (-4 *6 (-803)) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-859)) + (-4 *8 (-1061)) (-4 *6 (-802)) (-4 *2 - (-13 (-1113) - (-10 -8 (-15 -3079 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-781)))))) - (-5 *1 (-962 *6 *7 *8 *5 *2)) (-4 *5 (-960 *8 *6 *7)))) + (-13 (-1112) + (-10 -8 (-15 -3077 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-780)))))) + (-5 *1 (-961 *6 *7 *8 *5 *2)) (-4 *5 (-959 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-969 *5)) (-4 *5 (-1231)) - (-4 *6 (-1231)) (-5 *2 (-969 *6)) (-5 *1 (-968 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-968 *5)) (-4 *5 (-1230)) + (-4 *6 (-1230)) (-5 *2 (-968 *6)) (-5 *1 (-967 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-977 *5)) (-4 *5 (-1113)) - (-4 *6 (-1113)) (-5 *2 (-977 *6)) (-5 *1 (-979 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-976 *5)) (-4 *5 (-1112)) + (-4 *6 (-1112)) (-5 *2 (-976 *6)) (-5 *1 (-978 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-954 *5)) (-4 *5 (-1062)) - (-4 *6 (-1062)) (-5 *2 (-954 *6)) (-5 *1 (-994 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-953 *5)) (-4 *5 (-1061)) + (-4 *6 (-1061)) (-5 *2 (-953 *6)) (-5 *1 (-993 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-963 *4))) (-4 *4 (-1062)) - (-4 *2 (-960 (-963 *4) *5 *6)) (-4 *5 (-803)) + (-12 (-5 *3 (-1 *2 (-962 *4))) (-4 *4 (-1061)) + (-4 *2 (-959 (-962 *4) *5 *6)) (-4 *5 (-802)) (-4 *6 - (-13 (-860) - (-10 -8 (-15 -1836 ((-1190) $)) - (-15 -1488 ((-3 $ "failed") (-1190)))))) - (-5 *1 (-997 *4 *5 *6 *2)))) + (-13 (-859) + (-10 -8 (-15 -1835 ((-1189) $)) + (-15 -1487 ((-3 $ "failed") (-1189)))))) + (-5 *1 (-996 *4 *5 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-566)) (-4 *6 (-566)) - (-4 *2 (-1005 *6)) (-5 *1 (-1003 *5 *6 *4 *2)) (-4 *4 (-1005 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-565)) (-4 *6 (-565)) + (-4 *2 (-1004 *6)) (-5 *1 (-1002 *5 *6 *4 *2)) (-4 *4 (-1004 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) - (-4 *2 (-1010 *6)) (-5 *1 (-1011 *4 *5 *2 *6)) (-4 *4 (-1010 *5)))) + (-4 *2 (-1009 *6)) (-5 *1 (-1010 *4 *5 *2 *6)) (-4 *4 (-1009 *5)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1066 *3 *4 *5 *6 *7)) - (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1065 *3 *4 *5 *6 *7)) + (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1066 *3 *4 *5 *6 *7)) - (-4 *5 (-1062)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1065 *3 *4 *5 *6 *7)) + (-4 *5 (-1061)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1062)) (-4 *10 (-1062)) - (-14 *5 (-781)) (-14 *6 (-781)) (-4 *8 (-244 *6 *7)) - (-4 *9 (-244 *5 *7)) (-4 *2 (-1066 *5 *6 *10 *11 *12)) - (-5 *1 (-1068 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-1066 *5 *6 *7 *8 *9)) (-4 *11 (-244 *6 *10)) - (-4 *12 (-244 *5 *10)))) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1061)) (-4 *10 (-1061)) + (-14 *5 (-780)) (-14 *6 (-780)) (-4 *8 (-243 *6 *7)) + (-4 *9 (-243 *5 *7)) (-4 *2 (-1065 *5 *6 *10 *11 *12)) + (-5 *1 (-1067 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-1065 *5 *6 *7 *8 *9)) (-4 *11 (-243 *6 *10)) + (-4 *12 (-243 *5 *10)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1107 *5)) (-4 *5 (-1231)) - (-4 *6 (-1231)) (-5 *2 (-1107 *6)) (-5 *1 (-1102 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1106 *5)) (-4 *5 (-1230)) + (-4 *6 (-1230)) (-5 *2 (-1106 *6)) (-5 *1 (-1101 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1107 *5)) (-4 *5 (-858)) - (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-654 *6)) - (-5 *1 (-1102 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1106 *5)) (-4 *5 (-857)) + (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-653 *6)) + (-5 *1 (-1101 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1105 *5)) (-4 *5 (-1231)) - (-4 *6 (-1231)) (-5 *2 (-1105 *6)) (-5 *1 (-1104 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1104 *5)) (-4 *5 (-1230)) + (-4 *6 (-1230)) (-5 *2 (-1104 *6)) (-5 *1 (-1103 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1108 *4 *2)) (-4 *4 (-858)) - (-4 *2 (-1162 *4)))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1107 *4 *2)) (-4 *4 (-857)) + (-4 *2 (-1161 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1170 *5)) (-4 *5 (-1231)) - (-4 *6 (-1231)) (-5 *2 (-1170 *6)) (-5 *1 (-1168 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1169 *5)) (-4 *5 (-1230)) + (-4 *6 (-1230)) (-5 *2 (-1169 *6)) (-5 *1 (-1167 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1170 *6)) (-5 *5 (-1170 *7)) - (-4 *6 (-1231)) (-4 *7 (-1231)) (-4 *8 (-1231)) (-5 *2 (-1170 *8)) - (-5 *1 (-1169 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1169 *6)) (-5 *5 (-1169 *7)) + (-4 *6 (-1230)) (-4 *7 (-1230)) (-4 *8 (-1230)) (-5 *2 (-1169 *8)) + (-5 *1 (-1168 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1186 *5)) (-4 *5 (-1062)) - (-4 *6 (-1062)) (-5 *2 (-1186 *6)) (-5 *1 (-1184 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1185 *5)) (-4 *5 (-1061)) + (-4 *6 (-1061)) (-5 *2 (-1185 *6)) (-5 *1 (-1183 *5 *6)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1207 *3 *4)) (-4 *3 (-1113)) - (-4 *4 (-1113)))) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1206 *3 *4)) (-4 *3 (-1112)) + (-4 *4 (-1112)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1245 *5 *7 *9)) (-4 *5 (-1062)) - (-4 *6 (-1062)) (-14 *7 (-1190)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1245 *6 *8 *10)) (-5 *1 (-1240 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1190)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1244 *5 *7 *9)) (-4 *5 (-1061)) + (-4 *6 (-1061)) (-14 *7 (-1189)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1244 *6 *8 *10)) (-5 *1 (-1239 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1189)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1248 *5)) (-4 *5 (-1231)) - (-4 *6 (-1231)) (-5 *2 (-1248 *6)) (-5 *1 (-1247 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1247 *5)) (-4 *5 (-1230)) + (-4 *6 (-1230)) (-5 *2 (-1247 *6)) (-5 *1 (-1246 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1248 *5)) (-4 *5 (-858)) - (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-1170 *6)) - (-5 *1 (-1247 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1247 *5)) (-4 *5 (-857)) + (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-1169 *6)) + (-5 *1 (-1246 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1254 *5 *6)) (-14 *5 (-1190)) - (-4 *6 (-1062)) (-4 *8 (-1062)) (-5 *2 (-1254 *7 *8)) - (-5 *1 (-1249 *5 *6 *7 *8)) (-14 *7 (-1190)))) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1253 *5 *6)) (-14 *5 (-1189)) + (-4 *6 (-1061)) (-4 *8 (-1061)) (-5 *2 (-1253 *7 *8)) + (-5 *1 (-1248 *5 *6 *7 *8)) (-14 *7 (-1189)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1062)) (-4 *6 (-1062)) - (-4 *2 (-1257 *6)) (-5 *1 (-1255 *5 *4 *6 *2)) (-4 *4 (-1257 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1061)) (-4 *6 (-1061)) + (-4 *2 (-1256 *6)) (-5 *1 (-1254 *5 *4 *6 *2)) (-4 *4 (-1256 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1266 *5 *7 *9)) (-4 *5 (-1062)) - (-4 *6 (-1062)) (-14 *7 (-1190)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1266 *6 *8 *10)) (-5 *1 (-1261 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1190)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1265 *5 *7 *9)) (-4 *5 (-1061)) + (-4 *6 (-1061)) (-14 *7 (-1189)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1265 *6 *8 *10)) (-5 *1 (-1260 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1189)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1062)) (-4 *6 (-1062)) - (-4 *2 (-1272 *6)) (-5 *1 (-1270 *5 *6 *4 *2)) (-4 *4 (-1272 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1061)) (-4 *6 (-1061)) + (-4 *2 (-1271 *6)) (-5 *1 (-1269 *5 *6 *4 *2)) (-4 *4 (-1271 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1281 *5)) (-4 *5 (-1231)) - (-4 *6 (-1231)) (-5 *2 (-1281 *6)) (-5 *1 (-1280 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1280 *5)) (-4 *5 (-1230)) + (-4 *6 (-1230)) (-5 *2 (-1280 *6)) (-5 *1 (-1279 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1281 *5)) - (-4 *5 (-1231)) (-4 *6 (-1231)) (-5 *2 (-1281 *6)) - (-5 *1 (-1280 *5 *6)))) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1280 *5)) + (-4 *5 (-1230)) (-4 *6 (-1230)) (-5 *2 (-1280 *6)) + (-5 *1 (-1279 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) - (-4 *4 (-1062)))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) + (-4 *4 (-1061)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1062)) (-5 *1 (-1304 *3 *4)) - (-4 *4 (-856))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -2785 *1) (|:| -4443 *1) (|:| |associate| *1))) - (-4 *1 (-566))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 *1)) (-4 *1 (-310)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) - ((*1 *1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-622 *3)) (-4 *3 (-1113)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1061)) (-5 *1 (-1303 *3 *4)) + (-4 *4 (-855))))) +(((*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-112))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-653 *1)) (-4 *1 (-309)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-309)) (-5 *2 (-115)))) + ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-621 *3)) (-4 *3 (-1112)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-115)) (-5 *3 (-654 *5)) (-5 *4 (-781)) (-4 *5 (-1113)) - (-5 *1 (-622 *5))))) + (-12 (-5 *2 (-115)) (-5 *3 (-653 *5)) (-5 *4 (-780)) (-4 *5 (-1112)) + (-5 *1 (-621 *5))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1061)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1256 *3))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-871))) ((*1 *1 *1 *1) (-5 *1 (-871))) + ((*1 *1 *1) (-5 *1 (-871)))) +(((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014)))))) +(((*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1285)) (-5 *1 (-387)))) + ((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-387))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1039 (-853 (-574)))) - (-5 *3 (-1170 (-2 (|:| |k| (-574)) (|:| |c| *4)))) (-4 *4 (-1062)) - (-5 *1 (-605 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *1 *1) (-4 *1 (-1152)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1186 *5)) (-4 *5 (-372)) (-5 *2 (-654 *6)) - (-5 *1 (-542 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858)))))) -(((*1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1231)) (-4 *2 (-1113)))) - ((*1 *1 *1) (-12 (-4 *1 (-705 *2)) (-4 *2 (-1113))))) + (-12 (-5 *3 (-369 (-115))) (-4 *2 (-1061)) (-5 *1 (-723 *2 *4)) + (-4 *4 (-657 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-369 (-115))) (-5 *1 (-845 *2)) (-4 *2 (-1061))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-654 *4)) - (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-860)) (-5 *3 (-654 *6)) (-5 *5 (-654 *3)) - (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-654 *5)) (|:| |f3| *5) - (|:| |f4| (-654 *5)))) - (-5 *1 (-1201 *6)) (-5 *4 (-654 *5))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-654 (-287))) (-5 *1 (-287)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-1195))) (-5 *1 (-1195))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-870)) (-5 *2 (-701 (-559))) (-5 *3 (-559))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) - (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-1170 (-227))) (-5 *1 (-194)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-324 (-227))) (-5 *4 (-654 (-1190))) - (-5 *5 (-1107 (-853 (-227)))) (-5 *2 (-1170 (-227))) (-5 *1 (-308)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1281 (-324 (-227)))) (-5 *4 (-654 (-1190))) - (-5 *5 (-1107 (-853 (-227)))) (-5 *2 (-1170 (-227))) (-5 *1 (-308))))) + (-12 (-5 *4 (-931)) (-5 *2 (-1185 *3)) (-5 *1 (-1204 *3)) + (-4 *3 (-371))))) (((*1 *2) - (-12 (-4 *1 (-358)) - (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1170 *4)) (-5 *3 (-574)) (-4 *4 (-1062)) - (-5 *1 (-1174 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-574)) (-5 *1 (-1273 *3 *4 *5)) (-4 *3 (-1062)) - (-14 *4 (-1190)) (-14 *5 *3)))) + (-12 (-5 *2 (-112)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-780)) (-5 *2 (-1185 *4)) (-5 *1 (-537 *4)) + (-4 *4 (-357))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-698 *3)) + (-4 *3 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) + (-4 *4 (-1256 *3)) (-5 *1 (-508 *3 *4 *5)) (-4 *5 (-418 *3 *4)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-698 *3)) + (-4 *3 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) + (-4 *4 (-1256 *3)) (-5 *1 (-508 *3 *4 *5)) (-4 *5 (-418 *3 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1295 (-1189) *3)) (-4 *3 (-1061)) (-5 *1 (-1302 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1295 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) + (-5 *1 (-1304 *3 *4))))) +(((*1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1283))))) (((*1 *2 *1) (-12 (-5 *2 - (-654 - (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) - (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) + (-653 + (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) + (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) - (-5 *1 (-569)))) + (-5 *1 (-568)))) ((*1 *2 *1) - (-12 (-4 *1 (-620 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)) - (-5 *2 (-654 *3)))) + (-12 (-4 *1 (-619 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112)) + (-5 *2 (-653 *3)))) ((*1 *2 *1) (-12 (-5 *2 - (-654 + (-653 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1281 (-324 (-227)))) (|:| |yinit| (-654 (-227))) - (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) + (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) + (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) - (-5 *1 (-813))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574)))) - (-4 *3 (-13 (-27) (-1216) (-440 *6) (-10 -8 (-15 -2943 ($ *7))))) - (-4 *7 (-858)) - (-4 *8 - (-13 (-1259 *3 *7) (-372) (-1216) - (-10 -8 (-15 -3905 ($ $)) (-15 -2379 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1172)) (|:| |prob| (-1172)))))) - (-5 *1 (-432 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1172)) (-4 *9 (-996 *8)) - (-14 *10 (-1190))))) + (-5 *1 (-812))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1112)) (-4 *4 (-1112)) + (-4 *6 (-1112)) (-5 *2 (-1 *6 *5)) (-5 *1 (-693 *5 *4 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-416 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) + (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) + (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1148)) (-5 *2 (-701 (-288))) (-5 *1 (-169))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1216)))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1170 *4)) (-5 *3 (-574)) (-4 *4 (-1062)) - (-5 *1 (-1174 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-574)) (-5 *1 (-1273 *3 *4 *5)) (-4 *3 (-1062)) - (-14 *4 (-1190)) (-14 *5 *3)))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-654 (-654 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-654 (-3 (|:| |array| (-654 *3)) (|:| |scalar| (-1190))))) - (-5 *6 (-654 (-1190))) (-5 *3 (-1190)) (-5 *2 (-1117)) - (-5 *1 (-407)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-654 (-654 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-654 (-3 (|:| |array| (-654 *3)) (|:| |scalar| (-1190))))) - (-5 *6 (-654 (-1190))) (-5 *3 (-1190)) (-5 *2 (-1117)) - (-5 *1 (-407)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-654 (-1190))) (-5 *5 (-1193)) (-5 *3 (-1190)) - (-5 *2 (-1117)) (-5 *1 (-407))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-654 *6)) (-4 *1 (-960 *4 *5 *6)) (-4 *4 (-1062)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-781)))) - ((*1 *2 *1) - (-12 (-4 *1 (-960 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *5 (-860)) (-5 *2 (-781))))) -(((*1 *1 *2) - (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-4 *1 (-383 *3 *4)) - (-4 *4 (-174))))) -(((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-302 *6)) (-5 *4 (-115)) (-4 *6 (-440 *5)) - (-4 *5 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) - (-5 *1 (-325 *5 *6)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-302 *7)) (-5 *4 (-115)) (-5 *5 (-654 *7)) - (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) - (-5 *1 (-325 *6 *7)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-654 (-302 *7))) (-5 *4 (-654 (-115))) (-5 *5 (-302 *7)) - (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) - (-5 *1 (-325 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-654 (-302 *8))) (-5 *4 (-654 (-115))) (-5 *5 (-302 *8)) - (-5 *6 (-654 *8)) (-4 *8 (-440 *7)) - (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) - (-5 *1 (-325 *7 *8)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-654 *7)) (-5 *4 (-654 (-115))) (-5 *5 (-302 *7)) - (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) - (-5 *1 (-325 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 (-115))) (-5 *6 (-654 (-302 *8))) - (-4 *8 (-440 *7)) (-5 *5 (-302 *8)) - (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) - (-5 *1 (-325 *7 *8)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-302 *5)) (-5 *4 (-115)) (-4 *5 (-440 *6)) - (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) - (-5 *1 (-325 *6 *5)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-4 *3 (-440 *6)) - (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) - (-5 *1 (-325 *6 *3)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-4 *3 (-440 *6)) - (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) - (-5 *1 (-325 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-5 *6 (-654 *3)) - (-4 *3 (-440 *7)) (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) - (-5 *1 (-325 *7 *3))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-1251 *3 *2)) - (-4 *2 (-1257 *3))))) + (|partial| -12 (-5 *3 (-1171)) (-5 *2 (-387)) (-5 *1 (-795))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-764))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 *6)) (-5 *4 (-653 (-1169 *7))) (-4 *6 (-859)) + (-4 *7 (-959 *5 (-540 *6) *6)) (-4 *5 (-1061)) + (-5 *2 (-1 (-1169 *7) *7)) (-5 *1 (-1138 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) + (-5 *2 (-653 *4)) (-5 *1 (-1140 *3 *4)) (-4 *3 (-1256 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) + (-5 *2 (-653 *3)) (-5 *1 (-1140 *4 *3)) (-4 *4 (-1256 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-931)) (-5 *2 (-1285)) (-5 *1 (-1281)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-931)) (-5 *2 (-1285)) (-5 *1 (-1282))))) (((*1 *1 *1 *1) (-5 *1 (-130))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1197 *2)) (-14 *2 (-932)))) - ((*1 *1 *1 *1) (-5 *1 (-1236))) ((*1 *1 *1 *1) (-5 *1 (-1237))) - ((*1 *1 *1 *1) (-5 *1 (-1238))) ((*1 *1 *1 *1) (-5 *1 (-1239)))) -(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-938))))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1196 *2)) (-14 *2 (-931)))) + ((*1 *1 *1 *1) (-5 *1 (-1235))) ((*1 *1 *1 *1) (-5 *1 (-1236))) + ((*1 *1 *1 *1) (-5 *1 (-1237))) ((*1 *1 *1 *1) (-5 *1 (-1238)))) (((*1 *2 *1) - (-12 (-4 *1 (-1224 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1224 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) - (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *1 (-1039 *2)) (-4 *2 (-1231))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1153 *3 *2)) (-4 *3 (-13 (-1113) (-34))) - (-4 *2 (-13 (-1113) (-34)))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) + (-4 *4 (-1061))))) (((*1 *2 *3) - (-12 (-5 *2 (-1186 (-574))) (-5 *1 (-953)) (-5 *3 (-574))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1186 *7)) (-5 *3 (-574)) (-4 *7 (-960 *6 *4 *5)) - (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1062)) - (-5 *1 (-329 *4 *5 *6 *7))))) -(((*1 *2) (-12 (-5 *2 (-843 (-574))) (-5 *1 (-544)))) - ((*1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-1113))))) -(((*1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-839))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) + (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-573)) (-5 *1 (-206))))) +(((*1 *2 *3 *2) + (-12 (-4 *2 (-13 (-371) (-857))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1256 (-171 *2))))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-371) (-857))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1256 (-171 *2)))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + ((*1 *2 *1) + (-12 (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-112)) + (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-655 *3)) (-4 *3 (-1070)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-1070)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1080 *4 *3)) (-4 *4 (-13 (-857) (-371))) + (-4 *3 (-1256 *4)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) +(((*1 *1 *2 *2 *3 *1) + (-12 (-5 *2 (-515)) (-5 *3 (-1116)) (-5 *1 (-298))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-653 (-323 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) + (-5 *1 (-212))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1189)) (-5 *2 (-446)) (-5 *1 (-1193))))) +(((*1 *2) (-12 (-5 *2 (-842 (-573))) (-5 *1 (-543)))) + ((*1 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-1112))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1061)) (-5 *1 (-1173 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1272 *2 *3 *4)) (-4 *2 (-1061)) (-14 *3 (-1189)) + (-14 *4 *2)))) (((*1 *1 *1 *1) (-5 *1 (-130))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1197 *2)) (-14 *2 (-932)))) - ((*1 *1 *1 *1) (-5 *1 (-1236))) ((*1 *1 *1 *1) (-5 *1 (-1237))) - ((*1 *1 *1 *1) (-5 *1 (-1238))) ((*1 *1 *1 *1) (-5 *1 (-1239)))) -(((*1 *2 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-802)))) - ((*1 *2 *1) (-12 (-4 *1 (-718 *3)) (-4 *3 (-1062)) (-5 *2 (-781)))) - ((*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1062)) (-5 *2 (-781)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-654 *6)) (-4 *1 (-960 *4 *5 *6)) (-4 *4 (-1062)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-781))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-960 *4 *5 *3)) (-4 *4 (-1062)) (-4 *5 (-803)) - (-4 *3 (-860)) (-5 *2 (-781))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-595)) (-5 *3 (-607)) (-5 *4 (-299)) (-5 *1 (-288))))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1196 *2)) (-14 *2 (-931)))) + ((*1 *1 *1 *1) (-5 *1 (-1235))) ((*1 *1 *1 *1) (-5 *1 (-1236))) + ((*1 *1 *1 *1) (-5 *1 (-1237))) ((*1 *1 *1 *1) (-5 *1 (-1238)))) +(((*1 *2 *3) + (-12 (-4 *4 (-357)) (-4 *5 (-336 *4)) (-4 *6 (-1256 *5)) + (-5 *2 (-653 *3)) (-5 *1 (-786 *4 *5 *6 *3 *7)) (-4 *3 (-1256 *6)) + (-14 *7 (-931))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-337))))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-653 *9)) (-5 *3 (-1 (-112) *9)) + (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1077 *6 *7 *8)) (-4 *6 (-565)) (-4 *7 (-802)) + (-4 *8 (-859)) (-5 *1 (-989 *6 *7 *8 *9))))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-373 *2)) (-4 *2 (-1112)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1171)) (-5 *1 (-1211))))) (((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-427 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-699 *5)) (-4 *5 (-1062)) (-5 *1 (-1067 *3 *4 *5)) - (-14 *3 (-781)) (-14 *4 (-781))))) + (-12 (-4 *3 (-1256 *2)) (-4 *2 (-1256 *4)) (-5 *1 (-997 *4 *2 *3 *5)) + (-4 *4 (-357)) (-4 *5 (-733 *2 *3))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1169 *4)) (-5 *3 (-573)) (-4 *4 (-1061)) + (-5 *1 (-1173 *4)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-573)) (-5 *1 (-1272 *3 *4 *5)) (-4 *3 (-1061)) + (-14 *4 (-1189)) (-14 *5 *3)))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-573)) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) + (-4 *4 (-381 *3)) (-4 *5 (-381 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1216)))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1078 *5 *6 *7)) - (-5 *2 (-654 (-2 (|:| |val| (-654 *3)) (|:| -4091 *4)))) - (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1084 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1190)))) - (-4 *6 (-803)) (-5 *2 (-654 *3)) (-5 *1 (-935 *4 *5 *6 *3)) - (-4 *3 (-960 *4 *6 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566))))) -(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-937))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 - *4 *6 *4) - (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-685 (-227))) - (-5 *3 (-227)) (-5 *2 (-1048)) (-5 *1 (-760))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-620 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-1113)) - (-5 *2 (-112))))) + (-12 (-4 *3 (-13 (-565) (-1050 (-573)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1215) (-439 (-171 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-565) (-1050 (-573)))) + (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 (-171 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) + (-5 *1 (-1219 *3 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1189)) + (-4 *4 (-13 (-461) (-1050 (-573)) (-648 (-573)))) + (-5 *1 (-1219 *4 *2)) (-4 *2 (-13 (-27) (-1215) (-439 *4)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1185 *1)) (-5 *3 (-1189)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1185 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-962 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1189)) (-4 *1 (-29 *3)) (-4 *3 (-565)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-565)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1185 *2)) (-5 *4 (-1189)) (-4 *2 (-439 *5)) + (-5 *1 (-32 *5 *2)) (-4 *5 (-565)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *2 (-1185 *1)) (-5 *3 (-931)) (-4 *1 (-1024)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1185 *1)) (-5 *3 (-931)) (-5 *4 (-871)) + (-4 *1 (-1024)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-931)) (-4 *4 (-13 (-857) (-371))) + (-4 *1 (-1080 *4 *2)) (-4 *2 (-1256 *4))))) (((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) - (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) - (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) - ((*1 *1 *1) (-5 *1 (-388))) ((*1 *1) (-5 *1 (-388)))) -(((*1 *2 *1) (-12 (-4 *1 (-315)) (-5 *2 (-781))))) -(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) - ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) - ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-938))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1113)) (-4 *5 (-1113)) - (-5 *2 (-1 *5)) (-5 *1 (-693 *4 *5))))) + (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) + (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) + ((*1 *1 *1) (-5 *1 (-387))) ((*1 *1) (-5 *1 (-387)))) +(((*1 *1 *1) + (-12 (-4 *1 (-259 *2 *3 *4 *5)) (-4 *2 (-1061)) (-4 *3 (-859)) + (-4 *4 (-272 *3)) (-4 *5 (-802))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) + (-5 *2 (-698 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-698 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) + (-5 *1 (-1000 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-653 *7)) (-4 *7 (-1077 *4 *5 *6)) (-4 *4 (-461)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) + (-5 *1 (-1119 *4 *5 *6 *7 *8)) (-4 *8 (-1083 *4 *5 *6 *7))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-699 (-417 (-963 (-574))))) - (-5 *2 (-699 (-324 (-574)))) (-5 *1 (-1044))))) -(((*1 *1 *1 *1) (-4 *1 (-555)))) + (-12 (-5 *3 (-852 (-387))) (-5 *2 (-852 (-227))) (-5 *1 (-312))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-515)) (-5 *3 (-653 (-885))) (-5 *1 (-492))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1256 (-48)))))) (((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-932)) (-5 *1 (-1114 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-324 (-388))) (-5 *1 (-313))))) + (-12 (-5 *2 (-573)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-780)) (-4 *5 (-174)))) + ((*1 *1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-573)) (-14 *3 (-780)) + (-4 *4 (-174)))) + ((*1 *1 *1) + (-12 (-4 *1 (-696 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-381 *2)) + (-4 *4 (-381 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1061)) (-4 *1 (-696 *3 *2 *4)) (-4 *2 (-381 *3)) + (-4 *4 (-381 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1154 *2 *3)) (-14 *2 (-780)) (-4 *3 (-1061))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1225 *3)) (-4 *3 (-986))))) +(((*1 *2 *1) (-12 (-4 *1 (-683 *3)) (-4 *3 (-1230)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-372)) (-4 *6 (-1257 (-417 *2))) - (-4 *2 (-1257 *5)) (-5 *1 (-217 *5 *2 *6 *3)) - (-4 *3 (-351 *5 *2 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 (-932))) (-5 *1 (-1114 *3 *4)) (-14 *3 (-932)) - (-14 *4 (-932))))) -(((*1 *1 *1 *1) (-4 *1 (-980)))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1051 (-574)) (-649 (-574)) (-462))) - (-5 *2 (-853 *4)) (-5 *1 (-321 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1216) (-440 *3))) (-14 *5 (-1190)) - (-14 *6 *4))) + (-12 (-5 *4 (-1189)) + (-4 *5 (-13 (-565) (-1050 (-573)) (-648 (-573)))) + (-5 *2 + (-2 (|:| |func| *3) (|:| |kers| (-653 (-621 *3))) + (|:| |vals| (-653 *3)))) + (-5 *1 (-283 *5 *3)) (-4 *3 (-13 (-27) (-1215) (-439 *5)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1280 *1)) (-4 *1 (-378 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1256 *4)) (-5 *2 (-698 *4)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1051 (-574)) (-649 (-574)) (-462))) - (-5 *2 (-853 *4)) (-5 *1 (-1267 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1216) (-440 *3))) (-14 *5 (-1190)) - (-14 *6 *4)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1281 *5)) (-4 *5 (-802)) (-5 *2 (-112)) - (-5 *1 (-855 *4 *5)) (-14 *4 (-781))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-331 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-132)) - (-4 *3 (-802))))) -(((*1 *2 *3) (-12 (-5 *3 (-932)) (-5 *2 (-1172)) (-5 *1 (-796))))) -(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-654 (-875)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1202 (-654 *4))) (-4 *4 (-860)) - (-5 *2 (-654 (-654 *4))) (-5 *1 (-1201 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) - (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-63 LSFUN2)))) - (-5 *2 (-1048)) (-5 *1 (-763))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-781)) (-4 *5 (-174)))) - ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-781)) (-4 *5 (-174)))) + (-12 (-4 *1 (-418 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1256 *3)) + (-5 *2 (-698 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-565) (-148))) (-5 *1 (-546 *3 *2)) + (-4 *2 (-1271 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-371) (-376) (-623 (-573)))) (-4 *4 (-1256 *3)) + (-4 *5 (-733 *3 *4)) (-5 *1 (-550 *3 *4 *5 *2)) (-4 *2 (-1271 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-371) (-376) (-623 (-573)))) (-5 *1 (-551 *3 *2)) + (-4 *2 (-1271 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-13 (-565) (-148))) + (-5 *1 (-1165 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-323 (-227))) (-5 *2 (-112)) (-5 *1 (-273))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1189)) (-5 *2 (-1 (-1185 (-962 *4)) (-962 *4))) + (-5 *1 (-1288 *4)) (-4 *4 (-371))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1230)) (-4 *3 (-1112)) + (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1285)) (-5 *1 (-387))))) +(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-653 (-874)))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-1112)) + (-4 *4 (-1112))))) +(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-52)) (-5 *1 (-840))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-698 *4)) (-5 *3 (-931)) (|has| *4 (-6 (-4457 "*"))) + (-4 *4 (-1061)) (-5 *1 (-1040 *4)))) ((*1 *2 *2 *3) - (-12 - (-5 *2 - (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) - (-253 *4 (-417 (-574))))) - (-5 *3 (-654 (-874 *4))) (-14 *4 (-654 (-1190))) (-14 *5 (-781)) - (-5 *1 (-515 *4 *5))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4456)) (-4 *1 (-499 *3)) (-4 *3 (-1231)) - (-4 *3 (-1113)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-916 *4)) (-4 *4 (-1113)) (-5 *2 (-112)) - (-5 *1 (-915 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-932)) (-5 *2 (-112)) (-5 *1 (-1114 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-781)) (-4 *3 (-566)) (-5 *1 (-982 *3 *2)) - (-4 *2 (-1257 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-848))) (-5 *1 (-141))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) + (-12 (-5 *2 (-653 (-698 *4))) (-5 *3 (-931)) + (|has| *4 (-6 (-4457 "*"))) (-4 *4 (-1061)) (-5 *1 (-1040 *4))))) +(((*1 *2) + (-12 (-4 *1 (-350 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-1256 *3)) + (-4 *5 (-1256 (-416 *4))) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1192))))) +(((*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1185 *4)) (-4 *4 (-357)) (-5 *2 (-112)) + (-5 *1 (-365 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-371) (-857))) + (-5 *2 (-2 (|:| |start| *3) (|:| -1687 (-427 *3)))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1113)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-693 *4 *5)) (-4 *4 (-1113)))) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1112)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-692 *4 *5)) (-4 *4 (-1112)))) ((*1 *2 *2) - (-12 (-4 *3 (-1113)) (-5 *1 (-940 *3 *2)) (-4 *2 (-440 *3)))) + (-12 (-4 *3 (-1112)) (-5 *1 (-939 *3 *2)) (-4 *2 (-439 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1190)) (-5 *2 (-324 (-574))) (-5 *1 (-941)))) + (-12 (-5 *3 (-1189)) (-5 *2 (-323 (-573))) (-5 *1 (-940)))) ((*1 *2 *1) - (-12 (-4 *1 (-1298 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1062)))) + (-12 (-4 *1 (-1297 *3 *2)) (-4 *3 (-859)) (-4 *2 (-1061)))) ((*1 *2 *1) - (-12 (-4 *2 (-1062)) (-5 *1 (-1304 *2 *3)) (-4 *3 (-856))))) -(((*1 *2) (-12 (-5 *2 (-654 *3)) (-5 *1 (-1097 *3)) (-4 *3 (-133))))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1060))))) + (-12 (-4 *2 (-1061)) (-5 *1 (-1303 *2 *3)) (-4 *3 (-855))))) +(((*1 *2) (-12 (-5 *2 (-653 *3)) (-5 *1 (-1096 *3)) (-4 *3 (-133))))) +(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1211)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1211))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-995 *2)) (-4 *2 (-1215))))) +(((*1 *2 *1) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-176 *3)) (-4 *3 (-314))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-762))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-417 (-963 (-574))))) - (-5 *2 (-654 (-654 (-302 (-963 *4))))) (-5 *1 (-389 *4)) - (-4 *4 (-13 (-858) (-372))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-302 (-417 (-963 (-574)))))) - (-5 *2 (-654 (-654 (-302 (-963 *4))))) (-5 *1 (-389 *4)) - (-4 *4 (-13 (-858) (-372))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-963 (-574)))) (-5 *2 (-654 (-302 (-963 *4)))) - (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-302 (-417 (-963 (-574))))) - (-5 *2 (-654 (-302 (-963 *4)))) (-5 *1 (-389 *4)) - (-4 *4 (-13 (-858) (-372))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1190)) - (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) - (-4 *4 (-13 (-29 *6) (-1216) (-970))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -1882 (-654 *4)))) - (-5 *1 (-662 *6 *4 *3)) (-4 *3 (-666 *4)))) - ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1190)) (-5 *5 (-654 *2)) - (-4 *2 (-13 (-29 *6) (-1216) (-970))) - (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) - (-5 *1 (-662 *6 *2 *3)) (-4 *3 (-666 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-699 *5)) (-4 *5 (-372)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1281 *5) "failed")) - (|:| -1882 (-654 (-1281 *5))))) - (-5 *1 (-677 *5)) (-5 *4 (-1281 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-654 *5))) (-4 *5 (-372)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1281 *5) "failed")) - (|:| -1882 (-654 (-1281 *5))))) - (-5 *1 (-677 *5)) (-5 *4 (-1281 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-699 *5)) (-4 *5 (-372)) - (-5 *2 - (-654 - (-2 (|:| |particular| (-3 (-1281 *5) "failed")) - (|:| -1882 (-654 (-1281 *5)))))) - (-5 *1 (-677 *5)) (-5 *4 (-654 (-1281 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-654 *5))) (-4 *5 (-372)) - (-5 *2 - (-654 - (-2 (|:| |particular| (-3 (-1281 *5) "failed")) - (|:| -1882 (-654 (-1281 *5)))))) - (-5 *1 (-677 *5)) (-5 *4 (-654 (-1281 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4457)))) - (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4457)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1882 (-654 *4)))) - (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4457)))) - (-4 *7 (-13 (-382 *5) (-10 -7 (-6 -4457)))) - (-5 *2 - (-654 - (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1882 (-654 *7))))) - (-5 *1 (-678 *5 *6 *7 *3)) (-5 *4 (-654 *7)) - (-4 *3 (-697 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-963 *5))) (-5 *4 (-654 (-1190))) (-4 *5 (-566)) - (-5 *2 (-654 (-654 (-302 (-417 (-963 *5)))))) (-5 *1 (-780 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-963 *4))) (-4 *4 (-566)) - (-5 *2 (-654 (-654 (-302 (-417 (-963 *4)))))) (-5 *1 (-780 *4)))) - ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1190)) - (-4 *5 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) - (-5 *1 (-782 *5 *2)) (-4 *2 (-13 (-29 *5) (-1216) (-970))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-699 *7)) (-5 *5 (-1190)) - (-4 *7 (-13 (-29 *6) (-1216) (-970))) - (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) - (-5 *2 - (-2 (|:| |particular| (-1281 *7)) (|:| -1882 (-654 (-1281 *7))))) - (-5 *1 (-812 *6 *7)) (-5 *4 (-1281 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-699 *6)) (-5 *4 (-1190)) - (-4 *6 (-13 (-29 *5) (-1216) (-970))) - (-4 *5 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) - (-5 *2 (-654 (-1281 *6))) (-5 *1 (-812 *5 *6)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-654 (-302 *7))) (-5 *4 (-654 (-115))) - (-5 *5 (-1190)) (-4 *7 (-13 (-29 *6) (-1216) (-970))) - (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) - (-5 *2 - (-2 (|:| |particular| (-1281 *7)) (|:| -1882 (-654 (-1281 *7))))) - (-5 *1 (-812 *6 *7)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-654 *7)) (-5 *4 (-654 (-115))) - (-5 *5 (-1190)) (-4 *7 (-13 (-29 *6) (-1216) (-970))) - (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) - (-5 *2 - (-2 (|:| |particular| (-1281 *7)) (|:| -1882 (-654 (-1281 *7))))) - (-5 *1 (-812 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-302 *7)) (-5 *4 (-115)) (-5 *5 (-1190)) - (-4 *7 (-13 (-29 *6) (-1216) (-970))) - (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) - (-5 *2 - (-3 (-2 (|:| |particular| *7) (|:| -1882 (-654 *7))) *7 "failed")) - (-5 *1 (-812 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-115)) (-5 *5 (-1190)) - (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) - (-5 *2 - (-3 (-2 (|:| |particular| *3) (|:| -1882 (-654 *3))) *3 "failed")) - (-5 *1 (-812 *6 *3)) (-4 *3 (-13 (-29 *6) (-1216) (-970))))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-302 *2)) (-5 *4 (-115)) (-5 *5 (-654 *2)) - (-4 *2 (-13 (-29 *6) (-1216) (-970))) (-5 *1 (-812 *6 *2)) - (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))))) - ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-302 *2)) (-5 *5 (-654 *2)) - (-4 *2 (-13 (-29 *6) (-1216) (-970))) - (-4 *6 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) - (-5 *1 (-812 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1048)) (-5 *1 (-815)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-818)) (-5 *4 (-1076)) (-5 *2 (-1048)) (-5 *1 (-815)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1281 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4)) - (-5 *2 (-1048)) (-5 *1 (-815)))) - ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1281 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4)) - (-5 *2 (-1048)) (-5 *1 (-815)))) - ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1281 (-324 *4))) (-5 *5 (-654 (-388))) - (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1048)) (-5 *1 (-815)))) - ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1281 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4)) - (-5 *2 (-1048)) (-5 *1 (-815)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1281 (-324 *4))) (-5 *5 (-654 (-388))) - (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1048)) (-5 *1 (-815)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1281 (-324 *4))) (-5 *5 (-654 (-388))) - (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1048)) (-5 *1 (-815)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 - (-5 *5 - (-1 - (-3 (-2 (|:| |particular| *6) (|:| -1882 (-654 *6))) "failed") - *7 *6)) - (-4 *6 (-372)) (-4 *7 (-666 *6)) - (-5 *2 (-2 (|:| |particular| (-1281 *6)) (|:| -1882 (-699 *6)))) - (-5 *1 (-823 *6 *7)) (-5 *3 (-699 *6)) (-5 *4 (-1281 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1048)) (-5 *1 (-908)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-909)) (-5 *4 (-1076)) (-5 *2 (-1048)) (-5 *1 (-908)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-781)) (-5 *6 (-654 (-654 (-324 *3)))) (-5 *7 (-1172)) - (-5 *8 (-227)) (-5 *5 (-654 (-324 (-388)))) (-5 *3 (-388)) - (-5 *2 (-1048)) (-5 *1 (-908)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-781)) (-5 *6 (-654 (-654 (-324 *3)))) (-5 *7 (-1172)) - (-5 *5 (-654 (-324 (-388)))) (-5 *3 (-388)) (-5 *2 (-1048)) - (-5 *1 (-908)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-963 (-417 (-574)))) (-5 *2 (-654 (-388))) - (-5 *1 (-1036)) (-5 *4 (-388)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-963 (-574))) (-5 *2 (-654 (-388))) (-5 *1 (-1036)) - (-5 *4 (-388)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) - (-5 *2 (-654 *4)) (-5 *1 (-1141 *3 *4)) (-4 *3 (-1257 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) - (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1144 *4)) - (-5 *3 (-324 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) - (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1144 *4)) - (-5 *3 (-302 (-324 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1190)) - (-4 *5 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) - (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1144 *5)) - (-5 *3 (-302 (-324 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1190)) - (-4 *5 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) - (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1144 *5)) - (-5 *3 (-324 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-654 (-1190))) - (-4 *5 (-13 (-315) (-1051 (-574)) (-649 (-574)) (-148))) - (-5 *2 (-654 (-654 (-302 (-324 *5))))) (-5 *1 (-1144 *5)) - (-5 *3 (-654 (-302 (-324 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-417 (-963 *5)))) (-5 *4 (-654 (-1190))) - (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-963 *5)))))) - (-5 *1 (-1199 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-654 (-1190))) (-4 *5 (-566)) - (-5 *2 (-654 (-654 (-302 (-417 (-963 *5)))))) (-5 *1 (-1199 *5)) - (-5 *3 (-654 (-302 (-417 (-963 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-417 (-963 *4)))) (-4 *4 (-566)) - (-5 *2 (-654 (-654 (-302 (-417 (-963 *4)))))) (-5 *1 (-1199 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-963 *4)))))) - (-5 *1 (-1199 *4)) (-5 *3 (-654 (-302 (-417 (-963 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1190)) (-4 *5 (-566)) - (-5 *2 (-654 (-302 (-417 (-963 *5))))) (-5 *1 (-1199 *5)) - (-5 *3 (-417 (-963 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1190)) (-4 *5 (-566)) - (-5 *2 (-654 (-302 (-417 (-963 *5))))) (-5 *1 (-1199 *5)) - (-5 *3 (-302 (-417 (-963 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-654 (-302 (-417 (-963 *4))))) - (-5 *1 (-1199 *4)) (-5 *3 (-417 (-963 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-654 (-302 (-417 (-963 *4))))) - (-5 *1 (-1199 *4)) (-5 *3 (-302 (-417 (-963 *4))))))) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-932)) (-5 *1 (-1043 *2)) - (-4 *2 (-13 (-1113) (-10 -8 (-15 -3079 ($ $ $)))))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-654 (-963 *3))) (-4 *3 (-462)) - (-5 *1 (-369 *3 *4)) (-14 *4 (-654 (-1190))))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-654 (-790 *3 (-874 *4)))) (-4 *3 (-462)) - (-14 *4 (-654 (-1190))) (-5 *1 (-638 *3 *4))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1243 *3 *2)) (-4 *3 (-1062)) - (-4 *2 (-1272 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) - (-4 *1 (-1078 *3 *4 *5))))) + (-12 (-5 *3 (-931)) (-5 *1 (-1042 *2)) + (-4 *2 (-13 (-1112) (-10 -8 (-15 -3077 ($ $ $)))))))) +(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-931)) (-5 *1 (-795))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1185 (-573))) (-5 *2 (-573)) (-5 *1 (-952))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-780)) (-5 *1 (-596 *2)) (-4 *2 (-554))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1231)))) + (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1230)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-963 (-388))) (-5 *1 (-348 *3 *4 *5)) - (-4 *5 (-1051 (-388))) (-14 *3 (-654 (-1190))) - (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) + (|partial| -12 (-5 *2 (-962 (-387))) (-5 *1 (-347 *3 *4 *5)) + (-4 *5 (-1050 (-387))) (-14 *3 (-653 (-1189))) + (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-417 (-963 (-388)))) (-5 *1 (-348 *3 *4 *5)) - (-4 *5 (-1051 (-388))) (-14 *3 (-654 (-1190))) - (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) + (|partial| -12 (-5 *2 (-416 (-962 (-387)))) (-5 *1 (-347 *3 *4 *5)) + (-4 *5 (-1050 (-387))) (-14 *3 (-653 (-1189))) + (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-324 (-388))) (-5 *1 (-348 *3 *4 *5)) - (-4 *5 (-1051 (-388))) (-14 *3 (-654 (-1190))) - (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) + (|partial| -12 (-5 *2 (-323 (-387))) (-5 *1 (-347 *3 *4 *5)) + (-4 *5 (-1050 (-387))) (-14 *3 (-653 (-1189))) + (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-963 (-574))) (-5 *1 (-348 *3 *4 *5)) - (-4 *5 (-1051 (-574))) (-14 *3 (-654 (-1190))) - (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) + (|partial| -12 (-5 *2 (-962 (-573))) (-5 *1 (-347 *3 *4 *5)) + (-4 *5 (-1050 (-573))) (-14 *3 (-653 (-1189))) + (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-417 (-963 (-574)))) (-5 *1 (-348 *3 *4 *5)) - (-4 *5 (-1051 (-574))) (-14 *3 (-654 (-1190))) - (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) + (|partial| -12 (-5 *2 (-416 (-962 (-573)))) (-5 *1 (-347 *3 *4 *5)) + (-4 *5 (-1050 (-573))) (-14 *3 (-653 (-1189))) + (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-324 (-574))) (-5 *1 (-348 *3 *4 *5)) - (-4 *5 (-1051 (-574))) (-14 *3 (-654 (-1190))) - (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) + (|partial| -12 (-5 *2 (-323 (-573))) (-5 *1 (-347 *3 *4 *5)) + (-4 *5 (-1050 (-573))) (-14 *3 (-653 (-1189))) + (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1190)) (-5 *1 (-348 *3 *4 *5)) - (-14 *3 (-654 *2)) (-14 *4 (-654 *2)) (-4 *5 (-397)))) + (|partial| -12 (-5 *2 (-1189)) (-5 *1 (-347 *3 *4 *5)) + (-14 *3 (-653 *2)) (-14 *4 (-653 *2)) (-4 *5 (-396)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-324 *5)) (-4 *5 (-397)) - (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1190))) - (-14 *4 (-654 (-1190))))) + (|partial| -12 (-5 *2 (-323 *5)) (-4 *5 (-396)) + (-5 *1 (-347 *3 *4 *5)) (-14 *3 (-653 (-1189))) + (-14 *4 (-653 (-1189))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-699 (-417 (-963 (-574))))) (-4 *1 (-393)))) + (|partial| -12 (-5 *2 (-698 (-416 (-962 (-573))))) (-4 *1 (-392)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-699 (-417 (-963 (-388))))) (-4 *1 (-393)))) + (|partial| -12 (-5 *2 (-698 (-416 (-962 (-387))))) (-4 *1 (-392)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-699 (-963 (-574)))) (-4 *1 (-393)))) + (|partial| -12 (-5 *2 (-698 (-962 (-573)))) (-4 *1 (-392)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-699 (-963 (-388)))) (-4 *1 (-393)))) + (|partial| -12 (-5 *2 (-698 (-962 (-387)))) (-4 *1 (-392)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-699 (-324 (-574)))) (-4 *1 (-393)))) + (|partial| -12 (-5 *2 (-698 (-323 (-573)))) (-4 *1 (-392)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-699 (-324 (-388)))) (-4 *1 (-393)))) + (|partial| -12 (-5 *2 (-698 (-323 (-387)))) (-4 *1 (-392)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-417 (-963 (-574)))) (-4 *1 (-406)))) + (|partial| -12 (-5 *2 (-416 (-962 (-573)))) (-4 *1 (-405)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-417 (-963 (-388)))) (-4 *1 (-406)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-963 (-574))) (-4 *1 (-406)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-963 (-388))) (-4 *1 (-406)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-574))) (-4 *1 (-406)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-388))) (-4 *1 (-406)))) + (|partial| -12 (-5 *2 (-416 (-962 (-387)))) (-4 *1 (-405)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-962 (-573))) (-4 *1 (-405)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-962 (-387))) (-4 *1 (-405)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-323 (-573))) (-4 *1 (-405)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-323 (-387))) (-4 *1 (-405)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1281 (-417 (-963 (-574))))) (-4 *1 (-451)))) + (|partial| -12 (-5 *2 (-1280 (-416 (-962 (-573))))) (-4 *1 (-450)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1281 (-417 (-963 (-388))))) (-4 *1 (-451)))) + (|partial| -12 (-5 *2 (-1280 (-416 (-962 (-387))))) (-4 *1 (-450)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1281 (-963 (-574)))) (-4 *1 (-451)))) + (|partial| -12 (-5 *2 (-1280 (-962 (-573)))) (-4 *1 (-450)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1281 (-963 (-388)))) (-4 *1 (-451)))) + (|partial| -12 (-5 *2 (-1280 (-962 (-387)))) (-4 *1 (-450)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1281 (-324 (-574)))) (-4 *1 (-451)))) + (|partial| -12 (-5 *2 (-1280 (-323 (-573)))) (-4 *1 (-450)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1281 (-324 (-388)))) (-4 *1 (-451)))) + (|partial| -12 (-5 *2 (-1280 (-323 (-387)))) (-4 *1 (-450)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-358)) (-4 *5 (-337 *4)) (-4 *6 (-1257 *5)) - (-5 *2 (-1186 (-1186 *4))) (-5 *1 (-787 *4 *5 *6 *3 *7)) - (-4 *3 (-1257 *6)) (-14 *7 (-932)))) + (|partial| -12 (-4 *4 (-357)) (-4 *5 (-336 *4)) (-4 *6 (-1256 *5)) + (-5 *2 (-1185 (-1185 *4))) (-5 *1 (-786 *4 *5 *6 *3 *7)) + (-4 *3 (-1256 *6)) (-14 *7 (-931)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) - (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) - (-4 *1 (-989 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-1051 *2)) (-4 *2 (-1231)))) + (|partial| -12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) + (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) + (-4 *1 (-988 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-1050 *2)) (-4 *2 (-1230)))) ((*1 *1 *2) - (|partial| -2818 - (-12 (-5 *2 (-963 *3)) - (-12 (-2076 (-4 *3 (-38 (-417 (-574))))) - (-2076 (-4 *3 (-38 (-574)))) (-4 *5 (-624 (-1190)))) - (-4 *3 (-1062)) (-4 *1 (-1078 *3 *4 *5)) (-4 *4 (-803)) - (-4 *5 (-860))) - (-12 (-5 *2 (-963 *3)) - (-12 (-2076 (-4 *3 (-555))) (-2076 (-4 *3 (-38 (-417 (-574))))) - (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1190)))) - (-4 *3 (-1062)) (-4 *1 (-1078 *3 *4 *5)) (-4 *4 (-803)) - (-4 *5 (-860))) - (-12 (-5 *2 (-963 *3)) - (-12 (-2076 (-4 *3 (-1005 (-574)))) (-4 *3 (-38 (-417 (-574)))) - (-4 *5 (-624 (-1190)))) - (-4 *3 (-1062)) (-4 *1 (-1078 *3 *4 *5)) (-4 *4 (-803)) - (-4 *5 (-860))))) + (|partial| -2817 + (-12 (-5 *2 (-962 *3)) + (-12 (-2075 (-4 *3 (-38 (-416 (-573))))) + (-2075 (-4 *3 (-38 (-573)))) (-4 *5 (-623 (-1189)))) + (-4 *3 (-1061)) (-4 *1 (-1077 *3 *4 *5)) (-4 *4 (-802)) + (-4 *5 (-859))) + (-12 (-5 *2 (-962 *3)) + (-12 (-2075 (-4 *3 (-554))) (-2075 (-4 *3 (-38 (-416 (-573))))) + (-4 *3 (-38 (-573))) (-4 *5 (-623 (-1189)))) + (-4 *3 (-1061)) (-4 *1 (-1077 *3 *4 *5)) (-4 *4 (-802)) + (-4 *5 (-859))) + (-12 (-5 *2 (-962 *3)) + (-12 (-2075 (-4 *3 (-1004 (-573)))) (-4 *3 (-38 (-416 (-573)))) + (-4 *5 (-623 (-1189)))) + (-4 *3 (-1061)) (-4 *1 (-1077 *3 *4 *5)) (-4 *4 (-802)) + (-4 *5 (-859))))) ((*1 *1 *2) - (|partial| -2818 - (-12 (-5 *2 (-963 (-574))) (-4 *1 (-1078 *3 *4 *5)) - (-12 (-2076 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) - (-4 *5 (-624 (-1190)))) - (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))) - (-12 (-5 *2 (-963 (-574))) (-4 *1 (-1078 *3 *4 *5)) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1190)))) - (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))))) + (|partial| -2817 + (-12 (-5 *2 (-962 (-573))) (-4 *1 (-1077 *3 *4 *5)) + (-12 (-2075 (-4 *3 (-38 (-416 (-573))))) (-4 *3 (-38 (-573))) + (-4 *5 (-623 (-1189)))) + (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859))) + (-12 (-5 *2 (-962 (-573))) (-4 *1 (-1077 *3 *4 *5)) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *5 (-623 (-1189)))) + (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-963 (-417 (-574)))) (-4 *1 (-1078 *3 *4 *5)) - (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1190))) - (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860))))) -(((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-52))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-574)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1231)) - (-4 *5 (-382 *4)) (-4 *3 (-382 *4))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-622 *4)) (-4 *4 (-1113)) (-4 *2 (-1113)) - (-5 *1 (-621 *2 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1286)) - (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-960 *4 *5 *6))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1190)) (-5 *3 (-654 (-963 (-574)))) - (-5 *4 (-324 (-171 (-388)))) (-5 *1 (-338)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1190)) (-5 *3 (-654 (-963 (-574)))) - (-5 *4 (-324 (-388))) (-5 *1 (-338)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1190)) (-5 *3 (-654 (-963 (-574)))) - (-5 *4 (-324 (-574))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-324 (-171 (-388))))) - (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-324 (-388)))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-324 (-574)))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-324 (-171 (-388))))) - (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-324 (-388)))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-324 (-574)))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-324 (-171 (-388)))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-324 (-388))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-324 (-574))) (-5 *1 (-338)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1190)) (-5 *3 (-654 (-963 (-574)))) - (-5 *4 (-324 (-704))) (-5 *1 (-338)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1190)) (-5 *3 (-654 (-963 (-574)))) - (-5 *4 (-324 (-709))) (-5 *1 (-338)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1190)) (-5 *3 (-654 (-963 (-574)))) - (-5 *4 (-324 (-711))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-324 (-704)))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-324 (-709)))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-324 (-711)))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-324 (-704)))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-324 (-709)))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-324 (-711)))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-704))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-709))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-1281 (-711))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-704))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-709))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-699 (-711))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-324 (-704))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-324 (-709))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1190)) (-5 *3 (-324 (-711))) (-5 *1 (-338)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1190)) (-5 *3 (-1172)) (-5 *1 (-338)))) - ((*1 *1 *1 *1) (-5 *1 (-872)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-1257 *3)) (-4 *3 (-1062))))) -(((*1 *2) - (-12 (-4 *3 (-1235)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 (-417 *4))) - (-5 *2 (-1281 *1)) (-4 *1 (-351 *3 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-13 (-315) (-10 -8 (-15 -2827 ((-428 $) $))))) - (-4 *4 (-1257 *3)) - (-5 *2 - (-2 (|:| -1882 (-699 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-699 *3)))) - (-5 *1 (-359 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-1257 (-574))) - (-5 *2 - (-2 (|:| -1882 (-699 (-574))) (|:| |basisDen| (-574)) - (|:| |basisInv| (-699 (-574))))) - (-5 *1 (-778 *3 *4)) (-4 *4 (-419 (-574) *3)))) - ((*1 *2) - (-12 (-4 *3 (-358)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 *4)) - (-5 *2 - (-2 (|:| -1882 (-699 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-699 *4)))) - (-5 *1 (-998 *3 *4 *5 *6)) (-4 *6 (-734 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-358)) (-4 *4 (-1257 *3)) (-4 *5 (-1257 *4)) - (-5 *2 - (-2 (|:| -1882 (-699 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-699 *4)))) - (-5 *1 (-1290 *3 *4 *5 *6)) (-4 *6 (-419 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1162 *3)) (-4 *3 (-1231)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-699 *4)) (-5 *3 (-932)) (-4 *4 (-1062)) - (-5 *1 (-1041 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-654 (-699 *4))) (-5 *3 (-932)) (-4 *4 (-1062)) - (-5 *1 (-1041 *4))))) -(((*1 *1) (-5 *1 (-833)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-428 *4)) (-4 *4 (-566))))) -(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-428 *3)) (-4 *3 (-566)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-2 (|:| -4220 *4) (|:| -4202 (-574))))) - (-4 *4 (-1257 (-574))) (-5 *2 (-781)) (-5 *1 (-452 *4))))) -(((*1 *2) - (-12 (-5 *2 (-699 (-921 *3))) (-5 *1 (-360 *3 *4)) (-14 *3 (-932)) - (-14 *4 (-932)))) - ((*1 *2) - (-12 (-5 *2 (-699 *3)) (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) - (-14 *4 - (-3 (-1186 *3) - (-1281 (-654 (-2 (|:| -3083 *3) (|:| -2576 (-1133))))))))) - ((*1 *2) - (-12 (-5 *2 (-699 *3)) (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) - (-14 *4 (-932))))) -(((*1 *2 *3) - (-12 (-4 *4 (-860)) (-5 *2 (-654 (-654 *4))) (-5 *1 (-1201 *4)) - (-5 *3 (-654 *4))))) -(((*1 *1) (-5 *1 (-1283)))) + (|partial| -12 (-5 *2 (-962 (-416 (-573)))) (-4 *1 (-1077 *3 *4 *5)) + (-4 *3 (-38 (-416 (-573)))) (-4 *5 (-623 (-1189))) + (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859))))) +(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-52))))) +(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1290))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-858) (-372))) (-5 *2 (-112)) (-5 *1 (-1074 *4 *3)) - (-4 *3 (-1257 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *2 (-13 (-440 (-171 *4)) (-1015) (-1216))) - (-5 *1 (-610 *4 *3 *2)) (-4 *3 (-13 (-440 *4) (-1015) (-1216)))))) + (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-653 *1)) + (-4 *1 (-1083 *4 *5 *6 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-526))))) +(((*1 *1 *1 *2 *2) + (|partial| -12 (-5 *2 (-931)) (-5 *1 (-1113 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-988 *4 *5 *3 *6)) (-4 *4 (-1061)) (-4 *5 (-802)) + (-4 *3 (-859)) (-4 *6 (-1077 *4 *5 *3)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-653 *7)) (|:| -4090 *8))) + (-4 *7 (-1077 *4 *5 *6)) (-4 *8 (-1083 *4 *5 *6 *7)) (-4 *4 (-461)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) + (-5 *1 (-1000 *4 *5 *6 *7 *8)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-653 *7)) (|:| -4090 *8))) + (-4 *7 (-1077 *4 *5 *6)) (-4 *8 (-1083 *4 *5 *6 *7)) (-4 *4 (-461)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) + (-5 *1 (-1119 *4 *5 *6 *7 *8))))) +(((*1 *2 *1) + (-12 (-5 *2 (-653 (-2 (|:| |gen| *3) (|:| -1608 (-573))))) + (-5 *1 (-369 *3)) (-4 *3 (-1112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-394 *3)) (-4 *3 (-1112)) + (-5 *2 (-653 (-2 (|:| |gen| *3) (|:| -1608 (-780))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-653 (-2 (|:| -4218 *3) (|:| -3907 (-573))))) + (-5 *1 (-427 *3)) (-4 *3 (-565))))) +(((*1 *1 *2) + (-12 (-5 *2 (-653 (-653 *3))) (-4 *3 (-1112)) (-5 *1 (-915 *3))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-574)) (-5 *1 (-1213 *3)) (-4 *3 (-1062))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) + (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-653 (-227))) (-5 *1 (-206))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) + (-5 *2 (-653 (-653 (-953 *3)))))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-653 (-653 (-953 *4)))) (-5 *3 (-112)) (-4 *4 (-1061)) + (-4 *1 (-1146 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-653 (-653 (-953 *3)))) (-4 *3 (-1061)) + (-4 *1 (-1146 *3)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-653 (-653 (-653 *4)))) (-5 *3 (-112)) + (-4 *1 (-1146 *4)) (-4 *4 (-1061)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-653 (-653 (-953 *4)))) (-5 *3 (-112)) + (-4 *1 (-1146 *4)) (-4 *4 (-1061)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-653 (-653 (-653 *5)))) (-5 *3 (-653 (-173))) + (-5 *4 (-173)) (-4 *1 (-1146 *5)) (-4 *5 (-1061)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-653 (-653 (-953 *5)))) (-5 *3 (-653 (-173))) + (-5 *4 (-173)) (-4 *1 (-1146 *5)) (-4 *5 (-1061))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-112)) + (-5 *2 (-1047)) (-5 *1 (-762))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-1113)) (-4 *2 (-911 *4)) (-5 *1 (-702 *4 *2 *5 *3)) - (-4 *5 (-382 *2)) (-4 *3 (-13 (-382 *4) (-10 -7 (-6 -4456))))))) + (-12 (-5 *2 (-653 (-171 *4))) (-5 *1 (-156 *3 *4)) + (-4 *3 (-1256 (-171 (-573)))) (-4 *4 (-13 (-371) (-857))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-371) (-857))) (-5 *2 (-653 (-171 *4))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-371) (-857))) (-5 *2 (-653 (-171 *4))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4)))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1172)) (-4 *1 (-373 *2 *4)) (-4 *2 (-1113)) - (-4 *4 (-1113)))) + (-12 (-5 *2 (-780)) (-4 *3 (-1061)) (-4 *1 (-696 *3 *4 *5)) + (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) ((*1 *1 *2) - (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-1113))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-654 (-112))) (-5 *7 (-699 (-227))) - (-5 *8 (-699 (-574))) (-5 *3 (-574)) (-5 *4 (-227)) (-5 *5 (-112)) - (-5 *2 (-1048)) (-5 *1 (-764))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2)) - (-4 *2 (-1257 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1257 *3))))) + (-12 (-4 *2 (-1061)) (-4 *1 (-1135 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) + (-4 *5 (-243 *3 *2))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1304 *3 *4)) (-4 *1 (-382 *3 *4)) (-4 *3 (-859)) + (-4 *4 (-174)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-394 *2)) (-4 *2 (-1112)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-828 *2)) (-4 *2 (-859)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-828 *3)) (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) + (-4 *4 (-1061)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *5 (-1171)) + (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-82 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1047)) + (-5 *1 (-759))))) (((*1 *2 *2) - (-12 (-4 *3 (-315)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) - (-5 *1 (-1137 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-654 *5)) (-5 *4 (-574)) (-4 *5 (-858)) (-4 *5 (-372)) - (-5 *2 (-781)) (-5 *1 (-956 *5 *6)) (-4 *6 (-1257 *5))))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1113) (-34))) - (-5 *2 (-112)) (-5 *1 (-1153 *4 *5)) (-4 *4 (-13 (-1113) (-34)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-932)) (-5 *4 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282))))) -(((*1 *2) - (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-920)) - (-5 *1 (-467 *3 *4 *2 *5)) (-4 *5 (-960 *2 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-920)) - (-5 *1 (-917 *2 *3 *4 *5)) (-4 *5 (-960 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-920)) (-5 *1 (-918 *2 *3)) (-4 *3 (-1257 *2))))) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014)))))) +(((*1 *1 *1 *1) (-4 *1 (-144))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-159 *3 *2)) (-4 *2 (-439 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-554)))) + ((*1 *1 *1 *1) (-5 *1 (-871))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-573))) (-5 *1 (-1059)) + (-5 *3 (-573))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1189)) + (-4 *4 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) + (-5 *1 (-631 *4 *2)) (-4 *2 (-13 (-1215) (-969) (-29 *4)))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *3 (-1077 *4 *5 *6)) (-5 *2 (-3 (-112) (-653 *1))) + (-4 *1 (-1083 *4 *5 *6 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1171)) (-4 *1 (-372 *2 *4)) (-4 *2 (-1112)) + (-4 *4 (-1112)))) + ((*1 *1 *2) + (-12 (-4 *1 (-372 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112))))) (((*1 *2) - (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -1882 (-654 *1)))) - (-4 *1 (-376 *3)))) + (-12 (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-919)) + (-5 *1 (-466 *3 *4 *2 *5)) (-4 *5 (-959 *2 *3 *4)))) ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-463 *3 *4 *5 *6)) - (|:| -1882 (-654 (-463 *3 *4 *5 *6))))) - (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-932)) - (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3)))))) + (-12 (-4 *3 (-802)) (-4 *4 (-859)) (-4 *2 (-919)) + (-5 *1 (-916 *2 *3 *4 *5)) (-4 *5 (-959 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-919)) (-5 *1 (-917 *2 *3)) (-4 *3 (-1256 *2))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-371)) (-5 *1 (-292 *3 *2)) (-4 *2 (-1271 *3))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-780)) (-4 *4 (-565)) (-5 *1 (-981 *4 *2)) + (-4 *2 (-1256 *4))))) (((*1 *2 *3) - (-12 (-4 *1 (-931)) (-5 *2 (-2 (|:| -1858 (-654 *1)) (|:| -2970 *1))) - (-5 *3 (-654 *1))))) + (-12 (-4 *4 (-1061)) (-4 *3 (-1256 *4)) (-4 *2 (-1271 *4)) + (-5 *1 (-1274 *4 *3 *5 *2)) (-4 *5 (-665 *3))))) +(((*1 *2 *3) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-570)) (-5 *3 (-573)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1185 (-416 (-573)))) (-5 *1 (-952)) (-5 *3 (-573))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-653 (-1088 *4 *5 *2))) (-4 *4 (-1112)) + (-4 *5 (-13 (-1061) (-896 *4) (-623 (-902 *4)))) + (-4 *2 (-13 (-439 *5) (-896 *4) (-623 (-902 *4)))) + (-5 *1 (-54 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-653 (-1088 *5 *6 *2))) (-5 *4 (-931)) (-4 *5 (-1112)) + (-4 *6 (-13 (-1061) (-896 *5) (-623 (-902 *5)))) + (-4 *2 (-13 (-439 *6) (-896 *5) (-623 (-902 *5)))) + (-5 *1 (-54 *5 *6 *2))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-309)) (-5 *3 (-1189)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-309)) (-5 *3 (-115)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1189)) (-5 *2 (-112)) (-5 *1 (-621 *4)) + (-4 *4 (-1112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-621 *4)) (-4 *4 (-1112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-844 *3)) (-4 *3 (-1112)) (-5 *2 (-112)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1112)) (-5 *2 (-112)) (-5 *1 (-897 *5 *3 *4)) + (-4 *3 (-896 *5)) (-4 *4 (-623 (-902 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 *6)) (-4 *6 (-896 *5)) (-4 *5 (-1112)) + (-5 *2 (-112)) (-5 *1 (-897 *5 *6 *4)) (-4 *4 (-623 (-902 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) (((*1 *2 *3) - (-12 (-4 *1 (-358)) (-5 *3 (-574)) (-5 *2 (-1203 (-932) (-781)))))) + (-12 (-5 *3 (-1106 (-852 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1106 (-852 (-227)))) (-5 *2 (-227)) (-5 *1 (-307)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1106 (-852 (-227)))) (-5 *2 (-227)) (-5 *1 (-312))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-351 *4 *5 *6)) (-4 *4 (-1235)) - (-4 *5 (-1257 *4)) (-4 *6 (-1257 (-417 *5))) - (-5 *2 (-2 (|:| |num| (-699 *5)) (|:| |den| *5)))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-4 *1 (-241 *3)))) - ((*1 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-1113))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-802))))) + (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) + (-5 *2 (-653 (-962 *4))))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-653 (-962 *4))) (-5 *1 (-425 *3 *4)) + (-4 *3 (-426 *4)))) + ((*1 *2) + (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-653 (-962 *3))))) + ((*1 *2) + (-12 (-5 *2 (-653 (-962 *3))) (-5 *1 (-462 *3 *4 *5 *6)) + (-4 *3 (-565)) (-4 *3 (-174)) (-14 *4 (-931)) + (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1280 (-462 *4 *5 *6 *7))) (-5 *2 (-653 (-962 *4))) + (-5 *1 (-462 *4 *5 *6 *7)) (-4 *4 (-565)) (-4 *4 (-174)) + (-14 *5 (-931)) (-14 *6 (-653 (-1189))) (-14 *7 (-1280 (-698 *4)))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-1024)) (-5 *2 (-871))))) +(((*1 *2 *1) + (-12 (-4 *1 (-330 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-132)) + (-5 *2 (-653 (-2 (|:| |gen| *3) (|:| -1608 *4)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-653 (-2 (|:| -1857 *3) (|:| -3831 *4)))) + (-5 *1 (-744 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-735)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)) + (-5 *2 (-1169 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1171)) (-5 *5 (-698 (-227))) (-5 *6 (-227)) + (-5 *7 (-698 (-573))) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-761))))) +(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1072)))) + ((*1 *1 *1) + (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) + (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) + ((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)) (-4 *2 (-1072)))) + ((*1 *1 *1) (-4 *1 (-857))) + ((*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174)) (-4 *2 (-1072)))) + ((*1 *1 *1) (-4 *1 (-1072))) ((*1 *1 *1) (-4 *1 (-1151)))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-915 *4)) (-4 *4 (-1112)) (-5 *2 (-653 (-780))) + (-5 *1 (-914 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-324 (-227))) (-5 *2 (-324 (-388))) (-5 *1 (-313))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-860)) (-4 *5 (-803)) - (-4 *6 (-566)) (-4 *7 (-960 *6 *5 *3)) - (-5 *1 (-472 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-1051 (-417 (-574))) (-372) - (-10 -8 (-15 -2943 ($ *7)) (-15 -2966 (*7 $)) - (-15 -2977 (*7 $)))))))) -(((*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-566)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-990 *4 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))) - (-5 *1 (-178 *3))))) + (-12 (-4 *4 (-802)) + (-4 *5 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $))))) (-4 *6 (-565)) + (-5 *2 (-2 (|:| -3280 (-962 *6)) (|:| -4040 (-962 *6)))) + (-5 *1 (-741 *4 *5 *6 *3)) (-4 *3 (-959 (-416 (-962 *6)) *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-337))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1280 (-323 (-227)))) (|:| |yinit| (-653 (-227))) + (|:| |intvals| (-653 (-227))) (|:| |g| (-323 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-387)) (|:| |stabilityFactor| (-387)))) + (-5 *1 (-207))))) +(((*1 *2 *3) + (-12 (-5 *2 (-427 (-1185 *1))) (-5 *1 (-323 *4)) (-5 *3 (-1185 *1)) + (-4 *4 (-461)) (-4 *4 (-565)) (-4 *4 (-1112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-919)) (-5 *2 (-427 (-1185 *1))) (-5 *3 (-1185 *1))))) +(((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-937))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-781)) (-5 *2 (-654 (-1190))) (-5 *1 (-212)) - (-5 *3 (-1190)))) + (-12 (-5 *4 (-780)) (-5 *2 (-653 (-1189))) (-5 *1 (-212)) + (-5 *3 (-1189)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-324 (-227))) (-5 *4 (-781)) (-5 *2 (-654 (-1190))) - (-5 *1 (-274)))) + (-12 (-5 *3 (-323 (-227))) (-5 *4 (-780)) (-5 *2 (-653 (-1189))) + (-5 *1 (-273)))) ((*1 *2 *1) - (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) - (-5 *2 (-654 *3)))) + (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-859)) (-4 *4 (-174)) + (-5 *2 (-653 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-654 *3)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) - (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-932)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-829 *3)) (-4 *3 (-860)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) + (-12 (-5 *2 (-653 *3)) (-5 *1 (-636 *3 *4 *5)) (-4 *3 (-859)) + (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-14 *5 (-931)))) + ((*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-681 *3)) (-4 *3 (-859)))) + ((*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-686 *3)) (-4 *3 (-859)))) + ((*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-828 *3)) (-4 *3 (-859)))) + ((*1 *2 *1) (-12 (-5 *2 (-653 *3)) (-5 *1 (-903 *3)) (-4 *3 (-859)))) ((*1 *2 *1) - (-12 (-4 *1 (-1298 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1062)) - (-5 *2 (-654 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1216)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1190)) (-4 *5 (-624 (-903 (-574)))) - (-4 *5 (-897 (-574))) - (-4 *5 (-13 (-1051 (-574)) (-462) (-649 (-574)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-577 *5 *3)) (-4 *3 (-639)) - (-4 *3 (-13 (-27) (-1216) (-440 *5)))))) -(((*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-858)) (-5 *1 (-311 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315)))) - ((*1 *2 *3) - (-12 (-5 *3 (-932)) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192)))) - ((*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1231)))) - ((*1 *1 *1) (-4 *1 (-879 *2))) - ((*1 *1 *1) - (-12 (-4 *1 (-986 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-802)) - (-4 *4 (-860))))) + (-12 (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) + (-5 *2 (-653 *3))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-573)) (-5 *6 (-1171)) + (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-767))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-573)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-780)) (-4 *5 (-174)))) + ((*1 *1 *1 *2 *1 *2) + (-12 (-5 *2 (-573)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-780)) (-4 *5 (-174)))) + ((*1 *2 *2 *3) + (-12 + (-5 *2 + (-513 (-416 (-573)) (-245 *5 (-780)) (-873 *4) + (-252 *4 (-416 (-573))))) + (-5 *3 (-653 (-873 *4))) (-14 *4 (-653 (-1189))) (-14 *5 (-780)) + (-5 *1 (-514 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2872 *3))) + (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-932)) (-5 *2 (-1192 (-417 (-574)))) (-5 *1 (-192))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-417 (-963 (-171 (-574)))))) - (-5 *2 (-654 (-654 (-302 (-963 (-171 *4)))))) (-5 *1 (-387 *4)) - (-4 *4 (-13 (-372) (-858))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-302 (-417 (-963 (-171 (-574))))))) - (-5 *2 (-654 (-654 (-302 (-963 (-171 *4)))))) (-5 *1 (-387 *4)) - (-4 *4 (-13 (-372) (-858))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-963 (-171 (-574))))) - (-5 *2 (-654 (-302 (-963 (-171 *4))))) (-5 *1 (-387 *4)) - (-4 *4 (-13 (-372) (-858))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-302 (-417 (-963 (-171 (-574)))))) - (-5 *2 (-654 (-302 (-963 (-171 *4))))) (-5 *1 (-387 *4)) - (-4 *4 (-13 (-372) (-858)))))) -(((*1 *1 *1) (-4 *1 (-639))) - ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015) (-1216)))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-781)))) - ((*1 *1 *1) (-4 *1 (-412)))) -(((*1 *2 *1) (-12 (-5 *2 (-428 *3)) (-5 *1 (-925 *3)) (-4 *3 (-315))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-903 *4)) (-4 *4 (-1113)) (-5 *1 (-900 *4 *3)) - (-4 *3 (-1113))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1 *1) (-5 *1 (-872))) - ((*1 *1 *1) (-5 *1 (-872)))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1272 *3))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-566)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) - (-5 *1 (-1221 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-1257 (-574))) (-5 *1 (-496 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *5)) (-5 *4 (-932)) (-4 *5 (-860)) - (-5 *2 (-59 (-654 (-682 *5)))) (-5 *1 (-682 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1231)) (-5 *1 (-384 *4 *2)) - (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4457))))))) -(((*1 *1) (-5 *1 (-158)))) + (-12 (-5 *3 (-490 *4 *5)) (-14 *4 (-653 (-1189))) (-4 *5 (-1061)) + (-5 *2 (-962 *5)) (-5 *1 (-954 *4 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) +(((*1 *2 *3) + (-12 (-4 *4 (-565)) (-4 *2 (-13 (-439 (-171 *4)) (-1014) (-1215))) + (-5 *1 (-609 *4 *3 *2)) (-4 *3 (-13 (-439 *4) (-1014) (-1215)))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4455)) (-4 *1 (-498 *4)) + (-4 *4 (-1230)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-756))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-387) (-387))) (-5 *4 (-387)) + (-5 *2 + (-2 (|:| -3082 *4) (|:| -2675 *4) (|:| |totalpts| (-573)) + (|:| |success| (-112)))) + (-5 *1 (-798)) (-5 *5 (-573))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-698 (-227))) (-5 *5 (-698 (-573))) (-5 *3 (-573)) + (-5 *2 (-1047)) (-5 *1 (-765))))) +(((*1 *1 *2) (-12 (-5 *2 (-653 (-387))) (-5 *1 (-269)))) + ((*1 *1) + (|partial| -12 (-4 *1 (-375 *2)) (-4 *2 (-565)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-5 *1 (-427 *2)) (-4 *2 (-565))))) +(((*1 *1 *2) (-12 (-5 *2 (-416 (-573))) (-5 *1 (-496))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-653 (-653 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-653 (-3 (|:| |array| (-653 *3)) (|:| |scalar| (-1189))))) + (-5 *6 (-653 (-1189))) (-5 *3 (-1189)) (-5 *2 (-1116)) + (-5 *1 (-406)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-653 (-653 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-653 (-3 (|:| |array| (-653 *3)) (|:| |scalar| (-1189))))) + (-5 *6 (-653 (-1189))) (-5 *3 (-1189)) (-5 *2 (-1116)) + (-5 *1 (-406)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-653 (-1189))) (-5 *5 (-1192)) (-5 *3 (-1189)) + (-5 *2 (-1116)) (-5 *1 (-406))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1061)) (-4 *2 (-696 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1256 *4)) (-4 *5 (-381 *4)) + (-4 *6 (-381 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-932)) (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)))) - ((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-372)))) + (-12 (-5 *2 (-653 (-780))) (-5 *1 (-1177 *3 *4)) (-14 *3 (-931)) + (-4 *4 (-1061))))) +(((*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-780)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-411)) (-5 *2 (-780))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1185 *4)) (-4 *4 (-357)) (-5 *2 (-968 (-1132))) + (-5 *1 (-354 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-931)) (-4 *1 (-336 *3)) (-4 *3 (-371)) (-4 *3 (-376)))) + ((*1 *2 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-371)))) ((*1 *2 *1) - (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1257 *2)) (-4 *2 (-174)))) + (-12 (-4 *1 (-378 *2 *3)) (-4 *3 (-1256 *2)) (-4 *2 (-174)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1281 *4)) (-5 *3 (-932)) (-4 *4 (-358)) - (-5 *1 (-538 *4)))) + (-12 (-5 *2 (-1280 *4)) (-5 *3 (-931)) (-4 *4 (-357)) + (-5 *1 (-537 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1136 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) - (-4 *5 (-244 *3 *2)) (-4 *2 (-1062))))) -(((*1 *2) - (-12 (-4 *3 (-1062)) (-5 *2 (-969 (-722 *3 *4))) (-5 *1 (-722 *3 *4)) - (-4 *4 (-1257 *3))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) - (-4 *4 (-803)) (-4 *5 (-860)) (-4 *3 (-566))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-112)) - (-5 *2 (-1048)) (-5 *1 (-755))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-781)) (-4 *6 (-1113)) (-4 *3 (-911 *6)) - (-5 *2 (-699 *3)) (-5 *1 (-702 *6 *3 *7 *4)) (-4 *7 (-382 *3)) - (-4 *4 (-13 (-382 *6) (-10 -7 (-6 -4456))))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-654 (-1107 (-388)))) (-5 *3 (-654 (-270))) - (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-654 (-1107 (-388)))) (-5 *1 (-270)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1107 (-388)))) (-5 *1 (-478)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-1107 (-388)))) (-5 *1 (-478))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *2 (-574)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-977 *2)) (-4 *2 (-1113))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-574)) (-5 *2 (-654 (-2 (|:| -4220 *3) (|:| -4202 *4)))) - (-5 *1 (-706 *3)) (-4 *3 (-1257 *4))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-654 *2) *2 *2 *2)) (-4 *2 (-1113)) - (-5 *1 (-103 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1113)) (-5 *1 (-103 *2))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-315)) (-4 *3 (-174)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *2 (-2 (|:| -1411 *3) (|:| -2766 *3))) - (-5 *1 (-698 *3 *4 *5 *6)) (-4 *6 (-697 *3 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -1411 *3) (|:| -2766 *3))) (-5 *1 (-710 *3)) - (-4 *3 (-315))))) + (-12 (-4 *1 (-1135 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) + (-4 *5 (-243 *3 *2)) (-4 *2 (-1061))))) +(((*1 *1 *2) + (-12 (-5 *2 (-323 *3)) (-4 *3 (-13 (-1061) (-859))) + (-5 *1 (-225 *3 *4)) (-14 *4 (-653 (-1189)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-653 *1)) (-4 *3 (-1061)) (-4 *1 (-696 *3 *4 *5)) + (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-653 *3)) (-4 *3 (-1061)) (-4 *1 (-696 *3 *4 *5)) + (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1280 *3)) (-4 *3 (-1061)) (-5 *1 (-698 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-653 *4)) (-4 *4 (-1061)) (-4 *1 (-1135 *3 *4 *5 *6)) + (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-1102))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-387)) (-5 *1 (-1075))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1256 *5)) + (-4 *5 (-13 (-27) (-439 *4))) (-4 *4 (-13 (-565) (-1050 (-573)))) + (-4 *7 (-1256 (-416 *6))) (-5 *1 (-561 *4 *5 *6 *7 *2)) + (-4 *2 (-350 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-4 *3 (-357)) (-4 *4 (-336 *3)) (-4 *5 (-1256 *4)) + (-5 *1 (-786 *3 *4 *5 *2 *6)) (-4 *2 (-1256 *5)) (-14 *6 (-931)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-780)) (-4 *1 (-1299 *3)) (-4 *3 (-371)) (-4 *3 (-376)))) + ((*1 *1 *1) (-12 (-4 *1 (-1299 *2)) (-4 *2 (-371)) (-4 *2 (-376))))) +(((*1 *2 *1) (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1230)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1216 *3)) (-4 *3 (-1112))))) +(((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-476)))) + ((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-476)))) + ((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-937))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-417 (-963 (-171 (-574))))) (-5 *2 (-654 (-171 *4))) - (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858))))) + (-12 (-5 *4 (-1104 (-852 *3))) (-4 *3 (-13 (-1215) (-969) (-29 *5))) + (-4 *5 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) + (-5 *2 + (-3 (|:| |f1| (-852 *3)) (|:| |f2| (-653 (-852 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-221 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-654 (-417 (-963 (-171 (-574)))))) - (-5 *4 (-654 (-1190))) (-5 *2 (-654 (-654 (-171 *5)))) - (-5 *1 (-387 *5)) (-4 *5 (-13 (-372) (-858)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1190))) - (-14 *4 (-654 (-1190))) (-4 *5 (-397)))) - ((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1190))) - (-14 *4 (-654 (-1190))) (-4 *5 (-397))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) - (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-2 (|:| -4296 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-5 *1 (-103 *3))))) -(((*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284)))) - ((*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1284))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-1062)) (-5 *1 (-1174 *3)))) + (-12 (-5 *4 (-1104 (-852 *3))) (-5 *5 (-1171)) + (-4 *3 (-13 (-1215) (-969) (-29 *6))) + (-4 *6 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) + (-5 *2 + (-3 (|:| |f1| (-852 *3)) (|:| |f2| (-653 (-852 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-221 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-1104 (-852 (-323 *5)))) + (-4 *5 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) + (-5 *2 + (-3 (|:| |f1| (-852 (-323 *5))) (|:| |f2| (-653 (-852 (-323 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-416 (-962 *6))) (-5 *4 (-1104 (-852 (-323 *6)))) + (-5 *5 (-1171)) + (-4 *6 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) + (-5 *2 + (-3 (|:| |f1| (-852 (-323 *6))) (|:| |f2| (-653 (-852 (-323 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1104 (-852 (-416 (-962 *5))))) (-5 *3 (-416 (-962 *5))) + (-4 *5 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) + (-5 *2 + (-3 (|:| |f1| (-852 (-323 *5))) (|:| |f2| (-653 (-852 (-323 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1104 (-852 (-416 (-962 *6))))) (-5 *5 (-1171)) + (-5 *3 (-416 (-962 *6))) + (-4 *6 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) + (-5 *2 + (-3 (|:| |f1| (-852 (-323 *6))) (|:| |f2| (-653 (-852 (-323 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1189)) + (-4 *5 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) + (-5 *2 (-3 *3 (-653 *3))) (-5 *1 (-437 *5 *3)) + (-4 *3 (-13 (-1215) (-969) (-29 *5))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-483 *3 *4 *5)) + (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-14 *5 *3))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-323 (-387))) (-5 *4 (-1106 (-852 (-387)))) + (-5 *5 (-387)) (-5 *6 (-1075)) (-5 *2 (-1047)) (-5 *1 (-574)))) + ((*1 *2 *3) (-12 (-5 *3 (-778)) (-5 *2 (-1047)) (-5 *1 (-574)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-323 (-387))) (-5 *4 (-1106 (-852 (-387)))) + (-5 *5 (-387)) (-5 *2 (-1047)) (-5 *1 (-574)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-323 (-387))) (-5 *4 (-1106 (-852 (-387)))) + (-5 *5 (-387)) (-5 *2 (-1047)) (-5 *1 (-574)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-323 (-387))) (-5 *4 (-1106 (-852 (-387)))) + (-5 *2 (-1047)) (-5 *1 (-574)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-323 (-387))) (-5 *4 (-653 (-1106 (-852 (-387))))) + (-5 *2 (-1047)) (-5 *1 (-574)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-323 (-387))) (-5 *4 (-653 (-1106 (-852 (-387))))) + (-5 *5 (-387)) (-5 *2 (-1047)) (-5 *1 (-574)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-323 (-387))) (-5 *4 (-653 (-1106 (-852 (-387))))) + (-5 *5 (-387)) (-5 *2 (-1047)) (-5 *1 (-574)))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-323 (-387))) (-5 *4 (-653 (-1106 (-852 (-387))))) + (-5 *5 (-387)) (-5 *6 (-1075)) (-5 *2 (-1047)) (-5 *1 (-574)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-323 (-387))) (-5 *4 (-1104 (-852 (-387)))) + (-5 *5 (-1171)) (-5 *2 (-1047)) (-5 *1 (-574)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-323 (-387))) (-5 *4 (-1104 (-852 (-387)))) + (-5 *5 (-1189)) (-5 *2 (-1047)) (-5 *1 (-574)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-371) (-148) (-1050 (-573)))) (-4 *5 (-1256 *4)) + (-5 *2 (-595 (-416 *5))) (-5 *1 (-577 *4 *5)) (-5 *3 (-416 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-1189)) (-4 *5 (-148)) + (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) + (-5 *2 (-3 (-323 *5) (-653 (-323 *5)))) (-5 *1 (-598 *5)))) ((*1 *1 *1) - (-12 (-5 *1 (-1273 *2 *3 *4)) (-4 *2 (-1062)) (-14 *3 (-1190)) - (-14 *4 *2)))) + (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-749 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-859)) + (-4 *3 (-38 (-416 (-573)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1189)) (-5 *1 (-962 *3)) (-4 *3 (-38 (-416 (-573)))) + (-4 *3 (-1061)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-4 *2 (-859)) + (-5 *1 (-1138 *3 *2 *4)) (-4 *4 (-959 *3 (-540 *2) *2)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) + (-5 *1 (-1173 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1180 *3 *4 *5)) + (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1186 *3 *4 *5)) + (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1187 *3 *4 *5)) + (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-14 *5 *3))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1189)) (-5 *1 (-1224 *3)) (-4 *3 (-38 (-416 (-573)))) + (-4 *3 (-1061)))) + ((*1 *1 *1 *2) + (-2817 + (-12 (-5 *2 (-1189)) (-4 *1 (-1240 *3)) (-4 *3 (-1061)) + (-12 (-4 *3 (-29 (-573))) (-4 *3 (-969)) (-4 *3 (-1215)) + (-4 *3 (-38 (-416 (-573)))))) + (-12 (-5 *2 (-1189)) (-4 *1 (-1240 *3)) (-4 *3 (-1061)) + (-12 (|has| *3 (-15 -4354 ((-653 *2) *3))) + (|has| *3 (-15 -1626 (*3 *3 *2))) (-4 *3 (-38 (-416 (-573)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1061)) (-4 *2 (-38 (-416 (-573)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1244 *3 *4 *5)) + (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-14 *5 *3))) + ((*1 *1 *1) + (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1061)) (-4 *2 (-38 (-416 (-573)))))) + ((*1 *1 *1 *2) + (-2817 + (-12 (-5 *2 (-1189)) (-4 *1 (-1261 *3)) (-4 *3 (-1061)) + (-12 (-4 *3 (-29 (-573))) (-4 *3 (-969)) (-4 *3 (-1215)) + (-4 *3 (-38 (-416 (-573)))))) + (-12 (-5 *2 (-1189)) (-4 *1 (-1261 *3)) (-4 *3 (-1061)) + (-12 (|has| *3 (-15 -4354 ((-653 *2) *3))) + (|has| *3 (-15 -1626 (*3 *3 *2))) (-4 *3 (-38 (-416 (-573)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1061)) (-4 *2 (-38 (-416 (-573)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1265 *3 *4 *5)) + (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-2817 + (-12 (-5 *2 (-1189)) (-4 *1 (-1271 *3)) (-4 *3 (-1061)) + (-12 (-4 *3 (-29 (-573))) (-4 *3 (-969)) (-4 *3 (-1215)) + (-4 *3 (-38 (-416 (-573)))))) + (-12 (-5 *2 (-1189)) (-4 *1 (-1271 *3)) (-4 *3 (-1061)) + (-12 (|has| *3 (-15 -4354 ((-653 *2) *3))) + (|has| *3 (-15 -1626 (*3 *3 *2))) (-4 *3 (-38 (-416 (-573)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1061)) (-4 *2 (-38 (-416 (-573)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1276 *4)) (-14 *4 (-1189)) (-5 *1 (-1272 *3 *4 *5)) + (-4 *3 (-38 (-416 (-573)))) (-4 *3 (-1061)) (-14 *5 *3)))) +(((*1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-1052))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-574)) (-5 *2 (-1286)) (-5 *1 (-915 *4)) - (-4 *4 (-1113)))) - ((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-915 *3)) (-4 *3 (-1113))))) + (-12 (-5 *3 (-780)) (-5 *2 (-416 (-573))) (-5 *1 (-227)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-780)) (-5 *2 (-416 (-573))) (-5 *1 (-227)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-780)) (-5 *2 (-416 (-573))) (-5 *1 (-387)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-780)) (-5 *2 (-416 (-573))) (-5 *1 (-387))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) + ((*1 *2) (-12 (-5 *2 (-914 (-573))) (-5 *1 (-927))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-357)) (-5 *1 (-365 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-298)) (-5 *1 (-287))))) +(((*1 *2 *3) (-12 (-5 *3 (-387)) (-5 *2 (-227)) (-5 *1 (-1283)))) + ((*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1283))))) +(((*1 *2 *3) + (-12 (-5 *3 (-698 (-416 (-962 (-573))))) (-5 *2 (-653 (-323 (-573)))) + (-5 *1 (-1043))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-780)) (-4 *5 (-1061)) (-5 *2 (-573)) + (-5 *1 (-452 *5 *3 *6)) (-4 *3 (-1256 *5)) + (-4 *6 (-13 (-413) (-1050 *5) (-371) (-1215) (-291))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1061)) (-5 *2 (-573)) (-5 *1 (-452 *4 *3 *5)) + (-4 *3 (-1256 *4)) + (-4 *5 (-13 (-413) (-1050 *4) (-371) (-1215) (-291)))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-932)) (-5 *4 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1282))))) -(((*1 *1) (-5 *1 (-1076)))) -(((*1 *1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) - ((*1 *1 *1 *1) (-5 *1 (-872))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1060)) - (-5 *3 (-574))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-372)) (-4 *3 (-1062)) - (-5 *2 (-2 (|:| -1411 *1) (|:| -2766 *1))) (-4 *1 (-862 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-372)) (-4 *5 (-1062)) - (-5 *2 (-2 (|:| -1411 *3) (|:| -2766 *3))) (-5 *1 (-863 *5 *3)) - (-4 *3 (-862 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1001 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1078 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1120 *4 *5 *6 *7 *3)) (-4 *3 (-1084 *4 *5 *6 *7))))) + (-12 (-5 *3 (-931)) (-5 *4 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1281))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-760))))) +(((*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-112))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-1038 *2)) (-4 *2 (-1230))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-653 (-1171))) (-5 *1 (-1210))))) (((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2426 "void"))) - (-5 *1 (-447))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444))))) -(((*1 *1) (-5 *1 (-338)))) -(((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015)))))) + (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) + (-4 *5 (-381 *3)) (-5 *2 (-653 (-653 *3))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-653 (-653 *5))))) + ((*1 *2 *1) + (-12 (-5 *2 (-653 (-653 *3))) (-5 *1 (-1201 *3)) (-4 *3 (-1112))))) +(((*1 *1) (-5 *1 (-337)))) +(((*1 *2 *1) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1072)) (-4 *3 (-1215)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-653 (-573))) (-5 *1 (-1016 *3)) (-14 *3 (-573))))) (((*1 *1 *2) - (-12 (-5 *2 (-654 (-574))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1062)) - (-14 *4 (-654 (-1190))))) + (-12 (-5 *2 (-653 (-573))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1061)) + (-14 *4 (-653 (-1189))))) ((*1 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1015))))) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1272 *3)) - (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1243 *3 *4)))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1271 *3)) + (-5 *1 (-284 *3 *4 *2)) (-4 *2 (-1242 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1241 *3)) - (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1264 *3 *4)) (-4 *5 (-996 *4)))) - ((*1 *1 *1) (-4 *1 (-292))) + (-12 (-4 *3 (-38 (-416 (-573)))) (-4 *4 (-1240 *3)) + (-5 *1 (-285 *3 *4 *2 *5)) (-4 *2 (-1263 *3 *4)) (-4 *5 (-995 *4)))) + ((*1 *1 *1) (-4 *1 (-291))) ((*1 *1 *1) - (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1190))) - (-14 *3 (-654 (-1190))) (-4 *4 (-397)))) + (-12 (-5 *1 (-347 *2 *3 *4)) (-14 *2 (-653 (-1189))) + (-14 *3 (-653 (-1189))) (-4 *4 (-396)))) ((*1 *1 *2) - (-12 (-5 *2 (-674 *3 *4)) (-4 *3 (-860)) - (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-5 *1 (-637 *3 *4 *5)) - (-14 *5 (-932)))) + (-12 (-5 *2 (-673 *3 *4)) (-4 *3 (-859)) + (-4 *4 (-13 (-174) (-726 (-416 (-573))))) (-5 *1 (-636 *3 *4 *5)) + (-14 *5 (-931)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1175 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1174 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1176 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1175 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1062) (-727 (-417 (-574))))) - (-4 *5 (-860)) (-5 *1 (-1297 *4 *5 *2)) (-4 *2 (-1302 *5 *4)))) + (-12 (-5 *3 (-780)) (-4 *4 (-13 (-1061) (-726 (-416 (-573))))) + (-4 *5 (-859)) (-5 *1 (-1296 *4 *5 *2)) (-4 *2 (-1301 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-5 *1 (-1301 *3 *4)) - (-4 *4 (-727 (-417 (-574)))) (-4 *3 (-860)) (-4 *4 (-174))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1178 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1062))))) -(((*1 *2 *3) - (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-366 *4)) - (-4 *4 (-358))))) -(((*1 *2 *1) - (-12 (|has| *1 (-6 -4456)) (-4 *1 (-499 *3)) (-4 *3 (-1231)) - (-5 *2 (-654 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-747 *3)) (-4 *3 (-1113)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-449))) (-5 *1 (-875))))) -(((*1 *1 *1) (-4 *1 (-555)))) + (-12 (-5 *2 (-780)) (-5 *1 (-1300 *3 *4)) + (-4 *4 (-726 (-416 (-573)))) (-4 *3 (-859)) (-4 *4 (-174))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1047)) (-5 *3 (-1189)) (-5 *1 (-273))))) +(((*1 *1 *1) (-4 *1 (-554)))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-323 (-387))) (-5 *1 (-312))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 (-2 (|:| |den| (-573)) (|:| |gcdnum| (-573))))) + (-4 *4 (-1256 (-416 *2))) (-5 *2 (-573)) (-5 *1 (-923 *4 *5)) + (-4 *5 (-1256 (-416 *4)))))) (((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-654 (-1172))) (-5 *2 (-1172)) (-5 *1 (-1282)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1282)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1282)))) + (-12 (-5 *3 (-653 (-1171))) (-5 *2 (-1171)) (-5 *1 (-1281)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1281)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1281)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-654 (-1172))) (-5 *2 (-1172)) (-5 *1 (-1283)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1283)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1283))))) -(((*1 *1 *1 *1) (-5 *1 (-872)))) + (-12 (-5 *3 (-653 (-1171))) (-5 *2 (-1171)) (-5 *1 (-1282)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1282)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1282))))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-902 *4)) (-4 *4 (-1112)) (-5 *1 (-899 *4 *3)) + (-4 *3 (-1112))))) (((*1 *2 *3) - (-12 (-4 *4 (-372)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) - (-5 *2 (-781)) (-5 *1 (-531 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-781)))) + (-12 (-5 *2 (-427 (-1185 *1))) (-5 *1 (-323 *4)) (-5 *3 (-1185 *1)) + (-4 *4 (-461)) (-4 *4 (-565)) (-4 *4 (-1112)))) ((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) - (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-698 *4 *5 *6 *3)) - (-4 *3 (-697 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566)) - (-5 *2 (-781))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1186 *1)) (-4 *1 (-1025))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-315)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1231)) (-4 *1 (-107 *3))))) + (-12 (-4 *1 (-919)) (-5 *2 (-427 (-1185 *1))) (-5 *3 (-1185 *1))))) +(((*1 *1 *1) (-12 (-4 *1 (-289 *2)) (-4 *2 (-1230)) (-4 *2 (-1112)))) + ((*1 *1 *1) (-12 (-4 *1 (-704 *2)) (-4 *2 (-1112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-371)) (-4 *4 (-1256 *3)) + (-4 *5 (-1256 (-416 *4))) (-4 *6 (-350 *3 *4 *5)) (-5 *2 (-112))))) (((*1 *1) (-5 *1 (-188)))) -(((*1 *2 *2) (-12 (-5 *2 (-1186 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3))))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) - (-5 *1 (-1141 *3 *2)) (-4 *3 (-1257 *2))))) -(((*1 *2) - (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-427 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-831))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -3903 *6) (|:| |sol?| (-112))) (-573) + *6)) + (-4 *6 (-371)) (-4 *7 (-1256 *6)) + (-5 *2 (-2 (|:| |answer| (-595 (-416 *7))) (|:| |a0| *6))) + (-5 *1 (-583 *6 *7)) (-5 *3 (-416 *7))))) +(((*1 *2 *2) + (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))) + (-5 *1 (-178 *3))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-574)) (-4 *1 (-661 *3)) (-4 *3 (-1231)))) + (-12 (-5 *2 (-573)) (-4 *1 (-660 *3)) (-4 *3 (-1230)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-574)) (-4 *1 (-661 *2)) (-4 *2 (-1231))))) + (-12 (-5 *3 (-573)) (-4 *1 (-660 *2)) (-4 *2 (-1230))))) +(((*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1061)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-653 *4)) (-4 *4 (-1112)) (-4 *4 (-1230)) (-5 *2 (-112)) + (-5 *1 (-1169 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-566) (-1051 (-574)))) (-5 *2 (-171 (-324 *4))) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1216) (-440 (-171 *4)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-462) (-1051 (-574)) (-649 (-574)))) - (-5 *2 (-171 *3)) (-5 *1 (-1220 *4 *3)) - (-4 *3 (-13 (-27) (-1216) (-440 *4)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1172)) (-5 *1 (-1212))))) -(((*1 *2 *2) - (-12 (-5 *2 (-654 (-2 (|:| |val| (-654 *6)) (|:| -4091 *7)))) - (-4 *6 (-1078 *3 *4 *5)) (-4 *7 (-1084 *3 *4 *5 *6)) (-4 *3 (-462)) - (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1001 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-654 (-2 (|:| |val| (-654 *6)) (|:| -4091 *7)))) - (-4 *6 (-1078 *3 *4 *5)) (-4 *7 (-1084 *3 *4 *5 *6)) (-4 *3 (-462)) - (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1120 *3 *4 *5 *6 *7))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216))))) -(((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-455 *3)) (-4 *3 (-1062))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1186 *1)) (-5 *3 (-1190)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1186 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-963 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1190)) (-4 *1 (-29 *3)) (-4 *3 (-566)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-566))))) -(((*1 *1) (-5 *1 (-188)))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-903 *4)) (-4 *4 (-1113)) (-5 *1 (-901 *4 *3)) - (-4 *3 (-1231)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-903 *3)) (-4 *3 (-1113))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-1062)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-954 (-227))) (-5 *1 (-1227)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1231)) (-4 *2 (-1062))))) -(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *2 (-112)) - (-5 *1 (-1000 *3 *4 *5 *6)) (-4 *6 (-960 *3 *5 *4)))) + (-12 (-5 *3 (-931)) (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-13 (-1113) (-34))) - (-4 *4 (-13 (-1113) (-34)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-954 *4)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) - (-4 *4 (-1062))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1113))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-227)))) (-5 *1 (-937))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-1282)))) - ((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-1283))))) -(((*1 *1 *1) (-5 *1 (-1076)))) + (-12 (-5 *2 (-1280 (-3 (-477) "undefined"))) (-5 *1 (-1281))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-573)) (-5 *5 (-112)) (-5 *6 (-698 (-227))) + (-5 *7 (-3 (|:| |fn| (-397)) (|:| |fp| (-77 OBJFUN)))) + (-5 *4 (-227)) (-5 *2 (-1047)) (-5 *1 (-762))))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) + (-5 *2 (-1047)) (-5 *1 (-760))))) +(((*1 *1) (-5 *1 (-188)))) (((*1 *2 *1) - (-12 (-5 *2 (-1115 (-1115 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1113))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-872))))) + (-12 (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) (-4 *4 (-1061)) + (-5 *2 (-828 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-855)) (-5 *1 (-1303 *3 *2)) (-4 *3 (-1061))))) +(((*1 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283)))) + ((*1 *2 *2) (-12 (-5 *2 (-883)) (-5 *1 (-1283))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 (-574))) (-5 *2 (-915 (-574))) (-5 *1 (-928)))) - ((*1 *2) (-12 (-5 *2 (-915 (-574))) (-5 *1 (-928))))) -(((*1 *1 *1) (-4 *1 (-566)))) + (-12 + (-5 *2 + (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) + (-5 *1 (-1032 *3)) (-4 *3 (-1256 (-573))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) + (-5 *1 (-1032 *3)) (-4 *3 (-1256 (-573))) + (-5 *4 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) + (-5 *1 (-1032 *3)) (-4 *3 (-1256 (-573))) (-5 *4 (-416 (-573))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-416 (-573))) + (-5 *2 (-653 (-2 (|:| -3890 *5) (|:| -3903 *5)))) (-5 *1 (-1032 *3)) + (-4 *3 (-1256 (-573))) (-5 *4 (-2 (|:| -3890 *5) (|:| -3903 *5))))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) + (-5 *1 (-1033 *3)) (-4 *3 (-1256 (-416 (-573)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) + (-5 *1 (-1033 *3)) (-4 *3 (-1256 (-416 (-573)))) + (-5 *4 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-416 (-573))) + (-5 *2 (-653 (-2 (|:| -3890 *4) (|:| -3903 *4)))) (-5 *1 (-1033 *3)) + (-4 *3 (-1256 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-416 (-573))) + (-5 *2 (-653 (-2 (|:| -3890 *5) (|:| -3903 *5)))) (-5 *1 (-1033 *3)) + (-4 *3 (-1256 *5)) (-5 *4 (-2 (|:| -3890 *5) (|:| -3903 *5)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1073 (-1036 *4) (-1185 (-1036 *4)))) (-5 *3 (-871)) + (-5 *1 (-1036 *4)) (-4 *4 (-13 (-857) (-371) (-1034)))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-1281)))) + ((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-1282))))) +(((*1 *2 *3) + (-12 (-4 *4 (-565)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-112)) + (-5 *1 (-989 *4 *5 *6 *3)) (-4 *3 (-1077 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-871))))) +(((*1 *2 *1) (-12 (-4 *1 (-776 *3)) (-4 *3 (-1112)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-1061)) (-4 *2 (-371)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-371)) (-5 *1 (-668 *4 *2)) + (-4 *2 (-665 *4))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4455)) (-4 *1 (-498 *4)) + (-4 *4 (-1230)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-446)))) (((*1 *1) (-5 *1 (-188)))) -(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1172)) (-5 *1 (-313))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-573)) (-5 *6 (-1171)) + (-5 *3 (-227)) (-5 *2 (-1047)) (-5 *1 (-767))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1271 *4)) + (-4 *4 (-38 (-416 (-573)))) + (-5 *2 (-1 (-1169 *4) (-1169 *4) (-1169 *4))) (-5 *1 (-1273 *4 *5))))) +(((*1 *1) (-5 *1 (-568)))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-931)) (-4 *5 (-314)) (-4 *3 (-1256 *5)) + (-5 *2 (-2 (|:| |plist| (-653 *3)) (|:| |modulo| *5))) + (-5 *1 (-469 *5 *3)) (-5 *4 (-653 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-371) (-148) (-1050 (-573)))) (-4 *5 (-1256 *4)) + (-5 *2 (-2 (|:| |ans| (-416 *5)) (|:| |nosol| (-112)))) + (-5 *1 (-1027 *4 *5)) (-5 *3 (-416 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1189)) + (-4 *4 (-13 (-314) (-148) (-1050 (-573)) (-648 (-573)))) + (-5 *1 (-435 *4 *2)) (-4 *2 (-13 (-1215) (-29 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-1189)) (-4 *5 (-148)) + (-4 *5 (-13 (-461) (-1050 (-573)) (-648 (-573)))) (-5 *2 (-323 *5)) + (-5 *1 (-598 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -2276 (-654 *3)) (|:| -2401 (-654 *3)))) - (-5 *1 (-1232 *3)) (-4 *3 (-1113))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) - (-5 *2 - (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574)) - (|:| |success| (-112)))) - (-5 *1 (-799)) (-5 *5 (-574))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-654 (-417 *6))) (-5 *3 (-417 *6)) - (-4 *6 (-1257 *5)) (-4 *5 (-13 (-372) (-148) (-1051 (-574)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-578 *5 *6))))) -(((*1 *1 *1) - (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-802)) - (-4 *2 (-462)))) - ((*1 *1 *1) - (-12 (-4 *1 (-351 *2 *3 *4)) (-4 *2 (-1235)) (-4 *3 (-1257 *2)) - (-4 *4 (-1257 (-417 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-462)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-960 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *2 (-860)) (-4 *3 (-462)))) - ((*1 *1 *1) - (-12 (-4 *1 (-960 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-462)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-315)) (-4 *3 (-566)) (-5 *1 (-1177 *3 *2)) - (-4 *2 (-1257 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-654 *5) *6)) - (-4 *5 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *6 (-1257 *5)) - (-5 *2 (-654 (-2 (|:| -1706 *5) (|:| -4122 *3)))) - (-5 *1 (-819 *5 *6 *3 *7)) (-4 *3 (-666 *6)) - (-4 *7 (-666 (-417 *6)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1172)) (-5 *4 (-574)) (-5 *5 (-699 (-171 (-227)))) - (-5 *2 (-1048)) (-5 *1 (-764))))) -(((*1 *2 *3) (-12 (-5 *3 (-1281 *1)) (-4 *1 (-376 *2)) (-4 *2 (-174)))) - ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-426 *3 *2)) (-4 *3 (-427 *2)))) - ((*1 *2) (-12 (-4 *1 (-427 *2)) (-4 *2 (-174))))) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) + (-4 *3 (-375 *4)))) + ((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-780)) + (-4 *3 (-13 (-735) (-376) (-10 -7 (-15 ** (*3 *3 (-573)))))) + (-5 *1 (-251 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-654 (-1195))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-142)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-145))))) -(((*1 *1) (-4 *1 (-980)))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) - ((*1 *2 *3 *3 *2) - (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-781)) - (-4 *3 (-13 (-315) (-10 -8 (-15 -2827 ((-428 $) $))))) - (-4 *4 (-1257 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4))))) + (-12 (-5 *2 (-653 (-1194))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-780)) (-5 *1 (-228)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-171 (-227))) (-5 *3 (-780)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1151)))) +(((*1 *1) (-4 *1 (-979)))) +(((*1 *1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-538)))) + ((*1 *1 *2) (-12 (-5 *2 (-397)) (-5 *1 (-538))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1062)) (-4 *2 (-697 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1257 *4)) (-4 *5 (-382 *4)) - (-4 *6 (-382 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-247)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-1172))) (-5 *2 (-1286)) (-5 *1 (-247))))) -(((*1 *2 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1113))))) -(((*1 *2) (-12 (-5 *2 (-1146 (-227))) (-5 *1 (-1214))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-954 *3)) (-4 *3 (-13 (-372) (-1216) (-1015))) - (-5 *1 (-178 *3))))) + (-12 (-5 *3 (-1253 *5 *4)) (-4 *4 (-829)) (-14 *5 (-1189)) + (-5 *2 (-653 *4)) (-5 *1 (-1126 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-830)) (-14 *5 (-1190)) (-5 *2 (-654 (-1254 *5 *4))) - (-5 *1 (-1127 *4 *5)) (-5 *3 (-1254 *5 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1286)) (-5 *1 (-1019))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) - (-4 *2 (-1231))))) -(((*1 *2 *1) - (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1074 *2 *3)) - (-4 *3 (-1257 *2))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) - (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832))))) -(((*1 *1 *1) - (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1062))))) -(((*1 *2 *3) - (-12 (-5 *3 (-324 *4)) (-4 *4 (-13 (-838) (-1062))) (-5 *2 (-1172)) - (-5 *1 (-836 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-324 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-838) (-1062))) - (-5 *2 (-1172)) (-5 *1 (-836 *5)))) + (-12 (-4 *4 (-13 (-314) (-148))) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-959 *4 *5 *6)) (-5 *2 (-653 (-653 *7))) + (-5 *1 (-457 *4 *5 *6 *7)) (-5 *3 (-653 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-802)) + (-4 *7 (-859)) (-4 *8 (-959 *5 *6 *7)) (-5 *2 (-653 (-653 *8))) + (-5 *1 (-457 *5 *6 *7 *8)) (-5 *3 (-653 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-314) (-148))) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-959 *4 *5 *6)) (-5 *2 (-653 (-653 *7))) + (-5 *1 (-457 *4 *5 *6 *7)) (-5 *3 (-653 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-832)) (-5 *4 (-324 *5)) (-4 *5 (-13 (-838) (-1062))) - (-5 *2 (-1286)) (-5 *1 (-836 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-832)) (-5 *4 (-324 *6)) (-5 *5 (-112)) - (-4 *6 (-13 (-838) (-1062))) (-5 *2 (-1286)) (-5 *1 (-836 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-838)) (-5 *2 (-1172)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-838)) (-5 *3 (-112)) (-5 *2 (-1172)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-838)) (-5 *3 (-832)) (-5 *2 (-1286)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-838)) (-5 *3 (-832)) (-5 *4 (-112)) (-5 *2 (-1286))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4456)) (-4 *1 (-152 *2)) (-4 *2 (-1231)) - (-4 *2 (-1113))))) -(((*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1231)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-937))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) - ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-574) (-574))) (-5 *1 (-370 *3)) (-4 *3 (-1113)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-781) (-781))) (-4 *1 (-395 *3)) (-4 *3 (-1113)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) - (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1113))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1281 *4)) (-4 *4 (-13 (-1062) (-649 (-574)))) - (-5 *2 (-1281 (-574))) (-5 *1 (-1309 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595))))) -(((*1 *2 *3) - (-12 (-5 *3 (-932)) (-5 *2 (-1186 *4)) (-5 *1 (-366 *4)) - (-4 *4 (-358))))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-314) (-148))) (-4 *6 (-802)) + (-4 *7 (-859)) (-4 *8 (-959 *5 *6 *7)) (-5 *2 (-653 (-653 *8))) + (-5 *1 (-457 *5 *6 *7 *8)) (-5 *3 (-653 *8))))) +(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-246)))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 (-1171))) (-5 *2 (-1285)) (-5 *1 (-246))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1132)) (-5 *2 (-112)) (-5 *1 (-830))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1280 *4)) (-5 *3 (-573)) (-4 *4 (-357)) + (-5 *1 (-537 *4))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) (-4 *4 (-802)) + (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-314)) (-4 *3 (-174)) (-4 *4 (-381 *3)) + (-4 *5 (-381 *3)) (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) + (-5 *1 (-697 *3 *4 *5 *6)) (-4 *6 (-696 *3 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) (-5 *1 (-709 *3)) + (-4 *3 (-314))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 (-1172))) (-5 *2 (-1172)) (-5 *1 (-194)))) - ((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))) -(((*1 *2 *1) - (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) - (-5 *2 (-1186 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444))))) -(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283)))) - ((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-654 (-2 (|:| |totdeg| (-781)) (|:| -4086 *3)))) - (-5 *4 (-781)) (-4 *3 (-960 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) - (-4 *7 (-860)) (-5 *1 (-459 *5 *6 *7 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-954 *2)) (-5 *1 (-995 *2)) (-4 *2 (-1062))))) -(((*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315)))) - ((*1 *2 *1) (-12 (-5 *1 (-925 *2)) (-4 *2 (-315)))) - ((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-566)) (-4 *2 (-315)))) - ((*1 *2 *1) (-12 (-4 *1 (-1073)) (-5 *2 (-574))))) + (-12 + (-5 *3 + (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) + (|:| |explanations| (-653 (-1171))))) + (-5 *2 (-1047)) (-5 *1 (-312)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -4223 (-387)) (|:| -2031 (-1171)) + (|:| |explanations| (-653 (-1171))) (|:| |extra| (-1047)))) + (-5 *2 (-1047)) (-5 *1 (-312))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-371) (-857))) + (-5 *2 (-653 (-2 (|:| -1687 (-653 *3)) (|:| -2675 *5)))) + (-5 *1 (-183 *5 *3)) (-4 *3 (-1256 (-171 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-371) (-857))) + (-5 *2 (-653 (-2 (|:| -1687 (-653 *3)) (|:| -2675 *4)))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1256 (-171 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-831))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1191 (-416 (-573)))) (-5 *1 (-192))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4455)) (-4 *1 (-498 *3)) (-4 *3 (-1230)) + (-4 *3 (-1112)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-915 *4)) (-4 *4 (-1112)) (-5 *2 (-112)) + (-5 *1 (-914 *4)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-931)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-375 *2)) (-4 *2 (-174)) (-4 *2 (-565)))) + ((*1 *1 *1) (|partial| -4 *1 (-731)))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-780)) (-5 *1 (-166 *3 *4)) + (-4 *3 (-167 *4)))) + ((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1230)) (-5 *2 (-780)) + (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-1112)) (-5 *2 (-780)) (-5 *1 (-438 *3 *4)) + (-4 *3 (-439 *4)))) + ((*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-553 *3)) (-4 *3 (-554)))) + ((*1 *2) (-12 (-4 *1 (-772)) (-5 *2 (-780)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-780)) (-5 *1 (-805 *3 *4)) + (-4 *3 (-806 *4)))) + ((*1 *2) + (-12 (-4 *4 (-565)) (-5 *2 (-780)) (-5 *1 (-1003 *3 *4)) + (-4 *3 (-1004 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-780)) (-5 *1 (-1008 *3 *4)) + (-4 *3 (-1009 *4)))) + ((*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-1023 *3)) (-4 *3 (-1024)))) + ((*1 *2) (-12 (-4 *1 (-1061)) (-5 *2 (-780)))) + ((*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-1071 *3)) (-4 *3 (-1072))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-654 *3)) (-4 *3 (-1122 *5 *6 *7 *8)) - (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *8 (-1078 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-601 *5 *6 *7 *8 *3))))) -(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) - ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) - ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-938))))) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-565)) (-4 *2 (-461)) (-5 *1 (-981 *2 *3)) + (-4 *3 (-1256 *2))))) +(((*1 *2 *2) + (-12 (-5 *2 (-953 *3)) (-4 *3 (-13 (-371) (-1215) (-1014))) + (-5 *1 (-178 *3))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4456)) (-4 *1 (-249 *2)) (-4 *2 (-1230))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-573)) (-5 *1 (-1212 *3)) (-4 *3 (-1061))))) +(((*1 *2 *1) (-12 (-5 *2 (-340)) (-5 *1 (-254))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-780)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1061)) + (-4 *4 (-801)) (-4 *3 (-174))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1113)) (-4 *5 (-1113)) - (-4 *6 (-1113)) (-5 *2 (-1 *6 *5)) (-5 *1 (-694 *4 *5 *6))))) + (-12 (-5 *3 (-1189)) (-4 *5 (-371)) (-5 *2 (-653 (-1224 *5))) + (-5 *1 (-1288 *5)) (-5 *4 (-1224 *5))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-699 *1)) (-4 *1 (-358)) (-5 *2 (-1281 *1)))) + (-12 (-5 *3 (-962 (-573))) (-5 *2 (-653 *1)) (-4 *1 (-1024)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-699 *1)) (-4 *1 (-146)) (-4 *1 (-920)) - (-5 *2 (-1281 *1))))) -(((*1 *2 *2) (-12 (-5 *2 (-398)) (-5 *1 (-446)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-398)) (-5 *1 (-446))))) -(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1231))))) -(((*1 *2 *3) - (-12 (-4 *4 (-315)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) - (-5 *2 - (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1137 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1062)) (-5 *1 (-1253 *3 *2)) (-4 *2 (-1257 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-173)) (-5 *1 (-1178 *3 *4)) (-14 *3 (-932)) - (-4 *4 (-1062))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1062)) (-4 *2 (-372))))) -(((*1 *2 *1) - (-12 (-5 *2 (-176 (-417 (-574)))) (-5 *1 (-118 *3)) (-14 *3 (-574)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *3 (-1170 *2)) (-4 *2 (-315)) (-5 *1 (-176 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-417 *3)) (-4 *3 (-315)) (-5 *1 (-176 *3)))) + (-12 (-5 *3 (-962 (-416 (-573)))) (-5 *2 (-653 *1)) (-4 *1 (-1024)))) + ((*1 *2 *3) (-12 (-5 *3 (-962 *1)) (-4 *1 (-1024)) (-5 *2 (-653 *1)))) ((*1 *2 *3) - (-12 (-5 *2 (-176 (-574))) (-5 *1 (-775 *3)) (-4 *3 (-414)))) - ((*1 *2 *1) - (-12 (-5 *2 (-176 (-417 (-574)))) (-5 *1 (-881 *3)) (-14 *3 (-574)))) - ((*1 *2 *1) - (-12 (-14 *3 (-574)) (-5 *2 (-176 (-417 (-574)))) - (-5 *1 (-882 *3 *4)) (-4 *4 (-879 *3))))) -(((*1 *1 *2) + (-12 (-5 *3 (-1185 (-573))) (-5 *2 (-653 *1)) (-4 *1 (-1024)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1185 (-416 (-573)))) (-5 *2 (-653 *1)) (-4 *1 (-1024)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1185 *1)) (-4 *1 (-1024)) (-5 *2 (-653 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-857) (-371))) (-4 *3 (-1256 *4)) (-5 *2 (-653 *1)) + (-4 *1 (-1080 *4 *3))))) +(((*1 *2 *1) (-12 (-5 *2 - (-654 + (-653 (-2 - (|:| -3693 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1281 (-324 (-227)))) - (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) - (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) + (|:| -3692 + (-2 (|:| |var| (-1189)) (|:| |fn| (-323 (-227))) + (|:| -3821 (-1106 (-852 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (|:| -1908 - (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) - (|:| |expense| (-388)) (|:| |accuracy| (-388)) - (|:| |intermediateResults| (-388))))))) - (-5 *1 (-813))))) -(((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1257 *9)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-315)) - (-4 *10 (-960 *9 *7 *8)) + (|:| -1907 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1169 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3821 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-568)))) + ((*1 *2 *1) + (-12 (-4 *1 (-613 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1230)) + (-5 *2 (-653 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-334 *3)) (-4 *3 (-1230)))) + ((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-525 *3 *4)) (-4 *3 (-1230)) + (-14 *4 (-573))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-653 *6)) (-4 *6 (-859)) (-4 *4 (-371)) (-4 *5 (-802)) (-5 *2 - (-2 (|:| |deter| (-654 (-1186 *10))) - (|:| |dterm| - (-654 (-654 (-2 (|:| -3334 (-781)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-654 *6)) (|:| |nlead| (-654 *10)))) - (-5 *1 (-788 *6 *7 *8 *9 *10)) (-5 *3 (-1186 *10)) (-5 *4 (-654 *6)) - (-5 *5 (-654 *10))))) + (-2 (|:| |mval| (-698 *4)) (|:| |invmval| (-698 *4)) + (|:| |genIdeal| (-513 *4 *5 *6 *7)))) + (-5 *1 (-513 *4 *5 *6 *7)) (-4 *7 (-959 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-573)) (-4 *4 (-1256 (-416 *3))) (-5 *2 (-931)) + (-5 *1 (-923 *4 *5)) (-4 *5 (-1256 (-416 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1112)) (-4 *5 (-1112)) + (-4 *6 (-1112)) (-5 *2 (-1 *6 *5)) (-5 *1 (-693 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-323 (-227)))) (-5 *4 (-780)) + (-5 *2 (-698 (-227))) (-5 *1 (-273))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) - (-4 *3 (-376 *4)))) - ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-954 (-227)) (-227) (-227))) - (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-963 *6)) (-5 *4 (-1190)) - (-5 *5 (-853 *7)) - (-4 *6 (-13 (-462) (-1051 (-574)) (-649 (-574)))) - (-4 *7 (-13 (-1216) (-29 *6))) (-5 *1 (-226 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1186 *6)) (-5 *4 (-853 *6)) - (-4 *6 (-13 (-1216) (-29 *5))) - (-4 *5 (-13 (-462) (-1051 (-574)) (-649 (-574)))) - (-5 *1 (-226 *5 *6))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-566)) - (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-990 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-654 *7)) (-5 *3 (-112)) (-4 *7 (-1078 *4 *5 *6)) - (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) - (-5 *1 (-990 *4 *5 *6 *7))))) + (-12 (-4 *3 (-13 (-565) (-1050 (-573)))) (-5 *2 (-1285)) + (-5 *1 (-442 *3 *4)) (-4 *4 (-439 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1169 (-1169 *4))) (-5 *2 (-1169 *4)) (-5 *1 (-1173 *4)) + (-4 *4 (-38 (-416 (-573)))) (-4 *4 (-1061))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1112)) (-4 *6 (-1112)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-693 *4 *5 *6)) (-4 *5 (-1112))))) +(((*1 *2 *1) (-12 (-5 *2 (-653 (-177))) (-5 *1 (-1097))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-4 *3 (-1077 *5 *6 *7)) + (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) + (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 (-573))) (-5 *2 (-914 (-573))) (-5 *1 (-927)))) + ((*1 *2 *3) (-12 (-5 *3 (-983)) (-5 *2 (-914 (-573))) (-5 *1 (-927))))) (((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1216)))))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-23))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1062)) (-5 *2 (-1178 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1178 *2 *3)) (-14 *2 (-932)) (-4 *3 (-1062)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1146 (-227))) (-5 *1 (-1283)))) - ((*1 *2 *1) (-12 (-5 *2 (-1146 (-227))) (-5 *1 (-1283))))) -(((*1 *1 *2) - (-12 (-5 *2 (-654 *3)) (-4 *3 (-1113)) (-4 *1 (-1111 *3)))) - ((*1 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1113))))) -(((*1 *2 *1) (-12 (-5 *2 (-932)) (-5 *1 (-984))))) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014)))))) +(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1230))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-174))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1186 *6)) (-5 *3 (-574)) (-4 *6 (-315)) (-4 *4 (-803)) - (-4 *5 (-860)) (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-960 *6 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-417 *5)) (-4 *5 (-1257 *4)) (-4 *4 (-566)) - (-4 *4 (-1062)) (-4 *2 (-1272 *4)) (-5 *1 (-1275 *4 *5 *6 *2)) - (-4 *6 (-666 *5))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477))))) -(((*1 *1) (-5 *1 (-1098)))) -(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-264))))) -(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-932)) (-5 *1 (-796))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1172))) (-5 *1 (-1211))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-155)))) - ((*1 *2 *1) (-12 (-5 *2 (-654 (-1148))) (-5 *1 (-1079))))) -(((*1 *1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1) (-5 *1 (-872))) + (-12 (-4 *4 (-802)) + (-4 *3 (-13 (-859) (-10 -8 (-15 -1835 ((-1189) $))))) (-4 *5 (-565)) + (-5 *1 (-741 *4 *3 *5 *2)) (-4 *2 (-959 (-416 (-962 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1061)) (-4 *5 (-802)) + (-4 *3 + (-13 (-859) + (-10 -8 (-15 -1835 ((-1189) $)) + (-15 -1487 ((-3 $ "failed") (-1189)))))) + (-5 *1 (-996 *4 *5 *3 *2)) (-4 *2 (-959 (-962 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-653 *6)) + (-4 *6 + (-13 (-859) + (-10 -8 (-15 -1835 ((-1189) $)) + (-15 -1487 ((-3 $ "failed") (-1189)))))) + (-4 *4 (-1061)) (-4 *5 (-802)) (-5 *1 (-996 *4 *5 *6 *2)) + (-4 *2 (-959 (-962 *4) *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-573)) + (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-959 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-831))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-1282))))) +(((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-936))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-653 (-1152 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) + (-4 *4 (-13 (-1112) (-34))) (-4 *5 (-13 (-1112) (-34))) + (-5 *1 (-1153 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-653 (-1152 *3 *4))) (-4 *3 (-13 (-1112) (-34))) + (-4 *4 (-13 (-1112) (-34))) (-5 *1 (-1153 *3 *4))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-394 *2)) (-4 *2 (-1112))))) +(((*1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1230))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1112))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *5 (-780)) (-4 *6 (-1112)) (-4 *7 (-910 *6)) + (-5 *2 (-698 *7)) (-5 *1 (-701 *6 *7 *3 *4)) (-4 *3 (-381 *7)) + (-4 *4 (-13 (-381 *6) (-10 -7 (-6 -4455))))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-573)) (-4 *4 (-174)) (-4 *5 (-381 *4)) + (-4 *6 (-381 *4)) (-5 *1 (-697 *4 *5 *6 *2)) + (-4 *2 (-696 *4 *5 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-1112)))) + ((*1 *1 *1) (-5 *1 (-641)))) +(((*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) +(((*1 *1 *2) + (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-4 *1 (-1110 *3)))) + ((*1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1112))))) +(((*1 *1 *2) (-12 (-5 *2 (-653 (-871))) (-5 *1 (-871)))) + ((*1 *1 *1) (-5 *1 (-871)))) +(((*1 *1 *1 *1) (-5 *1 (-871))) ((*1 *1 *1) (-5 *1 (-871))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1186 (-574))) (-5 *3 (-574)) (-4 *1 (-879 *4))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-516)) (-5 *2 (-654 (-976))) (-5 *1 (-299))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) - (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -4219 (-654 (-2 (|:| |irr| *10) (|:| -3186 (-574))))))) - (-5 *6 (-654 *3)) (-5 *7 (-654 *8)) (-4 *8 (-860)) (-4 *3 (-315)) - (-4 *10 (-960 *3 *9 *8)) (-4 *9 (-803)) - (-5 *2 - (-2 (|:| |polfac| (-654 *10)) (|:| |correct| *3) - (|:| |corrfact| (-654 (-1186 *3))))) - (-5 *1 (-635 *8 *9 *3 *10)) (-5 *4 (-654 (-1186 *3)))))) + (-12 (-5 *2 (-1185 (-573))) (-5 *3 (-573)) (-4 *1 (-878 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-227))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-780)) (-5 *2 (-1 (-387))) (-5 *1 (-1052)))) + ((*1 *1 *1 *1) (-4 *1 (-1151)))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1230)) (-5 *2 (-573))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *6)) (-5 *4 (-1190)) (-4 *6 (-440 *5)) - (-4 *5 (-1113)) (-5 *2 (-654 (-622 *6))) (-5 *1 (-583 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-417 (-963 *4))) (-5 *3 (-1190)) - (-4 *4 (-13 (-566) (-1051 (-574)) (-148))) (-5 *1 (-580 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1231)) (-5 *2 (-781))))) -(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-388)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-388)) (-5 *1 (-97))))) -(((*1 *2 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-1 (-1170 (-963 *4)) (-1170 (-963 *4)))) - (-5 *1 (-1289 *4)) (-4 *4 (-372))))) -(((*1 *2 *1) (-12 (-4 *1 (-273 *2)) (-4 *2 (-860)))) + (-12 (-5 *4 (-573)) (-4 *2 (-439 *3)) (-5 *1 (-32 *3 *2)) + (-4 *3 (-1050 *4)) (-4 *3 (-565))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1073 (-1036 *3) (-1185 (-1036 *3)))) + (-5 *1 (-1036 *3)) (-4 *3 (-13 (-857) (-371) (-1034)))))) +(((*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-155)))) + ((*1 *2 *1) (-12 (-5 *2 (-653 (-1147))) (-5 *1 (-1078))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-698 *3)) + (-4 *3 (-13 (-314) (-10 -8 (-15 -2427 ((-427 $) $))))) + (-4 *4 (-1256 *3)) (-5 *1 (-508 *3 *4 *5)) (-4 *5 (-418 *3 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-314) (-148))) (-4 *5 (-13 (-859) (-623 (-1189)))) + (-4 *6 (-802)) (-5 *2 (-653 *3)) (-5 *1 (-934 *4 *5 *6 *3)) + (-4 *3 (-959 *4 *6 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-176 *3)) (-4 *3 (-314))))) +(((*1 *2 *1) + (-12 (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-381 *3)) + (-4 *5 (-381 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-461)) (-4 *6 (-802)) (-4 *7 (-859)) + (-4 *3 (-1077 *5 *6 *7)) (-5 *2 (-653 *4)) + (-5 *1 (-1120 *5 *6 *7 *3 *4)) (-4 *4 (-1083 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-653 (-185 (-140)))) (-5 *1 (-141))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1132)) (-5 *2 (-1285)) (-5 *1 (-840))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-859))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-605 *3)) (-4 *3 (-1061)))) + ((*1 *2 *1) + (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-1061)) (-4 *4 (-801)) + (-4 *5 (-859)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-272 *2)) (-4 *2 (-859)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1190)) (-5 *1 (-874 *3)) (-14 *3 (-654 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-1002)))) + (|partial| -12 (-5 *2 (-1189)) (-5 *1 (-873 *3)) (-14 *3 (-653 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1001)))) ((*1 *2 *1) - (-12 (-4 *4 (-1231)) (-5 *2 (-1190)) (-5 *1 (-1070 *3 *4)) - (-4 *3 (-1106 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-1105 *3)) (-4 *3 (-1231)))) + (-12 (-4 *4 (-1230)) (-5 *2 (-1189)) (-5 *1 (-1069 *3 *4)) + (-4 *3 (-1105 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1104 *3)) (-4 *3 (-1230)))) ((*1 *2 *1) - (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802)) - (-5 *2 (-1190)))) - ((*1 *2) (-12 (-5 *2 (-1190)) (-5 *1 (-1277 *3)) (-14 *3 *2)))) + (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)) + (-5 *2 (-1189)))) + ((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1276 *3)) (-14 *3 *2)))) (((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1231)) (-5 *2 (-781)) - (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) + (-12 (-14 *4 *2) (-4 *5 (-1230)) (-5 *2 (-780)) + (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-331 *3 *4)) (-4 *3 (-1113)) (-4 *4 (-132)) - (-5 *2 (-781)))) + (-12 (-4 *1 (-330 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-132)) + (-5 *2 (-780)))) ((*1 *2) - (-12 (-4 *4 (-372)) (-5 *2 (-781)) (-5 *1 (-336 *3 *4)) - (-4 *3 (-337 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-370 *3)) (-4 *3 (-1113)))) - ((*1 *2) (-12 (-4 *1 (-377)) (-5 *2 (-781)))) - ((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1113)) (-5 *2 (-781)))) + (-12 (-4 *4 (-371)) (-5 *2 (-780)) (-5 *1 (-335 *3 *4)) + (-4 *3 (-336 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-369 *3)) (-4 *3 (-1112)))) + ((*1 *2) (-12 (-4 *1 (-376)) (-5 *2 (-780)))) + ((*1 *2 *1) (-12 (-4 *1 (-394 *3)) (-4 *3 (-1112)) (-5 *2 (-780)))) ((*1 *2) - (-12 (-4 *4 (-1113)) (-5 *2 (-781)) (-5 *1 (-434 *3 *4)) - (-4 *3 (-435 *4)))) + (-12 (-4 *4 (-1112)) (-5 *2 (-780)) (-5 *1 (-433 *3 *4)) + (-4 *3 (-434 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-781)) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1113)) + (-12 (-5 *2 (-780)) (-5 *1 (-658 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) - (-12 (-4 *4 (-174)) (-4 *5 (-1257 *4)) (-5 *2 (-781)) - (-5 *1 (-733 *3 *4 *5)) (-4 *3 (-734 *4 *5)))) - ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1019)))) + (-12 (-4 *4 (-174)) (-4 *5 (-1256 *4)) (-5 *2 (-780)) + (-5 *1 (-732 *3 *4 *5)) (-4 *3 (-733 *4 *5)))) + ((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-1018)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1074 *2 *3)) - (-4 *3 (-1257 *2))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) - (-5 *2 - (-2 (|:| -3083 *4) (|:| -2678 *4) (|:| |totalpts| (-574)) - (|:| |success| (-112)))) - (-5 *1 (-799)) (-5 *5 (-574))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1281 *3)) (-4 *3 (-1062)) (-5 *1 (-722 *3 *4)) - (-4 *4 (-1257 *3))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174))))) -(((*1 *2 *3) - (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1190))) (-4 *5 (-1062)) - (-5 *2 (-491 *4 *5)) (-5 *1 (-955 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-569))))) -(((*1 *2 *1) - (-12 (-5 *2 (-654 (-654 (-954 (-227))))) (-5 *1 (-1226 *3)) - (-4 *3 (-987))))) + (-12 (-4 *2 (-13 (-857) (-371))) (-5 *1 (-1073 *2 *3)) + (-4 *3 (-1256 *2))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1047)) (-5 *1 (-757))))) +(((*1 *2) + (-12 (-5 *2 (-931)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573))))) + ((*1 *2 *2) + (-12 (-5 *2 (-931)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573)))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-1235)) (-4 *5 (-1257 *3)) (-4 *6 (-1257 (-417 *5))) - (-5 *2 (-112)) (-5 *1 (-350 *4 *3 *5 *6)) (-4 *4 (-351 *3 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) - (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) - ((*1 *1 *1 *1) (-4 *1 (-483))) - ((*1 *1 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) - ((*1 *2 *2) (-12 (-5 *2 (-654 (-932))) (-5 *1 (-894)))) - ((*1 *1 *1) (-5 *1 (-984))) - ((*1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-341))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 (-1190))) (-5 *3 (-52)) (-5 *1 (-903 *4)) - (-4 *4 (-1113))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) - (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-315)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2970 *1))) - (-4 *1 (-315))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1186 *9)) (-5 *4 (-654 *7)) (-5 *5 (-654 *8)) - (-4 *7 (-860)) (-4 *8 (-1062)) (-4 *9 (-960 *8 *6 *7)) - (-4 *6 (-803)) (-5 *2 (-1186 *8)) (-5 *1 (-329 *6 *7 *8 *9))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1113)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-1113))))) + (-12 (-4 *4 (-1256 *2)) (-4 *2 (-1234)) (-5 *1 (-149 *2 *4 *3)) + (-4 *3 (-1256 (-416 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-427 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-1212)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-1212))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1062)) (-4 *2 (-697 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1257 *4)) (-4 *5 (-382 *4)) - (-4 *6 (-382 *4))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4457)) (-4 *1 (-250 *2)) (-4 *2 (-1231))))) -(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) - ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-557)))))) -(((*1 *2 *3) - (-12 (-4 *1 (-906)) - (-5 *3 - (-2 (|:| |pde| (-654 (-324 (-227)))) - (|:| |constraints| - (-654 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-781)) (|:| |boundaryType| (-574)) - (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) - (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1172)) - (|:| |tol| (-227)))) - (-5 *2 (-1048))))) -(((*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-642))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-960 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *2 (-860)) (-4 *3 (-174)))) - ((*1 *2 *3 *3) - (-12 (-4 *2 (-566)) (-5 *1 (-982 *2 *3)) (-4 *3 (-1257 *2)))) + (-12 (-5 *3 (-653 (-653 (-953 (-227))))) + (-5 *2 (-653 (-1106 (-227)))) (-5 *1 (-938))))) +(((*1 *2 *1) (-12 (-4 *1 (-518 *3 *2)) (-4 *3 (-1112)) (-4 *2 (-859))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-381 *2)) (-4 *2 (-1230)) (-4 *2 (-859)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-381 *3)) (-4 *3 (-1230)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-859)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1061)))) + ((*1 *1 *2) + (-12 (-5 *2 (-653 *1)) (-4 *1 (-1146 *3)) (-4 *3 (-1061)))) + ((*1 *1 *2) + (-12 (-5 *2 (-653 (-1177 *3 *4))) (-5 *1 (-1177 *3 *4)) + (-14 *3 (-931)) (-4 *4 (-1061)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) - (-4 *4 (-860)) (-4 *2 (-566)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1062)) (-4 *2 (-174))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-692 *3)) (-4 *3 (-1113))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) + (-12 (-5 *1 (-1177 *2 *3)) (-14 *2 (-931)) (-4 *3 (-1061))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-621 *4)) (-5 *6 (-1185 *4)) + (-4 *4 (-13 (-439 *7) (-27) (-1215))) + (-4 *7 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *2 - (-2 (|:| |contp| (-574)) - (|:| -4219 (-654 (-2 (|:| |irr| *3) (|:| -3186 (-574))))))) - (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) + (-5 *1 (-569 *7 *4 *3)) (-4 *3 (-665 *4)) (-4 *3 (-1112)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-621 *4)) (-5 *6 (-416 (-1185 *4))) + (-4 *4 (-13 (-439 *7) (-27) (-1215))) + (-4 *7 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) (-5 *2 - (-2 (|:| |contp| (-574)) - (|:| -4219 (-654 (-2 (|:| |irr| *3) (|:| -3186 (-574))))))) - (-5 *1 (-1246 *3)) (-4 *3 (-1257 (-574)))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3914 (-653 *4)))) + (-5 *1 (-569 *7 *4 *3)) (-4 *3 (-665 *4)) (-4 *3 (-1112))))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-953 (-227))) (-5 *4 (-883)) (-5 *5 (-931)) + (-5 *2 (-1285)) (-5 *1 (-477)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-953 (-227))) (-5 *2 (-1285)) (-5 *1 (-477)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-653 (-953 (-227)))) (-5 *4 (-883)) (-5 *5 (-931)) + (-5 *2 (-1285)) (-5 *1 (-477))))) +(((*1 *2 *3) + (-12 (-5 *3 (-931)) (-5 *2 (-1185 *4)) (-5 *1 (-365 *4)) + (-4 *4 (-357))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-653 *3)) (-4 *3 (-959 *5 *6 *7)) (-4 *5 (-461)) + (-4 *6 (-802)) (-4 *7 (-859)) + (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-458 *5 *6 *7 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1230))))) +(((*1 *2 *1) + (-12 (-4 *1 (-381 *3)) (-4 *3 (-1230)) (-4 *3 (-859)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-381 *4)) (-4 *4 (-1230)) + (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573)))))) +(((*1 *2 *1) (-12 (-5 *2 (-968 (-780))) (-5 *1 (-340))))) +(((*1 *1 *1) (|partial| -4 *1 (-1164)))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-374 *3 *4)) + (-4 *3 (-375 *4)))) + ((*1 *2) (-12 (-4 *1 (-375 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566)) - (-5 *2 (-1186 *3))))) + (-12 (-5 *2 (-176 (-416 (-573)))) (-5 *1 (-118 *3)) (-14 *3 (-573)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *3 (-1169 *2)) (-4 *2 (-314)) (-5 *1 (-176 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-416 *3)) (-4 *3 (-314)) (-5 *1 (-176 *3)))) + ((*1 *2 *3) + (-12 (-5 *2 (-176 (-573))) (-5 *1 (-774 *3)) (-4 *3 (-413)))) + ((*1 *2 *1) + (-12 (-5 *2 (-176 (-416 (-573)))) (-5 *1 (-880 *3)) (-14 *3 (-573)))) + ((*1 *2 *1) + (-12 (-14 *3 (-573)) (-5 *2 (-176 (-416 (-573)))) + (-5 *1 (-881 *3 *4)) (-4 *4 (-878 *3))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) + (-4 *4 (-859)) (-4 *2 (-565)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) + (-4 *4 (-859)) (-4 *2 (-565))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-397)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1047)) + (-5 *1 (-755))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1280 *3)) (-4 *3 (-1256 *4)) (-4 *4 (-1234)) + (-4 *1 (-350 *4 *3 *5)) (-4 *5 (-1256 (-416 *3)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1186 (-574))) (-5 *1 (-193)) (-5 *3 (-574)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-174)))) + (-12 (-4 *4 (-859)) (-5 *2 (-653 (-653 (-653 *4)))) + (-5 *1 (-1200 *4)) (-5 *3 (-653 (-653 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-397)) (-5 *1 (-641))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1189)) (-5 *3 (-387)) (-5 *1 (-1075))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-653 (-962 *4))) (-5 *3 (-653 (-1189))) (-4 *4 (-461)) + (-5 *1 (-928 *4))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *2 (-1280 *4)) (-5 *3 (-698 *4)) (-4 *4 (-371)) + (-5 *1 (-676 *4)))) + ((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-371)) + (-4 *5 (-13 (-381 *4) (-10 -7 (-6 -4456)))) + (-4 *2 (-13 (-381 *4) (-10 -7 (-6 -4456)))) + (-5 *1 (-677 *4 *5 *2 *3)) (-4 *3 (-696 *4 *5 *2)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-653 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-371)) + (-5 *1 (-823 *2 *3)) (-4 *3 (-665 *2)))) ((*1 *2 *3) - (-12 (-5 *2 (-1186 (-574))) (-5 *1 (-953)) (-5 *3 (-574))))) + (-12 (-4 *2 (-13 (-371) (-10 -8 (-15 ** ($ $ (-416 (-573))))))) + (-5 *1 (-1140 *3 *2)) (-4 *3 (-1256 *2))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-653 *7)) (-5 *3 (-573)) (-4 *7 (-959 *4 *5 *6)) + (-4 *4 (-461)) (-4 *5 (-802)) (-4 *6 (-859)) + (-5 *1 (-458 *4 *5 *6 *7))))) (((*1 *2 *1) (-12 (-5 *2 @@ -16796,1525 +16658,1661 @@ (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-338))))) + (-5 *1 (-337))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-852 (-227)))) (-5 *4 (-227)) (-5 *2 (-653 *4)) + (-5 *1 (-273))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-988 *3 *4 *2 *5)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *2 (-859)) (-4 *5 (-1077 *3 *4 *2))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-756))))) (((*1 *2 *3) - (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) - (-4 *4 (-13 (-372) (-858))) (-4 *3 (-1257 *2))))) + (-12 (-5 *3 (-1280 *1)) (-4 *1 (-375 *4)) (-4 *4 (-174)) + (-5 *2 (-698 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-698 *4)) (-5 *1 (-425 *3 *4)) + (-4 *3 (-426 *4)))) + ((*1 *2) (-12 (-4 *1 (-426 *3)) (-4 *3 (-174)) (-5 *2 (-698 *3))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) - (-4 *3 (-1113))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) - (-5 *2 (-1048)) (-5 *1 (-762))))) + (|partial| -12 (-4 *1 (-959 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *2 (-859)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-802)) (-4 *5 (-1061)) (-4 *6 (-959 *5 *4 *2)) + (-4 *2 (-859)) (-5 *1 (-960 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-371) + (-10 -8 (-15 -2942 ($ *6)) (-15 -2965 (*6 $)) + (-15 -2975 (*6 $))))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-565)) + (-5 *2 (-1189)) (-5 *1 (-1055 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-417 (-574))) (-4 *4 (-1051 (-574))) (-4 *4 (-566)) - (-5 *1 (-32 *4 *2)) (-4 *2 (-440 *4)))) + (-12 (-5 *3 (-416 (-573))) (-4 *4 (-1050 (-573))) (-4 *4 (-565)) + (-5 *1 (-32 *4 *2)) (-4 *2 (-439 *4)))) ((*1 *1 *1 *1) (-5 *1 (-135))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) + (-12 (-4 *3 (-565)) (-5 *1 (-159 *3 *2)) (-4 *2 (-439 *3)))) ((*1 *1 *1 *1) (-5 *1 (-227))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-249)) (-5 *2 (-574)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-248)) (-5 *2 (-573)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-417 (-574))) (-4 *4 (-372)) (-4 *4 (-38 *3)) - (-4 *5 (-1272 *4)) (-5 *1 (-285 *4 *5 *2)) (-4 *2 (-1243 *4 *5)))) + (-12 (-5 *3 (-416 (-573))) (-4 *4 (-371)) (-4 *4 (-38 *3)) + (-4 *5 (-1271 *4)) (-5 *1 (-284 *4 *5 *2)) (-4 *2 (-1242 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-417 (-574))) (-4 *4 (-372)) (-4 *4 (-38 *3)) - (-4 *5 (-1241 *4)) (-5 *1 (-286 *4 *5 *2 *6)) (-4 *2 (-1264 *4 *5)) - (-4 *6 (-996 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-292))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-370 *2)) (-4 *2 (-1113)))) - ((*1 *1 *1 *1) (-5 *1 (-388))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-395 *2)) (-4 *2 (-1113)))) + (-12 (-5 *3 (-416 (-573))) (-4 *4 (-371)) (-4 *4 (-38 *3)) + (-4 *5 (-1240 *4)) (-5 *1 (-285 *4 *5 *2 *6)) (-4 *2 (-1263 *4 *5)) + (-4 *6 (-995 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-291))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-573)) (-5 *1 (-369 *2)) (-4 *2 (-1112)))) + ((*1 *1 *1 *1) (-5 *1 (-387))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-780)) (-4 *1 (-394 *2)) (-4 *2 (-1112)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-440 *3)) (-4 *3 (-1113)) - (-4 *3 (-1125)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-483)) (-5 *2 (-574)))) + (-12 (-5 *2 (-780)) (-4 *1 (-439 *3)) (-4 *3 (-1112)) + (-4 *3 (-1124)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-482)) (-5 *2 (-573)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-960 *3 *4 *5)))) + (-12 (-5 *2 (-780)) (-4 *3 (-371)) (-4 *4 (-802)) (-4 *5 (-859)) + (-5 *1 (-513 *3 *4 *5 *6)) (-4 *6 (-959 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1281 *4)) (-5 *3 (-574)) (-4 *4 (-358)) - (-5 *1 (-538 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-546)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-546)))) + (-12 (-5 *2 (-1280 *4)) (-5 *3 (-573)) (-4 *4 (-357)) + (-5 *1 (-537 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-545)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-545)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *4 (-1113)) - (-5 *1 (-692 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-780)) (-4 *4 (-1112)) + (-5 *1 (-691 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) - (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-4 *3 (-372)))) + (-12 (-5 *2 (-573)) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) + (-4 *4 (-381 *3)) (-4 *5 (-381 *3)) (-4 *3 (-371)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-781)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) - (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) + (-12 (-5 *2 (-780)) (-4 *1 (-696 *3 *4 *5)) (-4 *3 (-1061)) + (-4 *4 (-381 *3)) (-4 *5 (-381 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-699 *4)) (-5 *3 (-781)) (-4 *4 (-1062)) - (-5 *1 (-700 *4)))) + (-12 (-5 *2 (-698 *4)) (-5 *3 (-780)) (-4 *4 (-1061)) + (-5 *1 (-699 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-574)) (-4 *3 (-1062)) (-5 *1 (-724 *3 *4)) - (-4 *4 (-658 *3)))) + (-12 (-5 *2 (-573)) (-4 *3 (-1061)) (-5 *1 (-723 *3 *4)) + (-4 *4 (-657 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-574)) (-4 *4 (-1062)) - (-5 *1 (-724 *4 *5)) (-4 *5 (-658 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-932)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-736)) (-5 *2 (-781)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-846 *3)) (-4 *3 (-1062)))) + (-12 (-5 *2 (-115)) (-5 *3 (-573)) (-4 *4 (-1061)) + (-5 *1 (-723 *4 *5)) (-4 *5 (-657 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-729)) (-5 *2 (-931)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-780)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-735)) (-5 *2 (-780)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-845 *3)) (-4 *3 (-1061)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-574)) (-5 *1 (-846 *4)) (-4 *4 (-1062)))) - ((*1 *1 *1 *1) (-5 *1 (-872))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1113)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-903 *3)) (-4 *3 (-1113)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-417 (-574))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1125)) (-5 *2 (-932)))) + (-12 (-5 *2 (-115)) (-5 *3 (-573)) (-5 *1 (-845 *4)) (-4 *4 (-1061)))) + ((*1 *1 *1 *1) (-5 *1 (-871))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1112)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-902 *3)) (-4 *3 (-1112)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1014)) (-5 *2 (-416 (-573))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1124)) (-5 *2 (-931)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-574)) (-4 *1 (-1136 *3 *4 *5 *6)) (-4 *4 (-1062)) - (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)) (-4 *4 (-372)))) + (-12 (-5 *2 (-573)) (-4 *1 (-1135 *3 *4 *5 *6)) (-4 *4 (-1061)) + (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)) (-4 *4 (-371)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1175 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1174 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1170 *3)) (-4 *3 (-38 (-417 (-574)))) - (-5 *1 (-1176 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-38 (-416 (-573)))) + (-5 *1 (-1175 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1062)) (-4 *2 (-372))))) + (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1061)) (-4 *2 (-371))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-546) (-654 (-546)))) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-546) (-654 (-546)))) (-5 *1 (-115)))) - ((*1 *1) (-5 *1 (-588)))) + (|partial| -12 (-5 *2 (-1 (-545) (-653 (-545)))) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-545) (-653 (-545)))) (-5 *1 (-115)))) + ((*1 *1) (-5 *1 (-587)))) +(((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) + ((*1 *1 *1) (-4 *1 (-1151)))) +(((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-936))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1077 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-802)) + (-4 *4 (-859)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1223 *3 *4 *5 *2)) (-4 *3 (-565)) (-4 *4 (-802)) + (-4 *5 (-859)) (-4 *2 (-1077 *3 *4 *5))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1186 (-963 *4))) (-5 *1 (-426 *3 *4)) - (-4 *3 (-427 *4)))) + (|partial| -12 (-4 *3 (-565)) (-4 *3 (-174)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -3914 (-653 *1)))) + (-4 *1 (-375 *3)))) ((*1 *2) - (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-4 *3 (-372)) - (-5 *2 (-1186 (-963 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1186 (-417 (-963 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) - (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-932)) - (-14 *5 (-654 (-1190))) (-14 *6 (-1281 (-699 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) -(((*1 *2 *1) - (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1609 *4)))) - (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1113)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *2) - (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-459 *3 *4 *5 *2)) (-4 *2 (-960 *3 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284)))) - ((*1 *2) (-12 (-5 *2 (-932)) (-5 *1 (-1284))))) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-462 *3 *4 *5 *6)) + (|:| -3914 (-653 (-462 *3 *4 *5 *6))))) + (-5 *1 (-462 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-931)) + (-14 *5 (-653 (-1189))) (-14 *6 (-1280 (-698 *3)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1256 (-573)))))) +(((*1 *2) (-12 (-5 *2 (-573)) (-5 *1 (-708)))) + ((*1 *2 *2) (-12 (-5 *2 (-573)) (-5 *1 (-708))))) (((*1 *2 *1) - (-12 (-4 *1 (-1116 *3 *4 *5 *6 *2)) (-4 *3 (-1113)) (-4 *4 (-1113)) - (-4 *5 (-1113)) (-4 *6 (-1113)) (-4 *2 (-1113))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1172)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-270))))) -(((*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-781)))) + (-12 (-4 *1 (-1115 *3 *4 *5 *6 *2)) (-4 *3 (-1112)) (-4 *4 (-1112)) + (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *2 (-1112))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-698 *1)) (-4 *1 (-357)) (-5 *2 (-1280 *1)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-698 *1)) (-4 *1 (-146)) (-4 *1 (-919)) + (-5 *2 (-1280 *1))))) +(((*1 *1 *1) (-4 *1 (-1072))) + ((*1 *1 *1 *2 *2) + (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-801)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-801))))) +(((*1 *2 *2) (-12 (-5 *2 (-387)) (-5 *1 (-97))))) +(((*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-780)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-574)) (-4 *1 (-382 *3)) (-4 *3 (-1231)) - (-4 *3 (-1113)))) + (-12 (-5 *2 (-573)) (-4 *1 (-381 *3)) (-4 *3 (-1230)) + (-4 *3 (-1112)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-382 *3)) (-4 *3 (-1231)) (-4 *3 (-1113)) - (-5 *2 (-574)))) + (-12 (-4 *1 (-381 *3)) (-4 *3 (-1230)) (-4 *3 (-1112)) + (-5 *2 (-573)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-382 *4)) (-4 *4 (-1231)) - (-5 *2 (-574)))) - ((*1 *2 *1) (-12 (-5 *2 (-1133)) (-5 *1 (-539)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-574)) (-5 *3 (-142)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1157)) (-5 *2 (-574))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-555))))) -(((*1 *2 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-1186 *4)) (-5 *1 (-538 *4)) - (-4 *4 (-358))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1257 (-574)))))) -(((*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-1186 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-699 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2)))) - ((*1 *2 *3) - (-12 (-4 *4 (-174)) (-4 *2 (-1257 *4)) (-5 *1 (-179 *4 *2 *3)) - (-4 *3 (-734 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-699 (-417 (-963 *5)))) (-5 *4 (-1190)) - (-5 *2 (-963 *5)) (-5 *1 (-300 *5)) (-4 *5 (-462)))) - ((*1 *2 *3) - (-12 (-5 *3 (-699 (-417 (-963 *4)))) (-5 *2 (-963 *4)) - (-5 *1 (-300 *4)) (-4 *4 (-462)))) - ((*1 *2 *1) - (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1257 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-699 (-171 (-417 (-574))))) - (-5 *2 (-963 (-171 (-417 (-574))))) (-5 *1 (-774 *4)) - (-4 *4 (-13 (-372) (-858))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *4 (-1190)) - (-5 *2 (-963 (-171 (-417 (-574))))) (-5 *1 (-774 *5)) - (-4 *5 (-13 (-372) (-858))))) - ((*1 *2 *3) - (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *2 (-963 (-417 (-574)))) - (-5 *1 (-789 *4)) (-4 *4 (-13 (-372) (-858))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *4 (-1190)) - (-5 *2 (-963 (-417 (-574)))) (-5 *1 (-789 *5)) - (-4 *5 (-13 (-372) (-858)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-335 *3)) (-4 *3 (-1231)))) + (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-381 *4)) (-4 *4 (-1230)) + (-5 *2 (-573)))) + ((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-538)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-573)) (-5 *3 (-142)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1156)) (-5 *2 (-573))))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-780)) (-4 *3 (-565)) (-5 *1 (-981 *3 *2)) + (-4 *2 (-1256 *3))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-763))))) +(((*1 *2 *3) (-12 (-5 *3 (-871)) (-5 *2 (-1171)) (-5 *1 (-719))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-416 (-962 (-171 (-573))))) (-5 *2 (-653 (-171 *4))) + (-5 *1 (-386 *4)) (-4 *4 (-13 (-371) (-857))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-653 (-416 (-962 (-171 (-573)))))) + (-5 *4 (-653 (-1189))) (-5 *2 (-653 (-653 (-171 *5)))) + (-5 *1 (-386 *5)) (-4 *5 (-13 (-371) (-857)))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1304 *3 *4)) (-4 *1 (-382 *3 *4)) (-4 *3 (-859)) + (-4 *4 (-174)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-394 *2)) (-4 *2 (-1112)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-828 *2)) (-4 *2 (-859)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-574)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1231)) (-14 *4 *2)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))) -(((*1 *2 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-456)) (-5 *3 (-574))))) -(((*1 *2) - (-12 (-4 *4 (-1235)) (-4 *5 (-1257 *4)) (-4 *6 (-1257 (-417 *5))) - (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-1257 *3)) - (-4 *5 (-1257 (-417 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1172)) (-5 *3 (-574)) (-5 *1 (-247))))) -(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283)))) - ((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-112)) (-5 *5 (-699 (-171 (-227)))) - (-5 *2 (-1048)) (-5 *1 (-765))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-516)) (-5 *3 (-654 (-976))) (-5 *1 (-109))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *6 (-227)) - (-5 *3 (-574)) (-5 *2 (-1048)) (-5 *1 (-761))))) + (-12 (-5 *2 (-828 *3)) (-4 *1 (-1297 *3 *4)) (-4 *3 (-859)) + (-4 *4 (-1061)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1297 *2 *3)) (-4 *2 (-859)) (-4 *3 (-1061))))) +(((*1 *2 *3) + (-12 (-4 *4 (-919)) (-4 *5 (-802)) (-4 *6 (-859)) + (-4 *7 (-959 *4 *5 *6)) (-5 *2 (-427 (-1185 *7))) + (-5 *1 (-916 *4 *5 *6 *7)) (-5 *3 (-1185 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-919)) (-4 *5 (-1256 *4)) (-5 *2 (-427 (-1185 *5))) + (-5 *1 (-917 *4 *5)) (-5 *3 (-1185 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-653 *4)) (-4 *4 (-371)) (-4 *2 (-1256 *4)) + (-5 *1 (-932 *4 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-573)) (-5 *2 (-1047)) (-5 *1 (-767))))) +(((*1 *1 *1) + (-12 (-5 *1 (-604 *2)) (-4 *2 (-38 (-416 (-573)))) (-4 *2 (-1061))))) +(((*1 *2) (-12 (-5 *2 (-1145 (-227))) (-5 *1 (-1213))))) +(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-387)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-387)) (-5 *1 (-97))))) +(((*1 *2 *1) (-12 (-5 *2 (-1132)) (-5 *1 (-852 *3)) (-4 *3 (-1112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) + (-5 *2 (-1047)) (-5 *1 (-761))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) + (-5 *4 (-1 (-227) (-227) (-227) (-227))) + (-5 *2 (-1 (-953 (-227)) (-227) (-227))) (-5 *1 (-706))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-440 *3 *2)) (-4 *2 (-439 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1151)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-227))) (-5 *4 (-780)) (-5 *2 (-698 (-227))) + (-5 *1 (-312))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-931)) (-4 *5 (-565)) (-5 *2 (-698 *5)) + (-5 *1 (-966 *5 *3)) (-4 *3 (-665 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1216)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1231)) (-5 *1 (-1145 *4 *2)) - (-4 *2 (-13 (-614 (-574) *4) (-10 -7 (-6 -4456) (-6 -4457)))))) + (-12 (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) + (-5 *1 (-429 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1215) (-439 *3))) + (-14 *4 (-1189)) (-14 *5 *2))) ((*1 *2 *2) - (-12 (-4 *3 (-860)) (-4 *3 (-1231)) (-5 *1 (-1145 *3 *2)) - (-4 *2 (-13 (-614 (-574) *3) (-10 -7 (-6 -4456) (-6 -4457))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-574)) (-5 *2 (-112)) (-5 *1 (-563))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1084 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *6 (-1078 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) - (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-769))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-781)) (-4 *5 (-1062)) (-4 *2 (-1257 *5)) - (-5 *1 (-1275 *5 *2 *6 *3)) (-4 *6 (-666 *2)) (-4 *3 (-1272 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-699 (-324 (-227)))) (-5 *2 (-388)) (-5 *1 (-207))))) -(((*1 *2) - (-12 (-4 *1 (-358)) - (-5 *2 (-654 (-2 (|:| -4220 (-574)) (|:| -3715 (-574)))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1231)) (-5 *2 (-781)) (-5 *1 (-184 *4 *3)) - (-4 *3 (-684 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-956 *4 *3)) - (-4 *3 (-1257 *4))))) + (-12 (-4 *3 (-13 (-461) (-1050 (-573)) (-648 (-573)))) + (-4 *2 (-13 (-27) (-1215) (-439 *3) (-10 -8 (-15 -2942 ($ *4))))) + (-4 *4 (-857)) + (-4 *5 + (-13 (-1258 *2 *4) (-371) (-1215) + (-10 -8 (-15 -3904 ($ $)) (-15 -1626 ($ $))))) + (-5 *1 (-431 *3 *2 *4 *5 *6 *7)) (-4 *6 (-995 *5)) (-14 *7 (-1189))))) +(((*1 *1 *1 *1) (-4 *1 (-554)))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1190)) (|:| |fn| (-324 (-227))) - (|:| -2367 (-1107 (-853 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-112)) (-5 *1 (-308))))) -(((*1 *2 *3 *3 *1) - (-12 (-5 *3 (-516)) (-5 *2 (-701 (-1117))) (-5 *1 (-299))))) -(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-559)))))) -(((*1 *1 *1 *2) - (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-960 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) - (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-960 *2 *3 *4))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-699 *3)) (-4 *3 (-1062)) (-5 *1 (-700 *3))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1257 *5)) (-4 *5 (-372)) - (-5 *2 (-2 (|:| -2399 (-417 *6)) (|:| |coeff| (-417 *6)))) - (-5 *1 (-584 *5 *6)) (-5 *3 (-417 *6))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-417 (-574))) - (-4 *4 (-13 (-566) (-1051 (-574)) (-649 (-574)))) - (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1216) (-440 *4)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-1283))))) -(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283)))) - ((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1283))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-903 *4)) (-4 *4 (-1113)) (-5 *1 (-900 *4 *3)) - (-4 *3 (-1113))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 (-903 *6))) - (-5 *5 (-1 (-900 *6 *8) *8 (-903 *6) (-900 *6 *8))) (-4 *6 (-1113)) - (-4 *8 (-13 (-1062) (-624 (-903 *6)) (-1051 *7))) - (-5 *2 (-900 *6 *8)) (-4 *7 (-1062)) (-5 *1 (-952 *6 *7 *8))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-872) (-872))) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-872) (-654 (-872)))) (-5 *1 (-115)))) + (-653 (-2 (|:| -3890 (-416 (-573))) (|:| -3903 (-416 (-573)))))) + (-5 *2 (-653 (-416 (-573)))) (-5 *1 (-1032 *4)) + (-4 *4 (-1256 (-573)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1280 *4)) (-5 *3 (-780)) (-4 *4 (-357)) + (-5 *1 (-537 *4))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-621 *3)) (-4 *3 (-13 (-439 *5) (-27) (-1215))) + (-4 *5 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) + (-5 *2 (-595 *3)) (-5 *1 (-575 *5 *3 *6)) (-4 *6 (-1112))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-621 *3)) (-5 *5 (-653 *3)) (-5 *6 (-1185 *3)) + (-4 *3 (-13 (-439 *7) (-27) (-1215))) + (-4 *7 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-569 *7 *3 *8)) (-4 *8 (-1112)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-621 *3)) (-5 *5 (-653 *3)) + (-5 *6 (-416 (-1185 *3))) (-4 *3 (-13 (-439 *7) (-27) (-1215))) + (-4 *7 (-13 (-461) (-1050 (-573)) (-148) (-648 (-573)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-653 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-569 *7 *3 *8)) (-4 *8 (-1112))))) +(((*1 *2 *2) (-12 (-5 *2 (-780)) (-5 *1 (-454 *3)) (-4 *3 (-1061)))) + ((*1 *2) (-12 (-5 *2 (-780)) (-5 *1 (-454 *3)) (-4 *3 (-1061))))) +(((*1 *2 *2) + (-12 (-5 *2 (-653 *6)) (-4 *6 (-1077 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-314)) (-4 *3 (-565)) (-4 *4 (-802)) (-4 *5 (-859)) + (-5 *1 (-989 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1171)) (-5 *2 (-573)) (-5 *1 (-1212 *4)) + (-4 *4 (-1061))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-653 *10)) (-5 *5 (-112)) (-4 *10 (-1083 *6 *7 *8 *9)) + (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) + (-4 *9 (-1077 *6 *7 *8)) + (-5 *2 + (-653 + (-2 (|:| -4122 (-653 *9)) (|:| -4090 *10) (|:| |ineq| (-653 *9))))) + (-5 *1 (-1000 *6 *7 *8 *9 *10)) (-5 *3 (-653 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-653 *10)) (-5 *5 (-112)) (-4 *10 (-1083 *6 *7 *8 *9)) + (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) + (-4 *9 (-1077 *6 *7 *8)) + (-5 *2 + (-653 + (-2 (|:| -4122 (-653 *9)) (|:| -4090 *10) (|:| |ineq| (-653 *9))))) + (-5 *1 (-1119 *6 *7 *8 *9 *10)) (-5 *3 (-653 *9))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-859)) (-5 *3 (-653 *6)) (-5 *5 (-653 *3)) + (-5 *2 + (-2 (|:| |f1| *3) (|:| |f2| (-653 *5)) (|:| |f3| *5) + (|:| |f4| (-653 *5)))) + (-5 *1 (-1200 *6)) (-5 *4 (-653 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-831))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1061)) + (-14 *4 (-653 (-1189))))) + ((*1 *2 *3) + (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1230)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1061) (-859))) + (-14 *4 (-653 (-1189))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-681 *3)) (-4 *3 (-859)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-686 *3)) (-4 *3 (-859)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-859))))) +(((*1 *2 *1) + (-12 (-5 *2 (-700 (-882 (-976 *3) (-976 *3)))) (-5 *1 (-976 *3)) + (-4 *3 (-1112))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-314)))) + ((*1 *2 *1 *1) + (|partial| -12 (-4 *3 (-1112)) + (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-394 *3)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3152 (-780)) (|:| -3132 (-780)))) + (-5 *1 (-780)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-565)) (-5 *2 (-2 (|:| -3152 *3) (|:| -3132 *3))) + (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-931)) (-5 *4 (-427 *6)) (-4 *6 (-1256 *5)) + (-4 *5 (-1061)) (-5 *2 (-653 *6)) (-5 *1 (-453 *5 *6))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-974 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-871) (-871))) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-871) (-653 (-871)))) (-5 *1 (-115)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-872) (-654 (-872)))) (-5 *1 (-115)))) + (|partial| -12 (-5 *2 (-1 (-871) (-653 (-871)))) (-5 *1 (-115)))) ((*1 *2 *1) - (-12 (-5 *2 (-1286)) (-5 *1 (-216 *3)) + (-12 (-5 *2 (-1285)) (-5 *1 (-216 *3)) (-4 *3 - (-13 (-860) - (-10 -8 (-15 -2199 ((-1172) $ (-1190))) (-15 -1403 (*2 $)) - (-15 -3844 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-404)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1286)) (-5 *1 (-404)))) - ((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-512)))) - ((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-720)))) - ((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-1211)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1286)) (-5 *1 (-1211))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1224 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) - (-4 *5 (-860)) (-4 *2 (-1078 *3 *4 *5))))) + (-13 (-859) + (-10 -8 (-15 -2198 ((-1171) $ (-1189))) (-15 -1402 (*2 $)) + (-15 -1974 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-403)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-5 *2 (-1285)) (-5 *1 (-403)))) + ((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-511)))) + ((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-719)))) + ((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-1210)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-573)) (-5 *2 (-1285)) (-5 *1 (-1210))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1280 *5)) (-4 *5 (-801)) (-5 *2 (-112)) + (-5 *1 (-854 *4 *5)) (-14 *4 (-780))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-699 *5))) (-4 *5 (-315)) (-4 *5 (-1062)) - (-5 *2 (-1281 (-1281 *5))) (-5 *1 (-1042 *5)) (-5 *4 (-1281 *5))))) + (-12 (-5 *3 (-698 (-416 (-573)))) (-5 *2 (-653 *4)) (-5 *1 (-788 *4)) + (-4 *4 (-13 (-371) (-857)))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-573)) (-5 *5 (-698 (-227))) (-5 *4 (-227)) + (-5 *2 (-1047)) (-5 *1 (-761))))) (((*1 *2 *3) - (-12 (-5 *3 (-963 (-227))) (-5 *2 (-324 (-388))) (-5 *1 (-313))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-954 *3) (-954 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-372) (-1216) (-1015)))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832))))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) - (-5 *1 (-1141 *3 *2)) (-4 *3 (-1257 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-1170 (-654 (-932)))) (-5 *1 (-894))))) -(((*1 *2 *1) - (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *2 (-654 (-654 *3))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *5 (-1062)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-654 (-654 *5))))) - ((*1 *2 *1) - (-12 (-5 *2 (-654 (-654 *3))) (-5 *1 (-1202 *3)) (-4 *3 (-1113))))) + (-12 (-5 *3 (-653 *7)) (-4 *7 (-959 *4 *5 *6)) (-4 *4 (-461)) + (-4 *5 (-802)) (-4 *6 (-859)) (-5 *2 (-1285)) + (-5 *1 (-458 *4 *5 *6 *7))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-831))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-999 (-416 (-573)) (-873 *3) (-245 *4 (-780)) + (-252 *3 (-416 (-573))))) + (-14 *3 (-653 (-1189))) (-14 *4 (-780)) (-5 *1 (-998 *3 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-515)) (-5 *2 (-700 (-783))) (-5 *1 (-115)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1171)) (-5 *2 (-783)) (-5 *1 (-115)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-515)) (-5 *3 (-1116)) (-5 *1 (-975))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-263))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-573)) (-5 *1 (-427 *2)) (-4 *2 (-565))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-478)) (-5 *4 (-932)) (-5 *2 (-1286)) (-5 *1 (-1282))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-802)))) + (-12 (-5 *3 (-477)) (-5 *4 (-931)) (-5 *2 (-1285)) (-5 *1 (-1281))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-801)))) ((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1062)) (-14 *3 (-654 (-1190))))) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1061)) (-14 *3 (-653 (-1189))))) ((*1 *1 *1) - (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1062) (-860))) - (-14 *3 (-654 (-1190))))) + (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1061) (-859))) + (-14 *3 (-653 (-1189))))) ((*1 *1 *1) - (-12 (-4 *1 (-391 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-1113)))) + (-12 (-4 *1 (-390 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-1112)))) ((*1 *1 *1) - (-12 (-14 *2 (-654 (-1190))) (-4 *3 (-174)) - (-4 *5 (-244 (-2863 *2) (-781))) + (-12 (-14 *2 (-653 (-1189))) (-4 *3 (-174)) + (-4 *5 (-243 (-2862 *2) (-780))) (-14 *6 - (-1 (-112) (-2 (|:| -2576 *4) (|:| -3715 *5)) - (-2 (|:| -2576 *4) (|:| -3715 *5)))) - (-5 *1 (-471 *2 *3 *4 *5 *6 *7)) (-4 *4 (-860)) - (-4 *7 (-960 *3 *5 (-874 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1113)) (-4 *3 (-860)))) + (-1 (-112) (-2 (|:| -2575 *4) (|:| -3907 *5)) + (-2 (|:| -2575 *4) (|:| -3907 *5)))) + (-5 *1 (-470 *2 *3 *4 *5 *6 *7)) (-4 *4 (-859)) + (-4 *7 (-959 *3 *5 (-873 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-518 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-859)))) ((*1 *1 *1) - (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1257 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-718 *2)) (-4 *2 (-1062)))) + (-12 (-4 *2 (-565)) (-5 *1 (-632 *2 *3)) (-4 *3 (-1256 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-717 *2)) (-4 *2 (-1061)))) ((*1 *1 *1) - (-12 (-5 *1 (-745 *2 *3)) (-4 *3 (-860)) (-4 *2 (-1062)) - (-4 *3 (-736)))) - ((*1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)))) + (-12 (-5 *1 (-744 *2 *3)) (-4 *3 (-859)) (-4 *2 (-1061)) + (-4 *3 (-735)))) + ((*1 *1 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1078 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *2 (-860)))) + (-12 (-4 *1 (-1077 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *2 (-859)))) ((*1 *1 *1) - (-12 (-5 *1 (-1304 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-856))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1048)) - (-5 *1 (-765))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-883 (-1195) (-781)))) (-5 *1 (-341))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-1286)) (-5 *1 (-1282)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-1286)) (-5 *1 (-1283))))) -(((*1 *2 *1) - (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1113)) - (-5 *2 (-654 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-654 (-2 (|:| |k| (-904 *3)) (|:| |c| *4)))) - (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) - (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-932)))) - ((*1 *2 *1) - (-12 (-5 *2 (-654 (-682 *3))) (-5 *1 (-904 *3)) (-4 *3 (-860))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1170 *2)) (-4 *2 (-315)) (-5 *1 (-176 *2))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1053))))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-963 (-574))) (-5 *3 (-1190)) - (-5 *4 (-1107 (-417 (-574)))) (-5 *1 (-30))))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1190)) - (-4 *4 (-13 (-315) (-148) (-1051 (-574)) (-649 (-574)))) - (-5 *1 (-585 *4 *2)) - (-4 *2 (-13 (-1216) (-970) (-1152) (-29 *4)))))) + (-12 (-5 *1 (-1303 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-855))))) +(((*1 *2 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-174))))) (((*1 *2 *3) - (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-566))))) + (-12 (-5 *3 (-653 *5)) (-4 *5 (-439 *4)) (-4 *4 (-565)) + (-5 *2 (-871)) (-5 *1 (-32 *4 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1223 *2 *3 *4 *5)) (-4 *2 (-565)) (-4 *3 (-802)) + (-4 *4 (-859)) (-4 *5 (-1077 *2 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-654 (-1186 (-574)))) (-5 *1 (-193)) (-5 *3 (-574))))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-691 *2)) (-4 *2 (-1112)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-653 *5) (-653 *5))) (-5 *4 (-573)) + (-5 *2 (-653 *5)) (-5 *1 (-691 *5)) (-4 *5 (-1112))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-829)) (-14 *5 (-1189)) (-5 *2 (-653 (-1253 *5 *4))) + (-5 *1 (-1126 *4 *5)) (-5 *3 (-1253 *5 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-780)) (-5 *2 (-1 (-387))) (-5 *1 (-1052))))) +(((*1 *2 *1) + (-12 (-5 *2 (-653 (-915 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-301 (-416 (-962 *5)))) (-5 *4 (-1189)) + (-4 *5 (-13 (-314) (-148))) + (-5 *2 (-1178 (-653 (-323 *5)) (-653 (-301 (-323 *5))))) + (-5 *1 (-1141 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-1189)) + (-4 *5 (-13 (-314) (-148))) + (-5 *2 (-1178 (-653 (-323 *5)) (-653 (-301 (-323 *5))))) + (-5 *1 (-1141 *5))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1061)) + (-4 *4 (-801))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-344 *5 *6 *7 *8)) (-4 *5 (-439 *4)) + (-4 *6 (-1256 *5)) (-4 *7 (-1256 (-416 *6))) + (-4 *8 (-350 *5 *6 *7)) (-4 *4 (-13 (-565) (-1050 (-573)))) + (-5 *2 (-2 (|:| -2534 (-780)) (|:| -2708 *8))) + (-5 *1 (-921 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-344 (-416 (-573)) *4 *5 *6)) + (-4 *4 (-1256 (-416 (-573)))) (-4 *5 (-1256 (-416 *4))) + (-4 *6 (-350 (-416 (-573)) *4 *5)) + (-5 *2 (-2 (|:| -2534 (-780)) (|:| -2708 *6))) + (-5 *1 (-922 *4 *5 *6))))) (((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) - ((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-1282)))) - ((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-1283))))) + ((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-1281)))) + ((*1 *2 *1) (-12 (-5 *2 (-1285)) (-5 *1 (-1282))))) (((*1 *2 *1) - (-12 (-4 *3 (-1062)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) - (-4 *1 (-960 *3 *4 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1084 *4 *5 *6 *7)) - (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-1078 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-654 *7)) (-4 *7 (-1078 *4 *5 *6)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) - (-4 *1 (-1084 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-654 *1)) (-4 *1 (-1084 *4 *5 *6 *3)) (-4 *4 (-462)) - (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1078 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *3 (-1078 *4 *5 *6)) (-5 *2 (-654 *1)) - (-4 *1 (-1084 *4 *5 *6 *3))))) + (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) (-5 *2 (-653 *1)) + (-4 *1 (-959 *3 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-936))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-698 (-227))) (-5 *4 (-573)) (-5 *2 (-1047)) + (-5 *1 (-757))))) (((*1 *2 *3) - (-12 (-4 *4 (-920)) (-4 *5 (-803)) (-4 *6 (-860)) - (-4 *7 (-960 *4 *5 *6)) (-5 *2 (-428 (-1186 *7))) - (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-1186 *7)))) + (|partial| -12 (-5 *3 (-962 *4)) (-4 *4 (-1061)) (-4 *4 (-623 *2)) + (-5 *2 (-387)) (-5 *1 (-794 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-962 *5)) (-5 *4 (-931)) (-4 *5 (-1061)) + (-4 *5 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-920)) (-4 *5 (-1257 *4)) (-5 *2 (-428 (-1186 *5))) - (-5 *1 (-918 *4 *5)) (-5 *3 (-1186 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1463 *4))) - (-5 *1 (-982 *4 *3)) (-4 *3 (-1257 *4))))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-903 *4)) (-4 *4 (-1113)) (-5 *1 (-900 *4 *3)) - (-4 *3 (-1113))))) -(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-937))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-654 (-781))) (-5 *3 (-112)) (-5 *1 (-1178 *4 *5)) - (-14 *4 (-932)) (-4 *5 (-1062))))) + (|partial| -12 (-5 *3 (-416 (-962 *4))) (-4 *4 (-565)) + (-4 *4 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-416 (-962 *5))) (-5 *4 (-931)) (-4 *5 (-565)) + (-4 *5 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-323 *4)) (-4 *4 (-565)) (-4 *4 (-859)) + (-4 *4 (-623 *2)) (-5 *2 (-387)) (-5 *1 (-794 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-323 *5)) (-5 *4 (-931)) (-4 *5 (-565)) + (-4 *5 (-859)) (-4 *5 (-623 *2)) (-5 *2 (-387)) + (-5 *1 (-794 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-565)) (-5 *2 (-653 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-426 *4))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-573)) (-5 *4 (-698 (-227))) (-5 *2 (-1047)) + (-5 *1 (-760))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-554)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-461)) (-4 *7 (-802)) (-4 *8 (-859)) + (-4 *3 (-1077 *6 *7 *8)) + (-5 *2 (-653 (-2 (|:| |val| *3) (|:| -4090 *4)))) + (-5 *1 (-1084 *6 *7 *8 *3 *4)) (-4 *4 (-1083 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-653 (-2 (|:| |val| (-653 *8)) (|:| -4090 *9)))) + (-5 *5 (-112)) (-4 *8 (-1077 *6 *7 *4)) (-4 *9 (-1083 *6 *7 *4 *8)) + (-4 *6 (-461)) (-4 *7 (-802)) (-4 *4 (-859)) + (-5 *2 (-653 (-2 (|:| |val| *8) (|:| -4090 *9)))) + (-5 *1 (-1084 *6 *7 *4 *8 *9))))) (((*1 *2 *1) - (-12 (-5 *2 (-1170 (-2 (|:| |k| (-574)) (|:| |c| *3)))) - (-5 *1 (-605 *3)) (-4 *3 (-1062))))) + (|partial| -12 (-5 *2 (-1189)) (-5 *1 (-621 *3)) (-4 *3 (-1112))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1257 (-574))))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1257 (-574)))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) (-4 *4 (-382 *3)) - (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) - (-4 *2 (-697 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1062)))) + (-12 (-4 *4 (-565)) (-5 *2 (-1185 *3)) (-5 *1 (-41 *4 *3)) + (-4 *3 + (-13 (-371) (-309) + (-10 -8 (-15 -2965 ((-1137 *4 (-621 $)) $)) + (-15 -2975 ((-1137 *4 (-621 $)) $)) + (-15 -2942 ($ (-1137 *4 (-621 $)))))))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-801)) (-4 *2 (-1061)))) ((*1 *2 *1) - (-12 (-4 *2 (-1062)) (-5 *1 (-50 *2 *3)) (-14 *3 (-654 (-1190))))) + (-12 (-4 *2 (-1061)) (-5 *1 (-50 *2 *3)) (-14 *3 (-653 (-1189))))) ((*1 *2 *1) - (-12 (-5 *2 (-324 *3)) (-5 *1 (-225 *3 *4)) - (-4 *3 (-13 (-1062) (-860))) (-14 *4 (-654 (-1190))))) + (-12 (-5 *2 (-323 *3)) (-5 *1 (-225 *3 *4)) + (-4 *3 (-13 (-1061) (-859))) (-14 *4 (-653 (-1189))))) ((*1 *2 *1) - (-12 (-4 *1 (-391 *2 *3)) (-4 *3 (-1113)) (-4 *2 (-1062)))) + (-12 (-4 *1 (-390 *2 *3)) (-4 *3 (-1112)) (-4 *2 (-1061)))) ((*1 *2 *1) - (-12 (-14 *3 (-654 (-1190))) (-4 *5 (-244 (-2863 *3) (-781))) + (-12 (-14 *3 (-653 (-1189))) (-4 *5 (-243 (-2862 *3) (-780))) (-14 *6 - (-1 (-112) (-2 (|:| -2576 *4) (|:| -3715 *5)) - (-2 (|:| -2576 *4) (|:| -3715 *5)))) - (-4 *2 (-174)) (-5 *1 (-471 *3 *2 *4 *5 *6 *7)) (-4 *4 (-860)) - (-4 *7 (-960 *2 *5 (-874 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-519 *2 *3)) (-4 *3 (-860)) (-4 *2 (-1113)))) + (-1 (-112) (-2 (|:| -2575 *4) (|:| -3907 *5)) + (-2 (|:| -2575 *4) (|:| -3907 *5)))) + (-4 *2 (-174)) (-5 *1 (-470 *3 *2 *4 *5 *6 *7)) (-4 *4 (-859)) + (-4 *7 (-959 *2 *5 (-873 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-518 *2 *3)) (-4 *3 (-859)) (-4 *2 (-1112)))) ((*1 *2 *1) - (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1257 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-718 *2)) (-4 *2 (-1062)))) + (-12 (-4 *2 (-565)) (-5 *1 (-632 *2 *3)) (-4 *3 (-1256 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-717 *2)) (-4 *2 (-1061)))) ((*1 *2 *1) - (-12 (-4 *2 (-1062)) (-5 *1 (-745 *2 *3)) (-4 *3 (-860)) - (-4 *3 (-736)))) - ((*1 *2 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1062)))) + (-12 (-4 *2 (-1061)) (-5 *1 (-744 *2 *3)) (-4 *3 (-859)) + (-4 *3 (-735)))) + ((*1 *2 *1) (-12 (-4 *1 (-861 *2)) (-4 *2 (-1061)))) ((*1 *2 *1) - (-12 (-4 *1 (-986 *2 *3 *4)) (-4 *3 (-802)) (-4 *4 (-860)) - (-4 *2 (-1062)))) + (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *3 (-801)) (-4 *4 (-859)) + (-4 *2 (-1061)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1078 *3 *4 *2)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *2 (-860))))) -(((*1 *1) - (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1113)) (-4 *3 (-23)) - (-14 *4 *3)))) + (-12 (-4 *1 (-1077 *3 *4 *2)) (-4 *3 (-1061)) (-4 *4 (-802)) + (-4 *2 (-859))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-565)) + (-5 *2 (-2 (|:| -1857 *4) (|:| -3152 *3) (|:| -3132 *3))) + (-5 *1 (-981 *4 *3)) (-4 *3 (-1256 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1061)) (-4 *4 (-802)) (-4 *5 (-859)) + (-5 *2 (-2 (|:| -3152 *1) (|:| -3132 *1))) (-4 *1 (-1077 *3 *4 *5)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-565)) (-4 *3 (-1061)) + (-5 *2 (-2 (|:| -1857 *3) (|:| -3152 *1) (|:| -3132 *1))) + (-4 *1 (-1256 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1257 *5)) (-4 *5 (-372)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) - (-5 *1 (-584 *5 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-984)) (-5 *1 (-1306))))) + (-12 (-5 *4 (-112)) (-4 *5 (-357)) + (-5 *2 + (-2 (|:| |cont| *5) + (|:| -1687 (-653 (-2 (|:| |irr| *3) (|:| -3287 (-573))))))) + (-5 *1 (-218 *5 *3)) (-4 *3 (-1256 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1189)) (-4 *4 (-461)) (-4 *4 (-1112)) + (-5 *1 (-582 *4 *2)) (-4 *2 (-291)) (-4 *2 (-439 *4))))) +(((*1 *2 *1) + (-12 (-4 *3 (-371)) (-4 *4 (-1256 *3)) (-4 *5 (-1256 (-416 *4))) + (-5 *2 (-1280 *6)) (-5 *1 (-344 *3 *4 *5 *6)) + (-4 *6 (-350 *3 *4 *5))))) (((*1 *1 *2) - (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1017 *3)) (-14 *3 (-574))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-574)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1231)) - (-4 *3 (-382 *4)) (-4 *5 (-382 *4))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-166 *3 *4)) - (-4 *3 (-167 *4)))) - ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1231)) (-5 *2 (-781)) - (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-1113)) (-5 *2 (-781)) (-5 *1 (-439 *3 *4)) - (-4 *3 (-440 *4)))) - ((*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-554 *3)) (-4 *3 (-555)))) - ((*1 *2) (-12 (-4 *1 (-773)) (-5 *2 (-781)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-806 *3 *4)) - (-4 *3 (-807 *4)))) - ((*1 *2) - (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-1004 *3 *4)) - (-4 *3 (-1005 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-1009 *3 *4)) - (-4 *3 (-1010 *4)))) - ((*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1024 *3)) (-4 *3 (-1025)))) - ((*1 *2) (-12 (-4 *1 (-1062)) (-5 *2 (-781)))) - ((*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1072 *3)) (-4 *3 (-1073))))) -(((*1 *1 *1) (-5 *1 (-1076)))) -(((*1 *1 *1) - (-12 (-4 *2 (-315)) (-4 *3 (-1005 *2)) (-4 *4 (-1257 *3)) - (-5 *1 (-423 *2 *3 *4 *5)) (-4 *5 (-13 (-419 *3 *4) (-1051 *3)))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-555)))) + (-12 + (-5 *2 + (-653 + (-2 + (|:| -3692 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1280 (-323 (-227)))) + (|:| |yinit| (-653 (-227))) (|:| |intvals| (-653 (-227))) + (|:| |g| (-323 (-227))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| -1907 + (-2 (|:| |stiffness| (-387)) (|:| |stability| (-387)) + (|:| |expense| (-387)) (|:| |accuracy| (-387)) + (|:| |intermediateResults| (-387))))))) + (-5 *1 (-812))))) +(((*1 *2 *2) + (-12 (-4 *3 (-565)) (-5 *1 (-282 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1014)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-461)) (-5 *1 (-1221 *3 *2)) + (-4 *2 (-13 (-439 *3) (-1215)))))) +(((*1 *2 *2) (-12 (-5 *2 (-931)) (-5 *1 (-365 *3)) (-4 *3 (-357))))) +(((*1 *2 *3) + (-12 (-14 *4 (-653 (-1189))) (-14 *5 (-780)) + (-5 *2 + (-653 + (-513 (-416 (-573)) (-245 *5 (-780)) (-873 *4) + (-252 *4 (-416 (-573)))))) + (-5 *1 (-514 *4 *5)) + (-5 *3 + (-513 (-416 (-573)) (-245 *5 (-780)) (-873 *4) + (-252 *4 (-416 (-573)))))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1053)) (-5 *3 (-388))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1062)) (-4 *3 (-802)))) + (-12 (-5 *2 (-1 (-387))) (-5 *1 (-1052)) (-5 *3 (-387))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1061)) (-4 *3 (-801)))) ((*1 *2 *1) - (-12 (-4 *1 (-391 *3 *2)) (-4 *3 (-1062)) (-4 *2 (-1113)))) + (-12 (-4 *1 (-390 *3 *2)) (-4 *3 (-1061)) (-4 *2 (-1112)))) ((*1 *2 *1) - (-12 (-14 *3 (-654 (-1190))) (-4 *4 (-174)) - (-4 *6 (-244 (-2863 *3) (-781))) + (-12 (-14 *3 (-653 (-1189))) (-4 *4 (-174)) + (-4 *6 (-243 (-2862 *3) (-780))) (-14 *7 - (-1 (-112) (-2 (|:| -2576 *5) (|:| -3715 *6)) - (-2 (|:| -2576 *5) (|:| -3715 *6)))) - (-5 *2 (-723 *5 *6 *7)) (-5 *1 (-471 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-860)) (-4 *8 (-960 *4 *6 (-874 *3))))) + (-1 (-112) (-2 (|:| -2575 *5) (|:| -3907 *6)) + (-2 (|:| -2575 *5) (|:| -3907 *6)))) + (-5 *2 (-722 *5 *6 *7)) (-5 *1 (-470 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-859)) (-4 *8 (-959 *4 *6 (-873 *3))))) ((*1 *2 *1) - (-12 (-4 *2 (-736)) (-4 *2 (-860)) (-5 *1 (-745 *3 *2)) - (-4 *3 (-1062)))) + (-12 (-4 *2 (-735)) (-4 *2 (-859)) (-5 *1 (-744 *3 *2)) + (-4 *3 (-1061)))) ((*1 *1 *1) - (-12 (-4 *1 (-986 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-802)) - (-4 *4 (-860))))) -(((*1 *2 *1) (-12 (-5 *2 (-1286)) (-5 *1 (-832))))) + (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-1061)) (-4 *3 (-801)) + (-4 *4 (-859))))) +(((*1 *2) + (-12 (-5 *2 (-1285)) (-5 *1 (-1207 *3 *4)) (-4 *3 (-1112)) + (-4 *4 (-1112))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -3903 *6) (|:| |sol?| (-112))) (-573) + *6)) + (-4 *6 (-371)) (-4 *7 (-1256 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-416 *7)) (|:| |a0| *6)) + (-2 (|:| -3861 (-416 *7)) (|:| |coeff| (-416 *7))) "failed")) + (-5 *1 (-583 *6 *7)) (-5 *3 (-416 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1225 *3)) (-4 *3 (-986))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 (-653 *7) *7 (-1185 *7))) (-5 *5 (-1 (-427 *7) *7)) + (-4 *7 (-1256 *6)) (-4 *6 (-13 (-371) (-148) (-1050 (-416 (-573))))) + (-5 *2 (-653 (-2 (|:| |frac| (-416 *7)) (|:| -4122 *3)))) + (-5 *1 (-818 *6 *7 *3 *8)) (-4 *3 (-665 *7)) + (-4 *8 (-665 (-416 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-427 *6) *6)) (-4 *6 (-1256 *5)) + (-4 *5 (-13 (-371) (-148) (-1050 (-573)) (-1050 (-416 (-573))))) + (-5 *2 + (-653 (-2 (|:| |frac| (-416 *6)) (|:| -4122 (-663 *6 (-416 *6)))))) + (-5 *1 (-821 *5 *6)) (-5 *3 (-663 *6 (-416 *6)))))) (((*1 *2 *1) - (-12 (-4 *1 (-382 *3)) (-4 *3 (-1231)) (-4 *3 (-860)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-382 *4)) (-4 *4 (-1231)) - (-5 *2 (-112))))) + (-12 + (-5 *2 + (-653 + (-2 (|:| |scalar| (-416 (-573))) (|:| |coeff| (-1185 *3)) + (|:| |logand| (-1185 *3))))) + (-5 *1 (-595 *3)) (-4 *3 (-371))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-899 *5 *3)) (-5 *4 (-902 *5)) (-4 *5 (-1112)) + (-4 *3 (-167 *6)) (-4 (-962 *6) (-896 *5)) + (-4 *6 (-13 (-896 *5) (-174))) (-5 *1 (-180 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-899 *4 *1)) (-5 *3 (-902 *4)) (-4 *1 (-896 *4)) + (-4 *4 (-1112)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-899 *5 *6)) (-5 *4 (-902 *5)) (-4 *5 (-1112)) + (-4 *6 (-13 (-1112) (-1050 *3))) (-4 *3 (-896 *5)) + (-5 *1 (-941 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-899 *5 *3)) (-4 *5 (-1112)) + (-4 *3 (-13 (-439 *6) (-623 *4) (-896 *5) (-1050 (-621 $)))) + (-5 *4 (-902 *5)) (-4 *6 (-13 (-565) (-896 *5))) + (-5 *1 (-942 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-899 (-573) *3)) (-5 *4 (-902 (-573))) (-4 *3 (-554)) + (-5 *1 (-943 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-899 *5 *6)) (-5 *3 (-621 *6)) (-4 *5 (-1112)) + (-4 *6 (-13 (-1112) (-1050 (-621 $)) (-623 *4) (-896 *5))) + (-5 *4 (-902 *5)) (-5 *1 (-944 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-895 *5 *6 *3)) (-5 *4 (-902 *5)) (-4 *5 (-1112)) + (-4 *6 (-896 *5)) (-4 *3 (-675 *6)) (-5 *1 (-945 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-899 *6 *3) *8 (-902 *6) (-899 *6 *3))) + (-4 *8 (-859)) (-5 *2 (-899 *6 *3)) (-5 *4 (-902 *6)) + (-4 *6 (-1112)) (-4 *3 (-13 (-959 *9 *7 *8) (-623 *4))) + (-4 *7 (-802)) (-4 *9 (-13 (-1061) (-896 *6))) + (-5 *1 (-946 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-899 *5 *3)) (-4 *5 (-1112)) + (-4 *3 (-13 (-959 *8 *6 *7) (-623 *4))) (-5 *4 (-902 *5)) + (-4 *7 (-896 *5)) (-4 *6 (-802)) (-4 *7 (-859)) + (-4 *8 (-13 (-1061) (-896 *5))) (-5 *1 (-946 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-899 *5 *3)) (-4 *5 (-1112)) (-4 *3 (-1004 *6)) + (-4 *6 (-13 (-565) (-896 *5) (-623 *4))) (-5 *4 (-902 *5)) + (-5 *1 (-949 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-899 *5 (-1189))) (-5 *3 (-1189)) (-5 *4 (-902 *5)) + (-4 *5 (-1112)) (-5 *1 (-950 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-653 (-902 *7))) (-5 *5 (-1 *9 (-653 *9))) + (-5 *6 (-1 (-899 *7 *9) *9 (-902 *7) (-899 *7 *9))) (-4 *7 (-1112)) + (-4 *9 (-13 (-1061) (-623 (-902 *7)) (-1050 *8))) + (-5 *2 (-899 *7 *9)) (-5 *3 (-653 *9)) (-4 *8 (-1061)) + (-5 *1 (-951 *7 *8 *9))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1169 *4)) (-5 *3 (-1 *4 (-573))) (-4 *4 (-1061)) + (-5 *1 (-1173 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) - (-4 *6 (-1257 *5)) (-4 *7 (-1257 (-417 *6))) - (-4 *8 (-351 *5 *6 *7)) (-4 *4 (-13 (-566) (-1051 (-574)))) - (-5 *2 (-2 (|:| -3884 (-781)) (|:| -2707 *8))) - (-5 *1 (-922 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6)) - (-4 *4 (-1257 (-417 (-574)))) (-4 *5 (-1257 (-417 *4))) - (-4 *6 (-351 (-417 (-574)) *4 *5)) - (-5 *2 (-2 (|:| -3884 (-781)) (|:| -2707 *6))) - (-5 *1 (-923 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1257 *4)) (-5 *1 (-819 *4 *2 *3 *5)) - (-4 *4 (-13 (-372) (-148) (-1051 (-417 (-574))))) (-4 *3 (-666 *2)) - (-4 *5 (-666 (-417 *2)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1172)) (-5 *1 (-871)))) - ((*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-871))))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1257 *5)) - (-4 *5 (-13 (-372) (-148) (-1051 (-574)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-417 *6)) (|:| |h| *6) - (|:| |c1| (-417 *6)) (|:| |c2| (-417 *6)) (|:| -2143 *6))) - (-5 *1 (-1029 *5 *6)) (-5 *3 (-417 *6))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-382 *2)) - (-4 *4 (-382 *2))))) + (-12 (-5 *3 (-1280 (-323 (-227)))) (-5 *2 (-1280 (-323 (-387)))) + (-5 *1 (-312))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-932)) - (-5 *2 (-1281 (-654 (-2 (|:| -3083 *4) (|:| -2576 (-1133)))))) - (-5 *1 (-355 *4)) (-4 *4 (-358))))) -(((*1 *2 *2) (-12 (-5 *2 (-977 *3)) (-4 *3 (-1113)) (-5 *1 (-978 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-148)) (-4 *2 (-315)) (-4 *2 (-462)) (-4 *3 (-860)) - (-4 *4 (-803)) (-5 *1 (-1000 *2 *3 *4 *5)) (-4 *5 (-960 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-324 (-574))) (-5 *1 (-1132)))) - ((*1 *2 *2) - (-12 (-4 *3 (-462)) (-5 *1 (-1222 *3 *2)) - (-4 *2 (-13 (-440 *3) (-1216)))))) -(((*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1062)))) - ((*1 *2 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1113))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-654 *6)) (-4 *6 (-1078 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) - (-5 *1 (-990 *3 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1286)) (-5 *1 (-388)))) - ((*1 *2) (-12 (-5 *2 (-1286)) (-5 *1 (-388))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-781)) (-4 *3 (-1062)) (-4 *1 (-697 *3 *4 *5)) - (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) + (-12 (-5 *3 (-323 (-227))) (-5 *2 (-416 (-573))) (-5 *1 (-312))))) +(((*1 *2 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *3 (-801)) (-4 *2 (-1061)))) + ((*1 *2 *1) (-12 (-4 *1 (-439 *2)) (-4 *2 (-1112))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1152 *3 *4)) (-4 *3 (-13 (-1112) (-34))) + (-4 *4 (-13 (-1112) (-34)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-953 *3) (-953 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-371) (-1215) (-1014)))))) +(((*1 *2 *1) (-12 (-4 *1 (-565)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-883)) (-5 *1 (-269)))) + ((*1 *1 *2) (-12 (-5 *2 (-387)) (-5 *1 (-269))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1061)) (-4 *1 (-1256 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-653 (-2 (|:| |gen| *3) (|:| -1608 *4)))) + (-4 *3 (-1112)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-658 *3 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-397)) (-5 *1 (-445)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-397)) (-5 *1 (-445))))) +(((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-1112)) (-5 *1 (-91 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-371)) (-4 *4 (-1256 *3)) + (-4 *5 (-1256 (-416 *4))) (-4 *6 (-350 *3 *4 *5)) + (-5 *2 (-422 *4 (-416 *4) *5 *6)))) ((*1 *1 *2) - (-12 (-4 *2 (-1062)) (-4 *1 (-1136 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) - (-4 *5 (-244 *3 *2))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-781)) (-4 *5 (-566)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-982 *5 *3)) (-4 *3 (-1257 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1048)) (-5 *1 (-768))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) - (-4 *3 (-376 *4)))) - ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-2 (|:| |deg| (-781)) (|:| -1644 *5)))) - (-4 *5 (-1257 *4)) (-4 *4 (-358)) (-5 *2 (-654 *5)) - (-5 *1 (-218 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-2 (|:| -4220 *5) (|:| -4202 (-574))))) - (-5 *4 (-574)) (-4 *5 (-1257 *4)) (-5 *2 (-654 *5)) - (-5 *1 (-706 *5))))) + (-12 (-5 *2 (-1280 *6)) (-4 *6 (-13 (-418 *4 *5) (-1050 *4))) + (-4 *4 (-1004 *3)) (-4 *5 (-1256 *4)) (-4 *3 (-314)) + (-5 *1 (-422 *3 *4 *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-653 *6)) (-4 *6 (-959 *3 *4 *5)) (-4 *3 (-371)) + (-4 *4 (-802)) (-4 *5 (-859)) (-5 *1 (-513 *3 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-574)) - (-14 *6 (-781)) (-4 *7 (-174)) (-4 *8 (-174)) + (-12 (-5 *3 (-653 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-573)) + (-14 *6 (-780)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *9)) (-4 *9 (-1062)) (-4 *5 (-860)) (-4 *6 (-803)) - (-4 *8 (-1062)) (-4 *2 (-960 *9 *7 *5)) - (-5 *1 (-738 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-803)) - (-4 *4 (-960 *8 *6 *5))))) + (-12 (-5 *3 (-653 *9)) (-4 *9 (-1061)) (-4 *5 (-859)) (-4 *6 (-802)) + (-4 *8 (-1061)) (-4 *2 (-959 *9 *7 *5)) + (-5 *1 (-737 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-802)) + (-4 *4 (-959 *8 *6 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802)) + (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1061)) (-4 *4 (-801)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-440 *3)) (-4 *3 (-1113)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-654 *2))) (-5 *4 (-654 *5)) - (-4 *5 (-38 (-417 (-574)))) (-4 *2 (-1272 *5)) - (-5 *1 (-1274 *5 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-115)))) - ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-115)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1062)) (-4 *3 (-860)) - (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781)))) - ((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1062)) (-4 *4 (-860)) - (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-781)))) - ((*1 *2 *1) (-12 (-4 *1 (-273 *3)) (-4 *3 (-860)) (-5 *2 (-781))))) -(((*1 *2 *1) - (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1216))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1081 *4 *3)) (-4 *4 (-13 (-858) (-372))) - (-4 *3 (-1257 *4)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1113)) (-4 *2 (-377))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-996 *2)) (-4 *2 (-1216))))) -(((*1 *2 *3) - (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) - (-5 *1 (-990 *4 *5 *6 *3)) (-4 *3 (-1078 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872))))) - ((*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-886)))) - ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-886)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-574)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1172)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-516)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-602)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-488)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-138)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-157)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1180)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-636)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1109)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1103)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1086)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-983)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-182)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1049)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-319)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-681)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-155)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1164)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-535)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1292)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1079)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-527)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-691)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-96)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1128)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-134)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-616)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-139)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1291)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-686)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-220)))) - ((*1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-534)))) - ((*1 *2 *1) (-12 (-5 *2 (-1172)) (-5 *1 (-1195)))) - ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1195)))) - ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1195)))) - ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1195))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1078 *2 *3 *4)) (-4 *2 (-1062)) (-4 *3 (-803)) - (-4 *4 (-860))))) + ((*1 *2 *1) (-12 (-4 *1 (-439 *3)) (-4 *3 (-1112)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1285)) (-5 *1 (-387)))) + ((*1 *2) (-12 (-5 *2 (-1285)) (-5 *1 (-387))))) +(((*1 *2 *1) (-12 (-5 *2 (-653 (-847))) (-5 *1 (-141))))) +(((*1 *1 *2) (-12 (-5 *2 (-653 *3)) (-4 *3 (-859)) (-5 *1 (-493 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-347 *3 *4 *5)) (-14 *3 (-653 (-1189))) + (-14 *4 (-653 (-1189))) (-4 *5 (-396)))) + ((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-347 *3 *4 *5)) (-14 *3 (-653 (-1189))) + (-14 *4 (-653 (-1189))) (-4 *5 (-396))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-371) (-148) (-1050 (-416 (-573))))) + (-4 *5 (-1256 *4)) + (-5 *2 (-653 (-2 (|:| |deg| (-780)) (|:| -4122 *5)))) + (-5 *1 (-818 *4 *5 *3 *6)) (-4 *3 (-665 *5)) + (-4 *6 (-665 (-416 *5)))))) +(((*1 *2 *1) (-12 (-5 *1 (-700 *2)) (-4 *2 (-622 (-871))))) + ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-885)))) + ((*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-885)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-573)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1171)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-515)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-601)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-487)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-138)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-157)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1179)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-635)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1108)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1102)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1085)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-982)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-182)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1048)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-318)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-680)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-155)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1163)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-534)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1291)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1078)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-526)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-690)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-96)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1127)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-134)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-615)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-139)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-1290)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-685)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-220)))) + ((*1 *2 *1) (-12 (-4 *1 (-1149)) (-5 *2 (-533)))) + ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1194)))) + ((*1 *2 *1) (-12 (-5 *2 (-515)) (-5 *1 (-1194)))) + ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1194)))) + ((*1 *2 *1) (-12 (-5 *2 (-573)) (-5 *1 (-1194))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-653 (-653 (-953 (-227))))) (-5 *3 (-653 (-883))) + (-5 *1 (-477))))) +(((*1 *2 *3) + (-12 (-14 *4 (-653 (-1189))) (-4 *5 (-461)) + (-5 *2 + (-2 (|:| |glbase| (-653 (-252 *4 *5))) (|:| |glval| (-653 (-573))))) + (-5 *1 (-640 *4 *5)) (-5 *3 (-653 (-252 *4 *5)))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-1112)) (-4 *2 (-910 *4)) (-5 *1 (-701 *4 *2 *5 *3)) + (-4 *5 (-381 *2)) (-4 *3 (-13 (-381 *4) (-10 -7 (-6 -4455))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-916 (-574))) (-5 *4 (-574)) (-5 *2 (-699 *4)) - (-5 *1 (-1041 *5)) (-4 *5 (-1062)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-1041 *4)) - (-4 *4 (-1062)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-916 (-574)))) (-5 *4 (-574)) - (-5 *2 (-654 (-699 *4))) (-5 *1 (-1041 *5)) (-4 *5 (-1062)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-654 (-574)))) (-5 *2 (-654 (-699 (-574)))) - (-5 *1 (-1041 *4)) (-4 *4 (-1062))))) -(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-535))))) -(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (-145)) (-5 *2 (-112))))) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1185 *7)) (-4 *5 (-1061)) + (-4 *7 (-1061)) (-4 *2 (-1256 *5)) (-5 *1 (-510 *5 *2 *6 *7)) + (-4 *6 (-1256 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1061)) (-4 *7 (-1061)) + (-4 *4 (-1256 *5)) (-5 *2 (-1185 *7)) (-5 *1 (-510 *5 *4 *6 *7)) + (-4 *6 (-1256 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1061)) + (-4 *2 (-13 (-413) (-1050 *4) (-371) (-1215) (-291))) + (-5 *1 (-452 *4 *3 *2)) (-4 *3 (-1256 *4))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (-145)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-5 *2 (-654 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) - (-14 *4 (-781)) (-4 *5 (-174))))) -(((*1 *1 *1) (-4 *1 (-249))) + (-12 (-5 *2 (-653 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-573)) + (-14 *4 (-780)) (-4 *5 (-174))))) +(((*1 *1 *1) (-4 *1 (-248))) ((*1 *1 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1257 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-12 (-4 *2 (-174)) (-5 *1 (-296 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1256 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) - (-2818 (-12 (-5 *1 (-302 *2)) (-4 *2 (-372)) (-4 *2 (-1231))) - (-12 (-5 *1 (-302 *2)) (-4 *2 (-483)) (-4 *2 (-1231))))) - ((*1 *1 *1) (-4 *1 (-483))) - ((*1 *2 *2) (-12 (-5 *2 (-1281 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3)))) + (-2817 (-12 (-5 *1 (-301 *2)) (-4 *2 (-371)) (-4 *2 (-1230))) + (-12 (-5 *1 (-301 *2)) (-4 *2 (-482)) (-4 *2 (-1230))))) + ((*1 *1 *1) (-4 *1 (-482))) + ((*1 *2 *2) (-12 (-5 *2 (-1280 *3)) (-4 *3 (-357)) (-5 *1 (-537 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) + (-12 (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)) (-4 *2 (-372))))) -(((*1 *2 *3) (-12 (-5 *3 (-1172)) (-5 *2 (-1286)) (-5 *1 (-748))))) + ((*1 *1 *1) (-12 (-4 *1 (-806 *2)) (-4 *2 (-174)) (-4 *2 (-371))))) +(((*1 *2 *3) (-12 (-5 *3 (-1171)) (-5 *2 (-1285)) (-5 *1 (-747))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1169 (-653 (-573)))) (-5 *1 (-893)) (-5 *3 (-573))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-451 *3)) (-4 *3 (-1256 (-573)))))) (((*1 *2 *1) - (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-802)) - (-5 *2 (-781)))) - ((*1 *2 *1) - (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1062)) (-4 *4 (-1113)) - (-5 *2 (-781)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-381 *3)) + (-4 *5 (-381 *3)) (-5 *2 (-573)))) ((*1 *2 *1) - (-12 (-5 *2 (-781)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1062)) - (-4 *4 (-736))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-954 (-227)) (-954 (-227)))) (-5 *3 (-654 (-270))) - (-5 *1 (-268)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1 (-954 (-227)) (-954 (-227)))) (-5 *1 (-270)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-654 (-491 *5 *6))) (-5 *3 (-491 *5 *6)) - (-14 *5 (-654 (-1190))) (-4 *6 (-462)) (-5 *2 (-1281 *6)) - (-5 *1 (-641 *5 *6))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-771)))) + (-12 (-4 *1 (-1065 *3 *4 *5 *6 *7)) (-4 *5 (-1061)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-573))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-1230)) (-5 *1 (-184 *3 *2)) + (-4 *2 (-683 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-692 *4 *3)) (-4 *4 (-1112)) + (-4 *3 (-1112))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-476)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-476))))) +(((*1 *2 *1) (-12 (-5 *2 (-653 (-185 (-140)))) (-5 *1 (-141))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-853 (-227)))) (-5 *4 (-227)) (-5 *2 (-654 *4)) - (-5 *1 (-274))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1048)) - (-5 *1 (-761))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-574)) + (-12 (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-781)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-803)) (-4 *4 (-960 *5 *6 *7)) (-4 *5 (-462)) (-4 *7 (-860)) - (-5 *1 (-459 *5 *6 *7 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-654 (-185 (-140)))) (-5 *1 (-141))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-654 *1)) (-4 *1 (-1078 *4 *5 *6)) (-4 *4 (-1062)) - (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1078 *3 *4 *5)) (-4 *3 (-1062)) (-4 *4 (-803)) - (-4 *5 (-860)) (-5 *2 (-112)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1224 *5 *6 *7 *3)) - (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) - (-4 *3 (-1078 *5 *6 *7)) (-5 *2 (-112))))) -((-1315 . 732254) (-1316 . 732188) (-1317 . 731935) (-1318 . 731822) - (-1319 . 731715) (-1320 . 731678) (-1321 . 731333) (-1322 . 731054) - (-1323 . 730985) (-1324 . 730249) (-1325 . 730133) (-1326 . 730059) - (-1327 . 730007) (-1328 . 729954) (-1329 . 729480) (-1330 . 729382) - (-1331 . 727321) (-1332 . 727182) (-1333 . 727116) (-1334 . 727045) - (-1335 . 726797) (-1336 . 726359) (-1337 . 726213) (-1338 . 726050) - (-1339 . 725649) (-1340 . 725337) (-1341 . 725263) (-1342 . 725105) - (-1343 . 725053) (-1344 . 724965) (-1345 . 724784) (-1346 . 724552) - (-1347 . 724436) (-1348 . 724258) (-1349 . 724130) (-1350 . 723738) - (-1351 . 723581) (-1352 . 723475) (-1353 . 723162) (-1354 . 723059) - (-1355 . 722890) (-1356 . 722349) (-1357 . 722158) (-1358 . 722105) - (-1359 . 721461) (-1360 . 721383) (-1361 . 721346) (-1362 . 721201) - (-1363 . 721169) (-1364 . 720303) (-1365 . 720180) (-1366 . 720099) - (-1367 . 720046) (-1368 . 719888) (-1369 . 719798) (-1370 . 718626) - (-1371 . 718463) (-1372 . 718302) (-1373 . 718190) (-1374 . 718066) - (-1375 . 718017) (-1376 . 717910) (-1377 . 717780) (-1378 . 717484) - (-1379 . 716861) (-1380 . 716746) (-1381 . 716587) (-1382 . 716503) - (-1383 . 716404) (-1384 . 716206) (-1385 . 716085) (-1386 . 716007) - (-1387 . 715928) (-1388 . 715544) (-1389 . 715392) (-1390 . 715318) - (-1391 . 715202) (-1392 . 714065) (-1393 . 713973) (-1394 . 713624) - (-1395 . 713557) (-1396 . 713424) (-1397 . 713371) (-1398 . 713272) - (-1399 . 713154) (-1400 . 713071) (-1401 . 712920) (-1402 . 712792) - (-1403 . 712038) (-1404 . 711774) (-1405 . 711670) (-1406 . 711569) - (-1407 . 711496) (-1408 . 711332) (-1409 . 711129) (-1410 . 711047) - (-1411 . 710797) (-1412 . 710738) (-1413 . 710655) (-1414 . 710445) - (-1415 . 710345) (-1416 . 710248) (-1417 . 710151) (-1418 . 710068) - (-1419 . 709923) (-1420 . 709870) (-1421 . 709589) (-1422 . 709519) - (-1423 . 709466) (-1424 . 709170) (-1425 . 709074) (-1426 . 708918) - (-1427 . 708839) (-1428 . 708689) (-1429 . 708588) (-1430 . 708517) - (-1431 . 708244) (-1432 . 708170) (-1433 . 708091) (-1434 . 707928) - (-1435 . 706843) (-1436 . 706769) (-1437 . 706689) (-1438 . 706636) - (-1439 . 706542) (-1440 . 706472) (-1441 . 705951) (-1442 . 705820) - (-1443 . 705767) (-1444 . 705629) (-1445 . 705528) (-1446 . 705405) - (-1447 . 705262) (-1448 . 705147) (-1449 . 705059) (-1450 . 705004) - (-1451 . 704622) (-1452 . 704441) (** . 701447) (-1454 . 701322) - (-1455 . 701270) (-1456 . 701171) (-1457 . 701058) (-1458 . 700543) - (-1459 . 700320) (-1460 . 700226) (-1461 . 699847) (-1462 . 699775) - (-1463 . 699388) (-1464 . 699336) (-1465 . 698907) (-1466 . 698848) - (-1467 . 698793) (-1468 . 698694) (-1469 . 698611) (-1470 . 698453) - (-1471 . 698344) (-1472 . 698249) (-1473 . 698059) (-1474 . 697852) - (-1475 . 697639) (-1476 . 697515) (-1477 . 697411) (-1478 . 697359) - (-1479 . 697079) (-1480 . 696794) (-1481 . 696697) (-1482 . 696647) - (-1483 . 696517) (-1484 . 696438) (-1485 . 696336) (-1486 . 696117) - (-1487 . 695181) (-1488 . 694662) (-1489 . 694537) (-1490 . 694402) - (-1491 . 694331) (-1492 . 694186) (-1493 . 694133) (-1494 . 693989) - (-1495 . 693538) (-1496 . 693459) (-1497 . 693316) (-1498 . 693197) - (-1499 . 693133) (-1500 . 693065) (-1501 . 693013) (-1502 . 692984) - (-1503 . 692885) (-1504 . 692722) (-1505 . 692562) (-1506 . 692510) - (-1507 . 692381) (-1508 . 692109) (-1509 . 692028) (-1510 . 691932) - (-1511 . 691623) (-1512 . 691177) (-1513 . 691050) (-1514 . 690892) - (-1515 . 690483) (-1516 . 689937) (-1517 . 689428) (-1518 . 689253) - (-1519 . 689157) (-1520 . 689073) (-1521 . 688863) (-1522 . 688807) - (-1523 . 688702) (-1524 . 688511) (-1525 . 688368) (-1526 . 688222) - (-1527 . 688012) (-1528 . 687784) (-1529 . 687710) (-1530 . 687506) - (-1531 . 687405) (-1532 . 687353) (-1533 . 687259) (-1534 . 687124) - (-1535 . 687030) (-1536 . 686960) (-1537 . 686823) (-1538 . 686771) - (-1539 . 686484) (-1540 . 686258) (-1541 . 686209) (-1542 . 686138) - (-1543 . 686039) (-1544 . 685263) (-1545 . 685177) (-1546 . 685124) - (-1547 . 684963) (-1548 . 684867) (-1549 . 684767) (-1550 . 684739) - (-1551 . 684670) (-1552 . 684535) (-1553 . 684435) (-1554 . 684355) - (-1555 . 684297) (-1556 . 684238) (-1557 . 684166) (-1558 . 684021) - (-1559 . 683863) (-1560 . 683696) (-1561 . 683547) (-1562 . 683519) - (-1563 . 683409) (-1564 . 683329) (-1565 . 683134) (-1566 . 682986) - (-1567 . 682898) (-1568 . 682644) (-1569 . 682049) (-1570 . 681740) - (-1571 . 681518) (-1572 . 681402) (-1573 . 681334) (-9 . 681306) - (-1575 . 681275) (-1576 . 681138) (-1577 . 681082) (-1578 . 680997) - (-1579 . 680965) (-1580 . 680859) (-1581 . 680793) (-1582 . 680731) - (-1583 . 680632) (-1584 . 680326) (-1585 . 680130) (-1586 . 679958) - (-8 . 679930) (-1588 . 679628) (-1589 . 679559) (-1590 . 679493) - (-1591 . 679063) (-1592 . 678999) (-1593 . 678689) (-1594 . 678533) - (-1595 . 678438) (-1596 . 678299) (-1597 . 678225) (-7 . 678197) - (-1599 . 678123) (-1600 . 678068) (-1601 . 678001) (-1602 . 677419) - (-1603 . 677385) (-1604 . 676991) (-1605 . 676960) (-1606 . 676730) - (-1607 . 676636) (-1608 . 676558) (-1609 . 675358) (-1610 . 675263) - (-1611 . 675235) (-1612 . 675183) (-1613 . 675090) (-1614 . 674738) - (-1615 . 674452) (-1616 . 674147) (-1617 . 674118) (-1618 . 674025) - (-1619 . 673857) (-1620 . 673684) (-1621 . 673583) (-1622 . 673504) - (-1623 . 673235) (-1624 . 672982) (-1625 . 672667) (-1626 . 672370) - (-1627 . 672187) (-1628 . 672055) (-1629 . 671996) (-1630 . 671750) - (-1631 . 671455) (-1632 . 671263) (-1633 . 671144) (-1634 . 671010) - (-1635 . 670902) (-1636 . 670476) (-1637 . 670448) (-1638 . 670311) - (-1639 . 670259) (-1640 . 670132) (-1641 . 670049) (-1642 . 669916) - (-1643 . 669834) (-1644 . 669737) (-1645 . 669633) (-1646 . 669560) - (-1647 . 669476) (-1648 . 669344) (-1649 . 668692) (-1650 . 668608) - (-1651 . 668290) (-1652 . 668217) (-1653 . 667906) (-1654 . 667810) - (-1655 . 666994) (-1656 . 666894) (-1657 . 666731) (-1658 . 666657) - (-1659 . 666351) (-1660 . 666268) (-1661 . 666183) (-1662 . 666058) - (-1663 . 665874) (-1664 . 665790) (-1665 . 665680) (-1666 . 665272) - (-1667 . 664962) (-1668 . 664869) (-1669 . 664816) (-1670 . 664664) - (-1671 . 664513) (-1672 . 664383) (-1673 . 664197) (-1674 . 663992) - (-1675 . 663818) (-1676 . 663665) (-1677 . 663577) (-1678 . 663493) - (-1679 . 663340) (-1680 . 663226) (-1681 . 663197) (-1682 . 663093) - (-1683 . 662734) (-1684 . 662529) (-1685 . 662409) (-1686 . 662381) - (-1687 . 662180) (-1688 . 662108) (-1689 . 661110) (-1690 . 661033) - (-1691 . 658252) (-1692 . 658113) (-1693 . 658002) (-1694 . 657879) - (-1695 . 657828) (-1696 . 653285) (-1697 . 653169) (-1698 . 653072) - (-1699 . 652814) (-1700 . 652699) (-1701 . 643249) (-1702 . 643136) - (-1703 . 643048) (-1704 . 642963) (-1705 . 642892) (-1706 . 642475) - (-1707 . 642426) (-1708 . 642367) (-1709 . 642261) (-1710 . 641945) - (-1711 . 641505) (-1712 . 641334) (-1713 . 641268) (-1714 . 641156) - (-1715 . 641097) (-1716 . 641029) (-1717 . 640932) (-1718 . 640816) - (-1719 . 640746) (-1720 . 640319) (-1721 . 640285) (-1722 . 640182) - (-1723 . 640019) (-1724 . 639945) (-1725 . 639838) (-1726 . 639804) - (-1727 . 639683) (-1728 . 639565) (-1729 . 639419) (-1730 . 639367) - (-1731 . 639170) (-1732 . 639072) (-1733 . 638865) (-1734 . 638816) - (-1735 . 638743) (-1736 . 638565) (-1737 . 638340) (-1738 . 638244) - (-1739 . 638126) (-1740 . 638031) (-1741 . 637941) (-1742 . 637478) - (-1743 . 637256) (-1744 . 637199) (-1745 . 637092) (-1746 . 636928) - (-1747 . 636800) (-1748 . 636723) (-1749 . 636615) (-1750 . 636558) - (-1751 . 636277) (-1752 . 636225) (-1753 . 636003) (-1754 . 635891) - (-1755 . 634110) (-1756 . 634014) (-1757 . 633771) (-1758 . 633168) - (-1759 . 632950) (-1760 . 632878) (-1761 . 632801) (-1762 . 632319) - (-1763 . 631724) (-1764 . 631506) (-1765 . 631415) (-1766 . 630901) - (-1767 . 630822) (-1768 . 630694) (-1769 . 630469) (-1770 . 630289) - (-1771 . 630163) (-1772 . 630014) (-1773 . 629799) (-1774 . 629651) - (-1775 . 629342) (-1776 . 629236) (-1777 . 615005) (-1778 . 614807) - (-1779 . 614603) (-1780 . 614500) (-1781 . 614359) (-1782 . 614306) - (-1783 . 613499) (-1784 . 612539) (-1785 . 612483) (-1786 . 612340) - (-1787 . 612220) (-1788 . 612105) (-1789 . 612010) (-1790 . 611718) - (-1791 . 611653) (-1792 . 611495) (-1793 . 611376) (-1794 . 610982) - (-1795 . 610858) (-1796 . 610299) (-1797 . 610165) (-1798 . 610115) - (-1799 . 610012) (-1800 . 605949) (-1801 . 605848) (-1802 . 605746) - (-1803 . 605636) (-1804 . 605044) (-1805 . 604970) (-1806 . 604826) - (-1807 . 604301) (-1808 . 604198) (-1809 . 603639) (-1810 . 603444) - (-1811 . 602953) (-1812 . 602873) (-1813 . 602732) (-1814 . 602661) - (-1815 . 602598) (-1816 . 602393) (-1817 . 602343) (-1818 . 602190) - (-1819 . 602137) (-1820 . 601964) (-1821 . 601912) (-1822 . 601779) - (-1823 . 601602) (-1824 . 601574) (-1825 . 601474) (-1826 . 601373) - (-1827 . 601236) (-1828 . 600592) (-1829 . 600539) (-1830 . 600392) - (-1831 . 600299) (-1832 . 600202) (-1833 . 600047) (-1834 . 599670) - (-1835 . 599230) (-1836 . 595563) (-1837 . 595506) (-1838 . 595405) - (-1839 . 594977) (-1840 . 594824) (-1841 . 594512) (-1842 . 593080) - (-1843 . 592721) (-1844 . 592608) (-1845 . 592492) (-1846 . 590147) - (-1847 . 590037) (-1848 . 589987) (-1849 . 589934) (-1850 . 589839) - (-1851 . 589695) (-1852 . 589618) (-1853 . 589489) (-1854 . 589410) - (-1855 . 589158) (-1856 . 588944) (-1857 . 588799) (-1858 . 588441) - (-1859 . 588409) (-1860 . 587526) (-1861 . 587290) (-1862 . 587238) - (-1863 . 587183) (-1864 . 586907) (-1865 . 586856) (-1866 . 586732) - (-1867 . 586559) (-1868 . 586325) (-1869 . 586273) (-1870 . 586160) - (-1871 . 586107) (-1872 . 585953) (-1873 . 584773) (-1874 . 584739) - (-1875 . 584635) (-1876 . 584555) (-1877 . 584364) (-1878 . 583983) - (-1879 . 583495) (-1880 . 582677) (-1881 . 582408) (-1882 . 581540) - (-1883 . 581478) (-1884 . 581407) (-1885 . 581273) (-1886 . 581178) - (-1887 . 580904) (-1888 . 580818) (-1889 . 580724) (-1890 . 580533) - (-1891 . 580460) (-1892 . 580379) (-1893 . 580210) (-1894 . 580100) - (-1895 . 580033) (-1896 . 579904) (-1897 . 579810) (-1898 . 579776) - (-1899 . 579693) (-1900 . 579637) (-1901 . 579569) (-1902 . 579388) - (-1903 . 579311) (-1904 . 579040) (-1905 . 578987) (-1906 . 578913) - (-1907 . 578487) (-1908 . 577285) (-1909 . 577188) (-1910 . 577072) - (-1911 . 576874) (-1912 . 576757) (-1913 . 576627) (-1914 . 576526) - (-1915 . 576105) (-1916 . 576017) (-1917 . 575706) (-1918 . 575622) - (-1919 . 575527) (-1920 . 575422) (-1921 . 575229) (-1922 . 574805) - (-1923 . 574722) (-1924 . 574489) (-1925 . 574334) (-1926 . 574253) - (-1927 . 574174) (-1928 . 574107) (-1929 . 573856) (-1930 . 573618) - (-1931 . 573537) (-1932 . 573311) (-1933 . 573233) (-1934 . 573135) - (-1935 . 573069) (-1936 . 572899) (-1937 . 572847) (-1938 . 572764) - (-1939 . 572698) (-1940 . 571400) (-1941 . 571317) (-1942 . 571109) - (-1943 . 571035) (-1944 . 570938) (-1945 . 570852) (-1946 . 570707) - (-1947 . 570431) (-1948 . 569998) (-1949 . 569945) (-1950 . 569787) - (-1951 . 569710) (-1952 . 569639) (-1953 . 569567) (-1954 . 568907) - (-1955 . 568583) (-1956 . 568551) (-1957 . 568163) (-1958 . 568054) - (-1959 . 567995) (-1960 . 567842) (-1961 . 567790) (-1962 . 567717) - (-1963 . 567635) (-1964 . 567480) (-1965 . 567423) (-1966 . 567105) - (-1967 . 566872) (-1968 . 566801) (-1969 . 566720) (-1970 . 566513) - (-1971 . 566397) (-1972 . 566022) (-1973 . 565881) (-1974 . 565717) - (-1975 . 565689) (-1976 . 565443) (-1977 . 565372) (-1978 . 565163) - (-1979 . 564596) (-1980 . 564373) (-1981 . 564302) (-1982 . 564219) - (-1983 . 564146) (-1984 . 564065) (-1985 . 564012) (-1986 . 563859) - (-1987 . 563773) (-1988 . 563705) (-1989 . 563284) (-1990 . 563169) - (-1991 . 562889) (-1992 . 562815) (-1993 . 562738) (-1994 . 562405) - (-1995 . 562044) (-1996 . 561841) (-1997 . 561457) (-1998 . 561104) - (-1999 . 561039) (-2000 . 560965) (-2001 . 560912) (-2002 . 560855) - (-2003 . 560773) (-2004 . 560596) (-2005 . 560534) (-2006 . 560295) - (-2007 . 558999) (-2008 . 558879) (-2009 . 558563) (-2010 . 558462) - (-2011 . 558341) (-2012 . 558213) (-2013 . 558160) (-2014 . 558108) - (-2015 . 558021) (-2016 . 557965) (-2017 . 557620) (-2018 . 557512) - (-2019 . 557332) (-2020 . 557149) (-2021 . 556515) (-2022 . 556442) - (-2023 . 556263) (-2024 . 556165) (-2025 . 556010) (-2026 . 555906) - (-2027 . 555836) (-2028 . 555641) (-2029 . 555529) (-2030 . 555327) - (-2031 . 554919) (-2032 . 554273) (-2033 . 554195) (-2034 . 554167) - (-2035 . 553875) (-2036 . 553763) (-2037 . 553561) (-2038 . 553483) - (-2039 . 553265) (-2040 . 553147) (-2041 . 553036) (-2042 . 552784) - (-2043 . 552689) (-2044 . 552097) (-2045 . 552020) (-2046 . 551907) - (-2047 . 551807) (-2048 . 551736) (-2049 . 551685) (-2050 . 550504) - (-2051 . 550361) (-2052 . 550170) (-2053 . 550118) (-2054 . 550032) - (-2055 . 549665) (-2056 . 549521) (-2057 . 549424) (-2058 . 549061) - (-2059 . 548885) (-2060 . 548789) (-2061 . 548659) (-2062 . 548509) - (-2063 . 547542) (-2064 . 547447) (-2065 . 547376) (-2066 . 547105) - (-2067 . 547052) (-2068 . 547000) (-2069 . 546945) (-2070 . 546890) - (-2071 . 546617) (-2072 . 546138) (-2073 . 546055) (-2074 . 545714) - (-2075 . 545605) (-2076 . 545546) (-2077 . 545374) (-2078 . 545272) - (-2079 . 544853) (-2080 . 544726) (-2081 . 544657) (-2082 . 544583) - (-2083 . 544268) (-2084 . 544208) (-2085 . 544156) (-2086 . 544088) - (-2087 . 544023) (-2088 . 543859) (-2089 . 543146) (-2090 . 543118) - (-2091 . 542714) (-2092 . 542628) (-2093 . 542325) (-2094 . 542010) - (-2095 . 541940) (-2096 . 541812) (-2097 . 541553) (-2098 . 541488) - (-2099 . 541249) (-2100 . 540760) (-2101 . 540623) (-2102 . 540504) - (-2103 . 540448) (-2104 . 540226) (-2105 . 540152) (-2106 . 540097) - (-2107 . 540038) (-2108 . 539985) (-2109 . 539887) (-2110 . 539664) - (-2111 . 539563) (-2112 . 539459) (-2113 . 539210) (-2114 . 539127) - (-2115 . 538948) (-2116 . 538860) (-2117 . 538315) (-2118 . 538262) - (-2119 . 537619) (-2120 . 537533) (-2121 . 537358) (-2122 . 533695) - (-2123 . 533552) (-2124 . 533456) (-2125 . 532978) (-2126 . 532678) - (-2127 . 532092) (-2128 . 531125) (-2129 . 531076) (-2130 . 530783) - (-2131 . 530194) (-2132 . 529878) (-2133 . 529604) (-2134 . 529384) - (-2135 . 529029) (-2136 . 528927) (-2137 . 528817) (-2138 . 528743) - (-2139 . 528691) (-2140 . 528524) (-2141 . 528398) (-2142 . 528276) - (-2143 . 528203) (-2144 . 528117) (-2145 . 527870) (-2146 . 527817) - (-2147 . 527707) (-2148 . 527241) (-2149 . 527175) (-2150 . 527015) - (-2151 . 526848) (-2152 . 526746) (-2153 . 526568) (-2154 . 526496) - (-2155 . 526033) (-2156 . 525970) (-2157 . 525876) (-2158 . 525506) - (-2159 . 525228) (-2160 . 525168) (-2161 . 524861) (-2162 . 524738) - (-2163 . 524648) (-2164 . 524503) (-2165 . 524016) (-2166 . 523932) - (-2167 . 523790) (-2168 . 523424) (-2169 . 523371) (-2170 . 523315) - (-2171 . 523245) (-2172 . 522852) (-2173 . 522537) (-2174 . 521836) - (-2175 . 521657) (-2176 . 521591) (-2177 . 521531) (-2178 . 521435) - (-2179 . 521333) (-2180 . 521226) (-2181 . 521173) (-2182 . 519317) - (-2183 . 519212) (-2184 . 519050) (-2185 . 518926) (-2186 . 518846) - (-2187 . 518486) (-2188 . 518373) (-2189 . 518127) (-2190 . 518032) - (-2191 . 517895) (-2192 . 517584) (-2193 . 517523) (-2194 . 516939) - (-2195 . 516823) (-2196 . 516608) (-2197 . 516483) (-2198 . 516237) - (-2199 . 512237) (-2200 . 512176) (-2201 . 512062) (-2202 . 511980) - (-2203 . 511855) (-2204 . 511763) (-2205 . 511675) (-2206 . 506336) - (-2207 . 506196) (-2208 . 506109) (-2209 . 505943) (-2210 . 505857) - (-2211 . 505802) (-2212 . 505238) (-2213 . 504359) (-2214 . 504227) - (-2215 . 504168) (-2216 . 503961) (-2217 . 502384) (-2218 . 502094) - (-2219 . 501963) (-2220 . 501913) (-2221 . 501620) (-2222 . 501567) - (-2223 . 501384) (-2224 . 501137) (-2225 . 500982) (-2226 . 500865) - (-2227 . 500136) (-2228 . 500006) (-2229 . 499366) (-2230 . 499217) - (-2231 . 499140) (-2232 . 499054) (-2233 . 498995) (-2234 . 498936) - (-2235 . 498844) (-2236 . 497058) (-2237 . 496329) (-2238 . 496248) - (-2239 . 496100) (-2240 . 495993) (-2241 . 494915) (-2242 . 494688) - (-2243 . 494552) (-2244 . 494302) (-2245 . 494037) (-2246 . 493945) - (-2247 . 493269) (-2248 . 493188) (-2249 . 493080) (-2250 . 492936) - (-2251 . 492722) (-2252 . 492668) (-2253 . 492567) (-2254 . 492287) - (-2255 . 492201) (-2256 . 491637) (-2257 . 491248) (-2258 . 491069) - (-2259 . 490992) (-2260 . 490648) (-2261 . 490344) (-2262 . 490264) - (-2263 . 490165) (-2264 . 490052) (-2265 . 489844) (-2266 . 489758) - (-2267 . 489194) (-2268 . 489099) (-2269 . 488691) (-2270 . 488663) - (-2271 . 488635) (-2272 . 488529) (-2273 . 488457) (-2274 . 488379) - (-2275 . 487815) (-2276 . 487758) (-2277 . 487416) (-2278 . 487320) - (-2279 . 487140) (-2280 . 487058) (-2281 . 486984) (-2282 . 486932) - (-2283 . 486833) (-2284 . 486574) (-2285 . 486454) (-2286 . 486335) - (-2287 . 485661) (-2288 . 485518) (-2289 . 485021) (-2290 . 484872) - (-2291 . 484820) (-2292 . 484677) (-2293 . 484603) (-2294 . 484270) - (-2295 . 484239) (-2296 . 484162) (-2297 . 483488) (-2298 . 483387) - (-2299 . 483353) (-2300 . 483257) (-2301 . 482998) (-2302 . 482946) - (-2303 . 482844) (-2304 . 482737) (-2305 . 482000) (-2306 . 481625) - (-2307 . 481574) (-2308 . 481471) (-2309 . 481393) (-2310 . 481058) - (-2311 . 480937) (-2312 . 480827) (-2313 . 480732) (-2314 . 480644) - (-2315 . 480082) (-2316 . 479994) (-2317 . 479887) (-2318 . 479726) - (-2319 . 479623) (-2320 . 479570) (-2321 . 479385) (-2322 . 479308) - (-2323 . 479241) (-2324 . 479125) (-2325 . 478563) (-2326 . 478424) - (-2327 . 478341) (-2328 . 478216) (-2329 . 478143) (-2330 . 478042) - (-2331 . 477278) (-2332 . 477096) (-2333 . 476801) (-2334 . 476239) - (-2335 . 475980) (-2336 . 475906) (-2337 . 475850) (-2338 . 475781) - (-2339 . 475625) (-2340 . 475566) (-2341 . 475056) (-2342 . 474893) - (-2343 . 474218) (-2344 . 474059) (-2345 . 473882) (-2346 . 473742) - (-2347 . 473611) (-2348 . 473548) (-2349 . 473463) (-2350 . 473326) - (-2351 . 473248) (-2352 . 472573) (-2353 . 472516) (-2354 . 472146) - (-2355 . 472006) (-2356 . 471835) (-2357 . 471483) (-2358 . 471409) - (-2359 . 471327) (-2360 . 471212) (-2361 . 471135) (-2362 . 471082) - (-2363 . 470751) (-2364 . 470076) (-2365 . 469892) (-2366 . 469746) - (-2367 . 469607) (-2368 . 469553) (-2369 . 469479) (-2370 . 469424) - (-2371 . 469358) (-2372 . 469200) (-2373 . 469073) (-2374 . 468949) - (-2375 . 468386) (-2376 . 468198) (-2377 . 468038) (-2378 . 467656) - (-2379 . 460713) (-2380 . 460456) (-2381 . 460194) (-2382 . 460057) - (-2383 . 459921) (-2384 . 459861) (-2385 . 459429) (-2386 . 459346) - (-2387 . 459223) (-2388 . 459108) (-2389 . 458545) (-2390 . 458310) - (-2391 . 457633) (-2392 . 457458) (-2393 . 457326) (-2394 . 457225) - (-2395 . 457172) (-2396 . 456983) (-2397 . 456875) (-2398 . 456756) - (-2399 . 456701) (-2400 . 456622) (-2401 . 456565) (-2402 . 456002) - (-2403 . 455895) (-2404 . 455681) (-2405 . 455591) (-2406 . 455534) - (-2407 . 455451) (-2408 . 455368) (-2409 . 455215) (-2410 . 455009) - (-2411 . 454891) (-2412 . 454808) (-2413 . 454740) (-2414 . 454178) - (-2415 . 453570) (-2416 . 453440) (-2417 . 453250) (-2418 . 453123) - (-2419 . 453044) (-2420 . 452884) (-2421 . 452829) (-2422 . 452721) - (-2423 . 452569) (-2424 . 452451) (-2425 . 452371) (-2426 . 452342) - (-2427 . 452206) (-2428 . 451644) (-2429 . 451396) (-2430 . 451238) - (-2431 . 451080) (-2432 . 450920) (-2433 . 450892) (-2434 . 450755) - (-2435 . 450630) (-2436 . 450598) (-2437 . 450538) (-2438 . 450394) - (-2439 . 450299) (-2440 . 450247) (-2441 . 449685) (-2442 . 449603) - (-2443 . 448946) (-2444 . 448894) (-2445 . 448712) (-2446 . 448166) - (-2447 . 448104) (-2448 . 448038) (-2449 . 447811) (-2450 . 447678) - (-2451 . 447590) (-2452 . 447028) (-2453 . 446935) (-2454 . 446635) - (-2455 . 446243) (-2456 . 446191) (-2457 . 446105) (-2458 . 445873) - (-2459 . 445794) (-2460 . 445641) (-2461 . 445519) (-2462 . 445423) - (-2463 . 445220) (-2464 . 445122) (-2465 . 444560) (-2466 . 444230) - (-2467 . 444177) (-2468 . 444091) (-2469 . 443797) (-2470 . 443674) - (-2471 . 443422) (-2472 . 443327) (-2473 . 442848) (-2474 . 442090) - (-2475 . 441951) (-2476 . 441521) (-2477 . 441333) (-2478 . 441278) - (-2479 . 441136) (-2480 . 440956) (-2481 . 440811) (-2482 . 440759) - (-2483 . 440587) (-2484 . 440316) (-2485 . 440042) (-2486 . 439888) - (-2487 . 439835) (-2488 . 439733) (-2489 . 439518) (-2490 . 439389) - (-2491 . 439287) (-2492 . 439235) (-2493 . 439136) (-2494 . 439002) - (-2495 . 438902) (-2496 . 438730) (-2497 . 438661) (-2498 . 438527) - (-2499 . 438111) (-2500 . 437730) (-2501 . 437673) (-2502 . 437620) - (-2503 . 437370) (-2504 . 437341) (-2505 . 437244) (-2506 . 437152) - (-2507 . 437120) (-2508 . 436948) (-2509 . 436818) (-2510 . 436707) - (-2511 . 436636) (-2512 . 436513) (-2513 . 436428) (-2514 . 436099) - (-2515 . 435926) (-2516 . 435667) (-2517 . 435287) (-2518 . 435227) - (-2519 . 435177) (-2520 . 435005) (-2521 . 434443) (-2522 . 434348) - (-2523 . 434100) (-2524 . 433618) (-2525 . 433460) (-2526 . 433367) - (-2527 . 433280) (-2528 . 432892) (-2529 . 432444) (-2530 . 431933) - (-2531 . 431688) (-2532 . 431510) (-2533 . 430312) (-2534 . 430106) - (-2535 . 429900) (-2536 . 429832) (-2537 . 429719) (-2538 . 429664) - (-2539 . 429417) (-2540 . 429293) (-2541 . 429166) (-2542 . 429099) - (-2543 . 429028) (-2544 . 428693) (-2545 . 428414) (-2546 . 428340) - (-2547 . 428118) (-2548 . 427230) (-2549 . 427071) (-2550 . 426997) - (-2551 . 426437) (-2552 . 426382) (-2553 . 426216) (-2554 . 426048) - (-2555 . 425982) (-2556 . 425851) (-2557 . 425823) (-2558 . 425768) - (-2559 . 425671) (-2560 . 425587) (-2561 . 425489) (-2562 . 425406) - (-2563 . 425276) (-2564 . 425131) (-2565 . 425018) (-2566 . 424990) - (-2567 . 424937) (-2568 . 424490) (-2569 . 424219) (-2570 . 424076) - (-2571 . 422924) (-2572 . 422717) (-2573 . 422522) (-2574 . 422438) - (-2575 . 422220) (-2576 . 421893) (-2577 . 421798) (-2578 . 421600) - (-2579 . 421527) (-2580 . 420994) (-2581 . 420456) (-2582 . 420277) - (-2583 . 420218) (-2584 . 420115) (-2585 . 420032) (-2586 . 419966) - (-2587 . 419825) (-2588 . 419721) (-2589 . 418275) (-2590 . 417922) - (-2591 . 417804) (-2592 . 417674) (-2593 . 417567) (-2594 . 417462) - (-2595 . 417405) (-2596 . 417339) (-2597 . 416893) (-2598 . 416608) - (-2599 . 416535) (-2600 . 416398) (-2601 . 416183) (-2602 . 416002) - (-2603 . 415943) (-2604 . 415877) (-2605 . 415803) (-2606 . 415644) - (-2607 . 415464) (-2608 . 415208) (-2609 . 415128) (-2610 . 415065) - (-2611 . 414797) (-2612 . 414668) (-2613 . 414615) (-2614 . 414440) - (-2615 . 414368) (-2616 . 414269) (-2617 . 414159) (-2618 . 414104) - (-2619 . 413848) (-2620 . 413701) (-2621 . 413515) (-2622 . 413462) - (-2623 . 413145) (-2624 . 413030) (-2625 . 412645) (-2626 . 412560) - (-2627 . 412335) (-2628 . 412117) (-2629 . 412035) (-2630 . 411789) - (-2631 . 411679) (-2632 . 411501) (-2633 . 411364) (-2634 . 411211) - (-2635 . 411111) (-2636 . 410977) (-2637 . 410897) (-2638 . 410721) - (-2639 . 410619) (-2640 . 410550) (-2641 . 410468) (-2642 . 410416) - (-2643 . 410338) (-2644 . 410272) (-2645 . 409154) (-2646 . 405204) - (-2647 . 405080) (-2648 . 404845) (-2649 . 404765) (-2650 . 404645) - (-2651 . 404571) (-2652 . 404442) (-2653 . 404203) (-2654 . 404150) - (-2655 . 404083) (-2656 . 404049) (-2657 . 403912) (-2658 . 403764) - (-2659 . 402974) (-2660 . 402317) (-2661 . 402015) (-2662 . 401861) - (-2663 . 401504) (-2664 . 401418) (-2665 . 401322) (-2666 . 401032) - (-2667 . 400792) (-2668 . 400627) (-2669 . 400531) (-2670 . 400408) - (-2671 . 400064) (-2672 . 399687) (-2673 . 399635) (-2674 . 399579) - (-2675 . 399332) (-2676 . 399233) (-2677 . 399155) (-2678 . 398846) - (-2679 . 398727) (-2680 . 398644) (-2681 . 398183) (-2682 . 397656) - (-2683 . 396783) (-2684 . 396465) (-2685 . 396364) (-2686 . 396211) - (-2687 . 395993) (-2688 . 395852) (-2689 . 395739) (-2690 . 395644) - (-2691 . 395200) (-2692 . 394871) (-2693 . 394664) (-2694 . 394526) - (-2695 . 394352) (-2696 . 394164) (-2697 . 394070) (-2698 . 393982) - (-2699 . 393932) (-2700 . 393777) (-2701 . 393722) (-2702 . 393627) - (-2703 . 393524) (-2704 . 393429) (-2705 . 393326) (-2706 . 393116) - (-2707 . 392670) (-2708 . 392572) (-2709 . 392206) (-2710 . 392068) - (-2711 . 391915) (-2712 . 391236) (-2713 . 390171) (-2714 . 389773) - (-2715 . 389689) (-2716 . 389404) (-2717 . 388926) (-2718 . 388744) - (-2719 . 388692) (-2720 . 388549) (-2721 . 388382) (-2722 . 388269) - (-2723 . 387983) (-2724 . 387900) (-2725 . 387673) (-2726 . 387542) - (-2727 . 387358) (-2728 . 387264) (-2729 . 387137) (-2730 . 387075) - (-2731 . 386922) (-2732 . 386861) (-2733 . 386784) (-2734 . 386551) - (-2735 . 386351) (-2736 . 386140) (-2737 . 385543) (-2738 . 385457) - (-2739 . 385335) (-2740 . 385229) (-2741 . 385127) (-2742 . 384965) - (-2743 . 384905) (-2744 . 384853) (-2745 . 384693) (-2746 . 384641) - (-2747 . 383801) (-2748 . 383759) (-2749 . 383706) (-2750 . 383623) - (-2751 . 383302) (-2752 . 383103) (-2753 . 382905) (-2754 . 382853) - (-2755 . 382243) (-2756 . 381995) (-2757 . 381939) (-2758 . 381712) - (-2759 . 381562) (-2760 . 381348) (-2761 . 381263) (-2762 . 381212) - (-2763 . 381109) (-2764 . 380949) (-2765 . 380882) (-2766 . 380674) - (-2767 . 380555) (-2768 . 380431) (-2769 . 380363) (-2770 . 379987) - (-2771 . 379556) (-2772 . 379013) (-2773 . 378761) (-2774 . 378608) - (-2775 . 378440) (-2776 . 378381) (-2777 . 378106) (-2778 . 377520) - (-2779 . 377327) (-2780 . 377195) (-2781 . 377080) (-2782 . 376947) - (-2783 . 376861) (-2784 . 376740) (-2785 . 376551) (-2786 . 376454) - (-2787 . 376283) (-2788 . 376080) (-2789 . 376012) (-2790 . 375568) - (-2791 . 375445) (-2792 . 375377) (-2793 . 375234) (-2794 . 375106) - (-2795 . 374819) (-2796 . 373855) (-2797 . 373758) (-2798 . 371343) - (-2799 . 370757) (-2800 . 370552) (-2801 . 370524) (-2802 . 370378) - (-2803 . 370322) (-2804 . 370148) (-2805 . 369949) (-2806 . 369872) - (-2807 . 369815) (-2808 . 369570) (-2809 . 369309) (-2810 . 369185) - (-2811 . 369066) (-2812 . 368781) (-2813 . 368658) (-2814 . 368602) - (-2815 . 368531) (-2816 . 368474) (-2817 . 368401) (-2818 . 368229) - (-2819 . 367948) (-2820 . 367325) (-2821 . 367259) (-2822 . 367187) - (-2823 . 367012) (-2824 . 366873) (-2825 . 366710) (-2826 . 366626) - (-2827 . 365353) (-2828 . 365302) (-2829 . 365177) (-2830 . 364261) - (-12 . 364089) (-2832 . 364002) (-2833 . 363898) (-2834 . 363846) - (-2835 . 363748) (-2836 . 363720) (-2837 . 363664) (-2838 . 362803) - (-2839 . 362638) (-2840 . 362482) (-2841 . 362353) (-2842 . 361975) - (-2843 . 361947) (-2844 . 361728) (-2845 . 361634) (-2846 . 360291) - (-2847 . 360219) (-2848 . 360115) (-2849 . 360028) (-2850 . 359958) - (-2851 . 359803) (-2852 . 359376) (-2853 . 358949) (-2854 . 358107) - (-2855 . 358042) (-2856 . 357942) (-2857 . 357883) (-2858 . 357736) - (-2859 . 357657) (-2860 . 357266) (-2861 . 356874) (-2862 . 356536) - (-2863 . 356119) (-2864 . 355987) (-2865 . 355921) (-2866 . 355868) - (-2867 . 355771) (-2868 . 352162) (-2869 . 351860) (-2870 . 351805) - (-2871 . 351693) (-2872 . 350990) (-2873 . 349888) (-2874 . 349802) - (-2875 . 349701) (-2876 . 348958) (-2877 . 348927) (-2878 . 348836) - (-2879 . 348017) (-2880 . 347965) (-2881 . 347665) (-2882 . 347566) - (-2883 . 347538) (-2884 . 347416) (-2885 . 347306) (-2886 . 347116) - (-2887 . 346975) (-2888 . 346804) (-2889 . 346661) (-2890 . 346213) - (-2891 . 346032) (-2892 . 345851) (-2893 . 345678) (-2894 . 345430) - (-2895 . 345212) (-2896 . 345139) (-2897 . 344722) (-2898 . 344549) - (-2899 . 344411) (-2900 . 344298) (-2901 . 343907) (-2902 . 343806) - (-2903 . 343739) (-2904 . 343477) (-2905 . 343325) (-2906 . 343266) - (-2907 . 343126) (-2908 . 343024) (-2909 . 342950) (-2910 . 342793) - (-2911 . 342427) (-2912 . 342393) (-2913 . 342270) (-2914 . 341836) - (-2915 . 341223) (-2916 . 341171) (-2917 . 341093) (-2918 . 340991) - (-2919 . 340895) (-2920 . 340793) (-2921 . 340153) (-2922 . 339928) - (-2923 . 339724) (-2924 . 339636) (-2925 . 339602) (-2926 . 339175) - (-2927 . 338968) (-2928 . 338830) (-2929 . 338196) (-2930 . 338112) - (-2931 . 338040) (-2932 . 337884) (-2933 . 337646) (-2934 . 337330) - (-2935 . 337145) (-2936 . 336630) (-2937 . 336574) (-2938 . 336419) - (-2939 . 336223) (-2940 . 336070) (-2941 . 335996) (-2942 . 335899) - (-2943 . 317324) (* . 313057) (-2945 . 312968) (-2946 . 312708) - (-2947 . 312444) (-2948 . 312350) (-2949 . 312192) (-2950 . 312097) - (-2951 . 311567) (-2952 . 311508) (-2953 . 311405) (-2954 . 311346) - (-2955 . 311024) (-2956 . 308203) (-2957 . 308136) (-2958 . 307959) - (-2959 . 307157) (-2960 . 307100) (-2961 . 307012) (-2962 . 306601) - (-2963 . 306507) (-2964 . 306365) (-2965 . 306301) (-2966 . 305597) - (-2967 . 305432) (-2968 . 305339) (-2969 . 305244) (-2970 . 304633) - (-2971 . 304515) (-2972 . 304263) (-2973 . 303967) (-2974 . 303631) - (-2975 . 303391) (-2976 . 303339) (-2977 . 302658) (-2978 . 302588) - (-2979 . 302499) (-2980 . 302398) (-2981 . 302126) (-2982 . 302044) - (-2983 . 301963) (-2984 . 301892) (-2985 . 301638) (-2986 . 301541) - (-2987 . 301467) (-2988 . 301409) (-2989 . 301078) (-2990 . 300972) - (-2991 . 300693) (-2992 . 300641) (-2993 . 300556) (-2994 . 300451) - (-2995 . 300385) (-2996 . 300354) (-2997 . 300162) (-2998 . 299716) - (-2999 . 299507) (-3000 . 299254) (-3001 . 299167) (-3002 . 299115) - (-3003 . 299015) (-3004 . 298962) (-3005 . 298800) (-3006 . 298648) - (-3007 . 298417) (-3008 . 298321) (-3009 . 298122) (-3010 . 298063) - (-3011 . 297885) (-3012 . 297427) (-3013 . 297227) (-3014 . 297061) - (-3015 . 296920) (-3016 . 296786) (-3017 . 296657) (-3018 . 296570) - (-3019 . 296475) (-3020 . 296418) (-3021 . 296242) (-3022 . 296101) - (-3023 . 295874) (-3024 . 295790) (-3025 . 295626) (-3026 . 295568) - (-3027 . 295540) (-3028 . 295491) (-3029 . 295417) (-3030 . 295258) - (-3031 . 295115) (-3032 . 295056) (-3033 . 294953) (-3034 . 294884) - (-3035 . 294769) (-3036 . 294653) (-3037 . 294569) (-3038 . 294502) - (-3039 . 294368) (-3040 . 294227) (-3041 . 294198) (-3042 . 294111) - (-3043 . 294045) (-3044 . 293974) (-3045 . 293946) (-3046 . 293841) - (-3047 . 293685) (-3048 . 293657) (-3049 . 293515) (-3050 . 293432) - (-3051 . 293373) (-3052 . 293317) (-3053 . 293193) (-3054 . 293116) - (-3055 . 293082) (-3056 . 293011) (-3057 . 292934) (-3058 . 292833) - (-3059 . 292739) (-3060 . 292534) (-3061 . 292199) (-3062 . 292113) - (-3063 . 291863) (-3064 . 291742) (-3065 . 289964) (-3066 . 289892) - (-3067 . 289762) (-3068 . 289516) (-3069 . 289134) (-3070 . 289082) - (-3071 . 288950) (-3072 . 288897) (-3073 . 288770) (-3074 . 288742) - (-3075 . 288586) (-3076 . 288434) (-3077 . 288180) (-3078 . 287443) - (-3079 . 286257) (-3080 . 286029) (-3081 . 285863) (-3082 . 285835) - (-3083 . 285522) (-3084 . 285409) (-3085 . 285340) (-3086 . 285288) - (-3087 . 283699) (-3088 . 283671) (-3089 . 282750) (-3090 . 282613) - (-3091 . 282277) (-3092 . 282100) (-3093 . 281901) (-3094 . 280719) - (-3095 . 280653) (-3096 . 280601) (-3097 . 280093) (-3098 . 280041) - (-3099 . 279959) (-3100 . 279848) (-3101 . 279711) (-3102 . 279531) - (-3103 . 279432) (-3104 . 279332) (-3105 . 279178) (-3106 . 279099) - (-3107 . 279033) (-3108 . 276825) (-3109 . 276566) (-3110 . 276393) - (-3111 . 276322) (-3112 . 276267) (-3113 . 276128) (-3114 . 276076) - (-3115 . 275975) (-3116 . 275871) (-3117 . 275794) (-3118 . 275565) - (-3119 . 274339) (-3120 . 274254) (-3121 . 274146) (-3122 . 273854) - (-3123 . 273794) (-3124 . 273662) (-3125 . 273588) (-3126 . 273515) - (-3127 . 273416) (-3128 . 273335) (-3129 . 273280) (-3130 . 273167) - (-3131 . 272944) (-3132 . 272694) (-3133 . 272515) (-3134 . 272277) - (-3135 . 272113) (-3136 . 271927) (-3137 . 270704) (-3138 . 270217) - (-3139 . 270077) (-3140 . 269790) (-3141 . 269721) (-3142 . 269249) - (-3143 . 267945) (-3144 . 267768) (-3145 . 267644) (-3146 . 267485) - (-3147 . 267414) (-3148 . 267291) (-3149 . 267203) (-3150 . 267143) - (-3151 . 267000) (-3152 . 266914) (-3153 . 266861) (-3154 . 266810) - (-3155 . 266642) (-3156 . 266546) (-3157 . 266494) (-3158 . 266389) - (-3159 . 265903) (-3160 . 265611) (-3161 . 265319) (-3162 . 264017) - (-3163 . 263859) (-3164 . 263755) (-3165 . 263590) (-3166 . 263502) - (-3167 . 263175) (-3168 . 263017) (-3169 . 262859) (-3170 . 262733) - (-3171 . 262576) (-3172 . 262477) (-3173 . 262241) (-3174 . 261762) - (-3175 . 261676) (-3176 . 261552) (-3177 . 261446) (-3178 . 261115) - (-3179 . 260965) (-3180 . 260454) (-3181 . 260388) (-3182 . 260208) - (-3183 . 260080) (-3184 . 259985) (-3185 . 259819) (-3186 . 259711) - (-3187 . 259571) (-3188 . 259498) (-3189 . 259432) (-3190 . 259324) - (-3191 . 258973) (-3192 . 258449) (-3193 . 258354) (-3194 . 257358) - (-3195 . 257302) (-3196 . 257134) (-3197 . 256798) (-3198 . 256739) - (-3199 . 256452) (-3200 . 256290) (-3201 . 256173) (-3202 . 256107) - (-3203 . 256027) (-3204 . 255962) (-3205 . 255841) (-3206 . 255614) - (-3207 . 255486) (-3208 . 255315) (-3209 . 255209) (-3210 . 255129) - (-3211 . 255010) (-3212 . 254770) (-3213 . 254741) (-3214 . 254338) - (-3215 . 254108) (-3216 . 253762) (-3217 . 253676) (-3218 . 253608) - (-3219 . 253482) (-3220 . 253094) (-3221 . 252975) (-3222 . 252889) - (-3223 . 252775) (-3224 . 252681) (-3225 . 251839) (-3226 . 251721) - (-3227 . 251563) (-3228 . 251383) (-3229 . 251331) (-3230 . 251243) - (-3231 . 251098) (-3232 . 251020) (-3233 . 250917) (-3234 . 250864) - (-3235 . 250780) (-3236 . 250562) (-3237 . 249978) (-3238 . 249708) - (-3239 . 249615) (-3240 . 249483) (-3241 . 249382) (-3242 . 249112) - (-3243 . 249017) (-3244 . 248945) (-3245 . 248821) (-3246 . 248735) - (-3247 . 248639) (-3248 . 248281) (-3249 . 248011) (-3250 . 247908) - (-3251 . 247876) (-3252 . 247763) (-3253 . 247259) (-3254 . 247171) - (-3255 . 247053) (-3256 . 246953) (-3257 . 246894) (-3258 . 246780) - (-3259 . 246703) (-3260 . 246509) (-3261 . 246287) (-3262 . 246152) - (-3263 . 245825) (-3264 . 245673) (-3265 . 245614) (-3266 . 245456) - (-3267 . 245269) (-3268 . 245241) (-3269 . 245172) (-3270 . 245095) - (-3271 . 244959) (-3272 . 244880) (-3273 . 244765) (-3274 . 244669) - (-3275 . 244502) (-3276 . 244424) (-3277 . 244328) (-3278 . 244273) - (-3279 . 244160) (-3280 . 243845) (-3281 . 243638) (-3282 . 243546) - (-3283 . 243452) (-3284 . 243396) (-3285 . 243290) (-3286 . 242968) - (-3287 . 242810) (-3288 . 242597) (-3289 . 242569) (-3290 . 242398) - (-3291 . 242151) (-3292 . 242053) (-3293 . 241797) (-3294 . 241694) - (-3295 . 241396) (-3296 . 241310) (-3297 . 240926) (-3298 . 240797) - (-3299 . 240745) (-3300 . 240622) (-3301 . 240515) (-3302 . 240379) - (-3303 . 240327) (-3304 . 240134) (-3305 . 240079) (-3306 . 239459) - (-3307 . 239083) (-3308 . 238690) (-3309 . 238600) (-3310 . 238256) - (-3311 . 238171) (-3312 . 238008) (-3313 . 237927) (-3314 . 237173) - (-3315 . 237113) (-3316 . 237029) (-3317 . 236630) (-3318 . 236596) - (-3319 . 236568) (-3320 . 236472) (-3321 . 236312) (-3322 . 236240) - (-3323 . 236132) (-3324 . 236036) (-3325 . 235892) (-3326 . 235819) - (-3327 . 235223) (-3328 . 234772) (-3329 . 234410) (-3330 . 234231) - (-3331 . 234133) (-3332 . 234047) (-3333 . 233862) (-3334 . 233751) - (-3335 . 233152) (-3336 . 233054) (-3337 . 232951) (-3338 . 232857) - (-3339 . 232795) (-3340 . 232742) (-3341 . 232448) (-3342 . 232399) - (-3343 . 232278) (-3344 . 232226) (-3345 . 232011) (-3346 . 231938) - (-3347 . 231866) (-3348 . 231655) (-3349 . 231601) (-3350 . 231359) - (-3351 . 231278) (-3352 . 231156) (-3353 . 231077) (-3354 . 230950) - (-3355 . 230658) (-3356 . 230516) (-3357 . 229942) (-3358 . 229359) - (-3359 . 229028) (-3360 . 228654) (-3361 . 228508) (-3362 . 228455) - (-3363 . 228283) (-3364 . 228115) (-3365 . 228020) (-3366 . 227787) - (-3367 . 227692) (-3368 . 227553) (-3369 . 227415) (-3370 . 227359) - (-3371 . 227237) (-3372 . 227151) (-3373 . 226986) (-3374 . 226248) - (-3375 . 226116) (-3376 . 226021) (-3377 . 225491) (-3378 . 225339) - (-3379 . 225221) (-3380 . 225161) (-3381 . 225066) (-3382 . 224915) - (-3383 . 224705) (-3384 . 224634) (-3385 . 224574) (-3386 . 224500) - (-3387 . 224398) (-3388 . 224215) (-3389 . 224163) (-3390 . 224039) - (-3391 . 223637) (-3392 . 223263) (-3393 . 223175) (-3394 . 222955) - (-3395 . 222874) (-3396 . 222758) (-3397 . 222705) (-3398 . 222569) - (-3399 . 222373) (-3400 . 222317) (-3401 . 222211) (-3402 . 221824) - (-3403 . 221073) (-3404 . 220485) (-3405 . 220433) (-3406 . 220330) - (-3407 . 220257) (-3408 . 220134) (-3409 . 220068) (-3410 . 219961) - (-3411 . 219910) (-3412 . 219840) (-3413 . 219481) (-3414 . 219362) - (-3415 . 219313) (-3416 . 218795) (-3417 . 218743) (-3418 . 218670) - (-3419 . 218529) (-3420 . 218310) (-3421 . 218210) (-3422 . 218132) - (-3423 . 217987) (-3424 . 217901) (-3425 . 217759) (-3426 . 217225) - (-3427 . 217091) (-3428 . 217063) (-3429 . 216998) (-3430 . 216907) - (-3431 . 216837) (-3432 . 216768) (-3433 . 216449) (-3434 . 215232) - (-3435 . 215090) (-3436 . 214910) (-3437 . 214816) (-3438 . 214764) - (-3439 . 214667) (-3440 . 214511) (-3441 . 214389) (-3442 . 214357) - (-3443 . 214267) (-3444 . 214138) (-3445 . 213068) (-3446 . 212716) - (-3447 . 212620) (-3448 . 212226) (-3449 . 211566) (-3450 . 210304) - (-3451 . 210005) (-3452 . 209895) (-3453 . 209807) (-3454 . 209752) - (-3455 . 209633) (-3456 . 209560) (-3457 . 209442) (-3458 . 209149) - (-3459 . 209080) (-3460 . 208849) (-3461 . 208799) (-3462 . 208719) - (-3463 . 208667) (-3464 . 208572) (-3465 . 208354) (-3466 . 208277) - (-3467 . 207984) (-3468 . 207905) (-3469 . 207420) (-3470 . 207173) - (-3471 . 207105) (-3472 . 207021) (-3473 . 206756) (-3474 . 206562) - (-3475 . 206403) (-3476 . 206207) (-3477 . 205871) (-3478 . 205805) - (-3479 . 205722) (-3480 . 205636) (-3481 . 205449) (-3482 . 204963) - (-3483 . 204885) (-3484 . 204815) (-3485 . 204509) (-3486 . 204477) - (-3487 . 203285) (-3488 . 203068) (-3489 . 202820) (-3490 . 202725) - (-3491 . 202479) (-3492 . 202299) (-3493 . 201989) (-3494 . 201856) - (-3495 . 201442) (-3496 . 201275) (-3497 . 201101) (-3498 . 201024) - (-3499 . 200826) (-3500 . 200695) (-3501 . 200517) (-3502 . 200361) - (-3503 . 200258) (-3504 . 200174) (-3505 . 199958) (-3506 . 199854) - (-3507 . 199777) (-3508 . 199536) (-3509 . 199342) (-3510 . 199181) - (-3511 . 199040) (-3512 . 198822) (-3513 . 198720) (-3514 . 196990) - (-3515 . 196809) (-3516 . 196716) (-3517 . 196619) (-3518 . 196518) - (-3519 . 196300) (-3520 . 196226) (-3521 . 196173) (-3522 . 196090) - (-3523 . 195872) (-3524 . 195828) (-3525 . 195740) (-3526 . 195645) - (-3527 . 195456) (-3528 . 195329) (-3529 . 195258) (-3530 . 195130) - (-3531 . 194972) (-3532 . 194877) (-3533 . 194698) (-3534 . 194152) - (-3535 . 194124) (-3536 . 193979) (-3537 . 193908) (-3538 . 193792) - (-3539 . 193325) (-3540 . 193204) (-3541 . 193014) (-3542 . 192987) - (-3543 . 192871) (-3544 . 192668) (-3545 . 192510) (-3546 . 192482) - (-3547 . 192253) (-3548 . 191762) (-3549 . 191667) (-3550 . 191639) - (-3551 . 190963) (-3552 . 190894) (-3553 . 190827) (-3554 . 190737) - (-3555 . 190644) (-3556 . 190553) (-3557 . 190301) (-3558 . 190248) - (-3559 . 189963) (-3560 . 189883) (-3561 . 188455) (-3562 . 188397) - (-3563 . 188256) (-3564 . 188062) (-3565 . 187940) (-3566 . 187737) - (-3567 . 187571) (-3568 . 187052) (-3569 . 186981) (-3570 . 186893) - (-3571 . 186669) (-3572 . 186478) (-3573 . 186153) (-3574 . 185983) - (-3575 . 185821) (-3576 . 185656) (-3577 . 185417) (-3578 . 185322) - (-3579 . 185248) (-3580 . 185009) (-3581 . 184868) (-3582 . 184784) - (-3583 . 184705) (-3584 . 183455) (-3585 . 183308) (-3586 . 183081) - (-3587 . 182869) (-3588 . 182731) (-3589 . 182615) (-3590 . 182507) - (-3591 . 181869) (-3592 . 181781) (-3593 . 181290) (-3594 . 181208) - (-3595 . 181107) (-3596 . 180966) (-3597 . 180595) (-3598 . 180488) - (-3599 . 180436) (-3600 . 180226) (-3601 . 180058) (-3602 . 179893) - (-3603 . 179643) (-3604 . 179485) (-3605 . 179408) (-3606 . 179249) - (-3607 . 179038) (-3608 . 178878) (-3609 . 178481) (-3610 . 177571) - (-3611 . 177427) (-3612 . 177098) (-3613 . 176786) (-3614 . 176676) - (-3615 . 176557) (-3616 . 176133) (-3617 . 176031) (-3618 . 175936) - (-3619 . 175863) (-3620 . 175735) (-3621 . 175658) (-3622 . 175575) - (-3623 . 172734) (-3624 . 172327) (-3625 . 170099) (-3626 . 169929) - (-3627 . 169864) (-3628 . 169748) (-3629 . 168950) (-3630 . 168866) - (-3631 . 168535) (-3632 . 168369) (-3633 . 167941) (-3634 . 167797) - (-3635 . 167769) (-3636 . 167537) (-3637 . 167466) (-3638 . 167375) - (-3639 . 167317) (-3640 . 167097) (-3641 . 166904) (-3642 . 166696) - (-3643 . 166637) (-3644 . 166446) (-3645 . 166315) (-3646 . 166209) - (-3647 . 166028) (-3648 . 165940) (-3649 . 165769) (-3650 . 165641) - (-3651 . 165607) (-3652 . 165554) (-3653 . 165432) (-3654 . 165349) - (-3655 . 165295) (-3656 . 165198) (-3657 . 164999) (-3658 . 164843) - (-3659 . 164565) (-3660 . 164405) (-3661 . 164311) (-3662 . 164215) - (-3663 . 164114) (-3664 . 164020) (-3665 . 163782) (-3666 . 163178) - (-3667 . 163075) (-3668 . 163018) (-3669 . 162833) (-3670 . 162329) - (-3671 . 162260) (-3672 . 162153) (-3673 . 162057) (-3674 . 161910) - (-3675 . 161849) (-3676 . 161686) (-3677 . 161233) (-3678 . 157934) - (-3679 . 157875) (-3680 . 157533) (-3681 . 157306) (-3682 . 157232) - (-3683 . 157160) (-3684 . 157061) (-3685 . 157012) (-3686 . 156938) - (-3687 . 156884) (-3688 . 156666) (-3689 . 156593) (-3690 . 156433) - (-3691 . 156187) (-3692 . 155968) (-3693 . 155814) (-3694 . 155683) - (-3695 . 155634) (-3696 . 155530) (-3697 . 155202) (-3698 . 154849) - (-3699 . 154697) (-3700 . 154563) (-3701 . 154462) (-3702 . 154360) - (-3703 . 154142) (-3704 . 154029) (-3705 . 153857) (-3706 . 153739) - (-3707 . 153669) (-3708 . 153568) (-3709 . 153398) (-3710 . 153310) - (-3711 . 153254) (-3712 . 153183) (-3713 . 153124) (-3714 . 153000) - (-3715 . 152532) (-3716 . 152449) (-3717 . 152399) (-3718 . 152243) - (-3719 . 152106) (-3720 . 151809) (-3721 . 151639) (-3722 . 151511) - (-3723 . 151409) (-3724 . 151339) (-3725 . 151143) (-3726 . 151060) - (-3727 . 150744) (-3728 . 150646) (-3729 . 150547) (-3730 . 150437) - (-3731 . 150333) (-3732 . 150280) (-3733 . 150224) (-3734 . 150154) - (-3735 . 150050) (-3736 . 149971) (-3737 . 149698) (-3738 . 149590) - (-3739 . 149054) (-3740 . 148980) (-3741 . 148860) (-3742 . 148826) - (-3743 . 148686) (-3744 . 148636) (-3745 . 148198) (-3746 . 147930) - (-3747 . 147880) (-3748 . 147745) (-3749 . 147590) (-3750 . 147300) - (-3751 . 147182) (-3752 . 147124) (-3753 . 146987) (-3754 . 146491) - (-3755 . 146439) (-3756 . 146252) (-3757 . 146067) (-3758 . 146017) - (-3759 . 145921) (-3760 . 145253) (-3761 . 145110) (-3762 . 145060) - (-3763 . 144782) (-3764 . 144635) (-3765 . 144603) (-3766 . 144507) - (-3767 . 144403) (-3768 . 143852) (-3769 . 143802) (-3770 . 143719) - (-3771 . 143601) (-3772 . 143486) (-3773 . 143144) (-3774 . 142998) - (-3775 . 142711) (-3776 . 142652) (-3777 . 142229) (-3778 . 142027) - (-3779 . 141939) (-3780 . 141905) (-3781 . 141852) (-3782 . 141779) - (-3783 . 141557) (-3784 . 141347) (-3785 . 141129) (-3786 . 141022) - (-3787 . 140969) (-3788 . 140842) (-3789 . 140771) (-3790 . 140001) - (-3791 . 139949) (-3792 . 139780) (-3793 . 139666) (-3794 . 139551) - (-3795 . 139478) (-3796 . 139295) (-3797 . 139239) (-3798 . 139006) - (-3799 . 138818) (-3800 . 138766) (-3801 . 138653) (-3802 . 138553) - (-3803 . 138457) (-3804 . 138361) (-3805 . 138169) (-3806 . 138009) - (-3807 . 137844) (-3808 . 137813) (-3809 . 137735) (-3810 . 137704) - (-3811 . 137102) (-3812 . 135954) (-3813 . 135856) (-3814 . 135655) - (-3815 . 135596) (-3816 . 135513) (-3817 . 135440) (-3818 . 135315) - (-3819 . 134988) (-3820 . 134911) (-3821 . 134094) (-3822 . 133906) - (-3823 . 133758) (-3824 . 133670) (-3825 . 133569) (-3826 . 133491) - (-3827 . 133272) (-3828 . 133102) (-3829 . 133016) (-3830 . 132795) - (-3831 . 132694) (-3832 . 132418) (-3833 . 132280) (-3834 . 132061) - (-3835 . 132004) (-3836 . 131888) (-3837 . 131699) (-3838 . 131555) - (-3839 . 131469) (-3840 . 131417) (-3841 . 131349) (-3842 . 130974) - (-3843 . 130792) (-3844 . 130370) (-3845 . 130280) (-3846 . 130195) - (-3847 . 130137) (-3848 . 130085) (-3849 . 129857) (-3850 . 129446) - (-3851 . 129380) (-3852 . 129194) (-3853 . 129096) (-3854 . 128959) - (-3855 . 128886) (-3856 . 128791) (-3857 . 128696) (-3858 . 128416) - (-3859 . 128197) (-3860 . 128116) (-3861 . 128042) (-3862 . 127947) - (-3863 . 127794) (-3864 . 127084) (-3865 . 126580) (-3866 . 126302) - (-3867 . 126225) (-3868 . 126066) (-3869 . 125531) (-3870 . 125476) - (-3871 . 125367) (-3872 . 125167) (-3873 . 125100) (-3874 . 125040) - (-3875 . 125011) (-3876 . 124954) (-3877 . 124681) (-3878 . 124629) - (-3879 . 124474) (-3880 . 124370) (-3881 . 124217) (-3882 . 123800) - (-3883 . 123702) (-3884 . 121446) (-3885 . 121360) (-3886 . 121151) - (-3887 . 121065) (-3888 . 121031) (-3889 . 120916) (-3890 . 120811) - (-3891 . 120473) (-3892 . 120396) (-3893 . 120337) (-3894 . 120211) - (-3895 . 120113) (-3896 . 119723) (-3897 . 119662) (-3898 . 119609) - (-3899 . 119510) (-3900 . 119458) (-3901 . 119349) (-3902 . 119321) - (-3903 . 119148) (-3904 . 118810) (-3905 . 116694) (-3906 . 116438) - (-3907 . 116360) (-3908 . 116157) (-3909 . 116084) (-3910 . 115968) - (-3911 . 115618) (-3912 . 115507) (-3913 . 115171) (-3914 . 115033) - (-3915 . 114896) (-3916 . 114733) (-3917 . 114544) (-3918 . 114435) - (-3919 . 114374) (-3920 . 114302) (-3921 . 114225) (-3922 . 114070) - (-3923 . 114007) (-3924 . 113834) (-3925 . 113733) (-3926 . 113667) - (-3927 . 113543) (-3928 . 113448) (-3929 . 113352) (-3930 . 113199) - (-3931 . 112855) (-3932 . 112785) (-3933 . 112599) (-3934 . 112511) - (-3935 . 112483) (-3936 . 112140) (-3937 . 112045) (-3938 . 111906) - (-3939 . 110878) (-3940 . 110670) (-3941 . 110471) (-3942 . 110388) - (-3943 . 110193) (-3944 . 110055) (-3945 . 109894) (-3946 . 109829) - (-3947 . 109663) (-3948 . 109391) (-3949 . 109192) (-3950 . 109133) - (-3951 . 109056) (-3952 . 108957) (-3953 . 108923) (-3954 . 106955) - (-3955 . 106873) (-3956 . 106803) (-3957 . 106720) (-3958 . 106471) - (-3959 . 106119) (-3960 . 106027) (-3961 . 105909) (-3962 . 105856) - (-3963 . 105713) (-3964 . 105643) (-3965 . 105469) (-3966 . 105415) - (-3967 . 105331) (-3968 . 105186) (-3969 . 105109) (-3970 . 104978) - (-3971 . 104820) (-3972 . 104602) (-3973 . 104423) (-3974 . 104299) - (-3975 . 104060) (-3976 . 103915) (-3977 . 103829) (-3978 . 103755) - (-3979 . 103699) (-3980 . 103647) (-3981 . 103534) (-3982 . 103455) - (-3983 . 103307) (-3984 . 103254) (-3985 . 103202) (-3986 . 102987) - (-3987 . 102917) (-3988 . 102775) (-3989 . 102557) (-3990 . 102491) - (-3991 . 102399) (-3992 . 102257) (-3993 . 102177) (-3994 . 102081) - (-3995 . 102013) (-3996 . 101943) (-3997 . 101915) (-3998 . 101548) - (-3999 . 101393) (-4000 . 101365) (-4001 . 101261) (-4002 . 101198) - (-4003 . 101038) (-4004 . 100876) (-4005 . 100738) (-4006 . 100685) - (-4007 . 100553) (-4008 . 100446) (-4009 . 100390) (-4010 . 100156) - (-4011 . 100067) (-4012 . 100014) (-4013 . 99895) (-4014 . 99829) - (-4015 . 99748) (-4016 . 99437) (-4017 . 99383) (-4018 . 99225) - (-4019 . 99062) (-4020 . 98944) (-4021 . 98720) (-4022 . 98425) - (-4023 . 98341) (-4024 . 98207) (-4025 . 98040) (-4026 . 97830) - (-4027 . 97651) (-4028 . 97595) (-4029 . 97450) (-4030 . 97302) - (-4031 . 97060) (-4032 . 96885) (-4033 . 96594) (-4034 . 95413) - (-4035 . 95353) (-4036 . 95211) (-4037 . 95053) (-4038 . 94998) - (-4039 . 94966) (-4040 . 94821) (-4041 . 94438) (-4042 . 94404) - (-4043 . 94332) (-4044 . 94188) (-4045 . 94117) (-4046 . 93775) - (-4047 . 93532) (-4048 . 93329) (-4049 . 93269) (-4050 . 92889) - (-4051 . 92001) (-4052 . 91949) (-4053 . 91523) (-4054 . 91429) - (-4055 . 91357) (-4056 . 91111) (-4057 . 90899) (-4058 . 90292) - (-4059 . 90215) (-4060 . 90102) (-4061 . 90020) (-4062 . 89877) - (-4063 . 89660) (-4064 . 89574) (-4065 . 89452) (-4066 . 89381) - (-4067 . 89309) (-4068 . 89223) (-4069 . 89168) (-4070 . 89036) - (-4071 . 88964) (-4072 . 88806) (-4073 . 88734) (-4074 . 88560) - (-4075 . 88351) (-4076 . 88186) (-4077 . 88067) (-4078 . 87864) - (-4079 . 87732) (-4080 . 87558) (-4081 . 87428) (-4082 . 87313) - (-4083 . 87122) (-4084 . 87041) (-4085 . 86699) (-4086 . 86601) - (-4087 . 86471) (-4088 . 86374) (-4089 . 86133) (-4090 . 86056) - (-4091 . 85994) (-4092 . 85765) (-4093 . 85540) (-4094 . 85198) - (-4095 . 85082) (-4096 . 84903) (-4097 . 84815) (-4098 . 83941) - (-4099 . 83826) (-4100 . 83699) (-4101 . 83488) (-4102 . 83351) - (-4103 . 82688) (-4104 . 82635) (-4105 . 82583) (-4106 . 82483) - (-4107 . 82449) (-4108 . 82227) (-4109 . 81875) (-4110 . 81745) - (-4111 . 81414) (-4112 . 81341) (-4113 . 81288) (-4114 . 81228) - (-4115 . 81084) (-4116 . 80927) (-4117 . 80798) (-4118 . 80640) - (-4119 . 80588) (-4120 . 80370) (-4121 . 76210) (-4122 . 76000) - (-4123 . 75901) (-4124 . 75827) (-4125 . 75260) (-4126 . 75164) - (-4127 . 75102) (-4128 . 75032) (-4129 . 74955) (-4130 . 74757) - (-4131 . 74656) (-4132 . 74604) (-4133 . 73869) (-4134 . 73801) - (-4135 . 73125) (-4136 . 73071) (-4137 . 72704) (-4138 . 72630) - (-4139 . 72542) (-4140 . 72255) (-4141 . 70123) (-4142 . 69580) - (-4143 . 69525) (-4144 . 69310) (-4145 . 69239) (-4146 . 69185) - (-4147 . 68918) (-4148 . 68823) (-4149 . 68708) (-4150 . 68565) - (-4151 . 68503) (-4152 . 68323) (-4153 . 68177) (-4154 . 68125) - (-4155 . 68051) (-4156 . 67923) (-4157 . 67293) (-4158 . 67150) - (-4159 . 67084) (-4160 . 67032) (-4161 . 66926) (-4162 . 66895) - (-4163 . 66833) (-4164 . 66387) (-4165 . 66273) (-4166 . 65920) - (-4167 . 65865) (-4168 . 65579) (-4169 . 65491) (-4170 . 65239) - (-4171 . 65140) (-4172 . 65011) (-4173 . 64862) (-4174 . 64645) - (-4175 . 63478) (-4176 . 63400) (-4177 . 63320) (-4178 . 63283) - (-4179 . 63221) (-4180 . 63122) (-4181 . 62912) (-4182 . 62842) - (-4183 . 62772) (-4184 . 62699) (-4185 . 62215) (-4186 . 62144) - (-4187 . 62078) (-4188 . 61925) (-4189 . 61897) (-4190 . 61787) - (-4191 . 61713) (-4192 . 61500) (-4193 . 61334) (-4194 . 59932) - (-4195 . 59706) (-4196 . 59585) (-4197 . 59289) (-4198 . 59170) - (-4199 . 58918) (-4200 . 58634) (-4201 . 58597) (-4202 . 56483) - (-4203 . 56222) (-4204 . 56151) (-4205 . 56078) (-4206 . 55950) - (-4207 . 55840) (-4208 . 55787) (-4209 . 55631) (-4210 . 55367) - (-4211 . 55243) (-4212 . 55169) (-4213 . 55118) (-4214 . 55045) - (-4215 . 54983) (-4216 . 54890) (-4217 . 54773) (-4218 . 54620) - (-4219 . 54280) (-4220 . 48766) (-4221 . 48623) (-4222 . 48477) - (-4223 . 48421) (-4224 . 48114) (-4225 . 48020) (-4226 . 47948) - (-4227 . 47862) (-4228 . 47806) (-4229 . 47413) (-4230 . 47300) - (-4231 . 47137) (-4232 . 46773) (-4233 . 46720) (-4234 . 46624) - (-4235 . 46553) (-4236 . 46237) (-4237 . 46180) (-4238 . 45908) - (-4239 . 45466) (-4240 . 45211) (-4241 . 45113) (-4242 . 44686) - (-4243 . 44555) (-4244 . 44364) (-4245 . 44296) (-4246 . 44143) - (-4247 . 44043) (-4248 . 43667) (-4249 . 43332) (-4250 . 43237) - (-4251 . 43160) (-4252 . 42864) (-4253 . 42734) (-4254 . 42706) - (-4255 . 42467) (-4256 . 42413) (-4257 . 42135) (-4258 . 42010) - (-4259 . 41881) (-4260 . 41766) (-4261 . 41686) (-4262 . 41408) - (-4263 . 41082) (-4264 . 40984) (-4265 . 40866) (-4266 . 40629) - (-4267 . 40241) (-4268 . 39788) (-4269 . 39396) (-4270 . 39211) - (-4271 . 39090) (-4272 . 38986) (-4273 . 38802) (-4274 . 38731) - (-4275 . 38682) (-4276 . 38562) (-4277 . 38387) (-4278 . 38169) - (-4279 . 37909) (-4280 . 37843) (-4281 . 37628) (-4282 . 37526) - (-4283 . 37454) (-4284 . 37200) (-4285 . 37082) (-4286 . 37048) - (-4287 . 36939) (-4288 . 36675) (-4289 . 36551) (-4290 . 36472) - (-4291 . 36376) (-4292 . 35849) (-4293 . 35560) (-4294 . 35505) - (-4295 . 35454) (-4296 . 35375) (-4297 . 35304) (-4298 . 35235) - (-4299 . 34954) (-4300 . 34852) (-4301 . 34726) (-4302 . 34585) - (-4303 . 34212) (-4304 . 33962) (-4305 . 33590) (-4306 . 33532) - (-4307 . 33477) (-4308 . 33379) (-4309 . 33305) (-4310 . 33253) - (-4311 . 33137) (-4312 . 33084) (-4313 . 32946) (-4314 . 32612) - (-4315 . 32509) (-4316 . 32371) (-4317 . 32039) (-4318 . 31951) - (-4319 . 31871) (-4320 . 30779) (-4321 . 30633) (-4322 . 30555) - (-4323 . 30440) (-4324 . 30178) (-4325 . 30049) (-4326 . 29906) - (-4327 . 29333) (-4328 . 29081) (-4329 . 28660) (-4330 . 28380) - (-4331 . 28292) (-4332 . 27998) (-4333 . 27946) (-4334 . 27850) - (-4335 . 26220) (-4336 . 26062) (-4337 . 25974) (-4338 . 25900) - (-4339 . 25186) (-4340 . 25082) (-4341 . 24971) (-4342 . 24856) - (-4343 . 24799) (-4344 . 24762) (-4345 . 23903) (-4346 . 23819) - (-4347 . 23431) (-4348 . 23271) (-4349 . 23237) (-4350 . 23163) - (-4351 . 23032) (-4352 . 22902) (-4353 . 22800) (-4354 . 22603) - (-4355 . 21307) (-4356 . 21192) (-4357 . 20994) (-4358 . 20869) - (-4359 . 20507) (-4360 . 20261) (-4361 . 20168) (-4362 . 20091) - (-4363 . 19983) (-4364 . 19931) (-4365 . 19872) (-4366 . 19520) - (-4367 . 19442) (-4368 . 18689) (-4369 . 18605) (-4370 . 18470) - (-4371 . 16928) (-4372 . 16709) (-4373 . 16625) (-4374 . 15285) - (-4375 . 15189) (-4376 . 14948) (-4377 . 14870) (-4378 . 14841) - (-4379 . 14608) (-4380 . 14556) (-4381 . 14471) (-4382 . 14372) - (-4383 . 14199) (-4384 . 14041) (-4385 . 13946) (-4386 . 13850) - (-4387 . 13798) (-4388 . 13685) (-4389 . 13594) (-4390 . 13393) - (-4391 . 13083) (-4392 . 13020) (-4393 . 12838) (-4394 . 12591) - (-4395 . 12399) (-4396 . 12253) (-4397 . 12063) (-4398 . 12011) - (-4399 . 11895) (-4400 . 11843) (-4401 . 11667) (-4402 . 9901) - (-4403 . 9833) (-4404 . 9780) (-4405 . 9637) (-4406 . 9482) - (-4407 . 9394) (-4408 . 9164) (-4409 . 9112) (-4410 . 8916) - (-4411 . 8641) (-4412 . 8394) (-4413 . 6939) (-4414 . 6288) - (-4415 . 6172) (-4416 . 5686) (-4417 . 5543) (-4418 . 5447) - (-4419 . 5281) (-4420 . 5050) (-4421 . 4953) (-4422 . 4792) - (-4423 . 4567) (-4424 . 3077) (-4425 . 2213) (-4426 . 2019) - (-4427 . 1800) (-4428 . 1741) (-4429 . 1616) (-4430 . 1078) - (-4431 . 916) (-4432 . 824) (-4433 . 796) (-4434 . 715) (-4435 . 557) - (-4436 . 30))
\ No newline at end of file + (-653 + (-2 (|:| |eqzro| (-653 *8)) (|:| |neqzro| (-653 *8)) + (|:| |wcond| (-653 (-962 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1280 (-416 (-962 *5)))) + (|:| -3914 (-653 (-1280 (-416 (-962 *5)))))))))) + (-5 *4 (-1171)) (-4 *5 (-13 (-314) (-148))) (-4 *8 (-959 *5 *7 *6)) + (-4 *6 (-13 (-859) (-623 (-1189)))) (-4 *7 (-802)) (-5 *2 (-573)) + (-5 *1 (-934 *5 *6 *7 *8))))) +((-1314 . 732111) (-1315 . 732045) (-1316 . 731946) (-1317 . 731847) + (-1318 . 731752) (-1319 . 731506) (-1320 . 731426) (-1321 . 731342) + (-1322 . 731273) (-1323 . 730537) (-1324 . 730421) (-1325 . 730347) + (-1326 . 730204) (-1327 . 729870) (-1328 . 729717) (-1329 . 729519) + (-1330 . 729416) (-1331 . 727355) (-1332 . 727126) (-1333 . 726873) + (-1334 . 726800) (-1335 . 726741) (-1336 . 726625) (-1337 . 726462) + (-1338 . 726061) (-1339 . 725582) (-1340 . 725509) (-1341 . 725404) + (-1342 . 725261) (-1343 . 725183) (-1344 . 725081) (-1345 . 725029) + (-1346 . 724914) (-1347 . 724791) (-1348 . 724663) (-1349 . 724580) + (-1350 . 724478) (-1351 . 724371) (-1352 . 722143) (-1353 . 721965) + (-1354 . 721391) (-1355 . 721270) (-1356 . 720920) (-1357 . 720826) + (-1358 . 720182) (-1359 . 720104) (-1360 . 719819) (-1361 . 719749) + (-1362 . 719653) (-1363 . 719558) (-1364 . 719012) (-1365 . 718852) + (-1366 . 718721) (-1367 . 718522) (-1368 . 718095) (-1369 . 716923) + (-1370 . 716676) (-1371 . 716592) (-1372 . 716062) (-1373 . 716007) + (-1374 . 715894) (-1375 . 715796) (-1376 . 714956) (-1377 . 714852) + (-1378 . 714800) (-1379 . 714685) (-1380 . 714526) (-1381 . 713985) + (-1382 . 713884) (-1383 . 713517) (-1384 . 713434) (-1385 . 713356) + (-1386 . 713221) (-1387 . 713016) (-1388 . 712891) (-1389 . 712778) + (-1390 . 712723) (-1391 . 711586) (-1392 . 711494) (-1393 . 711421) + (-1394 . 711369) (-1395 . 711140) (-1396 . 710960) (-1397 . 710883) + (-1398 . 710723) (-1399 . 710586) (-1400 . 710463) (-1401 . 710347) + (-1402 . 709593) (-1403 . 709513) (-1404 . 709376) (-1405 . 708955) + (-1406 . 708852) (-1407 . 708348) (-1408 . 708295) (-1409 . 708070) + (-1410 . 707436) (-1411 . 707343) (-1412 . 707168) (-1413 . 707031) + (-1414 . 706241) (-1415 . 706034) (-1416 . 705937) (-1417 . 705822) + (-1418 . 705642) (-1419 . 705577) (-1420 . 705543) (-1421 . 705039) + (-1422 . 704909) (-1423 . 704805) (-1424 . 704578) (-1425 . 704408) + (-1426 . 704274) (-1427 . 704221) (-1428 . 704149) (-1429 . 704014) + (-1430 . 703956) (-1431 . 703870) (-1432 . 703782) (-1433 . 703679) + (-1434 . 703383) (-1435 . 702892) (-1436 . 702577) (-1437 . 702509) + (-1438 . 702402) (-1439 . 702296) (-1440 . 701775) (-1441 . 701724) + (-1442 . 701533) (-1443 . 701342) (-1444 . 701204) (-1445 . 701105) + (-1446 . 701025) (-1447 . 700617) (-1448 . 700390) (-1449 . 700338) + (-1450 . 700123) (-1451 . 699942) (** . 696948) (-1453 . 696470) + (-1454 . 696211) (-1455 . 696110) (-1456 . 695982) (-1457 . 695875) + (-1458 . 695360) (-1459 . 695195) (-1460 . 694612) (-1461 . 694501) + (-1462 . 694424) (-1463 . 694372) (-1464 . 694254) (-1465 . 694120) + (-1466 . 693937) (-1467 . 693707) (-1468 . 693198) (-1469 . 693040) + (-1470 . 692998) (-1471 . 692939) (-1472 . 692859) (-1473 . 692668) + (-1474 . 692609) (-1475 . 692520) (-1476 . 692325) (-1477 . 692231) + (-1478 . 691904) (-1479 . 691264) (-1480 . 690726) (-1481 . 690652) + (-1482 . 690544) (-1483 . 690429) (-1484 . 690274) (-1485 . 690082) + (-1486 . 689146) (-1487 . 688627) (-1488 . 688446) (-1489 . 688388) + (-1490 . 688316) (-1491 . 688250) (-1492 . 688070) (-1493 . 687975) + (-1494 . 687728) (-1495 . 687654) (-1496 . 687476) (-1497 . 687306) + (-1498 . 687187) (-1499 . 687046) (-1500 . 686929) (-1501 . 686852) + (-1502 . 686824) (-1503 . 686489) (-1504 . 686346) (-1505 . 686258) + (-1506 . 686129) (-1507 . 686077) (-1508 . 685992) (-1509 . 685839) + (-1510 . 685644) (-1511 . 685561) (-1512 . 685504) (-1513 . 685445) + (-1514 . 685135) (-1515 . 685086) (-1516 . 685013) (-1517 . 684960) + (-1518 . 684822) (-1519 . 684165) (-1520 . 684100) (-1521 . 684044) + (-1522 . 683949) (-1523 . 683794) (-1524 . 683579) (-1525 . 683519) + (-1526 . 683379) (-1527 . 683243) (-1528 . 683128) (-1529 . 683017) + (-1530 . 682874) (-1531 . 682744) (-1532 . 682649) (-1533 . 682395) + (-1534 . 682231) (-1535 . 680689) (-1536 . 680100) (-1537 . 679975) + (-1538 . 679860) (-1539 . 679808) (-1540 . 679724) (-1541 . 679641) + (-1542 . 679541) (-1543 . 679441) (-1544 . 679353) (-1545 . 678487) + (-1546 . 678366) (-1547 . 678050) (-1548 . 677998) (-1549 . 677928) + (-1550 . 677876) (-1551 . 677530) (-1552 . 677194) (-1553 . 676897) + (-1554 . 676769) (-1555 . 676672) (-1556 . 676601) (-1557 . 676456) + (-1558 . 675692) (-1559 . 675568) (-1560 . 675465) (-1561 . 675437) + (-1562 . 675178) (-1563 . 675098) (-1564 . 674952) (-1565 . 674794) + (-1566 . 674716) (-1567 . 674385) (-1568 . 674194) (-1569 . 674012) + (-1570 . 673984) (-1571 . 673817) (-1572 . 673679) (-9 . 673651) + (-1574 . 673623) (-1575 . 673499) (-1576 . 673321) (-1577 . 673250) + (-1578 . 673197) (-1579 . 673058) (-1580 . 672952) (-1581 . 672890) + (-1582 . 672744) (-1583 . 671312) (-1584 . 671211) (-1585 . 671038) + (-8 . 671010) (-1587 . 670882) (-1588 . 670657) (-1589 . 670569) + (-1590 . 670407) (-1591 . 670293) (-1592 . 670221) (-1593 . 670065) + (-1594 . 669965) (-1595 . 669685) (-1596 . 669632) (-7 . 669604) + (-1598 . 669451) (-1599 . 669325) (-1600 . 669107) (-1601 . 669000) + (-1602 . 668606) (-1603 . 668427) (-1604 . 668353) (-1605 . 668322) + (-1606 . 668250) (-1607 . 668162) (-1608 . 666962) (-1609 . 666878) + (-1610 . 666745) (-1611 . 666717) (-1612 . 666368) (-1613 . 666304) + (-1614 . 666244) (-1615 . 666172) (-1616 . 666062) (-1617 . 665969) + (-1618 . 665637) (-1619 . 665529) (-1620 . 665413) (-1621 . 665361) + (-1622 . 665275) (-1623 . 665138) (-1624 . 664822) (-1625 . 664772) + (-1626 . 657829) (-1627 . 657683) (-1628 . 657541) (-1629 . 657239) + (-1630 . 657000) (-1631 . 656928) (-1632 . 656867) (-1633 . 656423) + (-1634 . 656304) (-1635 . 655878) (-1636 . 655776) (-1637 . 655661) + (-1638 . 655555) (-1639 . 655397) (-1640 . 654794) (-1641 . 654735) + (-1642 . 654546) (-1643 . 654399) (-1644 . 654180) (-1645 . 654076) + (-1646 . 653952) (-1647 . 653799) (-1648 . 653713) (-1649 . 653586) + (-1650 . 653456) (-1651 . 653016) (-1652 . 652878) (-1653 . 652062) + (-1654 . 652010) (-1655 . 651792) (-1656 . 651433) (-1657 . 651374) + (-1658 . 651135) (-1659 . 651031) (-1660 . 650545) (-1661 . 650361) + (-1662 . 649980) (-1663 . 649917) (-1664 . 649249) (-1665 . 649001) + (-1666 . 648948) (-1667 . 648285) (-1668 . 647855) (-1669 . 647699) + (-1670 . 647572) (-1671 . 647469) (-1672 . 647387) (-1673 . 647077) + (-1674 . 646903) (-1675 . 646742) (-1676 . 646574) (-1677 . 646269) + (-1678 . 646174) (-1679 . 645928) (-1680 . 645437) (-1681 . 645205) + (-1682 . 644818) (-1683 . 644666) (-1684 . 643859) (-1685 . 643617) + (-1686 . 643534) (-1687 . 643194) (-1688 . 642736) (-1689 . 642593) + (-1690 . 642486) (-1691 . 642433) (-1692 . 642284) (-1693 . 642230) + (-1694 . 642179) (-1695 . 637636) (-1696 . 637563) (-1697 . 637486) + (-1698 . 637418) (-1699 . 637303) (-1700 . 637215) (-1701 . 637141) + (-1702 . 637075) (-1703 . 636966) (-1704 . 636895) (-1705 . 636478) + (-1706 . 636321) (-1707 . 636235) (-1708 . 636091) (-1709 . 636040) + (-1710 . 635916) (-1711 . 635659) (-1712 . 635593) (-1713 . 635500) + (-1714 . 635441) (-1715 . 635373) (-1716 . 635277) (-1717 . 635159) + (-1718 . 635085) (-1719 . 634639) (-1720 . 634419) (-1721 . 634167) + (-1722 . 634096) (-1723 . 634022) (-1724 . 633533) (-1725 . 633455) + (-1726 . 633376) (-1727 . 633293) (-1728 . 632905) (-1729 . 632734) + (-1730 . 632616) (-1731 . 632419) (-1732 . 631682) (-1733 . 631115) + (-1734 . 630991) (-1735 . 630773) (-1736 . 630645) (-1737 . 630517) + (-1738 . 630289) (-1739 . 630236) (-1740 . 630071) (-1741 . 629849) + (-1742 . 629676) (-1743 . 629569) (-1744 . 629497) (-1745 . 629390) + (-1746 . 629311) (-1747 . 629258) (-1748 . 628771) (-1749 . 628566) + (-1750 . 628356) (-1751 . 628260) (-1752 . 628038) (-1753 . 627886) + (-1754 . 627586) (-1755 . 627395) (-1756 . 627342) (-1757 . 627238) + (-1758 . 627158) (-1759 . 626979) (-1760 . 626836) (-1761 . 626748) + (-1762 . 626153) (-1763 . 626095) (-1764 . 625909) (-1765 . 625568) + (-1766 . 625474) (-1767 . 625397) (-1768 . 625299) (-1769 . 625111) + (-1770 . 624995) (-1771 . 624900) (-1772 . 624803) (-1773 . 624720) + (-1774 . 624411) (-1775 . 624359) (-1776 . 610128) (-1777 . 609792) + (-1778 . 609608) (-1779 . 609404) (-1780 . 609307) (-1781 . 609239) + (-1782 . 609173) (-1783 . 609139) (-1784 . 609087) (-1785 . 608994) + (-1786 . 608896) (-1787 . 608781) (-1788 . 608729) (-1789 . 608607) + (-1790 . 608414) (-1791 . 608385) (-1792 . 608166) (-1793 . 608075) + (-1794 . 607956) (-1795 . 607397) (-1796 . 607260) (-1797 . 606509) + (-1798 . 606391) (-1799 . 602328) (-1800 . 601904) (-1801 . 601830) + (-1802 . 601744) (-1803 . 601663) (-1804 . 601480) (-1805 . 601356) + (-1806 . 601299) (-1807 . 601196) (-1808 . 600637) (-1809 . 600582) + (-1810 . 600485) (-1811 . 600300) (-1812 . 600202) (-1813 . 600036) + (-1814 . 599692) (-1815 . 599453) (-1816 . 599382) (-1817 . 599294) + (-1818 . 598939) (-1819 . 598687) (-1820 . 598595) (-1821 . 598514) + (-1822 . 598415) (-1823 . 598387) (-1824 . 598315) (-1825 . 597949) + (-1826 . 597740) (-1827 . 597292) (-1828 . 597169) (-1829 . 596758) + (-1830 . 596670) (-1831 . 596442) (-1832 . 596371) (-1833 . 596188) + (-1834 . 596078) (-1835 . 592411) (-1836 . 592251) (-1837 . 592198) + (-1838 . 592146) (-1839 . 591718) (-1840 . 591656) (-1841 . 591453) + (-1842 . 591355) (-1843 . 591284) (-1844 . 590624) (-1845 . 588279) + (-1846 . 588171) (-1847 . 588101) (-1848 . 588024) (-1849 . 587863) + (-1850 . 587723) (-1851 . 587673) (-1852 . 587620) (-1853 . 587570) + (-1854 . 587441) (-1855 . 587294) (-1856 . 587206) (-1857 . 586848) + (-1858 . 586796) (-1859 . 586729) (-1860 . 586268) (-1861 . 586012) + (-1862 . 585742) (-1863 . 585466) (-1864 . 585288) (-1865 . 584971) + (-1866 . 584837) (-1867 . 584738) (-1868 . 584686) (-1869 . 584555) + (-1870 . 584496) (-1871 . 584443) (-1872 . 584083) (-1873 . 583783) + (-1874 . 583664) (-1875 . 583609) (-1876 . 583315) (-1877 . 583259) + (-1878 . 583157) (-1879 . 583052) (-1880 . 582783) (-1881 . 582674) + (-1882 . 582566) (-1883 . 582434) (-1884 . 582313) (-1885 . 582259) + (-1886 . 582155) (-1887 . 582072) (-1888 . 582001) (-1889 . 581945) + (-1890 . 581687) (-1891 . 581593) (-1892 . 581411) (-1893 . 581275) + (-1894 . 581180) (-1895 . 581127) (-1896 . 581025) (-1897 . 580991) + (-1898 . 580921) (-1899 . 580815) (-1900 . 580745) (-1901 . 580572) + (-1902 . 580477) (-1903 . 580405) (-1904 . 580328) (-1905 . 580185) + (-1906 . 579758) (-1907 . 578556) (-1908 . 578388) (-1909 . 578157) + (-1910 . 578016) (-1911 . 577646) (-1912 . 577451) (-1913 . 577356) + (-1914 . 577267) (-1915 . 576679) (-1916 . 576432) (-1917 . 576355) + (-1918 . 576051) (-1919 . 575709) (-1920 . 575198) (-1921 . 574946) + (-1922 . 574788) (-1923 . 574646) (-1924 . 574528) (-1925 . 574432) + (-1926 . 574377) (-1927 . 574255) (-1928 . 574202) (-1929 . 574115) + (-1930 . 574060) (-1931 . 573880) (-1932 . 573602) (-1933 . 573278) + (-1934 . 573039) (-1935 . 573011) (-1936 . 572705) (-1937 . 572562) + (-1938 . 572459) (-1939 . 572390) (-1940 . 572246) (-1941 . 571700) + (-1942 . 571334) (-1943 . 571168) (-1944 . 571113) (-1945 . 570991) + (-1946 . 570547) (-1947 . 570447) (-1948 . 570324) (-1949 . 570296) + (-1950 . 570209) (-1951 . 569623) (-1952 . 569551) (-1953 . 569160) + (-1954 . 568775) (-1955 . 568692) (-1956 . 568624) (-1957 . 568571) + (-1958 . 568320) (-1959 . 568033) (-1960 . 567963) (-1961 . 567867) + (-1962 . 567774) (-1963 . 567619) (-1964 . 567501) (-1965 . 567444) + (-1966 . 567383) (-1967 . 567282) (-1968 . 567187) (-1969 . 566980) + (-1970 . 566946) (-1971 . 566527) (-1972 . 566414) (-1973 . 565887) + (-1974 . 565465) (-1975 . 565392) (-1976 . 565340) (-1977 . 565242) + (-1978 . 565112) (-1979 . 564889) (-1980 . 564787) (-1981 . 564681) + (-1982 . 564629) (-1983 . 563286) (-1984 . 563233) (-1985 . 563118) + (-1986 . 563058) (-1987 . 562985) (-1988 . 562833) (-1989 . 562702) + (-1990 . 562211) (-1991 . 561978) (-1992 . 561921) (-1993 . 561687) + (-1994 . 552237) (-1995 . 552034) (-1996 . 551650) (-1997 . 551476) + (-1998 . 551402) (-1999 . 551350) (-2000 . 551256) (-2001 . 551199) + (-2002 . 551150) (-2003 . 551053) (-2004 . 550984) (-2005 . 550739) + (-2006 . 550644) (-2007 . 549348) (-2008 . 549271) (-2009 . 549204) + (-2010 . 549053) (-2011 . 548898) (-2012 . 548845) (-2013 . 548714) + (-2014 . 548232) (-2015 . 548092) (-2016 . 548008) (-2017 . 547819) + (-2018 . 547661) (-2019 . 547401) (-2020 . 547243) (-2021 . 547099) + (-2022 . 546991) (-2023 . 546818) (-2024 . 546718) (-2025 . 546562) + (-2026 . 546416) (-2027 . 546336) (-2028 . 546198) (-2029 . 546086) + (-2030 . 545834) (-2031 . 545188) (-2032 . 545160) (-2033 . 544817) + (-2034 . 544738) (-2035 . 544706) (-2036 . 544606) (-2037 . 544363) + (-2038 . 543912) (-2039 . 543884) (-2040 . 543773) (-2041 . 543626) + (-2042 . 543487) (-2043 . 542895) (-2044 . 542785) (-2045 . 542751) + (-2046 . 542671) (-2047 . 542576) (-2048 . 542520) (-2049 . 541339) + (-2050 . 541207) (-2051 . 541050) (-2052 . 540887) (-2053 . 540785) + (-2054 . 540604) (-2055 . 540552) (-2056 . 540425) (-2057 . 540127) + (-2058 . 539655) (-2059 . 539606) (-2060 . 539523) (-2061 . 539470) + (-2062 . 539438) (-2063 . 539365) (-2064 . 539294) (-2065 . 539120) + (-2066 . 538958) (-2067 . 538640) (-2068 . 538568) (-2069 . 538435) + (-2070 . 538289) (-2071 . 538206) (-2072 . 538133) (-2073 . 537988) + (-2074 . 537879) (-2075 . 537820) (-2076 . 537648) (-2077 . 537574) + (-2078 . 537412) (-2079 . 537308) (-2080 . 537135) (-2081 . 537045) + (-2082 . 536927) (-2083 . 536842) (-2084 . 536746) (-2085 . 536555) + (-2086 . 536490) (-2087 . 536252) (-2088 . 536064) (-2089 . 536005) + (-2090 . 535892) (-2091 . 535812) (-2092 . 535497) (-2093 . 535288) + (-2094 . 535214) (-2095 . 535063) (-2096 . 534684) (-2097 . 534619) + (-2098 . 534548) (-2099 . 534387) (-2100 . 534308) (-2101 . 534195) + (-2102 . 533716) (-2103 . 533590) (-2104 . 533506) (-2105 . 533403) + (-2106 . 533330) (-2107 . 533264) (-2108 . 533166) (-2109 . 532847) + (-2110 . 532629) (-2111 . 532451) (-2112 . 532202) (-2113 . 532075) + (-2114 . 531742) (-2115 . 531654) (-2116 . 531541) (-2117 . 531488) + (-2118 . 531372) (-2119 . 530732) (-2120 . 530557) (-2121 . 526894) + (-2122 . 526713) (-2123 . 525521) (-2124 . 525350) (-2125 . 525086) + (-2126 . 525034) (-2127 . 524067) (-2128 . 523914) (-2129 . 523618) + (-2130 . 523408) (-2131 . 523313) (-2132 . 523039) (-2133 . 522919) + (-2134 . 522767) (-2135 . 522739) (-2136 . 522686) (-2137 . 522607) + (-2138 . 522343) (-2139 . 522176) (-2140 . 522144) (-2141 . 521981) + (-2142 . 521908) (-2143 . 521718) (-2144 . 521471) (-2145 . 521418) + (-2146 . 521196) (-2147 . 520940) (-2148 . 520737) (-2149 . 520444) + (-2150 . 520338) (-2151 . 520171) (-2152 . 519953) (-2153 . 519857) + (-2154 . 519780) (-2155 . 519717) (-2156 . 519665) (-2157 . 519548) + (-2158 . 519447) (-2159 . 519361) (-2160 . 519016) (-2161 . 518926) + (-2162 . 518825) (-2163 . 518773) (-2164 . 518286) (-2165 . 518173) + (-2166 . 518121) (-2167 . 517993) (-2168 . 517940) (-2169 . 517841) + (-2170 . 517812) (-2171 . 517743) (-2172 . 517606) (-2173 . 517429) + (-2174 . 517343) (-2175 . 517220) (-2176 . 516995) (-2177 . 516914) + (-2178 . 516801) (-2179 . 516674) (-2180 . 516614) (-2181 . 516513) + (-2182 . 516409) (-2183 . 516324) (-2184 . 516031) (-2185 . 515964) + (-2186 . 515576) (-2187 . 515508) (-2188 . 515262) (-2189 . 515178) + (-2190 . 515078) (-2191 . 515025) (-2192 . 514752) (-2193 . 514611) + (-2194 . 514453) (-2195 . 514000) (-2196 . 513928) (-2197 . 513682) + (-2198 . 509682) (-2199 . 508818) (-2200 . 508740) (-2201 . 508388) + (-2202 . 508241) (-2203 . 507483) (-2204 . 507373) (-2205 . 502034) + (-2206 . 501883) (-2207 . 501753) (-2208 . 501614) (-2209 . 501523) + (-2210 . 501407) (-2211 . 501319) (-2212 . 500121) (-2213 . 499989) + (-2214 . 499861) (-2215 . 499654) (-2216 . 499558) (-2217 . 499485) + (-2218 . 499369) (-2219 . 499220) (-2220 . 499003) (-2221 . 498922) + (-2222 . 498798) (-2223 . 498446) (-2224 . 498329) (-2225 . 497600) + (-2226 . 497398) (-2227 . 497268) (-2228 . 497136) (-2229 . 496997) + (-2230 . 496401) (-2231 . 496332) (-2232 . 495115) (-2233 . 495056) + (-2234 . 494917) (-2235 . 494825) (-2236 . 494096) (-2237 . 493978) + (-2238 . 493907) (-2239 . 493766) (-2240 . 493700) (-2241 . 493638) + (-2242 . 493578) (-2243 . 493194) (-2244 . 493102) (-2245 . 492949) + (-2246 . 492273) (-2247 . 491937) (-2248 . 491860) (-2249 . 491832) + (-2250 . 491636) (-2251 . 491443) (-2252 . 491281) (-2253 . 490970) + (-2254 . 490884) (-2255 . 490320) (-2256 . 490174) (-2257 . 490106) + (-2258 . 490005) (-2259 . 489928) (-2260 . 489837) (-2261 . 489556) + (-2262 . 489486) (-2263 . 489378) (-2264 . 489170) (-2265 . 489054) + (-2266 . 488490) (-2267 . 488337) (-2268 . 488263) (-2269 . 488184) + (-2270 . 487988) (-2271 . 487910) (-2272 . 487786) (-2273 . 487715) + (-2274 . 487151) (-2275 . 487098) (-2276 . 487017) (-2277 . 486630) + (-2278 . 486598) (-2279 . 486210) (-2280 . 486004) (-2281 . 485851) + (-2282 . 485697) (-2283 . 485577) (-2284 . 485455) (-2285 . 485336) + (-2286 . 484662) (-2287 . 484464) (-2288 . 484320) (-2289 . 484149) + (-2290 . 484054) (-2291 . 483966) (-2292 . 483760) (-2293 . 483652) + (-2294 . 483621) (-2295 . 483547) (-2296 . 482873) (-2297 . 482498) + (-2298 . 481894) (-2299 . 481443) (-2300 . 481390) (-2301 . 481175) + (-2302 . 481123) (-2303 . 481070) (-2304 . 480333) (-2305 . 480226) + (-2306 . 480115) (-2307 . 480038) (-2308 . 479930) (-2309 . 479876) + (-2310 . 479679) (-2311 . 479581) (-2312 . 479512) (-2313 . 479104) + (-2314 . 478542) (-2315 . 478435) (-2316 . 478383) (-2317 . 477355) + (-2318 . 477252) (-2319 . 477199) (-2320 . 477117) (-2321 . 477031) + (-2322 . 476886) (-2323 . 476802) (-2324 . 476240) (-2325 . 476103) + (-2326 . 475857) (-2327 . 475709) (-2328 . 475556) (-2329 . 475404) + (-2330 . 475309) (-2331 . 475232) (-2332 . 474920) (-2333 . 474358) + (-2334 . 474099) (-2335 . 474047) (-2336 . 473926) (-2337 . 473898) + (-2338 . 473623) (-2339 . 473298) (-2340 . 473158) (-2341 . 472741) + (-2342 . 472066) (-2343 . 471981) (-2344 . 471816) (-2345 . 471748) + (-2346 . 471584) (-2347 . 471526) (-2348 . 471474) (-2349 . 471190) + (-2350 . 471158) (-2351 . 471088) (-2352 . 470413) (-2353 . 470297) + (-2354 . 469782) (-2355 . 469723) (-2356 . 469651) (-2357 . 469568) + (-2358 . 469144) (-2359 . 468918) (-2360 . 468833) (-2361 . 468780) + (-2362 . 468567) (-2363 . 467892) (-2364 . 467840) (-2365 . 467105) + (-2366 . 466989) (-2367 . 466905) (-2368 . 466831) (-2369 . 466690) + (-2370 . 466354) (-2371 . 466115) (-2372 . 466008) (-2373 . 465930) + (-2374 . 465367) (-2375 . 465249) (-2376 . 465108) (-2377 . 464985) + (-2378 . 464787) (-2379 . 464608) (-2380 . 464445) (-2381 . 464123) + (-2382 . 463249) (-2383 . 462987) (-2384 . 462555) (-2385 . 462410) + (-2386 . 462357) (-2387 . 462252) (-2388 . 461689) (-2389 . 461552) + (-2390 . 461277) (-2391 . 461191) (-2392 . 461059) (-2393 . 461007) + (-2394 . 460906) (-2395 . 460453) (-2396 . 460425) (-2397 . 460342) + (-2398 . 460163) (-2399 . 460089) (-2400 . 460011) (-2401 . 459448) + (-2402 . 459367) (-2403 . 459240) (-2404 . 459183) (-2405 . 459025) + (-2406 . 458973) (-2407 . 458917) (-2408 . 458566) (-2409 . 458461) + (-2410 . 458343) (-2411 . 458286) (-2412 . 458188) (-2413 . 457626) + (-2414 . 457523) (-2415 . 457304) (-2416 . 457238) (-2417 . 457099) + (-2418 . 457026) (-2419 . 456911) (-2420 . 456831) (-2421 . 456770) + (-2422 . 456738) (-2423 . 456620) (-2424 . 456368) (-2425 . 456339) + (-2426 . 455777) (-2427 . 454504) (-2428 . 454379) (-2429 . 454307) + (-2430 . 454200) (-2431 . 453803) (-2432 . 453555) (-2433 . 453484) + (-2434 . 453383) (-2435 . 450602) (-2436 . 450542) (-2437 . 450441) + (-2438 . 450160) (-2439 . 449598) (-2440 . 449171) (-2441 . 449089) + (-2442 . 448979) (-2443 . 448883) (-2444 . 448772) (-2445 . 448713) + (-2446 . 448486) (-2447 . 448239) (-2448 . 448097) (-2449 . 447927) + (-2450 . 447724) (-2451 . 447600) (-2452 . 447038) (-2453 . 446986) + (-2454 . 446933) (-2455 . 446875) (-2456 . 446844) (-2457 . 446612) + (-2458 . 446542) (-2459 . 446430) (-2460 . 446393) (-2461 . 446262) + (-2462 . 446161) (-2463 . 445767) (-2464 . 445205) (-2465 . 445106) + (-2466 . 445038) (-2467 . 444639) (-2468 . 444553) (-2469 . 444470) + (-2470 . 444402) (-2471 . 444346) (-2472 . 444201) (-2473 . 444146) + (-2474 . 443980) (-2475 . 443816) (-2476 . 443078) (-2477 . 442983) + (-2478 . 441406) (-2479 . 441357) (-2480 . 441215) (-2481 . 441149) + (-2482 . 440977) (-2483 . 440872) (-2484 . 440770) (-2485 . 440478) + (-2486 . 440324) (-2487 . 440268) (-2488 . 440169) (-2489 . 440074) + (-2490 . 439990) (-2491 . 439770) (-2492 . 439612) (-2493 . 439497) + (-2494 . 439259) (-2495 . 439087) (-2496 . 438542) (-2497 . 438126) + (-2498 . 437834) (-2499 . 437703) (-2500 . 437488) (-2501 . 437387) + (-2502 . 437270) (-2503 . 437037) (-2504 . 436933) (-2505 . 436813) + (-2506 . 436641) (-2507 . 436588) (-2508 . 436510) (-2509 . 436352) + (-2510 . 436324) (-2511 . 436258) (-2512 . 436089) (-2513 . 435291) + (-2514 . 435118) (-2515 . 435059) (-2516 . 435004) (-2517 . 433919) + (-2518 . 433603) (-2519 . 433431) (-2520 . 432869) (-2521 . 432753) + (-2522 . 432569) (-2523 . 432518) (-2524 . 432085) (-2525 . 431954) + (-2526 . 431658) (-2527 . 431515) (-2528 . 431123) (-2529 . 430599) + (-2530 . 430352) (-2531 . 429469) (-2532 . 429316) (-2533 . 429110) + (-2534 . 426854) (-2535 . 426755) (-2536 . 426660) (-2537 . 426565) + (-2538 . 426421) (-2539 . 426328) (-2540 . 426276) (-2541 . 425794) + (-2542 . 425596) (-2543 . 425494) (-2544 . 425215) (-2545 . 425141) + (-2546 . 425107) (-2547 . 424971) (-2548 . 424914) (-2549 . 424843) + (-2550 . 424791) (-2551 . 424140) (-2552 . 424068) (-2553 . 423929) + (-2554 . 423767) (-2555 . 423669) (-2556 . 423569) (-2557 . 423381) + (-2558 . 423091) (-2559 . 422965) (-2560 . 422867) (-2561 . 422815) + (-2562 . 421034) (-2563 . 420754) (-2564 . 420691) (-2565 . 418577) + (-2566 . 418524) (-2567 . 418306) (-2568 . 418278) (-2569 . 417618) + (-2570 . 416466) (-2571 . 416339) (-2572 . 416202) (-2573 . 415124) + (-2574 . 414906) (-2575 . 414579) (-2576 . 414496) (-2577 . 414356) + (-2578 . 414285) (-2579 . 413751) (-2580 . 413536) (-2581 . 413310) + (-2582 . 413051) (-2583 . 413002) (-2584 . 412974) (-2585 . 412940) + (-2586 . 412332) (-2587 . 412249) (-2588 . 411866) (-2589 . 410010) + (-2590 . 409892) (-2591 . 409673) (-2592 . 409381) (-2593 . 409249) + (-2594 . 408131) (-2595 . 408076) (-2596 . 407333) (-2597 . 407100) + (-2598 . 406973) (-2599 . 406907) (-2600 . 406694) (-2601 . 406591) + (-2602 . 406524) (-2603 . 406412) (-2604 . 406328) (-2605 . 406258) + (-2606 . 406105) (-2607 . 406009) (-2608 . 405929) (-2609 . 405834) + (-2610 . 405751) (-2611 . 405586) (-2612 . 405422) (-2613 . 405247) + (-2614 . 404604) (-2615 . 404552) (-2616 . 404442) (-2617 . 404414) + (-2618 . 404326) (-2619 . 404140) (-2620 . 403985) (-2621 . 403875) + (-2622 . 403745) (-2623 . 403630) (-2624 . 402184) (-2625 . 402129) + (-2626 . 402003) (-2627 . 401687) (-2628 . 401498) (-2629 . 401252) + (-2630 . 401142) (-2631 . 401056) (-2632 . 400900) (-2633 . 400704) + (-2634 . 400676) (-2635 . 400478) (-2636 . 400398) (-2637 . 400229) + (-2638 . 400036) (-2639 . 399937) (-2640 . 399701) (-2641 . 399533) + (-2642 . 399391) (-2643 . 399266) (-2644 . 399213) (-2645 . 395263) + (-2646 . 394934) (-2647 . 394850) (-2648 . 394770) (-2649 . 394570) + (-2650 . 394496) (-2651 . 394331) (-2652 . 394233) (-2653 . 394123) + (-2654 . 394020) (-2655 . 393965) (-2656 . 393876) (-2657 . 393780) + (-2658 . 393464) (-2659 . 393348) (-2660 . 393163) (-2661 . 393005) + (-2662 . 392880) (-2663 . 392550) (-2664 . 392390) (-2665 . 392205) + (-2666 . 391959) (-2667 . 391903) (-2668 . 391807) (-2669 . 391684) + (-2670 . 391588) (-2671 . 391236) (-2672 . 391125) (-2673 . 390864) + (-2674 . 390790) (-2675 . 390481) (-2676 . 389219) (-2677 . 389140) + (-2678 . 388767) (-2679 . 388693) (-2680 . 388665) (-2681 . 388549) + (-2682 . 387676) (-2683 . 387590) (-2684 . 387379) (-2685 . 387280) + (-2686 . 387195) (-2687 . 387124) (-2688 . 387000) (-2689 . 386879) + (-2690 . 386796) (-2691 . 386467) (-2692 . 386336) (-2693 . 386233) + (-2694 . 385880) (-2695 . 385750) (-2696 . 385361) (-2697 . 385232) + (-2698 . 385098) (-2699 . 384973) (-2700 . 384771) (-2701 . 384676) + (-2702 . 384572) (-2703 . 384481) (-2704 . 384254) (-2705 . 384043) + (-2706 . 384015) (-2707 . 383663) (-2708 . 383217) (-2709 . 383186) + (-2710 . 383100) (-2711 . 382421) (-2712 . 381119) (-2713 . 381009) + (-2714 . 380866) (-2715 . 380817) (-2716 . 380664) (-2717 . 380391) + (-2718 . 380289) (-2719 . 380255) (-2720 . 380150) (-2721 . 380097) + (-2722 . 380009) (-2723 . 379953) (-2724 . 379811) (-2725 . 379744) + (-2726 . 379672) (-2727 . 379613) (-2728 . 378617) (-2729 . 378519) + (-2730 . 378418) (-2731 . 378359) (-2732 . 378282) (-2733 . 378119) + (-2734 . 378031) (-2735 . 377835) (-2736 . 377734) (-2737 . 377679) + (-2738 . 377468) (-2739 . 377313) (-2740 . 377127) (-2741 . 377075) + (-2742 . 376931) (-2743 . 376549) (-2744 . 376391) (-2745 . 376327) + (-2746 . 376254) (-2747 . 375942) (-2748 . 375734) (-2749 . 375620) + (-2750 . 375381) (-2751 . 375280) (-2752 . 374688) (-2753 . 374389) + (-2754 . 374336) (-2755 . 374184) (-2756 . 374050) (-2757 . 373993) + (-2758 . 373507) (-2759 . 373154) (-2760 . 373076) (-2761 . 372983) + (-2762 . 372900) (-2763 . 372604) (-2764 . 372535) (-2765 . 372464) + (-2766 . 372414) (-2767 . 372083) (-2768 . 372003) (-2769 . 371760) + (-2770 . 371329) (-2771 . 371230) (-2772 . 371159) (-2773 . 371106) + (-2774 . 370948) (-2775 . 370882) (-2776 . 370626) (-2777 . 370470) + (-2778 . 370385) (-2779 . 370195) (-2780 . 370074) (-2781 . 369910) + (-2782 . 369664) (-2783 . 369569) (-2784 . 369472) (-2785 . 369394) + (-2786 . 369066) (-2787 . 368816) (-2788 . 368764) (-2789 . 368668) + (-2790 . 368545) (-2791 . 368358) (-2792 . 368072) (-2793 . 367949) + (-2794 . 367571) (-2795 . 367436) (-2796 . 367339) (-2797 . 367244) + (-2798 . 367111) (-2799 . 366876) (-2800 . 366821) (-2801 . 366002) + (-2802 . 365946) (-2803 . 365918) (-2804 . 365719) (-2805 . 365540) + (-2806 . 365403) (-2807 . 365158) (-2808 . 364382) (-2809 . 364239) + (-2810 . 364143) (-2811 . 363735) (-2812 . 363205) (-2813 . 363069) + (-2814 . 362725) (-2815 . 362668) (-2816 . 362189) (-2817 . 362017) + (-2818 . 361963) (-2819 . 361340) (-2820 . 361203) (-2821 . 361041) + (-2822 . 360957) (-2823 . 360794) (-2824 . 360613) (-2825 . 360507) + (-2826 . 360010) (-2827 . 359916) (-2828 . 359787) (-2829 . 359700) + (-12 . 359528) (-2831 . 359436) (-2832 . 359380) (-2833 . 359188) + (-2834 . 359017) (-2835 . 358931) (-2836 . 358775) (-2837 . 357914) + (-2838 . 357753) (-2839 . 357535) (-2840 . 357438) (-2841 . 357017) + (-2842 . 356902) (-2843 . 356828) (-2844 . 356438) (-2845 . 356366) + (-2846 . 356091) (-2847 . 356000) (-2848 . 355913) (-2849 . 355748) + (-2850 . 355595) (-2851 . 355485) (-2852 . 354952) (-2853 . 354110) + (-2854 . 353513) (-2855 . 353457) (-2856 . 352990) (-2857 . 352935) + (-2858 . 352876) (-2859 . 352803) (-2860 . 352659) (-2861 . 352409) + (-2862 . 351992) (-2863 . 351738) (-2864 . 351619) (-2865 . 351478) + (-2866 . 351206) (-2867 . 347597) (-2868 . 347502) (-2869 . 347421) + (-2870 . 347278) (-2871 . 347007) (-2872 . 345905) (-2873 . 344682) + (-2874 . 344596) (-2875 . 344523) (-2876 . 344492) (-2877 . 344283) + (-2878 . 344206) (-2879 . 344174) (-2880 . 344008) (-2881 . 343953) + (-2882 . 343866) (-2883 . 343838) (-2884 . 343717) (-2885 . 343499) + (-2886 . 343376) (-2887 . 343229) (-2888 . 342970) (-2889 . 342891) + (-2890 . 342598) (-2891 . 342060) (-2892 . 342003) (-2893 . 341930) + (-2894 . 341820) (-2895 . 341548) (-2896 . 341433) (-2897 . 341356) + (-2898 . 341003) (-2899 . 340896) (-2900 . 340505) (-2901 . 340345) + (-2902 . 340232) (-2903 . 340125) (-2904 . 339975) (-2905 . 339889) + (-2906 . 339767) (-2907 . 339648) (-2908 . 339577) (-2909 . 339543) + (-2910 . 339490) (-2911 . 339370) (-2912 . 338998) (-2913 . 338564) + (-2914 . 337951) (-2915 . 337881) (-2916 . 337814) (-2917 . 337723) + (-2918 . 337476) (-2919 . 337352) (-2920 . 337264) (-2921 . 337171) + (-2922 . 336953) (-2923 . 336855) (-2924 . 336821) (-2925 . 336394) + (-2926 . 336342) (-2927 . 336280) (-2928 . 335698) (-2929 . 335457) + (-2930 . 335373) (-2931 . 335278) (-2932 . 335031) (-2933 . 334915) + (-2934 . 334819) (-2935 . 334748) (-2936 . 334675) (-2937 . 334041) + (-2938 . 333947) (-2939 . 333697) (-2940 . 333644) (-2941 . 333516) + (-2942 . 314941) (* . 310674) (-2944 . 310609) (-2945 . 310556) + (-2946 . 310269) (-2947 . 309683) (-2948 . 309623) (-2949 . 309571) + (-2950 . 309488) (-2951 . 309315) (-2952 . 309196) (-2953 . 308931) + (-2954 . 308835) (-2955 . 306014) (-2956 . 305811) (-2957 . 305783) + (-2958 . 305705) (-2959 . 305653) (-2960 . 305401) (-2961 . 305223) + (-2962 . 305093) (-2963 . 305009) (-2964 . 304810) (-2965 . 304106) + (-2966 . 304047) (-2967 . 303820) (-2968 . 303643) (-2969 . 303032) + (-2970 . 302507) (-2971 . 302478) (-2972 . 302379) (-2973 . 302249) + (-2974 . 301821) (-2975 . 301140) (-2976 . 300885) (-2977 . 300747) + (-2978 . 300682) (-2979 . 300648) (-2980 . 300519) (-2981 . 300247) + (-2982 . 299973) (-2983 . 299929) (-2984 . 299445) (-2985 . 299351) + (-2986 . 299174) (-2987 . 299121) (-2988 . 299033) (-2989 . 298722) + (-2990 . 298669) (-2991 . 298575) (-2992 . 298476) (-2993 . 298355) + (-2994 . 298061) (-2995 . 297916) (-2996 . 297736) (-2997 . 297663) + (-2998 . 297597) (-2999 . 297344) (-3000 . 297315) (-3001 . 297263) + (-3002 . 297099) (-3003 . 296955) (-3004 . 296799) (-3005 . 296568) + (-3006 . 296253) (-3007 . 295967) (-3008 . 295824) (-3009 . 295751) + (-3010 . 295638) (-3011 . 295582) (-3012 . 295500) (-3013 . 295334) + (-3014 . 295266) (-3015 . 295179) (-3016 . 295124) (-3017 . 294884) + (-3018 . 294803) (-3019 . 294658) (-3020 . 294522) (-3021 . 294195) + (-3022 . 294099) (-3023 . 294030) (-3024 . 293942) (-3025 . 293728) + (-3026 . 293662) (-3027 . 293503) (-3028 . 293092) (-3029 . 293058) + (-3030 . 292972) (-3031 . 292494) (-3032 . 292355) (-3033 . 292044) + (-3034 . 291852) (-3035 . 291694) (-3036 . 291350) (-3037 . 291230) + (-3038 . 291001) (-3039 . 290822) (-3040 . 290735) (-3041 . 290609) + (-3042 . 290553) (-3043 . 290435) (-3044 . 289851) (-3045 . 289822) + (-3046 . 289727) (-3047 . 289545) (-3048 . 289458) (-3049 . 289106) + (-3050 . 289011) (-3051 . 288883) (-3052 . 288782) (-3053 . 288641) + (-3054 . 288497) (-3055 . 287533) (-3056 . 287362) (-3057 . 287207) + (-3058 . 286865) (-3059 . 286788) (-3060 . 286645) (-3061 . 286560) + (-3062 . 286430) (-3063 . 286229) (-3064 . 286170) (-3065 . 286097) + (-3066 . 286002) (-3067 . 285610) (-3068 . 285557) (-3069 . 285505) + (-3070 . 285431) (-3071 . 285378) (-3072 . 285321) (-3073 . 285263) + (-3074 . 285132) (-3075 . 285098) (-3076 . 284965) (-3077 . 283779) + (-3078 . 283613) (-3079 . 283561) (-3080 . 283461) (-3081 . 283366) + (-3082 . 283053) (-3083 . 282956) (-3084 . 282887) (-3085 . 282688) + (-3086 . 282616) (-3087 . 282563) (-3088 . 281642) (-3089 . 281499) + (-3090 . 281163) (-3091 . 280869) (-3092 . 280816) (-3093 . 279634) + (-3094 . 278453) (-3095 . 278394) (-3096 . 278204) (-3097 . 278061) + (-3098 . 277990) (-3099 . 277694) (-3100 . 277612) (-3101 . 277432) + (-3102 . 277182) (-3103 . 274974) (-3104 . 274820) (-3105 . 274665) + (-3106 . 274584) (-3107 . 274449) (-3108 . 274375) (-3109 . 273533) + (-3110 . 273480) (-3111 . 273396) (-3112 . 273188) (-3113 . 273111) + (-3114 . 273028) (-3115 . 272869) (-3116 . 272792) (-3117 . 272664) + (-3118 . 271438) (-3119 . 270737) (-3120 . 270656) (-3121 . 270568) + (-3122 . 270398) (-3123 . 270319) (-3124 . 270073) (-3125 . 269846) + (-3126 . 269760) (-3127 . 269623) (-3128 . 269510) (-3129 . 269420) + (-3130 . 269255) (-3131 . 268940) (-3132 . 268732) (-3133 . 268636) + (-3134 . 268570) (-3135 . 268474) (-3136 . 268378) (-3137 . 268124) + (-3138 . 268074) (-3139 . 267787) (-3140 . 267703) (-3141 . 267619) + (-3142 . 266315) (-3143 . 266081) (-3144 . 265944) (-3145 . 265786) + (-3146 . 265733) (-3147 . 265676) (-3148 . 265130) (-3149 . 264874) + (-3150 . 264708) (-3151 . 264475) (-3152 . 264225) (-3153 . 264000) + (-3154 . 263926) (-3155 . 263832) (-3156 . 263780) (-3157 . 263680) + (-3158 . 263194) (-3159 . 262913) (-3160 . 262810) (-3161 . 262283) + (-3162 . 262217) (-3163 . 262132) (-3164 . 262061) (-3165 . 261895) + (-3166 . 261568) (-3167 . 261540) (-3168 . 261463) (-3169 . 261183) + (-3170 . 260965) (-3171 . 260899) (-3172 . 260676) (-3173 . 260109) + (-3174 . 260012) (-3175 . 259885) (-3176 . 259857) (-3177 . 259707) + (-3178 . 259488) (-3179 . 258969) (-3180 . 258915) (-3181 . 256500) + (-3182 . 256215) (-3183 . 256096) (-3184 . 255778) (-3185 . 255623) + (-3186 . 255527) (-3187 . 255454) (-3188 . 255395) (-3189 . 255211) + (-3190 . 254882) (-3191 . 254372) (-3192 . 254345) (-3193 . 254292) + (-3194 . 254200) (-3195 . 254061) (-3196 . 253995) (-3197 . 253778) + (-3198 . 253504) (-3199 . 253406) (-3200 . 253335) (-3201 . 253262) + (-3202 . 252689) (-3203 . 252629) (-3204 . 252349) (-3205 . 252248) + (-3206 . 252182) (-3207 . 251365) (-3208 . 251269) (-3209 . 251111) + (-3210 . 250935) (-3211 . 250867) (-3212 . 250627) (-3213 . 250482) + (-3214 . 250252) (-3215 . 250158) (-3216 . 249827) (-3217 . 249725) + (-3218 . 249607) (-3219 . 249492) (-3220 . 249336) (-3221 . 249186) + (-3222 . 249127) (-3223 . 249053) (-3224 . 248965) (-3225 . 248916) + (-3226 . 248709) (-3227 . 248654) (-3228 . 248535) (-3229 . 248283) + (-3230 . 248231) (-3231 . 248131) (-3232 . 248018) (-3233 . 247944) + (-3234 . 247888) (-3235 . 247811) (-3236 . 247703) (-3237 . 247524) + (-3238 . 247471) (-3239 . 247385) (-3240 . 247076) (-3241 . 246806) + (-3242 . 246732) (-3243 . 246590) (-3244 . 246094) (-3245 . 245998) + (-3246 . 245403) (-3247 . 245045) (-3248 . 244775) (-3249 . 244676) + (-3250 . 244593) (-3251 . 244464) (-3252 . 244167) (-3253 . 244065) + (-3254 . 244006) (-3255 . 243935) (-3256 . 243551) (-3257 . 243169) + (-3258 . 243083) (-3259 . 242938) (-3260 . 242837) (-3261 . 242572) + (-3262 . 242313) (-3263 . 242217) (-3264 . 241823) (-3265 . 241713) + (-3266 . 241647) (-3267 . 241584) (-3268 . 241532) (-3269 . 241369) + (-3270 . 241214) (-3271 . 241041) (-3272 . 240809) (-3273 . 240467) + (-3274 . 240336) (-3275 . 240265) (-3276 . 239679) (-3277 . 239593) + (-3278 . 239541) (-3279 . 239429) (-3280 . 239328) (-3281 . 239095) + (-3282 . 238982) (-3283 . 238680) (-3284 . 238535) (-3285 . 238467) + (-3286 . 238372) (-3287 . 238264) (-3288 . 238164) (-3289 . 237912) + (-3290 . 237545) (-3291 . 237326) (-3292 . 237214) (-3293 . 237159) + (-3294 . 236971) (-3295 . 236541) (-3296 . 236478) (-3297 . 236412) + (-3298 . 236384) (-3299 . 235417) (-3300 . 235347) (-3301 . 235146) + (-3302 . 234861) (-3303 . 234724) (-3304 . 234644) (-3305 . 234430) + (-3306 . 234296) (-3307 . 234210) (-3308 . 234124) (-3309 . 234030) + (-3310 . 233971) (-3311 . 233808) (-3312 . 233716) (-3313 . 233558) + (-3314 . 233442) (-3315 . 233410) (-3316 . 233354) (-3317 . 233191) + (-3318 . 233050) (-3319 . 232973) (-3320 . 232751) (-3321 . 232648) + (-3322 . 232582) (-3323 . 232419) (-3324 . 232196) (-3325 . 231981) + (-3326 . 231828) (-3327 . 231454) (-3328 . 231274) (-3329 . 231171) + (-3330 . 230611) (-3331 . 230338) (-3332 . 230228) (-3333 . 229998) + (-3334 . 229399) (-3335 . 228483) (-3336 . 228377) (-3337 . 228278) + (-3338 . 228057) (-3339 . 227809) (-3340 . 227730) (-3341 . 227679) + (-3342 . 227566) (-3343 . 227140) (-3344 . 226954) (-3345 . 226922) + (-3346 . 226824) (-3347 . 226682) (-3348 . 226473) (-3349 . 226027) + (-3350 . 225903) (-3351 . 225748) (-3352 . 225510) (-3353 . 225448) + (-3354 . 225393) (-3355 . 225084) (-3356 . 224990) (-3357 . 224882) + (-3358 . 224551) (-3359 . 224177) (-3360 . 224098) (-3361 . 224016) + (-3362 . 223937) (-3363 . 223865) (-3364 . 223813) (-3365 . 223661) + (-3366 . 223608) (-3367 . 223553) (-3368 . 223415) (-3369 . 223332) + (-3370 . 223211) (-3371 . 223123) (-3372 . 223010) (-3373 . 222887) + (-3374 . 222819) (-3375 . 222722) (-3376 . 222214) (-3377 . 222162) + (-3378 . 222081) (-3379 . 222021) (-3380 . 221877) (-3381 . 221683) + (-3382 . 221513) (-3383 . 221133) (-3384 . 219403) (-3385 . 219262) + (-3386 . 218994) (-3387 . 218923) (-3388 . 218838) (-3389 . 218783) + (-3390 . 218439) (-3391 . 218405) (-3392 . 218289) (-3393 . 217868) + (-3394 . 217708) (-3395 . 217634) (-3396 . 217510) (-3397 . 217416) + (-3398 . 217331) (-3399 . 217267) (-3400 . 217094) (-3401 . 216981) + (-3402 . 216358) (-3403 . 216291) (-3404 . 216231) (-3405 . 216101) + (-3406 . 215921) (-3407 . 215791) (-3408 . 215740) (-3409 . 215592) + (-3410 . 215498) (-3411 . 215400) (-3412 . 215317) (-3413 . 215222) + (-3414 . 215061) (-3415 . 214924) (-3416 . 214827) (-3417 . 214799) + (-3418 . 214691) (-3419 . 214617) (-3420 . 214562) (-3421 . 212776) + (-3422 . 212693) (-3423 . 212553) (-3424 . 212475) (-3425 . 212381) + (-3426 . 212280) (-3427 . 212112) (-3428 . 212030) (-3429 . 211942) + (-3430 . 211715) (-3431 . 211556) (-3432 . 211429) (-3433 . 211324) + (-3434 . 211238) (-3435 . 211166) (-3436 . 211098) (-3437 . 210903) + (-3438 . 210800) (-3439 . 210678) (-3440 . 210515) (-3441 . 210393) + (-3442 . 210183) (-3443 . 210078) (-3444 . 209919) (-3445 . 209815) + (-3446 . 209714) (-3447 . 209276) (-3448 . 209206) (-3449 . 209058) + (-3450 . 208989) (-3451 . 208767) (-3452 . 208715) (-3453 . 208644) + (-3454 . 208392) (-3455 . 208234) (-3456 . 208100) (-3457 . 207925) + (-3458 . 207873) (-3459 . 207557) (-3460 . 206803) (-3461 . 206706) + (-3462 . 206632) (-3463 . 206575) (-3464 . 206515) (-3465 . 206236) + (-3466 . 206055) (-3467 . 205951) (-3468 . 205865) (-3469 . 205784) + (-3470 . 205689) (-3471 . 205125) (-3472 . 204966) (-3473 . 204848) + (-3474 . 204625) (-3475 . 204401) (-3476 . 204248) (-3477 . 204151) + (-3478 . 204063) (-3479 . 203931) (-3480 . 203830) (-3481 . 203643) + (-3482 . 203591) (-3483 . 203329) (-3484 . 203176) (-3485 . 202896) + (-3486 . 202719) (-3487 . 202631) (-3488 . 202520) (-3489 . 202391) + (-3490 . 202340) (-3491 . 202059) (-3492 . 201947) (-3493 . 201895) + (-3494 . 201716) (-3495 . 201638) (-3496 . 201510) (-3497 . 201373) + (-3498 . 201323) (-3499 . 201129) (-3500 . 200823) (-3501 . 200585) + (-3502 . 200394) (-3503 . 200295) (-3504 . 200211) (-3505 . 200134) + (-3506 . 200082) (-3507 . 200026) (-3508 . 199650) (-3509 . 199598) + (-3510 . 199520) (-3511 . 199449) (-3512 . 199238) (-3513 . 198928) + (-3514 . 198657) (-3515 . 198443) (-3516 . 198341) (-3517 . 198245) + (-3518 . 198141) (-3519 . 198104) (-3520 . 198051) (-3521 . 198023) + (-3522 . 197803) (-3523 . 197717) (-3524 . 197551) (-3525 . 197480) + (-3526 . 197414) (-3527 . 195446) (-3528 . 195394) (-3529 . 194396) + (-3530 . 194258) (-3531 . 194221) (-3532 . 194135) (-3533 . 194058) + (-3534 . 193977) (-3535 . 193613) (-3536 . 193457) (-3537 . 193350) + (-3538 . 193205) (-3539 . 193171) (-3540 . 192795) (-3541 . 192620) + (-3542 . 192504) (-3543 . 192430) (-3544 . 192309) (-3545 . 192225) + (-3546 . 192048) (-3547 . 191834) (-3548 . 191784) (-3549 . 191632) + (-3550 . 190956) (-3551 . 190903) (-3552 . 190821) (-3553 . 190750) + (-3554 . 190634) (-3555 . 190581) (-3556 . 190529) (-3557 . 190338) + (-3558 . 190216) (-3559 . 188788) (-3560 . 188325) (-3561 . 188267) + (-3562 . 188184) (-3563 . 187999) (-3564 . 187939) (-3565 . 187823) + (-3566 . 187598) (-3567 . 187543) (-3568 . 187493) (-3569 . 187400) + (-3570 . 187241) (-3571 . 187142) (-3572 . 186807) (-3573 . 186692) + (-3574 . 185813) (-3575 . 185718) (-3576 . 185603) (-3577 . 185541) + (-3578 . 185254) (-3579 . 184993) (-3580 . 184923) (-3581 . 184857) + (-3582 . 184668) (-3583 . 183418) (-3584 . 183131) (-3585 . 182881) + (-3586 . 182751) (-3587 . 182374) (-3588 . 182204) (-3589 . 182060) + (-3590 . 181422) (-3591 . 181237) (-3592 . 180534) (-3593 . 180452) + (-3594 . 180261) (-3595 . 180209) (-3596 . 180103) (-3597 . 180015) + (-3598 . 179963) (-3599 . 179935) (-3600 . 179767) (-3601 . 179644) + (-3602 . 179463) (-3603 . 179390) (-3604 . 179210) (-3605 . 179107) + (-3606 . 179021) (-3607 . 178825) (-3608 . 178723) (-3609 . 177866) + (-3610 . 177783) (-3611 . 177714) (-3612 . 177543) (-3613 . 177489) + (-3614 . 177321) (-3615 . 177176) (-3616 . 177003) (-3617 . 176897) + (-3618 . 176354) (-3619 . 176299) (-3620 . 176237) (-3621 . 175524) + (-3622 . 172683) (-3623 . 172588) (-3624 . 172428) (-3625 . 172086) + (-3626 . 171982) (-3627 . 171800) (-3628 . 171581) (-3629 . 171457) + (-3630 . 170855) (-3631 . 170737) (-3632 . 170684) (-3633 . 170536) + (-3634 . 170484) (-3635 . 170305) (-3636 . 169946) (-3637 . 169843) + (-3638 . 169747) (-3639 . 169564) (-3640 . 169481) (-3641 . 169402) + (-3642 . 169217) (-3643 . 169180) (-3644 . 169046) (-3645 . 168964) + (-3646 . 168867) (-3647 . 168808) (-3648 . 168716) (-3649 . 168537) + (-3650 . 168503) (-3651 . 168313) (-3652 . 168191) (-3653 . 167899) + (-3654 . 167800) (-3655 . 167704) (-3656 . 167610) (-3657 . 167582) + (-3658 . 167433) (-3659 . 167155) (-3660 . 166997) (-3661 . 166854) + (-3662 . 166758) (-3663 . 166604) (-3664 . 166516) (-3665 . 165973) + (-3666 . 165920) (-3667 . 165575) (-3668 . 165450) (-3669 . 164946) + (-3670 . 164753) (-3671 . 164655) (-3672 . 164437) (-3673 . 164363) + (-3674 . 164153) (-3675 . 164074) (-3676 . 163539) (-3677 . 163335) + (-3678 . 162921) (-3679 . 162714) (-3680 . 162600) (-3681 . 162492) + (-3682 . 162090) (-3683 . 162019) (-3684 . 161579) (-3685 . 161421) + (-3686 . 161372) (-3687 . 161235) (-3688 . 161078) (-3689 . 161004) + (-3690 . 160566) (-3691 . 160485) (-3692 . 160331) (-3693 . 160274) + (-3694 . 159899) (-3695 . 159834) (-3696 . 159765) (-3697 . 159737) + (-3698 . 159670) (-3699 . 159586) (-3700 . 159507) (-3701 . 159176) + (-3702 . 159120) (-3703 . 158798) (-3704 . 158580) (-3705 . 158462) + (-3706 . 158410) (-3707 . 158276) (-3708 . 158154) (-3709 . 158048) + (-3710 . 157992) (-3711 . 157504) (-3712 . 157445) (-3713 . 157078) + (-3714 . 156964) (-3715 . 156901) (-3716 . 155941) (-3717 . 155842) + (-3718 . 155592) (-3719 . 155271) (-3720 . 155204) (-3721 . 155058) + (-3722 . 154956) (-3723 . 154886) (-3724 . 154740) (-3725 . 154445) + (-3726 . 154332) (-3727 . 154270) (-3728 . 154211) (-3729 . 154156) + (-3730 . 153956) (-3731 . 152808) (-3732 . 152752) (-3733 . 152651) + (-3734 . 152508) (-3735 . 152429) (-3736 . 152253) (-3737 . 152134) + (-3738 . 152050) (-3739 . 151782) (-3740 . 151662) (-3741 . 151634) + (-3742 . 151550) (-3743 . 151453) (-3744 . 151401) (-3745 . 151189) + (-3746 . 151046) (-3747 . 150911) (-3748 . 150859) (-3749 . 150778) + (-3750 . 150724) (-3751 . 150446) (-3752 . 150076) (-3753 . 149694) + (-3754 . 149479) (-3755 . 149312) (-3756 . 149226) (-3757 . 149176) + (-3758 . 149058) (-3759 . 148978) (-3760 . 148850) (-3761 . 148755) + (-3762 . 148597) (-3763 . 148563) (-3764 . 148396) (-3765 . 148314) + (-3766 . 148159) (-3767 . 147608) (-3768 . 147489) (-3769 . 147429) + (-3770 . 147201) (-3771 . 147064) (-3772 . 146785) (-3773 . 146653) + (-3774 . 146621) (-3775 . 146483) (-3776 . 146428) (-3777 . 146226) + (-3778 . 146149) (-3779 . 146082) (-3780 . 146005) (-3781 . 145879) + (-3782 . 145750) (-3783 . 145578) (-3784 . 145459) (-3785 . 145241) + (-3786 . 145114) (-3787 . 144723) (-3788 . 144673) (-3789 . 143903) + (-3790 . 143561) (-3791 . 143437) (-3792 . 143277) (-3793 . 143111) + (-3794 . 143031) (-3795 . 142974) (-3796 . 142868) (-3797 . 142705) + (-3798 . 141365) (-3799 . 141313) (-3800 . 141200) (-3801 . 141056) + (-3802 . 140699) (-3803 . 140583) (-3804 . 140510) (-3805 . 140386) + (-3806 . 140355) (-3807 . 139974) (-3808 . 139943) (-3809 . 139539) + (-3810 . 138721) (-3811 . 138416) (-3812 . 138266) (-3813 . 138229) + (-3814 . 138127) (-3815 . 138071) (-3816 . 137946) (-3817 . 137879) + (-3818 . 137781) (-3819 . 137693) (-3820 . 137552) (-3821 . 137413) + (-3822 . 137126) (-3823 . 136908) (-3824 . 136879) (-3825 . 136663) + (-3826 . 136453) (-3827 . 136363) (-3828 . 136292) (-3829 . 136093) + (-3830 . 136061) (-3831 . 135785) (-3832 . 135618) (-3833 . 135569) + (-3834 . 134477) (-3835 . 134411) (-3836 . 134126) (-3837 . 134043) + (-3838 . 133902) (-3839 . 133821) (-3840 . 133675) (-3841 . 133300) + (-3842 . 133184) (-3843 . 133110) (-3844 . 132744) (-3845 . 132619) + (-3846 . 132432) (-3847 . 132288) (-3848 . 132167) (-3849 . 132018) + (-3850 . 131411) (-3851 . 131316) (-3852 . 131245) (-3853 . 131171) + (-3854 . 130981) (-3855 . 130771) (-3856 . 130493) (-3857 . 130294) + (-3858 . 130120) (-3859 . 130039) (-3860 . 129958) (-3861 . 129903) + (-3862 . 129758) (-3863 . 129662) (-3864 . 129543) (-3865 . 129265) + (-3866 . 129213) (-3867 . 129055) (-3868 . 128989) (-3869 . 128815) + (-3870 . 128195) (-3871 . 127902) (-3872 . 127770) (-3873 . 127608) + (-3874 . 127220) (-3875 . 127111) (-3876 . 126838) (-3877 . 126729) + (-3878 . 126643) (-3879 . 126590) (-3880 . 126465) (-3881 . 126367) + (-3882 . 126034) (-3883 . 125857) (-3884 . 125585) (-3885 . 125484) + (-3886 . 125359) (-3887 . 125240) (-3888 . 125051) (-3889 . 124947) + (-3890 . 124609) (-3891 . 124532) (-3892 . 124435) (-3893 . 124349) + (-3894 . 124239) (-3895 . 123822) (-3896 . 123761) (-3897 . 123704) + (-3898 . 123605) (-3899 . 123404) (-3900 . 123345) (-3901 . 123190) + (-3902 . 122798) (-3903 . 122460) (-3904 . 120397) (-3905 . 119886) + (-3906 . 119817) (-3907 . 119349) (-3908 . 119206) (-3909 . 119104) + (-3910 . 118988) (-3911 . 118898) (-3912 . 118730) (-3913 . 118532) + (-3914 . 117664) (-3915 . 117568) (-3916 . 117509) (-3917 . 117425) + (-3918 . 117352) (-3919 . 117248) (-3920 . 117178) (-3921 . 117082) + (-3922 . 116924) (-3923 . 116852) (-3924 . 116517) (-3925 . 116321) + (-3926 . 116208) (-3927 . 116152) (-3928 . 116074) (-3929 . 115941) + (-3930 . 115913) (-3931 . 115261) (-3932 . 115054) (-3933 . 114683) + (-3934 . 114593) (-3935 . 114541) (-3936 . 114337) (-3937 . 114233) + (-3938 . 114104) (-3939 . 113904) (-3940 . 113809) (-3941 . 113664) + (-3942 . 113608) (-3943 . 113554) (-3944 . 113464) (-3945 . 113408) + (-3946 . 113260) (-3947 . 113053) (-3948 . 112993) (-3949 . 112927) + (-3950 . 112850) (-3951 . 112716) (-3952 . 112606) (-3953 . 112527) + (-3954 . 112360) (-3955 . 111842) (-3956 . 111786) (-3957 . 111663) + (-3958 . 111414) (-3959 . 111362) (-3960 . 109584) (-3961 . 109507) + (-3962 . 109454) (-3963 . 109384) (-3964 . 109305) (-3965 . 109251) + (-3966 . 109152) (-3967 . 108898) (-3968 . 108779) (-3969 . 108726) + (-3970 . 108652) (-3971 . 108349) (-3972 . 108059) (-3973 . 107967) + (-3974 . 107728) (-3975 . 107598) (-3976 . 107545) (-3977 . 107281) + (-3978 . 107225) (-3979 . 107105) (-3980 . 106952) (-3981 . 106796) + (-3982 . 106767) (-3983 . 106697) (-3984 . 106321) (-3985 . 105958) + (-3986 . 105884) (-3987 . 105082) (-3988 . 104994) (-3989 . 104941) + (-3990 . 104889) (-3991 . 104837) (-3992 . 104728) (-3993 . 104540) + (-3994 . 104474) (-3995 . 104424) (-3996 . 104063) (-3997 . 103822) + (-3998 . 103558) (-3999 . 103465) (-4000 . 103406) (-4001 . 102960) + (-4002 . 102622) (-4003 . 102571) (-4004 . 102433) (-4005 . 102147) + (-4006 . 102065) (-4007 . 101982) (-4008 . 101867) (-4009 . 101783) + (-4010 . 101713) (-4011 . 101467) (-4012 . 101304) (-4013 . 101242) + (-4014 . 101142) (-4015 . 100831) (-4016 . 100408) (-4017 . 100248) + (-4018 . 100152) (-4019 . 99939) (-4020 . 99883) (-4021 . 99788) + (-4022 . 99261) (-4023 . 99187) (-4024 . 98946) (-4025 . 98736) + (-4026 . 98560) (-4027 . 98172) (-4028 . 98057) (-4029 . 97971) + (-4030 . 97773) (-4031 . 97706) (-4032 . 97628) (-4033 . 97337) + (-4034 . 97230) (-4035 . 97058) (-4036 . 96595) (-4037 . 96526) + (-4038 . 96425) (-4039 . 96203) (-4040 . 96134) (-4041 . 96048) + (-4042 . 95996) (-4043 . 95867) (-4044 . 95560) (-4045 . 95075) + (-4046 . 94716) (-4047 . 94646) (-4048 . 94543) (-4049 . 94325) + (-4050 . 94018) (-4051 . 93880) (-4052 . 93454) (-4053 . 93259) + (-4054 . 93204) (-4055 . 93147) (-4056 . 92905) (-4057 . 92827) + (-4058 . 92726) (-4059 . 92252) (-4060 . 92182) (-4061 . 90884) + (-4062 . 90755) (-4063 . 90667) (-4064 . 90570) (-4065 . 90518) + (-4066 . 90320) (-4067 . 90225) (-4068 . 90093) (-4069 . 89960) + (-4070 . 89802) (-4071 . 89399) (-4072 . 89327) (-4073 . 88934) + (-4074 . 88821) (-4075 . 88645) (-4076 . 88513) (-4077 . 88416) + (-4078 . 88284) (-4079 . 88191) (-4080 . 87879) (-4081 . 87720) + (-4082 . 87110) (-4083 . 87013) (-4084 . 86881) (-4085 . 86701) + (-4086 . 86597) (-4087 . 86540) (-4088 . 86463) (-4089 . 86269) + (-4090 . 86207) (-4091 . 86124) (-4092 . 85964) (-4093 . 85870) + (-4094 . 85809) (-4095 . 85726) (-4096 . 85373) (-4097 . 85320) + (-4098 . 85042) (-4099 . 84576) (-4100 . 84497) (-4101 . 84179) + (-4102 . 84108) (-4103 . 83990) (-4104 . 83902) (-4105 . 83640) + (-4106 . 83567) (-4107 . 83443) (-4108 . 83329) (-4109 . 83198) + (-4110 . 83099) (-4111 . 82889) (-4112 . 82811) (-4113 . 82743) + (-4114 . 82691) (-4115 . 82401) (-4116 . 82327) (-4117 . 82253) + (-4118 . 81951) (-4119 . 81656) (-4120 . 80999) (-4121 . 80777) + (-4122 . 80567) (-4123 . 80471) (-4124 . 80421) (-4125 . 80307) + (-4126 . 80102) (-4127 . 79869) (-4128 . 79768) (-4129 . 79674) + (-4130 . 75514) (-4131 . 75462) (-4132 . 75396) (-4133 . 75231) + (-4134 . 74555) (-4135 . 74395) (-4136 . 74002) (-4137 . 73924) + (-4138 . 73280) (-4139 . 73207) (-4140 . 73059) (-4141 . 73002) + (-4142 . 70870) (-4143 . 69800) (-4144 . 68735) (-4145 . 68681) + (-4146 . 68414) (-4147 . 68209) (-4148 . 68121) (-4149 . 67961) + (-4150 . 67832) (-4151 . 67758) (-4152 . 67510) (-4153 . 67415) + (-4154 . 67275) (-4155 . 67118) (-4156 . 66488) (-4157 . 66381) + (-4158 . 66206) (-4159 . 65914) (-4160 . 65711) (-4161 . 65680) + (-4162 . 65598) (-4163 . 65536) (-4164 . 65446) (-4165 . 65346) + (-4166 . 65251) (-4167 . 65095) (-4168 . 64934) (-4169 . 64805) + (-4170 . 64728) (-4171 . 64592) (-4172 . 64518) (-4173 . 63351) + (-4174 . 63279) (-4175 . 63183) (-4176 . 62980) (-4177 . 62907) + (-4178 . 62607) (-4179 . 62480) (-4180 . 62392) (-4181 . 62040) + (-4182 . 61974) (-4183 . 61703) (-4184 . 61393) (-4185 . 61319) + (-4186 . 61196) (-4187 . 60870) (-4188 . 60793) (-4189 . 60727) + (-4190 . 60281) (-4191 . 60223) (-4192 . 60089) (-4193 . 58687) + (-4194 . 58374) (-4195 . 58270) (-4196 . 58204) (-4197 . 57986) + (-4198 . 57912) (-4199 . 57815) (-4200 . 57650) (-4201 . 57552) + (-4202 . 57458) (-4203 . 57305) (-4204 . 57250) (-4205 . 57155) + (-4206 . 57103) (-4207 . 57002) (-4208 . 56914) (-4209 . 56026) + (-4210 . 55911) (-4211 . 55859) (-4212 . 55746) (-4213 . 55652) + (-4214 . 55590) (-4215 . 55562) (-4216 . 55483) (-4217 . 55387) + (-4218 . 49873) (-4219 . 49844) (-4220 . 49772) (-4221 . 49703) + (-4222 . 49669) (-4223 . 46370) (-4224 . 46151) (-4225 . 46098) + (-4226 . 45806) (-4227 . 45612) (-4228 . 45219) (-4229 . 45100) + (-4230 . 45012) (-4231 . 44903) (-4232 . 44836) (-4233 . 44734) + (-4234 . 44220) (-4235 . 44107) (-4236 . 44029) (-4237 . 43802) + (-4238 . 43360) (-4239 . 43289) (-4240 . 43103) (-4241 . 42885) + (-4242 . 42820) (-4243 . 42662) (-4244 . 42560) (-4245 . 42312) + (-4246 . 42238) (-4247 . 42153) (-4248 . 41818) (-4249 . 41420) + (-4250 . 41343) (-4251 . 41290) (-4252 . 41207) (-4253 . 41179) + (-4254 . 41038) (-4255 . 40889) (-4256 . 40641) (-4257 . 40496) + (-4258 . 40341) (-4259 . 40267) (-4260 . 40187) (-4261 . 40088) + (-4262 . 39987) (-4263 . 39864) (-4264 . 39704) (-4265 . 39467) + (-4266 . 39337) (-4267 . 39111) (-4268 . 38969) (-4269 . 38834) + (-4270 . 38730) (-4271 . 38490) (-4272 . 38430) (-4273 . 38347) + (-4274 . 38187) (-4275 . 38029) (-4276 . 37928) (-4277 . 37753) + (-4278 . 37601) (-4279 . 37472) (-4280 . 37257) (-4281 . 37155) + (-4282 . 37092) (-4283 . 37022) (-4284 . 36798) (-4285 . 36351) + (-4286 . 36066) (-4287 . 35920) (-4288 . 35840) (-4289 . 35716) + (-4290 . 35655) (-4291 . 35275) (-4292 . 34986) (-4293 . 34828) + (-4294 . 34725) (-4295 . 34639) (-4296 . 34560) (-4297 . 34460) + (-4298 . 34145) (-4299 . 34043) (-4300 . 33849) (-4301 . 33678) + (-4302 . 33537) (-4303 . 33378) (-4304 . 33175) (-4305 . 32968) + (-4306 . 32909) (-4307 . 32805) (-4308 . 32376) (-4309 . 32324) + (-4310 . 31903) (-4311 . 31780) (-4312 . 31684) (-4313 . 30504) + (-4314 . 30324) (-4315 . 30089) (-4316 . 29917) (-4317 . 28328) + (-4318 . 28120) (-4319 . 27967) (-4320 . 27821) (-4321 . 27561) + (-4322 . 27342) (-4323 . 27274) (-4324 . 26738) (-4325 . 26507) + (-4326 . 26425) (-4327 . 26288) (-4328 . 26202) (-4329 . 26174) + (-4330 . 26079) (-4331 . 25810) (-4332 . 25592) (-4333 . 25380) + (-4334 . 23750) (-4335 . 23547) (-4336 . 23488) (-4337 . 23414) + (-4338 . 23052) (-4339 . 23000) (-4340 . 22921) (-4341 . 22835) + (-4342 . 22082) (-4343 . 22031) (-4344 . 21172) (-4345 . 21122) + (-4346 . 20917) (-4347 . 20779) (-4348 . 20636) (-4349 . 20489) + (-4350 . 20348) (-4351 . 20190) (-4352 . 20141) (-4353 . 20041) + (-4354 . 18745) (-4355 . 18509) (-4356 . 18384) (-4357 . 18022) + (-4358 . 17812) (-4359 . 17706) (-4360 . 17489) (-4361 . 17158) + (-4362 . 17081) (-4363 . 16654) (-4364 . 16572) (-4365 . 16390) + (-4366 . 16356) (-4367 . 16290) (-4368 . 16019) (-4369 . 15766) + (-4370 . 15706) (-4371 . 15610) (-4372 . 15026) (-4373 . 14846) + (-4374 . 14795) (-4375 . 14500) (-4376 . 14426) (-4377 . 14019) + (-4378 . 13610) (-4379 . 13532) (-4380 . 13467) (-4381 . 12579) + (-4382 . 12527) (-4383 . 12443) (-4384 . 12348) (-4385 . 12296) + (-4386 . 11920) (-4387 . 11698) (-4388 . 11646) (-4389 . 11552) + (-4390 . 11479) (-4391 . 11383) (-4392 . 11214) (-4393 . 11146) + (-4394 . 11118) (-4395 . 11059) (-4396 . 10957) (-4397 . 10884) + (-4398 . 10692) (-4399 . 10509) (-4400 . 10475) (-4401 . 8709) + (-4402 . 8632) (-4403 . 8583) (-4404 . 8555) (-4405 . 8412) + (-4406 . 8233) (-4407 . 8059) (-4408 . 8000) (-4409 . 7872) + (-4410 . 7734) (-4411 . 7663) (-4412 . 6208) (-4413 . 6158) + (-4414 . 6088) (-4415 . 5935) (-4416 . 5876) (-4417 . 5166) + (-4418 . 5023) (-4419 . 4895) (-4420 . 4821) (-4421 . 4708) + (-4422 . 4483) (-4423 . 2993) (-4424 . 2316) (-4425 . 2168) + (-4426 . 1990) (-4427 . 1791) (-4428 . 1698) (-4429 . 1540) + (-4430 . 1474) (-4431 . 1401) (-4432 . 1260) (-4433 . 1086) + (-4434 . 372) (-4435 . 30))
\ No newline at end of file |